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Pregnancy is a period of profound hormonal and physiological changes
experienced by millions of women annually, yet the neural changes
unfoldingin the maternal brain throughout gestation are not well studied
in humans. Leveraging precision imaging, we mapped neuroanatomical
changesin anindividual from preconception through 2 years postpartum.
Pronounced decreases in gray matter volume and cortical thickness were
evident across the brain, standing in contrast to increases in white matter
microstructural integrity, ventricle volume and cerebrospinal fluid, with
few regions untouched by the transition to motherhood. This dataset serves
asacomprehensive map of the human brain across gestation, providing an
open-access resource for the brainimaging community to further explore
and understand the maternal brain.

Worldwide, nearly 85% of women experience one or more pregnancies
in their lifetime’, with 140 million women becoming pregnant each
year. Over an approximately 40-week gestational window, the maternal
body undergoes profound physiological adaptations to support the
development of the fetus, including increases in plasma volume, meta-
bolicrate, oxygen consumption and immune regulation”. These rapid
adaptationsareinitiated by 100-fold to1,000-fold increasesinhormone
production, including estrogen and progesterone. These neuromodu-
latory hormones also drive significant reorganization of the central
nervous system. Evidence from animal models and human studies con-
verge on pregnancy as a period of remarkable neuroplasticity® '’ (see
ref. 10 for one of the earliest known observations). Gestational increases
in steroid hormone synthesis drive neurogenesis, dendritic spine
growth, microglial proliferation, myelination and astrocyte remodeling
(for review, seeref.11). These cellular changes are pronounced in brain
circuits that promote maternal behavior. For example, Ammari et al.
recently discovered that steroid hormones canfine-tune the response
properties of galanin neurons in the rodent medial preoptic area of
the hypothalamus (mPOA), leading to enhanced sensitivity in dams
to sensory cues from newborn pups™.

In humans, reductions in gray matter volume (GMV) have
been observed postpartum®¢, particularly in regions central to
theory-of-mind processing®. These GMV changes persist at 6 years
postpartum’ and are traceable decades later'®", underscoring the
permanence of this major remodeling event. And yet the changes that
occur within the maternal brain during gestation itself are virtually
unknown (seeref. 20 for early neuroimaging insight). Arecent study by
Paternina-Die et al. offers intriguing clues”. Women were scanned once
inthe third trimester and again in the postpartum period, revealing a
reduction of cortical volume observable in the late pregnancy scan.
These findings suggest that pregnancy is a highly dynamic period for
neuralremodeling, yet neuroscientists lack a detailed map of how the
human brain changes throughout the gestational period.

Here we conducted a precision imaging study of pregnancy in
which a healthy 38-year-old primiparous woman underwent 26 mag-
netic resonance imaging (MRI) scans and venipuncture beginning
3 weeks preconception through 2 years postpartum. We observed
widespread reductions in cortical GMV and cortical thickness (CT)
occurring in step with advancing gestational week and the dramatic
rise in sex hormone production. Remodeling was also evident within
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subcortical structures, including the ventral diencephalon, caudate,
thalamus, putamen and hippocampus. High-resolution imaging and
segmentation of the medial temporallobe (MTL) extend these findings
further, revealing specific volumetric reductions within hippocampal
subfields CA1, CA2/CA3 and parahippocampal cortex (PHC). In con-
trast to widespread decreases in cortical and subcortical GMV, cor-
relational tractography analyses revealed nonlinear increases in white
matter quantitative anisotropy (QA) throughout the brain—indicating
greater tractintegrity—as gestational week progressed. Together, these
findings reveal the highly dynamic changes that unfold in a human
brain across pregnancy, demonstrating a capacity for extensive neural
remodeling well into adulthood.

Results

Serological evaluations

Serological evaluations captured canonical hormone fluctuations
characteristic of the prenatal, perinatal and postnatal periods (Fig. 1b).
Serum hormone concentrationsincreased significantly over the course
of pregnancy and dropped precipitously postpartum (preconcep-
tion, estradiol (E) = 3.42 pg ml™ and progesterone (P) = 0.84 ng ml™;
3 weeks preparturition, E=12,400 pg ml™and P =103 ng ml™; 3months
postparturition, E =11.50 pg ml™ and P = 0.04 ng ml™).

Whole-brain dynamics from baseline through postpartum

To begin, we characterized broad neuroanatomical changes over the
course of the entire experimental window (baseline—2 years postpar-
tum, 26 scans; Fig. 1d). Generalized additive models revealed strong
nonlinear (effective degrees of freedom > 3) relationships between
weeks since conception and summary brain metrics. Total GMV
(F=27.87,P<0.001, deviance explained = 93.9%, R, = 0.91), summary
CT (F=15.79, P<0.001, deviance explained = 78.6%, R*,4;= 0.75) and
total brain volume (F=26.12, P< 0.001, deviance explained = 93.4%,
R?,;;=0.90) linearly decreased during gestation and appeared to
partially rebound postpartum. In contrast, global microstructural
integrity (QA) of white matter increased throughout the first and sec-
ond trimesters before returning to baseline levels in the postpartum
period (whole-brain QA, F=4.62, P=0.007, deviance explained = 60.2%,
R?,4=0.51). We also observed nonlinear patterns of lateral ventricle
expansion (F=10.44, P< 0.001, deviance explained = 83.8%, R*,;; = 0.77)
and increased cerebrospinal fluid (CSF; F=13.32, P< 0.001, deviance
explained = 83.8%, R?,; = 0.79) rising in the second and third trimesters
before dropping sharply postpartum.

Cortical volume and thickness changes tied to gestation
We then narrowed the aperture to capture changes unfolding within
gestationitself (baseline—36 weeks pregnant, 19 scans). Relationships
between summary brain metrics were evident over the gestational
period as follows: total brain volume, GMV and CT were positively asso-
ciated with one another, whereaslateral ventricles, CSF and global QA
demonstrated negative relationships with GMV (Supplementary Fig.1).
Changes in GMV were near-ubiquitous across the cortical mantle
(Fig.2a). Most large-scale brain networks exhibited decreasesin GMV
(Fig.2band Supplementary Table1);indeed, 80% of the 400 regions of
interest (ROI) demonstrated negative relationships between GMV and
gestation week (Fig. 2a and Supplementary Table 2). Together, these
results provide evidence of aglobal decrease in cortical volume across
pregnancy. Several sensory and attention subnetworks were particu-
larly sensitive to gestation, including the control (subnetwork B), sali-
ence/ventral attention (subnetwork A), dorsal attention (subnetwork
B), default (subnetwork A) and somatomotor (subnetworks A and B)
networks (Supplementary Table1). Regions driving these network-level
changes include the bilateral inferior parietal lobe, postcentral gyri,
insulae, prefrontal cortex, posterior cingulate and somatosensory
cortex (Fig. 2c, Supplementary Table 2 and validation of findings using
alternate pipelineinSupplementary Tables1and 3). These regions and

associated brain networks appear to decrease in volume at a faster
rate than the rest of the brain throughout pregnancy, as determined
by a subsequent analysis controlling for total GMV (Supplementary
Tables1and2). GMVreductions were also significantly correlated with
the participant’s estradiol and progesterone concentrations (Supple-
mentary Table1). A highly similar pattern of results was observed when
examining pregnancy-related CT changes (Supplementary Fig. 3 and
Supplementary Tables 4 and 5). Significant reductions in cortical GMV
over gestation remained after controlling for standard quality control
(QC) metrics, albeit withsome influence on the magnitude and location
ofthe observed effects (Supplementary Figs. 4 and 5).

In contrast, GMV within regions of the default mode (subnetwork
C), limbic (subnetworks A and B) and visual peripheral networks buck
the global trend by slightly increasing (for example, temporal poles),
remaining constant (for example, orbitofrontal cortex) or reducing at
amuch slower rate (for example, extrastriate cortex) than total GMV
(Fig. 2a,b and Supplementary Tables 1 and 2). CT changes in these
regions exhibit similar patterns (Supplementary Fig. 3 and Supple-
mentary Tables 4 and 5).

Subcortical GMV changes tied to gestation

Consistent with the broader cortical reductions in GMV, several subcor-
tical regions significantly reduced in volume across gestation (Fig. 3a,
left). This included bilateral ventral diencephalon (right hemisphere
values showninFig. 3a, right; encompasses hypothalamus, substantia
nigra, mammillary body, lateral geniculate nucleus and red nucleus
among others?), caudate, hippocampus and thalamus, along with left
putamen and brain stem (Supplementary Table 6, g < 0.05).

Next, high-resolution segmentation of the MTL allowed us to
interrogate subcortical structures atafiner resolution, revealing non-
linear volumetric decreases in CA1(F(2,15) = 5.84,¢ = 0.031, R%,;;= 0.36;
Fig.3b, left) and CA2/CA3 (F(2,15) = 6.82, = 0.027,R?,; = 0.41; Fig. 3b,
middle) across gestation. PHC exhibited linear volumetric decreases
across gestation (F(1,16) = 24.87, g < 0.001, R*,4; = 0.58; Fig. 3b, right)
whichwas also tied to estradiol (F(1,12) =20.21, g = 0.005, R%,4; = 0.60).
Allthree relationships remained significant after proportional correc-
tionfor total GMV. There was no significant change in other subregions
or total volume of the hippocampal body, or in the parahippocampal
gyrus (Supplementary Table 7 and Supplementary Fig. 8).

White matter microstructure changes tied to gestation

In contrast to decreasing global GMV, correlational tractography of
white matter, which tests for linear trends in the data, revealed increas-
ing microstructural integrity across the whole brain during gestation
(Fig.4a), concomitant with therise in17f3-estradiol and progesterone
(all g < 0.001; Supplementary Fig. 9). Tracts displaying robust corre-
lations with gestational week included the corpus callosum, arcuate
fasciculus, inferior fronto-occipital fasciculus and inferior longitudinal
fasciculus (Fig.4b), as well as the cingulum bundle, middle and superior
longitudinal fasciculus, corticostriatal, corticospinal and corticopon-
tine tracts (see Supplementary Table 9 for complete list).

Comparing brain changes across pregnancy against controls

We then compared the changes in GMV across gestation to that of typi-
calvariability over time, derived from eight densely-sampled controls™.
The GMV changes we see across pregnancy far exceed normative brain
variability (Supplementary Fig.11). On average, changein cortical GMV
was nearly three times higher than controls scanned over a similar
duration (Supplementary Fig. 11a,b). This extends to MTL subfields,
wherein change in volume was three to four times greater across gesta-
tion than normative brain variability (Supplementary Fig. 11c,d). We
contextualized these findings further by comparing gestational GMV
change against our participant’s preconception brain volumes; average
GMV change during pregnancy was six times (cortical) and three times
(MTL) higher thanthe variability observed between baseline sessions.
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Fig.1|Precisionimaging reveals neuroanatomical changes throughout
gestation. a, Standard medical demarcations for pregnancy stages (that is,
trimesters) by gestation week (the image is created with BioRender.com).

b, Steroid hormonesincreased significantly throughout pregnancy and dropped
precipitously postpartum, as is characteristic of the prenatal and postnatal
periods. ¢, A healthy 38-year-old primiparous woman underwent 26 scanning
sessions from 3 weeks preconception through 2 years postpartum. Scans were
distributed throughout preconception (four scans), first trimester (four scans),
second trimester (six scans), third trimester (five scans) and postpartum

(seven scans); tick marks indicate when major measures were collected and

0 50 100
Weeks since conception

150

colors denote pregnancy stage. The participant underwent IVF to achieve
pregnancy, allowing for precise mapping of ovulation, conception and gestation
week. d, Summary (that s, total) of brain measures throughout the experiment.
Generalized additive models revealed GMV, CT and total brain volume decreased
throughout pregnancy (see Methods for validation with cubic regression), with
aslight recovery postpartum. Global QA, lateral ventricle and CSF volumes
displayed nonlinear increases across gestation, with anotable rise in the second
and third trimesters before dropping sharply postpartum. Shaded regions
represent 95% confidence bands; solid lines indicate model fit; dashed line
indicates parturition.

Discussion

Converging evidence across mammalian species points to pregnancy
asaremarkable period of neuroplasticity, revealing the brain’s ability
to undergo adaptive, hormonally-driven neuroanatomical changes
beyond adolescence >?%%%42¢ Inyestigations that compare women

prepregnancy and then again postpartum provide the strongest evi-
dence to date that the human brain undergoes such neural changes™~.
Butwhatabout pregnancy itself? Over what time course do anatomical
changes in the maternal brain manifest? Are they tied to the substantial
increase in sex hormone production? Here we begin to address these
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Fig.2| Cortical GMV showed widespread change through gestation and
postpartum. a, Multivariate regression analyses reveal largely negative
relationships between gestation week and regional GMV, with only a minority

of regions unaffected or increasing over the gestational window (baseline—36
weeks). All associations presented here were corrected for multiple comparisons
(FDRat g < 0.05; nonsignificant values set to zero for interpretability). b, Average
network change was calculated by estimating GMV percent change from baseline
(initial) to 36 weeks gestation (final). Attention and control networks appear
most affected. ¢, Six representative regions, classified by major subnetworks,
that exhibit pronounced GMV change across gestation. For each panel, we
display ascatterplot between average GMV of the ROIs and gestation week

(left; gestation sessions only, 19 scans), and summary GMV of ROIs by pregnancy
stage across the whole study (right; gestation and postpartum sessions, 26 scans).

Shaded regions in scatterplots represent a 95% confidence interval. Each

boxplot represents IQR for each stage, with a horizontal line representing the
median value. The whiskers indicate variability outside (+1.5) of this range.
Outside values are >1.5x and <3x IQR beyond either end of the box. All statistical
tests were corrected for multiple comparisons (FDR at g < 0.05) and values

were zscored and transformed to have a mean of zero and s.d. of one for easier
comparison across regions. Please note that the data values shown here are raw
(see Supplementary Tables1and 2 and Supplementary Data1for exhaustive list).
Brain visualizations created with R package ggseg*®. IQR, interquartile range;

Lat, lateral; Med, medial; DMN, default mode network; VisPeri, visual peripheral
network; SomMot, somatomotor network; VisCent, visual central network; Cont,
control network; TempPar, temporal parietal network; DorsAttn, dorsal attention
network; SalVentAttn, salience/ventral attention network.
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Fig.3|Subcortical GMV changed throughout gestation. a, Multivariate
regression analyses revealed largely negative relationships between gestation
week and subcortical GMV regions over pregnancy, including bilateral thalamus,
caudate, hippocampus, ventral diencephalon (encompassing hypothalamus,
substantia nigra, mammillary body and red nucleus) and left caudate. Lateral
ventricles displayed the only positive relationships with gestation week

(also depictedin Fig.1d). The whole-brain subcortical GMV estimates shown
here were derived via FreeSurfer and ‘aseg’ subcortical segmentation. FDR-
corrected at g < 0.05. Inset, right ventral diencephalon displayed the strongest
negative association with gestation (left; baseline—36 weeks, 19 scans) and did
not return to baseline postpartum (right; gestation and postpartum, 26 scans).
b, The participant’s hippocampus and surrounding cortex were segmented

into seven bilateral subregions. Quadratic (CA1, CA2/CA3) and linear regression
analyses (PHC) revealed subfields were negatively associated with gestation
week (baseline—36 weeks, 18 scans) and did not return to baseline postpartum
(gestation and postpartum, 25 scans). Shaded regions in scatterplots represent
a95% confidence interval. Each boxplot represents IQR for each stage, with a
horizontal line representing the median value. The whiskers indicate variability
outside (+1.5) of this range. Outside values are >1.5x and <3x IQR beyond either
end of the box. FDR-corrected at g < 0.05. For aand b, nonsignificant regions
were set to zero for interpretability. See Supplementary Fig. 6 for complete
labeling of regions in both segmentations. Brain visualizations created with R
package ggseg*®. DC, diencephalon.

outstanding questions. This study and corresponding open-access
dataset offer neuroscientists a detailed map of the humanbrain across
gestation, aresource for which awide range of previously unattainable
neurobiological questions can now be explored.

Our findings from this precision imaging study show that preg-
nancy is characterized by reductions in GMV, cortical thinning and
enhanced white matter microstructural integrity that unfold week by
week. These changes were also tied to the significant risein steroid hor-
mone concentrations over pregnancy. Some of these changes persist
at2years postpartum (for example, global reductionsin GMV and CT),
while others, including markers of white matter integrity, appear to be
transient. Ventricular expansion and contraction parallel these cortical
changes. These widespread patterns, and the notable increase in CSF
volume across gestation, could reflect increased water retention and
subsequent compression of cortical tissue. However, the persistence
ofthese changes at 2 years postpartum and regional variationin GMV,
CT and QA, hint at cellular underpinnings, such as alterations in glia

or neuron number, synaptic density and myelination (for review on
the latter, see ref. 4). Future studies of the relationship between fluid
dynamics and volumetric changes will help clarify the factors that drive
global neural changes during pregnancy; suchinsights will have broad
implications for maternal health (for example, neurological effects tied
to pre-eclampsia or edema).

Critically, dynamic neural changes occurred within the pregnancy
window itself, anuance not captured by studies limited to comparisons
between prepregnancy and postpregnancy. For example, we observed
largeincreases in white matter microstructuralintegrity (QA) through-
out the first and second trimesters of pregnancy, but these measures
fully returned to baseline values by the first postpartum scan. This
pattern may explainwhy previous studies report no pregnancy-related
differences in white matter tractography’*. Other measures, such as
GMV and CT, decreased throughout gestation and displayed only a
modest rebound postpartum. These nonlinear patterns suggest that
only quantifying prepregnancy and postpartum brain structure may
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overlook the full range of changes that unfold within the gestational
window, and underrepresent the brain’s metamorphosis during preg-
nancy. Furthermore, although observed changes were largely global,
someregions displayed notable stability (for example, extrastriate cor-
tex). The subcortical region that displayed the strongest relationship
with gestation week was the ventral diencephalon, which encompasses
the hypothalamus and subsequent medial preoptic area and paraven-
tricular nucleus—structures critical for inducing maternal behavior'>'®.
The hippocampus exhibited a reduction in volume across gestation,
and with higher spatial resolution, this reduction was revealed to be
driven by changes in CAland CA2/CA3 subfield volumes, while other
hippocampal subfields remained stable. Adjacent PHC within the
MTL also exhibited volume reduction across gestation. While our hip-
pocampal findings are consistent with pre/post studies of pregnancy®,
the precision lens applied within gestation revealed the nonlinear
nature of this reduction. Recapitulating and clarifying these region-
ally specific patterns of volume change throughout the MTL merits
furtherinvestigation.

Similar precision imaging studies have captured dynamic brain
reorganization across other neuroendocrine transitions, such as the
menstrual cycle (see review in ref. 28), underscoring the powerful
role steroid hormones have in shaping the mammalian brain®’. Endo-
crine changes across pregnancy dwarf those that occur across the
menstrual cycle, which highlights the critical need to map the brain’s
response to this unique hormonal state. Broad physiological changes
occur intandem with therise in steroid hormones, including changes
in body mass composition, water retention, immune function and

sleep patterns™. These factors could have a role in the brain changes
observed here, with some driving neurobiological changes and others,
like water retention, potentially affecting MRI-based measurements.
Note that, although cortical reductions in GMV over gestation were
stable across analyses, accounting for QC measures influenced the
magnitude and location of these results. These metrics all fell within
the standard range, but there may be meaningful reductions in signal
that accompany volumetric reductions (for example, increased CSF
and decreased GM)—a methodological nuance that goes beyond the
scope of this resource study. Ultimately, identifying the shared and
unique contributions of these factors to the neuroanatomical changes
that unfold across gestation warrants further investigation. Deeply
phenotypingalarge and diverse cohort of women across pregnancy will
open up new avenues of exploration, for example, allowing research-
erstolinkblood-based proteomic signatures to pregnancy outcomes;
deploying wearable devices to monitor changes insleep, cognitionand
mood; and probing the broader socialand environmental determinants
of maternal health?.

The neuroanatomical changes that unfold during matrescence
may have broad implications for understanding individual differences
in parental behavior***°* vulnerability to mental health disorders**
and patterns of brain aging'®'***¢, Decreases in GMV may reflect
‘fine-tuning’ of the brain by neuromodulatory hormones in prepara-
tion for parenthood®. For example, in rodents, steroid hormones
promote parental behavior by remodeling specific neural circuitsin the
medial preoptic area of the hypothalamus. These behavioral adapta-
tionsare critical to the dam’s ability to meet the demands of caring for
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the offspring™. Human studies have revealed GMV reductions in areas
ofthe brainimportant for social cognition and the magnitude of these
changes corresponds with increased parental attachment'. Deeper
examination of cellular and systems-level mechanisms will improve
our understanding of how pregnancy remodels specific circuits to
promote maternal behavior.

Although studied to a lesser degree, ties between maternal
behavior and white matter microstructure (particularly connectiv-
ity between temporal and occipital lobes) have been noted®. Here we
reveal pronounced GMV changesinregions within sensory, attention
and default mode networks over the gestational window. In paral-
lel, we observed increased anisotropy in white matter tracts that
facilitate communication between emotional and visual processing
hubs**, including the inferior longitudinal fasciculus and inferior
fronto-occipital fasciculus. Pinpointing the synchrony of gray and
white matter changes that unfold in the maternal brain could be
key to understanding the behavioral adaptions that emerge during
and after pregnancy, such as honing the brain’s visual and auditory
responses to infant cues and eliciting maternal behavior. Research
into other major transition periods supports this idea. For instance,
adolescence is a dynamic period characterized by region-specific,
nonlinear decreases in GMV and increases in WMV, maturational
brain changes that are tied to gains in executive function and social
cognition*®, For both adolescence* and matrescence, the consider-
ableriseinsteroid hormone production appears to remodel the brain
(seeref.25for comparative analysis), promoting a suite of behaviors
adaptive to that life stage. How specific neural changes give rise to
specific behavioral adaptations has yet to be fully explored with
respect to human pregnancy.

This precisionimaging study mapped neuroanatomical changes
across pregnancy inasingle individual, precluding our ability to gen-
eralize to the broader population. To benchmark our findings, we com-
pared the magnitude of GMV changes observed throughout pregnancy
against datafrom nonpregnantindividuals sampled over asimilar time
course. Doingso provided compelling evidence that pregnancy-related
neuroanatomical shifts far exceed normative day-to-day brain variabil-
ityand measurement error. Evidence suggests that white matter micro-
structure remains fairly stable over a six-month period*?, but more
studies are needed to compare the degree of white matter changes
observed during pregnancy to normative change over time. Further,
sampling larger cohorts of women will generate much-needed norma-
tive models of brain change (akin to ref. 43) throughout pregnancy to
establishwhat constitutes a typical degree of neuroanatomical change
expected during gestation and postpartum recovery.

These findings provide acritical rationale for conducting further
precisionimaging studies of pregnancy indemographically enriched
cohortsto determine the universality and idiosyncrasy of these adap-
tations and their role in maternal health. Are the changes observed in
our participant reflective of the broader population? Do deviations
from the norm lead to maladaptive outcomes? A precision imaging
approach canhelp determine whether the pace of pregnancy-induced
neuroanatomical changes drives divergent brain health outcomes in
women, as may be the case during other rapid periods of brain devel-
opment**. One in five women experiences perinatal depression* and
while the first FDA-approved treatment is now available*, early detec-
tionremains elusive. Precisionimaging studies could offer clues about
an individual’s risk for or resilience to depression before symptom
onset, helping clinicians better determine when and how tointervene.
Neuroscientists and clinicians also lack tools to facilitate detection
and treatment of neurological disorders that co-occur, worsen or
remit with pregnancy, such as epilepsy, headaches, multiple sclerosis
and intracranial hypertension®. Precision mapping of the maternal
brain lays the groundwork for a greater understanding of the subtle
and sweeping structural, functional, behavioral and clinical changes
that unfold across pregnancy. Such pursuits will advance our basic

understanding of the human brainandits remarkable ability to undergo
protracted plasticity in adulthood.

Online content
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Methods

Participant

Our participant (E.R.C.) was a healthy 38-year-old primiparous woman
who underwent in-vitro fertilization (IVF) to achieve pregnancy. Pre-
vious studies reported no observable differences in neural changes
from prepregnancy to postpregnancy between womenwho conceived
naturally versus women who conceived vialVF", and doing so provides
a controlled way of monitoring pregnancy status. The participant
experienced no pregnancy complications (for example, gestational
diabetes and hypertension), delivered at full term via vaginal birth,
nursed through 16 months postpartum, and had no history of neu-
ropsychiatric diagnosis, endocrine disorders, prior head trauma or
history of smoking. The participant gave writteninformed consent and
the study was approved by the University of California, Irvine Human
Subjects Committee.

Study design

The participant underwent 26 MRI scanning sessions from 3 weeks
before conception through 2 years postpartum (162 weeks), during
which high-resolution anatomical and diffusion spectrum imaging
scans of the brain were acquired. Scans were distributed throughout
this period, including prepregnancy (four scans), first trimester (four
scans), second trimester (six scans), third trimester (five scans) and
postpartum (seven scans; Fig. 1c). The first 6 sessions took place at
the UCSB Brain Imaging Center (BIC), the final 20 sessions took place
atthe UCI Facility for Imaging and Brain Research (FIBRE). The major-
ity of scans took place between 9 AM and 2 PM, limiting significant
AM-PM fluctuations*. The MRI protocol, scanner (Siemens 3T Prisma)
and software (version MR E11) were identical across sites. Each scan-
ner was checked weekly for the duration of the study and passed all
QC reports indicating no significant alterations in the geometry. To
ensure the robustness of the findings, after the final study session, the
participant completed back-to-back validation scans at UCland UCSB
withinal2-hwindow to assessreliability between scanners. Intraclass
correlation coefficients (two-way, random effects, absolute agreement,
single rater) reveal ‘excellent’ test-retest reliability between scanners,
including ROI-level GMV (ICC = 0.97, 95% CI: 0.80-0.99), ROI-level
CT (ICC=0.96, 95% Cl: 0.90-0.98), MTL subfield volume (ICC = 0.99,
95% CI: 0.97-0.99) and ROI-level QA (ICC = 0.94, 95% CI: 0.91-0.97).
Furthermore, when examining the relationship between gestation
week and GMV among UCI-only gestational sessions, findings were
consistent (Supplementary Fig. 12), indicating that site differences
are highly unlikely to have contributed meaningfully to the observed
effects. Although not applicable here, we note that having a control
participant scanned over asimilar duration within the same scanneris
critical for estimating how much variationin the brain can be attributed
to within-scanner variability.

To monitor state-dependent mood and lifestyle measures, the
following scales were administered on each experiment day: Perceived
Stress Scale®, Pittsburgh Sleep Quality Index”, State-Trait Anxiety
Inventory for Adults®* and Profile of Mood States™. Correlation analy-
ses between state-dependent measures, summary brain metrics and
gestation week revealed little to no relationships. The only exception
to this was a moderate negative association between global QA and
state anxiety (Spearman’s correlation (p) = —0.65, g = 0.04; baseline—36
weeks, n=16). By making this data openly accessible, we encourage a
more nuanced approach toward exploring mood and lifestyle measures
inrelation to brain changes over pregnancy.

Endocrine procedures

The participant underwent a blood draw (n =19; Fig. 1c) before
MRI scanning. Sex steroid concentrations were determined via
ultra-sensitive liquid chromatography-mass spectrometry at the
Brigham and Women’s Hospital Research Assay Core (BRAC). Assay
sensitivities, dynamic range and intra-assay coefficients of variation

were as follows: estradiol—1.0 pg ml™, 1-500 pg ml™, <5% relative s.d.
(RSD); progesterone—0.05 ng ml™, 0.05-10 ng ml™, 9.33% RSD. Sero-
logical samples were not acquired in five sessions due to scheduling
conflicts with UCIrvine’s Center for Clinical Research.

MRI acquisition. MRI scanning sessions at the University of Califor-
nia, Santa Barbara and Irvine were conducted on 3T Prisma scanners
equipped with 64-channel phased-array head/neck coil (of which 50
coilsareused foraxial brainimaging). High-resolution anatomical scans
were acquired using a T1-weighted (T1w) magnetization prepared rapid
gradient echo (MPRAGE) sequence (repetition time (TR) = 2,500 ms,
timetoecho (TE) =2.31 ms, inversion time (TI) =934 ms, flipangle = 7°,
0.8 mmthickness) followed by agradient echo field map (TR =758 ms,
TE1=4.92 ms, TE2=7.38 ms, flip angle = 60°). A T2-weighted (T2w)
turbo spin echo scanwas also acquired with an oblique coronal orienta-
tion positioned orthogonally to the main axis of the hippocampus (TR/
TE=9,860/50 ms, flipangle =122°,0.4 x 0.4 mm?in-plane resolution,
2-mm slice thickness, 38 interleaved slices with no gap, total acquisi-
tion time =5 min and 42 sec). The Diffusion Spectrum Imaging (DSI)
protocol sampled the entire brain with the following parameters:
single phase, TR =4,300 ms, echo time =100.2 ms, 139 directions,
b-max =4,990,FoV =259 x 259 mm, 78 slices,1.7986 x 1.7986 x 1.8 mm
voxel resolution. These images were linearly registered to the
whole-brain TIw MPRAGE image. A custom foam headcase was used
to provide extra padding around the head and neck, as well as to mini-
mize head motion. Additionally, a custom-built sound-absorbing foam
girdle was placed around the participant’s waist to attenuate sound
near the fetus during second-trimester and third-trimester scanning.

Image processing. Cortical volume and thickness. CT and GMV were
measured with Advanced Normalization Tools** version 2.1.0 (ANTS).
Wefirstbuilt a subject-specific template (SST) (antsMultivariateTem-
plateConstruction2) and tissue priors (antsCookTemplatePriors)
based on our participant’s two preconception whole-brain T1-weighted
scans to examine neuroanatomical changes relative to the participant’s
prepregnancy baseline. We used labels from the OASIS population
template, provided by ANTS, as priors for this step. For each session,
the structuralimage was processed and registered to the SST using the
ANTs CT pipeline (antsCorticalThickness). This begins with an N4 bias
field correction for field inhomogeneity, then brain extraction using a
hybrid registration/segmentation method>. Tissue segmentation was
performed using Atropos®* to create tissue masks of CSF, gray matter,
white matter and deep gray matter. Atropos allows prior knowledge
toguide the segmentation algorithm, and we used labels from our SST
as priors to minimize warping and remain in native participant space.
CT measurements were then estimated using the DiReCT algorithm®,
which estimates the gray-white matter interface and the gray mat-
ter—CSF interface and computes a diffeomorphic mapping between
thetwointeractions, from which thicknessis derived. Each gray matter
tissue mask was normalized to the template and multiplied to aJaco-
bian image that was computed via affine and nonlinear transforms.
Using MATLAB (version 2022a), summary, regional-level estimates
of CT, GMV and CSF for each scan were obtained by taking the first
eigenvariate (akin to a‘weighted mean”’) across all voxels within each
parcel of the Schaefer 400-region atlas®®. We then averaged ROIs across
networks, which were defined by the 17-network Schaefer scheme®®*’,
Global measures of CT, GMV and CSF were computed for each session
by summing across all voxels within the respective output image;
total brain volume was computed by summing across all voxels within
each session’s brain extraction mask. Our findings held when using an
SST derived from all 26 MRIs (prepregnancy through postpartum),
as well as when estimating the mean (versus weighted mean) of all
voxels within each parcel. The ANTs CT pipeline is highly validated
with good test-retest reproducibility and improved ability to predict
variables such as age and gender from region-wise CT measurements
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compared to surface-based FreeSurfer®. However, to reproduce our
findings across software packages, we also ran the Tlw data through
the longitudinal FreeSurfer (v.7) CT pipeline®®®', which corroborated
our findings using both the Schaefer-400 (Supplementary Fig. 2 and
Supplementary Tables 1and 4) and popular Desikan-Killiany®* (Sup-
plementary Table 3) cortical parcellations. Whole-brain T1lw-based
subcortical volume estimates (including cerebellum and lateral ven-
tricles) were also derived using this FreeSurfer pipeline, wherein we
derived 28 region-of-interest estimates via the commonly used ‘aseg’
parcellation scheme® (Supplementary Fig. 6a). A complete reporting
of findings can be found in Supplementary Data 1.

Mean framewise displacement (FWD) estimates from gestation
sessions witha10-minresting-state scan (n =18) were used toindirectly
assesswhether motionincreased throughout pregnancy. Average FWD
(mm) was extremely minimal across the entire experiment (M =0.13,
s.d.=0.02, range = 0.09-0.17) and varied only slightly by pregnancy
stage (pre, M=0.11ands.d.=0.004; first, M= 0.11and s.d. = 0.01; sec-
ond, M=0.13 and s.d. = 0.02; third, M= 0.16 and s.d. = 0.007; post,
M=0.13ands.d.=0.01). While mean FWD did correspond with gesta-
tionweek (r=0.88,P< 0.001), controlling for this did not alter our main
findings (for example, total GMV remained negatively associated with
gestation after partial correlation with FWD (r=-0.87 and P < 0.001)
because motion differences between stages were minuscule (Sup-
plementary Fig.4a).

Asafurthertest of the robustness of the dataset, we ran QC assess-
ments on all T1w images using the IQMs pipeline®* from MRIQC (ver-
sion 23.1). Assessments of interest included (1) coefficient of joint
variation (CJV), (2) signal-to-noise ratio for gray matter (SNR) and (3)
contrast-to-noise ratios (CNR). All QC metrics fell within expected
standard ranges® (Supplementary Fig. 4b—d). Although relationships
existed between gestation week and QC measures (CJV, r=0.70 and
P<0.001;SNRand CNR, r=-0.83and P < 0.001), including these vari-
ables in the regression models did not detract from our finding sug-
gesting cortical GMV reductions occur over gestation, especially within
regions belonging to attention and somatosensory networks (Supple-
mentary Fig. 5). When looking across all MRIQC outputs, discrepancies
were noted in session seven (gestation week nine, first trimester).
Removing this day from the analyses only strengthened observed
relationships between cortical volume and gestation; however, for
completeness, data from this day is included in the main findings.
These QC outputs for each session of the experiment can be found
in Supplementary Data 1. Finally, we used FreeSurfer’s Eueler num-
ber to evaluate a field-standard quantitative assessment of each Tlw
structural image®®. We observed no significant relationships between
the Euler number and gestation week or summary brain metrics. A
discrepancy (for example, two s.d. below average) was noted in session
eight; however, again, removing this session did not detract from our
main findings showing reductionsin GMV over gestation.

Hippocampal segmentation. T1-and T2-weighted images (n = 25) were
submitted to the automatic segmentation of hippocampal subfields
package (ASHS®, version July 2018) for parcellation of seven MTL
subregions: CAl, CA2/CA3, dentate gyrus, subiculum, perirhinal cor-
tex, entorhinal cortex and PHC (Supplementary Fig. 6b). The ASHS
segmentation pipeline automatically segmented the hippocampusin
the T2w MRIscans using a segmented population atlas, the Princeton
Young Adult 3T ASHS Atlas template®® (n = 24, mean age = 22.5 years).
Arigid-body transformation aligned each T2wimage to the respective
T1lw scan for each day. Using ANTs deformable registration, the T1w
was registered to the population atlas. The resulting deformation
fields were used to resample the data into the space of the left and
right template MTL ROI. Within each template ROI, each of the T2w
scans of the atlas package was registered to that day’s T2w scan. The
manual atlas segmentations were then mapped into the space of the
T2w scan, with segmentation of the T2w scan computed using joint

label fusion®. Finally, the corrective learning classifiers contained in
ASHS were applied to the consensus segmentation produced by joint
label fusion. The output of this step is a corrected segmentation of
the T2w scan. Further description of the ASHS protocol can be found
here®. T2w scans and segmentations were first visually examined using
ITK-SNAP”® for quality assurance and then subjected to manual editing
in native space using ITK-SNAP (v.3.8.0-b; C.M.T.). One session (scan
15, third trimester) was discarded due to erroneous scan orientation.
The anterior extent of the segmented labels was anchored 4 mm (two
slices) anterior to the appearance of the limeninsulae, and the posterior
extent was anchored to the disappearance of hippocampal gray matter
fromthetrigone of the lateral ventricle. Boundaries between perirhinal,
entorhinal and parahippocampal cortices were established in keeping
with the Olsen-Amaral-Palombo (OAP) segmentation protocol”. In
instances where automatic segmentation did not clearly correspond
to the underlying neuroanatomy, such as when a certain label was
missing several gray matter voxels, manual retouching allowed for
individual voxels to be added or removed. All results are reported
using the manually retouched subregion volumes to ensure the most
faithful representation of the underlying neuroanatomy. Scans were
randomized and segmentation was performed in arandom order,
blind to pregnancy stage. To assess intrarater reliability for the pre-
sent analyses, two days underwent manual editing a second time. The
generalized Dice similarity coefficient’” across subregions was 0.87
and the intraclass correlation coefficient was 0.97, suggesting robust
reliability in segmentation.

White matter microstructure. Diffusion scans were preprocessed using
the automation software QSIprep (version 0.16.1) compiled using a
singularity container” and run primarily with the default parameters,
with the exceptions ‘~output resolution 1.8, ‘~dwi denoise window 5,
-force-spatial-normalization’, ‘~hmc model 3dSHORE’, ‘~hmc-
transform Rigid’ and ‘~shoreline iters 2. Twenty-three sessions were
preprocessed and analyzed, with the remaining three scans excluded
due to missing DSIscans (sessions 9 and 15) or corresponding field map
for distortion correction (session 7). Despite passing QC assessments
during preprocessing, visual inspection of the field mapsin session 10
revealed aslight artifact. However, removal of this session had minimal
impact on the overall results and remained in the final analyses. Tlw
images were corrected for intensity nonuniformity (N4BiasFieldCorrec-
tion) and skull-stripped (antsBrainExtraction). Theimages underwent
spatial normalization and registrationto the ICBM 152 Nonlinear Asym-
metric template. Finally, brain tissue segmentation of CSF, GM and WM
was performed on each brain-extracted T1lw using FMRIB’s Automated
Segmentation Tool (FAST). Preprocessing of diffusionimages began by
implementing MP-PCA denoising with a 5-voxel window using MRtrix3’s
dwidenoise function. Bl fieldinhomogeneity was corrected using dwibi-
ascorrect from MRtrix3 with the N4 algorithm. Motion was corrected
using the SHORELine method. Susceptibility distortion correction was
based on GRE field maps. Preprocessed Nifti scans were prepared for
tractography using DSI Studio via singularity container version Chen-
2022-07-31 (ref. 74). Diffusion images were converted to source code
files using the DSI Studio command line ‘--action=src’ and a custom
script to convert all images. The diffusion data were reconstructed in
MNI space using g-space diffeomorphic reconstruction” with a diffu-
sion sampling of 1.25 and output resolution of 1.8 mm isotropic. The
following output metrics were specified to be included in the output
FIB file: QA and mean diffusivity (MD). The quality and integrity of
reconstructed images were assessed using ‘QC1: SRC Files Quality Con-
trol’. First, the consistency of image dimension, resolution, DWI count
and shell count was checked for each image. Second, each image was
assessed for the ‘neighboring DWI correlation’ which calculates the
correlation coefficient of low b DWI volumes that have similar gradi-
ent direction. Lower correlation values may indicate issues with the
diffusion signal due to artifacts or head motion. Finally, DSI Studio
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performedanoutlier check, labeling images as a‘low-quality outlier’if
the correlation coefficient was >3 s.d. from the absolute mean. None of
our scans were flagged as outliers. The reconstructed participant files
were aggregated into one connectometry database per metric.

Day2Day control dataset. To compare our findings against a control
group of nonpregnant densely-sampled individuals, we used the Day-
2Day dataset® which offered comparable whole-brain Tland T2MTL
scans for eight participants (two male) scanned 12-50 times over 2-7
months. Each participant was run through the ANTs CT and ASHS pro-
cessing pipelines as outlined above (‘Cortical volume and thickness’
and ‘Hippocampal segmentation’). To note, for each participant, we
created an SST based on their first two sessions for consistency with
the primary dataset; subfield volumes for the T2 MTL scans did not
undergo manual retouching. Due to missing header information on
the publicly available diffusion scans, we were unable to benchmark
our white matter changes with the Day2Day dataset.

Statistical analysis. Statistical analyses were conducted using R (sMRI;
version 3.4.4) and DSI Studio (dMRI; Chen-2022-07-31).

Summary brain metrics. To reflect the existing literature, we first
exploredbrain metrics across the entire study duration (prepregnancy
through postpartum, n =26 scans). When including all sessions, total
brainvolume, GMV, CT, global QA, ventricle volume and CSF displayed
nonlinear trends over time; therefore, we used generalized additive
models (GAM; cubic spline basis, k =10, smoothing = GCV), amethod of
nonparametric regressionanalysis (R package, mgcv’™), to explore the
relationship between summary brain metrics (outcome variables) and
gestation week (smooth term). Each model underwent examination
(gam.check function) to ensure it was correctly specified with regards
to (1) the choice of basis dimension (k) and (2) the distribution of model
residuals (see mgcv documentation inref. 76). The general pattern of
results held after toggling model parameters; however, we note the
risk of overinterpreting complex models with small sample sizes”. To
address overfitting and cross-validate our basis type selection, we also
fitthe datausingnonpenalized general linear models (GLM) with both
linear and polynomial terms for gestation week. We compared the per-
formance of each GLM (that is, models using only alinear term versus
models with polynomial terms) via the Akaike information criterion
(AIC), which revealed that cubic models consistently outperformed
both linear and quadratic models (AICy > 3), providing additional
evidence for nonlinear changesin structural brain variables over time.
Determining whether these patterns replicate in larger cohorts and
whether complex models are better suited to capture data patterns
across individuals will be a necessary next step.

Cortical GMV and CT. We then narrowed our analyses to the first 19
sessions (baseline—36 weeks gestation) to assess novel brain changes
occurring over the gestational window. We first computed Pearson’s
product-moment correlation matrices between the following vari-
ables: gestation week, estradiol, progesterone and the 17 network-level
average GMV values. We then ran a multivariate regression analysis
predicting ROI-level GMV changes by gestation week. To identify which
regions were changing at a rate different from the global decrease,
we then ran the analyses again to include total GMV in the regression
model (Supplementary Table 2). This was extended to the network
level, where we ran partial correlations accounting for total GMV. These
same analyses were then run with CT measures. Globally-corrected
results provided in Supplementary Tables 1-5. Percent change at the
network level was computed by subtracting the final pregnancy value
(36 weeks pregnant) from the first prepregnancy baseline value, then
dividing that difference by said first prepregnancy baseline value. All
analyses underwent multiple comparisons testing (false discovery rate
(FDR)-corrected at g < 0.05).

Subcortical GMV. A similar statistical approach was taken for subcorti-
calvolume estimates. Weranamultivariate regression analysis predict-
ing GMV changes over gestationin28 ROIs (Supplementary Fig. 6a) by
gestation week (FDR-corrected at g < 0.05).

To evaluate the relationship between gestation week and MTL
subregion volume over pregnancy (n =7 bilateral subregions and
n=18 MTL scans), we used a combination of linear and nonlinear
models based on individual subregion data patterns. Models were
compared for best fit with each subregion via AIC from the GLM output
(as described in ‘Summary brain metrics’). A linear regression model
was most appropriate for PHC (AIC, < 3), whereas a quadratic model
performed best for CA1 and CA2/CA3. As a control, we repeated the
analyses with MTL subregion volumes after proportional volume cor-
rection of total GMV calculated by ASHS. Finally, we evaluated the
relationship between endogenous sex hormones (estrogen and proges-
terone) and subregion volumes using linear regression. Relationships
were considered significant only if they met FDR correction at g < 0.05.

White matter microstructure. DSI Studio’s correlational tractography™
was used to analyze the relationship between white matter structure
and gestational week (n =16). A truncated model was run to examine the
relationship between white matter and sex steroid hormones (n=14)
for the subset of diffusion scans with paired endocrine data during ges-
tation. Anonparametric Spearman’s correlation was used to derive the
correlation between gestational week and endocrine factors and our
metrics of interest (QA and MD; see Supplementary Table 9 and Sup-
plementary Fig.10 for MD results) because the datawere not normally
distributed. Statistical inference was reached using connectometry,
a permutation-based approach that tests the strength of coherent
associations found between the local connectome and our variables
ofinterest. It provides higher reliability and replicability by correcting
for multiple comparisons. This technique provides a high-resolution
characterization of local axonal orientation. The correlational trac-
tography was run with the following parameters: ¢ score threshold of
2.5, four pruningiterations and alength threshold of 25 voxel distance.
To estimate the FDR, a total of 4,000 randomized permutations were
applied to obtain the null distribution of the track length. Reported
regions were selected based on FDR cutoff (FDR < 0.2, suggested by
DSIStudio), and contained atleast ten tracts. For visualization of global
andtract QA ateach gestational stage, mean QA values were extracted
using DSIStudio’s whole-brain fiber tracking algorithm and ROI-based
tracking using the default HCP842 atlas’®.

Day2Day dataset: measurement variability. To establish a marker of
normative variability over half a year, we computed metrics of meas-
urement variability using the Day2Day dataset®, which provided both
whole-brain T1and high-resolution T2MTL scans. For eachregion,j, of
the Schaefer parcellation, we assessed across-session variability, €, as

t— 1§
g =100 x mean(g)
¢

Where ¢, is the morphometric measurement of a parcel for session s
and ¢ is the mean of t across sessions®>”’. Thus, we defined variability
asthe mean absolute percent difference between eachindividual and
the mean across sessions. Across-session variability estimates for all
400regions werethen averaged across eight participants, and a global
measure of cortical GMV variability was computed by averaging across
the 400 regions. This approach was repeated independently for the
T2 hippocampal scans, wherein we computed across-session variability
for each parcel of the ASHS parcellation scheme (n =7 bilateral sub-
fields). However, it isimportant to note that raw subfield values (that
is, no manual retouching) were used for Day2Day variability assess-
ments and should be interpreted with caution. Finally, to better com-
pare against our own data, we repeated this approach using our
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participant’s first two baseline scans (thatis, preconception) to derive
within-participant variability estimates.

Benchmarking our datain this way allows usto capture the degree
of change expected due to factors such as image processing and
instrumentation variability or other day-to-day changes that could
potentially modulate brain size and shape (see ref. 80 for review). The
percent change observed over pregnancy (baseline versus 36 weeks
gestation) far exceeds the expected variability estimated using both
the Day2Day dataset (Supplementary Fig. 11) and our within-participant
control data. This was quantified by dividing the observed percent
change in GMV metrics (baseline versus 36 weeks) by the global meas-
ure of GMV percent variability of each control group (thatis, Day2Day,
within-participant control), independently for cortex and subcortex.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The dataset consists of 26 MRI scans (T1w, T2w and diffusion scans)
alongside state-dependent measures and serum assessments of ovar-
iansex hormones for each session. The raw datais publicly available at
https://openneuro.org/datasets/ds005299. Source data are provided
with this paper.

Code availability

No custom code was used.
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slice thickness, 38 interleaved slices with no gap, total acquisition time = 5:42 min). No other custom software was used for data collection.
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Advanced Normalization Tools (ANTs), version 2.1.0
FreeSurfer, version 7
Automatic Segmentation of Hippocampal Subfields (ASHS), version 7/2018
IQM Pipeline from MRIQC, version 23.1
Matlab, version 2022a
QSlprep, version 0.15.3
DSI Studio, version Chen-2022-07-31
R/R Studio, version 3.4.4
ITK-SNAP, v.3.8.0-b

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

>
QD
Y
(e
=
)
§o;
o)
=
o
=
_
D)
©
o)
=
S
Q@
wv
(e
=
S}
Q
<L

£zoz |udy




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy
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Reporting on sex and gender Our study focused on a single female participant to explore how pregnancy shapes the human brain.
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groupings

Population characteristics This was a precision imaging study of one 38-year old primiparous woman.

Recruitment Our participant (corresponding author E.R.C.) was a healthy primiparous woman who underwent in-vitro fertilization (IVF) to
achieve pregnancy. The project was conceived by E.R.C. and she wished to use herself as the participant, as has been done in
previous "dense-sampling" studies (cf. Poldrack et al., 2015; Pritschet et al., 2020).

Ethics oversight The participant gave written informed consent and the study was approved by the University of California, Irvine Human

Subjects Committee.
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Sample size We used precision imaging to deeply-phenotype, densely-sample an individual over the gestational window. As this study was the first of it's
kind, our sample size was an N=1 design. Although this limits the generalizability of our findings, this project serves as a proof-of-concept,
showcasing the value and feasibility of studying a woman's brain during the transition to motherhood.

Data exclusions  no history of neuropsychiatric diagnosis, endocrine disorders, prior head trauma or history of smoking

Replication This is the first study of it's kind; therefore, there are no study replications as of yet. However, to reproduce our results internally across
software packages, we also ran the T1w data through the longitudinal FreeSurfer cortical thickness pipeline (Dale et al., 1999), which
corroborated our finding that gray matter volume declines throughout gestation (e.g., successful internal replication). This pattern of results
not only held across software packages, but also brain parcellations (e.g., Schaefer 400-cortical atlas and Desikan-Killiany cortical atlas).

Randomization  This was an observational study design, and therefore not randomized.

Blinding For medial temporal lobe segmentation, scans were randomized and segmentation was performed in a random order, blind to pregnancy
stage. No other blinding was applicable, given the observational study of brain changes in response to advancing gestational week.
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Experimental design

Design type Structural & Diffusion MRI
Design specifications No task-based fMRI used in this manuscript.

Behavioral performance measures  N/A; no performance metrics collected

Acquisition
Imaging type(s) Structural
Field strength 3
Sequence & imaging parameters High-resolution anatomical scans were acquired using a T1-weighted (T1w) magnetization prepared rapid gradient echo
(MPRAGE) sequence (TR = 2500 ms, TE = 2.31 ms, T1 = 934 ms, flip angle = 7°, 0.8 mm thickness) followed by a gradient
echo fieldmap (TR = 758 ms; TE1 = 4.92 ms; TE2 = 7.38 ms; flip angle = 60°). A T2-weighted (T2w) turbo spin echo (TSE)
scan was also acquired with an oblique coronal orientation positioned orthogonally to the main axis of the hippocampus
(TR/TE =9860/50 ms, flip angle = 122°, 0.4 x 0.4 mm?2 in-plane resolution, 2 mm slice thickness, 38 interleaved slices
with no gap, total acquisition time = 5:42 min).
Area of acquisition T1-weighted and dMRI scans = whole-brain
T2-weighted scan = high-resolution imaging of medial temporal lobe
Diffusion MRI X Used [ ] Not used
Parameters TR =4300 ms, echo time = 100.2 ms, 139 directions, b-max = 4990, FoV = 259 x 259 mm, 78 slices, 1.7986 x 1.7986 x 1.8 mm voxel
resolution
Preprocessing
Preprocessing software Gray Matter Volume & Cortical Thickness:

Advanced Normalization Tools (ANTs), version 2.1.0
FreeSurfer, version 7

T2-weighted MTL scans:
Automatic Segmentation of Hippocampal Subfields (ASHS), version 7/2018

Diffusion imaging:
QSlprep, version 0.15.3
DSl Studio, version Chen-2022-07-31

Normalization Normalization differed by modality due to inherent limitations of applicable processing pipelines.

Gray Matter Volume & Cortical Thickness:
All analyses were kept in native subject-space to limit the amount of warping and leverage the advantages of a precision
imaging design.

T2-weighted MTL scans:
T2w images were registered to the segmentation template (see below) using ANTs deformable registration.

Diffusion imaging:
Initial preprocessing through QSlprep normalized diffusion images to the skull-stripped T1w images. Diffusion images were
then reconstructed in MNI space using DSI studio’s Q-space Diffeomorphic Reconstruction.
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Normalization template

Noise and artifact removal

Volume censoring

T2-weighted MTL scans:
Princeton Young Adult 3T ASHS Atlas Template (n=24, mean age = 22.5; Aly & Turk-Browne, 2016).

Diffusion imaging:
All diffusion images were reconstructed using the ICBM152 template.

Gray Matter Volume & Cortical Thickness:
All T1-weighted images underwent denoising ('denoiselmage') and N4 bias field correction ('"N4BiasFieldCorrection') for field
inhomogeneity via ANTs.

T2-weighted MTL scans:
All T2-weighted MTL images underwent denoising ('denoiselmage') via ANTs.

Diffusion:

All diffusion images underwent denoising, motion and distortion correction using MRtrix3’s dwidenoise and dwibiascorrect
with the N4 algorithm. All diffusion images were quality checked using DSI studio’s "QC1: SRC Files Quality Control. All images
passed QC checks.

Motion:

Mean framewise displacement (FWD) estimates from gestation sessions with a 10-minute resting state scan (n = 18) were
used to indirectly assess whether motion increased throughout pregnancy. Average FWD (millimeters) was extremely
minimal across the entire experiment (M = 0.13, SD = 0.02, range = 0.09-0.17) and varied only slightly by pregnancy stage
(pre: M =0.11, SD = 0.004; first: M =0.11, SD = 0.01; second: M = 0.13, SD = 0.02; third: M = 0.16, SD = 0.007; post: M = 0.13,
SD =0.01). While mean FWD did correspond with gestation week (r = 0.88, p <.001), controlling for this did not alter our
main findings (e.g., total GMV negatively associated with gestation; partial correlation: r =-0.87, p < 0.001) owing to the fact
that motion differences between stages were minuscule.

Gray Matter Volume & Cortical Thickness:

All images were visually assessed for QC. Further, we computed quality control (QC) assessments on all T1w images using the
IQMs pipeline from MRIQC (Esteban et al., 2017). Metrics of interest included 1) coefficient of joint variation (CJV), 2) signal-
to-noise ratio for gray matter (SNR), and 3) contrast-to-noise ratios (CNR). All QC metrics fell within expected standard
ranges. We also used FreeSurfer’s Eueler number to evaluate a field-standard quantitative assessment of each T1w structural
image. We observed no significant relationships between the Euler number and gestation week or summary brain metrics. A
discrepancy (e.g., 2 SD below average) was noted in session eight; however, again, removing this session did not detract from
our main findings showing reductions in gray matter volume over gestation.

T2-weighted MTL scans:
Volumes were visually assessed for QC. Volumes were removed from the analysis if unable to be reliably segmented.

Diffusion imaging:

All images were assessed using the DSI studio quality control and a visual inspection. DSI studio performed an outlier check,
labeling images as a “low quality outlier” if the correlation coefficient was greater than 3 standard deviations from the
absolute mean. No images were labeled as a low quality outlier.

Statistical modeling & inference

Model type and settings

Summary brain metrics:

To reflect the existing literature, we first explored brain metrics across the entire study duration (pre-conception through
postpartum). When including all sessions, total brain volume, GMV, CT, global QA, ventricle volume and CSF displayed non-
linear trends over time; therefore, we used generalized additive models (GAM; cubic spline basis, k = 10, smoothing = GCV), a
method of non-parametric regression analysis (R package: mgcv), to explore the relationship between summary brain metrics
(outcome variables) and gestation week (smooth term). Each model underwent examination (gam.check function) to ensure
it was correctly specified with regards 60 1) the choice of basis dimension (k) and 2) the distribution of the model residuals
(see mgcv documentation; Wood, 2017). The general pattern of results held after toggling model parameters; however, we
note the risk of overinterpreting complex models with small sample sizes (see Sullivan et al., 2015). To address overfitting and
cross-validate our basis type selection, we also fit the data using nonpenalized general linear models (GLM) with both linear
and polynomial terms for gestation week. We compared the performance of each GLM (i.e., models using only a linear term
vs. models with polynomial terms) via the Akaike information criterion (AIC), which revealed that cubic models consistently
outperformed both linear and quadratic models (AICdiff > 3), providing additional evidence for non-linear changes in
structural brain variables over time.

Gray Matter Volume & Cortical Thickness:

We first computed Pearson’s product-moment correlation matrices between the following variables (n = 19 pregnancy
scans): gestation week, estradiol, progesterone, total GMV, and the 17 network-level average GMV values. We then ran a
multivariate regression analysis predicting ROI-level GMV changes by gestation week. To identify which regions were
changing at a rate different from the global decrease, we then re-ran the analyses to include total GMV as a variable of non-
interest in the regression model. A similar statistical approach was taken for T1w-derived subcortical volume estimates. We
ran a multivariate regression analysis predicting GMV changes over gestation in 28 regions-of-interest by gestation week
(FDR-corrected at g < 0.05).

T2-weighted MTL scans:

To evaluate the relationship between gestation week and medial temporal lobe (MTL) subregion volume over pregnancy (n =
7 bilateral subregions; n = 18 MTL scans), we used a combination of linear and non-linear models based on individual
subregion data patterns. Models were compared for best fit with each subregion via AIC from the GLM output (as described
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above). A linear regression model was most appropriate for PHC (AICdiff < 3), whereas a quadratic model performed best for
CA1 and CA2/3. As a control, we repeated the analyses with MTL subregion volumes after proportional volume correction of
total gray matter volume calculated by ASHS. Finally, we evaluated the relationship between endogenous sex hormones
(estrogen and progesterone) and subregion volumes using linear regression. Relationships were considered significant only if
they met FDR correction at g <.05.

Diffusion imaging:

DSI Studio’s correlational tractography (Yeh et al., 2016) was used to analyze the relationship between white matter
structure and gestational week (n = 16). A truncated model was run to examine the relationship between white matter and
sex steroid hormones (n = 14) for the subset of diffusion scans with paired endocrine data during gestation. A non-parametric
Spearman correlation was used to derive the correlation between gestational week and endocrine factors and our metrics of
interest (QA and MD; see Table S9 and Fig. S10 for MD results) because the data were not normally distributed. Statistical
inference was reached using connectometry, a permutation-based approach that tests the strength of coherent associations
found between the local connectome and our variables of interest. It provides higher reliability and replicability by correcting
for multiple comparisons. This technique provides a high-resolution characterization of local axonal orientation. The
correlational tractography was run with the following parameters: T-score threshold of 2.5, 4 pruning iterations, and a length
threshold of 25 voxel distance. To estimate the false discovery rate (FDR), a total of 4000 randomized permutations were
applied to obtain the null distribution of the track length. Reported regions were selected based on FDR cutoff (FDR < 0.2,
suggested by DSI Studio), and contained at least 10 tracts. For visualization of global and tract QA at each gestational stage,
mean QA values were extracted using DSI Studio’s whole brain fiber tracking algorithm and ROI-based tracking using the
default HCP842 atlas (Yeh et al., 2013).

Effect(s) tested Predicting global, network, and regional volumetric change (GMV, CT, MTL subregion, microstructure) by pregnancy-related
indicators (gestation week, estrogen, progesterone).

Specify type of analysis: [ | whole brain || ROI-based X Both

Global measures of gray matter volume, cortical thickness, and cerebrospinal fluid were computed by
ANTSs and validated with FreeSurfer. A whole-brain probabilistic atlas (e.g., Schaefer 400-region
parcellation) was used for ROI analysis of cortical thickness and volume and the Yeo/Schaefer 17-network
scheme was used for network-level analyses. The 'aseg' segmentation was used for ROl analysis of
subcortical gray matter volume. The Princeton Young Adult 3T ASHS Atlas Template was used to examine
volume among 7 MTL subfields: CA1, CA 2/3, dentate gyrus, subiculum, entorhinal cortex, perirhinal
cortex, and the parahippocampal gyrus. Whole-brain white matter structure was assessed for the
diffusion imaging analysis, wherein every tract and bundle was evaluated.

Anatomical location(s)

Statistic type for inference N/A; s and diffusion MRI only.

(See Eklund et al. 2016)

Correction FDR-correction

Models & analysis

n/a | Involved in the study
|X| |:| Functional and/or effective connectivity

|X| |:| Graph analysis

|:| |X| Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis Multivariate regression analyses was used to explore brain structure in relation to gestation. Regional,
network, and summary brain measures (dependent variables) were examined in relation to gestation week
(independent variable). In follow-up statistical analyses (noted in Methods), various quality control metrics
and global brain volume were included into the model to account for variables of non-interest (e.g., motion)
and to identify highly impacted brain areas (e.g., controlling for total GMV).
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