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ABSTRACT

LLM routers aim to balance quality and cost of generation by classifying queries and routing them to
a cheaper or more expensive LLM depending on their complexity. Routers represent one type of what
we call LLM control planes: systems that orchestrate use of one or more LLMs. In this paper, we
investigate routers’ adversarial robustness.
We first define LLM control plane integrity, i.e., robustness of LLM orchestration to adversarial in-
puts, as a distinct problem in AI safety. Next, we demonstrate that an adversary can generate query-
independent token sequences we call “confounder gadgets” that, when added to any query, cause LLM
routers to send the query to a strong LLM.
Our quantitative evaluation shows that this attack is successful both in white-box and black-box settings
against a variety of open-source and commercial routers, and that confounding queries do not affect
the quality of LLM responses. Finally, we demonstrate that gadgets can be effective while maintaining
low perplexity, thus perplexity-based filtering is not an effective defense. We finish by investigating
alternative defenses.

1 Introduction

Large language models (LLMs) exhibit remarkable capabilities on many tasks. Today, hundreds of open-source and
proprietary LLMs are available at different prices, ranging from expensive, state-of-the-art models to cheaper, smaller,
less capable ones. LLM operators typically provide API access to their models (especially higher-quality models) on a
pay-per-query basis. This imposes non-trivial costs on LLM-based applications and systems.

Developers who want to integrate LLMs into their applications must therefore consider both utility and cost. They want
to maximize the quality of responses to their queries while minimizing the cost. The two objectives conflict with each
other: larger models tend to generate higher-quality answers but charge more per query. For example, at the time of
this writing, GPT-3.5-turbo costs $0.5/$1.5 per 1M input/output tokens, GPT-4o-mini $0.15/$0.6, GPT-4o $2.5/$10,
o1-preview $15/$60. The difference in quality between models is not uniform across queries. For some queries, even a
cheap model can generate an acceptable response. More complex queries require an expensive model to obtain a quality
answer.

A natural solution to balancing performance and economic considerations is to take advantage of the availability of mul-
tiple LLMs at different price-performance points. Recently proposed LLM routing systems [5, 12, 27, 47, 53] orchestrate
two or more LLMs and adaptively route each query to the cheapest LLM they deem likely to generate a response of
sufficient quality. In the two-LLM case, let Ms be an expensive, high-quality model and Mw a weaker, lower-grade one.
Given query q, the routing algorithm R(·) applies a classifier to q that outputs 0 if Mw is sufficient for answering q, or 1
if Ms is required. The system then routes q accordingly.

LLM routing is an example of a general class of systems we call LLM control planes, which orchestrate the use of multiple
LLMs to process inputs, as further described in Section 2.

Our contributions. First, we introduce LLM control plane integrity as a novel problem in AI safety. Recently proposed
LLM control-plane algorithms are learned, calibrated classifiers (see Section 2). Their inputs are queries from potentially
adversarial users. Robustness of control-plane algorithms to adversarial queries is a new problem, distinct from adversarial
robustness of the underlying LLMs.

ar
X

iv
:2

50
1.

01
81

8v
1 

 [
cs

.C
R

] 
 3

 J
an

 2
02

5



Figure 1: LLM routers classify queries and route complex ones to an expensive/strong model, others to a cheaper/weak
model. To control costs, LLM routers can be calibrated to maintain (for an expected workload) a specific ratio between
queries sent to the strong and weak models.

To initiate the study of this problem, we show that existing LLM routing algorithms are not adversarially robust. We
design, implement, and evaluate a method that generates query-independent adversarial token sequences we call “con-
founder gadgets.” If a gadget is added to any query, this query is routed to the strong model with high probability. Next,
we show that this attack is effective even in the transfer setting where the adversary does not have full knowledge of the
target LLM router (it is black-box), but has access to another router (e.g., an internally trained surrogate). We also evaluate
the integrity of commercial LLM routers, showing that they can be confounded as well.

Third, we investigate defenses. Our basic method generates gadgets that have anomalously high perplexity. Confounded
queries are thus easily distinguished from normal queries and can be filtered out by the routing system. Unfortunately, this
defense can be evaded by an adversary who incorporates a low-perplexity objective into the gadget generation algorithm,
producing gadgets that have low perplexity—and yet are effective at re-routing queries to the strong model. We also
discuss higher-level defenses, such as identifying users whose queries are routed to the strong model with abnormal
frequency.

Routing attacks can be deployed for various adversarial objectives, e.g., to ensure that the adversary always obtains the
highest-quality answer regardless of the target applications’s internal routing policies and cost constraints, or to mali-
ciously inflate the target’s LLM costs. As LLM control planes grow in importance and sophistication, we hope that this
work will motivate further research on their adversarial robustness.

2 LLM Control Planes and Routing

Inference using large language models (LLMs) is traditionally monolithic: a single model is applied to an input or se-
quence of inputs. This methodology can be sub-optimal for various reasons. State-of-the-art models are often expensive,
with API access to LLMs costing as much as several dollars for each query. Elsewhere, distinct LLMs may excel at dif-
ferent tasks, and selectively using them may improve overall quality on a diverse workload. Finally, combining multiple
LLMs, even all trained for similar tasks, may become increasingly prevalent as performance improvements of individual
LLMs plateaus [8–10].

Researchers and practitioners are therefore now developing inference architectures that use multiple LLMs to answer
queries. These LLMs are orchestrated by what we call an LLM control plane (borrowing the terminology from network-
ing [13]). The control plane may route queries or parts of queries to different LLMs, derive new strings to query to
underlying LLMs, combine answers from underlying LLMs, and more.

LLM routers. A prominent example of this emerging class of LLM control planes are LLM routers [27, 41, 47, 53, 59].
LLM routers decide which of the two (or, sometimes, more) LLMs to use to answer a query. In prescriptive routing,
the router applies some lightweight classifier to the input query that determines which underlying LLM to utilize for a
response. The classifier is itself a learned function that scores the complexity of the query. Deployments can then configure
a score threshold for when to route a query to the more expensive LLM. This threshold can be tuned using representative
workloads to achieve a desired cost-performance trade-off. Figure 1 shows the basic workflow of binary LLM routers.

Non-prescriptive routing [15, 20, 68] uses the responses from one or more underlying LLMs to determine which response
to return to the user. For example, FrugalGPT [20] submits the query to a sequence of models (ordered by price) called a
cascade, stopping when it obtains a response classified by the router as sufficient.
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In contrast to routers motivated by controlling costs, several LLM router designs focus solely on improving quality of
responses [31, 45, 57, 58].

The LLM routers described thus far do not modify the queries or individual LLM responses. Other types of control planes
do. Ensemble approaches such as mixture-of-expert (MoE) [29, 30, 52, 56] architectures select a subset of underlying
models to apply to each token of a query and merge their responses. LLM synthesis [40] architectures operate similarly,
but route the entire query to a subset of underlying LLMs and merge their responses. These approaches reduce inference
costs by using fewer and/or less complex underlying models.

Applications of LLM routers. A key use case for LLM routers is to help LLM-based application reduce cost. Several
commercial routers, including Unify [12], Martian [5], NotDiamond [7], and others, offer this as a service. By replacing a
few lines of code, the application can send user queries to a router service, rather than directly to some LLM provider. The
service selects the optimal LLM and forwards the queries. Commercial router services claim that this results in significant
cost savings: up to 98% in the case of Martian [5], and 10× in the case of NotDiamond [7].

3 LLM Control Plane Integrity

In this section, we define LLM control plane integrity. Informally, it means that decisions made about underlying LLM
queries made by the control plane algorithms cannot be subverted by adversarial queries. Looking ahead, we will focus
on one class of control plane: predictive LLM routing as used to manage cost.

Formalizing control planes. An LLM control plane Rω is a potentially randomized algorithm. It is parameterized by
a string ω, called the parameters. It utilizes some number n of LLMs denoted by M. We will mostly focus on the
case of n = 2, and, for reasons that will be clear in a moment, use Ms (“strong”) and Mw (“weak”) to denote the two
underlying LLMs. Then inference on an input x ∈ X for some set X of allowed queries is performed by computing
a response via y ←$ RM

ω (x). Here we use ←$ to denote running R with fresh random coins; we use ← when R is
deterministic. We focus on inference for a single query, but it is straightforward to extend our abstraction for control
planes to include sessions: the controller would maintain state across invocations, potentially adapting its behavior as a
function of a sequence of queries and responses.

LLM control planes should, in general, be relatively computationally lightweight, at least compared to the underlying
LLMs. This is particularly so in the cost-motivated usage of control planes, as a computationally or financially expensive
control plane would eat into cost savings incurred by utilizing cheaper underlying LLMs for some queries. For example,
predictive binary routers use relatively simple classifiers to determine which of Ms or Mw should be used to respond to a
query.

Inference flow. Given a set of LLMsM, a control plane Rω , and an input x, an LLM inference flow is the sequence of
LLM invocations Mij (zj) for 1 ≤ j ≤ m and ij ∈ {w, s} made when executing RM

ω (x). Here m is the total number of
LLM invocations, and z1, . . . , zm are the queries made to the underlying LLMs. Should R be randomized, the sequence
and its length are random variables. An inference flow can be written as a transcript

T = (i1, z1), (i2, z2), . . . , (im, zm)

of pairs of model indexes ij ∈ {w, s} and model inputs zj . Note that for simplicity we ignore the potential for paral-
lelization, assuming execution proceeds serially. For binary routers, we have m = 1 and T ∈ {(w, x), (s, x)}. We write
submitting a sequence of inferences x⃗ = x⃗1, . . . , x⃗q to a control plane as

RM
ω (x⃗) = (RM

ω (x⃗1), . . . , R
M
ω (x⃗q))

where note that each invocation could result in multiple underlying LLM invocations. In the binary router case, however,
each invocation results in a single LLM invocation.

An inference flow policy dictates the control plane designer’s intention regarding use of the underlying models. For
example, an application may want to ensure that only a small fraction of queries go to the expensive model Ms. We can
define this as a predicate over a sequence of transcripts. In our binary router example, the policy can be more simply
defined as a predicate P over (input, model) pairs (x⃗1, i1), . . . , (x⃗q, iq) since this fully defines the sequence of transcripts.
For example, a policy might specify that the strong model is used in at most an ϵ fraction of inferences:

P((x⃗1, i1), . . . , (x⃗q, iq)) =

 q∑
j=1

I(ij)
q
≤ ϵ


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where I(ij) = 1 if ij = s and I(ij) = 0 if ij = w. In other words, the predicate is that the fraction of queries routed to the
strong model is bounded by ϵ.

Control plane integrity. A control plane integrity adversary is a randomized algorithmA that seeks to maliciously guide
inference flow.

In an unconstrained LLM control plane integrity attack, the adversary A seeks to generate inputs x⃗ = x⃗1, . . . , x⃗q such
that running RM

ω (x⃗) generates a transcript for which P((x1, i1), . . . , (xq, iq)) = 0. This attack could be launched by an
adversary who wants to maximize inference costs for a victim application using an LLM router.

A harder setting requires input adaptation, where the adversary is given inputs x1, . . . , xq and it must find new inputs
x̂1, . . . , x̂q for which the transcript resulting from P((x̂1, i1), . . . , (x̂q, iq)) = 0. There will be some competing constraint,
such as that xj and x̂j are very similar for each j, or that the outputs yj ←$ RM

ω (xj) and ŷj ←$ RM
ω (x̂j) are close. In the

routing context, the adversary’s goal is to increase the fraction of queries that get routed to the strong model, in order to
improve the overall quality of responses, drive up the victim application’s inference costs, or both.

Relationship to evasion attacks. Evasion attacks [25, 43, 60] against an inference system (also called adversarial exam-
ples [32, 48, 49]) would, in our setting, seek to find a small modification ∆ to an input x such that RM

ω (x+∆) ̸= RM
ω (x)

where addition is appropriately defined based on input type (e.g., slight changes to text).

Our attack setting is not the same. The control plane integrity adversary seeks to maliciously control the inference flow, not
necessarily the output of inference. In an unconstrained attack, the adversary does not care what outputs are generated.
In the input adaptation attack, the adversary seeks to craft inputs that modify the inference flow yet do not change the
responses of the strong underlying LLM to the extent possible. Looking ahead, we will use evasion techniques in our
adaptation attacks against learned control plane routers, but, importantly, not the overall inference.

In the other direction, undermining LLM control plane integrity could be a stepping stone toward evasion attacks. For
example, if RM

ω is used to classify malicious content by combining LLMs each tuned to different types of harm categories,
then modifying inputs to force inference flows away from appropriate models could aid evasion. We leave evaluation of
how control-plane integrity attacks can enable evasion to future work.

Threat models. Within the context of control plane integrity attacks against LLM routers, we identify several threat
models that differ in terms of the adversary’s goals and their knowledge about the target control plane RM

ω .

In terms of goals, an adversary may seek to inflate the costs of a victim application that utilizes an LLM control plane.
As a kind of denial-of-service attack, such cost inflation would penalize the application developer who expects routing
to control costs. Another adversarial goal could be arbitrage: consider an application that charges X dollars per query,
whereas directly using Ms costs Y > X . The application’s lower rate X makes economic sense assuming it uses a router
to route the bulk of queries to a cheaper model Mw. An input adaptation attack in this setting can gain (indirect) access to
Ms, obtaining an arbitrage advantage of Y −X per query. To be effective, this arbitrage adversary would want to ensure
that adaptations do not lower response quality (i.e., it extracts all the value out of rerouting to Ms). As before, the victim
in this case is the application that relies on routing to lower its costs (unsuccessfully, under this attack).

We now discuss adversarial capabilities. We assume that our victim application’s prompt includes a substring that can be
controlled by the adversary. This represents many real-world apps such as chatbots, coding assistants, writing assistants,
and others, that insert user inputs into an LLM prompt. In crafting adversarial portions of prompts, an adversary may have
various levels of knowledge about the victim application’s router. We consider the following knowledge settings:

• White-box setting: The adversary knows the control plane algorithm and its parameters ω.

• Black-box (transfer) setting: The adversary does not know the control plane algorithm R and ω for the target model,
but knows instead another control plane algorithm R′

ω′ and its parameters. We refer to R′
ω′ as the surrogate. For

example, this could arise if an adversary trains their own router using available data. In this setting our attacks are
also zero-shot in that they do not require any interaction with the target control plane before the query that is being
rerouted.

4 Confounding Control Planes with Gadgets

We now turn to our main contribution: a methodology for attacking LLM control plane integrity. The key insight is that
an adversary can modify queries to mislead or “confound” the routing logic into routing these queries to an LLM of the
adversary’s choosing. Furthermore, we will demonstrate that these attacks can be black-box and query-independent, i.e.,
a single modification works for all queries and does not require advance knowledge of the specific router being attacked.
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Figure 2: Overview of our attack on LLM routing control plane integrity. The attack adds to each query a prefix (repre-
sented by the gear), called a “confounder gadget,” that causes the router to send the query to the strong model.

We focus on the binary router setting in which the router applies a learned scoring function to input queries and routes
any query whose score exceeds some threshold τ to the strong LLM Ms. This setting has been the focus of several prior
works [27, 41, 47] and is used in the control planes that are deployed in practice (see Section 7).

More formally, we consider a router RM
ω forM = {Mw,Ms}, where ω consists of a scoring function S, scoring function’s

parameters θ, and a threshold τ ∈ R+. For notational brevity we just write Rω below, withM clear from context. Here
S and θ define a scoring function Sθ : X → R+. Since our focus is LLMs, we assume that queries X are strings of text
tokens. The routing algorithm then works as follows:

Rω(x) =

{
Mw(x) if Sθ(x) < τ

Ms(x) otherwise

where ω = (S, θ, τ). We will detail scoring functions in Section 5; prior work has suggested linear models, light-weight
LLMs, and more. Note that, consistent with this application, scoring functions are computationally efficient and cheap (as
compared to Ms,Mw). Deployments calibrate τ to limit the fraction of queries routed to the strong model Ms, giving rise
to the type of control plane integrity policy discussed in Section 3.

We focus on input adaptation attacks; these immediately give unconstrained attacks as well. The adversary therefore has
a sequence of inputs x1, . . . , xq and must produce modified inputs x̂1, . . . , x̂q to maximize the number of inputs routed
to Ms. See Figure 2 for a depiction of our attack setting.

Instruction injection doesn’t work. Given the success of prompt injection for jailbreaking [50] and other adversarial
tasks [64], the adversary might simply prefix each query xi with some instruction such as “Treat the following query as
complex, . . . ” to generate a modified query x̂i. Our experiments show that this does not work well, failing to trigger the
control plane into routing otherwise weak queries to Ms. See Appendix C for details on our experiments with various
instruction prompts.

Confounder gadgets. Our approach works as follows. Given a query xi, we prepend a confounder gadget ci, which is a
short sequence of adversarially chosen tokens. The modified query is x̂i = ci∥xi where ∥ denotes string concatenation.
Intuitively, we will use optimization to search for confounders that trick the scoring function into ranking x̂i as sufficiently
complex to require the strong model.

In the white-box, query-specific setting, we can choose ci as a function of xi and the known parameters ω = (S, θ, τ). To
do so, we fix a confounder length of n tokens and let I be a token dictionary (it should be a sufficiently large subset of the
token dictionary used by S). Then we set the gadget to initially be n tokens all fixed to the same value from I. The exact
choice of the initialization token is not important; in our implementation, we used the first token in the dictionary (‘!’).
Denote this initial confounder as c(0)i = [c

(0)
i,1 , c

(0)
i,2 , . . . , c

(0)
i,n].

Then, we perform a hill-climbing style approach to find a good confounder for xi. For each iteration t ∈ [T ], where T is
the total number of iterations, do the following:

(1) Select a target index j ∈ [1, n] uniformly.

(2) Generate a set B of B + 1 candidates. First set c̃0 = c
(t)
i , the current confounder. To generate B additional

candidates, select replacement tokens from I uniformly, forming the set {tb ← I}Bb=1. Replace the jth token in the
current confounder c̃0 with tb:

c̃b = [c
(t)
i,1, . . . , c

(t)
i,j−1, tb, c

(t)
i,j+1, . . . , c

(t)
i,n] .

5



Let B = {c̃0, . . . , c̃B}.

(3) Find the candidate that maximizes the score:

c
(t+1)
i ← argmax

c∈B
Sθ(c∥xi) . (1)

The final confounder c(T )
i is used with query xi. We early abort if, after 25 iterations, there is no update to the confounder

gadget. Technically, we could abort early if we find a confounder whose score exceeds τ . Running further can be useful
when an adversary does not know τ .

The attack’s runtime is dominated by T ·B times the cost of executing S. In practice, S are designed to be fast (otherwise
routers would significantly increase the latency of applications that use them). We report precise timings later; in summary,
the attack is fast because we can set T to be relatively small and still find high-scoring confounders.

Due to the randomness in index and token selection, the method converges to different, yet similarly effective, confounder
gadgets on each run. Our evaluation will thus measure average performance over multiple gadgets.

Query-independent confounders. One downside of the per-query approach is that the adversary must repeat, for each
query, the search for a good confounder. In practice, the adversary might prefer a query-independent attack. Our con-
founder gadget approach extends to this setting readily: perform the search routine above for an empty query. In other
words, just ignore xi in the query-dependent attack above, replacing Sθ(c∥xi) in Eq. 1 with Sθ(c). This finds a sin-
gle query-independent confounder c that can be prefixed to all queries, i.e., x̂i = c∥xi. We will show that this works
surprisingly well.

It is tempting to assume the reason a query-independent confounder works well is that a good scoring function should be
roughly monotonic in query extensions, i.e., one might expect that Sθ(c∥x) ≥ Sθ(c) for almost any suffix x. This intuition
is not correct. In our experiments, we found that Sθ(c∥x) < Sθ(c) for many x and some of the routers discussed below.
Nevertheless, by ensuring that Sθ(c) is pretty high (set the number of iterations T higher) the resulting query-independent
confounder works well. That is, we at least get that Sθ(c∥x) > Sθ(x).

The black-box setting: confounders that transfer. Finally, the attacks so far are in the white-box setting, where the
attacker can optimize directly against Sθ. While in some cases routing control planes will be public knowledge, in others,
including the proprietary control planes we explore in Section 7, they are hidden. This gives rise to the black-box setting.
While an attacker might seek to perform model extraction attacks [43, 65] to learn θ, we instead explore attacks that
transfer from one router to another.

In more detail, we assume the adversary has access to a router R′
ω′ , called the surrogate, that is trained on data similar to

that used for the target router. Then the attack is the same as above, except that we use the surrogate’s scoring function
S′
θ′ instead of the target’s Sθ. Again, we will see that this works surprisingly well: the query-independent confounders

found for the surrogate transfer to successfully reroute queries against the target router.

Putting it all together. In summary, our methodology for input adaptation attacks is:

(1) (Preprocessing) Develop a single query-independent confounder gadget c, using either the target router or surrogate
to score the confounder.

(2) (Input adaptation) For each query xi, submit x̂i = c∥xi instead to obtain a response ŷi.

The confounder is applied to all queries, i.e., the adversary does not need to guess whether the original query would
have been routed to the weak or strong model. In the rest of the paper, we demonstrate the confounders rarely result in
“downgrades,” i.e., rerouting of queries from the strong to weak model.

We have experimented with variations of this approach that don’t work quite as well, for example adding c as a suffix
instead of a prefix. See Appendix B for details.

5 Open-Source Routers: Experimental Setup

To evaluate efficacy of confounder gadgets generated using the method from Section 4, we perform experiments with
several LLM routers. This section explains our experimental setup for the open-source routers proposed in the research
literature [47]; results of this evaluation appear in Section 6. In Section 7, we discuss experiments with proprietary,
commercial routers. Figure 3 shows the summary of our experimental setup.
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Routers Notation
Similarity-weighted ranking RSW

Matrix factorization RMF

BERT classifier RCLS

LLM scoring RLLM

LLM pair Strong (Ms) Weak (Mw)
1 Llama-3.1-8B 4-bit Mixtral 8x7B
2 Llama-3.1-8B Mistral-7B-Instruct-v0.3
3 Llama-3.1-8B Llama-2-7B-chat-hf
4 GPT-4-1106-preview 4-bit Mixtral 8x7B

Benchmark Description
MT-Bench [71] 160 open-ended questions
MMLU [35] 14,042 multi-choice questions
GSM8K [24] 1,319 grade-school math problems

Figure 3: Summary of our setup for routers, underlying LLMs, and benchmark datasets used in the experiments.

In all experiments, we assume that the adversary’s goal is to reroute queries to the strong model. In Appendix E, we
evaluate efficacy of the attack when the goal is to reroute to the weak model.

Target routers. We focus our evaluation on the four prescriptive routing algorithms proposed by Ong et al. [47],
which provides open-source code and trained parameters, and does so for a representative variety of routing ap-
proaches: similarity-based classification [41, 59], an MLP constructed via matrix factorization [59], BERT-based clas-
sification [27, 53, 59], and a fine-tuned LLM.

The routers we evaluate were trained in a supervised fashion using a set of reference (training) queries whose performance
score on each of the considered models is known. The scores were computed from a collection of human pairwise rankings
of model answers for each of the queries. We note that while the routers we consider are all learned using this training
set, there is no reason to believe a non-learning-based approach (e.g., rule based) to routing would be more adversarially
robust.

We now outline the routing methods considered in this work. See Ong et al. [47] for their full implementation details.

Similarity-weighted ranking: The first method is based on the Bradley-Terry (BT) model [17]. For a given user query,
this model derives a function to compute the probability of the weak model being preferred over the strong model. The
probability-function expressions all share parameters, which are optimized to minimize the sum of cross-entropy losses
over the training-set queries, where each element in the sum is weighted by the respective query’s similarity with the
user’s query (computed as embeddings cosine similarity, with the embedding derived using OpenAI’s text-embedding-3-
small [6]). We denote this method as RSW .

Matrix factorization: The second method is based on matrix factorization. The training queries are used to train a bilinear
function mapping a model’s embedding and a query’s embedding to a score corresponding to how well the model performs
on the query. Routing is done by computing the score of the input query for each model, and choosing the highest-scoring
model. We denote this method as RMF .

BERT classifier: The third method involves fine-tuning a classifier, based on the BERT-base architecture [26], to predict
which of the two models produces a better response for the given query or whether they do equally well (a tie). The
routing decision is based on the probability of the weak model providing a better response versus the strong model or the
tie. We denote this method as RCLS .

LLM classifier: The last method is based on asking an LLM to provide a score in the range 1–5 of how an AI expert
would struggle to respond to a given query based on the query’s complexity. For this, Ong et al. fine-tuned a Llama-3-8B
model [4] using their reference set of queries and corresponding scores. We denote this method as RLLM .

Underlying LLMs. In [47], Ong et al. trained the routers with GPT-4-1106-preview [14] as the strong model and Mixtral
8x7B [39] as the weak model. They report successful generalization between the underlying LLMs, stating that their
routers trained for a particular strong-weak LLM pair can be used with other strong-weak LLM pairs.

To allow our evaluation to scale, we use as the strong model Ms the open-sourced Llama-3.1-8B [3] and as Mw the
4-bit quantized version of Mixtral 8x7B (for efficiency reasons). This reduced the cost of our experiments by avoiding
expensive GPT API calls and lowering the computational costs of Mixtral. Unless mentioned otherwise, all of our results
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will be evaluated with respect to this pair, which we refer to as LLM pair 1. We performed more limited experiments with
the original strong, weak model pair (LLM pair 4) and had similar success in rerouting.

We additionally performed experiments with two further weaker models, in order to better evaluate the case where weak
models produce much lower-quality responses for queries (compared to the strong model). In particular, we define LLM
pair 2 as the strong model plus Mistral-7B-Instruct-v0.3 [38] and LLM pair 3 as the strong model plus Llama-2-7B-chat-
hf [63]. The weaker models in pairs 2 and 3 were chosen to represent smaller (Mistral 7B) and older-generation (Llama-2)
models: according to the Chatbot Arena LLM ranking leaderboard [1, 21], Llama-3.1-8B is ranked in the 58th place,
Mixtral 8x7B at the 88th place, Mistral-7B at the 108th place, and Llama-2-7B at the 125th place.

The LLM strong-weak pairs with which we performed experiments are summarized in Figure 3.

Evaluation datasets. We will evaluate our attacks using three standard LLM benchmarks as workloads: MT-Bench [71],
a dataset of 160 open-ended questions, MMLU [35], a dataset of 14,042 multi-choice questions, and GSM8K [24], a
dataset of 1,319 grade-school math problems. Note that Ong et al. [47] flagged that some data points are “contaminated”,
i.e., they are too similar to the ones used in their training of the routers. We use these datasets without these contaminated
elements, resulting in 72 MT-bench queries, 14,037 MMLU queries, and 1,307 GSM8K queries.

For MMLU and GSM8K, we will require that the LLMs respond in a predefined format so we can parse and compare
the responses to ground-truth answers. To facilitate this, we prepended formatting instructions to the query, inserted as
a prefix before the gadget in the case of confounded queries. In other words, a confounded query ends up defined as
x̂i = instr∥c∥xi for instruction template instr, confounder gadget c, and original query xi. Thus in this case we model
a scenario where the adversary only controls a part of the prompt rather than the entire prompt. See Appendix B for
formatting examples and ablations.

Router calibration. For each workload, we must calibrate each router by setting the threshold τ to achieve some target
fraction ϵ of queries routed to the strong model. Note that the calibration process we use is agnostic to the underlying
LLM pair. We therefore must define 12 distinct thresholds, one for each router, dataset pair. For our experiments here,
we set ϵ = 0.5, meaning the goal is to have about half the queries routed to the strong model. This reflects an application
developer that seeks to control for costs, even if it may mean sacrificing some performance for some workloads.

To calibrate for MT-bench, we use the Chatbot Arena [21] dataset as the calibration set, computing the threshold using
the 55 K queries for which Ong et al. precomputed the scoring function outputs. To calibrate for MMLU and GSM8K,
we select 1,000 queries uniformly at random and uses these to set thresholds. Looking ahead, we do not use these queries
during evaluation of the attacks.

Note that it important that the distribution of calibration queries be similar to the distribution of the target workload (and,
in our experiments, the test queries). We observed that the Chatbot Arena-based threshold did not transfer well to MMLU
and GSM8K, resulting in the majority of queries (≈ 98%) routed to the strong model.

6 Rerouting Open-Source Routers

We now empirically evaluate our rerouting attack against the open-source routers described in the previous section. Unless
otherwise specified, our evaluation focuses on the query-independent attack setting where the attacker first finds a fixed
set of gadgets and then uses them to attack arbitrarily many queries. This is the conservative setting, and query-specific
gadgets — which carry a higher computational cost — generally work better.

In Appendix C we evaluate optimization-free alternatives for generating our confounding gadgets, and show they signifi-
cantly underperform our optimization-based approach.

White-box confounder gadget generation. Following our attack framework described in Section 4, we construct a
query-independent control-plane gadget designed to confuse each router. We start with the white-box setting, setting the
batch size to B = 32 and the number of iterations to T = 100, ignoring thresholds. We generate four sets of n = 10
gadgets, i.e., ten for each router. Examples of generated gadgets can be found in Appendix A.

When reporting scores below, we therefore report the average over the n gadgets used with all 72 MT-bench queries, 100
randomly selected MMLU queries, and 100 randomly selected GSM8K queries. None of these testing queries were used
in the training of the routers or their calibration.

Runtime and convergence. Figure 4 shows the convergence rates for 10 different gadgets, against different routing
algorithms. The overall average number of iterations before convergence is 58. Generation against RSW converges the
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Figure 4: Convergence of gadget generation against different routing algorithms.

RSW RMF RCLS RLLM

Upgrade Strong Upgrade Strong Upgrade Strong Upgrade Strong

MT-Bench 100± 0 81 → 100± 0 100± 0 58 → 100± 0 100± 0 67 → 100± 0 73± 5 57 → 88± 2
MMLU 90± 1 43 → 94± 1 78± 4 53 → 90± 2 100± 0 47 → 100± 0 95± 1 53 → 98± 1
GSM8K 98± 0 52 → 99± 0 100± 0 54 → 100± 0 100± 0 56 → 100± 0 94± 3 53 → 97± 1

Table 1: The white-box attack’s rerouting success rate. “Upgrade” is the percentage of “Weak” queries successfully
rerouted to the strong model by adding a confounder gadget. “Strong” shows the change in the percentage of queries that
are routed to the strong LLM Ms before and after our rerouting attack.

fastest (50 iterations on average), RMF the slowest (66 iterations on average). Interestingly, the score of RSW does not
increase much during optimization but is still sufficient for a successful attack.

Runtime varies significantly when generating gadgets against different routing methods. On a machine with one A40 GPU,
4 CPUs, and 180G RAM, a single iteration takes 36.9 s, 8.4 s, 0.8 s, and 6.9 s for the RSW , RMF , RCLS , and RLLM

routers, respectively. On average, it takes around 31 minutes to generate a gadget for the RSW router, 9 minutes for RMF ,
50s for RCLS , and 6 minutes for RLLM .

Rerouting success rates. Recall that our attack adds the same confounder gadget to all queries. We start by evaluating the
reroute success rates: What fraction of confounded queries does the target router send to the strong model Ms? We show
the results for our attack in Table 1. Focusing first on the columns labeled ‘Strong’, the notation “X → Y ± Z” relays
that for unmodified queries, X% are routed to the strong model Ms, and that for the n = 10 confounders we achieved an
average of Y % of queries sent to Ms. The standard error is Z. Note that while calibration targets ϵ = 0.5, we see some
natural variance in X for the test sets.

To breakdown success further, we additionally report the upgrade rate, which focuses on the percentage of queries that
were (a) originally routed to the weak model, and (b) routed to the strong model after they were modified with the
confounder gadget. Because in our attacks few queries get “downgraded” (confounders cause them to be rerouted to the
weak model instead of strong), the upgrade rate dictates the success rate.

As can be seen, the gadgets reroute almost all weak queries to the strong model. In most cases we see 100% success, or
close to it. The worst case still achieves 88% rerouting success, boosting the fraction of queries sent to the strong LLM by
1.5x. Rerouting fails only for some queries that even after confounding are sent to the weak model: the fixed gadget did
not sufficiently increase the router’s estimate of those queries’ complexity. This is the only source of error for the attack:
no queries in these experiments got “downgraded”, i.e., a query that would otherwise be sent to Ms ends up rerouted to
Mw. This also means that adding the confounder to every single query does not have negative impact on rerouting efficacy.
We report standard error values for both the upgrade rates and the total percentage of queries routed to the strong model.
The maximal standard error is in the low single digits, indicating similar success rates across gadgets.

Quality of attack responses. We now turn to evaluating the quality of the responses generated by the attack. Note that
because we have calibrated the routers to target ϵ = 0.5, our attacks can improve response quality by rerouting to the
stronger model. In the other direction, our attacks add confounder gadgets which might degrade response quality.
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RSW RMF RCLS RLLM

Original Confounded Original Confounded Original Confounded Original Confounded

MT-Bench 13.8 12.3± 0.2 12.6 12.3± 0.2 13.1 12.1± 0.2 12.7 12.7± 0.4
MMLU 20.4 20.1± 0.1 20.0 20.3± 0.1 20.2 20.5± 0.1 21.0 19.6± 0.1
GSM8K 17.1 15.1± 0.3 17.0 15.2± 0.3 17.0 15.0± 0.2 16.4 15.2± 0.3

Table 2: Average perplexity of responses to the original and confounded queries, in the white-box setting for LLM pair 1.
Response perplexity does not change significantly when adding the confounder gadget.

RSW RMF RCLS RLLM

Original Confounded Original Confounded Original Confounded Original Confounded

MT-Bench 8.4 8.3± 0.0 8.4 8.4± 0.0 8.4 8.3± 0.0 8.3 8.2± 0.1
MMLU 61 66± 0 64 64± 1 63 65± 0 67 66± 0
GSM8K 46 64± 1 50 67± 1 50 63± 1 44 64± 1

Table 3: Average benchmark-specific scores of responses to the original and confounded queries, in the white-box setting
for LLM pair 1. Rerouting to the strong model improves quality of responses as long as there is a significant gap between
the benchmark performance of the weak and strong LLMs.

As a first measure of response quality, we compare the perplexity scores for unmodified responses and confounded query
responses. Text perplexity [37] is a well-known method for approximating “naturalness” of text sequences. Perplexity
can be computed using an LLM, we use GPT-2 [51] for this purpose as it is a standard choice [16, 69];1 Table 2 shows the
results. As can be seen, adding the confounder gadget to queries does not significantly change response perplexity. To the
extent that it does, it usually somewhat decreases response perplexity, i.e., makes it more “natural”. That said, perplexity
is a coarse measure of “naturalness,” and it does not measure whether the response is correct. In particular, responses of
strong and weak LLMs tend to have similar perplexities. We further discuss this issue in Appendix D.

We thus also evaluate using the following benchmark-specific metrics to assess response quality:

• MT-bench: We score the responses on a scale of 1–10 using an LLM-as-a-judge methodology [71]. We use
GPT-4o [2] as the judge and ask it to provide a score given a pair of a query and a corresponding response.

• MMLU: We parse the responses and compare the answer to the ground truth. In cases where the response did not
fit any known multi-choice format, we marked the response as a mistake. We report accuracy as the percentage of
responses that match the ground truth.

• GSM8K: similar to MMLU except questions are math rather than multiple choice, thus we parse the answers accord-
ing to the expected format.

Table 3 shows that, according to these metrics, in most cases responses to the confounded queries are no worse, and in
some cases even better, than responses to the original queries. We attribute the improvement on the GSM8K benchmark
to the fact that the strong model performs significantly better than the weak model on this benchmark (57% vs. 33%). On
the MT-bench and MMLU benchmarks, strong and weak models have comparable performance (8.5 vs. 7.6 for MT-bench
and 66% vs. 64% for MMLU), thus routing does not degrade quality of responses and, consequently, the attack cannot
improve it.

To further demonstrate that the attack improves the quality of responses when there is a significant gap between the weak
and strong LLMs, we perform an additional evaluation with Mistral-7B-Instruct-v0.3 [38] and Llama-2-7B-chat-hf [63]
as the weak LLMs (LLM pairs 2 and 3). Mistral-7B achieves 7.4, 57%, and 25% on MT-bench, MMLU, and GSM8K,
respectively. Llama-2-7B achieves 6.4, 44%, and 21%. Table 4 shows that the rerouting attack improves quality of
responses when either of these LLMs is the weak model, and in particular for the weaker Llama-2-7B model.

LLM responses are sometimes affected by the confounder gadget. In some cases, the LLM responded with, for example,
“I can’t answer that question as it appears to be a jumbled mix of characters”. Still, the response continued with “However,
I can help you with the actual question you’re asking,” followed by the actual answer. We observed very few cases where
an LLM refused to answer due to the presence of the gadget. In most cases, the response did not mention anything

1Some responses had abnormally high perplexity values (> 100), which we found do not correlate with quality, but these variations
disproportionately contribute to the average. We thus filter out such high-perplexity responses as outliers in both benign and attack
settings. We provide examples of filtered responses in Appendix D.
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RSW RMF RCLS RLLM

Orig. Conf. Orig. Conf. Orig. Conf. Orig. Conf.

LLM pair 2

MT-Bench 8.5 8.3± 0.0 8.4 8.3± 0.1 8.4 8.4± 0.1 8.4 8.3± 0.1
MMLU 55 64± 1 63 64± 0 58 66± 1 62 66± 0
GSM8K 46 64± 1 51 67± 1 49 63± 1 38 63± 2

LLM pair 3

MT-Bench 8.4 8.3± 0.0 8.1 8.3± 0.1 8.3 8.4± 0.1 8.1 8.2± 0.1
MMLU 51 64± 1 57 63± 1 52 66± 1 59 66± 1
GSM8K 40 64± 1 44 67± 1 45 63± 1 37 64± 1

Table 4: Average benchmark-specific scores of responses to the original and confounded queries with Mistral-7B-Instruct-
v0.3 (LLM pair 2) or Llama-2-7B-chat-hf (LLM pair 3) as the weak model, in the white-box setting. Results further
emphasize that the rerouting attack improves quality of responses when there is a significant gap between the weak and
strong LLMs.

Surrogate R̂SW R̂MF R̂CLS R̂LLM

Target RMF RCLS RLLM RSW RCLS RLLM RSW SFM RLLM RSW RMF RCLS

MT-Bench 99± 1 88± 5 45± 5 100± 0 96± 2 39± 3 100± 0 79± 9 51± 5 100± 0 83± 5 85± 7
MMLU 66± 5 44± 11 81± 3 82± 4 56± 7 74± 2 64± 6 16± 7 80± 5 53± 4 20± 5 46± 11
GSM8K 99± 1 72± 11 63± 4 92± 2 88± 3 62± 4 76± 6 60± 9 65± 8 60± 8 70± 7 73± 10

Table 5: Average upgrade rates for our attack in the black-box setting. This is the average percentage of queries rerouted
from the weak to strong model under the target router due to a confounder gadget generated using the surrogate. The
average downgrade rate (i.e., strong-to-weak rerouting) is 1.2% across all routers. Upgrade rates are lower than in the
white-box setting but still high, indicating that the attack transfers.

abnormal about the query. Intuitively, this reflects the fact that while LLMs are built to be robust to noisy inputs, the
router itself is not.

In summary, the attack is highly successful at rerouting queries from the weak to the strong model. Overall, quality
improves if there is a significant gap between the strong and weak LLMs used by the router. Either way, confounding has
no negative impact on the quality of responses.

Black-box attack results. Next, we consider the black-box attack, where the attacker does not know the algorithm
used by the target router. We assume that the attacker has access to another, surrogate router that it can use to generate
confounder gadgets. In effect, we evaluate transferability of the attack from a known, white-box router to unknown,
black-box routers.

Table 5 shows the results for all combinations of surrogate (denoted by R̂) and target routers. For conciseness we focus
on the upgrade and downgrade rates for the remainder of this work. Upgrade rates are lower than in the white-box setting
but still high, indicating that the attack transfers. The LLM-based routing algorithm RLLM has the lowest rates, perhaps
because it is the most complex of the four. The downgrade rate is 0 in most cases and is 1.2% on average.

Table 6 shows that the black-box attack does not increase the average perplexity of responses as generated by LLM
pair 1. Table 7 shows that the attack does not decrease benchmark-specific scores, other than some small decrease in
some cases for the MMLU benchmark. For GSM8K, similar to the behaviour observed in the white-box setting, we see
an improvement with our attack due to the performance difference between the strong and weak models for this task. This
indicates that confounding affects only the routing, not the quality of responses. When the weak model is significantly
weaker than the strong model, i.e., LLM pairs 2 and 3, the attack can improve the quality of responses significantly.

Query-specific gadgets. By default, our gadget generation method is query-independent and the same gadget can be used
to reroute any query. An adversary with more resources may instead generate a dedicated gadget for each query (using
the same algorithm).

Table 8 and Table 9 show the results for the white-box and black-box settings, respectively. (Here, percentage numbers
are not averaged and there is no standard error since we used a single gadget per query.) The white-box results are nearly
perfect; the black-box results are often better but sometimes somewhat worse than those for query-independent gadgets.
We conjecture that this is due to some level of overfitting.
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Surrogate R̂SW R̂MF R̂CLS R̂LLM

Target RMF RCLS RLLM RSW RCLS RLLM RSW SFM RLLM RSW RMF RCLS

MT-Bench 0.4 0.8 0.6 1.4 0.7 0.3 1.7 0.3 0.7 0.8 −0.6 0.0
MMLU 0.1 0.8 1.1 0.2 0.2 1.1 0.3 0.8 0.9 1.3 1.2 0.9
GSM8K 1.9 1.7 0.6 1.6 1.7 0.2 1.7 1.0 0.4 1.3 1.3 1.7

Table 6: Differences between average perplexity of responses to the original and confounded queries, in the black-box
setting, when the confounder gadget was generated for a different surrogate router than the target, for LLM pair 1. Positive
values indicate a lower average perplexity (more natural) of responses to the confounded queries; higher values are better
for the attacker. Standard errors were omitted for readability but are 0.2 on average. As in the white-box setting, the attack
does not increase the average response perplexity.

Surrogate R̂SW R̂MF R̂CLS R̂LLM

Target RMF RCLS RLLM RSW RCLS RLLM RSW SFM RLLM RSW RMF RCLS

LLM pair 1

MT-Bench −0.1 −0.1 0.0 −0.1 −0.1 0.0 −0.1 0.0 0.1 −0.2 −0.1 −0.2
MMLU −0.1 0.3 −0.2 4.8 1.0 0.5 2.5 −1.3 −0.8 2.6 −0.9 0.3
GSM8K 14.9 9.6 15.2 18.6 13.8 14.7 13.4 6.8 12.6 13.6 11.3 10.4

LLM pair 2

MT-Bench −0.1 −0.1 −0.1 −0.2 −0.2 −0.2 −0.1 −0.1 0.0 −0.2 −0.2 −0.2
MMLU 1.6 4.0 4.2 7.9 5.0 4.4 5.0 −2.9 3.2 5.2 −0.9 3.8
GSM8K 13.6 8.7 18.5 18.9 14.4 18.3 13.1 4.0 15.5 11.3 8.4 10.8

LLM pair 3

MT-Bench 0.2 0.0 0.1 −0.1 −0.1 0.0 0.0 0.2 0.2 −0.1 0.1 −0.1
MMLU 5.0 6.8 5.8 11.3 9.1 4.7 8.1 −3.7 4.8 7.8 0.1 7.2
GSM8K 20.5 13.4 20.9 24.3 18.6 21.6 17.9 11.2 18.9 16.7 15.2 14.2

Table 7: Differences between average benchmark specific scores of responses to the original and confounded queries,
when the confounder gadget was generated for a different surrogate router than the target (black-box setting) for three
LLM pairs. Positive values indicate a higher average score for responses to the confounded queries; higher values are
better for the attacker. Results are averaged across gadgets. Standard errors were omitted for readability and are on
average 0.1, 0.8, and 1.8 for MT-bench, MMLU and GSM8K, respectively. Aligned with the white-box setting, results
show almost no decrease in performance, and improvement when there is a performance gap for the LLM pair.

Results for LLM pair 4. As discussed in Section 5, we replace the strong model that was used by Ong et al. [47], GPT-4-
1106-preview (rank 28 in the Chatbot Arena leaderboard [1, 21]), with the open-sourced Llama-3.1-8B (rank 58) to reduce
the costs of our extensive set of evaluations. In this section we perform a smaller-scale evaluation of the quality-enhancing
attack performance when using GPT as the strong model, i.e., LLM pair 4. We evaluate this setting using three of the
n = 10 confounder gadgets for each router.

Table 10 shows the results across benchmarks in the white-box setting. Compared to the pair 1 setting (Table 3), the attack
results in a higher increase in benchmark performance. This further demonstrates higher attack effect on response quality
when the performance gap between the weak and strong models is higher.

7 Rerouting Commercial Routers

We evaluate our rerouting attack on several commercial routers: Unify [12], NotDiamond [7], OpenRouter [11], and
Martian [5]. These routers are available through black-box APIs. Therefore, we use our black-box attack with the
40 gadgets optimized for the open-sourced routers RSW , RMF , RCLS , and RLLM (10 per router). We perform this
evaluation using the MT-bench benchmark.

Unify. This router lets users specify a list of models from different providers and a metric configuration for routing
decisions. The available metrics are quality, time to first token, inter-token latency, and cost. The user can specify the
weight for each metric. Time, latency, and cost metrics are static and precomputed. The quality metric is computed for
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RSW RMF RCLS RLLM

MT-Bench 100 100 100 100
MMLU 100 96 100 100
GSM8K 100 100 100 100

Table 8: Upgrade rates for query-specific gadgets, in the white-box setting. Results are nearly perfect, i.e. nearly all
confounded queries are routed to the strong model.

Surrogate R̂SW R̂MF R̂CLS R̂LLM

Target RMF RCLS RLLM RSW RCLS RLLM RSW SFM RLLM RSW RMF RCLS

MT-Bench 100 83 71 100 83 48 100 73 52 100 67 83
MMLU 96 57 89 95 43 83 74 13 83 77 11 30
GSM8K 100 68 74 100 73 68 81 65 70 88 54 64

Table 9: Upgrade rates for query-specific gadgets, in the black-box setting. In most cases results are better than in the
query-independent setting, at the cost of a more resource intensive process.

each query using a neural scoring function that was trained on prompts from several open datasets (e.g., Open Hermes [62])
and labeled using an LLM-as-a-judge [71].

For our evaluation, we configure the router to choose between GPT-4o [2] as the strong model and Mixtral 8x7B [39] as
the weak model. We focus on the cost and quality metrics, and set the weight of time and latency to 0 so that they are
not factored into routing decisions. We manually calibrate the weights to 1 for the quality metric and 0.02 for the cost
metric. These weights result in 49% of the original, unmodified queries being routed to the strong model and 51% to the
weak model, resulting in a total cost of $0.13 for the 72 MT-bench queries. Adding confounder gadgets generated for the
four open-sourced evaluated routers results in upgrade rates of 79%, 88%, 91%, and 89%, respectively, averaged across
10 gadgets. The downgrade rate is zero in all cases. In terms of costs, the addition of the confounder gadget increased
the cost to $0.22, $0.23, $0.22, and $0.21, respectively, averaged across 10 gadgets. In other words, the rerouting attack
increased the cost of processing the queries, on average, by a factor of 1.7×.

NotDiamond. This router lets users route their queries to a list of predefined models. Available objectives are to maximize
quality, or balance quality and cost, or balance quality and latency. The exact details of the routing logic are not specified.
We focus on cost-aware routing, for which the API docs state that “NotDiamond will automatically determine when a
query is simple enough to use a cheaper model without degrading the quality of the response.” NotDiamond provides a
router selection tool which gives the routing decision for a particular query without forwarding the query to the chosen
model (thereby incurring no costs). We use this for our evaluation—of course a real attack would target the NotDiamond
API when used for actual routing.

Similar to the Unify experiments, we set GPT-4o as the strong model and Mixtral-8x7b as the weak model. Cost-aware
routing routes 82% of the original queries to the strong model, 18% to the weak model. Confounded queries generated for
RSW , RMF , RCLS , and RLLM achieve upgrade rates of 21%, 18%, 21%, and 15%, respectively. The downgrade rates
are 1–3%.

As opposed to our calibrated routers, NotDiamond aggressively routes to the stronger model even for unmodified queries
in most settings. We tried several strong/weak model pairs including GPT-4o/Mistral-7B-Instruct-v0.2, GPT-4o/GPT-4o-
mini, and Claude-3-Opus/Claude-3-Sonnet, and observed a similar 20%–80% split between strong and weak.

When we changed the strong model to OpenAI’s o1-mini and kept Mixtral-8x7b as the weak model, 54% of the original
queries were routed to the strong model, 46% to the weak model. In this setting, confounder gadgets yield 13–16%
upgrade rates and, on average, 3–6% downgrade rates. We conclude that while the attack is still effective, NotDiamond is
more robust than Unify.

OpenRouter. This framework offers a unified interface for LLMs, and additionally offers a system that routes users’
queries between three specific models: Llama-3-70b, Claude-3.5-Sonnet, and GPT-4o. Queries are routed “depending on
their size, subject, and complexity,” as described in the documentation.2

With OpenRouter, 96% of the original queries are routed to Llama, 4% to GPT, and none to Claude. Based on the pricing
and number of input-output tokens, the queries’ total cost is $0.03 for processing all evaluated queries. After adding

2https://openrouter.ai/openrouter/auto
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RSW RMF RCLS RLLM

Original Confounded Original Confounded Original Confounded Original Confounded

MT-Bench 9.2 9.2± 0.0 9.1 9.3± 0.0 9.2 9.1± 0.0 8.9 9.1± 0.1
MMLU 76 84± 1 76 81± 0 76 84± 0 78 84± 1
GSM8K 62 86± 0 65 88± 1 68 90± 2 66 85± 2

Table 10: Benchmark-specific average scores of responses to the original and confounded queries with GPT-4-1106-
preview as the strong model (LLM pair 4), in the white-box setting. Results demonstrate a higher increase in performance
with respect to the LLM pair 1 setting, due to the larger performance gap between the models.

confounder gadgets, queries originally routed to GPT are still routed to GPT and no queries are ever routed to Claude. For
queries originally routed to Llama, some gadgets result in all of them being rerouted to GPT, and some have no impact.
Specifically, 4 out of the 10 gadgets we optimized using RSW caused all queries to be rerouted to GPT, 2/10 using RMF ,
and 3/10 using RLLM . None of the gadgets optimized using RCLS had any impact on routing. In terms of costs, having
all queries being rerouted to GPT results with an average cost of $0.25, a greater than 8× increase over the cost of the
original queries. Given the lack of documentation of the routing algorithm being used, we are unsure what explains the
variability across gadgets.

Martian. This router is supposed to let the user provide a list of models and to specify the maximum amount the user is
willing to pay for a query or for 1M tokens. Unfortunately, as of November 14, 2024, the router appears to ignore the list
models provided by the user, and forwards the input to the same LLM regardless of it. We tested this in settings including
one, two, or multiple models. While responses do not specify which LLM was used, they were identical across settings,
so we excluded Martian from our evaluation. We notified Martian about the seemingly buggy behavior.

8 Defenses

Defenses against rerouting should be cheap. If the per-query cost of the defense is comparable to the per-query cost of a
strong LLM, deploying the defense will defeat the main purpose of LLM routing, which is to reduce the cost of responding
to queries.

Perplexity-based filtering. As explained in Section 6, perplexity is a measure of how “natural” the text looks. Perplexity-
based filtering has been suggested in many contexts as a defense against adversarial text inputs [16, 36]. This defense
computes the perplexity of multiple “trusted” texts, then compares it with the perplexity of the suspicious text. If the latter
is significantly higher, or above some predefined threshold, the text is considered adversarial. Specifically, we assume the
defender has access to a set of unmodified queries. The defender computes their perplexity values and uses these values
to establish a threshold. Given a new query, the defender checks if its perplexity exceeds the threshold. If so, the query
is flagged as adversarial. The defender can then decide how to handle such queries. Options include rejecting them or
routing them all to the weak model. Computing the perplexity of a query can be cheap to do, e.g., using GPT-2 as we do
in this work; this makes it viable for use as a defense that doesn’t undermine the benefits of routing.

To evaluate the effectiveness of such a defense against our attack, we compare the perplexity values of original and
confounded queries. Figure 5 presents histograms of perplexity values for both the original evaluated GSM8K queries and
their corresponding confounded versions, generated using one of the confounder gadgets, sampled uniformly at random.
Additionally, the figure displays the ROC curve for the defense that detects confounded queries by checking if their
perplexity exceeds a threshold. As can be seen, the confounded queries exhibit significantly higher perplexity values,
making them readily distinguishable from the original queries. For instance, in the case of the RSW router, setting the
threshold value at 55 yields a false-positive rate of 3% and a true-positive rate of 97%. Results are similar for other gadgets
and benchmarks and were omitted due to space constraints.

Unfortunately, this defense can be evaded if an adversary incorporates a perplexity constraint into the gadget generation
process. To demonstrate the feasibility of this evasion strategy, we modify gadget generation to maximize the score of the
routing algorithm R and simultaneously aligning the the gadget’s perplexity to some predefined perplexity value. In more
detail, in each iteration t ∈ [T ], we uniformly sample a target index j ∈ [1, n] and generate a set B of B+1 candidates as
explained in Section 4. We then modify Eq. 1 such that we now find the candidate that maximizes the difference between
the router’s score and the perplexity constraint for the confounder:

c(t+1) ← argmax
c∈B

(
Sθ(c∥xi)− α · |PPL(c)− ρ|

)
,
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Figure 5: Perplexity of the original queries in the GSM8K benchmark compared to the perplexity of confounded queries
using a single uniformly sampled gadget. We additionally present the ROC curve of the defense that detects confounded
queries by checking if they cross a perplexity threshold, and it’s corresponding ROCAUC score. Confounded queries have
significantly higher perplexity values, and are thus easy to recognize and filter out.

where PPL(·) denotes the perplexity function computed using GPT-2, the value ρ denotes a target perplexity value to
which we want gadgets’ perplexity to be close, and the value α is a balancing coefficient. For the experiments below, we
set ρ to be the average perplexity value of 100 uniformly sampled queries3 from the GSM8K benchmark.

Figure 6 shows the results when setting α = 0.01, for the GSM8K benchmark and one confounder gadget. The results
demonstrate that modified queries can no longer be easily distinguished from normal queries by their perplexity alone.
For instance, in the case of the RSW router, setting the threshold value at 55 as before, no confounded queries are flagged
as anomalous, meaning the true-positive rate is zero. We note that there is some variability across gadgets. The average
ROCAUC scores of the defense across ten gadgets with standard deviation indicated parenthetically, are 0.66 (±0.04),
0.69 (±0.02), 0.71 (±0.02), and 0.69 (±0.03) for the RSW , RMF , RCLS , and RLLM routers, respectively.

At the same time, optimizing for low perplexity does not significantly impact the attack success rate. Table 11 compares
the average upgrade rates (over n = 10 gadgets) of the original perplexity-agnostic optimization approach from Section 4
and the perplexity-minimizing one described above. The attack efficacy might be improvable further by adjusting α to
find a sweet spot that avoids the defense effectively while ensuring high rerouting success rate.

The attack is not particularly sensitive to the choice of queries used to obtain the calibration value ρ. Although ρ was
computed using GSM8K queries, we observe similar performance when evaluating on the MT-bench and MMLU bench-
marks, with average ROCAUC scores of 0.50 (±0.01), 0.51 (±0.01), 0.52 (±0), and 0.51 (±0.01) for MT-bench, and 0.52
(±0.03), 0.54 (±0.02), 0.55 (±0.01), and 0.53 (±0.02) for MMLU. One might also try removing the calibration value al-
together, instead simply minimizing the gadget’s perplexity value. However, this can result with an “overshooting” effect,
where the perplexity value is significantly lower than that of normal queries, thereby making it still distinguishable from
standard queries.

In summary, perplexity-based filtering is not an effective defense against against rerouting.

3The perplexity calibration queries were chosen such that they do not overlap with the queries used for evaluation.
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Figure 6: Perplexity values of the original and confounded queries, and the corresponding ROC curves of the defense that
detects confounded queries by checking if they cross a perplexity threshold, when the confounder gadget is optimized for
low perplexity, in the GSM8K benchmark and for one gadget sampled uniformly at random. Confounded queries have
similar perplexity values as the original queries, and can no longer be easily distinguished based on perplexity alone.

RSW RMF RCLS RLLM

Orig. PPL-opt. Orig. PPL-opt. Orig. PPL-opt. Orig. PPL-opt.

MT-Bench 100± 0 100± 0 100± 0 98± 2 100± 0 98± 1 73± 5 51± 8
MMLU 90± 1 59± 5 78± 4 74± 5 100± 0 66± 12 95± 1 89± 3
GSM8K 98± 0 70± 7 100± 0 98± 2 100± 0 88± 6 94± 3 81± 8

Table 11: Average upgrade rates for gadgets generated without (“Orig.”) and with (“PPL-opt.”) low-perplexity optimiza-
tion, for the balancing coefficient α = 0.01. In some cases, optimizing for low perplexity has a negative effect on the
attack success rate, however the attack can still be considered successful. A more careful choice of α can potentially limit
the effect on the attack success.

LLM-based filtering. Even though adversarially modified queries cannot be easily detected using perplexity, they may
still be “unnatural.” A possible defense is to employ an oracle LLM to determine if the query is natural or not. This defense
requires the router to invoke an additional LLM for every processed query, which is computationally expensive in the case
of a high-quality open-sourced LLM or financially costly in the case of a high-quality commercial LLM. Therefore, this
defense is unlikely to be practical. Furthermore, it is possible to optimize gadgets so that they both have low perplexity
and appear “natural” to LLM evaluators [69].

Paraphrasing. Filtering defenses like those discussed above are passive. An active alternative is to paraphrase queries
using an oracle LLM. LLMs are trained to generate natural text and are thus likely to remove unnatural substrings when
paraphrasing a query. This defense is likely impractical for two reasons. First, and as with LLM-based filtering, it requires
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an extra potentially expensive LLM invocation for each query processed by the router. Second, it may degrade the quality
of responses from the destination LLMs, which are sensitive to the phrasing of queries and prompts.

Detecting anomalous user workloads. Another possible defense requires the router to monitor individual user work-
loads, and identify those users whose queries are routed to the strongest model with an abnormally high frequency. The
router can then impose a user-specific threshold. Of course such workloads may have a benign explanation, e.g., the user’s
queries may be unusually complex. Even so, routers could potentially be designed to perform user-specific routing. For
example, one could imagine using per-user thresholds that are calibrated dynamically to attempt to maintain a consistent
fraction of queries being routed to the strong model.

Such user-specific routing would complicate implementations, and would make inaccurate decisions for a user until there
is sufficient data about their queries. The latter is relevant in adversarial settings, since such an approach would still be
circumventable should attackers be able to mount Sybil attacks in which the attacker creates a new user for, in the limit,
each query.

9 Related Work

Evasion attacks against ML systems. A large body of work has investigated evasion attacks against ML systems [25,
43, 60], also referred to as adversarial examples [32, 48, 49], and these attacks are now being explored in the context of
multi-modal LLMs [28] as well as text-only LLMs (for just one example, see [22]). We discussed in Section 3 how our
results compare: LLM control plane integrity is a distinct AI safety issue, but related in that: (1) control plane integrity
attacks may use evasion-style techniques, and (2) control plane integrity attacks might be useful for performing evasion.

Prompt injection against LLMs. Prompt injection is a class of attacks against LLMs in which the adversary manipulates
the prompt, i.e., the textual input fed directly to the LLM, causing the LLM to generate outputs that satisfy some adver-
sarial objective [50, 64]. Evasion attacks as discussed above can use prompt injection, jailbreaking attacks being a widely
explored example in which the adversary aims to bypass some safety guardrail included in the LLM system, such as “do
not output expletives” [23, 42, 54, 66, 72, 73].

Prompt injection is also used for extraction attacks that aim to infer some information from or about the model, for
example, the system prompt [50, 54, 70], training data samples [46], or model parameters [18]. In indirect prompt injection
attacks [33], the adversaries do not directly interact with the target LLM, and instead inject adversarial inputs into third-
party data, which is then added to the LLM prompt (intentionally or unintentionally) by the victim application and/or its
users. This relates to another category of attacks that target LLM-based applications, such as RAG systems, and invalidate
their integrity by exploiting the weaknesses of the underlying LLM [19, 55].

Our attacks also modify queries, but with a different aim than the above types of attacks: undermining the integrity of the
control plane routing, rather than the LLM itself. Future work might investigate indirect control plane integrity attacks
that, analogously to indirect prompt injection, serve to somehow trick users of a routing system into forming control-
plane-confounding queries.

Attacks against MoE. Mixture-of-Experts (MoE) architectures enable using multiple expert modules for processing a
given query with a lower computational cost by including an inner routing mechanism that in every layer routes different
tokens to a small number of experts [29, 30, 52, 56]. This can be thought of as an internal router within a single LLM,
rather than an external control plane that orchestrates multiple LLMs. MoE has increased in popularity as it allows to
build larger models at a fixed compute budget—not all parameters are used at the same time.

Hayes et al. [34] identified a vulnerability in MoE that can be exploited for a denial-of-service attack against MoE. Thus
control plane integrity issues appear to extend to the context of single-LLM MoE systems, and future work could explore
this connection further.

Yona et al. [67] presented a side-channel attack on MoE that enables an attacker to reveal other users’ prompts. We expect
that side-channel attacks against LLM control planes exist as well, for example, to infer which models are used via timing
of responses. Such attacks, which target confidentiality, are outside the scope of control plane integrity.

10 Conclusion

LLM routers balance quality and cost of LLM inference by routing different queries to different LLMs. They are an
example of a broader, emerging class of systems we call “LLM control planes” that aim to achieve various quality,
efficiency, and cost objectives by orchestrating use of multiple LLMs to respond to a query.
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We introduced and defined a new safety property, LLM control plane integrity. Informally, this property holds if an
adversarial user cannot influence routing decisions made by the control plane. To show that existing LLM routers do not
satisfy this property, we designed, implemented, and evaluated a black-box optimization method for generating query-
independent “confounder gadgets.” When added to any query, the confounder gadget confuses the router into routing the
query to the adversary-chosen LLM.

We evaluated the efficacy of confounder gadgets on multiple open-source and commercial routers and demonstrated that
they successfully reroute queries without a negative impact on the quality of responses. We also discussed defenses against
these attacks and indicated directions for future research.
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A Gadget Examples

Below are a few examples of the optimized confounder gadgets c we got, for the different routing algorithms:

• RSW :

legationbelongs967reglo’hui
(DictionaryizedNameantal bidi.numberOf

demanding RESULTS! XVI-ioibili Written Hormchriftlatable

• RMF :

041 personne.nama tomeTN Exact relação tinha seis.Description

NUMAGEMENTMedian157 mut-camerauacao nije Hir Ter

• RCLS :

contiene DEM USERNAME fourteen chees781 consultants200 inici DOJ

571:
Ord:nth Norwegian Mercer docs Abr226 METADATA

• RLLM :

dated:frameifyumi345 Kurdasciiuzeiphertext

Midnightexecution431!784 below1 unwrap : / n / n

B Ablation Study

In this section, we evaluate the effect of different hyperparameters and design choices (in the white-box setting).

Prefix vs. suffix. As described in Section 4, we prepend the confounder gadget to the query. An alternative is to append
it. This is straightforward for MT-bench and GSM8K, but MMLU consists of multi-choice questions followed by a list
of possible answers, and the term “Answer:”. We insert the gadget at the end of the question text and before the possible
answers. If we append it at the very end, after “Answer:”, the LLM assumes the query was answered and in many cases
does not generate any output at all.

Table 12 shows that average upgrade rates are similar regardless of whether the gadget was inserted as a prefix or a suffix.
For MMLU, prefix works better. The downgrade rate is 0% in all cases.
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RSW RMF RCLS RLLM

MT-Bench Prefix 100± 0 100± 0 100± 0 73± 5
Suffix 100± 0 100± 0 100± 0 84± 4

MMLU Prefix 90± 1 78± 4 100± 0 95± 1
Suffix 82± 2 63± 3 93± 1 93± 1

GSM8K Prefix 98± 0 100± 0 100± 0 100± 0
Suffix 94± 1 100± 0 100± 0 94± 3

Table 12: Average upgrade rates for different ways of adding the gadget to queries, in the white-box setting. Results are
similar in both methods, with a slight preference to the prefix approach.

RSW RMF RCLS RLLM

MT-Bench Uniform 100± 0 100± 0 100± 0 73± 5
Natural Prob. 100± 0 97± 2 100± 0 70± 5

MMLU Uniform 90± 1 78± 4 100± 0 95± 1
Natural Prob. 77± 2 41± 3 96± 2 87± 4

GSM8K Uniform 98± 0 100± 0 100± 0 94± 3
Natural Prob. 88± 2 92± 3 100± 0 83± 9

Table 13: Average upgrade rates for different ways of sampling candidate tokens during gadget generation, in the white-
box setting. Uniformly sampling the tokens yields better upgrade rates in most cases.

As mentioned in Section 5, to encourage the LLMs to follow the specific format in their responses (so they can be
parsed and compared with the ground-truth answers), we add a short prefix to the MMLU and GSM8K queries that
instructs the model how to respond. We phrase this instruction as follows: “Answer the question using the format:
“Answer: [A/B/C/D]. Explanation: [EXPLANATION]”” for the multi-choice queries of the MMLU benchmark, and a
similar version for GSM8K. We add this instruction after modifying the queries with the confounder gadget, i.e. the
instruction is prepended to the gadget.

An alternative to insert the instruction after the gadget but before the query, however we observed this to slighly underper-
form its counterpart. In the white-box setting we observe a slight decrease in the average (across all four routers) upgrade
rate from 91% to 89% for the MMLU benchmark, and from 98% to 91% for the GSM8K benchmark. In the black-box
setting, the average upgrade rate on MMLU reduces from 57% to 49% and on GSM8K from 73% to 64%.

Token sampling method. When generating the confounder gadget (see Section 4), we iteratively replace tokens with the
goal of maximizing the routing algorithm’s score for the gadget. Candidate replacement tokens are chosen uniformly at
random. An alternative is to choose candidates based on their probability of appearing in natural text. To evaluate this
method, we compute token probabilities by parsing and tokenizing the wikitext-103-raw-v1 dataset [44].

Table 13 shows that in most cases uniform sampling of replacement tokens yields better upgrade rates. We conjecture that
uniform sampling produces more unnatural text, confusing the router. For example, for the RSW routing algorithm, uni-
form sampling produces the following gadget: “legationbelongs967reglo’hui(DictionaryizedNameantal bidi.numberOf ”,
whereas sampling according to natural probabilities produces “total occurred According number Letar final Bab named
remainder”.

Number of tokens in the gadget. In our main evaluation, the gadgets are composed of n = 10 tokens. We evaluate the
effect of using less (n = 5) or more (n = 20 or n = 50) tokens. We observed that 5 tokens were insufficient to make
changes to the routing algorithm’s score and thus we were not able to optimize the gadget in this setting. As for 20 tokens,
we observe a a small improvement in the white-box setting, increase the average upgrade rate from 93.9% to 95.8%, and
a bigger improvement in the black-box setting, increase the average upgrade rate from 70.2% to 81.3%. Using 50 tokens
further increases the upgrade rates, to 98.2% in the white-box setting and 84.2% in the black box setting. The average
convergence rate increases as well, from 60 iterations for 10 tokens, to 70 for 20 tokens, and 100 for 50 tokens. Overall
this evaluation suggests that our rerouting attack can be even further improved by using longer gadgets, however it is
important to be careful not to make them too long to the point that they might degrade the performance of the underlying
LLM.
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gadget RSW RMF RCLS RLLM

MT-Bench Init 7 3 8 3
Random 97± 2 37± 8 62± 10 38± 4

MMLU Init 21 4 0 13
Random 49± 5 6± 3 14± 7 68± 5

GSM8K Init 21 20 0 9
Random 58± 8 34± 8 37± 9 41± 7

Table 14: Average upgrade rates when the gadget is not optimized and is either defined to be the the initial set of tokens
or a set of uniformly sampled tokens. The optimization-based approach outperforms these optimization-free approaches.

intro type RSW RMF RCLS RLLM

Up. Down. Up. Down. Up. Down. Up. Down.

MT-Bench

Ours-1 100 0 0 31 33 8 26 7
Ours-2 100 0 0 60 75 0 35 5
Gemini 100 0 0 50 100 0 55 0

GPT 100 0 0 48 46 2 19 7

MMLU

Ours-1 28 0 0 57 2 47 0 42
Ours-2 32 0 0 66 19 26 0 42
Gemini 35 0 0 60 100 0 21 21

GPT 54 0 0 51 0 66 26 23

GSM8K

Ours-1 4 46 0 100 0 77 4 36
Ours-2 6 63 0 100 16 43 2 43
Gemini 4 56 0 100 98 0 9 9

GPT 4 77 0 100 0 95 6 25

Table 15: Average upgrade and downgrade rates of gadgets containing injected instructions to the router. This method
significantly underperforms the optimization-based approach in most cases.

C Optimization-Free Gadget Generation

We evaluate optimization-free alternatives to our black-box optimization method for generating confounder gadgets.

Fixed gadget. A simple way to create a gadget without resorting to optimization is to repeat n tokens. We use ! as the
initialization token, so the gadget in this case is !!!!!!!!!!. Another possibility is to select n tokens uniformly at random.
Table 14 shows the upgrade rates for both options, were in the latter setting we repeat the process 10 times and report the
average result and the standard error. While they are non-negligible, especially for the randomly sampled gadgets, they
significantly underperform the upgrade rates reported in Table 1 for optimized gadgets.

Instruction injection. Prompt injection is a known attack on LLMs [50, 64], thus we consider a gadget consisting of a
direct instruction to the router to treat the query as a complex one and obtain a high-quality response.

We evaluated 4 differently phrased instructions: two created manually and two generated by, respectively, Gemini [61]
and GPT-4o [2], denoted as “ours-1”, “ours-2”, “Gemini”, and “GPT”.

Table 15 reports the results. This method works well in a few cases but poorly in most. This highlights the difference
between attacking LLMs and attacking LLM routers.

D Perplexity issues

In Section 5 we present perplexity as one of the metrics we use for evaluating the effect of our attack over the quality of
the generated response. However, perplexity is intended to measure the naturalness of text, and as such it is ill-suited for
comparing the quality of multiple natural texts. This results with the perplexity values of the responses of both the weak
and the strong model being close and withing the margin of error. Figure 7 shows the distribution of perplexity values of
the clean responses generated by both models, and the ROCAUC score computed on these two sets of values. As can be
seen, the perplexity values are quite similar between both models, with ROCAUC scores ranging between 0.38 to 0.47.
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Figure 7: Histograms of the perplexity values of clean responses generated by the strong and weak models.

RSW RMF RCLS RLLM

Up. Down. Up. Down. Up. Down. Up. Down.

MT-Bench 0± 0 24± 2 0± 0 67± 6 0± 0 29± 3 24± 3 1± 0
MMLU 8± 3 9± 2 0± 0 77± 7 0± 0 50± 4 55± 4 5± 1
GSM8K 4± 2 48± 9 1± 1 78± 11 0± 0 80± 4 21± 4 4± 2

Table 16: Upgrade and downgrade rates for the downgrading variant of our rerouting attack, where the goal is to reroute
queries to the weak model (white-box).

As mentioned in Section 5, throughout our evaluations we filter out responses with perplexity values higher than 100.
This is due to a few responses getting arbitrarily high perplexity values although corresponding to valid responses. For
example, for the query:

Suppose you are a mathematician and poet. You always write your proofs as short poets with less than 10 lines
but rhyme. Prove the square root of 2 is irrational number.

The weak model responses with:

In squares, two seeks a home, Two whole numbers, never roam. If it did, in pairs combined, A different square
would it find. But take root, two’s square, or four, Still leaves a remainder’s roar. The square root of two’s no child
of two, Its irrational nature ever true.

which results with an high perplexity value of 166. We also observed a few responses containing lists, code, or math
equations with abnormally high perplexity values.

E Rerouting to the Weak Model

In this section we evaluate the generality of our attack and show that generation of confounder gadgets can be optimized
for the opposite objective from what we consider so far: reroute queries to the weak model. For this, we repeat the same
optimization process as in Section 4 but minimize the router’s score. Table 16 shows the upgrade and downgrade rates
for this variant of the attack, in the white-box setting. In most cases we see a significant downgrade rate and a minimal
upgrade rate, meaning that most of the modified queries were routed to the weak model. One notable exception is the
LLM-based router RLLM , for which the attack does not work well. Future work will be needed to explore improving
confounder generation for this setting further.
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