@ Redhooks

ibm.com/redbooks

Red Hat OpenShift and IBM Cloud
Paks on IBM Power Systems
Volume 1

Dino Quintero Sudipto Pal
Ricardo Dobelin Barros Bogdan Savu
Daniel Casali Richard Wale

Luis Ferreira

Alain Fisher

Federico Fros

Luis Daniel Gonzalez
Miguel Gomez Gonzalez
Mahesh Gurugunti
Rogelio Rivera Gutierrez
Nicolas Joly

Boris Litichevsky
Ismael Solis Moreno
Gabriel Padilla

IBM Redbooks

Red Hat OpenShift and IBM Cloud Paks on IBM Power
Systems: Volume 1

March 2020

SG24-8459-00

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

First Edition (March 2020)
This edition applies to:

Red Hat OpenShift Container Platform for Power Enterprise V3.11
Red Hat Enterprise Linux Server release V7.6 (Maipo) for ppc64le
IBM Virtual I/O Server V3.1.1.0

IBM Cloud PowerVC Manager V1.4.3.1

Terraform V0.12.9

provider.null V2.1.2

provider.openstack V1.22.0

vyVVvyVYyVvYyVvYYVvVYYy

© Copyright International Business Machines Corporation 2020. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Contents

NOtICES vii
Trademarkso e viii
Preface e iX
AUNOIS . L e e e iX
Now you can become a published author,too! Xii
Comments WEICOME.t e Xiii
Stay connected to IBM RedbOOKSt e Xiii
Part 1. Introduction. 1
Chapter 1. Introduction to the Journey to the Cloud: Volume 1................... 3
1.1 Introduction e 4
1.2 Red Hatand IBM. 4
Chapter 2. Introduction to containers and orchestration with Kubernetes. 7
2.1 A new computing paradigm in cloud transformation................. 8
2.1.1 Cloud service model e e 8
2.1.2 Cloud adoplion e 9
2.1.3 Why s hybrid cloud soimportant 9
2.1.4 Application modernization journey for a cloud-centric business transformation. .. 9
2.2 Virtual machines meetcontainers. i 12
2.2.1 Perfect recipe for application modernization. 12
2.2.2 Coexistence of virtual machines and containers to modernize workloads 16
2.2.3 Virtual machines and containers in a hybrid multicloud architecture 17
2.3 CONtaINErS. . . it e 19
2.3.1 What are containers? e 19
2.3.2 Historyof containers 20
2.3.3 Docker as acontainermanagerottt 22
2.3.4 Dockerarchitecture. 22
2.4 Kubernetes: An open source container orchestration. 24
2.4.1 What is container orchestration?. 24
2.4.2 Kubernetes architecture, system, and components 25
2.4.3 Kubernetes operating environment, objects, and basic operations 26
2.4.4 Cloud Native Computing Foundation 29
2.5 Enterprise Kubernetes: Red Hat OpenShift 31
2.5.1 Red Hat OpenShiftoverview. e 31
2.5.2 Red Hat OpenShift Container Platform. 31
2.5.3 OpenShift Container Platform architecture 31
2.5.4 Red Hat OpenShiftaccessandcontrol. 33
Chapter 3. IBM Cloud Paks: Middleware anywhere. 37
B OVBIVIBW . . .t e 38
3.1.1 Whatare IBM Cloud Paks?. e e e 38
3.1.2 FirstIBM Cloud Paks e e e 39
B.1.8 C0re SEIVICES . o o vttt e 41
3.1.4 Production-ready Containers Imagest 41
3.2 IBM Cloud Pak for Applications. e 42
B.2.1 Featureso e e 42

© Copyright IBM Corp. 2020. All rights reserved. iii

3.2.2 Programming Language support 44

3.2.3 Tools and runtime packages.t 44
3.3 IBM Cloud Pak for Automation i e 45
3.3.1 Features e 46
3.3.2 Corecapabilities 47
3.4 IBMCloud PakforData e e 48
341 Features e 48
e I Y=Y 48
3.5 IBM Cloud Pak for Integration. 49
3.5, Features e 49
B0, 2 LayerS . i 49
3.6 IBM Cloud Pak for Multicloud Management, 50
B3.6.1 Features 50
3.6.2 Layersexplained. e 51
3.7 IBM Cloud Pak for Securityo e 53
B.7.1 Features e 53
3.7 2 Layers . . e 54
Part 2. Red Hat OpenShift e 57
Chapter 4. Red Hat OpenShift components and architecture. 59
4.1 OpenShift cluster COMpPONENtSt et e e 60
4.1.1 Docker service and Kubernetes i 60
4.1.2 etCd StOre e 60
4.1.3 OpenShift-Kubernetes extensions 60
4.1.4 Containerized SEIVICES vt i ittt e e 61
415 Runtimesand xPaaS. i e 61
4.1.6 DevOps tools and USer eXPeriENCe. v ittt it it e 61
417 Masterand nodeso e 61
4.1.8 OpenShift projects and applications i 62
4.2 OpenShift container platform networking i 63
4.2.1 OpenShift networkingoverview. i 63
4.2.2 OpenShift internal cluster communication. 63
4.2.3 OpenShift external cluster communication 66
4.3 OpenShift persistent storage. o e 68
4.4 OpenShiftregistryo e 69
4.4.1 Integrated OpenShift Container Registry 69
4.4.2 Third-party registries. e 69
4.5 Managing OpenShift resources.t e 69
Chapter 5. Red Hat OpenShift installation planning and considerations 71
5.1 IBM Power Systems e e e 72
5.1.1 Mission-critical workloads e 73
5.1.2 Bigdataworkloads 75
5.1.3 Enterprise Alworkloads 76
5.2 Red Hat OpenShift Container Platform 3.11 on IBM Power Systems. 77
5.3 Red Hat OpenShift Container Platform 3.11 on IBM PowerVC. 79
5.3.1 Reference architecture summary 79
5.3.2 Design considerations. e 81
5.3.83 Reference architecture 98
Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC 101
6.1 Deployment proCess OVEIVIEWottt i e s 102
6.2 Setting up the deployment environment 102

iv

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

6.2.1 Settingupthe DNS 102

6.2.2 PowerVC configurationt e 103
6.2.3 Creating the virtual machine to host deploymenttools.................... 104
6.2.4 Preparing the deploymenthost. i, 105
6.3 OpenShift container platform deployment. 111
6.3.1 Deployment SCeNariost e 111
6.3.2 Deploying OpenShift Container Platform on PowerVC. 113
6.3.3 Provisioning the infrastructure on PowerVC 114
6.3.4 Installing the OpenShift Container Platform 120
6.3.5 Uninstalling the OpenShift Container Platform 137
6.4 IBM PowerVC FlexVolume Driver. e 138
6.4.1 Deploying the IBM PowerVC FlexVolume Driver 138
6.4.2 Creating the persistent storage forthe Registry 141
6.4.3 Deploying the Prometheus Cluster Monitoring 142
6.5 Managing OpenShift Resourcesusing CLI. 146
6.6 Installing the IBM Cloud Pak for Multicloud Management. 154
Part 3. Practical scenarios. e 161
Chapter 7. USe CasSes ittt e e 163
7.1 Building Cloud Native Applications on IBM Power Systems: Rapid development of new
applications 164
7.2 Hybrid architecture and multicloud applications: A true hybrid multicloud feel for the user
169
7.2.1 Multicloud approach by using stateful MongoDB database 169
7.2.2 OpenShift Container Platform 3.11 ppc64le on-premises. 169
7.2.3 OpenShift Container Platform v4.1onx86atAWS 181
7.2.4 Testing the hybrid multicloud 185
Chapter 8. Specialtopics 191
8.1 IBM Multicloud Manager: Container orchestration 192
8.1.1 IBM Multicloud Manager overviewttt 192
8.1.2 Key features and capabilities of IBM Multicloud Manager 192
8.2 Moving dataacross clouds 194
8.2.1 IBM Aspera key featuresand benefits L. 194
8.2.2 Using IBM Aspera in a Hybrid cloud environment. 194
8.3 Configuring a multicloud datalake 195
8.3.1 Datalake overview e 195
8.3.2 Using a data lake in a multicloud environment 195
Part 4. AppPendiXes 197
Appendix A. Sample lab: Deployment and Pod management 199
A.1 Connectingtothe lab environment. i 200
A.2 Creating a user and project by using the OpenShift commandline 201
A.3 Logging in to the OpenShiftwebconsole 204
A.4 Deploying an Apache server by using the OpenShift web console 206
A.5 Verifying the status of the deployment i 211
A.6 Testing deploymentresiliency e 212
A.7 Scalingthe deployment e 214
Appendix B. Sample lab: Deployments and workload balance 219
Connecting to the lab environment 220
Creating a user and project by using the OpenShift commandline.................. 221

Contents v

Vi

Logging in to the OpenShiftwebconsole. 224

Deploying an NGINX server by using the OpenShift web console. 225
Deploying a second NGINX server by using the OpenShift web console 229
Customizing the index.test file of the NGINX instances. 233
Creating a route to balance the network traffic between the two NGINX instances. 237
Testing load balancing across NGINX instances. 239

Appendix C. Seamless application movement across multicloud environments .. 241

Network tunneling for MongoDB e 242
Moving the application across clouds i 243
Starting the pod at Amazon Web Services i 243
Accessing MongoDB by using the tunneled connection. 244
Moving to the on-premises Power Systemscloud 245
Related publications 249
IBM RedbooKS e 249
ONliNE rESOUICESttt e e e e e 249
Help from IBM e 249

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Notices

This information was developed for products and services offered in the US. This material might be available
from IBM in other languages. However, you may be required to own a copy of the product or product version in
that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS 1S”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are
provided “AS 1S”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use
of the sample programs.

© Copyright IBM Corp. 2020. All rights reserved. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/1egal/copytrade.shtmi

The following terms are trademarks or registered trademarks of International Business Machines Corporation,
and might also be trademarks or registered trademarks in other countries.

AIX® IBM Z® Redbooks®

Cognos® IBM z Systems® Redbooks (logo) ¢@ ®
DB2® OpenCAPI™ SystemMirror®
Guardium® POWER® Tivoli®

IBM® POWERS® WebSphere®

IBM Cloud™ POWER9™ XIV®

IBM Cloud Pak™ PowerHA® z Systems®

IBM Services™ PowerVM®

IBM Spectrum® QRadar®

The following terms are trademarks of other companies:

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

Ansible, Gluster, JBoss, OpenShift, Red Hat, are trademarks or registered trademarks of Red Hat, Inc. or its
subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

VMware, and the VMware logo are registered trademarks or trademarks of VMware, Inc. or its subsidiaries in
the United States and/or other jurisdictions.

Other company, product, or service names may be trademarks or service marks of others.

viii Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

http://www.ibm.com/legal/copytrade.shtml

Preface

This IBM® Redbooks® publication educates and prepares the readers to understand and
enter the multicloud era.

This book describes a journey to the following aspects of multicloud and associated context of
application modernization:

» Introduction to the rationale and methodology of this publication
» Concepts and terminology

» Why move to the cloud?

» Introduction to containers and orchestration with Kubernetes

» Introduction to OpenShift on Power Systems

» Why IBM? Why IBM Power Systems?

» Reference architecture for Red Hat OpenShift on Power Systems

» Installation planning, considerations and guidelines to help provide a system configuration
and implementation

» Implementation details
» Use case studies

The goal of this publication is to describe the journey to implement an IBM Cloud™ Solution
that uses Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems by using
theoretical knowledge to learn the concepts, hands-on exercises to practice the theory, and
documenting these findings by way of sample scenarios.

The publication addresses topics for developers, IT architects, IT specialists, sellers, and
anyone who wants to implement a Red Hat OpenShift and IBM Cloud Paks on IBM Power
Systems. This book also provides technical content to transfer how-to skills to the support
teams, and solution guidance to the sales team.

This book compliments the documentation that is available at IBM Knowledge Center, and
also aligns with the educational offerings that are provided by the IBM Systems Software
Education (SSE).

Authors

This book was produced by a team of specialists from around the world working at IBM
Redbooks, Austin Center.

Dino Quintero is an IT Management Consultant and an IBM Level 3 Senior Certified IT
Specialist with IBM Redbooks in Poughkeepsie, New York. Dino shares his technical
computing passion and expertise by leading teams developing technical content in the areas
of enterprise continuous availability, enterprise systems management, high-performance
computing, cloud computing, artificial intelligence including machine and deep learning, and
cognitive solutions. He also is a Certified Open Group Distinguished IT Specialist. Dino holds
a Master of Computing Information Systems degree and a Bachelor of Science degree in
Computer Science from Marist College.

© Copyright IBM Corp. 2020. All rights reserved. ix

Ricardo Dobelin Barros is an IBM Certified IT Specialist and IT Architect in Brazil. Ricardo
joined IBM in 2002 and has a total of 20 years of experience in the IT industry. He works in
the Sales Solutions group for IBM Services™ as pre-sales Technical Solution Architect.
Ricardo has expertise in availability management, service-levels management, sizing, and
performance tuning in operating systems. He also has experience in capacity planning,
modelling, measurement, automation, virtualization, multicloud, and infrastructure
management for many IBM clients in Brazil. Ricardo holds a bachelor degree in systems
analysis, post-graduate in Teaching Degree in Higher Education. He also has Master of
Business Administration in Strategic Management and Business Planning.

Daniel Casali is a Thought Leader Information Technology Specialist working for 15 years at
IBM with Power Systems, high-performance computing, big data, and storage. His role at IBM
is to bring to reality solutions that address client’s needs by exploring new technologies for
different workloads. He is also fascinated by real multicloud implementations, always trying to
abstract and simplify the new challenges of the heterogeneous architectures that are intrinsic
to this new consumption model, be that on-premises or in the public cloud.

Luis Ferreira is a Senior Software Engineer at IBM Austin, working on cloud containers,
Kubernetes-related products, and cloud computing design and architecture. He holds a
Master of Science degree from Universidade Federal do Rio de Janeiro in Brazil. Before
joining IBM Austin, Luis worked at Tivoli® Systems as a Certified Tivoli Consultant, at IBM
Brasil as a Certified IT Specialist, and at Cobra Computadores as a SOX Kernel developer
and operating systems designer.

Alain Fisher is an IT specialist and DevOps Developer and supports many IBM development
teams at the IBM Hursley Lab, UK. He holds a B.Sc. (Hons) degree in Computer Science
from The Open University, England. He joined IBM in 2001 supporting DB2® middleware
products, such as DB2, before moving to the Hursley Lab. His areas of expertise include the
OpenStack cloud platform, cloud deployments, automation, and virtualization. He contributed
to two other IBM Redbooks publications since 2005.

Federico Fros is an IT Specialist who works for IBM Global Technologies Services, leading
the UNIX and Storage team for the IBM Innovation center in Uruguay. He has worked at IBM
for more than 15 years, including 12 years in IBM Power Systems and IBM Storage. He is an
IBM Certified Systems Expert for UNIX and high availability. His areas of expertise include
IBM AIX®, Linux, PowerHA® SystemMirror®, IBM PowerVM®, SAN Networks, Cloud
Computing, and IBM Storage Family, including IBM Spectrum® Scale.

Luis Daniel Gonzalez is a System Administrator and an Automation Engineer on Power
Systems in IBM Guadalajara, Mexico. He holds a B.Sc. degree in Cyber Security and
Networking Engineering. He joined IBM in 2018 as an automation engineer, helping to
automate Power Systems installation and configurations. He has experience in configuring
Linux systems and services for 5 years.

Miguel Gomez Gonzalez is an IBM Power Systems Integration engineer who is based in
Mexico with over 11 years experience in Linux and IBM Power Systems technologies. He has
extensive experience in implementing several IBM Linux and AIX clustering solutions. His
areas of expertise are Power Systems performance boost, virtualization, high availability,
system administration, and test design. Miguel holds a Master in Information Technology
Management from ITESM.

Mahesh Gurugunti is a Senior Solutions Architect at Red Hat in New York City. Mahesh is a
seasoned technologist with experience in engineering, design, and architecture of laaS,
Paa$S, and Cloud infrastructures. He is certified in OpenStack and high availability (design
and implementation) that uses Veritas Cluster Services.

X Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Rogelio Rivera Gutierrez joined IBM in 2011 as part of the Storage Development group. As
a Test Performance Lead, he has become a SME in tape technologies and has trained
customers and IBMers on IBM Spectrum Archive. Rogelio has published several technical
white papers about tape products. As a Product Field Engineer, he provides support for
customer escalations from beginning to resolution for the IBM Security Appliance Product
Line. He also participated and provided support as a Hardware Development Engineer in the
release of IBM POWER9™. Rogelio holds a Master degree in Computer Science and is
currently pursuing a Ph.D. in IT, focusing on topics, such as Cloud, Blockchain, and Smart
Cities. He has presented at IEEE technical conferences with topics related to Cloud and
Blockchain technologies.

Nicolas Joly is a pre-sales architect with IBM Systems in New York City, New York. His areas
of knowledge include software-defined infrastructure, analytics solutions, storage, technical
computing, and clustering solutions. He is working with major customers in the finance and
telecommunication industry. Before joining IBM US, Nicolas was working for IBM France,
where he was a technical sales specialist for analytics and technical computing solutions.
Nicolas holds a Master’s degree in Computer Science with a major in parallel and distributed
computing from Institut Polytechnique de Bordeaux (ENSEIRB-MATMECA), France.

Boris Litichevsky is a Infrastructure Analyst IV Horizon Blue Cross. He works with RHEL
and lately with Red Hat on Power Systems. Boris participated in the IBM Cloud Private PoC.
He worked as a Senior Systems Engineer Consultant working with Tivoli Storage Manager
(TSM), Commvault Backup solution, VMware and created and configured Linux (RHEL and
CentOS) and Wintel servers 2008 and 2012. Boris has 20 years in the financial industry, 16 of
which in computer operations and 4 years as a TSM administrator.

Ismael Solis Moreno is a data scientist and performance analyst for IBM at Mexico Software
Lab. He received his Masters from the National Center of Research and Technological
Development in Mexico and his PhD from the University of Leeds in the UK. Ismael has
participated as technical leader in different projects that were related to big data analytics and
machine learning within the IBM and other companies, including the University of Leeds, The
UK Datacenter Alliance, and Apollo MIS researching predictive algorithms for Google,
Alibaba, and the British Premier League. Ismael has approximately 15 international
publications in prestigious computing science journals. He has participated as a speaker in
over 25 international conferences related to data science and machine learning, and
co-authored patents to improve datacenter energy efficiency by using big data. Ismael has
collaborated as researcher in the field of data science at the University of Leeds in the UK,
The National University of Defense and Technology, and The University of Aeronautics and
Astronautics in China. Ismael’s work at IBM is focused on developing machine learning
mechanisms to improve the performance of large distributed storage systems by analyzing
big data.

Gabriel Padilla is a Test Architect for Hardware on Power System. He is involved in early
faces of most of the hardware general availability working closely with development to achieve
best quality products. Gabriel previously worked on manufacturing lines at IBM Mexico as
Test Lead for XIV® Storage and Power Systems. Gabriel has a Masters degree in Information
Technology and a Bachelors of Science in Electronic Engineering.

Preface xi

Sudipto Pal is Solution Architect for IBM Cognos® Analytics in GBS. He successfully
delivered several critical deliverable with IBM clients from USA and Europe. He led Cognos
administration competency and monitored several candidates. He co-authored IBM
Redbooks publications about Cognos implementation with PowerVM platform. He has
experience in IBM Power system for Virtualized environment setup and provisioning. He also
has hands-on experience in data lake implementation by using DIP over a big data platform.
He is based in IBM India, Kolkata. He holds Master of Computer Application and has
experience in product development that uses C, C++ and Python,

Bogdan Savu is a Cloud Infrastructure Architect at IBM Cloud Managed Application Services
and works for IBM Global Technologies Services in Romania. He has over 13 years of
experience in designing, developing, and implementing Cloud Computing, Virtualization,
Automatization, and Infrastructure solutions. Bogdan holds a Bachelor’'s degree in Computer
Science from the Polytechnic University of Bucharest. He is an IBM Certified Advanced
Technical Expert for Power Systems, TOGAF 9 Certified, VMware Certified Professional, and
Red Hat Certified Specialist in Containerized Application Development. His areas of expertise
include Cloud Computing, Virtualization, DevOps, and Scripting.

Richard Wale is a Senior IT Specialist, supporting many IBM development teams at the IBM
Hursley Lab, UK. He holds a B.Sc. (Hons) degree in Computer Science from Portsmouth
University, England. He joined IBM in 1996 and has been supporting production AIX systems
since 1998. His areas of expertise include IBM Power Systems, PowerVM, AlX, and IBM i. He
has participated in co-writing many IBM Redbooks publications since 2002.

Thanks to the following people for their contributions to this project:

Wade Wallace
IBM Redbooks, Austin Center

Manoj Kumar, Joe Cropper, Chuck Bryan, Keshav Ranganathan, Bruce Anthony, Bruce
Semple, Reza Ghasemi, Mike Easlon
IBM USA

Miguel Angel de la Mora, Cesar Dominguez Moreno, Guillermo Hernandez Gonzalez,
Arianne Navarro
IBM Guadalajara, Mexico

Yenugu Madhavi
IBM India

Alfonso Jara
IBM Spain

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an IBM Redbooks residency project and help write a book
in your area of expertise, while honing your experience using leading-edge technologies. Your
efforts will help to increase product acceptance and customer satisfaction, as you expand
your network of technical contacts and relationships. Residencies run from two to six weeks
in length, and you can participate either in person or as a remote resident working from your
home base.

Xii Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!
We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:
» Use the online Contact us review Redbooks form found at:
ibm.com/redbooks
» Send your comments in an email to:
redbooks@us.ibm.com
» Mail your comments to:

IBM Corporation, IBM Redbooks
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

» Find us on Facebook:
http://www.facebook.com/IBMRedbooks

» Follow us on Twitter:
http://twitter.com/ibmredbooks

» Look for us on LinkedIn:
http://www.1linkedin.com/groups?home=&gid=2130806

» Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?0penForm
» Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html

Preface xiii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Xiv Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Part 1

Introduction

This part provides an overview of this first publication of a planned multi-volume series, and
introduces fundamental cloud concepts, topics and components.
The following chapters are included in this part:

» Chapter 1, “Introduction to the Journey to the Cloud: Volume 1” on page 3
» Chapter 2, “Introduction to containers and orchestration with Kubernetes” on page 7
» Chapter 3, “IBM Cloud Paks: Middleware anywhere” on page 37

© Copyright IBM Corp. 2020. All rights reserved.

2 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Introduction to the Journey to
the Cloud: Volume 1

This chapter focuses on the rationale behind the multiple publication volumes. This chapter
describes why delivering by way of volume methodology helps the reader throughout the
journey to multicloud.

This chapter includes the following topics:

» 1.1, “Introduction” on page 4
» 1.2, “Red Hat and IBM” on page 4

© Copyright IBM Corp. 2020. All rights reserved.

1.1 Introduction

Most companies started or are contemplating their journey to cloud. Although in recent years
the adoption of cloud became much more common place, the scope of what a cloud is or can
be also increased. This broadening of possibilities unfortunately added confusion and can
result in companies being unsure of how their existing application estate can change to
integrate with the cloud model.

As such, doubts still exist around how to start and progress on this journey. It is also true that
although people understand traditional enterprise applications and more modern
cloud-hosted applications, the integration or co-existence of both can prove equally confusing
and contradicting.

Recent industry trends, combined with the new partnership between Red Hat and IBM, seek
to bring some clarity to the landscape while providing new modernization opportunities for
existing enterprise applications and familiar environments.

The main focus of this IBM Redbooks publication relates to IBM Cloud Paks and Red Hat
OpenShift, which is hosted on IBM Power Systems. Although individually much can be written
about either topic, the relationship this publication highlights is between Red Hat OpenShift
and IBM Power Systems.

We show what Red Hat OpenShift brings to the IBM Power Systems platform specifically
discuss how it can be deployed and added into existing familiar Power System environments,
and the benefits that integration and co-existence can provide from an existing enterprise
application viewpoint.

This publication is a first volume in a planned multi-volume publication over the next 12 - 18
months. Within this initial volume, we explain the fundamental perspective (which is accurate
as of the time of this writing) while providing pointers to future direction that will be discussed
in future volumes.

Note: This initial publication relates to Red Hat OpenShift 3.11, because this release was
the current OpenShift Container Platform (OCP) release for IBM Power Systems at the
time of this writing. IBM and Red Hat intend to deliver Red Hat OpenShift 4 for IBM
POWER® to accelerate agility for enterprise clients through integrated tooling and a
feature-rich Kubernetes container platform for cloud-native development on POWER9 and
IBM POWERS8® processor-based servers.

1.2 Red Hat and IBM

On July 9th, 2019, IBM closed its acquisition of Red Hat, a leader in enterprise Linux and
open source technology.

This acquisition puts Red Hat and IBM in a unique position to unlock the true value of hybrid
cloud for your business. By combining the power and flexibility of Red Hat’s open hybrid cloud
technologies with the scale and depth of IBM innovation and industry expertise, you now have
the tools to accelerate your cloud journey.

IBM and Red Hat worked together for more than 20 years in making open source a
competitive advantage for businesses on x86, IBM Power Systems, and IBM z Systems®.
Together, we are both on a mission to improve open source technology and help your
companies capture the business value of the cloud.

4 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

This publication describes how Red Hat and IBM can advance your cloud journey and speed
growth and innovation for your business by using Red Hat OpenShift on IBM Power Systems.

Note: Red Hat joins IBM as a distinct unit, preserving the independence and neutrality of
Red Hat’s open source development heritage and unique development culture. Red Hat’s
unwavering commitment to open source remains unchanged and it continues to offer
customers choice and flexibility.

Chapter 1. Introduction to the Journey to the Cloud: Volume 1 5

6 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Introduction to containers and
orchestration with Kubernetes

This chapter presents the conceptual foundations of containers and the open source
container orchestration Kubernetes. It also introduces the Red Hat Enterprise Kubernetes
product that is called Red Hat OpenShift.

This chapter includes the following topics:

» 2.1, “A new computing paradigm in cloud transformation” on page 8
2.2, “Virtual machines meet containers” on page 12

2.3, “Containers” on page 19

2.4, “Kubernetes: An open source container orchestration” on page 24
2.5, “Enterprise Kubernetes: Red Hat OpenShift’ on page 31

vVvyyy

© Copyright IBM Corp. 2020. All rights reserved.

2.1 A new computing paradigm in cloud transformation

Cloud computing transformed the way that IT is managed.

In the traditional method of using services or resources, the owner of the infrastructure is
responsible for managing every piece of hardware and software they use. Normally, it takes
some time for a user to access a new resource, but it can be configured exactly as needed.

Traditional infrastructure is often related to aging core applications (typically integrated with
aging infrastructure and technologies) that cannot be easily migrated to cloud paradigms.
Elasticity, standardization, and other clear cloud advantages are not sufficient reasons to
migrate. In other cases, rigid security and country regulations sometimes force users to locate
data nearby and under total management control.

2.1.1 Cloud service model

This section describes the different cloud service models.

Infrastructure as a service (laaS)

The management responsibility for the company starts with the operating system layer and
the provider ensures the availability and reliability of the infrastructure provided.

Several use cases can benefit from this pattern. Companies that lack an owned data center
look to laaS as a quick, cheap infrastructure for their business initiatives that can be
expanded or ended as needed. Traditional companies that need compute power to run
variable workloads with less capital expenditure are perfect examples of laaS adoption. In
both cases, companies pay only for the services that they use.

Platform as a service (PaaS)

Development companies and factories that want to implement agile methodologies are the
most suited for PaaS. PaaS providers publish many services that can be used inside
applications. Those services are always available and up-to-date. PaaS provides a simple
way to test and prototype new applications. It can save money when developing new services
and applications. Applications can be released more quickly than usual to get user feedback.

The APl economy is the new paradigm in development. The cloud provides the perfect
platform for its implementation.

Software as a service (SaaS)

At the time of this writing, SaaS patterns are accepted by many companies that want to
benefit from application usage without the need to maintain and update infrastructure and
components. Mail, ERP, collaboration, and office apps are the most accepted SaaS solutions.
The flexibility and elasticity of the SaaS model are great benefits.

No “one-size-fits-all” solution exists for cloud adoption. Companies must consider their own
cost and benefit equation and then decide on the best model. Each application and process
that is needed is a workload. A deep workload assessment is normally performed by
companies that decided to move to the cloud.

8 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

2.1.2 Cloud adoption

The initial forays for most early adopters were focused on the easy things. Moving basic
applications to cloud infrastructure to cut costs and building new applications in the cloud to
speed innovation. However, to date only approximately 10 - 20% of applications that are
moved to the cloud. The next 80% of the cloud opportunity focuses on shifting business
applications to the cloud and optimizing everything from supply chains to sales transactions.
To address that opportunity, companies must move and manage data, services, and
workflows across multiple clouds (companies are running 5 - 16 cloud vendors). This issue is
challenging for them because it is largely a manual process, with major security implications
and inconsistent cloud management and automation services.

2.1.3 Why is hybrid cloud so important

A one-cloud-fits-all approach does not work, Companies are choosing multiple cloud
providers and clouds (public, private, software-as-a-service, and so on) to best meet their
needs. They also are integrating those clouds with existing IT to get more value.

The result is a hybrid approach to a multicloud environment. It is a mix of public clouds to
quickly develop and deploy applications, private clouds to maintain the highest levels of
security and availability for business-critical data and processes, and in many cases
traditional on-premises IT.

2.1.4 Application modernization journey for a cloud-centric business
transformation

The journey to the cloud starts with application modernization. On average, only 20% of
applications in an environment were moved to the cloud. Application modernization is a
strategy for helping companies to move aging application estates to the cloud.

Business pressures demand faster time to market, robust workload mobility to allow quick
migrations to the cloud, which improves operational efficiency, elasticity, and cost reductions.
Applications must be adapted and ported to the cloud. Cloud-native technologies, such as
containers, Kubernetes, and microservices, simplify this journey. How much time do you need
to rewrite the entire portfolio of applications? Of course, it is a lot; therefore, a gradual
application modernization is inevitable.

Modernizing your applications results in the following immediate benefits:

» Accelerate digital transformation. New applications quickly match the business
requirements.

» Improve developer productivity. Application containerization enables self-service for
developers.

» Improve operational efficiency and standardization. CI/CD practices of continuous
integration and continuous delivery to take advantage of the DevOps enablement culture.

An application modernization aligns with the hybrid nature of cloud adoption by large
enterprises. It fully supports multicloud deployments that can span private, on-premises
clouds and various public clouds by using standard Kubernetes-based container
orchestration platforms, such as Red Hat OpenShift. For more information, see 2.5,
“Enterprise Kubernetes: Red Hat OpenShift” on page 31.

Chapter 2. Introduction to containers and orchestration with Kubernetes 9

To start the modernization journey, first you must analyze your current application estate and
prioritize your modernization goals. The outcome of the analysis can help you select the most
suitable modernization patterns:

» Move the monolith to cloud

Containerize the applications, also called the VM-based lift and shift method. When you
containerize an application, you reduce future costs, simplify operations, and provide
flexible cloud migration to a common Kubernetes platform. You also focus on a single
operational model that can be used by new cloud-native and traditional applications.

» Expose on-premises assets by using APls

The use of APIs allows new applications to use the exposed capability in an accessible
way. Typically, this connection is made by way of the OpenAPI Specification (OAS) REST
standard that allows the interface to be discovered and managed.

» Refactor the monolith into macroservices

Transform your monolith application to become cloud-native. For example, when you deal
with large Java or JavaScript files and break monoliths into smaller deployable
components.

» Add capabilities as microservices

Enrich your application with new business functions that are implemented as
microservices. Your application can use various services that are available in the cloud,
such as Al, industry, and domain services.

» Strangle the monolith

Incrementally withdraw the monolith from service by replacing functions with new
cloud-native implementations.

To help you on your cloud journey, IBM introduced new and better experiences on
modernization approaches, such as the incremental lift-and-shift to cloud-native
microservices. You do not need to rewrite your entire application assets to move to the cloud.
With a cloud-native microservices approach, you can capitalize on the scalability and
flexibility that is inherent in any robust cloud infrastructure.

DevOps approach

DevOps is about tools and techniques that are needed to bring the worlds of development
and operations closer together. It is about the practices and automation that is required to
reliably and rapidly deploy new code through the build and test cycles to production
environments.

DevOps is an approach where companies and their development, operations, and quality
assurance teams collaborate to continuously deliver software. By following this approach,
which is based on lean and agile principles, enterprises can seize market opportunities and
reduce the time to include customer feedback in their products. DevOps applies to aging,
traditional, cloud-ready, and cloud-native applications.

Failing fast and iterating quickly are DevOps requirements for competitive app delivery. They
imply application architectures that decouple services from each other in a continuous
development and delivery cycle, although ensuring well-performing interactions with users.

In a cloud-native environment, applications are viewed as collections of microservices with
many deployable components that deploy at various speeds and independently of each other.
Manually deploying anything becomes an unsustainable effort that is prone to error,
inconsistency, and delays.

10 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Automating continuous delivery pipelines is a way to help operations from deploying an
application they have little knowledge of and rescue developers from complex configurations
and deployments. Efficient delivery means more time for innovation, which enables the
business to disrupt the market and competitors.

Whether they are accessing a website or a mobile app, people have high expectations of the
apps that they regularly use. As a result, companies must continuously deliver new features
and fixes. In the past, this process was painful because an application was developed, built,
and made available as a single, often monolithic, application.

Containerization or the paradigm shift towards microservices
Microservices is an application architectural style in which an application is composed of
many discrete, network-connected components called microservices. Consider the following
points:

» Large monolithic applications are broken into small services.

» A single network-accessible service is the smallest deployable unit for a microservices
application.

» A microservice is a small application that usually houses one function. The function is
exposed through APIs and messaging. This rule, sometimes referred to as one service per
container, might be a container or any other lightweight deployment mechanism,

» Each microservice can feature its own DevOps pipeline, scale individually, and have its
own database where it owns a data model.

Figure 2-1 shows how a monolithic application architecture evolves into a
microservices-based application architecture.

Exposed services/APIls Exposed services/APls
Silo component
com po nent Microservice Microservice
component component
Monolithic application Microservices application

Figure 2-1 Monolithic application versus Microservices application

Chapter 2. Introduction to containers and orchestration with Kubernetes 11

2.2 Virtual machines meet containers

The use of a hybrid container architecture by combining virtualization by both virtual
machines and containers can help to address the requirement for a robust cloud computing
platform.

2.2.1 Perfect recipe for application modernization

12

For years, Infrastructure as a Service (laaS) cloud was the main focus of cloud
implementations. The goal of 1aaS is to provide virtual machines as a service. laaS standards
initiatives, such as OpenStack and others, were developed to establish an easy way to
provision virtual machines.

Considering the IBM Power Systems environment, the IBM Power Virtualization Center
(PowerVC) product became the key element for cloud implementation. Software developers
and vendors created VM images as the way to deploy workloads. Putting in perspective, VM
clouds were an evolution of the old grid computing architectures, where the elasticity and
power were determined by the number of nodes that were performing tasks remotely. With
laaS, cloud infrastructure became solid and easy to implement.

PowerVC is a virtualization management offering that simplifies the tasks of creating and
managing virtual machines on IBM Power Systems servers. At the lower level, PowerVC
works with virtualization resources from PowerVM or KVM on Power hypervisors.

At a higher level, as shown in Figure 2-2 on page 13, PowerVC interacts with cloud
management services through OpenStack software infrastructure. It is designed to build a
private cloud on the Power Systems servers and improve administrator productivity. It can
further integrate with multicloud environments through higher-level cloud orchestrators.

For more information about PowerVC, see this website.

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

https://www.ibm.com/us-en/marketplace/powervc

Cloud
Management

PN

Virtualization
Management
PowerVC

N

Platform
Management

Figure 2-2 IBM PowerVC

Around 2011, Container technology started to be a strong player in the cloud arena, which is
a method to package an application in a box so it can be run with its dependencies, isolated
from other applications. For more information, see 2.3, “Containers” on page 19.

A year later, Docker Containers exploded in popularity, but one thing was missing: the
thorough view and management of the entire environment.

Chapter 2. Introduction to containers and orchestration with Kubernetes 13

IT Service Management and orchestration

An IT Service Management (ITSM) perspective can provide automation and a global
management view, and incorporate the necessary software disciplines that are required to
build a solid infrastructure for an enterprise, commercial or not.

The missing point was the orchestration and the orchestration of all containers and resources
around them. Many people think that orchestration and automation are the same thing, but
the orchestration is more complex. Automation often is discussed in the context of specific
tasks, whereas orchestration refers to the automation of processes and workflows.

Orchestration deals with the end-to-end process simplify the automation and the
administration across specific machines and diverse dependencies (see Figure 2-3).
Automation attempts to move people out of the equation whereas orchestration is not about
rigid planning, but arranging and coordination of automated tasks, which ultimately results in
a consolidated process or workflow. Parts can be automated, but the decision is still
human-centric; for example, the definition of which tasks must run, the order of the tasks, role
assignments, permission, post-deployment, failure recovery, and scaling.

IBM products Open Source 3rd party
£ I i, R
PR o
Application & Developer ‘;_‘ mr——
Services &

Orchestration/Scheduling | | """ _";uh.m“u

Service Model

Container Engine e
R %ﬁ'dcc ker
Infrastructure -

Figure 2-3 Where orchestration fits

For more information about automation, see 2.4, “Kubernetes: An open source container
orchestration” on page 24.

14 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Cloud engineering

In the same line of ITSM, the application of an engineering approach on cloud infrastructures
helped the clients and system administrators to integrate better and manage their day-to-day
business.

Cloud engineering focuses on cloud services, such as SaaS, PaaS, and laaS. Itis a
multidisciplinary method that includes the foundation of cloud, implementation, cloud
development-delivery lifecycle, and management.

An orchestrator normally includes a range of technologies, products, and components, as
shown in Figure 2-4.

Example of Orchestration Components

Monitoring & Logging

Routing & Load

Balancing

Figure 2-4 Example of Orchestration Components

The following cloud engineering disciplines are addressed by an orchestrator:

Platform management
Virtualization services
Authentication and authorization services
Resources management

Disaster recovery

Workload resilience

Monitoring, usage, and accounting
Configuration services

Application lifecycle

Service automation

Service catalog

YVVYVYYVYVYVYVYVYVYYY

Chapter 2. Introduction to containers and orchestration with Kubernetes 15

2.2.2 Coexistence of virtual machines and containers to modernize workloads

The component that is responsible for running containers is the container engine (Docker). In
a hybrid cloud or not environment, you can have a container engine running on a stand-alone
server or in a virtual machine-based server, as shown in Figure 2-5. For the functional
standpoint, there is no difference where the container engine runs. Some management
advantages exist for having containers on virtual machines, mainly in terms of flexibility and
control. Depending on what you need to do, a virtual machine might be the best place to host
those containers.

App 3
Bins/libs
App 2 App 3
Guest
Bins/libs | | Bins/libs 0Ss
Docker engine

Infrastructure Infrastructure

by O b

Figure 2-5 Docker engine versus virtual machine

The synergy of combining virtual machines and containers empowers the system
administrator to better tune the resources (processors, memory, storage, and network). They
also can optimize the overall usage of the available assets to maximize and simplify the use of
the physical hardware.

For management and infrastructure nodes of a cloud cluster, the use of virtual machines
might have more advantages. The system administrator has robust control of the resources
that are assigned to these nodes, which makes it easy to maintain the nodes as active and
well-tuned.

The decision to run it on a virtual machine or in a bare-metal machine must follow largely the
non-functional requirements of the architecture decisions. You can also take advantage of the
virtual resources that are provided by a virtual machine. Containers can interact with virtual
machine-provided services. For example, your application containers must interact with a
database that uses storage that is backed by volumes that are managed through IBM
PowerVC.

16 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

You can dynamically increase or decrease the amount of storage available to the node as the
deployed containers change. Figure 2-6 shows an example of how several containers across
multiple virtual machines can share one set of volumes.

Create volume

Storage

88

Attach volume

PowerVC
Management
Server

Power warker nodes
Systems : :
host Virtual = Virtual
machine o | machine
FlexVolume FlexVolume
) Driver Y Driver
masler node
Virtual) FlexVolume
= :
Create volume machine
v Provisioner
Attach volume p)

Figure 2-6 Storage Backed By Volumes Managed Through PowerVC

Note: For more information about the use of IBM PowerVC storage with containers, see
IBM Knowledge Center.

2.2.3 Virtual machines and containers in a hybrid multicloud architecture

Hybrid multicloud is a cloud environment that combines a private cloud and public clouds
that allows applications and data to be shared between them. A multicloud refers to an
environment that is made of up of more than one cloud provider (or vendor). Hybrid is an
environment that combines a private cloud and a public cloud that allows applications to take
advantage of the resources on either cloud. Therefore, hybrid multicloud combines a private
cloud, a public cloud, and more than one cloud service from more than one cloud vendor.

IBM Power Systems customers use a simplified deployment of enterprise resources by using
various virtual machines (LPARs). Enterprises worldwide are exploring container technology
and developing plans for how to integrate them into their enterprise. They want to start to
deploy, manage, and operate containerized applications smoothly by integrating them into
virtual machines.

IT administrators, developers, and line-of-business users want to continue a simplified access
to the infrastructure and applications, which is possible by adopting the IBM Power Systems
cloud technologies within the data center.

Chapter 2. Introduction to containers and orchestration with Kubernetes 17

https://ibm.co/34Cko06

From a Power Systems view, IBM PowerVC delivers the laaS layer on-premises, which
simplifies virtualization management and cloud deployments virtual machines. This
integration with multicloud environments is by way of cloud orchestrators, such as the

Kubernetes-based Red Hat OpenShift platform.

OpenShift provides a universal Paa$S solution that covers the entire hybrid multicloud
landscape. Therefore, users can run their software of choice, which is built as containers,
including IBM enterprise software delivered by way of IBM Cloud Paks (see Chapter 3, “IBM
Cloud Paks: Middleware anywhere” on page 37), ISV applications, and Open-source software
(OSS). Finally, technologies, such as IBM Multicloud Manager or VMware vRealize, can
integrate the historically separate cloud infrastructures into a single interconnected cloud

fabric.

Figure 2-7 shows an example of a hybrid multicloud scenario that is inclusive of the major
hardware platforms, including IBM Power Systems, IBM Z®, and x86.

VM-based Container-
apps based apps

WM-based Container-
apps based apps

11
I Power Systems I I Power Systems I
._I_. Y
Public Cloud(s) Private Cloud(s)

“Manage To” Environment

* Manages both containers and YMs
* Consistent stack on-prem and off-prem
* Works across multiple cloud providers

Clowd Automation

RMulticloud
Marager

Manager

Red Hat
OpensShift

“Manage From” Environment

Figure 2-7 Hybrid multicloud scenario

Manage-To
In the Manage-To side of Figure 2-7, you see the hybrid IT that includes the foundation,
platforms, apps, and tools from different vendors. Because proprietary tools do communicate
with each other, you need advancements in infrastructure, management, and development
that bring your clouds together.

Manage-From

In the Manage-From side of Figure 2-7, you see Red Hat OpenShift, Multicloud Manager, and
Cloud Automation Manager (CAM) management components.

Multicloud Manager is the enterprise-grade multicloud management solution for Kubernetes.
It provides consistent visibility, governance, and automation across the hybrid multicloud
infrastructures. It also provides a single source to provision applications and enforces access
and security policies across heterogeneous cloud environments.

18 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Whether your enterprise application is a modernized traditional application or a cloud-native,
12-factor application, Multicloud Manager provides a consistent way to deploy your
application across clusters. Placement policy provides control of deployment that is based on
several factors. Multicloud Manager uses CAM services to provision, configure, and deliver
individual Kubernetes clusters as a service in any cloud that CAM supports.

Multicloud Manager and CAM are offered as part of the IBM Cloud Pak™ for Multicloud
Management. For more information, see Chapter 3, “IBM Cloud Paks: Middleware anywhere”
on page 37.

2.3 Containers

Interconnected applications and services are the primary focus in 21st century. Services
availability is a key user expectation. Availability, scalability, resilience, and security are some
of the primary requirements for all service providers. All of these features demand platform
availability where operational overhead is a major challenge.

Operating system virtualization (see Figure 2-8) is a significant step to achieve optimal
resource utilization with reduced operation management effort. Container services are a step
further to ensure higher availability of services with minimal operation management
overhead. Containers are facilitating rapid and agile software development, testing, and
deployment.

App 1 App 2 App 3
Bins/libs | [Bins/libs| | Bins/libs

Docker engine

Figure 2-8 Containerized applications

2.3.1 What are containers?

A container is the object for encapsulating or packaging up software code, along with all
required dependencies, so that it can run uniformly and consistently on any infrastructure.
This abstraction away from the operating system makes the container highly portable to run
across any platform or cloud and clear of any issues. A container is also termed as
lightweight, considering that the same operating system kernel is shared across multiple
instances of containers.

A portability feature is also known as Write once and run anywhere, which is important in
context to development process and compatibility with other dependent software stack.
Containerization improved security and efficiently of code development with the adoption of
Docker and DevOps.

Chapter 2. Introduction to containers and orchestration with Kubernetes 19

Containers include the following key features and benefits:
» Portability:

— Single executable package with all code, configuration files, dependencies, and
required libraries

— Bundle must not include operating system-related files

— Open runtime engine is a prerequisite

— Common bins and libraries can be shared across multiple containers
> Agility:

— Container system is managed by Open Container Initiative

— DevOps tools and process are used for rapid code deployment by using continuous
integration and continuous deployment (CI/CD)

— Open Source Docker engine works for Linux and Windows platforms
» Performance:

— Multiple containers share operating system kernel for lightweight execution mode
— Improves service usage, which results in reduced software license costs
— Container start time is much faster than VM start time

» Fault isolation:

— During concurrent execution, each container runs independently. A fault in one
container does not affect other container’s execution.

— Container engine takes advantage of operating system security isolation technique.
» Ease of management:
— Container orchestration manages installation, scalability, availability as defined

— Application version upgrade, monitoring, and debugging managed centrally through
container orchestration system

» Security:

— Encapsulation and isolation is the first level of security for any containerized
application. A rogue application does not affect other applications of the hosting
environment

— Container engine inherits default security features from hosting platform

— Namespace provides an isolated view; for example, file system, mount point, network,
process ID, and User ID

2.3.2 History of containers

Container seems a latest buzzword with cloud technology. However, a similar concept was
used for the first time as early as 1970 where application code was decoupled from UNIX
native system calls.

Overtime, a few more enhancements were made, from stand-alone computer systems to
integrated environments. Then, virtualization features evolved with LPAR and workload
partition (WPAR) concepts. Although these virtualization features added flexibility, application
portability always was a challenge. With containerization, new age software developers
received all of the flexibility, portability, and security that they needed.

20 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

The following timeline highlights the major shifts in the development of container to date (see
Figure 2-9):

» 2000 FreeBSD Jails: FreeBSD Jails enabled Computer systems to be partitioned into
multiple servers that were independent subsystems named Jail with unique IP address.

» 2001 Linux Vserver: Similar to FreeBSD Jails, Linux also developed a feature for operating
system virtualization where a file system, memory, and network can be shared among
independent systems.

» 2004 Solaris Containers: Solaris Containers combined system resource controls and
boundary separation that was provided by zones to take advantage of features, such as
snapshots and cloning from ZFS.

» 2006 Google process containers: Process Containers was designed for limiting,
accounting, and isolating resource usage (CPU, memory, disk I/O, and network) of a
collection of processes. Later, this was renamed as Control Groups (cgroups) and merged
to Linux kernel 2.6.24.

» 2008 LXC evolved (Linux Container Group): Linux Containers (LXC) was the first, most
complete implementation of Linux container manager. It was implemented in 2008 by
using cgroups and Linux namespaces.

» 2013 Let Me Contain That For You (LMCTFY): Let Me Contain That For You (LMCTFY)
started in 2013 as an open source version of Google’s container stack. Applications can
be made container aware, which creates and manages their own subcontainers.

» 2013 Docker: Docker emerged, which made container service even more popular. Docker
and container grew together.

» 2016 Security and DevOps: Container security enhanced and DevOps method evolved as
most preferred Container Application process.

» 2017 Container becomes more matured with CNCF and Kubernetes.

2017 - CNCF and Kubernetes
2018 - OCPv3

2016 - sercurity and DevOps

2013 - Docker
2008 - LXC

2006 - Google process containers

2004 - Solaris containers

2000 - FreeBSD Jails
2001 - Linux Vserver

FreefsD, mmmy — docker

JL OPENSHIFT

Figure 2-9 Containers timeline

Chapter 2. Introduction to containers and orchestration with Kubernetes 21

2.3.3 Docker as a container manager

Docker is the virtualized platform to host containerized applications, starting from software
development until execution. Docker engine is a client/server application that features the
following components:

» Daemon: These processes run in the background and are not attached to any terminal
session. Mostly, these processes are designed to receive instructions from other
applications to perform specific tasks. Daemons plays a key role to manage Docker
objects, such as images, containers, networks, and volumes.

» REST API: These user interfaces are used in code to send instructions to Daemon jobs.

» CLI: These commands are run in terminal sessions to send instructions to Daemon.
Script-based batch jobs are created by using CLI.

Docker Containers optimize software development process with following objectives:

» Streamline the development process by using standardized environments of local
containers, which are highly compatible for CI/CD workflow. Automation plays a significant
role to build and run test scenarios.

» Docker containers are lightweight in nature, which makes it highly portable to almost every
possible environment from workstation to virtualized environment to cloud. This feature
makes it highly scalable based on user requirements.

» Docker requires minimal resources so that multiple Docker containers can be hosted on
the same hardware for optimal performance and resource usage.

2.3.4 Docker architecture

This section describes the Docker architecture, as shown in Figure 2-10.

I Docker
Client |
Namespace II ml
Docker
[y Registry —
Network I—I Container format |
Rest API

Container I—I_ . .
Union File System I

Docker
Server

Daemon —I
Irni'—l_ Control Group I

Figure 2-10 Docker architecture

22 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

The Docker architecture includes the following components:

» Docker Server Daemon

Daemon is the Docker process that runs as background process and listen for API
requests. It also manages Dockers objects, such as images, containers, networks, and
volumes.

» Docker Registry

A Docker registry stores Docker images. Docker Hub is a public registry that anyone can
use. Docker is configured to look for images on Docker Hub by default.

» Docker Objects:

Images: This template is read-only with instruction to build a Docker container. An
image can be layer on another image with specific changes. An images library is
available from the Docker registry.

A Dockerfile contains the configuration information that is needed to build and run an
image. Based on instructions that are defined in the Dockerfile, layers are created for
an image. During the build process, only the changed layer is rebuilt; therefore, Docker
remains lightweight, which makes it small and fast.

Container: A container is an executable instance that is built from the image, which can
be started, stopped, moved, or deleted by using Docker API or CLI. Containers can be
connected to one or many networks. Storage can be added and a new container can
be built by using a container.

Services: Services allow you to scale containers across multiple Docker daemons,
which all work together as a swarm with multiple managers and workers. Each member
of a swarm is a Docker daemon, and the daemons all communicate by using the
Docker API.

NameSpace: In context of Docker, NameSpace is the technology that provides isolated
workspaces for a container (see Table 2-1). Each container encapsulates all its
features within the namespace that is associated with that specific container.

Table 2-1 NameSpace

Namespace Description

PID

Process isolation (PID: Process ID)

NET Managing network interfaces (NET: Networking)

IPC Managing access to IPC resources (IPC: InterProcess Communication)
MNT Managing file system mount points (MNT: Mount)

uTS Isolating kernel and version identifiers. (UTS: UNIX Timesharing System)

Control groups: A control group (cgroup) is the technology that limits an application to a
specific set of resources. This feature allows Docker Engine to share available
hardware resources to containers and optionally enforce limits and constraints.

Union file system: Union file systems (UnionFS) are file systems that operate by
creating layers, which makes them lightweight and fast. Docker Engine uses UnionFS
to provide the building blocks for containers.

Container format: Container format is the wrapper around NameSpaces, control
groups, and UnionFS. The default container format is libcontainer.

Chapter 2. Introduction to containers and orchestration with Kubernetes 23

» Docker Client

A Docker client is primary interface with which the user can use Docker features, as shown
in Figure 2-11. Docker client starts APIs in this process. Developers build applications by
using Docker APIs.

-

Docker Daemon
Container

'] Sy

¢ Docker Build
e Docker Pull = |
e Docker Run—

Istry
@e
e

‘ Reg
©

Images

®6
(aJ o)

Docker Hosf

Docker Client

Figure 2-11 Docker orchestration

2.4 Kubernetes: An open source container orchestration

This section describes Kubernetes open source container orchestration.

2.4.1 What is container orchestration?

Container orchestration is the process of organizing properly to achieve the wanted
performance. Cloud-based applications are intended to be hosted on several commodity
hardware on several hardware environments. These loosely coupled containerized objects
must be organized and coordinated to meet functional requirement, such as starting and
stopping an application, and grouping and coordinating applications in a cluster. Some of the
most popular orchestration services are Apache Mesos, Google Kubernetes, and Docker
Swarm.

A container platform that is lead by Docker is used to package applications that were divided
into micro services. Such discrete services can be hosted on separate containers that are
helpful during the continues integration and continues delivery process. Container
orchestration is primarily focused on managing the lifecycle of containers for automated
deployment, management of nodes, scalability and availability of services based on work
load, and networking among distributed containers in large systems.

Container orchestration configuration is created in YAML or JSON files. Based on the
declarative configuration, container tools perform one or more of the following tasks:

» Fetch required configuration image from repository by way of Docker Hub
» Establish networks across container
» Allocate storage and space

24 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

» EnsurerRedundancy of container
» Manage load balancing
» Log and monitor services

2.4.2 Kubernetes architecture, system, and components

Kubernetes is highly portable with open source development and design that is heavily
influenced by Google’s Borg system. Kubernetes and DevOps grew simultaneously and
appeared as the leading self-serviced Platform as a Service (PaaS). The following
components the Kubernetes architecture are shown in Figure 2-12:

» Node: A logical collection of system resources to support containers. Node contains all
required services to run Pods.

» Cluster: A collection of nodes with at least one master node and several worker nodes.

» Kubernetes master: Through the API server, the Kubernetes master communicates with
nodes in which application and containers are deployed. Several services are hosted from
containers. The scheduler assigns nodes to Pods based on policies and constraints that
are defined in a control plan.

» Kubelet: This agent process runs on each node. This process tracks the status of the node
and other configuration parameters from the Control Plan. This information is fetched from
the API server.

» Pods: These individual objects can be run or scheduled as a stand-alone service. Each
pod can have one or more containers and features its unique IP within the cluster.
Therefore, each pod simulates an independent hosting environment where load balancing
is achieved by using the same service that can be hosted by using the same port.
Pod-specific configurations are placed in PodSpec by using YAML or JSON. PodSpec
communicates with Kubelet by using the API server.

» Deployments: A deployment is a YAML object that defines the Pods and the number of
container instances (called replicas) for each Pod.

» Replicas and ReplicaSets: The number of replicas that you want to have running in the
cluster are defined by using a ReplicaSet, which is part of the deployment object.

’ ™~
Kubernetes Master Controller Manager J
API Server
n | Scheduler]
= R

\ /

r v h 4 v Y
{ Kubelet 1 [cAdvisor] [Kube Proxyl ‘ ‘ (Kubelet] (cAdwsor] [‘K\u‘be Proxy |
<j| Network
Pod Pod [J

\Kubernetes NodelL,‘ J {tfbernetes Node|L 4

Figure 2-12 Kubernetes architecture

Chapter 2. Introduction to containers and orchestration with Kubernetes 25

2.4.3 Kubernetes operating environment, objects, and basic operations

This section describes the Kubernetes operating environment, including its objects and basic
operations.

Master node

This node runs multiple controllers that are responsible for the health of the cluster,
replication, scheduling, endpoints (linking Services and Pods), Kubernetes API. It interacts
with the underlying cloud providers and others. Generally, it ensures that everything is
running and monitors worker nodes.

Worker node

This node runs the Kubernetes agent that is responsible for running Pod containers by way of
Docker or rkt, requests secrets or configurations, mounts required Pod volumes, performs
health checks, and reports the status of Pods and the node to the rest of the system.

Pod

Within a cluster, a pod encapsulates an application that is composed of one or more
processes from one and at time multiple containers. Every pod includes dedicated I/O
resources, such as storage, a unique IP, and a set of configuration properties for the runtime
environment. These features make pod the smallest unit of deployment and basic unit of
execution.

Docker is the most popular container run time that is used for Kubernetes Pod'. Depending
on associated containers, pods are available in the following types:
» Pod with a single container: This configuration is the most common.

» Pod with multiple containers: Must be colocated containers to serve a functional
requirement.

» Networking: Each pod shares its namespace, IP, and port. However, for optimal
performance, containers in same Pod communicates with the localhost identity.

» Storage: A pod specifies shared storage volume. All containers in a pod can share
persistent data through this volume.

After a pod is created and is scheduled to run on a node, it persists until one of the following
actions occurs:

v

The process is ended.

The pod objected is deleted.

The pod is evicted for lack of resources.
The node fails.

vYyy

A pod alone is not self-healing, which means that during any failure, a pod does not attempt to
restart. A pod is the encapsulation of containers, which primarily are executable entities.
Therefore, to “run a pod” means running an application and service through containers.

1 https://www.sumologic.com/blog/kubernetes-vs-docker/

26 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

https://www.sumologic.com/blog/kubernetes-vs-docker/

Services

Kubernetes Service is one more REST object and is similar to a pod. However, this service is
designed as an abstraction for logical set of pods and associated policy to access those sets.
This abstraction enables cloud-based applications to be decoupled from its endpoints. A
Service definition is posted to API server to create a Service instance with or without Selector
definition. Cloud native applications take advantage of the API server to query and discover
Service endpoints, along with notification for changes in pods that are associated with a
service.

Service with selector
Service with selector includes the following features:

» An object is created with cluster IP, which is assigned by Kubernetes to new a Service
object

» Automatically creates endpoints
» Controller scans and find this service with the reference of Service selector

Service without selector
Service without selector includes the following features:

» Maps with objects from external clusters
» Maps with objects from different namespace
» During phased migration, section of objects from be run as a backend process

» Endpoint objects are not created automatically (requires manual mapping of service with
IP and ports)

Storage volume

Kubernetes volume is an abstraction to address two important aspects, such as data
persistency and sharing. Data persistency helps to retain the most updated data set after a
container is stopped or crashed. Data sharing can be an essential requirement if multiple
containers are hosted in a pod.

A Kubernetes volume is persistent until the enclosing pod is available. A pod can select or
move volumes from the following persistent block level storage devices:

awsElasticBlockStore
azureDisk

azureFile

cephfs

cinder

configMap

csi

downwardAPI
emptyDir

fc (Fibre Channel)
flexVolume

flocker
gcePersistentDisk
gitRepo (deprecated)
glusterfs

hostPath

iscsi

local

nfs

VY Y Y YYYYYYYYVYVYVYVYYVYYY

Chapter 2. Introduction to containers and orchestration with Kubernetes 27

28

persistentVolumeClaim
projected
portworxVolume
quobyte

rbd

scalelO

secret

storageos
vsphereVolume

vyVVYyVYyVYVYVYYVYYY

NameSpace

Kubernetes NameSpace is set of virtual clusters that are backed by physical clusters.
NameSpace is intended to divide cluster between users to provide an isolated and secure
environment. NameSpaces are built with unique names. But the same name can be present
in different NameSpaces. Therefore, a Name is supposed to be unique in a NameSpaces, but
not so when it encounters NameSpaces. A NameSpace must not be nested.

Controller

Controller is another Kubernetes abstraction that handles the availability of a pod. Therefore,
the most preferred practice is to use the Controller to manage pods. A Controller can create
and manage multiple pods for you. It also can handle replication and rollout and provide
self-healing capabilities at the cluster scope. For example, if a node fails, the Controller might
automatically replace the pod by scheduling an identical replacement on a different node.

ReplicaSet

ReplicaSet is the process to maintain the configured availability level with a specified number
of identical pods in the Kubernetes Cluster. A ReplicaSet must be created with a selector and
the template to include specifications for pod instances to be created or deleted to meet the
needed availability level. This task is performed by ReplicationController. A ReplicaSet
identifies new pods to acquire by using its selector.

Deployment

Kubernetes nodes are managed over declarative configuration to ensure the availability of the
wanted number of pods or ReplicaSets. At times, a deployment also can be rolled back based
on business requirements.

StatefulSet

StatefulSets are API objects that are used to manage stateful application for deployment and
ensures the ordering and uniqueness of pods. In this scheduling option, pods carry a unique
identity, although it starts with identical pods. This scheduling can be helpful for the following
aspects of an application:

» Persistent unique network identifier and storage
» Ordered deployment, scaling, and automated rolling updates

DaemonSet

A DaemonSet is another API server object that ensures scalability of a pod with the change of
available nodes in the system. After a node is added to the cluster, the corresponding pod is
initialized in that node. It also cleans up the pod after the node is deleted.

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

A DaemonSet often is used for the following tasks:

» Cluster storage daemon on each node
» Logs collection daemon on every node
» Node monitoring daemon on every node

The use of one or multiple DaemonSet depends on the complexity of the cluster and
application.

Job

A Job creates one or more pods and ensures that a specified number of those pods
successfully end. As pods successfully complete, the Job tracks the successful completions.
When a specified number of successful completions is reached, the task (for example, Job) is
complete. Deleting a Job cleans up the created pods.

A simple case is to create one Job object to reliably run one pod to completion. The Job
object starts a new pod if the first pod fails or is deleted (for example, because of a node
hardware failure or a node restart).

Control plan
Pods do not, by themselves, self-heal. If a pod is scheduled to a node that fails, or if the

scheduling operation fails, the pod is deleted; likewise, a pod does not survive an eviction
because of a lack of resources or node maintenance.

Kubernetes uses a higher-level abstraction, called a Controller, that handles the work of
managing the relatively disposable pod instances. Although it is possible to use pods directly,
it is far more common in Kubernetes to manage your pods by using a Controller. For more
information about how Kubernetes uses Controllers to implement pod scaling and healing,
see “Pod” on page 26 and “Controller” on page 28.

2.4.4 Cloud Native Computing Foundation

The Cloud Native Computing Foundation (CNCF) hosts critical components of the global
technology infrastructure. For more information, see this website.

One of the projects under incubation to develop a Kubernetes Container Runtime interface is
the Container Runtime Interface (CRI) for OCI (CRI-O). This initiative is explained in this
section, including its architecture, benefits, and distinguishing features.

CRI-O

CRI-O is a project that was started by Red Hat in 2016 to be an open Container Initiative
(OCI) that is based the implementation of Kubernetes CRI. This effort contributed to the
Cloud Native Computing Foundation (CNCF). CRI-O and Kubernetes follows the same
release cycle and dependencies.

Chapter 2. Introduction to containers and orchestration with Kubernetes 29

https://www.cncf.io/

CRI uses the OCIl-compatible environment for running Pods. CRI-O’s compatibility with OCI
enables it to be pulled in from any Container registry. This feature is a lightweight alternative
for Docker and similar services. CRI-O is available with Red Hat OpenShift.

The CRI-O architecture is shown in Figure 2-13.

| Container -A }<—~—>‘ conmon %—-—r‘ Container - C ‘

b | Infra Container |<——> Infra Container ‘
e :____-:_____":_____________________'_'"‘_":":‘: _________ :
1
| ' [Image Service | Runtime Service | CRIED :
- : | OC] Generator | :
4 RPC i
e ! \ CNI | |
: Library Library :
1
t ! [Containers/images | Containers/Storage | i
- _ - . 1

Figure 2-13 CRI-O architecture

The architecture overview that is shown in Figure 2-13 includes the following components:

» Pods are managed by a Kubelet that is based on information that is received from
Kubernetes. The Kubelet and CRI-O communicate over CRI-gRPC API. Each pod hosts
one or more containers from same cgroup and share common resources that are available
in Pod.CRI-O uses CIN plug-in for network setup for the pod.

» CRI-O daemon starts a new pod that is based on Kubelet instructions that are received by
way of Kubernetes CRI, which pulls images from the Container registry.

» The Container library unpacks the downloaded image in the Container root file system and
stores it in the COW file system.

» After rootfs is created for container by using OCI generate tools, CRI-O creates JSON
files with a runtime specification for the pod. The OCIl-compatible run time is started based
on the runtime specification. The default OCI run time is runc.

» Containers are monitored by using a common process that handles logging for the
container process until the exit code ends the process.

» GitHub repository for several CRI-O components provides the following components:

— OCI compatible run time

— Containers and storage

— Containers and images

— Networking - CNI

— Container monitoring (common)

Some key distinguishing features for CRI-O: CRI-O limits its scope to Kubernetes. New
features are also added based on the requirement of Kubernetes only. Primary driving factors
include stability, security, and performance. CRI-O has limited troubleshooting capability and
it uses Kubernetes’ CRI-API for Container-building activities.

30 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

2.5 Enterprise Kubernetes: Red Hat OpenShift

OpenShift is an open source container application platform by Red Hat that is based on the
Kubernetes container orchestrator.

2.5.1 Red Hat OpenShift overview

Based on industry standards, such as Docker and Kubernetes, Red Hat OpenShift is one of
the most reliable enterprise-grade containers. It is designed and optimized to easily deploy
web applications and services. Categorized as a cloud development Platform as a Service
(PasS), OpenShift allows developers to focus on code. It also manages all of the complex IT
operations and processes.

One of the main features that OpenShift offers to the industry is the ability to handle
applications that are written in different languages, such as Python, Node.js, Java, and Perl.

Red Hat OpenShift is presented to the users in three different products:

» Red Hat OpenShift Container Platform
» Red Hat OpenShift Online
» Red Hat OpenShift Dedicated

Red Hat OpenShift Online and Dedicated versions are clusters that are fully provided as a
cloud service. They offer many features, such as high availability, flexible authentication
options, and integrated container registries.

The differences between Online and Dedicated options are on the cloud service
implementation. Online Service is a multi-tenant operating system that is designed for
individual developers to quickly gain access to a hosted OpenShift environment, although the
Dedicated version offers clusters in a virtual private cloud, which is exclusive for a single
customer (single-tenant).

In contrast, OpenShift Container Platform works on-premises private PaaS. Although the
implementation purposes and business modeling can differ from one product to another, the
core of the code and functionality from the different versions are the same.

2.5.2 Red Hat OpenShift Container Platform

Formally known as a OpenShift Enterprise, the OpenShift Container Platform (OCP) is built
and optimized for easily deployment of web applications and services. It provides developers
with a secure and scalable operating system for their applications, which helps them to build
and deploy containerized infrastructure.

The following section describes the OpenShift architecture, its components, and high
availability considerations.

2.5.3 OpenShift Container Platform architecture

Designed as a layered system, OpenShift Container Platform architecture supports and
manages each layer with Docker, which allows for the creation of lightweight containers. All of
these containers are handled by Kubernetes on the top of the layers, which provides the
cluster management and orchestration of containers on multiple hosts.

Chapter 2. Introduction to containers and orchestration with Kubernetes 31

OpenShift Container Platform also integrates the following features:

» Source code management, builds, and deployments for developers

Managing and promoting images at scale as they flow through your system
Application management at scale

Team and user tracking for organizing an organization with tons of developers
Networking infrastructure that supports the cluster

vvyyy

Figure 2-14 shows the general architecture of OpenShift Container Platform.

@ ROUTING LAYER
Developer
MASTER NODE s
AR Management,/ —
SCM (Git/Svn) o Authentication LA SEIEH Replication ﬁ
Gluster
H Storage
1
; RED HAT ENTERPRISE LINUX OR ATOMIC HOST
CI/CD —
NODE INFRA NODE]
Existing rannennsnnmy b U e ﬁ
Automation — POD1 i A i POD1 i A i
Toolsets _______?E_____J i______?E_____.' S:;:oergge
| POD 2 App | POD 2 App 5
@ POD N App i POD N App

Operations RHEL OR ATOMIC HOST RHEL OR ATOMIC HOST _— ﬁ

Other Storage
Vendors

OPENSHIFT

SERVICE LAYER

CERTIFIED HARDWARE / CLOUD PROVIDER

Figure 2-14 OpenShift Container Platform architecture

OpenShift Container Platform is a microservices-based architecture that is composed of
decoupled and small units working together. The microservices are categorized by function:
REST APIs to change the state of the system, and Controllers, which use the REST API to
read the user’s wanted state, and then try to bring the other parts of the system into sync.

OpenShift Kubernetes cluster components

OpenShift is based on Kubernetes cluster. Kubernetes manages containerized applications
across a set of hosts and provides mechanisms for deploying, maintaining, and application
scaling.

32 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

A Kubernetes cluster consists of one or more masters and a set of nodes:
» Master

The master is the host or hosts that contain the control plane components, including the
API server, controller manager server, and etcd. The master manages nodes in its
Kubernetes cluster and schedules pods to run on those nodes (see Table 2-2).

Table 2-2 OpenShift Master components

Component Description

api server The Kubernetes API server validates and configures the data for
Pods, services, and replication controllers. It also assigns Pods to
nodes and synchronizes Pod information with service configuration.

etcd The etcd component stores the persistent master state while other
components watch etcd for changes to bring themselves into the
wanted state. Also, etcd optionally can be configured for high
availability, typically deployed with 2n+1 peer services.

Controller Manager Server The controller manager server watches etcd for changes to
replication controller objects and then uses the API to enforce the
wanted state. Several such processes create a cluster with one
active leader at a time.

HAProxy Optional, used when configuring highly available masters with the
native method to balance load between AP| master endpoints. The
cluster installation process can configure HAProxy for you by using
the native method. Alternatively, you can use the native method, but
pre-configure your own load balancer of choice.

» Service Proxy

Each node also runs a simple network proxy that reflects the services that are defined in
the API on that node. This feature allows the node to perform simple TCP and UDP stream
forwarding across a set of back ends.

OpenShift Container Platform creates nodes from a cloud provider, physical systems, or
virtual systems. Kubernetes interacts with node objects that are a representation of those
nodes. The master uses the information from node objects to validate nodes with health
checks. A node is ignored until it passes the health checks, and the master continues
checking nodes until they are valid.

Note: It is recommended to have more than three master nodes to provide high availability
and quorum.

2.5.4 Red Hat OpenShift access and control

OpenShift 3 allows access to the system from the command-line interface (CLI), web console,
or Eclipse integrated development environment (IDE). For the purpose of this book, we focus
on the use of the command-line tool and the web console.

Command Line Interface tool

The OpenShift Container Platform includes a CLI that allows running pre-configured
commands for managing your applications. IT also includes lower-level tools to interact with
each component of your system. The oc command-line tool, also known as OpenShift CLlI, is
used to interact with the OpenShift and Kubernetes HTTP API(s).

Chapter 2. Introduction to containers and orchestration with Kubernetes 33

For more information about CLI, see this website.

The oc command-line tool is verb-focused. The following base verbs are used:

» get
> create

> delete

» replace

> describe

These verbs can be used to manage Kubernetes and OpenShift resources. Overall, the
following command groups are available:

basic

build and deploy

application modification
troubleshooting and debugging
advanced

settings

vyvyvyvyyvyy

For more information about OpenShift Command-Line Interface, see this website.

Web console based

For the web console, the developers of OpenShift Container Platform can access their
applications by a web browser to visualize and manage the content of their projects. The web
console runs as a pod on the master. The static resources that are needed to run the web
console are set out by the pod. Administrators can also customize the web console by using
extensions, with which you can run scripts and load custom stylesheets when the web
console loads.

For more information, see this website.

Figure 2-15 shows the request architecture for the Web Console.

BROWSER MASTER

load static assets [J5, C55, HTML)
Web Console Pad

v

Page Load

Request initial lists of resources from AR|

v

JS Runtime AP| Server

F
v

Establish websecket connections to watch
for changes to resources

Figure 2-15 Web Console Request Architecture

For some operational tasks, such as the initial deployment of an application or project, the
web console provides a more form-based interface, which can help you start working with the
system faster.

The way to access web console is from a browser at https://<master _public_addr>:8443;
then, the system automatically redirects to a login page, as shown in Figure 2-16 on page 35.
After providing the login credentials on the login page, the user receives a token to make API
calls and the system shows the projects through the web console.

For more information, see this website.

34 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

https://<master_public_addr>:8443
https://docs.openshift.com/container-platform/3.11/cli_reference/get_started_cli.html
https://docs.openshift.com/container-platform/3.5/admin_solutions/authentication.html
https://github.com/openshift/origin/blob/master/docs/cli.md
https://red.ht/2P2W2q5

RED HAT'
0 OPENSHIFT
Container Platform

OPENSHIFT CONTAINER PLATFORM

Username | ‘ Welcome to the Openshift Container Platform.

| |

Figure 2-16 OpenShift Web Console Authentication Interface

OpensShift Container Platform includes a service catalog (see Figure 2-17), based on the
Open Service Broker API (OSB API) for Kubernetes, which offers the developers an easy
user experience. Also, this API allows users to connect any of their applications that are
deployed in OpenShift Container Platform to various service brokers.

OPENSHIFT CONTAINER PLATFORM

. oo | Getting Started TEET
Browse Catalog DeployImage Import YAML/JSON Select from Praject

Languages Databases Middleware Cl/CD Other

Filter ~ | 30 Items
/ / L L “»
Apache HTTP Server Apache HTTP Server CakePHP + MySQL CakePHP + MySQL Dancer + MySQL
(httpd) (Ephemeral)
Dancer + MySQL Django + PostgreSQL Django + PostgreSQL Jenkins Jenkins (Ephemeral)
(Ephemeral) (Ephemeral)
A A My
MariaDB MariaDB (Ephemeral) MongoDB MongoDB (Ephemeral) MySQL

Figure 2-17 General view to the OpenShift 3.11 Service Catalog

The service catalog allows cluster administrators to integrate multiple platforms by using a
single API specification. The OpenShift Container Platform web console displays the cluster
service classes that are offered by service brokers in the service catalog. This display allowed
users to discover and instantiate those services for use with their applications®

2 Qverview to the OpenShift Service Catalog:
https://docs.openshift.com/container-platform/3.11/architecture/service_catalog/index.html

Chapter 2. Introduction to containers and orchestration with Kubernetes 35

https://docs.openshift.com/container-platform/3.11/architecture/service_catalog/index.html

36 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

IBM Cloud Paks: Middleware
anywhere

This chapter describes IBM Cloud Paks and provides information about each Cloud Pak,
including pointers to more resources.

This chapter includes the following topics:

3.1, “Overview” on page 38

3.2, “IBM Cloud Pak for Applications” on page 42

3.3, “IBM Cloud Pak for Automation” on page 45

3.4, “IBM Cloud Pak for Data” on page 48

3.5, “IBM Cloud Pak for Integration” on page 49

3.6, “IBM Cloud Pak for Multicloud Management” on page 50
3.7, “IBM Cloud Pak for Security” on page 53

vVVvyVvYyVvYyYYvYYyvyYYy

© Copyright IBM Corp. 2020. All rights reserved.

37

3.1 Overview

This section introduces and describes IBM Cloud Paks.

3.1.1 What are IBM Cloud Paks?

IBM Cloud Paks are pre-integrated containers, pre-packaged solutions, that are ready for
deployment in production environments. These IBM Cloud Paks can be easily deployed to
Kubernetes-based container orchestration platforms. They are software solutions that give
clients an open, faster, and more secure way than individual solutions to move core business
applications to any cloud.

Designed to reduce development time, IBM Cloud Paks include IBM middleware and common
software services for development and management, on top of a standard integration layer.
They are portable and can run on-premises, on public clouds, or in an integrated system.

At the time of this writing, IBM offers six independent Cloud Paks for Power Systems that
provides a Kubernetes environment to help to build cloud-native applications or modernize
the existing applications. Also, IBM Cloud Paks enable you to quickly bring workloads to an
integrated container platform to support production-level qualities of service and end-to-end
lifecycle management.

Figure 3-1 on page 39 shows the following evolution of containers:

» Ad hoc Containers: Clients obtain IBM software binaries then create their container.
» IBM Containers: Clients obtain an individual IBM container software product.
» IBM Cloud Paks: Clients obtain a ready-to-use solution.

38 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Fast

AN
Qo
=
1]
>
=
L
]
E
-
ol

L Ad hoc Containers
Slow

Low € > High
Enterprise Ready

Figure 3-1 From simple containers to IBM Cloud Paks

3.1.2 First IBM Cloud Paks

IBM Cloud Paks are portable and can run on-premises, on public clouds, or in an integrated
system, as shown in Figure 3-2. In addition, they are certified by IBM and Red Hat for the
OpenShift Container Platform.

For more information, see this website.

IBM Cloud Pak

OB RE B 0.

Applications Data Integration Automation Multicloud Security
Management

Figure 3-2 First IBM Cloud Paks

Chapter 3. IBM Cloud Paks: Middleware anywhere 39

https://www.ibm.com/downloads/cas/QWB9X1GE

IBM Cloud Pak for Applications

IBM Cloud Pak for Applications accelerates the build of cloud-native apps by using built-in
developer tools and processes, including support for microservices functions and serverless
computing. Customers can quickly build apps on any cloud and at the same time, existing
IBM middleware clients gain the most straightforward path to modernization.

For more information, see this website.

IBM Cloud Pak for Data

IBM Cloud Pak for Data unifies and simplifies the collection, organization, and analysis of
data. Enterprises can turn data into insights through an integrated cloud-native architecture.
IBM Cloud Pak for Data is extensible and easily customized to unique client data and Al
landscapes through an integrated catalog of IBM, open source and third-party microservices
add-ons.

For more information, see this website.

IBM Cloud Pak for Integration

This Cloud Pak supports the speed, flexibility, security, and scale that is required for all of your
integration and digital transformation initiatives and features a set of preinstalled capabilities,
including API lifecycle, application, data integration, messaging, events, high-speed transfer,
and integration security.

For more information, see this website.

IBM Cloud Pak for Multicloud Management

This Cloud Pak provides consistent visibility, automation, and governance across a range of
hybrid, multicloud management capabilities, such as event management, infrastructure
management, application management, multicluster management, edge management, and
integration with existing tools and processes.

For more information, see this website.

IBM Cloud Pak for Automation

IBM Cloud Pak for Automation orchestrates the deployment on your choice of clouds, with
low-code tools for business users and real-time performance visibility for business managers.
Customers can migrate their automation run times without application changes or data
migration, and automate at scale without vendor lock-in.

For more information, see this website.

IBM Cloud Pak for Security

This platform helps you uncover hidden threats, make more informed risk-based decisions,
and prioritize your team’s time. You can connect it to your existing data sources to generate
deeper insights, and securely access IBM and third-party tools to search for threats across
any cloud or on-premises location. You also can quickly orchestrate actions and responses to
those threats, while leaving your data where it is.

For more information, see this website.

40 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

https://www.ibm.com/cloud/cloud-pak-for-applications
https://www.ibm.com/cloud/cloud-pak-for-automation
https://www.ibm.com/cloud/cloud-pak-for-management
https://www.ibm.com/products/cloud-pak-for-security
https://www.ibm.com/cloud/cloud-pak-for-integration
https://www.ibm.com/products/cloud-pak-for-data

3.1.3 Core Services

IBM Cloud Paks use a common set of operational services by default. These services are
called Core Services (see Figure 3-3) and are a layer on top of Red Hat OpenShift, which is
responsible for security and identity services, logging, monitoring, and auditing. Core
Services can easily monitor workload performance and general logs by using a consistent
dashboard view, regardless of the IBM Cloud Pak.

IBM Cloud Paks
(aka Workloads)

Cloud Pak Core Services

Figure 3-3 Core Services

Core Services contain a collection of services that provides essential capabilities that are
needed by most enterprise applications. Red Hat tests and certifies each Core Service
component to provide the necessary updates and security fixes as needed. For more
information, see the following web pages:

» Red Hat Middleware Core Services Collection datasheet
» IBM Cloud computing news: What are IBM Cloud Paks?

3.1.4 Production-ready Containers Images

Containers are the key for modular cloud solutions, which allows integrating multiple vendors
by isolating pieces of software so they can run independently. All IBM container images that
are provided in IBM Cloud Paks follow a set of well-defined best practices and guidelines,
which ensures support for production use cases and consistency across the IBM software
portfolio.

IBM Cloud Paks employs Kubernetes resources to deploy, manage, and monitor the
workloads. Configurations are pre-built but easily customized by using the Kubernetes
operators during deployment. Upgrades can be easily rolled out or rolled back.

IBM Cloud Paks are certified by IBM and Red Hat for the OpenShift Container Platform; the
container images that are included in IBM Cloud Paks are required to complete Red Hat
container certification, which is complementary to IBM certification process.

Chapter 3. IBM Cloud Paks: Middleware anywhere 41

https://www.redhat.com/en/resources/jboss-core-services-collection-datasheet
https://www.ibm.com/blogs/cloud-computing/2019/06/10/what-are-ibm-cloud-paks/
https://www.redhat.com/en/resources/jboss-core-services-collection-datasheet

3.2 IBM Cloud Pak for Applications

Enterprises must consistently update their software applications to meet the demands of their
customers and users.

3.2.1 Features

42

IBM Cloud Pak for Applications supports the acceleration of modernizing existing and
developing new cloud native applications, as shown in Figure 3-4. Running on OpenShift, IBM
Cloud Pak for Applications enables quick building, testing, and deployment
microservice-based applications, providing an end-to-end experience to speed developing
applications by using predefined built-in developer tools and processes.

~ Continue to run your apps, where they are.

s

Figure 3-4 IBM Cloud Pak for Applications goals

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

IBM Cloud Pak for Applications is based on IBM WebSphere® offerings and OpenShift with
IBM Kabanero Enterprise and provides a hybrid, multicloud foundation to enable workloads
and data to run anywhere. IBM Cloud Pak for Applications also provides a self-service
environment that combines open source tools with your existing middleware for continuous
compliance and quick development integration (see Figure 3-5).

Cloud Pak for

Applications

R

Developer Modernization
Tools Toolkit

=

Frameworks and Runtimes

Figure 3-5 IBM Cloud Pak for Applications

The self-service portal enables the developers to download the tools and runtime executable
they need for the project. Allowing them to build their application on a proven software stack
that is pre-configured and tested to work with the integrated logging, monitoring, scalability,
and high-availability mechanisms. Also, including DevOps practices for continuous integration
and continuous delivery (CI/CD).

Chapter 3. IBM Cloud Paks: Middleware anywhere 43

3.2.2 Programming Language support

IBM Cloud Pak for Applications offers support for programming languages that are designed
for cloud-native, including Knative, Java programming models, Microprofile, Java Enterprise
Edition, Jakarta EE and Spring, Node.js, Swift, Reactive, and CodeWind (see Figure 3-6).

1BM Cloud Pak for Applications

Client and Partner Applications

Unified User Experience
=
— N e) — N
Sell Service Developer Modernization Enterprise Integration and
Portal Tools e Toolkits D Ready Management Extensions
Securs

Engineering

Operational Efficlency
i D

g

Edge Cloud On-premises

Figure 3-6 IBM Cloud Pak for Applications end-to-end

After developers start using IBM Cloud Pak for Applications, they gain the platform solutions
from IBM in one bundle. You can move between WebSphere editions or to the new OpenShift
with the Kabanero Enterprise container platform. You no longer must choose between private
cloud-based platforms, traditional server deployments, or public cloud WebSphere
deployments. IBM Cloud Pak for Applications delivers all of those platform options, the ability
to mix and match as you need to today, and the flexibility to change that mix over time as you
transition and create more applications for the cloud.

3.2.3 Tools and runtime packages

IBM Cloud Pak for Applications provides to developers access to the following
industry-leading areas:

v

Continuous delivery for hybrid clouds

Runtime support

IBM Mobile Foundation

IBM WebSphere Application Server family of products

vYyy

IBM WebSphere Application Server

IBM WebSphere Application Server, with its traditional and Liberty runtimes, offers
production-ready, standards-based Java EE-compliant architectures. WebSphere run times in
DevOps workflows make it easy to integrate WebSphere into modern toolchains and DevOps
implementations. It enables secure, flexible, and efficient access to internal or external
software components and services.

44 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

IBM Cloud Pak for Applications includes the WebSphere Application Server Network
Deployment, WebSphere Application Server, and WebSphere Liberty Core editions.

IBM Kabanero Enterprise

Kabanero Enterprise is the commercial enterprise-ready and fully supported implementation
of the Kabanero open source community project. Kabanero Enterprise integrates with,
extends, and adds value to Red Hat OpenShift.

Red Hat Runtimes

Kabanero offers open source technologies in a microservices-based framework that
simplifies development, build, and deployment of applications for Kubernetes and Knative
(serverless).

Red Hat Runtimes provides a set of open runtimes, tools, and components for developing and
maintaining cloud-native applications. It offers lightweight runtimes and frameworks for highly
distributed cloud architectures, such as microservices.

IBM Application Navigator

IBM Application Navigator is a tool that helps you visualize, inspect, and monitor the deployed
resources in applications, with a single view across hybrid deployments. Application
Navigator extends the open source Kubernetes Application Navigator (kAppNav) with
integrated support for WebSphere Application Server Network Deployment and Liberty.

IBM Cloud Transformation Advisor

IBM Transformation Advisor helps you plan, prioritize, and package your on-premises
workloads for modernization on IBM Cloud Pak for Applications. Transformation Advisor
gathers preferences about your on-premises and wanted cloud environments and then
analyzes existing middleware deployments by using a data collector.

After you upload the results of the data collector, you can review recommendations for
migrating your applications to different cloud platforms and the estimated effort to migrate and
modernize. Transformation Advisor also creates necessary deployment artifacts to accelerate
your migration into IBM Cloud Pak for Applications.

IBM Mobile Foundation

IBM Mobile Foundation offers a secured platform for developers to rapidly build and deploy
the next generation of digital apps, including mobile, wearables, conversation, web, and
Progressive Web Apps (PWAs). With Mobile Foundation, developers get containerized mobile
back-end services covering comprehensive security, application lifecycle management, push
notifications, feature toggle, offline sync, and back-end integration. The platform also includes
a low-code studio, private Appstore, and rich SDKs for widely used mobile frameworks for
native and hybrid developers.

3.3 IBM Cloud Pak for Automation

IBM Cloud Pak for Automation is a pre-integrated set of essential software that enables
clients to easily design, build, and run intelligent automation applications at scale. With IBM
Cloud Pak for Automation, clients can deploy on their choice of clouds anywhere Kubernetes
is supported by low-code tools for business users and real-time performance visibility for
business managers. It is one flexible package with simple, consistent licensing, and ensures
no vendor lock-in. Also, existing customers can migrate their automation run times without
application changes or data migration.

Chapter 3. IBM Cloud Paks: Middleware anywhere 45

3.3.1 Features

IBM Cloud Pak for Automation is a containerized automation software platform with
pre-integrated automation capabilities, such as workflow and decision automation, content
management, document processing, and operational intelligence (see Figure 3-7). This
feature enables organizations to digitize all styles of work with Al-infused business-oriented
tools and built-in operational analytics for visibility and governance.

This offering empowers business users to rapidly deliver applications and services at
enterprise scale for greater cost savings and operational efficiencies. The IBM Cloud Pak for
Automation can run anywhere (on-premises, on private and public clouds, and in
pre-integrated systems) and is Red Hat OpenShift certified.

IBM containerized software

Tasks Workflow Decisions Content Capture Operational
Intelligence

Figure 3-7 IBM Cloud Pak for Automation

Successful enterprises look for modernizing their business operations with intelligent
automation lowering costs and increasing revenue, as shown in Figure 3-8.

Reduce costs Improve top-line

* Improve efficiency of their * New business models

automated systems 2 2
¥ + Find new opportunities for revenue

« Make employees more efficient growth
« Extract information from « Deliver better (more personalized,
unstructured data more relevant...) products and services

Figure 3-8 IBM Cloud Pak for Automation benefits

IBM Cloud Pak for Automation includes the following features:
» Drive scale, speed, and assist with complex knowledge work.

» Automate complex and less-structured business processes and optimize lighter customer
experiences for task efficiency.

» Drive growth with enhanced customer experiences and new business models.

» Enable a few expert employees to create great customer experiences at scale.

» Integrated automation platform.

» Measure, in real time, the value of human and automated work across your business.

46 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

3.3.2 Core capabilities

Integral to the IBM Cloud Pak for Automation is a set of containerized software, both IBM and
open source, which includes the following components:

>

IBM Business Automation Workflow

Manual workflows can easily disrupt or slow operations. Lack of transparency and
dependencies on employees leave businesses vulnerable to various bottlenecks that
create inefficiencies. Automating workflows safeguards against potential barriers and
empowers business professionals to directly participate in designing business solutions.
Workflow automation orchestrates multiple business processes straight-through,
human-assisted or case management within operations and provides visibility into each
step.

IBM Operational Decision Manager

A business rules management system (BRMS) enables businesses to create and manage
business logic independently from applications and processes. Through business rules,
your team can specify decision logic in simple terms, close to natural language. Because
rules are easily integrated with other IT systems, your applications can scale and run
automated decisions across multiple channels.

When changes to business rules are required, business users can quickly update them,
which provides the agility and speed that is needed to meet changing business demands.
Decision automation uses business rules to remove manual work from a decision process,
which improves business agility and reducing IT reliance.

IBM Business Automation Content Analyzer

To reinvent under-performing, high-friction business processes, enterprises are investing
in digital transformation. This investment requires processes and applications to access
and control a wide range of content, including documents, images, and audio files.

Content services are accessible in multiple ways, including mobile devices and desktops,
and as discrete capabilities embedded in workflows or applications, such as Enterprise
Resource Planning (ERP) systems. This content analyzer enables efficient, consistent,
and accurate content collaboration and decision-making across the organization. Content
services are capabilities for collecting, governing, managing, and enriching enterprise
content to be deployed efficiently across any cloud and within any application.

Process Mapping

Inefficient processes cost you time and money. Bottlenecks, complexities, and a lack of
understanding mask opportunities for process improvement. Process modeling helps you
to gain better visibility into business operations, which helps you create efficiencies at
scale. Process mapping is any automation strategy’s first step. It enables non-technical
people to work across departments to see a process landscape.

Data Capture

Enterprises produce and receive massive volumes of new information every day to make
decisions, manage operations, and create value. Most that information is inaccessible and
invisible to the business applications that need it most, which undermines the ability of
decision makers to truly understand the opportunities and constraints that are affecting
their organization.

Chapter 3. IBM Cloud Paks: Middleware anywhere 47

By standardizing and automating data extraction processes, enterprises can more
productively and accurately extract knowledge and intelligence from unstructured content
to create insights that accurately reflect operational reality, which enables more effective
digital transformation initiatives and better business outcomes. Intelligent data extraction is
an innovative evolution in standard data capture that extends optical character recognition
(OCR), Al, and other techniques to identify and extract information from unstructured
content.

» Tasks

Automating repetitive tasks saves time and money. Robotic process automation bots
expand the value of an automation platform by completing tasks faster, which allows
employees to perform higher-value work. Robotic process automation (RPA) is the use of
software bots to automate highly repetitive, routine tasks that are normally performed by
knowledge workers.

3.4 IBM Cloud Pak for Data

IBM Cloud Pak for Data is a fully integrated data and Al platform that modernizes data
engineering for organizations. Built on Red Hat OpenShift, IBM Cloud Pak for data provides
containerized solution for data processing and analytics capability.

3.4.1 Features

IBM Cloud Pak for Data is composed of pre-configured microservices. The microservices
enable you to connect to your data sources so that you can catalog and govern, explore and
profile, transform, and analyze your data from a single web application.

IBM Cloud Pak for Data is a native cloud solution that enables data to work quickly and
efficiently. Data is used to generate meaningful insights that can help to avoid problems.

IBM Cloud Pak for Data helps you do both by enabling you to connect to your data, govern it,
find it, and use it for analysis. IBM Cloud Pak for Data also enables all of your data users to
collaborate from a single, unified interface so that your IT department does not need to deploy
and connect multiple applications.

3.4.2 Layers

This section explains the following layers that are available in IBM Cloud Pak for Data:
» Data accumulation

IBM Cloud Pak for Data System offers, accelerated time to value, which allows you to
stand up an entire cloud system for user data and Al architecture in under four hours. IBM
Cloud Pak for Data System simplifies expansion. You can buy small increments of
computing or storage capacity as needed, rather than outlaying vast amounts of capital.
Based on application demand and delivery, budgeting can be completed in quarterly
expansions on an ad hoc basis.

» Data organization

Understanding the quality, content, and structure of your data is an important first step
when making critical business decisions. It uses a reusable rules library and supports
multi-level evaluations by rule record and pattern. It also facilitates the management of
exceptions to established rules.

48 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

>

Data analysis

Data Analyzer helps identify data inconsistencies, redundancies, and anomalies and
makes inferences about the best choices for structure. Analyzing data is the primary
purpose of Information Analyzer.

3.5 IBM Cloud Pak for Integration

With time, every organization expands their IT estate with new infrastructure, software, and
applications. This investment in a distributed and diverse environment is a major concern
during any cloud migration.

3.5.1 Features

IBM Cloud Pak for Integration includes the following features:

»

3.5.2 Layers

Maximize utilization: Support traditional integration with a containerized approach across
delivery models, domains, endpoints, and personas. Migrate, innovate, and scale at your
own pace.

Improvement efficiency: Use built-in features, including templates, prebuilt connectors,
and an asset repository to drive speed in integration development and reduce cost.

Increased flexibility: Use various integration styles that include APIs, message queues,
and emerging capabilities, including event-driven architecture and high-speed data
transfer.

The following layers are available in IBM Cloud Pak for Integration:

>

API lifecycle

This layer is a set of new API that was created for Cloud integration and to meet some
basic parameters, such as security, manageability, and continuous availability for the
changing needs of business users.

Application and data integration

Integrate all of your business data and applications more quickly and easily across any
cloud, from the simplest SaaS application to the most complex systems without worrying
about mismatched sources, formats, or standards.

Enterprise messaging

This layer provides a reliable exchange over a flexible and secured messaging process to
ensure that on demand availability of data is the primary objective from this system.

Event streaming

Use Apache Kafka to deliver messages more easily and reliably and to react to events in
real time. Provide more personalized customer experiences by responding to events
before the moment passes.

High-speed data transfer

Send large files and data sets almost anywhere, reliably and at maximum speed.
Accelerate collaboration and meet the demands of complex global teams, without
compromising performance or security.

Chapter 3. IBM Cloud Paks: Middleware anywhere 49

» Secure gateway

Create persistent, security-rich connections between on-premises and cloud
environments. Quickly set up and manage gateways, control access on a per-resource
basis, configure TLS encryption and mutual authentication, and monitor all of your traffic.

3.6 IBM Cloud Pak for Multicloud Management

One of the best features of containers is their ability to run anywhere considering that all of
the libraries and binaries that are needed for the run time are packaged and included in the
container. This feature makes it easier for a multicloud approach. With the correct
multi-architecture platform, containers can spawn seamlessly on any cloud by using any
architecture as the underlying infrastructure.

To better use this feature, the IBM Cloud Pak for Multicloud Management (running on Red Hat
OpenShift) provides consistent visibility, governance, and automation from on-premises to the
edge. Enterprises gain capabilities, such as multicluster management, event management,
application management, and infrastructure management. Enterprises can use this IBM
Cloud Pak to help increase operational efficiency that is driven by intelligent data, analysis,
and predictive golden signals. They also gain built-in support for their Compliance
Management.

The IBM Cloud Pak for Multicloud Management includes IBM Multicloud Manager, IBM Cloud
App Management, IBM Cloud Automation Manager, and IBM Cloud Event Management. With
IBM Cloud Pak for Multicloud Management, you get more application and cluster visibility
across the enterprise to any public or private cloud. You can improve automation by
simplifying your IT and application operations management with increased flexibility and cost
savings, and intelligent data analysis that is driven by predictive signals.

3.6.1 Features

50

The main goal of this IBM Cloud Pak is to offer the advantage of a centralized governance
because you can manage your multicloud environments with a consistent set of configuration
and security policies across all applications and clusters.

Operations with IBM Multicloud Manager

IBM Multicloud Manager provides user visibility, application-centric management
(governance, deployments, health, and operations), and policy-based compliance across
clouds and clusters. With IBM Multicloud Manager, you control your Kubernetes clusters. You
also ensure that your clusters are secure, operating efficiently, and delivering the service
levels that applications expect.

Monitoring with IBM Cloud App Management

Monitor cloud and on-premises application environments with IBM Cloud App Management.
Bridge your existing infrastructure into the cloud.

Visibility with Cloud Event Management

You can visualize and manage multiple clusters when you install Event Management. By
using Event Management, you can consolidate information from your monitoring systems and
address problems. Events indicate that something occurred on an application, service, or
another monitored object.

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

All events that are related to a single application or particular cluster are correlated with an
incident. Event Management can receive events from various monitoring sources
(on-premises or in the cloud). Event Management is installed along with IBM Cloud App
Management.

Provisioning with IBM Cloud Automation Manager

IBM Cloud Automation Manager is a cloud management solution in IBM Cloud Private that
automates provisioning of infrastructure and virtual machine applications across multiple
cloud environments with optional workflow orchestration.

3.6.2 Layers explained

IBM Multicloud Manager consists of several components, which are used to access and
manage your clusters. A high-level architecture of the components is shown in Figure 3-9.

/Multicloud Manager Hub CIuster\

Controllers:

- Governance and Risk
- Application

- Channel

- Subscription

Management
Console

API’s:
- Topology
- Search

Search Federated
Aggregator Monitoring

Juswagdeue|y
uol3eaIuUNWWo)

/// Managed Clusters

Application Manager Governance and Risk

(Subscription) Manager

Certificate Search Topology
Manager Collector Collector

)

Figure 3-9 Multicloud Manager high-level architecture

Multicloud Manager hub cluster

Hub cluster is used to define Multicloud Manager controller. Hub cluster aggregates
information from multiple clusters by using asynchronous work request. With a graph
database, the hub cluster maintains the state of clusters and applications that run on it.

Chapter 3. IBM Cloud Paks: Middleware anywhere 51

52

Hub cluster also uses etcd, which is a distributed key value store to store the state of work
requests and results from multiple clusters. It provides a set of REST APIs for various
functions that it supports.

Multicloud Manager managed cluster

Managed cluster defines Multicloud manager Klusterlet. Klusterlet is an agent that is
responsible for a single Kubernetes cluster. The managed cluster starts a connection to the
hub cluster, receives and applies work requests, and returns results. The managed cluster
connects to different services in the cluster for operations, such as Kubernetes API service.

IBM Multicloud Manager Application resources

After you configure an IBM Multicloud Manager hub cluster and a managed cluster, you can
view and deploy applications with application resources. Your application is used to view only
your resource, although other application resource examples are for deployment. A
multi-cluster application uses a Kubernetes specification, but with more automation of the
deployment and lifecycle management of resources to individual clusters.

IBM Multicloud Manager Governance and risk

After you configure an IBM Multicloud Manager hub cluster and a managed cluster, you can
define IBM Multicloud Manager security risk and create policies with templates from the
Governance and risk page. For more information see, IBM Knowledge Center.

For more information about IBM Multicloud Manager, see IBM Knowledge Center.

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

https://ibm.co/37lFhyv
https://ibm.co/3cnXkXf

3.7 IBM Cloud Pak for Security

Every enterprise in its journey to the cloud creates challenges for the security team. What

becomes clear is that cybersecurity does not need news tools; instead, it needs new rules.
Security teams are overwhelmed with hundreds of thousands of events that originate from
various sources. What they see today is that the security mechanisms are fragmented and
spread across several tools.

3.7.1 Features

The main goal of this IBM Cloud Pak is to help organizations detect, investigate, and respond
to cybersecurity threats faster. Also, it helps to speed up your move to the cloud by facilitating
the integration of their security tools to generate more in-depth insights into threats across
hybrid, multicloud environments, by using an infrastructure-independent standard operating
environment that runs anywhere.

Key capabilities and benefits
IBM Cloud Pak for Security features the following key capabilities and benefits:

» Run anywhere - Connect security openly

IBM Cloud Pak for Security is built on an open cloud-native framework that is integrated
with Red Hat OpenShift. As such, the solution can be deployed and run on any hybrid
multicloud environment, on-premises, private cloud, or public cloud.

The unified interface that is provided by IBM Cloud Pak for Security assists the security
teams to integrate data with analytic tools, and to combine that data across their cloud
environments to spot advanced threats.

» Gain security insights without moving data

IBM Cloud Pak for Security enables enterprises to connect and coordinate with their
security tools and data sources. Transferring data to analyze creates more complexity.
Therefore, you can combine all data sources to uncover hidden threats and make better
risk-based decisions while leaving the data where it is stored.

By connecting and coordinating various security tools, IBM Cloud Pak for Security assists
the security teams in integrating data with analytic tools, which allows them to orchestrate
and automate their security response so they can better prioritize their team's time. These
tools often are connected with other IBM and third-party tools, such as Security
Information and Event Management (SIEM), endpoint detection systems, threat smart
services, ldentity Manager, and software repositories.

» Respond faster to security incidents with automation

IBM Cloud Pak for Security provides a unified interface to orchestrate responses and
automates actions to security incidents. The use of automation playbooks assists the
security teams to respond faster to security incidents.

By formalizing security processes and activities across the enterprise, companies can
react faster and more efficiently, while supplying themselves with the information that is
needed for potential future regulatory scrutiny.

Chapter 3. IBM Cloud Paks: Middleware anywhere 53

3.7.2 Layers

Figure 3-10 shows the application layer at the top layer of the architecture. Those applications
rely on the Data Security Integration Services layer, which gives the capability to connect with
the security data sources. The environment is based on the Application Framework layer that
allows the integration of several components, including composable (BYOA) applications to
create applications and integrate them in the framework.

Applications

X

U a Data Security Integration Services
@ Application Framework

OpenShift and
Common Infrastructure Services

Figure 3-10 IBM Cloud Pak for Security Architecture

54 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Figure 3-11 shows an overview of the major blocks of the IBM Cloud Pak for Security

architecture.

Servers

Data Sources Analyzer

Security Information and Event
Management (SIEM) products and Cloud Paks for

services .
Security

Data Lake repositories - rperleliiies

Endpoint Dbtection & Response (EDR)

tools Data Explorer

Cloud Services Red Hat Open Shift

Figure 3-11 Major components of the IBM Cloud Pak for Security

IBM Cloud Pak for Security data sources consist of several components. The threats
investigating capabilities are bound to the IBM Cloud Pak for Security through special

components called connectors. The data explores orchestration and automation capability

can be alerted by various connectors, as listed in Table 3-1.

Table 3-1 Examples of data sources and connectors

Data source

Connectors

SIEM IBM QRadar®, Splunk
Data Lake Elasticsearch
EDR Carbon Black Response

IBM Guardium®

Guardium Data Protection

Big Fix Big Fix Compliance

AWS Cloud Watch, Guard Duty
Azure Azure Monitor

IBM Cloud IBM Cloud Advisor

Although IBM Cloud Pak for Security includes a library of connectors, connectors can be
created by using an Open Toolkit.

Chapter 3. IBM Cloud Paks: Middleware anywhere

55

56 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Part 2

Red Hat OpenShift

This part introduces Red Hat OpenShift, provides an overview of the modular components
and services, planning (for installation) considerations, preparing an environment, and
deploying an OCP instance.

The following chapters are included in this part:

» Chapter 4, “Red Hat OpenShift components and architecture” on page 59
» Chapter 5, “Red Hat OpenShift installation planning and considerations” on page 71

© Copyright IBM Corp. 2020. All rights reserved.

57

58 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Red Hat OpenShift components
and architecture

OpenShift is a set of modular components and services that are based on Kubernetes cluster
and Docker, which runs on top of Red Hat Linux. OpenShift provides access to container
images with a focus on easy composition of applications by developers.

This chapter describes the OpenShift cluster platform components and architecture and
includes the following topics:

>

>
>
>
>

4.1, “OpenShift cluster components” on page 60

4.2, “OpenShift container platform networking” on page 63
4.3, “OpenShift persistent storage” on page 68

4.4, “OpenShift registry” on page 69

4.5, “Managing OpenShift resources” on page 69

© Copyright IBM Corp. 2020. All rights reserved. 59

4.1 OpenShift cluster components

Figure 4-1 shows an overview of the OpenShift container platform components.

BED HAE‘
Container Platform
DevOps Tools & cluster management
Web Console, CLI, REST API, SCM Integration
Containerized Services Runtimes and xPaaS
Auth, Networking, Image Registry Java, Ruby, Node.js, etc.
Kubernetes Etcd OpenShift Kubernetes
Container Orchestration and Management Cluster state and configuration Extensions
Docker
Container API and packaging format
Red Hat Enterprise Linux

Figure 4-1 Red Hat OpenShift cluster platform components

4.1.1 Docker service and Kubernetes
The Docker service that runs in every OpenShift cluster node provides the container image

administration. The Kubernetes cluster provides cluster management and orchestrates
containers on multiple nodes in the OpenShift cluster.

4.1.2 etcd store
The etcd store is a distributed key value store that is used by Kubernetes to store

configuration and state information about the containers and resources that are inside the
OpenShift cluster.

4.1.3 OpenShift-Kubernetes extensions
OpenShift-Kubernetes extensions are more resources that are used to save the OpenShift

configuration and cluster internal state. These resource extensions are stored in etcd with
application resources that are managed by Kubernetes.

60 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

4.1.4 Containerized services

Containerized services are infrastructure service functions, such as networking components
and authorization. Most OpenShift internal services run as Docker containers that are
managed by Kubernetes.

4.1.5 Run times and xPaaS

Run times and xPaas are base container images that are ready for use by developers, each
preconfigured with a particular runtime language or database. They can be used as-is or
extended to add frameworks, libraries, and even other middleware products. The xPaaS
offering is a set of base images for JBoss middleware products, such as JBoss EAP and
ActiveMQ.

4.1.6 DevOps tools and user experience

OpensShift provides Web Ul and CLI management tools for developers and system
administrators, which enables the configuration and monitoring of applications and OpenShift
services and resources. Web Ul and CLI tools are built from the same REST APIs, which can
be used by external tools, such as IDEs and CI platforms. OpenShift can also reach external
SCM repositories and container image registries and bring their artifacts into the OpenShift
cloud.

Note: OpenShift does not hide the core Docker and Kubernetes infrastructure from
developers and system administrators. Instead, it uses them for its internal services and
allows importing raw containers and Kubernetes resources into the OpenShift cluster so
that they can benefit from added capabilities. Also, Raw containers and resources can be
exported from the OpenShift cluster and imported into other Docker-based infrastructures.

In addition to Docker and Kubernetes, OpenShift container platform adds source code
management for developers, application management, user and group management, and
networking infrastructure to give user access to the applications that are running in the
cluster.

4.1.7 Master and nodes

An OpenShift cluster is a set of node servers that run containers and are centrally managed
by a set of master servers. A master server can act as a node server, but for large OpenShift
deployments, the recommendation is that those roles are segregated for increased stability.

For more information about the recommended architecture for IBM Power Systems, see
Chapter 5, “Red Hat OpenShift installation planning and considerations” on page 71.

Chapter 4. Red Hat OpenShift components and architecture 61

Figure 4-2 shows a graphical view of OpenShift architecture components and how it works.

o B B2 0 gz

Routing Layer

f—\
Developer Node Node Node
Pod Pod Pod Pod Pod Pod
; : & =
SCM Master)) —
(Git/Svn) = Y

API/Authentication z aall | i
v
Data Store Persistent
ci/co Node Node Node Storage

Scheduler
Pod Pod Pod Pod Pod Pod
Management/Replication ; (: C

Automation ’@‘{ c =l
L]

Toolset Red Hat Enterprise Linux . Pod ‘ ‘

L ! mongo! C —

— AN o

) . @ ®

E Physical Virtual Private Public
Operations Service Layer

Figure 4-2 OpenShift Container Platform architectural components

The master nodes runs OpenShift core services, such as authentication, and provides the
API entry point for administration. The nodes run applications inside containers, which are
grouped into pods and then, the Kubernetes cluster divides the load between the cluster
nodes.

OpenShift masters run the Kubernetes master services and etcd daemons, and at the same
time, the nodes run the Kubernetes kubelet and kube-proxy daemons.

The masters are also nodes themselves. Scheduler, Management/Replication, and etcd are
examples of Kubernetes master services.

A pod is one or more containers that share a virtual network device, internal IP address, and
storage. The Kubernetes skeduling process ensures that pods are assigned to nodes and
that Kubelet service can run them. Skeduling is based on pod policies configuration.
Scheduling decisions include individual and collective resource requirements, hardware and
software/policy constraints, affinity and anti-affinity specifications, and others.

Kubernetes manages replicas to scale pods. A replica is a set of pods that share a definition.

For example, a replica that consists of many Apache and PHP pods that are running the
same container image can be used for horizontally scaling a web application.

4.1.8 OpenShift projects and applications

In 2.4, “Kubernetes: An open source container orchestration” on page 24, the Kubernetes
resources where described. However, OpenShift also manages projects and users.

62 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

A project is a group of Kubernetes resources with common user access rights. A project can
also be assigned a quota, which limits the number of defined pods, volumes, services, and
other cluster resources.

OpenShift client provides a new-app command that creates resources inside a project; then,
OpenShift uses the app label to group these related resources into a new application that is
inside that specific project.

4.2 OpenShift container platform networking

While installing all the prerequisites that are needed to deploy the OpenShift Container
Platform configuration, all of the nodes must include internet access to register each node
and install every dependency that is left.

During the installation process, an internal network is configured. To make this process
possible, a virtual switch is installed and configured automatically. This switch ensures that
the internal network is forwarded from the public network.

OpenShift Container Platform features a built-in DNS to resolve the hosts that are created
internally. This DNS manages the port forwarding for the public IP into the internal network,
such as for resolving the internal services IP addresses.

When a service is created, a new IP address can be assigned to it. If this service is deleted
and re-created, a new IP address can be assigned by default or the cloud administrator can
configure a specific IP address and host name on it.

This section provides an overview of the main OpenShift software-defined networking (SDN)
solutions and describes the traffic flow among pods that are inside the cluster. Also discussed
is how these pods communicate to destinations that are outside of the cluster.

4.2.1 OpenShift networking overview

OpenShift Networking features two main components: the OpenShift Software Defined
Network plug-in to handle the communication within the cluster and the OpenShift Router
plug-in to handle the inbound and outbound traffic that is destined to services in the cluster.

The default OpenShift SDN solution is built on Open vSwitch (OVS). With OpenShift, the
cluster administrator can choose to deploy with one of the OpenShift native SDN plug-ins or
deploy the cluster by using a third-party SDN from the supported system.

If a different SDN is wanted, OpenShift supports Kubernetes CNI-compliant SDN solutions.

4.2.2 OpenShift internal cluster communication

OpensShift container Platform uses a software-defined networking approach to provide a
unified cluster network that assigns an internal IP address to each pod in the cluster to ensure
that all containers within the pod behave as though they were on the same host. In terms of
port allocation, networking, naming, load balancing, and application configuration are the
same as though they were physical hosts or virtual machines.

This pod network is established and maintained by the OpenShift SDN, which configures an
overlay network by using Open vSwitch (OVS).

Chapter 4. Red Hat OpenShift components and architecture 63

64

Note: For more information about Open vSwitch, see this website.

OpenShift provides the following SDN plug-ins for configuring the network:

» The ovs-subnet plug-in is the original plug-in, which provides a flat pod network in which
every pod can communicate with every other pod and service. This configuration is the
default configuration for single-tenant clusters.

» The ovs-multitenant plug-in provides project-level isolation for pods and services. Each
project receives a unique Virtual Network ID (VNID) that identifies traffic from pods that
are assigned to the project.

Pods from different projects cannot send packets to or receive packets from pods and
services of a different project. However, projects that receive VNID 0 are more privileged,
so they can communicate with all other pods, and all other pods can communicate with
them.

In OpenShift Container Platform clusters, the default project has VNID 0. This designation
facilitates certain services, such as the load balancer, to communicate with all other pods
in the cluster and vice versa.

» The ovs-networkpolicy plug-in allows project administrators to configure their own isolation
policies by using NetworkPolicy objects.

OpenShift SDN maintains a registry of all nodes in the cluster. This registry is stored in etcd.
When the system administrator registers a node, OpenShift SDN allocates an unused /23
subnet from the cluster network and stores this subnet in the registry. When a node is
removed or deleted from the cluster, the OpenShift SDN frees the corresponding cluster
network subnet. This subnet becomes available for future allocations to new nodes.

This subnet value for nodes is specified in the Ansible inventory host variable
osm_cluster network cidr. The default network if this variable is not set is 10.128.0.0./14
(for example, 10.128.0.0 - 10.131.255.255).

The nodes are allocated /23 subnets (for example, 10.128.0.0/23, 10.128.2.0/23,
10.128.4.0/23, and others). Therefore, the cluster network has 512 subnets that are available
to assign to nodes, and a specific node is allocated 510 addresses that it can assign to the
containers that are running on it.

When the ovs-multitenant plug-in is used, the OpenShift SDN master also watches for the
creation and deletion of projects and assigns VXLAN VNIDs to them. These VXLAN VNIDs
are used later by the nodes to isolate traffic correctly.

To identify the cluster network subnet that is allocated to each node, run the oc get
hostsubnet command with a user with cluster-admin privilege, as shown in Figure 4-3.

oc get hostsubnet
NAME HOST HOST IP SUBNET EGRESS CIDRS EGRESS
IPS

rbapp01.domain.example.com rbappOl.domain.example.com 192.168.11.217 10.1.10.0/23 [] [1
rbapp02.domain.example.com rbapp02.domain.example.com 192.168.11.218 10.1.6.0/23 [0
rbapp03.domain.example.com rbapp03.domain.example.com 192.168.11.219 10.1.8.0/23 [1 [l
rbinf0l.domain.example.com rbinfOl.domain.example.com 192.168.11.214 10.1.14.0/23 [] 0
rbinf02.domain.example.com rbinf02.domain.example.com 192.168.11.215 10.1.12.0/23 [] [1
rbmst01.domain.example.com rbmstOl.domain.example.com 192.168.11.211 10.1.4.0/23 [1 [1
rbmst02.domain.example.com rbmst02.domain.example.com 192.168.11.212 10.1
rbmst03.domain.example.com rbmst03.domain.example.com 192.168.11.213 10.1

.0.0/23 [] (]
.2.0/23 [[

Figure 4-3 Output from oc get hostsubnet command

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

https://www.openvswitch.org/

When a node is added to the cluster, the OpenShift SDN registers the local host with the
registry on master to allocate an open subnet to the node.

Then, OpenShift SDN creates and configures the following network devices:

» br0: Open Virtual Switch (OVS) bridge device to which pod containers are attached.
OpenShift SDN also configures a set of non-subnet-specific flow rules on this bridge.

» tun0: OVS internal port (port 2 on br0). This port is assigned the cluster subnet gateway
address and is used for external network access. OpenShift SDN configures netfilter and
routing rules to enable access from the cluster subnet to the external network by way of
NAT.

» vxlan_sys_4789: OVS VXLAN device (port 1 on br0), which provides access to containers
on remote nodes. It is referred to as vxlanQ in the OVS rules.

When a pod is started on the host, OpenShift SDN completes the following process:
1. Assigns the pod an open IP address from the node’s cluster subnet.
2. Attaches the host side of the pod’s veth interface pair to the OVS bridge brO.

3. Adds OpenFlow rules to the OVS database to route traffic that is addressed to the new
pod to the correct OVS port. In the case, of the ovs-multitenant plug-in, it adds OpenFlow
rules to tag traffic that is coming from the Pod with the Pod’s VNID, and to allow traffic into
the Pod if the traffic’'s VNID matches the Pod’s VNID (or is the privileged VNID 0).
Non-matching traffic is filtered out by a generic rule.

OpenShift SDN nodes also watch for subnet updates from the SDN master. When a subnet is
added, the node adds OpenFlow rules on br0 so that packets with a destination IP address in
the remote subnet go to vxlan0 (port 1 on br0) and thus out onto the network. The ovs-subnet
plug-in sends all packets across the VXLAN with VNID 0, but the ovs-multitenant plug-in uses
the suitable VNID for the source container.

Figure 4-4 shows the components that are involved in pods communication.

openVSwitch: bro openVSwitch: bro
vxlan0 | v_obs_br vlinux_br vethX vethX vxlan0 | v_obs br viinux_br vethX vethX

eth0 eth0 eth0 eth0
POD POD POD POD

VXLAN
Tunel
10.1.0.0/16

linux bridge: lbrd 10.1.x.1 linux bridge: Ibr0 10.1.y.1

Figure 4-4 Communication example between pods

If both containers are running in the same node, the communication flow from one pod to
another uses the vethx interface from the same br0 interface of the node.

If the containers are running on different nodes, the flow of packets from one pod to another
use the vethX interface from the br0O ovs interface on different nodes.

Chapter 4. Red Hat OpenShift components and architecture 65

Finally, if the Pod connects to an external host, the traffic flow from the ethO interface in the
pod to the vethX in the Linux bridge then to the br0 interface in the OVS uses the tun0
interface through the eth0 to the physical network.

Almost all packet delivery decisions are performed with OpenFlow rules in the OVS bridge
br0, which simplifies the plug-in network architecture and provides flexible routing. In the case
of the ovs-multitenant plug-in, this configuration also provides enforceable network isolation.

4.2.3 OpenShift external cluster communication

OpensShift Container Platform provides different ways to access the applications or services
that are running inside the cluster.

Administrators can make available a service endpoint that external traffic can reach by
assigning a unique external IP address to that service from a range of external IP addresses.
This IP address range is specified by using a CIDR notation, which allows an application user
to make a request against the cluster for an external IP address.

Each IP address must be assigned to only one service to ensure that each service has a
unique endpoint.

The recommendation, in order or preference, is:

» Use a router if you use HTTP/HTTPS or TLS-encrypted protocol other than HTTPS.
» Use a Load Balancer, an External IP, or a NodePort.

OpenShift Container Platform Router plug-in
The following OpenShift Router plug-ins are available:

» HAProxy Template Router: The HAProxy template uses the openshift3/ose-haproxy-router
image to deploy one or more Router Pods (container) that are running on Infrastructure
Nodes on the OpenShift Container Platform.

» F5 BIG-IP Router plug-in: The F5 router integrates with a F5 BIG-IP system in your
environment to synchronize routes. F5 BIG-IP version 11.4 or newer is required to have
the F5 iControl REST API.

For more information about the use of the router HAProxy plug-in, see this web page.

Assigning a public IP by using a load balancer service

This method allows traffic to nonstandard ports through an IP address that is assigned from a
pool.

If you do not need a specific external IP address, you can configure a load balancer service to
allow external access to an OpenShift Container Platform cluster.

A load balancer service allocates a unique IP from a configured pool. The load balancer
features a single edge router IP (which can be a virtual IP (VIP), but is still a single machine
for initial load balancing).

Manually assigning an external IP to a service

A Kubernetes service serves as an internal load balancer. It identifies a set of replicated pods
to proxy the connections it receives to them. Backing pods can be added to or removed from
a service arbitrarily, although the service remains consistently available, which enables
anything that depends on the service to refer to it at a consistent address.

66 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

https://red.ht/34fbQfq

The default service clusterIP addresses are from the OpenShift Container Platform internal
network and they are used to permit Pods to access each other.

To permit external access to the service, more externallP and ingressIP addresses that are
external to the cluster can be assigned to the service. These externallP addresses also can
be virtual IP addresses that provide highly available access to the service.

Services are assigned an IP address and port pair that, when accessed, proxy the
connections to an appropriate backing pod. A service uses a label selector to find all the
containers that are running that provide a specific network service on a specific port, as
shown in Example 4-1.

Example 4-1 OpenShift service description

oc describe service httpd-example02

Name: httpd-example02
Namespace: project-test-ff
Labels: app=httpd-example
template=httpd-example

Annotations: description=Exposes and Toad balances the application pods
Selector: name=httpd-example02
Type: ClusterIP

IP: 172.30.92.1

Port: web 8080/TCP
TargetPort: 8080/TCP

Endpoints: 10.1.6.4:8080
Session Affinity: None

Events: <none>

Configuring a NodePort

NodePort is used to make available the service on a static port on all nodes in the cluster, as
shown in Example 4-2.

Example 4-2 Service YAML sample file for nodePort configuration

apiVersion: vl
kind: Service
metadata:
annotations:
description: Exposes and load balances the application pods
creationTimestamp: '2019-10-09T16:04:11Z"'
labels:
app: httpd-example
template: httpd-example
name: httpd-test03
namespace: project-test
resourceVersion: '72908925'
selfLink: /api/vl/namespaces/project-test/services/httpd-test03
uid: 6ec5640d-eaae-11e9-860f-fafad0b70720
spec:
clusterIP: 172.30.166.205
externalTrafficPolicy: Cluster
ports:
- name: http
nodePort: 30080
port: 8080

Chapter 4. Red Hat OpenShift components and architecture 67

protocol: TCP
targetPort: 8080
selector:
name: httpd-test03
sessionAffinity: None
type: NodePort
status:
loadBalancer: {}

NodePorts are in the 30000-32767 range by default, which is unlikely to match a service’s
intended port.

For service and application access, the administrator must ensure that the external IPs are
routed to the nodes and local firewall rules on all nodes allow access to the open port. The
DNS wildcard feature can be used to configure resolution for a subset of names to an IP
address in the cluster.

The service is accessed by using the <NodeIP>:30080 address, as shown in Example 4-2.

4.3 OpenShift persistent storage

68

Because Plain Docker storage is not shared between nodes, it is not enough for container
service availability because pods might be stopped on one node and restarted on another
node at any time. If a database pod is stopped and restarted on another node, any stored
data is lost.

Kubernetes provides a framework for managing external persistent storage for containers.
Kubernetes recognizes a PersistentVolume resource, which can be defined as local or
network storage. A pod resource can reference a PersistentVolumeClaim resource to access
storage of a certain size from a PersistentVolume.

Kubernetes also specifies whether a PersistentVolume resource can be shared between pods
or if each pod needs its own PersistentVolume with exclusive access. When a pod moves to
another node, it stays connected to the same PersistentVolumeClaim and PersistentVolume
instances. Therefore, a pod’s persistent storage data follows it, regardless of the node where
it is scheduled to run.

OpenShift adds several VolumeProviders to Kubernetes, which provide access to enterprise
storage, such as iSCSI, Fibre Channel, Gluster, or a cloud block volume service, such as
OpensStack Cinder.

OpenShift also provides dynamic provisioning of storage for applications by way of the
StorageClass resource. By using dynamic storage, you can select different types of back-end
storage. The back-end storage is segregated into different tiers, depending on the needs of
your application.

For example, a cluster administrator can define a StorageClass with the name of “fast,” which
uses higher-quality back-end storage, and another StorageClass called “slow,” which provides
commodity-grade storage.

When requesting storage, a user can specify a PersistentVolumeClaim with an annotation
that specifies the value of the StorageClass that they prefer.

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

4.4 OpenShift registry

OpenShift Container Platform can use any server that implements the container image
registry APl as a source of images, including the Docker Hub, private registries that are run by
third parties, and the integrated OpenShift Container Platform registry.

4.4.1 Integrated OpenShift Container Registry

OpensShift Container Platform provides an integrated container image registry called
OpensShift Container Registry (OCR). This registry that adds the ability to automatically
provision new image repositories on demand. This feature provides users with a built-in
location for their application builds to push the resulting images.

Whenever a new image is pushed to OCR, the registry notifies OpenShift Container Platform
about the new image, passing along all the information about it, such as the namespace,
name, and image metadata. Different components of OpenShift Container Platform react to
new images, creating builds and deployments.

OCR can also be deployed as a stand-alone component that acts solely as a container image
registry, without the build and deployment integration.

4.4.2 Third-party registries

OpenShift Container Platform can create containers by using images from third-party
registries. However, these registries do not offer the same image notification support as the
integrated OpenShift Container Platform registry. In this situation, OpenShift Container
Platform fetches tags from the remote registry upon imagestream creation. Refreshing the
fetched tags is as simple as running the oc import-image <stream> command. When new
images are detected, the build that was described in 4.4.1, “Integrated OpenShift Container
Registry” and deployment reactions occur.

4.5 Managing OpenShift resources

All OpenShift resources, images, containers, pods, services, builders, templates, and so on,
are stored on etcd and can be managed by the OpenShift CLI, web console, or REST API.
These resources also are defined in text files in JSON or YAML format and can be changed
by editing those files and shared on an SCM system, such as GIT.

OpenShift can even retrieve these resource definitions directly from an external SCM.

Chapter 4. Red Hat OpenShift components and architecture 69

70 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Red Hat OpenShift installation
planning and considerations

This chapter describes the Red Hat OpenShift planning, considerations, and installation
guidelines and includes the following topics:

» 5.1, “IBM Power Systems” on page 72
» 5.2, “Red Hat OpenShift Container Platform 3.11 on IBM Power Systems” on page 77

» 5.3, “Red Hat OpenShift Container Platform 3.11 on IBM PowerVC” on page 79

© Copyright IBM Corp. 2020. All rights reserved.

71

5.1 IBM Power Systems

Over the years, the IBM Power Systems family grew, matured, was innovated, and pushed the
boundaries of what clients expect and demand from the harmony of hardware and software.

With the advent of the IBM POWER4 processor in 2001, IBM introduced logical partitions
(LPARs) outside of their mainframe family to another audience. What was seen as radical
then, grew into the expected today. The term virtualization is now common-place across
most platforms and operating systems. These days, virtualization is the core foundation for
cloud computing.

IBM Power Systems is built for the most demanding, data-intensive, computing on Earth. The
servers are cloud-ready and help you unleash insight from your data pipeline: from managing
mission-critical data, to managing your operational data stores and data lakes, to delivering
the best server for cognitive computing.

IBM POWER?Q, the foundation for the number 1 and number 2 supercomputers in the world, is
the only processor with state-of-the-art 1/0 subsystem technology, including next generation
NVIDIA NVLink, PCle Gen4, and IBM OpenCAPI™.

IBM POWERS9 processor-based servers can be found in three product families: Enterprise
servers, Scale-out servers, and Accelerated servers. Each of these three families is
positioned for different types of client requirements and expectations.

IBM Power Systems servers that are based on IBM POWERS9 processors are built for today’s
most advanced applications from mission-critical enterprise workloads to big data and Al, as
shown in Figure 5-1.

Mission-critical workloads Big data workloads Enterprise Al workloads

Scale-out servers Enterprise servers

LC921/LC922 AC922
$922/5914/5924 Power E950 Power E980
H922/H924/L922

Figure 5-1 IBM Power Systems

» Mission critical

Robust scale-out and enterprise servers can support a wide range of mission-critical
applications that are running on IBM AlX, IBM i, and Linux operating systems. They also
can provide building blocks for private and hybrid cloud environments.

» Bigdata

Scale-out servers deliver the performance and capacity that is required for big data and
analytics workloads.

» Enterprise Al

Servers provide intelligent, accelerated infrastructure for modern analytics, HPC, and Al
workloads. They are advanced enterprise servers that deliver fast machine learning
performance.

72 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

5.1.1 Mission-critical workloads

To handle the most data-intensive mission-critical workloads, organizations need servers that
can deliver outstanding performance and scalability. Whether they are supporting small
business groups or building large private and hybrid cloud environments, they need
no-compromise infrastructure.

Enterprise (Scale-up) servers

IBM Power Systems Enterprise (Scale-up) servers, as listed in Table 5-1, offer the highest
levels of performance and scale for the most data- intensive, mission-critical workloads. They
can also serve as building blocks for growing private and hybrid cloud environments. Support
for AIX, Linux, and IBM i (for the IBM Power Systems E980 server) gives organizations the

flexibility to run a wide range of applications.

The IBM Power Systems E950 server is the correct fit for growing midsize businesses,
departments, and large enterprises that are looking for a building-block platform for their data
center. The IBM Power Systems E980 server is designed for large enterprises that need
flexible, reliable servers for a private or hybrid cloud infrastructure.

Table 5-1 IBM Power Systems - Enterprise servers

E950

E980

Key features

» Enterprise-class
capabilities in a reliable,
space-efficient form factor

» Exceptional performance at
an affordable price

» Ideal foundation for
world-class private or
hybrid cloud

» Can power large-scale,
mission-critical applications

» Flagship, high-end server

processor sockets at 3.15 -
3.80 GHz (max)

» Upto 44 cores — 11 core
processor sockets at 3.2 -
3.80 GHz (max)

» Up to 40 cores — 10 core
processor sockets at 3.40 -
3.80 GHz (max)

» Up to 32 cores — 8 core
processor sockets at 3.60 -
3.80 GHz (max)

Machine type and model 9040-MR9 9080-M9S

(MTM)

Form factors 4U 5U system node and 2U system
controller unit

Sockets 2-4 4 per node

Processor cores » Up to 48 cores — 12 core One node:

4x POWER9 CPUs; 8,10, 11 or
12 cores each System

Maximum:
16x POWER9 CPUs;
8, 10, 11, or 12 cores each

systems

Memory slots 128 128 per node
Memory max. 16 TB 64 TB per node
PCle G4 slots 10 8 per node; max. 32
Supported operating AlIX and Linux AlX, IBM i, and Linux

Chapter 5. Red Hat OpenShift installation planning and considerations

73

Scale-out servers

IBM Power Systems scale-out servers for mission-critical workloads, as listed in Table 5-2,
offer a strong alternative to commodity x86 servers. They provide a robust, reliable platform to
help maximize performance, and help ensure availability.

Scale-out AlX, IBM i, and Linux servers are designed to scale out and integrate into an
organization’s cloud and Al strategy. They deliver exceptional performance and reliability.

Table 5-2 IBM Power Systems: Scale-out servers

S914 $922 $924 L922
Key features » Entry-level » Strong price » Industry-leading » Industry-leading
offering performane for price performane price performane
» Industry-leading mission-critical for mission-critical for mission-critical
integrated workloads workloads Linux workloads
security and » Dense formfactor | » Large memory » Dense form factor
reliability with large footprint with large
» Cloud-enabled memory footprint » Strong security memory footprint
» Cloud-enabled and reliability
with integrated » Cloud-enabled
virtualization with integrated

virtualization

Machine type 9009-41A 9009-22A 9009-42A 9008-22L

and model

(MTM)

Form factors 4U and tower 2U 4U 2U

Sockets 1 2 2 1or2

Microprocessors | IXxPOWER9CPUs;4, | Up to 2x POWER9 2xPOWER9CPUs; 8, | Up to 2x POWER9

6 or 8 cores CPUs; 4,8 0r 10 10 or 12 cores CPUs; 8,10 0r 12

cores cores

Memory slots 16 32 32 32

Memory 1TB 4TB 4TB 4TB

maximum

PCle G4 slots 2 4 4 4

Supported AlX, IBM i, and Linux AIX, IBM i, and Linux AlX, IBM i, and Linux Linux

operating

systems

Scale-out servers for SAP HANA servers, as listed in Table 5-3 on page 75, deliver
outstanding performance and a large memory footprint of up to 4 TB in a dense form factor.
These servers help deliver insights fast although maintaining high reliability. They are also
scalable: When it is time to grow, organizations can expand database capacity and the size of
their SAP HANA environment without having to provision a new server.

74 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Table 5-3 IBM Power Systems: Scale-out servers for SAP HANA

H922

H924

Key features

» Optimized for SAP HANA

» High performance, tight security

» Dense form factor with large
memory footprint

» For Linux-focused customers

» High performance for SAP HANA

» Strong security with large memory
footprint

» For Linux-focused customers

Machine type and model 9223-22H 9223-42H
(MTM)

Form factors 2U 4U
Sockets 1 upgradeable or 2 2

Cores per socket 4,8,0r10 8,10, 0or 12
Memory slots 32 32
Memory maximum 4TB 47TB

PCle G4 slots 4 4

Supported operating
systems

AlX, IBM i, and Linux

AlX, IBM i, and Linux

5.1.2 Big data workloads

Across industries, organizations are poised to capitalize on big data to generate new
business insights, improve the customer experience, enhance efficiencies and gain
competitive advantage. But to make the most of growing data volumes, they need servers
with the performance and capacity for big data and Al workloads.

IBM Power Systems Scale-out servers for big data, as shown in Table 5-4, deliver the
outstanding performance and scalable capacity for intensive big data and Al workloads.
Purpose-built with a storage-rich server design and industry-leading compute capabilities,
these servers explore and analyze a tremendous amount of data, all at a lower cost than
equivalent x86 alternatives.

Table 5-4 IBM Power Systems: Scale-out servers for big data

LC921 LC922
Key features » High performance in a » Highest storage capacity in
space-saving design the IBM Power Systems
» Industry-leading compute in portfolio
a dense form factor » Up to 44 cores and 2 TB of
memory

» High performance at lower
cost than comparable x86
systems

Machine type and model 9006-12P 9006-22P
(MTM)

Form factors 1U 2U
Sockets 1 upgradeable or 2 2

Microprocessors

1x or 2x POWER9 CPUs; 16 or
20 cores

1x or 2x POWER9 CPUs; 16,
20 or 22 cores

Chapter 5. Red Hat OpenShift installation planning and considerations 75

LC921 LC922
Memory slots 32 16
Memory maximum 2TB 2TB
PCle G4 slots 4 6
Supported operating system | Linux Linux
Maximum storage 40 TB 120 TB

5.1.3 Enterprise Al workloads

Al holds tremendous promise for facilitating digital transformations, accelerating innovation,
enhancing the efficiency of internal processes, identifying new marketplace opportunities,
and more. For organizations to take advantage of Al and cognitive technologies, such as
machine learning and deep learning, they need powerful, accelerated servers that can handle
these data-intensive workloads.

Accelerated servers can also play a vital role in supercomputing. With the correct accelerated
servers, researchers and scientists can explore more complex, data- intensive problems and
deliver results faster than before.

The IBM Power Systems Accelerated Compute Server, as listed in Table 5-5, helps reduce
the time to value for enterprise Al initiatives. The IBM PowerAl Enterprise platform combines
this server with popular open source deep learning frameworks and efficient Al development
tools to accelerate the processes of building, training, and inferring deep learning neural
networks. By using PowerAl Enterprise, organizations can deploy a fully optimized and
supported Al platform with blazing performance, proven dependability, and resilience.

Table 5-5 IBM Power Systems - Accelerated Compute servers

AC922

Key features » Unprecedented performance for modern Al,
analytics, and HPC workloads

» Proven deployments from small clusters to
the world’s largest supercomputers, with
near-linear scaling

» Simple GPU acceleration

Machine type and model (MTM) 8335-GTH | 8335-GTX

Form factors

2U

Sockets

2

Microprocessors

2x POWER9 with NVLink CPUs: 16 or 20 cores;
or 18 or 22 cores with liquid cooling

GPUs 4 or 6 NVIDIA Tesla GPU processors
(NVLink 2.0 attached)

Memory slots 16

PCle G4 slot 1TB

Supported operating system Linux

76 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

5.2 Red Hat OpenShift Container Platform 3.11 on IBM Power

Systems

Red Hat OpenShift Container Platform 3.11 for Power Systems provides a secure,
enterprise-grade platform for IBM Power Systems servers. It brings together industry-leading
container orchestration from Kubernetes, advanced application build and delivery automation,
and Red Hat Enterprise Linux certified containers for IBM Power Systems.

Red Hat OpenShift Container Platform 3.11 for Power Systems brings developers and IT
operations together with a common platform. It provides applications, platforms, and services
for creating and delivering cloud-native apps and management so IT can ensure that the
environment is secure and available. It also enables in-place (for example, on IBM POWER)
application modernization of existing enterprise applications by surrounding them with new
container technology.

Red Hat OpenShift Container Platform 3.11 for Power Systems provides enterprises the
same functionality as the Red Hat OpenShift Container Platform offering on other platforms.
Key features include:

» Self-service environment for application and development teams.

» Pluggable architecture that supports a choice of container runtimes, networking, storage,
Continuous Integration/Continuous Deployment (CI-CD), and more.

» Ability to automate routine tasks for application teams.

Figure 5-2 shows a high-level view of the Red Hat OpenShift Container Platform components
for the various IBM Power Systems hardware platforms.

Persistent
Storage

Infrastructure Worker

Registry

Router

Red Hat 7.x

-
‘ TUALI
IBM Power Systems Power\/C qo
Infrastructure Power VM .

AKVM

Figure 5-2 High-level view of the OpenShift Container Platform for IBM Power Systems

From bare metal physical machines to virtualized infrastructure, or in private clouds, the
OpenShift is supported anywhere that Red Hat Enterprise Linux is running, including all of the
supported virtualization platforms (PowerVM or RHEV) and private cloud (PowerVC).

Chapter 5. Red Hat OpenShift installation planning and considerations 77

The OpensShift architecture builds on top of Kubernetes and consists of three types of roles

for the nodes:

» Master: These nodes are Kubernetes Master Nodes that can provide more functions, such

as the web console with the self-service portal, and the developers and
operations-focused dashboards.

Important: Because of the consensus that is required by the RAFT algorithm, the etcd
service must be deployed in odd numbers to maintain quorum. For this reason, the
minimum number of etcd instances for production environments is three.

» Infrastructure: These nodes are Kubernetes Worker Nodes that are dedicated to host
functions, such as the OpenShift Routes and the OpenShift internal registry.

» Worker: These nodes are the Kubernetes Worker Nodes that are used to run the
microservices and containerized applications that are deployed on OpenShift.

Master and Infrastructure roles can run on the same node.

Nodes can run on top of PowerVC, PowerVM, Red Hat Virtualization, KVM, or run bare metal
environment. Table 5-6 lists the IBM Power Systems Infrastructure Landscape for OpenShift
Container Platform 3.11.

Table 5-6 IBM Power Systems Infrastructure Landscape for OpenShift 3.11

laaS

PowerVC

N/A

RHV-M

N/A

Hypervisor

PowerVM

PowerVM

KVM/RHV

Bare-Metal

Guest operating
system

Red Hat 7.6 or
later

Red Hat 7.6 or
later

Red Hat 7.6 or
later

Red Hat 7.6 or
later

Defined Storage

Defined Storage

Defined Storage

Systems E980, E950, E980, E950, LC922, AC922 LC922, AC922
S924, 5922, S924, S922,
S914, L922 S914, L922

Storage SAN, Software NAS, Software NAS, Software NAS, Software

Defined Storage

Storage attach

FVD: PowerVC,
NFS,
GlusterFS,
FVD: Spectrum
Scale

NFS,
GlusterFS,
FVD: Spectrum
Scale

NFS,
GlusterFS,
FVD: Spectrum
Scale

NFS,
GlusterFS,
FVD: Spectrum
Scale

Note: In this IBM Redbooks publication, we cover only the deployment of the OpenShift
Container Platform 3.11 on top of PowerVC 1.4.3.1 environment.

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

5.3 Red Hat OpenShift Container Platform 3.11 on IBM
PowerVC

In this section, we provide guidelines and considerations for deploying and managing Red
Hat OpenShift Container Platform on IBM Power Virtualization Center (PowerVC).

Red Hat OpenShift Container Platform is a Platform-as-a-Service (PaaS) that provides
developers and IT organizations with a cloud application platform for deploying new
applications on secure, scalable resources with minimal configuration and management
overhead. It allows developers to create and deploy applications by delivering a consistent
environment for both development and during the runtime lifecycle that requires no server
management.

IBM PowerVC uses OpenStack technology to provide enterprise virtualization and cloud
management for IBM Power Systems, which provides all of the necessary capabilities for a
fully featured Infrastructure-as-a-Service (laaS) private cloud solution.

Note: The minimum version for PowerVC is 1.4.3 Fix Pack 1. This version adds IBM
PowerVC FlexVolume Driver support for OpenShift Container Platform 3.11.

5.3.1 Reference architecture summary

The deployment of Red Hat OpenShift Container Platform on PowerVC varies among several
factors that affect the installation process. Consider the following questions:

» How many instances do you minimally require in the cluster?
» How to configure the PowerVC Host Groups and colocation rules?

» Is High Availability required?

» What installation tools will you use?

» Which storage and network backends will you use?

For this reference architecture, eight instances (VMs) were defined: six for the OpenShift
cluster, one for the Load Balancer, and one for the Deployment Host. We tested on Single or
Dual Host Groups (Availability Zones) and soft-anti-affinity rules for OpenShift cluster
instances (VMs).

This reference architecture requires High Availability configuration (as described in “High
Availability” on page 84) and uses Ansible and IBM Terraform for installation and prerequisite
checks.

Note: Terraform is not required to install OpenShift. Multiple approaches are available for
deploying infrastructure. In this book, we demonstrate how to use an infrastructure as code
with Terraform to simplify the deployment. The Terraform examples in this book are open
source and “use-at-your-own-risk” templates.

This reference architecture uses OpenShift ovs-multitenant on top of Shared Ethernet
Adapter (SEA) for network and IBM PowerVC FlexVolume on top of Cinder for persistent
storage.

Chapter 5. Red Hat OpenShift installation planning and considerations 79

Figure 5-3 shows the environment that was used for this reference architecture.

DNS NTP
Network
Load Balancer
8443 80,443
HAProxy
OpenShift SDN
powerye Deployment Host |7~ :—_l:—:—:—:-:-:—:—:—: == 1

', Master Nodes Infrastructure Nodes : Workers

Ansible Host : " : | (Applications) Nodes
i I

Terraform Host : 1 : Logging Metrics :
1 : 1 1
: 1 : g:;{:::' Router : Appi App2
N API ETCD "
4, |

_____ e—————=—=—=—=—===
Local Local and Docker Local, Docker Local, Docker

and FlexVolume

and FlexVolume

PowerVC Cinder Volumes

Figure 5-3 Reference architecture summary

The Red Hat OpenShift Container Platform consists of the following instances:

IBM PowerVC instance

Deployment Host instance

Load Balancer instance

Three Master-Infrastructure instances
Three Worker (Applications) instances

vyvyyvyyvyy

Note: Instructions for installing and configuring PowerVC is out of the scope of this book.
For more information about PowerVC installation and configuration instructions, see IBM
Knowledge Center.

80 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

https://ibm.co/2R5bUuB
https://ibm.co/2R5bUuB
https://ibm.co/2R5bUuB

5.3.2 Design considerations

This section discusses some design considerations.

PowerVC considerations

IBM PowerVC is an advanced virtualization and cloud management offering for IBM Power
Systems. Built on OpenStack, it provides comprehensive virtualization management and
cloud deployments for IBM AlX, IBM i, and Linux virtual machines (VMs). PowerVC simplifies
the lifecycle management of the virtualization for Power Systems. It includes a deep
integration with IBM PowerVM virtualization technologies.

Availability zones (host groups)

Host groups, also known as host aggregates in OpenStack’s terminology, allow you to create
virtual boundaries around a group of hosts. It is a logical group of hosts, regardless of any
features that they might or might not have in common. For example, the hosts feature the
same architecture, network configuration, or storage, or hosts in the same rack or data center.

When a host group is created by using the user interface, an availability zone with the same
name is created and assigned to the host group. PowerVC also supports the standard
OpenStack APIs for host groups and availability zones.

Host groups (availability zones) include the following features:

» Every host must be in a host group

Any hosts that do not belong to a user-defined host group are members of the default host
group. The default host group cannot be deleted.

» Virtual machines are kept within the host group

A virtual machine can be deployed to a specific host or to a host group. After deployment,
that virtual machine must always be migrated or remote restarted within the host group.

» Placement policies are associated with host groups

Every host within a host group is subject to the host group’s placement policy. The default
placement policy is striping.

» Automated Remote Restart
If enabled, the PowerVC monitors hosts for failure by using the Platform Resource

Scheduler (PRS) HA service. If a host fails, PowerVC automatically remote restarts the
VMs from the failed host to another host within a host group.

» Dynamic Resource Optimizer (DRO)

If enabled, DRO continuously monitors your cloud environment’s usage. You can specify
that DRO monitors CPU usage or available memory. When a host is found to be overused,
the DRO attempts to correct the situation by performing the action that you specified. It
can migrate VMs to another host within a host group or, when applicable, work with
Capacity on Demand (CoD) to activate mobile cores.

Note: A host can belong only to one host group (availability zone).

Chapter 5. Red Hat OpenShift installation planning and considerations 81

Depending on the infrastructure and servers types, you must determine the suitable choice
when deciding between single and multiple Host Groups (Availability Zones) configuration.
From an administrative perspective, it is easier to have single Host Group and not isolate the
systems into multiple Host Group (Availability zones), as shown in Figure 5-4.

/ RED HAT \

Persistent
Volumes

PowerVC StorageClass Provisioner
\ PowerVC FlexVolume

Master - Infra Master - Infra

Master - Infra . ‘

[ﬂ PowerVM Hypervisor] |= PowerVM Hypervisor
ol [u vio1 J EQ ViO2 J [U VIO] [u,'!,r Vvio2]

Host Group (Availability Zone) 1

Cinder

__

Figure 5-4 PowerVC single Host Group (Availability Zone)

82 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

To force the VM placement (in general based on different rack or data center), you can create
dual Host Groups, as shown in Figure 5-5.

RED HAT \

OPENSHIFT
~ Workers 1, Persistent
' Volumes |
APP APP APP | I
.
mm i nm Yy, e 'IE l
iy | Wy | Wwmy BE——RN—N
____________ e

Master - Infra Master - Infra

Master - Infra .

[ﬂ PowerVM Hypervisor] |= PowerVM Hypervisor
[u vIO1 J [Q vio2 J [u VIOt] [u,'!,;: vIo2]

\ Host Group (Availability Zone) 1 \ Host Group (Availability Zone) 2 |

Cinder

Figure 5-5 PowerVC dualHost Groups (Availability Zones)

Colocation rules

Colocation rules, also known as server groups in OpenStack’s terminology, are used to
specify that selected virtual machines must always be kept on the same host (affinity) or can
never be placed on the same host (anti-affinity).

During deployment, migration, and remote restart, PowerVC ensures that these colocation
rules are followed.

Chapter 5. Red Hat OpenShift installation planning and considerations 83

84

PowerVC supports the following policies:
» Affinity: All virtual machines from this rule are hosted on the same host.
» Anti-affinity: All virtual machines from this rule are hosted on different host.

» Soft-affinity: All virtual machines from this rule are hosted on the same host if possible; if
not possible, they still are scheduled instead of failure and set the status of the rule to
violated.

» Soft-anti-affinity: All virtual machines from this rule are hosted on different host, if possible;
if not possible, they still are scheduled instead of failure and set the status of the rule to
violated.

If the rule status is violated, review the placement of the virtual machines. For any virtual
machines that are on an incorrect host, you can migrate it to the correct host by using LPM.

PowerVC image

A custom image must be created in PowerVC before the deployment is started. OpenShift
includes the following specific requirements:

RHEL 7.6 for POWERS8 and RHEL-ALT 7.6 for POWER9 Minimum installation.
SELinux is set to enforcing.

NetworkManager is enabled and running.

Firewall is enabled and running.

The host name from DNS (set_hostname_from_dns) is set in cloud-init.

vyvyyvyyvyy

Note: For more information about image creation in PowerVC, see IBM Knowledge Center.

Project and user

A project, sometimes referred to as a tenant, is a unit of ownership. Most resources, such as
virtual machines, volumes, and images, belong to a specific project. Only users with a role
assignment for a specific project can work with the resources that belong to that project. The
ibm-default project is created during installation, but PowerVC supports the creation of more
projects for resource segregation.

When possible, it is recommended to create a user and project for the OpenShift
environment.

High Availability

High Availability (HA) is a requirement for any production deployment. A crucial consideration
for HA is the removal of single points of failure (SPOFs). This reference architecture is highly
available at all layers (Hardware, PowerVM, PowerVC, and OpenShift).

Hardware HA

You must take care to eliminate single points of failure at the hardware layer. The following
hardware fault tolerance recommendations are implemented in this architecture:

» Redundant server power supplies that are connected to different power sources.
» Redundant network adapters that are connected to redundant network switches.
» Redundant Fibre Channel adapters that are connected to redundant SAN fabrics.

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

https://ibm.co/34wFSvt

PowerVM HA

The VIOS configuration includes the following specifications when LPAR is used with a
production OpenShift Container Platform:

» If /O virtualization is used, a dual-VIOS setup is mandatory. You can have more than two
VIOSes in the system that separates different environments, such as production and test
or multiple customers

» Each VIOS must be configured with at least two dedicated or dedicated donating cores for
any production systems. Size them as needed and monitor CPU usage to adapt to
workload changes over the life of the system.

» At least one Fibre Channel card per VIOS is needed. It is recommended to have two to
remove the single points of failure (SPOFs).

» At least two Ethernet cards per VIOS are needed. Interfaces with 10 GbE are needed at a
minimum for scale-up systems. For scale-out systems, a speed of at least 10 GbE is
mandatory.

» Enable VIO servers for Live Partition Mobility (LPM).

» Configure your VIO servers with NPIV (if present) and are supported by the operating
system, or with the Shared Ethernet Adapter (SEA) Failover with Load Sharing if they are
not supported. The following options are available for setting up virtual networks on your
VIO servers:

- SR_IOV

Not supported by PowerVC. Shares parts of a dedicated network adapter among
several partitions. Works with all current IBM AlX, IBM i, and Linux distributions.

Restrictions: Prevents Live Partition Mobility, restrictions on Etherchannel. Max 20 VM
per network port.

— VNIC

SR_IOV enhanced with Live Partition Mobility support. No Etherchannel or bonding
support. Maximum 20 VM per network port.

— VvNIC failover

Provides server-side high availability solution (similar to SEA failover). In the vNIC
failover configuration, a vNIC client adapter can be backed by multiple logical ports,
preferably allocated from a different SR-IOV adapter and hosted by different VIOSes to
avoid a single point failure.

At any time, only one logical port is connected with the vNIC adapter. If the active
(connected) backing device or its hosting VIOS fails, a new backing device is selected
to serve the client. The selection of the active backing device is done by the POWER
Hypervisor.

In contrast to the SEA failover, the vNIC failover does not rely on any communication
protocol between or among the multiple backing devices. The vNIC failover resorts to
the POWER Hypervisor as the decision maker because it (the POWER Hypervisor)
has a complete view and receives the real-time status of all the backing devices and is
best situated for selecting the correct logical port. Without the implementation of the
communication protocol, the vNIC failover is a much simpler, and more robust solution.

Chapter 5. Red Hat OpenShift installation planning and considerations 85

- SEA

Network high availability and redundancy with server-side failover solution that is
based on the SEA failover to provide virtual network redundancy and failover capability.
The main advantage of a server-side failover solution is that it simplifies the client
configuration because you need to create only a single virtual Ethernet adapter in the
client, which is served by two SEAs that are configured in the high availability mode
(failover configuration) in two Virtual I/O Servers.

It is recommended to aggregate more physical connections that operate as one link. It
increases network throughput and high availability. It features two basic modes of
operation: Etherchannel and LACP 802.3ad, also known as port trunking.

Figure 5-6 shows an example with two VMs (LPARs) with dual Virtual /O Server
configuration with SEA on top of LACP (802.3ad) adapter for client LPARs and an
Etherchannel adapter for VIO Management interface.

/ VM1 PowerVM Server VM2 \

PowerVM Hypervisor

=
(@]
w
-

Etherchannel
Management

| LACP 802.3ad |

[External Network Infrastructure }

Figure 5-6 Shared Ethernet Adapter (SEA) with Load Sharing and LACP (802.3ad)

Note: At the time of this writing, vNIC on Red Hat was available as a Technology
Preview. For more information, see this web page.

86 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

https://ibm.co/2XWE5gF

» The following options are available for setting up virtual storage on your VIO servers:
— Shared Storage Pool (SSP)

These pools allow a single physical volume on any supported storage controller to be
shared across a cluster of Virtual I/0 Servers. Those Virtual I/O Servers share
accesses to aggregated physical volumes and divide that aggregated volume into
storage volumes instead of interacting with external storage controllers or fabric
switches.

A cluster consists of up to 16 Virtual I/O Servers with a shared storage pool that
provides distributed storage access to the Virtual I/O Servers in the cluster. Each
cluster requires one physical volume for the repository physical volume and at least
one physical volume for the storage pool physical volume. The shared storage pool can
be accessed by all the Virtual I/O Servers in the cluster. All the Virtual I/0 Servers
within a cluster must have access to all the physical volumes in a shared storage pool.

— Virtual SCSI (vSCSI) adapters

These adapters provide one logical partition with the ability to use storage I/0 (disk,
CD, and tape) that is owned by the Virtual I1/0O Server partition. Virtual SCSl is based on
a client and server relationship; the Virtual I/O Server owns the physical resources and
has one Virtual SCSI server adapter that communicates with a logical partition Virtual
SCSiI client adapter.

— N_Port ID Virtualization (NPIV)

The NPIV allows a single physical HBA to register multiple virtual WWPNs. With NP1V,
you can configure the managed system so that multiple partitions can access
independent physical storage through the same physical Fibre Channel adapter.

Each client partition is configured with four Virtual Fibre Channel adapters: two are
mapped to Virtual Fibre Channel adapters on one VIOS and the other two are mapped
to Virtual Fibre Channel adapters on the other VIOS. The client has WWPNSs, four
active and four inactive (used only during LPM operations).

For client VMs to see same storage from all these ports, zoning must be done on the
SAN. Multi-path software on the client VM takes care of routing 10 through passive
path if the active path fails. The NPIV is recommended for production environments.

Chapter 5. Red Hat OpenShift installation planning and considerations 87

Figure 5-7 shows an example with two NPIV VMs (LPARs) with dual Virtual I/O Server.

PowerVM Se

T\
Multipath

Multipath

HBAO | HBA1 HBA2 HBA3J

fcs0fcsi iﬂ:sz-fcssvf:solfmsjfcszlfcss
““

FabricA(Red) FabricB(Blue)

G G
— R —

Storage

Figure 5-7 Two NPIV VMs with dual Virtual I/O servers

Note: For more information about PowerVM best practices, see IBM PowerVM Best
Practices, SG24-8062.

88 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

http://www.redbooks.ibm.com/redbooks/pdfs/sg248062.pdf

PowerVC HA
This architecture includes the following PowerVC recommendations:

» Each Host Group (Availability Zone) must include more that one server to allow Simplify
Remote Restart, DRO, and Host evacuation.

» Automated Remote Restart must be enabled at the Host Group level. When an error
causes a server outage, a virtual machine that is configured with the remote restart
capability can be restarted automatically on a different physical server.

Figure 5-8 shows how Simplify Remote Restart is working with HMC configuration.

VM1 VM2

r/..- = 1 =
l\ J Nl /
h-.

‘n PowerVM Hypervisor ‘
[w [']

IBM PowerVM Server

IBM PowerVM Server

Sfdrége

\ Host Group (Availability Zone) X /

Figure 5-8 Simplify Remote Restart with PowerVC and HMC

Chapter 5. Red Hat OpenShift installation planning and considerations 89

» Use PowerVC to manage the LPM feature to migrate VMs from one host to another. The
LPM is important for frame evacuation during maintenance operations. It is recommended
to include a dedicated Network interface for VIO management.

Figure 5-9 shows how LPM is working with HMC configuration.

——

.1‘*&

-'[l‘@ xﬁ

PowerVC / \

yF "ol
: v PR M1 VM2 vma

g PowerVM Hypervisor g PowerVM Hypervisor
[VIOS 1] { VIOS 2] [VIOS 1] { VIOS 2]

IBM PowerVM Server IBM PowerVM Server

! !

Storage

\ Host Group (Availability Zone) X /

Figure 5-9 Live Partition Mobility (LPM) with PowerVC and HMC

» Master/Infrastructure nodes are configured with the automatic remote restart; in case of
host failure, PowerVC automatically restarts the VMs (LPARs) on different hosts.

» Create Server Groups for OpenShift VMs and configure soft-anti-affinity rules.

OpenShift HA

OpenShift is also deployed for HA. In this reference architecture, the etcd state database is
colocated across the master nodes. The etcd requires a minimum of three nodes for HA. All
master nodes are configured in PowerVC to automatically restart in case of any host failure.

This reference architecture also uses three infrastructure nodes. Infrastructure nodes host
OpenShift infrastructure components, such as the registry, containers for log aggregation,
and metrics. A minimum of three infrastructure nodes are needed for HA when a shared
aggregated logging database is used, and to ensure that service interruptions do not occur
during a restart. All infrastructure nodes are configured in PowerVC to automatically restart in
case of any host failure.

90 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

In deployments with four or more PowerVM Compute nodes, OpenShift must be configured to
create application nodes across to all physical servers. The application nodes are not
configured to automatically restart in case of host failure. OpenShift is managing the
applications availability.

Installation tools
Perform the installation by using the tools that are recommended and supported.

Deployment host
A deployment host is any virtual or physical host that supports Terraform and Ansible.

For this book, the deployment host is a virtual machine that provides a simple method for
deploying OpenShift and includes the following features:

» Minimal operating system that is based on Red Hat ALT 7.6 Enterprise Linux.
» Terraform for deploying OpenShift Infrastructure.
» OpenShift-Ansible for installing and configure OpenShift.

Note: The deployment host can run on any architecture (for example, x86) that supports
the installation tools.

Terraform

Terraform is an Infrastructure as Code tool for building, changing, and versioning
infrastructure safely and efficiently.

Ansible, Chef, Puppet, and SaltStack focus on automating the installation and configuration of
the software. Terraform automates provisioning of the infrastructure.

Chapter 5. Red Hat OpenShift installation planning and considerations 91

Terraform components are shown in Figure 5-10.

vm1.if vm.2.tf provider.tf

Terraform
terraform.tfstate

Providers /
Provisioners

IBM Cloud Siddasd

Figure 5-10 Terraform components

Terraform features the following files:

» Configuration files(.tf): Terraform uses its own configuration language, which allows
concise descriptions of infrastructure. The Terraform language is declarative and
describing an intended goal rather than the steps to reach that goal.

» Terraform binary (executable) file: This file is written and compiled in GO language. To
install Terraform, find the appropriate package for your system and download it from this
web page.

Note: Terraform can run on any platform (including x86) to provision resources. If you
have a ppc64le platform, you must compile Terraform and all needed providers
(plug-ins).

» Terraform state file (.tfstate): This JSON state file contains information about the
provisioned infrastructure that Terraform manages.

92 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html

OpenShift-Ansible

Ansible is a simple IT automation engine that automates cloud provisioning, configuration
management, application deployment, intra-service orchestration, and many other IT needs.

Ansible uses no agents and no other custom security infrastructure, so it is easy to deploy
and most importantly, it uses a simple language (YAML, in the form of Ansible Playbooks) with
which you can describe your automation jobs in a way that approaches plain English.

Ansible works by connecting to your nodes and pushing out small programs, called Ansible
modules to them. These programs are written to be resource models of the wanted state of
the system. Ansible then runs these modules (over SSH by default), and removes them when
finished. Passwords are supported, but SSH keys with ssh-agent are one of the best ways to
use Ansible.

Note: Ansible 2.6 is required for OpenShift 3.11.

OpenShift-Ansible is a set of Ansible playbooks that orchestrate complex deployment tasks,
including the following examples:

Configuring the container runtime environment on virtual machines
Provisioning storage for an internal registry

Configuring the OpenShift SDN

Connecting to authentication systems

vyvyYyy

Note: Consider the following points:

» OpenStack Provisioning is not supported by PowerVC. OpenShift-Ansible deploys
OpensShift on OpenStack by using Heat service, but Heat is not implemented in
PowerVC.

» OpenShift-Ansible can also deploy OpenShift directly onto physical servers. This
reference architecture deploys to virtual machines as that is the more common
deployment model.

Load balancers

This guide uses an external load balancer that is running HAproxy to offer a single entry point
for the many Red Hat OpenShift Container Platform components. Organizations can provide
their own deployed load balancers if the service exists.

The Red Hat OpenShift Container Platform console, which is provided by the Red Hat
OpensShift Container Platform master nodes, can be spread across multiple instances to
provide load balancing and HA properties.

Application traffic passes through the Red Hat OpenShift Container Platform Router on its
way to the container processes. The Red Hat OpenShift Container Platform Router is a
reverse proxy service container that multiplexes the traffic to multiple containers that make up
a scaled application that is running inside Red Hat OpenShift Container Platform. The load
balancer that is used by infrastructure nodes acts as the public view for the Red Hat
OpenShift Container Platform applications.

The destination for the master and application traffic must be set in the load balancer
configuration after each instance is created, the floating IP address is assigned, and before
the installation. A single HAproxy Load Balancer can forward both sets of traffic to different
destinations.

Chapter 5. Red Hat OpenShift installation planning and considerations 93

When configuring multiple masters, the cluster installation process supports the native HA
method. This method uses the native HA master capabilities that are built into OpenShift
Container Platform and can be combined with any Load Balancing solution.

If a host is defined in the [1b] section of the inventory file, Ansible installs and configures
HAProxy automatically as the load balancing solution. If no host is defined, it is assumed that
you pre-configured an external load balancing solution of your choice to balance the master
API (port 8443) on all master hosts.

Note: The HAProxy Load Balancer is intended to demonstrate the API server's HA mode
and is not recommended for production environments. If you are deploying to a cloud
provider, Red Hat recommends deploying a cloud-native TCP-based Load Balancer or
take other steps to provide a highly available load balancer.

DNS

DNS service is an important component in the Red Hat OpenShift Container Platform
environment. Regardless of the provider of DNS, an organization is required to have certain
records in place to serve the various Red Hat OpenShift Container Platform components.

Considering the Load Balancer values for the Red Hat OpenShift Container Platform master
service and infrastructure nodes running router Pods are known beforehand, entries must be
configured into the DNS before starting the deployment procedure.

DNS for OpenShift applications

Applications that are served by OpenShift are accessible by the router on ports 80/TCP and
443/TCP. The router uses a wildcard record to map all host names under a specific sub
domain to the same IP address without requiring a separate record for each name. This
process allows Red Hat OpenShift Container Platform to add applications with arbitrary
names if they are under that sub domain.

For example, a wildcard record for *.apps.example.com causes DNS name lookups for
appl.apps.example.com and app2.apps.example.com to both return the same IP address:
9.109.x.y. All traffic is forwarded to the OpenShift Infrastructure Nodes (Routers). The
Routers examine the HTTP headers of the queries and forward them to the correct
destination.

With a load-balancer host address of 9.109.x.y, the wildcard DNS record for
*_.apps.example.comresolves IP address 9.109.x.y.

A simple DNS round-robin resolution can be used to spread traffic across infrastructure
nodes.

For production environments, it is recommended to have more advanced load balancing
capabilities to distribute the traffic among the OpenShift Routers. In those cases, an external
Load Balancer is used.

OpenShift Software Defined Networking (SDN)

Red Hat OpenShift Container Platform offers the ability to specify how pods communicate
with each other. This process can be done by using Red Hat provided Software-defined
networks (SDN) or a third-party SDN.

Deciding on the suitable internal network for an Red Hat OpenShift Container Platform step is
a crucial step. Unfortunately, no correct answer exists regarding the suitable pod network to
chose because this choice varies based on the specific scenario requirements for how a Red
Hat OpenShift Container Platform environment is to be used.

94 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

For the purposes of this reference environment, the Red Hat OpenShift Container Platform
ovs-networkpolicy SDN plug-in is chosen because of its ability to provide Pod isolation by
using Kubernetes NetworkPolicy.

Next, we discuss the important points to consider when deciding between the three popular
options for the internal networks: ovs-multitenant, ovs-networkpolicy, and ovs-subnet.

OpenShift SDN plug-ins
This section focuses on multiple plug-ins for pod communication within Red Hat OpenShift
Container Platform by using OpenShift SDN. The following plug-in options are available:

» ovs-subnet

The original plug-in that provides an overlay network that is created to allow Pod-to-Pod
communication and services. This pod network is created by using Open vSwitch (OVS).

» ovs-multitenant

A plug-in that provides an overlay network that is configured by using OVS, which is similar
to the ovs-subnet plug-in. However, unlike the ovs-subnet, this plug-in provides Red Hat
OpenShift Container Platform project-level isolation for pods and services.

» ovs-networkpolicy

A plug-in that provides an overlay network that is configured by using OVS that provides
the ability for Red Hat OpenShift Container Platform administrators to configure specific
isolation policies by using NetworkPolicy objects.

Choosing an OpenShift SDN option

Two other OpenShift SDN options are available: ovs-multitenant and ovs-networkpolicy. The
reason ovs-subnet is ruled out as an OpenShift SDN option is because it does not feature
network isolation.

Although ovs-multitenant and ovs-networkpolicy provide network isolation, the optimal choice
comes down to what type of isolation is required. The ovs-multitenant plug-in provides
project-level isolation for pods and services. Therefore, pods and services from different
projects cannot communicate with each other.

However, ovs-networkpolicy solves network isolation by providing project administrators the
flexibility to create their own network policies by using Kubernetes NetworkPolicy objects.
That is, all pods in a project are accessible from other pods and network endpoints by default
until NetworkPolicy objects are created. Then, Pods from separate projects can communicate
with each other, assuming the suitable NetworkPolicy is in place.

Depending on the level of isolation that is required, you must determine the suitable choice
when deciding between ovs-multitenant and ovs-networkpolicy.

OpenShift storage

Container storage is ephemeral by design. Initially, containers were designed for immutable
and stateless workloads. Later, the advantages of containerizing stateful applications became
apparent. With that realization came the need to support persistent storage.

A similar paradigm occurred with Kubernetes. Initially, it was designed for stateless
applications, but it was rapidly extended to support stateful workloads. Supporting these new
types of workloads drove the need to support multiple storage options. The storage options
for Kubernetes and OpenShift environments are grouped under two classifications:
ephemeral storage and persistent storage.

Chapter 5. Red Hat OpenShift installation planning and considerations 95

96

Ephemeral storage

Container images are stored locally on the nodes running Red Hat OpenShift Container
Platform pods.

When Docker run time is used, the /var/1ib/docker mount point is used by active containers
and pods. This local storage is where the node maintains a copy of container images that are
pulled from a container registry. This mount point is managed by docker-storage and it uses
the following naming format: /var/1ib/docker/overlay2/<layer-id> and
/var/1ib/docker/containers/<container-id>.

Persistent storage

Persistent Volume Claims (PVC) are used to store the application data. These claims can be
added to the environment manually or provisioned dynamically by using a StorageClass
object.

Storage classes

The StorageClass resource object describes and classifies different types of storage that can
be requested. It also provides a means for passing parameters to the backend for dynamically
provisioned storage on demand.

StorageClass objects can also serve as a management mechanism for controlling different
levels of storage and access to the storage. Cluster Administrators (cluster-admin) or Storage
Administrators (storage-admin) define and create the StorageClass objects that users can
use without needing any intimate knowledge about the underlying storage volume sources.
Therefore, the naming of the storage class that is defined in the StorageClass object must be
useful in understanding the type of storage it maps, whether that is storage from PowerVC
Cinder or from other storage provider.

Persistent Volumes

PersistentVolumes (PV) objects provide pods with non-ephemeral storage by configuring and
encapsulating underlying storage sources. A PersistentVolumeClaim (PVC) abstracts an
underlying PV to provide provider-independent storage to OpenShift resources. When
successfully fulfilled by the system, a PVC mounts the persistent storage to a specific
directory (mountPath) within one or more pods. From the container perspective, the
mountPath is connected to the underlying storage mount points by a regular bind mount.

FlexVolumes

FlexVolume is known as an out-of-tree plug-in interface because it is developed outside the
main Kubernetes source code. The FlexVolume interface enables users to write their own
drivers. These drivers can be written in any programming or scripting language.

When an application that is running on OpenShift needs a persistent volume, it submits a
persistent volume claim to the PowerVC FlexVolume driver. The PowerVC FlexVolume call is
translated into a Cinder API call to create a volume. When the volume is ready, it is presented
back to OpenShift and attached to the requesting pod.

The persistent volume claim needs to include only the volume size and access mode. The
backend implementation information about how and where the volume is created are handled
by PowerVC. The OpenShift API abstracts them from the user that is making the resource
claim.

Note: For more information about the PowerVC FlexVolume, see this web page.

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

https://github.com/IBM/power-openstack-k8s-volume-driver

Registry

OpenShift can build container images from source code, deploy them, and manage their
lifecycle. To enable this process, OpenShift provides an internal, integrated registry that can
be deployed in the OpenShift environment to manage images.

The registry stores images and metadata. For production environments, persistent storage
must be used for the registry; otherwise, any images that were built or pushed into the registry
disappear if the pod restarts.

Aggregated logging

One of the Red Hat OpenShift Container Platform optional components is named Red Hat
OpenShift Container Platform aggregated logging. This component collects and aggregates
logs from the pods that are running in the Red Hat OpenShift Container Platform cluster and
/var/log/messages on nodes. This configuration enables Red Hat OpenShift Container
Platform users to view the logs of projects that they can view by using a web interface.

Red Hat OpenShift Container Platform aggregated logging component is a modified version
of the ELK stack, which is composed of a few pods that are running on the Red Hat OpenShift
Container Platform environment:

» Elasticsearch: An object store where all logs are stored.

» Kibana: A web Ul for Elasticsearch.

» Curator: Elasticsearch maintenance operations that are performed automatically on a
per-project basis.

» Fluentd: Gathers logs from nodes and containers and feeds them to Elasticsearch.

Consider the following basic concepts for aggregated logging:

» Cluster: A set of Elasticsearch nodes that distribute the workload.

» Node: A container that is running an instance of Elasticsearch, which is part of the cluster.
» Index: Collection of documents (container logs).

» Shards and Replicas: Indexes can be divided into sets of data that contain the primary
copy of the documents that are stored (primary shards) or backups of that primary copies
(replica shards). Sharding allows the application to horizontally scale the information and
distributed/paralellized operations. Replication instead provides HA and also better search
throughput because searches are also run on replicas.

Note: Using NFS storage as a volume or a persistent volume (or by way of an NAS such
as Gluster) is not supported for Elasticsearch storage because Lucene relies on file
system behavior that NFS does not supply. Data corruption and other problems can occur.

Red Hat OpenShift Container Platform can gather metrics from kubelet and store the values
in Heapster. Red Hat OpenShift Container Platform Metrics provide the ability to view CPU,
memory, and network-based metrics and display the values in the user interface. These
metrics can allow for the horizontal autoscaling of pods based on parameters that are
provided by a Red Hat OpenShift Container Platform user. It is important to understand
capacity planning when metrics are deployed into an Red Hat OpenShift Container Platform
environment.

Red Hat OpenShift Container Platform metrics is composed by the following pods that are
running on the Red Hat OpenShift Container Platform environment:

» Heapster: Heapster scrapes the metrics for CPU, memory, and network usage on every
Pod. Then, it exports them into Hawkular Metrics.

Chapter 5. Red Hat OpenShift installation planning and considerations 97

» Hawkular Metrics: A metrics engine that stores the data persistently in a Cassandra
database.

» Cassandra: Database where the metrics data is stored.

Red Hat OpenShift Container Platform metrics components can be customized for longer
data persistence, pods limits, replicas of individual components, custom certificates, and so
on.

As a best practice, persistent storage must be used to allow for metric data to be preserved
when metrics are deployed. Node selectors must be used to specify where the metrics
components must run.

5.3.3 Reference architecture

This section describes a reference architecture for running OpenShift Container Platform 3.11
on PowerVC. In this reference architecture the OpenShift Container Platform is installed on
virtual machines that are provisioned by PowerVC to the IBM Power Systems, as shown in
Figure 5-11. The architecture is highly available and suitable for production.

This document describes the reference architecture as it was deployed and tested in a lab
environment.

Note: At the time of this writing, a cluster must be x86 or POWER, not mixed.

Ansible

PowerVC StoragoCInss Provisioner
PowerVC FlexVolume

. Master - Infra Master - Infra App
Master - Infra App
= = 6 B
Deploynjent Host

n PmNM Hypervisor n PowerVM Hypervisor
[u vIO1] [u vio2 J [U vio1] [u vioz

Host Group (Availability Zone) 1

Terraform

Storage

PowerVC

b I

—]
-—

(@

Figure 5-11 OpenShift Container Platform on PowerVC

98 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

The relationship between PowerVC and OpenShift is complementary. Consider the following

points:

» PowerVC exposes resources that OpenShift uses.

» OpenShift runs its containerized applications on the infrastructure that is provisioned by

PowerVC.

Table 5-7 lists the minimum resources that are required for OpenShift Container Platform 3.11
virtual machines. eCPU refers to the number of processing units of entitled capacity.

Table 5-7 OpenShift nodes roles and configurations

Role Count | vCPU | eCPU Memory (GB) | rootvg (GB) dockervg (GB)
Deployment 1 2 0.4 8 64 N/A
Load Balancer | 1 2 0.4 8 64 N/A
Master-Infra 3 8 1.6 32 64 128
Worker 3 4 0.8 16 64 128

The architecture consists of the following components:

» PowerVC: Provides Infrastructure as a Service and manages:
— IBM Power Systems (PowerVM):

* 2 x Virtual I/O Servers: 2 cores that are configured in dedicated donated mode and
16 GB memory

e 2 x Ethernet cards

¢ 2 x Fibre Channel cards for each VIO Server

— Dual SAN Fabrics Brocade or Cisco

— Storage backends

» Deployment host: RHEL 7.6 for POWERS8 and RHEL-ALT 7.6 for POWER9 minimum
installation. Responsible for deploying one or more OpenShift Container Platform

environments:

— Terraform for deploying PowerVC infrastructure (network, storage, virtual machines)
— OpenShift-Ansible for deploying OpenShift Container Platform

» Load balancer: RHEL 7.6 for POWERS8 and RHEL-ALT 7.6 for POWER9 minimum
installation. HAproxy offers a single entry point for the many Red Hat OpenShift Container
Platform components.

Note: The HAProxy Load Balancer is intended to demonstrate the API server's HA
mode and is not recommended for production environments. If you are deploying to a

cloud provider, Red Hat recommends deploying a cloud-native TCP-based Load
Balancer or take other steps to provide a highly available Load Balancer.

Master-Infrastructure: RHEL 7.6 for POWERS8 and RHEL-ALT 7.6 for POWER9 minimum
installation. Responsible for running the OpenShift master and infrastructure components,
including the API server, controller manager server, etcd, registry, and routers.

Worker: RHEL 7.6 for POWERS8 and RHEL-ALT 7.6 for POWER9 minimum installation.
Responsible for running Application containers that are created by the users of the
OpenShift service.

Chapter 5. Red Hat OpenShift installation planning and considerations 99

100 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Installing Red Hat OpenShift 3.11
on IBM PowerVC

This chapter describes the Red Hat OpenShift 3.11 deployment process on PowerVC by
using Terraform.

This chapter includes the following topics:

6.1, “Deployment process overview” on page 102

6.2, “Setting up the deployment environment” on page 102

6.3, “OpenShift container platform deployment” on page 111

6.4, “IBM PowerVC FlexVolume Driver” on page 138

6.5, “Managing OpenShift Resources using CLI” on page 146

6.6, “Installing the IBM Cloud Pak for Multicloud Management” on page 154

vVvyyvyvyYYyypy

© Copyright IBM Corp. 2020. All rights reserved. 101

6.1 Deployment process overview

This section describes the Red Hat OpenShift 3.11 deployment process on PowerVC by
using Terraform. The process includes the following steps:

1. Setting up the deployment environment:

Configure DNS.

Configure PowerVC user and project.

Create the virtual machine to host deployment tools.

Prepare the deployment host and install Terraform and OpenShift-Ansible.

2. OpenShift Container Platform Deployment:

— Infrastructure Deployment by using Terraform. Terraform deploys the PowerVC
network, virtual machines, and storage. It uses the OpenStack provider (plug-in) to
build resources directly to the PowerVC APls.

— OpenShift Container Platform Installation using OpenShift-Ansible. OpenShift-Ansible
is a set of Ansible playbooks that orchestrate complex deployment tasks for installing
the OpenShift Container Platform on the physical or virtual servers.

Note: The Deployment Host can be any host or virtual machine that is running an
operating system that is supported by Terraform and OpenShift-Ansible tools. This chapter
describes how to install and configure the Deployment Host on PowerVC running Red Hat
ALT 7.6 (ppc64le) operating system.

6.2 Setting up the deployment environment

This section shows how to set up the environment.

6.2.1 Setting up the DNS

OpensShift Container Platform requires a fully functional DNS server in the environment. A set
of records must be configured in your DNS to provide name resolution for hosts and
containers running on the platform. Optionally, you can also configure a wildcard DNS record
that points to the load balancer or routers to avoid the need to update your DNS configuration
when new routes are added.

Example 6-1 shows a sample DNS Masquerade configuration.

Example 6-1 DNS Masquerade configuration

cat > /etc/dnsmasq.conf <<EQF_/etc/dnsmasq.conf
conf-dir=/etc/dnsmasq.d, .rpmnew, .rpmsave, .rpmorig

strict-order

domain-needed
local=/domain.example.com/
bind-dynamic

log-queries

resolv-file=/etc/resolv.dnsmasq

L L OCP-aT0-===== == o m e ###
address=/bsocp01.domain.example.com/192.168.11.223
ptr-record=223.97.108.9.in-addr.arpa,bsocp0l.domain.example.com

102 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

address=/apps.bs.ibm.com/192.168.11.223

Deployment Node

address=/dpTnode01.domain.example.com/192.168.11.220
ptr-record=220.97.108.9.in-addr.arpa,dpInode0l.domain.example.
Master-Infra Nodes
address=/mstnode0l.domain.example.com/192.168.11.202
ptr-record=202.98.108.9.in-addr.arpa,mstnode01.domain.example.
address=/mstnode02.domain.example.com/192.168.11.203
ptr-record=203.98.108.9.in-addr.arpa,mstnode02.domain.example.
address=/mstnode03.domain.example.com/192.168.11.204
ptr-record=204.98.108.9.1in-addr.arpa,mstnode03.domain.example.

Worker Nodes

address=/wrknode01.domain.example.com/192.168.11.208
ptr-record=208.98.108.9.in-addr.arpa,wrknode0l.domain.example.
address=/wrknode02.domain.example.com/192.168.11.209
ptr-record=209.98.108.9.in-addr.arpa,wrknode02.domain.example.
address=/wrknode03.domain.example.com/192.168.11.210
ptr-record=210.98.108.9.in-addr.arpa,wrknode03.domain.example.
Load Balancer Node
address=/1bsnode0l.domain.example.com/192.168.11.212
ptr-record=212.98.108.9.in-addr.arpa, 1bsnode0l.domain.example.

Cluster and wildcard DNS

address=/ocp.domain.example.com/192.168.11.212
address=/apps.domain.example.com/192.168.11.212

e 0CP-7N00d@S===== === m o m e

EOF_/etc/dnsmasq.conf
###Configure firewallD to allow DNS####

firewall-cmd --permanent --add-service=rmc
firewall-cmd --reload
###Restart DNS Masqurade service ######
systemctl restart dnsmasq

com

com

com

com

com

com

com

com

6.2.2 PowerVC configuration

The next steps show how to configure a new user and a project (tenant) in PowerVC to
separate OpenShift resources for other resources. This is a logical isolation, and is not

required for installation; therefore, you can use any user or project. For the configuration, you

can use any PowerVC interface, although this scenario uses only the CLI interface.

Complete the following steps:

1. Set the access variables:

source /opt/ibm/powervc/powervcrc

export 0S_USERNAME=root

export 0S_PASSWORD=<SECRET>

export 0S_PROJECT _NAME=<Project Name> #Default is ibm-default

2. Create a project:

openstack project create --description "OpenShift Container Platform" ocp-project
openstack project create --description "OpenShift Container Platform" ocp-project

| description | OpenShift Container Platform |

| domain_id

| default

Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC

103

enabled	True
id	385ab82655074660b07bb0757e116€39
is_domain	False
name	ocp-project
parent_id	default
tags	[
Fomm e e - +

3. Create a user and assign admin role for the ocp-project:

groupadd -g 3030 ocpadmin

useradd -g ocpadmin -u 3030 -d /home/ocpadmin -c "OpenShift Container Platform
Admin" ocpadmin

echo "ocpadmin:<password>" | chpasswd

usermod -a -G powervc-filter ocpadmin

openstack role add --project ocp-project --user ocpadmin admin

6.2.3 Creating the virtual machine to host deployment tools

Complete the following steps to create a virtual machine (LPAR) by using PowerVC CLI:
1. Set PowerVC access variables using the new user and project:

source /opt/ibm/powervc/powervcrc
export 0S_PROJECT_NAME=ocp-project
export 0S_USERNAME=ocpadmin

export 0S_PASSWORD=<password>
openstack project Tist

Fem e = Fommrm e +
| 1D | Name |
Fem e = Fommrm e +
| 385ab82655074660b07bb0757e116e39 | ocp-project |
Fem e = Fommrm e +

2. List the flavors:

openstack flavor Tlist

et it e P P Fommmmee e Fommmee Fommm e R ittt et R ittt +

| 10 | Name | RAM | Disk | Ephemeral | VCPUs | Is Public |

R ittt Fommm e Fommmem e Fomm e R ataate Fommm e Fommmm e +

| 16f4c456-debe-4b7f-a59e-d024667fb74b | medium | 16384 | 0| 0| 4 | True |

| 3f2f851b-1ae9-4604-bde9-f81984a924fa | xxlarge | 131072 | 0 | 0| 32| True |

| 43032930-4dfb-417e-9501-80b5408076fc | large | 32768 | 0 | 0| 8 | True |

| 962979ba-2ee7-464f-a0ea-856248765758 | tiny | 4096 | 0 | 0 | 1| True |

| d7409716-49e2-426d-ach1-9de141b8d8ea | small | 8192 | 0 | 0 | 2 | True |

| €93908f5-b6f9-4bb9-bbff-9136c7a80211 | xlarge | 65536 | 0 | 0] 16| True |
Bt ettt R e Fommme e Fommm e R ittt Fommmmem ittt +

3. List the images:

openstack image list

ey e Fommmee - +
| 1D | Name | Status |
ey e Fommmee - +

| 09ba0030-b6c3-4631-b9f9-19eb3333289¢c | xiv_p8 image rhel76 | active |
| 77ad197b-0ade-4792-a3c4-eab34ffa0fd3 | xiv_p9 image rhel76 | active |
F e e - Fom e Fommm———— +

104 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

4. List the networks:

openstack network 1ist

R ittt oo B e +
| 10 | Name | Subnets |
F o e R ettt T e +
| 7e2fe367-ade6-424c-967e-893930c5b80c | GDL-VLANL | 1falfb36-1bec-450c-a94a-3ea3cdb56975 |
bt e e P e bttt R ittt tatated +

5. Create the new server (VM):

openstack server create \

openstack server create \

--flavor $(openstack flavor 1ist | awk '/ small / {print $2}') \

--image $(openstack image list | awk '/ xiv_p9_image rhel76 / {print $2}') \

--nic net-id="$(openstack network list|awk '/ VLANL / {print $2}'),v4-fixed-ip=x.x.x.x"\
--wait dplnode-01

6. List servers (VMs):

openstack server list

e m S S b mmmmm oo tmmmmm e S +
| 1D | Name | Status | Networks | Image | Flavor
S Fommmmmmmeee R o e e +
| 2f5b8ed8-53e5-406F-93ed- cefddaa0002d| dplnode-01 | ACTIVE | GDL-VLAN1=192.168.11. 220 | xiv_p9_image_ rhe176 |sma1l
R S P, Fommmmmem e SR SR

6.2.4 Preparing the deployment host

For the configuration, you connect by way of SSH as root on the deployment host VM and
complete the following steps:

1. Configure the Red Hat Subscription Manager (RHSM) registration:
a. Register the host to RHSM:

subscription-manager register --username=<username> --password=<password>
Registering to: subscription.rhsm.redhat.com:443/subscription

The system has been registered with ID: e2l4ca0l-fbed-43a0-aed5-d46150a5f912
The registered system name is: dplnodeOl.domain.example.com

b. Identify the available OpenShift subscriptions:

Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC 105

subscription-manager refresh
A1T1 Tlocal data refreshed

subscription-manager list
Subscription Name: Red Hat

NFR, Self-Supported

--available --matches '*OpenShift*'
OpenShift Container Platform for Power, LE Business Partner

Enterprise Linux for Power, little endian - Extended Update
Enterprise Linux Fast Datapath Beta for Power, little

Enterprise Linux for Power, Tittle endian

Ansible Engine

OpenShift Enterprise Application Node

Enterprise Linux for Power 9

Software Collections (for RHEL Server for IBM Power LE)
OpenShift Container Platform for Power

Software Collections Beta (for RHEL Server for IBM Power

RHEL for SAP HANA for Power, little endian - Extended Update

Red Hat Beta
Red Hat OpenShift Container Platform Client Tools for Power
Red Hat Enterprise Linux Fast Datapath (for RHEL Server for IBM

Provides: Red Hat
Support
Red Hat
endian
Red Hat
Red Hat
Red Hat
Red Hat
Red Hat
Red Hat
Red Hat
LE)
Support
Power LE)

RHEL for SAP for Power, Tittle endian - Extended Update Support
Red Hat Enterprise Linux for Power, little endian Beta

Red Hat Container Native Virtualization

Red Hat CodeReady Linux Builder for Power, Tittle endian - Extended

Update Support

SKU: 111111111
Contract: 111111111
Pool ID: <POOL_ID>
Provides Management: No
Available: Unlimited
Suggested: 1

Service Level: Standard
Service Type: L1-L3
Subscription Type: Stackable
Starts: 05/31/2019
Ends: 05/31/2020
System Type: Virtual

c. Assign the OpenShift subscription:

subscription-manager attach --pool=<POOL_ID>
Successfully attached a subscription for: Red Hat OpenShift Container Platform for
Power, LE Business Partner NFR, Self-Supported

d. Enable only the repositories that are required by OpenShift Container Platform 3.11.
For IBM POWERS9, run the commands that are shown in Example 6-2. For IBM
POWERS, run the commands that are shown in Example 6-3 on page 107.

Example 6-2 OpenShift repositories for POWER9 servers

subscription-manager repos --disable="*"

subscription-manager repos \
--enable="rhel-7-for-power-9-rpms" \
--enable="rhel-7-for-power-9-extras-rpms" \

106 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

--enable="rhel-7-for-power-9-optional-rpms" \
--enable="rhel-7-server-ansible-2.6-for-power-9-rpms" \
--enable="rhel-7-server-for-power-9-rhscl-rpms" \
--enable="rhel-7-for-power-9-ose-3.11-rpms"

Example 6-3 OpenShift repositories for POWERS8 servers

subscription-manager repos --disable="*"

subscription-manager repos \
--enable="rhel-7-for-power-le-rpms" \
--enable="rhel-7-for-power-le-extras-rpms" \
--enable="rhel-7-for-power-le-optional-rpms" \
--enable="rhel-7-server-ansible-2.6-for-power-le-rpms" \
--enable="rhel-7-server-for-power-le-rhscl-rpms" \
--enable="rhel-7-for-power-le-ose-3.11-rpms"

2. Install OpenShift-Ansible:

yum clean all

yum -y update --security --exclude=cloud-init*

yum -y install atomic-openshift-clients openshift-ansible

cp /usr/share/ansible/openshift-ansible/ansible.cfg /etc/ansible/ansible.cfg

3. Install Terraform.

Important: At the time this writing, Terraform is not available to download for the ppc64le
platform. This section compiles it from the source code. You can check its availability at this
web page.

4. Complete the following next steps to compile Terraform and the plug-ins needed for
PowerVC:
a. Install git, tftp, gcc, zip:

yum install -y git gcc tftp zip

Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC 107

https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html

b. Install GO from source:

Step 1. Grab yourself a binary release from here: https://golang.org/dl1/
wget https://dl1.google.com/go/gol.12.9.11inux-ppc64le.tar.gz

Step 2. Install

tar -C /usr/local -xzf gol.12.9.linux-ppc64le.tar.gz

Step 3. Configure Environment

mkdir ~/.go

vi ~/.bashrc

The go binary, so we can actually run it

export PATH=$PATH:/usr/local/go/bin;

This is where all your go packages live
GOPATH=/root/.go;

export GOPATH;

Add GOPATH/bin so compiled go libs appear on your PATH
export PATH=$PATH:$GOPATH/bin;

source ~/.bashrc

c. Compile Terraform for the ppc64le platform:

108 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Clone the terraform repository if needed

rm -rf /root/.go/*

cd ~

git clone https://github.com/hashicorp/terraform.git

Cloning into 'terraform'...

remote: Enumerating objects: 78, done.

remote: Counting objects: 100% (78/78), done.

remote: Compressing objects: 100% (48/48), done.

remote: Total 208686 (delta 42), reused 48 (delta 28), pack-reused 208608
Receiving objects: 100% (208686/208686), 162.04 MiB | 7.23 MiB/s, done.
Resolving deltas: 100% (126413/126413), done.

cd terraform

git checkout v0.12.9

Note: checking out 'v0.12.9'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

git checkout -b new_branch_name

HEAD is now at abecOac... v0.12.9

XC_0S=Tinux XC_ARCH=ppc641e make bin

==> Checking that code complies with gofmt requirements...
GO111MODULE=0ff go get -u golang.org/x/tools/cmd/stringer
GO111MODULE=0ff go get -u golang.org/x/tools/cmd/cover

GO111MODULE=0ff go get -u github.com/golang/mock/mockgen
GOFLAGS=-mod=vendor go generate ./...

2019/10/24 17:28:18 Generated command/internal_plugin_list.go

go: downloading github.com/golang/mock v1.3.1

go: extracting github.com/golang/mock v1.3.1

go fmt doesn't support -mod=vendor but it still wants to populate the
module cache with everything in go.mod even though formatting requires
no dependencies, and so we're disabling modules mode for this right
now until the "go fmt" behavior is rationalized to either support the
-mod= argument or _not_try to install things.

GO111MODULE=0ff go fmt command/internal plugin list.go > /dev/null

==> Removing old directory...

which: no gox in
(/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/root/bin:/usr/local/go/bin:/ro
ot/.go/bin)

==> Installing gox...

go: finding github.com/mitchellh/gox v1.0.1

H e R FH

Qutput truncated
adding: terraform (deflated 70%)
==> Results:

total 46M
-rwxr-xr-x. 1 root root 46M Oct 24 17:31 terraform

cp /root/.go/bin/terraform /usr/local/bin/

terraform -version
Terraform v0.12.9

Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC

109

d. Compile OpenStack plug-in for the ppc64le platform:

mkdir -p $GOPATH/src/github.com/terraform-providers; cd
$GOPATH/src/github.com/terraform-providers

git clone https://github.com/terraform-providers/terraform-provider-openstack
Cloning into 'terraform-provider-openstack'...

remote: Enumerating objects: 189, done.

remote: Counting objects: 100% (189/189), done.

remote: Compressing objects: 100% (163/163), done.

remote: Total 17434 (delta 59), reused 101 (delta 21), pack-reused 17245

Receiving objects: 100% (17434/17434), 11.96 MiB | 1.54 MiB/s, done.

Resolving deltas: 100% (10138/10138), done.

cd $GOPATH/src/github.com/terraform-providers/terraform-provider-openstack
git checkout v1.22.0

Note: checking out 'v1.22.0'.

Qutput truncated

HEAD is now at 7dcd493... v1.22.0

XC_0S=T1inux XC_ARCH=ppc64le make build

==> Checking that code complies with gofmt requirements...
go install

e. Compile Null plug-in for the ppc64le platform:

mkdir -p $GOPATH/src/github.com/terraform-providers ; cd
$GOPATH/src/github.com/terraform-providers/

git clone https://github.com/terraform-providers/terraform-provider-null.git
Cloning into 'terraform-provider-null'...

Qutput truncated

Resolving deltas: 100% (2057/2057), done.

cd $GOPATH/src/github.com/terraform-providers/terraform-provider-null
git checkout v2.1.2

Note: checking out 'v2.1.2'.

Output truncated

HEAD is now at 8d3d85a... v2.1.2

XC_0S=Tinux XC_ARCH=ppc64le make build

==> Checking that code complies with gofmt requirements...
go install

110 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

6.3 OpenShift container platform deployment

This section provides an OpenShift container deployment platform.

6.3.1 Deployment scenarios

This section describes the following most common scenarios that can be used to start
deploying OpenShift clusters:

» Single node deployment (all-in-one) is not an officially supported OpenShift deployment.
The all-in-one (AIO) configuration is considered a testing or development environment.
The Master, Infrastructure and Compute Roles are deployed to a single node (see
Figure 6-1).

;- *}i- ' ~ 0

- —

1 | ” »
Automation Cluster Application
CI/CD Tools Administrators Developers Owners

0 Web Console :8443 |- ---~ Router :80 & :44304_

+ https://focp.example.com:8443

Application Users
http:/<myapp>.ocp.example.com
https:/<myapp>.ocp.example.com:443

A}

Figure 6-1 OpenShift Container Platform 3.11 all-in-one

Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC 111

» Seven nodes deployment is highly available and suitable for production. The Master and
Infrastructure Roles are deployed to three Nodes, the Computer Role is deployed to three
Worker Nodes, and the Load Balancer is deployed to a single Node (see Figure 6-2).

{;’ ' ¥ 0 http:/<myapp=>.ocp.example.com
\,\? \ @ https:/<myapp>.ocp.example.com:443
-

[] » r
Automatlon Cluster Aplication
CI/CD Tools Administrators Developers Owners

VZ

Application
Users

Master - Infra Master - Infra Master - Infra
I [[I]]

Registry

- e e =

- e o wm wm = w
~

o Master Nodes X

Figure 6-2 OpenShift Container Platform 3.11 6xNodes + Load Balancer

» Three nodes deployment is considered a supported testing and development
environment. The Master and Infrastructure Roles are deployed to a single Node, and the
Computer Role is deployed to two Worker Nodes (see Figure 6-3).

21 ' ™~ 0 http:/<myapp>.ocp.example.com
_\:‘ \ @ . https:/<myapp>.ocp.example.com:443
-
J -~ LD

1 »
Automatlon Cluster Aplication
CI/CD Tools Administrators Developers Owners

Ve

.- - Load Balancer [LB] | -=

Application
Users

,

Master - Infra

]

&J

o Master Node e’

-—m o o =
- e o mm =

Figure 6-3 OpenShift Container Platform 3xNodes

112 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Important: At the time this publication was written, IBM Cloud Pak for Multicloud
Management does not support multiple master nodes. Therefore, the 3xNodes scenario is
used for IBM Cloud Pak for Multicloud Management.

6.3.2 Deploying OpenShift Container Platform on PowerVC

Deployment of the OpenShift Container Platform on PowerVC is a two steps process, as
shown in Figure 6-4:

1. Provision the infrastructure on PowerVC. Use Terraform to provision the network,
compute, and storage on PowerVC.

2. Install OpenShift Container Platform. Use OpenShift-Ansible playbook to install OpenShift
Container Platform (OCP) version 3.11.

e RED HAT' N
| OPENSHIFT '

Persistent
Volumes
Jrp——

- e

o o wm owm owm

Ansible

PowerVC StorageClass Provisioner
PowerVC FlexVolume

s

Deploynfent Host

Storage

Terraform \ Availability Zone X /
Power

Figure 6-4 Deployment process diagram

The next steps use the following git repository, which provides the Terraform templates and
configuration examples:

https://bit.1y/2R6nvJP

Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC 113

https://bit.ly/2R6nvJP

Complete the following steps:
1. Clone the git repository:

git clone https://github.com/ppc64le/devops-automation.git
Cloning into 'devops-automation'...

remote: Enumerating objects: 71, done.

remote: Counting objects: 100% (71/71), done.

remote: Total 71 (delta 34), reused 31 (delta 17), pack-reused 0
Unpacking objects: 100% (71/71), done.

2. Create a separate folder for each OpenShift Cluster:

###A11-in-One Cluster

cp devops-automation/terraform/powervc-openshift ocp-aio
###7Nodes Cluster

cp devops-automation/terraform/powervc-openshift ocp-7nodes

3. Copy the Terraform plug-ins:

cd <PATH> #ocp-aio or ocp-7nodes

mkdir -p .terraform/plugins/1inux_ppc64le/

cp $GOPATH/bin/terraform-provider-openstack
.terraform/plugins/1inux_ppc64le/terraform-provider-openstack v1.22.0 x4
cp $GOPATH/bin/terraform-provider-null
.terraform/plugins/1inux_ppc64le/terraform-provider-null v2.1.2 x4

6.3.3 Provisioning the infrastructure on PowerVC

114

Complete the following steps to deploy PowerVC Infrastructure:

Important: Terraform is one option for infrastructure deployment. Many other options are
not covered in this book.

1. Create terrafrom.tfvars file. You can use the terraform aio.tfvars.example for
All-In-One deployment (see Example 6-4), terraform_7nodes.tfvars.example for seven
nodes deployment (see Example 6-5 on page 116), or terraform 3nodes.tfvars.example
for three nodes deployment (see Example 6-6 on page 117). For resources configuration,
it is recommended to use the values from Table 5-7 on page 99.

Example 6-4 terrafomr.tfvars for All-In-One (AlO) deployment

cat terraform.tfvars
#PowerVC (OpenStack)

fomcmcmcmccccccmdccccccccccccanaaa

powervc_user = "ocpadmin" # PowerVC user
powervc_password = "<password>" # PowerVC password
powervc_server = "192.168.11.31" # PowerVC IP or hostname
powervc_project = "ocp-project"” # PowerVC project(tenant) name

#General configuration:

oo
ssh_user = "root" # Image username
ssh_user_password = "password" # Image password

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

user_public_key = "ssh-rsa

AAAAB3NzaClyc2EAAAABIWAAAQEAQ9+YMqJBVHX3HC7qy6HSxs3JjTGKbEgK+CExpf811luxsq+uJYbfXEKH19/NCf/U
vpkozJBDDXDIxJ4uqOEBWDGAmMUuu5U9a41Xgh6qaPYyXwVTygL/IcBOpoSGEQQaJzhB05g71uZrya++sG1xHUjSQAQz
hDuKrs4Bc3gcN4184UR+BX1pVgC1s3NRNOhLrfLWS37M/kn+b/n6VMYYVpHsZ2XVydAn2nwuzktaEuWYaY/1cNd4xuu
yVu08GQ0on6t5KQ1EZBheADdSsyamulLqW9z4j6Y1wwDe4GPDc5z IW++ASDAZBOeE fbKGDLVdpFsI5YV8nLV1r/TOY/

FiFZqQ== Bogdan Savu;IBMR0045771;IBMR0ZZ014E826;J;"

dnsl =
dns_domain

"192.168.11.210"
"domain.example.com

#Network configuration

o e e e e
netl_name = "net_ocp_clusterl” #
netl_vlan_id = "1 #
netl_subnet = "192.168.11.0/21" #
netl_gateway = "192.168.11.1" #
netl_start = "192.168.11.223" #
netl_end = "192.168.11.223" #

#UM1 configuration (OCP - Master Nodes)

e e e
vml_number = "1
vml_memory = "32"

vml_cpu = "8"
vml_vcpu_ratio = "4

vml_name = "bsocp"

"192.168.11.223"
"xiv_p9_image_rhel76"

vml_first_ip =
vml_image_name =

H: I F= W I H= W I HE=

vml_remote restart = "true"
vml_storage_name = "xiv_StoragePool"
vml_dockerdiskl = "0"

#VM2 configuration (OCP - Infra Nodes)

e o .
vm2_number = "o"
vm2_memory = "16"

vmZ_cpu = "4
vmZ_vcpu_ratio = "4

vm2_name = "infnode"

"192.168.11.205"
"xiv_p9_image_rhel76"

vm2_first_ip =
vm2_image_name =

S 3 I H I FH= H I I W

vm2_remote_restart = "true"
vm2_storage_name = "xiv_StoragePool"
vmZ_dockerdiskl = "68"

#VM3 configuration (OCP - Workers(App) Nodes)

e ______
vm3_number = "0"
vm3_memory = "32"

vm3_cpu = "4
vm3_vcpu_ratio = "4

vm3_name = "appnode"

"192.168.11.208"
"xiv_p9_image_rhel76"

vm3_first_ip =
vm3_image_name =

= = I H T I ¥

vm3_remote_restart = "false"
vm3_storage_name = "xiv_StoragePool"
vm3_dockerdiskl = "34"

#VM4 configuration (OCP - Load Balancer Node)

vm4_number = "0" #

Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC

DNS server 1
DNS Domain Name

Network Name

VLAN ID
Network/Mask
Gateway

First IP from Pool
Last IP from Pool

Number of VMs

Memory GB

Virtual CPU

vCPU RATIO 1:4 1 vCPU = 0.25 eCPU (cores)
Hostname prefix

Fist IP from a consecutive pool of IPs

The image name

Enable Auto Remote Restart

Storage Template

Docker disk size in GB for ephemeral storage

Number of VMs

Memory GB

Virtual CPU

vCPU RATIO 1:4 1 vCPU = 0.25 eCPU (cores)
Hostname prefix

Fist IP from a consecutive pool of IPs

The image name

Enable Auto Remote Restart

Storage Template

Docker disk size in GB for ephemeral storage

Number of VMs

Memory GB

Virtual CPU

vCPU RATIO 1:4 1 vCPU = 0.25 eCPU (cores)
Hostname prefix

Fist IP from a consecutive pool of IPs

The image name

Disable Auto Remote Restart

Storage Template

Docker disk size in GB for ephemeral storage

Number of VMs

115

vm4_memory = "g" # Memory GB

vmé4_cpu = " # Virtual CPU

vmd_vcpu_ratio = "4 # vCPU RATIO 1:4 1 vCPU = 0.25 eCPU (cores)
vm4_name = "1bsnode" # Hostname prefix

vm4_first_ip = "192.168.11.212" # Fist IP from a consecutive pool of IPs
vm4_image_name = "xiv_p9_image_rhel76" # The image name

vm4_remote_restart = "true" # Enable Auto Remote Restart

Example 6-5 terrafomr.tfvars for seven nodes deployment

cat terraform.tfvars
#PowerVC (OpenStack)

PowerVC user

PowerVC password

PowerVC IP or hostname
PowerVC project(tenant) name

powervc_user =
powervc_password =
powervc_server =
powervc_project =

"ocpadmin"
"<password>"
"192.168.11.31"
"ocp-project"

H= e I

#General configuration:

"root" #
ssh_user_password = "<password>" #
user_public_key = "ssh-rsa

AAAAB3NzaClyc2EAAAABIWAAAQEAQ9+YMqJBVHX3HC7qy6HSxs3JjTGKbEgK+CEXpf81luxsq+udYbfXEKH19/NCF/U
vpkozJBDDXDIxJ4uqOEBWDGAmMUuu5U9a41Xgh6qaPYyXwVTygL/IcBOpoSGEQQaJzhB05g7 1uZrya++sG1xHUjSQAQz
hDuKrs4Bc3gcN4184UR+BX1pVgC1s3NRNIhLrfLWS37M/kn+b/n6VMYYVpHsZ2XVydAn2nwuzktaEuWYaY/1cNd4xuu
yVu08GQOon6t5KQ1EZBheADdSsyamulLgW9z4j6Y lwwDed4GPDc5z IW++ASDAZBOeEfbKGDLVdpFsI5YV8nLYV1r/TOY/

ssh_user = Image username

Image password

FiFZqQ== Bogdan Savu;IBMR0045771;IBMROZZ014E826;J;"

dnsl
dns_domain

= "192.168.11.210"
"domain.example.com"

#Network configuration

e
netl_name = "net_ocp_cluster2"
netl_vlan_id ="

netl subnet = "192.168.11.0/21"
netl _gateway = "192.168.11.1"

"192.168.11.202"
"192.168.11.212"

netl start =
netl_end =

#VM1 configuration (OCP - Master Nodes)

o o oo
vml_number = "3"
vml_memory = "64"

vml_cpu = "8"
vml_vcpu_ratio = "2"

vml_name = "mstnode"

"192.168.11.202"
"xiv_p9_image_rhel76"

vml_first_ip =
vml_image_name =

vml_remote_restart = "true"
vml_storage_name = "xiv_StoragePool"
vml_dockerdiskl = "512"

#VM2 configuration (OCP - Infra Nodes)

o ______
vm2_number = "o"
vm2_memory = "16"

vmZ_cpu = "2"
vmZ_vcpu_ratio = "4

vm2_name = "infnode"

DNS server 1
DNS Domain Name

Network Name

VLAN ID
Network/Mask
Gateway

First IP from Pool
Last IP from Pool

= I FE= H I H

Number of VMs

Memory GB

Virtual CPU

vCPU RATIO 1:2 1 vCPU = 0.5 eCPU (cores)
Hostname prefix

Fist IP from a consecutive pool of IPs

The image name

Enable Auto Remote Restart

Storage Template

Docker disk size in GB for ephemeral storage

H= = ¥ I HH I HE=

Number of VMs

Memory GB

Virtual CPU

vCPU RATIO 1:4 1 vCPU = 0.25 eCPU (cores)
Hostname prefix

H= FH I H I

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

vm2_first_ip =
vmZ_image_name =
vm2_remote_restart =
vm2_storage name =
vmZ_dockerdiskl =

"192.168.11.205"
"xiv_p9_image_rhel76"
Iltruell
"xiv_StoragePool"
II64II

#
#
#
#
#

#VM3 configuration (OCP - Workers(App) Nodes)

vm3_number =
vm3_memory =
vm3_cpu =
vm3_vcpu_ratio =
vm3_name =
vm3_first_ip =
vm3_image_name =
vm3_remote_restart =
vm3_storage_name =
vm3_dockerdiskl =

II3II

II16II

II4II

II2II

"wrknode"
"192.168.11.208"
"xiv_p9_image_rhel76"
"false"
"xiv_StoragePool"
II32II

H: I F= W I H= W I HE=

#VM4 configuration (OCP - Load Balancer Node)

vm4_number =
vmd_memory =
vm4_cpu =
vm4_vcpu_ratio =
vm4_name =
vmd_first_ip =
vm4_image_name =
vmd_remote_restart =

II4II

"Tbsnode"
"192.168.11.212"
"xiv_p9_image_rhel76"
"true"

H H= H= I I H I H:

Fist IP from a consecutive pool of IPs

The image name

Enable Auto Remote Restart

Storage Template

Docker disk size in GB for ephemeral storage

Number of VMs

Memory GB

Virtual CPU

vCPU RATIO 1:4 1 vCPU = 0.5 eCPU (cores)
Hostname prefix

Fist IP from a consecutive pool of IPs

The image name

Disable Auto Remote Restart

Storage Template

Docker disk size in GB for ephemeral storage

Number of VMs

Memory GB

Virtual CPU

vCPU RATIO 1:4 1 vCPU = 0.25 eCPU (cores)
Hostname prefix

Fist IP from a consecutive pool of IPs
The image name

Enable Auto Remote Restart

Example 6-6 terraform.tfvars for three nodes deployment

#PowerVC (OpenStack)

powervc_user =
powervc_password =
powervc_server =
powervc_project =

"ocpadmin"
"<oassword>"
"192.168.11.31"
"ocp-project"

#General configuration:

ssh_user =
ssh_user_password =
user_public_key =

"root"
"<password>"
"ssh-rsa

H I H=

#
#

PowerVC user

PowerVC password

PowerVC IP or hostname
PowerVC project(tenant) name

Image username
Image password

AAAAB3NzaClyc2EAAAABIWAAAQEAQ9+YMqJBVHX3HC7qy6HSxs3JjTGKbEgK+CExpf811luxsq+uJYbfXEKH19/NCf/U
vpkozJBDDXDIxJ4uqOEBWDGAMUuu5U9a41Xgb6qaPYyXwVTyglL/IcBOpoSGEQQaJzhB05g7luZrya++sG1xHUjSQAQz
hDuKrs4Bc3gcN4184UR+BX1pVgC1s3NRNIhLrfLWS37M/kn+b/n6VMYYVpHsZ2XVydAn2nwuzktaEuWYaY/1cNd4xuu
yVu08GQOon6t5KQ1EZBheADdSsyamulLqW9z4j6Y1wwDe4GPDc5z IW++ASDAZBOeE fbKGDLVdpFsI5YV8nLV1r/TOY/
FiFZgQ== Bogdan Savu;IBMR0045771;IBMROZZ014E826;J;"

dnsl =
dns_domain

"192.168.11.210"
"domain.example.com"

#Network configuration

netl _name =
netl_vlan_id =
netl_subnet =
netl gateway =
netl start =

"net_ocp_cluster2"
II1II
"192.168.11.0/21"
"192.168.11.1"
"192.168.11.202"

#
#

#
#
#
#
#

DNS server 1
DNS Domain Name

Network Name

VLAN ID
Network/Mask
Gateway

First IP from Pool

Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC 117

netl_end = "192.168.11.212"

#VM1 configuration (OCP - Master Nodes)

e o _____
vml_number = "1
vml_memory = "32"

vml_cpu = "8"
vml_vcpu_ratio = "2"

vml_name = "mstnode"

"192.168.11.202"
"xiv_p9_image_rhel76"

vml _first_ip =
vml_image_name =

vml_remote_restart = "true"
vml_storage_name = "xiv_StoragePool"
vml_dockerdiskl = "256"

#VM2 configuration (OCP - Infra Nodes)

o o o
vmZ2_number = "0"
vmZ_memory = "16"

vm2_cpu = "2"
vmZ_vcpu_ratio = "4

vm2_name = "infnode"

"192.168.11.205"
"xiv_p9_image_rhel76"

vm2_first_ip =
vmZ_image_name =

vmZ_remote_restart = "true"
vm2_storage_name = "xiv_StoragePool"
vm2_dockerdiskl = "64"

#VM3 configuration

e o e
vm3_number = "2"
vm3_memory = "64"

vm3_cpu = "g"
vm3_vcpu_ratio = "2

vm3_name = "wrknode"

"192.168.11.208"
"xiv_p9_image_rhel76"

vm3_first_ip =
vm3_image_name =

vm3_remote_restart = "false"
vm3_storage_name = "xiv_StoragePool"
vm3_dockerdiskl = "128"

#VM4 configuration

e
vm4_number = "o"
vm4_memory = "g"

vm4_cpu = "2t
vm4_vcpu_ratio = 4"

vm4_name = "Tbsnode"

"192.168.11.212"
"xiv_p9_image_rhel76"
lltruell

vm4_first_ip =
vm4_image_name =
vmd_remote_restart =

H= T = ¥ I H T I I

H= e IR = I I e I I

(OCP - Workers(App) Nodes)

H F H I W I FH= H I

(OCP - Load Balancer Node)

H= e I H R I W W

Last IP from Pool

Number of VMs

Memory GB

Virtual CPU

vCPU RATIO 1:2 1 vCPU = 0.5 eCPU (cores)
Hostname prefix

Fist IP from a consecutive pool of IPs

The image name

Enable Auto Remote Restart

Storage Template

Docker disk size in GB for ephemeral storage

Number of VMs

Memory GB

Virtual CPU

vCPU RATIO 1:4 1 vCPU = 0.25 eCPU (cores)
Hostname prefix

Fist IP from a consecutive pool of IPs

The image name

Enable Auto Remote Restart

Storage Template

Docker disk size in GB for ephemeral storage

Number of VMs

Memory GB

Virtual CPU

vCPU RATIO 1:2 1 vCPU = 0.5 eCPU (cores)
Hostname prefix

Fist IP from a consecutive pool of IPs

The image name

Disable Auto Remote Restart

Storage Template

Docker disk size in GB for ephemeral storage

Number of VMs

Memory GB

Virtual CPU

vCPU RATIO 1:4 1 vCPU = 0.25 eCPU (cores)
Hostname prefix

Fist IP from a consecutive pool of IPs
The image name

Enable Auto Remote Restart

Attention: To use an existing network, you must remove the network. tf file before

applying the configuration.

Master-Infrastructure and Worker Nodes have a disk DOCKER_DISK_1 for docker-vg.

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

2. Initialize the Terraform working directory:

cd <PATH> #ocp-aio /ocp-7nodes ocp-3nodes

terraform init

Initializing the backend...

Initializing provider plugins...

The following providers do not have any version constraints in configuration,
so the Tatest version was installed.

Output truncated

* provider.null: version = "~> 2.1"

* provider.openstack: version = "~> 1.22"

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform plan" to see
any changes that are required for your infrastructure. A1l Terraform commands
should now work.

If you ever set or change modules or backend configuration for Terraform,

rerun this command to reinitialize your working directory. If you forget, other
commands will detect it and remind you to do so if necessary.

3. Create an execution plan:

terraform plan
Refreshing Terraform state in-memory prior to plan...

Qutput truncated

Plan: 33 to add, 0 to change, 0 to destroy.

Note: You didn't specify an "-out" parameter to save this plan, so Terraform
can't guarantee that exactly these actions will be performed if
"terraform apply" is subsequently run.

4. Apply the required changes to reach the wanted state:

terraform apply
data.openstack compute_availability zones v2.AZ: Refreshing state...

Qutput truncated
Plan: 33 to add, 0 to change, 0 to destroy.
Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.
Enter a value: yes
Qutput truncated
null_resource.vmd_post_install_config[0] (remote-exec): ---start adding

user_public_key---
Apply complete! Resources: 33 added, 0 changed, 0 destroyed.

After this process is completed, the virtual machines are up and running.

Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC

119

6.3.4 Installing the OpenShift Container Platform

Complete the following steps to install OpenShift Container Platform:

1. Create the Ansible inventory file. You can use the aio.inv.example for All-In-One (AIO)
configuration (see Example 6-7), 7nodes.inv.example for seven nodes configuration (see
Example 6-8 on page 122), or 3nodes.inv.example for three nodes configuration (see
Example 6-9 on page 125). Many other configurations are possible that can be used but
are not covered in this book.

Example 6-7 Ansible all in one inventory example

L e e L e e ##
Al11-in-One(AIO):

L ##
[0SEv3:vars]

B o m e m - ##
Ansible Vars

L e T R ##
timeout=60

ansible_user={{CHANGEME_ANSIBLE_SSH_USER}}
ansible_user=root

L e R T L e P T ##
OpenShift Basic Vars
B = mmmmm m e ##

Deployment type

openshift_deployment_type=openshift-enterprise

WARNING: only disable these checks in LAB/TEST environments

openshift_disable_check="disk_availability,memory_availability"
OpenShift Version:

openshift_release=3.11

openshift_pkg_version=-3.11.154

openshift_image_tag=v3.11.154

firewalld recommended for new installations (default is iptables)
os_firewall_use_firewalld=true

enable ntp on masters to ensure proper failover
openshift_clock_enabled=true

debug_Tevel=5

L e G RE L L R E ##
OpenShift Registries Locations
e GEEE LR E ##

NOTE: Need credentials from: https://access.redhat.com/terms-based-registry/
oreg_url=registry.redhat.io/openshift3/ose-${component}:${version}
oreg_auth_user={{CHANGEME_REGISTRY_SERVICE_ACCOUNT}}
oreg_auth_password={{CHANGEME_SERVICE_KEY}}

B mmmmm ##
OpenShift Master Vars
= mmmmm ##

openshift_master_api_port=8443
openshift_master_console_port=8443

Internal cluster name

openshift _master_cluster_hostname=bsocp0l.domain.example.com

External cluster name

openshift_master_cluster_public_hostname=ocp-ext.example.com
Default wildcard domain for applications
openshift_master_default_subdomain=apps.bs.ibm.com

120 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

R e ##

Available Identity Providers

#
https://docs.openshift.com/container-platform/3.11/install_config/configuring_authenticatio
n.html

L et LT T T T ##

htpasswd Authentication

Bl mmm ##

NOTE: read initial identities in htpasswd format from /root/htpasswd.openshift
openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login': 'true',

'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider'}]
To define initial users directly in the inventory file:
Note:

https://docs.openshift.com/container-platform/3.3/admin_solutions/master_node_config.html#h

tpasswd

openshift_master_htpasswd_users={'admin':'$apr1$hYehs0Q6$DQWSMGhPdS2LzS5cDJul21", 'developer

':'$apr1$10a9K2v0$ZLPrXnQseMIwTIIYzM8Hd. '}
To use external htpassword file:
openshift _master htpasswd file=/root/htpasswd.openshift

L B ##
Docker Vars
B o m o - ##

container_runtime_docker_storage_setup_device=/dev/mapper/DOCKER_DISK 1
container_runtime_docker_storage_type=overlay?

B mm = mm o - ##
OpenShift Router and Registry Vars
R e bt ##

NOTE: Qty should NOT exceed the number of infra nodes
openshift_hosted router_replicas=1
openshift_hosted_registry_replicas=1
openshift_router_selector='node-role.kubernetes.io/infra=true’
openshift_registry selector='node-role.kubernetes.io/infra=true’

L e e L R E ##
OpenShift Network Vars

= mmmmm ##
Defaults

osm_cluster_network cidr=10.1.0.0/16
openshift_portal_net=172.30.0.0/16

Configure the multi-tenant SDN plugin (default is 'redhat/openshift-ovs-subnet')

os_sdn_network_plugin_name='redhat/openshift-ovs-multitenant'

B o mmmmm o - ##
OpenShift Cockpit
B = m = ##

Disable cockpit
osm_use_cockpit=false

L e T T L ##
Metrics Server
L et e LT ##

Enable Metrics Server - is requiered for IBM Cloud Pak
openshift_metrics_server_install=true

Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC

121

Service Catalog

openshift_enable_service_catalog=true
ansible_service_broker_install=true

template_service_broker_install=true
openshift_template_service_broker_namespaces=['openshift']
ansible_service_broker_local_registry whitelist=["'.*-apb$']
template_service_broker_selector={"node-role.kubernetes.io/infra":"true"}

[0SEv3:children]
nfs

masters

etcd

nodes

[nfs]
bsocp0l.domain.example.com

[masters]
bsocp0l.domain.example.com

[etcd]
bsocp0l.domain.example.com

[nodes]

A11-In-One with Docker

bsocp0l.domain.example.com openshift_node_group_name='node-config-all-in-one'
openshift_node_problem_detector_install=true

Example 6-8 Ansible 7nodes inventory example

B o mm o o e #
7Nodes (3xMaster-Infra, 3xWorkers(Applications) and 1 Load Balancer):

L e e ##
[0SEv3:vars]

L e T T e Tt ##
Ansible Vars

B = mm e m e e e o ##
timeout=60

ansible_user={{CHANGEME_ANSIBLE_SSH_USER}}
ansible_become=yes
ansible_user=root

= mmmmm e ##
OpenShift Basic Vars
= m o mmm e e ##

Deployment type

openshift_deployment_type=openshift-enterprise

WARNING: only disable these checks in LAB/TEST environments

openshift_disable check="disk availability,memory availability"

OpenShift Version:

openshift_release=3.11

openshift_image_tag=v3.11.154

openshift_pkg_version=-3.11.154

firewalld recommended for new installations (default is iptables)
os_firewall use_firewalld=True

122 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

enable ntp on masters to ensure proper failover
openshift_clock_enabled=True

e nE Lt L LR ##
OpenShift Registries Locations
e ##

NOTE: Need credentials from: https://access.redhat.com/terms-based-registry/
oreg_url=registry.redhat.io/openshift3/ose-${component}:${version}
oreg_auth_user={{CHANGEME_REGISTRY_SERVICE_ACCOUNT}}
oreg_auth_password={{CHANGEME_SERVICE KEY}}

B mm = mm o - ##
OpenShift Master Vars
R e ##

openshift_master_api_port=8443

openshift_master_console_port=8443

Internal cluster name
openshift_master_cluster_hostname=ocp.domain.example.com

Note: When using an external Load Balancer service or device, the FQDN
of the northbound VIP address must be specified in the inventory file
using the variable openshift_master_cluster_public_hostname
openshift_master_cluster_public_hostname=ocp.domain.example.com

Note: The OpenShift Routers at Infrastructure Nodes require a wildcard
subdomain it will use to dynamically build a URL or Route for applications
running on the platform and exposing a service outside the cluster
openshift_master_default_subdomain=apps.domain.example.com

e nE LRt L LR E ##
OpenShift Router and Registry Vars
Bt = mmmmm e e ##

NOTE: Qty should NOT exceed the number of infra nodes
openshift_hosted_router_replicas=3
openshift_hosted_router_selector='node-role.kubernetes.io/infra=true'

NOTE: PowerVC FlexVolume Driver doesn't support shared file systems
openshift_hosted_registry_replicas=1

openshift_hosted_registry selector='node-role.kubernetes.io/infra=true’

L R e e L L L L P e PP P ##
OpenShift Authentication Vars

B mm m e ##
Available Identity Providers

#

https://docs.openshift.com/container-platform/3.11/install_config/configuring_authenticatio
n.html

L e e ##
htpasswd Authentication
L Lt ##

NOTE: read initial identities in htpasswd format from /root/htpasswd.openshift
openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login': 'True',
'challenge': 'True', 'kind': 'HTPasswdPasswordIdentityProvider'}]

To define initial users directly in the inventory file:

Note:
https://docs.openshift.com/container-platform/3.3/admin_solutions/master_node_config.html#h
tpasswd
openshift_master_htpasswd_users={'admin':'$apr1$hYehs0Q6$DQWSMGhPdS2LzS5cDJul21", 'developer
":'$apr1$10a9k2v0$ZLPrXnQseMIwTIIYzM8Hd. '}

L T e ##
Docker Vars
L e e e T ##

Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC 123

container_runtime_docker_storage_setup_device=/dev/mapper/DOCKER_DISK 1
container_runtime_docker_storage_type=overlay2

et S GEE L L LR T ##
OpenShift Network Vars

i mmmmm m e e ##
Defaults

osm_cluster_network_cidr=10.128.0.0/14

openshift_portal_net=172.30.0.0/16

Configure the multi-tenant SDN plugin (default is 'redhat/openshift-ovs-subnet')
os_sdn_network_plugin_name='redhat/openshift-ovs-multitenant'

Set SDN MTU (default is 1450)

openshift_node_sdn_mtu=1400

R L L P L PP PP PP PP PP PR PP PP ##
Metrics Server
R e ittt ##

Enable Metrics Server
openshift_metrics_server_install=True

B = m = e e ##
Service Catalog
B mm = mm o - ##

default=True

openshift_enable_service_catalog=True

default=True

template_service_broker_install=True
openshift_template service broker namespaces=['openshift']
template_service_broker_selector={"node-role.kubernetes.io/infra":"true"}
default=True

ansible_service_broker_install=True
ansible_service_broker_Tlocal registry whitelist=["'.*-apb$']

S #
Prometheus Cluster Monitoring

= mmmmm e ##

#
https://docs.openshift.com/container-platform/3.11/install_config/prometheus_cluster_monito
ring.html

openshift_cluster _monitoring_operator_install=False

openshift_prometheus node_selector={"node-role.kubernetes.io/infra":"true"}

Enable persistent storage of Prometheus time-series data (default False)
openshift_cluster_monitoring_operator_prometheus_storage_enabled=True

Enable persistent storage of Alertmanager notifications (default False)
openshift_cluster_monitoring_operator_alertmanager_storage_enabled=True

Dynamic storage allocation for Prometheus services
openshift_cluster_monitoring_operator_prometheus_storage_capacity=32Gi
openshift_cluster_monitoring_operator_alertmanager_storage_capacity=4Gi

Storage class to use if persistent storage enabled

NOTE: it will use storageclass default if storage class not specified
openshift_cluster_monitoring_operator_prometheus_storage_class_name='1ibm-powervc-k8s-volume
-default'

openshift_cluster_monitoring_operator_alertmanager_storage class_name='ibm-powervc-k8s-volu
me-default’

[0SEv3:children]
masters

124 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

etcd
nodes
1b

host group for masters
[masters]
mstnode0[1:3] .domain.example.com

host group for etcd
[etcd]
mstnode0[1:3].domain.example.com

Specify load balancer host
[1b]

1bsnode0l.domain.example.com

[nodes]
mstnode0[1:3].domain.example.com openshift_node_group_name='node-config-master-infra
wrknodeO[1:3] .domain.example.com openshift_node_group_name='node-config-compute'

Example 6-9 Ansible 3nodes inventory example

B o m o o e #
3Nodes (1xMaster-Infra, 3xWorkers(Applications):

L T T T ##
[0SEv3:vars]

= m = mm m e e e e e o ##
Ansible Vars

B o m o e ##
timeout=60

ansible_user={{CHANGEME_ANSIBLE_SSH_USER}}
ansible_become=yes
ansible_user=root

B mmmmm ##
OpenShift Basic Vars
= mmmmm e e ##

Deployment type

openshift_deployment_type=openshift-enterprise

WARNING: only disable these checks in LAB/TEST environments

openshift_disable check="disk availability,memory availability"
OpenShift Version:

openshift_release=3.11

openshift_image_tag=v3.11.154

openshift_pkg_version=-3.11.154

firewalld recommended for new installations (default is iptables)
os_firewall use_firewalld=True

enable ntp on masters to ensure proper failover
openshift_clock_enabled=True

L e e LT R E ##
OpenShift Registries Locations
B mmmmm ##

NOTE: Need credentials from: https://access.redhat.com/terms-based-registry/
oreg_url=registry.redhat.io/openshift3/ose-${component}:${version}
oreg_auth_user={{CHANGEME_REGISTRY_SERVICE_ACCOUNT}}
oreg_auth_password={{CHANGEME_SERVICE_KEY}}

OpenShift Master Vars

Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC

125

openshift_master_api_port=8443

openshift_master_console_port=8443

Internal cluster name
openshift_master_cluster_hostname=ocp.domain.example.com

Note: When using an external Load Balancer service or device, the FQDN
of the northbound VIP address must be specified in the inventory file
using the variable openshift_master_cluster_public_hostname
openshift_master_cluster_public_hostname=ocp.domain.example.com

Note: The OpenShift Routers at Infrastructure Nodes require a wildcard
subdomain it will use to dynamically build a URL or Route for applications
running on the platform and exposing a service outside the cluster
openshift_master_default_subdomain=apps.domain.example.com

e et ##
OpenShift Router and Registry Vars
B mmm mm e - ##

NOTE: Qty should NOT exceed the number of infra nodes
openshift_hosted_router_replicas=1
openshift_hosted_router_selector='node-role.kubernetes.io/infra=true'

NOTE: PowerVC FlexVolume Driver doesn't support shared file systems
openshift_hosted registry replicas=1

openshift_hosted_registry selector='node-role.kubernetes.io/infra=true’

i mmmmm m ##

OpenShift Authentication Vars

L e L L L R E ##

Available Identity Providers

#
https://docs.openshift.com/container-platform/3.11/install_config/configuring_authenticatio
n.html

L e LT ##

htpasswd Authentication

Fmmmmmm e ##

NOTE: read initial identities in htpasswd format from /root/htpasswd.openshift

openshift _master_identity providers=[{'name': 'htpasswd_auth', 'login': 'True',
‘challenge': 'True', 'kind': 'HTPasswdPasswordIdentityProvider'}]

To define initial users directly in the inventory file:

Note:
https://docs.openshift.com/container-platform/3.3/admin_solutions/master_node_config.html#h
tpasswd
openshift_master_htpasswd_users={'admin':'$apri$hYehs0Q6$DQWSmGhPdS2LzS5cDJul21", ' developer
":'$apr1$10a9k2v0$ZLPrXnQseMIwTIIYzM8Hd. '}

B o m e m - ##
Docker Vars
L et e LT ##

container_runtime_docker_storage_setup_device=/dev/mapper/DOCKER_DISK 1
container_runtime_docker_storage_type=overlay2

L e e L R E ##
OpenShift Network Vars

B mmmmm ##
Defaults

osm_cluster_network cidr=10.128.0.0/14

openshift_portal net=172.30.0.0/16

SDN plugin (default is 'redhat/openshift-ovs-subnet')
os_sdn_network_plugin_name='redhat/openshift-ovs-multitenant'
Set SDN MTU (default is 1450)

openshift_node_sdn_mtu=1400

126 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Enable Metrics Server
openshift_metrics_server_install=True

R R et ##
Service Catalog
B o m s mm o - ##

default=True

openshift_enable_service_catalog=True

default=True

template_service_broker_install=True

openshift_template_service_broker namespaces=['openshift']
template_service broker selector={"node-role.kubernetes.io/infra":"true"}
default=True

ansible_service_broker_install=True
ansible_service_broker_local_registry whitelist=["'.*-apb$']

R e s ##
Prometheus Cluster Monitoring

B mm = mm o - ##
#

https://docs.openshift.com/container-platform/3.11/install_config/prometheus_cluster_monito
ring.html

openshift_cluster_monitoring_operator_install=False
openshift_prometheus node selector={"node-role.kubernetes.io/infra":"true"}

Enable persistent storage of Prometheus time-series data (default False)
openshift_cluster_monitoring_operator_prometheus_storage_enabled=True

Enable persistent storage of Alertmanager notifications (default False)
openshift_cluster_monitoring_operator_alertmanager_storage_enabled=True

Dynamic storage allocation for Prometheus services

openshift_cluster _monitoring_operator_prometheus_storage capacity=32Gi
openshift_cluster_monitoring_operator_alertmanager_storage_capacity=4Gi

Storage class to use if persistent storage enabled

NOTE: it will use storageclass default if storage class not specified
openshift_cluster_monitoring_operator_prometheus_storage_class_name='1ibm-powervc-k8s-volume
-default'

openshift_cluster_monitoring_operator_alertmanager_storage class_name='ibm-powervc-k8s-volu
me-default’

[0SEv3:children]
masters

etcd

nodes

host group for masters
[masters]
mstnode0l.domain.example.com

host group for etcd

[etcd]
mstnode0l.domain.example.com
[nodes]

mstnode0l.domain.example.com openshift_node_group_name='node-config-master-infra'

Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC 127

wrknodeO[1:3] .domain.example.com openshift_node_group_name='node-config-compute'

2. Check whether the VMs are available:

ansible -i <inventory_file> nodes -m ping

mstnode02.domain.example.com | SUCCESS => {
"changed": false,
Ilpingllz IIpOngII

}

mstnode03.domain.example.com | SUCCESS => {
"changed": false,
Ilp.ingII: Ilpongll

}

wkrnode02.domain.example.com | SUCCESS => {
"changed": false,
Ilp.ingll: Ilpongll

!

wkrnode03.domain.example.com | SUCCESS => {
"changed": false,
Ilpingllz IIpOngII

}

mstnode01.domain.example.com | SUCCESS => {
"changed": false,
"p'ing": ||pong||

}

wkrnode01.domain.example.com | SUCCESS => {
"changed": false,
"ping": ||pongu

!

1bsnode01.domain.example.com | SUCCESS => {
"changed": false,
Ilpingllz IIpOngII

}s

3. Register the VMs to RHSM:

ansible -i <inventory file> -a 'subscription-manager register
--username={{REGISTRY_SERVICE_ACCOUNT}}}} --password={{SERVICE_KEY}}'
wkrnode01.domain.example.com | SUCCESS | rc=0 >>

Registering to: subscription.rhsm.redhat.com:443/subscription

The system has been registered with ID: 5aee976f-1345-4e25-8c27-0028b40b6cac

Output truncated
mstnode03.domain.example.com | SUCCESS | rc=0 >>
Registering to: subscription.rhsm.redhat.com:443/subscription

The system has been registered with ID: 952c0b7d-bd50-4ed4-99a9-47ef762ef29f
The registered system name is: mstnode03.domain.example.com

128 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

4. Attach to the Red Hat subscription Pool:

ansible -i <inventory file> nodes -a 'subscription-manager attach
--pool1={{POOL_ID}}'

Qutput truncated

wkrnode03.domain.example.com | SUCCESS | rc=0 >>
Successfully attached a subscription for: Red Hat OpenShift Container Platform for
Power, LE Business Partner NFR, Self-Supported

5. Enable Red Hat repositories for IBM POWERO:

ansible -i <inventory_file> nodes -a 'subscription-manager repos --disable="*"
--enable="rhel-7-for-power-9-rpms" --enable="rhel-7-for-power-9-extras-rpms"
--enable="rhel-7-for-power-9-optional-rpms"
--enable="rhel-7-server-ansible-2.6-for-power-9-rpms"
--enable="rhel-7-server-for-power-9-rhscl-rpms"
--enable="rhel-7-for-power-9-ose-3.11-rpms"

wkrnode01.domain.example.com | SUCCESS | rc=0 >>

Repository 'rhel-7-for-power-9-optional-source-rpms' is disabled for this system.
Repository 'rhel-7-for-power9-fast-datapath-beta-debug-rpms' is disabled for this
system.

Repository 'rhel-7-for-power-9-supplementary-debug-rpms' is disabled for this system.
Repository 'rhel-7-for-power-9-satellite-tools-6.3-debug-rpms' is disabled for this
system.

Qutput truncated

1bsnode01.domain.example.com | SUCCESS | rc=0 >>

Repository 'rhel-7-for-power-9-optional-source-rpms' is disabled for this system.
Repository 'rhel-7-for-power9-fast-datapath-beta-debug-rpms' is disabled for this
system.

Output truncated
Repository 'rhel-7-for-power-9-supplementary-rpms' is disabled for this system.
Repository 'rhel-7-server-ansible-2-for-power-9-rpms' is disabled for this system.

Repository 'rhel-7-for-power-9-optional-beta-debug-rpms' is disabled for this system.
Repository 'rhel-7-for-power-9-supplementary-beta-rpms' is disabled for this system.

Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC 129

6. Install the latest operating system updates:

ansible -i <inventory file> nodes,1b -a 'yum -y update --security
--exclude=cloud-init*'

[WARNING] : Consider using the yum module rather than running yum. If you need to use
command because yum is insufficient you can add warn=False to this
command task or set command_warnings=False in ansible.cfg to get rid of this message.

mstnode02.domain.example.com | SUCCESS | rc=0 >>

Loaded plugins: product-id, search-disabled-repos, subscription-manager
5 package(s) needed (+0 related) for security, out of 5 available
Resolving Dependencies

--> Running transaction check

---> Package kernel.ppc64le 0:4.14.0-115.14.1.e17a will be installed

Qutput truncated

Installed:
kernel.ppc64le 0:4.14.0-115.14.1.el7a

Updated:
kernel-bootwrapper.ppc64le 0:4.14.0-115.14.1.el7a
kernel-tools.ppc64le 0:4.14.0-115.14.1.el7a
kernel-tools-Tibs.ppc64le 0:4.14.0-115.14.1.el17a
python-perf.ppc64le 0:4.14.0-115.14.1.e17a

Complete!
7. Update kernel parameters:

ansible -i <inventory file> nodes,1b -m sysctl -a "name=vm.max_map_count
value=262144 state=present sysctl_set=yes reload=yes"
ansible -i <inventory file> nodes,1b -m sysctl -a "name=net.ipv4.ip_forward
value=1 state=present sysctl_set=yes reload=yes"
ansible -i <inventory file> nodes,1b -m sysctl -a
"name=fs.inotify.max_user_watches value=65536 state=present sysctl_set=yes
reload=yes"
mstnode02.domain.example.com | SUCCESS => {

"changed": true

}

Qutput truncated

Tbsnode01.domain.example.com | SUCCESS => {
"changed": true

}
wrknode01.domain.example.com | SUCCESS => {
"changed": true
}
ansible -i <inventory file> 1b -m sysctl -a "name=net.ipv4.ip_nonlocal_bind
value=1 state=present sysctl_set=yes reload=yes"
Tbsnode01.domain.example.com | SUCCESS => {
"changed": true

}

130 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

8. Update firewall to allow HTTP and HTTPS to access the Load Balancer VM:

ansible -i <inventory file> 1b -a 'firewall-cmd --permanent --add-service=http'
ansible -i <inventory file> 1b -a 'firewall-cmd --permanent

--add-service=https'

ansible -i <inventory file> 1b -a 'firewall-cmd --reload'
Tbsnode01.domain.example.com | SUCCESS | rc=0 >>
success

9. Update the DNS options:

ansible -i 7nodes.inv nodes,1b -a 'nmcli connection modify "System eth0"
ipv4.dns-options "rotate timeout:1 ndots:5"'

ansible -i 7nodes.inv nodes,1b -a 'nmcli con show "System eth0"' | grep -e
ipv4.dns-search -e ipv4.dns-options

ipvé.
ipvé.
ipvé.
ipv4.
ipv4.
ipvé.
ipvé.
ipvé.
ipvé.
ipv4.
ipv4.
ipvé.
ipvé.
ipvé.

10.Reboot the VMs:

dns-search:
dns-options:
dns-search:
dns-options:
dns-search:
dns-options:
dns-search:
dns-options:
dns-search:
dns-options:
dns-search:
dns-options:
dns-search:
dns-options:

ssm.sdc.gts.ibm.com
"rotate,timeout:1,ndots:5"
ssm.sdc.gts.ibm.com
"rotate,timeout:1,ndots:5"
ssm.sdc.gts.ibm.com
"rotate,timeout:1,ndots:5"
ssm.sdc.gts.ibm.com
"rotate,timeout:1,ndots:5"
ssm.sdc.gts.ibm.com
"rotate,timeout:1,ndots:5"
ssm.sdc.gts.ibm.com
"rotate,timeout:1,ndots:5"
ssm.sdc.gts.ibm.com
"rotate,timeout:1,ndots:5"

ansible -i <inventory_file> nodes,1b -a 'reboot'
wrknode02.domain.example.com | UNREACHABLE! => {

"changed": false,
"msg": "SSH Error: data could not be sent to remote host

\"wrknode02.domain.example.com\". Make sure this host can be reached over ssh",

}

"unreachable": true

mstnode01.domain.example.com | UNREACHABLE! => {

"changed": false,
"msg": "SSH Error: data could not be sent to remote host

\"mstnode01.domain.example.com\". Make sure this host can be reached over ssh",

}

"unreachable": true

Qutput truncated

1bsnode01.domain.example.com | UNREACHABLE! => {

"changed": false,
"msg": "SSH Error: data could not be sent to remote host

\"1bsnode01.domain.example.com\". Make sure this host can be reached over ssh",

}

"unreachable":

Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC

131

11.Check whether the VMs are started:

ansible -i <inventory file> nodes,1b -m ping

mstnode0l.domain.example.com | SUCCESS => {
"changed": false,
"ping": "pong"

}

wrknode01.domain.example.com | SUCCESS => {
"changed": false,
Ilp.ingll: Ilpongll

}

wrknode02.domain.example.com | SUCCESS => {
"changed": false,
“ping": "pong"

12.Uninstall the old kernels from VMs:

ansible -i <inventory_file> nodes,1b -a 'package-cleanup -y --oldkernels
--count=1'

mstnode01.domain.example.com | SUCCESS | rc=0 >>

Loaded plugins: product-id, subscription-manager

--> Running transaction check

---> Package kernel.ppc64le 0:4.14.0-115.13.1.e17a will be erased

Qutput truncated
Removed:

kernel.ppc6b4le 0:4.14.0-115.13.1.el7a
Complete!

132 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

13.Prepare the VMs for OpenShift installation:

ansible-playbook -i <inventory file>
/usr/share/ansible/openshift-ansible/playbooks/prerequisites.yml

PLAY [Fail openshift_kubelet name override for new hosts]
*hkkkkkhkkhkhkkkhhkhkhkhkkhkhkkhkhhhkhhhkhkhkhkkhhkkhkhhhkhhhkhkhhkhkhkhhkrhkhkhkhkhkkhkhkhkhkkhkhhhkhkhkhkkhkhkkkhkhkkhkkkhkhkkkx

TASK [Gathering Facts]

A A A A A A A A A A A A A ARk hhkhhhhhhhhhhhhhhhhhhhkhkx* * kK Kk Kk Kk kkhkk R R R R R R R R R R R R R R R
Thursday 28 November 2019 20:00:34 +0000 (0:00:00.103) 0:00:00.103 *****

ok: [wrknodeOl.domain.example.com]

ok: [mstnodeOl.domain.example.com]

ok: [wrknode02.domain.example.com]

TASK [Fail when openshift_kubelet_name_override is defined]
kkkhkkkhkkhkkkhkhkkkhhkkkhkkkhkkhkkhhkkhhkhhkhkkhhkkhhhkkhhkkhhkkhhhhhkhhkkhhhkkhhkhkkhhhkkhhhkkhhkhhkhhhkkhkhhkkhkhkkhhkkhhkkhhkkkxkdxx
Thursday 28 November 2019 20:00:37 +0000 (0:00:02.502) 0:00:02.605 *****
skipping: [mstnode0l.domain.example.com]

skipping: [wrknodeOl.domain.example.com]

skipping: [wrknode02.domain.example.com]

PLAY [Initialization Checkpoint Start]

B R o e R R R R T R T R R L

TASK [Set install initialization 'In Progress']

R R Rk o R R R R R R R R R ok kR R ok Rk

Thursday 28 November 2019 20:00:37 +0000 (0:00:00.268) 0:00:02.873 **#*x**
ok: [mstnodeOl.domain.example.com]

PLAY [Populate config host groups]

R R Rk o R R R R R R R R R R R kR R ok R R R R R R R R e R R R R R R R R R R R R R R Rk

Qutput truncated

INSTALLER STATUS

R R

Initialization : Complete (0:04:13)

Wednesday 30 October 2019 19:53:17 +0000 (0:00:00.460) 0:10:03.419 *****xx
container_runtime : Install Docker

Ensure openshift-ansible installer package deps are installed ------------------ 175.65s
openshift_excluder : Install docker excluder - yum -----------ommmmmmmmmmmmomm oo 43.74s
openshift_repos : refresh cache ---------------ommmmmmmm - 19.29s
container_runtime : Start the Docker service -----------mmmmmmmmmmm o 10.05s
container_runtime : Create credentials for oreg_url ----------ccoomoommmmmo 8.60s
openshift_repos : Ensure libselinux-python is installed ----------------coo-——- 7.91s
container_runtime : Fixup SELinux permissions for docker -------------c-coo-———- 7.80s
os_firewall : Install firewalld packages ----------=—c---oommmmmmm 6.54s
Gathering Facts =-----—-—-— oo - 5.48s
container_runtime : Get current installed Docker version ---------------c----————- 2.92s
Gathering Facts =—-=--=---m-mmmm oo 2.26s
Start and enable ntpd/chronyd -======----—cmm oo 1.65s
os_firewall : Ensure iptables services are not enabled --------------cocooo 1.59s
Check for NetworkManager ServiCe ===--—--— - - oo oo 1.58s
container_runtime : Setup the docker-storage for overlay --------=---—---coomu-- 1.48s
openshift_sanitize_inventory : include_tasks -------------cmommmmmmmmm 1.19s
openshift_sanitize_inventory : include_tasks ------=-------ccmmmmmmmmm 1.17s
os_firewall : Install iptables packages ------------------commmmmm 1.15s
container_runtime : include_tasks -------------coooo 1.08s

Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC 133

134

14.Install the OpenShift Container Platform:

ansible-playbook -i <inventory file>
/usr/share/ansible/openshift-ansible/playbooks/deploy cluster.yml
PLAY [Initialization Checkpoint Start]

R o o kR R R R R R R ok Rk R ok R R R R R R R R R R R R R R R R R R

Qutput truncated

Hosted Install : Complete (0:00:34)

Cluster Monitoring Operator : Complete (0:01:44)

Web Console Install : Complete (0:00:32)

Console Install : Complete (0:01:22)

metrics-server Install : Complete (0:00:01)

Service Catalog Install : Complete (0:04:46)

Wednesday 30 October 2019 20:32:17 +0000 (0:00:00.035) 0:34:41.168 *****
openshift node : install needed rpm(s) ============ommmmmmmm oo 177.38s
openshift node : Install node, clients, and conntrack packages ----------------- 126.12s
template_service_broker : Verify that TSB is running ----------------ccuuo———- 110.11s
openshift_cluster_monitoring_operator : Wait for the ServiceMonitor CRD to be created
--- 91.75s
openshift_console : Waiting for console rollout to complete ----------------—-——- 72.95s
openshift_control _plane : Wait for all control plane pods to become ready ------- 67.19s
Run health checks (install) = EL ====-mmmmmmm oo e 63.83s
openshift_node : Install Ceph storage plugin dependencies --------------—----—--- 59.41s
openshift_service _catalog : Wait for API Server rollout success ----------------- 56.42s
openshift_control_plane : Wait for control plane pods to appear ----------------- 54.33s
openshift ca : Install the base package for admin tooling ------------------—————- 53.89s
openshift_excluder : Install openshift excluder - yum ------------ocommmmmo- 44.92s
openshift_service catalog : Wait for Controller Manager rollout success --------- 43.78s
openshift_excluder : Install docker excluder - yum --------------ommmmmmmmmomo o 37.32s
openshift_node : Install GlusterFS storage plugin dependencies ------------------ 31.13s
openshift_Toadbalancer : Install haproxy ----------=--------——-—————oo———— 30.26s
openshift node : Install dnsmasq =-----=====---- - - oo 29.97s
openshift node : Install iSCSI storage plugin dependencies ---------=-------————- 25.03s
openshift_web _console : Verify that the console is running -----------------c--- 21.61s
openshift_service_catalog : 0C_proCcess ----=--------mmmmmmmmm oo 13.35s

15.Check the pods status after installation:

oc login -u system:admin

Logged into "https://ocp.domain.example.com:8443" as "system:admin" using existing
credentials.

oc get pod --all-namespaces

NAMESPACE NAME READY STATUS RESTARTS AGE
default docker-registry-1-tmbfn 1/1 Running 0 19m
default registry-console-1-p5clt 1/1 Running 0 19m
default router-1-2hm94 1/1 Running 0 19m
default router-1-2s9zn 1/1 Running 0 19m
default router-1-72f7r 1/1 Running 0 19m
kube-service-catalog apiserver-26kt5 1/1 Running 0 17m

Output truncated

openshift-sdn sdn-vx867 1/1 Running

2 26m
openshift-template-service-broker apiserver-2s57k 1/1 Running 0 15m
openshift-template-service-broker apiserver-4kghm 1/1 Running 0 15m
openshift-template-service-broker apiserver-j7g57 1/1 Running 0 15m
openshift-web-console webconsole-6f5f94c675-2kvmv 1/1 Running 0 19m
openshift-web-console webconsole-6f5f94c675-j121 1/1 Running 0 19m
openshift-web-console webconsole-6f5f94c675-xcx7g 1/1 Running 0 19m

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

16.For the seven nodes deployment, update the HAProxy configuration to support HTTP and

HTTPS, as shown in Example 6-10.

Example 6-10 HAProxy configuration

cat > /etc/haproxy/haproxy.cfg <<EOF_haproxy.cfg
Global settings

B o o e
global

maxconn 20000

log /dev/1og Tocal0 info

chroot /var/1ib/haproxy

pidfile /var/run/haproxy.pid

user haproxy

group haproxy

daemon

turn on stats unix socket

stats socket /var/lib/haproxy/stats
B o o e

common defaults that all the 'listen' and 'backend' sections will
use if not designated in their block

B o o o o e
defaults
mode http
log global
option httplog
option dontlognull
option http-server-close
option forwardfor except 127.0.0.0/8
option redispatch
retries 3
timeout http-request 10s
timeout queue Im
timeout connect 10s
timeout client 300s
timeout server 300s
timeout http-keep-alive 10s
timeout check 10s
maxconn 20000

listen stats
bind :9000
mode http
stats enable
stats uri /

frontend atomic-openshift-api
bind *:8443
default_backend atomic-openshift-api
mode tcp
option tcplog

backend atomic-openshift-api
balance source

mode tcp

server master0 192.168.11.202:8443 check
server masterl 192.168.11.203:8443 check
server master2 192.168.11.204:8443 check

Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC

135

frontend openshift-router80
bind *:80
default_backend openshift-router80
mode tcp
option tcplog

backend openshift-router80
balance source

mode tcp

server master0 192.168.11.202:80 check
server masterl 192.168.11.203:80 check
server master2 192.168.11.204:80 check

frontend openshift-routers43
bind *:443
default_backend openshift-router443
mode tcp
option tcplog

backend openshift-router4d43
balance source

mode tcp

server master0 192.168.11.202:443 check
server masterl 192.168.11.203:443 check
server master2 192.168.11.204:443 check

EOF_haproxy.cfg

17.Restart the haproxy service:

systemctl restart haproxy
systemctl status haproxy

? haproxy.service - HAProxy Load Balancer

Loaded: Toaded (/usr/1ib/systemd/system/haproxy.service; enabled; vendor preset: disabled)

Drop-In: /etc/systemd/system/haproxy.service.d
++limits.conf

Active: active (running) since Sun 2019-11-24 06:40:12 UTC; 6s ago

Main PID: 81816 (haproxy-systemd)

CGroup: /system.slice/haproxy.service
--81816 /usr/sbin/haproxy-systemd-wrapper -f /etc/haproxy/haproxy.cfg -p /run/haproxy.pid
-+81817 /usr/sbin/haproxy -f /etc/haproxy/haproxy.cfg -p /run/haproxy.pid -Ds
-+81818 /usr/shin/haproxy -f /etc/haproxy/haproxy.cfg -p /run/haproxy.pid -Ds

Nov 24 06:40:12 1bsnode0l.domain.example.com systemd[1]: Started HAProxy Load Balancer.

Nov 24 06:40:12 1bsnode0l.domain.example.com haproxy-systemd-wrapper[81816]: haproxy-systemd-wrapper: executing
/usr/sbin/haproxy -f /etc/haproxy/hap...d -Ds

Nov 24 06:40:12 1bsnode0l.domain.example.com haproxy[81817]: Proxy stats started.

Nov 24 06:40:12 1bsnode0l.domain.example.com haproxy[81817]: Proxy atomic-openshift-api started.
Nov 24 06:40:12 Tbsnode01.domain.example.com haproxy[81817]: Proxy atomic-openshift-api started.
Nov 24 06:40:12 T1bsnode0l.domain.example.com haproxy[81817]: Proxy openshift-router80 started.
Nov 24 06:40:12 1bsnode0l.domain.example.com haproxy[81817]: Proxy openshift-router80 started.
Nov 24 06:40:12 Tbsnode01.domain.example.com haproxy[81817]: Proxy openshift-router443 started.
Nov 24 06:40:12 1bsnode0l.domain.example.com haproxy[81817]: Proxy openshift-router443 started.
Hint: Some lines were ellipsized, use -1 to show in full.

18.Associate the cluster-admin role to the admin user by using the following command:

oc adm policy add-cluster-role-to-user cluster-admin admin

136 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

6.3.5 Uninstalling the OpenShift Container Platform

Complete the following steps to uninstall the OpenShift Container Platform:
1. Unregister OpenShift VMs from the RHSM:

ansible -i <inventory file> nodes,1b -a 'subscription-manager remove --all'
ansible -i <inventory file> nodes,1b -a 'subscription-manager unregister'
ansible -i <inventory file> nodes,1b -a 'subscription-manager clean'
wrknode01.domain.example.com | SUCCESS | rc=0 >>

Unregistering from: subscription.rhsm.redhat.com:443/subscription

System has been unregistered.

Output truncated

Tbsnode01.domain.example.com | SUCCESS | rc=0 >>
Unregistering from: subscription.rhsm.redhat.com:443/subscription
System has been unregistered.

2. Destroy the PowerVC infrastructure using Terraform:

terrafrom destroy
data.openstack_images_image_v2.vml-image-name: Refreshing state...

Qutput truncated
Plan: 0 to add, 0 to change, 33 to destroy.

Do you really want to destroy all resources?
Terraform will destroy all your managed infrastructure, as shown above.
There is no undo. Only 'yes' will be accepted to confirm.

Enter a value: yes

null_resource.vm4 post install config[0]: Destroying... [1d=1118127418209700949]
null_resource.vmd post_install _config[0]: Destruction complete after Os
openstack_compute_volume_attach v2.vml va_dockerdisk1[2]: Destroying...
[1d=5d929233-f9fc-4224-8960-5f1f050e4174/2563294f-d9ce-44a6-ac04-afc73a07593¢]
openstack_compute_volume_attach_v2.vml_va_dockerdisk1[0]: Destroying...
[1d=f7c4966f-7036-4494-bd35-8e66b84ed18e/3f5bcId4-c9le-42db-b529-f7b03ale963c]
openstack _compute volume attach v2.vm3 va dockerdisk1[0]: Destroying...
[1d=c47782d9-2d1b-4430-8d58-a755d652b07d/23c91f6b-790c-4afl-bda8-ee471ff75f1b]
openstack_compute_volume_attach v2.vm3_va_dockerdisk1[1]: Destroying...
[1d=8cf475c5-9315-4032-9400-e46alc6a3b7d/4b3c6d75-985b-4ba2-8363-8dd16e76e131]
openstack _compute volume attach v2.vml va dockerdiskl[1]: Destroying...
[1d=d6305c81-efd1-4257-beal-2eb9a5ad8145/0569bceb-753f-48ee-82d0-9e00a3245b96]
openstack _compute volume attach v2.vm3 va dockerdisk1[2]: Destroying...
[1d=4d28442a-fa3d-4389-80d8-2a2fe3199b19/a80c34a6-42fa-4d3d-866b-0a6a4548ea56]

Output truncated

openstack networking subnet v2.netl-subnet: Destruction complete after 1mb58s
openstack networking network v2.netl: Destroying...
[1d=42b5da3c-98ff-4f07-ba52-8fcd6lelblab]

openstack_networking_network v2.netl: Destruction complete after 6s

Destroy complete! Resources: 33 destroyed.

Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC 137

6.4 IBM PowerVC FlexVolume Driver

This section describes how to install the IBM PowerVC FlexVolume Driver. After installation,
configure the persistent storage for Registry, and install the Prometheus Cluster Monitoring.

6.4.1 Deploying the IBM PowerVC FlexVolume Driver

Complete the following steps to install IBM PowerVC FlexVolume driver:
3. Create a project for PowerVC FlexVolume Driver:

export NS=powervc-flexvoldrv

oc login -u system:admin

Logged into "https://ocp.domain.example.com:8443" as "system:admin" using existing
credentials.

You have access to the following projects and can switch between them with 'oc project
<projectname>':

Qutput truncated
Using project "default".
oc new-project $NS --description="PowerVC FlexVolume Driver for Containers"

--display-name="PowerVC FlexVolume Driver"
Now using project "powervc-flexvoldrv" on server "https://ocp.domain.example.com:8443".

You can add applications to this project with the 'new-app' command. For example, try:
oc new-app centos/ruby-25-centos7~https://github.com/sclorg/ruby-ex.git
to build a new example application in Ruby

oc project $NS
Already on project "powervc-flexvoldrv" on server "https://ocp.domain.example.com:8443

4. Patch the project to clear the nodeSelector tag:

oc patch namespace $NS -p '{"metadata": {"annotations":
{"openshift.io/node-selector": ""}}}'
namespace/powervc-flexvoldrv patched

5. Assign the cluster-admin role to the $NS project’s default service account:

oc adm policy add-cluster-role-to-user cluster-admin
system:serviceaccount:$NS:default
cluster role "cluster-admin" added: "system:serviceaccount:powervc-flexvoldrv:default"

6. Set the hostmount-anyuid source code control to the user root, or the user ID that was
used to create the $NS project:

oc adm policy add-scc-to-user hostmount-anyuid
system:serviceaccount:$NS:default
scc "hostmount-anyuid" added to: ["system:serviceaccount:powervc-flexvoldrv:default"]

138 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

7. Create a secret with the PowerVC user name and password:

oc create secret generic -n $NS powervc-secret \
--from-Titeral=0S_USERNAME=ocpadmin \
--from-1iteral=0S_PASSWORD=<password>
secret/powervc-secret created

8. Download the power-openstack-k8s-volume-driver file from this web page.

wget
https://raw.githubusercontent.com/IBM/power-openstack-k8s-volume-driver/master/

template/ibm-powervc-k8s-volume-driver-template.yaml

--2019-11-24 10:18:54--
https://raw.githubusercontent.com/IBM/power-openstack-k8s-volume-driver/master/template/ibm-powervc-k8s-volume-dri
ver-template.yaml

Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 199.232.36.133

Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|199.232.36.133|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 14005 (14K) [text/plain]

Saving to: ¢ibm-powervc-k8s-volume-driver-template.yaml”’

100%[>] 14,005 --.-K/s in 0.07s

2019-11-24 10:18:55 (189 KB/s) - ‘ibm-powervc-k8s-volume-driver-template.yaml’ saved [14005/14005]
9. Check the driver configuration parameters:

oc process --parameters -n $NS -f ibm-powervc-k8s-volume-driver-template.yaml

NAME DESCRIPTION GENERATOR VALUE

OPENSTACK_IP_OR_HOSTNAME IP address or host name of the PowerVC management server. It will be used to
construct the PowerVC authentication URL.

OPENSTACK_CRED_SECRET_NAME Name of the pre-created Secret object that contains the PowerVC admin username and
password.

OPENSTACK_CERT_DATA Paste the contents (in PEM) from the /etc/pki/tls/certs/powervc.crt file. If left
blank, certificate verification is not done, which is insecure.

OPENSTACK_PROJECT_NAME The project to use. The specified PowerVC user must have the administrator role in
this project. ibm-default
OPENSTACK_DOMAIN_NAME The name of the project domain for the PowerVC user. Default
DRIVER_FLEX_PLUGIN_DIR The directory that Kubernetes uses for the FlexVolume driver. Keep the default

value unless the --flex-volume-plugin-dir flag has been overridden.
/usr/libexec/kubernetes/kubelet-plugins/volume/exec/

DRIVER_VOLUME_TYPE The name or ID of the default storage class's volume type (storage template). This
can specify the default storage details for persistent volumes.

DRIVER_DFLT_STG_CLASS The default storage class is used if no storage class is specified when creating a
persistent volume claim. true

IMAGE_PROVISIONER_REPO Nameand locationof theprovisionerdocker image repository.
ibmcom/power-openstack-k8s-volume-provisioner

IMAGE_PROVISIONER_TAG Tag or Tabel for the provisioner docker image. The default value is the only
supported version. 1.0.2
IMAGE_FLEX_VOLUME_REPO Name and Tocationof the flexvolume docker image repository.
ibmcom/power-openstack-k8s-volume-flex

IMAGE_FLEX_VOLUME_TAG Tag or label for the flexvolume docker image. The default value is the only
supported version. 1.0.2
IMAGE_PROVISIONER_PULL Pull policy for the provisioner docker image. IfNotPresent
IMAGE_FLEX_VOLUME_PULL Pull policy for the flexvolume docker image. IfNotPresent

SECURITY_SERVICE_ACCOUNT _NAME Name of the service account to use default

To get the value of OPENSTACK_CERT_DATA, run the following command on the
PowerVC server:

cat /etc/pki/tls/certs/powervc.crt | tr '\n' ' '
————— BEGIN CERTIFICATE----- MIIDfTCCAmWgAWIBAg...[Output truncated]...1a3MBWLVmHzQ+OwFTN

Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC 139

https://github.com/IBM/power-openstack-k8s-volume-driver

140

10.Create the template environment file to store the PowerVC details:

cat > ibm-powervc-k8s-volume-driver.env <<EOF_ibm-powervc-k8s-volume-driver.env

OPENSTACK _IP_OR_HOSTNAME=rbpvc0l.domain.example.com
OPENSTACK_CRED_SECRET_NAME=powervc-secret

OPENSTACK_CERT_DATA=----- BEGIN CERTIFICATE----- MIIDf...[Output truncated]...sOwFTN

OPENSTACK_PROJECT_NAME=ocp-project
IMAGE_PROVISIONER_REPO=1ibmcom/power-openstack-k8s-volume-provisioner
IMAGE_PROVISIONER_TAG=1.0.2

IMAGE_FLEX VOLUME_REPO=1ibmcom/power-openstack-k8s-volume-flex
IMAGE_FLEX_VOLUME_TAG=1.0.2

SECURITY_SERVICE_ACCOUNT NAME=default
EOF_ibm-powervc-k8s-volume-driver.env

11.Deploy the PowerVC FlexVolume Driver application from the template by using the

environment file:

oc process -f ibm-powervc-k8s-volume-driver-template.yaml
--param-file=ibm-powervc-k8s-volume-driver.env | oc create -f -
configmap/ibm-powervc-config created
storageclass.storage.k8s.io/ibm-powervc-k8s-volume-default created
deployment.apps/ibm-powervc-k8s-volume-provisioner created
daemonset.apps/ibm-powervc-k8s-volume-flex created

12.Verify the installation. You have one running volume-flex Pod per each node, and one

volume-provisioner:

oc get pods

NAME READY STATUS
ibm-powervc-k8s-volume-flex-2jx8t 1/1 Running
ibm-powervc-k8s-volume-flex-fgjz6b 1/1 Running
ibm-powervc-k8s-volume-flex-gbh5xq 1/1 Running
ibm-powervc-k8s-volume-flex-kpqfk 1/1 Running
ibm-powervc-k8s-volume-flex-1p84r 1/1 Running
ibm-powervc-k8s-volume-flex-tri5t 1/1 Running
ibm-powervc-k8s-volume-provisioner-6cc7d64cdb-dfxsn 1/1 Running

13.(Optional) Uninstall PowerVC FlexVolume Driver:

######4# delete pods for powervc flex volume and start over #######
oc delete deployment ibm-powervc-k8s-volume-provisioner

oc delete ds ibm-powervc-k8s-volume-flex

oc delete cm ibm-powervc-config

oc delete sc ibm-powervc-k8s-volume-default

delete the template ######+#

oc delete template ibm-powervc-k8s-volume-driver

oc delete secret powervc-secret

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

RESTARTS

O OO OO oo

AGE
23s
23s
23s
23s
23s
23s
23s

6.4.2 Creating the persistent storage for the Registry

Complete the following steps to set up the persistent storage for the Registry:
1. Create a Persistent Volume Claim:

oc login -u system:admin

Logged into "https://mstnode0l.domain.example.com:8443" as "system:admin" using existing
credentials.

You have access to the following projects and can switch between them with 'oc project
<projectname>':

Qutput truncated

Using project "powervc-flexvoldrv".
oc project default
Now using project "default" on server "https://ocp.domain.example.com:8443".
cat > registry-pvc.yml <<EOF_/registry-pvc.yml
kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: registry-pvc
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1024Gi
EOF_/registry-pvc.yml
oc create -f registry-pvc.yml
persistentvolumeclaim/registry-pvc created

oc get pvc

NAME STATUS VOLUME CAPACITY ACCESS
MODES STORAGECLASS AGE

registry-pvc Bound pvc-fb388f7a-0fb4-1lea-al2a-faa2leff8220 1Ti RWO
ibm-powervc-k8s-volume-default 7s

oc get dc

NAME REVISION DESIRED CURRENT TRIGGERED BY

docker-registry 1 1 1 config

registry-console 1 1 1 config

router 1 3 3 config

oc get pods

NAME READY STATUS RESTARTS AGE
docker-registry-1-tmbfn 1/1 Running 0 41m
registry-console-1-p5clt 1/1 Running 0 41m

router-1-2hm94 1/1 Running 0 41m

router-1-2s9zn 1/1 Running 0 41m

router-1-72f7r 1/1 Running 0 41m

oc set volume dc/docker-registry
deploymentconfigs/docker-registry
empty directory as registry-storage
mounted at /registry
secret/registry-certificates as registry-certificates
mounted at /etc/secrets

Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC 141

2. Assign the Persistent Volume Claim to the Registry:

oc set volume dc/docker-registry --add --name=registry-storage -t pvc
--claim-name=registry-pvc --mount-path=/registry --overwrite
deploymentconfig.apps.openshift.io/docker-registry volume updated
oc set volume dc/docker-registry
deploymentconfigs/docker-registry
secret/registry-certificates as registry-certificates
mounted at /etc/secrets
pvc/registry-pvc (allocated 1TiB) as registry-storage
mounted at /registry

oc get pod

NAME READY STATUS RESTARTS AGE
docker-registry-2-8h9cf 1/1 Running 0 1m
registry-console-1-p5cit 1/1 Running 0 46m
router-1-2hm94 1/1 Running 0 47m
router-1-2s9zn 1/1 Running 0 47m
router-1-72f7r 1/1 Running 0 47m

oc exec -ti docker-registry-2-8h9cf bash

bash-4.2% df -h

Filesystem Size Used Avail Use% Mounted on
/dev/mapper/mpatha 10086 77M 957G 1% /registry

bash-4.2$ mount | grep regi

/dev/mapper/mpatha on /registry type ext4 (rw,relatime,seclabel,data=ordered)
bash-4.2$ exit

exit

6.4.3 Deploying the Prometheus Cluster Monitoring

142

This section describes the Prometheus Cluster Monitoring open source deployment.

Overview

OpenShift Container Platform includes a pre-configured and self-updating monitoring stack
(see Figure 6-5 on page 143) that is based on the Prometheus open source project and its
wider system.

OpenShift provides monitoring of cluster components, and includes a set of alerts to
immediately notify the cluster administrator about any occurring problems, and a set of
Grafana dashboards.

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

openshift-monitoring

cluster-monitoring-operator

b{ prometheus-operator
A 1

A

..‘ Grafana ‘

| v v ; v
[[
% kube-state-metrics H Prometheus - _b‘ Alertmanager
rreee_———————= l
»{ node-exporter |, |
» manages Control Plane
----» access | e ——— 1

— . — . alert Kubelet J

——» monitor

Figure 6-5 OpenShift monitoring

As highlighted in Figure 6-5, at the heart of the monitoring stack sits the OpenShift Container
Platform Cluster Monitoring Operator (CMO), which watches over the deployed monitoring
components and resources and ensures that these are always up-to-date.

The Prometheus Operator (PO) creates, configures, and manages Prometheus and
Alertmanager instances. It also automatically generates monitoring target configurations
based on familiar Kubernetes label queries.

In addition to Prometheus and Alertmanager, OpenShift Container Platform Monitoring
includes node-exporter and kube-state-metrics. Node-exporter is an agent that is deployed
on every node to collect metrics about it. The kube-state-metrics exporter agent converts
Kubernetes objects to metrics consumable by Prometheus.

The following targets are monitored as part of the cluster monitoring:

Prometheus itself

Prometheus-Operator

cluster-monitoring-operator

Alertmanager cluster instances

Kubernetes apiserver

kubelets (the kubelet embeds cAdvisor for per container metrics)
kube-controllers

kube-state-metrics

node-exporter

etcd (if etcd monitoring is enabled)

VVYVYYVYYVYVYVYYVYY

All of these components are automatically updated. For more information about the OpenShift
Container Platform Cluster Monitoring Operator, see this web page.

Configuring OpenShift Container Platform cluster monitoring

The OpenShift Cluster Monitoring is deployed by Ansible Playbooks. You can choose the
base playbook or the openshift-monitoring playbook for the deployment.

Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC 143

https://github.com/openshift/cluster-monitoring-operator

144

The Monitoring stack is installed with OpenShift Container Platform by default. You can
prevent it from being installed by setting
openshift_cluster_monitoring operator_install=False in the Ansible inventory file.

By default, persistent storage is disabled for Prometheus time-series data and for
Alertmanager notifications and silences. You can configure the cluster to persistently store
any one of them or both.

To enable persistent storage of Prometheus time-series data, set
openshift_cluster_monitoring_operator_prometheus_storage_enabled=True in the Ansible
inventory file.

To enable persistent storage of Alertmanager notifications and silences, set
openshift_cluster_monitoring_operator_alertmanager_storage_enabled=True in the
Ansible inventory file.

To specify the size of the persistent volume claim for Prometheus and Alertmanager, change
the following Ansible variables:

» openshift_cluster monitoring operator prometheus _storage capacity (default:
50G1)

» openshift_cluster monitoring operator_alertmanager storage capacity (default:
2Gi)

Each of these variables applies only if its corresponding storage_enabled variable is set to
True.

After you enable dynamic storage, you can also set the storageclass for the persistent
volume claim for each component in the Ansible inventory file:

» openshift_cluster monitoring operator prometheus storage class name (default:

n II)

» openshift_cluster monitoring operator_alertmanager storage class name (default:

")

Each of these variables applies only if its corresponding storage_enabled variable is set to
True.

Example 6-11 shows a sample Cluster Monitoring in the Ansible inventory file.

Example 6-11 Cluster Monitoring in the Ansible inventory file

Bt = mmmmm m e ##
Prometheus Cluster Monitoring
it mmmmm m e e ##

https://docs.openshift.com/container-platform/3.11/install_config/prometheus_cluster_monito
ring.html

openshift_cluster _monitoring_operator_install=False

openshift_prometheus node_selector={"node-role.kubernetes.io/infra":"true"}

Enable persistent storage of Prometheus time-series data (default False)
openshift_cluster_monitoring_operator_prometheus_storage_enabled=False

Enable persistent storage of Alertmanager notifications (default False)
openshift_cluster_monitoring_operator_alertmanager_storage_enabled=False

Dynamic storage allocation for Prometheus services

openshift_cluster _monitoring_operator_prometheus_storage capacity=32Gi
openshift_cluster_monitoring_operator_alertmanager_storage_capacity=4Gi

Storage class to use if persistent storage enabled

NOTE: it will use storageclass default if storage class not specified
openshift_cluster_monitoring_operator_prometheus_storage_class_name='1ibm-powervc-k8s-volume
-default'

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

openshift_cluster_monitoring_operator_alertmanager_storage_class_name='1ibm-powervc-k8s-volu
me-default'

The monitoring playbook is available at the following directory:

/usr/share/ansible/openshift-ansible/playbooks/openshift-monitoring/

Complete the following steps:
1. Deploying OpenShift Cluster Monitoring:

ansible-playbook -i <inventory file>

/usr/share/ansible/openshift-ansible/playbooks/openshift-monitoring/config.yml\
-e openshift_cluster_monitoring_operator_install=True

PLAY [Initialization Checkpoint Start]

R R Rk o o o o R R R R R R Rk R R R R R R ok o Rk

Qutput truncated

INSTALLER STATUS openshift_cluster_monitoring_operator : Wait for the ServiceMonitor CRD

to be created ----------mmmm oo 31.03s
Gathering Facts -=-—=—=—- oo 2.98s
set_ fact -----------mmm - 1.78s
openshift_cluster_monitoring_operator : Add monitoring project ---------------——- 1.66s
openshift_cluster_monitoring_operator : Label monitoring namespace -------------- 1.42s
openshift_sanitize_inventory : include_tasks -------------commmmmmmmmmm 1.13s
openshift_sanitize inventory : include tasks -------------cmmmmmmmmm - 1.11s
Gather Cluster facts ==--=----mmmmmmmmm oo 1.11s
openshift_sanitize_inventory : At least one master is schedulable --------------- 1.09s
Initialize openshift.node.sdn_mtu ---------------ooom - 1.09s
openshift_control_plane : Retrieve list of schedulable nodes matching selector -- 1.05s
openshift_sanitize_inventory : Check for usage of deprecated variables ---------- 1.00s
set fact openshift portal net if present on masters ------------—-omommmm- 0.96s
get openshift_current_version ------------mmmmmmmm - 0.95s
set_ fact -----------mmm - 0.95s
openshift_cluster_monitoring_operator : Copy files to temp directory ------------ 0.93s
Validate openshift_node_groups and openshift_node_group name -----------------—-- 0.82s

Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC 145

2. Verify the Cluster Monitoring installation:

oc get pod -n openshift-monitoring

NAME READY STATUS RESTARTS AGE
alertmanager-main-0 3/3 Running 0 4m
alertmanager-main-1 3/3 Running 0 4m
alertmanager-main-2 3/3 Running 0 3m
cluster-monitoring-operator-68fh779747-b6nd7 1/1 Running 0 6m
grafana-5756774f8f-71r1m 2/2 Running 0 6m
kube-state-metrics-79f458bd6c-qtv88 3/3 Running 0 2m
node-exporter-724ww 2/2 Running 0 2m
node-exporter-jbjm5 2/2 Running 0 2m
node-exporter-nrszt 2/2 Running 0 2m
node-exporter-shclk 2/2 Running 0 2m
node-exporter-vfzjr 2/2 Running 0 2m
node-exporter-wbjd7 2/2 Running 0 2m
prometheus-k8s-0 4/4 Running 1 6m
prometheus-k8s-1 4/4 Running 1 5m
prometheus-operator-88dcddf7d-22hd2 1/1 Running 0 6m
oc get pvc -n openshift-monitoring

NAME STATUS VOLUME CAPACITY ACCESS
MODES STORAGECLASS AGE

alertmanager-main-db-alertmanager-main-0 Bound pvc-569cfeb2-0fc2-1lea-acl3-faa2leff8220 4Gi RWO
ibm-powervc-k8s-volume-default 5m

alertmanager-main-db-alertmanager-main-1 Bound pvc-690150be-0fc2-11ea-acl3-faa2leff8220 4Gi RWO
ibm-powervc-k8s-volume-default 5m

alertmanager-main-db-alertmanager-main-2 Bound pvc-7b98bfa8-0fc2-1lea-acl3-faa2leff8220 4Gi RWO
ibm-powervc-k8s-volume-default 4m

prometheus-k8s-db-prometheus-k8s-0 Bound pvc-20342da0-0fc2-1lea-acl3-faa2leff8220 32Gi RWO
ibm-powervc-k8s-volume-default 7m

prometheus-k8s-db-prometheus-k8s-1 Bound pvc-364ff7f6-0fc2-11ea-acl3-faa2leff8220 32Gi RWO

ibm-powervc-k8s-volume-default 6m

6.5 Managing OpenShift Resources using CLI

OpenShift Container Platform organizes entities in the OpenShift cluster as objects that are
managed by the master node, which are collectively known as resources:

Projects (namespaces)
Users

Deployment Configuration
Nodes

Services

Pods

vVvyyvyvyYYyypy

These resources are available to the OpenShift Container Platform.

Red Hat OpenShift Container Platform includes a command-line tool that enables system
administrators and developers to work with an OpenShift cluster. The oc command-line tool
provides the ability to modify and manage resources throughout the delivery lifecycle of a
software development project. Common operations with this tool include deploying
applications, scaling applications, and checking the status of projects.

The oc command-line tool is installed on all master and node machines. You can also install
the oc client on systems that are not part of the OpenShift cluster, such as administrator
machines. When it is installed, you can issue commands after authenticating to any master
node.

146 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

On Red Hat Enterprise Linux (RHEL), the oc tool is available as an RPM file and installable by
using the yum install command:

yum install -y atomic-openshift-clients

Loaded plugins: product-id, search-disabled-repos, subscription-manager

Resolving Dependencies

--> Running transaction check

---> Package atomic-openshift-clients.ppc64le 0:3.11.153-1.git.0.aaf3f71.e17 will be
installed

--> Finished Dependency Resolution

Qutput truncated
Complete!
After the oc CLI tool is installed, use the oc help command to display help information.

You can use the oc Togin command to log in interactively, which prompts you for a server
name, a user name, and a password. You also can include the required information about the
command line:

oc login https://ocp.domain.example.com:8443 -u admin

The server uses a certificate signed by an unknown authority.

You can bypass the certificate check, but any data you send to the server could be
intercepted by others.

Use insecure connections? (y/n): y

Authentication required for https://ocp.domain.example.com:8443 (openshift)
Username: admin

Password:

Login successful.

Important: It is possible to log in as the OpenShift cluster administrator from any master
node without a password by connecting by way of ssh to the master node.

After successful authentication from a client, OpenShift saves an authorization token in the
user’s home folder.

To check your current credentials, run the oc whoami command:

oc whoami
admin

To log out of the OpenShift cluster, use the oc Togout command:

oc logout
Logged "admin" out on "https://ocp.domain.example.com:8443"

As an administrator, the oc get RESOURCE_TYPE [RESOURCE_NAME] command is used most
frequently. This command helps to get information about resources in the cluster. Generally,
this command displays only the most important characteristics of the resources and omits
more detailed information.

Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC 147

If the RESOURCE_NAME parameter is omitted, all resources of the specified RESOURCE_TYPE are
summarized, as shown in Example 6-12.

Example 6-12 oc get pod

oc get pod

NAME READY STATUS RESTARTS AGE
docker-registry-3-4fiql 1/1 Running 2 1d
router-2-4gnmj 1/1 Running 3 1d
router-2-cp5sf 1/1 Running 3 1d
router-2-s1kjf 1/1 Running 3 1d

Use the oc types command for a quick refresher on the concepts of the available
RESOURCE_TYPES, as shown in Example 6-13.

Example 6-13 oc types

oc types
Command "types" is deprecated, refer to official documentation instead
Concepts and Types

Kubernetes and OpenShift help developers and operators build, test, and deploy applications
in a containerized cloud

environment. Applications may be composed of all of the components below, although most
developers will be concerned

with Services, Deployments, and Builds for delivering changes.

Concepts:

* Containers:
A definition of how to run one or more processes inside of a portable Linux
environment. Containers are started from an Image and are usually isolated
from other containers on the same machine.

* Image:
A layered Linux filesystem that contains application code, dependencies,
and any supporting operating system libraries. An image is identified by
a name that can be local to the current cluster or point to a remote Docker
registry (a storage server for images).

* Pods [pod]:
A set of one or more containers that are deployed onto a Node together and
share a unique IP and Volumes (persistent storage). Pods also define the
security and runtime policy for each container.

* Labels:
Labels are key value pairs that can be assigned to any resource in the
system for grouping and selection. Many resources use labels to identify
sets of other resources.

* Volumes:
Containers are not persistent by default - on restart their contents are
cleared. Volumes are mounted filesystems available to Pods and their
containers which may be backed by a number of host-local or network
attached storage endpoints. The simplest volume type is EmptyDir, which
is a temporary directory on a single machine. Administrators may also
allow you to request a Persistent Volume that is automatically attached
to your pods.

* Nodes [node]:

148 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Machines set up in the cluster to run containers. Usually managed
by administrators and not by end users.

* Services [svc]:
A name representing a set of pods (or external servers) that are
accessed by other pods. The service gets an IP and a DNS name, and can be
exposed externally to the cluster via a port or a Route. It's also easy
to consume services from pods because an environment variable with the
name <SERVICE>_HOST is automatically injected into other pods.

* Routes [route]:
A route is an external DNS entry (either a top Tevel domain or a
dynamically allocated name) that is created to point to a service so that
it can be accessed outside the cluster. The administrator may configure
one or more Routers to handle those routes, typically through an Apache
or HAProxy load balancer / proxy.

* Replication Controllers [rc]:
A replication controller maintains a specific number of pods based on a
template that match a set of labels. If pods are deleted (because the
node they run on is taken out of service) the controller creates a new
copy of that pod. A replication controller is most commonly used to
represent a single deployment of part of an application based on a
built image.

* Deployment Configuration [dc]:
Defines the template for a pod and manages deploying new images or
configuration changes whenever those change. A single deployment
configuration is usually analogous to a single micro-service. Can support
many different deployment patterns, including full restart, customizable
rolling updates, and fully custom behaviors, as well as pre- and post-
hooks. Each deployment is represented as a replication controller.

* Build Configuration [bc]:
Contains a description of how to build source code and a base image into a
new image - the primary method for delivering changes to your application.
Builds can be source based and use builder images for common languages like
Java, PHP, Ruby, or Python, or be Docker based and create builds from a
Dockerfile. Each build configuration has web-hooks and can be triggered
automatically by changes to their base images.

* Builds [build]:
Builds create a new image from source code, other images, Dockerfiles, or
binary input. A build is run inside of a container and has the same
restrictions normal pods have. A build usually results in an image pushed
to a Docker registry, but you can also choose to run a post-build test that
does not push an image.

* Image Streams and Image Stream Tags [is,istag]:
An image stream groups sets of related images under tags - analogous to a
branch in a source code repository. Each image stream may have one or
more tags (the default tag is called "latest") and those tags may point
at external Docker registries, at other tags in the same stream, or be
controlled to directly point at known images. In addition, images can be
pushed to an image stream tag directly via the integrated Docker
registry.

* Secrets [secret]:

The secret resource can hold text or binary secrets for delivery into
your pods. By default, every container is given a single secret which

Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC

149

contains a token for accessing the API (with limited privileges) at
/var/run/secrets/kubernetes.io/serviceaccount. You can create new
secrets and mount them in your own pods, as well as reference secrets
from builds (for connecting to remote servers) or use them to import
remote images into an image stream.

* Projects [project]:
A11 of the above resources (except Nodes) exist inside of a project.
Projects have a 1ist of members and their roles, like viewer, editor,
or admin, as well as a set of security controls on the running pods, and
limits on how many resources the project can use. The names of each
resource are unique within a project. Developers may request projects
be created, but administrators control the resources allocated to
projects.

For more, see https://docs.openshift.com

Usage:
oc types [flags]

Examples:
View all projects you have access to

oc get projects

See a 1ist of all services in the current project
oc get svc

Describe a deployment configuration in detail
oc describe dc mydeploymentconfig

Show the images tagged into an image stream
oc describe is ruby-centos7

Use "oc options" for a 1ist of global command-line options (applies to all commands).

To get a summary of the most important components of the cluster, use the oc get all
command. This command iterates through the major resource types and prints out an
information summary:

oc get all

NAME READY STATUS RESTARTS AGE

pod/docker-registry-3-4fiql 1/1 Running 2 1d

pod/router-2-4gnmj 1/1 Running 3 1d

pod/router-2-cp5sf 1/1 Running 3 1d

pod/router-2-s1kjf 1/1 Running 3 1d

NAME DESIRED CURRENT READY AGE
replicationcontroller/docker-registry-1 0 0 0 1d
replicationcontroller/docker-registry-2 0 0 0 1d
replicationcontroller/docker-registry-3 1 1 1 1d
replicationcontroller/router-1 0 0 0 1d
replicationcontroller/router-2 3 3 3 1d

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/docker-registry ClusterIP 172.30.26.207 <none> 5000/TCP 1d
service/kubernetes ClusterIP 172.30.0.1 <none> 443/TCP,53/UDP,53/TCP 1d
service/router ClusterIP 172.30.1.163 <none> 80/TCP,443/TCP,1936/TCP 1d
NAME REVISION DESIRED CURRENT TRIGGERED BY
deploymentconfig.apps.openshift.io/docker-registry 3 1 1 config
deploymentconfig.apps.openshift.io/router 2 3 3 config

150 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

A useful option is available that you can add to the oc get command: the -w option. This
option continuously watches the output in real-time. This option is useful, for example, for
monitoring the output of an oc get pod command continuously instead of running it multiple
times.

If the details that are provided by the oc get command are not sufficient, more information
about the resource can be retrieved by using the oc describe RESOURCE_TYPE RESOURCE_NAME
command. Unlike the oc get command, there is no way to iterate through all of the different
resources by type. Although most major resources can be described, this functionality is not
available across all resources. To display detailed information about a Pod resource use the
following command:

oc describe pod docker-registry-3-4flql

Name: docker-registry-3-4fiql

Namespace: default

Priority: 0

PriorityClassName: <none>

Node: mstnode02.domain.example.com/192.168.11.203
Start Time: Thu, 07 Nov 2019 16:09:12 +0000

Labels: deployment=docker-registry-3

deploymentconfig=docker-registry
docker-registry=default

Annotations: openshift.io/deployment-config.latest-version=3
openshift.io/deployment-config.name=docker-registry
openshift.io/deployment.name=docker-registry-3
openshift.io/scc=restricted

Status: Running

IP: 10.130.0.48

Output truncated

Volumes:

registry-storage:
Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)

ClaimName: registry-pvc
ReadOnly: false
registry-token-zg2th:

Type: Secret (a volume populated by a Secret)
SecretName: registry-token-zg2th
Optional: false
QoS Class: Burstable
Node-Selectors: node-role.kubernetes.io/infra=true
Tolerations: node.kubernetes.io/memory-pressure:NoSchedule
Events: <none>

Use the oc export RESOURCE_TYPE RESOURCE_NAME [-o OUTPUT_FORMAT] command to export a
definition of a resource. Typical use cases include creating a backup, or to aid in modifying a
definition. By default, the export command prints out the object representation in YAML
format, but this can be changed by providing the -o option.

Use the oc create command to create resources from a resource definition. Typically, this is
paired with the oc export command for editing definitions.

Use the oc delete RESOURCE_TYPE RESOURCE_NAME command to remove a resource from the
OpenShift cluster.

Note: A fundamental understanding of the OpenShift architecture is needed because
deleting managed resources, such as pods, results in newer instances of those resources
being automatically recreated.

The oc new-app command can create application pods to run on OpenShift in many different
ways. It can create pods from Docker images, Docker files, and raw source code by using the
Source-to-Image (S2l) process. The command can create a service and a deployment
configuration, and a build configuration if source code is used.

Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC 151

Use the oc exec POD_NAME COMMAND command to execute commands against a Pod:

oc exec docker-registry-3-4fiql hostname
docker-registry-3-4fiq

Use the oc rsh POD_NAME command to start a remote shell connection to the Pod. This is
useful for logging in and investigating issues in a running Pod:

oc rsh docker-registry-3-4fiql

sh-4.2$ hostname

docker-registry-3-4fiql

sh-4.2% 1s /

bin boot config.yml dev etc home 1ib 1ib64 media mnt opt proc registry root
run sbin srv sys tmp usr var

sh-4.2$ exit

exit

Use the oc status command to get a high-level status of the current project:

oc status

In project default on server https://ocp.domain.example.com:8443

svc/docker-registry - 172.30.26.207:5000

dc/docker-registry deploys registry.redhat.io/openshift3/ose-docker-registry:v3.11.153

deployment #3 deployed 2 days ago - 1 pod
deployment #2 deployed 2 days ago
deployment #1 deployed 2 days ago

svc/kubernetes - 172.30.0.1 ports 443->8443, 53->8053, 53->8053

svc/router - 172.30.1.163 ports 80, 443, 1936
dc/router deploys registry.redhat.io/openshift3/ose-haproxy-router:v3.11.153
deployment #2 deployed 2 days ago - 3 pods
deployment #1 deployed 2 days ago
1 warning identified, use 'oc status --suggest' to see details.

The oc command-line client is the primary tool used by administrators to detect and
troubleshoot issues in an OpenShift cluster. It has a number of options that enable you to
detect, diagnose, and fix issues on the master and worker nodes, services, and resources
that are managed by the cluster.

Events allow OpenShift to record information about lifecycle events in a cluster. They help
developers and administrators to view information about OpenShift components in an unified
way. The oc get events command provides information about events in an OpenShift
namespace. The following events are captured and reported:

» Master and worker nodes status
» Pod creation and deletion
» Pod placement scheduling

Events are useful during troubleshooting. You can get high-level information about failures

and issues in the cluster, and then proceed to investigate by using log files and other oc
subcommands.

152 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

You can get a list of events in a project by using the oc events command as follows:

oc get events -n default

LAST SEEN FIRST SEEN COUNT NAME KIND

SUBOBJECT TYPE REASON SOURCE MESSAGE
7m 4d 704 template-service-broker.15d413288a764433
ClusterServiceBroker Normal FetchedCatalog
service-catalog-controller-manager Successfully fetched catalog entries from broker.
2m 4d 1403 ansible-service-broker.15d41326aef38cda
ClusterServiceBroker Normal FetchedCatalog

service-catalog-controller-manager Successfully fetched catalog entries from broker.

Note: For more information about events in OpenShift Container Platform 3.11, see this
web page.

The oc 1ogs RESOURCE_NAME command retrieves the log output for a specific build,
deployment, or pod. This command works for builds, build configurations, deployment
configurations, and pods.

To view the logs for the registry Pod use the oc logs:

oc logs docker-registry-3-4fiql

time="2019-11-09T19:08:13.8244384137" Tevel=info msg=response go.version=gol.9.7
http.request.host="10.130.0.48:5000"
http.request.id=274b894e-93b8-4186-9757-f4736ba792a9 http.request.method=GET
http.request.remoteaddr="10.130.0.1:48328" http.request.uri=/healthz
http.request.useragent=kube-probe/1.11+

http.response.duration="53.286us" http.response.status=200 http.response.written=0
instance.id=29752895-706b-4169-951c-351af53ad214

The oc rsync command copies the contents to or from a directory in a running pod. If a pod
has multiple containers, you can specify the container ID by using the -c option. Otherwise, it
defaults to the first container in the pod. This is useful for transferring log files and
configuration files from the container.

To copy contents from a directory in a pod to a local directory, run the following command:

oc rsync <pod>:<pod dir> <local _dir> [-c <container>]

To copy contents from a local directory to a directory in a pod, run the following command:

oc rsync <local_dir> <pod>:<pod_dir> -c [<container>]

Use the oc port-forward command to forward one or more local ports to a pod. This allows
to listen on a specific or random port locally, and have data forwarded to and from specific
ports in the pod. This command features the following format:

oc port-forward <pod> [<local port>:]<remote port>

Note: The OpenShift Container Platform 3.11 CLI Reference is available at this web page.

Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC 153

https://docs.openshift.com/container-platform/3.11/dev_guide/events.html
https://docs.openshift.com/container-platform/3.11/dev_guide/events.html
https://red.ht/2XZGBmz

6.6 Installing the IBM Cloud Pak for Multicloud Management

This section shows an offline installation of the IBM Cloud Pak for Multicloud Management
3.2.1. Complete the following steps:

1. Update the firewall to allow HTTP and HTTPS access to the Master VM:

firewall-cmd --permanent --add-service=https

success

firewall-cmd --permanent --add-service=http
success

firewall-cmd --reload

success

2. Access the OpenShift console to check that the OpenShift cluster is set up correctly. The
OpenShift console can access by running the following command:

oc -n openshift-console get route
NAME HOST/PORT PATH SERVICES PORT TERMINATION WILDCARD
console console.apps.domain.example.com console https reencrypt/Redirect None

The console URL in this example is console.apps.ssm.sdc.gts.ibm.com. Open the URL
with your browser, as shown in Figure 6-6.

@ | £ https:/fconsole.apps.ssm.sdc.gts.ibm.com/status/ns/default

OPENSHIFT CONTAINER PLATFORM Clus
Home Project: default «

Status
Search
Getting Started

Openshift helps you quickly develop, host, and scale applications. To get started, create a project for your application.

Events

Workloads View My Projects
Networking
Storane Overview
Events Software Info
Builds
Kubernetes v1.11.0+d4cacc0
Administration Openshift Container v3.11.154
Projects Platferm
Service Accounts
Roles Documentation

Role Bindings

Full Documentation

Resource Quotas

From getting started with creating your first application,
to trying out more advanced build and deployment
techniques, these resources provide what you need to

set up and manage your environment as a cluster

Figure 6-6 OpenShift Console

You must have a pre-configured StorageClass in OpenShift that can be used for creating
storage:

oc get sc
NAME PROVISIONER AGE
ibm-powervc-k8s-volume-default (default) ibm/powervc-k8s-volume-provisioner 2h

154 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

3. Expose the OpenShift image registry with a route:

oc get route -n default

NAME HOST/PORT PATH SERVICES PORT
TERMINATION WILDCARD

docker-registry docker-registry-default.apps.domain.example.com docker-registry <all>
passthrough None

registry-console registry-console-default.apps.domain.example.com registry-console <all>

passthrough None

4. For Elasticsearch, ensure that the vm.max_map_count setting is at least 262144 on all
nodes. Run the following command to check:

sysctl vm.max_map_count
vm.max_map_count = 262144

5. For the metrics server, check that the OpenShift Container Platform metrics server was
installed before you install Cloud Pak Foundation. You can verify that the server was
installed correctly by running:

oc adm top node

NAME CPU(cores) CPU% MEMORY (bytes) MEMORY%
mstnode0l.domain.example.com 579m 0% 4742Mi 15%
wrknode0Ol.domain.example.com 85m 0% 1530Mi 2%
wrknode02.domain.example.com 147m 0% 1533Mi 2%

6. Check that the admission webhooks are enabled on the OpenShift Container Platform all
master nodes:

cp /etc/origin/master/master-config.yaml
/etc/origin/master/master-config.yaml.orig
vi /etc/origin/master/master-config.yaml
admissionConfig:
pluginConfig:
MutatingAdmissionWebhook:
configuration:
apiVersion: apiserver.config.k8s.io/vlalphal
kubeConfigFile: /dev/null
kind: WebhookAdmission
ValidatingAdmissionWebhook:
configuration:
apiVersion: apiserver.config.k8s.io/vlalphal
kubeConfigFile: /dev/null
kind: WebhookAdmission

Restart your apiserver and controllers
/usr/local/bin/master-restart api

2

/usr/local/bin/master-restart controllers
2

Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC 155

7. Download the installation file (ibm-cloud-private-ppc64le-3.2.1.tar.gz) to the master
node. Then, load the container images into the local registry:

tar xf ibm-cloud-private-ppc64le-3.2.1.tar.gz -0 | sudo docker load

22f2eldaafdl: Loading layer 279.8 MB/279.8 MB
4153cc3de084: Loading layer 20.48 kB/20.48 kB
ceaale685ael: Loading layer 21.49 MB/21.49 MB
e5c43e70143d: Loading layer 170.9 MB/170.9 MB
35f172dfla4l: Loading layer 23.95 MB/23.95 MB
bde32f0ec8la: Loading layer 34.3 kB/34.3 kB
afdacfceb260: Loading layer 100.7 MB/100.7 MB
500de4764474: Loading layer 28.38 MB/28.38 MB

Qutput truncated

3f2ac47d1346: Loading layer
e9fd350aaef5: Loading layer
8b58cfdade26: Loading layer
2aa89bbaaba4: Loading layer
dc0532bb043a: Loading layer
93379faa8eb5: Loading layer
ca43800e3ee2: Loading layer
Loaded image: ibmcom/nginx-ingress-controller-ppc64le:0.23.1

611.3 kB/611.3 kB
37.7 MB/37.7 MB
5.12 kB/5.12 kB

31.39 MB/31.39 MB

19.74 MB/19.74 MB

3.072 kB/3.072 kB

3.072 kB/3.072 kB

8. Because of a limitation with OpenShift, to deploy IBM Multicloud Manager on the
OpenShift Master-Infrastructure node, you must label the node as an OpenShift compute
node by using the following command:

oc label node mstnode0l.domain.example.com node-role.kubernetes.io/compute=true
9. Create an installation directory on the boot node:

mkdir /opt/ibm-multicloud-manager-3.2.1; cd /opt/ibm-multicloud-manager-3.2.1
10.Extract the cluster directory:

docker run --rm -v $(pwd):/data:z -e LICENSE=accept --security-opt
label:disable ibmcom/icp-inception-ppc64le:3.2.1-ee cp -r cluster /data

11.Copy the OpenShift admin. kubeconfig file to the cluster directory. The OpenShift
admin.kubeconfig file can be found in the /etc/origin/master/admin.kubeconfig
directory:

cp /etc/origin/master/admin.kubeconfig
/opt/ibm-multicloud-manager-3.2.1/cluster/kubeconfig

12.Use the power.openshift.config.yaml file to replace the config.yaml for Linux on Power
(ppc64le) before you deploy the services:

cd /opt/ibm-multicloud-manager-3.2.1/cluster/
echo y |cp power.openshift.config.yaml config.yaml

156 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

18.Update the config.yaml file:

A Tist of OpenShift nodes that used to run ICP components
cluster_nodes:
master:
- mstnode0l.domain.example.com
proxy:
- mstnode0l.domain.example.com
management :
- mstnode0l.domain.example.com
va:
- mstnode0l.domain.example.com

storage_class: ibm-powervc-k8s-volume-default
default_admin_password: <password>

password_rules:

-

ingress_http_port: 3080
ingress_https_port: 3443

14.The installer fails trying to create multicluster-hub-security-advisor-onboarding-xxxx
on the worker node. To prevent this failure, mark the worker Nodes as unschedulable:

oc get events --all-namespaces | grep multicluster-hub-security-advisor

kube-system 39m 39m 1
multicluster-hub-security-advisor-onboarding-pndbt.15db965a517ch822 Pod
Normal Scheduled default-scheduler

Successfully assigned kube-system/multicluster-hub-security-advisor-onboarding-pndbt to
wrknode02.domain.example.com

kube-system 39m 39m 1
multicluster-hub-security-advisor-onboarding.15db965a5137ad18 Job

Normal SuccessfulCreate job-controller

Created pod: multicluster-hub-security-advisor-onboarding-pndbt

kube-system 38m 38m 6
multicluster-hub-security-advisor-onboarding-pndbt.15db965ef3c989bd Pod
spec.containers{multicluster-hub-security-advisor-onboarding} Warning Failed kubelet,
wrknode02.domain.example.com Error: secrets "icp-serviceid-apikey-secret" not
found

oc get nodes

NAME STATUS ROLES AGE VERSION
mstnode0l.domain.example.com Ready compute,infra,master 13h

v1.11.0+d4caccO

wrknodeOl.domain.example.com Ready compute 13h

vl.11.0+d4caccO

wrknode02.domain.example.com Ready compute 13h

v1.11.0+d4caccO

oc adm manage-node wrknode0l.domain.example.com --schedulable=false

NAME STATUS ROLES AGE VERSION
wrknode0Ol.domain.example.com Ready,SchedulingDisabled compute 2h

v1.11.0+d4caccO

oc adm manage-node wrknode02.domain.example.com --schedulable=false

NAME STATUS ROLES AGE VERSION
wrknode02.domain.example.com Ready,SchedulingDisabled compute 2h

v1.11.0+d4caccO

Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC 157

15.Deploy IBM Multicloud Manager:

docker run -t --net=host -e LICENSE=accept -v $(pwd):/installer/cluster:z -v
/var/run:/var/run:z -v /etc/docker:/etc/docker:z --security-opt label:disable
ibmcom/icp-inception-ppc64le:3.2.1-ee install-with-openshift

PLAY [Dep]oying addon Services] EE R

TASK [Gathering Facts] FERIIKKAKRKR KKK XXX XAKRKRIRKAIR KRRk hhhhhhhhhhhhhhhhhhhhhhhdhhdxdkdxxhkkxxxx

ok: [Tocalhost]

TASK [kubectl-config : Configuring kubectl]

B e o e e e R o R R R R R R R R R L E 2

changed: [localhost -> localhost]

TASK [k8s-detection : Detecting Kubernetes type]

B e R R R R R R R R R R R R *kkkkkkhkkkk kkhkkhkhkkhkhkkkkkkkkhkkkkx

changed: [localhost]
TASK [k8s-detection : Detect cluster vendor]
AR A A IA A KA IR A A I AT A I I A h A h Ak hdhh bk bk h Ak hhkhhhkhhhhhhhhhhdhhhhhhhdhddhdhhdhhdhddhhhdhhdhhdhrdisd

changed: [localhost]

TASK [k8S—detECt10n B Setting Kubernetes type] khkkhkkkkhkkkhkkhkkkhhkkkhhkkhkkhkhhkkhkkhhkkhkhkkhhkkhhkkkhhkkkkxkx*x
ok: [Tocalhost]

TASK [check-password : Checking if setting password or not] *#¥¥*dxksdddkddittidddrrixs
skipping: [localhost]

TASK [check-password : Creating check password script] *###ssddsdooooboboboohohhhshhhdhhhssss
changed: [localhost]

Qutput truncated

TASK [icam-workaround : Create ingress secret for icam] ***xx¥ddkssxiksdhssxrrsddksxx
skipping: [localhost]

TASK [openshift_archive_addon . 1nc]ude tasks] B R R R R R S

PLAY RECAP

Khhkkhhkhkhhhdhhdkrhhkhhhhhhhdrhdrhhhhhhdrhdrhdhhhrddrdrhhxkh* *kkkkkkkk k% *khkkkkhkkkhkhkkkhhkkkhhhkhrkhkkx
1.1.1.1 : ok=0 changed=0 unreachable=0 failed=0

localhost : ok=446 changed=288 unreachable=0 failed=0

POST DEPLOY MESSAGE

R e R R R R R R E T R R R R *kkkkkkhkkk kkhkkhkkkhkhkkkkkkkkkkkkx

The Dashboard URL: https://icp-console.apps.domain.example.com:443, please use
credentials in config.yaml to Togin.

Playbook run took 0 days, 1 hours, 13 minutes, 40 seconds
16.If you encounter errors during installation, uninstall it by running the following command:

docker run -t --net=host -e LICENSE=accept -v $(pwd):/installer/cluster:z -v
/var/run:/var/run:z -v /etc/docker:/etc/docker:z --security-opt label:disable
ibmcom/icp-inception-ppc64le:3.2.1-ee uninstall-with-openshift

158 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

17.Mark the worker Nodes as schedulable:

oc adm manage-node wrknode0l.domain.example.com --schedulable=true

NAME STATUS ROLES AGE VERSION
wrknode0Ol.domain.example.com Ready compute 3h v1.11.0+d4caccO
oc adm manage-node wrknode02.domain.example.com --schedulable=true
NAME STATUS ROLES AGE VERSION
wrknode02.domain.example.com Ready compute 3h v1.11.0+d4caccO

18.Remove the compute label from the OpenShift Master-Infrastructure node:

oc label node mstnode0l.domain.example.com
node-role.kubernetes.io/compute=false --overwrite
node/mstnode0l.domain.example.com labeled

19.Use the URL (https://icp-console.apps.domain.example.com:443) to connect to the IBM
Multicloud Manager management console, as shown in Figure 6-7.

@ £ https:/ficp-console.apps.gdl.stglabs.ibm.com/console/welcome e w

IBM Cloud Pak for Multicloud Management

Welcome to IBM Cloud Private

The Platform: The core platform is built on Kubernetes, a container archestration platform
that works across private, dedicated, and public clouds and can integrate open source

application runtimes, Helm charts, and other apps in its containers.

The Catalog: You can discover new services to use in your applications and quickly deploy .
trusted IBM middleware to your private cloud from the catalog. i 3

Managing your cloud: A core set of management services for the application runtime ! R N
frameworks and the applications that you develop is included as part of the platform. These
management services include logging, monitoring, access control, and event management.

You can integrate these tools with other enterprise management service instances so that

you access all of your management tools from one location.

Tired of this top section? Hide it

Manage vour platform

For more information about IBM Cloud Pak for Multicloud Management installation, see IBM
Knowledge Center.

Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC 159

https://ibm.co/2OCyXeS
https://ibm.co/2OCyXeS

160 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Part 3

Practical scenarios

This part builds on the previous sections by describing some of the typical next steps and use
cases. It also provides an overview of some specific deployment scenarios.

The following chapters are included in this part:

» Chapter 7, “Use cases” on page 163
» Chapter 8, “Special topics” on page 191

© Copyright IBM Corp. 2020. All rights reserved. 161

162 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Use cases

This chapter describes a few use cases. The first use case shows a node.js application build
that is run in a container by using OpenShift, and as a backend the application uses
MongoDB 3.6.

The second case shows a scenario that can be used for migration in a multicloud
environment in particular from one OpenShift environment to another on other site, and it can
be used even for failover purposes. This use case also shows running the same backend
database on different architectures.

This chapter includes the following topics:

» 7.1, “Building Cloud Native Applications on IBM Power Systems: Rapid development of
new applications” on page 164

» 7.2, “Hybrid architecture and multicloud applications: A true hybrid multicloud feel for the
user” on page 169

© Copyright IBM Corp. 2020. All rights reserved. 163

7.1 Building Cloud Native Applications on IBM Power Systems:
Rapid development of new applications

The Red Hat OpenShift Container Platform gives developers a self-service platform on which
to build and run containerized applications. With Red Hat OpenShift, you can quickly start
creating cloud-native applications or cloud-enabling existing applications, and spawning an
environment for a new microservice in minutes.

This section deploys a sample Node.js Application from github
(https://github.com/sclorg/nodejs-ex) to count the page views, and a MongoDB database
from the docker registry (registry.access.redhat.com/rhscl/mongodb-36-rhel7) to store the
views count.

To run the example, complete the following steps:

1. Log in as developer, as shown in Example 7-1.

Example 7-1 Login as developer

oc login -u developer

Authentication required for https://ocp.domain.example.com:8443 (openshift)
Username: developer

Password:

Login successful.

You don't have any projects. You can try to create a new project, by running

oc new-project <projectname>

2. Create the nodejs-example project, as shown in Example 7-2.

Example 7-2 Create nodejs-example project

oc new-project nodejs-example --display-name="nodejs" --description="Sample
Node.js Application"
Now using project "nodejs-example" on server "https://ocp.domain.example.com:8443".

You can add applications to this project with the 'new-app' command. For example, try:
oc new-app centos/ruby-25-centos7~https://github.com/sclorg/ruby-ex.git
to build a new example application in Ruby.

oc project nodejs-example
Already on project "nodejs-example" on server "https://ocp.domain.example.com:8443".

3. Deploy the nodejs-ex application from the source code, as shown in Example 7-3.

Example 7-3 deploy nodejs-ex application

oc new-app https://github.com/sclorg/nodejs-ex -1 name=myapp
--> Found image el19be86 (2 months old) in image stream "openshift/nodejs" under tag "10"
for "nodejs"

Node.js 10.16.3

Node.js 10.16.3 available as a container is a base platform for building and running
various Node.js 10.16.3 applications and frameworks. Node.js is a platform built on
Chrome's JavaScript runtime for easily building fast, scalable network applications.
Node.js uses an event-driven, non-blocking I/0 model that makes it Tightweight and

164 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

https://github.com/sclorg/nodejs-ex

efficient, perfect for data-intensive real-time applications that run across distributed
devices.

Tags: builder, nodejs, nodejs-10.16.3

* The source repository appears to match: nodejs
* A source build using source code from https://github.com/sclorg/nodejs-ex will be
created
* The resulting image will be pushed to image stream tag "nodejs-ex:latest"
* Use 'start-build' to trigger a new build
* This image will be deployed in deployment config "nodejs-ex"
* Port 8080/tcp will be load balanced by service "nodejs-ex"
* QOther containers can access this service through the hostname "nodejs-ex"

--> Creating resources with label name=myapp ...
imagestream.image.openshift.io "nodejs-ex" created
buildconfig.build.openshift.io "nodejs-ex" created
deploymentconfig.apps.openshift.io "nodejs-ex" created
service "nodejs-ex" created

--> Success
Build scheduled, use 'oc logs -f bc/nodejs-ex' to track its progress.
Application is not exposed. You can expose services to the outside world by executing

one or more of the commands below:

'oc expose svc/nodejs-ex'
Run 'oc status' to view your app.

4. Run the oc status command to verify the status of the project, as shown in Example 7-4.

Example 7-4 Run oc status command

oc status
In project nodejs (nodejs-example) on server https://ocp.domain.example.com:8443

svc/nodejs-ex - 172.30.186.102:8080
dc/nodejs-ex deploys istag/nodejs-ex:latest <-
bc/nodejs-ex source builds https://github.com/sclorg/nodejs-ex on openshift/nodejs:10
deployment #1 pending 6 seconds ago

3 infos identified, use 'oc status --suggest' to see details.

5. Expose the nodejs-ex service, as shown in Example 7-5.

Example 7-5 Expose nodejs-ex

oc get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

nodejs-ex ClusterIP 172.30.186.102 <none> 8080/TCP 7m

oc expose svc/nodejs-ex --hostname=myapp.apps.domain.example.com
route.route.openshift.io/nodejs-ex exposed

oc get routes

NAME HOST/PORT PATH SERVICES PORT TERMINATION WILDCARD
nodejs-ex myapp.apps.domain.example.com nodejs-ex 8080-tcp None

Note: The oc expose command supports generating only unsecured routes. For
generating secured (edge, pass-through, re-encrypt) routes, use the oc create route
command.

Chapter 7. Use cases 165

166

When you access the application link http://myapp.apps.domain.example.com, as shown in
Figure 7-1, notice the index page Page view count reads “No database configured”. To fix this

issue, add a MongoDB service.

© | £ myapp.apps.gdl.stglabs.iom.com

Welcome to your Node.js application on OpenShift

How to use this example application

For instructions on how to use this application with OpenShift, start by reading the
Developer Guide.

Deploying code changes

The source code for this application is available to be forked from the OpenShift GitHub
repository. You can configure a webhook in your repository to make OpenShift
automatically start a build whenever you push your code:

1. From the Web Console homepage, navigate to your project

2. Click on Browse > Builds

3. Click the link with your BuildConfig name

4. Click the Configuration tab

5. Click the "Copy to clipboard” icon to the right of the "GitHub webhook URL" field

6. Navigate to your repository on GitHub and click on repository settings >
‘webhooks > Add webhook

7. Paste your webhook URL provided by OpenShift in the "Payload URL" field

8. Change the "Content type" to ‘application/json’

9. Leave the defaults for the remaining fields — that's it!

After you save your webhook, if you refresh your settings page you can see the status of
the ping that Github sent to OpenShift to verify it can reach the server.

Note: adding a webhook requires your OpenShift server to be reachable from GitHub.

Managing your application

Documentation on how to manage your application from the Web Console or Command
Line is available at the Developer Guide.

Web Console

You can use the Web Console to view the state of your application components and
launch new builds.

Command Line

With the OpenShift command fine interface (CLI), you can create applications and
manage projects from a terminal.

Development Resources
« OpenShift Documentation
* Qpenshift Origin GitHub
« Source To Image GitHub
 Getting Started with Node.js on OpenShift
» Stack Overflow questions for OpenShift
+ Git documentation

Request information

|F'age view count: No

Figure 7-1 http://myapp.apps.domain.example.com without MongoDB

6. Deploy the mongodb-36-rhel7 application from the Red Hat registry, as shown in
Example 7-6.

Example 7-6 Deploy mongodb application

oc new-app \
-e MONGODB_USER=admin \
-e MONGODB_PASSWORD=secret \
-e MONGODB_DATABASE=mongo_db\
-e MONGODB_ADMIN_PASSWORD=super-secret \
registry.access.redhat.com/rhscl/mongodb-36-rhel7
--> Found Docker image 3414ee2 (4 weeks old) from registry.access.redhat.com for
"registry.access.redhat.com/rhscl/mongodb-36-rhel7"

MongoDB 3.6

MongoDB (from humongous) is a free and open-source cross-platform document-oriented
database program. Classified as a NoSQL database program, MongoDB uses JSON-like documents
with schemas. This container image contains programs to run mongod server.

Tags: database, mongodb, rh-mongodb36

* An image stream tag will be created as "mongodb-36-rhel7:1atest" that will track this
image
* This image will be deployed in deployment config "mongodb-36-rhel7"
* Port 27017/tcp will be load balanced by service "mongodb-36-rhel7"
* Other containers can access this service through the hostname "mongodb-36-rhel7"
* This image declares volumes and will default to use non-persistent, host-Tocal
storage.
You can add persistent volumes Tater by running 'volume dc/mongodb-36-rhel7 --add

--> Creating resources ...
imagestream.image.openshift.io "mongodb-36-rhel7" created

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

deploymentconfig.apps.openshift.io "mongodb-36-rhel7" created
service "mongodb-36-rhel7" created
--> Success
Application is not exposed. You can expose services to the outside world by executing
one or more of the commands below:
'oc expose svc/mongodb-36-rhel7'’
Run 'oc status' to view your app.

7. Configure the persistent volume for MongoDB, as shown in Example 7-7.

Example 7-7 MongoDB persistent volume

cat > mongodb-pvc.yml <<EOF_/mongodb-pvc.yml
kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: mongodb-pvc
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 17Gi
EOF_/mongodb-pvc.yml

oc get dc

NAME REVISION DESIRED CURRENT TRIGGERED BY

mongodb-36-rhel7 1 1 1 config,image(mongodb-36-rhel7:1atest)
nodejs-ex 1 1 1 config,image (nodejs-ex:latest)

oc set volume dc/mongodb-36-rhel7
deploymentconfigs/mongodb-36-rhel?
empty directory as mongodb-36-rhel7-volume-1
mounted at /var/lib/mongodb/data
oc create -f mongodb-pvc.yml
persistentvolumeclaim/mongodb-pvc created

oc get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE

mongodb-pvc Bound pvc-424befe9-0403-11lea-b8f2-fa47ee288120 17Gi RWO

ibm-powervc-k8s-volume-default 1m
oc set volume dc/mongodb-36-rhel7 --add --name=mongodb-storage -t pvc
--claim-name=mongodb-pvc --overwrite
warning: volume "mongodb-storage" did not previously exist and was not overriden. A new
volume with this name has been created
instead.deploymentconfig.apps.openshift.io/mongodb-36-rhel7 volume updated
oc set volume dc/mongodb-36-rhel?7
deploymentconfigs/mongodb-36-rhel7

empty directory as mongodb-36-rhel7-volume-1

mounted at /var/lib/mongodb/data
pvc/mongodb-pvc (allocated 17GiB) as mongodb-storage

8. Set up the environment variables for the nodejs-ex application, as shown in Example 7-8.

Example 7-8 Setting environment variables

oc status
In project nodejs (nodejs-example) on server https://ocp.domain.example.com:8443

svc/mongodb-36-rhel7 - 172.30.155.22:27017
dc/mongodb-36-rhel7 deploys istag/mongodb-36-rhel7:latest

Chapter 7. Use cases 167

deployment #2 deployed 5 minutes ago - 1 pod
deployment #1 deployed 13 minutes ago

http://myapp.apps.domain.example.com to pod port 8080-tcp (svc/nodejs-ex)
dc/nodejs-ex deploys istag/nodejs-ex:latest <-

bc/nodejs-ex source builds https://github.com/sclorg/nodejs-ex on openshift/nodejs:10
deployment #1 deployed about an hour ago - 1 pod

oc set env dc/nodejs-ex

MONGO_URL="mongodb://admin:secret@172.30.155.22:27017 /mongo_db'

deploymentconfig.apps.openshift.io/nodejs-ex updated

oc status

In project nodejs (nodejs-example) on server https://ocp.domain.example.com:8443

svc/mongodb-36-rhel7 - 172.30.155.22:27017
dc/mongodb-36-rhel7 deploys istag/mongodb-36-rhel7:latest
deployment #2 deployed 7 minutes ago - 1 pod
deployment #1 deployed 15 minutes ago

http://myapp.apps.domain.example.com to pod port 8080-tcp (svc/nodejs-ex)
dc/nodejs-ex deploys istag/nodejs-ex:latest <-
bc/nodejs-ex source builds https://github.com/sclorg/nodejs-ex on openshift/nodejs:10
deployment #2 deployed about a minute ago - 1 pod
deployment #1 deployed about an hour ago

9. Check the Page view count by accessing the application link
http://myapp.apps.domain.example.com, as shown in Figure 7-2.

Welcome to your Node.js application on OpenShift

How to use this example application Managing your application
For instructions on how to use this application with OpenShift, start by reading the Documentation on how to manage your application from the Web Console or Command
Developer Guide. Line is available at the Developer Guide.

Web Console

Hoployingicodaicliahges You can use the Web Console to view the state of your application components and
The source code for this application is available to be forked from the OpenShift GitHub launch new builds.
repository. You can configure a webhook iIn your repository to make OpenShift
automatically start a build whenever you push your cede:

Command Line
With the OpenShift command line interface (CLI), you can create applications and

1. From the Web Console homepage, navigate to your project a8 BBt ro 3 tenel

2. Click on Browse > Builds
3. Click the link with your BuildConfig name
4. Click the Configuration tab

5. Click the "Copy to clipboard icon {o the right of the "GitHub webhook URL" fieid D€Velopment Resources

6. Navigate to your repository on GitHub and click on repository settings > « OpenShift Documentation
webhooks > Add webhook « Openshit Origin GitHub

7. Paste your webhook URL provided by OpenShift in the "Payload URL" field « Source To Image GitHub

8. Change the "Content type" to ‘application/json’ o Getting Started with Node.]s on OpenShift

9. Leave the defaults for the remaining fields — that's it! * Stack Overfiow questions for OpenShift

* Git documentation
After you save your webhaok, if you refresh your settings page you can see the status of
the ping that Github sent to OpenShift to verify it can reach the server.
Request information

it vtk s o oot sl o W1

Working in your local Git repository DB Connection Info:
If you forked the application from the OpenShift GitHub example, you'll need to manually Type: MongoDB

Figure 7-2 http://myapp.apps.domain.example.com with MongoDB

10.Scale the nodejs-ex application to three nodes, as shown in Example 7-9.

Example 7-9 Scale nodejs-ex application

oc get dc

NAME REVISION DESIRED CURRENT TRIGGERED BY

mongodb-36-rhel7 2 1 1 config,image(mongodb-36-rhel7:1atest)
nodejs-ex 2 1 1 config,image(nodejs-ex:latest)

oc scale dc/nodejs-ex --replicas=3
deploymentconfig.apps.openshift.io/nodejs-ex scaled

168 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

oc get dc

NAME REVISION DESIRED CURRENT TRIGGERED BY
mongodb-36-rhel7 2 1 1 config,image (mongodb-36-rhel7:1atest)
nodejs-ex 2 3 3 config,image(nodejs-ex:latest)

7.2 Hybrid architecture and multicloud applications: A true
hybrid multicloud feel for the user

For containers, different architectures do not mean different types of deployments, even in a
multicloud environment with different infrastructures. This section gives an example of how
two different environments operate on different infrastructures, architectures, and OpenShift
versions. Ephemeral containers that do not use persistent volumes are easy to migrate
across different Kubernetes environments.

This section also demonstrates migrating data that is on persistent volumes that are used by
persistent application containers across environments to show the complete stack of a truly
multicloud hybrid architecture.

7.2.1 Multicloud approach by using stateful MongoDB database

MongoDB is a NoSQL database that is being used widely as a backend for many
applications. This scenario was selected because it shows the flexibility of working with
containers on IBM Power Systems servers while using multicloud functions, even on stateful
applications.

The intent is to show with simple Yet Another Markup Language (yaml) files that the same
user experience can be achieved, even by the administrator of the clusters. The yaml files can
even be converted in templates later if needed for self service deployment. The user
transparent experience is shown that uses MongoDB Compass client. The on-premise test
environment is in Guadalajara (Mexico), the AWS zone is in Ohio (USA), and the client is in
New York (US).

7.2.2 OpenShift Container Platform 3.11 ppc64le on-premises

For demonstration purposes, the on-premises scenario uses a small Power Systems
OpenShift cluster with a single node, as shown in Example 7-10.

Example 7-10 OpenShift 3.11 cluster on a Power Systems node

[root@dcocp0l ~]# oc get nodes -o json |grep -Al0 "nodeInfo"
"nodeInfo": {
"architecture": "ppc64le",
"bootID": "5d13a724-e909-4481-a617-ebd9acf4e020",
"containerRuntimeVersion": "docker://1.13.1",
"kernelVersion": "4.14.0-115.13.1.el17a.ppcb4le",
"kubeProxyVersion": "v1.11.0+d4cacc0",
"kubeletVersion": "v1.11.0+d4cacc0",
"machineID": "28803bf7ab784a0796e22f40f33a2827",
"operatingSystem": "Tinux",
"osImage": "OpenShift Enterprise",
"systemUUID": "IBM,037892CBA\u0000"
[root@dcocp0l ~]#

Chapter 7. Use cases 169

170

For a stateful container, you need the PV backing up the PVC requested for the pod. Other
scenarios showed the FlexVolume use with PowerVC, but this case uses the NFS attachment
for you to see another supported backend for volumes. This type of backend is still available if
not in use on any pod. The deployment file is shown in Example 7-11. Also, check the policy
of the PV is Retain and not Delete so the PVC can be used, even after migrated to another
cloud. This makes it available if and when the container is brought back.

Example 7-11 Yaml file for NFS backed PV on the Power Systems cluster

apiVersion: vl
kind: PersistentVolume
metadata:
name: appmongo-ibm-mongodb-dev-datavolume
spec:
persistentVolumeReclaimPolicy: Retain
storageClassName: manual
capacity:
storage: 2Gi
accessModes:
- ReadWriteMany
nfs:
server: dcocpl
path: /nfsmongofs/mongo

To verify the claim bounds to the intended PV, leave the PVC created, as shown in
Example 7-12.

Example 7-12 Yaml file for NFS backed PVC on the Power Systems cluster

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: "appmongo-ibm-mongodb-dev-datavolume"
spec:
storageClassName: manual
accessModes:
- ReadWriteMany
resources:
requests:
storage: 2Gi

MongoDB needs users and passwords for the database. To confirm that the password is not
on the Pod specification, use a secret entry, as shown in Example 7-13. Do not use this hash
in your environment because this is a password for demonstration purposes only.

Example 7-13 Yaml file for Secret password safeguard

apiVersion: vl
data:
password: c3RhcnQxMjMO
kind: Secret
metadata:
labels:
app: appmongo-ibm-mongodb-dev
name: appmongo-ibm-mongodb-dev
type: Opaque

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

To generate a hash for your environment, use the base64 command, as shown in
Example 7-14.

Example 7-14 Creating base64 hash for password stored in secrets

[root@dcocp01 ~]# echo -n startl1234|base64
c3RhcnQxMjMo
[root@dcocp0l ~]#

This scenario uses MongoDB 3.6.3 image available at the redhat registry
(registry.access.redhat.com/rhscl/mongodb-36-rhel17). As shown in Example 7-15, our
scenario creates a yaml file that picks any architecture between POWER and x86, but a
different weight can be set to give preference to one architecture. This pod definition makes it
transparent to the cluster operator if the MongoDB is being deployed on-premise, in the cloud,
on POWER, or on x86. The image has a unique name, although a container for each
architecture exists and is pulled accordingly without any user input.

Example 7-15 Yaml file for the MongoDB Pod

apiVersion: vl
kind: Pod
metadata:
annotations:
productName: MongoDB
productVersion: 3.6.3
labels:
app: appmongo-ibm-mongodb-dev
name: appmongo-ibm-mongodb-dev
namespace: default
spec:
affinity:
nodeAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- preference:
matchExpressions:
- key: beta.kubernetes.io/arch
operator: In
values:
- amd64
weight: 2
- preference:
matchExpressions:
- key: beta.kubernetes.io/arch
operator: In
values:
- ppcb4le
weight: 2
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: beta.kubernetes.io/arch
operator: In
values:
- amd64
- ppcb4le
containers:

Chapter 7. Use cases 171

- env:
- name: LICENSE
value: accept
- name: MONGODB_USER
value: mongo
- name: MONGODB_PASSWORD
valueFrom:
secretKeyRef:
key: password
name: appmongo-ibm-mongodb-dev
- name: MONGODB_ADMIN_PASSWORD
valueFrom:
secretKeyRef:
key: password
name: appmongo-ibm-mongodb-dev
- name: MONGODB_DATABASE
value: admin
image: registry.access.redhat.com/rhscl/mongodb-36-rhel7
imagePullPolicy: IfNotPresent
name: appmongo-ibm-mongodb-dev
ports:
- containerPort: 27017
name: mongodb
protocol: TCP
resources:
Timits:
cpu: "2"
memory: 4Gi
requests:
cpu: 100m
memory: 256Mi
securityContext:
privileged: true
capabilities:
drop:
- KILL
- MKNOD
- SETGID
- SETUID
terminationMessagePath: /dev/termination-Tog
terminationMessagePolicy: File
volumeMounts:
- mountPath: /var/lib/mongodb/data
name: appmongo-ibm-mongodb-dev-datavolume
dnsPolicy: ClusterFirst
priority: 0
restartPolicy: Always
schedulerName: default-scheduler
securityContext:
privileged: true
fsGroup: 10000
runAsUser: 10000
seLinuxOptions:
level: s0:cl,c0
terminationGracePeriodSeconds: 30

172 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

tolerations:

- effect: NoSchedule
key: node.kubernetes.io/memory-pressure
operator: Exists

volumes:

- name: appmongo-ibm-mongodb-dev-datavolume
persistentVolumeClaim:

claimName: appmongo-ibm-mongodb-dev-datavolume

The yaml file that is shown in Example 7-15 on page 171 uses the user as uid 10000 that
refers to the mongo user in our machines. Give access to that user to write files, as shown in
Example 7-16.

Example 7-16 Permission for user mongo set on the PV

[root@dcocp0l ~]# 1s -la /nfsmongofs/mongo

total 8

drwx------ . 2 mongo mongo 4096 Nov 9 14:34 .
drwxr-xr-x. 4 root root 4096 Oct 31 12:28 ..
[root@dcocp0l ~]# id mongo

uid=10000(mongo) gid=10000(mongo) groups=10000(mongo)
[root@dcocp0l ~]#

Finally, to verify customers can access mongodb, expose the port by using the NodePort type,
as shown in Example 7-17. In our case, we use this type so the service is accessible on the
external network. Other means of connection also can be used. MongoDB compass client
can even use SSH tunneling.

Example 7-17 Yaml file for service on the Power Systems cluster

apiVersion: vl
kind: Service
metadata:
labels:
app: appmongo-ibm-mongodb-dev
name: appmongo-ibm-mongodb-dev
spec:
externalTrafficPolicy: Cluster
ports:
- name: ibm-mongodb-dev
nodePort: 32767
port: 27017
protocol: TCP
targetPort: 27017
selector:
app: appmongo-ibm-mongodb-dev
sessionAffinity: None
type: NodePort

Applying all yaml files as shown in Example 7-18 makes MongoDB available for connections
on the node IP address at port 32767.

Example 7-18 Applying yaml files on the POWER OpenShift cluster

[root@dcocp0l daniel]# oc apply -f nfspv.yaml
persistentvolume/appmongo-ibm-mongodb-dev-datavolume created

Chapter 7. Use cases 173

[root@dcocp0l daniel]# oc apply -f nfspvc.yaml
persistentvolumeclaim/appmongo-ibm-mongodb-dev-datavolume created
[root@dcocp0l daniel]# oc apply -f secret.yaml
secret/appmongo-ibm-mongodb-dev created

[root@dcocp0l daniel]# oc apply -f service.yaml
service/appmongo-ibm-mongodb-dev created

[root@dcocp0l daniel]# oc apply -f mongo_pod.yaml
pod/appmongo-ibm-mongodb-dev created

[root@dcocp0l daniel]#

Example 7-19 shows the MongoDB Pod running, and the service correctly listening to the
expected port.

Example 7-19 MongoDB Pod running and port 32767 listening for connections

[root@dcocp0l daniel]# oc get pod appmongo-ibm-mongodb-dev

NAME READY STATUS RESTARTS AGE
appmongo-ibm-mongodb-dev 1/1 Running 0 7m
[root@dcocp0l daniel]# telnet localhost 32767

Trying ::1...

Connected to localhost.
Escape character is '~]'.
~]

telnet> quit

Connection closed.
[root@dcocp0l daniel]#

The first time you run the MongoDB with a clean pv, it creates the stateful files on the
container path /var/1ib/mongodb/data.

174 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Using MongoDB Compass v1.16.4, access the database on the IP and port configured on the
service, as shown in Figure 7-3. Use the admin user and the password that are configured on
the secret file, as shown in Example 7-13 on page 170.

Connect to Host

Hostname
Port

SRV Record

Authentication
Username
Password

Authentication Database

Replica Set Name

dcocp01

32767

Username / Password
admin|

admin

Figure 7-3 Connecting to the MongoDB database on the Power Systems cluster

For tests purposes, download the NYC Restaurant data set that is available at the city page at

this web page.

Chapter 7. Use cases

175

https://bit.ly/2L2Sd2C

Export the data by using the CSV format to import it on MongoDB compass. The first time you
open MongoDB, you see three databases. Click Create Database (as shown in Figure 7-4) to
insert the downloaded data set as a new collection.

¥ MongoDB Compass - dcocp01:32767 — O X

Connect View Help

#A POWER 4| dcocp01:32767 (STANDALONE MongoDB 3.6.3 Community
C 3 Databases
admin
Database Name Storage Size Collections Indexes
config
local
oc8 admin 320KB 0 3 &
config 4.0KB 0 2 o}
local 32.0KB 1 1 w

Figure 7-4 Click Create Database on MongoDB Compass

176 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Enter the database name and the collection name, as shown in Figure 7-5. In our case, both
are called restaurant.

k

Create Database

Database Name

restaurant

Collection Name

restau ranﬂ

L Capped Collection ©

L) Use Custom Collation €

Before MongoDB can save your new database, a collection name must
also be specified at the time of creation. More Information

CANCEL CREATE DATABASE

Figure 7-5 Creating restaurant Database and Collection

Chapter 7. Use cases

177

178

The new database appears empty at 4 K, as

shown in Figure 7-6.

§ MongoDB Compass - dcocp01:32767

Connect View Help

4 dcocp01:32767 (STANDALONE

Databases

CREATE DATABASE

admin

Database Name
config
local .

admin
restaurant

config

local

restaurant

MongoDB 3.6.3 Community

Storage Size Collections Indexes

32.0KB 0 3 7]
16.0KB 0 2 7]
32.0KB 1 1 7]
4.0KB 1 1 7]

Figure 7-6 Newly created restaurant database

Enter the collection by clicking the restaurant database, and on the restaurant collection.

Figure 7-7 shows the top bar menu changes

and a Collection Item appears. Click

Collection — Import Data to import the downloaded data set.

MongoDB Compass - dcocp01:32767/restaurant.restaurant

Connect View Collection Help

POWER Share Schema as JSON Alt+Cirl+5 STANDALONE

C a Import Data

t.restaurant

Export Collection

Documents

admin
config
local
INSERT DOCUMENT RUISUARS—RTt1g

restaurant

restaurant

MongoDB 3.6.3 Community

TOTAL SIZE AVG. SIZE TOTALSIZE AVG. SIZE
DOCUMENTS. O 0B 0B inpexes 1 40KB 4.0KB

» OPTIONS FIND RESET

BB TABLE Displaying documents 0-00f0 ¢ > ¢

Figure 7-7 Import data into collection menu

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

You are prompted to insert the file to be imported, as shown in Figure 7-8. Browse for the file,
select it, and click Import. This scenario uses file type CSV because this format is the
downloaded format.

MongoDB Compass - 9.108.98.213:32767 /restaurant.restaurant - O X

Connect View Collection Help

Import To Collection restaurant.restaurant

Select Input File Type
JSON

Select File

C:\Users\DanielDeSouzaCasali\Box Sync\Daniel_IBM\Desktop\IBM\Spect | & BROWSE

] o

Figure 7-8 Importing data set into the collection

Figure 7-9 shows almost 400 K documents and a little more than 300 MB database, which
serves as background data for the multicloud tests.

¢ MongoDB Compass - dcocp01:32767/restaurant.restaurant — O X

Connect View Collection Help

POWER 4/ dcocp01:32767 (STANDALONE MongoDB 3.6.3 Community

C' 4 TOTAL SIZE AVG. SIZE TOTALSIZE AVG. SIZE
oocuments 394.9K z147vE 8362 momes T 28MB 26V

restaurant.restaurant

admin
Documents Aggregations Schema Explain Plan Indexes Valic
config
local » OPTIONS FIND RESET
restaurant
VIEW| i= LIST = & TABLE Displaying documents 1 - 20 of 394921 < > ¢

restaurant
BORO: "Manhattan™

BUILDING: "208"

STREET: "MERCER STREET™

ZIPCODE: "10012"

PHONE: "2127775070"

CUISINE DESCRIPTION: "Delicatessen™

INSPECTION DATE: "05/@3/2017"

ACTION: "Viclations were cited in the following area(s)."
VIOLATION CODE: "Q4A"

VIOLATION DESCRIPTION: "Food Protection Certificate not held by supervisor of food operations.™
CRITICAL FLAG: "Y"

SCORE: "12"

GRADE: "A"

GRADE DATE: "05/083/2017"

RECORD DATE: "11/68/2019"

INSPECTION TYPE: "Cycle Inspection / Initial Inspection”
Latitude: "40.726712503605"

Longitude: "-73.996821431132"

Community Board: "102"

Council District: "01"

Figure 7-9 Data imported on the container running on Power Systems OpenShift

Chapter 7. Use cases 179

Now that the database is running, it contains loaded data in the Power Systems cluster
on-premises. Delete the pod and keep the data to use it on the other cluster, as shown in
Example 7-20.

Delete the pod so that it no longer runs on-premises, and start the workload on AWS.

Example 7-20 Deleting Pod and maintaining the data

[root@dcocp0l ~]# oc get pods

NAME READY STATUS RESTARTS AGE
appmongo-ibm-mongodb-dev 1/1 Running 0 21h
docker-registry-2-7dxwx 1/1 Running 1 13d
router-1-g9btn 1/1 Running 1 13d

[root@dcocp0l ~]# oc delete pod appmongo-ibm-mongodb-dev
pod "appmongo-ibm-mongodb-dev" deleted

[root@dcocp0l ~]#1s -1a /nfsmongofs/mongo/

total 146028

drwx------ . 4 mongo mongo 4096 Nov 10 12:07 .

drwxr-xr-x. 4 root root 4096 Oct 31 12:28 ..

-rW-—--—-- . 1 mongo root 16384 Nov 10 12:07
collection-0--1629751576978663310.wt

-rW-=--—-- . 1 mongo root 24576 Nov 10 12:07
collection-0-7744448727083060016.wt

-rW-=--—-- . 1 mongo root 32768 Nov 10 12:07
collection-2--1629751576978663310.wt

-rW-=--—-- . 1 mongo root 145391616 Nov 10 12:07
collection-3-7744448727083060016.wt

-rW------- . 1 mongo root 16384 Nov 10 12:07
collection-4--1629751576978663310.wt

drwx------ . 2 mongo root 4096 Nov 10 12:07 diagnostic.data

-rW------- . 1 mongo root 16384 Nov 10 12:07 index-1--1629751576978663310.wt
-rW-=--—-- . 1 mongo root 24576 Nov 10 12:07 index-1-7744448727083060016.wt
-rW-=--—-- . 1 mongo root 24576 Nov 10 12:07 index-2-7744448727083060016.wt
-rW------- . 1 mongo root 32768 Nov 10 12:07 index-3--1629751576978663310.wt
-rW-=----- . 1 mongo root 3735552 Nov 10 12:07 index-4-7744448727083060016.wt
-rW-=--—-- . 1 mongo root 16384 Nov 9 14:38 index-5--1629751576978663310.wt
-rW------- . 1 mongo root 16384 Nov 10 12:07 index-6--1629751576978663310.wt
drwx------ . 2 mongo root 4096 Nov 9 16:23 journal

“rW======= . 1 mongo root 36864 Nov 10 12:07 _mdb_catalog.wt

-rW-=----- . 1 mongo root 0 Nov 10 12:07 mongod.lock

-rW-=--—-- . 1 mongo root 36864 Nov 10 12:07 sizeStorer.wt

-rW-=--—-- . 1 mongo root 114 Nov 9 14:38 storage.bson

-rW------- . 1 mongo root 48 Nov 9 14:38 WiredTiger

-rW------- . 1 mongo root 4096 Nov 10 12:07 WiredTigerLAS.wt

-rW------- . 1 mongo root 21 Nov 9 14:38 WiredTiger.lock

-rW------- . 1 mongo root 1049 Nov 10 12:07 WiredTiger.turtle

-rW------- . 1 mongo root 69632 Nov 10 12:07 WiredTiger.wt

180 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

7.2.3 OpenShift Container Platform v4.1 on x86 at AWS

OpenShift v4.1 integrates with AWS by using APIs; therefore, the scenario uses this version.
However, the steps for installing OpenShift on AWS is out of the scope for this publication.
You can see the result of the deployment in Example 7-21.

Example 7-21 Cluster deployed at AWS

[root@ip-10-0-2-217 ~]# oc get nodes -o json |grep -A10 "nodeInfo"
"nodeInfo": {
"architecture": "amd64",
"bootID": "fa77c564-55a0-41el-9da2-1eaca280223b",
"containerRuntimeVersion":
"cri-o://1.13.11-0.7.dev.rhaos4.1.git9ch8f2f.e18-dev",
"kernelVersion": "4.18.0-80.11.2.e18 0.x86_64",
"kubeProxyVersion": "v1.13.4+12eelbd4a",
"kubeletVersion": "v1.13.4+12eelb5d4a",
"machineID": "b39138ad5cff4497bdd372953¢39d7eb",
"operatingSystem": "linux",
"osImage": "Red Hat Enterprise Linux CoreOS 410.8.20190920.2
(Ootpa)",
"systemUUID": "ec2flbd5-0c7b-ee9d-2580-9268d105ad71"

"nodeInfo": {

"architecture": "amd64",

"bootID": "3a3a43b4-aea3-4509-a99f-6e885c5bd70b",

"containerRuntimeVersion":
"cri-o://1.13.11-0.11.dev.rhaos4.1.9git3338d4d.e17-dev",

"kernelVersion": "3.10.0-957.21.3.e17.x86_64",

"kubeProxyVersion": "v1.13.4+493dbf621",

"kubeletVersion": "v1.13.4+493dbf621",

"machineID": "e84c8b64636b4bde8584cf1430e8ch80",

"operatingSystem": "1inux",

"osImage": "OpenShift Enterprise",

"systemUUID": "EC28C516-373A-6D9B-C6E1-5DCE702EFC62"

"nodeInfo": {

"architecture": "amd64",

"bootID": "516efa29-8b96-4527-9080-111499dff4dc",

"containerRuntimeVersion":
"cri-o://1.13.11-0.7.dev.rhaos4.1.git9ch8f2f.e18-dev",

"kernelVersion": "4.18.0-80.11.2.e18_0.x86_64",

"kubeProxyVersion": "v1.13.4+12eelbd4a",

"kubeletVersion": "v1.13.4+12eelb5d4a",

"machineID": "af6b56b6d5cc44cfbf3c6813422d9eal",

"operatingSystem": "linux",

"osImage": "Red Hat Enterprise Linux CoreOS 410.8.20190920.2
(Ootpa)",

"systemUUID": "ec2a5444-3f82-5928-1e98-f719edaOb577"

"nodeInfo": {
"architecture": "amd64",
"bootID": "4eaf7d68-011d-4236-aef0-a253fac84c42",
"containerRuntimeVersion":
"cri-o://1.13.11-0.7.dev.rhaos4.1.git9ch8f2f.e18-dev",
"kernelVersion": "4.18.0-80.11.2.e18_0.x86_64",

Chapter 7. Use cases 181

182

"kubeProxyVersion": "v1.13.4+12eelbd4a",

"kubeletVersion": "v1.13.4+12eelb5d4a",

"machineID": "fcc49500c2f440e2950f703d4837df63",

"operatingSystem": "linux",

"osImage": "Red Hat Enterprise Linux CoreOS 410.8.20190920.2
(Ootpa)",

"systemUUID": "ec25be78-a9c2-1a9bh-2cdf-3c084618b7hb0"

"nodeInfo": {

"architecture": "amd64",

"bootID": "2ae44826-30f6-4736-b489-e0cc7a697588",

"containerRuntimeVersion":
"cri-o://1.13.11-0.11.dev.rhaos4.1.git3338d4d.el7-dev",

"kernelVersion": "3.10.0-957.21.3.e17.x86_64",

"kubeProxyVersion": "v1.13.4+493dbf621",

"kubeletVersion": "v1.13.4+493dbf621",

"machineID": "7b71ef5a93d247e998a6dabeadeb8a3d",

"operatingSystem": "linux",

"osImage": "OpenShift Enterprise",

"systemUUID": "EC2F9F96-B5C2-F6E3-896F-CB35F1D6A06A"

Achieving asynchronous data migration where the data can be seamlessly, in both clouds and
at the same time, is needed for a complete multicloud environment. This scenario uses IBM
Spectrum Scale Active File Management in a technology preview integration with the
Spectrum Scale CSI driver. The Active File Management feature creates caches of your data
in the cloud, during the time saving on egress charges only writing back the changes made,
and asynchronously back on-premises.

The asynchronous data migration is intended to be supported when the support for the GUI
on AWS is available, and also the use of PVC on directories inside AFM file sets. The
configuration of Spectrum Scale Active File Management is outside the scope of this
publication. Example 7-22 shows the creation of the persistent volume by using Spectrum
Scale CSlI driver.

Example 7-22 CSl persistent volume yaml file

apiVersion: vl
kind: PersistentVolume
metadata:
name: appmongo-ibm-mongodb-dev-datavolume
spec:
storageClassName: manual
capacity:
storage: 2Gi
accessModes:
- ReadWriteMany
csi:
driver: csi-spectrum-scale
volumeHandle:
"7794843418738962737;0A0002D9:5DBA3A3A; path=/gpfs/mongoafm/mongo"

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Spectrum Scale enforces the existence of the files that were created on the Power Systems
cluster in the AWS cluster, as shown in Example 7-23. Spectrum Scale also updates the
writes on both clusters (sides). There is a prefetch command that brings all the data before,;
therefore, only the changes are updated after prefetch is done. This makes accessing the full
database faster in the cloud.

Example 7-23 Files as a cache and prefetched in the cloud

[root@ip-10-0-2-217 ~]# 1s -la /gpfs/mongoafm/mongo/
total 146083

drwx------ . 4 mongo mongo 8192 Nov 9 16:59 .

drwxr-xr-x. 7 root root 4096 Oct 31 12:28 ..

-rW------- . 1 mongo root 16384 Nov 9 14:38
collection-0--1629751576978663310.wt

-rW------- . 1 mongo root 36864 Nov 9 16:58
collection-0-7744448727083060016.wt

-rW------- . 1 mongo root 32768 Nov 9 14:39
collection-2--1629751576978663310.wt

-rW------- . 1 mongo root 145391616 Nov 9 16:24
collection-3-7744448727083060016.wt

-rW------- . 1 mongo root 16384 Nov 9 14:38
collection-4--1629751576978663310.wt

drwx------ . 2 mongo root 8192 Nov 10 12:01 diagnostic.data

-rw------- . 1 mongo root 16384 Nov 9 14:38 index-1--1629751576978663310.wt
-rw------- . 1 mongo root 36864 Nov 9 16:58 index-1-7744448727083060016.wt
-rw------- . 1 mongo root 36864 Nov 9 16:58 index-2-7744448727083060016.wt
-rw------- . 1 mongo root 32768 Nov 9 14:39 index-3--1629751576978663310.wt
-rw------- . 1 mongo root 3735552 Nov 9 16:24 index-4-7744448727083060016.wt
-rw------- . 1 mongo root 16384 Nov 9 14:38 index-5--1629751576978663310.wt
-rw------- . 1 mongo root 16384 Nov 9 15:27 index-6--1629751576978663310.wt
drwx------ . 2 mongo root 8192 Nov 9 16:23 journal

-rW------- . 1 mongo root 36864 Nov 9 15:31 mdb catalog.wt

-rw------- . 1 mongo root 2 Nov 9 14:38 mongod.lock

-rW------- . 1 mongo root 36864 Nov 9 16:59 sizeStorer.wt

-rw------- . 1 mongo root 114 Nov 9 14:38 storage.bson

-rW------- . 1 mongo root 48 Nov 9 14:38 WiredTiger

-rW------- . 1 mongo root 4096 Nov 9 14:38 WiredTigerLAS.wt

-rw------- . 1 mongo root 21 Nov 9 14:38 WiredTiger.lock

-rw------- . 1 mongo root 1049 Nov 9 16:59 WiredTiger.turtle

-rW------- . 1 mongo root 69632 Nov 9 16:59 WiredTiger.wt

Check that the link to the Persistent Volume claim was created, bound to the PV that was just
created, and also applied the file, as shown in Example 7-24.

Example 7-24 Persistent volume claim yaml file

apiVersion: vl
kind: PersistentVolumeClaim
metadata:

name: appmongo-ibm-mongodb-dev-datavolume
spec:

storageClassName: manual

accessModes:

- ReadWriteMany

resources:

requests:

Chapter 7. Use cases 183

storage: 2Gi

This scenario uses the same secret file used in the on-premise Power Systems cluster, as
shown in Example 7-13 on page 170. The mongoDB Pod yaml file is also the same as used
before as shown in Example 7-15 on page 171.

The service on AWS uses the load balancer that connects correctly the service on a
predefined name on port 27017. To accomplish this, use the yaml file, as shown in
Example 7-25.

Example 7-25 Service file for AWS

apiVersion: vl
kind: Service
metadata:
labels:
app: appmongo-ibm-mongodb-dev
name: appmongo-ibm-mongodb-dev
spec:
ports:
- name: ibm-mongodb-dev
port: 27017
protocol: TCP
targetPort: 27017
selector:
app: appmongo-ibm-mongodb-dev
type: LoadBalancer

After applying all yaml files (as shown in Example 7-26), Mongodb is available in AWS.

Example 7-26 Applying all yaml files

[root@ip-10-0-2-217 ~]# oc apply -f csipv.yaml
persistentvolume/appmongo-ibm-mongodb-dev-datavolume created
[root@ip-10-0-2-217 ~]# oc apply -f csipvc.yaml
persistentvolumeclaim/appmongo-ibm-mongodb-dev-datavolume created
[root@ip-10-0-2-217 ~]# oc apply -f secret.yaml
secret/appmongo-ibm-mongodb-dev created

[root@ip-10-0-2-217 ~1# oc apply -f awsservice.yaml
service/appmongo-ibm-mongodb-dev created

[root@ip-10-0-2-217 ~]# oc apply -f mongo_pod.yam]
pod/appmongo-ibm-mongodb-dev created

[root@ip-10-0-2-217 ~]#

The service is created by AWS. To get the address, check the service, as shown in
Example 7-27.

Example 7-27 Checking service created

[root@ip-10-0-2-217 ™~]# oc get service appmongo-ibm-mongodb-dev

NAME TYPE CLUSTER-IP EXTERNAL-IP

PORT(S) AGE

appmongo-ibm-mongodb-dev LoadBalancer 172.30.43.162
al765d068fc8911e9b07106df2fbalc0-125393943.us-east-2.elb.amazonaws.com
27017:31725/TCP 9d

[root@ip-10-0-2-217 ~]#

184 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Now you can access your MongoDB on AWS. Point MongoDB to the load balancer IP
address on the service and enter the admin user name and password that defined in the
secret file, as shown in Figure 7-10.

¢ MongoDB Compass - a1765d068fc8911e9b07106df2fbalc0-125393943.us-east-2.elb.amazonaws.com:27017/restaurant.restaurant - O X

Connect View Collection Help

J 765d068fc8911e9b07106df2fba1c0-125393943.us-east- STANDALONE MengoDB 3.6.3
2 elb.amazonaws.com:27017 Community
2 COLLECTIONS TOTAL SIZE SIZE TOTAL SIZE AVG. SIZE
DOCUMENTS 3949k 3147MB INDEXES 1 3.6MB 3.6MB
restaurant.restaurant
admin
Documents
config
local » OPTIONS m RESET
v restaurant
w VIEW| = LIST B8 TABLE Displaying documents 1 - 20 of 394921 < » ¢

restaurant

BUILDING: "208"

STREET: "MERCER STREET"

ZIPCODE: "10812"

PHONE: "2127775070"

CUISINE DESCRIPTION: "Delicatessen™

INSPECTION DATE: "05/03/2017"

ACTION: "Violations were cited in the following area(s)."
VIOLATION CODE: "04A"

VIOLATION DESCRIPTION: "Food Protection Certificate not held by supervisor of food operations.”
CRITICAL FLAG: "Y"

SCORE: "12"

GRADE: "A"

GRADE DATE: "05/03/2017"

RECORD DATE: "11/08/2019"

INSPECTION TYPE: "Cycle Inspection / Initial Inspection”
Latitude: "40.726712502605"

Longitude: "-73.996821431132"

Community Board: "102"

Council District: "01"

Census Tract: "005501"

Figure 7-10 Opening MongoDB on the AWS Cluster

All of the data that was inserted in the cluster that was installed on the Power Systems
servers in Mexico is shown transparently on the x86 cluster at AWS. The multicloud
environment is ready to be used.

7.2.4 Testing the hybrid multicloud

With both OpenShift Container Platform clusters working, test the movement of the MongoDB
pod, at the same time writing on both clouds. Start from the public cloud, inserting a test
document to show the behavior and easiness of migration back to the on-premises cluster.
Then, insert another document, move back to the cloud, and check both documents.
Example 7-28 shows that the pod is running in the public cloud.

Example 7-28 Confirm Pod is running in the public cloud

[root@ip-10-0-2-217 ~]# oc get pod appmongo-ibm-mongodb-dev

NAME READY STATUS RESTARTS AGE
appmongo-ibm-mongodb-dev 1/1 Running 1 14m
[root@ip-10-0-2-217 ~1#

Chapter 7. Use cases 185

186

Click Insert to add the test document on the window that appears, as shown in Figure 7-11.

MongoDB Compass - a1765d068fc8911e9b07106df2fba1c0-125393943.us-east-2.elb.amazonaws.com:27017 /restaurant.restaurant - O X

Connect View Collection Help

Insert Document

1 _id :ObjectId("5dc813e8955¢3e29¢80266ed ")
2 TEST : "INSERTING DATA IN AWS

CANCEL INSERT

Figure 7-11 Inserting data (test document) into AWS running container

Check that the document was correctly inserted, Click Aggregations, and filter to match the
document that was just created, as shown in Figure 7-12.

¢ MongoDB Compass - a1765d068fc8911e9b07106df2fba1c0-125393943.us-east-2.elb.amazonaws.com:27017 /restaurant.restaurant - m} X

Connect View Collection Help
a1765d068fc8911e9b07106df2fba1c0-125393943.us-east- STANDALONE| MongoDB 3.6.3
2.elb.amazonaws.com:27017 Community

TOTAL SIZE AVG. SIZE TOTAL SIZE AVG. SIZE
vocunents 394.9K 212708 8263 momes 1 zevB zevE

restaurant.restaurant

admin

Documents Aggregations Schema Explain Plan Indexes Valid
config COMMENT SAMPLE AUTO

S ineli

local & | Enter a pipeline name.. SAVE PIPELINE [@) e [@) et [@) R
restaurant
(T ~ $match v (J o W + Output after $match stage (Sample of 1 document)

1 /8%

2 * query - The query in MQL.

3 v _id: ObjectId("5de813e8955¢3229289266ed")

Zod TEST: "INSERTING DATA IN AWS"

5 TEST:"INSERTING DATA IN AWS"

6 }

ADD STAGE

Figure 7-12 Checking data inserted in the public cloud

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Delete the pod that is running in the public cloud, as shown in Example 7-29.

Example 7-29 Deleting the Pod from the public cloud

[root@ip-10-0-2-217 ~]# oc delete pod appmongo-ibm-mongodb-dev

pod "appmongo-ibm-mongodb-dev" deleted

[root@ip-10-0-2-217 ~]# oc get pod appmongo-ibm-mongodb-dev

Error from server (NotFound): pods "appmongo-ibm-mongodb-dev" not found
root@ip-10-0-2-217 ~1#

Bring the pod up on-premises, as shown in Example 7-30.

Example 7-30 Bring Pod up at the on-premises cloud

[root@dcocp0l ~]# oc apply -f mongo_pod.yaml
pod/appmongo-ibm-mongodb-dev created

[root@dcocp0l ~]# oc get pod appmongo-ibm-mongodb-dev

NAME READY STATUS RESTARTS AGE
appmongo-ibm-mongodb-dev 1/1 Running 0 Im

Now, open the restaurant database at the on-premises cluster, and again on the Aggregation
tab. Look for the entry that was inserted in the public cloud. You can see the match, as shown
in Figure 7-13.

MongoDB Compass - dcocp01:32767/restaurant.restaurant = O X

Connect View Collection Help

A POWER « dcocp01:32767 (STANDALONE MongoDB 3.6.3 Community

C aDBS

TOTAL

TOTAL Si
DOCUMENTS 3949k 314 B moexes 1
. restaurant.restaurant
admin .
Aggregations
config COMMENT SAMPLE AUTO
o > | & |Entera pipeline name.. SAVE PIPELINE | =+ [@) e [@) i [@) PREVIEWChz)
v restaurant
festaurant v $match v () o w + Output after $match stage (Sample of 1 document)

Lot
2 The query in MQI
_id: ObjectId("5dc81cdd955¢c3e29e89266ee™)

-t " 1 ¥ . TEST: "INSERTING DATA ON POWER"
TEST:"INSERTING DATA ON PONE*I

ADD STAGE

Figure 7-13 Matching document created at the public cloud on-premises

Chapter 7. Use cases 187

To test the migration from on-premises to the cloud, create another document. Click the
Documents tab (see Figure 7-13 on page 187). Then, click Insert to add the document, as
shown in Figure 7-14.

4 MongoDB Compass - dcocp01:32767/restaurant.restaurant - m] X

Connect View Collection Help

Insert Document

1 _id :ObjectTd("5dc8lcdd955c3e29¢89266ec)

2 TEST : "|INSERTING DATA ON POWER |

Figure 7-14 Inserting data in the Power Systems Cluster

Delete the container from the on-premises cluster, as shown in Example 7-31.

Example 7-31 Delete MongoDB Pod on-premises cloud

[root@dcocp0l ~]# oc delete pod appmongo-ibm-mongodb-dev
pod "appmongo-ibm-mongodb-dev" deleted
[root@dcocp0l ~]#

Bring the container up in the public cloud, as shown in Example 7-32.

Example 7-32 Bringing MongoDB up in the public cloud

[root@ip-10-0-2-217 ~]# oc apply -f mongo_pod.yaml
pod/appmongo-ibm-mongodb-dev created
[root@ip-10-0-2-217 ~1#

188 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

As you notice, the migration steps are just two lines and can be automated in many ways.
Open the database and on the Aggregation tab, look for the document that was inserted in
the cluster on-premises. The result is shown in Figure 7-15.

¢ MongoDB Compass - a1765d068fc8911e9b07106df2fba1c0-125393943.us-east-2.elb.amazonaws.com:27017/restaurant.restaurant — O X

Connect View Collection Help

" a1765d068fc8911e9b07106df2fba1c0-125393943 us-east- STANDALONE MongoDB 3.6.3
2 elb.amazonaws.com:27017 Community
TOTAL SIZE AVG. SIZE TOTAL SIZE AVG. SIZE

vocuments 394.9K 214705 8268 moexes 1 26MB 26V
restaurant.restaurant

admin
Aggregations
config COMMENT SAMPLE AUTO
- > & || Enter a pipeline name... SAVE PIPELINE | =-° [@) MODE @ MODE [@] PREVIEW.
CAMIS: "41306211"
restaurant DBA: "NO HO JUICE BAR & DELI"
Select an operator to construct expressions used in the BORO: "Manhattan”
restaurant aggregation pipeline stages. Learn more BUILDING: "208"
STREET: "MERCER STREET"
ZIPCODE: "10012"
PHONE: "2127775070"
~ $match v () (i) W + Output after $match stage (Sample of 1 document)
1%
2 query - The n MQL.
3 ¥ _id: ObjectId("5dc81lcddo55c3e2989266e2™)
dof . . TEST: "INSERTING DATA ON POWER™
5 TEST: "INSERTING DATA ON POWER
6 }

Figure 7-15 Data inserted on-premises seen at the public cloud MongoDB

For a seamless experience, a network solution that knows where the application is running
must be in place. For more information, see Appendix C, “Seamless application movement
across multicloud environments” on page 241.

Chapter 7. Use cases 189

190 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Special topics

This chapter discusses some other topics that can be used to enhance the use of and
manage Red Hat OpenShift and IBM Cloud Paks on Power Systems.

This chapter includes the following topics:

» 8.1, “IBM Multicloud Manager: Container orchestration” on page 192
» 8.2, “Moving data across clouds” on page 194
» 8.3, “Configuring a multicloud data lake” on page 195

© Copyright IBM Corp. 2020. All rights reserved. 191

8.1 IBM Multicloud Manager: Container orchestration

IBM Multicloud Manager is used to manage OpenShift deployments across multicloud
platforms.

8.1.1 IBM Multicloud Manager overview

There are many challenges that you will be faced with when trying to manage workloads
across multiple cloud environments as you modernized your environment and adopted a
hybrid and multicloud approach. You are looking at an enterprise out approach where you will
take your on-premises environment that can be an private cloud and scale-out to a public
cloud. You also might be looking at the cloud-in approach where you have a workload in a
public cloud environment and want to connect it back to a datacenter.

Both of these approaches can be characterized as both hybrid and multicloud.

Whichever approach you take, the challenges remain the same:

» How can you develop modern cloud-native applications and integrate into your existing
environments?

» How can you monitor data movement and comply with appropriate governance
regulations?

» How can service management, security and compliance be maintained and monitored?

IBM Multicloud Manager is designed facilitate the journey to cloud. Helping organizations
orchestrate, manage, and monitor their containerized workloads across multiple data centers
and public or private clouds allows your services to be managed as though they were a single
unified environment.

IBM Multicloud Manager supports multiple public cloud providers and private cloud
environments:

» Public cloud providers:

IBM Cloud

Amazon Web Services
Google Cloud Platform
Microsoft Azure

» Private cloud:

— Red Hat OpenShift
— IBM Cloud Private

8.1.2 Key features and capabilities of IBM Multicloud Manager

In this section, we provide a high-level overview of some of the key features of IBM Multicloud
Manager.

192 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Multicluster management and visibility

Parallel queries can be performed against multiple clusters aggregate the information
received based on certain criteria. You also can view real-time pod traffic to determine pod
traffic flows.

Cluster health can be viewed by region or cloud provider. You also can easily provision,
upgrade, and de-provision clusters across multiple hybrid and multicloud environments.

A complete view of your clusters is available in the Overview page, as shown in Figure 8-1.

= IBM Multicloud Manager Createresource Catalog ~ Docs Support (o)
O\/e rview Refresh every20s ™ <= Filter results
C1:32:13PM
AWS Azure Google IBM MyDatacenter
2 Clusters 1 Clusters 1 Clusters 9 Clusters 1 Clusters
01 01 01 01 04 02 01 02 01
EKS RHOCP AKS GKE ICP IKS RHOCP Other icp
Show details
2 14 8 3 21 886
Apps Clusters Kubernetes Types Regions Nodes Pods
VCPUusage: ~ below | average (2.54-10.52) M above Used by: nodes Hide details
Group By size Shade
AWS Azure Google 1BM MyDatacenter
Cluster compliance 14 Pods 561 Cluster status 14
544 Running
14 Compliant R 10 Ready
% % %
:]_OO/L 96/L 14 Pending 71)
Compliant 0 Non-compliant Running Ready 4 Offline

3 Failed

Figure 8-1 Multicloud Manager overview

Governance and risk management

You can set policies for applications, security, and infrastructure to maintain enforceable
governance and compliance across all your clouds. You also can view and manage policy
violations and security risks raised against clusters, which can be categorized by severity.
Customizable views are also available so that you can see only the information that is relevant
to your own clusters.

Monitoring, logging, and auditing

You can dynamically monitor and resolve problems by using opens source tools, such as
Grafana, Prometheusm, and ELK stack. Predictive alert systems can be set up, including
automatic backup and Disaster Recovery options and workload transfers.

Automated deployment of clusters

IBM Multicloud Manager leverages IBM Cloud Automation Manager services to provision,
configure, and deliver individual Kubernetes clusters as a service in any cloud that Cloud
Automation Manager supports.

Chapter 8. Special topics 193

8.2 Moving data across clouds

Sharing data between cloud environments can be a challenge, especially if your data sets are
large or your cloud environments are geographically dispersed. IBM Aspera® on Cloud is an
IBM hosted service for quick and reliable movement of data between cloud environments.

Traditional file transfer methods, such as FTP or HTTP, and other file transfer protocols can be
inherently slow and unreliable for transferring large amounts of data. IBM Aspera is designed
to move data files of any size of volume reliably, quickly and securely.

IBM Aspera uses patented Fast, Adaptive and Secure Protocol or FASP® technology to
support thousands of concurrent transfer requests. This feature enables Aspera to deliver
high throughput over networks with high latency, such as WAN. This allows high-performance
secure transport of files, directories, and other large data sets to, from, and between cloud
storage.

8.2.1 IBM Aspera key features and benefits

IBM Aspera includes the following key features and benefits:

Easy and intuitive file sharing and content delivery across a hybrid-cloud environment
High-speed data transfer at any distance

Cloud-native technology with high availability and scalability

Enterprise-grade security

Real-time control over your transfers

Central administration of hybrid environments

Automated transfers based on schedule, file arrival event, or an API call

vVVvyYVYyVvYVvYYvYyYyYy

For more information, see this web page.

8.2.2 Using IBM Aspera in a Hybrid cloud environment

IBM Aspera gives you the ability to connect your on-premises storage with on-premises
private cloud and off-premises public cloud to access files and folders in multiple
environments. IBM Aspera supports all of the leading cloud platforms, such as IBM Cloud,
AWS, Azure, and Google Cloud Platform.

You can configure access between the transfer nodes in your private and public cloud
environments to ensure seamless data transfer. You can embed file and folder delivery within
your applications by using the Aspera API. IBM Aspera’s containerized, scalable software is
optimized to run on and is certified on Red Hat OpenShift. It is included in the IBM Cloud Pak
for Integration to give you an end-to-end solution for hybrid cloud integration.

For more information about integrating IBM Aspera in a hybrid cloud environment, see the
data sheet IBM Aspera on Cloud.

IBM Aspera also supports the main cloud object storage services, including the following
examples:

IBM Cloud

Amazon AWS S3

OpenStack Swift version 1.12 and Up
Microsoft Azure BLOB

Akamai NetStorage

Google Storage

vVvyYvyvyYYyvyy

194 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

https://www.ibm.com/downloads/cas/YMPPVAA7
https://www.ibm.com/uk-en/cloud/high-speed-data-transfer

Limelight Object Storage
HDFS

HGST

NetApp Object Storage

vvyyvyy

For more information about the benefits of using IBM Aspera with third-party cloud storage
services, see the white paper IBM Aspera Direct-to-Cloud Storage.

8.3 Configuring a multicloud data lake

This section introduces the concept of a data lake and how it fits in a multicloud environment.

8.3.1 Data lake overview

A data lake is a next-generation hybrid data management solution that is designed to meet
the challenge and need to deal with big data in a hybrid multicloud environment. It is not a
product; rather, it is a hybrid data management reference architecture that is designed to form
part of your data governance strategy.

The use of a data lake offers greater flexibility than a data warehouse. A data lake
consolidates an organization’s data into a governed and well-managed environment that
supports production workloads and analytics development.

The use of a data lake includes the following benefits:

» Storing data in its native format means less time spent on data preparation
» Simplified data access

» Enhanced agility for applications data users
» Improved decision-making

» Reduced costs

For more information about data lakes and their benefits, see the following resources:

» What is a Data Lake?
» Build a better data lake

The following data lake providers operate in a multicloud environment:

IBM (through a partnership with Cloudera)
Google

Amazon AWS

Microsoft Azure

Hadoop

Terradata

Hortonworks

vVVvVyVYyVYVYYvVvYYyY

8.3.2 Using a data lake in a multicloud environment

Using a data lake in a multicloud environment enables secure integration and provides a
means to achieve unified data governance in a hybrid environment. Your data lake
repositories accept data from any data source in its native format, which provides a common
platform for containerized applications to use in both on-premises data centers and in the
cloud.

Chapter 8. Special topics 195

https://www.ibm.com/uk-en/analytics/data-lake
https://www.ibm.com/downloads/cas/ON4WK472
https://www.ibm.com/downloads/cas/PWN7GNX3
https://www.ibm.com/downloads/cas/AWOQXB8G
https://www.ibm.com/downloads/cas/ON4WK472
https://www.ibm.com/uk-en/analytics/data-lake

Connecting and integrating applications across traditional on-premises environments with
private and public cloud services can be challenging. Using a data lakes as part of your
strategy to move to the cloud enables secure multicloud integration by providing a means for
an enterprise to achieve unified data governance in a hybrid environment.

For more information about integrating a data lake into a multicloud strategy, see this web
page.

196 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

https://ibm.co/2Ob62hu
https://ibm.co/2Ob62hu

Part 4

Appendixes

This part details the creation and installation of the Lab environments that are used during the
development of this publication.

The following appendixes are included in this part:

» Appendix A, “Sample lab: Deployment and Pod management” on page 199

» Appendix B, “Sample lab: Deployments and workload balance” on page 219

» Appendix C, “Seamless application movement across multicloud environments” on
page 241

© Copyright IBM Corp. 2020. All rights reserved. 197

198 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Sample lab: Deployment and Pod
management

In this appendix, we describe how to deploy a single application, test the resiliency, and scale
the deployment.

This appendix includes the following topics:

A.1, “Connecting to the lab environment” on page 200

A.2, “Creating a user and project by using the OpenShift command line” on page 201
A.3, “Logging in to the OpenShift web console” on page 204

A.4, “Deploying an Apache server by using the OpenShift web console” on page 206
A.5, “Verifying the status of the deployment” on page 211

A.6, “Testing deployment resiliency” on page 212

A.7, “Scaling the deployment” on page 214

vVVvyYVYyvVvYYvYYyvYYyYyY

© Copyright IBM Corp. 2020. All rights reserved. 199

A.1 Connecting to the lab environment

To connect to the lab environment, you need access to the account credentials to your admin
OpenShift web console and the terminal window with root privileges, as shown in Figure A-1.

0-&0

OPENSHIFT

Figure A-1 Access OpenShift web console

Complete the following steps:
1. Modify the hosts file on your local computer.

The containers that are deployed in OpenShift are on a private network within the
OpenShift cluster. Accessing applications from an external connection requires network
and deployment planning, which is beyond the scope of this lab exercise. In this step, you
modify the hosts file on your local machine to access the deployments that were created
for this lab, as shown in Example A-1.

Example A-1 Modify the hosts file

IP_ADDRESS console.router.default.svc.cluster.local app-http-git

2. Open a terminal window to the OCP machine with a user with root privileges. Run the ssh
command or PuUTTY from your local computer.

3. Verify the release of Red Hat and other pieces of information about your operating system,
as shown in Example A-2.

Example A-2 Verify the release of Red Hat

$ uname -srm
Linux 3.10.0-957.21.3.e17.ppcb4le ppcbdle

200 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

A.2 Creating a user and project by using the OpenShift
command line

Complete the following steps:
1. Add a user called userl with password cloudonpower, as shown in Example A-3.

Example A-3 Adding a user

$ sudo adduser userl
$ echo “cloudonpower” | sudo passwd userl --stdin

2. Run the htpasswd command to update the flat files that are used to store user names and
passwords for basic authentication of HTTP users. Use user userl with password
cToudonpower, as shown in Example A-4.

Example A-4 Updating password for an HTTP user

$ sudo htpasswd -b /etc/origin/master/htpasswd userl cloudonpower
Adding password for user userl

3. Assign the new user cluster administration rights by logging in as cluster administrator
(root privileges) into the default project by using the OpenShift CLI command (oc), as
shown in Example A-5.

Example A-5 Logging in to the default project

$ oc login -u user615 -n default

Server [https://Tocalhost:8443]:

The server is using a certificate that does not match its hostname: x509:
certificate is valid for kubernetes, kubernetes.default,
kubernetes.default.svc, kubernetes.default.svc.cluster.local, openshift,
openshift.default, openshift.default.svc, openshift.default.svc.cluster.local,
p615-kvml.cecc.ihost.com, 129.40.252.236, 172.30.0.1, not localhost

You can bypass the certificate check, but any data you send to the server could
be intercepted by others.

Use insecure connections? (y/n): y

Authentication required for https://localhost:8443 (openshift)
Username: user615

PaSSWOY‘d . *kkkkkkkk

Login successful.

You have access to the following projects and can switch between them with 'oc

project <projectname>':

* default
kube-public
kube-service-catalog
kube-system
management-infra
openshift
openshift-ansible-service-broker
openshift-console
openshift-infra
openshift-Togging
openshift-monitoring

Appendix A. Sample lab: Deployment and Pod management 201

openshift-node

openshift-sdn
openshift-template-service-broker
openshift-web-console

Using project "default".
Welcome! See 'oc help' to get started.

4. List all currently defined OCP users by using the oc get command, as shown in
Example A-6.

Example A-6 Listing all currently defined OCP users

$ oc get user

NAME uib FULL NAME IDENTITIES
user6l5 3e8d8153-f5f8-11e9-b535-fal63e4226a4

htpasswd_auth:user615

5. Runthe oc policy command to assign the userl user cluster admin rights, as shown in
Example A-7.

Example A-7 Assigning user cluster admin rights

$ oc adm policy add-cluster-role-to-user cluster-admin userl
Warning: User 'userl' not found
cluster role "cluster-admin" added: "userl"

6. Log out by using the oc Togout command, as shown in Example A-8.

Example A-8 Logging out from OpenShift

$ oc logout
Logged "user615" out on "https://localhost:8443"

7. Log back in to OpenShift CLI as userl, as shown in Example A-9.

Example A-9 Logging in to OpenShift

$ oc login -u userl

Authentication required for https://localhost:8443 (openshift)
Username: userl

Password: **x*x*xx*x

Login successful.

You have access to the following projects and can switch between them with 'oc
project <projectname>':

* default
kube-public
kube-service-catalog
kube-system
management-infra
openshift
openshift-ansible-service-broker
openshift-console
openshift-infra
openshift-Togging
openshift-monitoring

202 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

openshift-node

openshift-sdn
openshift-template-service-broker
openshift-web-console

Using project "default".

8. List again all currently defined OCP users by using the oc get command. Now, you see
that userl is included in the list, as shown in Example A-10.

Example A-10 List all currently defined OCP users

$ oc get user

NAME uib FULL NAME IDENTITIES
userl 4da3954f-f77b-11e9-b535-fal63e4226a4

htpasswd_auth:userl

user6l5 3e8d8153-f5f8-11e9-b535-fal63ed226a4

htpasswd_auth:user615

9. Run the oc get project command to list all defined OpenShift projects, as shown in
Example A-11.

Example A-11 Listing all defined OpenShift projects

$ oc get project

NAME DISPLAY NAME STATUS
default Active
kube-public Active
kube-service-catalog Active
kube-system Active
management-infra Active
openshift Active
openshift-ansible-service-broker Active
openshift-console Active
openshift-infra Active
openshift-Togging Active
openshift-monitoring Active
openshift-node Active
openshift-sdn Active
openshift-template-service-broker Active
openshift-web-console Active

10.Run the oc new-project command to create a project that is called projectl, as shown in
Example A-12.

Example A-12 Creating a project

$ oc new-project projectl
Now using project "projectl" on server "https://localhost:8443".

You can add applications to this project with the 'new-app' command. For
example, try:

oc new-app centos/ruby-25-centos7~https://github.com/sclorg/ruby-ex.git

to build a new example application in Ruby.

Appendix A. Sample lab: Deployment and Pod management 203

A.3 Logging in to the OpenShift web console

Complete the following steps:

1. From your local computer, open a web browser and browse to the master node by using
port 8443, as shown in Example A-13.

Example A-13 Logging in to the OpenShift web console

https://<master ip>:8443

2. Login as userl, as shown in Figure A-2.

RED HAT'
0 OPENSHIFT
Container Platform

OPENSHIFT CONTAINER PLATFORM

Username | ‘ ‘Welcome to the OpenShift Container Platform.

Password | |

Figure A-2 Logging in to the OpenShift web console

204 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

The OpenShift web console is displayed, as shown in Figure A-3.

£33 OpenShift Web Console

C o Of https://p611-kvm1.ceccihost.com:8443/console/catalog b o INnD® ®

Y] y P roj ects + Create Project

Browse Catalo g Deploylmage Import YAML/JSON Select from Praject

5 of 16 Projects

Languages Databases Middleware cco Other

Filter v 31Items

/

Apache HTTP Server Apache HTTP Server CakePHP + MySQL CakePHP + MySQL
(httpd) (Ephemeral)

H ! ! H ! ! Management Infrastructure

Dancer + MySQL Dancer + MySQL Django + Django +
(Ephemeral) PostgresqL PostgreSQL
(Ephemeral)

Figure A-3 Service Catalog View

Appendix A. Sample lab: Deployment and Pod management 205

A.4 Deploying an Apache server by using the OpenShift web
console

Complete the following steps:
1. In the Service Catalog view, click Apache HTTP Server, as shown in Figure A-4.

£3 OpenShift Web Console x B

cC e Ok https://p611-kvm1.ceccihost.com:8443/console/catalog b WD ® (]
OPENSHIFT CONTAINER PLATFORM Se og ~ @

§ o seoencoes | MyProjecs R

BrOWSe Cata|og Deploy Image Import YAML/JSON Select from Project 5 of 16 Projects

Languages Databases Middleware Cl/CD Other

Filter ~ | 31Items

/ / @)

Apache HTTP Server/ Apache HTTP Server CakePHP + MySQL CakePHP + MySQL
(httpd) (Ephemeral)

H ! ! H ! ! Management Infrastructure

Dancer + MysSQL Dancer + MysSQL Django + Django +
(Ephemeral) PostgreSQL PostgreSQL
(Ephemeral)

Figure A-4 Select Apache HTTP Server

206 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

2. In the Information window, click Next, as shown in Figure A-5.

£ OpenShift Web Console X

&« & ‘@ @ & https://p611-kvm1.ceccihost.com:8443/console/catalog b T:T In @ a @

Apache HTTP Server

Information Configuration Results

o

i Apache HTTP Server

Red Hat, Inc.
QUICKSTART HTTPD PPCEALE

View Documentation @ Get Support @

Default plan

An example Apache HTTP Server (httpd) application that serves static content. For more information about using this template, including

Open5hift considerations, see htps://github.com/openshifi/hirpd-ex/blob/master/fREADME.md.
This template defines resources needed to develop a static application served by Apache HTTP Server (httpd), including a build cenfiguration and

application deployment configuration.

Cancel < Back m

Figure A-5 Information window

Appendix A. Sample lab: Deployment and Pod management 207

208

3. In the Configuration window, configure the following settings, as shown in Figure A-6:

— Add to project: projectl

— Name: appl

— Namespace: openshift

— Memory limit: 512 Mi

— Git repository URL: https://github.com/openshift/httpd-ex.git
— Application hostname: appl-http-git

Apache HTTP Server 4

Information Configuration Results

* Add to Project
project1 w
* Name
=ppl
The name assigned to all of the frontend objects defined in this template.
* Namespace
openshift
The OpenZhift Namespace where the ImageStream resides.
* Memory Limit
S1ZMi I
Maximum amgunt of memery the container can use.
* Git Repository URL
hitps://github.comfopenshift/httpd-exgit

The URL of the repository with your application source code.
L

Cancel < Back m

Figure A-6 Configuration window

4. To complete the deployment, click Create.

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

https://github.com/openshift/httpd-ex.git

5. The Results window is displayed and shows the progress of the deployment (see
Figure A-7). To continue, click Close.

Apache HTTP Server

Information Configuration Results

o

Apache HTTP Server is being provisioned in projecti.

This may take several minutes.

Continue to the project overview to chedk the status of your service.

Figure A-7 Results window

6. In the Application Console view, browse to the projectl project page by selecting the
project from the project list, as shown in Figure A-8. Scroll down the list to find your

project. Click project1.

OPENSHIFT

Openshift Monitoring

Figure A-8 Application Console view

Appendix A. Sample lab: Deployment and Pod management 209

210

The deployments within the project are listed, as shown in Figure A-9.

OPENSHIFT CONTAINER PLATFORM

Listhy | Application

.Http.)d-example hitpe//appl-hitp-git o7

? a.\:-pt # @ e

Provisioned Services

Figure A-9 Deployments within the project

7. Select the link for service on the appl that was deployed, as shown in Figure A-10. A new
tab opens in the browser and displays the Welcome page of your application.

Note: The service link relies on the hosts file entry for the name resolution that you
made on your local computer.

€3 OpenShift Web Console X

c @

@ b httpsy//p611-kvm1.ceccihost.com:8443/console/project/project 1 favervie see wiND ® e =

OPENSHIFT CONTAINER PLATFORM

List by = Application ~

Applications

httpd—exam p| e hitp:f/app1-http-git &

> © e

Provisioned Services

> Apache HTTP Server

Catalog

Figure A-10 Selecting the link for service

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

8. The Welcome to your static httpd application on OpenShift page is displayed in the new
tab of your browser, as shown in Figure A-11.

OpenShift Web Consale Sl \Welcome to OpenShift P + = O

C @ @ nttpy//appl-http-git .. wn@DO ®HG® =

Welcome to your static httpd application on OpenShift

For mare information and help
Deploying code changes S rcnctenicy
+ Documentation
« OpensShift forums
» Stack Overflow questions for OpenShift
« IRC channel at #openshift on freenode.net

To change this application, update your code and rebuild/redeploy the
image.

Built on

£3 OPENSHIFT

by Red Hat

Figure A-11 Welcome page to your static httpd application

A.5 Verifying the status of the deployment

Complete the following steps:

1. From the Application Console view in the web console, select Applications — Pods, as
shown in Figure A-12.

Applications

Figure A-12 Application Console view

Appendix A. Sample lab: Deployment and Pod management 211

2. From the displayed list of pods (see Figure A-13), confirm how many containers are

running.

PO d S leamMorex

‘ app1-1-6tgps % £ Running 1M1 ’

app1-1-build " Completed an

MName Status Containers Ready

Container Restarts Age

o an hour

o an hour

Figure A-13 List of pods table

A.6 Testing deployment resiliency

Complete the following steps:

1. Select the name of the running pod to display information about the pod, as shown in

Figure A-14.

PO d S leamMorex

MName Status Containers Ready
appl1-1 -6: £ Running "M
apP e " Completed an

Container Restarts Age

o an hour

o an hour

Figure A-14 Selecting a running pod

212 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

2. Verify the Pod restart policy of the deployment, as shown in Figure A-15, to determine how
OpenShift responds when containers in that pod exit. A pod restart policy of Always
attempts to restart a successfully exited container.

Paods appl-1-6tgps

app1-1-6tgPS crested zn hour szo

deployment deploymentconfig name
Details Environment Logs Terminal Events
Status
Status: & Running
Deployment: appl, #1
IP: 10.128.0.28

o1 (12940252 236)
Restart Policy: Always

Container httpd-example

State: Running since Oct 25, 2015 &:17:10 PM
Ready: true
Restart Count: [

Show Annotations

Actions

Template

Containers

httpd-example

=

-~
=

e -+

[+

Image: projecti/appl basaesf 121.1 MiB
Build: appi, #1

Source: Merge pull reguest #15 from adambkaplan/sdorg-rename 8acsdag
authored by Honza Horak

Ports: B0BO/TCP

Mount: default-token-kbwhj — fvar/run/secrets/kubernetes iofseniceaccount
read-only

Memory: 512 MiB to 512 MiB

Readiness Probe: GET / on port 8020 (HTTP)
Liveness Probe: GET f on port 8080 (HTTF) 30

Volumes

default-token-kbwbj

Figure A-15 Verifying the Pod restart policy

3. To simulate a pod failure, stop the pod. In the Actions drop-down menu, select Delete, as

shown in Figure A-16.

Pods appl-1-6tgps

app1-1-6tgps ceswdanhe

deployment deploymentconfig name

Details Environment Logs Terminal Events

Add Storage
Edit YAML

Delete

Figure A-16 Simulating a pod failure

Appendix A. Sample lab: Deployment and Pod management

213

4. Confirm the deletion of the pod, as shown in Figure A-17. Select the Delete Pod

immediately without waiting for the processes to terminate gracefully option. Click
Delete.

Confirm Delete b4

Are you sure you want to delete the pod 'app1-1-6tgps'?

It cannot be undone. Make sure this is something you really want to dol

@Deler\e pod immediately without waiting for the processes to terminate gracefully ’
cancej @

Figure A-17 Confirming the deletion of the Pod

5. The pod is stopped immediately, as shown in Figure A-18. Then, the pod restarts.

Pods ilemmorez

MName Status Containers Ready Container Restarts Age
app1-1-kzhn! . E Container Creating an o a few seconds
appl-1-g7n2s X Terminating 11 o a minute
app1-1-build " Completed an o an hour

Figure A-18 Pod restarting

A.7 Scaling the deployment

Complete the following steps:

1. From the Application Console view, select Applications — Deployments.
2. Select app1 from the list of deployments, as shown in Figure A-19.

Deployments tesmusrec

| MName Last Veersion Status Created Trigger

& Active, 1 replica an hour ago Canfig change

Figure A-19 Selecting an application from the list of deployments

214 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

3. Select deployment #1 (latest) from the list of deployments, as shown in Figure A-20.

Deployments app1
app | creas Deploy Actions
app template e-gwner
History Configuration Environment Events
i Deployment #1 is active. View Log
created 2 hours ago
Add
Status Created Trigger
£ Active, 1 replica 2 hours ago Config change

Figure A-20 Selecting a deployment

4. Scale up the pods from 1 to 2, by selecting the up
shown in Figure A-21.

arrow that is next to the pod count, as

Actions ~

More labelz...

Deployments appl #1
1
app A creges
app openshift.io/deployment-config.name template

Details Environment Logs Events

Status: £ Active

Deployment Config: appl

Status Reason: config change

Selectors: deploymen=app1-1
deploymentconfiz=app1
name=app1

Replicas: 1 current { 1 desired #

(Dt

Figure A-21 Selecting the up arrow to the Pod count

5. OpenShift starts another pod, as shown in Figure A-22. This process takes a moment.

Actions

More labelz...

Deployments appl #1
app1l W —
app openshift.io/deployment-config.name template

Details Environment Logs Events

Status: £ Active

Deployment Config: appl

Status Reasor: config change

Selectors: deployment=app1-1
deploymentconfig=app1 scalingo 2...
name=app1

Replicas: 1 current / 2 desired #

Figure A-22 Scaling up a Pod

Appendix A. Sample lab

: Deployment and Pod management 215

6. Verify that the second pod started, as shown in Figure A-23.

Deployments appl #
appT_Jl created 2 hours g0 Actions
app v openshift.io/deployment-config.name template Mare labels...
Details Environment Log= Events
Status: £ Active
Deployment Config: app1
Status Reason: config chan&
Selectors: deploymen=app1-1 2
deploymentconfiz=appl pods
name=appl
Replicas: 2 current/ 2 desired #°

Figure A-23 Verifying the number running of pods

7. You can scale down the Pods from 2 to 1 by selecting the down arrow that is next to the
pod count, as shown in Figure A-24.

Deployments appl #1
appT-1 created 2 hours ago Actions
app |, openshift.io/deployment-confiz.name template - 1 More labels..

Details Environment Logs Events

Status: £ Active

Deployment Config: appl

Status Reasor: config changs

Selectors: deployment=app1-1
deploymentconfiz=app1 scalingto 1.
name=app1

Replicas: 2 current / 2 desired #

Figure A-24 Scaling down the number of pods

8. Verify that only one pod is running, as shown in Figure A-25.

Deployments appl #1
appT‘Jl created 2 hours 3g0 Actions
app v openshift.io/deployment-config.name template More label=...
Details Environment Logs Events
Status: £ Active
Deployment Config: appl
Status Reason: config change
Selectors: deploymen=app1-1 1
deploymentconfig=app1 pod
name=app1 @
Replicas: 1 current{ 1 desired #

Figure A-25 Verifying the number of Pods running

216 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

9. Log out of OpenShift, as shown in Figure A-26.

OPENSHIFT CONTAINER PLATFORM

Niect”

Figure A-26 Logging out from OpenShift

Appendix A. Sample lab: Deployment and Pod management 217

218 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Sample lab: Deployments and
workload balance

In this appendix, we describe how to deploy a single application and add a route for workload
balance.

This appendix includes the following topics:

>

>

>

“Connecting to the lab environment” on page 220

“Creating a user and project by using the OpenShift command line” on page 221
“Logging in to the OpenShift web console” on page 224

“Deploying an NGINX server by using the OpenShift web console” on page 225
“Deploying a second NGINX server by using the OpenShift web console” on page 229
“Customizing the index.test file of the NGINX instances” on page 233

“Creating a route to balance the network traffic between the two NGINX instances” on
page 237

“Testing load balancing across NGINX instances” on page 239

© Copyright IBM Corp. 2020. All rights reserved. 219

Connecting to the lab environment

To connect to the lab environment, you need access to the account credentials to your admin
OpenShift web console and the terminal window with root privileges, as shown in Figure B-1.

0-&0

OPENSHIFT

Figure B-1 Access OpenShift web console

Complete the following steps:
1. Modify the hosts file on your local computer.

The containers that are deployed in OpenShift are on a private network within the
OpenShift cluster. Accessing applications from an external connection requires network
and deployment planning, which is beyond the scope of this lab exercise. In this step, you
modify the hosts file on your local machine to access the deployments that were created
for this lab, as shown in Example B-1.

Example B-1 Modifying the hosts file

IP_ADDRESS console.router.default.svc.cluster.local app2-http-git

2. Open a terminal window to the OCP machine by using a user with root privileges. Run the
ssh command or PuTTY from your local computer.

3. Verify the release of Red Hat and other pieces of information about your operating system,
as shown in Example B-2.

Example B-2 Verifying the release of Red Hat

$ uname -srm
Linux 3.10.0-957.21.3.e17.ppcb4le ppcbdle

220 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Creating a user and project by using the OpenShift command
line

Complete the following steps:
1. Add a user that is called user2 with password cloudonpower, as shown in Example B-3.

Example B-3 Adding a user

$ sudo adduser user?
$ echo “cloudonpower” | sudo passwd user2 --stdin

2. Use the htpasswd command to update the flat files that are used to store user names and
passwords for basic authentication of HTTP users. Use user user2 with password
cToudonpower, as shown in Example B-4.

Example B-4 Updating password for an HTTP user

$ sudo htpasswd -b /etc/origin/master/htpasswd user2 cloudonpower
Adding password for user user2

3. Assign the new user cluster administration rights by logging in as the cluster administrator
(root privileges). Then, into the default project by using the OpenShift CLI command
(oc), as shown in Example B-5.

Example B-5 Logging in to the default project

$ oc login -u user618 -n default

Server [https://Tocalhost:8443]:

The server is using a certificate that does not match its hostname: x509:
certificate is valid for kubernetes, kubernetes.default,
kubernetes.default.svc, kubernetes.default.svc.cluster.local, openshift,
openshift.default, openshift.default.svc, openshift.default.svc.cluster.local,
p618-kvml.cecc.ihost.com, 129.40.253.20, 172.30.0.1, not Tocalhost

You can bypass the certificate check, but any data you send to the server could
be intercepted by others.

Use insecure connections? (y/n): y

Authentication required for https://localhost:8443 (openshift)
Username: user6l18

PaSSWOY‘d . *kkkkkkkk

Login successful.

You have access to the following projects and can switch between them with 'oc

project <projectname>':

* default
kube-public
kube-service-catalog
kube-system
management-infra
openshift
openshift-ansible-service-broker
openshift-console
openshift-infra
openshift-Togging
openshift-monitoring

Appendix B. Sample lab: Deployments and workload balance 221

openshift-node

openshift-sdn
openshift-template-service-broker
openshift-web-console

Using project "default".
Welcome! See 'oc help' to get started.

4. List all defined OCP users by using the oc get command, as shown in Example B-6.

Example B-6 Listing all currently defined OCP users

$ oc get user

NAME UID FULL NAME IDENTITIES
user6l8 18e66d09-fc00-11e9-ade5-fal63el87e44

htpasswd_auth:user618

5. Use the oc policy command to assign the user2 user cluster admin rights, as shown in
Example B-7.

Example B-7 Assigning user cluster admin rights

$ oc adm policy add-cluster-role-to-user cluster-admin user2
Warning: User 'user2' not found
cluster role "cluster-admin" added: "user2"

6. Log out by using the oc Togout command, as shown in Example B-8.

Example B-8 Logging out from OpenShift

$ oc logout
Logged "user618" out on "https://localhost:8443"

7. Log back into OpenShift CLI as user user2, as shown in Example B-9.

Example B-9 Logging in to OpenShift

$ oc login -u user2

Authentication required for https://localhost:8443 (openshift)

Username: user2

PaSSWOY‘d . *kkkkkkkk

Login successful.

You have access to the following projects and can switch between them with '
project <projectname>':

ocC

* default
kube-public
kube-service-catalog
kube-system
management-infra
openshift
openshift-ansible-service-broker
openshift-console
openshift-infra
openshift-Togging
openshift-monitoring
openshift-node

222 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

openshift-sdn
openshift-template-service-broker
openshift-web-console

Using project "default".

8. List all defined OCP users by using the oc get command. Now, you see that user? is
included in the list, as shown in Example B-10.

Example B-10 Listing all defined OCP users

$ oc get user

NAME UID FULL NAME IDENTITIES
user2 9099b168-fc00-11e9-ade5-falb63el87e44 htpasswd_auth:user2
user61l8 18e66d09-fc00-11e9-ade5-fal63el87e44 htpasswd_auth:user618

9. Use the oc get project command to list all defined OpenShift projects, as shown in
Example B-11.

Example B-11 Listing all defined OpenShift projects

$ oc get project

NAME DISPLAY NAME STATUS
default Active
kube-public Active
kube-service-catalog Active
kube-system Active
management-infra Active
openshift Active
openshift-ansible-service-broker Active
openshift-console Active
openshift-infra Active
openshift-logging Active
openshift-monitoring Active
openshift-node Active
openshift-sdn Active
openshift-template-service-broker Active
openshift-web-console Active

10.Use the oc new-project command to create a project that is called project2, as shown in
Example B-12.

Example B-12 Creating a project

$ oc new-project project2
Now using project "project2" on server "https://localhost:8443".

You can add applications to this project with the 'new-app' command. For
example, try:

oc new-app centos/ruby-25-centos7~https://github.com/sclorg/ruby-ex.git

to build a new example application in Ruby.

Appendix B. Sample lab: Deployments and workload balance 223

Logging in to the OpenShift web console

Complete the following steps:

1. From your local computer, open a web browser and browse to the master node by using
port 8443, as shown in Example B-13.

Example B-13 Logging in to the OpenShift web console
https://<master ip>:8443

2. Log in as user2, as shown in Figure B-2.

RED HAT'
0 OPENSHIFT
Container Platform

OPENSHIFT CONTAINER PLATFORM

Username | ‘ ‘Welcome to the OpenShift Container Platform.

Password | |

Figure B-2 Logging in to the OpenShift web console

The OpenShift web console is displayed, as shown in Figure B-3.

OPENSHIFT CONTAINER PLATFORM Senvcec @ a

[Q socooos | Myprojects RN

Bl'DWb't’ l_ata|C|g Deplay Image Import YAML/JSON Select from Praoject

50f 16 Prajects

Languages Databases Middleware [alllan] Other

Filter ~ | 31 Items

J / D) D)

Apache HTTP Server Apache HTTP Server CakePHP + MySQL CakePHP + MySQL
(httpd) (Ephemeral)

“h Y A e

Dancer + MySQL Dancer + MySQL Django + PostgreSQL Django + PostgresQL
(Ephemeral) (Ephemeral)

Figure B-3 Service Catalog View

Management Infrastructure

224 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Deploying an NGINX server by using the OpenShift web
console

Complete the following steps:

1. In the Service Catalog view, click Nginx HTTP server and reverse proxyB, as shown in
Figure B-4.

My Projects + Create Project

5 of 16 Projects

MongoDB MongoDB (Ephemeral) MySQL (Ephemeral)

NGINX nodc nede
NginX asfEr and Nginx HTTP server and MNode.js Node.js + MongoDB
a reverse proxy a reverse proxy (nginx)
nede %ﬁ BhB)
Management Infrastructure
Node.js + MongoDB Perl PHP PostgreSQL
(Ephemeral)

recently Viewed

B e a 4

Figure B-4 Selecting the NGINX Server

Appendix B. Sample lab: Deployments and workload balance 225

2. In the Information window, click Next, as shown in Figure B-5.

MNginx HTTP server and a reverse proxy X

Information Configuration Binding Results

Nginx HTTP server and a reverse proxy

NGHIAX

Red Hat, Inc.

QUICKSTART NGIMX PPCEALE

View Documentation @ Get Supporti®
Default plan

An example Ngine HTTP server and a reverse prowgy {nginx) application that serves static content. For more information abowt using this template,

including OpenShift considerations, see hitps:/github.com/sclorg/ngin:x-e: Wmaster/README.md.

This template defines resources needed o develop a static application served by Mginx HTTP server and a reverse proxy (ngine). induding a build

configuration and application deployment configuration.

Cancel < Back Mext =

Figure B-5 Information window

3. In the Configuration window, configure the following settings, as shown in Figure B-6:

— Add to Project: project?2
— Name: app2a

Nginx HTTP server and a reverse proxy 4

Information Configuration Binding Results

~ &

* Add to Project
project2
* Name
app2a
The name assigned to all of the frontend objects defined in this template.
* Namespace

openshift I

The OpenShift Namespa

here the ImageStream resides.

* NGIMX Version

efault).

n of NGINX image to be used {1.12 by

* Memory Limit

512Mi o

Cancel

Figure B-6 Configuration window

226 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

. To complete the deployment, click Next. The Binding window is displayed, as shown in
Figure B-7. Select the Do not bind at this time option. Click Create to continue the

deployment.

Nginx HTTP server and a reverse proxy

Information Configuration Binding

©; @ ©

Create a binding for Nginx HTTP server and a reverse proxy
Eindings create a secret containing the neceszary information for an application to use this service.

o Create a secret in project2 to be used later

Secrets can be referenced later from an application.

(@ Do not bind st this time

Bindings can be created Ister from within a project.

Cancal

Results

< Back Create

Figure B-7 Binding window

Appendix B. Sample lab: Deployments and workload balance 227

5. The Results window is displayed and shows the progress of the deployment (see
Figure B-8). To continue, click Close.

Nginx HTTP server and a reverse proxy b4

Information Configuration Binding Results

@ ©) 4]

Nginx HTTP server and a reverse proxy is being provisioned in project2.

This may fake several minutes.

Continue to the project overview 1o check the status of your service.

Figure B-8 Results window

228 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Deploying a second NGINX server by using the OpenShift web

console

1. In the Service Catalog view, click Nginx HTTP server and reverse proxy, as shown in

Figure B-9.

OPENSHIFT CONTAINER PLATFORM

MongoDB MongoDB (Ephemeral)

MNgin: EsarfEr and Nginx HTTP server and
a@ reverse proxy a reverse proxy (nginx)

nede m

Node.js + MongoDB
(Ephemeral)

@ e

®@.

My Projects + Create Project

5 of 16 Projects

MySQL (Ephemeral)

nede

MNode.js + MongoDB

iy

PostgreSQL

Management Infrastructure

Figure B-9 Selecting NGINX Server

2. In the Information window (see Figure B-10), click Next.

MNginx HTTP server and a reverse proxy x
Information Configuration Binding Results
, Nginx HTTP server and a reverse proxy
NGiINX
Red Hat, Inc.
QUICKSTART NGINX PPCE4LE
View Documentation @ Get Support &
Default plan
An exxample Mgir: HTTP server and a reverse proogy (nginx) application that serves static content. For more information about using this template,
including OpenShift considerations, see htops://github.comisclorg/ngin:e-e:x Wmaster/README md.
This template defines resources needed to develop 3 static application served by Nginx HTTP server and a reverse proxy (ngine). induding a build
configuration and application deployment configuration.
Cancel < Back MNext >

Figure B-10 Information window

Appendix B. Sample lab: Deployments and workload balance 229

230

3. In the Configuration window (see Figure B-11), configure the following settings:

— Add to Project: project?
— Name: app2b

Nginx HTTP server and a reverse proxy

Information Configuration Binding

o

* Add to Project

project2

* Name

Results

| app2t|

The name assigned to all of the frontend objects defined in this template.
* Namespace
openshift
The OpenShift Namespace where the ImageStream resides.
* NGIMX Version
112
Version of NGIMX image to be used (1.12 by default).
* Memory Limit

512Mi

Cancel

< Back

Next =

Figure B-11 Configuration window

4. To complete the deployment, click Next.

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

5. The Binding window is displayed, as shown in Figure B-12. Select the Do not bind at this
time option. Click Create to continue the deployment.

Nginx HTTP server and a reverse proxy b4

Information Configuration Binding Results

Create a binding for Nginx HTTP server and a reverse proxy
Eindings create a secret containing the neceszary information for an application to use this service.

o Create a secret in project2 to be used later

Secrets can be referenced later from an application.

(@ Do not bind st this time

Bindings can be created Ister from within a project.

Cancal < Back Create

Figure B-12 Binding window

Appendix B. Sample lab: Deployments and workload balance 231

232

6. The Results window is displayed and shows the progress of the deployment. To continue,
click Close, as shown in Figure B-13.

Nginx HTTP server and a reverse proxy

Results

<]

Information Configuration Binding

Nginx HTTP server and a reverse proxy is being provisioned in project2.

This may fake several minutes.

Continue to the project overview 1o check the status of your service.

Figure B-13 Results window

7. Verify that two Nginx deployments are available that are in the Active state. From the
Application Console view (see Figure B-14), browse to the project2 application

deployments.

Listby | Application ~

Other Resources

‘1’ pod

appZa,

1 pod

app2b, #

Figure B-14 Verifying application deployments

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Customizing the index.test file of the NGINX instances

Complete the following steps:

1. From the web console, Application Console view (see Figure B-15), select
Applications — Pods.

OPENSHIFT CONTAINER PLATFORM

project?

Applications

Figure B-15 Application Console view

2. Select the name of the running Pod for app2a-1-yyyy (as shown in Figure B-16) where
yyyy is the unique identifier for the running pod.

OPENSHIFT CONTAINER PLATFORM

PO d S LearnMore

Applications

Containers Container

Sans Ready Restarts fes

& Running 1M 1} 2 hours
" Completed o1 o 2 hours
& Running " [v] 2 hours
« Completed oM o 2 hours

Figure B-16 Selecting the running Pod

Appendix B. Sample lab: Deployments and workload balance 233

3. Select the Terminal tab, as shown in Figure B-17.

Pods app2a-1-lgdijf

app2a-1-lqdjf

deployment deploymentconfig name

Details Environment

Status

Status: L1 Running

Deployment: appla, #1

1P: 10.128.0.28

Node: ph18-loern? (125.40.253 20)
Restart Policy: Always

Figure B-17 Selecting the terminal tab

4. In the Terminal window, run the echo App2a>>index.test command, as shown in
Figure B-18.

Details Environment Logs ermina Events

(@ When you navigate away from this pod, any open terminal connections will be dosed. This will kill any foreground processes

you started from the terminal. Open Fullzoreen Terminal

Container: nginx-example

rindex.test

Figure B-18 Terminal window view

234 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

5. From the web console, Application Console view (as shown in Figure B-19), select
Applications — Pods.

Applications

Figure B-19 Application Console view

6. Select the name of the running Pod for app2b-1-yyyy (as shown in Figure B-20) where

yyyy is the unique identifier for the running pod.

OPENSHIFT CONTAINER PLATFORM Azp

Pods tesmMorez

Applications

Name Status

[k
s:p:-bLi d " Completed
app2a-1 £ Running
app2a-1-build " Completed

Containers
Ready

"

on

"

o

Container
Restarts

0

0

0

Age

3 hours

3 hours

2 haours

S hours

Figure B-20 Selecting the running pod

Appendix B. Sample lab: Deployments and workload balance

235

236

7. Select the Terminal tab, as shown in Figure B-21.

Pods app2b-1-xljsl

app2b-1-xljsl

Details Environment

Status

Status:
Deployment:
P

Node:

Restart Policy:

deployment deploymentconfig name

3 Running

appZhb, #1

10.128.0.31

pE18-kovrr] (129.40.253.20)

Always

Figure B-21 Selecting the terminal tab

8. In the Terminal window, run the echo App2b>>index.test command, as shown in

Figure B-22.

Details Environment

you started from the terminal_

Container: ngins-example

Logs ermina Events

(@ When you navigate away from this pod, any open terminal connections will be dosed. This will kill amy foreground processes

Open Fullscreen Terminal

Figure B-22 Terminal window view

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Creating a route to balance the network traffic between the two
NGINX instances

Complete the following steps:
1. Modify the /etc/hosts file of your OpenShift system to include the entry IP_ADDRESS with
an alias of app2-http-git (the hostname of the service), as shown in Example B-14.

Example B-14 Modifying the /etc/hosts file

$ tail /etc/hosts
129.40.253.20 app2-http-git

2. From the web console, Application Console view (as shown in Figure B-23), select
Applications — Routes.

OPENSHIFT CONTAINER PLATFORM

project2

Applications

Applications

Figure B-23 Application Console view: Routes

Appendix B. Sample lab: Deployments and workload balance ~ 237

3. In the Create Route content pane (as shown in Figure B-24), configure the following
settings:

— Name: app2-route

— Hostname: app2-http-git

— Service: app2a

— Alternative Services: Divide traffic across multiple servers
— Service: app2b

— Service Weights: 50%/50%

Routes Create Route

Create Route

Routing is a way to make your application publicly visible.

Hostname

app2-http-git

Target Port

E0S0 — EDEO0(TCP) =

Target port for raffic.

Alternate Services

Split traffic across rru.lh:l'plesen.'inesff'

ices for AMB testing. Each service has a weight controlling how

Service Weights

app2a 50% 50% app2b

Percentage of traffic sent to each service. Drag the SMITr to adjust the values or edit weights as integers

Figure B-24 Configuring a route

238 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

4. Click Create to create the route, as shown in Figure B-25.

Routes teamiorez Create Route
Name Hostname Service Target Port TLS Termination
R i o

Figure B-25 Creating a route

Testing load balancing across NGINX instances

Complete the following steps:

1. Open a terminal window to the OCP machine with a user with root privileges. Use the ssh

command or PuTTY from your local computer.

. Run the script as shown in Example B-15 to test out the load balancing. The wget
command uses a capital letter O:

§ foriin12345678910

do

wget -q http://app2-http-git/ -0 index.test
grep App index.test

done

Example B-15 Running a script to test load balancing

$ for i in123456789 10; do wget -q http://app2-http-git/ -0
index.test; grep App2 index.test; done
App2a

App2b

App2a

App2b

App2a

App2b

App2a

App2b

App2a

App2b

From the command output, you can see that the route alternated between App2a and
App2b at a rate of 50%.

3. Close the terminal window and log out of the OpenShift console.

Appendix B. Sample lab: Deployments and workload balance

239

240 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Seamless application movement
across multicloud environments

This appendix provides an overview of a homegrown network solution. This solution is used
to transparently link the running service from any cloud to the name that is configured to use
for the multicloud case.

Many other industry solutions (proxies, load balancers, or traffic managers) are available and
can be used, considering they also connect to the Kubernetes APls.

This scenario shows that seamless multicloud can be achieved, even with a simple manual
solution.

This appendix includes the following topics:

» “Network tunneling for MongoDB” on page 242
» “Moving the application across clouds” on page 243

© Copyright IBM Corp. 2020. All rights reserved. 241

Network tunneling for MongoDB

A common solution that is present (even on the MongoDB Compass client) is the SSH
tunneling as a means of accessing the server. The intention is that the script takes the SSH
tunnel and points to the correct cloud

This example uses the CLI commands, although Kubernetes APlIs also can be used.
Example C-1 shows the script that was used to complete the seamless application
connection to the MongoDB database.

Example C-1 Script that looks for running MongoDB Pod and tunneling to correct cloud

AWSMASTERIP=3.15.11.140
POWERMASTERIP=10.108.98.213
ssh -M -S mongoconnect -fNT -L 27017:$POWERMASTERIP:32767 Tocalhost

while true
do
TESTVAR=$ (ssh root@$POWERMASTERIP -i /home/danielsc/.ssh/id_aws kubectl get pod
appmongo-1ibm-mongodb-dev -0 custom-columns=:{status.phase} -n default
2>>/dev/null)
if [$? -eq 0]

then

if [$(cat /proc/"$(ssh -S /home/danielsc/mongo/mongoconnect -0 check

localhost 2>&1 |cut -d= -f2 | sed 's/)//')"/cmdline|cut -d: -f2) ==
"$POWERMASTERIP"]

then

TESTVAR=$ (echo -n $TESTVAR)

echo "Pod status is $TESTVAR"

echo "Tunnel already connected to IBM correctly"
else

ssh -S mongoconnect -0 exit -p 443 localhost 2>>/dev/null
TESTVAR=$ (echo -n $TESTVAR)
echo "Pod status is $TESTVAR"
ssh -M -S mongoconnect -fNT -L 27017:$POWERMASTERIP:32767
localhost
echo "Tunneled to MongoDB running on IBM"
fi
fi

TESTVAR=$(ssh root@$AWSMASTERIP -i /home/danielsc/.ssh/id_aws kubectl get pod
appmongo-1ibm-mongodb-dev -0 custom-columns=:{.status.phase} -n default
2>>/dev/null)
if [$? -eq 0]
then

if [$(cat /proc/"$(ssh -S /home/danielsc/mongo/mongoconnect -0 check
localhost 2>&1 |cut -d= -f2 | sed 's/)//')"/cmdline|cut -d: -f2) ==
"a1765d068fc8911e9b07106df2fbalc0-125393943.us-east-2.elb.amazonaws.com"]

then

TESTVAR=$ (echo -n $TESTVAR)

echo "Pod status is $TESTVAR"

echo "Tunnel already connected to AWS correctly"
else

ssh -S mongoconnect -0 exit Tlocalhost 2>>/dev/null

242 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

TESTVAR=$ (echo -n $TESTVAR)
echo "Pod status is $TESTVAR"
ssh -M -S mongoconnect -fNT -L
27017:a1765d068fc8911e9b07106df2fbalc0-125393943.us-east-2.elb.amazonaws.com:27017
localhost
echo "Tunneled to MongoDB running on AWS"
fi
fi
sleep 30
done

Every 30 seconds, the script looks for the pod that is running in the public cloud or
on-premises cloud. The script returns the status of the pod if the need exists to tunnel to
another location, or the tunnel is correctly mapped to the location where the pod is running.
The tunnel is opened to the localhost IP 127.0.0.1. Then, an alias is added on the local hosts
file as yournetworksolution, which points to the localhost IP to make it transparent to the
client.

Moving the application across clouds

The application movement is performed manually to make it easier to be seen. An automation
script can be in place to decide where the database must be located. Also, IBM Cloud Pak for
Multicloud Management is an option for controlling the APIs on any OpenShift clusters.

Starting the pod at Amazon Web Services

Run the example script as shown in Example C-1 on page 242. At the point when the pods
are not running on any cloud, start them on the Amazon Web Services (AWS) cloud, as
shown in Example C-2.

Example C-2 Starting MongoDB Cloud in AWS

[root@ip-10-0-2-217 ~]# oc apply -f mongo_pod.yam]
pod/appmongo-ibm-mongodb-dev created

[root@ip-10-0-2-217 ~]# oc get pod appmongo-ibm-mongodb-dev

NAME READY STATUS RESTARTS AGE
appmongo-ibm-mongodb-dev 0/1 ContainerCreating 0 3s

Appendix C. Seamless application movement across multicloud environments 243

The script queries both clouds and understands that the pod is running in the public cloud
cluster, as shown in Figure C-1.

&2 ~/mengo - o X
$./seamlessnetwork.sh "
Pod status is Pending

Tunneled to MongoDB running on AWS

Pod status is Pending

Tunnel already connected to AWS correctly
Pod status is Pending

Tunnel already connected to AWS correctly
Pod status is Pending

Tunnel already connected to AWS correctly
Pod status is Pending

Tunnel already connected to AWS correctly
Pod status is Pending

Tunnel already connected to AWS correctly
Pod status is Pending

Tunnel already connected to AWS correctly
Pod status is Pending

Tunnel already connected to AWS correctly
Pod status is Pending

Tunnel already connected to AWS correctly
Pod status is Running

Tunnel already connected to AWS correctly
Pod status is Running

Tunnel already connected to AWS correctly
Pod status is Running

Tunnel already connected to AWS correctly

i 9

Figure C-1 Tunnel that is connected to the public cloud

Accessing MongoDB by using the tunneled connection

Now that the solution is running, point the MongoDB compass to the hostname that was
created. As expected, you can see it is a seamless connection, as shown in Figure C-2.

¥ MongoDB Compass - yournetworksolution:27017 - O X

Connect View Help

A Seamless 4« yournetworksolution:27017 (STANDALONE MongoDB 3.6.3 Community

C a Databases

a

> admin
Database Name Storage Size Collections Indexes

> config

> local

oc8 admin 52.0KB 0 3 o}

> restaurant
config 24.0KB 0 2 jof
local 52.0KB 1 1 W
restaurant 138.7MB 1 1 W

Figure C-2 Connecting by using the tunneled connection

244 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Moving to the on-premises Power Systems cloud

To show the seamless movement, delete the pod in the public cloud and bring it up in the
on-premises cloud (Power Systems cluster), as shown in Example C-3.

Example C-3 Deleting the pod in the public cloud and bringing it up in the Power Systems cloud

[root@ip-10-0-2-217 ™~]# oc delete pod appmongo-ibm-mongodb-dev

pod "appmongo-ibm-mongodb-dev" deleted

[root@ip-10-0-2-217 ™~]# oc get pod appmongo-ibm-mongodb-dev

Error from server (NotFound): pods "appmongo-ibm-mongodb-dev" not found
[root@ip-10-0-2-217 ~1#

[root@dcocp0l ~1# oc apply -f mongo_pod.yaml
pod/appmongo-ibm-mongodb-dev created

[root@dcocp0l ~]# oc get pod appmongo-ibm-mongodb-dev

NAME READY STATUS RESTARTS AGE
appmongo-ibm-mongodb-dev 1/1 Running 0 9s
[root@dcocp0l ~]#

The script checks again, validates that the pod is now running in the on-premises cloud, and
points the tunnel to it, as shown in Figure C-3.

&8 ~/mongo - o x
Tunnel already connected to AWS correctly ~
Pod status is Pending

Tunnel already connected to AWS correctly
Pod status is Pending

Tunnel already connected to AWS correctly
Pod status is Pending

Tunnel already connected to AWS correctly
Pod status is Pending

Tunnel already connected to AWS correctly
Pod status is Pending

Tunnel already connected to AWS correctly
Pod status is Running

Tunnel already connected to AWS correctly
Pod status is Running

Tunnel already connected to AWS correctly
Pod status is Running

Tunnel already connected to AWS correctly
Pod status is Running

Tunnel already connected to AWS correctly
Pod status is Running

Tunnel already connected to AWS correctly
Pod status is Running

Tunneled to MongoDB running on IBM

Pod status is Running

Tunnel already connected to IBM correctly

Figure C-3 Changing the tunnel to the on-premises cloud

Appendix C. Seamless application movement across multicloud environments 245

246

After the compass connection is reloaded (as shown in Figure C-4), you can access the
MongoDB instance again without disconnecting.

MongoDB Compass - yournetworksolution:27017

Connect View Help

A Seamless 4 yournetworksolution:27017
C 4DBS 2 COLLECTIONS Databases
—
admin
Database Name
config
local .
admin
restaurant
config

local

restaurant

STANDALONE

Storage Size Collections

**Poading databases

24.0KB 0
52.0KB 1
1387MB 1

MongoDB 3.6.3 Community

Indexes

3 W
2 W
1 a
1 a

Figure C-4 Reloading the connection on the new MongoDB instance without disconnecting

Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Glossary

Application Programming Interface (API)

An interface that allows an application program that is
written in a high-level language to use specific data or
functions of the operating system or another program.

Bare metal machine
A dedicated, fully-customizable physical server that can
be used for virtualization or web hosting.

Cl/cCD
Continuous Delivery/Continuous Integration

Continuous Delivery (CD)
A practice by which you build and deploy your software so
that it can be released into production at any time.

Continuous Integration (Cl)

A process where developers integrate their code more
frequently to identify integration issues earlier when they
are easier to fix.

Command Line Interface (CLI)
A computer interface in which the input and output are
text-based.

Cloud computing

A computing platform where users can access
applications or computing resources as services from
anywhere through their connected devices.

Cloud Native Computing Foundation (CNCF)

A consortium to promote cloud-native technologies and
principles, and provide guidance to the cloud community.
Although CNCEF is not intended to be a standards body,
they do have criteria and a review board before a project
can join.

Cloud native

How an application is built and deployed. A cloud native

application consists of discrete, reusable components that
are known as microservices that integrate into any cloud
environment.

Cloud provider

An organization that provides cloud computing resources.

Container

A system construct that allows users to simultaneously
run separate logical operating system instances.
Containers use layers of file systems to minimize image
sizes and promote reuse.

Containerization

A practice of encapsulating or packaging up software
code (containers) and all its dependencies so that it can
run uniformly and consistently on any infrastructure.

© Copyright IBM Corp. 2020. All rights reserved.

Container Orchestration
Manages the deployment, placement, and lifecycle of
containers. See Kubernetes.

CRI-O

An integration point between Kubernetes and container
runtimes that makes pods (groups of containers) work in
Kubernetes clusters.

Dashboard

A user interface component that provides a
comprehensive summary of pertinent information from
various sources to the user.

DevOps

A software methodology that integrates application
development and IT operations so that teams can deliver
code faster to production and iterate continuously based
on market feedback.

Dockerfile
A text file that contains instructions to build a Docker
image.

Hybrid cloud
A cloud computing environment that consists of multiple
public and private resources.

Infrastructure as a Service (laaS)

The delivery of a computer infrastructure, including server
functionality, networking functionality, data center
functionality, and storage functionality, as an outsourced
service.

Identity and Access Management (IAM)

The process of controlling access of authorized users to
data and applications, at the same time helping
companies comply with various regulatory requirements.

Image

A file and its execution parameters that are used within a
container runtime to create a container. The file consists
of a series of layers, combined at runtime, that are created
as the image is built by successive updates.

Instance
An entity that consists of resources that are reserved for a
particular application or a service.

Internet of Things (loT)

A global network of endpoints that can capture or
generate data. For example, a smartphone, smart watch
and back-end server might all communicate with each
other, sending data back and forth, or even to other
devices within the network.

247

Kubernetes (also known as k8s or kube)

A container orchestration platform for scheduling and
automating the deployment, management, and scaling of
containerized applications.

Load Balancer as a Service (LBaaS)
A service that provides the ability to distribute traffic
among instances in a virtual private cloud.

Local cloud

A cloud computing environment within the client's data
center. The local cloud is on-premises, which provides
improved latency and security.

Mobile Backend as a Service (MBaaS)

A computing model that connects mobile applications to
cloud computing services and provides features, such as
user management, push notifications, and integration with
social networks.

Mobile cloud

An infrastructure in which the storage and processing of
data for applications is offloaded from a mobile device into
the cloud.

Multicloud

A cloud adoption strategy that embraces a mix of cloud
models (public, dedicated, private, and managed) to best
meet unique business, application, and workload
requirements.

Microservices

An application architectural style in which an application is
composed of many discrete, network-connected
components that are called microservices.

OCI container image
A container image that is compliant with the OCI Image
Format Specification.

On-premises (on-prem)
Software that is installed and run on the local computers
of a user or organization.

Platform as a Service (PaaS)
The delivery of a computing platform, including
applications, optimized middleware, development tools,

and runtime environments, in a cloud-based environment.

Pod

A group of containers that are running on a Kubernetes
cluster. A pod is a unit of work that can be run, which can
be a a stand-alone application or a set of microservices.

Private cloud
A cloud computing environment on which access is limited
to members of an enterprise and partner networks.

Public cloud

A cloud computing environment on which access to
standardized resources, such as infrastructure,
multi-tenant hardware, and services, is available to
subscribers on a pay-per-use basis.

Registry
A public or private repository that contains images that are
used to create containers.

Software as a Service (SaaS)

A model of software deployment whereby software,
including business processes, enterprise applications,
and collaboration tools, are provided as a service to
customers through the cloud.

248 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Related publications

The publications that are listed in this section are considered particularly suitable for a more
detailed discussion of the topics that are covered in this book.

IBM Redbooks

The IBM Redbooks publication IBM PowerVM Best Practices, SG24-8062, provides more
information about the topic in this document. Note that this publication might be available in
softcopy only.

You can search for, view, download or order this documents and other Redbooks, Redpapers,
Web Docs, draft, and other materials, at the following website:

ibm.com/redbooks

Online resources

The following websites are also relevant as further information sources:

» Deploying Red Hat OpenShift Container Platform 3.11 on Red Hat OpenStack Platform 13
https://red.ht/2pEFNpV

» OpenShift on POWER
https://red.ht/337z0IT

» Kubernetes concepts
https://kubernetes.io/docs/concepts/services-networking/service/

» IBM PowerVC
https://www.ibm.com/us-en/marketplace/powervc

» Using PowerVC storage
https://ibm.co/34Cko06

» Red Hat OpenShift Container Platform 3.11 CLI Reference
https://red.ht/2XZGBmz

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

© Copyright IBM Corp. 2020. All rights reserved. 249

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
https://red.ht/2pEFNpV
https://red.ht/337zOIT
https://kubernetes.io/docs/concepts/services-networking/service/
https://www.ibm.com/us-en/marketplace/powervc
https://ibm.co/34Cko06
https://red.ht/2XZGBmz

250 Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1

Redbooks Red Hat OpenShift and IBM Cloud Paks on IBM Power Systems: Volume 1 I

(0.2”spine)
0.17"<->0.473"
90<->249 pages

“llil

SG24-8459-00
ISBN 0738458376

Printed in U.S.A.

&® Redhooks .

ibm.com/redbooks

https://www.facebook.com/IBMRedbooks
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/groups/2130806
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Part 1 Introduction
	Chapter 1. Introduction to the Journey to the Cloud: Volume 1
	1.1 Introduction
	1.2 Red Hat and IBM

	Chapter 2. Introduction to containers and orchestration with Kubernetes
	2.1 A new computing paradigm in cloud transformation
	2.1.1 Cloud service model
	2.1.2 Cloud adoption
	2.1.3 Why is hybrid cloud so important
	2.1.4 Application modernization journey for a cloud-centric business transformation

	2.2 Virtual machines meet containers
	2.2.1 Perfect recipe for application modernization
	2.2.2 Coexistence of virtual machines and containers to modernize workloads
	2.2.3 Virtual machines and containers in a hybrid multicloud architecture

	2.3 Containers
	2.3.1 What are containers?
	2.3.2 History of containers
	2.3.3 Docker as a container manager
	2.3.4 Docker architecture

	2.4 Kubernetes: An open source container orchestration
	2.4.1 What is container orchestration?
	2.4.2 Kubernetes architecture, system, and components
	2.4.3 Kubernetes operating environment, objects, and basic operations
	2.4.4 Cloud Native Computing Foundation

	2.5 Enterprise Kubernetes: Red Hat OpenShift
	2.5.1 Red Hat OpenShift overview
	2.5.2 Red Hat OpenShift Container Platform
	2.5.3 OpenShift Container Platform architecture
	2.5.4 Red Hat OpenShift access and control

	Chapter 3. IBM Cloud Paks: Middleware anywhere
	3.1 Overview
	3.1.1 What are IBM Cloud Paks?
	3.1.2 First IBM Cloud Paks
	3.1.3 Core Services
	3.1.4 Production-ready Containers Images

	3.2 IBM Cloud Pak for Applications
	3.2.1 Features
	3.2.2 Programming Language support
	3.2.3 Tools and runtime packages

	3.3 IBM Cloud Pak for Automation
	3.3.1 Features
	3.3.2 Core capabilities

	3.4 IBM Cloud Pak for Data
	3.4.1 Features
	3.4.2 Layers

	3.5 IBM Cloud Pak for Integration
	3.5.1 Features
	3.5.2 Layers

	3.6 IBM Cloud Pak for Multicloud Management
	3.6.1 Features
	3.6.2 Layers explained

	3.7 IBM Cloud Pak for Security
	3.7.1 Features
	3.7.2 Layers

	Part 2 Red Hat OpenShift
	Chapter 4. Red Hat OpenShift components and architecture
	4.1 OpenShift cluster components
	4.1.1 Docker service and Kubernetes
	4.1.2 etcd store
	4.1.3 OpenShift-Kubernetes extensions
	4.1.4 Containerized services
	4.1.5 Run times and xPaaS
	4.1.6 DevOps tools and user experience
	4.1.7 Master and nodes
	4.1.8 OpenShift projects and applications

	4.2 OpenShift container platform networking
	4.2.1 OpenShift networking overview
	4.2.2 OpenShift internal cluster communication
	4.2.3 OpenShift external cluster communication

	4.3 OpenShift persistent storage
	4.4 OpenShift registry
	4.4.1 Integrated OpenShift Container Registry
	4.4.2 Third-party registries

	4.5 Managing OpenShift resources

	Chapter 5. Red Hat OpenShift installation planning and considerations
	5.1 IBM Power Systems
	5.1.1 Mission-critical workloads
	5.1.2 Big data workloads
	5.1.3 Enterprise AI workloads

	5.2 Red Hat OpenShift Container Platform 3.11 on IBM Power Systems
	5.3 Red Hat OpenShift Container Platform 3.11 on IBM PowerVC
	5.3.1 Reference architecture summary
	5.3.2 Design considerations
	5.3.3 Reference architecture

	Chapter 6. Installing Red Hat OpenShift 3.11 on IBM PowerVC
	6.1 Deployment process overview
	6.2 Setting up the deployment environment
	6.2.1 Setting up the DNS
	6.2.2 PowerVC configuration
	6.2.3 Creating the virtual machine to host deployment tools
	6.2.4 Preparing the deployment host

	6.3 OpenShift container platform deployment
	6.3.1 Deployment scenarios
	6.3.2 Deploying OpenShift Container Platform on PowerVC
	6.3.3 Provisioning the infrastructure on PowerVC
	6.3.4 Installing the OpenShift Container Platform
	6.3.5 Uninstalling the OpenShift Container Platform

	6.4 IBM PowerVC FlexVolume Driver
	6.4.1 Deploying the IBM PowerVC FlexVolume Driver
	6.4.2 Creating the persistent storage for the Registry
	6.4.3 Deploying the Prometheus Cluster Monitoring

	6.5 Managing OpenShift Resources using CLI
	6.6 Installing the IBM Cloud Pak for Multicloud Management

	Part 3 Practical scenarios
	Chapter 7. Use cases
	7.1 Building Cloud Native Applications on IBM Power Systems: Rapid development of new applications
	7.2 Hybrid architecture and multicloud applications: A true hybrid multicloud feel for the user
	7.2.1 Multicloud approach by using stateful MongoDB database
	7.2.2 OpenShift Container Platform 3.11 ppc64le on-premises
	7.2.3 OpenShift Container Platform v4.1 on x86 at AWS
	7.2.4 Testing the hybrid multicloud

	Chapter 8. Special topics
	8.1 IBM Multicloud Manager: Container orchestration
	8.1.1 IBM Multicloud Manager overview
	8.1.2 Key features and capabilities of IBM Multicloud Manager

	8.2 Moving data across clouds
	8.2.1 IBM Aspera key features and benefits
	8.2.2 Using IBM Aspera in a Hybrid cloud environment

	8.3 Configuring a multicloud data lake
	8.3.1 Data lake overview
	8.3.2 Using a data lake in a multicloud environment

	Part 4 Appendixes
	Appendix A. Sample lab: Deployment and Pod management
	A.1 Connecting to the lab environment
	A.2 Creating a user and project by using the OpenShift command line
	A.3 Logging in to the OpenShift web console
	A.4 Deploying an Apache server by using the OpenShift web console
	A.5 Verifying the status of the deployment
	A.6 Testing deployment resiliency
	A.7 Scaling the deployment

	Appendix B. Sample lab: Deployments and workload balance
	Connecting to the lab environment
	Creating a user and project by using the OpenShift command line
	Logging in to the OpenShift web console
	Deploying an NGINX server by using the OpenShift web console
	Deploying a second NGINX server by using the OpenShift web console
	Customizing the index.test file of the NGINX instances
	Creating a route to balance the network traffic between the two NGINX instances
	Testing load balancing across NGINX instances

	Appendix C. Seamless application movement across multicloud environments
	Network tunneling for MongoDB
	Moving the application across clouds
	Starting the pod at Amazon Web Services
	Accessing MongoDB by using the tunneled connection
	Moving to the on-premises Power Systems cloud

	Related publications
	IBM Redbooks
	Online resources
	Help from IBM

	Back cover

