
OLAF

Ontology based-system

Ontology Use Cases Final Application

Knowledge sources

Text Corpus Seed Ontology

Ontology

Pipeline Building Pipeline Optimisation Pipeline Execution

C-value-based filtering
Linguistic-based filtering
TF-IDF value-based filtering

ConceptNet-based extraction
Grouping terms based on synonyms
Term cooccurrences-based extraction
Similarity-based extraction
Formal concept Analysis

Term subsumption algorithm
Hierarchical clustering

Rule-based axiom extraction
Inductive Logic Programming

OLAF : Ontology Learning Applied Framework
Marion SCHAEFFER (marion.schaeffer@insa-rouen.fr) - Matthias SESBOUE (matthias.sesboue@insa-rouen.fr)

Jean-Philippe KOTOWICZ - Nicolas DELESTRE - Cecilia ZANNI-MERK

Term Extraction

Term Enrichment

Concept/Relation
Extraction

Hierarchisation

Axiom

Data preprocessing

Text Corpus

Ontology

OLAF

Activity Ressource

Artifact Optional

CAPTION

STATE OF THE ART
System Overview Pros and cons

Text2Onto,
2005, [1]

It is the reference in the field as it defines a
representation-agnostic structure with modular
steps and takes into account uncertainty. The
system is implemented as a GATE module.

Ontologies can be exported in
various formats. GATE system
adds great visualisations. But it is
not maintained since 2011.

OntoLearn
(Reloaded),

2013, [3]

It focuses on "lexicalised ontologies" and uses seed
knowledge. It implements 5 steps: terminology
extraction, hypernym graph construction, domain
filtering of hypernyms, hypernym graph pruning and
edge recovery.

It relies on WordNet and POS
tags and does not distinguish
between terms and concepts.
It implements different
adaptable approaches.

OntoGain,
2010, [2]

It focuses on multiword terms to construct a
"lexicalised ontology" by adapting an agglomerative
clustering and an FCA method. It implements 4
steps: text preprocessing, concept extraction (C/NC-
value), taxonomy construction, and non-taxonomic
relation acquisition (rule-based and probabilistic).

It considers only multiword
terms and relies on WordNet
and POS tags. It does not
distinguish between terms and
concepts and implements
different adaptable approaches.

Cimiano P, Völker J. Text2Onto. Natural Language Processing and Information Systems. Berlin, Heidelberg: Springer Berlin Heidelberg; 2005.p. 227-238. ISBN: 978-3-540-32110-1
Drymonas E, Zervanou K, Petrakis EGM. Unsupervised Ontology Acquisition from Plain Texts: The OntoGain System. Natural Language Processing and Information Systems. Berlin, Heidelberg:
Springer Berlin Heidelberg; 2010. p. 277-87. ISBN: 978-3-642-13881-2
Paola Velardi, Stefano Faralli, Roberto Navigli; OntoLearn Reloaded: A Graph-Based Algorithm for Taxonomy Induction. Computational Linguistics 2013; 39 (3): 665–707. DOI:
10.1162/COLI_a_00146
Muhammad Nabeel Asim, Muhammad Wasim, Muhammad Usman Ghani Khan, Waqar Mahmood, Hafiza Mahnoor Abbasi, A survey of ontology learning techniques and applications,
Database, Volume 2018, 2018, bay101, DOI: 10.1093/database/bay101

1.
2.

3.

4.

Since the beginning of the century, research on ontology learning has gained popularity. Automatically extracting and structuring knowledge
relevant to a domain of interest from unstructured data is a major scientific challenge. We propose a new approach with a modular ontology
learning framework considering tasks from data pre-processing to axiom extraction. Whereas previous contributions considered ontology learning
systems as tools to help the domain expert, we developed the proposed framework with full automation in mind. An implementation as an open-
source and collaborative python library is available at https://gitlab.insa-rouen.fr/msesboue/ontology-learning.

Most ontology learning systems do not consider the targeted ontology-
based system. Though an ideal ontology should model a domain in an
application-independent manner, in practice, concepts and relations
represented largely depend on one or more business use cases. As
we designed our framework with industry application in mind, we need
to consider it within its real-world usage context.

Embedding-based similar term extraction
ConceptNet synonym extraction
WordNet synonym extraction

We choose Python as it eases access to the vast python
community and its library ecosystem, particularly NLP tools and
numerous Machine Learning (ML) libraries.

Algorithm implemented
Upcoming implementation
 : Iterative process

Our vision is to implement a toolbox of methods we can
gather to build pipelines. These pipelines can be run,
optimised and analysed to learn the best possible
ontology.

Our implementation is largely based on the Python NLP
library spaCy. The text processing on spaCy helps us
work with data in many different languages while
staying flexible on the methods used. The only constraint
is to end up with a list of spaCy Doc objects.

OLAF IN A PRACTICAL CONTEXT

We designed the proposed framework focusing on automation with very little, if any, human involvement in mind. Unlike most existing approaches,
particular attention is brought to the learned ontology final production use case. We implement the framework as an open-source and open-
access python library. We aim to gather feedback and grow a community to develop and test multiple algorithms. Various satellite tools could be
developed to enhance the framework implementation. However, we should focus on developing axiom extraction and automatic ontology
evaluation. One exciting research area might be the adaptation of the software industry's "DevOps" concepts to knowledge management. The latter
field is known as "SemOps".

Different serialization techniques can be used to export and
leverage the learned ontology in an application system.

ONTOLOGY LEARNING FRAMEWORK
ARCHITECTURE

a search engine on Schneider Electric products
a chatbot on Human Resources issues.

We only work on unstructured textual data.
We apply the framework in two different use cases and datasets
to validate our results :

Our framework provides several algorithms for the different
stages of the pipeline. The algorithms are taken from external
libraries or directly implemented in the framework. The goal is to
have as many methods as possible to cover the maximum needs.

https://doi.org/10.1162/COLI_a_00146
https://doi.org/10.1093/database/bay101

