|
1 |
|
00:00:21,600 --> 00:00:25,960 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุนูุฏุฉ ุนูู ุจุฏุก ูู ุงููุชุฑุฉ |
|
|
|
2 |
|
00:00:25,960 --> 00:00:31,280 |
|
ุงูุตุจุงุญูุฉ ุฃุฎุฐูุง ุซูุงุซ ูุธุฑูุงุช ุงููู ูู ุนูู ุงู |
|
|
|
3 |
|
00:00:31,280 --> 00:00:35,260 |
|
subgroups ูุฃู ุงูุฏุฑุณ ุงูุญุฏูุซ ุนูู ููุณ ุงูู
ูุถูุน |
|
|
|
4 |
|
00:00:35,910 --> 00:00:39,090 |
|
ุงููุธุฑูุฉ ุงููู ุนูุฏูุง ุจุชููู ูู g ู
ุฌู
ูุนุฉ ูุฎุฏ |
|
|
|
5 |
|
00:00:39,090 --> 00:00:44,710 |
|
ู a ุฃู ุนูุตุฑ ู
ูุฌูุฏ ูู g then the set ุงู set |
|
|
|
6 |
|
00:00:44,710 --> 00:00:49,350 |
|
ุงููู ูู ู
ููุฏุฉ ุจ a ูุจูู ูุฐู ุจูุณู
ููุง ุงู cycle |
|
|
|
7 |
|
00:00:49,350 --> 00:00:54,620 |
|
ู group ู
ููุฏุฉ ุจ a ู
ูู ููุ ุจุฑูุญ ูุนุฑููุง ูุฃู |
|
|
|
8 |
|
00:00:54,620 --> 00:01:01,140 |
|
ุงูุนูุตุฑ a ุงููู ู
ูุฌูุฏ ูู g ุจุณ ุจุฏู ุฃุฑูุนู ููุฃุณ n ู ุงู n |
|
|
|
9 |
|
00:01:01,140 --> 00:01:09,220 |
|
ู
ูุฌูุฏ ูู z ุงู a ูู ุนูุตุฑ ุซุงุจุช ููู ุงู n ุนุฏุฏ ู
ุชุบูุฑ ุฃู |
|
|
|
10 |
|
00:01:09,220 --> 00:01:13,940 |
|
ุนุฏุฏ ู
ู ุฐุงุช ุณูุงุก ูุงู ุตูุฑ ุฃู ู
ูุฌุจ ุฃู ุณุงูุจ ูุจูู ุงูุณุช |
|
|
|
11 |
|
00:01:13,940 --> 00:01:18,020 |
|
ุงููู ุนูุฏูุง ุจูุฐุง ุงูุดูู ุจุชุจูู subgroup ู
ู g ุจุฏูุง |
|
|
|
12 |
|
00:01:18,020 --> 00:01:22,140 |
|
ูุซุจุชูุง ูุฐู ุงู subgroup ุจูุณู
ูู ุงู cyclic subgroup |
|
|
|
13 |
|
00:01:22,140 --> 00:01:27,620 |
|
ู
ููุฏุฉ ุจ a ูุจูู ูู ู
ุฌู
ูุนุฉ ุฌุฒุฆูุฉ ุฏูุฑูุฉ ู
ููุฏุฉ |
|
|
|
14 |
|
00:01:27,620 --> 00:01:31,480 |
|
ุจุงูุนูุตุฑ a ุทุจุนุง ุงู cyclic groups |
|
|
|
15 |
|
00:01:31,480 --> 00:01:36,360 |
|
ุงูุดุทุฑ ุงูุฌุงู ููู ุงู cyclic groups ู
ู ุฃููู ุฅูู ุขุฎุฑู |
|
|
|
16 |
|
00:01:36,360 --> 00:01:41,220 |
|
ู ุงููุธุฑูุงุช ู ุฃู
ุซูุฉ ูู
ุง ุฅูู ุฐูู ููู ุฅุฐุง ุฑูุญ ูุซุจุช ูุฐู |
|
|
|
17 |
|
00:01:41,220 --> 00:01:45,720 |
|
ุจูู ุฃูุง ุจุฏู ุฃุซุจุช ููุทุชูู ุงูููุทุฉ ุงูุฃููู ุจุฏู ุฃุซุจุช ุฅู |
|
|
|
18 |
|
00:01:45,720 --> 00:01:52,360 |
|
ุงู set ูุฐู ููุณุช ุฎุงููุฉ non-empty ุงุซููู ุจุฏู ุฃุฎุฏ ู
ููุง |
|
|
|
19 |
|
00:01:52,360 --> 00:01:56,120 |
|
two elements ู ุฃุซุจุช ุฅู ุงูุฃูู ูู ู
ุนููุณ ุงูุซุงูู ู
ูุฌูุฏ |
|
|
|
20 |
|
00:01:56,120 --> 00:02:02,680 |
|
ูููุง ูุฐูู ุจุฌู ุจููู ููุง ุงู subgroup generated by a is |
|
|
|
21 |
|
00:02:02,680 --> 00:02:14,040 |
|
non-empty ุจู
ุง ุฃู ุงูู a to the power of 0 ูู |
|
|
|
22 |
|
00:02:14,040 --> 00:02:17,140 |
|
ุนูู |
|
|
|
23 |
|
00:02:17,140 --> 00:02:26,000 |
|
ุงูุดูู a<sup>0</sup> ู 0 ู
ูุฌูุฏ ูู z ูุจูู ูุฐุง ู
ูุฌูุฏ ูู a ูุฐูู ุงู |
|
|
|
24 |
|
00:02:26,000 --> 00:02:30,520 |
|
subgroup generated by a is non empty ุงูููุทุฉ |
|
|
|
25 |
|
00:02:30,520 --> 00:02:37,020 |
|
ุงูุซุงููุฉ ุจุฏู ุฃุฎุฏ two elements ูุจูู let ุงู X ู Y |
|
|
|
26 |
|
00:02:37,020 --> 00:02:42,180 |
|
ู
ูุฌูุฏุฉ ูู ุงู subgroup generated by A ุฃู ู
ูุฌูุฏุฉ ูู |
|
|
|
27 |
|
00:02:42,180 --> 00:02:48,620 |
|
ุงูุณุช ุงููู ูู ู
ููุฏุฉ ุจ A ูุจูู then ุงู X ูุฐู |
|
|
|
28 |
|
00:02:48,620 --> 00:02:54,740 |
|
ุจุฏูุง ุชุณุงูู A to the power N and ุงู Y ุชุณุงูู A to |
|
|
|
29 |
|
00:02:54,740 --> 00:03:01,740 |
|
the power M ุงูุขู ุจุฏู ุฃุซุจุช ุฅู ุงูุฃูู ูู ู
ุนููุณ ุงูุซุงูู |
|
|
|
30 |
|
00:03:01,740 --> 00:03:08,500 |
|
ู
ูุฌูุฏ ูู ูุฐู ุงูุณุช ู
ุดุงู ููู ุจุฏู ุขุฎุฐ ูู consider |
|
|
|
31 |
|
00:03:08,500 --> 00:03:16,460 |
|
ุขุฎุฐ ูู XY inverse ูุจูู ุจูุงุก ุนููู ูุฐุง ุจุฏู ูุณุงูู ุงู A<sup>N</sup> |
|
|
|
32 |
|
00:03:16,460 --> 00:03:23,110 |
|
ูุงู A<sup>M</sup> inverse ู
ู ู
ุนููู
ุงุชูุง ุงูุณุงุจูุฉ ูู ุงู chapter |
|
|
|
33 |
|
00:03:23,110 --> 00:03:29,810 |
|
ุงูุฃูู ูู ุงู groups ูุฐุง ุจุฏู ูุนุทููุง a<sup>m</sup> a<sup>-m</sup> |
|
|
|
34 |
|
00:03:29,810 --> 00:03:40,130 |
|
ุฃู ุฅูุดุงุกุชูู
ูููููุง a<sup>n-m</sup> ุงูุขู ูุฐุง ู
ูุฌูุฏ |
|
|
|
35 |
|
00:03:40,130 --> 00:03:49,510 |
|
ูู ุงู group generated by a ุจุณุจุจ ุฅู ุงู M ุฃู ุงู N |
|
|
|
36 |
|
00:03:49,510 --> 00:03:55,710 |
|
ูุงูุต ุงู M ูู integer ู
ูุฌูุฏ ูู ุงู Z ุฅุฐุง ุตุงุฑ ุงู |
|
|
|
37 |
|
00:03:55,710 --> 00:04:00,530 |
|
identity element ู
ูุฌูุฏ ููุง ุฃุฎุฐุช ุนูุตุฑูู ู
ูุฌูุฏุงุช ูู |
|
|
|
38 |
|
00:04:00,530 --> 00:04:03,370 |
|
ุงู group generated by A ุงููู ุฌุช ุงูุฃูู ูู ู
ุนููุณ |
|
|
|
39 |
|
00:04:03,370 --> 00:04:09,350 |
|
ุงูุซุงูู ู
ูุฌูุฏ ูููุง ูุจูู by a previous |
|
|
|
40 |
|
00:04:12,500 --> 00:04:19,180 |
|
theorem ุจูุธุฑูุฉ ุณุงุจูุฉ ุงููู ูู ุงู group generated by |
|
|
|
41 |
|
00:04:19,180 --> 00:04:27,020 |
|
a is a subgroup ูุจูู ูุฐู ุงู subgroup ู ุจููู ูุฐู |
|
|
|
42 |
|
00:04:27,020 --> 00:04:33,160 |
|
ู
ููุฏุฉ ุจุงูุนูุตุฑ a ูุนูู ุงู a ุจูุฌูุจ ูู ุงูุนูุงุตุฑ ุจุชุจุนุชู |
|
|
|
43 |
|
00:04:33,160 --> 00:04:35,800 |
|
remarks |
|
|
|
44 |
|
00:04:41,190 --> 00:04:49,050 |
|
ุงูููุทุฉ ุงูุฃููู ูู ูุงูุช ุงู G ูููุง ุจุฏุฃ ุชุณุงูู ุงู |
|
|
|
45 |
|
00:04:49,050 --> 00:04:59,630 |
|
subgroup generated by A ูููู ุฅู ุงู |
|
|
|
46 |
|
00:04:59,630 --> 00:05:10,490 |
|
G is cyclic ุงู G is cyclic and the element |
|
|
|
47 |
|
00:05:15,070 --> 00:05:26,150 |
|
and the element a is a generator for ุงููู ูู ุงู |
|
|
|
48 |
|
00:05:26,150 --> 00:05:32,330 |
|
group g ุงูููุทุฉ |
|
|
|
49 |
|
00:05:32,330 --> 00:05:40,130 |
|
ุงูุซุงููุฉ ุงูููุทุฉ |
|
|
|
50 |
|
00:05:40,130 --> 00:05:42,250 |
|
ุงูุซุงููุฉ every |
|
|
|
51 |
|
00:05:45,790 --> 00:05:53,190 |
|
cyclic group is |
|
|
|
52 |
|
00:05:53,190 --> 00:06:00,070 |
|
abelian ุฑูุญ |
|
|
|
53 |
|
00:06:00,070 --> 00:06:10,110 |
|
ูุฏุจ ุตุญุฉ ูุฐุง ุงูููุงู
ุงู |
|
|
|
54 |
|
00:06:10,110 --> 00:06:15,780 |
|
remark ุงููู ุนููุง ุนุจุงุฑุฉ ุนู ููุทุชูู ุงูููุทุฉ ุงูุฃููู ุจููู |
|
|
|
55 |
|
00:06:15,780 --> 00:06:22,180 |
|
ูู ูุงูุช ุงู G ูู ุงู subgroup generated by A ูุนูู |
|
|
|
56 |
|
00:06:22,180 --> 00:06:26,300 |
|
ุนูุงุตุฑ ููุง ูู ุฌูุช ุฏูุฑุช ุนูููู
ููุชูู
ุจุฏูู
ูุทูุนูุง |
|
|
|
57 |
|
00:06:26,300 --> 00:06:32,720 |
|
ุนูุงุตุฑ G ุงูุฃุตููุฉ ุจุฑูุญ ูููู ุงู G is cyclic ูุจูู ุงู |
|
|
|
58 |
|
00:06:32,720 --> 00:06:38,040 |
|
group G ุจููู ุนูููุง ู
ุฌู
ูุนุฉ ุฏูุฑูุฉ and element A ูุงู A |
|
|
|
59 |
|
00:06:38,040 --> 00:06:44,080 |
|
ุจููู generator ู G ูุนูู ุงู A ู
ููุฏ ูู
ูู ู G ูู
ุง ูููู |
|
|
|
60 |
|
00:06:44,080 --> 00:06:49,280 |
|
a ู
ููุฏ ูุฌูู ูุนูู ูุฐุง ุงู element a ุจูุฎูู ูู ุฌู
ูุน |
|
|
|
61 |
|
00:06:49,280 --> 00:06:54,800 |
|
ุนูุงุตุฑ ุงู group ุฌูู ููู ูู ููุช a ุฃุณ ุตูุฑ a ุฃุณ |
|
|
|
62 |
|
00:06:54,800 --> 00:07:00,000 |
|
ูุงุญุฏ a ุชุฑุจูุน a ุชูุนูุจ ุจุฏู ูุฌูุจ ูู ูู ุงูุนูุงุตุฑ ูุชูุฌุฉ |
|
|
|
63 |
|
00:07:00,000 --> 00:07:04,680 |
|
ููุฐู ุงูุฃุณุงุณ ุจุฏูู
ูุฌูุจ ูู ุนูุงุตุฑ ุฌูู ูููุง ุฅู ุญุฏุซ ุฐูู |
|
|
|
64 |
|
00:07:04,680 --> 00:07:09,660 |
|
ูุจูู ุจููู ุงู G ูุฐู Cyclic group ูุจูู ูุฐุง ุจูุงุก |
|
|
|
65 |
|
00:07:09,660 --> 00:07:16,040 |
|
ุนููู ูู ุชุนุฑูู ุงู Cyclic group generated by A ูุนูู |
|
|
|
66 |
|
00:07:16,040 --> 00:07:21,500 |
|
ุงูู
ุฌู
ูุนุฉ ุงูุฏูุฑูุฉ ุงูู
ููุฏุฉ ุจุงูุนูุตุฑ aุ ููุทุฉ ุซุงููุฉ |
|
|
|
67 |
|
00:07:21,500 --> 00:07:26,500 |
|
ุจูููู ุฃู cycling group ุฃู every cycling group is |
|
|
|
68 |
|
00:07:26,500 --> 00:07:31,460 |
|
abelian ุทูุจ ุฃูุง ุงูุขู ุจุฏู ุฃุซุจุช ุตุญุฉ ูุฐุง ุงูููุงู
ุนุดุงู |
|
|
|
69 |
|
00:07:31,460 --> 00:07:35,500 |
|
ุฃุนุชู
ุฏ ุนููู ุจุนุฏ ุฐูู ู
ู ุญุฏ ู
ุง ูููู ุงู cycling group |
|
|
|
70 |
|
00:07:35,500 --> 00:07:40,660 |
|
ุจุฏู ุฃููู
ุฅููุง abelian ุทูุจ ูู ุงูุนูุณ ุตุญูุญุ ุงูุนูุณ ููู |
|
|
|
71 |
|
00:07:40,660 --> 00:07:46,010 |
|
ุตุญูุญุ ูุฏ ุชููู abelian ูููุณุช cycling ูููุฐุง ุทูุจ ูู |
|
|
|
72 |
|
00:07:46,010 --> 00:07:55,250 |
|
ุฌูุช ุงูุขู ุจุฏุฃุช ุฃููู ูู let ุงู g be a cyclic group |
|
|
|
73 |
|
00:07:55,250 --> 00:08:08,630 |
|
then ุงู g ุจุฏูุง ุชุณุงูู ุงู subgroup generated by a for some a ุงููู ู
ูุฌูุฏ ูู g |
|
|
|
74 |
|
00:08:11,870 --> 00:08:17,310 |
|
ู
ุฑุฉ ุซุงููุฉ ุฃูุง ู
ูุชุฑุถ ุฅู ุฌูู ุงู cyclic group ูุจูู |
|
|
|
75 |
|
00:08:17,310 --> 00:08:21,430 |
|
ุฌูู ุงููู ูู ุดูู ู
ุนูู ู
ุง ูู ูุฐุง ุงูุดูู ุฌูู ุงููู ูู |
|
|
|
76 |
|
00:08:21,430 --> 00:08:27,240 |
|
ุงู subgroup generated by A ุทูุจุ ุฅูุด ูุนููุ ูุนูู |
|
|
|
77 |
|
00:08:27,240 --> 00:08:33,900 |
|
ู
ุนูุงุชู ุฅูู ููุงูู ุนูุตุฑ ุนูู ุงูุฃูู ูู G ุฃู ุฃูุซุฑ ููู |
|
|
|
78 |
|
00:08:33,900 --> 00:08:39,960 |
|
ู
ุง ููุชุด ุฌู
ูุน ุงูุนูุงุตุฑ ูุฑูุญุช ููุช for some ูุจุนุถ ุนูุงุตุฑ |
|
|
|
79 |
|
00:08:39,960 --> 00:08:46,500 |
|
G ุนูู ุฃู ุญุงู ุจุนุฏ ุดููุฉ ููุซุจุช ุฅูู ุนูู ุงูุฃูู ูู group |
|
|
|
80 |
|
00:08:46,500 --> 00:08:52,080 |
|
ูููุง two generators ูุนูู ู
ุด ูู ุนูุงุตุฑ ูุฌุฑูุจ ุจููุน |
|
|
|
81 |
|
00:08:52,080 --> 00:08:56,620 |
|
ูููููุง generators ุงูุจุนุถ ูุนู
ูุงูุจุนุถ ูุง ุชู
ุงู
ูุฅูุด |
|
|
|
82 |
|
00:08:56,620 --> 00:09:00,240 |
|
ุจูู ูุฌุจ ุฃููู ู
ุฏุงู
ูุฑุถุชูุง ุงู cyclic ูุจูู ูุงุฒู
ุฃูุงูู |
|
|
|
83 |
|
00:09:00,240 --> 00:09:05,060 |
|
element A ู
ูุฌูุฏ ูู G ุจุญูุซ ูุฐุง ุงู element ูุฌูุจ ูู
ูู |
|
|
|
84 |
|
00:09:05,060 --> 00:09:11,770 |
|
ุฌู
ูุน ุนูุงุตุฑ G ุฃูุง ุงูุขู ุจุฏู ุฃุซุจุช ุฅู ูุฐู ุงู G is |
|
|
|
85 |
|
00:09:11,770 --> 00:09:16,750 |
|
abelian ุจู
ุนูู ูู ุฃุฎุฐุช ุนูุตุฑูู ูููุง ุจุฏู ุฃุซุจุช ุฅู ุงู X |
|
|
|
86 |
|
00:09:16,750 --> 00:09:23,630 |
|
ูู Y ูุณุงูู ุงู Y ูู X ูุจูู ุจุงุฌู ุจููู ูู ุงู X ู Y |
|
|
|
87 |
|
00:09:23,630 --> 00:09:28,910 |
|
ู
ูุฌูุฏุงุช ูู ุงู group generated by A ุทูุจ ุงู group |
|
|
|
88 |
|
00:09:28,910 --> 00:09:35,690 |
|
generated by a ููุง ุชุนุฑูู ูู ุงูุชุนุฑูู ุฅุฐุง ูู x ูุฐุง |
|
|
|
89 |
|
00:09:35,690 --> 00:09:45,010 |
|
then ุงู x ูุณุงูู ู
ุนูุงุชู a ู
ุฑููุนุฉ ู integer ูุจูู ูุฐุง |
|
|
|
90 |
|
00:09:45,010 --> 00:09:53,090 |
|
ุจุฏู ูุณุงูู a<sup>i</sup> ู
ุซูุง and ุงู y ุจุฏูุง ุชุณุงูู a<sup>j</sup> |
|
|
|
91 |
|
00:09:55,520 --> 00:10:00,040 |
|
ูุฅูุดุ ูุฃู ุงู subgroup ูุฐุง a ู
ุฑููุน ู ุฃุณ ุงู ุฃุณ ูุฐุง |
|
|
|
92 |
|
00:10:00,040 --> 00:10:05,520 |
|
ุจุฏู ูุฌููุง ู
ููุ ู
ู z ูุนูู integer ูููุณ ุฃูุง ุดู ุจุฏู |
|
|
|
93 |
|
00:10:05,520 --> 00:10:14,960 |
|
ุฃุซุจุชุ ุจุฏู ุฃุซุจุช ุฅู ุงู x y inverse ู
ูุฌูุฏุฉ ุงู x y ุจุฏู |
|
|
|
94 |
|
00:10:14,960 --> 00:10:23,390 |
|
ุฃุณุงูู y x ูููุณ then ุงูุขู ุจุฏู ุฃููู ูู ุฎุฐ ูู consider |
|
|
|
95 |
|
00:10:23,390 --> 00:10:32,030 |
|
ุงู X Y ูุดูู ุดู ุจุฏู ูุณุงูู ุงู X ูู a<sup>i</sup> ุชู
ุงู
ุ ุทูุจ ูู |
|
|
|
96 |
|
00:10:32,030 --> 00:10:40,070 |
|
ูุฐุง ุงูููุงู
ุงู Y ุงููู ูู a<sup>j</sup> ูุฐุง |
|
|
|
97 |
|
00:10:40,070 --> 00:10:48,270 |
|
ุงูููุงู
ูุณุงูู a<sup>i+j</sup> ูุฐุง ุงูููุงู
ูุณุงูู a ุฃุณ |
|
|
|
98 |
|
00:10:48,270 --> 00:10:53,870 |
|
ุงููู ุฃุนูู
ุงูุขู ุงู I ู ุงู J integers ููุง ูุงุ ู J |
|
|
|
99 |
|
00:10:53,870 --> 00:10:58,790 |
|
ู
ุฌู
ูุนุฉ two integers ุจ Integer ุงุซููู ูู
ุง ุฃููู I |
|
|
|
100 |
|
00:10:58,790 --> 00:11:04,170 |
|
ุฒุงุฆุฏ J ู ูุง J ุฒุงุฆุฏ I ูู Integers ุจุฎุชูู ุงููุถุนุ ูุฃ |
|
|
|
101 |
|
00:11:04,170 --> 00:11:11,640 |
|
ูุจูู ูุฐุง ุงูููุงู
ุจูุฏุฑ ุฃููู a<sup>j+i</sup> ุชู
ุงู
ุ ูุฐุง |
|
|
|
102 |
|
00:11:11,640 --> 00:11:21,840 |
|
ุงูููุงู
ุจูุฏุฑ ุฃููู a<sup>j</sup> a<sup>i</sup> ุจุฑุฌุน a<sup>j</sup> ูู Y ู a<sup>i</sup> |
|
|
|
103 |
|
00:11:21,840 --> 00:11:30,360 |
|
ูู X ูุจูู ุตุงุฑ ุงู X ูู Y ูุณุงูู Y ูู X ููู ุงู X ู Y |
|
|
|
104 |
|
00:11:30,360 --> 00:11:35,660 |
|
ุงููู ู
ูุฌูุฏุฉ ูู ุงู group generated by A ู
ุนูุงุฉ ุงู |
|
|
|
105 |
|
00:11:35,660 --> 00:11:41,630 |
|
group ูุฐู ู
ุงููุงุ ุฃุจููุงู ูุจูู ููุง sir ุงู group |
|
|
|
106 |
|
00:11:41,630 --> 00:11:51,190 |
|
generated by a is an abelian group ูุจูู ู
ู ุงูุขู |
|
|
|
107 |
|
00:11:51,190 --> 00:11:54,830 |
|
ูุตุงุนุฏุง ูุณุชููุฏ ู
ู ุงูู
ุนููู
ุฉ ูู ูุงูุช ุงู group cyclic |
|
|
|
108 |
|
00:11:54,830 --> 00:12:01,410 |
|
ููู abelian ูุงุฎุฐ ุงูุขู ู
ุฌู
ูุนุฉ ู
ู ุงูุฃู
ุซูุฉ examples |
|
|
|
109 |
|
00:12:01,410 --> 00:12:05,090 |
|
ุฃูู |
|
|
|
110 |
|
00:12:05,090 --> 00:12:15,140 |
|
ู
ุซุงู ุจููู let ุงู G ุจุฏู ูุณุงูู U<sub>10</sub> U<sub>10</sub> |
|
|
|
111 |
|
00:12:15,140 --> 00:12:27,280 |
|
ุนูุงุตุฑูุง ุนุงุฑููููุง ุงููู ูู 1 ู 3 ู 7 ู 9 ุฎูู |
|
|
|
112 |
|
00:12:27,280 --> 00:12:35,310 |
|
ุจุงููู
ุนูููุง ุฃุญุงูู ุฃู ุฃุฌูุจ ุงู subgroup ู
ุฎุชููุฉ ููุฐู |
|
|
|
113 |
|
00:12:35,310 --> 00:12:41,670 |
|
ุงู group ุงูุขู ูู ุฌุจุช ุงู subgroup generated by 1 |
|
|
|
114 |
|
00:12:41,670 --> 00:12:46,690 |
|
ู
ู ูู ุงู โจ1โฉ ุจุงููุณุจุฉ ูู group ูุฐุงุ ู
ุงูู ุจูุทูุน ูุฐุงุ |
|
|
|
115 |
|
00:12:46,690 --> 00:12:51,850 |
|
ุงู identity element ู
ู
ุชุงุฒ ุฌุฏุง ูุจูู ูู
ุง ุฃุฑูุฏ ุฃู ุฃุถุน |
|
|
|
116 |
|
00:12:51,850 --> 00:12:55,470 |
|
1 ุฃุณ 1ุ 1 ุฃุณ 2ุ 1 ุฃุณ 0ุ 1 ุฃุณ |
|
|
|
117 |
|
00:12:55,470 --> 00:12:59,520 |
|
10ุ 1 ุฃุณ 2ุ ูุจูู ุงู order ุงููู ูู 1 |
|
|
|
118 |
|
00:12:59,520 --> 00:13:05,060 |
|
ูุจูู ูุฐู ุงู set ูุง ููุฌุฏ ูููุง ุฅูุง ุนูุตุฑ ูุญูุฏ ุงููู ูู |
|
|
|
119 |
|
00:13:05,060 --> 00:13:10,960 |
|
ุงู 1 itself ุงู group ุฃู ุงู subgroup ุงููู |
|
|
|
120 |
|
00:13:10,960 --> 00:13:14,860 |
|
ูููุงุด ุฅูุง ุงู identity element ุจูุณู
ููุง ุงู trivial |
|
|
|
121 |
|
00:13:14,860 --> 00:13:23,820 |
|
subgroup ุชู
ุงู
ุ ูุจูู ูุฐู ุงุณู
ูุง is a trivial |
|
|
|
122 |
|
00:13:23,820 --> 00:13:25,940 |
|
subgroup |
|
|
|
123 |
|
00:13:27,300 --> 00:13:32,260 |
|
ูุจูู ูุฐู ุงู group ุงู ุจุฏูุฉ ูู ุฃู ุงูุชุงุฑูุฉ 2 ู
ูู |
|
|
|
124 |
|
00:13:32,260 --> 00:13:36,520 |
|
ุจูุฌููู ุจุนุฏ ุงู 1 ุจูุฌููู 3 ุจุฏู subgroup |
|
|
|
125 |
|
00:13:36,520 --> 00:13:42,440 |
|
generated by 3 ุฃูุง |
|
|
|
126 |
|
00:13:42,440 --> 00:13:51,200 |
|
ุฃูุฏููุนูู ุฃูููุง the subgroup generated by ุณุจุนุฉ ูุฃูุฏููุนูู ูุฐูู |
|
|
|
127 |
|
00:13:51,200 --> 00:14:00,030 |
|
ุฃูููุง ูู ูุงุญุฏ ูุซูุงุซุฉ ูุณุจุนุฉ ูุชุณุนุฉ ูู
ุง ููุทูุจ ุงุณุชูู |
|
|
|
128 |
|
00:14:00,030 --> 00:14:05,650 |
|
ูุดูู ููุงู
ูุง ุตุญ ููุง ุบูุท ูุฃ ูู ุฌุฆุช ุซูุงุซุฉ ุฃุณ ุฒูุฑู |
|
|
|
129 |
|
00:14:05,650 --> 00:14:14,130 |
|
ุซูุงุซุฉ ุฃุณ ูุงุญุฏ ุซูุงุซุฉ ุซูุงุซุฉ ุชุฑุจูุน ุจุฑุฌุน ุงู operation |
|
|
|
130 |
|
00:14:14,130 --> 00:14:19,330 |
|
ุงููู ููุง ุนู
ููุฉ ู
ู ุงูุถุฑุจ module ุนุดุฑุฉ ูุจูู ุซูุงุซุฉ |
|
|
|
131 |
|
00:14:19,330 --> 00:14:25,610 |
|
ุชุฑุจูุน ุจุชุณุนุฉ ูู ุชู
ุงู
ูุจูู ุณุจุนุฉ ูุณู ู
ุธุงูุฑุงุช ุซูุงุซุฉ ุฃุณ |
|
|
|
132 |
|
00:14:25,610 --> 00:14:26,430 |
|
ุฃุฑุจุนุฉ |
|
|
|
133 |
|
00:14:29,150 --> 00:14:34,710 |
|
ุงุญูุง ูููุง ุซูุงุซุฉ ุชุฑุจูุน ุจุชุณุนุฉ ุซูุงุซุฉ ุชูุนูุจ ุจุณุจุนุฉ |
|
|
|
134 |
|
00:14:34,710 --> 00:14:39,910 |
|
ู20 ุดูู 20 ุจูุทูุน ุณุจุนุฉ ุงููู ูู ุงู element |
|
|
|
135 |
|
00:14:39,910 --> 00:14:47,330 |
|
ูุฐุง ูุจูู ูู ุงูุนูุงุตุฑ ุธุงูุฑูุง ุทูุจ ุซูุงุซุฉ ุฃุณ ุฃุฑุจุนุฉ ุงููู |
|
|
|
136 |
|
00:14:47,330 --> 00:14:54,200 |
|
ูู ูุงุญุฏ ู
ุธุจูุท ูุจูู ุญุท ุฃุณุณ ุฒู ู
ุง ุจุฏู ุฏุงูู
ุง ูู
ุง ุจุทูุนู |
|
|
|
137 |
|
00:14:54,200 --> 00:14:58,040 |
|
ูุฏูู ูุจูู ุงูุณุงุฑ ุงู subgroup ุฌููุง ุชุจูู ุซูุงุซุฉ ูู |
|
|
|
138 |
|
00:14:58,040 --> 00:15:03,080 |
|
ูุงุญุฏ ูุซูุงุซุฉ ูุณุจุนุฉ ูุชุณุนุฉ ูู ุดุบูุฑูู
ุทุจ ูู ุฌูุช |
|
|
|
139 |
|
00:15:03,080 --> 00:15:10,090 |
|
ููุณุจุนุฉ ุจููุณ ุงูุทุฑููุฉ ุณุจุนุฉ ุฃุณ Zero ุจูุงุญุฏ ุณุจุนุฉ ุฃุณ ูุงุญุฏ ุจุณุจุนุฉ ุณุจุนุฉ ุชุฑุจูุน ุจุชุณุนุฉ ูุฃุฑุจุนูู ุดูู ุฃุฑุจุน ุนุดุฑุงุช |
|
|
|
140 |
|
00:15:10,090 --> 00:15:16,430 |
|
ุจูุธู ุชุณุนุฉ ูุงูุง ูุธู ุนูุฏูุง ุชุณุนุฉ ุณุจุนุฉ ุชูุนูุจ ุงููู ูู |
|
|
|
141 |
|
00:15:16,430 --> 00:15:23,250 |
|
ุชุณุนุฉ ูุฃุฑุจุนูู ูู ุณุจุนุฉ ุฃู ุชุณุนุฉ ูู ุณุจุนุฉ ุงููู ุธู ุนูุฏูุง |
|
|
|
142 |
|
00:15:23,250 --> 00:15:29,350 |
|
ูู ุณุจุนุฉ ุซูุงุซุฉ ูุณุชูู ุดูู ุณุช ุนุดุฑุงุช ุจูุธู 3 ูุงูุง |
|
|
|
143 |
|
00:15:29,350 --> 00:15:34,890 |
|
ุชุนุงูู ูุชุณุนุฉ ุฃุณ ุฃุฑุจุนุฉ ุจุชูุงูู ุทุงูุน ูุจูู ูุฏูุ ูุงุญุฏ |
|
|
|
144 |
|
00:15:36,770 --> 00:15:41,970 |
|
ุตุญูุญ ูุจูู ุงู subgroup generated by ุซูุงุซุฉ ุงู |
|
|
|
145 |
|
00:15:41,970 --> 00:15:45,510 |
|
subgroup generated by ุณุจุนุฉ ูุชุนุชุจุฑ subgroup ูุงุญุฏุฉ |
|
|
|
146 |
|
00:15:45,510 --> 00:15:49,090 |
|
ู
ุด ุงุซูุชูู ุงูุงุซูุชูู ุจุณ are equivalent ุทูุจ ุฅูุด |
|
|
|
147 |
|
00:15:49,090 --> 00:15:52,510 |
|
ุฑุฃููุ ู
ุง ุนูุงูุฉ ุงูุงุซููู ูุฏูู ุจุงู group ุงูุฃุตููุ ุฅุฐุง |
|
|
|
148 |
|
00:15:52,510 --> 00:15:58,830 |
|
ุงู subgroup ุซูุช ูุฌุฑูุจ ุงูุฃุตููุฉ ุจูุณู
ููุง improper |
|
|
|
149 |
|
00:15:58,830 --> 00:16:03,290 |
|
subgroup ูุจูู ูุฐู ูุฐู is called improper subgroup |
|
|
|
150 |
|
00:16:03,290 --> 00:16:15,570 |
|
ุฃู subgroup ูุจูู ุงู subgroup generated by ุซูุงุซุฉ ุฃู |
|
|
|
151 |
|
00:16:15,570 --> 00:16:21,290 |
|
ุงู subgroup generated by ุณุจุนุฉ ุจูุณู
ููุง improper |
|
|
|
152 |
|
00:16:21,290 --> 00:16:24,190 |
|
subgroup ุฃู cyclic group ุชุญุณุจูุง ูุชุฌุฏูุง ุชุณุงูู ูุฌุฑูุจ |
|
|
|
153 |
|
00:16:24,190 --> 00:16:30,010 |
|
ุงูุฃุตููุฉ ุจุณู
ููุง improper subgroup ูุนูู ูุงู ุงู |
|
|
|
154 |
|
00:16:30,010 --> 00:16:33,950 |
|
subgroup ุบูุฑ ูุนููุฉ ูุนูู ุฃูุช ู
ุง ุฌุจุชุด ุฌุฏูุฏ ููุดุ ูุฃู |
|
|
|
155 |
|
00:16:33,950 --> 00:16:38,850 |
|
any set is a subset of itself improper ูุนูู ุบูุฑ |
|
|
|
156 |
|
00:16:38,850 --> 00:16:44,210 |
|
ูุนูู ุทูุจ ุฅูุด ุถุงูู ุนูุฏูุงุ ู
ุง ุธูุด ุฅูุง ุงูุชุณุนุฉ ูุจูู |
|
|
|
157 |
|
00:16:44,210 --> 00:16:50,390 |
|
ุงูุขู ูู ุฌุฆุช ูู subgroup generated by ุชุณุนุฉ ุจุฏู ูููู |
|
|
|
158 |
|
00:16:50,390 --> 00:16:55,810 |
|
ุชุณุนุฉ ุฃุณ ุตูุฑ ุจูุงุญุฏ ูุชุณุนุฉ ุฃุณ ูุงุญุฏ ุจุชุณุนุฉ ุชุฑุจูุน |
|
|
|
159 |
|
00:16:55,810 --> 00:17:02,490 |
|
ูุนูู ูุงุญุฏ ููู ููุง ูุฏู ุญุท ุงูุชุณุนุฉ ุงูุฃุณ ุงููู ุนุฌุจู ูุฏู |
|
|
|
160 |
|
00:17:03,110 --> 00:17:09,470 |
|
ูุทูุน ูุง ูุงุญุฏ ูุง ุชุณุนุฉ ุทุจ ูุฏูู ุดู ุงุณู
ูุง ุงููู ุทูุนุช ุฃูู |
|
|
|
161 |
|
00:17:09,470 --> 00:17:14,890 |
|
ู
ู ุงู group ุงูุฃุตููุฉ ูุจูู ูู ุงู proper subgroup |
|
|
|
162 |
|
00:17:14,890 --> 00:17:18,310 |
|
ูุจูู subgroup ูุนููุง ูุจูู ูุฏูู trivial ูุฏูู improper ูุฏูู |
|
|
|
163 |
|
00:17:18,310 --> 00:17:24,050 |
|
proper ูุจูู ูุงุญุฏ ูุชุณุนุฉ is a proper subgroup |
|
|
|
164 |
|
00:17:24,050 --> 00:17:32,630 |
|
ุทูุจ ุฎูููุง ูุจุฏุฃ ุงูู
ูุงุญุธุงุช ุงูุชุงููุฉ ุนูู ูุฐู ุงููุชูุฌุฉ |
|
|
|
165 |
|
00:17:35,700 --> 00:17:40,160 |
|
ุงูุชู ุชูุตููุง ุฅูููุง ููุฌุงูุจ ุนูู ุณุคุงูู ูุงุญูุง ุจูุญูู ุฅู |
|
|
|
166 |
|
00:17:40,160 --> 00:17:44,160 |
|
ุดุงุก ุงููู ุชู
ุงู
ุ ู
ู ุฏูู ู
ุง ุฃุนุฑู ุดู ุงูุณุคุงู ุชู
ุงู
ุ ูุจูู |
|
|
|
167 |
|
00:17:44,160 --> 00:17:49,220 |
|
ุฃูุง ุจุงุฌู ุจุชุทูุน ุงููู ุนูุฏูุง ุงููู ูููุช ุงู subgroup |
|
|
|
168 |
|
00:17:49,220 --> 00:17:52,140 |
|
generated by ุซูุงุซุฉ ูู ุงู subgroup generated by |
|
|
|
169 |
|
00:17:52,140 --> 00:17:55,220 |
|
ุงูุณุจุนุฉ ุทูุจ ููู ุนุดุฑุฉ ุดู ุงูุนูุงูุฉ ุจูู ุงูุซูุงุซุฉ |
|
|
|
170 |
|
00:17:55,220 --> 00:17:59,140 |
|
ูุงูุณุจุนุฉุ ุจููุฑุจูุง ูุจุนุถุ ุฃู ูุงุญุฏ ูููู
ู
ุนููุณ ุงูุซุงูู |
|
|
|
171 |
|
00:17:59,140 --> 00:18:05,220 |
|
ู
ุนูุงุชู ุงู subgroup generated ุจุงู element ูู ุงู |
|
|
|
172 |
|
00:18:05,220 --> 00:18:09,180 |
|
subgroup generated ุจุงู inverse ููุฐุง ุงู element ูุจูู |
|
|
|
173 |
|
00:18:09,180 --> 00:18:15,790 |
|
ููุง ูู ุงูุซูุงุซุฉ ูุงูุณุจุนุฉ ุจูุงุญุฏุฉ ูุนุดุฑูู ุดูู ุนุดุฑุชูู |
|
|
|
174 |
|
00:18:15,790 --> 00:18:20,170 |
|
ุจูุทูุน ุงู identity element ุฅุฐุง ุงูุซูุงุซุฉ is the |
|
|
|
175 |
|
00:18:20,170 --> 00:18:23,910 |
|
inverse of ุณุจุนุฉ ูุจุงูุชุงูู ุงู subgroup generated by |
|
|
|
176 |
|
00:18:23,910 --> 00:18:28,030 |
|
ุซูุงุซุฉ ูู ุงู subgroup generated by ุณุจุนุฉ ูุจูู ููุง |
|
|
|
177 |
|
00:18:28,030 --> 00:18:32,730 |
|
ุจููู not that ูุงุญุธ ุฃูู ุงูุซูุงุซุฉ is the inverse of |
|
|
|
178 |
|
00:18:32,730 --> 00:18:44,440 |
|
ุณุจุนุฉ modulo ุนุดุฑุฉ ูุฐุง ูู ู
ุนููุณู ุฏู ูู
ู ููุง ูุงู ุงู |
|
|
|
179 |
|
00:18:44,440 --> 00:18:51,800 |
|
subgroup ูุงุฏู ู
ูู ูู ุงู subgroup ุงููู ุนูุฏูุง ูุงุฏู |
|
|
|
180 |
|
00:18:51,800 --> 00:18:56,060 |
|
ุจุงูุถุจุท ูุฐู ุงูู
ูุงุญุธุฉ ูุงุฏู ูุจูู ูุงุฏู ูู ูุงุฏู ุจุงูุถุจุท |
|
|
|
181 |
|
00:18:56,060 --> 00:19:01,860 |
|
ุชู
ุงู
ุง ูุฃูู ูุฐุง ููุช ุจุงูุชุณุงูู ูุงุช ุงูุณุคุงู ู
ู
ุชุงุฒ |
|
|
|
182 |
|
00:19:01,860 --> 00:19:09,240 |
|
ุฌุฏุง ุงูุณุคุงู ุฅููู ุงูุณุคุงู ุฅููู ุงุณุชูู ุดููุฉ ุจุณ ูู group |
|
|
|
183 |
|
00:19:09,240 --> 00:19:15,740 |
|
ูุฐู ุงูุชู ูุดุจุงุจููู ุจูู is on cyclic ููุดุ ุจุณ ูุตุจุฑ |
|
|
|
184 |
|
00:19:15,740 --> 00:19:20,440 |
|
ุดููุฉ ููุดุ ูุฃู ูููุช ูููุง ุจุฏู ุงู generator ุงุซููู |
|
|
|
185 |
|
00:19:20,440 --> 00:19:26,560 |
|
ุงููู ูู
ู
ููุ ุซูุงุซุฉ ูุณุจุนุฉ ูุจูู ุจุงุฌู ุจูููู ููุง |
|
|
|
186 |
|
00:19:26,560 --> 00:19:31,720 |
|
ุงูููุทุฉ ุงูุซุงููุฉ note that ูุฐู ุงุนุชุจุฑูุง ุฑูู
ูุงุญุฏ ุฑูู
|
|
|
|
187 |
|
00:19:31,720 --> 00:19:38,380 |
|
ุงุซููู ุงู U ุนุดุฑุฉ is cyclic and |
|
|
|
188 |
|
00:19:38,380 --> 00:19:44,620 |
|
ุซูุงุซุฉ and ุณุจุนุฉ are generators ูุจูู |
|
|
|
189 |
|
00:19:46,290 --> 00:19:56,610 |
|
ุฏูู ุจูุฌูุจููู ูู group ุชู
ุงู
ูุจูู ู
ูุงุญุธุฉ ุตุงุฑ ุฃูู |
|
|
|
190 |
|
00:19:56,610 --> 00:20:02,360 |
|
ุงูุซูุงุซุฉ ูู ุงูู
ุนููุณ ุชุจุน ุงูุณุจุนุฉ ููุฐูู ุงู subgroup |
|
|
|
191 |
|
00:20:02,360 --> 00:20:06,800 |
|
generated by ุซูุงุซุฉ ูู ุงู subgroup generated by |
|
|
|
192 |
|
00:20:06,800 --> 00:20:10,240 |
|
ุณุจุนุฉ ููู ูุฐู ุงูุญุงูุฉ ุจููู ูุฌุฑูุจ ุงูุฃุตููุฉ ุชุจูู |
|
|
|
193 |
|
00:20:10,240 --> 00:20:15,720 |
|
ุนูุฏูุง ุงู cyclic ูุฃู ุงููู ุฌูุช ูููุง two generators |
|
|
|
194 |
|
00:20:15,720 --> 00:20:19,480 |
|
ุทุจ ุงูุณุคุงู ูู ุชุณุนุฉ generators ูุฃ ูุนูู ู
ุนูู ูุฐุง |
|
|
|
195 |
|
00:20:19,480 --> 00:20:24,730 |
|
ุงูููุงู
ูู
ุง ุชุจูู ุงู group cyclic ู
ุด ูู element |
|
|
|
196 |
|
00:20:24,730 --> 00:20:28,970 |
|
ุจูููู generator ุจุนุถูู
ุจูููู generator ููุจุนุถูู
|
|
|
|
197 |
|
00:20:28,970 --> 00:20:33,030 |
|
ุจููููุด generator ุฅุฐุง ุนูู ุงูุฃูู ุงู group ูููุง two |
|
|
|
198 |
|
00:20:33,030 --> 00:20:38,010 |
|
generators ุงู element ูุงูู
ุนููุณ ูุงุถุญุ ุงูุขู ูุนุทู |
|
|
|
199 |
|
00:20:38,010 --> 00:20:43,770 |
|
ู
ุฒูุฏุง ู
ู ุงูุฃู
ุซูุฉ ุนูู ุงู subgroup generated by any |
|
|
|
200 |
|
00:20:43,770 --> 00:20:51,160 |
|
element in the group ู
ุซุงู |
|
|
|
201 |
|
00:20:51,160 --> 00:21:04,300 |
|
ุงุซููู let |
|
|
|
202 |
|
00:21:04,300 --> 00:21:10,000 |
|
g ุจุฏูุง ุชุณุงูู Z 12 ุดุจุงุจ ุงููู ูู ุงู |
|
|
|
203 |
|
00:21:10,000 --> 00:21:18,240 |
|
0 1 2 3 4 5 6 7 8 |
|
|
|
204 |
|
00:21:18,240 --> 00:21:25,580 |
|
9 10 11 ูููุณ |
|
|
|
205 |
|
00:21:25,580 --> 00:21:32,860 |
|
ุงูุขู ูู ุฌุฆุช ุณุฃูุชู ุจุงููู ูุฏุงุด ุงู subgroup generated |
|
|
|
206 |
|
00:21:32,860 --> 00:21:39,160 |
|
by zero ูู
ุนูุตุฑ ูููุงุ ุนูุตุฑ ูุงุญุฏ ููุทุ ู
ุง ููุด ุบูุฑู ูุจูู |
|
|
|
207 |
|
00:21:39,160 --> 00:21:47,980 |
|
ูุฐุง ุงู trivial subgroup |
|
|
|
208 |
|
00:21:47,980 --> 00:21:54,440 |
|
ูุจูู ูุฐุง ุงู subgroup ุงูุจุฏููู ุทุจ ูู ุจุฏุฃูุง ุงู subgroup |
|
|
|
209 |
|
00:21:54,440 --> 00:22:00,260 |
|
generated by one ุงูุนู
ููุฉ |
|
|
|
210 |
|
00:22:00,260 --> 00:22:05,860 |
|
ุนูููุง ุนู
ููุฉ ุฌู
ุน Z 12 ุนุดุงู ุชููู ุงูุฌุฑูุจ ุนูููุง |
|
|
|
211 |
|
00:22:05,860 --> 00:22:10,560 |
|
ุนู
ููุฉ ุฌู
ุน ููู ุถุฑุจ ูุจุนุช ุงููู |
|
|
|
212 |
|
00:22:10,560 --> 00:22:12,760 |
|
ูููุง ู
ู ุฃูููุง ุฅูู ุขุฎุฑูุง Z 12 ูููุง |
|
|
|
213 |
|
00:22:15,630 --> 00:22:24,530 |
|
ู
ู ุฃูููุง ุฅูู ุขุฎุฑูุง Z 12 ูููุง |
|
|
|
214 |
|
00:22:24,530 --> 00:22:26,250 |
|
ู
ู ุฃูููุง ุฅูู ุขุฎุฑูุง Z 12 ูููุง |
|
|
|
215 |
|
00:22:26,250 --> 00:22:26,370 |
|
ู
ู ุฃูููุง ุฅูู ุขุฎุฑูุง Z 12 ูููุง |
|
|
|
216 |
|
00:22:26,370 --> 00:22:27,010 |
|
ู
ู ุฃูููุง ุฅูู ุขุฎุฑูุง Z 12 ูููุง |
|
|
|
217 |
|
00:22:27,010 --> 00:22:28,770 |
|
ู
ู ุฃูููุง ุฅูู ุขุฎุฑูุง Z 12 ูููุง |
|
|
|
218 |
|
00:22:28,770 --> 00:22:29,290 |
|
ู
ู ุฃูููุง ุฅูู ุขุฎุฑูุง Z 12 ูููุง |
|
|
|
219 |
|
00:22:29,290 --> 00:22:29,570 |
|
ู
ู ุฃูููุง ุฅูู ุขุฎุฑูุง Z 12 ูููุง |
|
|
|
220 |
|
00:22:29,570 --> 00:22:32,450 |
|
ู
ู ุฃูููุง ุฅูู ุขุฎุฑูุง Z 12 ูููุง |
|
|
|
221 |
|
00:22:32,450 --> 00:22:40,710 |
|
ู
ู ุฃูููุง ุฅูู ุขุฎุฑูุง Z 12 ูููุง |
|
|
|
222 |
|
00:22:40,710 --> 00:22:47,800 |
|
ู
ูุชุญุช ุนู
ููุฉ ุงูุฌู
ุน 11 ูุจูู 11 ุจุฏู ูุฌูุจ ูู
ุงู |
|
|
|
223 |
|
00:22:47,800 --> 00:22:52,960 |
|
ู
ูู ูุฌุฑูุจ ููู ูุจูู ูุฐุง ุจุฏู ูุณุงูู ุงู subgroup |
|
|
|
224 |
|
00:22:52,960 --> 00:23:04,140 |
|
generated by 11 ุทูุจ ุงุญูุง ุงูุขู ุจุฏู ูุฌู 1 2 3 4 ุจุฏู |
|
|
|
225 |
|
00:23:04,140 --> 00:23:06,580 |
|
ุงู subgroup generated by 5 |
|
|
|
226 |
|
00:23:13,980 --> 00:23:20,000 |
|
ุฎู
ุณุฉ ู Zero ุชุนูู Zero ูู ุฎู
ุณุฉ ุจูุฏุงุดุ ุจ Zero ูุจูู ูุฐุง |
|
|
|
227 |
|
00:23:20,000 --> 00:23:24,780 |
|
ุงู element ู
ูุฌูุฏ ูููุง ุฎู
ุณุฉ ุฃุณ ูุงุญุฏ ูุนูู ูุงุญุฏ ูู |
|
|
|
228 |
|
00:23:24,780 --> 00:23:29,960 |
|
ุฎู
ุณุฉ ุฎู
ุณุฉ ุชุฑุจูุน ุฑุงุญ ุงู element ุฎู
ุณุฉ ุชุฑุจูุน ุชุนูู ุฎู
ุณุฉ |
|
|
|
229 |
|
00:23:29,960 --> 00:23:35,130 |
|
ุฒุงุฆุฏ ุฎู
ุณุฉ ูู ุงู element ุงููู ุนูุฏูุง ููุง ุชู
ุงู
|
|
|
|
230 |
|
00:23:35,130 --> 00:23:40,270 |
|
ุงูุขู ูุฐุง ุฎู
ุณุฉ ุชูุนูุจ ุฎู
ุณุฉ ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ |
|
|
|
231 |
|
00:23:40,270 --> 00:23:41,330 |
|
ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ |
|
|
|
232 |
|
00:23:41,330 --> 00:23:42,130 |
|
ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ |
|
|
|
233 |
|
00:23:42,130 --> 00:23:43,830 |
|
ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ |
|
|
|
234 |
|
00:23:43,830 --> 00:23:44,370 |
|
ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ |
|
|
|
235 |
|
00:23:44,370 --> 00:23:45,350 |
|
ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ |
|
|
|
236 |
|
00:23:45,350 --> 00:23:49,990 |
|
ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ ุชูุนูุจ ุงูุขู ุฎู
ุณุฉ ุฃุณ ุฃุฑุจุนุฉ |
|
|
|
237 |
|
00:23:49,990 --> 00:23:54,270 |
|
ูุนูู ุฃุฑุจุนุฉ ูู ุฎู
ุณุฉ ุงููู ูู ุจ 20 ุจูุดูู 12 ุจูุทูุน |
|
|
|
238 |
|
00:23:54,270 --> 00:23:59,470 |
|
ูุฏุงุดุ 8 ุฎู
ุณุฉ ุฃุณ ุฎู
ุณุฉ ูุนูู ุฎู
ุณุฉ ูู ุฎู
ุณุฉ ุจ 25 |
|
|
|
239 |
|
00:23:59,470 --> 00:24:05,630 |
|
ุจุฏู ุฃุดูู ู
ู 24 ุจูุทูุน ูุฏุงุดุ 5 |
|
|
|
240 |
|
00:24:05,630 --> 00:24:10,750 |
|
ู 30 |
|
|
|
241 |
|
00:24:10,750 --> 00:24:17,170 |
|
ู 5 |
|
|
|
242 |
|
00:24:17,170 --> 00:24:22,270 |
|
ู 30 ู 5 ู 30 |
|
|
|
243 |
|
00:24:26,960 --> 00:24:32,440 |
|
ุฎู
ุณุฉ ุฃุณ 8 ุงููู 8 ูู 5 ุจ 40 ุจุฏูู |
|
|
|
244 |
|
00:24:32,440 --> 00:24:37,860 |
|
ุฃุดูู 36 ุจุชุทูุน ู
ู 4 ุฎู
ุณุฉ ุฃุณ 9 ุงููู |
|
|
|
245 |
|
00:24:37,860 --> 00:24:42,750 |
|
ุฎู
ุณุฉ ูู 40 ุจุจุฏุฃ ูุฒูู ู
ููู
36 ููุจูู |
|
|
|
246 |
|
00:24:42,750 --> 00:24:49,270 |
|
ุงูุฌุฏูุฏ 9 ุงูุขู ุฎู
ุณุฉ ุฃุณ 9 ููุง ุฎู
ุณุฉ ุฃุณ 10 ุงููู |
|
|
|
247 |
|
00:24:49,270 --> 00:24:52,390 |
|
ุจ 50 ุฃุฑุจุนุฉ ูู 12 ุจ 48 ููุจูู ูู |
|
|
|
248 |
|
00:24:52,390 --> 00:24:58,810 |
|
2 ูุจูู ูู 2 ููุง ุงูุขู ุฎู
ุณุฉ ุฃุณ 11 ุจ 55 |
|
|
|
249 |
|
00:24:58,810 --> 00:25:02,250 |
|
ู
ู 48 ููุจูู ูู 7 ูุจูู ูุฐู |
|
|
|
250 |
|
00:25:02,250 --> 00:25:06,310 |
|
ุงูุณุจุนุฉ ุฎู
ุณุฉ 12 ุจ 60 ุชุนูู Zero ูุจูู ุจุฏุฃูุง ู
ู |
|
|
|
251 |
|
00:25:06,310 --> 00:25:12,690 |
|
ุฃูู ูุฌุฏูุฏ ูู ุนูุตุฑ ู
ุธุงูุฑูุ ูู ุฑูุญุช ุญุณุจุช ู
ูู ุงูู
ุนููุณ |
|
|
|
252 |
|
00:25:12,690 --> 00:25:18,650 |
|
ุชุจุน ุงูุฎู
ุณุฉ ูุจูู ุจุฏู ูุทูุน ูู
ุงู ูุฐุง ุณุจุนุฉ subgroup |
|
|
|
253 |
|
00:25:18,650 --> 00:25:25,190 |
|
generated by ุณุจุนุฉ ุทูุจ by ุงููู ุนูุฏู ููู relatively |
|
|
|
254 |
|
00:25:25,190 --> 00:25:29,870 |
|
prime ููุฃุชูุงุดุฑ ุบูุฑ ูุฏูู ุงูุฎู
ุณุฉ ูุงูุณุจุนุฉ ูุงูุฃุญุฏุงุด |
|
|
|
255 |
|
00:25:29,870 --> 00:25:34,170 |
|
ู
ุงุดูุ ูุงููุงุด ุบูุฑูู
ุชู
ุงู
ุ ูุจูู ูุฐุง ุงูููุงู
ุจุฏู |
|
|
|
256 |
|
00:25:34,170 --> 00:25:43,110 |
|
ูุณุงูู Z ุงุชูุงุดุฑ ุจุงูุถุจุท ุชู
ุงู
ุงุ ูุจูู ูุฐูู ุนุจุงุฑุฉ ุนู ุงูุดุ |
|
|
|
257 |
|
00:25:43,110 --> 00:25:52,050 |
|
improper subgroupsุ ูุจูู ุจุนุฏู ุจูููู these subgroups |
|
|
|
258 |
|
00:25:52,050 --> 00:25:54,710 |
|
are improper |
|
|
|
259 |
|
00:25:57,830 --> 00:26:02,830 |
|
ูุจูู ูุง ุดุจุงุจ ูุฏูู ุงูุฃุฑุจุนุฉุ ููู ูู ุงูุญูููุฉ ูุงุญุฏุ ูุจูู |
|
|
|
260 |
|
00:26:02,830 --> 00:26:07,350 |
|
subgroup ูุงุญุฏุฉุ ู ุงู zero ูู ุชูุชููุ ุชูุชูู subgroup |
|
|
|
261 |
|
00:26:07,350 --> 00:26:11,890 |
|
ููุท ู
ู ุงู group ูุฐูุ ุชุนุงูู ูุดูู ุงูุจุงููุฉ ุจุนุฏ ุงููุงุญุฏ |
|
|
|
262 |
|
00:26:11,890 --> 00:26:16,450 |
|
ุจูุฌููู ุงุชููู subgroup generated by ุงุชููู ุงููู ูู |
|
|
|
263 |
|
00:26:16,450 --> 00:26:23,010 |
|
zeroุ ุงุชูููุ ุงุฑุจุนุฉุ ุณุชุฉุ ุชู
ุงููุฉุ ุนุงุดุฑุฉุ ู
ุชุฃูุฏุ ู
ุชุฃูุฏ ููุต |
|
|
|
264 |
|
00:26:24,160 --> 00:26:28,660 |
|
2ร0 ุจุฒูุฑ ู 2ร1 ุจุงุชููู ู 2 ุชุฑุจูุฉ ู 2ร2 ุจุงุฑุจุนุฉ ู 2 |
|
|
|
265 |
|
00:26:28,660 --> 00:26:31,860 |
|
ุชููุจุฉ ู 2ร3 ุจุณุชุฉ ู 2 ุงุชููู ู 4 ุงุฑุจุนุฉ ู 2 ุชู
ุงููุฉ |
|
|
|
266 |
|
00:26:31,860 --> 00:26:38,200 |
|
ูุบุงูุฉ ุงูุนุดุฑุฉ ุชู
ุงู
ุ ุจุฏู ุงุฌู ุงุดูู ู
ูู ูู
ุ ูู ูู ุบูุฑูุง |
|
|
|
267 |
|
00:26:38,200 --> 00:26:42,780 |
|
ูุฏู ู ุงููู ููุด ุบูุฑูุงุ ุจุงุฌู ุจุณุฃู ููุณู ูู ู
ูู ู
ุนูุณ 2 |
|
|
|
268 |
|
00:26:42,780 --> 00:26:48,440 |
|
ูู 8ุนุดุฑุฉุ ูุจูู ูู ุฑูุญุช ุญุณุจุช ุงูุนุดุฑุฉ ุจุฏูู
ูุทูุนูุง |
|
|
|
269 |
|
00:26:48,440 --> 00:26:51,860 |
|
ุงูุนูุงุตุฑ ุงููู ุนูุฏู ูุงูุชุ ูุนูู ูู ุฑูุญุช ุญุณุจุช ุงู |
|
|
|
270 |
|
00:26:51,860 --> 00:26:57,280 |
|
subgroup generated by ุนุดุฑุฉ ุจุฏูุง ุชุทูุน ูุฐู ุจุงูุถุจุท |
|
|
|
271 |
|
00:26:57,280 --> 00:27:02,840 |
|
ุฌุฑุจ ุนุดุฑุฉ ู Zero ู ูุงุญุฏ ุนุดุฑุฉ ู ุงุณ ูุงุญุฏ ุจุนุดุฑุฉ ูุฐุง |
|
|
|
272 |
|
00:27:02,840 --> 00:27:10,080 |
|
ุฑุงุญ ุงู zero ู ุฑุงุญ ุงูุนุดุฑุฉุ ุนุดุฑุฉ ุชุฑุจูุน ุจุนุดุฑุฉ ุฒุงุฆุฏ |
|
|
|
273 |
|
00:27:10,080 --> 00:27:15,900 |
|
ุนุดุฑุฉ ุชุงููุฉ ุนุดุฑููุ ูุฒุฏ ุงุชูุงุดุฑ ุจูู
ุงููุฉ ูุฐู ุงูุซู
ุงููุฉ |
|
|
|
274 |
|
00:27:15,900 --> 00:27:18,940 |
|
ูุงูุนุดุฑุฉ ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง |
|
|
|
275 |
|
00:27:18,940 --> 00:27:22,680 |
|
ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง |
|
|
|
276 |
|
00:27:22,680 --> 00:27:27,140 |
|
ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง |
|
|
|
277 |
|
00:27:27,140 --> 00:27:27,200 |
|
ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง |
|
|
|
278 |
|
00:27:27,200 --> 00:27:27,220 |
|
ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง |
|
|
|
279 |
|
00:27:27,220 --> 00:27:28,360 |
|
ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง |
|
|
|
280 |
|
00:27:28,360 --> 00:27:37,360 |
|
ุชูุฑูุจุง ุชูุฑูุจุงุ ุงูุฃู ุงูุตุฏ ุฎู
ุณุฉ ูุนูู ุฎู
ุณููุ ุงุฑุจุน ูู |
|
|
|
281 |
|
00:27:37,360 --> 00:27:41,180 |
|
ุงุชูุงุดุฑ ุชู
ุงููุฉ ูุงุฑุจุนููุ ุจูุธู ุงุชููู ุงููู ุจุนุฏูุง ุณุชูู |
|
|
|
282 |
|
00:27:41,180 --> 00:27:45,700 |
|
ุจูุฒูุฑูุงุ ูุจูู ูุนูุง ูุฐู ุงู sub group generated by |
|
|
|
283 |
|
00:27:45,700 --> 00:27:52,410 |
|
ุนุดุฑุฉ ูู ุงู sub group generated by ุงุชููู ุชู
ุงู
ุ ุทูุจุ |
|
|
|
284 |
|
00:27:52,410 --> 00:27:56,850 |
|
ุงูุขูุ ูุจูู ุตุงุฑูุง ูุงู
subgroup ุนูุฏูุ ุชูุงุชุฉ ุจุณ ู
ุงููุด |
|
|
|
285 |
|
00:27:56,850 --> 00:28:00,910 |
|
ุบูุฑูู
ุ ุฏูุฑ ุจุงูู ุฃูุง ุจู
ูุฏ ูู chapter ุงููู ุจุนุฏู ุงู |
|
|
|
286 |
|
00:28:00,910 --> 00:28:05,550 |
|
chapter ูุชุจุน ุฑุจูุญูู ุชุฌูู ุฃุณุฆูุฉ ูููู ูู list all |
|
|
|
287 |
|
00:28:05,550 --> 00:28:09,470 |
|
the subgroups of ุงู group ุงูููุงููุฉุ ู
ุด ูุชุฑูุญ ุชุญุทูู
|
|
|
|
288 |
|
00:28:09,470 --> 00:28:12,390 |
|
ุงุชูุงุดุฑ ูุงุญุฏุฉุ ูู
ูู ุจูุทูุนูุด ุบูุฑ ุงุฑุจุนุฉุ ูู
ูู ุจูุทูุนูุด |
|
|
|
289 |
|
00:28:12,390 --> 00:28:16,130 |
|
ุบูุฑ ุฎู
ุณุฉุ ูู
ูู ุบูุฑ ุณุชุฉุ ูุจูู ุฃูุช ุชุชููุฏ ุจุงูู
ูุฌูุฏุฉุ |
|
|
|
290 |
|
00:28:16,130 --> 00:28:21,180 |
|
ูุฏูู ูููู
ุ ุงูุงุฑุจุน ูุนุชุจุฑ ูุงุญุฏุฉ ูููุณ ุงุฑุจุนุ ูุจูู ูุงุญุฏุฉ |
|
|
|
291 |
|
00:28:21,180 --> 00:28:26,220 |
|
ููุทุ ุฏู ูุนูู ุทูุจุ ุงูุงู ูู ุฌูุช ููุช ูู ุจุฏู ุงู subgroup |
|
|
|
292 |
|
00:28:26,220 --> 00:28:34,080 |
|
generated by ุฎูุตูุง ูุงุญุฏ ูุงุซูููุ ุจุฏูุง ุชูุงุชุฉุ ูุจูู ูู |
|
|
|
293 |
|
00:28:34,080 --> 00:28:41,380 |
|
Zero ู ุชูุงุชุฉ ู ุณุชุฉ ู ุชุณุนุฉุ ูู ุบูุฑูู
ุ ูุฃุ ุทูุจ ูุฐู |
|
|
|
294 |
|
00:28:41,380 --> 00:28:45,900 |
|
ุชุนุชุจุฑ ุงู subgroup generated by ู
ุนููุณ ุงูุชูุงุชุฉ ู
ู |
|
|
|
295 |
|
00:28:45,900 --> 00:28:49,780 |
|
ุชุณุนุฉุ ูุจูู ุงู subgroup generated by .. ูุจูู ูุฏูู |
|
|
|
296 |
|
00:28:49,780 --> 00:28:55,840 |
|
ุชูู ุชููุ ููู ูุนุชุจุฑูุง ุงูุดุ ูุงุญุฏุฉ ููุท ูุง ุบูุฑุ ุทุจ ูู |
|
|
|
297 |
|
00:28:55,840 --> 00:29:01,300 |
|
ุจุฏู ุฃุฏูุจ ุงู subgroup generated by ุฃุฑุจุนุฉุ ุฒูุฑูุ ุฃุฑุจุนุฉ |
|
|
|
298 |
|
00:29:01,300 --> 00:29:06,860 |
|
ุชู
ุงููุฉุ ูู ุบูุฑูู
ุ ุฃุฑุจุนุฉ ูู ุฒูุฑู ุจุฒูุฑูุ ุฃุฑุจุนุฉ ูู ุฃุญุฏ |
|
|
|
299 |
|
00:29:06,860 --> 00:29:10,480 |
|
ุจุฃุฑุจุนุฉุ ุฃุฑุจุนุฉ ูู ุงุชููู ุชู
ุงููุฉุ ุฃุฑุจุนุฉ ูู ุชูุงุชุฉ ุจุฒูุฑู |
|
|
|
300 |
|
00:29:10,480 --> 00:29:16,340 |
|
ูุจูู ู
ุง ุนูุฏูุด ุฅูุง ุงูุชูุช ุนูุงุตุฑ ูุฏูู ุจุงูุถุจุท ุชู
ุงู
ุงุ ุทูุจ |
|
|
|
301 |
|
00:29:16,340 --> 00:29:21,340 |
|
ุจุนุฏ ุงูุฃุฑุจุนุฉุ ุงูุฎู
ุณุฉ ุฎูุตูุง ู
ููุงุ ุจุฏู ุงู sub group |
|
|
|
302 |
|
00:29:21,340 --> 00:29:28,180 |
|
generated by ุณุชุฉ ุงููู ูู
ูู ุฒูุฑู ูุณุชุฉุ ูู ุบูุฑูู
ุ ู
ุด |
|
|
|
303 |
|
00:29:28,180 --> 00:29:34,460 |
|
ุบูุฑูู
ุ ูู ูู
ุงู subgroup ุบูุฑ ูุฏูู ููุง ูุงุญุฏุฉ ุชู
ุงู
|
|
|
|
304 |
|
00:29:34,460 --> 00:29:41,740 |
|
ูุจูู ูู ูุงุญุฏุฉุ ูู ุชูุชููุ ูู ุชูุงุชุฉุ ูุฐุง ุฃุฑุจุนุฉุ ูุฐุง ุฎู
ุณุฉ |
|
|
|
305 |
|
00:29:41,740 --> 00:29:48,660 |
|
ูุฐุง ุณุชุฉุ ุจุณ ุณุชุฉ subgroupุ ุชู
ุงููุฉ ู
ุง ุญุณุจูุงูุงุดุ ุทูุจ ูุฐู |
|
|
|
306 |
|
00:29:48,660 --> 00:29:53,580 |
|
ุชุณุงูู subgroup generated by ุชู
ุงููุฉุ ูุนูุง ูู ุถุงูู |
|
|
|
307 |
|
00:29:53,580 --> 00:29:59,950 |
|
ุงูุญุงุฌุฉ ู
ุง ุญุณุจูุงูุงุดุ ุดููู ุฅู ุญุณุจุ ุชู
ุงู
ุ ุทูุจ ูุฐุง ูู ุงู |
|
|
|
308 |
|
00:29:59,950 --> 00:30:03,370 |
|
subgroupsุ ุงูุงู ูู ุฌูุช ุฃูุช ูุฏูู ูุฏูู ูููุง ุนูููู
|
|
|
|
309 |
|
00:30:03,370 --> 00:30:10,470 |
|
improperุ ูุฏู ู ูุฏู ู ูุฏู ู ูุฏู ู ูุฏูุ ูููู
proper |
|
|
|
310 |
|
00:30:10,470 --> 00:30:20,530 |
|
subgroupsุ ูุจูู ููุง ุงู subgroups ุงููู ูู
ุงู zero |
|
|
|
311 |
|
00:30:20,530 --> 00:30:23,290 |
|
ูุงู ุงุชููู |
|
|
|
312 |
|
00:30:25,560 --> 00:30:32,760 |
|
ูุงูุชูุงุชุฉ ู ุงู group generated by ุฃุฑุจุนุฉ ูุงู group |
|
|
|
313 |
|
00:30:32,760 --> 00:30:40,500 |
|
generated by and ุงู group generated by ุณุชุฉ are |
|
|
|
314 |
|
00:30:40,500 --> 00:30:49,650 |
|
properุ ูููู
ุฏูู proper sub groupsุ ูุจูู ุจุฑุถู ูุงุญุธูุง |
|
|
|
315 |
|
00:30:49,650 --> 00:30:55,930 |
|
ุงู ุงู subgroup ุชููุฏ ุจุนูุตุฑ ูุฐูู ุชููุฏ ุจู
ุนููุณ ูุฐุง |
|
|
|
316 |
|
00:30:55,930 --> 00:31:01,290 |
|
ุงูุนูุตุฑุ ูุฐุง ุงูุดูุก ุงููู ูู ู
ูุฌูุฏ ุนูุฏูุง ูุดูุก ุฃุณุงุณู |
|
|
|
317 |
|
00:31:01,290 --> 00:31:06,550 |
|
ูุงุฒู
ูุนุฑููุ ูุจูู ุนุฑููุง ุงู trivial subgroup ูุนุฑููุง |
|
|
|
318 |
|
00:31:06,550 --> 00:31:11,450 |
|
ุงู proper subgroup ูุนุฑููุง ุงู improper subgroup |
|
|
|
319 |
|
00:31:11,450 --> 00:31:22,710 |
|
ูุฐูู ูุฌู ู group ุชุงููุฉ ูู
ุงูุ ู
ุฌุฏุฏุด ูู
ุฑุฉ ุชูุงุชุฉ Z |
|
|
|
320 |
|
00:31:22,710 --> 00:31:29,110 |
|
ูุนูููุง |
|
|
|
321 |
|
00:31:29,110 --> 00:31:38,730 |
|
ุนู
ููุฉ ุงูุฌู
ุนุ Z ูุนูููุง ุนู
ููุฉ ุงูุฌู
ุนุ ูุงูุฑูููุ ูู ูุฐู |
|
|
|
322 |
|
00:31:38,730 --> 00:31:44,470 |
|
Cyclic ููุง ูุฃุ ูุฅุฐุง ูุงูุช Cyclic ู
ู ูู
ุงู generator |
|
|
|
323 |
|
00:32:02,420 --> 00:32:07,100 |
|
cyclic ู
ุด ูุงุชููู generator ูุงุญุฏ ุจุณ ุชุญุช ุนู
ููุฉ |
|
|
|
324 |
|
00:32:07,100 --> 00:32:14,320 |
|
ุงูุฌุงู
ุนุฉุ ู
ุด ุงูุฏุฑุจุ not cyclicุ not cyclicุ ุทูุจ ุงุฐุง |
|
|
|
325 |
|
00:32:14,320 --> 00:32:18,820 |
|
ุงุญูุง ุนุงู
ููุง contradiction ููููุงู
ุงููู ุจุชููููุ ุจุชุตูุฑ |
|
|
|
326 |
|
00:32:18,820 --> 00:32:25,100 |
|
ุงูุดุ ุจุชุตูุฑ cyclic ููุงูุน ุงููุง cyclicุ ุงูุง ูุงุฏุนู ุงููุง |
|
|
|
327 |
|
00:32:25,100 --> 00:32:30,420 |
|
cyclicุ ุงูุง ุงุฏุนู ุงู ุงูุณูููู ูุงููุ ุจุฏูุง ูุซุจุช ุตุญุฉ ุชูู |
|
|
|
328 |
|
00:32:30,420 --> 00:32:36,780 |
|
ูู
ุ ู ุจุฏู ุงุฌูุจูู ุจุฏู ุงู generator ุงุชูููุ ู ูู
ุงู |
|
|
|
329 |
|
00:32:36,780 --> 00:32:44,800 |
|
generators ููุท ูุงุ ูุง ููุฌุฏ ุบูุฑูู
ุงุ ูุงุญุฏ ู ุณูุจ ูุงุญุฏ |
|
|
|
330 |
|
00:32:44,800 --> 00:32:50,560 |
|
ุนูู ุทูู ุงูุฎุทุ ูุจูู ูุฐู in the groupุ ูุฐู the |
|
|
|
331 |
|
00:32:50,560 --> 00:32:52,240 |
|
generators |
|
|
|
332 |
|
00:32:56,770 --> 00:33:04,450 |
|
are one and ุณุงูุจ oneุ ุทูุจ ููุด one ู ุณุงูุจ one ูู |
|
|
|
333 |
|
00:33:04,450 --> 00:33:07,630 |
|
ูุงุญุฏ ูููู
ู
ุนููุณุฉ ูุขุฎุฑุ ุฃูุช ููุช ุงูุณุงุนุฉ ูู ุงูุณูุฉ ุงููู |
|
|
|
334 |
|
00:33:07,630 --> 00:33:10,990 |
|
ูุจูู ุฃู element ู
ุงูุงุฌูู generator ู
ุงูุงุฌูู ู
ุนููุณุฉ ู |
|
|
|
335 |
|
00:33:10,990 --> 00:33:14,250 |
|
generatorุ ูุจูู ููุง ุงููุงุญุฏ ู ุงูุณุงูุจ ูุงุญุฏ ููููู |
|
|
|
336 |
|
00:33:14,250 --> 00:33:18,690 |
|
ุงููุงุญุฏ ููู ุณุงูุจ ูุงุญุฏ generator ูู group ูููุ ุจููููู |
|
|
|
337 |
|
00:33:18,690 --> 00:33:25,610 |
|
ูุงูุชุงููุ ุฃูุง ุงูุขู ุจุฏู ุงู sub group generated by ุณุงูุจ |
|
|
|
338 |
|
00:33:25,610 --> 00:33:31,400 |
|
oneุ ุจุฏู ุฃุณููู ุงูุณูุจ oneุ ูุงูุช ุชุจูู at one one ู
ุน ุงู |
|
|
|
339 |
|
00:33:31,400 --> 00:33:38,180 |
|
one ุงููู ุถุงููุฉุ ูุจูู ูุฐู ุนูุงุตุฑูุง ูุชุงูุฉุ ุจุฏู ุฃุจุฏุฃ ุจู-1 |
|
|
|
340 |
|
00:33:38,180 --> 00:33:47,620 |
|
ุฃุณ 0ุ ู-1 ุฃุณ 1ุ ู-1 ุฃุณ 2ุ ู-1 ุฃุณ 3ุ ูุถูู ู
ุงุดู ุฅูู |
|
|
|
341 |
|
00:33:47,620 --> 00:33:55,440 |
|
ู
ุง ุดุงุก ุงูููุ ูุฃุฑุฌุน ุนูู ุงูุดู
ุงูุ ูุจูู -1 ุฃุณ 1ุ ู-1 |
|
|
|
342 |
|
00:33:55,440 --> 00:34:04,830 |
|
ุฃุณ 2ุ ู-1 ุฃุณ 3ุ ูุถูู ู
ุงุดู ุฅูู ู
ุง ุดุงุก ุงูููุ ุงูุงู |
|
|
|
343 |
|
00:34:04,830 --> 00:34:09,670 |
|
ุงูุนู
ููุฉ ุนู
ููุฉ ุฌู
ุนุ ููููุง ููู
ูู ุนู
ููุฉ ุงูุฌู
ุน ูุชุจูุง |
|
|
|
344 |
|
00:34:09,670 --> 00:34:14,030 |
|
ูู ููุงูุฉ ุขุฎุฑ ุญุงุฌุฉ ูู ุงูุฎุงุตูุฉ ุฑูู
ุฃุฑุจุนุฉ ูู ููุงูุฉ |
|
|
|
345 |
|
00:34:14,030 --> 00:34:19,110 |
|
ุงูุดุงุจุชุฑ ุงูู
ุงุถูุ ููููุง ุงูุฃุณ ุงููู ููู ุชุถุฑุจุ ูุชุถุฑุจ ูู |
|
|
|
346 |
|
00:34:19,110 --> 00:34:25,060 |
|
element ูุฃู ูุฐุง ุชุนูู ุงูู ุจุชุฌู
ุน ูุฐุง ู
ุฑุชููุ ูู
ุง ุฅูู |
|
|
|
347 |
|
00:34:25,060 --> 00:34:30,000 |
|
ุฐุงู ุชูุงุชุฉ ุฅูู ุขุฎุฑูุฉุ ูุจูู ูุฐู ูู ุจุฏูุง ุงุนูุฏ ุตูุงุบุชูุง |
|
|
|
348 |
|
00:34:30,000 --> 00:34:36,540 |
|
ุจุชููู ูู ุงู elements ุณุงูุจ ุชูุงุชุฉ ูู ุณุงูุจ ูุงุญุฏุ ุงููู |
|
|
|
349 |
|
00:34:36,540 --> 00:34:42,980 |
|
ุจุนุฏู ุณุงูุจ ุงุชููู ูู ุณุงูุจ ูุงุญุฏุ ุงููู ุจุนุฏู ุจูููู ุณุงูุจ |
|
|
|
350 |
|
00:34:42,980 --> 00:34:48,920 |
|
ูุงุญุฏ ูู ุณุงูุจ ูุงุญุฏุ ุงููู ุจุนุฏู Zero ูู ุณุงูุจ ูุงุญุฏุ ูุงุญุฏ |
|
|
|
351 |
|
00:34:48,920 --> 00:34:57,340 |
|
ูู ุณุงูุจ ูุงุญุฏุ ุงุชููู ูู ุณุงูุจ ูุงุญุฏุ ุชูุงุชุฉ ูู ุณุงูุจ ูุงุญุฏ |
|
|
|
352 |
|
00:34:57,340 --> 00:35:02,540 |
|
ู ููุฐุงุ ูุจูู ุฃุตุจุญุช ุงู group generated ุฃู ุงู sub |
|
|
|
353 |
|
00:35:02,540 --> 00:35:09,470 |
|
group generated by ุณุงูุจ ูุงุญุฏ ูู ููุง ุณุงูุจ ุชูุงุชุฉ ูู |
|
|
|
354 |
|
00:35:09,470 --> 00:35:16,230 |
|
ุณุงูุจ ูุงุญุฏ ุงููู ูู ูุฏุงุดุ ุชูุงุชุฉุ ุงุชูููุ ูุงุญุฏุ ุฒูุฑูุ ุณุงูุจ |
|
|
|
355 |
|
00:35:16,230 --> 00:35:22,050 |
|
ูุงุญุฏุ ุณุงูุจ ุงุชูููุ ุณุงูุจ ุชูุงุชุฉุ ูุงุถุฏูู ู
ุงุดู ุงูู ู
ุง ุดุงุก |
|
|
|
356 |
|
00:35:22,050 --> 00:35:26,570 |
|
ุงูููุ ุจุณ ู
ุด ู
ุฑุชุจุฉ ูุนูู ุฎูู ุงูู
ูุฌุฉ ูู ุงูุฃูู ูุงูุณูู
|
|
|
|
357 |
|
00:35:26,570 --> 00:35:33,370 |
|
ูู ุงูุขุฎุฑุ ููู ูู ุงูุนูุงุตุฑ ู
ูุฌูุฏุฉุ ูุฏู ุชุนุทูู Z itself |
|
|
|
358 |
|
00:35:33,370 --> 00:35:41,990 |
|
ูุจูู ูุฏูู improper ููุง proper subgroupุ ูุจูู |
|
|
|
359 |
|
00:35:41,990 --> 00:35:48,970 |
|
ููุง ุณุงูู group generated by one ุจุฏูุง ุชุณุงูู ุงู |
|
|
|
360 |
|
00:35:48,970 --> 00:35:55,710 |
|
subgroup generated by ุณุงูุจ oneุ ูุฏูู are improper |
|
|
|
361 |
|
00:35:55,710 --> 00:35:59,090 |
|
subgroups |
|
|
|
362 |
|
00:35:59,090 --> 00:36:08,350 |
|
ุทุจ ูู ูุฐู ุชุญุชูู ุนูู proper subgroupุ proper |
|
|
|
363 |
|
00:36:10,920 --> 00:36:15,540 |
|
ู
ู
ุชุงุฒ ุฌุฏุงุ ุงุชููู ุจูุฌูุจููุด ุงูุง ุงูุฒูุฌูุงุชุ ุงุชูููุ ุงุฑุจุนุฉ |
|
|
|
364 |
|
00:36:15,540 --> 00:36:19,640 |
|
ุณุชุฉุ ุชู
ุงููุฉุ Zeroุ ุณุงูุจ ุงุชูููุ ุณุงูุจ ุงุฑุจุนุฉุ ุณุงูุจ ุณุชุฉ |
|
|
|
365 |
|
00:36:19,640 --> 00:36:22,860 |
|
ุณุงูุจ ุชู
ุงููุฉุ Improperุ ูุงูุชูุงุชุฉ ูุงูุงุฑุจุนุฉ ูุงูุฎุงุทุฑ |
|
|
|
366 |
|
00:36:22,860 --> 00:36:27,280 |
|
ูููู
improper subgroupุ ูุจูู ูุฏูู the only |
|
|
|
367 |
|
00:36:27,280 --> 00:36:32,850 |
|
generatorsุ ู ูุฏูู ุงูู improper subgroupsุ ู ูุฏูู |
|
|
|
368 |
|
00:36:32,850 --> 00:36:37,350 |
|
ุงููู ุจูุฌูุจููู ุนูุงุตุฑ ุงู group ููุ ู
ุง ุฎู ุฐูู ุจูุฌูุจููู |
|
|
|
369 |
|
00:36:37,350 --> 00:36:44,610 |
|
ุฌุฒุก ู
ู ุงู groups ุชู
ุงู
ุ ูุจูู ูุฐุง z ูุง ููุฌุฏ ูููุง |
|
|
|
370 |
|
00:36:44,610 --> 00:36:48,490 |
|
generators ุฅูุง ุงุชูููุ ูุงุญุฏ ู ุณุงูุจ ูุงุญุฏุ ุบูุฑ ููู |
|
|
|
371 |
|
00:36:48,490 --> 00:36:52,350 |
|
ูุจุนุชูู ุงูููุ ุชูุงุชุฉ ุจูุตูุฑ ุฒูุฑู ุชูุงุชุฉ ุณุชุฉ ุชุณุนุฉุ ููุต |
|
|
|
372 |
|
00:36:52,350 --> 00:36:56,190 |
|
ุชูุงุชุฉุ ููุต ุณุชุฉุ ููุต ุชุณุนุฉุ subgroup generated by ุงุฑุจุนุฉ |
|
|
|
373 |
|
00:36:56,190 --> 00:36:59,450 |
|
ุฒูุฑู ุงุฑุจุนุฉ ุชู
ุงููุฉ ุงุชูุงููุฉุ ุฒูุฑู ุณุงูุจ ุงุฑุจุนุฉ ุณุงูุจ |
|
|
|
374 |
|
00:36:59,450 --> 00:37:03,930 |
|
ุชู
ุงููุฉ ุณุงูุจ ุงุชูุงููุฉุ ููุถูู ู
ุงูู ูููุฐุงุ ุชู
ุงู
ุ ูุจูู ูุง |
|
|
|
375 |
|
00:37:03,930 --> 00:37:09,250 |
|
ููุฌุฏ generators ูุง ุฒุฏ ุชุญุช ุนู
ู ุงูุฌุงู
ุนุฉ ุงูุง two |
|
|
|
376 |
|
00:37:09,250 --> 00:37:14,380 |
|
generators ู ุงูุจูุช ูููู
ู
ุง ููุด ูู
ูู ูุฌููุจ ุญุงุฌุฉ |
|
|
|
377 |
|
00:37:14,380 --> 00:37:19,340 |
|
ู
ุง ุชุทูุนุด Cyclic ูู ุฃุนุทูู ูุฌููุจ ู
ุง ุชุทูุนุด Cyclic ุฎุฏ ูู |
|
|
|
378 |
|
00:37:19,340 --> 00:37:25,810 |
|
ููุง ู
ุซููุง ุงุนุชุจุฑ ูุฐุง ูู
ุงู ู
ุซุงู ุงูู U ุฃุฑุจุนุฉ ุชู
ุงููุฉ |
|
|
|
379 |
|
00:37:25,810 --> 00:37:33,270 |
|
ุนูุงุตุฑูุง ูุงุญุฏ ู ุซูุงุซุฉ ู ุฎู
ุณุฉ ู ุณุจุนุฉ ุดูู ูุฐู Cyclic |
|
|
|
380 |
|
00:37:33,270 --> 00:37:42,170 |
|
ููุง ูุง ุงูุขู ุซูุงุซุฉ ุชุฑุจูุน ูุนูู ูุงุญุฏ ุทูุจ ุฎู
ุณุฉ ุชุฑุจูุน |
|
|
|
381 |
|
00:37:42,170 --> 00:37:48,970 |
|
ูุนูู ูุงุญุฏ ุซูุงุซุฉ ุซู
ุงููุฉ ุณุจุนุฉ ุชุฑุจูุน ุชุณุนุฉ ูุนุดุฑูู ูุนูู |
|
|
|
382 |
|
00:37:48,970 --> 00:37:54,110 |
|
ูุงุญุฏ ูุจูู ููุง ูุงุญุฏ ูููู
generator ูุจูู ู
ุนูุงู ุฏู |
|
|
|
383 |
|
00:37:54,110 --> 00:38:06,070 |
|
ู
ูููุงุด Cyclic ูุจูู ูุฐู as not cyclic because ุฃู ุงู |
|
|
|
384 |
|
00:38:06,070 --> 00:38:11,870 |
|
X ุชุฑุจูุน ุชุณุงูู ูุงุญุฏ for all X ุงููู ู
ูุฌูุฏุฉ ูู U |
|
|
|
385 |
|
00:38:11,870 --> 00:38:18,200 |
|
ุชู
ุงู
ูุง ู
ูู ู
ุง ุชููู ุชููู ุฑุจุน ุจูุทูุน ุงู identity ุชู
ุงู
ุ |
|
|
|
386 |
|
00:38:18,200 --> 00:38:22,500 |
|
ูุนูู ุณุจุนุฉ ุชุฑุจูุน ุชุณุงูู ุซูุงุซุฉ ุชุฑุจูุน ุชุณุงูู ุฎู
ุณุฉ ุชุฑุจูุน |
|
|
|
387 |
|
00:38:22,500 --> 00:38:26,840 |
|
ุชุณุงูู ูุงุญุฏ ุชุฑุจูุน ููู ุจุงู identity ุฅุฐุง ููุง ูุงุญุฏ ูููู
|
|
|
|
388 |
|
00:38:26,840 --> 00:38:36,380 |
|
generator ูููุณ ููุงุตู ุงูุญูู ูู ูุฐุง ุงูู
ูุถูุน ูู
ุฑุฉ |
|
|
|
389 |
|
00:38:36,380 --> 00:38:45,020 |
|
ูุฐู ุงุนุชุจุฑุชูุง ุฃุฑุจุนุฉ ูุจูู ูู
ุฑุฉ ุฎู
ุณุฉ ูู
ุฑุฉ ุฎู
ุณุฉ in ุฏู |
|
|
|
390 |
|
00:38:45,020 --> 00:38:55,090 |
|
ุฃู ูู ุฏู ุฃู ุงููู ูู ุฏู ุฏุงููุฏุฑุงู ุฏุงููุฏุฑุงู |
|
|
|
391 |
|
00:38:55,090 --> 00:39:05,550 |
|
ุฌุฑูุจ of order ุงุซููู ุฃู ุฌุฏุงุด ุงูุขู ุจุชุถุฑุจ ูู ุงุซููู |
|
|
|
392 |
|
00:39:05,550 --> 00:39:14,790 |
|
let ุงูู R ุจูู rotation ุจูู rotation |
|
|
|
393 |
|
00:39:17,820 --> 00:39:26,140 |
|
ุฃุนุธู ุซูุงุซู
ุฆุฉ ู ุณุชูู ุนูู in degree ุซูุงุซู
ุฆุฉ ู ุณุชูู |
|
|
|
394 |
|
00:39:26,140 --> 00:39:38,640 |
|
ุนูู in degree then ุฌุงุจ |
|
|
|
395 |
|
00:39:38,640 --> 00:39:45,200 |
|
ุงูู
ุจุฏุฃ ุงููู ุฃูุง ุจุฏูู ุงูุขู ุฃูุง ุฌุงู ุงูู DN ูู dihydral |
|
|
|
396 |
|
00:39:45,200 --> 00:39:50,180 |
|
group ุงููู ูู ุงูู
ุฌู
ูุนุฉ ุซูุงุฆูุฉ ุงูุณุทูุญ ู
ู ุงู order 2 |
|
|
|
397 |
|
00:39:50,180 --> 00:40:02,650 |
|
ุงุญูุง ุฎุฏูุง ู
ุซุงู ุนูููุง ูุจู ุฐูู ุงููู ูู ู
ููุ D4 D4 D4 |
|
|
|
398 |
|
00:40:02,650 --> 00:40:13,490 |
|
D4 D4 D4 D4 D4 D4 D4 D4 D4 D4 D4 D4 D4 D4 D4 ุฃุฑุจุนุฉ |
|
|
|
399 |
|
00:40:13,490 --> 00:40:18,670 |
|
ุฃุถูุงุน ูู ู
ุถูุน ู
ูุชุธู
ู
ูุณู
ู
ู ุฃุฑุจุนุฉ ุฃุถูุงุน ุฅุฐุง ุจูุณู
|
|
|
|
400 |
|
00:40:18,670 --> 00:40:23,830 |
|
ุงูู 360 ุนูู ุฃุฑุจุนุฉ ุจูุตูุฑ ูุฏุงุด ูุจูู ุงู element of |
|
|
|
401 |
|
00:40:23,830 --> 00:40:30,630 |
|
rotation ุจูููู R ุชุณุนูู ุทูุจ ูู ููุช ู
ุฎู
ุณ ู
ูุชุธู
ุจุฏู |
|
|
|
402 |
|
00:40:30,630 --> 00:40:35,590 |
|
ุฃูุณู
ุนูู ุฎู
ุณุฉ ูุจูู ุจุฏู ุฃูุณู
ุซูุงุซู
ุฆุฉ ู ุณุชูู ุนูู |
|
|
|
403 |
|
00:40:35,590 --> 00:40:41,330 |
|
ุฎู
ุณุฉ ูููุง ุงูุณุช ูู ุฎู
ุณุฉ ุจุชูุงุชูู ูููุง ูููุง ุงูุณุช ูููุง |
|
|
|
404 |
|
00:40:41,330 --> 00:40:48,270 |
|
ุงูุณุช ุนูู ุฎู
ุณุฉ ุนูู ุฎู
ุณุฉ ูููุง ุงูุณุจุนุฉ ูุจูู ูููุง |
|
|
|
405 |
|
00:40:48,270 --> 00:40:53,250 |
|
ุงูุณุจุนุฉ ูู ุฎู
ุณุฉ ุจุชูุงุชู ูุจูู ุงุซููู ู ุณุจุนูู ุฏุฑุฌุฉ ุฃูุง |
|
|
|
406 |
|
00:40:53,250 --> 00:40:58,270 |
|
ุจุฏู ุฃุนู
ู ุฏูุฑุงู ูู ุงูู
ุฎู
ุณ ุจุฒุงููุฉ 72 ุฏุฑุฌุฉ ู ุจุตูุฑ |
|
|
|
407 |
|
00:40:58,270 --> 00:41:09,350 |
|
ุนูุฏู R0 R72 R144 ู ููุฐุง ูุบุงูุฉ ู
ุง ุฃูุตู ุฅูู R4 R5 |
|
|
|
408 |
|
00:41:09,350 --> 00:41:14,730 |
|
ุจุชุนูุฏ ู
ู ุฌุฏูุฏ ุงููู ูู R0 ุทุจ ูู ููุช ู
ุซูุซ ู
ุชุณุงูู |
|
|
|
409 |
|
00:41:14,730 --> 00:41:22,910 |
|
ุงูุฃุถูุงุน ูุจูู ุจุตูุฑ ูุฐู DN ูุนูู ูููุง ุงุซููู ูู ุซูุงุซุฉ |
|
|
|
410 |
|
00:41:22,910 --> 00:41:29,370 |
|
ุณุชุฉ ุนูุงุตุฑ ููุท ูุง ุบูุฑ ููุด ุจูุณู
ุซูุงุซู
ุฆุฉ ู ุณุชูู ุนูู |
|
|
|
411 |
|
00:41:29,370 --> 00:41:34,010 |
|
ุซูุงุซุฉ ุจุตูุฑ ู
ุฆุฉ ู ุนุดุฑูู ูุจูู ุฏูุฑุงู ุจูููู ู
ุฆุฉ ู ุนุดุฑูู |
|
|
|
412 |
|
00:41:34,010 --> 00:41:39,270 |
|
ุฏุฑุฌุฉ ู ููุณ ุชุณุนูู ู ููุฐุง ู ููู counter clockwise |
|
|
|
413 |
|
00:41:39,270 --> 00:41:46,780 |
|
ุชู
ุงู
ูุจูู ุจุตูุฑ ุนูุฏู R ููุฏ ู R ู
ุฆุฉ ู ุนุดุฑูู ู R ู
ุฆุชูู |
|
|
|
414 |
|
00:41:46,780 --> 00:41:51,800 |
|
ู ุฃุฑุจุนูู ู ุจุนุฏูู ุจุฑูุญ ุงูุด ูู reflections ู ููุฐุง |
|
|
|
415 |
|
00:41:51,800 --> 00:41:55,800 |
|
ุจูุถููุง ุซูุงุซุฉ reflections ู
ุงุดู ุงูุญุงูุฉ ูุจูู ูุฐุง |
|
|
|
416 |
|
00:41:55,800 --> 00:42:04,390 |
|
ุงูู
ูุตูุฏ ุจุงูู DN ุงูุขู ุฃูุง ูู ุฌูุช ููุช ูู ุงูู RN ูุนูู |
|
|
|
417 |
|
00:42:04,390 --> 00:42:11,950 |
|
ุฃูุง ุงููู ุฃูุถูุง ู
ุซูุซ ู
ุฑุจุน ู
ุฎู
ุณ ู
ูุชุธู
ู
ุณุฏุณ ู
ูุชุธู
ูู |
|
|
|
418 |
|
00:42:11,950 --> 00:42:18,580 |
|
ุนู
ูุช ุงูู ู
ู ุงูู
ุฑุงุช ุฏูุฑุงูุ ู
ูู ุจูุนุทููู ููุงุ ูุนูู ุฒู |
|
|
|
419 |
|
00:42:18,580 --> 00:42:24,520 |
|
R ุชุณุนูู R ุชุณุนูู ุฃุณ ุฃุฑุจุนุฉ ุจูุฏุงุด ุงู identity ูู ุงูู R |
|
|
|
420 |
|
00:42:24,520 --> 00:42:30,720 |
|
ููุฏ ูุจูู ูุฐุง ุงูู R ุชุณุนูู ุงูู R N ูุณุงูู ุงู identity |
|
|
|
421 |
|
00:42:30,720 --> 00:42:37,080 |
|
element ุงููู ุฑู
ุฒูุง ูู ุจุงูุฑู
ุฒ R ููุฏ ุทุจ ูู ุถุฑุจุช |
|
|
|
422 |
|
00:42:37,080 --> 00:42:45,980 |
|
ุงูุทุฑููู ูู R ูุจูู ูุฐุง ู
ุนูุงู ุฃู R N ุฒุงุฆุฏ ูุงุญุฏ ูุณุงูู |
|
|
|
423 |
|
00:42:45,980 --> 00:42:58,100 |
|
R ุฑู ุฒุงุฆุฏ ุงุซููู ุฑ ุชุฑุจูุน ุฑู ุฒุงุฆุฏ ุซูุงุซุฉ ุฑู ุฒุงุฆุฏ ุฃุฑุจุนุฉ |
|
|
|
424 |
|
00:42:58,100 --> 00:43:02,580 |
|
ุฑุชุจุฉ ุฑุชุจุฉ |
|
|
|
425 |
|
00:43:02,580 --> 00:43:07,760 |
|
ุฑุชุจุฉ |
|
|
|
426 |
|
00:43:07,760 --> 00:43:16,220 |
|
ุฑุชุจุฉ ุฑุชุจุฉ ุฑุชุจุฉ ุฑุชุจุฉ ุฑุชุจุฉ ุฑุชุจุฉ |
|
|
|
427 |
|
00:43:20,650 --> 00:43:28,910 |
|
ุฑู ูุงูุต ูุงุญุฏ ูุณุงูู ุงูู R inverse ุฑู |
|
|
|
428 |
|
00:43:28,910 --> 00:43:32,490 |
|
ูุงูุต |
|
|
|
429 |
|
00:43:32,490 --> 00:43:38,580 |
|
ูุงุญุฏ ูุณุงูู ุงูู R inverse ุฅุฐุง ุจูุงุก ุนููู ุงูุฏูุฑุงู ูุบุงูุฉ ุฃู |
|
|
|
430 |
|
00:43:38,580 --> 00:43:43,720 |
|
ู
ุง ุฒุงุฏ ุนูู ุฐูู ูุนุชุจุฑ ุนูุตุฑ ู
ู ู
ูู ู
ู ุงูุนูุตุฑ ุงููู ูุจู |
|
|
|
431 |
|
00:43:43,720 --> 00:43:48,060 |
|
ูุจูู ุจูุงุก ุนููู ุงููู ูู ุฌูุช ููุช ูู ุงูู subgroup |
|
|
|
432 |
|
00:43:48,060 --> 00:43:53,900 |
|
generated by R R ูุฐู any rotation ูุง ูุง ุดุจุงุจ ูุนูู |
|
|
|
433 |
|
00:43:53,900 --> 00:44:00,700 |
|
ูุฏ ุชููู R 120 ููุฏ ุชููู R 90 ููุฏ ุชููู R 72 ููุฏ ุชููู |
|
|
|
434 |
|
00:44:00,700 --> 00:44:05,440 |
|
R 60 ููุฏ ููุฏ ุฅูู ุขุฎุฑูู ูุจูู ู
ูู ู
ูุงู ุงู rotations |
|
|
|
435 |
|
00:44:05,440 --> 00:44:09,480 |
|
ููุดุ ูุฃู ุงุญูุง ูู
ุง ุฃุฎุฐูุง ุฏู for goal ููู ุฃุฑุจุน |
|
|
|
436 |
|
00:44:09,480 --> 00:44:14,380 |
|
rotations ู ุฃุฑุจุน reflectionsุ ู
ู ุฐุงูุฑููุ ุณูุงุช |
|
|
|
437 |
|
00:44:14,380 --> 00:44:23,290 |
|
ุงูุดุนุจุงุฑุจุน rotation ูุงุฑุจุน reflection ูุจูู |
|
|
|
438 |
|
00:44:23,290 --> 00:44:33,630 |
|
ุฃุฑุจุน rotation ูุจูู ุฃุฑุจุน rotation ูุงุฑุจุน reflection ูุจูู |
|
|
|
439 |
|
00:44:33,630 --> 00:44:38,870 |
|
ุฃุฑุจุน rotation ููุชุจุช ู
ุนูู
ูู ุงูุฏูุชุฑ ุฃู ูู ุถุฑุจุช ุงู |
|
|
|
440 |
|
00:44:38,870 --> 00:44:43,290 |
|
reflection ูู ุงู rotation ุฃู ุงู rotation ูู ุงู |
|
|
|
441 |
|
00:44:43,290 --> 00:44:47,970 |
|
reflection ุนูู ูู ุงูุฃู
ุฑูู ุจุฏู ูุทูุน ู
ูู reflection |
|
|
|
442 |
|
00:44:47,970 --> 00:44:54,290 |
|
ุชู
ุงู
ูุจูู ุงุฑู ุงููู ุนูุฏูุง ุฏู rotation ุจุชุณุนูู ุจุชููู |
|
|
|
443 |
|
00:44:54,290 --> 00:44:58,210 |
|
ูุณุจุนูู ุจู
ุฆุฉ ูุนุดุฑูู ุฃูุช ุญุฑ ู
ูู ู
ุง ุชููู ุงู rotation |
|
|
|
444 |
|
00:44:58,210 --> 00:45:03,090 |
|
ุฏุงู ู
ุนูู ูุฐุง ุงูููุงู
ุฃู ุงู rotation commutes ู
ุน |
|
|
|
445 |
|
00:45:03,090 --> 00:45:09,130 |
|
ููุณูุง ู
ุน ุฃู rotation ุฃุฎุฑู ููู ู
ุน ุงู reflection ู
ุด |
|
|
|
446 |
|
00:45:09,130 --> 00:45:15,750 |
|
ุตุญูุญ ูุนูู ูู
ุง ููุง ูููู ู
ุซููุง R ุชุณุนูู ูู H ูู ูู H |
|
|
|
447 |
|
00:45:15,750 --> 00:45:16,750 |
|
ูู R ุชุณุนููุ |
|
|
|
448 |
|
00:45:21,120 --> 00:45:28,800 |
|
ุงูุนู
ููุฉ ููุณุช ุฅุจุฏุงููุฉ ูู
ุง ููู rotation ู
ุน ููุณู ุฅุฐุง |
|
|
|
449 |
|
00:45:28,800 --> 00:45:33,940 |
|
ููุช ุฑ ุชุณุนูู ูู ุฑ ู
ุฆุฉ ู ุซู
ุงููู ุฃููุณุช ุฑ ู
ุฆุฉ ู ุซู
ุงููู |
|
|
|
450 |
|
00:45:33,940 --> 00:45:35,160 |
|
ูู ุฑ ุชุณุนููุ |
|
|
|
451 |
|
00:45:42,590 --> 00:45:47,930 |
|
ูุนูู ูุนูู ุงูุฅุจุฏุงู ู
ุน ุงู rotation ู
ุฆุฉ ุจุงูู
ุฆุฉ ู
ุง ุนูุงู |
|
|
|
452 |
|
00:45:47,930 --> 00:45:53,210 |
|
ู
ุดููุฉ ุฅุฐุง ูู
ุง ุฃููู ุงูู subgroup generated by R ูุฐู |
|
|
|
453 |
|
00:45:53,210 --> 00:45:59,010 |
|
ูุชุนุทููู ู
ููุ ูุชุนุทููู ุงู identity element ุงููู |
|
|
|
454 |
|
00:45:59,010 --> 00:46:05,240 |
|
ูุณู
ูู ู
ููุ ุงููู ูุณู
ูู Arnold ูุจุนุฏูู ูุชุนุทููู ุฑ ุงุชุณู |
|
|
|
455 |
|
00:46:05,240 --> 00:46:10,900 |
|
ูุจุนุฏูู ูุชุนุทููู ุฑ ุชุฑุจูุน ููุชุนุทููู ุฑ ุชูุนูุจ ููุถู |
|
|
|
456 |
|
00:46:10,900 --> 00:46:19,120 |
|
ู
ุงุดู ูุบุงูุฉ ุฑ N minus ุงูู one ูุฃู ุฑ N ุจุชุนุทููู ู
ูู ุงูู |
|
|
|
457 |
|
00:46:19,120 --> 00:46:24,200 |
|
identity ุงููู ูู Arnold ุจูุฑุฌุน ููุฐุง ูุจูู ู
ูู
ุง ูุงูุช |
|
|
|
458 |
|
00:46:24,200 --> 00:46:29,400 |
|
ุงูููู
ุฉ N ุงู integer ุงููู ุนูุฏู ุชุจุฏุฃ ุชุจุฏุฃ ุชุฏูุฑ ุงููุ ู
ู |
|
|
|
459 |
|
00:46:29,400 --> 00:46:34,600 |
|
ุฌุฏูุฏ ูุจูู ุงู rotation is a cyclic subgroup ุฃู |
|
|
|
460 |
|
00:46:34,600 --> 00:46:39,660 |
|
rotation ู ุฎูููุง ู
ุนุงู R ุฃุฑุจุนุฉ ุงููู ุฃุฎุฐูุงูุง ู
ุน D |
|
|
|
461 |
|
00:46:39,660 --> 00:46:44,860 |
|
ุฃุฑุจุนุฉ ุบุฒูุฉ ูุจูู ุงูู R node cyclic group generated |
|
|
|
462 |
|
00:46:44,860 --> 00:46:49,780 |
|
by R node ู
ุง ููุด ูููุง ุฅูุง element ูุงุญุฏ ุงูู R ุชุณุนูู |
|
|
|
463 |
|
00:46:49,780 --> 00:46:56,350 |
|
cyclic subgroup ูููุง ูุงู
ุนูุตุฑ R ุชุณุนูู R ุชุณุนูู ุชุจุน |
|
|
|
464 |
|
00:46:56,350 --> 00:47:01,170 |
|
ุงูู D4 ูุชููู
ุนู ุงูู D4 ูุจูู ููู ุงูู R ุชุณุนูู Cyclic |
|
|
|
465 |
|
00:47:01,170 --> 00:47:06,210 |
|
subgroup generated by ุชุณุนูู ูููุง ูุงู
elementุ R |
|
|
|
466 |
|
00:47:06,210 --> 00:47:11,590 |
|
ุชุณุนูู ุฃุฑุจุนุฉ ุนูุงุตุฑ ุฃุฑุจุนุฉ ุนูุงุตุฑ ูุฃู ุงู order ูู R |
|
|
|
467 |
|
00:47:11,590 --> 00:47:17,490 |
|
ุชุณุนูู ูู ุฃุฑุจุนุฉ ูุนูู R ุฃุณ R ุชุณุนูู ุฃุณ ุฃุฑุจุนุฉ ูู ุจุงู |
|
|
|
468 |
|
00:47:17,490 --> 00:47:21,090 |
|
identity element ูููู ู
ุง ุนูุฏูุด ุฅูุง ู
ููุ ุฃุฑุจุนุฉ ุทุจ R |
|
|
|
469 |
|
00:47:21,090 --> 00:47:22,190 |
|
ู
ูู ู ุซู
ุงูููุ |
|
|
|
470 |
|
00:47:24,690 --> 00:47:29,670 |
|
ู
ุง ููุด ุฅูุง ุงู identity ู ุงูู R 180 itself ุทุจ ุงูู R |
|
|
|
471 |
|
00:47:29,670 --> 00:47:35,010 |
|
272 ุงูู cyclic ูุฐู ุฃูุซุฑ .. ุงููู ูู ู
ููุ ุงุฑุชุณุงูู |
|
|
|
472 |
|
00:47:35,010 --> 00:47:40,110 |
|
ูุฃูู ุงูุชูุชูู ู
ุนููุณุงุช ูุจุนุถ ู ููุฐุง ู ูููุณ ุนูู ุฐูู ุฏู |
|
|
|
473 |
|
00:47:40,110 --> 00:47:44,010 |
|
ุฃู ู
ูู
ุง ูุงูุช ุฏู ุซูุงุซุฉุ ุฏู ุฎู
ุณุฉุ ุฏู ุณุชุฉุ ุฏู ุณุจุนุฉุ |
|
|
|
474 |
|
00:47:44,010 --> 00:47:48,120 |
|
ุฌุฏ ู
ุง ูููู ููู ุจููุณ ุงูููุฑุฉ ุงููู ุนูุฏูุง ูุจูู ูุฐู |
|
|
|
475 |
|
00:47:48,120 --> 00:47:54,120 |
|
Cyclic group generated by ูุตุฏุชู ู
ู ุฐูู ุฃูู are any |
|
|
|
476 |
|
00:47:54,120 --> 00:48:00,860 |
|
rotation ุณูุงุก ูุงูุช R90 ููุง R72 ููุง R120 ููุง R60 |
|
|
|
477 |
|
00:48:00,860 --> 00:48:06,380 |
|
ูุจูู ูุฐู ู
ูู ู
ุง ูููู ุงูู
ุซู ุนูุฏู DN ุฎูุงุตูุงุ ูุจูู |
|
|
|
478 |
|
00:48:06,380 --> 00:48:10,220 |
|
ูุฐุง ุงู elements ุงููู ุนูุฏูุง ุทูุจ ุจุฏูุง ููุฌู ุงูุขู |
|
|
|
479 |
|
00:48:10,220 --> 00:48:16,520 |
|
ูุชุนุฑูู ุฌุฏูุฏ ูุง ุดุจุงุจ ุจุฏูุง ูุฏูุฑ ุนูู ู
ุฑูุฒ ูุฌุฑูุจ ุงู |
|
|
|
480 |
|
00:48:16,520 --> 00:48:23,020 |
|
center ุงุญูุง |
|
|
|
481 |
|
00:48:23,020 --> 00:48:28,900 |
|
ู
ุง ูููุงุด ุฃูู ุฏู in cyclic ูููุง ุจุนุถ ุงู subgroups |
|
|
|
482 |
|
00:48:28,900 --> 00:48:34,700 |
|
cyclic ู ุงูุจุนุถ ุงูุขุฎุฑ ู
ุงูููุงุด cyclic ูุนูู ู
ุซููุง |
|
|
|
483 |
|
00:48:34,700 --> 00:48:40,930 |
|
ุงุฑุชุณูู cyclic group ุทุจ ูู ุงูู R 180 .. ุงูู cyclic |
|
|
|
484 |
|
00:48:40,930 --> 00:48:43,630 |
|
group ุตุญูุญ ู ู
ุง ููุด ูููุง ุฅูุง ุฃุฑุจุนุฉ ุฃู ุงูู cyclic sub |
|
|
|
485 |
|
00:48:43,630 --> 00:48:47,290 |
|
group ุทุจ ู ุงูู R 180ุ ุงูู cyclic sub group ู ู
ุง ููุด |
|
|
|
486 |
|
00:48:47,290 --> 00:48:52,490 |
|
ูููุง ุฅูุง ุนูุตุฑูู ููู ูู ูููู
ุฃู ูุงุญุฏ ุจุฏู ุฃุฌูุจ ูู |
|
|
|
487 |
|
00:48:52,490 --> 00:48:57,710 |
|
group ุงูุฃุตููุฉ ุงููู ูู ุฏู ููุง ูุงุญุฏ ูุนูู ุฏู ุงู ููุณุช |
|
|
|
488 |
|
00:48:57,710 --> 00:49:02,930 |
|
cyclic group ู ูู ูุงู ุงูู cyclic ูุตุงุฑุช ูุงุจู ูุนูู |
|
|
|
489 |
|
00:49:02,930 --> 00:49:08,010 |
|
ูุฃู ุงูุตุจุญ ุฃุซุจุชูุง ุฃู ุฃูุง ุงูู cyclic group is ุฃุจูููุงู ู |
|
|
|
490 |
|
00:49:08,010 --> 00:49:11,270 |
|
ุงุญูุง ูู ุญูุงุชูุง ู
ู ููู
ุฃุฎุฐูุง D4 ุจูููู ู
ุงูููุงุด |
|
|
|
491 |
|
00:49:11,270 --> 00:49:19,250 |
|
ุฃุจูููุงูุ ุชู
ุงู
ุ ูุนูู ุงูู D4 ุฃู ุงูู D in .. in has no |
|
|
|
492 |
|
00:49:19,250 --> 00:49:23,790 |
|
generatorุ ููุดุ ูุฃูู ู
ุงูููุงุด Cyclic ููุง ุฅูุง ูู ูุงู |
|
|
|
493 |
|
00:49:23,790 --> 00:49:28,860 |
|
ูููุง generator ูุงุญุฏ ูุงู ุฌุงุจ ูู ูุฌุฑูุจูุง ููู ู
ู
ูู ูููู |
|
|
|
494 |
|
00:49:28,860 --> 00:49:33,560 |
|
ุงู subgroups ุจุนุถูู
cyclic ุงู ุตุญูุญ ุจุตูุฑ ุจุนุถูู
|
|
|
|
495 |
|
00:49:33,560 --> 00:49:39,120 |
|
cyclic ุฑุบู
ุฃู ุงูุฃุตููุฉ ู
ุงูููุงุด cyclic ุชู
ุงู
ููู ุฃู |
|
|
|
496 |
|
00:49:39,120 --> 00:49:43,440 |
|
ุดุงุก ุงููู ุฌุงู ุขูู ูุธุฑูุฉ ุงูุดุจุทุฑูุช ุฌุงู ูู ูุงูุช |
|
|
|
497 |
|
00:49:43,440 --> 00:49:48,800 |
|
ุงูุฃุตููุฉ cyclic ูุจูู ุฃู subgroup ู
ููุง ุจุชุจูู cyclic |
|
|
|
498 |
|
00:49:50,860 --> 00:49:54,380 |
|
ุงูุดุจุชุฑ ุงูุฌุงู
ุนู ู
ุด ุงูุดุจุชุฑ ูุฐุง ูุนูู ุงุญูุง ูุฐุง ู
ุฌุฑุฏ ุจุณ |
|
|
|
499 |
|
00:49:54,380 --> 00:49:59,180 |
|
ู
ุนููู
ุฉ ุจุณูุทุฉ ูุฎููู ุชููุฑ ุนูู ุฃู ุญุงู ุจุฏูุง ุนุดุงู ุฃุจุนุฏ |
|
|
|
500 |
|
00:49:59,180 --> 00:50:03,780 |
|
ูุชูุฑ definition definition |
|
|
|
501 |
|
00:50:03,780 --> 00:50:08,740 |
|
the center |
|
|
|
502 |
|
00:50:08,740 --> 00:50:20,420 |
|
the center ุงููู ูู ุญุฏูุฏ Z of G ุฃุฏู ุงูุฑู
ุฒ ูุฐุง of A |
|
|
|
503 |
|
00:50:20,420 --> 00:50:37,780 |
|
center of G is the subset of G consisting |
|
|
|
504 |
|
00:50:37,780 --> 00:50:42,260 |
|
of |
|
|
|
505 |
|
00:50:42,260 --> 00:50:46,040 |
|
those elements |
|
|
|
506 |
|
00:50:47,470 --> 00:50:59,630 |
|
ูุชููู ู
ู ุงูุนูุงุตุฑ of g of g that that |
|
|
|
507 |
|
00:50:59,630 --> 00:51:05,770 |
|
commutes with |
|
|
|
508 |
|
00:51:05,770 --> 00:51:11,310 |
|
commutes with every |
|
|
|
509 |
|
00:51:11,310 --> 00:51:23,690 |
|
element of G with every element of |
|
|
|
510 |
|
00:51:23,690 --> 00:51:35,040 |
|
G that is ุจุชุตูุฑ ูุฐุง ุงูููุงู
ุฑูุงุถูุง ูุจุงุฌู ุจููู Z of G |
|
|
|
511 |
|
00:51:35,040 --> 00:51:41,280 |
|
ุฃู ุงูู Center ุชุจุน ูุฌุฑูุจ G ูู ุงูุนูุงุตุฑ A ุงููู ู
ูุฌูุฏุฉ |
|
|
|
512 |
|
00:51:41,280 --> 00:51:50,900 |
|
ูู G ุจุญูุซ ุฃู ุงู A X ุจุฏู ูุณุงูู ุงู X A ููู ุงู X ุงููู |
|
|
|
513 |
|
00:51:50,900 --> 00:51:53,500 |
|
ู
ูุฌูุฏ ูู G |
|
|
|
514 |
|
00:52:01,760 --> 00:52:06,940 |
|
ู
ุฑุฉ ุชุงููุฉ ูุฌู ูุญุงุฌุฉ ุงุณู
ูุง ุงู center ุชุจุน ุงู group |
|
|
|
515 |
|
00:52:06,940 --> 00:52:13,380 |
|
ู
ุฑูุฒ ุงู group ู
ุฑูุฒ ุงู group ูู ูู ุงูุนูุงุตุฑ ุงููู |
|
|
|
516 |
|
00:52:13,380 --> 00:52:19,460 |
|
ุจุชุจูู commutes ู
ุน ุฌู
ูุน ุนูุงุตุฑ ุงู group ุญุฏ ูููู
ุจูุฏุฑ |
|
|
|
517 |
|
00:52:19,460 --> 00:52:24,990 |
|
ูุฌูุจ ููู element commute ู
ุน ุฌู
ูุน ุนูุงุตุฑ ุงู group ุงูู |
|
|
|
518 |
|
00:52:24,990 --> 00:52:28,490 |
|
identity element ู
ู
ุชุงุฒ ูุจูู ุงู identity element |
|
|
|
519 |
|
00:52:28,490 --> 00:52:33,870 |
|
ุฏุงุฆู
ุง ู ุฃุจุฏุง ู
ูุฌูุฏ ูู ุงู center ุชุจุน ุงู group ุชู
ุงู
|
|
|
|
520 |
|
00:52:33,870 --> 00:52:39,270 |
|
ูุจูู ููุงู ุนูุงุตุฑ ุฃุฎุฑู ุจุณ ุงุญูุง ุจูุถุฑุจ ู
ุซุงู ุจุนุถูู
ู
ุด |
|
|
|
521 |
|
00:52:39,270 --> 00:52:43,510 |
|
ูุชูุงูู ุบูุฑ ุงู identity element ุงูุจุนุถ ุงูุขุฎุฑ ูุชูุงูู |
|
|
|
522 |
|
00:52:43,510 --> 00:52:49,710 |
|
ุนูุงุตุฑ ุฃุฎุฑู ุทูุจ ุณุคุงู ูู ูุงูุช ุงู group abelian |
|
|
|
523 |
|
00:52:52,230 --> 00:52:55,270 |
|
ูุจูู ุงูู center ุชุจุน ุงู group ุจูุณุงูู ุงู group ูููุง |
|
|
|
524 |
|
00:52:55,270 --> 00:52:59,970 |
|
ูู ุนูุงุตุฑ ุงู group ููุดุ ูุฃูู ุจููููู ูู ุงูุนูุงุตุฑ ุงููู |
|
|
|
525 |
|
00:52:59,970 --> 00:53:05,870 |
|
ู
ูุฌูุฏ ูู ุงู group ุจุญูุซ ax ุจูุณุงูู xa ููู ุงู x ุงููู |
|
|
|
526 |
|
00:53:05,870 --> 00:53:10,490 |
|
ู
ูุฌูุฏ ูุนูู ุงู element ู
ุดุงู ูููู ูู ุงู center ุจุฏููู
|
|
|
|
527 |
|
00:53:10,490 --> 00:53:15,750 |
|
ูุณู
ุน ุฌู
ูุน ุนูุงุตุฑ ุฏู ุจูุง ุงุณุชุซูุงุก ู
ุด ูุงุญุฏ ุฃู ูุงุญุฏ ูุฃ |
|
|
|
528 |
|
00:53:16,790 --> 00:53:20,850 |
|
ูุฐุง ูุฏู ูุงุญุฏ ุฃู ูุงุญุฏ ูุฃ ูู ุชุณู
ูุฉ ุฌุฏูุฏุฉ ุจุฏูุง ูุณู
ููุง |
|
|
|
529 |
|
00:53:20,850 --> 00:53:25,650 |
|
ุฅู ุดุงุก ุงููู ูููุณ ููู
ุฑุฉ ุงููุงุฏู
ุฉ ุนูููุง ุงูู
ุฑุฉ ุงููุงุฏู
ุฉ |
|
|
|
530 |
|
00:53:25,650 --> 00:53:31,030 |
|
ุณูุซุจุช ุฃู ุงู center ูุฐุง ูู ุงู sub group ู
ู ุงู group |
|
|
|
531 |
|
00:53:31,030 --> 00:53:36,530 |
|
ุงูุฃุณุงุณูุฉ ุฅู ุดุงุก ุงููู ุชุนุงูู ู
ุงุดู ูุจูู stop ุงูู
ุฑุฉ |
|
|
|
532 |
|
00:53:36,530 --> 00:53:38,670 |
|
ุงููุงุฏู
ุฉ ุจููู
ู ุฅู ุดุงุก ุงููู |
|
|