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The properties of helical thin films have been thoroughly investigated by classical Monte Carlo
simulations. The employed model assumes classical planar spins in a body-centered tetragonal
lattice, where the helical arrangement along the film growth direction has been modeled by nearest
neighbor and next-nearest neighbor competing interactions, the minimal requirement to get helical
order. We obtain that, while the in-plane transition temperatures remain essentially unchanged with
respect to the bulk ones, the helical/fan arrangement is stabilized at more and more low temperature
when the film thickness, n, decreases; in the ordered phase, increasing the temperature, a softening
of the helix pitch wave-vector is also observed. Moreover, we show also that the simulation data
around both transition temperatures lead us to exclude the presence of a first order transition for all
analyzed sizes. Finally, by comparing the results of the present work with those obtained for other
models previously adopted in literature, we can get a deeper insight about the entwined role played
by the number (range) of interlayer interactions and surface effects in non-collinear thin films.

PACS numbers: 64.60.an,64.60.De,75.10.Hk,75.40.Cx,75.70.Ak.

I. INTRODUCTION

The study of low dimensional frustrated magnetic
systems1 still raises great interest, both in consequence
of theoretical aspects, related to their peculiar criti-
cal properties2, and in view of possible technological
applications3. Indeed, beside conventional ferromagnetic
or antiferromagnetic phase transitions, in many new ma-
terials other nontrivial and unconventional forms of or-
dering have been observed4,5. A quantity of particular
interest in this context is the spin chirality, an order pa-
rameter which turned out to be extremely relevant in,
e.g., magnetoelectric materials6, itinerant MnSi7, binary
compounds as FeGe8, glass transition of spins9, and XY
helimagnets, as Holmium, Terbium or Dysprosium10. In
the latter case, a new universality class was predicted be-
cause a Z2 × SO(2) symmetry is spontaneously broken
in the ordered phase2: In fact, when dealing with such
systems, in addition to the SO(2) symmetry of the spin

degrees of freedom ~Si, one has to consider also the Z2

symmetry of the spin chirality κij ∝
[

~Si × ~Sj

]z

.

For these rare-earth elements, the development of new
and sophisticated experimental methods11 has allowed to
obtain ultra-thin films where the non-collinear modula-
tion is comparable with the film thickness. Under such
conditions the lack of translational invariance due to the
presence of surfaces results decisive in order to observe
a drastic change of the magnetic structures12. Recent
experimental data on ultra-thin Holmium films13 have
been lately interpreted and discussed14,15 on the basis
of detailed classical Monte Carlo (MC) simulations of a
spin Hamiltonian, which is believed to give a realistic
modeling of bulk Holmium. Such Hamiltonian, proposed
by Bohr et al.16, allows for competitive middle-range in-

teractions by including six different exchange constants
along the c crystallographic axis, and gives a helix pitch
wave-vector Qz such that Qzc

′ ≃ 30◦, where c′ = c/2 is
the distance between nearest neighboring spin layers par-
allel to the ab crystallographic planes, henceforth denoted
also as x − y planes, while z will be taken parallel to c.
For n > 16, n being the number of spin layers in the film,
a correct bulk limit is reached, while for lower n the film
properties are clearly affected by the strong competition
among the helical pitch and the surface effects, which in-
volve the majority of the spin layers. In the thickness
range n = 9 − 16, i.e. right for thickness values com-
parable with the helical pitch, three different magnetic
phases emerged, with the high-temperature, disordered,
paramagnetic phase and the low-temperature, long-range
ordered one separated by an intriguing, intermediate-
temperature block phase, where outer ordered layers co-
exist with some inner disordered ones, the phase tran-
sition of the latter eventually displaying the signatures
of a Kosterlitz-Thouless one. Finally, for n ≤ 7 the film
collapses once and for all to a quasi-collinear order.

The complex phase diagram unveiled by such MC sim-
ulations awaken however a further intriguing question:
to what extent the observed behavior may be considered
a simple consequence of the competition between helical
order and surface effects? I.e., is it just a matter of hav-
ing such a competition or does the range of interactions
also play a relevant role? Indeed, when the range of the
interactions is large enough we have a greater number of
planes which can be thought of as ”surface planes”, i.e.
for which the number of interacting neighbors are sig-
nificantly reduced with respect to the bulk layers; there-
fore, we expect that the larger the interaction range, the
stronger should be the surface effects. But, at the same
time, the same modulation of the magnetic order can
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FIG. 1: (colors online) (a): body-centered tetragonal (BCT)
lattice with J0 in-plane coupling constant, and out-of-plane
J1, and J2 competing interactions.

be achieved with different number of interacting layers:
notably, nearest and next-nearest layers competitive in-
teractions are enough to get a helical structure with a
whatever pitch wavevector. Such observation gives us a
possible way to solve the conundrum previously emerged,
as we have the possibility of varying the range of inter-
actions without modifying the helical pitch, thus decou-
pling the two relevant length scales along the film growth
direction, and making accessible a range of n of the or-
der of, or smaller than, the helical pitch, but still large
enough that a substantial number of layers can behave
as “bulk” layers. Therefore, while in the previous papers
we have studied the properties of ultrathin magnetic films
of Ho assuming a model with six interlayer exchange in-
teractions, here we investigate by MC simulations the
properties of the same system by making use of the sim-
plest model Hamiltonian able to describe the onset of a
helical magnetic order in Holmium, i.e. we consider only
two inter-layer coupling constants, as previously done in
Ref. 11.
The paper is organized as follows: In Sec. II the model

Hamiltonian will be defined, and the MC techniques, and
all the thermodynamic quantities relevant for this study,
will be introduced. In Sec. III the results obtained for
different thicknesses will be presented, both in the matter
of the critical properties of the model and of the magnetic
ordered structures observed. Finally, in Sec. IV we shall
discuss such results, drawing also some conclusions.

II. MODEL HAMILTONIAN AND MONTE
CARLO OBSERVABLES

The model Hamiltonian we use in our simulations is the
minimal one able to describe helimagnetic structures:

H = −



J0
∑

〈ij〉

~Si · ~Sj + J1
∑

〈ik〉

~Si · ~Sk + J2
∑

〈il〉

~Si · ~Sl



 .

(1)

~Si are classical planar unit vectors representing the di-
rection of the total angular momentum of the magnetic
ions, whose magnitude

√

j(j + 1) (j = 8 for Holmium
ions) is already encompassed within the definition of the
interaction constants J0,1,2. As sketched in Fig. 1, the
magnetic ions are located on the sites of a body-centered
tetragonal (BCT) lattice; the first sum appearing in the
Hamiltonian describes the in-plane (xy) nearest neigh-
bor (NN) interaction, which is taken ferromagnetic (FM),
with exchange strength J0 > 0; the second sum rep-
resents the coupling, of exchange strength J1, between
spins belonging to nearest neighbor (NN) planes along
the z-direction (which we will assume to coincide with
the film growth direction); finally, the third sum takes
into account the interaction, of exchange strength J2, be-
tween spins lying on next-nearest neighbor (NNN) planes
along z. In order to have frustration, giving rise to non-
collinear order along z in the bulk, NN interaction J1
can be taken both ferro- or antiferromagnetic, but NNN
coupling J2 has necessarily to be antiferromagnetic, and
the condition |J2| > |J1|/4 must be fulfilled. Such simpli-
fied Hamiltonian was already employed to simulate he-
lical ordering in bulk systems by Diep1,17 and Loison18.
In the bulk limit, the state of minimal energy of a sys-
tem described by Eq.(1) corresponds to a helical arrange-
ment of spins. The ground state energy per spin is equal
to eg(Qz) = [−4J0 − 2J1 (4 cos (Qzc

′) + δ cos (2Qzc
′))]

where c′ is the distance between NN layers, δ = J2

J1

,

and Qzc
′ = arccos

(

− 1
δ

)

is the angle between spins ly-
ing on adjacent planes along the z-direction. The ob-
served helical arrangement in bulk holmium corresponds
to Qzc

′ ≃ 30.5◦10: such value can be obtained from
the formula above with the set of coupling constants
J0=67.2K, J1=20.9K, and J2 = −24.2K, that we have
employed in our simulations. The given values for the ex-
change constants are the same already used by Weschke
et al. in Ref. 13 to interpret experimental data on
Holmium films on the basis of a J1 − J2 model, after
a proper scaling by the numbers of NN and NNN on
neighboring layers of a BCT lattice.

In the following we will denote with n the film thick-
ness, i.e. the number of spin layers along the z direction,
and with L×L the number of spins in each layer (i.e., L
is the lattice size along both the x and y directions). In
our simulations thickness values from 1 to 24 were con-
sidered, while the range of lateral size L was from 8 to
64. Periodic boundary conditions were applied along x
and y, while free boundaries were obviously taken along
the film growth direction z.

Thermal equilibrium was attained by the usual
Metropolis algorithm19, supplemented by the over-
relaxed technique20 in order to speed-up the sampling
of the spin configuration space: a typical “Monte Carlo
step” was composed by four Metropolis and four-five
over-relaxed moves per particle. Such judicious mix of
moves is able both to get faster the thermal equilibrium
and to minimize the correlation “time” between succes-
sive samples, i.e. the undesired effects due to lack of in-
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dependence of different samples during the measurement
stage. For each temperature we have usually performed
three independent simulations, each one containing at
least 2×105 measurements, taken after discarding up to
5×104 Monte Carlo steps in order to assure thermal equi-
libration.
In the proximity of the critical region the multiple his-

togram (MH) technique was also employed21, as it allows
us to estimate the physical observables of interest over a
whole temperature range in a substantially continuous
way by interpolating results obtained from sets of simu-
lations performed at some different temperatures.
For all the quantities of interest, the average value and

the error estimate were obtained by the bootstrap re-
sampling method22 given that, as pointed out in Ref. 23,
for a large enough number of measurements, this method
turns out to be more accurate than the usual blocking
technique. In our implementation, we pick out randomly
a sizable number of measurements (typically, between 1
and 1×103 for the single simulation, and between 1 and
5×104 for the MH technique), and iterate the re-sampling
at least one hundred times.
The thermodynamic observables we have investigated

include the FM order parameter for each plane l:

ml =
√

(mx
l )

2 + (my
l )

2 , (2)

which is related to the SO(2) symmetry breaking. At the
same time, it turns out to be significant also the average
order parameter of the film, defined as

M =
1

n

n
∑

l=1

ml . (3)

Turning to the helical order, which is the relevant
quantity for the Z2 × SO(2) symmetry, we can explore
it along two different directions. The first one is by the
introduction of the chirality order parameter1,2

κ =
1

4(n− 1)L2 sinQz

∑

〈ij〉

[

Sx
i S

y
j − Sy

i S
x
j

]

, (4)

where the sum refers to spins belonging to NN layers
i and j, respectively, while Qz is the bulk helical pitch
vector along the z direction. The second possibility is
that of looking at the integral of the structure factor:

MHM =
1

K

∫ π

0

dqzS(~q) (5)

where S(~q), with ~q = (0, 0, qz), is the structure factor24

(i.e. the Fourier transform of the spin correlation func-
tion) along the z-direction of the film, while the normal-
ization factor K is the structure factor integral at T = 0.
Although the use of the last observable can be seen as a
suitable and elegant way to overcome the intrinsic diffi-
culties met in defining a correct helical order parameter,
free of any undue external bias (as the wave-vector Qz
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FIG. 2: (color online) Specific heat cv per spin vs. temper-
ature for thickness n = 16 (for lateral dimension, see the
legend inside the figure). Inset: Maximum of cv vs. L ob-
tained through MH technique. The continuum red line is a
power law fit.

entering the definition of κ in Eq. (4)), we remind that
such quantity has generally to be managed with particu-
lar care, as discussed in details in Refs.14,15, where it was
shown that the presence of block structures prevents us
to unambiguously relate the evolution of S(~q) with the
onset of helical order. However, for the specific case of
the model under investigation such integrated quantity
can still be considered a fairly significant order parame-
ter, as no block structures emerge from the simulations
(see below).

In order to get a clear picture of the critical region and
to give an accurate estimate of the critical temperature,
we look also at the following quantities

cv = nL2β2
(

〈e2〉 − 〈e〉2
)

, (6)

χo = nL2β
(

〈o2〉 − 〈o〉2
)

, (7)

∂βo = nL2 (〈oe〉 − 〈o〉〈e〉) , (8)

u4(o) = 1−
〈o4〉

3〈o2〉2
, (9)

where β = 1/kBT , and o is one of the relevant observ-
ables, i.e. ml,M, κ,MHM . In this paper, we shall mainly
locate the critical temperature by looking at the intersec-
tion of the graphs of the Binder cumulant25, Eq. (9), as a
function of T obtained at different L. For clarity reasons,
we introduce also the following symbols: by TN (n) we
will denote the helical/fan phase transition temperature
for thickness n, TC(n) will instead indicate the order-
ing temperature of the sample as deduced by looking at
the behaviour of the average order parameter (3), while
T l
C(n) will be the l-th plane transition temperature re-

lated to the order parameter defined in Eq. (2).
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FIG. 3: (color online) Binder cumulants at thickness n =
16, colors as in Fig. 2. (a): Binder cumulant for the order
parameter defined in Eq. (3). (b): Binder cumulant extracted
from the integral of the structure factor (see Sec. II). Inset:
structure factor for L = 64 between T = 131 K (upper curve)
and T = 140 K (lower), with 1 K temperature step.

III. RESULTS

The results obtained by MC simulations of the model
introduced in Sec. II will be presented starting from
n = 16, i.e. the highest investigated film thickness which
still displays a bulk-like behaviour. In Fig. 2 the spe-
cific heat for samples with n = 16 and lateral dimension
L = 24, 32, 48, 64 is shown. The location of the specific
heat maximum shows a quite definite evolution toward
the bulk transition temperature, THo

N ≃ 132K10 (it is
worthwhile to note that for this XY model the mean field
theory predicts a critical temperature THo

N,MF ≃ 198K).
The intensity of the maximum of cv has been analyzed

by the MH technique for the same lateral dimensions (see
inset of Fig. 2): it clearly appears as it increases with L
in a smooth way.
The Binder cumulant for the average order parameter

defined in Eq. (3) was obtained close to the cv peak and is
reported in Fig. 3a; its analysis leads to an estimate of the
critical temperature of the sample (given by the location
of the common crossing point of the different curves re-
ported in the figure) of TC(16) = 133.2(5) This value can
be considered in a rather good agreement with the exper-
imental ordering temperature of Holmium THo

N , the rel-
ative difference being about 1%. Even such a mismatch
between THo

N and TC(16) could be completely eliminated
by slightly adjusting the in-plane coupling constant J0,
but, as discussed in Sec. II, we shall preserve the value
reported in Refs. 13, and 12 in order to allow for a correct
comparison with the results reported in those papers.
The development of the helical arrangement of magne-

tization along the film growth direction was investigated
by looking at the integral of the structure factor S(~q)
along the z-direction, i.e. by taking ~q = (0, 0, qz), and
making again use of the cumulant analysis in order to
locate the helical transition temperature at TN (16) =
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FIG. 4: (color online) Thermodynamic quantities obtained for
thickness n = 8 in the temperature range 0-150K. Colors and
symbols as in Fig. 2. (a): specific heat; (b): chirality order
parameter. (c): susceptibility χκ. (d): Binder cumulant for
κ.

133.1(3)K (see Fig. 3b). The crossing points of the
Binder’s cumulants of the helical order parameter imme-
diately appear to be located, within the error bars, at the
same temperature of those for the average magnetization
previously discussed. In addition, it is worthwhile to ob-
serve that the peak evolution of S(0, 0, qz), in particular
close to TN(16) (inset of Fig. 3b), displays the typical
behaviour expected for an helical structure. We can thus
conclude that for n = 16, as it is commonly observed
in bulk samples, the establishment of the in-plane order
coincides with onset of the perpendicular helical arrange-
ment at TN(16). However, due to helix distortion in the
surface regions, the maximum of S(0, 0, qz) stabilizes at
values of qz sensibly smaller (e.g. Qz(TN(16)) ≈ 16◦,
and Qz(T = 10K) ≈ 28◦) with respect to the bulk one
(QHo

z = 30.5◦).

The MC simulations outcomes for n = 16 we just pre-
sented appear quite different with respect to those ob-
tained at the same thickness for the model with six cou-
pling constants along the z direction14,15. Indeed, for
the J1-J2 model here investigated, we observe that all
layers order at the same temperature, and we do not find
any hint of the block-phase, with inner disordered planes
intercalated to antiparallel quasi-FM four-layer blocks,
previously observed; sample MC runs we made using the
same hcp lattice employed in Refs. 14,15 shows that the
presence or absence of the block phase is not related to
the lattice geometry, but it is a consequence of the inter-
action range only.

We now move to describe and discuss MC simulation
data for thinner samples. A graphical synthesis of the
results obtained for n = 8 in reported in Fig. 4a-d. The
specific heat cv, shown in Figs. 4a, reveals very small
finite-size effects, which, however, cannot be unambigu-
ously detected for the largest lattice size (L = 64), as
they fall comfortably within the error range. Surpris-
ingly, the specific heat maximum is located close to the
bulk transition temperature as found for n = 16, and
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FIG. 5: Transition temperatures TN(n) and TC(n) vs. film
thickness n.

the same is true for the crossing point of the Binder cu-
mulant of the average magnetization M (not reported in
figure), which is located at TC(8) = 133.3(3)K. These
data give a first rough indication that also for n = 8 all
the planes of the sample are still ordering almost at the
same temperature; such property has been observed for
all the investigated thicknesses n below 16, so that TC(n)
results quite n-independent (see also Fig. 5) .
Although the layer subtraction does not seem to mod-

ify TC(n), the onset of helical arrangement is observed to
shift at lower temperatures as n decreases. The chirality
κ defined in Eq. (4) is reported in Fig 4b for n = 8. As the
temperature decreases, around T ∼ 80K we can identify
a finite-size behaviour of κ which, at variance with the
previous one, can be easily recognized as typical of an
effective phase transition. Such conclusion is confirmed
by the analysis of the chiral susceptibility χκ (Fig. 4c),
which for the largest L has a maximum at T = 85K. As-
suming that the order parameter (4) is the relevant one
to single out the onset of the fan arrangement, we can
get a more accurate estimate of TN(8) by looking at the
Binder cumulant u4(κ), reported in Fig. 4d. By making
use of the MH technique, we locate the crossing point at
TN(8) = 92(2)K. Finally, it is worthwhile to observe as
the specific heat does not show any anomaly at TN(8),
being the entropy substantially removed at TC(8).
The scenario just outlined for n = 8 results to be cor-

rect in the thickness range 6 ≤ n . 15, where a clear
separation between TN(n) and TC(n) can be easily fig-
ured out. In such temperature window, the strong sur-
face effects produce a quasi-FM set-up of the magnetic
film structure along the z-direction. While leaving to the
next Section a more detailed discussion of this regime, we
report in Fig. 5 a plot of TN(n) and TC(n) vs. n for all
the simulated thicknesses. The separation between the
two critical temperatures is maximum for n = 6, where
TN(6) = 38(4), that is TN(6) ∼ 1

3TC(6). For films with
less than six layers no fan order is observed, i.e. for n = 5
and below the chirality does not display any typical fea-
ture of fan ordering at any temperature below TC(n). As
a representative quantity we finally look at the rotation
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FIG. 6: Rotation angle ∆ϕl between magnetic moments on
NN layers (l + 1, l) at some low temperatures, for thickness
n = 5 and n = 6, and lateral dimension L = 64.

angle of the magnetization between nearest planes:

∆ϕl = ϕl+1 − ϕl = arccos
[

Mx
l M

x
l+1 +My

l M
y
l+1

]

(10)

where (Mx
l ,M

y
l ) is the magnetic vector profile for each

plane l. ∆ϕl is displayed in Fig. 6a and Fig. 6b, for
n = 6 and n = 5, respectively. In Fig. 6a, a quite clear
fan stabilization is observed when the temperature de-
creases, while in Fig. 6b, i.e. for n = 5, ∆ϕl keeps an
almost temperature independent very small value; what’s
more, ∆ϕl seems to loose any temperature dependence
as T = 0 is approached. We attribute the absence of fan
arrangement for n ≤ 5 as simply due to the lack of “bulk
planes” inside the film, so that we are left with only a 2d
trend at TC(n), i.e. at the temperature where the order
parameters defined in Eqs. (2) and (3) show a critical
behaviour.

IV. DISCUSSION AND CONCLUSION

A possible framework to analyze the results presented
in the previous Section is suggested by Fig. 5, where we
can easily distinguish three significant regions: i) high
thickness, n > 16, where the films substantially display a
bulk behaviour, with the single planes ordering tempera-
ture coinciding with the helical phase transition one; ii)
intermediate thickness, 6 ≤ n . 15, where the tempera-
ture corresponding to the onset of in-plane order, TC(n),
is still ≃ THo

N , but where the helical/fan arrangement sta-
bilizes only below a finite temperature TN(n) < TC(n);
iii) low thickness,1 ≤ n ≤ 5, where TC(n) . THo

N but no
fan phase is present at any temperature.
The observed behaviour in region iii) can be reason-

ably attributed to the decreasing relevance of the con-
tribution to the total energy of the system coming from
the competitive interactions among NNN planes as the
film thickness decreases; moreover, the thinness of the
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FIG. 7: (color online) ∆ϕl(T ) vs. temperature for the surface
planes, l = 1 (triangles), l = 2 (squares), l = 3 (diamonds),
l = 4 (circles). Straight lines and full symbols: n = 8. Dashed
lines and open symbols: n = 16.

film leads to an effective 2d-like trend. Region ii) looks
however more intriguing, and requires a more accurate
discussion, which can benefit from a careful comparison
of the behaviour of a given quantity in regions i) and ii).

For this purpose, we look at the temperature depen-
dence of the rotation angle of the magnetization between
NN planes. In Fig. 7, ∆ϕl(T ) for n = 8 and n = 16
(continuous and dashed lines, respectively), is plotted for
the outermost planes, l = 1 . . . 4. For both thicknesses, a
monotonic trend is observed for all l, but at variance with
what happens for the highest thickness, for n = 8 we see,
starting from a temperature T . TN(8), an abrupt drop
of ∆ϕ3 and ∆ϕ4, which rapidly reach an almost con-
stant value, only slightly larger than ∆ϕ1. In the tem-
perature range TN(8) . T < TC(8) we thus substantially
observe the same small magnetic phase shifts between all
NN layers, testifying an energetically stable quasi-FM
configuration giving no contribution to the helical order
parameters. The latter point can be made clearer by
looking at the the peak position Qz,max of the structure
factor S(0, 0, qz). In Fig. 8 the average of Qz,max vs T is
reported, again for n = 8 and for different lateral dimen-
sions L26. As expected from the previous argument, we
see that Qz,max = 0 for TN(8) < T < TC(8), while it be-
gins to shift to higher values as soon as the temperature
decreases below TN (8), making apparent a progressive
fan stabilization with Qz,max 6= 0 and reaching a value
of about 21◦ for T = 10K.

In a previous study, where the magnetic properties of
Ho thin films were investigated by MC simulations of a
Heisenberg model with easy-plane single-ion anisotropy
and six out-of-plane coupling constants (as obtained by
experimental neutron scattering measurements16) on a
HCP lattice14,15, it was found that for thicknesses compa-
rable with the helical pitch the phase diagram landscape
is quite different from what we find here. Indeed, for
n = 9− 16, three different magnetic phases could be sin-
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FIG. 8: (color online) Qz, position of the maximum of S(~q),
vs. temperature for thickness n = 8. Inset: magnetic vector
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l ) profile for some temperatures for L = 64. Colors
and symbols as in Fig. 2.
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FIG. 9: ∆ϕl for a BCT lattice and n = 12, when the six
coupling constants set employed in Ref. 14,15 (see text) is
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(error bars lye within point size).

gled out, with the high-temperature, paramagnetic phase
separated from the low-temperature, long-range ordered
one, by an intermediate-temperature block phase where
outer ordered 4-layers blocks coexist with some inner dis-
ordered ones. Moreover, it was observed that the phase
transition of such inner layers turns out to have the sig-
natures of a Kosterlitz-Thouless one.

The absence of the block phase in the J1 − J2 model
here investigated has to be attributed to the different
range of interactions, rather than to the different lattice
structure. We came to this conclusion by doing some
simulations using the same set of interaction constants
employed in Refs. 14,15, but using a BCT lattice: the
results we obtained for ∆ϕl with n = 12 are reported in
Fig. 9. The latter is absolutely similar to Fig.7 of Ref. 15
and clearly displays the footmarks of the block phase (see
down-triangle), with two external blocks of ordered layers
( l =1. . . 5 and 8. . . 12 ), where ∆ϕl is roughly 10◦, sep-
arated by a block of disordered layers, and with almost
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FIG. 10: (colors online) Equilibrium probability distribution
of the energy for the thickness n = 8 for some temperatures
around TN (8), (a), and TC(8), (b), respectively.

opposite magnetization. We can thus confidently assert
that, regardless of the underlying lattice structure, by
decreasing the number of the out-of-plane interactions,
for thicknesses close to the helical bulk pitch, the block

phase is replaced by a quasi-FM configuration in the in-
termediate temperature range TN(n) < T < TC(n) .

As a final issue we address the problem of the order
of the transitions observed at TN (n) and TC(n), respec-
tively. In particular, we focus our attention to the thick-
ness ranges where the chiral order parameter is relevant,
i.e. regions i) and ii) as defined at the beginning of
this Section. In Fig. 10 the equilibrium probability dis-
tribution of the energy for temperatures around TN(8)
(Fig. 10a) and TC(8) (Fig. 10b) is plotted: for both
temperatures, no double peak structure is observed, so
that we have no direct indication for a first order tran-
sition even if, according to precedent studies of Loison
and Diep17,18, the presence of a first-order transition at
TN(n), cannot be completely excluded, as it could reveal
itself only when the lateral dimension L are much larger
than the largest correlation length. The same conclusion
about the order of transition is reached for any other in-
vestigated film thickness, as the energy probability distri-
bution shape does not qualitatively change. This findings
agree with the results we got in previous MC simulations
discussed in Ref. 15, so that we may conclude that the
order of the observed transitions is not affected by the
range of interactions.
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