Upload modified_lerobot_dataset.py
Browse files
scripts/modified_lerobot_dataset.py
ADDED
@@ -0,0 +1,327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import Callable
|
3 |
+
|
4 |
+
from tqdm import tqdm
|
5 |
+
import h5py
|
6 |
+
import torch
|
7 |
+
import einops
|
8 |
+
import shutil
|
9 |
+
import logging
|
10 |
+
import numpy as np
|
11 |
+
from math import ceil
|
12 |
+
from copy import deepcopy
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
17 |
+
from lerobot.common.datasets.utils import (
|
18 |
+
STATS_PATH,
|
19 |
+
check_timestamps_sync,
|
20 |
+
get_episode_data_index,
|
21 |
+
serialize_dict,
|
22 |
+
write_json,
|
23 |
+
)
|
24 |
+
|
25 |
+
def get_stats_einops_patterns(dataset, num_workers=0):
|
26 |
+
"""These einops patterns will be used to aggregate batches and compute statistics.
|
27 |
+
|
28 |
+
Note: We assume the images are in channel first format
|
29 |
+
"""
|
30 |
+
|
31 |
+
dataloader = torch.utils.data.DataLoader(
|
32 |
+
dataset,
|
33 |
+
num_workers=num_workers,
|
34 |
+
batch_size=2,
|
35 |
+
shuffle=False,
|
36 |
+
)
|
37 |
+
batch = next(iter(dataloader))
|
38 |
+
|
39 |
+
stats_patterns = {}
|
40 |
+
|
41 |
+
for key in dataset.features:
|
42 |
+
# sanity check that tensors are not float64
|
43 |
+
assert batch[key].dtype != torch.float64
|
44 |
+
|
45 |
+
# if isinstance(feats_type, (VideoFrame, Image)):
|
46 |
+
if key in dataset.meta.camera_keys:
|
47 |
+
# sanity check that images are channel first
|
48 |
+
_, c, h, w = batch[key].shape
|
49 |
+
assert (
|
50 |
+
c < h and c < w
|
51 |
+
), f"expect channel first images, but instead {batch[key].shape}"
|
52 |
+
assert (
|
53 |
+
batch[key].dtype == torch.float32
|
54 |
+
), f"expect torch.float32, but instead {batch[key].dtype=}"
|
55 |
+
# assert batch[key].max() <= 1, f"expect pixels lower than 1, but instead {batch[key].max()=}"
|
56 |
+
# assert batch[key].min() >= 0, f"expect pixels greater than 1, but instead {batch[key].min()=}"
|
57 |
+
stats_patterns[key] = "b c h w -> c 1 1"
|
58 |
+
elif batch[key].ndim == 2:
|
59 |
+
stats_patterns[key] = "b c -> c "
|
60 |
+
elif batch[key].ndim == 1:
|
61 |
+
stats_patterns[key] = "b -> 1"
|
62 |
+
else:
|
63 |
+
raise ValueError(f"{key}, {batch[key].shape}")
|
64 |
+
|
65 |
+
return stats_patterns
|
66 |
+
|
67 |
+
|
68 |
+
def compute_stats(dataset, batch_size=1, num_workers=4, max_num_samples=None):
|
69 |
+
"""Compute mean/std and min/max statistics of all data keys in a LeRobotDataset."""
|
70 |
+
if max_num_samples is None:
|
71 |
+
max_num_samples = len(dataset)
|
72 |
+
else:
|
73 |
+
max_num_samples = min(max_num_samples, len(dataset))
|
74 |
+
|
75 |
+
# for more info on why we need to set the same number of workers, see `load_from_videos`
|
76 |
+
stats_patterns = get_stats_einops_patterns(dataset, num_workers)
|
77 |
+
|
78 |
+
# mean and std will be computed incrementally while max and min will track the running value.
|
79 |
+
mean, std, _max, _min = {}, {}, {}, {}
|
80 |
+
for key in stats_patterns:
|
81 |
+
mean[key] = torch.tensor(0.0).float()
|
82 |
+
std[key] = torch.tensor(0.0).float()
|
83 |
+
_max[key] = torch.tensor(-float("inf")).float()
|
84 |
+
_min[key] = torch.tensor(float("inf")).float()
|
85 |
+
|
86 |
+
def create_seeded_dataloader(dataset, batch_size, seed):
|
87 |
+
generator = torch.Generator()
|
88 |
+
generator.manual_seed(seed)
|
89 |
+
dataloader = torch.utils.data.DataLoader(
|
90 |
+
dataset,
|
91 |
+
num_workers=num_workers,
|
92 |
+
batch_size=batch_size,
|
93 |
+
shuffle=True,
|
94 |
+
drop_last=False,
|
95 |
+
generator=generator,
|
96 |
+
)
|
97 |
+
return dataloader
|
98 |
+
|
99 |
+
# Note: Due to be refactored soon. The point of storing `first_batch` is to make sure we don't get
|
100 |
+
# surprises when rerunning the sampler.
|
101 |
+
first_batch = None
|
102 |
+
running_item_count = 0 # for online mean computation
|
103 |
+
dataloader = create_seeded_dataloader(dataset, batch_size, seed=1337)
|
104 |
+
for i, batch in enumerate(
|
105 |
+
tqdm(
|
106 |
+
dataloader,
|
107 |
+
total=ceil(max_num_samples / batch_size),
|
108 |
+
desc="Compute mean, min, max",
|
109 |
+
)
|
110 |
+
):
|
111 |
+
this_batch_size = len(batch["index"])
|
112 |
+
running_item_count += this_batch_size
|
113 |
+
if first_batch is None:
|
114 |
+
first_batch = deepcopy(batch)
|
115 |
+
for key, pattern in stats_patterns.items():
|
116 |
+
batch[key] = batch[key].float()
|
117 |
+
# Numerically stable update step for mean computation.
|
118 |
+
batch_mean = einops.reduce(batch[key], pattern, "mean")
|
119 |
+
# Hint: to update the mean we need x̄ₙ = (Nₙ₋₁x̄ₙ₋₁ + Bₙxₙ) / Nₙ, where the subscript represents
|
120 |
+
# the update step, N is the running item count, B is this batch size, x̄ is the running mean,
|
121 |
+
# and x is the current batch mean. Some rearrangement is then required to avoid risking
|
122 |
+
# numerical overflow. Another hint: Nₙ₋₁ = Nₙ - Bₙ. Rearrangement yields
|
123 |
+
# x̄ₙ = x̄ₙ₋₁ + Bₙ * (xₙ - x̄ₙ₋₁) / Nₙ
|
124 |
+
mean[key] = (
|
125 |
+
mean[key]
|
126 |
+
+ this_batch_size * (batch_mean - mean[key]) / running_item_count
|
127 |
+
)
|
128 |
+
_max[key] = torch.maximum(
|
129 |
+
_max[key], einops.reduce(batch[key], pattern, "max")
|
130 |
+
)
|
131 |
+
_min[key] = torch.minimum(
|
132 |
+
_min[key], einops.reduce(batch[key], pattern, "min")
|
133 |
+
)
|
134 |
+
|
135 |
+
if i == ceil(max_num_samples / batch_size) - 1:
|
136 |
+
break
|
137 |
+
|
138 |
+
first_batch_ = None
|
139 |
+
running_item_count = 0 # for online std computation
|
140 |
+
dataloader = create_seeded_dataloader(dataset, batch_size, seed=1337)
|
141 |
+
for i, batch in enumerate(
|
142 |
+
tqdm(dataloader, total=ceil(max_num_samples / batch_size), desc="Compute std")
|
143 |
+
):
|
144 |
+
this_batch_size = len(batch["index"])
|
145 |
+
running_item_count += this_batch_size
|
146 |
+
# Sanity check to make sure the batches are still in the same order as before.
|
147 |
+
if first_batch_ is None:
|
148 |
+
first_batch_ = deepcopy(batch)
|
149 |
+
for key in stats_patterns:
|
150 |
+
assert torch.equal(first_batch_[key], first_batch[key])
|
151 |
+
for key, pattern in stats_patterns.items():
|
152 |
+
batch[key] = batch[key].float()
|
153 |
+
# Numerically stable update step for mean computation (where the mean is over squared
|
154 |
+
# residuals).See notes in the mean computation loop above.
|
155 |
+
batch_std = einops.reduce((batch[key] - mean[key]) ** 2, pattern, "mean")
|
156 |
+
std[key] = (
|
157 |
+
std[key] + this_batch_size * (batch_std - std[key]) / running_item_count
|
158 |
+
)
|
159 |
+
|
160 |
+
if i == ceil(max_num_samples / batch_size) - 1:
|
161 |
+
break
|
162 |
+
|
163 |
+
for key in stats_patterns:
|
164 |
+
std[key] = torch.sqrt(std[key])
|
165 |
+
|
166 |
+
stats = {}
|
167 |
+
for key in stats_patterns:
|
168 |
+
stats[key] = {
|
169 |
+
"mean": mean[key],
|
170 |
+
"std": std[key],
|
171 |
+
"max": _max[key],
|
172 |
+
"min": _min[key],
|
173 |
+
}
|
174 |
+
return stats
|
175 |
+
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
class AgiBotDataset(LeRobotDataset):
|
180 |
+
def __init__(
|
181 |
+
self,
|
182 |
+
repo_id: str,
|
183 |
+
root: str | Path | None = None,
|
184 |
+
episodes: list[int] | None = None,
|
185 |
+
image_transforms: Callable | None = None,
|
186 |
+
delta_timestamps: dict[list[float]] | None = None,
|
187 |
+
tolerance_s: float = 1e-4,
|
188 |
+
download_videos: bool = True,
|
189 |
+
local_files_only: bool = False,
|
190 |
+
video_backend: str | None = None,
|
191 |
+
):
|
192 |
+
super().__init__(
|
193 |
+
repo_id=repo_id,
|
194 |
+
root=root,
|
195 |
+
episodes=episodes,
|
196 |
+
image_transforms=image_transforms,
|
197 |
+
delta_timestamps=delta_timestamps,
|
198 |
+
tolerance_s=tolerance_s,
|
199 |
+
download_videos=download_videos,
|
200 |
+
local_files_only=local_files_only,
|
201 |
+
video_backend=video_backend,
|
202 |
+
)
|
203 |
+
|
204 |
+
def save_episode(
|
205 |
+
self, task: str, episode_data: dict | None = None, videos: dict | None = None
|
206 |
+
) -> None:
|
207 |
+
"""
|
208 |
+
We rewrite this method to copy mp4 videos to the target position
|
209 |
+
"""
|
210 |
+
if not episode_data:
|
211 |
+
episode_buffer = self.episode_buffer
|
212 |
+
|
213 |
+
episode_length = episode_buffer.pop("size")
|
214 |
+
episode_index = episode_buffer["episode_index"]
|
215 |
+
if episode_index != self.meta.total_episodes:
|
216 |
+
# TODO(aliberts): Add option to use existing episode_index
|
217 |
+
raise NotImplementedError(
|
218 |
+
"You might have manually provided the episode_buffer with an episode_index that doesn't "
|
219 |
+
"match the total number of episodes in the dataset. This is not supported for now."
|
220 |
+
)
|
221 |
+
|
222 |
+
if episode_length == 0:
|
223 |
+
raise ValueError(
|
224 |
+
"You must add one or several frames with `add_frame` before calling `add_episode`."
|
225 |
+
)
|
226 |
+
|
227 |
+
task_index = self.meta.get_task_index(task)
|
228 |
+
|
229 |
+
if not set(episode_buffer.keys()) == set(self.features):
|
230 |
+
raise ValueError()
|
231 |
+
|
232 |
+
for key, ft in self.features.items():
|
233 |
+
if key == "index":
|
234 |
+
episode_buffer[key] = np.arange(
|
235 |
+
self.meta.total_frames, self.meta.total_frames + episode_length
|
236 |
+
)
|
237 |
+
elif key == "episode_index":
|
238 |
+
episode_buffer[key] = np.full((episode_length,), episode_index)
|
239 |
+
elif key == "task_index":
|
240 |
+
episode_buffer[key] = np.full((episode_length,), task_index)
|
241 |
+
elif ft["dtype"] in ["image", "video"]:
|
242 |
+
continue
|
243 |
+
elif len(ft["shape"]) == 1 and ft["shape"][0] == 1:
|
244 |
+
episode_buffer[key] = np.array(episode_buffer[key], dtype=ft["dtype"])
|
245 |
+
elif len(ft["shape"]) == 1 and ft["shape"][0] > 1:
|
246 |
+
episode_buffer[key] = np.stack(episode_buffer[key])
|
247 |
+
else:
|
248 |
+
raise ValueError(key)
|
249 |
+
|
250 |
+
self._wait_image_writer()
|
251 |
+
self._save_episode_table(episode_buffer, episode_index)
|
252 |
+
|
253 |
+
self.meta.save_episode(episode_index, episode_length, task, task_index)
|
254 |
+
for key in self.meta.video_keys:
|
255 |
+
video_path = self.root / self.meta.get_video_file_path(episode_index, key)
|
256 |
+
episode_buffer[key] = video_path
|
257 |
+
video_path.parent.mkdir(parents=True, exist_ok=True)
|
258 |
+
shutil.copyfile(videos[key], video_path)
|
259 |
+
if not episode_data: # Reset the buffer
|
260 |
+
self.episode_buffer = self.create_episode_buffer()
|
261 |
+
self.consolidated = False
|
262 |
+
|
263 |
+
def consolidate(
|
264 |
+
self, run_compute_stats: bool = True, keep_image_files: bool = False
|
265 |
+
) -> None:
|
266 |
+
self.hf_dataset = self.load_hf_dataset()
|
267 |
+
self.episode_data_index = get_episode_data_index(
|
268 |
+
self.meta.episodes, self.episodes
|
269 |
+
)
|
270 |
+
check_timestamps_sync(
|
271 |
+
self.hf_dataset, self.episode_data_index, self.fps, self.tolerance_s
|
272 |
+
)
|
273 |
+
if len(self.meta.video_keys) > 0:
|
274 |
+
self.meta.write_video_info()
|
275 |
+
|
276 |
+
if not keep_image_files:
|
277 |
+
img_dir = self.root / "images"
|
278 |
+
if img_dir.is_dir():
|
279 |
+
shutil.rmtree(self.root / "images")
|
280 |
+
video_files = list(self.root.rglob("*.mp4"))
|
281 |
+
assert len(video_files) == self.num_episodes * len(self.meta.video_keys)
|
282 |
+
|
283 |
+
parquet_files = list(self.root.rglob("*.parquet"))
|
284 |
+
assert len(parquet_files) == self.num_episodes
|
285 |
+
|
286 |
+
if run_compute_stats:
|
287 |
+
self.stop_image_writer()
|
288 |
+
self.meta.stats = compute_stats(self, batch_size=1, num_workers=1, max_num_samples=1000)
|
289 |
+
serialized_stats = serialize_dict(self.meta.stats)
|
290 |
+
write_json(serialized_stats, self.root / STATS_PATH)
|
291 |
+
self.consolidated = True
|
292 |
+
else:
|
293 |
+
logging.warning(
|
294 |
+
"Skipping computation of the dataset statistics, dataset is not fully consolidated."
|
295 |
+
)
|
296 |
+
|
297 |
+
def add_frame(self, frame: dict) -> None:
|
298 |
+
"""
|
299 |
+
This function only adds the frame to the episode_buffer. Apart from images — which are written in a
|
300 |
+
temporary directory — nothing is written to disk. To save those frames, the 'save_episode()' method
|
301 |
+
then needs to be called.
|
302 |
+
"""
|
303 |
+
# TODO(aliberts, rcadene): Add sanity check for the input, check it's numpy or torch,
|
304 |
+
# check the dtype and shape matches, etc.
|
305 |
+
|
306 |
+
if self.episode_buffer is None:
|
307 |
+
self.episode_buffer = self.create_episode_buffer()
|
308 |
+
|
309 |
+
frame_index = self.episode_buffer["size"]
|
310 |
+
timestamp = (
|
311 |
+
frame.pop("timestamp") if "timestamp" in frame else frame_index / self.fps
|
312 |
+
)
|
313 |
+
self.episode_buffer["frame_index"].append(frame_index)
|
314 |
+
self.episode_buffer["timestamp"].append(timestamp)
|
315 |
+
|
316 |
+
for key in frame:
|
317 |
+
if key not in self.features:
|
318 |
+
raise ValueError(key)
|
319 |
+
item = (
|
320 |
+
frame[key].numpy()
|
321 |
+
if isinstance(frame[key], torch.Tensor)
|
322 |
+
else frame[key]
|
323 |
+
)
|
324 |
+
self.episode_buffer[key].append(item)
|
325 |
+
|
326 |
+
self.episode_buffer["size"] += 1
|
327 |
+
|