import gradio as gr import os os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..') import time import json import math import torch from torch import nn from torch.nn import functional as F from torch.utils.data import DataLoader import re import langid import jieba import commons import utils from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate from models import SynthesizerTrn from text.symbols import symbols from text import text_to_sequence, cleaned_text_to_sequence from text.cleaners import japanese_cleaners from scipy.io.wavfile import write def getMixText(text): langid.set_languages(['zh','en']) seg_list = jieba.cut(text, cut_all=False) clean_list=[] for seg in seg_list: langtext='[ZH]' if(len(seg)>0): lang=langid.classify(seg)[0] if lang == 'en': langtext='[EN]' elif lang=='zh': langtext='[ZH]' clean_list.append(langtext+seg+langtext) return ''.join(clean_list) def get_text(text, hps): text_norm = text_to_sequence(text, hps.data.text_cleaners) if hps.data.add_blank: text_norm = commons.intersperse(text_norm, 0) text_norm = torch.LongTensor(text_norm) # print(text_norm.shape) return text_norm hps_ms = utils.get_hparams_from_file("save_model/config.json") hps = utils.get_hparams_from_file("save_model/config.json") net_g_ms = SynthesizerTrn( len(symbols), hps_ms.data.filter_length // 2 + 1, hps_ms.train.segment_size // hps.data.hop_length, n_speakers=hps_ms.data.n_speakers, **hps_ms.model) npclists=[] with open("save_model/npclists.txt",'r') as r: for npc in r.readlines(): npclists.append(npc.split('|')[-1]) print(npc) r.close def tts(spkid, text): if(len(re.findall(r'\[ZH\].*?\[ZH\]', text))==0 and len(re.findall(r'\[EN\].*?\[EN\]', text))==0): text=getMixText(text) sid = torch.LongTensor([spkid]) # speaker identity stn_tst = get_text(text, hps_ms) with torch.no_grad(): x_tst = stn_tst.unsqueeze(0) x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) t1 = time.time() audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][ 0, 0].data.float().numpy() t2 = time.time() return "成功,耗时"+str((t2-t1))+"s", (hps.data.sampling_rate, audio) _ = utils.load_checkpoint("save_model/model.pth", net_g_ms, None) def clean_text(text): return japanese_cleaners(text) app = gr.Blocks() with app: with gr.Tabs(): with gr.TabItem("Basic"): tts_input1 = gr.TextArea(label="在这输入文字", value="基于VITS的中英混合语音合成模型,当前进度为45epoch,30000 Steps,正在持续训练中。。") tts_input2 = gr.Dropdown(label="人物", choices=npclists, type="index", value=npclists[0]) tts_submit = gr.Button("合成", variant="primary") tts_output1 = gr.Textbox(label="信息") tts_output2 = gr.Audio(label="结果") tts_submit.click(tts, [tts_input2, tts_input1], [tts_output1, tts_output2]) app.launch()