|
import csv |
|
import os |
|
import json |
|
|
|
import datasets |
|
|
|
|
|
|
|
|
|
_CITATION = """ TBD """ |
|
|
|
_DESCRIPTION = """\ |
|
ALORESB is a collection of african speech corpus for ASR Task. |
|
""" |
|
|
|
_DL_URL_FORMAT = "audio/{name}" |
|
|
|
class AloresbConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for aloresb""" |
|
def __init__( |
|
self, name, **kwargs |
|
): |
|
""" |
|
Args: |
|
name: name of the configuration |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(AloresbConfig, self).__init__( |
|
version=datasets.Version("1.0.0", ""), name=name, **kwargs) |
|
self.data_root_url = _DL_URL_FORMAT.format(name=name) |
|
|
|
|
|
|
|
class Aloresb(datasets.GeneratorBasedBuilder): |
|
""" |
|
The Aloresb dataset |
|
""" |
|
BUILDER_CONFIGS = [ |
|
AloresbConfig(name="fongbe", description="Fongbe aloresb dataset"), |
|
AloresbConfig(name="hausa", description="Hausa aloresb dataset"), |
|
AloresbConfig(name="ahmaric", description="Ahmaric aloresb dataset"), |
|
AloresbConfig(name="wolof", description="Wolof aloresb dataset"), |
|
AloresbConfig(name="swahili", description="Swahili aloresb dataset"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"file": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"audio_id": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=("file", "text"), |
|
task_templates=None, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
""" |
|
Returns SplitGenerators. |
|
""" |
|
|
|
if self.config.name in ["hausa", "wolof"]: |
|
transcripts = dl_manager.download({ |
|
"train": self.config.data_root_url + "/train/transcripts.txt", |
|
"dev": self.config.data_root_url + "/dev/transcripts.txt", |
|
"test": self.config.data_root_url + "/test/transcripts.txt", |
|
}) |
|
audio_filenames_paths = dl_manager.download({ |
|
"train": self.config.data_root_url + "/train/audio_filenames.txt", |
|
"dev": self.config.data_root_url + "/dev/audio_filenames.txt", |
|
"test": self.config.data_root_url + "/test/audio_filenames.txt", |
|
}) |
|
else: |
|
transcripts = dl_manager.download({ |
|
"train": self.config.data_root_url + "/train/transcripts.txt", |
|
"test": self.config.data_root_url + "/test/transcripts.txt", |
|
}) |
|
|
|
audio_filenames_paths = dl_manager.download({ |
|
"train": self.config.data_root_url + "/train/audio_filenames.txt", |
|
"test": self.config.data_root_url + "/test/audio_filenames.txt", |
|
}) |
|
|
|
|
|
|
|
audio_archives = {} |
|
for split in audio_filenames_paths: |
|
if os.path.exists(audio_filenames_paths[split]): |
|
with open(audio_filenames_paths[split], encoding="utf-8") as f: |
|
audio_filenames = [line.strip() for line in f.readlines()] |
|
audio_archives[split] = dl_manager.download([ |
|
self.config.data_root_url + "/" + split + "/audio/" + filename |
|
for filename in audio_filenames |
|
]) |
|
|
|
local_extracted_archives = dl_manager.extract(audio_archives) if not dl_manager.is_streaming else {} |
|
|
|
train_splits = [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"transcript_path": transcripts["train"], |
|
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_archives["train"]], |
|
"local_extracted_archive": local_extracted_archives.get("train"), |
|
} |
|
), |
|
] |
|
if self.config.name in ["hausa", "wolof"]: |
|
return train_splits + [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, gen_kwargs={ |
|
"transcript_path": transcripts["dev"], |
|
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_archives["dev"]], |
|
"local_extracted_archive": local_extracted_archives.get("dev"), |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={ |
|
"transcript_path": transcripts["test"], |
|
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_archives["test"]], |
|
"local_extracted_archive": local_extracted_archives.get("test"), |
|
} |
|
), |
|
] |
|
return train_splits + [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={ |
|
"transcript_path": transcripts["test"], |
|
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_archives["test"]], |
|
"local_extracted_archive": local_extracted_archives.get("test"), |
|
} |
|
), |
|
] |
|
|
|
def _generate_examples(self, transcript_path, audio_archives, local_extracted_archive): |
|
""" |
|
Generate examples as dicts. |
|
""" |
|
transcripts = {} |
|
with open(transcript_path, encoding="utf-8") as f: |
|
for line in f: |
|
audio_id, text = line.strip().split("\t") |
|
transcripts[audio_id] = text |
|
|
|
for archive_idx, audio_archive in enumerate(audio_archives): |
|
for audio_filename, file in audio_archive: |
|
|
|
ext = os.path.splitext(audio_filename)[1] |
|
audio_id = audio_filename.split(ext)[0] |
|
audio_transcript = transcripts[audio_id] |
|
|
|
local_audio_file_path = os.path.join( |
|
local_extracted_archive[archive_idx], audio_filename |
|
) if local_extracted_archive else None |
|
yield audio_filename, { |
|
"file": local_audio_file_path, |
|
|
|
|
|
|
|
|
|
"text": audio_transcript, |
|
"audio_id": audio_id |
|
} |
|
|
|
|
|
|
|
|