content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def showresults(options=''):
"""
Generate and plot results from a kima run.
The argument `options` should be a string with the same options as for
the kima-showresults script.
"""
# force correct CLI arguments
args = _parse_args(options)
plots = []
if args.rv:
plots.append('6')
if args.planets:
plots.append('1')
if args.orbital:
plots.append('2'); plots.append('3')
if args.gp:
plots.append('4'); plots.append('5')
if args.extra:
plots.append('7')
for number in args.plot_number:
plots.append(number)
try:
evidence, H, logx_samples = postprocess(plot=args.diagnostic)
except IOError as e:
print(e)
sys.exit(1)
res = KimaResults(list(set(plots)))
show() # render the plots
# __main__.__file__ doesn't exist in the interactive interpreter
if not hasattr(__main__, '__file__'):
return res | 0c5c944dc21e0abf808c258d8993f6133a254701 | 22,041 |
import re
def convert_as_number(symbol: str) -> float:
"""
handle cases:
' ' or '' -> 0
'10.95%' -> 10.95
'$404,691,250' -> 404691250
'$8105.52' -> 8105.52
:param symbol: string
:return: float
"""
result = symbol.strip()
if len(result) == 0:
return 0
result = re.sub('[%$, *]', '', result)
return float(result) | cea1d6e894fa380ecf6968d5cb0ef1ce21b73fac | 22,042 |
def smiles_dict():
"""Store SMILES for compounds used in test cases here."""
smiles = {
"ATP": "Nc1ncnc2c1ncn2[C@@H]1O[C@H](COP(=O)(O)OP(=O)(O)OP(=O)(O)O)[C"
+ "@@H](O)[C@H]1O",
"ADP": "Nc1ncnc2c1ncn2[C@@H]1O[C@H](COP(=O)(O)OP(=O)(O)O)[C@@H](O)[C" + "@H]1O",
"meh": "CCC(=O)C(=O)O",
"l_ala": "C[C@H](N)C(=O)O",
"d_ala": "C[C@@H](N)C(=O)O",
"FADH": "Cc1cc2c(cc1C)N(CC(O)C(O)C(O)COP(=O)(O)OP(=O)(O)OCC1OC(n3cnc"
+ "4c(N)ncnc43)C(O)C1O)c1nc(O)nc(O)c1N2",
"S-Adenosylmethionine": "C[S+](CC[C@H](N)C(=O)O)C[C@H]1O[C@@H](n2cnc"
+ "3c(N)ncnc32)[C@H](O)[C@@H]1O",
}
return smiles | 080373bdfb250f57e20e0e2b89702ac07c430f69 | 22,044 |
def prepare_parser() -> ArgumentParser:
"""Create all CLI parsers/subparsers."""
# Handle core parser args
parser = ArgumentParser(
description="Learning (Hopefully) Safe Agents in Gridworlds"
)
handle_parser_args({"core": parser}, "core", core_parser_configs)
# Handle environment subparser args
env_subparsers = parser.add_subparsers(
help="Types of gridworld environments", dest="env_alias"
)
env_subparsers.required = True
env_parsers = {}
for env_name in ENV_MAP:
env_parsers[env_name] = env_subparsers.add_parser(env_name)
handle_parser_args(env_parsers, env_name, env_parser_configs)
# Handle agent subparser args
agent_subparsers = {}
for env_name, env_parser in env_subparsers.choices.items():
agent_parser_configs = deepcopy(stashed_agent_parser_configs)
agent_subparsers[env_name] = env_parser.add_subparsers(
help="Types of agents", dest="agent_alias"
)
agent_subparsers[env_name].required = True
agent_parsers = {}
for agent_name in AGENT_MAP:
agent_parsers[agent_name] = agent_subparsers[env_name].add_parser(
agent_name
)
handle_parser_args(agent_parsers, agent_name, agent_parser_configs)
return parser | c0a42abf56f3c82ae09ef2459aae49fded71e9f0 | 22,045 |
def import_google(authsub_token, user):
"""
Uses the given AuthSub token to retrieve Google Contacts and
import the entries with an email address into the contacts of the
given user.
Returns a tuple of (number imported, total number of entries).
"""
contacts_service = gdata.contacts.service.ContactsService()
contacts_service.auth_token = authsub_token
contacts_service.UpgradeToSessionToken()
entries = []
feed = contacts_service.GetContactsFeed()
entries.extend(feed.entry)
next_link = feed.GetNextLink()
while next_link:
feed = contacts_service.GetContactsFeed(uri=next_link.href)
entries.extend(feed.entry)
next_link = feed.GetNextLink()
total = 0
imported = 0
for entry in entries:
name = entry.title.text
for e in entry.email:
email = e.address
total += 1
try:
Contact.objects.get(user=user, email=email)
except Contact.DoesNotExist:
Contact(user=user, name=name, email=email).save()
imported += 1
return imported, total | 768b900ceac60cc69d1906ef915fdace8b6d0982 | 22,046 |
def getGpsTime(dt):
"""_getGpsTime returns gps time (seconds since midnight Sat/Sun) for a datetime
"""
total = 0
days = (dt.weekday()+ 1) % 7 # this makes Sunday = 0, Monday = 1, etc.
total += days*3600*24
total += dt.hour * 3600
total += dt.minute * 60
total += dt.second
return(total) | 30f0fa562cf88ca2986c3346b4111dcb18b1cb34 | 22,047 |
from datetime import datetime
def validate_date(date, flash_errors=True):
"""
Validates date string. Format should be YYYY-MM-DD. Flashes errors if
flash_errors is True.
"""
try:
datetime.datetime.strptime(date, '%Y-%m-%d')
except ValueError:
if flash_errors:
flask.flash('Invalid date provided. Make sure dates are in YYYY-MM-DD format.')
return False
return True | ed3e45c3232da8d994f854001a3be852180681e0 | 22,049 |
def generate_error_map(image, losses, box_lenght):
"""
Function to overlap an error map to an image
Args:
image: input image
losses: list of losses, one for each masked part of the flow.
Returs:
error_map: overlapped error_heatmap and image.
"""
box_lenght = int(box_lenght)
# Assert that everything is correct
num_boxes = int(image.shape[0] / box_lenght) * int(image.shape[1] / box_lenght)
assert(num_boxes ==len(losses))
img_width = int(np.floor(image.shape[1] / box_lenght) * box_lenght)
img_height = int(np.floor(image.shape[0] / box_lenght) * box_lenght)
image = image[:img_height, :img_width]
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
heatmap = np.ones_like(image[:,:,0])
res_heatmap = np.reshape(heatmap, (box_lenght, box_lenght, num_boxes))
res_heatmap = res_heatmap * np.array(losses)
heatmap = np.zeros((img_height, img_width))
# ugly for loop, unable to solve atm
i = 0
for y in np.arange(0, img_height, step=box_lenght):
for x in np.arange(0, img_width, step=box_lenght):
# convert to x,y coordinates
heatmap[y: y+box_lenght, x: x+box_lenght] = res_heatmap[:,:,i]
i+=1
heatmap = np.asarray(heatmap / np.max(heatmap) * 255, dtype=np.uint8)
heatmap_img = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
final = cv2.addWeighted(heatmap_img, 0.5, postprocess_image(image), 0.5, 0)
return final | b4b8a8207a90226caba0c5f5be4c322dc6181a42 | 22,050 |
def get_order(oid): # noqa: E501
"""Gets an existing order by order id
# noqa: E501
:param oid:
:type oid: str
:rtype: Order
"""
oid = int(oid)
msg = "error retrieving order"
ret_code = 400
if oid in orders:
msg = {"status": f"order retrieved", "order": orders[oid], "oid": oid}
ret_code = 200
else:
msg = f"Order: {oid} could not be found"
ret_code = 404
return msg, ret_code | d95051e027994b0bd7837859a3e7fd8106f4a07e | 22,051 |
import operator
def most_recent_assembly(assembly_list):
"""Based on assembly summaries find the one submitted the most recently"""
if assembly_list:
return sorted(assembly_list, key=operator.itemgetter('submissiondate'))[-1] | 1d7ecf3a1fa862e421295dda0ba3d89863f33b0f | 22,052 |
import re
def dict_from_xml_text(xml_text, fix_ampersands=False):
"""
Convert an xml string to a dictionary of values
:param xml_text: valid xml string
:param fix_ampersands: additionally replace & to & encoded value before parsing to etree
:return: dictionary of data
"""
if fix_ampersands:
xml_text = re.sub(r'&', '&', xml_text)
root = Etree.fromstring(xml_text)
return dict_from_etree(root) | fc008f9c9ef23640ed09adef3320eb549506988d | 22,053 |
def find_encryption_key(loop_size, subject_number):
"""Find encryption key from the subject_number and loop_size."""
value = 1
for _ in range(loop_size):
value = transform_value(value, subject_number)
return value | cb9f58d065e4bc227ac034357981eac070834f73 | 22,054 |
import math
def carla_rotation_to_RPY(carla_rotation):
"""
Convert a carla rotation to a roll, pitch, yaw tuple
Considers the conversion from left-handed system (unreal) to right-handed
system (ROS).
Considers the conversion from degrees (carla) to radians (ROS).
:param carla_rotation: the carla rotation
:type carla_rotation: carla.Rotation
:return: a tuple with 3 elements (roll, pitch, yaw)
:rtype: tuple
"""
roll = -math.radians(carla_rotation.roll)
pitch = -math.radians(carla_rotation.pitch)
yaw = -math.radians(carla_rotation.yaw)
return (roll, pitch, yaw) | 30f4cd3facd3696d3f0daf25f2723d82541c89f2 | 22,055 |
from bempp.api.integration.triangle_gauss import rule
from scipy.sparse import coo_matrix
from scipy.sparse.linalg import aslinearoperator
def compute_p1_curl_transformation(space, quadrature_order):
"""
Compute the transformation of P1 space coefficients to surface curl values.
Returns two lists, curl_transforms and curl_transforms_transpose. The jth matrix
in curl_transforms is the map from P1 function space coefficients (or extended space
built upon P1 type spaces) to the jth component of the surface curl evaluated at the
quadrature points, multiplied with the quadrature weights and integration element. The
list curl_transforms_transpose contains the transpose of these matrices.
"""
grid_data = space.grid.data("double")
number_of_elements = space.grid.number_of_elements
quad_points, weights = rule(quadrature_order)
npoints = len(weights)
dof_count = space.localised_space.grid_dof_count
data, iind, jind = compute_p1_curl_transformation_impl(
grid_data,
space.support_elements,
space.normal_multipliers,
quad_points,
weights,
)
curl_transforms = []
curl_transforms_transpose = []
for index in range(3):
curl_transforms.append(
aslinearoperator(
coo_matrix(
(data[index, :], (iind, jind)),
shape=(npoints * number_of_elements, dof_count),
).tocsr()
)
@ aslinearoperator(space.map_to_localised_space)
@ aslinearoperator(space.dof_transformation)
)
curl_transforms_transpose.append(
aslinearoperator(space.dof_transformation.T)
@ aslinearoperator(space.map_to_localised_space.T)
@ aslinearoperator(
coo_matrix(
(data[index, :], (jind, iind)),
shape=(dof_count, npoints * number_of_elements),
).tocsr()
)
)
return curl_transforms, curl_transforms_transpose | 6ad147c23fb9c153d534b742443c6238c1dc6f33 | 22,056 |
def _get_individual_id(individual) -> str:
"""
Returns a unique identifier as string for the given individual.
:param individual: The individual to get the ID for.
:return: A string representing the ID.
"""
if hasattr(individual, "identifier") and (isinstance(individual.identifier, list) and
len(individual.identifier) > 0 and
type(individual.identifier[0]) in [int, str]) or (
type(individual.identifier) in [int, str]):
return str(individual.identifier[0])
else:
return str(individual) | e606d5eef7bfbcd0d76113c20f450be3c1e6b2ab | 22,057 |
def get_self_url(d):
"""Returns the URL of a Stash resource"""
return d.html_url if isinstance(d, PullRequest) else d["links"]["self"][0]["href"] | b7b88b49a1035ec7d15e4d0f7c864e489dccbf70 | 22,058 |
def shift(arr, *args):
"""
**WARNING**
The ``Si`` arguments can be either a single array containing the shift
parameters for each dimension, or a sequence of up to eight scalar shift
values. For arrays of more than one dimension, the parameter ``Sn`` specifies
the shift applied to the n-th dimension
while this implementation supports lists as ``arr`` argument, to match the
style of IDL, the IDLpy bridge does *not* support lists, and returns it
*unchanged*!
If ``SHIFT`` is used in combination with ``FFT``, maybe you should look at
``np.fft.fftshift``.
"""
arr = np.asarray(arr) # accept list (see note above)
if arr.ndim==1:
if len(args)==1:
return np.roll(arr, _int_list(args))
elif arr.ndim==2:
if len(args)==1:
return np.roll(arr, _int_list(args))
if len(args)==2:
return np.roll(arr, _int_list(args)[::-1], axis=(0,1))
elif arr.ndim==3:
if len(args)==1:
return np.roll(arr, args)
elif len(args)==1:
raise IDLException("Incorrect number of arguments.")
elif len(args)==3:
return np.roll(arr, args[::-1], axis=(0,1,2))
raise NotImplementedError("shift does only work for 1D, 2D and 3D arrays.") | b70a430039ba369d99a3c2edea920430eb27dfa1 | 22,059 |
def ConvertToMeaningfulConstant(pset):
""" Gets the flux constant, and quotes it above some energy minimum Emin """
# Units: IF TOBS were in yr, it would be smaller, and raw const greater.
# also converts per Mpcs into per Gpc3
units=1e9*365.25
const = (10**pset[7])*units # to cubic Gpc and days to year
Eref=1e40 #erg per Hz
Emin=10**pset[0]
Emax=10**pset[1]
gamma=pset[3]
factor=(Eref/Emin)**gamma - (Emax/Emin)**gamma
const *= factor
return const | e393f66e72c3a43e91e9975f270ac7dcf577ad3e | 22,060 |
def hw_uint(value):
"""return HW of 16-bit unsigned integer in two's complement"""
bitcount = bin(value).count("1")
return bitcount | 9a9c6017d3d6da34c4e9132a0c89b267aa263ace | 22,061 |
import copy
def clip(x,xmin,xmax) :
""" clip input array so that x<xmin becomes xmin, x>xmax becomes xmax, return clipped array
"""
new=copy.copy(x)
bd=np.where(x<xmin)[0]
new[bd]=xmin
bd=np.where(x>xmax)[0]
new[bd]=xmax
return new | 502d8c5ce0427283bf02ead2d5f5c90c69e14638 | 22,062 |
def profile_from_creds(creds, keychain, cache):
"""Create a profile from an AWS credentials file."""
access_key, secret_key = get_keys_from_file(creds)
arn = security_store(access_key, secret_key, keychain, cache)
return profile_from_arn(arn) | 62923959ce115bef776b32c3ed93a19aef93f9c3 | 22,063 |
import torch
def test(model, test_loader, dynamics, fast_init):
"""
Evaluate prediction accuracy of an energy-based model on a given test set.
Args:
model: EnergyBasedModel
test_loader: Dataloader containing the test dataset
dynamics: Dictionary containing the keyword arguments
for the relaxation dynamics on u
fast_init: Boolean to specify if fast feedforward initilization
is used for the prediction
Returns:
Test accuracy
Mean energy of the model per batch
"""
test_E, correct, total = 0.0, 0.0, 0.0
for x_batch, y_batch in test_loader:
# Prepare the new batch
x_batch, y_batch = x_batch.to(config.device), y_batch.to(config.device)
# Extract prediction as the output unit with the strongest activity
output = predict_batch(model, x_batch, dynamics, fast_init)
prediction = torch.argmax(output, 1)
with torch.no_grad():
# Compute test batch accuracy, energy and store number of seen batches
correct += float(torch.sum(prediction == y_batch.argmax(dim=1)))
test_E += float(torch.sum(model.E))
total += x_batch.size(0)
return correct / total, test_E / total | 41c6e20fbcf11e76437a175f7b4662ec24b85773 | 22,065 |
def get_cluster_activite(cluster_path_csv, test, train=None):
"""Get cluster activite csv from patch cluster_path_csv.
Merge cluster with station_id
Parameters
----------
cluster_path_csv : String :
Path to export df_labels DataFrame
test : pandas.DataFrame
train : pandas.DataFrame
Returns
-------
If train is not None:
Return 2 pandas.DataFrame train, test
Else:
Return 1 pandas.DataFrame test
"""
cluster_activite = read_cluster_activite(cluster_path_csv=cluster_path_csv)
test = test.merge(cluster_activite, left_on='station_id', right_on='id_station', how='left')
test.drop('id_station', axis=1, inplace=True)
if len(train) > 0:
train = train.merge(cluster_activite, left_on='station_id', right_on='id_station', how='left')
train.drop('id_station', axis=1, inplace=True)
return train, test
else:
return test | f8dbb1bb2149a58f8617f76cfdf1a4943f500314 | 22,066 |
from typing import Optional
def get_ssl_policy(name: Optional[str] = None,
project: Optional[str] = None,
opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetSSLPolicyResult:
"""
Gets an SSL Policy within GCE from its name, for use with Target HTTPS and Target SSL Proxies.
For more information see [the official documentation](https://cloud.google.com/compute/docs/load-balancing/ssl-policies).
## Example Usage
```python
import pulumi
import pulumi_gcp as gcp
my_ssl_policy = gcp.compute.get_ssl_policy(name="production-ssl-policy")
```
:param str name: The name of the SSL Policy.
:param str project: The ID of the project in which the resource belongs. If it
is not provided, the provider project is used.
"""
__args__ = dict()
__args__['name'] = name
__args__['project'] = project
if opts is None:
opts = pulumi.InvokeOptions()
if opts.version is None:
opts.version = _utilities.get_version()
__ret__ = pulumi.runtime.invoke('gcp:compute/getSSLPolicy:getSSLPolicy', __args__, opts=opts, typ=GetSSLPolicyResult).value
return AwaitableGetSSLPolicyResult(
creation_timestamp=__ret__.creation_timestamp,
custom_features=__ret__.custom_features,
description=__ret__.description,
enabled_features=__ret__.enabled_features,
fingerprint=__ret__.fingerprint,
id=__ret__.id,
min_tls_version=__ret__.min_tls_version,
name=__ret__.name,
profile=__ret__.profile,
project=__ret__.project,
self_link=__ret__.self_link) | 1b4248a6a8dbbd735a006cc99de5d5e855c195ca | 22,067 |
def getitem(self, item):
"""Select elements at the specific index.
Parameters
----------
item : Union[slice, int, dragon.Tensor]
The index.
Returns
-------
dragon.Tensor
The output tensor.
"""
gather_args = []
if isinstance(item, Tensor):
if item.dtype == 'bool' or item.dtype == 'uint8':
if context.executing_eagerly():
return OpLib.execute('BooleanMask', [self, item])
return OpLib.add('BooleanMask', [self, item])
elif item.dtype == 'int64':
gather_args.append((0, item))
else:
raise TypeError('Unsupported index type: ' + item.dtype)
if isinstance(item, tuple):
for i, elem in enumerate(item):
if isinstance(elem, Tensor):
if elem.dtype == 'int64':
gather_args.append((i, elem))
else:
raise TypeError('Unsupported index type: ' + elem.dtype)
if len(gather_args) == 1:
axis, index = gather_args[0]
if context.executing_eagerly():
return OpLib.execute(
'Gather', [self, index], axis=axis, end_axis=None)
return OpLib.add('Gather', [self, index], axis=axis)
elif len(gather_args) > 1:
raise NotImplementedError
starts, sizes = _process_index(item)
if context.executing_eagerly():
return OpLib.execute(
'Slice', [self], ndim=len(starts), starts=starts, sizes=sizes)
return OpLib.add('Slice', [self], starts=starts, sizes=sizes) | 0f7a4659a9fc3ac34fcee8f402fada7f622e11f0 | 22,068 |
import torch
def zdot_batch(x1, x2):
"""Finds the complex-valued dot product of two complex-valued multidimensional Tensors, preserving the batch dimension.
Args:
x1 (Tensor): The first multidimensional Tensor.
x2 (Tensor): The second multidimensional Tensor.
Returns:
The dot products along each dimension of x1 and x2.
"""
batch = x1.shape[0]
return torch.reshape(torch.conj(x1)*x2, (batch, -1)).sum(1) | 5e57dd7a693c420dd1b0c5c01523eb2f0fb85253 | 22,069 |
def serve_values(name, func, args, kwargs, serving_values, fallback_func, backend_name=None, implemented_funcs=None, supported_kwargs=None,): #249 (line num in coconut source)
"""Determines the parameter value to serve for the given parameter
name and kwargs. First checks for unsupported funcs or kwargs, then
uses the following algorithm:
1. if name in serving_values, use serving_values[name], else
2. if guess in kwargs, use the guess, else
3. call fallback_func(name, func, *args, **kwargs).""" #265 (line num in coconut source)
# validate arguments
if implemented_funcs is not None: #267 (line num in coconut source)
assert backend_name is not None, "serve_values expects a backend_name argument when doing func validation" #268 (line num in coconut source)
if func not in implemented_funcs: #269 (line num in coconut source)
raise ValueError("the {_coconut_format_0} backend does not implement the {_coconut_format_1} function".format(_coconut_format_0=(backend_name), _coconut_format_1=(func))) #270 (line num in coconut source)
if supported_kwargs is not None: #271 (line num in coconut source)
assert backend_name is not None, "serve_values expects a backend_name argument when doing kwargs validation" #272 (line num in coconut source)
unsupported_kwargs = set(kwargs) - set(supported_kwargs) #273 (line num in coconut source)
if unsupported_kwargs: #274 (line num in coconut source)
raise ValueError("the {_coconut_format_0} backend does not support {_coconut_format_1} option(s)".format(_coconut_format_0=(backend_name), _coconut_format_1=(unsupported_kwargs))) #275 (line num in coconut source)
# determine value
_coconut_match_to_4 = serving_values #278 (line num in coconut source)
_coconut_match_check_6 = False #278 (line num in coconut source)
_coconut_match_set_name_value = _coconut_sentinel #278 (line num in coconut source)
if _coconut.isinstance(_coconut_match_to_4, _coconut.abc.Mapping): #278 (line num in coconut source)
_coconut_match_temp_19 = _coconut_match_to_4.get(name, _coconut_sentinel) #278 (line num in coconut source)
if _coconut_match_temp_19 is not _coconut_sentinel: #278 (line num in coconut source)
_coconut_match_set_name_value = _coconut_match_temp_19 #278 (line num in coconut source)
_coconut_match_check_6 = True #278 (line num in coconut source)
if _coconut_match_check_6: #278 (line num in coconut source)
if _coconut_match_set_name_value is not _coconut_sentinel: #278 (line num in coconut source)
value = _coconut_match_set_name_value #278 (line num in coconut source)
if _coconut_match_check_6: #278 (line num in coconut source)
return value #279 (line num in coconut source)
else: #280 (line num in coconut source)
_coconut_match_to_3 = kwargs #280 (line num in coconut source)
_coconut_match_check_5 = False #280 (line num in coconut source)
_coconut_match_set_name_guess = _coconut_sentinel #280 (line num in coconut source)
if _coconut.isinstance(_coconut_match_to_3, _coconut.abc.Mapping): #280 (line num in coconut source)
_coconut_match_temp_18 = _coconut_match_to_3.get("guess", _coconut_sentinel) #280 (line num in coconut source)
if _coconut_match_temp_18 is not _coconut_sentinel: #280 (line num in coconut source)
_coconut_match_set_name_guess = _coconut_match_temp_18 #280 (line num in coconut source)
_coconut_match_check_5 = True #280 (line num in coconut source)
if _coconut_match_check_5: #280 (line num in coconut source)
if _coconut_match_set_name_guess is not _coconut_sentinel: #280 (line num in coconut source)
guess = _coconut_match_set_name_guess #280 (line num in coconut source)
if _coconut_match_check_5: #280 (line num in coconut source)
return guess #281 (line num in coconut source)
else: #282 (line num in coconut source)
return fallback_func(name, func, *args, **kwargs) | 7ad5847df2d3904da7786ab0c77e5a0d9e6380cd | 22,072 |
def find_peaks(sig):
"""
Find hard peaks and soft peaks in a signal, defined as follows:
- Hard peak: a peak that is either /\ or \/.
- Soft peak: a peak that is either /-*\ or \-*/.
In this case we define the middle as the peak.
Parameters
----------
sig : np array
The 1d signal array.
Returns
-------
hard_peaks : ndarray
Array containing the indices of the hard peaks.
soft_peaks : ndarray
Array containing the indices of the soft peaks.
"""
if len(sig) == 0:
return np.empty([0]), np.empty([0])
tmp = sig[1:]
tmp = np.append(tmp, [sig[-1]])
tmp = sig - tmp
tmp[np.where(tmp>0)] = 1
tmp[np.where(tmp==0)] = 0
tmp[np.where(tmp<0)] = -1
tmp2 = tmp[1:]
tmp2 = np.append(tmp2, [0])
tmp = tmp-tmp2
hard_peaks = np.where(np.logical_or(tmp==-2, tmp==+2))[0] + 1
soft_peaks = []
for iv in np.where(np.logical_or(tmp==-1,tmp==+1))[0]:
t = tmp[iv]
i = iv+1
while True:
if i==len(tmp) or tmp[i] == -t or tmp[i] == -2 or tmp[i] == 2:
break
if tmp[i] == t:
soft_peaks.append(int(iv + (i - iv)/2))
break
i += 1
soft_peaks = np.array(soft_peaks, dtype='int') + 1
return hard_peaks, soft_peaks | 486b30d506e3d79dc7df8d2503d3bc626b6791f5 | 22,073 |
def evenly_divides(x, y):
"""Returns if [x] evenly divides [y]."""
return int(y / x) == y / x | dbf8236454e88805e71aabf58d9b7ebd2b2a6393 | 22,074 |
def proxmap_sort(arr: list, key: Function = lambda x: x, reverse: bool = False) -> list:
"""Proxmap sort is a sorting algorithm that works by partitioning an array of data items, or keys, into a number of
"subarrays" (termed buckets, in similar sorts). The name is short for computing a "proximity map," which indicates
for each key K the beginning of a subarray where K will reside in the final sorted order. Keys are placed into each
subarray using insertion sort."""
# Time complexity:
# Worst: O(n^2)
# Average: Theta(n)
# Best: Omega(n)
# Stable, Not in place
_check_key_arr(arr, key, IntFloatList)
if not arr:
return []
_min = key(min(arr, key=key))
_max = key(max(arr, key=key))
hit_counts = [0 for _ in range(int(_min), int(_max + 1))]
for item in arr:
hit_counts[int(key(item)) - int(_min)] += 1
proxmaps = []
last_hit_count = 0
for hc in hit_counts:
if hc == 0:
proxmaps.append(None)
else:
proxmaps.append(last_hit_count)
last_hit_count += hc
locations = []
for item in arr:
locations.append(proxmaps[int(key(item)) - int(_min)])
final = [None for _ in range(len(locations))]
for idx, item in enumerate(arr):
loc = locations[idx]
if final[loc] is None:
final[loc] = item
else:
none_ptr = loc
while final[none_ptr] is not None:
none_ptr += 1
for ptr in range(none_ptr - 1, loc - 1, -1):
if final[ptr] > item:
final[ptr], final[ptr + 1] = final[ptr + 1], final[ptr]
else:
final[ptr + 1] = item
break
else:
final[loc] = item
if reverse:
final = final[::-1]
return final | 9673abbad9320df5d83ebef9658c84ab21b5f021 | 22,075 |
import pathlib
def load_footings_file(file: str):
"""Load footings generated file.
:param str file: The path to the file.
:return: A dict representing the respective file type.
:rtype: dict
.. seealso::
:obj:`footings.testing.load_footings_json_file`
:obj:`footings.testing.load_footings_xlsx_file`
"""
file_ext = pathlib.Path(file).suffix
return _load_footings_file(file_ext=file_ext, file=file) | 929cf95e631e8be4dcc8f18c36a0b545593fed69 | 22,076 |
def coupler(*, coupling: float = 0.5) -> SDict:
"""a simple coupler model"""
kappa = coupling ** 0.5
tau = (1 - coupling) ** 0.5
sdict = reciprocal(
{
("in0", "out0"): tau,
("in0", "out1"): 1j * kappa,
("in1", "out0"): 1j * kappa,
("in1", "out1"): tau,
}
)
return sdict | dfd40ce9a8c61ffe8382b461c41d4034c7342570 | 22,077 |
def new_client(request):
"""
Function that allows a new client to register itself.
:param request: Who has made the request.
:return: Response 200 with user_type, state, message and token, if everything goes smoothly. Response 400 if there
is some kind of request error. Response 403 for forbidden. Or Response 404 for not found error.
"""
if "email" not in request.data or "first_name" not in request.data or "last_name" not in request.data or "password" not in request.data:
return Response({"state": "Error", "message": "Missing parameters"}, status=HTTP_400_BAD_REQUEST)
state, message, username = queries.add_client(request.data)
state, status = ("Success", HTTP_200_OK) if state else ("Error", HTTP_400_BAD_REQUEST)
return Response({"state": state, "message": message}, status=status) | d05eeb55527cfe355fb237751693749ed707a598 | 22,078 |
from datetime import datetime
def parse_time_interval_seconds(time_str):
""" Convert a given time interval (e.g. '5m') into the number of seconds in that interval
:param time_str: the string to parse
:returns: the number of seconds in the interval
:raises ValueError: if the string could not be parsed
"""
cal = parsedatetime.Calendar()
parse_result = cal.parseDT(time_str, sourceTime=datetime.min)
if parse_result[1] == 0:
raise ValueError("Could not understand time {time}".format(time=time_str))
return (parse_result[0] - datetime.min).total_seconds() | 6c07ee52b8dd727e96dae8a58f59c1bd043f3627 | 22,079 |
from typing import List
from typing import Dict
def _map_class_names_to_probabilities(probabilities: List[float]) -> Dict[str, float]:
"""Creates a dictionary mapping readable class names to their corresponding probabilites.
Args:
probabilities (List[float]): A List of the probabilities for the best predicted classes.
Returns:
Dict[str, float]: A dictionary mapping all readable class names to their corresponding probabilites.
"""
classes = load_classes()
return {
class_name: probability
for class_name, probability in zip(classes, probabilities)
} | 51096015e4c291b7d3357822ea13de3354b9b12f | 22,080 |
import collections
def order_items(records):
"""Orders records by ASC SHA256"""
return collections.OrderedDict(sorted(records.items(), key=lambda t: t[0])) | a9117282974fcea8d0d99821ea6293df82889b30 | 22,081 |
def G2DListMutatorRealGaussianGradient(genome, **args):
""" A gaussian gradient mutator for G2DList of Real
Accepts the *rangemin* and *rangemax* genome parameters, both optional.
The difference is that this multiplies the gene by gauss(1.0, 0.0333), allowing
for a smooth gradient drift about the value.
"""
if args["pmut"] <= 0.0:
return 0
height, width = genome.getSize()
elements = height * width
mutations = args["pmut"] * elements
mu = constants.CDefGaussianGradientMU
sigma = constants.CDefGaussianGradientSIGMA
if mutations < 1.0:
mutations = 0
for i in xrange(genome.getHeight()):
for j in xrange(genome.getWidth()):
if utils.randomFlipCoin(args["pmut"]):
final_value = genome[i][j] * abs(prng.normal(mu, sigma))
final_value = min(final_value, genome.getParam("rangemax", constants.CDefRangeMax))
final_value = max(final_value, genome.getParam("rangemin", constants.CDefRangeMin))
genome.setItem(i, j, final_value)
mutations += 1
else:
for it in xrange(int(round(mutations))):
which_x = prng.randint(0, genome.getWidth())
which_y = prng.randint(0, genome.getHeight())
final_value = genome[which_y][which_x] * abs(prng.normal(mu, sigma))
final_value = min(final_value, genome.getParam("rangemax", constants.CDefRangeMax))
final_value = max(final_value, genome.getParam("rangemin", constants.CDefRangeMin))
genome.setItem(which_y, which_x, final_value)
return int(mutations) | 52e739fe4c490064dbec5fe0b6a7443570cada0e | 22,082 |
def convert_group_by(response, field):
"""
Convert to key, doc_count dictionary
"""
if not response.hits.hits:
return []
r = response.hits.hits[0]._source.to_dict()
stats = r.get(field)
result = [{"key": key, "doc_count": count} for key, count in stats.items()]
result_sorted = sorted(
result, key=lambda i: i["doc_count"], reverse=True
) # sort by count
return result_sorted | 888321f300d88bd6f150a4bfda9420e920bab510 | 22,083 |
def _parse_single(argv, args_array, opt_def_dict, opt_val):
"""Function: _parse_single
Description: Processes a single-value argument in command line
arguments. Modifys the args_array by adding a dictionary key and a
value.
NOTE: Used by the arg_parse2() to reduce the complexity rating.
Arguments:
(input) argv -> Arguments from the command line.
(input) args_array -> Array of command line options and values.
(input) opt_def_dict -> Dict with options and default values.
(input) opt_val -> List of options allow None or 1 value for option.
(output) argv -> Arguments from the command line.
(output) args_array -> Array of command line options and values.
"""
argv = list(argv)
args_array = dict(args_array)
opt_def_dict = dict(opt_def_dict)
opt_val = list(opt_val)
# If no value in argv for option and it is not an integer.
if len(argv) < 2 or (argv[1][0] == "-" and not gen_libs.chk_int(argv[1])):
if argv[0] in opt_val:
args_array[argv[0]] = None
else:
# See if default value is available for argument.
args_array = arg_default(argv[0], args_array, opt_def_dict)
else:
args_array[argv[0]] = argv[1]
argv = argv[1:]
return argv, args_array | 5b44a891400b545940c9be3913af9710c37df898 | 22,085 |
def compOverValueTwoSets(setA={1, 2, 3, 4}, setB={3, 4, 5, 6}):
"""
task 0.5.9
comprehension whose value is the intersection of setA and setB
without using the '&' operator
"""
return {x for x in (setA | setB) if x in setA and x in setB} | 2b222d6c171e0170ace64995dd64c352f03aa99b | 22,086 |
def d_beta():
"""
Real Name: b'D BETA'
Original Eqn: b'0.05'
Units: b''
Limits: (None, None)
Type: constant
b''
"""
return 0.05 | 32aa0e1fbf31761a36657b314a7c4bc4bf99889e | 22,087 |
import csv
def _get_data(filename):
"""
:param filename: name of a comma-separated data file with two columns: eccentricity and some other
quantity x
:return: eccentricities, x
"""
eccentricities = []
x = []
with open(filename) as file:
r = csv.reader(file)
for row in r:
eccentricities.append(float(row[0]))
x.append(float(row[1]))
return np.array(eccentricities), np.array(x) | f8c86f0f1c9bf2ee91108382cd6da6b98445bf1f | 22,088 |
def longestCommonPrefix(strs):
"""
:type strs: List[str]
:rtype: str
"""
if len(strs) > 0:
common = strs[0]
for str in strs[1:]:
while not str.startswith(common):
common = common[:-1]
return common
else:
return '' | a860d46df8dbaeaab90bb3bc69abb68484216b5b | 22,089 |
def analytics_dashboard(request):
"""Main page for analytics related things"""
template = 'analytics/analyzer/dashboard.html'
return render(request, template) | 068913de2f2b1a381f73395e53e2e06db7d02e8e | 22,090 |
def insert(shape, axis=-1):
"""Shape -> shape with one axis inserted"""
return shape[:axis] + (1,) + shape[axis:] | 8c786df81b76cfa5dae78b51d16b2ee302263c53 | 22,091 |
import re
def simplify_text(text):
"""
:param text:
:return:
"""
no_html = re.sub('<[^<]+?>', '', str(text))
stripped = re.sub(r"[^a-zA-Z]+", "", str(no_html))
clean = stripped.lower()
return clean | a867bd08a642843df9d8a2a517f1b0c13ea145b1 | 22,092 |
def is_numpy_convertable(v):
"""
Return whether a value is meaningfully convertable to a numpy array
via 'numpy.array'
"""
return hasattr(v, "__array__") or hasattr(v, "__array_interface__") | 163da2cf50e2172e1fc39ae8afd7c4417b02a852 | 22,093 |
def grower(array):
"""grows masked regions by one pixel
"""
grower = np.array([[0,1,0],[1,1,1],[0,1,0]])
ag = convolve2d(array , grower , mode = "same")
ag = ag != 0
return ag | b6ae0c9eeb96ec13a5f9ef7a282ec428b5d536ad | 22,094 |
def SMAPELossFlat(*args, axis=-1, floatify=True, **kwargs):
"""Same as `smape`, but flattens input and target.
DOES not work yet
"""
return BaseLoss(smape, *args, axis=axis, floatify=floatify, is_2d=False, **kwargs) | 470e8f34cfd5fd6a867f9991e8babcad25fa03ff | 22,095 |
from datetime import datetime
def get_fake_datetime(now: datetime):
"""Generate monkey patch class for `datetime.datetime`, whose now() and utcnow() always returns given value."""
class FakeDatetime:
"""Fake datetime.datetime class."""
@classmethod
def now(cls):
"""Return given value."""
return now
@classmethod
def utcnow(cls):
"""Return given value."""
return now
return FakeDatetime | f268640c6459f4eb88fd9fbe72acf8c9d806d3bc | 22,096 |
from typing import List
def generate_order_by(fields: List[str], sort_orders: List[str], table_pre: str = '') -> str:
"""Функция генерит ORDER BY запрос для SQL
Args:
fields: список полей для сортировки
sort_orders: список (asc\desc) значений
table_pre: префикс таблицы в запросе
Return:
sql ORBER BY
"""
def _get_str_order(field: str, sort_order: str, table_pre: str = '') -> str:
"""Функция генерации одной FIELD ASC"""
if sort_order.upper() not in ['ASC', 'DESC']:
raise PGsqlOrderByExcept(f'sort_order value should consist of ASC or DESC but he {sort_order}')
if table_pre:
return f"{table_pre}.{field} {sort_order.upper()}"
return f"{field} {sort_order.upper()}"
if not fields:
return ''
orders_clause = []
for i, f in enumerate(fields):
orders_clause.append(_get_str_order(f, sort_orders[i], table_pre))
return "ORDER BY " + ", ".join(orders_clause) | 863d348d2bd844718e056c6767e1f282405b3edf | 22,097 |
def toUnicode(glyph, isZapfDingbats=False):
"""Convert glyph names to Unicode, such as 'longs_t.oldstyle' --> u'ſt'
If isZapfDingbats is True, the implementation recognizes additional
glyph names (as required by the AGL specification).
"""
# https://github.com/adobe-type-tools/agl-specification#2-the-mapping
#
# 1. Drop all the characters from the glyph name starting with
# the first occurrence of a period (U+002E; FULL STOP), if any.
glyph = glyph.split(".", 1)[0]
# 2. Split the remaining string into a sequence of components,
# using underscore (U+005F; LOW LINE) as the delimiter.
components = glyph.split("_")
# 3. Map each component to a character string according to the
# procedure below, and concatenate those strings; the result
# is the character string to which the glyph name is mapped.
result = [_glyphComponentToUnicode(c, isZapfDingbats)
for c in components]
return "".join(result) | 42bfee52db47f466308dfc4782a609776f6b90b9 | 22,098 |
def list_watchlist_items_command(client, args):
"""
Get specific watchlist item or list of watchlist items.
:param client: (AzureSentinelClient) The Azure Sentinel client to work with.
:param args: (dict) arguments for this command.
"""
# prepare the request
alias = args.get('watchlist_alias', '')
url_suffix = f'watchlists/{alias}/watchlistItems'
item_id = args.get('watchlist_item_id')
if item_id:
url_suffix += f'/{item_id}'
# request
result = client.http_request('GET', url_suffix)
# prepare result
raw_items = [result] if item_id else result.get('value')
items = [{'WatchlistAlias': alias, **watchlist_item_data_to_xsoar_format(item)} for item in raw_items]
readable_output = tableToMarkdown('Watchlist items results', items,
headers=['ID', 'ItemsKeyValue'],
headerTransform=pascalToSpace,
removeNull=True)
return CommandResults(
readable_output=readable_output,
outputs_prefix='AzureSentinel.WatchlistItem',
outputs=items,
outputs_key_field='ID',
raw_response=result
) | 1567bd56c90e9560fcae583d8360e4299620c266 | 22,099 |
def blit_array(surface, array):
"""
Generates image pixels from a JNumeric array.
Arguments include destination Surface and array of integer colors.
JNumeric required as specified in numeric module.
"""
if not _initialized:
_init()
if len(array.shape) == 2:
data = numeric.transpose(array, (1,0))
data = numeric.ravel(data)
else:
data = array[:,:,0]*0x10000 | array[:,:,1]*0x100 | array[:,:,2]
data = numeric.transpose(data, (1,0))
data = numeric.ravel(data)
if not surface.getColorModel().hasAlpha():
surface.setRGB(0, 0, surface.width, surface.height, data, 0, surface.width)
else:
surf = Surface((surface.width,surface.height), BufferedImage.TYPE_INT_RGB)
surf.setRGB(0, 0, surface.width, surface.height, data, 0, surface.width)
g2d = surface.createGraphics()
g2d.drawImage(surf, 0, 0, None)
g2d.dispose()
return None | 850b6451ecc780fd163f574176a8c5683174046e | 22,100 |
def generate_IO_examples(program, N, L, V):
""" Given a programs, randomly generates N IO examples.
using the specified length L for the input arrays. """
input_types = program.ins
input_nargs = len(input_types)
# Generate N input-output pairs
IO = []
for _ in range(N):
input_value = [None]*input_nargs
for a in range(input_nargs):
minv, maxv = program.bounds[a]
if input_types[a] == int:
input_value[a] = np.random.randint(minv, maxv)
elif input_types[a] == [int]:
input_value[a] = list(np.random.randint(minv, maxv, size=L))
else:
raise Exception("Unsupported input type " + input_types[a] + " for random input generation")
output_value = program.fun(input_value)
IO.append((input_value, output_value))
assert (program.out == int and output_value <= V) or (program.out == [int] and len(output_value) == 0) or (program.out == [int] and max(output_value) <= V)
return IO | 4449974cf5a1bd04a89e5575fb48362da8fa1621 | 22,102 |
def secrecy_capacity(dist, rvs=None, crvs=None, rv_mode=None, niter=None, bound_u=None):
"""
The rate at which X and Y can agree upon a key with Z eavesdropping,
and no public communication.
Parameters
----------
dist : Distribution
The distribution of interest.
rvs : iterable of iterables, len(rvs) == 2
The indices of the random variables agreeing upon a secret key.
crvs : iterable
The indices of the eavesdropper.
rv_mode : str, None
Specifies how to interpret `rvs` and `crvs`. Valid options are:
{'indices', 'names'}. If equal to 'indices', then the elements of
`crvs` and `rvs` are interpreted as random variable indices. If
equal to 'names', the the elements are interpreted as random
variable names. If `None`, then the value of `dist._rv_mode` is
consulted, which defaults to 'indices'.
niter : int, None
The number of hops to perform during optimization.
bound_u : int, None
The bound to use on the size of the variable U. If none, use the
theoretical bound of |X|.
Returns
-------
sc : float
The secrecy capacity.
"""
a = secrecy_capacity_directed(dist, rvs[0], rvs[1], crvs, rv_mode=rv_mode,
niter=niter, bound_u=bound_u)
b = secrecy_capacity_directed(dist, rvs[1], rvs[0], crvs, rv_mode=rv_mode,
niter=niter, bound_u=bound_u)
return max([a, b]) | c55655847f9d9cf586bd4e274f72359d0241c349 | 22,104 |
def encrypt_message(partner, message):
"""
Encrypt a message
:param parner: Name of partner
:param message: Message as string
:return: Message as numbers
"""
matrix = get_encryption_matrix(get_key(get_private_filename(partner)))
rank = np.linalg.matrix_rank(matrix)
num_blocks = int(np.ceil(1.0 * len(message) / rank))
padded_message = message
for i in range(len(message), rank * num_blocks):
padded_message += ' '
encoded_message = string_to_numbers(padded_message)
encrypted_numbers = np.empty(rank * num_blocks, dtype=int)
rhs = np.empty(rank, dtype=int)
for b in range(num_blocks):
for i in range(rank):
rhs[i] = encoded_message[i + rank * b]
lhs = np.dot(matrix, rhs)
for i in range(rank):
encrypted_numbers[i + rank * b] = lhs[i]
return encrypted_numbers | e8e96f99f511afb3b91a9c264f8452e45b14e165 | 22,105 |
def create_event(title, start, end, capacity, location, coach, private):
"""Create event and submit to database"""
event = Class(title=title, start=start, end=end, capacity=capacity, location=location, coach=coach, free=capacity, private=private)
db.session.add(event)
db.session.commit()
return event | 4a1b6314eee362f6ae7f35685cb09fe969175c0b | 22,106 |
def regret_obs(m_list, inputs, true_ymin=0):
"""Immediate regret using past observations.
Parameters
----------
m_list : list
A list of GPy models generated by `OptimalDesign`.
inputs : instance of `Inputs`
The input space.
true_ymin : float, optional
The minimum value of the objective function.
Returns
-------
res : list
A list containing the values of the immediate regret for each
model in `m_list` using past observations:
$r(n) = min y_i - y_{true}$
where y_i are the observations recorded in the first `n`
iterations, and y_{true} the minimum of the objective function.
"""
res = np.zeros(len(m_list))
for ii, model in enumerate(m_list):
res[ii] = model.Y.min() - true_ymin
return res | e9cc2567f9740deae7b681cc754d20a387fbc894 | 22,107 |
import numpy
def pmat2cam_center(P):
"""
See Hartley & Zisserman (2003) p. 163
"""
assert P.shape == (3, 4)
determinant = numpy.linalg.det
# camera center
X = determinant([P[:, 1], P[:, 2], P[:, 3]])
Y = -determinant([P[:, 0], P[:, 2], P[:, 3]])
Z = determinant([P[:, 0], P[:, 1], P[:, 3]])
T = -determinant([P[:, 0], P[:, 1], P[:, 2]])
C_ = nx.transpose(nx.array([[X / T, Y / T, Z / T]]))
return C_ | f959eab9feeeafd90c3a2178b77d81e509ef1282 | 22,108 |
def _http_req(mocker):
"""Fixture providing HTTP Request mock."""
return mocker.Mock(spec=Request) | 651866118fd25909e50469cb92f35a9aa3a6d873 | 22,109 |
def transform_data(df, steps_per_floor_):
"""Transform original dataset.
:param df: Input DataFrame.
:param steps_per_floor_: The number of steps per-floor at 43 Tanner
Street.
:return: Transformed DataFrame.
"""
df_transformed = (
df
.select(
col('id'),
concat_ws(
' ',
col('first_name'),
col('second_name')).alias('name'),
(col('floor') * lit(steps_per_floor_)).alias('steps_to_desk')))
return df_transformed | 163bedd83315828001f4cca2abdc130a2a77a55a | 22,110 |
import logging
def get_client(bucket):
"""Get the Storage Client appropriate for the bucket.
Args:
bucket (str): Bucket including
Returns:
~Storage: Client for interacting with the cloud.
"""
try:
protocol, bucket_name = str(bucket).lower().split('://', 1)
except ValueError:
raise ValueError('Invalid storage bucket name: {}'.format(bucket))
logger = logging.getLogger('storage.get_client')
if protocol == 's3':
storage_client = S3Storage(bucket_name)
elif protocol == 'gs':
storage_client = GoogleStorage(bucket_name)
else:
errmsg = 'Unknown STORAGE_BUCKET protocol: %s'
logger.error(errmsg, protocol)
raise ValueError(errmsg % protocol)
return storage_client | 46a27b4a028daa927507f3e8b0d5aeb453fd302b | 22,111 |
def extract_text(xml_string):
"""Get text from the body of the given NLM XML string.
Parameters
----------
xml_string : str
String containing valid NLM XML.
Returns
-------
str
Extracted plaintext.
"""
paragraphs = extract_paragraphs(xml_string)
if paragraphs:
return '\n'.join(paragraphs) + '\n'
else:
return None | f3e80d960837d8663d9711bd9696644f00ba21e9 | 22,112 |
def search_organizations(search_term: str = None, limit: str = None):
"""
Looks up organizations by name & location.
:param search_term: e.g. "College of Nursing" or "Chicago, IL".
:param limit: The maximum number of matches you'd like returned - defaults to 10, maximum is 50.
:returns: String containing xml or an lxml element.
"""
return get_anonymous(
'searchOrganizations',
search_term=search_term,
limit=limit) | 5523f6278b4eff5618979ce942fb175b20042079 | 22,114 |
def call_math_operator(value1, value2, op, default):
"""Return the result of the math operation on the given values."""
if not value1:
value1 = default
if not value2:
value2 = default
if not pyd.is_number(value1):
try:
value1 = float(value1)
except Exception:
pass
if not pyd.is_number(value2):
try:
value2 = float(value2)
except Exception:
pass
return op(value1, value2) | da1a163e4079cfd885d8ca163939111c9291767b | 22,115 |
def addGems(ID, nbGems):
"""
Permet d'ajouter un nombre de gems à quelqu'un. Il nous faut son ID et le nombre de gems.
Si vous souhaitez en retirer mettez un nombre négatif.
Si il n'y a pas assez d'argent sur le compte la fonction retourne un nombre
strictement inférieur à 0.
"""
old_value = valueAt(ID, "gems", GF.dbGems)
new_value = int(old_value) + nbGems
if new_value >= 0:
updateField(ID, "gems", new_value, GF.dbGems)
print("DB >> Le compte de " + str(ID) + " est maintenant de: " + str(new_value))
else:
print("DB >> Il n'y a pas assez sur ce compte !")
return str(new_value) | 6f3778cec488138101a78a072591babb832d7f95 | 22,116 |
def BertzCT(mol, cutoff=100, dMat=None, forceDMat=1):
""" A topological index meant to quantify "complexity" of molecules.
Consists of a sum of two terms, one representing the complexity
of the bonding, the other representing the complexity of the
distribution of heteroatoms.
From S. H. Bertz, J. Am. Chem. Soc., vol 103, 3599-3601 (1981)
"cutoff" is an integer value used to limit the computational
expense. A cutoff value tells the program to consider vertices
topologically identical if their distance vectors (sets of
distances to all other vertices) are equal out to the "cutoff"th
nearest-neighbor.
**NOTE** The original implementation had the following comment:
> this implementation treats aromatic rings as the
> corresponding Kekule structure with alternating bonds,
> for purposes of counting "connections".
Upon further thought, this is the WRONG thing to do. It
results in the possibility of a molecule giving two different
CT values depending on the kekulization. For example, in the
old implementation, these two SMILES:
CC2=CN=C1C3=C(C(C)=C(C=N3)C)C=CC1=C2C
CC3=CN=C2C1=NC=C(C)C(C)=C1C=CC2=C3C
which correspond to differentk kekule forms, yield different
values.
The new implementation uses consistent (aromatic) bond orders
for aromatic bonds.
THIS MEANS THAT THIS IMPLEMENTATION IS NOT BACKWARDS COMPATIBLE.
Any molecule containing aromatic rings will yield different
values with this implementation. The new behavior is the correct
one, so we're going to live with the breakage.
**NOTE** this barfs if the molecule contains a second (or
nth) fragment that is one atom.
"""
atomTypeDict = {}
connectionDict = {}
numAtoms = mol.GetNumAtoms()
if forceDMat or dMat is None:
if forceDMat:
# nope, gotta calculate one
dMat = Chem.GetDistanceMatrix(mol, useBO=0, useAtomWts=0, force=1)
mol._adjMat = dMat
else:
try:
dMat = mol._adjMat
except AttributeError:
dMat = Chem.GetDistanceMatrix(mol, useBO=0, useAtomWts=0, force=1)
mol._adjMat = dMat
if numAtoms < 2:
return 0
bondDict, neighborList, vdList = _CreateBondDictEtc(mol, numAtoms)
symmetryClasses = _AssignSymmetryClasses(mol, vdList, dMat, forceDMat, numAtoms, cutoff)
# print('Symmm Classes:',symmetryClasses)
for atomIdx in range(numAtoms):
hingeAtomNumber = mol.GetAtomWithIdx(atomIdx).GetAtomicNum()
atomTypeDict[hingeAtomNumber] = atomTypeDict.get(hingeAtomNumber, 0) + 1
hingeAtomClass = symmetryClasses[atomIdx]
numNeighbors = vdList[atomIdx]
for i in range(numNeighbors):
neighbor_iIdx = neighborList[atomIdx][i]
NiClass = symmetryClasses[neighbor_iIdx]
bond_i_order = _LookUpBondOrder(atomIdx, neighbor_iIdx, bondDict)
# print('\t',atomIdx,i,hingeAtomClass,NiClass,bond_i_order)
if (bond_i_order > 1) and (neighbor_iIdx > atomIdx):
numConnections = bond_i_order * (bond_i_order - 1) / 2
connectionKey = (min(hingeAtomClass, NiClass), max(hingeAtomClass, NiClass))
connectionDict[connectionKey] = connectionDict.get(connectionKey, 0) + numConnections
for j in range(i + 1, numNeighbors):
neighbor_jIdx = neighborList[atomIdx][j]
NjClass = symmetryClasses[neighbor_jIdx]
bond_j_order = _LookUpBondOrder(atomIdx, neighbor_jIdx, bondDict)
numConnections = bond_i_order * bond_j_order
connectionKey = (min(NiClass, NjClass), hingeAtomClass, max(NiClass, NjClass))
connectionDict[connectionKey] = connectionDict.get(connectionKey, 0) + numConnections
if not connectionDict:
connectionDict = {'a': 1}
return _CalculateEntropies(connectionDict, atomTypeDict, numAtoms) | 0ca8119db47121dc22e0554e114e51ad916af455 | 22,117 |
def BOPTools_AlgoTools_CorrectRange(*args):
"""
* Correct shrunk range <aSR> taking into account 3D-curve resolution and corresp. tolerances' values of <aE1>, <aE2>
:param aE1:
:type aE1: TopoDS_Edge &
:param aE2:
:type aE2: TopoDS_Edge &
:param aSR:
:type aSR: IntTools_Range &
:param aNewSR:
:type aNewSR: IntTools_Range &
:rtype: void
* Correct shrunk range <aSR> taking into account 3D-curve resolution and corresp. tolerances' values of <aE>, <aF>
:param aE:
:type aE: TopoDS_Edge &
:param aF:
:type aF: TopoDS_Face &
:param aSR:
:type aSR: IntTools_Range &
:param aNewSR:
:type aNewSR: IntTools_Range &
:rtype: void
"""
return _BOPTools.BOPTools_AlgoTools_CorrectRange(*args) | 491b1930a017940137aa2a59c630f995f0fc8366 | 22,118 |
from typing import Tuple
def approx_min_k(operand: Array,
k: int,
reduction_dimension: int = -1,
recall_target: float = 0.95,
reduction_input_size_override: int = -1,
aggregate_to_topk: bool = True) -> Tuple[Array, Array]:
"""Returns min ``k`` values and their indices of the ``operand``.
Args:
operand : Array to search for min-k.
k : Specifies the number of min-k.
reduction_dimension: Integer dimension along which to search. Default: -1.
recall_target: Recall target for the approximation.
reduction_input_size_override : When set to a positive value, it overrides
the size determined by operands[reduction_dim] for evaluating the recall.
This option is useful when the given operand is only a subset of the
overall computation in SPMD or distributed pipelines, where the true input
size cannot be deferred by the operand shape.
aggregate_to_topk: When true, aggregates approximate results to top-k. When
false, returns the approximate results.
Returns:
Tuple[Array, Array] : Least k values and their indices of the inputs.
"""
if xc._version < 45:
aggregate_to_topk = True
return approx_top_k_p.bind(
operand,
k=k,
reduction_dimension=reduction_dimension,
recall_target=recall_target,
is_max_k=False,
reduction_input_size_override=reduction_input_size_override,
aggregate_to_topk=aggregate_to_topk) | e4716369b4371b27ccabaaa61d2157e513cf06ed | 22,120 |
def sitemap_host_xml():
"""Supplementary Sitemap XML for Host Pages"""
database_connection.reconnect()
hosts = ww_host.info.retrieve_all(database_connection)
sitemap = render_template("sitemaps/hosts.xml",
hosts=hosts)
return Response(sitemap, mimetype="text/xml") | 79b21d1465ef84c1cfaf192be0b2fa5bf07f1014 | 22,121 |
def WTC(df,N):
"""Within Topic Coherence Measure.
[Note]
It ignores a word which does not have trained word vector.
Parameters
----------
df : Word-Topic distribution K by V
where K is number of topics and V is number of words
N : Number of top N words
Returns
-------
total : WTC value of each topic (1 * K)
"""
df = df.iloc[:N,:]
total = []
for col in df.columns:
cos_val = 0
words = df[col].tolist()
for c in combinations(words,2):
# print(c)
try:
cos_val += 1-cosine(word2vec_model.get_vector(c[0]),
word2vec_model.get_vector(c[1]))
except:
pass
# print(c)
# print(cosine(word2glove[c[0]], word2glove[c[1]]))
print(col, cos_val)
total.append(cos_val)
return total | b5b50eef85f6e12c54c9ec16a2f7264aa057d344 | 22,122 |
def extract_static_override_features(
static_overrides):
"""Extract static feature override values.
Args:
static_overrides: A dataframe that contains the value for static overrides
to be passed to the GAM Encoders.
Returns:
A mapping from feature name to location and then to the override value.
This is a two-level dictionary of the format: {feature: {location: value}}
"""
static_overrides_features = dict()
for feature in set(static_overrides[constants.FEATURE_NAME_COLUMN]):
static_overrides_features[feature] = dict()
override_slice = static_overrides.loc[static_overrides[
constants.FEATURE_NAME_COLUMN] == feature]
for location in set(override_slice[constants.GEO_ID_COLUMN]):
override_sub_slice = override_slice.loc[override_slice[
constants.GEO_ID_COLUMN] == location]
static_overrides_features[feature][location] = override_sub_slice[
constants.FEATURE_MODIFIER_COLUMN].to_numpy()[0]
return static_overrides_features | 9425674eb2e0578ecbc926b249a6eb2f6afb37d0 | 22,123 |
def job_list_View(request):
"""
"""
job_list = Job.objects.filter()
paginator = Paginator(job_list, 10)
page_number = request.GET.get('page')
page_obj = paginator.get_page(page_number)
context = {
'page_obj': page_obj,
}
return render(request, 'jobapp/job-list.html', context) | a2928ea255ff3cb044462fc4ebf7c530bd54b2fb | 22,124 |
import json
def edit_schedule(request):
"""Edit automatic updates schedule"""
if request.method == "POST":
schedule = models.UpdateSchedule.objects.get()
def fun(query):
return [int(x.strip()) for x in query.split(" ") if x.strip() != ""]
schedule.text = json.dumps({
models.YoutubeChannel.PRIORITY_LOW: fun(request.POST["low"]),
models.YoutubeChannel.PRIORITY_MEDIUM: fun(request.POST["medium"]),
models.YoutubeChannel.PRIORITY_HIGH: fun(request.POST["high"]),
})
schedule.save()
return redirect("notifpy:settings") | c87ef4ff0088bf4d67a1078ffe11b4c723272a8a | 22,125 |
import math
def infection_formula(name_model, infectious_number, classroom_volume, classroom_ach):
""" Calculate infection rate of with/without a mask by selected model. """
if name_model == "wells_riley":
# Use wells riley model.
effect_mask = 1.0 / ((1.0 - config.EXHALATION_FILTRATION_EFFICIENCY) * (1.0 - config.RESPIRATION_FILTRATION_EFFICIENCY))
infection_rate_w_mask = 1.0 - math.exp(-infectious_number * config.QUANTUM_GENERATION_RATE * config.PULMONARY_VENTILATIION_RATE * (config.LESSON_TIME / 60) / (classroom_volume * classroom_ach * effect_mask))
infection_rate_wo_mask = 1.0 - math.exp(-infectious_number * config.QUANTUM_GENERATION_RATE * config.PULMONARY_VENTILATIION_RATE * (config.LESSON_TIME / 60) / (classroom_volume * classroom_ach))
else:
# Future Work: Add infection models for calculate infection rate.
infection_rate_w_mask = 0.0
infection_rate_wo_mask = 0.0
return infection_rate_w_mask, infection_rate_wo_mask | 99b14a88c4ed02716626d8bc037b3f54211caa2a | 22,126 |
def RetryWithBackoff(opts, fn, args=None, kwargs=None):
"""`fn` function must follow the interface suggested:
* it should return tuple <status, err> where
status - backoff status
err - error that happend in function to propogate it to caller."""
args = args or ()
kwargs = kwargs or {}
update_opts(opts)
count = 0
backoff = opts['backoff']
while True:
count += 1
status, err_or_rv = fn(*args, **kwargs)
print status, err_or_rv
if status == RETRY_BREAK:
return err_or_rv
if status == RETRY_RESET:
backoff = opts['backoff']
count = wait = 0
if status == RETRY_CONTINUE:
if opts['max_attempts'] > 0 and count >= opts['max_attempts']:
raise RetryMaxAttemptsError(
opts['max_attempts'], reason=err_or_rv)
wait = (backoff + backoff * retry_jitter) * opts['constant_factor']
print "RETRIED IN ... %s" % wait
if backoff > opts['max_backoff']:
backoff = opts['max_backoff']
gevent.sleep(wait) | bf040a93015f3a283ac858c8738dc6bd8c48b2af | 22,127 |
def noaa_api_formatter(raw, metrics=None, country_aggr=False):
"""Format the output of the NOAA API to the task-geo Data Model.
Arguments:
raw(pandas.DataFrame):Data to be formatted.
metrics(list[str]): Optional.List of metrics requested,valid metric values are:
TMIN: Minimum temperature.
TMAX: Maximum temperature.
TAVG: Average of temperature.
SNOW: Snowfall (mm).
SNWD: Snow depth (mm).
PRCP: Precipitation
country_aggr(bool): When True, only an aggregate for each date/country will be returned.
Returns:
pandas.DataFrame
"""
if metrics is None:
metrics = [metric.lower() for metric in DEFAULT_METRICS if metric in raw.columns]
data = raw.copy()
data.columns = [column.lower() for column in data.columns]
column_order = [
'latitude', 'longitude', 'elevation', 'country', 'name',
'date', 'station']
column_order.extend(metrics)
data.date = pd.to_datetime(data.date)
for column in ['tmax', 'tavg', 'tmin']:
if column in data.columns:
data[column] = data[column].astype(float)
if 'snwd' in data.columns:
data['snwd'] = data['snwd'].astype(float) / 1000
data.snwd.fillna(0, inplace=True)
if 'prcp' in data.columns:
data['prcp'] = data['prcp'].astype(float) / 1000
data.prcp.fillna(0, inplace=True)
data['country'] = data.station.str.slice(0, 2).apply(fips_to_name)
data = data[column_order]
if country_aggr:
aggregations = {}
if 'tmin' in metrics:
aggregations['tmin'] = np.min
if 'tmax' in metrics:
aggregations['tmax'] = np.max
agg_columns = list(aggregations.keys())
return data.groupby(['country', 'date'])[agg_columns].aggregate(aggregations).reset_index()
return data | 155b9a0cee72f85d6f5329a5a68aca4aa1dfe1eb | 22,128 |
def crop_wav(wav, center, radius):
"""
Crop wav on [center - radius, center + radius + 1], and pad 0 for out of range indices.
:param wav: wav
:param center: crop center
:param radius: crop radius
:return: a slice whose length is radius*2 +1.
"""
left_border = center - radius
right_border = center + radius + 1
if left_border < 0:
zeros = np.zeros(-left_border)
cropped_wav = np.concatenate([zeros, wav[0: right_border]])
elif right_border > len(wav):
zeros = np.zeros(right_border - len(wav))
cropped_wav = np.concatenate([wav[left_border: len(wav)], zeros])
else:
cropped_wav = wav[left_border: right_border]
assert len(cropped_wav) == radius * 2 + 1
return cropped_wav | 69a5a078f06b083694d5d5eb5328b63c70a6f17c | 22,129 |
def markdown(text: str) -> str:
"""Helper function to escape markdown symbols"""
return MD_RE.sub(r'\\\1', text) | 2cb5fb3f5cac2d5cc5b6d256c4a8357832f3e53e | 22,130 |
def import_sample(sample_name, db):
"""Import sample"""
cur = db.cursor()
cur.execute('select sample_id from sample where sample_name=?',
(sample_name, ))
res = cur.fetchone()
if res is None:
cur.execute('insert into sample (sample_name) values (?)',
(sample_name, ))
sample_id = cur.lastrowid
else:
sample_id = res[0]
return sample_id | c477a4f036951cac88789b59f361cf9397a0e9ee | 22,131 |
import torch
def change_background_color_balck_digit(images, old_background, new_background, new_background2=None, p=1):
"""
:param images: BCHW
:return:
"""
if new_background2 is None:
assert old_background == [0]
if not torch.is_tensor(new_background):
new_background = torch.tensor(new_background, dtype=images.dtype)
if images.max() <= 1 and new_background.max() > 1:
new_background /= 255
if images.size(1) == 1 and len(new_background) == 3:
images = images.expand(-1, 3, -1, -1)
else:
assert images.size(1) == len(new_background)
# raise NotImplementedError(images.size(), new_background)
images = images.clone()
new_background = new_background.view(-1, 1, 1)
n=images.size(0)
ch=images.size(1)
if (images.view(n,ch,-1).sum(2)==0).sum(1).sum()>n:
#when input is already colored (digit or background)
non_zero_ch_idx=torch.nonzero(images[0].view(ch,-1).sum(1)).squeeze() #torch.nonzero(images[0].view(n,ch,-1).sum(2))
non_zero_chnls = images[:,non_zero_ch_idx]
if len(non_zero_chnls.shape)==3:
non_zero_chnls=non_zero_chnls.unsqueeze(1)
else:
non_zero_chnls=non_zero_chnls[:,0].unsqueeze(1)
if torch.sum(non_zero_chnls.view(n,-1)==0)>torch.sum(non_zero_chnls.view(n,-1)==1):
#digit was previously colored
bg_ratio = images.max() - non_zero_chnls
bg = bg_ratio * new_background
return images + bg
else:
#background is previously colored
bg = (non_zero_chnls.expand(-1, 3, -1, -1)*new_background)
images*=images.max()-new_background
return images+bg
else:
#when input is greyscale
bg_ratio = images.max() - images
bg = bg_ratio * new_background
# imgs = images + bg
# print(images[:, 0, :, :].std().item(),images[:, 1, :, :].std().item(),images[:, 2, :, :].std().item())
# print(imgs[:, 0, :, :].std().item(), imgs[:, 1, :, :].std().item(), imgs[:, 2, :, :].std().item())
return bg #imgs
else:
assert old_background == [0]
if not torch.is_tensor(new_background):
new_background = torch.tensor(new_background, dtype=images.dtype)
if images.max() <= 1 and new_background.max() > 1:
new_background /= 255
if not torch.is_tensor(new_background2):
new_background2 = torch.tensor(new_background2, dtype=images.dtype)
if images.max() <= 1 and new_background2.max() > 1:
new_background2 /= 255
if images.size(1) == 1 and len(new_background) == 3:
images = images.expand(-1, 3, -1, -1)
else:
assert images.size(1) == len(new_background)
# raise NotImplementedError(images.size(), new_background)
images = images.clone()
new_background = new_background.view(-1, 1, 1)
new_background2 = new_background2.view(-1, 1, 1)
n=images.size(0)
ch=images.size(1)
if (images.view(n,ch,-1).sum(2)==0).sum(1).sum()>n:
raise NotImplementedError
#when input is already colored (digit or background)
non_zero_ch_idx=torch.nonzero(images[0].view(ch,-1).sum(1)).squeeze() #torch.nonzero(images[0].view(n,ch,-1).sum(2))
non_zero_chnls = images[:,non_zero_ch_idx]
if len(non_zero_chnls.shape)==3:
non_zero_chnls=non_zero_chnls.unsqueeze(1)
else:
non_zero_chnls=non_zero_chnls[:,0].unsqueeze(1)
if torch.sum(non_zero_chnls.view(n,-1)==0)>torch.sum(non_zero_chnls.view(n,-1)==1):
#digit was previously colored
bg_ratio = images.max() - non_zero_chnls
bg = bg_ratio * new_background
return images + bg
else:
#background is previously colored
bg = (non_zero_chnls.expand(-1, 3, -1, -1)*new_background)
images*=images.max()-new_background
return images+bg
else:
#when input is greyscale
bg_ratio = images.max() - images
idxs = torch.randperm(len(bg_ratio))
n_imgs=int(p*len(bg_ratio))
bg_ratio[idxs[:n_imgs]] *= new_background2
bg_ratio[idxs[n_imgs:]] *= new_background
# imgs = images + bg
# print(images[:, 0, :, :].std().item(),images[:, 1, :, :].std().item(),images[:, 2, :, :].std().item())
# print(imgs[:, 0, :, :].std().item(), imgs[:, 1, :, :].std().item(), imgs[:, 2, :, :].std().item())
return bg_ratio | f17f627616c75f3673d6ed043f0f36751ccde2a1 | 22,132 |
def render_sprites(sprites, scales, offsets, backgrounds, name="render_sprites"):
""" Render a scene composed of sprites on top of a background.
An scene is composed by scaling the sprites by `scales` and offseting them by offsets
(using spatial transformers), and merging the sprites and background together using per-sprite
alpha and importance channels.
Sprites are organized into a series of `flights`. Each flight can use a different shape for the sprite maps,
and there can be a different number of sprites in each flight.
The coordinate system for scales and offsets has (0, 0) at the image top-left and (1, 1) at the image bottom-right.
A sprite with scale (1, 1) and offset (0, 0) would occupy the whole output image.
Uses bilinear interpolation for the spatial transformer sections.
Args:
sprites: List of tensors of length `n_flights`, each of shape
(batch_size, sprite_height_i, sprite_width_i, n_channels+2)
The sprite maps in flight i are assumed to have shape (sprite_height_i, sprite_width_i).
The final two channels are the alpha and importance channels.
scales: Tensor of shape `[batch_size, n_sprites, 2]`
Amount to scale sprites by. Order is y, x. A value of 1 will have the sprite occupy the whole output image.
offsets: Tensor of shape `[batch_size, n_sprites, 2]`
Location of top-left corner of each sprite. Order is y, x.
backgrounds: Tensor of shape `[batch_size, output_height, output_width, n_channels]`
The background for each image.
name: Optional name of the op.
Returns:
Tensor giving the stitched images. Shape is
`(batch_size, output_height, output_width, n_channels)`, same as `backgrounds`.
Raises:
ImportError: if the wrapper generated during compilation is not present when
the function is called.
"""
with ops.name_scope(name, "render_sprites", [sprites, scales, offsets, backgrounds]):
sprites_tensor_list = [
ops.convert_to_tensor(s, name="sprites_flight_{}".format(i))
for i, s in enumerate(sprites)]
scales_tensor_list = [
ops.convert_to_tensor(s, name="scales_flight_{}".format(i))
for i, s in enumerate(scales)]
offsets_tensor_list = [
ops.convert_to_tensor(s, name="offsets_flight_{}".format(i))
for i, s in enumerate(offsets)]
backgrounds_tensor = ops.convert_to_tensor(backgrounds, name="backgrounds")
lib = render_sprites_so()
output = lib.render_sprites(
sprites_tensor_list, scales_tensor_list, offsets_tensor_list, backgrounds_tensor)
return output | c4210a3b1f123368c77d89fcf15634ead3d97c85 | 22,133 |
import ctypes
def load_shared_library(dll_path, lib_dir):
"""
Return the loaded shared library object from the dll_path and adding `lib_dir` to the path.
"""
# add lib path to the front of the PATH env var
update_path_environment(lib_dir)
if not exists(dll_path):
raise ImportError('Shared library does not exists: %(dll_path)r' % locals())
if not isinstance(dll_path, bytes):
# ensure that the path is not Unicode...
dll_path = fsencode(dll_path)
lib = ctypes.CDLL(dll_path)
if lib and lib._name:
return lib
raise ImportError('Failed to load shared library with ctypes: %(dll_path)r and lib_dir: %(lib_dir)r' % locals()) | 983b6b42b25e5f7936117579b02babff30899d21 | 22,134 |
def preprocess_img(image):
"""Preprocess the image to adapt it to network requirements
Args:
Image we want to input the network (W,H,3) numpy array
Returns:
Image ready to input the network (1,W,H,3)
"""
# BGR to RGB
in_ = image[:, :, ::-1]
# image centralization
# They are the mean color values of BSDS500 dataset
in_ = np.subtract(in_, np.array((104.00699, 116.66877, 122.67892), dtype=np.float32))
# in_ = tf.subtract(tf.cast(in_, tf.float32), np.array((104.00699, 116.66877, 122.67892), dtype=np.float32))
# (W,H,3) to (1,W,H,3)
in_ = np.expand_dims(in_, axis=0)
return in_ | c4a0136c03aa57a54db432e9abe8e35cbe43f0b6 | 22,135 |
def _parse_ec_record(e_rec):
"""
This parses an ENSDF electron capture + b+ record
Parameters
----------
e_rec : re.MatchObject
regular expression MatchObject
Returns
-------
en : float
b+ endpoint energy in keV
en_err : float
error in b+ endpoint energy
ib : float
b+ branch intensity
dib : float
error in b+ branch intensity
ie : float
ec branch intensity
die : float
error in ec branch intensity
logft : float
logft of the decay
dft : float
error in logft
"""
en, en_err = _get_val_err(e_rec.group(2), e_rec.group(3))
ib, dib = _get_val_err(e_rec.group(4), e_rec.group(5))
ie, die = _get_val_err(e_rec.group(6), e_rec.group(7))
logft, dft = _get_val_err(e_rec.group(8), e_rec.group(9))
tti, dtti = _get_val_err(e_rec.group(10), e_rec.group(11))
return en, en_err, ib, dib, ie, die, logft, dft, tti, dtti | 00480d031a3e6b118d880ed5e2abb890e7e8b410 | 22,136 |
import datetime
def skpTime(time):
"""
Retorna un datetime con la hora en que la unidad genero la trama.
>>> time = '212753.00'
>>> datetime.time(int(time[0:2]), int(time[2:4]), int(time[4:6]), int(time[-2]))
datetime.time(21, 27, 53)
>>>
"""
return datetime.time(int(time[0:2]), int(time[2:4]), int(time[4:6]), int(time[-2]), tzinfo=timezone('UTC')) | 8bfa7e4d7faa52152c0a63944502cd6b1975ebdf | 22,137 |
def calc_max_moisture_set_point(bpr, tsd, t):
"""
(76) in ISO 52016-1:2017
Gabriel Happle, Feb. 2018
:param bpr: Building Properties
:type bpr: BuildingPropertiesRow
:param tsd: Time series data of building
:type tsd: dict
:param t: time step / hour of the year
:type t: int
:return: max moisture set point (kg/kg_dry_air)
:rtype: double
"""
# from bpr get set point for humidification
phi_int_set_dhu = bpr.comfort['RH_max_pc']
t_int = tsd['T_int'][t]
p_sat_int = calc_saturation_pressure(t_int)
x_set_max = 0.622 * (phi_int_set_dhu / 100 * p_sat_int) / (
P_ATM - phi_int_set_dhu / 100 * p_sat_int)
return x_set_max | 3fe2ab28b8f0ba3e6ba2139ed168f08e1b0e969d | 22,138 |
def compress_pub_key(pub_key: bytes) -> bytes:
"""Convert uncompressed to compressed public key."""
if pub_key[-1] & 1:
return b"\x03" + pub_key[1:33]
return b"\x02" + pub_key[1:33] | 05824112c6e28c36171c956910810fc1d133c865 | 22,139 |
def is_tensor(blob):
"""Whether the given blob is a tensor object."""
return isinstance(blob, TensorBase) | 514e9fea7b6fc60078ea46c61d25462096fa47cc | 22,140 |
def transform_dlinput(
tlist=None, make_tensor=True, flip_prob=0.5,
augment_stain_sigma1=0.5, augment_stain_sigma2=0.5):
"""Transform input image data for a DL model.
Parameters
----------
tlist: None or list. If testing mode, pass as None.
flip_prob
augment_stain_sigma1
augment_stain_sigma2
"""
tmap = {
'hflip': tvdt.RandomHorizontalFlip(prob=flip_prob),
'augment_stain': tvdt.RandomHEStain(
sigma1=augment_stain_sigma1, sigma2=augment_stain_sigma2),
}
tlist = [] if tlist is None else tlist
transforms = []
# go through various transforms
for tname in tlist:
transforms.append(tmap[tname])
# maybe convert to tensor
if make_tensor:
# transforms.append(tvdt.PILToTensor(float16=ISCUDA))
transforms.append(tvdt.PILToTensor(float16=False))
return tvdt.Compose(transforms) | 9f7bacb5a27667667432d3775ae624f4fd57e2c6 | 22,141 |
def _(text):
"""Normalize white space."""
return ' '.join(text.strip().split()) | f99f02a2fe84d3b214164e881d7891d4bfa0571d | 22,142 |
import ipdb
def mean_IOU_primitive_segment(matching, predicted_labels, labels, pred_prim, gt_prim):
"""
Primitive type IOU, this is calculated over the segment level.
First the predicted segments are matched with ground truth segments,
then IOU is calculated over these segments.
:param matching
:param pred_labels: N x 1, pred label id for segments
:param gt_labels: N x 1, gt label id for segments
:param pred_prim: K x 1, pred primitive type for each of the predicted segments
:param gt_prim: N x 1, gt primitive type for each point
"""
batch_size = labels.shape[0]
IOU = []
IOU_prim = []
for b in range(batch_size):
iou_b = []
iou_b_prim = []
iou_b_prims = []
len_labels = np.unique(predicted_labels[b]).shape[0]
rows, cols = matching[b]
count = 0
for r, c in zip(rows, cols):
pred_indices = predicted_labels[b] == r
gt_indices = labels[b] == c
# use only matched segments for evaluation
if (np.sum(gt_indices) == 0) or (np.sum(pred_indices) == 0):
continue
# also remove the gt labels that are very small in number
if np.sum(gt_indices) < 100:
continue
iou = np.sum(np.logical_and(pred_indices, gt_indices)) / (
np.sum(np.logical_or(pred_indices, gt_indices)) + 1e-8)
iou_b.append(iou)
# evaluation of primitive type prediction performance
gt_prim_type_k = gt_prim[b][gt_indices][0]
try:
predicted_prim_type_k = pred_prim[b][r]
except:
ipdb.set_trace()
iou_b_prim.append(gt_prim_type_k == predicted_prim_type_k)
iou_b_prims.append([gt_prim_type_k, predicted_prim_type_k])
# find the mean of IOU over this shape
IOU.append(np.mean(iou_b))
IOU_prim.append(np.mean(iou_b_prim))
return np.mean(IOU), np.mean(IOU_prim), iou_b_prims | cf405144206e824a868f4eb777635237e8cc59b8 | 22,143 |
def _infer_title(ntbk, strip_title_header=True):
"""Infer a title from notebook metadata.
First looks in metadata['title'] and if nothing is found,
looks for whether the first line of the first cell is an H1
header. Optionally it strips this header from the notebook content.
"""
# First try the notebook metadata, if not found try the first line
title = ntbk.metadata.get('title')
# If the first line of the ontebook is H1 header, assume it's the title.
if title is None:
first_cell_lines = ntbk.cells[0].source.lstrip().split('\n')
if first_cell_lines[0].startswith('# '):
title = first_cell_lines.pop(0).strip('# ')
if strip_title_header is True:
ntbk.cells[0].source = '\n'.join(first_cell_lines)
return title | e8152f0c160d2cb7af66b1a20f4d95d4ea16c703 | 22,145 |
import hashlib
def stable_hash(value):
"""Return a stable hash."""
return int(hashlib.md5(str(value).encode('utf-8')).hexdigest(), 16) | a5be51a971eb6c9a91489155216ef194f9d0d7ba | 22,146 |
def minimal_community(community_owner):
"""Minimal community data as dict coming from the external world."""
return {
"id": "comm_id",
"access": {
"visibility": "public",
},
"metadata": {
"title": "Title",
"type": "topic"
}
} | 18b99c30d4dff01b988e8ac311a6da92142e71ee | 22,147 |
from typing import Counter
def retrieve_descriptions(gene, descriptions, empties):
"""Given single gene name, grab possible descriptions from NCBI
and prompt user to select one"""
# Perform ESearch and grab list of IDs
query = gene + '[Gene Name]'
handle = Entrez.esearch(db='gene', term=query,
retmax=100,
retmode='xml')
record = Entrez.read(handle)
handle.close()
idlist = ','.join(record["IdList"])
# Ensure you have results, exit if not
if idlist == '':
print('No records for {}, skipping...\n'.format(gene))
empties.append(gene)
return
# Generate summary from UID list
handle = Entrez.esummary(db='gene', id=idlist)
record = Entrez.read(handle)
handle.close()
# Grab description, counter for unique values
desc_cnt = Counter()
doc_sums = record[u'DocumentSummarySet'][u'DocumentSummary']
for i in range(len(doc_sums)):
if doc_sums[i][u'NomenclatureName'] != '':
desc = doc_sums[i][u'NomenclatureName']
else:
desc = doc_sums[i][u'OtherDesignations'].split('|')[0]
desc_cnt[desc] += 1
# Create list from counter keys for indexing purposes
desc_list = filter(None, desc_cnt)
if len(desc_cnt) > 1:
print('{} has {} unique descriptions from {} results. These are:'.format(
gene, len(desc_list), len(doc_sums)))
ans_range = range(len(desc_list))
for i in ans_range:
print ('{}: {} [{}/{}]'.format(i+1, desc_list[i], desc_cnt[desc_list[i]], len(doc_sums)))
# Take user input to accept/reject a description
while True:
ans = raw_input('Which do you accept? [{}-{}/N]: '.format(
min(ans_range)+1, max(ans_range)+1))
# Check if int or str entered
try:
ans = int(ans)-1
if ans in ans_range:
print('Accepting #{}.\n'.format(ans+1))
descriptions[gene] = desc_list[ans]
break
else:
print('{} is outside acceptable range. Try again.'.format(
ans))
except:
if ans in ['N', 'n', 'no', 'No']:
print('Skipping this gene.\n')
break
else:
print('Invalid input, try again.')
# If there's only one unique description, accept/reject
elif len(desc_cnt) == 1:
desc_list2 = list(desc_cnt)
desc = desc_list2[0]
if desc == '':
print('{} has empty description.'.format(gene))
empties.append(gene)
return
print('{} only has one unique description from {} results.'.format(
gene, len(doc_sums)))
print('This is:\n{}'.format(desc))
while True:
ans = raw_input('Accept? Y/N: ')
if ans in ['Y', 'y', 'yes', 'Yes']:
print('Description accepted.\n')
descriptions[gene] = desc
break
elif ans in ['N', 'n', 'no', 'No']:
print('Skipping this gene.\n')
empties.append(gene)
break
else:
print('Invalid input, try again.')
return(descriptions) | 524d4955a51eb0e3143c06d91eb7ae611579d9dd | 22,148 |
import time
def readCmd():
""" Parses out a single character contained in '<>'
i.e. '<1>' returns int(1)
returns the single character as an int, or
returns -1 if it fails"""
recvInProgress = False
timeout = time.time() + 10
while time.time() < timeout:
try:
rc = ser.read().decode("utf-8")
except(UnicodeDecodeError):
continue
if recvInProgress == True:
if rc != '>':
cmd = rc
else:
#while(ser.in_waiting != 0):
# ser.read()
try:
return int(cmd)
except:
print("Bad command parse")
return -1
elif rc == '<':
recvInProgress = True
print("Timeout on readCmd")
return -1 | 3e7b1eef27ab41b7079c966bf696e95923ebe6eb | 22,149 |
def map_ground_truth(bounding_boxes, anchor_boxes, threshold=0.5):
"""
Assign a ground truth object to every anchor box as described in SSD paper
:param bounding_boxes:
:param anchor_boxes:
:param threshold:
:return:
"""
# overlaps shape: (bounding_boxes, anchor_boxes)
overlaps = jaccard_overlap(bounding_boxes, anchor_boxes)
# best_bbox_overlaps and best_bbox_ids shape: (bounding_boxes)
# best_bbox_overlaps: IoU of overlap with the best anchor box for every ground truth box
# best_bbox_ids: indexes of anchor boxes
best_bbox_overlaps, best_bbox_ids = overlaps.max(1)
# overlaps and bbox_ids shape: (anchor_boxes)
# IoU and indexes of bounding boxes with the best overlap for every anchor box
overlaps, bbox_ids = overlaps.max(0)
# Combine the two:
# best_bbox_overlaps takes precedence
overlaps[best_bbox_ids] = 2
for bbox_id, anchor_id in enumerate(best_bbox_ids):
bbox_ids[anchor_id] = bbox_id
# Check for the threshold and return binary mask and bbox ids for each anchor
is_positive = overlaps > threshold
return is_positive, bbox_ids | 1609bac66f4132249e893996b07b1a8752b8ab48 | 22,150 |
def MakeFrame(ea, lvsize, frregs, argsize):
"""
Make function frame
@param ea: any address belonging to the function
@param lvsize: size of function local variables
@param frregs: size of saved registers
@param argsize: size of function arguments
@return: ID of function frame or -1
If the function did not have a frame, the frame
will be created. Otherwise the frame will be modified
"""
func = idaapi.get_func(ea)
if func is None:
return -1
frameid = idaapi.add_frame(func, lvsize, frregs, argsize)
if not frameid:
if not idaapi.set_frame_size(func, lvsize, frregs, argsize):
return -1
return func.frame | f0affe28d506a65d2a43fa64f2b9a99dbaf62b25 | 22,152 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.