Yaxin commited on
Commit
8e6ac4a
·
1 Parent(s): 72c62cb

Create SemEval2020Task9CodeSwitch.py

Browse files
Files changed (1) hide show
  1. SemEval2020Task9CodeSwitch.py +137 -0
SemEval2020Task9CodeSwitch.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datasets
2
+
3
+
4
+ logger = datasets.logging.get_logger(__name__)
5
+
6
+
7
+ _CITATION = """\
8
+ @inproceedings{tjong-kim-sang-2002-introduction,
9
+ title = "Introduction to the {C}o{NLL}-2002 Shared Task: Language-Independent Named Entity Recognition",
10
+ author = "Tjong Kim Sang, Erik F.",
11
+ booktitle = "{COLING}-02: The 6th Conference on Natural Language Learning 2002 ({C}o{NLL}-2002)",
12
+ year = "2002",
13
+ url = "https://www.aclweb.org/anthology/W02-2024",
14
+ }
15
+ """
16
+
17
+ _DESCRIPTION = """\
18
+ Named entities are phrases that contain the names of persons, organizations, locations, times and quantities.
19
+ Example:
20
+ [PER Wolff] , currently a journalist in [LOC Argentina] , played with [PER Del Bosque] in the final years of the seventies in [ORG Real Madrid] .
21
+ The shared task of CoNLL-2002 concerns language-independent named entity recognition.
22
+ We will concentrate on four types of named entities: persons, locations, organizations and names of miscellaneous entities that do not belong to the previous three groups.
23
+ The participants of the shared task will be offered training and test data for at least two languages.
24
+ They will use the data for developing a named-entity recognition system that includes a machine learning component.
25
+ Information sources other than the training data may be used in this shared task.
26
+ We are especially interested in methods that can use additional unannotated data for improving their performance (for example co-training).
27
+ The train/validation/test sets are available in Spanish and Dutch.
28
+ For more details see https://www.clips.uantwerpen.be/semeval2016/ner/ and https://www.aclweb.org/anthology/W02-2024/
29
+ """
30
+
31
+ _URL = "https://raw.githubusercontent.com/YaxinCui/Semeval_2020_task9_data/main/Spanglish/"
32
+
33
+ TRAINING_FILE_Dict = {
34
+ 'Spanglish': "Spanglish_train.conll",
35
+
36
+ }
37
+
38
+ TEST_FILE_Dict = {
39
+ 'Spanglish': "Spanglish_dev.conll",
40
+ }
41
+
42
+ class Semeval2016Config(datasets.BuilderConfig):
43
+ """BuilderConfig for Semeval2016"""
44
+
45
+ def __init__(self, **kwargs):
46
+ """BuilderConfig forSemeval2016.
47
+ Args:
48
+ **kwargs: keyword arguments forwarded to super.
49
+ """
50
+ super(Semeval2016Config, self).__init__(**kwargs)
51
+
52
+
53
+ class Semeval2016(datasets.GeneratorBasedBuilder):
54
+ """Semeval2016 dataset."""
55
+
56
+ BUILDER_CONFIGS = [
57
+ Semeval2016Config(name="Spanglish", version=datasets.Version("1.0.0"), description="Semeval2016 Spanish dataset"),
58
+ ]
59
+
60
+ def _info(self):
61
+ return datasets.DatasetInfo(
62
+ description=_DESCRIPTION,
63
+ features=datasets.Features(
64
+ {
65
+ "id": datasets.Value("string"),
66
+ "meta": datasets.Value("string"),
67
+ "tokens": datasets.Sequence(datasets.Value("string")),
68
+ # "langs": datasets.Sequence(datasets.features.ClassLabel(names=["lang1","lang2","ambiguous","other","ne","unk","mixed","fw","8","9","10","11",] ) ),
69
+ "label": datasets.features.ClassLabel(
70
+ names=[
71
+ "positive",
72
+ "neutral",
73
+ "negative",
74
+ ]
75
+ ),
76
+ }
77
+ ),
78
+ supervised_keys=None,
79
+ homepage="/",
80
+ citation=_CITATION,
81
+ )
82
+
83
+ def _split_generators(self, dl_manager):
84
+ """Returns SplitGenerators."""
85
+
86
+ if self.config.name=="Spanglish":
87
+ urls_to_download = {
88
+ "train": f"{_URL}{TRAINING_FILE_Dict[self.config.name]}",
89
+ "test": f"{_URL}{TEST_FILE_Dict[self.config.name]}",
90
+ }
91
+
92
+ downloaded_files = dl_manager.download_and_extract(urls_to_download)
93
+
94
+ return [
95
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
96
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
97
+ ]
98
+
99
+ def _generate_examples(self, filepath):
100
+ logger.info("⏳ Generating examples from = %s", filepath)
101
+ prev_pos = '$$$'
102
+ with open(filepath, encoding="utf-8") as f:
103
+ guid = 0
104
+ meta = None
105
+ tokens = []
106
+ langs = []
107
+ label = None
108
+ for line in f:
109
+ if len(tokens) and (line == "" or line == "\n"):
110
+ yield guid, {
111
+ "id": str(guid),
112
+ "meta": str(meta),
113
+ "tokens": tokens,
114
+ "label": label,
115
+ }
116
+ guid += 1
117
+ tokens = []
118
+ langs = []
119
+ labels = []
120
+ else:
121
+ line = line.strip()
122
+ # semeval2016 tokens are space separated
123
+ splits = [s.rstrip() for s in line.split(" ")]
124
+ if len(tokens)==0 and line.startswith("meta "):
125
+ meta = splits[1]
126
+ label = splits[2]
127
+ else:
128
+ tokens.append(splits[0])
129
+ langs.append(splits[1])
130
+ # last example
131
+
132
+ yield guid, {
133
+ "id": str(guid),
134
+ "meta": str(meta),
135
+ "tokens": tokens,
136
+ "label": label,
137
+ }