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Models of electrolyte solutions from molecular descriptions: The example of NaCl
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We present a method to derive implicit solvent models of electrolyte solutions from all-atom
descriptions; providing analytical expressions of the thermodynamic and structural properties of
the ions consistent with the underlying explicit solvent representation. Effective potentials between
ions in solution are calculated to perform perturbation theory calculations, in order to derive the
best possible description in terms of charged hard spheres. Applying this method to NaCl solutions
yields excellent agreement with the all-atom model, provided ion association is taken into account.

Since the pioneering works of Debye, Hiickel, and
Onsager, electrolyte solutions have been commonly
described by continuous solvent models, for which
the McMillan-Mayer theory @] provides a rigorous
statistical-mechanical foundation. Within that level of
description, simple phenomenological models such as the
primitive model (PM), for which the ions are assimi-
lated to charged hard spheres ﬂj], can lead to explicit
formulas for the thermodynamic and structural proper-
ties (e.g., with the help of the mean spherical approxima-
tion (MSA) [3] or the binding MSA (BIMSA) ﬂﬁ]). These
models are the most practical to use ﬂﬂ], since they allow
for a direct link between the experimental measurements
and the microscopic parameters of the system. Never-
theless, they ignore the molecular structure of the sol-
vent. Consequently, they cannot properly account for
the complex specific effects of the ions, which appear in
numerous biological, chemical, and physical interfacial
phenomena ﬂa, ﬁ], without further developments.

An alternative procedure consists in carrying out
molecular simulations, where both the solvent and solute
are treated explicitly. After a rigorous averaging over
the solvent configurations, a coarse-grained description
of the ions, which still includes the effect of the solvent
structure, can be obtained B] However, this set of
methods is purely numeric; they do not provide any an-
alytical expression for thermodynamic quantities. They
are therefore restricted to simple geometries [12,[13] (bulk
solutions or planar interfaces). The description of com-
plex systems, such as porous or electrochemical materi-
als, is still based on continuous solvent models ﬂﬂ]

In this letter we present a method aimed at bridging
the gap between analytical and numerical approaches. It
is based on the application of liquid perturbation theory
(LPT) [15] to effective ion-ion potentials extracted from
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molecular dynamics (MD) results. Different approxima-
tions of the PM are employed for the case of NaCl elec-
trolyte solutions: a two component model (MSA2), that
only takes free ions into account, and two different three
component models (MSA3 and BIMSA3), which include
a third species (the contact ion pair). As we proceed
to show, LPT allows us to select the best simple model
which accurately accounts for the thermodynamics and
the physical-chemistry of the system.

The first stage consists in calculating the McMillan-
Mayer effective ion-ion interaction potentials V;?—H(T), by
inverting the radial distribution functions (RDF) g;;(r)
obtained by MD. The simulations were carried out on
a box of 2000 water molecules and 48 NaCl pairs us-
ing the same interaction potentials as in reference HEJ
This setup corresponds to a concentration of 0.64 moll™ .
NPT ensemble sampling at standard pressure and tem-
perature was enforced, with a time step of 1 fs and a
pressure bath coupling constant of 1 ps. An equilibration
run of 0.25 ns was followed by a production run of 0.6 ns
for five different initial configurations. The averages of
the resulting RDF were then used for the potential inver-
sion via the HNC closure ﬂﬁ] These effective potentials
are assumed to be concentration independent and will be
used for simulations at all concentrations.

Subtracting the long-range Coulombic potential
Viz®(r) (which depends on the dielectric constant of the
solvent) from Vij-ff(r), we obtain the short-range contri-
bution VgR(r) to the effective potentials. These are given
in Fig. [ (species 1 and 2 refer to Na™ and Cl~ free ions,
respectively). All the short-range potentials exhibit os-
cillations corresponding to the solvent layering between
the ions, but this effect is particularly important for the
cation-anion interaction: a considerable potential barrier
(Z 2kpT) separates the first two attractive wells. To
serve as a reference, Monte Carlo (MC) simulations were
performed with these effective potentials; a comparison
between MD and MC RDF is also provided in Fig.[Il The
excellent agreement between both sets of RDF validates
the HNC inversion procedure ﬂﬂ], and allows us to com-
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FIG. 1: Effective McMillan-Mayer short-range pair potentials
extracted from explicit solvent simulations using the HNC
closure. (a) Cation anion, (b) cation cation, (c) anion anion,
(d) cation anion RDF obtained from explicit solvent MD and
implicit solvent MC simulations.

pute all ion thermodynamic properties through implicit
solvent MC simulations.

The second stage of our coarse-graining procedure con-
sists in applying LPT, in order to deduce the best ana-
lytical model of electrolyte solutions which reproduces
this molecular description. The principle of LPT is to
describe the properties of a given system in terms of
those of a well known reference system, with the differ-
ence between them treated as a perturbation in the ref-
erence potential. Assuming pairwise additive potentials,
Vij = Vig-o) + AVjj, a first-order truncated expression for
the free energy density of the system 3 f, is obtained,

51 S B+ 555 pipy [ dr g AV (1)
]

which depends only on the free-energy density féo) and
RDF ¢ of the reference fluid, with 3 = (kgT)~' and
p; the concentration of species 7. The Gibbs-Bogoliubov
inequality [15] ensures that the right-hand side of Eq. ()
is actually a strict upper bound. Once a reference system
has been chosen, the expression on the right-hand side of
Eq. () must be minimized with respect to the parameters
defining the reference. This procedure yields the best
first-order approximation to the free energy of the system
under consideration.

For a system of charged particles in solution, the nat-
ural reference is the PM, defined in terms of the charge
and diameter (o;) of each species. In this case, the per-
turbing potentials are just the short-range effective po-
tentials computed above (AV;; = VSR) We use the
MSA B] solution to the PM, since it provides analyti-
cal expressions for both the free energy and the RDF.
The perturbation term is evaluated using an exponential
approximation to the RDF obtained within the MSA,
g(r) = exp [gmsa(r) — 1], which removes any unphysical
negative regions and improves the comparison with HNC
calculations.
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FIG. 2: (Color online) (a) Osmotic coefficient ® in the

McMillan-Mayer frame of reference. (diamond) MC simula-
tions, (dot dashed) MSA2, (dot) Debye Hiickel Limiting law
(DHLL), (cross) experiments (Ref. [18] with the McMillan-
Mayer to Lewis Randall conversion). (b) Minimization diam-
eters. (dot dashed) MSA2 and (diamond) MSA-fit.

We first used LPT for a two-component system (Na™
and Cl~ free ions) within the MSA (model MSA2), for
concentrations ranging from 0.1 to 2.0 mol1™". The mini-
mization leads to almost constant diameters on the whole
range of concentration: o; = 3.67 A and oy = 4.78 A.
As shown in Fig. 2] these parameters yield osmotic co-
efficients close to MC calculations only at very low con-
centration, i.e., ¢ < 0.1moll™* (experimental values are
given for indicative purposes only, since a perfect model
will exactly match the MC results). For molar solutions,
the LPT results differ considerably from MC calculations.
This discrepancy can easily be understood by comparing
the diameters found within the MSA2 calculation with
the effective potentials given in Fig.[Il The anion/cation
contact distance obtained within the MSA2 calculation
is 4.2 A, which is in the region of the second minimum of
the effective potential and corresponds to the situation
where there is a single layer of water molecules between
the ions. The first minimum of the potential, which cor-
responds to the contact ion pair (CIP) is thus completely
ignored by the MSA2 calculation. If the MSA diameters
are directly fitted to reproduce the MC osmotic pres-
sure, much smaller values are obtained. These MSA-fit
hydrated diameters, which are compared to the MSA2
diameters in the bottom part of Fig. 2] are averages of
the CIP and the solvent-separated ion pair.

To overcome this difficulty, we have explicitly intro-
duced the CIP in our model (species 3). Straightforward
calculations, based on a characteristic-function formal-
ism, allow us to define an equivalent model in which
the free ions and the CIP are explicitly taken into ac-
count ﬂE, ] We apply this formalism by defining a
pair as an anion and a cation at a distance less than
4 A, which corresponds to the position of the effective
potential maximum. The interaction between free, like
charges in this new system remains unchanged, and the
cation-anion interactions are easily approximated by ex-
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FIG. 3: Effective pair potentials derived for MSA3 and

BIMSA3. (a) Cation anion (dashed line: without taking the
pair into account), (b) pair cation, (c) pair anion, and (d) pair
pair. The internal potential of the pair B‘znt(r) is set equal
to BV (r) for distances less than 4 A.

trapolating the original potential at the barrier separat-
ing pairs from free ions (as shown in Fig.[B). We assume
that the interaction potential is averaged over the rota-
tional degrees of freedom of the CIP and thus pairwise
additive. Hereafter, the quantities referring to such a
three-component model are written with a tilda symbol.
The short-range potentials involving the pair can be de-
rived, in the infinite dilution limit, from an average of
the contributing ion interactions. In Fourier space,

Vilk(k) = w(k/2)[VER + VER](k), i=1,2 (2a)
Vil (k) = w(k/2)2 [VER + VSR + 2V (k) (2b)

where w(r) is the pair probability distribution
@(r) = Ky e BV (n) (2c)

XN/int(r) is the internal part of the pair potential (see
Fig. B), and K is the association constant, defined as:

Ko = / drdmr2e AVm () = 043 Lmol ™" (3)
0

The excess free-energy density of the original system

BfsX is that of the three component mixture 3 f5* plus a
correction term

B = BfEX — psIn Ko, (4)

which is due to the change in standard chemical potential
between the two component and three component mod-
els. It should be noted that the fraction of pairs is now an
additional parameter in the minimization scheme, which
serves to ensure chemical equilibrium. Within this rep-
resentation, the pair can be modeled as a hard sphere
(MSA3) or as a dumbbell-like CIP (BIMSA3) [4]. Since
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FIG. 4: (Color online) Excess free-energy density Sfs* as
a function of the square root of the concentration /c. (dia-
mond) MC simulations, (dot dashed) MSA2, (dashed) MSA3,
(solid) BIMSA3, (dot) DHLL, and (cross) experiments. The
inset gives the fraction of pairs (MSA3, BIMSA3) as a func-
tion of +/c.

we have no additional information, we consider only sym-
metric dumbbells. Furthermore, since analytic expres-
sions for the RDF within BIMSA are not known, we ap-
proximate the dumbbell as a hard sphere when comput-
ing the perturbation term (this is not necessary for the
reference term, since an expression for the free energy
is available). Let o, be the diameter of the cation (an-
ion) within the dumbbell, the diameter of the hard sphere

representing this dumbbell is taken to be o3 = %ﬁ o.l21].

Using these two reference systems, the three-
component MSA3 and BIMSA3, we obtain results in
much better agreement with the MC simulations, as
shown in Fig. @ The diameters obtained for species 1,
2, and 3 are 3.65, 4.79, and 5.76 A for MSA3 and 3.69,
4.75 and 6.19 A for BIMSA3. The free ion diameters are
similar for MSA2, MSA3, and BIMSA3. The pair diam-
eter is smaller when modeled as a hard sphere (MSA3)
than when modeled as a dumbbell (BIMSA3). At high
concentration (about 1moll™!), the MSA3 overestimates
the free energy, because the excluded volume repulsion
becomes too important for the pairs to be represented as
hard spheres. The BIMSA3 model is the closest to the
MC simulation results. It is worth noting that even at
the lowest concentration considered, the fraction of pairs
(shown in the insert of Fig. [), although less then 5%,
has a non-negligible effect on the thermodynamics of the
system.

This procedure also provides an accurate description of
the structure over the whole range of concentrations. A
development similar to the one that leads to Eq. ([2]) de-
rives the average unpaired RDF from the corresponding
paired quantities:

pip;gij(k) = p3w(k) (1 — di5) + pip;Gij (k)

+ psw(k/2) [pigsi + pigs;| (k) (5)
+ 73 [w(k/2)] Gss (k)
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FIG. 5: (Color online) RDF obtained from MC simulations
(diamond), BIMSA3 (solid line), and MSA-fit (dot dashed)
at two concentrations.

The RDF obtained within BIMSA3 are compared with
the MC and MSA-fit results in Fig. Our BIMSA3
model accounts for the strong molecular peak of the CIP
and provides the correct distances of minimal approach;
whereas the naive MSA-fit procedure ignores the former
and gives poor estimates for the latter. At larger sep-
arations, the BIMSA3 results do not reproduce the os-
cillations observed in the MC simulations, but the cor-
responding energy oscillations in the effective potentials
are less than kgT. In addition, the perturbation term

of the BIMSA3 appears to be negligible compared to the
reference term for concentrations less than 1moll1™!. The
perturbation can then be omitted to obtain a fully ana-
lytical theory, determined by the hard sphere diameters
and the pair fraction given by LPT; with the free energy
and the RDF given in terms of the BIMSA and MSA so-
lutions, as described above. While the procedure we have
followed uses two different approximations for the refer-
ence and perturbation terms (MSA vs BIMSA), these are
known to be accurate for the systems under consideration
and do not appear to be inconsistent with each other.

To conclude, we have combined MD simulations with
LPT to construct simple models of electrolyte solutions
which account for the molecular nature of the solvent.
The final result is fully analytical and it yields the ther-
modynamic and structural properties of the solution, in
agreement with the original molecular description. The
methodology can in principle be adapted to any molecu-
lar description of the system (MD simulations involving
interaction potentials accounting for polarization effects
or Car-Parrinello MD simulations for example) as long
as the ion-ion RDF are known. It can also be generalized
to study interfaces. The method appears to be a promis-
ing approach toward the description of the specific effects
of ions, especially for complex systems whose modeling
requires an analytic solution.

The authors are particularly grateful to Werner Kunz
for fruitful discussions.
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