abdullah's picture
Add files using upload-large-folder tool
9fbc638 verified
raw
history blame
56.8 kB
1
00:00:21,600 --> 00:00:25,960
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุนูˆุฏุฉ ุนู„ู‰ ุจุฏุก ููŠ ุงู„ูุชุฑุฉ
2
00:00:25,960 --> 00:00:31,280
ุงู„ุตุจุงุญูŠุฉ ุฃุฎุฐู†ุง ุซู„ุงุซ ู†ุธุฑูŠุงุช ุงู„ู„ูŠ ู‡ูˆ ุนู„ู‰ ุงู„
3
00:00:31,280 --> 00:00:35,260
subgroups ู„ุฃู† ุงู„ุฏุฑุณ ุงู„ุญุฏูŠุซ ุนู„ู‰ ู†ูุณ ุงู„ู…ูˆุถูˆุน
4
00:00:35,910 --> 00:00:39,090
ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุจุชู‚ูˆู„ ู„ูŠ g ู…ุฌู…ูˆุนุฉ ูˆุฎุฏ
5
00:00:39,090 --> 00:00:44,710
ู„ a ุฃูŠ ุนู†ุตุฑ ู…ูˆุฌูˆุฏ ููŠ g then the set ุงู„ set
6
00:00:44,710 --> 00:00:49,350
ุงู„ู„ูŠ ู‡ูŠ ู…ูˆู„ุฏุฉ ุจ a ูŠุจู‚ู‰ ู‡ุฐู‡ ุจู†ุณู…ูŠู‡ุง ุงู„ cycle
7
00:00:49,350 --> 00:00:54,620
ูƒ group ู…ูˆู„ุฏุฉ ุจ a ู…ูŠู† ู‡ูŠุŸ ุจุฑูˆุญ ู†ุนุฑูู‡ุง ู„ุฃู†
8
00:00:54,620 --> 00:01:01,140
ุงู„ุนู†ุตุฑ a ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ููŠ g ุจุณ ุจุฏูŠ ุฃุฑูุนู‡ ู„ู„ุฃุณ n ูˆ ุงู„ n
9
00:01:01,140 --> 00:01:09,220
ู…ูˆุฌูˆุฏ ููŠ z ุงู„ a ู‡ูˆ ุนู†ุตุฑ ุซุงุจุช ู„ูƒู† ุงู„ n ุนุฏุฏ ู…ุชุบูŠุฑ ุฃูŠ
10
00:01:09,220 --> 00:01:13,940
ุนุฏุฏ ู…ู† ุฐุงุช ุณูˆุงุก ูƒุงู† ุตูุฑ ุฃูˆ ู…ูˆุฌุจ ุฃูˆ ุณุงู„ุจ ูŠุจู‚ู‰ ุงู„ุณุช
11
00:01:13,940 --> 00:01:18,020
ุงู„ู„ูŠ ุนู†ุฏู†ุง ุจู‡ุฐุง ุงู„ุดูƒู„ ุจุชุจู‚ู‰ subgroup ู…ู† g ุจุฏู†ุง
12
00:01:18,020 --> 00:01:22,140
ู†ุซุจุชู‡ุง ู‡ุฐู‡ ุงู„ subgroup ุจู†ุณู…ูŠู‡ ุงู„ cyclic subgroup
13
00:01:22,140 --> 00:01:27,620
ู…ูˆู„ุฏุฉ ุจ a ูŠุจู‚ู‰ ู‡ูŠ ู…ุฌู…ูˆุนุฉ ุฌุฒุฆูŠุฉ ุฏูˆุฑูŠุฉ ู…ูˆู„ุฏุฉ
14
00:01:27,620 --> 00:01:31,480
ุจุงู„ุนู†ุตุฑ a ุทุจุนุง ุงู„ cyclic groups
15
00:01:31,480 --> 00:01:36,360
ุงู„ุดุทุฑ ุงู„ุฌุงูŠ ูƒู„ู‡ ุงู„ cyclic groups ู…ู† ุฃูˆู„ู‡ ุฅู„ู‰ ุขุฎุฑู‡
16
00:01:36,360 --> 00:01:41,220
ูˆ ุงู„ู†ุธุฑูŠุงุช ูˆ ุฃู…ุซู„ุฉ ูˆู…ุง ุฅู„ู‰ ุฐู„ูƒ ู„ูƒู† ุฅุฐุง ุฑูˆุญ ู†ุซุจุช ู‡ุฐู‡
17
00:01:41,220 --> 00:01:45,720
ุจู‚ู‰ ุฃู†ุง ุจุฏูŠ ุฃุซุจุช ู†ู‚ุทุชูŠู† ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ุจุฏูŠ ุฃุซุจุช ุฅู†
18
00:01:45,720 --> 00:01:52,360
ุงู„ set ู‡ุฐู‡ ู„ูŠุณุช ุฎุงู„ูŠุฉ non-empty ุงุซู†ูŠู† ุจุฏูŠ ุฃุฎุฏ ู…ู†ู‡ุง
19
00:01:52,360 --> 00:01:56,120
two elements ูˆ ุฃุซุจุช ุฅู† ุงู„ุฃูˆู„ ููŠ ู…ุนูƒูˆุณ ุงู„ุซุงู†ูŠ ู…ูˆุฌูˆุฏ
20
00:01:56,120 --> 00:02:02,680
ููŠู‡ุง ู„ุฐู„ูƒ ุจุฌูŠ ุจู‚ูˆู„ ู‡ู†ุง ุงู„ subgroup generated by a is
21
00:02:02,680 --> 00:02:14,040
non-empty ุจู…ุง ุฃู† ุงู„ู€ a to the power of 0 ู‡ูŠ
22
00:02:14,040 --> 00:02:17,140
ุนู„ู‰
23
00:02:17,140 --> 00:02:26,000
ุงู„ุดูƒู„ a<sup>0</sup> ูˆ 0 ู…ูˆุฌูˆุฏ ููŠ z ูŠุจู‚ู‰ ู‡ุฐุง ู…ูˆุฌูˆุฏ ููŠ a ู„ุฐู„ูƒ ุงู„
24
00:02:26,000 --> 00:02:30,520
subgroup generated by a is non empty ุงู„ู†ู‚ุทุฉ
25
00:02:30,520 --> 00:02:37,020
ุงู„ุซุงู†ูŠุฉ ุจุฏูŠ ุฃุฎุฏ two elements ูŠุจู‚ู‰ let ุงู„ X ูˆ Y
26
00:02:37,020 --> 00:02:42,180
ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ subgroup generated by A ุฃูˆ ู…ูˆุฌูˆุฏุฉ ููŠ
27
00:02:42,180 --> 00:02:48,620
ุงู„ุณุช ุงู„ู„ูŠ ู‡ูŠ ู…ูˆู„ุฏุฉ ุจ A ูŠุจู‚ู‰ then ุงู„ X ู‡ุฐู‡
28
00:02:48,620 --> 00:02:54,740
ุจุฏู‡ุง ุชุณุงูˆูŠ A to the power N and ุงู„ Y ุชุณุงูˆูŠ A to
29
00:02:54,740 --> 00:03:01,740
the power M ุงู„ุขู† ุจุฏูŠ ุฃุซุจุช ุฅู† ุงู„ุฃูˆู„ ููŠ ู…ุนูƒูˆุณ ุงู„ุซุงู†ูŠ
30
00:03:01,740 --> 00:03:08,500
ู…ูˆุฌูˆุฏ ููŠ ู‡ุฐู‡ ุงู„ุณุช ู…ุดุงู† ู‡ูŠูƒ ุจุฏูŠ ุขุฎุฐ ู„ู‡ consider
31
00:03:08,500 --> 00:03:16,460
ุขุฎุฐ ู„ูŠ XY inverse ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ู‡ุฐุง ุจุฏูŠ ูŠุณุงูˆูŠ ุงู„ A<sup>N</sup>
32
00:03:16,460 --> 00:03:23,110
ูุงู„ A<sup>M</sup> inverse ู…ู† ู…ุนู„ูˆู…ุงุชู†ุง ุงู„ุณุงุจู‚ุฉ ููŠ ุงู„ chapter
33
00:03:23,110 --> 00:03:29,810
ุงู„ุฃูˆู„ ููŠ ุงู„ groups ู‡ุฐุง ุจุฏูŠ ูŠุนุทูŠู†ุง a<sup>m</sup> a<sup>-m</sup>
34
00:03:29,810 --> 00:03:40,130
ุฃูˆ ุฅู†ุดุงุกุชู‡ู… ูู‚ูˆู„ูˆุง a<sup>n-m</sup> ุงู„ุขู† ู‡ุฐุง ู…ูˆุฌูˆุฏ
35
00:03:40,130 --> 00:03:49,510
ููŠ ุงู„ group generated by a ุจุณุจุจ ุฅู† ุงู„ M ุฃูˆ ุงู„ N
36
00:03:49,510 --> 00:03:55,710
ู†ุงู‚ุต ุงู„ M ู‡ูˆ integer ู…ูˆุฌูˆุฏ ููŠ ุงู„ Z ุฅุฐุง ุตุงุฑ ุงู„
37
00:03:55,710 --> 00:04:00,530
identity element ู…ูˆุฌูˆุฏ ู‡ู†ุง ุฃุฎุฐุช ุนู†ุตุฑูŠู† ู…ูˆุฌูˆุฏุงุช ููŠ
38
00:04:00,530 --> 00:04:03,370
ุงู„ group generated by A ุงู„ู„ูŠ ุฌุช ุงู„ุฃูˆู„ ููŠ ู…ุนูƒูˆุณ
39
00:04:03,370 --> 00:04:09,350
ุงู„ุซุงู†ูŠ ู…ูˆุฌูˆุฏ ููŠู‡ุง ูŠุจู‚ู‰ by a previous
40
00:04:12,500 --> 00:04:19,180
theorem ุจู†ุธุฑูŠุฉ ุณุงุจู‚ุฉ ุงู„ู„ูŠ ู‡ูˆ ุงู„ group generated by
41
00:04:19,180 --> 00:04:27,020
a is a subgroup ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ subgroup ูˆ ุจู‚ูˆู„ ู‡ุฐู‡
42
00:04:27,020 --> 00:04:33,160
ู…ูˆู„ุฏุฉ ุจุงู„ุนู†ุตุฑ a ูŠุนู†ูŠ ุงู„ a ุจูŠุฌูŠุจ ูƒู„ ุงู„ุนู†ุงุตุฑ ุจุชุจุนุชู‡
43
00:04:33,160 --> 00:04:35,800
remarks
44
00:04:41,190 --> 00:04:49,050
ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ู„ูˆ ูƒุงู†ุช ุงู„ G ูƒู„ู‡ุง ุจุฏุฃ ุชุณุงูˆูŠ ุงู„
45
00:04:49,050 --> 00:04:59,630
subgroup generated by A ู†ู‚ูˆู„ ุฅู† ุงู„
46
00:04:59,630 --> 00:05:10,490
G is cyclic ุงู„ G is cyclic and the element
47
00:05:15,070 --> 00:05:26,150
and the element a is a generator for ุงู„ู„ูŠ ู‡ูˆ ุงู„
48
00:05:26,150 --> 00:05:32,330
group g ุงู„ู†ู‚ุทุฉ
49
00:05:32,330 --> 00:05:40,130
ุงู„ุซุงู†ูŠุฉ ุงู„ู†ู‚ุทุฉ
50
00:05:40,130 --> 00:05:42,250
ุงู„ุซุงู†ูŠุฉ every
51
00:05:45,790 --> 00:05:53,190
cyclic group is
52
00:05:53,190 --> 00:06:00,070
abelian ุฑูˆุญ
53
00:06:00,070 --> 00:06:10,110
ู†ุฏุจ ุตุญุฉ ู‡ุฐุง ุงู„ูƒู„ุงู… ุงู„
54
00:06:10,110 --> 00:06:15,780
remark ุงู„ู„ูŠ ุนู†ู‡ุง ุนุจุงุฑุฉ ุนู† ู†ู‚ุทุชูŠู† ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ุจู‚ูˆู„
55
00:06:15,780 --> 00:06:22,180
ู„ูˆ ูƒุงู†ุช ุงู„ G ู‡ูŠ ุงู„ subgroup generated by A ูŠุนู†ูŠ
56
00:06:22,180 --> 00:06:26,300
ุนู†ุงุตุฑ ู‡ู†ุง ู„ูˆ ุฌูŠุช ุฏูˆุฑุช ุนู„ูŠู‡ู… ููƒุชู‡ู… ุจุฏู‡ู… ูŠุทู„ุนูˆุง
57
00:06:26,300 --> 00:06:32,720
ุนู†ุงุตุฑ G ุงู„ุฃุตู„ูŠุฉ ุจุฑูˆุญ ู†ู‚ูˆู„ ุงู„ G is cyclic ูŠุจู‚ู‰ ุงู„
58
00:06:32,720 --> 00:06:38,040
group G ุจู‚ูˆู„ ุนู„ูŠู‡ุง ู…ุฌู…ูˆุนุฉ ุฏูˆุฑูŠุฉ and element A ูˆุงู„ A
59
00:06:38,040 --> 00:06:44,080
ุจู‚ูˆู„ generator ู„ G ูŠุนู†ูŠ ุงู„ A ู…ูˆู„ุฏ ู„ู…ูŠู† ู„ G ู„ู…ุง ู†ู‚ูˆู„
60
00:06:44,080 --> 00:06:49,280
a ู…ูˆู„ุฏ ู„ุฌูŠู‡ ูŠุนู†ูŠ ู‡ุฐุง ุงู„ element a ุจูŠุฎู„ู‚ ู„ูŠ ุฌู…ูŠุน
61
00:06:49,280 --> 00:06:54,800
ุนู†ุงุตุฑ ุงู„ group ุฌูŠู‡ ูƒูŠู ู„ูˆ ู‚ู„ุช a ุฃุณ ุตูุฑ a ุฃุณ
62
00:06:54,800 --> 00:07:00,000
ูˆุงุญุฏ a ุชุฑุจูŠุน a ุชูƒุนูŠุจ ุจุฏู‡ ูŠุฌูŠุจ ู„ูŠ ูƒู„ ุงู„ุนู†ุงุตุฑ ู†ุชูŠุฌุฉ
63
00:07:00,000 --> 00:07:04,680
ู„ู‡ุฐู‡ ุงู„ุฃุณุงุณ ุจุฏู‡ู… ูŠุฌูŠุจ ู„ูŠ ุนู†ุงุตุฑ ุฌูŠู‡ ูƒู„ู‡ุง ุฅู† ุญุฏุซ ุฐู„ูƒ
64
00:07:04,680 --> 00:07:09,660
ูŠุจู‚ู‰ ุจู‚ูˆู„ ุงู„ G ู‡ุฐู‡ Cyclic group ูŠุจู‚ู‰ ู‡ุฐุง ุจู†ุงุก
65
00:07:09,660 --> 00:07:16,040
ุนู„ูŠู‡ ู‡ูˆ ุชุนุฑูŠู ุงู„ Cyclic group generated by A ูŠุนู†ูŠ
66
00:07:16,040 --> 00:07:21,500
ุงู„ู…ุฌู…ูˆุนุฉ ุงู„ุฏูˆุฑูŠุฉ ุงู„ู…ูˆู„ุฏุฉ ุจุงู„ุนู†ุตุฑ aุŸ ู†ู‚ุทุฉ ุซุงู†ูŠุฉ
67
00:07:21,500 --> 00:07:26,500
ุจูŠู‚ูˆู„ ุฃูŠ cycling group ุฃูˆ every cycling group is
68
00:07:26,500 --> 00:07:31,460
abelian ุทูŠุจ ุฃู†ุง ุงู„ุขู† ุจุฏูŠ ุฃุซุจุช ุตุญุฉ ู‡ุฐุง ุงู„ูƒู„ุงู… ุนุดุงู†
69
00:07:31,460 --> 00:07:35,500
ุฃุนุชู…ุฏ ุนู„ูŠู‡ ุจุนุฏ ุฐู„ูƒ ู…ู† ุญุฏ ู…ุง ูŠู‚ูˆู„ ุงู„ cycling group
70
00:07:35,500 --> 00:07:40,660
ุจุฏูŠ ุฃูู‡ู… ุฅู†ู‡ุง abelian ุทูŠุจ ู‡ู„ ุงู„ุนูƒุณ ุตุญูŠุญุŸ ุงู„ุนูƒุณ ู„ูŠู‡
71
00:07:40,660 --> 00:07:46,010
ุตุญูŠุญุŸ ู‚ุฏ ุชูƒูˆู† abelian ูˆู„ูŠุณุช cycling ูˆู‡ูƒุฐุง ุทูŠุจ ู„ูˆ
72
00:07:46,010 --> 00:07:55,250
ุฌูŠุช ุงู„ุขู† ุจุฏุฃุช ุฃู‚ูˆู„ ู„ู‡ let ุงู„ g be a cyclic group
73
00:07:55,250 --> 00:08:08,630
then ุงู„ g ุจุฏู‡ุง ุชุณุงูˆูŠ ุงู„ subgroup generated by a for some a ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ููŠ g
74
00:08:11,870 --> 00:08:17,310
ู…ุฑุฉ ุซุงู†ูŠุฉ ุฃู†ุง ู…ูุชุฑุถ ุฅู† ุฌูŠู‡ ุงู„ cyclic group ูŠุจู‚ู‰
75
00:08:17,310 --> 00:08:21,430
ุฌูŠู‡ ุงู„ู„ูŠ ู‡ูŠ ุดูƒู„ ู…ุนูŠู† ู…ุง ู‡ูˆ ู‡ุฐุง ุงู„ุดูƒู„ ุฌูŠู‡ ุงู„ู„ูŠ ู‡ูŠ
76
00:08:21,430 --> 00:08:27,240
ุงู„ subgroup generated by A ุทูŠุจุŒ ุฅูŠุด ูŠุนู†ูŠุŸ ูŠุนู†ูŠ
77
00:08:27,240 --> 00:08:33,900
ู…ุนู†ุงุชู‡ ุฅู†ู‡ ู‡ู„ุงู‚ูŠ ุนู†ุตุฑ ุนู„ู‰ ุงู„ุฃู‚ู„ ููŠ G ุฃูˆ ุฃูƒุซุฑ ู„ูƒู†
78
00:08:33,900 --> 00:08:39,960
ู…ุง ู‚ู„ุชุด ุฌู…ูŠุน ุงู„ุนู†ุงุตุฑ ูุฑูˆุญุช ู‚ู„ุช for some ู„ุจุนุถ ุนู†ุงุตุฑ
79
00:08:39,960 --> 00:08:46,500
G ุนู„ู‰ ุฃูŠ ุญุงู„ ุจุนุฏ ุดูˆูŠุฉ ู‡ู†ุซุจุช ุฅู†ู‡ ุนู„ู‰ ุงู„ุฃู‚ู„ ูƒู„ group
80
00:08:46,500 --> 00:08:52,080
ููŠู‡ุง two generators ูŠุนู†ูŠ ู…ุด ูƒู„ ุนู†ุงุตุฑ ู„ุฌุฑูˆุจ ุจู†ูุน
81
00:08:52,080 --> 00:08:56,620
ูŠูƒูˆู†ูˆุง generators ุงู„ุจุนุถ ู†ุนู… ูˆุงู„ุจุนุถ ู„ุง ุชู…ุงู… ูุฅูŠุด
82
00:08:56,620 --> 00:09:00,240
ุจู‚ู‰ ูŠุฌุจ ุฃู‚ูˆู„ ู…ุฏุงู… ูุฑุถุชู‡ุง ุงู„ cyclic ูŠุจู‚ู‰ ู„ุงุฒู… ุฃู„ุงู‚ูŠ
83
00:09:00,240 --> 00:09:05,060
element A ู…ูˆุฌูˆุฏ ููŠ G ุจุญูŠุซ ู‡ุฐุง ุงู„ element ูŠุฌูŠุจ ู„ู…ูŠู†
84
00:09:05,060 --> 00:09:11,770
ุฌู…ูŠุน ุนู†ุงุตุฑ G ุฃู†ุง ุงู„ุขู† ุจุฏูŠ ุฃุซุจุช ุฅู† ู‡ุฐูŠ ุงู„ G is
85
00:09:11,770 --> 00:09:16,750
abelian ุจู…ุนู†ู‰ ู„ูˆ ุฃุฎุฐุช ุนู†ุตุฑูŠู† ููŠู‡ุง ุจุฏูŠ ุฃุซุจุช ุฅู† ุงู„ X
86
00:09:16,750 --> 00:09:23,630
ููŠ Y ูŠุณุงูˆูŠ ุงู„ Y ููŠ X ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ู„ู‡ ุงู„ X ูˆ Y
87
00:09:23,630 --> 00:09:28,910
ู…ูˆุฌูˆุฏุงุช ููŠ ุงู„ group generated by A ุทูŠุจ ุงู„ group
88
00:09:28,910 --> 00:09:35,690
generated by a ู„ู‡ุง ุชุนุฑูŠู ููŠ ุงู„ุชุนุฑูŠู ุฅุฐุง ูƒู„ x ู‡ุฐุง
89
00:09:35,690 --> 00:09:45,010
then ุงู„ x ูŠุณุงูˆูŠ ู…ุนู†ุงุชู‡ a ู…ุฑููˆุนุฉ ู„ integer ูŠุจู‚ู‰ ู‡ุฐุง
90
00:09:45,010 --> 00:09:53,090
ุจุฏู‡ ูŠุณุงูˆูŠ a<sup>i</sup> ู…ุซู„ุง and ุงู„ y ุจุฏู‡ุง ุชุณุงูˆูŠ a<sup>j</sup>
91
00:09:55,520 --> 00:10:00,040
ู„ุฅูŠุดุŸ ู„ุฃู† ุงู„ subgroup ู‡ุฐุง a ู…ุฑููˆุน ู„ ุฃุณ ุงู„ ุฃุณ ู‡ุฐุง
92
00:10:00,040 --> 00:10:05,520
ุจุฏูŠ ูŠุฌูŠู†ุง ู…ูŠู†ุŸ ู…ู† z ูŠุนู†ูŠ integer ูƒูˆูŠุณ ุฃู†ุง ุดูˆ ุจุฏูŠ
93
00:10:05,520 --> 00:10:14,960
ุฃุซุจุชุŸ ุจุฏูŠ ุฃุซุจุช ุฅู† ุงู„ x y inverse ู…ูˆุฌูˆุฏุฉ ุงู„ x y ุจุฏูŠ
94
00:10:14,960 --> 00:10:23,390
ุฃุณุงูˆูŠ y x ูƒูˆูŠุณ then ุงู„ุขู† ุจุฏูŠ ุฃู‚ูˆู„ ู„ูƒ ุฎุฐ ู„ูŠ consider
95
00:10:23,390 --> 00:10:32,030
ุงู„ X Y ู‡ุดูˆู ุดูˆ ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ X ู‡ูˆ a<sup>i</sup> ุชู…ุงู…ุŸ ุทูŠุจ ู‡ูˆ
96
00:10:32,030 --> 00:10:40,070
ู‡ุฐุง ุงู„ูƒู„ุงู… ุงู„ Y ุงู„ู„ูŠ ู‡ูŠ a<sup>j</sup> ู‡ุฐุง
97
00:10:40,070 --> 00:10:48,270
ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ a<sup>i+j</sup> ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ a ุฃุณ
98
00:10:48,270 --> 00:10:53,870
ุงู„ู„ู‡ ุฃุนู„ู… ุงู„ุขู† ุงู„ I ูˆ ุงู„ J integers ูˆู„ุง ู„ุงุŸ ูˆ J
99
00:10:53,870 --> 00:10:58,790
ู…ุฌู…ูˆุนุฉ two integers ุจ Integer ุงุซู†ูŠู† ู„ู…ุง ุฃู‚ูˆู„ I
100
00:10:58,790 --> 00:11:04,170
ุฒุงุฆุฏ J ูˆ ู„ุง J ุฒุงุฆุฏ I ููŠ Integers ุจุฎุชู„ู ุงู„ูˆุถุนุŸ ู„ุฃ
101
00:11:04,170 --> 00:11:11,640
ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจู‚ุฏุฑ ุฃู‚ูˆู„ a<sup>j+i</sup> ุชู…ุงู…ุŸ ู‡ุฐุง
102
00:11:11,640 --> 00:11:21,840
ุงู„ูƒู„ุงู… ุจู‚ุฏุฑ ุฃู‚ูˆู„ a<sup>j</sup> a<sup>i</sup> ุจุฑุฌุน a<sup>j</sup> ู‡ูˆ Y ูˆ a<sup>i</sup>
103
00:11:21,840 --> 00:11:30,360
ู‡ูˆ X ูŠุจู‚ู‰ ุตุงุฑ ุงู„ X ููŠ Y ูŠุณุงูˆูŠ Y ููŠ X ู„ูƒู„ ุงู„ X ูˆ Y
104
00:11:30,360 --> 00:11:35,660
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ group generated by A ู…ุนู†ุงุฉ ุงู„
105
00:11:35,660 --> 00:11:41,630
group ู‡ุฐู‡ ู…ุงู„ู‡ุงุŸ ุฃุจู„ูŠุงู† ูŠุจู‚ู‰ ู‡ู†ุง sir ุงู„ group
106
00:11:41,630 --> 00:11:51,190
generated by a is an abelian group ูŠุจู‚ู‰ ู…ู† ุงู„ุขู†
107
00:11:51,190 --> 00:11:54,830
ูุตุงุนุฏุง ู†ุณุชููŠุฏ ู…ู† ุงู„ู…ุนู„ูˆู…ุฉ ู„ูˆ ูƒุงู†ุช ุงู„ group cyclic
108
00:11:54,830 --> 00:12:01,410
ูู‡ูŠ abelian ู†ุงุฎุฐ ุงู„ุขู† ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ุฃู…ุซู„ุฉ examples
109
00:12:01,410 --> 00:12:05,090
ุฃูˆู„
110
00:12:05,090 --> 00:12:15,140
ู…ุซุงู„ ุจู‚ูˆู„ let ุงู„ G ุจุฏู‡ ูŠุณุงูˆูŠ U<sub>10</sub> U<sub>10</sub>
111
00:12:15,140 --> 00:12:27,280
ุนู†ุงุตุฑู‡ุง ุนุงุฑููŠู†ู‡ุง ุงู„ู„ูŠ ู‡ูŠ 1 ูˆ 3 ูˆ 7 ูˆ 9 ุฎู„ูŠ
112
00:12:27,280 --> 00:12:35,310
ุจุงู„ูƒู… ุนู„ูŠู‡ุง ุฃุญุงูˆู„ ุฃู† ุฃุฌู„ุจ ุงู„ subgroup ู…ุฎุชู„ูุฉ ู„ู‡ุฐู‡
113
00:12:35,310 --> 00:12:41,670
ุงู„ group ุงู„ุขู† ู„ูˆ ุฌุจุช ุงู„ subgroup generated by 1
114
00:12:41,670 --> 00:12:46,690
ู…ู† ู‡ูˆ ุงู„ โŸจ1โŸฉ ุจุงู„ู†ุณุจุฉ ู„ู„ group ู‡ุฐุงุŸ ู…ุงู‡ูˆ ุจูŠุทู„ุน ู‡ุฐุงุŸ
115
00:12:46,690 --> 00:12:51,850
ุงู„ identity element ู…ู…ุชุงุฒ ุฌุฏุง ูŠุจู‚ู‰ ู„ู…ุง ุฃุฑูŠุฏ ุฃู† ุฃุถุน
116
00:12:51,850 --> 00:12:55,470
1 ุฃุณ 1ุŒ 1 ุฃุณ 2ุŒ 1 ุฃุณ 0ุŒ 1 ุฃุณ
117
00:12:55,470 --> 00:12:59,520
10ุŒ 1 ุฃุณ 2ุŒ ูŠุจู‚ู‰ ุงู„ order ุงู„ู„ูŠ ู‡ูˆ 1
118
00:12:59,520 --> 00:13:05,060
ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ set ู„ุง ูŠูˆุฌุฏ ููŠู‡ุง ุฅู„ุง ุนู†ุตุฑ ูˆุญูŠุฏ ุงู„ู„ูŠ ู‡ูˆ
119
00:13:05,060 --> 00:13:10,960
ุงู„ 1 itself ุงู„ group ุฃูˆ ุงู„ subgroup ุงู„ู„ูŠ
120
00:13:10,960 --> 00:13:14,860
ููŠู‡ุงุด ุฅู„ุง ุงู„ identity element ุจู†ุณู…ูŠู‡ุง ุงู„ trivial
121
00:13:14,860 --> 00:13:23,820
subgroup ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงุณู…ู‡ุง is a trivial
122
00:13:23,820 --> 00:13:25,940
subgroup
123
00:13:27,300 --> 00:13:32,260
ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ group ุงู„ ุจุฏูŠุฉ ู‡ูŠ ุฃูˆ ุงู„ุชุงุฑูŠุฉ 2 ู…ูŠู†
124
00:13:32,260 --> 00:13:36,520
ุจูŠุฌูŠู†ูŠ ุจุนุฏ ุงู„ 1 ุจูŠุฌูŠู†ูŠ 3 ุจุฏูŠ subgroup
125
00:13:36,520 --> 00:13:42,440
generated by 3 ุฃู†ุง
126
00:13:42,440 --> 00:13:51,200
ุฃูŽุฏูŽู‘ุนููŠ ุฃู†ู‘ู‡ุง the subgroup generated by ุณุจุนุฉ ูˆุฃูŽุฏูŽู‘ุนููŠ ูƒุฐู„ูƒ
127
00:13:51,200 --> 00:14:00,030
ุฃู†ู‘ู‡ุง ู‡ูŠ ูˆุงุญุฏ ูˆุซู„ุงุซุฉ ูˆุณุจุนุฉ ูˆุชุณุนุฉ ูƒู…ุง ู‡ูŠุทูŠุจ ุงุณุชู†ู‰
128
00:14:00,030 --> 00:14:05,650
ู†ุดูˆู ูƒู„ุงู…ู†ุง ุตุญ ูˆู„ุง ุบู„ุท ู„ุฃ ู„ูˆ ุฌุฆุช ุซู„ุงุซุฉ ุฃุณ ุฒูŠุฑูˆ
129
00:14:05,650 --> 00:14:14,130
ุซู„ุงุซุฉ ุฃุณ ูˆุงุญุฏ ุซู„ุงุซุฉ ุซู„ุงุซุฉ ุชุฑุจูŠุน ุจุฑุฌุน ุงู„ operation
130
00:14:14,130 --> 00:14:19,330
ุงู„ู„ูŠ ู‡ู†ุง ุนู…ู„ูŠุฉ ู…ู† ุงู„ุถุฑุจ module ุนุดุฑุฉ ูŠุจู‚ู‰ ุซู„ุงุซุฉ
131
00:14:19,330 --> 00:14:25,610
ุชุฑุจูŠุน ุจุชุณุนุฉ ู‡ูŠ ุชู…ุงู… ูŠุจู‚ู‰ ุณุจุนุฉ ู„ุณู‡ ู…ุธุงู‡ุฑุงุช ุซู„ุงุซุฉ ุฃุณ
132
00:14:25,610 --> 00:14:26,430
ุฃุฑุจุนุฉ
133
00:14:29,150 --> 00:14:34,710
ุงุญู†ุง ู‚ู„ู†ุง ุซู„ุงุซุฉ ุชุฑุจูŠุน ุจุชุณุนุฉ ุซู„ุงุซุฉ ุชูƒุนูŠุจ ุจุณุจุนุฉ
134
00:14:34,710 --> 00:14:39,910
ูˆ20 ุดูŠู„ 20 ุจูŠุทู„ุน ุณุจุนุฉ ุงู„ู„ูŠ ู‡ูˆ ุงู„ element
135
00:14:39,910 --> 00:14:47,330
ู‡ุฐุง ูŠุจู‚ู‰ ูƒู„ ุงู„ุนู†ุงุตุฑ ุธุงู‡ุฑูˆุง ุทูŠุจ ุซู„ุงุซุฉ ุฃุณ ุฃุฑุจุนุฉ ุงู„ู„ูŠ
136
00:14:47,330 --> 00:14:54,200
ู‡ูˆ ูˆุงุญุฏ ู…ุธุจูˆุท ูŠุจู‚ู‰ ุญุท ุฃุณุณ ุฒูŠ ู…ุง ุจุฏูƒ ุฏุงูŠู…ุง ู„ู…ุง ุจุทู„ุนู‡
137
00:14:54,200 --> 00:14:58,040
ู‡ุฏูˆู„ ูŠุจู‚ู‰ ุงู„ุณุงุฑ ุงู„ subgroup ุฌูŠู†ุง ุชุจู‚ู‰ ุซู„ุงุซุฉ ู‡ูŠ
138
00:14:58,040 --> 00:15:03,080
ูˆุงุญุฏ ูˆุซู„ุงุซุฉ ูˆุณุจุนุฉ ูˆุชุณุนุฉ ููŠ ุดุบูŠุฑู‡ู… ุทุจ ู„ูˆ ุฌูŠุช
139
00:15:03,080 --> 00:15:10,090
ู„ู„ุณุจุนุฉ ุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ ุณุจุนุฉ ุฃุณ Zero ุจูˆุงุญุฏ ุณุจุนุฉ ุฃุณ ูˆุงุญุฏ ุจุณุจุนุฉ ุณุจุนุฉ ุชุฑุจูŠุน ุจุชุณุนุฉ ูˆุฃุฑุจุนูŠู† ุดูŠู„ ุฃุฑุจุน ุนุดุฑุงุช
140
00:15:10,090 --> 00:15:16,430
ุจูŠุธู„ ุชุณุนุฉ ู‡ุงูŠุง ูŠุธู„ ุนู†ุฏู†ุง ุชุณุนุฉ ุณุจุนุฉ ุชูƒุนูŠุจ ุงู„ู„ูŠ ู‡ูˆ
141
00:15:16,430 --> 00:15:23,250
ุชุณุนุฉ ูˆุฃุฑุจุนูŠู† ููŠ ุณุจุนุฉ ุฃูˆ ุชุณุนุฉ ููŠ ุณุจุนุฉ ุงู„ู„ูŠ ุธู„ ุนู†ุฏู†ุง
142
00:15:23,250 --> 00:15:29,350
ููŠ ุณุจุนุฉ ุซู„ุงุซุฉ ูˆุณุชูŠู† ุดูŠู„ ุณุช ุนุดุฑุงุช ุจูŠุธู„ 3 ู‡ุงูŠุง
143
00:15:29,350 --> 00:15:34,890
ุชุนุงู„ู‰ ู„ุชุณุนุฉ ุฃุณ ุฃุฑุจุนุฉ ุจุชู„ุงู‚ูŠ ุทุงู„ุน ูŠุจู‚ู‰ ูƒุฏู‡ุŸ ูˆุงุญุฏ
144
00:15:36,770 --> 00:15:41,970
ุตุญูŠุญ ูŠุจู‚ู‰ ุงู„ subgroup generated by ุซู„ุงุซุฉ ุงู„
145
00:15:41,970 --> 00:15:45,510
subgroup generated by ุณุจุนุฉ ูˆุชุนุชุจุฑ subgroup ูˆุงุญุฏุฉ
146
00:15:45,510 --> 00:15:49,090
ู…ุด ุงุซู†ุชูŠู† ุงู„ุงุซู†ุชูŠู† ุจุณ are equivalent ุทูŠุจ ุฅูŠุด
147
00:15:49,090 --> 00:15:52,510
ุฑุฃูŠูƒุŸ ู…ุง ุนู„ุงู‚ุฉ ุงู„ุงุซู†ูŠู† ู‡ุฏูˆู„ ุจุงู„ group ุงู„ุฃุตู„ูŠุŸ ุฅุฐุง
148
00:15:52,510 --> 00:15:58,830
ุงู„ subgroup ุซูˆุช ู„ุฌุฑูˆุจ ุงู„ุฃุตู„ูŠุฉ ุจู†ุณู…ูŠู‡ุง improper
149
00:15:58,830 --> 00:16:03,290
subgroup ูŠุจู‚ู‰ ู‡ุฐูŠ ู‡ุฐูŠ is called improper subgroup
150
00:16:03,290 --> 00:16:15,570
ุฃูˆ subgroup ูŠุจู‚ู‰ ุงู„ subgroup generated by ุซู„ุงุซุฉ ุฃูˆ
151
00:16:15,570 --> 00:16:21,290
ุงู„ subgroup generated by ุณุจุนุฉ ุจู†ุณู…ูŠู‡ุง improper
152
00:16:21,290 --> 00:16:24,190
subgroup ุฃูŠ cyclic group ุชุญุณุจู‡ุง ูˆุชุฌุฏู‡ุง ุชุณุงูˆูŠ ู„ุฌุฑูˆุจ
153
00:16:24,190 --> 00:16:30,010
ุงู„ุฃุตู„ูŠุฉ ุจุณู…ูŠู‡ุง improper subgroup ูŠุนู†ูŠ ูƒุงู† ุงู„
154
00:16:30,010 --> 00:16:33,950
subgroup ุบูŠุฑ ูุนู„ูŠุฉ ูŠุนู†ูŠ ุฃู†ุช ู…ุง ุฌุจุชุด ุฌุฏูŠุฏ ู„ูŠุดุŸ ู„ุฃู†
155
00:16:33,950 --> 00:16:38,850
any set is a subset of itself improper ูŠุนู†ูŠ ุบูŠุฑ
156
00:16:38,850 --> 00:16:44,210
ูุนู„ูŠ ุทูŠุจ ุฅูŠุด ุถุงูŠู„ ุนู†ุฏู†ุงุŸ ู…ุง ุธู„ุด ุฅู„ุง ุงู„ุชุณุนุฉ ูŠุจู‚ู‰
157
00:16:44,210 --> 00:16:50,390
ุงู„ุขู† ู„ูˆ ุฌุฆุช ู„ู„ subgroup generated by ุชุณุนุฉ ุจุฏูŠ ูŠูƒูˆู†
158
00:16:50,390 --> 00:16:55,810
ุชุณุนุฉ ุฃุณ ุตูุฑ ุจูˆุงุญุฏ ูˆุชุณุนุฉ ุฃุณ ูˆุงุญุฏ ุจุชุณุนุฉ ุชุฑุจูŠุน
159
00:16:55,810 --> 00:17:02,490
ูŠุนู†ูŠ ูˆุงุญุฏ ูˆู‡ูŠ ูˆู‡ุง ูƒุฏู‡ ุญุท ุงู„ุชุณุนุฉ ุงู„ุฃุณ ุงู„ู„ูŠ ุนุฌุจูƒ ูˆุฏูŠ
160
00:17:03,110 --> 00:17:09,470
ูŠุทู„ุน ูŠุง ูˆุงุญุฏ ูŠุง ุชุณุนุฉ ุทุจ ู‡ุฏูˆู„ ุดูˆ ุงุณู…ู‡ุง ุงู„ู„ูŠ ุทู„ุนุช ุฃู‚ู„
161
00:17:09,470 --> 00:17:14,890
ู…ู† ุงู„ group ุงู„ุฃุตู„ูŠุฉ ูŠุจู‚ู‰ ู‡ูŠ ุงู„ proper subgroup
162
00:17:14,890 --> 00:17:18,310
ูŠุจู‚ู‰ subgroup ูุนู„ูŠุง ูŠุจู‚ู‰ ู‡ุฏูˆู„ trivial ู‡ุฏูˆู„ improper ู‡ุฏูˆู„
163
00:17:18,310 --> 00:17:24,050
proper ูŠุจู‚ู‰ ูˆุงุญุฏ ูˆุชุณุนุฉ is a proper subgroup
164
00:17:24,050 --> 00:17:32,630
ุทูŠุจ ุฎู„ูŠู†ุง ู†ุจุฏุฃ ุงู„ู…ู„ุงุญุธุงุช ุงู„ุชุงู„ูŠุฉ ุนู„ู‰ ู‡ุฐู‡ ุงู„ู†ุชูŠุฌุฉ
165
00:17:35,700 --> 00:17:40,160
ุงู„ุชูŠ ุชูˆุตู„ู†ุง ุฅู„ูŠู‡ุง ู‡ู†ุฌุงูˆุจ ุนู„ู‰ ุณุคุงู„ูƒ ูˆุงุญู†ุง ุจู†ุญูƒูŠ ุฅู†
166
00:17:40,160 --> 00:17:44,160
ุดุงุก ุงู„ู„ู‡ ุชู…ุงู…ุŸ ู…ู† ุฏูˆู† ู…ุง ุฃุนุฑู ุดูˆ ุงู„ุณุคุงู„ ุชู…ุงู…ุŸ ูŠุจู‚ู‰
167
00:17:44,160 --> 00:17:49,220
ุฃู†ุง ุจุงุฌูŠ ุจุชุทู„ุน ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงู„ู„ูŠ ู„ู‚ูŠุช ุงู„ subgroup
168
00:17:49,220 --> 00:17:52,140
generated by ุซู„ุงุซุฉ ู‡ูŠ ุงู„ subgroup generated by
169
00:17:52,140 --> 00:17:55,220
ุงู„ุณุจุนุฉ ุทูŠุจ ููŠู‡ ุนุดุฑุฉ ุดูˆ ุงู„ุนู„ุงู‚ุฉ ุจูŠู† ุงู„ุซู„ุงุซุฉ
170
00:17:55,220 --> 00:17:59,140
ูˆุงู„ุณุจุนุฉุŸ ุจูŠู‚ุฑุจูˆุง ู„ุจุนุถุŸ ุฃู‡ ูˆุงุญุฏ ููŠู‡ู… ู…ุนูƒูˆุณ ุงู„ุซุงู†ูŠ
171
00:17:59,140 --> 00:18:05,220
ู…ุนู†ุงุชู‡ ุงู„ subgroup generated ุจุงู„ element ู‡ูŠ ุงู„
172
00:18:05,220 --> 00:18:09,180
subgroup generated ุจุงู„ inverse ู„ู‡ุฐุง ุงู„ element ูŠุจู‚ู‰
173
00:18:09,180 --> 00:18:15,790
ู‡ู†ุง ู‡ูŠ ุงู„ุซู„ุงุซุฉ ูˆุงู„ุณุจุนุฉ ุจูˆุงุญุฏุฉ ูˆุนุดุฑูŠู† ุดูŠู„ ุนุดุฑุชูŠู†
174
00:18:15,790 --> 00:18:20,170
ุจูŠุทู„ุน ุงู„ identity element ุฅุฐุง ุงู„ุซู„ุงุซุฉ is the
175
00:18:20,170 --> 00:18:23,910
inverse of ุณุจุนุฉ ูˆุจุงู„ุชุงู„ูŠ ุงู„ subgroup generated by
176
00:18:23,910 --> 00:18:28,030
ุซู„ุงุซุฉ ู‡ูŠ ุงู„ subgroup generated by ุณุจุนุฉ ูŠุจู‚ู‰ ู‡ู†ุง
177
00:18:28,030 --> 00:18:32,730
ุจู‚ูˆู„ not that ู„ุงุญุธ ุฃู†ู‘ ุงู„ุซู„ุงุซุฉ is the inverse of
178
00:18:32,730 --> 00:18:44,440
ุณุจุนุฉ modulo ุนุดุฑุฉ ู‡ุฐุง ู‡ูˆ ู…ุนูƒูˆุณู‡ ุฏู‡ ูˆู…ู† ู‡ู†ุง ูƒุงู† ุงู„
179
00:18:44,440 --> 00:18:51,800
subgroup ู‡ุงุฏูŠ ู…ูŠู† ู‡ูŠ ุงู„ subgroup ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุงุฏูŠ
180
00:18:51,800 --> 00:18:56,060
ุจุงู„ุถุจุท ู‡ุฐู‡ ุงู„ู…ู„ุงุญุธุฉ ู‡ุงุฏูŠ ูŠุจู‚ู‰ ู‡ุงุฏูŠ ู‡ูŠ ู‡ุงุฏูŠ ุจุงู„ุถุจุท
181
00:18:56,060 --> 00:19:01,860
ุชู…ุงู…ุง ูƒุฃู†ู‡ ู‡ุฐุง ูƒู†ุช ุจุงูƒุชุณุงู„ู‡ ู‡ุงุช ุงู„ุณุคุงู„ ู…ู…ุชุงุฒ
182
00:19:01,860 --> 00:19:09,240
ุฌุฏุง ุงู„ุณุคุงู„ ุฅู„ูŠูƒ ุงู„ุณุคุงู„ ุฅู„ูŠูƒ ุงุณุชู†ู‰ ุดูˆูŠุฉ ุจุณ ู‡ู„ group
183
00:19:09,240 --> 00:19:15,740
ู‡ุฐู‡ ุงู„ุชูŠ ูƒุดุจุงุจูู‡ูˆ ุจู‚ู‰ is on cyclic ู„ูŠุดุŸ ุจุณ ูŠุตุจุฑ
184
00:19:15,740 --> 00:19:20,440
ุดูˆูŠุฉ ู„ูŠุดุŸ ู„ุฃู† ู„ู‚ูŠุช ููŠู‡ุง ุจุฏู„ ุงู„ generator ุงุซู†ูŠู†
185
00:19:20,440 --> 00:19:26,560
ุงู„ู„ูŠ ู‡ู… ู…ูŠู†ุŸ ุซู„ุงุซุฉ ูˆุณุจุนุฉ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ู‡ู†ุง
186
00:19:26,560 --> 00:19:31,720
ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ note that ู‡ุฐู‡ ุงุนุชุจุฑู‡ุง ุฑู‚ู… ูˆุงุญุฏ ุฑู‚ู…
187
00:19:31,720 --> 00:19:38,380
ุงุซู†ูŠู† ุงู„ U ุนุดุฑุฉ is cyclic and
188
00:19:38,380 --> 00:19:44,620
ุซู„ุงุซุฉ and ุณุจุนุฉ are generators ูŠุจู‚ู‰
189
00:19:46,290 --> 00:19:56,610
ุฏูˆู„ ุจูŠุฌูŠุจูˆู„ูŠ ูƒู„ group ุชู…ุงู… ูŠุจู‚ู‰ ู…ู„ุงุญุธุฉ ุตุงุฑ ุฃู†ู‘
190
00:19:56,610 --> 00:20:02,360
ุงู„ุซู„ุงุซุฉ ู‡ูˆ ุงู„ู…ุนูƒูˆุณ ุชุจุน ุงู„ุณุจุนุฉ ูˆู„ุฐู„ูƒ ุงู„ subgroup
191
00:20:02,360 --> 00:20:06,800
generated by ุซู„ุงุซุฉ ู‡ูŠ ุงู„ subgroup generated by
192
00:20:06,800 --> 00:20:10,240
ุณุจุนุฉ ูˆููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุจู‚ูˆู„ ู„ุฌุฑูˆุจ ุงู„ุฃุตู„ูŠุฉ ุชุจู‚ู‰
193
00:20:10,240 --> 00:20:15,720
ุนู†ุฏู†ุง ุงู„ cyclic ู„ุฃู† ุงู„ู„ูŠ ุฌูŠุช ููŠู‡ุง two generators
194
00:20:15,720 --> 00:20:19,480
ุทุจ ุงู„ุณุคุงู„ ู‡ูˆ ุชุณุนุฉ generators ู„ุฃ ูŠุนู†ูŠ ู…ุนู†ู‰ ู‡ุฐุง
195
00:20:19,480 --> 00:20:24,730
ุงู„ูƒู„ุงู… ู„ู…ุง ุชุจู‚ู‰ ุงู„ group cyclic ู…ุด ูƒู„ element
196
00:20:24,730 --> 00:20:28,970
ุจูŠูƒูˆู† generator ุจุนุถู‡ู… ุจูŠูƒูˆู† generator ูˆู„ุจุนุถู‡ู…
197
00:20:28,970 --> 00:20:33,030
ุจูŠูƒูˆู†ุด generator ุฅุฐุง ุนู„ู‰ ุงู„ุฃู‚ู„ ุงู„ group ููŠู‡ุง two
198
00:20:33,030 --> 00:20:38,010
generators ุงู„ element ูˆุงู„ู…ุนูƒูˆุณ ูˆุงุถุญุŸ ุงู„ุขู† ู†ุนุทูŠ
199
00:20:38,010 --> 00:20:43,770
ู…ุฒูŠุฏุง ู…ู† ุงู„ุฃู…ุซู„ุฉ ุนู„ู‰ ุงู„ subgroup generated by any
200
00:20:43,770 --> 00:20:51,160
element in the group ู…ุซุงู„
201
00:20:51,160 --> 00:21:04,300
ุงุซู†ูŠู† let
202
00:21:04,300 --> 00:21:10,000
g ุจุฏู‡ุง ุชุณุงูˆูŠ Z 12 ุดุจุงุจ ุงู„ู„ูŠ ู‡ูŠ ุงู„
203
00:21:10,000 --> 00:21:18,240
0 1 2 3 4 5 6 7 8
204
00:21:18,240 --> 00:21:25,580
9 10 11 ูƒูˆูŠุณ
205
00:21:25,580 --> 00:21:32,860
ุงู„ุขู† ู„ูˆ ุฌุฆุช ุณุฃู„ุชูƒ ุจุงู„ู„ู‡ ู‚ุฏุงุด ุงู„ subgroup generated
206
00:21:32,860 --> 00:21:39,160
by zero ูƒู… ุนู†ุตุฑ ููŠู‡ุงุŸ ุนู†ุตุฑ ูˆุงุญุฏ ูู‚ุทุŒ ู…ุง ููŠุด ุบูŠุฑู‡ ูŠุจู‚ู‰
207
00:21:39,160 --> 00:21:47,980
ู‡ุฐุง ุงู„ trivial subgroup
208
00:21:47,980 --> 00:21:54,440
ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ subgroup ุงู„ุจุฏูŠู‡ูŠ ุทุจ ู„ูˆ ุจุฏุฃู†ุง ุงู„ subgroup
209
00:21:54,440 --> 00:22:00,260
generated by one ุงู„ุนู…ู„ูŠุฉ
210
00:22:00,260 --> 00:22:05,860
ุนู„ูŠู‡ุง ุนู…ู„ูŠุฉ ุฌู…ุน Z 12 ุนุดุงู† ุชูƒูˆู† ุงู„ุฌุฑูˆุจ ุนู„ูŠู‡ุง
211
00:22:05,860 --> 00:22:10,560
ุนู…ู„ูŠุฉ ุฌู…ุน ู„ูƒู† ุถุฑุจ ูŠุจุนุช ุงู„ู„ู‡
212
00:22:10,560 --> 00:22:12,760
ูƒู„ู‡ุง ู…ู† ุฃูˆู„ู‡ุง ุฅู„ู‰ ุขุฎุฑู‡ุง Z 12 ูƒู„ู‡ุง
213
00:22:15,630 --> 00:22:24,530
ู…ู† ุฃูˆู„ู‡ุง ุฅู„ู‰ ุขุฎุฑู‡ุง Z 12 ูƒู„ู‡ุง
214
00:22:24,530 --> 00:22:26,250
ู…ู† ุฃูˆู„ู‡ุง ุฅู„ู‰ ุขุฎุฑู‡ุง Z 12 ูƒู„ู‡ุง
215
00:22:26,250 --> 00:22:26,370
ู…ู† ุฃูˆู„ู‡ุง ุฅู„ู‰ ุขุฎุฑู‡ุง Z 12 ูƒู„ู‡ุง
216
00:22:26,370 --> 00:22:27,010
ู…ู† ุฃูˆู„ู‡ุง ุฅู„ู‰ ุขุฎุฑู‡ุง Z 12 ูƒู„ู‡ุง
217
00:22:27,010 --> 00:22:28,770
ู…ู† ุฃูˆู„ู‡ุง ุฅู„ู‰ ุขุฎุฑู‡ุง Z 12 ูƒู„ู‡ุง
218
00:22:28,770 --> 00:22:29,290
ู…ู† ุฃูˆู„ู‡ุง ุฅู„ู‰ ุขุฎุฑู‡ุง Z 12 ูƒู„ู‡ุง
219
00:22:29,290 --> 00:22:29,570
ู…ู† ุฃูˆู„ู‡ุง ุฅู„ู‰ ุขุฎุฑู‡ุง Z 12 ูƒู„ู‡ุง
220
00:22:29,570 --> 00:22:32,450
ู…ู† ุฃูˆู„ู‡ุง ุฅู„ู‰ ุขุฎุฑู‡ุง Z 12 ูƒู„ู‡ุง
221
00:22:32,450 --> 00:22:40,710
ู…ู† ุฃูˆู„ู‡ุง ุฅู„ู‰ ุขุฎุฑู‡ุง Z 12 ูƒู„ู‡ุง
222
00:22:40,710 --> 00:22:47,800
ู…ู†ุชุญุช ุนู…ู„ูŠุฉ ุงู„ุฌู…ุน 11 ูŠุจู‚ู‰ 11 ุจุฏู‡ ูŠุฌูŠุจ ูƒู…ุงู†
223
00:22:47,800 --> 00:22:52,960
ู…ูŠู† ู„ุฌุฑูˆุจ ูƒู„ู‡ ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ subgroup
224
00:22:52,960 --> 00:23:04,140
generated by 11 ุทูŠุจ ุงุญู†ุง ุงู„ุขู† ุจุฏู‡ ูŠุฌูŠ 1 2 3 4 ุจุฏู‡
225
00:23:04,140 --> 00:23:06,580
ุงู„ subgroup generated by 5
226
00:23:13,980 --> 00:23:20,000
ุฎู…ุณุฉ ูˆ Zero ุชุนู†ูŠ Zero ููŠ ุฎู…ุณุฉ ุจู‚ุฏุงุดุŸ ุจ Zero ูŠุจู‚ู‰ ู‡ุฐุง
227
00:23:20,000 --> 00:23:24,780
ุงู„ element ู…ูˆุฌูˆุฏ ููŠู‡ุง ุฎู…ุณุฉ ุฃุณ ูˆุงุญุฏ ูŠุนู†ูŠ ูˆุงุญุฏ ููŠ
228
00:23:24,780 --> 00:23:29,960
ุฎู…ุณุฉ ุฎู…ุณุฉ ุชุฑุจูŠุน ุฑุงุญ ุงู„ element ุฎู…ุณุฉ ุชุฑุจูŠุน ุชุนู†ูŠ ุฎู…ุณุฉ
229
00:23:29,960 --> 00:23:35,130
ุฒุงุฆุฏ ุฎู…ุณุฉ ู‡ูŠ ุงู„ element ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง ุชู…ุงู…
230
00:23:35,130 --> 00:23:40,270
ุงู„ุขู† ู‡ุฐุง ุฎู…ุณุฉ ุชูƒุนูŠุจ ุฎู…ุณุฉ ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ
231
00:23:40,270 --> 00:23:41,330
ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ
232
00:23:41,330 --> 00:23:42,130
ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ
233
00:23:42,130 --> 00:23:43,830
ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ
234
00:23:43,830 --> 00:23:44,370
ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ
235
00:23:44,370 --> 00:23:45,350
ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ
236
00:23:45,350 --> 00:23:49,990
ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุชูƒุนูŠุจ ุงู„ุขู† ุฎู…ุณุฉ ุฃุณ ุฃุฑุจุนุฉ
237
00:23:49,990 --> 00:23:54,270
ูŠุนู†ูŠ ุฃุฑุจุนุฉ ููŠ ุฎู…ุณุฉ ุงู„ู„ูŠ ู‡ูˆ ุจ 20 ุจู†ุดูŠู„ 12 ุจูŠุทู„ุน
238
00:23:54,270 --> 00:23:59,470
ู‚ุฏุงุดุŸ 8 ุฎู…ุณุฉ ุฃุณ ุฎู…ุณุฉ ูŠุนู†ูŠ ุฎู…ุณุฉ ููŠ ุฎู…ุณุฉ ุจ 25
239
00:23:59,470 --> 00:24:05,630
ุจุฏูŠ ุฃุดูŠู„ ู…ู† 24 ุจูŠุทู„ุน ู‚ุฏุงุดุŸ 5
240
00:24:05,630 --> 00:24:10,750
ูˆ 30
241
00:24:10,750 --> 00:24:17,170
ูˆ 5
242
00:24:17,170 --> 00:24:22,270
ูˆ 30 ูˆ 5 ูˆ 30
243
00:24:26,960 --> 00:24:32,440
ุฎู…ุณุฉ ุฃุณ 8 ุงู„ู„ูŠ 8 ููŠ 5 ุจ 40 ุจุฏู‘ู‡
244
00:24:32,440 --> 00:24:37,860
ุฃุดูŠู„ 36 ุจุชุทู„ุน ู…ู† 4 ุฎู…ุณุฉ ุฃุณ 9 ุงู„ู„ูŠ
245
00:24:37,860 --> 00:24:42,750
ุฎู…ุณุฉ ููŠ 40 ุจุจุฏุฃ ูŠุฒูŠู„ ู…ู†ู‡ู… 36 ูˆูŠุจู‚ู‰
246
00:24:42,750 --> 00:24:49,270
ุงู„ุฌุฏูŠุฏ 9 ุงู„ุขู† ุฎู…ุณุฉ ุฃุณ 9 ู‡ู†ุง ุฎู…ุณุฉ ุฃุณ 10 ุงู„ู„ูŠ
247
00:24:49,270 --> 00:24:52,390
ุจ 50 ุฃุฑุจุนุฉ ููŠ 12 ุจ 48 ูˆูŠุจู‚ู‰ ู„ู‡
248
00:24:52,390 --> 00:24:58,810
2 ูŠุจู‚ู‰ ู„ู‡ 2 ู‡ูŠุง ุงู„ุขู† ุฎู…ุณุฉ ุฃุณ 11 ุจ 55
249
00:24:58,810 --> 00:25:02,250
ู…ู† 48 ูˆูŠุจู‚ู‰ ู„ู‡ 7 ูŠุจู‚ู‰ ู‡ุฐู‡
250
00:25:02,250 --> 00:25:06,310
ุงู„ุณุจุนุฉ ุฎู…ุณุฉ 12 ุจ 60 ุชุนู†ูŠ Zero ูŠุจู‚ู‰ ุจุฏุฃู†ุง ู…ู†
251
00:25:06,310 --> 00:25:12,690
ุฃูˆู„ ูˆุฌุฏูŠุฏ ููŠ ุนู†ุตุฑ ู…ุธุงู‡ุฑู‡ุŒ ู„ูˆ ุฑูˆุญุช ุญุณุจุช ู…ูŠู† ุงู„ู…ุนูƒูˆุณ
252
00:25:12,690 --> 00:25:18,650
ุชุจุน ุงู„ุฎู…ุณุฉ ูŠุจู‚ู‰ ุจุฏู‡ ูŠุทู„ุน ูƒู…ุงู† ู‡ุฐุง ุณุจุนุฉ subgroup
253
00:25:18,650 --> 00:25:25,190
generated by ุณุจุนุฉ ุทูŠุจ by ุงู„ู„ูŠ ุนู†ุฏูŠ ููŠู‡ relatively
254
00:25:25,190 --> 00:25:29,870
prime ู„ู„ุฃุชู†ุงุดุฑ ุบูŠุฑ ู‡ุฏูˆู„ ุงู„ุฎู…ุณุฉ ูˆุงู„ุณุจุนุฉ ูˆุงู„ุฃุญุฏุงุด
255
00:25:29,870 --> 00:25:34,170
ู…ุงุดูŠุŒ ู‡ุงู„ูุงุด ุบูŠุฑู‡ู… ุชู…ุงู…ุŒ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡
256
00:25:34,170 --> 00:25:43,110
ูŠุณุงูˆูŠ Z ุงุชู†ุงุดุฑ ุจุงู„ุถุจุท ุชู…ุงู…ุงุŒ ูŠุจู‚ู‰ ู‡ุฐูˆู„ ุนุจุงุฑุฉ ุนู† ุงูŠุดุŸ
257
00:25:43,110 --> 00:25:52,050
improper subgroupsุŒ ูŠุจู‚ู‰ ุจุนุฏูŠ ุจู‚ูˆู„ู‡ these subgroups
258
00:25:52,050 --> 00:25:54,710
are improper
259
00:25:57,830 --> 00:26:02,830
ูŠุจู‚ู‰ ูŠุง ุดุจุงุจ ู‡ุฏูˆู„ ุงู„ุฃุฑุจุนุฉุŒ ู„ูƒู† ููŠ ุงู„ุญู‚ูŠู‚ุฉ ูˆุงุญุฏุŒ ูŠุจู‚ู‰
260
00:26:02,830 --> 00:26:07,350
subgroup ูˆุงุญุฏุฉุŒ ูˆ ุงู„ zero ู‡ูŠ ุชู†ุชูŠู†ุŒ ุชู†ุชูŠู† subgroup
261
00:26:07,350 --> 00:26:11,890
ูู‚ุท ู…ู† ุงู„ group ู‡ุฐู‡ุŒ ุชุนุงู„ู‰ ู†ุดูˆู ุงู„ุจุงู‚ูŠุฉ ุจุนุฏ ุงู„ูˆุงุญุฏ
262
00:26:11,890 --> 00:26:16,450
ุจูŠุฌูŠู†ูŠ ุงุชู†ูŠู† subgroup generated by ุงุชู†ูŠู† ุงู„ู„ูŠ ู‡ูˆ
263
00:26:16,450 --> 00:26:23,010
zeroุŒ ุงุชู†ูŠู†ุŒ ุงุฑุจุนุฉุŒ ุณุชุฉุŒ ุชู…ุงู†ูŠุฉุŒ ุนุงุดุฑุฉุŒ ู…ุชุฃูƒุฏุŒ ู…ุชุฃูƒุฏ ูˆู†ุต
264
00:26:24,160 --> 00:26:28,660
2ร—0 ุจุฒูŠุฑ ูˆ 2ร—1 ุจุงุชู†ูŠู† ูˆ 2 ุชุฑุจูŠุฉ ูˆ 2ร—2 ุจุงุฑุจุนุฉ ูˆ 2
265
00:26:28,660 --> 00:26:31,860
ุชูƒูŠุจุฉ ูˆ 2ร—3 ุจุณุชุฉ ูˆ 2 ุงุชู†ูŠู† ูˆ 4 ุงุฑุจุนุฉ ูˆ 2 ุชู…ุงู†ูŠุฉ
266
00:26:31,860 --> 00:26:38,200
ู„ุบุงูŠุฉ ุงู„ุนุดุฑุฉ ุชู…ุงู…ุŸ ุจุฏูŠ ุงุฌูŠ ุงุดูˆู ู…ูŠู† ู‡ู…ุŒ ู‡ู„ ููŠ ุบูŠุฑู‡ุง
267
00:26:38,200 --> 00:26:42,780
ู‡ุฏู‰ ูˆ ุงู„ู„ู‡ ููŠุด ุบูŠุฑู‡ุงุŒ ุจุงุฌูŠ ุจุณุฃู„ ู†ูุณูŠ ู‡ูˆ ู…ูŠู† ู…ุนูƒุณ 2
268
00:26:42,780 --> 00:26:48,440
ููŠ 8ุนุดุฑุฉุŒ ูŠุจู‚ู‰ ู„ูˆ ุฑูˆุญุช ุญุณุจุช ุงู„ุนุดุฑุฉ ุจุฏู‡ู… ูŠุทู„ุนูˆุง
269
00:26:48,440 --> 00:26:51,860
ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ุนู†ุฏูƒ ูƒุงู†ุชุŒ ูŠุนู†ูŠ ู„ูˆ ุฑูˆุญุช ุญุณุจุช ุงู„
270
00:26:51,860 --> 00:26:57,280
subgroup generated by ุนุดุฑุฉ ุจุฏู‡ุง ุชุทู„ุน ู‡ุฐู‡ ุจุงู„ุถุจุท
271
00:26:57,280 --> 00:27:02,840
ุฌุฑุจ ุนุดุฑุฉ ูˆ Zero ูˆ ูˆุงุญุฏ ุนุดุฑุฉ ูˆ ุงุณ ูˆุงุญุฏ ุจุนุดุฑุฉ ู‡ุฐุง
272
00:27:02,840 --> 00:27:10,080
ุฑุงุญ ุงู„ zero ูˆ ุฑุงุญ ุงู„ุนุดุฑุฉุŒ ุนุดุฑุฉ ุชุฑุจูŠุน ุจุนุดุฑุฉ ุฒุงุฆุฏ
273
00:27:10,080 --> 00:27:15,900
ุนุดุฑุฉ ุชุงู†ูŠุฉ ุนุดุฑูŠู†ุŒ ูุฒุฏ ุงุชู†ุงุดุฑ ุจูƒู…ุงู†ูŠุฉ ู‡ุฐู‡ ุงู„ุซู…ุงู†ูŠุฉ
274
00:27:15,900 --> 00:27:18,940
ูˆุงู„ุนุดุฑุฉ ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง
275
00:27:18,940 --> 00:27:22,680
ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง
276
00:27:22,680 --> 00:27:27,140
ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง
277
00:27:27,140 --> 00:27:27,200
ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง
278
00:27:27,200 --> 00:27:27,220
ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง
279
00:27:27,220 --> 00:27:28,360
ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง
280
00:27:28,360 --> 00:27:37,360
ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุงุŒ ุงู„ุฃู† ุงู‚ุตุฏ ุฎู…ุณุฉ ูŠุนู†ูŠ ุฎู…ุณูŠู†ุŒ ุงุฑุจุน ููŠ
281
00:27:37,360 --> 00:27:41,180
ุงุชู†ุงุดุฑ ุชู…ุงู†ูŠุฉ ูˆุงุฑุจุนูŠู†ุŒ ุจูŠุธู„ ุงุชู†ูŠู† ุงู„ู„ูŠ ุจุนุฏู‡ุง ุณุชูŠู†
282
00:27:41,180 --> 00:27:45,700
ุจูŠุฒูŠุฑูˆุงุŒ ูŠุจู‚ู‰ ูุนู„ุง ู‡ุฐู‡ ุงู„ sub group generated by
283
00:27:45,700 --> 00:27:52,410
ุนุดุฑุฉ ู‡ูŠ ุงู„ sub group generated by ุงุชู†ูŠู† ุชู…ุงู…ุŸ ุทูŠุจุŒ
284
00:27:52,410 --> 00:27:56,850
ุงู„ุขู†ุŒ ูŠุจู‚ู‰ ุตุงุฑูˆุง ูƒุงู… subgroup ุนู†ุฏูŠุŸ ุชู„ุงุชุฉ ุจุณ ู…ุงููŠุด
285
00:27:56,850 --> 00:28:00,910
ุบูŠุฑู‡ู…ุŒ ุฏูŠุฑ ุจุงู„ูƒ ุฃู†ุง ุจู…ู‡ุฏ ู„ู„ chapter ุงู„ู„ูŠ ุจุนุฏู‡ ุงู„
286
00:28:00,910 --> 00:28:05,550
chapter ู‡ุชุจุน ุฑุจูˆุญูŠู‡ ุชุฌูŠูƒ ุฃุณุฆู„ุฉ ูŠู‚ูˆู„ ู„ูƒ list all
287
00:28:05,550 --> 00:28:09,470
the subgroups of ุงู„ group ุงู„ูู„ุงู†ูŠุฉุŒ ู…ุด ู‡ุชุฑูˆุญ ุชุญุทู‡ู…
288
00:28:09,470 --> 00:28:12,390
ุงุชู†ุงุดุฑ ูˆุงุญุฏุฉุŒ ูŠู…ูƒู† ุจูŠุทู„ุนูˆุด ุบูŠุฑ ุงุฑุจุนุฉุŒ ูŠู…ูƒู† ุจูŠุทู„ุนูˆุด
289
00:28:12,390 --> 00:28:16,130
ุบูŠุฑ ุฎู…ุณุฉุŒ ูŠู…ูƒู† ุบูŠุฑ ุณุชุฉุŒ ูŠุจู‚ู‰ ุฃู†ุช ุชุชู‚ูŠุฏ ุจุงู„ู…ูˆุฌูˆุฏุฉุŒ
290
00:28:16,130 --> 00:28:21,180
ู‡ุฏูˆู„ ูƒู„ู‡ู…ุŒ ุงู„ุงุฑุจุน ูŠุนุชุจุฑ ูˆุงุญุฏุฉ ูˆู„ูŠุณ ุงุฑุจุนุŒ ูŠุจู‚ู‰ ูˆุงุญุฏุฉ
291
00:28:21,180 --> 00:28:26,220
ูู‚ุทุŒ ุฏู‡ ูŠุนู†ูŠ ุทูŠุจุŒ ุงู„ุงู† ู„ูˆ ุฌูŠุช ู‚ู„ุช ู„ูƒ ุจุฏูŠ ุงู„ subgroup
292
00:28:26,220 --> 00:28:34,080
generated by ุฎู„ุตู†ุง ูˆุงุญุฏ ูˆุงุซู†ูŠู†ุŒ ุจุฏู†ุง ุชู„ุงุชุฉุŒ ูŠุจู‚ู‰ ู‡ูŠ
293
00:28:34,080 --> 00:28:41,380
Zero ูˆ ุชู„ุงุชุฉ ูˆ ุณุชุฉ ูˆ ุชุณุนุฉุŒ ููŠ ุบูŠุฑู‡ู…ุŸ ู„ุฃุŒ ุทูŠุจ ู‡ุฐู‡
294
00:28:41,380 --> 00:28:45,900
ุชุนุชุจุฑ ุงู„ subgroup generated by ู…ุนูƒูˆุณ ุงู„ุชู„ุงุชุฉ ู…ู†
295
00:28:45,900 --> 00:28:49,780
ุชุณุนุฉุŒ ูŠุจู‚ู‰ ุงู„ subgroup generated by .. ูŠุจู‚ู‰ ู‡ุฏูˆู„
296
00:28:49,780 --> 00:28:55,840
ุชูŠู† ุชูŠู†ุŒ ู„ูƒู† ูŠุนุชุจุฑูˆุง ุงูŠุดุŸ ูˆุงุญุฏุฉ ูู‚ุท ู„ุง ุบูŠุฑุŒ ุทุจ ู„ูˆ
297
00:28:55,840 --> 00:29:01,300
ุจุฏูŠ ุฃุฏูŠุจ ุงู„ subgroup generated by ุฃุฑุจุนุฉุŒ ุฒูŠุฑูˆุŒ ุฃุฑุจุนุฉ
298
00:29:01,300 --> 00:29:06,860
ุชู…ุงู†ูŠุฉุŒ ููŠ ุบูŠุฑู‡ู…ุŒ ุฃุฑุจุนุฉ ููŠ ุฒูŠุฑูˆ ุจุฒูŠุฑูˆุŒ ุฃุฑุจุนุฉ ููŠ ุฃุญุฏ
299
00:29:06,860 --> 00:29:10,480
ุจุฃุฑุจุนุฉุŒ ุฃุฑุจุนุฉ ููŠ ุงุชู†ูŠู† ุชู…ุงู†ูŠุฉุŒ ุฃุฑุจุนุฉ ููŠ ุชู„ุงุชุฉ ุจุฒูŠุฑูˆ
300
00:29:10,480 --> 00:29:16,340
ูŠุจู‚ู‰ ู…ุง ุนู†ุฏูŠุด ุฅู„ุง ุงู„ุชู„ุช ุนู†ุงุตุฑ ู‡ุฏูˆู„ ุจุงู„ุถุจุท ุชู…ุงู…ุงุŒ ุทูŠุจ
301
00:29:16,340 --> 00:29:21,340
ุจุนุฏ ุงู„ุฃุฑุจุนุฉุŒ ุงู„ุฎู…ุณุฉ ุฎู„ุตู†ุง ู…ู†ู‡ุงุŒ ุจุฏูŠ ุงู„ sub group
302
00:29:21,340 --> 00:29:28,180
generated by ุณุชุฉ ุงู„ู„ูŠ ู‡ู…ูŠู† ุฒูŠุฑูˆ ูˆุณุชุฉุŒ ููŠ ุบูŠุฑู‡ู…ุŒ ู…ุด
303
00:29:28,180 --> 00:29:34,460
ุบูŠุฑู‡ู…ุŒ ููŠ ูƒู…ุงู† subgroup ุบูŠุฑ ู‡ุฏูˆู„ ูˆู„ุง ูˆุงุญุฏุฉ ุชู…ุงู…
304
00:29:34,460 --> 00:29:41,740
ูŠุจู‚ู‰ ู‡ูŠ ูˆุงุญุฏุฉุŒ ู‡ูŠ ุชู†ุชูŠู†ุŒ ู‡ูŠ ุชู„ุงุชุฉุŒ ู‡ุฐุง ุฃุฑุจุนุฉุŒ ู‡ุฐุง ุฎู…ุณุฉ
305
00:29:41,740 --> 00:29:48,660
ู‡ุฐุง ุณุชุฉุŒ ุจุณ ุณุชุฉ subgroupุŒ ุชู…ุงู†ูŠุฉ ู…ุง ุญุณุจู†ุงู‡ุงุดุŒ ุทูŠุจ ู‡ุฐู‡
306
00:29:48,660 --> 00:29:53,580
ุชุณุงูˆูŠ subgroup generated by ุชู…ุงู†ูŠุฉุŒ ูุนู„ุง ููŠ ุถุงูŠู‚
307
00:29:53,580 --> 00:29:59,950
ุงู„ุญุงุฌุฉ ู…ุง ุญุณุจู†ุงู‡ุงุดุŒ ุดูƒู„ู‡ ุฅู† ุญุณุจุŒ ุชู…ุงู…ุŒ ุทูŠุจ ู‡ุฐุง ูƒู„ ุงู„
308
00:29:59,950 --> 00:30:03,370
subgroupsุŒ ุงู„ุงู† ู„ูˆ ุฌูŠุช ุฃู†ุช ู‡ุฏูˆู„ ู‡ุฏูˆู„ ู‚ู„ู†ุง ุนู„ูŠู‡ู…
309
00:30:03,370 --> 00:30:10,470
improperุŒ ู‡ุฏู‰ ูˆ ู‡ุฏู‰ ูˆ ู‡ุฏู‰ ูˆ ู‡ุฏู‰ ูˆ ู‡ุฏู‰ุŒ ูƒู„ู‡ู… proper
310
00:30:10,470 --> 00:30:20,530
subgroupsุŒ ูŠุจู‚ู‰ ู‡ู†ุง ุงู„ subgroups ุงู„ู„ูŠ ู‡ู… ุงู„ zero
311
00:30:20,530 --> 00:30:23,290
ูˆุงู„ ุงุชู†ูŠู†
312
00:30:25,560 --> 00:30:32,760
ูˆุงู„ุชู„ุงุชุฉ ูˆ ุงู„ group generated by ุฃุฑุจุนุฉ ูˆุงู„ group
313
00:30:32,760 --> 00:30:40,500
generated by and ุงู„ group generated by ุณุชุฉ are
314
00:30:40,500 --> 00:30:49,650
properุŒ ูƒู„ู‡ู… ุฏูˆู„ proper sub groupsุŒ ูŠุจู‚ู‰ ุจุฑุถู‡ ู„ุงุญุธู†ุง
315
00:30:49,650 --> 00:30:55,930
ุงู† ุงูŠ subgroup ุชูˆู„ุฏ ุจุนู†ุตุฑ ูƒุฐู„ูƒ ุชูˆู„ุฏ ุจู…ุนูƒูˆุณ ู‡ุฐุง
316
00:30:55,930 --> 00:31:01,290
ุงู„ุนู†ุตุฑุŒ ู‡ุฐุง ุงู„ุดูŠุก ุงู„ู„ูŠ ู‡ูˆ ู…ูˆุฌูˆุฏ ุนู†ุฏู†ุง ูˆุดูŠุก ุฃุณุงุณูŠ
317
00:31:01,290 --> 00:31:06,550
ู„ุงุฒู… ู†ุนุฑูู‡ุŒ ูŠุจู‚ู‰ ุนุฑูู†ุง ุงู„ trivial subgroup ูˆุนุฑูู†ุง
318
00:31:06,550 --> 00:31:11,450
ุงู„ proper subgroup ูˆุนุฑูู†ุง ุงู„ improper subgroup
319
00:31:11,450 --> 00:31:22,710
ูƒุฐู„ูƒ ู†ุฌูŠ ู„ group ุชุงู†ูŠุฉ ูƒู…ุงู†ุŒ ู…ุฌุฏุฏุด ู†ู…ุฑุฉ ุชู„ุงุชุฉ Z
320
00:31:22,710 --> 00:31:29,110
ูˆุนู„ูŠู‡ุง
321
00:31:29,110 --> 00:31:38,730
ุนู…ู„ูŠุฉ ุงู„ุฌู…ุนุŒ Z ูˆุนู„ูŠู‡ุง ุนู…ู„ูŠุฉ ุงู„ุฌู…ุนุŒ ูุงูƒุฑูˆู„ูŠุŸ ู‡ู„ ู‡ุฐู‡
322
00:31:38,730 --> 00:31:44,470
Cyclic ูˆู„ุง ู„ุฃุŸ ูˆุฅุฐุง ูƒุงู†ุช Cyclic ู…ู† ู‡ู… ุงู„ generator
323
00:32:02,420 --> 00:32:07,100
cyclic ู…ุด ู‡ุงุชูˆู„ู‰ generator ูˆุงุญุฏ ุจุณ ุชุญุช ุนู…ู„ูŠุฉ
324
00:32:07,100 --> 00:32:14,320
ุงู„ุฌุงู…ุนุฉุŒ ู…ุด ุงู„ุฏุฑุจุŒ not cyclicุŒ not cyclicุŒ ุทูŠุจ ุงุฐุง
325
00:32:14,320 --> 00:32:18,820
ุงุญู†ุง ุนุงู…ู„ู†ุง contradiction ู„ู„ูƒู„ุงู… ุงู„ู„ูŠ ุจุชู‚ูˆู„ู‡ุŒ ุจุชุตูŠุฑ
326
00:32:18,820 --> 00:32:25,100
ุงูŠุดุŸ ุจุชุตูŠุฑ cyclic ูˆู†ุงูุน ุงู†ู‡ุง cyclicุŒ ุงู†ุง ู‡ุงุฏุนู‰ ุงู†ู‡ุง
327
00:32:25,100 --> 00:32:30,420
cyclicุŒ ุงู†ุง ุงุฏุนู‰ ุงู† ุงู„ุณูŠูƒู„ู ูƒุงูƒู†ุŒ ุจุฏู†ุง ู†ุซุจุช ุตุญุฉ ุชู„ูƒ
328
00:32:30,420 --> 00:32:36,780
ู‡ู…ุŒ ูˆ ุจุฏูŠ ุงุฌูŠุจู„ูƒ ุจุฏู„ ุงู„ generator ุงุชู†ูŠู†ุŒ ูˆ ู‡ู… ุงู„
329
00:32:36,780 --> 00:32:44,800
generators ูู‚ุท ู„ุงุŒ ู„ุง ูŠูˆุฌุฏ ุบูŠุฑู‡ู…ุงุŒ ูˆุงุญุฏ ูˆ ุณู„ุจ ูˆุงุญุฏ
330
00:32:44,800 --> 00:32:50,560
ุนู„ู‰ ุทูˆู„ ุงู„ุฎุทุŒ ูŠุจู‚ู‰ ู‡ุฐู‡ in the groupุŒ ู‡ุฐู‡ the
331
00:32:50,560 --> 00:32:52,240
generators
332
00:32:56,770 --> 00:33:04,450
are one and ุณุงู„ุจ oneุŒ ุทูŠุจ ู„ูŠุด one ูˆ ุณุงู„ุจ one ูƒู„
333
00:33:04,450 --> 00:33:07,630
ูˆุงุญุฏ ููŠู‡ู… ู…ุนูƒูˆุณุฉ ู„ุขุฎุฑุŒ ุฃู†ุช ู‚ู„ุช ุงู„ุณุงุนุฉ ููŠ ุงู„ุณู†ุฉ ุงู„ู„ูŠ
334
00:33:07,630 --> 00:33:10,990
ู‚ุจู„ู‡ ุฃูŠ element ู…ุงู„ุงุฌูŠู‡ generator ู…ุงู„ุงุฌูŠู‡ ู…ุนูƒูˆุณุฉ ูˆ
335
00:33:10,990 --> 00:33:14,250
generatorุŒ ูŠุจู‚ู‰ ู‡ู†ุง ุงู„ูˆุงุญุฏ ูˆ ุงู„ุณุงู„ุจ ูˆุงุญุฏ ู‡ูŠู‚ูˆู„
336
00:33:14,250 --> 00:33:18,690
ุงู„ูˆุงุญุฏ ูƒูŠู ุณุงู„ุจ ูˆุงุญุฏ generator ู„ู„ group ูƒู„ู‡ุŒ ุจู†ู‚ูˆู„ู‡
337
00:33:18,690 --> 00:33:25,610
ูƒุงู„ุชุงู„ูŠุŒ ุฃู†ุง ุงู„ุขู† ุจุฏูŠ ุงู„ sub group generated by ุณุงู„ุจ
338
00:33:25,610 --> 00:33:31,400
oneุŒ ุจุฏูŠ ุฃุณูˆู„ูƒ ุงู„ุณู„ุจ oneุŒ ูˆุงู†ุช ุชุจู‚ู‰ at one one ู…ุน ุงู„
339
00:33:31,400 --> 00:33:38,180
one ุงู„ู„ูŠ ุถุงูŠู„ุฉุŒ ูŠุจู‚ู‰ ู‡ุฐู‡ ุนู†ุงุตุฑู‡ุง ูƒุชุงู„ุฉุŒ ุจุฏูŠ ุฃุจุฏุฃ ุจู€-1
340
00:33:38,180 --> 00:33:47,620
ุฃุณ 0ุŒ ูˆ-1 ุฃุณ 1ุŒ ูˆ-1 ุฃุณ 2ุŒ ูˆ-1 ุฃุณ 3ุŒ ูˆุถู„ูƒ ู…ุงุดูŠ ุฅู„ู‰
341
00:33:47,620 --> 00:33:55,440
ู…ุง ุดุงุก ุงู„ู„ู‡ุŒ ูˆุฃุฑุฌุน ุนู„ู‰ ุงู„ุดู…ุงู„ุŒ ูŠุจู‚ู‰ -1 ุฃุณ 1ุŒ ูˆ-1
342
00:33:55,440 --> 00:34:04,830
ุฃุณ 2ุŒ ูˆ-1 ุฃุณ 3ุŒ ูˆุถู„ูƒ ู…ุงุดูŠ ุฅู„ู‰ ู…ุง ุดุงุก ุงู„ู„ู‡ุŒ ุงู„ุงู†
343
00:34:04,830 --> 00:34:09,670
ุงู„ุนู…ู„ูŠุฉ ุนู…ู„ูŠุฉ ุฌู…ุนุŒ ู‚ูˆู„ู†ุง ู„ูƒู… ููŠ ุนู…ู„ูŠุฉ ุงู„ุฌู…ุน ูƒุชุจู†ุง
344
00:34:09,670 --> 00:34:14,030
ููŠ ู†ู‡ุงูŠุฉ ุขุฎุฑ ุญุงุฌุฉ ููŠ ุงู„ุฎุงุตูŠุฉ ุฑู‚ู… ุฃุฑุจุนุฉ ููŠ ู†ู‡ุงูŠุฉ
345
00:34:14,030 --> 00:34:19,110
ุงู„ุดุงุจุชุฑ ุงู„ู…ุงุถูŠุŒ ู‚ูˆู„ู†ุง ุงู„ุฃุณ ุงู„ู„ูŠ ููˆู‚ ุชุถุฑุจุŒ ูˆุชุถุฑุจ ู„ู„
346
00:34:19,110 --> 00:34:25,060
element ู„ุฃู† ู‡ุฐุง ุชุนู†ูŠ ุงู†ูƒ ุจุชุฌู…ุน ู‡ุฐุง ู…ุฑุชูŠู†ุŒ ูˆู…ุง ุฅู„ู‰
347
00:34:25,060 --> 00:34:30,000
ุฐุงูƒ ุชู„ุงุชุฉ ุฅู„ู‰ ุขุฎุฑูŠุฉุŒ ูŠุจู‚ู‰ ู‡ุฐู‡ ู„ูˆ ุจุฏู‡ุง ุงุนูŠุฏ ุตูŠุงุบุชู‡ุง
348
00:34:30,000 --> 00:34:36,540
ุจุชูƒูˆู† ู‡ูŠ ุงู„ elements ุณุงู„ุจ ุชู„ุงุชุฉ ููŠ ุณุงู„ุจ ูˆุงุญุฏุŒ ุงู„ู„ูŠ
349
00:34:36,540 --> 00:34:42,980
ุจุนุฏู‡ ุณุงู„ุจ ุงุชู†ูŠู† ููŠ ุณุงู„ุจ ูˆุงุญุฏุŒ ุงู„ู„ูŠ ุจุนุฏู‡ ุจูŠูƒูˆู† ุณุงู„ุจ
350
00:34:42,980 --> 00:34:48,920
ูˆุงุญุฏ ููŠ ุณุงู„ุจ ูˆุงุญุฏุŒ ุงู„ู„ูŠ ุจุนุฏู‡ Zero ููŠ ุณุงู„ุจ ูˆุงุญุฏุŒ ูˆุงุญุฏ
351
00:34:48,920 --> 00:34:57,340
ููŠ ุณุงู„ุจ ูˆุงุญุฏุŒ ุงุชู†ูŠู† ููŠ ุณุงู„ุจ ูˆุงุญุฏุŒ ุชู„ุงุชุฉ ููŠ ุณุงู„ุจ ูˆุงุญุฏ
352
00:34:57,340 --> 00:35:02,540
ูˆ ู‡ูƒุฐุงุŒ ูŠุจู‚ู‰ ุฃุตุจุญุช ุงู„ group generated ุฃูˆ ุงู„ sub
353
00:35:02,540 --> 00:35:09,470
group generated by ุณุงู„ุจ ูˆุงุญุฏ ู‡ูŠ ู‡ู†ุง ุณุงู„ุจ ุชู„ุงุชุฉ ููŠ
354
00:35:09,470 --> 00:35:16,230
ุณุงู„ุจ ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูŠ ู‚ุฏุงุดุŸ ุชู„ุงุชุฉุŒ ุงุชู†ูŠู†ุŒ ูˆุงุญุฏุŒ ุฒูŠุฑูˆุŒ ุณุงู„ุจ
355
00:35:16,230 --> 00:35:22,050
ูˆุงุญุฏุŒ ุณุงู„ุจ ุงุชู†ูŠู†ุŒ ุณุงู„ุจ ุชู„ุงุชุฉุŒ ูˆุงุถุฏู„ูƒ ู…ุงุดูŠ ุงู„ู‰ ู…ุง ุดุงุก
356
00:35:22,050 --> 00:35:26,570
ุงู„ู„ู‡ุŒ ุจุณ ู…ุด ู…ุฑุชุจุฉ ูŠุนู†ูŠ ุฎู„ู‰ ุงู„ู…ูˆุฌุฉ ููŠ ุงู„ุฃูˆู„ ูˆุงู„ุณู„ู…
357
00:35:26,570 --> 00:35:33,370
ููŠ ุงู„ุขุฎุฑุŒ ู„ูƒู† ูƒู„ ุงู„ุนู†ุงุตุฑ ู…ูˆุฌูˆุฏุฉุŒ ู‡ุฏู ุชุนุทูŠูƒ Z itself
358
00:35:33,370 --> 00:35:41,990
ูŠุจู‚ู‰ ู‡ุฏูˆู„ improper ูˆู„ุง proper subgroupุŒ ูŠุจู‚ู‰
359
00:35:41,990 --> 00:35:48,970
ู‡ู†ุง ุณุงู„ู€ group generated by one ุจุฏู‡ุง ุชุณุงูˆูŠ ุงู„
360
00:35:48,970 --> 00:35:55,710
subgroup generated by ุณุงู„ุจ oneุŒ ู‡ุฏูˆู„ are improper
361
00:35:55,710 --> 00:35:59,090
subgroups
362
00:35:59,090 --> 00:36:08,350
ุทุจ ู‡ู„ ู‡ุฐู‡ ุชุญุชูˆูŠ ุนู„ู‰ proper subgroupุŒ proper
363
00:36:10,920 --> 00:36:15,540
ู…ู…ุชุงุฒ ุฌุฏุงุŒ ุงุชู†ูŠู† ุจูŠุฌูŠุจู„ูŠุด ุงู„ุง ุงู„ุฒูˆุฌูŠุงุชุŒ ุงุชู†ูŠู†ุŒ ุงุฑุจุนุฉ
364
00:36:15,540 --> 00:36:19,640
ุณุชุฉุŒ ุชู…ุงู†ูŠุฉุŒ ZeroุŒ ุณุงู„ุจ ุงุชู†ูŠู†ุŒ ุณุงู„ุจ ุงุฑุจุนุฉุŒ ุณุงู„ุจ ุณุชุฉ
365
00:36:19,640 --> 00:36:22,860
ุณุงู„ุจ ุชู…ุงู†ูŠุฉุŒ ImproperุŒ ูˆุงู„ุชู„ุงุชุฉ ูˆุงู„ุงุฑุจุนุฉ ูˆุงู„ุฎุงุทุฑ
366
00:36:22,860 --> 00:36:27,280
ูƒู„ู‡ู… improper subgroupุŒ ูŠุจู‚ู‰ ู‡ุฏูˆู„ the only
367
00:36:27,280 --> 00:36:32,850
generatorsุŒ ูˆ ู‡ุฏูˆู„ ุงู„ู€ improper subgroupsุŒ ูˆ ู‡ุฏูˆู„
368
00:36:32,850 --> 00:36:37,350
ุงู„ู„ูŠ ุจูŠุฌูŠุจูˆู„ูŠ ุนู†ุงุตุฑ ุงู„ group ูƒู„ุŒ ู…ุง ุฎู„ ุฐู„ูƒ ุจูŠุฌูŠุจูˆู„ูŠ
369
00:36:37,350 --> 00:36:44,610
ุฌุฒุก ู…ู† ุงู„ groups ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ู‡ุฐุง z ู„ุง ูŠูˆุฌุฏ ููŠู‡ุง
370
00:36:44,610 --> 00:36:48,490
generators ุฅู„ุง ุงุชู†ูŠู†ุŒ ูˆุงุญุฏ ูˆ ุณุงู„ุจ ูˆุงุญุฏุŒ ุบูŠุฑ ู‡ูŠูƒ
371
00:36:48,490 --> 00:36:52,350
ูŠุจุนุชู„ูƒ ุงู„ู„ู‡ุŒ ุชู„ุงุชุฉ ุจูŠุตูŠุฑ ุฒูŠุฑูˆ ุชู„ุงุชุฉ ุณุชุฉ ุชุณุนุฉุŒ ู†ู‚ุต
372
00:36:52,350 --> 00:36:56,190
ุชู„ุงุชุฉุŒ ู†ู‚ุต ุณุชุฉุŒ ู†ู‚ุต ุชุณุนุฉุŒ subgroup generated by ุงุฑุจุนุฉ
373
00:36:56,190 --> 00:36:59,450
ุฒูŠุฑูˆ ุงุฑุจุนุฉ ุชู…ุงู†ูŠุฉ ุงุชู†ุงู†ูŠุฉุŒ ุฒูŠุฑูˆ ุณุงู„ุจ ุงุฑุจุนุฉ ุณุงู„ุจ
374
00:36:59,450 --> 00:37:03,930
ุชู…ุงู†ูŠุฉ ุณุงู„ุจ ุงุชู†ุงู†ูŠุฉุŒ ูˆู†ุถู„ูƒ ู…ุงู„ูŠ ูˆู‡ูƒุฐุงุŒ ุชู…ุงู…ุŒ ูŠุจู‚ู‰ ู„ุง
375
00:37:03,930 --> 00:37:09,250
ูŠูˆุฌุฏ generators ู„ุง ุฒุฏ ุชุญุช ุนู…ู„ ุงู„ุฌุงู…ุนุฉ ุงู„ุง two
376
00:37:09,250 --> 00:37:14,380
generators ูˆ ุงู„ุจูŠุช ูƒู„ู‡ู… ู…ุง ููŠุด ูŠู…ูƒู† ู„ุฌู†ูˆุจ ุญุงุฌุฉ
377
00:37:14,380 --> 00:37:19,340
ู…ุง ุชุทู„ุนุด Cyclic ู‡ู‡ ุฃุนุทูŠูƒ ู„ุฌู†ูˆุจ ู…ุง ุชุทู„ุนุด Cyclic ุฎุฏ ู„ูŠ
378
00:37:19,340 --> 00:37:25,810
ู‡ู†ุง ู…ุซู„ู‹ุง ุงุนุชุจุฑ ู‡ุฐุง ูƒู…ุงู† ู…ุซุงู„ ุงู„ู€ U ุฃุฑุจุนุฉ ุชู…ุงู†ูŠุฉ
379
00:37:25,810 --> 00:37:33,270
ุนู†ุงุตุฑู‡ุง ูˆุงุญุฏ ูˆ ุซู„ุงุซุฉ ูˆ ุฎู…ุณุฉ ูˆ ุณุจุนุฉ ุดูˆู ู‡ุฐู‡ Cyclic
380
00:37:33,270 --> 00:37:42,170
ูˆู„ุง ู„ุง ุงู„ุขู† ุซู„ุงุซุฉ ุชุฑุจูŠุน ูŠุนู†ูŠ ูˆุงุญุฏ ุทูŠุจ ุฎู…ุณุฉ ุชุฑุจูŠุน
381
00:37:42,170 --> 00:37:48,970
ูŠุนู†ูŠ ูˆุงุญุฏ ุซู„ุงุซุฉ ุซู…ุงู†ูŠุฉ ุณุจุนุฉ ุชุฑุจูŠุน ุชุณุนุฉ ูˆุนุดุฑูŠู† ูŠุนู†ูŠ
382
00:37:48,970 --> 00:37:54,110
ูˆุงุญุฏ ูŠุจู‚ู‰ ูˆู„ุง ูˆุงุญุฏ ููŠู‡ู… generator ูŠุจู‚ู‰ ู…ุนู†ุงู‡ ุฏูŠ
383
00:37:54,110 --> 00:38:06,070
ู…ู‡ู†ูŠุงุด Cyclic ูŠุจู‚ู‰ ู‡ุฐู‡ as not cyclic because ุฃู† ุงู„
384
00:38:06,070 --> 00:38:11,870
X ุชุฑุจูŠุน ุชุณุงูˆูŠ ูˆุงุญุฏ for all X ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ U
385
00:38:11,870 --> 00:38:18,200
ุชู…ุงู…ู‹ุง ู…ูŠู† ู…ุง ุชูƒูˆู† ุชูƒูˆู† ุฑุจุน ุจูŠุทู„ุน ุงู„ identity ุชู…ุงู…ุŸ
386
00:38:18,200 --> 00:38:22,500
ูŠุนู†ูŠ ุณุจุนุฉ ุชุฑุจูŠุน ุชุณุงูˆูŠ ุซู„ุงุซุฉ ุชุฑุจูŠุน ุชุณุงูˆูŠ ุฎู…ุณุฉ ุชุฑุจูŠุน
387
00:38:22,500 --> 00:38:26,840
ุชุณุงูˆูŠ ูˆุงุญุฏ ุชุฑุจูŠุน ูƒู„ู‡ ุจุงู„ identity ุฅุฐุง ูˆู„ุง ูˆุงุญุฏ ููŠู‡ู…
388
00:38:26,840 --> 00:38:36,380
generator ูƒูˆูŠุณ ู†ูˆุงุตู„ ุงู„ุญูƒูŠ ููŠ ู‡ุฐุง ุงู„ู…ูˆุถูˆุน ู†ู…ุฑุฉ
389
00:38:36,380 --> 00:38:45,020
ู‡ุฐู‡ ุงุนุชุจุฑุชู‡ุง ุฃุฑุจุนุฉ ูŠุจู‚ู‰ ู†ู…ุฑุฉ ุฎู…ุณุฉ ู†ู…ุฑุฉ ุฎู…ุณุฉ in ุฏูŠ
390
00:38:45,020 --> 00:38:55,090
ุฃู† ููŠ ุฏูŠ ุฃู† ุงู„ู„ูŠ ู‡ูŠ ุฏูŠ ุฏุงูŠู‡ุฏุฑุงู„ ุฏุงูŠู‡ุฏุฑุงู„
391
00:38:55,090 --> 00:39:05,550
ุฌุฑูˆุจ of order ุงุซู†ูŠู† ุฃู† ุฌุฏุงุด ุงู„ุขู† ุจุชุถุฑุจ ููŠ ุงุซู†ูŠู†
392
00:39:05,550 --> 00:39:14,790
let ุงู„ู€ R ุจูŠู‡ rotation ุจูŠู‡ rotation
393
00:39:17,820 --> 00:39:26,140
ุฃุนุธู‡ ุซู„ุงุซู…ุฆุฉ ูˆ ุณุชูŠู† ุนู„ู‰ in degree ุซู„ุงุซู…ุฆุฉ ูˆ ุณุชูŠู†
394
00:39:26,140 --> 00:39:38,640
ุนู„ู‰ in degree then ุฌุงุจ
395
00:39:38,640 --> 00:39:45,200
ุงู„ู…ุจุฏุฃ ุงู„ู„ูŠ ุฃู†ุง ุจุฏูŠู‡ ุงู„ุขู† ุฃู†ุง ุฌุงูŠ ุงู„ู€ DN ู‡ูŠ dihydral
396
00:39:45,200 --> 00:39:50,180
group ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุฌู…ูˆุนุฉ ุซู†ุงุฆูŠุฉ ุงู„ุณุทูˆุญ ู…ู† ุงู„ order 2
397
00:39:50,180 --> 00:40:02,650
ุงุญู†ุง ุฎุฏู†ุง ู…ุซุงู„ ุนู„ูŠู‡ุง ู‚ุจู„ ุฐู„ูƒ ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู†ุŸ D4 D4 D4
398
00:40:02,650 --> 00:40:13,490
D4 D4 D4 D4 D4 D4 D4 D4 D4 D4 D4 D4 D4 D4 D4 ุฃุฑุจุนุฉ
399
00:40:13,490 --> 00:40:18,670
ุฃุถู„ุงุน ู‡ูˆ ู…ุถู„ุน ู…ู†ุชุธู… ู…ู‚ุณู… ู…ู† ุฃุฑุจุนุฉ ุฃุถู„ุงุน ุฅุฐุง ุจู‚ุณู…
400
00:40:18,670 --> 00:40:23,830
ุงู„ู€ 360 ุนู„ู‰ ุฃุฑุจุนุฉ ุจูŠุตูŠุฑ ู‚ุฏุงุด ูŠุจู‚ู‰ ุงู„ element of
401
00:40:23,830 --> 00:40:30,630
rotation ุจูŠูƒูˆู† R ุชุณุนูŠู† ุทูŠุจ ู„ูˆ ู‚ู„ุช ู…ุฎู…ุณ ู…ู†ุชุธู… ุจุฏูŠ
402
00:40:30,630 --> 00:40:35,590
ุฃู‚ุณู… ุนู„ู‰ ุฎู…ุณุฉ ูŠุจู‚ู‰ ุจุฏูŠ ุฃู‚ุณู… ุซู„ุงุซู…ุฆุฉ ูˆ ุณุชูŠู† ุนู„ู‰
403
00:40:35,590 --> 00:40:41,330
ุฎู…ุณุฉ ููŠู‡ุง ุงู„ุณุช ููŠ ุฎู…ุณุฉ ุจุชู„ุงุชูŠู† ููŠู‡ุง ููŠู‡ุง ุงู„ุณุช ููŠู‡ุง
404
00:40:41,330 --> 00:40:48,270
ุงู„ุณุช ุนู„ู‰ ุฎู…ุณุฉ ุนู„ู‰ ุฎู…ุณุฉ ููŠู‡ุง ุงู„ุณุจุนุฉ ูŠุจู‚ู‰ ููŠู‡ุง
405
00:40:48,270 --> 00:40:53,250
ุงู„ุณุจุนุฉ ููŠ ุฎู…ุณุฉ ุจุชู„ุงุชูŠ ูŠุจู‚ู‰ ุงุซู†ูŠู† ูˆ ุณุจุนูŠู† ุฏุฑุฌุฉ ุฃู†ุง
406
00:40:53,250 --> 00:40:58,270
ุจุฏูŠ ุฃุนู…ู„ ุฏูˆุฑุงู† ููŠ ุงู„ู…ุฎู…ุณ ุจุฒุงูˆูŠุฉ 72 ุฏุฑุฌุฉ ูˆ ุจุตูŠุฑ
407
00:40:58,270 --> 00:41:09,350
ุนู†ุฏูŠ R0 R72 R144 ูˆ ู‡ูƒุฐุง ู„ุบุงูŠุฉ ู…ุง ุฃูˆุตู„ ุฅู„ู‰ R4 R5
408
00:41:09,350 --> 00:41:14,730
ุจุชุนูˆุฏ ู…ู† ุฌุฏูŠุฏ ุงู„ู„ูŠ ู‡ูŠ R0 ุทุจ ู„ูˆ ู‚ู„ุช ู…ุซู„ุซ ู…ุชุณุงูˆูŠ
409
00:41:14,730 --> 00:41:22,910
ุงู„ุฃุถู„ุงุน ูŠุจู‚ู‰ ุจุตูŠุฑ ู‡ุฐู‡ DN ูŠุนู†ูŠ ููŠู‡ุง ุงุซู†ูŠู† ููŠ ุซู„ุงุซุฉ
410
00:41:22,910 --> 00:41:29,370
ุณุชุฉ ุนู†ุงุตุฑ ูู‚ุท ู„ุง ุบูŠุฑ ู„ูŠุด ุจู‚ุณู… ุซู„ุงุซู…ุฆุฉ ูˆ ุณุชูŠู† ุนู„ู‰
411
00:41:29,370 --> 00:41:34,010
ุซู„ุงุซุฉ ุจุตูŠุฑ ู…ุฆุฉ ูˆ ุนุดุฑูŠู† ูŠุจู‚ู‰ ุฏูˆุฑุงู† ุจูŠูƒูˆู† ู…ุฆุฉ ูˆ ุนุดุฑูŠู†
412
00:41:34,010 --> 00:41:39,270
ุฏุฑุฌุฉ ูˆ ู„ูŠุณ ุชุณุนูŠู† ูˆ ู‡ูƒุฐุง ูˆ ูƒู„ู‡ counter clockwise
413
00:41:39,270 --> 00:41:46,780
ุชู…ุงู… ูŠุจู‚ู‰ ุจุตูŠุฑ ุนู†ุฏูŠ R ู†ูˆุฏ ูˆ R ู…ุฆุฉ ูˆ ุนุดุฑูŠู† ูˆ R ู…ุฆุชูŠู†
414
00:41:46,780 --> 00:41:51,800
ูˆ ุฃุฑุจุนูŠู† ูˆ ุจุนุฏูŠู† ุจุฑูˆุญ ุงูŠุด ู„ู„ reflections ูˆ ู‡ูƒุฐุง
415
00:41:51,800 --> 00:41:55,800
ุจูŠุถู„ูˆุง ุซู„ุงุซุฉ reflections ู…ุงุดูŠ ุงู„ุญุงู„ุฉ ูŠุจู‚ู‰ ู‡ุฐุง
416
00:41:55,800 --> 00:42:04,390
ุงู„ู…ู‚ุตูˆุฏ ุจุงู„ู€ DN ุงู„ุขู† ุฃู†ุง ู„ูˆ ุฌูŠุช ู‚ู„ุช ู„ูƒ ุงู„ู€ RN ูŠุนู†ูŠ
417
00:42:04,390 --> 00:42:11,950
ุฃู†ุง ุงู„ู„ูŠ ุฃูŠุถู‹ุง ู…ุซู„ุซ ู…ุฑุจุน ู…ุฎู…ุณ ู…ู†ุชุธู… ู…ุณุฏุณ ู…ู†ุชุธู… ู„ูˆ
418
00:42:11,950 --> 00:42:18,580
ุนู…ู„ุช ุงูŠู‡ ู…ู† ุงู„ู…ุฑุงุช ุฏูˆุฑุงู†ุŸ ู…ูŠู† ุจูŠุนุทูŠู†ูŠ ู‡ู†ุงุŸ ูŠุนู†ูŠ ุฒูŠ
419
00:42:18,580 --> 00:42:24,520
R ุชุณุนูŠู† R ุชุณุนูŠู† ุฃุณ ุฃุฑุจุนุฉ ุจู‚ุฏุงุด ุงู„ identity ู„ู‡ ุงู„ู€ R
420
00:42:24,520 --> 00:42:30,720
ู†ูˆุฏ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู€ R ุชุณุนูŠู† ุงู„ู€ R N ูŠุณุงูˆูŠ ุงู„ identity
421
00:42:30,720 --> 00:42:37,080
element ุงู„ู„ูŠ ุฑู…ุฒู†ุง ู„ู‡ ุจุงู„ุฑู…ุฒ R ู†ูˆุฏ ุทุจ ู„ูˆ ุถุฑุจุช
422
00:42:37,080 --> 00:42:45,980
ุงู„ุทุฑููŠู† ููŠ R ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† R N ุฒุงุฆุฏ ูˆุงุญุฏ ูŠุณุงูˆูŠ
423
00:42:45,980 --> 00:42:58,100
R ุฑู† ุฒุงุฆุฏ ุงุซู†ูŠู† ุฑ ุชุฑุจูŠุน ุฑู† ุฒุงุฆุฏ ุซู„ุงุซุฉ ุฑู† ุฒุงุฆุฏ ุฃุฑุจุนุฉ
424
00:42:58,100 --> 00:43:02,580
ุฑุชุจุฉ ุฑุชุจุฉ
425
00:43:02,580 --> 00:43:07,760
ุฑุชุจุฉ
426
00:43:07,760 --> 00:43:16,220
ุฑุชุจุฉ ุฑุชุจุฉ ุฑุชุจุฉ ุฑุชุจุฉ ุฑุชุจุฉ ุฑุชุจุฉ
427
00:43:20,650 --> 00:43:28,910
ุฑู† ู†ุงู‚ุต ูˆุงุญุฏ ูŠุณุงูˆูŠ ุงู„ู€ R inverse ุฑู†
428
00:43:28,910 --> 00:43:32,490
ู†ุงู‚ุต
429
00:43:32,490 --> 00:43:38,580
ูˆุงุญุฏ ูŠุณุงูˆูŠ ุงู„ู€ R inverse ุฅุฐุง ุจู†ุงุก ุนู„ูŠู‡ ุงู„ุฏูˆุฑุงู† ู„ุบุงูŠุฉ ุฃู†
430
00:43:38,580 --> 00:43:43,720
ู…ุง ุฒุงุฏ ุนู„ู‰ ุฐู„ูƒ ูŠุนุชุจุฑ ุนู†ุตุฑ ู…ู† ู…ูŠู† ู…ู† ุงู„ุนู†ุตุฑ ุงู„ู„ูŠ ู‚ุจู„
431
00:43:43,720 --> 00:43:48,060
ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุงู„ู„ูŠ ู„ูˆ ุฌูŠุช ู‚ู„ุช ู„ูƒ ุงู„ู€ subgroup
432
00:43:48,060 --> 00:43:53,900
generated by R R ู‡ุฐู‡ any rotation ู‡ุง ูŠุง ุดุจุงุจ ูŠุนู†ูŠ
433
00:43:53,900 --> 00:44:00,700
ู‚ุฏ ุชูƒูˆู† R 120 ูˆู‚ุฏ ุชูƒูˆู† R 90 ูˆู‚ุฏ ุชูƒูˆู† R 72 ูˆู‚ุฏ ุชูƒูˆู†
434
00:44:00,700 --> 00:44:05,440
R 60 ูˆู‚ุฏ ูˆู‚ุฏ ุฅู„ู‰ ุขุฎุฑูŠู† ูŠุจู‚ู‰ ู…ูŠู† ู…ูƒุงู† ุงู„ rotations
435
00:44:05,440 --> 00:44:09,480
ู„ูŠุดุŸ ู„ุฃู† ุงุญู†ุง ู„ู…ุง ุฃุฎุฐู†ุง ุฏูŠ for goal ููŠู‡ ุฃุฑุจุน
436
00:44:09,480 --> 00:44:14,380
rotations ูˆ ุฃุฑุจุน reflectionsุŒ ู…ู† ุฐุงูƒุฑูŠู†ุŸ ุณูƒุงุช
437
00:44:14,380 --> 00:44:23,290
ุงู„ุดุนุจุงุฑุจุน rotation ูˆุงุฑุจุน reflection ูŠุจู‚ู‰
438
00:44:23,290 --> 00:44:33,630
ุฃุฑุจุน rotation ูŠุจู‚ู‰ ุฃุฑุจุน rotation ูˆุงุฑุจุน reflection ูŠุจู‚ู‰
439
00:44:33,630 --> 00:44:38,870
ุฃุฑุจุน rotation ูˆูƒุชุจุช ู…ุนูƒู… ููŠ ุงู„ุฏูุชุฑ ุฃู† ู„ูˆ ุถุฑุจุช ุงู„
440
00:44:38,870 --> 00:44:43,290
reflection ููŠ ุงู„ rotation ุฃูˆ ุงู„ rotation ููŠ ุงู„
441
00:44:43,290 --> 00:44:47,970
reflection ุนู„ู‰ ูƒู„ ุงู„ุฃู…ุฑูŠู† ุจุฏู‡ ูŠุทู„ุน ู…ูŠู† reflection
442
00:44:47,970 --> 00:44:54,290
ุชู…ุงู… ูŠุจู‚ู‰ ุงุฑู‰ ุงู„ู„ูŠ ุนู†ุฏู‡ุง ุฏูŠ rotation ุจุชุณุนูŠู† ุจุชู†ูŠู†
443
00:44:54,290 --> 00:44:58,210
ูˆุณุจุนูŠู† ุจู…ุฆุฉ ูˆุนุดุฑูŠู† ุฃู†ุช ุญุฑ ู…ูŠู† ู…ุง ุชูƒูˆู† ุงู„ rotation
444
00:44:58,210 --> 00:45:03,090
ุฏุงูƒ ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู† ุงู„ rotation commutes ู…ุน
445
00:45:03,090 --> 00:45:09,130
ู†ูุณู‡ุง ู…ุน ุฃูŠ rotation ุฃุฎุฑู‰ ู„ูƒู† ู…ุน ุงู„ reflection ู…ุด
446
00:45:09,130 --> 00:45:15,750
ุตุญูŠุญ ูŠุนู†ูŠ ู„ู…ุง ูƒู†ุง ู†ู‚ูˆู„ ู…ุซู„ู‹ุง R ุชุณุนูŠู† ููŠ H ู‡ู„ ู‡ูŠ H
447
00:45:15,750 --> 00:45:16,750
ููŠ R ุชุณุนูŠู†ุŸ
448
00:45:21,120 --> 00:45:28,800
ุงู„ุนู…ู„ูŠุฉ ู„ูŠุณุช ุฅุจุฏุงู„ูŠุฉ ู„ู…ุง ู†ู‚ู„ rotation ู…ุน ู†ูุณู‡ ุฅุฐุง
449
00:45:28,800 --> 00:45:33,940
ู‚ู„ุช ุฑ ุชุณุนูŠู† ููŠ ุฑ ู…ุฆุฉ ูˆ ุซู…ุงู†ูŠู† ุฃู„ูŠุณุช ุฑ ู…ุฆุฉ ูˆ ุซู…ุงู†ูŠู†
450
00:45:33,940 --> 00:45:35,160
ููŠ ุฑ ุชุณุนูŠู†ุŸ
451
00:45:42,590 --> 00:45:47,930
ูŠุนู†ูŠ ูŠุนู†ูŠ ุงู„ุฅุจุฏุงู„ ู…ุน ุงู„ rotation ู…ุฆุฉ ุจุงู„ู…ุฆุฉ ู…ุง ุนู†ุงู‡
452
00:45:47,930 --> 00:45:53,210
ู…ุดูƒู„ุฉ ุฅุฐุง ู„ู…ุง ุฃู‚ูˆู„ ุงู„ู€ subgroup generated by R ู‡ุฐู‡
453
00:45:53,210 --> 00:45:59,010
ู‡ุชุนุทูŠู†ูŠ ู…ูŠู†ุŸ ู‡ุชุนุทูŠู†ูŠ ุงู„ identity element ุงู„ู„ูŠ
454
00:45:59,010 --> 00:46:05,240
ู‡ุณู…ูŠู‡ ู…ูŠู†ุŸ ุงู„ู„ูŠ ู‡ุณู…ูŠู‡ Arnold ูˆุจุนุฏูŠู† ู‡ุชุนุทูŠู†ูŠ ุฑ ุงุชุณู„
455
00:46:05,240 --> 00:46:10,900
ูˆุจุนุฏูŠู† ู‡ุชุนุทูŠู†ูŠ ุฑ ุชุฑุจูŠุน ูˆู‡ุชุนุทูŠู†ูŠ ุฑ ุชูƒุนูŠุจ ูˆู‡ุถู„
456
00:46:10,900 --> 00:46:19,120
ู…ุงุดูŠ ู„ุบุงูŠุฉ ุฑ N minus ุงู„ู€ one ู„ุฃู† ุฑ N ุจุชุนุทูŠู†ูŠ ู…ูŠู† ุงู„ู€
457
00:46:19,120 --> 00:46:24,200
identity ุงู„ู„ูŠ ู‡ูˆ Arnold ุจู†ุฑุฌุน ู„ู‡ุฐุง ูŠุจู‚ู‰ ู…ู‡ู…ุง ูƒุงู†ุช
458
00:46:24,200 --> 00:46:29,400
ุงู„ู‚ูŠู…ุฉ N ุงู„ integer ุงู„ู„ูŠ ุนู†ุฏูƒ ุชุจุฏุฃ ุชุจุฏุฃ ุชุฏูˆุฑ ุงูŠู‡ุŸ ู…ู†
459
00:46:29,400 --> 00:46:34,600
ุฌุฏูŠุฏ ูŠุจู‚ู‰ ุงู„ rotation is a cyclic subgroup ุฃูŠ
460
00:46:34,600 --> 00:46:39,660
rotation ูˆ ุฎู„ูŠู†ุง ู…ุนุงู‡ R ุฃุฑุจุนุฉ ุงู„ู„ูŠ ุฃุฎุฐู†ุงู‡ุง ู…ุน D
461
00:46:39,660 --> 00:46:44,860
ุฃุฑุจุนุฉ ุบุฒู†ุฉ ูŠุจู‚ู‰ ุงู„ู€ R node cyclic group generated
462
00:46:44,860 --> 00:46:49,780
by R node ู…ุง ููŠุด ููŠู‡ุง ุฅู„ุง element ูˆุงุญุฏ ุงู„ู€ R ุชุณุนูŠู†
463
00:46:49,780 --> 00:46:56,350
cyclic subgroup ููŠู‡ุง ูƒุงู… ุนู†ุตุฑ R ุชุณุนูŠู† R ุชุณุนูŠู† ุชุจุน
464
00:46:56,350 --> 00:47:01,170
ุงู„ู€ D4 ู†ุชูƒู„ู… ุนู† ุงู„ู€ D4 ูŠุจู‚ู‰ ููŠู‡ ุงู„ู€ R ุชุณุนูŠู† Cyclic
465
00:47:01,170 --> 00:47:06,210
subgroup generated by ุชุณุนูŠู† ููŠู‡ุง ูƒุงู… elementุŸ R
466
00:47:06,210 --> 00:47:11,590
ุชุณุนูŠู† ุฃุฑุจุนุฉ ุนู†ุงุตุฑ ุฃุฑุจุนุฉ ุนู†ุงุตุฑ ู„ุฃู† ุงู„ order ู„ู€ R
467
00:47:11,590 --> 00:47:17,490
ุชุณุนูŠู† ู‡ูˆ ุฃุฑุจุนุฉ ูŠุนู†ูŠ R ุฃุณ R ุชุณุนูŠู† ุฃุณ ุฃุฑุจุนุฉ ู‡ูˆ ุจุงู„
468
00:47:17,490 --> 00:47:21,090
identity element ูŠู‚ูˆู„ ู…ุง ุนู†ุฏูŠุด ุฅู„ุง ู…ูŠู†ุŸ ุฃุฑุจุนุฉ ุทุจ R
469
00:47:21,090 --> 00:47:22,190
ู…ูŠู† ูˆ ุซู…ุงู†ูŠู†ุŸ
470
00:47:24,690 --> 00:47:29,670
ู…ุง ููŠุด ุฅู„ุง ุงู„ identity ูˆ ุงู„ู€ R 180 itself ุทุจ ุงู„ู€ R
471
00:47:29,670 --> 00:47:35,010
272 ุงู„ู€ cyclic ู‡ุฐูŠ ุฃูƒุซุฑ .. ุงู„ู„ูŠ ู‡ูŠ ู…ูŠู†ุŸ ุงุฑุชุณุงูŠู„
472
00:47:35,010 --> 00:47:40,110
ู„ุฃู†ู‡ ุงู„ุชู†ุชูŠู† ู…ุนูƒูˆุณุงุช ู„ุจุนุถ ูˆ ู‡ูƒุฐุง ูˆ ู†ู‚ูŠุณ ุนู„ู‰ ุฐู„ูƒ ุฏูŠ
473
00:47:40,110 --> 00:47:44,010
ุฃู† ู…ู‡ู…ุง ูƒุงู†ุช ุฏูŠ ุซู„ุงุซุฉุŒ ุฏูŠ ุฎู…ุณุฉุŒ ุฏูŠ ุณุชุฉุŒ ุฏูŠ ุณุจุนุฉุŒ
474
00:47:44,010 --> 00:47:48,120
ุฌุฏ ู…ุง ูŠูƒูˆู† ูƒู„ู‡ ุจู†ูุณ ุงู„ููƒุฑุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุจู‚ู‰ ู‡ุฐู‡
475
00:47:48,120 --> 00:47:54,120
Cyclic group generated by ู‚ุตุฏุชู‡ ู…ู† ุฐู„ูƒ ุฃู†ู‡ are any
476
00:47:54,120 --> 00:48:00,860
rotation ุณูˆุงุก ูƒุงู†ุช R90 ูˆู„ุง R72 ูˆู„ุง R120 ูˆู„ุง R60
477
00:48:00,860 --> 00:48:06,380
ูŠุจู‚ู‰ ู‡ุฐู‡ ู…ูŠู† ู…ุง ูŠูƒูˆู† ุงู„ู…ุซู„ ุนู†ุฏูƒ DN ุฎู„ุงุตู†ุงุŸ ูŠุจู‚ู‰
478
00:48:06,380 --> 00:48:10,220
ู‡ุฐุง ุงู„ elements ุงู„ู„ูŠ ุนู†ุฏู†ุง ุทูŠุจ ุจุฏู†ุง ู†ูŠุฌูŠ ุงู„ุขู†
479
00:48:10,220 --> 00:48:16,520
ู„ุชุนุฑูŠู ุฌุฏูŠุฏ ูŠุง ุดุจุงุจ ุจุฏู†ุง ู†ุฏูˆุฑ ุนู„ู‰ ู…ุฑูƒุฒ ู„ุฌุฑูˆุจ ุงู„
480
00:48:16,520 --> 00:48:23,020
center ุงุญู†ุง
481
00:48:23,020 --> 00:48:28,900
ู…ุง ู‚ู„ู†ุงุด ุฃู†ู‡ ุฏูŠ in cyclic ู‚ู„ู†ุง ุจุนุถ ุงู„ subgroups
482
00:48:28,900 --> 00:48:34,700
cyclic ูˆ ุงู„ุจุนุถ ุงู„ุขุฎุฑ ู…ุงู‡ูŠู‘ุงุด cyclic ูŠุนู†ูŠ ู…ุซู„ู‹ุง
483
00:48:34,700 --> 00:48:40,930
ุงุฑุชุณูŠู† cyclic group ุทุจ ู‡ู„ ุงู„ู€ R 180 .. ุงู„ู€ cyclic
484
00:48:40,930 --> 00:48:43,630
group ุตุญูŠุญ ูˆ ู…ุง ููŠุด ููŠู‡ุง ุฅู„ุง ุฃุฑุจุนุฉ ุฃู† ุงู„ู€ cyclic sub
485
00:48:43,630 --> 00:48:47,290
group ุทุจ ูˆ ุงู„ู€ R 180ุŸ ุงู„ู€ cyclic sub group ูˆ ู…ุง ููŠุด
486
00:48:47,290 --> 00:48:52,490
ููŠู‡ุง ุฅู„ุง ุนู†ุตุฑูŠู† ู„ูƒู† ู‡ู„ ููŠู‡ู… ุฃูŠ ูˆุงุญุฏ ุจุฏูŠ ุฃุฌูŠุจ ู„ู„
487
00:48:52,490 --> 00:48:57,710
group ุงู„ุฃุตู„ูŠุฉ ุงู„ู„ูŠ ู‡ูŠ ุฏูŠ ูˆู„ุง ูˆุงุญุฏ ูŠุนู†ูŠ ุฏูŠ ุงู† ู„ูŠุณุช
488
00:48:57,710 --> 00:49:02,930
cyclic group ูˆ ู„ูˆ ูƒุงู† ุงู„ู€ cyclic ู„ุตุงุฑุช ู‚ุงุจู„ ูŠุนู†ูŠ
489
00:49:02,930 --> 00:49:08,010
ู„ุฃู† ุงู„ุตุจุญ ุฃุซุจุชู†ุง ุฃู† ุฃู†ุง ุงู„ู€ cyclic group is ุฃุจูŠู„ูŠุงู† ูˆ
490
00:49:08,010 --> 00:49:11,270
ุงุญู†ุง ูƒู„ ุญูŠุงุชู†ุง ู…ู† ูŠูˆู… ุฃุฎุฐู†ุง D4 ุจู†ู‚ูˆู„ ู…ุงู‡ูŠู‘ุงุด
491
00:49:11,270 --> 00:49:19,250
ุฃุจูŠู„ูŠุงู†ุŒ ุชู…ุงู…ุŸ ูŠุนู†ูŠ ุงู„ู€ D4 ุฃูˆ ุงู„ู€ D in .. in has no
492
00:49:19,250 --> 00:49:23,790
generatorุŒ ู„ูŠุดุŸ ู„ุฃู†ู‡ ู…ุงู‡ูŠู‘ุงุด Cyclic ูˆู„ุง ุฅู„ุง ู„ูˆ ูƒุงู†
493
00:49:23,790 --> 00:49:28,860
ููŠู‡ุง generator ูˆุงุญุฏ ูƒุงู† ุฌุงุจ ู„ูŠ ู„ุฌุฑูˆุจู†ุง ู„ูƒู† ู…ู…ูƒู† ูŠูƒูˆู†
494
00:49:28,860 --> 00:49:33,560
ุงู„ subgroups ุจุนุถู‡ู… cyclic ุงู‡ ุตุญูŠุญ ุจุตูŠุฑ ุจุนุถู‡ู…
495
00:49:33,560 --> 00:49:39,120
cyclic ุฑุบู… ุฃู† ุงู„ุฃุตู„ูŠุฉ ู…ุงู‡ูŠู‘ุงุด cyclic ุชู…ุงู… ู„ูƒู† ุฃู†
496
00:49:39,120 --> 00:49:43,440
ุดุงุก ุงู„ู„ู‡ ุฌุงูŠ ุขูƒูˆ ู†ุธุฑูŠุฉ ุงู„ุดุจุทุฑูŠุช ุฌุงูŠ ู„ูˆ ูƒุงู†ุช
497
00:49:43,440 --> 00:49:48,800
ุงู„ุฃุตู„ูŠุฉ cyclic ูŠุจู‚ู‰ ุฃูŠ subgroup ู…ู†ู‡ุง ุจุชุจู‚ู‰ cyclic
498
00:49:50,860 --> 00:49:54,380
ุงู„ุดุจุชุฑ ุงู„ุฌุงู…ุนูŠ ู…ุด ุงู„ุดุจุชุฑ ู‡ุฐุง ูŠุนู†ูŠ ุงุญู†ุง ู‡ุฐุง ู…ุฌุฑุฏ ุจุณ
499
00:49:54,380 --> 00:49:59,180
ู…ุนู„ูˆู…ุฉ ุจุณูŠุทุฉ ู†ุฎู„ูŠูƒ ุชููƒุฑ ุนู„ู‰ ุฃูŠ ุญุงู„ ุจุฏู†ุง ุนุดุงู† ุฃุจุนุฏ
500
00:49:59,180 --> 00:50:03,780
ูƒุชูŠุฑ definition definition
501
00:50:03,780 --> 00:50:08,740
the center
502
00:50:08,740 --> 00:50:20,420
the center ุงู„ู„ูŠ ู‡ูˆ ุญุฏูŠุฏ Z of G ุฃุฏูŠ ุงู„ุฑู…ุฒ ู‡ุฐุง of A
503
00:50:20,420 --> 00:50:37,780
center of G is the subset of G consisting
504
00:50:37,780 --> 00:50:42,260
of
505
00:50:42,260 --> 00:50:46,040
those elements
506
00:50:47,470 --> 00:50:59,630
ูŠุชูƒูˆู† ู…ู† ุงู„ุนู†ุงุตุฑ of g of g that that
507
00:50:59,630 --> 00:51:05,770
commutes with
508
00:51:05,770 --> 00:51:11,310
commutes with every
509
00:51:11,310 --> 00:51:23,690
element of G with every element of
510
00:51:23,690 --> 00:51:35,040
G that is ุจุชุตูŠุฑ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฑูŠุงุถูŠุง ูุจุงุฌูŠ ุจู‚ูˆู„ Z of G
511
00:51:35,040 --> 00:51:41,280
ุฃูˆ ุงู„ู€ Center ุชุจุน ู„ุฌุฑูˆุจ G ูƒู„ ุงู„ุนู†ุงุตุฑ A ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ
512
00:51:41,280 --> 00:51:50,900
ููŠ G ุจุญูŠุซ ุฃู† ุงู„ A X ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ X A ู„ูƒู„ ุงู„ X ุงู„ู„ูŠ
513
00:51:50,900 --> 00:51:53,500
ู…ูˆุฌูˆุฏ ููŠ G
514
00:52:01,760 --> 00:52:06,940
ู…ุฑุฉ ุชุงู†ูŠุฉ ู†ุฌูŠ ู„ุญุงุฌุฉ ุงุณู…ู‡ุง ุงู„ center ุชุจุน ุงู„ group
515
00:52:06,940 --> 00:52:13,380
ู…ุฑูƒุฒ ุงู„ group ู…ุฑูƒุฒ ุงู„ group ู‡ูˆ ูƒู„ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ
516
00:52:13,380 --> 00:52:19,460
ุจุชุจู‚ู‰ commutes ู…ุน ุฌู…ูŠุน ุนู†ุงุตุฑ ุงู„ group ุญุฏ ููŠูƒู… ุจู‚ุฏุฑ
517
00:52:19,460 --> 00:52:24,990
ูŠุฌูŠุจ ู„ูŠู‡ element commute ู…ุน ุฌู…ูŠุน ุนู†ุงุตุฑ ุงู„ group ุงู„ู€
518
00:52:24,990 --> 00:52:28,490
identity element ู…ู…ุชุงุฒ ูŠุจู‚ู‰ ุงู„ identity element
519
00:52:28,490 --> 00:52:33,870
ุฏุงุฆู…ุง ูˆ ุฃุจุฏุง ู…ูˆุฌูˆุฏ ููŠ ุงู„ center ุชุจุน ุงู„ group ุชู…ุงู…
520
00:52:33,870 --> 00:52:39,270
ูŠุจู‚ู‰ ู‡ู†ุงูƒ ุนู†ุงุตุฑ ุฃุฎุฑู‰ ุจุณ ุงุญู†ุง ุจู†ุถุฑุจ ู…ุซุงู„ ุจุนุถู‡ู… ู…ุด
521
00:52:39,270 --> 00:52:43,510
ู‡ุชู„ุงู‚ูŠ ุบูŠุฑ ุงู„ identity element ุงู„ุจุนุถ ุงู„ุขุฎุฑ ู‡ุชู„ุงู‚ูŠ
522
00:52:43,510 --> 00:52:49,710
ุนู†ุงุตุฑ ุฃุฎุฑู‰ ุทูŠุจ ุณุคุงู„ ู„ูˆ ูƒุงู†ุช ุงู„ group abelian
523
00:52:52,230 --> 00:52:55,270
ูŠุจู‚ู‰ ุงู„ู€ center ุชุจุน ุงู„ group ุจูŠุณุงูˆูŠ ุงู„ group ูƒู„ู‡ุง
524
00:52:55,270 --> 00:52:59,970
ูƒู„ ุนู†ุงุตุฑ ุงู„ group ู„ูŠุดุŸ ู„ุฃู†ู‡ ุจูŠู‚ูˆู„ูƒ ูƒู„ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ
525
00:52:59,970 --> 00:53:05,870
ู…ูˆุฌูˆุฏ ููŠ ุงู„ group ุจุญูŠุซ ax ุจูŠุณุงูˆูŠ xa ู„ูƒู„ ุงู„ x ุงู„ู„ูŠ
526
00:53:05,870 --> 00:53:10,490
ู…ูˆุฌูˆุฏ ูŠุนู†ูŠ ุงู„ element ู…ุดุงู† ูŠูƒูˆู† ููŠ ุงู„ center ุจุฏูŠูƒู…
527
00:53:10,490 --> 00:53:15,750
ูŠุณู…ุน ุฌู…ูŠุน ุนู†ุงุตุฑ ุฏูŠ ุจู„ุง ุงุณุชุซู†ุงุก ู…ุด ูˆุงุญุฏ ุฃูˆ ูˆุงุญุฏ ู„ุฃ
528
00:53:16,790 --> 00:53:20,850
ู‡ุฐุง ูƒุฏู‡ ูˆุงุญุฏ ุฃูˆ ูˆุงุญุฏ ู„ุฃ ููŠ ุชุณู…ูŠุฉ ุฌุฏูŠุฏุฉ ุจุฏู†ุง ู†ุณู…ูŠู‡ุง
529
00:53:20,850 --> 00:53:25,650
ุฅู† ุดุงุก ุงู„ู„ู‡ ูƒูˆูŠุณ ู„ู„ู…ุฑุฉ ุงู„ู‚ุงุฏู…ุฉ ุนู„ูŠู‡ุง ุงู„ู…ุฑุฉ ุงู„ู‚ุงุฏู…ุฉ
530
00:53:25,650 --> 00:53:31,030
ุณู†ุซุจุช ุฃู† ุงู„ center ู‡ุฐุง ู‡ูˆ ุงู„ sub group ู…ู† ุงู„ group
531
00:53:31,030 --> 00:53:36,530
ุงู„ุฃุณุงุณูŠุฉ ุฅู† ุดุงุก ุงู„ู„ู‡ ุชุนุงู„ู‰ ู…ุงุดูŠ ูŠุจู‚ู‰ stop ุงู„ู…ุฑุฉ
532
00:53:36,530 --> 00:53:38,670
ุงู„ู‚ุงุฏู…ุฉ ุจู†ูƒู…ู„ ุฅู† ุดุงุก ุงู„ู„ู‡