content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def create_vertices_intrinsics(disparity, intrinsics): """3D mesh vertices from a given disparity and intrinsics. Args: disparity: [B, H, W] inverse depth intrinsics: [B, 4] reference intrinsics Returns: [B, L, H*W, 3] vertex coordinates. """ # Focal lengths fx = intrinsics[:, 0] fy = intrinsics[:, 1] fx = fx[Ellipsis, tf.newaxis, tf.newaxis] fy = fy[Ellipsis, tf.newaxis, tf.newaxis] # Centers cx = intrinsics[:, 2] cy = intrinsics[:, 3] cx = cx[Ellipsis, tf.newaxis] cy = cy[Ellipsis, tf.newaxis] batch_size, height, width = disparity.shape.as_list() vertex_count = height * width i, j = tf.meshgrid(tf.range(width), tf.range(height)) i = tf.cast(i, tf.float32) j = tf.cast(j, tf.float32) width = tf.cast(width, tf.float32) height = tf.cast(height, tf.float32) # 0.5 is added to get the position of the pixel centers. i = (i + 0.5) / width j = (j + 0.5) / height i = i[tf.newaxis] j = j[tf.newaxis] depths = 1.0 / tf.clip_by_value(disparity, 0.01, 1.0) mx = depths / fx my = depths / fy px = (i-cx) * mx py = (j-cy) * my vertices = tf.stack([px, py, depths], axis=-1) vertices = tf.reshape(vertices, (batch_size, vertex_count, 3)) return vertices
d476767c71fb1a8cefe121a3aaf8cbf9a19e7943
16,000
def _find_smart_path(challbs, preferences, combinations): """Find challenge path with server hints. Can be called if combinations is included. Function uses a simple ranking system to choose the combo with the lowest cost. """ chall_cost = {} max_cost = 1 for i, chall_cls in enumerate(preferences): chall_cost[chall_cls] = i max_cost += i # max_cost is now equal to sum(indices) + 1 best_combo = [] # Set above completing all of the available challenges best_combo_cost = max_cost combo_total = 0 for combo in combinations: for challenge_index in combo: combo_total += chall_cost.get(challbs[ challenge_index].chall.__class__, max_cost) if combo_total < best_combo_cost: best_combo = combo best_combo_cost = combo_total combo_total = 0 if not best_combo: _report_no_chall_path() return best_combo
96f55288bfa08de32badd9f1a96b3decd76573c8
16,001
def run_generator_and_test(test_case, mlmd_connection, generator_class, pipeline, task_queue, use_task_queue, service_job_manager, num_initial_executions, num_tasks_generated, num_new_executions, num_active_executions, expected_exec_nodes=None, ignore_node_ids=None): """Runs generator.generate() and tests the effects.""" if service_job_manager is None: service_job_manager = service_jobs.DummyServiceJobManager() with mlmd_connection as m: executions = m.store.get_executions() test_case.assertLen( executions, num_initial_executions, f'Expected {num_initial_executions} execution(s) in MLMD.') tasks = run_generator( mlmd_connection, generator_class, pipeline, task_queue, use_task_queue, service_job_manager, ignore_node_ids=ignore_node_ids) with mlmd_connection as m: test_case.assertLen( tasks, num_tasks_generated, f'Expected {num_tasks_generated} task(s) to be generated.') executions = m.store.get_executions() num_total_executions = num_initial_executions + num_new_executions test_case.assertLen( executions, num_total_executions, f'Expected {num_total_executions} execution(s) in MLMD.') active_executions = [ e for e in executions if execution_lib.is_execution_active(e) ] test_case.assertLen( active_executions, num_active_executions, f'Expected {num_active_executions} active execution(s) in MLMD.') if expected_exec_nodes: for i, task in enumerate(tasks): _verify_exec_node_task(test_case, pipeline, expected_exec_nodes[i], active_executions[i].id, task) return tasks
c7f03b5db9f100c8c5eec029e843ce4ab1cdb84e
16,002
def sort_func(kd1, kd2): """ Compares 2 key descriptions :param kd1: First key description :param kd2: Second key description :return: -1,0,1 depending on whether kd1 le,eq or gt then kd2 """ _c = type_order(kd1, kd2) if _c is not None: return _c return kid_order(kd1, kd2)
2ac9100f9c69c283266cc4ba4f6d6262551ce1b5
16,003
def sumdigits(a: int): """Sum of the digits of an integer""" return sum(map(int, str(a)))
018bcc429e6ea3842fd9e9e2580820aed29bc0aa
16,004
from datetime import datetime def nth_weekday_of_month(y, m, n, w): """ y = 2020; m = 2 assert nth_weekday_of_month(y, m, -1, 'sat') == dt(2020, 2, 29) assert nth_weekday_of_month(y, m, -2, 'sat') == dt(2020, 2, 22) assert nth_weekday_of_month(y, m, 1, 'sat') == dt(2020, 2, 1) assert nth_weekday_of_month(y, m, 1, 'sun') == dt(2020, 2, 2) assert nth_weekday_of_month(y, m, 1, 'monday') == dt(2020, 2, 3) assert nth_weekday_of_month(y, 'G', 3, 'sat') == dt(2020, 2, 15) assert nth_weekday_of_month(y, 'G', 3, 'sun') == dt(2020, 2, 16) assert nth_weekday_of_month(y, 'G', 3, 'monday') == dt(2020, 2, 17) """ if n < 0 : return nth_weekday_of_month(y, m+1, 1, w) + datetime.timedelta(7 * n) t = dt(y, m , 1) bump = wkdays[w[:3].lower()] - t.weekday() if bump < 0: bump = bump + 7 bump = bump + (n-1) * 7 res = t + datetime.timedelta(bump) return res
2f422b3fac4d97db64f541b54158248c44afad14
16,005
def getBits(val, hiIdx: int, loIdx: int) -> int: """Returns a bit slice of a value. Args: val: Original value. hiIdx: Upper (high) index of slice. loIdx: Lower index of slice. Returns: The bit slice. """ return (~(MASK_32<<(hiIdx-loIdx+1)) & (val>>loIdx))
acaf1a36fceb12ee99140aca0769dde084ee08d6
16,006
def get_hostname(): """Returns the hostname, from /etc/hostname.""" hostname = "" try: with open('/etc/hostname') as f: hostname = f.read().rstrip() if len(hostname) == 0: hostname = "Unknown" except: hostname = "Unknown" return hostname
4cd4ffc1c8c56bc2e440443fdbc315d27fb94033
16,007
def is_valid_body(val): """Body must be a dictionary.""" return isinstance(val, dict)
ef3a605e1e84ce9d74f77c07799d1abb58aaf61a
16,008
def _vba_to_python_op(op, is_boolean): """ Convert a VBA boolean operator to a Python boolean operator. """ op_map = { "Not" : "not", "And" : "and", "AndAlso" : "and", "Or" : "or", "OrElse" : "or", "Eqv" : "|eq|", "=" : "|eq|", ">" : ">", "<" : "<", ">=" : ">=", "=>" : ">=", "<=" : "<=", "=<" : "<=", "<>" : "|neq|", "is" : "|eq|" } if (not is_boolean): op_map["Not"] = "~" op_map["And"] = "&" op_map["AndAlso"] = "&" op_map["Or"] = "|" op_map["OrElse"] = "|" return op_map[op]
a6ed0c65c6c2d2635f14fb664540eaf283ee4065
16,009
def file_diff_format(filename1, filename2): """ Inputs: filename1 - name of first file filename2 - name of second file Output: Returns a four line string showing the location of the first difference between the two files named by the inputs. If the files are identical, the function instead returns the string "No differences\n". If either file does not exist or is not readable, then the behavior of this function is undefined. """ # read files lst1 = get_file_lines(filename1) lst2 = get_file_lines(filename2) # get tuple indicating line and index of first difference between two files my_tup = multiline_diff(lst1, lst2) # handle identical case if my_tup[0] == -1: return "No differences\n" else: # get 3 line formatted output of first difference between two lines sdf_output = singleline_diff_format(lst1[my_tup[0]], lst2[my_tup[0]], my_tup[1]) # all other cases return "Line " + str(my_tup[0]) + ":\n" + sdf_output
c2027767ac6694620d895ef1565a03e7b706c2e7
16,010
import six def _check_assembly_string(base_asm, instr_type, target, operands): """ :param base_asm: :type base_asm: :param instr_type: :type instr_type: :param target: :type target: :param operands: :type operands: """ LOG.debug("Start checking assembly string: %s", base_asm) operands = list(operands) relocation_mode = False for idx, operand in enumerate(operands): if isinstance(operand, six.string_types) and "@" not in operand: operands[idx] = Address(base_address=operand) if isinstance(operand, six.string_types) and "@" in operand: relocation_mode = True instruction = target.new_instruction(instr_type.name) try: if not relocation_mode: instruction.set_operands(operands) else: # Go one by one, and make relocation safe for operand, value in zip(instruction.operands(), operands): if (isinstance(operand.type, OperandImmRange) and "@" in value): operand.set_value(value, check=False) else: operand.set_value(value) except MicroprobeValueError: LOG.debug("End checking assembly string: Operands not valid") return False except MicroprobeCodeGenerationError: LOG.debug( "End checking assembly string: Operands not valid for " "callback" ) return False nasm = _normalize_asm(instruction.assembly()) base_asm = _normalize_asm(base_asm) base_asm = base_asm.replace(instr_type.name, instr_type.mnemonic) LOG.debug("'%s' == '%s' ?", nasm, base_asm) if nasm == base_asm: LOG.debug("End checking assembly string: Valid") return True LOG.debug("End checking assembly string: Not valid") return False
64e6e812d037c6e9576ee5db0c3d06468a7b6414
16,011
def get_label_number(window): """This method assigns to each label of a window a number.""" mode_list = ["bike", "car", "walk", "bus", "train"] current_label_number = 0 for mode in enumerate(mode_list): if window[1] == mode[1]: current_label_number = mode[0] return current_label_number
5ed3c683e8619e1b07857992f54079bc68fdfa58
16,012
def midi_array_to_event(midi_as_array): """ Take converted MIDI array and convert to array of Event objects """ # Sort MIDI array midi = sorted(midi_as_array, key=itemgetter(2)) # Init result result = [] # Accumulators for computing start and end times active_notes = [] curr_time = 0 # For comparing velocities prev_vel_range = 0 # For all the entries in the midi array for i in midi: # Add the current note active_notes.append(i) # Get time shift values shift_values, shift_sum = get_shift_value(i[2] - curr_time) # Apply time shift to the next start note if shift_values: for s in shift_values: if s > 0: result.append(Event(EventType.TIME_SHIFT, s)) else: result.append(Event(EventType.TIME_SHIFT, shift_sum)) # Update time curr_time += shift_sum # Check if there are notes that are playing that need to end notes_to_end = [x for x in active_notes if curr_time >= x[3]] active_notes[:] = (x for x in active_notes if curr_time < x[3]) # For the finished notes for j in notes_to_end: # End the note result.append(Event(EventType.NOTE_OFF, j[1])) # If the velocity has changed by a large enough amount, add a set velocity event temp_velocity = i[0] bin_size = (127/20) for vel in range(20): if temp_velocity < (vel + 1) * bin_size: if prev_vel_range != vel: result.append(Event(EventType.SET_VELOCITY, int((vel + 1) * bin_size))) prev_vel_range = vel break # Start the note result.append(Event(EventType.NOTE_ON, i[1])) # If there are still notes in midi_acc if active_notes: for i in active_notes: if i[3] > curr_time: # Apply time shift shift_values, shift_sum = get_shift_value(i[3] - curr_time) if shift_values: for s in shift_values: if s > 0: result.append(Event(EventType.TIME_SHIFT, s)) else: result.append(Event(EventType.TIME_SHIFT, shift_sum)) # Update time curr_time += shift_sum # End note result.append(Event(EventType.NOTE_OFF, i[1])) # Return array return result
63391a1fa045f2185ce22c3ab5da186169d445e7
16,013
from typing import Dict from typing import Type def find_benchmarks(module) -> Dict[str, Type[Benchmark]]: """Enumerate benchmarks in `module`.""" found = {} for name in module.__all__: benchmark_type = getattr(module, name) found[benchmark_type.name] = benchmark_type return found
4b456a44963629da0b6072dcb9e6e8946cbaef23
16,014
def out_folder_android_armv8_clang(ctx, section_name, option_name, value): """ Configure output folder for Android ARMv8 Clang """ if not _is_user_input_allowed(ctx, option_name, value): Logs.info('\nUser Input disabled.\nUsing default value "%s" for option: "%s"' % (value, option_name)) return value # GUI if not ctx.is_option_true('console_mode'): return ctx.gui_get_attribute(section_name, option_name, value) _output_folder_disclaimer(ctx) return _get_string_value(ctx, 'Android ARMv8 Clang Output Folder', value)
b713642879cfcffe78fc415adbbea7c13c319925
16,015
import copy import json import os def remap_classes(dataset, class_map): """ Replaces classes of dataset based on a dictionary""" class_new_names = list(set(class_map.values())) class_new_names.sort() # NOTE sort() is a NoneType return method, it sorts the list without outputting new vars class_originals = copy.deepcopy(dataset['categories']) dataset['categories'] = [] # removing all dependencies class_ids_map = {} # map from old id to new id # Check whether the category has background or not, assign index 0. Useful for panoptic segmentation. has_background = False if 'Background' in class_new_names: # Check whether the backgroun category has index zero. if class_new_names.index('Background') != 0: class_new_names.remove('Background') class_new_names.insert(0, 'Background') has_background = True # Catching duplicates - TACO had duplicates for id 4040 and 309. Re-id'd id_ann_all = [] id_ann_repeated = [] for index_old, ann_old in enumerate(dataset['annotations']): if ann_old['id'] in id_ann_all: # if found a duplicate, re-id at the end id_ann_repeated.append(ann_old['id']) ann_old['id'] = len(dataset['annotations'])+len(id_ann_repeated)-1 else: id_ann_all.append(ann_old['id']) print(f'Found {len(id_ann_repeated)} annotations repeated.' f'\nPlease double check input file, annotation id(s) {id_ann_repeated} are duplicated!\n') # Replace categories, iterating through every class name for id_new, class_new_name in enumerate(class_new_names): # Make sure id:0 is reserved for background id_rectified = id_new if not has_background: id_rectified += 1 # Creating new category dictionary, using new category ID and the new class name category = { 'supercategory': '', 'id': id_rectified, # Background has id=0 'name': class_new_name, } dataset['categories'].append(category) # assigning new categories # Map class names for class_original in class_originals: # If the new class exists in the value of the class map dict, create new class id if class_map[class_original['name']] == class_new_name: class_ids_map[class_original['id']] = id_rectified # Update annotations category id tag for ann in dataset['annotations']: ann['category_id'] = class_ids_map[ann['category_id']] # Saving the newly created file as a JSON file num_classes = str(len(class_new_names)) ann_out_path = './data' + '/' + 'ann_'+ 'map_to_' + num_classes +'.json' with open(ann_out_path, 'w+') as f: f.write(json.dumps(dataset)) # return path to new file, for loading somewhere else. return str(os.path.abspath(ann_out_path))
fd3c971221a102f296c76f72d6296ebf0a0e4763
16,016
def MCTS(root, verbose = False): """initialization of the chemical trees and grammar trees""" run_time=time.time()+600*2 rootnode = Node(state = root) state = root.Clone() maxnum=0 iteration_num=0 start_time=time.time() """----------------------------------------------------------------------""" """global variables used for save valid compounds and simulated compounds""" valid_compound=[] all_simulated_compound=[] desired_compound=[] max_score=-100.0 desired_activity=[] time_distribution=[] num_searched=[] current_score=[] depth=[] all_score=[] """----------------------------------------------------------------------""" while maxnum<10100: print maxnum node = rootnode state = root.Clone() """selection step""" node_pool=[] print "current found max_score:",max_score while node.childNodes!=[]: node = node.Selectnode() state.SelectPosition(node.position) print "state position:,",state.position depth.append(len(state.position)) if len(state.position)>=81: re=-1.0 while node != None: node.Update(re) node = node.parentNode else: """------------------------------------------------------------------""" """expansion step""" """calculate how many nodes will be added under current leaf""" expanded=expanded_node(model,state.position,val) nodeadded=node_to_add(expanded,val) all_posible=chem_kn_simulation(model,state.position,val,nodeadded) generate_smile=predict_smile(all_posible,val) new_compound=make_input_smile(generate_smile) node_index,score,valid_smile,all_smile=check_node_type(new_compound,SA_mean,SA_std,logP_mean,logP_std,cycle_mean,cycle_std) print node_index valid_compound.extend(valid_smile) all_simulated_compound.extend(all_smile) all_score.extend(score) iteration_num=len(all_simulated_compound) if len(node_index)==0: re=-1.0 while node != None: node.Update(re) node = node.parentNode else: re=[] for i in range(len(node_index)): m=node_index[i] maxnum=maxnum+1 node.Addnode(nodeadded[m],state) node_pool.append(node.childNodes[i]) if score[i]>=max_score: max_score=score[i] current_score.append(max_score) else: current_score.append(max_score) depth.append(len(state.position)) """simulation""" re.append((0.8*score[i])/(1.0+abs(0.8*score[i]))) if maxnum==100: maxscore100=max_score time100=time.time()-start_time if maxnum==500: maxscore500=max_score time500=time.time()-start_time if maxnum==1000: maxscore1000=max_score time1000=time.time()-start_time if maxnum==5000: maxscore5000=max_score time5000=time.time()-start_time if maxnum==10000: time10000=time.time()-start_time maxscore10000=max_score #valid10000=10000*1.0/len(all_simulated_compound) """backpropation step""" #print "node pool length:",len(node.childNodes) for i in range(len(node_pool)): node=node_pool[i] while node != None: node.Update(re[i]) node = node.parentNode #finish_iteration_time=time.time()-iteration_time #print "four step time:",finish_iteration_time """check if found the desired compound""" #print "all valid compounds:",valid_compound finished_run_time=time.time()-start_time print "logp max found:", current_score #print "length of score:",len(current_score) #print "time:",time_distribution print "valid_com=",valid_compound print "num_valid:", len(valid_compound) print "all compounds:",len(all_simulated_compound) print "score=", all_score print "depth=",depth print len(depth) print "runtime",finished_run_time #print "num_searched=",num_searched print "100 max:",maxscore100,time100 print "500 max:",maxscore500,time500 print "1000 max:",maxscore1000,time1000 print "5000 max:",maxscore5000,time5000 print "10000 max:",maxscore10000,time10000 return valid_compound
686a412c0f4cc4cd81d96872e9929d1ce51e7ed8
16,017
def update_internalnodes_MRTKStandard() -> bpy.types.NodeGroup: """定義中のノードグループの内部ノードを更新する Returns: bpy.types.NodeGroup: 作成ノードグループの参照 """ # データ内に既にMRTKStandardのノードグループが定義されているか確認する # (get関数は対象が存在しない場合 None が返る) get_nodegroup = bpy.data.node_groups.get(def_nodegroup_name) # ノードグループが取得できたか確認する if get_nodegroup == None: # ノードグループが定義されていない場合は処理を行わない return None # 入力出力ノードを除くノードグループ内部のノードとリンクのみ更新を行う # 現在の内部ノードを全て操作する for node in get_nodegroup.nodes: # 入力ノードか確認する if node.name == def_inputnode_name: # 入力ノードの場合、処理しない continue # 出力ノードか確認する if node.name == def_outputnode_name: # 出力ノードの場合、処理しない continue # 入出力ノード以外は全て削除する get_nodegroup.nodes.remove(node) # ノードグループにバージョン記載ノードを作成する group_versionnode = add_nodegroup_MRTKStandard_framenode() # ノードグループにBSDFノードを作成する group_bsdfnode = add_nodegroup_MRTKStandard_bsdfnode() # ノードグループにRGBミックスノードを作成する group_rgbmix = add_nodegroup_MRTKStandard_rgbmixnode() # ノードグループに滑らかさ数値反転ノードを作成する group_smoothinversion = add_nodegroup_MRTKStandard_smoothinversionnode() # ノードグループを構成するのリンク情報を設定する link_result = link_MRTKStandardNodeGroup_default() # リンク接続に成功したか if link_result == False: # リンク接続に失敗した場合はノードを返さない return None return get_nodegroup
14d152377b58de842ff6cc228e80fbb0c48c5128
16,018
def _ensure_consistent_schema( frame: SparkDF, schemas_df: pd.DataFrame, ) -> SparkDF: """Ensure the dataframe is consistent with the schema. If there are column data type mismatches, (more than one data type for a column name in the column schemas) then will try to convert the data type if possible: * if they are all number data types, then picks the largest number type present * if one of the types is string, then ensures it casts the column to string type Also fills any missing columns with Null values, ensuring correct dtype. Parameters ---------- frame : SparkDF column_schemas : set A set of simple column schemas in the form (name, dtype) for all dataframes set to be concatenated. Returns ------- SparkDF Input dataframe with consistent schema. """ final_schema = _get_final_schema(schemas_df) missing_fields = [f for f in final_schema if f not in frame.dtypes] for column, dtype in missing_fields: # If current frame missing the column in the schema, then # set values to Null. vals = ( F.lit(None) if column not in frame.columns else F.col(column) ) # Cast the values with the correct dtype. frame = frame.withColumn(column, vals.cast(dtype)) return frame
653f2740fa2ba090c1a1ace71b09523848d52be7
16,019
def shave_bd(img, bd): """ Shave border area of spatial views. A common operation in SR. :param img: :param bd: :return: """ return img[bd:-bd, bd:-bd, :]
4b822c5e57787edb74955fd350ad361080b8640b
16,020
import os def get_raw_dir(args): """ Archived function. Ignore this for now """ root = "C:\\Workspace\\FakeNews" if os.name == "posix": root = '..' path = osp.join(root, "Demo", "data", f"{args.dataset}", "raw") return path
34e1f9277bac24e3dc6938b7bf854e7fd018ee41
16,021
def plotly_single(ma, average_type, color, label, plot_type='line'): """A plotly version of plot_single. Returns a list of traces""" summary = list(np.ma.__getattribute__(average_type)(ma, axis=0)) x = list(np.arange(len(summary))) if isinstance(color, str): color = list(matplotlib.colors.to_rgb(color)) traces = [go.Scatter(x=x, y=summary, name=label, line={'color': "rgba({},{},{},0.9)".format(color[0], color[1], color[2])}, showlegend=False)] if plot_type == 'fill': traces[0].update(fill='tozeroy', fillcolor=color) if plot_type in ['se', 'std']: if plot_type == 'se': # standard error std = np.std(ma, axis=0) / np.sqrt(ma.shape[0]) else: std = np.std(ma, axis=0) x_rev = x[::-1] lower = summary - std trace = go.Scatter(x=x + x_rev, y=np.concatenate([summary + std, lower[::-1]]), fill='tozerox', fillcolor="rgba({},{},{},0.2)".format(color[0], color[1], color[2]), line=go.Line(color='transparent'), showlegend=False, name=label) traces.append(trace) return traces
b568d0e4496fc424aa5b07ff90bf45880a374d56
16,022
from pathlib import Path def create_task(className, *args, projectDirectory='.', dryrun=None, force=None, source=False): """Generates task class from the parameters derived from :class:`.Task` Fails if the target file already exists unless ``force=True`` or ``--force`` in the CLI is set. Setting the ``--source`` will generate a different template that have stubs with the functions that need to be overwritten. Parameters ---------- className : string (CamelCase) Name of the class to be created projectDirectory : string (default='.') Location of the project directory, the code will be created in ``projectDirectory/data_models/class_name.py``. dryrun : bool (default=None) If set to ``True`` it returns the generated code as a string force : bool (default=None) If set to ``True`` it overwrites the target file source : bool (default=False) If set to ``True`` the class will generate stubs for functions to be overwritten *args : List of strings (CamelCase) Classes to be imported into the generated code from the datamodel, fails if class not found Returns ------- content : string The generated code if ``dryrun`` is specified """ if source: taskType = NameString('Source') else: taskType = NameString('Task') project = HypergolProject(projectDirectory=projectDirectory, dryrun=dryrun, force=force) className = NameString(className) dependencies = [NameString(value) for value in args] project.check_dependencies(dependencies) content = project.render( templateName=f'{taskType.asFileName}.j2', templateData={'className': className, 'dependencies': dependencies}, filePath=Path(projectDirectory, 'tasks', className.asFileName) ) return project.cli_final_message(creationType=taskType, name=className, content=(content, ))
028e751a43930e167f000d5ff0d0c76d1340cec4
16,023
def asciitable(columns, rows): """Formats an ascii table for given columns and rows. Parameters ---------- columns : list The column names rows : list of tuples The rows in the table. Each tuple must be the same length as ``columns``. """ rows = [tuple(str(i) for i in r) for r in rows] columns = tuple(str(i) for i in columns) widths = tuple(max(max(map(len, x)), len(c)) for x, c in zip(zip(*rows), columns)) row_template = ("|" + (" %%-%ds |" * len(columns))) % widths header = row_template % tuple(columns) bar = "+%s+" % "+".join("-" * (w + 2) for w in widths) data = "\n".join(row_template % r for r in rows) return "\n".join([bar, header, bar, data, bar])
d65e0dfef94060db243de2a3a4f162aa01e12537
16,024
def __resolve_key(key: Handle) -> PyHKEY: """ Returns the full path to the key >>> # Setup >>> fake_registry = fake_reg_tools.get_minimal_windows_testregistry() >>> load_fake_registry(fake_registry) >>> # Connect registry and get PyHkey Type >>> reg_handle = ConnectRegistry(None, HKEY_CURRENT_USER) >>> __resolve_key(key=reg_handle).handle.full_key 'HKEY_CURRENT_USER' >>> __resolve_key(key=HKEY_CURRENT_USER).handle.full_key 'HKEY_CURRENT_USER' >>> # Test PyHKey Type (the most common) >>> discard = __resolve_key(reg_handle) >>> # Test int Type >>> discard = __resolve_key(HKEY_CURRENT_USER) >>> # Test HKEYType >>> hkey = HKEYType(handle=reg_handle.handle, access=reg_handle._access) >>> discard = __resolve_key(hkey) >>> # Test invalid handle >>> discard = __resolve_key(42) Traceback (most recent call last): ... OSError: [WinError 6] The handle is invalid >>> # Test invalid type >>> discard = __resolve_key('spam') # noqa Traceback (most recent call last): ... RuntimeError: unknown Key Type """ if isinstance(key, PyHKEY): key_handle = key elif isinstance(key, int): try: key_handle = PyHKEY(__fake_registry.hive[key]) except KeyError: error = OSError("[WinError 6] The handle is invalid") setattr(error, "winerror", 6) raise error elif isinstance(key, HKEYType): key_handle = PyHKEY(handle=key.handle, access=key._access) else: raise RuntimeError("unknown Key Type") return key_handle
70344ac3b068793a0c40e4151fb210c269dba743
16,025
def vec3f_unitZ(): """vec3f_unitZ() -> vec3f""" return _libvncxx.vec3f_unitZ()
dd0b6e28333a8d72918113b0f5caf788fb51bd43
16,026
import os def _BotNames(source_config, full_mode=False): """Returns try bot names to use for the given config file name.""" platform = os.path.basename(source_config).split('.')[0] assert platform in PLATFORM_BOT_MAP bot_names = PLATFORM_BOT_MAP[platform] if full_mode: return bot_names return [bot_names[0]]
c514e2534d57ce5867b72e3cfd182854e99c1bf6
16,027
def get_public_key(public_key_path=None, private_key_path=None): """get_public_key. Loads public key. If no path is specified, loads signing_key.pem.pub from the current directory. If a private key path is provided, the public key path is ignored and the public key is loaded from the private key. :param public_key_path: a string of the public key file name, with relative or full path :param private_key_path: a string of the private key file name, with relative or full path :return: """ if private_key_path is not None: private_key = get_private_key(private_key_path) public_key = private_key.publickey().exportKey("PEM") return public_key elif public_key_path is None: public_key_path = "signing_key.pem.pub" with open(public_key_path, "rb") as f: public_key = RSA.importKey(f.read()) return public_key
f37bb64e9a0971c77986b6c82b8519153f3f8eaa
16,028
def InitializeState(binaryString): """ State initializer """ state = np.zeros(shape=(4, 4), dtype=np.uint8) plaintextBytes = SplitByN(binaryString, 8) for col in range(4): for row in range(4): binary = plaintextBytes[col * 4 + row] state[row, col] = int(binary, 2) return np.matrix(state)
b8de68bba8837865f9e74c43be1b6144774d69ad
16,029
from typing import Dict from typing import Any def _apply_modifier(s: str, modifier: str, d: Dict[Any, str]) -> str: """ This will search for the ^ signs and replace the next digit or (digits when {} is used) with its/their uppercase representation. :param s: Latex string code :param modifier: Modifier command :param d: Dict to look upon :return: New text with replaced text. """ s = s.replace(modifier, "^") newtext = "" mode_normal, mode_modified, mode_long = range(3) mode = mode_normal for ch in s: if mode == mode_normal and ch == '^': mode = mode_modified continue elif mode == mode_modified and ch == '{': mode = mode_long continue elif mode == mode_modified: newtext += d.get(ch, ch) mode = mode_normal continue elif mode == mode_long and ch == '}': mode = mode_normal continue if mode == mode_normal: newtext += ch else: newtext += d.get(ch, ch) return newtext
c54a2c66ff6ee768e588b14472fa5707edf9bc56
16,030
import concurrent def threaded_polling(data, max_workers): """ Multithreaded polling method to get the data from cryptocompare :param data: dictionary containing the details to be fetched :param max_workers: maximum number of threads to spawn :return list: containing the high low metrics for each pair """ hl_parsed_data = list() exchange = data["name"] pairs = data["pair_whitelist"] with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor: # Start the load operations and mark each future with its URL future_to_pairs = [ executor.submit(run_parser, _.split("/")[0], _.split("/")[1], exchange) for _ in pairs ] total = len(future_to_pairs) count = 0 for future in concurrent.futures.as_completed(future_to_pairs): try: data = future.result() hl_parsed_data.append(data) except Exception as exc: print(exc) else: count += 1 msg = f"Parsing {data['symbol']:10} | {count:2}/{total:2}" print(msg, end="\r") print(f"Pairs processed from {exchange} | {count:2}/{total:2}") return hl_parsed_data
587a07912b8ea6d0267638c72a98fdbeb6b0ebf0
16,031
from typing import Dict from typing import Any from typing import List def sub(attrs: Dict[str, Any], in_xlayers: List[XLayer]) -> Dict[str, List[int]]: """Return numpy-style subtraction layer registration information (shape) NOTE: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html""" assert len(in_xlayers) == 2, "Subtract layer expects two input layers" lX, rX = in_xlayers shape = TensorShape(get_numpy_broadcasted_shape(lX.shapes[:], rX.shapes[:])) return {'shape': shape}
ebe4160dc92c259d2d6fd58a96eb78c697c0a5e4
16,032
import re def word_column_filter_df(dataframe, column_to_filter, column_freeze, word_list): # La fonction .where() donne une position qu'il faut transformer en index # Il faut entrer le nom d'une colonne repère (exemple: code produit) pour retrouver l'index, ou construire un colonne de re-indexée. """Filtre les colonnes d'un dataframe, en fonction d'une liste de mots, puis retourne le dataframe""" position_to_drop_lst = np.where(dataframe[column_to_filter].str.contains('|'.join(map(re.escape, word_list)), np.NaN))[0] indices_to_drop_lst = [] for position in position_to_drop_lst: indice = (dataframe[dataframe[column_freeze] == dataframe.iloc[position].loc[column_freeze]]).index[0] indices_to_drop_lst.append(indice) print("Nombre de lignes supprimées:") nbr= len(indices_to_drop_lst) print(nbr) print("\n") dataframe.drop(indices_to_drop_lst, axis=0,inplace=True) return dataframe
f58acf2188a192c1aa6cedecbfeeb66d7d073ba5
16,033
def adjust_learning_rate(optimizer, iteration, epoch_size, hyp, epoch, epochs): """adjust learning rate, warmup and lr decay :param optimizer: optimizer :param gamma: gamma :param iteration: iteration :param epoch_size: epoch_size :param hyp: hyperparameters :param epoch: epoch :param epochs: the number of epochs :return: lr """ step_index = 0 if epoch < 6: # The first 6 epochs carried out warm up learning_rate = 1e-6 + (hyp['lr0'] - 1e-6) * iteration / (epoch_size * 2) else: if epoch > epochs * 0.5: # At 50% of the epochs, the learning rate decays in Gamma step_index = 1 if epoch > epochs * 0.7: # At 70% of the epochs, the learning rate decays in Gamma^2 step_index = 2 learning_rate = hyp['lr0'] * (0.1 ** (step_index)) for param_group in optimizer.param_groups: param_group['lr'] = learning_rate return learning_rate
c90c61fcecca99d31214c96cdf7d96b6ba682daa
16,034
import numpy as np from scipy.io import loadmat import numpy as np import h5py from numpy import fromfile, empty, append def reading_data(data_file): """ Read in a data file (16 bit) and obtain the entire data set that is multiplexed between ECG and Pulse data. The data is then extracted and appended to separate arrays :param data_file: The binary data file to be loaded into the function :return data: The ECG data in array """ try: m = loadmat(data_file) x = dict(m) fs = x.get('f_s') fs = np.array(fs) fs = fs.flatten() pp = x.get('pulse_P') pp = np.array(pp) pp = pp.flatten() ecg = x.get('ECG') ecg = np.array(ecg) ecg = ecg.flatten() print(fs) return fs, pp, ecg except ValueError: try: # for h5py with h5py.File(data_file, 'r') as hf: fs = hf.get('f_s') fs = np.array(fs) fs = fs.flatten() pp = hf.get('pp') pp = np.array(pp) pp = pp.flatten() ecg = hf.get('ECG') ecg = np.array(ecg) ecg = ecg.flatten() print(fs) return fs, pp, ecg except IOError: fs = fromfile(data_file, dtype='uint16', count=1, sep='') hrData = fromfile(data_file, dtype='uint16', count=-1, sep='') ecg = empty(shape=[0, len(hrData)], dtype=int) # Initialize Empty Arrays pp = empty(shape=[0, len(hrData)], dtype=int) # Initialize Empty Arrays for i in range(1, len(hrData), 2): ecg = append(ecg, hrData[i]) for k in range(2, len(hrData), 2): pp = append(pp, hrData[k]) print(ecg) return fs, pp, ecg
0ba4980db08a8877fabdfcc282d45c18d868a0a3
16,035
from typing import Callable def two_body_mc_grad(env1: AtomicEnvironment, env2: AtomicEnvironment, d1: int, d2: int, hyps: 'ndarray', cutoffs: 'ndarray', cutoff_func: Callable = cf.quadratic_cutoff) \ -> (float, 'ndarray'): """2-body multi-element kernel between two force components and its gradient with respect to the hyperparameters. Args: env1 (AtomicEnvironment): First local environment. env2 (AtomicEnvironment): Second local environment. d1 (int): Force component of the first environment. d2 (int): Force component of the second environment. hyps (np.ndarray): Hyperparameters of the kernel function (sig, ls). cutoffs (np.ndarray): One-element array containing the 2-body cutoff. cutoff_func (Callable): Cutoff function of the kernel. Return: (float, np.ndarray): Value of the 2-body kernel and its gradient with respect to the hyperparameters. """ sig = hyps[0] ls = hyps[1] r_cut = cutoffs[0] return two_body_mc_grad_jit(env1.bond_array_2, env1.ctype, env1.etypes, env2.bond_array_2, env2.ctype, env2.etypes, d1, d2, sig, ls, r_cut, cutoff_func)
8cba89674c5e1dea999d026aad8f9b393a57f5cc
16,036
import types def get_task_name(task): """Gets a tasks *string* name, whether it is a task object/function.""" task_name = "" if isinstance(task, (types.MethodType, types.FunctionType)): # If its a function look for the attributes that should have been # set using the task() decorator provided in the decorators file. If # those have not been set, then we should at least have enough basic # information (not a version) to form a useful task name. task_name = get_attr(task, 'name') if not task_name: name_pieces = [a for a in get_many_attr(task, '__module__', '__name__') if a is not None] task_name = join(name_pieces, ".") else: task_name = str(task) return task_name
181682d930cf358f2532406f1558b007aa09a41f
16,037
def EventAddPublication(builder, publication): """This method is deprecated. Please switch to AddPublication.""" return AddPublication(builder, publication)
39cf5facf251370fd86a004477f848dafd41976c
16,038
def convModel(input1_shape, layers): """" convolutional model defined by layers. ith entry defines ith layer. If entry is a (x,y) it defines a conv layer with x kernels and y filters. If entry is x it defines a pool layer with size x""" model = Sequential() for (i, layer) in enumerate(layers): if isinstance(layer, int): model.add(MaxPool1D(layer)) elif len(layer) == 2: if i == 0: model.add(Conv1D(layer[0], layer[1], input_shape=input1_shape, padding='same', activation='relu')) else: model.add(Conv1D(layer[0], layer[1], padding='same', activation='relu')) else: print("Hodor") model.add(GlobalMaxPool1D()) model.add(Dropout(0.5)) model.add(Dense(4, activation='softmax')) model.compile(loss='binary_crossentropy', metrics=['accuracy',precision], optimizer=Adam(lr=3e-4)) print(model.inputs) print(model.summary()) return model
d1a49a42ab0fc4eecd40783345f09121a773ae02
16,039
def cached_open_doc(db, doc_id, cache_expire=COUCH_CACHE_TIMEOUT, **params): """ Main wrapping function to open up a doc. Replace db.open_doc(doc_id) """ try: cached_doc = _get_cached_doc_only(doc_id) except ConnectionInterrupted: cached_doc = INTERRUPTED if cached_doc in (None, INTERRUPTED): doc = db.open_doc(doc_id, **params) if cached_doc is not INTERRUPTED: do_cache_doc(doc, cache_expire=cache_expire) return doc else: return cached_doc
82118a5c9c43aaf339e7ca3ab8af9680fbd362d1
16,040
import os def Voices_preload_and_split(subset='room-1', test_subset='room-2', seconds=3, path=None, pad=False, splits=None, trim=True): """Index and split librispeech dataset. Args: subset (string): LibriSpeech subset to parse, load and split. Currently can only handle one at a time seconds (int): Minimum length of audio samples to include. path (string): Path to location containing dataset. If left as None will search default location 'DATASETS_DIR' specified in definitions. pad (bool): Flag to specify whether to pad (with 0's) and keep the samples with lenght below the minimum. splits (dict): dictionary with {name:[fractions]} for a user specified split. The split will be saved to 'DATASPLITS_DIR' under 'name' trim (bool): trims data by >.5. removes half of mics, and no noise data Returns: dict(Dataframes): Dictionary containing the dataframes corresponding to each split inclduing metadata. Example: Todo: - Write Example. - More work on user specified splits. - Add option and functionality to split longer recording into samples of length 'seconds' to augment data. """ num_splits = 6 fragment_seconds = seconds if path is None: path = DATASETS_DIR print('Initialising VOiCESDataset with minimum length = {}s' ' and subset = {}'.format(seconds, subset)) df = load_or_index_subset(subset=subset, path=path, fragment_seconds=fragment_seconds, pad=pad) test_df = load_or_index_subset(subset=test_subset, path=path, fragment_seconds=fragment_seconds, pad=pad) # remove all None sound from df if trim: df = df[df['Noise'] != 'none'] # Convert arbitrary integer labels of dataset to ordered 0-(num_speakers # - 1) labels unique_speakers = sorted(df['speaker_id'].unique()) # Convert arbitrary integer labels of dataset to ordered 0-(num_speakers # - 1) labels dfs = {} # dictionary of dataframes sample_dfs = {} # split df into data-subsets if splits is None: # Default behaviour will be to load cyphercat default splits # check if splits exists. print('Build/load speaker membership inference splits') splits_ready = [False]*num_splits for i_split in range(num_splits): if os.path.exists(DATASPLITS_DIR+'/VOiCES-%s/speaker_splits/' 'VOiCES_%i.csv' % (subset, i_split)): splits_ready[i_split] = True if all(splits_ready): # Found all of the relelvant splits print('Found default speaker splits, loading dataframe') dfs = {} for i_split in range(num_splits): dfs[i_split] = pd.read_csv(DATASPLITS_DIR + '/VOiCES-%s/speaker_splits/' 'VOiCES_%i.csv' % (subset, i_split)) else: # Case when splits not found. This should only occur first time # VOiCES is parsed by developers (not users), so will include # a warning print('WARNING: Creating default speaker splits for VOiCES!') dfs = default_speaker_splitter2( dfs, df, trim=trim, test_df=test_df) # write the default dataframes for i_df, this_df in enumerate(dfs): dfs[this_df] = dfs[this_df].drop(columns=['id']) dfs[this_df].rename(columns={'level_0': 'idx_in_original_df'}, inplace=True) dfs[this_df].to_csv(DATASPLITS_DIR+'/VOiCES-%s/speaker_splits/' 'VOiCES_%i.csv' % (subset, i_df), index=False) print('Build/load sample membership inference splits') splits_ready = [False]*(num_splits-1) for i_split in range(num_splits-1): if os.path.exists(DATASPLITS_DIR+'/VOiCES-%s/sample_splits/' 'VOiCES_%i.csv' % (subset, i_split)): splits_ready[i_split] = True if all(splits_ready): # Found all of the relelvant splits print('Found default sample splits, loading dataframe') sample_dfs = {} for i_split in range(num_splits-1): sample_dfs[i_split] = pd.read_csv(DATASPLITS_DIR + '/VOiCES-%s/sample_splits/' 'VOiCES_%i.csv' % (subset, i_split)) else: # Case when splits not found. This should only occur first time # LibriSpeech is parsed by developers (not users), so will include # a warning print('WARNING: Creating default sample splits for VOiCES!') sample_dfs = default_sample_splitter(sample_dfs, df, trim) # write the default dataframes for i_df, this_df in enumerate(sample_dfs): sample_dfs[this_df] = sample_dfs[this_df].drop(columns=['id']) sample_dfs[this_df].rename(columns={'level_0': 'idx_in_original_df'}, inplace=True) sample_dfs[this_df].to_csv(DATASPLITS_DIR+'/VOiCES-%s/' 'sample_splits/VOiCES_%i.csv' % (subset, i_df), index=False) else: name = list(splits.keys())[0] print('Creating user defined splits under name %s' % (list(splits.keys())[0])) total = 0 for fraction in splits[name]: total += fraction if total != 1.: raise('Data split doesn\'t not add up to 1.') # this creates user selescted splits according to the list provided # num speakers for train & test is the same. # the below was solved with a system of equations # amt data depends on train data n = int(len(unique_speakers)//(2+2*splits[0])) # n is train data for shadow & target networks unique_speakers1 = unique_speakers[:n] # target unique_speakers2 = unique_speakers[n:2*n] # shadow unique_speakers3 = unique_speakers[2*n:] # out (target + shadow) dfs = splitter(dfs=dfs, df=df, unique_categories=unique_speakers1, category_id='speaker_id', splits=splits, N=0) dfs = splitter(dfs=dfs, df=df, unique_categories=unique_speakers2, category_id='speaker_id', splits=splits, N=2) # split out data for attack train + test evenly dfs = splitter(dfs=dfs, df=df, unique_categories=unique_speakers3, category_id='speaker_id', splits=[0.5, 0.5], N=4) print('\n ------- Speaker split statistics ------- ') for d in dfs: this_df = dfs[d] male_df = this_df[this_df['sex'] == 'M'] female_df = this_df[this_df['sex'] == 'F'] print('\t\t ---- Split %i ---- \n\tUnique speakers \t Samples' % d) print('Male:\t\t %i\t\t %i' % (len(male_df['speaker_id'].unique()), len(male_df))) print('Female:\t\t %i\t\t %i' % (len(female_df['speaker_id'].unique()), len(female_df))) print('Total:\t\t %i\t\t %i' % (len(this_df['speaker_id'].unique()), len(this_df))) print(' ---------------------------------------- \n') print(' ------- Sample split statistics -------- ') for d in sample_dfs: this_df = sample_dfs[d] male_df = this_df[this_df['sex'] == 'M'] female_df = this_df[this_df['sex'] == 'F'] print('\t\t ---- Split %i ---- \n\tUnique speakers \t Samples' % d) print('Male:\t\t %i\t\t %i' % (len(male_df['speaker_id'].unique()), len(male_df))) print('Female:\t\t %i\t\t %i' % (len(female_df['speaker_id'].unique()), len(female_df))) print('Total:\t\t %i\t\t %i' % (len(this_df['speaker_id'].unique()), len(this_df))) print(' ---------------------------------------- \n') print('Finished splitting data.') return dfs, sample_dfs
46bd0234dbc006b7f5fdb53d3e032bddc679a6f0
16,041
import torch def dense2bpseq(sequence: torch.Tensor, label: torch.Tensor) -> str: """converts sequence and label tensors to `.bpseq`-style string""" seq_lab = dense2seqlab(sequence, label) return seqlab2bpseq
ec0a5d681fef518068042aa2830ee4d2ef3231c8
16,042
from datetime import datetime def _base_app(config): """ init a barebone flask app. if it is needed to create multiple flask apps, use this function to create a base app which can be further modified later """ app = Flask(__name__) app.config.from_object(config) config.init_app(app) bootstrap.init_app(app) app.jinja_env.globals['datetime'] = datetime app.jinja_env.globals['str_to_datetime'] = lambda x: from_string_to_datetime(x) app.jinja_env.globals['format_float'] = lambda x: "%.2f" % x if x else None app.jinja_env.globals['momentjs'] = momentjs app.jinja_env.globals['get_collapsed_ids'] = get_collapsed return app
f5f40ed9ea740c5b9bc9ebb8490136179d06f777
16,043
def applyC(input_map,nbar,MAS_mat,pk_map,Y_lms,k_grids,r_grids,v_cell,shot_fac,include_pix=True): """Apply the fiducial covariance to a pixel map x, i.e. C[x] = S[x]+N[x]. We decompose P(k;x) = \sum_l P_l(k) L_l(k.x) where x is the position of the second galaxy and use spherical harmonic decompositions. P_l(k) are the even fiducial power spectrum multipoles, taken as an input (including the MAS window if relevant). Parameters ---------- input_map : ndarray The input map to apply the covariance to. nbar : ndarray Map of the background number density. MAS_mat : ndarray The mass assignment (i.e. compensation) matrix. pk_map : ndarray The fiducial power spectrum multipoles (only used with ML weights). Y_lms : list List of spherical harmonic functions, generated by the compute_spherical_harmonic_functions() function. k_grids : ndarray 3D grids containing the (k_x,k_y,k_z) values. r_grids : ndarray 3D grids containing the (r_x,r_y,r_z) values. v_cell : float Cell volume. shot_fac : float Shot noise factor. include_pix : bool, optional Whether to include the MAS effects in the covariance (default: True). Returns ------- ndarray Covariance matrix applied to the input map. """ return applyS(input_map,nbar,MAS_mat,pk_map,Y_lms,k_grids,r_grids,v_cell,include_pix=include_pix)+applyN(input_map,nbar,MAS_mat,v_cell,shot_fac,include_pix=include_pix)
91346d935217f540a91947b0a00e91e0125794ef
16,044
def invert_injective_mapping(dictionary): """ Inverts a dictionary with a one-to-one mapping from key to value, into a new dictionary with a one-to-one mapping from value to key. """ inverted_dict = {} for key, value in iteritems(dictionary): assert value not in inverted_dict, "Mapping is not 1-1" inverted_dict[value] = key return inverted_dict
c8cba85f542c5129892eeba4168edf6d9715b54e
16,045
def biosql_dbseqrecord_to_seqrecord(dbseqrecord_, off=False): """Converts a DBSeqRecord object into a SeqRecord object. Motivation of this function was two-fold: first, it makes type testing simpler; and second, DBSeqRecord does not have a functional implementation of the translate method. :param DBSeqRecord dbseqrecord_: The DBSeqRecord object to be converted. :param bool off: Don't actually convert the DBSeqRecord. [Default: False] :return: """ assert isinstance(dbseqrecord_, DBSeqRecord), ('Input must be a DBSeqRecord, ' 'was of type {}!').format(type(dbseqrecord_)) if off: return dbseqrecord_ else: return SeqRecord(seq=Seq(data=str(dbseqrecord_.seq)), id=dbseqrecord_.id, name=dbseqrecord_.name, description=dbseqrecord_.description, dbxrefs=dbseqrecord_.dbxrefs, features=dbseqrecord_.features, annotations=dbseqrecord_.annotations, letter_annotations=dbseqrecord_.letter_annotations)
9129c5efd9025a04f0693fd2d35f420b28c2ea91
16,046
def loadConfig(fileName): """ Attempt to load the specified config file. If successful, clean the variables/data the config file has setup """ if not os.path.isfile(fileName): return False if not os.access(fileName, os.R_OK): warn('Unable to read config file: ' + fileName) return False try: execfile(fileName) # Cache this operation (whether or not we're in debug mode) for faster (hardly) # debug spamming (from NZBLeecher) if hasattr(Hellanzb, 'DEBUG_MODE') and Hellanzb.DEBUG_MODE is not None and \ Hellanzb.DEBUG_MODE != False: # Set this ASAP for sane logging. FIXME: You could possibly lose some debug # output during initialization if you're using the -d option Hellanzb.DEBUG_MODE_ENABLED = True # Ensure the types are lower case for varName in ('NOT_REQUIRED_FILE_TYPES', 'KEEP_FILE_TYPES'): types = getattr(Hellanzb, varName) lowerTypes = [ext.lower() for ext in types] setattr(Hellanzb, varName, lowerTypes) if not hasattr(Hellanzb, 'MAX_RATE') or Hellanzb.MAX_RATE is None: Hellanzb.MAX_RATE = 0 else: Hellanzb.MAX_RATE = int(Hellanzb.MAX_RATE) if not hasattr(Hellanzb, 'UNRAR_CMD') or Hellanzb.UNRAR_CMD is None: Hellanzb.UNRAR_CMD = assertIsExe(['rar', 'unrar']) else: Hellanzb.UNRAR_CMD = assertIsExe([Hellanzb.UNRAR_CMD]) if not hasattr(Hellanzb, 'PAR2_CMD') or Hellanzb.PAR2_CMD is None: Hellanzb.PAR2_CMD = assertIsExe(['par2']) else: Hellanzb.PAR2_CMD = assertIsExe([Hellanzb.PAR2_CMD]) if not hasattr(Hellanzb, 'MACBINCONV_CMD') or Hellanzb.MACBINCONV_CMD is None: # macbinconv is optional when not explicitly specified in the conf Hellanzb.MACBINCONV_CMD = None try: Hellanzb.MACBINCONV_CMD = assertIsExe(['macbinconv']) except FatalError: pass else: Hellanzb.MACBINCONV_CMD = assertIsExe([Hellanzb.MACBINCONV_CMD]) if not hasattr(Hellanzb, 'SKIP_UNRAR') or Hellanzb.SKIP_UNRAR is None: Hellanzb.SKIP_UNRAR = False if not hasattr(Hellanzb, 'SMART_PAR'): Hellanzb.SMART_PAR = True if not hasattr(Hellanzb, 'CATEGORIZE_DEST'): Hellanzb.CATEGORIZE_DEST = True if not hasattr(Hellanzb, 'NZB_ZIPS'): Hellanzb.NZB_ZIPS = '.nzb.zip' if not hasattr(Hellanzb, 'NZB_GZIPS'): Hellanzb.NZB_GZIPS = '.nzb.gz' if not hasattr(Hellanzb, 'DISABLE_COLORS'): Hellanzb.DISABLE_COLORS = False if not hasattr(Hellanzb, 'DISABLE_ANSI'): Hellanzb.DISABLE_ANSI = False Hellanzb.CACHE_LIMIT = unPrettyBytes(getattr(Hellanzb, 'CACHE_LIMIT', 0)) if not hasattr(Hellanzb, 'OTHER_NZB_FILE_TYPES'): # By default, just match .nzb files in the queue dir Hellanzb.NZB_FILE_RE = re.compile(r'(?i)\.(nzb)$') else: nzbTypeRe = r'(?i)\.(%s)$' if not isinstance(Hellanzb.OTHER_NZB_FILE_TYPES, list): Hellanzb.OTHER_NZB_FILE_TYPES = [Hellanzb.OTHER_NZB_FILE_TYPES] if 'nzb' not in Hellanzb.OTHER_NZB_FILE_TYPES: Hellanzb.OTHER_NZB_FILE_TYPES.append('nzb') typesStr = '|'.join(Hellanzb.OTHER_NZB_FILE_TYPES) Hellanzb.NZB_FILE_RE = re.compile(nzbTypeRe % typesStr) # Make sure we expand pathnames so that ~ can be used for expandPath in ('PREFIX_DIR', 'QUEUE_DIR', 'DEST_DIR', 'POSTPONED_DIR', 'CURRENT_DIR', 'TEMP_DIR', 'PROCESSING_DIR', 'STATE_XML_FILE', 'WORKING_DIR', 'LOG_FILE', 'DEBUG_MODE', 'UNRAR_CMD', 'PAR2_CMD', 'MACBINCONV_CMD', 'EXTERNAL_HANDLER_SCRIPT'): if hasattr(Hellanzb, expandPath): thisDir = getattr(Hellanzb, expandPath) if thisDir is not None: expandedDir = os.path.expanduser(thisDir) setattr(Hellanzb, expandPath, expandedDir) if not hasattr(Hellanzb, 'EXTERNAL_HANDLER_SCRIPT') or \ Hellanzb.EXTERNAL_HANDLER_SCRIPT is None or \ not os.path.isfile(Hellanzb.EXTERNAL_HANDLER_SCRIPT) or \ not os.access(Hellanzb.EXTERNAL_HANDLER_SCRIPT, os.X_OK): Hellanzb.EXTERNAL_HANDLER_SCRIPT = None debug('Found config file in directory: ' + os.path.dirname(fileName)) return True except FatalError, fe: error('A problem occurred while reading the config file', fe) raise except Exception, e: msg = 'An unexpected error occurred while reading the config file' error(msg, e) raise
eb959a65743a1e73732f8226a55a69582fe4ac20
16,047
import re def parse_rpsbproc(handle): """Parse a results file generated by rpsblast->rpsbproc. This function takes a handle corresponding to a rpsbproc output file. local.rpsbproc returns a subprocess.CompletedProcess object, which contains the results as byte string in it's stdout attribute. """ # Sanitize input. Should work for either an open file handle (str, still contains \n # when iterating) or byte-string stdout stored in a CompletedProcess object passed to this # function as e.g. process.stdout.splitlines() stdout = "\n".join( line.decode().strip() if isinstance(line, bytes) else line.strip() for line in handle ) # Files produced by rpsbproc have anchors for easy parsing. Each query sequence # is given a block starting/ending with QUERY/ENDQUERY, and domain hits for the # query with DOMAINS/ENDDOMAINS. query_pattern = re.compile( r"QUERY\tQuery_\d+\tPeptide\t\d+\t([A-Za-z0-9.]+?)\n" r"DOMAINS\n(.+?)ENDDOMAINS", re.DOTALL, ) domains = defaultdict(list) for match in query_pattern.finditer(stdout): query = match.group(1) for row in match.group(2).split("\n"): try: domain = domain_from_row(row) except ValueError: continue domains[query].append(domain) return domains
64be049b5cb96a3e59f421327d1715cee84e2300
16,048
from typing import get_type_hints def _invalidate(obj, depth=0): """ Recursively validate type anotated classes. """ annotations = get_type_hints(type(obj)) for k, v in annotations.items(): item = getattr(obj, k) res = not_type_check(item, v) if res: return f"{k} field of {type(obj)} : {res}" if isinstance(item, (list, tuple)): for ii, i in enumerate(item): sub = _invalidate(i, depth + 1) if sub is not None: return f"{k}.{ii}." + sub if isinstance(item, dict): for ii, i in item.items(): sub = _invalidate(i, depth + 1) if sub is not None: return f"{k}.{ii}." + sub else: sub = _invalidate(item, depth + 1) if sub is not None: return f"{k}.{ii}." + sub # return outcome,s
a1881d45414a4a034456e0078553e4aa7bf6471a
16,049
import os def maybe_download(filename, expected_bytes, force=False): """Download a file if not present, and make sure it's the right size.""" if force or not os.path.exists(filename): print('Attempting to download:', filename) filename, _ = urlretrieve(url + filename, filename, reporthook=download_progress_hook) print('\nDownload Complete!') statinfo = os.stat(filename) if statinfo.st_size == expected_bytes: print('Found and verified', filename) else: raise Exception( 'Failed to verify ' + filename + '. Can you get to it with a browser?') return filename
a9af221b98647792a92749a901ecc70f09a388ff
16,050
def convtranspose2d_output_shape(h_w, kernel_size=1, stride=1, pad=0, dilation=1, out_pad=0): """Calculates the output height and width of a feature map for a ConvTranspose2D operation.""" h_w, kernel_size, stride, pad, dilation, out_pad = num2tuple(h_w), num2tuple(kernel_size), num2tuple(stride), num2tuple(pad), num2tuple(dilation), num2tuple(out_pad) pad = num2tuple(pad[0]), num2tuple(pad[1]) out_height = (h_w[0] - 1) * stride[0] - sum(pad[0]) + dilation[0] * (kernel_size[0] - 1) + out_pad[0] + 1 out_width = (h_w[1] - 1) * stride[1] - sum(pad[1]) + dilation[1] * (kernel_size[1] - 1) + out_pad[1] + 1 return out_height, out_width
e1ded212929e7e24b138335ae3d9006b1dcfb759
16,051
def set_multizone_read_mode(session, read_mode, return_type=None, **kwargs): """ Modifies where data is read from in multizone environments. :type session: zadarapy.session.Session :param session: A valid zadarapy.session.Session object. Required. :type read_mode: str :param read_mode: For multizone environments, if set to 'roundrobin', data will be read from storage nodes in all protection zones. If set to 'localcopy', data from the local protection zone will be favored. 'roundrobin' is the default value. Required. :type return_type: str :param return_type: If this is set to the string 'json', this function will return a JSON string. Otherwise, it will return a Python dictionary. Optional (will return a Python dictionary by default). :rtype: dict, str :returns: A dictionary or JSON data set as a string depending on return_type parameter. """ verify_read_mode(read_mode) body_values = {'readmode': read_mode} path = '/api/settings/raid_read_mode.json' return session.post_api(path=path, body=body_values, return_type=return_type, **kwargs)
0831bfd722514cab792eef38838e357209a0971f
16,052
import re def get_name_convert_func(): """ Get the function to convert Caffe2 layer names to PyTorch layer names. Returns: (func): function to convert parameter name from Caffe2 format to PyTorch format. """ pairs = [ # ------------------------------------------------------------ # 'nonlocal_conv3_1_theta_w' -> 's3.pathway0_nonlocal3.conv_g.weight' [ r"^nonlocal_conv([0-9]*)_([0-9]*)_(.*)", r"s\1.pathway0_nonlocal\2_\3", ], # 'theta' -> 'conv_theta' [r"^(.*)_nonlocal([0-9]*)_(theta)(.*)", r"\1_nonlocal\2.conv_\3\4"], # 'g' -> 'conv_g' [r"^(.*)_nonlocal([0-9]*)_(g)(.*)", r"\1_nonlocal\2.conv_\3\4"], # 'phi' -> 'conv_phi' [r"^(.*)_nonlocal([0-9]*)_(phi)(.*)", r"\1_nonlocal\2.conv_\3\4"], # 'out' -> 'conv_out' [r"^(.*)_nonlocal([0-9]*)_(out)(.*)", r"\1_nonlocal\2.conv_\3\4"], # 'nonlocal_conv4_5_bn_s' -> 's4.pathway0_nonlocal3.bn.weight' [r"^(.*)_nonlocal([0-9]*)_(bn)_(.*)", r"\1_nonlocal\2.\3.\4"], # ------------------------------------------------------------ # 't_pool1_subsample_bn' -> 's1_fuse.conv_f2s.bn.running_mean' [r"^t_pool1_subsample_bn_(.*)", r"s1_fuse.bn.\1"], # 't_pool1_subsample' -> 's1_fuse.conv_f2s' [r"^t_pool1_subsample_(.*)", r"s1_fuse.conv_f2s.\1"], # 't_res4_5_branch2c_bn_subsample_bn_rm' -> 's4_fuse.conv_f2s.bias' [ r"^t_res([0-9]*)_([0-9]*)_branch2c_bn_subsample_bn_(.*)", r"s\1_fuse.bn.\3", ], # 't_pool1_subsample' -> 's1_fuse.conv_f2s' [ r"^t_res([0-9]*)_([0-9]*)_branch2c_bn_subsample_(.*)", r"s\1_fuse.conv_f2s.\3", ], # ------------------------------------------------------------ # 'res4_4_branch_2c_bn_b' -> 's4.pathway0_res4.branch2.c_bn_b' [ r"^res([0-9]*)_([0-9]*)_branch([0-9]*)([a-z])_(.*)", r"s\1.pathway0_res\2.branch\3.\4_\5", ], # 'res_conv1_bn_' -> 's1.pathway0_stem.bn.' [r"^res_conv1_bn_(.*)", r"s1.pathway0_stem.bn.\1"], # 'conv1_w_momentum' -> 's1.pathway0_stem.conv.' [r"^conv1_(.*)", r"s1.pathway0_stem.conv.\1"], # 'res4_0_branch1_w' -> 'S4.pathway0_res0.branch1.weight' [ r"^res([0-9]*)_([0-9]*)_branch([0-9]*)_(.*)", r"s\1.pathway0_res\2.branch\3_\4", ], # 'res_conv1_' -> 's1.pathway0_stem.conv.' [r"^res_conv1_(.*)", r"s1.pathway0_stem.conv.\1"], # ------------------------------------------------------------ # 'res4_4_branch_2c_bn_b' -> 's4.pathway0_res4.branch2.c_bn_b' [ r"^t_res([0-9]*)_([0-9]*)_branch([0-9]*)([a-z])_(.*)", r"s\1.pathway1_res\2.branch\3.\4_\5", ], # 'res_conv1_bn_' -> 's1.pathway0_stem.bn.' [r"^t_res_conv1_bn_(.*)", r"s1.pathway1_stem.bn.\1"], # 'conv1_w_momentum' -> 's1.pathway0_stem.conv.' [r"^t_conv1_(.*)", r"s1.pathway1_stem.conv.\1"], # 'res4_0_branch1_w' -> 'S4.pathway0_res0.branch1.weight' [ r"^t_res([0-9]*)_([0-9]*)_branch([0-9]*)_(.*)", r"s\1.pathway1_res\2.branch\3_\4", ], # 'res_conv1_' -> 's1.pathway0_stem.conv.' [r"^t_res_conv1_(.*)", r"s1.pathway1_stem.conv.\1"], # ------------------------------------------------------------ # pred_ -> head.projection. [r"pred_(.*)", r"head.projection.\1"], # '.bn_b' -> '.weight' [r"(.*)bn.b\Z", r"\1bn.bias"], # '.bn_s' -> '.weight' [r"(.*)bn.s\Z", r"\1bn.weight"], # '_bn_rm' -> '.running_mean' [r"(.*)bn.rm\Z", r"\1bn.running_mean"], # '_bn_riv' -> '.running_var' [r"(.*)bn.riv\Z", r"\1bn.running_var"], # '_b' -> '.bias' [r"(.*)[\._]b\Z", r"\1.bias"], # '_w' -> '.weight' [r"(.*)[\._]w\Z", r"\1.weight"], ] def convert_caffe2_name_to_pytorch(caffe2_layer_name): """ Convert the caffe2_layer_name to pytorch format by apply the list of regular expressions. Args: caffe2_layer_name (str): caffe2 layer name. Returns: (str): pytorch layer name. """ for source, dest in pairs: caffe2_layer_name = re.sub(source, dest, caffe2_layer_name) return caffe2_layer_name return convert_caffe2_name_to_pytorch
4e3cbe0885a0d23d5af151bc0cea7127156aa9c9
16,053
def generate_dict_entry(key, wordlist): """Generate one entry of the python dictionary""" entry = " '{}': {},\n".format(key, wordlist) return entry
57ab3c063df0bde1261602f0c6279c70900a7a88
16,054
def record_to_dict(record): """ Transform string into bovespa.Record :param record: (string) position string from bovespa. :return: parsed Record """ try: record = bovespa.Record(record) except: return None return { 'date': record.date, 'year': record.date.year, 'month': record.date.month, 'day': record.date.day, 'money_volume': record.volume, 'volume': record.quantity, 'stock_code': record.stock_code, 'company_name': record.company_name, 'price_open': record.price_open, 'price_close': record.price_close, 'price_mean': record.price_mean, 'price_high': record.price_high, 'price_low': record.price_low }
3065d233a0186a72330165c9b082c819369ef449
16,055
def sample_product(user, **params): """Create and return a custom product""" defaults = { 'name': 'Ron Cacique', 'description': 'El ron cacique es...', 'price': 20, 'weight': '0.70', 'units': 'l', 'featured': True, } defaults.update(params) return Products.objects.create(user=user, **defaults)
310b2ee775e5497597dd68cf6737623e40b78932
16,056
def _find_op_path_(block, outputs, inputs, no_grad_set): """ no_grad_set will also be changed """ input_names = set([inp.name for inp in inputs]) output_names = set([out.name for out in outputs]) relevant_op_flags = [True] * len(block.ops) # All the inputs of the block are used if inputs is empty, if inputs: for i, op in enumerate(block.ops): if _some_in_set_(op.desc.input_arg_names(), input_names): for name in op.desc.output_arg_names(): if name not in no_grad_set: input_names.add(name) else: relevant_op_flags[i] = False for i, op in reversed(list(enumerate(block.ops))): if _some_in_set_(op.desc.output_arg_names(), output_names): for name in op.desc.input_arg_names(): if name not in no_grad_set: output_names.add(name) else: relevant_op_flags[i] = False op_path = [ block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i] ] if inputs: for op in op_path: for name in op.desc.input_arg_names(): if name not in input_names and block.vars[name].stop_gradient: no_grad_set.add(name) return op_path
05d1b18f883906cc41fa84f6f27f061b30ced4b8
16,057
def clean_gltf_materials(gltf): """ 未使用のglTFマテリアルを削除する :param gltf: glTFオブジェクト :return: 新しいマテリアルリスト """ return filter(lambda m: m['name'] in used_material_names(gltf), gltf['materials'])
7e429dceb84d48298897589172f976ea907ddcab
16,058
def create_root(request): """ Returns a new traversal tree root. """ r = Root() r.add('api', api.create_root(request)) r.add('a', Annotations(request)) r.add('t', TagStreamFactory()) r.add('u', UserStreamFactory()) return r
ebc64f7f49bf6b3405b9971aa0b30e72b3d13c5f
16,059
def sort_basis_functions(basis_functions): """Sorts a set of basis functions by their distance to the function with the smallest two-norm. Args: basis_functions: The set of basis functions to sort. Expected shape is (-1, basis_function_length). Returns: sorted_basis: The sorted basis functions sorted_ids: Mapping from unsorted basis function ids to their sorted position. """ min_norm_idx = np.argmin(np.linalg.norm(basis_functions, axis=-1), axis=0) min_norm_fn = basis_functions[min_norm_idx] ids = list(range(len(basis_functions))) sorted_ids = sorted(ids, key=lambda x: np.linalg.norm(basis_functions[x] - min_norm_fn)) sorted_basis = np.array(basis_functions)[sorted_ids] return sorted_basis, sorted_ids
18b11f80c7d08eb6435d823e557ec9ea4e028b92
16,060
import os def to_zgrid(roms_file, z_file, src_grid=None, z_grid=None, depth=None, records=None, threads=2, reftime=None, nx=0, ny=0, weight=10, vmap=None, cdl=None, dims=2, pmap=None): """ Given an existing ROMS history or average file, create (if does not exit) a new z-grid file. Use the given z_grid or otherwise build one with the same horizontal extent and the specified depths and interpolate the ROMS fields onto the z-grid. Parameters ---------- roms_file : string, File name of src file to interpolate from z_file : string, Name of desination file to write to src_grid : (string or seapy.model.grid), optional: Name or instance of source grid. If nothing is specified, derives grid from the roms_file z_grid: (string or seapy.model.grid), optional: Name or instance of output definition depth: numpy.ndarray, optional: array of depths to use for z-level records : numpy.ndarray, optional: Record indices to interpolate threads : int, optional: number of processing threads reftime: datetime, optional: Reference time as the epoch for z-grid file nx : float, optional: decorrelation length-scale for OA (same units as source data) ny : float, optional: decorrelation length-scale for OA (same units as source data) nx : float, optional: decorrelation length-scale for OA (same units as source data, typically twice the difference in the source data) ny : float, optional: decorrelation length-scale for OA (same units as source data, typically twice the difference in the source data) weight : int, optional: number of points to use in weighting matrix vmap : dictionary, optional mapping source and destination variables cdl: string, optional, Use the specified CDL file as the definition for the new netCDF file. dims : int, optional number of dimensions to use for lat/lon arrays (default 2) pmap : numpy.ndarray, optional: use the specified pmap rather than compute it Returns ------- pmap : ndarray the weighting matrix computed during the interpolation """ if src_grid is None: src_grid = seapy.model.asgrid(roms_file) else: src_grid = seapy.model.asgrid(src_grid) ncsrc = seapy.netcdf(roms_file) src_ref, time = seapy.roms.get_reftime(ncsrc) if reftime is not None: src_ref = reftime records = np.arange(0, ncsrc.variables[time].shape[0]) \ if records is None else np.atleast_1d(records) # Load the grid if z_grid is not None: z_grid = seapy.model.asgrid(z_grid) elif os.path.isfile(z_file): z_grid = seapy.model.asgrid(z_file) if not os.path.isfile(z_file): if z_grid is None: lat = src_grid.lat_rho.shape[0] lon = src_grid.lat_rho.shape[1] if depth is None: raise ValueError("depth must be specified") ncout = seapy.roms.ncgen.create_zlevel(z_file, lat, lon, len(depth), src_ref, "ROMS z-level", cdl=cdl, dims=dims) if dims == 1: ncout.variables["lat"][:] = src_grid.lat_rho[:, 0] ncout.variables["lon"][:] = src_grid.lon_rho[0, :] else: ncout.variables["lat"][:] = src_grid.lat_rho ncout.variables["lon"][:] = src_grid.lon_rho ncout.variables["depth"][:] = depth ncout.variables["mask"][:] = src_grid.mask_rho ncout.sync() z_grid = seapy.model.grid(z_file) else: lat = z_grid.lat_rho.shape[0] lon = z_grid.lat_rho.shape[1] dims = z_grid.spatial_dims ncout = seapy.roms.ncgen.create_zlevel(z_file, lat, lon, len(z_grid.z), src_ref, "ROMS z-level", cdl=cdl, dims=dims) if dims == 1: ncout.variables["lat"][:] = z_grid.lat_rho[:, 0] ncout.variables["lon"][:] = z_grid.lon_rho[0, :] else: ncout.variables["lat"][:] = z_grid.lat_rho ncout.variables["lon"][:] = z_grid.lon_rho ncout.variables["depth"][:] = z_grid.z ncout.variables["mask"][:] = z_grid.mask_rho else: ncout = netCDF4.Dataset(z_file, "a") ncout.variables["time"][:] = seapy.roms.date2num( seapy.roms.num2date(ncsrc, time, records), ncout, "time") # Call the interpolation try: src_grid.set_east(z_grid.east()) pmap = __interp_grids(src_grid, z_grid, ncsrc, ncout, records=records, threads=threads, nx=nx, ny=ny, vmap=vmap, weight=weight, z_mask=True, pmap=pmap) except TimeoutError: print("Timeout: process is hung, deleting output.") # Delete the output file os.remove(z_file) finally: # Clean up ncsrc.close() ncout.close() return pmap
305b25c6e98cf50c4784d4eaa18b3306b415aea3
16,061
def info_materials_groups_get(): """ info_materials_groups_get Get **array** of information for all materials, or if an array of &#x60;type_ids&#x60; is included, information on only those materials. :rtype: List[Group] """ session = info_map.Session() mat = aliased(info_map.Material) grp = aliased(info_map.Group) q = session.query(mat.group_id,grp.name).join(grp).distinct() groups = [Group(group=row.group_id,name=row.name) for row in q.all()] return groups, 200
49dcf0785be8d9a94b4bb730af6326d493e79000
16,062
import os def TestFSSH(): """ molcas test 1. FSSH calculation """ pyrai2mddir = os.environ['PYRAI2MD'] testdir = '%s/fssh' % (os.getcwd()) record = { 'coord' : 'FileNotFound', 'energy' : 'FileNotFound', 'energy1' : 'FileNotFound', 'energy2' : 'FileNotFound', 'energy3' : 'FileNotfound', 'kinetic1' : 'FileNotFound', 'kinetic2' : 'FileNotFound', 'velo1' : 'FileNotFound', 'velo2' : 'FileNotFound', 'nac1' : 'FileNotFound', 'nac2' : 'FileNotFound', 'soc1' : 'FileNotFound', 'soc2' : 'FileNotFound', 'pop2' : 'FileNotFound', } filepath = '%s/TEST/fssh/fssh_data/c3h2o.xyz' % (pyrai2mddir) if os.path.exists(filepath): record['coord'] = filepath filepath = '%s/TEST/fssh/fssh_data/c3h2o.energy' % (pyrai2mddir) if os.path.exists(filepath): record['energy'] = filepath filepath = '%s/TEST/fssh/fssh_data/c3h2o.energy.1' % (pyrai2mddir) if os.path.exists(filepath): record['energy1'] = filepath filepath = '%s/TEST/fssh/fssh_data/c3h2o.energy.2' % (pyrai2mddir) if os.path.exists(filepath): record['energy2'] = filepath filepath = '%s/TEST/fssh/fssh_data/c3h2o.energy.3' % (pyrai2mddir) if os.path.exists(filepath): record['energy3'] = filepath filepath = '%s/TEST/fssh/fssh_data/c3h2o.kinetic.1' % (pyrai2mddir) if os.path.exists(filepath): record['kinetic1'] = filepath filepath = '%s/TEST/fssh/fssh_data/c3h2o.kinetic.2' % (pyrai2mddir) if os.path.exists(filepath): record['kinetic2'] = filepath filepath = '%s/TEST/fssh/fssh_data/c3h2o.nac.1' % (pyrai2mddir) if os.path.exists(filepath): record['nac1'] = filepath filepath = '%s/TEST/fssh/fssh_data/c3h2o.nac.2' % (pyrai2mddir) if os.path.exists(filepath): record['nac2'] = filepath filepath = '%s/TEST/fssh/fssh_data/c3h2o.soc.1' % (pyrai2mddir) if os.path.exists(filepath): record['soc1'] = filepath filepath = '%s/TEST/fssh/fssh_data/c3h2o.soc.2' % (pyrai2mddir) if os.path.exists(filepath): record['soc2'] = filepath filepath = '%s/TEST/fssh/fssh_data/c3h2o.velo.1' % (pyrai2mddir) if os.path.exists(filepath): record['velo1'] = filepath filepath = '%s/TEST/fssh/fssh_data/c3h2o.velo.2' % (pyrai2mddir) if os.path.exists(filepath): record['velo2'] = filepath filepath = '%s/TEST/fssh/fssh_data/c3h2o.pop.2' % (pyrai2mddir) if os.path.exists(filepath): record['pop2'] = filepath summary = """ *---------------------------------------------------* | | | FSSH Test Calculation | | | *---------------------------------------------------* Check files and settings: ------------------------------------------------------- """ for key, location in record.items(): summary += ' %-10s %s\n' % (key, location) for key, location in record.items(): if location == 'FileNotFound': summary += '\n Test files are incomplete, please download it again, skip test\n\n' return summary, 'FAILED(test file unavailable)' if location == 'VariableNotFound': summary += '\n Environment variables are not set, cannot find program, skip test\n\n' return summary, 'FAILED(enviroment variable missing)' CopyInput(record, testdir) Setup(record, testdir) summary += """ Copy files: %-10s --> %s/c3h2o.xyz %-10s --> %s/c3h2o.energy %-10s --> %s/c3h2o.energy.1 %-10s --> %s/c3h2o.energy.2 %-10s --> %s/c3h2o.energy.3 %-10s --> %s/c3h2o.kinetic %-10s --> %s/c3h2o.kinetic.1 %-10s --> %s/c3h2o.nac %-10s --> %s/c3h2o.nac.1 %-10s --> %s/c3h2o.soc %-10s --> %s/c3h2o.soc.1 %-10s --> %s/c3h2o.velo %-10s --> %s/c3h2o.velo.1 %-10s --> %s/c3h2o.pop.1 Run FSSH Calculation: """ % ('coord', testdir, 'energy1', testdir, 'energy2', testdir, 'energy', testdir, 'energy3', testdir, 'kinetic1', testdir, 'kinetic2', testdir, 'nac1', testdir, 'nac2', testdir, 'soc1', testdir, 'soc2', testdir, 'velo1', testdir, 'velo2', testdir, 'pop2', testdir) results, code = RunFSSH(record, testdir, pyrai2mddir) if code == 'PASSED': summary += """ ------------------------------------------------------- FSSH OUTPUT (NAC) ------------------------------------------------------- %s ------------------------------------------------------- nactype == nac test done, entering nactype == ktdc test """ % (results) else: summary += """ nactype == test failed, stop here """ return summary, code results, code = RunFSSH2(record, testdir, pyrai2mddir) summary += """ ------------------------------------------------------- FSSH OUTPUT (kTDC) ------------------------------------------------------- %s ------------------------------------------------------- """ % (results) return summary, code
be7f26eb2a398996a87e756905b596c26c428332
16,063
def relu(x): """ Compute the relu of x Arguments: x -- A scalar or numpy array of any size. Return: s -- relu(x) """ s = np.maximum(0,x) return s
40b838889b62abca0a88788436b5d648261a3c67
16,064
def kane_frstar_alt(bodies, coordinates, speeds, kdeqs, inertial_frame, uaux=Matrix(), udep=None, Ars=None): """Form the generalized inertia force.""" t = dynamicsymbols._t N = inertial_frame # Derived inputs q = Matrix(coordinates) # q u = Matrix(speeds) # u udot = u.diff(t) qdot_u_map,_,_,_k_kqdot = _initialize_kindiffeq_matrices(q, u, kdeqs, uaux=Matrix()) # Dicts setting things to zero udot_zero = dict((i, 0) for i in udot) uaux_zero = dict((i, 0) for i in uaux) uauxdot = [diff(i, t) for i in uaux] uauxdot_zero = dict((i, 0) for i in uauxdot) # Dictionary of q' and q'' to u and u' q_ddot_u_map = dict((k.diff(t), v.diff(t)) for (k, v) in qdot_u_map.items()) q_ddot_u_map.update(qdot_u_map) # Fill up the list of partials: format is a list with num elements # equal to number of entries in body list. Each of these elements is a # list - either of length 1 for the translational components of # particles or of length 2 for the translational and rotational # components of rigid bodies. The inner most list is the list of # partial velocities. def get_partial_velocity(body): if isinstance(body,YAMSRigidBody) or isinstance(body, RigidBody): vlist = [body.masscenter.vel(N), body.frame.ang_vel_in(N)] elif isinstance(body, Particle): vlist = [body.point.vel(N),] elif isinstance(body,YAMSFlexibleBody): print('>>>> FlexibleBody TODO, Jv Jo to partials') vlist=[body.masscenter.vel(N), body.frame.ang_vel_in(N)] else: raise TypeError('The body list may only contain either ' 'RigidBody or Particle as list elements.') v = [msubs(vel, qdot_u_map) for vel in vlist] return partial_velocity(v, u, N) partials = [get_partial_velocity(body) for body in bodies] # Compute fr_star in two components: # fr_star = -(MM*u' + nonMM) o = len(u) MM = zeros(o, o) nonMM = zeros(o, 1) zero_uaux = lambda expr: msubs(expr, uaux_zero) zero_udot_uaux = lambda expr: msubs(msubs(expr, udot_zero), uaux_zero) for i, body in enumerate(bodies): bodyMM = zeros(o, o) bodynonMM = zeros(o, 1) if isinstance(body,YAMSRigidBody) or isinstance(body, RigidBody): # Rigid Body (see sympy.mechanics.kane) M = zero_uaux( body.mass ) I = zero_uaux( body.central_inertia ) vel = zero_uaux( body.masscenter.vel(N) ) omega = zero_uaux( body.frame.ang_vel_in(N) ) acc = zero_udot_uaux( body.masscenter.acc(N) ) # --- Mas Matrix for j in range(o): tmp_vel = zero_uaux(partials[i][0][j]) tmp_ang = zero_uaux(I & partials[i][1][j]) for k in range(o): # translational bodyMM[j, k] += M * (tmp_vel & partials[i][0][k]) # rotational bodyMM[j, k] += (tmp_ang & partials[i][1][k]) # --- Full inertial loads Matrix inertial_force = (M.diff(t) * vel + M * acc) inertial_torque = zero_uaux((I.dt(body.frame) & omega) + msubs(I & body.frame.ang_acc_in(N), udot_zero) + (omega ^ (I & omega))) # "&" = dot, "^"=cross for j in range(o): bodynonMM[j] += inertial_force & partials[i][0][j] bodynonMM[j] += inertial_torque & partials[i][1][j] elif isinstance(body,YAMSFlexibleBody): print('>>>> FlexibleBody TODO') M = zero_uaux(body.mass) #I = zero_uaux(body.central_inertia) vel = zero_uaux(body.origin.vel(N)) omega = zero_uaux(body.frame.ang_vel_in(N)) acc = zero_udot_uaux(body.origin.acc(N)) inertial_force=0 # Fstar !<<<< TODO inertial_torque=0 # Tstar !<<<< TODO else: # Particles M = zero_uaux(body.mass) vel = zero_uaux(body.point.vel(N)) acc = zero_udot_uaux(body.point.acc(N)) inertial_force = (M.diff(t) * vel + M * acc) inertial_torque=0 # Tstar for j in range(o): temp = zero_uaux(partials[i][0][j]) for k in range(o): bodyMM[j, k] += M * (temp & partials[i][0][k]) bodynonMM[j] += inertial_force & partials[i][0][j] # Perform important substitution and store body contributions body.MM_alt = zero_uaux(msubs(bodyMM, q_ddot_u_map)) body.nonMM_alt_bef = bodynonMM #body.nonMM_alt = msubs(msubs(bodynonMM, q_ddot_u_map), udot_zero, uauxdot_zero, uaux_zero) # Cumulative MM and nonMM over all bodies MM += bodyMM nonMM += bodynonMM # --- Storing for debug body.acc_alt = acc body.vel_alt = vel body.omega_alt = omega body.inertial_force_alt = inertial_force body.inertial_torque_alt = inertial_torque body.Jv_vect_alt=partials[i][0] body.Jo_vect_alt=partials[i][1] # End loop on bodies nonMM = msubs(msubs(nonMM, q_ddot_u_map), udot_zero, uauxdot_zero, uaux_zero) # Compose fr_star out of MM and nonMM fr_star = -(MM * msubs(Matrix(udot), uauxdot_zero) + nonMM) # If there are dependent speeds, we need to find fr_star_tilde if udep: p = o - len(udep) fr_star_ind = fr_star[:p, 0] fr_star_dep = fr_star[p:o, 0] fr_star = fr_star_ind + (Ars.T * fr_star_dep) # Apply the same to MM MMi = MM[:p, :] MMd = MM[p:o, :] MM = MMi + (Ars.T * MMd) MM_full= mass_matrix_full(MM,_k_kqdot) #self._bodylist = bodies #self._frstar = fr_star #self._k_d = MM #self._f_d = -msubs(self._fr + self._frstar, udot_zero) return fr_star, MM, MM_full
a42d8c902f7a27cb3867e9c85f8a844129293f7d
16,065
def line(value): """ | Line which can be used to cross with functions like RSI or MACD. | Name: line\_\ **value**\ :param value: Value of the line :type value: float """ def return_function(data): column_name = f'line_{value}' if column_name not in data.columns: data[column_name] = value return data[column_name].copy() return return_function
07b4f9671ae06cf63c02062a9da4eb2a0b1a265a
16,066
import json import requests def goodsGetSku(spuId,regionId): """ :param spuId: :param regionId: :return: """ reqUrl = req_url('goods', "/goods/getGoodsList") if reqUrl: url = reqUrl else: return "服务host匹配失败" headers = { 'Content-Type': 'application/json', 'X-Region-Id': regionId, } body = json.dumps( { "spuId": spuId, "groundStatus": "", "environment": "", "page": 1, "limit": 20 } ) result = requests.post(url=url,headers=headers,data=body) resultJ = json.loads(result.content) return resultJ
23c3960384529c7a45e730a612cc7999fa316bd4
16,067
import os def build_model(config, model_dir=None, weight=None): """ Inputs: config: train_config, see train_celery.py model_dir: a trained model's output dir, None if model has not been trained yet weight: class weights """ contents = os.listdir(model_dir) print(contents) return ClassificationModel( "roberta", model_dir or "roberta-base", use_cuda=USE_CUDA, args={ # https://github.com/ThilinaRajapakse/simpletransformers/#sliding-window-for-long-sequences "sliding_window": config.get("sliding_window", False), "reprocess_input_data": True, "overwrite_output_dir": True, "use_cached_eval_features": False, "no_cache": True, "num_train_epochs": config["num_train_epochs"], "weight": weight, # TODO I don't need checkpoints yet - disable this to save disk space "save_eval_checkpoints": False, "save_model_every_epoch": False, "save_steps": 999999, # Bug in the library, need to specify it here and in the .train_model kwargs "output_dir": config.get("model_output_dir"), # Maybe a bug in the library, need to turn off multiprocessing for prediction # We may also want to look at the process_count config. It may use too many cpus "use_multiprocessing": False, # Note: 512 requires 16g of GPU mem. You can try 256 for 8g. "max_seq_length": config.get("max_seq_length", 512), }, )
d526404b5b5ad73c16a3bbb12af9c03f6099a17b
16,068
def get_scheduler(config, optimizer): """ :param config: 配置参数 :param optimizer: 优化器 :return: 学习率衰减策略 """ # 加载学习率衰减策略 if config.scheduler_name == 'StepLR': scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=config.StepLR['decay_step'], gamma=config.StepLR["gamma"]) elif config.scheduler_name == 'Cosine': scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=config.Cosine['restart_step'], eta_min=config.Cosine['eta_min']) elif config.scheduler_name == 'author': scheduler = WarmupMultiStepLR(optimizer, config.WarmupMultiStepLR["steps"], config.WarmupMultiStepLR["gamma"], config.WarmupMultiStepLR["warmup_factor"], config.WarmupMultiStepLR["warmup_iters"], config.WarmupMultiStepLR["warmup_method"] ) return scheduler
1e4be51c74ed6c35bde3343547c4a7a88736179a
16,069
def pipeline_dict() -> dict: """Pipeline config dict. You need to update the labels!""" pipeline_dictionary = { "name": "german_business_names", "features": { "word": {"embedding_dim": 16, "lowercase_tokens": True}, "char": { "embedding_dim": 16, "encoder": { "type": "gru", "num_layers": 1, "hidden_size": 32, "bidirectional": True, }, "dropout": 0.1, }, }, "head": { "type": "TextClassification", "labels": [ "Unternehmensberatungen", "Friseure", "Tiefbau", "Dienstleistungen", "Gebrauchtwagen", "Restaurants", "Architekturbüros", "Elektriker", "Vereine", "Versicherungsvermittler", "Sanitärinstallationen", "Edv", "Maler", "Physiotherapie", "Werbeagenturen", "Apotheken", "Vermittlungen", "Hotels", "Autowerkstätten", "Elektrotechnik", "Allgemeinärzte", "Handelsvermittler Und -vertreter", ], "pooler": { "type": "gru", "num_layers": 1, "hidden_size": 16, "bidirectional": True, }, "feedforward": { "num_layers": 1, "hidden_dims": [16], "activations": ["relu"], "dropout": [0.1], }, }, } return pipeline_dictionary
d9e15fb1a09678d65b30a49b7c7c811843420c57
16,070
def _is_hangul_syllable(i): """ Function for determining if a Unicode scalar value i is within the range of Hangul syllables. :param i: Unicode scalar value to lookup :return: Boolean: True if the lookup value is within the range of Hangul syllables, otherwise False. """ if i in range(0xAC00, 0xD7A3 + 1): # Range of Hangul characters as defined in UnicodeData.txt return True return False
793519ec33a8920ea13328b0e5a4f814c859b0d3
16,071
def shape14_4(tik_instance, input_x, res, input_shape, shape_info): """input_shape == ((32, 16, 14, 14, 16), 'float16', (1, 1), (1, 1))""" stride_w, stride_h, filter_w, filter_h, dilation_filter_w, dilation_filter_h = shape_info pad = [0, 0, 0, 0] l1_h = 14 l1_w = 14 c1_index = 0 jump_stride = 1 repeat_mode = 1 with tik_instance.for_range(0, 32, block_num=32) as block_index: eeb0 = block_index % 2 eeb1 = block_index // 2 input_1_1_local_l1 = tik_instance.Tensor("float16", (196 * 32 * 16,), scope=tik.scope_cbuf, name="input_1_1_local_l1") input_1_1_fractal_l1_local_ub = tik_instance.Tensor("float16", (106496 // 2,), scope=tik.scope_ubuf, name="input_1_1_fractal_l1_local_ub") input_1_2_fractal_l1_local_ub = tik_instance.Tensor("float16", (196 * 16 * 16,), scope=tik.scope_ubuf, name="input_1_2_fractal_l1_local_ub") with tik_instance.for_range(0, 32) as i: tik_instance.data_move(input_1_1_local_l1[i * 3136], input_x[i, eeb1, 0, 0, 0], 0, 1, 196, 0, 0) with tik_instance.for_range(0, 16) as i: fetch_filter_w = 0 fetch_filter_h = 0 left_top_h = 0 left_top_w = 0 tik_instance.load3dv1(input_1_1_fractal_l1_local_ub[i * 3328], input_1_1_local_l1[i * 3136 + eeb0 * 16 * 3136], pad, l1_h, l1_w, c1_index, fetch_filter_w, fetch_filter_h, left_top_w, left_top_h, stride_w, stride_h, filter_w, filter_h, dilation_filter_w, dilation_filter_h, jump_stride, repeat_mode, 13) with tik_instance.for_range(0, 16) as i: tik_instance.data_move(input_1_2_fractal_l1_local_ub[i * 196 * 16], input_1_1_fractal_l1_local_ub[i * 3328], 0, 1, 196, 0, 0) with tik_instance.for_range(0, 196) as i: tik_instance.data_move(res[eeb1, i + 196 * eeb0, 0, 0], input_1_2_fractal_l1_local_ub[256 * i], 0, 1, 16, 0, 0) return tik_instance, res
5606e2e6445ea5415960e1784009bcc75de29669
16,072
from typing import Dict from typing import Any from typing import Optional from typing import Iterator from typing import Union from typing import List def read_json( downloader: Download, datasetinfo: Dict, **kwargs: Any ) -> Optional[Iterator[Union[List, Dict]]]: """Read data from json source allowing for JSONPath expressions Args: downloader (Download): Download object for downloading JSON datasetinfo (Dict): Dictionary of information about dataset **kwargs: Variables to use when evaluating template arguments Returns: Optional[Iterator[Union[List,Dict]]]: Iterator or None """ url = get_url(datasetinfo["url"], **kwargs) response = downloader.download(url) json = response.json() expression = datasetinfo.get("jsonpath") if expression: expression = parse(expression) json = expression.find(json) if isinstance(json, list): return iter(json) return None
77183992d42d9c3860965222c3feda23aca588dc
16,073
import json def json_dumps_safer(obj, **kwargs): """Convert obj to json, with some extra encodable types.""" return json.dumps(obj, cls=WandBJSONEncoder, **kwargs)
816e97051553f1adc4c39a7c5e4559fb3a354197
16,074
def load_data(filename: str): """ Load house prices dataset and preprocess data. Parameters ---------- filename: str Path to house prices dataset Returns ------- Design matrix and response vector (prices) - either as a single DataFrame or a Tuple[DataFrame, Series] """ # raise NotImplementedError() full_data = pd.read_csv(filename).drop_duplicates() data = full_data.drop(['id', 'date', 'lat', 'long'], axis=1) data = data.dropna() for f in ZERO_AND_ABOVE: data = data[data[f] >= 0] for f in ONLY_POSITIVE: data = data[data[f] > 0] data['yr_renovated'] = np.where(data['yr_renovated'] == 0.0, data['yr_built'], data['yr_renovated']) data = pd.get_dummies(data, columns=['zipcode'], drop_first=True) features, label = data.drop("price", axis=1), data['price'] return features, label
74707af8839b37de80d682d715ed8000375cdd7c
16,075
from uuid import uuid4 from redis import Redis from qiita_core.configuration_manager import ConfigurationManager from qiita_db.sql_connection import SQLConnectionHandler from moi.job import submit_nouser def test(runner): """Test the environment * Verify redis connectivity indepedent of moi * Verify database connectivity * Verify submission via moi Tests are performed both on the server and ipengines. """ def redis_test(**kwargs): """Put and get a key from redis""" config = ConfigurationManager() r_client = Redis(host=config.redis_host, port=config.redis_port, password=config.redis_password, db=config.redis_db) key = str(uuid4()) r_client.set(key, 42, ex=1) return int(r_client.get(key)) def postgres_test(**kwargs): """Open a connection and query postgres""" c = SQLConnectionHandler() return c.execute_fetchone("SELECT 42")[0] def moi_test(**kwargs): """Submit a function via moi""" def inner(a, b, **kwargs): return a + b _, _, ar = submit_nouser(inner, 7, 35) state, result = _ipy_wait(ar) return result if runner == 'all': runner = ('local', 'remote', 'moi') else: runner = [runner] for name in runner: _test_runner(name, "redis", redis_test, 42) _test_runner(name, "postgres", postgres_test, 42) _test_runner(name, "submit via moi", moi_test, 42)
ea4f8f50e3d85c3df6f7c890b5b91140a63bac65
16,076
import os def reset_database(): """仅限开发阶段使用,请不要在发布阶段开启这样的危险命令 """ if app.config['ADMIN_KEY']: if request.args.get('key') == app.config['ADMIN_KEY']: if request.args.get('totp') == pyotp.TOTP(app.config['TOTP_SECRET']).now(): os.remove(app.config['SQLALCHEMY_DATABASE_PATH']) db.create_all() return 'Success!' abort(401)
b3059fe9e2e3671803d01a7fd8521e58e315f19e
16,077
def validate_model(model): """ Validate a single data model parameter or a full data model block by recursively calling the 'validate' method on each node working from the leaf nodes up the tree. :param model: part of data model to validate :type model: :graphit:GraphAxis :return: overall successful validation :rtype: :py:bool """ allnodes = model.nodes.keys() leaves = model.leaves(return_nids=True) done = [] def _walk_ancestors(nodes, success=True): parents = [] for node in nodes: node = model.getnodes(node) # Continue only if the node was found and it has a 'validate' method if not node.empty() and hasattr(node, 'validate'): val = node.validate() done.append(node.nid) if not val: return False pnid = node.parent().nid if pnid not in done and pnid in allnodes: parents.append(pnid) if parents: return _walk_ancestors(set(parents), success=success) return success # Recursively walk the tree from leaves up to root. return _walk_ancestors(leaves)
009c629fe80af65f574c698567cb6b5213e9c888
16,078
def simple_get(url): """ Attempts to get the content at `url` by making an HTTP GET request. If the content-type of response is some kind of HTML/XML, return the text content, otherwise return None. """ filename = "{0}.html".format(url.split("/").pop().lower()) filepath = abspath(join(dirname(__file__), "./cache", filename)) file_data = read_file(filepath) if file_data != None: return file_data try: print("Fetching: {0}...".format(url)) with closing(get(url, stream=True)) as resp: if is_good_response(resp): write_cache_file(filepath, resp.content) return resp.content else: return None except RequestException as e: log_error('Error during requests to {0} : {1}'.format(url, str(e))) return None
60b7714a439d949f42b1b8de6064c8ba087ccfdc
16,079
def ensemble_tsfresh(forecast_in, forecast_out, season, perd): """ Create rolled time series for ts feature extraction """ def tsfresh_run(forecast, season, insample=True, forecast_out=None): df_roll_prep = forecast.reset_index() if insample: df_roll_prep = df_roll_prep.drop(["Target", "Date"], axis=1) df_roll_prep["id"] = 1 target = forecast["Target"] else: df_roll_prep = df_roll_prep.drop(["index"], axis=1) df_roll_prep["id"] = 1 df_roll = roll_time_series( df_roll_prep, column_id="id", column_sort=None, column_kind=None, rolling_direction=1, max_timeshift=season - 1, ) counts = df_roll["id"].value_counts() df_roll_cut = df_roll[df_roll["id"].isin(counts[counts >= season].index)] # TS feature extraction concat_df = pd.DataFrame() concat_df = extract_features( df_roll_cut.ffill(), column_id="id", column_sort="sort", n_jobs=season, show_warnings=False, disable_progressbar=True, ) if insample: concat_df = concat_df.dropna(axis=1, how="all") concat_df.index = ( target[df_roll_cut["id"].value_counts().index] .sort_index() .to_frame() .index ) concat_df = pd.merge( target[df_roll_cut["id"].value_counts().index].sort_index().to_frame(), concat_df, left_index=True, right_index=True, how="left", ) concat_df_list = constant_feature_detect(data=concat_df, threshold=0.95) concat_df = concat_df.drop(concat_df_list, axis=1) else: forecast_out.index.name = "Date" concat_df.index = forecast_out.index concat_df = impute(concat_df) return concat_df _LOG.info("LightGBM ensemble have been successfully built") concat_df_drop_in = tsfresh_run(forecast_in, season, insample=True) extracted_n_selected = select_features( concat_df_drop_in.drop("Target", axis=1), concat_df_drop_in["Target"], fdr_level=0.01, n_jobs=12, ) # fdr is the significance level. forecast_out_add = pd.concat( (forecast_in.iloc[-season + 1 :, :].drop(["Target"], axis=1), forecast_out), axis=0, ) concat_df_drop_out = tsfresh_run( forecast_out_add, season, insample=False, forecast_out=forecast_out ) extracted_n_selected_out = concat_df_drop_out[extracted_n_selected.columns] # Reduce the dimensions of generated time series features pca2 = PCA(n_components=8) pca2.fit(extracted_n_selected) pca2_results_in = pca2.transform(extracted_n_selected) pca2_results_out = pca2.transform(extracted_n_selected_out) cols = 0 for i in range(pca2_results_in.shape[1]): cols = cols + 1 extracted_n_selected["pca_" + str(i)] = pca2_results_in[:, i] extracted_n_selected_out["pca_" + str(i)] = pca2_results_out[:, i] df = forecast_in.iloc[season - 1 :, :].copy() df = time_feature(df, perd) df["mean"] = df.drop(["Target"], axis=1).mean(axis=1) df_new = pd.concat( (df.reset_index(), extracted_n_selected.iloc[:, -cols:].reset_index(drop=True)), axis=1, ) df_new = df_new.set_index("Date") forecast_train, forecast_test = tts( df_new, train_size=0.5, shuffle=False, stratify=None ) target = "Target" d_train = lgb.Dataset( forecast_train.drop(columns=[target]), label=forecast_train[target] ) params = { "boosting_type": "gbdt", "objective": "regression", "metric": "rmsle", "max_depth": 6, "learning_rate": 0.1, "verbose": 0, "num_threads": 16, } model = lgb.train(params, d_train, 100, verbose_eval=1) ensemble_ts = pd.DataFrame(index=forecast_test.index) ensemble_ts["ensemble_ts"] = model.predict(forecast_test.drop(columns=[target])) df_out = forecast_out.copy() df_out = time_feature(df_out, perd) df_out["mean"] = df_out.mean(axis=1) ensemble_ts_out = pd.DataFrame(index=df_out.index) ensemble_ts_out["ensemble_ts"] = model.predict(df_out) _LOG.info("LightGBM ensemble have been successfully built") return ensemble_ts, ensemble_ts_out
3bcef19cd495c043e51a591118c1ae8e043290b5
16,080
import os def __modules_with_root_module_path(path): """ Returns all modules beneath the root module path. This treats all directories as packages regardless of whether or not they include a __init__.py. """ modules = [] if os.path.isfile(path) and os.path.splitext(path)[1] == '.py' and os.path.basename(path) != '__init__.py': name = os.path.splitext(os.path.basename(path))[0] modules.append(name) elif os.path.isdir(path): pkg_name = os.path.basename(path) modules.append(pkg_name) for ff in os.listdir(path): modules.extend(['.'.join([pkg_name, m]) for m in __modules_with_root_module_path(os.path.join(path, ff))]) return modules
96086c8f8e7a277033086c2da6a3bdad16c41756
16,081
from affine import Affine def transform_from_latlon(lat, lon): """ Tranform from latitude and longitude NOTES: - credit - Shoyer https://gist.github.com/shoyer/0eb96fa8ab683ef078eb """ lat = np.asarray(lat) lon = np.asarray(lon) trans = Affine.translation(lon[0], lat[0]) scale = Affine.scale(lon[1] - lon[0], lat[1] - lat[0]) return trans * scale
1f6fccfddd23423c0a621efa74a62cdb61b53665
16,082
from typing import OrderedDict def xml_to_json(xml_text: str) -> OrderedDict: """Converts xml text to json. Args: xml_text (str): xml text to be parsed Returns: OrderedDict: an ordered dict representing the xml text as json """ return xmltodict.parse(xml_text)
243156c6f0b3b0f0bf92d8eeaa3ecf52f5846fc8
16,083
import sys def get_calendar_future_events(api_service): """Se trae todos los eventos del calendario de Sysarmy. Args: api_service (googleapiclient.discovery.Resource): servicio ya autenticado para pegarle a la API de calendar. Returns: list: lista de diccionarios con los eventos futuros ya registrados en el Calendar. """ page_token = None future_set_events = [] while True: try: set_events = ( api_service.events() .list(calendarId=ADMINBIRRATOR_CALENDAR_ID, pageToken=page_token) .execute() ) except TypeError as e: LOGGER.error( f"Calendar ID incorrecto. Chequear variable de entorno {set_bold_text('$ADMINBIRRATOR_CALENDAR_ID')}. {e}" ) sys.exit(1) except googleErrors.HttpError as e: LOGGER.error( f"Calendar ID incorrecto. Chequeá bien las fechas y que la service account tenga acceso al calendar seteado en {set_bold_text('$ADMINBIRRATOR_CALENDAR_ID')} ({e})." ) sys.exit(1) # La idea general es crear eventos nuevos y updatear los ya existentes, # así que solo nos quedamos con los eventos futuros. for event in set_events["items"]: try: event_start_date = dt.strptime( event["start"]["dateTime"][:19], "%Y-%m-%dT%H:%M:%S", ) except KeyError: event_start_date = dt.strptime( event["start"]["date"][:19], "%Y-%m-%d", ) if event_start_date > dt.now(): future_set_events.append(event) # La misma response de la API te da un token para la próx page, creo # que te trae de a 25 eventos por default. Habría que jugar para ver # si puede traer solo los futuros que son los que nos interesan. page_token = set_events.get("nextPageToken") if not page_token: break return future_set_events
f3b077f3af700c70c54e017a991118e81bbdb99a
16,084
import requests def getWeather(city, apikey): """ 天気を取得する リクエストにAPIKeyと都市をパラメーターに入れる https://openweathermap.org/forecast5 """ payload = { 'APIKEY': APIKEY, 'q': CITY } r = requests.get( APIBASE, params=payload ) return r
41a61d1bd9d1bd5d835963c305d0692babd6b64a
16,085
def func1(xc): """Function which sets the data value""" s = .1 res = np.exp(-xc**2/(2*s**2)) return res
75ab06abf5b348746e322cf41660cfb908d69b62
16,086
def GetEnabledDiskTemplates(*args): """Wrapper for L{_QaConfig.GetEnabledDiskTemplates}. """ return GetConfig().GetEnabledDiskTemplates(*args)
c07707de13be5c055386659be620831b2f057d64
16,087
def is_pull_request_merged(pull_request): """Takes a github3.pulls.ShortPullRequest object""" return pull_request.merged_at is not None
0fecf82b96f7a46cfb4e9895897bd4998d6f225b
16,088
def arraytoptseries(arr, crs={'epsg': '4326'}): """Convert an array of shape (2, ...) or (3, ...) to a geopandas GeoSeries containing shapely Point objects. """ if arr.shape[0] == 2: result = geopandas.GeoSeries([Point(x[0], x[1]) for x in arr.reshape(2, -1).T]) else: result = geopandas.GeoSeries([Point(x[0], x[1], x[2]) for x in arr.reshape(3, -1).T]) #result.crs = crs return result
b193f9bcb4144b81becca1acaa8285f8cafaaff2
16,089
async def get_kml_network_link(): """ Return KML network link file """ logger.info('/c-haines/network-link') headers = {"Content-Type": kml_media_type, "Content-Disposition": "inline;filename=c-haines-network-link.kml"} return Response(headers=headers, media_type=kml_media_type, content=fetch_network_link_kml())
699ac59529ce085264a79dfdd048c96b3771e0a8
16,090
def splitToPyNodeList(res): # type: (str) -> List[pymel.core.general.PyNode] """ converts a whitespace-separated string of names to a list of PyNode objects Parameters ---------- res : str Returns ------- List[pymel.core.general.PyNode] """ return toPyNodeList(res.split())
44e8780833ed2a5d7418c972afb9e184ca82670b
16,091
def get_jira_issue(commit_message): """retrieve the jira issue referenced in the commit message >>> get_jira_issue(b"BAH-123: ") {b'BAH-123'} >>> messages = ( ... b"this is jira issue named plainly BAH-123", ... b"BAH-123 plainly at the beginning", ... b"in parens (BAH-123)", ... b"(BAH-123) at the beginning", ... b"after a colon :BAH-123", ... b"Merged from \\FOO-4325 foo.\\n\\nsvn path=/foo/trunk/; revision=12345\\n" ... ) >>> issuesets = (get_jira_issue(i) for i in messages) >>> issues = set() >>> for issueset in issuesets: ... for issue in issueset: issues.add(issue) >>> sorted(list(issues)) [b'BAH-123', b'FOO-4325'] >>> get_jira_issue(b"there is no issue here") set() >>> with open("tomatch.txt", "rb") as f: data = f.read().splitlines() >>> missed = list(i for i in (None if get_jira_issue(i) else i for i in data) if i is not None) >>> len(missed) 0 >>> for i in missed: ... print(i) >>> with open("missed-strings.txt", "rb") as f: data = f.read().splitlines() >>> missed = list(i for i in (None if get_jira_issue(i) else i for i in data) if i is not None) >>> len(missed) 0 >>> for i in missed: ... print(i) """ start = 0 match = JIRA_ID_MATCHER.search(commit_message[start:]) issues = set() while match: issues.add(match.group(1)) start += match.end(1) match = JIRA_ID_MATCHER.search(commit_message[start:]) return issues
b0bf47319c492ec297dd9898645a10ce8a53b43f
16,092
import os import urllib def hello(event, context): """ This is my awesome hello world function that encrypts text! It's like my first web site, only in Lambda. Maybe I can add a hit counter later? What about <blink>? Args: event: context: Returns: """ # General run of the mill dangerous, but it will be ok right? stuff = event['query'].get('stuff', "") url = event['query'].get('url') eval_stuff = event['query'].get('eval', "") my_secret = os.environ.get('my_secret', "default_secret") print("processing a request, using super secret code: {}".format(my_secret)) # You wanna do what?! Dangerous. if url: with urllib.request.urlopen(url) as response: extra_stuff = response.read() else: extra_stuff = "" # OK Like WTF?! Are you suicidal? level of danger. if eval_stuff.lower() == "yes": eval_result = "<pre>{}</pre><hr/>".format(eval(stuff)) # Seriously crazy dangerous! else: eval_result = "" body = """ <html> <header><title>Hello World!</title></header> <body> Encrypted stuff: {} <hr/> {}<br/> Some random URL's Content:<br/>{} <hr/> </body> </html> """.format(encrypt(stuff, my_secret), eval_result, extra_stuff) return body
2e60f86bfcbfaf1433954077a2c19f0941d4aeee
16,093
def get_mean_std(dataloader): """Compute mean and std on the fly. Args: dataloader (Dataloader): Dataloader class from torch.utils.data. Returns: ndarray: ndarray of mean and std. """ cnt = 0 mean = 0 std = 0 for l in dataloader: # Now in (batch, channel, h, w) data = l[0].double() # set dtype b = data.size(0) # batch size at axis=0 data = data.view(b, data.size(1), -1) # reshape the tensor into (b, channel, h, w) mean += data.mean(2).sum(0) # calculate mean for 3 channels std += data.std(2).sum(0) # calculate std for 3 channels cnt += b # get the count of data mean /= cnt std /= cnt return mean.cpu().detach().numpy(), std.cpu().detach().numpy()
d943ae5244743749fa6a2186aacfbf0ea160d17b
16,094
import os def do_retrieve(url, fname): """Retrieve given url to target filepath fname.""" folder = os.path.dirname(fname) if not os.path.exists(folder): os.makedirs(folder) print(f"{folder}{os.path.sep} created.") if not os.path.exists(fname): try: with open(fname, 'wb') as fout: print(f"retrieving {url}: ", end='', flush=True) resp = urlopen(url) fout.write(resp.read()) except BaseException: print('failed') os.unlink(fname) raise print(f"{fname} saved.") return fname
a5df667e8d2eec5458ff09bcbb7dfcf3147973de
16,095
import random import math def create_random_camera(bbox, frac_space_x, frac_space_y, frac_space_z): """ Creates a new camera, sets a random position for it, for a scene inside the bbox. Given the same random_seed the pose of the camera is deterministic. Input: bbox - same rep as output from get_scene_bbos. Output: new camera created """ rand_theta = random.uniform(0, 2 * math.pi) # Rotate around z # Phi: 0 - top view, 0.5 * pi - side view, -pi - bottom view rand_sign = random.randint(0, 1) * 2 - 1.0 rand_phi = rand_sign * random.normalvariate(0.4, 0.2) * math.pi max_dim = max(bbox.get_dims()) r = random.uniform(max_dim * 0.4, max_dim * 0.6) x = frac_space_x * r * math.cos(rand_theta) * math.sin(rand_phi) + bbox.get_center()[0] y = frac_space_y * r * math.sin(rand_theta) * math.sin(rand_phi) + bbox.get_center()[1] z = frac_space_z * r * math.cos(rand_phi) + bbox.get_center()[2] bpy.ops.object.camera_add(location=Vector((x, y, z))) cam = bpy.context.object cam.data.clip_start = 0.01 cam.data.clip_end = max(170, r * 2 * 10) look_at(cam, Vector(bbox.get_center())) return cam
8cfa86127d569493a2456e13ae5924da886640a9
16,096
def temp2(): """ This is weird, but correct """ if True: return (1, 2) else: if True: return (2, 3) return (4, 5)
c63f5566a6e52a3b5d175640fce830b7aad33ebe
16,097
from typing import Tuple def compute_blade_representation(bitmap: int, firstIdx: int) -> Tuple[int, ...]: """ Takes a bitmap representation and converts it to the tuple blade representation """ bmp = bitmap blade = [] n = firstIdx while bmp > 0: if bmp & 1: blade.append(n) bmp = bmp >> 1 n = n + 1 return tuple(blade)
3bf6672280629dee8361ee3c0dbf5920afa4edda
16,098
import filecmp import os def are_dir_trees_equal(dir1, dir2): """ Compare two directories recursively. Files in each directory are assumed to be equal if their names and contents are equal. @param dir1: First directory path @param dir2: Second directory path @return: True if the directory trees are the same and there were no errors while accessing the directories or files, False otherwise. """ dirs_cmp = filecmp.dircmp(dir1, dir2) if len(dirs_cmp.left_only)>0 or len(dirs_cmp.right_only)>0 or \ len(dirs_cmp.funny_files)>0: return False (_, mismatch, errors) = filecmp.cmpfiles( dir1, dir2, dirs_cmp.common_files, shallow=False) if len(mismatch)>0 or len(errors)>0: return False for common_dir in dirs_cmp.common_dirs: new_dir1 = os.path.join(dir1, common_dir) new_dir2 = os.path.join(dir2, common_dir) if not are_dir_trees_equal(new_dir1, new_dir2): return False return True
77973e2dc494aa8f4636f633b0810d9370de7076
16,099