import gradio as gr from sentence_transformers import SentenceTransformer, util ts_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') def similarity(*data): question = data[0] q = data[1::2] a = data[2::2] similarities = [] for i in q: embedding_1= ts_model.encode(i, convert_to_tensor=True) embedding_2 = ts_model.encode(question, convert_to_tensor=True) similarities.append(float(util.pytorch_cos_sim(embedding_1, embedding_2))) max_similarity = max(similarities) max_similarity_index = similarities.index(max_similarity) if max_similarity <= 0.5: return "It seems that, I don't have a specific answer for that Question" else: return a[max_similarity_index] gr.Interface( fn = similarity, inputs = [gr.Textbox(label = "Main Q"),gr.Textbox(label = "Q1"),gr.Textbox(label = "A1"),gr.Textbox(label = "Q2"),gr.Textbox(label = "A2")], outputs = "text" ).launch()