content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import time def get_ntp_time(ntp_server_url): """ 通过ntp server获取网络时间 :param ntp_server_url: 传入的服务器的地址 :return: time.strftime()格式化后的时间和日期 """ ntp_client = ntplib.NTPClient() ntp_stats = ntp_client.request(ntp_server_url) fmt_time = time.strftime('%X', time.localtime(ntp_stats.tx_time)) fmt_date = time.strftime('%Y-%m-%d', time.localtime(ntp_stats.tx_time)) return fmt_time, fmt_date
17881970361994e329e1154478c8abb8171461f9
16,100
def read_data(path, names, verbose=False): """ Read time-series from MATLAB .mat file. Parameters ---------- path : str Path (relative or absolute) to the time series file. names : list Names of the requested time series incl. the time array itself verbose : bool, optional Increase verbosity Returns ------- dict Time and data Examples -------- >>> tname, names = read_names('data.mat') >>> data = read_data('data.mat') >>> t = data[tname] # time >>> x1 = data[names[0]] # first data series """ if verbose: print('Reading %s ...' % path) data = loadmat(path, squeeze_me=True, variable_names=names) return data
978870d4517b5e5ab66186747c326794d6d43814
16,101
async def search(q: str, person_type: str = 'student') -> list: """ Search by query. :param q: `str` query to search for :param person_type: 'student', 'lecturer', 'group', 'auditorium' :return: list of results """ url = '/'.join((BASE_URL, SEARCH_INDPOINT)) params = {'term': q, 'type': person_type} return await api_request(url, params)
83913866f45a44202ccddbc9352fef9799caf751
16,102
def format_data_hex(data): """Convert the bytes array to an hex representation.""" # Bytes are separated by spaces. return ' '.join('%02X' % byte for byte in data)
27239052d9ca0b12c19977e79d512e0cab04182e
16,103
import glob import os def eval_test(test_path, gt_path, test_prefix='', gt_prefix='', test_format='png', gt_format='png', exigence=2, desync=0): """ Evaluates some test results against a given ground truth :param test_path: (str) relative or absolute path to the test results images :param gt_path: (str) relative or absolute path to the ground truth images :param test_prefix: (str) prefix of the test files before their ID (e.g. test_A_001235.png has test_A_ as prefix) :param gt_prefix: (str) prefix of the ground truth files before their ID (e.g. gt001235.png has gt as prefix) :param test_format: (str) format of the test images :param gt_format: (str) format of the ground truth images :param exigence: (int) tells how easy will be from a pixel to be foreground in the ground truth: - 0: all non-static pixels will be taken as foreground - 1: all non-static pixels excepting hard shadows will be taken as foreground - 2: only pixels with motion inside the region of interest will be taken as foreground - 3: only pixels with known motion inside the region of interest will be taken as foreground - Else exigence=2 will be assumed :return: (dict) results of the test analysis. - TP: (int) true positives - FP: (int) false positives - FN: (int) false negatives - TN: (int) true negatives """ if exigence is 0: fg_thresh = 25 elif exigence is 1: fg_thresh = 75 elif exigence is 3: fg_thresh = 200 else: fg_thresh = 100 data = dict(TP=0, FP=0, FN=0, TN=0) for filename in glob.glob(os.path.join(test_path, test_prefix + '*.' + test_format)): pil_img_test = Image.open(filename) img_test = np.array(pil_img_test) f_id = filename.replace(os.path.join(test_path, test_prefix), '') f_id = f_id.replace('.' + test_format, '') try: f_id = str(int(f_id) + desync).zfill(6) except: print('Erroneous type of Id in data files will result in fake ' 'results.') filename_gt = os.path.join(gt_path, gt_prefix + f_id + '.' + gt_format) pil_img_gt = Image.open(filename_gt) real_img_gt = np.array(pil_img_gt) img_gt = np.where(real_img_gt > fg_thresh, 1, 0) trues_test = img_test.astype(bool) trues_gt = img_gt.astype(bool) img_tp = np.logical_and(trues_test, trues_gt) img_fp = np.logical_and(trues_test, np.logical_not(trues_gt)) img_fn = np.logical_and(np.logical_not(trues_test), trues_gt) img_tn = np.logical_not(np.logical_and(trues_test, trues_gt)) data['TP'] += img_tp.sum() data['FP'] += img_fp.sum() data['FN'] += img_fn.sum() data['TN'] += img_tn.sum() return data
b71475bf3c51e5a69e8498e60b8131a00fcd3d6f
16,104
from datetime import datetime import requests import dateutil def get_installation_token(installation): """ Get access token for installation """ now = datetime.datetime.now().timestamp() if installation_token_expiry[installation] is None or now + 60 > installation_token_expiry[installation]: # FIXME: if .netrc file is present, Authorization header will get # overwritten, so need to figure out how to ignore that file. if netrc_exists(): raise Exception("Authentication does not work properly if a ~/.netrc " "file exists. Rename that file temporarily and try again.") headers = {} headers['Authorization'] = 'Bearer {0}'.format(get_json_web_token()) headers['Accept'] = 'application/vnd.github.machine-man-preview+json' url = 'https://api.github.com/installations/{0}/access_tokens'.format(installation) req = requests.post(url, headers=headers) resp = req.json() if not req.ok: if 'message' in resp: raise Exception(resp['message']) else: raise Exception("An error occurred when requesting token") installation_token[installation] = resp['token'] installation_token_expiry[installation] = dateutil.parser.parse(resp['expires_at']).timestamp() return installation_token[installation]
e5bf43f601ca9e155dcf296179d778b78b2cc67a
16,105
def disp(cog_x, cog_y, src_x, src_y): """ Compute the disp parameters Parameters ---------- cog_x: `numpy.ndarray` or float cog_y: `numpy.ndarray` or float src_x: `numpy.ndarray` or float src_y: `numpy.ndarray` or float Returns ------- (disp_dx, disp_dy, disp_norm, disp_angle, disp_sign): disp_dx: 'astropy.units.m` disp_dy: 'astropy.units.m` disp_norm: 'astropy.units.m` disp_angle: 'astropy.units.rad` disp_sign: `numpy.ndarray` """ disp_dx = src_x - cog_x disp_dy = src_y - cog_y disp_norm = np.sqrt(disp_dx**2 + disp_dy**2) if hasattr(disp_dx, '__len__'): disp_angle = np.arctan(disp_dy / disp_dx) disp_angle[disp_dx == 0] = np.pi / 2. * np.sign(disp_dy[disp_dx == 0]) else: if disp_dx == 0: disp_angle = np.pi/2. * np.sign(disp_dy) else: disp_angle = np.arctan(disp_dy/disp_dx) disp_sign = np.sign(disp_dx) return disp_dx, disp_dy, disp_norm, disp_angle, disp_sign
e9d8166827e86a8e2180ba357a450aca817fdff4
16,106
def get_landmark_from_prob(prob, thres=0.5, mode="mean", binary_mask=False): """Compute landmark location from the model probablity maps Inputs: prob : [RO, E1], the model produced probablity map for a landmark thres : if np.max(prob)<thres, determine there is no landmark detected mode : mean or max, use mean or max probablity to detect landmark binary_mask : if true, prob is a binary (0 or 1) map Outputs: pt : [x, y], detected landmark point """ pt = None if(binary_mask): ind = np.where(prob==thres) else: if(thres>0 and np.max(prob)<thres): return pt else: adaptive_thres = 0.5 mask = adaptive_thresh_cpu(prob, p_thresh=adaptive_thres*np.max(prob)) ind = np.where(mask>0) if (np.size(ind[0])==0): return pt pt = np.zeros(2) if(mode == "mean"): pt[0] = np.mean(ind[1].astype(np.float32)) pt[1] = np.mean(ind[0].astype(np.float32)) else: v = np.unravel_index(np.argmax(prob), prob.shape) pt[0] = v[1] pt[1] = v[0] return pt
fad614088e587e389f15b0700bf442a956d498b0
16,107
import socket def request( url, timeout: float, method="GET", data=None, response_encoding="utf-8", headers=None, ): """ Helper function to perform HTTP requests """ req = Request(url, data=data, method=method, headers=headers or {}) try: return urlopen(req, timeout=timeout).read().decode(response_encoding) except (URLError, socket.timeout, UnicodeDecodeError) as error: raise CEPProviderUnavailableError(error)
80f130101290442d538fa3f416f5650800547c6b
16,108
from typing import Any from typing import Optional from typing import get_args from typing import get_origin def get_annotation_affiliation(annotation: Any, default: Any) -> Optional[Any]: """Helper for classifying affiliation of parameter :param annotation: annotation record :returns: classified value or None """ args, alias = get_args(annotation), get_origin(annotation) # if alias and alias == list: annotation = args[0] if alias == list else annotation if annotation == Request: return "request" elif isinstance(default, (Form, File)): return "form" return None
db6efd7dfb0ed0272e7491547669de8f235b2b35
16,109
import os import glob def find_config_files( path=['~/.vcspull'], match=['*'], filetype=['json', 'yaml'], include_home=False ): """Return repos from a directory and match. Not recursive. Parameters ---------- path : list list of paths to search match : list list of globs to search against filetype: list of filetypes to search against include_home : bool Include home configuration files Raises ------ LoadConfigRepoConflict : There are two configs that have same path and name with different repo urls. Returns ------- list : list of absolute paths to config files. """ configs = [] if include_home is True: configs.extend(find_home_config_files()) if isinstance(path, list): for p in path: configs.extend(find_config_files(p, match, filetype)) return configs else: path = os.path.expanduser(path) if isinstance(match, list): for m in match: configs.extend(find_config_files(path, m, filetype)) else: if isinstance(filetype, list): for f in filetype: configs.extend(find_config_files(path, match, f)) else: match = os.path.join(path, match) match += ".{filetype}".format(filetype=filetype) configs = glob.glob(match) return configs
3138839e8914451a4138c3e24d375089c5c866b0
16,110
def sort_dict(original): """Recursively sorts dictionary keys and dictionary values in alphabetical order""" if isinstance(original, dict): res = ( dict() ) # Make a new "ordered" dictionary. No need for Collections in Python 3.7+ for k, v in sorted(original.items()): res[k] = v d = res else: d = original for k in d: if isinstance(d[k], str): continue if isinstance(d[k], list) and len(d[k]) > 1 and isinstance(d[k][0], str): d[k] = sorted(d[k]) if isinstance(d[k], dict): d[k] = sort_dict(d[k]) if isinstance(d[k], list) and len(d[k]) >= 1 and isinstance(d[k][0], dict): for i in range(len(d[k])): d[k][i] = sort_dict(d[k][i]) return d
8c194af76160b0e4d3bad135720e051a4d4622b0
16,111
import requests def playonyt(topic): """Will play video on following topic, takes about 10 to 15 seconds to load""" url = 'https://www.youtube.com/results?q=' + topic count = 0 cont = requests.get(url) data = str(cont.content) lst = data.split('"') for i in lst: count+=1 if i == 'WEB_PAGE_TYPE_WATCH': break if lst[count-5] == "/results": raise Exception("No video found.") #print("Videos found, opening most recent video") web.open("https://www.youtube.com"+lst[count-5]) return "https://www.youtube.com"+lst[count-5]
49f4285dc0e0086d30776fc0668bac0e4c19dbc5
16,112
def train_classifier(classifier, features, labels): """This function must concern itself with training the classifier on the specified data.""" return classifier.fit(features, labels)
ef74548aeb6e245d8728caf3205163c249046aae
16,113
def work_on_disk(dev, root_mb, swap_mb, image_path): """Creates partitions and write an image to the root partition.""" root_part = "%s-part1" % dev swap_part = "%s-part2" % dev if not is_block_device(dev): LOG.warn(_("parent device '%s' not found"), dev) return make_partitions(dev, root_mb, swap_mb) if not is_block_device(root_part): LOG.warn(_("root device '%s' not found"), root_part) return if not is_block_device(swap_part): LOG.warn(_("swap device '%s' not found"), swap_part) return dd(image_path, root_part) mkswap(swap_part) try: root_uuid = block_uuid(root_part) except processutils.ProcessExecutionError as err: with excutils.save_and_reraise_exception(): LOG.error(_("Failed to detect root device UUID.")) return root_uuid
195ded6deae958b7efa41bcfdda1d3d68cabb23d
16,114
def get_annotation_names(viewer): """Detect the names of nodes and edges layers""" layer_nodes_name = None layer_edges_name = None for layer in viewer.layers: if isinstance(layer, napari.layers.points.points.Points): layer_nodes_name = layer.name elif isinstance(layer, napari.layers.shapes.shapes.Shapes): layer_edges_name = layer.name if layer_nodes_name is not None and layer_edges_name is not None: break return layer_nodes_name, layer_edges_name
20e64a6719b945eceda341d5a42da178818cb1a1
16,115
def remap(kx,ky,lx,ly,qomt,datai): """ remap the k-space variable back to shearing periodic frame to reflect the time dependent Eulerian wave number """ ndim = datai.ndim dim = np.array(datai.shape)# datai[nz,ny,nx] sh_data = np.empty([dim[0],dim[1],dim[2]]) tp_data = np.empty([dim[0],dim[2]]) sh_kx = -qomt*ky*lx/ly #nquist= np.max(np.fabs(kx)) for j in np.arange(0,dim[1]): quot = int(np.floor(sh_kx[j])) res = sh_kx[j]-float(quot) #kx_new = kx[:] + sh_kx[j] tp_data[:,:]= datai[:,j,:] sh_data[:,j,:] = (1.0-res)*np.roll(tp_data,quot, axis=1) \ + res*np.roll(tp_data,quot+1,axis=1) #sh_data[:,j,kx_new[:]>nquist] = 0.0 return sh_data
6ea415df88c0db2ba26ef0fc8daa35b12a101ef8
16,116
def fips_disable(): """ Disables FIPS on RH/CentOS system. Note that you must reboot the system in order for FIPS to be disabled. This routine prepares the system to disable FIPS. CLI Example: .. code-block:: bash salt '*' ash.fips_disable """ installed_fips_pkgs = _get_installed_dracutfips_pkgs() ret = { 'result': True } old = {} new = {} try: # Remove dracut-fips installations. installed_fips_pkgs = _get_installed_dracutfips_pkgs() if 'dracut-fips' in installed_fips_pkgs: __salt__['pkg.remove']('dracut-fips') old['Packages'] = installed_fips_pkgs # If fips is in kernel, create a new boot-kernel. if _is_fips_in_kernel(): _move_boot_kernel(False) __salt__['cmd.run']("dracut -f", python_shell=False) # Update grub.cfg file to remove the fips argument. grub_args = _get_grub_args() if 'fips=1' in grub_args: cmd = 'grubby --update-kernel=ALL --remove-args=fips=1' __salt__['cmd.run'](cmd, python_shell=False) new['grubby'] = cmd # Update GRUB command line entry to remove fips. diff = _modify_grub_file(True) if diff: new['/etc/default/grub'] = diff except Exception: _rollback_fips_disable(installed_fips_pkgs) ret['result'] = False ret['changes'] = {} ret['comment'] = 'Unable to change state of system to FIPS-disabled.' else: if old: ret['changes'] = {'old': old} ret['comment'] = 'FIPS has been toggled to off.' if new: if 'changes' in ret: ret['changes'].update({'new': new}) else: ret['changes'] = {'new': new} ret['comment'] = 'FIPS has been toggled to off.' if fips_status() == 'enabled': msg = ' Reboot system to place into FIPS-disabled state.' if 'comment' in ret: ret['comment'] = ret['comment'] + msg else: ret['comment'] = msg[1:] if 'changes' not in ret and 'comment' not in ret: ret['comment'] = 'FIPS mode is already disabled. No changes.' finally: return ret
d31cc5ad6dd71ec0f3d238051a7b2a64b311c0fd
16,117
import java.lang import sys def get_os_platform(): """return platform name, but for Jython it uses os.name Java property""" ver = sys.platform.lower() if ver.startswith('java'): ver = java.lang.System.getProperty("os.name").lower() print('platform: %s' % (ver)) return ver
df717ae12fadf0ced75f4f1148ceed11701a7f25
16,118
from datetime import datetime def buy_sell_fun_mp_org(datam, S1=1.0, S2=0.8): """ 斜率指标交易策略标准分策略 """ start_t = datetime.datetime.now() print("begin-buy_sell_fun_mp:", start_t) dataR = pd.DataFrame() for code in datam.index.levels[1]: # data = price.copy() # price = datam.query("code=='%s'" % code) # data = price.copy() data = buy_sell_fun(datam, code) # if code == '000732': # print(data.tail(22)) if len(dataR) == 0: dataR = data else: dataR = dataR.append(data) end_t = datetime.datetime.now() print(end_t, 'buy_sell_fun_mp spent:{}'.format((end_t - start_t))) result01 = dataR['nav'].groupby(level=['date']).sum() result02 = dataR['nav'].groupby(level=['date']).count() num = dataR.flag.abs().sum() dataR2 = pd.DataFrame({'nav':result01 - result02 + 1,'flag':0}) # dataR2['flag'] = 0 dataR2.iat[-1,1] = num # result['nav'] = result['nav'] - len(datam.index.levels[1]) + 1 return dataR2
8d3b78b9d266c3c39b8491677caa0f4dfb9f839a
16,119
import collections import abc def marshall_namedtuple(obj): """ This method takes any atomic value, list, dictionary or namedtuple, and recursively it tries translating namedtuples into dictionaries """ recurse = lambda x: map(marshall_namedtuple, x) obj_is = partial(isinstance, obj) if hasattr(obj, '_marshall'): return marshall_namedtuple(obj._marshall()) elif obj_is(tuple) and hasattr(obj, '_fields'): # namedtuple fields = zip(obj._fields, recurse(obj)) class_name = obj.__class__.__name__ return dict(fields, **{'_type': class_name}) elif obj_is((collections.abc.Mapping,dict)): return type(obj)(zip(obj.keys(), recurse(obj.values()))) elif obj_is(collections.abc.Iterable) and not obj_is(str): return type(obj)(recurse(obj)) elif obj_is(abc.ABC): return { '_instance_of': obj.__class__.__name__ } elif obj_is(abc.ABCMeta): return { '_class': obj.__name__ } else: return obj
87d24fe1b273bfcf481679a96710be757baf08a5
16,120
import torch def prep_image(img, inp_dim): """ Prepare image for inputting to the neural network. Returns a Variable """ # print("prepping images") img = cv2.resize(img, (inp_dim, inp_dim)) img = img[:,:,::-1].transpose((2,0,1)).copy() img = torch.from_numpy(img).float().div(255.0) # print("prepped images") return img
02ebc73a32a24d59c53da9bfb99485f3a4f6dee2
16,121
from typing import Dict from typing import List import math def best_broaders(supers_for_all_entities: Dict, per_candidate_links_and_supers: List[Dict], num_best: int = 5, super_counts_field: str = "broader_counts", doprint=False, representativeness_threshold=0.1): """ Returns the best matching super for a candidate class, according to a list of supers for entities in the class and entities in the whole corpus. If comparing to a taxonomy, a super is a broader. @param super_counts_field: @param super_counts: a dictionary that has, for every possible entity, the supers it belongs to @param per_candidate_links_and_supers: a list of dictionaries, one per candidate. Fro each, at least two fields are expected "entities" containing the list of entities, and that given by super_counts_field which is, in turn, a dictionary whose keys are supers and whose values are the number of entities in that candidate having this broad @param num_best: maximum number of best matching supers to be returned @return: for every candidate class, the num_best best matching supers and their log odds ratio """ result = [] global_counts = dict() for ent, bros in supers_for_all_entities.items(): for bro in bros: global_counts[bro] = global_counts.get(bro, 0) + 1 onlytopmost = [] for can in per_candidate_links_and_supers: # For this entity, the following dictionaries have an element for every possible super # Using notation from the paper # T_cc : The number of entities narrower to a candidate which are tagged with NER typeT T_cc = {x: y for x, y in can[super_counts_field].items() if y > representativeness_threshold * len(can["entities"])} if len(T_cc) == 0: T_cc = {x: y for x, y in can[super_counts_field].items()} # T_w : is the number of entities in the wholecorpus tagged with T T_w = {y: global_counts[y] for y in T_cc.keys()} # w : the total number of entities in the whole corpus w = float(len(supers_for_all_entities)) # cc : the total number of entities in this candidate cc = float(len(can["entities"])) # dict of the form super : log_odds log_odds_per_super = {x: math.log((T_cc[x] / cc) / (T_w[x] / w)) for x in T_cc.keys()} logslist = list(log_odds_per_super.items()) logslist.sort(key=lambda x: x[1]) logslist.reverse() maxbroads = min(len(logslist), num_best) logodds = [] for bi in range(maxbroads): logodds.append({"candidatesbroader": logslist[bi][0], "loggods": logslist[bi][1]}) can["log_odds"] = logodds if doprint: print("\t\t---", ", ".join([str(x[1]) for x in logslist[:maxbroads]])) if len(logslist) > 0: onlytopmost.append(logslist[0][1]) can["best_match_broader"] = logslist[0][0] else: onlytopmost.append(None) can["best_match_broader"] = None return onlytopmost
9aa9826c43e67a28eeca463b107296e093709246
16,122
def clump_list_sort(clump_list): """Returns a copy of clump_list, sorted by ascending minimum density. This eliminates overlap when passing to yt.visualization.plot_modification.ClumpContourCallback""" minDensity = [c['Density'].min() for c in clump_list] args = np.argsort(minDensity) list = nar(clump_list)[args] reverse = range(list.size-1,-1,-1) return list[reverse]
732e747e36c37f9d65ef44b6aa060d5c9d04e3d1
16,123
from typing import Dict from typing import Any from typing import Type import types from typing import Optional def _prepare_artifact( metadata_handler: metadata.Metadata, uri: Text, properties: Dict[Text, Any], custom_properties: Dict[Text, Any], reimport: bool, output_artifact_class: Type[types.Artifact], mlmd_artifact_type: Optional[metadata_store_pb2.ArtifactType] ) -> types.Artifact: """Prepares the Importer's output artifact. If there is already an artifact in MLMD with the same URI and properties / custom properties, that artifact will be reused unless the `reimport` argument is set to True. Args: metadata_handler: The handler of MLMD. uri: The uri of the artifact. properties: The properties of the artifact, given as a dictionary from string keys to integer / string values. Must conform to the declared properties of the destination channel's output type. custom_properties: The custom properties of the artifact, given as a dictionary from string keys to integer / string values. reimport: If set to True, will register a new artifact even if it already exists in the database. output_artifact_class: The class of the output artifact. mlmd_artifact_type: The MLMD artifact type of the Artifact to be created. Returns: An Artifact object representing the imported artifact. """ absl.logging.info( 'Processing source uri: %s, properties: %s, custom_properties: %s' % (uri, properties, custom_properties)) # Check types of custom properties. for key, value in custom_properties.items(): if not isinstance(value, (int, Text, bytes)): raise ValueError( ('Custom property value for key %r must be a string or integer ' '(got %r instead)') % (key, value)) unfiltered_previous_artifacts = metadata_handler.get_artifacts_by_uri( uri) # Only consider previous artifacts as candidates to reuse, if the properties # of the imported artifact match those of the existing artifact. previous_artifacts = [] for candidate_mlmd_artifact in unfiltered_previous_artifacts: is_candidate = True candidate_artifact = output_artifact_class(mlmd_artifact_type) candidate_artifact.set_mlmd_artifact(candidate_mlmd_artifact) for key, value in properties.items(): if getattr(candidate_artifact, key) != value: is_candidate = False break for key, value in custom_properties.items(): if isinstance(value, int): if candidate_artifact.get_int_custom_property(key) != value: is_candidate = False break elif isinstance(value, (Text, bytes)): if candidate_artifact.get_string_custom_property(key) != value: is_candidate = False break if is_candidate: previous_artifacts.append(candidate_mlmd_artifact) result = output_artifact_class(mlmd_artifact_type) result.uri = uri for key, value in properties.items(): setattr(result, key, value) for key, value in custom_properties.items(): if isinstance(value, int): result.set_int_custom_property(key, value) elif isinstance(value, (Text, bytes)): result.set_string_custom_property(key, value) # If a registered artifact has the same uri and properties and the user does # not explicitly ask for reimport, reuse that artifact. if bool(previous_artifacts) and not reimport: absl.logging.info('Reusing existing artifact') result.set_mlmd_artifact(max(previous_artifacts, key=lambda m: m.id)) return result
d30dcd579c73c71173f10207ab80d05c761c7185
16,124
import re def ParseCLILines(lines, skipStartLines=0, lastSkipLineRe=None, skipEndLines=0): """Delete first few and last few lines in an array""" if skipStartLines > 0: if lastSkipLineRe != None: # sanity check. Make sure last line to skip matches the given regexp if None == re.match(lastSkipLineRe, lines[(skipStartLines-1)]): raise exceptions.MalformedIO("Expected '%s' at line %d of result, but found '%s'." % (lastSkipLineRe, skipStartLines, lines[(skipStartLines-1)].strip())) if len(lines) < skipStartLines: raise exceptions.MalformedIO("Can't skip first %d lines of result %s. It only contains %d lines." % (skipStartLines, repr(lines), len(lines))) del lines[0:skipStartLines] if skipEndLines > 0: if len(lines) < skipEndLines: raise exceptions.MalformedIO("Can't skip last %d lines of result %s. It only contains %d lines." % (skipEndLines, repr(lines), len(lines))) del lines[-skipEndLines:] return lines
dc445765f42df25b8d046e3f2303d85109a3d419
16,125
def initialize_parameters(n_x, n_h, n_y): """ Argument: n_x -- size of the input layer n_h -- size of the hidden layer n_y -- size of the output layer Returns: params -- python dictionary containing your parameters: W1 -- weight matrix of shape (n_h, n_x) b1 -- bias vector of shape (n_h, 1) W2 -- weight matrix of shape (n_y, n_h) b2 -- bias vector of shape (n_y, 1) """ np.random.seed(2) # we set up a seed so that your output matches ours although the initialization is random. ### START CODE HERE ### (≈ 4 lines of code) W1 = np.random.randn(n_h, n_x) * 0.01 b1 = np.zeros((n_h, 1)) W2 = np.random.randn(n_y, n_h) * 0.01 b2 = np.zeros((n_y, 1)) ### END CODE HERE ### assert (W1.shape == (n_h, n_x)) assert (b1.shape == (n_h, 1)) assert (W2.shape == (n_y, n_h)) assert (b2.shape == (n_y, 1)) parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2} return parameters
785985b79b9284ba8c6058c8e9c4018955407cf8
16,126
import os def _NormalizedSource(source): """Normalize the path. But not if that gets rid of a variable, as this may expand to something larger than one directory. Arguments: source: The path to be normalize.d Returns: The normalized path. """ normalized = os.path.normpath(source) if source.count('$') == normalized.count('$'): source = normalized return source
5ecaeddf2c3941bbfb0d89ee902a961f7aeab838
16,127
from datetime import datetime def get_df_from_sampled_trips(step_trip_list, show_service_data=False, earliest_datetime=None): """Get dataframe from sampled trip list. Parameters ---------- step_trip_list : list of lists List of trip lists occuring in the same step. show_service_data: bool Show trip pickup and dropoff results. earliest_datetime: datetime Trip start time - rebalance offset Returns ------- DataFrame Dataframe with trip data info. """ d = defaultdict(list) for step, trips in enumerate(step_trip_list): for t in trips: d["placement_datetime"].append(t.placement) d["step"].append(step + 1) d["pk_id"].append(t.o.id) d["dp_id"].append(t.d.id) d["sq_class"].append(t.sq_class) d["max_delay"].append(t.max_delay) d["elapsed_sec"].append(t.elapsed_sec) d["max_delay_from_placement"].append(t.max_delay_from_placement) d["delay_close_step"].append(t.delay_close_step) d["tolerance"].append(t.tolerance) lon_o, lat_o = nw.tenv.lonlat(t.o.id) lon_d, lat_d = nw.tenv.lonlat(t.d.id) d["passenger_count"].append(1) d["pickup_latitude"].append(lat_o) d["pickup_longitude"].append(lon_o) d["dropoff_latitude"].append(lat_d) d["dropoff_longitude"].append(lon_d) if show_service_data: if t.pk_delay is not None: pickup_datetime = t.placement + timedelta( minutes=t.pk_delay ) pickup_datetime_str = datetime.strftime( pickup_datetime, "%Y-%m-%d %H:%M:%S" ) if t.dropoff_time is not None: dropoff_datetime = earliest_datetime + timedelta( minutes=t.dropoff_time ) dropoff_datetime_str = datetime.strftime( dropoff_datetime, "%Y-%m-%d %H:%M:%S" ) d["times_backlogged"].append(t.times_backlogged) d["pickup_step"].append( t.pk_step if t.pk_step is not None else "-" ) d["dropoff_step"].append( t.dp_step if t.dp_step is not None else "-" ) d["pickup_delay"].append( t.pk_delay if t.pk_delay is not None else "-" ) d["pickup_duration"].append( t.pk_duration if t.pk_duration is not None else "-" ) d["pickup_datetime"].append( pickup_datetime_str if t.pk_delay is not None else "-" ) d["dropoff_time"].append( t.dropoff_time if t.dropoff_time is not None else "-" ) d["dropoff_datetime"].append( dropoff_datetime_str if t.dropoff_time is not None else "-" ) d["picked_by"].append(t.picked_by) df = pd.DataFrame.from_dict(dict(d)) df.sort_values(by=["placement_datetime", "sq_class"], inplace=True) return df
36bba80f0c46862df0390cf4e4279eeb33002e86
16,128
def compute_v_y(transporter, particles): """ Compute values of V y on grid specified in bunch configuration :param transporter: transport function :param particles: BunchConfiguration object, specification of grid :return: matrix with columns: x, theta_x, y, theta_y, pt, V y """ return __compute_optical_function(transporter, particles, Parameters.V_Y)
4a17e0c0e4612534483187b6779bcf5c179c0fcc
16,129
def gabor_kernel_nodc(frequency, theta=0, bandwidth=1, gamma=1, n_stds=3, offset=0): """ Return complex 2D Gabor filter kernel with no DC offset. This function is a modification of the gabor_kernel function of scikit-image Gabor kernel is a Gaussian kernel modulated by a complex harmonic function. Harmonic function consists of an imaginary sine function and a real cosine function. Spatial frequency is inversely proportional to the wavelength of the harmonic and to the standard deviation of a Gaussian kernel. The bandwidth is also inversely proportional to the standard deviation. Parameters ---------- frequency : float Spatial frequency of the harmonic function. Specified in pixels. theta : float, optional Orientation in radians. If 0, the harmonic is in the x-direction. bandwidth : float, optional The bandwidth captured by the filter. For fixed bandwidth, `sigma_x` and `sigma_y` will decrease with increasing frequency. This value is ignored if `sigma_x` and `sigma_y` are set by the user. gamma : float, optional gamma changes the aspect ratio (ellipsoidal) of the gabor filter. By default, gamma=1 which means no aspect ratio (circle) if gamma>1, the filter is larger (x-dir) if gamma<1, the filter is higher (y-dir) This value is ignored if `sigma_x` and `sigma_y` are set by the user. sigma_x, sigma_y : float, optional Standard deviation in x- and y-directions. These directions apply to the kernel *before* rotation. If `theta = pi/2`, then the kernel is rotated 90 degrees so that `sigma_x` controls the *vertical* direction. n_stds : scalar, optional The linear size of the kernel is n_stds (3 by default) standard deviations offset : float, optional Phase offset of harmonic function in radians. Returns ------- g_nodc : complex 2d array A single gabor kernel (complex) with no DC offset References ---------- .. [1] http://en.wikipedia.org/wiki/Gabor_filter .. [2] http://mplab.ucsd.edu/tutorials/gabor.pdf Examples -------- >>> from skimage.filters import gabor_kernel >>> from skimage import io >>> from matplotlib import pyplot as plt # doctest: +SKIP >>> gk = gabor_kernel(frequency=0.2) >>> plt.figure() # doctest: +SKIP >>> io.imshow(gk.real) # doctest: +SKIP >>> io.show() # doctest: +SKIP >>> # more ripples (equivalent to increasing the size of the >>> # Gaussian spread) >>> gk = gabor_kernel(frequency=0.2, bandwidth=0.1) >>> plt.figure() # doctest: +SKIP >>> io.imshow(gk.real) # doctest: +SKIP >>> io.show() # doctest: +SKIP """ # set gaussian parameters b = bandwidth sigma_pref = 1.0 / np.pi * np.sqrt(np.log(2) / 2.0) * (2.0 ** b + 1) / (2.0 ** b - 1) sigma_y = sigma_pref / frequency sigma_x = sigma_y/gamma # meshgrid x0 = np.ceil(max(np.abs(n_stds * sigma_x * np.cos(theta)), np.abs(n_stds * sigma_y * np.sin(theta)), 1)) y0 = np.ceil(max(np.abs(n_stds * sigma_y * np.cos(theta)), np.abs(n_stds * sigma_x * np.sin(theta)), 1)) y, x = np.mgrid[-y0:y0 + 1, -x0:x0 + 1] # rotation matrix rotx = x * np.cos(theta) + y * np.sin(theta) roty = -x * np.sin(theta) + y * np.cos(theta) # combine gambor and g = np.zeros(y.shape, dtype=np.complex) g[:] = np.exp(-0.5 * (rotx ** 2 / sigma_x ** 2 + roty ** 2 / sigma_y ** 2)) g /= 2 * np.pi * sigma_x * sigma_y # gaussian envelope oscil = np.exp(1j * (2 * np.pi * frequency * rotx + offset)) # harmonic / oscilatory function g_dc = g*oscil # remove dc component by subtracting the envelope weighted by K K = np.sum(g_dc)/np.sum(g) g_nodc = g_dc - K*g return g_nodc
f725561a1eb56b6e23c1046c33b0abec49201122
16,130
def run_fn(fn_args: TrainerFnArgs): """Train the model based on given args. Args: fn_args: Holds args used to train the model as name/value pairs. """ # get transform component output tf_transform_output = tft.TFTransformOutput(fn_args.transform_output) # read input data train_dataset = fn_args.data_accessor.tf_dataset_factory( fn_args.train_files, dataset_options.TensorFlowDatasetOptions( batch_size=fn_args.custom_config["batch_size"], ), tf_transform_output.transformed_metadata.schema, ) eval_dataset = fn_args.data_accessor.tf_dataset_factory( fn_args.eval_files, dataset_options.TensorFlowDatasetOptions( batch_size=fn_args.custom_config["batch_size"], ), tf_transform_output.transformed_metadata.schema, ) # instantiate model model = build_model( fn_args.custom_config["input_features"], fn_args.custom_config["window_size"], fn_args.custom_config["outer_units"], fn_args.custom_config["inner_units"], ) # tf callbacks for tensorboard tensorboard_callback = tf.keras.callbacks.TensorBoard( log_dir=fn_args.model_run_dir, update_freq="batch", ) # validation_data = list(eval_dataset.as_numpy_iterator()) # train model model.fit( train_dataset, # train_dataset.as_numpy_iterator(), steps_per_epoch=fn_args.train_steps, validation_data=eval_dataset, validation_steps=fn_args.eval_steps, callbacks=[tensorboard_callback], ) # Build signatures model.tft_layer = tf_transform_output.transform_features_layer() @tf.function def _serve_tf_examples_fn(**input_features): # """Returns the output to be used in the serving signature.""" preprocessed_features = model.tft_layer(input_features) autoencoded_features = model(preprocessed_features) return { **{ f"input_features::{f}": input_features[f] for f in input_features.keys() }, **{ f"preprocessed_features::{f}": preprocessed_features[f] for f in preprocessed_features.keys() }, # Output tensor names are of the form: # lstm_autoencoder_model/decoder/{feature_name}/Reshape_1:0 **{ f"output_features::{f.name.split('/')[2]}": f for f in autoencoded_features }, } _input_tf_specs = { f: tf.TensorSpec( shape=[None, fn_args.custom_config["window_size"]], dtype=tf.float32, name=f ) for f in fn_args.custom_config["input_features"] } signatures = { "serving_default": _serve_tf_examples_fn.get_concrete_function( **_input_tf_specs ) } # Save model (this is the effective output of this function) model.save(fn_args.serving_model_dir, save_format="tf", signatures=signatures)
15c8202ad6955052bbd1da2984aedb9887c390af
16,131
def log_likelihood(X, Y, Z, data, boolean=True, **kwargs): """ Log likelihood ratio test for conditional independence. Also commonly known as G-test, G-squared test or maximum likelihood statistical significance test. Tests the null hypothesis that X is independent of Y given Zs. Parameters ---------- X: int, string, hashable object A variable name contained in the data set Y: int, string, hashable object A variable name contained in the data set, different from X Z: list (array-like) A list of variable names contained in the data set, different from X and Y. This is the separating set that (potentially) makes X and Y independent. Default: [] data: pandas.DataFrame The dataset on which to test the independence condition. boolean: bool If boolean=True, an additional argument `significance_level` must be specified. If p_value of the test is greater than equal to `significance_level`, returns True. Otherwise returns False. If boolean=False, returns the chi2 and p_value of the test. Returns ------- If boolean = False, Returns 3 values: chi: float The chi-squre test statistic. p_value: float The p_value, i.e. the probability of observing the computed chi-square statistic (or an even higher value), given the null hypothesis that X \u27C2 Y | Zs. dof: int The degrees of freedom of the test. If boolean = True, returns: independent: boolean If the p_value of the test is greater than significance_level, returns True. Else returns False. References ---------- [1] https://en.wikipedia.org/wiki/G-test Examples -------- >>> import pandas as pd >>> import numpy as np >>> data = pd.DataFrame(np.random.randint(0, 2, size=(50000, 4)), columns=list('ABCD')) >>> data['E'] = data['A'] + data['B'] + data['C'] >>> log_likelihood(X='A', Y='C', Z=[], data=data, boolean=True, significance_level=0.05) True >>> log_likelihood(X='A', Y='B', Z=['D'], data=data, boolean=True, significance_level=0.05) True >>> log_likelihood(X='A', Y='B', Z=['D', 'E'], data=data, boolean=True, significance_level=0.05) False """ return power_divergence( X=X, Y=Y, Z=Z, data=data, boolean=boolean, lambda_="log-likelihood", **kwargs )
00493131d78506c5a6cbb9e04bda51b69f1a04ca
16,132
def conjugada_matriz_vec(mat:list): """ Funcion que realiza la conjugada de una matriz o vector complejo. :param mat: Lista que representa la matriz o vector complejo. :return: lista que representa la matriz o vector resultante. """ fila = len(mat) columnas = len(mat[0]) resul = [] for i in range(fila): resul.append([]) for j in range(columnas): resul[i].append(conjugado_complejos(mat[i][j])) return resul
ad883dae9161f4e60f933caf93703544e16bfb4d
16,133
def features2matrix(feature_list): """ Args: feature_list (list of Feature): Returns: (np.ndarray, list of str): matrix and list of key of features """ matrix = np.array([feature.values for feature in feature_list], dtype=float) key_lst = [feature.key for feature in feature_list] return matrix, key_lst
f60cdb904489cca3ab926dbc8d396804367e4a7a
16,134
import os def GenDataFrameFromPath(path, pattern='*.png', fs=False): """ generate a dataframe for all file in a dir with the specific pattern of file name. use: GenDataFrameFromPath(path, pattern='*.png') """ fnpaths = list(path.glob(pattern)) df = pd.DataFrame(dict(zip(['fnpath'], [fnpaths]))) df['dir'] = df['fnpath'].apply(lambda x: x.parent) df['fn'] = df['fnpath'].apply(lambda x: x.name) if fs: df['size'] = df['fnpath'].apply(lambda x: os.path.getsize(x)) return df
899026131fe8eb18a2c5c6cf0df6a4ebfa287986
16,135
import re def is_heading(line): """Determine whether a given line is a section header that describes subsequent lines of a report. """ has_cattle = re.search(r'steer?|hfrs?|calves|cows?|bulls?', line, re.IGNORECASE) has_price = re.search(r'\$[0-9]+\.[0-9]{2}', line) return bool(has_cattle) and not bool(has_price)
ccbc80f7db61f7ba82aa88e54112d1995d457764
16,136
def get_channel_messages(channel_id): """ Holt fuer einen bestimmten Kanal die Nachrichten aus der Datenbank""" session = get_cassandra_session() future = session.execute_async("SELECT * FROM messages WHERE channel_id=%s", (channel_id,)) try: rows = future.result() except Exception: log.exeception() messages = [] for row in rows: messages.append({ 'channel_id': row.channel_id, 'message_id': row.message_id, 'author_id': row.author_id, 'message': row.message }) return jsonify({'messages': messages}), 200
7a3821dd8e93c4d49dfeecea200a881fdcb3f1a4
16,137
def train(traj, pol, targ_pol, qf, targ_qf, optim_pol, optim_qf, epoch, batch_size, # optimization hypers tau, gamma, # advantage estimation sampling, ): """ Train function for deep deterministic policy gradient Parameters ---------- traj : Traj Off policy trajectory. pol : Pol Policy. targ_pol : Pol Target Policy. qf : SAVfunction Q function. targ_qf : SAVfunction Target Q function. optim_pol : torch.optim.Optimizer Optimizer for Policy. optim_qf : torch.optim.Optimizer Optimizer for Q function. epoch : int Number of iteration. batch_size : int Number of batches. tau : float Target updating rate. gamma : float Discounting rate. sampling : int Number of samping in calculating expectation. Returns ------- result_dict : dict Dictionary which contains losses information. """ pol_losses = [] qf_losses = [] logger.log("Optimizing...") for batch in traj.iterate(batch_size, epoch): qf_bellman_loss = lf.bellman( qf, targ_qf, targ_pol, batch, gamma, sampling=sampling) optim_qf.zero_grad() qf_bellman_loss.backward() optim_qf.step() pol_loss = lf.ag(pol, qf, batch, sampling) optim_pol.zero_grad() pol_loss.backward() optim_pol.step() for q, targ_q, p, targ_p in zip(qf.parameters(), targ_qf.parameters(), pol.parameters(), targ_pol.parameters()): targ_p.detach().copy_((1 - tau) * targ_p.detach() + tau * p.detach()) targ_q.detach().copy_((1 - tau) * targ_q.detach() + tau * q.detach()) qf_losses.append(qf_bellman_loss.detach().cpu().numpy()) pol_losses.append(pol_loss.detach().cpu().numpy()) logger.log("Optimization finished!") return dict(PolLoss=pol_losses, QfLoss=qf_losses, )
14c09f3ce1f30366be3b8d0e0b965bdc1c677834
16,138
import os def upsample_gtiff(files: list, scale: float) -> list: """ Performs array math to artificially increase the resolution of a geotiff. No interpolation of values. A scale factor of X means that the length of a horizontal and vertical grid cell decreases by X. Be careful, increasing the resolution by X increases the file size by ~X^2 Args: files: A list of absolute paths to the appropriate type of files (even if len==1) scale: A positive integer used as the multiplying factor to increase the resolution. Returns: list of paths to the geotiff files created """ # Read raster dimensions raster_dim = rasterio.open(files[0]) width = raster_dim.width height = raster_dim.height lon_min = raster_dim.bounds.left lon_max = raster_dim.bounds.right lat_min = raster_dim.bounds.bottom lat_max = raster_dim.bounds.top # Geotransform for each resampled raster (east, south, west, north, width, height) affine_resampled = rasterio.transform.from_bounds(lon_min, lat_min, lon_max, lat_max, width * scale, height * scale) # keep track of the new files new_files = [] # Resample each GeoTIFF for file in files: rio_obj = rasterio.open(file) data = rio_obj.read( out_shape=(int(rio_obj.height * scale), int(rio_obj.width * scale)), resampling=Resampling.nearest ) # Convert new resampled array from 3D to 2D data = np.squeeze(data, axis=0) # Specify the filepath of the resampled raster new_filepath = os.path.splitext(file)[0] + '_upsampled.tiff' new_files.append(new_filepath) # Save the GeoTIFF with rasterio.open( new_filepath, 'w', driver='GTiff', height=data.shape[0], width=data.shape[1], count=1, dtype=data.dtype, nodata=np.nan, crs=rio_obj.crs, transform=affine_resampled, ) as dst: dst.write(data, 1) return new_files
93e158d4beae9d4d179e9908e6dce639de1770d3
16,139
def merge_dicts(dict1, dict2): """ _merge_dicts Merges two dictionaries into one. INPUTS @dict1 [dict]: First dictionary to merge. @dict2 [dict]: Second dictionary to merge. RETURNS @merged [dict]: Merged dictionary """ merged = {**dict1, **dict2} return merged
67e96ba9c9831e6e2aa4bbd6cd8b8d1d5edb93c4
16,140
import pagure.api import pagure.lib.query def check_api_acls(acls, optional=False): """Checks if the user provided an API token with its request and if this token allows the user to access the endpoint desired. :arg acls: A list of access control :arg optional: Only check the API token is valid. Skip the ACL validation. """ if authenticated(): return flask.g.token = None flask.g.fas_user = None token = None token_str = None if "Authorization" in flask.request.headers: authorization = flask.request.headers["Authorization"] if "token" in authorization: token_str = authorization.split("token", 1)[1].strip() token_auth = False error_msg = None if token_str: token = pagure.lib.query.get_api_token(flask.g.session, token_str) if token: if token.expired: error_msg = "Expired token" else: flask.g.authenticated = True # Some ACLs are required if acls: token_acls_set = set(token.acls_list) needed_acls_set = set(acls or []) overlap = token_acls_set.intersection(needed_acls_set) # Our token has some of the required ACLs: auth successful if overlap: token_auth = True flask.g.fas_user = token.user # To get a token, in the `fas` auth user must have # signed the CLA, so just set it to True flask.g.fas_user.cla_done = True flask.g.token = token flask.g.authenticated = True # Our token has none of the required ACLs -> auth fail else: error_msg = "Missing ACLs: %s" % ", ".join( sorted(set(acls) - set(token.acls_list)) ) # No ACL required else: if optional: token_auth = True flask.g.fas_user = token.user # To get a token, in the `fas` auth user must have # signed the CLA, so just set it to True flask.g.fas_user.cla_done = True flask.g.token = token flask.g.authenticated = True else: error_msg = "Invalid token" elif optional: return else: error_msg = "Invalid token" if not token_auth: output = { "error_code": pagure.api.APIERROR.EINVALIDTOK.name, "error": pagure.api.APIERROR.EINVALIDTOK.value, "errors": error_msg, } jsonout = flask.jsonify(output) jsonout.status_code = 401 return jsonout
81d658036c5b31e3471e48ef44f4eb26e571c49a
16,141
import os def get_data(): """ Return data files :return: """ data = {} for df in get_manifest(): d, f = os.path.split(df) if d not in data: data[d] = [df] else: data[d].append(df) return list(data.items())
3add894e03e153dc82aebcaca3a0099ac98b0a1c
16,142
def china_province_head_fifteen(): """ 各省前15数据 :return: """ return db_request_service.get_china_province_head_fifteen(ChinaTotal, ChinaProvince)
18dc3f22c05b3580bcd983361efc03bd3cdae43b
16,143
import tempfile import os from datetime import datetime import glob import shutil def exec_sedml_docs_in_archive(sed_doc_executer, archive_filename, out_dir, apply_xml_model_changes=False, sed_doc_executer_supported_features=(Task, Report, DataSet, Plot2D, Curve, Plot3D, Surface), report_formats=None, plot_formats=None, bundle_outputs=None, keep_individual_outputs=None, sed_doc_executer_logged_features=(Task, Report, DataSet, Plot2D, Curve, Plot3D, Surface)): """ Execute the SED-ML files in a COMBINE/OMEX archive (execute tasks and save outputs) Args: sed_doc_executer (:obj:`types.FunctionType`): function to execute each SED document in the archive. The function must implement the following interface:: def sed_doc_executer(doc, working_dir, base_out_path, rel_out_path=None, apply_xml_model_changes=False, report_formats=None, plot_formats=None, log=None, indent=0): ''' Execute the tasks specified in a SED document and generate the specified outputs Args: doc (:obj:`SedDocument` of :obj:`str`): SED document or a path to SED-ML file which defines a SED document working_dir (:obj:`str`): working directory of the SED document (path relative to which models are located) out_path (:obj:`str`): path to store the outputs * CSV: directory in which to save outputs to files ``{out_path}/{rel_out_path}/{report.id}.csv`` * HDF5: directory in which to save a single HDF5 file (``{out_path}/reports.h5``), with reports at keys ``{rel_out_path}/{report.id}`` within the HDF5 file rel_out_path (:obj:`str`, optional): path relative to :obj:`out_path` to store the outputs apply_xml_model_changes (:obj:`bool`, optional): if :obj:`True`, apply any model changes specified in the SED-ML file report_formats (:obj:`list` of :obj:`ReportFormat`, optional): report format (e.g., csv or h5) plot_formats (:obj:`list` of :obj:`PlotFormat`, optional): plot format (e.g., pdf) log (:obj:`SedDocumentLog`, optional): execution status of document indent (:obj:`int`, optional): degree to indent status messages ''' archive_filename (:obj:`str`): path to COMBINE/OMEX archive out_dir (:obj:`str`): path to store the outputs of the archive * CSV: directory in which to save outputs to files ``{ out_dir }/{ relative-path-to-SED-ML-file-within-archive }/{ report.id }.csv`` * HDF5: directory in which to save a single HDF5 file (``{ out_dir }/reports.h5``), with reports at keys ``{ relative-path-to-SED-ML-file-within-archive }/{ report.id }`` within the HDF5 file apply_xml_model_changes (:obj:`bool`): if :obj:`True`, apply any model changes specified in the SED-ML files before calling :obj:`task_executer`. sed_doc_executer_supported_features (:obj:`list` of :obj:`type`, optional): list of the types of elements that the SED document executer supports. Default: tasks, reports, plots, data sets, curves, and surfaces. report_formats (:obj:`list` of :obj:`ReportFormat`, optional): report format (e.g., csv or h5) plot_formats (:obj:`list` of :obj:`PlotFormat`, optional): report format (e.g., pdf) bundle_outputs (:obj:`bool`, optional): if :obj:`True`, bundle outputs into archives for reports and plots keep_individual_outputs (:obj:`bool`, optional): if :obj:`True`, keep individual output files sed_doc_executer_logged_features (:obj:`list` of :obj:`type`, optional): list of the types fo elements which that the SED document executer logs. Default: tasks, reports, plots, data sets, curves, and surfaces. Returns: :obj:`CombineArchiveLog`: log """ config = get_config() # process arguments if report_formats is None: report_formats = [ReportFormat(format_value) for format_value in config.REPORT_FORMATS] if plot_formats is None: plot_formats = [PlotFormat(format_value) for format_value in config.PLOT_FORMATS] if bundle_outputs is None: bundle_outputs = config.BUNDLE_OUTPUTS if keep_individual_outputs is None: keep_individual_outputs = config.KEEP_INDIVIDUAL_OUTPUTS verbose = config.VERBOSE # create temporary directory to unpack archive archive_tmp_dir = tempfile.mkdtemp() # unpack archive and read metadata archive = CombineArchiveReader.run(archive_filename, archive_tmp_dir) # determine files to execute sedml_contents = get_sedml_contents(archive) if not sedml_contents: warn("COMBINE/OMEX archive '{}' does not contain any executing SED-ML files".format(archive_filename), NoSedmlWarning) # print summary of SED documents print(get_summary_sedml_contents(archive, archive_tmp_dir)) # create output directory if not os.path.isdir(out_dir): os.makedirs(out_dir) # initialize status and output supported_features = sed_doc_executer_supported_features logged_features = sed_doc_executer_logged_features if SedDocument not in supported_features: supported_features = tuple(list(supported_features) + [SedDocument]) if SedDocument not in logged_features: logged_features = tuple(list(logged_features) + [SedDocument]) log = init_combine_archive_log(archive, archive_tmp_dir, supported_features=supported_features, logged_features=logged_features) log.status = Status.RUNNING log.out_dir = out_dir log.export() start_time = datetime.datetime.now() # execute SED-ML files: execute tasks and save output exceptions = [] for i_content, content in enumerate(sedml_contents): content_filename = os.path.join(archive_tmp_dir, content.location) content_id = os.path.relpath(content_filename, archive_tmp_dir) print('Executing SED-ML file {}: {} ...'.format(i_content, content_id)) doc_log = log.sed_documents[content_id] doc_log.status = Status.RUNNING doc_log.export() with capturer.CaptureOutput(merged=True, relay=verbose) as captured: doc_start_time = datetime.datetime.now() try: working_dir = os.path.dirname(content_filename) sed_doc_executer(content_filename, working_dir, out_dir, os.path.relpath(content_filename, archive_tmp_dir), apply_xml_model_changes=apply_xml_model_changes, report_formats=report_formats, plot_formats=plot_formats, log=doc_log, indent=1) doc_log.status = Status.SUCCEEDED except Exception as exception: exceptions.append(exception) doc_log.status = Status.FAILED doc_log.exception = exception # update status doc_log.output = captured.get_bytes().decode() doc_log.duration = (datetime.datetime.now() - doc_start_time).total_seconds() doc_log.export() print('') if bundle_outputs: print('Bundling outputs ...') # bundle CSV files of reports into zip archive archive_paths = [os.path.join(out_dir, '**', '*.' + format.value) for format in report_formats if format != ReportFormat.h5] archive = build_archive_from_paths(archive_paths, out_dir) if archive.files: ArchiveWriter().run(archive, os.path.join(out_dir, config.REPORTS_PATH)) # bundle PDF files of plots into zip archive archive_paths = [os.path.join(out_dir, '**', '*.' + format.value) for format in plot_formats] archive = build_archive_from_paths(archive_paths, out_dir) if archive.files: ArchiveWriter().run(archive, os.path.join(out_dir, config.PLOTS_PATH)) # cleanup temporary files print('Cleaning up ...') if not keep_individual_outputs: path_patterns = ( [os.path.join(out_dir, '**', '*.' + format.value) for format in report_formats if format != ReportFormat.h5] + [os.path.join(out_dir, '**', '*.' + format.value) for format in plot_formats] ) for path_pattern in path_patterns: for path in glob.glob(path_pattern, recursive=True): os.remove(path) for dir_path, dir_names, file_names in os.walk(out_dir, topdown=False): for dir_name in list(dir_names): full_dir_name = os.path.join(dir_path, dir_name) if not os.path.isdir(full_dir_name): dir_names.remove(dir_name) elif not os.listdir(full_dir_name): # not reachable because directory would # have already been removed by the iteration for the directory shutil.rmtree(full_dir_name) # pragma: no cover dir_names.remove(dir_name) # pragma: no cover if not dir_names and not file_names: shutil.rmtree(dir_path) shutil.rmtree(archive_tmp_dir) # update status log.status = Status.FAILED if exceptions else Status.SUCCEEDED log.duration = (datetime.datetime.now() - start_time).total_seconds() log.finalize() log.export() # summarize execution print('') print('============= SUMMARY =============') print(get_summary_combine_archive_log(log)) # raise exceptions if exceptions: msg = 'The COMBINE/OMEX did not execute successfully:\n\n {}'.format( '\n\n '.join(str(exceptions).replace('\n', '\n ') for exceptions in exceptions)) raise CombineArchiveExecutionError(msg) # return log return log
508ac3f83e7365c58f830081bf16470e0ad43e43
16,144
def pipeline(x_train, y_train, x_test, y_test, param_dict=None, problem='classification'): """Trains and evaluates a DNN classifier. Args: x_train: np.array or scipy.sparse.*matrix array of features of training data y_train: np.array 1-D array of class labels of training data x_test: np.array or scipy.sparse.*matrix array of features of test data y_test: np.array 1-D array of class labels of the test data param_dict: {string: ?} dictionary of parameters of their values problem: string type of learning problem; values = 'classification', 'regression' Returns: model: Keras.models.Model trained Keras model metrics: {str: float} dictionary of metric scores """ assert problem in ['classification', 'regression'] if param_dict is None: param_dict = {'epochs': 10, 'batch_size': 256} num_feature = x_train.shape[1] is_sparse = sparse.issparse(x_train) param_dict = param_dict.copy() num_epoch = param_dict.pop('epochs') batch_size = param_dict.pop('batch_size') if problem == 'regression': num_output = 1 loss = 'mean_squared_error' model_init = KerasRegressor else: num_output = len(set(y_train)) loss = 'categorical_crossentropy' model_init = FunctionalKerasClassifier build_fn = pseudo_partial( keras_build_fn, num_feature=num_feature, num_output=num_output, is_sparse=is_sparse, loss=loss, **param_dict) model = model_init( build_fn=build_fn, epochs=num_epoch, batch_size=batch_size, shuffle=True, verbose=False) return generic_pipeline( model, x_train, y_train, x_test, y_test, problem=problem)
f01e20851c91dd9f6b3db889fdf713edc1eb37b9
16,145
def model_selection(modelname, num_out_classes, dropout=None): """ :param modelname: :return: model, image size, pretraining<yes/no>, input_list """ if modelname == 'xception': return TransferModel(modelchoice='xception', num_out_classes=num_out_classes) # , 299, \True, ['image'], None elif modelname == 'resnet18': return TransferModel(modelchoice='resnet18', dropout=dropout, num_out_classes=num_out_classes) # , \224, True, ['image'], None elif modelname == 'xception_concat': return TransferModel(modelchoice='xception_concat', num_out_classes=num_out_classes) else: raise NotImplementedError(modelname)
67ba26ab4f7cbe8f4540eb10f2ef6e598b49ea2f
16,146
def Packet_computeBinaryPacketLength(startOfPossibleBinaryPacket): """Packet_computeBinaryPacketLength(char const * startOfPossibleBinaryPacket) -> size_t""" return _libvncxx.Packet_computeBinaryPacketLength(startOfPossibleBinaryPacket)
58139b8d874d9292e63b6eb6afdbd9c5c2fa6f9d
16,147
def build_check_query(check_action: Action) -> str: """Builds check query from action item Parameters ---------- check_action : action check action to build query from Returns ------- str query to execute """ return f""" UPDATE todos SET completed = 1 WHERE name LIKE '{check_action.pattern}'; """
a6b8f5b328e3bb9eedf61a325e54d6cae9704a55
16,148
import itertools def gen_positions(n, n_boulders): """Generates state codes for boulders. Includes empty rows Parameters: n: number of rows/columns n_boulders: number of boulders per row return value: Possible boulder and alien states """ boulder_positions=[]; b_p=[] alien_positions_with_0=["{}1{}".format('0'*(n-i-1),'0'*(i)) for i in range(n)]+['0'*n] if n_boulders==1: return alien_positions_with_0, alien_positions_with_0[0:n] else: positions=[] position_index=list(itertools.combinations(range(n), n_boulders)) for tup in position_index: pos='' for i in range(n): if i in tup: pos+='1' else: pos+='0' positions.append(pos) if '0'*n not in boulder_positions: positions.append('0'*n) return positions, alien_positions_with_0[0:n]
0a20594f2e021bf8e190f6c7c726159fde0b8367
16,149
def analysis_linear_correlation(data1:np.array, data2:np.array, alpha:float = .05, return_corr:bool = True, verbose:bool = False)->bool: """ ## Linear correlation analysis to test independence for numerical / ordinal variables. data1, date2 -- 1D data to be tested. alpha -- Significance level (default, 0.05). return_corr -- If is True, return correlation value and his p-value (default, False). verbose -- Display extra information (default, False). return -- boolean according test result. """ # get types type1 = data1.dtype type2 = data2.dtype # get size n = len(data1) # ord - ord if type1 == "int64" and type2 == "int64": # number of categories ncat1 = len(np.unique(data1)) ncat2 = len(np.unique(data2)) # analysis if ncat1 >= 5 and ncat2 >= 5: result = correlation_spearman(data1, data2, alpha = alpha, return_corr = return_corr, verbose = verbose) else: result = correlation_kendalltau(data1, data2, alpha = alpha, return_corr = return_corr, verbose = verbose) # num - num if type1 == "float64" and type2 == "float64": # test if variables are gaussian if n >= 5000: is_normal1 = test_anderson(data1, alpha = alpha) is_normal2 = test_anderson(data2, alpha = alpha) else: is_normal1 = test_shapiro(data1, alpha = alpha) is_normal2 = test_shapiro(data2, alpha = alpha) # analysis if n >= 100: result = correlation_pearson(data1, data2, alpha = alpha, return_corr = return_corr, verbose = verbose) else: if is_normal1 and is_normal2: result = correlation_pearson(data1, data2, alpha = alpha, return_corr = return_corr, verbose = verbose) else: result = correlation_spearman(data1, data2, alpha = alpha, return_corr = return_corr, verbose = verbose) # num - ord if (type1 == "float64" and type2 == "int64") or (type1 == "int64" and type2 == "float64"): # number of categories if type1 == "int64": ncat = len(np.unique(data1)) else: ncat = len(np.unique(data2)) # analysis if ncat < 5: result = correlation_kendalltau(data1, data2, alpha = alpha, return_corr = return_corr, verbose = verbose) else: if n >= 100: result = correlation_pearson(data1, data2, alpha = alpha, return_corr = return_corr, verbose = verbose) else: result = correlation_spearman(data1, data2, alpha = alpha, return_corr = return_corr, verbose = verbose) # return return result
6eaf34a12281949236d28143399024ed30e834ad
16,150
def sha256(buffer=None): """Secure Hash Algorithm 2 (SHA-2) with 256 bits hash value.""" return Hash("sha256", buffer)
2e33c38c0f7b9dd019104a18e6842243773686ca
16,151
import math import torch def nmc_eig(model, design, observation_labels, target_labels=None, N=100, M=10, M_prime=None, independent_priors=False): """ Nested Monte Carlo estimate of the expected information gain (EIG). The estimate is, when there are not any random effects, .. math:: \\frac{1}{N}\\sum_{n=1}^N \\log p(y_n | \\theta_n, d) - \\frac{1}{N}\\sum_{n=1}^N \\log \\left(\\frac{1}{M}\\sum_{m=1}^M p(y_n | \\theta_m, d)\\right) The estimate is, in the presence of random effects, .. math:: \\frac{1}{N}\\sum_{n=1}^N \\log \\left(\\frac{1}{M'}\\sum_{m=1}^{M'} p(y_n | \\theta_n, \\widetilde{\\theta}_{nm}, d)\\right)- \\frac{1}{N}\\sum_{n=1}^N \\log \\left(\\frac{1}{M}\\sum_{m=1}^{M} p(y_n | \\theta_m, \\widetilde{\\theta}_{m}, d)\\right) The latter form is used when `M_prime != None`. :param function model: A pyro model accepting `design` as only argument. :param torch.Tensor design: Tensor representation of design :param list observation_labels: A subset of the sample sites present in `model`. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred. :param list target_labels: A subset of the sample sites over which the posterior entropy is to be measured. :param int N: Number of outer expectation samples. :param int M: Number of inner expectation samples for `p(y|d)`. :param int M_prime: Number of samples for `p(y | theta, d)` if required. :param bool independent_priors: Only used when `M_prime` is not `None`. Indicates whether the prior distributions for the target variables and the nuisance variables are independent. In this case, it is not necessary to sample the targets conditional on the nuisance variables. :return: EIG estimate :rtype: `torch.Tensor` """ if isinstance(observation_labels, str): # list of strings instead of strings observation_labels = [observation_labels] if isinstance(target_labels, str): target_labels = [target_labels] # Take N samples of the model expanded_design = lexpand(design, N) # N copies of the model trace = poutine.trace(model).get_trace(expanded_design) trace.compute_log_prob() if M_prime is not None: y_dict = {l: lexpand(trace.nodes[l]["value"], M_prime) for l in observation_labels} theta_dict = {l: lexpand(trace.nodes[l]["value"], M_prime) for l in target_labels} theta_dict.update(y_dict) # Resample M values of u and compute conditional probabilities # WARNING: currently the use of condition does not actually sample # the conditional distribution! # We need to use some importance weighting conditional_model = pyro.condition(model, data=theta_dict) if independent_priors: reexpanded_design = lexpand(design, M_prime, 1) else: # Not acceptable to use (M_prime, 1) here - other variables may occur after # theta, so need to be sampled conditional upon it reexpanded_design = lexpand(design, M_prime, N) retrace = poutine.trace(conditional_model).get_trace(reexpanded_design) retrace.compute_log_prob() conditional_lp = sum(retrace.nodes[l]["log_prob"] for l in observation_labels).logsumexp(0) \ - math.log(M_prime) else: # This assumes that y are independent conditional on theta # Furthermore assume that there are no other variables besides theta conditional_lp = sum(trace.nodes[l]["log_prob"] for l in observation_labels) y_dict = {l: lexpand(trace.nodes[l]["value"], M) for l in observation_labels} # Resample M values of theta and compute conditional probabilities conditional_model = pyro.condition(model, data=y_dict) # Using (M, 1) instead of (M, N) - acceptable to re-use thetas between ys because # theta comes before y in graphical model reexpanded_design = lexpand(design, M, 1) # sample M theta retrace = poutine.trace(conditional_model).get_trace(reexpanded_design) retrace.compute_log_prob() marginal_lp = sum(retrace.nodes[l]["log_prob"] for l in observation_labels).logsumexp(0) \ - math.log(M) terms = conditional_lp - marginal_lp nonnan = (~torch.isnan(terms)).sum(0).type_as(terms) terms[torch.isnan(terms)] = 0. return terms.sum(0)/nonnan
8de69e87677a4a74fd04ce4cf302221121d00b2d
16,152
import scipy def _orient_eigs(eigvecs, phasing_track, corr_metric=None): """ Orient each eigenvector deterministically according to the orientation that correlates better with the phasing track. Parameters ---------- eigvecs : 2D array (n, k) `k` eigenvectors (as columns). phasing_track : 1D array (n,) Reference track for determining orientation. corr_metric: spearmanr, pearsonr, var_explained, MAD_explained Correlation metric to use for selecting orientations. Returns ------- 2D array (n, k) Reoriented `k` eigenvectors. Notes ----- This function does NOT change the order of the eigenvectors. """ for i in range(eigvecs.shape[1]): mask = np.isfinite(eigvecs[:, i]) & np.isfinite(phasing_track) if corr_metric is None or corr_metric == "spearmanr": corr = scipy.stats.spearmanr(phasing_track[mask], eigvecs[mask, i])[0] elif corr_metric == "pearsonr": corr = scipy.stats.pearsonr(phasing_track[mask], eigvecs[mask, i])[0] elif corr_metric == "var_explained": corr = scipy.stats.pearsonr(phasing_track[mask], eigvecs[mask, i])[0] # multiply by the sign to keep the phasing information corr = np.sign(corr) * corr * corr * np.var(eigvecs[mask, i]) elif corr_metric == "MAD_explained": corr = ( numutils.COMED(phasing_track[mask], eigvecs[mask, i]) * numutils.MAD(eigvecs[mask, i]) ) else: raise ValueError("Unknown correlation metric: {}".format(corr_metric)) eigvecs[:, i] = np.sign(corr) * eigvecs[:, i] return eigvecs
d6feebbd7b7748549ebc494bf8b00f0d9e313f7c
16,153
def test_CreativeProject_auto_multivariate_functional(max_iter, max_response, error_lim, model_type): """ test that auto method works for a particular multivariate (bivariate) function """ # define data covars = [(0.5, 0, 1), (0.5, 0, 1)] # covariates come as a list of tuples (one per covariate: (<initial_guess>, <min>, <max>)) # define response function def f(x): return (-(6 * x['covar0'].iloc[0] - 2) ** 2 * np.sin(12 * x['covar0'].iloc[0] - 4)) * (-(6 * x['covar1'].iloc[0] - 2) ** 2 * np.sin(12 * x['covar1'].iloc[0] - 4)) # initialize class instance cc = TuneSession(covars=covars, model=model_type) # run the auto-method cc.auto(response_samp_func=f, max_iter=max_iter) # assert that max_iter steps taken by optimizer assert cc.model["covars_sampled_iter"] == max_iter assert cc.model["covars_proposed_iter"] == max_iter assert cc.model["response_sampled_iter"] == max_iter # assert that training and test data is stored assert cc.train_X.shape[0] == max_iter assert cc.proposed_X.shape[0] == max_iter assert cc.train_X.shape[0] == max_iter assert cc.train_X.shape[1] == 2 # check that it's bivariate train_X # assert that best response is stored at each step assert cc.covars_best_response_value.shape[0] == max_iter assert cc.best_response_value.shape[0] == max_iter # assert that the correct maximum and covariate values for that spot are identified THEORETICAL_MAX_COVAR = 1.0 for it in range(len(covars)): assert abs(cc.covars_best_response_value[-1, it].item() - THEORETICAL_MAX_COVAR)/THEORETICAL_MAX_COVAR \ < error_lim assert abs(cc.best_response_value[-1].item() - max_response)/max_response < error_lim
ee0cc1d34a1836c8ea9ec2b23de175f4b6d8ca75
16,154
def crossValidate(x, y, cv=5, K=None): """ :param y: N*L ranking vectors :return: """ results = {"perf": []} ## cross validation ## np.random.seed(1100) kf = KFold(n_splits=cv, shuffle=True, random_state=0) for train, test in kf.split(x): x_train = x[train, :] y_train = y[train, :] x_test = x[test, :] y_test = y[test, :] # y_pred = KNN(K=K).fit(x_train, y_train).predict(x_test) y_pred = multithreadPredict(x_test, KNN(K=K).fit(x_train, y_train)) print y_pred # print y_pred ### test results["perf"].append(perfMeasure(y_pred, y_test, rankopt=True)) # print results["perf"][-1] for key in results.keys(): item = np.array(results[key]) mean = np.nanmean(item, axis=0) std = np.nanstd(item, axis=0) results[key] = [mean, std] return results
820f5b53a38d2a64a3a1ee740d0fded020000bb7
16,155
def make_word_groups(vocab_words): """ :param vocab_words: list of vocabulary words with a prefix. :return: str of prefix followed by vocabulary words with prefix applied, separated by ' :: '. This function takes a `vocab_words` list and returns a string with the prefix and the words with prefix applied, separated by ' :: '. """ vocab_words.reverse() prefix = vocab_words.pop() new_list = [prefix] vocab_words.reverse() for i in range(len(vocab_words)): new_list.append(prefix + vocab_words[i]) # print(new_list) return " :: ".join(new_list)
f940c602939ca3a9bab013f5847918f7ba4536ae
16,156
def gpi_g10s40(rescale=False): """ Multiply by the 'rescale' factor to adjust hole sizes and centers in entrance pupil (PM) (Magnify the physical mask coordinates up to the primary mirror size) """ demag = gpi_mag_asdesigned() if rescale: demag = demag/rescale # rescale 1.1 gives a bigger mask in PM pupil space print ("gpi_g10s4...") hdia, ctrs = gpi_g10s40_asmanufactured(1.0/demag) # meters return hdia, ctrs """ From GPI FPRD 2008 http://dms.hia.nrc.ca/view.php?fDocumentId=1398 Filter 1/2 pwr bandwidth name wavelen/um % Y 0.95-1.14 18 J 1.12-1.35 19 H 1.50-1.80 18 K1 1.9-2.19 14 K2 2.13-2.4 12 Spectral Resolution 34-36 35-39 44-49 62-70 75-83 # spectral pixels 12-13 13-15 16-18 18-20 18-20 pixels 14mas are nyquist at 1.1 """
4be151f7e99332be0f67d00619fe75def90c2b5d
16,157
import inspect def test_close_sections(): """Parse sections without blank lines in between.""" def f(x, y, z): """ Parameters ---------- x : X y : Y z : Z Raises ------ Error2 error. Error1 error. Returns ------- str value """ return x + y + z sections, errors = parse(inspect.getdoc(f), inspect.signature(f)) assert len(sections) == 3 assert not errors
793d92d989f3caa020c06ea798f7f34703abd747
16,158
import sys def get_good_contours(proc_image, image, bb, savedir, max_num_add=None): """ Adapted from `click_and_crop_v3.py`, except that we have to make the contours. Here, we're going to inspect and check that the contours are reasonable. Returns a list of processed contours that I'll then use for later. """ cv2.imshow("Now detecting contours for this image.", proc_image) key = cv2.waitKey(0) if key in utils.ESC_KEYS: sys.exit() (cnts, _) = cv2.findContours(proc_image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) processed = [] for c in cnts: try: # Find the centroids of the contours in _pixel_space_. :) M = cv2.moments(c) cX = int(M["m10"] / M["m00"]) cY = int(M["m01"] / M["m00"]) if utils.filter_point(cX,cY,xlower=bb[0],xupper=bb[0]+bb[2],ylower=bb[1],yupper=bb[1]+bb[3]): continue # Now fit an ellipse! ellipse = cv2.fitEllipse(c) cv2.ellipse(image, ellipse, (0,255,0), 2) name = "Is this ellipse good? ESC to skip it, else add it." cv2.namedWindow(name, cv2.WINDOW_NORMAL) cv2.resizeWindow(name, 2000, 4000) cv2.imshow(name, image) firstkey = cv2.waitKey(0) if firstkey not in utils.ESC_KEYS: angle = ellipse[2] yaw = utils.opencv_ellipse_angle_to_robot_yaw(angle) processed.append( (cX,cY,angle,yaw) ) cv2.circle(img=image, center=(cX,cY), radius=5, color=(0,0,255), thickness=-1) cv2.putText(img=image, text="{},{:.1f}".format(len(processed), angle), org=(cX,cY), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(255,0,0), thickness=2) if (max_num_add is not None) and (len(processed) == max_num_add): break except: pass assert len(processed) >= 1 cv2.destroyAllWindows() # Save images for debugging. Then return the processed list. cv2.imshow("FINAL IMAGE before saving (PRESS ESC IF BAD).", image) key = cv2.waitKey(0) if key in utils.ESC_KEYS: sys.exit() cv2.imwrite(savedir, image) return processed
4437c44c249b1bd4bf6bcef90d38defdcbe9bc48
16,159
def _int_converter(value): """Convert string value to int. We do not use the int converter default exception since we want to make sure the exact http response code. Raises: exception_handler.BadRequest if value can not be parsed to int. Examples: /<request_path>?count=10 parsed to {'count': '10'} and it should be converted to {'count': 10}. """ try: return int(value) except Exception: raise exception_handler.BadRequest( '%r type is not int' % value )
6b5c99635211bf8ce2e3c2adc784f2a4e9ee355f
16,160
from typing import List def split_rule(rules, rule_name, symbols_to_extract: List[str], subrule_name: str): """ Let only options which are starting with symbols from symbols_to_extract. Put the rest to a subrule. """ r = rule_by_name(rules, rule_name) assert isinstance(r.body, Antlr4Selection), r sub_options = Antlr4Selection([]) for o in r.body: start_symbols = set() _direct_left_corner(o, start_symbols, allow_eps_in_sel=True) if not start_symbols.intersection(symbols_to_extract): sub_options.append(o) r.body = Antlr4Selection([o for o in r.body if not (o in sub_options)]) r.body.insert(0, Antlr4Symbol(subrule_name, False)) if len(r.body) == 1: r.body = r.body[0] assert len(sub_options) > 0 if len(sub_options) == 1: sub_options = sub_options[0] else: sub_options = Antlr4Selection(sub_options) sub_r = Antlr4Rule(subrule_name, sub_options) rules.insert(rules.index(r), sub_r) return sub_r
aa4d2aac62c488e3cd8d002556edea3aaef7185b
16,161
def ESS(works_prev, works_incremental): """ compute the effective sample size (ESS) as given in Eq 3.15 in https://arxiv.org/abs/1303.3123. Parameters ---------- works_prev: np.array np.array of floats representing the accumulated works at t-1 (unnormalized) works_incremental: np.array np.array of floats representing the incremental works at t (unnormalized) Returns ------- normalized_ESS: float effective sample size """ prev_weights_normalized = np.exp(-works_prev - logsumexp(-works_prev)) incremental_weights_unnormalized = np.exp(-works_incremental) ESS = np.dot(prev_weights_normalized, incremental_weights_unnormalized)**2 / np.dot(np.power(prev_weights_normalized, 2), np.power(incremental_weights_unnormalized, 2)) normalized_ESS = ESS / len(prev_weights_normalized) assert normalized_ESS >= 0.0 - DISTRIBUTED_ERROR_TOLERANCE and normalized_ESS <= 1.0 + DISTRIBUTED_ERROR_TOLERANCE, f"the normalized ESS ({normalized_ESS} is not between 0 and 1)" return normalized_ESS
514ca2462708a4c163f45e92854159d50eb5f3a8
16,162
def new_line_over(): """Creates a new line over the cursor. The cursor is also moved to the beginning of the new line. It is not possible to create more than one new line over the cursor at a time for now. Usage: `In a config file:` .. code-block:: yaml - new_line_over: `Using the API:` .. code-block:: python ezvi.tools.new_line_over() :rtype: str :return: Characters that would be used in ``Vi`` to add a new line over the cursor. """ to_write = "O" + ESCAPE return to_write
41da4d301240a8ea3d9108dd1d957a30cff1097b
16,163
import json def lambda_handler(event, context): """Calls custom job waiter developed by user Arguments: event {dict} -- Dictionary with details on previous processing step context {dict} -- Dictionary with details on Lambda context Returns: {dict} -- Dictionary with Processed Bucket, Key(s) and Job Details """ try: logger.info("Lambda event is [{}]".format(event)) logger.info(event["body"]) source_bucket = event["body"]["bucket"] job_name = event["body"]["targetJob"] ddb_table = event["body"]["targetDDBTable"] token = event["body"]["token"] s3_prefix_key_proc = event["body"]["keysRawProc"] logger.info( "[{}] [{}] [{}] [{}]".format( source_bucket, s3_prefix_key_proc, job_name, ddb_table, ) ) # Submitting a new Glue Job job_response = client.start_job_run( JobName=job_name, Arguments={ # Specify any arguments needed based on bucket and keys (e.g. input/output S3 locations) "--job-bookmark-option": "job-bookmark-enable", "--additional-python-modules": "pyarrow==2,awswrangler==2.9.0", # Custom arguments below "--TARGET_DDB_TABLE": ddb_table, "--S3_BUCKET": source_bucket, "--S3_PREFIX_PROCESSED": s3_prefix_key_proc[0] # }, MaxCapacity=2.0, ) logger.info("Response is [{}]".format(job_response)) # Collecting details about Glue Job after submission (e.g. jobRunId for Glue) json_data = json.loads(json.dumps(job_response, default=datetimeconverter)) job_details = { "jobName": job_name, "jobRunId": json_data.get("JobRunId"), "jobStatus": "STARTED", "token": token, } response = {"jobDetails": job_details} except Exception as e: logger.error("Fatal error", exc_info=True) sagemaker.send_pipeline_execution_step_failure( CallbackToken=token, FailureReason="error" ) raise e return response
e5a4055a39d0df1fabd3ad5f70a2859524378f44
16,164
def put_path(components, value): """Recursive function to put value in component""" if len(components) > 1: new = components.pop(0) value = put_path(components, value) else: new = components[0] return {new: value}
77db4064a77cf1cdcde1d74d901410525722b66e
16,165
def con_orthogonal_checkboard(X,c_v1,c_v2,c_v3,c_v4,num,N): """for principal / isothermic / developable mesh / aux_diamond / aux_cmc (v1-v3)*(v2-v4)=0 """ col = np.r_[c_v1,c_v2,c_v3,c_v4] row = np.tile(np.arange(num),12) d1 = X[c_v2]-X[c_v4] d2 = X[c_v1]-X[c_v3] d3 = X[c_v4]-X[c_v2] d4 = X[c_v3]-X[c_v1] data = np.r_[d1,d2,d3,d4] H = sparse.coo_matrix((data,(row,col)), shape=(num, N)) r = np.einsum('ij,ij->i',d1.reshape(-1,3, order='F'),d2.reshape(-1,3, order='F')) return H,r
f05228d6caa49f60a2a9f515ce5590e6f13127e0
16,166
def _PropertyGridInterface_GetPropertyValues(self, dict_=None, as_strings=False, inc_attributes=False): """ Returns all property values in the grid. :param `dict_`: A to fill with the property values. If not given, then a new one is created. The dict_ can be an object as well, in which case it's __dict__ is used. :param `as_strings`: if True, then string representations of values are fetched instead of native types. Useful for config and such. :param `inc_attributes`: if True, then property attributes are added in the form of "@<propname>@<attr>". :returns: A dictionary with values. It is always a dictionary, so if dict_ was and object with __dict__ attribute, then that attribute is returned. """ if dict_ is None: dict_ = {} elif hasattr(dict_,'__dict__'): dict_ = dict_.__dict__ getter = self.GetPropertyValue if not as_strings else self.GetPropertyValueAsString it = self.GetVIterator(PG_ITERATE_PROPERTIES) while not it.AtEnd(): p = it.GetProperty() name = p.GetName() dict_[name] = getter(p) if inc_attributes: attrs = p.GetAttributes() if attrs and len(attrs): dict_['@%s@attr'%name] = attrs it.Next() return dict_
06974bec88351d5e8743b43e7c0495bb40545ef0
16,167
def get_pipelines(exp_type, cal_ver=None, context=None): """Given `exp_type` and `cal_ver` and `context`, locate the appropriate SYSTEM CRDSCFG reference file and determine the sequence of pipeline .cfgs required to process that exp_type. """ context = _get_missing_context(context) cal_ver = _get_missing_calver(cal_ver) with log.augment_exception("Failed determining required pipeline .cfgs for", "EXP_TYPE", srepr(exp_type), "CAL_VER", srepr(cal_ver)): config_manager = _get_config_manager(context, cal_ver) return config_manager.exptype_to_pipelines(exp_type)
7fb4a02ffe7598df4621b2fd4a6863094616fd41
16,168
def distance_to_line(p,a,b): """ Computes the perpendicular distance from a point to an infinite line. Parameters ---------- p : (x,y) Coordinates of a point. a : (x,y) Coordinates of a point on a line. b : (x,y) Coordinates of another point on a line. Returns ---------- float The Euclidean distance from p to the infinite line through a & b. """ # code by BJK # area of triangle formed between point and line segment trianglearea=abs(area([a,b,p])) # length of line segment line_length=distance(a,b) # make sure line segment has a length if line_length==0: # a & b are the same, so just calculate distance between points return distance(p,a) else: # the distance we want is the height of the triangle # area is 1/2 base x height so height is 2*area/base return 2*trianglearea/line_length
1b1d0ef37587cd8cb0f5730ac78c39ec8b42faec
16,169
def pearsonr(A, B): """ A broadcasting method to compute pearson r and p ----------------------------------------------- Parameters: A: matrix A, (i*k) B: matrix B, (j*k) Return: rcorr: matrix correlation, (i*j) pcorr: matrix correlation p, (i*j) Example: >>> rcorr, pcorr = pearsonr(A, B) """ if isinstance(A,list): A = np.array(A) if isinstance(B,list): B = np.array(B) if np.ndim(A) == 1: A = A[None,:] if np.ndim(B) == 1: B = B[None,:] A_mA = A - A.mean(1)[:, None] B_mB = B - B.mean(1)[:, None] ssA = (A_mA**2).sum(1) ssB = (B_mB**2).sum(1) rcorr = np.dot(A_mA, B_mB.T)/np.sqrt(np.dot(ssA[:,None], ssB[None])) df = A.T.shape[1] - 2 r_forp = rcorr*1.0 r_forp[r_forp==1.0] = 0.0 t_squared = rcorr.T**2*(df/((1.0-rcorr.T)*(1.0+rcorr.T))) pcorr = special.betainc(0.5*df, 0.5, df/(df+t_squared)) return rcorr, pcorr
f66ca9eb6c6367580043ab9d512400c826d30d39
16,170
def inst_bench(dt, gt, bOpts, tp=None, fp=None, score=None, numInst=None): """ ap, rec, prec, npos, details = inst_bench(dt, gt, bOpts, tp = None, fp = None, sc = None, numInst = None) dt - a list with a dict for each image and with following fields .boxInfo - info that will be used to cpmpute the overlap with ground truths, a list .sc - score gt .boxInfo - info used to compute the overlap, a list .diff - a logical array of size nGtx1, saying if the instance is hard or not bOpt .minoverlap - the minimum overlap to call it a true positive [tp], [fp], [sc], [numInst] Optional arguments, in case the inst_bench_image is being called outside of this function """ details = None if tp is None: # We do not have the tp, fp, sc, and numInst, so compute them from the structures gt, and out tp = [] fp = [] numInst = [] score = [] dupDet = [] instId = [] ov = [] for i in range(len(gt)): # Sort dt by the score sc = dt[i]["sc"] bb = dt[i]["boxInfo"] ind = np.argsort(sc, axis=0) ind = ind[::-1] if len(ind) > 0: sc = np.vstack((sc[i, :] for i in ind)) bb = np.vstack((bb[i, :] for i in ind)) else: sc = np.zeros((0, 1)).astype(np.float) bb = np.zeros((0, 4)).astype(np.float) dtI = dict({"boxInfo": bb, "sc": sc}) tp_i, fp_i, sc_i, numInst_i, dupDet_i, instId_i, ov_i = inst_bench_image( dtI, gt[i], bOpts ) tp.append(tp_i) fp.append(fp_i) score.append(sc_i) numInst.append(numInst_i) dupDet.append(dupDet_i) instId.append(instId_i) ov.append(ov_i) details = { "tp": list(tp), "fp": list(fp), "score": list(score), "dupDet": list(dupDet), "numInst": list(numInst), "instId": list(instId), "ov": list(ov), } tp = np.vstack(tp[:]) fp = np.vstack(fp[:]) sc = np.vstack(score[:]) cat_all = np.hstack((tp, fp, sc)) ind = np.argsort(cat_all[:, 2]) cat_all = cat_all[ind[::-1], :] tp = np.cumsum(cat_all[:, 0], axis=0) fp = np.cumsum(cat_all[:, 1], axis=0) thresh = cat_all[:, 2] npos = np.sum(numInst, axis=0) # Compute precision/recall rec = tp / npos prec = np.divide(tp, (fp + tp)) ap = VOCap(rec, prec) return ap, rec, prec, npos, details
9f8e12863205c24247003a4c95cf52f99086a6a6
16,171
from typing import Tuple from typing import List def _tee( cmd: str, executable: str, abort_on_error: bool ) -> Tuple[int, List[str]]: """ Execute command "cmd", capturing its output and removing empty lines. :return: list of strings """ _LOG.debug("cmd=%s executable=%s", cmd, executable) rc, output = hsysinte.system_to_string(cmd, abort_on_error=abort_on_error) hdbg.dassert_isinstance(output, str) output1 = output.split("\n") _LOG.debug("output1= (%d)\n'%s'", len(output1), "\n".join(output1)) # output2 = hprint.remove_empty_lines_from_string_list(output1) _LOG.debug("output2= (%d)\n'%s'", len(output2), "\n".join(output2)) _dassert_list_of_strings(output2) return rc, output2
4aafdac48b9deb4810b96f99ffc178464b79372a
16,172
def normalized_str(token): """ Return as-is text for tokens that are proper nouns or acronyms, lemmatized text for everything else. Args: token (``spacy.Token`` or ``spacy.Span``) Returns: str """ if isinstance(token, SpacyToken): return token.text if preserve_case(token) else token.lemma_ elif isinstance(token, SpacySpan): return ' '.join(subtok.text if preserve_case(subtok) else subtok.lemma_ for subtok in token) else: msg = 'Input must be a spacy Token or Span, not {}.'.format(type(token)) raise TypeError(msg)
c5e30b48716fa99bfbcf8252b3ecd018cc921cbe
16,173
def scatter_nd(*args, **kwargs): """ See https://www.tensorflow.org/api_docs/python/tf/scatter_nd . """ return tensorflow.scatter_nd(*args, **kwargs)
5b5d457c91df73314de6d81c105132d6b69eb1aa
16,174
from typing import Union from typing import Tuple def concatenate_sequences(X: Union[list, np.ndarray], y: Union[list, np.ndarray], sequence_to_value: bool = False) \ -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """ Concatenate multiple sequences to scikit-learn compatible numpy arrays. ´Parameters ----------- X : Union[list, np.ndarray] of shape=(n_sequences, ) All sequences. Note that all elements in ```X``` must have at least one equal dimension. y : Union[list, np.ndarray] of shape=(n_sequences, ) All sequences. Note that all elements in ```X``` must have at least one equal dimension. sequence_to_value : bool, default=False If true, expand each element of y to the sequence length Returns ------- X : np.ndarray of shape=(n_samples, n_features) Input data where n_samples is the accumulated length of all sequences y : np.ndarray of shape=(n_samples, n_features) or shape=(n_samples, ) Target data where n_samples is the accumulated length of all sequences sequence_ranges : Union[None, np.ndarray] of shape=(n_sequences, 2) Sequence border indicator matrix """ if isinstance(X, list): X = np.asarray(X) if isinstance(y, list): y = np.asarray(y) X = np.array(X) y = np.array(y) if sequence_to_value: for k, _ in enumerate(y): y[k] = np.repeat(y[k], X[k].shape[0]) check_consistent_length(X, y) sequence_ranges: np.ndarray = np.ndarray([]) if X.ndim == 1: sequence_ranges = np.zeros((X.shape[0], 2), dtype=int) sequence_ranges[:, 1] = np.cumsum([X[k].shape[0] for k, _ in enumerate(X)]) sequence_ranges[1:, 0] = sequence_ranges[:-1, 1] for k, _ in enumerate(X): X[k], y[k] = check_X_y(X[k], y[k], multi_output=True) return np.concatenate(X), np.concatenate(y), sequence_ranges
b4b2489eeb601ce5378f6cf7b2cce7daf68bdf1d
16,175
def get_export_table_operator(table_name, dag=None): """Get templated BigQueryToCloudStorageOperator. Args: table_name (string): Name of the table to export. dag (airflow.models.DAG): DAG used by context_manager. e.g. `with get_dag() as dag: get_export_table_operator(..., dag=dag)`. Defaults to None. Returns: airflow.contrib.operators.bigquery_operator.BigQueryOperator """ if dag is None: logger.warning('No DAG context was found. The operator may not be associated to any DAG nor appeared in Web UI') date_descriptor = '{{ ds_nodash }}' table_name_with_date_descriptor = \ '{table_name}{date_descriptor}'.format( table_name=table_name, date_descriptor=date_descriptor) return BigQueryToCloudStorageOperator( dag=dag or models._CONTEXT_MANAGER_DAG, task_id='{experiment_name}.{table_name}.export' .format( experiment_name=get_config('experiment_name'), table_name=table_name), source_project_dataset_table='{gcp_project_name}.{database_name}.{table_name}' .format( gcp_project_name=get_config('gcp_project_name'), database_name='%s_database' % get_config('experiment_name'), table_name=table_name_with_date_descriptor), # TODO: 1GB以上のデータに対応 # https://cloud.google.com/bigquery/exporting-data-from-bigquery#exportingmultiple destination_cloud_storage_uris=[ 'gs://{bucket_name}/{experiment_name}/exported_tables/' '{table_name}/{date_descriptor}/' 'out.csv.gzip'.format( bucket_name=get_config('bucket_name'), experiment_name=get_config('experiment_name'), date_descriptor=date_descriptor, table_name=table_name)], compression="GZIP")
b1fd75caf10bc5fefbba4b5702bf05ab1ec6be6c
16,176
def run_command_with_code(cmd, redirect_output=True, check_exit_code=True): """Runs a command in an out-of-process shell. Returns the output of that command. Working directory is self.root. """ if redirect_output: stdout = sp.PIPE else: stdout = None proc = sp.Popen(cmd, stdout=stdout, stderr=sp.PIPE) output = proc.communicate()[0] if check_exit_code and proc.returncode != 0: log.error('Command "%s" failed.\n%s', ' '.join(cmd), output) return output, proc.returncode
45e8592def8290f45458a183bed410072cc15000
16,177
import logging async def delete_project( delete_project_request: DeleteProject, token: str = Depends(oauth2_scheme) ): """[API router to delete project on AWS Rekognition] Args: delete_project_request (DeleteProject): [AWS Rekognition create project request] token (str, optional): [Bearer token for authentication]. Defaults to Depends(oauth2_scheme). Raises: HTTPException: [Unauthorized exception when invalid token is passed] error: [Exception in underlying controller] Returns: [DeleteProjectResponse]: [AWS Rekognition delete project response] """ try: logging.info("Calling /aws/rekog/delete_project endpoint") logging.debug(f"Request: {delete_project_request}") if decodeJWT(token=token): response = ProjectController().delete_project( request=delete_project_request ) return DeleteProjectResponse(**response) else: raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid access token", headers={"WWW-Authenticate": "Bearer"}, ) except Exception as error: logging.error(f"Error in /aws/rekog/delete_project endpoint: {error}") raise error
5711adf3ee9177952561d825a733ee169b6f97b0
16,178
from typing import Union import ast def _create_element_invocation(span_: span.Span, callee: Union[ast.NameRef, ast.ModRef], arg_array: ast.Expr) -> ast.Invocation: """Creates a function invocation on the first element of the given array. We need to create a fake invocation to deduce the type of a function in the case where map is called with a builtin as the map function. Normally, map functions (including parametric ones) have their types deduced when their ast.Function nodes are encountered (where a similar fake ast.Invocation node is created). Builtins don't have ast.Function nodes, so that inference can't occur, so we essentually perform that synthesis and deduction here. Args: span_: The location in the code where analysis is occurring. callee: The function to be invoked. arg_array: The array of arguments (at least one) to the function. Returns: An invocation node for the given function when called with an element in the argument array. """ annotation = ast.TypeAnnotation( span_, scanner.Token(scanner.TokenKind.KEYWORD, span_, scanner.Keyword.U32), ()) index_number = ast.Number( scanner.Token(scanner.TokenKind.KEYWORD, span_, '32'), annotation) index = ast.Index(span_, arg_array, index_number) return ast.Invocation(span_, callee, (index,))
0449c27fc6e7f16054bddfd99bd9e64109b9ee0e
16,179
import os import logging def _CreateClassToFileNameDict(test_apk): """Creates a dict mapping classes to file names from size-info apk.""" constants.CheckOutputDirectory() test_apk_size_info = os.path.join(constants.GetOutDirectory(), 'size-info', os.path.basename(test_apk) + '.jar.info') class_to_file_dict = {} # Some tests such as webview_cts_tests use a separately downloaded apk to run # tests. This means the apk may not have been built by the system and hence # no size info file exists. if not os.path.exists(test_apk_size_info): logging.debug('Apk size file not found. %s', test_apk_size_info) return class_to_file_dict with open(test_apk_size_info, 'r') as f: for line in f: file_class, file_name = line.rstrip().split(',', 1) # Only want files that are not prebuilt. if file_name.startswith('../../'): class_to_file_dict[file_class] = str( file_name.replace('../../', '//', 1)) return class_to_file_dict
96ba6c74217d212ee50d454225f334528919292c
16,180
import time def train_deeper_better(train_data, train_labels, test_data, test_labels, params): """Same as 'train_deeper', but now with tf.contrib.data.Dataset input pipeline.""" default_params = { 'regularization_coeff': 0.00001, 'keep_prob': 0.5, 'batch_size': 128, 'fc1_size': 2048, 'fc2_size': 1024, 'fc3_size': 1024, 'fc4_size': 1024, 'fc5_size': 512, 'activation': 'relu', } activation_funcs = { 'relu': tf.nn.relu, 'tanh': tf.nn.tanh, } def get_param(name): if name in params: return params[name] logger.warning('%s not found in param, use default value %r', name, default_params[name]) return default_params[name] regularization_coeff = get_param('regularization_coeff') keep_prob_param = get_param('keep_prob') batch_size = int(get_param('batch_size')) fc1_size = int(get_param('fc1_size')) fc2_size = int(get_param('fc2_size')) fc3_size = int(get_param('fc3_size')) fc4_size = int(get_param('fc4_size')) fc5_size = int(get_param('fc5_size')) activation_func = activation_funcs[get_param('activation')] save_restore = False time_limit_seconds = 3600 saver_path = join(SAVER_FOLDER, train_deeper_better.__name__) graph = tf.Graph() with graph.as_default(): tf.set_random_seed(52) global_step_tensor = tf.contrib.framework.get_or_create_global_step() epoch_tensor = tf.Variable(0, trainable=False, name='epoch') next_epoch = tf.assign_add(epoch_tensor, 1) # dataset definition dataset = Dataset.from_tensor_slices({'x': train_data, 'y': train_labels}) dataset = dataset.shuffle(buffer_size=10000) dataset = dataset.batch(batch_size) iterator = dataset.make_initializable_iterator() sample = iterator.get_next() x = sample['x'] y = sample['y'] # actual computation graph keep_prob = tf.placeholder(tf.float32) is_training = tf.placeholder(tf.bool, name='is_training') regularizer = tf.contrib.layers.l2_regularizer(scale=regularization_coeff) def fully_connected(x, size, name): return dense_regularized( x, size, is_training, keep_prob, regularizer, name, activation_func, ) fc1 = fully_connected(x, fc1_size, 'fc1') fc2 = fully_connected(fc1, fc2_size, 'fc2') fc3 = fully_connected(fc2, fc3_size, 'fc3') fc4 = fully_connected(fc3, fc4_size, 'fc4') fc5 = fully_connected(fc4, fc5_size, 'fc5') logits = dense(fc5, NUM_CLASSES, regularizer, 'logits') layer_summaries(logits, 'logits_summaries') with tf.name_scope('accuracy'): accuracy = tf.reduce_mean( tf.cast(tf.equal(tf.argmax(y, 1), tf.argmax(logits, 1)), tf.float32), ) accuracy_percent = 100 * accuracy tf.summary.scalar('accuracy_percent', accuracy_percent) with tf.name_scope('loss'): regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) regularization_loss = tf.reduce_sum(regularization_losses) cross_entropy_loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y), ) loss = cross_entropy_loss + regularization_loss tf.summary.scalar('regularization_loss', regularization_loss) tf.summary.scalar('cross_entropy_loss', cross_entropy_loss) tf.summary.scalar('loss', loss) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): # ensures that we execute the update_ops before performing the train_op # needed for batch normalization (apparently) optimizer = tf.train.AdamOptimizer(learning_rate=(1e-4), epsilon=1e-3) train_op = optimizer.minimize(loss, global_step=global_step_tensor) all_summaries = tf.summary.merge_all() train_writer = tf.summary.FileWriter(join(SUMMARY_FOLDER, 'train')) batch_writer = tf.summary.FileWriter(join(SUMMARY_FOLDER, 'batch')) test_writer = tf.summary.FileWriter(join(SUMMARY_FOLDER, 'test')) saver = tf.train.Saver(max_to_keep=3) test_accuracy = 0 best_accuracy = 0 with tf.Session(graph=graph) as sess: restored = False if save_restore: try: saver.restore(sess, tf.train.latest_checkpoint(checkpoint_dir=SAVER_FOLDER)) restored = True except ValueError as exc: logger.info('Could not restore previous session! %r', exc) logger.info('Starting from scratch!') if not restored: tf.global_variables_initializer().run() logger.info('Starting training...') start_time = time.time() def enough(): if time_limit_seconds is None: return False elapsed = time.time() - start_time return elapsed > time_limit_seconds epoch = epoch_tensor.eval() new_epoch = True while not enough(): logger.info('Starting new epoch #%d!', epoch) sess.run(iterator.initializer, feed_dict={}) while not enough(): step = tf.train.global_step(sess, tf.train.get_global_step()) try: sess.run(train_op, feed_dict={keep_prob: keep_prob_param, is_training: True}) if new_epoch: new_epoch = False l, reg_l, ac, summaries = sess.run( [loss, regularization_loss, accuracy_percent, all_summaries], feed_dict={keep_prob: keep_prob_param, is_training: False}, ) batch_writer.add_summary(summaries, global_step=step) logger.info( 'Minibatch loss: %f, reg loss: %f, accuracy: %.2f%%', l, reg_l, ac, ) except tf.errors.OutOfRangeError: logger.info('End of epoch #%d', epoch) break # end of epoch previous_epoch = epoch epoch = next_epoch.eval() new_epoch = True if previous_epoch % 5 == 0 and save_restore: saver.save(sess, saver_path, global_step=previous_epoch) def get_eval_dict(data, labels): """Data for evaluation.""" return {x: data, y: labels, keep_prob: 1, is_training: False} train_l, train_ac, summaries = sess.run( [loss, accuracy_percent, all_summaries], feed_dict=get_eval_dict(train_data[:10000], train_labels[:10000]), ) train_writer.add_summary(summaries, global_step=step) test_l, test_accuracy, summaries = sess.run( [loss, accuracy_percent, all_summaries], feed_dict=get_eval_dict(test_data, test_labels), ) test_writer.add_summary(summaries, global_step=step) best_accuracy = max(best_accuracy, test_accuracy) logger.info('Train loss: %f, train accuracy: %.2f%%', train_l, train_ac) logger.info( 'Test loss: %f, TEST ACCURACY: %.2f%% BEST ACCURACY %.2f%% <<<<<<<', test_l, test_accuracy, best_accuracy, ) return best_accuracy
c2d2c56ac7dbb52d072f2397540d4d793ac0d0c4
16,181
def redirect_return(): """Redirects back from page with url generated by url_return.""" return redirect(str(Url.get_return()))
f1ce09afef02651e0331a930e53211f9eb4f2a54
16,182
def setup(coresys: CoreSys) -> EvaluateBase: """Initialize evaluation-setup function.""" return EvaluateOperatingSystem(coresys)
daf3bd3ddca0085d6305535b27c28d70ac240dac
16,183
def _weight_initializers(seed=42): """Function returns initilializers to be used in the model.""" kernel_initializer = tf.keras.initializers.TruncatedNormal( mean=0.0, stddev=0.02, seed=seed ) bias_initializer = tf.keras.initializers.Zeros() return kernel_initializer, bias_initializer
1c7652b787d4a69d3a43983c2c291c09337d06d0
16,184
import os def inputs(eval_data, data_dir, batch_size): """Construct input for eye evaluation using the Reader ops. Args: eval_data: bool, indicating if one should use the train or eval data set. data_dir: Path to the eye data directory. batch_size: Number of images per batch. Returns: images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size. labels: Labels. 1D tensor of [batch_size] size. """ if not eval_data: data_dir = os.path.join(data_dir, 'tr') filenames = [] for folder_name in LABLES: folder_path = os.path.join(data_dir, folder_name) filenames += [os.path.join(folder_path, f) for f in os.listdir(folder_path)] num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN else: data_dir = os.path.join(data_dir, 'te') filenames = [] for folder_name in LABLES: folder_path = os.path.join(data_dir, folder_name) filenames += [os.path.join(folder_path, f) for f in os.listdir(folder_path)] num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_EVAL # Create a queue that produces the filenames to read. filename_queue = tf.train.string_input_producer(filenames) # Read examples from files in the filename queue. read_input = read_eye(filename_queue) reshaped_image = tf.cast(read_input.uint8image, tf.float32) height = IMAGE_SIZE width = IMAGE_SIZE # Image processing for evaluation. # Crop the central [height, width] of the image. resized_image = tf.image.resize_image_with_crop_or_pad(reshaped_image, width, height) # Subtract off the mean and divide by the variance of the pixels. float_image = tf.image.per_image_whitening(resized_image) # Fix the shape of Tensor float_image.set_shape([height, width, 3]) # Ensure that the random shuffling has good mixing properties. min_fraction_of_examples_in_queue = 0.1 min_queue_examples = int(num_examples_per_epoch * min_fraction_of_examples_in_queue) # Generate a batch of images and labels by building up a queue of examples. return _generate_image_and_label_batch(float_image, read_input.label, min_queue_examples, batch_size, shuffle=False)
e5b8457bcc370df37e995db100ac5d0470df2fa8
16,185
def get_non_ready_rs_pod_names(namespace): """ get names of rs pods that are not ready """ pod_names = [] rs_pods = get_pods(namespace, selector='redis.io/role=node') if not rs_pods: logger.info("Namespace '%s': cannot find redis enterprise pods", namespace) return [] for rs_pod in rs_pods: pod_name = rs_pod['metadata']['name'] if "status" in rs_pod and "containerStatuses" in rs_pod["status"]: for container_status_entry in rs_pod["status"]["containerStatuses"]: container_name = container_status_entry['name'] is_ready = container_status_entry["ready"] if container_name == RLEC_CONTAINER_NAME and not is_ready: pod_names.append(pod_name) return pod_names
167922c4fa03127a3371f2c5b7516bb6462c6253
16,186
def lookup_material_probase(information_extractor, query, num): """Lookup material in Probase""" material_params = { 'instance': query, 'topK': num } result = information_extractor.lookup_probase(material_params) rank = information_extractor.rank_probase_result_material(result) return rank
9cecf99e3a9689f85788df21ef01d4e86c9a392d
16,187
def get_unexpected_exit_events(op): """Return all unexpected exit status events.""" events = get_events(op) if not events: return None return [e for e in events if is_unexpected_exit_status_event(e)]
171158d16c34e2764bc8c91f4888863c162043c4
16,188
async def delete_user(username: str) -> GenericResponse: """Delete concrete user by username""" try: await MongoDbWrapper().remove_user(username) except Exception as exception_message: raise DatabaseException(error=exception_message) return GenericResponse(detail="Deleted user")
8b2756922ab79d058097105fa8cd000396350a3b
16,189
def get_changelog(): """download ChangeLog.txt from github, extract latest version number, return a tuple of (latest_version, contents) """ # url will be chosen depend on frozen state of the application source_code_url = 'https://github.com/pyIDM/pyIDM/raw/master/ChangeLog.txt' new_release_url = 'https://github.com/pyIDM/pyIDM/releases/download/extra/ChangeLog.txt' url = new_release_url if config.FROZEN else source_code_url # url = new_release_url # get BytesIO object log('check for PyIDM latest version ...') buffer = download(url, verbose=False) if buffer: # convert to string contents = buffer.getvalue().decode() # extract version number from contents latest_version = contents.splitlines()[0].replace(':', '').strip() return latest_version, contents else: log("check_for_update() --> couldn't check for update, url is unreachable") return None
7c8df0cbc5fa85642e4e23106006445f59539a1f
16,190
def get_train_tags(force=False): """ Download (if needed) and read the training tags. Keyword Arguments ----------------- force : bool If true, overwrite existing data if it already exists. """ download_train_tags(force=force) return read_tags(train_tags_file_path)
5d67422a275011a719c0121206397fb99e6e4f70
16,191
def select_own(ligands, decoys, scores): """Select ligand ids and decoy ids from full ranked ids.""" #scores format is full OUTDOCK line selected = set(ligands) selected.update(decoys) results = [] for scoreline in scores: #id = scoreline[extract_all.zincCol] #refer to correct column always id = scoreline[extract_all.zincCol].split('.')[0] #refer to correct column always # maybe in this form: zinccode.prot #print id if id in selected: results.append(scoreline) #print scoreline return results
444555a30571e61fad7eac36389e2dd638313744
16,192
def create_app(): """ 生成FatAPI对象 :return: """ app = FastAPI( debug=settings.DEBUG, title=settings.PROJECT_NAME, # 项目名称 description=settings.DESCRIPTION, # 项目简介 docs_url=f"{settings.API_V1}/docs", # 自定义 docs文档的访问路径 redoc_url=f"{settings.API_V1}/redocs", # 禁用 redoc文档 openapi_url=f"{settings.API_V1}/openapi.json" ) app.add_middleware(SessionMiddleware, secret_key="jwt") # 其余的一些全局配置可以写在这里 多了可以考虑拆分到其他文件夹 register_redis(app) # 注册mysql register_mysql(app) # 注册mongodb register_mongodb(app) # 注册ws register_ws(app) # 跨域设置 register_cors(app) # 注册路由 register_router(app) # 注册定时任务 # register_task(app) # 注册捕获全局异常 register_exception(app) # 请求拦截 register_middleware(app) # if settings.DEBUG: # register_static_file(app) return app
10e106e9968344cf8382ecbd24b1029b3548be79
16,193
def cmp_text_file(text, file): """returns True when text and file content are identical """ fh = open(file) ftext = fh.read() fh.close() return cmp(ftext, text)
ecf10004cd3fa230d0e794c4c89e45ca91e7e40e
16,194
def get_alignment_summary(seq_info): """ Determine the consensus sequence of an alignment, and create position matrix Definition of consensus: most common base represented at that position. """ consensus_sequence = [] position_matrix = [] for position in seq_info: #Ignore any ambiguous basecalls - accept A, T, C, G, and 'gap' base_counts = { 'a':position['bases'].count('a')+position['bases'].count('A'), 't':position['bases'].count('t')+position['bases'].count('T'), 'c':position['bases'].count('c')+position['bases'].count('C'), 'g':position['bases'].count('g')+position['bases'].count('G'), '-':position['bases'].count('-'), } #print(base_counts) max_basecalls = [key for key, count in base_counts.items() if count == max(base_counts.values())] if len(max_basecalls) == 1: consensus_sequence.append(max_basecalls[0]) else: consensus_sequence.append('n') #Assembling position_matrix position_matrix.append(base_counts) return (''.join(consensus_sequence), position_matrix)
f91e4dcea2f4570a194524970fdbc95eacc455b2
16,195
def calculate_pcx_chord_emission(impact_factor, Ti, w0, mu, Lnu, Vouter, rmax=40.0, nr=101, nlambda=2000, Lne=2.5, R_outer=35): """Calculates PCX emission with only the outer boundary spinning for a given impact factor Args: impact_factor (float): impact factor for chord Ti (float): ion temperature in eV w0 (float): central wavelength mu (float): mass in amu Lnu (float): momentum diffusion length Vouter (float): velocity in m/s for outer boundary rmax (float): end of the plasma nr (int): number of radial points to integrate chord with nlambda (int): number of wavelength points Lne (float): density gradient scale length at rmax R_outer (float): velocity at outer boundary Returns: tuple: (np.ndarray, np.ndarray) wavelength and spectrum """ r, theta, x = calculate_r_theta_x_from_impact_factor(impact_factor, rmax=rmax, npts=nr) vel = pcx_velocity_profile(r, Lnu, R_outer, Vouter) # fig, ax = plt.subplots() # ax.plot(r, vel) # plt.show() vel_adjusted = vel * np.cos(theta) # ToDo: Should really iterate over w0 to handle the He II complex w_shifted_max = models.doppler_shift(w0, np.max(vel_adjusted)) sigma = models.doppler_broadening(w_shifted_max, mu, Ti) wavelength = np.linspace(-1, 1, nlambda) * 10.0 * sigma + w_shifted_max # Now to build a big spectrum matrix w_shifts = models.doppler_shift(w0, vel_adjusted) full_spectrum = models.gaussian(wavelength[np.newaxis, :], w_shifts[:, np.newaxis], sigma, amp=1.0, norm=False) # fig, ax = plt.subplots() # ax.plot(vel_adjusted, w_shifts) # plt.show() dens = density_profile(r, rmax, Lne) dens = dens[:, np.newaxis] full_spectrum *= dens ** 2 # fig, ax = plt.subplots() # for idx, spec in enumerate(full_spectrum): # ax.plot(wavelength, spec, 'C0') # ax.axvline(w_shifts[idx], color='C1') # plt.show() # print(full_spectrum.shape) spectrum = np.trapz(full_spectrum, x=x, axis=0) # print(spectrum.shape) # fig, ax = plt.subplots() # ax.plot(wavelength, spectrum / spectrum.max(), 'C1') # plt.show() return wavelength, spectrum
611d80973d3767b16fbd26c7ccebee8fc5390c95
16,196
def _get_variables(exp:Experiment, config: dict) -> dict: """Process the configuration's variables before rendering it""" return {key: value.format(exp=exp) for key, value in config.get("variables", {}).items()}
1b819c93ef079557908c216dc5c9fa75d55fe0f3
16,197
def func_calc_M(S): """ Use molecules structure/symbol to calculate molecular weight Parameter: S : structrue in a format: (atomType number) separated by '-' or blank space number of '-' and spaces does not matter precendent: '-' > blank space Example 1: C2H3O4N5 Example 2: C2 - H3 - O4 - N5 Example 3: C2 H3 O4 N5 Example 4: C2 H3 - O4 - N5 Return: M : molecular weight (g/mol) """ ##Test list ##Slist = [ 123, ' ', '- - ', '---', '1,2,','1 +','4 $', #bad # 'C3H4O5Br1Cl2', 'CHOBrCl','Br Br BrBr', #good # 'C3 - H -2 - 2 - O', 'C3 - H2 2 - O' #bad] log = {'nice':True, } # define Periodic Table PT = { 'H':1.008, 'B':10.81, 'C':12.01, 'N':14.01, 'O':16.00, 'F':19.00, 'P':30.91, 'S':32.06, 'Cl':35.45, 'Br':79.90, 'I':126.90 } if not isinstance(S,str): log['nice'] = False log['info'] = 'Error: Molecule structure has to be a string' return log, 0.0 S = S.lower() proS = [] # format: split by '-' then split by blank space for t in S.split('-'): proS += t.split() if len(proS) == 0: log['nice'] = False log['info'] = 'Error: empty inputs' return log, 0.0 proSS = [] # 1D: split to [ character number character number ] for t in proS: if t.isdigit(): proSS.append(int(t)) elif t.isalpha(): proSS.append(t) elif t.isalnum(): stmp = '' for c in t: if c.isdigit(): if stmp.isalpha(): proSS.append(stmp) stmp = '' else: if stmp.isdigit(): proSS.append(int(stmp)) stmp = '' stmp += c if stmp.isdigit(): proSS.append(int(stmp)) else: proSS.append(stmp) else: log['nice'] = False log['info'] = 'Error: input < {:} > is not correctly defined'.format(t) return log, 0.0 proSSS = [] # 1D: split to [ atomtype number atomtype number ] for t in proSS: if isinstance(t,int): proSSS.append(t) else: # for character, it may have special cases like Br, Cl while True: if 'br' in t or 'cl' in t: ndx = t.find('br') if 'br' in t else t.find('cl') if ndx > 0: proSSS += [ c for c in t[:ndx] ] proSSS.append(t[ndx:ndx+2]) if len(t) >= ndx + 2: t = t[ndx+2:] else: proSSS += [ c for c in t ] break else: proSSS += [ c for c in t ] break # No adjacent numbers is allowed # However the number of each adjacent character is defined at 1 # Consider cases like: # C 1 2 H <bad> # C C C 3 <good> # C 1 H 3 <good> if not isinstance(proSSS[0],str): log['nice'] = False log['info'] = 'Error: the atomtype has to be in the first input along with its numbers\n' + \ ' : < {:} > is not correctly defined'.format(proSSS[0]) return log, 0.0 bo = False for t in proSSS: if isinstance(t,int): if bo: log['nice'] = False stmp = t break bo = True else: bo = False if not log['nice']: log['info'] = 'Error: no adjacent number inputs is allowd\n' + \ ' : < {:} > is not correctly defined'.format(stmp) return log, 0.0 i = 0 proSSSS = [] # 2D: [ [atomtype, number], [atomtype, number], ... ] while i < len(proSSS): j = i + 1 if j < len(proSSS) and isinstance(proSSS[j],int): proSSSS.append([proSSS[i],proSSS[j]]) i = j else: proSSSS.append([proSSS[i],1]) i += 1 # time to check for Periodic Table M = 0.0 for t in proSSSS: tmp = t[0].capitalize() if tmp in PT: M += PT[tmp] * t[1] else: log['nice'] = False log['info'] = 'Error: atomtype < {:} > is not defined in Periodic Table'.format(tmp) break return log, M
ed8e3d5ccd5305caccfac64cb0ecb200fde650eb
16,198
def find_NN(ngbrof, ngbrin, distance_ULIM=NP.inf, flatten=False, parallel=False, nproc=None): """ ----------------------------------------------------------------------------- Find all nearest neighbours of one set of locations in another set of locations within a specified distance. Inputs: ngbrof [numpy array] Locations for nearest neighbours are to be determined. Has dimensions MxK where M is the number of locations. ngbrin [numpy array] Locations from which nearest neighbours are to be chosen for the locations in ngbrof. Has dimensions NxK. distance_ULIM [scalar] Maximum search radius to look for neighbours. Default=NP.inf flatten [boolean] If set to True, flattens the output of the nearest neighbour search algorithm to yield two separate sets of matching indices - one for ngbrof and the other for ngbrin. Default=False parallel [boolean] specifies if parallelization is to be invoked. False (default) means only serial processing. Parallelization is done over ngbrof nproc [scalar] specifies number of independent processes to spawn. Default=None, means automatically determines the number of process cores in the system and use one less than that to avoid locking the system for other processes. Applies only if input parameter 'parallel' (see above) is set to True. If nproc is set to a value more than the number of process cores in the system, it will be reset to number of process cores in the system minus one to avoid locking the system out for other processes Outputs: List containing three items. The first item is a list of M lists where each of the M inner lists corresponds to one entry in ngbrof and the elements in the inner list contains indices to ngbrin that are the nearest neighbours of that specific ngbrof (same as output of cKDTree.query_ball_tree()). The second item in the output list is a numpy array of indices to ngbrof (obtained from the first item if input keyword flatten is set to True) or None (if input keyword flatten is set to False). The third item in the output list is a numpy array of indices to ngbrin that is a valid neighbour of ngbrof (obtained from the first item if input keyword flatten is set to True) or None (if input keyword flatten is set to False). ----------------------------------------------------------------------------- """ try: ngbrof, ngbrin except NameError: raise NameError('ngbrof and ngbrin must be specified for finding nearest neighbours.') if (ngbrof.shape[1] != ngbrin.shape[1]): raise ValueError('ngbrof and ngbrin must contain same number of columns') if parallel or (nproc is not None): if nproc is None: nproc = max(MP.cpu_count()-1, 1) else: nproc = min(nproc, max(MP.cpu_count()-1, 1)) split_ind = NP.arange(ngbrof.shape[0]/nproc, ngbrof.shape[0], ngbrof.shape[0]/nproc) split_ngbrof_list = NP.split(ngbrof, split_ind, axis=0) ngbrin_list = [ngbrin] * len(split_ngbrof_list) distance_ULIM_list = [distance_ULIM] * len(split_ngbrof_list) pool = MP.Pool(processes=nproc) lolol = pool.map(find_NN_arg_splitter, IT.izip(split_ngbrof_list, ngbrin_list, distance_ULIM_list)) pool.close() pool.join() indNN_list = [subitem for item in lolol for subitem in item] else: kdtself = KDT(ngbrof) kdtother = KDT(ngbrin) indNN_list = kdtself.query_ball_tree(kdtother, distance_ULIM, p=2.0) ind_ngbrof = None ind_ngbrin = None if flatten: list_of_ind_tuples = [(i,ind) for i,item in enumerate(indNN_list) for ind in item] ind_ngbrof, ind_ngbrin = zip(*list_of_ind_tuples) return [indNN_list, NP.asarray(ind_ngbrof), NP.asarray(ind_ngbrin)]
131d136ad92900f3ee624982f70234070d0d76a6
16,199