Commit
·
ca29e1a
0
Parent(s):
Update files from the datasets library (from 1.4.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.4.0
- .gitattributes +27 -0
- README.md +321 -0
- ccaligned_multilingual.py +216 -0
- dataset_infos.json +1 -0
- dummy/documents-ak_GH/1.0.0/dummy_data.zip +3 -0
- dummy/documents-tz_MA/1.0.0/dummy_data.zip +3 -0
- dummy/documents-zz_TR/1.0.0/dummy_data.zip +3 -0
- dummy/sentences-ak_GH/1.0.0/dummy_data.zip +3 -0
- dummy/sentences-tz_MA/1.0.0/dummy_data.zip +3 -0
- dummy/sentences-zz_TR/1.0.0/dummy_data.zip +3 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- no-annotation
|
4 |
+
language_creators:
|
5 |
+
- found
|
6 |
+
languages:
|
7 |
+
- af
|
8 |
+
- ak
|
9 |
+
- am
|
10 |
+
- ar
|
11 |
+
- as
|
12 |
+
- ay
|
13 |
+
- az
|
14 |
+
- be
|
15 |
+
- bg
|
16 |
+
- bm
|
17 |
+
- bn
|
18 |
+
- br
|
19 |
+
- bs
|
20 |
+
- ca
|
21 |
+
- cb
|
22 |
+
- cs
|
23 |
+
- cx
|
24 |
+
- cy
|
25 |
+
- de
|
26 |
+
- dv
|
27 |
+
- el
|
28 |
+
- eo
|
29 |
+
- es
|
30 |
+
- fa
|
31 |
+
- ff
|
32 |
+
- fi
|
33 |
+
- fo
|
34 |
+
- fr
|
35 |
+
- fy
|
36 |
+
- ga
|
37 |
+
- gl
|
38 |
+
- gn
|
39 |
+
- gu
|
40 |
+
- he
|
41 |
+
- hi
|
42 |
+
- hr
|
43 |
+
- hu
|
44 |
+
- id
|
45 |
+
- ig
|
46 |
+
- is
|
47 |
+
- it
|
48 |
+
- iu
|
49 |
+
- ja
|
50 |
+
- ka
|
51 |
+
- kg
|
52 |
+
- kk
|
53 |
+
- km
|
54 |
+
- kn
|
55 |
+
- ko
|
56 |
+
- ku
|
57 |
+
- ky
|
58 |
+
- la
|
59 |
+
- lg
|
60 |
+
- li
|
61 |
+
- ln
|
62 |
+
- lo
|
63 |
+
- lt
|
64 |
+
- lv
|
65 |
+
- mg
|
66 |
+
- mi
|
67 |
+
- mk
|
68 |
+
- ml
|
69 |
+
- mn
|
70 |
+
- mr
|
71 |
+
- ms
|
72 |
+
- mt
|
73 |
+
- my
|
74 |
+
- my
|
75 |
+
- ne
|
76 |
+
- nl
|
77 |
+
- no
|
78 |
+
- ns
|
79 |
+
- ny
|
80 |
+
- om
|
81 |
+
- or
|
82 |
+
- pa
|
83 |
+
- pl
|
84 |
+
- ps
|
85 |
+
- pt
|
86 |
+
- qa
|
87 |
+
- qd
|
88 |
+
- rm
|
89 |
+
- ro
|
90 |
+
- ru
|
91 |
+
- rw
|
92 |
+
- sc
|
93 |
+
- sd
|
94 |
+
- se
|
95 |
+
- si
|
96 |
+
- sk
|
97 |
+
- sl
|
98 |
+
- sn
|
99 |
+
- so
|
100 |
+
- sq
|
101 |
+
- sr
|
102 |
+
- ss
|
103 |
+
- st
|
104 |
+
- su
|
105 |
+
- sv
|
106 |
+
- sw
|
107 |
+
- sy
|
108 |
+
- sz
|
109 |
+
- ta
|
110 |
+
- te
|
111 |
+
- tg
|
112 |
+
- th
|
113 |
+
- ti
|
114 |
+
- tl
|
115 |
+
- tn
|
116 |
+
- tr
|
117 |
+
- ts
|
118 |
+
- tt
|
119 |
+
- tz
|
120 |
+
- ug
|
121 |
+
- uk
|
122 |
+
- ur
|
123 |
+
- uz
|
124 |
+
- ve
|
125 |
+
- vi
|
126 |
+
- wo
|
127 |
+
- wy
|
128 |
+
- xh
|
129 |
+
- yi
|
130 |
+
- yo
|
131 |
+
- zh
|
132 |
+
- zh
|
133 |
+
- zu
|
134 |
+
- zz
|
135 |
+
licenses:
|
136 |
+
- unknown
|
137 |
+
multilinguality:
|
138 |
+
- translation
|
139 |
+
size_categories:
|
140 |
+
- n<1K
|
141 |
+
- 1K<n<10K
|
142 |
+
- 10K<n<100K
|
143 |
+
- 100K<n<1M
|
144 |
+
- n>1M
|
145 |
+
source_datasets:
|
146 |
+
- original
|
147 |
+
task_categories:
|
148 |
+
- other
|
149 |
+
task_ids:
|
150 |
+
- other-other-translation
|
151 |
+
---
|
152 |
+
|
153 |
+
# Dataset Card for ccaligned_multilingual
|
154 |
+
|
155 |
+
## Table of Contents
|
156 |
+
- [Dataset Description](#dataset-description)
|
157 |
+
- [Dataset Summary](#dataset-summary)
|
158 |
+
- [Supported Tasks](#supported-tasks-and-leaderboards)
|
159 |
+
- [Languages](#languages)
|
160 |
+
- [Dataset Structure](#dataset-structure)
|
161 |
+
- [Data Instances](#data-instances)
|
162 |
+
- [Data Fields](#data-instances)
|
163 |
+
- [Data Splits](#data-instances)
|
164 |
+
- [Dataset Creation](#dataset-creation)
|
165 |
+
- [Curation Rationale](#curation-rationale)
|
166 |
+
- [Source Data](#source-data)
|
167 |
+
- [Annotations](#annotations)
|
168 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
169 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
170 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
171 |
+
- [Discussion of Biases](#discussion-of-biases)
|
172 |
+
- [Other Known Limitations](#other-known-limitations)
|
173 |
+
- [Additional Information](#additional-information)
|
174 |
+
- [Dataset Curators](#dataset-curators)
|
175 |
+
- [Licensing Information](#licensing-information)
|
176 |
+
- [Citation Information](#citation-information)
|
177 |
+
- [Contributions](#contributions)
|
178 |
+
|
179 |
+
## Dataset Description
|
180 |
+
|
181 |
+
- **Homepage:** http://www.statmt.org/cc-aligned/
|
182 |
+
- **Repository:** [Needs More Information]
|
183 |
+
- **Paper:** https://www.aclweb.org/anthology/2020.emnlp-main.480.pdf
|
184 |
+
- **Leaderboard:** [Needs More Information]
|
185 |
+
- **Point of Contact:** [Needs More Information]
|
186 |
+
|
187 |
+
### Dataset Summary
|
188 |
+
|
189 |
+
CCAligned consists of parallel or comparable web-document pairs in 137 languages aligned with English. These web-document pairs were constructed by performing language identification on raw web-documents, and ensuring corresponding language codes were corresponding in the URLs of web documents. This pattern matching approach yielded more than 100 million aligned documents paired with English. Recognizing that each English document was often aligned to mulitple documents in different target language, we can join on English documents to obtain aligned documents that directly pair two non-English documents (e.g., Arabic-French). This corpus was created from 68 Commoncrawl Snapshots.
|
190 |
+
|
191 |
+
|
192 |
+
To load a language which isn't part of the config, all you need to do is specify the language code. You can find the valid languages in http://www.statmt.org/cc-aligned/ E.g.
|
193 |
+
```
|
194 |
+
dataset = load_dataset("ccaligned_multilingual", language_code="fr_XX", type="documents")
|
195 |
+
```
|
196 |
+
or
|
197 |
+
```
|
198 |
+
dataset = load_dataset("ccaligned_multilingual", language_code="fr_XX", type="sentences")
|
199 |
+
```
|
200 |
+
|
201 |
+
|
202 |
+
### Supported Tasks and Leaderboards
|
203 |
+
|
204 |
+
[Needs More Information]
|
205 |
+
|
206 |
+
### Languages
|
207 |
+
|
208 |
+
The text in the dataset is in (137) multiple languages aligned with english.
|
209 |
+
|
210 |
+
## Dataset Structure
|
211 |
+
|
212 |
+
### Data Instances
|
213 |
+
|
214 |
+
An instance of `documents` type for language `ak_GH`:
|
215 |
+
|
216 |
+
```
|
217 |
+
{'Domain': 'islamhouse.com', 'Source_URL': 'https://islamhouse.com/en/audios/373088/', 'Target_URL': 'https://islamhouse.com/ak/audios/373088/', 'translation': {'ak_GH': "Ntwatiaa / wɔabɔ no tɔfa wɔ mu no te ase ma Umrah - Arab kasa|Islamhouse.com|Follow us:|facebook|twitter|taepe|Titles All|Fie wibesite|kasa nyina|Buukuu edi adanse ma prente|Nhyehyɛmu|Nyim/sua Islam|Curriculums|Nyina ndeɛma|Nyina ndeɛma (295)|Buukuu/ nwoma (2)|sini / muuvi (31)|ɔdio (262)|Aɛn websideNew!|Kɔ wura kramosom mu seisei|Ebio|figa/kaasɛ|Farebae|AKAkan|Kratafa titriw|kasa interface( anyimu) : Akan|Kasa ma no mu-nsɛm : Arab kasa|ɔdio|Ntwatiaa / wɔabɔ no tɔfa wɔ mu no te ase ma Umrah|play|pause|stop|mute|unmute|max volume|Kasakyerɛ ni :|Farebae:|17 / 11 / 1432 , 15/10/2011|Nhyehyɛmu:|Jurisprudence/ Esum Nimdea|Som|Hajj na Umrah|Jurisprudence/ Esum Nimdea|Som|Hajj na Umrah|Mmira ma Hajj na Umrah|nkyerɛmu|kasamu /sɛntɛns ma te ase na Umrah wɔ ... mu no hann ma no Quran na Sunnah na te ase ma no nana na no kasamu /sɛntɛns ma bi ma no emerging yi adu obusuani|Akenkane we ye di ko kasa bi su (36)|Afar - Qafár afa|Akan|Amhari ne - አማርኛ|Arab kasa - عربي|Assamese - অসমীয়া|Bengali - বাংলা|Maldive - ދިވެހި|Greek - Ελληνικά|English ( brofo kasa) - English|Persian - فارسی|Fula - pulla|French - Français|Hausa - Hausa|Kurdish - كوردی سۆرانی|Uganda ne - Oluganda|Mandinka - Mandinko|Malayalam - മലയാളം|Nepali - नेपाली|Portuguese - Português|Russian - Русский|Sango - Sango|Sinhalese - සිංහල|Somali - Soomaali|Albania ne - Shqip|Swahili - Kiswahili|Telugu - తెలుగు ప్రజలు|Tajik - Тоҷикӣ|Thai - ไทย|Tagalog - Tagalog|Turkish - Türkçe|Uyghur - ئۇيغۇرچە|Urdu - اردو|Uzbeck ne - Ўзбек тили|Vietnamese - Việt Nam|Wolof - Wolof|Chine ne - 中文|Soma kɔ bi kyerɛ adwen kɔ wɛb ebusuapanin|Soma kɔ ne kɔ hom adamfo|Soma kɔ bi kyerɛ adwen kɔ wɛb ebusuapanin|Nsɔwso fael (1)|1|الموجز في فقه العمرة|MP3 14.7 MB|Enoumah ebatahu|Rituals/Esom ajomadie ewu Hajji mmire .. 1434 AH [01] no fapemso Enum|Fiidbak/ Ye hiya wu jun kyiri|Lenke de yɛe|kɔntakt yɛn|Aɛn webside|Qura'an Kro kronkrom|Balagh|wɔ mfinimfin Dowload faele|Yɛ atuu bra Islam mu afei|Tsin de yɛe ewu|Anaa bomu/combine hɛn melin liste|© Islamhouse Website/ Islam dan webi site|×|×|Yi mu kasa|", 'en_XX': 'SUMMARY in the jurisprudence of Umrah - Arabic - Abdul Aziz Bin Marzooq Al-Turaifi|Islamhouse.com|Follow us:|facebook|twitter|QuranEnc.com|HadeethEnc.com|Type|Titles All|Home Page|All Languages|Categories|Know about Islam|All items|All items (4057)|Books (701)|Articles (548)|Fatawa (370)|Videos (1853)|Audios (416)|Posters (98)|Greeting cards (22)|Favorites (25)|Applications (21)|Desktop Applications (3)|To convert to Islam now !|More|Figures|Sources|Curriculums|Our Services|QuranEnc.com|HadeethEnc.com|ENEnglish|Main Page|Interface Language : English|Language of the content : Arabic|Audios|تعريب عنوان المادة|SUMMARY in the jurisprudence of Umrah|play|pause|stop|mute|unmute|max volume|Lecturer : Abdul Aziz Bin Marzooq Al-Turaifi|Sources:|AlRaya Islamic Recoding in Riyadh|17 / 11 / 1432 , 15/10/2011|Categories:|Islamic Fiqh|Fiqh of Worship|Hajj and Umrah|Islamic Fiqh|Fiqh of Worship|Hajj and Umrah|Pilgrimage and Umrah|Description|SUMMARY in jurisprudence of Umrah: A statement of jurisprudence and Umrah in the light of the Quran and Sunnah and understanding of the Ancestors and the statement of some of the emerging issues related to them.|This page translated into (36)|Afar - Qafár afa|Akane - Akan|Amharic - አማርኛ|Arabic - عربي|Assamese - অসমীয়া|Bengali - বাংলা|Maldivi - ދިވެހި|Greek - Ελληνικά|English|Persian - فارسی|Fula - pulla|French - Français|Hausa - Hausa|kurdish - كوردی سۆرانی|Ugandan - Oluganda|Mandinka - Mandinko|Malayalam - മലയാളം|Nepali - नेपाली|Portuguese - Português|Russian - Русский|Sango - Yanga ti Sango|Sinhalese - සිංහල|Somali - Soomaali|Albanian - Shqip|Swahili - Kiswahili|Telugu - తెలుగు|Tajik - Тоҷикӣ|Thai - ไทย|Tagalog - Tagalog|Turkish - Türkçe|Uyghur - ئۇيغۇرچە|Urdu - اردو|Uzbek - Ўзбек тили|Vietnamese - Việt Nam|Wolof - Wolof|Chinese - 中文|Send a comment to Webmaster|Send to a friend?|Send a comment to Webmaster|Attachments (1)|1|الموجز في فقه العمرة|MP3 14.7 MB|The relevant Material|The rituals of the pilgrimage season .. 1434 AH [ 01] the fifth pillar|The Quality of the Accepted Hajj (Piligrimage) and Its Limitations|Easy Path to the Rules of the Rites of Hajj|A Call to the Pilgrims of the Scared House of Allah|More|feedback|Important links|Contact us|Privacy policy|Islam Q&A|Learning Arabic Language|About Us|Convert To Islam|Noble Quran encyclopedia|IslamHouse.com Reader|Encyclopedia of Translated Prophetic Hadiths|Our Services|The Quran|Balagh|Center for downloading files|To embrace Islam now...|Follow us through|Or join our mailing list.|© Islamhouse Website|×|×|Choose language|'}}
|
218 |
+
```
|
219 |
+
|
220 |
+
An instance of `sentences` type for language `ak_GH`:
|
221 |
+
|
222 |
+
```
|
223 |
+
{'LASER_similarity': 1.4549942016601562, 'translation': {'ak_GH': 'Salah (nyamefere) ye Mmerebeia', 'en_XX': 'What he dislikes when fasting (10)'}}
|
224 |
+
```
|
225 |
+
|
226 |
+
### Data Fields
|
227 |
+
|
228 |
+
For `documents` type:
|
229 |
+
|
230 |
+
- `Domain`: a `string` feature containing the domain.
|
231 |
+
- `Source_URL`: a `string` feature containing the source URL.
|
232 |
+
- `Target_URL`: a `string` feature containing the target URL.
|
233 |
+
- `translation`: a `dictionary` feature with two keys :
|
234 |
+
- `en_XX`: a `string` feature containing the content in English.
|
235 |
+
- <language_code>: a `string` feature containing the content in the `language_code` specified.
|
236 |
+
|
237 |
+
For `sentences` type:
|
238 |
+
|
239 |
+
- `LASER_similarity`: a `float32` feature representing the LASER similarity score.
|
240 |
+
- `translation`: a `dictionary` feature with two keys :
|
241 |
+
- `en_XX`: a `string` feature containing the content in English.
|
242 |
+
- <language_code>: a `string` feature containing the content in the `language_code` specified.
|
243 |
+
|
244 |
+
### Data Splits
|
245 |
+
|
246 |
+
[Needs More Information]
|
247 |
+
|
248 |
+
## Dataset Creation
|
249 |
+
|
250 |
+
### Curation Rationale
|
251 |
+
|
252 |
+
[Needs More Information]
|
253 |
+
|
254 |
+
### Source Data
|
255 |
+
|
256 |
+
#### Initial Data Collection and Normalization
|
257 |
+
|
258 |
+
[Needs More Information]
|
259 |
+
|
260 |
+
#### Who are the source language producers?
|
261 |
+
|
262 |
+
[Needs More Information]
|
263 |
+
|
264 |
+
### Annotations
|
265 |
+
|
266 |
+
#### Annotation process
|
267 |
+
|
268 |
+
[Needs More Information]
|
269 |
+
|
270 |
+
#### Who are the annotators?
|
271 |
+
|
272 |
+
[Needs More Information]
|
273 |
+
|
274 |
+
### Personal and Sensitive Information
|
275 |
+
|
276 |
+
[Needs More Information]
|
277 |
+
|
278 |
+
## Considerations for Using the Data
|
279 |
+
|
280 |
+
### Social Impact of Dataset
|
281 |
+
|
282 |
+
[Needs More Information]
|
283 |
+
|
284 |
+
### Discussion of Biases
|
285 |
+
|
286 |
+
[Needs More Information]
|
287 |
+
|
288 |
+
### Other Known Limitations
|
289 |
+
|
290 |
+
[Needs More Information]
|
291 |
+
|
292 |
+
## Additional Information
|
293 |
+
|
294 |
+
### Dataset Curators
|
295 |
+
|
296 |
+
[Needs More Information]
|
297 |
+
|
298 |
+
### Licensing Information
|
299 |
+
|
300 |
+
[Needs More Information]
|
301 |
+
|
302 |
+
### Citation Information
|
303 |
+
|
304 |
+
```
|
305 |
+
@inproceedings{elkishky_ccaligned_2020,
|
306 |
+
author = {El-Kishky, Ahmed and Chaudhary, Vishrav and Guzm{\'a}n, Francisco and Koehn, Philipp},
|
307 |
+
booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020)},
|
308 |
+
month = {November},
|
309 |
+
title = {{CCAligned}: A Massive Collection of Cross-lingual Web-Document Pairs},
|
310 |
+
year = {2020}
|
311 |
+
address = "Online",
|
312 |
+
publisher = "Association for Computational Linguistics",
|
313 |
+
url = "https://www.aclweb.org/anthology/2020.emnlp-main.480",
|
314 |
+
doi = "10.18653/v1/2020.emnlp-main.480",
|
315 |
+
pages = "5960--5969"
|
316 |
+
}
|
317 |
+
```
|
318 |
+
|
319 |
+
### Contributions
|
320 |
+
|
321 |
+
Thanks to [@gchhablani](https://github.com/gchhablani) for adding this dataset.
|
ccaligned_multilingual.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Ccaligned Multilingual Translation Dataset"""
|
16 |
+
|
17 |
+
from __future__ import absolute_import, division, print_function
|
18 |
+
|
19 |
+
import os
|
20 |
+
|
21 |
+
import datasets
|
22 |
+
|
23 |
+
|
24 |
+
_CITATION = """\
|
25 |
+
@inproceedings{elkishky_ccaligned_2020,
|
26 |
+
author = {El-Kishky, Ahmed and Chaudhary, Vishrav and Guzm{\'a}n, Francisco and Koehn, Philipp},
|
27 |
+
booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020)},
|
28 |
+
month = {November},
|
29 |
+
title = {{CCAligned}: A Massive Collection of Cross-lingual Web-Document Pairs},
|
30 |
+
year = {2020}
|
31 |
+
address = "Online",
|
32 |
+
publisher = "Association for Computational Linguistics",
|
33 |
+
url = "https://www.aclweb.org/anthology/2020.emnlp-main.480",
|
34 |
+
doi = "10.18653/v1/2020.emnlp-main.480",
|
35 |
+
pages = "5960--5969"
|
36 |
+
}
|
37 |
+
"""
|
38 |
+
|
39 |
+
_DESCRIPTION = """\
|
40 |
+
CCAligned consists of parallel or comparable web-document pairs in 137 languages aligned with English. These web-document pairs were constructed by performing language identification on raw web-documents, and ensuring corresponding language codes were corresponding in the URLs of web documents. This pattern matching approach yielded more than 100 million aligned documents paired with English. Recognizing that each English document was often aligned to mulitple documents in different target language, we can join on English documents to obtain aligned documents that directly pair two non-English documents (e.g., Arabic-French).
|
41 |
+
"""
|
42 |
+
|
43 |
+
_HOMEPAGE = "http://www.statmt.org/cc-aligned/"
|
44 |
+
|
45 |
+
|
46 |
+
_LICENSE = "" # Unknown
|
47 |
+
|
48 |
+
|
49 |
+
_URLs = {
|
50 |
+
"documents": "http://www.statmt.org/cc-aligned/",
|
51 |
+
"sentences": "http://www.statmt.org/cc-aligned/sentence-aligned/",
|
52 |
+
}
|
53 |
+
|
54 |
+
reverse_mapped_sentences = [
|
55 |
+
"af_ZA",
|
56 |
+
"ak_GH",
|
57 |
+
"am_ET",
|
58 |
+
"ar_AR",
|
59 |
+
"as_IN",
|
60 |
+
"ay_BO",
|
61 |
+
"az_AZ",
|
62 |
+
"az_IR",
|
63 |
+
"be_BY",
|
64 |
+
"bg_BG",
|
65 |
+
"bm_ML",
|
66 |
+
"bn_IN",
|
67 |
+
"br_FR",
|
68 |
+
"bs_BA",
|
69 |
+
"ca_ES",
|
70 |
+
"cb_IQ",
|
71 |
+
"cs_CZ",
|
72 |
+
"cx_PH",
|
73 |
+
"cy_GB",
|
74 |
+
"da_DK",
|
75 |
+
"de_DE",
|
76 |
+
"el_GR",
|
77 |
+
] # Some languages have the reverse source languages in the URLs.
|
78 |
+
|
79 |
+
|
80 |
+
class CcalignedMultilingualConfig(datasets.BuilderConfig):
|
81 |
+
def __init__(self, *args, type=None, language_code=None, **kwargs):
|
82 |
+
super().__init__(
|
83 |
+
*args,
|
84 |
+
name=f"{type}-{language_code}",
|
85 |
+
**kwargs,
|
86 |
+
)
|
87 |
+
self.type = type
|
88 |
+
self.language_code = language_code
|
89 |
+
|
90 |
+
|
91 |
+
class CcalignedMultilingual(datasets.GeneratorBasedBuilder):
|
92 |
+
"""The Ccaligned Multilingual Dataset."""
|
93 |
+
|
94 |
+
VERSION = datasets.Version("1.0.0")
|
95 |
+
|
96 |
+
BUILDER_CONFIGS = [
|
97 |
+
CcalignedMultilingualConfig(
|
98 |
+
type="documents",
|
99 |
+
language_code="zz_TR",
|
100 |
+
version=VERSION,
|
101 |
+
description="The dataset containing document-pairs for en_XX-zz_TR.",
|
102 |
+
),
|
103 |
+
CcalignedMultilingualConfig(
|
104 |
+
type="sentences",
|
105 |
+
language_code="zz_TR",
|
106 |
+
version=VERSION,
|
107 |
+
description="The dataset containing sentence-pairs for en_XX-zz_TR.",
|
108 |
+
),
|
109 |
+
CcalignedMultilingualConfig(
|
110 |
+
type="documents",
|
111 |
+
language_code="tz_MA",
|
112 |
+
version=VERSION,
|
113 |
+
description="The dataset containing document-pairs for en_XX-tz_MA.",
|
114 |
+
),
|
115 |
+
CcalignedMultilingualConfig(
|
116 |
+
type="sentences",
|
117 |
+
language_code="tz_MA",
|
118 |
+
version=VERSION,
|
119 |
+
description="The dataset containing sentence-pairs for en_XX-tz_MA.",
|
120 |
+
),
|
121 |
+
CcalignedMultilingualConfig(
|
122 |
+
type="documents",
|
123 |
+
language_code="ak_GH",
|
124 |
+
version=VERSION,
|
125 |
+
description="The dataset containing document-pairs for en_XX-ak_GH.",
|
126 |
+
),
|
127 |
+
CcalignedMultilingualConfig(
|
128 |
+
type="sentences",
|
129 |
+
language_code="ak_GH",
|
130 |
+
version=VERSION,
|
131 |
+
description="The dataset containing sentence-pairs for en_XX-ak_GH.",
|
132 |
+
),
|
133 |
+
]
|
134 |
+
|
135 |
+
BUILDER_CONFIG_CLASS = CcalignedMultilingualConfig
|
136 |
+
|
137 |
+
# DEFAULT_CONFIG_NAME = "documents-zz_TR" # Not Needed
|
138 |
+
|
139 |
+
def _info(self):
|
140 |
+
if self.config.name[:9] == "documents":
|
141 |
+
features = datasets.Features(
|
142 |
+
{
|
143 |
+
"Domain": datasets.Value("string"),
|
144 |
+
"Source_URL": datasets.Value("string"),
|
145 |
+
"Target_URL": datasets.Value("string"),
|
146 |
+
"translation": datasets.Translation(languages=("en_XX", self.config.language_code)),
|
147 |
+
}
|
148 |
+
)
|
149 |
+
else:
|
150 |
+
features = datasets.Features(
|
151 |
+
{
|
152 |
+
"translation": datasets.Translation(languages=("en_XX", self.config.language_code)),
|
153 |
+
"LASER_similarity": datasets.Value("float"),
|
154 |
+
}
|
155 |
+
)
|
156 |
+
|
157 |
+
return datasets.DatasetInfo(
|
158 |
+
# This is the description that will appear on the datasets page.
|
159 |
+
description=_DESCRIPTION,
|
160 |
+
# This defines the different columns of the dataset and their types
|
161 |
+
features=features, # Here we define them above because they are different between the two configurations
|
162 |
+
supervised_keys=None,
|
163 |
+
# Homepage of the dataset for documentation
|
164 |
+
homepage=_HOMEPAGE,
|
165 |
+
# License for the dataset if available
|
166 |
+
license=_LICENSE,
|
167 |
+
# Citation for the dataset
|
168 |
+
citation=_CITATION,
|
169 |
+
)
|
170 |
+
|
171 |
+
def _split_generators(self, dl_manager):
|
172 |
+
"""Returns SplitGenerators."""
|
173 |
+
my_urls = _URLs[self.config.name[:9]]
|
174 |
+
if self.config.name[:9] == "sentences" and self.config.language_code in reverse_mapped_sentences:
|
175 |
+
url = my_urls + self.config.language_code + "-en_XX.tsv.xz"
|
176 |
+
from_english = False
|
177 |
+
else:
|
178 |
+
url = my_urls + "en_XX-" + self.config.language_code + ".tsv.xz"
|
179 |
+
from_english = True
|
180 |
+
data_file = dl_manager.download_and_extract(url)
|
181 |
+
return [
|
182 |
+
datasets.SplitGenerator(
|
183 |
+
name=datasets.Split.TRAIN,
|
184 |
+
# These kwargs will be passed to _generate_examples
|
185 |
+
gen_kwargs={
|
186 |
+
"filepath": os.path.join(data_file),
|
187 |
+
"from_english": from_english, # Whether the translation is from english or to english, only useful in case of sentence-pairs
|
188 |
+
},
|
189 |
+
)
|
190 |
+
]
|
191 |
+
|
192 |
+
def _generate_examples(self, filepath, from_english=False):
|
193 |
+
""" Yields examples. """
|
194 |
+
lc = self.config.language_code
|
195 |
+
reverse = lc in reverse_mapped_sentences
|
196 |
+
with open(filepath, encoding="utf-8") as f:
|
197 |
+
for id_, row in enumerate(f):
|
198 |
+
data = row.split("\t")
|
199 |
+
if self.config.name[:9] == "documents":
|
200 |
+
yield id_, {
|
201 |
+
"Domain": data[0],
|
202 |
+
"Source_URL": data[1],
|
203 |
+
"Target_URL": data[3],
|
204 |
+
"translation": {"en_XX": data[2].strip(), lc: data[4].strip()},
|
205 |
+
}
|
206 |
+
else:
|
207 |
+
if not reverse:
|
208 |
+
yield id_, {
|
209 |
+
"translation": {"en_XX": data[0].strip(), lc: data[1].strip()},
|
210 |
+
"LASER_similarity": data[2],
|
211 |
+
}
|
212 |
+
else:
|
213 |
+
yield id_, {
|
214 |
+
"translation": {lc: data[0].strip(), "en_XX": data[1].strip()},
|
215 |
+
"LASER_similarity": data[2],
|
216 |
+
}
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"documents-zz_TR": {"description": "CCAligned consists of parallel or comparable web-document pairs in 137 languages aligned with English. These web-document pairs were constructed by performing language identification on raw web-documents, and ensuring corresponding language codes were corresponding in the URLs of web documents. This pattern matching approach yielded more than 100 million aligned documents paired with English. Recognizing that each English document was often aligned to mulitple documents in different target language, we can join on English documents to obtain aligned documents that directly pair two non-English documents (e.g., Arabic-French).\n", "citation": "@inproceedings{elkishky_ccaligned_2020,\n author = {El-Kishky, Ahmed and Chaudhary, Vishrav and Guzm{'a}n, Francisco and Koehn, Philipp},\n booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020)},\n month = {November},\n title = {{CCAligned}: A Massive Collection of Cross-lingual Web-Document Pairs},\n year = {2020}\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.480\",\n doi = \"10.18653/v1/2020.emnlp-main.480\",\n pages = \"5960--5969\"\n}\n", "homepage": "http://www.statmt.org/cc-aligned/", "license": "", "features": {"Domain": {"dtype": "string", "id": null, "_type": "Value"}, "Source_URL": {"dtype": "string", "id": null, "_type": "Value"}, "Target_URL": {"dtype": "string", "id": null, "_type": "Value"}, "translation": {"languages": ["en_XX", "zz_TR"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": null, "builder_name": "ccaligned_multilingual", "config_name": "documents-zz_TR", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 641412, "num_examples": 41, "dataset_name": "ccaligned_multilingual"}}, "download_checksums": {"http://www.statmt.org/cc-aligned/en_XX-zz_TR.tsv.xz": {"num_bytes": 125488, "checksum": "c4a4fe74bdc054dfd1d3c83503fb1bfa41bd26f98219f179e345df5814cfc18f"}}, "download_size": 125488, "post_processing_size": null, "dataset_size": 641412, "size_in_bytes": 766900}, "sentences-zz_TR": {"description": "CCAligned consists of parallel or comparable web-document pairs in 137 languages aligned with English. These web-document pairs were constructed by performing language identification on raw web-documents, and ensuring corresponding language codes were corresponding in the URLs of web documents. This pattern matching approach yielded more than 100 million aligned documents paired with English. Recognizing that each English document was often aligned to mulitple documents in different target language, we can join on English documents to obtain aligned documents that directly pair two non-English documents (e.g., Arabic-French).\n", "citation": "@inproceedings{elkishky_ccaligned_2020,\n author = {El-Kishky, Ahmed and Chaudhary, Vishrav and Guzm{'a}n, Francisco and Koehn, Philipp},\n booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020)},\n month = {November},\n title = {{CCAligned}: A Massive Collection of Cross-lingual Web-Document Pairs},\n year = {2020}\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.480\",\n doi = \"10.18653/v1/2020.emnlp-main.480\",\n pages = \"5960--5969\"\n}\n", "homepage": "http://www.statmt.org/cc-aligned/", "license": "", "features": {"translation": {"languages": ["en_XX", "zz_TR"], "id": null, "_type": "Translation"}, "LASER_similarity": {"dtype": "float32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "ccaligned_multilingual", "config_name": "sentences-zz_TR", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4056, "num_examples": 34, "dataset_name": "ccaligned_multilingual"}}, "download_checksums": {"http://www.statmt.org/cc-aligned/sentence-aligned/en_XX-zz_TR.tsv.xz": {"num_bytes": 1428, "checksum": "14bbbb8752bc0d3620a1f441378862f457f4fdf4613887715794202301c7c9af"}}, "download_size": 1428, "post_processing_size": null, "dataset_size": 4056, "size_in_bytes": 5484}, "documents-tz_MA": {"description": "CCAligned consists of parallel or comparable web-document pairs in 137 languages aligned with English. These web-document pairs were constructed by performing language identification on raw web-documents, and ensuring corresponding language codes were corresponding in the URLs of web documents. This pattern matching approach yielded more than 100 million aligned documents paired with English. Recognizing that each English document was often aligned to mulitple documents in different target language, we can join on English documents to obtain aligned documents that directly pair two non-English documents (e.g., Arabic-French).\n", "citation": "@inproceedings{elkishky_ccaligned_2020,\n author = {El-Kishky, Ahmed and Chaudhary, Vishrav and Guzm{'a}n, Francisco and Koehn, Philipp},\n booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020)},\n month = {November},\n title = {{CCAligned}: A Massive Collection of Cross-lingual Web-Document Pairs},\n year = {2020}\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.480\",\n doi = \"10.18653/v1/2020.emnlp-main.480\",\n pages = \"5960--5969\"\n}\n", "homepage": "http://www.statmt.org/cc-aligned/", "license": "", "features": {"Domain": {"dtype": "string", "id": null, "_type": "Value"}, "Source_URL": {"dtype": "string", "id": null, "_type": "Value"}, "Target_URL": {"dtype": "string", "id": null, "_type": "Value"}, "translation": {"languages": ["en_XX", "tz_MA"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": null, "builder_name": "ccaligned_multilingual", "config_name": "documents-tz_MA", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 51782, "num_examples": 4, "dataset_name": "ccaligned_multilingual"}}, "download_checksums": {"http://www.statmt.org/cc-aligned/en_XX-tz_MA.tsv.xz": {"num_bytes": 11996, "checksum": "31fabb4f9ba4506db3dcbecb31fcafeddb6ca5c0cc7bb37f24ebb0aa5f03f2dc"}}, "download_size": 11996, "post_processing_size": null, "dataset_size": 51782, "size_in_bytes": 63778}, "sentences-tz_MA": {"description": "CCAligned consists of parallel or comparable web-document pairs in 137 languages aligned with English. These web-document pairs were constructed by performing language identification on raw web-documents, and ensuring corresponding language codes were corresponding in the URLs of web documents. This pattern matching approach yielded more than 100 million aligned documents paired with English. Recognizing that each English document was often aligned to mulitple documents in different target language, we can join on English documents to obtain aligned documents that directly pair two non-English documents (e.g., Arabic-French).\n", "citation": "@inproceedings{elkishky_ccaligned_2020,\n author = {El-Kishky, Ahmed and Chaudhary, Vishrav and Guzm{'a}n, Francisco and Koehn, Philipp},\n booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020)},\n month = {November},\n title = {{CCAligned}: A Massive Collection of Cross-lingual Web-Document Pairs},\n year = {2020}\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.480\",\n doi = \"10.18653/v1/2020.emnlp-main.480\",\n pages = \"5960--5969\"\n}\n", "homepage": "http://www.statmt.org/cc-aligned/", "license": "", "features": {"translation": {"languages": ["en_XX", "tz_MA"], "id": null, "_type": "Translation"}, "LASER_similarity": {"dtype": "float32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "ccaligned_multilingual", "config_name": "sentences-tz_MA", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 6256, "num_examples": 33, "dataset_name": "ccaligned_multilingual"}}, "download_checksums": {"http://www.statmt.org/cc-aligned/sentence-aligned/en_XX-tz_MA.tsv.xz": {"num_bytes": 2420, "checksum": "ebe1b6e0fc44af392d784fd5cba98f347e1cc010dfc2d283f884cbe8534fcc21"}}, "download_size": 2420, "post_processing_size": null, "dataset_size": 6256, "size_in_bytes": 8676}, "documents-ak_GH": {"description": "CCAligned consists of parallel or comparable web-document pairs in 137 languages aligned with English. These web-document pairs were constructed by performing language identification on raw web-documents, and ensuring corresponding language codes were corresponding in the URLs of web documents. This pattern matching approach yielded more than 100 million aligned documents paired with English. Recognizing that each English document was often aligned to mulitple documents in different target language, we can join on English documents to obtain aligned documents that directly pair two non-English documents (e.g., Arabic-French).\n", "citation": "@inproceedings{elkishky_ccaligned_2020,\n author = {El-Kishky, Ahmed and Chaudhary, Vishrav and Guzm{'a}n, Francisco and Koehn, Philipp},\n booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020)},\n month = {November},\n title = {{CCAligned}: A Massive Collection of Cross-lingual Web-Document Pairs},\n year = {2020}\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.480\",\n doi = \"10.18653/v1/2020.emnlp-main.480\",\n pages = \"5960--5969\"\n}\n", "homepage": "http://www.statmt.org/cc-aligned/", "license": "", "features": {"Domain": {"dtype": "string", "id": null, "_type": "Value"}, "Source_URL": {"dtype": "string", "id": null, "_type": "Value"}, "Target_URL": {"dtype": "string", "id": null, "_type": "Value"}, "translation": {"languages": ["en_XX", "ak_GH"], "id": null, "_type": "Translation"}}, "post_processed": null, "supervised_keys": null, "builder_name": "ccaligned_multilingual", "config_name": "documents-ak_GH", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 10738312, "num_examples": 249, "dataset_name": "ccaligned_multilingual"}}, "download_checksums": {"http://www.statmt.org/cc-aligned/en_XX-ak_GH.tsv.xz": {"num_bytes": 399236, "checksum": "e0e78c243e68e4a717be0af5bd12ff3de7331ac250b018bd755cade4f98fa832"}}, "download_size": 399236, "post_processing_size": null, "dataset_size": 10738312, "size_in_bytes": 11137548}, "sentences-ak_GH": {"description": "CCAligned consists of parallel or comparable web-document pairs in 137 languages aligned with English. These web-document pairs were constructed by performing language identification on raw web-documents, and ensuring corresponding language codes were corresponding in the URLs of web documents. This pattern matching approach yielded more than 100 million aligned documents paired with English. Recognizing that each English document was often aligned to mulitple documents in different target language, we can join on English documents to obtain aligned documents that directly pair two non-English documents (e.g., Arabic-French).\n", "citation": "@inproceedings{elkishky_ccaligned_2020,\n author = {El-Kishky, Ahmed and Chaudhary, Vishrav and Guzm{'a}n, Francisco and Koehn, Philipp},\n booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020)},\n month = {November},\n title = {{CCAligned}: A Massive Collection of Cross-lingual Web-Document Pairs},\n year = {2020}\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.480\",\n doi = \"10.18653/v1/2020.emnlp-main.480\",\n pages = \"5960--5969\"\n}\n", "homepage": "http://www.statmt.org/cc-aligned/", "license": "", "features": {"translation": {"languages": ["en_XX", "ak_GH"], "id": null, "_type": "Translation"}, "LASER_similarity": {"dtype": "float32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "ccaligned_multilingual", "config_name": "sentences-ak_GH", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 50110, "num_examples": 478, "dataset_name": "ccaligned_multilingual"}}, "download_checksums": {"http://www.statmt.org/cc-aligned/sentence-aligned/ak_GH-en_XX.tsv.xz": {"num_bytes": 17636, "checksum": "52b9db18c1a19d4c9cd16d28730d7c1a945679302fcec10b79a990b3d1efbb46"}}, "download_size": 17636, "post_processing_size": null, "dataset_size": 50110, "size_in_bytes": 67746}}
|
dummy/documents-ak_GH/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a036a026482dac3acf410e462f4bf25f0f765cde53193c2a34e93479adf5365
|
3 |
+
size 2796
|
dummy/documents-tz_MA/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b8c15168e2b1e90df66ed6ef7bdd8ef38a970cf5118bbfb5723c8b05d2a0ab4
|
3 |
+
size 1734
|
dummy/documents-zz_TR/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76c6c0a66ed32e6f859d4063dba02e6fa15d3188eb67db6b0a44bebe6a7a5d83
|
3 |
+
size 2618
|
dummy/sentences-ak_GH/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de00a36f249d6ac2c497f7ebfecdc429612bc4d65832b13a46063d739a92fa68
|
3 |
+
size 474
|
dummy/sentences-tz_MA/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8abb80362d93ba9c825e583bf769801c4e15d3886ce0c79b9de8af590016500c
|
3 |
+
size 483
|
dummy/sentences-zz_TR/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47367a6914049e2083168fbf4c20de5a00faf7b2ab16daefda67e49a45bc3917
|
3 |
+
size 506
|