Ziyuan111 commited on
Commit
474361f
·
verified ·
1 Parent(s): 57ae4d4

Upload treesplantingsitesdataset.py

Browse files
Files changed (1) hide show
  1. treesplantingsitesdataset.py +102 -0
treesplantingsitesdataset.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """TreesPlantingSitesDataset
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1Hvt3Y131OjTl7oGQGS55S_v7-aYu1Yj8
8
+ """
9
+
10
+ !pip install datasets
11
+ from datasets import DatasetBuilder, DownloadManager, DatasetInfo, SplitGenerator, Split
12
+ from datasets.features import Features, Value, Sequence, ClassLabel
13
+ import pandas as pd
14
+ import geopandas as gpd
15
+ import matplotlib.pyplot as plt
16
+ from datasets import Features, Value, ClassLabel
17
+
18
+ class TreesPlantingSitesDataset(DatasetBuilder):
19
+ VERSION = "1.0.0"
20
+
21
+ def _info(self):
22
+ # Specifies the dataset's features
23
+ return DatasetInfo(
24
+ description="This dataset contains information about tree planting sites from CSV and GeoJSON files.",
25
+ features=Features({
26
+ "OBJECTID": Value("int32"), # Unique identifier for each record
27
+ "streetaddress": Value("string"), # Street address of the tree planting site
28
+ "city": Value("string"), # City where the tree planting site is located
29
+ "zipcode": Value("int32"), # Zip code of the tree planting site
30
+ "facilityid": Value("int32"), # Identifier for the facility
31
+ "present": ClassLabel(names=["False", "True"]), # Indicates if the tree is present (assuming boolean represented as string)
32
+ "neighborhood": Value("string"), # Neighborhood where the tree planting site is located
33
+ "plantingwidth": Value("string"), # Width available for planting
34
+ "plantingcondition": Value("string"), # Condition of the planting site
35
+ "underpowerlines": ClassLabel(names=["False", "True"]), # Indicates if the site is under power lines
36
+ "matureheight": Value("string"), # Expected mature height of the tree
37
+ "GlobalID": Value("string"), # Global unique identifier
38
+ "created_user": Value("string"), # User who created the record
39
+ "created_date": Value("string"), # Date when the record was created
40
+ "last_edited_user": Value("string"), # User who last edited the record
41
+ "last_edited_date": Value("string"), # Date when the record was last edited
42
+ "geometry": Value("string") # Geometry feature from GeoJSON
43
+ }),
44
+ supervised_keys=None, # Provide if the dataset is for supervised learning
45
+ homepage="https://example.com/dataset-homepage", # Replace with the actual URL
46
+ citation="Citation for the dataset",
47
+ )
48
+
49
+ def _split_generators(self, dl_manager: DownloadManager):
50
+ # Downloads the data and defines the splits
51
+ urls_to_download = {
52
+ "csv": "https://drive.google.com/uc?export=download&id=18HmgMbtbntWsvAySoZr4nV1KNu-i7GCy",
53
+ "geojson": "https://drive.google.com/uc?export=download&id=1jpFVanNGy7L5tVO-Z_nltbBXKvrcAoDo"
54
+ }
55
+ downloaded_files = dl_manager.download_and_extract(urls_to_download)
56
+
57
+ return [
58
+ SplitGenerator(name=Split.TRAIN, gen_kwargs={
59
+ "csv_path": downloaded_files["csv"],
60
+ "geojson_path": downloaded_files["geojson"]
61
+ }),
62
+ # If you have additional splits, add them here
63
+ ]
64
+
65
+ # ... (previous code)
66
+
67
+ def _generate_examples(self, csv_path, geojson_path):
68
+
69
+ # Load the data into DataFrame and GeoDataFrame
70
+ csv_data = pd.read_csv(csv_path)
71
+ geojson_data = gpd.read_file(geojson_path)
72
+
73
+ # Merge the CSV data with the GeoJSON data on the 'OBJECTID' column
74
+ gdf = geojson_data.merge(csv_data, on='OBJECTID')
75
+ columns_to_extract = [
76
+ "OBJECTID", "streetaddress", "city", "zipcode", "facilityid", "present",
77
+ "neighborhood", "plantingwidth", "plantingcondition", "underpowerlines",
78
+ "matureheight", "GlobalID", "created_user", "created_date",
79
+ "last_edited_user", "last_edited_date", "geometry"
80
+ ]
81
+
82
+ # Extract the specified columns
83
+ extracted_gdf = gdf[columns_to_extract]
84
+ # Basic statistics: Count the number of planting sites
85
+ number_of_planting_sites = gdf['present'].value_counts()
86
+ print("Number of planting sites:", number_of_planting_sites)
87
+
88
+ # Spatial analysis: Group by neighborhood to see the distribution of features
89
+ neighborhood_analysis = gdf.groupby('neighborhood').size()
90
+ print("Distribution by neighborhood:", neighborhood_analysis)
91
+
92
+ # Visual analysis: Plot the points on a map
93
+ gdf.plot(marker='*', color='green', markersize=5)
94
+ plt.title('TreesPlantingSitesDataset')
95
+ for id_, row in gdf.iterrows():
96
+ yield id_, {
97
+ "OBJECTID": row["OBJECTID"],
98
+ "neighborhood": row["neighborhood"], # Assuming 'neighborhood' is a column name in your data
99
+ "present": row["present"], # Assuming 'present' indicates if a tree is present
100
+ "geometry": row["geometry"], # Geometry information from GeoJSON
101
+ # Include other fields from your data
102
+ }