abdullah's picture
Add files using upload-large-folder tool
b4e65c0 verified
raw
history blame
52.6 kB
1
00:00:21,190 --> 00:00:26,610
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุจุฏุฃู†ุง ููŠ ุฎูˆุงุต
2
00:00:26,610 --> 00:00:31,330
ุงู„ู€ group ุงู„ุฎูˆุงุต ุงู„ุฃูˆู„ู‰ ู„ู„ู€ group ูˆุงุฎุฏู†ุง ุฃูˆู„ ุฎุงุตูŠุฉ
3
00:00:31,330 --> 00:00:35,930
ุงู„ุฎุงุตูŠุฉ ุงู„ุฃูˆู„ู‰ ุจุชู‚ูˆู„ ู„ูˆ ูƒุงู† ุนู†ุฏูŠ identity element
4
00:00:35,930 --> 00:00:39,980
ููŠ ุงู„ู€ group ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู€ identity element ูŠูƒูˆู†
5
00:00:39,980 --> 00:00:43,540
ุฃุซุจุชู†ุง ุฃู† ุงู„ุงุชู†ูŠู† ู…ุฑุชุจุทูŠู† ูˆ ุฃุซุจุชู†ุง ุฃู† ุงู„ุงุชู†ูŠู†
6
00:00:43,540 --> 00:00:45,200
ู…ุฑุชุจุทูŠู† ูˆ ุฃุซุจุชู†ุง ุฃู† ุงู„ุงุชู†ูŠู† ู…ุฑุชุจุทูŠู† ูˆ ุฃุซุจุชู†ุง ุฃู†
7
00:00:45,200 --> 00:00:47,820
ุงู„ุงุชู†ูŠู† ู…ุฑุชุจุทูŠู† ูˆ ุฃุซุจุชู†ุง ุฃู† ุงู„ุงุชู†ูŠู† ู…ุฑุชุจุทูŠู† ูˆ
8
00:00:47,820 --> 00:00:48,960
ุฃุซุจุชู†ุง ุฃู† ุงู„ุงุชู†ูŠู† ู…ุฑุชุจุทูŠู† ูˆ ุฃุซุจุชู†ุง ุฃู† ุงู„ุงุชู†ูŠู†
9
00:00:48,960 --> 00:00:50,300
ู…ุฑุชุจุทูŠู† ูˆ ุฃุซุจุชู†ุง ุฃู† ุงู„ุงุชู†ูŠู† ู…ุฑุชุจุทูŠู† ูˆ ุฃุซุจุชู†ุง ุฃู†
10
00:00:50,300 --> 00:00:52,420
ุงู„ุงุชู†ูŠู† ู…ุฑุชุจุทูŠู† ูˆ ุฃุซุจุชู†ุง ุฃู† ุงู„ุงุชู†ูŠู† ู…ุฑุชุจุทูŠู† ูˆ
11
00:00:52,420 --> 00:00:56,700
ุฃุซุจุชู†ุง ุฃู† ุงู„ุงุชู†ูŠู† ู…ุฑุชุจุทูŠู† ูˆ ุฃุซุจุชู†ุง ุฃู† ุงู„ุงุชู†ูŠู†
12
00:00:56,700 --> 00:01:01,140
ู…ุฑุชุจุทูŠู† ูˆ ุฃุซุจุชู†ุง ุฃู† ุงู„ุงุชู†ูŠู† ู…ุฑุชุจุทูŠู† ูˆ ุฃุซุจุชู†ุง ุฃู†
13
00:01:01,140 --> 00:01:06,290
ุงู„ุงุชู†ูŠู† ู…ุฑุชุจุทูŠู† ุจู„ุบุฉ ุฃุฎุฑู‰ ู„ู…ุง ู†ู‚ูˆู„ ba ุจุฏู‡ ูŠุณุงูˆูŠ
14
00:01:06,290 --> 00:01:12,450
ca then ุจูŠู‡ ูŠุณุงูˆูŠ c ูŠุนู†ูŠ ูƒุฃู†ู‡ ุดุงุทุจู†ุง a ู…ุน a ูˆุฏู‡
15
00:01:12,450 --> 00:01:18,250
ุงุณู…ู‡ ู‚ุงู†ูˆู† ุงู„ุดุงุทุจ ุงู„ุฃูŠู…ู† ุงู„ุซุงู†ูŠ ู‡ุฐุง a ุจูŠู‡ ุจุฏู‡
16
00:01:18,250 --> 00:01:23,630
ูŠุณุงูˆูŠ ac ูŠุจู‚ู‰ ุทุงู„ุน ุฃู†ู‡ ุจูŠู‡ ุจุชุณุงูˆูŠ c ูŠุจู‚ู‰ ูƒุฃู†ู‡
17
00:01:23,630 --> 00:01:29,510
ุดุงุทุจู†ุง ู…ู† ุฌู‡ุฉ ุงู„ุดู…ุงู„ ูŠุจู‚ู‰ ู‚ุงู†ูˆู† ุงู„ุดุงุทุจ ุงู„ุฃูŠุณุฑ ู‚ุงู†ูˆู†
18
00:01:29,510 --> 00:01:32,810
ุงู„ุดุงุทุจ ุงู„ุฃูŠู…ู† ู‚ุงู†ูˆู† ุงู„ุดุงุทุจ ุงู„ุฃูŠุณุฑ ู‡ุฐู‡ ุชุณู…ูŠุงุช
19
00:01:32,810 --> 00:01:37,310
ุจุชู‡ู…ู†ูŠุด ูƒุซูŠุฑ ุจู‡ู…ู†ูŠ ุฃู† ุฃู†ุง ู†ุตู„ ุฅู„ู‰ ุฅุซุจุงุช ู‡ุฐู‡
20
00:01:37,310 --> 00:01:43,170
ุงู„ุนู„ุงู‚ุฉ ูŠุจู‚ู‰ ุจุฏู†ุง ู†ุฑูˆุญ ู†ุซุจุชู‡ุง ูุจุงุฌูŠ ุจู‚ูˆู„ู‡ for proof
21
00:01:46,430 --> 00:01:51,850
ุงู„ุขู† b ููŠ a ู…ูˆุฌูˆุฏ
22
00:01:51,850 --> 00:01:56,150
ููŠ ุงู„ู€ group g ูˆุงู„ู€ b ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ group g ู…ุดุงู†
23
00:01:56,150 --> 00:02:02,210
ุชูƒูˆู† group ู„ุงุฒู… ูŠูƒูˆู† ููŠู‡ุง ู„ูƒู„ ุนู†ุตุฑ ู…ุนูƒูˆุณ ู„ู‡ุฐุง
24
00:02:02,210 --> 00:02:07,650
ุงู„ุนู†ุตุฑ ุฅุฐุง ุจุฏูŠ ุฃูุชุฑุถ ุฃู†ู‡ ู…ุนูƒูˆุณ ู„ุนู†ุตุฑ a ู…ุซู„ุง ูˆู„ูŠู‡
25
00:02:07,650 --> 00:02:12,230
ุฃูƒูˆู† a prime ุฃูˆ ุฃูŠ ุฑู…ุฒ ุขุฎุฑ ูˆู†ุดูˆู ู‡ุฐุง ู‡ูŠูˆุตู„ู†ุง ู„ูˆูŠู†
26
00:02:12,230 --> 00:02:14,790
ูŠุจู‚ู‰ ุญุงุฌุฉ ุฃู‚ูˆู„ู‡ assume
27
00:02:34,810 --> 00:02:43,090
ุงู„ุญูŠู† ุงุญู†ุง ุนู†ุฏู†ุง ba ุจุฏู‡ ูŠุณุงูˆูŠ ca ุงุจุฏุฃ ุฃุถุฑุจ ู…ู† ุฌู‡ุฉ
28
00:02:43,090 --> 00:02:51,850
ุงู„ูŠู…ูŠู† ููŠ ุงู„ู€ a' ูŠุจู‚ู‰ ba ููŠ ุงู„ู€ a' ูŠุจู‚ู‰ ca ููŠ
29
00:02:51,850 --> 00:02:59,230
ุงู„ู€ a' ู‡ุฐุง ุงู„ูƒู„ุงู… ุณูŠุนุทูŠู†ุง ุงุจุฏุฃ ุฃุณุชุฎุฏู… ุฎุงุตูŠุฉ ุงู„
30
00:02:59,230 --> 00:03:03,880
associativity ูŠุจู‚ู‰ ู…ู† ุฎุงุตูŠุฉ ุงู„ู€ associativity ุจุตูŠุฑ
31
00:03:03,880 --> 00:03:10,660
ุฃู† b ููŠ aa prime ูŠุณุงูˆูŠ
32
00:03:10,660 --> 00:03:17,700
c ููŠ aa prime ู‡ุฐุง ุจุฏูŠ ูŠุนุทูŠู†ุง ุฃูŠ ุนู†ุตุฑ ููŠ ู…ุนูƒุณู‡ ุดูˆ
33
00:03:17,700 --> 00:03:22,860
ุจูŠุนุทูŠู†ุงู‡ ุนู†ุตุฑ ุงู„ูˆุญุฏุฉ ุงู„ู€ identity element ูŠุจู‚ู‰ ุจู†ุงุก
34
00:03:22,860 --> 00:03:34,390
ุนู„ูŠู‡ ู‡ุฐุง ู‡ูŠุนุทูŠู†ุง ุฃู† ุงู„ู€ b ุงู„ู€ b ููŠ ุงู„ู€ e ุจุฏู‡ ูŠุณุงูˆูŠ
35
00:03:34,390 --> 00:03:38,890
ู…ูŠู†ุŸ ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ c ููŠ ุงู„ู€ e ุทุจ ุงู„ู€ identity
36
00:03:38,890 --> 00:03:42,870
element ู„ู…ุง ุฃุถุฑุจู‡ ููŠ ุฃูŠ ุนู†ุตุฑ ุฅูŠุด ุจูŠุนุทูŠู†ุงุŸ ู†ูุณ
37
00:03:42,870 --> 00:03:49,950
ุงู„ุนู†ุตุฑ ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู†ุง b ุชุณุงูˆูŠ c ู‡ุฐุง ู‡ูˆ
38
00:03:49,950 --> 00:04:01,090
ุงู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„ ุงู„ู…ุทู„ูˆุจ ุงู„ุซุงู†ูŠ and ูˆูƒุฐู„ูƒ ุงู„ู€ ab ุจุฏู‡
39
00:04:01,090 --> 00:04:08,390
ูŠุณุงูˆูŠ ac implies ุฃู† ุงู„ู€ a prime ููŠ ุงู„ู€ ab ุจุฏู‡ ูŠุณุงูˆูŠ
40
00:04:08,390 --> 00:04:15,350
ุงู„ู€ a prime ููŠ ุงู„ู€ ac ู…ู† ุฎุงุตูŠุฉ ุงู„ู€ associativity ู‡ุฐุง
41
00:04:15,350 --> 00:04:18,110
ูŠุนู†ูŠ ุฃู† ุงู„ู€ a prime a
42
00:04:26,160 --> 00:04:31,040
ุงู„ุนู†ุตุฑ ููŠ ู…ุนูƒุณู‡ ุจูŠุนุทูŠู†ุง ุงู„ู€ identity element ุฏูŠุฑ
43
00:04:31,040 --> 00:04:34,320
ุจุงู„ูƒ ุจุณ ู…ุด ุนู†ุตุฑ ุชุถุฑุจ ู…ู† ุงู„ูŠู…ูŠู† ูˆ ุงู„ุซุงู†ูŠ ู…ู† ุงู„ุดู…ุงู„
44
00:04:34,320 --> 00:04:37,720
ุถุฑุจุช ู…ู† ุงู„ุดู…ุงู„ ูŠุจู‚ู‰ ุงู„ุซุงู†ูŠ ู…ู† ุงู„ุดู…ุงู„ ุถุฑุจุช ู…ู†
45
00:04:37,720 --> 00:04:40,960
ุงู„ูŠู…ูŠู† ูŠุจู‚ู‰ ุงู„ุซุงู†ูŠ ู…ู† ุงู„ูŠู…ูŠู† ู„ูŠุดุŸ ู„ุฃู†ู‡ ู…ุง ู‚ุงู„ูŠุด ุงู„ู€
46
00:04:40,960 --> 00:04:44,780
group abelian ู„ูˆ ู‚ุงู„ูŠ ู„ุฌุฑูˆุจ ุฃุจูŠู„ูŠ ุฃู† ุถุฑุจุช ูˆุงุญุฏุฉ ู…ู†
47
00:04:44,780 --> 00:04:47,560
ุงู„ูŠู…ูŠู† ูˆ ูˆุงุญุฏุฉ ู…ู† ุงู„ุดู…ุงู„ุŒ ุฃู†ุช ูุฑูŠู‚ุด ุนู†ู†ุง ุจุณ ุฅู† ูƒุงู†
48
00:04:47,560 --> 00:04:49,880
ุงู„ุถุฑุจ ู…ู† ุงู„ูŠู…ูŠู†ุŒ ุงู„ุซุงู†ูŠ ู…ู† ุงู„ูŠู…ูŠู†ุŒ ุงู„ุถุฑุจ ู…ู†
49
00:04:49,880 --> 00:04:53,280
ุงู„ุดู…ุงู„ุŒ ุงู„ุทุฑู ุงู„ุซุงู†ูŠ ู…ู† ุงู„ุดู…ุงู„ ุฒูŠ ู…ุง ุฃู†ุช ุดุงูŠู ู„ุงุฒู…
50
00:04:53,280 --> 00:04:58,420
ู†ุฑู‰ ุงู„ุชุฑุชูŠุจ ุนู†ุฏ ุนู…ู„ูŠุฉ ุงู„ุดุบู„ ููŠ ุงู„ู€ groups ูŠุจู‚ู‰ ู‡ุฐุง
51
00:04:58,420 --> 00:05:03,720
ู…ุนู†ุงู‡ ุฃู† ุงู„ู€ identity element ููŠ b ูŠุณูˆู‰ ุงู„ู€ identity
52
00:05:03,720 --> 00:05:11,320
element ููŠ c ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† b ุจูŠุจุฏุฃ ุชุณุงูˆูŠ c ุฅุฐุง
53
00:05:11,320 --> 00:05:15,520
ู…ู† ุงู„ุขู† ูุตุงุนุฏู‹ุง ู‚ุงู†ูˆู† ุงู„ุดุทุจ ุงู„ุฃูŠู…ู† ูˆู‚ุงู†ูˆู† ุงู„ุดุทุจ
54
00:05:15,520 --> 00:05:23,320
ุงู„ุฃูŠุณุฑ ุนู„ู‰ ุงู„ู€ group exist ู…ูˆุฌูˆุฏ ูˆู…ุชุนุฑู ุนู„ูŠู‡ ุงู„ู†ู‚ุทุฉ
55
00:05:23,320 --> 00:05:27,880
ุงู„ุซุงู„ุซุฉ ุฃูˆ ุงู„ุฎุงุตูŠุฉ ุงู„ุซุงู„ุซุฉ ู…ู† ุฎูˆุงุต ุงู„ู€ group ุจูŠู‚ูˆู„
56
00:05:27,880 --> 00:05:38,920
for each element for each element ู„ุฃูŠ ุนู†ุตุฑ for
57
00:05:38,920 --> 00:05:47,040
each element a in a group g
58
00:05:49,680 --> 00:05:55,360
ู„ุฃูŠ ุนู†ุตุฑ ููŠ ุงู„ู€ group g there is a unique element
59
00:05:55,360 --> 00:06:10,620
there is a unique element there is
60
00:06:10,620 --> 00:06:17,880
a unique element b in g such that
61
00:06:21,290 --> 00:06:29,150
ุจุนุฏ ุฐู„ูƒ ab ุณุงูˆูŠ ba ุณุงูˆูŠ ุงู„ู€ identity
62
00:06:29,150 --> 00:06:40,070
element ู…ุฑุฉ
63
00:06:40,070 --> 00:06:44,940
ุซุงู†ูŠุฉ ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ุฃูˆู„ ุฎุงุตูŠุฉ ุฃุซุจุชู†ุง ุฃู† ุนู†ุตุฑ
64
00:06:44,940 --> 00:06:49,080
ุงู„ูˆุญุฏุฉ ูŠูƒูˆู† ูˆุญูŠุฏู‹ุง ู…ุงููŠุด ุบูŠุฑ ุนู†ุตุฑ ูˆุงุญุฏ ูˆุงุญุฏ ููŠ ุงู„ู€
65
00:06:49,080 --> 00:06:53,500
group ูƒู„ู‡ุง ู…ู† ุฃูˆู„ู‡ุง ุฅู„ู‰ ุขุฎุฑู‡ุง ุงู„ุขู† ุจูŠู‚ูˆู„ ู„ูˆ ุฃุฎุฏุช
66
00:06:53,500 --> 00:07:00,060
ุฃูŠ ุนู†ุตุฑ a ู…ูˆุฌูˆุฏ ููŠ g ู„ุงุฒู… ู†ู„ุงู‚ูŠ ุนู†ุตุฑ ูˆุญูŠุฏ ู„ุงุญุธ
67
00:07:00,060 --> 00:07:05,080
ุงู„ูƒู„ู…ุฉ ู‡ุฐู‡ a unique element ูŠุจู‚ู‰ ุนู†ุตุฑู‹ุง ูˆุญูŠุฏู‹ุง ู…ุงููŠุด
68
00:07:05,080 --> 00:07:10,910
ุบูŠุฑู‡ ูˆ b ููŠ g ู…ูˆุฌูˆุฏ ููŠ g ุจุญูŠุซ ุฃู† ุงู„ู€ a ููŠ b
69
00:07:10,910 --> 00:07:14,710
ุจูŠุณุงูˆูŠ ุงู„ู€ a ููŠ b ุจูŠุณุงูˆูŠ ุงู„ู€ identity ุดูˆ ู…ุนู†ู‰ ู‡ุฐุง
70
00:07:14,710 --> 00:07:20,990
ุงู„ูƒู„ุงู… ู…ุนู†ู‰ ุฃู† ุงู„ู…ุนูƒูˆุณ ู„ูƒู„ ุนู†ุตุฑ ูŠูƒูˆู†ู‡ ูˆุญูŠุฏู‹ุง ู…ุงููŠุด
71
00:07:20,990 --> 00:07:26,540
ุบูŠุฑู‡ ูŠุนู†ูŠ ูƒู„ ุนู†ุตุฑ ููŠ ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ group ู„ู‡ ู…ุนูƒูˆุณ ู„ุง
72
00:07:26,540 --> 00:07:31,740
ูŠุดุงุฑูƒู‡ ุฃุญุฏ ููŠ ู‡ุฐุง ุงู„ู…ุนูƒูˆุณ ุฅุฐุง ุจุฏู†ุง ู†ุฑูˆุญ ู†ุซุจุช ู‡ุฐุง
73
00:07:31,740 --> 00:07:35,840
ุงู„ูƒู„ุงู… ุจู†ูุณ ุงู„ููƒุฑุฉ ุงู„ู„ูŠ ุฃุซุจุชู†ุง ููŠู‡ุง ุงู„ู€ identity
74
00:07:35,840 --> 00:07:39,360
element ูŠุจู‚ู‰ ุงู„ุนู†ุตุฑ a ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ group ุจุฏูŠ
75
00:07:39,360 --> 00:07:43,960
ุฃูุชุฑุถ ุฃู†ู‡ ู„ู‡ ู…ุนูƒูˆุณูŠู† ูˆ ุฃุญุงูˆู„ ุฃุซุจุช ุฃู† ู‡ุฐูŠู†
76
00:07:43,960 --> 00:07:49,260
ุงู„ู…ุนูƒูˆุณูŠู† ู…ุชุณุงูˆูŠุงู† ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ for proof
77
00:07:53,660 --> 00:08:07,940
Assume ุงูุชุฑุถ ุฃู† b ูˆ c ู‡ู… ุฃูƒุซุฑ
78
00:08:07,940 --> 00:08:18,200
ู…ู† ุงุณู…
79
00:08:18,200 --> 00:08:20,080
ุงู„ู…ูˆุฌูˆุฏ ููŠ g
80
00:08:26,860 --> 00:08:35,980
ุงู„ู€ ab ุจูŠุณุงูˆูŠ ba ุงู„ู€ ab ุจูŠุณุงูˆูŠ ba ุจูŠุณุงูˆูŠ ุงู„ู€
81
00:08:35,980 --> 00:08:44,760
identity e and ุงู„ู€ ac ุจูŠุณุงูˆูŠ ca ุจูŠุณุงูˆูŠ ุงู„ู€
82
00:08:44,760 --> 00:08:50,540
identity e ู‡ุฐุง ุญุณุจ ุชุนุฑูŠู ู…ู†ุŸ ุญุณุจ ุชุนุฑูŠู ุงู„ู…ุนูƒูˆุณ
83
00:08:50,540 --> 00:08:57,810
ุงู„ุขู† ู‡ุฐุง ุงู„ู€ element ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ identity ูˆ ู‡ุฐุง ุงู„ู€
84
00:08:57,810 --> 00:09:01,850
element ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ identity ู…ุนู†ุงุชู‡ ุงู„ู€ two
85
00:09:01,850 --> 00:09:08,270
elements are equal ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู†ุง a ุฃู†ู‡ a
86
00:09:08,270 --> 00:09:14,230
ููŠ b ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ ac ู„ุฅู†ู‡ ูƒู„ ูˆุงุญุฏ ู…ุงู„ู‡ู… ุจุฏู‡ ูŠุณุงูˆูŠ
87
00:09:14,230 --> 00:09:19,310
ุงู„ู€ identity ุจุงู„ุฎุงุตูŠุฉ ุงู„ู„ูŠ ููˆู‚ ุงู„ุฃูˆู„ุงู†ูŠุฉ ุฑู‚ู… ุงุซู†ูŠู†
88
00:09:19,310 --> 00:09:23,030
ูŠุจู‚ู‰ by property
89
00:09:29,720 --> 00:09:37,400
ุจุชุณุงูˆูŠ ุงู„ู€ c ู„ูˆ ุฃุฎุฐู†ุง ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ similarly ุจู†ูุณ
90
00:09:37,400 --> 00:09:38,420
ุงู„ุทุฑูŠู‚ุฉ
91
00:09:40,770 --> 00:09:49,050
ุงู„ู„ูŠ ู‡ูˆ ba ุจุฏู‡ ูŠุณุงูˆูŠ ca implies ุฃู† ุงู„ู€ b ุชุณุงูˆูŠ c
92
00:09:49,050 --> 00:09:53,330
ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ู„ูˆ ูˆุฌุฏ ู…ุนูƒูˆุณูŠู† ุฅู† ุดุงุก ุงู„ู„ู‡ ูŠูƒูˆู†ูˆุง
93
00:09:53,330 --> 00:09:57,970
ุนุดุฑุฉ ู„ุนู†ุตุฑ ู…ุง ุงู„ุนุดุฑุฉ ู‡ุฏูˆู„ ู„ุงุฒู… ูŠูƒูˆู†ูˆุง are equal
94
00:09:57,970 --> 00:10:02,850
ูŠุนู†ูŠ ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู† ู…ุนูƒูˆุณ ุงู„ุนู†ุตุฑ ูŠูƒูˆู†ูˆุง aูŠู‡ุŸ
95
00:10:02,850 --> 00:10:05,490
ูŠูƒูˆู†ูˆุง ูˆุญูŠุฏู‹ุง ู…ููŠุด ุบูŠุฑู‡
96
00:10:13,790 --> 00:10:20,370
ุงู„ุฎุงุตูŠุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ
97
00:10:20,370 --> 00:10:20,490
ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ
98
00:10:20,490 --> 00:10:21,050
ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ
99
00:10:21,050 --> 00:10:21,450
ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ
100
00:10:21,450 --> 00:10:22,370
ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ
101
00:10:22,370 --> 00:10:26,570
ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ
102
00:10:26,570 --> 00:10:29,330
ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ
103
00:10:29,330 --> 00:10:29,610
ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ
104
00:10:29,610 --> 00:10:31,270
ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ
105
00:10:31,270 --> 00:10:40,590
ุงู„ุฑุงุจุนุฉ ุงู„ุฑุงุจุนุฉ
106
00:10:40,590 --> 00:10:46,180
ุงู„ุฑูˆุงู„ุนูƒุณ ู…ู† g
107
00:10:46,180 --> 00:10:57,840
ู‡ูˆ denoted by g inverse ูŠุนู†ูŠ ูŠุง ุดุจุงุจ ู…ู† ุงู„ุขู† ูุตุงุนุฏู‹ุง
108
00:10:57,840 --> 00:11:03,700
ุจุฏู†ุง ู†ุจุทู„ ู†ู‚ูˆู„ let a' b is inverse of a ุนู„ู‰ ุทูˆู„
109
00:11:03,700 --> 00:11:08,640
ุงู„ุฎุท ู…ุนูƒูˆุณ ุงู„ู€ a ู‡ู‚ูˆู„ู‡ a inverse ู…ุนูƒูˆุณ ุงู„ู€ g ู‡ูˆ g
110
00:11:08,640 --> 00:11:20,880
inverse ูˆู‡ูƒุฐุง ู†ู‚ุทุฉ ุซุงู†ูŠุฉ if ุงู„ู€ n is a positive
111
00:11:22,440 --> 00:11:32,780
integer ุนุฏุฏ ุตุญูŠุญ ู…ูˆุฌุจ ุจุงู„ู„ูŠ ุงู„ู€ n then ุงู„ู€ g to the
112
00:11:32,780 --> 00:11:40,440
power n ู…ุนู†ุงุชู‡ aูŠู‡ุŸ ู…ุนู†ุงุชู‡ g ู…ุถุฑูˆุจุฉ ููŠ g ู…ุถุฑูˆุจุฉ ููŠ
113
00:11:40,440 --> 00:11:47,800
g ู‡ุฐุง ุงู„ูƒู„ุงู… in times ูŠุนู†ูŠ n ู…ู† ุงู„ู…ุฑุงุช ูŠุง ุดุจุงุจ ู‡ู†ุง
114
00:11:47,800 --> 00:11:50,760
ุงู„ุถุฑุจ ู‡ุฐู‡ ุงู„ู†ู‚ุงุท ุงู„ู„ูŠ ุดุงูŠููŠู†ู‡ุง ู…ุด ุนู…ู„ูŠุฉ ุงู„ุถุฑุจ
115
00:11:50,760 --> 00:11:55,860
ุงู„ุนุงุฏูŠุฉ ูŠุนู†ูŠ g star g g star g star g star g ุฅู„ู‰
116
00:11:55,860 --> 00:11:59,920
ุฃุฎูŠุฑูŠุฉ ุงู„ู€ star mean ู…ุง ูƒุงู†ุช ุชูƒูˆู† ุจุณ ุงุญู†ุง ุงุฎุชุตุงุฑู‹ุง
117
00:11:59,920 --> 00:12:07,490
ุจู†ูƒุชุจู‡ุง ุจุงู„ุดูƒู„ ู‡ุฐุง ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู„ุซุฉ
118
00:12:07,490 --> 00:12:13,930
ุงู„ู€ g ู…ุฑููˆุน ู„ู„ุฃุณ ุตูุฑ ุจุฏู‡ ูŠุณุงูˆูŠ ุฃูŠ element ููŠ ุงู„ู€
119
00:12:13,930 --> 00:12:18,890
group g ุงุฑูุน ู„ู‡ ุงู„ุตูุฑ ุจูŠุนุทูŠู†ุง ุงู„ู€ identity element
120
00:12:18,890 --> 00:12:26,550
ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู€ e ู†ู…ุฑุฉ ุฃุฑุจุนุฉ ุงู„ู€ g to the power n ุจู‚ุฏุฑ
121
00:12:26,550 --> 00:12:35,520
ุฃู‚ูˆู„ g inverse ุฃุณ ุณุงู„ุจ n ู„ู…ุง ุฃู‚ูˆู„ gn ุจู‚ุฏุฑ ุฃูƒุชุจู‡ุง ุนู„ู‰
122
00:12:35,520 --> 00:12:36,620
ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ
123
00:12:47,300 --> 00:12:56,760
ุจู‚ูˆู„ ุงู„ู€ gm ููŠ ุงู„ู€ gn ุจุฏู‡ ูŠุณุงูˆูŠ gm ุฒุงุฆุฏ ุงู„ู€ n ูŠุจู‚ู‰ ุชุฌู…ุน
124
00:12:56,760 --> 00:13:06,260
ุงู„ุฃุณุณ ุนุงุฏูŠ ุฌุฏุง ุฎู…ุณุฉ ู†ู…ุฑุฉ ุณุชุฉ ู†ู…ุฑุฉ ุณุชุฉ gm ูƒู„ู‡ ุฃุณ n
125
00:13:06,260 --> 00:13:14,390
ุฒูŠ ู‡ุฐู‡ ุจุงู„ุถุจุท ุชู…ุงู…ู‹ุง ูŠุจู‚ู‰ ู‡ุฐู‡ ุฃุณุณ ู…ุฑูƒุจุฉ ูˆู„ูŠุณุช ู…ุซู„
126
00:13:14,390 --> 00:13:19,430
ู‡ุฐู‡ ู‡ู†ุง ุงู„ุฃุณุงุณุงุช ู‡ูŠ ุงู„ู€ element ู…ุฑููˆุนุฉ ู„ู†ูุณ ุงู„ุฃุณุณ M
127
00:13:19,430 --> 00:13:24,950
ูˆ N ูŠุจู‚ู‰ ุนู†ุฏ ุงู„ู€ operation ู‡ุฐู‡ ุชุฌู…ุน ุงู„ุฃุณุณ ู„ูƒู† ู‡ุฐู‡
128
00:13:24,950 --> 00:13:32,650
ูƒุงู†ู‡ุง GM Star GM Star GM Star GM ูŠุนู†ูŠ ุฅูŠุด ูŠุนู†ูŠ N
129
00:13:32,650 --> 00:13:42,050
ู…ู† ุงู„ู…ุฑุงุช ุฅุฐุง ู‡ุฐู‡ ุจุงู„ุถุจุท ุชู…ุงู…ุง ู‡ูŠ GMN ุฃูˆ ุจู‚ุฏุฑ ุฃู‚ูˆู„
130
00:13:42,050 --> 00:13:50,250
GNM ู„ูŠุดุŸ ู„ุฃู† ุงู„ุถุฑุจ ูˆ ุงู„ุถุฑุจ ุนู…ู„ูŠุฉ ุถุฑุจ ุนุงุฏูŠุฉ
131
00:13:50,250 --> 00:13:54,910
ู„ู„ุฃุนุฏุงุฏ ุนู…ู„ูŠุฉ ุฅุจุฏุงู„ูŠุฉ ุฎู…ุณุฉ ููŠ ุณุชุฉ ู‡ูŠ ุณุชุฉ ููŠ ุฎู…ุณุฉ
132
00:13:54,910 --> 00:14:01,710
ุฅุฐุง ู‡ุฐู‡ ุจู‚ุฏุฑ ุฃุฑูˆุญ ุฃูƒุชุจู‡ุง ูƒุฐู„ูƒ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ GNM
133
00:14:01,710 --> 00:14:07,170
ุจู‡ู…ู†ูŠุด ู…ู† ุงู„ุฃุณู„ูˆุจ ูˆู„ุง ุนู„ู‰ ูƒู„ ุงู„ุฃู…ุฑูŠู† ูƒู„ู‡ ุจุนุทูŠู†ูŠ ู†ูุณ
134
00:14:07,170 --> 00:14:14,580
ุงู„ู†ุชูŠุฌุฉ ุงู„ู†ู‚ุทุฉ ุงู„ุณุงุจุนุฉ ุงู„ู†ู‚ุทุฉ ุงู„ุณุงุจุนุฉ ู„ูˆ ู‚ู„ุช a b
135
00:14:14,580 --> 00:14:23,820
ูƒู„ู‡ to the power n ู‡ู„ ูŠุณุงูˆูŠ a n b n ูŠุนู†ูŠ
136
00:14:23,820 --> 00:14:29,680
ู„ูˆ ู‚ู„ุช ู„ูƒ ุงุซู†ูŠู† ู‡ู„ ุงู„ู€ a b ุชุฑุจูŠุน ูŠุณุงูˆูŠ a ุชุฑุจูŠุน b ุชุฑุจูŠุน
137
00:14:29,680 --> 00:14:36,300
ููŠ ุญุงู„ุฉ ูˆุงุญุฏุฉ ู„ูˆ ูƒุงู†ุช ุงู„ู€ g ุฃุจูŠู„ูŠุง ุบูŠุฑ ู‡ูŠูƒ ุจูŠุนุทูŠูƒ
138
00:14:36,300 --> 00:14:41,400
ุงู„ู„ู‡ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ู„ุง ูŠู…ูƒู† ุฃู† ูŠุณุงูˆูŠ ู‡ุฐุง ุนู„ู‰
139
00:14:41,400 --> 00:14:49,880
ุงู„ุฅุทู„ุงู‚ ุจุฑูˆุญ ุจุณุชุซู†ูŠ ูˆ ุจู‚ูˆู„ but if g is abelian
140
00:14:49,880 --> 00:14:58,160
then ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ a b to the power n ุจุฏู‡ ูŠุณุงูˆูŠ a n b n
141
00:14:58,160 --> 00:15:04,290
ุบูŠุฑ ู‡ูŠูƒ ู„ุฃ ู„ุฃู†ู‡ ุจู‚ุฏุฑ ุฃุจุฏู„ ุฃูŠ ุนู†ุตุฑ ู…ูƒุงู† ุงู„ุซุงู†ูŠ
142
00:15:04,290 --> 00:15:07,430
ุจุฏูˆู† ุฃูŠ ู…ุดูƒู„ุฉ ุฅู† ูƒุงู† ุชู…ูŠู„ ู„ูƒู† if it's not
143
00:15:07,430 --> 00:15:12,830
abelian ุจูŠุตูŠุฑ ูƒู„ุงู…ูŠ ู‡ุฐุง ูƒู„ู‡ ู„ูŠุณ ุตุญูŠุญุง ุทูŠุจ ุงู„ู†ู‚ุทุฉ
144
00:15:12,830 --> 00:15:23,270
ุงู„ุซุงู…ู†ุฉ ุจูŠู‚ูˆู„ if ุงู„ู€ g ูˆ ุงู„ู€ plus is a group is a
145
00:15:23,270 --> 00:15:28,190
group then
146
00:15:30,130 --> 00:15:47,370
ุงู„ู€ inverse of g is minus g that is a n ุงู„ู€ g
147
00:15:47,370 --> 00:15:53,710
inverse ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุณุงู„ุจ g and
148
00:15:55,880 --> 00:16:04,480
ุงู„ู€ G Inverse ูƒู„ ุชูƒุนูŠุจ ุจุฏู‡ ูŠุณุงูˆูŠ ุณุงู„ุจ ุซู„ุงุซุฉ G
149
00:16:28,420 --> 00:16:34,920
ุจุชุฑุฌุน ู…ุฑุฉ ุซุงู†ูŠุฉ ู„ู‡ุฐู‡ ุงู„ู†ู‚ุงุท ุงู„ุฃุณุงุณูŠุฉ ุงู„ุซู…ุงู†ูŠุฉ ู„ุฃู†
150
00:16:34,920 --> 00:16:40,000
ู‡ุฐู‡ ุงู„ุฃุณุงุณูŠุฉ ุนู†ุฏู†ุง ุจุชุธู„ ู…ุนุงู†ุง ุทูŠู„ุฉ ุดุบู„ู†ุง ููŠ ุนู„ู…
151
00:16:40,000 --> 00:16:45,400
ุงู„ุฌุจุฑ ู…ู† ุงู„ุขู† ูุตุงุนุฏุง ู„ู† ู†ุชูู‚ ุนู„ู‰ ู‡ุฐู‡ ุงู„ู†ู‚ุงุท ู…ุฑุฉ
152
00:16:45,400 --> 00:16:50,680
ุฃุฎุฑู‰ ูŠุจู‚ู‰ ุงู„ู†ู‚ุทุฉ ุงู„ุฃุฎุฑู‰ ุฅุญู†ุง ุจู†ุดุชุบู„ ุฏุงุฎู„ ุงู„ู€ group
153
00:16:50,680 --> 00:16:55,240
ูˆู„ูŠุณ ุฏุงุฎู„ ุงู„ู€ set of real number ุฅุญู†ุง ุจู†ุดุชุบู„ ุฏุงุฎู„ ุงู„ู€
154
00:16:55,240 --> 00:16:59,380
group ู…ู† ู…ุง ูƒุงู†ุช ุงู„ู€ group ุชูƒูˆู† ู‡ุฐู‡ ุจู‚ูˆู„ ู„ูˆ ูƒุงู†ุช ุฌูŠ
155
00:16:59,380 --> 00:17:04,760
ุฌุฑูˆุจ ูˆ ุฃุฎุฐุช ุนู†ุตุฑ ุฌูŠ ู…ูˆุฌูˆุฏ ููŠ ุฌูŠ ูŠุจู‚ู‰ ู…ุนูƒูˆุณ ุงู„ุฌูŠ ู…ู†
156
00:17:04,760 --> 00:17:11,040
ุงู„ุขู† ูุตุงุนุฏุง ู‡ู†ุฑู…ุฒ ู„ู‡ ุจุงู„ุฑู…ุฒ G inverse ูˆู„ูŠุณ G ุณุงู„ุจ
157
00:17:11,040 --> 00:17:16,140
ูˆุงุญุฏ ูŠุนู†ูŠ ู‡ุฐู‡ ู„ูŠุณุช ูˆุงุญุฏ ุนู„ู‰ ุฌูŠ ุชู…ุงู… ุฃูŠูˆุฉ ู…ุดุงู†
158
00:17:16,140 --> 00:17:22,000
ู…ุง ุชุชูˆู‡ุด ุจูŠู† ุบุณูŠู„ ุงูƒุชุจ ู„ู€ G inverse ู„ุง ุชุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰
159
00:17:22,000 --> 00:17:26,600
ุฌูŠ ูŠู…ูƒู† ููŠ ุจุนุถ ุงู„ุชุนุฑูŠูุงุช ู‡ูŠู‡ุง ุตุญูŠุญ ุงู„ู€ G inverse
160
00:17:26,600 --> 00:17:31,920
ูˆุงุญุฏ ุนู„ู‰ G ุจุณ in general ุงู„ูƒู„ุงู… ู‡ุฐุง ู„ูŠุณ ุตุญูŠุญุง ุทูŠุจ
161
00:17:31,920 --> 00:17:35,900
ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ ู„ูˆ ูƒุงู†ุช ุงู„ู€ N positive integer ุนุฏุฏ
162
00:17:35,900 --> 00:17:41,900
ุตุญูŠุญ ู…ูˆุฌุจ ูŠุจู‚ู‰ ุงู„ู…ู‚ุตูˆุฏ ุจู€ G N ู‡ูŠ G star G star G
163
00:17:41,900 --> 00:17:46,740
star G N ู…ู† ุงู„ู…ุฑุงุช ูŠุนู†ูŠ ุจุฏูŠ ุฃุทุจู‚ ุงู„ู€ binary
164
00:17:46,740 --> 00:17:51,510
operation ุนู„ู‰ ุงู„ู€ element ู‡ุฐุง N ู…ู† ุงู„ู…ุฑุงุช ุงู„ู†ู‚ุทุฉ
165
00:17:51,510 --> 00:17:56,070
ุงู„ุซุงู„ุซุฉ ุงู„ู€ A element ููŠ ุงู„ู€ group G ู„ูˆ ุญุทูŠุช ู„ู‡
166
00:17:56,070 --> 00:17:59,570
ุงู„ุฃุณ Zero ุจุฏูŠ ูŠุนุทูŠู†ูŠ ุฏุงุฆู…ุง ูˆ ุฃุจุฏุง ุงู„ู€ identity
167
00:17:59,570 --> 00:18:06,590
element ู„ู…ุง ุฃู‚ูˆู„ GN ูŠู…ูƒู† ุตูŠุงุบุชู‡ุง ุจุตูŠุงุบุฉ ุฃุฎุฑู‰ ูˆ
168
00:18:06,590 --> 00:18:11,990
ู‡ุชุดูˆููˆุง ูˆุฅุญู†ุง ุจู†ุจุฑู‡ู† ู‡ู†ุถุทุฑ ู†ุตูŠุบ ุงู„ู€ GN ุจุงู„ุตูŠุงุบุฉ
169
00:18:11,990 --> 00:18:19,070
ู‡ุฐู‡ ูŠุจู‚ู‰ ู‡ูŠ G inverse ูˆ ุณุงู„ุจ N ู‡ุฐู‡ ูˆ ู‡ุฐู‡ ุงู„ุงุซู†ูŠู†
170
00:18:19,070 --> 00:18:27,180
are the same ุงู„ู†ู‚ุทุฉ ุงู„ุฎุงู…ุณุฉ GM ู…ุถุฑูˆุจุฉ ููŠ GN ูŠุจู‚ู‰
171
00:18:27,180 --> 00:18:31,960
ุจู†ุฌู…ุน ุงู„ุฃุณุณ ุฌู…ุน ู‡ุฐู‡ ู„ูŠุณุช ุถุฑุจ ูˆุฅู†ู…ุง ู…ุง ุงู„ู…ู‚ุตูˆุฏ
172
00:18:31,960 --> 00:18:40,770
ุจู‡ุง Star GM Star GN ูŠุจู‚ู‰ GM ุฒุงุฆุฏ M ู„ูˆ ูƒุงู† ุงู„ุฃุณ
173
00:18:40,770 --> 00:18:46,010
ุฃุณุง ู…ุฑูƒุจุง ูŠุจู‚ู‰ ุจู†ุถุฑุจ ู‡ุฐู‡ ุงู„ุฃุณุณ ููŠ ุจุนุถ ูŠุจู‚ู‰ G
174
00:18:46,010 --> 00:18:52,030
M N ูŠุณุงูˆูŠ G ุฃุณ M N ุจุฏู„ ุงู„ู€ N ูˆ ุงู„ู€ M ู„ุฃู† ู‡ู… ู‡ุฏูˆู„
175
00:18:52,030 --> 00:18:57,470
integers ูˆ ุงุซู†ูŠู† are positive ูŠุจู‚ู‰ G N M ุฃูˆ G N
176
00:18:57,470 --> 00:19:03,240
ุฃุณ M ูƒู„ู‡ are the same ู„ุฃ ู„ูˆ ุฌูŠุช ู„ุญุงุตู„ ุถุฑุจ a b to
177
00:19:03,240 --> 00:19:10,360
the power n ู„ุง ูŠุณุงูˆูŠ a n ููŠ b n ูˆู„ูƒู† ู‡ุฐุง ูŠุณุงูˆูŠ a b
178
00:19:10,360 --> 00:19:18,160
a b a b a b a b n ู…ู† ุงู„ู…ุฑุงุช ูˆู„ุง ูŠุณุงูˆูŠ a n b n ู„ูƒู†
179
00:19:18,160 --> 00:19:23,100
ุฅู† ูƒุงู†ุช ุงู„ู€ g abelian ุจู‚ุฏุฑ ุฃุจุฏู„ ุงู„ู€ a ู…ูƒุงู† ุงู„ู€ b
180
00:19:23,100 --> 00:19:28,220
ูˆุจุงู„ุชุงู„ูŠ ูŠุทู„ุน ุนู†ุฏ ุงู„ู€ a b to the power n ูŠุณุงูˆูŠ a n
181
00:19:28,220 --> 00:19:35,950
b n ูŠุจู‚ู‰ ุฏูŠ ุจุงู„ูƒ ุงู‡ ู„ูˆ ู‚ู„ุช ู„ูƒ a ุฒุงุฆุฏ b ู„ูƒู„ ุชุฑุจูŠุน ู…ุด
182
00:19:35,950 --> 00:19:39,610
ู‡ุชู‚ูˆู„ ุงู‡ ุชุฑุจูŠุน ุฒุงุฆุฏ ุงุซู†ูŠู† a b ุฒุงุฆุฏ b ุชุฑุจูŠุน ู‡ุฐุง
183
00:19:39,610 --> 00:19:44,490
ุงู„ูƒู„ุงู… ุบู„ุท a ุชุฑุจูŠุน ุฃูˆ ุฒุงุฆุฏ b ุชุฑุจูŠุน ุตุญ ุจุณ ู…ุด ุงุซู†ูŠู†
184
00:19:44,490 --> 00:19:50,830
a b ูŠุจู‚ู‰ ุฒุงุฆุฏ a b ุฒุงุฆุฏ b a ูŠุนู†ูŠ ุจู‡ุฐุง ุงู„ุดูƒู„ ู‡ุฐุง ู„ู…ุง
185
00:19:50,830 --> 00:19:56,770
ุฃู‚ูˆู„ ู„ูƒ a ุฒุงุฆุฏ b ู„ูƒู„ ุชุฑุจูŠุน ู„ูˆ ุญุจูŠุช ุฃุดูˆูู‡ู… ู‡ุฐูˆู„ ููŠ ุงู„ู€
186
00:19:56,770 --> 00:20:02,110
group ุดูˆ ุดูƒู„ู‡ู… ูŠุจู‚ู‰ ุจุฃุฌูŠ ุจู‚ูˆู„ ู„ูƒ ู‡ุฐุง a ุชุฑุจูŠุน ู…ุธุจูˆุท ูˆ
187
00:20:02,110 --> 00:20:09,990
ู‡ุฐุง ุฒุงุฆุฏ a b ูˆ ู‡ุฐุง ุฒุงุฆุฏ b a ูˆ ู‡ุฐุง ุฒุงุฆุฏ b ุชุฑุจูŠุน ู‡ูŠูƒ
188
00:20:09,990 --> 00:20:14,690
ุตุญ ู„ูƒู† ุชู‚ูˆู„ ู„ูŠ a ุชุฑุจูŠุน ุฒุงุฆุฏ ุงุซู†ูŠู† a b ุฒุงุฆุฏ b ุชุฑุจูŠุน
189
00:20:14,690 --> 00:20:19,010
ู‡ุฐุง ูƒู„ุงู… ุบู„ุท ุฅู„ุง ุฅุฐุง ูƒุงู†ุช ุฃุจูŠู„ุง ุบูŠุฑ ู‡ูŠูƒ ุจูŠุนุทูŠูƒ
190
00:20:19,010 --> 00:20:24,580
ุงู„ู„ู‡ ูŠุจู‚ู‰ ุฏูŠุฑ ุจุงู„ูƒ ู…ู† ุงู„ุดุบู„ ู‡ุฐู‡ ุทูŠุจ ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู…ู†ุฉ
191
00:20:24,580 --> 00:20:30,020
ูˆ ุงู„ุฃุฎูŠุฑุฉ ู„ูˆ ูƒุงู†ุช ุงู„ุนู…ู„ูŠุฉ ุงู„ู€ binary operation ู…ุนุฑูุฉ
192
00:20:30,020 --> 00:20:36,120
ุนู„ู‰ ุงู„ู€ group G ู‡ูŠ ุนู…ู„ูŠุฉ ุงู„ุฌู…ุน ูŠุจู‚ู‰ ุงู„ู€ G inverse
193
00:20:36,120 --> 00:20:42,380
ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ู‡ูŠูƒูˆู† ู‡ูˆ ุณุงู„ุจ G ูŠุจู‚ู‰ ู…ุนูƒูˆุณ ุงู„ู€ G ู‡ูˆ
194
00:20:42,380 --> 00:20:47,600
ุณุงู„ุจ G that is ุงู„ู€ G inverse ู‡ูŠ ุณุงู„ุจ G ูˆ ููŠ ู‡ุฐู‡
195
00:20:47,600 --> 00:20:55,100
ุงู„ุญุงู„ุฉ ุฃู‚ูˆู„ ุฌูŠ ุงู†ูุฑุณ ุฃูˆ ุชูƒุนูŠุจ ูŠุนู†ูŠ ุฅูŠุดุŸ ูŠุนู†ูŠ ุณุงู„ุจ
196
00:20:55,100 --> 00:21:01,480
ุฌูŠ ุงู„ูƒู„ ุชูƒุนูŠุจ ูˆ ู‡ุฐู‡ ุชุนุชุจุฑ ุณุงู„ุจ ุซู„ุงุซุฉ ุฌูŠ ู„ุฃู† ุนู†ุฏ
197
00:21:01,480 --> 00:21:06,080
ุงู„ุฌู…ุน ุจุฏูŠ ุฃู‚ูˆู„ ุณุงู„ุจ ุฌูŠ ุณุงู„ุจ ุฌูŠ ุณุงู„ุจ ุฌูŠ ุจูŠุจู‚ู‰
198
00:21:06,080 --> 00:21:13,530
ุณุงู„ุจ ุซู„ุงุซุฉ ุฌูŠ ูˆูƒุฃู†ู‡ ุจูŠุถุฑุจ ุงู„ุฃุณุณ ููŠ ุจุนุถู‡ุง ูˆ ุจู†ุฒู„ู‡ ุชุญุช
199
00:21:13,530 --> 00:21:18,110
ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู‡ ู‡ุฐุง ุจูŠุทู„ุน ุงู„ูƒู„ุงู… ู…ุงุฆุฉ ุจุงู„ู…ุงุฆุฉ ุทูŠุจ
200
00:21:18,110 --> 00:21:22,650
ูˆุฑุณูˆ ู„ูˆ ุจุฏู‡ ุฃู‚ูˆู„ ุฌูŠ ุชูƒุนูŠุจ ุงู„ุนู…ู„ูŠุฉ ุนู…ู„ูŠุฉ ุงู„ุฌู…ุน
201
00:21:22,650 --> 00:21:28,750
ูŠุจู‚ู‰ ุจุฏู‡ ุฃู‚ูˆู„ ุฌูŠ ุฒุงุฆุฏ ุฌูŠ ุฒุงุฆุฏ ุฌูŠ ูˆู„ูŠุณ ุชุถุฑุจ ูŠุจู‚ู‰
202
00:21:28,750 --> 00:21:33,670
ู‡ุฐู‡ ูƒู„ู‡ุง ุชุณุงูˆูŠ ู…ู† ุชุณุงูˆูŠ ุซู„ุงุซุฉ ุฌูŠ ูŠุจู‚ู‰ ุฅุฐุง ุงู„ุนู…ู„ูŠุฉ
203
00:21:33,670 --> 00:21:39,080
ุนู„ู‰ ุงู„ู€ group G ู‡ูŠ ุนู…ู„ูŠุฉ ุงู„ุฌู…ุน ุงู„ุนุงุฏูŠุฉ ูŠุจู‚ู‰ ุฌูŠ
204
00:21:39,080 --> 00:21:44,420
ุชูƒุนูŠุจ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุซู„ุงุซุฉ ุฌูŠ ุฌูŠ ุฃุณ ุนุดุฑุฉ ุชุนู†ูŠ ุนุดุฑุฉ ุฌูŠ
205
00:21:44,420 --> 00:21:50,620
ุฌูŠ ุฃุณ ุณุงู„ุจ ุซู…ุงู†ูŠุฉ ุชุนู†ูŠ ุณุงู„ุจ ุซู…ุงู†ูŠุฉ ุฌูŠ and so on ูˆ
206
00:21:50,620 --> 00:21:59,680
ู‡ูƒุฐุง ุทูŠุจ ููŠ ุงู„ุขู† ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู„ู†ู‚ุทุฉ ุงู„ุฎุงู…ุณุฉ if ุงู„ู€ a
207
00:21:59,680 --> 00:22:07,020
ู†ู‚ุทุฉ ุงู„ุฎุงู…ุณุฉ if ุงู„ู€ a and ุงู„ู€ b belong
208
00:22:14,690 --> 00:22:24,890
ุจุงู„ู†ุณุจุฉ ู„ู„ู…ุฌู…ูˆุนุฉ ุฌูŠ ุซู… ุฃูŠ ุจูŠ ุงู„ูƒู„ ุงู†ูุฑุณ ุจุฏูŠ ูŠุณุงูˆูŠ ุจูŠ
209
00:22:24,890 --> 00:22:37,030
ุงู†ูุฑุณ ุฃูŠ ุงู†ูุฑุณ ุฎู„ูŠ
210
00:22:37,030 --> 00:22:43,070
ุจุงู„ูƒ ู‡ู†ุฃ ู„ูˆ ููŠ ุนู†ุตุฑูŠู† ููŠ ู‚ู„ูˆุจู‡ู… ูˆุถุฑุจุชู‡ู… ููŠ ุจุนุถู‡ู…
211
00:22:43,070 --> 00:22:48,230
ุจุฏูŠ ุฃุฌูŠุจ ุงู„ู…ุนูƒูˆุณ ุชุจุนู‡ู… ูŠุจู‚ู‰ ุงู„ู…ุนูƒูˆุณ ุจู‚ูˆู„ A B ูƒู„
212
00:22:48,230 --> 00:22:54,110
inverse ุนู…ู„ูŠุง ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู‡ุฐุง B inverse A inverse
213
00:22:54,110 --> 00:22:58,950
ูŠุนู†ูŠ ูƒุชุจุช ุงู„ู€ inverse ู„ูƒู„ ูˆุงุญุฏ ููŠู‡ู… ูˆ ู‚ู„ุจุช ุงู„ูˆุถุน
214
00:22:58,950 --> 00:23:04,990
ู‡ุฑูˆุญ ู†ุจุฑู‡ู† ุตุญุฉ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฅุญู†ุง ู‚ุจู„ ู‚ู„ูŠู„ ุฃุซุจุชู†ุง ุฃู†
215
00:23:04,990 --> 00:23:09,140
ุงู„ู€ inverse element ูˆุญูŠุฏ ูˆ ุงู„ู„ู‡ ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ ุฅู„ุง
216
00:23:09,140 --> 00:23:14,040
ุฅู†ุตุงุฑ ูˆุงุญุฏ ู‡ูˆ ูˆุงุญุฏ ูŠุจู‚ู‰ ุงู„ู€ a b ู…ุง ู„ู‡ ุฅู„ุง ู…ุนูƒูˆุณ
217
00:23:14,040 --> 00:23:20,180
ูˆุงุญุฏ ู‡ุฏู ูŠู‚ูˆู„ ุฃู†ู‡ ูŠู„ู‡ ุฌุฏุงุด ุงุซู†ูŠู† ู…ุฏุงู… ุงุซู†ูŠู† ู„ุงุฒู…
218
00:23:20,180 --> 00:23:25,000
ุงุซู†ูŠู† ูŠุชุณุงูˆู‰ ุทุจู‚ุง ู„ู„ุฎุงุตูŠุฉ ุงู„ู„ูŠ ู‚ุจู„ ู‚ู„ูŠู„ ูŠุจู‚ู‰ ุฃู†ุง
219
00:23:25,000 --> 00:23:30,200
ู„ูˆ ู‚ุฏุฑุช ุฃุซุจุช ุฃู† ุงู„ู€ b inverse a inverse ู‡ูˆ ู…ุนูƒูˆุณ ุงู„ู€
220
00:23:30,200 --> 00:23:32,940
a b ุจุชู…ู† ุงู„ู…ุทู„ูˆุจ ู…ุธุจูˆุท
221
00:23:37,330 --> 00:23:46,230
ุจู…ุง ุฃู† ุงู„ู€ a ูˆ ุงู„ู€ b ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ g, we have ุฃู† ุญุงุตู„
222
00:23:46,230 --> 00:23:51,570
ุงู„ุถุฑุจ a,b ู…ูˆุฌูˆุฏ ููŠ g ู„ู…ุงุฐุงุŸ ู„ู…ุดุงู† ุงู„ู€ binary
223
00:23:51,570 --> 00:23:56,210
operation a to elements a star b ู„ุงุฒู… ูŠูƒูˆู† ู…ูˆุฌูˆุฏ
224
00:23:56,210 --> 00:24:03,250
ููŠ ุฌูŠ ู…ุง ุฏุงู… ู…ูˆุฌูˆุฏ ููŠ ุฌูŠ ู‡ุฐุง ู…ุนู†ุงู‡ there exists
225
00:24:03,250 --> 00:24:15,690
inverse for the element a,b ู„ุงุฒู… ู†ุฌูŠ ู„ู‡ ู…ุนูƒูˆุณ that
226
00:24:15,690 --> 00:24:23,790
is A B ุงู„ูƒู„ inverse ู…ุด ุดุงูƒุจ ุฅู†ู‡ุง ุฑู…ุฒ ุงู„ู…ุนูƒูˆุณ ุชุจุน ุงู„ู€
227
00:24:23,790 --> 00:24:29,730
A B A B inverse ุทูŠุจ ุฃู†ุง ุจุฏูŠ ุฃุดูˆู ุงู„ู„ูŠ ูƒุงุชุจู‡ ู„ูŠ ู‡ุฐุง
228
00:24:29,730 --> 00:24:34,670
ุฅุฐุง ุถุฑุจุช ููŠ A B ู…ู† ุงู„ูŠู…ูŠู† ูˆ ู…ู† ุงู„ูŠุณุงุฑ ูˆ ุทู„ุน ุงู„ู€
229
00:24:34,670 --> 00:24:39,250
identity ุงู„ู€ e ูŠุจู‚ู‰ ู‡ุฐุง ูƒู…ุงู† inverse ุตุญ ูˆู„ุง ู„ุง
230
00:24:39,250 --> 00:24:48,090
ุงู„ุขู† ู„ูˆ ุฌูŠุช ูˆ ู‚ู„ุช ู„ูƒ consider ุฎุฏ ู„ูŠ ุงู„ู€ A B ููŠ ุงู„ู€ B
231
00:24:48,090 --> 00:24:53,590
inverse A inverse ู‡ุฃุดูˆู ูƒุฏู‡ ุจุฏู‡ ูŠุนุทูŠู†ูŠ ู‡ุฐุง ุงู„ุขู† ุจุฏู‘ู‡
232
00:24:53,590 --> 00:24:58,450
ุฃุณุชุฎุฏู… ุฎุงุตูŠุฉ ุงู„ู€ associativity ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‘ู‡ ูŠุนุทูŠู†ูŠ
233
00:24:58,450 --> 00:25:05,910
A ููŠ B ููŠ ุงู„ู€ B inverse ููŠ ุงู„ู€ A inverse ุงู„ู€ B ููŠ ุงู„ู€
234
00:25:05,910 --> 00:25:12,210
B inverse ุจูŠุนุทูŠู†ูŠ ุงู„ู€ identity ูŠุจู‚ู‰ ุงู„ู€ A ููŠ ุงู„ู€ E ููŠ
235
00:25:12,210 --> 00:25:17,700
ุงู„ู€ A inverse ุงู„ู€ E ุฃุถุฑุจ ููŠ ุฃูŠ ุนู†ุตุฑ ุจูŠุทู„ุนุŸ ู†ูุณ
236
00:25:17,700 --> 00:25:23,320
ุงู„ุนู†ุตุฑ ูŠุจู‚ู‰ ู‡ุฐุง A A inverse ูŠุจู‚ู‰ ุจุฏู‘ู‡ ูŠุณุงูˆูŠ ุงู„ู€
237
00:25:23,320 --> 00:25:28,960
identity E ู…ุง ู†ูุนุด ู…ู† ุงู„ูŠุณุงุฑ ูˆ ุจุณ ูˆ ู…ู† ุงู„ูŠู…ูŠู† ู„ุงุฒู…
238
00:25:28,960 --> 00:25:35,410
ูŠูƒูˆู† ู…ู† ูˆูŠู†ุŸ ู…ู† ุงู„ุทุฑููŠู† ูŠุจู‚ู‰ ุจุฃุฌูŠ ุจู‚ูˆู„ู‡ and ุงู„ู€ b
239
00:25:35,410 --> 00:25:42,670
inverse a inverse ููŠ ุงู„ู€ a b ุจุฏู‘ู‡ ูŠุณุงูˆูŠ b inverse ููŠ
240
00:25:42,670 --> 00:25:50,410
ุงู„ู€ a inverse a ููŠ ุงู„ู€ a inverse a ููŠ ู…ู†ุŸ ููŠ ุงู„ู€ b
241
00:25:50,410 --> 00:25:56,190
ุทูŠุจ ู‡ุฐุง ุงู„ุนู†ุตุฑ ูˆ ู…ุนูƒูˆุณู‡ ุจูŠุนุทูŠู†ูŠ ู…ู†ุŸ ุงู„ู€ identity
242
00:25:56,190 --> 00:26:02,420
element ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‘ู‡ ูŠุนุทูŠู†ุง P inverse AB ุงู„ู„ูŠ ู‡ูˆ
243
00:26:02,420 --> 00:26:07,200
ุจุฏู‘ู‡ ูŠุนุทูŠู†ุง P inverse P ุจุฏู‘ู‡ ูŠุนุทูŠู†ุง ู…ู† ุงู„ู€ identity
244
00:26:07,200 --> 00:26:12,400
element ุจู†ุงุก ุนู„ูŠู‡ ู‡ุฐุง ุงู„ู€ element P inverse A
245
00:26:12,400 --> 00:26:18,840
inverse ุญู‚ู‚ ู„ูŠู‡ ุฎุงุตูŠุฉ ู…ุนูƒูˆุณ ุงู„ุนู†ุตุฑ AB ูŠุจู‚ู‰ ู…ู†
246
00:26:18,840 --> 00:26:25,940
ุงู„ุงุซู†ูŠู† ู‡ุฏูˆู„ ู…ุน ุจุนุถ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู‡ุฐุง ุจุฏู‘ู‡ ูŠุนุทูŠู†ูŠ ุฃู† b
247
00:26:25,940 --> 00:26:37,140
inverse a inverse is the inverse element of a,b
248
00:26:37,140 --> 00:26:41,800
ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุนู†ุตุฑ ู‡ูˆ ู…ุนูƒูˆุณ ุงู„ู€ a,b ู„ูƒู† ุฅุญู†ุง ุนู†ุฏู†ุง
249
00:26:41,800 --> 00:26:46,900
ู…ุนูƒูˆุณ ุงู„ู€ a,b ู…ูŠู† ู‡ูˆ ุงู„ู„ูŠ ูุงุฌ ูŠุจู‚ู‰ ุฏูˆู„ ุงุซู†ูŠู† ู…ุนุงู‡ู…
250
00:26:47,490 --> 00:26:55,110
ู„ุงุฒู… ูŠุชุณุงูˆู‰ ูุจุฃุฌูŠ ุจู‚ูˆู„ู‡ since ุจู…ุง ุฃู† the inverse
251
00:26:55,110 --> 00:27:05,950
the inverse of an element of a group G is unique
252
00:27:13,670 --> 00:27:20,850
ุฅู† (A B) ุงู„ูƒู„ inverse ูŠุณุงูˆูŠ B inverse A inverse
253
00:27:20,850 --> 00:27:24,010
ุงู„ู„ูŠ
254
00:27:24,010 --> 00:27:28,830
ุฎู„ูŠู†ูŠ ุฃุณุฃู„ูƒูˆุง ู‡ุฐุง ุงู„ุณุคุงู„ ูˆ ุฃุดูˆู ุฅูŠุด ุฑุฃูŠูƒูˆุง ููŠู‡ ุทูŠุจ
255
00:27:28,830 --> 00:27:36,510
ูŠุง ุดุจุงุจ ุฃู†ุง ู„ูˆ ุจุฏูŠ (A B C) ุงู„ูƒู„ inverse ุฅูŠุด ุจุฏู‡ ูŠุณุงูˆูŠ
256
00:27:40,480 --> 00:27:44,280
C inverse B inverse A inverse ูŠุนู†ูŠ ูŠุจู‚ู‰ ุดูƒู„ ู…ู†
257
00:27:44,280 --> 00:27:51,260
ุงู„ุขุฎุฑ ู„ู„ุฃูˆู„ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏูŠ ูŠุนุทูŠู†ูŠ C inverse ูˆ
258
00:27:51,260 --> 00:27:56,600
ู‡ู†ุง B inverse ูˆ ู‡ู†ุง A inverse ุซู„ุงุซุฉ ุฃุฑุจุนุฉ ุนุดุงู†
259
00:27:56,600 --> 00:28:01,440
ุงู„ู„ู‡ ูŠูƒูˆู†ูˆุง ู…ูŠุฉ ุจุฏูƒ ุชุจุฏุฃ ู…ู† ุงู„ุขุฎุฑ ูˆ ุชุฑุฌุน ุฑุฌูˆุน ูŠุจู‚ู‰
260
00:28:01,440 --> 00:28:09,060
ู‡ุฐุง ู‡ูˆ ุงู„ู…ุนูƒูˆุณ ู„ู…ู†ุŸ ู„ู„ุนู†ุตุฑ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงู„ุขู† ููŠ ุณุคุงู„
261
00:28:09,060 --> 00:28:15,840
ููŠ ุงู„ูƒุชุงุจ ุณุคุงู„ 18 ุจุฑุถู‡ ุจุฏูŠ ุงุนุชุจุฑู‡ ุฎุงุตูŠุฉ ู…ู‡ู…ุฉ
262
00:28:15,840 --> 00:28:22,540
ุฌุฏุง ุจุชู„ุฒู…ู†ุง ุฃุซู†ุงุก ุงู„ุดุบู„ ุณุคุงู„ 18 ุจูŠู‚ูˆู„ ู„ูŠ if G
263
00:28:22,540 --> 00:28:31,610
is a group ู„ูˆ ูƒุงู†ุช ุงู„ G group then ุงู„ู€ A Inverse
264
00:28:31,610 --> 00:28:39,910
Inverse ุจุฏู‡ ูŠุณุงูˆูŠ A itself ู‡ุฐุง ุงู„ูƒู„ุงู… ุตุญูŠุญ ู„ูƒู„ ุงู„
265
00:28:39,910 --> 00:28:42,390
A ุงู„ู…ูˆุฌูˆุฏ ููŠ ุงู„ group G
266
00:29:05,530 --> 00:29:11,690
ุฎู„ูŠู†ูŠ ุฃู‚ูˆู„ ู„ู‡ ููŠ ุงู„ group G ู…ุนูƒูˆุณ ุงู„ู…ุนูƒูˆุณ ุจูŠุนุทูŠู†ุง
267
00:29:11,690 --> 00:29:17,730
ุงู„ุฃุตู„ A inverse inverse ุจูŠุนุทูŠู†ุง A ู‚ุจู„ ู…ุง ุชูˆุฌุฏ A
268
00:29:17,730 --> 00:29:23,630
ุงู„ู…ุนูƒูˆุณ ุชุจุนู‡ ูŠุจู‚ู‰ ู…ู† ุงู„ุขู† ูุตุงุนุฏุง ู…ุนูƒูˆุณ ู…ุนูƒูˆุณ ุงู„
269
00:29:23,630 --> 00:29:28,130
element ุจูŠุฑุฌุนู†ูŠ ู„ู„ element itself ุจุฏู†ุง ู†ุฑูˆุญ ู†ุซุจุช
270
00:29:28,130 --> 00:29:32,090
ุตุญุฉ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ู„ ุงู„ professor
271
00:29:38,960 --> 00:29:49,840
ู„ุช ุงู„ a ู…ูˆุฌูˆุฏ ููŠ ุงู„ group g then a inverse ู…ูˆุฌูˆุฏ
272
00:29:49,840 --> 00:29:57,830
ููŠ g ู…ุนูƒูˆุณู‡ ู…ูˆุฌูˆุฏ ููŠ ุฌูŠู‡ ูƒู…ุงู† ู…ุนูƒูˆุณ ู‡ุฐุง ู„ุงุฒู… ูŠูƒูˆู†
273
00:29:57,830 --> 00:30:06,150
ู…ูˆุฌูˆุฏ ููŠ ุฌูŠู‡ ุตุญูŠุญ ูŠุจู‚ู‰ then and a inverse inverse
274
00:30:06,150 --> 00:30:12,530
ู…ูˆุฌูˆุฏ ููŠ ุฌูŠู‡ ู„ูŠุด ู„ุฃู†ู‡ ุฅุฐุง ูˆุฌุฏ ุนู†ุตุฑ ููŠ ุงู„ group
275
00:30:12,530 --> 00:30:17,610
ู„ุงุฒู… ูŠูƒูˆู† ู…ุนูƒูˆุณู‡ ู…ูˆุฌูˆุฏ ุดูˆ ู…ุนูƒูˆุณู‡ ุงู„ู„ูŠ ู‡ูˆ a inverse
276
00:30:17,610 --> 00:30:25,060
inverse ุทูŠุจ ู…ุฏุงู… ู‡ูŠูƒ ู„ูˆ ุฌูŠุช ุฃุฎุฏุช ุงู„ a inverse
277
00:30:25,060 --> 00:30:33,820
inverse inverse ู…ุด ู‡ุฐุง ุงู„ุนู†ุตุฑ ูˆ ู‡ุฐุง ู…ุนูƒูˆุณู‡ ุญุงุตู„
278
00:30:33,820 --> 00:30:40,860
ุถุฑุจู‡ ู…ุง ุดูˆ ุจุฏู‡ ูŠุทูŠู†ูŠ ุงู„ identity element ุทูŠุจ ุฅูŠุด
279
00:30:40,860 --> 00:30:47,440
ุฑุฃูŠูƒ ู„ูˆ ุฑูˆุญุช ุถุฑุจุช ู…ู† ุฌู‡ุฉ ุงู„ุดู…ุงู„ ุจุงู„ุนู†ุตุฑ a ุงุชุตู„ุช ู…ู†
280
00:30:47,440 --> 00:30:54,760
ุฌู‡ุฉ ุงู„ุดู…ุงู„ ู‡ุงู‡ุฏุฑ ุจุงู„ูƒ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู€ A ู…ุถุฑูˆุจ ููŠ ุงู„ู€ A
281
00:30:54,760 --> 00:31:02,060
inverse ููŠ ุงู„ู€ A inverse inverse ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู€ A
282
00:31:02,060 --> 00:31:03,360
ู…ุถุฑูˆุจ ููŠ ุงู„ู€ A inverse inverse ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู€ A
283
00:31:03,360 --> 00:31:04,500
ู…ุถุฑูˆุจ ููŠ ุงู„ู€ A inverse inverse ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู€ A
284
00:31:04,500 --> 00:31:06,880
ู…ุถุฑูˆุจ ููŠ ุงู„ู€ A inverse inverse ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู€ A
285
00:31:06,880 --> 00:31:11,880
ู…ุถุฑูˆุจ ููŠ ุงู„ู€ A inverse inverse ูŠุจู‚ู‰
286
00:31:11,880 --> 00:31:15,540
ู‡ุฐุง ุงู„ู€ A ู…ุถุฑูˆุจ ููŠ ุงู„ู€ A inverse inverse ูŠุจู‚ู‰ ู‡ุฐุง
287
00:31:26,790 --> 00:31:33,030
ุงู„ุนู†ุตุฑ ููŠ ุงู„ู…ุนูƒูˆุณ ูŠุนุทูŠู†ุง ุงู„ identity element ูŠุจู‚ู‰
288
00:31:33,030 --> 00:31:38,970
ู‡ุฐุง ูŠุนุทูŠู†ุง ุฃู† ุงู„ E ููŠ A inverse inverse
289
00:31:41,540 --> 00:31:45,380
ุงู„ู€ identity element ู„ู…ุง ู†ู‚ุถุจู‡ ููŠ ุฃูŠ ุนู†ุตุฑ ุจูŠุทู„ุน
290
00:31:45,380 --> 00:31:51,460
ู†ูุณ ุงู„ุนู†ุตุฑ ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ a inverse inverse ุจุฏู‡
291
00:31:51,460 --> 00:31:57,240
ูŠุณุงูˆูŠ ุงู„ a itself ุนุฒูŠุฒูŠ ูˆ ู‡ูˆ ุงู„ู…ุทู„ูˆุจุŸ ุทูŠุจ ูˆ ู‡ูˆ
292
00:31:57,240 --> 00:32:02,360
ุงู„ู…ุทู„ูˆุจ ูˆ ุงู†ุชู‡ูŠู†ุง ู…ู† ู‡ุฐุง ุงู„ section ูˆ ุฅู„ูŠูƒู… ุงู„
293
00:32:02,360 --> 00:32:10,730
exercises ุจุฏู†ุง ูŠุงูƒู… ุชู…ุฑู†ูŠ ุฃุฏูŠูƒู… ุจุณุคุงู„ 5 ูˆ 6 ูˆ
294
00:32:10,730 --> 00:32:21,230
8 ูˆ 10 ูˆ 12 ูˆ 17 ูˆ 19 ูˆ 4 ูˆ
295
00:32:21,230 --> 00:32:30,690
20 ูˆ 25 ูˆ 26 ูˆ 3 ูˆ
296
00:32:30,690 --> 00:32:39,050
33 ูˆ 34 ูˆ 35 ูˆ 39 ูˆ
297
00:32:39,050 --> 00:32:39,730
30
298
00:32:44,920 --> 00:32:49,500
ู‡ุฐุง ู„ุง ูŠุนู†ูŠ ุฃู† ุจู‚ู‰ ุงู„ู†ุงุณ ู…ุดุทูˆุจุฉ ู„ุง ู…ุด ู…ุดุทูˆุจุฉ ุฅุฐุง
299
00:32:49,500 --> 00:32:54,500
ุจุชุญู„ ู‡ุฏูˆู„ู‡ ูƒู…ุงู† ุฌุฏู‡ู… ุจูŠูƒูˆู†ูˆุง ูƒูˆูŠุณ ู…ุด ุบู„ุท ู„ูƒู† ุฃู†ุง
300
00:32:54,500 --> 00:32:59,720
ุจู‡ู…ู†ูŠ ู‡ุฏูˆู„ ุงู†ุชู‚ู†ู‡ู… ุงู†ุชู‚ุงุก ุจุญูŠุซ ูŠุบุทูˆุง ููƒุฑุฉ ูƒุซูŠุฑุฉ
301
00:32:59,720 --> 00:33:05,780
ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ุชู…ุฑูŠู† ูˆู„ุฐู„ูƒ ู‡ุฏูˆู„ ู…ู† ุฃู‡ู… ุงู„ู…ุณุงุฆู„ ุงู„ู„ูŠ
302
00:33:05,780 --> 00:33:10,440
ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ุชู…ุฑูŠู† ู„ุนู„ ูŠูƒูˆู† ููŠู‡ุง ููƒุฑุฉ ุฌุฏูŠุฏุฉ ู†ุญุงูˆู„
303
00:33:10,440 --> 00:33:15,190
ู†ุณุชููŠุฏ ู‡ุฐู‡ ุงู„ููƒุฑุฉ ุทุจุนุง ุนู†ุฏูƒู… ู…ุญุงุถุฑุฉ ุงู„ูŠูˆู… 14
304
00:33:15,190 --> 00:33:20,270
ุงู„ูˆุงุญุฏุฉ ู…ุด ุญุงุฌุฉ ุญู„ ุงู„ุฃุณุฆู„ุฉ ู„ุฃ ุญุงุจุฏ ู…ุญุงุถุฑุฉ ุฌุฏูŠุฏุฉ
305
00:33:20,270 --> 00:33:24,710
ู„ูƒู† ุงู„ุฃุณุฆู„ุฉ ู„ูŠูˆู… ุฅูŠุดุŸ ู„ูŠูˆู… ุงู„ุงุซู†ูŠู† ู…ุด ู‡ุชุฑูˆุญ ุชุญู„
306
00:33:24,710 --> 00:33:29,690
ุนู„ูŠูƒ ู…ุด ู‡ู†ุญู„ ูˆ ุฃู†ุช ุชู†ุณุฎ ูˆู„ุง ุนู…ุฑูƒ ุจุชุณุชููŠุฏ ุญุงุฌุฉ ุจุฏูƒ
307
00:33:29,690 --> 00:33:34,510
ุชููƒุฑ ู…ู† ู‡ู†ุง ู„ุจุนุฏ ุจูƒุฑุฉ ููŠ ุญู„ ู‡ุฐู‡ ุงู„ู…ุณุฃู„ุฉ ูˆ ุชุญุงูˆู„ ุชุญู„
308
00:33:34,510 --> 00:33:38,430
ุจู‚ุฏุฑ ุงู„ุงู…ูƒุงู† ูˆ ุงู„ู„ูŠ ูŠุตุนุจ ุนู„ูŠูƒ ุจุนุฏ ุจูƒุฑุฉ ุฅู† ุดุงุก ุงู„ู„ู‡
309
00:33:38,430 --> 00:33:43,610
ุจู†ุญู„ู‡ ู…ู‡ู…ุง ูƒุงู† ุดูƒู„ ู‡ุฐุง ุงู„ุณุคุงู„ ูˆุงุถุญ ูƒู„ุงู… ุงูŠู‡ุŸ ูŠุนู†ูŠ
310
00:33:43,610 --> 00:33:47,970
ุจุฏูŠูƒ ุจุนุถ ุงู„ู…ุงุฏุฉ ุชูŠุฌูŠ ุฌุงู‡ุฒ ู†ูุณูƒ ู„ู„ู†ู‚ุงุดุŒ ู‡ูŠูƒูˆู† ููŠ
311
00:33:47,970 --> 00:33:51,950
ู†ู‚ุงุด ูƒุซูŠุฑ ุญุณุจ ุงู„ู„ูŠ ูŠู…ูƒู† ุงู„ู„ูŠ ูŠุณุฃู„ูƒูˆุง ูƒู„ูƒูˆุง ุฃูˆ ุซู„ุซ
312
00:33:51,950 --> 00:33:56,330
ุฑุจุงุนูƒูˆุง ุฃูˆ ู†ุตููƒูˆุง ุญุณุจ ู…ุง ุงู„ูˆู‚ุช ุงู„ู„ูŠ ุงูŠู‡ ุงู„ู…ุชุงุญ ูŠุนู†ูŠ
313
00:33:56,330 --> 00:34:00,050
ูƒู„ ูˆุญุฏุฉ ุฃู†ุช ุชุชูˆุฌู‡ู„ูƒ ุงู„ุณุคุงู„ ุฅูŠุด ุฑุฃูŠูƒ ููŠ ุงู„ุณุคุงู„ ู„ูˆูŠู†
314
00:34:00,050 --> 00:34:04,970
ูˆุตู„ุช ููŠู‡ ุฅูŠุด ุญู„ุช ุฅูŠุด ูƒุฏู‡ ุฅู„ู‰ ุขุฎุฑู‡ ู‡ูŠูƒ ุจูŠุตูŠุฑ ู…ุฎูƒ
315
00:34:04,970 --> 00:34:10,210
ูŠูู‡ู… ุงู„ู„ูŠ ู‡ูˆ ุฌุจุฑ ูˆ ุจุชุณุชุทูŠุน ุฃู† ุชู…ุดูŠ ู…ุนุงู†ุง ู…ุง ุญู„ุชุด
316
00:34:10,210 --> 00:34:14,250
ูˆุงู„ู„ู‡ ุนู…ุฑูƒ ู…ุง ู‡ุชู…ุดูŠ ู‡ุชุถู„ูƒ ู‚ุงุนุฏ ุนู†ุฏู†ุง ู‡ู†ุง ุนู„ู‰ ุทูˆู„
317
00:34:14,250 --> 00:34:21,770
ู‡ุงูŠ ู†ุนู… ูŠุจู‚ู‰ ุงู„ุขู† ู†ุญุงูˆู„ ุจู‚ุฏุฑ ุงู„ุงู…ูƒุงู† ุชุญู„ ู‡ุฐู‡ ุงู„ู…ุณุงุฆู„
318
00:34:21,770 --> 00:34:26,830
ุฃู†ุง ู…ุชุฃูƒุฏ ุฃู†ู‡ ู…ุด ู‡ุชุนุฑู ุชุญู„ู‡ู… ูƒู„ู‡ู… ู„ูƒู† ุนู„ู‰ ุงู„ุฃู‚ู„
319
00:34:26,830 --> 00:34:32,350
ุจุชุญู„ ุดูŠุก ูƒุซูŠุฑ ู…ู†ู‡ู… ูˆู„ุฐู„ูƒ ุงู„ู…ู†ุงู‚ุดุฉ ุญุชู‰ ุงู„ู„ูŠ
320
00:34:32,350 --> 00:34:38,670
ู…ุง ุนุฑูู†ุงุด ู†ุญู„ู‡ ุงู„ุฑูˆุญ ู†ุญู„ู‡ ููŠ ู…ุญุงุถุฑุฉ ุงู„ู…ู†ุงู‚ุดุฉ ุทูŠุจ
321
00:34:38,670 --> 00:34:43,230
ุนู„ูŠูƒ ุจูƒูˆู† ุงู†ุชู‡ูŠู†ุง ู…ู† ู‡ุฐุง ุงู„ chapter ุจุฏู†ุง ู†ุฑูˆุญ ู„ู„
322
00:34:43,230 --> 00:34:48,010
chapter ุงู„ู„ูŠ ุจุนุฏู‡ ุงู„ู„ูŠ ู‡ูˆ chapter 3 chapter
323
00:34:48,010 --> 00:34:54,690
3 ูŠุง ุดุจุงุจ ุงู„ู„ูŠ ู‡ูˆ ุจูŠุชุญุฏุซ ุนู† ุงู„ subgroups ูŠุนู†ูŠ
324
00:34:54,690 --> 00:34:59,110
ุงุญู†ุง ูƒู†ุง ุจู†ุดุชุบู„ ููŠ ุงู„ groups ุงู„ุขู† ุจุฏู†ุง ู†ุจุฏุฃ ู†ุงุฎุฏ
325
00:34:59,110 --> 00:35:12,310
ู…ุฌู…ูˆุนุงุช ุฌุฒุฆูŠุฉ ู…ู†ู‡ุง ูŠุจู‚ู‰ chapter 3 finite groups
326
00:35:12,310 --> 00:35:20,390
finite groups finite
327
00:35:20,390 --> 00:35:21,110
groups finite groups finite groups finite groups
328
00:35:21,110 --> 00:35:22,930
finite groups finite groups finite groups finite
329
00:35:22,930 --> 00:35:24,850
groups finite groups finite groups finite groups
330
00:35:24,850 --> 00:35:26,470
finite groups finite groups finite groups finite
331
00:35:26,470 --> 00:35:34,790
groups finite groups ุฌุฏูŠุฏุฉ ู‚ุจู„ ุฃู† ู†ุจุฏุฃ ููŠ ุงู„ู€
332
00:35:34,790 --> 00:35:40,570
subgroups ุญุงุฌุฉ ุงุณู…ู‡ุง ุงู„ order ู„ู„ group ูˆ ุงู„ order ู„ู„
333
00:35:40,570 --> 00:35:46,090
element ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ููŠ ุงู„ group ุฃูˆู„ ุดูŠุก ุจุงู„ุจู„ุฏูŠ ู‡ูŠูƒ
334
00:35:46,090 --> 00:35:50,900
ู‚ุจู„ ู…ุง ู†ูƒุชุจ ู„ู‡ ุฃุฑุฏุช ุงู„ order ู„ุฌุฑูˆุจ ูุฃุฐู‡ุจ ุจุนุฏ
335
00:35:50,900 --> 00:35:56,000
ุนู†ุงุตุฑู‡ุง ุฌุฏุงุด ุงู„ order ู„ุฌุฑูˆุจ ู‡ูˆ ุนุฏุฏ ุงู„ุนู†ุงุตุฑ ููŠ
336
00:35:56,000 --> 00:35:59,620
ุงู„ุฌุฑูˆุจ ุฌุฑูˆุจ ููŠู‡ุง ุฃุฑุจุน ุนู†ุงุตุฑ ูŠุจู‚ู‰ ุงู„ order ู„ู‡ุง
337
00:35:59,620 --> 00:36:04,480
ูŠุณุงูˆูŠ ุฃุฑุจุนุฉ ุฌุฑูˆุจ ููŠู‡ุง ุนุดุฑ ุนู†ุงุตุฑ ูŠุจู‚ู‰ ุงู„ order ู„ู‡ุง
338
00:36:04,480 --> 00:36:11,770
ูŠุณุงูˆูŠ ุนุดุฑุฉ ูˆ ู‡ูƒุฐุง ู„ูƒู† ุงู„ order ู„ู„ element ุงู„ู„ูŠ
339
00:36:11,770 --> 00:36:18,150
ู…ูˆุฌูˆุฏ ููŠ ุงู„ group ู‡ูˆ ุฃุตุบุฑ ุนุฏุฏ ุตุญูŠุญ ู…ูˆุฌุจ ุจุญุทู‡ ูƒ ุฃุณู„
340
00:36:18,150 --> 00:36:21,170
ู‡ุฐุง ุงู„ element ุจูŠุนุทูŠู†ุง ุงู„ identity
341
00:36:26,400 --> 00:36:29,720
ุฃุตุบุฑ ุนุฏุฏ ุตุญูŠุญ ู…ูˆุฌุจ ุฃุตุบุฑ ุนุฏุฏ ุตุญูŠุญ ู…ูˆุฌุจ ุฃุตุบุฑ ุนุฏุฏ
342
00:36:29,720 --> 00:36:32,280
ุตุญูŠุญ ู…ูˆุฌุจ ุฃุตุบุฑ ุนุฏุฏ ุตุญูŠุญ ู…ูˆุฌุจ ุฃุตุบุฑ ุนุฏุฏ ุตุญูŠุญ ู…ูˆุฌุจ
343
00:36:32,280 --> 00:36:34,300
ุฃุตุบุฑ ุนุฏุฏ ุตุญูŠุญ ู…ูˆุฌุจ ุฃุตุบุฑ ุนุฏุฏ ุตุญูŠุญ ู…ูˆุฌุจ ุฃุตุบุฑ ุนุฏุฏ
344
00:36:34,300 --> 00:36:38,640
ุตุญูŠุญ ู…ูˆุฌุจ ุฃุตุบุฑ ุนุฏุฏ ุตุญูŠุญ ู…ูˆุฌุจ ุฃุตุบุฑ ุนุฏุฏ ุตุญูŠุญ ู…ูˆุฌุจ
345
00:36:38,640 --> 00:36:43,420
ุฃุตุบุฑ ุนุฏุฏ ุตุญูŠุญ ู…ูˆุฌุจ ุฃุตุบุฑ ุนุฏุฏ ุตุญูŠุญ ู…ูˆุฌุจ ุฃุตุบุฑ ุนุฏุฏ
346
00:36:43,420 --> 00:36:45,120
ุตุญูŠุญ ู…ูˆุฌุจ ุฃุตุบุฑ ุนุฏุฏ ุตุญูŠุญ ู…ูˆุฌุจ ุฃุตุบุฑ ุนุฏุฏ ุตุญูŠุญ ู…ูˆุฌุจ
347
00:36:45,120 --> 00:36:49,640
ุฃุตุบุฑ ุนุฏุฏ
348
00:36:49,640 --> 00:37:01,290
ุตุญูŠุญ ู…ูˆุฌุจ the order of G as the number
349
00:37:01,290 --> 00:37:08,950
of elements
350
00:37:08,950 --> 00:37:18,050
in G which is denoted by
351
00:37:22,800 --> 00:37:29,120
|G| ุฌูŠู‡ ู…ุง ุจูŠู† ุฎุทูŠู† ูˆ ุชู‚ุฑุฃ ุงู„ order ู„ุฌูŠู‡ ู…ุด
352
00:37:29,120 --> 00:37:34,400
absolute value ู„ุฌูŠู‡ ูŠุจู‚ู‰ ู‡ุฐุง ู‡ูˆ ุงู„ order ู„ุฌูŠู‡
353
00:37:34,400 --> 00:37:39,440
command definition ุซุงู†ูŠ ุงู„ order ู„ู„ element the
354
00:37:39,440 --> 00:37:53,720
order of an element of an element ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ููŠ G
355
00:37:53,720 --> 00:38:04,040
is the smallest positive
356
00:38:04,040 --> 00:38:07,580
integer
357
00:38:37,950 --> 00:38:46,780
ุจู†ุฑูˆุญ ู†ูƒุชุจ ุงู„ order ู„ู€ G ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ n ููŠ ุนู†ุฏู†ุง
358
00:38:46,780 --> 00:38:59,960
ุจุนุถ ุงู„ notes ุงู„ุจุณูŠุทุฉ ุฃูˆู„ ูˆุงุญุฏุฉ if the operation on
359
00:38:59,960 --> 00:39:11,100
G is addition is addition ุนู…ู„ูŠุฉ ุงู„ุฌู…ุน then
360
00:39:30,230 --> 00:39:38,950
ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ is the order of
361
00:39:38,950 --> 00:39:41,250
the identity
362
00:39:42,600 --> 00:40:00,500
element E is ูˆุงุญุฏุฉ ุตุญูŠุญุฉ ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู„ุซุฉ if there is if
363
00:40:00,500 --> 00:40:10,380
there is no positive integer n
364
00:40:11,810 --> 00:40:17,310
such that ุงู„ู€
365
00:40:17,310 --> 00:40:25,310
G to the power N ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ identity then ุงู„ order
366
00:40:25,310 --> 00:40:29,270
ู„ู€ G is infinite
367
00:41:00,880 --> 00:41:05,620
ู†ุฑุฌุน ู„ู‡ุฐู‡ ุงู„ุชุนุฑูŠููŠู† ูˆุงู„ู…ู„ุงุญุธุงุช ุงู„ู„ูŠ ุนู„ู‰ ุงู„ุชุนุฑูŠููŠู†
368
00:41:05,620 --> 00:41:10,920
ู…ุฑุฉ ุซุงู†ูŠุฉ ุจู‚ูˆู„ the order of a group G is the
369
00:41:10,920 --> 00:41:16,980
number of elements in G ุนุฏุฏ ุงู„ุนู†ุงุตุฑ ููŠ G ูˆุงู„ู„ูŠ
370
00:41:16,980 --> 00:41:22,280
ุจุชุฏุฑู…ุฒู„ู‡ ุจุงู„ุฑู…ุฒ |G| ุฌูŠู‡ ู…ุง ุจูŠู† ุฎุทูŠู† ู„ูŠุณุช absolute value
371
00:41:22,280 --> 00:41:28,140
ู„ู€ G ูˆุฅู†ู…ุง ุงู„ order ู„ู€ G ูŠุจู‚ู‰ ุงู„ order ู„ู€ G ู‡ูˆ
372
00:41:28,140 --> 00:41:33,360
ุนุฏุฏ ุงู„ุนู†ุงุตุฑ ููŠ ุงู„ group ุงู„ุณุคุงู„ ู‡ูˆ ู‡ู„ ู…ู…ูƒู† ุนุฏุฏ
373
00:41:33,360 --> 00:41:37,960
ุงู„ุนู†ุงุตุฑ ูŠูƒูˆู† ู…ุญุฏูˆุฏ ูŠุนู†ูŠ ุฑู‚ู… ูˆ ู…ู…ูƒู† ูŠูƒูˆู† ูƒุฐู„ูƒ
374
00:41:37,960 --> 00:41:43,760
infinity ู…ู…ูƒู† ุงุซู†ูŠู† ูˆุฑุฏุงุช ูŠุนู†ูŠ ุงู„ group ู‚ุฏ ุชู†ุชู‡ูŠ
375
00:41:43,760 --> 00:41:48,700
ูˆุจุงู„ุชุงู„ูŠ ุนุฏุฏ ุงู„ุนู†ุงุตุฑ ูŠูƒูˆู† finite ูˆู‚ุฏ ู„ุง ุชู†ุชู‡ูŠ
376
00:41:48,700 --> 00:41:54,340
ูˆุจุงู„ุชุงู„ูŠ ู‡ุฐู‡ ุงู„ุนู†ุงุตุฑ infinite ุฒูŠ ุงู„ู€ R star ุงู„ู„ูŠ
377
00:41:54,340 --> 00:41:57,760
ู‡ูŠ set of real numbers ู„ู…ุง ุฃุดูŠู„ ู…ู†ู‡ุง zero ุชุญุช
378
00:41:57,760 --> 00:42:01,680
ุนู…ู„ูŠุฉ ุงู„ุถุฑุจ ุฃูƒู… ุฃู†ุตุฑ ููŠู‡ุง ุฏูŠ group ุทุจุนุง ุฃูƒู… ุฃู†ุตุฑ
379
00:42:01,680 --> 00:42:06,200
ููŠู‡ุง ู…ุงู„ุงู†ู‡ุงูŠุฉ ู…ู† ุงู„ุนู†ุงุตุฑ ุฅุฐุง ู…ู† ุงู„ู€ order ู„ู„
380
00:42:06,200 --> 00:42:11,430
group G ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุจูŠูƒูˆู† infinite ู„ูƒู† ู„ูˆ ุฑูˆุญุช ู„
381
00:42:11,430 --> 00:42:17,110
ZN ูˆ ู„ุง UN ูˆ ู„ุง ูƒู„ ุงู„ุฃู…ุซู„ุฉ ุงู„ู„ูŠ ุฃุฎุฏู†ุงู‡ู… ู‡ุฐู‡ ุจูŠุตูŠุฑ
382
00:42:17,110 --> 00:42:21,630
ู…ุงู„ู‡ุง finite ุฃุฑุจุน ุนู†ุงุตุฑ ุณุชุฉ ุนู†ุงุตุฑ ุนุดุฑูŠู† ุนู†ุตุฑ ุญุณุจ
383
00:42:21,630 --> 00:42:27,110
ู‚ูŠู…ุฉ N ุทูŠุจ ุงู„ุชุนุฑูŠู ุงู„ุซุงู†ูŠ ุจูŠู‚ูˆู„ ุงู„ู€ order of an element
384
00:42:27,110 --> 00:42:31,850
g ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ููŠ G is the smallest positive integer
385
00:42:31,850 --> 00:42:37,870
in such that ุงู„ู€ g n ุจุฏู‡ ูŠุณุงูˆูŠ e ูˆู„ู‡ ู†ูุณ ุงู„ุฑู…ุฒ
386
00:42:37,870 --> 00:42:41,750
ุงู„ู€ order ู„ู„ู€ element g ุจุฏู‡ ูŠุณุงูˆูŠ ู…ูŠู†ุŸ ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„
387
00:42:41,750 --> 00:42:46,770
n ุงุณุชู†ู‰ ุดูˆูŠุฉ ุทูŠุจ ุฃู†ุง ุงูุชุฑุถ ุจู‚ุฏุฑ ุขุฎุฏ ุฃูŠ ุนู†ุตุฑ
388
00:42:46,770 --> 00:42:52,290
ู…ู† ุงู„ู€ group ู…ูŠู† ู…ุง ูƒุงู† ูŠุณู…ูŠุชู‡ ุงูŠู‡ุŸ ุฑูุนุชู„ู‡ ุฃุณ
389
00:42:52,290 --> 00:42:57,850
ุนุดุฑูŠู† ู„ู‚ูŠุชู‡ ุงู„ู€ identity element ุฅุฐุง ุงู„ู€ order ู„ุฅูŠู‡
390
00:42:57,850 --> 00:43:05,060
ูŠุณุงูˆูŠ ุนุดุฑูŠู†ุŸ ู‚ุฏ ูŠูƒูˆู† ูˆู‚ุฏ ู„ุง ูŠูƒูˆู† ูƒูŠู ู‚ุฏ ูŠูƒูˆู†ุŸ ุงุญู†ุง
391
00:43:05,060 --> 00:43:08,600
ู‚ู„ู†ุง the smallest positive integer ูŠู…ูƒู† ููŠ ุฑู‚ู… ุชุญุช
392
00:43:08,600 --> 00:43:13,320
ุงู„ุนุดุฑูŠู† ุฒูŠ ุนุดุฑุฉ ูŠูƒูˆู† A ุฃุณ ุนุดุฑุฉ ูŠุณุงูˆูŠ ุงู„ู€ identity
393
00:43:13,320 --> 00:43:17,600
ูุฅู† ูƒุงู† A ุฃุณ ุนุดุฑุฉ ูŠุณุงูˆูŠ ุงู„ู€ identity ุฅุฐุง A ุฃุณ
394
00:43:17,600 --> 00:43:20,720
ุนุดุฑูŠู† ูŠุณุงูˆูŠ ุงู„ู€ identity A ุฃุณ ุซู„ุงุซูŠู† ูŠุณุงูˆูŠ ุงู„
395
00:43:20,720 --> 00:43:26,800
identity A ุฃุณ ุฎู…ุณูŠู† ูŠุจู‚ู‰ ุฃุตุบุฑ ุฑู‚ู… ุฅู† ุจุญุทู‡ ูƒุฃุณ
396
00:43:26,800 --> 00:43:30,990
ู„ู‡ุฐุง ุงู„ู€ element ุจุฏู‡ ูŠุนุทูŠู‡ ุงู„ู€ identity ุฅู† ุญุฏุซ ุฐู„ูƒ
397
00:43:30,990 --> 00:43:35,150
ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุฑู‚ู… ู‡ูˆ ุงู„ู€ order ุชุจุน ู…ูŠู†ุŸ ุชุจุน ู‡ุฐุง ุงู„
398
00:43:35,150 --> 00:43:39,190
element ูŠุจู‚ู‰ ู„ูˆ ู‚ุงู„ show that the order of this
399
00:43:39,190 --> 00:43:45,410
element is ูƒุฐุง ุฃูˆ ุฑู‚ู… ุชู…ุงู… ุฃุญุท ุฃุณ ู„ู‡ุฐุง ุงู„ุฑู‚ู… ูŠุทู„ุน
400
00:43:45,410 --> 00:43:50,040
ุงู„ู€ identity ู…ุง ุฃู‚ุฏุฑุด ุฃู‚ูˆู„ ู‡ุฐุง ู‡ูˆ ุงู„ู€ order ูŠุง ุงู„ู€ order
401
00:43:50,040 --> 00:43:55,380
ูŠุง ุฃู‚ู„ ู…ู†ู‡ ุฅุฐุง ุจุฏุฃ ุฃุณุชุจุนุฏ ุงู„ู„ูŠ ุฃู‚ู„ ู…ู†ู‡ ูŠุจู‚ู‰ ุฅุฌุจุงุฑูŠ
402
00:43:55,380 --> 00:43:59,080
ุจูŠุตูŠุฑ ู‡ุฐุง ูŠุง ุฅู…ุง ู‡ุฐุง ู‡ูˆ ุงู„ู€ order ูˆ ู‡ู†ุดูˆู ู‡ุฐุง ุงู„ูƒู„ุงู…
403
00:43:59,080 --> 00:44:05,000
ู…ู† ุฎู„ุงู„ ุงู„ู…ุณุงุฆู„ ูŠุจู‚ู‰ ุจุฏูŠูƒ ุชุนุฑู ุฃู† ุงู„ู€ order ู„ู‡ุฐุง ุงู„
404
00:44:05,000 --> 00:44:11,040
element ุฃู‚ู„ ุนุฏุฏ ุตุญูŠุญ ู…ูˆุฌุจ ุจุญุท ุฃุณ ู„ู‡ุฐุง ุงู„ู€ element
405
00:44:11,040 --> 00:44:15,490
ุจูŠุนุทูŠู†ูŠ ุงู„ู€ Identity ุงู„ู„ูŠ ุฌุงูŠ ุบูŠุฑู‡ ู…ุง ู„ูŠุด ุนู„ุงู‚ุฉ ููŠู‡ู…
406
00:44:15,490 --> 00:44:21,630
ูˆ ู‚ุฏุงู… ุดูˆูŠุฉ ู‡ู†ู‚ูˆู„ ู„ูƒ ุฃู† ุงู„ู€ order ู‡ุฐุง ุจูŠู‚ุณู… ุฃูŠ ุฑู‚ู…
407
00:44:21,630 --> 00:44:25,490
ุซุงู†ูŠ ูŠุญุทู‡ ูƒุฃุณู‡ ูŠุทู„ุน ู„ู†ุง ุงู„ู€ identity ู…ุง ุนู„ูŠู†ุง
408
00:44:25,490 --> 00:44:29,870
ู„ุณู‡ ุจุนูŠุฏ ุนู†ู†ุง ุดูˆูŠุฉ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ุงู„ู€ order ู„ู„
409
00:44:29,870 --> 00:44:36,290
element g ู‡ูˆ ุฃุตุบุฑ smallest ูˆ positive integer in
410
00:44:36,290 --> 00:44:40,290
such that g to the power n ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ e ูˆู„ู‡
411
00:44:40,290 --> 00:44:46,630
ุงู„ุฑู…ุฒ ุฌูŠ ุจูŠู† ุฎุทูŠู† ูˆู‚ูˆู„ ุงู„ุฑู…ุฒ ู‡ุฐุง ูŠู‚ุฑุฃ ุงู„ู€ order ู„ู€ g
412
00:44:46,630 --> 00:44:50,690
ูˆู„ูŠุณ ุงู„ู€ absolute value ู„ู€ g ุงู„ู€ absolute ู„ู„ูƒู„ ูƒู„ุงุณ ู…ุด
413
00:44:50,690 --> 00:44:54,930
ู„ู„ุฌุจุฑ ูŠุจู‚ู‰ ู‡ู†ุง ุจู†ู‚ูˆู„ ุงู‡ ุจู†ู‚ูˆู„ ุงู„ู€ order ู„ู€ g ูŠุณุงูˆูŠ
414
00:44:54,930 --> 00:45:00,230
ู…ูŠู†ุŸ ูŠุณุงูˆูŠ ุงู„ู€ n ุทูŠุจ ู…ู…ูƒู† ู„ู€ group ุฒูŠ ู…ุง ุดูˆูู†ุง ููŠ
415
00:45:00,230 --> 00:45:05,160
ุงู„ุฃู…ุซู„ุฉ ุนู„ู‰ group ุชุจู‚ู‰ ุงู„ุนู…ู„ูŠุฉ ุนู…ู„ูŠุฉ ุฌู…ุน ุทูŠุจ ู„ูˆ
416
00:45:05,160 --> 00:45:10,780
ูƒุงู†ุช ุนู…ู„ูŠุฉ ุฌู…ุน ุงูŠุด ุจุตูŠุฑ ุดูƒู„ ู‡ุฐุง ุงู„ู€ element ูŠุจู‚ู‰ ู„ูˆ
417
00:45:10,780 --> 00:45:14,520
ูƒุงู†ุช ุงู„ู€ operation ุนู„ู‰ G ู‡ูˆ ุงู„ุฌู…ุน ุฅุฐุง ุงู„ู€ element
418
00:45:14,520 --> 00:45:19,320
ู‡ุฐุง ุจูŠุตูŠุฑ in G ูŠุณุงูˆูŠ ุงู„ู€ identity element ุชุญุช ุนู…ู„ูŠุฉ
419
00:45:19,320 --> 00:45:23,140
ุงู„ุฌู…ุน ุงู„ู„ูŠ ู‡ูˆ main ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ zero ูŠุจู‚ู‰ ุงู„ู€ G to
420
00:45:23,140 --> 00:45:26,840
the power n ูŠุณุงูˆูŠ ุงู„ู€ identity ุจุชุฑุฌู… ุฅู„ู‰ in G
421
00:45:26,840 --> 00:45:31,480
ูŠุณุงูˆูŠ main ุงู„ู€ zero ุจุดุฑุท ุชุจู‚ู‰ ุงู„ุนู…ู„ูŠุฉ ุงู„ู…ุนุฑูุฉ ุนู„ู‰
422
00:45:31,480 --> 00:45:36,980
ุงู„ู€ group ู‡ูŠ ุนู…ู„ูŠุฉ ุงู„ุฌู…ุน ุงู„ุนุงุฏูŠุฉ ุทูŠุจ ุจุฏู†ุง ุงู„
423
00:45:36,980 --> 00:45:41,900
identity element ุงูŠู‡ ุจุฏู†ุง ู†ุนุฑู ู‚ุฏุงุด ุงู„ู€ order ุฃุตุบุฑ
424
00:45:41,900 --> 00:45:46,220
ุฑู‚ู… ุจุญุทู‡ ู„ู„ู€ g ุจูŠุทู„ุน ุงู„ู€ e ู…ูŠู† ูˆุงุญุฏ ูŠุณุงูˆูŠ e
425
00:45:46,220 --> 00:45:50,880
ูˆุงุญุฏ ูŠุณุงูˆูŠ ู…ูŠู† ูˆุงุญุฏ ุฅุฐุง ุงู„ู€ order ู„ุฃูŠ identity
426
00:45:50,880 --> 00:45:53,600
element ู…ู‡ู…ุง ูƒุงู† ุดูƒู„ ุงู„ู€ group
427
00:46:11,020 --> 00:46:19,800
ู„ูˆ ู„ู… ุฃุฌุฏ ุนุฏุฏ ุตุญูŠุญ ูุฃุถุนู‡ ูƒุฃุณู‡ g ูŠุนุทูŠู†ุง ุงู„ู€ identity
428
00:46:19,800 --> 00:46:25,040
elementูŠู‚ูˆู„ g ุฃุณ ู…ูŠุฉ ู…ุง ุทู„ุนุด ุงู„ู€ identity element
429
00:46:25,040 --> 00:46:29,100
ูŠู‚ูˆู„ g ุฃุณ ู…ู„ูŠูˆู† ู…ุง ุทู„ุนุด ุงู„ู€ identity ูƒู„ ู…ุง ูŠุฌูŠ
430
00:46:29,100 --> 00:46:32,740
ุฐุงู„ูƒ ุฑู‚ู… ู…ุง ูŠุทู„ุนุด ุงู„ู€ identity element ูŠุจู‚ู‰ ููŠ ู‡ุฐู‡
431
00:46:32,740 --> 00:46:37,820
ุงู„ุญุงู„ุฉ ุงู„ู€ order ู„ู€ g ู‚ุฏุงุด ุจูŠูƒูˆู† ู…ุงู„ุงู†ู‡ุงูŠุฉ ูŠุจู‚ู‰ ุจุงุฌูŠ
432
00:46:37,820 --> 00:46:42,880
ุจู‚ูˆู„ ุงู„ู€ element ู‡ุฐุง is of infinite order ูŠุจู‚ู‰ ุงู„
433
00:46:42,880 --> 00:46:48,820
order ู„ู‡ุฐุง ุงู„ู€ element ุจูŠูƒูˆู† infinite ูˆู‚ุฏ ุชุณุชุบุฑุจูˆุง
434
00:46:48,820 --> 00:46:53,000
ุฃู†ู‡ ู…ู…ูƒู† ูŠูƒูˆู† ูˆุงุญู†ุง ุจู†ุดุชุบู„ ู‡ูŠูƒ ููŠ ุงู„ู€ groups
435
00:46:53,000 --> 00:46:57,720
element ุฃุฎุฐู‡ ููŠ ุงู„ู€ group ุงู„ู€ order ู„ู‡ finite ุงุชู†ูŠู†
436
00:46:57,720 --> 00:47:01,520
ุซู„ุงุซุฉ ุนุดุฑ ุฌุฏ ู…ุง ูŠูƒูˆู†ูˆุง element ุซุงู†ูŠ ุงู„ู€ order ู„ู‡
437
00:47:01,520 --> 00:47:07,120
finite ุฃุถุฑุจ ุงุชู†ูŠู† ููŠ ุจุนุถ ูŠุทู„ุน ุงู„ู€ order infinite
438
00:47:09,630 --> 00:47:13,130
ุทุจุนุง ุฃู†ุช ู…ุด ุชุบุฑุจูŠู† ู„ูƒู† ู‡ู†ุนุทูŠูƒู… ู…ุซุงู„ ุฅู† ุดุงุก ุงู„ู„ู‡
439
00:47:13,130 --> 00:47:16,830
ู†ูˆุถุญ ููŠู‡ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุนู†ูŠ ุฅู† ูƒุงู† ุงู„ู€ order ู„ู„
440
00:47:16,830 --> 00:47:21,470
element finite ูˆุงู„ู€ order ุงู„ุซุงู†ูŠ finite ู„ูˆ ุถุฑุจุช
441
00:47:21,470 --> 00:47:25,030
ุงุชู†ูŠู† ููŠ ุจุนุถ ุจุงู„ู€ operation start ุทู„ุน element ุฌุฏูŠุฏ
442
00:47:25,030 --> 00:47:29,910
ุงู„ู€ element ุงู„ุฌุฏูŠุฏ ู„ูŠุณ ุจุถุฑูˆุฑุฉ ุฃู† ูŠูƒูˆู† finite ูˆุฑุจู…ุง
443
00:47:29,910 --> 00:47:36,270
infinite ูˆุฎุงุตุฉ ููŠ ู…ูˆุถูˆุน ุงู„ู…ุตููˆูุงุช ุทูŠุจ ู†ุจุฏุฃ ู†ุงุฎุฏ
444
00:47:36,270 --> 00:47:42,220
ุจุนุถ ุงู„ุฃู…ุซู„ุฉ ุนู„ู‰ ู‡ุฐู‡ ุงู„ุชุนุฑูŠู ู…ุดุงู† ูŠุซุจุช ู‡ุฐู‡ ุงู„ู…ุนู„ูˆู…ุงุช
445
00:47:42,220 --> 00:47:50,340
ูˆู„ูˆ ุนู„ู‰ ุงู„ุฃู‚ู„ ู…ุซุงู„ุง ูˆุงุญุฏุง ูŠุจู‚ู‰ examples ุฃูˆู„ ู…ุซุงู„
446
00:47:50,340 --> 00:47:59,440
ุจูŠู‚ูˆู„ ุงู„ู€ let ุงู„ู€ G ูŠุณุงูˆูŠ U 15 ูŠุจู‚ู‰ ุจุฏู†ุง ุนู†ุงุตุฑ
447
00:47:59,440 --> 00:48:05,120
ุงู„ู€ U 15 ุดุจู‡ ู…ูŠู† ุงู„ู€ 1 ูˆุงู„ู€ 2 ูˆุงู„ู€ 3 ู…ู†ู‡ู…
448
00:48:05,960 --> 00:48:16,160
ุงู„ู€ 4 ูˆุงู„ู€ 5 ูˆุงู„ู€ 6 ูˆุงู„ู€ 7 ูˆุงู„ู€ 8 ูˆุงู„ู€ 9 ูˆุงู„ู€ 10
449
00:48:16,160 --> 00:48:25,120
ุงู„ู€ 11 ูˆุงู„ู€ 12 ูˆุงู„ู€ 13 ูˆูƒู…ุงู† 14 ูŠุจู‚ู‰ ู‡ุงูŠ
450
00:48:25,120 --> 00:48:32,240
ูƒุชุจุชู„ู‡ ุงู„ู€ U 15 ุทูŠุจ ุจู†ุงุก ุนู„ูŠู‡ ุงู„ู€ order ู„ู€ U
451
00:48:32,240 --> 00:48:38,520
15 ุฃู†ุง ุจู‚ูˆู„ 15 ูˆู„ุง ู„ุฃ ู„ุฃุŒ ูˆุด ุฌุงุจ ุงู„ู€ 5ุŸ ุนุฏ
452
00:48:38,520 --> 00:48:41,640
ุงู„ุนู†ุงุตุฑ 1ุŒ 2ุŒ 3ุŒ 4ุŒ 5ุŒ 6ุŒ
453
00:48:41,640 --> 00:48:46,220
7ุŒ 8 ูŠุจู‚ู‰ ุงู„ู€ order ุงู„ู„ูŠ ุฃุฌูŠุจู‡ ูŠุณุงูˆูŠ 8
454
00:48:46,220 --> 00:48:53,560
ุทูŠุจ ู„ูˆ ุจุฏูŠ ุฃุฌูŠุจ ุงู„ู€ order ู„ู„ูˆุงุญุฏ ู‚ุฏุงุดุŸ
455
00:48:53,560 --> 00:48:57,500
ูˆุงุญุฏ ู„ุฃู† ู‡ุฐุง ู‡ูˆ ุงู„ู€ identity element ูŠุจู‚ู‰ ุงู„ู€ order
456
00:48:57,500 --> 00:49:03,630
ู„ู„ูˆุงุญุฏ ูŠุณุงูˆูŠ ูˆุงุญุฏ ุทูŠุจ ุจุฏูŠ ุงู„ู€ order ู„ู„ูŠุชู†ูŠู†ุŸ ุดูˆู ุนุงุฏ
457
00:49:03,630 --> 00:49:07,570
ู†ุถุฑุจ ุงุชู†ูŠู† ููŠ ู†ูุณู‡ ูƒุงู… ู…ุฑุฉ ุญุชู‰ ูŠุทู„ุน ุนู†ุฏูŠ ุงู„
458
00:49:07,570 --> 00:49:11,230
identity element ุทุจุนุง ู‡ู†ุง ุนู…ู„ูŠุฉ ุถุฑุจ ุงู„ุนุงุฏูŠุฉ 2
459
00:49:11,230 --> 00:49:19,370
ููŠ 2 ููŠ 2 ุงุณุงุณ 4 ููŠ 2 ุจ 8 ููŠ
460
00:49:19,370 --> 00:49:24,070
2 ุจ 16 ุดูŠู„ู‡ ู‡ู†ุง ูˆ 15 ุจุถู„ ุงู„ู„ูŠ ูŠู‚ูˆู„ูˆุง
461
00:49:24,070 --> 00:49:29,400
ุญุฏ ูŠุจู‚ู‰ ุงู„ู€ order ุงู„ู„ูŠ ุฌุฏูŠุด 4 ูŠุจู‚ู‰ ุงู„ู€ order ู„ู„
462
00:49:29,400 --> 00:49:36,220
2 ูŠุณุงูˆูŠ 4 because ุดูˆ ุงู„ุณุจุจ ุฅู† 2 ุฃุณ
463
00:49:36,220 --> 00:49:42,660
1 ูŠุณุงูˆูŠ 2 2 ุชุฑุจูŠุน ูŠุณุงูˆูŠ 4
464
00:49:42,660 --> 00:49:49,020
ุชูƒุนูŠุจ ูŠุณุงูˆูŠ 8 2 ุฃุณ 4 ูŠุณุงูˆูŠ 16
465
00:49:49,020 --> 00:49:55,150
modulo 15 ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ 1 ู‡ุฐุง ุจุฏูŠ
466
00:49:55,150 --> 00:50:00,770
ุฃุนุทูŠูƒ ุฅู† ุงู„ู€ order ู„ู„ูŠุชู†ูŠู† ู‡ูˆ 4 ุทูŠุจ ุงู„ู€ order
467
00:50:00,770 --> 00:50:08,110
ู„ู€ 4 similarly ุงู„ู€ order ู„ู€ 4 ุจุฏู‡ ูŠุณุงูˆูŠ 2
468
00:50:08,110 --> 00:50:13,750
ู„ูŠุด ู„ุฅู†ู‡ 4 ููŠ 4 ุจ 16 modulo 15 ุจ 1
469
00:50:13,750 --> 00:50:17,870
ุนู… ูŠุจู‚ู‰ ุจ 2 ุทูŠุจ ู„ูˆ ุฑูˆุญุชูŠ ูˆู‚ู„ุช ู„ูƒ ุงู„ู€ order ู„
470
00:50:17,870 --> 00:50:27,030
7 ุจุฏู†ุง ู†ุนุฑู ููŠ ู‡ุฐุง ู‚ุฏ ุงูŠู‡ ูŠุจู‚ู‰ ุจุงู„ุถุจุท 7 ุฃุณ 1
471
00:50:27,030 --> 00:50:30,290
ูŠุณุงูˆูŠ
472
00:50:30,290 --> 00:50:36,770
7 ู‡ูˆ 7 ุชุฑุจูŠุน ูŠุณุงูˆูŠ 49 modulo
473
00:50:36,770 --> 00:50:43,200
15 15 ููŠ 3 ุจ 45 ูŠุทู„ุน 4 ุทูŠุจ
474
00:50:43,200 --> 00:50:50,160
ู„ูˆ ุฌูŠุช ู‚ู„ุช ู„ูƒ 7 ุชูƒุนูŠุจ ูŠุจู‚ู‰ ูŠุณุงูˆูŠ 7 ู…ุถุฑูˆุจุฉ ููŠ
475
00:50:50,160 --> 00:50:55,770
4 modulo 15 4 ููŠ 7 ุจ 28
476
00:50:55,770 --> 00:50:57,190
28 28 28 28
477
00:50:57,190 --> 00:51:01,690
28 28 28 28 28 28 28 28
478
00:51:01,690 --> 00:51:06,870
28 28
479
00:51:06,870 --> 00:51:10,250
28 28 28 28 28 28 28 28
480
00:51:10,250 --> 00:51:10,430
28 28 28 28 28 28 28 28
481
00:51:10,430 --> 00:51:11,310
28 28 28 28 28 28 28 28
482
00:51:11,310 --> 00:51:11,770
28 28 28 28 28 28 28 28
483
00:51:11,770 --> 00:51:14,370
28 28 28 28 28 28 28 28
484
00:51:14,370 --> 00:51:21,670
28 28 28 ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุฅู† ุงู„ู€ order ู„
485
00:51:21,670 --> 00:51:28,430
7 ุจุฏู‡ ูŠุณุงูˆูŠ ู‚ุฏุงุด ุจุฏู‡ ูŠุณุงูˆูŠ 4 ูˆู‡ูƒุฐุง ุทูŠุจ
486
00:51:28,430 --> 00:51:35,250
ุงู„ู€ 8 8 ููŠ 8 ุจ 64 ุดูŠู„ ุงู„ู€ 60
487
00:51:35,250 --> 00:51:39,810
ู„ุฃู†ู‡ ู…ุถุงุนู ู„ู€ 15 ุจุชุธู„ 4 ููŠ 8 ุจ 32 ูˆ
488
00:51:39,810 --> 00:51:45,130
30 ุดูŠู„ 30 ุจุชุธู„ 2 ููŠ 8 ุจ 16 ูŠุจู‚ู‰
489
00:51:45,130 --> 00:51:51,460
ุงู„ู€ order ู„ู€ 8 ุจู‚ุฏุงุด 4 ูŠุจู‚ู‰ similarly ูƒู…ุงู†
490
00:51:51,460 --> 00:52:00,140
ุงู„ู€ order ู„ู€ 8 ุจุฏู‡ ูŠุณุงูˆูŠ ูƒุฐู„ูƒ 4 ูˆู‡ูƒุฐุง ุทูŠุจ ุฎู„ูŠู†ุง ู†ุณุฃู„
491
00:52:00,140 --> 00:52:06,740
ุงู„ู€ order ู„ู€ 11 11
492
00:52:06,740 --> 00:52:14,040
ูˆ 11 121 121 ู…ุด ุจุชูƒุณุจู‡ุง 15 ู„ุฃู†ู‡ุง ุจุชูƒุณุจู‡ุง 30 ูˆ 30
493
00:52:14,040 --> 00:52:20,250
ูŠุจู‚ู‰ ูŠุจู‚ู‰ 1 ูŠุจู‚ู‰ ุงู„ู€ order ู„ู„ุฅุญุฏุงุด ู‡ูˆ 2 ูˆุงู„
494
00:52:20,250 --> 00:52:27,710
order ู„ู„ุฅุญุฏุงุด ุจุฏู‡ ูŠุณุงูˆูŠ 2 ูู‚ุท ูˆู‡ูƒุฐุง ูŠู„ุง ุจู†ูƒู…ู„
495
00:52:27,710 --> 00:52:29,070
ุฅู† ุดุงุก ุงู„ู„ู‡ ุจุนุฏ ุงู„ุธู‡ุฑ