--- language: - en task_categories: - sentence-similarity dataset_info: config_name: triplet features: - name: query dtype: string - name: positive dtype: string - name: negative dtype: string splits: - name: train num_bytes: 12581563.792427007 num_examples: 42076 - name: test num_bytes: 3149278.207572993 num_examples: 10532 download_size: 1254810 dataset_size: 15730842 configs: - config_name: triplet data_files: - split: train path: triplet/train-* - split: test path: triplet/test-* --- This dataset is the triplet subset of https://huggingface.co/datasets/sentence-transformers/sql-questions with a train and test split. The test split can be passed to [`TripletEvaluator`](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#tripletevaluator). The train and test spilts don't have any queries in common.
Here's the full script used to generate this dataset ```python import os import datasets from sklearn.model_selection import train_test_split dataset = datasets.load_dataset( "sentence-transformers/sql-questions", "triplet", split="train" ) queries_unique = list({record["query"]: None for record in dataset}) # Use a dict for deterministic (insertion) order len(queries_unique) queries_tr, queries_te = train_test_split( queries_unique, test_size=0.2, random_state=42 ) queries_tr = set(queries_tr) queries_te = set(queries_te) train_dataset = dataset.filter(lambda record: record["query"] in queries_tr) test_dataset = dataset.filter(lambda record: record["query"] in queries_te) assert not set(train_dataset["query"]) & set(test_dataset["query"]) assert len(train_dataset) + len(test_dataset) == len(dataset) dataset_dict = datasets.DatasetDict({"train": train_dataset, "test": test_dataset}) dataset_dict.push_to_hub( "aladar/sql-questions", config_name="triplet", token=os.environ["HF_TOKEN_CREATE"] ) ```