abhishektandon commited on
Commit
223cfcc
·
1 Parent(s): 9159d99

Upload 9 files

Browse files
00000-dataset-auto1-gamma10-kimg200/fakes000000.png ADDED

Git LFS Details

  • SHA256: 171b4df9149d20a1870a13660ae49a741db075f07542210899a2c16f9638dacd
  • Pointer size: 133 Bytes
  • Size of remote file: 14.3 MB
00000-dataset-auto1-gamma10-kimg200/fakes000200.png ADDED

Git LFS Details

  • SHA256: 92a6c5a08a98b476ea8f69e021647b40cd162907e078159e15ae33e909f1d800
  • Pointer size: 133 Bytes
  • Size of remote file: 30.3 MB
00000-dataset-auto1-gamma10-kimg200/fakes_init.png ADDED

Git LFS Details

  • SHA256: c2fb75e65ee3faa1ae4471291423d1bce850977c9fe49cde9bef77de47cdd64f
  • Pointer size: 133 Bytes
  • Size of remote file: 14.9 MB
00000-dataset-auto1-gamma10-kimg200/log.txt ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Loading training set...
2
+
3
+ Num images: 692
4
+ Image shape: [3, 128, 128]
5
+ Label shape: [0]
6
+
7
+ Constructing networks...
8
+
9
+ Generator Parameters Buffers Output shape Datatype
10
+ --- --- --- --- ---
11
+ mapping.fc0 262656 - [32, 512] float32
12
+ mapping.fc1 262656 - [32, 512] float32
13
+ mapping - 512 [32, 12, 512] float32
14
+ synthesis.b4.conv1 2622465 32 [32, 512, 4, 4] float32
15
+ synthesis.b4.torgb 264195 - [32, 3, 4, 4] float32
16
+ synthesis.b4:0 8192 16 [32, 512, 4, 4] float32
17
+ synthesis.b4:1 - - [32, 512, 4, 4] float32
18
+ synthesis.b8.conv0 2622465 80 [32, 512, 8, 8] float32
19
+ synthesis.b8.conv1 2622465 80 [32, 512, 8, 8] float32
20
+ synthesis.b8.torgb 264195 - [32, 3, 8, 8] float32
21
+ synthesis.b8:0 - 16 [32, 512, 8, 8] float32
22
+ synthesis.b8:1 - - [32, 512, 8, 8] float32
23
+ synthesis.b16.conv0 2622465 272 [32, 512, 16, 16] float16
24
+ synthesis.b16.conv1 2622465 272 [32, 512, 16, 16] float16
25
+ synthesis.b16.torgb 264195 - [32, 3, 16, 16] float16
26
+ synthesis.b16:0 - 16 [32, 512, 16, 16] float16
27
+ synthesis.b16:1 - - [32, 512, 16, 16] float32
28
+ synthesis.b32.conv0 2622465 1040 [32, 512, 32, 32] float16
29
+ synthesis.b32.conv1 2622465 1040 [32, 512, 32, 32] float16
30
+ synthesis.b32.torgb 264195 - [32, 3, 32, 32] float16
31
+ synthesis.b32:0 - 16 [32, 512, 32, 32] float16
32
+ synthesis.b32:1 - - [32, 512, 32, 32] float32
33
+ synthesis.b64.conv0 1442561 4112 [32, 256, 64, 64] float16
34
+ synthesis.b64.conv1 721409 4112 [32, 256, 64, 64] float16
35
+ synthesis.b64.torgb 132099 - [32, 3, 64, 64] float16
36
+ synthesis.b64:0 - 16 [32, 256, 64, 64] float16
37
+ synthesis.b64:1 - - [32, 256, 64, 64] float32
38
+ synthesis.b128.conv0 426369 16400 [32, 128, 128, 128] float16
39
+ synthesis.b128.conv1 213249 16400 [32, 128, 128, 128] float16
40
+ synthesis.b128.torgb 66051 - [32, 3, 128, 128] float16
41
+ synthesis.b128:0 - 16 [32, 128, 128, 128] float16
42
+ synthesis.b128:1 - - [32, 128, 128, 128] float32
43
+ --- --- --- --- ---
44
+ Total 22949277 44448 - -
45
+
46
+
47
+ Discriminator Parameters Buffers Output shape Datatype
48
+ --- --- --- --- ---
49
+ b128.fromrgb 512 16 [32, 128, 128, 128] float16
50
+ b128.skip 32768 16 [32, 256, 64, 64] float16
51
+ b128.conv0 147584 16 [32, 128, 128, 128] float16
52
+ b128.conv1 295168 16 [32, 256, 64, 64] float16
53
+ b128 - 16 [32, 256, 64, 64] float16
54
+ b64.skip 131072 16 [32, 512, 32, 32] float16
55
+ b64.conv0 590080 16 [32, 256, 64, 64] float16
56
+ b64.conv1 1180160 16 [32, 512, 32, 32] float16
57
+ b64 - 16 [32, 512, 32, 32] float16
58
+ b32.skip 262144 16 [32, 512, 16, 16] float16
59
+ b32.conv0 2359808 16 [32, 512, 32, 32] float16
60
+ b32.conv1 2359808 16 [32, 512, 16, 16] float16
61
+ b32 - 16 [32, 512, 16, 16] float16
62
+ b16.skip 262144 16 [32, 512, 8, 8] float16
63
+ b16.conv0 2359808 16 [32, 512, 16, 16] float16
64
+ b16.conv1 2359808 16 [32, 512, 8, 8] float16
65
+ b16 - 16 [32, 512, 8, 8] float16
66
+ b8.skip 262144 16 [32, 512, 4, 4] float32
67
+ b8.conv0 2359808 16 [32, 512, 8, 8] float32
68
+ b8.conv1 2359808 16 [32, 512, 4, 4] float32
69
+ b8 - 16 [32, 512, 4, 4] float32
70
+ b4.mbstd - - [32, 513, 4, 4] float32
71
+ b4.conv 2364416 16 [32, 512, 4, 4] float32
72
+ b4.fc 4194816 - [32, 512] float32
73
+ b4.out 513 - [32, 1] float32
74
+ --- --- --- --- ---
75
+ Total 23882369 352 - -
76
+
77
+ Setting up augmentation...
78
+ Distributing across 1 GPUs...
79
+ Setting up training phases...
80
+ Exporting sample images...
81
+ Initializing logs...
82
+ Skipping tfevents export: No module named 'tensorboard'
83
+ Training for 200 kimg...
84
+
85
+ tick 0 kimg 0.0 time 23s sec/tick 6.6 sec/kimg 205.00 maintenance 16.4 cpumem 4.12 gpumem 16.47 augment 0.000
86
+ tick 1 kimg 4.0 time 2m 11s sec/tick 99.7 sec/kimg 24.92 maintenance 8.3 cpumem 4.13 gpumem 8.25 augment 0.005
87
+ tick 2 kimg 8.0 time 3m 53s sec/tick 102.1 sec/kimg 25.53 maintenance 0.1 cpumem 4.13 gpumem 8.25 augment 0.011
88
+ tick 3 kimg 12.0 time 5m 36s sec/tick 102.5 sec/kimg 25.62 maintenance 0.1 cpumem 4.13 gpumem 8.31 augment 0.017
89
+ tick 4 kimg 16.0 time 7m 19s sec/tick 103.1 sec/kimg 25.78 maintenance 0.0 cpumem 4.13 gpumem 8.27 augment 0.021
90
+ tick 5 kimg 20.0 time 9m 02s sec/tick 103.1 sec/kimg 25.77 maintenance 0.1 cpumem 4.13 gpumem 8.28 augment 0.024
91
+ tick 6 kimg 24.0 time 10m 45s sec/tick 102.7 sec/kimg 25.67 maintenance 0.1 cpumem 4.13 gpumem 8.28 augment 0.025
92
+ tick 7 kimg 28.0 time 12m 28s sec/tick 103.0 sec/kimg 25.75 maintenance 0.1 cpumem 4.13 gpumem 8.26 augment 0.025
93
+ tick 8 kimg 32.0 time 14m 11s sec/tick 103.1 sec/kimg 25.78 maintenance 0.0 cpumem 4.13 gpumem 8.26 augment 0.023
94
+ tick 9 kimg 36.0 time 15m 53s sec/tick 102.4 sec/kimg 25.59 maintenance 0.1 cpumem 4.13 gpumem 8.28 augment 0.020
95
+ tick 10 kimg 40.0 time 17m 36s sec/tick 102.9 sec/kimg 25.74 maintenance 0.1 cpumem 4.13 gpumem 8.26 augment 0.018
96
+ tick 11 kimg 44.0 time 19m 19s sec/tick 102.1 sec/kimg 25.51 maintenance 0.1 cpumem 4.13 gpumem 8.25 augment 0.015
97
+ tick 12 kimg 48.0 time 21m 01s sec/tick 102.5 sec/kimg 25.62 maintenance 0.0 cpumem 4.13 gpumem 8.26 augment 0.013
98
+ tick 13 kimg 52.0 time 22m 43s sec/tick 101.7 sec/kimg 25.43 maintenance 0.1 cpumem 4.13 gpumem 8.25 augment 0.010
99
+ tick 14 kimg 56.0 time 24m 24s sec/tick 101.2 sec/kimg 25.29 maintenance 0.1 cpumem 4.13 gpumem 8.26 augment 0.006
100
+ tick 15 kimg 60.0 time 26m 05s sec/tick 100.8 sec/kimg 25.19 maintenance 0.1 cpumem 4.13 gpumem 8.25 augment 0.003
101
+ tick 16 kimg 64.0 time 27m 45s sec/tick 100.4 sec/kimg 25.10 maintenance 0.0 cpumem 4.13 gpumem 8.25 augment 0.001
102
+ tick 17 kimg 68.0 time 29m 25s sec/tick 99.6 sec/kimg 24.90 maintenance 0.1 cpumem 4.13 gpumem 8.18 augment 0.000
103
+ tick 18 kimg 72.0 time 31m 05s sec/tick 100.0 sec/kimg 25.00 maintenance 0.1 cpumem 4.13 gpumem 8.19 augment 0.000
104
+ tick 19 kimg 76.0 time 32m 46s sec/tick 100.1 sec/kimg 25.02 maintenance 0.1 cpumem 4.13 gpumem 8.17 augment 0.000
105
+ tick 20 kimg 80.0 time 34m 26s sec/tick 100.3 sec/kimg 25.07 maintenance 0.0 cpumem 4.13 gpumem 8.19 augment 0.001
106
+ tick 21 kimg 84.0 time 36m 06s sec/tick 100.1 sec/kimg 25.02 maintenance 0.1 cpumem 4.13 gpumem 8.19 augment 0.000
107
+ tick 22 kimg 88.0 time 37m 46s sec/tick 99.7 sec/kimg 24.93 maintenance 0.1 cpumem 4.13 gpumem 8.19 augment 0.000
108
+ tick 23 kimg 92.0 time 39m 26s sec/tick 100.1 sec/kimg 25.04 maintenance 0.1 cpumem 4.13 gpumem 8.19 augment 0.001
109
+ tick 24 kimg 96.0 time 41m 06s sec/tick 100.3 sec/kimg 25.07 maintenance 0.0 cpumem 4.13 gpumem 8.18 augment 0.000
110
+ tick 25 kimg 100.0 time 42m 46s sec/tick 100.0 sec/kimg 25.01 maintenance 0.1 cpumem 4.13 gpumem 8.18 augment 0.000
111
+ tick 26 kimg 104.0 time 44m 27s sec/tick 100.0 sec/kimg 25.01 maintenance 0.1 cpumem 4.13 gpumem 8.23 augment 0.000
112
+ tick 27 kimg 108.0 time 46m 06s sec/tick 99.8 sec/kimg 24.95 maintenance 0.1 cpumem 4.13 gpumem 8.19 augment 0.001
113
+ tick 28 kimg 112.0 time 47m 47s sec/tick 100.3 sec/kimg 25.09 maintenance 0.0 cpumem 4.13 gpumem 8.24 augment 0.001
114
+ tick 29 kimg 116.0 time 49m 27s sec/tick 100.1 sec/kimg 25.03 maintenance 0.1 cpumem 4.13 gpumem 8.25 augment 0.003
115
+ tick 30 kimg 120.0 time 51m 08s sec/tick 100.4 sec/kimg 25.11 maintenance 0.1 cpumem 4.13 gpumem 8.25 augment 0.005
116
+ tick 31 kimg 124.0 time 52m 48s sec/tick 100.7 sec/kimg 25.17 maintenance 0.1 cpumem 4.13 gpumem 8.27 augment 0.004
117
+ tick 32 kimg 128.0 time 54m 29s sec/tick 100.8 sec/kimg 25.20 maintenance 0.0 cpumem 4.13 gpumem 8.24 augment 0.004
118
+ tick 33 kimg 132.0 time 56m 10s sec/tick 100.5 sec/kimg 25.13 maintenance 0.1 cpumem 4.13 gpumem 8.25 augment 0.006
119
+ tick 34 kimg 136.0 time 57m 51s sec/tick 100.8 sec/kimg 25.20 maintenance 0.1 cpumem 4.13 gpumem 8.25 augment 0.007
120
+ tick 35 kimg 140.0 time 59m 32s sec/tick 101.3 sec/kimg 25.32 maintenance 0.1 cpumem 4.13 gpumem 8.25 augment 0.010
121
+ tick 36 kimg 144.0 time 1h 01m 25s sec/tick 113.0 sec/kimg 28.25 maintenance 0.0 cpumem 4.13 gpumem 8.26 augment 0.012
122
+ tick 37 kimg 148.0 time 1h 03m 07s sec/tick 101.4 sec/kimg 25.36 maintenance 0.1 cpumem 4.13 gpumem 8.26 augment 0.015
123
+ tick 38 kimg 152.0 time 1h 04m 48s sec/tick 101.2 sec/kimg 25.29 maintenance 0.1 cpumem 4.13 gpumem 8.25 augment 0.017
124
+ tick 39 kimg 156.0 time 1h 06m 30s sec/tick 102.2 sec/kimg 25.55 maintenance 0.1 cpumem 4.13 gpumem 8.43 augment 0.020
125
+ tick 40 kimg 160.0 time 1h 08m 12s sec/tick 102.2 sec/kimg 25.56 maintenance 0.0 cpumem 4.13 gpumem 8.31 augment 0.022
126
+ tick 41 kimg 164.0 time 1h 09m 54s sec/tick 101.9 sec/kimg 25.49 maintenance 0.1 cpumem 4.13 gpumem 8.27 augment 0.023
127
+ tick 42 kimg 168.0 time 1h 11m 36s sec/tick 101.8 sec/kimg 25.45 maintenance 0.1 cpumem 4.13 gpumem 8.38 augment 0.023
128
+ tick 43 kimg 172.0 time 1h 13m 18s sec/tick 102.0 sec/kimg 25.51 maintenance 0.1 cpumem 4.13 gpumem 8.26 augment 0.025
129
+ tick 44 kimg 176.0 time 1h 15m 01s sec/tick 102.5 sec/kimg 25.63 maintenance 0.0 cpumem 4.13 gpumem 8.28 augment 0.028
130
+ tick 45 kimg 180.0 time 1h 16m 43s sec/tick 102.3 sec/kimg 25.57 maintenance 0.1 cpumem 4.13 gpumem 8.27 augment 0.030
131
+ tick 46 kimg 184.0 time 1h 18m 26s sec/tick 102.6 sec/kimg 25.65 maintenance 0.1 cpumem 4.13 gpumem 8.30 augment 0.031
132
+ tick 47 kimg 188.0 time 1h 20m 09s sec/tick 102.6 sec/kimg 25.64 maintenance 0.1 cpumem 4.13 gpumem 8.27 augment 0.034
133
+ tick 48 kimg 192.0 time 1h 21m 52s sec/tick 103.4 sec/kimg 25.84 maintenance 0.0 cpumem 4.14 gpumem 8.26 augment 0.034
134
+ tick 49 kimg 196.0 time 1h 23m 35s sec/tick 102.5 sec/kimg 25.62 maintenance 0.1 cpumem 4.14 gpumem 8.27 augment 0.035
135
+ tick 50 kimg 200.0 time 1h 25m 16s sec/tick 101.7 sec/kimg 25.62 maintenance 0.1 cpumem 4.14 gpumem 8.32 augment 0.036
136
+
137
+ Exiting...
00000-dataset-auto1-gamma10-kimg200/network-snapshot-000000.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b49df0ac552a95c05d565c1835c77e56dfdb5d9f5b11324c725a61cbb1e940df
3
+ size 279651716
00000-dataset-auto1-gamma10-kimg200/network-snapshot-000200.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7e680e06aabfcc2f884425ae093c8ef35059abb4d84661606833bb3219c1d60
3
+ size 279651278
00000-dataset-auto1-gamma10-kimg200/reals.png ADDED

Git LFS Details

  • SHA256: b02d6974dda84a527749c6ba91e767cb4ff2014c8d85a41809b487a00f78d813
  • Pointer size: 133 Bytes
  • Size of remote file: 26.3 MB
00000-dataset-auto1-gamma10-kimg200/stats.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
00000-dataset-auto1-gamma10-kimg200/training_options.json ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "num_gpus": 1,
3
+ "image_snapshot_ticks": 50,
4
+ "network_snapshot_ticks": 50,
5
+ "metrics": [],
6
+ "random_seed": 0,
7
+ "training_set_kwargs": {
8
+ "class_name": "training.dataset.ImageFolderDataset",
9
+ "path": "./content/dataset.zip",
10
+ "use_labels": false,
11
+ "max_size": 692,
12
+ "xflip": false,
13
+ "resolution": 128
14
+ },
15
+ "data_loader_kwargs": {
16
+ "pin_memory": true,
17
+ "num_workers": 3,
18
+ "prefetch_factor": 2
19
+ },
20
+ "G_kwargs": {
21
+ "class_name": "training.networks.Generator",
22
+ "z_dim": 512,
23
+ "w_dim": 512,
24
+ "mapping_kwargs": {
25
+ "num_layers": 2
26
+ },
27
+ "synthesis_kwargs": {
28
+ "channel_base": 16384,
29
+ "channel_max": 512,
30
+ "num_fp16_res": 4,
31
+ "conv_clamp": 256
32
+ }
33
+ },
34
+ "D_kwargs": {
35
+ "class_name": "training.networks.Discriminator",
36
+ "block_kwargs": {},
37
+ "mapping_kwargs": {},
38
+ "epilogue_kwargs": {
39
+ "mbstd_group_size": 4
40
+ },
41
+ "channel_base": 16384,
42
+ "channel_max": 512,
43
+ "num_fp16_res": 4,
44
+ "conv_clamp": 256
45
+ },
46
+ "G_opt_kwargs": {
47
+ "class_name": "torch.optim.Adam",
48
+ "lr": 0.0025,
49
+ "betas": [
50
+ 0,
51
+ 0.99
52
+ ],
53
+ "eps": 1e-08
54
+ },
55
+ "D_opt_kwargs": {
56
+ "class_name": "torch.optim.Adam",
57
+ "lr": 0.0025,
58
+ "betas": [
59
+ 0,
60
+ 0.99
61
+ ],
62
+ "eps": 1e-08
63
+ },
64
+ "loss_kwargs": {
65
+ "class_name": "training.loss.StyleGAN2Loss",
66
+ "r1_gamma": 10.0
67
+ },
68
+ "total_kimg": 200,
69
+ "batch_size": 32,
70
+ "batch_gpu": 32,
71
+ "ema_kimg": 10.0,
72
+ "ema_rampup": 0.05,
73
+ "ada_target": 0.6,
74
+ "augment_kwargs": {
75
+ "class_name": "training.augment.AugmentPipe",
76
+ "xflip": 1,
77
+ "rotate90": 1,
78
+ "xint": 1,
79
+ "scale": 1,
80
+ "rotate": 1,
81
+ "aniso": 1,
82
+ "xfrac": 1,
83
+ "brightness": 1,
84
+ "contrast": 1,
85
+ "lumaflip": 1,
86
+ "hue": 1,
87
+ "saturation": 1
88
+ },
89
+ "run_dir": "./training-runs/00000-dataset-auto1-gamma10-kimg200"
90
+ }