--- dataset_info: features: - name: image_id dtype: string - name: caption dtype: string - name: cui sequence: string splits: - name: train num_bytes: 11668074 num_examples: 59962 - name: validation num_bytes: 2024347 num_examples: 9904 - name: test num_bytes: 2028034 num_examples: 9927 download_size: 7123511 dataset_size: 15720455 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* --- ## Citation If you use the ROCOv2 dataset in your research, please cite the following paper: Pelka, O., Menze, B. H., & Rexhausen, S. E. (2023). Radiology Objects in COntext version 2 (ROCOv2): A multimodal dataset for medical image analysis. arXiv preprint arXiv:2405.10004. ```latex @misc {ronan_l.m._2024, author = { {Ronan L.M.} }, title = { ROCOv2-radiology (Revision 5d66908) }, year = 2024, url = { https://huggingface.co/datasets/eltorio/ROCOv2-radiology }, doi = { 10.57967/hf/3489 }, publisher = { Hugging Face } } ``` ## License The ROCOv2 dataset is licensed under the CC BY-NC-SA 4.0 license. ## Acknowledgments We acknowledge the National Library of Medicine (NLM) for providing access to the PMC Open Access Subset. We also acknowledge the creators of the Medical Concept Annotation Toolkit (MedCAT) for providing a valuable tool for concept extraction and annotation.