|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""TODO: Add a description here.""" |
|
|
|
|
|
import xml.etree.ElementTree as ET |
|
import os |
|
|
|
import datasets |
|
from datasets import ClassLabel |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{pontiki-etal-2014-semeval, |
|
title = "{S}em{E}val-2014 Task 4: Aspect Based Sentiment Analysis", |
|
author = "Pontiki, Maria and |
|
Galanis, Dimitris and |
|
Pavlopoulos, John and |
|
Papageorgiou, Harris and |
|
Androutsopoulos, Ion and |
|
Manandhar, Suresh", |
|
booktitle = "Proceedings of the 8th International Workshop on Semantic Evaluation ({S}em{E}val 2014)", |
|
month = aug, |
|
year = "2014", |
|
address = "Dublin, Ireland", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/S14-2004", |
|
doi = "10.3115/v1/S14-2004", |
|
pages = "27--35", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
These are the datasets for Aspect Based Sentiment Analysis (ABSA), Task 4 of SemEval-2014. |
|
""" |
|
|
|
_HOMEPAGE = "https://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools" |
|
|
|
|
|
_LICENSE = "" |
|
|
|
|
|
|
|
|
|
_URLS = { |
|
"restaurants": {"train": "SemEval'14-ABSA-TrainData_v2 & AnnotationGuidelines/Restaurants_Train_v2.xml", |
|
"test": "ABSA_Gold_TestData/Restaurants_Test_Gold.xml"}, |
|
"laptops": {"train": "SemEval'14-ABSA-TrainData_v2 & AnnotationGuidelines/Laptop_Train_v2.xml", |
|
"test": "ABSA_Gold_TestData/Laptops_Test_Gold.xml"}, |
|
} |
|
|
|
|
|
class SemEval2014Task4(datasets.GeneratorBasedBuilder): |
|
"""These are the datasets for Aspect Based Sentiment Analysis (ABSA), Task 4 of SemEval-2014.""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="restaurants", version=VERSION, description="Restaurant review sentences"), |
|
datasets.BuilderConfig(name="laptops", version=VERSION, description="Laptop review sentences"), |
|
] |
|
|
|
|
|
|
|
def _info(self): |
|
|
|
if self.config.name == "restaurants": |
|
features = datasets.Features( |
|
{'sentenceId': datasets.Value(dtype='string'), |
|
'text': datasets.Value(dtype='string'), |
|
'aspectTerms': [ |
|
{'term': datasets.Value(dtype='string'), |
|
'polarity': ClassLabel(num_classes=4, names=['positive', 'negative', 'neutral', 'conflict']), |
|
'from': datasets.Value(dtype='string'), |
|
'to': datasets.Value(dtype='string')} |
|
], |
|
'aspectCategories': [ |
|
{'category': ClassLabel(num_classes=5, names=['food', 'service', 'price', 'ambience', 'anecdotes/miscellaneous']), |
|
'polarity': ClassLabel(num_classes=4, names=['positive', 'negative', 'neutral', 'conflict'])} |
|
], |
|
'domain': ClassLabel(num_classes=2, names=['restaurants', 'laptops']) |
|
} |
|
) |
|
elif self.config.name == "laptops": |
|
features = datasets.Features( |
|
{'sentenceId': datasets.Value(dtype='string'), |
|
'text': datasets.Value(dtype='string'), |
|
'aspectTerms': [ |
|
{'term': datasets.Value(dtype='string'), |
|
'polarity': ClassLabel(num_classes=4, names=['positive', 'negative', 'neutral', 'conflict']), |
|
'from': datasets.Value(dtype='string'), |
|
'to': datasets.Value(dtype='string')} |
|
], |
|
'domain': ClassLabel(num_classes=2, names=['restaurants', 'laptops']) |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
|
|
|
|
|
|
|
|
|
|
urls = _URLS[self.config.name] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": data_dir['train'], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"filepath": data_dir['test'], |
|
"split": "test" |
|
}, |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, filepath, split): |
|
|
|
|
|
tree = ET.parse(filepath) |
|
root = tree.getroot() |
|
for id_, sentence in enumerate(root.iter("sentence")): |
|
sentenceId = sentence.attrib.get("id") |
|
text = sentence.find("text").text |
|
aspectTerms = [] |
|
for aspectTerm in sentence.iter("aspectTerm"): |
|
aspectTerms.append(aspectTerm.attrib) |
|
if self.config.name == "restaurants": |
|
aspectCategories = [] |
|
for aspectCategory in sentence.iter("aspectCategory"): |
|
aspectCategories.append(aspectCategory.attrib) |
|
yield id_, { |
|
"sentenceId": sentenceId, |
|
"text": text, |
|
"aspectTerms": aspectTerms, |
|
"aspectCategories": aspectCategories, |
|
"domain": self.config.name, |
|
} |
|
elif self.config.name == 'laptops': |
|
yield id_, { |
|
"sentenceId": sentenceId, |
|
"text": text, |
|
"aspectTerms": aspectTerms, |
|
"domain": self.config.name, |
|
} |