|
1 |
|
00:00:21,190 --> 00:00:26,610 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ุจุฏุฃูุง ูู ุฎูุงุต |
|
|
|
2 |
|
00:00:26,610 --> 00:00:31,330 |
|
ุงูู group ุงูุฎูุงุต ุงูุฃููู ููู group ูุงุฎุฏูุง ุฃูู ุฎุงุตูุฉ |
|
|
|
3 |
|
00:00:31,330 --> 00:00:35,930 |
|
ุงูุฎุงุตูุฉ ุงูุฃููู ุจุชููู ูู ูุงู ุนูุฏู identity element |
|
|
|
4 |
|
00:00:35,930 --> 00:00:39,980 |
|
ูู ุงูู group ูุจูู ูุฐุง ุงูู identity element ูููู |
|
|
|
5 |
|
00:00:39,980 --> 00:00:43,540 |
|
ุฃุซุจุชูุง ุฃู ุงูุงุชููู ู
ุฑุชุจุทูู ู ุฃุซุจุชูุง ุฃู ุงูุงุชููู |
|
|
|
6 |
|
00:00:43,540 --> 00:00:45,200 |
|
ู
ุฑุชุจุทูู ู ุฃุซุจุชูุง ุฃู ุงูุงุชููู ู
ุฑุชุจุทูู ู ุฃุซุจุชูุง ุฃู |
|
|
|
7 |
|
00:00:45,200 --> 00:00:47,820 |
|
ุงูุงุชููู ู
ุฑุชุจุทูู ู ุฃุซุจุชูุง ุฃู ุงูุงุชููู ู
ุฑุชุจุทูู ู |
|
|
|
8 |
|
00:00:47,820 --> 00:00:48,960 |
|
ุฃุซุจุชูุง ุฃู ุงูุงุชููู ู
ุฑุชุจุทูู ู ุฃุซุจุชูุง ุฃู ุงูุงุชููู |
|
|
|
9 |
|
00:00:48,960 --> 00:00:50,300 |
|
ู
ุฑุชุจุทูู ู ุฃุซุจุชูุง ุฃู ุงูุงุชููู ู
ุฑุชุจุทูู ู ุฃุซุจุชูุง ุฃู |
|
|
|
10 |
|
00:00:50,300 --> 00:00:52,420 |
|
ุงูุงุชููู ู
ุฑุชุจุทูู ู ุฃุซุจุชูุง ุฃู ุงูุงุชููู ู
ุฑุชุจุทูู ู |
|
|
|
11 |
|
00:00:52,420 --> 00:00:56,700 |
|
ุฃุซุจุชูุง ุฃู ุงูุงุชููู ู
ุฑุชุจุทูู ู ุฃุซุจุชูุง ุฃู ุงูุงุชููู |
|
|
|
12 |
|
00:00:56,700 --> 00:01:01,140 |
|
ู
ุฑุชุจุทูู ู ุฃุซุจุชูุง ุฃู ุงูุงุชููู ู
ุฑุชุจุทูู ู ุฃุซุจุชูุง ุฃู |
|
|
|
13 |
|
00:01:01,140 --> 00:01:06,290 |
|
ุงูุงุชููู ู
ุฑุชุจุทูู ุจูุบุฉ ุฃุฎุฑู ูู
ุง ูููู ba ุจุฏู ูุณุงูู |
|
|
|
14 |
|
00:01:06,290 --> 00:01:12,450 |
|
ca then ุจูู ูุณุงูู c ูุนูู ูุฃูู ุดุงุทุจูุง a ู
ุน a ูุฏู |
|
|
|
15 |
|
00:01:12,450 --> 00:01:18,250 |
|
ุงุณู
ู ูุงููู ุงูุดุงุทุจ ุงูุฃูู
ู ุงูุซุงูู ูุฐุง a ุจูู ุจุฏู |
|
|
|
16 |
|
00:01:18,250 --> 00:01:23,630 |
|
ูุณุงูู ac ูุจูู ุทุงูุน ุฃูู ุจูู ุจุชุณุงูู c ูุจูู ูุฃูู |
|
|
|
17 |
|
00:01:23,630 --> 00:01:29,510 |
|
ุดุงุทุจูุง ู
ู ุฌูุฉ ุงูุดู
ุงู ูุจูู ูุงููู ุงูุดุงุทุจ ุงูุฃูุณุฑ ูุงููู |
|
|
|
18 |
|
00:01:29,510 --> 00:01:32,810 |
|
ุงูุดุงุทุจ ุงูุฃูู
ู ูุงููู ุงูุดุงุทุจ ุงูุฃูุณุฑ ูุฐู ุชุณู
ูุงุช |
|
|
|
19 |
|
00:01:32,810 --> 00:01:37,310 |
|
ุจุชูู
ููุด ูุซูุฑ ุจูู
ูู ุฃู ุฃูุง ูุตู ุฅูู ุฅุซุจุงุช ูุฐู |
|
|
|
20 |
|
00:01:37,310 --> 00:01:43,170 |
|
ุงูุนูุงูุฉ ูุจูู ุจุฏูุง ูุฑูุญ ูุซุจุชูุง ูุจุงุฌู ุจูููู for proof |
|
|
|
21 |
|
00:01:46,430 --> 00:01:51,850 |
|
ุงูุขู b ูู a ู
ูุฌูุฏ |
|
|
|
22 |
|
00:01:51,850 --> 00:01:56,150 |
|
ูู ุงูู group g ูุงูู b ู
ูุฌูุฏ ูู ุงูู group g ู
ุดุงู |
|
|
|
23 |
|
00:01:56,150 --> 00:02:02,210 |
|
ุชููู group ูุงุฒู
ูููู ูููุง ููู ุนูุตุฑ ู
ุนููุณ ููุฐุง |
|
|
|
24 |
|
00:02:02,210 --> 00:02:07,650 |
|
ุงูุนูุตุฑ ุฅุฐุง ุจุฏู ุฃูุชุฑุถ ุฃูู ู
ุนููุณ ูุนูุตุฑ a ู
ุซูุง ูููู |
|
|
|
25 |
|
00:02:07,650 --> 00:02:12,230 |
|
ุฃููู a prime ุฃู ุฃู ุฑู
ุฒ ุขุฎุฑ ููุดูู ูุฐุง ูููุตููุง ูููู |
|
|
|
26 |
|
00:02:12,230 --> 00:02:14,790 |
|
ูุจูู ุญุงุฌุฉ ุฃูููู assume |
|
|
|
27 |
|
00:02:34,810 --> 00:02:43,090 |
|
ุงูุญูู ุงุญูุง ุนูุฏูุง ba ุจุฏู ูุณุงูู ca ุงุจุฏุฃ ุฃุถุฑุจ ู
ู ุฌูุฉ |
|
|
|
28 |
|
00:02:43,090 --> 00:02:51,850 |
|
ุงููู
ูู ูู ุงูู a' ูุจูู ba ูู ุงูู a' ูุจูู ca ูู |
|
|
|
29 |
|
00:02:51,850 --> 00:02:59,230 |
|
ุงูู a' ูุฐุง ุงูููุงู
ุณูุนุทููุง ุงุจุฏุฃ ุฃุณุชุฎุฏู
ุฎุงุตูุฉ ุงู |
|
|
|
30 |
|
00:02:59,230 --> 00:03:03,880 |
|
associativity ูุจูู ู
ู ุฎุงุตูุฉ ุงูู associativity ุจุตูุฑ |
|
|
|
31 |
|
00:03:03,880 --> 00:03:10,660 |
|
ุฃู b ูู aa prime ูุณุงูู |
|
|
|
32 |
|
00:03:10,660 --> 00:03:17,700 |
|
c ูู aa prime ูุฐุง ุจุฏู ูุนุทููุง ุฃู ุนูุตุฑ ูู ู
ุนูุณู ุดู |
|
|
|
33 |
|
00:03:17,700 --> 00:03:22,860 |
|
ุจูุนุทููุงู ุนูุตุฑ ุงููุญุฏุฉ ุงูู identity element ูุจูู ุจูุงุก |
|
|
|
34 |
|
00:03:22,860 --> 00:03:34,390 |
|
ุนููู ูุฐุง ููุนุทููุง ุฃู ุงูู b ุงูู b ูู ุงูู e ุจุฏู ูุณุงูู |
|
|
|
35 |
|
00:03:34,390 --> 00:03:38,890 |
|
ู
ููุ ุจุฏู ูุณุงูู ุงูู c ูู ุงูู e ุทุจ ุงูู identity |
|
|
|
36 |
|
00:03:38,890 --> 00:03:42,870 |
|
element ูู
ุง ุฃุถุฑุจู ูู ุฃู ุนูุตุฑ ุฅูุด ุจูุนุทููุงุ ููุณ |
|
|
|
37 |
|
00:03:42,870 --> 00:03:49,950 |
|
ุงูุนูุตุฑ ูุจูู ูุฐุง ุจุฏู ูุนุทููุง b ุชุณุงูู c ูุฐุง ูู |
|
|
|
38 |
|
00:03:49,950 --> 00:04:01,090 |
|
ุงูู
ุทููุจ ุงูุฃูู ุงูู
ุทููุจ ุงูุซุงูู and ููุฐูู ุงูู ab ุจุฏู |
|
|
|
39 |
|
00:04:01,090 --> 00:04:08,390 |
|
ูุณุงูู ac implies ุฃู ุงูู a prime ูู ุงูู ab ุจุฏู ูุณุงูู |
|
|
|
40 |
|
00:04:08,390 --> 00:04:15,350 |
|
ุงูู a prime ูู ุงูู ac ู
ู ุฎุงุตูุฉ ุงูู associativity ูุฐุง |
|
|
|
41 |
|
00:04:15,350 --> 00:04:18,110 |
|
ูุนูู ุฃู ุงูู a prime a |
|
|
|
42 |
|
00:04:26,160 --> 00:04:31,040 |
|
ุงูุนูุตุฑ ูู ู
ุนูุณู ุจูุนุทููุง ุงูู identity element ุฏูุฑ |
|
|
|
43 |
|
00:04:31,040 --> 00:04:34,320 |
|
ุจุงูู ุจุณ ู
ุด ุนูุตุฑ ุชุถุฑุจ ู
ู ุงููู
ูู ู ุงูุซุงูู ู
ู ุงูุดู
ุงู |
|
|
|
44 |
|
00:04:34,320 --> 00:04:37,720 |
|
ุถุฑุจุช ู
ู ุงูุดู
ุงู ูุจูู ุงูุซุงูู ู
ู ุงูุดู
ุงู ุถุฑุจุช ู
ู |
|
|
|
45 |
|
00:04:37,720 --> 00:04:40,960 |
|
ุงููู
ูู ูุจูู ุงูุซุงูู ู
ู ุงููู
ูู ููุดุ ูุฃูู ู
ุง ูุงููุด ุงูู |
|
|
|
46 |
|
00:04:40,960 --> 00:04:44,780 |
|
group abelian ูู ูุงูู ูุฌุฑูุจ ุฃุจููู ุฃู ุถุฑุจุช ูุงุญุฏุฉ ู
ู |
|
|
|
47 |
|
00:04:44,780 --> 00:04:47,560 |
|
ุงููู
ูู ู ูุงุญุฏุฉ ู
ู ุงูุดู
ุงูุ ุฃูุช ูุฑููุด ุนููุง ุจุณ ุฅู ูุงู |
|
|
|
48 |
|
00:04:47,560 --> 00:04:49,880 |
|
ุงูุถุฑุจ ู
ู ุงููู
ููุ ุงูุซุงูู ู
ู ุงููู
ููุ ุงูุถุฑุจ ู
ู |
|
|
|
49 |
|
00:04:49,880 --> 00:04:53,280 |
|
ุงูุดู
ุงูุ ุงูุทุฑู ุงูุซุงูู ู
ู ุงูุดู
ุงู ุฒู ู
ุง ุฃูุช ุดุงูู ูุงุฒู
|
|
|
|
50 |
|
00:04:53,280 --> 00:04:58,420 |
|
ูุฑู ุงูุชุฑุชูุจ ุนูุฏ ุนู
ููุฉ ุงูุดุบู ูู ุงูู groups ูุจูู ูุฐุง |
|
|
|
51 |
|
00:04:58,420 --> 00:05:03,720 |
|
ู
ุนูุงู ุฃู ุงูู identity element ูู b ูุณูู ุงูู identity |
|
|
|
52 |
|
00:05:03,720 --> 00:05:11,320 |
|
element ูู c ูุจูู ูุฐุง ู
ุนูุงู ุฃู b ุจูุจุฏุฃ ุชุณุงูู c ุฅุฐุง |
|
|
|
53 |
|
00:05:11,320 --> 00:05:15,520 |
|
ู
ู ุงูุขู ูุตุงุนุฏูุง ูุงููู ุงูุดุทุจ ุงูุฃูู
ู ููุงููู ุงูุดุทุจ |
|
|
|
54 |
|
00:05:15,520 --> 00:05:23,320 |
|
ุงูุฃูุณุฑ ุนูู ุงูู group exist ู
ูุฌูุฏ ูู
ุชุนุฑู ุนููู ุงูููุทุฉ |
|
|
|
55 |
|
00:05:23,320 --> 00:05:27,880 |
|
ุงูุซุงูุซุฉ ุฃู ุงูุฎุงุตูุฉ ุงูุซุงูุซุฉ ู
ู ุฎูุงุต ุงูู group ุจูููู |
|
|
|
56 |
|
00:05:27,880 --> 00:05:38,920 |
|
for each element for each element ูุฃู ุนูุตุฑ for |
|
|
|
57 |
|
00:05:38,920 --> 00:05:47,040 |
|
each element a in a group g |
|
|
|
58 |
|
00:05:49,680 --> 00:05:55,360 |
|
ูุฃู ุนูุตุฑ ูู ุงูู group g there is a unique element |
|
|
|
59 |
|
00:05:55,360 --> 00:06:10,620 |
|
there is a unique element there is |
|
|
|
60 |
|
00:06:10,620 --> 00:06:17,880 |
|
a unique element b in g such that |
|
|
|
61 |
|
00:06:21,290 --> 00:06:29,150 |
|
ุจุนุฏ ุฐูู ab ุณุงูู ba ุณุงูู ุงูู identity |
|
|
|
62 |
|
00:06:29,150 --> 00:06:40,070 |
|
element ู
ุฑุฉ |
|
|
|
63 |
|
00:06:40,070 --> 00:06:44,940 |
|
ุซุงููุฉ ุงูู
ุฑุฉ ุงููู ูุงุชุช ุฃูู ุฎุงุตูุฉ ุฃุซุจุชูุง ุฃู ุนูุตุฑ |
|
|
|
64 |
|
00:06:44,940 --> 00:06:49,080 |
|
ุงููุญุฏุฉ ูููู ูุญูุฏูุง ู
ุงููุด ุบูุฑ ุนูุตุฑ ูุงุญุฏ ูุงุญุฏ ูู ุงูู |
|
|
|
65 |
|
00:06:49,080 --> 00:06:53,500 |
|
group ูููุง ู
ู ุฃูููุง ุฅูู ุขุฎุฑูุง ุงูุขู ุจูููู ูู ุฃุฎุฏุช |
|
|
|
66 |
|
00:06:53,500 --> 00:07:00,060 |
|
ุฃู ุนูุตุฑ a ู
ูุฌูุฏ ูู g ูุงุฒู
ููุงูู ุนูุตุฑ ูุญูุฏ ูุงุญุธ |
|
|
|
67 |
|
00:07:00,060 --> 00:07:05,080 |
|
ุงูููู
ุฉ ูุฐู a unique element ูุจูู ุนูุตุฑูุง ูุญูุฏูุง ู
ุงููุด |
|
|
|
68 |
|
00:07:05,080 --> 00:07:10,910 |
|
ุบูุฑู ู b ูู g ู
ูุฌูุฏ ูู g ุจุญูุซ ุฃู ุงูู a ูู b |
|
|
|
69 |
|
00:07:10,910 --> 00:07:14,710 |
|
ุจูุณุงูู ุงูู a ูู b ุจูุณุงูู ุงูู identity ุดู ู
ุนูู ูุฐุง |
|
|
|
70 |
|
00:07:14,710 --> 00:07:20,990 |
|
ุงูููุงู
ู
ุนูู ุฃู ุงูู
ุนููุณ ููู ุนูุตุฑ ููููู ูุญูุฏูุง ู
ุงููุด |
|
|
|
71 |
|
00:07:20,990 --> 00:07:26,540 |
|
ุบูุฑู ูุนูู ูู ุนูุตุฑ ูู ู
ูุฌูุฏ ูู ุงูู group ูู ู
ุนููุณ ูุง |
|
|
|
72 |
|
00:07:26,540 --> 00:07:31,740 |
|
ูุดุงุฑูู ุฃุญุฏ ูู ูุฐุง ุงูู
ุนููุณ ุฅุฐุง ุจุฏูุง ูุฑูุญ ูุซุจุช ูุฐุง |
|
|
|
73 |
|
00:07:31,740 --> 00:07:35,840 |
|
ุงูููุงู
ุจููุณ ุงูููุฑุฉ ุงููู ุฃุซุจุชูุง ูููุง ุงูู identity |
|
|
|
74 |
|
00:07:35,840 --> 00:07:39,360 |
|
element ูุจูู ุงูุนูุตุฑ a ุงููู ู
ูุฌูุฏ ูู ุงูู group ุจุฏู |
|
|
|
75 |
|
00:07:39,360 --> 00:07:43,960 |
|
ุฃูุชุฑุถ ุฃูู ูู ู
ุนููุณูู ู ุฃุญุงูู ุฃุซุจุช ุฃู ูุฐูู |
|
|
|
76 |
|
00:07:43,960 --> 00:07:49,260 |
|
ุงูู
ุนููุณูู ู
ุชุณุงููุงู ูุจูู ุจุงุฌู ุจูููู for proof |
|
|
|
77 |
|
00:07:53,660 --> 00:08:07,940 |
|
Assume ุงูุชุฑุถ ุฃู b ู c ูู
ุฃูุซุฑ |
|
|
|
78 |
|
00:08:07,940 --> 00:08:18,200 |
|
ู
ู ุงุณู
|
|
|
|
79 |
|
00:08:18,200 --> 00:08:20,080 |
|
ุงูู
ูุฌูุฏ ูู g |
|
|
|
80 |
|
00:08:26,860 --> 00:08:35,980 |
|
ุงูู ab ุจูุณุงูู ba ุงูู ab ุจูุณุงูู ba ุจูุณุงูู ุงูู |
|
|
|
81 |
|
00:08:35,980 --> 00:08:44,760 |
|
identity e and ุงูู ac ุจูุณุงูู ca ุจูุณุงูู ุงูู |
|
|
|
82 |
|
00:08:44,760 --> 00:08:50,540 |
|
identity e ูุฐุง ุญุณุจ ุชุนุฑูู ู
ูุ ุญุณุจ ุชุนุฑูู ุงูู
ุนููุณ |
|
|
|
83 |
|
00:08:50,540 --> 00:08:57,810 |
|
ุงูุขู ูุฐุง ุงูู element ุจุฏู ูุณุงูู ุงูู identity ู ูุฐุง ุงูู |
|
|
|
84 |
|
00:08:57,810 --> 00:09:01,850 |
|
element ุจุฏู ูุณุงูู ุงูู identity ู
ุนูุงุชู ุงูู two |
|
|
|
85 |
|
00:09:01,850 --> 00:09:08,270 |
|
elements are equal ูุจูู ูุฐุง ุจุฏู ูุนุทููุง a ุฃูู a |
|
|
|
86 |
|
00:09:08,270 --> 00:09:14,230 |
|
ูู b ุจุฏู ูุณุงูู ุงูู ac ูุฅูู ูู ูุงุญุฏ ู
ุงููู
ุจุฏู ูุณุงูู |
|
|
|
87 |
|
00:09:14,230 --> 00:09:19,310 |
|
ุงูู identity ุจุงูุฎุงุตูุฉ ุงููู ููู ุงูุฃููุงููุฉ ุฑูู
ุงุซููู |
|
|
|
88 |
|
00:09:19,310 --> 00:09:23,030 |
|
ูุจูู by property |
|
|
|
89 |
|
00:09:29,720 --> 00:09:37,400 |
|
ุจุชุณุงูู ุงูู c ูู ุฃุฎุฐูุง ุงูุฌุฒุก ุงูุซุงูู similarly ุจููุณ |
|
|
|
90 |
|
00:09:37,400 --> 00:09:38,420 |
|
ุงูุทุฑููุฉ |
|
|
|
91 |
|
00:09:40,770 --> 00:09:49,050 |
|
ุงููู ูู ba ุจุฏู ูุณุงูู ca implies ุฃู ุงูู b ุชุณุงูู c |
|
|
|
92 |
|
00:09:49,050 --> 00:09:53,330 |
|
ูุจูู ุจูุงุก ุนููู ูู ูุฌุฏ ู
ุนููุณูู ุฅู ุดุงุก ุงููู ูููููุง |
|
|
|
93 |
|
00:09:53,330 --> 00:09:57,970 |
|
ุนุดุฑุฉ ูุนูุตุฑ ู
ุง ุงูุนุดุฑุฉ ูุฏูู ูุงุฒู
ูููููุง are equal |
|
|
|
94 |
|
00:09:57,970 --> 00:10:02,850 |
|
ูุนูู ู
ุนูู ูุฐุง ุงูููุงู
ุฃู ู
ุนููุณ ุงูุนูุตุฑ ูููููุง aููุ |
|
|
|
95 |
|
00:10:02,850 --> 00:10:05,490 |
|
ูููููุง ูุญูุฏูุง ู
ููุด ุบูุฑู |
|
|
|
96 |
|
00:10:13,790 --> 00:10:20,370 |
|
ุงูุฎุงุตูุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ |
|
|
|
97 |
|
00:10:20,370 --> 00:10:20,490 |
|
ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ |
|
|
|
98 |
|
00:10:20,490 --> 00:10:21,050 |
|
ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ |
|
|
|
99 |
|
00:10:21,050 --> 00:10:21,450 |
|
ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ |
|
|
|
100 |
|
00:10:21,450 --> 00:10:22,370 |
|
ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ |
|
|
|
101 |
|
00:10:22,370 --> 00:10:26,570 |
|
ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ |
|
|
|
102 |
|
00:10:26,570 --> 00:10:29,330 |
|
ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ |
|
|
|
103 |
|
00:10:29,330 --> 00:10:29,610 |
|
ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ |
|
|
|
104 |
|
00:10:29,610 --> 00:10:31,270 |
|
ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ |
|
|
|
105 |
|
00:10:31,270 --> 00:10:40,590 |
|
ุงูุฑุงุจุนุฉ ุงูุฑุงุจุนุฉ |
|
|
|
106 |
|
00:10:40,590 --> 00:10:46,180 |
|
ุงูุฑูุงูุนูุณ ู
ู g |
|
|
|
107 |
|
00:10:46,180 --> 00:10:57,840 |
|
ูู denoted by g inverse ูุนูู ูุง ุดุจุงุจ ู
ู ุงูุขู ูุตุงุนุฏูุง |
|
|
|
108 |
|
00:10:57,840 --> 00:11:03,700 |
|
ุจุฏูุง ูุจุทู ูููู let a' b is inverse of a ุนูู ุทูู |
|
|
|
109 |
|
00:11:03,700 --> 00:11:08,640 |
|
ุงูุฎุท ู
ุนููุณ ุงูู a ููููู a inverse ู
ุนููุณ ุงูู g ูู g |
|
|
|
110 |
|
00:11:08,640 --> 00:11:20,880 |
|
inverse ูููุฐุง ููุทุฉ ุซุงููุฉ if ุงูู n is a positive |
|
|
|
111 |
|
00:11:22,440 --> 00:11:32,780 |
|
integer ุนุฏุฏ ุตุญูุญ ู
ูุฌุจ ุจุงููู ุงูู n then ุงูู g to the |
|
|
|
112 |
|
00:11:32,780 --> 00:11:40,440 |
|
power n ู
ุนูุงุชู aููุ ู
ุนูุงุชู g ู
ุถุฑูุจุฉ ูู g ู
ุถุฑูุจุฉ ูู |
|
|
|
113 |
|
00:11:40,440 --> 00:11:47,800 |
|
g ูุฐุง ุงูููุงู
in times ูุนูู n ู
ู ุงูู
ุฑุงุช ูุง ุดุจุงุจ ููุง |
|
|
|
114 |
|
00:11:47,800 --> 00:11:50,760 |
|
ุงูุถุฑุจ ูุฐู ุงูููุงุท ุงููู ุดุงูููููุง ู
ุด ุนู
ููุฉ ุงูุถุฑุจ |
|
|
|
115 |
|
00:11:50,760 --> 00:11:55,860 |
|
ุงูุนุงุฏูุฉ ูุนูู g star g g star g star g star g ุฅูู |
|
|
|
116 |
|
00:11:55,860 --> 00:11:59,920 |
|
ุฃุฎูุฑูุฉ ุงูู star mean ู
ุง ูุงูุช ุชููู ุจุณ ุงุญูุง ุงุฎุชุตุงุฑูุง |
|
|
|
117 |
|
00:11:59,920 --> 00:12:07,490 |
|
ุจููุชุจูุง ุจุงูุดูู ูุฐุง ุงูููุทุฉ ุงูุซุงูุซุฉ |
|
|
|
118 |
|
00:12:07,490 --> 00:12:13,930 |
|
ุงูู g ู
ุฑููุน ููุฃุณ ุตูุฑ ุจุฏู ูุณุงูู ุฃู element ูู ุงูู |
|
|
|
119 |
|
00:12:13,930 --> 00:12:18,890 |
|
group g ุงุฑูุน ูู ุงูุตูุฑ ุจูุนุทููุง ุงูู identity element |
|
|
|
120 |
|
00:12:18,890 --> 00:12:26,550 |
|
ูุจูู ูุฐุง ุงูู e ูู
ุฑุฉ ุฃุฑุจุนุฉ ุงูู g to the power n ุจูุฏุฑ |
|
|
|
121 |
|
00:12:26,550 --> 00:12:35,520 |
|
ุฃููู g inverse ุฃุณ ุณุงูุจ n ูู
ุง ุฃููู gn ุจูุฏุฑ ุฃูุชุจูุง ุนูู |
|
|
|
122 |
|
00:12:35,520 --> 00:12:36,620 |
|
ุงูุดูู ุงูุชุงูู |
|
|
|
123 |
|
00:12:47,300 --> 00:12:56,760 |
|
ุจููู ุงูู gm ูู ุงูู gn ุจุฏู ูุณุงูู gm ุฒุงุฆุฏ ุงูู n ูุจูู ุชุฌู
ุน |
|
|
|
124 |
|
00:12:56,760 --> 00:13:06,260 |
|
ุงูุฃุณุณ ุนุงุฏู ุฌุฏุง ุฎู
ุณุฉ ูู
ุฑุฉ ุณุชุฉ ูู
ุฑุฉ ุณุชุฉ gm ููู ุฃุณ n |
|
|
|
125 |
|
00:13:06,260 --> 00:13:14,390 |
|
ุฒู ูุฐู ุจุงูุถุจุท ุชู
ุงู
ูุง ูุจูู ูุฐู ุฃุณุณ ู
ุฑูุจุฉ ูููุณุช ู
ุซู |
|
|
|
126 |
|
00:13:14,390 --> 00:13:19,430 |
|
ูุฐู ููุง ุงูุฃุณุงุณุงุช ูู ุงูู element ู
ุฑููุนุฉ ูููุณ ุงูุฃุณุณ M |
|
|
|
127 |
|
00:13:19,430 --> 00:13:24,950 |
|
ู N ูุจูู ุนูุฏ ุงูู operation ูุฐู ุชุฌู
ุน ุงูุฃุณุณ ููู ูุฐู |
|
|
|
128 |
|
00:13:24,950 --> 00:13:32,650 |
|
ูุงููุง GM Star GM Star GM Star GM ูุนูู ุฅูุด ูุนูู N |
|
|
|
129 |
|
00:13:32,650 --> 00:13:42,050 |
|
ู
ู ุงูู
ุฑุงุช ุฅุฐุง ูุฐู ุจุงูุถุจุท ุชู
ุงู
ุง ูู GMN ุฃู ุจูุฏุฑ ุฃููู |
|
|
|
130 |
|
00:13:42,050 --> 00:13:50,250 |
|
GNM ููุดุ ูุฃู ุงูุถุฑุจ ู ุงูุถุฑุจ ุนู
ููุฉ ุถุฑุจ ุนุงุฏูุฉ |
|
|
|
131 |
|
00:13:50,250 --> 00:13:54,910 |
|
ููุฃุนุฏุงุฏ ุนู
ููุฉ ุฅุจุฏุงููุฉ ุฎู
ุณุฉ ูู ุณุชุฉ ูู ุณุชุฉ ูู ุฎู
ุณุฉ |
|
|
|
132 |
|
00:13:54,910 --> 00:14:01,710 |
|
ุฅุฐุง ูุฐู ุจูุฏุฑ ุฃุฑูุญ ุฃูุชุจูุง ูุฐูู ุนูู ุงูุดูู ุงูุชุงูู GNM |
|
|
|
133 |
|
00:14:01,710 --> 00:14:07,170 |
|
ุจูู
ููุด ู
ู ุงูุฃุณููุจ ููุง ุนูู ูู ุงูุฃู
ุฑูู ููู ุจุนุทููู ููุณ |
|
|
|
134 |
|
00:14:07,170 --> 00:14:14,580 |
|
ุงููุชูุฌุฉ ุงูููุทุฉ ุงูุณุงุจุนุฉ ุงูููุทุฉ ุงูุณุงุจุนุฉ ูู ููุช a b |
|
|
|
135 |
|
00:14:14,580 --> 00:14:23,820 |
|
ููู to the power n ูู ูุณุงูู a n b n ูุนูู |
|
|
|
136 |
|
00:14:23,820 --> 00:14:29,680 |
|
ูู ููุช ูู ุงุซููู ูู ุงูู a b ุชุฑุจูุน ูุณุงูู a ุชุฑุจูุน b ุชุฑุจูุน |
|
|
|
137 |
|
00:14:29,680 --> 00:14:36,300 |
|
ูู ุญุงูุฉ ูุงุญุฏุฉ ูู ูุงูุช ุงูู g ุฃุจูููุง ุบูุฑ ููู ุจูุนุทูู |
|
|
|
138 |
|
00:14:36,300 --> 00:14:41,400 |
|
ุงููู ูุจูู ูุฐุง ุงูููุงู
ูุง ูู
ูู ุฃู ูุณุงูู ูุฐุง ุนูู |
|
|
|
139 |
|
00:14:41,400 --> 00:14:49,880 |
|
ุงูุฅุทูุงู ุจุฑูุญ ุจุณุชุซูู ู ุจููู but if g is abelian |
|
|
|
140 |
|
00:14:49,880 --> 00:14:58,160 |
|
then ุงููู ูู ุงูู a b to the power n ุจุฏู ูุณุงูู a n b n |
|
|
|
141 |
|
00:14:58,160 --> 00:15:04,290 |
|
ุบูุฑ ููู ูุฃ ูุฃูู ุจูุฏุฑ ุฃุจุฏู ุฃู ุนูุตุฑ ู
ูุงู ุงูุซุงูู |
|
|
|
142 |
|
00:15:04,290 --> 00:15:07,430 |
|
ุจุฏูู ุฃู ู
ุดููุฉ ุฅู ูุงู ุชู
ูู ููู if it's not |
|
|
|
143 |
|
00:15:07,430 --> 00:15:12,830 |
|
abelian ุจูุตูุฑ ููุงู
ู ูุฐุง ููู ููุณ ุตุญูุญุง ุทูุจ ุงูููุทุฉ |
|
|
|
144 |
|
00:15:12,830 --> 00:15:23,270 |
|
ุงูุซุงู
ูุฉ ุจูููู if ุงูู g ู ุงูู plus is a group is a |
|
|
|
145 |
|
00:15:23,270 --> 00:15:28,190 |
|
group then |
|
|
|
146 |
|
00:15:30,130 --> 00:15:47,370 |
|
ุงูู inverse of g is minus g that is a n ุงูู g |
|
|
|
147 |
|
00:15:47,370 --> 00:15:53,710 |
|
inverse ูู ุนุจุงุฑุฉ ุนู ุณุงูุจ g and |
|
|
|
148 |
|
00:15:55,880 --> 00:16:04,480 |
|
ุงูู G Inverse ูู ุชูุนูุจ ุจุฏู ูุณุงูู ุณุงูุจ ุซูุงุซุฉ G |
|
|
|
149 |
|
00:16:28,420 --> 00:16:34,920 |
|
ุจุชุฑุฌุน ู
ุฑุฉ ุซุงููุฉ ููุฐู ุงูููุงุท ุงูุฃุณุงุณูุฉ ุงูุซู
ุงููุฉ ูุฃู |
|
|
|
150 |
|
00:16:34,920 --> 00:16:40,000 |
|
ูุฐู ุงูุฃุณุงุณูุฉ ุนูุฏูุง ุจุชุธู ู
ุนุงูุง ุทููุฉ ุดุบููุง ูู ุนูู
|
|
|
|
151 |
|
00:16:40,000 --> 00:16:45,400 |
|
ุงูุฌุจุฑ ู
ู ุงูุขู ูุตุงุนุฏุง ูู ูุชูู ุนูู ูุฐู ุงูููุงุท ู
ุฑุฉ |
|
|
|
152 |
|
00:16:45,400 --> 00:16:50,680 |
|
ุฃุฎุฑู ูุจูู ุงูููุทุฉ ุงูุฃุฎุฑู ุฅุญูุง ุจูุดุชุบู ุฏุงุฎู ุงูู group |
|
|
|
153 |
|
00:16:50,680 --> 00:16:55,240 |
|
ูููุณ ุฏุงุฎู ุงูู set of real number ุฅุญูุง ุจูุดุชุบู ุฏุงุฎู ุงูู |
|
|
|
154 |
|
00:16:55,240 --> 00:16:59,380 |
|
group ู
ู ู
ุง ูุงูุช ุงูู group ุชููู ูุฐู ุจููู ูู ูุงูุช ุฌู |
|
|
|
155 |
|
00:16:59,380 --> 00:17:04,760 |
|
ุฌุฑูุจ ู ุฃุฎุฐุช ุนูุตุฑ ุฌู ู
ูุฌูุฏ ูู ุฌู ูุจูู ู
ุนููุณ ุงูุฌู ู
ู |
|
|
|
156 |
|
00:17:04,760 --> 00:17:11,040 |
|
ุงูุขู ูุตุงุนุฏุง ููุฑู
ุฒ ูู ุจุงูุฑู
ุฒ G inverse ูููุณ G ุณุงูุจ |
|
|
|
157 |
|
00:17:11,040 --> 00:17:16,140 |
|
ูุงุญุฏ ูุนูู ูุฐู ููุณุช ูุงุญุฏ ุนูู ุฌู ุชู
ุงู
ุฃููุฉ ู
ุดุงู |
|
|
|
158 |
|
00:17:16,140 --> 00:17:22,000 |
|
ู
ุง ุชุชููุด ุจูู ุบุณูู ุงูุชุจ ูู G inverse ูุง ุชุณุงูู ูุงุญุฏ ุนูู |
|
|
|
159 |
|
00:17:22,000 --> 00:17:26,600 |
|
ุฌู ูู
ูู ูู ุจุนุถ ุงูุชุนุฑููุงุช ูููุง ุตุญูุญ ุงูู G inverse |
|
|
|
160 |
|
00:17:26,600 --> 00:17:31,920 |
|
ูุงุญุฏ ุนูู G ุจุณ in general ุงูููุงู
ูุฐุง ููุณ ุตุญูุญุง ุทูุจ |
|
|
|
161 |
|
00:17:31,920 --> 00:17:35,900 |
|
ุงูููุทุฉ ุงูุซุงููุฉ ูู ูุงูุช ุงูู N positive integer ุนุฏุฏ |
|
|
|
162 |
|
00:17:35,900 --> 00:17:41,900 |
|
ุตุญูุญ ู
ูุฌุจ ูุจูู ุงูู
ูุตูุฏ ุจู G N ูู G star G star G |
|
|
|
163 |
|
00:17:41,900 --> 00:17:46,740 |
|
star G N ู
ู ุงูู
ุฑุงุช ูุนูู ุจุฏู ุฃุทุจู ุงูู binary |
|
|
|
164 |
|
00:17:46,740 --> 00:17:51,510 |
|
operation ุนูู ุงูู element ูุฐุง N ู
ู ุงูู
ุฑุงุช ุงูููุทุฉ |
|
|
|
165 |
|
00:17:51,510 --> 00:17:56,070 |
|
ุงูุซุงูุซุฉ ุงูู A element ูู ุงูู group G ูู ุญุทูุช ูู |
|
|
|
166 |
|
00:17:56,070 --> 00:17:59,570 |
|
ุงูุฃุณ Zero ุจุฏู ูุนุทููู ุฏุงุฆู
ุง ู ุฃุจุฏุง ุงูู identity |
|
|
|
167 |
|
00:17:59,570 --> 00:18:06,590 |
|
element ูู
ุง ุฃููู GN ูู
ูู ุตูุงุบุชูุง ุจุตูุงุบุฉ ุฃุฎุฑู ู |
|
|
|
168 |
|
00:18:06,590 --> 00:18:11,990 |
|
ูุชุดูููุง ูุฅุญูุง ุจูุจุฑูู ููุถุทุฑ ูุตูุบ ุงูู GN ุจุงูุตูุงุบุฉ |
|
|
|
169 |
|
00:18:11,990 --> 00:18:19,070 |
|
ูุฐู ูุจูู ูู G inverse ู ุณุงูุจ N ูุฐู ู ูุฐู ุงูุงุซููู |
|
|
|
170 |
|
00:18:19,070 --> 00:18:27,180 |
|
are the same ุงูููุทุฉ ุงูุฎุงู
ุณุฉ GM ู
ุถุฑูุจุฉ ูู GN ูุจูู |
|
|
|
171 |
|
00:18:27,180 --> 00:18:31,960 |
|
ุจูุฌู
ุน ุงูุฃุณุณ ุฌู
ุน ูุฐู ููุณุช ุถุฑุจ ูุฅูู
ุง ู
ุง ุงูู
ูุตูุฏ |
|
|
|
172 |
|
00:18:31,960 --> 00:18:40,770 |
|
ุจูุง Star GM Star GN ูุจูู GM ุฒุงุฆุฏ M ูู ูุงู ุงูุฃุณ |
|
|
|
173 |
|
00:18:40,770 --> 00:18:46,010 |
|
ุฃุณุง ู
ุฑูุจุง ูุจูู ุจูุถุฑุจ ูุฐู ุงูุฃุณุณ ูู ุจุนุถ ูุจูู G |
|
|
|
174 |
|
00:18:46,010 --> 00:18:52,030 |
|
M N ูุณุงูู G ุฃุณ M N ุจุฏู ุงูู N ู ุงูู M ูุฃู ูู
ูุฏูู |
|
|
|
175 |
|
00:18:52,030 --> 00:18:57,470 |
|
integers ู ุงุซููู are positive ูุจูู G N M ุฃู G N |
|
|
|
176 |
|
00:18:57,470 --> 00:19:03,240 |
|
ุฃุณ M ููู are the same ูุฃ ูู ุฌูุช ูุญุงุตู ุถุฑุจ a b to |
|
|
|
177 |
|
00:19:03,240 --> 00:19:10,360 |
|
the power n ูุง ูุณุงูู a n ูู b n ูููู ูุฐุง ูุณุงูู a b |
|
|
|
178 |
|
00:19:10,360 --> 00:19:18,160 |
|
a b a b a b a b n ู
ู ุงูู
ุฑุงุช ููุง ูุณุงูู a n b n ููู |
|
|
|
179 |
|
00:19:18,160 --> 00:19:23,100 |
|
ุฅู ูุงูุช ุงูู g abelian ุจูุฏุฑ ุฃุจุฏู ุงูู a ู
ูุงู ุงูู b |
|
|
|
180 |
|
00:19:23,100 --> 00:19:28,220 |
|
ูุจุงูุชุงูู ูุทูุน ุนูุฏ ุงูู a b to the power n ูุณุงูู a n |
|
|
|
181 |
|
00:19:28,220 --> 00:19:35,950 |
|
b n ูุจูู ุฏู ุจุงูู ุงู ูู ููุช ูู a ุฒุงุฆุฏ b ููู ุชุฑุจูุน ู
ุด |
|
|
|
182 |
|
00:19:35,950 --> 00:19:39,610 |
|
ูุชููู ุงู ุชุฑุจูุน ุฒุงุฆุฏ ุงุซููู a b ุฒุงุฆุฏ b ุชุฑุจูุน ูุฐุง |
|
|
|
183 |
|
00:19:39,610 --> 00:19:44,490 |
|
ุงูููุงู
ุบูุท a ุชุฑุจูุน ุฃู ุฒุงุฆุฏ b ุชุฑุจูุน ุตุญ ุจุณ ู
ุด ุงุซููู |
|
|
|
184 |
|
00:19:44,490 --> 00:19:50,830 |
|
a b ูุจูู ุฒุงุฆุฏ a b ุฒุงุฆุฏ b a ูุนูู ุจูุฐุง ุงูุดูู ูุฐุง ูู
ุง |
|
|
|
185 |
|
00:19:50,830 --> 00:19:56,770 |
|
ุฃููู ูู a ุฒุงุฆุฏ b ููู ุชุฑุจูุน ูู ุญุจูุช ุฃุดูููู
ูุฐูู ูู ุงูู |
|
|
|
186 |
|
00:19:56,770 --> 00:20:02,110 |
|
group ุดู ุดูููู
ูุจูู ุจุฃุฌู ุจููู ูู ูุฐุง a ุชุฑุจูุน ู
ุธุจูุท ู |
|
|
|
187 |
|
00:20:02,110 --> 00:20:09,990 |
|
ูุฐุง ุฒุงุฆุฏ a b ู ูุฐุง ุฒุงุฆุฏ b a ู ูุฐุง ุฒุงุฆุฏ b ุชุฑุจูุน ููู |
|
|
|
188 |
|
00:20:09,990 --> 00:20:14,690 |
|
ุตุญ ููู ุชููู ูู a ุชุฑุจูุน ุฒุงุฆุฏ ุงุซููู a b ุฒุงุฆุฏ b ุชุฑุจูุน |
|
|
|
189 |
|
00:20:14,690 --> 00:20:19,010 |
|
ูุฐุง ููุงู
ุบูุท ุฅูุง ุฅุฐุง ูุงูุช ุฃุจููุง ุบูุฑ ููู ุจูุนุทูู |
|
|
|
190 |
|
00:20:19,010 --> 00:20:24,580 |
|
ุงููู ูุจูู ุฏูุฑ ุจุงูู ู
ู ุงูุดุบู ูุฐู ุทูุจ ุงูููุทุฉ ุงูุซุงู
ูุฉ |
|
|
|
191 |
|
00:20:24,580 --> 00:20:30,020 |
|
ู ุงูุฃุฎูุฑุฉ ูู ูุงูุช ุงูุนู
ููุฉ ุงูู binary operation ู
ุนุฑูุฉ |
|
|
|
192 |
|
00:20:30,020 --> 00:20:36,120 |
|
ุนูู ุงูู group G ูู ุนู
ููุฉ ุงูุฌู
ุน ูุจูู ุงูู G inverse |
|
|
|
193 |
|
00:20:36,120 --> 00:20:42,380 |
|
ูู ูุฐู ุงูุญุงูุฉ ููููู ูู ุณุงูุจ G ูุจูู ู
ุนููุณ ุงูู G ูู |
|
|
|
194 |
|
00:20:42,380 --> 00:20:47,600 |
|
ุณุงูุจ G that is ุงูู G inverse ูู ุณุงูุจ G ู ูู ูุฐู |
|
|
|
195 |
|
00:20:47,600 --> 00:20:55,100 |
|
ุงูุญุงูุฉ ุฃููู ุฌู ุงููุฑุณ ุฃู ุชูุนูุจ ูุนูู ุฅูุดุ ูุนูู ุณุงูุจ |
|
|
|
196 |
|
00:20:55,100 --> 00:21:01,480 |
|
ุฌู ุงููู ุชูุนูุจ ู ูุฐู ุชุนุชุจุฑ ุณุงูุจ ุซูุงุซุฉ ุฌู ูุฃู ุนูุฏ |
|
|
|
197 |
|
00:21:01,480 --> 00:21:06,080 |
|
ุงูุฌู
ุน ุจุฏู ุฃููู ุณุงูุจ ุฌู ุณุงูุจ ุฌู ุณุงูุจ ุฌู ุจูุจูู |
|
|
|
198 |
|
00:21:06,080 --> 00:21:13,530 |
|
ุณุงูุจ ุซูุงุซุฉ ุฌู ููุฃูู ุจูุถุฑุจ ุงูุฃุณุณ ูู ุจุนุถูุง ู ุจูุฒูู ุชุญุช |
|
|
|
199 |
|
00:21:13,530 --> 00:21:18,110 |
|
ุจุงูุดูู ุงููู ุนูุฏู ูุฐุง ุจูุทูุน ุงูููุงู
ู
ุงุฆุฉ ุจุงูู
ุงุฆุฉ ุทูุจ |
|
|
|
200 |
|
00:21:18,110 --> 00:21:22,650 |
|
ูุฑุณู ูู ุจุฏู ุฃููู ุฌู ุชูุนูุจ ุงูุนู
ููุฉ ุนู
ููุฉ ุงูุฌู
ุน |
|
|
|
201 |
|
00:21:22,650 --> 00:21:28,750 |
|
ูุจูู ุจุฏู ุฃููู ุฌู ุฒุงุฆุฏ ุฌู ุฒุงุฆุฏ ุฌู ูููุณ ุชุถุฑุจ ูุจูู |
|
|
|
202 |
|
00:21:28,750 --> 00:21:33,670 |
|
ูุฐู ูููุง ุชุณุงูู ู
ู ุชุณุงูู ุซูุงุซุฉ ุฌู ูุจูู ุฅุฐุง ุงูุนู
ููุฉ |
|
|
|
203 |
|
00:21:33,670 --> 00:21:39,080 |
|
ุนูู ุงูู group G ูู ุนู
ููุฉ ุงูุฌู
ุน ุงูุนุงุฏูุฉ ูุจูู ุฌู |
|
|
|
204 |
|
00:21:39,080 --> 00:21:44,420 |
|
ุชูุนูุจ ูู ุนุจุงุฑุฉ ุนู ุซูุงุซุฉ ุฌู ุฌู ุฃุณ ุนุดุฑุฉ ุชุนูู ุนุดุฑุฉ ุฌู |
|
|
|
205 |
|
00:21:44,420 --> 00:21:50,620 |
|
ุฌู ุฃุณ ุณุงูุจ ุซู
ุงููุฉ ุชุนูู ุณุงูุจ ุซู
ุงููุฉ ุฌู and so on ู |
|
|
|
206 |
|
00:21:50,620 --> 00:21:59,680 |
|
ููุฐุง ุทูุจ ูู ุงูุขู ุจุฏูุง ููุฌู ููููุทุฉ ุงูุฎุงู
ุณุฉ if ุงูู a |
|
|
|
207 |
|
00:21:59,680 --> 00:22:07,020 |
|
ููุทุฉ ุงูุฎุงู
ุณุฉ if ุงูู a and ุงูู b belong |
|
|
|
208 |
|
00:22:14,690 --> 00:22:24,890 |
|
ุจุงููุณุจุฉ ููู
ุฌู
ูุนุฉ ุฌู ุซู
ุฃู ุจู ุงููู ุงููุฑุณ ุจุฏู ูุณุงูู ุจู |
|
|
|
209 |
|
00:22:24,890 --> 00:22:37,030 |
|
ุงููุฑุณ ุฃู ุงููุฑุณ ุฎูู |
|
|
|
210 |
|
00:22:37,030 --> 00:22:43,070 |
|
ุจุงูู ููุฃ ูู ูู ุนูุตุฑูู ูู ูููุจูู
ูุถุฑุจุชูู
ูู ุจุนุถูู
|
|
|
|
211 |
|
00:22:43,070 --> 00:22:48,230 |
|
ุจุฏู ุฃุฌูุจ ุงูู
ุนููุณ ุชุจุนูู
ูุจูู ุงูู
ุนููุณ ุจููู A B ูู |
|
|
|
212 |
|
00:22:48,230 --> 00:22:54,110 |
|
inverse ุนู
ููุง ุจูุฏุฑ ุฃููู ูุฐุง B inverse A inverse |
|
|
|
213 |
|
00:22:54,110 --> 00:22:58,950 |
|
ูุนูู ูุชุจุช ุงูู inverse ููู ูุงุญุฏ ูููู
ู ููุจุช ุงููุถุน |
|
|
|
214 |
|
00:22:58,950 --> 00:23:04,990 |
|
ูุฑูุญ ูุจุฑูู ุตุญุฉ ูุฐุง ุงูููุงู
ุฅุญูุง ูุจู ูููู ุฃุซุจุชูุง ุฃู |
|
|
|
215 |
|
00:23:04,990 --> 00:23:09,140 |
|
ุงูู inverse element ูุญูุฏ ู ุงููู ุฃูุจุฑ ู
ู ูุงุญุฏ ุฅูุง |
|
|
|
216 |
|
00:23:09,140 --> 00:23:14,040 |
|
ุฅูุตุงุฑ ูุงุญุฏ ูู ูุงุญุฏ ูุจูู ุงูู a b ู
ุง ูู ุฅูุง ู
ุนููุณ |
|
|
|
217 |
|
00:23:14,040 --> 00:23:20,180 |
|
ูุงุญุฏ ูุฏู ูููู ุฃูู ููู ุฌุฏุงุด ุงุซููู ู
ุฏุงู
ุงุซููู ูุงุฒู
|
|
|
|
218 |
|
00:23:20,180 --> 00:23:25,000 |
|
ุงุซููู ูุชุณุงูู ุทุจูุง ููุฎุงุตูุฉ ุงููู ูุจู ูููู ูุจูู ุฃูุง |
|
|
|
219 |
|
00:23:25,000 --> 00:23:30,200 |
|
ูู ูุฏุฑุช ุฃุซุจุช ุฃู ุงูู b inverse a inverse ูู ู
ุนููุณ ุงูู |
|
|
|
220 |
|
00:23:30,200 --> 00:23:32,940 |
|
a b ุจุชู
ู ุงูู
ุทููุจ ู
ุธุจูุท |
|
|
|
221 |
|
00:23:37,330 --> 00:23:46,230 |
|
ุจู
ุง ุฃู ุงูู a ู ุงูู b ู
ูุฌูุฏ ูู ุงูู g, we have ุฃู ุญุงุตู |
|
|
|
222 |
|
00:23:46,230 --> 00:23:51,570 |
|
ุงูุถุฑุจ a,b ู
ูุฌูุฏ ูู g ูู
ุงุฐุงุ ูู
ุดุงู ุงูู binary |
|
|
|
223 |
|
00:23:51,570 --> 00:23:56,210 |
|
operation a to elements a star b ูุงุฒู
ูููู ู
ูุฌูุฏ |
|
|
|
224 |
|
00:23:56,210 --> 00:24:03,250 |
|
ูู ุฌู ู
ุง ุฏุงู
ู
ูุฌูุฏ ูู ุฌู ูุฐุง ู
ุนูุงู there exists |
|
|
|
225 |
|
00:24:03,250 --> 00:24:15,690 |
|
inverse for the element a,b ูุงุฒู
ูุฌู ูู ู
ุนููุณ that |
|
|
|
226 |
|
00:24:15,690 --> 00:24:23,790 |
|
is A B ุงููู inverse ู
ุด ุดุงูุจ ุฅููุง ุฑู
ุฒ ุงูู
ุนููุณ ุชุจุน ุงูู |
|
|
|
227 |
|
00:24:23,790 --> 00:24:29,730 |
|
A B A B inverse ุทูุจ ุฃูุง ุจุฏู ุฃุดูู ุงููู ูุงุชุจู ูู ูุฐุง |
|
|
|
228 |
|
00:24:29,730 --> 00:24:34,670 |
|
ุฅุฐุง ุถุฑุจุช ูู A B ู
ู ุงููู
ูู ู ู
ู ุงููุณุงุฑ ู ุทูุน ุงูู |
|
|
|
229 |
|
00:24:34,670 --> 00:24:39,250 |
|
identity ุงูู e ูุจูู ูุฐุง ูู
ุงู inverse ุตุญ ููุง ูุง |
|
|
|
230 |
|
00:24:39,250 --> 00:24:48,090 |
|
ุงูุขู ูู ุฌูุช ู ููุช ูู consider ุฎุฏ ูู ุงูู A B ูู ุงูู B |
|
|
|
231 |
|
00:24:48,090 --> 00:24:53,590 |
|
inverse A inverse ูุฃุดูู ูุฏู ุจุฏู ูุนุทููู ูุฐุง ุงูุขู ุจุฏูู |
|
|
|
232 |
|
00:24:53,590 --> 00:24:58,450 |
|
ุฃุณุชุฎุฏู
ุฎุงุตูุฉ ุงูู associativity ูุจูู ูุฐุง ุจุฏูู ูุนุทููู |
|
|
|
233 |
|
00:24:58,450 --> 00:25:05,910 |
|
A ูู B ูู ุงูู B inverse ูู ุงูู A inverse ุงูู B ูู ุงูู |
|
|
|
234 |
|
00:25:05,910 --> 00:25:12,210 |
|
B inverse ุจูุนุทููู ุงูู identity ูุจูู ุงูู A ูู ุงูู E ูู |
|
|
|
235 |
|
00:25:12,210 --> 00:25:17,700 |
|
ุงูู A inverse ุงูู E ุฃุถุฑุจ ูู ุฃู ุนูุตุฑ ุจูุทูุนุ ููุณ |
|
|
|
236 |
|
00:25:17,700 --> 00:25:23,320 |
|
ุงูุนูุตุฑ ูุจูู ูุฐุง A A inverse ูุจูู ุจุฏูู ูุณุงูู ุงูู |
|
|
|
237 |
|
00:25:23,320 --> 00:25:28,960 |
|
identity E ู
ุง ููุนุด ู
ู ุงููุณุงุฑ ู ุจุณ ู ู
ู ุงููู
ูู ูุงุฒู
|
|
|
|
238 |
|
00:25:28,960 --> 00:25:35,410 |
|
ูููู ู
ู ูููุ ู
ู ุงูุทุฑููู ูุจูู ุจุฃุฌู ุจูููู and ุงูู b |
|
|
|
239 |
|
00:25:35,410 --> 00:25:42,670 |
|
inverse a inverse ูู ุงูู a b ุจุฏูู ูุณุงูู b inverse ูู |
|
|
|
240 |
|
00:25:42,670 --> 00:25:50,410 |
|
ุงูู a inverse a ูู ุงูู a inverse a ูู ู
ูุ ูู ุงูู b |
|
|
|
241 |
|
00:25:50,410 --> 00:25:56,190 |
|
ุทูุจ ูุฐุง ุงูุนูุตุฑ ู ู
ุนููุณู ุจูุนุทููู ู
ูุ ุงูู identity |
|
|
|
242 |
|
00:25:56,190 --> 00:26:02,420 |
|
element ูุจูู ูุฐุง ุจุฏูู ูุนุทููุง P inverse AB ุงููู ูู |
|
|
|
243 |
|
00:26:02,420 --> 00:26:07,200 |
|
ุจุฏูู ูุนุทููุง P inverse P ุจุฏูู ูุนุทููุง ู
ู ุงูู identity |
|
|
|
244 |
|
00:26:07,200 --> 00:26:12,400 |
|
element ุจูุงุก ุนููู ูุฐุง ุงูู element P inverse A |
|
|
|
245 |
|
00:26:12,400 --> 00:26:18,840 |
|
inverse ุญูู ููู ุฎุงุตูุฉ ู
ุนููุณ ุงูุนูุตุฑ AB ูุจูู ู
ู |
|
|
|
246 |
|
00:26:18,840 --> 00:26:25,940 |
|
ุงูุงุซููู ูุฏูู ู
ุน ุจุนุถ ุจูุฏุฑ ุฃููู ูุฐุง ุจุฏูู ูุนุทููู ุฃู b |
|
|
|
247 |
|
00:26:25,940 --> 00:26:37,140 |
|
inverse a inverse is the inverse element of a,b |
|
|
|
248 |
|
00:26:37,140 --> 00:26:41,800 |
|
ูุจูู ูุฐุง ุงูุนูุตุฑ ูู ู
ุนููุณ ุงูู a,b ููู ุฅุญูุง ุนูุฏูุง |
|
|
|
249 |
|
00:26:41,800 --> 00:26:46,900 |
|
ู
ุนููุณ ุงูู a,b ู
ูู ูู ุงููู ูุงุฌ ูุจูู ุฏูู ุงุซููู ู
ุนุงูู
|
|
|
|
250 |
|
00:26:47,490 --> 00:26:55,110 |
|
ูุงุฒู
ูุชุณุงูู ูุจุฃุฌู ุจูููู since ุจู
ุง ุฃู the inverse |
|
|
|
251 |
|
00:26:55,110 --> 00:27:05,950 |
|
the inverse of an element of a group G is unique |
|
|
|
252 |
|
00:27:13,670 --> 00:27:20,850 |
|
ุฅู (A B) ุงููู inverse ูุณุงูู B inverse A inverse |
|
|
|
253 |
|
00:27:20,850 --> 00:27:24,010 |
|
ุงููู |
|
|
|
254 |
|
00:27:24,010 --> 00:27:28,830 |
|
ุฎูููู ุฃุณุฃูููุง ูุฐุง ุงูุณุคุงู ู ุฃุดูู ุฅูุด ุฑุฃูููุง ููู ุทูุจ |
|
|
|
255 |
|
00:27:28,830 --> 00:27:36,510 |
|
ูุง ุดุจุงุจ ุฃูุง ูู ุจุฏู (A B C) ุงููู inverse ุฅูุด ุจุฏู ูุณุงูู |
|
|
|
256 |
|
00:27:40,480 --> 00:27:44,280 |
|
C inverse B inverse A inverse ูุนูู ูุจูู ุดูู ู
ู |
|
|
|
257 |
|
00:27:44,280 --> 00:27:51,260 |
|
ุงูุขุฎุฑ ููุฃูู ูุจูู ูุฐุง ุงูููุงู
ุจุฏู ูุนุทููู C inverse ู |
|
|
|
258 |
|
00:27:51,260 --> 00:27:56,600 |
|
ููุง B inverse ู ููุง A inverse ุซูุงุซุฉ ุฃุฑุจุนุฉ ุนุดุงู |
|
|
|
259 |
|
00:27:56,600 --> 00:28:01,440 |
|
ุงููู ูููููุง ู
ูุฉ ุจุฏู ุชุจุฏุฃ ู
ู ุงูุขุฎุฑ ู ุชุฑุฌุน ุฑุฌูุน ูุจูู |
|
|
|
260 |
|
00:28:01,440 --> 00:28:09,060 |
|
ูุฐุง ูู ุงูู
ุนููุณ ูู
ูุ ููุนูุตุฑ ุงููู ุนูุฏูุง ุงูุขู ูู ุณุคุงู |
|
|
|
261 |
|
00:28:09,060 --> 00:28:15,840 |
|
ูู ุงููุชุงุจ ุณุคุงู 18 ุจุฑุถู ุจุฏู ุงุนุชุจุฑู ุฎุงุตูุฉ ู
ูู
ุฉ |
|
|
|
262 |
|
00:28:15,840 --> 00:28:22,540 |
|
ุฌุฏุง ุจุชูุฒู
ูุง ุฃุซูุงุก ุงูุดุบู ุณุคุงู 18 ุจูููู ูู if G |
|
|
|
263 |
|
00:28:22,540 --> 00:28:31,610 |
|
is a group ูู ูุงูุช ุงู G group then ุงูู A Inverse |
|
|
|
264 |
|
00:28:31,610 --> 00:28:39,910 |
|
Inverse ุจุฏู ูุณุงูู A itself ูุฐุง ุงูููุงู
ุตุญูุญ ููู ุงู |
|
|
|
265 |
|
00:28:39,910 --> 00:28:42,390 |
|
A ุงูู
ูุฌูุฏ ูู ุงู group G |
|
|
|
266 |
|
00:29:05,530 --> 00:29:11,690 |
|
ุฎูููู ุฃููู ูู ูู ุงู group G ู
ุนููุณ ุงูู
ุนููุณ ุจูุนุทููุง |
|
|
|
267 |
|
00:29:11,690 --> 00:29:17,730 |
|
ุงูุฃุตู A inverse inverse ุจูุนุทููุง A ูุจู ู
ุง ุชูุฌุฏ A |
|
|
|
268 |
|
00:29:17,730 --> 00:29:23,630 |
|
ุงูู
ุนููุณ ุชุจุนู ูุจูู ู
ู ุงูุขู ูุตุงุนุฏุง ู
ุนููุณ ู
ุนููุณ ุงู |
|
|
|
269 |
|
00:29:23,630 --> 00:29:28,130 |
|
element ุจูุฑุฌุนูู ูู element itself ุจุฏูุง ูุฑูุญ ูุซุจุช |
|
|
|
270 |
|
00:29:28,130 --> 00:29:32,090 |
|
ุตุญุฉ ูุฐุง ุงูููุงู
ูุจูู ุจุงุฌู ุจูููู ู ุงู professor |
|
|
|
271 |
|
00:29:38,960 --> 00:29:49,840 |
|
ูุช ุงู a ู
ูุฌูุฏ ูู ุงู group g then a inverse ู
ูุฌูุฏ |
|
|
|
272 |
|
00:29:49,840 --> 00:29:57,830 |
|
ูู g ู
ุนููุณู ู
ูุฌูุฏ ูู ุฌูู ูู
ุงู ู
ุนููุณ ูุฐุง ูุงุฒู
ูููู |
|
|
|
273 |
|
00:29:57,830 --> 00:30:06,150 |
|
ู
ูุฌูุฏ ูู ุฌูู ุตุญูุญ ูุจูู then and a inverse inverse |
|
|
|
274 |
|
00:30:06,150 --> 00:30:12,530 |
|
ู
ูุฌูุฏ ูู ุฌูู ููุด ูุฃูู ุฅุฐุง ูุฌุฏ ุนูุตุฑ ูู ุงู group |
|
|
|
275 |
|
00:30:12,530 --> 00:30:17,610 |
|
ูุงุฒู
ูููู ู
ุนููุณู ู
ูุฌูุฏ ุดู ู
ุนููุณู ุงููู ูู a inverse |
|
|
|
276 |
|
00:30:17,610 --> 00:30:25,060 |
|
inverse ุทูุจ ู
ุฏุงู
ููู ูู ุฌูุช ุฃุฎุฏุช ุงู a inverse |
|
|
|
277 |
|
00:30:25,060 --> 00:30:33,820 |
|
inverse inverse ู
ุด ูุฐุง ุงูุนูุตุฑ ู ูุฐุง ู
ุนููุณู ุญุงุตู |
|
|
|
278 |
|
00:30:33,820 --> 00:30:40,860 |
|
ุถุฑุจู ู
ุง ุดู ุจุฏู ูุทููู ุงู identity element ุทูุจ ุฅูุด |
|
|
|
279 |
|
00:30:40,860 --> 00:30:47,440 |
|
ุฑุฃูู ูู ุฑูุญุช ุถุฑุจุช ู
ู ุฌูุฉ ุงูุดู
ุงู ุจุงูุนูุตุฑ a ุงุชุตูุช ู
ู |
|
|
|
280 |
|
00:30:47,440 --> 00:30:54,760 |
|
ุฌูุฉ ุงูุดู
ุงู ูุงูุฏุฑ ุจุงูู ูุจูู ูุฐุง ุงูู A ู
ุถุฑูุจ ูู ุงูู A |
|
|
|
281 |
|
00:30:54,760 --> 00:31:02,060 |
|
inverse ูู ุงูู A inverse inverse ูุจูู ูุฐุง ุงูู A |
|
|
|
282 |
|
00:31:02,060 --> 00:31:03,360 |
|
ู
ุถุฑูุจ ูู ุงูู A inverse inverse ูุจูู ูุฐุง ุงูู A |
|
|
|
283 |
|
00:31:03,360 --> 00:31:04,500 |
|
ู
ุถุฑูุจ ูู ุงูู A inverse inverse ูุจูู ูุฐุง ุงูู A |
|
|
|
284 |
|
00:31:04,500 --> 00:31:06,880 |
|
ู
ุถุฑูุจ ูู ุงูู A inverse inverse ูุจูู ูุฐุง ุงูู A |
|
|
|
285 |
|
00:31:06,880 --> 00:31:11,880 |
|
ู
ุถุฑูุจ ูู ุงูู A inverse inverse ูุจูู |
|
|
|
286 |
|
00:31:11,880 --> 00:31:15,540 |
|
ูุฐุง ุงูู A ู
ุถุฑูุจ ูู ุงูู A inverse inverse ูุจูู ูุฐุง |
|
|
|
287 |
|
00:31:26,790 --> 00:31:33,030 |
|
ุงูุนูุตุฑ ูู ุงูู
ุนููุณ ูุนุทููุง ุงู identity element ูุจูู |
|
|
|
288 |
|
00:31:33,030 --> 00:31:38,970 |
|
ูุฐุง ูุนุทููุง ุฃู ุงู E ูู A inverse inverse |
|
|
|
289 |
|
00:31:41,540 --> 00:31:45,380 |
|
ุงูู identity element ูู
ุง ููุถุจู ูู ุฃู ุนูุตุฑ ุจูุทูุน |
|
|
|
290 |
|
00:31:45,380 --> 00:31:51,460 |
|
ููุณ ุงูุนูุตุฑ ูุจูู ุจูุงุก ุนููู a inverse inverse ุจุฏู |
|
|
|
291 |
|
00:31:51,460 --> 00:31:57,240 |
|
ูุณุงูู ุงู a itself ุนุฒูุฒู ู ูู ุงูู
ุทููุจุ ุทูุจ ู ูู |
|
|
|
292 |
|
00:31:57,240 --> 00:32:02,360 |
|
ุงูู
ุทููุจ ู ุงูุชูููุง ู
ู ูุฐุง ุงู section ู ุฅูููู
ุงู |
|
|
|
293 |
|
00:32:02,360 --> 00:32:10,730 |
|
exercises ุจุฏูุง ูุงูู
ุชู
ุฑูู ุฃุฏููู
ุจุณุคุงู 5 ู 6 ู |
|
|
|
294 |
|
00:32:10,730 --> 00:32:21,230 |
|
8 ู 10 ู 12 ู 17 ู 19 ู 4 ู |
|
|
|
295 |
|
00:32:21,230 --> 00:32:30,690 |
|
20 ู 25 ู 26 ู 3 ู |
|
|
|
296 |
|
00:32:30,690 --> 00:32:39,050 |
|
33 ู 34 ู 35 ู 39 ู |
|
|
|
297 |
|
00:32:39,050 --> 00:32:39,730 |
|
30 |
|
|
|
298 |
|
00:32:44,920 --> 00:32:49,500 |
|
ูุฐุง ูุง ูุนูู ุฃู ุจูู ุงููุงุณ ู
ุดุทูุจุฉ ูุง ู
ุด ู
ุดุทูุจุฉ ุฅุฐุง |
|
|
|
299 |
|
00:32:49,500 --> 00:32:54,500 |
|
ุจุชุญู ูุฏููู ูู
ุงู ุฌุฏูู
ุจูููููุง ูููุณ ู
ุด ุบูุท ููู ุฃูุง |
|
|
|
300 |
|
00:32:54,500 --> 00:32:59,720 |
|
ุจูู
ูู ูุฏูู ุงูุชูููู
ุงูุชูุงุก ุจุญูุซ ูุบุทูุง ููุฑุฉ ูุซูุฑุฉ |
|
|
|
301 |
|
00:32:59,720 --> 00:33:05,780 |
|
ู
ูุฌูุฏุฉ ูู ุงูุชู
ุฑูู ููุฐูู ูุฏูู ู
ู ุฃูู
ุงูู
ุณุงุฆู ุงููู |
|
|
|
302 |
|
00:33:05,780 --> 00:33:10,440 |
|
ู
ูุฌูุฏุฉ ูู ุงูุชู
ุฑูู ูุนู ูููู ูููุง ููุฑุฉ ุฌุฏูุฏุฉ ูุญุงูู |
|
|
|
303 |
|
00:33:10,440 --> 00:33:15,190 |
|
ูุณุชููุฏ ูุฐู ุงูููุฑุฉ ุทุจุนุง ุนูุฏูู
ู
ุญุงุถุฑุฉ ุงูููู
14 |
|
|
|
304 |
|
00:33:15,190 --> 00:33:20,270 |
|
ุงููุงุญุฏุฉ ู
ุด ุญุงุฌุฉ ุญู ุงูุฃุณุฆูุฉ ูุฃ ุญุงุจุฏ ู
ุญุงุถุฑุฉ ุฌุฏูุฏุฉ |
|
|
|
305 |
|
00:33:20,270 --> 00:33:24,710 |
|
ููู ุงูุฃุณุฆูุฉ ูููู
ุฅูุดุ ูููู
ุงูุงุซููู ู
ุด ูุชุฑูุญ ุชุญู |
|
|
|
306 |
|
00:33:24,710 --> 00:33:29,690 |
|
ุนููู ู
ุด ููุญู ู ุฃูุช ุชูุณุฎ ููุง ุนู
ุฑู ุจุชุณุชููุฏ ุญุงุฌุฉ ุจุฏู |
|
|
|
307 |
|
00:33:29,690 --> 00:33:34,510 |
|
ุชููุฑ ู
ู ููุง ูุจุนุฏ ุจูุฑุฉ ูู ุญู ูุฐู ุงูู
ุณุฃูุฉ ู ุชุญุงูู ุชุญู |
|
|
|
308 |
|
00:33:34,510 --> 00:33:38,430 |
|
ุจูุฏุฑ ุงูุงู
ูุงู ู ุงููู ูุตุนุจ ุนููู ุจุนุฏ ุจูุฑุฉ ุฅู ุดุงุก ุงููู |
|
|
|
309 |
|
00:33:38,430 --> 00:33:43,610 |
|
ุจูุญูู ู
ูู
ุง ูุงู ุดูู ูุฐุง ุงูุณุคุงู ูุงุถุญ ููุงู
ุงููุ ูุนูู |
|
|
|
310 |
|
00:33:43,610 --> 00:33:47,970 |
|
ุจุฏูู ุจุนุถ ุงูู
ุงุฏุฉ ุชูุฌู ุฌุงูุฒ ููุณู ููููุงุดุ ููููู ูู |
|
|
|
311 |
|
00:33:47,970 --> 00:33:51,950 |
|
ููุงุด ูุซูุฑ ุญุณุจ ุงููู ูู
ูู ุงููู ูุณุฃูููุง ููููุง ุฃู ุซูุซ |
|
|
|
312 |
|
00:33:51,950 --> 00:33:56,330 |
|
ุฑุจุงุนููุง ุฃู ูุตูููุง ุญุณุจ ู
ุง ุงูููุช ุงููู ุงูู ุงูู
ุชุงุญ ูุนูู |
|
|
|
313 |
|
00:33:56,330 --> 00:34:00,050 |
|
ูู ูุญุฏุฉ ุฃูุช ุชุชูุฌููู ุงูุณุคุงู ุฅูุด ุฑุฃูู ูู ุงูุณุคุงู ูููู |
|
|
|
314 |
|
00:34:00,050 --> 00:34:04,970 |
|
ูุตูุช ููู ุฅูุด ุญูุช ุฅูุด ูุฏู ุฅูู ุขุฎุฑู ููู ุจูุตูุฑ ู
ุฎู |
|
|
|
315 |
|
00:34:04,970 --> 00:34:10,210 |
|
ูููู
ุงููู ูู ุฌุจุฑ ู ุจุชุณุชุทูุน ุฃู ุชู
ุดู ู
ุนุงูุง ู
ุง ุญูุชุด |
|
|
|
316 |
|
00:34:10,210 --> 00:34:14,250 |
|
ูุงููู ุนู
ุฑู ู
ุง ูุชู
ุดู ูุชุถูู ูุงุนุฏ ุนูุฏูุง ููุง ุนูู ุทูู |
|
|
|
317 |
|
00:34:14,250 --> 00:34:21,770 |
|
ูุงู ูุนู
ูุจูู ุงูุขู ูุญุงูู ุจูุฏุฑ ุงูุงู
ูุงู ุชุญู ูุฐู ุงูู
ุณุงุฆู |
|
|
|
318 |
|
00:34:21,770 --> 00:34:26,830 |
|
ุฃูุง ู
ุชุฃูุฏ ุฃูู ู
ุด ูุชุนุฑู ุชุญููู
ูููู
ููู ุนูู ุงูุฃูู |
|
|
|
319 |
|
00:34:26,830 --> 00:34:32,350 |
|
ุจุชุญู ุดูุก ูุซูุฑ ู
ููู
ููุฐูู ุงูู
ูุงูุดุฉ ุญุชู ุงููู |
|
|
|
320 |
|
00:34:32,350 --> 00:34:38,670 |
|
ู
ุง ุนุฑููุงุด ูุญูู ุงูุฑูุญ ูุญูู ูู ู
ุญุงุถุฑุฉ ุงูู
ูุงูุดุฉ ุทูุจ |
|
|
|
321 |
|
00:34:38,670 --> 00:34:43,230 |
|
ุนููู ุจููู ุงูุชูููุง ู
ู ูุฐุง ุงู chapter ุจุฏูุง ูุฑูุญ ูู |
|
|
|
322 |
|
00:34:43,230 --> 00:34:48,010 |
|
chapter ุงููู ุจุนุฏู ุงููู ูู chapter 3 chapter |
|
|
|
323 |
|
00:34:48,010 --> 00:34:54,690 |
|
3 ูุง ุดุจุงุจ ุงููู ูู ุจูุชุญุฏุซ ุนู ุงู subgroups ูุนูู |
|
|
|
324 |
|
00:34:54,690 --> 00:34:59,110 |
|
ุงุญูุง ููุง ุจูุดุชุบู ูู ุงู groups ุงูุขู ุจุฏูุง ูุจุฏุฃ ูุงุฎุฏ |
|
|
|
325 |
|
00:34:59,110 --> 00:35:12,310 |
|
ู
ุฌู
ูุนุงุช ุฌุฒุฆูุฉ ู
ููุง ูุจูู chapter 3 finite groups |
|
|
|
326 |
|
00:35:12,310 --> 00:35:20,390 |
|
finite groups finite |
|
|
|
327 |
|
00:35:20,390 --> 00:35:21,110 |
|
groups finite groups finite groups finite groups |
|
|
|
328 |
|
00:35:21,110 --> 00:35:22,930 |
|
finite groups finite groups finite groups finite |
|
|
|
329 |
|
00:35:22,930 --> 00:35:24,850 |
|
groups finite groups finite groups finite groups |
|
|
|
330 |
|
00:35:24,850 --> 00:35:26,470 |
|
finite groups finite groups finite groups finite |
|
|
|
331 |
|
00:35:26,470 --> 00:35:34,790 |
|
groups finite groups ุฌุฏูุฏุฉ ูุจู ุฃู ูุจุฏุฃ ูู ุงูู |
|
|
|
332 |
|
00:35:34,790 --> 00:35:40,570 |
|
subgroups ุญุงุฌุฉ ุงุณู
ูุง ุงู order ูู group ู ุงู order ูู |
|
|
|
333 |
|
00:35:40,570 --> 00:35:46,090 |
|
element ุงููู ู
ูุฌูุฏ ูู ุงู group ุฃูู ุดูุก ุจุงูุจูุฏู ููู |
|
|
|
334 |
|
00:35:46,090 --> 00:35:50,900 |
|
ูุจู ู
ุง ููุชุจ ูู ุฃุฑุฏุช ุงู order ูุฌุฑูุจ ูุฃุฐูุจ ุจุนุฏ |
|
|
|
335 |
|
00:35:50,900 --> 00:35:56,000 |
|
ุนูุงุตุฑูุง ุฌุฏุงุด ุงู order ูุฌุฑูุจ ูู ุนุฏุฏ ุงูุนูุงุตุฑ ูู |
|
|
|
336 |
|
00:35:56,000 --> 00:35:59,620 |
|
ุงูุฌุฑูุจ ุฌุฑูุจ ูููุง ุฃุฑุจุน ุนูุงุตุฑ ูุจูู ุงู order ููุง |
|
|
|
337 |
|
00:35:59,620 --> 00:36:04,480 |
|
ูุณุงูู ุฃุฑุจุนุฉ ุฌุฑูุจ ูููุง ุนุดุฑ ุนูุงุตุฑ ูุจูู ุงู order ููุง |
|
|
|
338 |
|
00:36:04,480 --> 00:36:11,770 |
|
ูุณุงูู ุนุดุฑุฉ ู ููุฐุง ููู ุงู order ูู element ุงููู |
|
|
|
339 |
|
00:36:11,770 --> 00:36:18,150 |
|
ู
ูุฌูุฏ ูู ุงู group ูู ุฃุตุบุฑ ุนุฏุฏ ุตุญูุญ ู
ูุฌุจ ุจุญุทู ู ุฃุณู |
|
|
|
340 |
|
00:36:18,150 --> 00:36:21,170 |
|
ูุฐุง ุงู element ุจูุนุทููุง ุงู identity |
|
|
|
341 |
|
00:36:26,400 --> 00:36:29,720 |
|
ุฃุตุบุฑ ุนุฏุฏ ุตุญูุญ ู
ูุฌุจ ุฃุตุบุฑ ุนุฏุฏ ุตุญูุญ ู
ูุฌุจ ุฃุตุบุฑ ุนุฏุฏ |
|
|
|
342 |
|
00:36:29,720 --> 00:36:32,280 |
|
ุตุญูุญ ู
ูุฌุจ ุฃุตุบุฑ ุนุฏุฏ ุตุญูุญ ู
ูุฌุจ ุฃุตุบุฑ ุนุฏุฏ ุตุญูุญ ู
ูุฌุจ |
|
|
|
343 |
|
00:36:32,280 --> 00:36:34,300 |
|
ุฃุตุบุฑ ุนุฏุฏ ุตุญูุญ ู
ูุฌุจ ุฃุตุบุฑ ุนุฏุฏ ุตุญูุญ ู
ูุฌุจ ุฃุตุบุฑ ุนุฏุฏ |
|
|
|
344 |
|
00:36:34,300 --> 00:36:38,640 |
|
ุตุญูุญ ู
ูุฌุจ ุฃุตุบุฑ ุนุฏุฏ ุตุญูุญ ู
ูุฌุจ ุฃุตุบุฑ ุนุฏุฏ ุตุญูุญ ู
ูุฌุจ |
|
|
|
345 |
|
00:36:38,640 --> 00:36:43,420 |
|
ุฃุตุบุฑ ุนุฏุฏ ุตุญูุญ ู
ูุฌุจ ุฃุตุบุฑ ุนุฏุฏ ุตุญูุญ ู
ูุฌุจ ุฃุตุบุฑ ุนุฏุฏ |
|
|
|
346 |
|
00:36:43,420 --> 00:36:45,120 |
|
ุตุญูุญ ู
ูุฌุจ ุฃุตุบุฑ ุนุฏุฏ ุตุญูุญ ู
ูุฌุจ ุฃุตุบุฑ ุนุฏุฏ ุตุญูุญ ู
ูุฌุจ |
|
|
|
347 |
|
00:36:45,120 --> 00:36:49,640 |
|
ุฃุตุบุฑ ุนุฏุฏ |
|
|
|
348 |
|
00:36:49,640 --> 00:37:01,290 |
|
ุตุญูุญ ู
ูุฌุจ the order of G as the number |
|
|
|
349 |
|
00:37:01,290 --> 00:37:08,950 |
|
of elements |
|
|
|
350 |
|
00:37:08,950 --> 00:37:18,050 |
|
in G which is denoted by |
|
|
|
351 |
|
00:37:22,800 --> 00:37:29,120 |
|
|G| ุฌูู ู
ุง ุจูู ุฎุทูู ู ุชูุฑุฃ ุงู order ูุฌูู ู
ุด |
|
|
|
352 |
|
00:37:29,120 --> 00:37:34,400 |
|
absolute value ูุฌูู ูุจูู ูุฐุง ูู ุงู order ูุฌูู |
|
|
|
353 |
|
00:37:34,400 --> 00:37:39,440 |
|
command definition ุซุงูู ุงู order ูู element the |
|
|
|
354 |
|
00:37:39,440 --> 00:37:53,720 |
|
order of an element of an element ุงููู ู
ูุฌูุฏ ูู G |
|
|
|
355 |
|
00:37:53,720 --> 00:38:04,040 |
|
is the smallest positive |
|
|
|
356 |
|
00:38:04,040 --> 00:38:07,580 |
|
integer |
|
|
|
357 |
|
00:38:37,950 --> 00:38:46,780 |
|
ุจูุฑูุญ ููุชุจ ุงู order ูู G ุจุฏู ูุณุงูู ุงู n ูู ุนูุฏูุง |
|
|
|
358 |
|
00:38:46,780 --> 00:38:59,960 |
|
ุจุนุถ ุงู notes ุงูุจุณูุทุฉ ุฃูู ูุงุญุฏุฉ if the operation on |
|
|
|
359 |
|
00:38:59,960 --> 00:39:11,100 |
|
G is addition is addition ุนู
ููุฉ ุงูุฌู
ุน then |
|
|
|
360 |
|
00:39:30,230 --> 00:39:38,950 |
|
ุงูููุทุฉ ุงูุซุงููุฉ is the order of |
|
|
|
361 |
|
00:39:38,950 --> 00:39:41,250 |
|
the identity |
|
|
|
362 |
|
00:39:42,600 --> 00:40:00,500 |
|
element E is ูุงุญุฏุฉ ุตุญูุญุฉ ุงูููุทุฉ ุงูุซุงูุซุฉ if there is if |
|
|
|
363 |
|
00:40:00,500 --> 00:40:10,380 |
|
there is no positive integer n |
|
|
|
364 |
|
00:40:11,810 --> 00:40:17,310 |
|
such that ุงูู |
|
|
|
365 |
|
00:40:17,310 --> 00:40:25,310 |
|
G to the power N ุจุฏู ูุณุงูู ุงู identity then ุงู order |
|
|
|
366 |
|
00:40:25,310 --> 00:40:29,270 |
|
ูู G is infinite |
|
|
|
367 |
|
00:41:00,880 --> 00:41:05,620 |
|
ูุฑุฌุน ููุฐู ุงูุชุนุฑูููู ูุงูู
ูุงุญุธุงุช ุงููู ุนูู ุงูุชุนุฑูููู |
|
|
|
368 |
|
00:41:05,620 --> 00:41:10,920 |
|
ู
ุฑุฉ ุซุงููุฉ ุจููู the order of a group G is the |
|
|
|
369 |
|
00:41:10,920 --> 00:41:16,980 |
|
number of elements in G ุนุฏุฏ ุงูุนูุงุตุฑ ูู G ูุงููู |
|
|
|
370 |
|
00:41:16,980 --> 00:41:22,280 |
|
ุจุชุฏุฑู
ุฒูู ุจุงูุฑู
ุฒ |G| ุฌูู ู
ุง ุจูู ุฎุทูู ููุณุช absolute value |
|
|
|
371 |
|
00:41:22,280 --> 00:41:28,140 |
|
ูู G ูุฅูู
ุง ุงู order ูู G ูุจูู ุงู order ูู G ูู |
|
|
|
372 |
|
00:41:28,140 --> 00:41:33,360 |
|
ุนุฏุฏ ุงูุนูุงุตุฑ ูู ุงู group ุงูุณุคุงู ูู ูู ู
ู
ูู ุนุฏุฏ |
|
|
|
373 |
|
00:41:33,360 --> 00:41:37,960 |
|
ุงูุนูุงุตุฑ ูููู ู
ุญุฏูุฏ ูุนูู ุฑูู
ู ู
ู
ูู ูููู ูุฐูู |
|
|
|
374 |
|
00:41:37,960 --> 00:41:43,760 |
|
infinity ู
ู
ูู ุงุซููู ูุฑุฏุงุช ูุนูู ุงู group ูุฏ ุชูุชูู |
|
|
|
375 |
|
00:41:43,760 --> 00:41:48,700 |
|
ูุจุงูุชุงูู ุนุฏุฏ ุงูุนูุงุตุฑ ูููู finite ููุฏ ูุง ุชูุชูู |
|
|
|
376 |
|
00:41:48,700 --> 00:41:54,340 |
|
ูุจุงูุชุงูู ูุฐู ุงูุนูุงุตุฑ infinite ุฒู ุงูู R star ุงููู |
|
|
|
377 |
|
00:41:54,340 --> 00:41:57,760 |
|
ูู set of real numbers ูู
ุง ุฃุดูู ู
ููุง zero ุชุญุช |
|
|
|
378 |
|
00:41:57,760 --> 00:42:01,680 |
|
ุนู
ููุฉ ุงูุถุฑุจ ุฃูู
ุฃูุตุฑ ูููุง ุฏู group ุทุจุนุง ุฃูู
ุฃูุตุฑ |
|
|
|
379 |
|
00:42:01,680 --> 00:42:06,200 |
|
ูููุง ู
ุงูุงููุงูุฉ ู
ู ุงูุนูุงุตุฑ ุฅุฐุง ู
ู ุงูู order ูู |
|
|
|
380 |
|
00:42:06,200 --> 00:42:11,430 |
|
group G ูู ูุฐู ุงูุญุงูุฉ ุจูููู infinite ููู ูู ุฑูุญุช ู |
|
|
|
381 |
|
00:42:11,430 --> 00:42:17,110 |
|
ZN ู ูุง UN ู ูุง ูู ุงูุฃู
ุซูุฉ ุงููู ุฃุฎุฏูุงูู
ูุฐู ุจูุตูุฑ |
|
|
|
382 |
|
00:42:17,110 --> 00:42:21,630 |
|
ู
ุงููุง finite ุฃุฑุจุน ุนูุงุตุฑ ุณุชุฉ ุนูุงุตุฑ ุนุดุฑูู ุนูุตุฑ ุญุณุจ |
|
|
|
383 |
|
00:42:21,630 --> 00:42:27,110 |
|
ููู
ุฉ N ุทูุจ ุงูุชุนุฑูู ุงูุซุงูู ุจูููู ุงูู order of an element |
|
|
|
384 |
|
00:42:27,110 --> 00:42:31,850 |
|
g ุงููู ู
ูุฌูุฏ ูู G is the smallest positive integer |
|
|
|
385 |
|
00:42:31,850 --> 00:42:37,870 |
|
in such that ุงูู g n ุจุฏู ูุณุงูู e ููู ููุณ ุงูุฑู
ุฒ |
|
|
|
386 |
|
00:42:37,870 --> 00:42:41,750 |
|
ุงูู order ููู element g ุจุฏู ูุณุงูู ู
ููุ ุจุฏู ูุณุงูู ุงู |
|
|
|
387 |
|
00:42:41,750 --> 00:42:46,770 |
|
n ุงุณุชูู ุดููุฉ ุทูุจ ุฃูุง ุงูุชุฑุถ ุจูุฏุฑ ุขุฎุฏ ุฃู ุนูุตุฑ |
|
|
|
388 |
|
00:42:46,770 --> 00:42:52,290 |
|
ู
ู ุงูู group ู
ูู ู
ุง ูุงู ูุณู
ูุชู ุงููุ ุฑูุนุชูู ุฃุณ |
|
|
|
389 |
|
00:42:52,290 --> 00:42:57,850 |
|
ุนุดุฑูู ูููุชู ุงูู identity element ุฅุฐุง ุงูู order ูุฅูู |
|
|
|
390 |
|
00:42:57,850 --> 00:43:05,060 |
|
ูุณุงูู ุนุดุฑููุ ูุฏ ูููู ููุฏ ูุง ูููู ููู ูุฏ ููููุ ุงุญูุง |
|
|
|
391 |
|
00:43:05,060 --> 00:43:08,600 |
|
ูููุง the smallest positive integer ูู
ูู ูู ุฑูู
ุชุญุช |
|
|
|
392 |
|
00:43:08,600 --> 00:43:13,320 |
|
ุงูุนุดุฑูู ุฒู ุนุดุฑุฉ ูููู A ุฃุณ ุนุดุฑุฉ ูุณุงูู ุงูู identity |
|
|
|
393 |
|
00:43:13,320 --> 00:43:17,600 |
|
ูุฅู ูุงู A ุฃุณ ุนุดุฑุฉ ูุณุงูู ุงูู identity ุฅุฐุง A ุฃุณ |
|
|
|
394 |
|
00:43:17,600 --> 00:43:20,720 |
|
ุนุดุฑูู ูุณุงูู ุงูู identity A ุฃุณ ุซูุงุซูู ูุณุงูู ุงู |
|
|
|
395 |
|
00:43:20,720 --> 00:43:26,800 |
|
identity A ุฃุณ ุฎู
ุณูู ูุจูู ุฃุตุบุฑ ุฑูู
ุฅู ุจุญุทู ูุฃุณ |
|
|
|
396 |
|
00:43:26,800 --> 00:43:30,990 |
|
ููุฐุง ุงูู element ุจุฏู ูุนุทูู ุงูู identity ุฅู ุญุฏุซ ุฐูู |
|
|
|
397 |
|
00:43:30,990 --> 00:43:35,150 |
|
ูุจูู ูุฐุง ุงูุฑูู
ูู ุงูู order ุชุจุน ู
ููุ ุชุจุน ูุฐุง ุงู |
|
|
|
398 |
|
00:43:35,150 --> 00:43:39,190 |
|
element ูุจูู ูู ูุงู show that the order of this |
|
|
|
399 |
|
00:43:39,190 --> 00:43:45,410 |
|
element is ูุฐุง ุฃู ุฑูู
ุชู
ุงู
ุฃุญุท ุฃุณ ููุฐุง ุงูุฑูู
ูุทูุน |
|
|
|
400 |
|
00:43:45,410 --> 00:43:50,040 |
|
ุงูู identity ู
ุง ุฃูุฏุฑุด ุฃููู ูุฐุง ูู ุงูู order ูุง ุงูู order |
|
|
|
401 |
|
00:43:50,040 --> 00:43:55,380 |
|
ูุง ุฃูู ู
ูู ุฅุฐุง ุจุฏุฃ ุฃุณุชุจุนุฏ ุงููู ุฃูู ู
ูู ูุจูู ุฅุฌุจุงุฑู |
|
|
|
402 |
|
00:43:55,380 --> 00:43:59,080 |
|
ุจูุตูุฑ ูุฐุง ูุง ุฅู
ุง ูุฐุง ูู ุงูู order ู ููุดูู ูุฐุง ุงูููุงู
|
|
|
|
403 |
|
00:43:59,080 --> 00:44:05,000 |
|
ู
ู ุฎูุงู ุงูู
ุณุงุฆู ูุจูู ุจุฏูู ุชุนุฑู ุฃู ุงูู order ููุฐุง ุงู |
|
|
|
404 |
|
00:44:05,000 --> 00:44:11,040 |
|
element ุฃูู ุนุฏุฏ ุตุญูุญ ู
ูุฌุจ ุจุญุท ุฃุณ ููุฐุง ุงูู element |
|
|
|
405 |
|
00:44:11,040 --> 00:44:15,490 |
|
ุจูุนุทููู ุงูู Identity ุงููู ุฌุงู ุบูุฑู ู
ุง ููุด ุนูุงูุฉ ูููู
|
|
|
|
406 |
|
00:44:15,490 --> 00:44:21,630 |
|
ู ูุฏุงู
ุดููุฉ ููููู ูู ุฃู ุงูู order ูุฐุง ุจููุณู
ุฃู ุฑูู
|
|
|
|
407 |
|
00:44:21,630 --> 00:44:25,490 |
|
ุซุงูู ูุญุทู ูุฃุณู ูุทูุน ููุง ุงูู identity ู
ุง ุนูููุง |
|
|
|
408 |
|
00:44:25,490 --> 00:44:29,870 |
|
ูุณู ุจุนูุฏ ุนููุง ุดููุฉ ูุจูู ุจุงุฌู ุจููู ุงูู order ูู |
|
|
|
409 |
|
00:44:29,870 --> 00:44:36,290 |
|
element g ูู ุฃุตุบุฑ smallest ู positive integer in |
|
|
|
410 |
|
00:44:36,290 --> 00:44:40,290 |
|
such that g to the power n ุจุฏู ูุณุงูู ุงูู e ููู |
|
|
|
411 |
|
00:44:40,290 --> 00:44:46,630 |
|
ุงูุฑู
ุฒ ุฌู ุจูู ุฎุทูู ูููู ุงูุฑู
ุฒ ูุฐุง ููุฑุฃ ุงูู order ูู g |
|
|
|
412 |
|
00:44:46,630 --> 00:44:50,690 |
|
ูููุณ ุงูู absolute value ูู g ุงูู absolute ูููู ููุงุณ ู
ุด |
|
|
|
413 |
|
00:44:50,690 --> 00:44:54,930 |
|
ููุฌุจุฑ ูุจูู ููุง ุจูููู ุงู ุจูููู ุงูู order ูู g ูุณุงูู |
|
|
|
414 |
|
00:44:54,930 --> 00:45:00,230 |
|
ู
ููุ ูุณุงูู ุงูู n ุทูุจ ู
ู
ูู ูู group ุฒู ู
ุง ุดูููุง ูู |
|
|
|
415 |
|
00:45:00,230 --> 00:45:05,160 |
|
ุงูุฃู
ุซูุฉ ุนูู group ุชุจูู ุงูุนู
ููุฉ ุนู
ููุฉ ุฌู
ุน ุทูุจ ูู |
|
|
|
416 |
|
00:45:05,160 --> 00:45:10,780 |
|
ูุงูุช ุนู
ููุฉ ุฌู
ุน ุงูุด ุจุตูุฑ ุดูู ูุฐุง ุงูู element ูุจูู ูู |
|
|
|
417 |
|
00:45:10,780 --> 00:45:14,520 |
|
ูุงูุช ุงูู operation ุนูู G ูู ุงูุฌู
ุน ุฅุฐุง ุงูู element |
|
|
|
418 |
|
00:45:14,520 --> 00:45:19,320 |
|
ูุฐุง ุจูุตูุฑ in G ูุณุงูู ุงูู identity element ุชุญุช ุนู
ููุฉ |
|
|
|
419 |
|
00:45:19,320 --> 00:45:23,140 |
|
ุงูุฌู
ุน ุงููู ูู main ุงููู ูู ุงูู zero ูุจูู ุงูู G to |
|
|
|
420 |
|
00:45:23,140 --> 00:45:26,840 |
|
the power n ูุณุงูู ุงูู identity ุจุชุฑุฌู
ุฅูู in G |
|
|
|
421 |
|
00:45:26,840 --> 00:45:31,480 |
|
ูุณุงูู main ุงูู zero ุจุดุฑุท ุชุจูู ุงูุนู
ููุฉ ุงูู
ุนุฑูุฉ ุนูู |
|
|
|
422 |
|
00:45:31,480 --> 00:45:36,980 |
|
ุงูู group ูู ุนู
ููุฉ ุงูุฌู
ุน ุงูุนุงุฏูุฉ ุทูุจ ุจุฏูุง ุงู |
|
|
|
423 |
|
00:45:36,980 --> 00:45:41,900 |
|
identity element ุงูู ุจุฏูุง ูุนุฑู ูุฏุงุด ุงูู order ุฃุตุบุฑ |
|
|
|
424 |
|
00:45:41,900 --> 00:45:46,220 |
|
ุฑูู
ุจุญุทู ููู g ุจูุทูุน ุงูู e ู
ูู ูุงุญุฏ ูุณุงูู e |
|
|
|
425 |
|
00:45:46,220 --> 00:45:50,880 |
|
ูุงุญุฏ ูุณุงูู ู
ูู ูุงุญุฏ ุฅุฐุง ุงูู order ูุฃู identity |
|
|
|
426 |
|
00:45:50,880 --> 00:45:53,600 |
|
element ู
ูู
ุง ูุงู ุดูู ุงูู group |
|
|
|
427 |
|
00:46:11,020 --> 00:46:19,800 |
|
ูู ูู
ุฃุฌุฏ ุนุฏุฏ ุตุญูุญ ูุฃุถุนู ูุฃุณู g ูุนุทููุง ุงูู identity |
|
|
|
428 |
|
00:46:19,800 --> 00:46:25,040 |
|
elementูููู g ุฃุณ ู
ูุฉ ู
ุง ุทูุนุด ุงูู identity element |
|
|
|
429 |
|
00:46:25,040 --> 00:46:29,100 |
|
ูููู g ุฃุณ ู
ูููู ู
ุง ุทูุนุด ุงูู identity ูู ู
ุง ูุฌู |
|
|
|
430 |
|
00:46:29,100 --> 00:46:32,740 |
|
ุฐุงูู ุฑูู
ู
ุง ูุทูุนุด ุงูู identity element ูุจูู ูู ูุฐู |
|
|
|
431 |
|
00:46:32,740 --> 00:46:37,820 |
|
ุงูุญุงูุฉ ุงูู order ูู g ูุฏุงุด ุจูููู ู
ุงูุงููุงูุฉ ูุจูู ุจุงุฌู |
|
|
|
432 |
|
00:46:37,820 --> 00:46:42,880 |
|
ุจููู ุงูู element ูุฐุง is of infinite order ูุจูู ุงู |
|
|
|
433 |
|
00:46:42,880 --> 00:46:48,820 |
|
order ููุฐุง ุงูู element ุจูููู infinite ููุฏ ุชุณุชุบุฑุจูุง |
|
|
|
434 |
|
00:46:48,820 --> 00:46:53,000 |
|
ุฃูู ู
ู
ูู ูููู ูุงุญูุง ุจูุดุชุบู ููู ูู ุงูู groups |
|
|
|
435 |
|
00:46:53,000 --> 00:46:57,720 |
|
element ุฃุฎุฐู ูู ุงูู group ุงูู order ูู finite ุงุชููู |
|
|
|
436 |
|
00:46:57,720 --> 00:47:01,520 |
|
ุซูุงุซุฉ ุนุดุฑ ุฌุฏ ู
ุง ูููููุง element ุซุงูู ุงูู order ูู |
|
|
|
437 |
|
00:47:01,520 --> 00:47:07,120 |
|
finite ุฃุถุฑุจ ุงุชููู ูู ุจุนุถ ูุทูุน ุงูู order infinite |
|
|
|
438 |
|
00:47:09,630 --> 00:47:13,130 |
|
ุทุจุนุง ุฃูุช ู
ุด ุชุบุฑุจูู ููู ููุนุทููู
ู
ุซุงู ุฅู ุดุงุก ุงููู |
|
|
|
439 |
|
00:47:13,130 --> 00:47:16,830 |
|
ููุถุญ ููู ูุฐุง ุงูููุงู
ูุนูู ุฅู ูุงู ุงูู order ูู |
|
|
|
440 |
|
00:47:16,830 --> 00:47:21,470 |
|
element finite ูุงูู order ุงูุซุงูู finite ูู ุถุฑุจุช |
|
|
|
441 |
|
00:47:21,470 --> 00:47:25,030 |
|
ุงุชููู ูู ุจุนุถ ุจุงูู operation start ุทูุน element ุฌุฏูุฏ |
|
|
|
442 |
|
00:47:25,030 --> 00:47:29,910 |
|
ุงูู element ุงูุฌุฏูุฏ ููุณ ุจุถุฑูุฑุฉ ุฃู ูููู finite ูุฑุจู
ุง |
|
|
|
443 |
|
00:47:29,910 --> 00:47:36,270 |
|
infinite ูุฎุงุตุฉ ูู ู
ูุถูุน ุงูู
ุตูููุงุช ุทูุจ ูุจุฏุฃ ูุงุฎุฏ |
|
|
|
444 |
|
00:47:36,270 --> 00:47:42,220 |
|
ุจุนุถ ุงูุฃู
ุซูุฉ ุนูู ูุฐู ุงูุชุนุฑูู ู
ุดุงู ูุซุจุช ูุฐู ุงูู
ุนููู
ุงุช |
|
|
|
445 |
|
00:47:42,220 --> 00:47:50,340 |
|
ููู ุนูู ุงูุฃูู ู
ุซุงูุง ูุงุญุฏุง ูุจูู examples ุฃูู ู
ุซุงู |
|
|
|
446 |
|
00:47:50,340 --> 00:47:59,440 |
|
ุจูููู ุงูู let ุงูู G ูุณุงูู U 15 ูุจูู ุจุฏูุง ุนูุงุตุฑ |
|
|
|
447 |
|
00:47:59,440 --> 00:48:05,120 |
|
ุงูู U 15 ุดุจู ู
ูู ุงูู 1 ูุงูู 2 ูุงูู 3 ู
ููู
|
|
|
|
448 |
|
00:48:05,960 --> 00:48:16,160 |
|
ุงูู 4 ูุงูู 5 ูุงูู 6 ูุงูู 7 ูุงูู 8 ูุงูู 9 ูุงูู 10 |
|
|
|
449 |
|
00:48:16,160 --> 00:48:25,120 |
|
ุงูู 11 ูุงูู 12 ูุงูู 13 ููู
ุงู 14 ูุจูู ูุงู |
|
|
|
450 |
|
00:48:25,120 --> 00:48:32,240 |
|
ูุชุจุชูู ุงูู U 15 ุทูุจ ุจูุงุก ุนููู ุงูู order ูู U |
|
|
|
451 |
|
00:48:32,240 --> 00:48:38,520 |
|
15 ุฃูุง ุจููู 15 ููุง ูุฃ ูุฃุ ูุด ุฌุงุจ ุงูู 5ุ ุนุฏ |
|
|
|
452 |
|
00:48:38,520 --> 00:48:41,640 |
|
ุงูุนูุงุตุฑ 1ุ 2ุ 3ุ 4ุ 5ุ 6ุ |
|
|
|
453 |
|
00:48:41,640 --> 00:48:46,220 |
|
7ุ 8 ูุจูู ุงูู order ุงููู ุฃุฌูุจู ูุณุงูู 8 |
|
|
|
454 |
|
00:48:46,220 --> 00:48:53,560 |
|
ุทูุจ ูู ุจุฏู ุฃุฌูุจ ุงูู order ูููุงุญุฏ ูุฏุงุดุ |
|
|
|
455 |
|
00:48:53,560 --> 00:48:57,500 |
|
ูุงุญุฏ ูุฃู ูุฐุง ูู ุงูู identity element ูุจูู ุงูู order |
|
|
|
456 |
|
00:48:57,500 --> 00:49:03,630 |
|
ูููุงุญุฏ ูุณุงูู ูุงุญุฏ ุทูุจ ุจุฏู ุงูู order ูููุชูููุ ุดูู ุนุงุฏ |
|
|
|
457 |
|
00:49:03,630 --> 00:49:07,570 |
|
ูุถุฑุจ ุงุชููู ูู ููุณู ูุงู
ู
ุฑุฉ ุญุชู ูุทูุน ุนูุฏู ุงู |
|
|
|
458 |
|
00:49:07,570 --> 00:49:11,230 |
|
identity element ุทุจุนุง ููุง ุนู
ููุฉ ุถุฑุจ ุงูุนุงุฏูุฉ 2 |
|
|
|
459 |
|
00:49:11,230 --> 00:49:19,370 |
|
ูู 2 ูู 2 ุงุณุงุณ 4 ูู 2 ุจ 8 ูู |
|
|
|
460 |
|
00:49:19,370 --> 00:49:24,070 |
|
2 ุจ 16 ุดููู ููุง ู 15 ุจุถู ุงููู ูููููุง |
|
|
|
461 |
|
00:49:24,070 --> 00:49:29,400 |
|
ุญุฏ ูุจูู ุงูู order ุงููู ุฌุฏูุด 4 ูุจูู ุงูู order ูู |
|
|
|
462 |
|
00:49:29,400 --> 00:49:36,220 |
|
2 ูุณุงูู 4 because ุดู ุงูุณุจุจ ุฅู 2 ุฃุณ |
|
|
|
463 |
|
00:49:36,220 --> 00:49:42,660 |
|
1 ูุณุงูู 2 2 ุชุฑุจูุน ูุณุงูู 4 |
|
|
|
464 |
|
00:49:42,660 --> 00:49:49,020 |
|
ุชูุนูุจ ูุณุงูู 8 2 ุฃุณ 4 ูุณุงูู 16 |
|
|
|
465 |
|
00:49:49,020 --> 00:49:55,150 |
|
modulo 15 ูุจูู ูุฐุง ุงูููุงู
ูุณุงูู 1 ูุฐุง ุจุฏู |
|
|
|
466 |
|
00:49:55,150 --> 00:50:00,770 |
|
ุฃุนุทูู ุฅู ุงูู order ูููุชููู ูู 4 ุทูุจ ุงูู order |
|
|
|
467 |
|
00:50:00,770 --> 00:50:08,110 |
|
ูู 4 similarly ุงูู order ูู 4 ุจุฏู ูุณุงูู 2 |
|
|
|
468 |
|
00:50:08,110 --> 00:50:13,750 |
|
ููุด ูุฅูู 4 ูู 4 ุจ 16 modulo 15 ุจ 1 |
|
|
|
469 |
|
00:50:13,750 --> 00:50:17,870 |
|
ุนู
ูุจูู ุจ 2 ุทูุจ ูู ุฑูุญุชู ูููุช ูู ุงูู order ู |
|
|
|
470 |
|
00:50:17,870 --> 00:50:27,030 |
|
7 ุจุฏูุง ูุนุฑู ูู ูุฐุง ูุฏ ุงูู ูุจูู ุจุงูุถุจุท 7 ุฃุณ 1 |
|
|
|
471 |
|
00:50:27,030 --> 00:50:30,290 |
|
ูุณุงูู |
|
|
|
472 |
|
00:50:30,290 --> 00:50:36,770 |
|
7 ูู 7 ุชุฑุจูุน ูุณุงูู 49 modulo |
|
|
|
473 |
|
00:50:36,770 --> 00:50:43,200 |
|
15 15 ูู 3 ุจ 45 ูุทูุน 4 ุทูุจ |
|
|
|
474 |
|
00:50:43,200 --> 00:50:50,160 |
|
ูู ุฌูุช ููุช ูู 7 ุชูุนูุจ ูุจูู ูุณุงูู 7 ู
ุถุฑูุจุฉ ูู |
|
|
|
475 |
|
00:50:50,160 --> 00:50:55,770 |
|
4 modulo 15 4 ูู 7 ุจ 28 |
|
|
|
476 |
|
00:50:55,770 --> 00:50:57,190 |
|
28 28 28 28 |
|
|
|
477 |
|
00:50:57,190 --> 00:51:01,690 |
|
28 28 28 28 28 28 28 28 |
|
|
|
478 |
|
00:51:01,690 --> 00:51:06,870 |
|
28 28 |
|
|
|
479 |
|
00:51:06,870 --> 00:51:10,250 |
|
28 28 28 28 28 28 28 28 |
|
|
|
480 |
|
00:51:10,250 --> 00:51:10,430 |
|
28 28 28 28 28 28 28 28 |
|
|
|
481 |
|
00:51:10,430 --> 00:51:11,310 |
|
28 28 28 28 28 28 28 28 |
|
|
|
482 |
|
00:51:11,310 --> 00:51:11,770 |
|
28 28 28 28 28 28 28 28 |
|
|
|
483 |
|
00:51:11,770 --> 00:51:14,370 |
|
28 28 28 28 28 28 28 28 |
|
|
|
484 |
|
00:51:14,370 --> 00:51:21,670 |
|
28 28 28 ูุจูู ุจูุงุก ุนููู ุฅู ุงูู order ู |
|
|
|
485 |
|
00:51:21,670 --> 00:51:28,430 |
|
7 ุจุฏู ูุณุงูู ูุฏุงุด ุจุฏู ูุณุงูู 4 ูููุฐุง ุทูุจ |
|
|
|
486 |
|
00:51:28,430 --> 00:51:35,250 |
|
ุงูู 8 8 ูู 8 ุจ 64 ุดูู ุงูู 60 |
|
|
|
487 |
|
00:51:35,250 --> 00:51:39,810 |
|
ูุฃูู ู
ุถุงุนู ูู 15 ุจุชุธู 4 ูู 8 ุจ 32 ู |
|
|
|
488 |
|
00:51:39,810 --> 00:51:45,130 |
|
30 ุดูู 30 ุจุชุธู 2 ูู 8 ุจ 16 ูุจูู |
|
|
|
489 |
|
00:51:45,130 --> 00:51:51,460 |
|
ุงูู order ูู 8 ุจูุฏุงุด 4 ูุจูู similarly ูู
ุงู |
|
|
|
490 |
|
00:51:51,460 --> 00:52:00,140 |
|
ุงูู order ูู 8 ุจุฏู ูุณุงูู ูุฐูู 4 ูููุฐุง ุทูุจ ุฎูููุง ูุณุฃู |
|
|
|
491 |
|
00:52:00,140 --> 00:52:06,740 |
|
ุงูู order ูู 11 11 |
|
|
|
492 |
|
00:52:06,740 --> 00:52:14,040 |
|
ู 11 121 121 ู
ุด ุจุชูุณุจูุง 15 ูุฃููุง ุจุชูุณุจูุง 30 ู 30 |
|
|
|
493 |
|
00:52:14,040 --> 00:52:20,250 |
|
ูุจูู ูุจูู 1 ูุจูู ุงูู order ููุฅุญุฏุงุด ูู 2 ูุงู |
|
|
|
494 |
|
00:52:20,250 --> 00:52:27,710 |
|
order ููุฅุญุฏุงุด ุจุฏู ูุณุงูู 2 ููุท ูููุฐุง ููุง ุจููู
ู |
|
|
|
495 |
|
00:52:27,710 --> 00:52:29,070 |
|
ุฅู ุดุงุก ุงููู ุจุนุฏ ุงูุธูุฑ |
|
|