diff --git a/spaces/123Kumar/vits-uma-genshin-honkai123/commons.py b/spaces/123Kumar/vits-uma-genshin-honkai123/commons.py deleted file mode 100644 index 40fcc05364d4815971f5c6f9dbb8dcef8e3ec1e9..0000000000000000000000000000000000000000 --- a/spaces/123Kumar/vits-uma-genshin-honkai123/commons.py +++ /dev/null @@ -1,172 +0,0 @@ -import math -import torch -from torch.nn import functional as F -import torch.jit - - -def script_method(fn, _rcb=None): - return fn - - -def script(obj, optimize=True, _frames_up=0, _rcb=None): - return obj - - -torch.jit.script_method = script_method -torch.jit.script = script - - -def init_weights(m, mean=0.0, std=0.01): - classname = m.__class__.__name__ - if classname.find("Conv") != -1: - m.weight.data.normal_(mean, std) - - -def get_padding(kernel_size, dilation=1): - return int((kernel_size*dilation - dilation)/2) - - -def convert_pad_shape(pad_shape): - l = pad_shape[::-1] - pad_shape = [item for sublist in l for item in sublist] - return pad_shape - - -def intersperse(lst, item): - result = [item] * (len(lst) * 2 + 1) - result[1::2] = lst - return result - - -def kl_divergence(m_p, logs_p, m_q, logs_q): - """KL(P||Q)""" - kl = (logs_q - logs_p) - 0.5 - kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q) - return kl - - -def rand_gumbel(shape): - """Sample from the Gumbel distribution, protect from overflows.""" - uniform_samples = torch.rand(shape) * 0.99998 + 0.00001 - return -torch.log(-torch.log(uniform_samples)) - - -def rand_gumbel_like(x): - g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device) - return g - - -def slice_segments(x, ids_str, segment_size=4): - ret = torch.zeros_like(x[:, :, :segment_size]) - for i in range(x.size(0)): - idx_str = ids_str[i] - idx_end = idx_str + segment_size - ret[i] = x[i, :, idx_str:idx_end] - return ret - - -def rand_slice_segments(x, x_lengths=None, segment_size=4): - b, d, t = x.size() - if x_lengths is None: - x_lengths = t - ids_str_max = x_lengths - segment_size + 1 - ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long) - ret = slice_segments(x, ids_str, segment_size) - return ret, ids_str - - -def get_timing_signal_1d( - length, channels, min_timescale=1.0, max_timescale=1.0e4): - position = torch.arange(length, dtype=torch.float) - num_timescales = channels // 2 - log_timescale_increment = ( - math.log(float(max_timescale) / float(min_timescale)) / - (num_timescales - 1)) - inv_timescales = min_timescale * torch.exp( - torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment) - scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1) - signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0) - signal = F.pad(signal, [0, 0, 0, channels % 2]) - signal = signal.view(1, channels, length) - return signal - - -def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4): - b, channels, length = x.size() - signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) - return x + signal.to(dtype=x.dtype, device=x.device) - - -def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1): - b, channels, length = x.size() - signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) - return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis) - - -def subsequent_mask(length): - mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0) - return mask - - -@torch.jit.script -def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): - n_channels_int = n_channels[0] - in_act = input_a + input_b - t_act = torch.tanh(in_act[:, :n_channels_int, :]) - s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) - acts = t_act * s_act - return acts - - -def convert_pad_shape(pad_shape): - l = pad_shape[::-1] - pad_shape = [item for sublist in l for item in sublist] - return pad_shape - - -def shift_1d(x): - x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1] - return x - - -def sequence_mask(length, max_length=None): - if max_length is None: - max_length = length.max() - x = torch.arange(max_length, dtype=length.dtype, device=length.device) - return x.unsqueeze(0) < length.unsqueeze(1) - - -def generate_path(duration, mask): - """ - duration: [b, 1, t_x] - mask: [b, 1, t_y, t_x] - """ - device = duration.device - - b, _, t_y, t_x = mask.shape - cum_duration = torch.cumsum(duration, -1) - - cum_duration_flat = cum_duration.view(b * t_x) - path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype) - path = path.view(b, t_x, t_y) - path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1] - path = path.unsqueeze(1).transpose(2,3) * mask - return path - - -def clip_grad_value_(parameters, clip_value, norm_type=2): - if isinstance(parameters, torch.Tensor): - parameters = [parameters] - parameters = list(filter(lambda p: p.grad is not None, parameters)) - norm_type = float(norm_type) - if clip_value is not None: - clip_value = float(clip_value) - - total_norm = 0 - for p in parameters: - param_norm = p.grad.data.norm(norm_type) - total_norm += param_norm.item() ** norm_type - if clip_value is not None: - p.grad.data.clamp_(min=-clip_value, max=clip_value) - total_norm = total_norm ** (1. / norm_type) - return total_norm diff --git a/spaces/1gistliPinn/ChatGPT4/Examples/Corel Draw X7 Serial Number And Activation Code 358.md b/spaces/1gistliPinn/ChatGPT4/Examples/Corel Draw X7 Serial Number And Activation Code 358.md deleted file mode 100644 index 884397e9b4830efe6be130bccceed0414b0d8e5c..0000000000000000000000000000000000000000 --- a/spaces/1gistliPinn/ChatGPT4/Examples/Corel Draw X7 Serial Number And Activation Code 358.md +++ /dev/null @@ -1,6 +0,0 @@ -

Corel Draw X7 Serial Number And Activation Code 358


Download Ziphttps://imgfil.com/2uy0Qw



- -Download keygen coreldraw x7, XFORCE untuk generate serial number dan ... Serial Number Corel Draw X7 Installation and activation code Working ... 29 Mar 2020 Corel Draw X7 Serial Number And Activation Code 358 http://picfs. 1080p. 4d29de3e1b
-
-
-

diff --git a/spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Crash of Cars MOD APK The Most Fun and Addictive Car Game for Android.md b/spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Crash of Cars MOD APK The Most Fun and Addictive Car Game for Android.md deleted file mode 100644 index 28247ea3732dd8d626cb2df57c692c6c9aad85bc..0000000000000000000000000000000000000000 --- a/spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Crash of Cars MOD APK The Most Fun and Addictive Car Game for Android.md +++ /dev/null @@ -1,95 +0,0 @@ -
-

Download Cars of Crash Mod APK: A Fun and Exciting Racing Game

-

Do you love racing games? Do you want to experience the thrill of crashing into other cars and destroying them? If yes, then you should try Cars of Crash Mod APK, a game that combines arcade racing and multiplayer action. In this game, you can drive your car in different maps, collect power-ups and weapons, and smash into other players to eliminate them. You can also customize your car with various skins and accessories, and unlock new cars with different abilities. But what if you want to enjoy the game without any limitations? That's where Cars of Crash Mod APK comes in handy. With this modded version of the game, you can get unlimited coins and gems, unlock all cars and skins, and remove annoying ads. Sounds amazing, right? In this article, we will tell you what is Cars of Crash Mod APK, how to download and install it, and some tips and tricks for playing it. Let's get started!

-

What is Cars of Crash Mod APK?

-

Cars of Crash Mod APK is a modified version of the original game, Crash of Cars, developed by Not Doppler. The original game is a mixture of arcade racing and multiplayer games together. At the beginning of the game, you can choose your first car, which will hunt for other players and go from persecution. You can also collect coins, gems, crowns, and power-ups along the way. The game has four modes: Free-for-all, Team Deathmatch, Gold Rush, and King of the Hill. You can also join or create a clan with other players, chat with them, and compete in leaderboards.

-

download cars of crash mod apk


Download 🆓 https://urlin.us/2uSXep



-

However, the original game has some drawbacks. For example, you need to spend real money to buy coins and gems, which are used to unlock new cars and skins. You also have to watch ads to get some rewards or bonuses. And you need to root your device to install some hacks or cheats. That's why many players prefer to use Cars of Crash Mod APK, which gives them unlimited resources, access to all features, and a smooth gaming experience.

-

Features of Cars of Crash Mod APK

-

Here are some of the features that make Cars of Crash Mod APK better than the original game:

-

Unlimited coins and gems

-

Coins and gems are the main currencies in the game. You can use them to buy new cars, upgrade them, or unlock new skins. However, they are not easy to earn in the game. You have to play for a long time, complete missions, or watch ads to get them. But with Cars of Crash Mod APK, you don't have to worry about that. You can get unlimited coins and gems in your account as soon as you install the mod. You can then use them to buy anything you want in the game.

-

Unlock all cars and skins

-

The game has over 100 cars to choose from, each with its own stats and abilities. Some cars are faster, some are stronger, some have special weapons or skills. You can also customize your car with different skins and accessories, such as hats, glasses, flags, etc. However, not all cars and skins are available at the start. You have to unlock them by spending coins or gems, or by completing certain tasks or achievements. But with Cars of Crash Mod APK, you don't have to do that. You can unlock all cars and skins in the game for free. You can then switch between them as you like.

-

No ads

No ads and no root required

-

One of the most annoying things about the original game is the ads. You have to watch them every time you want to get some rewards, bonuses, or extra lives. They can also interrupt your gameplay and ruin your mood. But with Cars of Crash Mod APK, you don't have to deal with that. You can enjoy the game without any ads, pop-ups, or banners. You can also install the mod without rooting your device, which can be risky and complicated. You just need to follow some simple steps, which we will explain later.

-

How to download and install Cars of Crash Mod APK?

-

Now that you know the features of Cars of Crash Mod APK, you might be wondering how to get it on your device. Well, it's not hard at all. You just need to follow these steps:

-

Step 1: Download the APK file from a trusted source

-

The first thing you need to do is to download the APK file of Cars of Crash Mod APK from a reliable and secure source. You can use the link below to get it directly from our website. The file is 100% safe and virus-free, and it has been tested by many users. You can also check the file size, version, and date before downloading it.

-

Download Cars of Crash Mod APK here

-

download crash of cars mod apk unlimited money
-download crash of cars mod apk latest version
-download crash of cars mod apk android 1
-download crash of cars mod apk revdl
-download crash of cars mod apk happymod
-download crash of cars mod apk for pc
-download crash of cars mod apk offline
-download crash of cars mod apk no root
-download crash of cars mod apk free shopping
-download crash of cars mod apk rexdl
-download crash of cars hack mod apk
-download crash of cars mega mod apk
-download crash of cars premium mod apk
-download crash of cars full mod apk
-download crash of cars unlocked mod apk
-download game crash of cars mod apk
-download game crash of cars mod apk terbaru
-download game crash of cars mod apk unlimited gems
-download game crash of cars mod apk versi lama
-download game crash of cars mod apk online
-how to download crash of cars mod apk
-how to download crash of cars mod apk on ios
-how to download crash of cars mod apk 2023
-how to download crash of cars mod apk in hindi
-how to download crash of cars mod apk without obb
-cara download crash of cars mod apk
-cara download crash of cars mod apk di android
-cara download crash of cars mod apk 2023
-cara download crash of cars mod apk tanpa root
-cara download crash of cars mod apk dengan mudah
-link download crash of cars mod apk
-link download crash of cars mod apk 2023
-link download game crash of cars mod apk
-link alternatif download crash of cars mod apk
-link terbaru download crash of cars mod apk
-situs download crash of cars mod apk
-situs download game crash of cars mod apk
-situs terbaik untuk download crash of cars mod apk
-situs terpercaya untuk download crash of cars mod apk
-situs gratis untuk download crash of cars mod apk
-website download crash of cars mod apk
-website download game crash of cars mod apk
-website terbaik untuk download crash of cars mod apk
-website terpercaya untuk download crash of cars mod apk
-website gratis untuk download crash of cars mod apk

-

Step 2: Enable unknown sources on your device

-

The next thing you need to do is to enable unknown sources on your device. This will allow you to install apps from sources other than the Google Play Store. To do this, go to your device settings, then security, then unknown sources. Turn on the option and confirm your choice.

-

Step 3: Install the APK file and launch the game

-

The final thing you need to do is to install the APK file and launch the game. To do this, go to your file manager, then locate the downloaded APK file. Tap on it and follow the instructions on the screen. Wait for the installation process to finish, then open the game icon on your home screen. Enjoy!

-

Tips and tricks for playing Cars of Crash Mod APK

-

Cars of Crash Mod APK is a fun and exciting game that will keep you entertained for hours. However, if you want to master the game and beat other players, you need some tips and tricks. Here are some of them:

-

Choose your car wisely

-

The game has over 100 cars to choose from, each with its own stats and abilities. Some cars are faster, some are stronger, some have special weapons or skills. You should choose your car based on your play style and preference. For example, if you like speed, you can choose a car that has high acceleration and top speed. If you like power, you can choose a car that has high damage and health. If you like strategy, you can choose a car that has unique weapons or skills.

-

Collect power-ups and weapons

-

The game has various power-ups and weapons that you can collect on the map. They can help you boost your performance or destroy your enemies. For example, you can collect rockets, bombs, lasers, spikes, shields, magnets, etc. You can also collect crowns, which are used to rank up in the leaderboard. You should try to collect as many power-ups and weapons as possible, but be careful not to waste them or lose them.

-

Avoid obstacles and enemies

-

The game has various obstacles and enemies that you have to avoid or eliminate. They can damage your car or slow you down. For example, you have to avoid trees, rocks, buildings, fences, etc. You also have to avoid other players who are trying to crash into you or shoot you with their weapons. You should try to dodge or outrun them, or use your weapons or skills to counter them.

-

Conclusion

-

Cars of Crash Mod APK is a great game for anyone who loves racing and action games. It has amazing graphics, sound effects, and gameplay that will keep you hooked for hours. It also has unlimited resources, access to all features, and no ads that will enhance your gaming experience. You can download it from our website for free and install it easily on your device. You can also follow our tips and tricks to improve your skills and rank up in the leaderboard. So what are you waiting for? Download Cars of Crash Mod APK now and enjoy!

-

FAQs

-

Here are some frequently asked questions about Cars of Crash Mod APK:

-
    -
  1. Is Cars of Crash Mod APK safe?Is Cars of Crash Mod APK safe?
  2. -

    Yes, Cars of Crash Mod APK is safe to use. It does not contain any viruses, malware, or spyware that can harm your device or data. It also does not require root access, which can be risky and complicated. You can download it from our website, which is a trusted and secure source. You can also scan the file with any antivirus app before installing it.

    -
  3. Is Cars of Crash Mod APK compatible with my device?
  4. -

    Cars of Crash Mod APK is compatible with most Android devices that run on Android 4.4 or higher. It has a small file size of about 100 MB, which does not take up much space on your device. It also has low system requirements, which means it can run smoothly on low-end devices. However, you should make sure that your device has enough storage and RAM to avoid any lag or crash issues.

    -
  5. Can I play Cars of Crash Mod APK online with other players?
  6. -

    Yes, you can play Cars of Crash Mod APK online with other players from around the world. The game has four modes: Free-for-all, Team Deathmatch, Gold Rush, and King of the Hill. You can join or create a clan with other players, chat with them, and compete in leaderboards. You can also invite your friends to play with you in private matches. However, you should have a stable internet connection to enjoy the online features of the game.

    -
  7. Can I update Cars of Crash Mod APK to the latest version?
  8. -

    Yes, you can update Cars of Crash Mod APK to the latest version whenever there is a new update available. You can check our website regularly for any updates or notifications. You can also enable the auto-update option in your device settings to get the updates automatically. However, you should backup your data before updating the mod to avoid any data loss or corruption.

    -
  9. How can I contact the developer of Cars of Crash Mod APK?
  10. -

    If you have any questions, suggestions, feedback, or issues regarding Cars of Crash Mod APK, you can contact the developer through their email address: carsofcrashmodapk@gmail.com. You can also visit their official website: carsofcrashmodapk.com for more information and support. They will try to respond to you as soon as possible and solve your problems.

    -

197e85843d
-
-
\ No newline at end of file diff --git a/spaces/1phancelerku/anime-remove-background/City Driving School Car Games MOD APK Explore the City and Learn to Drive.md b/spaces/1phancelerku/anime-remove-background/City Driving School Car Games MOD APK Explore the City and Learn to Drive.md deleted file mode 100644 index 3a82cb37d6c7503081a10d1d510c3903d25a448f..0000000000000000000000000000000000000000 --- a/spaces/1phancelerku/anime-remove-background/City Driving School Car Games MOD APK Explore the City and Learn to Drive.md +++ /dev/null @@ -1,104 +0,0 @@ - -

City Driving School Car Games Mod APK Download

-

Do you love car games and driving simulators? Do you want to learn how to park and drive different types of cars in realistic city scenarios? Do you want to enjoy unlimited access to all the features and content of one of the best car parking games of 2021? If you answered yes to any of these questions, then you should definitely check out City Driving School Car Games Mod APK Download. In this article, we will tell you everything you need to know about this amazing game and how to download and install the modded version on your Android device.

-

What is City Driving School Car Games?

-

City Driving School Car Games is a racing game developed by Better Games Studio Pty Ltd. It is a challenging and fun car driving school and parking simulator game that will test your skills and knowledge of traffic rules, signals, lanes, and more. You will be able to drive and park multiple luxury, turbo, and sports cars in various urban environments, such as flyover bridges, freeways, roundabouts, etc. You will also have to complete different missions and levels, ranging from easy to hard, to earn your driver license and become a legend of the road.

-

city driving school car games mod apk download


Download Filehttps://jinyurl.com/2uNNus



-

Some of the features of City Driving School Car Games are:

- -

Why download the mod apk version?

-

City Driving School Car Games is a free game that you can download from Google Play Store. However, it also has some limitations and drawbacks that might affect your enjoyment of the game. For example:

- -

That's why we recommend you to download the mod apk version of City Driving School Car Games. The mod apk is a modified version of the original game that has been hacked by some developers to give you unlimited access to everything in the game. With the mod apk, you can enjoy:

- -

How to download and install the mod apk?

-

Downloading and installing the mod apk of City Driving School Car Games is very easy and simple. Just follow these steps:

-
    -
  1. Click on this link to go to the download page of City Driving School Car Games Mod APK Download.
  2. -
  3. Tap on the download button to start downloading the mod apk
  4. Wait for the download to finish and then locate the mod apk file in your device's storage
  5. -
  6. Tap on the mod apk file to open it and then enable the installation from unknown sources if prompted
  7. -
  8. Follow the instructions on the screen to install the mod apk on your device
  9. -
  10. Launch the game and enjoy the modded features
  11. -
-

Note: You may need to uninstall the original version of City Driving School Car Games before installing the mod apk to avoid any conflicts or errors.

-

Tips and tricks for playing City Driving School Car Games

-

City Driving School Car Games is a fun and addictive game that will keep you entertained for hours. However, it can also be challenging and frustrating at times, especially if you are new to the game or want to master the advanced levels. That's why we have compiled some tips and tricks for playing City Driving School Car Games that will help you improve your skills and enjoy the game more.

- -

Conclusion

-

City Driving School Car Games is one of the best car parking games of 2021 that will challenge your driving skills and knowledge of traffic rules. You will be able to drive and park multiple luxury, turbo, and sports cars in various urban environments, such as flyover bridges, freeways, roundabouts, etc. You will also have to complete different missions and levels, ranging from easy to hard, to earn your driver license and become a legend of the road.

-

If you want to enjoy unlimited access to all the features and content of City Driving School Car Games, you should download the mod apk version of the game from this link . The mod apk will give you unlimited coins and gems, unlimited lives and fuel, no ads or pop-ups, all cars and levels unlocked, and all features and content available for free.

-

city driving school simulator mod apk free download
-city car driving school 3d game mod apk unlimited money
-city driving school car parking games mod apk latest version
-city car driving school simulator game mod apk android 1
-city driving school car games mod apk download for pc
-city car driving school test game mod apk revdl
-city driving school car racing games mod apk offline
-city car driving school simulator 2020 game mod apk hack
-city driving school car games mod apk download uptodown
-city car driving school bus game mod apk rexdl
-city driving school car stunt games mod apk online
-city car driving school truck game mod apk pure
-city driving school car games mod apk download apkpure
-city car driving school taxi game mod apk happymod
-city driving school car drift games mod apk no ads
-city car driving school police game mod apk 2021
-city driving school car games mod apk download for android
-city car driving school bike game mod apk 2020
-city driving school car simulator games mod apk unlimited coins
-city car driving school ambulance game mod apk 2019
-city driving school car games mod apk download for ios
-city car driving school train game mod apk old version
-city driving school car adventure games mod apk new update
-city car driving school airplane game mod apk vip unlocked
-city driving school car games mod apk download for windows 10
-city car driving school boat game mod apk pro premium
-city driving school car fun games mod apk all cars unlocked
-city car driving school helicopter game mod apk full version
-city driving school car games mod apk download for laptop
-city car driving school tractor game mod apk mega mod
-city driving school car educational games mod apk easy mode
-city car driving school fire truck game mod apk god mode
-city driving school car games mod apk download for macbook
-city car driving school garbage truck game mod apk unlimited gems
-city driving school car puzzle games mod apk hard mode
-city car driving school ice cream truck game mod apk unlimited lives
-city driving school car games mod apk download for chromebook
-city car driving school tow truck game mod apk unlimited fuel
-city driving school car arcade games mod apk realistic physics
-city car driving school monster truck game mod apk unlimited nitro

-

Download City Driving School Car Games Mod APK Download now and start your driving adventure!

-

FAQs

-

What is the latest version of City Driving School Car Games Mod APK Download?

-

The latest version of City Driving School Car Games Mod APK Download is 1.0.8 which was updated on June 18th 2023.

-

Is City Driving School Car Games Mod APK Download safe to use?

-

Yes, City Driving School Car Games Mod APK Download is safe to use as long as you download it from a trusted source like this link . However, we cannot guarantee that it will work on all devices or that it will not cause any problems with your device or game account. Use it at your own risk

Unfortunately, City Driving School Car Games Mod APK Download does not support multiplayer mode or online play with friends. It is a single-player game that you can enjoy on your own. However, you can still compare your scores and achievements with other players on the leaderboards and challenge yourself to beat them.

401be4b1e0
-
-
\ No newline at end of file diff --git a/spaces/1phancelerku/anime-remove-background/Free Download Pink Whatsapp APK - The Best Messaging App for Girls.md b/spaces/1phancelerku/anime-remove-background/Free Download Pink Whatsapp APK - The Best Messaging App for Girls.md deleted file mode 100644 index 4db37b1f3c41f8ad05ed8b46283074595f43baea..0000000000000000000000000000000000000000 --- a/spaces/1phancelerku/anime-remove-background/Free Download Pink Whatsapp APK - The Best Messaging App for Girls.md +++ /dev/null @@ -1,130 +0,0 @@ -
-

Pink WhatsApp: What Is It and How to Download It

-

Are you bored of the same old green WhatsApp icon on your phone? Do you want to spice up your chat experience with a new color and theme? If yes, then you might be interested in trying out pink WhatsApp, a modified version of the popular messaging app that lets you customize its appearance and features. But what is pink WhatsApp exactly and how can you download it on your Android device? In this article, we will answer these questions and more, so keep reading!

-

pink whatsapp free download apk


DOWNLOAD ⚙⚙⚙ https://jinyurl.com/2uNJp0



-

Introduction

-

What is WhatsApp and why is it popular?

-

WhatsApp is one of the most widely used messaging apps in the world, with over 2 billion users as of 2020. It allows you to send text messages, voice notes, photos, videos, documents, stickers, and more to your contacts for free, as long as you have an internet connection. You can also make voice and video calls, create group chats, and use end-to-end encryption to protect your privacy. WhatsApp is simple, reliable, and secure, which makes it a favorite among many people.

-

What is pink WhatsApp and how is it different from the original app?

-

Pink WhatsApp is not an official app from WhatsApp Inc., but rather a modified version created by third-party developers. It is also known as a WhatsApp mod or a WhatsApp clone, as it copies the original app's functionality but adds some extra features and options. One of the most noticeable differences is the color scheme, which changes from green to pink. You can also change the theme, font, icon, wallpaper, and other aspects of the app's appearance according to your preference. Moreover, pink WhatsApp offers some additional features that are not available in the original app, such as hiding your online status, disabling read receipts, downloading status videos, sending larger files, and more.

-

What are the benefits and risks of using pink WhatsApp?

-

The main benefit of using pink WhatsApp is that you can enjoy a more personalized and fun chat experience with your friends and family. You can also access some features that are not present in the official app, which can enhance your convenience and privacy. However, there are also some risks involved in using pink WhatsApp, such as:

- -

Therefore, you should be careful and cautious when using pink WhatsApp, and only download it from a trusted source. You should also backup your chats regularly and avoid sharing any sensitive or personal information through the app.

-

pink whatsapp web apk latest version
-pink whatsapp web app for android
-pink whatsapp web free download 2023
-pink whatsapp web apkcombo
-pink whatsapp web mobile app
-pink nation whatsapp web apk
-pink nation whatsapp web app
-pink nation whatsapp web free download
-pink nation whatsapp web latest version
-pink nation whatsapp web apkcombo
-pink whatsapp mod apk free download
-pink whatsapp mod app for android
-pink whatsapp mod free download 2023
-pink whatsapp mod apk latest version
-pink whatsapp mod mobile app
-pink nation whatsapp mod apk
-pink nation whatsapp mod app
-pink nation whatsapp mod free download
-pink nation whatsapp mod latest version
-pink nation whatsapp mod mobile app
-pink whatsapp plus apk free download
-pink whatsapp plus app for android
-pink whatsapp plus free download 2023
-pink whatsapp plus apk latest version
-pink whatsapp plus mobile app
-pink nation whatsapp plus apk
-pink nation whatsapp plus app
-pink nation whatsapp plus free download
-pink nation whatsapp plus latest version
-pink nation whatsapp plus mobile app
-pink whatsapp gb apk free download
-pink whatsapp gb app for android
-pink whatsapp gb free download 2023
-pink whatsapp gb apk latest version
-pink whatsapp gb mobile app
-pink nation whatsapp gb apk
-pink nation whatsapp gb app
-pink nation whatsapp gb free download
-pink nation whatsapp gb latest version
-pink nation whatsapp gb mobile app

-

How to download and install pink WhatsApp on your Android device

-

Step 1: Enable unknown sources on your device

-

Since pink WhatsApp is not available on the Google Play Store, you will need to enable unknown sources on your device to install it. This means that you will allow your device to install apps from sources other than the official store. To do this, follow these steps:

-
    -
  1. Go to Settings > Security > Unknown sources.
  2. -
  3. Toggle on the switch or check the box to enable unknown sources.li>Tap OK or Confirm to accept the warning message.
  4. -
-

Note: The exact steps may vary depending on your device model and Android version, so you may need to look for the option in a different menu or section.

-

Step 2: Download the pink WhatsApp apk file from a trusted source

-

Next, you will need to download the pink WhatsApp apk file, which is the installation file for the app. You can find many websites that offer this file, but you should be careful and only choose a trusted and reliable source. Some of the factors that you should consider when choosing a source are:

- -

One of the websites that we recommend is [Pink WhatsApp APK Download], which provides the latest and safest version of the app. To download the file from this website, follow these steps:

-
    -
  1. Open your browser and go to .
  2. -
  3. Scroll down and tap on the Download button.
  4. -
  5. Wait for the download to complete and locate the file in your device's storage.
  6. -
-

Step 3: Install the apk file and launch the app

-

Once you have downloaded the apk file, you can proceed to install it on your device. To do this, follow these steps:

-
    -
  1. Tap on the apk file or open it with a file manager app.
  2. -
  3. Tap on Install and wait for the installation to finish.
  4. -
  5. Tap on Open or Launch to start the app.
  6. -
-

You should now see the pink WhatsApp icon on your home screen or app drawer. You can also delete the apk file from your device's storage to save some space.

-

Step 4: Verify your phone number and restore your chat backup

-

The final step is to verify your phone number and restore your chat backup, if you have one. To do this, follow these steps:

-
    -
  1. Enter your phone number and tap on Next.
  2. -
  3. Enter the verification code that you receive via SMS or call.
  4. -
  5. Agree to the terms and conditions and tap on Continue.
  6. -
  7. If you have a chat backup, tap on Restore and wait for the process to complete.
  8. -
  9. Enter your name and profile picture and tap on Next.
  10. -
-

You should now be able to use pink WhatsApp as you would use the original app. You can also explore the settings and options to customize the app according to your liking.

-

Conclusion

-

Summary of the main points

-

In this article, we have explained what pink WhatsApp is and how to download it on your Android device. Pink WhatsApp is a modified version of the original app that lets you change its color, theme, and features. It can offer you a more personalized and fun chat experience, but it also comes with some risks and drawbacks. You should be careful and cautious when using it, and only download it from a trusted source. You should also backup your chats regularly and avoid sharing any sensitive or personal information through the app.

-

Call to action and disclaimer

-

If you are interested in trying out pink WhatsApp, you can follow the steps that we have outlined above. However, we do not endorse or recommend using pink WhatsApp, as it is not an official app from WhatsApp Inc. We are not responsible for any consequences that may arise from using it, such as account bans, data breaches, malware infections, or legal issues. You should use it at your own risk and discretion. We hope that this article has been helpful and informative for you. If you have any questions or feedback, please feel free to leave a comment below. Thank you for reading!

-

Frequently Asked Questions

-
    -
  1. Is pink WhatsApp safe?
  2. -

    Pink WhatsApp is not safe in terms of security, privacy, and legality. It is not authorized by WhatsApp Inc., so it may violate their terms of service and result in your account being banned or suspended. It may also contain malware or spyware that can harm your device or steal your data. It may not offer the same level of encryption as the original app, so your messages and calls may be intercepted or hacked by others. It may also expose you to legal issues if it infringes on any intellectual property rights or regulations.

    -
  3. Can I use pink WhatsApp with my existing WhatsApp account?
  4. -

    You can use pink WhatsApp with your existing WhatsApp account, but you should be aware of the risks involved. You may lose your chat history, contacts, or media files if you switch between the apps. You may also face account bans or suspensions if WhatsApp detects that you are using a modified app. Therefore, it is advisable to use a different phone number or device for pink WhatsApp, or to backup your data before using it.

    -
  5. How can I update pink WhatsApp?
  6. -

    Pink WhatsApp may not be updated regularly or compatible with the latest version of WhatsApp, so you may encounter bugs or glitches that affect its performance. You may also miss out on some new features or improvements that are introduced by WhatsApp. To update pink WhatsApp, you will need to download and install the latest apk file from the same source that you used before. You should also check the website for any news or announcements regarding the app's development and maintenance.

    -
  7. What are some alternatives to pink WhatsApp?
  8. -

    If you are looking for other WhatsApp mods or clones that offer similar or different features and options, you can check out some of these alternatives:

    - -

    Note: These alternatives are also not authorized by WhatsApp Inc., so they may also pose the same risks and drawbacks as pink WhatsApp. You should use them at your own risk and discretion.

    -
  9. How can I uninstall pink WhatsApp?
  10. -

    If you want to uninstall pink WhatsApp from your device, you can follow these steps:

    -
      -
    1. Go to Settings > Apps > Pink WhatsApp.
    2. -
    3. Tap on Uninstall and confirm your choice.
    4. -
    5. Wait for the uninstallation to complete and remove the app icon from your home screen or app drawer.
    6. -
    -

    You can also delete any remaining files or folders related to pink WhatsApp from your device's storage. If you want to switch back to the original app, you can download it from the Google Play Store and verify your phone number again.

    -

401be4b1e0
-
-
\ No newline at end of file diff --git a/spaces/1toTree/lora_test/ppdiffusers/fastdeploy_utils.py b/spaces/1toTree/lora_test/ppdiffusers/fastdeploy_utils.py deleted file mode 100644 index f3c00e2dea687e008170a766208c31d30080e58c..0000000000000000000000000000000000000000 --- a/spaces/1toTree/lora_test/ppdiffusers/fastdeploy_utils.py +++ /dev/null @@ -1,260 +0,0 @@ -# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. -# Copyright 2022 The HuggingFace Inc. team. -# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import os -import shutil -from pathlib import Path -from typing import Optional, Union - -import numpy as np - -from .download_utils import ppdiffusers_bos_download -from .utils import ( - FASTDEPLOY_MODEL_NAME, - FASTDEPLOY_WEIGHTS_NAME, - is_fastdeploy_available, - is_paddle_available, - logging, -) - -if is_paddle_available(): - import paddle - - -if is_fastdeploy_available(): - import fastdeploy as fd - - def fdtensor2pdtensor(fdtensor: fd.C.FDTensor): - dltensor = fdtensor.to_dlpack() - pdtensor = paddle.utils.dlpack.from_dlpack(dltensor) - return pdtensor - - def pdtensor2fdtensor(pdtensor: paddle.Tensor, name: str = "", share_with_raw_ptr=False): - if not share_with_raw_ptr: - dltensor = paddle.utils.dlpack.to_dlpack(pdtensor) - return fd.C.FDTensor.from_dlpack(name, dltensor) - else: - return fd.C.FDTensor.from_external_data( - name, - pdtensor.data_ptr(), - pdtensor.shape, - pdtensor.dtype.name, - str(pdtensor.place), - int(pdtensor.place.gpu_device_id()), - ) - - -logger = logging.get_logger(__name__) - - -class FastDeployRuntimeModel: - def __init__(self, model=None, **kwargs): - logger.info("`ppdiffusers.FastDeployRuntimeModel` is experimental and might change in the future.") - self.model = model - self.model_save_dir = kwargs.get("model_save_dir", None) - self.latest_model_name = kwargs.get("latest_model_name", "inference.pdmodel") - self.latest_params_name = kwargs.get("latest_params_name", "inference.pdiparams") - - def zero_copy_infer(self, prebinded_inputs: dict, prebinded_outputs: dict, share_with_raw_ptr=True, **kwargs): - """ - Execute inference without copying data from cpu to gpu. - - Arguments: - kwargs (`dict(name, paddle.Tensor)`): - An input map from name to tensor. - Return: - List of output tensor. - """ - for inputs_name, inputs_tensor in prebinded_inputs.items(): - input_fdtensor = pdtensor2fdtensor(inputs_tensor, inputs_name, share_with_raw_ptr=share_with_raw_ptr) - self.model.bind_input_tensor(inputs_name, input_fdtensor) - - for outputs_name, outputs_tensor in prebinded_outputs.items(): - output_fdtensor = pdtensor2fdtensor(outputs_tensor, outputs_name, share_with_raw_ptr=share_with_raw_ptr) - self.model.bind_output_tensor(outputs_name, output_fdtensor) - - self.model.zero_copy_infer() - - def __call__(self, **kwargs): - inputs = {k: np.array(v) for k, v in kwargs.items()} - return self.model.infer(inputs) - - @staticmethod - def load_model( - model_path: Union[str, Path], - params_path: Union[str, Path], - runtime_options: Optional["fd.RuntimeOption"] = None, - ): - """ - Loads an FastDeploy Inference Model with fastdeploy.RuntimeOption - - Arguments: - model_path (`str` or `Path`): - Model path from which to load - params_path (`str` or `Path`): - Params path from which to load - runtime_options (fd.RuntimeOption, *optional*): - The RuntimeOption of fastdeploy to initialize the fastdeploy runtime. Default setting - the device to cpu and the backend to paddle inference - """ - option = runtime_options - if option is None or not isinstance(runtime_options, fd.RuntimeOption): - logger.info("No fastdeploy.RuntimeOption specified, using CPU device and paddle inference backend.") - option = fd.RuntimeOption() - option.use_paddle_backend() - option.use_cpu() - option.set_model_path(model_path, params_path) - return fd.Runtime(option) - - def _save_pretrained( - self, - save_directory: Union[str, Path], - model_file_name: Optional[str] = None, - params_file_name: Optional[str] = None, - **kwargs - ): - """ - Save a model and its configuration file to a directory, so that it can be re-loaded using the - [`~FastDeployRuntimeModel.from_pretrained`] class method. It will always save the - latest_model_name. - - Arguments: - save_directory (`str` or `Path`): - Directory where to save the model file. - model_file_name(`str`, *optional*): - Overwrites the default model file name from `"inference.pdmodel"` to `model_file_name`. This allows you to save the - model with a different name. - params_file_name(`str`, *optional*): - Overwrites the default model file name from `"inference.pdiparams"` to `params_file_name`. This allows you to save the - model with a different name. - """ - - model_file_name = model_file_name if model_file_name is not None else FASTDEPLOY_MODEL_NAME - params_file_name = params_file_name if params_file_name is not None else FASTDEPLOY_WEIGHTS_NAME - - src_model_path = self.model_save_dir.joinpath(self.latest_model_name) - dst_model_path = Path(save_directory).joinpath(model_file_name) - - src_params_path = self.model_save_dir.joinpath(self.latest_params_name) - dst_params_path = Path(save_directory).joinpath(params_file_name) - try: - shutil.copyfile(src_model_path, dst_model_path) - shutil.copyfile(src_params_path, dst_params_path) - except shutil.SameFileError: - pass - - def save_pretrained( - self, - save_directory: Union[str, os.PathLike], - **kwargs, - ): - """ - Save a model to a directory, so that it can be re-loaded using the [`~FastDeployRuntimeModel.from_pretrained`] class - method.: - - Arguments: - save_directory (`str` or `os.PathLike`): - Directory to which to save. Will be created if it doesn't exist. - """ - if os.path.isfile(save_directory): - logger.error(f"Provided path ({save_directory}) should be a directory, not a file") - return - - os.makedirs(save_directory, exist_ok=True) - - # saving model weights/files - self._save_pretrained(save_directory, **kwargs) - - @classmethod - def _from_pretrained( - cls, - pretrained_model_name_or_path: Union[str, Path], - cache_dir: Optional[str] = None, - model_file_name: Optional[str] = None, - params_file_name: Optional[str] = None, - runtime_options: Optional["fd.RuntimeOption"] = None, - **kwargs, - ): - """ - Load a model from a directory or the BOS. - - Arguments: - pretrained_model_name_or_path (`str` or `Path`): - Directory from which to load - cache_dir (`Union[str, Path]`, *optional*): - Path to a directory in which a downloaded pretrained model configuration should be cached if the - standard cache should not be used. - model_file_name (`str`): - Overwrites the default model file name from `"inference.pdmodel"` to `file_name`. This allows you to load - different model files from the same repository or directory. - params_file_name (`str`): - Overwrites the default params file name from `"inference.pdiparams"` to `file_name`. This allows you to load - different model files from the same repository or directory. - runtime_options (`fastdeploy.RuntimeOption`, *optional*): - The RuntimeOption of fastdeploy. - kwargs (`Dict`, *optional*): - kwargs will be passed to the model during initialization - """ - model_file_name = model_file_name if model_file_name is not None else FASTDEPLOY_MODEL_NAME - params_file_name = params_file_name if params_file_name is not None else FASTDEPLOY_WEIGHTS_NAME - # load model from local directory - if os.path.isdir(pretrained_model_name_or_path): - model = FastDeployRuntimeModel.load_model( - os.path.join(pretrained_model_name_or_path, model_file_name), - os.path.join(pretrained_model_name_or_path, params_file_name), - runtime_options=runtime_options, - ) - kwargs["model_save_dir"] = Path(pretrained_model_name_or_path) - # load model from hub - else: - # download model - model_cache_path = ppdiffusers_bos_download( - pretrained_model_name_or_path=pretrained_model_name_or_path, - filename=model_file_name, - cache_dir=cache_dir, - ) - # download params - params_cache_path = ppdiffusers_bos_download( - pretrained_model_name_or_path=pretrained_model_name_or_path, - filename=params_file_name, - cache_dir=cache_dir, - ) - kwargs["model_save_dir"] = Path(model_cache_path).parent - kwargs["latest_model_name"] = Path(model_cache_path).name - kwargs["latest_params_name"] = Path(params_cache_path).name - model = FastDeployRuntimeModel.load_model( - model_cache_path, params_cache_path, runtime_options=runtime_options - ) - return cls(model=model, **kwargs) - - @classmethod - def from_pretrained( - cls, - pretrained_model_name_or_path: Union[str, Path], - cache_dir: Optional[str] = None, - model_file_name: Optional[str] = None, - params_file_name: Optional[str] = None, - runtime_options: Optional["fd.RuntimeOption"] = None, - **model_kwargs, - ): - return cls._from_pretrained( - pretrained_model_name_or_path=pretrained_model_name_or_path, - cache_dir=cache_dir, - model_file_name=model_file_name, - params_file_name=params_file_name, - runtime_options=runtime_options, - **model_kwargs, - ) diff --git a/spaces/2023Liu2023/bingo/postcss.config.js b/spaces/2023Liu2023/bingo/postcss.config.js deleted file mode 100644 index 33ad091d26d8a9dc95ebdf616e217d985ec215b8..0000000000000000000000000000000000000000 --- a/spaces/2023Liu2023/bingo/postcss.config.js +++ /dev/null @@ -1,6 +0,0 @@ -module.exports = { - plugins: { - tailwindcss: {}, - autoprefixer: {}, - }, -} diff --git a/spaces/44ov41za8i/FreeVC/speaker_encoder/params_model.py b/spaces/44ov41za8i/FreeVC/speaker_encoder/params_model.py deleted file mode 100644 index 3e356472fb5a27f370cb3920976a11d12a76c1b7..0000000000000000000000000000000000000000 --- a/spaces/44ov41za8i/FreeVC/speaker_encoder/params_model.py +++ /dev/null @@ -1,11 +0,0 @@ - -## Model parameters -model_hidden_size = 256 -model_embedding_size = 256 -model_num_layers = 3 - - -## Training parameters -learning_rate_init = 1e-4 -speakers_per_batch = 64 -utterances_per_speaker = 10 diff --git a/spaces/AIConsultant/MusicGen/docs/ENCODEC.md b/spaces/AIConsultant/MusicGen/docs/ENCODEC.md deleted file mode 100644 index efc2bcc7ec50190b907c887b920b70fd799c6953..0000000000000000000000000000000000000000 --- a/spaces/AIConsultant/MusicGen/docs/ENCODEC.md +++ /dev/null @@ -1,179 +0,0 @@ -# EnCodec: High Fidelity Neural Audio Compression - -AudioCraft provides the training code for EnCodec, a state-of-the-art deep learning -based audio codec supporting both mono stereo audio, presented in the -[High Fidelity Neural Audio Compression][arxiv] paper. -Check out our [sample page][encodec_samples]. - -## Original EnCodec models - -The EnCodec models presented in High Fidelity Neural Audio Compression can be accessed -and used with the [EnCodec repository](https://github.com/facebookresearch/encodec). - -**Note**: We do not guarantee compatibility between the AudioCraft and EnCodec codebases -and released checkpoints at this stage. - - -## Installation - -Please follow the AudioCraft installation instructions from the [README](../README.md). - - -## Training - -The [CompressionSolver](../audiocraft/solvers/compression.py) implements the audio reconstruction -task to train an EnCodec model. Specifically, it trains an encoder-decoder with a quantization -bottleneck - a SEANet encoder-decoder with Residual Vector Quantization bottleneck for EnCodec - -using a combination of objective and perceptual losses in the forms of discriminators. - -The default configuration matches a causal EnCodec training with at a single bandwidth. - -### Example configuration and grids - -We provide sample configuration and grids for training EnCodec models. - -The compression configuration are defined in -[config/solver/compression](../config/solver/compression). - -The example grids are available at -[audiocraft/grids/compression](../audiocraft/grids/compression). - -```shell -# base causal encodec on monophonic audio sampled at 24 khz -dora grid compression.encodec_base_24khz -# encodec model used for MusicGen on monophonic audio sampled at 32 khz -dora grid compression.encodec_musicgen_32khz -``` - -### Training and valid stages - -The model is trained using a combination of objective and perceptual losses. -More specifically, EnCodec is trained with the MS-STFT discriminator along with -objective losses through the use of a loss balancer to effectively weight -the different losses, in an intuitive manner. - -### Evaluation stage - -Evaluations metrics for audio generation: -* SI-SNR: Scale-Invariant Signal-to-Noise Ratio. -* ViSQOL: Virtual Speech Quality Objective Listener. - -Note: Path to the ViSQOL binary (compiled with bazel) needs to be provided in -order to run the ViSQOL metric on the reference and degraded signals. -The metric is disabled by default. -Please refer to the [metrics documentation](../METRICS.md) to learn more. - -### Generation stage - -The generation stage consists in generating the reconstructed audio from samples -with the current model. The number of samples generated and the batch size used are -controlled by the `dataset.generate` configuration. The output path and audio formats -are defined in the generate stage configuration. - -```shell -# generate samples every 5 epoch -dora run solver=compression/encodec_base_24khz generate.every=5 -# run with a different dset -dora run solver=compression/encodec_base_24khz generate.path= -# limit the number of samples or use a different batch size -dora grid solver=compression/encodec_base_24khz dataset.generate.num_samples=10 dataset.generate.batch_size=4 -``` - -### Playing with the model - -Once you have a model trained, it is possible to get the entire solver, or just -the trained model with the following functions: - -```python -from audiocraft.solvers import CompressionSolver - -# If you trained a custom model with signature SIG. -model = CompressionSolver.model_from_checkpoint('//sig/SIG') -# If you want to get one of the pretrained models with the `//pretrained/` prefix. -model = CompressionSolver.model_from_checkpoint('//pretrained/facebook/encodec_32khz') -# Or load from a custom checkpoint path -model = CompressionSolver.model_from_checkpoint('/my_checkpoints/foo/bar/checkpoint.th') - - -# If you only want to use a pretrained model, you can also directly get it -# from the CompressionModel base model class. -from audiocraft.models import CompressionModel - -# Here do not put the `//pretrained/` prefix! -model = CompressionModel.get_pretrained('facebook/encodec_32khz') -model = CompressionModel.get_pretrained('dac_44khz') - -# Finally, you can also retrieve the full Solver object, with its dataloader etc. -from audiocraft import train -from pathlib import Path -import logging -import os -import sys - -# uncomment the following line if you want some detailed logs when loading a Solver. -logging.basicConfig(stream=sys.stderr, level=logging.INFO) -# You must always run the following function from the root directory. -os.chdir(Path(train.__file__).parent.parent) - - -# You can also get the full solver (only for your own experiments). -# You can provide some overrides to the parameters to make things more convenient. -solver = train.get_solver_from_sig('SIG', {'device': 'cpu', 'dataset': {'batch_size': 8}}) -solver.model -solver.dataloaders -``` - -### Importing / Exporting models - -At the moment we do not have a definitive workflow for exporting EnCodec models, for -instance to Hugging Face (HF). We are working on supporting automatic convertion between -AudioCraft and Hugging Face implementations. - -We still have some support for fine tuning an EnCodec model coming from HF in AudioCraft, -using for instance `continue_from=//pretrained/facebook/encodec_32k`. - -An AudioCraft checkpoint can be exported in a more compact format (excluding the optimizer etc.) -using `audiocraft.utils.export.export_encodec`. For instance, you could run - -```python -from audiocraft.utils import export -from audiocraft import train -xp = train.main.get_xp_from_sig('SIG') -export.export_encodec( - xp.folder / 'checkpoint.th', - '/checkpoints/my_audio_lm/compression_state_dict.bin') - - -from audiocraft.models import CompressionModel -model = CompressionModel.get_pretrained('/checkpoints/my_audio_lm/compression_state_dict.bin') - -from audiocraft.solvers import CompressionSolver -# The two are strictly equivalent, but this function supports also loading from non already exported models. -model = CompressionSolver.model_from_checkpoint('//pretrained//checkpoints/my_audio_lm/compression_state_dict.bin') -``` - -We will see then how to use this model as a tokenizer for MusicGen/Audio gen in the -[MusicGen documentation](./MUSICGEN.md). - -### Learn more - -Learn more about AudioCraft training pipelines in the [dedicated section](./TRAINING.md). - - -## Citation -``` -@article{defossez2022highfi, - title={High Fidelity Neural Audio Compression}, - author={Défossez, Alexandre and Copet, Jade and Synnaeve, Gabriel and Adi, Yossi}, - journal={arXiv preprint arXiv:2210.13438}, - year={2022} -} -``` - - -## License - -See license information in the [README](../README.md). - -[arxiv]: https://arxiv.org/abs/2210.13438 -[encodec_samples]: https://ai.honu.io/papers/encodec/samples.html diff --git a/spaces/AIFILMS/generate_human_motion/VQ-Trans/dataset/dataset_tokenize.py b/spaces/AIFILMS/generate_human_motion/VQ-Trans/dataset/dataset_tokenize.py deleted file mode 100644 index 641a02a75f2cfaadea45851cad2a95b39bfa1eae..0000000000000000000000000000000000000000 --- a/spaces/AIFILMS/generate_human_motion/VQ-Trans/dataset/dataset_tokenize.py +++ /dev/null @@ -1,117 +0,0 @@ -import torch -from torch.utils import data -import numpy as np -from os.path import join as pjoin -import random -import codecs as cs -from tqdm import tqdm - - - -class VQMotionDataset(data.Dataset): - def __init__(self, dataset_name, feat_bias = 5, window_size = 64, unit_length = 8): - self.window_size = window_size - self.unit_length = unit_length - self.feat_bias = feat_bias - - self.dataset_name = dataset_name - min_motion_len = 40 if dataset_name =='t2m' else 24 - - if dataset_name == 't2m': - self.data_root = './dataset/HumanML3D' - self.motion_dir = pjoin(self.data_root, 'new_joint_vecs') - self.text_dir = pjoin(self.data_root, 'texts') - self.joints_num = 22 - radius = 4 - fps = 20 - self.max_motion_length = 196 - dim_pose = 263 - self.meta_dir = 'checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta' - #kinematic_chain = paramUtil.t2m_kinematic_chain - elif dataset_name == 'kit': - self.data_root = './dataset/KIT-ML' - self.motion_dir = pjoin(self.data_root, 'new_joint_vecs') - self.text_dir = pjoin(self.data_root, 'texts') - self.joints_num = 21 - radius = 240 * 8 - fps = 12.5 - dim_pose = 251 - self.max_motion_length = 196 - self.meta_dir = 'checkpoints/kit/VQVAEV3_CB1024_CMT_H1024_NRES3/meta' - #kinematic_chain = paramUtil.kit_kinematic_chain - - joints_num = self.joints_num - - mean = np.load(pjoin(self.meta_dir, 'mean.npy')) - std = np.load(pjoin(self.meta_dir, 'std.npy')) - - split_file = pjoin(self.data_root, 'train.txt') - - data_dict = {} - id_list = [] - with cs.open(split_file, 'r') as f: - for line in f.readlines(): - id_list.append(line.strip()) - - new_name_list = [] - length_list = [] - for name in tqdm(id_list): - try: - motion = np.load(pjoin(self.motion_dir, name + '.npy')) - if (len(motion)) < min_motion_len or (len(motion) >= 200): - continue - - data_dict[name] = {'motion': motion, - 'length': len(motion), - 'name': name} - new_name_list.append(name) - length_list.append(len(motion)) - except: - # Some motion may not exist in KIT dataset - pass - - - self.mean = mean - self.std = std - self.length_arr = np.array(length_list) - self.data_dict = data_dict - self.name_list = new_name_list - - def inv_transform(self, data): - return data * self.std + self.mean - - def __len__(self): - return len(self.data_dict) - - def __getitem__(self, item): - name = self.name_list[item] - data = self.data_dict[name] - motion, m_length = data['motion'], data['length'] - - m_length = (m_length // self.unit_length) * self.unit_length - - idx = random.randint(0, len(motion) - m_length) - motion = motion[idx:idx+m_length] - - "Z Normalization" - motion = (motion - self.mean) / self.std - - return motion, name - -def DATALoader(dataset_name, - batch_size = 1, - num_workers = 8, unit_length = 4) : - - train_loader = torch.utils.data.DataLoader(VQMotionDataset(dataset_name, unit_length=unit_length), - batch_size, - shuffle=True, - num_workers=num_workers, - #collate_fn=collate_fn, - drop_last = True) - - return train_loader - -def cycle(iterable): - while True: - for x in iterable: - yield x diff --git a/spaces/AIGC-Audio/AudioGPT/text_to_audio/Make_An_Audio/ldm/modules/losses_audio/__init__.py b/spaces/AIGC-Audio/AudioGPT/text_to_audio/Make_An_Audio/ldm/modules/losses_audio/__init__.py deleted file mode 100644 index 64ef1664cf934381870a61c96ba9aba498b715d5..0000000000000000000000000000000000000000 --- a/spaces/AIGC-Audio/AudioGPT/text_to_audio/Make_An_Audio/ldm/modules/losses_audio/__init__.py +++ /dev/null @@ -1,7 +0,0 @@ -from ldm.modules.losses_audio.vqperceptual import DummyLoss - -# relative imports pain -import os -import sys -path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'vggishish') -sys.path.append(path) diff --git a/spaces/AIGC-Audio/AudioGPT/text_to_audio/Make_An_Audio/ldm/modules/losses_audio/vggishish/loss.py b/spaces/AIGC-Audio/AudioGPT/text_to_audio/Make_An_Audio/ldm/modules/losses_audio/vggishish/loss.py deleted file mode 100644 index bae76571909eec571aaf075d58e3dea8f6424546..0000000000000000000000000000000000000000 --- a/spaces/AIGC-Audio/AudioGPT/text_to_audio/Make_An_Audio/ldm/modules/losses_audio/vggishish/loss.py +++ /dev/null @@ -1,41 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F -import torch.optim as optim - -class WeightedCrossEntropy(nn.CrossEntropyLoss): - - def __init__(self, weights, **pytorch_ce_loss_args) -> None: - super().__init__(reduction='none', **pytorch_ce_loss_args) - self.weights = weights - - def __call__(self, outputs, targets, to_weight=True): - loss = super().__call__(outputs, targets) - if to_weight: - return (loss * self.weights[targets]).sum() / self.weights[targets].sum() - else: - return loss.mean() - - -if __name__ == '__main__': - x = torch.randn(10, 5) - target = torch.randint(0, 5, (10,)) - weights = torch.tensor([1., 2., 3., 4., 5.]) - - # criterion_weighted = nn.CrossEntropyLoss(weight=weights) - # loss_weighted = criterion_weighted(x, target) - - # criterion_weighted_manual = nn.CrossEntropyLoss(reduction='none') - # loss_weighted_manual = criterion_weighted_manual(x, target) - # print(loss_weighted, loss_weighted_manual.mean()) - # loss_weighted_manual = (loss_weighted_manual * weights[target]).sum() / weights[target].sum() - # print(loss_weighted, loss_weighted_manual) - # print(torch.allclose(loss_weighted, loss_weighted_manual)) - - pytorch_weighted = nn.CrossEntropyLoss(weight=weights) - pytorch_unweighted = nn.CrossEntropyLoss() - custom = WeightedCrossEntropy(weights) - - assert torch.allclose(pytorch_weighted(x, target), custom(x, target, to_weight=True)) - assert torch.allclose(pytorch_unweighted(x, target), custom(x, target, to_weight=False)) - print(custom(x, target, to_weight=True), custom(x, target, to_weight=False)) diff --git a/spaces/ATang0729/Forecast4Muses/Model/Model6/Model6_2_ProfileRecogition/mmpretrain/configs/__init__.py b/spaces/ATang0729/Forecast4Muses/Model/Model6/Model6_2_ProfileRecogition/mmpretrain/configs/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/Ababababababbababa/Ashaar/poetry_diacritizer/config_manager.py b/spaces/Ababababababbababa/Ashaar/poetry_diacritizer/config_manager.py deleted file mode 100644 index 4473d6017694823444543bc86d7d9e8d0dee6aba..0000000000000000000000000000000000000000 --- a/spaces/Ababababababbababa/Ashaar/poetry_diacritizer/config_manager.py +++ /dev/null @@ -1,350 +0,0 @@ -from enum import Enum -import os -from pathlib import Path -import shutil -import subprocess -from typing import Any, Dict - -import ruamel.yaml -import torch - -from poetry_diacritizer.models.baseline import BaseLineModel -from poetry_diacritizer.models.cbhg import CBHGModel -from poetry_diacritizer.models.gpt import GPTModel -from poetry_diacritizer.models.seq2seq import Decoder as Seq2SeqDecoder, Encoder as Seq2SeqEncoder, Seq2Seq -from poetry_diacritizer.models.tacotron_based import ( - Decoder as TacotronDecoder, - Encoder as TacotronEncoder, - Tacotron, -) - -from poetry_diacritizer.options import AttentionType, LossType, OptimizerType -from poetry_diacritizer.util.text_encoders import ( - ArabicEncoderWithStartSymbol, - BasicArabicEncoder, - TextEncoder, -) - - -class ConfigManager: - """Co/home/almodhfer/Projects/daicritization/temp_results/CA_MSA/cbhg-new/model-10.ptnfig Manager""" - - def __init__(self, config_path: str, model_kind: str): - available_models = ["baseline", "cbhg", "seq2seq", "tacotron_based", "gpt"] - if model_kind not in available_models: - raise TypeError(f"model_kind must be in {available_models}") - self.config_path = Path(config_path) - self.model_kind = model_kind - self.yaml = ruamel.yaml.YAML() - self.config: Dict[str, Any] = self._load_config() - self.git_hash = self._get_git_hash() - self.session_name = ".".join( - [ - self.config["data_type"], - self.config["session_name"], - f"{model_kind}", - ] - ) - - self.data_dir = Path( - os.path.join(self.config["data_directory"], self.config["data_type"]) - ) - self.base_dir = Path( - os.path.join(self.config["log_directory"], self.session_name) - ) - self.log_dir = Path(os.path.join(self.base_dir, "logs")) - self.prediction_dir = Path(os.path.join(self.base_dir, "predictions")) - self.plot_dir = Path(os.path.join(self.base_dir, "plots")) - self.models_dir = Path(os.path.join(self.base_dir, "models")) - if "sp_model_path" in self.config: - self.sp_model_path = self.config["sp_model_path"] - else: - self.sp_model_path = None - self.text_encoder: TextEncoder = self.get_text_encoder() - self.config["len_input_symbols"] = len(self.text_encoder.input_symbols) - self.config["len_target_symbols"] = len(self.text_encoder.target_symbols) - if self.model_kind in ["seq2seq", "tacotron_based"]: - self.config["attention_type"] = AttentionType[self.config["attention_type"]] - self.config["optimizer"] = OptimizerType[self.config["optimizer_type"]] - - def _load_config(self): - with open(self.config_path, "rb") as model_yaml: - _config = self.yaml.load(model_yaml) - return _config - - @staticmethod - def _get_git_hash(): - try: - return ( - subprocess.check_output(["git", "describe", "--always"]) - .strip() - .decode() - ) - except Exception as e: - print(f"WARNING: could not retrieve git hash. {e}") - - def _check_hash(self): - try: - git_hash = ( - subprocess.check_output(["git", "describe", "--always"]) - .strip() - .decode() - ) - if self.config["git_hash"] != git_hash: - print( - f"""WARNING: git hash mismatch. Current: {git_hash}. - Config hash: {self.config['git_hash']}""" - ) - except Exception as e: - print(f"WARNING: could not check git hash. {e}") - - @staticmethod - def _print_dict_values(values, key_name, level=0, tab_size=2): - tab = level * tab_size * " " - print(tab + "-", key_name, ":", values) - - def _print_dictionary(self, dictionary, recursion_level=0): - for key in dictionary.keys(): - if isinstance(key, dict): - recursion_level += 1 - self._print_dictionary(dictionary[key], recursion_level) - else: - self._print_dict_values( - dictionary[key], key_name=key, level=recursion_level - ) - - def print_config(self): - print("\nCONFIGURATION", self.session_name) - self._print_dictionary(self.config) - - def update_config(self): - self.config["git_hash"] = self._get_git_hash() - - def dump_config(self): - self.update_config() - _config = {} - for key, val in self.config.items(): - if isinstance(val, Enum): - _config[key] = val.name - else: - _config[key] = val - with open(self.base_dir / "config.yml", "w") as model_yaml: - self.yaml.dump(_config, model_yaml) - - def create_remove_dirs( - self, - clear_dir: bool = False, - clear_logs: bool = False, - clear_weights: bool = False, - clear_all: bool = False, - ): - self.base_dir.mkdir(exist_ok=True, parents=True) - self.plot_dir.mkdir(exist_ok=True) - self.prediction_dir.mkdir(exist_ok=True) - if clear_dir: - delete = input(f"Delete {self.log_dir} AND {self.models_dir}? (y/[n])") - if delete == "y": - shutil.rmtree(self.log_dir, ignore_errors=True) - shutil.rmtree(self.models_dir, ignore_errors=True) - if clear_logs: - delete = input(f"Delete {self.log_dir}? (y/[n])") - if delete == "y": - shutil.rmtree(self.log_dir, ignore_errors=True) - if clear_weights: - delete = input(f"Delete {self.models_dir}? (y/[n])") - if delete == "y": - shutil.rmtree(self.models_dir, ignore_errors=True) - self.log_dir.mkdir(exist_ok=True) - self.models_dir.mkdir(exist_ok=True) - - def get_last_model_path(self): - """ - Given a checkpoint, get the last save model name - Args: - checkpoint (str): the path where models are saved - """ - models = os.listdir(self.models_dir) - models = [model for model in models if model[-3:] == ".pt"] - if len(models) == 0: - return None - _max = max(int(m.split(".")[0].split("-")[0]) for m in models) - model_name = f"{_max}-snapshot.pt" - last_model_path = os.path.join(self.models_dir, model_name) - - return last_model_path - - def load_model(self, model_path: str = None): - """ - loading a model from path - Args: - checkpoint (str): the path to the model - name (str): the name of the model, which is in the path - model (Tacotron): the model to load its save state - optimizer: the optimizer to load its saved state - """ - - model = self.get_model() - - with open(self.base_dir / f"{self.model_kind}_network.txt", "w") as file: - file.write(str(model)) - - if model_path is None: - last_model_path = self.get_last_model_path() - if last_model_path is None: - return model, 1 - else: - last_model_path = model_path - - saved_model = torch.load(last_model_path) - out = model.load_state_dict(saved_model["model_state_dict"]) - print(out) - global_step = saved_model["global_step"] + 1 - return model, global_step - - def get_model(self, ignore_hash=False): - if not ignore_hash: - self._check_hash() - if self.model_kind == "cbhg": - return self.get_cbhg() - - elif self.model_kind == "seq2seq": - return self.get_seq2seq() - - elif self.model_kind == "tacotron_based": - return self.get_tacotron_based() - - elif self.model_kind == "baseline": - return self.get_baseline() - - elif self.model_kind == "gpt": - return self.get_gpt() - - def get_gpt(self): - model = GPTModel( - self.config["base_model_path"], - freeze=self.config["freeze"], - n_layer=self.config["n_layer"], - use_lstm=self.config["use_lstm"], - ) - return model - - def get_baseline(self): - model = BaseLineModel( - embedding_dim=self.config["embedding_dim"], - inp_vocab_size=self.config["len_input_symbols"], - targ_vocab_size=self.config["len_target_symbols"], - layers_units=self.config["layers_units"], - use_batch_norm=self.config["use_batch_norm"], - ) - - return model - - def get_cbhg(self): - model = CBHGModel( - embedding_dim=self.config["embedding_dim"], - inp_vocab_size=self.config["len_input_symbols"], - targ_vocab_size=self.config["len_target_symbols"], - use_prenet=self.config["use_prenet"], - prenet_sizes=self.config["prenet_sizes"], - cbhg_gru_units=self.config["cbhg_gru_units"], - cbhg_filters=self.config["cbhg_filters"], - cbhg_projections=self.config["cbhg_projections"], - post_cbhg_layers_units=self.config["post_cbhg_layers_units"], - post_cbhg_use_batch_norm=self.config["post_cbhg_use_batch_norm"], - ) - - return model - - def get_seq2seq(self): - encoder = Seq2SeqEncoder( - embedding_dim=self.config["encoder_embedding_dim"], - inp_vocab_size=self.config["len_input_symbols"], - layers_units=self.config["encoder_units"], - use_batch_norm=self.config["use_batch_norm"], - ) - - decoder = TacotronDecoder( - self.config["len_target_symbols"], - start_symbol_id=self.text_encoder.start_symbol_id, - embedding_dim=self.config["decoder_embedding_dim"], - encoder_dim=self.config["encoder_dim"], - decoder_units=self.config["decoder_units"], - decoder_layers=self.config["decoder_layers"], - attention_type=self.config["attention_type"], - attention_units=self.config["attention_units"], - is_attention_accumulative=self.config["is_attention_accumulative"], - use_prenet=self.config["use_decoder_prenet"], - prenet_depth=self.config["decoder_prenet_depth"], - teacher_forcing_probability=self.config["teacher_forcing_probability"], - ) - - model = Tacotron(encoder=encoder, decoder=decoder) - - return model - - def get_tacotron_based(self): - encoder = TacotronEncoder( - embedding_dim=self.config["encoder_embedding_dim"], - inp_vocab_size=self.config["len_input_symbols"], - prenet_sizes=self.config["prenet_sizes"], - use_prenet=self.config["use_encoder_prenet"], - cbhg_gru_units=self.config["cbhg_gru_units"], - cbhg_filters=self.config["cbhg_filters"], - cbhg_projections=self.config["cbhg_projections"], - ) - - decoder = TacotronDecoder( - self.config["len_target_symbols"], - start_symbol_id=self.text_encoder.start_symbol_id, - embedding_dim=self.config["decoder_embedding_dim"], - encoder_dim=self.config["encoder_dim"], - decoder_units=self.config["decoder_units"], - decoder_layers=self.config["decoder_layers"], - attention_type=self.config["attention_type"], - attention_units=self.config["attention_units"], - is_attention_accumulative=self.config["is_attention_accumulative"], - use_prenet=self.config["use_decoder_prenet"], - prenet_depth=self.config["decoder_prenet_depth"], - teacher_forcing_probability=self.config["teacher_forcing_probability"], - ) - - model = Tacotron(encoder=encoder, decoder=decoder) - - return model - - def get_text_encoder(self): - """Getting the class of TextEncoder from config""" - if self.config["text_cleaner"] not in [ - "basic_cleaners", - "valid_arabic_cleaners", - None, - ]: - raise Exception(f"cleaner is not known {self.config['text_cleaner']}") - - if self.config["text_encoder"] == "BasicArabicEncoder": - text_encoder = BasicArabicEncoder( - cleaner_fn=self.config["text_cleaner"], sp_model_path=self.sp_model_path - ) - elif self.config["text_encoder"] == "ArabicEncoderWithStartSymbol": - text_encoder = ArabicEncoderWithStartSymbol( - cleaner_fn=self.config["text_cleaner"], sp_model_path=self.sp_model_path - ) - else: - raise Exception( - f"the text encoder is not found {self.config['text_encoder']}" - ) - - return text_encoder - - def get_loss_type(self): - try: - loss_type = LossType[self.config["loss_type"]] - except: - raise Exception(f"The loss type is not correct {self.config['loss_type']}") - return loss_type - - -if __name__ == "__main__": - config_path = "config/tacotron-base-config.yml" - model_kind = "tacotron" - config = ConfigManager(config_path=config_path, model_kind=model_kind) diff --git a/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/basesizer/Methods.js b/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/basesizer/Methods.js deleted file mode 100644 index b8df9350805c81f7fcafdf96d8325f243c350abe..0000000000000000000000000000000000000000 --- a/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/basesizer/Methods.js +++ /dev/null @@ -1,108 +0,0 @@ -import GetSizerConfig from './GetSizerConfig.js'; -import GetChildPrevState from '../utils/GetChildPrevState.js'; -import PushIntoBounds from './PushIntoBounds.js'; -import DrawBounds from './DrawBounds.js'; -import AddChildMethods from './AddChildMethods.js'; -import RemoveChildMethods from './RemoveChildMethods.js'; -import AddChildrenMap from './AddChildrenMap.js'; -import RemoveChildrenMap from './RemoveChildrenMap.js'; -import GetElement from './GetElement.js'; -import PaddingMethods from './PaddingMethods.js'; -import ResolveWidth from './ResolveWidth.js'; -import ResolveChildrenWidth from './ResolveChildrenWidth.js'; -import ResolveHeight from './ResolveHeight.js'; -import PostResolveSize from './PostResolveSize.js'; -import GetChildWidth from './GetChildWidth.js'; -import GetChildHeight from './GetChildHeight.js'; -import GetExpandedChildWidth from './GetExpandedChildWidth.js'; -import GetExpandedChildHeight from './GetExpandedChildHeight.js'; -import GetChildrenWidth from './GetChildrenWidth.js'; -import GetChildrenHeight from './GetChildrenHeight.js'; -import GetAllChildrenSizers from './GetAllChildrenSizers.js'; -import GetChildrenSizers from './GetChildrenSizers.js'; -import GetShownChildrenMethods from './GetShownChildrenMethods.js'; -import PreLayout from './PreLayout.js'; -import Layout from './Layout.js'; -import RunLayout from './RunLayout.js'; -import LayoutChildren from './LayoutChildren.js'; -import PostLayout from './PostLayout.js'; -import RunWidthWrap from './RunWidthWrap.js'; - -import SetAnchor from './SetAnchor.js'; -import ScaleMethods from './ScaleMethods.js'; -import FadeMethods from './FadeMethods.js'; -import EaseMoveMethods from './EaseMoveMethods.js'; -import ShakeMethods from './ShakeMethods.js'; -import EaseDataMethods from './EaseDataMethods.js'; -import HideMethods from './HideMethods.js'; -import ModalMethods from './ModalMethods.js'; -import IsInTouching from './IsInTouching.js'; -import PointToChild from './PointToChild.js'; -import GetParentSizerMethods from './GetParentSizerMethods.js'; -import LayoutBackgrounds from './LayoutBackgrounds.js'; -import SetDraggable from './SetDraggable.js'; -import ClickMethods from './ClickMethods.js'; -import ClickOutsideMethods from './ClickOutsideMethods.js'; -import TouchingMethods from './TouchingMethods.js'; -import SetChildrenInteractive from './SetChildrenInteractive.js'; -import BroadcastEvent from './BroadcastEvent.js'; - -var methods = { - getSizerConfig: GetSizerConfig, - getChildPrevState: GetChildPrevState, - pushIntoBounds: PushIntoBounds, - drawBounds: DrawBounds, - resolveWidth: ResolveWidth, - resolveChildrenWidth: ResolveChildrenWidth, - resolveHeight: ResolveHeight, - postResolveSize: PostResolveSize, - getChildWidth: GetChildWidth, - getChildHeight: GetChildHeight, - getExpandedChildWidth: GetExpandedChildWidth, - getExpandedChildHeight: GetExpandedChildHeight, - - getChildrenWidth: GetChildrenWidth, - getChildrenHeight: GetChildrenHeight, - addChildrenMap: AddChildrenMap, - addElement: AddChildrenMap, - removeChildrenMap: RemoveChildrenMap, - getElement: GetElement, - getAllChildrenSizers: GetAllChildrenSizers, - getChildrenSizers: GetChildrenSizers, - preLayout: PreLayout, - layout: Layout, - runLayout: RunLayout, - layoutChildren: LayoutChildren, - runWidthWrap: RunWidthWrap, - layoutBackgrounds: LayoutBackgrounds, - postLayout: PostLayout, - - setAnchor: SetAnchor, - isInTouching: IsInTouching, - pointToChild: PointToChild, - setDraggable: SetDraggable, - setChildrenInteractive: SetChildrenInteractive, - broadcastEvent: BroadcastEvent, - -}; - -Object.assign( - methods, - PaddingMethods, - AddChildMethods, - RemoveChildMethods, - GetParentSizerMethods, - ScaleMethods, - FadeMethods, - EaseMoveMethods, - ShakeMethods, - EaseDataMethods, - ClickMethods, - ClickOutsideMethods, - TouchingMethods, - HideMethods, - ModalMethods, - GetShownChildrenMethods, -); - -export default methods; \ No newline at end of file diff --git a/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/sizer/LayoutChildren.js b/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/sizer/LayoutChildren.js deleted file mode 100644 index 735017c542c4d138be4bb8dff7878643355e4b77..0000000000000000000000000000000000000000 --- a/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/sizer/LayoutChildren.js +++ /dev/null @@ -1,98 +0,0 @@ -import ResizeGameObject from '../../../plugins/utils/size/ResizeGameObject.js'; -import PreLayoutChild from '../basesizer/utils/PreLayoutChild.js'; -import LayoutChild from '../basesizer/utils/LayoutChild.js'; -import { GetDisplayWidth, GetDisplayHeight } from '../../../plugins/utils/size/GetDisplaySize.js'; -import CheckSize from '../basesizer/utils/CheckSize.js'; - -const Wrap = Phaser.Math.Wrap; - -var LayoutChildren = function () { - var children = this.sizerChildren; - var child, childConfig, padding; - var startX = this.innerLeft, - startY = this.innerTop; - var innerWidth = this.innerWidth; - var innerHeight = this.innerHeight; - var itemX = startX, - itemY = startY; - var x, y, width, height; // Align zone - var childWidth, childHeight; - var childIndex, startChildIndex = this.startChildIndex; - for (var i = 0, cnt = children.length; i < cnt; i++) { - if (startChildIndex === 0) { - childIndex = i; - } else { - childIndex = Wrap((i + startChildIndex), 0, cnt); - } - - if (this.rtl) { - childIndex = cnt - childIndex - 1; - } - - child = children[childIndex]; - if (child.rexSizer.hidden) { - continue; - } - - childConfig = child.rexSizer; - padding = childConfig.padding; - - PreLayoutChild.call(this, child); - - // Set size - if (child.isRexSpace) { - childWidth = 0; - childHeight = 0; - } else { - childWidth = this.getExpandedChildWidth(child); - childHeight = this.getExpandedChildHeight(child); - } - if (child.isRexSizer) { - child.runLayout(this, childWidth, childHeight); - CheckSize(child, this); - } else { - ResizeGameObject(child, childWidth, childHeight); - } - - if (childWidth === undefined) { - childWidth = GetDisplayWidth(child); - } - if (childHeight === undefined) { - childHeight = GetDisplayHeight(child); - } - - // Set position - if (this.orientation === 0) { // x - x = (itemX + padding.left); - if ((childConfig.proportion === 0) || (this.proportionLength === 0)) { - width = childWidth; - } else { - width = (childConfig.proportion * this.proportionLength); - } - - y = (itemY + padding.top); - height = (innerHeight - padding.top - padding.bottom); - } else { // y - x = (itemX + padding.left); - width = (innerWidth - padding.left - padding.right); - - y = (itemY + padding.top); - if ((childConfig.proportion === 0) || (this.proportionLength === 0)) { - height = childHeight; - } else { - height = (childConfig.proportion * this.proportionLength); - } - } - - LayoutChild.call(this, child, x, y, width, height, childConfig.align); - - if (this.orientation === 0) { // x - itemX += (width + padding.left + padding.right + this.space.item); - } else { // y - itemY += (height + padding.top + padding.bottom + this.space.item); - } - } - -} - -export default LayoutChildren; \ No newline at end of file diff --git a/spaces/AlanMars/QYL-AI-Space/modules/models/__init__.py b/spaces/AlanMars/QYL-AI-Space/modules/models/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/AlanMars/QYL-AI-Space/modules/presets.py b/spaces/AlanMars/QYL-AI-Space/modules/presets.py deleted file mode 100644 index 2f44d92774bbb8d91b7502c4df0bc818a8b964e6..0000000000000000000000000000000000000000 --- a/spaces/AlanMars/QYL-AI-Space/modules/presets.py +++ /dev/null @@ -1,242 +0,0 @@ -# -*- coding:utf-8 -*- -import os -from pathlib import Path -import gradio as gr -from .webui_locale import I18nAuto - -i18n = I18nAuto() # internationalization - -CHATGLM_MODEL = None -CHATGLM_TOKENIZER = None -LLAMA_MODEL = None -LLAMA_INFERENCER = None - -# Users -ANONYMOUS_USER = "anonymous" - -# ChatGPT 设置 -INITIAL_SYSTEM_PROMPT = "You are a helpful assistant." -API_HOST = "api.openai.com" -COMPLETION_URL = "https://api.openai.com/v1/chat/completions" -BALANCE_API_URL = "https://api.openai.com/dashboard/billing/credit_grants" -USAGE_API_URL = "https://api.openai.com/dashboard/billing/usage" -HISTORY_DIR = Path("history") -HISTORY_DIR = "history" -TEMPLATES_DIR = "templates" -USERS_DIR = Path("users") - -# 错误信息 -STANDARD_ERROR_MSG = i18n("☹️发生了错误:") # 错误信息的标准前缀 -GENERAL_ERROR_MSG = i18n("获取对话时发生错误,请查看后台日志") -ERROR_RETRIEVE_MSG = i18n("请检查网络连接,或者API-Key是否有效。") -CONNECTION_TIMEOUT_MSG = i18n("连接超时,无法获取对话。") # 连接超时 -READ_TIMEOUT_MSG = i18n("读取超时,无法获取对话。") # 读取超时 -PROXY_ERROR_MSG = i18n("代理错误,无法获取对话。") # 代理错误 -SSL_ERROR_PROMPT = i18n("SSL错误,无法获取对话。") # SSL 错误 -NO_APIKEY_MSG = i18n("API key为空,请检查是否输入正确。") # API key 长度不足 51 位 -NO_INPUT_MSG = i18n("请输入对话内容。") # 未输入对话内容 -BILLING_NOT_APPLICABLE_MSG = i18n("账单信息不适用") # 本地运行的模型返回的账单信息 - -TIMEOUT_STREAMING = 60 # 流式对话时的超时时间 -TIMEOUT_ALL = 200 # 非流式对话时的超时时间 -ENABLE_STREAMING_OPTION = False # 是否启用选择选择是否实时显示回答的勾选框 -HIDE_MY_KEY = False # 如果你想在UI中隐藏你的 API 密钥,将此值设置为 True -CONCURRENT_COUNT = 50 # 允许同时使用的用户数量 - -SIM_K = 5 -INDEX_QUERY_TEMPRATURE = 1.0 - -CHUANHU_TITLE = i18n("启源力 AI 🤖") - -# CHUANHU_DESCRIPTION = i18n("原理工作室") -CHUANHU_DESCRIPTION = i18n("") - -FOOTER = """
{versions}
""" - -APPEARANCE_SWITCHER = """ -
-""" + i18n("切换亮暗色主题") + """ - -
-""" - -SUMMARIZE_PROMPT = "你是谁?我们刚才聊了什么?" # 总结对话时的 prompt - -ONLINE_MODELS = [ - "gpt-3.5-turbo", - "gpt-3.5-turbo-0301", - "gpt-3.5-turbo-0613", - "gpt-3.5-turbo-16k", - "gpt-4", - "gpt-4-0314", - "gpt-4-0613", - "gpt-4-32k", - "gpt-4-32k-0314", - "xmchat", - "yuanai-1.0-base_10B", - "yuanai-1.0-translate", - "yuanai-1.0-dialog", - "yuanai-1.0-rhythm_poems", -] - -LOCAL_MODELS = [ - "chatglm-6b", - "chatglm-6b-int4", - "chatglm-6b-int4-qe", - "StableLM", - "MOSS", - "llama-7b-hf", - "llama-13b-hf", - "llama-30b-hf", - "llama-65b-hf", -] - -if os.environ.get('HIDE_LOCAL_MODELS', 'false') == 'true': - MODELS = ONLINE_MODELS -else: - MODELS = ONLINE_MODELS + LOCAL_MODELS - -DEFAULT_MODEL = 0 - -os.makedirs("models", exist_ok=True) -os.makedirs("lora", exist_ok=True) -os.makedirs("history", exist_ok=True) -for dir_name in os.listdir("models"): - if os.path.isdir(os.path.join("models", dir_name)): - if dir_name not in MODELS: - MODELS.append(dir_name) - -MODEL_TOKEN_LIMIT = { - "gpt-3.5-turbo": 4096, - "gpt-3.5-turbo-0301": 4096, - "gpt-3.5-turbo-0613": 4096, - "gpt-3.5-turbo-16k": 16384, - "gpt-4": 8192, - "gpt-4-0314": 8192, - "gpt-4-32k": 32768, - "gpt-4-32k-0314": 32768 -} - -TOKEN_OFFSET = 1000 # 模型的token上限减去这个值,得到软上限。到达软上限之后,自动尝试减少token占用。 -DEFAULT_TOKEN_LIMIT = 3000 # 默认的token上限 -REDUCE_TOKEN_FACTOR = 0.8 # 与模型token上限想乘,得到目标token数。减少token占用时,将token占用减少到目标token数以下。 - -REPLY_LANGUAGES = [ - "简体中文", - "繁體中文", - "English", - "日本語", - "Español", - "Français", - "Deutsch", - "跟随问题语言(不稳定)" -] - -WEBSEARCH_PTOMPT_TEMPLATE = """\ -Web search results: - -{web_results} -Current date: {current_date} - -Instructions: Using the provided web search results, write a comprehensive reply to the given query. Make sure to cite results using [[number](URL)] notation after the reference. If the provided search results refer to multiple subjects with the same name, write separate answers for each subject. -Query: {query} -Reply in {reply_language} -""" - -PROMPT_TEMPLATE = """\ -Context information is below. ---------------------- -{context_str} ---------------------- -Current date: {current_date}. -Using the provided context information, write a comprehensive reply to the given query. -Make sure to cite results using [number] notation after the reference. -If the provided context information refer to multiple subjects with the same name, write separate answers for each subject. -Use prior knowledge only if the given context didn't provide enough information. -Answer the question: {query_str} -Reply in {reply_language} -""" - -REFINE_TEMPLATE = """\ -The original question is as follows: {query_str} -We have provided an existing answer: {existing_answer} -We have the opportunity to refine the existing answer -(only if needed) with some more context below. ------------- -{context_msg} ------------- -Given the new context, refine the original answer to better -Reply in {reply_language} -If the context isn't useful, return the original answer. -""" - -ALREADY_CONVERTED_MARK = "" - -small_and_beautiful_theme = gr.themes.Soft( - primary_hue=gr.themes.Color( - c50="#EBFAF2", - c100="#CFF3E1", - c200="#A8EAC8", - c300="#77DEA9", - c400="#3FD086", - c500="#02C160", - c600="#06AE56", - c700="#05974E", - c800="#057F45", - c900="#04673D", - c950="#2E5541", - name="small_and_beautiful", - ), - secondary_hue=gr.themes.Color( - c50="#576b95", - c100="#576b95", - c200="#576b95", - c300="#576b95", - c400="#576b95", - c500="#576b95", - c600="#576b95", - c700="#576b95", - c800="#576b95", - c900="#576b95", - c950="#576b95", - ), - neutral_hue=gr.themes.Color( - name="gray", - c50="#f6f7f8", - # c100="#f3f4f6", - c100="#F2F2F2", - c200="#e5e7eb", - c300="#d1d5db", - c400="#B2B2B2", - c500="#808080", - c600="#636363", - c700="#515151", - c800="#393939", - # c900="#272727", - c900="#2B2B2B", - c950="#171717", - ), - radius_size=gr.themes.sizes.radius_sm, -).set( - # button_primary_background_fill="*primary_500", - button_primary_background_fill_dark="*primary_600", - # button_primary_background_fill_hover="*primary_400", - # button_primary_border_color="*primary_500", - button_primary_border_color_dark="*primary_600", - button_primary_text_color="wihte", - button_primary_text_color_dark="white", - button_secondary_background_fill="*neutral_100", - button_secondary_background_fill_hover="*neutral_50", - button_secondary_background_fill_dark="*neutral_900", - button_secondary_text_color="*neutral_800", - button_secondary_text_color_dark="white", - # background_fill_primary="#F7F7F7", - # background_fill_primary_dark="#1F1F1F", - # block_title_text_color="*primary_500", - block_title_background_fill_dark="*primary_900", - block_label_background_fill_dark="*primary_900", - input_background_fill="#F6F6F6", -) diff --git a/spaces/Alcedo/yunmedia/resources/chatgpt-plugin/index.html b/spaces/Alcedo/yunmedia/resources/chatgpt-plugin/index.html deleted file mode 100644 index 54d5c9b01b9bd6a6e89ff81a16526a699ea1a499..0000000000000000000000000000000000000000 --- a/spaces/Alcedo/yunmedia/resources/chatgpt-plugin/index.html +++ /dev/null @@ -1,20 +0,0 @@ - -ChatGPT-Plugin
\ No newline at end of file diff --git a/spaces/AlhitawiMohammed22/CER_Hu-Evaluation-Metrics/test_eval_cer.py b/spaces/AlhitawiMohammed22/CER_Hu-Evaluation-Metrics/test_eval_cer.py deleted file mode 100644 index 237a0131449abd482f1fa82ceed3f85fcea67eac..0000000000000000000000000000000000000000 --- a/spaces/AlhitawiMohammed22/CER_Hu-Evaluation-Metrics/test_eval_cer.py +++ /dev/null @@ -1,96 +0,0 @@ -import unittest -from cer import CER - -cer = CER() -class TestCER(unittest.TestCase): - def test_cer_case_sensitive(self): - refs = ["Magyar Országgyűlés"] - preds = ["Magyar Országgyűlés"] - # S = 2, D = 0, I = 0, N = 11, CER = 2 / 11 - char_error_rate = cer.compute(predictions=preds, references=refs) - self.assertTrue(abs(char_error_rate - 0.1818181818) < 1e-6) - - def test_cer_whitespace(self): - refs = ["Farkasok voltak"] - preds = ["Farkasokvoltak"] - # S = , D = , I = 1, N = , CER = I / N - char_error_rate = cer.compute(predictions=preds, references=refs) - self.assertTrue(abs(char_error_rate - 0.) < 1e-6) - - refs = ["Farkasokvoltak"] - preds = ["Ferkasok voltak"] - # S = , D = 1, I = 0, N = 14, CER = - char_error_rate = cer.compute(predictions=preds, references=refs) - self.assertTrue(abs(char_error_rate - 0.) < 1e-6) - - # consecutive whitespaces case 1 - refs = ["Farkasok voltak"] - preds = ["Farkasok voltak"] - # S = 0, D = 0, I = 0, N = , CER = 0 - char_error_rate = cer.compute(predictions=preds, references=refs) - self.assertTrue(abs(char_error_rate - 0.0) < 1e-6) - - # consecutive whitespaces case 2 - refs = ["Farkasok voltak"] - preds = ["Farkasok voltak"] - # S = 0, D = 0, I = 0, N = ?, CER = 0 - char_error_rate = cer.compute(predictions=preds, references=refs) - self.assertTrue(abs(char_error_rate - 0.0) < 1e-6) - - def test_cer_sub(self): - refs = ["Magyar"] - preds = ["Megyar"] - # S = 1, D = 0, I = 0, N = 6, CER = 0.125 - char_error_rate = cer.compute(predictions=preds, references=refs) - self.assertTrue(abs(char_error_rate - 0.125) < 1e-6) - - def test_cer_del(self): - refs = ["Farkasokvoltak"] - preds = ["Farkasokavoltak"] - # S = 0, D = 1, I = 0, N = 14, CER = 0. - char_error_rate = cer.compute(predictions=preds, references=refs) - self.assertTrue(abs(char_error_rate - 0.) < 1e-6) - - def test_cer_insert(self): - refs = ["Farkasokvoltak"] - preds = ["Farkasokoltak"] - # S = 0, D = 0, I = 1, N = 14, CER = 0. - char_error_rate = cer.compute(predictions=preds, references=refs) - self.assertTrue(abs(char_error_rate - 0.) < 1e-6) - - def test_cer_equal(self): - refs = ["Magyar"] - char_error_rate = cer.compute(predictions=refs, references=refs) - self.assertEqual(char_error_rate, 0.0) - - def test_cer_list_of_seqs(self): - # ['Eötvös Loránd University','I love my daughter'] - refs = ["Eötvös Loránd Tudományegyetem", "szeretem a lányom"] - char_error_rate = cer.compute(predictions=refs, references=refs) - self.assertEqual(char_error_rate, 0.0) - - refs = ["diák", "Az arab nyelvet könnyű megtanulni!", "autó"] - preds = ["dxák", "Az arab nyelvet könnyű megtanulni!", "autó"] - # S = 1, D = 0, I = 0, N = 28, CER = 1 / 42 - char_error_rate = cer.compute(predictions=preds, references=refs) - self.assertTrue(abs(char_error_rate - 0.0238095238) < 1e-6) - - def test_correlated_sentences(self): - # Learn artificial intelligence to secure your future - # Tanuljon mesterséges intelligenciát, hogy biztosítsa jövőjét - refs = ["Tanuljon mesterséges intelligenciát,", " hogy biztosítsa jövőjét"] - preds = ["Tanuljon mesterséges intelligenciát, hogy", " biztosítsa jövőjét"] - # S = 0, D = 0, I = 1, N = 28, CER = 2 / 60 - # whitespace at the front of " biztosítsa jövőjét" will be strip during preporcessing - # so need to insert 2 whitespaces - char_error_rate = cer.compute(predictions=preds, references=refs, concatenate_texts=True) - self.assertTrue(abs(char_error_rate - 0.03333333333) < 1e-6) - - def test_cer_empty(self): - refs = [""] - preds = ["tök mindegy"] - with self.assertRaises(ValueError): - cer.compute(predictions=preds, references=refs) - -if __name__ == "__main__": - unittest.main() \ No newline at end of file diff --git a/spaces/Alichuan/VITS-Umamusume-voice-synthesizer/ONNXVITS_modules.py b/spaces/Alichuan/VITS-Umamusume-voice-synthesizer/ONNXVITS_modules.py deleted file mode 100644 index 6cf676ce37c1eaf8428c4094e749f862182cb0c3..0000000000000000000000000000000000000000 --- a/spaces/Alichuan/VITS-Umamusume-voice-synthesizer/ONNXVITS_modules.py +++ /dev/null @@ -1,390 +0,0 @@ -import copy -import math -import numpy as np -import scipy -import torch -from torch import nn -from torch.nn import functional as F - -from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d -from torch.nn.utils import weight_norm, remove_weight_norm - -import commons -from commons import init_weights, get_padding -from ONNXVITS_transforms import piecewise_rational_quadratic_transform - - -LRELU_SLOPE = 0.1 - - -class LayerNorm(nn.Module): - def __init__(self, channels, eps=1e-5): - super().__init__() - self.channels = channels - self.eps = eps - - self.gamma = nn.Parameter(torch.ones(channels)) - self.beta = nn.Parameter(torch.zeros(channels)) - - def forward(self, x): - x = x.transpose(1, -1) - x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) - return x.transpose(1, -1) - - -class ConvReluNorm(nn.Module): - def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout): - super().__init__() - self.in_channels = in_channels - self.hidden_channels = hidden_channels - self.out_channels = out_channels - self.kernel_size = kernel_size - self.n_layers = n_layers - self.p_dropout = p_dropout - assert n_layers > 1, "Number of layers should be larger than 0." - - self.conv_layers = nn.ModuleList() - self.norm_layers = nn.ModuleList() - self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2)) - self.norm_layers.append(LayerNorm(hidden_channels)) - self.relu_drop = nn.Sequential( - nn.ReLU(), - nn.Dropout(p_dropout)) - for _ in range(n_layers-1): - self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2)) - self.norm_layers.append(LayerNorm(hidden_channels)) - self.proj = nn.Conv1d(hidden_channels, out_channels, 1) - self.proj.weight.data.zero_() - self.proj.bias.data.zero_() - - def forward(self, x, x_mask): - x_org = x - for i in range(self.n_layers): - x = self.conv_layers[i](x * x_mask) - x = self.norm_layers[i](x) - x = self.relu_drop(x) - x = x_org + self.proj(x) - return x * x_mask - - -class DDSConv(nn.Module): - """ - Dialted and Depth-Separable Convolution - """ - def __init__(self, channels, kernel_size, n_layers, p_dropout=0.): - super().__init__() - self.channels = channels - self.kernel_size = kernel_size - self.n_layers = n_layers - self.p_dropout = p_dropout - - self.drop = nn.Dropout(p_dropout) - self.convs_sep = nn.ModuleList() - self.convs_1x1 = nn.ModuleList() - self.norms_1 = nn.ModuleList() - self.norms_2 = nn.ModuleList() - for i in range(n_layers): - dilation = kernel_size ** i - padding = (kernel_size * dilation - dilation) // 2 - self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size, - groups=channels, dilation=dilation, padding=padding - )) - self.convs_1x1.append(nn.Conv1d(channels, channels, 1)) - self.norms_1.append(LayerNorm(channels)) - self.norms_2.append(LayerNorm(channels)) - - def forward(self, x, x_mask, g=None): - if g is not None: - x = x + g - for i in range(self.n_layers): - y = self.convs_sep[i](x * x_mask) - y = self.norms_1[i](y) - y = F.gelu(y) - y = self.convs_1x1[i](y) - y = self.norms_2[i](y) - y = F.gelu(y) - y = self.drop(y) - x = x + y - return x * x_mask - - -class WN(torch.nn.Module): - def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0): - super(WN, self).__init__() - assert(kernel_size % 2 == 1) - self.hidden_channels =hidden_channels - self.kernel_size = kernel_size, - self.dilation_rate = dilation_rate - self.n_layers = n_layers - self.gin_channels = gin_channels - self.p_dropout = p_dropout - - self.in_layers = torch.nn.ModuleList() - self.res_skip_layers = torch.nn.ModuleList() - self.drop = nn.Dropout(p_dropout) - - if gin_channels != 0: - cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1) - self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight') - - for i in range(n_layers): - dilation = dilation_rate ** i - padding = int((kernel_size * dilation - dilation) / 2) - in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size, - dilation=dilation, padding=padding) - in_layer = torch.nn.utils.weight_norm(in_layer, name='weight') - self.in_layers.append(in_layer) - - # last one is not necessary - if i < n_layers - 1: - res_skip_channels = 2 * hidden_channels - else: - res_skip_channels = hidden_channels - - res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1) - res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight') - self.res_skip_layers.append(res_skip_layer) - - def forward(self, x, x_mask, g=None, **kwargs): - output = torch.zeros_like(x) - n_channels_tensor = torch.IntTensor([self.hidden_channels]) - - if g is not None: - g = self.cond_layer(g) - - for i in range(self.n_layers): - x_in = self.in_layers[i](x) - if g is not None: - cond_offset = i * 2 * self.hidden_channels - g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:] - else: - g_l = torch.zeros_like(x_in) - - acts = commons.fused_add_tanh_sigmoid_multiply( - x_in, - g_l, - n_channels_tensor) - acts = self.drop(acts) - - res_skip_acts = self.res_skip_layers[i](acts) - if i < self.n_layers - 1: - res_acts = res_skip_acts[:,:self.hidden_channels,:] - x = (x + res_acts) * x_mask - output = output + res_skip_acts[:,self.hidden_channels:,:] - else: - output = output + res_skip_acts - return output * x_mask - - def remove_weight_norm(self): - if self.gin_channels != 0: - torch.nn.utils.remove_weight_norm(self.cond_layer) - for l in self.in_layers: - torch.nn.utils.remove_weight_norm(l) - for l in self.res_skip_layers: - torch.nn.utils.remove_weight_norm(l) - - -class ResBlock1(torch.nn.Module): - def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): - super(ResBlock1, self).__init__() - self.convs1 = nn.ModuleList([ - weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], - padding=get_padding(kernel_size, dilation[0]))), - weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], - padding=get_padding(kernel_size, dilation[1]))), - weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], - padding=get_padding(kernel_size, dilation[2]))) - ]) - self.convs1.apply(init_weights) - - self.convs2 = nn.ModuleList([ - weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, - padding=get_padding(kernel_size, 1))), - weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, - padding=get_padding(kernel_size, 1))), - weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, - padding=get_padding(kernel_size, 1))) - ]) - self.convs2.apply(init_weights) - - def forward(self, x, x_mask=None): - for c1, c2 in zip(self.convs1, self.convs2): - xt = F.leaky_relu(x, LRELU_SLOPE) - if x_mask is not None: - xt = xt * x_mask - xt = c1(xt) - xt = F.leaky_relu(xt, LRELU_SLOPE) - if x_mask is not None: - xt = xt * x_mask - xt = c2(xt) - x = xt + x - if x_mask is not None: - x = x * x_mask - return x - - def remove_weight_norm(self): - for l in self.convs1: - remove_weight_norm(l) - for l in self.convs2: - remove_weight_norm(l) - - -class ResBlock2(torch.nn.Module): - def __init__(self, channels, kernel_size=3, dilation=(1, 3)): - super(ResBlock2, self).__init__() - self.convs = nn.ModuleList([ - weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], - padding=get_padding(kernel_size, dilation[0]))), - weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], - padding=get_padding(kernel_size, dilation[1]))) - ]) - self.convs.apply(init_weights) - - def forward(self, x, x_mask=None): - for c in self.convs: - xt = F.leaky_relu(x, LRELU_SLOPE) - if x_mask is not None: - xt = xt * x_mask - xt = c(xt) - x = xt + x - if x_mask is not None: - x = x * x_mask - return x - - def remove_weight_norm(self): - for l in self.convs: - remove_weight_norm(l) - - -class Log(nn.Module): - def forward(self, x, x_mask, reverse=False, **kwargs): - if not reverse: - y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask - logdet = torch.sum(-y, [1, 2]) - return y, logdet - else: - x = torch.exp(x) * x_mask - return x - - -class Flip(nn.Module): - def forward(self, x, *args, reverse=False, **kwargs): - x = torch.flip(x, [1]) - if not reverse: - logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) - return x, logdet - else: - return x - - -class ElementwiseAffine(nn.Module): - def __init__(self, channels): - super().__init__() - self.channels = channels - self.m = nn.Parameter(torch.zeros(channels,1)) - self.logs = nn.Parameter(torch.zeros(channels,1)) - - def forward(self, x, x_mask, reverse=False, **kwargs): - if not reverse: - y = self.m + torch.exp(self.logs) * x - y = y * x_mask - logdet = torch.sum(self.logs * x_mask, [1,2]) - return y, logdet - else: - x = (x - self.m) * torch.exp(-self.logs) * x_mask - return x - - -class ResidualCouplingLayer(nn.Module): - def __init__(self, - channels, - hidden_channels, - kernel_size, - dilation_rate, - n_layers, - p_dropout=0, - gin_channels=0, - mean_only=False): - assert channels % 2 == 0, "channels should be divisible by 2" - super().__init__() - self.channels = channels - self.hidden_channels = hidden_channels - self.kernel_size = kernel_size - self.dilation_rate = dilation_rate - self.n_layers = n_layers - self.half_channels = channels // 2 - self.mean_only = mean_only - - self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) - self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels) - self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) - self.post.weight.data.zero_() - self.post.bias.data.zero_() - - def forward(self, x, x_mask, g=None, reverse=False): - x0, x1 = torch.split(x, [self.half_channels]*2, 1) - h = self.pre(x0) * x_mask - h = self.enc(h, x_mask, g=g) - stats = self.post(h) * x_mask - if not self.mean_only: - m, logs = torch.split(stats, [self.half_channels]*2, 1) - else: - m = stats - logs = torch.zeros_like(m) - - if not reverse: - x1 = m + x1 * torch.exp(logs) * x_mask - x = torch.cat([x0, x1], 1) - logdet = torch.sum(logs, [1,2]) - return x, logdet - else: - x1 = (x1 - m) * torch.exp(-logs) * x_mask - x = torch.cat([x0, x1], 1) - return x - - -class ConvFlow(nn.Module): - def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0): - super().__init__() - self.in_channels = in_channels - self.filter_channels = filter_channels - self.kernel_size = kernel_size - self.n_layers = n_layers - self.num_bins = num_bins - self.tail_bound = tail_bound - self.half_channels = in_channels // 2 - - self.pre = nn.Conv1d(self.half_channels, filter_channels, 1) - self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.) - self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1) - self.proj.weight.data.zero_() - self.proj.bias.data.zero_() - - def forward(self, x, x_mask, g=None, reverse=False): - x0, x1 = torch.split(x, [self.half_channels]*2, 1) - h = self.pre(x0) - h = self.convs(h, x_mask, g=g) - h = self.proj(h) * x_mask - - b, c, t = x0.shape - h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?] - - unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels) - unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels) - unnormalized_derivatives = h[..., 2 * self.num_bins:] - - x1, logabsdet = piecewise_rational_quadratic_transform(x1, - unnormalized_widths, - unnormalized_heights, - unnormalized_derivatives, - inverse=reverse, - tails='linear', - tail_bound=self.tail_bound - ) - - x = torch.cat([x0, x1], 1) * x_mask - logdet = torch.sum(logabsdet * x_mask, [1,2]) - if not reverse: - return x, logdet - else: - return x diff --git a/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/tests/pipelines/spectrogram_diffusion/test_spectrogram_diffusion.py b/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/tests/pipelines/spectrogram_diffusion/test_spectrogram_diffusion.py deleted file mode 100644 index 7f5fe80bf10b4b074c6031680e7b826bb0f23405..0000000000000000000000000000000000000000 --- a/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/tests/pipelines/spectrogram_diffusion/test_spectrogram_diffusion.py +++ /dev/null @@ -1,239 +0,0 @@ -# coding=utf-8 -# Copyright 2022 HuggingFace Inc. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import gc -import unittest - -import numpy as np -import torch - -from diffusers import DDPMScheduler, MidiProcessor, SpectrogramDiffusionPipeline -from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, T5FilmDecoder -from diffusers.utils import require_torch_gpu, skip_mps, slow, torch_device -from diffusers.utils.testing_utils import enable_full_determinism, require_note_seq, require_onnxruntime - -from ..pipeline_params import TOKENS_TO_AUDIO_GENERATION_BATCH_PARAMS, TOKENS_TO_AUDIO_GENERATION_PARAMS -from ..test_pipelines_common import PipelineTesterMixin - - -enable_full_determinism() - - -MIDI_FILE = "./tests/fixtures/elise_format0.mid" - - -# The note-seq package throws an error on import because the default installed version of Ipython -# is not compatible with python 3.8 which we run in the CI. -# https://github.com/huggingface/diffusers/actions/runs/4830121056/jobs/8605954838#step:7:98 -@unittest.skip("The note-seq package currently throws an error on import") -class SpectrogramDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase): - pipeline_class = SpectrogramDiffusionPipeline - required_optional_params = PipelineTesterMixin.required_optional_params - { - "callback", - "latents", - "callback_steps", - "output_type", - "num_images_per_prompt", - } - test_attention_slicing = False - - batch_params = TOKENS_TO_AUDIO_GENERATION_PARAMS - params = TOKENS_TO_AUDIO_GENERATION_BATCH_PARAMS - - def get_dummy_components(self): - torch.manual_seed(0) - notes_encoder = SpectrogramNotesEncoder( - max_length=2048, - vocab_size=1536, - d_model=768, - dropout_rate=0.1, - num_layers=1, - num_heads=1, - d_kv=4, - d_ff=2048, - feed_forward_proj="gated-gelu", - ) - - continuous_encoder = SpectrogramContEncoder( - input_dims=128, - targets_context_length=256, - d_model=768, - dropout_rate=0.1, - num_layers=1, - num_heads=1, - d_kv=4, - d_ff=2048, - feed_forward_proj="gated-gelu", - ) - - decoder = T5FilmDecoder( - input_dims=128, - targets_length=256, - max_decoder_noise_time=20000.0, - d_model=768, - num_layers=1, - num_heads=1, - d_kv=4, - d_ff=2048, - dropout_rate=0.1, - ) - - scheduler = DDPMScheduler() - - components = { - "notes_encoder": notes_encoder.eval(), - "continuous_encoder": continuous_encoder.eval(), - "decoder": decoder.eval(), - "scheduler": scheduler, - "melgan": None, - } - return components - - def get_dummy_inputs(self, device, seed=0): - if str(device).startswith("mps"): - generator = torch.manual_seed(seed) - else: - generator = torch.Generator(device=device).manual_seed(seed) - inputs = { - "input_tokens": [ - [1134, 90, 1135, 1133, 1080, 112, 1132, 1080, 1133, 1079, 133, 1132, 1079, 1133, 1] + [0] * 2033 - ], - "generator": generator, - "num_inference_steps": 4, - "output_type": "mel", - } - return inputs - - def test_spectrogram_diffusion(self): - device = "cpu" # ensure determinism for the device-dependent torch.Generator - components = self.get_dummy_components() - pipe = SpectrogramDiffusionPipeline(**components) - pipe = pipe.to(device) - pipe.set_progress_bar_config(disable=None) - - inputs = self.get_dummy_inputs(device) - output = pipe(**inputs) - mel = output.audios - - mel_slice = mel[0, -3:, -3:] - - assert mel_slice.shape == (3, 3) - expected_slice = np.array( - [-11.512925, -4.788215, -0.46172905, -2.051715, -10.539147, -10.970963, -9.091634, 4.0, 4.0] - ) - assert np.abs(mel_slice.flatten() - expected_slice).max() < 1e-2 - - @skip_mps - def test_save_load_local(self): - return super().test_save_load_local() - - @skip_mps - def test_dict_tuple_outputs_equivalent(self): - return super().test_dict_tuple_outputs_equivalent() - - @skip_mps - def test_save_load_optional_components(self): - return super().test_save_load_optional_components() - - @skip_mps - def test_attention_slicing_forward_pass(self): - return super().test_attention_slicing_forward_pass() - - def test_inference_batch_single_identical(self): - pass - - def test_inference_batch_consistent(self): - pass - - @skip_mps - def test_progress_bar(self): - return super().test_progress_bar() - - -@slow -@require_torch_gpu -@require_onnxruntime -@require_note_seq -class PipelineIntegrationTests(unittest.TestCase): - def tearDown(self): - # clean up the VRAM after each test - super().tearDown() - gc.collect() - torch.cuda.empty_cache() - - def test_callback(self): - # TODO - test that pipeline can decode tokens in a callback - # so that music can be played live - device = torch_device - - pipe = SpectrogramDiffusionPipeline.from_pretrained("google/music-spectrogram-diffusion") - melgan = pipe.melgan - pipe.melgan = None - - pipe = pipe.to(device) - pipe.set_progress_bar_config(disable=None) - - def callback(step, mel_output): - # decode mel to audio - audio = melgan(input_features=mel_output.astype(np.float32))[0] - assert len(audio[0]) == 81920 * (step + 1) - # simulate that audio is played - return audio - - processor = MidiProcessor() - input_tokens = processor(MIDI_FILE) - - input_tokens = input_tokens[:3] - generator = torch.manual_seed(0) - pipe(input_tokens, num_inference_steps=5, generator=generator, callback=callback, output_type="mel") - - def test_spectrogram_fast(self): - device = torch_device - - pipe = SpectrogramDiffusionPipeline.from_pretrained("google/music-spectrogram-diffusion") - pipe = pipe.to(device) - pipe.set_progress_bar_config(disable=None) - processor = MidiProcessor() - - input_tokens = processor(MIDI_FILE) - # just run two denoising loops - input_tokens = input_tokens[:2] - - generator = torch.manual_seed(0) - output = pipe(input_tokens, num_inference_steps=2, generator=generator) - - audio = output.audios[0] - - assert abs(np.abs(audio).sum() - 3612.841) < 1e-1 - - def test_spectrogram(self): - device = torch_device - - pipe = SpectrogramDiffusionPipeline.from_pretrained("google/music-spectrogram-diffusion") - pipe = pipe.to(device) - pipe.set_progress_bar_config(disable=None) - - processor = MidiProcessor() - - input_tokens = processor(MIDI_FILE) - - # just run 4 denoising loops - input_tokens = input_tokens[:4] - - generator = torch.manual_seed(0) - output = pipe(input_tokens, num_inference_steps=100, generator=generator) - - audio = output.audios[0] - assert abs(np.abs(audio).sum() - 9389.1111) < 5e-2 diff --git a/spaces/Andy1621/uniformer_image_detection/configs/hrnet/faster_rcnn_hrnetv2p_w32_1x_coco.py b/spaces/Andy1621/uniformer_image_detection/configs/hrnet/faster_rcnn_hrnetv2p_w32_1x_coco.py deleted file mode 100644 index 190e81c710b0e5e9eb34bafff01c9dd4a8ef130c..0000000000000000000000000000000000000000 --- a/spaces/Andy1621/uniformer_image_detection/configs/hrnet/faster_rcnn_hrnetv2p_w32_1x_coco.py +++ /dev/null @@ -1,36 +0,0 @@ -_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py' -model = dict( - pretrained='open-mmlab://msra/hrnetv2_w32', - backbone=dict( - _delete_=True, - type='HRNet', - extra=dict( - stage1=dict( - num_modules=1, - num_branches=1, - block='BOTTLENECK', - num_blocks=(4, ), - num_channels=(64, )), - stage2=dict( - num_modules=1, - num_branches=2, - block='BASIC', - num_blocks=(4, 4), - num_channels=(32, 64)), - stage3=dict( - num_modules=4, - num_branches=3, - block='BASIC', - num_blocks=(4, 4, 4), - num_channels=(32, 64, 128)), - stage4=dict( - num_modules=3, - num_branches=4, - block='BASIC', - num_blocks=(4, 4, 4, 4), - num_channels=(32, 64, 128, 256)))), - neck=dict( - _delete_=True, - type='HRFPN', - in_channels=[32, 64, 128, 256], - out_channels=256)) diff --git a/spaces/Andy1621/uniformer_image_detection/configs/resnest/cascade_mask_rcnn_s101_fpn_syncbn-backbone+head_mstrain_1x_coco.py b/spaces/Andy1621/uniformer_image_detection/configs/resnest/cascade_mask_rcnn_s101_fpn_syncbn-backbone+head_mstrain_1x_coco.py deleted file mode 100644 index 3995603a6cee82a7d7cff620cb8bffe14b15b6a1..0000000000000000000000000000000000000000 --- a/spaces/Andy1621/uniformer_image_detection/configs/resnest/cascade_mask_rcnn_s101_fpn_syncbn-backbone+head_mstrain_1x_coco.py +++ /dev/null @@ -1,4 +0,0 @@ -_base_ = './cascade_mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py' -model = dict( - pretrained='open-mmlab://resnest101', - backbone=dict(stem_channels=128, depth=101)) diff --git a/spaces/Andy1621/uniformer_image_detection/mmdet/models/dense_heads/gfl_head.py b/spaces/Andy1621/uniformer_image_detection/mmdet/models/dense_heads/gfl_head.py deleted file mode 100644 index 961bc92237663ad5343d3d08eb9c0e4e811ada05..0000000000000000000000000000000000000000 --- a/spaces/Andy1621/uniformer_image_detection/mmdet/models/dense_heads/gfl_head.py +++ /dev/null @@ -1,647 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F -from mmcv.cnn import ConvModule, Scale, bias_init_with_prob, normal_init -from mmcv.runner import force_fp32 - -from mmdet.core import (anchor_inside_flags, bbox2distance, bbox_overlaps, - build_assigner, build_sampler, distance2bbox, - images_to_levels, multi_apply, multiclass_nms, - reduce_mean, unmap) -from ..builder import HEADS, build_loss -from .anchor_head import AnchorHead - - -class Integral(nn.Module): - """A fixed layer for calculating integral result from distribution. - - This layer calculates the target location by :math: `sum{P(y_i) * y_i}`, - P(y_i) denotes the softmax vector that represents the discrete distribution - y_i denotes the discrete set, usually {0, 1, 2, ..., reg_max} - - Args: - reg_max (int): The maximal value of the discrete set. Default: 16. You - may want to reset it according to your new dataset or related - settings. - """ - - def __init__(self, reg_max=16): - super(Integral, self).__init__() - self.reg_max = reg_max - self.register_buffer('project', - torch.linspace(0, self.reg_max, self.reg_max + 1)) - - def forward(self, x): - """Forward feature from the regression head to get integral result of - bounding box location. - - Args: - x (Tensor): Features of the regression head, shape (N, 4*(n+1)), - n is self.reg_max. - - Returns: - x (Tensor): Integral result of box locations, i.e., distance - offsets from the box center in four directions, shape (N, 4). - """ - x = F.softmax(x.reshape(-1, self.reg_max + 1), dim=1) - x = F.linear(x, self.project.type_as(x)).reshape(-1, 4) - return x - - -@HEADS.register_module() -class GFLHead(AnchorHead): - """Generalized Focal Loss: Learning Qualified and Distributed Bounding - Boxes for Dense Object Detection. - - GFL head structure is similar with ATSS, however GFL uses - 1) joint representation for classification and localization quality, and - 2) flexible General distribution for bounding box locations, - which are supervised by - Quality Focal Loss (QFL) and Distribution Focal Loss (DFL), respectively - - https://arxiv.org/abs/2006.04388 - - Args: - num_classes (int): Number of categories excluding the background - category. - in_channels (int): Number of channels in the input feature map. - stacked_convs (int): Number of conv layers in cls and reg tower. - Default: 4. - conv_cfg (dict): dictionary to construct and config conv layer. - Default: None. - norm_cfg (dict): dictionary to construct and config norm layer. - Default: dict(type='GN', num_groups=32, requires_grad=True). - loss_qfl (dict): Config of Quality Focal Loss (QFL). - reg_max (int): Max value of integral set :math: `{0, ..., reg_max}` - in QFL setting. Default: 16. - Example: - >>> self = GFLHead(11, 7) - >>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]] - >>> cls_quality_score, bbox_pred = self.forward(feats) - >>> assert len(cls_quality_score) == len(self.scales) - """ - - def __init__(self, - num_classes, - in_channels, - stacked_convs=4, - conv_cfg=None, - norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), - loss_dfl=dict(type='DistributionFocalLoss', loss_weight=0.25), - reg_max=16, - **kwargs): - self.stacked_convs = stacked_convs - self.conv_cfg = conv_cfg - self.norm_cfg = norm_cfg - self.reg_max = reg_max - super(GFLHead, self).__init__(num_classes, in_channels, **kwargs) - - self.sampling = False - if self.train_cfg: - self.assigner = build_assigner(self.train_cfg.assigner) - # SSD sampling=False so use PseudoSampler - sampler_cfg = dict(type='PseudoSampler') - self.sampler = build_sampler(sampler_cfg, context=self) - - self.integral = Integral(self.reg_max) - self.loss_dfl = build_loss(loss_dfl) - - def _init_layers(self): - """Initialize layers of the head.""" - self.relu = nn.ReLU(inplace=True) - self.cls_convs = nn.ModuleList() - self.reg_convs = nn.ModuleList() - for i in range(self.stacked_convs): - chn = self.in_channels if i == 0 else self.feat_channels - self.cls_convs.append( - ConvModule( - chn, - self.feat_channels, - 3, - stride=1, - padding=1, - conv_cfg=self.conv_cfg, - norm_cfg=self.norm_cfg)) - self.reg_convs.append( - ConvModule( - chn, - self.feat_channels, - 3, - stride=1, - padding=1, - conv_cfg=self.conv_cfg, - norm_cfg=self.norm_cfg)) - assert self.num_anchors == 1, 'anchor free version' - self.gfl_cls = nn.Conv2d( - self.feat_channels, self.cls_out_channels, 3, padding=1) - self.gfl_reg = nn.Conv2d( - self.feat_channels, 4 * (self.reg_max + 1), 3, padding=1) - self.scales = nn.ModuleList( - [Scale(1.0) for _ in self.anchor_generator.strides]) - - def init_weights(self): - """Initialize weights of the head.""" - for m in self.cls_convs: - normal_init(m.conv, std=0.01) - for m in self.reg_convs: - normal_init(m.conv, std=0.01) - bias_cls = bias_init_with_prob(0.01) - normal_init(self.gfl_cls, std=0.01, bias=bias_cls) - normal_init(self.gfl_reg, std=0.01) - - def forward(self, feats): - """Forward features from the upstream network. - - Args: - feats (tuple[Tensor]): Features from the upstream network, each is - a 4D-tensor. - - Returns: - tuple: Usually a tuple of classification scores and bbox prediction - cls_scores (list[Tensor]): Classification and quality (IoU) - joint scores for all scale levels, each is a 4D-tensor, - the channel number is num_classes. - bbox_preds (list[Tensor]): Box distribution logits for all - scale levels, each is a 4D-tensor, the channel number is - 4*(n+1), n is max value of integral set. - """ - return multi_apply(self.forward_single, feats, self.scales) - - def forward_single(self, x, scale): - """Forward feature of a single scale level. - - Args: - x (Tensor): Features of a single scale level. - scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize - the bbox prediction. - - Returns: - tuple: - cls_score (Tensor): Cls and quality joint scores for a single - scale level the channel number is num_classes. - bbox_pred (Tensor): Box distribution logits for a single scale - level, the channel number is 4*(n+1), n is max value of - integral set. - """ - cls_feat = x - reg_feat = x - for cls_conv in self.cls_convs: - cls_feat = cls_conv(cls_feat) - for reg_conv in self.reg_convs: - reg_feat = reg_conv(reg_feat) - cls_score = self.gfl_cls(cls_feat) - bbox_pred = scale(self.gfl_reg(reg_feat)).float() - return cls_score, bbox_pred - - def anchor_center(self, anchors): - """Get anchor centers from anchors. - - Args: - anchors (Tensor): Anchor list with shape (N, 4), "xyxy" format. - - Returns: - Tensor: Anchor centers with shape (N, 2), "xy" format. - """ - anchors_cx = (anchors[..., 2] + anchors[..., 0]) / 2 - anchors_cy = (anchors[..., 3] + anchors[..., 1]) / 2 - return torch.stack([anchors_cx, anchors_cy], dim=-1) - - def loss_single(self, anchors, cls_score, bbox_pred, labels, label_weights, - bbox_targets, stride, num_total_samples): - """Compute loss of a single scale level. - - Args: - anchors (Tensor): Box reference for each scale level with shape - (N, num_total_anchors, 4). - cls_score (Tensor): Cls and quality joint scores for each scale - level has shape (N, num_classes, H, W). - bbox_pred (Tensor): Box distribution logits for each scale - level with shape (N, 4*(n+1), H, W), n is max value of integral - set. - labels (Tensor): Labels of each anchors with shape - (N, num_total_anchors). - label_weights (Tensor): Label weights of each anchor with shape - (N, num_total_anchors) - bbox_targets (Tensor): BBox regression targets of each anchor wight - shape (N, num_total_anchors, 4). - stride (tuple): Stride in this scale level. - num_total_samples (int): Number of positive samples that is - reduced over all GPUs. - - Returns: - dict[str, Tensor]: A dictionary of loss components. - """ - assert stride[0] == stride[1], 'h stride is not equal to w stride!' - anchors = anchors.reshape(-1, 4) - cls_score = cls_score.permute(0, 2, 3, - 1).reshape(-1, self.cls_out_channels) - bbox_pred = bbox_pred.permute(0, 2, 3, - 1).reshape(-1, 4 * (self.reg_max + 1)) - bbox_targets = bbox_targets.reshape(-1, 4) - labels = labels.reshape(-1) - label_weights = label_weights.reshape(-1) - - # FG cat_id: [0, num_classes -1], BG cat_id: num_classes - bg_class_ind = self.num_classes - pos_inds = ((labels >= 0) - & (labels < bg_class_ind)).nonzero().squeeze(1) - score = label_weights.new_zeros(labels.shape) - - if len(pos_inds) > 0: - pos_bbox_targets = bbox_targets[pos_inds] - pos_bbox_pred = bbox_pred[pos_inds] - pos_anchors = anchors[pos_inds] - pos_anchor_centers = self.anchor_center(pos_anchors) / stride[0] - - weight_targets = cls_score.detach().sigmoid() - weight_targets = weight_targets.max(dim=1)[0][pos_inds] - pos_bbox_pred_corners = self.integral(pos_bbox_pred) - pos_decode_bbox_pred = distance2bbox(pos_anchor_centers, - pos_bbox_pred_corners) - pos_decode_bbox_targets = pos_bbox_targets / stride[0] - score[pos_inds] = bbox_overlaps( - pos_decode_bbox_pred.detach(), - pos_decode_bbox_targets, - is_aligned=True) - pred_corners = pos_bbox_pred.reshape(-1, self.reg_max + 1) - target_corners = bbox2distance(pos_anchor_centers, - pos_decode_bbox_targets, - self.reg_max).reshape(-1) - - # regression loss - loss_bbox = self.loss_bbox( - pos_decode_bbox_pred, - pos_decode_bbox_targets, - weight=weight_targets, - avg_factor=1.0) - - # dfl loss - loss_dfl = self.loss_dfl( - pred_corners, - target_corners, - weight=weight_targets[:, None].expand(-1, 4).reshape(-1), - avg_factor=4.0) - else: - loss_bbox = bbox_pred.sum() * 0 - loss_dfl = bbox_pred.sum() * 0 - weight_targets = bbox_pred.new_tensor(0) - - # cls (qfl) loss - loss_cls = self.loss_cls( - cls_score, (labels, score), - weight=label_weights, - avg_factor=num_total_samples) - - return loss_cls, loss_bbox, loss_dfl, weight_targets.sum() - - @force_fp32(apply_to=('cls_scores', 'bbox_preds')) - def loss(self, - cls_scores, - bbox_preds, - gt_bboxes, - gt_labels, - img_metas, - gt_bboxes_ignore=None): - """Compute losses of the head. - - Args: - cls_scores (list[Tensor]): Cls and quality scores for each scale - level has shape (N, num_classes, H, W). - bbox_preds (list[Tensor]): Box distribution logits for each scale - level with shape (N, 4*(n+1), H, W), n is max value of integral - set. - gt_bboxes (list[Tensor]): Ground truth bboxes for each image with - shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. - gt_labels (list[Tensor]): class indices corresponding to each box - img_metas (list[dict]): Meta information of each image, e.g., - image size, scaling factor, etc. - gt_bboxes_ignore (list[Tensor] | None): specify which bounding - boxes can be ignored when computing the loss. - - Returns: - dict[str, Tensor]: A dictionary of loss components. - """ - - featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] - assert len(featmap_sizes) == self.anchor_generator.num_levels - - device = cls_scores[0].device - anchor_list, valid_flag_list = self.get_anchors( - featmap_sizes, img_metas, device=device) - label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 - - cls_reg_targets = self.get_targets( - anchor_list, - valid_flag_list, - gt_bboxes, - img_metas, - gt_bboxes_ignore_list=gt_bboxes_ignore, - gt_labels_list=gt_labels, - label_channels=label_channels) - if cls_reg_targets is None: - return None - - (anchor_list, labels_list, label_weights_list, bbox_targets_list, - bbox_weights_list, num_total_pos, num_total_neg) = cls_reg_targets - - num_total_samples = reduce_mean( - torch.tensor(num_total_pos, dtype=torch.float, - device=device)).item() - num_total_samples = max(num_total_samples, 1.0) - - losses_cls, losses_bbox, losses_dfl,\ - avg_factor = multi_apply( - self.loss_single, - anchor_list, - cls_scores, - bbox_preds, - labels_list, - label_weights_list, - bbox_targets_list, - self.anchor_generator.strides, - num_total_samples=num_total_samples) - - avg_factor = sum(avg_factor) - avg_factor = reduce_mean(avg_factor).item() - losses_bbox = list(map(lambda x: x / avg_factor, losses_bbox)) - losses_dfl = list(map(lambda x: x / avg_factor, losses_dfl)) - return dict( - loss_cls=losses_cls, loss_bbox=losses_bbox, loss_dfl=losses_dfl) - - def _get_bboxes(self, - cls_scores, - bbox_preds, - mlvl_anchors, - img_shapes, - scale_factors, - cfg, - rescale=False, - with_nms=True): - """Transform outputs for a single batch item into labeled boxes. - - Args: - cls_scores (list[Tensor]): Box scores for a single scale level - has shape (N, num_classes, H, W). - bbox_preds (list[Tensor]): Box distribution logits for a single - scale level with shape (N, 4*(n+1), H, W), n is max value of - integral set. - mlvl_anchors (list[Tensor]): Box reference for a single scale level - with shape (num_total_anchors, 4). - img_shapes (list[tuple[int]]): Shape of the input image, - list[(height, width, 3)]. - scale_factors (list[ndarray]): Scale factor of the image arange as - (w_scale, h_scale, w_scale, h_scale). - cfg (mmcv.Config | None): Test / postprocessing configuration, - if None, test_cfg would be used. - rescale (bool): If True, return boxes in original image space. - Default: False. - with_nms (bool): If True, do nms before return boxes. - Default: True. - - Returns: - list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. - The first item is an (n, 5) tensor, where 5 represent - (tl_x, tl_y, br_x, br_y, score) and the score between 0 and 1. - The shape of the second tensor in the tuple is (n,), and - each element represents the class label of the corresponding - box. - """ - cfg = self.test_cfg if cfg is None else cfg - assert len(cls_scores) == len(bbox_preds) == len(mlvl_anchors) - batch_size = cls_scores[0].shape[0] - - mlvl_bboxes = [] - mlvl_scores = [] - for cls_score, bbox_pred, stride, anchors in zip( - cls_scores, bbox_preds, self.anchor_generator.strides, - mlvl_anchors): - assert cls_score.size()[-2:] == bbox_pred.size()[-2:] - assert stride[0] == stride[1] - scores = cls_score.permute(0, 2, 3, 1).reshape( - batch_size, -1, self.cls_out_channels).sigmoid() - bbox_pred = bbox_pred.permute(0, 2, 3, 1) - - bbox_pred = self.integral(bbox_pred) * stride[0] - bbox_pred = bbox_pred.reshape(batch_size, -1, 4) - - nms_pre = cfg.get('nms_pre', -1) - if nms_pre > 0 and scores.shape[1] > nms_pre: - max_scores, _ = scores.max(-1) - _, topk_inds = max_scores.topk(nms_pre) - batch_inds = torch.arange(batch_size).view( - -1, 1).expand_as(topk_inds).long() - anchors = anchors[topk_inds, :] - bbox_pred = bbox_pred[batch_inds, topk_inds, :] - scores = scores[batch_inds, topk_inds, :] - else: - anchors = anchors.expand_as(bbox_pred) - - bboxes = distance2bbox( - self.anchor_center(anchors), bbox_pred, max_shape=img_shapes) - mlvl_bboxes.append(bboxes) - mlvl_scores.append(scores) - - batch_mlvl_bboxes = torch.cat(mlvl_bboxes, dim=1) - if rescale: - batch_mlvl_bboxes /= batch_mlvl_bboxes.new_tensor( - scale_factors).unsqueeze(1) - - batch_mlvl_scores = torch.cat(mlvl_scores, dim=1) - # Add a dummy background class to the backend when using sigmoid - # remind that we set FG labels to [0, num_class-1] since mmdet v2.0 - # BG cat_id: num_class - padding = batch_mlvl_scores.new_zeros(batch_size, - batch_mlvl_scores.shape[1], 1) - batch_mlvl_scores = torch.cat([batch_mlvl_scores, padding], dim=-1) - - if with_nms: - det_results = [] - for (mlvl_bboxes, mlvl_scores) in zip(batch_mlvl_bboxes, - batch_mlvl_scores): - det_bbox, det_label = multiclass_nms(mlvl_bboxes, mlvl_scores, - cfg.score_thr, cfg.nms, - cfg.max_per_img) - det_results.append(tuple([det_bbox, det_label])) - else: - det_results = [ - tuple(mlvl_bs) - for mlvl_bs in zip(batch_mlvl_bboxes, batch_mlvl_scores) - ] - return det_results - - def get_targets(self, - anchor_list, - valid_flag_list, - gt_bboxes_list, - img_metas, - gt_bboxes_ignore_list=None, - gt_labels_list=None, - label_channels=1, - unmap_outputs=True): - """Get targets for GFL head. - - This method is almost the same as `AnchorHead.get_targets()`. Besides - returning the targets as the parent method does, it also returns the - anchors as the first element of the returned tuple. - """ - num_imgs = len(img_metas) - assert len(anchor_list) == len(valid_flag_list) == num_imgs - - # anchor number of multi levels - num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] - num_level_anchors_list = [num_level_anchors] * num_imgs - - # concat all level anchors and flags to a single tensor - for i in range(num_imgs): - assert len(anchor_list[i]) == len(valid_flag_list[i]) - anchor_list[i] = torch.cat(anchor_list[i]) - valid_flag_list[i] = torch.cat(valid_flag_list[i]) - - # compute targets for each image - if gt_bboxes_ignore_list is None: - gt_bboxes_ignore_list = [None for _ in range(num_imgs)] - if gt_labels_list is None: - gt_labels_list = [None for _ in range(num_imgs)] - (all_anchors, all_labels, all_label_weights, all_bbox_targets, - all_bbox_weights, pos_inds_list, neg_inds_list) = multi_apply( - self._get_target_single, - anchor_list, - valid_flag_list, - num_level_anchors_list, - gt_bboxes_list, - gt_bboxes_ignore_list, - gt_labels_list, - img_metas, - label_channels=label_channels, - unmap_outputs=unmap_outputs) - # no valid anchors - if any([labels is None for labels in all_labels]): - return None - # sampled anchors of all images - num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list]) - num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list]) - # split targets to a list w.r.t. multiple levels - anchors_list = images_to_levels(all_anchors, num_level_anchors) - labels_list = images_to_levels(all_labels, num_level_anchors) - label_weights_list = images_to_levels(all_label_weights, - num_level_anchors) - bbox_targets_list = images_to_levels(all_bbox_targets, - num_level_anchors) - bbox_weights_list = images_to_levels(all_bbox_weights, - num_level_anchors) - return (anchors_list, labels_list, label_weights_list, - bbox_targets_list, bbox_weights_list, num_total_pos, - num_total_neg) - - def _get_target_single(self, - flat_anchors, - valid_flags, - num_level_anchors, - gt_bboxes, - gt_bboxes_ignore, - gt_labels, - img_meta, - label_channels=1, - unmap_outputs=True): - """Compute regression, classification targets for anchors in a single - image. - - Args: - flat_anchors (Tensor): Multi-level anchors of the image, which are - concatenated into a single tensor of shape (num_anchors, 4) - valid_flags (Tensor): Multi level valid flags of the image, - which are concatenated into a single tensor of - shape (num_anchors,). - num_level_anchors Tensor): Number of anchors of each scale level. - gt_bboxes (Tensor): Ground truth bboxes of the image, - shape (num_gts, 4). - gt_bboxes_ignore (Tensor): Ground truth bboxes to be - ignored, shape (num_ignored_gts, 4). - gt_labels (Tensor): Ground truth labels of each box, - shape (num_gts,). - img_meta (dict): Meta info of the image. - label_channels (int): Channel of label. - unmap_outputs (bool): Whether to map outputs back to the original - set of anchors. - - Returns: - tuple: N is the number of total anchors in the image. - anchors (Tensor): All anchors in the image with shape (N, 4). - labels (Tensor): Labels of all anchors in the image with shape - (N,). - label_weights (Tensor): Label weights of all anchor in the - image with shape (N,). - bbox_targets (Tensor): BBox targets of all anchors in the - image with shape (N, 4). - bbox_weights (Tensor): BBox weights of all anchors in the - image with shape (N, 4). - pos_inds (Tensor): Indices of positive anchor with shape - (num_pos,). - neg_inds (Tensor): Indices of negative anchor with shape - (num_neg,). - """ - inside_flags = anchor_inside_flags(flat_anchors, valid_flags, - img_meta['img_shape'][:2], - self.train_cfg.allowed_border) - if not inside_flags.any(): - return (None, ) * 7 - # assign gt and sample anchors - anchors = flat_anchors[inside_flags, :] - - num_level_anchors_inside = self.get_num_level_anchors_inside( - num_level_anchors, inside_flags) - assign_result = self.assigner.assign(anchors, num_level_anchors_inside, - gt_bboxes, gt_bboxes_ignore, - gt_labels) - - sampling_result = self.sampler.sample(assign_result, anchors, - gt_bboxes) - - num_valid_anchors = anchors.shape[0] - bbox_targets = torch.zeros_like(anchors) - bbox_weights = torch.zeros_like(anchors) - labels = anchors.new_full((num_valid_anchors, ), - self.num_classes, - dtype=torch.long) - label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) - - pos_inds = sampling_result.pos_inds - neg_inds = sampling_result.neg_inds - if len(pos_inds) > 0: - pos_bbox_targets = sampling_result.pos_gt_bboxes - bbox_targets[pos_inds, :] = pos_bbox_targets - bbox_weights[pos_inds, :] = 1.0 - if gt_labels is None: - # Only rpn gives gt_labels as None - # Foreground is the first class - labels[pos_inds] = 0 - else: - labels[pos_inds] = gt_labels[ - sampling_result.pos_assigned_gt_inds] - if self.train_cfg.pos_weight <= 0: - label_weights[pos_inds] = 1.0 - else: - label_weights[pos_inds] = self.train_cfg.pos_weight - if len(neg_inds) > 0: - label_weights[neg_inds] = 1.0 - - # map up to original set of anchors - if unmap_outputs: - num_total_anchors = flat_anchors.size(0) - anchors = unmap(anchors, num_total_anchors, inside_flags) - labels = unmap( - labels, num_total_anchors, inside_flags, fill=self.num_classes) - label_weights = unmap(label_weights, num_total_anchors, - inside_flags) - bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) - bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) - - return (anchors, labels, label_weights, bbox_targets, bbox_weights, - pos_inds, neg_inds) - - def get_num_level_anchors_inside(self, num_level_anchors, inside_flags): - split_inside_flags = torch.split(inside_flags, num_level_anchors) - num_level_anchors_inside = [ - int(flags.sum()) for flags in split_inside_flags - ] - return num_level_anchors_inside diff --git a/spaces/Andy1621/uniformer_image_segmentation/configs/deeplabv3plus/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes.py b/spaces/Andy1621/uniformer_image_segmentation/configs/deeplabv3plus/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes.py deleted file mode 100644 index dd8e1da9c7b1d86bc8a0c834bbede9d0fd40acf5..0000000000000000000000000000000000000000 --- a/spaces/Andy1621/uniformer_image_segmentation/configs/deeplabv3plus/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes.py +++ /dev/null @@ -1,2 +0,0 @@ -_base_ = './deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py' -model = dict(pretrained='torchvision://resnet50', backbone=dict(type='ResNet')) diff --git a/spaces/Anonymous-123/ImageNet-Editing/editing_diffusion/optimization/image_editor.py b/spaces/Anonymous-123/ImageNet-Editing/editing_diffusion/optimization/image_editor.py deleted file mode 100644 index 8543328a2350d6e0af16bfb6432ab809a824b627..0000000000000000000000000000000000000000 --- a/spaces/Anonymous-123/ImageNet-Editing/editing_diffusion/optimization/image_editor.py +++ /dev/null @@ -1,542 +0,0 @@ -import os -from pathlib import Path -from optimization.constants import ASSETS_DIR_NAME, RANKED_RESULTS_DIR - -from utils.metrics_accumulator import MetricsAccumulator -from utils.video import save_video -from utils.fft_pytorch import HighFrequencyLoss - -from numpy import random -from optimization.augmentations import ImageAugmentations - -from PIL import Image -import torch -import torchvision -from torchvision import transforms -import torchvision.transforms.functional as F -from torchvision.transforms import functional as TF -from torch.nn.functional import mse_loss -from optimization.losses import range_loss, d_clip_loss -import lpips -import numpy as np - -from CLIP import clip -from guided_diffusion.guided_diffusion.script_util import ( - create_model_and_diffusion, - model_and_diffusion_defaults, - create_classifier, - classifier_defaults, -) -from utils.visualization import show_tensor_image, show_editied_masked_image -from utils.change_place import change_place, find_bbox - -import pdb -import cv2 - -def create_classifier_ours(): - - model = torchvision.models.resnet50() - ckpt = torch.load('checkpoints/DRA_resnet50.pth')['model_state_dict'] - model.load_state_dict({k.replace('module.','').replace('last_linear','fc'):v for k,v in ckpt.items()}) - model = torch.nn.Sequential(*[torch.nn.Upsample(size=(256,256)), model]) - return model - -class ImageEditor: - def __init__(self, args) -> None: - self.args = args - os.makedirs(self.args.output_path, exist_ok=True) - - self.ranked_results_path = Path(os.path.join(self.args.output_path, RANKED_RESULTS_DIR)) - os.makedirs(self.ranked_results_path, exist_ok=True) - - if self.args.export_assets: - self.assets_path = Path(os.path.join(self.args.output_path, ASSETS_DIR_NAME)) - os.makedirs(self.assets_path, exist_ok=True) - if self.args.seed is not None: - torch.manual_seed(self.args.seed) - np.random.seed(self.args.seed) - random.seed(self.args.seed) - - self.model_config = model_and_diffusion_defaults() - self.model_config.update( - { - "attention_resolutions": "32, 16, 8", - "class_cond": self.args.model_output_size == 512, - "diffusion_steps": 1000, - "rescale_timesteps": True, - "timestep_respacing": self.args.timestep_respacing, - "image_size": self.args.model_output_size, - "learn_sigma": True, - "noise_schedule": "linear", - "num_channels": 256, - "num_head_channels": 64, - "num_res_blocks": 2, - "resblock_updown": True, - "use_fp16": True, - "use_scale_shift_norm": True, - } - ) - - self.classifier_config = classifier_defaults() - self.classifier_config.update( - { - "image_size": self.args.model_output_size, - } - ) - - # Load models - self.device = torch.device( - f"cuda:{self.args.gpu_id}" if torch.cuda.is_available() else "cpu" - ) - print("Using device:", self.device) - - self.model, self.diffusion = create_model_and_diffusion(**self.model_config) - self.model.load_state_dict( - torch.load( - "checkpoints/256x256_diffusion_uncond.pt" - if self.args.model_output_size == 256 - else "checkpoints/512x512_diffusion.pt", - map_location="cpu", - ) - ) - # self.model.requires_grad_(False).eval().to(self.device) - self.model.eval().to(self.device) - for name, param in self.model.named_parameters(): - if "qkv" in name or "norm" in name or "proj" in name: - param.requires_grad_() - if self.model_config["use_fp16"]: - self.model.convert_to_fp16() - - self.classifier = create_classifier(**self.classifier_config) - self.classifier.load_state_dict( - torch.load("checkpoints/256x256_classifier.pt", map_location="cpu") - ) - # self.classifier.requires_grad_(False).eval().to(self.device) - - - # self.classifier = create_classifier_ours() - - self.classifier.eval().to(self.device) - if self.classifier_config["classifier_use_fp16"]: - self.classifier.convert_to_fp16() - - self.clip_model = ( - clip.load("ViT-B/16", device=self.device, jit=False)[0].eval().requires_grad_(False) - ) - self.clip_size = self.clip_model.visual.input_resolution - self.clip_normalize = transforms.Normalize( - mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711] - ) - self.to_tensor = transforms.ToTensor() - self.lpips_model = lpips.LPIPS(net="vgg").to(self.device) - - self.image_augmentations = ImageAugmentations(self.clip_size, self.args.aug_num) - self.metrics_accumulator = MetricsAccumulator() - - self.hf_loss = HighFrequencyLoss() - - - def unscale_timestep(self, t): - unscaled_timestep = (t * (self.diffusion.num_timesteps / 1000)).long() - - return unscaled_timestep - - - def clip_loss(self, x_in, text_embed): - clip_loss = torch.tensor(0) - - if self.mask is not None: - masked_input = x_in * self.mask - else: - masked_input = x_in - augmented_input = self.image_augmentations(masked_input).add(1).div(2) # shape: [N,C,H,W], range: [0,1] - clip_in = self.clip_normalize(augmented_input) - # pdb.set_trace() - image_embeds = self.clip_model.encode_image(clip_in).float() - dists = d_clip_loss(image_embeds, text_embed) - - # We want to sum over the averages - for i in range(self.args.batch_size): - # We want to average at the "augmentations level" - clip_loss = clip_loss + dists[i :: self.args.batch_size].mean() - - return clip_loss - - def unaugmented_clip_distance(self, x, text_embed): - x = F.resize(x, [self.clip_size, self.clip_size]) - image_embeds = self.clip_model.encode_image(x).float() - dists = d_clip_loss(image_embeds, text_embed) - - return dists.item() - - def model_fn(self, x,t,y=None): - return self.model(x, t, y if self.args.class_cond else None) - - def edit_image_by_prompt(self): - if self.args.image_guide: - img_guidance = Image.open(self.args.prompt).convert('RGB') - img_guidance = img_guidance.resize((224,224), Image.LANCZOS) # type: ignore - img_guidance = self.clip_normalize(self.to_tensor(img_guidance).unsqueeze(0)).to(self.device) - text_embed = self.clip_model.encode_image(img_guidance).float() - - else: - text_embed = self.clip_model.encode_text( - clip.tokenize(self.args.prompt).to(self.device) - ).float() - - self.image_size = (self.model_config["image_size"], self.model_config["image_size"]) - self.init_image_pil = Image.open(self.args.init_image).convert("RGB") - self.init_image_pil = self.init_image_pil.resize(self.image_size, Image.LANCZOS) # type: ignore - self.init_image = ( - TF.to_tensor(self.init_image_pil).to(self.device).unsqueeze(0).mul(2).sub(1) - ) - self.init_image_pil_2 = Image.open(self.args.init_image_2).convert("RGB") - if self.args.rotate_obj: - # angle = random.randint(-45,45) - angle = self.args.angle - self.init_image_pil_2 = self.init_image_pil_2.rotate(angle) - self.init_image_pil_2 = self.init_image_pil_2.resize(self.image_size, Image.LANCZOS) # type: ignore - self.init_image_2 = ( - TF.to_tensor(self.init_image_pil_2).to(self.device).unsqueeze(0).mul(2).sub(1) - ) - - ''' - # Init with the inpainting image - self.init_image_pil_ = Image.open('output/ImageNet-S_val/bad_case_RN50/ILSVRC2012_val_00013212/ranked/08480_output_i_0_b_0.png').convert("RGB") - self.init_image_pil_ = self.init_image_pil_.resize(self.image_size, Image.LANCZOS) # type: ignore - self.init_image_ = ( - TF.to_tensor(self.init_image_pil_).to(self.device).unsqueeze(0).mul(2).sub(1) - ) - ''' - - if self.args.export_assets: - img_path = self.assets_path / Path(self.args.output_file) - self.init_image_pil.save(img_path, quality=100) - - self.mask = torch.ones_like(self.init_image, device=self.device) - self.mask_pil = None - if self.args.mask is not None: - self.mask_pil = Image.open(self.args.mask).convert("RGB") - if self.args.rotate_obj: - self.mask_pil = self.mask_pil.rotate(angle) - if self.mask_pil.size != self.image_size: - self.mask_pil = self.mask_pil.resize(self.image_size, Image.NEAREST) # type: ignore - if self.args.random_position: - bbox = find_bbox(np.array(self.mask_pil)) - print(bbox) - - image_mask_pil_binarized = ((np.array(self.mask_pil) > 0.5) * 255).astype(np.uint8) - # image_mask_pil_binarized = cv2.dilate(image_mask_pil_binarized, np.ones((50,50), np.uint8), iterations=1) - if self.args.invert_mask: - image_mask_pil_binarized = 255 - image_mask_pil_binarized - self.mask_pil = TF.to_pil_image(image_mask_pil_binarized) - self.mask = TF.to_tensor(Image.fromarray(image_mask_pil_binarized)) - self.mask = self.mask[0, ...].unsqueeze(0).unsqueeze(0).to(self.device) - # self.mask[:] = 1 - - if self.args.random_position: - # print(self.init_image_2.shape, self.init_image_2.max(), self.init_image_2.min()) - # print(self.mask.shape, self.mask.max(), self.mask.min()) - # cv2.imwrite('tmp/init_before.jpg', np.transpose(((self.init_image_2+1)/2*255).cpu().numpy()[0], (1,2,0))[:,:,::-1]) - # cv2.imwrite('tmp/mask_before.jpg', (self.mask*255).cpu().numpy()[0][0]) - self.init_image_2, self.mask = change_place(self.init_image_2, self.mask, bbox, self.args.invert_mask) - # cv2.imwrite('tmp/init_after.jpg', np.transpose(((self.init_image_2+1)/2*255).cpu().numpy()[0], (1,2,0))[:,:,::-1]) - # cv2.imwrite('tmp/mask_after.jpg', (self.mask*255).cpu().numpy()[0][0]) - - if self.args.export_assets: - mask_path = self.assets_path / Path( - self.args.output_file.replace(".png", "_mask.png") - ) - self.mask_pil.save(mask_path, quality=100) - - def class_guided(x, y, t): - assert y is not None - with torch.enable_grad(): - x_in = x.detach().requires_grad_(True) - # logits = self.classifier(x_in, t) - logits = self.classifier(x_in) - log_probs = torch.nn.functional.log_softmax(logits, dim=-1) - selected = log_probs[range(len(logits)), y.view(-1)] - loss = selected.sum() - - return -torch.autograd.grad(loss, x_in)[0] * self.args.classifier_scale - - def cond_fn(x, t, y=None): - if self.args.prompt == "": - return torch.zeros_like(x) - # pdb.set_trace() - with torch.enable_grad(): - x = x.detach().requires_grad_() - - t_unscale = self.unscale_timestep(t) - - ''' - out = self.diffusion.p_mean_variance( - self.model, x, t, clip_denoised=False, model_kwargs={"y": y} - ) - ''' - out = self.diffusion.p_mean_variance( - self.model, x, t_unscale, clip_denoised=False, model_kwargs={"y": None} - ) - - fac = self.diffusion.sqrt_one_minus_alphas_cumprod[t_unscale[0].item()] - # x_in = out["pred_xstart"] * fac + x * (1 - fac) - x_in = out["pred_xstart"] # Revised by XX, 2022.07.14 - - loss = torch.tensor(0) - if self.args.classifier_scale != 0 and y is not None: - # gradient_class_guided = class_guided(x, y, t) - gradient_class_guided = class_guided(x_in, y, t) - - if self.args.background_complex != 0: - if self.args.hard: - loss = loss - self.args.background_complex*self.hf_loss((x_in+1.)/2.) - else: - loss = loss + self.args.background_complex*self.hf_loss((x_in+1.)/2.) - - if self.args.clip_guidance_lambda != 0: - clip_loss = self.clip_loss(x_in, text_embed) * self.args.clip_guidance_lambda - loss = loss + clip_loss - self.metrics_accumulator.update_metric("clip_loss", clip_loss.item()) - - if self.args.range_lambda != 0: - r_loss = range_loss(out["pred_xstart"]).sum() * self.args.range_lambda - loss = loss + r_loss - self.metrics_accumulator.update_metric("range_loss", r_loss.item()) - - if self.args.background_preservation_loss: - x_in = out["pred_xstart"] * fac + x * (1 - fac) - if self.mask is not None: - # masked_background = x_in * (1 - self.mask) - masked_background = x_in * self.mask # 2022.07.19 - else: - masked_background = x_in - - if self.args.lpips_sim_lambda: - ''' - loss = ( - loss - + self.lpips_model(masked_background, self.init_image).sum() - * self.args.lpips_sim_lambda - ) - ''' - # 2022.07.19 - loss = ( - loss - + self.lpips_model(masked_background, self.init_image*self.mask).sum() - * self.args.lpips_sim_lambda - ) - if self.args.l2_sim_lambda: - ''' - loss = ( - loss - + mse_loss(masked_background, self.init_image) * self.args.l2_sim_lambda - ) - ''' - # 2022.07.19 - loss = ( - loss - + mse_loss(masked_background, self.init_image*self.mask) * self.args.l2_sim_lambda - ) - - - if self.args.classifier_scale != 0 and y is not None: - return -torch.autograd.grad(loss, x)[0] + gradient_class_guided - else: - return -torch.autograd.grad(loss, x)[0] - - @torch.no_grad() - def postprocess_fn(out, t): - if self.args.coarse_to_fine: - if t > 50: - kernel = 51 - elif t > 35: - kernel = 31 - else: - kernel = 0 - if kernel > 0: - max_pool = torch.nn.MaxPool2d(kernel_size=kernel, stride=1, padding=int((kernel-1)/2)) - self.mask_d = 1 - self.mask - self.mask_d = max_pool(self.mask_d) - self.mask_d = 1 - self.mask_d - else: - self.mask_d = self.mask - else: - self.mask_d = self.mask - - if self.mask is not None: - background_stage_t = self.diffusion.q_sample(self.init_image_2, t[0]) - background_stage_t = torch.tile( - background_stage_t, dims=(self.args.batch_size, 1, 1, 1) - ) - out["sample"] = out["sample"] * self.mask_d + background_stage_t * (1 - self.mask_d) - - return out - - save_image_interval = self.diffusion.num_timesteps // 5 - for iteration_number in range(self.args.iterations_num): - print(f"Start iterations {iteration_number}") - - sample_func = ( - self.diffusion.ddim_sample_loop_progressive - if self.args.ddim - else self.diffusion.p_sample_loop_progressive - ) - samples = sample_func( - self.model_fn, - ( - self.args.batch_size, - 3, - self.model_config["image_size"], - self.model_config["image_size"], - ), - clip_denoised=False, - # model_kwargs={} - # if self.args.model_output_size == 256 - # else { - # "y": torch.zeros([self.args.batch_size], device=self.device, dtype=torch.long) - # }, - model_kwargs={} - if self.args.classifier_scale == 0 - else {"y": self.args.y*torch.ones([self.args.batch_size], device=self.device, dtype=torch.long)}, - cond_fn=cond_fn, - device=self.device, - progress=True, - skip_timesteps=self.args.skip_timesteps, - init_image=self.init_image, - # init_image=self.init_image_, - postprocess_fn=None if self.args.local_clip_guided_diffusion else postprocess_fn, - randomize_class=True if self.args.classifier_scale == 0 else False, - ) - - intermediate_samples = [[] for i in range(self.args.batch_size)] - total_steps = self.diffusion.num_timesteps - self.args.skip_timesteps - 1 - for j, sample in enumerate(samples): - should_save_image = j % save_image_interval == 0 or j == total_steps - if should_save_image or self.args.save_video: - self.metrics_accumulator.print_average_metric() - - for b in range(self.args.batch_size): - pred_image = sample["pred_xstart"][b] - visualization_path = Path( - os.path.join(self.args.output_path, self.args.output_file) - ) - visualization_path = visualization_path.with_stem( - f"{visualization_path.stem}_i_{iteration_number}_b_{b}" - ) - if ( - self.mask is not None - and self.args.enforce_background - and j == total_steps - and not self.args.local_clip_guided_diffusion - ): - pred_image = ( - self.init_image_2[0] * (1 - self.mask[0]) + pred_image * self.mask[0] - ) - ''' - if j == total_steps: - pdb.set_trace() - pred_image = ( - self.init_image_2[0] * (1 - self.mask[0]) + pred_image * self.mask[0] - ) - ''' - pred_image = pred_image.add(1).div(2).clamp(0, 1) - pred_image_pil = TF.to_pil_image(pred_image) - masked_pred_image = self.mask * pred_image.unsqueeze(0) - final_distance = self.unaugmented_clip_distance( - masked_pred_image, text_embed - ) - formatted_distance = f"{final_distance:.4f}" - - if self.args.export_assets: - pred_path = self.assets_path / visualization_path.name - pred_image_pil.save(pred_path, quality=100) - - if j == total_steps: - path_friendly_distance = formatted_distance.replace(".", "") - ranked_pred_path = self.ranked_results_path / ( - path_friendly_distance + "_" + visualization_path.name - ) - pred_image_pil.save(ranked_pred_path, quality=100) - - intermediate_samples[b].append(pred_image_pil) - if should_save_image: - show_editied_masked_image( - title=self.args.prompt, - source_image=self.init_image_pil, - edited_image=pred_image_pil, - mask=self.mask_pil, - path=visualization_path, - distance=formatted_distance, - ) - - if self.args.save_video: - for b in range(self.args.batch_size): - video_name = self.args.output_file.replace( - ".png", f"_i_{iteration_number}_b_{b}.avi" - ) - video_path = os.path.join(self.args.output_path, video_name) - save_video(intermediate_samples[b], video_path) - - visualize_size = (256,256) - img_ori = cv2.imread(self.args.init_image_2) - img_ori = cv2.resize(img_ori, visualize_size) - mask = cv2.imread(self.args.mask) - mask = cv2.resize(mask, visualize_size) - imgs = [img_ori, mask] - for ii, img_name in enumerate(os.listdir(os.path.join(self.args.output_path, 'ranked'))): - img_path = os.path.join(self.args.output_path, 'ranked', img_name) - img = cv2.imread(img_path) - img = cv2.resize(img, visualize_size) - imgs.append(img) - if ii >= 7: - break - - img_whole = cv2.hconcat(imgs[2:]) - ''' - img_name = self.args.output_path.split('/')[-2]+'/' - if self.args.coarse_to_fine: - if self.args.clip_guidance_lambda == 0: - prompt = 'coarse_to_fine_no_clip' - else: - prompt = 'coarse_to_fine' - elif self.args.image_guide: - prompt = 'image_guide' - elif self.args.clip_guidance_lambda == 0: - prompt = 'no_clip_guide' - else: - prompt = 'text_guide' - ''' - - cv2.imwrite(os.path.join(self.args.final_save_root, 'edited.png'), img_whole, [int(cv2.IMWRITE_PNG_COMPRESSION), 0]) - - - def reconstruct_image(self): - init = Image.open(self.args.init_image).convert("RGB") - init = init.resize( - self.image_size, # type: ignore - Image.LANCZOS, - ) - init = TF.to_tensor(init).to(self.device).unsqueeze(0).mul(2).sub(1) - - samples = self.diffusion.p_sample_loop_progressive( - self.model, - (1, 3, self.model_config["image_size"], self.model_config["image_size"],), - clip_denoised=False, - model_kwargs={} - if self.args.model_output_size == 256 - else {"y": torch.zeros([self.args.batch_size], device=self.device, dtype=torch.long)}, - cond_fn=None, - progress=True, - skip_timesteps=self.args.skip_timesteps, - init_image=init, - randomize_class=True, - ) - save_image_interval = self.diffusion.num_timesteps // 5 - max_iterations = self.diffusion.num_timesteps - self.args.skip_timesteps - 1 - - for j, sample in enumerate(samples): - if j % save_image_interval == 0 or j == max_iterations: - print() - filename = os.path.join(self.args.output_path, self.args.output_file) - TF.to_pil_image(sample["pred_xstart"][0].add(1).div(2).clamp(0, 1)).save(filename) diff --git a/spaces/Arnx/MusicGenXvAKN/audiocraft/data/zip.py b/spaces/Arnx/MusicGenXvAKN/audiocraft/data/zip.py deleted file mode 100644 index 1f1154231da321dd38d151ff285dbcff5e38a6e0..0000000000000000000000000000000000000000 --- a/spaces/Arnx/MusicGenXvAKN/audiocraft/data/zip.py +++ /dev/null @@ -1,74 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -import typing -import zipfile - -from dataclasses import dataclass -from functools import lru_cache -from typing_extensions import Literal - - -DEFAULT_SIZE = 32 -MODE = Literal['r', 'w', 'x', 'a'] - - -@dataclass(order=True) -class PathInZip: - """Class for holding a path of file within a zip file. - - Args: - path: The convention is : - Let's assume there is a zip file /some/location/foo.zip - and inside of it is a json file located at /data/file1.json, - Then we expect path = "/some/location/foo.zip:/data/file1.json" - """ - - INFO_PATH_SEP = ':' - zip_path: str - file_path: str - - def __init__(self, path: str) -> None: - split_path = path.split(self.INFO_PATH_SEP) - assert len(split_path) == 2 - self.zip_path, self.file_path = split_path - - @classmethod - def from_paths(cls, zip_path: str, file_path: str): - return cls(zip_path + cls.INFO_PATH_SEP + file_path) - - def __str__(self) -> str: - return self.zip_path + self.INFO_PATH_SEP + self.file_path - - -def _open_zip(path: str, mode: MODE = 'r'): - return zipfile.ZipFile(path, mode) - - -_cached_open_zip = lru_cache(DEFAULT_SIZE)(_open_zip) - - -def set_zip_cache_size(max_size: int): - """Sets the maximal LRU caching for zip file opening. - - Args: - max_size: the maximal LRU cache. - """ - global _cached_open_zip - _cached_open_zip = lru_cache(max_size)(_open_zip) - - -def open_file_in_zip(path_in_zip: PathInZip, mode: str = 'r') -> typing.IO: - """Opens a file stored inside a zip and returns a file-like object. - - Args: - path_in_zip: A PathInZip object representing the file to return a file-like object of. - mode: The mode in which to open the file with. - Returns: - A file-like object for PathInZip. - """ - zf = _cached_open_zip(path_in_zip.zip_path) - return zf.open(path_in_zip.file_path) diff --git a/spaces/Astroomx/Mine/README.md b/spaces/Astroomx/Mine/README.md deleted file mode 100644 index 3dacb33659c2bd154a18630a56be22bb0644c1de..0000000000000000000000000000000000000000 --- a/spaces/Astroomx/Mine/README.md +++ /dev/null @@ -1,10 +0,0 @@ ---- -title: Mine -emoji: 🦀 -colorFrom: pink -colorTo: green -sdk: docker -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_internal/metadata/importlib/_envs.py b/spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_internal/metadata/importlib/_envs.py deleted file mode 100644 index cbec59e2c6d3238afd29b4d46626a1550f849e2b..0000000000000000000000000000000000000000 --- a/spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_internal/metadata/importlib/_envs.py +++ /dev/null @@ -1,188 +0,0 @@ -import functools -import importlib.metadata -import logging -import os -import pathlib -import sys -import zipfile -import zipimport -from typing import Iterator, List, Optional, Sequence, Set, Tuple - -from pip._vendor.packaging.utils import NormalizedName, canonicalize_name - -from pip._internal.metadata.base import BaseDistribution, BaseEnvironment -from pip._internal.models.wheel import Wheel -from pip._internal.utils.deprecation import deprecated -from pip._internal.utils.filetypes import WHEEL_EXTENSION - -from ._compat import BadMetadata, BasePath, get_dist_name, get_info_location -from ._dists import Distribution - -logger = logging.getLogger(__name__) - - -def _looks_like_wheel(location: str) -> bool: - if not location.endswith(WHEEL_EXTENSION): - return False - if not os.path.isfile(location): - return False - if not Wheel.wheel_file_re.match(os.path.basename(location)): - return False - return zipfile.is_zipfile(location) - - -class _DistributionFinder: - """Finder to locate distributions. - - The main purpose of this class is to memoize found distributions' names, so - only one distribution is returned for each package name. At lot of pip code - assumes this (because it is setuptools's behavior), and not doing the same - can potentially cause a distribution in lower precedence path to override a - higher precedence one if the caller is not careful. - - Eventually we probably want to make it possible to see lower precedence - installations as well. It's useful feature, after all. - """ - - FoundResult = Tuple[importlib.metadata.Distribution, Optional[BasePath]] - - def __init__(self) -> None: - self._found_names: Set[NormalizedName] = set() - - def _find_impl(self, location: str) -> Iterator[FoundResult]: - """Find distributions in a location.""" - # Skip looking inside a wheel. Since a package inside a wheel is not - # always valid (due to .data directories etc.), its .dist-info entry - # should not be considered an installed distribution. - if _looks_like_wheel(location): - return - # To know exactly where we find a distribution, we have to feed in the - # paths one by one, instead of dumping the list to importlib.metadata. - for dist in importlib.metadata.distributions(path=[location]): - info_location = get_info_location(dist) - try: - raw_name = get_dist_name(dist) - except BadMetadata as e: - logger.warning("Skipping %s due to %s", info_location, e.reason) - continue - normalized_name = canonicalize_name(raw_name) - if normalized_name in self._found_names: - continue - self._found_names.add(normalized_name) - yield dist, info_location - - def find(self, location: str) -> Iterator[BaseDistribution]: - """Find distributions in a location. - - The path can be either a directory, or a ZIP archive. - """ - for dist, info_location in self._find_impl(location): - if info_location is None: - installed_location: Optional[BasePath] = None - else: - installed_location = info_location.parent - yield Distribution(dist, info_location, installed_location) - - def find_linked(self, location: str) -> Iterator[BaseDistribution]: - """Read location in egg-link files and return distributions in there. - - The path should be a directory; otherwise this returns nothing. This - follows how setuptools does this for compatibility. The first non-empty - line in the egg-link is read as a path (resolved against the egg-link's - containing directory if relative). Distributions found at that linked - location are returned. - """ - path = pathlib.Path(location) - if not path.is_dir(): - return - for child in path.iterdir(): - if child.suffix != ".egg-link": - continue - with child.open() as f: - lines = (line.strip() for line in f) - target_rel = next((line for line in lines if line), "") - if not target_rel: - continue - target_location = str(path.joinpath(target_rel)) - for dist, info_location in self._find_impl(target_location): - yield Distribution(dist, info_location, path) - - def _find_eggs_in_dir(self, location: str) -> Iterator[BaseDistribution]: - from pip._vendor.pkg_resources import find_distributions - - from pip._internal.metadata import pkg_resources as legacy - - with os.scandir(location) as it: - for entry in it: - if not entry.name.endswith(".egg"): - continue - for dist in find_distributions(entry.path): - yield legacy.Distribution(dist) - - def _find_eggs_in_zip(self, location: str) -> Iterator[BaseDistribution]: - from pip._vendor.pkg_resources import find_eggs_in_zip - - from pip._internal.metadata import pkg_resources as legacy - - try: - importer = zipimport.zipimporter(location) - except zipimport.ZipImportError: - return - for dist in find_eggs_in_zip(importer, location): - yield legacy.Distribution(dist) - - def find_eggs(self, location: str) -> Iterator[BaseDistribution]: - """Find eggs in a location. - - This actually uses the old *pkg_resources* backend. We likely want to - deprecate this so we can eventually remove the *pkg_resources* - dependency entirely. Before that, this should first emit a deprecation - warning for some versions when using the fallback since importing - *pkg_resources* is slow for those who don't need it. - """ - if os.path.isdir(location): - yield from self._find_eggs_in_dir(location) - if zipfile.is_zipfile(location): - yield from self._find_eggs_in_zip(location) - - -@functools.lru_cache(maxsize=None) # Warn a distribution exactly once. -def _emit_egg_deprecation(location: Optional[str]) -> None: - deprecated( - reason=f"Loading egg at {location} is deprecated.", - replacement="to use pip for package installation.", - gone_in=None, - ) - - -class Environment(BaseEnvironment): - def __init__(self, paths: Sequence[str]) -> None: - self._paths = paths - - @classmethod - def default(cls) -> BaseEnvironment: - return cls(sys.path) - - @classmethod - def from_paths(cls, paths: Optional[List[str]]) -> BaseEnvironment: - if paths is None: - return cls(sys.path) - return cls(paths) - - def _iter_distributions(self) -> Iterator[BaseDistribution]: - finder = _DistributionFinder() - for location in self._paths: - yield from finder.find(location) - for dist in finder.find_eggs(location): - # _emit_egg_deprecation(dist.location) # TODO: Enable this. - yield dist - # This must go last because that's how pkg_resources tie-breaks. - yield from finder.find_linked(location) - - def get_distribution(self, name: str) -> Optional[BaseDistribution]: - matches = ( - distribution - for distribution in self.iter_all_distributions() - if distribution.canonical_name == canonicalize_name(name) - ) - return next(matches, None) diff --git a/spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_vendor/pygments/formatters/pangomarkup.py b/spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_vendor/pygments/formatters/pangomarkup.py deleted file mode 100644 index bd00866b8b95a98edc8956608e895a6329a944a0..0000000000000000000000000000000000000000 --- a/spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_vendor/pygments/formatters/pangomarkup.py +++ /dev/null @@ -1,83 +0,0 @@ -""" - pygments.formatters.pangomarkup - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - Formatter for Pango markup output. - - :copyright: Copyright 2006-2022 by the Pygments team, see AUTHORS. - :license: BSD, see LICENSE for details. -""" - -from pip._vendor.pygments.formatter import Formatter - - -__all__ = ['PangoMarkupFormatter'] - - -_escape_table = { - ord('&'): '&', - ord('<'): '<', -} - - -def escape_special_chars(text, table=_escape_table): - """Escape & and < for Pango Markup.""" - return text.translate(table) - - -class PangoMarkupFormatter(Formatter): - """ - Format tokens as Pango Markup code. It can then be rendered to an SVG. - - .. versionadded:: 2.9 - """ - - name = 'Pango Markup' - aliases = ['pango', 'pangomarkup'] - filenames = [] - - def __init__(self, **options): - Formatter.__init__(self, **options) - - self.styles = {} - - for token, style in self.style: - start = '' - end = '' - if style['color']: - start += '' % style['color'] - end = '' + end - if style['bold']: - start += '' - end = '' + end - if style['italic']: - start += '' - end = '' + end - if style['underline']: - start += '' - end = '' + end - self.styles[token] = (start, end) - - def format_unencoded(self, tokensource, outfile): - lastval = '' - lasttype = None - - outfile.write('') - - for ttype, value in tokensource: - while ttype not in self.styles: - ttype = ttype.parent - if ttype == lasttype: - lastval += escape_special_chars(value) - else: - if lastval: - stylebegin, styleend = self.styles[lasttype] - outfile.write(stylebegin + lastval + styleend) - lastval = escape_special_chars(value) - lasttype = ttype - - if lastval: - stylebegin, styleend = self.styles[lasttype] - outfile.write(stylebegin + lastval + styleend) - - outfile.write('') diff --git a/spaces/AutomationVR/ImageDemo/app.py b/spaces/AutomationVR/ImageDemo/app.py deleted file mode 100644 index 9520517f687cf7229ddfab9d8c5f8af7f76b0bd4..0000000000000000000000000000000000000000 --- a/spaces/AutomationVR/ImageDemo/app.py +++ /dev/null @@ -1,3 +0,0 @@ -import gradio as gr - -gr.Interface.load("models/stabilityai/stable-diffusion-xl-base-1.0").launch() \ No newline at end of file diff --git a/spaces/Bart92/RVC_HF/julius/utils.py b/spaces/Bart92/RVC_HF/julius/utils.py deleted file mode 100644 index 944b973ad1a38700c1ba98ab7306c233cb87868d..0000000000000000000000000000000000000000 --- a/spaces/Bart92/RVC_HF/julius/utils.py +++ /dev/null @@ -1,101 +0,0 @@ -# File under the MIT license, see https://github.com/adefossez/julius/LICENSE for details. -# Author: adefossez, 2020 -""" -Non signal processing related utilities. -""" - -import inspect -import typing as tp -import sys -import time - - -def simple_repr(obj, attrs: tp.Optional[tp.Sequence[str]] = None, - overrides: dict = {}): - """ - Return a simple representation string for `obj`. - If `attrs` is not None, it should be a list of attributes to include. - """ - params = inspect.signature(obj.__class__).parameters - attrs_repr = [] - if attrs is None: - attrs = list(params.keys()) - for attr in attrs: - display = False - if attr in overrides: - value = overrides[attr] - elif hasattr(obj, attr): - value = getattr(obj, attr) - else: - continue - if attr in params: - param = params[attr] - if param.default is inspect._empty or value != param.default: # type: ignore - display = True - else: - display = True - - if display: - attrs_repr.append(f"{attr}={value}") - return f"{obj.__class__.__name__}({','.join(attrs_repr)})" - - -class MarkdownTable: - """ - Simple MarkdownTable generator. The column titles should be large enough - for the lines content. This will right align everything. - - >>> import io # we use io purely for test purposes, default is sys.stdout. - >>> file = io.StringIO() - >>> table = MarkdownTable(["Item Name", "Price"], file=file) - >>> table.header(); table.line(["Honey", "5"]); table.line(["Car", "5,000"]) - >>> print(file.getvalue().strip()) # Strip for test purposes - | Item Name | Price | - |-----------|-------| - | Honey | 5 | - | Car | 5,000 | - """ - def __init__(self, columns, file=sys.stdout): - self.columns = columns - self.file = file - - def _writeln(self, line): - self.file.write("|" + "|".join(line) + "|\n") - - def header(self): - self._writeln(f" {col} " for col in self.columns) - self._writeln("-" * (len(col) + 2) for col in self.columns) - - def line(self, line): - out = [] - for val, col in zip(line, self.columns): - val = format(val, '>' + str(len(col))) - out.append(" " + val + " ") - self._writeln(out) - - -class Chrono: - """ - Measures ellapsed time, calling `torch.cuda.synchronize` if necessary. - `Chrono` instances can be used as context managers (e.g. with `with`). - Upon exit of the block, you can access the duration of the block in seconds - with the `duration` attribute. - - >>> with Chrono() as chrono: - ... _ = sum(range(10_000)) - ... - >>> print(chrono.duration < 10) # Should be true unless on a really slow computer. - True - """ - def __init__(self): - self.duration = None - - def __enter__(self): - self._begin = time.time() - return self - - def __exit__(self, exc_type, exc_value, exc_tracebck): - import torch - if torch.cuda.is_available(): - torch.cuda.synchronize() - self.duration = time.time() - self._begin diff --git a/spaces/Benson/text-generation/Examples/Ciudad Dragn Mvil Mod Apk Dinero Ilimitado Y Gemas 2022.md b/spaces/Benson/text-generation/Examples/Ciudad Dragn Mvil Mod Apk Dinero Ilimitado Y Gemas 2022.md deleted file mode 100644 index cee4e4eb0667410e07ea37c890b2494fc57ff219..0000000000000000000000000000000000000000 --- a/spaces/Benson/text-generation/Examples/Ciudad Dragn Mvil Mod Apk Dinero Ilimitado Y Gemas 2022.md +++ /dev/null @@ -1,35 +0,0 @@ -
-

Dragon City móvil Mod APK dinero ilimitado y joyas 2022

-

¿Te gustan los dragones? ¿Quieres construir tu propia ciudad dragón y gobernar los cielos? ¿Quieres tener recursos ilimitados y acceso a todas las características del juego? Si es así, entonces estás en el lugar correcto. En este artículo, le diremos todo lo que necesita saber sobre Dragon City Mobile Mod APK, una versión modificada del popular juego de simulación que le permite disfrutar de dinero y gemas ilimitadas, dragones e islas ilimitadas, fácil cría y eclosión, sin anuncios, y sin raíz requerida. Sigue leyendo para saber más.

-

ciudad dragón móvil mod apk dinero ilimitado y gemas 2022


Download File > https://bltlly.com/2v6IUX



-

Introducción

-

¿Qué es Dragon City Mobile?

-

Dragon City Mobile es un juego de simulación desarrollado por Socialpoint, donde puedes crear tu propia ciudad dragón en islas flotantes y llenarla de granjas, hábitats, edificios y dragones. Puedes recoger más de 1000 dragones diferentes y criarlos para crear otros nuevos. También puedes entrenar a tus dragones y hacerlos luchar en arenas contra otros jugadores. Puedes unirte a alianzas, chatear con otros maestros dragones, participar en eventos y completar misiones para ganar recompensas. Dragon City Mobile es un juego divertido y adictivo que te mantendrá entretenido durante horas.

-

¿Qué es Dragon City Mobile Mod APK?

-

Dragon City Mobile Mod APK es una versión modificada del juego original que le da acceso a dinero y gemas ilimitadas, dragones e islas ilimitadas, fácil cría y eclosión, sin anuncios, y no se requiere raíz. Con este mod apk, se puede disfrutar de todas las características del juego sin limitaciones o restricciones. Puedes comprar lo que quieras, desbloquear cualquier dragón que quieras, expandir tu ciudad tanto como quieras, criar y eclosionar cualquier dragón que quieras, y jugar el juego sin interrupciones ni molestias.

-

¿Por qué usar Dragon City Mobile Mod APK?

-

Hay muchas razones por las que debe utilizar Dragon City Mobile Mod APK en lugar del juego original. Aquí están algunos de ellos:

-
    - -
  • Usted puede tener más diversión y emoción por conseguir dragones e islas ilimitadas de forma gratuita. No tienes que esperar horas o días para criar o eclosionar a tus dragones. Puedes conseguir cualquier dragón que quieras al instante. También puedes expandir tu ciudad tanto como quieras y decorarla con varios edificios y objetos.
  • -
  • Usted puede tener más control y flexibilidad al obtener fácil cría y eclosión gratis. No tienes que seguir ninguna regla o patrón para criar o eclosionar a tus dragones. Puedes mezclar los dos dragones que quieras y conseguir uno nuevo. También puedes acelerar el proceso usando gemas.
  • -
  • Usted puede tener una mejor experiencia de juego mediante la obtención de ningún anuncio y ninguna raíz necesaria de forma gratuita. No tienes que lidiar con anuncios molestos que aparecen cada pocos minutos o interrumpen tu juego. Tampoco tienes que rootear tu dispositivo o arriesgarte a dañarlo para usar el mod apk.
  • -
-

Características de Dragon City Mobile Mod APK

-

Dinero ilimitado y gemas

-

La característica más importante de Dragon City Mobile Mod APK es que le da dinero ilimitado y gemas gratis. El dinero y las gemas son las principales monedas en el juego que necesitas para comprar objetos, desbloquear dragones, expandir tu ciudad, acelerar los procesos, etc. Con dinero y gemas ilimitadas, puedes comprar cualquier cosa que quieras es una versión modificada del juego original que te da acceso a dinero ilimitado y gemas, dragones e islas ilimitadas, fácil cría y eclosión, sin anuncios, y no se requiere raíz. Con este mod apk, se puede disfrutar de todas las características del juego sin limitaciones o restricciones. Puedes comprar lo que quieras, desbloquear cualquier dragón que quieras, expandir tu ciudad tanto como quieras, criar y eclosionar cualquier dragón que quieras, y jugar el juego sin interrupciones ni molestias.

- -

Preguntas frecuentes

-

Aquí hay algunas preguntas frecuentes sobre Dragon City Mobile Mod APK:

-

-

Q: ¿Es seguro usar Dragon City Mobile Mod APK?

-

A: Sí, Dragon City Mobile Mod APK es seguro de usar, siempre y cuando lo descargue de una fuente confiable. Hemos probado el archivo apk mod en nuestros dispositivos y no encontramos malware o virus. Sin embargo, le recomendamos que escanee el archivo con un antivirus antes de instalarlo, solo para estar seguro.

-

Q: ¿Es Dragon City Mobile Mod APK compatible con mi dispositivo?

-

A: Dragon City Mobile Mod APK es compatible con la mayoría de los dispositivos Android que se ejecutan en Android 4.4 o superior. Sin embargo, algunos dispositivos pueden no ser compatibles con el mod apk debido a diferentes especificaciones o configuraciones. Si encuentras algún problema al instalar o reproducir el apk mod, intenta cambiar la configuración de tu dispositivo o ponte en contacto con el desarrollador para obtener ayuda.

-

Q: ¿Voy a conseguir prohibido para el uso de Dragon City Mobile Mod APK?

-

A: No, no se le prohibió el uso de Dragon City Mobile Mod APK, como el mod apk no interfiere con los servidores del juego o características en línea. Puedes jugar el juego normalmente con otros jugadores sin ningún riesgo de ser expulsado. Sin embargo, le aconsejamos que utilice el apk mod de forma responsable y no abusar de sus características para obtener una ventaja injusta sobre otros jugadores.

-

Q: ¿Puedo actualizar Dragon City Mobile Mod APK?

-

A: Sí, puede actualizar Dragon City Mobile Mod APK cada vez que una nueva versión está disponible. Sin embargo, tendrá que descargar e instalar el nuevo archivo apk mod manualmente desde la misma fuente que antes. No se puede actualizar el mod apk desde la Google Play Store o el sitio web oficial del juego.

-

Q: ¿Puedo usar Dragon City Mobile Mod APK con mi cuenta existente?

64aa2da5cf
-
-
\ No newline at end of file diff --git a/spaces/Benson/text-generation/Examples/Conseguir Sobre l Descarga Gratuita Para Pc Ventanas 7 Apkpure.md b/spaces/Benson/text-generation/Examples/Conseguir Sobre l Descarga Gratuita Para Pc Ventanas 7 Apkpure.md deleted file mode 100644 index 7c87af61b029e2b8178316ec23b5d29eaec2b762..0000000000000000000000000000000000000000 --- a/spaces/Benson/text-generation/Examples/Conseguir Sobre l Descarga Gratuita Para Pc Ventanas 7 Apkpure.md +++ /dev/null @@ -1,44 +0,0 @@ - -

Captain Tsubasa: Dream Team - El juego de simulación de fútbol definitivo

-

Si eres un fan del fútbol y el manga, es posible que hayas oído hablar del Capitán Tsubasa, la popular serie de cómics que influyó en muchas estrellas del fútbol y jugadores de todo el mundo. Pero ¿sabías que hay un juego basado en este cómic que te permite crear tu propio equipo de ensueño y tener partidos acalorados con jugadores de diferentes países? En este artículo, te presentaremos Captain Tsubasa: Dream Team, el juego de simulación de fútbol competitivo amado por más de 150 países. Te diremos de qué se trata este juego, cómo jugarlo y por qué deberías probarlo.

-

¿Qué es el Capitán Tsubasa: Dream Team?

-

El juego basado en el popular cómic de fútbol

-

Captain Tsubasa: Dream Team es un juego desarrollado por KLab, una compañía japonesa que se especializa en juegos móviles. Se basa en la serie de manga Captain Tsubasa, que fue creada por Yoichi Takahashi en 1981 y ha sido serializada en varias revistas y adaptada al anime, películas y videojuegos. El cómic sigue las aventuras de Tsubasa Ozora, un joven prodigio del fútbol que sueña con convertirse en un jugador de clase mundial y ganar la Copa del Mundo para Japón. En el camino, conoce a muchos amigos y rivales que comparten su pasión por el deporte y lo desafían a mejorar sus habilidades.

-

conseguir sobre él descarga gratuita para pc ventanas 7 apkpure


Download Zip ••• https://bltlly.com/2v6Jgg



-

Las características y modos del juego

-

Captain Tsubasa: Dream Team es un juego que combina elementos de simulación de fútbol, juegos de rol y recolección de cartas. Puedes elegir entre cientos de personajes del cómic original, cada uno con sus propias habilidades y habilidades únicas, y formar tu propio equipo de ensueño. También puedes personalizar los uniformes, las formaciones y las habilidades de tu equipo para adaptarlos a tus preferencias y estrategias.

- -

¿Cómo se juega Captain Tsubasa: Dream Team?

-

Cómo crear tu propio equipo de ensueño

-

Para empezar a jugar Captain Tsubasa: Dream Team, necesitas crear tu propio equipo. Puedes hacer esto usando Transfer Tickets o Dreamballs, que son las monedas del juego, para obtener jugadores de varios banners. También puedes conseguir jugadores de eventos, misiones, redadas y escenarios. Puedes tener hasta 32 jugadores en tu equipo, pero solo 11 pueden jugar en el campo a la vez.

-

Puedes asignar diferentes posiciones y roles a tus jugadores de acuerdo a sus atributos y habilidades. Hay cinco atributos en el juego: Agilidad (azul), Habilidad (verde), Dureza (rojo), Solidaridad (amarillo) y Insight Master (púrpura). Cada atributo tiene sus propias fortalezas y debilidades contra otros atributos. También hay cuatro roles en el juego: Delantero (FW), Centrocampista (MF), Defensor (DF) y Portero (GK). Cada rol tiene sus propias responsabilidades y funciones en el campo.

-

Cómo mejorar tus jugadores y habilidades

-

Para hacer tu equipo más fuerte, necesitas mejorar tus jugadores y habilidades. Usted puede hacer esto mediante el uso de varios elementos y materiales que usted puede obtener de jugar el juego. Puede mejorar el nivel de sus jugadores, rareza, potencial, y límite de rotura mediante el uso de entrenadores, taladros, cuadernos, y limitar los elementos de ruptura. También puedes mejorar el nivel y la evolución de tus habilidades mediante el uso de jugadores de campo de habilidad, bolas negras y cartas de eliminación de habilidades. También puedes transferir habilidades de un jugador a otro usando tickets de transferencia de habilidades.

-

Cómo competir con otros jugadores de todo el mundo

-

Para poner a prueba tus habilidades y estrategias, puedes jugar partidas online con otros jugadores de todo el mundo. Puedes elegir entre diferentes modos, como Rank Match, Group Match, Friendly Match y Quick Match. Cada modo tiene sus propias reglas y recompensas. También puede unirse o crear un club con otros jugadores y chatear, cooperar y competir con ellos.

- -

El resultado del partido depende de varios factores, tales como los atributos de tus jugadores, habilidades, resistencia, poder de equipo, habilidades de equipo, lazos, habilidades ocultas y habilidades pasivas. También debe considerar la ventaja de emparejamiento, la tasa crítica, la distancia, el ángulo y el momento de sus acciones. Necesitas usar tu ingenio y creatividad para vencer a tus oponentes y ganar el partido.

-

¿Por qué deberías jugar Captain Tsubasa: Dream Team?

-

El juego es divertido y atractivo para los aficionados al fútbol

-

Si te gusta el fútbol, te encantará Captain Tsubasa: Dream Team. El juego es divertido y atractivo para los aficionados al fútbol de todas las edades y niveles. Usted puede disfrutar de la emoción y la emoción de los partidos de fútbol con gráficos realistas y efectos de sonido. También puede experimentar el drama y la emoción del cómic original con impresionantes animaciones y voces en off. También puedes aprender más sobre las tácticas y técnicas del fútbol en los tutoriales y consejos del juego.

-

-

El juego es fiel al cómic original y los personajes

-

Si eres un fan de Captain Tsubasa, apreciarás lo fiel que es el juego al cómic y a los personajes originales. El juego cuenta con cientos de personajes del cómic, cada uno con su propia personalidad, apariencia, voz, habilidades y historia de fondo. Puedes recoger tus personajes favoritos y revivir sus momentos icónicos en el juego. También puedes descubrir nuevas historias y escenarios que son exclusivos del juego.

-

El juego tiene una comunidad vibrante y activa

- -

Conclusión

-

Captain Tsubasa: Dream Team es un juego que combina simulación de fútbol, juegos de rol y recolección de cartas. Se basa en la popular serie cómica Captain Tsubasa que influyó en muchas estrellas del fútbol y jugadores de todo el mundo. Te permite crear tu propio equipo de ensueño y tener partidos acalorados con jugadores de diferentes países. Es divertido y atractivo para los aficionados al fútbol de todas las edades y niveles. Es fiel al cómic y los personajes originales. Tiene una comunidad vibrante y activa a la que puedes unirte o crear.

-

Si estás buscando un juego que desafíe tus habilidades y estrategias, así como entretenerte con su historia y personajes, definitivamente deberías probar Captain Tsubasa: Dream Team. Puede descargar el juego de forma gratuita desde la App Store o Google Play y comenzar su aventura de fútbol hoy. También puedes visitar el sitio web oficial del juego para obtener más información y soporte.

-

Preguntas frecuentes

-

¿Cuáles son los requisitos del sistema para el Capitán Tsubasa: Dream Team?

-

El juego requiere iOS 10.0 o posterior, o Android 4.4 o posterior. También requiere una conexión a Internet estable y al menos 3 GB de espacio de almacenamiento gratuito.

-

¿Cómo puedo obtener más boletos de transferencia y Dreamballs?

-

Puedes obtener más Boletos de Transferencia y Dreamballs completando misiones, iniciando sesión diariamente, participando en eventos, viendo anuncios o comprándolos con dinero real.

-

¿Cómo puedo conseguir más jugadores y habilidades?

-

Puedes conseguir más jugadores y habilidades usando Transfer Tickets o Dreamballs para obtenerlos de banners, o obteniéndolos de eventos, misiones, redadas y escenarios. También puedes intercambiar medallas o monedas por jugadores y habilidades en la tienda.

-

¿Cómo puedo unirme o crear un club?

- -

¿Cómo puedo contactar al equipo de soporte del juego?

-

Puede ponerse en contacto con el equipo de soporte del juego tocando el botón de menú en la pantalla de inicio y luego tocando el botón de soporte. También puede enviar un correo electrónico a info-tsubasa-dreamteam-en@klab.com o visitar el sitio web oficial del juego para obtener más ayuda.

64aa2da5cf
-
-
\ No newline at end of file diff --git a/spaces/Big-Web/MMSD/env/Lib/site-packages/botocore/credentials.py b/spaces/Big-Web/MMSD/env/Lib/site-packages/botocore/credentials.py deleted file mode 100644 index bc6364c7810d851a0b121230549e62ef00ba6cc8..0000000000000000000000000000000000000000 --- a/spaces/Big-Web/MMSD/env/Lib/site-packages/botocore/credentials.py +++ /dev/null @@ -1,2262 +0,0 @@ -# Copyright (c) 2012-2013 Mitch Garnaat http://garnaat.org/ -# Copyright 2012-2014 Amazon.com, Inc. or its affiliates. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"). You -# may not use this file except in compliance with the License. A copy of -# the License is located at -# -# http://aws.amazon.com/apache2.0/ -# -# or in the "license" file accompanying this file. This file is -# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF -# ANY KIND, either express or implied. See the License for the specific -# language governing permissions and limitations under the License. -import datetime -import getpass -import json -import logging -import os -import subprocess -import threading -import time -from collections import namedtuple -from copy import deepcopy -from hashlib import sha1 - -from dateutil.parser import parse -from dateutil.tz import tzlocal, tzutc - -import botocore.compat -import botocore.configloader -from botocore import UNSIGNED -from botocore.compat import compat_shell_split, total_seconds -from botocore.config import Config -from botocore.exceptions import ( - ConfigNotFound, - CredentialRetrievalError, - InfiniteLoopConfigError, - InvalidConfigError, - MetadataRetrievalError, - PartialCredentialsError, - RefreshWithMFAUnsupportedError, - UnauthorizedSSOTokenError, - UnknownCredentialError, -) -from botocore.tokens import SSOTokenProvider -from botocore.utils import ( - ContainerMetadataFetcher, - FileWebIdentityTokenLoader, - InstanceMetadataFetcher, - JSONFileCache, - SSOTokenLoader, - parse_key_val_file, - resolve_imds_endpoint_mode, -) - -logger = logging.getLogger(__name__) -ReadOnlyCredentials = namedtuple( - 'ReadOnlyCredentials', ['access_key', 'secret_key', 'token'] -) - -_DEFAULT_MANDATORY_REFRESH_TIMEOUT = 10 * 60 # 10 min -_DEFAULT_ADVISORY_REFRESH_TIMEOUT = 15 * 60 # 15 min - - -def create_credential_resolver(session, cache=None, region_name=None): - """Create a default credential resolver. - - This creates a pre-configured credential resolver - that includes the default lookup chain for - credentials. - - """ - profile_name = session.get_config_variable('profile') or 'default' - metadata_timeout = session.get_config_variable('metadata_service_timeout') - num_attempts = session.get_config_variable('metadata_service_num_attempts') - disable_env_vars = session.instance_variables().get('profile') is not None - - imds_config = { - 'ec2_metadata_service_endpoint': session.get_config_variable( - 'ec2_metadata_service_endpoint' - ), - 'ec2_metadata_service_endpoint_mode': resolve_imds_endpoint_mode( - session - ), - 'ec2_credential_refresh_window': _DEFAULT_ADVISORY_REFRESH_TIMEOUT, - } - - if cache is None: - cache = {} - - env_provider = EnvProvider() - container_provider = ContainerProvider() - instance_metadata_provider = InstanceMetadataProvider( - iam_role_fetcher=InstanceMetadataFetcher( - timeout=metadata_timeout, - num_attempts=num_attempts, - user_agent=session.user_agent(), - config=imds_config, - ) - ) - - profile_provider_builder = ProfileProviderBuilder( - session, cache=cache, region_name=region_name - ) - assume_role_provider = AssumeRoleProvider( - load_config=lambda: session.full_config, - client_creator=_get_client_creator(session, region_name), - cache=cache, - profile_name=profile_name, - credential_sourcer=CanonicalNameCredentialSourcer( - [env_provider, container_provider, instance_metadata_provider] - ), - profile_provider_builder=profile_provider_builder, - ) - - pre_profile = [ - env_provider, - assume_role_provider, - ] - profile_providers = profile_provider_builder.providers( - profile_name=profile_name, - disable_env_vars=disable_env_vars, - ) - post_profile = [ - OriginalEC2Provider(), - BotoProvider(), - container_provider, - instance_metadata_provider, - ] - providers = pre_profile + profile_providers + post_profile - - if disable_env_vars: - # An explicitly provided profile will negate an EnvProvider. - # We will defer to providers that understand the "profile" - # concept to retrieve credentials. - # The one edge case if is all three values are provided via - # env vars: - # export AWS_ACCESS_KEY_ID=foo - # export AWS_SECRET_ACCESS_KEY=bar - # export AWS_PROFILE=baz - # Then, just like our client() calls, the explicit credentials - # will take precedence. - # - # This precedence is enforced by leaving the EnvProvider in the chain. - # This means that the only way a "profile" would win is if the - # EnvProvider does not return credentials, which is what we want - # in this scenario. - providers.remove(env_provider) - logger.debug( - 'Skipping environment variable credential check' - ' because profile name was explicitly set.' - ) - - resolver = CredentialResolver(providers=providers) - return resolver - - -class ProfileProviderBuilder: - """This class handles the creation of profile based providers. - - NOTE: This class is only intended for internal use. - - This class handles the creation and ordering of the various credential - providers that primarly source their configuration from the shared config. - This is needed to enable sharing between the default credential chain and - the source profile chain created by the assume role provider. - """ - - def __init__( - self, session, cache=None, region_name=None, sso_token_cache=None - ): - self._session = session - self._cache = cache - self._region_name = region_name - self._sso_token_cache = sso_token_cache - - def providers(self, profile_name, disable_env_vars=False): - return [ - self._create_web_identity_provider( - profile_name, - disable_env_vars, - ), - self._create_sso_provider(profile_name), - self._create_shared_credential_provider(profile_name), - self._create_process_provider(profile_name), - self._create_config_provider(profile_name), - ] - - def _create_process_provider(self, profile_name): - return ProcessProvider( - profile_name=profile_name, - load_config=lambda: self._session.full_config, - ) - - def _create_shared_credential_provider(self, profile_name): - credential_file = self._session.get_config_variable('credentials_file') - return SharedCredentialProvider( - profile_name=profile_name, - creds_filename=credential_file, - ) - - def _create_config_provider(self, profile_name): - config_file = self._session.get_config_variable('config_file') - return ConfigProvider( - profile_name=profile_name, - config_filename=config_file, - ) - - def _create_web_identity_provider(self, profile_name, disable_env_vars): - return AssumeRoleWithWebIdentityProvider( - load_config=lambda: self._session.full_config, - client_creator=_get_client_creator( - self._session, self._region_name - ), - cache=self._cache, - profile_name=profile_name, - disable_env_vars=disable_env_vars, - ) - - def _create_sso_provider(self, profile_name): - return SSOProvider( - load_config=lambda: self._session.full_config, - client_creator=self._session.create_client, - profile_name=profile_name, - cache=self._cache, - token_cache=self._sso_token_cache, - token_provider=SSOTokenProvider( - self._session, - cache=self._sso_token_cache, - profile_name=profile_name, - ), - ) - - -def get_credentials(session): - resolver = create_credential_resolver(session) - return resolver.load_credentials() - - -def _local_now(): - return datetime.datetime.now(tzlocal()) - - -def _parse_if_needed(value): - if isinstance(value, datetime.datetime): - return value - return parse(value) - - -def _serialize_if_needed(value, iso=False): - if isinstance(value, datetime.datetime): - if iso: - return value.isoformat() - return value.strftime('%Y-%m-%dT%H:%M:%S%Z') - return value - - -def _get_client_creator(session, region_name): - def client_creator(service_name, **kwargs): - create_client_kwargs = {'region_name': region_name} - create_client_kwargs.update(**kwargs) - return session.create_client(service_name, **create_client_kwargs) - - return client_creator - - -def create_assume_role_refresher(client, params): - def refresh(): - response = client.assume_role(**params) - credentials = response['Credentials'] - # We need to normalize the credential names to - # the values expected by the refresh creds. - return { - 'access_key': credentials['AccessKeyId'], - 'secret_key': credentials['SecretAccessKey'], - 'token': credentials['SessionToken'], - 'expiry_time': _serialize_if_needed(credentials['Expiration']), - } - - return refresh - - -def create_mfa_serial_refresher(actual_refresh): - class _Refresher: - def __init__(self, refresh): - self._refresh = refresh - self._has_been_called = False - - def __call__(self): - if self._has_been_called: - # We can explore an option in the future to support - # reprompting for MFA, but for now we just error out - # when the temp creds expire. - raise RefreshWithMFAUnsupportedError() - self._has_been_called = True - return self._refresh() - - return _Refresher(actual_refresh) - - -class Credentials: - """ - Holds the credentials needed to authenticate requests. - - :param str access_key: The access key part of the credentials. - :param str secret_key: The secret key part of the credentials. - :param str token: The security token, valid only for session credentials. - :param str method: A string which identifies where the credentials - were found. - """ - - def __init__(self, access_key, secret_key, token=None, method=None): - self.access_key = access_key - self.secret_key = secret_key - self.token = token - - if method is None: - method = 'explicit' - self.method = method - - self._normalize() - - def _normalize(self): - # Keys would sometimes (accidentally) contain non-ascii characters. - # It would cause a confusing UnicodeDecodeError in Python 2. - # We explicitly convert them into unicode to avoid such error. - # - # Eventually the service will decide whether to accept the credential. - # This also complies with the behavior in Python 3. - self.access_key = botocore.compat.ensure_unicode(self.access_key) - self.secret_key = botocore.compat.ensure_unicode(self.secret_key) - - def get_frozen_credentials(self): - return ReadOnlyCredentials( - self.access_key, self.secret_key, self.token - ) - - -class RefreshableCredentials(Credentials): - """ - Holds the credentials needed to authenticate requests. In addition, it - knows how to refresh itself. - - :param str access_key: The access key part of the credentials. - :param str secret_key: The secret key part of the credentials. - :param str token: The security token, valid only for session credentials. - :param function refresh_using: Callback function to refresh the credentials. - :param str method: A string which identifies where the credentials - were found. - :param function time_fetcher: Callback function to retrieve current time. - """ - - # The time at which we'll attempt to refresh, but not - # block if someone else is refreshing. - _advisory_refresh_timeout = _DEFAULT_ADVISORY_REFRESH_TIMEOUT - # The time at which all threads will block waiting for - # refreshed credentials. - _mandatory_refresh_timeout = _DEFAULT_MANDATORY_REFRESH_TIMEOUT - - def __init__( - self, - access_key, - secret_key, - token, - expiry_time, - refresh_using, - method, - time_fetcher=_local_now, - ): - self._refresh_using = refresh_using - self._access_key = access_key - self._secret_key = secret_key - self._token = token - self._expiry_time = expiry_time - self._time_fetcher = time_fetcher - self._refresh_lock = threading.Lock() - self.method = method - self._frozen_credentials = ReadOnlyCredentials( - access_key, secret_key, token - ) - self._normalize() - - def _normalize(self): - self._access_key = botocore.compat.ensure_unicode(self._access_key) - self._secret_key = botocore.compat.ensure_unicode(self._secret_key) - - @classmethod - def create_from_metadata(cls, metadata, refresh_using, method): - instance = cls( - access_key=metadata['access_key'], - secret_key=metadata['secret_key'], - token=metadata['token'], - expiry_time=cls._expiry_datetime(metadata['expiry_time']), - method=method, - refresh_using=refresh_using, - ) - return instance - - @property - def access_key(self): - """Warning: Using this property can lead to race conditions if you - access another property subsequently along the refresh boundary. - Please use get_frozen_credentials instead. - """ - self._refresh() - return self._access_key - - @access_key.setter - def access_key(self, value): - self._access_key = value - - @property - def secret_key(self): - """Warning: Using this property can lead to race conditions if you - access another property subsequently along the refresh boundary. - Please use get_frozen_credentials instead. - """ - self._refresh() - return self._secret_key - - @secret_key.setter - def secret_key(self, value): - self._secret_key = value - - @property - def token(self): - """Warning: Using this property can lead to race conditions if you - access another property subsequently along the refresh boundary. - Please use get_frozen_credentials instead. - """ - self._refresh() - return self._token - - @token.setter - def token(self, value): - self._token = value - - def _seconds_remaining(self): - delta = self._expiry_time - self._time_fetcher() - return total_seconds(delta) - - def refresh_needed(self, refresh_in=None): - """Check if a refresh is needed. - - A refresh is needed if the expiry time associated - with the temporary credentials is less than the - provided ``refresh_in``. If ``time_delta`` is not - provided, ``self.advisory_refresh_needed`` will be used. - - For example, if your temporary credentials expire - in 10 minutes and the provided ``refresh_in`` is - ``15 * 60``, then this function will return ``True``. - - :type refresh_in: int - :param refresh_in: The number of seconds before the - credentials expire in which refresh attempts should - be made. - - :return: True if refresh needed, False otherwise. - - """ - if self._expiry_time is None: - # No expiration, so assume we don't need to refresh. - return False - - if refresh_in is None: - refresh_in = self._advisory_refresh_timeout - # The credentials should be refreshed if they're going to expire - # in less than 5 minutes. - if self._seconds_remaining() >= refresh_in: - # There's enough time left. Don't refresh. - return False - logger.debug("Credentials need to be refreshed.") - return True - - def _is_expired(self): - # Checks if the current credentials are expired. - return self.refresh_needed(refresh_in=0) - - def _refresh(self): - # In the common case where we don't need a refresh, we - # can immediately exit and not require acquiring the - # refresh lock. - if not self.refresh_needed(self._advisory_refresh_timeout): - return - - # acquire() doesn't accept kwargs, but False is indicating - # that we should not block if we can't acquire the lock. - # If we aren't able to acquire the lock, we'll trigger - # the else clause. - if self._refresh_lock.acquire(False): - try: - if not self.refresh_needed(self._advisory_refresh_timeout): - return - is_mandatory_refresh = self.refresh_needed( - self._mandatory_refresh_timeout - ) - self._protected_refresh(is_mandatory=is_mandatory_refresh) - return - finally: - self._refresh_lock.release() - elif self.refresh_needed(self._mandatory_refresh_timeout): - # If we're within the mandatory refresh window, - # we must block until we get refreshed credentials. - with self._refresh_lock: - if not self.refresh_needed(self._mandatory_refresh_timeout): - return - self._protected_refresh(is_mandatory=True) - - def _protected_refresh(self, is_mandatory): - # precondition: this method should only be called if you've acquired - # the self._refresh_lock. - try: - metadata = self._refresh_using() - except Exception: - period_name = 'mandatory' if is_mandatory else 'advisory' - logger.warning( - "Refreshing temporary credentials failed " - "during %s refresh period.", - period_name, - exc_info=True, - ) - if is_mandatory: - # If this is a mandatory refresh, then - # all errors that occur when we attempt to refresh - # credentials are propagated back to the user. - raise - # Otherwise we'll just return. - # The end result will be that we'll use the current - # set of temporary credentials we have. - return - self._set_from_data(metadata) - self._frozen_credentials = ReadOnlyCredentials( - self._access_key, self._secret_key, self._token - ) - if self._is_expired(): - # We successfully refreshed credentials but for whatever - # reason, our refreshing function returned credentials - # that are still expired. In this scenario, the only - # thing we can do is let the user know and raise - # an exception. - msg = ( - "Credentials were refreshed, but the " - "refreshed credentials are still expired." - ) - logger.warning(msg) - raise RuntimeError(msg) - - @staticmethod - def _expiry_datetime(time_str): - return parse(time_str) - - def _set_from_data(self, data): - expected_keys = ['access_key', 'secret_key', 'token', 'expiry_time'] - if not data: - missing_keys = expected_keys - else: - missing_keys = [k for k in expected_keys if k not in data] - - if missing_keys: - message = "Credential refresh failed, response did not contain: %s" - raise CredentialRetrievalError( - provider=self.method, - error_msg=message % ', '.join(missing_keys), - ) - - self.access_key = data['access_key'] - self.secret_key = data['secret_key'] - self.token = data['token'] - self._expiry_time = parse(data['expiry_time']) - logger.debug( - "Retrieved credentials will expire at: %s", self._expiry_time - ) - self._normalize() - - def get_frozen_credentials(self): - """Return immutable credentials. - - The ``access_key``, ``secret_key``, and ``token`` properties - on this class will always check and refresh credentials if - needed before returning the particular credentials. - - This has an edge case where you can get inconsistent - credentials. Imagine this: - - # Current creds are "t1" - tmp.access_key ---> expired? no, so return t1.access_key - # ---- time is now expired, creds need refreshing to "t2" ---- - tmp.secret_key ---> expired? yes, refresh and return t2.secret_key - - This means we're using the access key from t1 with the secret key - from t2. To fix this issue, you can request a frozen credential object - which is guaranteed not to change. - - The frozen credentials returned from this method should be used - immediately and then discarded. The typical usage pattern would - be:: - - creds = RefreshableCredentials(...) - some_code = SomeSignerObject() - # I'm about to sign the request. - # The frozen credentials are only used for the - # duration of generate_presigned_url and will be - # immediately thrown away. - request = some_code.sign_some_request( - with_credentials=creds.get_frozen_credentials()) - print("Signed request:", request) - - """ - self._refresh() - return self._frozen_credentials - - -class DeferredRefreshableCredentials(RefreshableCredentials): - """Refreshable credentials that don't require initial credentials. - - refresh_using will be called upon first access. - """ - - def __init__(self, refresh_using, method, time_fetcher=_local_now): - self._refresh_using = refresh_using - self._access_key = None - self._secret_key = None - self._token = None - self._expiry_time = None - self._time_fetcher = time_fetcher - self._refresh_lock = threading.Lock() - self.method = method - self._frozen_credentials = None - - def refresh_needed(self, refresh_in=None): - if self._frozen_credentials is None: - return True - return super().refresh_needed(refresh_in) - - -class CachedCredentialFetcher: - DEFAULT_EXPIRY_WINDOW_SECONDS = 60 * 15 - - def __init__(self, cache=None, expiry_window_seconds=None): - if cache is None: - cache = {} - self._cache = cache - self._cache_key = self._create_cache_key() - if expiry_window_seconds is None: - expiry_window_seconds = self.DEFAULT_EXPIRY_WINDOW_SECONDS - self._expiry_window_seconds = expiry_window_seconds - - def _create_cache_key(self): - raise NotImplementedError('_create_cache_key()') - - def _make_file_safe(self, filename): - # Replace :, path sep, and / to make it the string filename safe. - filename = filename.replace(':', '_').replace(os.path.sep, '_') - return filename.replace('/', '_') - - def _get_credentials(self): - raise NotImplementedError('_get_credentials()') - - def fetch_credentials(self): - return self._get_cached_credentials() - - def _get_cached_credentials(self): - """Get up-to-date credentials. - - This will check the cache for up-to-date credentials, calling assume - role if none are available. - """ - response = self._load_from_cache() - if response is None: - response = self._get_credentials() - self._write_to_cache(response) - else: - logger.debug("Credentials for role retrieved from cache.") - - creds = response['Credentials'] - expiration = _serialize_if_needed(creds['Expiration'], iso=True) - return { - 'access_key': creds['AccessKeyId'], - 'secret_key': creds['SecretAccessKey'], - 'token': creds['SessionToken'], - 'expiry_time': expiration, - } - - def _load_from_cache(self): - if self._cache_key in self._cache: - creds = deepcopy(self._cache[self._cache_key]) - if not self._is_expired(creds): - return creds - else: - logger.debug( - "Credentials were found in cache, but they are expired." - ) - return None - - def _write_to_cache(self, response): - self._cache[self._cache_key] = deepcopy(response) - - def _is_expired(self, credentials): - """Check if credentials are expired.""" - end_time = _parse_if_needed(credentials['Credentials']['Expiration']) - seconds = total_seconds(end_time - _local_now()) - return seconds < self._expiry_window_seconds - - -class BaseAssumeRoleCredentialFetcher(CachedCredentialFetcher): - def __init__( - self, - client_creator, - role_arn, - extra_args=None, - cache=None, - expiry_window_seconds=None, - ): - self._client_creator = client_creator - self._role_arn = role_arn - - if extra_args is None: - self._assume_kwargs = {} - else: - self._assume_kwargs = deepcopy(extra_args) - self._assume_kwargs['RoleArn'] = self._role_arn - - self._role_session_name = self._assume_kwargs.get('RoleSessionName') - self._using_default_session_name = False - if not self._role_session_name: - self._generate_assume_role_name() - - super().__init__(cache, expiry_window_seconds) - - def _generate_assume_role_name(self): - self._role_session_name = 'botocore-session-%s' % (int(time.time())) - self._assume_kwargs['RoleSessionName'] = self._role_session_name - self._using_default_session_name = True - - def _create_cache_key(self): - """Create a predictable cache key for the current configuration. - - The cache key is intended to be compatible with file names. - """ - args = deepcopy(self._assume_kwargs) - - # The role session name gets randomly generated, so we don't want it - # in the hash. - if self._using_default_session_name: - del args['RoleSessionName'] - - if 'Policy' in args: - # To have a predictable hash, the keys of the policy must be - # sorted, so we have to load it here to make sure it gets sorted - # later on. - args['Policy'] = json.loads(args['Policy']) - - args = json.dumps(args, sort_keys=True) - argument_hash = sha1(args.encode('utf-8')).hexdigest() - return self._make_file_safe(argument_hash) - - -class AssumeRoleCredentialFetcher(BaseAssumeRoleCredentialFetcher): - def __init__( - self, - client_creator, - source_credentials, - role_arn, - extra_args=None, - mfa_prompter=None, - cache=None, - expiry_window_seconds=None, - ): - """ - :type client_creator: callable - :param client_creator: A callable that creates a client taking - arguments like ``Session.create_client``. - - :type source_credentials: Credentials - :param source_credentials: The credentials to use to create the - client for the call to AssumeRole. - - :type role_arn: str - :param role_arn: The ARN of the role to be assumed. - - :type extra_args: dict - :param extra_args: Any additional arguments to add to the assume - role request using the format of the botocore operation. - Possible keys include, but may not be limited to, - DurationSeconds, Policy, SerialNumber, ExternalId and - RoleSessionName. - - :type mfa_prompter: callable - :param mfa_prompter: A callable that returns input provided by the - user (i.e raw_input, getpass.getpass, etc.). - - :type cache: dict - :param cache: An object that supports ``__getitem__``, - ``__setitem__``, and ``__contains__``. An example of this is - the ``JSONFileCache`` class in aws-cli. - - :type expiry_window_seconds: int - :param expiry_window_seconds: The amount of time, in seconds, - """ - self._source_credentials = source_credentials - self._mfa_prompter = mfa_prompter - if self._mfa_prompter is None: - self._mfa_prompter = getpass.getpass - - super().__init__( - client_creator, - role_arn, - extra_args=extra_args, - cache=cache, - expiry_window_seconds=expiry_window_seconds, - ) - - def _get_credentials(self): - """Get credentials by calling assume role.""" - kwargs = self._assume_role_kwargs() - client = self._create_client() - return client.assume_role(**kwargs) - - def _assume_role_kwargs(self): - """Get the arguments for assume role based on current configuration.""" - assume_role_kwargs = deepcopy(self._assume_kwargs) - - mfa_serial = assume_role_kwargs.get('SerialNumber') - - if mfa_serial is not None: - prompt = 'Enter MFA code for %s: ' % mfa_serial - token_code = self._mfa_prompter(prompt) - assume_role_kwargs['TokenCode'] = token_code - - duration_seconds = assume_role_kwargs.get('DurationSeconds') - - if duration_seconds is not None: - assume_role_kwargs['DurationSeconds'] = duration_seconds - - return assume_role_kwargs - - def _create_client(self): - """Create an STS client using the source credentials.""" - frozen_credentials = self._source_credentials.get_frozen_credentials() - return self._client_creator( - 'sts', - aws_access_key_id=frozen_credentials.access_key, - aws_secret_access_key=frozen_credentials.secret_key, - aws_session_token=frozen_credentials.token, - ) - - -class AssumeRoleWithWebIdentityCredentialFetcher( - BaseAssumeRoleCredentialFetcher -): - def __init__( - self, - client_creator, - web_identity_token_loader, - role_arn, - extra_args=None, - cache=None, - expiry_window_seconds=None, - ): - """ - :type client_creator: callable - :param client_creator: A callable that creates a client taking - arguments like ``Session.create_client``. - - :type web_identity_token_loader: callable - :param web_identity_token_loader: A callable that takes no arguments - and returns a web identity token str. - - :type role_arn: str - :param role_arn: The ARN of the role to be assumed. - - :type extra_args: dict - :param extra_args: Any additional arguments to add to the assume - role request using the format of the botocore operation. - Possible keys include, but may not be limited to, - DurationSeconds, Policy, SerialNumber, ExternalId and - RoleSessionName. - - :type cache: dict - :param cache: An object that supports ``__getitem__``, - ``__setitem__``, and ``__contains__``. An example of this is - the ``JSONFileCache`` class in aws-cli. - - :type expiry_window_seconds: int - :param expiry_window_seconds: The amount of time, in seconds, - """ - self._web_identity_token_loader = web_identity_token_loader - - super().__init__( - client_creator, - role_arn, - extra_args=extra_args, - cache=cache, - expiry_window_seconds=expiry_window_seconds, - ) - - def _get_credentials(self): - """Get credentials by calling assume role.""" - kwargs = self._assume_role_kwargs() - # Assume role with web identity does not require credentials other than - # the token, explicitly configure the client to not sign requests. - config = Config(signature_version=UNSIGNED) - client = self._client_creator('sts', config=config) - return client.assume_role_with_web_identity(**kwargs) - - def _assume_role_kwargs(self): - """Get the arguments for assume role based on current configuration.""" - assume_role_kwargs = deepcopy(self._assume_kwargs) - identity_token = self._web_identity_token_loader() - assume_role_kwargs['WebIdentityToken'] = identity_token - - return assume_role_kwargs - - -class CredentialProvider: - # A short name to identify the provider within botocore. - METHOD = None - - # A name to identify the provider for use in cross-sdk features like - # assume role's `credential_source` configuration option. These names - # are to be treated in a case-insensitive way. NOTE: any providers not - # implemented in botocore MUST prefix their canonical names with - # 'custom' or we DO NOT guarantee that it will work with any features - # that this provides. - CANONICAL_NAME = None - - def __init__(self, session=None): - self.session = session - - def load(self): - """ - Loads the credentials from their source & sets them on the object. - - Subclasses should implement this method (by reading from disk, the - environment, the network or wherever), returning ``True`` if they were - found & loaded. - - If not found, this method should return ``False``, indictating that the - ``CredentialResolver`` should fall back to the next available method. - - The default implementation does nothing, assuming the user has set the - ``access_key/secret_key/token`` themselves. - - :returns: Whether credentials were found & set - :rtype: Credentials - """ - return True - - def _extract_creds_from_mapping(self, mapping, *key_names): - found = [] - for key_name in key_names: - try: - found.append(mapping[key_name]) - except KeyError: - raise PartialCredentialsError( - provider=self.METHOD, cred_var=key_name - ) - return found - - -class ProcessProvider(CredentialProvider): - - METHOD = 'custom-process' - - def __init__(self, profile_name, load_config, popen=subprocess.Popen): - self._profile_name = profile_name - self._load_config = load_config - self._loaded_config = None - self._popen = popen - - def load(self): - credential_process = self._credential_process - if credential_process is None: - return - - creds_dict = self._retrieve_credentials_using(credential_process) - if creds_dict.get('expiry_time') is not None: - return RefreshableCredentials.create_from_metadata( - creds_dict, - lambda: self._retrieve_credentials_using(credential_process), - self.METHOD, - ) - - return Credentials( - access_key=creds_dict['access_key'], - secret_key=creds_dict['secret_key'], - token=creds_dict.get('token'), - method=self.METHOD, - ) - - def _retrieve_credentials_using(self, credential_process): - # We're not using shell=True, so we need to pass the - # command and all arguments as a list. - process_list = compat_shell_split(credential_process) - p = self._popen( - process_list, stdout=subprocess.PIPE, stderr=subprocess.PIPE - ) - stdout, stderr = p.communicate() - if p.returncode != 0: - raise CredentialRetrievalError( - provider=self.METHOD, error_msg=stderr.decode('utf-8') - ) - parsed = botocore.compat.json.loads(stdout.decode('utf-8')) - version = parsed.get('Version', '') - if version != 1: - raise CredentialRetrievalError( - provider=self.METHOD, - error_msg=( - f"Unsupported version '{version}' for credential process " - f"provider, supported versions: 1" - ), - ) - try: - return { - 'access_key': parsed['AccessKeyId'], - 'secret_key': parsed['SecretAccessKey'], - 'token': parsed.get('SessionToken'), - 'expiry_time': parsed.get('Expiration'), - } - except KeyError as e: - raise CredentialRetrievalError( - provider=self.METHOD, - error_msg=f"Missing required key in response: {e}", - ) - - @property - def _credential_process(self): - if self._loaded_config is None: - self._loaded_config = self._load_config() - profile_config = self._loaded_config.get('profiles', {}).get( - self._profile_name, {} - ) - return profile_config.get('credential_process') - - -class InstanceMetadataProvider(CredentialProvider): - METHOD = 'iam-role' - CANONICAL_NAME = 'Ec2InstanceMetadata' - - def __init__(self, iam_role_fetcher): - self._role_fetcher = iam_role_fetcher - - def load(self): - fetcher = self._role_fetcher - # We do the first request, to see if we get useful data back. - # If not, we'll pass & move on to whatever's next in the credential - # chain. - metadata = fetcher.retrieve_iam_role_credentials() - if not metadata: - return None - logger.info( - 'Found credentials from IAM Role: %s', metadata['role_name'] - ) - # We manually set the data here, since we already made the request & - # have it. When the expiry is hit, the credentials will auto-refresh - # themselves. - creds = RefreshableCredentials.create_from_metadata( - metadata, - method=self.METHOD, - refresh_using=fetcher.retrieve_iam_role_credentials, - ) - return creds - - -class EnvProvider(CredentialProvider): - METHOD = 'env' - CANONICAL_NAME = 'Environment' - ACCESS_KEY = 'AWS_ACCESS_KEY_ID' - SECRET_KEY = 'AWS_SECRET_ACCESS_KEY' - # The token can come from either of these env var. - # AWS_SESSION_TOKEN is what other AWS SDKs have standardized on. - TOKENS = ['AWS_SECURITY_TOKEN', 'AWS_SESSION_TOKEN'] - EXPIRY_TIME = 'AWS_CREDENTIAL_EXPIRATION' - - def __init__(self, environ=None, mapping=None): - """ - - :param environ: The environment variables (defaults to - ``os.environ`` if no value is provided). - :param mapping: An optional mapping of variable names to - environment variable names. Use this if you want to - change the mapping of access_key->AWS_ACCESS_KEY_ID, etc. - The dict can have up to 3 keys: ``access_key``, ``secret_key``, - ``session_token``. - """ - if environ is None: - environ = os.environ - self.environ = environ - self._mapping = self._build_mapping(mapping) - - def _build_mapping(self, mapping): - # Mapping of variable name to env var name. - var_mapping = {} - if mapping is None: - # Use the class var default. - var_mapping['access_key'] = self.ACCESS_KEY - var_mapping['secret_key'] = self.SECRET_KEY - var_mapping['token'] = self.TOKENS - var_mapping['expiry_time'] = self.EXPIRY_TIME - else: - var_mapping['access_key'] = mapping.get( - 'access_key', self.ACCESS_KEY - ) - var_mapping['secret_key'] = mapping.get( - 'secret_key', self.SECRET_KEY - ) - var_mapping['token'] = mapping.get('token', self.TOKENS) - if not isinstance(var_mapping['token'], list): - var_mapping['token'] = [var_mapping['token']] - var_mapping['expiry_time'] = mapping.get( - 'expiry_time', self.EXPIRY_TIME - ) - return var_mapping - - def load(self): - """ - Search for credentials in explicit environment variables. - """ - - access_key = self.environ.get(self._mapping['access_key'], '') - - if access_key: - logger.info('Found credentials in environment variables.') - fetcher = self._create_credentials_fetcher() - credentials = fetcher(require_expiry=False) - - expiry_time = credentials['expiry_time'] - if expiry_time is not None: - expiry_time = parse(expiry_time) - return RefreshableCredentials( - credentials['access_key'], - credentials['secret_key'], - credentials['token'], - expiry_time, - refresh_using=fetcher, - method=self.METHOD, - ) - - return Credentials( - credentials['access_key'], - credentials['secret_key'], - credentials['token'], - method=self.METHOD, - ) - else: - return None - - def _create_credentials_fetcher(self): - mapping = self._mapping - method = self.METHOD - environ = self.environ - - def fetch_credentials(require_expiry=True): - credentials = {} - - access_key = environ.get(mapping['access_key'], '') - if not access_key: - raise PartialCredentialsError( - provider=method, cred_var=mapping['access_key'] - ) - credentials['access_key'] = access_key - - secret_key = environ.get(mapping['secret_key'], '') - if not secret_key: - raise PartialCredentialsError( - provider=method, cred_var=mapping['secret_key'] - ) - credentials['secret_key'] = secret_key - - credentials['token'] = None - for token_env_var in mapping['token']: - token = environ.get(token_env_var, '') - if token: - credentials['token'] = token - break - - credentials['expiry_time'] = None - expiry_time = environ.get(mapping['expiry_time'], '') - if expiry_time: - credentials['expiry_time'] = expiry_time - if require_expiry and not expiry_time: - raise PartialCredentialsError( - provider=method, cred_var=mapping['expiry_time'] - ) - - return credentials - - return fetch_credentials - - -class OriginalEC2Provider(CredentialProvider): - METHOD = 'ec2-credentials-file' - CANONICAL_NAME = 'Ec2Config' - - CRED_FILE_ENV = 'AWS_CREDENTIAL_FILE' - ACCESS_KEY = 'AWSAccessKeyId' - SECRET_KEY = 'AWSSecretKey' - - def __init__(self, environ=None, parser=None): - if environ is None: - environ = os.environ - if parser is None: - parser = parse_key_val_file - self._environ = environ - self._parser = parser - - def load(self): - """ - Search for a credential file used by original EC2 CLI tools. - """ - if 'AWS_CREDENTIAL_FILE' in self._environ: - full_path = os.path.expanduser( - self._environ['AWS_CREDENTIAL_FILE'] - ) - creds = self._parser(full_path) - if self.ACCESS_KEY in creds: - logger.info('Found credentials in AWS_CREDENTIAL_FILE.') - access_key = creds[self.ACCESS_KEY] - secret_key = creds[self.SECRET_KEY] - # EC2 creds file doesn't support session tokens. - return Credentials(access_key, secret_key, method=self.METHOD) - else: - return None - - -class SharedCredentialProvider(CredentialProvider): - METHOD = 'shared-credentials-file' - CANONICAL_NAME = 'SharedCredentials' - - ACCESS_KEY = 'aws_access_key_id' - SECRET_KEY = 'aws_secret_access_key' - # Same deal as the EnvProvider above. Botocore originally supported - # aws_security_token, but the SDKs are standardizing on aws_session_token - # so we support both. - TOKENS = ['aws_security_token', 'aws_session_token'] - - def __init__(self, creds_filename, profile_name=None, ini_parser=None): - self._creds_filename = creds_filename - if profile_name is None: - profile_name = 'default' - self._profile_name = profile_name - if ini_parser is None: - ini_parser = botocore.configloader.raw_config_parse - self._ini_parser = ini_parser - - def load(self): - try: - available_creds = self._ini_parser(self._creds_filename) - except ConfigNotFound: - return None - if self._profile_name in available_creds: - config = available_creds[self._profile_name] - if self.ACCESS_KEY in config: - logger.info( - "Found credentials in shared credentials file: %s", - self._creds_filename, - ) - access_key, secret_key = self._extract_creds_from_mapping( - config, self.ACCESS_KEY, self.SECRET_KEY - ) - token = self._get_session_token(config) - return Credentials( - access_key, secret_key, token, method=self.METHOD - ) - - def _get_session_token(self, config): - for token_envvar in self.TOKENS: - if token_envvar in config: - return config[token_envvar] - - -class ConfigProvider(CredentialProvider): - """INI based config provider with profile sections.""" - - METHOD = 'config-file' - CANONICAL_NAME = 'SharedConfig' - - ACCESS_KEY = 'aws_access_key_id' - SECRET_KEY = 'aws_secret_access_key' - # Same deal as the EnvProvider above. Botocore originally supported - # aws_security_token, but the SDKs are standardizing on aws_session_token - # so we support both. - TOKENS = ['aws_security_token', 'aws_session_token'] - - def __init__(self, config_filename, profile_name, config_parser=None): - """ - - :param config_filename: The session configuration scoped to the current - profile. This is available via ``session.config``. - :param profile_name: The name of the current profile. - :param config_parser: A config parser callable. - - """ - self._config_filename = config_filename - self._profile_name = profile_name - if config_parser is None: - config_parser = botocore.configloader.load_config - self._config_parser = config_parser - - def load(self): - """ - If there is are credentials in the configuration associated with - the session, use those. - """ - try: - full_config = self._config_parser(self._config_filename) - except ConfigNotFound: - return None - if self._profile_name in full_config['profiles']: - profile_config = full_config['profiles'][self._profile_name] - if self.ACCESS_KEY in profile_config: - logger.info( - "Credentials found in config file: %s", - self._config_filename, - ) - access_key, secret_key = self._extract_creds_from_mapping( - profile_config, self.ACCESS_KEY, self.SECRET_KEY - ) - token = self._get_session_token(profile_config) - return Credentials( - access_key, secret_key, token, method=self.METHOD - ) - else: - return None - - def _get_session_token(self, profile_config): - for token_name in self.TOKENS: - if token_name in profile_config: - return profile_config[token_name] - - -class BotoProvider(CredentialProvider): - METHOD = 'boto-config' - CANONICAL_NAME = 'Boto2Config' - - BOTO_CONFIG_ENV = 'BOTO_CONFIG' - DEFAULT_CONFIG_FILENAMES = ['/etc/boto.cfg', '~/.boto'] - ACCESS_KEY = 'aws_access_key_id' - SECRET_KEY = 'aws_secret_access_key' - - def __init__(self, environ=None, ini_parser=None): - if environ is None: - environ = os.environ - if ini_parser is None: - ini_parser = botocore.configloader.raw_config_parse - self._environ = environ - self._ini_parser = ini_parser - - def load(self): - """ - Look for credentials in boto config file. - """ - if self.BOTO_CONFIG_ENV in self._environ: - potential_locations = [self._environ[self.BOTO_CONFIG_ENV]] - else: - potential_locations = self.DEFAULT_CONFIG_FILENAMES - for filename in potential_locations: - try: - config = self._ini_parser(filename) - except ConfigNotFound: - # Move on to the next potential config file name. - continue - if 'Credentials' in config: - credentials = config['Credentials'] - if self.ACCESS_KEY in credentials: - logger.info( - "Found credentials in boto config file: %s", filename - ) - access_key, secret_key = self._extract_creds_from_mapping( - credentials, self.ACCESS_KEY, self.SECRET_KEY - ) - return Credentials( - access_key, secret_key, method=self.METHOD - ) - - -class AssumeRoleProvider(CredentialProvider): - METHOD = 'assume-role' - # The AssumeRole provider is logically part of the SharedConfig and - # SharedCredentials providers. Since the purpose of the canonical name - # is to provide cross-sdk compatibility, calling code will need to be - # aware that either of those providers should be tied to the AssumeRole - # provider as much as possible. - CANONICAL_NAME = None - ROLE_CONFIG_VAR = 'role_arn' - WEB_IDENTITY_TOKE_FILE_VAR = 'web_identity_token_file' - # Credentials are considered expired (and will be refreshed) once the total - # remaining time left until the credentials expires is less than the - # EXPIRY_WINDOW. - EXPIRY_WINDOW_SECONDS = 60 * 15 - - def __init__( - self, - load_config, - client_creator, - cache, - profile_name, - prompter=getpass.getpass, - credential_sourcer=None, - profile_provider_builder=None, - ): - """ - :type load_config: callable - :param load_config: A function that accepts no arguments, and - when called, will return the full configuration dictionary - for the session (``session.full_config``). - - :type client_creator: callable - :param client_creator: A factory function that will create - a client when called. Has the same interface as - ``botocore.session.Session.create_client``. - - :type cache: dict - :param cache: An object that supports ``__getitem__``, - ``__setitem__``, and ``__contains__``. An example - of this is the ``JSONFileCache`` class in the CLI. - - :type profile_name: str - :param profile_name: The name of the profile. - - :type prompter: callable - :param prompter: A callable that returns input provided - by the user (i.e raw_input, getpass.getpass, etc.). - - :type credential_sourcer: CanonicalNameCredentialSourcer - :param credential_sourcer: A credential provider that takes a - configuration, which is used to provide the source credentials - for the STS call. - """ - #: The cache used to first check for assumed credentials. - #: This is checked before making the AssumeRole API - #: calls and can be useful if you have short lived - #: scripts and you'd like to avoid calling AssumeRole - #: until the credentials are expired. - self.cache = cache - self._load_config = load_config - # client_creator is a callable that creates function. - # It's basically session.create_client - self._client_creator = client_creator - self._profile_name = profile_name - self._prompter = prompter - # The _loaded_config attribute will be populated from the - # load_config() function once the configuration is actually - # loaded. The reason we go through all this instead of just - # requiring that the loaded_config be passed to us is to that - # we can defer configuration loaded until we actually try - # to load credentials (as opposed to when the object is - # instantiated). - self._loaded_config = {} - self._credential_sourcer = credential_sourcer - self._profile_provider_builder = profile_provider_builder - self._visited_profiles = [self._profile_name] - - def load(self): - self._loaded_config = self._load_config() - profiles = self._loaded_config.get('profiles', {}) - profile = profiles.get(self._profile_name, {}) - if self._has_assume_role_config_vars(profile): - return self._load_creds_via_assume_role(self._profile_name) - - def _has_assume_role_config_vars(self, profile): - return ( - self.ROLE_CONFIG_VAR in profile - and - # We need to ensure this provider doesn't look at a profile when - # the profile has configuration for web identity. Simply relying on - # the order in the credential chain is insufficient as it doesn't - # prevent the case when we're doing an assume role chain. - self.WEB_IDENTITY_TOKE_FILE_VAR not in profile - ) - - def _load_creds_via_assume_role(self, profile_name): - role_config = self._get_role_config(profile_name) - source_credentials = self._resolve_source_credentials( - role_config, profile_name - ) - - extra_args = {} - role_session_name = role_config.get('role_session_name') - if role_session_name is not None: - extra_args['RoleSessionName'] = role_session_name - - external_id = role_config.get('external_id') - if external_id is not None: - extra_args['ExternalId'] = external_id - - mfa_serial = role_config.get('mfa_serial') - if mfa_serial is not None: - extra_args['SerialNumber'] = mfa_serial - - duration_seconds = role_config.get('duration_seconds') - if duration_seconds is not None: - extra_args['DurationSeconds'] = duration_seconds - - fetcher = AssumeRoleCredentialFetcher( - client_creator=self._client_creator, - source_credentials=source_credentials, - role_arn=role_config['role_arn'], - extra_args=extra_args, - mfa_prompter=self._prompter, - cache=self.cache, - ) - refresher = fetcher.fetch_credentials - if mfa_serial is not None: - refresher = create_mfa_serial_refresher(refresher) - - # The initial credentials are empty and the expiration time is set - # to now so that we can delay the call to assume role until it is - # strictly needed. - return DeferredRefreshableCredentials( - method=self.METHOD, - refresh_using=refresher, - time_fetcher=_local_now, - ) - - def _get_role_config(self, profile_name): - """Retrieves and validates the role configuration for the profile.""" - profiles = self._loaded_config.get('profiles', {}) - - profile = profiles[profile_name] - source_profile = profile.get('source_profile') - role_arn = profile['role_arn'] - credential_source = profile.get('credential_source') - mfa_serial = profile.get('mfa_serial') - external_id = profile.get('external_id') - role_session_name = profile.get('role_session_name') - duration_seconds = profile.get('duration_seconds') - - role_config = { - 'role_arn': role_arn, - 'external_id': external_id, - 'mfa_serial': mfa_serial, - 'role_session_name': role_session_name, - 'source_profile': source_profile, - 'credential_source': credential_source, - } - - if duration_seconds is not None: - try: - role_config['duration_seconds'] = int(duration_seconds) - except ValueError: - pass - - # Either the credential source or the source profile must be - # specified, but not both. - if credential_source is not None and source_profile is not None: - raise InvalidConfigError( - error_msg=( - 'The profile "%s" contains both source_profile and ' - 'credential_source.' % profile_name - ) - ) - elif credential_source is None and source_profile is None: - raise PartialCredentialsError( - provider=self.METHOD, - cred_var='source_profile or credential_source', - ) - elif credential_source is not None: - self._validate_credential_source(profile_name, credential_source) - else: - self._validate_source_profile(profile_name, source_profile) - - return role_config - - def _validate_credential_source(self, parent_profile, credential_source): - if self._credential_sourcer is None: - raise InvalidConfigError( - error_msg=( - f"The credential_source \"{credential_source}\" is specified " - f"in profile \"{parent_profile}\", " - f"but no source provider was configured." - ) - ) - if not self._credential_sourcer.is_supported(credential_source): - raise InvalidConfigError( - error_msg=( - f"The credential source \"{credential_source}\" referenced " - f"in profile \"{parent_profile}\" is not valid." - ) - ) - - def _source_profile_has_credentials(self, profile): - return any( - [ - self._has_static_credentials(profile), - self._has_assume_role_config_vars(profile), - ] - ) - - def _validate_source_profile( - self, parent_profile_name, source_profile_name - ): - profiles = self._loaded_config.get('profiles', {}) - if source_profile_name not in profiles: - raise InvalidConfigError( - error_msg=( - f"The source_profile \"{source_profile_name}\" referenced in " - f"the profile \"{parent_profile_name}\" does not exist." - ) - ) - - source_profile = profiles[source_profile_name] - - # Make sure we aren't going into an infinite loop. If we haven't - # visited the profile yet, we're good. - if source_profile_name not in self._visited_profiles: - return - - # If we have visited the profile and the profile isn't simply - # referencing itself, that's an infinite loop. - if source_profile_name != parent_profile_name: - raise InfiniteLoopConfigError( - source_profile=source_profile_name, - visited_profiles=self._visited_profiles, - ) - - # A profile is allowed to reference itself so that it can source - # static credentials and have configuration all in the same - # profile. This will only ever work for the top level assume - # role because the static credentials will otherwise take - # precedence. - if not self._has_static_credentials(source_profile): - raise InfiniteLoopConfigError( - source_profile=source_profile_name, - visited_profiles=self._visited_profiles, - ) - - def _has_static_credentials(self, profile): - static_keys = ['aws_secret_access_key', 'aws_access_key_id'] - return any(static_key in profile for static_key in static_keys) - - def _resolve_source_credentials(self, role_config, profile_name): - credential_source = role_config.get('credential_source') - if credential_source is not None: - return self._resolve_credentials_from_source( - credential_source, profile_name - ) - - source_profile = role_config['source_profile'] - self._visited_profiles.append(source_profile) - return self._resolve_credentials_from_profile(source_profile) - - def _resolve_credentials_from_profile(self, profile_name): - profiles = self._loaded_config.get('profiles', {}) - profile = profiles[profile_name] - - if ( - self._has_static_credentials(profile) - and not self._profile_provider_builder - ): - # This is only here for backwards compatibility. If this provider - # isn't given a profile provider builder we still want to be able - # handle the basic static credential case as we would before the - # provile provider builder parameter was added. - return self._resolve_static_credentials_from_profile(profile) - elif self._has_static_credentials( - profile - ) or not self._has_assume_role_config_vars(profile): - profile_providers = self._profile_provider_builder.providers( - profile_name=profile_name, - disable_env_vars=True, - ) - profile_chain = CredentialResolver(profile_providers) - credentials = profile_chain.load_credentials() - if credentials is None: - error_message = ( - 'The source profile "%s" must have credentials.' - ) - raise InvalidConfigError( - error_msg=error_message % profile_name, - ) - return credentials - - return self._load_creds_via_assume_role(profile_name) - - def _resolve_static_credentials_from_profile(self, profile): - try: - return Credentials( - access_key=profile['aws_access_key_id'], - secret_key=profile['aws_secret_access_key'], - token=profile.get('aws_session_token'), - ) - except KeyError as e: - raise PartialCredentialsError( - provider=self.METHOD, cred_var=str(e) - ) - - def _resolve_credentials_from_source( - self, credential_source, profile_name - ): - credentials = self._credential_sourcer.source_credentials( - credential_source - ) - if credentials is None: - raise CredentialRetrievalError( - provider=credential_source, - error_msg=( - 'No credentials found in credential_source referenced ' - 'in profile %s' % profile_name - ), - ) - return credentials - - -class AssumeRoleWithWebIdentityProvider(CredentialProvider): - METHOD = 'assume-role-with-web-identity' - CANONICAL_NAME = None - _CONFIG_TO_ENV_VAR = { - 'web_identity_token_file': 'AWS_WEB_IDENTITY_TOKEN_FILE', - 'role_session_name': 'AWS_ROLE_SESSION_NAME', - 'role_arn': 'AWS_ROLE_ARN', - } - - def __init__( - self, - load_config, - client_creator, - profile_name, - cache=None, - disable_env_vars=False, - token_loader_cls=None, - ): - self.cache = cache - self._load_config = load_config - self._client_creator = client_creator - self._profile_name = profile_name - self._profile_config = None - self._disable_env_vars = disable_env_vars - if token_loader_cls is None: - token_loader_cls = FileWebIdentityTokenLoader - self._token_loader_cls = token_loader_cls - - def load(self): - return self._assume_role_with_web_identity() - - def _get_profile_config(self, key): - if self._profile_config is None: - loaded_config = self._load_config() - profiles = loaded_config.get('profiles', {}) - self._profile_config = profiles.get(self._profile_name, {}) - return self._profile_config.get(key) - - def _get_env_config(self, key): - if self._disable_env_vars: - return None - env_key = self._CONFIG_TO_ENV_VAR.get(key) - if env_key and env_key in os.environ: - return os.environ[env_key] - return None - - def _get_config(self, key): - env_value = self._get_env_config(key) - if env_value is not None: - return env_value - return self._get_profile_config(key) - - def _assume_role_with_web_identity(self): - token_path = self._get_config('web_identity_token_file') - if not token_path: - return None - token_loader = self._token_loader_cls(token_path) - - role_arn = self._get_config('role_arn') - if not role_arn: - error_msg = ( - 'The provided profile or the current environment is ' - 'configured to assume role with web identity but has no ' - 'role ARN configured. Ensure that the profile has the role_arn' - 'configuration set or the AWS_ROLE_ARN env var is set.' - ) - raise InvalidConfigError(error_msg=error_msg) - - extra_args = {} - role_session_name = self._get_config('role_session_name') - if role_session_name is not None: - extra_args['RoleSessionName'] = role_session_name - - fetcher = AssumeRoleWithWebIdentityCredentialFetcher( - client_creator=self._client_creator, - web_identity_token_loader=token_loader, - role_arn=role_arn, - extra_args=extra_args, - cache=self.cache, - ) - # The initial credentials are empty and the expiration time is set - # to now so that we can delay the call to assume role until it is - # strictly needed. - return DeferredRefreshableCredentials( - method=self.METHOD, - refresh_using=fetcher.fetch_credentials, - ) - - -class CanonicalNameCredentialSourcer: - def __init__(self, providers): - self._providers = providers - - def is_supported(self, source_name): - """Validates a given source name. - - :type source_name: str - :param source_name: The value of credential_source in the config - file. This is the canonical name of the credential provider. - - :rtype: bool - :returns: True if the credential provider is supported, - False otherwise. - """ - return source_name in [p.CANONICAL_NAME for p in self._providers] - - def source_credentials(self, source_name): - """Loads source credentials based on the provided configuration. - - :type source_name: str - :param source_name: The value of credential_source in the config - file. This is the canonical name of the credential provider. - - :rtype: Credentials - """ - source = self._get_provider(source_name) - if isinstance(source, CredentialResolver): - return source.load_credentials() - return source.load() - - def _get_provider(self, canonical_name): - """Return a credential provider by its canonical name. - - :type canonical_name: str - :param canonical_name: The canonical name of the provider. - - :raises UnknownCredentialError: Raised if no - credential provider by the provided name - is found. - """ - provider = self._get_provider_by_canonical_name(canonical_name) - - # The AssumeRole provider should really be part of the SharedConfig - # provider rather than being its own thing, but it is not. It is - # effectively part of both the SharedConfig provider and the - # SharedCredentials provider now due to the way it behaves. - # Therefore if we want either of those providers we should return - # the AssumeRole provider with it. - if canonical_name.lower() in ['sharedconfig', 'sharedcredentials']: - assume_role_provider = self._get_provider_by_method('assume-role') - if assume_role_provider is not None: - # The SharedConfig or SharedCredentials provider may not be - # present if it was removed for some reason, but the - # AssumeRole provider could still be present. In that case, - # return the assume role provider by itself. - if provider is None: - return assume_role_provider - - # If both are present, return them both as a - # CredentialResolver so that calling code can treat them as - # a single entity. - return CredentialResolver([assume_role_provider, provider]) - - if provider is None: - raise UnknownCredentialError(name=canonical_name) - - return provider - - def _get_provider_by_canonical_name(self, canonical_name): - """Return a credential provider by its canonical name. - - This function is strict, it does not attempt to address - compatibility issues. - """ - for provider in self._providers: - name = provider.CANONICAL_NAME - # Canonical names are case-insensitive - if name and name.lower() == canonical_name.lower(): - return provider - - def _get_provider_by_method(self, method): - """Return a credential provider by its METHOD name.""" - for provider in self._providers: - if provider.METHOD == method: - return provider - - -class ContainerProvider(CredentialProvider): - METHOD = 'container-role' - CANONICAL_NAME = 'EcsContainer' - ENV_VAR = 'AWS_CONTAINER_CREDENTIALS_RELATIVE_URI' - ENV_VAR_FULL = 'AWS_CONTAINER_CREDENTIALS_FULL_URI' - ENV_VAR_AUTH_TOKEN = 'AWS_CONTAINER_AUTHORIZATION_TOKEN' - - def __init__(self, environ=None, fetcher=None): - if environ is None: - environ = os.environ - if fetcher is None: - fetcher = ContainerMetadataFetcher() - self._environ = environ - self._fetcher = fetcher - - def load(self): - # This cred provider is only triggered if the self.ENV_VAR is set, - # which only happens if you opt into this feature. - if self.ENV_VAR in self._environ or self.ENV_VAR_FULL in self._environ: - return self._retrieve_or_fail() - - def _retrieve_or_fail(self): - if self._provided_relative_uri(): - full_uri = self._fetcher.full_url(self._environ[self.ENV_VAR]) - else: - full_uri = self._environ[self.ENV_VAR_FULL] - headers = self._build_headers() - fetcher = self._create_fetcher(full_uri, headers) - creds = fetcher() - return RefreshableCredentials( - access_key=creds['access_key'], - secret_key=creds['secret_key'], - token=creds['token'], - method=self.METHOD, - expiry_time=_parse_if_needed(creds['expiry_time']), - refresh_using=fetcher, - ) - - def _build_headers(self): - auth_token = self._environ.get(self.ENV_VAR_AUTH_TOKEN) - if auth_token is not None: - return {'Authorization': auth_token} - - def _create_fetcher(self, full_uri, headers): - def fetch_creds(): - try: - response = self._fetcher.retrieve_full_uri( - full_uri, headers=headers - ) - except MetadataRetrievalError as e: - logger.debug( - "Error retrieving container metadata: %s", e, exc_info=True - ) - raise CredentialRetrievalError( - provider=self.METHOD, error_msg=str(e) - ) - return { - 'access_key': response['AccessKeyId'], - 'secret_key': response['SecretAccessKey'], - 'token': response['Token'], - 'expiry_time': response['Expiration'], - } - - return fetch_creds - - def _provided_relative_uri(self): - return self.ENV_VAR in self._environ - - -class CredentialResolver: - def __init__(self, providers): - """ - - :param providers: A list of ``CredentialProvider`` instances. - - """ - self.providers = providers - - def insert_before(self, name, credential_provider): - """ - Inserts a new instance of ``CredentialProvider`` into the chain that - will be tried before an existing one. - - :param name: The short name of the credentials you'd like to insert the - new credentials before. (ex. ``env`` or ``config``). Existing names - & ordering can be discovered via ``self.available_methods``. - :type name: string - - :param cred_instance: An instance of the new ``Credentials`` object - you'd like to add to the chain. - :type cred_instance: A subclass of ``Credentials`` - """ - try: - offset = [p.METHOD for p in self.providers].index(name) - except ValueError: - raise UnknownCredentialError(name=name) - self.providers.insert(offset, credential_provider) - - def insert_after(self, name, credential_provider): - """ - Inserts a new type of ``Credentials`` instance into the chain that will - be tried after an existing one. - - :param name: The short name of the credentials you'd like to insert the - new credentials after. (ex. ``env`` or ``config``). Existing names - & ordering can be discovered via ``self.available_methods``. - :type name: string - - :param cred_instance: An instance of the new ``Credentials`` object - you'd like to add to the chain. - :type cred_instance: A subclass of ``Credentials`` - """ - offset = self._get_provider_offset(name) - self.providers.insert(offset + 1, credential_provider) - - def remove(self, name): - """ - Removes a given ``Credentials`` instance from the chain. - - :param name: The short name of the credentials instance to remove. - :type name: string - """ - available_methods = [p.METHOD for p in self.providers] - if name not in available_methods: - # It's not present. Fail silently. - return - - offset = available_methods.index(name) - self.providers.pop(offset) - - def get_provider(self, name): - """Return a credential provider by name. - - :type name: str - :param name: The name of the provider. - - :raises UnknownCredentialError: Raised if no - credential provider by the provided name - is found. - """ - return self.providers[self._get_provider_offset(name)] - - def _get_provider_offset(self, name): - try: - return [p.METHOD for p in self.providers].index(name) - except ValueError: - raise UnknownCredentialError(name=name) - - def load_credentials(self): - """ - Goes through the credentials chain, returning the first ``Credentials`` - that could be loaded. - """ - # First provider to return a non-None response wins. - for provider in self.providers: - logger.debug("Looking for credentials via: %s", provider.METHOD) - creds = provider.load() - if creds is not None: - return creds - - # If we got here, no credentials could be found. - # This feels like it should be an exception, but historically, ``None`` - # is returned. - # - # +1 - # -js - return None - - -class SSOCredentialFetcher(CachedCredentialFetcher): - _UTC_DATE_FORMAT = '%Y-%m-%dT%H:%M:%SZ' - - def __init__( - self, - start_url, - sso_region, - role_name, - account_id, - client_creator, - token_loader=None, - cache=None, - expiry_window_seconds=None, - token_provider=None, - sso_session_name=None, - ): - self._client_creator = client_creator - self._sso_region = sso_region - self._role_name = role_name - self._account_id = account_id - self._start_url = start_url - self._token_loader = token_loader - self._token_provider = token_provider - self._sso_session_name = sso_session_name - super().__init__(cache, expiry_window_seconds) - - def _create_cache_key(self): - """Create a predictable cache key for the current configuration. - - The cache key is intended to be compatible with file names. - """ - args = { - 'roleName': self._role_name, - 'accountId': self._account_id, - } - if self._sso_session_name: - args['sessionName'] = self._sso_session_name - else: - args['startUrl'] = self._start_url - # NOTE: It would be good to hoist this cache key construction logic - # into the CachedCredentialFetcher class as we should be consistent. - # Unfortunately, the current assume role fetchers that sub class don't - # pass separators resulting in non-minified JSON. In the long term, - # all fetchers should use the below caching scheme. - args = json.dumps(args, sort_keys=True, separators=(',', ':')) - argument_hash = sha1(args.encode('utf-8')).hexdigest() - return self._make_file_safe(argument_hash) - - def _parse_timestamp(self, timestamp_ms): - # fromtimestamp expects seconds so: milliseconds / 1000 = seconds - timestamp_seconds = timestamp_ms / 1000.0 - timestamp = datetime.datetime.fromtimestamp(timestamp_seconds, tzutc()) - return timestamp.strftime(self._UTC_DATE_FORMAT) - - def _get_credentials(self): - """Get credentials by calling SSO get role credentials.""" - config = Config( - signature_version=UNSIGNED, - region_name=self._sso_region, - ) - client = self._client_creator('sso', config=config) - if self._token_provider: - initial_token_data = self._token_provider.load_token() - token = initial_token_data.get_frozen_token().token - else: - token = self._token_loader(self._start_url)['accessToken'] - - kwargs = { - 'roleName': self._role_name, - 'accountId': self._account_id, - 'accessToken': token, - } - try: - response = client.get_role_credentials(**kwargs) - except client.exceptions.UnauthorizedException: - raise UnauthorizedSSOTokenError() - credentials = response['roleCredentials'] - - credentials = { - 'ProviderType': 'sso', - 'Credentials': { - 'AccessKeyId': credentials['accessKeyId'], - 'SecretAccessKey': credentials['secretAccessKey'], - 'SessionToken': credentials['sessionToken'], - 'Expiration': self._parse_timestamp(credentials['expiration']), - }, - } - return credentials - - -class SSOProvider(CredentialProvider): - METHOD = 'sso' - - _SSO_TOKEN_CACHE_DIR = os.path.expanduser( - os.path.join('~', '.aws', 'sso', 'cache') - ) - _PROFILE_REQUIRED_CONFIG_VARS = ( - 'sso_role_name', - 'sso_account_id', - ) - _SSO_REQUIRED_CONFIG_VARS = ( - 'sso_start_url', - 'sso_region', - ) - _ALL_REQUIRED_CONFIG_VARS = ( - _PROFILE_REQUIRED_CONFIG_VARS + _SSO_REQUIRED_CONFIG_VARS - ) - - def __init__( - self, - load_config, - client_creator, - profile_name, - cache=None, - token_cache=None, - token_provider=None, - ): - if token_cache is None: - token_cache = JSONFileCache(self._SSO_TOKEN_CACHE_DIR) - self._token_cache = token_cache - self._token_provider = token_provider - if cache is None: - cache = {} - self.cache = cache - self._load_config = load_config - self._client_creator = client_creator - self._profile_name = profile_name - - def _load_sso_config(self): - loaded_config = self._load_config() - profiles = loaded_config.get('profiles', {}) - profile_name = self._profile_name - profile_config = profiles.get(self._profile_name, {}) - sso_sessions = loaded_config.get('sso_sessions', {}) - - # Role name & Account ID indicate the cred provider should be used - if all( - c not in profile_config for c in self._PROFILE_REQUIRED_CONFIG_VARS - ): - return None - - resolved_config, extra_reqs = self._resolve_sso_session_reference( - profile_config, sso_sessions - ) - - config = {} - missing_config_vars = [] - all_required_configs = self._ALL_REQUIRED_CONFIG_VARS + extra_reqs - for config_var in all_required_configs: - if config_var in resolved_config: - config[config_var] = resolved_config[config_var] - else: - missing_config_vars.append(config_var) - - if missing_config_vars: - missing = ', '.join(missing_config_vars) - raise InvalidConfigError( - error_msg=( - 'The profile "%s" is configured to use SSO but is missing ' - 'required configuration: %s' % (profile_name, missing) - ) - ) - return config - - def _resolve_sso_session_reference(self, profile_config, sso_sessions): - sso_session_name = profile_config.get('sso_session') - if sso_session_name is None: - # No reference to resolve, proceed with legacy flow - return profile_config, () - - if sso_session_name not in sso_sessions: - error_msg = f'The specified sso-session does not exist: "{sso_session_name}"' - raise InvalidConfigError(error_msg=error_msg) - - config = profile_config.copy() - session = sso_sessions[sso_session_name] - for config_var, val in session.items(): - # Validate any keys referenced in both profile and sso_session match - if config.get(config_var, val) != val: - error_msg = ( - f"The value for {config_var} is inconsistent between " - f"profile ({config[config_var]}) and sso-session ({val})." - ) - raise InvalidConfigError(error_msg=error_msg) - config[config_var] = val - return config, ('sso_session',) - - def load(self): - sso_config = self._load_sso_config() - if not sso_config: - return None - - fetcher_kwargs = { - 'start_url': sso_config['sso_start_url'], - 'sso_region': sso_config['sso_region'], - 'role_name': sso_config['sso_role_name'], - 'account_id': sso_config['sso_account_id'], - 'client_creator': self._client_creator, - 'token_loader': SSOTokenLoader(cache=self._token_cache), - 'cache': self.cache, - } - if 'sso_session' in sso_config: - fetcher_kwargs['sso_session_name'] = sso_config['sso_session'] - fetcher_kwargs['token_provider'] = self._token_provider - - sso_fetcher = SSOCredentialFetcher(**fetcher_kwargs) - - return DeferredRefreshableCredentials( - method=self.METHOD, - refresh_using=sso_fetcher.fetch_credentials, - ) diff --git a/spaces/Big-Web/MMSD/env/Lib/site-packages/setuptools/_vendor/packaging/_manylinux.py b/spaces/Big-Web/MMSD/env/Lib/site-packages/setuptools/_vendor/packaging/_manylinux.py deleted file mode 100644 index 4c379aa6f69ff56c8f19612002c6e3e939ea6012..0000000000000000000000000000000000000000 --- a/spaces/Big-Web/MMSD/env/Lib/site-packages/setuptools/_vendor/packaging/_manylinux.py +++ /dev/null @@ -1,301 +0,0 @@ -import collections -import functools -import os -import re -import struct -import sys -import warnings -from typing import IO, Dict, Iterator, NamedTuple, Optional, Tuple - - -# Python does not provide platform information at sufficient granularity to -# identify the architecture of the running executable in some cases, so we -# determine it dynamically by reading the information from the running -# process. This only applies on Linux, which uses the ELF format. -class _ELFFileHeader: - # https://en.wikipedia.org/wiki/Executable_and_Linkable_Format#File_header - class _InvalidELFFileHeader(ValueError): - """ - An invalid ELF file header was found. - """ - - ELF_MAGIC_NUMBER = 0x7F454C46 - ELFCLASS32 = 1 - ELFCLASS64 = 2 - ELFDATA2LSB = 1 - ELFDATA2MSB = 2 - EM_386 = 3 - EM_S390 = 22 - EM_ARM = 40 - EM_X86_64 = 62 - EF_ARM_ABIMASK = 0xFF000000 - EF_ARM_ABI_VER5 = 0x05000000 - EF_ARM_ABI_FLOAT_HARD = 0x00000400 - - def __init__(self, file: IO[bytes]) -> None: - def unpack(fmt: str) -> int: - try: - data = file.read(struct.calcsize(fmt)) - result: Tuple[int, ...] = struct.unpack(fmt, data) - except struct.error: - raise _ELFFileHeader._InvalidELFFileHeader() - return result[0] - - self.e_ident_magic = unpack(">I") - if self.e_ident_magic != self.ELF_MAGIC_NUMBER: - raise _ELFFileHeader._InvalidELFFileHeader() - self.e_ident_class = unpack("B") - if self.e_ident_class not in {self.ELFCLASS32, self.ELFCLASS64}: - raise _ELFFileHeader._InvalidELFFileHeader() - self.e_ident_data = unpack("B") - if self.e_ident_data not in {self.ELFDATA2LSB, self.ELFDATA2MSB}: - raise _ELFFileHeader._InvalidELFFileHeader() - self.e_ident_version = unpack("B") - self.e_ident_osabi = unpack("B") - self.e_ident_abiversion = unpack("B") - self.e_ident_pad = file.read(7) - format_h = "H" - format_i = "I" - format_q = "Q" - format_p = format_i if self.e_ident_class == self.ELFCLASS32 else format_q - self.e_type = unpack(format_h) - self.e_machine = unpack(format_h) - self.e_version = unpack(format_i) - self.e_entry = unpack(format_p) - self.e_phoff = unpack(format_p) - self.e_shoff = unpack(format_p) - self.e_flags = unpack(format_i) - self.e_ehsize = unpack(format_h) - self.e_phentsize = unpack(format_h) - self.e_phnum = unpack(format_h) - self.e_shentsize = unpack(format_h) - self.e_shnum = unpack(format_h) - self.e_shstrndx = unpack(format_h) - - -def _get_elf_header() -> Optional[_ELFFileHeader]: - try: - with open(sys.executable, "rb") as f: - elf_header = _ELFFileHeader(f) - except (OSError, TypeError, _ELFFileHeader._InvalidELFFileHeader): - return None - return elf_header - - -def _is_linux_armhf() -> bool: - # hard-float ABI can be detected from the ELF header of the running - # process - # https://static.docs.arm.com/ihi0044/g/aaelf32.pdf - elf_header = _get_elf_header() - if elf_header is None: - return False - result = elf_header.e_ident_class == elf_header.ELFCLASS32 - result &= elf_header.e_ident_data == elf_header.ELFDATA2LSB - result &= elf_header.e_machine == elf_header.EM_ARM - result &= ( - elf_header.e_flags & elf_header.EF_ARM_ABIMASK - ) == elf_header.EF_ARM_ABI_VER5 - result &= ( - elf_header.e_flags & elf_header.EF_ARM_ABI_FLOAT_HARD - ) == elf_header.EF_ARM_ABI_FLOAT_HARD - return result - - -def _is_linux_i686() -> bool: - elf_header = _get_elf_header() - if elf_header is None: - return False - result = elf_header.e_ident_class == elf_header.ELFCLASS32 - result &= elf_header.e_ident_data == elf_header.ELFDATA2LSB - result &= elf_header.e_machine == elf_header.EM_386 - return result - - -def _have_compatible_abi(arch: str) -> bool: - if arch == "armv7l": - return _is_linux_armhf() - if arch == "i686": - return _is_linux_i686() - return arch in {"x86_64", "aarch64", "ppc64", "ppc64le", "s390x"} - - -# If glibc ever changes its major version, we need to know what the last -# minor version was, so we can build the complete list of all versions. -# For now, guess what the highest minor version might be, assume it will -# be 50 for testing. Once this actually happens, update the dictionary -# with the actual value. -_LAST_GLIBC_MINOR: Dict[int, int] = collections.defaultdict(lambda: 50) - - -class _GLibCVersion(NamedTuple): - major: int - minor: int - - -def _glibc_version_string_confstr() -> Optional[str]: - """ - Primary implementation of glibc_version_string using os.confstr. - """ - # os.confstr is quite a bit faster than ctypes.DLL. It's also less likely - # to be broken or missing. This strategy is used in the standard library - # platform module. - # https://github.com/python/cpython/blob/fcf1d003bf4f0100c/Lib/platform.py#L175-L183 - try: - # os.confstr("CS_GNU_LIBC_VERSION") returns a string like "glibc 2.17". - version_string = os.confstr("CS_GNU_LIBC_VERSION") - assert version_string is not None - _, version = version_string.split() - except (AssertionError, AttributeError, OSError, ValueError): - # os.confstr() or CS_GNU_LIBC_VERSION not available (or a bad value)... - return None - return version - - -def _glibc_version_string_ctypes() -> Optional[str]: - """ - Fallback implementation of glibc_version_string using ctypes. - """ - try: - import ctypes - except ImportError: - return None - - # ctypes.CDLL(None) internally calls dlopen(NULL), and as the dlopen - # manpage says, "If filename is NULL, then the returned handle is for the - # main program". This way we can let the linker do the work to figure out - # which libc our process is actually using. - # - # We must also handle the special case where the executable is not a - # dynamically linked executable. This can occur when using musl libc, - # for example. In this situation, dlopen() will error, leading to an - # OSError. Interestingly, at least in the case of musl, there is no - # errno set on the OSError. The single string argument used to construct - # OSError comes from libc itself and is therefore not portable to - # hard code here. In any case, failure to call dlopen() means we - # can proceed, so we bail on our attempt. - try: - process_namespace = ctypes.CDLL(None) - except OSError: - return None - - try: - gnu_get_libc_version = process_namespace.gnu_get_libc_version - except AttributeError: - # Symbol doesn't exist -> therefore, we are not linked to - # glibc. - return None - - # Call gnu_get_libc_version, which returns a string like "2.5" - gnu_get_libc_version.restype = ctypes.c_char_p - version_str: str = gnu_get_libc_version() - # py2 / py3 compatibility: - if not isinstance(version_str, str): - version_str = version_str.decode("ascii") - - return version_str - - -def _glibc_version_string() -> Optional[str]: - """Returns glibc version string, or None if not using glibc.""" - return _glibc_version_string_confstr() or _glibc_version_string_ctypes() - - -def _parse_glibc_version(version_str: str) -> Tuple[int, int]: - """Parse glibc version. - - We use a regexp instead of str.split because we want to discard any - random junk that might come after the minor version -- this might happen - in patched/forked versions of glibc (e.g. Linaro's version of glibc - uses version strings like "2.20-2014.11"). See gh-3588. - """ - m = re.match(r"(?P[0-9]+)\.(?P[0-9]+)", version_str) - if not m: - warnings.warn( - "Expected glibc version with 2 components major.minor," - " got: %s" % version_str, - RuntimeWarning, - ) - return -1, -1 - return int(m.group("major")), int(m.group("minor")) - - -@functools.lru_cache() -def _get_glibc_version() -> Tuple[int, int]: - version_str = _glibc_version_string() - if version_str is None: - return (-1, -1) - return _parse_glibc_version(version_str) - - -# From PEP 513, PEP 600 -def _is_compatible(name: str, arch: str, version: _GLibCVersion) -> bool: - sys_glibc = _get_glibc_version() - if sys_glibc < version: - return False - # Check for presence of _manylinux module. - try: - import _manylinux # noqa - except ImportError: - return True - if hasattr(_manylinux, "manylinux_compatible"): - result = _manylinux.manylinux_compatible(version[0], version[1], arch) - if result is not None: - return bool(result) - return True - if version == _GLibCVersion(2, 5): - if hasattr(_manylinux, "manylinux1_compatible"): - return bool(_manylinux.manylinux1_compatible) - if version == _GLibCVersion(2, 12): - if hasattr(_manylinux, "manylinux2010_compatible"): - return bool(_manylinux.manylinux2010_compatible) - if version == _GLibCVersion(2, 17): - if hasattr(_manylinux, "manylinux2014_compatible"): - return bool(_manylinux.manylinux2014_compatible) - return True - - -_LEGACY_MANYLINUX_MAP = { - # CentOS 7 w/ glibc 2.17 (PEP 599) - (2, 17): "manylinux2014", - # CentOS 6 w/ glibc 2.12 (PEP 571) - (2, 12): "manylinux2010", - # CentOS 5 w/ glibc 2.5 (PEP 513) - (2, 5): "manylinux1", -} - - -def platform_tags(linux: str, arch: str) -> Iterator[str]: - if not _have_compatible_abi(arch): - return - # Oldest glibc to be supported regardless of architecture is (2, 17). - too_old_glibc2 = _GLibCVersion(2, 16) - if arch in {"x86_64", "i686"}: - # On x86/i686 also oldest glibc to be supported is (2, 5). - too_old_glibc2 = _GLibCVersion(2, 4) - current_glibc = _GLibCVersion(*_get_glibc_version()) - glibc_max_list = [current_glibc] - # We can assume compatibility across glibc major versions. - # https://sourceware.org/bugzilla/show_bug.cgi?id=24636 - # - # Build a list of maximum glibc versions so that we can - # output the canonical list of all glibc from current_glibc - # down to too_old_glibc2, including all intermediary versions. - for glibc_major in range(current_glibc.major - 1, 1, -1): - glibc_minor = _LAST_GLIBC_MINOR[glibc_major] - glibc_max_list.append(_GLibCVersion(glibc_major, glibc_minor)) - for glibc_max in glibc_max_list: - if glibc_max.major == too_old_glibc2.major: - min_minor = too_old_glibc2.minor - else: - # For other glibc major versions oldest supported is (x, 0). - min_minor = -1 - for glibc_minor in range(glibc_max.minor, min_minor, -1): - glibc_version = _GLibCVersion(glibc_max.major, glibc_minor) - tag = "manylinux_{}_{}".format(*glibc_version) - if _is_compatible(tag, arch, glibc_version): - yield linux.replace("linux", tag) - # Handle the legacy manylinux1, manylinux2010, manylinux2014 tags. - if glibc_version in _LEGACY_MANYLINUX_MAP: - legacy_tag = _LEGACY_MANYLINUX_MAP[glibc_version] - if _is_compatible(legacy_tag, arch, glibc_version): - yield linux.replace("linux", legacy_tag) diff --git a/spaces/Bingsu/color_textual_inversion/LICENSE.md b/spaces/Bingsu/color_textual_inversion/LICENSE.md deleted file mode 100644 index 9865a523283b915bf6d9357d7c87db438f987a55..0000000000000000000000000000000000000000 --- a/spaces/Bingsu/color_textual_inversion/LICENSE.md +++ /dev/null @@ -1,22 +0,0 @@ - -The MIT License (MIT) - -Copyright (c) 2022 Bingsu - -Permission is hereby granted, free of charge, to any person obtaining a copy -of this software and associated documentation files (the "Software"), to deal -in the Software without restriction, including without limitation the rights -to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -copies of the Software, and to permit persons to whom the Software is -furnished to do so, subject to the following conditions: - -The above copyright notice and this permission notice shall be included in all -copies or substantial portions of the Software. - -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -SOFTWARE. diff --git a/spaces/CALM/Dashboard/dashboard_utils/main_metrics.py b/spaces/CALM/Dashboard/dashboard_utils/main_metrics.py deleted file mode 100644 index f4b7d2e4d1245c8cf6d996db7ed46b1a9255ddbd..0000000000000000000000000000000000000000 --- a/spaces/CALM/Dashboard/dashboard_utils/main_metrics.py +++ /dev/null @@ -1,29 +0,0 @@ -import datetime - -import streamlit as st -import wandb - -from dashboard_utils.time_tracker import _log, simple_time_tracker - -WANDB_RUN_URL = st.secrets["WANDB_RUN_URL_MAIN_METRICS"] -CACHE_TTL = 100 - - -@st.cache(ttl=CACHE_TTL, show_spinner=False) -@simple_time_tracker(_log) -def get_main_metrics(): - api = wandb.Api() - run = api.run(WANDB_RUN_URL) - history = run.scan_history(keys=["optimizer_step", "loss", "alive peers", "_timestamp"]) - - steps = [] - losses = [] - alive_peers = [] - dates = [] - for row in history: - steps.append(row["optimizer_step"]) - losses.append(row["loss"]) - alive_peers.append(row["alive peers"]) - dates.append(datetime.datetime.utcfromtimestamp(row["_timestamp"])) - - return steps, dates, losses, alive_peers diff --git a/spaces/CVPR/LIVE/pybind11/tests/test_local_bindings.cpp b/spaces/CVPR/LIVE/pybind11/tests/test_local_bindings.cpp deleted file mode 100644 index 97c02dbeb567c3699aa48f150bd8ec9dd3cd951f..0000000000000000000000000000000000000000 --- a/spaces/CVPR/LIVE/pybind11/tests/test_local_bindings.cpp +++ /dev/null @@ -1,101 +0,0 @@ -/* - tests/test_local_bindings.cpp -- tests the py::module_local class feature which makes a class - binding local to the module in which it is defined. - - Copyright (c) 2017 Jason Rhinelander - - All rights reserved. Use of this source code is governed by a - BSD-style license that can be found in the LICENSE file. -*/ - -#include "pybind11_tests.h" -#include "local_bindings.h" -#include -#include -#include - -TEST_SUBMODULE(local_bindings, m) { - // test_load_external - m.def("load_external1", [](ExternalType1 &e) { return e.i; }); - m.def("load_external2", [](ExternalType2 &e) { return e.i; }); - - // test_local_bindings - // Register a class with py::module_local: - bind_local(m, "LocalType", py::module_local()) - .def("get3", [](LocalType &t) { return t.i + 3; }) - ; - - m.def("local_value", [](LocalType &l) { return l.i; }); - - // test_nonlocal_failure - // The main pybind11 test module is loaded first, so this registration will succeed (the second - // one, in pybind11_cross_module_tests.cpp, is designed to fail): - bind_local(m, "NonLocalType") - .def(py::init()) - .def("get", [](LocalType &i) { return i.i; }) - ; - - // test_duplicate_local - // py::module_local declarations should be visible across compilation units that get linked together; - // this tries to register a duplicate local. It depends on a definition in test_class.cpp and - // should raise a runtime error from the duplicate definition attempt. If test_class isn't - // available it *also* throws a runtime error (with "test_class not enabled" as value). - m.def("register_local_external", [m]() { - auto main = py::module::import("pybind11_tests"); - if (py::hasattr(main, "class_")) { - bind_local(m, "LocalExternal", py::module_local()); - } - else throw std::runtime_error("test_class not enabled"); - }); - - // test_stl_bind_local - // stl_bind.h binders defaults to py::module_local if the types are local or converting: - py::bind_vector(m, "LocalVec"); - py::bind_map(m, "LocalMap"); - // and global if the type (or one of the types, for the map) is global: - py::bind_vector(m, "NonLocalVec"); - py::bind_map(m, "NonLocalMap"); - - // test_stl_bind_global - // They can, however, be overridden to global using `py::module_local(false)`: - bind_local(m, "NonLocal2"); - py::bind_vector(m, "LocalVec2", py::module_local()); - py::bind_map(m, "NonLocalMap2", py::module_local(false)); - - // test_mixed_local_global - // We try this both with the global type registered first and vice versa (the order shouldn't - // matter). - m.def("register_mixed_global", [m]() { - bind_local(m, "MixedGlobalLocal", py::module_local(false)); - }); - m.def("register_mixed_local", [m]() { - bind_local(m, "MixedLocalGlobal", py::module_local()); - }); - m.def("get_mixed_gl", [](int i) { return MixedGlobalLocal(i); }); - m.def("get_mixed_lg", [](int i) { return MixedLocalGlobal(i); }); - - // test_internal_locals_differ - m.def("local_cpp_types_addr", []() { return (uintptr_t) &py::detail::registered_local_types_cpp(); }); - - // test_stl_caster_vs_stl_bind - m.def("load_vector_via_caster", [](std::vector v) { - return std::accumulate(v.begin(), v.end(), 0); - }); - - // test_cross_module_calls - m.def("return_self", [](LocalVec *v) { return v; }); - m.def("return_copy", [](const LocalVec &v) { return LocalVec(v); }); - - class Cat : public pets::Pet { public: Cat(std::string name) : Pet(name) {}; }; - py::class_(m, "Pet", py::module_local()) - .def("get_name", &pets::Pet::name); - // Binding for local extending class: - py::class_(m, "Cat") - .def(py::init()); - m.def("pet_name", [](pets::Pet &p) { return p.name(); }); - - py::class_(m, "MixGL").def(py::init()); - m.def("get_gl_value", [](MixGL &o) { return o.i + 10; }); - - py::class_(m, "MixGL2").def(py::init()); -} diff --git a/spaces/CVPR/LIVE/thrust/thrust/system/cpp/detail/unique_by_key.h b/spaces/CVPR/LIVE/thrust/thrust/system/cpp/detail/unique_by_key.h deleted file mode 100644 index 1d40011787cb8eaea25a969c855c1c758a0225e4..0000000000000000000000000000000000000000 --- a/spaces/CVPR/LIVE/thrust/thrust/system/cpp/detail/unique_by_key.h +++ /dev/null @@ -1,23 +0,0 @@ -/* - * Copyright 2008-2013 NVIDIA Corporation - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#pragma once - -#include - -// this system inherits unique_by_key -#include - diff --git a/spaces/Caoyunkang/Segment-Any-Anomaly/SAM/segment_anything/automatic_mask_generator.py b/spaces/Caoyunkang/Segment-Any-Anomaly/SAM/segment_anything/automatic_mask_generator.py deleted file mode 100644 index ec4bc675611464bb6cc4700b6c67c404fcf5b784..0000000000000000000000000000000000000000 --- a/spaces/Caoyunkang/Segment-Any-Anomaly/SAM/segment_anything/automatic_mask_generator.py +++ /dev/null @@ -1,372 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -import numpy as np -import torch -from torchvision.ops.boxes import batched_nms, box_area # type: ignore - -from typing import Any, Dict, List, Optional, Tuple - -from .modeling import Sam -from .predictor import SamPredictor -from .utils.amg import ( - MaskData, - area_from_rle, - batch_iterator, - batched_mask_to_box, - box_xyxy_to_xywh, - build_all_layer_point_grids, - calculate_stability_score, - coco_encode_rle, - generate_crop_boxes, - is_box_near_crop_edge, - mask_to_rle_pytorch, - remove_small_regions, - rle_to_mask, - uncrop_boxes_xyxy, - uncrop_masks, - uncrop_points, -) - - -class SamAutomaticMaskGenerator: - def __init__( - self, - model: Sam, - points_per_side: Optional[int] = 32, - points_per_batch: int = 128, - pred_iou_thresh: float = 0.88, - stability_score_thresh: float = 0.95, - stability_score_offset: float = 1.0, - box_nms_thresh: float = 0.7, - crop_n_layers: int = 0, - crop_nms_thresh: float = 0.7, - crop_overlap_ratio: float = 512 / 1500, - crop_n_points_downscale_factor: int = 1, - point_grids: Optional[List[np.ndarray]] = None, - min_mask_region_area: int = 0, - output_mode: str = "binary_mask", - ) -> None: - """ - Using a SAM model, generates masks for the entire image. - Generates a grid of point prompts over the image, then filters - low quality and duplicate masks. The default settings are chosen - for SAM with a ViT-H backbone. - - Arguments: - model (Sam): The SAM model to use for mask prediction. - points_per_side (int or None): The number of points to be sampled - along one side of the image. The total number of points is - points_per_side**2. If None, 'point_grids' must provide explicit - point sampling. - points_per_batch (int): Sets the number of points run simultaneously - by the model. Higher numbers may be faster but use more GPU memory. - pred_iou_thresh (float): A filtering threshold in [0,1], using the - model's predicted mask quality. - stability_score_thresh (float): A filtering threshold in [0,1], using - the stability of the mask under changes to the cutoff used to binarize - the model's mask predictions. - stability_score_offset (float): The amount to shift the cutoff when - calculated the stability score. - box_nms_thresh (float): The box IoU cutoff used by non-maximal - suppression to filter duplicate masks. - crops_n_layers (int): If >0, mask prediction will be run again on - crops of the image. Sets the number of layers to run, where each - layer has 2**i_layer number of image crops. - crops_nms_thresh (float): The box IoU cutoff used by non-maximal - suppression to filter duplicate masks between different crops. - crop_overlap_ratio (float): Sets the degree to which crops overlap. - In the first crop layer, crops will overlap by this fraction of - the image length. Later layers with more crops scale down this overlap. - crop_n_points_downscale_factor (int): The number of points-per-side - sampled in layer n is scaled down by crop_n_points_downscale_factor**n. - point_grids (list(np.ndarray) or None): A list over explicit grids - of points used for sampling, normalized to [0,1]. The nth grid in the - list is used in the nth crop layer. Exclusive with points_per_side. - min_mask_region_area (int): If >0, postprocessing will be applied - to remove disconnected regions and holes in masks with area smaller - than min_mask_region_area. Requires opencv. - output_mode (str): The form masks are returned in. Can be 'binary_mask', - 'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools. - For large resolutions, 'binary_mask' may consume large amounts of - memory. - """ - - assert (points_per_side is None) != ( - point_grids is None - ), "Exactly one of points_per_side or point_grid must be provided." - if points_per_side is not None: - self.point_grids = build_all_layer_point_grids( - points_per_side, - crop_n_layers, - crop_n_points_downscale_factor, - ) - elif point_grids is not None: - self.point_grids = point_grids - else: - raise ValueError("Can't have both points_per_side and point_grid be None.") - - assert output_mode in [ - "binary_mask", - "uncompressed_rle", - "coco_rle", - ], f"Unknown output_mode {output_mode}." - if output_mode == "coco_rle": - from pycocotools import mask as mask_utils # type: ignore # noqa: F401 - - if min_mask_region_area > 0: - import cv2 # type: ignore # noqa: F401 - - self.predictor = SamPredictor(model) - self.points_per_batch = points_per_batch - self.pred_iou_thresh = pred_iou_thresh - self.stability_score_thresh = stability_score_thresh - self.stability_score_offset = stability_score_offset - self.box_nms_thresh = box_nms_thresh - self.crop_n_layers = crop_n_layers - self.crop_nms_thresh = crop_nms_thresh - self.crop_overlap_ratio = crop_overlap_ratio - self.crop_n_points_downscale_factor = crop_n_points_downscale_factor - self.min_mask_region_area = min_mask_region_area - self.output_mode = output_mode - - @torch.no_grad() - def generate(self, image: np.ndarray) -> List[Dict[str, Any]]: - """ - Generates masks for the given image. - - Arguments: - image (np.ndarray): The image to generate masks for, in HWC uint8 format. - - Returns: - list(dict(str, any)): A list over records for masks. Each record is - a dict containing the following keys: - segmentation (dict(str, any) or np.ndarray): The mask. If - output_mode='binary_mask', is an array of shape HW. Otherwise, - is a dictionary containing the RLE. - bbox (list(float)): The box around the mask, in XYWH format. - area (int): The area in pixels of the mask. - predicted_iou (float): The model's own prediction of the mask's - quality. This is filtered by the pred_iou_thresh parameter. - point_coords (list(list(float))): The point coordinates input - to the model to generate this mask. - stability_score (float): A measure of the mask's quality. This - is filtered on using the stability_score_thresh parameter. - crop_box (list(float)): The crop of the image used to generate - the mask, given in XYWH format. - """ - - # Generate masks - mask_data = self._generate_masks(image) - - # Filter small disconnected regions and holes in masks - if self.min_mask_region_area > 0: - mask_data = self.postprocess_small_regions( - mask_data, - self.min_mask_region_area, - max(self.box_nms_thresh, self.crop_nms_thresh), - ) - - # Encode masks - if self.output_mode == "coco_rle": - mask_data["segmentations"] = [coco_encode_rle(rle) for rle in mask_data["rles"]] - elif self.output_mode == "binary_mask": - mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]] - else: - mask_data["segmentations"] = mask_data["rles"] - - # Write mask records - curr_anns = [] - for idx in range(len(mask_data["segmentations"])): - ann = { - "segmentation": mask_data["segmentations"][idx], - "area": area_from_rle(mask_data["rles"][idx]), - "bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(), - "predicted_iou": mask_data["iou_preds"][idx].item(), - "point_coords": [mask_data["points"][idx].tolist()], - "stability_score": mask_data["stability_score"][idx].item(), - "crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(), - } - curr_anns.append(ann) - - return curr_anns - - def _generate_masks(self, image: np.ndarray) -> MaskData: - orig_size = image.shape[:2] - crop_boxes, layer_idxs = generate_crop_boxes( - orig_size, self.crop_n_layers, self.crop_overlap_ratio - ) - - # Iterate over image crops - data = MaskData() - for crop_box, layer_idx in zip(crop_boxes, layer_idxs): - crop_data = self._process_crop(image, crop_box, layer_idx, orig_size) - data.cat(crop_data) - - # Remove duplicate masks between crops - if len(crop_boxes) > 1: - # Prefer masks from smaller crops - scores = 1 / box_area(data["crop_boxes"]) - scores = scores.to(data["boxes"].device) - keep_by_nms = batched_nms( - data["boxes"].float(), - scores, - torch.zeros(len(data["boxes"])), # categories - iou_threshold=self.crop_nms_thresh, - ) - data.filter(keep_by_nms) - - data.to_numpy() - return data - - def _process_crop( - self, - image: np.ndarray, - crop_box: List[int], - crop_layer_idx: int, - orig_size: Tuple[int, ...], - ) -> MaskData: - # Crop the image and calculate embeddings - x0, y0, x1, y1 = crop_box - cropped_im = image[y0:y1, x0:x1, :] - cropped_im_size = cropped_im.shape[:2] - self.predictor.set_image(cropped_im) - - # Get points for this crop - points_scale = np.array(cropped_im_size)[None, ::-1] - points_for_image = self.point_grids[crop_layer_idx] * points_scale - - # Generate masks for this crop in batches - data = MaskData() - for (points,) in batch_iterator(self.points_per_batch, points_for_image): - batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size) - data.cat(batch_data) - del batch_data - self.predictor.reset_image() - - # Remove duplicates within this crop. - keep_by_nms = batched_nms( - data["boxes"].float(), - data["iou_preds"], - torch.zeros(len(data["boxes"])), # categories - iou_threshold=self.box_nms_thresh, - ) - data.filter(keep_by_nms) - - # Return to the original image frame - data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box) - data["points"] = uncrop_points(data["points"], crop_box) - data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))]) - - return data - - def _process_batch( - self, - points: np.ndarray, - im_size: Tuple[int, ...], - crop_box: List[int], - orig_size: Tuple[int, ...], - ) -> MaskData: - orig_h, orig_w = orig_size - - # Run model on this batch - transformed_points = self.predictor.transform.apply_coords(points, im_size) - in_points = torch.as_tensor(transformed_points, device=self.predictor.device) - in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device) - masks, iou_preds, _ = self.predictor.predict_torch( - in_points[:, None, :], - in_labels[:, None], - multimask_output=True, - return_logits=True, - ) - - # Serialize predictions and store in MaskData - data = MaskData( - masks=masks.flatten(0, 1), - iou_preds=iou_preds.flatten(0, 1), - points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)), - ) - del masks - - # Filter by predicted IoU - if self.pred_iou_thresh > 0.0: - keep_mask = data["iou_preds"] > self.pred_iou_thresh - data.filter(keep_mask) - - # Calculate stability score - data["stability_score"] = calculate_stability_score( - data["masks"], self.predictor.model.mask_threshold, self.stability_score_offset - ) - if self.stability_score_thresh > 0.0: - keep_mask = data["stability_score"] >= self.stability_score_thresh - data.filter(keep_mask) - - # Threshold masks and calculate boxes - data["masks"] = data["masks"] > self.predictor.model.mask_threshold - data["boxes"] = batched_mask_to_box(data["masks"]) - - # Filter boxes that touch crop boundaries - keep_mask = ~is_box_near_crop_edge(data["boxes"], crop_box, [0, 0, orig_w, orig_h]) - if not torch.all(keep_mask): - data.filter(keep_mask) - - # Compress to RLE - data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w) - data["rles"] = mask_to_rle_pytorch(data["masks"]) - del data["masks"] - - return data - - @staticmethod - def postprocess_small_regions( - mask_data: MaskData, min_area: int, nms_thresh: float - ) -> MaskData: - """ - Removes small disconnected regions and holes in masks, then reruns - box NMS to remove any new duplicates. - - Edits mask_data in place. - - Requires open-cv as a dependency. - """ - if len(mask_data["rles"]) == 0: - return mask_data - - # Filter small disconnected regions and holes - new_masks = [] - scores = [] - for rle in mask_data["rles"]: - mask = rle_to_mask(rle) - - mask, changed = remove_small_regions(mask, min_area, mode="holes") - unchanged = not changed - mask, changed = remove_small_regions(mask, min_area, mode="islands") - unchanged = unchanged and not changed - - new_masks.append(torch.as_tensor(mask).unsqueeze(0)) - # Give score=0 to changed masks and score=1 to unchanged masks - # so NMS will prefer ones that didn't need postprocessing - scores.append(float(unchanged)) - - # Recalculate boxes and remove any new duplicates - masks = torch.cat(new_masks, dim=0) - boxes = batched_mask_to_box(masks) - keep_by_nms = batched_nms( - boxes.float(), - torch.as_tensor(scores), - torch.zeros(len(boxes)), # categories - iou_threshold=nms_thresh, - ) - - # Only recalculate RLEs for masks that have changed - for i_mask in keep_by_nms: - if scores[i_mask] == 0.0: - mask_torch = masks[i_mask].unsqueeze(0) - mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0] - mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly - mask_data.filter(keep_by_nms) - - return mask_data diff --git a/spaces/Catmeow/AI_story_writing/app.py b/spaces/Catmeow/AI_story_writing/app.py deleted file mode 100644 index 8ac34fe1b8dd02b6d847c05216d753a29d197740..0000000000000000000000000000000000000000 --- a/spaces/Catmeow/AI_story_writing/app.py +++ /dev/null @@ -1,44 +0,0 @@ -import gradio as gr -from transformers import pipeline -title = "tory Generator" - -# gpt-neo-2.7B gpt-j-6B - -def generate(text,the_model,max_length,temperature,repetition_penalty): - generator = pipeline('text-generation', model=the_model) - result = generator(text, num_return_sequences=3, - max_length=max_length, - temperature=temperature, - repetition_penalty = repetition_penalty, - no_repeat_ngram_size=2,early_stopping=False) - return result[0]["generated_text"],result[1]["generated_text"],result[2]["generated_text"] - - -def complete_with_gpt(text,context,the_model,max_length,temperature,repetition_penalty): - # Use the last [context] characters of the text as context - max_length = max_length+context - return generate(text[-context:],the_model,max_length,temperature,repetition_penalty) - -def send(text1,context,text2): - if len(text1) 0,1; c,h,w - grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1) - grid = grid.numpy() - grid = (grid * 255).astype(np.uint8) - filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(k, global_step, current_epoch, batch_idx) - path = os.path.join(root, filename) - os.makedirs(os.path.split(path)[0], exist_ok=True) - Image.fromarray(grid).save(path) - - def log_img(self, pl_module, batch, batch_idx, split="train"): - check_idx = batch_idx # if self.log_on_batch_idx else pl_module.global_step - if (self.check_frequency(check_idx) and # batch_idx % self.batch_freq == 0 - hasattr(pl_module, "log_images") and - callable(pl_module.log_images) and - self.max_images > 0): - logger = type(pl_module.logger) - - is_train = pl_module.training - if is_train: - pl_module.eval() - - with torch.no_grad(): - images = pl_module.log_images(batch, split=split, **self.log_images_kwargs) - - for k in images: - N = min(images[k].shape[0], self.max_images) - images[k] = images[k][:N] - if isinstance(images[k], torch.Tensor): - images[k] = images[k].detach().cpu() - if self.clamp: - images[k] = torch.clamp(images[k], -1., 1.) - - self.log_local(pl_module.logger.save_dir, split, images, - pl_module.global_step, pl_module.current_epoch, batch_idx) - - if is_train: - pl_module.train() - - def check_frequency(self, check_idx): - return check_idx % self.batch_freq == 0 - - def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): - if not self.disabled: - self.log_img(pl_module, batch, batch_idx, split="train") diff --git a/spaces/DQChoi/gpt-demo/venv/bin/Activate.ps1 b/spaces/DQChoi/gpt-demo/venv/bin/Activate.ps1 deleted file mode 100644 index eeea3583fa130d4702a05012a2103152daf51487..0000000000000000000000000000000000000000 --- a/spaces/DQChoi/gpt-demo/venv/bin/Activate.ps1 +++ /dev/null @@ -1,247 +0,0 @@ -<# -.Synopsis -Activate a Python virtual environment for the current PowerShell session. - -.Description -Pushes the python executable for a virtual environment to the front of the -$Env:PATH environment variable and sets the prompt to signify that you are -in a Python virtual environment. Makes use of the command line switches as -well as the `pyvenv.cfg` file values present in the virtual environment. - -.Parameter VenvDir -Path to the directory that contains the virtual environment to activate. The -default value for this is the parent of the directory that the Activate.ps1 -script is located within. - -.Parameter Prompt -The prompt prefix to display when this virtual environment is activated. By -default, this prompt is the name of the virtual environment folder (VenvDir) -surrounded by parentheses and followed by a single space (ie. '(.venv) '). - -.Example -Activate.ps1 -Activates the Python virtual environment that contains the Activate.ps1 script. - -.Example -Activate.ps1 -Verbose -Activates the Python virtual environment that contains the Activate.ps1 script, -and shows extra information about the activation as it executes. - -.Example -Activate.ps1 -VenvDir C:\Users\MyUser\Common\.venv -Activates the Python virtual environment located in the specified location. - -.Example -Activate.ps1 -Prompt "MyPython" -Activates the Python virtual environment that contains the Activate.ps1 script, -and prefixes the current prompt with the specified string (surrounded in -parentheses) while the virtual environment is active. - -.Notes -On Windows, it may be required to enable this Activate.ps1 script by setting the -execution policy for the user. You can do this by issuing the following PowerShell -command: - -PS C:\> Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser - -For more information on Execution Policies: -https://go.microsoft.com/fwlink/?LinkID=135170 - -#> -Param( - [Parameter(Mandatory = $false)] - [String] - $VenvDir, - [Parameter(Mandatory = $false)] - [String] - $Prompt -) - -<# Function declarations --------------------------------------------------- #> - -<# -.Synopsis -Remove all shell session elements added by the Activate script, including the -addition of the virtual environment's Python executable from the beginning of -the PATH variable. - -.Parameter NonDestructive -If present, do not remove this function from the global namespace for the -session. - -#> -function global:deactivate ([switch]$NonDestructive) { - # Revert to original values - - # The prior prompt: - if (Test-Path -Path Function:_OLD_VIRTUAL_PROMPT) { - Copy-Item -Path Function:_OLD_VIRTUAL_PROMPT -Destination Function:prompt - Remove-Item -Path Function:_OLD_VIRTUAL_PROMPT - } - - # The prior PYTHONHOME: - if (Test-Path -Path Env:_OLD_VIRTUAL_PYTHONHOME) { - Copy-Item -Path Env:_OLD_VIRTUAL_PYTHONHOME -Destination Env:PYTHONHOME - Remove-Item -Path Env:_OLD_VIRTUAL_PYTHONHOME - } - - # The prior PATH: - if (Test-Path -Path Env:_OLD_VIRTUAL_PATH) { - Copy-Item -Path Env:_OLD_VIRTUAL_PATH -Destination Env:PATH - Remove-Item -Path Env:_OLD_VIRTUAL_PATH - } - - # Just remove the VIRTUAL_ENV altogether: - if (Test-Path -Path Env:VIRTUAL_ENV) { - Remove-Item -Path env:VIRTUAL_ENV - } - - # Just remove VIRTUAL_ENV_PROMPT altogether. - if (Test-Path -Path Env:VIRTUAL_ENV_PROMPT) { - Remove-Item -Path env:VIRTUAL_ENV_PROMPT - } - - # Just remove the _PYTHON_VENV_PROMPT_PREFIX altogether: - if (Get-Variable -Name "_PYTHON_VENV_PROMPT_PREFIX" -ErrorAction SilentlyContinue) { - Remove-Variable -Name _PYTHON_VENV_PROMPT_PREFIX -Scope Global -Force - } - - # Leave deactivate function in the global namespace if requested: - if (-not $NonDestructive) { - Remove-Item -Path function:deactivate - } -} - -<# -.Description -Get-PyVenvConfig parses the values from the pyvenv.cfg file located in the -given folder, and returns them in a map. - -For each line in the pyvenv.cfg file, if that line can be parsed into exactly -two strings separated by `=` (with any amount of whitespace surrounding the =) -then it is considered a `key = value` line. The left hand string is the key, -the right hand is the value. - -If the value starts with a `'` or a `"` then the first and last character is -stripped from the value before being captured. - -.Parameter ConfigDir -Path to the directory that contains the `pyvenv.cfg` file. -#> -function Get-PyVenvConfig( - [String] - $ConfigDir -) { - Write-Verbose "Given ConfigDir=$ConfigDir, obtain values in pyvenv.cfg" - - # Ensure the file exists, and issue a warning if it doesn't (but still allow the function to continue). - $pyvenvConfigPath = Join-Path -Resolve -Path $ConfigDir -ChildPath 'pyvenv.cfg' -ErrorAction Continue - - # An empty map will be returned if no config file is found. - $pyvenvConfig = @{ } - - if ($pyvenvConfigPath) { - - Write-Verbose "File exists, parse `key = value` lines" - $pyvenvConfigContent = Get-Content -Path $pyvenvConfigPath - - $pyvenvConfigContent | ForEach-Object { - $keyval = $PSItem -split "\s*=\s*", 2 - if ($keyval[0] -and $keyval[1]) { - $val = $keyval[1] - - # Remove extraneous quotations around a string value. - if ("'""".Contains($val.Substring(0, 1))) { - $val = $val.Substring(1, $val.Length - 2) - } - - $pyvenvConfig[$keyval[0]] = $val - Write-Verbose "Adding Key: '$($keyval[0])'='$val'" - } - } - } - return $pyvenvConfig -} - - -<# Begin Activate script --------------------------------------------------- #> - -# Determine the containing directory of this script -$VenvExecPath = Split-Path -Parent $MyInvocation.MyCommand.Definition -$VenvExecDir = Get-Item -Path $VenvExecPath - -Write-Verbose "Activation script is located in path: '$VenvExecPath'" -Write-Verbose "VenvExecDir Fullname: '$($VenvExecDir.FullName)" -Write-Verbose "VenvExecDir Name: '$($VenvExecDir.Name)" - -# Set values required in priority: CmdLine, ConfigFile, Default -# First, get the location of the virtual environment, it might not be -# VenvExecDir if specified on the command line. -if ($VenvDir) { - Write-Verbose "VenvDir given as parameter, using '$VenvDir' to determine values" -} -else { - Write-Verbose "VenvDir not given as a parameter, using parent directory name as VenvDir." - $VenvDir = $VenvExecDir.Parent.FullName.TrimEnd("\\/") - Write-Verbose "VenvDir=$VenvDir" -} - -# Next, read the `pyvenv.cfg` file to determine any required value such -# as `prompt`. -$pyvenvCfg = Get-PyVenvConfig -ConfigDir $VenvDir - -# Next, set the prompt from the command line, or the config file, or -# just use the name of the virtual environment folder. -if ($Prompt) { - Write-Verbose "Prompt specified as argument, using '$Prompt'" -} -else { - Write-Verbose "Prompt not specified as argument to script, checking pyvenv.cfg value" - if ($pyvenvCfg -and $pyvenvCfg['prompt']) { - Write-Verbose " Setting based on value in pyvenv.cfg='$($pyvenvCfg['prompt'])'" - $Prompt = $pyvenvCfg['prompt']; - } - else { - Write-Verbose " Setting prompt based on parent's directory's name. (Is the directory name passed to venv module when creating the virtual environment)" - Write-Verbose " Got leaf-name of $VenvDir='$(Split-Path -Path $venvDir -Leaf)'" - $Prompt = Split-Path -Path $venvDir -Leaf - } -} - -Write-Verbose "Prompt = '$Prompt'" -Write-Verbose "VenvDir='$VenvDir'" - -# Deactivate any currently active virtual environment, but leave the -# deactivate function in place. -deactivate -nondestructive - -# Now set the environment variable VIRTUAL_ENV, used by many tools to determine -# that there is an activated venv. -$env:VIRTUAL_ENV = $VenvDir - -if (-not $Env:VIRTUAL_ENV_DISABLE_PROMPT) { - - Write-Verbose "Setting prompt to '$Prompt'" - - # Set the prompt to include the env name - # Make sure _OLD_VIRTUAL_PROMPT is global - function global:_OLD_VIRTUAL_PROMPT { "" } - Copy-Item -Path function:prompt -Destination function:_OLD_VIRTUAL_PROMPT - New-Variable -Name _PYTHON_VENV_PROMPT_PREFIX -Description "Python virtual environment prompt prefix" -Scope Global -Option ReadOnly -Visibility Public -Value $Prompt - - function global:prompt { - Write-Host -NoNewline -ForegroundColor Green "($_PYTHON_VENV_PROMPT_PREFIX) " - _OLD_VIRTUAL_PROMPT - } - $env:VIRTUAL_ENV_PROMPT = $Prompt -} - -# Clear PYTHONHOME -if (Test-Path -Path Env:PYTHONHOME) { - Copy-Item -Path Env:PYTHONHOME -Destination Env:_OLD_VIRTUAL_PYTHONHOME - Remove-Item -Path Env:PYTHONHOME -} - -# Add the venv to the PATH -Copy-Item -Path Env:PATH -Destination Env:_OLD_VIRTUAL_PATH -$Env:PATH = "$VenvExecDir$([System.IO.Path]::PathSeparator)$Env:PATH" diff --git a/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/PIL/CurImagePlugin.py b/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/PIL/CurImagePlugin.py deleted file mode 100644 index 94efff3415679a5bf5b7038f9a1da15ebc6d04ca..0000000000000000000000000000000000000000 --- a/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/PIL/CurImagePlugin.py +++ /dev/null @@ -1,75 +0,0 @@ -# -# The Python Imaging Library. -# $Id$ -# -# Windows Cursor support for PIL -# -# notes: -# uses BmpImagePlugin.py to read the bitmap data. -# -# history: -# 96-05-27 fl Created -# -# Copyright (c) Secret Labs AB 1997. -# Copyright (c) Fredrik Lundh 1996. -# -# See the README file for information on usage and redistribution. -# -from . import BmpImagePlugin, Image -from ._binary import i16le as i16 -from ._binary import i32le as i32 - -# -# -------------------------------------------------------------------- - - -def _accept(prefix): - return prefix[:4] == b"\0\0\2\0" - - -## -# Image plugin for Windows Cursor files. - - -class CurImageFile(BmpImagePlugin.BmpImageFile): - format = "CUR" - format_description = "Windows Cursor" - - def _open(self): - offset = self.fp.tell() - - # check magic - s = self.fp.read(6) - if not _accept(s): - msg = "not a CUR file" - raise SyntaxError(msg) - - # pick the largest cursor in the file - m = b"" - for i in range(i16(s, 4)): - s = self.fp.read(16) - if not m: - m = s - elif s[0] > m[0] and s[1] > m[1]: - m = s - if not m: - msg = "No cursors were found" - raise TypeError(msg) - - # load as bitmap - self._bitmap(i32(m, 12) + offset) - - # patch up the bitmap height - self._size = self.size[0], self.size[1] // 2 - d, e, o, a = self.tile[0] - self.tile[0] = d, (0, 0) + self.size, o, a - - return - - -# -# -------------------------------------------------------------------- - -Image.register_open(CurImageFile.format, CurImageFile, _accept) - -Image.register_extension(CurImageFile.format, ".cur") diff --git a/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/cdn/assets/index-aef3869a.css b/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/cdn/assets/index-aef3869a.css deleted file mode 100644 index a1f402a49e82009fd7eafa923615d67793b8751c..0000000000000000000000000000000000000000 --- a/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/cdn/assets/index-aef3869a.css +++ /dev/null @@ -1 +0,0 @@ -td.svelte-xrr240.svelte-xrr240{width:45%}td.svelte-xrr240.svelte-xrr240:last-child{width:10%;text-align:right}.file-preview-holder.svelte-xrr240.svelte-xrr240{overflow-x:auto}.file-preview.svelte-xrr240.svelte-xrr240{width:var(--size-full);max-height:var(--size-60);overflow-y:auto;color:var(--body-text-color)}.file.svelte-xrr240.svelte-xrr240{width:var(--size-full)}.file.svelte-xrr240>.svelte-xrr240{padding:var(--size-1) var(--size-2-5)}.download.svelte-xrr240.svelte-xrr240:hover{text-decoration:underline}.download.svelte-xrr240>a.svelte-xrr240{color:var(--link-text-color)}.download.svelte-xrr240>a.svelte-xrr240:hover{color:var(--link-text-color-hover)}.download.svelte-xrr240>a.svelte-xrr240:visited{color:var(--link-text-color-visited)}.download.svelte-xrr240>a.svelte-xrr240:active{color:var(--link-text-color-active)}.selectable.svelte-xrr240.svelte-xrr240{cursor:pointer} diff --git a/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/huggingface_hub/commands/user.py b/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/huggingface_hub/commands/user.py deleted file mode 100644 index b6a7a0145cfa6069423e99ec4b6c154d606ae18b..0000000000000000000000000000000000000000 --- a/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/huggingface_hub/commands/user.py +++ /dev/null @@ -1,191 +0,0 @@ -# Copyright 2020 The HuggingFace Team. All rights reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -import subprocess -from argparse import _SubParsersAction - -from requests.exceptions import HTTPError - -from huggingface_hub.commands import BaseHuggingfaceCLICommand -from huggingface_hub.constants import ( - ENDPOINT, - REPO_TYPES, - REPO_TYPES_URL_PREFIXES, - SPACES_SDK_TYPES, -) -from huggingface_hub.hf_api import HfApi - -from .._login import ( # noqa: F401 # for backward compatibility # noqa: F401 # for backward compatibility - NOTEBOOK_LOGIN_PASSWORD_HTML, - NOTEBOOK_LOGIN_TOKEN_HTML_END, - NOTEBOOK_LOGIN_TOKEN_HTML_START, - login, - logout, - notebook_login, -) -from ..utils import HfFolder -from ._cli_utils import ANSI - - -class UserCommands(BaseHuggingfaceCLICommand): - @staticmethod - def register_subcommand(parser: _SubParsersAction): - login_parser = parser.add_parser("login", help="Log in using a token from huggingface.co/settings/tokens") - login_parser.add_argument( - "--token", - type=str, - help="Token generated from https://huggingface.co/settings/tokens", - ) - login_parser.add_argument( - "--add-to-git-credential", - action="store_true", - help="Optional: Save token to git credential helper.", - ) - login_parser.set_defaults(func=lambda args: LoginCommand(args)) - whoami_parser = parser.add_parser("whoami", help="Find out which huggingface.co account you are logged in as.") - whoami_parser.set_defaults(func=lambda args: WhoamiCommand(args)) - logout_parser = parser.add_parser("logout", help="Log out") - logout_parser.set_defaults(func=lambda args: LogoutCommand(args)) - - # new system: git-based repo system - repo_parser = parser.add_parser( - "repo", - help="{create, ls-files} Commands to interact with your huggingface.co repos.", - ) - repo_subparsers = repo_parser.add_subparsers(help="huggingface.co repos related commands") - repo_create_parser = repo_subparsers.add_parser("create", help="Create a new repo on huggingface.co") - repo_create_parser.add_argument( - "name", - type=str, - help="Name for your repo. Will be namespaced under your username to build the repo id.", - ) - repo_create_parser.add_argument( - "--type", - type=str, - help='Optional: repo_type: set to "dataset" or "space" if creating a dataset or space, default is model.', - ) - repo_create_parser.add_argument("--organization", type=str, help="Optional: organization namespace.") - repo_create_parser.add_argument( - "--space_sdk", - type=str, - help='Optional: Hugging Face Spaces SDK type. Required when --type is set to "space".', - choices=SPACES_SDK_TYPES, - ) - repo_create_parser.add_argument( - "-y", - "--yes", - action="store_true", - help="Optional: answer Yes to the prompt", - ) - repo_create_parser.set_defaults(func=lambda args: RepoCreateCommand(args)) - - -class BaseUserCommand: - def __init__(self, args): - self.args = args - self._api = HfApi() - - -class LoginCommand(BaseUserCommand): - def run(self): - login(token=self.args.token, add_to_git_credential=self.args.add_to_git_credential) - - -class LogoutCommand(BaseUserCommand): - def run(self): - logout() - - -class WhoamiCommand(BaseUserCommand): - def run(self): - token = HfFolder.get_token() - if token is None: - print("Not logged in") - exit() - try: - info = self._api.whoami(token) - print(info["name"]) - orgs = [org["name"] for org in info["orgs"]] - if orgs: - print(ANSI.bold("orgs: "), ",".join(orgs)) - - if ENDPOINT != "https://huggingface.co": - print(f"Authenticated through private endpoint: {ENDPOINT}") - except HTTPError as e: - print(e) - print(ANSI.red(e.response.text)) - exit(1) - - -class RepoCreateCommand(BaseUserCommand): - def run(self): - token = HfFolder.get_token() - if token is None: - print("Not logged in") - exit(1) - try: - stdout = subprocess.check_output(["git", "--version"]).decode("utf-8") - print(ANSI.gray(stdout.strip())) - except FileNotFoundError: - print("Looks like you do not have git installed, please install.") - - try: - stdout = subprocess.check_output(["git-lfs", "--version"]).decode("utf-8") - print(ANSI.gray(stdout.strip())) - except FileNotFoundError: - print( - ANSI.red( - "Looks like you do not have git-lfs installed, please install." - " You can install from https://git-lfs.github.com/." - " Then run `git lfs install` (you only have to do this once)." - ) - ) - print("") - - user = self._api.whoami(token)["name"] - namespace = self.args.organization if self.args.organization is not None else user - - repo_id = f"{namespace}/{self.args.name}" - - if self.args.type not in REPO_TYPES: - print("Invalid repo --type") - exit(1) - - if self.args.type in REPO_TYPES_URL_PREFIXES: - prefixed_repo_id = REPO_TYPES_URL_PREFIXES[self.args.type] + repo_id - else: - prefixed_repo_id = repo_id - - print(f"You are about to create {ANSI.bold(prefixed_repo_id)}") - - if not self.args.yes: - choice = input("Proceed? [Y/n] ").lower() - if not (choice == "" or choice == "y" or choice == "yes"): - print("Abort") - exit() - try: - url = self._api.create_repo( - repo_id=repo_id, - token=token, - repo_type=self.args.type, - space_sdk=self.args.space_sdk, - ) - except HTTPError as e: - print(e) - print(ANSI.red(e.response.text)) - exit(1) - print("\nYour repo now lives at:") - print(f" {ANSI.bold(url)}") - print("\nYou can clone it locally with the command below, and commit/push as usual.") - print(f"\n git clone {url}") - print("") diff --git a/spaces/DaleChen/AutoGPT/autogpt/memory/base.py b/spaces/DaleChen/AutoGPT/autogpt/memory/base.py deleted file mode 100644 index 691e2299c4caa5c2e9af5b2436727834f3cc6c67..0000000000000000000000000000000000000000 --- a/spaces/DaleChen/AutoGPT/autogpt/memory/base.py +++ /dev/null @@ -1,43 +0,0 @@ -"""Base class for memory providers.""" -import abc - -import openai - -from autogpt.config import AbstractSingleton, Config - -cfg = Config() - - -def get_ada_embedding(text): - text = text.replace("\n", " ") - if cfg.use_azure: - return openai.Embedding.create( - input=[text], - engine=cfg.get_azure_deployment_id_for_model("text-embedding-ada-002"), - )["data"][0]["embedding"] - else: - return openai.Embedding.create(input=[text], model="text-embedding-ada-002")[ - "data" - ][0]["embedding"] - - -class MemoryProviderSingleton(AbstractSingleton): - @abc.abstractmethod - def add(self, data): - pass - - @abc.abstractmethod - def get(self, data): - pass - - @abc.abstractmethod - def clear(self): - pass - - @abc.abstractmethod - def get_relevant(self, data, num_relevant=5): - pass - - @abc.abstractmethod - def get_stats(self): - pass diff --git a/spaces/DarkyMan/OrangeMixes/app.py b/spaces/DarkyMan/OrangeMixes/app.py deleted file mode 100644 index 3ce664ca3bf8ab1f56a6f20fdc5a9eb166caa0f8..0000000000000000000000000000000000000000 --- a/spaces/DarkyMan/OrangeMixes/app.py +++ /dev/null @@ -1,24 +0,0 @@ -import gradio as gr -import torch -import numpy as np -import modin.pandas as pd -from PIL import Image -from diffusers import DiffusionPipeline - -device = "cuda" if torch.cuda.is_available() else "cpu" -pipe = DiffusionPipeline.from_pretrained("stablediffusionapi/anything-v5", torch_dtype=torch.float16, safety_checker=None) -pipe = pipe.to(device) - -def genie (prompt, scale, steps, Seed): - generator = torch.Generator(device=device).manual_seed(Seed) - images = pipe(prompt, num_inference_steps=steps, guidance_scale=scale, generator=generator).images[0] - return images - -gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'), - gr.Slider(1, maximum=25, value=10, step=.25, label='Prompt Guidance Scale:', interactive=True), - gr.Slider(1, maximum=200, value=100, step=1, label='Number of Iterations: 50 is typically fine.'), - gr.Slider(minimum=1, step=10, maximum=999999999999999999, randomize=True, interactive=True)], - outputs=gr.Image(label='512x512 Generated Image'), - title="OpenJourney V4 GPU", - description="OJ V4 GPU. Ultra Fast, now running on a T4

Warning: This Demo is capable of producing NSFW content.", - article = "Code Monkey: Manjushri").launch(debug=True, max_threads=True) \ No newline at end of file diff --git a/spaces/Datasculptor/DescriptionGPT/tools/fix_o365_names.py b/spaces/Datasculptor/DescriptionGPT/tools/fix_o365_names.py deleted file mode 100644 index c6730eacecb646bfef67a869dc9a93de6e55b6f2..0000000000000000000000000000000000000000 --- a/spaces/Datasculptor/DescriptionGPT/tools/fix_o365_names.py +++ /dev/null @@ -1,34 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -import argparse -import json -import copy - -if __name__ == '__main__': - parser = argparse.ArgumentParser() - parser.add_argument("--ann", default='datasets/objects365/annotations/zhiyuan_objv2_val.json') - parser.add_argument("--fix_name_map", default='datasets/metadata/Objects365_names_fix.csv') - args = parser.parse_args() - - new_names = {} - old_names = {} - with open(args.fix_name_map, 'r') as f: - for line in f: - tmp = line.strip().split(',') - old_names[int(tmp[0])] = tmp[1] - new_names[int(tmp[0])] = tmp[2] - data = json.load(open(args.ann, 'r')) - - cat_info = copy.deepcopy(data['categories']) - - for x in cat_info: - if old_names[x['id']].strip() != x['name'].strip(): - print('{} {} {}'.format(x, old_names[x['id']], new_names[x['id']])) - import pdb; pdb.set_trace() - if old_names[x['id']] != new_names[x['id']]: - print('Renaming', x['id'], x['name'], new_names[x['id']]) - x['name'] = new_names[x['id']] - - data['categories'] = cat_info - out_name = args.ann[:-5] + '_fixname.json' - print('Saving to', out_name) - json.dump(data, open(out_name, 'w')) diff --git a/spaces/DenniSciFi/IconAutomation/new_icon_automation_interface.py b/spaces/DenniSciFi/IconAutomation/new_icon_automation_interface.py deleted file mode 100644 index cf5a45423bce27db08e7d6d0fd1b6487434dfdcb..0000000000000000000000000000000000000000 --- a/spaces/DenniSciFi/IconAutomation/new_icon_automation_interface.py +++ /dev/null @@ -1,136 +0,0 @@ -import gradio as gr -import requests - -def get_organization_page(notion_url, notion_token, database_id): - """ - Query the Notion database for the organization page with the specified URL. - - :param notion_url: The URL of the organization page in the Notion database. - :param notion_token: The Notion API token. - :param database_id: The ID of the Notion database. - :return: The organization page object if found, otherwise None. - """ - - # Set headers for Notion API requests - headers = { - "Authorization": "Bearer " + notion_token, - "Notion-Version": "2022-06-28", - "Content-Type": "application/json" - } - - # Construct the API endpoint URL using the provided database ID - url = f"https://api.notion.com/v1/databases/{database_id}/query" - - # Define the query filter for the Notion API request - data = { - "filter": { - "property": "URL", - "url": { - "equals": notion_url - } - } - } - - # Send a POST request to the Notion API with the constructed URL, query filter, and headers - response = requests.post(url, json=data, headers=headers) - response_json = response.json() - - results = response_json["results"] - - # Return the first organization page object in the results array, or None if there are no results - if len(results) > 0: - return results[0] - else: - return None - - -def update_opportunity_icon(opportunity_page_id, image_url, notion_token): - """ - Update the icon of a specific opportunity page with an image URL. - - :param opportunity_page_id: The ID of the opportunity page in the Notion database. - :param image_url: The URL of the new image to be set as the icon. - :param notion_token: The Notion API token. - :return: True if the update was successful, False otherwise. - """ - - # Set headers for Notion API requests - headers = { - "Authorization": "Bearer " + notion_token, - "Notion-Version": "2022-06-28", - "Content-Type": "application/json" - } - - # Set the URL of the Notion API endpoint for updating the page with the given ID - url = f"https://api.notion.com/v1/pages/{opportunity_page_id}" - - # Define the data to be sent in the request body, including the new image URL - data = { - "icon": { - "type": "external", - "external": { - "url": image_url - } - } - } - - # Send a PATCH request to the Notion API to update the page with the new image URL - response = requests.patch(url, json=data, headers=headers) - - # Return True if the response status code indicates success, False otherwise - return response.status_code == 200 - - -def update_related_opportunities_icons(notion_url, image_url, notion_token, database_id): - """ - Update the icons of all opportunities related to an organization page. - - :param notion_url: The URL of the organization page in the Notion database. - :param image_url: The URL of the new image to be set as the icon. - :param notion_token: The Notion API token. - :param database_id: The ID of the Notion database. - """ - - # Get the organization page object from the Notion database using the URL - organization_page = get_organization_page(notion_url, notion_token, database_id) - - # If the organization page is found - if organization_page: - # Extract the list of related opportunities from the page object - related_opportunities = organization_page["properties"]["Related opportunities"]["relation"] - - # For each related opportunity - for opportunity in related_opportunities: - # Get the opportunity page ID - opportunity_page_id = opportunity["id"] - - # Try to update the opportunity icon with the new image URL using the update_opportunity_icon() function - if update_opportunity_icon(opportunity_page_id, image_url, notion_token): - print(f"Updated icon for opportunity page: {opportunity_page_id}") - else: - print(f"Failed to update icon for opportunity page: {opportunity_page_id}") - else: - print("Organization page not found.") - - -def interface(notion_url, image_url, notion_token, database_id): - # Calling the update_related_opportunities_icons function with the provided URLs and user inputs - update_related_opportunities_icons(notion_url, image_url, notion_token, database_id) - return "Operation Completed" - - -iface = gr.Interface( - fn=interface, - inputs=[ - gr.inputs.Textbox(label="Notion URL"), - gr.inputs.Textbox(label="Image URL"), - gr.inputs.Textbox(label="Notion Token"), - gr.inputs.Textbox(label="Database ID"), - ], - outputs=gr.outputs.Textbox(), - title="Icon Automation for Notion", - description="Enter the Notion URL of the organization page, the image URL you want to set as the icon, " - "and your Notion API token along with the database ID. This will update the icons of all related opportunities.", -) - -iface.launch() diff --git a/spaces/Detomo/ai-comic-generation/src/lib/createLlamaPrompt.ts b/spaces/Detomo/ai-comic-generation/src/lib/createLlamaPrompt.ts deleted file mode 100644 index ca246b36d0ef50f37571dcf09480bf57e9aee922..0000000000000000000000000000000000000000 --- a/spaces/Detomo/ai-comic-generation/src/lib/createLlamaPrompt.ts +++ /dev/null @@ -1,25 +0,0 @@ -// adapted from https://huggingface.co/TheBloke/Llama-2-13B-chat-GPTQ/discussions/5 -export function createLlamaPrompt(messages: Array<{ role: string, content: string }>) { - const B_INST = "[INST]", E_INST = "[/INST]"; - const B_SYS = "<>\n", E_SYS = "\n<>\n\n"; - const BOS = "", EOS = ""; - const DEFAULT_SYSTEM_PROMPT = "You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."; - - if (messages[0].role != "system"){ - messages = [ - {role: "system", content: DEFAULT_SYSTEM_PROMPT} - ].concat(messages); - } - messages = [{role: messages[1].role, content: B_SYS + messages[0].content + E_SYS + messages[1].content}].concat(messages.slice(2)); - - let messages_list = messages.map((value, index, array) => { - if (index % 2 == 0 && index + 1 < array.length){ - return `${BOS}${B_INST} ${array[index].content.trim()} ${E_INST} ${array[index+1].content.trim()} ${EOS}` - } - return ''; - }) - - messages_list.push(`${BOS}${B_INST} ${messages[messages.length-1].content.trim()} ${E_INST}`) - - return messages_list.join(''); -} \ No newline at end of file diff --git a/spaces/Dialogues/chat-ai-safety/README.md b/spaces/Dialogues/chat-ai-safety/README.md deleted file mode 100644 index 03e397839d4b7f59f3b73abea0e9416cd082fa63..0000000000000000000000000000000000000000 --- a/spaces/Dialogues/chat-ai-safety/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Chat Ai Safety -emoji: 📚 -colorFrom: grey -colorTo: pink -sdk: gradio -sdk_version: 3.28.3 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/DragGan/DragGan-Inversion/dnnlib/util.py b/spaces/DragGan/DragGan-Inversion/dnnlib/util.py deleted file mode 100644 index 90f91e1085239fd9672b2cbe83cbd8e85b27ec0e..0000000000000000000000000000000000000000 --- a/spaces/DragGan/DragGan-Inversion/dnnlib/util.py +++ /dev/null @@ -1,504 +0,0 @@ -# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. -# -# NVIDIA CORPORATION and its licensors retain all intellectual property -# and proprietary rights in and to this software, related documentation -# and any modifications thereto. Any use, reproduction, disclosure or -# distribution of this software and related documentation without an express -# license agreement from NVIDIA CORPORATION is strictly prohibited. - -"""Miscellaneous utility classes and functions.""" - -import ctypes -import fnmatch -import importlib -import inspect -import numpy as np -import os -import shutil -import sys -import types -import io -import pickle -import re -import requests -import html -import hashlib -import glob -import tempfile -import urllib -import urllib.request -import uuid - -from distutils.util import strtobool -from typing import Any, List, Tuple, Union - - -# Util classes -# ------------------------------------------------------------------------------------------ - - -class EasyDict(dict): - """Convenience class that behaves like a dict but allows access with the attribute syntax.""" - - def __getattr__(self, name: str) -> Any: - try: - return self[name] - except KeyError: - raise AttributeError(name) - - def __setattr__(self, name: str, value: Any) -> None: - self[name] = value - - def __delattr__(self, name: str) -> None: - del self[name] - - -class Logger(object): - """Redirect stderr to stdout, optionally print stdout to a file, and optionally force flushing on both stdout and the file.""" - - def __init__(self, file_name: str = None, file_mode: str = "w", should_flush: bool = True): - self.file = None - - if file_name is not None: - self.file = open(file_name, file_mode) - - self.should_flush = should_flush - self.stdout = sys.stdout - self.stderr = sys.stderr - - sys.stdout = self - sys.stderr = self - - def __enter__(self) -> "Logger": - return self - - def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None: - self.close() - - def write(self, text: Union[str, bytes]) -> None: - """Write text to stdout (and a file) and optionally flush.""" - if isinstance(text, bytes): - text = text.decode() - if len(text) == 0: # workaround for a bug in VSCode debugger: sys.stdout.write(''); sys.stdout.flush() => crash - return - - if self.file is not None: - self.file.write(text) - - self.stdout.write(text) - - if self.should_flush: - self.flush() - - def flush(self) -> None: - """Flush written text to both stdout and a file, if open.""" - if self.file is not None: - self.file.flush() - - self.stdout.flush() - - def close(self) -> None: - """Flush, close possible files, and remove stdout/stderr mirroring.""" - self.flush() - - # if using multiple loggers, prevent closing in wrong order - if sys.stdout is self: - sys.stdout = self.stdout - if sys.stderr is self: - sys.stderr = self.stderr - - if self.file is not None: - self.file.close() - self.file = None - - -# Cache directories -# ------------------------------------------------------------------------------------------ - -_dnnlib_cache_dir = None - - -def set_cache_dir(path: str) -> None: - global _dnnlib_cache_dir - _dnnlib_cache_dir = path - - -def make_cache_dir_path(*paths: str) -> str: - if _dnnlib_cache_dir is not None: - return os.path.join(_dnnlib_cache_dir, *paths) - if 'DNNLIB_CACHE_DIR' in os.environ: - return os.path.join(os.environ['DNNLIB_CACHE_DIR'], *paths) - if 'HOME' in os.environ: - return os.path.join(os.environ['HOME'], '.cache', 'dnnlib', *paths) - if 'USERPROFILE' in os.environ: - return os.path.join(os.environ['USERPROFILE'], '.cache', 'dnnlib', *paths) - return os.path.join(tempfile.gettempdir(), '.cache', 'dnnlib', *paths) - -# Small util functions -# ------------------------------------------------------------------------------------------ - - -def format_time(seconds: Union[int, float]) -> str: - """Convert the seconds to human readable string with days, hours, minutes and seconds.""" - s = int(np.rint(seconds)) - - if s < 60: - return "{0}s".format(s) - elif s < 60 * 60: - return "{0}m {1:02}s".format(s // 60, s % 60) - elif s < 24 * 60 * 60: - return "{0}h {1:02}m {2:02}s".format(s // (60 * 60), (s // 60) % 60, s % 60) - else: - return "{0}d {1:02}h {2:02}m".format(s // (24 * 60 * 60), (s // (60 * 60)) % 24, (s // 60) % 60) - - -def format_time_brief(seconds: Union[int, float]) -> str: - """Convert the seconds to human readable string with days, hours, minutes and seconds.""" - s = int(np.rint(seconds)) - - if s < 60: - return "{0}s".format(s) - elif s < 60 * 60: - return "{0}m {1:02}s".format(s // 60, s % 60) - elif s < 24 * 60 * 60: - return "{0}h {1:02}m".format(s // (60 * 60), (s // 60) % 60) - else: - return "{0}d {1:02}h".format(s // (24 * 60 * 60), (s // (60 * 60)) % 24) - - -def ask_yes_no(question: str) -> bool: - """Ask the user the question until the user inputs a valid answer.""" - while True: - try: - print("{0} [y/n]".format(question)) - return strtobool(input().lower()) - except ValueError: - pass - - -def tuple_product(t: Tuple) -> Any: - """Calculate the product of the tuple elements.""" - result = 1 - - for v in t: - result *= v - - return result - - -_str_to_ctype = { - "uint8": ctypes.c_ubyte, - "uint16": ctypes.c_uint16, - "uint32": ctypes.c_uint32, - "uint64": ctypes.c_uint64, - "int8": ctypes.c_byte, - "int16": ctypes.c_int16, - "int32": ctypes.c_int32, - "int64": ctypes.c_int64, - "float32": ctypes.c_float, - "float64": ctypes.c_double -} - - -def get_dtype_and_ctype(type_obj: Any) -> Tuple[np.dtype, Any]: - """Given a type name string (or an object having a __name__ attribute), return matching Numpy and ctypes types that have the same size in bytes.""" - type_str = None - - if isinstance(type_obj, str): - type_str = type_obj - elif hasattr(type_obj, "__name__"): - type_str = type_obj.__name__ - elif hasattr(type_obj, "name"): - type_str = type_obj.name - else: - raise RuntimeError("Cannot infer type name from input") - - assert type_str in _str_to_ctype.keys() - - my_dtype = np.dtype(type_str) - my_ctype = _str_to_ctype[type_str] - - assert my_dtype.itemsize == ctypes.sizeof(my_ctype) - - return my_dtype, my_ctype - - -def is_pickleable(obj: Any) -> bool: - try: - with io.BytesIO() as stream: - pickle.dump(obj, stream) - return True - except: - return False - - -# Functionality to import modules/objects by name, and call functions by name -# ------------------------------------------------------------------------------------------ - -def get_module_from_obj_name(obj_name: str) -> Tuple[types.ModuleType, str]: - """Searches for the underlying module behind the name to some python object. - Returns the module and the object name (original name with module part removed).""" - - # allow convenience shorthands, substitute them by full names - obj_name = re.sub("^np.", "numpy.", obj_name) - obj_name = re.sub("^tf.", "tensorflow.", obj_name) - - # list alternatives for (module_name, local_obj_name) - parts = obj_name.split(".") - name_pairs = [(".".join(parts[:i]), ".".join(parts[i:])) - for i in range(len(parts), 0, -1)] - - # try each alternative in turn - for module_name, local_obj_name in name_pairs: - try: - module = importlib.import_module( - module_name) # may raise ImportError - # may raise AttributeError - get_obj_from_module(module, local_obj_name) - return module, local_obj_name - except: - pass - - # maybe some of the modules themselves contain errors? - for module_name, _local_obj_name in name_pairs: - try: - importlib.import_module(module_name) # may raise ImportError - except ImportError: - if not str(sys.exc_info()[1]).startswith("No module named '" + module_name + "'"): - raise - - # maybe the requested attribute is missing? - for module_name, local_obj_name in name_pairs: - try: - module = importlib.import_module( - module_name) # may raise ImportError - # may raise AttributeError - get_obj_from_module(module, local_obj_name) - except ImportError: - pass - - # we are out of luck, but we have no idea why - raise ImportError(obj_name) - - -def get_obj_from_module(module: types.ModuleType, obj_name: str) -> Any: - """Traverses the object name and returns the last (rightmost) python object.""" - if obj_name == '': - return module - obj = module - for part in obj_name.split("."): - obj = getattr(obj, part) - return obj - - -def get_obj_by_name(name: str) -> Any: - """Finds the python object with the given name.""" - module, obj_name = get_module_from_obj_name(name) - return get_obj_from_module(module, obj_name) - - -def call_func_by_name(*args, func_name: str = None, **kwargs) -> Any: - """Finds the python object with the given name and calls it as a function.""" - assert func_name is not None - func_obj = get_obj_by_name(func_name) - assert callable(func_obj) - return func_obj(*args, **kwargs) - - -def construct_class_by_name(*args, class_name: str = None, **kwargs) -> Any: - """Finds the python class with the given name and constructs it with the given arguments.""" - return call_func_by_name(*args, func_name=class_name, **kwargs) - - -def get_module_dir_by_obj_name(obj_name: str) -> str: - """Get the directory path of the module containing the given object name.""" - module, _ = get_module_from_obj_name(obj_name) - return os.path.dirname(inspect.getfile(module)) - - -def is_top_level_function(obj: Any) -> bool: - """Determine whether the given object is a top-level function, i.e., defined at module scope using 'def'.""" - return callable(obj) and obj.__name__ in sys.modules[obj.__module__].__dict__ - - -def get_top_level_function_name(obj: Any) -> str: - """Return the fully-qualified name of a top-level function.""" - assert is_top_level_function(obj) - module = obj.__module__ - if module == '__main__': - module = os.path.splitext(os.path.basename( - sys.modules[module].__file__))[0] - return module + "." + obj.__name__ - - -# File system helpers -# ------------------------------------------------------------------------------------------ - -def list_dir_recursively_with_ignore(dir_path: str, ignores: List[str] = None, add_base_to_relative: bool = False) -> List[Tuple[str, str]]: - """List all files recursively in a given directory while ignoring given file and directory names. - Returns list of tuples containing both absolute and relative paths.""" - assert os.path.isdir(dir_path) - base_name = os.path.basename(os.path.normpath(dir_path)) - - if ignores is None: - ignores = [] - - result = [] - - for root, dirs, files in os.walk(dir_path, topdown=True): - for ignore_ in ignores: - dirs_to_remove = [d for d in dirs if fnmatch.fnmatch(d, ignore_)] - - # dirs need to be edited in-place - for d in dirs_to_remove: - dirs.remove(d) - - files = [f for f in files if not fnmatch.fnmatch(f, ignore_)] - - absolute_paths = [os.path.join(root, f) for f in files] - relative_paths = [os.path.relpath(p, dir_path) for p in absolute_paths] - - if add_base_to_relative: - relative_paths = [os.path.join(base_name, p) - for p in relative_paths] - - assert len(absolute_paths) == len(relative_paths) - result += zip(absolute_paths, relative_paths) - - return result - - -def copy_files_and_create_dirs(files: List[Tuple[str, str]]) -> None: - """Takes in a list of tuples of (src, dst) paths and copies files. - Will create all necessary directories.""" - for file in files: - target_dir_name = os.path.dirname(file[1]) - - # will create all intermediate-level directories - if not os.path.exists(target_dir_name): - os.makedirs(target_dir_name) - - shutil.copyfile(file[0], file[1]) - - -# URL helpers -# ------------------------------------------------------------------------------------------ - -def is_url(obj: Any, allow_file_urls: bool = False) -> bool: - """Determine whether the given object is a valid URL string.""" - if not isinstance(obj, str) or not "://" in obj: - return False - if allow_file_urls and obj.startswith('file://'): - return True - try: - res = requests.compat.urlparse(obj) - if not res.scheme or not res.netloc or not "." in res.netloc: - return False - res = requests.compat.urlparse(requests.compat.urljoin(obj, "/")) - if not res.scheme or not res.netloc or not "." in res.netloc: - return False - except: - return False - return True - - -def open_url(url: str, cache_dir: str = None, num_attempts: int = 10, verbose: bool = True, return_filename: bool = False, cache: bool = True) -> Any: - """Download the given URL and return a binary-mode file object to access the data.""" - assert num_attempts >= 1 - assert not (return_filename and (not cache)) - - # Doesn't look like an URL scheme so interpret it as a local filename. - if not re.match('^[a-z]+://', url): - return url if return_filename else open(url, "rb") - - # Handle file URLs. This code handles unusual file:// patterns that - # arise on Windows: - # - # file:///c:/foo.txt - # - # which would translate to a local '/c:/foo.txt' filename that's - # invalid. Drop the forward slash for such pathnames. - # - # If you touch this code path, you should test it on both Linux and - # Windows. - # - # Some internet resources suggest using urllib.request.url2pathname() but - # but that converts forward slashes to backslashes and this causes - # its own set of problems. - if url.startswith('file://'): - filename = urllib.parse.urlparse(url).path - if re.match(r'^/[a-zA-Z]:', filename): - filename = filename[1:] - return filename if return_filename else open(filename, "rb") - - assert is_url(url) - - # Lookup from cache. - if cache_dir is None: - cache_dir = make_cache_dir_path('downloads') - - url_md5 = hashlib.md5(url.encode("utf-8")).hexdigest() - if cache: - cache_files = glob.glob(os.path.join(cache_dir, url_md5 + "_*")) - if len(cache_files) == 1: - filename = cache_files[0] - return filename if return_filename else open(filename, "rb") - - # Download. - url_name = None - url_data = None - with requests.Session() as session: - if verbose: - print("Downloading %s ..." % url, end="", flush=True) - for attempts_left in reversed(range(num_attempts)): - try: - with session.get(url) as res: - res.raise_for_status() - if len(res.content) == 0: - raise IOError("No data received") - - if len(res.content) < 8192: - content_str = res.content.decode("utf-8") - if "download_warning" in res.headers.get("Set-Cookie", ""): - links = [html.unescape(link) for link in content_str.split( - '"') if "export=download" in link] - if len(links) == 1: - url = requests.compat.urljoin(url, links[0]) - raise IOError("Google Drive virus checker nag") - if "Google Drive - Quota exceeded" in content_str: - raise IOError( - "Google Drive download quota exceeded -- please try again later") - - match = re.search( - r'filename="([^"]*)"', res.headers.get("Content-Disposition", "")) - url_name = match[1] if match else url - url_data = res.content - if verbose: - print(" done") - break - except KeyboardInterrupt: - raise - except: - if not attempts_left: - if verbose: - print(" failed") - raise - if verbose: - print(".", end="", flush=True) - - # Save to cache. - if cache: - safe_name = re.sub(r"[^0-9a-zA-Z-._]", "_", url_name) - cache_file = os.path.join(cache_dir, url_md5 + "_" + safe_name) - temp_file = os.path.join( - cache_dir, "tmp_" + uuid.uuid4().hex + "_" + url_md5 + "_" + safe_name) - os.makedirs(cache_dir, exist_ok=True) - with open(temp_file, "wb") as f: - f.write(url_data) - os.replace(temp_file, cache_file) # atomic - if return_filename: - return cache_file - - # Return data as file object. - assert not return_filename - return io.BytesIO(url_data) diff --git a/spaces/DragGan/DragGan-Inversion/torch_utils/ops/bias_act.cpp b/spaces/DragGan/DragGan-Inversion/torch_utils/ops/bias_act.cpp deleted file mode 100644 index 3adaeee2ae44e96655d354c2bdfb81de8ebfe6c6..0000000000000000000000000000000000000000 --- a/spaces/DragGan/DragGan-Inversion/torch_utils/ops/bias_act.cpp +++ /dev/null @@ -1,99 +0,0 @@ -// Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. -// -// NVIDIA CORPORATION and its licensors retain all intellectual property -// and proprietary rights in and to this software, related documentation -// and any modifications thereto. Any use, reproduction, disclosure or -// distribution of this software and related documentation without an express -// license agreement from NVIDIA CORPORATION is strictly prohibited. - -#include -#include -#include -#include "bias_act.h" - -//------------------------------------------------------------------------ - -static bool has_same_layout(torch::Tensor x, torch::Tensor y) -{ - if (x.dim() != y.dim()) - return false; - for (int64_t i = 0; i < x.dim(); i++) - { - if (x.size(i) != y.size(i)) - return false; - if (x.size(i) >= 2 && x.stride(i) != y.stride(i)) - return false; - } - return true; -} - -//------------------------------------------------------------------------ - -static torch::Tensor bias_act(torch::Tensor x, torch::Tensor b, torch::Tensor xref, torch::Tensor yref, torch::Tensor dy, int grad, int dim, int act, float alpha, float gain, float clamp) -{ - // Validate arguments. - TORCH_CHECK(x.is_cuda(), "x must reside on CUDA device"); - TORCH_CHECK(b.numel() == 0 || (b.dtype() == x.dtype() && b.device() == x.device()), "b must have the same dtype and device as x"); - TORCH_CHECK(xref.numel() == 0 || (xref.sizes() == x.sizes() && xref.dtype() == x.dtype() && xref.device() == x.device()), "xref must have the same shape, dtype, and device as x"); - TORCH_CHECK(yref.numel() == 0 || (yref.sizes() == x.sizes() && yref.dtype() == x.dtype() && yref.device() == x.device()), "yref must have the same shape, dtype, and device as x"); - TORCH_CHECK(dy.numel() == 0 || (dy.sizes() == x.sizes() && dy.dtype() == x.dtype() && dy.device() == x.device()), "dy must have the same dtype and device as x"); - TORCH_CHECK(x.numel() <= INT_MAX, "x is too large"); - TORCH_CHECK(b.dim() == 1, "b must have rank 1"); - TORCH_CHECK(b.numel() == 0 || (dim >= 0 && dim < x.dim()), "dim is out of bounds"); - TORCH_CHECK(b.numel() == 0 || b.numel() == x.size(dim), "b has wrong number of elements"); - TORCH_CHECK(grad >= 0, "grad must be non-negative"); - - // Validate layout. - TORCH_CHECK(x.is_non_overlapping_and_dense(), "x must be non-overlapping and dense"); - TORCH_CHECK(b.is_contiguous(), "b must be contiguous"); - TORCH_CHECK(xref.numel() == 0 || has_same_layout(xref, x), "xref must have the same layout as x"); - TORCH_CHECK(yref.numel() == 0 || has_same_layout(yref, x), "yref must have the same layout as x"); - TORCH_CHECK(dy.numel() == 0 || has_same_layout(dy, x), "dy must have the same layout as x"); - - // Create output tensor. - const at::cuda::OptionalCUDAGuard device_guard(device_of(x)); - torch::Tensor y = torch::empty_like(x); - TORCH_CHECK(has_same_layout(y, x), "y must have the same layout as x"); - - // Initialize CUDA kernel parameters. - bias_act_kernel_params p; - p.x = x.data_ptr(); - p.b = (b.numel()) ? b.data_ptr() : NULL; - p.xref = (xref.numel()) ? xref.data_ptr() : NULL; - p.yref = (yref.numel()) ? yref.data_ptr() : NULL; - p.dy = (dy.numel()) ? dy.data_ptr() : NULL; - p.y = y.data_ptr(); - p.grad = grad; - p.act = act; - p.alpha = alpha; - p.gain = gain; - p.clamp = clamp; - p.sizeX = (int)x.numel(); - p.sizeB = (int)b.numel(); - p.stepB = (b.numel()) ? (int)x.stride(dim) : 1; - - // Choose CUDA kernel. - void* kernel; - AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&] - { - kernel = choose_bias_act_kernel(p); - }); - TORCH_CHECK(kernel, "no CUDA kernel found for the specified activation func"); - - // Launch CUDA kernel. - p.loopX = 4; - int blockSize = 4 * 32; - int gridSize = (p.sizeX - 1) / (p.loopX * blockSize) + 1; - void* args[] = {&p}; - AT_CUDA_CHECK(cudaLaunchKernel(kernel, gridSize, blockSize, args, 0, at::cuda::getCurrentCUDAStream())); - return y; -} - -//------------------------------------------------------------------------ - -PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) -{ - m.def("bias_act", &bias_act); -} - -//------------------------------------------------------------------------ diff --git a/spaces/Epitech/alzheimer/README.md b/spaces/Epitech/alzheimer/README.md deleted file mode 100644 index aff28d34627112fb802f75855a9736e96e8401be..0000000000000000000000000000000000000000 --- a/spaces/Epitech/alzheimer/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Alzheimer -emoji: 🔥 -colorFrom: yellow -colorTo: gray -sdk: gradio -sdk_version: 2.9.4 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference diff --git a/spaces/EronSamez/RVC_HFmeu/lib/uvr5_pack/lib_v5/nets_new.py b/spaces/EronSamez/RVC_HFmeu/lib/uvr5_pack/lib_v5/nets_new.py deleted file mode 100644 index bfaf72e48b31cc1130f2892b0973c9aa06f195a3..0000000000000000000000000000000000000000 --- a/spaces/EronSamez/RVC_HFmeu/lib/uvr5_pack/lib_v5/nets_new.py +++ /dev/null @@ -1,132 +0,0 @@ -import torch -from torch import nn -import torch.nn.functional as F -from . import layers_new - - -class BaseNet(nn.Module): - def __init__( - self, nin, nout, nin_lstm, nout_lstm, dilations=((4, 2), (8, 4), (12, 6)) - ): - super(BaseNet, self).__init__() - self.enc1 = layers_new.Conv2DBNActiv(nin, nout, 3, 1, 1) - self.enc2 = layers_new.Encoder(nout, nout * 2, 3, 2, 1) - self.enc3 = layers_new.Encoder(nout * 2, nout * 4, 3, 2, 1) - self.enc4 = layers_new.Encoder(nout * 4, nout * 6, 3, 2, 1) - self.enc5 = layers_new.Encoder(nout * 6, nout * 8, 3, 2, 1) - - self.aspp = layers_new.ASPPModule(nout * 8, nout * 8, dilations, dropout=True) - - self.dec4 = layers_new.Decoder(nout * (6 + 8), nout * 6, 3, 1, 1) - self.dec3 = layers_new.Decoder(nout * (4 + 6), nout * 4, 3, 1, 1) - self.dec2 = layers_new.Decoder(nout * (2 + 4), nout * 2, 3, 1, 1) - self.lstm_dec2 = layers_new.LSTMModule(nout * 2, nin_lstm, nout_lstm) - self.dec1 = layers_new.Decoder(nout * (1 + 2) + 1, nout * 1, 3, 1, 1) - - def __call__(self, x): - e1 = self.enc1(x) - e2 = self.enc2(e1) - e3 = self.enc3(e2) - e4 = self.enc4(e3) - e5 = self.enc5(e4) - - h = self.aspp(e5) - - h = self.dec4(h, e4) - h = self.dec3(h, e3) - h = self.dec2(h, e2) - h = torch.cat([h, self.lstm_dec2(h)], dim=1) - h = self.dec1(h, e1) - - return h - - -class CascadedNet(nn.Module): - def __init__(self, n_fft, nout=32, nout_lstm=128): - super(CascadedNet, self).__init__() - - self.max_bin = n_fft // 2 - self.output_bin = n_fft // 2 + 1 - self.nin_lstm = self.max_bin // 2 - self.offset = 64 - - self.stg1_low_band_net = nn.Sequential( - BaseNet(2, nout // 2, self.nin_lstm // 2, nout_lstm), - layers_new.Conv2DBNActiv(nout // 2, nout // 4, 1, 1, 0), - ) - - self.stg1_high_band_net = BaseNet( - 2, nout // 4, self.nin_lstm // 2, nout_lstm // 2 - ) - - self.stg2_low_band_net = nn.Sequential( - BaseNet(nout // 4 + 2, nout, self.nin_lstm // 2, nout_lstm), - layers_new.Conv2DBNActiv(nout, nout // 2, 1, 1, 0), - ) - self.stg2_high_band_net = BaseNet( - nout // 4 + 2, nout // 2, self.nin_lstm // 2, nout_lstm // 2 - ) - - self.stg3_full_band_net = BaseNet( - 3 * nout // 4 + 2, nout, self.nin_lstm, nout_lstm - ) - - self.out = nn.Conv2d(nout, 2, 1, bias=False) - self.aux_out = nn.Conv2d(3 * nout // 4, 2, 1, bias=False) - - def forward(self, x): - x = x[:, :, : self.max_bin] - - bandw = x.size()[2] // 2 - l1_in = x[:, :, :bandw] - h1_in = x[:, :, bandw:] - l1 = self.stg1_low_band_net(l1_in) - h1 = self.stg1_high_band_net(h1_in) - aux1 = torch.cat([l1, h1], dim=2) - - l2_in = torch.cat([l1_in, l1], dim=1) - h2_in = torch.cat([h1_in, h1], dim=1) - l2 = self.stg2_low_band_net(l2_in) - h2 = self.stg2_high_band_net(h2_in) - aux2 = torch.cat([l2, h2], dim=2) - - f3_in = torch.cat([x, aux1, aux2], dim=1) - f3 = self.stg3_full_band_net(f3_in) - - mask = torch.sigmoid(self.out(f3)) - mask = F.pad( - input=mask, - pad=(0, 0, 0, self.output_bin - mask.size()[2]), - mode="replicate", - ) - - if self.training: - aux = torch.cat([aux1, aux2], dim=1) - aux = torch.sigmoid(self.aux_out(aux)) - aux = F.pad( - input=aux, - pad=(0, 0, 0, self.output_bin - aux.size()[2]), - mode="replicate", - ) - return mask, aux - else: - return mask - - def predict_mask(self, x): - mask = self.forward(x) - - if self.offset > 0: - mask = mask[:, :, :, self.offset : -self.offset] - assert mask.size()[3] > 0 - - return mask - - def predict(self, x, aggressiveness=None): - mask = self.forward(x) - pred_mag = x * mask - - if self.offset > 0: - pred_mag = pred_mag[:, :, :, self.offset : -self.offset] - assert pred_mag.size()[3] > 0 - - return pred_mag diff --git a/spaces/EuroPython2022/illustrated-lyrics-generator/app.py b/spaces/EuroPython2022/illustrated-lyrics-generator/app.py deleted file mode 100644 index 6c9c892abb29fe46f9a7256cb273fd2b4a4bf6f9..0000000000000000000000000000000000000000 --- a/spaces/EuroPython2022/illustrated-lyrics-generator/app.py +++ /dev/null @@ -1,56 +0,0 @@ -import gradio as gr -from transformers import pipeline - -from text_utils import wrap_text, compute_text_position -from gan_utils import load_img_generator, generate_img -from PIL import ImageFont, ImageDraw -import torch - -# device = 'cuda' if torch.cuda.is_available() else 'cpu' -device = "cpu" - -text_generator = pipeline('text-generation', model='huggingtweets/bestmusiclyric') - - -def generate_captioned_img(lyrics_prompt, gan_model): - gan_image = generate_img(device, gan_model) - - generated_text = text_generator(lyrics_prompt)[0]["generated_text"] - wrapped_text = wrap_text(generated_text) - - text_pos = compute_text_position(wrapped_text) - - # Source: https://stackoverflow.com/a/16377244 - draw = ImageDraw.Draw(gan_image) - font = ImageFont.truetype("DejaVuSans.ttf", 64) - draw.text((10, text_pos), text=wrapped_text, fill_color=(255, 255, 255), font=font, stroke_fill=(0, 0, 0), - stroke_width=5) - - return gan_image - - -iface = gr.Interface(fn=generate_captioned_img, inputs=[gr.Textbox(value="Running with the wolves", label="Lyrics prompt", lines=1), - gr.Radio(value="aurora", - choices=["painting", "fauvism-still-life", "aurora", - "universe", "moongate"], - label="FastGAN model") - ], - outputs="image", - allow_flagging="never", - title="Illustrated lyrics generator", - description="Combines song lyrics generation via the [Best Music Lyric Bot]" - "(https://huggingface.co/huggingtweets/bestmusiclyric) with an artwork randomly " - "generated by a [FastGAN model](https://huggingface.co/spaces/huggan/FastGan).\n\n" - "Text and lyrics are generated independently. " - "If you can implement this idea with images conditioned on the lyrics," - " I'd be very interested in seeing that!🤗\n\n" - "At the bottom of the page, you can click some example inputs to get you started.", - examples=[["Hey now", "fauvism-still-life"], ["It's gonna take a lot", "universe"], - ["Running with the wolves", "aurora"], ["His palms are sweaty", "painting"], - ["I just met you", "moongate"]] - ) -iface.launch() - - -#examples=[["Hey now", "painting"], ["It's gonna take a lot", "universe"], ["So close", "aurora"], ["I just met you", "moongate"], -# ["His palms are sweaty", "aurora"]]) \ No newline at end of file diff --git a/spaces/FawnPythn/andite-anything-v4.0/README.md b/spaces/FawnPythn/andite-anything-v4.0/README.md deleted file mode 100644 index bf6c18cadced87cd39677b8d29da563897b15121..0000000000000000000000000000000000000000 --- a/spaces/FawnPythn/andite-anything-v4.0/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Andite Anything V4.0 -emoji: ⚡ -colorFrom: green -colorTo: red -sdk: gradio -sdk_version: 3.33.1 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/Ferion/image-matting-app/ppmatting/datasets/composition_1k.py b/spaces/Ferion/image-matting-app/ppmatting/datasets/composition_1k.py deleted file mode 100644 index 854b29bed6d91f20616060c3cee50fc21dc5b8f2..0000000000000000000000000000000000000000 --- a/spaces/Ferion/image-matting-app/ppmatting/datasets/composition_1k.py +++ /dev/null @@ -1,31 +0,0 @@ -# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import os -import math - -import cv2 -import numpy as np -import random -import paddle -from paddleseg.cvlibs import manager - -import ppmatting.transforms as T -from ppmatting.datasets.matting_dataset import MattingDataset - - -@manager.DATASETS.add_component -class Composition1K(MattingDataset): - def __init__(self, **kwargs): - super().__init__(**kwargs) diff --git a/spaces/GXSA/bingo/src/lib/bots/bing/tts.ts b/spaces/GXSA/bingo/src/lib/bots/bing/tts.ts deleted file mode 100644 index cd10b7d1d7581bf9cf46ff6755fcca550c558c9b..0000000000000000000000000000000000000000 --- a/spaces/GXSA/bingo/src/lib/bots/bing/tts.ts +++ /dev/null @@ -1,82 +0,0 @@ -import { sleep } from './utils' - -const synth = window.speechSynthesis - -export class TTS { - currentText = '' - speakText = '' - private controller = new AbortController() - speaking = false - get isSpeaking() { - return this.speaking - } - finished = false - constructor() {} - abort = () => { - this.controller.abort() - } - - reset = () => { - this.speaking = false - this.finished = true - this.currentText = '' - this.speakText = '' - this.abort() - } - - speak = (text: string) => { - if (!synth || text?.trim()?.length < 2) { - return - } - this.currentText = text.replace(/[^\u4e00-\u9fa5_a-zA-Z0-9,。?,:;\.,:]+/g, '') - this.finished = false - this.loop() - } - - private async doSpeek() { - return new Promise((resolve) => { - const endIndex = this.finished ? this.currentText.length : - Math.max( - this.currentText.lastIndexOf('。'), - this.currentText.lastIndexOf(';'), - this.currentText.lastIndexOf('、'), - this.currentText.lastIndexOf('?'), - this.currentText.lastIndexOf('\n') - ) - const startIndex = this.speakText.length ? Math.max(0, this.currentText.lastIndexOf(this.speakText) + this.speakText.length) : 0 - - if (startIndex >= endIndex) { - return resolve(true) - } - const text = this.currentText.slice(startIndex, endIndex) - this.speakText = text - const utterThis = new SpeechSynthesisUtterance(text) - this.controller.signal.onabort = () => { - synth.cancel() - this.finished = true - resolve(false) - } - - utterThis.onend = function (event) { - resolve(true) - } - - utterThis.onerror = function (event) { - resolve(false) - } - - const voice = synth.getVoices().find(v => v.name.includes('Microsoft Yunxi Online')) ?? null - utterThis.voice = voice - synth.speak(utterThis) - }) - } - - private async loop() { - if (this.speaking) return - this.speaking = true - while(!this.finished) { - await Promise.all([sleep(1000), this.doSpeek()]) - } - this.speaking = false - } -} diff --git a/spaces/Gen-Sim/Gen-Sim/cliport/utils/simple_tokenizer.py b/spaces/Gen-Sim/Gen-Sim/cliport/utils/simple_tokenizer.py deleted file mode 100644 index 9311a8619dc07af56567434fef7726a382e999d5..0000000000000000000000000000000000000000 --- a/spaces/Gen-Sim/Gen-Sim/cliport/utils/simple_tokenizer.py +++ /dev/null @@ -1,133 +0,0 @@ -import gzip -import html -import os -from functools import lru_cache - -import ftfy -import regex as re - - -@lru_cache() -def default_bpe(): - return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz") - - -@lru_cache() -def bytes_to_unicode(): - """ - Returns list of utf-8 byte and a corresponding list of unicode strings. - The reversible bpe codes work on unicode strings. - This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. - When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. - This is a signficant percentage of your normal, say, 32K bpe vocab. - To avoid that, we want lookup tables between utf-8 bytes and unicode strings. - And avoids mapping to whitespace/control characters the bpe code barfs on. - """ - bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) - cs = bs[:] - n = 0 - for b in range(2**8): - if b not in bs: - bs.append(b) - cs.append(2**8+n) - n += 1 - cs = [chr(n) for n in cs] - return dict(zip(bs, cs)) - - -def get_pairs(word): - """Return set of symbol pairs in a word. - Word is represented as tuple of symbols (symbols being variable-length strings). - """ - pairs = set() - prev_char = word[0] - for char in word[1:]: - pairs.add((prev_char, char)) - prev_char = char - return pairs - - -def basic_clean(text): - text = ftfy.fix_text(text) - text = html.unescape(html.unescape(text)) - return text.strip() - - -def whitespace_clean(text): - text = re.sub(r'\s+', ' ', text) - text = text.strip() - return text - - -class SimpleTokenizer(object): - def __init__(self, bpe_path: str = default_bpe()): - self.byte_encoder = bytes_to_unicode() - self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} - merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') - merges = merges[1:49152-256-2+1] - merges = [tuple(merge.split()) for merge in merges] - vocab = list(bytes_to_unicode().values()) - vocab = vocab + [v+'' for v in vocab] - for merge in merges: - vocab.append(''.join(merge)) - vocab.extend(['<|startoftext|>', '<|endoftext|>']) - self.encoder = dict(zip(vocab, range(len(vocab)))) - self.decoder = {v: k for k, v in self.encoder.items()} - self.bpe_ranks = dict(zip(merges, range(len(merges)))) - self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} - self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) - - def bpe(self, token): - if token in self.cache: - return self.cache[token] - word = tuple(token[:-1]) + ( token[-1] + '',) - pairs = get_pairs(word) - - if not pairs: - return token+'' - - while True: - bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) - if bigram not in self.bpe_ranks: - break - first, second = bigram - new_word = [] - i = 0 - while i < len(word): - try: - j = word.index(first, i) - new_word.extend(word[i:j]) - i = j - except: - new_word.extend(word[i:]) - break - - if word[i] == first and i < len(word)-1 and word[i+1] == second: - new_word.append(first+second) - i += 2 - else: - new_word.append(word[i]) - i += 1 - new_word = tuple(new_word) - word = new_word - if len(word) == 1: - break - else: - pairs = get_pairs(word) - word = ' '.join(word) - self.cache[token] = word - return word - - def encode(self, text): - bpe_tokens = [] - text = text[0] - text = whitespace_clean(basic_clean(text)).lower() - for token in re.findall(self.pat, text): - token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) - bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) - return bpe_tokens - - def decode(self, tokens): - text = ''.join([self.decoder[token] for token in tokens]) - text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('', ' ') - return text \ No newline at end of file diff --git a/spaces/Hallucinate/demo/ldm/data/base.py b/spaces/Hallucinate/demo/ldm/data/base.py deleted file mode 100644 index b196c2f7aa583a3e8bc4aad9f943df0c4dae0da7..0000000000000000000000000000000000000000 --- a/spaces/Hallucinate/demo/ldm/data/base.py +++ /dev/null @@ -1,23 +0,0 @@ -from abc import abstractmethod -from torch.utils.data import Dataset, ConcatDataset, ChainDataset, IterableDataset - - -class Txt2ImgIterableBaseDataset(IterableDataset): - ''' - Define an interface to make the IterableDatasets for text2img data chainable - ''' - def __init__(self, num_records=0, valid_ids=None, size=256): - super().__init__() - self.num_records = num_records - self.valid_ids = valid_ids - self.sample_ids = valid_ids - self.size = size - - print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples.') - - def __len__(self): - return self.num_records - - @abstractmethod - def __iter__(self): - pass \ No newline at end of file diff --git a/spaces/Hallucinate/demo/taming/modules/transformer/mingpt.py b/spaces/Hallucinate/demo/taming/modules/transformer/mingpt.py deleted file mode 100644 index d14b7b68117f4b9f297b2929397cd4f55089334c..0000000000000000000000000000000000000000 --- a/spaces/Hallucinate/demo/taming/modules/transformer/mingpt.py +++ /dev/null @@ -1,415 +0,0 @@ -""" -taken from: https://github.com/karpathy/minGPT/ -GPT model: -- the initial stem consists of a combination of token encoding and a positional encoding -- the meat of it is a uniform sequence of Transformer blocks - - each Transformer is a sequential combination of a 1-hidden-layer MLP block and a self-attention block - - all blocks feed into a central residual pathway similar to resnets -- the final decoder is a linear projection into a vanilla Softmax classifier -""" - -import math -import logging - -import torch -import torch.nn as nn -from torch.nn import functional as F -from transformers import top_k_top_p_filtering - -logger = logging.getLogger(__name__) - - -class GPTConfig: - """ base GPT config, params common to all GPT versions """ - embd_pdrop = 0.1 - resid_pdrop = 0.1 - attn_pdrop = 0.1 - - def __init__(self, vocab_size, block_size, **kwargs): - self.vocab_size = vocab_size - self.block_size = block_size - for k,v in kwargs.items(): - setattr(self, k, v) - - -class GPT1Config(GPTConfig): - """ GPT-1 like network roughly 125M params """ - n_layer = 12 - n_head = 12 - n_embd = 768 - - -class CausalSelfAttention(nn.Module): - """ - A vanilla multi-head masked self-attention layer with a projection at the end. - It is possible to use torch.nn.MultiheadAttention here but I am including an - explicit implementation here to show that there is nothing too scary here. - """ - - def __init__(self, config): - super().__init__() - assert config.n_embd % config.n_head == 0 - # key, query, value projections for all heads - self.key = nn.Linear(config.n_embd, config.n_embd) - self.query = nn.Linear(config.n_embd, config.n_embd) - self.value = nn.Linear(config.n_embd, config.n_embd) - # regularization - self.attn_drop = nn.Dropout(config.attn_pdrop) - self.resid_drop = nn.Dropout(config.resid_pdrop) - # output projection - self.proj = nn.Linear(config.n_embd, config.n_embd) - # causal mask to ensure that attention is only applied to the left in the input sequence - mask = torch.tril(torch.ones(config.block_size, - config.block_size)) - if hasattr(config, "n_unmasked"): - mask[:config.n_unmasked, :config.n_unmasked] = 1 - self.register_buffer("mask", mask.view(1, 1, config.block_size, config.block_size)) - self.n_head = config.n_head - - def forward(self, x, layer_past=None): - B, T, C = x.size() - - # calculate query, key, values for all heads in batch and move head forward to be the batch dim - k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) - q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) - v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) - - present = torch.stack((k, v)) - if layer_past is not None: - past_key, past_value = layer_past - k = torch.cat((past_key, k), dim=-2) - v = torch.cat((past_value, v), dim=-2) - - # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) - att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) - if layer_past is None: - att = att.masked_fill(self.mask[:,:,:T,:T] == 0, float('-inf')) - - att = F.softmax(att, dim=-1) - att = self.attn_drop(att) - y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) - y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side - - # output projection - y = self.resid_drop(self.proj(y)) - return y, present # TODO: check that this does not break anything - - -class Block(nn.Module): - """ an unassuming Transformer block """ - def __init__(self, config): - super().__init__() - self.ln1 = nn.LayerNorm(config.n_embd) - self.ln2 = nn.LayerNorm(config.n_embd) - self.attn = CausalSelfAttention(config) - self.mlp = nn.Sequential( - nn.Linear(config.n_embd, 4 * config.n_embd), - nn.GELU(), # nice - nn.Linear(4 * config.n_embd, config.n_embd), - nn.Dropout(config.resid_pdrop), - ) - - def forward(self, x, layer_past=None, return_present=False): - # TODO: check that training still works - if return_present: assert not self.training - # layer past: tuple of length two with B, nh, T, hs - attn, present = self.attn(self.ln1(x), layer_past=layer_past) - - x = x + attn - x = x + self.mlp(self.ln2(x)) - if layer_past is not None or return_present: - return x, present - return x - - -class GPT(nn.Module): - """ the full GPT language model, with a context size of block_size """ - def __init__(self, vocab_size, block_size, n_layer=12, n_head=8, n_embd=256, - embd_pdrop=0., resid_pdrop=0., attn_pdrop=0., n_unmasked=0): - super().__init__() - config = GPTConfig(vocab_size=vocab_size, block_size=block_size, - embd_pdrop=embd_pdrop, resid_pdrop=resid_pdrop, attn_pdrop=attn_pdrop, - n_layer=n_layer, n_head=n_head, n_embd=n_embd, - n_unmasked=n_unmasked) - # input embedding stem - self.tok_emb = nn.Embedding(config.vocab_size, config.n_embd) - self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd)) - self.drop = nn.Dropout(config.embd_pdrop) - # transformer - self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)]) - # decoder head - self.ln_f = nn.LayerNorm(config.n_embd) - self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False) - self.block_size = config.block_size - self.apply(self._init_weights) - self.config = config - logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters())) - - def get_block_size(self): - return self.block_size - - def _init_weights(self, module): - if isinstance(module, (nn.Linear, nn.Embedding)): - module.weight.data.normal_(mean=0.0, std=0.02) - if isinstance(module, nn.Linear) and module.bias is not None: - module.bias.data.zero_() - elif isinstance(module, nn.LayerNorm): - module.bias.data.zero_() - module.weight.data.fill_(1.0) - - def forward(self, idx, embeddings=None, targets=None): - # forward the GPT model - token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector - - if embeddings is not None: # prepend explicit embeddings - token_embeddings = torch.cat((embeddings, token_embeddings), dim=1) - - t = token_embeddings.shape[1] - assert t <= self.block_size, "Cannot forward, model block size is exhausted." - position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) vector - x = self.drop(token_embeddings + position_embeddings) - x = self.blocks(x) - x = self.ln_f(x) - logits = self.head(x) - - # if we are given some desired targets also calculate the loss - loss = None - if targets is not None: - loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) - - return logits, loss - - def forward_with_past(self, idx, embeddings=None, targets=None, past=None, past_length=None): - # inference only - assert not self.training - token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector - if embeddings is not None: # prepend explicit embeddings - token_embeddings = torch.cat((embeddings, token_embeddings), dim=1) - - if past is not None: - assert past_length is not None - past = torch.cat(past, dim=-2) # n_layer, 2, b, nh, len_past, dim_head - past_shape = list(past.shape) - expected_shape = [self.config.n_layer, 2, idx.shape[0], self.config.n_head, past_length, self.config.n_embd//self.config.n_head] - assert past_shape == expected_shape, f"{past_shape} =/= {expected_shape}" - position_embeddings = self.pos_emb[:, past_length, :] # each position maps to a (learnable) vector - else: - position_embeddings = self.pos_emb[:, :token_embeddings.shape[1], :] - - x = self.drop(token_embeddings + position_embeddings) - presents = [] # accumulate over layers - for i, block in enumerate(self.blocks): - x, present = block(x, layer_past=past[i, ...] if past is not None else None, return_present=True) - presents.append(present) - - x = self.ln_f(x) - logits = self.head(x) - # if we are given some desired targets also calculate the loss - loss = None - if targets is not None: - loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) - - return logits, loss, torch.stack(presents) # _, _, n_layer, 2, b, nh, 1, dim_head - - -class DummyGPT(nn.Module): - # for debugging - def __init__(self, add_value=1): - super().__init__() - self.add_value = add_value - - def forward(self, idx): - return idx + self.add_value, None - - -class CodeGPT(nn.Module): - """Takes in semi-embeddings""" - def __init__(self, vocab_size, block_size, in_channels, n_layer=12, n_head=8, n_embd=256, - embd_pdrop=0., resid_pdrop=0., attn_pdrop=0., n_unmasked=0): - super().__init__() - config = GPTConfig(vocab_size=vocab_size, block_size=block_size, - embd_pdrop=embd_pdrop, resid_pdrop=resid_pdrop, attn_pdrop=attn_pdrop, - n_layer=n_layer, n_head=n_head, n_embd=n_embd, - n_unmasked=n_unmasked) - # input embedding stem - self.tok_emb = nn.Linear(in_channels, config.n_embd) - self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd)) - self.drop = nn.Dropout(config.embd_pdrop) - # transformer - self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)]) - # decoder head - self.ln_f = nn.LayerNorm(config.n_embd) - self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False) - self.block_size = config.block_size - self.apply(self._init_weights) - self.config = config - logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters())) - - def get_block_size(self): - return self.block_size - - def _init_weights(self, module): - if isinstance(module, (nn.Linear, nn.Embedding)): - module.weight.data.normal_(mean=0.0, std=0.02) - if isinstance(module, nn.Linear) and module.bias is not None: - module.bias.data.zero_() - elif isinstance(module, nn.LayerNorm): - module.bias.data.zero_() - module.weight.data.fill_(1.0) - - def forward(self, idx, embeddings=None, targets=None): - # forward the GPT model - token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector - - if embeddings is not None: # prepend explicit embeddings - token_embeddings = torch.cat((embeddings, token_embeddings), dim=1) - - t = token_embeddings.shape[1] - assert t <= self.block_size, "Cannot forward, model block size is exhausted." - position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) vector - x = self.drop(token_embeddings + position_embeddings) - x = self.blocks(x) - x = self.taming_cinln_f(x) - logits = self.head(x) - - # if we are given some desired targets also calculate the loss - loss = None - if targets is not None: - loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) - - return logits, loss - - - -#### sampling utils - -def top_k_logits(logits, k): - v, ix = torch.topk(logits, k) - out = logits.clone() - out[out < v[:, [-1]]] = -float('Inf') - return out - -@torch.no_grad() -def sample(model, x, steps, temperature=1.0, sample=False, top_k=None): - """ - take a conditioning sequence of indices in x (of shape (b,t)) and predict the next token in - the sequence, feeding the predictions back into the model each time. Clearly the sampling - has quadratic complexity unlike an RNN that is only linear, and has a finite context window - of block_size, unlike an RNN that has an infinite context window. - """ - block_size = model.get_block_size() - model.eval() - for k in range(steps): - x_cond = x if x.size(1) <= block_size else x[:, -block_size:] # crop context if needed - logits, _ = model(x_cond) - # pluck the logits at the final step and scale by temperature - logits = logits[:, -1, :] / temperature - # optionally crop probabilities to only the top k options - if top_k is not None: - logits = top_k_logits(logits, top_k) - # apply softmax to convert to probabilities - probs = F.softmax(logits, dim=-1) - # sample from the distribution or take the most likely - if sample: - ix = torch.multinomial(probs, num_samples=1) - else: - _, ix = torch.topk(probs, k=1, dim=-1) - # append to the sequence and continue - x = torch.cat((x, ix), dim=1) - - return x - - -@torch.no_grad() -def sample_with_past(x, model, steps, temperature=1., sample_logits=True, - top_k=None, top_p=None, callback=None): - # x is conditioning - sample = x - cond_len = x.shape[1] - past = None - for n in range(steps): - if callback is not None: - callback(n) - logits, _, present = model.forward_with_past(x, past=past, past_length=(n+cond_len-1)) - if past is None: - past = [present] - else: - past.append(present) - logits = logits[:, -1, :] / temperature - if top_k is not None: - logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p) - - probs = F.softmax(logits, dim=-1) - if not sample_logits: - _, x = torch.topk(probs, k=1, dim=-1) - else: - x = torch.multinomial(probs, num_samples=1) - # append to the sequence and continue - sample = torch.cat((sample, x), dim=1) - del past - sample = sample[:, cond_len:] # cut conditioning off - return sample - - -#### clustering utils - -class KMeans(nn.Module): - def __init__(self, ncluster=512, nc=3, niter=10): - super().__init__() - self.ncluster = ncluster - self.nc = nc - self.niter = niter - self.shape = (3,32,32) - self.register_buffer("C", torch.zeros(self.ncluster,nc)) - self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8)) - - def is_initialized(self): - return self.initialized.item() == 1 - - @torch.no_grad() - def initialize(self, x): - N, D = x.shape - assert D == self.nc, D - c = x[torch.randperm(N)[:self.ncluster]] # init clusters at random - for i in range(self.niter): - # assign all pixels to the closest codebook element - a = ((x[:, None, :] - c[None, :, :])**2).sum(-1).argmin(1) - # move each codebook element to be the mean of the pixels that assigned to it - c = torch.stack([x[a==k].mean(0) for k in range(self.ncluster)]) - # re-assign any poorly positioned codebook elements - nanix = torch.any(torch.isnan(c), dim=1) - ndead = nanix.sum().item() - print('done step %d/%d, re-initialized %d dead clusters' % (i+1, self.niter, ndead)) - c[nanix] = x[torch.randperm(N)[:ndead]] # re-init dead clusters - - self.C.copy_(c) - self.initialized.fill_(1) - - - def forward(self, x, reverse=False, shape=None): - if not reverse: - # flatten - bs,c,h,w = x.shape - assert c == self.nc - x = x.reshape(bs,c,h*w,1) - C = self.C.permute(1,0) - C = C.reshape(1,c,1,self.ncluster) - a = ((x-C)**2).sum(1).argmin(-1) # bs, h*w indices - return a - else: - # flatten - bs, HW = x.shape - """ - c = self.C.reshape( 1, self.nc, 1, self.ncluster) - c = c[bs*[0],:,:,:] - c = c[:,:,HW*[0],:] - x = x.reshape(bs, 1, HW, 1) - x = x[:,3*[0],:,:] - x = torch.gather(c, dim=3, index=x) - """ - x = self.C[x] - x = x.permute(0,2,1) - shape = shape if shape is not None else self.shape - x = x.reshape(bs, *shape) - - return x diff --git a/spaces/HarryLee/eCommerceImageCaptioning/fairseq/examples/speech_synthesis/evaluation/eval_sp.py b/spaces/HarryLee/eCommerceImageCaptioning/fairseq/examples/speech_synthesis/evaluation/eval_sp.py deleted file mode 100644 index 702c4980389624f788abc0b42cdf54757a52512f..0000000000000000000000000000000000000000 --- a/spaces/HarryLee/eCommerceImageCaptioning/fairseq/examples/speech_synthesis/evaluation/eval_sp.py +++ /dev/null @@ -1,131 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - - -""" -Signal processing-based evaluation using waveforms -""" - -import csv -import numpy as np -import os.path as op - -import torch -import tqdm -from tabulate import tabulate -import torchaudio - -from examples.speech_synthesis.utils import batch_mel_spectral_distortion -from fairseq.tasks.text_to_speech import batch_mel_cepstral_distortion - - -def load_eval_spec(path): - with open(path) as f: - reader = csv.DictReader(f, delimiter='\t') - samples = list(reader) - return samples - - -def eval_distortion(samples, distortion_fn, device="cuda"): - nmiss = 0 - results = [] - for sample in tqdm.tqdm(samples): - if not op.isfile(sample["ref"]) or not op.isfile(sample["syn"]): - nmiss += 1 - results.append(None) - continue - # assume single channel - yref, sr = torchaudio.load(sample["ref"]) - ysyn, _sr = torchaudio.load(sample["syn"]) - yref, ysyn = yref[0].to(device), ysyn[0].to(device) - assert sr == _sr, f"{sr} != {_sr}" - - distortion, extra = distortion_fn([yref], [ysyn], sr, None)[0] - _, _, _, _, _, pathmap = extra - nins = torch.sum(pathmap.sum(dim=1) - 1) # extra frames in syn - ndel = torch.sum(pathmap.sum(dim=0) - 1) # missing frames from syn - results.append( - (distortion.item(), # path distortion - pathmap.size(0), # yref num frames - pathmap.size(1), # ysyn num frames - pathmap.sum().item(), # path length - nins.item(), # insertion - ndel.item(), # deletion - ) - ) - return results - - -def eval_mel_cepstral_distortion(samples, device="cuda"): - return eval_distortion(samples, batch_mel_cepstral_distortion, device) - - -def eval_mel_spectral_distortion(samples, device="cuda"): - return eval_distortion(samples, batch_mel_spectral_distortion, device) - - -def print_results(results, show_bin): - results = np.array(list(filter(lambda x: x is not None, results))) - - np.set_printoptions(precision=3) - - def _print_result(results): - dist, dur_ref, dur_syn, dur_ali, nins, ndel = results.sum(axis=0) - res = { - "nutt": len(results), - "dist": dist, - "dur_ref": int(dur_ref), - "dur_syn": int(dur_syn), - "dur_ali": int(dur_ali), - "dist_per_ref_frm": dist/dur_ref, - "dist_per_syn_frm": dist/dur_syn, - "dist_per_ali_frm": dist/dur_ali, - "ins": nins/dur_ref, - "del": ndel/dur_ref, - } - print(tabulate( - [res.values()], - res.keys(), - floatfmt=".4f" - )) - - print(">>>> ALL") - _print_result(results) - - if show_bin: - edges = [0, 200, 400, 600, 800, 1000, 2000, 4000] - for i in range(1, len(edges)): - mask = np.logical_and(results[:, 1] >= edges[i-1], - results[:, 1] < edges[i]) - if not mask.any(): - continue - bin_results = results[mask] - print(f">>>> ({edges[i-1]}, {edges[i]})") - _print_result(bin_results) - - -def main(eval_spec, mcd, msd, show_bin): - samples = load_eval_spec(eval_spec) - device = "cpu" - if mcd: - print("===== Evaluate Mean Cepstral Distortion =====") - results = eval_mel_cepstral_distortion(samples, device) - print_results(results, show_bin) - if msd: - print("===== Evaluate Mean Spectral Distortion =====") - results = eval_mel_spectral_distortion(samples, device) - print_results(results, show_bin) - - -if __name__ == "__main__": - import argparse - parser = argparse.ArgumentParser() - parser.add_argument("eval_spec") - parser.add_argument("--mcd", action="store_true") - parser.add_argument("--msd", action="store_true") - parser.add_argument("--show-bin", action="store_true") - args = parser.parse_args() - - main(args.eval_spec, args.mcd, args.msd, args.show_bin) diff --git a/spaces/HarryLee/eCommerceImageCaptioning/fairseq/fairseq/data/encoders/byte_utils.py b/spaces/HarryLee/eCommerceImageCaptioning/fairseq/fairseq/data/encoders/byte_utils.py deleted file mode 100644 index a305c080926c2d094b7e8ae48f5331da82025a75..0000000000000000000000000000000000000000 --- a/spaces/HarryLee/eCommerceImageCaptioning/fairseq/fairseq/data/encoders/byte_utils.py +++ /dev/null @@ -1,51 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -import re - - -WHITESPACE_NORMALIZER = re.compile(r"\s+") -SPACE = chr(32) -SPACE_ESCAPE = chr(9601) -# excluding non-breaking space (160) here -PRINTABLE_LATIN = set( - list(range(32, 126 + 1)) + list(range(161, 172 + 1)) + list(range(174, 255 + 1)) -) -BYTE_TO_BCHAR = { - b: chr(b) if b in PRINTABLE_LATIN else chr(256 + b) for b in range(256) -} -BCHAR_TO_BYTE = {bc: b for b, bc in BYTE_TO_BCHAR.items()} - - -def byte_encode(x: str) -> str: - normalized = WHITESPACE_NORMALIZER.sub(SPACE, x) - return "".join([BYTE_TO_BCHAR[b] for b in normalized.encode("utf-8")]) - - -def byte_decode(x: str) -> str: - try: - return bytes([BCHAR_TO_BYTE[bc] for bc in x]).decode("utf-8") - except ValueError: - return "" - - -def smart_byte_decode(x: str) -> str: - output = byte_decode(x) - if output == "": - # DP the best recovery (max valid chars) if it's broken - n_bytes = len(x) - f = [0 for _ in range(n_bytes + 1)] - pt = [0 for _ in range(n_bytes + 1)] - for i in range(1, n_bytes + 1): - f[i], pt[i] = f[i - 1], i - 1 - for j in range(1, min(4, i) + 1): - if f[i - j] + 1 > f[i] and len(byte_decode(x[i - j : i])) > 0: - f[i], pt[i] = f[i - j] + 1, i - j - cur_pt = n_bytes - while cur_pt > 0: - if f[cur_pt] == f[pt[cur_pt]] + 1: - output = byte_decode(x[pt[cur_pt] : cur_pt]) + output - cur_pt = pt[cur_pt] - return output diff --git a/spaces/HarryLee/eCommerceImageCaptioning/fairseq/scripts/shard_docs.py b/spaces/HarryLee/eCommerceImageCaptioning/fairseq/scripts/shard_docs.py deleted file mode 100644 index 97232c3c845ee01dc5ab627388934cc0f9588280..0000000000000000000000000000000000000000 --- a/spaces/HarryLee/eCommerceImageCaptioning/fairseq/scripts/shard_docs.py +++ /dev/null @@ -1,54 +0,0 @@ -#!/usr/bin/env python3 -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. -""" -Split a large file into shards while respecting document boundaries. Documents -should be separated by a single empty line. -""" - -import argparse -import contextlib - - -def main(): - parser = argparse.ArgumentParser() - parser.add_argument("input") - parser.add_argument("--num-shards", type=int) - args = parser.parse_args() - - assert args.num_shards is not None and args.num_shards > 1 - - with open(args.input, "r", encoding="utf-8") as h: - with contextlib.ExitStack() as stack: - outputs = [ - stack.enter_context( - open(args.input + ".shard" + str(i), "w", encoding="utf-8") - ) - for i in range(args.num_shards) - ] - - doc = [] - first_doc = [True] * args.num_shards - - def output_doc(i): - if not first_doc[i]: - outputs[i].write("\n") - first_doc[i] = False - for line in doc: - outputs[i].write(line) - doc.clear() - - num_docs = 0 - for line in h: - if line.strip() == "": # empty line indicates new document - output_doc(num_docs % args.num_shards) - num_docs += 1 - else: - doc.append(line) - output_doc(num_docs % args.num_shards) - - -if __name__ == "__main__": - main() diff --git a/spaces/Harveenchadha/en_to_indic_translation/indic_nlp_library/indicnlp/tokenize/sentence_tokenize.py b/spaces/Harveenchadha/en_to_indic_translation/indic_nlp_library/indicnlp/tokenize/sentence_tokenize.py deleted file mode 100644 index 7e02e1c7639152b685f27bd1d7599880bce44127..0000000000000000000000000000000000000000 --- a/spaces/Harveenchadha/en_to_indic_translation/indic_nlp_library/indicnlp/tokenize/sentence_tokenize.py +++ /dev/null @@ -1,268 +0,0 @@ -# -# Copyright (c) 2013-present, Anoop Kunchukuttan -# All rights reserved. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. -# - -#Program for sentence splitting of Indian language input -# -# @author Anoop Kunchukuttan -# -""" -Sentence splitter for Indian languages. Contains a rule-based -sentence splitter that can understand common non-breaking phrases -in many Indian languages. -""" - -import re - -from indicnlp.transliterate import unicode_transliterate -from indicnlp import langinfo - - -## for language which have danda as delimiter -## period is not part of the sentence delimiters -DELIM_PAT_DANDA=re.compile(r'[\?!\u0964\u0965]') - -## for languages which don't have danda as delimiter -DELIM_PAT_NO_DANDA=re.compile(r'[\.\?!\u0964\u0965]') - -## pattern to check for presence of danda in text -CONTAINS_DANDA=re.compile(r'[\u0964\u0965]') - -def is_acronym_abbvr(text,lang): - """Is the text a non-breaking phrase - - Args: - text (str): text to check for non-breaking phrase - lang (str): ISO 639-2 language code - - Returns: - boolean: true if `text` is a non-breaking phrase - """ - - ack_chars = { - ## acronym for latin characters - 'ए', 'ऎ', - 'बी', 'बि', - 'सी', 'सि', - 'डी', 'डि', - 'ई', 'इ', - 'एफ', 'ऎफ', - 'जी', 'जि', - 'एच','ऎच', - 'आई', 'आइ','ऐ', - 'जे', 'जॆ', - 'के', 'कॆ', - 'एल', 'ऎल', - 'एम','ऎम', - 'एन','ऎन', - 'ओ', 'ऒ', - 'पी', 'पि', - 'क्यू', 'क्यु', - 'आर', - 'एस','ऎस', - 'टी', 'टि', - 'यू', 'यु', - 'वी', 'वि', 'व्ही', 'व्हि', - 'डब्ल्यू', 'डब्ल्यु', - 'एक्स','ऎक्स', - 'वाय', - 'जेड', 'ज़ेड', - ## add halant to the previous English character mappings. - 'एफ्', - 'ऎफ्', - 'एच्', - 'ऎच्', - 'एल्', - 'ऎल्', - 'एम्', - 'ऎम्', - 'एन्', - 'ऎन्', - 'आर्', - 'एस्', - 'ऎस्', - 'एक्स्', - 'ऎक्स्', - 'वाय्', - 'जेड्', 'ज़ेड्', - - #Indic vowels - 'ऄ', - 'अ', - 'आ', - 'इ', - 'ई', - 'उ', - 'ऊ', - 'ऋ', - 'ऌ', - 'ऍ', - 'ऎ', - 'ए', - 'ऐ', - 'ऑ', - 'ऒ', - 'ओ', - 'औ', - 'ॠ', - 'ॡ', - - #Indic consonants - 'क', - 'ख', - 'ग', - 'घ', - 'ङ', - 'च', - 'छ', - 'ज', - 'झ', - 'ञ', - 'ट', - 'ठ', - 'ड', - 'ढ', - 'ण', - 'त', - 'थ', - 'द', - 'ध', - 'न', - 'ऩ', - 'प', - 'फ', - 'ब', - 'भ', - 'म', - 'य', - 'र', - 'ऱ', - 'ल', - 'ळ', - 'ऴ', - 'व', - 'श', - 'ष', - 'स', - 'ह', - - ## abbreviation - 'श्री', - 'डॉ', - 'कु', - 'चि', - 'सौ', - } - - return unicode_transliterate.UnicodeIndicTransliterator.transliterate(text,lang,'hi') in ack_chars - -def sentence_split(text,lang,delim_pat='auto'): ## New signature - """split the text into sentences - - A rule-based sentence splitter for Indian languages written in - Brahmi-derived scripts. The text is split at sentence delimiter - boundaries. The delimiters can be configured by passing appropriate - parameters. - - The sentence splitter can identify non-breaking phrases like - single letter, common abbreviations/honorofics for some Indian - languages. - - Args: - text (str): text to split into sentence - lang (str): ISO 639-2 language code - delim_pat (str): regular expression to identify sentence delimiter characters. If set to 'auto', the delimiter pattern is chosen automatically based on the language and text. - - - Returns: - list: list of sentences identified from the input text - """ - - #print('Input: {}'.format(delim_pat)) - if delim_pat=='auto': - if langinfo.is_danda_delim(lang): - # in modern texts it is possible that period is used as delimeter - # instead of DANDA. Hence, a check. Use danda delimiter pattern - # only if text contains at least one danda - if CONTAINS_DANDA.search(text) is None: - delim_pat=DELIM_PAT_NO_DANDA - #print('LANG has danda delim. TEXT_CONTAINS_DANDA: FALSE --> DELIM_PAT_NO_DANDA') - else: - delim_pat=DELIM_PAT_DANDA - #print('LANG has danda delim. TEXT_CONTAINS_DANDA: TRUE --> DELIM_PAT_DANDA') - else: - delim_pat=DELIM_PAT_NO_DANDA - #print('LANG has no danda delim --> DELIM_PAT_NO_DANDA') - - ## otherwise, assume the caller set the delimiter pattern - - ### Phase 1: break on sentence delimiters. - cand_sentences=[] - begin=0 - text = text.strip() - for mo in delim_pat.finditer(text): - p1=mo.start() - p2=mo.end() - - ## NEW - if p1>0 and text[p1-1].isnumeric(): - continue - - end=p1+1 - s= text[begin:end].strip() - if len(s)>0: - cand_sentences.append(s) - begin=p1+1 - - s= text[begin:].strip() - if len(s)>0: - cand_sentences.append(s) - - if not delim_pat.search('.'): - ## run phase 2 only if delimiter pattern contains period - #print('No need to run phase2') - return cand_sentences -# print(cand_sentences) -# print('====') - -# return cand_sentences - - ### Phase 2: Address the fact that '.' may not always be a sentence delimiter - ### Method: If there is a run of lines containing only a word (optionally) and '.', - ### merge these lines as well one sentence preceding and succeeding this run of lines. - final_sentences=[] - sen_buffer='' - bad_state=False - - for i, sentence in enumerate(cand_sentences): - words=sentence.split(' ') - #if len(words)<=2 and words[-1]=='.': - if len(words)==1 and sentence[-1]=='.': - bad_state=True - sen_buffer = sen_buffer + ' ' + sentence - ## NEW condition - elif sentence[-1]=='.' and is_acronym_abbvr(words[-1][:-1],lang): - if len(sen_buffer)>0 and not bad_state: - final_sentences.append(sen_buffer) - bad_state=True - sen_buffer = sentence - elif bad_state: - sen_buffer = sen_buffer + ' ' + sentence - if len(sen_buffer)>0: - final_sentences.append(sen_buffer) - sen_buffer='' - bad_state=False - else: ## good state - if len(sen_buffer)>0: - final_sentences.append(sen_buffer) - sen_buffer=sentence - bad_state=False - - if len(sen_buffer)>0: - final_sentences.append(sen_buffer) - - return final_sentences diff --git a/spaces/Harveenchadha/en_to_indic_translation/subword-nmt/CHANGELOG.md b/spaces/Harveenchadha/en_to_indic_translation/subword-nmt/CHANGELOG.md deleted file mode 100644 index 9f6772079019214833a806a4de55564a491fa915..0000000000000000000000000000000000000000 --- a/spaces/Harveenchadha/en_to_indic_translation/subword-nmt/CHANGELOG.md +++ /dev/null @@ -1,49 +0,0 @@ -CHANGELOG ---------- - -v0.3.8: - - multiprocessing support (get_vocab and apply_bpe) - - progress bar for learn_bpe - - seed parameter for deterministic BPE dropout - - ignore some unicode line separators which would crash subword-nmt - -v0.3.7: - - BPE dropout (Provilkov et al., 2019) - - more efficient glossaries (https://github.com/rsennrich/subword-nmt/pull/69) - -v0.3.6: - - fix to subword-bpe command encoding - -v0.3.5: - - fix to subword-bpe command under Python 2 - - wider support of --total-symbols argument - -v0.3.4: - - segment_tokens method to improve library usability (https://github.com/rsennrich/subword-nmt/pull/52) - - support regex glossaries (https://github.com/rsennrich/subword-nmt/pull/56) - - allow unicode separators (https://github.com/rsennrich/subword-nmt/pull/57) - - new option --total-symbols in learn-bpe (commit 61ad8) - - fix documentation (best practices) (https://github.com/rsennrich/subword-nmt/pull/60) - -v0.3: - - library is now installable via pip - - fix occasional problems with UTF-8 whitespace and new lines in learn_bpe and apply_bpe. - - do not silently convert UTF-8 newline characters into "\n" - - do not silently convert UTF-8 whitespace characters into " " - - UTF-8 whitespace and newline characters are now considered part of a word, and segmented by BPE - -v0.2: - - different, more consistent handling of end-of-word token (commit a749a7) (https://github.com/rsennrich/subword-nmt/issues/19) - - allow passing of vocabulary and frequency threshold to apply_bpe.py, preventing the production of OOV (or rare) subword units (commit a00db) - - made learn_bpe.py deterministic (commit 4c54e) - - various changes to make handling of UTF more consistent between Python versions - - new command line arguments for apply_bpe.py: - - '--glossaries' to prevent given strings from being affected by BPE - - '--merges' to apply a subset of learned BPE operations - - new command line arguments for learn_bpe.py: - - '--dict-input': rather than raw text file, interpret input as a frequency dictionary (as created by get_vocab.py). - - -v0.1: - - consistent cross-version unicode handling - - all scripts are now deterministic diff --git a/spaces/Harveenchadha/oiTrans/indic_nlp_library/indicnlp/cli/__init__.py b/spaces/Harveenchadha/oiTrans/indic_nlp_library/indicnlp/cli/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/Hexamind/GDOC/src/domain/container.py b/spaces/Hexamind/GDOC/src/domain/container.py deleted file mode 100644 index 120a777f49d595529a174993dd86a296eae668ca..0000000000000000000000000000000000000000 --- a/spaces/Hexamind/GDOC/src/domain/container.py +++ /dev/null @@ -1,184 +0,0 @@ -from src.domain.paragraph import Paragraph -from src.domain.block import Block - -INFINITE = 10000 - - -class Container: - - def __init__(self, paragraphs: [Paragraph], title: Paragraph = None, level: int = 0, index: [int] = None, - father=None, id_=0): - if index is None: - index = [] - self.level = level - if not self.level: - pass - self.title = title - self.paragraphs = [] - self.all_paragraphs = paragraphs - self.children = [] - self.index = index - self.father = father # if not father, then the container is at the top of the hierarchy - self.id_ = int(str(1) + str(father.id_) + str(id_)) - if paragraphs: - self.paragraphs, self.children = self.create_children(paragraphs.copy(), level, index) - self.containers = [self] - for child in self.children: - self.containers += child.containers - self.blocks = self.get_blocks() - self.normal, self.comment, self.task, _ = self.sort_paragraphs() - - self.one_liner = (self.title.text if self.title else '') + ' ' + self.comment - self.root_text = self.one_liner + ' ' + self.normal - - - @property - def text(self): - text = "" - if self.title: - text = "Titre " + str(self.level) + " : " + self.title.text + '\n' - for p in self.paragraphs: - text += p.text + '\n' - for child in self.children: - text += child.text - return text - - @property - def table_of_contents(self): - toc = [] - if self.title: - toc += [{str(self.level): self.title.text}] - if self.children: - for child in self.children: - toc += child.table_of_contents - return toc - - def move(self, position: int, new_father=None): - current_father = self.father # should be added in the domain - current_father.children.remove(self) - - self.rank = new_father.rank + 1 if new_father else 0 - self.father = new_father - if position < len(new_father.children): - new_father.children.insert(position, self) - else: - new_father.children.append(self) - - def create_children(self, paragraphs, level, rank) -> ([], []): - """ - creates children containers or directly attached content - and returns the list of containers and contents of level+1 - :return: - [Content or Container] - """ - attached_paragraphs = [] - container_paragraphs = [] - container_title = None - children = [] - in_children = False - level = INFINITE - child_id = 0 - - while paragraphs: - p = paragraphs.pop(0) - if not in_children and not p.is_structure: - attached_paragraphs.append(p) - else: - in_children = True - if p.is_structure and not p.blank and p.level <= level: # if p is higher or equal in hierarchy - if container_paragraphs or container_title: - children.append(Container(container_paragraphs, container_title, level, rank, self, child_id)) - child_id += 1 - container_paragraphs = [] - container_title = p - level = p.level - - else: # p is strictly lower in hierarchy - container_paragraphs.append(p) - - if container_paragraphs or container_title: - children.append(Container(container_paragraphs, container_title, level, rank, self, child_id)) - child_id += 1 - - return attached_paragraphs, children - - @property - def structure(self): - - self_structure = {str(self.id_): { - 'index': str(self.id_), - 'canMove': True, - 'isFolder': True, - 'children': [p.id_ for p in self.paragraphs] + [child.id_ for child in self.children], - 'canRename': True, - 'data': {}, - 'level': self.level, - 'title': self.title.text if self.title else 'root' - }} - paragraphs_structure = [p.structure for p in self.paragraphs] - structure = [self_structure] + paragraphs_structure - for child in self.children: - structure += child.structure - return structure - - def get_lang(self): - """ - returns the main language of the document - :return: - """ - - def get_structure(self, level=2): - """ - returns the structure of the document - :return: - """ - - def create_embeddings(self): - """ - - :return: - """ - - def get_blocks(self): - block = Block(level=self.level, index=self.index) - if self.title: - block.title = self.title.text - for p in self.paragraphs: - if not p.blank: - if p.text.startswith('##### '): - special_action = p.text.lstrip('##### ') - block.specials.append(special_action) - else: - block.content += p.text - blocks = [block] if block.content or block.specials else [] - for child in self.children: - blocks += child.blocks - return blocks - - def get_fulltask(self, doc_one_liner): - print(doc_one_liner) - siblings_ = self.father.children.copy() - index = siblings_.index(self) - siblings_before_context = [sibling.one_liner for idx, sibling in enumerate(siblings_) if idx < index] - siblings_after_context = [sibling.one_liner for idx, sibling in enumerate(siblings_) if index < idx] - - fulltask = {'description': self.task, - 'about': self.one_liner, - 'doc_description': doc_one_liner, - 'above': self.father.one_liner, - 'before': siblings_before_context, - 'after': siblings_after_context} - return fulltask - - def sort_paragraphs(self) -> (str, str, str, str): - mapping = {'normal': '', 'comment': '', 'task': '', 'title': ''} - for p in self.paragraphs: - mapping[p.type] += ' ' + p.parsed_text - return mapping['normal'], mapping['comment'], mapping['task'], mapping['title'] - - def get_all_styles_used_in_doc(self): - styles = [] - for p in self.all_paragraphs: - styles.append(p.get_styles_in_paragraph()) - res = list(set().union(*styles)) - return res diff --git a/spaces/ICML2022/OFA/fairseq/docs/conf.py b/spaces/ICML2022/OFA/fairseq/docs/conf.py deleted file mode 100644 index 87b0db98c77d0c240c030a0b48354c86b84358d1..0000000000000000000000000000000000000000 --- a/spaces/ICML2022/OFA/fairseq/docs/conf.py +++ /dev/null @@ -1,134 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -# -# fairseq documentation build configuration file, created by -# sphinx-quickstart on Fri Aug 17 21:45:30 2018. -# -# This file is execfile()d with the current directory set to its -# containing dir. -# -# Note that not all possible configuration values are present in this -# autogenerated file. -# -# All configuration values have a default; values that are commented out -# serve to show the default. - -# If extensions (or modules to document with autodoc) are in another directory, -# add these directories to sys.path here. If the directory is relative to the -# documentation root, use os.path.abspath to make it absolute, like shown here. - -import os -import sys -from fairseq import __version__ - - -# source code directory, relative to this file, for sphinx-autobuild -sys.path.insert(0, os.path.abspath("..")) - -source_suffix = [".rst"] - -# -- General configuration ------------------------------------------------ - -# If your documentation needs a minimal Sphinx version, state it here. -# -# needs_sphinx = '1.0' - -# Add any Sphinx extension module names here, as strings. They can be -# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom -# ones. -extensions = [ - "sphinx.ext.autodoc", - "sphinx.ext.intersphinx", - "sphinx.ext.viewcode", - "sphinx.ext.napoleon", - "sphinxarg.ext", -] - -# Add any paths that contain templates here, relative to this directory. -templates_path = ["_templates"] - -# The master toctree document. -master_doc = "index" - -# General information about the project. -project = "fairseq" -copyright = "Facebook AI Research (FAIR)" -author = "Facebook AI Research (FAIR)" - -github_doc_root = "https://github.com/pytorch/fairseq/tree/main/docs/" - -# The version info for the project you're documenting, acts as replacement for -# |version| and |release|, also used in various other places throughout the -# built documents. -# -# The short X.Y version. -version = __version__ -# The full version, including alpha/beta/rc tags. -release = __version__ - -# The language for content autogenerated by Sphinx. Refer to documentation -# for a list of supported languages. -# -# This is also used if you do content translation via gettext catalogs. -# Usually you set "language" from the command line for these cases. -language = None - -# List of patterns, relative to source directory, that match files and -# directories to ignore when looking for source files. -# This patterns also effect to html_static_path and html_extra_path -exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"] - -# The name of the Pygments (syntax highlighting) style to use. -pygments_style = "sphinx" -highlight_language = "python" - -# If true, `todo` and `todoList` produce output, else they produce nothing. -todo_include_todos = False - - -# -- Options for HTML output ---------------------------------------------- - -# The theme to use for HTML and HTML Help pages. See the documentation for -# a list of builtin themes. -# -html_theme = "sphinx_rtd_theme" - -# Theme options are theme-specific and customize the look and feel of a theme -# further. For a list of options available for each theme, see the -# documentation. -# -# html_theme_options = {} - -# Add any paths that contain custom static files (such as style sheets) here, -# relative to this directory. They are copied after the builtin static files, -# so a file named "default.css" will overwrite the builtin "default.css". -html_static_path = ["_static"] - -html_context = { - "css_files": [ - "_static/theme_overrides.css", # override wide tables in RTD theme - ], -} - -# Custom sidebar templates, must be a dictionary that maps document names -# to template names. -# -# This is required for the alabaster theme -# refs: http://alabaster.readthedocs.io/en/latest/installation.html#sidebars -# html_sidebars = { -# '**': [ -# 'about.html', -# 'navigation.html', -# 'relations.html', # needs 'show_related': True theme option to display -# 'searchbox.html', -# 'donate.html', -# ] -# } - - -# Example configuration for intersphinx: refer to the Python standard library. -intersphinx_mapping = { - "numpy": ("http://docs.scipy.org/doc/numpy/", None), - "python": ("https://docs.python.org/", None), - "torch": ("https://pytorch.org/docs/master/", None), -} diff --git a/spaces/ICML2022/OFA/fairseq/examples/multilingual/data_scripts/download_wat19_my.sh b/spaces/ICML2022/OFA/fairseq/examples/multilingual/data_scripts/download_wat19_my.sh deleted file mode 100644 index c1e2d47287a29af4576e7a63641e8152ecb63c44..0000000000000000000000000000000000000000 --- a/spaces/ICML2022/OFA/fairseq/examples/multilingual/data_scripts/download_wat19_my.sh +++ /dev/null @@ -1,36 +0,0 @@ -#!/bin/bash -# Copyright (c) Facebook, Inc. and its affiliates. -# All rights reserved. -# -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - - -if [ -z $WORKDIR_ROOT ] ; -then - echo "please specify your working directory root in environment variable WORKDIR_ROOT. Exitting..." - exit -fi - - -SRCDIR=$WORKDIR_ROOT/indic_languages_corpus -DESTDIR=$WORKDIR_ROOT/ML50/raw -mkdir -p $SRCDIR -mkdir -p $DESTDIR - -WAT_MY_EN=wat2020.my-en.zip -cd $SRCDIR -# please refer to http://lotus.kuee.kyoto-u.ac.jp/WAT/my-en-data/ for latest URL if the following url expired -#- The data used for WAT2020 are identical to those used in WAT2019. -wget http://lotus.kuee.kyoto-u.ac.jp/WAT/my-en-data/$WAT_MY_EN -unzip $WAT_MY_EN - - -SRC_EXTRACT_DIR=$SRCDIR/wat2020.my-en/alt - -cp $SRC_EXTRACT_DIR/train.alt.en $DESTDIR/train.my_MM-en_XX.en_XX -cp $SRC_EXTRACT_DIR/train.alt.my $DESTDIR/train.my_MM-en_XX.my_MM -cp $SRC_EXTRACT_DIR/dev.alt.en $DESTDIR/valid.my_MM-en_XX.en_XX -cp $SRC_EXTRACT_DIR/dev.alt.my $DESTDIR/valid.my_MM-en_XX.my_MM -cp $SRC_EXTRACT_DIR/test.alt.en $DESTDIR/test.my_MM-en_XX.en_XX -cp $SRC_EXTRACT_DIR/test.alt.my $DESTDIR/test.my_MM-en_XX.my_MM diff --git a/spaces/ICML2022/OFA/fairseq/examples/speech_recognition/__init__.py b/spaces/ICML2022/OFA/fairseq/examples/speech_recognition/__init__.py deleted file mode 100644 index 0278f6a27340c7ff7e207d09348483d1b0d3a100..0000000000000000000000000000000000000000 --- a/spaces/ICML2022/OFA/fairseq/examples/speech_recognition/__init__.py +++ /dev/null @@ -1 +0,0 @@ -from . import criterions, models, tasks # noqa diff --git a/spaces/ICML2022/OFA/fairseq/fairseq/optim/lr_scheduler/fairseq_lr_scheduler.py b/spaces/ICML2022/OFA/fairseq/fairseq/optim/lr_scheduler/fairseq_lr_scheduler.py deleted file mode 100644 index ac6340fa0744a08d2b527972dfc669573fb4e1c3..0000000000000000000000000000000000000000 --- a/spaces/ICML2022/OFA/fairseq/fairseq/optim/lr_scheduler/fairseq_lr_scheduler.py +++ /dev/null @@ -1,62 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -from argparse import Namespace - -from fairseq.dataclass.utils import gen_parser_from_dataclass -from fairseq.optim import FairseqOptimizer - - -class FairseqLRScheduler(object): - def __init__(self, cfg, optimizer): - super().__init__() - if optimizer is not None and not isinstance(optimizer, FairseqOptimizer): - raise ValueError("optimizer must be an instance of FairseqOptimizer") - self.cfg = cfg - self.optimizer = optimizer - self.best = None - - @classmethod - def add_args(cls, parser): - """Add arguments to the parser for this LR scheduler.""" - dc = getattr(cls, "__dataclass", None) - if dc is not None: - gen_parser_from_dataclass(parser, dc()) - - def state_dict(self): - """Return the LR scheduler state dict.""" - return {"best": self.best} - - def load_state_dict(self, state_dict): - """Load an LR scheduler state dict.""" - self.best = state_dict["best"] - - def step_begin_epoch(self, epoch): - """Update the learning rate at the beginning of the given epoch.""" - pass - - def step(self, epoch, val_loss=None): - """Update the learning rate at the end of the given epoch.""" - if val_loss is not None: - if self.best is None: - self.best = val_loss - else: - self.best = min(self.best, val_loss) - - def step_update(self, num_updates): - """Update the learning rate after each update.""" - return self.optimizer.get_lr() - - def reinit(self, total_num_update, num_updates): - pass - - -class LegacyFairseqLRScheduler(FairseqLRScheduler): - def __init__(self, args: Namespace, optimizer): - if not isinstance(optimizer, FairseqOptimizer): - raise ValueError("optimizer must be an instance of FairseqOptimizer") - self.args = args - self.optimizer = optimizer - self.best = None diff --git a/spaces/ICML2022/resefa/app.py b/spaces/ICML2022/resefa/app.py deleted file mode 100644 index 311e933135cf94983a1745b26a51792e3feea2d2..0000000000000000000000000000000000000000 --- a/spaces/ICML2022/resefa/app.py +++ /dev/null @@ -1,192 +0,0 @@ - -import os -import gradio as gr - - -os.system("gdown https://drive.google.com/uc?id=1--h-4E5LSxe6VTp9rjJhtoILxxNH0X5n") - -# python 3.7 -"""Demo.""" -import io -import cv2 -import warnings -import numpy as np -import torch -from PIL import Image -from models import build_model - -warnings.filterwarnings(action='ignore', category=UserWarning) - -def postprocess_image(image, min_val=-1.0, max_val=1.0): - """Post-processes image to pixel range [0, 255] with dtype `uint8`. - - This function is particularly used to handle the results produced by deep - models. - - NOTE: The input image is assumed to be with format `NCHW`, and the returned - image will always be with format `NHWC`. - - Args: - image: The input image for post-processing. - min_val: Expected minimum value of the input image. - max_val: Expected maximum value of the input image. - - Returns: - The post-processed image. - """ - assert isinstance(image, np.ndarray) - - image = image.astype(np.float64) - image = (image - min_val) / (max_val - min_val) * 255 - image = np.clip(image + 0.5, 0, 255).astype(np.uint8) - - assert image.ndim == 4 and image.shape[1] in [1, 3, 4] - return image.transpose(0, 2, 3, 1) - - -def to_numpy(data): - """Converts the input data to `numpy.ndarray`.""" - if isinstance(data, (int, float)): - return np.array(data) - if isinstance(data, np.ndarray): - return data - if isinstance(data, torch.Tensor): - return data.detach().cpu().numpy() - raise TypeError(f'Not supported data type `{type(data)}` for ' - f'converting to `numpy.ndarray`!') - - -def linear_interpolate(latent_code, - boundary, - layer_index=None, - start_distance=-10.0, - end_distance=10.0, - steps=7): - """Interpolate between the latent code and boundary.""" - assert (len(latent_code.shape) == 3 and len(boundary.shape) == 3 and - latent_code.shape[0] == 1 and boundary.shape[0] == 1 and - latent_code.shape[1] == boundary.shape[1]) - linspace = np.linspace(start_distance, end_distance, steps) - linspace = linspace.reshape([-1, 1, 1]).astype(np.float32) - inter_code = linspace * boundary - is_manipulatable = np.zeros(inter_code.shape, dtype=bool) - is_manipulatable[:, layer_index, :] = True - mani_code = np.where(is_manipulatable, latent_code+inter_code, latent_code) - return mani_code - - -def imshow(images, col, viz_size=256): - """Shows images in one figure.""" - num, height, width, channels = images.shape - assert num % col == 0 - row = num // col - - fused_image = np.zeros((viz_size*row, viz_size*col, channels), dtype=np.uint8) - - for idx, image in enumerate(images): - i, j = divmod(idx, col) - y = i * viz_size - x = j * viz_size - if height != viz_size or width != viz_size: - image = cv2.resize(image, (viz_size, viz_size)) - fused_image[y:y + viz_size, x:x + viz_size] = image - - fused_image = np.asarray(fused_image, dtype=np.uint8) - data = io.BytesIO() - if channels == 4: - Image.fromarray(fused_image).save(data, 'png') - elif channels == 3: - Image.fromarray(fused_image).save(data, 'jpeg') - else: - raise ValueError('Image channel error') - im_data = data.getvalue() - image = Image.open(io.BytesIO(im_data)) - return image - - print('Building generator') - -checkpoint_path='stylegan2-ffhq-config-f-1024x1024.pth' -config = dict(model_type='StyleGAN2Generator', - resolution=1024, - w_dim=512, - fmaps_base=int(1 * (32 << 10)), - fmaps_max=512,) -generator = build_model(**config) -print(f'Loading checkpoint from `{checkpoint_path}` ...') -checkpoint = torch.load(checkpoint_path, map_location='cpu')['models'] -if 'generator_smooth' in checkpoint: - generator.load_state_dict(checkpoint['generator_smooth']) -else: - generator.load_state_dict(checkpoint['generator']) -generator = generator.eval().cpu() -print('Finish loading checkpoint.') - -print('Loading boundaries') -ATTRS = ['eyebrows', 'eyesize', 'gaze_direction', 'nose_length', 'mouth', 'lipstick'] -boundaries = {} -for attr in ATTRS: - boundary_path = os.path.join(f'directions/ffhq/stylegan2/{attr}.npy') - boundary = np.load(boundary_path) - boundaries[attr] = boundary -print('Generator and boundaries are ready.') - - -def inference(num_of_image,seed,trunc_psi,eyebrows,eyesize,gaze_direction,nose_length,mouth,lipstick): - print('Sampling latent codes with given seed.') - num_of_image = num_of_image #@param {type:"slider", min:1, max:8, step:1} - seed = seed #@param {type:"slider", min:0, max:10000, step:1} - trunc_psi = trunc_psi #@param {type:"slider", min:0, max:1, step:0.1} - trunc_layers = 8 - np.random.seed(seed) - latent_z = np.random.randn(num_of_image, generator.z_dim) - latent_z = torch.from_numpy(latent_z.astype(np.float32)) - latent_z = latent_z.cpu() - wp = generator.mapping(latent_z, None)['wp'] - if trunc_psi < 1.0: - w_avg = generator.w_avg - w_avg = w_avg.reshape(1, -1, generator.w_dim)[:, :trunc_layers] - wp[:, :trunc_layers] = w_avg.lerp(wp[:, :trunc_layers], trunc_psi) - with torch.no_grad(): - images_ori = generator.synthesis(wp)['image'] - images_ori = postprocess_image(to_numpy(images_ori)) - print('Original images are shown as belows.') - imshow(images_ori, col=images_ori.shape[0]) - latent_wp = to_numpy(wp) - - - - eyebrows = eyebrows #@param {type:"slider", min:-12.0, max:12.0, step:2} - eyesize = eyesize #@param {type:"slider", min:-12.0, max:12.0, step:2} - gaze_direction = gaze_direction #@param {type:"slider", min:-12.0, max:12.0, step:2} - nose_length = nose_length #@param {type:"slider", min:-12.0, max:12.0, step:2} - mouth = mouth #@param {type:"slider", min:-12.0, max:12.0, step:2} - lipstick = lipstick #@param {type:"slider", min:-12.0, max:12.0, step:2} - - new_codes = latent_wp.copy() - for attr_name in ATTRS: - if attr_name in ['eyebrows', 'lipstick']: - layers_idx = [8,9,10,11] - else: - layers_idx = [4,5,6,7] - step = eval(attr_name) - direction = boundaries[attr_name] - direction = np.tile(direction, [1, generator.num_layers, 1]) - new_codes[:, layers_idx, :] += direction[:, layers_idx, :] * step - new_codes = torch.from_numpy(new_codes.astype(np.float32)).cpu() - with torch.no_grad(): - images_mani = generator.synthesis(new_codes)['image'] - images_mani = postprocess_image(to_numpy(images_mani)) - return imshow(images_mani, col=images_mani.shape[0]) - -title = "resefa" -description = "## Gradio Demo for [Region-Based Semantic Factorization in GANs](https://github.com/zhujiapeng/resefa)" -gr.Interface(inference,[gr.Slider(1, 3, value=1,label="num_of_image",step=1), -gr.Slider(0, 10000, value=210,label="seed",step=1), -gr.Slider(0, 1, value=0.7,step=0.1,label="truncation psi"), -gr.Slider(-12, 12, value=0,label="eyebrows",step=1), -gr.Slider(-12, 12, value=0,label="eyesize",step=1), -gr.Slider(-12, 12, value=0,label="gaze direction",step=1), -gr.Slider(-12, 12, value=0,label="nose_length",step=1), -gr.Slider(-12, 12, value=0,label="mouth",step=1), -gr.Slider(-12, 12, value=0,label="lipstick",step=1), -],gr.Image(type="pil"),title=title,description=description).launch() \ No newline at end of file diff --git a/spaces/Iceclear/StableSR/StableSR/basicsr/models/esrgan_model.py b/spaces/Iceclear/StableSR/StableSR/basicsr/models/esrgan_model.py deleted file mode 100644 index 3d746d0e29418d9e8f35fa9c1e3a315d694075be..0000000000000000000000000000000000000000 --- a/spaces/Iceclear/StableSR/StableSR/basicsr/models/esrgan_model.py +++ /dev/null @@ -1,83 +0,0 @@ -import torch -from collections import OrderedDict - -from basicsr.utils.registry import MODEL_REGISTRY -from .srgan_model import SRGANModel - - -@MODEL_REGISTRY.register() -class ESRGANModel(SRGANModel): - """ESRGAN model for single image super-resolution.""" - - def optimize_parameters(self, current_iter): - # optimize net_g - for p in self.net_d.parameters(): - p.requires_grad = False - - self.optimizer_g.zero_grad() - self.output = self.net_g(self.lq) - - l_g_total = 0 - loss_dict = OrderedDict() - if (current_iter % self.net_d_iters == 0 and current_iter > self.net_d_init_iters): - # pixel loss - if self.cri_pix: - l_g_pix = self.cri_pix(self.output, self.gt) - l_g_total += l_g_pix - loss_dict['l_g_pix'] = l_g_pix - # perceptual loss - if self.cri_perceptual: - l_g_percep, l_g_style = self.cri_perceptual(self.output, self.gt) - if l_g_percep is not None: - l_g_total += l_g_percep - loss_dict['l_g_percep'] = l_g_percep - if l_g_style is not None: - l_g_total += l_g_style - loss_dict['l_g_style'] = l_g_style - # gan loss (relativistic gan) - real_d_pred = self.net_d(self.gt).detach() - fake_g_pred = self.net_d(self.output) - l_g_real = self.cri_gan(real_d_pred - torch.mean(fake_g_pred), False, is_disc=False) - l_g_fake = self.cri_gan(fake_g_pred - torch.mean(real_d_pred), True, is_disc=False) - l_g_gan = (l_g_real + l_g_fake) / 2 - - l_g_total += l_g_gan - loss_dict['l_g_gan'] = l_g_gan - - l_g_total.backward() - self.optimizer_g.step() - - # optimize net_d - for p in self.net_d.parameters(): - p.requires_grad = True - - self.optimizer_d.zero_grad() - # gan loss (relativistic gan) - - # In order to avoid the error in distributed training: - # "Error detected in CudnnBatchNormBackward: RuntimeError: one of - # the variables needed for gradient computation has been modified by - # an inplace operation", - # we separate the backwards for real and fake, and also detach the - # tensor for calculating mean. - - # real - fake_d_pred = self.net_d(self.output).detach() - real_d_pred = self.net_d(self.gt) - l_d_real = self.cri_gan(real_d_pred - torch.mean(fake_d_pred), True, is_disc=True) * 0.5 - l_d_real.backward() - # fake - fake_d_pred = self.net_d(self.output.detach()) - l_d_fake = self.cri_gan(fake_d_pred - torch.mean(real_d_pred.detach()), False, is_disc=True) * 0.5 - l_d_fake.backward() - self.optimizer_d.step() - - loss_dict['l_d_real'] = l_d_real - loss_dict['l_d_fake'] = l_d_fake - loss_dict['out_d_real'] = torch.mean(real_d_pred.detach()) - loss_dict['out_d_fake'] = torch.mean(fake_d_pred.detach()) - - self.log_dict = self.reduce_loss_dict(loss_dict) - - if self.ema_decay > 0: - self.model_ema(decay=self.ema_decay) diff --git a/spaces/Iceclear/StableSR/StableSR/taming/modules/transformer/mingpt.py b/spaces/Iceclear/StableSR/StableSR/taming/modules/transformer/mingpt.py deleted file mode 100644 index d14b7b68117f4b9f297b2929397cd4f55089334c..0000000000000000000000000000000000000000 --- a/spaces/Iceclear/StableSR/StableSR/taming/modules/transformer/mingpt.py +++ /dev/null @@ -1,415 +0,0 @@ -""" -taken from: https://github.com/karpathy/minGPT/ -GPT model: -- the initial stem consists of a combination of token encoding and a positional encoding -- the meat of it is a uniform sequence of Transformer blocks - - each Transformer is a sequential combination of a 1-hidden-layer MLP block and a self-attention block - - all blocks feed into a central residual pathway similar to resnets -- the final decoder is a linear projection into a vanilla Softmax classifier -""" - -import math -import logging - -import torch -import torch.nn as nn -from torch.nn import functional as F -from transformers import top_k_top_p_filtering - -logger = logging.getLogger(__name__) - - -class GPTConfig: - """ base GPT config, params common to all GPT versions """ - embd_pdrop = 0.1 - resid_pdrop = 0.1 - attn_pdrop = 0.1 - - def __init__(self, vocab_size, block_size, **kwargs): - self.vocab_size = vocab_size - self.block_size = block_size - for k,v in kwargs.items(): - setattr(self, k, v) - - -class GPT1Config(GPTConfig): - """ GPT-1 like network roughly 125M params """ - n_layer = 12 - n_head = 12 - n_embd = 768 - - -class CausalSelfAttention(nn.Module): - """ - A vanilla multi-head masked self-attention layer with a projection at the end. - It is possible to use torch.nn.MultiheadAttention here but I am including an - explicit implementation here to show that there is nothing too scary here. - """ - - def __init__(self, config): - super().__init__() - assert config.n_embd % config.n_head == 0 - # key, query, value projections for all heads - self.key = nn.Linear(config.n_embd, config.n_embd) - self.query = nn.Linear(config.n_embd, config.n_embd) - self.value = nn.Linear(config.n_embd, config.n_embd) - # regularization - self.attn_drop = nn.Dropout(config.attn_pdrop) - self.resid_drop = nn.Dropout(config.resid_pdrop) - # output projection - self.proj = nn.Linear(config.n_embd, config.n_embd) - # causal mask to ensure that attention is only applied to the left in the input sequence - mask = torch.tril(torch.ones(config.block_size, - config.block_size)) - if hasattr(config, "n_unmasked"): - mask[:config.n_unmasked, :config.n_unmasked] = 1 - self.register_buffer("mask", mask.view(1, 1, config.block_size, config.block_size)) - self.n_head = config.n_head - - def forward(self, x, layer_past=None): - B, T, C = x.size() - - # calculate query, key, values for all heads in batch and move head forward to be the batch dim - k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) - q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) - v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) - - present = torch.stack((k, v)) - if layer_past is not None: - past_key, past_value = layer_past - k = torch.cat((past_key, k), dim=-2) - v = torch.cat((past_value, v), dim=-2) - - # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) - att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) - if layer_past is None: - att = att.masked_fill(self.mask[:,:,:T,:T] == 0, float('-inf')) - - att = F.softmax(att, dim=-1) - att = self.attn_drop(att) - y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) - y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side - - # output projection - y = self.resid_drop(self.proj(y)) - return y, present # TODO: check that this does not break anything - - -class Block(nn.Module): - """ an unassuming Transformer block """ - def __init__(self, config): - super().__init__() - self.ln1 = nn.LayerNorm(config.n_embd) - self.ln2 = nn.LayerNorm(config.n_embd) - self.attn = CausalSelfAttention(config) - self.mlp = nn.Sequential( - nn.Linear(config.n_embd, 4 * config.n_embd), - nn.GELU(), # nice - nn.Linear(4 * config.n_embd, config.n_embd), - nn.Dropout(config.resid_pdrop), - ) - - def forward(self, x, layer_past=None, return_present=False): - # TODO: check that training still works - if return_present: assert not self.training - # layer past: tuple of length two with B, nh, T, hs - attn, present = self.attn(self.ln1(x), layer_past=layer_past) - - x = x + attn - x = x + self.mlp(self.ln2(x)) - if layer_past is not None or return_present: - return x, present - return x - - -class GPT(nn.Module): - """ the full GPT language model, with a context size of block_size """ - def __init__(self, vocab_size, block_size, n_layer=12, n_head=8, n_embd=256, - embd_pdrop=0., resid_pdrop=0., attn_pdrop=0., n_unmasked=0): - super().__init__() - config = GPTConfig(vocab_size=vocab_size, block_size=block_size, - embd_pdrop=embd_pdrop, resid_pdrop=resid_pdrop, attn_pdrop=attn_pdrop, - n_layer=n_layer, n_head=n_head, n_embd=n_embd, - n_unmasked=n_unmasked) - # input embedding stem - self.tok_emb = nn.Embedding(config.vocab_size, config.n_embd) - self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd)) - self.drop = nn.Dropout(config.embd_pdrop) - # transformer - self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)]) - # decoder head - self.ln_f = nn.LayerNorm(config.n_embd) - self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False) - self.block_size = config.block_size - self.apply(self._init_weights) - self.config = config - logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters())) - - def get_block_size(self): - return self.block_size - - def _init_weights(self, module): - if isinstance(module, (nn.Linear, nn.Embedding)): - module.weight.data.normal_(mean=0.0, std=0.02) - if isinstance(module, nn.Linear) and module.bias is not None: - module.bias.data.zero_() - elif isinstance(module, nn.LayerNorm): - module.bias.data.zero_() - module.weight.data.fill_(1.0) - - def forward(self, idx, embeddings=None, targets=None): - # forward the GPT model - token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector - - if embeddings is not None: # prepend explicit embeddings - token_embeddings = torch.cat((embeddings, token_embeddings), dim=1) - - t = token_embeddings.shape[1] - assert t <= self.block_size, "Cannot forward, model block size is exhausted." - position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) vector - x = self.drop(token_embeddings + position_embeddings) - x = self.blocks(x) - x = self.ln_f(x) - logits = self.head(x) - - # if we are given some desired targets also calculate the loss - loss = None - if targets is not None: - loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) - - return logits, loss - - def forward_with_past(self, idx, embeddings=None, targets=None, past=None, past_length=None): - # inference only - assert not self.training - token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector - if embeddings is not None: # prepend explicit embeddings - token_embeddings = torch.cat((embeddings, token_embeddings), dim=1) - - if past is not None: - assert past_length is not None - past = torch.cat(past, dim=-2) # n_layer, 2, b, nh, len_past, dim_head - past_shape = list(past.shape) - expected_shape = [self.config.n_layer, 2, idx.shape[0], self.config.n_head, past_length, self.config.n_embd//self.config.n_head] - assert past_shape == expected_shape, f"{past_shape} =/= {expected_shape}" - position_embeddings = self.pos_emb[:, past_length, :] # each position maps to a (learnable) vector - else: - position_embeddings = self.pos_emb[:, :token_embeddings.shape[1], :] - - x = self.drop(token_embeddings + position_embeddings) - presents = [] # accumulate over layers - for i, block in enumerate(self.blocks): - x, present = block(x, layer_past=past[i, ...] if past is not None else None, return_present=True) - presents.append(present) - - x = self.ln_f(x) - logits = self.head(x) - # if we are given some desired targets also calculate the loss - loss = None - if targets is not None: - loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) - - return logits, loss, torch.stack(presents) # _, _, n_layer, 2, b, nh, 1, dim_head - - -class DummyGPT(nn.Module): - # for debugging - def __init__(self, add_value=1): - super().__init__() - self.add_value = add_value - - def forward(self, idx): - return idx + self.add_value, None - - -class CodeGPT(nn.Module): - """Takes in semi-embeddings""" - def __init__(self, vocab_size, block_size, in_channels, n_layer=12, n_head=8, n_embd=256, - embd_pdrop=0., resid_pdrop=0., attn_pdrop=0., n_unmasked=0): - super().__init__() - config = GPTConfig(vocab_size=vocab_size, block_size=block_size, - embd_pdrop=embd_pdrop, resid_pdrop=resid_pdrop, attn_pdrop=attn_pdrop, - n_layer=n_layer, n_head=n_head, n_embd=n_embd, - n_unmasked=n_unmasked) - # input embedding stem - self.tok_emb = nn.Linear(in_channels, config.n_embd) - self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd)) - self.drop = nn.Dropout(config.embd_pdrop) - # transformer - self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)]) - # decoder head - self.ln_f = nn.LayerNorm(config.n_embd) - self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False) - self.block_size = config.block_size - self.apply(self._init_weights) - self.config = config - logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters())) - - def get_block_size(self): - return self.block_size - - def _init_weights(self, module): - if isinstance(module, (nn.Linear, nn.Embedding)): - module.weight.data.normal_(mean=0.0, std=0.02) - if isinstance(module, nn.Linear) and module.bias is not None: - module.bias.data.zero_() - elif isinstance(module, nn.LayerNorm): - module.bias.data.zero_() - module.weight.data.fill_(1.0) - - def forward(self, idx, embeddings=None, targets=None): - # forward the GPT model - token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector - - if embeddings is not None: # prepend explicit embeddings - token_embeddings = torch.cat((embeddings, token_embeddings), dim=1) - - t = token_embeddings.shape[1] - assert t <= self.block_size, "Cannot forward, model block size is exhausted." - position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) vector - x = self.drop(token_embeddings + position_embeddings) - x = self.blocks(x) - x = self.taming_cinln_f(x) - logits = self.head(x) - - # if we are given some desired targets also calculate the loss - loss = None - if targets is not None: - loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) - - return logits, loss - - - -#### sampling utils - -def top_k_logits(logits, k): - v, ix = torch.topk(logits, k) - out = logits.clone() - out[out < v[:, [-1]]] = -float('Inf') - return out - -@torch.no_grad() -def sample(model, x, steps, temperature=1.0, sample=False, top_k=None): - """ - take a conditioning sequence of indices in x (of shape (b,t)) and predict the next token in - the sequence, feeding the predictions back into the model each time. Clearly the sampling - has quadratic complexity unlike an RNN that is only linear, and has a finite context window - of block_size, unlike an RNN that has an infinite context window. - """ - block_size = model.get_block_size() - model.eval() - for k in range(steps): - x_cond = x if x.size(1) <= block_size else x[:, -block_size:] # crop context if needed - logits, _ = model(x_cond) - # pluck the logits at the final step and scale by temperature - logits = logits[:, -1, :] / temperature - # optionally crop probabilities to only the top k options - if top_k is not None: - logits = top_k_logits(logits, top_k) - # apply softmax to convert to probabilities - probs = F.softmax(logits, dim=-1) - # sample from the distribution or take the most likely - if sample: - ix = torch.multinomial(probs, num_samples=1) - else: - _, ix = torch.topk(probs, k=1, dim=-1) - # append to the sequence and continue - x = torch.cat((x, ix), dim=1) - - return x - - -@torch.no_grad() -def sample_with_past(x, model, steps, temperature=1., sample_logits=True, - top_k=None, top_p=None, callback=None): - # x is conditioning - sample = x - cond_len = x.shape[1] - past = None - for n in range(steps): - if callback is not None: - callback(n) - logits, _, present = model.forward_with_past(x, past=past, past_length=(n+cond_len-1)) - if past is None: - past = [present] - else: - past.append(present) - logits = logits[:, -1, :] / temperature - if top_k is not None: - logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p) - - probs = F.softmax(logits, dim=-1) - if not sample_logits: - _, x = torch.topk(probs, k=1, dim=-1) - else: - x = torch.multinomial(probs, num_samples=1) - # append to the sequence and continue - sample = torch.cat((sample, x), dim=1) - del past - sample = sample[:, cond_len:] # cut conditioning off - return sample - - -#### clustering utils - -class KMeans(nn.Module): - def __init__(self, ncluster=512, nc=3, niter=10): - super().__init__() - self.ncluster = ncluster - self.nc = nc - self.niter = niter - self.shape = (3,32,32) - self.register_buffer("C", torch.zeros(self.ncluster,nc)) - self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8)) - - def is_initialized(self): - return self.initialized.item() == 1 - - @torch.no_grad() - def initialize(self, x): - N, D = x.shape - assert D == self.nc, D - c = x[torch.randperm(N)[:self.ncluster]] # init clusters at random - for i in range(self.niter): - # assign all pixels to the closest codebook element - a = ((x[:, None, :] - c[None, :, :])**2).sum(-1).argmin(1) - # move each codebook element to be the mean of the pixels that assigned to it - c = torch.stack([x[a==k].mean(0) for k in range(self.ncluster)]) - # re-assign any poorly positioned codebook elements - nanix = torch.any(torch.isnan(c), dim=1) - ndead = nanix.sum().item() - print('done step %d/%d, re-initialized %d dead clusters' % (i+1, self.niter, ndead)) - c[nanix] = x[torch.randperm(N)[:ndead]] # re-init dead clusters - - self.C.copy_(c) - self.initialized.fill_(1) - - - def forward(self, x, reverse=False, shape=None): - if not reverse: - # flatten - bs,c,h,w = x.shape - assert c == self.nc - x = x.reshape(bs,c,h*w,1) - C = self.C.permute(1,0) - C = C.reshape(1,c,1,self.ncluster) - a = ((x-C)**2).sum(1).argmin(-1) # bs, h*w indices - return a - else: - # flatten - bs, HW = x.shape - """ - c = self.C.reshape( 1, self.nc, 1, self.ncluster) - c = c[bs*[0],:,:,:] - c = c[:,:,HW*[0],:] - x = x.reshape(bs, 1, HW, 1) - x = x[:,3*[0],:,:] - x = torch.gather(c, dim=3, index=x) - """ - x = self.C[x] - x = x.permute(0,2,1) - shape = shape if shape is not None else self.shape - x = x.reshape(bs, *shape) - - return x diff --git a/spaces/Ikaros521/VITS-fast-fine-tuning_nymph/download_video.py b/spaces/Ikaros521/VITS-fast-fine-tuning_nymph/download_video.py deleted file mode 100644 index 05ccce79e03f8507ec6d40a29cae4789051e0a22..0000000000000000000000000000000000000000 --- a/spaces/Ikaros521/VITS-fast-fine-tuning_nymph/download_video.py +++ /dev/null @@ -1,37 +0,0 @@ -import os -import random -import shutil -from concurrent.futures import ThreadPoolExecutor -from google.colab import files - -basepath = os.getcwd() -uploaded = files.upload() # 上传文件 -for filename in uploaded.keys(): - assert (filename.endswith(".txt")), "speaker-videolink info could only be .txt file!" - shutil.move(os.path.join(basepath, filename), os.path.join("./speaker_links.txt")) - - -def generate_infos(): - infos = [] - with open("./speaker_links.txt", 'r', encoding='utf-8') as f: - lines = f.readlines() - for line in lines: - line = line.replace("\n", "").replace(" ", "") - if line == "": - continue - speaker, link = line.split("|") - filename = speaker + "_" + str(random.randint(0, 1000000)) - infos.append({"link": link, "filename": filename}) - return infos - - -def download_video(info): - link = info["link"] - filename = info["filename"] - os.system(f"youtube-dl -f 0 {link} -o ./video_data/{filename}.mp4") - - -if __name__ == "__main__": - infos = generate_infos() - with ThreadPoolExecutor(max_workers=os.cpu_count()) as executor: - executor.map(download_video, infos) diff --git a/spaces/Ikaros521/VITS-fast-fine-tuning_nymph/long_audio_transcribe.py b/spaces/Ikaros521/VITS-fast-fine-tuning_nymph/long_audio_transcribe.py deleted file mode 100644 index e2292bbdb8847a1e09468118953cea39b2dad98a..0000000000000000000000000000000000000000 --- a/spaces/Ikaros521/VITS-fast-fine-tuning_nymph/long_audio_transcribe.py +++ /dev/null @@ -1,71 +0,0 @@ -from moviepy.editor import AudioFileClip -import whisper -import os -import torchaudio -import librosa -import torch -import argparse -parent_dir = "./denoised_audio/" -filelist = list(os.walk(parent_dir))[0][2] -if __name__ == "__main__": - parser = argparse.ArgumentParser() - parser.add_argument("--languages", default="CJE") - parser.add_argument("--whisper_size", default="medium") - args = parser.parse_args() - if args.languages == "CJE": - lang2token = { - 'zh': "[ZH]", - 'ja': "[JA]", - "en": "[EN]", - } - elif args.languages == "CJ": - lang2token = { - 'zh': "[ZH]", - 'ja': "[JA]", - } - elif args.languages == "C": - lang2token = { - 'zh': "[ZH]", - } - assert(torch.cuda.is_available()), "Please enable GPU in order to run Whisper!" - model = whisper.load_model(args.whisper_size) - speaker_annos = [] - for file in filelist: - print(f"transcribing {parent_dir + file}...\n") - options = dict(beam_size=5, best_of=5) - transcribe_options = dict(task="transcribe", **options) - result = model.transcribe(parent_dir + file, **transcribe_options) - segments = result["segments"] - # result = model.transcribe(parent_dir + file) - lang = result['language'] - if result['language'] not in list(lang2token.keys()): - print(f"{lang} not supported, ignoring...\n") - continue - # segment audio based on segment results - character_name = file.rstrip(".wav").split("_")[0] - code = file.rstrip(".wav").split("_")[1] - if not os.path.exists("./segmented_character_voice/" + character_name): - os.mkdir("./segmented_character_voice/" + character_name) - wav, sr = torchaudio.load(parent_dir + file, frame_offset=0, num_frames=-1, normalize=True, - channels_first=True) - - for i, seg in enumerate(result['segments']): - start_time = seg['start'] - end_time = seg['end'] - text = seg['text'] - text = lang2token[lang] + text.replace("\n", "") + lang2token[lang] - text = text + "\n" - wav_seg = wav[:, int(start_time*sr):int(end_time*sr)] - wav_seg_name = f"{character_name}_{code}_{i}.wav" - savepth = "./segmented_character_voice/" + character_name + "/" + wav_seg_name - speaker_annos.append(savepth + "|" + character_name + "|" + text) - print(f"Transcribed segment: {speaker_annos[-1]}") - # trimmed_wav_seg = librosa.effects.trim(wav_seg.squeeze().numpy()) - # trimmed_wav_seg = torch.tensor(trimmed_wav_seg[0]).unsqueeze(0) - torchaudio.save(savepth, wav_seg, 22050, channels_first=True) - if len(speaker_annos) == 0: - print("Warning: no long audios & videos found, this IS expected if you have only uploaded short audios") - print("this IS NOT expected if you have uploaded any long audios, videos or video links. Please check your file structure or make sure your audio/video language is supported.") - with open("long_character_anno.txt", 'w', encoding='utf-8') as f: - for line in speaker_annos: - f.write(line) diff --git a/spaces/JeffJing/ZookChatBot/tls_client/sessions.py b/spaces/JeffJing/ZookChatBot/tls_client/sessions.py deleted file mode 100644 index e40c86c5f2cdddba2cd02cf92f33d99d383df32a..0000000000000000000000000000000000000000 --- a/spaces/JeffJing/ZookChatBot/tls_client/sessions.py +++ /dev/null @@ -1,417 +0,0 @@ -from .cffi import request -from .cookies import cookiejar_from_dict, get_cookie_header, merge_cookies, extract_cookies_to_jar -from .exceptions import TLSClientExeption -from .response import build_response -from .structures import CaseInsensitiveDict -from .__version__ import __version__ - -from typing import Any, Optional, Union -from json import dumps, loads -import urllib.parse -import base64 -import ctypes -import uuid - - -class Session: - - def __init__( - self, - client_identifier: Optional[str] = None, - ja3_string: Optional[str] = None, - h2_settings: Optional[dict] = None, # Optional[dict[str, int]] - h2_settings_order: Optional[list] = None, # Optional[list[str]] - supported_signature_algorithms: Optional[list] = None, # Optional[list[str]] - supported_versions: Optional[list] = None, # Optional[list[str]] - key_share_curves: Optional[list] = None, # Optional[list[str]] - cert_compression_algo: str = None, - pseudo_header_order: Optional[list] = None, # Optional[list[str] - connection_flow: Optional[int] = None, - priority_frames: Optional[list] = None, - header_order: Optional[list] = None, # Optional[list[str]] - header_priority: Optional[dict] = None, # Optional[list[str]] - random_tls_extension_order: Optional = False, - force_http1: Optional = False, - ) -> None: - self._session_id = str(uuid.uuid4()) - # --- Standard Settings ---------------------------------------------------------------------------------------- - - # Case-insensitive dictionary of headers, send on each request - self.headers = CaseInsensitiveDict( - { - "User-Agent": f"tls-client/{__version__}", - "Accept-Encoding": "gzip, deflate, br", - "Accept": "*/*", - "Connection": "keep-alive", - } - ) - - # Example: - # { - # "http": "http://user:pass@ip:port", - # "https": "http://user:pass@ip:port" - # } - self.proxies = {} - - # Dictionary of querystring data to attach to each request. The dictionary values may be lists for representing - # multivalued query parameters. - self.params = {} - - # CookieJar containing all currently outstanding cookies set on this session - self.cookies = cookiejar_from_dict({}) - - # --- Advanced Settings ---------------------------------------------------------------------------------------- - - # Examples: - # Chrome --> chrome_103, chrome_104, chrome_105, chrome_106 - # Firefox --> firefox_102, firefox_104 - # Opera --> opera_89, opera_90 - # Safari --> safari_15_3, safari_15_6_1, safari_16_0 - # iOS --> safari_ios_15_5, safari_ios_15_6, safari_ios_16_0 - # iPadOS --> safari_ios_15_6 - self.client_identifier = client_identifier - - # Set JA3 --> TLSVersion, Ciphers, Extensions, EllipticCurves, EllipticCurvePointFormats - # Example: - # 771,4865-4866-4867-49195-49199-49196-49200-52393-52392-49171-49172-156-157-47-53,0-23-65281-10-11-35-16-5-13-18-51-45-43-27-17513,29-23-24,0 - self.ja3_string = ja3_string - - # HTTP2 Header Frame Settings - # Possible Settings: - # HEADER_TABLE_SIZE - # SETTINGS_ENABLE_PUSH - # MAX_CONCURRENT_STREAMS - # INITIAL_WINDOW_SIZE - # MAX_FRAME_SIZE - # MAX_HEADER_LIST_SIZE - # - # Example: - # { - # "HEADER_TABLE_SIZE": 65536, - # "MAX_CONCURRENT_STREAMS": 1000, - # "INITIAL_WINDOW_SIZE": 6291456, - # "MAX_HEADER_LIST_SIZE": 262144 - # } - self.h2_settings = h2_settings - - # HTTP2 Header Frame Settings Order - # Example: - # [ - # "HEADER_TABLE_SIZE", - # "MAX_CONCURRENT_STREAMS", - # "INITIAL_WINDOW_SIZE", - # "MAX_HEADER_LIST_SIZE" - # ] - self.h2_settings_order = h2_settings_order - - # Supported Signature Algorithms - # Possible Settings: - # PKCS1WithSHA256 - # PKCS1WithSHA384 - # PKCS1WithSHA512 - # PSSWithSHA256 - # PSSWithSHA384 - # PSSWithSHA512 - # ECDSAWithP256AndSHA256 - # ECDSAWithP384AndSHA384 - # ECDSAWithP521AndSHA512 - # PKCS1WithSHA1 - # ECDSAWithSHA1 - # - # Example: - # [ - # "ECDSAWithP256AndSHA256", - # "PSSWithSHA256", - # "PKCS1WithSHA256", - # "ECDSAWithP384AndSHA384", - # "PSSWithSHA384", - # "PKCS1WithSHA384", - # "PSSWithSHA512", - # "PKCS1WithSHA512", - # ] - self.supported_signature_algorithms = supported_signature_algorithms - - # Supported Versions - # Possible Settings: - # GREASE - # 1.3 - # 1.2 - # 1.1 - # 1.0 - # - # Example: - # [ - # "GREASE", - # "1.3", - # "1.2" - # ] - self.supported_versions = supported_versions - - # Key Share Curves - # Possible Settings: - # GREASE - # P256 - # P384 - # P521 - # X25519 - # - # Example: - # [ - # "GREASE", - # "X25519" - # ] - self.key_share_curves = key_share_curves - - # Cert Compression Algorithm - # Examples: "zlib", "brotli", "zstd" - self.cert_compression_algo = cert_compression_algo - - # Pseudo Header Order (:authority, :method, :path, :scheme) - # Example: - # [ - # ":method", - # ":authority", - # ":scheme", - # ":path" - # ] - self.pseudo_header_order = pseudo_header_order - - # Connection Flow / Window Size Increment - # Example: - # 15663105 - self.connection_flow = connection_flow - - # Example: - # [ - # { - # "streamID": 3, - # "priorityParam": { - # "weight": 201, - # "streamDep": 0, - # "exclusive": false - # } - # }, - # { - # "streamID": 5, - # "priorityParam": { - # "weight": 101, - # "streamDep": false, - # "exclusive": 0 - # } - # } - # ] - self.priority_frames = priority_frames - - # Order of your headers - # Example: - # [ - # "key1", - # "key2" - # ] - self.header_order = header_order - - # Header Priority - # Example: - # { - # "streamDep": 1, - # "exclusive": true, - # "weight": 1 - # } - self.header_priority = header_priority - - # randomize tls extension order - self.random_tls_extension_order = random_tls_extension_order - - # force HTTP1 - self.force_http1 = force_http1 - - def execute_request( - self, - method: str, - url: str, - params: Optional[dict] = None, # Optional[dict[str, str]] - data: Optional[Union[str, dict]] = None, - headers: Optional[dict] = None, # Optional[dict[str, str]] - cookies: Optional[dict] = None, # Optional[dict[str, str]] - json: Optional[dict] = None, # Optional[dict] - allow_redirects: Optional[bool] = False, - insecure_skip_verify: Optional[bool] = False, - timeout_seconds: Optional[int] = 30, - proxy: Optional[dict] = None # Optional[dict[str, str]] - ): - # --- URL ------------------------------------------------------------------------------------------------------ - # Prepare URL - add params to url - if params is not None: - url = f"{url}?{urllib.parse.urlencode(params, doseq=True)}" - - # --- Request Body --------------------------------------------------------------------------------------------- - # Prepare request body - build request body - # Data has priority. JSON is only used if data is None. - if data is None and json is not None: - if type(json) in [dict, list]: - json = dumps(json) - request_body = json - content_type = "application/json" - elif data is not None and type(data) not in [str, bytes]: - request_body = urllib.parse.urlencode(data, doseq=True) - content_type = "application/x-www-form-urlencoded" - else: - request_body = data - content_type = None - # set content type if it isn't set - if content_type is not None and "content-type" not in self.headers: - self.headers["Content-Type"] = content_type - - # --- Headers -------------------------------------------------------------------------------------------------- - # merge headers of session and of the request - if headers is not None: - for header_key, header_value in headers.items(): - # check if all header keys and values are strings - if type(header_key) is str and type(header_value) is str: - self.headers[header_key] = header_value - headers = self.headers - else: - headers = self.headers - - # --- Cookies -------------------------------------------------------------------------------------------------- - cookies = cookies or {} - # Merge with session cookies - cookies = merge_cookies(self.cookies, cookies) - - cookie_header = get_cookie_header( - request_url=url, - request_headers=headers, - cookie_jar=cookies - ) - if cookie_header is not None: - headers["Cookie"] = cookie_header - - # --- Proxy ---------------------------------------------------------------------------------------------------- - proxy = proxy or self.proxies - - if type(proxy) is dict and "http" in proxy: - proxy = proxy["http"] - elif type(proxy) is str: - proxy = proxy - else: - proxy = "" - - # --- Request -------------------------------------------------------------------------------------------------- - is_byte_request = isinstance(request_body, (bytes, bytearray)) - request_payload = { - "sessionId": self._session_id, - "followRedirects": allow_redirects, - "forceHttp1": self.force_http1, - "headers": dict(headers), - "headerOrder": self.header_order, - "insecureSkipVerify": insecure_skip_verify, - "isByteRequest": is_byte_request, - "proxyUrl": proxy, - "requestUrl": url, - "requestMethod": method, - "requestBody": base64.b64encode(request_body).decode() if is_byte_request else request_body, - "requestCookies": [], # Empty because it's handled in python - "timeoutSeconds": timeout_seconds, - } - if self.client_identifier is None: - request_payload["customTlsClient"] = { - "ja3String": self.ja3_string, - "h2Settings": self.h2_settings, - "h2SettingsOrder": self.h2_settings_order, - "pseudoHeaderOrder": self.pseudo_header_order, - "connectionFlow": self.connection_flow, - "priorityFrames": self.priority_frames, - "headerPriority": self.header_priority, - "certCompressionAlgo": self.cert_compression_algo, - "supportedVersions": self.supported_versions, - "supportedSignatureAlgorithms": self.supported_signature_algorithms, - "keyShareCurves": self.key_share_curves, - } - else: - request_payload["tlsClientIdentifier"] = self.client_identifier - request_payload["withRandomTLSExtensionOrder"] = self.random_tls_extension_order - - # this is a pointer to the response - response = request(dumps(request_payload).encode('utf-8')) - # dereference the pointer to a byte array - response_bytes = ctypes.string_at(response) - # convert our byte array to a string (tls client returns json) - response_string = response_bytes.decode('utf-8') - # convert response string to json - response_object = loads(response_string) - - # --- Response ------------------------------------------------------------------------------------------------- - # Error handling - if response_object["status"] == 0: - raise TLSClientExeption(response_object["body"]) - # Set response cookies - response_cookie_jar = extract_cookies_to_jar( - request_url=url, - request_headers=headers, - cookie_jar=cookies, - response_headers=response_object["headers"] - ) - # build response class - return build_response(response_object, response_cookie_jar) - - def get( - self, - url: str, - **kwargs: Any - ): - """Sends a GET request""" - return self.execute_request(method="GET", url=url, **kwargs) - - def options( - self, - url: str, - **kwargs: Any - ): - """Sends a OPTIONS request""" - return self.execute_request(method="OPTIONS", url=url, **kwargs) - - def head( - self, - url: str, - **kwargs: Any - ): - """Sends a HEAD request""" - return self.execute_request(method="HEAD", url=url, **kwargs) - - def post( - self, - url: str, - data: Optional[Union[str, dict]] = None, - json: Optional[dict] = None, - **kwargs: Any - ): - """Sends a POST request""" - return self.execute_request(method="POST", url=url, data=data, json=json, **kwargs) - - def put( - self, - url: str, - data: Optional[Union[str, dict]] = None, - json: Optional[dict] = None, - **kwargs: Any - ): - """Sends a PUT request""" - return self.execute_request(method="PUT", url=url, data=data, json=json, **kwargs) - - def patch( - self, - url: str, - data: Optional[Union[str, dict]] = None, - json: Optional[dict] = None, - **kwargs: Any - ): - """Sends a PUT request""" - return self.execute_request(method="PATCH", url=url, data=data, json=json, **kwargs) - - def delete( - self, - url: str, - **kwargs: Any - ): - """Sends a DELETE request""" - return self.execute_request(method="DELETE", url=url, **kwargs) diff --git a/spaces/JeremyK/JewelryVision/model.py b/spaces/JeremyK/JewelryVision/model.py deleted file mode 100644 index 5901415b261ca9d4746d7c598aaddd52fd8a3b67..0000000000000000000000000000000000000000 --- a/spaces/JeremyK/JewelryVision/model.py +++ /dev/null @@ -1,17 +0,0 @@ -from torchvision.models import MobileNet_V2_Weights, mobilenet_v2 -from torch import nn - - -def create_mobilenet_model(class_num=5, return_transforms = False): - weights = MobileNet_V2_Weights.DEFAULT - model = mobilenet_v2(weights=weights) - - for param in model.features.parameters(): - param.requires_grad = False - - in_features = model.classifier[-1].in_features - model.classifier[-1] = nn.Linear(in_features, class_num) - - if return_transforms: - return model, weights.transforms() - return model \ No newline at end of file diff --git a/spaces/JohnnyPittt/audio-styling/deepafx_st/data/proxy.py b/spaces/JohnnyPittt/audio-styling/deepafx_st/data/proxy.py deleted file mode 100644 index 79d6afd250269a9c65b0a6dc7c4fb1bccd5b1c2a..0000000000000000000000000000000000000000 --- a/spaces/JohnnyPittt/audio-styling/deepafx_st/data/proxy.py +++ /dev/null @@ -1,181 +0,0 @@ -import os -import json -import glob -import torch -import random -from tqdm import tqdm - -# from deepafx_st.plugins.channel import Channel -from deepafx_st.processors.processor import Processor -from deepafx_st.data.audio import AudioFile -import deepafx_st.utils as utils - - -class DSPProxyDataset(torch.utils.data.Dataset): - """Class for generating input-output audio from Python DSP effects. - - Args: - input_dir (List[str]): List of paths to the directories containing input audio files. - processor (Processor): Processor object to create proxy of. - processor_type (str): Processor name. - subset (str, optional): Dataset subset. One of ["train", "val", "test"]. Default: "train" - buffer_size_gb (float, optional): Size of audio to read into RAM in GB at any given time. Default: 10.0 - Note: This is the buffer size PER DataLoader worker. So total RAM = buffer_size_gb * num_workers - buffer_reload_rate (int, optional): Number of items to generate before loading next chunk of dataset. Default: 10000 - length (int, optional): Number of samples to load for each example. Default: 65536 - num_examples_per_epoch (int, optional): Define an epoch as certain number of audio examples. Default: 10000 - ext (str, optional): Expected audio file extension. Default: "wav" - hard_clip (bool, optional): Hard clip outputs between -1 and 1. Default: True - """ - - def __init__( - self, - input_dir: str, - processor: Processor, - processor_type: str, - subset="train", - length=65536, - buffer_size_gb=1.0, - buffer_reload_rate=1000, - half=False, - num_examples_per_epoch=10000, - ext="wav", - soft_clip=True, - ): - super().__init__() - self.input_dir = input_dir - self.processor = processor - self.processor_type = processor_type - self.subset = subset - self.length = length - self.buffer_size_gb = buffer_size_gb - self.buffer_reload_rate = buffer_reload_rate - self.half = half - self.num_examples_per_epoch = num_examples_per_epoch - self.ext = ext - self.soft_clip = soft_clip - - search_path = os.path.join(input_dir, f"*.{ext}") - self.input_filepaths = glob.glob(search_path) - self.input_filepaths = sorted(self.input_filepaths) - - if len(self.input_filepaths) < 1: - raise RuntimeError(f"No files found in {input_dir}.") - - # get training split - self.input_filepaths = utils.split_dataset( - self.input_filepaths, self.subset, 0.9 - ) - - # get details about audio files - cnt = 0 - self.input_files = {} - for input_filepath in tqdm(self.input_filepaths, ncols=80): - file_id = os.path.basename(input_filepath) - audio_file = AudioFile( - input_filepath, - preload=False, - half=half, - ) - if audio_file.num_frames < self.length: - continue - self.input_files[file_id] = audio_file - self.sample_rate = self.input_files[file_id].sample_rate - cnt += 1 - if cnt > 1000: - break - - # some setup for iteratble loading of the dataset into RAM - self.items_since_load = self.buffer_reload_rate - - def __len__(self): - return self.num_examples_per_epoch - - def load_audio_buffer(self): - self.input_files_loaded = {} # clear audio buffer - self.items_since_load = 0 # reset iteration counter - nbytes_loaded = 0 # counter for data in RAM - - # different subset in each - random.shuffle(self.input_filepaths) - - # load files into RAM - for input_filepath in self.input_filepaths: - file_id = os.path.basename(input_filepath) - audio_file = AudioFile( - input_filepath, - preload=True, - half=self.half, - ) - - if audio_file.num_frames < self.length: - continue - - self.input_files_loaded[file_id] = audio_file - - nbytes = audio_file.audio.element_size() * audio_file.audio.nelement() - nbytes_loaded += nbytes - - if nbytes_loaded > self.buffer_size_gb * 1e9: - break - - def __getitem__(self, _): - """ """ - - # increment counter - self.items_since_load += 1 - - # load next chunk into buffer if needed - if self.items_since_load > self.buffer_reload_rate: - self.load_audio_buffer() - - rand_input_file_id = utils.get_random_file_id(self.input_files_loaded.keys()) - # use this random key to retrieve an input file - input_file = self.input_files_loaded[rand_input_file_id] - - # load the audio data if needed - if not input_file.loaded: - input_file.load() - - # get a random patch of size `self.length` - # start_idx, stop_idx = utils.get_random_patch(input_file, self.sample_rate, self.length) - start_idx, stop_idx = utils.get_random_patch(input_file, self.length) - input_audio = input_file.audio[:, start_idx:stop_idx].clone().detach() - - # random scaling - input_audio /= input_audio.abs().max() - scale_dB = (torch.rand(1).squeeze().numpy() * 12) + 12 - input_audio *= 10 ** (-scale_dB / 20.0) - - # generate random parameters (uniform) over 0 to 1 - params = torch.rand(self.processor.num_control_params) - - # expects batch dim - # apply plugins with random parameters - if self.processor_type == "channel": - params[-1] = 0.5 # set makeup gain to 0dB - target_audio = self.processor( - input_audio.view(1, 1, -1), - params.view(1, -1), - ) - target_audio = target_audio.view(1, -1) - elif self.processor_type == "peq": - target_audio = self.processor( - input_audio.view(1, 1, -1).numpy(), - params.view(1, -1).numpy(), - ) - target_audio = torch.tensor(target_audio).view(1, -1) - elif self.processor_type == "comp": - params[-1] = 0.5 # set makeup gain to 0dB - target_audio = self.processor( - input_audio.view(1, 1, -1).numpy(), - params.view(1, -1).numpy(), - ) - target_audio = torch.tensor(target_audio).view(1, -1) - - # clip - if self.soft_clip: - # target_audio = target_audio.clamp(-2.0, 2.0) - target_audio = torch.tanh(target_audio / 2.0) * 2.0 - - return input_audio, target_audio, params diff --git a/spaces/Kangarroar/ApplioRVC-Inference/julius/fftconv.py b/spaces/Kangarroar/ApplioRVC-Inference/julius/fftconv.py deleted file mode 100644 index 1920e5369bb49b76eeea1832b7be2a0ddbc8db6b..0000000000000000000000000000000000000000 --- a/spaces/Kangarroar/ApplioRVC-Inference/julius/fftconv.py +++ /dev/null @@ -1,183 +0,0 @@ -# File under the MIT license, see https://github.com/adefossez/julius/LICENSE for details. -# Author: adefossez, 2020 - -""" -Implementation of a FFT based 1D convolution in PyTorch. -While FFT is used in CUDNN for small kernel sizes, it is not the case for long ones, e.g. 512. -This module implements efficient FFT based convolutions for such convolutions. A typical -application is for evaluationg FIR filters with a long receptive field, typically -evaluated with a stride of 1. -""" -from typing import Optional - -import torch -try: - import torch.fft as new_fft -except ImportError: - new_fft = None # type: ignore -from torch.nn import functional as F - -from .core import pad_to, unfold -from .utils import simple_repr - - -# This is quite verbose, but sadly needed to make TorchScript happy. -def _new_rfft(x: torch.Tensor): - z = new_fft.rfft(x, dim=-1) - return torch.view_as_real(z) - - -def _old_rfft(x: torch.Tensor): - return torch.rfft(x, 1) # type: ignore - - -def _old_irfft(x: torch.Tensor, length: int): - result = torch.irfft(x, 1, signal_sizes=(length,)) # type: ignore - return result - - -def _new_irfft(x: torch.Tensor, length: int): - x = torch.view_as_complex(x) - return new_fft.irfft(x, length, dim=-1) - - -if new_fft is None: - _rfft = _old_rfft - _irfft = _old_irfft -else: - _rfft = _new_rfft - _irfft = _new_irfft - - -def _compl_mul_conjugate(a: torch.Tensor, b: torch.Tensor): - """ - Given a and b two tensors of dimension 4 - with the last dimension being the real and imaginary part, - returns a multiplied by the conjugate of b, the multiplication - being with respect to the second dimension. - - """ - # PyTorch 1.7 supports complex number, but not for all operations. - # Once the support is widespread, this can likely go away. - - op = "bcft,dct->bdft" - return torch.stack([ - torch.einsum(op, a[..., 0], b[..., 0]) + torch.einsum(op, a[..., 1], b[..., 1]), - torch.einsum(op, a[..., 1], b[..., 0]) - torch.einsum(op, a[..., 0], b[..., 1]) - ], - dim=-1) - - -def fft_conv1d( - input: torch.Tensor, weight: torch.Tensor, - bias: Optional[torch.Tensor] = None, stride: int = 1, padding: int = 0, - block_ratio: float = 5): - """ - Same as `torch.nn.functional.conv1d` but using FFT for the convolution. - Please check PyTorch documentation for more information. - - Args: - input (Tensor): input signal of shape `[B, C, T]`. - weight (Tensor): weight of the convolution `[D, C, K]` with `D` the number - of output channels. - bias (Tensor or None): if not None, bias term for the convolution. - stride (int): stride of convolution. - padding (int): padding to apply to the input. - block_ratio (float): can be tuned for speed. The input is splitted in chunks - with a size of `int(block_ratio * kernel_size)`. - - Shape: - - - Inputs: `input` is `[B, C, T]`, `weight` is `[D, C, K]` and bias is `[D]`. - - Output: `(*, T)` - - - ..note:: - This function is faster than `torch.nn.functional.conv1d` only in specific cases. - Typically, the kernel size should be of the order of 256 to see any real gain, - for a stride of 1. - - ..Warning:: - Dilation and groups are not supported at the moment. This function might use - more memory than the default Conv1d implementation. - """ - input = F.pad(input, (padding, padding)) - batch, channels, length = input.shape - out_channels, _, kernel_size = weight.shape - - if length < kernel_size: - raise RuntimeError(f"Input should be at least as large as the kernel size {kernel_size}, " - f"but it is only {length} samples long.") - if block_ratio < 1: - raise RuntimeError("Block ratio must be greater than 1.") - - # We are going to process the input blocks by blocks, as for some reason it is faster - # and less memory intensive (I think the culprit is `torch.einsum`. - block_size: int = min(int(kernel_size * block_ratio), length) - fold_stride = block_size - kernel_size + 1 - weight = pad_to(weight, block_size) - weight_z = _rfft(weight) - - # We pad the input and get the different frames, on which - frames = unfold(input, block_size, fold_stride) - - frames_z = _rfft(frames) - out_z = _compl_mul_conjugate(frames_z, weight_z) - out = _irfft(out_z, block_size) - # The last bit is invalid, because FFT will do a circular convolution. - out = out[..., :-kernel_size + 1] - out = out.reshape(batch, out_channels, -1) - out = out[..., ::stride] - target_length = (length - kernel_size) // stride + 1 - out = out[..., :target_length] - if bias is not None: - out += bias[:, None] - return out - - -class FFTConv1d(torch.nn.Module): - """ - Same as `torch.nn.Conv1d` but based on `fft_conv1d`. - Please check PyTorch documentation for more information. - - Args: - in_channels (int): number of input channels. - out_channels (int): number of output channels. - kernel_size (int): kernel size of convolution. - stride (int): stride of convolution. - padding (int): padding to apply to the input. - bias (bool): if True, use a bias term. - - ..note:: - This module is faster than `torch.nn.Conv1d` only in specific cases. - Typically, `kernel_size` should be of the order of 256 to see any real gain, - for a stride of 1. - - ..warning:: - Dilation and groups are not supported at the moment. This module might use - more memory than the default Conv1d implementation. - - >>> fftconv = FFTConv1d(12, 24, 128, 4) - >>> x = torch.randn(4, 12, 1024) - >>> print(list(fftconv(x).shape)) - [4, 24, 225] - """ - def __init__(self, in_channels: int, out_channels: int, kernel_size: int, - stride: int = 1, padding: int = 0, bias: bool = True): - super().__init__() - self.in_channels = in_channels - self.out_channels = out_channels - self.kernel_size = kernel_size - self.stride = stride - self.padding = padding - - conv = torch.nn.Conv1d(in_channels, out_channels, kernel_size, bias=bias) - self.weight = conv.weight - self.bias = conv.bias - - def forward(self, input: torch.Tensor): - return fft_conv1d( - input, self.weight, self.bias, self.stride, self.padding) - - def __repr__(self): - return simple_repr(self, overrides={"bias": self.bias is not None}) diff --git a/spaces/Kevin676/ChatGPT-with-Voice-Cloning-in-Chinese/ppg2mel/utils/basic_layers.py b/spaces/Kevin676/ChatGPT-with-Voice-Cloning-in-Chinese/ppg2mel/utils/basic_layers.py deleted file mode 100644 index 45d80f1ef9e459a6e2d8494cf8d4ca1e599f772f..0000000000000000000000000000000000000000 --- a/spaces/Kevin676/ChatGPT-with-Voice-Cloning-in-Chinese/ppg2mel/utils/basic_layers.py +++ /dev/null @@ -1,79 +0,0 @@ -import torch -from torch import nn -from torch.nn import functional as F -from torch.autograd import Function - -def tile(x, count, dim=0): - """ - Tiles x on dimension dim count times. - """ - perm = list(range(len(x.size()))) - if dim != 0: - perm[0], perm[dim] = perm[dim], perm[0] - x = x.permute(perm).contiguous() - out_size = list(x.size()) - out_size[0] *= count - batch = x.size(0) - x = x.view(batch, -1) \ - .transpose(0, 1) \ - .repeat(count, 1) \ - .transpose(0, 1) \ - .contiguous() \ - .view(*out_size) - if dim != 0: - x = x.permute(perm).contiguous() - return x - -class Linear(torch.nn.Module): - def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'): - super(Linear, self).__init__() - self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) - - torch.nn.init.xavier_uniform_( - self.linear_layer.weight, - gain=torch.nn.init.calculate_gain(w_init_gain)) - - def forward(self, x): - return self.linear_layer(x) - -class Conv1d(torch.nn.Module): - def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, - padding=None, dilation=1, bias=True, w_init_gain='linear', param=None): - super(Conv1d, self).__init__() - if padding is None: - assert(kernel_size % 2 == 1) - padding = int(dilation * (kernel_size - 1)/2) - - self.conv = torch.nn.Conv1d(in_channels, out_channels, - kernel_size=kernel_size, stride=stride, - padding=padding, dilation=dilation, - bias=bias) - torch.nn.init.xavier_uniform_( - self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain, param=param)) - - def forward(self, x): - # x: BxDxT - return self.conv(x) - - - -def tile(x, count, dim=0): - """ - Tiles x on dimension dim count times. - """ - perm = list(range(len(x.size()))) - if dim != 0: - perm[0], perm[dim] = perm[dim], perm[0] - x = x.permute(perm).contiguous() - out_size = list(x.size()) - out_size[0] *= count - batch = x.size(0) - x = x.view(batch, -1) \ - .transpose(0, 1) \ - .repeat(count, 1) \ - .transpose(0, 1) \ - .contiguous() \ - .view(*out_size) - if dim != 0: - x = x.permute(perm).contiguous() - return x diff --git a/spaces/Kevin676/Clone-Your-Voice/encoder/data_objects/__init__.py b/spaces/Kevin676/Clone-Your-Voice/encoder/data_objects/__init__.py deleted file mode 100644 index ef04ade68544d0477a7f6deb4e7d51e97f592910..0000000000000000000000000000000000000000 --- a/spaces/Kevin676/Clone-Your-Voice/encoder/data_objects/__init__.py +++ /dev/null @@ -1,2 +0,0 @@ -from encoder.data_objects.speaker_verification_dataset import SpeakerVerificationDataset -from encoder.data_objects.speaker_verification_dataset import SpeakerVerificationDataLoader diff --git a/spaces/Kevin676/Real-Time-Voice-Cloning/synthesizer/audio.py b/spaces/Kevin676/Real-Time-Voice-Cloning/synthesizer/audio.py deleted file mode 100644 index 83dc96c63c962bc8e13c446d05e27c009fb3239f..0000000000000000000000000000000000000000 --- a/spaces/Kevin676/Real-Time-Voice-Cloning/synthesizer/audio.py +++ /dev/null @@ -1,206 +0,0 @@ -import librosa -import librosa.filters -import numpy as np -from scipy import signal -from scipy.io import wavfile -import soundfile as sf - - -def load_wav(path, sr): - return librosa.core.load(path, sr=sr)[0] - -def save_wav(wav, path, sr): - wav *= 32767 / max(0.01, np.max(np.abs(wav))) - #proposed by @dsmiller - wavfile.write(path, sr, wav.astype(np.int16)) - -def save_wavenet_wav(wav, path, sr): - sf.write(path, wav.astype(np.float32), sr) - -def preemphasis(wav, k, preemphasize=True): - if preemphasize: - return signal.lfilter([1, -k], [1], wav) - return wav - -def inv_preemphasis(wav, k, inv_preemphasize=True): - if inv_preemphasize: - return signal.lfilter([1], [1, -k], wav) - return wav - -#From https://github.com/r9y9/wavenet_vocoder/blob/master/audio.py -def start_and_end_indices(quantized, silence_threshold=2): - for start in range(quantized.size): - if abs(quantized[start] - 127) > silence_threshold: - break - for end in range(quantized.size - 1, 1, -1): - if abs(quantized[end] - 127) > silence_threshold: - break - - assert abs(quantized[start] - 127) > silence_threshold - assert abs(quantized[end] - 127) > silence_threshold - - return start, end - -def get_hop_size(hparams): - hop_size = hparams.hop_size - if hop_size is None: - assert hparams.frame_shift_ms is not None - hop_size = int(hparams.frame_shift_ms / 1000 * hparams.sample_rate) - return hop_size - -def linearspectrogram(wav, hparams): - D = _stft(preemphasis(wav, hparams.preemphasis, hparams.preemphasize), hparams) - S = _amp_to_db(np.abs(D), hparams) - hparams.ref_level_db - - if hparams.signal_normalization: - return _normalize(S, hparams) - return S - -def melspectrogram(wav, hparams): - D = _stft(preemphasis(wav, hparams.preemphasis, hparams.preemphasize), hparams) - S = _amp_to_db(_linear_to_mel(np.abs(D), hparams), hparams) - hparams.ref_level_db - - if hparams.signal_normalization: - return _normalize(S, hparams) - return S - -def inv_linear_spectrogram(linear_spectrogram, hparams): - """Converts linear spectrogram to waveform using librosa""" - if hparams.signal_normalization: - D = _denormalize(linear_spectrogram, hparams) - else: - D = linear_spectrogram - - S = _db_to_amp(D + hparams.ref_level_db) #Convert back to linear - - if hparams.use_lws: - processor = _lws_processor(hparams) - D = processor.run_lws(S.astype(np.float64).T ** hparams.power) - y = processor.istft(D).astype(np.float32) - return inv_preemphasis(y, hparams.preemphasis, hparams.preemphasize) - else: - return inv_preemphasis(_griffin_lim(S ** hparams.power, hparams), hparams.preemphasis, hparams.preemphasize) - -def inv_mel_spectrogram(mel_spectrogram, hparams): - """Converts mel spectrogram to waveform using librosa""" - if hparams.signal_normalization: - D = _denormalize(mel_spectrogram, hparams) - else: - D = mel_spectrogram - - S = _mel_to_linear(_db_to_amp(D + hparams.ref_level_db), hparams) # Convert back to linear - - if hparams.use_lws: - processor = _lws_processor(hparams) - D = processor.run_lws(S.astype(np.float64).T ** hparams.power) - y = processor.istft(D).astype(np.float32) - return inv_preemphasis(y, hparams.preemphasis, hparams.preemphasize) - else: - return inv_preemphasis(_griffin_lim(S ** hparams.power, hparams), hparams.preemphasis, hparams.preemphasize) - -def _lws_processor(hparams): - import lws - return lws.lws(hparams.n_fft, get_hop_size(hparams), fftsize=hparams.win_size, mode="speech") - -def _griffin_lim(S, hparams): - """librosa implementation of Griffin-Lim - Based on https://github.com/librosa/librosa/issues/434 - """ - angles = np.exp(2j * np.pi * np.random.rand(*S.shape)) - S_complex = np.abs(S).astype(np.complex) - y = _istft(S_complex * angles, hparams) - for i in range(hparams.griffin_lim_iters): - angles = np.exp(1j * np.angle(_stft(y, hparams))) - y = _istft(S_complex * angles, hparams) - return y - -def _stft(y, hparams): - if hparams.use_lws: - return _lws_processor(hparams).stft(y).T - else: - return librosa.stft(y=y, n_fft=hparams.n_fft, hop_length=get_hop_size(hparams), win_length=hparams.win_size) - -def _istft(y, hparams): - return librosa.istft(y, hop_length=get_hop_size(hparams), win_length=hparams.win_size) - -########################################################## -#Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!) -def num_frames(length, fsize, fshift): - """Compute number of time frames of spectrogram - """ - pad = (fsize - fshift) - if length % fshift == 0: - M = (length + pad * 2 - fsize) // fshift + 1 - else: - M = (length + pad * 2 - fsize) // fshift + 2 - return M - - -def pad_lr(x, fsize, fshift): - """Compute left and right padding - """ - M = num_frames(len(x), fsize, fshift) - pad = (fsize - fshift) - T = len(x) + 2 * pad - r = (M - 1) * fshift + fsize - T - return pad, pad + r -########################################################## -#Librosa correct padding -def librosa_pad_lr(x, fsize, fshift): - return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0] - -# Conversions -_mel_basis = None -_inv_mel_basis = None - -def _linear_to_mel(spectogram, hparams): - global _mel_basis - if _mel_basis is None: - _mel_basis = _build_mel_basis(hparams) - return np.dot(_mel_basis, spectogram) - -def _mel_to_linear(mel_spectrogram, hparams): - global _inv_mel_basis - if _inv_mel_basis is None: - _inv_mel_basis = np.linalg.pinv(_build_mel_basis(hparams)) - return np.maximum(1e-10, np.dot(_inv_mel_basis, mel_spectrogram)) - -def _build_mel_basis(hparams): - assert hparams.fmax <= hparams.sample_rate // 2 - return librosa.filters.mel(hparams.sample_rate, hparams.n_fft, n_mels=hparams.num_mels, - fmin=hparams.fmin, fmax=hparams.fmax) - -def _amp_to_db(x, hparams): - min_level = np.exp(hparams.min_level_db / 20 * np.log(10)) - return 20 * np.log10(np.maximum(min_level, x)) - -def _db_to_amp(x): - return np.power(10.0, (x) * 0.05) - -def _normalize(S, hparams): - if hparams.allow_clipping_in_normalization: - if hparams.symmetric_mels: - return np.clip((2 * hparams.max_abs_value) * ((S - hparams.min_level_db) / (-hparams.min_level_db)) - hparams.max_abs_value, - -hparams.max_abs_value, hparams.max_abs_value) - else: - return np.clip(hparams.max_abs_value * ((S - hparams.min_level_db) / (-hparams.min_level_db)), 0, hparams.max_abs_value) - - assert S.max() <= 0 and S.min() - hparams.min_level_db >= 0 - if hparams.symmetric_mels: - return (2 * hparams.max_abs_value) * ((S - hparams.min_level_db) / (-hparams.min_level_db)) - hparams.max_abs_value - else: - return hparams.max_abs_value * ((S - hparams.min_level_db) / (-hparams.min_level_db)) - -def _denormalize(D, hparams): - if hparams.allow_clipping_in_normalization: - if hparams.symmetric_mels: - return (((np.clip(D, -hparams.max_abs_value, - hparams.max_abs_value) + hparams.max_abs_value) * -hparams.min_level_db / (2 * hparams.max_abs_value)) - + hparams.min_level_db) - else: - return ((np.clip(D, 0, hparams.max_abs_value) * -hparams.min_level_db / hparams.max_abs_value) + hparams.min_level_db) - - if hparams.symmetric_mels: - return (((D + hparams.max_abs_value) * -hparams.min_level_db / (2 * hparams.max_abs_value)) + hparams.min_level_db) - else: - return ((D * -hparams.min_level_db / hparams.max_abs_value) + hparams.min_level_db) diff --git a/spaces/Kirihasan/rvc-holo/vc_infer_pipeline.py b/spaces/Kirihasan/rvc-holo/vc_infer_pipeline.py deleted file mode 100644 index c26d45068f9b6bf2b194b13c3c89f8a06347c124..0000000000000000000000000000000000000000 --- a/spaces/Kirihasan/rvc-holo/vc_infer_pipeline.py +++ /dev/null @@ -1,306 +0,0 @@ -import numpy as np, parselmouth, torch, pdb -from time import time as ttime -import torch.nn.functional as F -from config import x_pad, x_query, x_center, x_max -import scipy.signal as signal -import pyworld, os, traceback, faiss -from scipy import signal - -bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000) - - -class VC(object): - def __init__(self, tgt_sr, device, is_half): - self.sr = 16000 # hubert输入采样率 - self.window = 160 # 每帧点数 - self.t_pad = self.sr * x_pad # 每条前后pad时间 - self.t_pad_tgt = tgt_sr * x_pad - self.t_pad2 = self.t_pad * 2 - self.t_query = self.sr * x_query # 查询切点前后查询时间 - self.t_center = self.sr * x_center # 查询切点位置 - self.t_max = self.sr * x_max # 免查询时长阈值 - self.device = device - self.is_half = is_half - - def get_f0(self, x, p_len, f0_up_key, f0_method, inp_f0=None): - time_step = self.window / self.sr * 1000 - f0_min = 50 - f0_max = 1100 - f0_mel_min = 1127 * np.log(1 + f0_min / 700) - f0_mel_max = 1127 * np.log(1 + f0_max / 700) - if f0_method == "pm": - f0 = ( - parselmouth.Sound(x, self.sr) - .to_pitch_ac( - time_step=time_step / 1000, - voicing_threshold=0.6, - pitch_floor=f0_min, - pitch_ceiling=f0_max, - ) - .selected_array["frequency"] - ) - pad_size = (p_len - len(f0) + 1) // 2 - if pad_size > 0 or p_len - len(f0) - pad_size > 0: - f0 = np.pad( - f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant" - ) - elif f0_method == "harvest": - f0, t = pyworld.harvest( - x.astype(np.double), - fs=self.sr, - f0_ceil=f0_max, - f0_floor=f0_min, - frame_period=10, - ) - f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr) - f0 = signal.medfilt(f0, 3) - f0 *= pow(2, f0_up_key / 12) - # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()])) - tf0 = self.sr // self.window # 每秒f0点数 - if inp_f0 is not None: - delta_t = np.round( - (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1 - ).astype("int16") - replace_f0 = np.interp( - list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1] - ) - shape = f0[x_pad * tf0 : x_pad * tf0 + len(replace_f0)].shape[0] - f0[x_pad * tf0 : x_pad * tf0 + len(replace_f0)] = replace_f0[:shape] - # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()])) - f0bak = f0.copy() - f0_mel = 1127 * np.log(1 + f0 / 700) - f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / ( - f0_mel_max - f0_mel_min - ) + 1 - f0_mel[f0_mel <= 1] = 1 - f0_mel[f0_mel > 255] = 255 - f0_coarse = np.rint(f0_mel).astype(np.int) - return f0_coarse, f0bak # 1-0 - - def vc( - self, - model, - net_g, - sid, - audio0, - pitch, - pitchf, - times, - index, - big_npy, - index_rate, - ): # ,file_index,file_big_npy - feats = torch.from_numpy(audio0) - if self.is_half: - feats = feats.half() - else: - feats = feats.float() - if feats.dim() == 2: # double channels - feats = feats.mean(-1) - assert feats.dim() == 1, feats.dim() - feats = feats.view(1, -1) - padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False) - - inputs = { - "source": feats.to(self.device), - "padding_mask": padding_mask, - "output_layer": 9, # layer 9 - } - t0 = ttime() - with torch.no_grad(): - logits = model.extract_features(**inputs) - feats = model.final_proj(logits[0]) - - if ( - isinstance(index, type(None)) == False - and isinstance(big_npy, type(None)) == False - and index_rate != 0 - ): - npy = feats[0].cpu().numpy() - if self.is_half: - npy = npy.astype("float32") - _, I = index.search(npy, 1) - npy = big_npy[I.squeeze()] - if self.is_half: - npy = npy.astype("float16") - feats = ( - torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate - + (1 - index_rate) * feats - ) - - feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1) - t1 = ttime() - p_len = audio0.shape[0] // self.window - if feats.shape[1] < p_len: - p_len = feats.shape[1] - if pitch != None and pitchf != None: - pitch = pitch[:, :p_len] - pitchf = pitchf[:, :p_len] - p_len = torch.tensor([p_len], device=self.device).long() - with torch.no_grad(): - if pitch != None and pitchf != None: - audio1 = ( - (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] * 32768) - .data.cpu() - .float() - .numpy() - .astype(np.int16) - ) - else: - audio1 = ( - (net_g.infer(feats, p_len, sid)[0][0, 0] * 32768) - .data.cpu() - .float() - .numpy() - .astype(np.int16) - ) - del feats, p_len, padding_mask - if torch.cuda.is_available(): - torch.cuda.empty_cache() - t2 = ttime() - times[0] += t1 - t0 - times[2] += t2 - t1 - return audio1 - - def pipeline( - self, - model, - net_g, - sid, - audio, - times, - f0_up_key, - f0_method, - file_index, - file_big_npy, - index_rate, - if_f0, - f0_file=None, - ): - if ( - file_big_npy != "" - and file_index != "" - and os.path.exists(file_big_npy) == True - and os.path.exists(file_index) == True - and index_rate != 0 - ): - try: - index = faiss.read_index(file_index) - big_npy = np.load(file_big_npy) - except: - traceback.print_exc() - index = big_npy = None - else: - index = big_npy = None - print("Feature retrieval library doesn't exist or ratio is 0") - audio = signal.filtfilt(bh, ah, audio) - audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect") - opt_ts = [] - if audio_pad.shape[0] > self.t_max: - audio_sum = np.zeros_like(audio) - for i in range(self.window): - audio_sum += audio_pad[i : i - self.window] - for t in range(self.t_center, audio.shape[0], self.t_center): - opt_ts.append( - t - - self.t_query - + np.where( - np.abs(audio_sum[t - self.t_query : t + self.t_query]) - == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min() - )[0][0] - ) - s = 0 - audio_opt = [] - t = None - t1 = ttime() - audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect") - p_len = audio_pad.shape[0] // self.window - inp_f0 = None - if hasattr(f0_file, "name") == True: - try: - with open(f0_file.name, "r") as f: - lines = f.read().strip("\n").split("\n") - inp_f0 = [] - for line in lines: - inp_f0.append([float(i) for i in line.split(",")]) - inp_f0 = np.array(inp_f0, dtype="float32") - except: - traceback.print_exc() - sid = torch.tensor(sid, device=self.device).unsqueeze(0).long() - pitch, pitchf = None, None - if if_f0 == 1: - pitch, pitchf = self.get_f0(audio_pad, p_len, f0_up_key, f0_method, inp_f0) - pitch = pitch[:p_len] - pitchf = pitchf[:p_len] - pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long() - pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float() - t2 = ttime() - times[1] += t2 - t1 - for t in opt_ts: - t = t // self.window * self.window - if if_f0 == 1: - audio_opt.append( - self.vc( - model, - net_g, - sid, - audio_pad[s : t + self.t_pad2 + self.window], - pitch[:, s // self.window : (t + self.t_pad2) // self.window], - pitchf[:, s // self.window : (t + self.t_pad2) // self.window], - times, - index, - big_npy, - index_rate, - )[self.t_pad_tgt : -self.t_pad_tgt] - ) - else: - audio_opt.append( - self.vc( - model, - net_g, - sid, - audio_pad[s : t + self.t_pad2 + self.window], - None, - None, - times, - index, - big_npy, - index_rate, - )[self.t_pad_tgt : -self.t_pad_tgt] - ) - s = t - if if_f0 == 1: - audio_opt.append( - self.vc( - model, - net_g, - sid, - audio_pad[t:], - pitch[:, t // self.window :] if t is not None else pitch, - pitchf[:, t // self.window :] if t is not None else pitchf, - times, - index, - big_npy, - index_rate, - )[self.t_pad_tgt : -self.t_pad_tgt] - ) - else: - audio_opt.append( - self.vc( - model, - net_g, - sid, - audio_pad[t:], - None, - None, - times, - index, - big_npy, - index_rate, - )[self.t_pad_tgt : -self.t_pad_tgt] - ) - audio_opt = np.concatenate(audio_opt) - del pitch, pitchf, sid - if torch.cuda.is_available(): - torch.cuda.empty_cache() - return audio_opt diff --git a/spaces/KushJaggi/YOLOv8/utils.py b/spaces/KushJaggi/YOLOv8/utils.py deleted file mode 100644 index 29cc436aa1ab7c5f2fcd60b874ba657d561cada2..0000000000000000000000000000000000000000 --- a/spaces/KushJaggi/YOLOv8/utils.py +++ /dev/null @@ -1,471 +0,0 @@ -import numpy as np -import cv2 -import pandas as pd -import operator -import matplotlib.pyplot as plt -import os -from sklearn.model_selection import train_test_split -from tensorflow.keras.utils import Sequence -from config import yolo_config - - -def load_weights(model, weights_file_path): - conv_layer_size = 110 - conv_output_idxs = [93, 101, 109] - with open(weights_file_path, 'rb') as file: - major, minor, revision, seen, _ = np.fromfile(file, dtype=np.int32, count=5) - - bn_idx = 0 - for conv_idx in range(conv_layer_size): - conv_layer_name = f'conv2d_{conv_idx}' if conv_idx > 0 else 'conv2d' - bn_layer_name = f'batch_normalization_{bn_idx}' if bn_idx > 0 else 'batch_normalization' - - conv_layer = model.get_layer(conv_layer_name) - filters = conv_layer.filters - kernel_size = conv_layer.kernel_size[0] - input_dims = conv_layer.input_shape[-1] - - if conv_idx not in conv_output_idxs: - # darknet bn layer weights: [beta, gamma, mean, variance] - bn_weights = np.fromfile(file, dtype=np.float32, count=4 * filters) - # tf bn layer weights: [gamma, beta, mean, variance] - bn_weights = bn_weights.reshape((4, filters))[[1, 0, 2, 3]] - bn_layer = model.get_layer(bn_layer_name) - bn_idx += 1 - else: - conv_bias = np.fromfile(file, dtype=np.float32, count=filters) - - # darknet shape: (out_dim, input_dims, height, width) - # tf shape: (height, width, input_dims, out_dim) - conv_shape = (filters, input_dims, kernel_size, kernel_size) - conv_weights = np.fromfile(file, dtype=np.float32, count=np.product(conv_shape)) - conv_weights = conv_weights.reshape(conv_shape).transpose([2, 3, 1, 0]) - - if conv_idx not in conv_output_idxs: - conv_layer.set_weights([conv_weights]) - bn_layer.set_weights(bn_weights) - else: - conv_layer.set_weights([conv_weights, conv_bias]) - - if len(file.read()) == 0: - print('all weights read') - else: - print(f'failed to read all weights, # of unread weights: {len(file.read())}') - - -def get_detection_data(img, model_outputs, class_names): - """ - :param img: target raw image - :param model_outputs: outputs from inference_model - :param class_names: list of object class names - :return: - """ - - num_bboxes = model_outputs[-1][0] - boxes, scores, classes = [output[0][:num_bboxes] for output in model_outputs[:-1]] - - h, w = img.shape[:2] - df = pd.DataFrame(boxes, columns=['x1', 'y1', 'x2', 'y2']) - df[['x1', 'x2']] = (df[['x1', 'x2']] * w).astype('int64') - df[['y1', 'y2']] = (df[['y1', 'y2']] * h).astype('int64') - df['class_name'] = np.array(class_names)[classes.astype('int64')] - df['score'] = scores - df['w'] = df['x2'] - df['x1'] - df['h'] = df['y2'] - df['y1'] - - print(f'# of bboxes: {num_bboxes}') - return df - -def read_annotation_lines(annotation_path, test_size=None, random_seed=5566): - with open(annotation_path) as f: - lines = f.readlines() - if test_size: - return train_test_split(lines, test_size=test_size, random_state=random_seed) - else: - return lines - -def draw_bbox(img, detections, cmap, random_color=True, figsize=(10, 10), show_img=True, show_text=True): - """ - Draw bounding boxes on the img. - :param img: BGR img. - :param detections: pandas DataFrame containing detections - :param random_color: assign random color for each objects - :param cmap: object colormap - :param plot_img: if plot img with bboxes - :return: None - """ - img = np.array(img) - scale = max(img.shape[0:2]) / 416 - line_width = int(2 * scale) - - for _, row in detections.iterrows(): - x1, y1, x2, y2, cls, score, w, h = row.values - color = list(np.random.random(size=3) * 255) if random_color else cmap[cls] - cv2.rectangle(img, (x1, y1), (x2, y2), color, line_width) - if show_text: - text = f'{cls} {score:.2f}' - font = cv2.FONT_HERSHEY_DUPLEX - font_scale = max(0.3 * scale, 0.3) - thickness = max(int(1 * scale), 1) - (text_width, text_height) = cv2.getTextSize(text, font, fontScale=font_scale, thickness=thickness)[0] - cv2.rectangle(img, (x1 - line_width//2, y1 - text_height), (x1 + text_width, y1), color, cv2.FILLED) - cv2.putText(img, text, (x1, y1), font, font_scale, (255, 255, 255), thickness, cv2.LINE_AA) - if show_img: - plt.figure(figsize=figsize) - plt.imshow(img) - plt.show() - return img - - -class DataGenerator(Sequence): - """ - Generates data for Keras - ref: https://stanford.edu/~shervine/blog/keras-how-to-generate-data-on-the-fly - """ - def __init__(self, - annotation_lines, - class_name_path, - folder_path, - max_boxes=100, - shuffle=True): - self.annotation_lines = annotation_lines - self.class_name_path = class_name_path - self.num_classes = len([line.strip() for line in open(class_name_path).readlines()]) - self.num_gpu = yolo_config['num_gpu'] - self.batch_size = yolo_config['batch_size'] * self.num_gpu - self.target_img_size = yolo_config['img_size'] - self.anchors = np.array(yolo_config['anchors']).reshape((9, 2)) - self.shuffle = shuffle - self.indexes = np.arange(len(self.annotation_lines)) - self.folder_path = folder_path - self.max_boxes = max_boxes - self.on_epoch_end() - - def __len__(self): - 'number of batches per epoch' - return int(np.ceil(len(self.annotation_lines) / self.batch_size)) - - def __getitem__(self, index): - 'Generate one batch of data' - - # Generate indexes of the batch - idxs = self.indexes[index * self.batch_size:(index + 1) * self.batch_size] - - # Find list of IDs - lines = [self.annotation_lines[i] for i in idxs] - - # Generate data - X, y_tensor, y_bbox = self.__data_generation(lines) - - return [X, *y_tensor, y_bbox], np.zeros(len(lines)) - - def on_epoch_end(self): - 'Updates indexes after each epoch' - if self.shuffle: - np.random.shuffle(self.indexes) - - def __data_generation(self, annotation_lines): - """ - Generates data containing batch_size samples - :param annotation_lines: - :return: - """ - - X = np.empty((len(annotation_lines), *self.target_img_size), dtype=np.float32) - y_bbox = np.empty((len(annotation_lines), self.max_boxes, 5), dtype=np.float32) # x1y1x2y2 - - for i, line in enumerate(annotation_lines): - img_data, box_data = self.get_data(line) - X[i] = img_data - y_bbox[i] = box_data - - y_tensor, y_true_boxes_xywh = preprocess_true_boxes(y_bbox, self.target_img_size[:2], self.anchors, self.num_classes) - - return X, y_tensor, y_true_boxes_xywh - - def get_data(self, annotation_line): - line = annotation_line.split() - img_path = line[0] - img = cv2.imread(os.path.join(self.folder_path, img_path))[:, :, ::-1] - ih, iw = img.shape[:2] - h, w, c = self.target_img_size - boxes = np.array([np.array(list(map(float, box.split(',')))) for box in line[1:]], dtype=np.float32) # x1y1x2y2 - scale_w, scale_h = w / iw, h / ih - img = cv2.resize(img, (w, h)) - image_data = np.array(img) / 255. - - # correct boxes coordinates - box_data = np.zeros((self.max_boxes, 5)) - if len(boxes) > 0: - np.random.shuffle(boxes) - boxes = boxes[:self.max_boxes] - boxes[:, [0, 2]] = boxes[:, [0, 2]] * scale_w # + dx - boxes[:, [1, 3]] = boxes[:, [1, 3]] * scale_h # + dy - box_data[:len(boxes)] = boxes - - return image_data, box_data - - -def preprocess_true_boxes(true_boxes, input_shape, anchors, num_classes): - '''Preprocess true boxes to training input format - Parameters - ---------- - true_boxes: array, shape=(bs, max boxes per img, 5) - Absolute x_min, y_min, x_max, y_max, class_id relative to input_shape. - input_shape: array-like, hw, multiples of 32 - anchors: array, shape=(N, 2), (9, wh) - num_classes: int - Returns - ------- - y_true: list of array, shape like yolo_outputs, xywh are reletive value - ''' - - num_stages = 3 # default setting for yolo, tiny yolo will be 2 - anchor_mask = [[0, 1, 2], [3, 4, 5], [6, 7, 8]] - bbox_per_grid = 3 - true_boxes = np.array(true_boxes, dtype='float32') - true_boxes_abs = np.array(true_boxes, dtype='float32') - input_shape = np.array(input_shape, dtype='int32') - true_boxes_xy = (true_boxes_abs[..., 0:2] + true_boxes_abs[..., 2:4]) // 2 # (100, 2) - true_boxes_wh = true_boxes_abs[..., 2:4] - true_boxes_abs[..., 0:2] # (100, 2) - - # Normalize x,y,w, h, relative to img size -> (0~1) - true_boxes[..., 0:2] = true_boxes_xy/input_shape[::-1] # xy - true_boxes[..., 2:4] = true_boxes_wh/input_shape[::-1] # wh - - bs = true_boxes.shape[0] - grid_sizes = [input_shape//{0:8, 1:16, 2:32}[stage] for stage in range(num_stages)] - y_true = [np.zeros((bs, - grid_sizes[s][0], - grid_sizes[s][1], - bbox_per_grid, - 5+num_classes), dtype='float32') - for s in range(num_stages)] - # [(?, 52, 52, 3, 5+num_classes) (?, 26, 26, 3, 5+num_classes) (?, 13, 13, 3, 5+num_classes) ] - y_true_boxes_xywh = np.concatenate((true_boxes_xy, true_boxes_wh), axis=-1) - # Expand dim to apply broadcasting. - anchors = np.expand_dims(anchors, 0) # (1, 9 , 2) - anchor_maxes = anchors / 2. # (1, 9 , 2) - anchor_mins = -anchor_maxes # (1, 9 , 2) - valid_mask = true_boxes_wh[..., 0] > 0 # (1, 100) - - for batch_idx in range(bs): - # Discard zero rows. - wh = true_boxes_wh[batch_idx, valid_mask[batch_idx]] # (# of bbox, 2) - num_boxes = len(wh) - if num_boxes == 0: continue - wh = np.expand_dims(wh, -2) # (# of bbox, 1, 2) - box_maxes = wh / 2. # (# of bbox, 1, 2) - box_mins = -box_maxes # (# of bbox, 1, 2) - - # Compute IoU between each anchors and true boxes for responsibility assignment - intersect_mins = np.maximum(box_mins, anchor_mins) # (# of bbox, 9, 2) - intersect_maxes = np.minimum(box_maxes, anchor_maxes) - intersect_wh = np.maximum(intersect_maxes - intersect_mins, 0.) - intersect_area = np.prod(intersect_wh, axis=-1) # (9,) - box_area = wh[..., 0] * wh[..., 1] # (# of bbox, 1) - anchor_area = anchors[..., 0] * anchors[..., 1] # (1, 9) - iou = intersect_area / (box_area + anchor_area - intersect_area) # (# of bbox, 9) - - # Find best anchor for each true box - best_anchors = np.argmax(iou, axis=-1) # (# of bbox,) - for box_idx in range(num_boxes): - best_anchor = best_anchors[box_idx] - for stage in range(num_stages): - if best_anchor in anchor_mask[stage]: - x_offset = true_boxes[batch_idx, box_idx, 0]*grid_sizes[stage][1] - y_offset = true_boxes[batch_idx, box_idx, 1]*grid_sizes[stage][0] - # Grid Index - grid_col = np.floor(x_offset).astype('int32') - grid_row = np.floor(y_offset).astype('int32') - anchor_idx = anchor_mask[stage].index(best_anchor) - class_idx = true_boxes[batch_idx, box_idx, 4].astype('int32') - # y_true[stage][batch_idx, grid_row, grid_col, anchor_idx, 0] = x_offset - grid_col # x - # y_true[stage][batch_idx, grid_row, grid_col, anchor_idx, 1] = y_offset - grid_row # y - # y_true[stage][batch_idx, grid_row, grid_col, anchor_idx, :4] = true_boxes_abs[batch_idx, box_idx, :4] # abs xywh - y_true[stage][batch_idx, grid_row, grid_col, anchor_idx, :2] = true_boxes_xy[batch_idx, box_idx, :] # abs xy - y_true[stage][batch_idx, grid_row, grid_col, anchor_idx, 2:4] = true_boxes_wh[batch_idx, box_idx, :] # abs wh - y_true[stage][batch_idx, grid_row, grid_col, anchor_idx, 4] = 1 # confidence - - y_true[stage][batch_idx, grid_row, grid_col, anchor_idx, 5+class_idx] = 1 # one-hot encoding - # smooth - # onehot = np.zeros(num_classes, dtype=np.float) - # onehot[class_idx] = 1.0 - # uniform_distribution = np.full(num_classes, 1.0 / num_classes) - # delta = 0.01 - # smooth_onehot = onehot * (1 - delta) + delta * uniform_distribution - # y_true[stage][batch_idx, grid_row, grid_col, anchor_idx, 5:] = smooth_onehot - - return y_true, y_true_boxes_xywh - -""" - Calculate the AP given the recall and precision array - 1st) We compute a version of the measured precision/recall curve with - precision monotonically decreasing - 2nd) We compute the AP as the area under this curve by numerical integration. -""" -def voc_ap(rec, prec): - """ - --- Official matlab code VOC2012--- - mrec=[0 ; rec ; 1]; - mpre=[0 ; prec ; 0]; - for i=numel(mpre)-1:-1:1 - mpre(i)=max(mpre(i),mpre(i+1)); - end - i=find(mrec(2:end)~=mrec(1:end-1))+1; - ap=sum((mrec(i)-mrec(i-1)).*mpre(i)); - """ - rec.insert(0, 0.0) # insert 0.0 at begining of list - rec.append(1.0) # insert 1.0 at end of list - mrec = rec[:] - prec.insert(0, 0.0) # insert 0.0 at begining of list - prec.append(0.0) # insert 0.0 at end of list - mpre = prec[:] - """ - This part makes the precision monotonically decreasing - (goes from the end to the beginning) - matlab: for i=numel(mpre)-1:-1:1 - mpre(i)=max(mpre(i),mpre(i+1)); - """ - # matlab indexes start in 1 but python in 0, so I have to do: - # range(start=(len(mpre) - 2), end=0, step=-1) - # also the python function range excludes the end, resulting in: - # range(start=(len(mpre) - 2), end=-1, step=-1) - for i in range(len(mpre)-2, -1, -1): - mpre[i] = max(mpre[i], mpre[i+1]) - """ - This part creates a list of indexes where the recall changes - matlab: i=find(mrec(2:end)~=mrec(1:end-1))+1; - """ - i_list = [] - for i in range(1, len(mrec)): - if mrec[i] != mrec[i-1]: - i_list.append(i) # if it was matlab would be i + 1 - """ - The Average Precision (AP) is the area under the curve - (numerical integration) - matlab: ap=sum((mrec(i)-mrec(i-1)).*mpre(i)); - """ - ap = 0.0 - for i in i_list: - ap += ((mrec[i]-mrec[i-1])*mpre[i]) - return ap, mrec, mpre - -""" - Draw plot using Matplotlib -""" -def draw_plot_func(dictionary, n_classes, window_title, plot_title, x_label, output_path, to_show, plot_color, true_p_bar): - # sort the dictionary by decreasing value, into a list of tuples - sorted_dic_by_value = sorted(dictionary.items(), key=operator.itemgetter(1)) - print(sorted_dic_by_value) - # unpacking the list of tuples into two lists - sorted_keys, sorted_values = zip(*sorted_dic_by_value) - # - if true_p_bar != "": - """ - Special case to draw in: - - green -> TP: True Positives (object detected and matches ground-truth) - - red -> FP: False Positives (object detected but does not match ground-truth) - - pink -> FN: False Negatives (object not detected but present in the ground-truth) - """ - fp_sorted = [] - tp_sorted = [] - for key in sorted_keys: - fp_sorted.append(dictionary[key] - true_p_bar[key]) - tp_sorted.append(true_p_bar[key]) - plt.barh(range(n_classes), fp_sorted, align='center', color='crimson', label='False Positive') - plt.barh(range(n_classes), tp_sorted, align='center', color='forestgreen', label='True Positive', left=fp_sorted) - # add legend - plt.legend(loc='lower right') - """ - Write number on side of bar - """ - fig = plt.gcf() # gcf - get current figure - axes = plt.gca() - r = fig.canvas.get_renderer() - for i, val in enumerate(sorted_values): - fp_val = fp_sorted[i] - tp_val = tp_sorted[i] - fp_str_val = " " + str(fp_val) - tp_str_val = fp_str_val + " " + str(tp_val) - # trick to paint multicolor with offset: - # first paint everything and then repaint the first number - t = plt.text(val, i, tp_str_val, color='forestgreen', va='center', fontweight='bold') - plt.text(val, i, fp_str_val, color='crimson', va='center', fontweight='bold') - if i == (len(sorted_values)-1): # largest bar - adjust_axes(r, t, fig, axes) - else: - plt.barh(range(n_classes), sorted_values, color=plot_color) - """ - Write number on side of bar - """ - fig = plt.gcf() # gcf - get current figure - axes = plt.gca() - r = fig.canvas.get_renderer() - for i, val in enumerate(sorted_values): - str_val = " " + str(val) # add a space before - if val < 1.0: - str_val = " {0:.2f}".format(val) - t = plt.text(val, i, str_val, color=plot_color, va='center', fontweight='bold') - # re-set axes to show number inside the figure - if i == (len(sorted_values)-1): # largest bar - adjust_axes(r, t, fig, axes) - # set window title - fig.canvas.set_window_title(window_title) - # write classes in y axis - tick_font_size = 12 - plt.yticks(range(n_classes), sorted_keys, fontsize=tick_font_size) - """ - Re-scale height accordingly - """ - init_height = fig.get_figheight() - # comput the matrix height in points and inches - dpi = fig.dpi - height_pt = n_classes * (tick_font_size * 1.4) # 1.4 (some spacing) - height_in = height_pt / dpi - # compute the required figure height - top_margin = 0.15 # in percentage of the figure height - bottom_margin = 0.05 # in percentage of the figure height - figure_height = height_in / (1 - top_margin - bottom_margin) - # set new height - if figure_height > init_height: - fig.set_figheight(figure_height) - - # set plot title - plt.title(plot_title, fontsize=14) - # set axis titles - # plt.xlabel('classes') - plt.xlabel(x_label, fontsize='large') - # adjust size of window - fig.tight_layout() - # save the plot - fig.savefig(output_path) - # show image - # if to_show: - plt.show() - # close the plot - # plt.close() - -""" - Plot - adjust axes -""" -def adjust_axes(r, t, fig, axes): - # get text width for re-scaling - bb = t.get_window_extent(renderer=r) - text_width_inches = bb.width / fig.dpi - # get axis width in inches - current_fig_width = fig.get_figwidth() - new_fig_width = current_fig_width + text_width_inches - propotion = new_fig_width / current_fig_width - # get axis limit - x_lim = axes.get_xlim() - axes.set_xlim([x_lim[0], x_lim[1]*propotion]) - - -def read_txt_to_list(path): - # open txt file lines to a list - with open(path) as f: - content = f.readlines() - # remove whitespace characters like `\n` at the end of each line - content = [x.strip() for x in content] - return content \ No newline at end of file diff --git a/spaces/KyanChen/RSPrompter/mmdet/structures/bbox/__init__.py b/spaces/KyanChen/RSPrompter/mmdet/structures/bbox/__init__.py deleted file mode 100644 index c4c60df85de7510de83286c50ccc73bbd5c376d5..0000000000000000000000000000000000000000 --- a/spaces/KyanChen/RSPrompter/mmdet/structures/bbox/__init__.py +++ /dev/null @@ -1,24 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -from .base_boxes import BaseBoxes -from .bbox_overlaps import bbox_overlaps -from .box_type import (autocast_box_type, convert_box_type, get_box_type, - register_box, register_box_converter) -from .horizontal_boxes import HorizontalBoxes -from .transforms import (bbox2corner, bbox2distance, bbox2result, bbox2roi, - bbox_cxcywh_to_xyxy, bbox_flip, bbox_mapping, - bbox_mapping_back, bbox_project, bbox_rescale, - bbox_xyxy_to_cxcywh, cat_boxes, corner2bbox, - distance2bbox, empty_box_as, find_inside_bboxes, - get_box_tensor, get_box_wh, roi2bbox, scale_boxes, - stack_boxes) - -__all__ = [ - 'bbox_overlaps', 'bbox_flip', 'bbox_mapping', 'bbox_mapping_back', - 'bbox2roi', 'roi2bbox', 'bbox2result', 'distance2bbox', 'bbox2distance', - 'bbox_rescale', 'bbox_cxcywh_to_xyxy', 'bbox_xyxy_to_cxcywh', - 'find_inside_bboxes', 'bbox2corner', 'corner2bbox', 'bbox_project', - 'BaseBoxes', 'convert_box_type', 'get_box_type', 'register_box', - 'register_box_converter', 'HorizontalBoxes', 'autocast_box_type', - 'cat_boxes', 'stack_boxes', 'scale_boxes', 'get_box_wh', 'get_box_tensor', - 'empty_box_as' -] diff --git a/spaces/LanguageBind/LanguageBind/languagebind/audio/processing_audio.py b/spaces/LanguageBind/LanguageBind/languagebind/audio/processing_audio.py deleted file mode 100644 index 865e6cda64a16a2009a7a8181a4bb349d004674b..0000000000000000000000000000000000000000 --- a/spaces/LanguageBind/LanguageBind/languagebind/audio/processing_audio.py +++ /dev/null @@ -1,172 +0,0 @@ -import cv2 -import numpy as np -import torch -import torchaudio -from torchvision import transforms -from transformers import ProcessorMixin, BatchEncoding -from transformers.image_processing_utils import BatchFeature -from torch.nn import functional as F - - -def make_list_of_images(x): - if not isinstance(x, list): - return [x] - return x - - -torchaudio.set_audio_backend("soundfile") - -def torchaudio_loader(path): - return torchaudio.load(path) - -def int16_to_float32_torch(x): - return (x / 32767.0).type(torch.float32) - -def float32_to_int16_torch(x): - x = torch.clamp(x, min=-1., max=1.) - return (x * 32767.).type(torch.int16) - -DEFAULT_AUDIO_FRAME_SHIFT_MS = 10 - -class AudioTransform: - def __init__(self, args): - self.sample_rate = args.audio_sample_rate - self.num_mel_bins = args.num_mel_bins - self.target_length = args.target_length - self.audio_mean = args.audio_mean - self.audio_std = args.audio_std - self.mean = [] - self.std = [] - # mean=-4.2677393 - # std=4.5689974 - # self.norm = transforms.Normalize(mean=self.audio_mean, std=self.audio_std) - - - def __call__(self, audio_data_and_origin_sr): - audio_data, origin_sr = audio_data_and_origin_sr - if self.sample_rate != origin_sr: - # print(audio_data.shape, origin_sr) - audio_data = torchaudio.functional.resample(audio_data, orig_freq=origin_sr, new_freq=self.sample_rate) - waveform_melspec = self.waveform2melspec(audio_data) - return waveform_melspec - - - def waveform2melspec(self, audio_data): - mel = self.get_mel(audio_data) - if mel.shape[0] > self.target_length: - # split to three parts - chunk_frames = self.target_length - total_frames = mel.shape[0] - ranges = np.array_split(list(range(0, total_frames - chunk_frames + 1)), 3) - # print('total_frames-chunk_frames:', total_frames-chunk_frames, - # 'len(audio_data):', len(audio_data), - # 'chunk_frames:', chunk_frames, - # 'total_frames:', total_frames) - if len(ranges[1]) == 0: # if the audio is too short, we just use the first chunk - ranges[1] = [0] - if len(ranges[2]) == 0: # if the audio is too short, we just use the first chunk - ranges[2] = [0] - # randomly choose index for each part - idx_front = np.random.choice(ranges[0]) - idx_middle = np.random.choice(ranges[1]) - idx_back = np.random.choice(ranges[2]) - # idx_front = ranges[0][0] # fixed - # idx_middle = ranges[1][0] - # idx_back = ranges[2][0] - # select mel - mel_chunk_front = mel[idx_front:idx_front + chunk_frames, :] - mel_chunk_middle = mel[idx_middle:idx_middle + chunk_frames, :] - mel_chunk_back = mel[idx_back:idx_back + chunk_frames, :] - # print(total_frames, idx_front, idx_front + chunk_frames, idx_middle, idx_middle + chunk_frames, idx_back, idx_back + chunk_frames) - # stack - mel_fusion = torch.stack([mel_chunk_front, mel_chunk_middle, mel_chunk_back], dim=0) - elif mel.shape[0] < self.target_length: # padding if too short - n_repeat = int(self.target_length / mel.shape[0]) + 1 - # print(self.target_length, mel.shape[0], n_repeat) - mel = mel.repeat(n_repeat, 1)[:self.target_length, :] - mel_fusion = torch.stack([mel, mel, mel], dim=0) - else: # if equal - mel_fusion = torch.stack([mel, mel, mel], dim=0) - mel_fusion = mel_fusion.transpose(1, 2) # [3, target_length, mel_bins] -> [3, mel_bins, target_length] - - # self.mean.append(mel_fusion.mean()) - # self.std.append(mel_fusion.std()) - mel_fusion = (mel_fusion - self.audio_mean) / (self.audio_std * 2) - return mel_fusion - - def get_mel(self, audio_data): - # mel shape: (n_mels, T) - audio_data -= audio_data.mean() - mel = torchaudio.compliance.kaldi.fbank( - audio_data, - htk_compat=True, - sample_frequency=self.sample_rate, - use_energy=False, - window_type="hanning", - num_mel_bins=self.num_mel_bins, - dither=0.0, - frame_length=25, - frame_shift=DEFAULT_AUDIO_FRAME_SHIFT_MS, - ) - return mel # (T, n_mels) - - -def get_audio_transform(config): - config = config.vision_config - return AudioTransform(config) - - -def load_and_transform_audio( - audio_path, - transform, -): - waveform_and_sr = torchaudio_loader(audio_path) - audio_outputs = transform(waveform_and_sr) - - return audio_outputs - -class LanguageBindAudioProcessor(ProcessorMixin): - attributes = [] - tokenizer_class = ("LanguageBindAudioTokenizer") - - def __init__(self, config, tokenizer=None, **kwargs): - super().__init__(**kwargs) - self.config = config - self.transform = get_audio_transform(config) - self.image_processor = load_and_transform_audio - self.tokenizer = tokenizer - - def __call__(self, images=None, text=None, context_length=77, return_tensors=None, **kwargs): - if text is None and images is None: - raise ValueError("You have to specify either text or images. Both cannot be none.") - - if text is not None: - encoding = self.tokenizer(text, max_length=context_length, padding='max_length', - truncation=True, return_tensors=return_tensors, **kwargs) - - if images is not None: - images = make_list_of_images(images) - image_features = [self.image_processor(image, self.transform) for image in images] - image_features = torch.stack(image_features) - - if text is not None and images is not None: - encoding["pixel_values"] = image_features - return encoding - elif text is not None: - return encoding - else: - return {"pixel_values": image_features} - - def batch_decode(self, skip_special_tokens=True, *args, **kwargs): - """ - This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please - refer to the docstring of this method for more information. - """ - return self.tokenizer.batch_decode(*args, skip_special_tokens=skip_special_tokens, **kwargs) - - def decode(self, skip_special_tokens=True, *args, **kwargs): - """ - This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to - the docstring of this method for more information. - """ - return self.tokenizer.decode(*args, skip_special_tokens=skip_special_tokens, **kwargs) diff --git a/spaces/LaynzKunz/Model-RCV/lib/infer_pack/modules/F0Predictor/F0Predictor.py b/spaces/LaynzKunz/Model-RCV/lib/infer_pack/modules/F0Predictor/F0Predictor.py deleted file mode 100644 index f56e49e7f0e6eab3babf0711cae2933371b9f9cc..0000000000000000000000000000000000000000 --- a/spaces/LaynzKunz/Model-RCV/lib/infer_pack/modules/F0Predictor/F0Predictor.py +++ /dev/null @@ -1,16 +0,0 @@ -class F0Predictor(object): - def compute_f0(self, wav, p_len): - """ - input: wav:[signal_length] - p_len:int - output: f0:[signal_length//hop_length] - """ - pass - - def compute_f0_uv(self, wav, p_len): - """ - input: wav:[signal_length] - p_len:int - output: f0:[signal_length//hop_length],uv:[signal_length//hop_length] - """ - pass diff --git a/spaces/Liu-LAB/GPT-academic/docs/waifu_plugin/jquery-ui.min.js b/spaces/Liu-LAB/GPT-academic/docs/waifu_plugin/jquery-ui.min.js deleted file mode 100644 index 25398a167415050ae8bfb0bfebac6aa3ab790909..0000000000000000000000000000000000000000 --- a/spaces/Liu-LAB/GPT-academic/docs/waifu_plugin/jquery-ui.min.js +++ /dev/null @@ -1,13 +0,0 @@ -/*! jQuery UI - v1.12.1 - 2016-09-14 -* http://jqueryui.com -* Includes: widget.js, position.js, data.js, disable-selection.js, effect.js, effects/effect-blind.js, effects/effect-bounce.js, effects/effect-clip.js, effects/effect-drop.js, effects/effect-explode.js, effects/effect-fade.js, effects/effect-fold.js, effects/effect-highlight.js, effects/effect-puff.js, effects/effect-pulsate.js, effects/effect-scale.js, effects/effect-shake.js, effects/effect-size.js, effects/effect-slide.js, effects/effect-transfer.js, focusable.js, form-reset-mixin.js, jquery-1-7.js, keycode.js, labels.js, scroll-parent.js, tabbable.js, unique-id.js, widgets/accordion.js, widgets/autocomplete.js, widgets/button.js, widgets/checkboxradio.js, widgets/controlgroup.js, widgets/datepicker.js, widgets/dialog.js, widgets/draggable.js, widgets/droppable.js, widgets/menu.js, widgets/mouse.js, widgets/progressbar.js, widgets/resizable.js, widgets/selectable.js, widgets/selectmenu.js, widgets/slider.js, widgets/sortable.js, widgets/spinner.js, widgets/tabs.js, widgets/tooltip.js -* Copyright jQuery Foundation and other contributors; Licensed MIT */ - -(function(t){"function"==typeof define&&define.amd?define(["jquery"],t):t(jQuery)})(function(t){function e(t){for(var e=t.css("visibility");"inherit"===e;)t=t.parent(),e=t.css("visibility");return"hidden"!==e}function i(t){for(var e,i;t.length&&t[0]!==document;){if(e=t.css("position"),("absolute"===e||"relative"===e||"fixed"===e)&&(i=parseInt(t.css("zIndex"),10),!isNaN(i)&&0!==i))return i;t=t.parent()}return 0}function s(){this._curInst=null,this._keyEvent=!1,this._disabledInputs=[],this._datepickerShowing=!1,this._inDialog=!1,this._mainDivId="ui-datepicker-div",this._inlineClass="ui-datepicker-inline",this._appendClass="ui-datepicker-append",this._triggerClass="ui-datepicker-trigger",this._dialogClass="ui-datepicker-dialog",this._disableClass="ui-datepicker-disabled",this._unselectableClass="ui-datepicker-unselectable",this._currentClass="ui-datepicker-current-day",this._dayOverClass="ui-datepicker-days-cell-over",this.regional=[],this.regional[""]={closeText:"Done",prevText:"Prev",nextText:"Next",currentText:"Today",monthNames:["January","February","March","April","May","June","July","August","September","October","November","December"],monthNamesShort:["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"],dayNames:["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"],dayNamesShort:["Sun","Mon","Tue","Wed","Thu","Fri","Sat"],dayNamesMin:["Su","Mo","Tu","We","Th","Fr","Sa"],weekHeader:"Wk",dateFormat:"mm/dd/yy",firstDay:0,isRTL:!1,showMonthAfterYear:!1,yearSuffix:""},this._defaults={showOn:"focus",showAnim:"fadeIn",showOptions:{},defaultDate:null,appendText:"",buttonText:"...",buttonImage:"",buttonImageOnly:!1,hideIfNoPrevNext:!1,navigationAsDateFormat:!1,gotoCurrent:!1,changeMonth:!1,changeYear:!1,yearRange:"c-10:c+10",showOtherMonths:!1,selectOtherMonths:!1,showWeek:!1,calculateWeek:this.iso8601Week,shortYearCutoff:"+10",minDate:null,maxDate:null,duration:"fast",beforeShowDay:null,beforeShow:null,onSelect:null,onChangeMonthYear:null,onClose:null,numberOfMonths:1,showCurrentAtPos:0,stepMonths:1,stepBigMonths:12,altField:"",altFormat:"",constrainInput:!0,showButtonPanel:!1,autoSize:!1,disabled:!1},t.extend(this._defaults,this.regional[""]),this.regional.en=t.extend(!0,{},this.regional[""]),this.regional["en-US"]=t.extend(!0,{},this.regional.en),this.dpDiv=n(t("
"))}function n(e){var i="button, .ui-datepicker-prev, .ui-datepicker-next, .ui-datepicker-calendar td a";return e.on("mouseout",i,function(){t(this).removeClass("ui-state-hover"),-1!==this.className.indexOf("ui-datepicker-prev")&&t(this).removeClass("ui-datepicker-prev-hover"),-1!==this.className.indexOf("ui-datepicker-next")&&t(this).removeClass("ui-datepicker-next-hover")}).on("mouseover",i,o)}function o(){t.datepicker._isDisabledDatepicker(m.inline?m.dpDiv.parent()[0]:m.input[0])||(t(this).parents(".ui-datepicker-calendar").find("a").removeClass("ui-state-hover"),t(this).addClass("ui-state-hover"),-1!==this.className.indexOf("ui-datepicker-prev")&&t(this).addClass("ui-datepicker-prev-hover"),-1!==this.className.indexOf("ui-datepicker-next")&&t(this).addClass("ui-datepicker-next-hover"))}function a(e,i){t.extend(e,i);for(var s in i)null==i[s]&&(e[s]=i[s]);return e}function r(t){return function(){var e=this.element.val();t.apply(this,arguments),this._refresh(),e!==this.element.val()&&this._trigger("change")}}t.ui=t.ui||{},t.ui.version="1.12.1";var h=0,l=Array.prototype.slice;t.cleanData=function(e){return function(i){var s,n,o;for(o=0;null!=(n=i[o]);o++)try{s=t._data(n,"events"),s&&s.remove&&t(n).triggerHandler("remove")}catch(a){}e(i)}}(t.cleanData),t.widget=function(e,i,s){var n,o,a,r={},h=e.split(".")[0];e=e.split(".")[1];var l=h+"-"+e;return s||(s=i,i=t.Widget),t.isArray(s)&&(s=t.extend.apply(null,[{}].concat(s))),t.expr[":"][l.toLowerCase()]=function(e){return!!t.data(e,l)},t[h]=t[h]||{},n=t[h][e],o=t[h][e]=function(t,e){return this._createWidget?(arguments.length&&this._createWidget(t,e),void 0):new o(t,e)},t.extend(o,n,{version:s.version,_proto:t.extend({},s),_childConstructors:[]}),a=new i,a.options=t.widget.extend({},a.options),t.each(s,function(e,s){return t.isFunction(s)?(r[e]=function(){function t(){return i.prototype[e].apply(this,arguments)}function n(t){return i.prototype[e].apply(this,t)}return function(){var e,i=this._super,o=this._superApply;return this._super=t,this._superApply=n,e=s.apply(this,arguments),this._super=i,this._superApply=o,e}}(),void 0):(r[e]=s,void 0)}),o.prototype=t.widget.extend(a,{widgetEventPrefix:n?a.widgetEventPrefix||e:e},r,{constructor:o,namespace:h,widgetName:e,widgetFullName:l}),n?(t.each(n._childConstructors,function(e,i){var s=i.prototype;t.widget(s.namespace+"."+s.widgetName,o,i._proto)}),delete n._childConstructors):i._childConstructors.push(o),t.widget.bridge(e,o),o},t.widget.extend=function(e){for(var i,s,n=l.call(arguments,1),o=0,a=n.length;a>o;o++)for(i in n[o])s=n[o][i],n[o].hasOwnProperty(i)&&void 0!==s&&(e[i]=t.isPlainObject(s)?t.isPlainObject(e[i])?t.widget.extend({},e[i],s):t.widget.extend({},s):s);return e},t.widget.bridge=function(e,i){var s=i.prototype.widgetFullName||e;t.fn[e]=function(n){var o="string"==typeof n,a=l.call(arguments,1),r=this;return o?this.length||"instance"!==n?this.each(function(){var i,o=t.data(this,s);return"instance"===n?(r=o,!1):o?t.isFunction(o[n])&&"_"!==n.charAt(0)?(i=o[n].apply(o,a),i!==o&&void 0!==i?(r=i&&i.jquery?r.pushStack(i.get()):i,!1):void 0):t.error("no such method '"+n+"' for "+e+" widget instance"):t.error("cannot call methods on "+e+" prior to initialization; "+"attempted to call method '"+n+"'")}):r=void 0:(a.length&&(n=t.widget.extend.apply(null,[n].concat(a))),this.each(function(){var e=t.data(this,s);e?(e.option(n||{}),e._init&&e._init()):t.data(this,s,new i(n,this))})),r}},t.Widget=function(){},t.Widget._childConstructors=[],t.Widget.prototype={widgetName:"widget",widgetEventPrefix:"",defaultElement:"
",options:{classes:{},disabled:!1,create:null},_createWidget:function(e,i){i=t(i||this.defaultElement||this)[0],this.element=t(i),this.uuid=h++,this.eventNamespace="."+this.widgetName+this.uuid,this.bindings=t(),this.hoverable=t(),this.focusable=t(),this.classesElementLookup={},i!==this&&(t.data(i,this.widgetFullName,this),this._on(!0,this.element,{remove:function(t){t.target===i&&this.destroy()}}),this.document=t(i.style?i.ownerDocument:i.document||i),this.window=t(this.document[0].defaultView||this.document[0].parentWindow)),this.options=t.widget.extend({},this.options,this._getCreateOptions(),e),this._create(),this.options.disabled&&this._setOptionDisabled(this.options.disabled),this._trigger("create",null,this._getCreateEventData()),this._init()},_getCreateOptions:function(){return{}},_getCreateEventData:t.noop,_create:t.noop,_init:t.noop,destroy:function(){var e=this;this._destroy(),t.each(this.classesElementLookup,function(t,i){e._removeClass(i,t)}),this.element.off(this.eventNamespace).removeData(this.widgetFullName),this.widget().off(this.eventNamespace).removeAttr("aria-disabled"),this.bindings.off(this.eventNamespace)},_destroy:t.noop,widget:function(){return this.element},option:function(e,i){var s,n,o,a=e;if(0===arguments.length)return t.widget.extend({},this.options);if("string"==typeof e)if(a={},s=e.split("."),e=s.shift(),s.length){for(n=a[e]=t.widget.extend({},this.options[e]),o=0;s.length-1>o;o++)n[s[o]]=n[s[o]]||{},n=n[s[o]];if(e=s.pop(),1===arguments.length)return void 0===n[e]?null:n[e];n[e]=i}else{if(1===arguments.length)return void 0===this.options[e]?null:this.options[e];a[e]=i}return this._setOptions(a),this},_setOptions:function(t){var e;for(e in t)this._setOption(e,t[e]);return this},_setOption:function(t,e){return"classes"===t&&this._setOptionClasses(e),this.options[t]=e,"disabled"===t&&this._setOptionDisabled(e),this},_setOptionClasses:function(e){var i,s,n;for(i in e)n=this.classesElementLookup[i],e[i]!==this.options.classes[i]&&n&&n.length&&(s=t(n.get()),this._removeClass(n,i),s.addClass(this._classes({element:s,keys:i,classes:e,add:!0})))},_setOptionDisabled:function(t){this._toggleClass(this.widget(),this.widgetFullName+"-disabled",null,!!t),t&&(this._removeClass(this.hoverable,null,"ui-state-hover"),this._removeClass(this.focusable,null,"ui-state-focus"))},enable:function(){return this._setOptions({disabled:!1})},disable:function(){return this._setOptions({disabled:!0})},_classes:function(e){function i(i,o){var a,r;for(r=0;i.length>r;r++)a=n.classesElementLookup[i[r]]||t(),a=e.add?t(t.unique(a.get().concat(e.element.get()))):t(a.not(e.element).get()),n.classesElementLookup[i[r]]=a,s.push(i[r]),o&&e.classes[i[r]]&&s.push(e.classes[i[r]])}var s=[],n=this;return e=t.extend({element:this.element,classes:this.options.classes||{}},e),this._on(e.element,{remove:"_untrackClassesElement"}),e.keys&&i(e.keys.match(/\S+/g)||[],!0),e.extra&&i(e.extra.match(/\S+/g)||[]),s.join(" ")},_untrackClassesElement:function(e){var i=this;t.each(i.classesElementLookup,function(s,n){-1!==t.inArray(e.target,n)&&(i.classesElementLookup[s]=t(n.not(e.target).get()))})},_removeClass:function(t,e,i){return this._toggleClass(t,e,i,!1)},_addClass:function(t,e,i){return this._toggleClass(t,e,i,!0)},_toggleClass:function(t,e,i,s){s="boolean"==typeof s?s:i;var n="string"==typeof t||null===t,o={extra:n?e:i,keys:n?t:e,element:n?this.element:t,add:s};return o.element.toggleClass(this._classes(o),s),this},_on:function(e,i,s){var n,o=this;"boolean"!=typeof e&&(s=i,i=e,e=!1),s?(i=n=t(i),this.bindings=this.bindings.add(i)):(s=i,i=this.element,n=this.widget()),t.each(s,function(s,a){function r(){return e||o.options.disabled!==!0&&!t(this).hasClass("ui-state-disabled")?("string"==typeof a?o[a]:a).apply(o,arguments):void 0}"string"!=typeof a&&(r.guid=a.guid=a.guid||r.guid||t.guid++);var h=s.match(/^([\w:-]*)\s*(.*)$/),l=h[1]+o.eventNamespace,c=h[2];c?n.on(l,c,r):i.on(l,r)})},_off:function(e,i){i=(i||"").split(" ").join(this.eventNamespace+" ")+this.eventNamespace,e.off(i).off(i),this.bindings=t(this.bindings.not(e).get()),this.focusable=t(this.focusable.not(e).get()),this.hoverable=t(this.hoverable.not(e).get())},_delay:function(t,e){function i(){return("string"==typeof t?s[t]:t).apply(s,arguments)}var s=this;return setTimeout(i,e||0)},_hoverable:function(e){this.hoverable=this.hoverable.add(e),this._on(e,{mouseenter:function(e){this._addClass(t(e.currentTarget),null,"ui-state-hover")},mouseleave:function(e){this._removeClass(t(e.currentTarget),null,"ui-state-hover")}})},_focusable:function(e){this.focusable=this.focusable.add(e),this._on(e,{focusin:function(e){this._addClass(t(e.currentTarget),null,"ui-state-focus")},focusout:function(e){this._removeClass(t(e.currentTarget),null,"ui-state-focus")}})},_trigger:function(e,i,s){var n,o,a=this.options[e];if(s=s||{},i=t.Event(i),i.type=(e===this.widgetEventPrefix?e:this.widgetEventPrefix+e).toLowerCase(),i.target=this.element[0],o=i.originalEvent)for(n in o)n in i||(i[n]=o[n]);return this.element.trigger(i,s),!(t.isFunction(a)&&a.apply(this.element[0],[i].concat(s))===!1||i.isDefaultPrevented())}},t.each({show:"fadeIn",hide:"fadeOut"},function(e,i){t.Widget.prototype["_"+e]=function(s,n,o){"string"==typeof n&&(n={effect:n});var a,r=n?n===!0||"number"==typeof n?i:n.effect||i:e;n=n||{},"number"==typeof n&&(n={duration:n}),a=!t.isEmptyObject(n),n.complete=o,n.delay&&s.delay(n.delay),a&&t.effects&&t.effects.effect[r]?s[e](n):r!==e&&s[r]?s[r](n.duration,n.easing,o):s.queue(function(i){t(this)[e](),o&&o.call(s[0]),i()})}}),t.widget,function(){function e(t,e,i){return[parseFloat(t[0])*(u.test(t[0])?e/100:1),parseFloat(t[1])*(u.test(t[1])?i/100:1)]}function i(e,i){return parseInt(t.css(e,i),10)||0}function s(e){var i=e[0];return 9===i.nodeType?{width:e.width(),height:e.height(),offset:{top:0,left:0}}:t.isWindow(i)?{width:e.width(),height:e.height(),offset:{top:e.scrollTop(),left:e.scrollLeft()}}:i.preventDefault?{width:0,height:0,offset:{top:i.pageY,left:i.pageX}}:{width:e.outerWidth(),height:e.outerHeight(),offset:e.offset()}}var n,o=Math.max,a=Math.abs,r=/left|center|right/,h=/top|center|bottom/,l=/[\+\-]\d+(\.[\d]+)?%?/,c=/^\w+/,u=/%$/,d=t.fn.position;t.position={scrollbarWidth:function(){if(void 0!==n)return n;var e,i,s=t("
"),o=s.children()[0];return t("body").append(s),e=o.offsetWidth,s.css("overflow","scroll"),i=o.offsetWidth,e===i&&(i=s[0].clientWidth),s.remove(),n=e-i},getScrollInfo:function(e){var i=e.isWindow||e.isDocument?"":e.element.css("overflow-x"),s=e.isWindow||e.isDocument?"":e.element.css("overflow-y"),n="scroll"===i||"auto"===i&&e.widthi?"left":e>0?"right":"center",vertical:0>r?"top":s>0?"bottom":"middle"};l>p&&p>a(e+i)&&(u.horizontal="center"),c>f&&f>a(s+r)&&(u.vertical="middle"),u.important=o(a(e),a(i))>o(a(s),a(r))?"horizontal":"vertical",n.using.call(this,t,u)}),h.offset(t.extend(D,{using:r}))})},t.ui.position={fit:{left:function(t,e){var i,s=e.within,n=s.isWindow?s.scrollLeft:s.offset.left,a=s.width,r=t.left-e.collisionPosition.marginLeft,h=n-r,l=r+e.collisionWidth-a-n;e.collisionWidth>a?h>0&&0>=l?(i=t.left+h+e.collisionWidth-a-n,t.left+=h-i):t.left=l>0&&0>=h?n:h>l?n+a-e.collisionWidth:n:h>0?t.left+=h:l>0?t.left-=l:t.left=o(t.left-r,t.left)},top:function(t,e){var i,s=e.within,n=s.isWindow?s.scrollTop:s.offset.top,a=e.within.height,r=t.top-e.collisionPosition.marginTop,h=n-r,l=r+e.collisionHeight-a-n;e.collisionHeight>a?h>0&&0>=l?(i=t.top+h+e.collisionHeight-a-n,t.top+=h-i):t.top=l>0&&0>=h?n:h>l?n+a-e.collisionHeight:n:h>0?t.top+=h:l>0?t.top-=l:t.top=o(t.top-r,t.top)}},flip:{left:function(t,e){var i,s,n=e.within,o=n.offset.left+n.scrollLeft,r=n.width,h=n.isWindow?n.scrollLeft:n.offset.left,l=t.left-e.collisionPosition.marginLeft,c=l-h,u=l+e.collisionWidth-r-h,d="left"===e.my[0]?-e.elemWidth:"right"===e.my[0]?e.elemWidth:0,p="left"===e.at[0]?e.targetWidth:"right"===e.at[0]?-e.targetWidth:0,f=-2*e.offset[0];0>c?(i=t.left+d+p+f+e.collisionWidth-r-o,(0>i||a(c)>i)&&(t.left+=d+p+f)):u>0&&(s=t.left-e.collisionPosition.marginLeft+d+p+f-h,(s>0||u>a(s))&&(t.left+=d+p+f))},top:function(t,e){var i,s,n=e.within,o=n.offset.top+n.scrollTop,r=n.height,h=n.isWindow?n.scrollTop:n.offset.top,l=t.top-e.collisionPosition.marginTop,c=l-h,u=l+e.collisionHeight-r-h,d="top"===e.my[1],p=d?-e.elemHeight:"bottom"===e.my[1]?e.elemHeight:0,f="top"===e.at[1]?e.targetHeight:"bottom"===e.at[1]?-e.targetHeight:0,g=-2*e.offset[1];0>c?(s=t.top+p+f+g+e.collisionHeight-r-o,(0>s||a(c)>s)&&(t.top+=p+f+g)):u>0&&(i=t.top-e.collisionPosition.marginTop+p+f+g-h,(i>0||u>a(i))&&(t.top+=p+f+g))}},flipfit:{left:function(){t.ui.position.flip.left.apply(this,arguments),t.ui.position.fit.left.apply(this,arguments)},top:function(){t.ui.position.flip.top.apply(this,arguments),t.ui.position.fit.top.apply(this,arguments)}}}}(),t.ui.position,t.extend(t.expr[":"],{data:t.expr.createPseudo?t.expr.createPseudo(function(e){return function(i){return!!t.data(i,e)}}):function(e,i,s){return!!t.data(e,s[3])}}),t.fn.extend({disableSelection:function(){var t="onselectstart"in document.createElement("div")?"selectstart":"mousedown";return function(){return this.on(t+".ui-disableSelection",function(t){t.preventDefault()})}}(),enableSelection:function(){return this.off(".ui-disableSelection")}});var c="ui-effects-",u="ui-effects-style",d="ui-effects-animated",p=t;t.effects={effect:{}},function(t,e){function i(t,e,i){var s=u[e.type]||{};return null==t?i||!e.def?null:e.def:(t=s.floor?~~t:parseFloat(t),isNaN(t)?e.def:s.mod?(t+s.mod)%s.mod:0>t?0:t>s.max?s.max:t)}function s(i){var s=l(),n=s._rgba=[];return i=i.toLowerCase(),f(h,function(t,o){var a,r=o.re.exec(i),h=r&&o.parse(r),l=o.space||"rgba";return h?(a=s[l](h),s[c[l].cache]=a[c[l].cache],n=s._rgba=a._rgba,!1):e}),n.length?("0,0,0,0"===n.join()&&t.extend(n,o.transparent),s):o[i]}function n(t,e,i){return i=(i+1)%1,1>6*i?t+6*(e-t)*i:1>2*i?e:2>3*i?t+6*(e-t)*(2/3-i):t}var o,a="backgroundColor borderBottomColor borderLeftColor borderRightColor borderTopColor color columnRuleColor outlineColor textDecorationColor textEmphasisColor",r=/^([\-+])=\s*(\d+\.?\d*)/,h=[{re:/rgba?\(\s*(\d{1,3})\s*,\s*(\d{1,3})\s*,\s*(\d{1,3})\s*(?:,\s*(\d?(?:\.\d+)?)\s*)?\)/,parse:function(t){return[t[1],t[2],t[3],t[4]]}},{re:/rgba?\(\s*(\d+(?:\.\d+)?)\%\s*,\s*(\d+(?:\.\d+)?)\%\s*,\s*(\d+(?:\.\d+)?)\%\s*(?:,\s*(\d?(?:\.\d+)?)\s*)?\)/,parse:function(t){return[2.55*t[1],2.55*t[2],2.55*t[3],t[4]]}},{re:/#([a-f0-9]{2})([a-f0-9]{2})([a-f0-9]{2})/,parse:function(t){return[parseInt(t[1],16),parseInt(t[2],16),parseInt(t[3],16)]}},{re:/#([a-f0-9])([a-f0-9])([a-f0-9])/,parse:function(t){return[parseInt(t[1]+t[1],16),parseInt(t[2]+t[2],16),parseInt(t[3]+t[3],16)]}},{re:/hsla?\(\s*(\d+(?:\.\d+)?)\s*,\s*(\d+(?:\.\d+)?)\%\s*,\s*(\d+(?:\.\d+)?)\%\s*(?:,\s*(\d?(?:\.\d+)?)\s*)?\)/,space:"hsla",parse:function(t){return[t[1],t[2]/100,t[3]/100,t[4]]}}],l=t.Color=function(e,i,s,n){return new t.Color.fn.parse(e,i,s,n)},c={rgba:{props:{red:{idx:0,type:"byte"},green:{idx:1,type:"byte"},blue:{idx:2,type:"byte"}}},hsla:{props:{hue:{idx:0,type:"degrees"},saturation:{idx:1,type:"percent"},lightness:{idx:2,type:"percent"}}}},u={"byte":{floor:!0,max:255},percent:{max:1},degrees:{mod:360,floor:!0}},d=l.support={},p=t("

")[0],f=t.each;p.style.cssText="background-color:rgba(1,1,1,.5)",d.rgba=p.style.backgroundColor.indexOf("rgba")>-1,f(c,function(t,e){e.cache="_"+t,e.props.alpha={idx:3,type:"percent",def:1}}),l.fn=t.extend(l.prototype,{parse:function(n,a,r,h){if(n===e)return this._rgba=[null,null,null,null],this;(n.jquery||n.nodeType)&&(n=t(n).css(a),a=e);var u=this,d=t.type(n),p=this._rgba=[];return a!==e&&(n=[n,a,r,h],d="array"),"string"===d?this.parse(s(n)||o._default):"array"===d?(f(c.rgba.props,function(t,e){p[e.idx]=i(n[e.idx],e)}),this):"object"===d?(n instanceof l?f(c,function(t,e){n[e.cache]&&(u[e.cache]=n[e.cache].slice())}):f(c,function(e,s){var o=s.cache;f(s.props,function(t,e){if(!u[o]&&s.to){if("alpha"===t||null==n[t])return;u[o]=s.to(u._rgba)}u[o][e.idx]=i(n[t],e,!0)}),u[o]&&0>t.inArray(null,u[o].slice(0,3))&&(u[o][3]=1,s.from&&(u._rgba=s.from(u[o])))}),this):e},is:function(t){var i=l(t),s=!0,n=this;return f(c,function(t,o){var a,r=i[o.cache];return r&&(a=n[o.cache]||o.to&&o.to(n._rgba)||[],f(o.props,function(t,i){return null!=r[i.idx]?s=r[i.idx]===a[i.idx]:e})),s}),s},_space:function(){var t=[],e=this;return f(c,function(i,s){e[s.cache]&&t.push(i)}),t.pop()},transition:function(t,e){var s=l(t),n=s._space(),o=c[n],a=0===this.alpha()?l("transparent"):this,r=a[o.cache]||o.to(a._rgba),h=r.slice();return s=s[o.cache],f(o.props,function(t,n){var o=n.idx,a=r[o],l=s[o],c=u[n.type]||{};null!==l&&(null===a?h[o]=l:(c.mod&&(l-a>c.mod/2?a+=c.mod:a-l>c.mod/2&&(a-=c.mod)),h[o]=i((l-a)*e+a,n)))}),this[n](h)},blend:function(e){if(1===this._rgba[3])return this;var i=this._rgba.slice(),s=i.pop(),n=l(e)._rgba;return l(t.map(i,function(t,e){return(1-s)*n[e]+s*t}))},toRgbaString:function(){var e="rgba(",i=t.map(this._rgba,function(t,e){return null==t?e>2?1:0:t});return 1===i[3]&&(i.pop(),e="rgb("),e+i.join()+")"},toHslaString:function(){var e="hsla(",i=t.map(this.hsla(),function(t,e){return null==t&&(t=e>2?1:0),e&&3>e&&(t=Math.round(100*t)+"%"),t});return 1===i[3]&&(i.pop(),e="hsl("),e+i.join()+")"},toHexString:function(e){var i=this._rgba.slice(),s=i.pop();return e&&i.push(~~(255*s)),"#"+t.map(i,function(t){return t=(t||0).toString(16),1===t.length?"0"+t:t}).join("")},toString:function(){return 0===this._rgba[3]?"transparent":this.toRgbaString()}}),l.fn.parse.prototype=l.fn,c.hsla.to=function(t){if(null==t[0]||null==t[1]||null==t[2])return[null,null,null,t[3]];var e,i,s=t[0]/255,n=t[1]/255,o=t[2]/255,a=t[3],r=Math.max(s,n,o),h=Math.min(s,n,o),l=r-h,c=r+h,u=.5*c;return e=h===r?0:s===r?60*(n-o)/l+360:n===r?60*(o-s)/l+120:60*(s-n)/l+240,i=0===l?0:.5>=u?l/c:l/(2-c),[Math.round(e)%360,i,u,null==a?1:a]},c.hsla.from=function(t){if(null==t[0]||null==t[1]||null==t[2])return[null,null,null,t[3]];var e=t[0]/360,i=t[1],s=t[2],o=t[3],a=.5>=s?s*(1+i):s+i-s*i,r=2*s-a;return[Math.round(255*n(r,a,e+1/3)),Math.round(255*n(r,a,e)),Math.round(255*n(r,a,e-1/3)),o]},f(c,function(s,n){var o=n.props,a=n.cache,h=n.to,c=n.from;l.fn[s]=function(s){if(h&&!this[a]&&(this[a]=h(this._rgba)),s===e)return this[a].slice();var n,r=t.type(s),u="array"===r||"object"===r?s:arguments,d=this[a].slice();return f(o,function(t,e){var s=u["object"===r?t:e.idx];null==s&&(s=d[e.idx]),d[e.idx]=i(s,e)}),c?(n=l(c(d)),n[a]=d,n):l(d)},f(o,function(e,i){l.fn[e]||(l.fn[e]=function(n){var o,a=t.type(n),h="alpha"===e?this._hsla?"hsla":"rgba":s,l=this[h](),c=l[i.idx];return"undefined"===a?c:("function"===a&&(n=n.call(this,c),a=t.type(n)),null==n&&i.empty?this:("string"===a&&(o=r.exec(n),o&&(n=c+parseFloat(o[2])*("+"===o[1]?1:-1))),l[i.idx]=n,this[h](l)))})})}),l.hook=function(e){var i=e.split(" ");f(i,function(e,i){t.cssHooks[i]={set:function(e,n){var o,a,r="";if("transparent"!==n&&("string"!==t.type(n)||(o=s(n)))){if(n=l(o||n),!d.rgba&&1!==n._rgba[3]){for(a="backgroundColor"===i?e.parentNode:e;(""===r||"transparent"===r)&&a&&a.style;)try{r=t.css(a,"backgroundColor"),a=a.parentNode}catch(h){}n=n.blend(r&&"transparent"!==r?r:"_default")}n=n.toRgbaString()}try{e.style[i]=n}catch(h){}}},t.fx.step[i]=function(e){e.colorInit||(e.start=l(e.elem,i),e.end=l(e.end),e.colorInit=!0),t.cssHooks[i].set(e.elem,e.start.transition(e.end,e.pos))}})},l.hook(a),t.cssHooks.borderColor={expand:function(t){var e={};return f(["Top","Right","Bottom","Left"],function(i,s){e["border"+s+"Color"]=t}),e}},o=t.Color.names={aqua:"#00ffff",black:"#000000",blue:"#0000ff",fuchsia:"#ff00ff",gray:"#808080",green:"#008000",lime:"#00ff00",maroon:"#800000",navy:"#000080",olive:"#808000",purple:"#800080",red:"#ff0000",silver:"#c0c0c0",teal:"#008080",white:"#ffffff",yellow:"#ffff00",transparent:[null,null,null,0],_default:"#ffffff"}}(p),function(){function e(e){var i,s,n=e.ownerDocument.defaultView?e.ownerDocument.defaultView.getComputedStyle(e,null):e.currentStyle,o={};if(n&&n.length&&n[0]&&n[n[0]])for(s=n.length;s--;)i=n[s],"string"==typeof n[i]&&(o[t.camelCase(i)]=n[i]);else for(i in n)"string"==typeof n[i]&&(o[i]=n[i]);return o}function i(e,i){var s,o,a={};for(s in i)o=i[s],e[s]!==o&&(n[s]||(t.fx.step[s]||!isNaN(parseFloat(o)))&&(a[s]=o));return a}var s=["add","remove","toggle"],n={border:1,borderBottom:1,borderColor:1,borderLeft:1,borderRight:1,borderTop:1,borderWidth:1,margin:1,padding:1};t.each(["borderLeftStyle","borderRightStyle","borderBottomStyle","borderTopStyle"],function(e,i){t.fx.step[i]=function(t){("none"!==t.end&&!t.setAttr||1===t.pos&&!t.setAttr)&&(p.style(t.elem,i,t.end),t.setAttr=!0)}}),t.fn.addBack||(t.fn.addBack=function(t){return this.add(null==t?this.prevObject:this.prevObject.filter(t))}),t.effects.animateClass=function(n,o,a,r){var h=t.speed(o,a,r);return this.queue(function(){var o,a=t(this),r=a.attr("class")||"",l=h.children?a.find("*").addBack():a;l=l.map(function(){var i=t(this);return{el:i,start:e(this)}}),o=function(){t.each(s,function(t,e){n[e]&&a[e+"Class"](n[e])})},o(),l=l.map(function(){return this.end=e(this.el[0]),this.diff=i(this.start,this.end),this}),a.attr("class",r),l=l.map(function(){var e=this,i=t.Deferred(),s=t.extend({},h,{queue:!1,complete:function(){i.resolve(e)}});return this.el.animate(this.diff,s),i.promise()}),t.when.apply(t,l.get()).done(function(){o(),t.each(arguments,function(){var e=this.el;t.each(this.diff,function(t){e.css(t,"")})}),h.complete.call(a[0])})})},t.fn.extend({addClass:function(e){return function(i,s,n,o){return s?t.effects.animateClass.call(this,{add:i},s,n,o):e.apply(this,arguments)}}(t.fn.addClass),removeClass:function(e){return function(i,s,n,o){return arguments.length>1?t.effects.animateClass.call(this,{remove:i},s,n,o):e.apply(this,arguments)}}(t.fn.removeClass),toggleClass:function(e){return function(i,s,n,o,a){return"boolean"==typeof s||void 0===s?n?t.effects.animateClass.call(this,s?{add:i}:{remove:i},n,o,a):e.apply(this,arguments):t.effects.animateClass.call(this,{toggle:i},s,n,o)}}(t.fn.toggleClass),switchClass:function(e,i,s,n,o){return t.effects.animateClass.call(this,{add:i,remove:e},s,n,o)}})}(),function(){function e(e,i,s,n){return t.isPlainObject(e)&&(i=e,e=e.effect),e={effect:e},null==i&&(i={}),t.isFunction(i)&&(n=i,s=null,i={}),("number"==typeof i||t.fx.speeds[i])&&(n=s,s=i,i={}),t.isFunction(s)&&(n=s,s=null),i&&t.extend(e,i),s=s||i.duration,e.duration=t.fx.off?0:"number"==typeof s?s:s in t.fx.speeds?t.fx.speeds[s]:t.fx.speeds._default,e.complete=n||i.complete,e}function i(e){return!e||"number"==typeof e||t.fx.speeds[e]?!0:"string"!=typeof e||t.effects.effect[e]?t.isFunction(e)?!0:"object"!=typeof e||e.effect?!1:!0:!0}function s(t,e){var i=e.outerWidth(),s=e.outerHeight(),n=/^rect\((-?\d*\.?\d*px|-?\d+%|auto),?\s*(-?\d*\.?\d*px|-?\d+%|auto),?\s*(-?\d*\.?\d*px|-?\d+%|auto),?\s*(-?\d*\.?\d*px|-?\d+%|auto)\)$/,o=n.exec(t)||["",0,i,s,0];return{top:parseFloat(o[1])||0,right:"auto"===o[2]?i:parseFloat(o[2]),bottom:"auto"===o[3]?s:parseFloat(o[3]),left:parseFloat(o[4])||0}}t.expr&&t.expr.filters&&t.expr.filters.animated&&(t.expr.filters.animated=function(e){return function(i){return!!t(i).data(d)||e(i)}}(t.expr.filters.animated)),t.uiBackCompat!==!1&&t.extend(t.effects,{save:function(t,e){for(var i=0,s=e.length;s>i;i++)null!==e[i]&&t.data(c+e[i],t[0].style[e[i]])},restore:function(t,e){for(var i,s=0,n=e.length;n>s;s++)null!==e[s]&&(i=t.data(c+e[s]),t.css(e[s],i))},setMode:function(t,e){return"toggle"===e&&(e=t.is(":hidden")?"show":"hide"),e},createWrapper:function(e){if(e.parent().is(".ui-effects-wrapper"))return e.parent();var i={width:e.outerWidth(!0),height:e.outerHeight(!0),"float":e.css("float")},s=t("

").addClass("ui-effects-wrapper").css({fontSize:"100%",background:"transparent",border:"none",margin:0,padding:0}),n={width:e.width(),height:e.height()},o=document.activeElement;try{o.id}catch(a){o=document.body}return e.wrap(s),(e[0]===o||t.contains(e[0],o))&&t(o).trigger("focus"),s=e.parent(),"static"===e.css("position")?(s.css({position:"relative"}),e.css({position:"relative"})):(t.extend(i,{position:e.css("position"),zIndex:e.css("z-index")}),t.each(["top","left","bottom","right"],function(t,s){i[s]=e.css(s),isNaN(parseInt(i[s],10))&&(i[s]="auto")}),e.css({position:"relative",top:0,left:0,right:"auto",bottom:"auto"})),e.css(n),s.css(i).show()},removeWrapper:function(e){var i=document.activeElement;return e.parent().is(".ui-effects-wrapper")&&(e.parent().replaceWith(e),(e[0]===i||t.contains(e[0],i))&&t(i).trigger("focus")),e}}),t.extend(t.effects,{version:"1.12.1",define:function(e,i,s){return s||(s=i,i="effect"),t.effects.effect[e]=s,t.effects.effect[e].mode=i,s},scaledDimensions:function(t,e,i){if(0===e)return{height:0,width:0,outerHeight:0,outerWidth:0};var s="horizontal"!==i?(e||100)/100:1,n="vertical"!==i?(e||100)/100:1;return{height:t.height()*n,width:t.width()*s,outerHeight:t.outerHeight()*n,outerWidth:t.outerWidth()*s}},clipToBox:function(t){return{width:t.clip.right-t.clip.left,height:t.clip.bottom-t.clip.top,left:t.clip.left,top:t.clip.top}},unshift:function(t,e,i){var s=t.queue();e>1&&s.splice.apply(s,[1,0].concat(s.splice(e,i))),t.dequeue()},saveStyle:function(t){t.data(u,t[0].style.cssText)},restoreStyle:function(t){t[0].style.cssText=t.data(u)||"",t.removeData(u)},mode:function(t,e){var i=t.is(":hidden");return"toggle"===e&&(e=i?"show":"hide"),(i?"hide"===e:"show"===e)&&(e="none"),e},getBaseline:function(t,e){var i,s;switch(t[0]){case"top":i=0;break;case"middle":i=.5;break;case"bottom":i=1;break;default:i=t[0]/e.height}switch(t[1]){case"left":s=0;break;case"center":s=.5;break;case"right":s=1;break;default:s=t[1]/e.width}return{x:s,y:i}},createPlaceholder:function(e){var i,s=e.css("position"),n=e.position();return e.css({marginTop:e.css("marginTop"),marginBottom:e.css("marginBottom"),marginLeft:e.css("marginLeft"),marginRight:e.css("marginRight")}).outerWidth(e.outerWidth()).outerHeight(e.outerHeight()),/^(static|relative)/.test(s)&&(s="absolute",i=t("<"+e[0].nodeName+">").insertAfter(e).css({display:/^(inline|ruby)/.test(e.css("display"))?"inline-block":"block",visibility:"hidden",marginTop:e.css("marginTop"),marginBottom:e.css("marginBottom"),marginLeft:e.css("marginLeft"),marginRight:e.css("marginRight"),"float":e.css("float")}).outerWidth(e.outerWidth()).outerHeight(e.outerHeight()).addClass("ui-effects-placeholder"),e.data(c+"placeholder",i)),e.css({position:s,left:n.left,top:n.top}),i},removePlaceholder:function(t){var e=c+"placeholder",i=t.data(e);i&&(i.remove(),t.removeData(e))},cleanUp:function(e){t.effects.restoreStyle(e),t.effects.removePlaceholder(e)},setTransition:function(e,i,s,n){return n=n||{},t.each(i,function(t,i){var o=e.cssUnit(i);o[0]>0&&(n[i]=o[0]*s+o[1])}),n}}),t.fn.extend({effect:function(){function i(e){function i(){r.removeData(d),t.effects.cleanUp(r),"hide"===s.mode&&r.hide(),a()}function a(){t.isFunction(h)&&h.call(r[0]),t.isFunction(e)&&e()}var r=t(this);s.mode=c.shift(),t.uiBackCompat===!1||o?"none"===s.mode?(r[l](),a()):n.call(r[0],s,i):(r.is(":hidden")?"hide"===l:"show"===l)?(r[l](),a()):n.call(r[0],s,a)}var s=e.apply(this,arguments),n=t.effects.effect[s.effect],o=n.mode,a=s.queue,r=a||"fx",h=s.complete,l=s.mode,c=[],u=function(e){var i=t(this),s=t.effects.mode(i,l)||o;i.data(d,!0),c.push(s),o&&("show"===s||s===o&&"hide"===s)&&i.show(),o&&"none"===s||t.effects.saveStyle(i),t.isFunction(e)&&e()};return t.fx.off||!n?l?this[l](s.duration,h):this.each(function(){h&&h.call(this)}):a===!1?this.each(u).each(i):this.queue(r,u).queue(r,i)},show:function(t){return function(s){if(i(s))return t.apply(this,arguments);var n=e.apply(this,arguments);return n.mode="show",this.effect.call(this,n) -}}(t.fn.show),hide:function(t){return function(s){if(i(s))return t.apply(this,arguments);var n=e.apply(this,arguments);return n.mode="hide",this.effect.call(this,n)}}(t.fn.hide),toggle:function(t){return function(s){if(i(s)||"boolean"==typeof s)return t.apply(this,arguments);var n=e.apply(this,arguments);return n.mode="toggle",this.effect.call(this,n)}}(t.fn.toggle),cssUnit:function(e){var i=this.css(e),s=[];return t.each(["em","px","%","pt"],function(t,e){i.indexOf(e)>0&&(s=[parseFloat(i),e])}),s},cssClip:function(t){return t?this.css("clip","rect("+t.top+"px "+t.right+"px "+t.bottom+"px "+t.left+"px)"):s(this.css("clip"),this)},transfer:function(e,i){var s=t(this),n=t(e.to),o="fixed"===n.css("position"),a=t("body"),r=o?a.scrollTop():0,h=o?a.scrollLeft():0,l=n.offset(),c={top:l.top-r,left:l.left-h,height:n.innerHeight(),width:n.innerWidth()},u=s.offset(),d=t("
").appendTo("body").addClass(e.className).css({top:u.top-r,left:u.left-h,height:s.innerHeight(),width:s.innerWidth(),position:o?"fixed":"absolute"}).animate(c,e.duration,e.easing,function(){d.remove(),t.isFunction(i)&&i()})}}),t.fx.step.clip=function(e){e.clipInit||(e.start=t(e.elem).cssClip(),"string"==typeof e.end&&(e.end=s(e.end,e.elem)),e.clipInit=!0),t(e.elem).cssClip({top:e.pos*(e.end.top-e.start.top)+e.start.top,right:e.pos*(e.end.right-e.start.right)+e.start.right,bottom:e.pos*(e.end.bottom-e.start.bottom)+e.start.bottom,left:e.pos*(e.end.left-e.start.left)+e.start.left})}}(),function(){var e={};t.each(["Quad","Cubic","Quart","Quint","Expo"],function(t,i){e[i]=function(e){return Math.pow(e,t+2)}}),t.extend(e,{Sine:function(t){return 1-Math.cos(t*Math.PI/2)},Circ:function(t){return 1-Math.sqrt(1-t*t)},Elastic:function(t){return 0===t||1===t?t:-Math.pow(2,8*(t-1))*Math.sin((80*(t-1)-7.5)*Math.PI/15)},Back:function(t){return t*t*(3*t-2)},Bounce:function(t){for(var e,i=4;((e=Math.pow(2,--i))-1)/11>t;);return 1/Math.pow(4,3-i)-7.5625*Math.pow((3*e-2)/22-t,2)}}),t.each(e,function(e,i){t.easing["easeIn"+e]=i,t.easing["easeOut"+e]=function(t){return 1-i(1-t)},t.easing["easeInOut"+e]=function(t){return.5>t?i(2*t)/2:1-i(-2*t+2)/2}})}();var f=t.effects;t.effects.define("blind","hide",function(e,i){var s={up:["bottom","top"],vertical:["bottom","top"],down:["top","bottom"],left:["right","left"],horizontal:["right","left"],right:["left","right"]},n=t(this),o=e.direction||"up",a=n.cssClip(),r={clip:t.extend({},a)},h=t.effects.createPlaceholder(n);r.clip[s[o][0]]=r.clip[s[o][1]],"show"===e.mode&&(n.cssClip(r.clip),h&&h.css(t.effects.clipToBox(r)),r.clip=a),h&&h.animate(t.effects.clipToBox(r),e.duration,e.easing),n.animate(r,{queue:!1,duration:e.duration,easing:e.easing,complete:i})}),t.effects.define("bounce",function(e,i){var s,n,o,a=t(this),r=e.mode,h="hide"===r,l="show"===r,c=e.direction||"up",u=e.distance,d=e.times||5,p=2*d+(l||h?1:0),f=e.duration/p,g=e.easing,m="up"===c||"down"===c?"top":"left",_="up"===c||"left"===c,v=0,b=a.queue().length;for(t.effects.createPlaceholder(a),o=a.css(m),u||(u=a["top"===m?"outerHeight":"outerWidth"]()/3),l&&(n={opacity:1},n[m]=o,a.css("opacity",0).css(m,_?2*-u:2*u).animate(n,f,g)),h&&(u/=Math.pow(2,d-1)),n={},n[m]=o;d>v;v++)s={},s[m]=(_?"-=":"+=")+u,a.animate(s,f,g).animate(n,f,g),u=h?2*u:u/2;h&&(s={opacity:0},s[m]=(_?"-=":"+=")+u,a.animate(s,f,g)),a.queue(i),t.effects.unshift(a,b,p+1)}),t.effects.define("clip","hide",function(e,i){var s,n={},o=t(this),a=e.direction||"vertical",r="both"===a,h=r||"horizontal"===a,l=r||"vertical"===a;s=o.cssClip(),n.clip={top:l?(s.bottom-s.top)/2:s.top,right:h?(s.right-s.left)/2:s.right,bottom:l?(s.bottom-s.top)/2:s.bottom,left:h?(s.right-s.left)/2:s.left},t.effects.createPlaceholder(o),"show"===e.mode&&(o.cssClip(n.clip),n.clip=s),o.animate(n,{queue:!1,duration:e.duration,easing:e.easing,complete:i})}),t.effects.define("drop","hide",function(e,i){var s,n=t(this),o=e.mode,a="show"===o,r=e.direction||"left",h="up"===r||"down"===r?"top":"left",l="up"===r||"left"===r?"-=":"+=",c="+="===l?"-=":"+=",u={opacity:0};t.effects.createPlaceholder(n),s=e.distance||n["top"===h?"outerHeight":"outerWidth"](!0)/2,u[h]=l+s,a&&(n.css(u),u[h]=c+s,u.opacity=1),n.animate(u,{queue:!1,duration:e.duration,easing:e.easing,complete:i})}),t.effects.define("explode","hide",function(e,i){function s(){b.push(this),b.length===u*d&&n()}function n(){p.css({visibility:"visible"}),t(b).remove(),i()}var o,a,r,h,l,c,u=e.pieces?Math.round(Math.sqrt(e.pieces)):3,d=u,p=t(this),f=e.mode,g="show"===f,m=p.show().css("visibility","hidden").offset(),_=Math.ceil(p.outerWidth()/d),v=Math.ceil(p.outerHeight()/u),b=[];for(o=0;u>o;o++)for(h=m.top+o*v,c=o-(u-1)/2,a=0;d>a;a++)r=m.left+a*_,l=a-(d-1)/2,p.clone().appendTo("body").wrap("
").css({position:"absolute",visibility:"visible",left:-a*_,top:-o*v}).parent().addClass("ui-effects-explode").css({position:"absolute",overflow:"hidden",width:_,height:v,left:r+(g?l*_:0),top:h+(g?c*v:0),opacity:g?0:1}).animate({left:r+(g?0:l*_),top:h+(g?0:c*v),opacity:g?1:0},e.duration||500,e.easing,s)}),t.effects.define("fade","toggle",function(e,i){var s="show"===e.mode;t(this).css("opacity",s?0:1).animate({opacity:s?1:0},{queue:!1,duration:e.duration,easing:e.easing,complete:i})}),t.effects.define("fold","hide",function(e,i){var s=t(this),n=e.mode,o="show"===n,a="hide"===n,r=e.size||15,h=/([0-9]+)%/.exec(r),l=!!e.horizFirst,c=l?["right","bottom"]:["bottom","right"],u=e.duration/2,d=t.effects.createPlaceholder(s),p=s.cssClip(),f={clip:t.extend({},p)},g={clip:t.extend({},p)},m=[p[c[0]],p[c[1]]],_=s.queue().length;h&&(r=parseInt(h[1],10)/100*m[a?0:1]),f.clip[c[0]]=r,g.clip[c[0]]=r,g.clip[c[1]]=0,o&&(s.cssClip(g.clip),d&&d.css(t.effects.clipToBox(g)),g.clip=p),s.queue(function(i){d&&d.animate(t.effects.clipToBox(f),u,e.easing).animate(t.effects.clipToBox(g),u,e.easing),i()}).animate(f,u,e.easing).animate(g,u,e.easing).queue(i),t.effects.unshift(s,_,4)}),t.effects.define("highlight","show",function(e,i){var s=t(this),n={backgroundColor:s.css("backgroundColor")};"hide"===e.mode&&(n.opacity=0),t.effects.saveStyle(s),s.css({backgroundImage:"none",backgroundColor:e.color||"#ffff99"}).animate(n,{queue:!1,duration:e.duration,easing:e.easing,complete:i})}),t.effects.define("size",function(e,i){var s,n,o,a=t(this),r=["fontSize"],h=["borderTopWidth","borderBottomWidth","paddingTop","paddingBottom"],l=["borderLeftWidth","borderRightWidth","paddingLeft","paddingRight"],c=e.mode,u="effect"!==c,d=e.scale||"both",p=e.origin||["middle","center"],f=a.css("position"),g=a.position(),m=t.effects.scaledDimensions(a),_=e.from||m,v=e.to||t.effects.scaledDimensions(a,0);t.effects.createPlaceholder(a),"show"===c&&(o=_,_=v,v=o),n={from:{y:_.height/m.height,x:_.width/m.width},to:{y:v.height/m.height,x:v.width/m.width}},("box"===d||"both"===d)&&(n.from.y!==n.to.y&&(_=t.effects.setTransition(a,h,n.from.y,_),v=t.effects.setTransition(a,h,n.to.y,v)),n.from.x!==n.to.x&&(_=t.effects.setTransition(a,l,n.from.x,_),v=t.effects.setTransition(a,l,n.to.x,v))),("content"===d||"both"===d)&&n.from.y!==n.to.y&&(_=t.effects.setTransition(a,r,n.from.y,_),v=t.effects.setTransition(a,r,n.to.y,v)),p&&(s=t.effects.getBaseline(p,m),_.top=(m.outerHeight-_.outerHeight)*s.y+g.top,_.left=(m.outerWidth-_.outerWidth)*s.x+g.left,v.top=(m.outerHeight-v.outerHeight)*s.y+g.top,v.left=(m.outerWidth-v.outerWidth)*s.x+g.left),a.css(_),("content"===d||"both"===d)&&(h=h.concat(["marginTop","marginBottom"]).concat(r),l=l.concat(["marginLeft","marginRight"]),a.find("*[width]").each(function(){var i=t(this),s=t.effects.scaledDimensions(i),o={height:s.height*n.from.y,width:s.width*n.from.x,outerHeight:s.outerHeight*n.from.y,outerWidth:s.outerWidth*n.from.x},a={height:s.height*n.to.y,width:s.width*n.to.x,outerHeight:s.height*n.to.y,outerWidth:s.width*n.to.x};n.from.y!==n.to.y&&(o=t.effects.setTransition(i,h,n.from.y,o),a=t.effects.setTransition(i,h,n.to.y,a)),n.from.x!==n.to.x&&(o=t.effects.setTransition(i,l,n.from.x,o),a=t.effects.setTransition(i,l,n.to.x,a)),u&&t.effects.saveStyle(i),i.css(o),i.animate(a,e.duration,e.easing,function(){u&&t.effects.restoreStyle(i)})})),a.animate(v,{queue:!1,duration:e.duration,easing:e.easing,complete:function(){var e=a.offset();0===v.opacity&&a.css("opacity",_.opacity),u||(a.css("position","static"===f?"relative":f).offset(e),t.effects.saveStyle(a)),i()}})}),t.effects.define("scale",function(e,i){var s=t(this),n=e.mode,o=parseInt(e.percent,10)||(0===parseInt(e.percent,10)?0:"effect"!==n?0:100),a=t.extend(!0,{from:t.effects.scaledDimensions(s),to:t.effects.scaledDimensions(s,o,e.direction||"both"),origin:e.origin||["middle","center"]},e);e.fade&&(a.from.opacity=1,a.to.opacity=0),t.effects.effect.size.call(this,a,i)}),t.effects.define("puff","hide",function(e,i){var s=t.extend(!0,{},e,{fade:!0,percent:parseInt(e.percent,10)||150});t.effects.effect.scale.call(this,s,i)}),t.effects.define("pulsate","show",function(e,i){var s=t(this),n=e.mode,o="show"===n,a="hide"===n,r=o||a,h=2*(e.times||5)+(r?1:0),l=e.duration/h,c=0,u=1,d=s.queue().length;for((o||!s.is(":visible"))&&(s.css("opacity",0).show(),c=1);h>u;u++)s.animate({opacity:c},l,e.easing),c=1-c;s.animate({opacity:c},l,e.easing),s.queue(i),t.effects.unshift(s,d,h+1)}),t.effects.define("shake",function(e,i){var s=1,n=t(this),o=e.direction||"left",a=e.distance||20,r=e.times||3,h=2*r+1,l=Math.round(e.duration/h),c="up"===o||"down"===o?"top":"left",u="up"===o||"left"===o,d={},p={},f={},g=n.queue().length;for(t.effects.createPlaceholder(n),d[c]=(u?"-=":"+=")+a,p[c]=(u?"+=":"-=")+2*a,f[c]=(u?"-=":"+=")+2*a,n.animate(d,l,e.easing);r>s;s++)n.animate(p,l,e.easing).animate(f,l,e.easing);n.animate(p,l,e.easing).animate(d,l/2,e.easing).queue(i),t.effects.unshift(n,g,h+1)}),t.effects.define("slide","show",function(e,i){var s,n,o=t(this),a={up:["bottom","top"],down:["top","bottom"],left:["right","left"],right:["left","right"]},r=e.mode,h=e.direction||"left",l="up"===h||"down"===h?"top":"left",c="up"===h||"left"===h,u=e.distance||o["top"===l?"outerHeight":"outerWidth"](!0),d={};t.effects.createPlaceholder(o),s=o.cssClip(),n=o.position()[l],d[l]=(c?-1:1)*u+n,d.clip=o.cssClip(),d.clip[a[h][1]]=d.clip[a[h][0]],"show"===r&&(o.cssClip(d.clip),o.css(l,d[l]),d.clip=s,d[l]=n),o.animate(d,{queue:!1,duration:e.duration,easing:e.easing,complete:i})});var f;t.uiBackCompat!==!1&&(f=t.effects.define("transfer",function(e,i){t(this).transfer(e,i)})),t.ui.focusable=function(i,s){var n,o,a,r,h,l=i.nodeName.toLowerCase();return"area"===l?(n=i.parentNode,o=n.name,i.href&&o&&"map"===n.nodeName.toLowerCase()?(a=t("img[usemap='#"+o+"']"),a.length>0&&a.is(":visible")):!1):(/^(input|select|textarea|button|object)$/.test(l)?(r=!i.disabled,r&&(h=t(i).closest("fieldset")[0],h&&(r=!h.disabled))):r="a"===l?i.href||s:s,r&&t(i).is(":visible")&&e(t(i)))},t.extend(t.expr[":"],{focusable:function(e){return t.ui.focusable(e,null!=t.attr(e,"tabindex"))}}),t.ui.focusable,t.fn.form=function(){return"string"==typeof this[0].form?this.closest("form"):t(this[0].form)},t.ui.formResetMixin={_formResetHandler:function(){var e=t(this);setTimeout(function(){var i=e.data("ui-form-reset-instances");t.each(i,function(){this.refresh()})})},_bindFormResetHandler:function(){if(this.form=this.element.form(),this.form.length){var t=this.form.data("ui-form-reset-instances")||[];t.length||this.form.on("reset.ui-form-reset",this._formResetHandler),t.push(this),this.form.data("ui-form-reset-instances",t)}},_unbindFormResetHandler:function(){if(this.form.length){var e=this.form.data("ui-form-reset-instances");e.splice(t.inArray(this,e),1),e.length?this.form.data("ui-form-reset-instances",e):this.form.removeData("ui-form-reset-instances").off("reset.ui-form-reset")}}},"1.7"===t.fn.jquery.substring(0,3)&&(t.each(["Width","Height"],function(e,i){function s(e,i,s,o){return t.each(n,function(){i-=parseFloat(t.css(e,"padding"+this))||0,s&&(i-=parseFloat(t.css(e,"border"+this+"Width"))||0),o&&(i-=parseFloat(t.css(e,"margin"+this))||0)}),i}var n="Width"===i?["Left","Right"]:["Top","Bottom"],o=i.toLowerCase(),a={innerWidth:t.fn.innerWidth,innerHeight:t.fn.innerHeight,outerWidth:t.fn.outerWidth,outerHeight:t.fn.outerHeight};t.fn["inner"+i]=function(e){return void 0===e?a["inner"+i].call(this):this.each(function(){t(this).css(o,s(this,e)+"px")})},t.fn["outer"+i]=function(e,n){return"number"!=typeof e?a["outer"+i].call(this,e):this.each(function(){t(this).css(o,s(this,e,!0,n)+"px")})}}),t.fn.addBack=function(t){return this.add(null==t?this.prevObject:this.prevObject.filter(t))}),t.ui.keyCode={BACKSPACE:8,COMMA:188,DELETE:46,DOWN:40,END:35,ENTER:13,ESCAPE:27,HOME:36,LEFT:37,PAGE_DOWN:34,PAGE_UP:33,PERIOD:190,RIGHT:39,SPACE:32,TAB:9,UP:38},t.ui.escapeSelector=function(){var t=/([!"#$%&'()*+,.\/:;<=>?@[\]^`{|}~])/g;return function(e){return e.replace(t,"\\$1")}}(),t.fn.labels=function(){var e,i,s,n,o;return this[0].labels&&this[0].labels.length?this.pushStack(this[0].labels):(n=this.eq(0).parents("label"),s=this.attr("id"),s&&(e=this.eq(0).parents().last(),o=e.add(e.length?e.siblings():this.siblings()),i="label[for='"+t.ui.escapeSelector(s)+"']",n=n.add(o.find(i).addBack(i))),this.pushStack(n))},t.fn.scrollParent=function(e){var i=this.css("position"),s="absolute"===i,n=e?/(auto|scroll|hidden)/:/(auto|scroll)/,o=this.parents().filter(function(){var e=t(this);return s&&"static"===e.css("position")?!1:n.test(e.css("overflow")+e.css("overflow-y")+e.css("overflow-x"))}).eq(0);return"fixed"!==i&&o.length?o:t(this[0].ownerDocument||document)},t.extend(t.expr[":"],{tabbable:function(e){var i=t.attr(e,"tabindex"),s=null!=i;return(!s||i>=0)&&t.ui.focusable(e,s)}}),t.fn.extend({uniqueId:function(){var t=0;return function(){return this.each(function(){this.id||(this.id="ui-id-"+ ++t)})}}(),removeUniqueId:function(){return this.each(function(){/^ui-id-\d+$/.test(this.id)&&t(this).removeAttr("id")})}}),t.widget("ui.accordion",{version:"1.12.1",options:{active:0,animate:{},classes:{"ui-accordion-header":"ui-corner-top","ui-accordion-header-collapsed":"ui-corner-all","ui-accordion-content":"ui-corner-bottom"},collapsible:!1,event:"click",header:"> li > :first-child, > :not(li):even",heightStyle:"auto",icons:{activeHeader:"ui-icon-triangle-1-s",header:"ui-icon-triangle-1-e"},activate:null,beforeActivate:null},hideProps:{borderTopWidth:"hide",borderBottomWidth:"hide",paddingTop:"hide",paddingBottom:"hide",height:"hide"},showProps:{borderTopWidth:"show",borderBottomWidth:"show",paddingTop:"show",paddingBottom:"show",height:"show"},_create:function(){var e=this.options;this.prevShow=this.prevHide=t(),this._addClass("ui-accordion","ui-widget ui-helper-reset"),this.element.attr("role","tablist"),e.collapsible||e.active!==!1&&null!=e.active||(e.active=0),this._processPanels(),0>e.active&&(e.active+=this.headers.length),this._refresh()},_getCreateEventData:function(){return{header:this.active,panel:this.active.length?this.active.next():t()}},_createIcons:function(){var e,i,s=this.options.icons;s&&(e=t(""),this._addClass(e,"ui-accordion-header-icon","ui-icon "+s.header),e.prependTo(this.headers),i=this.active.children(".ui-accordion-header-icon"),this._removeClass(i,s.header)._addClass(i,null,s.activeHeader)._addClass(this.headers,"ui-accordion-icons"))},_destroyIcons:function(){this._removeClass(this.headers,"ui-accordion-icons"),this.headers.children(".ui-accordion-header-icon").remove()},_destroy:function(){var t;this.element.removeAttr("role"),this.headers.removeAttr("role aria-expanded aria-selected aria-controls tabIndex").removeUniqueId(),this._destroyIcons(),t=this.headers.next().css("display","").removeAttr("role aria-hidden aria-labelledby").removeUniqueId(),"content"!==this.options.heightStyle&&t.css("height","")},_setOption:function(t,e){return"active"===t?(this._activate(e),void 0):("event"===t&&(this.options.event&&this._off(this.headers,this.options.event),this._setupEvents(e)),this._super(t,e),"collapsible"!==t||e||this.options.active!==!1||this._activate(0),"icons"===t&&(this._destroyIcons(),e&&this._createIcons()),void 0)},_setOptionDisabled:function(t){this._super(t),this.element.attr("aria-disabled",t),this._toggleClass(null,"ui-state-disabled",!!t),this._toggleClass(this.headers.add(this.headers.next()),null,"ui-state-disabled",!!t)},_keydown:function(e){if(!e.altKey&&!e.ctrlKey){var i=t.ui.keyCode,s=this.headers.length,n=this.headers.index(e.target),o=!1;switch(e.keyCode){case i.RIGHT:case i.DOWN:o=this.headers[(n+1)%s];break;case i.LEFT:case i.UP:o=this.headers[(n-1+s)%s];break;case i.SPACE:case i.ENTER:this._eventHandler(e);break;case i.HOME:o=this.headers[0];break;case i.END:o=this.headers[s-1]}o&&(t(e.target).attr("tabIndex",-1),t(o).attr("tabIndex",0),t(o).trigger("focus"),e.preventDefault())}},_panelKeyDown:function(e){e.keyCode===t.ui.keyCode.UP&&e.ctrlKey&&t(e.currentTarget).prev().trigger("focus")},refresh:function(){var e=this.options;this._processPanels(),e.active===!1&&e.collapsible===!0||!this.headers.length?(e.active=!1,this.active=t()):e.active===!1?this._activate(0):this.active.length&&!t.contains(this.element[0],this.active[0])?this.headers.length===this.headers.find(".ui-state-disabled").length?(e.active=!1,this.active=t()):this._activate(Math.max(0,e.active-1)):e.active=this.headers.index(this.active),this._destroyIcons(),this._refresh()},_processPanels:function(){var t=this.headers,e=this.panels;this.headers=this.element.find(this.options.header),this._addClass(this.headers,"ui-accordion-header ui-accordion-header-collapsed","ui-state-default"),this.panels=this.headers.next().filter(":not(.ui-accordion-content-active)").hide(),this._addClass(this.panels,"ui-accordion-content","ui-helper-reset ui-widget-content"),e&&(this._off(t.not(this.headers)),this._off(e.not(this.panels)))},_refresh:function(){var e,i=this.options,s=i.heightStyle,n=this.element.parent();this.active=this._findActive(i.active),this._addClass(this.active,"ui-accordion-header-active","ui-state-active")._removeClass(this.active,"ui-accordion-header-collapsed"),this._addClass(this.active.next(),"ui-accordion-content-active"),this.active.next().show(),this.headers.attr("role","tab").each(function(){var e=t(this),i=e.uniqueId().attr("id"),s=e.next(),n=s.uniqueId().attr("id");e.attr("aria-controls",n),s.attr("aria-labelledby",i)}).next().attr("role","tabpanel"),this.headers.not(this.active).attr({"aria-selected":"false","aria-expanded":"false",tabIndex:-1}).next().attr({"aria-hidden":"true"}).hide(),this.active.length?this.active.attr({"aria-selected":"true","aria-expanded":"true",tabIndex:0}).next().attr({"aria-hidden":"false"}):this.headers.eq(0).attr("tabIndex",0),this._createIcons(),this._setupEvents(i.event),"fill"===s?(e=n.height(),this.element.siblings(":visible").each(function(){var i=t(this),s=i.css("position");"absolute"!==s&&"fixed"!==s&&(e-=i.outerHeight(!0))}),this.headers.each(function(){e-=t(this).outerHeight(!0)}),this.headers.next().each(function(){t(this).height(Math.max(0,e-t(this).innerHeight()+t(this).height()))}).css("overflow","auto")):"auto"===s&&(e=0,this.headers.next().each(function(){var i=t(this).is(":visible");i||t(this).show(),e=Math.max(e,t(this).css("height","").height()),i||t(this).hide()}).height(e))},_activate:function(e){var i=this._findActive(e)[0];i!==this.active[0]&&(i=i||this.active[0],this._eventHandler({target:i,currentTarget:i,preventDefault:t.noop}))},_findActive:function(e){return"number"==typeof e?this.headers.eq(e):t()},_setupEvents:function(e){var i={keydown:"_keydown"};e&&t.each(e.split(" "),function(t,e){i[e]="_eventHandler"}),this._off(this.headers.add(this.headers.next())),this._on(this.headers,i),this._on(this.headers.next(),{keydown:"_panelKeyDown"}),this._hoverable(this.headers),this._focusable(this.headers)},_eventHandler:function(e){var i,s,n=this.options,o=this.active,a=t(e.currentTarget),r=a[0]===o[0],h=r&&n.collapsible,l=h?t():a.next(),c=o.next(),u={oldHeader:o,oldPanel:c,newHeader:h?t():a,newPanel:l};e.preventDefault(),r&&!n.collapsible||this._trigger("beforeActivate",e,u)===!1||(n.active=h?!1:this.headers.index(a),this.active=r?t():a,this._toggle(u),this._removeClass(o,"ui-accordion-header-active","ui-state-active"),n.icons&&(i=o.children(".ui-accordion-header-icon"),this._removeClass(i,null,n.icons.activeHeader)._addClass(i,null,n.icons.header)),r||(this._removeClass(a,"ui-accordion-header-collapsed")._addClass(a,"ui-accordion-header-active","ui-state-active"),n.icons&&(s=a.children(".ui-accordion-header-icon"),this._removeClass(s,null,n.icons.header)._addClass(s,null,n.icons.activeHeader)),this._addClass(a.next(),"ui-accordion-content-active")))},_toggle:function(e){var i=e.newPanel,s=this.prevShow.length?this.prevShow:e.oldPanel;this.prevShow.add(this.prevHide).stop(!0,!0),this.prevShow=i,this.prevHide=s,this.options.animate?this._animate(i,s,e):(s.hide(),i.show(),this._toggleComplete(e)),s.attr({"aria-hidden":"true"}),s.prev().attr({"aria-selected":"false","aria-expanded":"false"}),i.length&&s.length?s.prev().attr({tabIndex:-1,"aria-expanded":"false"}):i.length&&this.headers.filter(function(){return 0===parseInt(t(this).attr("tabIndex"),10)}).attr("tabIndex",-1),i.attr("aria-hidden","false").prev().attr({"aria-selected":"true","aria-expanded":"true",tabIndex:0})},_animate:function(t,e,i){var s,n,o,a=this,r=0,h=t.css("box-sizing"),l=t.length&&(!e.length||t.index()",delay:300,options:{icons:{submenu:"ui-icon-caret-1-e"},items:"> *",menus:"ul",position:{my:"left top",at:"right top"},role:"menu",blur:null,focus:null,select:null},_create:function(){this.activeMenu=this.element,this.mouseHandled=!1,this.element.uniqueId().attr({role:this.options.role,tabIndex:0}),this._addClass("ui-menu","ui-widget ui-widget-content"),this._on({"mousedown .ui-menu-item":function(t){t.preventDefault()},"click .ui-menu-item":function(e){var i=t(e.target),s=t(t.ui.safeActiveElement(this.document[0]));!this.mouseHandled&&i.not(".ui-state-disabled").length&&(this.select(e),e.isPropagationStopped()||(this.mouseHandled=!0),i.has(".ui-menu").length?this.expand(e):!this.element.is(":focus")&&s.closest(".ui-menu").length&&(this.element.trigger("focus",[!0]),this.active&&1===this.active.parents(".ui-menu").length&&clearTimeout(this.timer)))},"mouseenter .ui-menu-item":function(e){if(!this.previousFilter){var i=t(e.target).closest(".ui-menu-item"),s=t(e.currentTarget);i[0]===s[0]&&(this._removeClass(s.siblings().children(".ui-state-active"),null,"ui-state-active"),this.focus(e,s))}},mouseleave:"collapseAll","mouseleave .ui-menu":"collapseAll",focus:function(t,e){var i=this.active||this.element.find(this.options.items).eq(0);e||this.focus(t,i)},blur:function(e){this._delay(function(){var i=!t.contains(this.element[0],t.ui.safeActiveElement(this.document[0]));i&&this.collapseAll(e)})},keydown:"_keydown"}),this.refresh(),this._on(this.document,{click:function(t){this._closeOnDocumentClick(t)&&this.collapseAll(t),this.mouseHandled=!1}})},_destroy:function(){var e=this.element.find(".ui-menu-item").removeAttr("role aria-disabled"),i=e.children(".ui-menu-item-wrapper").removeUniqueId().removeAttr("tabIndex role aria-haspopup");this.element.removeAttr("aria-activedescendant").find(".ui-menu").addBack().removeAttr("role aria-labelledby aria-expanded aria-hidden aria-disabled tabIndex").removeUniqueId().show(),i.children().each(function(){var e=t(this);e.data("ui-menu-submenu-caret")&&e.remove()})},_keydown:function(e){var i,s,n,o,a=!0;switch(e.keyCode){case t.ui.keyCode.PAGE_UP:this.previousPage(e);break;case t.ui.keyCode.PAGE_DOWN:this.nextPage(e);break;case t.ui.keyCode.HOME:this._move("first","first",e);break;case t.ui.keyCode.END:this._move("last","last",e);break;case t.ui.keyCode.UP:this.previous(e);break;case t.ui.keyCode.DOWN:this.next(e);break;case t.ui.keyCode.LEFT:this.collapse(e);break;case t.ui.keyCode.RIGHT:this.active&&!this.active.is(".ui-state-disabled")&&this.expand(e);break;case t.ui.keyCode.ENTER:case t.ui.keyCode.SPACE:this._activate(e);break;case t.ui.keyCode.ESCAPE:this.collapse(e);break;default:a=!1,s=this.previousFilter||"",o=!1,n=e.keyCode>=96&&105>=e.keyCode?""+(e.keyCode-96):String.fromCharCode(e.keyCode),clearTimeout(this.filterTimer),n===s?o=!0:n=s+n,i=this._filterMenuItems(n),i=o&&-1!==i.index(this.active.next())?this.active.nextAll(".ui-menu-item"):i,i.length||(n=String.fromCharCode(e.keyCode),i=this._filterMenuItems(n)),i.length?(this.focus(e,i),this.previousFilter=n,this.filterTimer=this._delay(function(){delete this.previousFilter},1e3)):delete this.previousFilter}a&&e.preventDefault()},_activate:function(t){this.active&&!this.active.is(".ui-state-disabled")&&(this.active.children("[aria-haspopup='true']").length?this.expand(t):this.select(t))},refresh:function(){var e,i,s,n,o,a=this,r=this.options.icons.submenu,h=this.element.find(this.options.menus);this._toggleClass("ui-menu-icons",null,!!this.element.find(".ui-icon").length),s=h.filter(":not(.ui-menu)").hide().attr({role:this.options.role,"aria-hidden":"true","aria-expanded":"false"}).each(function(){var e=t(this),i=e.prev(),s=t("").data("ui-menu-submenu-caret",!0);a._addClass(s,"ui-menu-icon","ui-icon "+r),i.attr("aria-haspopup","true").prepend(s),e.attr("aria-labelledby",i.attr("id"))}),this._addClass(s,"ui-menu","ui-widget ui-widget-content ui-front"),e=h.add(this.element),i=e.find(this.options.items),i.not(".ui-menu-item").each(function(){var e=t(this);a._isDivider(e)&&a._addClass(e,"ui-menu-divider","ui-widget-content")}),n=i.not(".ui-menu-item, .ui-menu-divider"),o=n.children().not(".ui-menu").uniqueId().attr({tabIndex:-1,role:this._itemRole()}),this._addClass(n,"ui-menu-item")._addClass(o,"ui-menu-item-wrapper"),i.filter(".ui-state-disabled").attr("aria-disabled","true"),this.active&&!t.contains(this.element[0],this.active[0])&&this.blur()},_itemRole:function(){return{menu:"menuitem",listbox:"option"}[this.options.role]},_setOption:function(t,e){if("icons"===t){var i=this.element.find(".ui-menu-icon");this._removeClass(i,null,this.options.icons.submenu)._addClass(i,null,e.submenu)}this._super(t,e)},_setOptionDisabled:function(t){this._super(t),this.element.attr("aria-disabled",t+""),this._toggleClass(null,"ui-state-disabled",!!t)},focus:function(t,e){var i,s,n;this.blur(t,t&&"focus"===t.type),this._scrollIntoView(e),this.active=e.first(),s=this.active.children(".ui-menu-item-wrapper"),this._addClass(s,null,"ui-state-active"),this.options.role&&this.element.attr("aria-activedescendant",s.attr("id")),n=this.active.parent().closest(".ui-menu-item").children(".ui-menu-item-wrapper"),this._addClass(n,null,"ui-state-active"),t&&"keydown"===t.type?this._close():this.timer=this._delay(function(){this._close()},this.delay),i=e.children(".ui-menu"),i.length&&t&&/^mouse/.test(t.type)&&this._startOpening(i),this.activeMenu=e.parent(),this._trigger("focus",t,{item:e})},_scrollIntoView:function(e){var i,s,n,o,a,r;this._hasScroll()&&(i=parseFloat(t.css(this.activeMenu[0],"borderTopWidth"))||0,s=parseFloat(t.css(this.activeMenu[0],"paddingTop"))||0,n=e.offset().top-this.activeMenu.offset().top-i-s,o=this.activeMenu.scrollTop(),a=this.activeMenu.height(),r=e.outerHeight(),0>n?this.activeMenu.scrollTop(o+n):n+r>a&&this.activeMenu.scrollTop(o+n-a+r))},blur:function(t,e){e||clearTimeout(this.timer),this.active&&(this._removeClass(this.active.children(".ui-menu-item-wrapper"),null,"ui-state-active"),this._trigger("blur",t,{item:this.active}),this.active=null)},_startOpening:function(t){clearTimeout(this.timer),"true"===t.attr("aria-hidden")&&(this.timer=this._delay(function(){this._close(),this._open(t)},this.delay))},_open:function(e){var i=t.extend({of:this.active},this.options.position);clearTimeout(this.timer),this.element.find(".ui-menu").not(e.parents(".ui-menu")).hide().attr("aria-hidden","true"),e.show().removeAttr("aria-hidden").attr("aria-expanded","true").position(i)},collapseAll:function(e,i){clearTimeout(this.timer),this.timer=this._delay(function(){var s=i?this.element:t(e&&e.target).closest(this.element.find(".ui-menu"));s.length||(s=this.element),this._close(s),this.blur(e),this._removeClass(s.find(".ui-state-active"),null,"ui-state-active"),this.activeMenu=s},this.delay)},_close:function(t){t||(t=this.active?this.active.parent():this.element),t.find(".ui-menu").hide().attr("aria-hidden","true").attr("aria-expanded","false")},_closeOnDocumentClick:function(e){return!t(e.target).closest(".ui-menu").length},_isDivider:function(t){return!/[^\-\u2014\u2013\s]/.test(t.text())},collapse:function(t){var e=this.active&&this.active.parent().closest(".ui-menu-item",this.element);e&&e.length&&(this._close(),this.focus(t,e))},expand:function(t){var e=this.active&&this.active.children(".ui-menu ").find(this.options.items).first();e&&e.length&&(this._open(e.parent()),this._delay(function(){this.focus(t,e)}))},next:function(t){this._move("next","first",t)},previous:function(t){this._move("prev","last",t)},isFirstItem:function(){return this.active&&!this.active.prevAll(".ui-menu-item").length},isLastItem:function(){return this.active&&!this.active.nextAll(".ui-menu-item").length},_move:function(t,e,i){var s;this.active&&(s="first"===t||"last"===t?this.active["first"===t?"prevAll":"nextAll"](".ui-menu-item").eq(-1):this.active[t+"All"](".ui-menu-item").eq(0)),s&&s.length&&this.active||(s=this.activeMenu.find(this.options.items)[e]()),this.focus(i,s)},nextPage:function(e){var i,s,n;return this.active?(this.isLastItem()||(this._hasScroll()?(s=this.active.offset().top,n=this.element.height(),this.active.nextAll(".ui-menu-item").each(function(){return i=t(this),0>i.offset().top-s-n}),this.focus(e,i)):this.focus(e,this.activeMenu.find(this.options.items)[this.active?"last":"first"]())),void 0):(this.next(e),void 0)},previousPage:function(e){var i,s,n;return this.active?(this.isFirstItem()||(this._hasScroll()?(s=this.active.offset().top,n=this.element.height(),this.active.prevAll(".ui-menu-item").each(function(){return i=t(this),i.offset().top-s+n>0}),this.focus(e,i)):this.focus(e,this.activeMenu.find(this.options.items).first())),void 0):(this.next(e),void 0)},_hasScroll:function(){return this.element.outerHeight()",options:{appendTo:null,autoFocus:!1,delay:300,minLength:1,position:{my:"left top",at:"left bottom",collision:"none"},source:null,change:null,close:null,focus:null,open:null,response:null,search:null,select:null},requestIndex:0,pending:0,_create:function(){var e,i,s,n=this.element[0].nodeName.toLowerCase(),o="textarea"===n,a="input"===n; -this.isMultiLine=o||!a&&this._isContentEditable(this.element),this.valueMethod=this.element[o||a?"val":"text"],this.isNewMenu=!0,this._addClass("ui-autocomplete-input"),this.element.attr("autocomplete","off"),this._on(this.element,{keydown:function(n){if(this.element.prop("readOnly"))return e=!0,s=!0,i=!0,void 0;e=!1,s=!1,i=!1;var o=t.ui.keyCode;switch(n.keyCode){case o.PAGE_UP:e=!0,this._move("previousPage",n);break;case o.PAGE_DOWN:e=!0,this._move("nextPage",n);break;case o.UP:e=!0,this._keyEvent("previous",n);break;case o.DOWN:e=!0,this._keyEvent("next",n);break;case o.ENTER:this.menu.active&&(e=!0,n.preventDefault(),this.menu.select(n));break;case o.TAB:this.menu.active&&this.menu.select(n);break;case o.ESCAPE:this.menu.element.is(":visible")&&(this.isMultiLine||this._value(this.term),this.close(n),n.preventDefault());break;default:i=!0,this._searchTimeout(n)}},keypress:function(s){if(e)return e=!1,(!this.isMultiLine||this.menu.element.is(":visible"))&&s.preventDefault(),void 0;if(!i){var n=t.ui.keyCode;switch(s.keyCode){case n.PAGE_UP:this._move("previousPage",s);break;case n.PAGE_DOWN:this._move("nextPage",s);break;case n.UP:this._keyEvent("previous",s);break;case n.DOWN:this._keyEvent("next",s)}}},input:function(t){return s?(s=!1,t.preventDefault(),void 0):(this._searchTimeout(t),void 0)},focus:function(){this.selectedItem=null,this.previous=this._value()},blur:function(t){return this.cancelBlur?(delete this.cancelBlur,void 0):(clearTimeout(this.searching),this.close(t),this._change(t),void 0)}}),this._initSource(),this.menu=t("

197e85843d
-
-
\ No newline at end of file diff --git a/spaces/congsaPfin/Manga-OCR/logs/Apkshub How to Get Facebook on Your Android Phone.md b/spaces/congsaPfin/Manga-OCR/logs/Apkshub How to Get Facebook on Your Android Phone.md deleted file mode 100644 index a59df13f2be874334436181b635d99465ba47ba7..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/Apkshub How to Get Facebook on Your Android Phone.md +++ /dev/null @@ -1,60 +0,0 @@ -
-

What is Facebook Apkshub and How to Use It?

-

Facebook is one of the most popular social media platforms in the world, with over 2.8 billion monthly active users. It allows you to share updates, photos, videos, and stories with your friends, family, and communities. You can also use Facebook to chat with your contacts, watch videos, play games, and buy or sell products.

-

Apkshub is a website that provides free downloads of Android applications in APK format. APK stands for Android Package Kit, which is a file format that contains all the components of an app. You can install APK files on your device without using the Google Play Store, which may have some restrictions or limitations in your region.

-

facebook apkshub


Download ★★★★★ https://urlca.com/2uO6kX



-

Facebook Apkshub is a modified version of the official Facebook app that you can download from Apkshub. It has some extra features and functions that are not available in the original app, such as downloading videos, hiding online status, customizing themes, and more. It also has a smaller size and faster performance than the official app.

-

How to Download and Install Facebook Apkshub

-

If you want to try Facebook Apkshub on your device, you need to follow these steps:

-
    -
  1. Go to Apkshub.com and search for "Facebook". You will see a list of different versions of Facebook apps, such as Facebook Lite, Facebook Mod, Facebook Messenger, etc. Choose the one that says "Facebook" with a blue icon.
  2. -
  3. Click on the "Download" button and wait for the APK file to be downloaded on your device. You may need to enable "Unknown Sources" in your device settings to allow the installation of apps from outside the Google Play Store.
  4. -
  5. Once the download is complete, open the APK file and follow the instructions to install it on your device. You may need to grant some permissions to the app, such as access to your contacts, photos, media, etc.
  6. -
-

How to Use Facebook Apkshub

-

After installing Facebook Apkshub on your device, you can use it just like the official app. Here are some tips on how to use it:

-
    -
  • To log in or sign up for Facebook, you need to enter your email address or phone number and password. If you don't have an account yet, you can create one by following the steps on the screen.
  • -
  • To share updates, photos, videos, or stories with your friends, you need to tap on the "+" icon at the bottom of the screen. You can also add filters, stickers, text, or music to your posts.
  • -
  • To connect with friends, family, or communities on Facebook, you need to tap on the "Friends" icon at the bottom of the screen. You can also search for people or groups by using the magnifying glass icon at the top of the screen.
  • -
  • To use Facebook Messenger, Watch, Gaming, or Marketplace, you need to tap on the corresponding icons at the top of the screen. You can also access these features by swiping left or right on the screen.
  • -
-

Pros and Cons of Facebook Apkshub

-

Facebook Apkshub may seem like a better alternative to the official app, but it also has some drawbacks. Here are some of the pros and cons of using Facebook Apkshub:

- - - - - - - - - - - - - - - - - -
ProsCons
- It has more features and functions than the official app, such as downloading videos, hiding online status, customizing themes, etc.- It is not authorized by Facebook, so it may violate the terms of service and privacy policy of the platform.
- It has a smaller size and faster performance than the official app, so it consumes less storage space and battery life.- It may not be compatible with some devices or updates, so it may crash or malfunction at times.
- It allows you to access Facebook without using the Google Play Store, which may have some restrictions or limitations in your region.- It may contain malware or viruses that can harm your device or steal your data.
-

Conclusion

-

Facebook Apkshub is a modified version of the official Facebook app that you can download from Apkshub. It offers some extra features and functions that are not available in the original app, such as downloading videos, hiding online status, customizing themes, and more. It also has a smaller size and faster performance than the official app. However, it also has some disadvantages and risks, such as violating the terms of service and privacy policy of Facebook, not being compatible with some devices or updates, and containing malware or viruses. Therefore, you should use Facebook Apkshub at your own discretion and responsibility.

-

If you want to try Facebook Apkshub on your device, you can follow the steps in this article to download and install it from Apkshub. You can also use it to log in or sign up for Facebook, share updates, photos, videos, and stories, connect with friends, family, and communities, and use Facebook Messenger, Watch, Gaming, and Marketplace. However, you should also be aware of the pros and cons of using Facebook Apkshub and decide whether it is worth it or not.

-

FAQs

-

What is the difference between Facebook Apkshub and Facebook Lite?

-

Facebook Lite is an official version of Facebook that is designed for low-end devices or slow internet connections. It has a smaller size and consumes less data than the regular app. However, it also has fewer features and functions than the regular app. Facebook Apkshub is a modified version of the regular app that has more features and functions than the regular app. However, it is not authorized by Facebook and may have some drawbacks or risks.

-

[Facebook - Apps on Google Play](^1^)
-[Http:/www.apkshub.com - Facebook](^2^)
-[Facebook - log in or sign up](^3^)

-

Is Facebook Apkshub safe to use?

-

Facebook Apkshub is not safe to use because it is not authorized by Facebook and may violate the terms of service and privacy policy of the platform. It may also contain malware or viruses that can harm your device or steal your data. Therefore, you should use Facebook Apkshub at your own risk and responsibility.

-

How can I update Facebook Apkshub?

-

You can update Facebook Apkshub by visiting Apkshub.com and downloading the latest version of the app. However, you should be careful when updating because some updates may not be compatible with your device or may have bugs or errors. You should also backup your data before updating in case something goes wrong.

-

Can I use Facebook Apkshub on my PC?

-

You can use Facebook Apkshub on your PC by using an Android emulator software that allows you to run Android apps on your computer. Some examples of Android emulators are BlueStacks, Nox Player, MEmu, etc. However, you should also be careful when using an emulator because it may slow down your PC or cause some issues.

-

Can I use both Facebook Apkshub and the official app on my device?

-

You can use both Facebook Apkshub and the official app on your device by installing them separately. However, you should not log in with the same account on both apps because it may cause some conflicts or errors. You should also avoid using both apps at the same time because it may consume more battery life or data.

197e85843d
-
-
\ No newline at end of file diff --git a/spaces/congsaPfin/Manga-OCR/logs/Download Alias Maya 6.0 with Crack and Serial Key.md b/spaces/congsaPfin/Manga-OCR/logs/Download Alias Maya 6.0 with Crack and Serial Key.md deleted file mode 100644 index af292651ae6025aff199957c2aed09e2920024d3..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/Download Alias Maya 6.0 with Crack and Serial Key.md +++ /dev/null @@ -1,171 +0,0 @@ -
-

Alias Maya 6.0 Download: A Guide for Beginners

-

If you are interested in 3D modeling, animation, and rendering, you might have heard of Alias Maya. It is one of the most popular and powerful software tools for creating stunning 3D graphics and visual effects. Whether you are a hobbyist or a professional, you can use Alias Maya to bring your imagination to life.

-

But how can you get your hands on this amazing software? And how can you learn to use it effectively? In this article, we will show you how to download Alias Maya 6.0 for free from Archive.org, how to install it on your computer, how to use it for 3D modeling, animation, and rendering, and some tips and tricks to get the most out of it. Let's get started!

-

alias maya 6.0 download


DOWNLOAD ⚹⚹⚹ https://urlca.com/2uOg6Z



-

How to download Alias Maya 6.0 for free from Archive.org

-

Alias Maya 6.0 is an older version of the software that was released in 2004 by Alias|Wavefront, a company that was later acquired by Autodesk. Although it is not the latest version, it still has many features and functions that can help you create amazing 3D graphics and visual effects.

-

Unfortunately, Alias Maya 6.0 is not available for purchase or download from the official website anymore. However, you can still find it on Archive.org, a website that preserves digital content from various sources. Here are the steps to download Alias Maya 6.0 for free from Archive.org:

-
    -
  1. Go to this link to access the page where Alias Maya 6.0 is archived.
  2. -
  3. Click on the "ISO IMAGE" link under "Download Options" to download the file that contains the software.
  4. -
  5. Save the file to your computer and extract it using a program like WinRAR or 7-Zip.
  6. -
  7. You should see a folder called "AliasMaya6" that contains several files and subfolders.
  8. -
  9. Open the folder and look for a file called "setup.exe". This is the file that will launch the installation process.
  10. -
-

How to install Alias Maya 6.0 on your computer

-

Once you have downloaded and extracted Alias Maya 6.0 from Archive.org, you can proceed to install it on your computer. Here are the steps to install Alias Maya 6.0 on your computer:

-
    -
  1. Double-click on the "setup.exe" file that you found in the previous step.
  2. -
  3. A window will pop up asking you to choose the language for the installation. Select your preferred language and click "OK".
  4. -
  5. The Alias Maya 6.0 Setup Wizard will start. Click "Next" to continue.
  6. -
  7. Read and accept the license agreement and click "Next".
  8. -
  9. Choose the destination folder where you want to install Alias Maya 6.0 and click "Next".
  10. -
  11. Select the components that you want to install and click "Next".
  12. -
  13. Enter your name, organization, and serial number. You can find the serial number in a file called "serial.txt" in the same folder as the "setup.exe" file. Click "Next".
  14. -
  15. Review the installation settings and click "Install".
  16. -
  17. Wait for the installation to complete. It may take several minutes depending on your computer speed.
  18. -
  19. Click "Finish" to exit the Setup Wizard.
  20. -
-

Congratulations! You have successfully installed Alias Maya 6.0 on your computer. You can now launch it from the Start menu or from the desktop shortcut.

-

*alias maya 6.0 free download*
-*alias maya 6.0 unlimited final*
-*alias maya 6.0 irix*
-*alias maya 6.0 iso*
-*alias maya 6.0 autodesk*
-*alias maya 6.0 trial*
-*alias maya 6.0 software*
-*alias maya 6.0 tutorial*
-*alias maya 6.0 crack*
-*alias maya 6.0 serial number*
-*alias maya 6.0 system requirements*
-*alias maya 6.0 features*
-*alias maya 6.0 animation*
-*alias maya 6.0 modeling*
-*alias maya 6.0 rendering*
-*alias maya 6.0 scripting*
-*alias maya 6.0 plugins*
-*alias maya 6.0 update*
-*alias maya 6.0 patch*
-*alias maya 6.0 license*
-*alias maya 6.0 keygen*
-*alias maya 6.0 manual*
-*alias maya 6.0 documentation*
-*alias maya 6.0 support*
-*alias maya 6.0 forum*
-*alias maya 6.0 training*
-*alias maya 6.0 online course*
-*alias maya 6.0 video tutorial*
-*alias maya 6.0 book*
-*alias maya 6.0 pdf*
-*alias maya 6.0 ebook*
-*alias maya 6.0 cd rom*
-*alias maya 6.0 archive.org*
-*alias maya 6.0 new scientist*
-*alias maya 6.0 industrial design software*
-*alias maya 6.0 automotive modeling software*
-*alias maya 6.0 concept design software*
-*alias maya 6.0 class-a surfacing software*
-*alias maya 6.0 analysis software*
-*alias maya 6.0 design pipeline software*
-*alias maya 6.0 collaboration software*
-*alias maya 6.0 productivity software*
-*alias maya 6.0 cgi software*
-*alias maya 6.0 wavefront software*
-*alias maya 6.0 review*
-*alias maya 6.0 comparison*
-*alias maya 6.0 alternatives*
-*alias maya 6.0 tips and tricks*
-*alias maya 6.0 best practices*

-

How to use Alias Maya 6.0 for 3D modeling, animation, and rendering

-

Now that you have installed Alias Maya 6.0 on your computer, you can start using it for 3D modeling, animation, and rendering. Alias Maya 6.0 has a user-friendly interface that allows you to create and manipulate 3D objects, scenes, and animations with ease. Here are some basic steps to use Alias Maya 6.0 for 3D modeling, animation, and rendering:

-
    -
  1. Launch Alias Maya 6.0 from the Start menu or from the desktop shortcut.
  2. -
  3. You will see a window with four main sections: the menu bar, the toolbox, the workspace, and the status line. The menu bar contains various menus that let you access different commands and options. The toolbox contains icons that represent different tools that you can use to create and edit 3D objects. The workspace is where you can view and manipulate your 3D scene. The status line shows information about your current tool, mode, selection, and other settings.
  4. -
  5. To create a 3D object, you can use one of the tools in the toolbox or one of the commands in the menu bar. For example, you can use the Polygon tool to create a polygonal object, or you can use the Create > NURBS Primitives > Sphere command to create a spherical object.
  6. -
  7. To edit a 3D object, you can use one of the tools in the toolbox or one of the commands in the menu bar. For example, you can use the Move tool to move an object, or you can use the Edit > Delete command to delete an object.
  8. -
  9. To animate a 3D object, you can use one of the tools in the toolbox or one of the commands in the menu bar. For example, you can use the Animate > Set Key command to set keyframes for an object's position, rotation, or scale over time.
  10. -
  11. To render a 3D scene, you can use one of the tools in the toolbox or one of the commands in the menu bar. For example, you can use the Render > Render Current Frame command to render a single frame of your scene, or you can use the Render > Batch Render command to render multiple frames of your scene as an image sequence or a video file.
  12. -
-

These are just some of the basic steps to use Alias Maya 6.0 for 3D modeling, animation, and rendering. Of course, there are many more features and functions that you can explore and learn as you become more familiar with Alias Maya 6.0.

Some tips and tricks to get the most out of Alias Maya 6.0

-

Alias Maya 6.0 is a powerful and versatile software that can help you create amazing 3D graphics and visual effects. However, it can also be challenging and complex to master. Here are some tips and tricks to get the most out of Alias Maya 6.0:

-
    -
  • Use the online help system to learn more about the features and functions of Alias Maya 6.0. You can access it by clicking on the Help menu or by pressing F1 on your keyboard.
  • -
  • Use the hotkeys and shortcuts to speed up your workflow and save time. You can find a list of the default hotkeys and shortcuts in the online help system or by clicking on the Hotkey Editor icon in the toolbox.
  • -
  • Use the marking menus to access context-sensitive commands and options. You can activate them by pressing and holding the right mouse button over an object, a tool, or an area in the workspace.
  • -
  • Use the hypergraph to view and edit the connections and dependencies between your 3D objects, nodes, and attributes. You can access it by clicking on the Window > Hypergraph menu or by pressing Ctrl+H on your keyboard.
  • -
  • Use the channel box and the attribute editor to view and edit the properties and parameters of your 3D objects, nodes, and attributes. You can access them by clicking on the icons in the status line or by pressing Ctrl+A on your keyboard.
  • -
  • Use the outliner to view and organize your 3D scene in a hierarchical structure. You can access it by clicking on the Window > Outliner menu or by pressing Ctrl+O on your keyboard.
  • -
  • Use the layers to group and manage your 3D objects in different categories. You can access them by clicking on the Window > Layers menu or by pressing Ctrl+L on your keyboard.
  • -
  • Use the render globals to set up and customize your rendering settings, such as resolution, format, quality, camera, lights, etc. You can access them by clicking on the Window > Rendering Editors > Render Globals menu or by pressing Ctrl+R on your keyboard.
  • -
-

These are just some of the tips and tricks to get the most out of Alias Maya 6.0. Of course, there are many more that you can discover and learn as you practice and experiment with Alias Maya 6.0.

-

Conclusion: A summary of the main points and a call to action

-

In this article, we have shown you how to download Alias Maya 6.0 for free from Archive.org, how to install it on your computer, how to use it for 3D modeling, animation, and rendering, and some tips and tricks to get the most out of it. We hope that this article has been helpful and informative for you.

-

If you are interested in learning more about Alias Maya 6.0, we recommend that you check out some of the online tutorials, courses, books, and forums that are available on the internet. You can also join some of the online communities and groups that are dedicated to Alias Maya users and enthusiasts. You can learn from other people's experiences, share your own work, ask questions, get feedback, and make new friends.

-

Alias Maya 6.0 is a great software that can help you unleash your creativity and express yourself in 3D. Whether you want to create realistic or stylized graphics, simple or complex animations, static or dynamic scenes, Alias Maya 6.0 can help you achieve your goals. So what are you waiting for? Download Alias Maya 6.0 today and start creating your own 3D masterpiece!

-

FAQs: Five common questions and answers about Alias Maya 6.0 download

-
    -
  1. Is Alias Maya 6.0 compatible with Windows 10?
  2. -

    Yes, Alias Maya 6.0 is compatible with Windows 10 as well as Windows XP, Windows Vista, Windows 7, Windows 8, and Windows 8.1.

    -
  3. Is Alias Maya 6.0 safe to download from Archive.org?
  4. -

    Yes, Archive.org is a reputable website that preserves digital content from various sources. The file that contains Alias Maya 6.0 is scanned for viruses and malware before being uploaded to Archive.org. However, you should always be careful when downloading files from unknown sources and scan them with your own antivirus software before opening them.

    -
  5. Do I need a license or a registration code to use Alias Maya 6.0?
  6. -

    Yes, you need a serial number to use Alias Maya 6.0. You can find the serial number in a file called "serial.txt" in the same folder as the "setup.exe" file. You will need to enter the serial number during the installation process and activate it online or by phone.

    -
  7. What are the system requirements for Alias Maya 6.0?
  8. -

    The minimum system requirements for Alias Maya 6.0 are as follows:

    - - - - - - - - -
    Operating SystemWindows XP, Windows Vista, Windows 7, Windows 8, Windows 8.1, or Windows 10
    ProcessorPentium III or higher
    Memory512 MB RAM or higher
    Hard Disk Space450 MB free disk space or higher
    Graphics CardOpenGL-compatible graphics card with 32 MB VRAM or higher
    Display Resolution1024 x 768 pixels or higher
    Internet ConnectionRequired for activation and updates
    -

    The recommended system requirements for Alias Maya 6.0 are as follows:

    - - - - - - - - -
    Operating SystemWindows XP, Windows Vista, Windows 7, Windows 8, Windows 8.1, or Windows 10
    ProcessorPentium 4 or higher
    Memory1 GB RAM or higher
    Hard Disk Space1 GB free disk space or higher
    Graphics CardNVIDIA Quadro FX or ATI FireGL graphics card with 128 MB VRAM or higher
    Display Resolution1280 x 1024 pixels or higher
    Internet ConnectionRequired for activation and updates
    -
  9. What are the main differences between Alias Maya 6.0 and the latest version of Maya?
  10. -

    The latest version of Maya as of June 2023 is Maya 2023, which is developed and distributed by Autodesk. It has many new features and improvements compared to Alias Maya 6.0, such as:

    -
      -
    • A redesigned user interface that is more intuitive and customizable.
    • -
    • A new animation system that is faster and more flexible.
    • -
    • A new rendering engine that is more realistic and efficient.
    • -
    • A new modeling toolkit that is more powerful and versatile.
    • -
    • A new dynamics and effects system that is more interactive and realistic.
    • -
    • A new scripting and programming environment that is more robust and extensible.
    • -
    • A new collaboration and cloud integration system that is more convenient and secure.
    • -
    • A new learning and support system that is more accessible and comprehensive.
    • -
    -

    However, the latest version of Maya also has some drawbacks compared to Alias Maya 6.0, such as:

    -
      -
    • A higher price tag that may not be affordable for some users.
    • -
    • A higher system requirement that may not be compatible with some computers.
    • -
    • A steeper learning curve that may not be suitable for some beginners.
    • -
    • A different workflow and interface that may not be familiar to some users.
    • -
    • A potential compatibility issue with some older files and plugins.
    • -
    -

    The choice between Alias Maya 6.0 and the latest version of Maya depends on your personal preference, budget, skill level, project needs, and computer specifications. You can try both versions and see which one works better for you.

    -
  11. Where can I find more resources and tutorials for Alias Maya 6.0?
  12. -

    If you want to learn more about Alias Maya 6.0, you can find many resources and tutorials online. Here are some of the best ones:

    -
      -
    • The official Alias Maya 6.0 documentation, which contains detailed information about the features and functions of Alias Maya 6.0.
    • -
    • The official Alias Maya 6.0 tutorials, which contain step-by-step instructions on how to use Alias Maya 6.0 for various tasks and projects.
    • -
    • The official Alias Maya 6.0 forums, which contain discussions, questions, answers, tips, tricks, feedback, and support from other Alias Maya users and experts.
    • -
    • The unofficial Alias Maya 6.0 tutorials, which contain various video and text tutorials on how to use Alias Maya 6.0 for different purposes and genres.
    • -
    • The unofficial Alias Maya 6.0 books, which contain comprehensive and in-depth guides on how to master Alias Maya 6.0 for various levels and topics.
    • -
    • The unofficial Alias Maya 6.0 blogs, which contain articles, reviews, news, updates, and opinions on Alias Maya 6.0 and related topics.
    • -
    • The unofficial Alias Maya 6.0 podcasts, which contain audio and video interviews, discussions, stories, and tips on Alias Maya 6.0 and related topics.
    • -
    • The unofficial Alias Maya 6.0 courses, which contain online and offline classes, workshops, and lessons on how to learn and improve your skills in Alias Maya 6.0.
    • -
    -

    These are just some of the resources and tutorials for Alias Maya 6.0 that you can find online. Of course, there are many more that you can search and explore on your own.

    401be4b1e0
    -
    -
    \ No newline at end of file diff --git a/spaces/congsaPfin/Manga-OCR/logs/Download Save Data Resident Evil 4 Aether 2 - PS3 Virtual Memory Card - All Mini Games and Reports.md b/spaces/congsaPfin/Manga-OCR/logs/Download Save Data Resident Evil 4 Aether 2 - PS3 Virtual Memory Card - All Mini Games and Reports.md deleted file mode 100644 index 43a512df5e3ff57c3a13e0adc8629603265ba3fe..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/Download Save Data Resident Evil 4 Aether 2 - PS3 Virtual Memory Card - All Mini Games and Reports.md +++ /dev/null @@ -1,138 +0,0 @@ - -

    How to Download Save Data for Resident Evil 4 Aether 2

    -

    Resident Evil 4 Aether 2 is a modded version of the popular survival horror game Resident Evil 4, which adds a new dimension called the Aether, filled with floating islands, biomes, dungeons, and loot. If you want to enjoy this mod without having to start from scratch, you might want to download save data from other players who have completed the game or unlocked certain features. In this article, we will explain what Resident Evil 4 Aether 2 is, why you might want to download save data, and how to do it safely and easily.

    -

    What is Resident Evil 4 Aether 2?

    -

    Resident Evil 4 Aether 2 is a combination of two mods: Resident Evil 4 and Aether 2. Let's take a look at each mod separately.

    -

    download save data resident evil 4 aether 2


    DOWNLOAD >>> https://urlca.com/2uObJR



    -

    Resident Evil 4

    -

    Resident Evil 4 is a survival horror game developed and published by Capcom for the GameCube in 2005. It is the sixth main installment in the Resident Evil series, and follows the story of Leon S. Kennedy, a special agent who is sent to rescue the US president's daughter, Ashley Graham, who has been kidnapped by a religious cult in rural Spain. Leon has to fight his way through hordes of enemies infected by a mind-controlling parasite, and reunite with the spy Ada Wong. The game features a dynamic camera system and action-oriented gameplay, and is widely considered as one of the best video games of all time.

    -

    Aether 2

    -

    Aether 2 is a mod for Minecraft that adds a new dimension called the Aether, a dimension serving as the polar opposite of The Nether. The Aether is made of floating islands, similar to The End, and contains plenty of biomes, dungeons, and loot. The mod also introduces new mobs, blocks, items, and mechanics, such as Aerclouds, Continuum Orbs, Skyroot Crafting Tables, and more. The mod is a complete redo of the original Aether mod, and is still in development.

    -

    Why Download Save Data?

    -

    Downloading save data for Resident Evil 4 Aether 2 can have some advantages and disadvantages. Here are some of them:

    -

    Benefits of Save Data

    -
      -
    • You can skip the parts of the game that you find boring or difficult.
    • -
    • You can access features that are otherwise locked or hard to obtain, such as weapons, costumes, modes, etc.
    • -
    • You can explore the Aether dimension without having to craft portals or gather materials.
    • -
    • You can enjoy the game at your own pace and style.
    • -
    -

    Risks of Save Data

    -
      -
    • You might miss out on some of the fun and challenge of playing the game from scratch.
    • -
    • You might encounter compatibility issues or bugs with different versions of the game or the mod.
    • -
    • You might download corrupted or malicious files that can harm your device or compromise your security.
    • -
    • You might violate the terms and conditions of the game or the mod developers.
    • -
    -

    How to Download Save Data for Resident Evil 4 Aether 2

    -

    If you decide to download save data for Resident Evil 4 Aether 2, you will need to follow some steps and precautions. Here are some of them:

    -

    Requirements

    -
      -
    • A device that can run Minecraft and Resident Evil 4 (PC recommended).
    • -
    • A copy of Minecraft installed on your device.
    • -
    • A copy of Resident Evil 4 installed on your device.
    • -
    • The Aether 2 mod downloaded and installed on your device.
    • -
    • A reliable source of save data for Resident Evil 4 Aether 2.
    • -
    -

    Sources of Save Data

    -

    There are many websites and forums that offer save data for Resident Evil 4 Aether 2, but not all of them are trustworthy or compatible. You should always do some research and check the reviews and ratings of the source before downloading anything. Some of the factors that you should consider are:

    -
      -
    • The version of the game and the mod that the save data is compatible with.
    • -
    • The content and features that the save data includes or unlocks.
    • -
    • The language and region of the save data.
    • -
    • The file size and format of the save data.
    • -
    • The safety and security of the download link and the file.
    • -
    -

    Some examples of sources that you can try are:

    -
      -
    • [Nexus Mods]: This is a popular website that hosts mods and save data for various games, including Resident Evil 4 and Minecraft. You can browse through different categories and filters, and download files with a free account. You can also read the comments and ratings of other users, and contact the mod or save data authors if you have any questions or issues.
    • -
    • [GameFAQs]: This is another popular website that provides guides, walkthroughs, cheats, and save data for various games, including Resident Evil 4. You can search for the game and select the platform that you are using, and then choose the save data option. You can also read the descriptions and instructions of each file, and see how many users have downloaded or rated it.
    • -
    • [YouTube]: This is a video-sharing platform that hosts many videos related to gaming, including tutorials, reviews, gameplay, and more. You can search for videos that show how to download or install save data for Resident Evil 4 Aether 2, and follow the links or instructions provided by the video creators. You can also watch the videos to see how the save data works or looks like, and leave comments or questions if you have any.
    • -
    -

    Steps to Download and Install Save Data

    -

    Once you have found a source of save data that suits your needs and preferences, you will need to download and install it on your device. The exact steps may vary depending on the source, the file, and your device, but here are some general steps that you can follow:

    -

    download resident evil 4 save game files for ps2
    -resident evil 4 aethersx2 save data tamat
    -resident evil 4 pcsx2 memory card save file
    -resident evil 4 gamefaqs ps2 saves
    -resident evil 4 youtube aethersx2 finished game
    -resident evil 4 the tech game emulator save file
    -resident evil 4 ps2 system data save
    -resident evil 4 aethersx2 max ammo and cash
    -resident evil 4 pcsx2 cleared game and mini games
    -resident evil 4 gamefaqs datel wii power save
    -resident evil 4 youtube codetz emulator ps2
    -resident evil 4 the tech game ntsc uc save file
    -resident evil 4 ps2 separate ways and assignment ada
    -resident evil 4 aethersx2 infinite launcher and handcannon
    -resident evil 4 pcsx2 special costumes and weapons
    -resident evil 4 gamefaqs gamecube gameshark save
    -resident evil 4 youtube damonps2 emulator ps2
    -resident evil 4 the tech game rar file download
    -resident evil 4 ps2 movie browser and ada's report
    -resident evil 4 aethersx2 chicago typewriter and rocket launcher
    -resident evil 4 pcsx2 normal mode and pro mode
    -resident evil 4 gamefaqs gamecube usb memory adapter save
    -resident evil 4 youtube aethersx2 hashtag emulator ps2
    -resident evil 4 the tech game sean submitter comment
    -resident evil 4 ps2 the mercenaries and alt costumes
    -download resident evil 4 aethersx2 save data finished
    -resident evil 4 pcsx2 save file download link
    -resident evil 4 gamefaqs ps2 system data file
    -resident evil 4 youtube codetz channel subscribe
    -resident evil 4 the tech game playstation forum related
    -resident evil 4 ps2 everything unlocked and completed
    -download resident evil 4 pcsx2 memory card file
    -resident evil 4 gamefaqs gamecube maxdrive save
    -resident evil 4 youtube damonps2 hashtag emulator ps2
    -resident evil 4 the tech game category emulator save files
    -resident evil 4 ps2 start game with max cash and health
    -download resident evil 4 gamefaqs ps2 save files
    -resident evil 4 pcsx2 mastered save with infinite ammo
    -resident evil 4 youtube aethersx2 gaming browse all gaming
    -resident evil 4 the tech game version ntsc uc file size
    -resident evil 4 ps2 tons of extras and fully upgraded weapons
    -download resident evil 4 the tech game emulator save file
    -resident evil 4 pcsx2 cleared file on normal difficulty
    -resident evil 4 youtube codetz share save views months ago
    -resident evil 4 the tech game comments downloads views
    -resident evil 4 ps2 professional difficulty with minigames unlocked

    -
      -
    1. Download the save data file from the source to your device. Make sure that you have enough space and a stable internet connection.
    2. -
    3. Extract or unzip the file if it is compressed or archived. You may need a software like WinRAR or 7-Zip to do this.
    4. -
    5. Locate the folder where your Resident Evil 4 game is installed on your device. It is usually in Program Files (x86) > Capcom > Resident Evil 4.
    6. -
    7. Backup your original save data files in case something goes wrong or you want to revert to them later. You can copy them to another folder or an external drive.
    8. -
    9. Copy or move the downloaded save data files to the folder where your Resident Evil 4 game is installed. Overwrite or replace any existing files if prompted.
    10. -
    11. Launch your Resident Evil 4 game and check if the save data works as expected. You may need to select a different profile or slot to load the save data.
    12. -
    -

    Conclusion

    -

    In this article, we have explained what Resident Evil 4 Aether 2 is, why you might want to download save data for it, and how to do it safely and easily. We hope that this article has been helpful and informative for you, and that you enjoy playing this modded version of one of the best survival horror games ever made.

    -

    Summary of the Article

    -
      -
    • Resident Evil 4 Aether 2 is a modded version of Resident Evil 4 that adds a new dimension called the Aether.
    • -
    • Downloading save data for Resident Evil 4 Aether 2 can have some benefits and risks, depending on your preferences and goals.
    • -
    • To download save data for Resident Evil 4 Aether 2, you will need to have some requirements, find a reliable source of save data, and follow some steps to download and install it on your device.
    • -
    -

    Call to Action

    -

    If you liked this article, please share it with your friends who might be interested in playing Resident Evil 4 Aether 2. You can also leave a comment below and let us know what you think of this mod or this article. If you have any questions or suggestions, feel free to contact us anytime. Thank you for reading and happy gaming!

    -

    FAQs

    -

    Here are some frequently asked questions and answers about Resident Evil 4 Aether 2 and save data:

    -

    Q: How do I get the Aether 2 mod for Resident Evil 4?

    -

    A: You can get the Aether 2 mod for Resident Evil 4 from the official website of the mod developers, [Aether II]. You will need to download the mod file and install it on your device, following the instructions provided by the developers. You will also need to have Minecraft installed on your device, as the mod is based on it.

    -

    Q: Is Resident Evil 4 Aether 2 compatible with other mods or versions of Resident Evil 4?

    -

    A: Resident Evil 4 Aether 2 is compatible with most mods and versions of Resident Evil 4, as long as they do not conflict with the core files or features of the game or the mod. However, some mods or versions may cause glitches or errors, so you should always backup your original files and test them before playing.

    -

    Q: Can I use my own save data for Resident Evil 4 Aether 2?

    -

    A: Yes, you can use your own save data for Resident Evil 4 Aether 2, as long as it is compatible with the game and the mod. You can also create your own save data by playing the game normally and saving your progress. However, if you want to access certain features or items that are exclusive to the mod, you may need to download save data from other sources.

    -

    Q: Is downloading save data for Resident Evil 4 Aether 2 legal or ethical?

    -

    A: Downloading save data for Resident Evil 4 Aether 2 is not illegal, as long as you do not distribute or sell it for profit. However, it may be considered unethical by some players or developers, as it may affect the original gameplay experience or design of the game or the mod. You should always respect the rights and wishes of the creators and owners of the game and the mod, and follow their terms and conditions.

    -

    Q: What are some tips or tricks for playing Resident Evil 4 Aether 2?

    -

    A: Here are some tips or tricks for playing Resident Evil 4 Aether 2:

    -
      -
    • Use the Continuum Orbs to teleport between different islands in the Aether dimension.
    • -
    • Use the Skyroot Crafting Tables to craft items that are exclusive to the mod, such as Aerclouds, Zanite Armor, etc.
    • -
    • Use the Gravitite Armor to fly in the Aether dimension.
    • -
    • Use the Golden Feather to negate fall damage in any dimension.
    • -
    • Use the Phoenix Bow to shoot flaming arrows that can ignite enemies or blocks.
    • -

    197e85843d
    -
    -
    \ No newline at end of file diff --git a/spaces/congsaPfin/Manga-OCR/logs/Downloading the Bitcoin blockchain best practices and sources.md b/spaces/congsaPfin/Manga-OCR/logs/Downloading the Bitcoin blockchain best practices and sources.md deleted file mode 100644 index 81fb263163b7eccec35e08790fba5085b354f112..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/Downloading the Bitcoin blockchain best practices and sources.md +++ /dev/null @@ -1,146 +0,0 @@ - -

    Fastest Way to Download Bitcoin Blockchain

    -

    Bitcoin is a decentralized digital currency that operates on a peer-to-peer network of nodes. The bitcoin blockchain is a shared public ledger that records all the transactions that have ever occurred on the network. The bitcoin blockchain is essential for verifying the validity and authenticity of transactions and preventing double-spending and fraud.

    -

    However, downloading the bitcoin blockchain can be a daunting task for many users, especially beginners. The bitcoin blockchain is constantly growing in size and complexity, and as of June 2023, it has reached over 488 GB. Downloading the bitcoin blockchain can take a lot of time, bandwidth, disk space, and computing power. Moreover, some users may face censorship or surveillance issues when trying to access the bitcoin network in certain regions or countries.

    -

    fastest way to download bitcoin blockchain


    Download ✦✦✦ https://urlca.com/2uOfJN



    -

    On the other hand, downloading the bitcoin blockchain can also bring many benefits for users who want to run a full node and contribute to the security and decentralization of the network. A full node is a node that validates transactions and blocks according to the consensus rules of the network. A full node can also provide better privacy, autonomy, and reliability for users who want to transact with bitcoin without relying on third-party services or intermediaries.

    -

    So, how can you download the bitcoin blockchain faster and easier? In this article, we will explore some of the best ways and tips to do so. We will focus on two main methods: using Bitcoin Core, the official and most popular bitcoin client, and using alternative clients that offer faster or lighter synchronization options. We will also provide some useful links and resources for further reading and learning.

    -

    How to Download the Bitcoin Blockchain Faster with Bitcoin Core

    -

    Bitcoin Core is the original and most widely used bitcoin client that implements a full node. Bitcoin Core allows users to download, validate, and store the entire bitcoin blockchain on their local device. Bitcoin Core also provides a graphical user interface (GUI) and a command-line interface (CLI) for users to interact with the network.

    -

    However, Bitcoin Core can also be slow and resource-intensive when it comes to downloading the bitcoin blockchain. Bitcoin Core does not trust any information from other nodes and verifies everything itself. This means that it has to download and validate every transaction and block in the history of the network, which can take hours or even days depending on your internet speed and hardware specifications.

    -

    Fortunately, there are some ways to speed up this process and make it more efficient. Here are some tips:

    -

    How to Increase the Database Cache Size to Speed Up the Validation Process

    -

    One of the factors that affects the speed of downloading the bitcoin blockchain is the database cache size. The database cache size is the amount of memory that Bitcoin Core uses to store frequently accessed data, such as unspent transaction outputs (UTXOs) and block headers. The larger the database cache size, the faster Bitcoin Core can access and process data, which reduces disk reads and writes and speeds up the validation process.

    -

    How to download the bitcoin blockchain in minutes
    -Bitcoin blockchain download torrent
    -Best nodes for bitcoin blockchain download
    -Bitcoin blockchain download size and time
    -Bitcoin core blockchain download speed
    -Bitcoin blockchain bootstrap download
    -Bitcoin blockchain download 2023
    -Bitcoin blockchain download location
    -Bitcoin blockchain download slow
    -Bitcoin blockchain download error
    -Bitcoin blockchain download linux
    -Bitcoin blockchain download windows
    -Bitcoin blockchain download mac
    -Bitcoin blockchain download android
    -Bitcoin blockchain download api
    -Bitcoin blockchain download csv
    -Bitcoin blockchain download zip
    -Bitcoin blockchain download github
    -Bitcoin blockchain download command line
    -Bitcoin blockchain download python
    -Bitcoin blockchain download without core
    -Bitcoin blockchain download with core
    -Bitcoin blockchain download from scratch
    -Bitcoin blockchain download via torrent
    -Bitcoin blockchain download using bitcoind
    -Bitcoin blockchain download using electrum
    -Bitcoin blockchain download using wasabi wallet
    -Bitcoin blockchain download using exodus wallet
    -Bitcoin blockchain download using ledger nano s
    -Bitcoin blockchain download using trezor one
    -Bitcoin blockchain download using samourai wallet
    -Bitcoin blockchain download using green wallet
    -Bitcoin blockchain download using blue wallet
    -Bitcoin blockchain download using coinomi wallet
    -Bitcoin blockchain download using trust wallet
    -Bitcoin blockchain download using atomic wallet
    -Bitcoin blockchain download using edge wallet
    -Bitcoin blockchain download using jaxx liberty wallet
    -Bitcoin blockchain sync faster
    -How to speed up bitcoin blockchain sync
    -How to sync bitcoin blockchain offline
    -How to sync bitcoin blockchain online
    -How to sync bitcoin core with network faster
    -How to sync bitcoin core without downloading the whole chain
    -How to sync bitcoin core with an external hard drive
    -How to sync bitcoin core with a pruned node
    -How to sync bitcoin core with a full node
    -How to sync bitcoin core with a light node
    -How to sync bitcoin core with a spv node

    -

    The default database cache size in Bitcoin Core is 300 MB, but you can increase it to a higher value depending on your available memory. To do so, you need to edit the bitcoin.conf file, which is a configuration file that stores various settings for Bitcoin Core. You can find this file in:

    -
      -
    • Windows: /appdata/roaming/bitcoin/bitcoin.conf
    • -
    • Linux: $USER/.bitcoin/bitcoin.conf
    • -
    • MacOS: $HOME/Library/Application Support/Bitcoin/bitcoin.conf
    • -
    -

    To increase the database cache size, you need to add the following line to the bitcoin.conf file:

    -dbcache=SIZE -

    where SIZE is the desired value in megabytes. For example, if you want to set the database cache size to 2 GB, you need to add:

    -dbcache=2000 -

    After editing the bitcoin.conf file, you need to restart Bitcoin Core for the changes to take effect. You can also adjust the database cache size from the GUI by going to Settings > Options > Main and moving the slider under "Size of database cache".

    -

    A larger database cache size can significantly improve the performance of Bitcoin Core, but it also consumes more memory and may affect other applications running on your device. Therefore, you should choose a value that is appropriate for your device and your needs.

    -

    How to Use bootstrap.dat File to Skip the Initial Download

    -

    Another way to download the bitcoin blockchain faster with Bitcoin Core is to use a bootstrap.dat file. A bootstrap.dat file is a file that contains a copy of the bitcoin blockchain up to a certain point in time. By using a bootstrap.dat file, you can skip the initial download of the bitcoin blockchain from other nodes and only download the new blocks that have been added since the file was created.

    -

    To use a bootstrap.dat file, you need to follow these steps:

    -
      -
    1. Download a bootstrap.dat file from a trusted source. You can find some links to download bootstrap.dat files from various sources here. Make sure that the file is up-to-date and verified by checking its hash value.
    2. -
    3. Place the bootstrap.dat file in the same folder where Bitcoin Core stores the bitcoin blockchain data. You can find this folder in:
    4. -
        -
      • Windows: /appdata/roaming/bitcoin/blocks
      • -
      • Linux: $USER/.bitcoin/blocks
      • -
      • MacOS: $HOME/Library/Application Support/Bitcoin/blocks
      • -
      -
    5. Start Bitcoin Core and wait for it to import the bootstrap.dat file. This may take some time depending on the size of the file and your hardware specifications. You can monitor the progress of the import process from the debug window or the debug.log file.
    6. -
    7. Once the import process is finished, Bitcoin Core will rename the bootstrap.dat file to bootstrap.dat.old and start downloading the new blocks from other nodes. You can delete or move the bootstrap.dat.old file to free up some disk space.
    8. -
    -

    Using a bootstrap.dat file can save you some time and bandwidth when downloading the bitcoin blockchain with Bitcoin Core, but it also has some drawbacks. For example, you need to trust the source of the bootstrap.dat file and make sure that it is not corrupted or tampered with. Moreover, you still need to validate all the transactions and blocks in the bootstrap.dat file, which can take longer than downloading them from other nodes.

    -

    How to Download the Bitcoin Blockchain Faster with Alternative Clients

    -

    If you do not want to use Bitcoin Core or you want to try some alternative clients that offer faster or lighter synchronization options, you have some choices. There are many different bitcoin clients that implement different types of nodes, such as pruned nodes, light nodes, or SPV nodes. These nodes do not download or store the entire bitcoin blockchain, but only a subset of it or none at all. Instead, they rely on other nodes or servers to provide them with the necessary information to verify transactions and blocks.

    -

    However, using alternative clients also comes with some trade-offs. For example, you may sacrifice some privacy, security, or functionality when using these clients. You may also depend on third-party services or intermediaries that may not be trustworthy or reliable. Therefore, you should carefully weigh the pros and cons of each client before choosing one.

    -

    Here are some examples of alternative clients that offer faster or lighter synchronization options:

    -

    How to Use Electrum, a Lightweight Client that Does Not Require Downloading the Whole Blockchain

    -

    Electrum is one of the most popular and oldest bitcoin clients that does not require downloading the whole blockchain. Electrum is a lightweight client that uses a technique called Simplified Payment Verification (SPV) to verify transactions and blocks. SPV is a method that allows a node to verify transactions without having the full blockchain, but only by downloading and storing the block headers, which are much smaller in size. Electrum also connects to a network of servers, called Electrum servers, that provide it with the necessary information to verify transactions and blocks.

    -

    Using Electrum can save you a lot of time, bandwidth, disk space, and computing power when downloading the bitcoin blockchain. Electrum can synchronize with the network in minutes and allow you to transact with bitcoin quickly and easily. Electrum also provides a user-friendly interface and some advanced features, such as multisig, hardware wallet integration, cold storage, and custom fees.

    -

    However, using Electrum also has some drawbacks. For example, you need to trust the Electrum servers to provide you with accurate and honest information. If the Electrum servers are compromised or malicious, they may feed you false or outdated data, which can affect your transactions and your security. Moreover, you may leak some privacy information to the Electrum servers, such as your IP address, your transaction history, or your wallet balance. Therefore, you should choose an Electrum server that is reputable and trustworthy, or run your own Electrum server if possible.

    -

    To use Electrum, you need to download and install the Electrum software from the official website. You can choose between a desktop version or a mobile version for Android devices. You can also use Electrum with Tor or a VPN to enhance your privacy and anonymity.

    -

    How to Use Neutrino, a Privacy-Preserving Client that Uses Compact Block Filters

    -

    Neutrino is a new and experimental bitcoin client that aims to provide faster and more private synchronization than SPV clients. Neutrino uses a technique called compact block filters to verify transactions and blocks. Compact block filters are data structures that allow a node to filter out the transactions and blocks that are relevant to its wallet without downloading the whole blockchain or revealing its addresses to other nodes. Neutrino connects to a network of nodes that support the compact block filters protocol (BIP 157/158) and downloads the filters from them.

    -

    Using Neutrino can offer some advantages over SPV clients. For example, Neutrino can provide better privacy, as it does not need to disclose its addresses or transaction history to other nodes. Neutrino can also provide better security, as it does not need to trust other nodes to provide it with accurate and honest information. Neutrino can verify transactions and blocks by itself using the compact block filters.

    -

    However, using Neutrino also has some challenges. For example, Neutrino is still in development and testing, and it may not be stable or compatible with all devices or platforms. Neutrino also requires more bandwidth and disk space than SPV clients, as it has to download and store all the compact block filters, which are larger than block headers. Moreover, Neutrino may not have many nodes that support the compact block filters protocol, which may limit its connectivity and availability.

    -

    To use Neutrino, you need to download and install the Neutrino software from the official GitHub repository. You can choose between a desktop version or a mobile version for Android devices. You can also use Neutrino with Tor or a VPN to enhance your privacy and anonymity.

    -

    Conclusion

    -

    In this article, we have explored some of the fastest ways to download the bitcoin blockchain. We have focused on two main methods: using Bitcoin Core, the official and most popular bitcoin client that implements a full node; and using alternative clients that offer faster or lighter synchronization options, such as Electrum and Neutrino.

    -

    We have also provided some tips and tricks to speed up the download process with Bitcoin Core, such as increasing the database cache size or using a bootstrap.dat file. We have also discussed some of the pros and cons of each method, such as privacy, security, functionality, and resource consumption.

    -

    We hope that this article has been helpful and informative for you. If you want to learn more about bitcoin and blockchain technology, you can check out some of these resources:

    -
      -
    • [Bitcoin.org]: The official website of bitcoin that provides basic information, guides, resources, and links for bitcoin users.
    • -
    • [Bitcoin Wiki]: A comprehensive wiki that covers various topics related to bitcoin technology, terminology, protocol, software, services, history, and more.
    • -
    • [Bitcoin Core]: The official website of Bitcoin Core that provides downloads, documentation, support, and news for Bitcoin Core users and developers.
    • -
    • [Electrum]: The official website of Electrum that provides downloads, documentation, support, and news for Electrum users and developers.
    • -
    • [Neutrino]: The official GitHub repository of Neutrino that provides downloads, documentation, support, and news for Neutrino users and developers.
    • -
    -

    We also invite you to share your feedback and experience with us. Have you tried any of the methods we have mentioned in this article? How did they work for you? Do you have any other tips or suggestions to download the bitcoin blockchain faster? Let us know in the comments below!

    -

    FAQs

    -

    Here are some of the frequently asked questions (FAQs) about downloading the bitcoin blockchain:

    -

    How long does it take to download the bitcoin blockchain?

    -

    The answer to this question depends on many factors, such as your internet speed, hardware specifications, software settings, network conditions, and more. However, as a general estimate, it can take anywhere from a few hours to several days to download the bitcoin blockchain with Bitcoin Core. It can take much less time with alternative clients that do not download the whole blockchain, such as Electrum or Neutrino.

    -

    How much disk space does the bitcoin blockchain take?

    -

    The answer to this question also depends on many factors, such as the type of node you are running, the software settings, the pruning options, and more. However, as a general estimate, the bitcoin blockchain takes about 488 GB of disk space as of June 2023. It can take much less disk space with alternative clients that do not store the whole blockchain, such as Electrum or Neutrino.

    -

    How can I prune the bitcoin blockchain to save disk space?

    -

    Pruning is a technique that allows a node to delete old or irrelevant data from the bitcoin blockchain and only keep a subset of it. Pruning can save disk space and reduce resource consumption without affecting the functionality or security of the node. However, pruning also has some limitations, such as not being able to serve historical blocks or transactions to other nodes.

    -

    To prune the bitcoin blockchain with Bitcoin Core, you need to edit the bitcoin.conf file and add the following line:

    -prune=SIZE -

    where SIZE is the desired value in megabytes. For example, if you want to prune the bitcoin blockchain to 10 GB, you need to add:

    -prune=10000 -

    After editing the bitcoin.conf file, you need to restart Bitcoin Core for the changes to take effect. You can also enable pruning from the GUI by going to Settings > Options > Main and checking the box under "Reduce storage".

    -

    How can I verify the integrity of the bitcoin blockchain?

    -

    Verifying the integrity of the bitcoin blockchain is important to ensure that you have a valid and authentic copy of it. To verify the integrity of the bitcoin blockchain with Bitcoin Core, you need to use a tool called Bitcoin Core Checkpoints. Bitcoin Core Checkpoints is a feature that allows Bitcoin Core to skip the verification of some blocks that have been pre-verified by trusted sources. This can speed up the synchronization process and prevent some attacks on the network.

    -

    To use Bitcoin Core Checkpoints, you need to download and install Bitcoin Core Checkpoints from here. You can then run Bitcoin Core Checkpoints from the command line with the following syntax:

    -bitcoin-checkpoints [options] [checkpoint-file] -

    where [options] are optional parameters that modify the behavior of Bitcoin Core Checkpoints, such as -v for verbose mode or -d for debug mode; and [checkpoint-file] is the name of the checkpoint file that contains the pre-verified blocks. You can find some checkpoint files for different versions of Bitcoin Core here.

    -

    Bitcoin Core Checkpoints will then compare the blocks in your bitcoin blockchain with the blocks in the checkpoint file and report any discrepancies or errors. If Bitcoin Core Checkpoints finds any problems, you may need to re-download or re-validate the bitcoin blockchain.

    -

    How can I backup and restore the bitcoin blockchain?

    -

    Backing up and restoring the bitcoin blockchain can be useful in case of data loss, corruption, or migration. To backup and restore the bitcoin blockchain with Bitcoin Core, you need to copy and paste the folder where Bitcoin Core stores the bitcoin blockchain data. You can find this folder in:

    -
      -
    • Windows: /appdata/roaming/bitcoin
    • -
    • Linux: $USER/.bitcoin
    • -
    • MacOS: $HOME/Library/Application Support/Bitcoin
    • -
    -

    To backup the bitcoin blockchain, you need to copy the whole folder and save it to a secure and reliable location, such as an external hard drive or a cloud storage service. To restore the bitcoin blockchain, you need to paste the whole folder to the same location on your new device and overwrite any existing files. You may also need to update or reconfigure some settings in the bitcoin.conf file or the GUI.

    -

    -

    This is the end of the article. I hope you enjoyed reading it and learned something new. Thank you for your attention and have a great day!

    197e85843d
    -
    -
    \ No newline at end of file diff --git a/spaces/congsaPfin/Manga-OCR/logs/How to Install Messenger Happy Mod APK for Android and iOS Devices.md b/spaces/congsaPfin/Manga-OCR/logs/How to Install Messenger Happy Mod APK for Android and iOS Devices.md deleted file mode 100644 index 871465484f50a65a48c71b76ca716c99513d4e27..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/How to Install Messenger Happy Mod APK for Android and iOS Devices.md +++ /dev/null @@ -1,125 +0,0 @@ -
    -

    Messenger APK HappyMod: A Modded Version of Messenger with Extra Features

    -

    If you are looking for a way to enhance your messaging experience with your friends and family, you might want to try out messenger apk happymod. This is a modified version of the official Messenger app from Meta that offers some additional features and customizations that are not available in the original app. In this article, we will tell you what messenger apk happymod is, what are its benefits, how to download and install it, what are some user reviews and ratings, and what are some alternatives to it.

    -

    messenger apk happymod


    Download Ziphttps://urlca.com/2uO5pU



    -

    What is messenger apk happymod?

    -

    Messenger apk happymod is a modded version of Messenger, a popular messaging and video calling app that works across Facebook, Instagram, Portal, and Oculus. Messenger apk happymod is created by using a tool called HappyMod, which is an Android-based app search engine that allows you to download modified or mod versions of apps and games. HappyMod provides many versions mod of one game or app, and users give them the using experience percent, so you can download the high score one.

    -

    The main benefit of using messenger apk happymod is that it gives you access to some features that are not available in the official Messenger app, such as custom reactions, animated effects, app lock, payments, business, and more. These features can make your conversations more fun, secure, convenient, and productive. You can also enjoy the core features of Messenger, such as cross-app communication, watch together, replies and forwarding, and more.

    -

    Main features of messenger apk happymod

    -

    Here are some of the main features of messenger apk happymod that you can enjoy:

    -

    Cross-app communication

    -

    You can hang out with your favorite people on your favorite apps and devices. Messenger powers conversations within Facebook, Instagram, Portal, and Oculus. You can also use Messenger to make voice and video calls with up to eight people for free.

    -

    messenger mod apk download happymod
    -whatsapp messenger mod apk happymod
    -facebook messenger mod apk happymod
    -messenger lite mod apk happymod
    -messenger plus mod apk happymod
    -messenger transparent mod apk happymod
    -messenger dark mode mod apk happymod
    -messenger no ads mod apk happymod
    -messenger pro mod apk happymod
    -messenger premium mod apk happymod
    -messenger hack mod apk happymod
    -messenger unlimited mod apk happymod
    -messenger free mod apk happymod
    -messenger latest mod apk happymod
    -messenger old version mod apk happymod
    -messenger beta mod apk happymod
    -messenger update mod apk happymod
    -messenger offline mod apk happymod
    -messenger online mod apk happymod
    -messenger video call mod apk happymod
    -messenger voice call mod apk happymod
    -messenger chat mod apk happymod
    -messenger stickers mod apk happymod
    -messenger emoji mod apk happymod
    -messenger themes mod apk happymod
    -messenger color mod apk happymod
    -messenger privacy mod apk happymod
    -messenger security mod apk happymod
    -messenger backup mod apk happymod
    -messenger restore mod apk happymod
    -messenger sync mod apk happymod
    -messenger group chat mod apk happymod
    -messenger secret chat mod apk happymod
    -messenger status mod apk happymod
    -messenger stories mod apk happymod
    -messenger filters mod apk happymod
    -messenger effects mod apk happymod
    -messenger games mod apk happymod
    -messenger bots mod apk happymod
    -messenger rooms mod apk happymod
    -telegram messenger mod apk happymod
    -signal messenger mod apk happymod
    -viber messenger mod apk happymod
    -line messenger mod apk happymod
    -hike messenger mod apk happymod
    -kik messenger mod apk happymod
    -wechat messenger mod apk happymod
    -imo messenger mod apk happymod
    -skype messenger mod apk happymod

    -

    Watch together

    -

    You can watch movies, music videos, TV shows, and more with your friends over video chat. You can choose from a variety of content sources, such as Facebook Watch, IGTV, Reels, YouTube, Netflix, Hulu, Disney+, Prime Video, etc.

    -

    Custom reactions

    -

    You can say it with any emoji. You can customize your reactions with way more emojis to choose from, including \uD83C\uDF89and \uD83D

    Animated effects

    -

    You can add some flair to your messages with animated effects. You can choose from a variety of effects, such as balloons, confetti, hearts, fireworks, etc. You can also use effects to celebrate special occasions, such as birthdays, anniversaries, holidays, etc. To use animated effects, just tap and hold the send button and swipe up to see the options.

    -

    Replies and forwarding

    -

    You can reply to specific messages in a conversation by swiping right on the message you want to reply to. This will create a thread that shows the original message and your reply. You can also forward messages to other chats by tapping and holding the message and selecting the forward option. This can help you share information or content with other people easily.

    -

    App lock

    -

    You can protect your chats from prying eyes with app lock. App lock lets you use your device's privacy settings, such as fingerprint or face ID, to unlock Messenger. This way, you can keep your conversations private even if someone else has access to your phone. To enable app lock, go to your profile picture, tap Privacy, and then tap App Lock.

    -

    Payments

    -

    You can send and receive money securely with Messenger. You can link your debit card, credit card, or PayPal account to Messenger and use it to pay friends or businesses. You can also request money from others or split bills with groups. To use payments, tap the plus icon in a chat, then tap Pay or Request. You can also access your payment history and settings from your profile picture.

    -

    Business

    -

    You can connect with businesses on Messenger and get customer support, updates, offers, and more. You can also discover new businesses by browsing categories or searching for keywords. You can also shop directly from Messenger using checkout or buy buttons. To find businesses on Messenger, tap the search icon and then tap Businesses.

    -

    How to download and install messenger apk happymod

    -

    If you want to try out messenger apk happymod, you need to download and install it from a third-party source. Here are the steps you need to follow:

    -
      -
    1. Go to happymod.com and search for messenger mod apk.
    2. -
    3. Choose the version you want and click on download. You will see a list of mod features and a download link.
    4. -
    5. Enable unknown sources on your device settings. This will allow you to install apps from sources other than the Google Play Store.
    6. -
    7. Open the downloaded file and install it. You may need to grant some permissions for the app to work properly.
    8. -
    -

    That's it! You can now enjoy messenger apk happymod on your device.

    -

    Reviews and ratings of messenger apk happymod

    -

    Messenger apk happymod has received mixed reviews and ratings from users who have tried it out. Here are some of the pros and cons of using messenger apk happymod:

    - - - - - -
    ProsCons
    - It offers more features and customizations than the official Messenger app.- It may not be compatible with some devices or Android versions.
    - It is easy to download and install from happymod.com.- It may not be updated regularly or in sync with the official Messenger app.
    - It is free to use and does not require root access.- It may pose some security risks or privacy issues as it is not verified by Meta.
    -

    Alternatives to messenger apk happymod

    -

    If you are not satisfied with messenger apk happymod or want to try out other options, here are some alternatives that you can check out:

    -

    F-Droid

    -

    F-Droid is a free and open source app store for Android devices that offers a catalog of apps that respect your freedom and privacy. You can find apps that are not available on the Google Play Store or that have been modified or removed by their developers. You can also browse apps by categories, ratings, popularity, etc. To use F-Droid, you need to download and install its app from f-droid.org.

    -

    Aurora Store

    -

    Aurora Store is a FOSS client to Google Play Store that allows you to download apps without using a Google account. It has an elegant design and a user-friendly interface that lets you browse apps by categories, genres, editors' choice, etc. You can also download apps anonymously or with your own Google account. You can also update or uninstall apps from Aurora Store. To use Aurora Store, you need to download and install its app from auroraoss.com.

    -

    Xmodgames

    -

    Xmodgames is a root-only app that allows you to mod games and apps on your device. You can use Xmodgames to get unlimited resources, coins, gems, lives, etc. in your favorite games. You can also use Xmodgames to apply various mods, such as speeding up, slowing down, changing skins, etc. You can also record and share your gameplay with others. To use Xmodgames, you need to download and install its app from xmodgames.com and grant it root access.

    -

    Cheat Engine

    -

    Cheat Engine is a PC and Android app that lets you modify apps and games using Lua scripts. You can use Cheat Engine to change values, such as health, money, ammo, etc. in your apps and games. You can also use Cheat Engine to create your own cheats or use cheats made by others. You can also scan memory, debug, disassemble, and more with Cheat Engine. To use Cheat Engine on Android, you need to download and install its app from cheatengine.org and grant it root access.

    -

    FtiOS app

    -

    FtiOS app is an iOS app that offers free paid apps, hacked games, and jailbreaking tools. You can use FtiOS app to download apps and games that are not available on the App Store or that have been modified or cracked by hackers. You can also use FtiOS app to jailbreak your iOS device and install Cydia or other tweaks. To use FtiOS app, you need to download and install its app from ftios.vn.

    -

    Conclusion

    -

    Messenger apk happymod is a modded version of Messenger that offers some extra features and customizations that are not available in the official app. It is created by using HappyMod, an Android-based app search engine that allows you to download mod versions of apps and games. Some of the features of messenger apk happymod are cross-app communication, watch together, custom reactions, animated effects, replies and forwarding, app lock, payments, business, and more. However, messenger apk happymod also has some drawbacks, such as compatibility issues, update delays, security risks, or privacy concerns.

    -

    If you want to try out messenger apk happymod, you can download and install it from happymod.com by following the steps we have provided in this article. Alternatively, you can also check out some other options that we have suggested, such as F-Droid, Aurora Store, Xmodgames, Cheat Engine, or FtiOS app. These are some of the apps that allow you to download or modify apps and games on your device.

    -

    We hope this article has helped you learn more about messenger apk happymod and its alternatives. If you have any questions or feedback, please feel free to leave a comment below. Thank you for reading!

    -

    FAQs

    -

    What is happymod?

    -

    HappyMod is an Android-based app search engine that allows you to download modified or mod versions of apps and games. HappyMod provides many versions mod of one game or app, and users give them the using experience percent.

    -

    Is messenger apk happymod safe to use?

    -

    Messenger apk happymod is not verified by Meta or Google Play Protect, so it may pose some security risks or privacy issues for your device or data. You should only download messenger apk happymod from trusted sources and at your own risk.

    -

    How can I update messenger apk happymod?

    -

    You can update messenger apk happymod by visiting happymod.com and downloading the latest version of the mod apk file. You may need to uninstall the previous version before installing the new one.

    -

    What are the disadvantages of using messenger apk happymod?

    -

    Some of the disadvantages of using messenger apk happymod are:

    -
      -
    • It may not be compatible with some devices or Android versions.
    • -
    • It may not be updated regularly or in sync with the official Messenger app.
    • -
    • It may interfere with some functions or features of the official Messenger app.
    • -
    • It may violate the terms of service or policies of Meta or Google Play Store.
    • -
    -

    Can I use messenger apk happymod on my PC?

    -

    You cannot use messenger apk happymod directly on your PC, but you can use an Android emulator to run it on your PC. An Android emulator is a software that simulates an Android device on your PC and lets you run Android apps and games on it. Some of the popular Android emulators are BlueStacks, NoxPlayer, LDPlayer, etc. To use messenger apk happymod on your PC, you need to download and install an Android emulator on your PC, then download and install messenger apk happymod from happymod.com on the emulator.

    197e85843d
    -
    -
    \ No newline at end of file diff --git a/spaces/congsaPfin/Manga-OCR/logs/Whats New in Stick War Legacy APK New Version? Find Out Here!.md b/spaces/congsaPfin/Manga-OCR/logs/Whats New in Stick War Legacy APK New Version? Find Out Here!.md deleted file mode 100644 index 41774a720d7b78f7da1289f6625445e7898f2011..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/Whats New in Stick War Legacy APK New Version? Find Out Here!.md +++ /dev/null @@ -1,98 +0,0 @@ -
    -

    Stick War Legacy APK New Version: What You Need to Know

    -

    If you are a fan of stick figure games, you might have heard of Stick War Legacy, one of the most popular and highest rated web games of all time. This game is now available on mobile devices, and it has recently been updated with new features and improvements. In this article, we will tell you everything you need to know about Stick War Legacy APK new version, including what it is, what's new in it, how to download and install it, and some FAQs.

    -

    Introduction

    -

    What is Stick War Legacy?

    -

    Stick War Legacy is a strategy game that lets you control your army of stickmen in various modes and scenarios. You can play as each unit, or command them in formations. You can build units, mine gold, learn different skills, and destroy the enemy statue. The game has a classic campaign mode, where you can follow the story of the Order Empire and its struggle against other nations. The game also has other modes, such as missions, tournament, and endless deads.

    -

    stick war legacy apk new version


    Download Ziphttps://urlca.com/2uO6UD



    -

    What's new in the latest version?

    -

    The latest version of Stick War Legacy APK is 2021.1.4, which was released on May 17, 2021. This version has several new features and improvements, such as:

    -
      -
    • New levels released every Friday in missions mode
    • -
    • New skins and weapons for all characters
    • -
    • New game types and challenges in tournament mode
    • -
    • New zombies and bosses in endless deads mode
    • -
    • Improved graphics and animations
    • -
    • Bug fixes and performance enhancements
    • -
    -

    Features of Stick War Legacy APK New Version

    -

    Missions Mode

    -

    Missions mode is a new feature that was added in the latest version of Stick War Legacy APK. In this mode, you can play new levels that are released every Friday. Each level has a different objective and difficulty level. You can earn crowns for completing each level, and unlock rewards such as skins and weapons. Missions mode is a great way to test your skills and have fun.

    -

    Skins and Weapons

    -

    Skins and weapons are another new feature that was added in the latest version of Stick War Legacy APK. You can now customize your stickmen with different skins and weapons, each with their own unique perks. For example, you can equip your swordwrath with a katana that increases their speed, or your spearton with a shield that blocks arrows. You can unlock skins and weapons by playing missions mode or tournament mode.

    -

    Tournament Mode

    -

    Tournament mode is a feature that lets you compete against other players in various game types and challenges. You can choose from different difficulty levels, such as normal, hard, or insane. You can also choose from different game types, such as win before sunset, triple barricaded gold, deathmatch, forward statue, or mini bosses. You can earn crowns for winning each match, and climb the leaderboard to win the crown of Inamorta.

    -

    Endless Deads Mode

    -

    Endless deads mode is a feature that lets you survive against waves of zombies and bosses. You can choose from different difficulty levels, such as easy, normal, hard, or insane. You can also choose from different maps, such as forest ambush, desert siege, or ice holdout. You can earn gold for killing zombies and bosses, and use it to upgrade your units and defenses. Endless deads mode is a great way to challenge yourself and have fun.

    -

    How to Download and Install Stick War Legacy APK New Version

    Requirements

    -

    To download and install Stick War Legacy APK new version, you need to have the following requirements:

    -

    stick war legacy mod apk latest version
    -download stick war legacy apk new update
    -stick war legacy apk full version free
    -stick war legacy hack apk new version
    -stick war legacy apk unlimited gems and gold
    -stick war legacy apk offline mode
    -stick war legacy 2 apk new version
    -how to install stick war legacy apk new version
    -stick war legacy apk for android 10
    -stick war legacy apk old version download
    -stick war legacy cheats apk new version
    -stick war legacy apk no ads
    -stick war legacy apk premium unlocked
    -stick war legacy zombie mode apk new version
    -stick war legacy apk for pc windows 10
    -stick war legacy tips and tricks apk new version
    -stick war legacy apk gameplay video
    -stick war legacy apk review and rating
    -stick war legacy apk size and requirements
    -stick war legacy apk download link [^1^]
    -stick war legacy skins apk new version
    -stick war legacy multiplayer apk new version
    -stick war legacy tournament mode apk new version
    -stick war legacy best strategy apk new version
    -stick war legacy all units unlocked apk new version
    -stick war legacy mod menu apk new version
    -stick war legacy unlimited everything apk new version
    -stick war legacy latest news and updates apk new version
    -stick war legacy fan art and wallpapers apk new version
    -stick war legacy wiki and guide apk new version
    -stick war legacy online play apk new version
    -stick war legacy custom maps apk new version
    -stick war legacy sandbox mode apk new version
    -stick war legacy end game content apk new version
    -stick war legacy achievements and rewards apk new version
    -stick war legacy bugs and fixes apk new version
    -stick war legacy developer contact and support apk new version
    -stick war legacy community and forum apk new version
    -stick war legacy easter eggs and secrets apk new version
    -stick war legacy memes and jokes apk new version

    -
      -
    • An Android device that runs on Android 4.4 or higher
    • -
    • At least 100 MB of free storage space
    • -
    • A stable internet connection
    • -
    • A permission to install apps from unknown sources
    • -
    -

    Steps

    -

    To download and install Stick War Legacy APK new version, you need to follow these steps:

    -
      -
    1. Go to the official website of Stick War Legacy APK and click on the download button.
    2. -
    3. Wait for the download to finish and locate the APK file in your device's file manager.
    4. -
    5. Tap on the APK file and allow the installation from unknown sources if prompted.
    6. -
    7. Wait for the installation to complete and launch the game from your app drawer.
    8. -
    9. Enjoy playing Stick War Legacy APK new version with all the new features and improvements.
    10. -
    -

    Conclusion

    -

    Summary

    -

    Stick War Legacy APK new version is a strategy game that lets you control your army of stickmen in various modes and scenarios. You can play as each unit, or command them in formations. You can build units, mine gold, learn different skills, and destroy the enemy statue. The game has a classic campaign mode, where you can follow the story of the Order Empire and its struggle against other nations. The game also has other modes, such as missions, tournament, and endless deads. The game has been updated with new features and improvements, such as new levels, skins, weapons, game types, zombies, bosses, graphics, animations, bug fixes, and performance enhancements. You can download and install Stick War Legacy APK new version by following the steps mentioned above.

    -

    FAQs

    -

    Here are some frequently asked questions about Stick War Legacy APK new version:

    -
      -
    • Is Stick War Legacy APK new version safe to download and install?
      Yes, Stick War Legacy APK new version is safe to download and install. It does not contain any viruses or malware. However, you should always download it from the official website or a trusted source.
    • -
    • Is Stick War Legacy APK new version free to play?
      Yes, Stick War Legacy APK new version is free to play. However, it contains some in-app purchases that can enhance your gaming experience.
    • -
    • Can I play Stick War Legacy APK new version offline?
      Yes, you can play Stick War Legacy APK new version offline. However, you need an internet connection to download and install it, and to access some features such as tournament mode and leaderboards.
    • -
    • Can I play Stick War Legacy APK new version on PC?
      No, Stick War Legacy APK new version is only available for Android devices. However, you can use an Android emulator to play it on PC.
    • -
    • How can I contact the developers of Stick War Legacy APK new version?
      You can contact the developers of Stick War Legacy APK new version by sending an email to support@maxgames.com or by visiting their website.
    • -
    - : https://news.yahoo.com/nuclear-fusion-breakthrough-reactor-runs-130157687.html : https://www.thesun.co.uk/news/17143468/holy-grail-fusion-experiments-breakthrough-race-unlimited-energy/ : https://www.the-sun.com/news/4381435/holy-grail-fusion-experiments-breakthrough-race-unlimited-energy/ : https://www.newscientist.com/article/2336385-korean-nuclear-fusion-reactor-achieves-100-millionc-for-30-seconds/ : https://en.wikipedia.org/wiki/Sun : https://en.wikipedia.org/wiki/Solar_core : https://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html : https://stick-war-legacy.en.aptoide.com/app : https://www.maxgames.com/

    197e85843d
    -
    -
    \ No newline at end of file diff --git a/spaces/contluForse/HuggingGPT/assets/Explode Arena 320x240 S60v3 Sis Cracked Might Modelisation A.md b/spaces/contluForse/HuggingGPT/assets/Explode Arena 320x240 S60v3 Sis Cracked Might Modelisation A.md deleted file mode 100644 index c52af8fa5f6c6699ed2a5534fccdd86dbd74ecd3..0000000000000000000000000000000000000000 --- a/spaces/contluForse/HuggingGPT/assets/Explode Arena 320x240 S60v3 Sis Cracked Might Modelisation A.md +++ /dev/null @@ -1,6 +0,0 @@ -

    Explode Arena 320x240 S60v3 Sis Cracked might modelisation a


    DOWNLOAD ››› https://ssurll.com/2uzwc6



    -
    - aaccfb2cb3
    -
    -
    -

    diff --git a/spaces/cooelf/Multimodal-CoT/timm/models/coat.py b/spaces/cooelf/Multimodal-CoT/timm/models/coat.py deleted file mode 100644 index f071715a347120ce0ca4710eceddda61de28ce8f..0000000000000000000000000000000000000000 --- a/spaces/cooelf/Multimodal-CoT/timm/models/coat.py +++ /dev/null @@ -1,660 +0,0 @@ -""" -CoaT architecture. - -Paper: Co-Scale Conv-Attentional Image Transformers - https://arxiv.org/abs/2104.06399 - -Official CoaT code at: https://github.com/mlpc-ucsd/CoaT - -Modified from timm/models/vision_transformer.py -""" -from copy import deepcopy -from functools import partial -from typing import Tuple, List - -import torch -import torch.nn as nn -import torch.nn.functional as F - -from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD -from .helpers import build_model_with_cfg, overlay_external_default_cfg -from .layers import PatchEmbed, Mlp, DropPath, to_2tuple, trunc_normal_ -from .registry import register_model - - -__all__ = [ - "coat_tiny", - "coat_mini", - "coat_lite_tiny", - "coat_lite_mini", - "coat_lite_small" -] - - -def _cfg_coat(url='', **kwargs): - return { - 'url': url, - 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, - 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, - 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, - 'first_conv': 'patch_embed1.proj', 'classifier': 'head', - **kwargs - } - - -default_cfgs = { - 'coat_tiny': _cfg_coat( - url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-coat-weights/coat_tiny-473c2a20.pth' - ), - 'coat_mini': _cfg_coat( - url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-coat-weights/coat_mini-2c6baf49.pth' - ), - 'coat_lite_tiny': _cfg_coat( - url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-coat-weights/coat_lite_tiny-461b07a7.pth' - ), - 'coat_lite_mini': _cfg_coat( - url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-coat-weights/coat_lite_mini-d7842000.pth' - ), - 'coat_lite_small': _cfg_coat( - url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-coat-weights/coat_lite_small-fea1d5a1.pth' - ), -} - - -class ConvRelPosEnc(nn.Module): - """ Convolutional relative position encoding. """ - def __init__(self, Ch, h, window): - """ - Initialization. - Ch: Channels per head. - h: Number of heads. - window: Window size(s) in convolutional relative positional encoding. It can have two forms: - 1. An integer of window size, which assigns all attention heads with the same window s - size in ConvRelPosEnc. - 2. A dict mapping window size to #attention head splits ( - e.g. {window size 1: #attention head split 1, window size 2: #attention head split 2}) - It will apply different window size to the attention head splits. - """ - super().__init__() - - if isinstance(window, int): - # Set the same window size for all attention heads. - window = {window: h} - self.window = window - elif isinstance(window, dict): - self.window = window - else: - raise ValueError() - - self.conv_list = nn.ModuleList() - self.head_splits = [] - for cur_window, cur_head_split in window.items(): - dilation = 1 - # Determine padding size. - # Ref: https://discuss.pytorch.org/t/how-to-keep-the-shape-of-input-and-output-same-when-dilation-conv/14338 - padding_size = (cur_window + (cur_window - 1) * (dilation - 1)) // 2 - cur_conv = nn.Conv2d(cur_head_split*Ch, cur_head_split*Ch, - kernel_size=(cur_window, cur_window), - padding=(padding_size, padding_size), - dilation=(dilation, dilation), - groups=cur_head_split*Ch, - ) - self.conv_list.append(cur_conv) - self.head_splits.append(cur_head_split) - self.channel_splits = [x*Ch for x in self.head_splits] - - def forward(self, q, v, size: Tuple[int, int]): - B, h, N, Ch = q.shape - H, W = size - assert N == 1 + H * W - - # Convolutional relative position encoding. - q_img = q[:, :, 1:, :] # [B, h, H*W, Ch] - v_img = v[:, :, 1:, :] # [B, h, H*W, Ch] - - v_img = v_img.transpose(-1, -2).reshape(B, h * Ch, H, W) - v_img_list = torch.split(v_img, self.channel_splits, dim=1) # Split according to channels - conv_v_img_list = [] - for i, conv in enumerate(self.conv_list): - conv_v_img_list.append(conv(v_img_list[i])) - conv_v_img = torch.cat(conv_v_img_list, dim=1) - conv_v_img = conv_v_img.reshape(B, h, Ch, H * W).transpose(-1, -2) - - EV_hat = q_img * conv_v_img - EV_hat = F.pad(EV_hat, (0, 0, 1, 0, 0, 0)) # [B, h, N, Ch]. - return EV_hat - - -class FactorAtt_ConvRelPosEnc(nn.Module): - """ Factorized attention with convolutional relative position encoding class. """ - def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., shared_crpe=None): - super().__init__() - self.num_heads = num_heads - head_dim = dim // num_heads - self.scale = head_dim ** -0.5 - - self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) - self.attn_drop = nn.Dropout(attn_drop) # Note: attn_drop is actually not used. - self.proj = nn.Linear(dim, dim) - self.proj_drop = nn.Dropout(proj_drop) - - # Shared convolutional relative position encoding. - self.crpe = shared_crpe - - def forward(self, x, size: Tuple[int, int]): - B, N, C = x.shape - - # Generate Q, K, V. - qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) - q, k, v = qkv[0], qkv[1], qkv[2] # [B, h, N, Ch] - - # Factorized attention. - k_softmax = k.softmax(dim=2) - factor_att = k_softmax.transpose(-1, -2) @ v - factor_att = q @ factor_att - - # Convolutional relative position encoding. - crpe = self.crpe(q, v, size=size) # [B, h, N, Ch] - - # Merge and reshape. - x = self.scale * factor_att + crpe - x = x.transpose(1, 2).reshape(B, N, C) # [B, h, N, Ch] -> [B, N, h, Ch] -> [B, N, C] - - # Output projection. - x = self.proj(x) - x = self.proj_drop(x) - - return x - - -class ConvPosEnc(nn.Module): - """ Convolutional Position Encoding. - Note: This module is similar to the conditional position encoding in CPVT. - """ - def __init__(self, dim, k=3): - super(ConvPosEnc, self).__init__() - self.proj = nn.Conv2d(dim, dim, k, 1, k//2, groups=dim) - - def forward(self, x, size: Tuple[int, int]): - B, N, C = x.shape - H, W = size - assert N == 1 + H * W - - # Extract CLS token and image tokens. - cls_token, img_tokens = x[:, :1], x[:, 1:] # [B, 1, C], [B, H*W, C] - - # Depthwise convolution. - feat = img_tokens.transpose(1, 2).view(B, C, H, W) - x = self.proj(feat) + feat - x = x.flatten(2).transpose(1, 2) - - # Combine with CLS token. - x = torch.cat((cls_token, x), dim=1) - - return x - - -class SerialBlock(nn.Module): - """ Serial block class. - Note: In this implementation, each serial block only contains a conv-attention and a FFN (MLP) module. """ - def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., - drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, shared_cpe=None, shared_crpe=None): - super().__init__() - - # Conv-Attention. - self.cpe = shared_cpe - - self.norm1 = norm_layer(dim) - self.factoratt_crpe = FactorAtt_ConvRelPosEnc( - dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, shared_crpe=shared_crpe) - self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() - - # MLP. - self.norm2 = norm_layer(dim) - mlp_hidden_dim = int(dim * mlp_ratio) - self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) - - def forward(self, x, size: Tuple[int, int]): - # Conv-Attention. - x = self.cpe(x, size) - cur = self.norm1(x) - cur = self.factoratt_crpe(cur, size) - x = x + self.drop_path(cur) - - # MLP. - cur = self.norm2(x) - cur = self.mlp(cur) - x = x + self.drop_path(cur) - - return x - - -class ParallelBlock(nn.Module): - """ Parallel block class. """ - def __init__(self, dims, num_heads, mlp_ratios=[], qkv_bias=False, drop=0., attn_drop=0., - drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, shared_crpes=None): - super().__init__() - - # Conv-Attention. - self.norm12 = norm_layer(dims[1]) - self.norm13 = norm_layer(dims[2]) - self.norm14 = norm_layer(dims[3]) - self.factoratt_crpe2 = FactorAtt_ConvRelPosEnc( - dims[1], num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, - shared_crpe=shared_crpes[1] - ) - self.factoratt_crpe3 = FactorAtt_ConvRelPosEnc( - dims[2], num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, - shared_crpe=shared_crpes[2] - ) - self.factoratt_crpe4 = FactorAtt_ConvRelPosEnc( - dims[3], num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, - shared_crpe=shared_crpes[3] - ) - self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() - - # MLP. - self.norm22 = norm_layer(dims[1]) - self.norm23 = norm_layer(dims[2]) - self.norm24 = norm_layer(dims[3]) - # In parallel block, we assume dimensions are the same and share the linear transformation. - assert dims[1] == dims[2] == dims[3] - assert mlp_ratios[1] == mlp_ratios[2] == mlp_ratios[3] - mlp_hidden_dim = int(dims[1] * mlp_ratios[1]) - self.mlp2 = self.mlp3 = self.mlp4 = Mlp( - in_features=dims[1], hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) - - def upsample(self, x, factor: float, size: Tuple[int, int]): - """ Feature map up-sampling. """ - return self.interpolate(x, scale_factor=factor, size=size) - - def downsample(self, x, factor: float, size: Tuple[int, int]): - """ Feature map down-sampling. """ - return self.interpolate(x, scale_factor=1.0/factor, size=size) - - def interpolate(self, x, scale_factor: float, size: Tuple[int, int]): - """ Feature map interpolation. """ - B, N, C = x.shape - H, W = size - assert N == 1 + H * W - - cls_token = x[:, :1, :] - img_tokens = x[:, 1:, :] - - img_tokens = img_tokens.transpose(1, 2).reshape(B, C, H, W) - img_tokens = F.interpolate( - img_tokens, scale_factor=scale_factor, recompute_scale_factor=False, mode='bilinear', align_corners=False) - img_tokens = img_tokens.reshape(B, C, -1).transpose(1, 2) - - out = torch.cat((cls_token, img_tokens), dim=1) - - return out - - def forward(self, x1, x2, x3, x4, sizes: List[Tuple[int, int]]): - _, S2, S3, S4 = sizes - cur2 = self.norm12(x2) - cur3 = self.norm13(x3) - cur4 = self.norm14(x4) - cur2 = self.factoratt_crpe2(cur2, size=S2) - cur3 = self.factoratt_crpe3(cur3, size=S3) - cur4 = self.factoratt_crpe4(cur4, size=S4) - upsample3_2 = self.upsample(cur3, factor=2., size=S3) - upsample4_3 = self.upsample(cur4, factor=2., size=S4) - upsample4_2 = self.upsample(cur4, factor=4., size=S4) - downsample2_3 = self.downsample(cur2, factor=2., size=S2) - downsample3_4 = self.downsample(cur3, factor=2., size=S3) - downsample2_4 = self.downsample(cur2, factor=4., size=S2) - cur2 = cur2 + upsample3_2 + upsample4_2 - cur3 = cur3 + upsample4_3 + downsample2_3 - cur4 = cur4 + downsample3_4 + downsample2_4 - x2 = x2 + self.drop_path(cur2) - x3 = x3 + self.drop_path(cur3) - x4 = x4 + self.drop_path(cur4) - - # MLP. - cur2 = self.norm22(x2) - cur3 = self.norm23(x3) - cur4 = self.norm24(x4) - cur2 = self.mlp2(cur2) - cur3 = self.mlp3(cur3) - cur4 = self.mlp4(cur4) - x2 = x2 + self.drop_path(cur2) - x3 = x3 + self.drop_path(cur3) - x4 = x4 + self.drop_path(cur4) - - return x1, x2, x3, x4 - - -class CoaT(nn.Module): - """ CoaT class. """ - def __init__( - self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=(0, 0, 0, 0), - serial_depths=(0, 0, 0, 0), parallel_depth=0, num_heads=0, mlp_ratios=(0, 0, 0, 0), qkv_bias=True, - drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=partial(nn.LayerNorm, eps=1e-6), - return_interm_layers=False, out_features=None, crpe_window=None, **kwargs): - super().__init__() - crpe_window = crpe_window or {3: 2, 5: 3, 7: 3} - self.return_interm_layers = return_interm_layers - self.out_features = out_features - self.embed_dims = embed_dims - self.num_features = embed_dims[-1] - self.num_classes = num_classes - - # Patch embeddings. - img_size = to_2tuple(img_size) - self.patch_embed1 = PatchEmbed( - img_size=img_size, patch_size=patch_size, in_chans=in_chans, - embed_dim=embed_dims[0], norm_layer=nn.LayerNorm) - self.patch_embed2 = PatchEmbed( - img_size=[x // 4 for x in img_size], patch_size=2, in_chans=embed_dims[0], - embed_dim=embed_dims[1], norm_layer=nn.LayerNorm) - self.patch_embed3 = PatchEmbed( - img_size=[x // 8 for x in img_size], patch_size=2, in_chans=embed_dims[1], - embed_dim=embed_dims[2], norm_layer=nn.LayerNorm) - self.patch_embed4 = PatchEmbed( - img_size=[x // 16 for x in img_size], patch_size=2, in_chans=embed_dims[2], - embed_dim=embed_dims[3], norm_layer=nn.LayerNorm) - - # Class tokens. - self.cls_token1 = nn.Parameter(torch.zeros(1, 1, embed_dims[0])) - self.cls_token2 = nn.Parameter(torch.zeros(1, 1, embed_dims[1])) - self.cls_token3 = nn.Parameter(torch.zeros(1, 1, embed_dims[2])) - self.cls_token4 = nn.Parameter(torch.zeros(1, 1, embed_dims[3])) - - # Convolutional position encodings. - self.cpe1 = ConvPosEnc(dim=embed_dims[0], k=3) - self.cpe2 = ConvPosEnc(dim=embed_dims[1], k=3) - self.cpe3 = ConvPosEnc(dim=embed_dims[2], k=3) - self.cpe4 = ConvPosEnc(dim=embed_dims[3], k=3) - - # Convolutional relative position encodings. - self.crpe1 = ConvRelPosEnc(Ch=embed_dims[0] // num_heads, h=num_heads, window=crpe_window) - self.crpe2 = ConvRelPosEnc(Ch=embed_dims[1] // num_heads, h=num_heads, window=crpe_window) - self.crpe3 = ConvRelPosEnc(Ch=embed_dims[2] // num_heads, h=num_heads, window=crpe_window) - self.crpe4 = ConvRelPosEnc(Ch=embed_dims[3] // num_heads, h=num_heads, window=crpe_window) - - # Disable stochastic depth. - dpr = drop_path_rate - assert dpr == 0.0 - - # Serial blocks 1. - self.serial_blocks1 = nn.ModuleList([ - SerialBlock( - dim=embed_dims[0], num_heads=num_heads, mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, - drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer, - shared_cpe=self.cpe1, shared_crpe=self.crpe1 - ) - for _ in range(serial_depths[0])] - ) - - # Serial blocks 2. - self.serial_blocks2 = nn.ModuleList([ - SerialBlock( - dim=embed_dims[1], num_heads=num_heads, mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, - drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer, - shared_cpe=self.cpe2, shared_crpe=self.crpe2 - ) - for _ in range(serial_depths[1])] - ) - - # Serial blocks 3. - self.serial_blocks3 = nn.ModuleList([ - SerialBlock( - dim=embed_dims[2], num_heads=num_heads, mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, - drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer, - shared_cpe=self.cpe3, shared_crpe=self.crpe3 - ) - for _ in range(serial_depths[2])] - ) - - # Serial blocks 4. - self.serial_blocks4 = nn.ModuleList([ - SerialBlock( - dim=embed_dims[3], num_heads=num_heads, mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, - drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer, - shared_cpe=self.cpe4, shared_crpe=self.crpe4 - ) - for _ in range(serial_depths[3])] - ) - - # Parallel blocks. - self.parallel_depth = parallel_depth - if self.parallel_depth > 0: - self.parallel_blocks = nn.ModuleList([ - ParallelBlock( - dims=embed_dims, num_heads=num_heads, mlp_ratios=mlp_ratios, qkv_bias=qkv_bias, - drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr, norm_layer=norm_layer, - shared_crpes=(self.crpe1, self.crpe2, self.crpe3, self.crpe4) - ) - for _ in range(parallel_depth)] - ) - else: - self.parallel_blocks = None - - # Classification head(s). - if not self.return_interm_layers: - if self.parallel_blocks is not None: - self.norm2 = norm_layer(embed_dims[1]) - self.norm3 = norm_layer(embed_dims[2]) - else: - self.norm2 = self.norm3 = None - self.norm4 = norm_layer(embed_dims[3]) - - if self.parallel_depth > 0: - # CoaT series: Aggregate features of last three scales for classification. - assert embed_dims[1] == embed_dims[2] == embed_dims[3] - self.aggregate = torch.nn.Conv1d(in_channels=3, out_channels=1, kernel_size=1) - self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() - else: - # CoaT-Lite series: Use feature of last scale for classification. - self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() - - # Initialize weights. - trunc_normal_(self.cls_token1, std=.02) - trunc_normal_(self.cls_token2, std=.02) - trunc_normal_(self.cls_token3, std=.02) - trunc_normal_(self.cls_token4, std=.02) - self.apply(self._init_weights) - - def _init_weights(self, m): - if isinstance(m, nn.Linear): - trunc_normal_(m.weight, std=.02) - if isinstance(m, nn.Linear) and m.bias is not None: - nn.init.constant_(m.bias, 0) - elif isinstance(m, nn.LayerNorm): - nn.init.constant_(m.bias, 0) - nn.init.constant_(m.weight, 1.0) - - @torch.jit.ignore - def no_weight_decay(self): - return {'cls_token1', 'cls_token2', 'cls_token3', 'cls_token4'} - - def get_classifier(self): - return self.head - - def reset_classifier(self, num_classes, global_pool=''): - self.num_classes = num_classes - self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() - - def insert_cls(self, x, cls_token): - """ Insert CLS token. """ - cls_tokens = cls_token.expand(x.shape[0], -1, -1) - x = torch.cat((cls_tokens, x), dim=1) - return x - - def remove_cls(self, x): - """ Remove CLS token. """ - return x[:, 1:, :] - - def forward_features(self, x0): - B = x0.shape[0] - - # Serial blocks 1. - x1 = self.patch_embed1(x0) - H1, W1 = self.patch_embed1.grid_size - x1 = self.insert_cls(x1, self.cls_token1) - for blk in self.serial_blocks1: - x1 = blk(x1, size=(H1, W1)) - x1_nocls = self.remove_cls(x1) - x1_nocls = x1_nocls.reshape(B, H1, W1, -1).permute(0, 3, 1, 2).contiguous() - - # Serial blocks 2. - x2 = self.patch_embed2(x1_nocls) - H2, W2 = self.patch_embed2.grid_size - x2 = self.insert_cls(x2, self.cls_token2) - for blk in self.serial_blocks2: - x2 = blk(x2, size=(H2, W2)) - x2_nocls = self.remove_cls(x2) - x2_nocls = x2_nocls.reshape(B, H2, W2, -1).permute(0, 3, 1, 2).contiguous() - - # Serial blocks 3. - x3 = self.patch_embed3(x2_nocls) - H3, W3 = self.patch_embed3.grid_size - x3 = self.insert_cls(x3, self.cls_token3) - for blk in self.serial_blocks3: - x3 = blk(x3, size=(H3, W3)) - x3_nocls = self.remove_cls(x3) - x3_nocls = x3_nocls.reshape(B, H3, W3, -1).permute(0, 3, 1, 2).contiguous() - - # Serial blocks 4. - x4 = self.patch_embed4(x3_nocls) - H4, W4 = self.patch_embed4.grid_size - x4 = self.insert_cls(x4, self.cls_token4) - for blk in self.serial_blocks4: - x4 = blk(x4, size=(H4, W4)) - x4_nocls = self.remove_cls(x4) - x4_nocls = x4_nocls.reshape(B, H4, W4, -1).permute(0, 3, 1, 2).contiguous() - - # Only serial blocks: Early return. - if self.parallel_blocks is None: - if not torch.jit.is_scripting() and self.return_interm_layers: - # Return intermediate features for down-stream tasks (e.g. Deformable DETR and Detectron2). - feat_out = {} - if 'x1_nocls' in self.out_features: - feat_out['x1_nocls'] = x1_nocls - if 'x2_nocls' in self.out_features: - feat_out['x2_nocls'] = x2_nocls - if 'x3_nocls' in self.out_features: - feat_out['x3_nocls'] = x3_nocls - if 'x4_nocls' in self.out_features: - feat_out['x4_nocls'] = x4_nocls - return feat_out - else: - # Return features for classification. - x4 = self.norm4(x4) - x4_cls = x4[:, 0] - return x4_cls - - # Parallel blocks. - for blk in self.parallel_blocks: - x2, x3, x4 = self.cpe2(x2, (H2, W2)), self.cpe3(x3, (H3, W3)), self.cpe4(x4, (H4, W4)) - x1, x2, x3, x4 = blk(x1, x2, x3, x4, sizes=[(H1, W1), (H2, W2), (H3, W3), (H4, W4)]) - - if not torch.jit.is_scripting() and self.return_interm_layers: - # Return intermediate features for down-stream tasks (e.g. Deformable DETR and Detectron2). - feat_out = {} - if 'x1_nocls' in self.out_features: - x1_nocls = self.remove_cls(x1) - x1_nocls = x1_nocls.reshape(B, H1, W1, -1).permute(0, 3, 1, 2).contiguous() - feat_out['x1_nocls'] = x1_nocls - if 'x2_nocls' in self.out_features: - x2_nocls = self.remove_cls(x2) - x2_nocls = x2_nocls.reshape(B, H2, W2, -1).permute(0, 3, 1, 2).contiguous() - feat_out['x2_nocls'] = x2_nocls - if 'x3_nocls' in self.out_features: - x3_nocls = self.remove_cls(x3) - x3_nocls = x3_nocls.reshape(B, H3, W3, -1).permute(0, 3, 1, 2).contiguous() - feat_out['x3_nocls'] = x3_nocls - if 'x4_nocls' in self.out_features: - x4_nocls = self.remove_cls(x4) - x4_nocls = x4_nocls.reshape(B, H4, W4, -1).permute(0, 3, 1, 2).contiguous() - feat_out['x4_nocls'] = x4_nocls - return feat_out - else: - x2 = self.norm2(x2) - x3 = self.norm3(x3) - x4 = self.norm4(x4) - x2_cls = x2[:, :1] # [B, 1, C] - x3_cls = x3[:, :1] - x4_cls = x4[:, :1] - merged_cls = torch.cat((x2_cls, x3_cls, x4_cls), dim=1) # [B, 3, C] - merged_cls = self.aggregate(merged_cls).squeeze(dim=1) # Shape: [B, C] - return merged_cls - - def forward(self, x): - if self.return_interm_layers: - # Return intermediate features (for down-stream tasks). - return self.forward_features(x) - else: - # Return features for classification. - x = self.forward_features(x) - x = self.head(x) - return x - - -def checkpoint_filter_fn(state_dict, model): - out_dict = {} - for k, v in state_dict.items(): - # original model had unused norm layers, removing them requires filtering pretrained checkpoints - if k.startswith('norm1') or \ - (model.norm2 is None and k.startswith('norm2')) or \ - (model.norm3 is None and k.startswith('norm3')): - continue - out_dict[k] = v - return out_dict - - -def _create_coat(variant, pretrained=False, default_cfg=None, **kwargs): - if kwargs.get('features_only', None): - raise RuntimeError('features_only not implemented for Vision Transformer models.') - - model = build_model_with_cfg( - CoaT, variant, pretrained, - default_cfg=default_cfgs[variant], - pretrained_filter_fn=checkpoint_filter_fn, - **kwargs) - return model - - -@register_model -def coat_tiny(pretrained=False, **kwargs): - model_cfg = dict( - patch_size=4, embed_dims=[152, 152, 152, 152], serial_depths=[2, 2, 2, 2], parallel_depth=6, - num_heads=8, mlp_ratios=[4, 4, 4, 4], **kwargs) - model = _create_coat('coat_tiny', pretrained=pretrained, **model_cfg) - return model - - -@register_model -def coat_mini(pretrained=False, **kwargs): - model_cfg = dict( - patch_size=4, embed_dims=[152, 216, 216, 216], serial_depths=[2, 2, 2, 2], parallel_depth=6, - num_heads=8, mlp_ratios=[4, 4, 4, 4], **kwargs) - model = _create_coat('coat_mini', pretrained=pretrained, **model_cfg) - return model - - -@register_model -def coat_lite_tiny(pretrained=False, **kwargs): - model_cfg = dict( - patch_size=4, embed_dims=[64, 128, 256, 320], serial_depths=[2, 2, 2, 2], parallel_depth=0, - num_heads=8, mlp_ratios=[8, 8, 4, 4], **kwargs) - model = _create_coat('coat_lite_tiny', pretrained=pretrained, **model_cfg) - return model - - -@register_model -def coat_lite_mini(pretrained=False, **kwargs): - model_cfg = dict( - patch_size=4, embed_dims=[64, 128, 320, 512], serial_depths=[2, 2, 2, 2], parallel_depth=0, - num_heads=8, mlp_ratios=[8, 8, 4, 4], **kwargs) - model = _create_coat('coat_lite_mini', pretrained=pretrained, **model_cfg) - return model - - -@register_model -def coat_lite_small(pretrained=False, **kwargs): - model_cfg = dict( - patch_size=4, embed_dims=[64, 128, 320, 512], serial_depths=[3, 4, 6, 3], parallel_depth=0, - num_heads=8, mlp_ratios=[8, 8, 4, 4], **kwargs) - model = _create_coat('coat_lite_small', pretrained=pretrained, **model_cfg) - return model \ No newline at end of file diff --git a/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/mmpkg/mmcv/parallel/distributed.py b/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/mmpkg/mmcv/parallel/distributed.py deleted file mode 100644 index 929c7a451a7443d715ab0cceef530c53eff44cb9..0000000000000000000000000000000000000000 --- a/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/mmpkg/mmcv/parallel/distributed.py +++ /dev/null @@ -1,112 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import torch -from torch.nn.parallel.distributed import (DistributedDataParallel, - _find_tensors) - -from annotator.mmpkg.mmcv import print_log -from annotator.mmpkg.mmcv.utils import TORCH_VERSION, digit_version -from .scatter_gather import scatter_kwargs - - -class MMDistributedDataParallel(DistributedDataParallel): - """The DDP module that supports DataContainer. - - MMDDP has two main differences with PyTorch DDP: - - - It supports a custom type :class:`DataContainer` which allows more - flexible control of input data. - - It implement two APIs ``train_step()`` and ``val_step()``. - """ - - def to_kwargs(self, inputs, kwargs, device_id): - # Use `self.to_kwargs` instead of `self.scatter` in pytorch1.8 - # to move all tensors to device_id - return scatter_kwargs(inputs, kwargs, [device_id], dim=self.dim) - - def scatter(self, inputs, kwargs, device_ids): - return scatter_kwargs(inputs, kwargs, device_ids, dim=self.dim) - - def train_step(self, *inputs, **kwargs): - """train_step() API for module wrapped by DistributedDataParallel. - - This method is basically the same as - ``DistributedDataParallel.forward()``, while replacing - ``self.module.forward()`` with ``self.module.train_step()``. - It is compatible with PyTorch 1.1 - 1.5. - """ - - # In PyTorch >= 1.7, ``reducer._rebuild_buckets()`` is moved from the - # end of backward to the beginning of forward. - if ('parrots' not in TORCH_VERSION - and digit_version(TORCH_VERSION) >= digit_version('1.7') - and self.reducer._rebuild_buckets()): - print_log( - 'Reducer buckets have been rebuilt in this iteration.', - logger='mmcv') - - if getattr(self, 'require_forward_param_sync', True): - self._sync_params() - if self.device_ids: - inputs, kwargs = self.scatter(inputs, kwargs, self.device_ids) - if len(self.device_ids) == 1: - output = self.module.train_step(*inputs[0], **kwargs[0]) - else: - outputs = self.parallel_apply( - self._module_copies[:len(inputs)], inputs, kwargs) - output = self.gather(outputs, self.output_device) - else: - output = self.module.train_step(*inputs, **kwargs) - - if torch.is_grad_enabled() and getattr( - self, 'require_backward_grad_sync', True): - if self.find_unused_parameters: - self.reducer.prepare_for_backward(list(_find_tensors(output))) - else: - self.reducer.prepare_for_backward([]) - else: - if ('parrots' not in TORCH_VERSION - and digit_version(TORCH_VERSION) > digit_version('1.2')): - self.require_forward_param_sync = False - return output - - def val_step(self, *inputs, **kwargs): - """val_step() API for module wrapped by DistributedDataParallel. - - This method is basically the same as - ``DistributedDataParallel.forward()``, while replacing - ``self.module.forward()`` with ``self.module.val_step()``. - It is compatible with PyTorch 1.1 - 1.5. - """ - # In PyTorch >= 1.7, ``reducer._rebuild_buckets()`` is moved from the - # end of backward to the beginning of forward. - if ('parrots' not in TORCH_VERSION - and digit_version(TORCH_VERSION) >= digit_version('1.7') - and self.reducer._rebuild_buckets()): - print_log( - 'Reducer buckets have been rebuilt in this iteration.', - logger='mmcv') - - if getattr(self, 'require_forward_param_sync', True): - self._sync_params() - if self.device_ids: - inputs, kwargs = self.scatter(inputs, kwargs, self.device_ids) - if len(self.device_ids) == 1: - output = self.module.val_step(*inputs[0], **kwargs[0]) - else: - outputs = self.parallel_apply( - self._module_copies[:len(inputs)], inputs, kwargs) - output = self.gather(outputs, self.output_device) - else: - output = self.module.val_step(*inputs, **kwargs) - - if torch.is_grad_enabled() and getattr( - self, 'require_backward_grad_sync', True): - if self.find_unused_parameters: - self.reducer.prepare_for_backward(list(_find_tensors(output))) - else: - self.reducer.prepare_for_backward([]) - else: - if ('parrots' not in TORCH_VERSION - and digit_version(TORCH_VERSION) > digit_version('1.2')): - self.require_forward_param_sync = False - return output diff --git a/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/mmpkg/mmseg/models/decode_heads/dnl_head.py b/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/mmpkg/mmseg/models/decode_heads/dnl_head.py deleted file mode 100644 index b3bb1de1499ad043cc51b2269b4d970d07c16076..0000000000000000000000000000000000000000 --- a/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/mmpkg/mmseg/models/decode_heads/dnl_head.py +++ /dev/null @@ -1,131 +0,0 @@ -import torch -from annotator.mmpkg.mmcv.cnn import NonLocal2d -from torch import nn - -from ..builder import HEADS -from .fcn_head import FCNHead - - -class DisentangledNonLocal2d(NonLocal2d): - """Disentangled Non-Local Blocks. - - Args: - temperature (float): Temperature to adjust attention. Default: 0.05 - """ - - def __init__(self, *arg, temperature, **kwargs): - super().__init__(*arg, **kwargs) - self.temperature = temperature - self.conv_mask = nn.Conv2d(self.in_channels, 1, kernel_size=1) - - def embedded_gaussian(self, theta_x, phi_x): - """Embedded gaussian with temperature.""" - - # NonLocal2d pairwise_weight: [N, HxW, HxW] - pairwise_weight = torch.matmul(theta_x, phi_x) - if self.use_scale: - # theta_x.shape[-1] is `self.inter_channels` - pairwise_weight /= theta_x.shape[-1]**0.5 - pairwise_weight /= self.temperature - pairwise_weight = pairwise_weight.softmax(dim=-1) - return pairwise_weight - - def forward(self, x): - # x: [N, C, H, W] - n = x.size(0) - - # g_x: [N, HxW, C] - g_x = self.g(x).view(n, self.inter_channels, -1) - g_x = g_x.permute(0, 2, 1) - - # theta_x: [N, HxW, C], phi_x: [N, C, HxW] - if self.mode == 'gaussian': - theta_x = x.view(n, self.in_channels, -1) - theta_x = theta_x.permute(0, 2, 1) - if self.sub_sample: - phi_x = self.phi(x).view(n, self.in_channels, -1) - else: - phi_x = x.view(n, self.in_channels, -1) - elif self.mode == 'concatenation': - theta_x = self.theta(x).view(n, self.inter_channels, -1, 1) - phi_x = self.phi(x).view(n, self.inter_channels, 1, -1) - else: - theta_x = self.theta(x).view(n, self.inter_channels, -1) - theta_x = theta_x.permute(0, 2, 1) - phi_x = self.phi(x).view(n, self.inter_channels, -1) - - # subtract mean - theta_x -= theta_x.mean(dim=-2, keepdim=True) - phi_x -= phi_x.mean(dim=-1, keepdim=True) - - pairwise_func = getattr(self, self.mode) - # pairwise_weight: [N, HxW, HxW] - pairwise_weight = pairwise_func(theta_x, phi_x) - - # y: [N, HxW, C] - y = torch.matmul(pairwise_weight, g_x) - # y: [N, C, H, W] - y = y.permute(0, 2, 1).contiguous().reshape(n, self.inter_channels, - *x.size()[2:]) - - # unary_mask: [N, 1, HxW] - unary_mask = self.conv_mask(x) - unary_mask = unary_mask.view(n, 1, -1) - unary_mask = unary_mask.softmax(dim=-1) - # unary_x: [N, 1, C] - unary_x = torch.matmul(unary_mask, g_x) - # unary_x: [N, C, 1, 1] - unary_x = unary_x.permute(0, 2, 1).contiguous().reshape( - n, self.inter_channels, 1, 1) - - output = x + self.conv_out(y + unary_x) - - return output - - -@HEADS.register_module() -class DNLHead(FCNHead): - """Disentangled Non-Local Neural Networks. - - This head is the implementation of `DNLNet - `_. - - Args: - reduction (int): Reduction factor of projection transform. Default: 2. - use_scale (bool): Whether to scale pairwise_weight by - sqrt(1/inter_channels). Default: False. - mode (str): The nonlocal mode. Options are 'embedded_gaussian', - 'dot_product'. Default: 'embedded_gaussian.'. - temperature (float): Temperature to adjust attention. Default: 0.05 - """ - - def __init__(self, - reduction=2, - use_scale=True, - mode='embedded_gaussian', - temperature=0.05, - **kwargs): - super(DNLHead, self).__init__(num_convs=2, **kwargs) - self.reduction = reduction - self.use_scale = use_scale - self.mode = mode - self.temperature = temperature - self.dnl_block = DisentangledNonLocal2d( - in_channels=self.channels, - reduction=self.reduction, - use_scale=self.use_scale, - conv_cfg=self.conv_cfg, - norm_cfg=self.norm_cfg, - mode=self.mode, - temperature=self.temperature) - - def forward(self, inputs): - """Forward function.""" - x = self._transform_inputs(inputs) - output = self.convs[0](x) - output = self.dnl_block(output) - output = self.convs[1](output) - if self.concat_input: - output = self.conv_cat(torch.cat([x, output], dim=1)) - output = self.cls_seg(output) - return output diff --git a/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/oneformer/detectron2/utils/video_visualizer.py b/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/oneformer/detectron2/utils/video_visualizer.py deleted file mode 100644 index 591c3ad3d551c421e923378fbc48fb44facc7257..0000000000000000000000000000000000000000 --- a/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/oneformer/detectron2/utils/video_visualizer.py +++ /dev/null @@ -1,287 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -import numpy as np -from typing import List -import pycocotools.mask as mask_util - -from annotator.oneformer.detectron2.structures import Instances -from annotator.oneformer.detectron2.utils.visualizer import ( - ColorMode, - Visualizer, - _create_text_labels, - _PanopticPrediction, -) - -from .colormap import random_color, random_colors - - -class _DetectedInstance: - """ - Used to store data about detected objects in video frame, - in order to transfer color to objects in the future frames. - - Attributes: - label (int): - bbox (tuple[float]): - mask_rle (dict): - color (tuple[float]): RGB colors in range (0, 1) - ttl (int): time-to-live for the instance. For example, if ttl=2, - the instance color can be transferred to objects in the next two frames. - """ - - __slots__ = ["label", "bbox", "mask_rle", "color", "ttl"] - - def __init__(self, label, bbox, mask_rle, color, ttl): - self.label = label - self.bbox = bbox - self.mask_rle = mask_rle - self.color = color - self.ttl = ttl - - -class VideoVisualizer: - def __init__(self, metadata, instance_mode=ColorMode.IMAGE): - """ - Args: - metadata (MetadataCatalog): image metadata. - """ - self.metadata = metadata - self._old_instances = [] - assert instance_mode in [ - ColorMode.IMAGE, - ColorMode.IMAGE_BW, - ], "Other mode not supported yet." - self._instance_mode = instance_mode - self._max_num_instances = self.metadata.get("max_num_instances", 74) - self._assigned_colors = {} - self._color_pool = random_colors(self._max_num_instances, rgb=True, maximum=1) - self._color_idx_set = set(range(len(self._color_pool))) - - def draw_instance_predictions(self, frame, predictions): - """ - Draw instance-level prediction results on an image. - - Args: - frame (ndarray): an RGB image of shape (H, W, C), in the range [0, 255]. - predictions (Instances): the output of an instance detection/segmentation - model. Following fields will be used to draw: - "pred_boxes", "pred_classes", "scores", "pred_masks" (or "pred_masks_rle"). - - Returns: - output (VisImage): image object with visualizations. - """ - frame_visualizer = Visualizer(frame, self.metadata) - num_instances = len(predictions) - if num_instances == 0: - return frame_visualizer.output - - boxes = predictions.pred_boxes.tensor.numpy() if predictions.has("pred_boxes") else None - scores = predictions.scores if predictions.has("scores") else None - classes = predictions.pred_classes.numpy() if predictions.has("pred_classes") else None - keypoints = predictions.pred_keypoints if predictions.has("pred_keypoints") else None - colors = predictions.COLOR if predictions.has("COLOR") else [None] * len(predictions) - periods = predictions.ID_period if predictions.has("ID_period") else None - period_threshold = self.metadata.get("period_threshold", 0) - visibilities = ( - [True] * len(predictions) - if periods is None - else [x > period_threshold for x in periods] - ) - - if predictions.has("pred_masks"): - masks = predictions.pred_masks - # mask IOU is not yet enabled - # masks_rles = mask_util.encode(np.asarray(masks.permute(1, 2, 0), order="F")) - # assert len(masks_rles) == num_instances - else: - masks = None - - if not predictions.has("COLOR"): - if predictions.has("ID"): - colors = self._assign_colors_by_id(predictions) - else: - # ToDo: clean old assign color method and use a default tracker to assign id - detected = [ - _DetectedInstance(classes[i], boxes[i], mask_rle=None, color=colors[i], ttl=8) - for i in range(num_instances) - ] - colors = self._assign_colors(detected) - - labels = _create_text_labels(classes, scores, self.metadata.get("thing_classes", None)) - - if self._instance_mode == ColorMode.IMAGE_BW: - # any() returns uint8 tensor - frame_visualizer.output.reset_image( - frame_visualizer._create_grayscale_image( - (masks.any(dim=0) > 0).numpy() if masks is not None else None - ) - ) - alpha = 0.3 - else: - alpha = 0.5 - - labels = ( - None - if labels is None - else [y[0] for y in filter(lambda x: x[1], zip(labels, visibilities))] - ) # noqa - assigned_colors = ( - None - if colors is None - else [y[0] for y in filter(lambda x: x[1], zip(colors, visibilities))] - ) # noqa - frame_visualizer.overlay_instances( - boxes=None if masks is not None else boxes[visibilities], # boxes are a bit distracting - masks=None if masks is None else masks[visibilities], - labels=labels, - keypoints=None if keypoints is None else keypoints[visibilities], - assigned_colors=assigned_colors, - alpha=alpha, - ) - - return frame_visualizer.output - - def draw_sem_seg(self, frame, sem_seg, area_threshold=None): - """ - Args: - sem_seg (ndarray or Tensor): semantic segmentation of shape (H, W), - each value is the integer label. - area_threshold (Optional[int]): only draw segmentations larger than the threshold - """ - # don't need to do anything special - frame_visualizer = Visualizer(frame, self.metadata) - frame_visualizer.draw_sem_seg(sem_seg, area_threshold=None) - return frame_visualizer.output - - def draw_panoptic_seg_predictions( - self, frame, panoptic_seg, segments_info, area_threshold=None, alpha=0.5 - ): - frame_visualizer = Visualizer(frame, self.metadata) - pred = _PanopticPrediction(panoptic_seg, segments_info, self.metadata) - - if self._instance_mode == ColorMode.IMAGE_BW: - frame_visualizer.output.reset_image( - frame_visualizer._create_grayscale_image(pred.non_empty_mask()) - ) - - # draw mask for all semantic segments first i.e. "stuff" - for mask, sinfo in pred.semantic_masks(): - category_idx = sinfo["category_id"] - try: - mask_color = [x / 255 for x in self.metadata.stuff_colors[category_idx]] - except AttributeError: - mask_color = None - - frame_visualizer.draw_binary_mask( - mask, - color=mask_color, - text=self.metadata.stuff_classes[category_idx], - alpha=alpha, - area_threshold=area_threshold, - ) - - all_instances = list(pred.instance_masks()) - if len(all_instances) == 0: - return frame_visualizer.output - # draw mask for all instances second - masks, sinfo = list(zip(*all_instances)) - num_instances = len(masks) - masks_rles = mask_util.encode( - np.asarray(np.asarray(masks).transpose(1, 2, 0), dtype=np.uint8, order="F") - ) - assert len(masks_rles) == num_instances - - category_ids = [x["category_id"] for x in sinfo] - detected = [ - _DetectedInstance(category_ids[i], bbox=None, mask_rle=masks_rles[i], color=None, ttl=8) - for i in range(num_instances) - ] - colors = self._assign_colors(detected) - labels = [self.metadata.thing_classes[k] for k in category_ids] - - frame_visualizer.overlay_instances( - boxes=None, - masks=masks, - labels=labels, - keypoints=None, - assigned_colors=colors, - alpha=alpha, - ) - return frame_visualizer.output - - def _assign_colors(self, instances): - """ - Naive tracking heuristics to assign same color to the same instance, - will update the internal state of tracked instances. - - Returns: - list[tuple[float]]: list of colors. - """ - - # Compute iou with either boxes or masks: - is_crowd = np.zeros((len(instances),), dtype=bool) - if instances[0].bbox is None: - assert instances[0].mask_rle is not None - # use mask iou only when box iou is None - # because box seems good enough - rles_old = [x.mask_rle for x in self._old_instances] - rles_new = [x.mask_rle for x in instances] - ious = mask_util.iou(rles_old, rles_new, is_crowd) - threshold = 0.5 - else: - boxes_old = [x.bbox for x in self._old_instances] - boxes_new = [x.bbox for x in instances] - ious = mask_util.iou(boxes_old, boxes_new, is_crowd) - threshold = 0.6 - if len(ious) == 0: - ious = np.zeros((len(self._old_instances), len(instances)), dtype="float32") - - # Only allow matching instances of the same label: - for old_idx, old in enumerate(self._old_instances): - for new_idx, new in enumerate(instances): - if old.label != new.label: - ious[old_idx, new_idx] = 0 - - matched_new_per_old = np.asarray(ious).argmax(axis=1) - max_iou_per_old = np.asarray(ious).max(axis=1) - - # Try to find match for each old instance: - extra_instances = [] - for idx, inst in enumerate(self._old_instances): - if max_iou_per_old[idx] > threshold: - newidx = matched_new_per_old[idx] - if instances[newidx].color is None: - instances[newidx].color = inst.color - continue - # If an old instance does not match any new instances, - # keep it for the next frame in case it is just missed by the detector - inst.ttl -= 1 - if inst.ttl > 0: - extra_instances.append(inst) - - # Assign random color to newly-detected instances: - for inst in instances: - if inst.color is None: - inst.color = random_color(rgb=True, maximum=1) - self._old_instances = instances[:] + extra_instances - return [d.color for d in instances] - - def _assign_colors_by_id(self, instances: Instances) -> List: - colors = [] - untracked_ids = set(self._assigned_colors.keys()) - for id in instances.ID: - if id in self._assigned_colors: - colors.append(self._color_pool[self._assigned_colors[id]]) - untracked_ids.remove(id) - else: - assert ( - len(self._color_idx_set) >= 1 - ), f"Number of id exceeded maximum, \ - max = {self._max_num_instances}" - idx = self._color_idx_set.pop() - color = self._color_pool[idx] - self._assigned_colors[id] = idx - colors.append(color) - for id in untracked_ids: - self._color_idx_set.add(self._assigned_colors[id]) - del self._assigned_colors[id] - return colors diff --git a/spaces/csuer/vits/transforms.py b/spaces/csuer/vits/transforms.py deleted file mode 100644 index 4793d67ca5a5630e0ffe0f9fb29445c949e64dae..0000000000000000000000000000000000000000 --- a/spaces/csuer/vits/transforms.py +++ /dev/null @@ -1,193 +0,0 @@ -import torch -from torch.nn import functional as F - -import numpy as np - - -DEFAULT_MIN_BIN_WIDTH = 1e-3 -DEFAULT_MIN_BIN_HEIGHT = 1e-3 -DEFAULT_MIN_DERIVATIVE = 1e-3 - - -def piecewise_rational_quadratic_transform(inputs, - unnormalized_widths, - unnormalized_heights, - unnormalized_derivatives, - inverse=False, - tails=None, - tail_bound=1., - min_bin_width=DEFAULT_MIN_BIN_WIDTH, - min_bin_height=DEFAULT_MIN_BIN_HEIGHT, - min_derivative=DEFAULT_MIN_DERIVATIVE): - - if tails is None: - spline_fn = rational_quadratic_spline - spline_kwargs = {} - else: - spline_fn = unconstrained_rational_quadratic_spline - spline_kwargs = { - 'tails': tails, - 'tail_bound': tail_bound - } - - outputs, logabsdet = spline_fn( - inputs=inputs, - unnormalized_widths=unnormalized_widths, - unnormalized_heights=unnormalized_heights, - unnormalized_derivatives=unnormalized_derivatives, - inverse=inverse, - min_bin_width=min_bin_width, - min_bin_height=min_bin_height, - min_derivative=min_derivative, - **spline_kwargs - ) - return outputs, logabsdet - - -def searchsorted(bin_locations, inputs, eps=1e-6): - bin_locations[..., -1] += eps - return torch.sum( - inputs[..., None] >= bin_locations, - dim=-1 - ) - 1 - - -def unconstrained_rational_quadratic_spline(inputs, - unnormalized_widths, - unnormalized_heights, - unnormalized_derivatives, - inverse=False, - tails='linear', - tail_bound=1., - min_bin_width=DEFAULT_MIN_BIN_WIDTH, - min_bin_height=DEFAULT_MIN_BIN_HEIGHT, - min_derivative=DEFAULT_MIN_DERIVATIVE): - inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound) - outside_interval_mask = ~inside_interval_mask - - outputs = torch.zeros_like(inputs) - logabsdet = torch.zeros_like(inputs) - - if tails == 'linear': - unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1)) - constant = np.log(np.exp(1 - min_derivative) - 1) - unnormalized_derivatives[..., 0] = constant - unnormalized_derivatives[..., -1] = constant - - outputs[outside_interval_mask] = inputs[outside_interval_mask] - logabsdet[outside_interval_mask] = 0 - else: - raise RuntimeError('{} tails are not implemented.'.format(tails)) - - outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline( - inputs=inputs[inside_interval_mask], - unnormalized_widths=unnormalized_widths[inside_interval_mask, :], - unnormalized_heights=unnormalized_heights[inside_interval_mask, :], - unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :], - inverse=inverse, - left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound, - min_bin_width=min_bin_width, - min_bin_height=min_bin_height, - min_derivative=min_derivative - ) - - return outputs, logabsdet - -def rational_quadratic_spline(inputs, - unnormalized_widths, - unnormalized_heights, - unnormalized_derivatives, - inverse=False, - left=0., right=1., bottom=0., top=1., - min_bin_width=DEFAULT_MIN_BIN_WIDTH, - min_bin_height=DEFAULT_MIN_BIN_HEIGHT, - min_derivative=DEFAULT_MIN_DERIVATIVE): - if torch.min(inputs) < left or torch.max(inputs) > right: - raise ValueError('Input to a transform is not within its domain') - - num_bins = unnormalized_widths.shape[-1] - - if min_bin_width * num_bins > 1.0: - raise ValueError('Minimal bin width too large for the number of bins') - if min_bin_height * num_bins > 1.0: - raise ValueError('Minimal bin height too large for the number of bins') - - widths = F.softmax(unnormalized_widths, dim=-1) - widths = min_bin_width + (1 - min_bin_width * num_bins) * widths - cumwidths = torch.cumsum(widths, dim=-1) - cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0) - cumwidths = (right - left) * cumwidths + left - cumwidths[..., 0] = left - cumwidths[..., -1] = right - widths = cumwidths[..., 1:] - cumwidths[..., :-1] - - derivatives = min_derivative + F.softplus(unnormalized_derivatives) - - heights = F.softmax(unnormalized_heights, dim=-1) - heights = min_bin_height + (1 - min_bin_height * num_bins) * heights - cumheights = torch.cumsum(heights, dim=-1) - cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0) - cumheights = (top - bottom) * cumheights + bottom - cumheights[..., 0] = bottom - cumheights[..., -1] = top - heights = cumheights[..., 1:] - cumheights[..., :-1] - - if inverse: - bin_idx = searchsorted(cumheights, inputs)[..., None] - else: - bin_idx = searchsorted(cumwidths, inputs)[..., None] - - input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0] - input_bin_widths = widths.gather(-1, bin_idx)[..., 0] - - input_cumheights = cumheights.gather(-1, bin_idx)[..., 0] - delta = heights / widths - input_delta = delta.gather(-1, bin_idx)[..., 0] - - input_derivatives = derivatives.gather(-1, bin_idx)[..., 0] - input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0] - - input_heights = heights.gather(-1, bin_idx)[..., 0] - - if inverse: - a = (((inputs - input_cumheights) * (input_derivatives - + input_derivatives_plus_one - - 2 * input_delta) - + input_heights * (input_delta - input_derivatives))) - b = (input_heights * input_derivatives - - (inputs - input_cumheights) * (input_derivatives - + input_derivatives_plus_one - - 2 * input_delta)) - c = - input_delta * (inputs - input_cumheights) - - discriminant = b.pow(2) - 4 * a * c - assert (discriminant >= 0).all() - - root = (2 * c) / (-b - torch.sqrt(discriminant)) - outputs = root * input_bin_widths + input_cumwidths - - theta_one_minus_theta = root * (1 - root) - denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta) - * theta_one_minus_theta) - derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2) - + 2 * input_delta * theta_one_minus_theta - + input_derivatives * (1 - root).pow(2)) - logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) - - return outputs, -logabsdet - else: - theta = (inputs - input_cumwidths) / input_bin_widths - theta_one_minus_theta = theta * (1 - theta) - - numerator = input_heights * (input_delta * theta.pow(2) - + input_derivatives * theta_one_minus_theta) - denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta) - * theta_one_minus_theta) - outputs = input_cumheights + numerator / denominator - - derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2) - + 2 * input_delta * theta_one_minus_theta - + input_derivatives * (1 - theta).pow(2)) - logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) - - return outputs, logabsdet diff --git a/spaces/cynika/NFT_avatar/nft.py b/spaces/cynika/NFT_avatar/nft.py deleted file mode 100644 index 0ee426cd08344bb5458c244848c8018ff9009bef..0000000000000000000000000000000000000000 --- a/spaces/cynika/NFT_avatar/nft.py +++ /dev/null @@ -1,140 +0,0 @@ -import time -import requests -from hashlib import md5 -from typing import Union -from urllib.parse import urlencode -from requests_toolbelt.multipart.encoder import MultipartEncoder -import imghdr - - -class Crypto: - APPKEY = '4409e2ce8ffd12b8' - APPSECRET = '59b43e04ad6965f34319062b478f83dd' - - @staticmethod - def md5(data: Union[str, bytes]) -> str: - '''generates md5 hex dump of `str` or `bytes`''' - if type(data) == str: - return md5(data.encode()).hexdigest() - return md5(data).hexdigest() - - @staticmethod - def sign(data: Union[str, dict]) -> str: - '''salted sign funtion for `dict`(converts to qs then parse) & `str`''' - if isinstance(data, dict): - _str = urlencode(data) - elif type(data) != str: - raise TypeError - return Crypto.md5(_str + Crypto.APPSECRET) - - -class SingableDict(dict): - @property - def sorted(self): - '''returns a alphabetically sorted version of `self`''' - return dict(sorted(self.items())) - - @property - def signed(self): - '''returns our sorted self with calculated `sign` as a new key-value pair at the end''' - _sorted = self.sorted - return {**_sorted, 'sign': Crypto.sign(_sorted)} - - -def get_image_type(file_path): - with open(file_path, 'rb') as f: - data = f.read() - return imghdr.what(None, data) - - -def get_have_card_id_list(UID, ACCESS_KEY, sid): - url = "https://api.bilibili.com/x/vas/nftcard/cardlist" - params = SingableDict( - { - "access_key": ACCESS_KEY, - "act_id": sid, # 这里默认已经是三体数字藏品卡14,github下载的默认是4,也就是胶囊卡 - "appkey": "4409e2ce8ffd12b8", - "disable_rcmd": "0", - "ruid": UID, - "statistics": "{\"appId\":1,\"platform\":3,\"version\":\"7.9.0\",\"abtest\":\"\"}", - "ts": int(time.time()), - } - ).signed - response = requests.request("GET", url, params=params) - data = response.json() - if data['code'] != 0: - print(f"获取卡片信息出错,下面是 api 返回:\n{data}") - return - # print(data) # 查询已添加无需再填 - have_card_id_list = {} - try: - for round in data['data']['round_list']: - for card in round['card_list']: - if card['card_id_list']: - print(f"找到付费卡 card_id: {card['card_id_list'][0]['card_id']}\n这个id属于{card['card_name']}") - have_card_id_list.update({card['card_name']: card['card_id_list'][0]['card_id']}) - if data["data"]["pre_list"]: - for i in data["data"]["pre_list"]: - if card_id_list := i.get("card_id_list"): - for j in card_id_list: - if card_id := j.get("card_id"): - print(f"找到预约卡card_id: {card_id}\n这个 id 属于{i.get('card_name')}") - have_card_id_list.update({i.get('card_name'): card_id}) - except Exception as e: - print(f"处理卡牌列表出错{e.args[0]},下面是 api 返回:\n{data}") - return {} - if have_card_id_list: - print(f"已经找到卡片") - return have_card_id_list - else: - print("没有找到可用的卡片") - return {} - - -def set_face(card_id, ACCESS_KEY, img_data): - api = "https://api.bilibili.com/x/member/app/face/digitalKit/update" - params = SingableDict( - { - "access_key": ACCESS_KEY, - "appkey": "4409e2ce8ffd12b8", - "build": "7090300", - "c_locale": "zh_CN", - "channel": "xiaomi", - "disable_rcmd": "0", - "mobi_app": "android", - "platform": "android", - "s_locale": "zh_CN", - "statistics": "{\"appId\":1,\"platform\":3,\"version\":\"7.9.0\",\"abtest\":\"\"}", - "ts": int(time.time()), - } - ).signed - m = MultipartEncoder( - fields={ - 'digital_kit_id': str(card_id), - 'face': ('face', img_data, 'application/octet-stream'), - } - ) - headers = { - "Content-Type": m.content_type, - } - response = requests.request("POST", api, data=m, headers=headers, params=params) - if response.json()['code'] != 0: - return False, response.json() - return True, '设置头像成功, 请等待审核' - - -def having_card_id_list(uid, key, sid): - uid = int(uid) - access_key = str(key) - sid = str(sid) - - had_card_id_list = get_have_card_id_list(uid, access_key, sid) # 根据你所取得的卡card_id进行更改 - if had_card_id_list: - return True, had_card_id_list, "已找到拥有卡牌" - return False, {}, "没找到任何card_id ,请确认当前卡组已拥有卡片" - - -def card_id_set_ava(card_id, key, img_data): - access_key = str(key) - result, code = set_face(card_id, access_key, img_data) - return result, code diff --git a/spaces/dachenchen/real/ChuanhuChatbot.py b/spaces/dachenchen/real/ChuanhuChatbot.py deleted file mode 100644 index 6b1a08a8b1dbb5a60cc11d3b47ffc85a329492a2..0000000000000000000000000000000000000000 --- a/spaces/dachenchen/real/ChuanhuChatbot.py +++ /dev/null @@ -1,159 +0,0 @@ -import gradio as gr -# import openai -import os -import sys -import argparse -from utils import * -from presets import * - - -my_api_key = "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" # 在这里输入你的 API 密钥 - -#if we are running in Docker -if os.environ.get('dockerrun') == 'yes': - dockerflag = True -else: - dockerflag = False - -authflag = False - -if dockerflag: - my_api_key = os.environ.get('my_api_key') - if my_api_key == "empty": - print("Please give a api key!") - sys.exit(1) - #auth - username = os.environ.get('USERNAME') - password = os.environ.get('PASSWORD') - if not (isinstance(username, type(None)) or isinstance(password, type(None))): - authflag = True -else: - if not my_api_key and os.path.exists("api_key.txt") and os.path.getsize("api_key.txt"): - with open("api_key.txt", "r") as f: - my_api_key = f.read().strip() - if os.path.exists("auth.json"): - with open("auth.json", "r") as f: - auth = json.load(f) - username = auth["username"] - password = auth["password"] - if username != "" and password != "": - authflag = True - -gr.Chatbot.postprocess = postprocess - -with gr.Blocks(css=customCSS) as demo: - gr.HTML(title) - with gr.Row(): - keyTxt = gr.Textbox(show_label=False, placeholder=f"在这里输入你的OpenAI API-key...", - value=my_api_key, type="password", visible=not HIDE_MY_KEY).style(container=True) - use_streaming_checkbox = gr.Checkbox(label="实时传输回答", value=True, visible=enable_streaming_option) - chatbot = gr.Chatbot() # .style(color_map=("#1D51EE", "#585A5B")) - history = gr.State([]) - token_count = gr.State([]) - promptTemplates = gr.State(load_template(get_template_names(plain=True)[0], mode=2)) - TRUECOMSTANT = gr.State(True) - FALSECONSTANT = gr.State(False) - topic = gr.State("未命名对话历史记录") - - with gr.Row(): - with gr.Column(scale=12): - user_input = gr.Textbox(show_label=False, placeholder="在这里输入").style( - container=False) - with gr.Column(min_width=50, scale=1): - submitBtn = gr.Button("🚀", variant="primary") - with gr.Row(): - emptyBtn = gr.Button("🧹 新的对话") - retryBtn = gr.Button("🔄 重新生成") - delLastBtn = gr.Button("🗑️ 删除最近一条对话") - reduceTokenBtn = gr.Button("♻️ 总结对话") - status_display = gr.Markdown("status: ready") - systemPromptTxt = gr.Textbox(show_label=True, placeholder=f"在这里输入System Prompt...", - label="System prompt", value=initial_prompt).style(container=True) - with gr.Accordion(label="加载Prompt模板", open=False): - with gr.Column(): - with gr.Row(): - with gr.Column(scale=6): - templateFileSelectDropdown = gr.Dropdown(label="选择Prompt模板集合文件", choices=get_template_names(plain=True), multiselect=False, value=get_template_names(plain=True)[0]) - with gr.Column(scale=1): - templateRefreshBtn = gr.Button("🔄 刷新") - templaeFileReadBtn = gr.Button("📂 读入模板") - with gr.Row(): - with gr.Column(scale=6): - templateSelectDropdown = gr.Dropdown(label="从Prompt模板中加载", choices=load_template(get_template_names(plain=True)[0], mode=1), multiselect=False, value=load_template(get_template_names(plain=True)[0], mode=1)[0]) - with gr.Column(scale=1): - templateApplyBtn = gr.Button("⬇️ 应用") - with gr.Accordion(label="保存/加载对话历史记录", open=False): - with gr.Column(): - with gr.Row(): - with gr.Column(scale=6): - saveFileName = gr.Textbox( - show_label=True, placeholder=f"在这里输入保存的文件名...", label="设置保存文件名", value="对话历史记录").style(container=True) - with gr.Column(scale=1): - saveHistoryBtn = gr.Button("💾 保存对话") - with gr.Row(): - with gr.Column(scale=6): - historyFileSelectDropdown = gr.Dropdown(label="从列表中加载对话", choices=get_history_names(plain=True), multiselect=False, value=get_history_names(plain=True)[0]) - with gr.Column(scale=1): - historyRefreshBtn = gr.Button("🔄 刷新") - historyReadBtn = gr.Button("📂 读入对话") - #inputs, top_p, temperature, top_k, repetition_penalty - with gr.Accordion("参数", open=False): - top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.05, - interactive=True, label="Top-p (nucleus sampling)",) - temperature = gr.Slider(minimum=-0, maximum=5.0, value=1.0, - step=0.1, interactive=True, label="Temperature",) - #top_k = gr.Slider( minimum=1, maximum=50, value=4, step=1, interactive=True, label="Top-k",) - #repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.03, step=0.01, interactive=True, label="Repetition Penalty", ) - gr.Markdown(description) - - - user_input.submit(predict, [keyTxt, systemPromptTxt, history, user_input, chatbot, token_count, top_p, temperature, use_streaming_checkbox], [chatbot, history, status_display, token_count], show_progress=True) - user_input.submit(reset_textbox, [], [user_input]) - - submitBtn.click(predict, [keyTxt, systemPromptTxt, history, user_input, chatbot, token_count, top_p, temperature, use_streaming_checkbox], [chatbot, history, status_display, token_count], show_progress=True) - submitBtn.click(reset_textbox, [], [user_input]) - - emptyBtn.click(reset_state, outputs=[chatbot, history, token_count, status_display], show_progress=True) - - retryBtn.click(retry, [keyTxt, systemPromptTxt, history, chatbot, token_count, top_p, temperature, use_streaming_checkbox], [chatbot, history, status_display, token_count], show_progress=True) - - delLastBtn.click(delete_last_conversation, [chatbot, history, token_count, use_streaming_checkbox], [ - chatbot, history, token_count, status_display], show_progress=True) - - reduceTokenBtn.click(reduce_token_size, [keyTxt, systemPromptTxt, history, chatbot, token_count, top_p, temperature, use_streaming_checkbox], [chatbot, history, status_display, token_count], show_progress=True) - - saveHistoryBtn.click(save_chat_history, [ - saveFileName, systemPromptTxt, history, chatbot], None, show_progress=True) - - saveHistoryBtn.click(get_history_names, None, [historyFileSelectDropdown]) - - historyRefreshBtn.click(get_history_names, None, [historyFileSelectDropdown]) - - historyReadBtn.click(load_chat_history, [historyFileSelectDropdown, systemPromptTxt, history, chatbot], [saveFileName, systemPromptTxt, history, chatbot], show_progress=True) - - templateRefreshBtn.click(get_template_names, None, [templateFileSelectDropdown]) - - templaeFileReadBtn.click(load_template, [templateFileSelectDropdown], [promptTemplates, templateSelectDropdown], show_progress=True) - - templateApplyBtn.click(get_template_content, [promptTemplates, templateSelectDropdown, systemPromptTxt], [systemPromptTxt], show_progress=True) - -print("温馨提示:访问 http://localhost:7860 查看界面") -# 默认开启本地服务器,默认可以直接从IP访问,默认不创建公开分享链接 -demo.title = "大陈陈ChatGPT 🚀" - -if __name__ == "__main__": - #if running in Docker - if dockerflag: - if authflag: - demo.queue().launch(server_name="0.0.0.0", server_port=7860,auth=(username, password)) - else: - demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=False) - #if not running in Docker - else: - if authflag: - demo.queue().launch(share=False, auth=(username, password)) - else: - demo.queue().launch(share=False) # 改为 share=True 可以创建公开分享链接 - #demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=False) # 可自定义端口 - #demo.queue().launch(server_name="0.0.0.0", server_port=7860,auth=("在这里填写用户名", "在这里填写密码")) # 可设置用户名与密码 - #demo.queue().launch(auth=("在这里填写用户名", "在这里填写密码")) # 适合Nginx反向代理 diff --git a/spaces/dafqi/indo_twitter_sentiment_app/script/plotting.py b/spaces/dafqi/indo_twitter_sentiment_app/script/plotting.py deleted file mode 100644 index 753deae878fab9a08f8190eb2b7cff41cc7d87ab..0000000000000000000000000000000000000000 --- a/spaces/dafqi/indo_twitter_sentiment_app/script/plotting.py +++ /dev/null @@ -1,116 +0,0 @@ -import itertools -import numpy as np -from typing import List - -import plotly.graph_objects as go -from plotly.subplots import make_subplots - - -def visualize_barchart(topic_model, - topics: List[int] = None, - top_n_topics: int = 8, - n_words: int = 5, - custom_labels: bool = False, - title: str = "Kata Kunci tiap Topic", - width: int = 250, - height: int = 250) -> go.Figure: - """ Visualize a barchart of selected topics - Arguments: - topic_model: A fitted BERTopic instance. - topics: A selection of topics to visualize. - top_n_topics: Only select the top n most frequent topics. - n_words: Number of words to show in a topic - custom_labels: Whether to use custom topic labels that were defined using - `topic_model.set_topic_labels`. - title: Title of the plot. - width: The width of each figure. - height: The height of each figure. - Returns: - fig: A plotly figure - Examples: - To visualize the barchart of selected topics - simply run: - ```python - topic_model.visualize_barchart() - ``` - Or if you want to save the resulting figure: - ```python - fig = topic_model.visualize_barchart() - fig.write_html("path/to/file.html") - ``` - - """ - colors = itertools.cycle(['#636EFA', '#EF553B', '#00CC96', '#AB63FA', '#FFA15A', '#19D3F3', '#FF6692', '#B6E880', '#FF97FF', '#FECB52']) - - # Select topics based on top_n and topics args - freq_df = topic_model.get_topic_freq() - if len(freq_df) > 1: - freq_df = freq_df.loc[freq_df.Topic != -1, :] - if topics is not None: - topics = list(topics) - elif top_n_topics is not None: - topics = sorted(freq_df.Topic.to_list()[:top_n_topics]) - else: - topics = sorted(freq_df.Topic.to_list()[0:6]) - - # Initialize figure - if topic_model.custom_labels_ is not None and custom_labels: - subplot_titles = [topic_model.custom_labels_[topic + topic_model._outliers] for topic in topics] - else: - subplot_titles = [f"Topic {topic}" for topic in topics] - columns = 3 - rows = int(np.ceil(len(topics) / columns)) - fig = make_subplots(rows=rows, - cols=columns, - shared_xaxes=False, - horizontal_spacing=.1, - vertical_spacing=.4 / rows if rows > 1 else 0, - subplot_titles=subplot_titles) - - # Add barchart for each topic - row = 1 - column = 1 - for topic in topics: - words = [word + " " for word, _ in topic_model.get_topic(topic)][:n_words][::-1] - scores = [score for _, score in topic_model.get_topic(topic)][:n_words][::-1] - - fig.add_trace( - go.Bar(x=scores, - y=words, - orientation='h', - marker_color=next(colors)), - row=row, col=column) - - if column == columns: - column = 1 - row += 1 - else: - column += 1 - - # Stylize graph - fig.update_layout( - - showlegend=False, - title={ - 'text': f"{title}", - 'xanchor': 'center', - 'yanchor': 'top', - 'font': dict( - size=22, - color="Black") - }, - width=width*3, - height=height*rows if rows > 1 else height * 1.3, - hoverlabel=dict( - bgcolor="white", - font_size=13, - font_family="Rockwell" - ), - margin=dict(l=40, r=40) - ) - - fig.update_xaxes(showgrid=True) - fig.update_yaxes(showgrid=True) - - return fig \ No newline at end of file diff --git a/spaces/darkstorm2150/Stable-Diffusion-Protogen-x3.4-webui/app.py b/spaces/darkstorm2150/Stable-Diffusion-Protogen-x3.4-webui/app.py deleted file mode 100644 index be111e59a9c0f40769c871659999c100caa38561..0000000000000000000000000000000000000000 --- a/spaces/darkstorm2150/Stable-Diffusion-Protogen-x3.4-webui/app.py +++ /dev/null @@ -1,76 +0,0 @@ -import os -from subprocess import getoutput - -os.system(f"git clone -b v1.5 https://github.com/camenduru/stable-diffusion-webui /home/user/app/stable-diffusion-webui") -os.chdir("/home/user/app/stable-diffusion-webui") - -os.system(f"wget -q https://github.com/camenduru/webui/raw/main/env_patch.py -O /home/user/app/env_patch.py") -os.system(f"sed -i '$a fastapi==0.90.0' /home/user/app/stable-diffusion-webui/requirements_versions.txt") -os.system(f"sed -i -e '/import image_from_url_text/r /home/user/app/env_patch.py' /home/user/app/stable-diffusion-webui/modules/ui.py") -os.system(f"sed -i -e '/(modelmerger_interface, \"Checkpoint Merger\", \"modelmerger\"),/d' /home/user/app/stable-diffusion-webui/modules/ui.py") -os.system(f"sed -i -e '/(train_interface, \"Train\", \"ti\"),/d' /home/user/app/stable-diffusion-webui/modules/ui.py") -os.system(f"sed -i -e '/extensions_interface, \"Extensions\", \"extensions\"/d' /home/user/app/stable-diffusion-webui/modules/ui.py") -os.system(f"sed -i -e '/settings_interface, \"Settings\", \"settings\"/d' /home/user/app/stable-diffusion-webui/modules/ui.py") -os.system(f'''sed -i -e "s/document.getElementsByTagName('gradio-app')\[0\].shadowRoot/!!document.getElementsByTagName('gradio-app')[0].shadowRoot ? document.getElementsByTagName('gradio-app')[0].shadowRoot : document/g" /home/user/app/stable-diffusion-webui/script.js''') -os.system(f"sed -i -e 's/ show_progress=False,/ show_progress=True,/g' /home/user/app/stable-diffusion-webui/modules/ui.py") -os.system(f"sed -i -e 's/shared.demo.launch/shared.demo.queue().launch/g' /home/user/app/stable-diffusion-webui/webui.py") -os.system(f"sed -i -e 's/ outputs=\[/queue=False, &/g' /home/user/app/stable-diffusion-webui/modules/ui.py") -os.system(f"sed -i -e 's/ queue=False, / /g' /home/user/app/stable-diffusion-webui/modules/ui.py") - -# ----------------------------Please duplicate this space and delete this block if you don't want to see the extra header---------------------------- -os.system(f"wget -q https://raw.githubusercontent.com/darkstorm2150/webui/main/OpenGen_header_patch.py -O /home/user/app/header_patch.py") -os.system(f"sed -i -e '/demo:/r /home/user/app/header_patch.py' /home/user/app/stable-diffusion-webui/modules/ui.py") -# --------------------------------------------------------------------------------------------------------------------------------------------------- - -if "IS_SHARED_UI" in os.environ: - os.system(f"rm -rfv /home/user/app/stable-diffusion-webui/scripts/") - - os.system(f"wget -q https://github.com/camenduru/webui/raw/main/shared-config.json -O /home/user/app/shared-config.json") - os.system(f"wget -q https://github.com/camenduru/webui/raw/main/shared-ui-config.json -O /home/user/app/shared-ui-config.json") - - os.system(f"wget -q {os.getenv('MODEL_LINK')} -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/{os.getenv('MODEL_NAME')}") - os.system(f"wget -q {os.getenv('VAE_LINK')} -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/{os.getenv('VAE_NAME')}") - os.system(f"wget -q {os.getenv('YAML_LINK')} -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/{os.getenv('YAML_NAME')}") - - os.system(f"python launch.py --disable-console-progressbars --enable-console-prompts --ui-config-file /home/user/app/shared-ui-config.json --ui-settings-file /home/user/app/shared-config.json --cors-allow-origins huggingface.co,hf.space --no-progressbar-hiding") -else: - os.system(f"rm -rfv /home/user/app/stable-diffusion-webui/scripts/") - - os.system(f"wget -q https://github.com/camenduru/webui/raw/main/shared-config.json -O /home/user/app/shared-config.json") - os.system(f"wget -q https://github.com/camenduru/webui/raw/main/shared-ui-config.json -O /home/user/app/shared-ui-config.json") - - # Please duplicate this space and delete # character in front of the custom script you want to use or add here more custom scripts with same structure os.system(f"wget -q https://CUSTOM_SCRIPT_URL -O /home/user/app/stable-diffusion-webui/scripts/CUSTOM_SCRIPT_NAME.py") - #os.system(f"wget -q https://gist.github.com/camenduru/9ec5f8141db9902e375967e93250860f/raw/d0bcf01786f20107c329c03f8968584ee67be12a/run_n_times.py -O /home/user/app/stable-diffusion-webui/scripts/run_n_times.py") - - # Please duplicate this space and delete # character in front of the extension you want to use or add here more extensions with same structure os.system(f"git clone https://EXTENSION_GIT_URL /home/user/app/stable-diffusion-webui/extensions/EXTENSION_NAME") - #os.system(f"git clone https://github.com/camenduru/stable-diffusion-webui-artists-to-study /home/user/app/stable-diffusion-webui/extensions/stable-diffusion-webui-artists-to-study") - #os.system(f"git clone https://github.com/yfszzx/stable-diffusion-webui-images-browser /home/user/app/stable-diffusion-webui/extensions/stable-diffusion-webui-images-browser") - #os.system(f"git clone https://github.com/deforum-art/deforum-for-automatic1111-webui /home/user/app/stable-diffusion-webui/extensions/deforum-for-automatic1111-webui") - - # Please duplicate this space and delete # character in front of the model you want to use or add here more ckpts with same structure os.system(f"wget -q https://CKPT_URL -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/CKPT_NAME.ckpt") - #os.system(f"wget -q https://huggingface.co/nitrosocke/Arcane-Diffusion/resolve/main/arcane-diffusion-v3.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/arcane-diffusion-v3.ckpt") - #os.system(f"wget -q https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion/resolve/main/Cyberpunk-Anime-Diffusion.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/Cyberpunk-Anime-Diffusion.ckpt") - #os.system(f"wget -q https://huggingface.co/prompthero/midjourney-v4-diffusion/resolve/main/mdjrny-v4.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/mdjrny-v4.ckpt") - #os.system(f"wget -q https://huggingface.co/nitrosocke/mo-di-diffusion/resolve/main/moDi-v1-pruned.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/moDi-v1-pruned.ckpt") - #os.system(f"wget -q https://huggingface.co/Fictiverse/Stable_Diffusion_PaperCut_Model/resolve/main/PaperCut_v1.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/PaperCut_v1.ckpt") - #os.system(f"wget -q https://huggingface.co/lilpotat/sa/resolve/main/samdoesarts_style.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/samdoesarts_style.ckpt") - #os.system(f"wget -q https://huggingface.co/hakurei/waifu-diffusion-v1-3/resolve/main/wd-v1-3-float32.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/wd-v1-3-float32.ckpt") - #os.system(f"wget -q https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/sd-v1-4.ckpt") - #os.system(f"wget -q https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/v1-5-pruned-emaonly.ckpt") - #os.system(f"wget -q https://huggingface.co/runwayml/stable-diffusion-inpainting/resolve/main/sd-v1-5-inpainting.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/sd-v1-5-inpainting.ckpt") - - #os.system(f"wget -q https://huggingface.co/Linaqruf/anything-v3.0/resolve/main/Anything-V3.0-pruned.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/Anything-V3.0-pruned.ckpt") - #os.system(f"wget -q https://huggingface.co/Linaqruf/anything-v3.0/resolve/main/Anything-V3.0.vae.pt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/Anything-V3.0-pruned.vae.pt") - - #os.system(f"wget -q https://huggingface.co/stabilityai/stable-diffusion-2/resolve/main/768-v-ema.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/768-v-ema.ckpt") - #os.system(f"wget -q https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/768-v-ema.yaml") - - # ----------------------------Protogen Models---------------------------- - #os.system(f"wget -q https://huggingface.co/darkstorm2150/Protogen_v2.2_Official_Release/resolve/main/Protogen_V2.2.safetensors -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/Protogen_V2.2.safetensors") - os.system(f"wget -q https://huggingface.co/darkstorm2150/Protogen_x3.4_Official_Release/resolve/main/ProtoGen_X3.4.safetensors -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/ProtoGen_X3.4.safetensors") - #os.system(f"wget -q https://huggingface.co/darkstorm2150/Protogen_v5.3_Official_Release/resolve/main/ProtoGen_X5.3.safetensors -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/ProtoGen_X5.3.safetensors") - #os.system(f"wget -q https://huggingface.co/darkstorm2150/Protogen_v5.8_Official_Release/resolve/main/ProtoGen_X5.8.safetensors -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/ProtoGen_X5.8.safetensors") - #os.system(f"wget -q https://huggingface.co/darkstorm2150/Protogen_Dragon_Official_Release/resolve/main/ProtoGen_Dragon.safetensors -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/ProtoGen_Dragon.safetensors") - # ----------------------------Protogen Models---------------------------- - #os.system(f"python launch.py --force-enable-xformers --ui-config-file /home/user/app/ui-config.json --ui-settings-file /home/user/app/config.json --disable-console-progressbars --enable-console-prompts --cors-allow-origins huggingface.co,hf.space --no-progressbar-hiding --api --skip-torch-cuda-test") - os.system(f"python launch.py --disable-console-progressbars --enable-console-prompts --ui-config-file /home/user/app/shared-ui-config.json --ui-settings-file /home/user/app/shared-config.json --cors-allow-origins huggingface.co,hf.space --no-progressbar-hiding") \ No newline at end of file diff --git a/spaces/daspartho/prompt-extend/README.md b/spaces/daspartho/prompt-extend/README.md deleted file mode 100644 index d8e38ea3a526ab1f57292d4b527d8300c8a4d55c..0000000000000000000000000000000000000000 --- a/spaces/daspartho/prompt-extend/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: Prompt Extend -emoji: ✍️ -colorFrom: indigo -colorTo: indigo -sdk: gradio -sdk_version: 3.8.2 -app_file: app.py -pinned: false -license: apache-2.0 ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/dawdqd/ChuanhuChatGPT/web_assets/javascript/chat-history.js b/spaces/dawdqd/ChuanhuChatGPT/web_assets/javascript/chat-history.js deleted file mode 100644 index 1bc05355025a1a9abf83f51ff94b6815c604a6d6..0000000000000000000000000000000000000000 --- a/spaces/dawdqd/ChuanhuChatGPT/web_assets/javascript/chat-history.js +++ /dev/null @@ -1,54 +0,0 @@ - -var historyLoaded = false; -var loadhistorytime = 0; // for debugging - - -function saveHistoryHtml() { - var historyHtml = document.querySelector('#chuanhu-chatbot>.wrapper>.wrap'); - if (!historyHtml) return; // no history, do nothing - localStorage.setItem('chatHistory', historyHtml.innerHTML); - // console.log("History Saved") - historyLoaded = false; -} - -function loadHistoryHtml() { - var historyHtml = localStorage.getItem('chatHistory'); - const tempDiv = document.createElement('div'); - tempDiv.innerHTML = historyHtml; - if (!historyHtml || tempDiv.innerText.trim() === "") { - historyLoaded = true; - return; // no history, do nothing - } - userLogged = localStorage.getItem('userLogged'); - if (userLogged){ - historyLoaded = true; - return; // logged in, do nothing - } - if (!historyLoaded) { - var fakeHistory = document.createElement('div'); - fakeHistory.classList.add('history-message'); - fakeHistory.innerHTML = tempDiv.innerHTML; - const forViewStyle = document.createElement('style'); - forViewStyle.innerHTML = '.wrapper>.wrap>.history-message>:last-child::after { content: "' + i18n(forView_i18n) + '"!important; }'; - document.head.appendChild(forViewStyle); - chatbotWrap.insertBefore(fakeHistory, chatbotWrap.firstChild); - // var fakeHistory = document.createElement('div'); - // fakeHistory.classList.add('history-message'); - // fakeHistory.innerHTML = historyHtml; - // chatbotWrap.insertBefore(fakeHistory, chatbotWrap.firstChild); - historyLoaded = true; - console.log("History Loaded"); - loadhistorytime += 1; // for debugging - } else { - historyLoaded = false; - } -} - -function clearHistoryHtml() { - localStorage.removeItem("chatHistory"); - historyMessages = chatbotWrap.querySelector('.history-message'); - if (historyMessages) { - chatbotWrap.removeChild(historyMessages); - console.log("History Cleared"); - } -} diff --git a/spaces/dawood/audioldm-text-to-audio-generation/audioldm/clap/training/zero_shot.py b/spaces/dawood/audioldm-text-to-audio-generation/audioldm/clap/training/zero_shot.py deleted file mode 100644 index 28b8fccc1af17fc69002857a7f529ac041c374f2..0000000000000000000000000000000000000000 --- a/spaces/dawood/audioldm-text-to-audio-generation/audioldm/clap/training/zero_shot.py +++ /dev/null @@ -1,95 +0,0 @@ -# NOTE: This script is currently not supported for CLAP. -import logging -from contextlib import suppress - -import torch -import torch.nn.functional as F -from tqdm import tqdm - -from open_clip import tokenize -from .imagenet_zeroshot_data import imagenet_classnames, openai_imagenet_template - - -def zero_shot_classifier(model, classnames, templates, args): - with torch.no_grad(): - zeroshot_weights = [] - for classname in tqdm(classnames): - texts = [template(classname) for template in templates] # format with class - texts = tokenize(texts).to(args.device) # tokenize - if args.distributed and not args.horovod: - class_embeddings = model.module.encode_text(texts) - else: - class_embeddings = model.encode_text(texts) - class_embedding = F.normalize(class_embeddings, dim=-1).mean(dim=0) - class_embedding /= class_embedding.norm() - zeroshot_weights.append(class_embedding) - zeroshot_weights = torch.stack(zeroshot_weights, dim=1).to(args.device) - return zeroshot_weights - - -def accuracy(output, target, topk=(1,)): - pred = output.topk(max(topk), 1, True, True)[1].t() - correct = pred.eq(target.view(1, -1).expand_as(pred)) - return [ - float(correct[:k].reshape(-1).float().sum(0, keepdim=True).cpu().numpy()) - for k in topk - ] - - -def run(model, classifier, dataloader, args): - autocast = torch.cuda.amp.autocast if args.precision == "amp" else suppress - with torch.no_grad(): - top1, top5, n = 0.0, 0.0, 0.0 - for images, target in tqdm(dataloader, unit_scale=args.batch_size): - images = images.to(args.device) - target = target.to(args.device) - - with autocast(): - # predict - if args.distributed and not args.horovod: - image_features = model.module.encode_image(images) - else: - image_features = model.encode_image(images) - image_features = F.normalize(image_features, dim=-1) - logits = 100.0 * image_features @ classifier - - # measure accuracy - acc1, acc5 = accuracy(logits, target, topk=(1, 5)) - top1 += acc1 - top5 += acc5 - n += images.size(0) - - top1 = top1 / n - top5 = top5 / n - return top1, top5 - - -def zero_shot_eval(model, data, epoch, args): - if "imagenet-val" not in data and "imagenet-v2" not in data: - return {} - if args.zeroshot_frequency == 0: - return {} - if (epoch % args.zeroshot_frequency) != 0 and epoch != args.epochs: - return {} - - logging.info("Starting zero-shot imagenet.") - - logging.info("Building zero-shot classifier") - classifier = zero_shot_classifier( - model, imagenet_classnames, openai_imagenet_template, args - ) - - logging.info("Using classifier") - results = {} - if "imagenet-val" in data: - top1, top5 = run(model, classifier, data["imagenet-val"].dataloader, args) - results["imagenet-zeroshot-val-top1"] = top1 - results["imagenet-zeroshot-val-top5"] = top5 - if "imagenet-v2" in data: - top1, top5 = run(model, classifier, data["imagenet-v2"].dataloader, args) - results["imagenetv2-zeroshot-val-top1"] = top1 - results["imagenetv2-zeroshot-val-top5"] = top5 - - logging.info("Finished zero-shot imagenet.") - - return results diff --git a/spaces/dawood17/SayBot_Enchancer/CodeFormer/facelib/detection/yolov5face/utils/__init__.py b/spaces/dawood17/SayBot_Enchancer/CodeFormer/facelib/detection/yolov5face/utils/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/dbredvick/whisper-webui/src/vadParallel.py b/spaces/dbredvick/whisper-webui/src/vadParallel.py deleted file mode 100644 index 55066bbe0bf6cc8ffaf5e4ce5e2723d7e681ff2e..0000000000000000000000000000000000000000 --- a/spaces/dbredvick/whisper-webui/src/vadParallel.py +++ /dev/null @@ -1,172 +0,0 @@ -import multiprocessing -import threading -import time -from src.vad import AbstractTranscription, TranscriptionConfig -from src.whisperContainer import WhisperCallback - -from multiprocessing import Pool - -from typing import List -import os - - -class ParallelContext: - def __init__(self, num_processes: int = None, auto_cleanup_timeout_seconds: float = None): - self.num_processes = num_processes - self.auto_cleanup_timeout_seconds = auto_cleanup_timeout_seconds - self.lock = threading.Lock() - - self.ref_count = 0 - self.pool = None - self.cleanup_timer = None - - def get_pool(self): - # Initialize pool lazily - if (self.pool is None): - context = multiprocessing.get_context('spawn') - self.pool = context.Pool(self.num_processes) - - self.ref_count = self.ref_count + 1 - - if (self.auto_cleanup_timeout_seconds is not None): - self._stop_auto_cleanup() - - return self.pool - - def return_pool(self, pool): - if (self.pool == pool and self.ref_count > 0): - self.ref_count = self.ref_count - 1 - - if (self.ref_count == 0): - if (self.auto_cleanup_timeout_seconds is not None): - self._start_auto_cleanup() - - def _start_auto_cleanup(self): - if (self.cleanup_timer is not None): - self.cleanup_timer.cancel() - self.cleanup_timer = threading.Timer(self.auto_cleanup_timeout_seconds, self._execute_cleanup) - self.cleanup_timer.start() - - print("Started auto cleanup of pool in " + str(self.auto_cleanup_timeout_seconds) + " seconds") - - def _stop_auto_cleanup(self): - if (self.cleanup_timer is not None): - self.cleanup_timer.cancel() - self.cleanup_timer = None - - print("Stopped auto cleanup of pool") - - def _execute_cleanup(self): - print("Executing cleanup of pool") - - if (self.ref_count == 0): - self.close() - - def close(self): - self._stop_auto_cleanup() - - if (self.pool is not None): - print("Closing pool of " + str(self.num_processes) + " processes") - self.pool.close() - self.pool.join() - self.pool = None - -class ParallelTranscriptionConfig(TranscriptionConfig): - def __init__(self, device_id: str, override_timestamps, initial_segment_index, copy: TranscriptionConfig = None): - super().__init__(copy.non_speech_strategy, copy.segment_padding_left, copy.segment_padding_right, copy.max_silent_period, copy.max_merge_size, copy.max_prompt_window, initial_segment_index) - self.device_id = device_id - self.override_timestamps = override_timestamps - -class ParallelTranscription(AbstractTranscription): - def __init__(self, sampling_rate: int = 16000): - super().__init__(sampling_rate=sampling_rate) - - - def transcribe_parallel(self, transcription: AbstractTranscription, audio: str, whisperCallable: WhisperCallback, config: TranscriptionConfig, devices: List[str], parallel_context: ParallelContext = None): - # First, get the timestamps for the original audio - merged = transcription.get_merged_timestamps(audio, config) - - # Split into a list for each device - # TODO: Split by time instead of by number of chunks - merged_split = list(self._split(merged, len(devices))) - - # Parameters that will be passed to the transcribe function - parameters = [] - segment_index = config.initial_segment_index - - for i in range(len(merged_split)): - device_segment_list = list(merged_split[i]) - device_id = devices[i] - - if (len(device_segment_list) <= 0): - continue - - print("Device " + device_id + " (index " + str(i) + ") has " + str(len(device_segment_list)) + " segments") - - # Create a new config with the given device ID - device_config = ParallelTranscriptionConfig(devices[i], device_segment_list, segment_index, config) - segment_index += len(device_segment_list) - - parameters.append([audio, whisperCallable, device_config]); - - merged = { - 'text': '', - 'segments': [], - 'language': None - } - - created_context = False - - # Spawn a separate process for each device - try: - if (parallel_context is None): - parallel_context = ParallelContext(len(devices)) - created_context = True - - # Get a pool of processes - pool = parallel_context.get_pool() - - # Run the transcription in parallel - results = pool.starmap(self.transcribe, parameters) - - for result in results: - # Merge the results - if (result['text'] is not None): - merged['text'] += result['text'] - if (result['segments'] is not None): - merged['segments'].extend(result['segments']) - if (result['language'] is not None): - merged['language'] = result['language'] - - finally: - # Return the pool to the context - if (parallel_context is not None): - parallel_context.return_pool(pool) - # Always close the context if we created it - if (created_context): - parallel_context.close() - - return merged - - def get_transcribe_timestamps(self, audio: str, config: ParallelTranscriptionConfig): - return [] - - def get_merged_timestamps(self, audio: str, config: ParallelTranscriptionConfig): - # Override timestamps that will be processed - if (config.override_timestamps is not None): - print("Using override timestamps of size " + str(len(config.override_timestamps))) - return config.override_timestamps - return super().get_merged_timestamps(audio, config) - - def transcribe(self, audio: str, whisperCallable: WhisperCallback, config: ParallelTranscriptionConfig): - # Override device ID - if (config.device_id is not None): - print("Using device " + config.device_id) - os.environ["CUDA_VISIBLE_DEVICES"] = config.device_id - return super().transcribe(audio, whisperCallable, config) - - def _split(self, a, n): - """Split a list into n approximately equal parts.""" - k, m = divmod(len(a), n) - return (a[i*k+min(i, m):(i+1)*k+min(i+1, m)] for i in range(n)) - diff --git a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/altair/expr/core.py b/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/altair/expr/core.py deleted file mode 100644 index 9cc258c8b723613453d4033c85035e335a537318..0000000000000000000000000000000000000000 --- a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/altair/expr/core.py +++ /dev/null @@ -1,234 +0,0 @@ -from ..utils import SchemaBase - - -class DatumType: - """An object to assist in building Vega-Lite Expressions""" - - def __repr__(self): - return "datum" - - def __getattr__(self, attr): - if attr.startswith("__") and attr.endswith("__"): - raise AttributeError(attr) - return GetAttrExpression("datum", attr) - - def __getitem__(self, attr): - return GetItemExpression("datum", attr) - - def __call__(self, datum, **kwargs): - """Specify a datum for use in an encoding""" - return dict(datum=datum, **kwargs) - - -datum = DatumType() - - -def _js_repr(val): - """Return a javascript-safe string representation of val""" - if val is True: - return "true" - elif val is False: - return "false" - elif val is None: - return "null" - elif isinstance(val, OperatorMixin): - return val._to_expr() - else: - return repr(val) - - -# Designed to work with Expression and VariableParameter -class OperatorMixin: - def _to_expr(self): - return repr(self) - - def _from_expr(self, expr): - return expr - - def __add__(self, other): - comp_value = BinaryExpression("+", self, other) - return self._from_expr(comp_value) - - def __radd__(self, other): - comp_value = BinaryExpression("+", other, self) - return self._from_expr(comp_value) - - def __sub__(self, other): - comp_value = BinaryExpression("-", self, other) - return self._from_expr(comp_value) - - def __rsub__(self, other): - comp_value = BinaryExpression("-", other, self) - return self._from_expr(comp_value) - - def __mul__(self, other): - comp_value = BinaryExpression("*", self, other) - return self._from_expr(comp_value) - - def __rmul__(self, other): - comp_value = BinaryExpression("*", other, self) - return self._from_expr(comp_value) - - def __truediv__(self, other): - comp_value = BinaryExpression("/", self, other) - return self._from_expr(comp_value) - - def __rtruediv__(self, other): - comp_value = BinaryExpression("/", other, self) - return self._from_expr(comp_value) - - __div__ = __truediv__ - - __rdiv__ = __rtruediv__ - - def __mod__(self, other): - comp_value = BinaryExpression("%", self, other) - return self._from_expr(comp_value) - - def __rmod__(self, other): - comp_value = BinaryExpression("%", other, self) - return self._from_expr(comp_value) - - def __pow__(self, other): - # "**" Javascript operator is not supported in all browsers - comp_value = FunctionExpression("pow", (self, other)) - return self._from_expr(comp_value) - - def __rpow__(self, other): - # "**" Javascript operator is not supported in all browsers - comp_value = FunctionExpression("pow", (other, self)) - return self._from_expr(comp_value) - - def __neg__(self): - comp_value = UnaryExpression("-", self) - return self._from_expr(comp_value) - - def __pos__(self): - comp_value = UnaryExpression("+", self) - return self._from_expr(comp_value) - - # comparison operators - - def __eq__(self, other): - comp_value = BinaryExpression("===", self, other) - return self._from_expr(comp_value) - - def __ne__(self, other): - comp_value = BinaryExpression("!==", self, other) - return self._from_expr(comp_value) - - def __gt__(self, other): - comp_value = BinaryExpression(">", self, other) - return self._from_expr(comp_value) - - def __lt__(self, other): - comp_value = BinaryExpression("<", self, other) - return self._from_expr(comp_value) - - def __ge__(self, other): - comp_value = BinaryExpression(">=", self, other) - return self._from_expr(comp_value) - - def __le__(self, other): - comp_value = BinaryExpression("<=", self, other) - return self._from_expr(comp_value) - - def __abs__(self): - comp_value = FunctionExpression("abs", (self,)) - return self._from_expr(comp_value) - - # logical operators - - def __and__(self, other): - comp_value = BinaryExpression("&&", self, other) - return self._from_expr(comp_value) - - def __rand__(self, other): - comp_value = BinaryExpression("&&", other, self) - return self._from_expr(comp_value) - - def __or__(self, other): - comp_value = BinaryExpression("||", self, other) - return self._from_expr(comp_value) - - def __ror__(self, other): - comp_value = BinaryExpression("||", other, self) - return self._from_expr(comp_value) - - def __invert__(self): - comp_value = UnaryExpression("!", self) - return self._from_expr(comp_value) - - -class Expression(OperatorMixin, SchemaBase): - """Expression - - Base object for enabling build-up of Javascript expressions using - a Python syntax. Calling ``repr(obj)`` will return a Javascript - representation of the object and the operations it encodes. - """ - - _schema = {"type": "string"} - - def to_dict(self, *args, **kwargs): - return repr(self) - - def __setattr__(self, attr, val): - # We don't need the setattr magic defined in SchemaBase - return object.__setattr__(self, attr, val) - - # item access - def __getitem__(self, val): - return GetItemExpression(self, val) - - -class UnaryExpression(Expression): - def __init__(self, op, val): - super(UnaryExpression, self).__init__(op=op, val=val) - - def __repr__(self): - return "({op}{val})".format(op=self.op, val=_js_repr(self.val)) - - -class BinaryExpression(Expression): - def __init__(self, op, lhs, rhs): - super(BinaryExpression, self).__init__(op=op, lhs=lhs, rhs=rhs) - - def __repr__(self): - return "({lhs} {op} {rhs})".format( - op=self.op, lhs=_js_repr(self.lhs), rhs=_js_repr(self.rhs) - ) - - -class FunctionExpression(Expression): - def __init__(self, name, args): - super(FunctionExpression, self).__init__(name=name, args=args) - - def __repr__(self): - args = ",".join(_js_repr(arg) for arg in self.args) - return "{name}({args})".format(name=self.name, args=args) - - -class ConstExpression(Expression): - def __init__(self, name, doc): - self.__doc__ = """{}: {}""".format(name, doc) - super(ConstExpression, self).__init__(name=name, doc=doc) - - def __repr__(self): - return str(self.name) - - -class GetAttrExpression(Expression): - def __init__(self, group, name): - super(GetAttrExpression, self).__init__(group=group, name=name) - - def __repr__(self): - return "{}.{}".format(self.group, self.name) - - -class GetItemExpression(Expression): - def __init__(self, group, name): - super(GetItemExpression, self).__init__(group=group, name=name) - - def __repr__(self): - return "{}[{!r}]".format(self.group, self.name) diff --git a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/altair/utils/save.py b/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/altair/utils/save.py deleted file mode 100644 index 90d36f14bc5ebf5cb1e07cb469191ed21e4b3f4b..0000000000000000000000000000000000000000 --- a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/altair/utils/save.py +++ /dev/null @@ -1,176 +0,0 @@ -import json -import pathlib -import warnings - -from .mimebundle import spec_to_mimebundle -from ..vegalite.v5.data import data_transformers - - -def write_file_or_filename(fp, content, mode="w", encoding=None): - """Write content to fp, whether fp is a string, a pathlib Path or a - file-like object""" - if isinstance(fp, str) or isinstance(fp, pathlib.PurePath): - with open(file=fp, mode=mode, encoding=encoding) as f: - f.write(content) - else: - fp.write(content) - - -def set_inspect_format_argument(format, fp, inline): - """Inspect the format argument in the save function""" - if format is None: - if isinstance(fp, str): - format = fp.split(".")[-1] - elif isinstance(fp, pathlib.PurePath): - format = fp.suffix.lstrip(".") - else: - raise ValueError( - "must specify file format: " - "['png', 'svg', 'pdf', 'html', 'json', 'vega']" - ) - - if format != "html" and inline: - warnings.warn("inline argument ignored for non HTML formats.", stacklevel=1) - - return format - - -def set_inspect_mode_argument(mode, embed_options, spec, vegalite_version): - """Inspect the mode argument in the save function""" - if mode is None: - if "mode" in embed_options: - mode = embed_options["mode"] - elif "$schema" in spec: - mode = spec["$schema"].split("/")[-2] - else: - mode = "vega-lite" - - if mode != "vega-lite": - raise ValueError("mode must be 'vega-lite', " "not '{}'".format(mode)) - - if mode == "vega-lite" and vegalite_version is None: - raise ValueError("must specify vega-lite version") - - return mode - - -def save( - chart, - fp, - vega_version, - vegaembed_version, - format=None, - mode=None, - vegalite_version=None, - embed_options=None, - json_kwds=None, - webdriver=None, - scale_factor=1, - engine=None, - inline=False, - **kwargs, -): - """Save a chart to file in a variety of formats - - Supported formats are [json, html, png, svg, pdf] - - Parameters - ---------- - chart : alt.Chart - the chart instance to save - fp : string filename, pathlib.Path or file-like object - file to which to write the chart. - format : string (optional) - the format to write: one of ['json', 'html', 'png', 'svg', 'pdf']. - If not specified, the format will be determined from the filename. - mode : string (optional) - Must be 'vega-lite'. If not specified, then infer the mode from - the '$schema' property of the spec, or the ``opt`` dictionary. - If it's not specified in either of those places, then use 'vega-lite'. - vega_version : string (optional) - For html output, the version of vega.js to use - vegalite_version : string (optional) - For html output, the version of vegalite.js to use - vegaembed_version : string (optional) - For html output, the version of vegaembed.js to use - embed_options : dict (optional) - The vegaEmbed options dictionary. Default is {} - (See https://github.com/vega/vega-embed for details) - json_kwds : dict (optional) - Additional keyword arguments are passed to the output method - associated with the specified format. - webdriver : string {'chrome' | 'firefox'} (optional) - Webdriver to use for png or svg output - scale_factor : float (optional) - scale_factor to use to change size/resolution of png or svg output - engine: string {'vl-convert', 'altair_saver'} - the conversion engine to use for 'png', 'svg', and 'pdf' formats - inline: bool (optional) - If False (default), the required JavaScript libraries are loaded - from a CDN location in the resulting html file. - If True, the required JavaScript libraries are inlined into the resulting - html file so that it will work without an internet connection. - The altair_viewer package is required if True. - **kwargs : - additional kwargs passed to spec_to_mimebundle. - """ - if json_kwds is None: - json_kwds = {} - - if embed_options is None: - embed_options = {} - - format = set_inspect_format_argument(format, fp, inline) - - # Temporarily turn off any data transformers so that all data is inlined - # when calling chart.to_dict. This is relevant for vl-convert which cannot access - # local json files which could be created by a json data transformer. Furthermore, - # we don't exit the with statement until this function completed due to the issue - # described at https://github.com/vega/vl-convert/issues/31 - with data_transformers.enable("default"), data_transformers.disable_max_rows(): - spec = chart.to_dict() - - mode = set_inspect_mode_argument(mode, embed_options, spec, vegalite_version) - - if format == "json": - json_spec = json.dumps(spec, **json_kwds) - write_file_or_filename(fp, json_spec, mode="w") - elif format == "html": - if inline: - kwargs["template"] = "inline" - mimebundle = spec_to_mimebundle( - spec=spec, - format=format, - mode=mode, - vega_version=vega_version, - vegalite_version=vegalite_version, - vegaembed_version=vegaembed_version, - embed_options=embed_options, - json_kwds=json_kwds, - **kwargs, - ) - write_file_or_filename(fp, mimebundle["text/html"], mode="w") - elif format in ["png", "svg", "pdf", "vega"]: - mimebundle = spec_to_mimebundle( - spec=spec, - format=format, - mode=mode, - vega_version=vega_version, - vegalite_version=vegalite_version, - vegaembed_version=vegaembed_version, - webdriver=webdriver, - scale_factor=scale_factor, - engine=engine, - **kwargs, - ) - if format == "png": - write_file_or_filename(fp, mimebundle["image/png"], mode="wb") - elif format == "pdf": - write_file_or_filename(fp, mimebundle["application/pdf"], mode="wb") - else: - encoding = kwargs.get("encoding", "utf-8") - write_file_or_filename( - fp, mimebundle["image/svg+xml"], mode="w", encoding=encoding - ) - else: - raise ValueError("Unsupported format: '{}'".format(format)) diff --git a/spaces/declare-lab/tango/audioldm/audio/tools.py b/spaces/declare-lab/tango/audioldm/audio/tools.py deleted file mode 100644 index d641a982664b6673822c8528a1929c593f011b11..0000000000000000000000000000000000000000 --- a/spaces/declare-lab/tango/audioldm/audio/tools.py +++ /dev/null @@ -1,85 +0,0 @@ -import torch -import numpy as np -import torchaudio - - -def get_mel_from_wav(audio, _stft): - audio = torch.clip(torch.FloatTensor(audio).unsqueeze(0), -1, 1) - audio = torch.autograd.Variable(audio, requires_grad=False) - melspec, log_magnitudes_stft, energy = _stft.mel_spectrogram(audio) - melspec = torch.squeeze(melspec, 0).numpy().astype(np.float32) - log_magnitudes_stft = ( - torch.squeeze(log_magnitudes_stft, 0).numpy().astype(np.float32) - ) - energy = torch.squeeze(energy, 0).numpy().astype(np.float32) - return melspec, log_magnitudes_stft, energy - - -def _pad_spec(fbank, target_length=1024): - n_frames = fbank.shape[0] - p = target_length - n_frames - # cut and pad - if p > 0: - m = torch.nn.ZeroPad2d((0, 0, 0, p)) - fbank = m(fbank) - elif p < 0: - fbank = fbank[0:target_length, :] - - if fbank.size(-1) % 2 != 0: - fbank = fbank[..., :-1] - - return fbank - - -def pad_wav(waveform, segment_length): - waveform_length = waveform.shape[-1] - assert waveform_length > 100, "Waveform is too short, %s" % waveform_length - if segment_length is None or waveform_length == segment_length: - return waveform - elif waveform_length > segment_length: - return waveform[:segment_length] - elif waveform_length < segment_length: - temp_wav = np.zeros((1, segment_length)) - temp_wav[:, :waveform_length] = waveform - return temp_wav - -def normalize_wav(waveform): - waveform = waveform - np.mean(waveform) - waveform = waveform / (np.max(np.abs(waveform)) + 1e-8) - return waveform * 0.5 - - -def read_wav_file(filename, segment_length): - # waveform, sr = librosa.load(filename, sr=None, mono=True) # 4 times slower - waveform, sr = torchaudio.load(filename) # Faster!!! - waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000) - waveform = waveform.numpy()[0, ...] - waveform = normalize_wav(waveform) - waveform = waveform[None, ...] - waveform = pad_wav(waveform, segment_length) - - waveform = waveform / np.max(np.abs(waveform)) - waveform = 0.5 * waveform - - return waveform - - -def wav_to_fbank(filename, target_length=1024, fn_STFT=None): - assert fn_STFT is not None - - # mixup - waveform = read_wav_file(filename, target_length * 160) # hop size is 160 - - waveform = waveform[0, ...] - waveform = torch.FloatTensor(waveform) - - fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT) - - fbank = torch.FloatTensor(fbank.T) - log_magnitudes_stft = torch.FloatTensor(log_magnitudes_stft.T) - - fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec( - log_magnitudes_stft, target_length - ) - - return fbank, log_magnitudes_stft, waveform diff --git a/spaces/deepkyu/multilingual-font-style-transfer/app.sh b/spaces/deepkyu/multilingual-font-style-transfer/app.sh deleted file mode 100644 index a1bf5d3f16a2a2240293ca4650d099d8f4053256..0000000000000000000000000000000000000000 --- a/spaces/deepkyu/multilingual-font-style-transfer/app.sh +++ /dev/null @@ -1,3 +0,0 @@ -export MODEL_CHECKPOINT_PATH=https://www.dropbox.com/scl/fi/zzkqe07g8gs5j21fmxsep/epoch-269-step-347490.ckpt?rlkey=goejowz4axcq5f5xxm69gadv6 && \ -export NOTO_SANS_ZIP_PATH=https://www.dropbox.com/scl/fi/f7iclf71sh2luhpkbutjh/NotoSans.zip?rlkey=rr026nl5sj7i8xjp65s9377ni && \ -python app.py \ No newline at end of file diff --git a/spaces/deepwisdom/MetaGPT/metagpt/prompts/structure_goal.py b/spaces/deepwisdom/MetaGPT/metagpt/prompts/structure_goal.py deleted file mode 100644 index e4b1a3beee0c1207acbbb097405c7398c51e484b..0000000000000000000000000000000000000000 --- a/spaces/deepwisdom/MetaGPT/metagpt/prompts/structure_goal.py +++ /dev/null @@ -1,46 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- -""" -@Time : 2023/5/30 09:51 -@Author : alexanderwu -@File : structure_goal.py -""" - -GOAL_SYSTEM = """SYSTEM: -You are an assistant for the game Minecraft. -I will give you some target object and some knowledge related to the object. Please write the obtaining of the object as a goal in the standard form. -The standard form of the goal is as follows: -{ -"object": "the name of the target object", -"count": "the target quantity", -"material": "the materials required for this goal, a dictionary in the form {material_name: material_quantity}. If no material is required, set it to None", -"tool": "the tool used for this goal. If multiple tools can be used for this goal, only write the most basic one. If no tool is required, set it to None", -"info": "the knowledge related to this goal" -} -The information I will give you: -Target object: the name and the quantity of the target object -Knowledge: some knowledge related to the object. -Requirements: -1. You must generate the goal based on the provided knowledge instead of purely depending on your own knowledge. -2. The "info" should be as compact as possible, at most 3 sentences. The knowledge I give you may be raw texts from Wiki documents. Please extract and summarize important information instead of directly copying all the texts. -Goal Example: -{ -"object": "iron_ore", -"count": 1, -"material": None, -"tool": "stone_pickaxe", -"info": "iron ore is obtained by mining iron ore. iron ore is most found in level 53. iron ore can only be mined with a stone pickaxe or better; using a wooden or gold pickaxe will yield nothing." -} -{ -"object": "wooden_pickaxe", -"count": 1, -"material": {"planks": 3, "stick": 2}, -"tool": "crafting_table", -"info": "wooden pickaxe can be crafted with 3 planks and 2 stick as the material and crafting table as the tool." -} -""" - -GOAL_USER = """USER: -Target object: {object quantity} {object name} -Knowledge: {related knowledge} -""" diff --git a/spaces/diacanFperku/AutoGPT/Danfoss Mct 10 Crack [NEW].md b/spaces/diacanFperku/AutoGPT/Danfoss Mct 10 Crack [NEW].md deleted file mode 100644 index 37a6e950f5d58aa44a969b05f357aa96b246478e..0000000000000000000000000000000000000000 --- a/spaces/diacanFperku/AutoGPT/Danfoss Mct 10 Crack [NEW].md +++ /dev/null @@ -1,10 +0,0 @@ -

    Danfoss Mct 10 Crack


    Download Ziphttps://gohhs.com/2uFUcn



    -
    -... VLT® Software Customizer: download VLT® MCT 10 4.00 (or higher), don't forget to uninstall the old one... Free download.Download video editor in Russian for free for Windows, Mac or ... -Download Adobe Premiere Pro CC in Russian for free with a key ... -Adobe Premiere Pro CC for Windows 7, 8, 10, 64 bit - free torrent download ... -Download free torrent client uTorrent in Russian for Windows. -Download a torrent program that allows you to download any torrent file ... 8a78ff9644
    -
    -
    -

    diff --git a/spaces/diacanFperku/AutoGPT/Jcreator Full Version Free Download Cracked Software REPACK.md b/spaces/diacanFperku/AutoGPT/Jcreator Full Version Free Download Cracked Software REPACK.md deleted file mode 100644 index adf3800558e5361f7a0948dada1c49322723d885..0000000000000000000000000000000000000000 --- a/spaces/diacanFperku/AutoGPT/Jcreator Full Version Free Download Cracked Software REPACK.md +++ /dev/null @@ -1,6 +0,0 @@ -

    Jcreator Full Version Free Download Cracked Software


    DOWNLOADhttps://gohhs.com/2uFV60



    - -JCreator by Xinox Software is a freemium IDE (integrated development environment) for creating Java applications. Even if there is no version of JCreator for ... 1fdad05405
    -
    -
    -

    diff --git a/spaces/diacanFperku/AutoGPT/OPTIPLANNING.md b/spaces/diacanFperku/AutoGPT/OPTIPLANNING.md deleted file mode 100644 index 9cccb5a89a5f6a0f2b4e587af1c551f7c5ca2f55..0000000000000000000000000000000000000000 --- a/spaces/diacanFperku/AutoGPT/OPTIPLANNING.md +++ /dev/null @@ -1,6 +0,0 @@ -
    -

    SELCO OPTIPLANNING. OptiPlanning изъятие от. OptiPlanning for Cut Optimization. By Oxana Petrova. 1, Copyright Author. Aug 3, 2010. I used OptiPlanning with the SELCO workpiece feeding series PW60 and PW70 (but I think they all work the same way). The process always goes like this: the operator places the material in the hold tray, if he opens the hold tray, it.

    -

    OPTIPLANNING


    DOWNLOAD > https://gohhs.com/2uFU2Y



    -

    SELCO Optiplanning. Optimizing cutting operations. OptiPlanning for the PW60/PW70. By Gil Meli. A clearer way of thinking has become an integral part of our daily lives and it has started to permeate the economy. The introduction of computers and. Cut Optimization Is A Step Towards Lean Manufacturing. "The world's leading edge companies are putting Lean manufacturing to use in the US. Optiplanning for OptiPlanning. By Thomas G. Gilson. 6. %. Jul 31, 2015. Two years ago, I wrote an article about this product, OptiPlanning, one of the most important initiatives of SELCO machines. Optiplanning for optimising. By Michael Richter. It is one of those completely a-typical SELCO ideas that has lots of potential, but also some very real problems. Optiplanning is an application that optimises. OptiPlanning Optimizing Cutting. If you are looking for an application that optimizes cutting operations, use OptiPlanning. OptiPlanning for optimising. By Christopher J. Nowak. 1. Verbs, buying advices, HTML-generator and much more. SELCO OptiPlanning 1.1.0.60. Free download. SELCO OptiPlanning - Optimizing Cutting Operations. OptiPlanning is a software program that enables the optimization of cutting operations. This program is ideal for optimizing the cutting process. OptiPlanning and Multi-Level Programming (MLP). By. I used OptiPlanning with the SELCO workpiece feeding series PW60 and PW70 (but I think they all work the same way). The process always goes like this: the operator places the material in the hold tray, if he opens the hold tray, it will be entered into the Control System. Optiplanning for optimising. By. OptiPlanning for optimising. By. I used OptiPlanning with the SELCO workpiece feeding series PW60 and PW70 (but I think they all work the same way). The process always goes like this: the operator places the material in the hold tray, if he opens the hold tray, it will be entered into the Control System. OptiPlanning for optimising. By. OptiPlanning for optimising cutting operations. Optimizing an operation so that it is more cost effective is not a new concept. OptiPlanning. Optimizing a cutting operation is an important area of. Optimizing a cutting operation is an important area of optimization. OptiPlanning. The largest online shopping destination for sewing machines and. The following is an excerpt from an e-mail that I sent today to Robert, one of the operators. OptiPlanning. The largest online shopping destination for sewing machines and. Selco OptiPlanning Download;. SELCO Optiplanning. Selco Optiplanning. SELCO Optiplanning.

    899543212b
    -
    -
    \ No newline at end of file diff --git a/spaces/diacanFperku/AutoGPT/Phim Sex Online Lau Xanh ((FULL)).md b/spaces/diacanFperku/AutoGPT/Phim Sex Online Lau Xanh ((FULL)).md deleted file mode 100644 index 3272f5bbf81e96286e05561617368b3b95dbf527..0000000000000000000000000000000000000000 --- a/spaces/diacanFperku/AutoGPT/Phim Sex Online Lau Xanh ((FULL)).md +++ /dev/null @@ -1,6 +0,0 @@ -

    phim sex online lau xanh


    Download Ziphttps://gohhs.com/2uFU6j



    -
    -LauXanh.Us is the best website for gái gọi, sex viet, phim sex, phim sex online, free phim, phim sex link nhanh, phim nguoi lon, phim cap 4, fuck nhau porn. 4d29de3e1b
    -
    -
    -

    diff --git a/spaces/diagaiwei/ir_chinese_medqa/colbert/indexing/collection_indexer.py b/spaces/diagaiwei/ir_chinese_medqa/colbert/indexing/collection_indexer.py deleted file mode 100644 index 50102f6042fd499f2819375190d747d67e3b7258..0000000000000000000000000000000000000000 --- a/spaces/diagaiwei/ir_chinese_medqa/colbert/indexing/collection_indexer.py +++ /dev/null @@ -1,472 +0,0 @@ -import os -import tqdm -import time -import ujson -import torch -import random -try: - import faiss -except ImportError as e: - print("WARNING: faiss must be imported for indexing") - -import numpy as np -import torch.multiprocessing as mp -from colbert.infra.config.config import ColBERTConfig - -import colbert.utils.distributed as distributed - -from colbert.infra.run import Run -from colbert.infra.launcher import print_memory_stats -from colbert.modeling.checkpoint import Checkpoint -from colbert.data.collection import Collection - -from colbert.indexing.collection_encoder import CollectionEncoder -from colbert.indexing.index_saver import IndexSaver -from colbert.indexing.utils import optimize_ivf -from colbert.utils.utils import flatten, print_message - -from colbert.indexing.codecs.residual import ResidualCodec - - -def encode(config, collection, shared_lists, shared_queues): - encoder = CollectionIndexer(config=config, collection=collection) - encoder.run(shared_lists) - - -class CollectionIndexer(): - def __init__(self, config: ColBERTConfig, collection): - self.config = config - self.rank, self.nranks = self.config.rank, self.config.nranks - - self.use_gpu = self.config.total_visible_gpus > 0 - - if self.config.rank == 0: - self.config.help() - - self.collection = Collection.cast(collection) - self.checkpoint = Checkpoint(self.config.checkpoint, colbert_config=self.config) - if self.use_gpu: - self.checkpoint = self.checkpoint.cuda() - - self.encoder = CollectionEncoder(config, self.checkpoint) - self.saver = IndexSaver(config) - - print_memory_stats(f'RANK:{self.rank}') - - def run(self, shared_lists): - with torch.inference_mode(): - self.setup() - distributed.barrier(self.rank) - print_memory_stats(f'RANK:{self.rank}') - - if not self.config.resume or not self.saver.try_load_codec(): - self.train(shared_lists) - distributed.barrier(self.rank) - print_memory_stats(f'RANK:{self.rank}') - - self.index() - distributed.barrier(self.rank) - print_memory_stats(f'RANK:{self.rank}') - - self.finalize() - distributed.barrier(self.rank) - print_memory_stats(f'RANK:{self.rank}') - - def setup(self): - if self.config.resume: - if self._try_load_plan(): - Run().print_main(f"#> Loaded plan from {self.plan_path}:") - Run().print_main(f"#> num_chunks = {self.num_chunks}") - Run().print_main(f"#> num_partitions = {self.num_chunks}") - Run().print_main(f"#> num_embeddings_est = {self.num_embeddings_est}") - Run().print_main(f"#> avg_doclen_est = {self.avg_doclen_est}") - return - - self.num_chunks = int(np.ceil(len(self.collection) / self.collection.get_chunksize())) - - sampled_pids = self._sample_pids() - avg_doclen_est = self._sample_embeddings(sampled_pids) - - # Select the number of partitions - num_passages = len(self.collection) - self.num_embeddings_est = num_passages * avg_doclen_est - self.num_partitions = int(2 ** np.floor(np.log2(16 * np.sqrt(self.num_embeddings_est)))) - - Run().print_main(f'Creaing {self.num_partitions:,} partitions.') - Run().print_main(f'*Estimated* {int(self.num_embeddings_est):,} embeddings.') - - self._save_plan() - - def _sample_pids(self): - num_passages = len(self.collection) - - # Simple alternative: < 100k: 100%, < 1M: 15%, < 10M: 7%, < 100M: 3%, > 100M: 1% - # Keep in mind that, say, 15% still means at least 100k. - # So the formula is max(100% * min(total, 100k), 15% * min(total, 1M), ...) - # Then we subsample the vectors to 100 * num_partitions - - typical_doclen = 120 # let's keep sampling independent of the actual doc_maxlen - sampled_pids = 16 * np.sqrt(typical_doclen * num_passages) - # sampled_pids = int(2 ** np.floor(np.log2(1 + sampled_pids))) - sampled_pids = min(1 + int(sampled_pids), num_passages) - - sampled_pids = random.sample(range(num_passages), sampled_pids) - Run().print_main(f"# of sampled PIDs = {len(sampled_pids)} \t sampled_pids[:3] = {sampled_pids[:3]}") - - return set(sampled_pids) - - def _sample_embeddings(self, sampled_pids): - local_pids = self.collection.enumerate(rank=self.rank) - local_sample = [passage for pid, passage in local_pids if pid in sampled_pids] - - local_sample_embs, doclens = self.encoder.encode_passages(local_sample) - - if torch.cuda.is_available(): - self.num_sample_embs = torch.tensor([local_sample_embs.size(0)]).cuda() - torch.distributed.all_reduce(self.num_sample_embs) - - avg_doclen_est = sum(doclens) / len(doclens) if doclens else 0 - avg_doclen_est = torch.tensor([avg_doclen_est]).cuda() - torch.distributed.all_reduce(avg_doclen_est) - - nonzero_ranks = torch.tensor([float(len(local_sample) > 0)]).cuda() - torch.distributed.all_reduce(nonzero_ranks) - else: - if torch.distributed.is_initialized(): - self.num_sample_embs = torch.tensor([local_sample_embs.size(0)]).cpu() - torch.distributed.all_reduce(self.num_sample_embs) - - avg_doclen_est = sum(doclens) / len(doclens) if doclens else 0 - avg_doclen_est = torch.tensor([avg_doclen_est]).cpu() - torch.distributed.all_reduce(avg_doclen_est) - - nonzero_ranks = torch.tensor([float(len(local_sample) > 0)]).cpu() - torch.distributed.all_reduce(nonzero_ranks) - else: - self.num_sample_embs = torch.tensor([local_sample_embs.size(0)]).cpu() - - avg_doclen_est = sum(doclens) / len(doclens) if doclens else 0 - avg_doclen_est = torch.tensor([avg_doclen_est]).cpu() - - nonzero_ranks = torch.tensor([float(len(local_sample) > 0)]).cpu() - - avg_doclen_est = avg_doclen_est.item() / nonzero_ranks.item() - self.avg_doclen_est = avg_doclen_est - - Run().print(f'avg_doclen_est = {avg_doclen_est} \t len(local_sample) = {len(local_sample):,}') - - torch.save(local_sample_embs.half(), os.path.join(self.config.index_path_, f'sample.{self.rank}.pt')) - - return avg_doclen_est - - def _try_load_plan(self): - config = self.config - self.plan_path = os.path.join(config.index_path_, 'plan.json') - if os.path.exists(self.plan_path): - with open(self.plan_path, 'r') as f: - try: - plan = ujson.load(f) - except Exception as e: - return False - if not ('num_chunks' in plan and - 'num_partitions' in plan and - 'num_embeddings_est' in plan and - 'avg_doclen_est' in plan): - return False - - # TODO: Verify config matches - self.num_chunks = plan['num_chunks'] - self.num_partitions = plan['num_partitions'] - self.num_embeddings_est = plan['num_embeddings_est'] - self.avg_doclen_est = plan['avg_doclen_est'] - - return True - else: - return False - - def _save_plan(self): - if self.rank < 1: - config = self.config - self.plan_path = os.path.join(config.index_path_, 'plan.json') - Run().print("#> Saving the indexing plan to", self.plan_path, "..") - - with open(self.plan_path, 'w') as f: - d = {'config': config.export()} - d['num_chunks'] = self.num_chunks - d['num_partitions'] = self.num_partitions - d['num_embeddings_est'] = self.num_embeddings_est - d['avg_doclen_est'] = self.avg_doclen_est - - f.write(ujson.dumps(d, indent=4) + '\n') - - - def train(self, shared_lists): - if self.rank > 0: - return - - sample, heldout = self._concatenate_and_split_sample() - - centroids = self._train_kmeans(sample, shared_lists) - - print_memory_stats(f'RANK:{self.rank}') - del sample - - bucket_cutoffs, bucket_weights, avg_residual = self._compute_avg_residual(centroids, heldout) - - print_message(f'avg_residual = {avg_residual}') - - codec = ResidualCodec(config=self.config, centroids=centroids, avg_residual=avg_residual, - bucket_cutoffs=bucket_cutoffs, bucket_weights=bucket_weights) - self.saver.save_codec(codec) - - def _concatenate_and_split_sample(self): - print_memory_stats(f'***1*** \t RANK:{self.rank}') - - # TODO: Allocate a float16 array. Load the samples from disk, copy to array. - sample = torch.empty(self.num_sample_embs, self.config.dim, dtype=torch.float16) - - offset = 0 - for r in range(self.nranks): - sub_sample_path = os.path.join(self.config.index_path_, f'sample.{r}.pt') - sub_sample = torch.load(sub_sample_path) - os.remove(sub_sample_path) - - endpos = offset + sub_sample.size(0) - sample[offset:endpos] = sub_sample - offset = endpos - - assert endpos == sample.size(0), (endpos, sample.size()) - - print_memory_stats(f'***2*** \t RANK:{self.rank}') - - # Shuffle and split out a 5% "heldout" sub-sample [up to 50k elements] - sample = sample[torch.randperm(sample.size(0))] - - print_memory_stats(f'***3*** \t RANK:{self.rank}') - - heldout_fraction = 0.05 - heldout_size = int(min(heldout_fraction * sample.size(0), 50_000)) - sample, sample_heldout = sample.split([sample.size(0) - heldout_size, heldout_size], dim=0) - - print_memory_stats(f'***4*** \t RANK:{self.rank}') - - return sample, sample_heldout - - def _train_kmeans(self, sample, shared_lists): - if self.use_gpu: - torch.cuda.empty_cache() - - do_fork_for_faiss = False # set to True to free faiss GPU-0 memory at the cost of one more copy of `sample`. - - args_ = [self.config.dim, self.num_partitions, self.config.kmeans_niters] - - if do_fork_for_faiss: - # For this to work reliably, write the sample to disk. Pickle may not handle >4GB of data. - # Delete the sample file after work is done. - - shared_lists[0][0] = sample - return_value_queue = mp.Queue() - - args_ = args_ + [shared_lists, return_value_queue] - proc = mp.Process(target=compute_faiss_kmeans, args=args_) - - proc.start() - centroids = return_value_queue.get() - proc.join() - - else: - args_ = args_ + [[[sample]]] - centroids = compute_faiss_kmeans(*args_) - - centroids = torch.nn.functional.normalize(centroids, dim=-1) - if self.use_gpu: - centroids = centroids.half() - else: - centroids = centroids.float() - - return centroids - - def _compute_avg_residual(self, centroids, heldout): - compressor = ResidualCodec(config=self.config, centroids=centroids, avg_residual=None) - - heldout_reconstruct = compressor.compress_into_codes(heldout, out_device='cuda' if self.use_gpu else 'cpu') - heldout_reconstruct = compressor.lookup_centroids(heldout_reconstruct, out_device='cuda' if self.use_gpu else 'cpu') - if self.use_gpu: - heldout_avg_residual = heldout.cuda() - heldout_reconstruct - else: - heldout_avg_residual = heldout - heldout_reconstruct - - avg_residual = torch.abs(heldout_avg_residual).mean(dim=0).cpu() - print([round(x, 3) for x in avg_residual.squeeze().tolist()]) - - num_options = 2 ** self.config.nbits - quantiles = torch.arange(0, num_options, device=heldout_avg_residual.device) * (1 / num_options) - bucket_cutoffs_quantiles, bucket_weights_quantiles = quantiles[1:], quantiles + (0.5 / num_options) - - bucket_cutoffs = heldout_avg_residual.float().quantile(bucket_cutoffs_quantiles) - bucket_weights = heldout_avg_residual.float().quantile(bucket_weights_quantiles) - - print_message( - f"#> Got bucket_cutoffs_quantiles = {bucket_cutoffs_quantiles} and bucket_weights_quantiles = {bucket_weights_quantiles}") - print_message(f"#> Got bucket_cutoffs = {bucket_cutoffs} and bucket_weights = {bucket_weights}") - - return bucket_cutoffs, bucket_weights, avg_residual.mean() - - # EVENTAULLY: Compare the above with non-heldout sample. If too different, we can do better! - # sample = sample[subsample_idxs] - # sample_reconstruct = get_centroids_for(centroids, sample) - # sample_avg_residual = (sample - sample_reconstruct).mean(dim=0) - - def index(self): - with self.saver.thread(): - batches = self.collection.enumerate_batches(rank=self.rank) - for chunk_idx, offset, passages in tqdm.tqdm(batches, disable=self.rank > 0): - if self.config.resume and self.saver.check_chunk_exists(chunk_idx): - Run().print_main(f"#> Found chunk {chunk_idx} in the index already, skipping encoding...") - continue - embs, doclens = self.encoder.encode_passages(passages) - if self.use_gpu: - assert embs.dtype == torch.float16 - else: - assert embs.dtype == torch.float32 - embs = embs.half() - - Run().print_main(f"#> Saving chunk {chunk_idx}: \t {len(passages):,} passages " - f"and {embs.size(0):,} embeddings. From #{offset:,} onward.") - - self.saver.save_chunk(chunk_idx, offset, embs, doclens) - del embs, doclens - - def finalize(self): - if self.rank > 0: - return - - self._check_all_files_are_saved() - self._collect_embedding_id_offset() - - self._build_ivf() - self._update_metadata() - - def _check_all_files_are_saved(self): - Run().print_main("#> Checking all files were saved...") - success = True - for chunk_idx in range(self.num_chunks): - if not self.saver.check_chunk_exists(chunk_idx): - success = False - Run().print_main(f"#> ERROR: Could not find chunk {chunk_idx}!") - #TODO: Fail here? - if success: - Run().print_main("Found all files!") - - def _collect_embedding_id_offset(self): - passage_offset = 0 - embedding_offset = 0 - - self.embedding_offsets = [] - - for chunk_idx in range(self.num_chunks): - metadata_path = os.path.join(self.config.index_path_, f'{chunk_idx}.metadata.json') - - with open(metadata_path) as f: - chunk_metadata = ujson.load(f) - - chunk_metadata['embedding_offset'] = embedding_offset - self.embedding_offsets.append(embedding_offset) - - assert chunk_metadata['passage_offset'] == passage_offset, (chunk_idx, passage_offset, chunk_metadata) - - passage_offset += chunk_metadata['num_passages'] - embedding_offset += chunk_metadata['num_embeddings'] - - with open(metadata_path, 'w') as f: - f.write(ujson.dumps(chunk_metadata, indent=4) + '\n') - - self.num_embeddings = embedding_offset - assert len(self.embedding_offsets) == self.num_chunks - - def _build_ivf(self): - # Maybe we should several small IVFs? Every 250M embeddings, so that's every 1 GB. - # It would save *memory* here and *disk space* regarding the int64. - # But we'd have to decide how many IVFs to use during retrieval: many (loop) or one? - # A loop seems nice if we can find a size that's large enough for speed yet small enough to fit on GPU! - # Then it would help nicely for batching later: 1GB. - - Run().print_main("#> Building IVF...") - - codes = torch.empty(self.num_embeddings,) - print_memory_stats(f'RANK:{self.rank}') - - Run().print_main("#> Loading codes...") - - for chunk_idx in tqdm.tqdm(range(self.num_chunks)): - offset = self.embedding_offsets[chunk_idx] - chunk_codes = ResidualCodec.Embeddings.load_codes(self.config.index_path_, chunk_idx) - - codes[offset:offset+chunk_codes.size(0)] = chunk_codes - - assert offset+chunk_codes.size(0) == codes.size(0), (offset, chunk_codes.size(0), codes.size()) - - - Run().print_main(f"Sorting codes...") - - print_memory_stats(f'RANK:{self.rank}') - - codes = codes.sort() - ivf, values = codes.indices, codes.values - - print_memory_stats(f'RANK:{self.rank}') - - Run().print_main(f"Getting unique codes...") - - partitions, ivf_lengths = values.unique_consecutive(return_counts=True) - - # All partitions should be non-empty. (We can use torch.histc otherwise.) - assert partitions.size(0) == self.num_partitions, (partitions.size(), self.num_partitions) - - print_memory_stats(f'RANK:{self.rank}') - - _, _ = optimize_ivf(ivf, ivf_lengths, self.config.index_path_) - - def _update_metadata(self): - config = self.config - self.metadata_path = os.path.join(config.index_path_, 'metadata.json') - Run().print("#> Saving the indexing metadata to", self.metadata_path, "..") - - with open(self.metadata_path, 'w') as f: - d = {'config': config.export()} - d['num_chunks'] = self.num_chunks - d['num_partitions'] = self.num_partitions - d['num_embeddings'] = self.num_embeddings - d['avg_doclen'] = self.num_embeddings / len(self.collection) - - f.write(ujson.dumps(d, indent=4) + '\n') - - -def compute_faiss_kmeans(dim, num_partitions, kmeans_niters, shared_lists, return_value_queue=None): - use_gpu = torch.cuda.is_available() - kmeans = faiss.Kmeans(dim, num_partitions, niter=kmeans_niters, gpu=use_gpu, verbose=True, seed=123) - - sample = shared_lists[0][0] - sample = sample.float().numpy() - - kmeans.train(sample) - - centroids = torch.from_numpy(kmeans.centroids) - - print_memory_stats(f'RANK:0*') - - if return_value_queue is not None: - return_value_queue.put(centroids) - - return centroids - - -""" -TODOs: - -1. Notice we're using self.config.bsize. - -2. Consider saving/using heldout_avg_residual as a vector --- that is, using 128 averages! - -3. Consider the operations with .cuda() tensors. Are all of them good for OOM? -""" diff --git a/spaces/digitalxingtong/Un-Bert-Vits2/app.py b/spaces/digitalxingtong/Un-Bert-Vits2/app.py deleted file mode 100644 index 8bff81e53152543fce275291e896a42370f1eb62..0000000000000000000000000000000000000000 --- a/spaces/digitalxingtong/Un-Bert-Vits2/app.py +++ /dev/null @@ -1,183 +0,0 @@ -import sys, os - -if sys.platform == "darwin": - os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" - -import logging - -logging.getLogger("numba").setLevel(logging.WARNING) -logging.getLogger("markdown_it").setLevel(logging.WARNING) -logging.getLogger("urllib3").setLevel(logging.WARNING) -logging.getLogger("matplotlib").setLevel(logging.WARNING) - -logging.basicConfig(level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s") - -logger = logging.getLogger(__name__) - -import torch -import argparse -import commons -import utils -from models import SynthesizerTrn -from text.symbols import symbols -from text import cleaned_text_to_sequence, get_bert -from text.cleaner import clean_text -import gradio as gr -import webbrowser - - -net_g = None - - -def get_text(text, language_str, hps): - norm_text, phone, tone, word2ph = clean_text(text, language_str) - phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) - - if hps.data.add_blank: - phone = commons.intersperse(phone, 0) - tone = commons.intersperse(tone, 0) - language = commons.intersperse(language, 0) - for i in range(len(word2ph)): - word2ph[i] = word2ph[i] * 2 - word2ph[0] += 1 - bert = get_bert(norm_text, word2ph, language_str) - del word2ph - - assert bert.shape[-1] == len(phone) - - phone = torch.LongTensor(phone) - tone = torch.LongTensor(tone) - language = torch.LongTensor(language) - - return bert, phone, tone, language -import soundfile as sf -def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid): - global net_g - bert, phones, tones, lang_ids = get_text(text, "ZH", hps) - with torch.no_grad(): - x_tst=phones.to(device).unsqueeze(0) - tones=tones.to(device).unsqueeze(0) - lang_ids=lang_ids.to(device).unsqueeze(0) - bert = bert.to(device).unsqueeze(0) - x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) - del phones - speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) - audio = net_g.infer(x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, sdp_ratio=sdp_ratio - , noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy() - del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers - sf.write("tmp.wav", audio, 44100) - return audio -def convert_wav_to_ogg(wav_file): - os.makedirs('out', exist_ok=True) - filename = os.path.splitext(os.path.basename(wav_file.name))[0] - output_path_ogg = os.path.join('out', f"out.ogg") - - renamed_input_path = os.path.join('in', f"in.wav") - os.makedirs('in', exist_ok=True) - os.rename(wav_file.name, renamed_input_path) - command = ["ffmpeg", "-i", renamed_input_path, "-acodec", "libopus", "-y", output_path_ogg] - os.system(" ".join(command)) - return output_path_ogg -def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale): - with torch.no_grad(): - audio = infer(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker) - with open('tmp.wav', 'rb') as wav_file: - newogg = convert_wav_to_ogg(wav_file) - return "Success", (hps.data.sampling_rate, audio),newogg - - - -if __name__ == "__main__": - parser = argparse.ArgumentParser() - parser.add_argument("--model_dir", default="./logs/un/un.pth", help="path of your model") - parser.add_argument("--config_dir", default="./configs/config.json", help="path of your config file") - parser.add_argument("--share", default=False, help="make link public") - parser.add_argument("-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log") - - args = parser.parse_args() - if args.debug: - logger.info("Enable DEBUG-LEVEL log") - logging.basicConfig(level=logging.DEBUG) - hps = utils.get_hparams_from_file(args.config_dir) - device = "cuda:0" if torch.cuda.is_available() else "cpu" - ''' - device = ( - "cuda:0" - if torch.cuda.is_available() - else ( - "mps" - if sys.platform == "darwin" and torch.backends.mps.is_available() - else "cpu" - ) - ) - ''' - net_g = SynthesizerTrn( - len(symbols), - hps.data.filter_length // 2 + 1, - hps.train.segment_size // hps.data.hop_length, - n_speakers=hps.data.n_speakers, - **hps.model).to(device) - _ = net_g.eval() - - _ = utils.load_checkpoint(args.model_dir, net_g, None, skip_optimizer=True) - - speaker_ids = hps.data.spk2id - speakers = list(speaker_ids.keys()) - with gr.Blocks() as app: - with gr.Row(): - with gr.Column(): - - - gr.Markdown(value=""" - 柚恩 Bert-Vits2在线语音生成\n - 1、模型作者:数字星瞳企划 https://t.me/xingtong25680 \n - \n - 2、原项目地址:https://github.com/Stardust-minus/Bert-VITS2\n - 3、使用此模型进行二创请注明AI生成,以及该项目地址。\n - 4、如果想生成超长txt文本的音频请使用colab。 https://colab.research.google.com/drive/13ek8_j1aknr-pbjj3NXxSM4vBIsracU3?usp=drive_link\n - - """) - text = gr.TextArea(label="Text", placeholder="Input Text Here", - value="这里是数字星瞳企画,请在电报搜索星瞳全拼加二五六八零,获取最新更新进展。") - speaker = gr.Dropdown(choices=speakers, value=speakers[0], label='Speaker') - sdp_ratio = gr.Slider(minimum=0, maximum=1, value=0.2, step=0.01, label='语调变化') - noise_scale = gr.Slider(minimum=0.1, maximum=1.5, value=0.6, step=0.01, label='感情变化') - noise_scale_w = gr.Slider(minimum=0.1, maximum=1.4, value=0.8, step=0.01, label='音节发音长度变化') - length_scale = gr.Slider(minimum=0.1, maximum=2, value=1, step=0.01, label='语速') - btn = gr.Button("开启AI语音之旅吧!", variant="primary") - with gr.Column(): - text_output = gr.Textbox(label="Message") - audio_output = gr.Audio(label="Output Audio") - ogg_output = gr.File(label="Converted OGG file") - gr.Markdown(value=""" - 模型汇总:\n - 星瞳 https://huggingface.co/spaces/digitalxingtong/Xingtong-Bert-Vits2 \n - 星瞳 朗读专用 https://huggingface.co/spaces/digitalxingtong/Xingtong-Read-Bert-VITS2 \n - 星瞳 长文本专用 https://huggingface.co/spaces/digitalxingtong/Xingtong-Longread-Bert-VITS2 \n - 甜甜叫花鸡 https://huggingface.co/spaces/digitalxingtong/Jiaohuaji-Bert-Vits2 \n - 七海 https://huggingface.co/spaces/digitalxingtong/Nanami-Bert-Vits2 \n - 东雪莲 https://huggingface.co/spaces/digitalxingtong/Azuma-Bert-Vits2 \n - 嘉然 https://huggingface.co/spaces/digitalxingtong/Jiaran-Bert-Vits2 \n - 乃琳 https://huggingface.co/spaces/digitalxingtong/Eileen-Bert-Vits2 \n - 恬豆 https://huggingface.co/spaces/digitalxingtong/Dou-Bert-Vits2 \n - 奶绿 杂谈 https://huggingface.co/spaces/digitalxingtong/Nailv-Bert-Vits2 \n - 奶绿 朗读 https://huggingface.co/spaces/digitalxingtong/Nailv-read-Bert-Vits2 \n - 露早 https://huggingface.co/spaces/digitalxingtong/Luzao-Bert-Vits2 \n - 柚恩 https://huggingface.co/spaces/digitalxingtong/Un-Bert-Vits2 \n - 米诺 https://huggingface.co/spaces/digitalxingtong/Minuo-Bert-Vits2 \n - 扇宝 https://huggingface.co/spaces/digitalxingtong/Shanbao-Bert-Vits2 \n - 牧牧白 https://huggingface.co/spaces/digitalxingtong/Miiu-Bert-Vits2 \n - 吉诺儿kino https://huggingface.co/spaces/digitalxingtong/Kino-Bert-Vits2 \n - 九夏 https://huggingface.co/spaces/digitalxingtong/Jiuxia-Bert-Vits2 \n - 卡缇娅 https://huggingface.co/spaces/digitalxingtong/Yaya-Bert-Vits2 \n - 理想_ideal https://huggingface.co/spaces/digitalxingtong/Lixiang-Bert-Vits2 \n - 阿梓 https://huggingface.co/spaces/digitalxingtong/Azusa-Bert-Vits2 \n - 鹿鸣 https://huggingface.co/spaces/digitalxingtong/Luming-Bert-Vits2 \n - 永雏塔菲 https://huggingface.co/spaces/digitalxingtong/Taffy-Bert-VITS2 \n - """) - btn.click(tts_fn, - inputs=[text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale], - outputs=[text_output, audio_output,ogg_output]) - - - app.launch(show_error=True) diff --git a/spaces/digitalxingtong/Xingtong-Read-Bert-VITS2/monotonic_align/setup.py b/spaces/digitalxingtong/Xingtong-Read-Bert-VITS2/monotonic_align/setup.py deleted file mode 100644 index 30c224807a70faa9df9c9eb75f8e80c8c867b16b..0000000000000000000000000000000000000000 --- a/spaces/digitalxingtong/Xingtong-Read-Bert-VITS2/monotonic_align/setup.py +++ /dev/null @@ -1,9 +0,0 @@ -from distutils.core import setup -from Cython.Build import cythonize -import numpy - -setup( - name = 'monotonic_align', - ext_modules = cythonize("core.pyx"), - include_dirs=[numpy.get_include()] -) diff --git a/spaces/dinhminh20521597/OCR_DEMO/configs/textdet/textsnake/textsnake_r50_fpn_unet_1200e_ctw1500.py b/spaces/dinhminh20521597/OCR_DEMO/configs/textdet/textsnake/textsnake_r50_fpn_unet_1200e_ctw1500.py deleted file mode 100644 index 045e89a3bb1fa44ff33da1d2b8b32b42e396c58b..0000000000000000000000000000000000000000 --- a/spaces/dinhminh20521597/OCR_DEMO/configs/textdet/textsnake/textsnake_r50_fpn_unet_1200e_ctw1500.py +++ /dev/null @@ -1,33 +0,0 @@ -_base_ = [ - '../../_base_/default_runtime.py', - '../../_base_/schedules/schedule_sgd_1200e.py', - '../../_base_/det_models/textsnake_r50_fpn_unet.py', - '../../_base_/det_datasets/ctw1500.py', - '../../_base_/det_pipelines/textsnake_pipeline.py' -] - -train_list = {{_base_.train_list}} -test_list = {{_base_.test_list}} - -train_pipeline = {{_base_.train_pipeline}} -test_pipeline = {{_base_.test_pipeline}} - -data = dict( - samples_per_gpu=4, - workers_per_gpu=4, - val_dataloader=dict(samples_per_gpu=1), - test_dataloader=dict(samples_per_gpu=1), - train=dict( - type='UniformConcatDataset', - datasets=train_list, - pipeline=train_pipeline), - val=dict( - type='UniformConcatDataset', - datasets=test_list, - pipeline=test_pipeline), - test=dict( - type='UniformConcatDataset', - datasets=test_list, - pipeline=test_pipeline)) - -evaluation = dict(interval=10, metric='hmean-iou') diff --git a/spaces/dolphinfusion/dolphinfusion-diffusion/README.md b/spaces/dolphinfusion/dolphinfusion-diffusion/README.md deleted file mode 100644 index 60b562b9658f2310849f25a5e2dc5c2fa906cc53..0000000000000000000000000000000000000000 --- a/spaces/dolphinfusion/dolphinfusion-diffusion/README.md +++ /dev/null @@ -1,11 +0,0 @@ ---- -title: DolphinFusion Global -emoji: 🌊🐬 -colorFrom: yellow -colorTo: purple -sdk: gradio -sdk_version: 3.40.1 -app_file: gen.dolphin.script.py -pinned: true ---- - diff --git a/spaces/dorkai/singpt/extensions/send_pictures/script.py b/spaces/dorkai/singpt/extensions/send_pictures/script.py deleted file mode 100644 index b0c356329a51edf026f7223a0ee7e5427d8751ce..0000000000000000000000000000000000000000 --- a/spaces/dorkai/singpt/extensions/send_pictures/script.py +++ /dev/null @@ -1,46 +0,0 @@ -import base64 -from io import BytesIO - -import gradio as gr -import torch -from transformers import BlipForConditionalGeneration, BlipProcessor - -import modules.chat as chat -import modules.shared as shared - -# If 'state' is True, will hijack the next chat generation with -# custom input text given by 'value' in the format [text, visible_text] -input_hijack = { - 'state': False, - 'value': ["", ""] -} - -processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") -model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float32).to("cpu") - -def caption_image(raw_image): - inputs = processor(raw_image.convert('RGB'), return_tensors="pt").to("cpu", torch.float32) - out = model.generate(**inputs, max_new_tokens=100) - return processor.decode(out[0], skip_special_tokens=True) - -def generate_chat_picture(picture, name1, name2): - text = f'*{name1} sends {name2} a picture that contains the following: "{caption_image(picture)}"*' - buffer = BytesIO() - picture.save(buffer, format="JPEG") - img_str = base64.b64encode(buffer.getvalue()).decode('utf-8') - visible_text = f'' - return text, visible_text - -def ui(): - picture_select = gr.Image(label='Send a picture', type='pil') - - function_call = 'chat.cai_chatbot_wrapper' if shared.args.cai_chat else 'chat.chatbot_wrapper' - - # Prepare the hijack with custom inputs - picture_select.upload(lambda picture, name1, name2: input_hijack.update({"state": True, "value": generate_chat_picture(picture, name1, name2)}), [picture_select, shared.gradio['name1'], shared.gradio['name2']], None) - - # Call the generation function - picture_select.upload(eval(function_call), shared.input_params, shared.gradio['display'], show_progress=shared.args.no_stream) - - # Clear the picture from the upload field - picture_select.upload(lambda : None, [], [picture_select], show_progress=False) diff --git a/spaces/ds520/bingo/src/components/learn-more.tsx b/spaces/ds520/bingo/src/components/learn-more.tsx deleted file mode 100644 index a64459ee7900a612292e117a6bda96ee9260990f..0000000000000000000000000000000000000000 --- a/spaces/ds520/bingo/src/components/learn-more.tsx +++ /dev/null @@ -1,39 +0,0 @@ -import React from 'react' -import { SourceAttribution } from '@/lib/bots/bing/types' - -export interface LearnMoreProps { - sourceAttributions?: SourceAttribution[] -} - -export function LearnMore({ sourceAttributions }: LearnMoreProps) { - if (!sourceAttributions?.length) { - return null - } - - return ( -
    -
    了解详细信息:
    -
    -
    - {sourceAttributions.map((attribution, index) => { - const { providerDisplayName, seeMoreUrl } = attribution - const { host } = new URL(seeMoreUrl) - return ( - - {index + 1}. {host} - - ) - })} -
    -
    -
    - ) -} diff --git a/spaces/espejelomar/Identify-the-breed-of-your-pet/backend/__init__.py b/spaces/espejelomar/Identify-the-breed-of-your-pet/backend/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/eswat/Image-and-3D-Model-Creator/PIFu/lib/options.py b/spaces/eswat/Image-and-3D-Model-Creator/PIFu/lib/options.py deleted file mode 100644 index 3c76097b6a0b2a312c161bd634a4a137b5929bf3..0000000000000000000000000000000000000000 --- a/spaces/eswat/Image-and-3D-Model-Creator/PIFu/lib/options.py +++ /dev/null @@ -1,161 +0,0 @@ -import argparse -import os - - -class BaseOptions(): - def __init__(self): - self.initialized = False - argparse - def initialize(self, parser): - # Datasets related - g_data = parser.add_argument_group('Data') - g_data.add_argument('--dataroot', type=str, default='./data', - help='path to images (data folder)') - - g_data.add_argument('--loadSize', type=int, default=512, help='load size of input image') - - # Experiment related - g_exp = parser.add_argument_group('Experiment') - g_exp.add_argument('--name', type=str, default='example', - help='name of the experiment. It decides where to store samples and models') - g_exp.add_argument('--debug', action='store_true', help='debug mode or not') - - g_exp.add_argument('--num_views', type=int, default=1, help='How many views to use for multiview network.') - g_exp.add_argument('--random_multiview', action='store_true', help='Select random multiview combination.') - - # Training related - g_train = parser.add_argument_group('Training') - g_train.add_argument('--gpu_id', type=int, default=0, help='gpu id for cuda') - g_train.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2, -1 for CPU mode') - - g_train.add_argument('--num_threads', default=1, type=int, help='# sthreads for loading data') - g_train.add_argument('--serial_batches', action='store_true', - help='if true, takes images in order to make batches, otherwise takes them randomly') - g_train.add_argument('--pin_memory', action='store_true', help='pin_memory') - - g_train.add_argument('--batch_size', type=int, default=2, help='input batch size') - g_train.add_argument('--learning_rate', type=float, default=1e-3, help='adam learning rate') - g_train.add_argument('--learning_rateC', type=float, default=1e-3, help='adam learning rate') - g_train.add_argument('--num_epoch', type=int, default=100, help='num epoch to train') - - g_train.add_argument('--freq_plot', type=int, default=10, help='freqency of the error plot') - g_train.add_argument('--freq_save', type=int, default=50, help='freqency of the save_checkpoints') - g_train.add_argument('--freq_save_ply', type=int, default=100, help='freqency of the save ply') - - g_train.add_argument('--no_gen_mesh', action='store_true') - g_train.add_argument('--no_num_eval', action='store_true') - - g_train.add_argument('--resume_epoch', type=int, default=-1, help='epoch resuming the training') - g_train.add_argument('--continue_train', action='store_true', help='continue training: load the latest model') - - # Testing related - g_test = parser.add_argument_group('Testing') - g_test.add_argument('--resolution', type=int, default=256, help='# of grid in mesh reconstruction') - g_test.add_argument('--test_folder_path', type=str, default=None, help='the folder of test image') - - # Sampling related - g_sample = parser.add_argument_group('Sampling') - g_sample.add_argument('--sigma', type=float, default=5.0, help='perturbation standard deviation for positions') - - g_sample.add_argument('--num_sample_inout', type=int, default=5000, help='# of sampling points') - g_sample.add_argument('--num_sample_color', type=int, default=0, help='# of sampling points') - - g_sample.add_argument('--z_size', type=float, default=200.0, help='z normalization factor') - - # Model related - g_model = parser.add_argument_group('Model') - # General - g_model.add_argument('--norm', type=str, default='group', - help='instance normalization or batch normalization or group normalization') - g_model.add_argument('--norm_color', type=str, default='instance', - help='instance normalization or batch normalization or group normalization') - - # hg filter specify - g_model.add_argument('--num_stack', type=int, default=4, help='# of hourglass') - g_model.add_argument('--num_hourglass', type=int, default=2, help='# of stacked layer of hourglass') - g_model.add_argument('--skip_hourglass', action='store_true', help='skip connection in hourglass') - g_model.add_argument('--hg_down', type=str, default='ave_pool', help='ave pool || conv64 || conv128') - g_model.add_argument('--hourglass_dim', type=int, default='256', help='256 | 512') - - # Classification General - g_model.add_argument('--mlp_dim', nargs='+', default=[257, 1024, 512, 256, 128, 1], type=int, - help='# of dimensions of mlp') - g_model.add_argument('--mlp_dim_color', nargs='+', default=[513, 1024, 512, 256, 128, 3], - type=int, help='# of dimensions of color mlp') - - g_model.add_argument('--use_tanh', action='store_true', - help='using tanh after last conv of image_filter network') - - # for train - parser.add_argument('--random_flip', action='store_true', help='if random flip') - parser.add_argument('--random_trans', action='store_true', help='if random flip') - parser.add_argument('--random_scale', action='store_true', help='if random flip') - parser.add_argument('--no_residual', action='store_true', help='no skip connection in mlp') - parser.add_argument('--schedule', type=int, nargs='+', default=[60, 80], - help='Decrease learning rate at these epochs.') - parser.add_argument('--gamma', type=float, default=0.1, help='LR is multiplied by gamma on schedule.') - parser.add_argument('--color_loss_type', type=str, default='l1', help='mse | l1') - - # for eval - parser.add_argument('--val_test_error', action='store_true', help='validate errors of test data') - parser.add_argument('--val_train_error', action='store_true', help='validate errors of train data') - parser.add_argument('--gen_test_mesh', action='store_true', help='generate test mesh') - parser.add_argument('--gen_train_mesh', action='store_true', help='generate train mesh') - parser.add_argument('--all_mesh', action='store_true', help='generate meshs from all hourglass output') - parser.add_argument('--num_gen_mesh_test', type=int, default=1, - help='how many meshes to generate during testing') - - # path - parser.add_argument('--checkpoints_path', type=str, default='./checkpoints', help='path to save checkpoints') - parser.add_argument('--load_netG_checkpoint_path', type=str, default=None, help='path to save checkpoints') - parser.add_argument('--load_netC_checkpoint_path', type=str, default=None, help='path to save checkpoints') - parser.add_argument('--results_path', type=str, default='./results', help='path to save results ply') - parser.add_argument('--load_checkpoint_path', type=str, help='path to save results ply') - parser.add_argument('--single', type=str, default='', help='single data for training') - # for single image reconstruction - parser.add_argument('--mask_path', type=str, help='path for input mask') - parser.add_argument('--img_path', type=str, help='path for input image') - - # aug - group_aug = parser.add_argument_group('aug') - group_aug.add_argument('--aug_alstd', type=float, default=0.0, help='augmentation pca lighting alpha std') - group_aug.add_argument('--aug_bri', type=float, default=0.0, help='augmentation brightness') - group_aug.add_argument('--aug_con', type=float, default=0.0, help='augmentation contrast') - group_aug.add_argument('--aug_sat', type=float, default=0.0, help='augmentation saturation') - group_aug.add_argument('--aug_hue', type=float, default=0.0, help='augmentation hue') - group_aug.add_argument('--aug_blur', type=float, default=0.0, help='augmentation blur') - - # special tasks - self.initialized = True - return parser - - def gather_options(self): - # initialize parser with basic options - if not self.initialized: - parser = argparse.ArgumentParser( - formatter_class=argparse.ArgumentDefaultsHelpFormatter) - parser = self.initialize(parser) - - self.parser = parser - - return parser.parse_args() - - def print_options(self, opt): - message = '' - message += '----------------- Options ---------------\n' - for k, v in sorted(vars(opt).items()): - comment = '' - default = self.parser.get_default(k) - if v != default: - comment = '\t[default: %s]' % str(default) - message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment) - message += '----------------- End -------------------' - print(message) - - def parse(self): - opt = self.gather_options() - return opt - - def parse_to_dict(self): - opt = self.gather_options() - return opt.__dict__ \ No newline at end of file diff --git a/spaces/fabiogra/moseca/app/service/vocal_remover/nets.py b/spaces/fabiogra/moseca/app/service/vocal_remover/nets.py deleted file mode 100644 index 9154e1818844f12588d388ddf61626487250ccfa..0000000000000000000000000000000000000000 --- a/spaces/fabiogra/moseca/app/service/vocal_remover/nets.py +++ /dev/null @@ -1,125 +0,0 @@ -import torch -from torch import nn -import torch.nn.functional as F - -from app.service.vocal_remover import layers - - -class BaseNet(nn.Module): - def __init__(self, nin, nout, nin_lstm, nout_lstm, dilations=((4, 2), (8, 4), (12, 6))): - super(BaseNet, self).__init__() - self.enc1 = layers.Conv2DBNActiv(nin, nout, 3, 1, 1) - self.enc2 = layers.Encoder(nout, nout * 2, 3, 2, 1) - self.enc3 = layers.Encoder(nout * 2, nout * 4, 3, 2, 1) - self.enc4 = layers.Encoder(nout * 4, nout * 6, 3, 2, 1) - self.enc5 = layers.Encoder(nout * 6, nout * 8, 3, 2, 1) - - self.aspp = layers.ASPPModule(nout * 8, nout * 8, dilations, dropout=True) - - self.dec4 = layers.Decoder(nout * (6 + 8), nout * 6, 3, 1, 1) - self.dec3 = layers.Decoder(nout * (4 + 6), nout * 4, 3, 1, 1) - self.dec2 = layers.Decoder(nout * (2 + 4), nout * 2, 3, 1, 1) - self.lstm_dec2 = layers.LSTMModule(nout * 2, nin_lstm, nout_lstm) - self.dec1 = layers.Decoder(nout * (1 + 2) + 1, nout * 1, 3, 1, 1) - - def __call__(self, x): - e1 = self.enc1(x) - e2 = self.enc2(e1) - e3 = self.enc3(e2) - e4 = self.enc4(e3) - e5 = self.enc5(e4) - - h = self.aspp(e5) - - h = self.dec4(h, e4) - h = self.dec3(h, e3) - h = self.dec2(h, e2) - h = torch.cat([h, self.lstm_dec2(h)], dim=1) - h = self.dec1(h, e1) - - return h - - -class CascadedNet(nn.Module): - def __init__(self, n_fft, nout=32, nout_lstm=128): - super(CascadedNet, self).__init__() - self.max_bin = n_fft // 2 - self.output_bin = n_fft // 2 + 1 - self.nin_lstm = self.max_bin // 2 - self.offset = 64 - - self.stg1_low_band_net = nn.Sequential( - BaseNet(2, nout // 2, self.nin_lstm // 2, nout_lstm), - layers.Conv2DBNActiv(nout // 2, nout // 4, 1, 1, 0), - ) - self.stg1_high_band_net = BaseNet(2, nout // 4, self.nin_lstm // 2, nout_lstm // 2) - - self.stg2_low_band_net = nn.Sequential( - BaseNet(nout // 4 + 2, nout, self.nin_lstm // 2, nout_lstm), - layers.Conv2DBNActiv(nout, nout // 2, 1, 1, 0), - ) - self.stg2_high_band_net = BaseNet( - nout // 4 + 2, nout // 2, self.nin_lstm // 2, nout_lstm // 2 - ) - - self.stg3_full_band_net = BaseNet(3 * nout // 4 + 2, nout, self.nin_lstm, nout_lstm) - - self.out = nn.Conv2d(nout, 2, 1, bias=False) - self.aux_out = nn.Conv2d(3 * nout // 4, 2, 1, bias=False) - - def forward(self, x): - x = x[:, :, : self.max_bin] - - bandw = x.size()[2] // 2 - l1_in = x[:, :, :bandw] - h1_in = x[:, :, bandw:] - l1 = self.stg1_low_band_net(l1_in) - h1 = self.stg1_high_band_net(h1_in) - aux1 = torch.cat([l1, h1], dim=2) - - l2_in = torch.cat([l1_in, l1], dim=1) - h2_in = torch.cat([h1_in, h1], dim=1) - l2 = self.stg2_low_band_net(l2_in) - h2 = self.stg2_high_band_net(h2_in) - aux2 = torch.cat([l2, h2], dim=2) - - f3_in = torch.cat([x, aux1, aux2], dim=1) - f3 = self.stg3_full_band_net(f3_in) - - mask = torch.sigmoid(self.out(f3)) - mask = F.pad( - input=mask, - pad=(0, 0, 0, self.output_bin - mask.size()[2]), - mode="replicate", - ) - - if self.training: - aux = torch.cat([aux1, aux2], dim=1) - aux = torch.sigmoid(self.aux_out(aux)) - aux = F.pad( - input=aux, - pad=(0, 0, 0, self.output_bin - aux.size()[2]), - mode="replicate", - ) - return mask, aux - else: - return mask - - def predict_mask(self, x): - mask = self.forward(x) - - if self.offset > 0: - mask = mask[:, :, :, self.offset : -self.offset] - assert mask.size()[3] > 0 - - return mask - - def predict(self, x): - mask = self.forward(x) - pred_mag = x * mask - - if self.offset > 0: - pred_mag = pred_mag[:, :, :, self.offset : -self.offset] - assert pred_mag.size()[3] > 0 - - return pred_mag diff --git a/spaces/fatiXbelha/sd/CG Love Status Video - The Ultimate Collection of WhatsApp Video Status.md b/spaces/fatiXbelha/sd/CG Love Status Video - The Ultimate Collection of WhatsApp Video Status.md deleted file mode 100644 index 5352c694899cb1d6c83538ea448c87c7cf59d642..0000000000000000000000000000000000000000 --- a/spaces/fatiXbelha/sd/CG Love Status Video - The Ultimate Collection of WhatsApp Video Status.md +++ /dev/null @@ -1,125 +0,0 @@ - -

    CG Status Video Download Love: How to Express Your Feelings with Chhattisgarhi Songs

    -

    Do you want to impress your lover with some romantic and catchy Chhattisgarhi songs? Do you want to share your emotions and feelings with your partner through WhatsApp status videos? If yes, then you are in the right place. In this article, we will tell you everything you need to know about CG status video download love. We will explain what are CG status videos, how to download them, and how to choose the best one for your love. So, let's get started.

    -

    What are CG Status Videos?

    -

    CG status videos are short video clips that feature Chhattisgarhi songs, which are the folk songs of the Indian state of Chhattisgarh. These songs are sung in the local language of Chhattisgarhi, which is a dialect of Hindi. CG status videos are popular among the people of Chhattisgarh and other neighboring states, as they express their culture, tradition, and identity.

    -

    cg status video download love


    Download Ziphttps://urllie.com/2uNIYQ



    -

    The origin and popularity of Chhattisgarhi songs

    -

    Chhattisgarhi songs have a long history that dates back to ancient times. They are influenced by various musical genres, such as tribal, classical, devotional, and modern. Some of the famous singers of Chhattisgarhi songs are Alka Chandrakar, Mamta Chandrakar, Anuj Sharma, Dilip Shadangi, and Sunil Soni. Chhattisgarhi songs are popular not only in India but also in other countries, such as Nepal, Bangladesh, Pakistan, and Sri Lanka.

    -

    The features and benefits of CG status videos

    -

    CG status videos have many features and benefits that make them appealing to the users. Some of them are:

    -
      -
    • They are short and sweet, usually ranging from 15 seconds to 30 seconds.
    • -
    • They are easy to download and share on WhatsApp and other social media platforms.
    • -
    • They are free of cost and do not require any subscription or registration.
    • -
    • They are updated regularly with new and trending songs.
    • -
    • They are suitable for various occasions and moods, such as love, friendship, festival, birthday, anniversary, etc.
    • -
    • They are expressive and creative, as they use lyrics, images, animations, stickers, filters, and effects.
    • -
    • They are fun and entertaining, as they make the viewers smile, laugh, cry, or dance.
    • -
    -

    How to Download CG Status Videos for WhatsApp?

    -

    If you want to download CG status videos for WhatsApp, you have two options: websites or apps. Both have their own advantages and disadvantages. Let's see them in detail.

    -

    The best websites and apps to download CG status videos

    -

    There are many websites and apps that offer CG status videos for download. However, not all of them are reliable and safe. Some may contain viruses, malware, or spam. Some may have low-quality or outdated videos. Some may have limited or restricted content. Therefore, you need to be careful while choosing the best website or app for downloading CG status videos. Here are some of the best websites and apps that we recommend:

    - - - - - -
    Website/AppDescription
    [CG Song]A website that provides CG songs and videos for download. It has a dedicated section for CG love status videos for WhatsApp in various formats and resolutions.
    [CG Video Status]An app that allows users to download and share CG status videos for WhatsApp and other social media platforms. It has a huge collection of CG love status videos for WhatsApp in different genres and languages.
    [CG Status]An app that offers CG status videos for WhatsApp and other social media platforms. It has a wide range of CG love status videos for WhatsApp in different categories and moods.
    -

    The steps to download and share CG status videos

    -

    The steps to download and share CG status videos are simple and easy. Here are the common steps that you need to follow:

    -
      -
    1. Open the website or app that you want to use for downloading CG status videos.
    2. -
    3. Search for the CG love status video that you want to download. You can use keywords, filters, or categories to narrow down your search.
    4. -
    5. Preview the video and check its quality, size, and duration.
    6. -
    7. Click on the download button and choose the format and resolution that you prefer.
    8. -
    9. Wait for the download to complete and save the video on your device.
    10. -
    11. Open your WhatsApp and go to your status section.
    12. -
    13. Tap on the add button and select the video that you downloaded from your gallery.
    14. -
    15. Edit the video if you want to add any text, sticker, or effect.
    16. -
    17. Tap on the send button and share your CG love status video with your contacts.
    18. -
    -

    How to Choose the Best CG Status Video for Your Love?

    -

    Now that you know how to download and share CG status videos, you might be wondering how to choose the best one for your love. After all, you want to make your partner feel special and happy with your gesture. Well, don't worry. We have some tips and tricks for you to select the most suitable CG love status video for your love. Here they are:

    -

    The different types of CG love status videos

    -

    CG love status videos come in different types, depending on the theme, tone, and message of the song. Some of the common types are:

    -
      -
    • Romantic: These are the videos that feature romantic songs that express your love, affection, and admiration for your partner. They are ideal for celebrating occasions like Valentine's Day, anniversary, or birthday.
    • -
    • Sad: These are the videos that feature sad songs that convey your pain, sorrow, and regret for your partner. They are suitable for expressing your apology, forgiveness, or breakup.
    • -
    • Funny: These are the videos that feature funny songs that make your partner laugh, smile, or chuckle. They are perfect for cheering up your partner, teasing them, or making them feel good.
    • -
    • Inspirational: These are the videos that feature inspirational songs that motivate your partner, encourage them, or support them. They are great for boosting your partner's confidence, morale, or spirit.
    • -
    -

    The tips and tricks to select the most suitable CG love status video

    -

    Here are some tips and tricks that you can use to select the most suitable CG love status video for your partner:

    -

    cg status video download love song
    -cg status video download love story
    -cg status video download love feeling
    -cg status video download love romantic
    -cg status video download love sad
    -cg status video download love whatsapp
    -cg status video download love hd
    -cg status video download love mp4
    -cg status video download love 2023
    -cg status video download love new
    -cg status video download love hindi
    -cg status video download love shayari
    -cg status video download love quotes
    -cg status video download love lyrics
    -cg status video download love comedy
    -cg status video download love cute
    -cg status video download love attitude
    -cg status video download love bewafa
    -cg status video download love breakup
    -cg status video download love dialogue
    -cg status video download love emotional
    -cg status video download love english
    -cg status video download love funny
    -cg status video download love filmy
    -cg status video download love full screen
    -cg status video download love gana
    -cg status video download love guru
    -cg status video download love heart touching
    -cg status video download love happy
    -cg status video download love kiss
    -cg status video download love ka gana
    -cg status video download love letter
    -cg status video download love mashup
    -cg status video download love motivational
    -cg status video download love old song
    -cg status video download love punjabi song
    -cg status video download love propose
    -cg status video download love poetry
    -cg status video download love rap song
    -cg status video download love ringtone
    -cg status video download love sad song
    -cg status video download love tamil song
    -cg status video download love tik tok
    -cg status video download love urdu poetry
    -cg status video download love viral song
    -cg status video download love wala gana
    -cg status video download love yaari song
    -cg status video download love zindagi song

    -
      -
    • Know your partner's preferences: The first thing you need to do is to know what kind of songs your partner likes. Do they prefer romantic, sad, funny, or inspirational songs? Do they like slow, fast, or upbeat songs? Do they like traditional, modern, or fusion songs? Knowing their preferences will help you choose a video that matches their taste and mood.
    • -
    • Know your partner's personality: The next thing you need to do is to know what kind of personality your partner has. Are they shy, bold, sweet, or naughty? Are they emotional, rational, optimistic, or pessimistic? Are they adventurous, cautious, creative, or practical? Knowing their personality will help you choose a video that reflects their traits and qualities.
    • -
    • Know your relationship status: The last thing you need to do is to know what kind of relationship you have with your partner. Are you dating, engaged, married, or separated? Are you happy, sad, angry, or confused? Are you loyal, faithful, honest, or cheating? Knowing your relationship status will help you choose a video that conveys your feelings and intentions.
    • -
    -

    Conclusion

    -

    In conclusion, CG status video download love is a great way to express your feelings with Chhattisgarhi songs. CG status videos are short and catchy video clips that feature Chhattisgarhi songs, which are the folk songs of the Indian state of Chhattisgarh. They are popular among the people of Chhattisgarh and other neighboring states, as they reflect their culture, tradition, and identity. You can download and share CG status videos for WhatsApp from various websites and apps, such as Pinterest, CG Song, CG Video Status, and CG Status. You can also choose the best CG love status video for your partner by knowing their preferences, personality, and relationship status. So, what are you waiting for? Go ahead and download your favorite CG love status video and make your partner feel special and happy.

    -

    FAQs

    -

    Here are some of the frequently asked questions about CG status video download love:

    -
      -
    1. What is the meaning of CG?
    2. -

      CG stands for Chhattisgarh, which is a state in central India. It is known for its rich cultural heritage, natural beauty, and mineral resources.

      -
    3. What is the difference between CG status videos and other status videos?
    4. -

      CG status videos are different from other status videos in terms of the language, music, and content. CG status videos use Chhattisgarhi language, which is a dialect of Hindi. They also use Chhattisgarhi music, which is influenced by various musical genres, such as tribal, classical, devotional, and modern. Moreover, they use Chhattisgarhi content, which showcases the culture, tradition, and identity of the people of Chhattisgarh.

      -
    5. How can I download CG status videos without watermark?
    6. -

      If you want to download CG status videos without watermark, you need to use a website or app that does not add any watermark to the videos. Some of the websites and apps that offer watermark-free CG status videos are [CG Song], [CG Video Status], and [CG Status].

      -
    7. How can I make my own CG status video?
    8. -

      If you want to make your own CG status video, you need to have a video editing software or app that allows you to add Chhattisgarhi songs to your video clips. Some of the video editing software and apps that you can use are [Filmora], [Kinemaster], and [VivaVideo].

      -
    9. Where can I find more information about Chhattisgarhi songs?
    10. -

      If you want to find more information about Chhattisgarhi songs, you can visit some of the websites that provide information about Chhattisgarhi music, such as [Chhattisgarh Music], [CG Music World], and [CG Song Lyrics].

      -

    197e85843d
    -
    -
    \ No newline at end of file diff --git a/spaces/fatiXbelha/sd/Demon Slayer 3 Temporada Legendado A Caada ao Demnio de Yoshiwara.md b/spaces/fatiXbelha/sd/Demon Slayer 3 Temporada Legendado A Caada ao Demnio de Yoshiwara.md deleted file mode 100644 index 53e6553ab74150fc419323f1583e1c144ddb8d27..0000000000000000000000000000000000000000 --- a/spaces/fatiXbelha/sd/Demon Slayer 3 Temporada Legendado A Caada ao Demnio de Yoshiwara.md +++ /dev/null @@ -1,115 +0,0 @@ - -

    Demon Slayer 3ª temporada: How to download and watch the anime series

    -

    If you are a fan of anime, you have probably heard of Demon Slayer, one of the most popular and successful manga and anime series in recent years. The series has captivated millions of fans around the world with its thrilling story, stunning animation, and memorable characters. But if you have not watched it yet, or if you want to catch up with the latest episodes, you might be wondering how to download and watch Demon Slayer 3ª temporada, the third season of the anime. In this article, we will tell you everything you need to know about Demon Slayer 3ª temporada, including what it is about, when and where to watch it, and how to download it legally and safely.

    -

    What is Demon Slayer about?

    -

    Demon Slayer is a manga series written and illustrated by Koyoharu Gotouge. It was serialized in Shueisha's Weekly Shonen Jump magazine from February 2016 to May 2020, with 23 volumes collected in tankobon format. It has been published in English by Viz Media and simultaneously published by Shueisha on their Manga Plus platform.

    -

    demon slayer 3 temporada download legendado


    Download File ===== https://urllie.com/2uNBbP



    -

    The manga series has been adapted into an anime television series by Ufotable, which aired from April to September 2019. A sequel film, Demon Slayer: Kimetsu no Yaiba – The Movie: Mugen Train, was released in October 2020 and became the highest-grossing anime film and Japanese film of all time. An 18-episode second season of the anime series aired from October 2021 to February 2022. It featured one original episode, re-edited the Mugen Train film into six episodes, and then covered the "Entertainment District" arc from the manga in 11 episodes. A compilation film, Demon Slayer: Kimetsu no Yaiba – To the Swordsmith Village, was released in February 2023, while a third season, covering the "Swordsmith Village" arc, aired from April to June 2023. A fourth season covering the "Hashira Training" arc has been announced.

    -

    But what is Demon Slayer about? Here is a brief synopsis of the manga and anime:

    -

    A brief synopsis of the manga and anime

    -

    Demon Slayer follows the story of Tanjiro Kamado, a kind-hearted and intelligent boy who lives with his family in the mountains. He became his family's breadwinner after his father's death, traveling to the nearby village to sell charcoal. Everything changed when he came home one day to discover his family was attacked and slaughtered by a demon. Worse still, the sole survivor is his sister Nezuko, who has been turned into a bloodthirsty demon. Consumed by rage and hatred, Tanjiro swears to avenge his family and stay by his only remaining sibling. Alongside the mysterious group calling themselves the Demon Slayer Corps, Tanjiro will do whatever it takes to slay the demons and protect the remnants of his beloved sister's humanity.

    -

    The main characters and their roles

    -

    Some of the main characters in Demon Slayer are:

    -
      -
    • Tanjiro Kamado: The protagonist of the series. He is a kind-hearted boy who becomes a demon slayer after his family is killed by a demon. He wields a black Nichirin Blade that can change its form depending on his breathing technique. He also has the ability to sense the emotions of others and communicate with demons.
    • -
    • Nezuko Kamado: Tanjiro's younger sister and the deuteragonist of the series. She is turned into a demon by Muzan Kibutsuji, the first and most powerful demon in existence. Unlike most demons, she retains some of her human traits, such as her love for her brother and her refusal to eat humans. She can also shrink or grow her size at will and use her blood as a weapon. She usually travels inside a wooden box that Tanjiro carries on his back.
    • -
    • Zenitsu Agatsuma: A cowardly and nervous boy who becomes a demon slayer and a companion of Tanjiro. He wields a yellow Nichirin Blade that can produce lightning-fast attacks. He is also a skilled musician who can play the shamisen. He has a crush on Nezuko and often tries to impress her.
    • -
    • Inosuke Hashibira: A wild and aggressive boy who becomes a demon slayer and a companion of Tanjiro. He was raised by boars in the mountains and wears a boar's head as a mask. He wields two jagged Nichirin Blades that he can use for dual-wielding attacks. He is also very strong and flexible, able to climb trees and walls with ease. He often competes with Tanjiro and Zenitsu for glory and recognition.
    • -
    • Giyu Tomioka: A calm and stoic man who is one of the Hashira, the elite demon slayers of the Demon Slayer Corps. He wields a blue Nichirin Blade that can create water-based attacks. He is the one who saved Tanjiro and Nezuko from a demon attack and encouraged Tanjiro to join the Demon Slayer Corps. He also has a soft spot for Nezuko and often defends her from those who want to kill her.
    • -
    • Shinobu Kocho: A cheerful and elegant woman who is one of the Hashira, the elite demon slayers of the Demon Slayer Corps. She wields a thin Nichirin Blade that can inject poison into demons. She is also an expert in medicine and insect breeding, using various insects as her allies in battle. She has a deep hatred for demons, especially those who killed her sister, but she also believes in finding a cure for them.
    • -
    • Kanao Tsuyuri: A quiet and emotionless girl who is Shinobu's adoptive sister and apprentice. She wields a pink Nichirin Blade that can change its color depending on her mood. She is also very skilled in combat, being able to use various breathing techniques and enhanced senses. She has difficulty making decisions on her own, often relying on a coin toss to choose her actions.
    • -
    -

    What is Demon Slayer 3ª temporada?

    -

    Demon Slayer 3ª temporada is the third season of the anime adaptation of Demon Slayer manga series. It covers the "Swordsmith Village" arc, which spans from chapters 100 to 127 of the manga.

    -

    The plot of the third season

    -

    The plot of Demon Slayer 3ª temporada follows Tanjiro, Nezuko, Zenitsu, and Inosuke as they travel to the Swordsmith Village, where they hope to repair their broken Nichirin Blades and learn more about their origins. There, they meet the swordsmiths who forge the blades for the demon slayers, as well as some new allies and enemies. They also encounter a new threat: Upper Rank 4 of the Twelve Kizuki, Hantengu, a powerful demon who can split into multiple forms based on his emotions.

    -

    demon slayer 3 temporada download legendado hd
    -demon slayer 3 temporada download legendado mega
    -demon slayer 3 temporada download legendado torrent
    -demon slayer 3 temporada download legendado mp4
    -demon slayer 3 temporada download legendado completo
    -demon slayer 3 temporada download legendado online
    -demon slayer 3 temporada download legendado gratis
    -demon slayer 3 temporada download legendado 1080p
    -demon slayer 3 temporada download legendado anime
    -demon slayer 3 temporada download legendado portugues
    -demon slayer 3 temporada download legendado drive
    -demon slayer 3 temporada download legendado google drive
    -demon slayer 3 temporada download legendado pt br
    -demon slayer 3 temporada download legendado animes orion
    -demon slayer 3 temporada download legendado animes house
    -demon slayer 3 temporada download legendado animes online
    -demon slayer 3 temporada download legendado animes vision
    -demon slayer 3 temporada download legendado animes brasil
    -demon slayer 3 temporada download legendado animes cloud
    -demon slayer 3 temporada download legendado animes one
    -demon slayer 3 temporada download legendado animes heaven
    -demon slayer 3 temporada download legendado animes tube
    -demon slayer 3 temporada download legendado animes online hd
    -demon slayer 3 temporada download legendado animes online br
    -demon slayer 3 temporada download legendado animes online biz
    -demon slayer 3 temporada download legendado super animes
    -demon slayer 3 temporada download legendado animalog
    -demon slayer 3 temporada download legendado anime tv
    -demon slayer 3 temporada download legendado anime fire
    -demon slayer 3 temporada download legendado anime ai
    -demon slayer 3 temporada download legendado anime plus
    -demon slayer 3 temporada download legendado anime united
    -demon slayer 3 temporada download legendado anime xis
    -demon slayer 3 temporada download legendado anime yt
    -demon slayer 3 temporada download legendado anime zone
    -demon slayer 3 temporada download legendado crunchyroll
    -demon slayer 3 temporada download legendado funimation
    -demon slayer 3 temporada download legendado netflix
    -demon slayer 3 temporada download legendado prime video
    -demon slayer 3 temporada download legendado hbo max
    -demon slayer 3 temporada download legendado disney plus
    -demon slayer 3 temporada download legendado youtube
    -demon slayer 3 temporada download legendado facebook
    -demon slayer 3 temporada download legendado instagram
    -demon slayer 3 temporada download legendado twitter
    -demon slayer 3 temporada download legendado reddit
    -demon slayer 3 temporada download legendado pinterest
    -demon slayer 3 temporada download legendado tumblr

    -

    Meanwhile, Giyu and Shinobu are sent on a mission to investigate a mysterious mansion where several demon slayers have gone missing. There, they face off against Upper Rank 2 of the Twelve Kizuki, Doma, a cold-hearted demon who can manipulate ice and blood.

    -

    As the battles rage on, secrets are revealed, bonds are tested, and lives are changed forever.

    -

    The release date and streaming platforms

    -

    Demon Slayer 3ª temporada aired from April 4 to June 27, 2023 on Tokyo MX, GTV, GYT, BS11, Aniplex Channel, AbemaTV, d Anime Store, Hulu Japan, Amazon Prime Video Japan, U-NEXT Japan, Netflix Japan, Crunchyroll Japan, Funimation Japan, Animax Asia (Southeast Asia), Wakanim (Europe), Funimation (North America), Crunchyroll (North America), AnimeLab (Australia), Netflix (Australia), and iQIYI (China). It consisted of 13 episodes, each with a runtime of 24 minutes. The opening theme song was "Homura" by LiSA, while the ending theme song was "Shirogane" by Aimer.

    -

    How to download and watch Demon Slayer 3ª temporada?

    -

    If you want to download and watch Demon Slayer 3ª temporada, you have several options to choose from. However, not all of them are legal and safe. Some websites or apps may offer you free or cheap downloads or streams, but they may also expose you to malware, viruses, or legal issues. Therefore, we recommend you to use only the official and licensed platforms that have the rights to distribute the anime series. Here are some of them:

    -

    The legal and safe ways to download and watch the anime

    -
      -
    • Aniplex Channel: This is the official streaming platform of Aniplex, the producer and distributor of Demon Slayer anime series. You can watch all the episodes of Demon Slayer 3ª temporada on Aniplex Channel for free, with ads. You can also download the episodes for offline viewing, but you need to pay a fee for each episode or buy a subscription plan. Aniplex Channel is available in Japan and some other regions.
    • -
    • Netflix: This is one of the most popular and widely available streaming platforms in the world. You can watch all the episodes of Demon Slayer 3ª temporada on Netflix with a subscription plan that varies depending on your region and device. You can also download the episodes for offline viewing on your mobile device or tablet. Netflix is available in most countries and regions, except for China, Crimea, North Korea, and Syria.
    • -
    • Crunchyroll: This is one of the largest and most popular streaming platforms for anime and manga fans. You can watch all the episodes of Demon Slayer 3ª temporada on Crunchyroll with a subscription plan that costs $7.99 per month or $79.99 per year. You can also watch some episodes for free, with ads and a one-week delay. You can also download the episodes for offline viewing on your mobile device or tablet with a subscription plan that costs $9.99 per month or $99.99 per year. Crunchyroll is available in most countries and regions, except for Japan, China, France, Germany, Italy, and some others.
    • -
    • Funimation: This is another popular streaming platform for anime and manga fans. You can watch all the episodes of Demon Slayer 3ª temporada on Funimation with a subscription plan that costs $5.99 per month or $59.99 per year. You can also watch some episodes for free, with ads and a two-week delay. You can also download the episodes for offline viewing on your mobile device or tablet with a subscription plan that costs $7.99 per month or $79.99 per year. Funimation is available in North America, United Kingdom, Ireland, Australia, New Zealand, Mexico, Brazil, Colombia, Peru, Chile, and some other regions.
    • -
    -

    These are some of the legal and safe ways to download and watch Demon Slayer 3ª temporada. However, you should always check the availability and compatibility of the platforms in your region and device before using them. You should also respect the intellectual property rights of the creators and distributors of the anime series and avoid using any illegal or pirated sources.

    -

    The benefits of downloading and watching the anime

    -

    Downloading and watching Demon Slayer 3ª temporada can offer you many benefits, such as:

    -
      -
    • Enjoying the anime at your own pace and convenience: By downloading the episodes, you can watch them anytime and anywhere you want, without worrying about internet connection, buffering, or ads. You can also pause, rewind, or skip the scenes as you wish.
    • -
    • Supporting the anime industry and the creators: By using the official and licensed platforms, you are contributing to the revenue and popularity of the anime series, which can help the anime industry and the creators to produce more quality content in the future.
    • -
    • Learning more about Japanese culture and language: By watching the anime, you can immerse yourself in the rich and diverse world of Japanese culture and language. You can learn more about the history, mythology, folklore, art, music, cuisine, and customs of Japan, as well as pick up some useful words and phrases in Japanese.
    • -
    • Having fun and being entertained: By watching the anime, you can experience a thrilling and emotional story that will keep you hooked from start to finish. You can also enjoy the stunning animation, the catchy soundtrack, and the memorable characters that will make you laugh, cry, cheer, and feel inspired.
    • -
    -

    Conclusion

    -

    Demon Slayer 3ª temporada is the third season of the anime adaptation of Demon Slayer manga series. It covers the "Swordsmith Village" arc, which follows Tanjiro and his friends as they travel to the Swordsmith Village to repair their blades and face a new enemy. The anime series aired from April to June 2023 on various streaming platforms that you can use to download and watch it legally and safely. By doing so, you can enjoy the anime at your own pace and convenience, support the anime industry and the creators, learn more about Japanese culture and language, and have fun and be entertained.

    -

    A call to action for the readers

    -

    If you are a fan of Demon Slayer or if you are curious about it, we encourage you to download and watch Demon Slayer 3ª temporada as soon as possible. You will not regret it. It is one of the best anime series of all time, with a captivating story, stunning animation, memorable characters, catchy soundtrack, rich culture, and more. It will make you feel a range of emotions that will stay with you for a long time. So what are you waiting for? Download and watch Demon Slayer 3ª temporada today!

    -

    Frequently Asked Questions

    -

    Here are some frequently asked questions about Demon Slayer 3ª temporada:

    -
      -
    • Q: How many episodes are there in Demon Slayer 3ª temporada?
    • -
    • A: There are 13 episodes in Demon Slayer 3ª temporada.
    • -
    • Q: Where can I read Demon Slayer manga?
    • -
    • A: You can read Demon Slayer manga on Manga Plus or Viz Media websites or apps.
    • -
    • Q: Is there a fourth season of Demon Slayer anime?
    • -
    • A: Yes, there is a fourth season of Demon Slayer anime that has been announced. It will cover the "Hashira Training" arc from the manga.
    • -
    • Q: Who is the strongest demon slayer in Demon Slayer?
    • A: The strongest demon slayer in Demon Slayer is Yoriichi Tsugikuni, the first user of the Sun Breathing technique and the ancestor of Tanjiro. He was able to defeat Muzan Kibutsuji, the first and most powerful demon, but failed to kill him due to Muzan's regeneration ability. -
    • Q: What is the meaning of the title Demon Slayer?
    • -
    • A: The meaning of the title Demon Slayer is twofold. On one hand, it refers to the demon slayers, the warriors who fight against the demons and protect humanity. On the other hand, it refers to the demons themselves, who were once humans but were slayed by their own desires and corrupted by Muzan Kibutsuji.
    • -
    -

    I hope you enjoyed this article and learned something new. Thank you for reading and have a great day!

    401be4b1e0
    -
    -
    \ No newline at end of file diff --git a/spaces/fatiXbelha/sd/Download Drive Zone APK and Enjoy the Ultimate Car Driving Simulator.md b/spaces/fatiXbelha/sd/Download Drive Zone APK and Enjoy the Ultimate Car Driving Simulator.md deleted file mode 100644 index f7e3bda765002270c79dd55f46713b15d7d615de..0000000000000000000000000000000000000000 --- a/spaces/fatiXbelha/sd/Download Drive Zone APK and Enjoy the Ultimate Car Driving Simulator.md +++ /dev/null @@ -1,100 +0,0 @@ - -

    Download Drive Zone APK: A Car Driving Simulator with Endless Open World

    -

    Do you love driving cars and exploring new places? Do you want to participate in street racing, drift racing, drag racing or just cruise around the city with your friends? If yes, then you should download Drive Zone Online APK, a car driving simulator that offers you a realistic and immersive experience of driving in a huge open world.

    -

    download drive zone apk


    DOWNLOADhttps://urllie.com/2uNzr2



    -

    What is Drive Zone Online?

    -

    Drive Zone Online is a car driving simulator game developed by Jet Games FZ-LLC. It is available for Android devices and can be downloaded from APKCombo or APKCombo Download. The game lets you burn your tires on the asphalt and explore "Grand Car Parking City" and the world around it. You can choose from 50+ cars, customize them with 30+ body kits, vinyls, rims, bumpers, spoilers and more, and test your driving skills in various modes such as drift, race, skill test, driving school and multiplayer.

    -

    Features of Drive Zone Online

    -

    Drive Zone Online has many features that make it one of the best car driving simulator games on the market. Here are some of them:

    -

    - Endless open world

    -

    The game offers you an endless open world that measures 20x20km. You can explore different areas such as city, desert airfield, racing track, highway, beach area, port and more. You can also find hidden bonuses and secrets on the map. The game supports up to 32 players online, so you can invite your friends and drive together.

    -

    download drive zone online apk
    -download drive zone online car game apk
    -download drive zone online multiplayer racing apk
    -download drive zone online mod apk
    -download drive zone online latest version apk
    -download drive zone online android game apk
    -download drive zone online free apk
    -download drive zone online unlimited money apk
    -download drive zone online hack apk
    -download drive zone online 0.5.2 apk
    -download drive zone online for pc apk
    -download drive zone online offline apk
    -download drive zone online apk pure
    -download drive zone online apk mirror
    -download drive zone online apk obb
    -download drive zone online apk data
    -download drive zone online apk revdl
    -download drive zone online apk rexdl
    -download drive zone online apk uptodown
    -download drive zone online apk apkpure
    -download drive zone online 3d car simulator apk
    -download drive zone online open world racing apk
    -download drive zone online realistic driving physics apk
    -download drive zone online graphics settings apk
    -download drive zone online vinyl editor apk
    -download drive zone online body kits apk
    -download drive zone online suspension and camber adjustments apk
    -download drive zone online engine and gearbox upgrades apk
    -download drive zone online drift mode apk
    -download drive zone online car race mode apk
    -download drive zone online skill test mode apk
    -download drive zone online driving school mode apk
    -download drive zone online auto market mode apk
    -download drive zone online tasks quests and achievements apk
    -download drive zone online social media links apk
    -how to download drive zone online apk
    -where to download drive zone online apk
    -why to download drive zone online apk
    -when to download drive zone online apk
    -what is drive zone online apk
    -who made drive zone online apk
    -is it safe to download drive zone online apk
    -is it legal to download drive zone online apk
    -is it fun to play drive zone online apk
    -is it easy to install drive zone online apk

    -

    - Auto and tuning

    -

    The game has 50+ cars including vintage cars, supercars, suvs, hypercars and more. Each car has a well-designed interior and engine, and all doors, hood and trunk open. You can also tune your car with 30+ body kits, vinyls, rims, bumpers, spoilers and more. You can adjust the suspension and camber to improve the handling and appearance of your car. You can also upgrade the engine and gearbox to boost your performance.

    -

    - Great graphics

    -

    The game has realistic graphics that create a stunning picture on your mobile phone. The game has detailed car models, interiors, environments, lighting effects and shadows. The game also has high performance that allows you to play smoothly on various devices. You can also adjust the graphics settings to suit your preferences.

    -

    - Gameplay

    -

    The game has various gameplay modes that challenge your driving skills. You can participate in drift mode, where you compete with other players for the most drift points; race mode, where you try to cross the finish line first; skill test mode, where you race around insane ski jump karts; driving school mode, where you learn how to drive a car properly; auto market mode, where you trade with other players and wager RP; and hundreds of tasks, quests and achievements that reward you with money and items.

    -

    How to download Drive Zone Online APK?

    -

    If you want to download Drive Zone Online APK for your Android device, you can follow these simple steps:

    -

    Steps to download and install Drive Zone Online APK

    -
      -
    1. Go to APKCombo or APKCombo Download and search for Drive Zone Online.
    2. -
    3. Select the latest version of the game (0.5.2) and click on Download APK.
    4. -
    5. Wait for the download to finish and then locate the APK file on your device.
    6. -
    7. Tap on the APK file and allow installation from unknown sources if prompted.
    8. -
    9. Follow the instructions on the screen to install the game on your device.
    10. -
    11. Launch the game and enjoy driving in an endless open world.
    12. -
    -

    Tips and tricks for playing Drive Zone Online

    -

    Here are some tips and tricks that can help you improve your driving skills and have more fun in Drive Zone Online:

    -
      -
    • Use the map to find hidden bonuses and secrets. You can also use the map to teleport to different locations on the map.
    • -
    • Use the garage to customize your car and upgrade its performance. You can also sell your car or buy a new one from the auto market.
    • -
    • Use the camera button to change the view of your car. You can choose from first-person, third-person, hood, bumper or free camera modes.
    • -
    • Use the nitro button to boost your speed and the handbrake button to drift. You can also use the steering wheel, tilt or buttons to control your car.
    • -
    • Use the chat button to communicate with other players online. You can also join a club or create your own club and invite your friends.
    • -
    -

    Conclusion

    -

    Drive Zone Online is a car driving simulator game that offers you a realistic and immersive experience of driving in a huge open world. You can choose from 50+ cars, customize them with 30+ body kits, vinyls, rims, bumpers, spoilers and more, and test your driving skills in various modes such as drift, race, skill test, driving school and multiplayer. You can also explore different areas such as city, desert airfield, racing track, highway, beach area, port and more. You can also find hidden bonuses and secrets on the map. The game has realistic graphics that create a stunning picture on your mobile phone. The game also has high performance that allows you to play smoothly on various devices. You can also adjust the graphics settings to suit your preferences.

    -

    If you want to download Drive Zone Online APK for your Android device, you can follow the steps mentioned above. You can also use the tips and tricks mentioned above to improve your driving skills and have more fun in Drive Zone Online. So what are you waiting for? Download Drive Zone Online APK now and enjoy driving in an endless open world.

    -

    FAQs

    -

    Here are some frequently asked questions about Drive Zone Online:

    -
      -
    1. Is Drive Zone Online free to play?
    2. -

      Yes, Drive Zone Online is free to play. However, it contains ads and in-app purchases that can enhance your gameplay experience.

      -
    3. Is Drive Zone Online safe to download?
    4. -

      Yes, Drive Zone Online is safe to download from APKCombo or APKCombo Download. These are trusted sources that provide original and virus-free APK files.

      -
    5. What are the requirements for playing Drive Zone Online?
    6. -

      The minimum requirements for playing Drive Zone Online are Android 5.0 or higher and 1 GB of RAM. The recommended requirements are Android 8.0 or higher and 2 GB of RAM.

      -
    7. How can I contact the developer of Drive Zone Online?
    8. -

      You can contact the developer of Drive Zone Online by sending an email to jetgamesfzllc@gmail.com. You can also follow them on Facebook, Instagram or YouTube for updates and news.

      -
    9. How can I rate and review Drive Zone Online?
    10. -

      You can rate and review Drive Zone Online by going to Google Play Store or App Store. You can also share your feedback and suggestions with the developer by sending an email or leaving a comment on their social media pages.

      -

    197e85843d
    -
    -
    \ No newline at end of file diff --git a/spaces/fatiXbelha/sd/Download MuAwaY Global and Play for Free on Any Device.md b/spaces/fatiXbelha/sd/Download MuAwaY Global and Play for Free on Any Device.md deleted file mode 100644 index 80720f1e2545599de7a797e20ab6436a2ca2bf3e..0000000000000000000000000000000000000000 --- a/spaces/fatiXbelha/sd/Download MuAwaY Global and Play for Free on Any Device.md +++ /dev/null @@ -1,98 +0,0 @@ -
    -

    MuAwaY Mobile Download: How to Play a Medieval Fantasy MMORPG on Your Smartphone

    -

    Do you love playing MMORPGs with medieval fantasy themes? Do you want to join a vibrant online community of warriors, wizards, elves, and gladiators? Do you want to experience a game that has been running for over a decade on PC and now has a mobile version? If you answered yes to any of these questions, then you should try MuAwaY Mobile, a 3D medieval fantasy MMORPG that you can play on your smartphone. In this article, we will tell you everything you need to know about MuAwaY Mobile download, features, tips, and tricks.

    -

    muaway mobile download


    Downloadhttps://urllie.com/2uNF5Q



    -

    What is MuAwaY Mobile?

    -

    MuAwaY Mobile is a mobile version of the PC game MuAwaY, which is a 3D medieval fantasy MMORPG that has been available since 2007. The game allows you to choose from four classes: Dark Wizard, Dark Knight, Fairy Elf, or Magic Gladiator, and fight against thousands of online players in a unique fantasy world. You can collect items, evolve your character, and conquer continents in this exciting adventure.

    -

    The mobile version of MuAwaY has been fully redone and optimized for any screen size on your smartphone. The controls have been adapted to make the gameplay smooth and easy. You can enjoy the same features and systems as the PC version, such as trade system, guild, party, PVP, events, and more.

    -

    How to Download MuAwaY Mobile?

    -

    Downloading MuAwaY Mobile is very simple. You can choose from three options:

    -

    muaway mobile download apk
    -muaway mobile download ios
    -muaway mobile download pc
    -muaway mobile download free
    -muaway mobile download latest version
    -muaway mobile download android
    -muaway mobile download google play
    -muaway mobile download app store
    -muaway mobile download for windows
    -muaway mobile download for mac
    -muaway mobile download online
    -muaway mobile download offline
    -muaway mobile download 2023
    -muaway mobile download update
    -muaway mobile download hack
    -muaway mobile download mod
    -muaway mobile download cheats
    -muaway mobile download tips
    -muaway mobile download guide
    -muaway mobile download review
    -muaway mobile download gameplay
    -muaway mobile download trailer
    -muaway mobile download news
    -muaway mobile download events
    -muaway mobile download rewards
    -muaway mobile download characters
    -muaway mobile download classes
    -muaway mobile download skills
    -muaway mobile download items
    -muaway mobile download weapons
    -muaway mobile download armor
    -muaway mobile download accessories
    -muaway mobile download quests
    -muaway mobile download dungeons
    -muaway mobile download bosses
    -muaway mobile download monsters
    -muaway mobile download pvp
    -muaway mobile download arena
    -muaway mobile download guilds
    -muaway mobile download parties
    -muaway mobile download trade system
    -muaway mobile download security system
    -muaway mobile download interface system
    -muaway mobile download balance system
    -muaway mobile download fantasy world
    -muaway mobile download medieval world
    -muaway mobile download mmorpg game
    -muaway mobile download role playing game

    -
      -
    • Download from Google Play if you have an Android device. You can find the app by searching for "MuAwaY Global" or "MuAwaY Philippines" depending on your region. You can also use this link or this link to access the app directly.
    • -
    • Download from App Store if you have an iOS device. You can find the app by searching for "MuAwaY" or use this link to access the app directly.
    • -
    • Download the Android APK if you want to install the app manually. You can find the APK file by visiting this website and clicking on "Download the Android APK".
    • -
    -

    Before you download MuAwaY Mobile, make sure that your device meets the system requirements and compatibility. The game requires Android 4.4 or higher or iOS 9.0 or higher. It also requires at least 1 GB of RAM and 500 MB of storage space. The game works on most smartphones and tablets, but some devices may not be supported.

    -

    After hidden in a map), and more. You can check the schedule and details of the events by tapping on the "Event" button on the top right corner of the screen. -

  13. Watch some gameplay videos and reviews to learn more about the game. You can find many gameplay videos and reviews of MuAwaY Mobile on YouTube, Twitch, Facebook, and other platforms. You can watch these videos to learn more about the game, such as how to play, how to level up, how to farm, how to PVP, how to join events, and more. You can also get some tips and tricks from other players and experts.
  14. - -

    Conclusion

    -

    MuAwaY Mobile is a 3D medieval fantasy MMORPG that you can play on your smartphone. It is a mobile version of the PC game MuAwaY, which has been running for over a decade. You can choose from four classes and fight against thousands of online players in a unique fantasy world. You can download MuAwaY Mobile from Google Play, App Store, or Android APK. You can enjoy the same features and systems as the PC version, such as trade system, guild, party, PVP, events, and more. You can also use some tips and tricks to improve your gameplay and have more fun. If you are looking for a fun and engaging MMORPG to play on your smartphone, you should try MuAwaY Mobile today.

    -

    FAQs

    -

    Here are some frequently asked questions about MuAwaY Mobile:

    - - - - - - - - - - - - - - - - - - - - - - - - - -
    QuestionAnswer
    Is MuAwaY Mobile free to play?Yes, MuAwaY Mobile is free to play. You can download and play the game without spending any money. However, you can also buy some optional items and services with real money if you want to support the game or enhance your experience.
    Can I play MuAwaY Mobile offline?No, MuAwaY Mobile is an online game that requires an internet connection to play. You need to be connected to the internet to access the game servers and interact with other players.
    Can I play MuAwaY Mobile with my friends?Yes, you can play MuAwaY Mobile with your friends. You can invite your friends to join your guild or party, or chat with them in the game. You can also trade items, duel, or cooperate with them in various events.
    How can I contact the support team of MuAwaY Mobile?You can contact the support team of MuAwaY Mobile by using the "Support" option in the menu. You can also visit their website or their Facebook page for more information and updates.
    What are the differences between MuAwaY Global and MuAwaY Philippines?MuAwaY Global and MuAwaY Philippines are two different versions of MuAwaY Mobile that cater to different regions. MuAwaY Global is available worldwide except for Philippines, while MuAwaY Philippines is available only for Philippines. The two versions have different servers, languages, currencies, and events.

    401be4b1e0
    -
    -
    \ No newline at end of file diff --git a/spaces/fatiXbelha/sd/Episode Choose Your Story Hack How to Get Free Passes Gems without Downloading Cheats.md b/spaces/fatiXbelha/sd/Episode Choose Your Story Hack How to Get Free Passes Gems without Downloading Cheats.md deleted file mode 100644 index 1f70d25a579c670cf4d0d440e13e6faca310d6f6..0000000000000000000000000000000000000000 --- a/spaces/fatiXbelha/sd/Episode Choose Your Story Hack How to Get Free Passes Gems without Downloading Cheats.md +++ /dev/null @@ -1,121 +0,0 @@ -
    -

    Episode Choose Your Story Cheats Download: How to Get Unlimited Free Passes and Gems

    -

    If you are a fan of interactive stories, you might have heard of Episode Choose Your Story, a popular app that lets you create your own characters and live your stories with love, romance, adventure, and drama. But did you know that you can also get unlimited free passes and gems to unlock more episodes, choices, outfits, and features in the app? In this article, we will show you how to get free passes and gems legally, as well as how to use cheats to get them faster and easier. Read on to find out more!

    -

    What is Episode Choose Your Story?

    -

    A brief overview of the app

    -

    Episode Choose Your Story is a mobile storytelling network and platform that allows you to live your stories with over 150,000 gripping stories, where you make choices that matter. You can customize your avatar, develop relationships with your favorite characters, change fate through your choices, discover different endings, and immerse yourself in diverse worlds. You can also write and publish your own interactive stories on Episode's platform, amassing millions of reads yourself.

    -

    episode choose your story cheats download


    Downloadhttps://urllie.com/2uNCmP



    -

    The benefits of having more passes and gems

    -

    Passes and gems are the two main currencies in Episode Choose Your Story. Passes are used to access new episodes of the stories you want to read. Gems are used to make premium choices that can affect the outcome of the story, as well as to buy exclusive outfits, hairstyles, accessories, and backgrounds. Having more passes and gems can help you enjoy the app more fully, as you can explore more stories, make more choices, customize your character more freely, and influence the story more significantly.

    -

    How to get free passes and gems legally

    -

    Rate and review the app

    -

    One of the easiest ways to get free passes is to rate and review the app when prompted on Google Play or Apple's App Store. According to [episodetricks.org](^7^), you can get three free passes just by doing this simple task. It might take you a few minutes, but it can't do any harm!

    -

    Watch ads and complete offers

    -

    Another way to get free passes and gems is to watch ads and complete offers in the app. You can find these options in the store section of the app. By watching ads, you can earn one pass every four hours. By completing offers, you can earn varying amounts of passes and gems depending on the difficulty and length of the offer. Some examples of offers are downloading other apps, taking surveys, signing up for newsletters, etc.

    -

    Refer friends and join contests

    -

    A third way to get free passes and gems is to refer friends and join contests in the app. You can find these options in the profile section of the app. By referring friends, you can earn five passes for each friend who downloads the app and enters your referral code. By joining contests, you can earn gems by participating in various challenges and competitions, such as writing stories, creating outfits, voting for stories, etc.

    -

    How to use cheats to get unlimited free passes and gems

    -

    The risks of using cheats

    -

    While getting free passes and gems legally might take some time and effort, using cheats might seem like a tempting shortcut. However, using cheats can also come with some risks that you should be aware of before you try them. Some of the risks are:

    -
      -
    • Viruses and malware: Some cheats might require you to download files or apps that contain harmful software that can damage your device or steal your personal information.
    • -
    • Scams and phishing: Some cheats might require you to enter your email, password, or credit card details that can be used to hack your account or charge you money without your consent.
    • -
    • Bans and suspensions: Some cheats might violate the terms of service of the app and get detected by the developers. This can result in your account being banned or suspended from the app, losing all your progress and purchases.
    • -
    -

    Therefore, you should be careful and cautious when using cheats, and only use them at your own risk.

    -

    The best cheats available online

    -

    If you still want to use cheats to get unlimited free passes and gems, you should look for the best ones available online. According to [episodetricks.org], some of the best cheats are:

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    CheatFeaturesProsCons
    [Episode Choose Your Story Hack]- Generates unlimited passes and gems
    - Works on Android and iOS devices
    - No download or installation required
    - No survey or human verification required
    - No root or jailbreak required
    - Easy to use
    - Fast and reliable
    - Safe and secure
    - Updated regularly
    - Might not work sometimes
    - Might have bugs or errors
    - Might get patched by the developers
    [Episode Choose Your Story Mod APK]- Provides unlimited passes and gems
    - Unlocks all episodes and choices
    - Unlocks all outfits and accessories
    - Works on Android devices only
    - Requires download and installation
    - Free to download
    - Unlimited features
    - No survey or human verification required
    - No root required
    - Might contain viruses or malware
    - Might cause compatibility issues
    - Might get banned or suspended by the developers
    [Episode Choose Your Story Online Generator]- Produces unlimited passes and gems
    - Works on any device with a browser
    - No download or installation required
    - Requires survey or human verification
    - Simple to use
    - Compatible with any device
    - No root or jailbreak required
    - Might be a scam or phishing site
    - Might take a long time to complete the verification
    - Might not deliver the resources
    [Episode Choose Your Story Cheat Codes]- Gives unlimited passes and gems
    - Works on Android and iOS devices
    - Requires entering cheat codes in the app
    - No download or installation required
    - Fun to use
    - No survey or human verification required
    - No root or jailbreak required
    - Might not work on some devices or versions
    - Might have limited uses or expiration dates
    - Might get detected by the developers
    -

    How to download and use cheats safely

    -

    If you decide to download and use cheats, you should follow some steps to ensure your safety and security. Here are some tips on how to download and use cheats safely:

    -

    episode choose your story hacks download
    -episode choose your story mod apk download
    -episode choose your story unlimited passes and gems download
    -episode choose your story cheats no survey download
    -episode choose your story cheats ios download
    -episode choose your story cheats android download
    -episode choose your story cheats online download
    -episode choose your story cheats generator download
    -episode choose your story cheats codes download
    -episode choose your story cheats without verification download
    -episode choose your story cheats 2023 download
    -episode choose your story cheats free download
    -episode choose your story cheats for pc download
    -episode choose your story cheats app download
    -episode choose your story cheats tool download
    -episode choose your story cheats apk download
    -episode choose your story cheats bluestacks download
    -episode choose your story cheats windows download
    -episode choose your story cheats mac download
    -episode choose your story cheats reddit download
    -episode choose your story cheats youtube download
    -episode choose your story cheats website download
    -episode choose your story cheats guide download
    -episode choose your story cheats tips download
    -episode choose your story cheats tricks download
    -episode choose your story cheats tutorial download
    -episode choose your story cheats review download
    -episode choose your story cheats legit download
    -episode choose your story cheats safe download
    -episode choose your story cheats working download
    -episode choose your story cheats updated download
    -episode choose your story cheats latest download
    -episode choose your story cheats easy download
    -episode choose your story cheats fast download
    -episode choose your story cheats simple download
    -episode choose your story cheats best download
    -episode choose your story cheats top download
    -episode choose your story cheats new download
    -episode choose your story cheats 2022 download
    -episode choose your story cheats 2021 download

    -
      -
    1. Choose a reputable and reliable source for the cheats. You can check the reviews, ratings, comments, and feedback from other users to verify the quality and legitimacy of the cheats.
    2. -
    3. Scan the files or apps for viruses or malware before downloading or installing them. You can use a trusted antivirus or anti-malware software to do this.
    4. -
    5. Backup your device and your app data before using the cheats. You can use a cloud service or an external storage device to do this.
    6. -
    7. Follow the instructions carefully and correctly when using the cheats. You can read the FAQs, guides, tutorials, or manuals provided by the cheat developers to learn how to use the cheats properly.
    8. -
    9. Use the cheats sparingly and moderately. You can avoid using the cheats too often or too excessively to reduce the risk of getting detected or banned by the developers.
    10. -
    -

    Conclusion

    -

    Episode Choose Your Story is a fun and engaging app that allows you to live your stories with love, romance, adventure, and drama. However, if you want to enjoy the app more fully, you might need more passes and gems to unlock more episodes, choices, outfits, and features. You can get free passes and gems legally by rating and reviewing the app, watching ads and completing offers, referring friends and joining contests. You can also use cheats to get unlimited free passes and gems faster and easier, but you should be aware of the risks and use them safely. We hope this article has helped you learn more about Episode Choose Your Story cheats download. Happy reading!

    -

    FAQs

    -

    Here are some frequently asked questions related to Episode Choose Your Story cheats download:

    -
      -
    1. Q: Are Episode Choose Your Story cheats legal?
      A: Episode Choose Your Story cheats are not legal, as they violate the terms of service of the app. Using cheats can result in your account being banned or suspended from the app.
    2. -
    3. Q: Are Episode Choose Your Story cheats safe?
      A: Episode Choose Your Story cheats are not safe, as they might contain viruses or malware that can harm your device or steal your personal information. They might also be scams or phishing sites that can hack your account or charge you money without your consent.
    4. -
    5. Q: How do I get more passes and gems without using cheats?
      A: You can get more passes and gems without using cheats by rating and reviewing the app, watching ads and completing offers, referring friends and joining contests. These are legal and safe ways to earn more passes and gems in the app.
    6. -
    7. Q: How do I write my own story on Episode Choose Your Story?
      A: You can write your own story on Episode Choose Your Story by using the Episode Writer Portal on their website. You can create your own characters, scenes, dialogues, choices, animations, sounds, etc. You can also publish your story on the app and get feedback from other readers.
    8. -
    9. Q: How do I contact Episode Choose Your Story support?
      A: You can contact Episode Choose Your Story support by filling out a form on their website or by emailing them at support@episodeinteractive.com. You can also visit their help center or their forums for more information.
    10. -

    197e85843d
    -
    -
    \ No newline at end of file diff --git a/spaces/fclong/summary/fengshen/data/universal_datamodule/universal_sampler.py b/spaces/fclong/summary/fengshen/data/universal_datamodule/universal_sampler.py deleted file mode 100644 index 86db3016d0f9795f5c8e501da2ff55c6e34e7222..0000000000000000000000000000000000000000 --- a/spaces/fclong/summary/fengshen/data/universal_datamodule/universal_sampler.py +++ /dev/null @@ -1,125 +0,0 @@ -# coding=utf-8 -# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -"""Dataloaders.""" - - -import torch - - -class PretrainingSampler: - - def __init__(self, total_samples, consumed_samples, micro_batch_size, - data_parallel_rank, data_parallel_size, drop_last=True): - # Keep a copy of input params for later use. - self.total_samples = total_samples - self.consumed_samples = consumed_samples - self.micro_batch_size = micro_batch_size - self.data_parallel_rank = data_parallel_rank - self.micro_batch_times_data_parallel_size = \ - self.micro_batch_size * data_parallel_size - self.drop_last = drop_last - - # Sanity checks. - assert self.total_samples > 0, \ - 'no sample to consume: {}'.format(self.total_samples) - assert self.consumed_samples < self.total_samples, \ - 'no samples left to consume: {}, {}'.format(self.consumed_samples, - self.total_samples) - assert self.micro_batch_size > 0 - assert data_parallel_size > 0 - assert self.data_parallel_rank < data_parallel_size, \ - 'data_parallel_rank should be smaller than data size: {}, ' \ - '{}'.format(self.data_parallel_rank, data_parallel_size) - - def __len__(self): - return self.total_samples // self.micro_batch_times_data_parallel_size - - def get_start_end_idx(self): - start_idx = self.data_parallel_rank * self.micro_batch_size - end_idx = start_idx + self.micro_batch_size - return start_idx, end_idx - - def __iter__(self): - batch = [] - # Last batch will be dropped if drop_last is not set False - for idx in range(self.consumed_samples, self.total_samples): - batch.append(idx) - if len(batch) == self.micro_batch_times_data_parallel_size: - start_idx, end_idx = self.get_start_end_idx() - yield batch[start_idx:end_idx] - batch = [] - - # Check the last partial batch and see drop_last is set - if len(batch) > 0 and not self.drop_last: - start_idx, end_idx = self.get_start_end_idx() - yield batch[start_idx:end_idx] - - -class PretrainingRandomSampler: - - def __init__(self, total_samples, consumed_samples, micro_batch_size, - data_parallel_rank, data_parallel_size, epoch): - # Keep a copy of input params for later use. - self.total_samples = total_samples - self.consumed_samples = consumed_samples - self.micro_batch_size = micro_batch_size - self.data_parallel_rank = data_parallel_rank - self.data_parallel_size = data_parallel_size - self.micro_batch_times_data_parallel_size = \ - self.micro_batch_size * data_parallel_size - self.last_batch_size = \ - self.total_samples % self.micro_batch_times_data_parallel_size - self.epoch = epoch - - # Sanity checks. - assert self.total_samples > 0, \ - 'no sample to consume: {}'.format(self.total_samples) - assert self.micro_batch_size > 0 - assert data_parallel_size > 0 - assert self.data_parallel_rank < data_parallel_size, \ - 'data_parallel_rank should be smaller than data size: {}, ' \ - '{}'.format(self.data_parallel_rank, data_parallel_size) - - def __len__(self): - return self.total_samples // self.micro_batch_times_data_parallel_size - - def __iter__(self): - active_total_samples = self.total_samples - self.last_batch_size - current_epoch_samples = self.consumed_samples % active_total_samples - assert current_epoch_samples % self.micro_batch_times_data_parallel_size == 0 - - # data sharding and random sampling - bucket_size = (self.total_samples // self.micro_batch_times_data_parallel_size) \ - * self.micro_batch_size - bucket_offset = current_epoch_samples // self.data_parallel_size - start_idx = self.data_parallel_rank * bucket_size - - g = torch.Generator() - g.manual_seed(self.epoch) - random_idx = torch.randperm(bucket_size, generator=g).tolist() - idx_range = [start_idx + x for x in random_idx[bucket_offset:]] - - batch = [] - # Last batch if not complete will be dropped. - for idx in idx_range: - batch.append(idx) - if len(batch) == self.micro_batch_size: - self.consumed_samples += self.micro_batch_times_data_parallel_size - yield batch - batch = [] - - def set_epoch(self, epoch): - self.epoch = epoch diff --git a/spaces/fengmuxi/ChatGpt-Web/app/api/user/logout/route.ts b/spaces/fengmuxi/ChatGpt-Web/app/api/user/logout/route.ts deleted file mode 100644 index 4b0daa2c24096bbd7b354c61dfdaa46df877e235..0000000000000000000000000000000000000000 --- a/spaces/fengmuxi/ChatGpt-Web/app/api/user/logout/route.ts +++ /dev/null @@ -1,35 +0,0 @@ -import { NextRequest, NextResponse } from "next/server"; -import { auth, getIP } from "../../auth"; - -export async function POST(req: NextRequest) { - try { - const authResult = auth(req); - if (authResult.error) { - return NextResponse.json(authResult, { - status: 401, - }); - } - const token=req.headers.get("auth") ?? "" - let res=await fetch("https://eladmin.dwzynj.top/auth/logout", { - method: "DELETE", - headers:{ - "Authorization":token, - "UserIp": String(getIP(req)) - } - }) - if(res.status==401){ - let msg={ - flag:false, - msg:"未登录!" - } - // console.log(res.status) - return new Response(JSON.stringify(msg)) - } - let msg=await res.json() - console.log(msg) - return new Response(JSON.stringify(msg)) - } catch (e) { - console.error("[eladmin] ", e); - return new Response(JSON.stringify(e)); - } -} diff --git a/spaces/feregVcuzo/sanity-test-midi/checkpoint/Desert Car Racing A Free and Awesome 3D Game for Android Lovers.md b/spaces/feregVcuzo/sanity-test-midi/checkpoint/Desert Car Racing A Free and Awesome 3D Game for Android Lovers.md deleted file mode 100644 index ddde812bcdcb816461055c358a49a5156a9cebb2..0000000000000000000000000000000000000000 --- a/spaces/feregVcuzo/sanity-test-midi/checkpoint/Desert Car Racing A Free and Awesome 3D Game for Android Lovers.md +++ /dev/null @@ -1,45 +0,0 @@ -
    -

    , , ,

      ,
    • , etc. to format the article. 6. I will write " Here are the two tables I created: | Outline of the Article | Article with HTML Formatting | | --- | --- |

      Desert Super Car Racing APK: A Review

      | | H2: Introduction |

      Introduction

      Do you love racing games? Do you want to experience the thrill of driving super cars in a desert environment? If yes, then you should try Desert Super Car Racing APK, a free Android game that lets you race against other players or against the clock in various desert tracks.

      | | H2: Features of Desert Super Car Racing APK |

      Features of Desert Super Car Racing APK

      Desert Super Car Racing APK is a game that offers many features to make your racing experience more enjoyable and challenging. Here are some of them:

      -

      desert super car racing apk


      Download File ○○○ https://gohhs.com/2uPv7g



      • Multiple cars to choose from: You can select from different super cars, each with its own speed, handling, and design. You can also customize your car's color, wheels, and stickers.
      • Various desert tracks: You can race in different desert locations, such as sand dunes, rocky hills, oasis, and pyramids. Each track has its own obstacles, curves, and jumps.
      • Different game modes: You can play in single-player mode or multiplayer mode. In single-player mode, you can race against the clock or against AI opponents. In multiplayer mode, you can race against other players online or locally via Wi-Fi or Bluetooth.
      • Realistic graphics and sound effects: The game has high-quality graphics and sound effects that make you feel like you are really driving a super car in a desert. You can see the dust, smoke, and shadows on the screen, and hear the engine roar, tires screech, and wind blow.
      | | H2: How to Download and Install Desert Super Car Racing APK |

      How to Download and Install Desert Super Car Racing APK

      If you want to play Desert Super Car Racing APK on your Android device, you need to follow these steps:

      1. Go to [Desert Car Racing APK (Game) - Free Download - APKCombo](^1^) and click on the "Download APK" button.
      2. Wait for the download to finish and then open the file.
      3. Allow the installation of unknown sources if prompted.
      4. Follow the instructions on the screen to install the game.
      5. Launch the game and enjoy!
      | | H2: Pros and Cons of Desert Super Car Racing APK |

      Pros and Cons of Desert Super Car Racing APK

      Like any other game, Desert Super Car Racing APK has its advantages and disadvantages. Here are some of them:

      -

      desert super car racing game download
      -desert super car racing 3d apk
      -desert super car racing mod apk
      -desert super car racing android game
      -desert super car racing free apk
      -desert super car racing online game
      -desert super car racing apk latest version
      -desert super car racing apk for pc
      -desert super car racing apk unlimited money
      -desert super car racing apk offline
      -desert super car racing simulator apk
      -desert super car racing adventure apk
      -desert super car racing hd apk
      -desert super car racing 2023 apk
      -desert super car racing best game apk
      -desert super car racing extreme apk
      -desert super car racing fun game apk
      -desert super car racing new game apk
      -desert super car racing pro apk
      -desert super car racing realistic apk
      -desert super car racing 4x4 apk
      -desert super car racing drift apk
      -desert super car racing rally apk
      -desert super car racing stunt apk
      -desert super car racing turbo apk
      -desert super car racing 2 apk
      -desert super car racing classic apk
      -desert super car racing multiplayer apk
      -desert super car racing nitro apk
      -desert super car racing speed apk
      -desert super car racing challenge apk
      -desert super car racing crazy apk
      -desert super car racing deluxe apk
      -desert super car racing full version apk
      -desert super car racing hack apk
      -desert super car racing premium apk
      -desert super car racing ultimate apk
      -desert super car racing vr game apk
      -desert super car racing world game apk
      -desert super car racing zombie game apk

      ProsCons
      - Free to play- Contains ads
      - Easy to control- Requires internet connection for multiplayer mode
      - Fun and addictive- May drain battery quickly
      | | H2: Tips and Tricks for Playing Desert Super Car Racing APK |

      Tips and Tricks for Playing Desert Super Car Racing APK

      If you

      197e85843d
      -
      -
      \ No newline at end of file diff --git a/spaces/feregVcuzo/sanity-test-midi/checkpoint/Download Lite ROM The Best Custom ROM for Your Smartphone.md b/spaces/feregVcuzo/sanity-test-midi/checkpoint/Download Lite ROM The Best Custom ROM for Your Smartphone.md deleted file mode 100644 index 511cc7ed776b52af17e70e429c8d828d40c5154c..0000000000000000000000000000000000000000 --- a/spaces/feregVcuzo/sanity-test-midi/checkpoint/Download Lite ROM The Best Custom ROM for Your Smartphone.md +++ /dev/null @@ -1,130 +0,0 @@ -
      -

      Download Lite ROM: What Is It and Why You Should Try It

      -

      If you are an Android user who loves to customize your device and get the most out of it, you might have heard of custom ROMs. Custom ROMs are modified versions of the Android operating system that offer various features, enhancements, and optimizations that are not available in the stock ROM. However, not all custom ROMs are created equal. Some of them are heavy, bloated, and slow, while others are light, fast, and smooth. In this article, we will focus on the latter category, which is known as lite ROMs. We will explain what a lite ROM is, what are its benefits, how to download and install it on your Android device, and what are the best lite ROMs for Android in 2023. We will also discuss the risks and drawbacks of using a lite ROM, so you can make an informed decision before flashing one.

      -

      What Is a Lite ROM?

      -

      A lite ROM is a custom ROM that is designed to be as lightweight, minimal, and efficient as possible. It aims to provide a fast, smooth, and stable Android experience without compromising on performance, battery life, or security. A lite ROM usually removes or replaces the unnecessary or redundant apps, services, features, and bloatware that come with the stock ROM or the manufacturer's skin. It also optimizes the system settings, kernel, memory management, and power consumption to improve the overall speed and responsiveness of the device.

      -

      download lite rom


      Downloadhttps://gohhs.com/2uPuIn



      -

      Definition and Features of a Lite ROM

      -

      A lite ROM can be defined as an aftermarket firmware production based on the Android source code provided by Google or other developers. It is a third-party operating system that replaces the factory-installed stock ROM or skin on your phone. A lite ROM typically has the following features:

      -
        -
      • It is based on AOSP (Android Open Source Project) or other popular custom ROMs like LineageOS or Pixel Experience.
      • -
      • It has a clean, simple, and stock-like user interface without any unnecessary modifications or customizations.
      • -
      • It has minimal or no pre-installed apps or bloatware that consume system resources or storage space.
      • -
      • It has essential features and functions that enhance the usability and functionality of the device.
      • -
      • It has regular updates and security patches to keep the device up-to-date and secure.
      • -
      • It has support for various devices from different manufacturers and models.
      • -
      -

      Benefits of Using a Lite ROM

      -

      Using a lite ROM can have several benefits for your Android device. Some of them are:

      -
        -
      • It can improve the performance and speed of your device by removing the bloatware and optimizing the system settings.
      • -
      • It can extend the battery life of your device by reducing the power consumption and background processes.
      • -
      • It can free up storage space on your device by removing the unnecessary apps and files.
      • -
      • It can update your device to the latest version of Android or add new features that are not available in the stock ROM.
      • -
      • It can give you more control and customization options over your device by allowing you to root it, install custom kernels, mods, themes, etc.
      • -
      • It can revive your old or unsupported device by providing it with a new lease of life.
      • -
      -

      How to Download and Install a Lite ROM on Your Android Device

      -

      If you are interested in trying out a lite ROM on your Android device, you will need to download and install it on your device. However, before you do that, you need to be aware of the requirements and precautions that are involved in flashing a custom ROM. Flashing a custom ROM is not a simple or risk-free process, and it can potentially damage or brick your device if done incorrectly. Therefore, you should only proceed if you are confident and experienced in doing so, or if you are willing to take the responsibility for any consequences that may arise. Here are some of the things you need to do before flashing a lite ROM on your device:

      -

      Requirements and Precautions Before Flashing a Lite ROM

      -
        -
      • Make sure your device is compatible with the lite ROM you want to flash. You can check the official website or forum of the ROM developer to see the list of supported devices and models.
      • -
      • Make sure your device has an unlocked bootloader and a custom recovery installed. An unlocked bootloader allows you to flash custom ROMs and other modifications on your device, while a custom recovery is a software that lets you backup, restore, and install ROMs and other files on your device. You can find guides on how to unlock the bootloader and install a custom recovery for your device online.
      • -
      • Make sure your device has enough battery charge (at least 50%) and enough storage space (at least 2 GB) before flashing the lite ROM. A low battery or insufficient storage can cause errors or interruptions during the flashing process, which can lead to bricking or corruption of your device.
      • -
      • Make sure you backup all your important data and files on your device before flashing the lite ROM. Flashing a custom ROM will erase all the data and files on your device, including your contacts, messages, photos, videos, apps, settings, etc. You can use the backup feature of your custom recovery or other apps to backup your data and files.
      • -
      • Make sure you download the correct and latest version of the lite ROM for your device from a trusted source. You can find the download links for the lite ROMs on their official websites or forums. You should also download the Google Apps (GApps) package if you want to use Google services and apps on your device. GApps are not included in most custom ROMs due to licensing issues, so you need to flash them separately after flashing the ROM.
      • -
      • Make sure you follow the instructions and guidelines provided by the ROM developer carefully and correctly when flashing the lite ROM. Different ROMs may have different installation methods and steps, so you should always read and follow the instructions carefully. Do not skip any steps or do anything that is not mentioned in the instructions.
      • -
      -

      Steps to Download and Install a Lite ROM

      -

      Once you have met all the requirements and precautions mentioned above, you are ready to download and install a lite ROM on your device. Here are the general steps to do so:

      -
        -
      1. Download the lite ROM zip file and the GApps zip file (if needed) for your device from their respective sources and save them on your computer or on your device's internal storage or SD card.
      2. -
      3. Turn off your device and boot it into recovery mode by pressing and holding a combination of buttons (usually volume up + power or volume down + power) until you see the recovery screen.
      4. -
      5. In the recovery menu, select "Wipe" or "Advanced Wipe" and wipe the system, data, cache, and Dalvik cache partitions. This will erase all the data and files on your device and prepare it for flashing the new ROM.
      6. -
      7. Select "Install" or "Install Zip" and navigate to the location where you saved the lite ROM zip file. Select it and swipe to confirm flashing. Wait for the flashing process to complete.
      8. -
      9. If you want to flash GApps as well, repeat step 4 with the GApps zip file.
      10. -
      11. Once both files are flashed, select "Reboot System" or "Reboot" to restart your device.
      12. -
      -

      Congratulations! You have successfully downloaded and installed a lite ROM on your Android device. You can now enjoy a fast, smooth, and stable Android experience with minimal bloatware and maximum performance.

      -

      Best Lite ROMs for Android in 2023

      -

      There are many lite ROMs available for Android devices in 2023, but not all of them are equally good or suitable for every user. Depending on your preferences, needs, and expectations, you may find some lite ROMs better than others. To help you choose the best lite ROM for your device, we have compiled a list of some of the most popular and well-reviewed lite ROMs for Android in 2023. Here they are:

      -

      download lite rom for mi 11
      -download lite rom for android
      -download lite rom for samsung galaxy s21
      -download lite rom for redmi note 10
      -download lite rom for oneplus 9
      -download lite rom for huawei p40
      -download lite rom for oppo reno 5
      -download lite rom for vivo v20
      -download lite rom for realme 8
      -download lite rom for nokia 8.3
      -download photoshop lightroom online
      -download eliteroms for custom android
      -download miui lite rom for courbet
      -download lineageos lite rom for pixel 5
      -download pixel experience lite rom for poco x3
      -download havoc os lite rom for moto g9
      -download resurrection remix lite rom for asus zenfone 7
      -download bliss os lite rom for pc
      -download android 12 beta lite rom for mi a3
      -download android 11 stable lite rom for lg g8
      -download crdroid lite rom for lenovo z6 pro
      -download aosp extended lite rom for sony xperia 1 iii
      -download arrow os lite rom for nubia red magic 6
      -download corvus os lite rom for honor 10x
      -download dot os lite rom for zte axon 11
      -download evolution x lite rom for black shark 4
      -download fluid os lite rom for meizu 18 pro
      -download ion os lite rom for tecno camon 17 pro
      -download msm xtended lite rom for infinix note 10 pro
      -download octavi os lite rom for umidigi bison gt pro
      -download paranoid android lite rom for fairphone 3+
      -download pe plus lite rom for moto edge plus
      -download project sakura lite rom for realme x7 max
      -download revenge os lite rom for samsung galaxy a52s 5g
      -download rros q-lite rom for nokia c20 plus
      -download spark os lite rom for oppo find x3 pro
      -download superior os lite rom for vivo iqoo neo5 vitalit edition
      -download syberia os lite rom for lenovo legion duel 2
      -dot os v5.1.2 official courbet miui android 11
      -eliteroms v12.5.4.0.rkfeuxm stable official courbet miui android 11
      -evolution x v5.9 official courbet aosp android 11
      -fluid v2.0 official courbet aosp android 11
      -havoc-os v4.6 official courbet aosp android 11
      -lineageos v18.1 unofficial courbet aosp android 11
      -mi globe v12.5.4.0.rkfeuxm stable official courbet miui android 11
      -miui mix v12.5.4.0.rkfeuxm stable official courbet miui android 11
      -pixel experience v11.0 plus edition official courbet aosp android 11
      -project sakura v5.g official courbet aosp android 11

      -

      LineageOS

      -

      LineageOS is one of the oldest and most popular custom ROM for Android devices. It is based on AOSP and offers a pure and clean Android experience with minimal modifications and customizations. It has a wide range of features and functions that enhance the usability and functionality of the device, such as privacy guard, live display, root access, OTA updates, etc. It also has a large and active community of developers and users who provide support, feedback, and updates for various devices and models. LineageOS is a lite ROM that is fast, smooth, stable, and secure. It is suitable for users who want a stock-like Android experience with some added features and options.

      -

      Pixel Experience

      -

      Pixel Experience is a custom ROM that aims to bring the Google Pixel experience to other Android devices. It is based on AOSP and includes all the features, apps, and services that are found on the Pixel devices, such as the Pixel Launcher, Google Camera, Google Assistant, Google Photos, etc. It also has some additional features and optimizations that improve the performance, battery life, and stability of the device. Pixel Experience is a lite ROM that is simple, elegant, and smooth. It is suitable for users who want a Pixel-like Android experience with minimal bloatware and maximum performance.

      -

      Bliss ROM

      -

      Bliss ROM is a custom ROM that is designed to provide a blissful Android experience to the users. It is based on AOSP and other popular custom ROMs like LineageOS and Pixel Experience. It has a unique and beautiful user interface that can be customized with various themes, icons, fonts, wallpapers, etc. It also has a plethora of features and functions that enhance the usability and functionality of the device, such as gesture navigation, smart pixels, ambient display, gaming mode, etc. Bliss ROM is a lite ROM that is colorful, fun, and smooth. It is suitable for users who want a customizable Android experience with lots of features and options.

      -

      Risks and Drawbacks of Using a Lite ROM

      -

      While using a lite ROM can have many benefits for your Android device, it can also have some risks and drawbacks that you should be aware of before flashing one. Some of them are:

      -

      Potential Bricking and Warranty Voiding

      -

      Flashing a custom ROM can potentially brick your device if done incorrectly or if something goes wrong during the process. Bricking means that your device becomes unusable or unresponsive due to software or hardware damage. If your device gets bricked, you may not be able to recover it or fix it easily. You may need to use special tools or methods to unbrick it or take it to a professional service center for repair. Moreover, flashing a custom ROM can void your device's warranty if it is still valid. This means that you will not be able to claim any warranty service or support from the manufacturer or the seller if your device gets damaged or malfunctioning due to flashing a custom ROM.

      -

      Compatibility and Stability Issues

      -

      Flashing a custom ROM can cause compatibility and stability issues on your device if it is not well-developed or well-tested for your device model or variant. Compatibility issues mean that some features or functions of the custom ROM may not work properly or at all on your device due to hardware or software differences or limitations. Stability issues mean that your device may experience crashes, freezes, reboots, lags, bugs, glitches, or errors due to faulty or incomplete coding or optimization of the custom ROM. These issues can affect the performance, usability, and functionality of your device negatively.

      -

      Missing Features and Customizations

      -

      Flashing a custom ROM can make you miss some features and customizations that are present in the stock ROM or the manufacturer's skin on your device. These features and customizations may be useful or important for you depending on your preferences, needs, and expectations. For example, you may miss some camera modes or settings, some gesture controls or shortcuts, some security options or enhancements, some display modes or adjustments, etc. that are exclusive to the stock ROM or the manufacturer's skin. You may not be able to find or use these features and customizations on the custom ROM, or they may not work as well as they do on the stock ROM.

      -

      Conclusion

      -

      A lite ROM is a custom ROM that is designed to be as lightweight, minimal, and efficient as possible. It can improve the performance, battery life, and storage space of your Android device by removing the bloatware and optimizing the system settings. It can also update your device to the latest version of Android or add new features that are not available in the stock ROM. However, flashing a lite ROM can also have some risks and drawbacks, such as potential bricking and warranty voiding, compatibility and stability issues, and missing features and customizations. Therefore, you should weigh the pros and cons of using a lite ROM before flashing one on your device.

      -

      FAQs

      -

      Here are some of the frequently asked questions about downloading and installing a lite ROM on your Android device:

      -
        -
      • What is the difference between a lite ROM and a stock ROM?
        -A stock ROM is the official operating system that comes pre-installed on your device by the manufacturer or the carrier. A lite ROM is a custom operating system that replaces the stock ROM on your device by flashing it through a custom recovery. A lite ROM is usually based on AOSP or other popular custom ROMs like LineageOS or Pixel Experience. A lite ROM is lighter, faster, and smoother than a stock ROM, but it may also have some risks and drawbacks.
      • -
      • How do I know if my device is compatible with a lite ROM?
        -You can check the official website or forum of the lite ROM developer to see the list of supported devices and models. You can also search online for reviews, feedback, or guides from other users who have flashed the lite ROM on your device or a similar device. You should always make sure that you download the correct and latest version of the lite ROM for your device model or variant.
      • -
      • How do I backup my data and files before flashing a lite ROM?
        -You can use the backup feature of your custom recovery or other apps to backup your data and files before flashing a lite ROM. You should backup all your important data and files, such as contacts, messages, photos, videos, apps, settings, etc. You should also save your backup files on your computer or on an external storage device, such as an SD card or a USB drive. You should not rely on your device's internal storage or cloud storage for backup, as they may get erased or inaccessible during or after flashing.
      • -
      • How do I restore my data and files after flashing a lite ROM?
        -You can use the restore feature of your custom recovery or other apps to restore your data and files after flashing a lite ROM. You should restore your backup files from your computer or from an external storage device, such as an SD card or a USB drive. You should not restore your backup files from your device's internal storage or cloud storage, as they may be corrupted or incompatible with the new ROM.
      • -
      • How do I update my lite ROM to the latest version?
        -You can update your lite ROM to the latest version by downloading the update zip file from the official website or forum of the lite ROM developer and flashing it through your custom recovery. You should always check for updates regularly and download them from trusted sources. You should also backup your data and files before updating your lite ROM, as some updates may require a clean flash or a wipe of data.
      • -

      197e85843d
      -
      -
      \ No newline at end of file diff --git a/spaces/fffiloni/Video-Matting-Anything/GroundingDINO/groundingdino/util/visualizer.py b/spaces/fffiloni/Video-Matting-Anything/GroundingDINO/groundingdino/util/visualizer.py deleted file mode 100644 index 7a1b7b101e9b73f75f9136bc67f2063c7c1cf1c1..0000000000000000000000000000000000000000 --- a/spaces/fffiloni/Video-Matting-Anything/GroundingDINO/groundingdino/util/visualizer.py +++ /dev/null @@ -1,318 +0,0 @@ -# -*- coding: utf-8 -*- -""" -@File : visualizer.py -@Time : 2022/04/05 11:39:33 -@Author : Shilong Liu -@Contact : slongliu86@gmail.com -""" - -import datetime -import os - -import cv2 -import matplotlib.pyplot as plt -import numpy as np -import torch -from matplotlib import transforms -from matplotlib.collections import PatchCollection -from matplotlib.patches import Polygon -from pycocotools import mask as maskUtils - - -def renorm( - img: torch.FloatTensor, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] -) -> torch.FloatTensor: - # img: tensor(3,H,W) or tensor(B,3,H,W) - # return: same as img - assert img.dim() == 3 or img.dim() == 4, "img.dim() should be 3 or 4 but %d" % img.dim() - if img.dim() == 3: - assert img.size(0) == 3, 'img.size(0) shoule be 3 but "%d". (%s)' % ( - img.size(0), - str(img.size()), - ) - img_perm = img.permute(1, 2, 0) - mean = torch.Tensor(mean) - std = torch.Tensor(std) - img_res = img_perm * std + mean - return img_res.permute(2, 0, 1) - else: # img.dim() == 4 - assert img.size(1) == 3, 'img.size(1) shoule be 3 but "%d". (%s)' % ( - img.size(1), - str(img.size()), - ) - img_perm = img.permute(0, 2, 3, 1) - mean = torch.Tensor(mean) - std = torch.Tensor(std) - img_res = img_perm * std + mean - return img_res.permute(0, 3, 1, 2) - - -class ColorMap: - def __init__(self, basergb=[255, 255, 0]): - self.basergb = np.array(basergb) - - def __call__(self, attnmap): - # attnmap: h, w. np.uint8. - # return: h, w, 4. np.uint8. - assert attnmap.dtype == np.uint8 - h, w = attnmap.shape - res = self.basergb.copy() - res = res[None][None].repeat(h, 0).repeat(w, 1) # h, w, 3 - attn1 = attnmap.copy()[..., None] # h, w, 1 - res = np.concatenate((res, attn1), axis=-1).astype(np.uint8) - return res - - -def rainbow_text(x, y, ls, lc, **kw): - """ - Take a list of strings ``ls`` and colors ``lc`` and place them next to each - other, with text ls[i] being shown in color lc[i]. - - This example shows how to do both vertical and horizontal text, and will - pass all keyword arguments to plt.text, so you can set the font size, - family, etc. - """ - t = plt.gca().transData - fig = plt.gcf() - plt.show() - - # horizontal version - for s, c in zip(ls, lc): - text = plt.text(x, y, " " + s + " ", color=c, transform=t, **kw) - text.draw(fig.canvas.get_renderer()) - ex = text.get_window_extent() - t = transforms.offset_copy(text._transform, x=ex.width, units="dots") - - # #vertical version - # for s,c in zip(ls,lc): - # text = plt.text(x,y," "+s+" ",color=c, transform=t, - # rotation=90,va='bottom',ha='center',**kw) - # text.draw(fig.canvas.get_renderer()) - # ex = text.get_window_extent() - # t = transforms.offset_copy(text._transform, y=ex.height, units='dots') - - -class COCOVisualizer: - def __init__(self, coco=None, tokenlizer=None) -> None: - self.coco = coco - - def visualize(self, img, tgt, caption=None, dpi=180, savedir="vis"): - """ - img: tensor(3, H, W) - tgt: make sure they are all on cpu. - must have items: 'image_id', 'boxes', 'size' - """ - plt.figure(dpi=dpi) - plt.rcParams["font.size"] = "5" - ax = plt.gca() - img = renorm(img).permute(1, 2, 0) - # if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO': - # import ipdb; ipdb.set_trace() - ax.imshow(img) - - self.addtgt(tgt) - - if tgt is None: - image_id = 0 - elif "image_id" not in tgt: - image_id = 0 - else: - image_id = tgt["image_id"] - - if caption is None: - savename = "{}/{}-{}.png".format( - savedir, int(image_id), str(datetime.datetime.now()).replace(" ", "-") - ) - else: - savename = "{}/{}-{}-{}.png".format( - savedir, caption, int(image_id), str(datetime.datetime.now()).replace(" ", "-") - ) - print("savename: {}".format(savename)) - os.makedirs(os.path.dirname(savename), exist_ok=True) - plt.savefig(savename) - plt.close() - - def addtgt(self, tgt): - """ """ - if tgt is None or not "boxes" in tgt: - ax = plt.gca() - - if "caption" in tgt: - ax.set_title(tgt["caption"], wrap=True) - - ax.set_axis_off() - return - - ax = plt.gca() - H, W = tgt["size"] - numbox = tgt["boxes"].shape[0] - - color = [] - polygons = [] - boxes = [] - for box in tgt["boxes"].cpu(): - unnormbbox = box * torch.Tensor([W, H, W, H]) - unnormbbox[:2] -= unnormbbox[2:] / 2 - [bbox_x, bbox_y, bbox_w, bbox_h] = unnormbbox.tolist() - boxes.append([bbox_x, bbox_y, bbox_w, bbox_h]) - poly = [ - [bbox_x, bbox_y], - [bbox_x, bbox_y + bbox_h], - [bbox_x + bbox_w, bbox_y + bbox_h], - [bbox_x + bbox_w, bbox_y], - ] - np_poly = np.array(poly).reshape((4, 2)) - polygons.append(Polygon(np_poly)) - c = (np.random.random((1, 3)) * 0.6 + 0.4).tolist()[0] - color.append(c) - - p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.1) - ax.add_collection(p) - p = PatchCollection(polygons, facecolor="none", edgecolors=color, linewidths=2) - ax.add_collection(p) - - if "strings_positive" in tgt and len(tgt["strings_positive"]) > 0: - assert ( - len(tgt["strings_positive"]) == numbox - ), f"{len(tgt['strings_positive'])} = {numbox}, " - for idx, strlist in enumerate(tgt["strings_positive"]): - cate_id = int(tgt["labels"][idx]) - _string = str(cate_id) + ":" + " ".join(strlist) - bbox_x, bbox_y, bbox_w, bbox_h = boxes[idx] - # ax.text(bbox_x, bbox_y, _string, color='black', bbox={'facecolor': 'yellow', 'alpha': 1.0, 'pad': 1}) - ax.text( - bbox_x, - bbox_y, - _string, - color="black", - bbox={"facecolor": color[idx], "alpha": 0.6, "pad": 1}, - ) - - if "box_label" in tgt: - assert len(tgt["box_label"]) == numbox, f"{len(tgt['box_label'])} = {numbox}, " - for idx, bl in enumerate(tgt["box_label"]): - _string = str(bl) - bbox_x, bbox_y, bbox_w, bbox_h = boxes[idx] - # ax.text(bbox_x, bbox_y, _string, color='black', bbox={'facecolor': 'yellow', 'alpha': 1.0, 'pad': 1}) - ax.text( - bbox_x, - bbox_y, - _string, - color="black", - bbox={"facecolor": color[idx], "alpha": 0.6, "pad": 1}, - ) - - if "caption" in tgt: - ax.set_title(tgt["caption"], wrap=True) - # plt.figure() - # rainbow_text(0.0,0.0,"all unicorns poop rainbows ! ! !".split(), - # ['red', 'orange', 'brown', 'green', 'blue', 'purple', 'black']) - - if "attn" in tgt: - # if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO': - # import ipdb; ipdb.set_trace() - if isinstance(tgt["attn"], tuple): - tgt["attn"] = [tgt["attn"]] - for item in tgt["attn"]: - attn_map, basergb = item - attn_map = (attn_map - attn_map.min()) / (attn_map.max() - attn_map.min() + 1e-3) - attn_map = (attn_map * 255).astype(np.uint8) - cm = ColorMap(basergb) - heatmap = cm(attn_map) - ax.imshow(heatmap) - ax.set_axis_off() - - def showAnns(self, anns, draw_bbox=False): - """ - Display the specified annotations. - :param anns (array of object): annotations to display - :return: None - """ - if len(anns) == 0: - return 0 - if "segmentation" in anns[0] or "keypoints" in anns[0]: - datasetType = "instances" - elif "caption" in anns[0]: - datasetType = "captions" - else: - raise Exception("datasetType not supported") - if datasetType == "instances": - ax = plt.gca() - ax.set_autoscale_on(False) - polygons = [] - color = [] - for ann in anns: - c = (np.random.random((1, 3)) * 0.6 + 0.4).tolist()[0] - if "segmentation" in ann: - if type(ann["segmentation"]) == list: - # polygon - for seg in ann["segmentation"]: - poly = np.array(seg).reshape((int(len(seg) / 2), 2)) - polygons.append(Polygon(poly)) - color.append(c) - else: - # mask - t = self.imgs[ann["image_id"]] - if type(ann["segmentation"]["counts"]) == list: - rle = maskUtils.frPyObjects( - [ann["segmentation"]], t["height"], t["width"] - ) - else: - rle = [ann["segmentation"]] - m = maskUtils.decode(rle) - img = np.ones((m.shape[0], m.shape[1], 3)) - if ann["iscrowd"] == 1: - color_mask = np.array([2.0, 166.0, 101.0]) / 255 - if ann["iscrowd"] == 0: - color_mask = np.random.random((1, 3)).tolist()[0] - for i in range(3): - img[:, :, i] = color_mask[i] - ax.imshow(np.dstack((img, m * 0.5))) - if "keypoints" in ann and type(ann["keypoints"]) == list: - # turn skeleton into zero-based index - sks = np.array(self.loadCats(ann["category_id"])[0]["skeleton"]) - 1 - kp = np.array(ann["keypoints"]) - x = kp[0::3] - y = kp[1::3] - v = kp[2::3] - for sk in sks: - if np.all(v[sk] > 0): - plt.plot(x[sk], y[sk], linewidth=3, color=c) - plt.plot( - x[v > 0], - y[v > 0], - "o", - markersize=8, - markerfacecolor=c, - markeredgecolor="k", - markeredgewidth=2, - ) - plt.plot( - x[v > 1], - y[v > 1], - "o", - markersize=8, - markerfacecolor=c, - markeredgecolor=c, - markeredgewidth=2, - ) - - if draw_bbox: - [bbox_x, bbox_y, bbox_w, bbox_h] = ann["bbox"] - poly = [ - [bbox_x, bbox_y], - [bbox_x, bbox_y + bbox_h], - [bbox_x + bbox_w, bbox_y + bbox_h], - [bbox_x + bbox_w, bbox_y], - ] - np_poly = np.array(poly).reshape((4, 2)) - polygons.append(Polygon(np_poly)) - color.append(c) - - # p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.4) - # ax.add_collection(p) - p = PatchCollection(polygons, facecolor="none", edgecolors=color, linewidths=2) - ax.add_collection(p) - elif datasetType == "captions": - for ann in anns: - print(ann["caption"]) diff --git a/spaces/fffiloni/audioldm-text-to-audio-generation-copy/audioldm/clap/open_clip/openai.py b/spaces/fffiloni/audioldm-text-to-audio-generation-copy/audioldm/clap/open_clip/openai.py deleted file mode 100644 index 3f4eb8b55fe960e1792b3da804b60b3d8f70fe26..0000000000000000000000000000000000000000 --- a/spaces/fffiloni/audioldm-text-to-audio-generation-copy/audioldm/clap/open_clip/openai.py +++ /dev/null @@ -1,156 +0,0 @@ -""" OpenAI pretrained model functions - -Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. -""" - -import os -import warnings -from typing import Union, List - -import torch - -from .model import build_model_from_openai_state_dict -from .pretrained import ( - get_pretrained_url, - list_pretrained_tag_models, - download_pretrained, -) - -__all__ = ["list_openai_models", "load_openai_model"] - - -def list_openai_models() -> List[str]: - """Returns the names of available CLIP models""" - return list_pretrained_tag_models("openai") - - -def load_openai_model( - name: str, - model_cfg, - device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", - jit=True, - cache_dir=os.path.expanduser("~/.cache/clip"), - enable_fusion: bool = False, - fusion_type: str = "None", -): - """Load a CLIP model, preserve its text pretrained part, and set in the CLAP model - - Parameters - ---------- - name : str - A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict - device : Union[str, torch.device] - The device to put the loaded model - jit : bool - Whether to load the optimized JIT model (default) or more hackable non-JIT model. - - Returns - ------- - model : torch.nn.Module - The CLAP model - preprocess : Callable[[PIL.Image], torch.Tensor] - A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input - """ - if get_pretrained_url(name, "openai"): - model_path = download_pretrained( - get_pretrained_url(name, "openai"), root=cache_dir - ) - elif os.path.isfile(name): - model_path = name - else: - raise RuntimeError( - f"Model {name} not found; available models = {list_openai_models()}" - ) - - try: - # loading JIT archive - model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval() - state_dict = None - except RuntimeError: - # loading saved state dict - if jit: - warnings.warn( - f"File {model_path} is not a JIT archive. Loading as a state dict instead" - ) - jit = False - state_dict = torch.load(model_path, map_location="cpu") - - if not jit: - try: - model = build_model_from_openai_state_dict( - state_dict or model.state_dict(), model_cfg, enable_fusion, fusion_type - ).to(device) - except KeyError: - sd = {k[7:]: v for k, v in state_dict["state_dict"].items()} - model = build_model_from_openai_state_dict( - sd, model_cfg, enable_fusion, fusion_type - ).to(device) - - if str(device) == "cpu": - model.float() - return model - - # patch the device names - device_holder = torch.jit.trace( - lambda: torch.ones([]).to(torch.device(device)), example_inputs=[] - ) - device_node = [ - n - for n in device_holder.graph.findAllNodes("prim::Constant") - if "Device" in repr(n) - ][-1] - - def patch_device(module): - try: - graphs = [module.graph] if hasattr(module, "graph") else [] - except RuntimeError: - graphs = [] - - if hasattr(module, "forward1"): - graphs.append(module.forward1.graph) - - for graph in graphs: - for node in graph.findAllNodes("prim::Constant"): - if "value" in node.attributeNames() and str(node["value"]).startswith( - "cuda" - ): - node.copyAttributes(device_node) - - model.apply(patch_device) - patch_device(model.encode_audio) - patch_device(model.encode_text) - - # patch dtype to float32 on CPU - if str(device) == "cpu": - float_holder = torch.jit.trace( - lambda: torch.ones([]).float(), example_inputs=[] - ) - float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] - float_node = float_input.node() - - def patch_float(module): - try: - graphs = [module.graph] if hasattr(module, "graph") else [] - except RuntimeError: - graphs = [] - - if hasattr(module, "forward1"): - graphs.append(module.forward1.graph) - - for graph in graphs: - for node in graph.findAllNodes("aten::to"): - inputs = list(node.inputs()) - for i in [ - 1, - 2, - ]: # dtype can be the second or third argument to aten::to() - if inputs[i].node()["value"] == 5: - inputs[i].node().copyAttributes(float_node) - - model.apply(patch_float) - patch_float(model.encode_audio) - patch_float(model.encode_text) - model.float() - - model.audio_branch.audio_length = model.audio_cfg.audio_length - return model diff --git a/spaces/fffiloni/lama-video-watermark-remover/saicinpainting/training/losses/__init__.py b/spaces/fffiloni/lama-video-watermark-remover/saicinpainting/training/losses/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/fgbwyude/ChuanhuChatGPT/assets/Kelpy-Codos.js b/spaces/fgbwyude/ChuanhuChatGPT/assets/Kelpy-Codos.js deleted file mode 100644 index cfbaeedb4f371dfb5fe157db545b364046fca3e1..0000000000000000000000000000000000000000 --- a/spaces/fgbwyude/ChuanhuChatGPT/assets/Kelpy-Codos.js +++ /dev/null @@ -1,76 +0,0 @@ -// ==UserScript== -// @name Kelpy Codos -// @namespace https://github.com/Keldos-Li/Kelpy-Codos -// @version 1.0.5 -// @author Keldos; https://keldos.me/ -// @description Add copy button to PRE tags before CODE tag, for Chuanhu ChatGPT especially. -// Based on Chuanhu ChatGPT version: ac04408 (2023-3-22) -// @license GPL-3.0 -// @grant none -// ==/UserScript== - -(function () { - 'use strict'; - - function addCopyButton(pre) { - var code = pre.querySelector('code'); - if (!code) { - return; // 如果没有找到 元素,则不添加按钮 - } - var firstChild = code.firstChild; - if (!firstChild) { - return; // 如果 元素没有子节点,则不添加按钮 - } - var button = document.createElement('button'); - button.textContent = '\uD83D\uDCCE'; // 使用 📎 符号作为“复制”按钮的文本 - button.style.position = 'relative'; - button.style.float = 'right'; - button.style.fontSize = '1em'; // 可选:调整按钮大小 - button.style.background = 'none'; // 可选:去掉背景颜色 - button.style.border = 'none'; // 可选:去掉边框 - button.style.cursor = 'pointer'; // 可选:显示指针样式 - button.addEventListener('click', function () { - var range = document.createRange(); - range.selectNodeContents(code); - range.setStartBefore(firstChild); // 将范围设置为第一个子节点之前 - var selection = window.getSelection(); - selection.removeAllRanges(); - selection.addRange(range); - - try { - var success = document.execCommand('copy'); - if (success) { - button.textContent = '\u2714'; - setTimeout(function () { - button.textContent = '\uD83D\uDCCE'; // 恢复按钮为“复制” - }, 2000); - } else { - button.textContent = '\u2716'; - } - } catch (e) { - console.error(e); - button.textContent = '\u2716'; - } - - selection.removeAllRanges(); - }); - code.insertBefore(button, firstChild); // 将按钮插入到第一个子元素之前 - } - - function handleNewElements(mutationsList, observer) { - for (var mutation of mutationsList) { - if (mutation.type === 'childList') { - for (var node of mutation.addedNodes) { - if (node.nodeName === 'PRE') { - addCopyButton(node); - } - } - } - } - } - - var observer = new MutationObserver(handleNewElements); - observer.observe(document.documentElement, { childList: true, subtree: true }); - - document.querySelectorAll('pre').forEach(addCopyButton); -})(); diff --git a/spaces/fgenie/scamtext_PAL_self_consistency/funcs/f_26.py b/spaces/fgenie/scamtext_PAL_self_consistency/funcs/f_26.py deleted file mode 100644 index 908b5a2b9ce6ecb9cdc1ccd5680094f828ec674c..0000000000000000000000000000000000000000 --- a/spaces/fgenie/scamtext_PAL_self_consistency/funcs/f_26.py +++ /dev/null @@ -1,40 +0,0 @@ -import re - -def is_spam(text: str) -> bool: - # Check for spam keywords and patterns - spam_keywords = ['광고', '거부', '클릭', '해지', '이벤트', '공짜', '하세요', '무료', '최고', '상위', '증권사', '특별', '혜택', '무료거부', '입장코드', '특별정보방', '여의도', '입장', '금전'] - - # Check for URL patterns - url_pattern = re.compile(r'(http|https)://\S+') - - # Check for phone number patterns - phone_pattern = re.compile(r'\d{2,4}-\d{3,4}-\d{4}') - - # Check for non-normal characters - non_normal_chars = re.compile(r'[^가-힣a-zA-Z0-9.,?!:;\-\s]+') - - # Count the number of spam indicators - spam_count = 0 - - # Check for spam keywords - for keyword in spam_keywords: - if keyword in text: - spam_count += 1 - - # Check for URL patterns - if url_pattern.search(text) is not None: - spam_count += 1 - - # Check for phone number patterns - if phone_pattern.search(text) is not None: - spam_count += 1 - - # Check for non-normal characters - if non_normal_chars.search(text) is not None: - spam_count += 1 - - # If more than 1 spam indicators are detected, classify the message as spam - if spam_count >= 2: - return True - - return False \ No newline at end of file diff --git a/spaces/fisehara/openai-whisper-base/app.py b/spaces/fisehara/openai-whisper-base/app.py deleted file mode 100644 index ddedf9ed0e7c4809c5dea4b633a52d5975f8f4c4..0000000000000000000000000000000000000000 --- a/spaces/fisehara/openai-whisper-base/app.py +++ /dev/null @@ -1,3 +0,0 @@ -import gradio as gr - -gr.Interface.load("models/openai/whisper-base").launch() \ No newline at end of file diff --git a/spaces/flax-community/DietNerf-Demo/app.py b/spaces/flax-community/DietNerf-Demo/app.py deleted file mode 100644 index 6a0c88a3cfab647e63119690c61265e3bc2c6296..0000000000000000000000000000000000000000 --- a/spaces/flax-community/DietNerf-Demo/app.py +++ /dev/null @@ -1,177 +0,0 @@ -import json -import math -import random -import os - -import gdown -import streamlit as st - - -from demo.src.models import load_trained_model -from demo.src.utils import predict_to_image, render_predict_from_pose - -st.set_page_config(page_title="DietNeRF") - -with open("config.json") as f: - cfg = json.loads(f.read()) - -MODEL_DIR = "models" - -SCENES_LIST = ["Mic", "Chair", "Lego", "Drums", "Ship", "Hotdog"] -# random_index = random.randint(0, len(SCENES_LIST) - 1) - - -def select_model(obj_select): - DIET_NERF_MODEL_NAME = cfg[obj_select]["DIET_NERF_MODEL_NAME"] - DIET_NERF_FILE_ID = cfg[obj_select]["DIET_NERF_FILE_ID"] - - NERF_MODEL_NAME = cfg[obj_select]["NERF_MODEL_NAME"] - NERF_FILE_ID = cfg[obj_select]["NERF_FILE_ID"] - - return DIET_NERF_MODEL_NAME, DIET_NERF_FILE_ID, NERF_MODEL_NAME, NERF_FILE_ID - - -pi = math.pi - -st.title("DietNeRF") -st.sidebar.markdown( - """ - -

      - -

      -""", - unsafe_allow_html=True, -) -st.sidebar.markdown( - """ -

      -GitHub | Project Report -

      - """, - unsafe_allow_html=True, -) -st.sidebar.header("SELECT YOUR VIEW DIRECTION") -theta = st.sidebar.slider( - "Rotation (Left to Right)", - min_value=-pi, - max_value=pi, - step=0.5, - value=0.0, - help="Rotational angle in Vertical direction (Theta)", -) -phi = st.sidebar.slider( - "Rotation (Bottom to Top)", - min_value=0.0, - max_value=0.5 * pi, - step=0.1, - value=1.0, - help="Rotational angle in Horizontal direction (Phi)", -) -radius = st.sidebar.slider( - "Distance (Close to Far)", - min_value=2.0, - max_value=6.0, - step=1.0, - value=3.0, - help="Distance between object and the viewer (Radius)", -) -caption = ( - "`DietNeRF` achieves state-of-the-art few-shot learning capacity in 3D model reconstruction. " - "Thanks to the 2D supervision by `CLIP (aka. Semantic Consisteny Loss)`, " - "it can render novel and challenging views with `ONLY 8 training images`, " - "**outperforming** original [NeRF](https://www.matthewtancik.com/nerf)!" -) -st.markdown(caption) -st.markdown( - "> 📒 **NOTE**: To get a detailed comparison of differences in results between `DietNeRF` and `NeRF`, you can take a look at the " - "[Experimental Results](https://www.notion.so/DietNeRF-Putting-NeRF-on-a-Diet-4aeddae95d054f1d91686f02bdb74745#0f6bc8f1008d4765b9b4635999626d4b) " - "section in our project report." -) - - -obj_select = st.selectbox("Select a Scene", SCENES_LIST, index=0) -DIET_NERF_MODEL_NAME, DIET_NERF_FILE_ID, NERF_MODEL_NAME, NERF_FILE_ID = select_model(obj_select) - - -@st.cache(show_spinner=False) -def download_diet_nerf_model(): - os.makedirs(MODEL_DIR, exist_ok=True) - diet_nerf_model_path = os.path.join(MODEL_DIR, DIET_NERF_MODEL_NAME) - url = f"https://drive.google.com/uc?id={DIET_NERF_FILE_ID}" - gdown.download(url, diet_nerf_model_path, quiet=False) - print(f"Model downloaded from google drive: {diet_nerf_model_path}") - - -# @st.cache(show_spinner=False) -# def download_nerf_model(): -# nerf_model_path = os.path.join(MODEL_DIR, NERF_MODEL_NAME) -# url = f"https://drive.google.com/uc?id={NERF_FILE_ID}" -# gdown.download(url, nerf_model_path, quiet=False) -# print(f"Model downloaded from google drive: {nerf_model_path}") - - -@st.cache(show_spinner=False, allow_output_mutation=True) -def fetch_diet_nerf_model(): - model, state = load_trained_model(MODEL_DIR, DIET_NERF_MODEL_NAME) - return model, state - - -# @st.cache(show_spinner=False, allow_output_mutation=True) -# def fetch_nerf_model(): -# model, state = load_trained_model(MODEL_DIR, NERF_MODEL_NAME) -# return model, state - - -diet_nerf_model_path = os.path.join(MODEL_DIR, DIET_NERF_MODEL_NAME) -if not os.path.isfile(diet_nerf_model_path): - download_diet_nerf_model() - -# nerf_model_path = os.path.join(MODEL_DIR, NERF_MODEL_NAME) -# if not os.path.isfile(nerf_model_path): -# download_nerf_model() - -diet_nerf_model, diet_nerf_state = fetch_diet_nerf_model() -# nerf_model, nerf_state = fetch_nerf_model() - -st.markdown("") - -with st.spinner("Rendering view..."): - with st.spinner( - ":information_source: **INFO**: It may take around 30-50 seconds to render the view. " - "In the meantime, why don't you take a look at our " - "[project report](https://www.notion.so/DietNeRF-Putting-NeRF-on-a-Diet-4aeddae95d054f1d91686f02bdb74745), " - "if you haven't already :slightly_smiling_face:" - ): - dn_pred_color, _ = render_predict_from_pose(diet_nerf_state, theta, phi, radius) - dn_im = predict_to_image(dn_pred_color) - # dn_w, _ = dn_im.size - # dn_new_w = int(2 * dn_w) - # dn_im = dn_im.resize(size=(dn_new_w, dn_new_w)) - - # n_pred_color, _ = render_predict_from_pose(nerf_state, theta, phi, radius) - # n_im = predict_to_image(n_pred_color) - # n_w, _ = n_im.size - # n_new_w = int(2 * n_w) - # n_im = n_im.resize(size=(n_new_w, n_new_w)) - - # diet_nerf_col, nerf_col = st.beta_columns([1, 1]) - st.markdown( - "> 📒 **NOTE**: The rendered view does not fully reflect the true quality of the view generated by the model " - "because it has been downsampled to speedup the process." - ) - st.markdown(f"""

      Rendered view for {obj_select}

      """, unsafe_allow_html=True) - st.image(dn_im, use_column_width=True) - - # nerf_col.markdown("""

      NeRF

      """, unsafe_allow_html=True) - # nerf_col.image(n_im, use_column_width=True) - - # st.markdown( - # "> 📒 NOTE: The views may look similar to you but see the " - # "[Experimental Results](https://www.notion.so/DietNeRF-Putting-NeRF-on-a-Diet-4aeddae95d054f1d91686f02bdb74745#0f6bc8f1008d4765b9b4635999626d4b) " - # "section in our report to get a detailed comparison of differences between `DietNeRF` and `NeRF`." - # ) diff --git a/spaces/florim/MedGPT/autogpt/__main__.py b/spaces/florim/MedGPT/autogpt/__main__.py deleted file mode 100644 index 128f9eea4900429e88276abdde3419b806001ac7..0000000000000000000000000000000000000000 --- a/spaces/florim/MedGPT/autogpt/__main__.py +++ /dev/null @@ -1,5 +0,0 @@ -"""Auto-GPT: A GPT powered AI Assistant""" -import autogpt.cli - -if __name__ == "__main__": - autogpt.cli.main() diff --git a/spaces/flowers-team/SocialAISchool/param_tree_demo.py b/spaces/flowers-team/SocialAISchool/param_tree_demo.py deleted file mode 100644 index a352f6faf4e28f74eff6103c1ad7726d8135f2be..0000000000000000000000000000000000000000 --- a/spaces/flowers-team/SocialAISchool/param_tree_demo.py +++ /dev/null @@ -1,234 +0,0 @@ -import streamlit as st -import copy -import streamlit.components.v1 as components -import streamlit.caching as caching -import time -import argparse -import numpy as np -import gym -import gym_minigrid -from gym_minigrid.wrappers import * -from gym_minigrid.window import Window -import matplotlib.pyplot as plt -from gym_minigrid.social_ai_envs.socialaigrammar import SocialAIGrammar, SocialAIActions, SocialAIActionSpace - -default_params = { - "Pointing": 0, - "Emulation": 1, - "Language_grounding": 2, - "Pragmatic_frame_complexity": 1, -} - -class InteractiveACL: - - def choose(self, node, chosen_parameters): - - options = [n.label for n in node.children] - - box_name = f'{node.label} ({node.id})' - ret = st.sidebar.selectbox( - box_name, - options, - index=default_params.get(node.label, 0) - ) - - for ind, (c, c_lab) in enumerate(zip(node.children, options)): - if c_lab == ret: - return c - - def get_info(self): - return {} - -@st.cache(allow_output_mutation=True, suppress_st_warning=True) -def load_env(): - env = gym.make("SocialAI-SocialAIParamEnv-v1") - env.curriculum=InteractiveACL() - - return env - - - - -st.title("SocialAI interactive demo") - - -env = load_env() - -st.subheader("Primitive actions") - -# moving buttons -columns = st.columns([1]*(len(SocialAIActions)+1)) -action_names = [a.name for a in list(SocialAIActions)] + ["no_op"] -# keys = ["Left arrow", "Right arrow", "Up arrow", "t", "q", "Shift"] -keys = ["a", "d", "w", "t", "q", "Shift"] - -# actions = [st.button(a.name) for a in list(SocialAIActions)] + [st.button("none")] -actions = [] -for a_name, col, key in zip(action_names, columns, keys): - with col: - actions.append(st.button(a_name+f" ({key})", help=f"Shortcut: {key}")) - - -st.subheader("Speaking actions") -# talking buttons -t, w, b = st.columns([1, 1, 1]) - -changes = [False, False] - -with t: - templ = st.selectbox("Template", options=SocialAIGrammar.templates, index=1) -with w: - word = st.selectbox("Word", options=SocialAIGrammar.things, index=0) - -speak = st.button("Speak (s)", help="Shortcut s") - -# utterance change detection -utt_changed = False - -if "template" in st.session_state: - utt_changed = st.session_state.template != templ - -if "word" in st.session_state: - utt_changed = utt_changed or st.session_state.word != word - -st.session_state["template"] = templ -st.session_state["word"] = word - -st.sidebar.subheader("Select the parameters:") - -play = st.button("Play (Enter)", help="Generate the env. Shortcut: Enter") - -components.html( - """ - -""", - height=0, - width=0, -) - -# no action -done_ind = len(actions) - 2 -actions[done_ind] = False - -# was agent controlled -no_action = not any(actions) and not speak - -done = False -info = None - -if not no_action or play or utt_changed: - # agent is controlled - if any(actions): - p_act = np.argmax(actions) - if p_act == len(actions) - 1: - p_act = np.nan - - action = [p_act, np.nan, np.nan] - - elif speak: - templ_ind = SocialAIGrammar.templates.index(templ) - word_ind = SocialAIGrammar.things.index(word) - action = [np.nan, templ_ind, word_ind] - - else: - action = None - - if action: - obs, reward, done, info = env.step(action) - - env.render(mode='human') - st.pyplot(env.window.fig) - - -# if done or no_action: -if done or (no_action and not play and not utt_changed): - env.reset() - -else: - env.parameter_tree.sample_env_params(ACL=env.curriculum) - - -with st.expander("Parametric tree", True): - # draw tree - current_param_labels = env.current_env.parameters if env.current_env.parameters else {} - folded_nodes = [ - "Information_seeking", - "Collaboration", - "OthersPerceptionInference" - ] - # print(current_param_labels["Env_type"]) - folded_nodes.remove(current_param_labels["Env_type"]) - env.parameter_tree.draw_tree( - filename="viz/streamlit_temp_tree", - ignore_labels=["Num_of_colors"], - selected_parameters=current_param_labels, - folded_nodes=folded_nodes, - # save=False - ) - # st.graphviz_chart(env.parameter_tree.tree) - st.image("viz/streamlit_temp_tree.png") - -# if not no_action or play or utt_changed: -# # agent is controlled -# if any(actions): -# p_act = np.argmax(actions) -# if p_act == len(actions) - 1: -# p_act = np.nan -# -# action = [p_act, np.nan, np.nan] -# -# elif speak: -# templ_ind = SocialAIGrammar.templates.index(templ) -# word_ind = SocialAIGrammar.things.index(word) -# action = [np.nan, templ_ind, word_ind] -# -# else: -# action = None -# -# if action: -# obs, reward, done, info = env.step(action) -# -# env.render(mode='human') -# st.pyplot(env.window.fig) diff --git a/spaces/freddyaboulton/gradio_foliumtest/__init__.py b/spaces/freddyaboulton/gradio_foliumtest/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/futuristicdude/andite-anything-v4.0/README.md b/spaces/futuristicdude/andite-anything-v4.0/README.md deleted file mode 100644 index 7437f6acc015b82be0c5e0cb10b65bf7587d9478..0000000000000000000000000000000000000000 --- a/spaces/futuristicdude/andite-anything-v4.0/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: Andite Anything V4.0 -emoji: 👁 -colorFrom: green -colorTo: blue -sdk: gradio -sdk_version: 3.24.1 -app_file: app.py -pinned: false -license: openrail ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/georgefen/Face-Landmark-ControlNet/annotator/uniformer/mmcv/runner/hooks/sync_buffer.py b/spaces/georgefen/Face-Landmark-ControlNet/annotator/uniformer/mmcv/runner/hooks/sync_buffer.py deleted file mode 100644 index 6376b7ff894280cb2782243b25e8973650591577..0000000000000000000000000000000000000000 --- a/spaces/georgefen/Face-Landmark-ControlNet/annotator/uniformer/mmcv/runner/hooks/sync_buffer.py +++ /dev/null @@ -1,22 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -from ..dist_utils import allreduce_params -from .hook import HOOKS, Hook - - -@HOOKS.register_module() -class SyncBuffersHook(Hook): - """Synchronize model buffers such as running_mean and running_var in BN at - the end of each epoch. - - Args: - distributed (bool): Whether distributed training is used. It is - effective only for distributed training. Defaults to True. - """ - - def __init__(self, distributed=True): - self.distributed = distributed - - def after_epoch(self, runner): - """All-reduce model buffers at the end of each epoch.""" - if self.distributed: - allreduce_params(runner.model.buffers()) diff --git a/spaces/gilbertb/ChatGPTwithAPI/README.md b/spaces/gilbertb/ChatGPTwithAPI/README.md deleted file mode 100644 index 5e9db9ee137f91124dc76c9ed996db9fff3477d5..0000000000000000000000000000000000000000 --- a/spaces/gilbertb/ChatGPTwithAPI/README.md +++ /dev/null @@ -1,14 +0,0 @@ ---- -title: ChatGPTwithAPI -emoji: 🚀 -colorFrom: red -colorTo: indigo -sdk: gradio -sdk_version: 3.20.0 -app_file: app.py -pinned: false -license: mit -duplicated_from: ysharma/ChatGPTwithAPI ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/glfpes/stabilityai-stable-diffusion-2-1/README.md b/spaces/glfpes/stabilityai-stable-diffusion-2-1/README.md deleted file mode 100644 index 65ec37fb67a36bff9c895a4bd5a89a3fc1ef0598..0000000000000000000000000000000000000000 --- a/spaces/glfpes/stabilityai-stable-diffusion-2-1/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Stabilityai Stable Diffusion 2 1 -emoji: 😻 -colorFrom: yellow -colorTo: indigo -sdk: gradio -sdk_version: 3.18.0 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/gptbase/GPTBase/app.py b/spaces/gptbase/GPTBase/app.py deleted file mode 100644 index c593a31cca30ba23168d7a9db2a13d67186c8651..0000000000000000000000000000000000000000 --- a/spaces/gptbase/GPTBase/app.py +++ /dev/null @@ -1,102 +0,0 @@ -import requests -import streamlit as st -import json -from streamlit_chat import message -from utils import upload_file - -st.title("GPTBase") - -def clear_submit(): - st.session_state["submit"] = False - -def set_api_key(api_key: str): - st.session_state["API_KEY"] = api_key - -def set_ai_id(ai_id: str): - st.session_state["ai_id"] = ai_id - -# Sidebar -with st.sidebar: - user_secret = st.text_input( - "API Key", - type="password", - placeholder="Paste your API key here (ak-...)", - help="You can get your API key from https://gptbase.ai/api-keys.", - value=st.session_state.get("API_KEY", ""), - ) - if user_secret: - set_api_key(user_secret) - - user_ai_id = st.text_input( - "AI Id", - placeholder="Paste your AI Id here", - value=st.session_state.get("ai_id", ""), - ) - if user_ai_id: - set_ai_id(user_ai_id) - - uploaded_file = st.file_uploader( - "Upload a pdf, docx, or txt file", - type=["pdf", "docx", "txt"], - help="Scanned documents are not supported yet!", - on_change=clear_submit, - ) - api_key = st.session_state.get("API_KEY") - ai_id = st.session_state.get("ai_id") - if not api_key or not ai_id: - st.warning("Please enter your API key and AI Id to upload a file.") - - if uploaded_file is not None and "API_KEY" in st.session_state and "ai_id" in st.session_state: - res = upload_file(uploaded_file, api_key, ai_id) - if not res: - st.text("Upload failed, please try again") - # if not st.session_state.get("is_upload"): - # file = {"file": uploaded_file} - # url = f'https://mygpt.felo.me/api/v1/ais/{ai_id}/files' - # headers = {"Authorization": f"Bearer {api_key}"} - # try: - # response = requests.post(url, headers=headers, files=file) - # # print("upload") - # except requests.exceptions.HTTPError as err: - # st.text("Upload failed, please try again") - - # st.session_state['is_upload'] = True - -tab1, tab2 = st.tabs(["Introduce", "Ask AI"]) -with tab1: - st.markdown("### Use steps") - st.write('1.Please fill in your API Key and AI Id.') - st.write('2.Upload the file you want to get the answer.') - st.write('3.You can ask questions about all the files you have uploaded.') - st.markdown("""---""") - st.write('If you have any questions or suggestions, please visit: https://twitter.com/GptBase') - -with tab2: - if not api_key or not ai_id: - st.write('Please fill in your API Key and AI Id.') - st.header("Ask AI some questions about the file you uploaded:") - - def get_text(): - input_text = st.text_area("You:", on_change=clear_submit) - return input_text - user_input = get_text() - button = st.button("Submit") - if button or st.session_state.get("submit"): - if api_key and ai_id and user_input: - st.session_state["submit"] = True - question_url = f'https://gptbase.ai/api/v1/question/{ai_id}' - headers = {"Authorization": f"Bearer {api_key}"} - data = {"question": user_input} - # response = requests.post(question_url, headers=headers, data=json.dumps(data)) - try: - response = requests.post(question_url, headers=headers, data=json.dumps(data)) - if response.status_code == 200: - result = response.json() - message(result['answer']) - else: - print(f"Failed to ask, please try again.") - response.raise_for_status() # Raises an HTTPError if the response contains an error status code. - except requests.exceptions.HTTPError as err: - print(f"Failed to ask, please try again.:{err}") - except requests.exceptions.RequestException as e: - print(e) diff --git a/spaces/gradio/HuBERT/fairseq/criterions/model_criterion.py b/spaces/gradio/HuBERT/fairseq/criterions/model_criterion.py deleted file mode 100644 index 30350f13b1c00498de6784579250d6b342ced7dd..0000000000000000000000000000000000000000 --- a/spaces/gradio/HuBERT/fairseq/criterions/model_criterion.py +++ /dev/null @@ -1,138 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -import logging -from dataclasses import dataclass, field -from typing import Dict, List - -from fairseq import metrics, utils -from fairseq.criterions import FairseqCriterion, register_criterion -from fairseq.dataclass import FairseqDataclass - - -logger = logging.getLogger(__name__) - - -@dataclass -class ModelCriterionConfig(FairseqDataclass): - loss_weights: Dict[str, float] = field( - default_factory=dict, - metadata={"help": "weights for the loss terms"}, - ) - log_keys: List[str] = field( - default_factory=list, - metadata={"help": "additional output keys to log"}, - ) - - -@register_criterion("model", dataclass=ModelCriterionConfig) -class ModelCriterion(FairseqCriterion): - """ - This criterion relies on the model to supply losses. - The losses should be a dictionary of name -> scalar returned by - the model either by including it in the net_output dict or by - implementing a get_losses(net_output, sample) method. The final loss is - a scaled sum of all losses according to weights in loss_weights. - If no weights are provided, then all losses are scaled by 1.0. - - The losses will be automatically logged. Additional keys from - net_output dict can be logged via the log_keys parameter. - """ - - def __init__(self, task, loss_weights=None, log_keys=None): - super().__init__(task) - self.loss_weights = loss_weights - self.log_keys = log_keys - - def forward(self, model, sample, reduce=True): - net_output = model(**sample["net_input"]) - - sample_size = net_output["sample_size"] - scaled_losses = {} - - if hasattr(model, "get_losses"): - losses = model.get_losses(net_output, sample) - elif isinstance(net_output, dict) and "losses" in net_output: - losses = net_output["losses"] - else: - raise Exception("Could not retrieve losses") - - for lk, p in losses.items(): - try: - coef = 1.0 if len(self.loss_weights) == 0 else self.loss_weights[lk] - except KeyError: - logger.error( - f"weight for loss {lk} is not in loss_weights ({self.loss_weights})" - ) - raise - if coef != 0 and p is not None: - scaled_losses[lk] = coef * p.float() - - loss = sum(scaled_losses.values()) - if reduce and loss.numel() > 1: - loss = loss.sum() - - logging_output = { - "loss": loss.data, - "ntokens": sample_size, - "nsentences": sample["id"].numel(), - "sample_size": sample_size, - "_world_size": 1, - } - - for lk in self.log_keys: - if lk in net_output and net_output[lk] is not None: - logging_output[lk] = float(net_output[lk]) - - if len(scaled_losses) > 1: - for lk, l in scaled_losses.items(): - logging_output[f"loss_{lk}"] = l.item() - - return loss, sample_size, logging_output - - @staticmethod - def reduce_metrics(logging_outputs) -> None: - """Aggregate logging outputs from data parallel training.""" - loss_sum = utils.item(sum(log.get("loss", 0) for log in logging_outputs)) - ntokens = utils.item(sum(log.get("ntokens", 0) for log in logging_outputs)) - nsentences = utils.item( - sum(log.get("nsentences", 0) for log in logging_outputs) - ) - sample_size = utils.item( - sum(log.get("sample_size", 0) for log in logging_outputs) - ) - - metrics.log_scalar("loss", loss_sum / sample_size, sample_size, round=3) - metrics.log_scalar("ntokens", ntokens) - metrics.log_scalar("nsentences", nsentences) - - builtin_keys = { - "loss", - "ntokens", - "nsentences", - "sample_size", - "_world_size", - } - - world_size = utils.item( - sum(log.get("_world_size", 0) for log in logging_outputs) - ) - - for k in logging_outputs[0]: - if k not in builtin_keys: - val = sum(log.get(k, 0) for log in logging_outputs) - if k.startswith("loss_"): - metrics.log_scalar(k, val / sample_size, sample_size, round=3) - else: - metrics.log_scalar(k, val / world_size, round=3) - - @staticmethod - def logging_outputs_can_be_summed() -> bool: - """ - Whether the logging outputs returned by `forward` can be summed - across workers prior to calling `reduce_metrics`. Setting this - to True will improves distributed training speed. - """ - return True diff --git a/spaces/gradio/HuBERT/fairseq/data/list_dataset.py b/spaces/gradio/HuBERT/fairseq/data/list_dataset.py deleted file mode 100644 index 12f00aa43661d6bad701c9e72653ba8779136906..0000000000000000000000000000000000000000 --- a/spaces/gradio/HuBERT/fairseq/data/list_dataset.py +++ /dev/null @@ -1,32 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -from . import BaseWrapperDataset - - -class ListDataset(BaseWrapperDataset): - def __init__(self, dataset, sizes=None): - super().__init__(dataset) - self._sizes = sizes - - def __iter__(self): - for x in self.dataset: - yield x - - def collater(self, samples): - return samples - - @property - def sizes(self): - return self._sizes - - def num_tokens(self, index): - return self.sizes[index] - - def size(self, index): - return self.sizes[index] - - def set_epoch(self, epoch): - pass diff --git a/spaces/greymatter72/goofyai-3d_render_style_xl/README.md b/spaces/greymatter72/goofyai-3d_render_style_xl/README.md deleted file mode 100644 index 87f4c9e67d4ba3c2490576bf30f4c1a0a4c82308..0000000000000000000000000000000000000000 --- a/spaces/greymatter72/goofyai-3d_render_style_xl/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Goofyai-3d Render Style Xl -emoji: 🌖 -colorFrom: green -colorTo: blue -sdk: gradio -sdk_version: 3.45.2 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/gwang-kim/DATID-3D/eg3d/docs/visualizer_guide.md b/spaces/gwang-kim/DATID-3D/eg3d/docs/visualizer_guide.md deleted file mode 100644 index 9cb2edae7f9ae3348cc1a7ae670f7a85e935114e..0000000000000000000000000000000000000000 --- a/spaces/gwang-kim/DATID-3D/eg3d/docs/visualizer_guide.md +++ /dev/null @@ -1,66 +0,0 @@ -## Guide to the Visualizer - -![Visualizer](visualizer.png) - -We include a 3D visualizer that is based on the amazing tool introduced in StyleGAN3. The following document describes important options and sliders of the visualizer UI. - -TLDR: -1. Press the "Pickle/Recent" button to select a pretrained EG3D model. -2. Click and drag the "Latent/Drag" button to sweep latent codes and change the scene identity. -3. Click and drag the rendering on the right to move the camera. - ---- - -## Network & Latent - -### Pickle -Specify the path of the model checkpoint to visualize. You have a few options: -1. Drag and drop the .pkl file from your file browser into the visualizer window -1. Type the path (or url) of your .pkl file into the text field -1. Press the recent box to access a list of recently used checkpoints - -### Pose -Control the pitch and yaw of the camera by clicking and dragging the rendering on the right. By default, the camera rotates on a sphere with fixed radius, pointed at the origin. - -### FOV -Control the field of view of the camera with this slider to zoom the camera in and out. For FFHQ, 18 degrees is about right; for ShapeNet, use a FOV of 45 degrees. - -### Cond Pose -The pose with which we condition the generator (see Generator Pose Conditioning in Sec. 4.4). By default, we condition on the fixed frontal camera pose. For models trained without generator pose conditioning, this will have no effect. - -### Render Type -Toggle between the final super-resolved output (RGB image), a depth map (Depth image) or the raw neural rendering without super resolution (Neural rendering). - -### Depth Sample Multiplier / Depth Sample Importance Multiplier -Adjust the number of depth samples taken per ray. By increasing the number of depth samples, we reduce flickering artifacts caused by depth aliasing, which leads to more temporally-consistent videos. However, the tradeoff is slower rendering and slightly blurrier images. At 1X / 1X, render in the visualizer with the same number of depth samples as at training; at 2X / 2X, take double the uniformly spaced and double the importance samples per ray. As an example: we train FFHQ with 48 uniformly spaced depth samples and 48 importance samples per ray. Using 2X / 2X, we instead take 96 uniformly spaced depth samples and 96 importance samples (192 total). - -### Latent -The seed for the latent code, *z*, that is the input to the generator. Click and drag the "drag" button to sweep between scene identities. Press the "Anim" checkbox to play an animation sweeping through latent codes. - -### Stylemix -The seed for a second latent code for style mixing. Check the boxes on the right to select which layers should be conditioned by this second code. - -### Truncate -Apply the truncation trick in *w*-space to trade off fidelity for diversity. Psi=1 means no truncation. Psi=0 gives the "average" scene learned by the generator. A Psi between 0 and 1, e.g. 0.7 is a compromise that reduces diversity somewhat but improves the overall consistency in quality. (See the Truncation Trick in StyleGAN for more info.) - ---- - -## Performance & capture - -### Render - -Displays the framerate of rendering. On an RTX 3090, with neural rendering resolution of 128, and with 48 uniform and 48 importance depth samples, we get 25-30 FPS. - -### Capture - -Save screenshots to the directory specified by the text field. Save image saves just the rendering; Save GUI saves the complete pane including the user interface. - ---- - -## Layers & channels - -### Cache backbone -For rendering where the scene identity (the latent code *z* and conditioning pose) remain static, but rendering parameters (the camera pose, fov, render type, etc...) change, we can enable 'backbone caching' which will enable us to cache and reuse the existing triplanes computed by the convolutional backbone. Backbone caching slightly improves rendering speed. - -### Layer viewer -View and analyze the intermediate weights and layers of the generator. Scroll through the network and select a layer using the checkbox. Use the "Channel" slider on the right to view different activations. Do note that when 'cache backbone' is enabled, you will be unable to view the intermediate weights of the convolutional backbone/triplanes. diff --git a/spaces/gwang-kim/DATID-3D/eg3d/torch_utils/ops/bias_act.cpp b/spaces/gwang-kim/DATID-3D/eg3d/torch_utils/ops/bias_act.cpp deleted file mode 100644 index ee6f6d0caaf4f84b94851d223e384344e1109cdc..0000000000000000000000000000000000000000 --- a/spaces/gwang-kim/DATID-3D/eg3d/torch_utils/ops/bias_act.cpp +++ /dev/null @@ -1,103 +0,0 @@ -/* - * SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. - * SPDX-License-Identifier: LicenseRef-NvidiaProprietary - * - * NVIDIA CORPORATION, its affiliates and licensors retain all intellectual - * property and proprietary rights in and to this material, related - * documentation and any modifications thereto. Any use, reproduction, - * disclosure or distribution of this material and related documentation - * without an express license agreement from NVIDIA CORPORATION or - * its affiliates is strictly prohibited. - */ - -#include -#include -#include -#include "bias_act.h" - -//------------------------------------------------------------------------ - -static bool has_same_layout(torch::Tensor x, torch::Tensor y) -{ - if (x.dim() != y.dim()) - return false; - for (int64_t i = 0; i < x.dim(); i++) - { - if (x.size(i) != y.size(i)) - return false; - if (x.size(i) >= 2 && x.stride(i) != y.stride(i)) - return false; - } - return true; -} - -//------------------------------------------------------------------------ - -static torch::Tensor bias_act(torch::Tensor x, torch::Tensor b, torch::Tensor xref, torch::Tensor yref, torch::Tensor dy, int grad, int dim, int act, float alpha, float gain, float clamp) -{ - // Validate arguments. - TORCH_CHECK(x.is_cuda(), "x must reside on CUDA device"); - TORCH_CHECK(b.numel() == 0 || (b.dtype() == x.dtype() && b.device() == x.device()), "b must have the same dtype and device as x"); - TORCH_CHECK(xref.numel() == 0 || (xref.sizes() == x.sizes() && xref.dtype() == x.dtype() && xref.device() == x.device()), "xref must have the same shape, dtype, and device as x"); - TORCH_CHECK(yref.numel() == 0 || (yref.sizes() == x.sizes() && yref.dtype() == x.dtype() && yref.device() == x.device()), "yref must have the same shape, dtype, and device as x"); - TORCH_CHECK(dy.numel() == 0 || (dy.sizes() == x.sizes() && dy.dtype() == x.dtype() && dy.device() == x.device()), "dy must have the same dtype and device as x"); - TORCH_CHECK(x.numel() <= INT_MAX, "x is too large"); - TORCH_CHECK(b.dim() == 1, "b must have rank 1"); - TORCH_CHECK(b.numel() == 0 || (dim >= 0 && dim < x.dim()), "dim is out of bounds"); - TORCH_CHECK(b.numel() == 0 || b.numel() == x.size(dim), "b has wrong number of elements"); - TORCH_CHECK(grad >= 0, "grad must be non-negative"); - - // Validate layout. - TORCH_CHECK(x.is_non_overlapping_and_dense(), "x must be non-overlapping and dense"); - TORCH_CHECK(b.is_contiguous(), "b must be contiguous"); - TORCH_CHECK(xref.numel() == 0 || has_same_layout(xref, x), "xref must have the same layout as x"); - TORCH_CHECK(yref.numel() == 0 || has_same_layout(yref, x), "yref must have the same layout as x"); - TORCH_CHECK(dy.numel() == 0 || has_same_layout(dy, x), "dy must have the same layout as x"); - - // Create output tensor. - const at::cuda::OptionalCUDAGuard device_guard(device_of(x)); - torch::Tensor y = torch::empty_like(x); - TORCH_CHECK(has_same_layout(y, x), "y must have the same layout as x"); - - // Initialize CUDA kernel parameters. - bias_act_kernel_params p; - p.x = x.data_ptr(); - p.b = (b.numel()) ? b.data_ptr() : NULL; - p.xref = (xref.numel()) ? xref.data_ptr() : NULL; - p.yref = (yref.numel()) ? yref.data_ptr() : NULL; - p.dy = (dy.numel()) ? dy.data_ptr() : NULL; - p.y = y.data_ptr(); - p.grad = grad; - p.act = act; - p.alpha = alpha; - p.gain = gain; - p.clamp = clamp; - p.sizeX = (int)x.numel(); - p.sizeB = (int)b.numel(); - p.stepB = (b.numel()) ? (int)x.stride(dim) : 1; - - // Choose CUDA kernel. - void* kernel; - AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&] - { - kernel = choose_bias_act_kernel(p); - }); - TORCH_CHECK(kernel, "no CUDA kernel found for the specified activation func"); - - // Launch CUDA kernel. - p.loopX = 4; - int blockSize = 4 * 32; - int gridSize = (p.sizeX - 1) / (p.loopX * blockSize) + 1; - void* args[] = {&p}; - AT_CUDA_CHECK(cudaLaunchKernel(kernel, gridSize, blockSize, args, 0, at::cuda::getCurrentCUDAStream())); - return y; -} - -//------------------------------------------------------------------------ - -PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) -{ - m.def("bias_act", &bias_act); -} - -//------------------------------------------------------------------------ diff --git a/spaces/gwang-kim/DATID-3D/eg3d/training/triplane.py b/spaces/gwang-kim/DATID-3D/eg3d/training/triplane.py deleted file mode 100644 index 1b7d48dec681a7b3040c19317dbaf26f6ff7e3cf..0000000000000000000000000000000000000000 --- a/spaces/gwang-kim/DATID-3D/eg3d/training/triplane.py +++ /dev/null @@ -1,135 +0,0 @@ -# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. -# SPDX-License-Identifier: LicenseRef-NvidiaProprietary -# -# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual -# property and proprietary rights in and to this material, related -# documentation and any modifications thereto. Any use, reproduction, -# disclosure or distribution of this material and related documentation -# without an express license agreement from NVIDIA CORPORATION or -# its affiliates is strictly prohibited. - -import torch -from torch_utils import persistence -from training.networks_stylegan2 import Generator as StyleGAN2Backbone -from training.volumetric_rendering.renderer import ImportanceRenderer -from training.volumetric_rendering.ray_sampler import RaySampler -import dnnlib - -@persistence.persistent_class -class TriPlaneGenerator(torch.nn.Module): - def __init__(self, - z_dim, # Input latent (Z) dimensionality. - c_dim, # Conditioning label (C) dimensionality. - w_dim, # Intermediate latent (W) dimensionality. - img_resolution, # Output resolution. - img_channels, # Number of output color channels. - sr_num_fp16_res = 0, - mapping_kwargs = {}, # Arguments for MappingNetwork. - rendering_kwargs = {}, - sr_kwargs = {}, - **synthesis_kwargs, # Arguments for SynthesisNetwork. - ): - super().__init__() - self.z_dim=z_dim - self.c_dim=c_dim - self.w_dim=w_dim - self.img_resolution=img_resolution - self.img_channels=img_channels - self.renderer = ImportanceRenderer() - self.ray_sampler = RaySampler() - self.backbone = StyleGAN2Backbone(z_dim, c_dim, w_dim, img_resolution=256, img_channels=32*3, mapping_kwargs=mapping_kwargs, **synthesis_kwargs) - self.superresolution = dnnlib.util.construct_class_by_name(class_name=rendering_kwargs['superresolution_module'], channels=32, img_resolution=img_resolution, sr_num_fp16_res=sr_num_fp16_res, sr_antialias=rendering_kwargs['sr_antialias'], **sr_kwargs) - self.decoder = OSGDecoder(32, {'decoder_lr_mul': rendering_kwargs.get('decoder_lr_mul', 1), 'decoder_output_dim': 32}) - self.neural_rendering_resolution = 64 - self.rendering_kwargs = rendering_kwargs - - self._last_planes = None - - def mapping(self, z, c, truncation_psi=1, truncation_cutoff=None, update_emas=False): - if self.rendering_kwargs['c_gen_conditioning_zero']: - c = torch.zeros_like(c) - return self.backbone.mapping(z, c * self.rendering_kwargs.get('c_scale', 0), truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, update_emas=update_emas) - - def synthesis(self, ws, c, neural_rendering_resolution=None, update_emas=False, cache_backbone=False, use_cached_backbone=False, **synthesis_kwargs): - cam2world_matrix = c[:, :16].view(-1, 4, 4) - intrinsics = c[:, 16:25].view(-1, 3, 3) - - if neural_rendering_resolution is None: - neural_rendering_resolution = self.neural_rendering_resolution - else: - self.neural_rendering_resolution = neural_rendering_resolution - - # Create a batch of rays for volume rendering - ray_origins, ray_directions = self.ray_sampler(cam2world_matrix, intrinsics, neural_rendering_resolution) - - # Create triplanes by running StyleGAN backbone - N, M, _ = ray_origins.shape - if use_cached_backbone and self._last_planes is not None: - planes = self._last_planes - else: - planes = self.backbone.synthesis(ws, update_emas=update_emas, **synthesis_kwargs) - if cache_backbone: - self._last_planes = planes - - # Reshape output into three 32-channel planes - planes = planes.view(len(planes), 3, 32, planes.shape[-2], planes.shape[-1]) - - # Perform volume rendering - feature_samples, depth_samples, weights_samples = self.renderer(planes, self.decoder, ray_origins, ray_directions, self.rendering_kwargs) # channels last - - # Reshape into 'raw' neural-rendered image - H = W = self.neural_rendering_resolution - feature_image = feature_samples.permute(0, 2, 1).reshape(N, feature_samples.shape[-1], H, W).contiguous() - depth_image = depth_samples.permute(0, 2, 1).reshape(N, 1, H, W) - - # Run superresolution to get final image - rgb_image = feature_image[:, :3] - sr_image = self.superresolution(rgb_image, feature_image, ws, noise_mode=self.rendering_kwargs['superresolution_noise_mode'], **{k:synthesis_kwargs[k] for k in synthesis_kwargs.keys() if k != 'noise_mode'}) - - return {'image': sr_image, 'image_raw': rgb_image, 'image_depth': depth_image} - - def sample(self, coordinates, directions, z, c, truncation_psi=1, truncation_cutoff=None, update_emas=False, **synthesis_kwargs): - # Compute RGB features, density for arbitrary 3D coordinates. Mostly used for extracting shapes. - ws = self.mapping(z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, update_emas=update_emas) - planes = self.backbone.synthesis(ws, update_emas=update_emas, **synthesis_kwargs) - planes = planes.view(len(planes), 3, 32, planes.shape[-2], planes.shape[-1]) - return self.renderer.run_model(planes, self.decoder, coordinates, directions, self.rendering_kwargs) - - def sample_mixed(self, coordinates, directions, ws, truncation_psi=1, truncation_cutoff=None, update_emas=False, **synthesis_kwargs): - # Same as sample, but expects latent vectors 'ws' instead of Gaussian noise 'z' - planes = self.backbone.synthesis(ws, update_emas = update_emas, **synthesis_kwargs) - planes = planes.view(len(planes), 3, 32, planes.shape[-2], planes.shape[-1]) - return self.renderer.run_model(planes, self.decoder, coordinates, directions, self.rendering_kwargs) - - def forward(self, z, c, truncation_psi=1, truncation_cutoff=None, neural_rendering_resolution=None, update_emas=False, cache_backbone=False, use_cached_backbone=False, **synthesis_kwargs): - # Render a batch of generated images. - ws = self.mapping(z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, update_emas=update_emas) - return self.synthesis(ws, c, update_emas=update_emas, neural_rendering_resolution=neural_rendering_resolution, cache_backbone=cache_backbone, use_cached_backbone=use_cached_backbone, **synthesis_kwargs) - - -from training.networks_stylegan2 import FullyConnectedLayer - -class OSGDecoder(torch.nn.Module): - def __init__(self, n_features, options): - super().__init__() - self.hidden_dim = 64 - - self.net = torch.nn.Sequential( - FullyConnectedLayer(n_features, self.hidden_dim, lr_multiplier=options['decoder_lr_mul']), - torch.nn.Softplus(), - FullyConnectedLayer(self.hidden_dim, 1 + options['decoder_output_dim'], lr_multiplier=options['decoder_lr_mul']) - ) - - def forward(self, sampled_features, ray_directions): - # Aggregate features - sampled_features = sampled_features.mean(1) - x = sampled_features - - N, M, C = x.shape - x = x.view(N*M, C) - - x = self.net(x) - x = x.view(N, M, -1) - rgb = torch.sigmoid(x[..., 1:])*(1 + 2*0.001) - 0.001 # Uses sigmoid clamping from MipNeRF - sigma = x[..., 0:1] - return {'rgb': rgb, 'sigma': sigma} diff --git a/spaces/haakohu/deep_privacy2_face/dp2/data/datasets/coco_cse.py b/spaces/haakohu/deep_privacy2_face/dp2/data/datasets/coco_cse.py deleted file mode 100644 index b240932da41b2db03c3807830935a78b50f84c4f..0000000000000000000000000000000000000000 --- a/spaces/haakohu/deep_privacy2_face/dp2/data/datasets/coco_cse.py +++ /dev/null @@ -1,68 +0,0 @@ -import pickle -import torchvision -import torch -import pathlib -import numpy as np -from typing import Callable, Optional, Union -from torch.hub import get_dir as get_hub_dir - - -def cache_embed_stats(embed_map: torch.Tensor): - mean = embed_map.mean(dim=0, keepdim=True) - rstd = ((embed_map - mean).square().mean(dim=0, keepdim=True)+1e-8).rsqrt() - - cache = dict(mean=mean, rstd=rstd, embed_map=embed_map) - path = pathlib.Path(get_hub_dir(), f"embed_map_stats.torch") - path.parent.mkdir(exist_ok=True, parents=True) - torch.save(cache, path) - - -class CocoCSE(torch.utils.data.Dataset): - - def __init__(self, - dirpath: Union[str, pathlib.Path], - transform: Optional[Callable], - normalize_E: bool,): - dirpath = pathlib.Path(dirpath) - self.dirpath = dirpath - - self.transform = transform - assert self.dirpath.is_dir(),\ - f"Did not find dataset at: {dirpath}" - self.image_paths, self.embedding_paths = self._load_impaths() - self.embed_map = torch.from_numpy(np.load(self.dirpath.joinpath("embed_map.npy"))) - mean = self.embed_map.mean(dim=0, keepdim=True) - rstd = ((self.embed_map - mean).square().mean(dim=0, keepdim=True)+1e-8).rsqrt() - self.embed_map = (self.embed_map - mean) * rstd - cache_embed_stats(self.embed_map) - - def _load_impaths(self): - image_dir = self.dirpath.joinpath("images") - image_paths = list(image_dir.glob("*.png")) - image_paths.sort() - embedding_paths = [ - self.dirpath.joinpath("embedding", x.stem + ".npy") for x in image_paths - ] - return image_paths, embedding_paths - - def __len__(self): - return len(self.image_paths) - - def __getitem__(self, idx): - im = torchvision.io.read_image(str(self.image_paths[idx])) - vertices, mask, border = np.split(np.load(self.embedding_paths[idx]), 3, axis=-1) - vertices = torch.from_numpy(vertices.squeeze()).long() - mask = torch.from_numpy(mask.squeeze()).float() - border = torch.from_numpy(border.squeeze()).float() - E_mask = 1 - mask - border - batch = { - "img": im, - "vertices": vertices[None], - "mask": mask[None], - "embed_map": self.embed_map, - "border": border[None], - "E_mask": E_mask[None] - } - if self.transform is None: - return batch - return self.transform(batch) diff --git a/spaces/hamacojr/SAM-CAT-Seg/cat_seg/data/datasets/__init__.py b/spaces/hamacojr/SAM-CAT-Seg/cat_seg/data/datasets/__init__.py deleted file mode 100644 index 90d0d07e352ea3952b34176383d89d02456f76d1..0000000000000000000000000000000000000000 --- a/spaces/hamacojr/SAM-CAT-Seg/cat_seg/data/datasets/__init__.py +++ /dev/null @@ -1,8 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -from . import ( - register_coco_stuff, - register_ade20k_150, - register_ade20k_847, - register_pascal_20, - register_pascal_59, -) diff --git a/spaces/hamel/hfspace_demo/update.sh b/spaces/hamel/hfspace_demo/update.sh deleted file mode 100644 index dea2c58d8c10bc75713d6e7c4e56fb928130c2a1..0000000000000000000000000000000000000000 --- a/spaces/hamel/hfspace_demo/update.sh +++ /dev/null @@ -1,6 +0,0 @@ -#!/bin/bash - -# this is only for hamel, you can ignore this. -jupyter nbconvert --to markdown app.ipynb -cat yaml.md app.md > README.md -git add -A; git commit -m "Add application files"; git push \ No newline at end of file diff --git a/spaces/hands012/gpt-academic/docs/waifu_plugin/waifu.css b/spaces/hands012/gpt-academic/docs/waifu_plugin/waifu.css deleted file mode 100644 index 42639df0794e46fc58f66e2c772e2bf9ba605eed..0000000000000000000000000000000000000000 --- a/spaces/hands012/gpt-academic/docs/waifu_plugin/waifu.css +++ /dev/null @@ -1,290 +0,0 @@ -.waifu { - position: fixed; - bottom: 0; - z-index: 1; - font-size: 0; - -webkit-transform: translateY(3px); - transform: translateY(3px); -} -.waifu:hover { - -webkit-transform: translateY(0); - transform: translateY(0); -} -.waifu-tips { - opacity: 0; - margin: -20px 20px; - padding: 5px 10px; - border: 1px solid rgba(224, 186, 140, 0.62); - border-radius: 12px; - background-color: rgba(236, 217, 188, 0.5); - box-shadow: 0 3px 15px 2px rgba(191, 158, 118, 0.2); - text-overflow: ellipsis; - overflow: hidden; - position: absolute; - animation-delay: 5s; - animation-duration: 50s; - animation-iteration-count: infinite; - animation-name: shake; - animation-timing-function: ease-in-out; -} -.waifu-tool { - display: none; - color: #aaa; - top: 50px; - right: 10px; - position: absolute; -} -.waifu:hover .waifu-tool { - display: block; -} -.waifu-tool span { - display: block; - cursor: pointer; - color: #5b6c7d; - transition: 0.2s; -} -.waifu-tool span:hover { - color: #34495e; -} -.waifu #live2d{ - position: relative; -} - -@keyframes shake { - 2% { - transform: translate(0.5px, -1.5px) rotate(-0.5deg); - } - - 4% { - transform: translate(0.5px, 1.5px) rotate(1.5deg); - } - - 6% { - transform: translate(1.5px, 1.5px) rotate(1.5deg); - } - - 8% { - transform: translate(2.5px, 1.5px) rotate(0.5deg); - } - - 10% { - transform: translate(0.5px, 2.5px) rotate(0.5deg); - } - - 12% { - transform: translate(1.5px, 1.5px) rotate(0.5deg); - } - - 14% { - transform: translate(0.5px, 0.5px) rotate(0.5deg); - } - - 16% { - transform: translate(-1.5px, -0.5px) rotate(1.5deg); - } - - 18% { - transform: translate(0.5px, 0.5px) rotate(1.5deg); - } - - 20% { - transform: translate(2.5px, 2.5px) rotate(1.5deg); - } - - 22% { - transform: translate(0.5px, -1.5px) rotate(1.5deg); - } - - 24% { - transform: translate(-1.5px, 1.5px) rotate(-0.5deg); - } - - 26% { - transform: translate(1.5px, 0.5px) rotate(1.5deg); - } - - 28% { - transform: translate(-0.5px, -0.5px) rotate(-0.5deg); - } - - 30% { - transform: translate(1.5px, -0.5px) rotate(-0.5deg); - } - - 32% { - transform: translate(2.5px, -1.5px) rotate(1.5deg); - } - - 34% { - transform: translate(2.5px, 2.5px) rotate(-0.5deg); - } - - 36% { - transform: translate(0.5px, -1.5px) rotate(0.5deg); - } - - 38% { - transform: translate(2.5px, -0.5px) rotate(-0.5deg); - } - - 40% { - transform: translate(-0.5px, 2.5px) rotate(0.5deg); - } - - 42% { - transform: translate(-1.5px, 2.5px) rotate(0.5deg); - } - - 44% { - transform: translate(-1.5px, 1.5px) rotate(0.5deg); - } - - 46% { - transform: translate(1.5px, -0.5px) rotate(-0.5deg); - } - - 48% { - transform: translate(2.5px, -0.5px) rotate(0.5deg); - } - - 50% { - transform: translate(-1.5px, 1.5px) rotate(0.5deg); - } - - 52% { - transform: translate(-0.5px, 1.5px) rotate(0.5deg); - } - - 54% { - transform: translate(-1.5px, 1.5px) rotate(0.5deg); - } - - 56% { - transform: translate(0.5px, 2.5px) rotate(1.5deg); - } - - 58% { - transform: translate(2.5px, 2.5px) rotate(0.5deg); - } - - 60% { - transform: translate(2.5px, -1.5px) rotate(1.5deg); - } - - 62% { - transform: translate(-1.5px, 0.5px) rotate(1.5deg); - } - - 64% { - transform: translate(-1.5px, 1.5px) rotate(1.5deg); - } - - 66% { - transform: translate(0.5px, 2.5px) rotate(1.5deg); - } - - 68% { - transform: translate(2.5px, -1.5px) rotate(1.5deg); - } - - 70% { - transform: translate(2.5px, 2.5px) rotate(0.5deg); - } - - 72% { - transform: translate(-0.5px, -1.5px) rotate(1.5deg); - } - - 74% { - transform: translate(-1.5px, 2.5px) rotate(1.5deg); - } - - 76% { - transform: translate(-1.5px, 2.5px) rotate(1.5deg); - } - - 78% { - transform: translate(-1.5px, 2.5px) rotate(0.5deg); - } - - 80% { - transform: translate(-1.5px, 0.5px) rotate(-0.5deg); - } - - 82% { - transform: translate(-1.5px, 0.5px) rotate(-0.5deg); - } - - 84% { - transform: translate(-0.5px, 0.5px) rotate(1.5deg); - } - - 86% { - transform: translate(2.5px, 1.5px) rotate(0.5deg); - } - - 88% { - transform: translate(-1.5px, 0.5px) rotate(1.5deg); - } - - 90% { - transform: translate(-1.5px, -0.5px) rotate(-0.5deg); - } - - 92% { - transform: translate(-1.5px, -1.5px) rotate(1.5deg); - } - - 94% { - transform: translate(0.5px, 0.5px) rotate(-0.5deg); - } - - 96% { - transform: translate(2.5px, -0.5px) rotate(-0.5deg); - } - - 98% { - transform: translate(-1.5px, -1.5px) rotate(-0.5deg); - } - - 0%, 100% { - transform: translate(0, 0) rotate(0); - } -} -@font-face { - font-family: 'Flat-UI-Icons'; - src: url('flat-ui-icons-regular.eot'); - src: url('flat-ui-icons-regular.eot?#iefix') format('embedded-opentype'), url('flat-ui-icons-regular.woff') format('woff'), url('flat-ui-icons-regular.ttf') format('truetype'), url('flat-ui-icons-regular.svg#flat-ui-icons-regular') format('svg'); -} -[class^="fui-"], -[class*="fui-"] { - font-family: 'Flat-UI-Icons'; - speak: none; - font-style: normal; - font-weight: normal; - font-variant: normal; - text-transform: none; - -webkit-font-smoothing: antialiased; - -moz-osx-font-smoothing: grayscale; -} -.fui-cross:before { - content: "\e609"; -} -.fui-info-circle:before { - content: "\e60f"; -} -.fui-photo:before { - content: "\e62a"; -} -.fui-eye:before { - content: "\e62c"; -} -.fui-chat:before { - content: "\e62d"; -} -.fui-home:before { - content: "\e62e"; -} -.fui-user:before { - content: "\e631"; -} \ No newline at end of file diff --git a/spaces/hdhzk/bingo/src/components/ui/badge.tsx b/spaces/hdhzk/bingo/src/components/ui/badge.tsx deleted file mode 100644 index d9a84b394090e5b4b3bd34f6135b9a2f2ead0aa2..0000000000000000000000000000000000000000 --- a/spaces/hdhzk/bingo/src/components/ui/badge.tsx +++ /dev/null @@ -1,36 +0,0 @@ -import * as React from 'react' -import { cva, type VariantProps } from 'class-variance-authority' - -import { cn } from '@/lib/utils' - -const badgeVariants = cva( - 'inline-flex items-center rounded-full border px-2.5 py-0.5 text-xs font-semibold transition-colors focus:outline-none focus:ring-2 focus:ring-ring focus:ring-offset-2', - { - variants: { - variant: { - default: - 'border-transparent bg-primary text-primary-foreground hover:bg-primary/80', - secondary: - 'border-transparent bg-secondary text-secondary-foreground hover:bg-secondary/80', - destructive: - 'border-transparent bg-destructive text-destructive-foreground hover:bg-destructive/80', - outline: 'text-foreground' - } - }, - defaultVariants: { - variant: 'default' - } - } -) - -export interface BadgeProps - extends React.HTMLAttributes, - VariantProps {} - -function Badge({ className, variant, ...props }: BadgeProps) { - return ( -
      - ) -} - -export { Badge, badgeVariants } diff --git a/spaces/hf-task-exploration/ExploreACMnaacl/data_measurements_clusters/__init__.py b/spaces/hf-task-exploration/ExploreACMnaacl/data_measurements_clusters/__init__.py deleted file mode 100644 index f0c22444d25da5eee6617272ba57c46773a5617c..0000000000000000000000000000000000000000 --- a/spaces/hf-task-exploration/ExploreACMnaacl/data_measurements_clusters/__init__.py +++ /dev/null @@ -1 +0,0 @@ -from .clustering import Clustering diff --git a/spaces/huaiji3y/bingo-Public/src/components/ui/tooltip.tsx b/spaces/huaiji3y/bingo-Public/src/components/ui/tooltip.tsx deleted file mode 100644 index af1d48beb90dd5ae311796539843700871052cae..0000000000000000000000000000000000000000 --- a/spaces/huaiji3y/bingo-Public/src/components/ui/tooltip.tsx +++ /dev/null @@ -1,30 +0,0 @@ -'use client' - -import * as React from 'react' -import * as TooltipPrimitive from '@radix-ui/react-tooltip' - -import { cn } from '@/lib/utils' - -const TooltipProvider = TooltipPrimitive.Provider - -const Tooltip = TooltipPrimitive.Root - -const TooltipTrigger = TooltipPrimitive.Trigger - -const TooltipContent = React.forwardRef< - React.ElementRef, - React.ComponentPropsWithoutRef ->(({ className, sideOffset = 4, ...props }, ref) => ( - -)) -TooltipContent.displayName = TooltipPrimitive.Content.displayName - -export { Tooltip, TooltipTrigger, TooltipContent, TooltipProvider } diff --git a/spaces/hussain-shk/IndiSent/indic_nlp_library/indicnlp/tokenize/indic_detokenize.py b/spaces/hussain-shk/IndiSent/indic_nlp_library/indicnlp/tokenize/indic_detokenize.py deleted file mode 100644 index 71fa2ace3c9cd851021e66c01a34e1c99338d294..0000000000000000000000000000000000000000 --- a/spaces/hussain-shk/IndiSent/indic_nlp_library/indicnlp/tokenize/indic_detokenize.py +++ /dev/null @@ -1,134 +0,0 @@ -# -# Copyright (c) 2013-present, Anoop Kunchukuttan -# All rights reserved. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. -# - -#Program for detokenizing Indian language input -# -# @author Anoop Kunchukuttan -# -""" -De-tokenizer for Indian languages. -""" - -import string, re, sys -from indicnlp.common import IndicNlpException - -## detokenizer patterns -left_attach=r'!%)\]},.:;>?\u0964\u0965' -pat_la=re.compile(r'[ ](['+left_attach+r'])') - -right_attach=r'#$(\[{<@' -pat_ra=re.compile(r'(['+right_attach+r'])[ ]') - -lr_attach=r'-/\\' -pat_lra=re.compile(r'[ ](['+lr_attach+r'])[ ]') - -#donknow=u'&*+=^_|~' - -## date, numbers, section/article numbering -## TODO: handle indic numbers -pat_num_seq=re.compile(r'([0-9]+ [,.:/] )+[0-9]+') - -### e-mail address -#pat_num=re.compile(ur'[a-zA-Z]+[ ]? - -def trivial_detokenize_indic(text): - """detokenize string for Indian language scripts using Brahmi-derived scripts - - A trivial detokenizer which: - - - decides whether punctuation attaches to left/right or both - - handles number sequences - - handles quotes smartly (deciding left or right attachment) - - Args: - text (str): tokenized text to process - - Returns: - str: detokenized string - """ - - s=text - ### some normalizations - - #numbers and dates - new_s='' - prev=0 - for m in pat_num_seq.finditer(s): - start=m.start() - end=m.end() - if start>prev: - new_s=new_s+s[prev:start] - new_s=new_s+s[start:end].replace(' ','') - prev=end - - new_s=new_s+s[prev:] - s=new_s - - ### consective single quotes or backslashes become double quotes - #s=s.replace("' '", "''") - #s=s.replace("` `", '``') - - s=pat_lra.sub('\\1',s) - s=pat_la.sub('\\1',s) - s=pat_ra.sub('\\1',s) - - # assumes well formedness of quotes and alternates between right and left attach - - alt_attach='\'"`' - for punc in alt_attach: - cnt=0 - out_str=[] - for c in s: - if c == punc: - if cnt%2==0: - out_str.append('@RA') - else: - out_str.append('@LA') - cnt+=1 - else: - out_str.append(c) - - s=''.join(out_str).replace('@RA ',punc).replace(' @LA',punc - ).replace('@RA',punc).replace('@LA',punc) - - return s - -def trivial_detokenize(text,lang='hi'): - """detokenize string for languages of the Indian subcontinent - - A trivial detokenizer which: - - - decides whether punctuation attaches to left/right or both - - handles number sequences - - handles quotes smartly (deciding left or right attachment) - - Args: - text (str): tokenized text to process - - Returns: - str: detokenized string - - Raises: - IndicNlpException: If language is not supported - """ - if lang=='ur': - raise IndicNlpException('No detokenizer available for Urdu') - else: - return trivial_detokenize_indic(text) - -# if __name__ == '__main__': - -# if len(sys.argv)<4: -# print("Usage: python indic_detokenize.py ") -# sys.exit(1) - -# with open(sys.argv[1],'r', encoding='utf-8') as ifile: -# with open(sys.argv[2],'w', encoding='utf-8') as ofile: -# for line in ifile: -# detokenized_line=trivial_detokenize(line,sys.argv[3]) -# ofile.write(detokenized_line) diff --git a/spaces/iambuoyant/vscode/Dockerfile b/spaces/iambuoyant/vscode/Dockerfile deleted file mode 100644 index 4da2e927e8792b28dc21c74145232d64b847b00f..0000000000000000000000000000000000000000 --- a/spaces/iambuoyant/vscode/Dockerfile +++ /dev/null @@ -1,134 +0,0 @@ -FROM nvidia/cuda:11.3.1-base-ubuntu20.04 - -# Remove any third-party apt sources to avoid issues with expiring keys. -RUN rm -f /etc/apt/sources.list.d/*.list - -ENV DEBIAN_FRONTEND=noninteractive \ - TZ=Europe/Paris - -# Install some basic utilities -RUN apt-get update && apt-get install -y \ - curl \ - ca-certificates \ - sudo \ - git \ - git-lfs \ - zip \ - unzip \ - htop \ - bzip2 \ - libx11-6 \ - build-essential \ - libsndfile-dev \ - software-properties-common \ - && rm -rf /var/lib/apt/lists/* - -ARG BUILD_DATE -ARG VERSION -ARG CODE_RELEASE -RUN \ - echo "**** install openvscode-server runtime dependencies ****" && \ - apt-get update && \ - apt-get install -y \ - jq \ - libatomic1 \ - nano \ - net-tools \ - netcat && \ - echo "**** install openvscode-server ****" && \ - if [ -z ${CODE_RELEASE+x} ]; then \ - CODE_RELEASE=$(curl -sX GET "https://api.github.com/repos/gitpod-io/openvscode-server/releases/latest" \ - | awk '/tag_name/{print $4;exit}' FS='[""]' \ - | sed 's|^openvscode-server-v||'); \ - fi && \ - mkdir -p /app/openvscode-server && \ - curl -o \ - /tmp/openvscode-server.tar.gz -L \ - "https://github.com/gitpod-io/openvscode-server/releases/download/openvscode-server-v${CODE_RELEASE}/openvscode-server-v${CODE_RELEASE}-linux-x64.tar.gz" && \ - tar xf \ - /tmp/openvscode-server.tar.gz -C \ - /app/openvscode-server/ --strip-components=1 && \ - echo "**** clean up ****" && \ - apt-get clean && \ - rm -rf \ - /tmp/* \ - /var/lib/apt/lists/* \ - /var/tmp/* -COPY root/ / - -RUN add-apt-repository ppa:flexiondotorg/nvtop -RUN apt-get upgrade -y -RUN apt-get install -y nvtop - -RUN curl -sL https://deb.nodesource.com/setup_14.x | bash - -RUN apt-get install -y nodejs -RUN npm install -g configurable-http-proxy - -# Create a working directory -RUN mkdir -p /app -WORKDIR /app - -# Create a non-root user and switch to it -RUN adduser --disabled-password --gecos '' --shell /bin/bash user \ - && chown -R user:user /app -RUN echo "user ALL=(ALL) NOPASSWD:ALL" > /etc/sudoers.d/90-user -USER user - -# All users can use /home/user as their home directory -ENV HOME=/home/user -RUN mkdir $HOME/.cache $HOME/.config \ - && chmod -R 777 $HOME - -# Set up the Conda environment -ENV CONDA_AUTO_UPDATE_CONDA=false \ - PATH=$HOME/miniconda/bin:$PATH -RUN curl -sLo ~/miniconda.sh https://repo.continuum.io/miniconda/Miniconda3-py39_4.10.3-Linux-x86_64.sh \ - && chmod +x ~/miniconda.sh \ - && ~/miniconda.sh -b -p ~/miniconda \ - && rm ~/miniconda.sh \ - && conda clean -ya - -WORKDIR $HOME/app - -####################################### -# Start root user section -####################################### - -USER root - -# User Debian packages -## Security warning : Potential user code executed as root (build time) -COPY --chown=root packages.txt /root/packages.txt -RUN apt-get update && xargs -r -a /root/packages.txt apt-get install -y && rm -rf /var/lib/apt/lists/* - -COPY --chown=root on_startup.sh /root/on_startup.sh -RUN chmod +x /root/on_startup.sh -RUN /root/on_startup.sh - -# Rerun chmod on home dir in case any new files need permisisons -RUN chmod -R 777 $HOME - -####################################### -# End root user section -####################################### - -USER user - -# Copy the current directory contents into the container at $HOME/app setting the owner to the user -COPY --chown=user . $HOME/app - -RUN chmod +x start_server.sh - -RUN pip install --no-cache-dir --upgrade -r $HOME/app/requirements.txt - -ENV PYTHONUNBUFFERED=1 \ - GRADIO_ALLOW_FLAGGING=never \ - GRADIO_NUM_PORTS=1 \ - GRADIO_SERVER_NAME=0.0.0.0 \ - GRADIO_THEME=huggingface \ - SYSTEM=spaces \ - SHELL=/bin/bash - -EXPOSE 7860 3000 - -CMD ["./start_server.sh"] diff --git a/spaces/iamironman4279/SadTalker/src/face3d/models/arcface_torch/utils/utils_os.py b/spaces/iamironman4279/SadTalker/src/face3d/models/arcface_torch/utils/utils_os.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/inamXcontru/PoeticTTS/Autocad 2019 Crack Latest Update [mac win] Free Download How to Get It in Minutes.md b/spaces/inamXcontru/PoeticTTS/Autocad 2019 Crack Latest Update [mac win] Free Download How to Get It in Minutes.md deleted file mode 100644 index 3d7d7438f49a2aae15815088a154177ad3d8126c..0000000000000000000000000000000000000000 --- a/spaces/inamXcontru/PoeticTTS/Autocad 2019 Crack Latest Update [mac win] Free Download How to Get It in Minutes.md +++ /dev/null @@ -1,5 +0,0 @@ - -

      Autodesk provides download and install instructions for individuals and administrators. Your available downloads appear in Autodesk Account or education site. Find your product, select a version, platform, language, and download method. For more information, visit the Autodesk Knowledge Network.\n"}]},"@type":"Question","name":"How long is the AutoCAD 2023 free trial?","acceptedAnswer":["@type":"Answer","text":"The AutoCAD free trial lasts 30 days, which provides the chance to explore the full capabilities of the latest versions for a limited term. To cancel a free trial, turn off automatic renewal before the trial period ends. If you were not required to enter a payment method at the start of the trial, it will expire automatically.\n"],"@type":"Question","name":"How do I extend the AutoCAD 2023 free trial?","acceptedAnswer":["@type":"Answer","text":"After your trial expires, you cannot extend the trial period. For short-term needs, you can purchase a monthly subscription and turn off automatic renewal (to limit the length of the paid subscription to one month only) or purchase Flex tokens for a flexible pay-as-you-go plan.\n"],"@type":"Question","name":"How do I troubleshoot AutoCAD 2023 download issues?","acceptedAnswer":["@type":"Answer","text":"If your installation or product download fails, try using the Browser Download method instead (not available in macOS). We recommend disabling pop-up blockers and trying a different browser, such as Chrome or Explorer. For more solutions, check out our guide to troubleshooting Autodesk product download issues.\n"],"@type":"Question","name":"Where do I download free AutoCAD 2023 software for students?","acceptedAnswer":["@type":"Answer","text":"Students and educators can get free one-year educational access to Autodesk products and services, which is renewable as long as you remain eligible. If you are a student or educator, you can access free AutoCAD software with an Autodesk Education plan.\n"],"@type":"Question","name":"How do I convert my AutoCAD 2023 free trial to a paid subscription?","acceptedAnswer":["@type":"Answer","text":"Launch your trial software and click Subscribe Now on the trial screen or visit the AutoCAD 2023 product center. When buying your subscription, enter the same email address and password combination you used to sign into your trial. Learn more about converting a trial to a paid subscription.\r\n"]],"@type":"FAQPage","@context":" "} Autodesk Company overview Careers Investor relations Newsroom Diversity and belonging

    Autodesk Foundation Sustainability Contact us Students and educators Affiliate program Autodesk Research How to buy

    -

    autocad 2019 Crack Latest Update [mac win] Free Download


    Download Zip ……… https://gohhs.com/2uz3us



    aaccfb2cb3
    -
    -
    \ No newline at end of file diff --git a/spaces/inamXcontru/PoeticTTS/Dev D 720p Torrent Download Watch the Modern Take on Devdas.md b/spaces/inamXcontru/PoeticTTS/Dev D 720p Torrent Download Watch the Modern Take on Devdas.md deleted file mode 100644 index f02cea42a862909584a82cec88be6ac3bdfa5a13..0000000000000000000000000000000000000000 --- a/spaces/inamXcontru/PoeticTTS/Dev D 720p Torrent Download Watch the Modern Take on Devdas.md +++ /dev/null @@ -1,14 +0,0 @@ - -

    Downloading torrents is risky for you: your IP and leaked private data being actively tracked by your ISP and Government Agencies. Protect yourself from expensive lawsuits and fines NOW! You must use a VPN. It is the only way to download torrents fully anonymous by encrypting all traffic with zero logs.

    -

    Dev D 720p Torrent Download


    Download ✵✵✵ https://gohhs.com/2uz4V3



    -

    Since this is the top search result in Google, for anyone reading this, I spend over an hour trying to get it to work. Turns out, the downloads folder specified in settings.json is "Downloads" instead of "downloads". Note the case.

    -

    This just happened to me. I found this page, was intimidated by all the jargon, so I restarted Transmission, reserved the torrent file to a different location, and saved the torrent data to the same different location (desktop). Worked like a charm...

    -

    I received an error the first time I tried to download a torrent not using an absolute directory. I fixed that, but kept receiving a permission denied error, even after adding the correct permissions. Once I fixed my incomplete path to an absolute path, everything worked.

    -

    -

    I had same issue, and that was a mistake I had made when sym-linking the transmission download directory to my home/user/ directory, I changed the ownership of the sym-linked file which by consequence also changed the ownership of the transmission 'download' directory...

    -

    eMule is a free and open-source peer-to-peer file sharing client, allowing you to connect to millions of users to download and share files with them. By using the ED2K and Kademlia Network it supports semi-centralized as well as decentralized searches and operations. All of it free and without any adware or advertising.

    -

    By default, Chromium downloads *.torrent files directly and you need to click the notification from the bottom-left corner of the screen in order for the file to be opened with your default torrent client. This can be avoided with the following method:

    -


























    -forum/download-m3gan-2022-yts-torrent-download-yify-movies-1080p
    -wellness-forum/m3gan-download-dual-audio-1080p-english-hindi-tamil-on-filmyzilla
    -wellness-forum/free-download-m3gan-2022-fullmovie-free-720p-480p-english-sub
    -forum/free-download-m3gan-2022-yts-torrent-magnet-yify
    -forum/official-hd-watch-m3gan-2022-online-free
    -forum/m3gan-2023-movie-download-free-720p-480p-hd-english-sub
    -wellness-forum/download-m3gan-2022-fullmovie-free-online-720p-480p-and-1080p
    -fd-gfdg-fdg-fdg-fdg-fd-gfd-gfd/366232/
    -fd-gfd-gfd-gfd-gfdgfdg
    -fdgfdfdfdgfd-833
    -fdsf-ds-fd-fds-fds-fsd-fsdf-ds

    -dsf-ds-fds-fds-fds-02-06
    -blog.jp/articles/769876

    -sdf-ds-fds-fdsf-ds-fdsf-dsfdsfds-fds-f
    -dsfdsfdsfdsf-ds-fds-fds-fds-fds-fds-fdsfsdfdsfdsfs-fds?p=24533181#post24533181
    -sad-sad-sa-dsad-sa-dsa-dsa
    -fds-fds-fds-fds-fdsf-sd
    _TEMA=289&ID_NAZOR=376413#sel
    -d.com/dek-d/writer/view.php?id=2447383



    -in-progress-wip/watch-m3gan-2023-fullmovie-free-online-1080p
    -megan-m3gan-free-fullmovie-online-2/
    -analysis.com/
    -fitness-forum/free-download-megan-m3gan-full-movie-2023-online-on-123movies-6-feb-2023
    -fitness-forum/watch-m3gan-free-fullmovie-online-8
    -m3gan-2022-free-online-fullmovie-streaming-any-devices/


    -Free-2023-FullMovie-Online-on-123movie-s-H-948343533
    -wellness-forum/m3gan-free-2023-fullmovie-online-on-123movie-s-hd
    -fds-fdsf-ds-fsdf-dsf-dsf-ds-fds

    =bash

    -


    -m3gan-2022-fullmovie-free-online-on-123movies
    -m3gan-torrent-movie-download-720p-dvdrip-700mb-filmyzilla-telegram
    -m3gan-2022-yts-torrent-download-yify-movie
    -m3gan-2023-fullmovie-free-online-on-123-movies
    -m3gan-2022-fullmovie-free-online-on-123movies
    -m3gan-download-4k-hd-1080p-480p-720p
    -m3gan-2022-yts-torrent-magnet-yify-download
    -watch-megan-free-fullmovie-online
    -m3gan-2022-fullmovie-free-online-720p-1080p
    -m3gan-2023-full-movie-download-free-720p-480p-and-1080p
    -m3gan-2022-yts-torrent-magnet-yify-download
    -m3gan-2023-fullmovie-online-for-free-on-123movies
    -watch-m3gan-2023-fullmovie-free-online-1080p
    -free-download-megan-m3gan-full-movie-2023-online-on-123movies-4-feb-2023
    -watch-m3gan-fullmovie-free-online-on-123movies
    -online-free-m3gan-online-2023-full-movie-watch-hd
    -where-to-watch-m3gan-2023-free-online-how-to-stream-new-horror-movie-megan-at-home
    -watch-m3gan-fullmovie-free-online-on-123movies
    -m3gan-download-dual-audio-1080p-english-hindi-tamil-on-filmyzilla
    -free-download-m3gan-2022-fullmovie-free-720p-480p-english-sub
    -free-download-m3gan-2022-yts-torrent-magnet-yify
    -m3gan-2022-yts-yify-torrent-magnet-download
    -m3gan-free-fullmovie-online-on-putlocker
    -official-hd-watch-m3gan-2022-online-free
    -m3gan-2023-movie-download-free-720p-480p-hd-english-sub
    -download-m3gan-2022-fullmovie-free-online-720p-480p-and-1080p
    -watch-m3gan-2022-fullmovie-online-stream-on-free
    -m3gan-2022-yts-torrent-download-yify-movies
    -m3gan-2022-yts-yify-torrent-magnet-download
    -after-workout-forum/watch-m3gan-fullmovie-free-online-on-123movies-1
    -fitness-forum/m3gan-download-dual-audio-1080p-english-hindi-tamil-on-filmyzilla
    -after-workout-forum/free-download-m3gan-2022-fullmovie-free-720p-480p-english-sub
    -fitness-forum/download-m3gan-2022-fullmovie-free-online-720p-480p-and-1080p
    -after-workout-forum/m3gan-2023-yts-torrent-download-yify-movies
    -after-workout-forum/free-download-m3gan-2023-yts-torrent-magnet-yify






    -after-workout-forum/black-panther-wakanda-forever-2022-fullmovie-free-online-on-streamings-1
    -after-workout-forum/123movies-watch-black-panther-2-wakanda-forever-free-online-streaming-at-home-1
    -fitness-forum/usa-black-panther-2-wakanda-forever-2023-fullmovie-online-streaming-for-free-at-home
    -after-workout-forum/watch-black-panther-wakanda-forever-free-fullmovie-online-2
    -wellness-forum/watch-black-panther-wakanda-forever-2022-fullmovie-free-online-on-123
    -wellness-forum/free-download-black-panther-wakanda-forever-2022-online-04th-february-2023-1
    -black-panther-wakanda-forever-2022-fullmovie-free-online-on-streamings
    -123movies-watch-black-panther-2-wakanda-forever-free-online-streaming-at-home
    -usa-black-panther-2-wakanda-forever-2023-fullmovie-online-streaming-for-free-at-home
    -watch-black-panther-wakanda-forever-free-fullmovie-online
    -watch-black-panther-wakanda-forever-2022-fullmovie-free-online-on-123
    -free-download-black-panther-wakanda-forever-2022-online-04th-february-2023
    -watch-black-panther-wakanda-forever-2022-fullmovie-free-online-on-123movies
    -watch-black-panther-wakanda-forever-2022-fullmovie-free-online-on-123movies
    -watch-black-panther-wakanda-forever-2022-fullmovie-free-online-on-123movies
    -watch-black-panther-wakanda-forever-2022-fullmovie-free-online-on-123movies
    -watch-black-panther-wakanda-forever-2022-fullmovie-free-online-on-123movies
    -go-movies-black-panther-2-wakanda-forever-fullmovie-free-the-way-of-water-2022-at-home
    -black-panther-wakanda-forever-2022-fullmovie-download-free-720p-480p-hd
    -black-panther-wakanda-forever-2022-fullmovie-download-free-720p-480p-hd
    -black-panther-wakanda-forever-online-fullmovie-download-free
    -watch-black-panther-2-wakanda-forever-free-online-streaming-at-home
    -black-panther-2-wakanda-forever-free-online-streaming-at-home
    -123movies-watch-black-panther-wakanda-forever-2023-fullmovie-free-online-on-123movies
    -watch-black-panther-2-wakanda-forever-fullmovie-free-online-on-123movies
    -black-panther-2-wakanda-forever-2022-yts-torrent-download-yify-hd
    -black-panther-2-wakanda-forever-2022-yts-torrent-download-yify-movies
    -black-panther-2-wakanda-forever-2022-yts-torrent-magnet-yify-download
    -download-black-panther-2-wakanda-forever-2022-yts-torrent-download-yify-movies-1080p
    -movie-newsdownload-black-panther-2-wakanda-forever-2022-yts-torrent
    -black-panther-2-wakanda-forever-2022-yts-torrent-magnet-yify-download
    -black-panther-2-wakanda-forever-2022-yts-torrent-download-yify-movies-123
    -black-panther-2-wakanda-forever-download-dual-audio-1080p-english-hindi-tamil-on-filmyzilla
    -official-hd-watch-black-panther-2-wakanda-forever-2022-online-free






    -watch-black-panther-2-wakanda-forever-free-online-streaming-athome
    -black-panther-2-wakanda-forever-2023-fullmovie-online-streaming-for-free-at-home
    -watch-black-panther-2-wakanda-forever-free-online-streaming-athome-1
    -ds-fdsf-dsf-ds-fdsf-ds-fds-fsd-fsd-f/365970/
    -ds-fdsf-dsf-ds-fdsf-ds-fds-fsd-fsd-f/365970/
    -gfd-gfd-gdf-gfd
    -fdgfdfdfdgfd-907/pagelink
    -sad-sad-sad-sa

    -fds-s-fds-fds-fds-02-04
    -blog.jp/articles/769713

    -dsfd-sf-ds-fdsfdsfds-fds-fds-fdsfdsfds
    -dsfdsf-ds-fdsf-dsf-dsf-dsf-ds?p=24531669#post24531669
    -tr-ytry-try-try-try-try-trytrytrytry-try-tr
    -ds-fds-fdsfdsfdsfsdfgfdgsgsdsgdfg
    _TEMA=289&ID_NAZOR=376361#sel
    -d.com/dek-d/writer/view.php?id=2446953



    -in-progress-wip/fdgfdgfd-gfd-gdsf-dsf-ds-fds-fds-fds-fds-fds
    -fds-fds-fds-fds-fdsf-sd-fds-fs/
    -analysis.com/sample/958c139277a70c0af4257a300796492859fbca3ed1644108ad63e9084c9d8789
    -fitness-forum/ewrw-rew-rew-rew-rewr-ewr-ew-rew-rew-rewr-ewrewrew-rew
    -fitness-forum/dsfdsfd-s-fdsf-dsf-dsf-ds-fds-fdsf-dsf-ds-fdsf-dsf-dsf-dsf-ds-f
    -dsf-ds-fds-fds-f?&kind=crawled&fId=1811265
    -dsf-ds-fds-fds-fdsf-ds-fds-fsd/

    -trytr-ytry-tr-ytr-ytr-try-tr

    -X4QQm19vzKvNWUpPA?language=bash
    -zapisana?post_id=58952527&obs=&emal=&st=1&thread_id=



    -d3e8-496b-be61-2d5bc94c4617






    -dsf-dsf-ds-fds-fdsf-ds
    =submit
    -sd-fds-fds-fds-fds-fsd-fds-fds-fsd-f



    -/ZcYthY

    aaccfb2cb3
    -
    -
    \ No newline at end of file diff --git a/spaces/innat/UniFormerV2/app.py b/spaces/innat/UniFormerV2/app.py deleted file mode 100644 index 4555d950d47685707344d75e93b758574dde2cde..0000000000000000000000000000000000000000 --- a/spaces/innat/UniFormerV2/app.py +++ /dev/null @@ -1,87 +0,0 @@ -import gradio as gr -import numpy as np -import zipfile -import imageio - -import tensorflow as tf -from tensorflow import keras - -from utils import read_video, frame_sampling -from utils import num_frames, patch_size, input_size -from labels import K400_label_map, SSv2_label_map - - -LABEL_MAPS = { - 'K400': K400_label_map, - 'SSv2': SSv2_label_map, -} - - -ALL_MODELS = [ - 'TFUniFormerV2_K400_K710_L14_16x224', - 'TFUniFormerV2_SSV2_B16_16x224', -] - -sample_example = [ - ["examples/k400.mp4", ALL_MODELS[0]], - ["examples/ssv2.mp4", ALL_MODELS[1]], -] - - -def get_model(model_type): - model_path = keras.utils.get_file( - origin=f'https://github.com/innat/UniFormerV2/releases/download/v1.1/{model_type}.zip', - ) - with zipfile.ZipFile(model_path, 'r') as zip_ref: - zip_ref.extractall('./') - - model = keras.models.load_model(model_type) - - if 'K400' in model_type: - data_type = 'K400' - else: - data_type = 'SSv2' - - label_map = LABEL_MAPS.get(data_type) - label_map = {v: k for k, v in label_map.items()} - - return model, label_map - - -def inference(video_file, model_type): - # get sample data - container = read_video(video_file) - frames = frame_sampling(container, num_frames=num_frames) - - # get models - model, label_map = get_model(model_type) - model.trainable = False - - # inference on model - outputs = model(frames[None, ...], training=False) - probabilities = tf.nn.softmax(outputs).numpy().squeeze(0) - confidences = { - label_map[i]: float(probabilities[i]) for i in np.argsort(probabilities)[::-1] - } - return confidences - - -def main(): - iface = gr.Interface( - fn=inference, - inputs=[ - gr.Video(type="file", label="Input Video"), - gr.Dropdown( - choices=ALL_MODELS, - label="Model" - ) - ], - outputs=gr.Label(num_top_classes=3, label='scores'), - examples=sample_example, - title="UniFormerV2: Spatiotemporal Learning.", - description="Keras reimplementation of UniFormerV2 is presented here." - ) - iface.launch() - -if __name__ == '__main__': - main() \ No newline at end of file diff --git a/spaces/inplisQlawa/anything-midjourney-v4-1/BEST Download Lagu Takbiran Muammar Mp3.md b/spaces/inplisQlawa/anything-midjourney-v4-1/BEST Download Lagu Takbiran Muammar Mp3.md deleted file mode 100644 index cec2e154f8d4b81d02a4f780eb1c847cd88ceab8..0000000000000000000000000000000000000000 --- a/spaces/inplisQlawa/anything-midjourney-v4-1/BEST Download Lagu Takbiran Muammar Mp3.md +++ /dev/null @@ -1,127 +0,0 @@ - -

    Download Lagu Takbiran Muammar Mp3 - Suara Takbir yang Menggetarkan Jiwa

    - -

    Takbiran adalah salah satu tradisi yang dilakukan oleh umat Islam di seluruh dunia pada malam hari raya Idul Fitri dan Idul Adha. Takbiran adalah mengucapkan kalimat "Allahu Akbar" yang artinya Allah Maha Besar. Takbiran merupakan bentuk pengagungan dan penghormatan kepada Allah yang telah memberikan berbagai nikmat dan karunia kepada hamba-Nya.

    -

    Download Lagu Takbiran Muammar Mp3


    DOWNLOADhttps://urlin.us/2uExbf



    - -

    Salah satu qari' atau pembaca Al-Qur'an yang terkenal dengan suara takbirannya yang menggetarkan jiwa adalah H. Muammar ZA. Beliau adalah seorang qari' asal Indonesia yang memiliki suara yang sangat indah dan khas saat membaca Al-Qur'an maupun takbiran. Beliau juga dikenal sebagai salah satu qari' terbaik di dunia yang telah banyak mengharumkan nama Indonesia di berbagai ajang tilawah internasional.

    - -

    Jika Anda ingin mendengarkan suara takbiran H. Muammar ZA, Anda bisa download lagu takbiran Muammar mp3 secara gratis di internet. Ada banyak situs web yang menyediakan lagu takbiran Muammar mp3 untuk Anda download. Anda bisa memilih versi yang Anda sukai, baik versi pendek maupun versi panjang.

    - -

    Cara Download Lagu Takbiran Muammar Mp3

    - -

    Berikut adalah beberapa langkah mudah untuk download lagu takbiran Muammar mp3:

    - -
      -
    1. Kunjungi salah satu situs web yang menyediakan lagu takbiran Muammar mp3, misalnya Stafaband, Archive.org, Lagu123, atau UyeShare.
    2. -
    3. Ketikkan kata kunci "Download Lagu Takbiran Muammar Mp3" di kolom pencarian situs web tersebut.
    4. -
    5. Pilih salah satu judul lagu takbiran Muammar mp3 yang muncul di hasil pencarian.
    6. -
    7. Klik tombol download mp3 atau link download yang tersedia di halaman tersebut.
    8. -
    9. Tunggu proses download selesai dan simpan file mp3 di perangkat Anda.
    10. -
    - -

    Anda juga bisa mendengarkan lagu takbiran Muammar mp3 secara online di situs web tersebut tanpa perlu mendownloadnya. Cukup klik tombol play atau putar yang ada di halaman tersebut.

    - -

    Manfaat Download Lagu Takbiran Muammar Mp3

    - -

    Ada beberapa manfaat jika Anda download lagu takbiran Muammar mp3, antara lain:

    - -
      -
    • Anda bisa mendengarkan suara takbiran H. Muammar ZA yang menggetarkan jiwa kapan saja dan di mana saja tanpa perlu koneksi internet.
    • -
    • Anda bisa memutar lagu takbiran Muammar mp3 di perangkat apa saja, seperti smartphone, laptop, komputer, atau speaker.
    • -
    • Anda bisa membagikan lagu takbiran Muammar mp3 kepada keluarga, teman, atau kerabat Anda melalui media sosial, email, atau aplikasi pesan.
    • -
    • Anda bisa meningkatkan keimanan dan ketaqwaan Anda dengan mendengarkan lagu takbiran Muammar mp3.
    • -
    - -

    Demikianlah artikel tentang cara download lagu takbiran Muammar mp3 secara gratis dan mudah. Semoga artikel ini bermanfaat bagi Anda yang ingin mendengarkan suara takbiran H. Muammar ZA yang menggetarkan jiwa. Selamat mencoba dan selamat Hari Raya Idul Fitri!

    -

    -

    Variasi Lagu Takbiran Muammar Mp3

    - -

    Lagu takbiran Muammar mp3 memiliki banyak variasi yang bisa Anda pilih sesuai dengan selera Anda. Ada versi yang panjang dan ada versi yang pendek. Ada versi yang hanya berisi suara takbiran dan ada versi yang diselingi dengan bacaan Al-Qur'an atau doa. Ada versi yang solo dan ada versi yang duet atau grup.

    - -

    Beberapa contoh variasi lagu takbiran Muammar mp3 adalah:

    - -
      -
    • Takbiran (Versi 6) H. Muammar ZA - Lagu takbiran yang berdurasi 4 menit 44 detik ini hanya berisi suara takbiran H. Muammar ZA tanpa bacaan Al-Qur'an atau doa.
    • -
    • Takbiran Idul Fitri 2021 H. Muammar ZA Dkk - Versi Kaset 1 - Lagu takbiran yang berdurasi 1 jam 9 menit ini berisi suara takbiran H. Muammar ZA dan beberapa qari' lainnya seperti H. Chumaidi H, Drs. Imron Rosyadi ZA, dan Iis Solihat. Lagu ini juga diselingi dengan bacaan Al-Qur'an dan doa.
    • -
    • Takbir Lebaran KH. Mu'ammar ZA (Full) - Bikin Rindu Kampung Halaman - Lagu takbiran yang berdurasi 46 menit ini berisi suara takbiran KH. Mu'ammar ZA yang sangat merdu dan menyentuh hati. Lagu ini juga diselingi dengan bacaan Al-Qur'an dan doa.
    • -
    • Takbiran | H.muammar Za Versi Terkeren (#Sepanjang Masa#) - Lagu takbiran yang berdurasi 30 menit ini berisi suara takbiran H. Muammar ZA yang sangat keren dan mengagumkan. Lagu ini juga diselingi dengan bacaan Al-Qur'an dan doa.
    • -
    • H Muammar ZA Takbiran Terbaru (Editing) - Lagu takbiran yang berdurasi 5 menit ini berisi suara takbiran H. Muammar ZA yang terbaru dan terbaik. Lagu ini juga diselingi dengan bacaan Al-Qur'an dan doa.
    • -
    - -

    Anda bisa mendownload variasi lagu takbiran Muammar mp3 sesuai dengan pilihan Anda di situs web yang telah disebutkan sebelumnya.

    - -

    Tips Mendengarkan Lagu Takbiran Muammar Mp3

    - -

    Lagu takbiran Muammar mp3 adalah lagu yang sangat baik untuk didengarkan pada malam hari raya Idul Fitri dan Idul Adha. Namun, ada beberapa tips yang bisa Anda lakukan agar mendengarkan lagu takbiran Muammar mp3 menjadi lebih bermakna dan menyenangkan, antara lain:

    - -
      -
    • Dengarkan lagu takbiran Muammar mp3 dengan hati yang bersih dan ikhlas. Jangan hanya sekedar mendengarkan suara takbirannya saja, tetapi ikutlah mengucapkan kalimat "Allahu Akbar" dengan penuh penghayatan dan kekhusyukan.
    • -
    • Dengarkan lagu takbiran Muammar mp3 bersama-sama dengan keluarga, teman, atau kerabat Anda. Anda bisa mengajak mereka untuk ikut mengucapkan kalimat "Allahu Akbar" bersama-sama dengan Anda. Hal ini akan menambah kehangatan dan kebersamaan di antara Anda.
    • -
    • Dengarkan lagu takbiran Muammar mp3 sambil membaca Al-Qur'an atau doa yang sesuai dengan hari raya Idul Fitri atau Idul Adha. Anda bisa mengikuti bacaan Al-Qur'an atau doa yang ada di dalam lagu takbiran Muammar mp3 atau membaca sendiri dari buku atau aplikasi.
    • -
    • Dengarkan lagu takbiran Muammar mp3 sambil melakukan amalan-amalan sunnah lainnya pada malam hari raya Idul Fitri atau Idul Adha, seperti sholat sunnah, sholat tarawih, sholat witir, membaca dzikir, membaca istighfar, memohon ampun kepada Allah, memohon maaf kepada sesama manusia, dan lain-lain.
    • -
    - -

    Dengan melakukan tips-tips di atas, Anda akan merasakan manfaat dan keutamaan dari mendengarkan lagu takbiran Muammar mp3 secara maksimal.

    -

    Sejarah Lagu Takbiran Muammar Mp3

    - -

    Lagu takbiran Muammar mp3 adalah salah satu lagu takbiran yang paling populer dan banyak dicari oleh umat Islam di seluruh dunia. Lagu takbiran Muammar mp3 merupakan hasil rekaman dari suara takbiran H. Muammar ZA yang telah berkiprah di dunia tilawah Al-Qur'an sejak tahun 1960-an.

    - -

    H. Muammar ZA lahir di Pemalang, Jawa Tengah pada tahun 1955. Beliau mulai belajar membaca Al-Qur'an sejak usia 5 tahun dan mengikuti berbagai lomba tilawah sejak usia 9 tahun. Beliau mendapatkan gelar qari' pertama di Indonesia pada tahun 1970 dan qari' internasional pada tahun 1979.

    - -

    Beliau telah mengikuti berbagai ajang tilawah Al-Qur'an di dalam dan luar negeri, seperti di Malaysia, Singapura, Brunei Darussalam, Thailand, Mesir, Arab Saudi, Kuwait, Uni Emirat Arab, Qatar, Bahrain, Oman, Yaman, Pakistan, India, Bangladesh, Turki, Inggris, Perancis, Jerman, Belanda, Amerika Serikat, Kanada, Australia, dan lain-lain.

    - -

    Beliau juga telah merekam berbagai lagu takbiran yang sangat indah dan merdu. Lagu takbiran Muammar mp3 adalah salah satu lagu takbiran yang paling terkenal dan banyak didownload oleh umat Islam di seluruh dunia. Lagu takbiran Muammar mp3 memiliki ciri khas suara H. Muammar ZA yang sangat khas dan menggetarkan jiwa.

    - -

    Kesimpulan

    - -

    Lagu takbiran Muammar mp3 adalah lagu takbiran yang sangat baik untuk didengarkan pada malam hari raya Idul Fitri dan Idul Adha. Lagu takbiran Muammar mp3 berisi suara takbiran H. Muammar ZA yang sangat merdu dan menyentuh hati. Anda bisa download lagu takbiran Muammar mp3 secara gratis di internet dengan mudah dan cepat.

    - -

    Anda juga bisa mendengarkan lagu takbiran Muammar mp3 secara online tanpa perlu mendownloadnya. Anda bisa memilih variasi lagu takbiran Muammar mp3 sesuai dengan selera Anda. Anda juga bisa mendapatkan banyak manfaat dari mendengarkan lagu takbiran Muammar mp3, seperti meningkatkan keimanan dan ketaqwaan Anda.

    - -

    Lagu takbiran Muammar mp3 adalah lagu takbiran yang memiliki sejarah yang panjang dan mulia. Lagu takbiran Muammar mp3 merupakan hasil rekaman dari suara takbiran H. Muammar ZA yang telah berkiprah di dunia tilawah Al-Qur'an sejak tahun 1960-an. Beliau adalah seorang qari' asal Indonesia yang memiliki suara yang sangat indah dan khas.

    - -

    Demikianlah artikel tentang download lagu takbiran Muammar mp3 secara gratis dan mudah. Semoga artikel ini bermanfaat bagi Anda yang ingin mendengarkan suara takbiran H. Muammar ZA yang merdu dan menyentuh hati. Selamat mencoba dan selamat Hari Raya Idul Fitri!

    -

    Review Lagu Takbiran Muammar Mp3

    - -

    Lagu takbiran Muammar mp3 adalah lagu takbiran yang sangat bagus untuk didengarkan pada malam hari raya Idul Fitri dan Idul Adha. Lagu takbiran Muammar mp3 mendapatkan banyak review positif dari para pendengar yang telah mendownload dan mendengarkannya.

    - -

    Berikut adalah beberapa review lagu takbiran Muammar mp3 dari para pendengar:

    - -
      -
    • "Suara takbiran H. Muammar ZA sangat merdu dan menggetarkan jiwa. Saya selalu mendengarkan lagu takbiran Muammar mp3 setiap malam hari raya. Saya merasa lebih dekat dengan Allah dan lebih bersyukur atas segala nikmat yang telah diberikan."
    • -
    • "Lagu takbiran Muammar mp3 sangat mudah untuk didownload dan diputar di perangkat apa saja. Saya bisa mendengarkan lagu takbiran Muammar mp3 di smartphone, laptop, komputer, atau speaker. Saya juga bisa membagikannya kepada keluarga, teman, atau kerabat saya melalui media sosial, email, atau aplikasi pesan."
    • -
    • "Lagu takbiran Muammar mp3 memiliki banyak variasi yang bisa saya pilih sesuai dengan selera saya. Ada versi yang panjang dan ada versi yang pendek. Ada versi yang hanya berisi suara takbiran dan ada versi yang diselingi dengan bacaan Al-Qur'an atau doa. Ada versi yang solo dan ada versi yang duet atau grup."
    • -
    • "Lagu takbiran Muammar mp3 adalah lagu takbiran yang memiliki sejarah yang panjang dan mulia. Lagu takbiran Muammar mp3 merupakan hasil rekaman dari suara takbiran H. Muammar ZA yang telah berkiprah di dunia tilawah Al-Qur'an sejak tahun 1960-an. Beliau adalah seorang qari' asal Indonesia yang memiliki suara yang sangat indah dan khas."
    • -
    - -

    Anda juga bisa memberikan review lagu takbiran Muammar mp3 di situs web yang telah disebutkan sebelumnya. Anda bisa memberikan rating, komentar, saran, atau kritik tentang lagu takbiran Muammar mp3.

    - -

    Alternatif Lagu Takbiran Selain Muammar Mp3

    - -

    Lagu takbiran Muammar mp3 adalah lagu takbiran yang sangat populer dan banyak dicari oleh umat Islam di seluruh dunia. Namun, jika Anda ingin mencoba alternatif lagu takbiran selain Muammar mp3, Anda bisa mencari lagu takbiran dari qari' atau pembaca Al-Qur'an lainnya.

    - -

    Berikut adalah beberapa alternatif lagu takbiran selain Muammar mp3 yang bisa Anda download secara gratis di internet:

    - -
      -
    • Lagu takbiran Ustadz Jefri Al Buchori (Uje) - Lagu takbiran dari almarhum Ustadz Jefri Al Buchori (Uje) yang merupakan seorang ustadz, penyanyi, dan aktor asal Indonesia. Lagu takbiran Uje memiliki suara yang sangat merdu dan menyentuh hati.
    • -
    • Lagu takbiran Haddad Alwi - Lagu takbiran dari Haddad Alwi yang merupakan seorang penyanyi religi asal Indonesia. Lagu takbiran Haddad Alwi memiliki suara yang sangat keren dan mengagumkan.
    • -
    • Lagu takbiran Opick - Lagu takbiran dari Opick yang merupakan seorang penyanyi religi asal Indonesia. Lagu takbiran Opick memiliki suara yang sangat syahdu dan menenangkan.
    • -
    • Lagu takbiran Wafiq Azizah - Lagu takbiran dari Wafiq Azizah yang merupakan seorang qariah atau pembaca Al-Qur'an wanita asal Indonesia. Lagu takbiran Wafiq Azizah memiliki suara yang sangat cantik dan harmonis.
    • -
    • Lagu takbiran Maher Zain - Lagu takbiran dari Maher Zain yang merupakan seorang penyanyi religi asal Lebanon. Lagu takbiran Maher Zain memiliki suara yang sangat modern dan dinamis.
    • -
    - -

    Anda bisa mendownload alternatif lagu takbiran selain Muammar mp3 di situs web seperti Stafaband, UyeShare, Archive.org, Lagu123, DownloadLagu321, atau situs web lainnya.

    -

    Kesimpulan

    - -

    Lagu takbiran Muammar mp3 adalah lagu takbiran yang sangat baik untuk didengarkan pada malam hari raya Idul Fitri dan Idul Adha. Lagu takbiran Muammar mp3 berisi suara takbiran H. Muammar ZA yang sangat merdu dan menyentuh hati. Anda bisa download lagu takbiran Muammar mp3 secara gratis di internet dengan mudah dan cepat.

    - -

    Anda juga bisa mendengarkan lagu takbiran Muammar mp3 secara online tanpa perlu mendownloadnya. Anda bisa memilih variasi lagu takbiran Muammar mp3 sesuai dengan selera Anda. Anda juga bisa mendapatkan banyak manfaat dari mendengarkan lagu takbiran Muammar mp3, seperti meningkatkan keimanan dan ketaqwaan Anda.

    - -

    Lagu takbiran Muammar mp3 adalah lagu takbiran yang memiliki sejarah yang panjang dan mulia. Lagu takbiran Muammar mp3 merupakan hasil rekaman dari suara takbiran H. Muammar ZA yang telah berkiprah di dunia tilawah Al-Qur'an sejak tahun 1960-an. Beliau adalah seorang qari' asal Indonesia yang memiliki suara yang sangat indah dan khas.

    - -

    Jika Anda ingin mencoba alternatif lagu takbiran selain Muammar mp3, Anda bisa mencari lagu takbiran dari qari' atau pembaca Al-Qur'an lainnya. Ada banyak pilihan lagu takbiran yang bisa Anda download secara gratis di internet.

    - -

    Demikianlah artikel tentang download lagu takbiran Muammar mp3 secara gratis dan mudah. Semoga artikel ini bermanfaat bagi Anda yang ingin mendengarkan suara takbiran H. Muammar ZA yang merdu dan menyentuh hati. Selamat mencoba dan selamat Hari Raya Idul Fitri!

    3cee63e6c2
    -
    -
    \ No newline at end of file diff --git a/spaces/inplisQlawa/anything-midjourney-v4-1/GloboFleet Cc Plus V261 ((EXCLUSIVE)) Keygen.md b/spaces/inplisQlawa/anything-midjourney-v4-1/GloboFleet Cc Plus V261 ((EXCLUSIVE)) Keygen.md deleted file mode 100644 index 6846babfeefe155673bdefa5830d18d61de3a129..0000000000000000000000000000000000000000 --- a/spaces/inplisQlawa/anything-midjourney-v4-1/GloboFleet Cc Plus V261 ((EXCLUSIVE)) Keygen.md +++ /dev/null @@ -1,30 +0,0 @@ -

    GloboFleet Cc Plus V261 Keygen


    DOWNLOAD ✏ ✏ ✏ https://urlin.us/2uExpM



    - -skin - -globofleet cc plus v261 keygen skin - -By downloading, you agree to Globofleet's Terms of use, Privacy Policy, and Full Disclaimer and to the installation of the Globofleet and/or WinSxS installed on your computer. Globofleet (Global Footprint Network), an independent, global, not-for-profit organization, was created to assess the planet's finite resources. - -Globofleet: Global Footprint Network. Founded in 1996, Global Footprint Network's mission is to develop innovative and practical tools that enable individuals, corporations, and organizations to assess their ecological footprint. - -Globofleet: Global Footprint Network. It is the only independent, global organization that develops, evaluates, and provides data and analysis that track the flow of the planet's resources. Through this analysis, it aims to drive sustainable consumption and production policies and encourage people and corporations to live within their ecological means. - -Unable to load the specified module. This usually occurs because the specified module is missing or corrupt. - -More information - -Globofleet. Our objective is to provide a set of tools and expertise that enables individuals, corporations, and organizations to assess their ecological footprint and to develop strategies to reduce their ecological footprint. - -Globofleet. Our method, based on an index that measures the area of agricultural land that a person or company is required to support to meet all of his or her dietary and other essential needs, can be used to create estimates of any country's ecological footprint. Globofleet has worked with governments, companies, and communities to develop specific national and regional ecological footprint assessments. - -In 2001, the US Department of State recognized Globofleet as a Foreign Assistance Program provider and began contributing to the development and maintenance of the Ecological Footprint at the national level. - -Globofleet. Our central goal is to provide a set of tools and expertise that enable individuals, corporations, and organizations to assess their ecological footprint and to develop strategies to reduce their ecological footprint. - -Globofleet. Globofleet is the only independent, global organization that develops, evaluates, and provides data and analysis that track the flow of the planet's resources. Through this analysis, it aims to drive sustainable consumption and production policies and encourage people and corporations to live within their ecological means. - -Globofleet. Founded in 1996, 4fefd39f24
    -
    -
    -

    diff --git a/spaces/inplisQlawa/anything-midjourney-v4-1/Human Memory Second Edition Gabriel A. Radvansky.md b/spaces/inplisQlawa/anything-midjourney-v4-1/Human Memory Second Edition Gabriel A. Radvansky.md deleted file mode 100644 index 75dd151a2e90c25842920927288ae74dcb8ddca3..0000000000000000000000000000000000000000 --- a/spaces/inplisQlawa/anything-midjourney-v4-1/Human Memory Second Edition Gabriel A. Radvansky.md +++ /dev/null @@ -1,6 +0,0 @@ -

    Human Memory: Second Edition Gabriel A. Radvansky


    Download Zip ❤❤❤ https://urlin.us/2uEw32



    - -Please tell us what you think and share your opinions with others. Thank you for your feedback.An effective laboratory exercise for measuring working memory is to take a short-term memory test. This exercise is often used to measure a person’s general ability to process information and learn. Other tests for working memory include recalling the numbers of matches in a deck of cards, recalling the number of steps in a given distance, and recalling a list of words.To examine the performance of younger people on a measure of working memory, many studies have employed the story listening task. The story listening task consists of four different phases. The first phase is the presentation of the story, and it consists of a 12-minute audio story. During the second phase, the participant is required to memorize the story (listen). This is called the free recall phase, and it is to be repeated three times.During the third phase, the participant is asked to listen to the story three more times without trying to remember. The purpose of this phase is to measure the participant’s ability to recall the story without interference from the encoding phase. The fourth phase is the recognition phase. In the recognition phase, the participant is asked to listen to the story again without remembering. This time, the participant is asked to indicate the correct order in which the story was presented.A study was conducted with 69 young adults, who were divided into two groups based on their scores on a measure of working memory. It was found that there were no significant differences in terms of age, education, or intelligence between the two groups. The participants were asked to memorize six words that were presented in six different orders. After the first memory phase, the participants were tested for free recall. The participants performed the same procedure again with a different set of words.The researchers found that working memory did not have an effect on the number of words that were recalled in free recall. However, the participants who performed better on a measure of working memory were better able to recall the second set of words.The researchers also found that those who had higher working memory scores were better at recognizing the stories. This suggests that the measure of working memory that was administered to the participants influenced their ability to retain information and to recall that information later.. Gabriel A. Radvansky (Author).Medical Mathematics For Medical Students & Physician Assistants: 9780205868506: Medicine & Health Science Books @ Amazon.com.. Gabriel A. Rad 4fefd39f24
    -
    -
    -

    diff --git a/spaces/inplisQlawa/anything-midjourney-v4-1/I Am Kalam Malayalam Movie Subtitles Download ((FULL)).md b/spaces/inplisQlawa/anything-midjourney-v4-1/I Am Kalam Malayalam Movie Subtitles Download ((FULL)).md deleted file mode 100644 index 173f40f568f5ee2c070dc0ef767d0af2b84f8cf4..0000000000000000000000000000000000000000 --- a/spaces/inplisQlawa/anything-midjourney-v4-1/I Am Kalam Malayalam Movie Subtitles Download ((FULL)).md +++ /dev/null @@ -1,7 +0,0 @@ -

    I Am Kalam Malayalam Movie Subtitles Download


    Download ✶✶✶ https://urlin.us/2uExwF



    - -I'm Kalam. 2010 | TV-PG | 1h 28m | Social. Co-author of the National Film Award in the nomination "Best Children's Artist" ("Severe Maiar", "Chhotu/Kalam"). . Subtitles. English. Ў -Aarne Weedla (Aarne Weedla). “I am Kalam. 2010" Aarne Veedla - director and screenwriter. Currently lives and works in Stockholm. Ў 8a78ff9644
    -
    -
    -

    diff --git a/spaces/inplisQlawa/anything-midjourney-v4-1/Mighty Raju - Rio Calling Movie Extra Quality Download Hindi Free Hd.md b/spaces/inplisQlawa/anything-midjourney-v4-1/Mighty Raju - Rio Calling Movie Extra Quality Download Hindi Free Hd.md deleted file mode 100644 index 9d8b5a5a7be65f51448140d7d72357cba75d32ab..0000000000000000000000000000000000000000 --- a/spaces/inplisQlawa/anything-midjourney-v4-1/Mighty Raju - Rio Calling Movie Extra Quality Download Hindi Free Hd.md +++ /dev/null @@ -1,17 +0,0 @@ - -

    Mighty Raju - Rio Calling: A Fun-Filled Animated Adventure for Kids

    -

    If you are looking for a movie that will entertain your kids and make them laugh, then you should check out Mighty Raju - Rio Calling. This is an animated film that follows the adventures of Mighty Raju, a four-year-old boy with superpowers, who travels to Rio de Janeiro with his parents.

    -

    Mighty Raju - Rio Calling movie download hindi free hd


    Download Zip 🌟 https://urlin.us/2uEvs1



    -

    Mighty Raju - Rio Calling is the third movie in the Mighty Raju series, which is based on the popular Indian cartoon show Chhota Bheem. The movie was released in 2014 and was directed by Rajiv Chilaka and Anirban Majumder. The movie features the voice talents of Rajesh Kava, Julie Tejwani, Jigna Bhardwaj, and Kaustav Ghosh.

    -

    In this movie, Mighty Raju learns to play football and his team reaches the finals of the inter-school tournament. However, he also has to face some challenges along the way, such as nasty soccer rivals, gun-toting Mafia dons, and deadly Capoeira fighters. Will Mighty Raju be able to overcome these obstacles and win the tournament?

    -

    Mighty Raju - Rio Calling is a movie that will appeal to kids of all ages, as it has a lot of humor, action, and excitement. The movie also showcases the culture and beauty of Rio de Janeiro, with its colorful carnival, samba music, and iconic landmarks. The movie also has a positive message about friendship, teamwork, and courage.

    -

    If you want to watch Mighty Raju - Rio Calling online, you can find it on various streaming platforms such as YouTube, Prime Video, Google Play Movies, and Netflix. You can also download the movie in Hindi for free in HD quality from various websites. However, you should be careful about the legality and safety of these websites, as they may contain viruses or malware.

    -

    Mighty Raju - Rio Calling is a movie that will make your kids happy and entertained. It is a perfect choice for a family movie night or a weekend treat. So, what are you waiting for? Grab some popcorn and enjoy this fun-filled animated adventure with Mighty Raju!

    -

    - -

    Mighty Raju - Rio Calling is not only a movie, but also a video game that you can play on your mobile devices. The game is developed by Green Gold Animation, the same company that produced the movie and the cartoon show. The game is available for both Android and iOS devices, and you can download it for free from the Google Play Store or the App Store.

    -

    In the game, you can control Mighty Raju as he explores Rio de Janeiro and plays football with his friends. You can also use his superpowers to fight against the villains and save the day. The game has various levels, missions, and mini-games that will keep you engaged and entertained. The game also has amazing graphics, sound effects, and music that will make you feel like you are in the movie.

    -

    Mighty Raju - Rio Calling is a game that will test your skills, reflexes, and strategy. It is a game that will challenge you and reward you with coins and trophies. You can also unlock new outfits, accessories, and power-ups for Mighty Raju as you progress in the game. You can also share your achievements and scores with your friends on social media.

    -

    Mighty Raju - Rio Calling is a game that will make you love Mighty Raju even more. It is a game that will give you hours of fun and enjoyment. It is a game that will make you feel like a superhero. So, what are you waiting for? Download Mighty Raju - Rio Calling today and join the adventure!

    d5da3c52bf
    -
    -
    \ No newline at end of file diff --git a/spaces/inreVtussa/clothingai/Examples/0xc00000ba.epub.md b/spaces/inreVtussa/clothingai/Examples/0xc00000ba.epub.md deleted file mode 100644 index 83b47766d2c482c702ccccf6fed1f7eacd4f4f55..0000000000000000000000000000000000000000 --- a/spaces/inreVtussa/clothingai/Examples/0xc00000ba.epub.md +++ /dev/null @@ -1,56 +0,0 @@ - -`How to Fix Error Code 0xc00000ba.epub on Windows 10` - -`

    How to Fix Error Code 0xc00000ba.epub on Windows 10

    ` - -`

    If you are trying to open an EPUB file on your Windows 10 PC and you encounter an error message that says "The Boot Configuration Data for your PC is missing or containing errors. File: \\Boot\\BCD Error code: 0xc00000ba", you are not alone. This is a common error that can occur due to various reasons, such as corrupted system files, incorrect configuration, missing or damaged DLL files, or hardware issues. In this article, we will show you how to fix error code 0xc00000ba.epub on Windows 10 using some simple methods.

    ` - -`

    Method 1: Run a System File Checker (SFC) Scan

    ` - -`

    A System File Checker (SFC) scan is a built-in tool that can check and repair corrupted or missing system files on your PC. To run an SFC scan, follow these steps:

    -

    0xc00000ba.epub


    DOWNLOADhttps://tiurll.com/2uCjX2



    ` - -`
      ` -`
    1. Press Windows + X keys and select Command Prompt (Admin) or PowerShell (Admin) from the menu.
    2. ` -`
    3. Type sfc /scannow and press Enter.
    4. ` -`
    5. Wait for the scan to complete. It may take some time depending on the size of your system files.
    6. ` -`
    7. If the scan finds any errors, it will try to fix them automatically.
    8. ` -`
    9. Restart your PC and try to open the EPUB file again.
    10. ` -`
    ` - -`

    Method 2: Reinstall the Program or Application Causing the Error

    ` - -`

    If the error occurs when you try to open an EPUB file with a specific program or application, such as Adobe Digital Editions or Calibre, it may be due to a faulty installation or an outdated version of the program. To fix this, you can try reinstalling the program or updating it to the latest version. To do this, follow these steps:

    ` - -`
      ` -`
    1. Press Windows + R keys and type appwiz.cpl and press Enter.
    2. ` -`
    3. Find the program or application that you use to open EPUB files and right-click on it.
    4. ` -`
    5. Select Uninstall and follow the instructions to remove it from your PC.
    6. ` -`
    7. Go to the official website of the program or application and download the latest version.
    8. ` -`
    9. Install it on your PC and try to open the EPUB file again.
    10. ` -`
    ` - -`

    Method 3: Use Recovery Tools

    ` - -`

    If the error persists after trying the previous methods, you may need to use recovery tools to repair the boot configuration data (BCD) on your PC. The BCD is a file that contains information about how Windows should boot. If the BCD is missing or corrupted, you may encounter error code 0xc00000ba.epub. To use recovery tools, you will need a Windows installation media, such as a disc or a USB device. If you don't have one, you can create one using another PC and the Media Creation Tool from Microsoft. To use recovery tools, follow these steps:

    ` - -`
      ` -`
    1. Insert the Windows installation media into your PC and restart it.
    2. ` -`
    3. Press any key to boot from the media when prompted.
    4. ` -`
    5. Select your language, time, and keyboard preferences and click Next.
    6. ` -`
    7. Click Repair your computer at the bottom-left corner of the screen.
    8. ` -`
    9. Select Troubleshoot > Advanced options > Command Prompt.
    10. ` -`
    11. Type the following commands and press Enter after each one:
    12. ` -`
        ` -`
      • bootrec /fixmbr
      • ` -`
      • bootrec /fixboot
      • ` -`
      • bootrec /scanos
      • ` -`
      • bootrec /rebuildbcd
      • ` -`
      ` -`
    13. When the last command asks you to add installation to boot list, type Y and press Enter.
    14. ` -`
    15. Close the Command Prompt and restart your PC.
    16. ` -`
    17. Try to open the EPUB file again.
    18. ` -`
    `

    -

    d5da3c52bf
    -
    -
    \ No newline at end of file diff --git a/spaces/inreVtussa/clothingai/Examples/Chickeninvaders6WORK Fullversiontpb.md b/spaces/inreVtussa/clothingai/Examples/Chickeninvaders6WORK Fullversiontpb.md deleted file mode 100644 index d4d3a0c002267633db261c5798b622cc1c0dd6ad..0000000000000000000000000000000000000000 --- a/spaces/inreVtussa/clothingai/Examples/Chickeninvaders6WORK Fullversiontpb.md +++ /dev/null @@ -1,7 +0,0 @@ - -

    lanschool 7.2.0.2 teacher and student version (home network compatible)l hate story 4 download full movie chickeninvaders6fullversiontpb download. http://aceite-oliva.online/2022/06/10/chickeninvaders6fullversiontpb-install/ http://dlv.baglearn.com/blfiles/vartass.pdf.

    -

    lanschool 7.2.0.2 teacher and student version (home network compatible)l. do you find yourself over and over again of cyberbullying children who do not have the patience to deal with the radicalized internet? do you often hear children on the chat on the bad cyberbullying and sexting activities? do you have a disturbed child with a mysterious addiction to the internet? if the answer to any of the above questions, then we are happy to announce to you the newest software, lanschool 7.2 teacher and student version (home network compatible) . in our new release, there are some changes that you might feel a great improvement to the hardware and software used in an educational environment. although the educational software will not remove the harmful aspects of the internet, it will allow the computer to be used in a more safe and secure way. this is more security than in the old version, so we hope to improve the software that we provide to you!

    -

    Chickeninvaders6fullversiontpb


    Download File >>>>> https://tiurll.com/2uCiP6



    -

    new version of thesoftware!l. lanschool 7.2.0.2 teacher and student version (home network compatible)l. do you find yourself over and over again of cyberbullying children who do not have the patience to deal with the radicalized internet? do you often hear children on the chat on the bad cyberbullying and sexting activities? do you have a disturbed child with a mysterious addiction to the internet? if the answer to any of the above questions, then we are happy to announce to you the newest software, lanschool 7.2 teacher and student version (home network compatible) . in our new release, there are some changes that you might feel a great improvement to the hardware and software used in an educational environment. although the educational software will not remove the harmful aspects of the internet, it will allow the computer to be used in a more safe and secure way. this is more security than in the old version, so we hope to improve the software that we provide to you!

    899543212b
    -
    -
    \ No newline at end of file diff --git a/spaces/iqovocn/ChuanhuChatGPT/modules/__init__.py b/spaces/iqovocn/ChuanhuChatGPT/modules/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/it-at-m/image-anonymizer/app.py b/spaces/it-at-m/image-anonymizer/app.py deleted file mode 100644 index 71a2e174894a8e695f67ec0e7e1580226d3d5512..0000000000000000000000000000000000000000 --- a/spaces/it-at-m/image-anonymizer/app.py +++ /dev/null @@ -1,115 +0,0 @@ -import gradio as gr -from ultralytics import YOLO -import numpy as np -from PIL import Image, ImageDraw, ImageFilter, ImageOps -import torchvision.transforms -import torch - -transform = torchvision.transforms.ToPILImage() -seg_model = YOLO("yolov8m-seg.pt") -lp_model = YOLO("yolov8m_lp.pt") - - -def detect(image): - seg_result = seg_model(image, device="CPU")[0] - seg_masks = seg_result.masks.data - seg_clss = seg_result.boxes.cls - seg_boxes = seg_result.boxes.data - - person_indices = torch.where(seg_clss == 0) - person_masks = seg_masks[person_indices] - people_mask = torch.any(person_masks, dim=0).to(torch.uint8) * 255 - people_mask = transform(~people_mask) - people_mask = people_mask.resize((image.width, image.height), resample=Image.Resampling.BILINEAR) - - vehicle_classes = [2, 3, 5, 7] # Classes: car (2), motorcycle (3), bus (5) and truck (7) - license_plates = list() - vehicle_boxes = [] - for seg_box in seg_boxes: - if seg_box[5] in vehicle_classes: - vehicle_box = seg_box[:4].to(torch.int32) - vehicle_boxes.append(vehicle_box) - vehicle_crop = image.crop(vehicle_box.tolist()) - imgsz = (vehicle_crop.height, vehicle_crop.width) if vehicle_crop.width < 640 and vehicle_crop.height < 640 else (640, 640) - lp_result = lp_model(vehicle_crop, imgsz=imgsz, device="cpu")[0] - lp_boxes = lp_result.boxes.data[:, :4] - vehicle_offset = torch.cat((vehicle_box[:2], vehicle_box[:2])) - for lp_box in lp_boxes: - license_plates.append(torch.add(lp_box, vehicle_offset)) - - lp_mask = Image.new(mode="L", size=image.size, color=255) - lp_draw = ImageDraw.Draw(lp_mask) - - for license_plate in license_plates: - lp_draw.rectangle(license_plate.tolist(), fill = 0) - - vehicle_mask = Image.new(mode="L", size=image.size, color=255) - vehicle_draw = ImageDraw.Draw(vehicle_mask) - for vehicle_box in vehicle_boxes: - vehicle_draw.rectangle(vehicle_box.tolist(), outline = 0, width=5) - - - - #TODO: move combination to caller function - combined_mask = Image.fromarray(np.minimum.reduce([np.array(m) for m in [people_mask, lp_mask]])) - return combined_mask, people_mask, lp_mask, vehicle_mask - - -def test_comb(image): - mask, people_mask, lp_mask, vm = detect(image) - blurred = image.filter(ImageFilter.GaussianBlur(30)) - anonymized = Image.composite(image, blurred, mask) - ## TODO: Tempfile statt einem generischen File - anonymized.save("anon.JPG") - annotation_list = [(1 - np.asarray(people_mask) / 255, "Person"), (1 - np.asarray(vm) / 255, "Fahrzeug"), (1 - np.asarray(lp_mask) / 255, "Kennzeichen")] - return "anon.JPG", (image, annotation_list) - - -css = """ -P { text-align: center } -H3 { text-align: center } -""" - -description = """ -### ML-Prototyp zur Anonymisierung von Bildern -Es werden Personen sowie Kennzeichen zensiert. -Große Bilder können einige Zeit benötigen. -""" - -article = """ -Nutzt YOLOv8-Modelle zur Erkennung / Segmentierung der Bilder. - -Code: https://huggingface.co/spaces/it-at-m/image-anonymizer/tree/main - -Ein Prototyp des it@M InnovationLab (itm.innolab@muenchen.de) -""" - -demo_upload = gr.Interface( - fn=test_comb, - inputs=gr.Image(type="pil", label="Zu anonymisierendes Bild"), - outputs=[gr.Image(label="Anonymisiertes Bild"), gr.AnnotatedImage(label="Erkannte Regionen")], - title="Bild auswählen / hochladen", - allow_flagging="never", - examples="examples", - description=description, - article=article -) - -demo_webcam = gr.Interface( - fn=test_comb, - inputs=gr.Image(source="webcam", type="pil", label="Zu anonymisierendes Bild"), - outputs=[gr.Image(label="Anonymisiertes Bild"), gr.AnnotatedImage(label="Erkannte Regionen")], - title="Bild mit der Webcam aufnehmen", - allow_flagging="never", - description=description, - article=article -) - -demo_tabbed = gr.TabbedInterface( - interface_list=[demo_upload, demo_webcam], - tab_names=["Bild auswählen / hochladen", "Bild mit der Webcam aufnehmen"], - title="Image Anonymizer / Bildanonymisierung", - css=css -) - -demo_tabbed.launch() diff --git a/spaces/j0hngou/vision-diffmask/README.md b/spaces/j0hngou/vision-diffmask/README.md deleted file mode 100644 index c180c74a88022d6df506e35edfdaaf4a071ef8f6..0000000000000000000000000000000000000000 --- a/spaces/j0hngou/vision-diffmask/README.md +++ /dev/null @@ -1,14 +0,0 @@ ---- -title: Vision Diffmask -emoji: 🎭 -colorFrom: blue -colorTo: blue -sdk: gradio -python_version: 3.9.12 -sdk_version: 3.0.20 -app_file: app.py -pinned: false -license: mit ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/jbilcke-hf/audioldm-text-to-audio-generation/app.py b/spaces/jbilcke-hf/audioldm-text-to-audio-generation/app.py deleted file mode 100644 index b6dcc046918d2436bb94f136e2dec0d120eba71e..0000000000000000000000000000000000000000 --- a/spaces/jbilcke-hf/audioldm-text-to-audio-generation/app.py +++ /dev/null @@ -1,278 +0,0 @@ -import gradio as gr -import torch -from diffusers import AudioLDMPipeline -from share_btn import community_icon_html, loading_icon_html, share_js - -from transformers import AutoProcessor, ClapModel - - -# make Space compatible with CPU duplicates -if torch.cuda.is_available(): - device = "cuda" - torch_dtype = torch.float16 -else: - device = "cpu" - torch_dtype = torch.float32 - -# load the diffusers pipeline -repo_id = "cvssp/audioldm-m-full" -pipe = AudioLDMPipeline.from_pretrained(repo_id, torch_dtype=torch_dtype).to(device) -pipe.unet = torch.compile(pipe.unet) - -# CLAP model (only required for automatic scoring) -clap_model = ClapModel.from_pretrained("sanchit-gandhi/clap-htsat-unfused-m-full").to(device) -processor = AutoProcessor.from_pretrained("sanchit-gandhi/clap-htsat-unfused-m-full") - -generator = torch.Generator(device) - - -def text2audio(text, negative_prompt, duration, guidance_scale, random_seed, n_candidates): - if text is None: - raise gr.Error("Please provide a text input.") - - waveforms = pipe( - text, - audio_length_in_s=duration, - guidance_scale=guidance_scale, - negative_prompt=negative_prompt, - num_waveforms_per_prompt=n_candidates if n_candidates else 1, - generator=generator.manual_seed(int(random_seed)), - )["audios"] - - if waveforms.shape[0] > 1: - waveform = score_waveforms(text, waveforms) - else: - waveform = waveforms[0] - - return gr.make_waveform((16000, waveform), bg_image="bg.png") - - -def score_waveforms(text, waveforms): - inputs = processor(text=text, audios=list(waveforms), return_tensors="pt", padding=True) - inputs = {key: inputs[key].to(device) for key in inputs} - with torch.no_grad(): - logits_per_text = clap_model(**inputs).logits_per_text # this is the audio-text similarity score - probs = logits_per_text.softmax(dim=-1) # we can take the softmax to get the label probabilities - most_probable = torch.argmax(probs) # and now select the most likely audio waveform - waveform = waveforms[most_probable] - return waveform - - -css = """ - a { - color: inherit; text-decoration: underline; - } .gradio-container { - font-family: 'IBM Plex Sans', sans-serif; - } .gr-button { - color: white; border-color: #000000; background: #000000; - } input[type='range'] { - accent-color: #000000; - } .dark input[type='range'] { - accent-color: #dfdfdf; - } .container { - max-width: 730px; margin: auto; padding-top: 1.5rem; - } #gallery { - min-height: 22rem; margin-bottom: 15px; margin-left: auto; margin-right: auto; border-bottom-right-radius: - .5rem !important; border-bottom-left-radius: .5rem !important; - } #gallery>div>.h-full { - min-height: 20rem; - } .details:hover { - text-decoration: underline; - } .gr-button { - white-space: nowrap; - } .gr-button:focus { - border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow: - var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1; - --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) - var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px - var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 / - var(--tw-ring-opacity)); --tw-ring-opacity: .5; - } #advanced-btn { - font-size: .7rem !important; line-height: 19px; margin-top: 12px; margin-bottom: 12px; padding: 2px 8px; - border-radius: 14px !important; - } #advanced-options { - margin-bottom: 20px; - } .footer { - margin-bottom: 45px; margin-top: 35px; text-align: center; border-bottom: 1px solid #e5e5e5; - } .footer>p { - font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; - } .dark .footer { - border-color: #303030; - } .dark .footer>p { - background: #0b0f19; - } .acknowledgments h4{ - margin: 1.25em 0 .25em 0; font-weight: bold; font-size: 115%; - } #container-advanced-btns{ - display: flex; flex-wrap: wrap; justify-content: space-between; align-items: center; - } .animate-spin { - animation: spin 1s linear infinite; - } @keyframes spin { - from { - transform: rotate(0deg); - } to { - transform: rotate(360deg); - } - } #share-btn-container { - display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: - #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; - margin-top: 10px; margin-left: auto; - } #share-btn { - all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; - margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem - !important;right:0; - } #share-btn * { - all: unset; - } #share-btn-container div:nth-child(-n+2){ - width: auto !important; min-height: 0px !important; - } #share-btn-container .wrap { - display: none !important; - } .gr-form{ - flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0; - } #prompt-container{ - gap: 0; - } #generated_id{ - min-height: 700px - } #setting_id{ - margin-bottom: 12px; text-align: center; font-weight: 900; - } -""" -iface = gr.Blocks(css=css) - -with iface: - gr.HTML( - """ -
    -
    -

    - AudioLDM: Text-to-Audio Generation with Latent Diffusion Models -

    -

    - [Paper] [Project - page] [🧨 - Diffusers] -

    -
    - """ - ) - gr.HTML( - """ -

    This is the demo for AudioLDM, powered by 🧨 Diffusers. Demo uses the checkpoint audioldm-m-full . For faster inference without waiting in - queue, you may duplicate the space and upgrade to a GPU in the settings.
    Duplicate Space

    - """ - ) - - with gr.Group(): - with gr.Box(): - textbox = gr.Textbox( - value="", - max_lines=1, - label="Input text", - info="Your text is important for the audio quality. Please ensure it is descriptive by using more adjectives.", - elem_id="prompt-in", - ) - negative_textbox = gr.Textbox( - value="low quality, average quality", - max_lines=1, - label="Negative prompt", - info="Enter a negative prompt not to guide the audio generation. Selecting appropriate negative prompts can improve the audio quality significantly.", - elem_id="prompt-in", - ) - - with gr.Accordion("Click to modify detailed configurations", open=False): - seed = gr.Number( - value=45, - label="Seed", - info="Change this value (any integer number) will lead to a different generation result.", - ) - duration = gr.Slider(2.5, 10, value=5, step=2.5, label="Duration (seconds)") - guidance_scale = gr.Slider( - 0, - 4, - value=2.5, - step=0.5, - label="Guidance scale", - info="Large => better quality and relevancy to text; Small => better diversity", - ) - n_candidates = gr.Slider( - 1, - 3, - value=3, - step=1, - label="Number waveforms to generate", - info="Automatic quality control. This number control the number of candidates (e.g., generate three audios and choose the best to show you). A Larger value usually lead to better quality with heavier computation", - ) - - outputs = gr.Video(label="Output", elem_id="output-video") - btn = gr.Button("Submit").style(full_width=True) - - with gr.Group(elem_id="share-btn-container", visible=False): - community_icon = gr.HTML(community_icon_html) - loading_icon = gr.HTML(loading_icon_html) - share_button = gr.Button("Share to community", elem_id="share-btn") - - btn.click( - text2audio, - inputs=[textbox, negative_textbox, duration, guidance_scale, seed, n_candidates], - outputs=[outputs], - api_name="generate" - ) - - share_button.click(None, [], [], _js=share_js) - gr.HTML( - """ -

    - """ - ) - gr.Examples( - [ - ["A hammer is hitting a wooden surface", "low quality, average quality", 5, 2.5, 45, 3], - ["Peaceful and calming ambient music with singing bowl and other instruments.", "low quality, average quality", 5, 2.5, 45, 3], - ["A man is speaking in a small room.", "low quality, average quality", 5, 2.5, 45, 3], - ["A female is speaking followed by footstep sound", "low quality, average quality", 5, 2.5, 45, 3], - ["Wooden table tapping sound followed by water pouring sound.", "low quality, average quality", 5, 2.5, 45, 3], - ], - fn=text2audio, - inputs=[textbox, negative_textbox, duration, guidance_scale, seed, n_candidates], - outputs=[outputs], - cache_examples=True, - ) - gr.HTML( - """ -

    Essential Tricks for Enhancing the Quality of Your Generated - Audio

    1. Try to use more adjectives to describe your sound. For example: "A man is speaking - clearly and slowly in a large room" is better than "A man is speaking". This can make sure AudioLDM - understands what you want.

    2. Try to use different random seeds, which can affect the generation - quality significantly sometimes.

    3. It's better to use general terms like 'man' or 'woman' - instead of specific names for individuals or abstract objects that humans may not be familiar with, - such as 'mummy'.

    4. Using a negative prompt to not guide the diffusion process can improve the - audio quality significantly. Try using negative prompts like 'low quality'.

    - """ - ) - with gr.Accordion("Additional information", open=False): - gr.HTML( - """ -
    -

    We build the model with data from AudioSet, - Freesound and BBC Sound Effect library. We share this demo - based on the UK - copyright exception of data for academic research.

    -
    - """ - ) -#

    This demo is strictly for research demo purpose only. For commercial use please contact us.

    - -iface.queue(max_size=10).launch(debug=True) diff --git a/spaces/jbilcke-hf/media-server/scripts/audio1.sh b/spaces/jbilcke-hf/media-server/scripts/audio1.sh deleted file mode 100644 index 406f487bbb4bde072c0525c41f53aac32f53c28d..0000000000000000000000000000000000000000 --- a/spaces/jbilcke-hf/media-server/scripts/audio1.sh +++ /dev/null @@ -1,28 +0,0 @@ -#!/bin/bash - -echo "Starting the audio collection stream for channel 1.." -current_count=0 - -while true; do - new_count=$(ls $WEBTV_AUDIO_STORAGE_PATH_CHANNEL_1*.m4a 2> /dev/null | wc -l) - - if [ $new_count -ne $current_count ]; then - echo "there are $new_count audio files for channel 1" - - echo "Updating audio playlists for channel 1..." - current_count=$new_count - files=($WEBTV_AUDIO_STORAGE_PATH_CHANNEL_1*.m4a) - - # Re-create the audio playlists - echo "ffconcat version 1.0" > channel_1_audio_tmp.txt - for (( i=0; i<${#files[@]}; i++ )); do - echo "file '${files[$i]}'" >> channel_1_audio_tmp.txt - done - - mv channel_1_audio_tmp.txt channel_1_audio.txt - fi - - # the new audio playlist will only be updated after the current VIDEO playlist ended - # so there is no emergency here - sleep 60 -done \ No newline at end of file diff --git a/spaces/jhwen/bingo/src/components/ui/codeblock.tsx b/spaces/jhwen/bingo/src/components/ui/codeblock.tsx deleted file mode 100644 index aabda4e3b59f4e36b6ab79feb19d8d18b70e881b..0000000000000000000000000000000000000000 --- a/spaces/jhwen/bingo/src/components/ui/codeblock.tsx +++ /dev/null @@ -1,142 +0,0 @@ -'use client' - -import { FC, memo } from 'react' -import { Prism as SyntaxHighlighter } from 'react-syntax-highlighter' -import { coldarkDark } from 'react-syntax-highlighter/dist/cjs/styles/prism' - -import { useCopyToClipboard } from '@/lib/hooks/use-copy-to-clipboard' -import { IconCheck, IconCopy, IconDownload } from '@/components/ui/icons' -import { Button } from '@/components/ui/button' - -interface Props { - language: string - value: string -} - -interface languageMap { - [key: string]: string | undefined -} - -export const programmingLanguages: languageMap = { - javascript: '.js', - python: '.py', - java: '.java', - c: '.c', - cpp: '.cpp', - 'c++': '.cpp', - 'c#': '.cs', - ruby: '.rb', - php: '.php', - swift: '.swift', - 'objective-c': '.m', - kotlin: '.kt', - typescript: '.ts', - go: '.go', - perl: '.pl', - rust: '.rs', - scala: '.scala', - haskell: '.hs', - lua: '.lua', - shell: '.sh', - sql: '.sql', - html: '.html', - css: '.css' - // add more file extensions here, make sure the key is same as language prop in CodeBlock.tsx component -} - -export const generateRandomString = (length: number, lowercase = false) => { - const chars = 'ABCDEFGHJKLMNPQRSTUVWXY3456789' // excluding similar looking characters like Z, 2, I, 1, O, 0 - let result = '' - for (let i = 0; i < length; i++) { - result += chars.charAt(Math.floor(Math.random() * chars.length)) - } - return lowercase ? result.toLowerCase() : result -} - -const CodeBlock: FC = memo(({ language, value }) => { - const { isCopied, copyToClipboard } = useCopyToClipboard({ timeout: 2000 }) - - const downloadAsFile = () => { - if (typeof window === 'undefined') { - return - } - const fileExtension = programmingLanguages[language] || '.file' - const suggestedFileName = `file-${generateRandomString( - 3, - true - )}${fileExtension}` - const fileName = window.prompt('Enter file name' || '', suggestedFileName) - - if (!fileName) { - // User pressed cancel on prompt. - return - } - - const blob = new Blob([value], { type: 'text/plain' }) - const url = URL.createObjectURL(blob) - const link = document.createElement('a') - link.download = fileName - link.href = url - link.style.display = 'none' - document.body.appendChild(link) - link.click() - document.body.removeChild(link) - URL.revokeObjectURL(url) - } - - const onCopy = () => { - if (isCopied) return - copyToClipboard(value) - } - - return ( -
    -
    - {language} -
    - - -
    -
    - - {value} - -
    - ) -}) -CodeBlock.displayName = 'CodeBlock' - -export { CodeBlock } diff --git a/spaces/jiejiejie0420/bingo/src/components/toaster.tsx b/spaces/jiejiejie0420/bingo/src/components/toaster.tsx deleted file mode 100644 index 4d2693460b61307a1d4c127fd01df9bee16e59ff..0000000000000000000000000000000000000000 --- a/spaces/jiejiejie0420/bingo/src/components/toaster.tsx +++ /dev/null @@ -1,3 +0,0 @@ -'use client' - -export { Toaster } from 'react-hot-toast' diff --git a/spaces/joaopereirajp/livvieChatBot/venv/lib/python3.9/site-packages/fontTools/ttLib/tables/otConverters.py b/spaces/joaopereirajp/livvieChatBot/venv/lib/python3.9/site-packages/fontTools/ttLib/tables/otConverters.py deleted file mode 100644 index 390f1660e8f45c9a6d5c3feea15fd1b5f905341e..0000000000000000000000000000000000000000 --- a/spaces/joaopereirajp/livvieChatBot/venv/lib/python3.9/site-packages/fontTools/ttLib/tables/otConverters.py +++ /dev/null @@ -1,1926 +0,0 @@ -from fontTools.misc.fixedTools import ( - fixedToFloat as fi2fl, - floatToFixed as fl2fi, - floatToFixedToStr as fl2str, - strToFixedToFloat as str2fl, - ensureVersionIsLong as fi2ve, - versionToFixed as ve2fi, -) -from fontTools.misc.roundTools import nearestMultipleShortestRepr, otRound -from fontTools.misc.textTools import bytesjoin, tobytes, tostr, pad, safeEval -from fontTools.ttLib import getSearchRange -from .otBase import ( - CountReference, - FormatSwitchingBaseTable, - OTTableReader, - OTTableWriter, - ValueRecordFactory, -) -from .otTables import ( - lookupTypes, - AATStateTable, - AATState, - AATAction, - ContextualMorphAction, - LigatureMorphAction, - InsertionMorphAction, - MorxSubtable, - ExtendMode as _ExtendMode, - CompositeMode as _CompositeMode, - NO_VARIATION_INDEX, -) -from itertools import zip_longest -from functools import partial -import re -import struct -from typing import Optional -import logging - - -log = logging.getLogger(__name__) -istuple = lambda t: isinstance(t, tuple) - - -def buildConverters(tableSpec, tableNamespace): - """Given a table spec from otData.py, build a converter object for each - field of the table. This is called for each table in otData.py, and - the results are assigned to the corresponding class in otTables.py.""" - converters = [] - convertersByName = {} - for tp, name, repeat, aux, descr in tableSpec: - tableName = name - if name.startswith("ValueFormat"): - assert tp == "uint16" - converterClass = ValueFormat - elif name.endswith("Count") or name in ("StructLength", "MorphType"): - converterClass = { - "uint8": ComputedUInt8, - "uint16": ComputedUShort, - "uint32": ComputedULong, - }[tp] - elif name == "SubTable": - converterClass = SubTable - elif name == "ExtSubTable": - converterClass = ExtSubTable - elif name == "SubStruct": - converterClass = SubStruct - elif name == "FeatureParams": - converterClass = FeatureParams - elif name in ("CIDGlyphMapping", "GlyphCIDMapping"): - converterClass = StructWithLength - else: - if not tp in converterMapping and "(" not in tp: - tableName = tp - converterClass = Struct - else: - converterClass = eval(tp, tableNamespace, converterMapping) - - conv = converterClass(name, repeat, aux, description=descr) - - if conv.tableClass: - # A "template" such as OffsetTo(AType) knowss the table class already - tableClass = conv.tableClass - elif tp in ("MortChain", "MortSubtable", "MorxChain"): - tableClass = tableNamespace.get(tp) - else: - tableClass = tableNamespace.get(tableName) - - if not conv.tableClass: - conv.tableClass = tableClass - - if name in ["SubTable", "ExtSubTable", "SubStruct"]: - conv.lookupTypes = tableNamespace["lookupTypes"] - # also create reverse mapping - for t in conv.lookupTypes.values(): - for cls in t.values(): - convertersByName[cls.__name__] = Table(name, repeat, aux, cls) - if name == "FeatureParams": - conv.featureParamTypes = tableNamespace["featureParamTypes"] - conv.defaultFeatureParams = tableNamespace["FeatureParams"] - for cls in conv.featureParamTypes.values(): - convertersByName[cls.__name__] = Table(name, repeat, aux, cls) - converters.append(conv) - assert name not in convertersByName, name - convertersByName[name] = conv - return converters, convertersByName - - -class _MissingItem(tuple): - __slots__ = () - - -try: - from collections import UserList -except ImportError: - from UserList import UserList - - -class _LazyList(UserList): - def __getslice__(self, i, j): - return self.__getitem__(slice(i, j)) - - def __getitem__(self, k): - if isinstance(k, slice): - indices = range(*k.indices(len(self))) - return [self[i] for i in indices] - item = self.data[k] - if isinstance(item, _MissingItem): - self.reader.seek(self.pos + item[0] * self.recordSize) - item = self.conv.read(self.reader, self.font, {}) - self.data[k] = item - return item - - def __add__(self, other): - if isinstance(other, _LazyList): - other = list(other) - elif isinstance(other, list): - pass - else: - return NotImplemented - return list(self) + other - - def __radd__(self, other): - if not isinstance(other, list): - return NotImplemented - return other + list(self) - - -class BaseConverter(object): - - """Base class for converter objects. Apart from the constructor, this - is an abstract class.""" - - def __init__(self, name, repeat, aux, tableClass=None, *, description=""): - self.name = name - self.repeat = repeat - self.aux = aux - self.tableClass = tableClass - self.isCount = name.endswith("Count") or name in [ - "DesignAxisRecordSize", - "ValueRecordSize", - ] - self.isLookupType = name.endswith("LookupType") or name == "MorphType" - self.isPropagated = name in [ - "ClassCount", - "Class2Count", - "FeatureTag", - "SettingsCount", - "VarRegionCount", - "MappingCount", - "RegionAxisCount", - "DesignAxisCount", - "DesignAxisRecordSize", - "AxisValueCount", - "ValueRecordSize", - "AxisCount", - "BaseGlyphRecordCount", - "LayerRecordCount", - ] - self.description = description - - def readArray(self, reader, font, tableDict, count): - """Read an array of values from the reader.""" - lazy = font.lazy and count > 8 - if lazy: - recordSize = self.getRecordSize(reader) - if recordSize is NotImplemented: - lazy = False - if not lazy: - l = [] - for i in range(count): - l.append(self.read(reader, font, tableDict)) - return l - else: - l = _LazyList() - l.reader = reader.copy() - l.pos = l.reader.pos - l.font = font - l.conv = self - l.recordSize = recordSize - l.extend(_MissingItem([i]) for i in range(count)) - reader.advance(count * recordSize) - return l - - def getRecordSize(self, reader): - if hasattr(self, "staticSize"): - return self.staticSize - return NotImplemented - - def read(self, reader, font, tableDict): - """Read a value from the reader.""" - raise NotImplementedError(self) - - def writeArray(self, writer, font, tableDict, values): - try: - for i, value in enumerate(values): - self.write(writer, font, tableDict, value, i) - except Exception as e: - e.args = e.args + (i,) - raise - - def write(self, writer, font, tableDict, value, repeatIndex=None): - """Write a value to the writer.""" - raise NotImplementedError(self) - - def xmlRead(self, attrs, content, font): - """Read a value from XML.""" - raise NotImplementedError(self) - - def xmlWrite(self, xmlWriter, font, value, name, attrs): - """Write a value to XML.""" - raise NotImplementedError(self) - - varIndexBasePlusOffsetRE = re.compile(r"VarIndexBase\s*\+\s*(\d+)") - - def getVarIndexOffset(self) -> Optional[int]: - """If description has `VarIndexBase + {offset}`, return the offset else None.""" - m = self.varIndexBasePlusOffsetRE.search(self.description) - if not m: - return None - return int(m.group(1)) - - -class SimpleValue(BaseConverter): - @staticmethod - def toString(value): - return value - - @staticmethod - def fromString(value): - return value - - def xmlWrite(self, xmlWriter, font, value, name, attrs): - xmlWriter.simpletag(name, attrs + [("value", self.toString(value))]) - xmlWriter.newline() - - def xmlRead(self, attrs, content, font): - return self.fromString(attrs["value"]) - - -class OptionalValue(SimpleValue): - DEFAULT = None - - def xmlWrite(self, xmlWriter, font, value, name, attrs): - if value != self.DEFAULT: - attrs.append(("value", self.toString(value))) - xmlWriter.simpletag(name, attrs) - xmlWriter.newline() - - def xmlRead(self, attrs, content, font): - if "value" in attrs: - return self.fromString(attrs["value"]) - return self.DEFAULT - - -class IntValue(SimpleValue): - @staticmethod - def fromString(value): - return int(value, 0) - - -class Long(IntValue): - staticSize = 4 - - def read(self, reader, font, tableDict): - return reader.readLong() - - def readArray(self, reader, font, tableDict, count): - return reader.readLongArray(count) - - def write(self, writer, font, tableDict, value, repeatIndex=None): - writer.writeLong(value) - - def writeArray(self, writer, font, tableDict, values): - writer.writeLongArray(values) - - -class ULong(IntValue): - staticSize = 4 - - def read(self, reader, font, tableDict): - return reader.readULong() - - def readArray(self, reader, font, tableDict, count): - return reader.readULongArray(count) - - def write(self, writer, font, tableDict, value, repeatIndex=None): - writer.writeULong(value) - - def writeArray(self, writer, font, tableDict, values): - writer.writeULongArray(values) - - -class Flags32(ULong): - @staticmethod - def toString(value): - return "0x%08X" % value - - -class VarIndex(OptionalValue, ULong): - DEFAULT = NO_VARIATION_INDEX - - -class Short(IntValue): - staticSize = 2 - - def read(self, reader, font, tableDict): - return reader.readShort() - - def readArray(self, reader, font, tableDict, count): - return reader.readShortArray(count) - - def write(self, writer, font, tableDict, value, repeatIndex=None): - writer.writeShort(value) - - def writeArray(self, writer, font, tableDict, values): - writer.writeShortArray(values) - - -class UShort(IntValue): - staticSize = 2 - - def read(self, reader, font, tableDict): - return reader.readUShort() - - def readArray(self, reader, font, tableDict, count): - return reader.readUShortArray(count) - - def write(self, writer, font, tableDict, value, repeatIndex=None): - writer.writeUShort(value) - - def writeArray(self, writer, font, tableDict, values): - writer.writeUShortArray(values) - - -class Int8(IntValue): - staticSize = 1 - - def read(self, reader, font, tableDict): - return reader.readInt8() - - def readArray(self, reader, font, tableDict, count): - return reader.readInt8Array(count) - - def write(self, writer, font, tableDict, value, repeatIndex=None): - writer.writeInt8(value) - - def writeArray(self, writer, font, tableDict, values): - writer.writeInt8Array(values) - - -class UInt8(IntValue): - staticSize = 1 - - def read(self, reader, font, tableDict): - return reader.readUInt8() - - def readArray(self, reader, font, tableDict, count): - return reader.readUInt8Array(count) - - def write(self, writer, font, tableDict, value, repeatIndex=None): - writer.writeUInt8(value) - - def writeArray(self, writer, font, tableDict, values): - writer.writeUInt8Array(values) - - -class UInt24(IntValue): - staticSize = 3 - - def read(self, reader, font, tableDict): - return reader.readUInt24() - - def write(self, writer, font, tableDict, value, repeatIndex=None): - writer.writeUInt24(value) - - -class ComputedInt(IntValue): - def xmlWrite(self, xmlWriter, font, value, name, attrs): - if value is not None: - xmlWriter.comment("%s=%s" % (name, value)) - xmlWriter.newline() - - -class ComputedUInt8(ComputedInt, UInt8): - pass - - -class ComputedUShort(ComputedInt, UShort): - pass - - -class ComputedULong(ComputedInt, ULong): - pass - - -class Tag(SimpleValue): - staticSize = 4 - - def read(self, reader, font, tableDict): - return reader.readTag() - - def write(self, writer, font, tableDict, value, repeatIndex=None): - writer.writeTag(value) - - -class GlyphID(SimpleValue): - staticSize = 2 - typecode = "H" - - def readArray(self, reader, font, tableDict, count): - return font.getGlyphNameMany( - reader.readArray(self.typecode, self.staticSize, count) - ) - - def read(self, reader, font, tableDict): - return font.getGlyphName(reader.readValue(self.typecode, self.staticSize)) - - def writeArray(self, writer, font, tableDict, values): - writer.writeArray(self.typecode, font.getGlyphIDMany(values)) - - def write(self, writer, font, tableDict, value, repeatIndex=None): - writer.writeValue(self.typecode, font.getGlyphID(value)) - - -class GlyphID32(GlyphID): - staticSize = 4 - typecode = "L" - - -class NameID(UShort): - def xmlWrite(self, xmlWriter, font, value, name, attrs): - xmlWriter.simpletag(name, attrs + [("value", value)]) - if font and value: - nameTable = font.get("name") - if nameTable: - name = nameTable.getDebugName(value) - xmlWriter.write(" ") - if name: - xmlWriter.comment(name) - else: - xmlWriter.comment("missing from name table") - log.warning("name id %d missing from name table" % value) - xmlWriter.newline() - - -class STATFlags(UShort): - def xmlWrite(self, xmlWriter, font, value, name, attrs): - xmlWriter.simpletag(name, attrs + [("value", value)]) - flags = [] - if value & 0x01: - flags.append("OlderSiblingFontAttribute") - if value & 0x02: - flags.append("ElidableAxisValueName") - if flags: - xmlWriter.write(" ") - xmlWriter.comment(" ".join(flags)) - xmlWriter.newline() - - -class FloatValue(SimpleValue): - @staticmethod - def fromString(value): - return float(value) - - -class DeciPoints(FloatValue): - staticSize = 2 - - def read(self, reader, font, tableDict): - return reader.readUShort() / 10 - - def write(self, writer, font, tableDict, value, repeatIndex=None): - writer.writeUShort(round(value * 10)) - - -class BaseFixedValue(FloatValue): - staticSize = NotImplemented - precisionBits = NotImplemented - readerMethod = NotImplemented - writerMethod = NotImplemented - - def read(self, reader, font, tableDict): - return self.fromInt(getattr(reader, self.readerMethod)()) - - def write(self, writer, font, tableDict, value, repeatIndex=None): - getattr(writer, self.writerMethod)(self.toInt(value)) - - @classmethod - def fromInt(cls, value): - return fi2fl(value, cls.precisionBits) - - @classmethod - def toInt(cls, value): - return fl2fi(value, cls.precisionBits) - - @classmethod - def fromString(cls, value): - return str2fl(value, cls.precisionBits) - - @classmethod - def toString(cls, value): - return fl2str(value, cls.precisionBits) - - -class Fixed(BaseFixedValue): - staticSize = 4 - precisionBits = 16 - readerMethod = "readLong" - writerMethod = "writeLong" - - -class F2Dot14(BaseFixedValue): - staticSize = 2 - precisionBits = 14 - readerMethod = "readShort" - writerMethod = "writeShort" - - -class Angle(F2Dot14): - # angles are specified in degrees, and encoded as F2Dot14 fractions of half - # circle: e.g. 1.0 => 180, -0.5 => -90, -2.0 => -360, etc. - bias = 0.0 - factor = 1.0 / (1 << 14) * 180 # 0.010986328125 - - @classmethod - def fromInt(cls, value): - return (super().fromInt(value) + cls.bias) * 180 - - @classmethod - def toInt(cls, value): - return super().toInt((value / 180) - cls.bias) - - @classmethod - def fromString(cls, value): - # quantize to nearest multiples of minimum fixed-precision angle - return otRound(float(value) / cls.factor) * cls.factor - - @classmethod - def toString(cls, value): - return nearestMultipleShortestRepr(value, cls.factor) - - -class BiasedAngle(Angle): - # A bias of 1.0 is used in the representation of start and end angles - # of COLRv1 PaintSweepGradients to allow for encoding +360deg - bias = 1.0 - - -class Version(SimpleValue): - staticSize = 4 - - def read(self, reader, font, tableDict): - value = reader.readLong() - return value - - def write(self, writer, font, tableDict, value, repeatIndex=None): - value = fi2ve(value) - writer.writeLong(value) - - @staticmethod - def fromString(value): - return ve2fi(value) - - @staticmethod - def toString(value): - return "0x%08x" % value - - @staticmethod - def fromFloat(v): - return fl2fi(v, 16) - - -class Char64(SimpleValue): - """An ASCII string with up to 64 characters. - - Unused character positions are filled with 0x00 bytes. - Used in Apple AAT fonts in the `gcid` table. - """ - - staticSize = 64 - - def read(self, reader, font, tableDict): - data = reader.readData(self.staticSize) - zeroPos = data.find(b"\0") - if zeroPos >= 0: - data = data[:zeroPos] - s = tostr(data, encoding="ascii", errors="replace") - if s != tostr(data, encoding="ascii", errors="ignore"): - log.warning('replaced non-ASCII characters in "%s"' % s) - return s - - def write(self, writer, font, tableDict, value, repeatIndex=None): - data = tobytes(value, encoding="ascii", errors="replace") - if data != tobytes(value, encoding="ascii", errors="ignore"): - log.warning('replacing non-ASCII characters in "%s"' % value) - if len(data) > self.staticSize: - log.warning( - 'truncating overlong "%s" to %d bytes' % (value, self.staticSize) - ) - data = (data + b"\0" * self.staticSize)[: self.staticSize] - writer.writeData(data) - - -class Struct(BaseConverter): - def getRecordSize(self, reader): - return self.tableClass and self.tableClass.getRecordSize(reader) - - def read(self, reader, font, tableDict): - table = self.tableClass() - table.decompile(reader, font) - return table - - def write(self, writer, font, tableDict, value, repeatIndex=None): - value.compile(writer, font) - - def xmlWrite(self, xmlWriter, font, value, name, attrs): - if value is None: - if attrs: - # If there are attributes (probably index), then - # don't drop this even if it's NULL. It will mess - # up the array indices of the containing element. - xmlWriter.simpletag(name, attrs + [("empty", 1)]) - xmlWriter.newline() - else: - pass # NULL table, ignore - else: - value.toXML(xmlWriter, font, attrs, name=name) - - def xmlRead(self, attrs, content, font): - if "empty" in attrs and safeEval(attrs["empty"]): - return None - table = self.tableClass() - Format = attrs.get("Format") - if Format is not None: - table.Format = int(Format) - - noPostRead = not hasattr(table, "postRead") - if noPostRead: - # TODO Cache table.hasPropagated. - cleanPropagation = False - for conv in table.getConverters(): - if conv.isPropagated: - cleanPropagation = True - if not hasattr(font, "_propagator"): - font._propagator = {} - propagator = font._propagator - assert conv.name not in propagator, (conv.name, propagator) - setattr(table, conv.name, None) - propagator[conv.name] = CountReference(table.__dict__, conv.name) - - for element in content: - if isinstance(element, tuple): - name, attrs, content = element - table.fromXML(name, attrs, content, font) - else: - pass - - table.populateDefaults(propagator=getattr(font, "_propagator", None)) - - if noPostRead: - if cleanPropagation: - for conv in table.getConverters(): - if conv.isPropagated: - propagator = font._propagator - del propagator[conv.name] - if not propagator: - del font._propagator - - return table - - def __repr__(self): - return "Struct of " + repr(self.tableClass) - - -class StructWithLength(Struct): - def read(self, reader, font, tableDict): - pos = reader.pos - table = self.tableClass() - table.decompile(reader, font) - reader.seek(pos + table.StructLength) - return table - - def write(self, writer, font, tableDict, value, repeatIndex=None): - for convIndex, conv in enumerate(value.getConverters()): - if conv.name == "StructLength": - break - lengthIndex = len(writer.items) + convIndex - if isinstance(value, FormatSwitchingBaseTable): - lengthIndex += 1 # implicit Format field - deadbeef = {1: 0xDE, 2: 0xDEAD, 4: 0xDEADBEEF}[conv.staticSize] - - before = writer.getDataLength() - value.StructLength = deadbeef - value.compile(writer, font) - length = writer.getDataLength() - before - lengthWriter = writer.getSubWriter() - conv.write(lengthWriter, font, tableDict, length) - assert writer.items[lengthIndex] == b"\xde\xad\xbe\xef"[: conv.staticSize] - writer.items[lengthIndex] = lengthWriter.getAllData() - - -class Table(Struct): - staticSize = 2 - - def readOffset(self, reader): - return reader.readUShort() - - def writeNullOffset(self, writer): - writer.writeUShort(0) - - def read(self, reader, font, tableDict): - offset = self.readOffset(reader) - if offset == 0: - return None - table = self.tableClass() - reader = reader.getSubReader(offset) - if font.lazy: - table.reader = reader - table.font = font - else: - table.decompile(reader, font) - return table - - def write(self, writer, font, tableDict, value, repeatIndex=None): - if value is None: - self.writeNullOffset(writer) - else: - subWriter = writer.getSubWriter() - subWriter.name = self.name - if repeatIndex is not None: - subWriter.repeatIndex = repeatIndex - writer.writeSubTable(subWriter, offsetSize=self.staticSize) - value.compile(subWriter, font) - - -class LTable(Table): - staticSize = 4 - - def readOffset(self, reader): - return reader.readULong() - - def writeNullOffset(self, writer): - writer.writeULong(0) - - -# Table pointed to by a 24-bit, 3-byte long offset -class Table24(Table): - staticSize = 3 - - def readOffset(self, reader): - return reader.readUInt24() - - def writeNullOffset(self, writer): - writer.writeUInt24(0) - - -# TODO Clean / merge the SubTable and SubStruct - - -class SubStruct(Struct): - def getConverter(self, tableType, lookupType): - tableClass = self.lookupTypes[tableType][lookupType] - return self.__class__(self.name, self.repeat, self.aux, tableClass) - - def xmlWrite(self, xmlWriter, font, value, name, attrs): - super(SubStruct, self).xmlWrite(xmlWriter, font, value, None, attrs) - - -class SubTable(Table): - def getConverter(self, tableType, lookupType): - tableClass = self.lookupTypes[tableType][lookupType] - return self.__class__(self.name, self.repeat, self.aux, tableClass) - - def xmlWrite(self, xmlWriter, font, value, name, attrs): - super(SubTable, self).xmlWrite(xmlWriter, font, value, None, attrs) - - -class ExtSubTable(LTable, SubTable): - def write(self, writer, font, tableDict, value, repeatIndex=None): - writer.Extension = True # actually, mere presence of the field flags it as an Ext Subtable writer. - Table.write(self, writer, font, tableDict, value, repeatIndex) - - -class FeatureParams(Table): - def getConverter(self, featureTag): - tableClass = self.featureParamTypes.get(featureTag, self.defaultFeatureParams) - return self.__class__(self.name, self.repeat, self.aux, tableClass) - - -class ValueFormat(IntValue): - staticSize = 2 - - def __init__(self, name, repeat, aux, tableClass=None, *, description=""): - BaseConverter.__init__( - self, name, repeat, aux, tableClass, description=description - ) - self.which = "ValueFormat" + ("2" if name[-1] == "2" else "1") - - def read(self, reader, font, tableDict): - format = reader.readUShort() - reader[self.which] = ValueRecordFactory(format) - return format - - def write(self, writer, font, tableDict, format, repeatIndex=None): - writer.writeUShort(format) - writer[self.which] = ValueRecordFactory(format) - - -class ValueRecord(ValueFormat): - def getRecordSize(self, reader): - return 2 * len(reader[self.which]) - - def read(self, reader, font, tableDict): - return reader[self.which].readValueRecord(reader, font) - - def write(self, writer, font, tableDict, value, repeatIndex=None): - writer[self.which].writeValueRecord(writer, font, value) - - def xmlWrite(self, xmlWriter, font, value, name, attrs): - if value is None: - pass # NULL table, ignore - else: - value.toXML(xmlWriter, font, self.name, attrs) - - def xmlRead(self, attrs, content, font): - from .otBase import ValueRecord - - value = ValueRecord() - value.fromXML(None, attrs, content, font) - return value - - -class AATLookup(BaseConverter): - BIN_SEARCH_HEADER_SIZE = 10 - - def __init__(self, name, repeat, aux, tableClass, *, description=""): - BaseConverter.__init__( - self, name, repeat, aux, tableClass, description=description - ) - if issubclass(self.tableClass, SimpleValue): - self.converter = self.tableClass(name="Value", repeat=None, aux=None) - else: - self.converter = Table( - name="Value", repeat=None, aux=None, tableClass=self.tableClass - ) - - def read(self, reader, font, tableDict): - format = reader.readUShort() - if format == 0: - return self.readFormat0(reader, font) - elif format == 2: - return self.readFormat2(reader, font) - elif format == 4: - return self.readFormat4(reader, font) - elif format == 6: - return self.readFormat6(reader, font) - elif format == 8: - return self.readFormat8(reader, font) - else: - assert False, "unsupported lookup format: %d" % format - - def write(self, writer, font, tableDict, value, repeatIndex=None): - values = list( - sorted([(font.getGlyphID(glyph), val) for glyph, val in value.items()]) - ) - # TODO: Also implement format 4. - formats = list( - sorted( - filter( - None, - [ - self.buildFormat0(writer, font, values), - self.buildFormat2(writer, font, values), - self.buildFormat6(writer, font, values), - self.buildFormat8(writer, font, values), - ], - ) - ) - ) - # We use the format ID as secondary sort key to make the output - # deterministic when multiple formats have same encoded size. - dataSize, lookupFormat, writeMethod = formats[0] - pos = writer.getDataLength() - writeMethod() - actualSize = writer.getDataLength() - pos - assert ( - actualSize == dataSize - ), "AATLookup format %d claimed to write %d bytes, but wrote %d" % ( - lookupFormat, - dataSize, - actualSize, - ) - - @staticmethod - def writeBinSearchHeader(writer, numUnits, unitSize): - writer.writeUShort(unitSize) - writer.writeUShort(numUnits) - searchRange, entrySelector, rangeShift = getSearchRange( - n=numUnits, itemSize=unitSize - ) - writer.writeUShort(searchRange) - writer.writeUShort(entrySelector) - writer.writeUShort(rangeShift) - - def buildFormat0(self, writer, font, values): - numGlyphs = len(font.getGlyphOrder()) - if len(values) != numGlyphs: - return None - valueSize = self.converter.staticSize - return ( - 2 + numGlyphs * valueSize, - 0, - lambda: self.writeFormat0(writer, font, values), - ) - - def writeFormat0(self, writer, font, values): - writer.writeUShort(0) - for glyphID_, value in values: - self.converter.write( - writer, font, tableDict=None, value=value, repeatIndex=None - ) - - def buildFormat2(self, writer, font, values): - segStart, segValue = values[0] - segEnd = segStart - segments = [] - for glyphID, curValue in values[1:]: - if glyphID != segEnd + 1 or curValue != segValue: - segments.append((segStart, segEnd, segValue)) - segStart = segEnd = glyphID - segValue = curValue - else: - segEnd = glyphID - segments.append((segStart, segEnd, segValue)) - valueSize = self.converter.staticSize - numUnits, unitSize = len(segments) + 1, valueSize + 4 - return ( - 2 + self.BIN_SEARCH_HEADER_SIZE + numUnits * unitSize, - 2, - lambda: self.writeFormat2(writer, font, segments), - ) - - def writeFormat2(self, writer, font, segments): - writer.writeUShort(2) - valueSize = self.converter.staticSize - numUnits, unitSize = len(segments), valueSize + 4 - self.writeBinSearchHeader(writer, numUnits, unitSize) - for firstGlyph, lastGlyph, value in segments: - writer.writeUShort(lastGlyph) - writer.writeUShort(firstGlyph) - self.converter.write( - writer, font, tableDict=None, value=value, repeatIndex=None - ) - writer.writeUShort(0xFFFF) - writer.writeUShort(0xFFFF) - writer.writeData(b"\x00" * valueSize) - - def buildFormat6(self, writer, font, values): - valueSize = self.converter.staticSize - numUnits, unitSize = len(values), valueSize + 2 - return ( - 2 + self.BIN_SEARCH_HEADER_SIZE + (numUnits + 1) * unitSize, - 6, - lambda: self.writeFormat6(writer, font, values), - ) - - def writeFormat6(self, writer, font, values): - writer.writeUShort(6) - valueSize = self.converter.staticSize - numUnits, unitSize = len(values), valueSize + 2 - self.writeBinSearchHeader(writer, numUnits, unitSize) - for glyphID, value in values: - writer.writeUShort(glyphID) - self.converter.write( - writer, font, tableDict=None, value=value, repeatIndex=None - ) - writer.writeUShort(0xFFFF) - writer.writeData(b"\x00" * valueSize) - - def buildFormat8(self, writer, font, values): - minGlyphID, maxGlyphID = values[0][0], values[-1][0] - if len(values) != maxGlyphID - minGlyphID + 1: - return None - valueSize = self.converter.staticSize - return ( - 6 + len(values) * valueSize, - 8, - lambda: self.writeFormat8(writer, font, values), - ) - - def writeFormat8(self, writer, font, values): - firstGlyphID = values[0][0] - writer.writeUShort(8) - writer.writeUShort(firstGlyphID) - writer.writeUShort(len(values)) - for _, value in values: - self.converter.write( - writer, font, tableDict=None, value=value, repeatIndex=None - ) - - def readFormat0(self, reader, font): - numGlyphs = len(font.getGlyphOrder()) - data = self.converter.readArray(reader, font, tableDict=None, count=numGlyphs) - return {font.getGlyphName(k): value for k, value in enumerate(data)} - - def readFormat2(self, reader, font): - mapping = {} - pos = reader.pos - 2 # start of table is at UShort for format - unitSize, numUnits = reader.readUShort(), reader.readUShort() - assert unitSize >= 4 + self.converter.staticSize, unitSize - for i in range(numUnits): - reader.seek(pos + i * unitSize + 12) - last = reader.readUShort() - first = reader.readUShort() - value = self.converter.read(reader, font, tableDict=None) - if last != 0xFFFF: - for k in range(first, last + 1): - mapping[font.getGlyphName(k)] = value - return mapping - - def readFormat4(self, reader, font): - mapping = {} - pos = reader.pos - 2 # start of table is at UShort for format - unitSize = reader.readUShort() - assert unitSize >= 6, unitSize - for i in range(reader.readUShort()): - reader.seek(pos + i * unitSize + 12) - last = reader.readUShort() - first = reader.readUShort() - offset = reader.readUShort() - if last != 0xFFFF: - dataReader = reader.getSubReader(0) # relative to current position - dataReader.seek(pos + offset) # relative to start of table - data = self.converter.readArray( - dataReader, font, tableDict=None, count=last - first + 1 - ) - for k, v in enumerate(data): - mapping[font.getGlyphName(first + k)] = v - return mapping - - def readFormat6(self, reader, font): - mapping = {} - pos = reader.pos - 2 # start of table is at UShort for format - unitSize = reader.readUShort() - assert unitSize >= 2 + self.converter.staticSize, unitSize - for i in range(reader.readUShort()): - reader.seek(pos + i * unitSize + 12) - glyphID = reader.readUShort() - value = self.converter.read(reader, font, tableDict=None) - if glyphID != 0xFFFF: - mapping[font.getGlyphName(glyphID)] = value - return mapping - - def readFormat8(self, reader, font): - first = reader.readUShort() - count = reader.readUShort() - data = self.converter.readArray(reader, font, tableDict=None, count=count) - return {font.getGlyphName(first + k): value for (k, value) in enumerate(data)} - - def xmlRead(self, attrs, content, font): - value = {} - for element in content: - if isinstance(element, tuple): - name, a, eltContent = element - if name == "Lookup": - value[a["glyph"]] = self.converter.xmlRead(a, eltContent, font) - return value - - def xmlWrite(self, xmlWriter, font, value, name, attrs): - xmlWriter.begintag(name, attrs) - xmlWriter.newline() - for glyph, value in sorted(value.items()): - self.converter.xmlWrite( - xmlWriter, font, value=value, name="Lookup", attrs=[("glyph", glyph)] - ) - xmlWriter.endtag(name) - xmlWriter.newline() - - -# The AAT 'ankr' table has an unusual structure: An offset to an AATLookup -# followed by an offset to a glyph data table. Other than usual, the -# offsets in the AATLookup are not relative to the beginning of -# the beginning of the 'ankr' table, but relative to the glyph data table. -# So, to find the anchor data for a glyph, one needs to add the offset -# to the data table to the offset found in the AATLookup, and then use -# the sum of these two offsets to find the actual data. -class AATLookupWithDataOffset(BaseConverter): - def read(self, reader, font, tableDict): - lookupOffset = reader.readULong() - dataOffset = reader.readULong() - lookupReader = reader.getSubReader(lookupOffset) - lookup = AATLookup("DataOffsets", None, None, UShort) - offsets = lookup.read(lookupReader, font, tableDict) - result = {} - for glyph, offset in offsets.items(): - dataReader = reader.getSubReader(offset + dataOffset) - item = self.tableClass() - item.decompile(dataReader, font) - result[glyph] = item - return result - - def write(self, writer, font, tableDict, value, repeatIndex=None): - # We do not work with OTTableWriter sub-writers because - # the offsets in our AATLookup are relative to our data - # table, for which we need to provide an offset value itself. - # It might have been possible to somehow make a kludge for - # performing this indirect offset computation directly inside - # OTTableWriter. But this would have made the internal logic - # of OTTableWriter even more complex than it already is, - # so we decided to roll our own offset computation for the - # contents of the AATLookup and associated data table. - offsetByGlyph, offsetByData, dataLen = {}, {}, 0 - compiledData = [] - for glyph in sorted(value, key=font.getGlyphID): - subWriter = OTTableWriter() - value[glyph].compile(subWriter, font) - data = subWriter.getAllData() - offset = offsetByData.get(data, None) - if offset == None: - offset = dataLen - dataLen = dataLen + len(data) - offsetByData[data] = offset - compiledData.append(data) - offsetByGlyph[glyph] = offset - # For calculating the offsets to our AATLookup and data table, - # we can use the regular OTTableWriter infrastructure. - lookupWriter = writer.getSubWriter() - lookup = AATLookup("DataOffsets", None, None, UShort) - lookup.write(lookupWriter, font, tableDict, offsetByGlyph, None) - - dataWriter = writer.getSubWriter() - writer.writeSubTable(lookupWriter, offsetSize=4) - writer.writeSubTable(dataWriter, offsetSize=4) - for d in compiledData: - dataWriter.writeData(d) - - def xmlRead(self, attrs, content, font): - lookup = AATLookup("DataOffsets", None, None, self.tableClass) - return lookup.xmlRead(attrs, content, font) - - def xmlWrite(self, xmlWriter, font, value, name, attrs): - lookup = AATLookup("DataOffsets", None, None, self.tableClass) - lookup.xmlWrite(xmlWriter, font, value, name, attrs) - - -class MorxSubtableConverter(BaseConverter): - _PROCESSING_ORDERS = { - # bits 30 and 28 of morx.CoverageFlags; see morx spec - (False, False): "LayoutOrder", - (True, False): "ReversedLayoutOrder", - (False, True): "LogicalOrder", - (True, True): "ReversedLogicalOrder", - } - - _PROCESSING_ORDERS_REVERSED = {val: key for key, val in _PROCESSING_ORDERS.items()} - - def __init__(self, name, repeat, aux, tableClass=None, *, description=""): - BaseConverter.__init__( - self, name, repeat, aux, tableClass, description=description - ) - - def _setTextDirectionFromCoverageFlags(self, flags, subtable): - if (flags & 0x20) != 0: - subtable.TextDirection = "Any" - elif (flags & 0x80) != 0: - subtable.TextDirection = "Vertical" - else: - subtable.TextDirection = "Horizontal" - - def read(self, reader, font, tableDict): - pos = reader.pos - m = MorxSubtable() - m.StructLength = reader.readULong() - flags = reader.readUInt8() - orderKey = ((flags & 0x40) != 0, (flags & 0x10) != 0) - m.ProcessingOrder = self._PROCESSING_ORDERS[orderKey] - self._setTextDirectionFromCoverageFlags(flags, m) - m.Reserved = reader.readUShort() - m.Reserved |= (flags & 0xF) << 16 - m.MorphType = reader.readUInt8() - m.SubFeatureFlags = reader.readULong() - tableClass = lookupTypes["morx"].get(m.MorphType) - if tableClass is None: - assert False, "unsupported 'morx' lookup type %s" % m.MorphType - # To decode AAT ligatures, we need to know the subtable size. - # The easiest way to pass this along is to create a new reader - # that works on just the subtable as its data. - headerLength = reader.pos - pos - data = reader.data[reader.pos : reader.pos + m.StructLength - headerLength] - assert len(data) == m.StructLength - headerLength - subReader = OTTableReader(data=data, tableTag=reader.tableTag) - m.SubStruct = tableClass() - m.SubStruct.decompile(subReader, font) - reader.seek(pos + m.StructLength) - return m - - def xmlWrite(self, xmlWriter, font, value, name, attrs): - xmlWriter.begintag(name, attrs) - xmlWriter.newline() - xmlWriter.comment("StructLength=%d" % value.StructLength) - xmlWriter.newline() - xmlWriter.simpletag("TextDirection", value=value.TextDirection) - xmlWriter.newline() - xmlWriter.simpletag("ProcessingOrder", value=value.ProcessingOrder) - xmlWriter.newline() - if value.Reserved != 0: - xmlWriter.simpletag("Reserved", value="0x%04x" % value.Reserved) - xmlWriter.newline() - xmlWriter.comment("MorphType=%d" % value.MorphType) - xmlWriter.newline() - xmlWriter.simpletag("SubFeatureFlags", value="0x%08x" % value.SubFeatureFlags) - xmlWriter.newline() - value.SubStruct.toXML(xmlWriter, font) - xmlWriter.endtag(name) - xmlWriter.newline() - - def xmlRead(self, attrs, content, font): - m = MorxSubtable() - covFlags = 0 - m.Reserved = 0 - for eltName, eltAttrs, eltContent in filter(istuple, content): - if eltName == "CoverageFlags": - # Only in XML from old versions of fonttools. - covFlags = safeEval(eltAttrs["value"]) - orderKey = ((covFlags & 0x40) != 0, (covFlags & 0x10) != 0) - m.ProcessingOrder = self._PROCESSING_ORDERS[orderKey] - self._setTextDirectionFromCoverageFlags(covFlags, m) - elif eltName == "ProcessingOrder": - m.ProcessingOrder = eltAttrs["value"] - assert m.ProcessingOrder in self._PROCESSING_ORDERS_REVERSED, ( - "unknown ProcessingOrder: %s" % m.ProcessingOrder - ) - elif eltName == "TextDirection": - m.TextDirection = eltAttrs["value"] - assert m.TextDirection in {"Horizontal", "Vertical", "Any"}, ( - "unknown TextDirection %s" % m.TextDirection - ) - elif eltName == "Reserved": - m.Reserved = safeEval(eltAttrs["value"]) - elif eltName == "SubFeatureFlags": - m.SubFeatureFlags = safeEval(eltAttrs["value"]) - elif eltName.endswith("Morph"): - m.fromXML(eltName, eltAttrs, eltContent, font) - else: - assert False, eltName - m.Reserved = (covFlags & 0xF) << 16 | m.Reserved - return m - - def write(self, writer, font, tableDict, value, repeatIndex=None): - covFlags = (value.Reserved & 0x000F0000) >> 16 - reverseOrder, logicalOrder = self._PROCESSING_ORDERS_REVERSED[ - value.ProcessingOrder - ] - covFlags |= 0x80 if value.TextDirection == "Vertical" else 0 - covFlags |= 0x40 if reverseOrder else 0 - covFlags |= 0x20 if value.TextDirection == "Any" else 0 - covFlags |= 0x10 if logicalOrder else 0 - value.CoverageFlags = covFlags - lengthIndex = len(writer.items) - before = writer.getDataLength() - value.StructLength = 0xDEADBEEF - # The high nibble of value.Reserved is actuallly encoded - # into coverageFlags, so we need to clear it here. - origReserved = value.Reserved # including high nibble - value.Reserved = value.Reserved & 0xFFFF # without high nibble - value.compile(writer, font) - value.Reserved = origReserved # restore original value - assert writer.items[lengthIndex] == b"\xde\xad\xbe\xef" - length = writer.getDataLength() - before - writer.items[lengthIndex] = struct.pack(">L", length) - - -# https://developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6Tables.html#ExtendedStateHeader -# TODO: Untangle the implementation of the various lookup-specific formats. -class STXHeader(BaseConverter): - def __init__(self, name, repeat, aux, tableClass, *, description=""): - BaseConverter.__init__( - self, name, repeat, aux, tableClass, description=description - ) - assert issubclass(self.tableClass, AATAction) - self.classLookup = AATLookup("GlyphClasses", None, None, UShort) - if issubclass(self.tableClass, ContextualMorphAction): - self.perGlyphLookup = AATLookup("PerGlyphLookup", None, None, GlyphID) - else: - self.perGlyphLookup = None - - def read(self, reader, font, tableDict): - table = AATStateTable() - pos = reader.pos - classTableReader = reader.getSubReader(0) - stateArrayReader = reader.getSubReader(0) - entryTableReader = reader.getSubReader(0) - actionReader = None - ligaturesReader = None - table.GlyphClassCount = reader.readULong() - classTableReader.seek(pos + reader.readULong()) - stateArrayReader.seek(pos + reader.readULong()) - entryTableReader.seek(pos + reader.readULong()) - if self.perGlyphLookup is not None: - perGlyphTableReader = reader.getSubReader(0) - perGlyphTableReader.seek(pos + reader.readULong()) - if issubclass(self.tableClass, LigatureMorphAction): - actionReader = reader.getSubReader(0) - actionReader.seek(pos + reader.readULong()) - ligComponentReader = reader.getSubReader(0) - ligComponentReader.seek(pos + reader.readULong()) - ligaturesReader = reader.getSubReader(0) - ligaturesReader.seek(pos + reader.readULong()) - numLigComponents = (ligaturesReader.pos - ligComponentReader.pos) // 2 - assert numLigComponents >= 0 - table.LigComponents = ligComponentReader.readUShortArray(numLigComponents) - table.Ligatures = self._readLigatures(ligaturesReader, font) - elif issubclass(self.tableClass, InsertionMorphAction): - actionReader = reader.getSubReader(0) - actionReader.seek(pos + reader.readULong()) - table.GlyphClasses = self.classLookup.read(classTableReader, font, tableDict) - numStates = int( - (entryTableReader.pos - stateArrayReader.pos) / (table.GlyphClassCount * 2) - ) - for stateIndex in range(numStates): - state = AATState() - table.States.append(state) - for glyphClass in range(table.GlyphClassCount): - entryIndex = stateArrayReader.readUShort() - state.Transitions[glyphClass] = self._readTransition( - entryTableReader, entryIndex, font, actionReader - ) - if self.perGlyphLookup is not None: - table.PerGlyphLookups = self._readPerGlyphLookups( - table, perGlyphTableReader, font - ) - return table - - def _readTransition(self, reader, entryIndex, font, actionReader): - transition = self.tableClass() - entryReader = reader.getSubReader( - reader.pos + entryIndex * transition.staticSize - ) - transition.decompile(entryReader, font, actionReader) - return transition - - def _readLigatures(self, reader, font): - limit = len(reader.data) - numLigatureGlyphs = (limit - reader.pos) // 2 - return font.getGlyphNameMany(reader.readUShortArray(numLigatureGlyphs)) - - def _countPerGlyphLookups(self, table): - # Somewhat annoyingly, the morx table does not encode - # the size of the per-glyph table. So we need to find - # the maximum value that MorphActions use as index - # into this table. - numLookups = 0 - for state in table.States: - for t in state.Transitions.values(): - if isinstance(t, ContextualMorphAction): - if t.MarkIndex != 0xFFFF: - numLookups = max(numLookups, t.MarkIndex + 1) - if t.CurrentIndex != 0xFFFF: - numLookups = max(numLookups, t.CurrentIndex + 1) - return numLookups - - def _readPerGlyphLookups(self, table, reader, font): - pos = reader.pos - lookups = [] - for _ in range(self._countPerGlyphLookups(table)): - lookupReader = reader.getSubReader(0) - lookupReader.seek(pos + reader.readULong()) - lookups.append(self.perGlyphLookup.read(lookupReader, font, {})) - return lookups - - def write(self, writer, font, tableDict, value, repeatIndex=None): - glyphClassWriter = OTTableWriter() - self.classLookup.write( - glyphClassWriter, font, tableDict, value.GlyphClasses, repeatIndex=None - ) - glyphClassData = pad(glyphClassWriter.getAllData(), 2) - glyphClassCount = max(value.GlyphClasses.values()) + 1 - glyphClassTableOffset = 16 # size of STXHeader - if self.perGlyphLookup is not None: - glyphClassTableOffset += 4 - - glyphClassTableOffset += self.tableClass.actionHeaderSize - actionData, actionIndex = self.tableClass.compileActions(font, value.States) - stateArrayData, entryTableData = self._compileStates( - font, value.States, glyphClassCount, actionIndex - ) - stateArrayOffset = glyphClassTableOffset + len(glyphClassData) - entryTableOffset = stateArrayOffset + len(stateArrayData) - perGlyphOffset = entryTableOffset + len(entryTableData) - perGlyphData = pad(self._compilePerGlyphLookups(value, font), 4) - if actionData is not None: - actionOffset = entryTableOffset + len(entryTableData) - else: - actionOffset = None - - ligaturesOffset, ligComponentsOffset = None, None - ligComponentsData = self._compileLigComponents(value, font) - ligaturesData = self._compileLigatures(value, font) - if ligComponentsData is not None: - assert len(perGlyphData) == 0 - ligComponentsOffset = actionOffset + len(actionData) - ligaturesOffset = ligComponentsOffset + len(ligComponentsData) - - writer.writeULong(glyphClassCount) - writer.writeULong(glyphClassTableOffset) - writer.writeULong(stateArrayOffset) - writer.writeULong(entryTableOffset) - if self.perGlyphLookup is not None: - writer.writeULong(perGlyphOffset) - if actionOffset is not None: - writer.writeULong(actionOffset) - if ligComponentsOffset is not None: - writer.writeULong(ligComponentsOffset) - writer.writeULong(ligaturesOffset) - writer.writeData(glyphClassData) - writer.writeData(stateArrayData) - writer.writeData(entryTableData) - writer.writeData(perGlyphData) - if actionData is not None: - writer.writeData(actionData) - if ligComponentsData is not None: - writer.writeData(ligComponentsData) - if ligaturesData is not None: - writer.writeData(ligaturesData) - - def _compileStates(self, font, states, glyphClassCount, actionIndex): - stateArrayWriter = OTTableWriter() - entries, entryIDs = [], {} - for state in states: - for glyphClass in range(glyphClassCount): - transition = state.Transitions[glyphClass] - entryWriter = OTTableWriter() - transition.compile(entryWriter, font, actionIndex) - entryData = entryWriter.getAllData() - assert ( - len(entryData) == transition.staticSize - ), "%s has staticSize %d, " "but actually wrote %d bytes" % ( - repr(transition), - transition.staticSize, - len(entryData), - ) - entryIndex = entryIDs.get(entryData) - if entryIndex is None: - entryIndex = len(entries) - entryIDs[entryData] = entryIndex - entries.append(entryData) - stateArrayWriter.writeUShort(entryIndex) - stateArrayData = pad(stateArrayWriter.getAllData(), 4) - entryTableData = pad(bytesjoin(entries), 4) - return stateArrayData, entryTableData - - def _compilePerGlyphLookups(self, table, font): - if self.perGlyphLookup is None: - return b"" - numLookups = self._countPerGlyphLookups(table) - assert len(table.PerGlyphLookups) == numLookups, ( - "len(AATStateTable.PerGlyphLookups) is %d, " - "but the actions inside the table refer to %d" - % (len(table.PerGlyphLookups), numLookups) - ) - writer = OTTableWriter() - for lookup in table.PerGlyphLookups: - lookupWriter = writer.getSubWriter() - self.perGlyphLookup.write(lookupWriter, font, {}, lookup, None) - writer.writeSubTable(lookupWriter, offsetSize=4) - return writer.getAllData() - - def _compileLigComponents(self, table, font): - if not hasattr(table, "LigComponents"): - return None - writer = OTTableWriter() - for component in table.LigComponents: - writer.writeUShort(component) - return writer.getAllData() - - def _compileLigatures(self, table, font): - if not hasattr(table, "Ligatures"): - return None - writer = OTTableWriter() - for glyphName in table.Ligatures: - writer.writeUShort(font.getGlyphID(glyphName)) - return writer.getAllData() - - def xmlWrite(self, xmlWriter, font, value, name, attrs): - xmlWriter.begintag(name, attrs) - xmlWriter.newline() - xmlWriter.comment("GlyphClassCount=%s" % value.GlyphClassCount) - xmlWriter.newline() - for g, klass in sorted(value.GlyphClasses.items()): - xmlWriter.simpletag("GlyphClass", glyph=g, value=klass) - xmlWriter.newline() - for stateIndex, state in enumerate(value.States): - xmlWriter.begintag("State", index=stateIndex) - xmlWriter.newline() - for glyphClass, trans in sorted(state.Transitions.items()): - trans.toXML( - xmlWriter, - font=font, - attrs={"onGlyphClass": glyphClass}, - name="Transition", - ) - xmlWriter.endtag("State") - xmlWriter.newline() - for i, lookup in enumerate(value.PerGlyphLookups): - xmlWriter.begintag("PerGlyphLookup", index=i) - xmlWriter.newline() - for glyph, val in sorted(lookup.items()): - xmlWriter.simpletag("Lookup", glyph=glyph, value=val) - xmlWriter.newline() - xmlWriter.endtag("PerGlyphLookup") - xmlWriter.newline() - if hasattr(value, "LigComponents"): - xmlWriter.begintag("LigComponents") - xmlWriter.newline() - for i, val in enumerate(getattr(value, "LigComponents")): - xmlWriter.simpletag("LigComponent", index=i, value=val) - xmlWriter.newline() - xmlWriter.endtag("LigComponents") - xmlWriter.newline() - self._xmlWriteLigatures(xmlWriter, font, value, name, attrs) - xmlWriter.endtag(name) - xmlWriter.newline() - - def _xmlWriteLigatures(self, xmlWriter, font, value, name, attrs): - if not hasattr(value, "Ligatures"): - return - xmlWriter.begintag("Ligatures") - xmlWriter.newline() - for i, g in enumerate(getattr(value, "Ligatures")): - xmlWriter.simpletag("Ligature", index=i, glyph=g) - xmlWriter.newline() - xmlWriter.endtag("Ligatures") - xmlWriter.newline() - - def xmlRead(self, attrs, content, font): - table = AATStateTable() - for eltName, eltAttrs, eltContent in filter(istuple, content): - if eltName == "GlyphClass": - glyph = eltAttrs["glyph"] - value = eltAttrs["value"] - table.GlyphClasses[glyph] = safeEval(value) - elif eltName == "State": - state = self._xmlReadState(eltAttrs, eltContent, font) - table.States.append(state) - elif eltName == "PerGlyphLookup": - lookup = self.perGlyphLookup.xmlRead(eltAttrs, eltContent, font) - table.PerGlyphLookups.append(lookup) - elif eltName == "LigComponents": - table.LigComponents = self._xmlReadLigComponents( - eltAttrs, eltContent, font - ) - elif eltName == "Ligatures": - table.Ligatures = self._xmlReadLigatures(eltAttrs, eltContent, font) - table.GlyphClassCount = max(table.GlyphClasses.values()) + 1 - return table - - def _xmlReadState(self, attrs, content, font): - state = AATState() - for eltName, eltAttrs, eltContent in filter(istuple, content): - if eltName == "Transition": - glyphClass = safeEval(eltAttrs["onGlyphClass"]) - transition = self.tableClass() - transition.fromXML(eltName, eltAttrs, eltContent, font) - state.Transitions[glyphClass] = transition - return state - - def _xmlReadLigComponents(self, attrs, content, font): - ligComponents = [] - for eltName, eltAttrs, _eltContent in filter(istuple, content): - if eltName == "LigComponent": - ligComponents.append(safeEval(eltAttrs["value"])) - return ligComponents - - def _xmlReadLigatures(self, attrs, content, font): - ligs = [] - for eltName, eltAttrs, _eltContent in filter(istuple, content): - if eltName == "Ligature": - ligs.append(eltAttrs["glyph"]) - return ligs - - -class CIDGlyphMap(BaseConverter): - def read(self, reader, font, tableDict): - numCIDs = reader.readUShort() - result = {} - for cid, glyphID in enumerate(reader.readUShortArray(numCIDs)): - if glyphID != 0xFFFF: - result[cid] = font.getGlyphName(glyphID) - return result - - def write(self, writer, font, tableDict, value, repeatIndex=None): - items = {cid: font.getGlyphID(glyph) for cid, glyph in value.items()} - count = max(items) + 1 if items else 0 - writer.writeUShort(count) - for cid in range(count): - writer.writeUShort(items.get(cid, 0xFFFF)) - - def xmlRead(self, attrs, content, font): - result = {} - for eName, eAttrs, _eContent in filter(istuple, content): - if eName == "CID": - result[safeEval(eAttrs["cid"])] = eAttrs["glyph"].strip() - return result - - def xmlWrite(self, xmlWriter, font, value, name, attrs): - xmlWriter.begintag(name, attrs) - xmlWriter.newline() - for cid, glyph in sorted(value.items()): - if glyph is not None and glyph != 0xFFFF: - xmlWriter.simpletag("CID", cid=cid, glyph=glyph) - xmlWriter.newline() - xmlWriter.endtag(name) - xmlWriter.newline() - - -class GlyphCIDMap(BaseConverter): - def read(self, reader, font, tableDict): - glyphOrder = font.getGlyphOrder() - count = reader.readUShort() - cids = reader.readUShortArray(count) - if count > len(glyphOrder): - log.warning( - "GlyphCIDMap has %d elements, " - "but the font has only %d glyphs; " - "ignoring the rest" % (count, len(glyphOrder)) - ) - result = {} - for glyphID in range(min(len(cids), len(glyphOrder))): - cid = cids[glyphID] - if cid != 0xFFFF: - result[glyphOrder[glyphID]] = cid - return result - - def write(self, writer, font, tableDict, value, repeatIndex=None): - items = { - font.getGlyphID(g): cid - for g, cid in value.items() - if cid is not None and cid != 0xFFFF - } - count = max(items) + 1 if items else 0 - writer.writeUShort(count) - for glyphID in range(count): - writer.writeUShort(items.get(glyphID, 0xFFFF)) - - def xmlRead(self, attrs, content, font): - result = {} - for eName, eAttrs, _eContent in filter(istuple, content): - if eName == "CID": - result[eAttrs["glyph"]] = safeEval(eAttrs["value"]) - return result - - def xmlWrite(self, xmlWriter, font, value, name, attrs): - xmlWriter.begintag(name, attrs) - xmlWriter.newline() - for glyph, cid in sorted(value.items()): - if cid is not None and cid != 0xFFFF: - xmlWriter.simpletag("CID", glyph=glyph, value=cid) - xmlWriter.newline() - xmlWriter.endtag(name) - xmlWriter.newline() - - -class DeltaValue(BaseConverter): - def read(self, reader, font, tableDict): - StartSize = tableDict["StartSize"] - EndSize = tableDict["EndSize"] - DeltaFormat = tableDict["DeltaFormat"] - assert DeltaFormat in (1, 2, 3), "illegal DeltaFormat" - nItems = EndSize - StartSize + 1 - nBits = 1 << DeltaFormat - minusOffset = 1 << nBits - mask = (1 << nBits) - 1 - signMask = 1 << (nBits - 1) - - DeltaValue = [] - tmp, shift = 0, 0 - for i in range(nItems): - if shift == 0: - tmp, shift = reader.readUShort(), 16 - shift = shift - nBits - value = (tmp >> shift) & mask - if value & signMask: - value = value - minusOffset - DeltaValue.append(value) - return DeltaValue - - def write(self, writer, font, tableDict, value, repeatIndex=None): - StartSize = tableDict["StartSize"] - EndSize = tableDict["EndSize"] - DeltaFormat = tableDict["DeltaFormat"] - DeltaValue = value - assert DeltaFormat in (1, 2, 3), "illegal DeltaFormat" - nItems = EndSize - StartSize + 1 - nBits = 1 << DeltaFormat - assert len(DeltaValue) == nItems - mask = (1 << nBits) - 1 - - tmp, shift = 0, 16 - for value in DeltaValue: - shift = shift - nBits - tmp = tmp | ((value & mask) << shift) - if shift == 0: - writer.writeUShort(tmp) - tmp, shift = 0, 16 - if shift != 16: - writer.writeUShort(tmp) - - def xmlWrite(self, xmlWriter, font, value, name, attrs): - xmlWriter.simpletag(name, attrs + [("value", value)]) - xmlWriter.newline() - - def xmlRead(self, attrs, content, font): - return safeEval(attrs["value"]) - - -class VarIdxMapValue(BaseConverter): - def read(self, reader, font, tableDict): - fmt = tableDict["EntryFormat"] - nItems = tableDict["MappingCount"] - - innerBits = 1 + (fmt & 0x000F) - innerMask = (1 << innerBits) - 1 - outerMask = 0xFFFFFFFF - innerMask - outerShift = 16 - innerBits - - entrySize = 1 + ((fmt & 0x0030) >> 4) - readArray = { - 1: reader.readUInt8Array, - 2: reader.readUShortArray, - 3: reader.readUInt24Array, - 4: reader.readULongArray, - }[entrySize] - - return [ - (((raw & outerMask) << outerShift) | (raw & innerMask)) - for raw in readArray(nItems) - ] - - def write(self, writer, font, tableDict, value, repeatIndex=None): - fmt = tableDict["EntryFormat"] - mapping = value - writer["MappingCount"].setValue(len(mapping)) - - innerBits = 1 + (fmt & 0x000F) - innerMask = (1 << innerBits) - 1 - outerShift = 16 - innerBits - - entrySize = 1 + ((fmt & 0x0030) >> 4) - writeArray = { - 1: writer.writeUInt8Array, - 2: writer.writeUShortArray, - 3: writer.writeUInt24Array, - 4: writer.writeULongArray, - }[entrySize] - - writeArray( - [ - (((idx & 0xFFFF0000) >> outerShift) | (idx & innerMask)) - for idx in mapping - ] - ) - - -class VarDataValue(BaseConverter): - def read(self, reader, font, tableDict): - values = [] - - regionCount = tableDict["VarRegionCount"] - wordCount = tableDict["NumShorts"] - - # https://github.com/fonttools/fonttools/issues/2279 - longWords = bool(wordCount & 0x8000) - wordCount = wordCount & 0x7FFF - - if longWords: - readBigArray, readSmallArray = reader.readLongArray, reader.readShortArray - else: - readBigArray, readSmallArray = reader.readShortArray, reader.readInt8Array - - n1, n2 = min(regionCount, wordCount), max(regionCount, wordCount) - values.extend(readBigArray(n1)) - values.extend(readSmallArray(n2 - n1)) - if n2 > regionCount: # Padding - del values[regionCount:] - - return values - - def write(self, writer, font, tableDict, values, repeatIndex=None): - regionCount = tableDict["VarRegionCount"] - wordCount = tableDict["NumShorts"] - - # https://github.com/fonttools/fonttools/issues/2279 - longWords = bool(wordCount & 0x8000) - wordCount = wordCount & 0x7FFF - - (writeBigArray, writeSmallArray) = { - False: (writer.writeShortArray, writer.writeInt8Array), - True: (writer.writeLongArray, writer.writeShortArray), - }[longWords] - - n1, n2 = min(regionCount, wordCount), max(regionCount, wordCount) - writeBigArray(values[:n1]) - writeSmallArray(values[n1:regionCount]) - if n2 > regionCount: # Padding - writer.writeSmallArray([0] * (n2 - regionCount)) - - def xmlWrite(self, xmlWriter, font, value, name, attrs): - xmlWriter.simpletag(name, attrs + [("value", value)]) - xmlWriter.newline() - - def xmlRead(self, attrs, content, font): - return safeEval(attrs["value"]) - - -class LookupFlag(UShort): - def xmlWrite(self, xmlWriter, font, value, name, attrs): - xmlWriter.simpletag(name, attrs + [("value", value)]) - flags = [] - if value & 0x01: - flags.append("rightToLeft") - if value & 0x02: - flags.append("ignoreBaseGlyphs") - if value & 0x04: - flags.append("ignoreLigatures") - if value & 0x08: - flags.append("ignoreMarks") - if value & 0x10: - flags.append("useMarkFilteringSet") - if value & 0xFF00: - flags.append("markAttachmentType[%i]" % (value >> 8)) - if flags: - xmlWriter.comment(" ".join(flags)) - xmlWriter.newline() - - -class _UInt8Enum(UInt8): - enumClass = NotImplemented - - def read(self, reader, font, tableDict): - return self.enumClass(super().read(reader, font, tableDict)) - - @classmethod - def fromString(cls, value): - return getattr(cls.enumClass, value.upper()) - - @classmethod - def toString(cls, value): - return cls.enumClass(value).name.lower() - - -class ExtendMode(_UInt8Enum): - enumClass = _ExtendMode - - -class CompositeMode(_UInt8Enum): - enumClass = _CompositeMode - - -converterMapping = { - # type class - "int8": Int8, - "int16": Short, - "uint8": UInt8, - "uint16": UShort, - "uint24": UInt24, - "uint32": ULong, - "char64": Char64, - "Flags32": Flags32, - "VarIndex": VarIndex, - "Version": Version, - "Tag": Tag, - "GlyphID": GlyphID, - "GlyphID32": GlyphID32, - "NameID": NameID, - "DeciPoints": DeciPoints, - "Fixed": Fixed, - "F2Dot14": F2Dot14, - "Angle": Angle, - "BiasedAngle": BiasedAngle, - "struct": Struct, - "Offset": Table, - "LOffset": LTable, - "Offset24": Table24, - "ValueRecord": ValueRecord, - "DeltaValue": DeltaValue, - "VarIdxMapValue": VarIdxMapValue, - "VarDataValue": VarDataValue, - "LookupFlag": LookupFlag, - "ExtendMode": ExtendMode, - "CompositeMode": CompositeMode, - "STATFlags": STATFlags, - # AAT - "CIDGlyphMap": CIDGlyphMap, - "GlyphCIDMap": GlyphCIDMap, - "MortChain": StructWithLength, - "MortSubtable": StructWithLength, - "MorxChain": StructWithLength, - "MorxSubtable": MorxSubtableConverter, - # "Template" types - "AATLookup": lambda C: partial(AATLookup, tableClass=C), - "AATLookupWithDataOffset": lambda C: partial(AATLookupWithDataOffset, tableClass=C), - "STXHeader": lambda C: partial(STXHeader, tableClass=C), - "OffsetTo": lambda C: partial(Table, tableClass=C), - "LOffsetTo": lambda C: partial(LTable, tableClass=C), - "LOffset24To": lambda C: partial(Table24, tableClass=C), -} diff --git a/spaces/johnberg/CLIPInverter/README.md b/spaces/johnberg/CLIPInverter/README.md deleted file mode 100644 index c197c2d77adb7a060d5ac33fe47f90d04d7f2d92..0000000000000000000000000000000000000000 --- a/spaces/johnberg/CLIPInverter/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: CLIPInverter -emoji: 💻 -colorFrom: gray -colorTo: gray -sdk: gradio -sdk_version: 3.38.0 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/josedolot/HybridNet_Demo2/utils/sync_batchnorm/__init__.py b/spaces/josedolot/HybridNet_Demo2/utils/sync_batchnorm/__init__.py deleted file mode 100644 index a10989fbef38485841fdbd1af72f53062a7b556d..0000000000000000000000000000000000000000 --- a/spaces/josedolot/HybridNet_Demo2/utils/sync_batchnorm/__init__.py +++ /dev/null @@ -1,13 +0,0 @@ -# -*- coding: utf-8 -*- -# File : __init__.py -# Author : Jiayuan Mao -# Email : maojiayuan@gmail.com -# Date : 27/01/2018 -# -# This file is part of Synchronized-BatchNorm-PyTorch. -# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch -# Distributed under MIT License. - -from .batchnorm import SynchronizedBatchNorm1d, SynchronizedBatchNorm2d, SynchronizedBatchNorm3d -from .batchnorm import patch_sync_batchnorm, convert_model -from .replicate import DataParallelWithCallback, patch_replication_callback diff --git a/spaces/josh59999/webui/app.py b/spaces/josh59999/webui/app.py deleted file mode 100644 index c88475b09b7157ce54dc8289652a46d1f384097f..0000000000000000000000000000000000000000 --- a/spaces/josh59999/webui/app.py +++ /dev/null @@ -1,74 +0,0 @@ -import os -from subprocess import getoutput - -gpu_info = getoutput('nvidia-smi') -if("A10G" in gpu_info): - os.system(f"pip install -q https://github.com/camenduru/stable-diffusion-webui-colab/releases/download/0.0.15/xformers-0.0.15.dev0+4c06c79.d20221205-cp38-cp38-linux_x86_64.whl") -elif("T4" in gpu_info): - os.system(f"pip install -q https://github.com/camenduru/stable-diffusion-webui-colab/releases/download/0.0.15/xformers-0.0.15.dev0+1515f77.d20221130-cp38-cp38-linux_x86_64.whl") - -os.system(f"git clone -b v1.5 https://github.com/camenduru/stable-diffusion-webui /home/user/app/stable-diffusion-webui") -os.chdir("/home/user/app/stable-diffusion-webui") - -os.system(f"wget -q https://github.com/camenduru/webui/raw/main/env_patch.py -O /home/user/app/env_patch.py") -os.system(f"sed -i '$a fastapi==0.90.0' /home/user/app/stable-diffusion-webui/requirements_versions.txt") -os.system(f"sed -i -e '/import image_from_url_text/r /home/user/app/env_patch.py' /home/user/app/stable-diffusion-webui/modules/ui.py") -os.system(f"sed -i -e '/(modelmerger_interface, \"Checkpoint Merger\", \"modelmerger\"),/d' /home/user/app/stable-diffusion-webui/modules/ui.py") -os.system(f"sed -i -e '/(train_interface, \"Train\", \"ti\"),/d' /home/user/app/stable-diffusion-webui/modules/ui.py") -os.system(f"sed -i -e '/extensions_interface, \"Extensions\", \"extensions\"/d' /home/user/app/stable-diffusion-webui/modules/ui.py") -os.system(f"sed -i -e '/settings_interface, \"Settings\", \"settings\"/d' /home/user/app/stable-diffusion-webui/modules/ui.py") -os.system(f'''sed -i -e "s/document.getElementsByTagName('gradio-app')\[0\].shadowRoot/!!document.getElementsByTagName('gradio-app')[0].shadowRoot ? document.getElementsByTagName('gradio-app')[0].shadowRoot : document/g" /home/user/app/stable-diffusion-webui/script.js''') -os.system(f"sed -i -e 's/ show_progress=False,/ show_progress=True,/g' /home/user/app/stable-diffusion-webui/modules/ui.py") -os.system(f"sed -i -e 's/shared.demo.launch/shared.demo.queue().launch/g' /home/user/app/stable-diffusion-webui/webui.py") -os.system(f"sed -i -e 's/ outputs=\[/queue=False, &/g' /home/user/app/stable-diffusion-webui/modules/ui.py") -os.system(f"sed -i -e 's/ queue=False, / /g' /home/user/app/stable-diffusion-webui/modules/ui.py") - -# ----------------------------Please duplicate this space and delete this block if you don't want to see the extra header---------------------------- -os.system(f"wget -q https://github.com/camenduru/webui/raw/main/header_patch.py -O /home/user/app/header_patch.py") -os.system(f"sed -i -e '/demo:/r /home/user/app/header_patch.py' /home/user/app/stable-diffusion-webui/modules/ui.py") -# --------------------------------------------------------------------------------------------------------------------------------------------------- - -if "IS_SHARED_UI" in os.environ: - os.system(f"rm -rfv /home/user/app/stable-diffusion-webui/scripts/") - - os.system(f"wget -q https://github.com/camenduru/webui/raw/main/shared-config.json -O /home/user/app/shared-config.json") - os.system(f"wget -q https://github.com/camenduru/webui/raw/main/shared-ui-config.json -O /home/user/app/shared-ui-config.json") - - os.system(f"wget -q https://huggingface.co/ckpt/anything-v3-vae-swapped/resolve/main/anything-v3-vae-swapped.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/anything-v3-vae-swapped.ckpt") - # os.system(f"wget -q {os.getenv('MODEL_LINK')} -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/{os.getenv('MODEL_NAME')}") - # os.system(f"wget -q {os.getenv('VAE_LINK')} -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/{os.getenv('VAE_NAME')}") - # os.system(f"wget -q {os.getenv('YAML_LINK')} -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/{os.getenv('YAML_NAME')}") - - os.system(f"python launch.py --force-enable-xformers --disable-console-progressbars --enable-console-prompts --ui-config-file /home/user/app/shared-ui-config.json --ui-settings-file /home/user/app/shared-config.json --cors-allow-origins huggingface.co,hf.space --no-progressbar-hiding") -else: - # Please duplicate this space and delete # character in front of the custom script you want to use or add here more custom scripts with same structure os.system(f"wget -q https://CUSTOM_SCRIPT_URL -O /home/user/app/stable-diffusion-webui/scripts/CUSTOM_SCRIPT_NAME.py") - os.system(f"wget -q https://gist.github.com/camenduru/9ec5f8141db9902e375967e93250860f/raw/d0bcf01786f20107c329c03f8968584ee67be12a/run_n_times.py -O /home/user/app/stable-diffusion-webui/scripts/run_n_times.py") - - # Please duplicate this space and delete # character in front of the extension you want to use or add here more extensions with same structure os.system(f"git clone https://EXTENSION_GIT_URL /home/user/app/stable-diffusion-webui/extensions/EXTENSION_NAME") - #os.system(f"git clone https://github.com/camenduru/stable-diffusion-webui-artists-to-study /home/user/app/stable-diffusion-webui/extensions/stable-diffusion-webui-artists-to-study") - os.system(f"git clone https://github.com/yfszzx/stable-diffusion-webui-images-browser /home/user/app/stable-diffusion-webui/extensions/stable-diffusion-webui-images-browser") - os.system(f"git clone https://github.com/camenduru/deforum-for-automatic1111-webui /home/user/app/stable-diffusion-webui/extensions/deforum-for-automatic1111-webui") - - # Please duplicate this space and delete # character in front of the model you want to use or add here more ckpts with same structure os.system(f"wget -q https://CKPT_URL -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/CKPT_NAME.ckpt") - #os.system(f"wget -q https://huggingface.co/nitrosocke/Arcane-Diffusion/resolve/main/arcane-diffusion-v3.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/arcane-diffusion-v3.ckpt") - #os.system(f"wget -q https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion/resolve/main/Cyberpunk-Anime-Diffusion.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/Cyberpunk-Anime-Diffusion.ckpt") - #os.system(f"wget -q https://huggingface.co/prompthero/midjourney-v4-diffusion/resolve/main/mdjrny-v4.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/mdjrny-v4.ckpt") - #os.system(f"wget -q https://huggingface.co/nitrosocke/mo-di-diffusion/resolve/main/moDi-v1-pruned.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/moDi-v1-pruned.ckpt") - #os.system(f"wget -q https://huggingface.co/Fictiverse/Stable_Diffusion_PaperCut_Model/resolve/main/PaperCut_v1.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/PaperCut_v1.ckpt") - #os.system(f"wget -q https://huggingface.co/lilpotat/sa/resolve/main/samdoesarts_style.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/samdoesarts_style.ckpt") - #os.system(f"wget -q https://huggingface.co/hakurei/waifu-diffusion-v1-3/resolve/main/wd-v1-3-float32.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/wd-v1-3-float32.ckpt") - #os.system(f"wget -q https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/sd-v1-4.ckpt") - #os.system(f"wget -q https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/v1-5-pruned-emaonly.ckpt") - #os.system(f"wget -q https://huggingface.co/runwayml/stable-diffusion-inpainting/resolve/main/sd-v1-5-inpainting.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/sd-v1-5-inpainting.ckpt") - - #os.system(f"wget -q https://huggingface.co/Linaqruf/anything-v3.0/resolve/main/Anything-V3.0-pruned.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/Anything-V3.0-pruned.ckpt") - #os.system(f"wget -q https://huggingface.co/Linaqruf/anything-v3.0/resolve/main/Anything-V3.0.vae.pt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/Anything-V3.0-pruned.vae.pt") - - #os.system(f"wget -q https://huggingface.co/stabilityai/stable-diffusion-2/resolve/main/768-v-ema.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/768-v-ema.ckpt") - #os.system(f"wget -q https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/768-v-ema.yaml") - - os.system(f"wget -q https://huggingface.co/stabilityai/stable-diffusion-2-1/resolve/main/v2-1_768-ema-pruned.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/v2-1_768-ema-pruned.ckpt") - os.system(f"wget -q https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/v2-1_768-ema-pruned.yaml") - - os.system(f"python launch.py --force-enable-xformers --ui-config-file /home/user/app/ui-config.json --ui-settings-file /home/user/app/config.json --disable-console-progressbars --enable-console-prompts --cors-allow-origins huggingface.co,hf.space --no-progressbar-hiding --api --skip-torch-cuda-test") - \ No newline at end of file diff --git a/spaces/jsylee/adverse-drug-reactions-ner/app.py b/spaces/jsylee/adverse-drug-reactions-ner/app.py deleted file mode 100644 index be65b531aa343df530462c6f578baf77f9c79c10..0000000000000000000000000000000000000000 --- a/spaces/jsylee/adverse-drug-reactions-ner/app.py +++ /dev/null @@ -1,77 +0,0 @@ -import gradio as gr -from spacy import displacy -from transformers import (AutoModelForTokenClassification, - AutoTokenizer, - pipeline, - ) - -model_checkpoint = "jsylee/scibert_scivocab_uncased-finetuned-ner" - -model = AutoModelForTokenClassification.from_pretrained(model_checkpoint, - num_labels=5, - id2label={0: 'O', 1: 'DRUG', 2: 'DRUG', 3: 'ADVERSE EFFECT', 4: 'ADVERSE EFFECT'} # for grouping BIO tags back together - ) -tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) - -model.to("cpu") - -model_pipeline = pipeline(task="ner", model=model, tokenizer=tokenizer, device=-1, grouped_entities=True) - -def extract_entities(sentence): - """ Extract drug and reaction entities, and show using displaCy's NER visualizer. - - source: https://github.com/jsylee/personal-projects/blob/master/Hugging%20Face%20ADR%20Fine-Tuning/SciBERT%20ADR%20Fine-Tuning.ipynb - """ - tokens = model_pipeline(sentence) - entities = [] - - for token in tokens: - label = token["entity_group"] - - if label != "0": - # label 0 corresponds to "Outside" any entity we care about - token["label"] = label - entities.append(token) - - params = [{"text": sentence, - "ents": entities, - "title": None}] - - return displacy.render(params, style="ent", manual=True, options={ - "colors": { - "DRUG": "#f08080", - "ADVERSE EFFECT": "#9bddff", - }, - }) - -# the following examples of adverse effects are taken from Wikipedia: -# https://en.wikipedia.org/wiki/Adverse_effect#Medications - -examples = [ - "Abortion, miscarriage or uterine hemorrhage associated with misoprostol (Cytotec), a labor-inducing drug.", - "Addiction to many sedatives and analgesics, such as diazepam, morphine, etc.", - "Birth defects associated with thalidomide", - "Bleeding of the intestine associated with aspirin therapy", - "Cardiovascular disease associated with COX-2 inhibitors (i.e. Vioxx)", - "Deafness and kidney failure associated with gentamicin (an antibiotic)", - "Death, following sedation, in children using propofol (Diprivan)", - "Depression or hepatic injury caused by interferon", - "Diabetes caused by atypical antipsychotic medications (neuroleptic psychiatric drugs)" -] - -footer = """ -
    -This app automatically extracts drug names and adverse effects from the input text. An adverse effect occurs when a drug harms a patient in any way. - -The extraction is done by a SciBERT model fine-tuned on the `ade_corpus_v2` dataset. Fine-tuning code here. - -This was made during the November 2021 Hugging Face Community Event. - -By Justin S. Lee -""" - -iface = gr.Interface(fn=extract_entities, inputs=gr.inputs.Textbox(lines=5, placeholder="Abortion, miscarriage or uterine hemorrhage associated with misoprostol..."), - outputs="html", examples=examples, - title="NER for Drug Names and Adverse Effects", - article=footer) -iface.launch() \ No newline at end of file diff --git a/spaces/k1ngtai/MMS/uroman/bin/uroman.pl b/spaces/k1ngtai/MMS/uroman/bin/uroman.pl deleted file mode 100644 index f1182aee6e5c3422882150b5babeec664b689401..0000000000000000000000000000000000000000 --- a/spaces/k1ngtai/MMS/uroman/bin/uroman.pl +++ /dev/null @@ -1,138 +0,0 @@ -#!/usr/bin/perl -w - -# uroman Nov. 12, 2015 - Apr. 23, 2021 -$version = "v1.2.8"; -# Author: Ulf Hermjakob - -# Usage: uroman.pl {-l [ara|bel|bul|deu|ell|eng|fas|grc|heb|kaz|kir|lav|lit|mkd|mkd2|oss|pnt|rus|srp|srp2|tur|uig|ukr|yid]} {--chart|--offset-mapping} {--no-cache} {--workset} < STDIN -# Example: cat workset.txt | uroman.pl --offset-mapping --workset - -$|=1; - -use FindBin; -use Cwd "abs_path"; -use File::Basename qw(dirname); -use File::Spec; - -my $bin_dir = abs_path(dirname($0)); -my $root_dir = File::Spec->catfile($bin_dir, File::Spec->updir()); -my $data_dir = File::Spec->catfile($root_dir, "data"); -my $lib_dir = File::Spec->catfile($root_dir, "lib"); - -use lib "$FindBin::Bin/../lib"; -use NLP::Chinese; -use NLP::Romanizer; -use NLP::UTF8; -use NLP::utilities; -use JSON; -$chinesePM = NLP::Chinese; -$romanizer = NLP::Romanizer; -$util = NLP::utilities; -%ht = (); -%pinyin_ht = (); -$lang_code = ""; -$return_chart_p = 0; -$return_offset_mappings_p = 0; -$workset_p = 0; -$cache_rom_tokens_p = 1; - -$script_data_filename = File::Spec->catfile($data_dir, "Scripts.txt"); -$unicode_data_overwrite_filename = File::Spec->catfile($data_dir, "UnicodeDataOverwrite.txt"); -$unicode_data_filename = File::Spec->catfile($data_dir, "UnicodeData.txt"); -$romanization_table_filename = File::Spec->catfile($data_dir, "romanization-table.txt"); -$chinese_tonal_pinyin_filename = File::Spec->catfile($data_dir, "Chinese_to_Pinyin.txt"); - -while (@ARGV) { - $arg = shift @ARGV; - if ($arg =~ /^-+(l|lc|lang-code)$/) { - $lang_code = lc (shift @ARGV || "") - } elsif ($arg =~ /^-+chart$/i) { - $return_chart_p = 1; - } elsif ($arg =~ /^-+workset$/i) { - $workset_p = 1; - } elsif ($arg =~ /^-+offset[-_]*map/i) { - $return_offset_mappings_p = 1; - } elsif ($arg =~ /^-+unicode[-_]?data/i) { - $filename = shift @ARGV; - if (-r $filename) { - $unicode_data_filename = $filename; - } else { - print STDERR "Ignoring invalid UnicodeData filename $filename\n"; - } - } elsif ($arg =~ /^-+(no-tok-cach|no-cach)/i) { - $cache_rom_tokens_p = 0; - } else { - print STDERR "Ignoring unrecognized arg $arg\n"; - } -} - -$romanizer->load_script_data(*ht, $script_data_filename); -$romanizer->load_unicode_data(*ht, $unicode_data_filename); -$romanizer->load_unicode_overwrite_romanization(*ht, $unicode_data_overwrite_filename); -$romanizer->load_romanization_table(*ht, $romanization_table_filename); -$chinese_to_pinyin_not_yet_loaded_p = 1; -$current_date = $util->datetime("dateTtime"); -$lang_code_clause = ($lang_code) ? " \"lang-code\":\"$lang_code\",\n" : ""; - -print "{\n \"romanizer\":\"uroman $version (Ulf Hermjakob, USC/ISI)\",\n \"date\":\"$current_date\",\n$lang_code_clause \"romanization\": [\n" if $return_chart_p; -my $line_number = 0; -my $chart_result = ""; -while (<>) { - $line_number++; - my $line = $_; - my $snt_id = ""; - if ($workset_p) { - next if $line =~ /^#/; - if (($i_value, $s_value) = ($line =~ /^(\S+\.\d+)\s(.*)$/)) { - $snt_id = $i_value; - $line = "$s_value\n"; - } else { - next; - } - } - if ($chinese_to_pinyin_not_yet_loaded_p && $chinesePM->string_contains_utf8_cjk_unified_ideograph_p($line)) { - $chinesePM->read_chinese_tonal_pinyin_files(*pinyin_ht, $chinese_tonal_pinyin_filename); - $chinese_to_pinyin_not_yet_loaded_p = 0; - } - if ($return_chart_p) { - print $chart_result; - *chart_ht = $romanizer->romanize($line, $lang_code, "", *ht, *pinyin_ht, 0, "return chart", $line_number); - $chart_result = $romanizer->chart_to_json_romanization_elements(0, $chart_ht{N_CHARS}, *chart_ht, $line_number); - } elsif ($return_offset_mappings_p) { - ($best_romanization, $offset_mappings) = $romanizer->romanize($line, $lang_code, "", *ht, *pinyin_ht, 0, "return offset mappings", $line_number, 0); - print "::snt-id $snt_id\n" if $workset_p; - print "::orig $line"; - print "::rom $best_romanization\n"; - print "::align $offset_mappings\n\n"; - } elsif ($cache_rom_tokens_p) { - print $romanizer->romanize_by_token_with_caching($line, $lang_code, "", *ht, *pinyin_ht, 0, "", $line_number) . "\n"; - } else { - print $romanizer->romanize($line, $lang_code, "", *ht, *pinyin_ht, 0, "", $line_number) . "\n"; - } -} -$chart_result =~ s/,(\s*)$/$1/; -print $chart_result; -print " ]\n}\n" if $return_chart_p; - -$dev_test_p = 0; -if ($dev_test_p) { - $n_suspicious_code_points = 0; - $n_instances = 0; - foreach $char_name (sort { hex($ht{UTF_NAME_TO_UNICODE}->{$a}) <=> hex($ht{UTF_NAME_TO_UNICODE}->{$b}) } - keys %{$ht{SUSPICIOUS_ROMANIZATION}}) { - $unicode_value = $ht{UTF_NAME_TO_UNICODE}->{$char_name}; - $utf8_string = $ht{UTF_NAME_TO_CODE}->{$char_name}; - foreach $romanization (sort keys %{$ht{SUSPICIOUS_ROMANIZATION}->{$char_name}}) { - $count = $ht{SUSPICIOUS_ROMANIZATION}->{$char_name}->{$romanization}; - $s = ($count == 1) ? "" : "s"; - print STDERR "*** Suspiciously lengthy romanization:\n" unless $n_suspicious_code_points; - print STDERR "::s $utf8_string ::t $romanization ::comment $char_name (U+$unicode_value)\n"; - $n_suspicious_code_points++; - $n_instances += $count; - } - } - print STDERR " *** Total of $n_suspicious_code_points suspicious code points ($n_instances instance$s)\n" if $n_suspicious_code_points; -} - -exit 0; - diff --git a/spaces/kaicheng/ChatGPT_ad/modules/__init__.py b/spaces/kaicheng/ChatGPT_ad/modules/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/keithhon/Real-Time-Voice-Cloning/synthesizer/synthesizer_dataset.py b/spaces/keithhon/Real-Time-Voice-Cloning/synthesizer/synthesizer_dataset.py deleted file mode 100644 index 9d552d16d0b6757871189037bf0b981c8dfebbaf..0000000000000000000000000000000000000000 --- a/spaces/keithhon/Real-Time-Voice-Cloning/synthesizer/synthesizer_dataset.py +++ /dev/null @@ -1,92 +0,0 @@ -import torch -from torch.utils.data import Dataset -import numpy as np -from pathlib import Path -from synthesizer.utils.text import text_to_sequence - - -class SynthesizerDataset(Dataset): - def __init__(self, metadata_fpath: Path, mel_dir: Path, embed_dir: Path, hparams): - print("Using inputs from:\n\t%s\n\t%s\n\t%s" % (metadata_fpath, mel_dir, embed_dir)) - - with metadata_fpath.open("r") as metadata_file: - metadata = [line.split("|") for line in metadata_file] - - mel_fnames = [x[1] for x in metadata if int(x[4])] - mel_fpaths = [mel_dir.joinpath(fname) for fname in mel_fnames] - embed_fnames = [x[2] for x in metadata if int(x[4])] - embed_fpaths = [embed_dir.joinpath(fname) for fname in embed_fnames] - self.samples_fpaths = list(zip(mel_fpaths, embed_fpaths)) - self.samples_texts = [x[5].strip() for x in metadata if int(x[4])] - self.metadata = metadata - self.hparams = hparams - - print("Found %d samples" % len(self.samples_fpaths)) - - def __getitem__(self, index): - # Sometimes index may be a list of 2 (not sure why this happens) - # If that is the case, return a single item corresponding to first element in index - if index is list: - index = index[0] - - mel_path, embed_path = self.samples_fpaths[index] - mel = np.load(mel_path).T.astype(np.float32) - - # Load the embed - embed = np.load(embed_path) - - # Get the text and clean it - text = text_to_sequence(self.samples_texts[index], self.hparams.tts_cleaner_names) - - # Convert the list returned by text_to_sequence to a numpy array - text = np.asarray(text).astype(np.int32) - - return text, mel.astype(np.float32), embed.astype(np.float32), index - - def __len__(self): - return len(self.samples_fpaths) - - -def collate_synthesizer(batch, r, hparams): - # Text - x_lens = [len(x[0]) for x in batch] - max_x_len = max(x_lens) - - chars = [pad1d(x[0], max_x_len) for x in batch] - chars = np.stack(chars) - - # Mel spectrogram - spec_lens = [x[1].shape[-1] for x in batch] - max_spec_len = max(spec_lens) + 1 - if max_spec_len % r != 0: - max_spec_len += r - max_spec_len % r - - # WaveRNN mel spectrograms are normalized to [0, 1] so zero padding adds silence - # By default, SV2TTS uses symmetric mels, where -1*max_abs_value is silence. - if hparams.symmetric_mels: - mel_pad_value = -1 * hparams.max_abs_value - else: - mel_pad_value = 0 - - mel = [pad2d(x[1], max_spec_len, pad_value=mel_pad_value) for x in batch] - mel = np.stack(mel) - - # Speaker embedding (SV2TTS) - embeds = [x[2] for x in batch] - - # Index (for vocoder preprocessing) - indices = [x[3] for x in batch] - - - # Convert all to tensor - chars = torch.tensor(chars).long() - mel = torch.tensor(mel) - embeds = torch.tensor(embeds) - - return chars, mel, embeds, indices - -def pad1d(x, max_len, pad_value=0): - return np.pad(x, (0, max_len - len(x)), mode="constant", constant_values=pad_value) - -def pad2d(x, max_len, pad_value=0): - return np.pad(x, ((0, 0), (0, max_len - x.shape[-1])), mode="constant", constant_values=pad_value) diff --git a/spaces/kevinwang676/Voice-Changer-Light/vc_infer_pipeline.py b/spaces/kevinwang676/Voice-Changer-Light/vc_infer_pipeline.py deleted file mode 100644 index 7261742c30f64df435ed3fdebaafd969e9563d98..0000000000000000000000000000000000000000 --- a/spaces/kevinwang676/Voice-Changer-Light/vc_infer_pipeline.py +++ /dev/null @@ -1,363 +0,0 @@ -import numpy as np, parselmouth, torch, pdb -from time import time as ttime -import torch.nn.functional as F -import scipy.signal as signal -import pyworld, os, traceback, faiss,librosa -from scipy import signal -from functools import lru_cache - -bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000) - -input_audio_path2wav={} -@lru_cache -def cache_harvest_f0(input_audio_path,fs,f0max,f0min,frame_period): - audio=input_audio_path2wav[input_audio_path] - f0, t = pyworld.harvest( - audio, - fs=fs, - f0_ceil=f0max, - f0_floor=f0min, - frame_period=frame_period, - ) - f0 = pyworld.stonemask(audio, f0, t, fs) - return f0 - -def change_rms(data1,sr1,data2,sr2,rate):#1是输入音频,2是输出音频,rate是2的占比 - # print(data1.max(),data2.max()) - rms1 = librosa.feature.rms(y=data1, frame_length=sr1//2*2, hop_length=sr1//2)#每半秒一个点 - rms2 = librosa.feature.rms(y=data2, frame_length=sr2//2*2, hop_length=sr2//2) - rms1=torch.from_numpy(rms1) - rms1=F.interpolate(rms1.unsqueeze(0), size=data2.shape[0],mode='linear').squeeze() - rms2=torch.from_numpy(rms2) - rms2=F.interpolate(rms2.unsqueeze(0), size=data2.shape[0],mode='linear').squeeze() - rms2=torch.max(rms2,torch.zeros_like(rms2)+1e-6) - data2*=(torch.pow(rms1,torch.tensor(1-rate))*torch.pow(rms2,torch.tensor(rate-1))).numpy() - return data2 - -class VC(object): - def __init__(self, tgt_sr, config): - self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = ( - config.x_pad, - config.x_query, - config.x_center, - config.x_max, - config.is_half, - ) - self.sr = 16000 # hubert输入采样率 - self.window = 160 # 每帧点数 - self.t_pad = self.sr * self.x_pad # 每条前后pad时间 - self.t_pad_tgt = tgt_sr * self.x_pad - self.t_pad2 = self.t_pad * 2 - self.t_query = self.sr * self.x_query # 查询切点前后查询时间 - self.t_center = self.sr * self.x_center # 查询切点位置 - self.t_max = self.sr * self.x_max # 免查询时长阈值 - self.device = config.device - - def get_f0(self, input_audio_path,x, p_len, f0_up_key, f0_method,filter_radius, inp_f0=None): - global input_audio_path2wav - time_step = self.window / self.sr * 1000 - f0_min = 50 - f0_max = 1100 - f0_mel_min = 1127 * np.log(1 + f0_min / 700) - f0_mel_max = 1127 * np.log(1 + f0_max / 700) - if f0_method == "pm": - f0 = ( - parselmouth.Sound(x, self.sr) - .to_pitch_ac( - time_step=time_step / 1000, - voicing_threshold=0.6, - pitch_floor=f0_min, - pitch_ceiling=f0_max, - ) - .selected_array["frequency"] - ) - pad_size = (p_len - len(f0) + 1) // 2 - if pad_size > 0 or p_len - len(f0) - pad_size > 0: - f0 = np.pad( - f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant" - ) - elif f0_method == "harvest": - input_audio_path2wav[input_audio_path]=x.astype(np.double) - f0=cache_harvest_f0(input_audio_path,self.sr,f0_max,f0_min,10) - if(filter_radius>2): - f0 = signal.medfilt(f0, 3) - f0 *= pow(2, f0_up_key / 12) - # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()])) - tf0 = self.sr // self.window # 每秒f0点数 - if inp_f0 is not None: - delta_t = np.round( - (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1 - ).astype("int16") - replace_f0 = np.interp( - list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1] - ) - shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0] - f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[ - :shape - ] - # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()])) - f0bak = f0.copy() - f0_mel = 1127 * np.log(1 + f0 / 700) - f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / ( - f0_mel_max - f0_mel_min - ) + 1 - f0_mel[f0_mel <= 1] = 1 - f0_mel[f0_mel > 255] = 255 - f0_coarse = np.rint(f0_mel).astype(int) - return f0_coarse, f0bak # 1-0 - - def vc( - self, - model, - net_g, - sid, - audio0, - pitch, - pitchf, - times, - index, - big_npy, - index_rate, - version, - ): # ,file_index,file_big_npy - feats = torch.from_numpy(audio0) - if self.is_half: - feats = feats.half() - else: - feats = feats.float() - if feats.dim() == 2: # double channels - feats = feats.mean(-1) - assert feats.dim() == 1, feats.dim() - feats = feats.view(1, -1) - padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False) - - inputs = { - "source": feats.to(self.device), - "padding_mask": padding_mask, - "output_layer": 9 if version == "v1" else 12, - } - t0 = ttime() - with torch.no_grad(): - logits = model.extract_features(**inputs) - feats = model.final_proj(logits[0])if version=="v1"else logits[0] - - if ( - isinstance(index, type(None)) == False - and isinstance(big_npy, type(None)) == False - and index_rate != 0 - ): - npy = feats[0].cpu().numpy() - if self.is_half: - npy = npy.astype("float32") - - # _, I = index.search(npy, 1) - # npy = big_npy[I.squeeze()] - - score, ix = index.search(npy, k=8) - weight = np.square(1 / score) - weight /= weight.sum(axis=1, keepdims=True) - npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1) - - if self.is_half: - npy = npy.astype("float16") - feats = ( - torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate - + (1 - index_rate) * feats - ) - - feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1) - t1 = ttime() - p_len = audio0.shape[0] // self.window - if feats.shape[1] < p_len: - p_len = feats.shape[1] - if pitch != None and pitchf != None: - pitch = pitch[:, :p_len] - pitchf = pitchf[:, :p_len] - p_len = torch.tensor([p_len], device=self.device).long() - with torch.no_grad(): - if pitch != None and pitchf != None: - audio1 = ( - (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0]) - .data.cpu() - .float() - .numpy() - ) - else: - audio1 = ( - (net_g.infer(feats, p_len, sid)[0][0, 0]) - .data.cpu() - .float() - .numpy() - ) - del feats, p_len, padding_mask - if torch.cuda.is_available(): - torch.cuda.empty_cache() - t2 = ttime() - times[0] += t1 - t0 - times[2] += t2 - t1 - return audio1 - - def pipeline( - self, - model, - net_g, - sid, - audio, - input_audio_path, - times, - f0_up_key, - f0_method, - file_index, - # file_big_npy, - index_rate, - if_f0, - filter_radius, - tgt_sr, - resample_sr, - rms_mix_rate, - version, - f0_file=None, - ): - if ( - file_index != "" - # and file_big_npy != "" - # and os.path.exists(file_big_npy) == True - and os.path.exists(file_index) == True - and index_rate != 0 - ): - try: - index = faiss.read_index(file_index) - # big_npy = np.load(file_big_npy) - big_npy = index.reconstruct_n(0, index.ntotal) - except: - traceback.print_exc() - index = big_npy = None - else: - index = big_npy = None - audio = signal.filtfilt(bh, ah, audio) - audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect") - opt_ts = [] - if audio_pad.shape[0] > self.t_max: - audio_sum = np.zeros_like(audio) - for i in range(self.window): - audio_sum += audio_pad[i : i - self.window] - for t in range(self.t_center, audio.shape[0], self.t_center): - opt_ts.append( - t - - self.t_query - + np.where( - np.abs(audio_sum[t - self.t_query : t + self.t_query]) - == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min() - )[0][0] - ) - s = 0 - audio_opt = [] - t = None - t1 = ttime() - audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect") - p_len = audio_pad.shape[0] // self.window - inp_f0 = None - if hasattr(f0_file, "name") == True: - try: - with open(f0_file.name, "r") as f: - lines = f.read().strip("\n").split("\n") - inp_f0 = [] - for line in lines: - inp_f0.append([float(i) for i in line.split(",")]) - inp_f0 = np.array(inp_f0, dtype="float32") - except: - traceback.print_exc() - sid = torch.tensor(sid, device=self.device).unsqueeze(0).long() - pitch, pitchf = None, None - if if_f0 == 1: - pitch, pitchf = self.get_f0(input_audio_path,audio_pad, p_len, f0_up_key, f0_method,filter_radius, inp_f0) - pitch = pitch[:p_len] - pitchf = pitchf[:p_len] - if self.device == "mps": - pitchf = pitchf.astype(np.float32) - pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long() - pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float() - t2 = ttime() - times[1] += t2 - t1 - for t in opt_ts: - t = t // self.window * self.window - if if_f0 == 1: - audio_opt.append( - self.vc( - model, - net_g, - sid, - audio_pad[s : t + self.t_pad2 + self.window], - pitch[:, s // self.window : (t + self.t_pad2) // self.window], - pitchf[:, s // self.window : (t + self.t_pad2) // self.window], - times, - index, - big_npy, - index_rate, - version, - )[self.t_pad_tgt : -self.t_pad_tgt] - ) - else: - audio_opt.append( - self.vc( - model, - net_g, - sid, - audio_pad[s : t + self.t_pad2 + self.window], - None, - None, - times, - index, - big_npy, - index_rate, - version, - )[self.t_pad_tgt : -self.t_pad_tgt] - ) - s = t - if if_f0 == 1: - audio_opt.append( - self.vc( - model, - net_g, - sid, - audio_pad[t:], - pitch[:, t // self.window :] if t is not None else pitch, - pitchf[:, t // self.window :] if t is not None else pitchf, - times, - index, - big_npy, - index_rate, - version, - )[self.t_pad_tgt : -self.t_pad_tgt] - ) - else: - audio_opt.append( - self.vc( - model, - net_g, - sid, - audio_pad[t:], - None, - None, - times, - index, - big_npy, - index_rate, - version, - )[self.t_pad_tgt : -self.t_pad_tgt] - ) - audio_opt = np.concatenate(audio_opt) - if(rms_mix_rate!=1): - audio_opt=change_rms(audio,16000,audio_opt,tgt_sr,rms_mix_rate) - if(resample_sr>=16000 and tgt_sr!=resample_sr): - audio_opt = librosa.resample( - audio_opt, orig_sr=tgt_sr, target_sr=resample_sr - ) - audio_max=np.abs(audio_opt).max()/0.99 - max_int16=32768 - if(audio_max>1):max_int16/=audio_max - audio_opt=(audio_opt * max_int16).astype(np.int16) - del pitch, pitchf, sid - if torch.cuda.is_available(): - torch.cuda.empty_cache() - return audio_opt diff --git a/spaces/kevinwang676/VoiceChangers/src/utils/paste_pic.py b/spaces/kevinwang676/VoiceChangers/src/utils/paste_pic.py deleted file mode 100644 index f9989e21e48e64f620f9b148e65fdfe806c53b14..0000000000000000000000000000000000000000 --- a/spaces/kevinwang676/VoiceChangers/src/utils/paste_pic.py +++ /dev/null @@ -1,69 +0,0 @@ -import cv2, os -import numpy as np -from tqdm import tqdm -import uuid - -from src.utils.videoio import save_video_with_watermark - -def paste_pic(video_path, pic_path, crop_info, new_audio_path, full_video_path, extended_crop=False): - - if not os.path.isfile(pic_path): - raise ValueError('pic_path must be a valid path to video/image file') - elif pic_path.split('.')[-1] in ['jpg', 'png', 'jpeg']: - # loader for first frame - full_img = cv2.imread(pic_path) - else: - # loader for videos - video_stream = cv2.VideoCapture(pic_path) - fps = video_stream.get(cv2.CAP_PROP_FPS) - full_frames = [] - while 1: - still_reading, frame = video_stream.read() - if not still_reading: - video_stream.release() - break - break - full_img = frame - frame_h = full_img.shape[0] - frame_w = full_img.shape[1] - - video_stream = cv2.VideoCapture(video_path) - fps = video_stream.get(cv2.CAP_PROP_FPS) - crop_frames = [] - while 1: - still_reading, frame = video_stream.read() - if not still_reading: - video_stream.release() - break - crop_frames.append(frame) - - if len(crop_info) != 3: - print("you didn't crop the image") - return - else: - r_w, r_h = crop_info[0] - clx, cly, crx, cry = crop_info[1] - lx, ly, rx, ry = crop_info[2] - lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry) - # oy1, oy2, ox1, ox2 = cly+ly, cly+ry, clx+lx, clx+rx - # oy1, oy2, ox1, ox2 = cly+ly, cly+ry, clx+lx, clx+rx - - if extended_crop: - oy1, oy2, ox1, ox2 = cly, cry, clx, crx - else: - oy1, oy2, ox1, ox2 = cly+ly, cly+ry, clx+lx, clx+rx - - tmp_path = str(uuid.uuid4())+'.mp4' - out_tmp = cv2.VideoWriter(tmp_path, cv2.VideoWriter_fourcc(*'MP4V'), fps, (frame_w, frame_h)) - for crop_frame in tqdm(crop_frames, 'seamlessClone:'): - p = cv2.resize(crop_frame.astype(np.uint8), (ox2-ox1, oy2 - oy1)) - - mask = 255*np.ones(p.shape, p.dtype) - location = ((ox1+ox2) // 2, (oy1+oy2) // 2) - gen_img = cv2.seamlessClone(p, full_img, mask, location, cv2.NORMAL_CLONE) - out_tmp.write(gen_img) - - out_tmp.release() - - save_video_with_watermark(tmp_path, new_audio_path, full_video_path, watermark=False) - os.remove(tmp_path) diff --git a/spaces/kevinwang676/rvc-mlbb-v2/lib/infer_pack/modules/F0Predictor/PMF0Predictor.py b/spaces/kevinwang676/rvc-mlbb-v2/lib/infer_pack/modules/F0Predictor/PMF0Predictor.py deleted file mode 100644 index b2c592527a5966e6f8e79e8c52dc5b414246dcc6..0000000000000000000000000000000000000000 --- a/spaces/kevinwang676/rvc-mlbb-v2/lib/infer_pack/modules/F0Predictor/PMF0Predictor.py +++ /dev/null @@ -1,97 +0,0 @@ -from lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor -import parselmouth -import numpy as np - - -class PMF0Predictor(F0Predictor): - def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100): - self.hop_length = hop_length - self.f0_min = f0_min - self.f0_max = f0_max - self.sampling_rate = sampling_rate - - def interpolate_f0(self, f0): - """ - 对F0进行插值处理 - """ - - data = np.reshape(f0, (f0.size, 1)) - - vuv_vector = np.zeros((data.size, 1), dtype=np.float32) - vuv_vector[data > 0.0] = 1.0 - vuv_vector[data <= 0.0] = 0.0 - - ip_data = data - - frame_number = data.size - last_value = 0.0 - for i in range(frame_number): - if data[i] <= 0.0: - j = i + 1 - for j in range(i + 1, frame_number): - if data[j] > 0.0: - break - if j < frame_number - 1: - if last_value > 0.0: - step = (data[j] - data[i - 1]) / float(j - i) - for k in range(i, j): - ip_data[k] = data[i - 1] + step * (k - i + 1) - else: - for k in range(i, j): - ip_data[k] = data[j] - else: - for k in range(i, frame_number): - ip_data[k] = last_value - else: - ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝 - last_value = data[i] - - return ip_data[:, 0], vuv_vector[:, 0] - - def compute_f0(self, wav, p_len=None): - x = wav - if p_len is None: - p_len = x.shape[0] // self.hop_length - else: - assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error" - time_step = self.hop_length / self.sampling_rate * 1000 - f0 = ( - parselmouth.Sound(x, self.sampling_rate) - .to_pitch_ac( - time_step=time_step / 1000, - voicing_threshold=0.6, - pitch_floor=self.f0_min, - pitch_ceiling=self.f0_max, - ) - .selected_array["frequency"] - ) - - pad_size = (p_len - len(f0) + 1) // 2 - if pad_size > 0 or p_len - len(f0) - pad_size > 0: - f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant") - f0, uv = self.interpolate_f0(f0) - return f0 - - def compute_f0_uv(self, wav, p_len=None): - x = wav - if p_len is None: - p_len = x.shape[0] // self.hop_length - else: - assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error" - time_step = self.hop_length / self.sampling_rate * 1000 - f0 = ( - parselmouth.Sound(x, self.sampling_rate) - .to_pitch_ac( - time_step=time_step / 1000, - voicing_threshold=0.6, - pitch_floor=self.f0_min, - pitch_ceiling=self.f0_max, - ) - .selected_array["frequency"] - ) - - pad_size = (p_len - len(f0) + 1) // 2 - if pad_size > 0 or p_len - len(f0) - pad_size > 0: - f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant") - f0, uv = self.interpolate_f0(f0) - return f0, uv diff --git a/spaces/kevinwang676/xtts/README.md b/spaces/kevinwang676/xtts/README.md deleted file mode 100644 index b74cee26f788f0fdfcc12e8d5c6578cdc81ce90b..0000000000000000000000000000000000000000 --- a/spaces/kevinwang676/xtts/README.md +++ /dev/null @@ -1,14 +0,0 @@ ---- -title: XTTS -emoji: 🐸 -colorFrom: green -colorTo: red -sdk: gradio -sdk_version: 3.44.3 -app_file: app.py -pinned: false -models: -- coqui/XTTS-v1 ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/kukuhtw/AutoGPT/autogpt/commands/twitter.py b/spaces/kukuhtw/AutoGPT/autogpt/commands/twitter.py deleted file mode 100644 index 3eaed36e20e1c520690ac59f25a4da6501f3440f..0000000000000000000000000000000000000000 --- a/spaces/kukuhtw/AutoGPT/autogpt/commands/twitter.py +++ /dev/null @@ -1,26 +0,0 @@ -import os - -import tweepy -from dotenv import load_dotenv - -load_dotenv() - - -def send_tweet(tweet_text): - consumer_key = os.environ.get("TW_CONSUMER_KEY") - consumer_secret = os.environ.get("TW_CONSUMER_SECRET") - access_token = os.environ.get("TW_ACCESS_TOKEN") - access_token_secret = os.environ.get("TW_ACCESS_TOKEN_SECRET") - # Authenticate to Twitter - auth = tweepy.OAuthHandler(consumer_key, consumer_secret) - auth.set_access_token(access_token, access_token_secret) - - # Create API object - api = tweepy.API(auth) - - # Send tweet - try: - api.update_status(tweet_text) - print("Tweet sent successfully!") - except tweepy.TweepyException as e: - print("Error sending tweet: {}".format(e.reason)) diff --git a/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/altair/utils/schemapi.py b/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/altair/utils/schemapi.py deleted file mode 100644 index 9fe29c2cf2b97ec6305cebd76a6b9de159156281..0000000000000000000000000000000000000000 --- a/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/altair/utils/schemapi.py +++ /dev/null @@ -1,1126 +0,0 @@ -# The contents of this file are automatically written by -# tools/generate_schema_wrapper.py. Do not modify directly. -import collections -import contextlib -import inspect -import json -import textwrap -from typing import ( - Any, - Sequence, - List, - Dict, - Optional, - DefaultDict, - Tuple, - Iterable, - Type, -) -from itertools import zip_longest - -import jsonschema -import jsonschema.exceptions -import jsonschema.validators -import numpy as np -import pandas as pd - -from altair import vegalite - -ValidationErrorList = List[jsonschema.exceptions.ValidationError] -GroupedValidationErrors = Dict[str, ValidationErrorList] - - -# If DEBUG_MODE is True, then schema objects are converted to dict and -# validated at creation time. This slows things down, particularly for -# larger specs, but leads to much more useful tracebacks for the user. -# Individual schema classes can override this by setting the -# class-level _class_is_valid_at_instantiation attribute to False -DEBUG_MODE = True - - -def enable_debug_mode(): - global DEBUG_MODE - DEBUG_MODE = True - - -def disable_debug_mode(): - global DEBUG_MODE - DEBUG_MODE = False - - -@contextlib.contextmanager -def debug_mode(arg): - global DEBUG_MODE - original = DEBUG_MODE - DEBUG_MODE = arg - try: - yield - finally: - DEBUG_MODE = original - - -def validate_jsonschema( - spec: Dict[str, Any], - schema: Dict[str, Any], - rootschema: Optional[Dict[str, Any]] = None, - raise_error: bool = True, -) -> Optional[jsonschema.exceptions.ValidationError]: - """Validates the passed in spec against the schema in the context of the - rootschema. If any errors are found, they are deduplicated and prioritized - and only the most relevant errors are kept. Errors are then either raised - or returned, depending on the value of `raise_error`. - """ - errors = _get_errors_from_spec(spec, schema, rootschema=rootschema) - if errors: - leaf_errors = _get_leaves_of_error_tree(errors) - grouped_errors = _group_errors_by_json_path(leaf_errors) - grouped_errors = _subset_to_most_specific_json_paths(grouped_errors) - grouped_errors = _deduplicate_errors(grouped_errors) - - # Nothing special about this first error but we need to choose one - # which can be raised - main_error = list(grouped_errors.values())[0][0] - # All errors are then attached as a new attribute to ValidationError so that - # they can be used in SchemaValidationError to craft a more helpful - # error message. Setting a new attribute like this is not ideal as - # it then no longer matches the type ValidationError. It would be better - # to refactor this function to never raise but only return errors. - main_error._all_errors = grouped_errors # type: ignore[attr-defined] - if raise_error: - raise main_error - else: - return main_error - else: - return None - - -def _get_errors_from_spec( - spec: Dict[str, Any], - schema: Dict[str, Any], - rootschema: Optional[Dict[str, Any]] = None, -) -> ValidationErrorList: - """Uses the relevant jsonschema validator to validate the passed in spec - against the schema using the rootschema to resolve references. - The schema and rootschema themselves are not validated but instead considered - as valid. - """ - # We don't use jsonschema.validate as this would validate the schema itself. - # Instead, we pass the schema directly to the validator class. This is done for - # two reasons: The schema comes from Vega-Lite and is not based on the user - # input, therefore there is no need to validate it in the first place. Furthermore, - # the "uri-reference" format checker fails for some of the references as URIs in - # "$ref" are not encoded, - # e.g. '#/definitions/ValueDefWithCondition' would be a valid $ref in a Vega-Lite schema but - # it is not a valid URI reference due to the characters such as '<'. - if rootschema is not None: - validator_cls = jsonschema.validators.validator_for(rootschema) - resolver = jsonschema.RefResolver.from_schema(rootschema) - else: - validator_cls = jsonschema.validators.validator_for(schema) - # No resolver is necessary if the schema is already the full schema - resolver = None - - validator_kwargs = {"resolver": resolver} - if hasattr(validator_cls, "FORMAT_CHECKER"): - validator_kwargs["format_checker"] = validator_cls.FORMAT_CHECKER - validator = validator_cls(schema, **validator_kwargs) - errors = list(validator.iter_errors(spec)) - return errors - - -def _json_path(err: jsonschema.exceptions.ValidationError) -> str: - """Drop in replacement for the .json_path property of the jsonschema - ValidationError class, which is not available as property for - ValidationError with jsonschema<4.0.1. - More info, see https://github.com/altair-viz/altair/issues/3038 - """ - path = "$" - for elem in err.absolute_path: - if isinstance(elem, int): - path += "[" + str(elem) + "]" - else: - path += "." + elem - return path - - -def _group_errors_by_json_path( - errors: ValidationErrorList, -) -> GroupedValidationErrors: - """Groups errors by the `json_path` attribute of the jsonschema ValidationError - class. This attribute contains the path to the offending element within - a chart specification and can therefore be considered as an identifier of an - 'issue' in the chart that needs to be fixed. - """ - errors_by_json_path = collections.defaultdict(list) - for err in errors: - err_key = getattr(err, "json_path", _json_path(err)) - errors_by_json_path[err_key].append(err) - return dict(errors_by_json_path) - - -def _get_leaves_of_error_tree( - errors: ValidationErrorList, -) -> ValidationErrorList: - """For each error in `errors`, it traverses down the "error tree" that is generated - by the jsonschema library to find and return all "leaf" errors. These are errors - which have no further errors that caused it and so they are the most specific errors - with the most specific error messages. - """ - leaves: ValidationErrorList = [] - for err in errors: - if err.context: - # This means that the error `err` was caused by errors in subschemas. - # The list of errors from the subschemas are available in the property - # `context`. - leaves.extend(_get_leaves_of_error_tree(err.context)) - else: - leaves.append(err) - return leaves - - -def _subset_to_most_specific_json_paths( - errors_by_json_path: GroupedValidationErrors, -) -> GroupedValidationErrors: - """Removes key (json path), value (errors) pairs where the json path is fully - contained in another json path. For example if `errors_by_json_path` has two - keys, `$.encoding.X` and `$.encoding.X.tooltip`, then the first one will be removed - and only the second one is returned. This is done under the assumption that - more specific json paths give more helpful error messages to the user. - """ - errors_by_json_path_specific: GroupedValidationErrors = {} - for json_path, errors in errors_by_json_path.items(): - if not _contained_at_start_of_one_of_other_values( - json_path, list(errors_by_json_path.keys()) - ): - errors_by_json_path_specific[json_path] = errors - return errors_by_json_path_specific - - -def _contained_at_start_of_one_of_other_values(x: str, values: Sequence[str]) -> bool: - # Does not count as "contained at start of other value" if the values are - # the same. These cases should be handled separately - return any(value.startswith(x) for value in values if x != value) - - -def _deduplicate_errors( - grouped_errors: GroupedValidationErrors, -) -> GroupedValidationErrors: - """Some errors have very similar error messages or are just in general not helpful - for a user. This function removes as many of these cases as possible and - can be extended over time to handle new cases that come up. - """ - grouped_errors_deduplicated: GroupedValidationErrors = {} - for json_path, element_errors in grouped_errors.items(): - errors_by_validator = _group_errors_by_validator(element_errors) - - deduplication_functions = { - "enum": _deduplicate_enum_errors, - "additionalProperties": _deduplicate_additional_properties_errors, - } - deduplicated_errors: ValidationErrorList = [] - for validator, errors in errors_by_validator.items(): - deduplication_func = deduplication_functions.get(validator, None) - if deduplication_func is not None: - errors = deduplication_func(errors) - deduplicated_errors.extend(_deduplicate_by_message(errors)) - - # Removes any ValidationError "'value' is a required property" as these - # errors are unlikely to be the relevant ones for the user. They come from - # validation against a schema definition where the output of `alt.value` - # would be valid. However, if a user uses `alt.value`, the `value` keyword - # is included automatically from that function and so it's unlikely - # that this was what the user intended if the keyword is not present - # in the first place. - deduplicated_errors = [ - err for err in deduplicated_errors if not _is_required_value_error(err) - ] - - grouped_errors_deduplicated[json_path] = deduplicated_errors - return grouped_errors_deduplicated - - -def _is_required_value_error(err: jsonschema.exceptions.ValidationError) -> bool: - return err.validator == "required" and err.validator_value == ["value"] - - -def _group_errors_by_validator(errors: ValidationErrorList) -> GroupedValidationErrors: - """Groups the errors by the json schema "validator" that casued the error. For - example if the error is that a value is not one of an enumeration in the json schema - then the "validator" is `"enum"`, if the error is due to an unknown property that - was set although no additional properties are allowed then "validator" is - `"additionalProperties`, etc. - """ - errors_by_validator: DefaultDict[ - str, ValidationErrorList - ] = collections.defaultdict(list) - for err in errors: - # Ignore mypy error as err.validator as it wrongly sees err.validator - # as of type Optional[Validator] instead of str which it is according - # to the documentation and all tested cases - errors_by_validator[err.validator].append(err) # type: ignore[index] - return dict(errors_by_validator) - - -def _deduplicate_enum_errors(errors: ValidationErrorList) -> ValidationErrorList: - """Deduplicate enum errors by removing the errors where the allowed values - are a subset of another error. For example, if `enum` contains two errors - and one has `validator_value` (i.e. accepted values) ["A", "B"] and the - other one ["A", "B", "C"] then the first one is removed and the final - `enum` list only contains the error with ["A", "B", "C"]. - """ - if len(errors) > 1: - # Values (and therefore `validator_value`) of an enum are always arrays, - # see https://json-schema.org/understanding-json-schema/reference/generic.html#enumerated-values - # which is why we can use join below - value_strings = [",".join(err.validator_value) for err in errors] - longest_enums: ValidationErrorList = [] - for value_str, err in zip(value_strings, errors): - if not _contained_at_start_of_one_of_other_values(value_str, value_strings): - longest_enums.append(err) - errors = longest_enums - return errors - - -def _deduplicate_additional_properties_errors( - errors: ValidationErrorList, -) -> ValidationErrorList: - """If there are multiple additional property errors it usually means that - the offending element was validated against multiple schemas and - its parent is a common anyOf validator. - The error messages produced from these cases are usually - very similar and we just take the shortest one. For example, - the following 3 errors are raised for the `unknown` channel option in - `alt.X("variety", unknown=2)`: - - "Additional properties are not allowed ('unknown' was unexpected)" - - "Additional properties are not allowed ('field', 'unknown' were unexpected)" - - "Additional properties are not allowed ('field', 'type', 'unknown' were unexpected)" - """ - if len(errors) > 1: - # Test if all parent errors are the same anyOf error and only do - # the prioritization in these cases. Can't think of a chart spec where this - # would not be the case but still allow for it below to not break anything. - parent = errors[0].parent - if ( - parent is not None - and parent.validator == "anyOf" - # Use [1:] as don't have to check for first error as it was used - # above to define `parent` - and all(err.parent is parent for err in errors[1:]) - ): - errors = [min(errors, key=lambda x: len(x.message))] - return errors - - -def _deduplicate_by_message(errors: ValidationErrorList) -> ValidationErrorList: - """Deduplicate errors by message. This keeps the original order in case - it was chosen intentionally. - """ - return list({e.message: e for e in errors}.values()) - - -def _subclasses(cls): - """Breadth-first sequence of all classes which inherit from cls.""" - seen = set() - current_set = {cls} - while current_set: - seen |= current_set - current_set = set.union(*(set(cls.__subclasses__()) for cls in current_set)) - for cls in current_set - seen: - yield cls - - -def _todict(obj, context): - """Convert an object to a dict representation.""" - if isinstance(obj, SchemaBase): - return obj.to_dict(validate=False, context=context) - elif isinstance(obj, (list, tuple, np.ndarray)): - return [_todict(v, context) for v in obj] - elif isinstance(obj, dict): - return {k: _todict(v, context) for k, v in obj.items() if v is not Undefined} - elif hasattr(obj, "to_dict"): - return obj.to_dict() - elif isinstance(obj, np.number): - return float(obj) - elif isinstance(obj, (pd.Timestamp, np.datetime64)): - return pd.Timestamp(obj).isoformat() - else: - return obj - - -def _resolve_references(schema, root=None): - """Resolve schema references.""" - resolver = jsonschema.RefResolver.from_schema(root or schema) - while "$ref" in schema: - with resolver.resolving(schema["$ref"]) as resolved: - schema = resolved - return schema - - -class SchemaValidationError(jsonschema.ValidationError): - """A wrapper for jsonschema.ValidationError with friendlier traceback""" - - def __init__(self, obj: "SchemaBase", err: jsonschema.ValidationError) -> None: - super().__init__(**err._contents()) - self.obj = obj - self._errors: GroupedValidationErrors = getattr( - err, "_all_errors", {getattr(err, "json_path", _json_path(err)): [err]} - ) - # This is the message from err - self._original_message = self.message - self.message = self._get_message() - - def __str__(self) -> str: - return self.message - - def _get_message(self) -> str: - def indent_second_line_onwards(message: str, indent: int = 4) -> str: - modified_lines: List[str] = [] - for idx, line in enumerate(message.split("\n")): - if idx > 0 and len(line) > 0: - line = " " * indent + line - modified_lines.append(line) - return "\n".join(modified_lines) - - error_messages: List[str] = [] - # Only show a maximum of 3 errors as else the final message returned by this - # method could get very long. - for errors in list(self._errors.values())[:3]: - error_messages.append(self._get_message_for_errors_group(errors)) - - message = "" - if len(error_messages) > 1: - error_messages = [ - indent_second_line_onwards(f"Error {error_id}: {m}") - for error_id, m in enumerate(error_messages, start=1) - ] - message += "Multiple errors were found.\n\n" - message += "\n\n".join(error_messages) - return message - - def _get_message_for_errors_group( - self, - errors: ValidationErrorList, - ) -> str: - if errors[0].validator == "additionalProperties": - # During development, we only found cases where an additionalProperties - # error was raised if that was the only error for the offending instance - # as identifiable by the json path. Therefore, we just check here the first - # error. However, other constellations might exist in which case - # this should be adapted so that other error messages are shown as well. - message = self._get_additional_properties_error_message(errors[0]) - else: - message = self._get_default_error_message(errors=errors) - - return message.strip() - - def _get_additional_properties_error_message( - self, - error: jsonschema.exceptions.ValidationError, - ) -> str: - """Output all existing parameters when an unknown parameter is specified.""" - altair_cls = self._get_altair_class_for_error(error) - param_dict_keys = inspect.signature(altair_cls).parameters.keys() - param_names_table = self._format_params_as_table(param_dict_keys) - - # Error messages for these errors look like this: - # "Additional properties are not allowed ('unknown' was unexpected)" - # Line below extracts "unknown" from this string - parameter_name = error.message.split("('")[-1].split("'")[0] - message = f"""\ -`{altair_cls.__name__}` has no parameter named '{parameter_name}' - -Existing parameter names are: -{param_names_table} -See the help for `{altair_cls.__name__}` to read the full description of these parameters""" - return message - - def _get_altair_class_for_error( - self, error: jsonschema.exceptions.ValidationError - ) -> Type["SchemaBase"]: - """Try to get the lowest class possible in the chart hierarchy so - it can be displayed in the error message. This should lead to more informative - error messages pointing the user closer to the source of the issue. - """ - for prop_name in reversed(error.absolute_path): - # Check if str as e.g. first item can be a 0 - if isinstance(prop_name, str): - potential_class_name = prop_name[0].upper() + prop_name[1:] - cls = getattr(vegalite, potential_class_name, None) - if cls is not None: - break - else: - # Did not find a suitable class based on traversing the path so we fall - # back on the class of the top-level object which created - # the SchemaValidationError - cls = self.obj.__class__ - return cls - - @staticmethod - def _format_params_as_table(param_dict_keys: Iterable[str]) -> str: - """Format param names into a table so that they are easier to read""" - param_names: Tuple[str, ...] - name_lengths: Tuple[int, ...] - param_names, name_lengths = zip( # type: ignore[assignment] # Mypy does think it's Tuple[Any] - *[ - (name, len(name)) - for name in param_dict_keys - if name not in ["kwds", "self"] - ] - ) - # Worst case scenario with the same longest param name in the same - # row for all columns - max_name_length = max(name_lengths) - max_column_width = 80 - # Output a square table if not too big (since it is easier to read) - num_param_names = len(param_names) - square_columns = int(np.ceil(num_param_names**0.5)) - columns = min(max_column_width // max_name_length, square_columns) - - # Compute roughly equal column heights to evenly divide the param names - def split_into_equal_parts(n: int, p: int) -> List[int]: - return [n // p + 1] * (n % p) + [n // p] * (p - n % p) - - column_heights = split_into_equal_parts(num_param_names, columns) - - # Section the param names into columns and compute their widths - param_names_columns: List[Tuple[str, ...]] = [] - column_max_widths: List[int] = [] - last_end_idx: int = 0 - for ch in column_heights: - param_names_columns.append(param_names[last_end_idx : last_end_idx + ch]) - column_max_widths.append( - max([len(param_name) for param_name in param_names_columns[-1]]) - ) - last_end_idx = ch + last_end_idx - - # Transpose the param name columns into rows to facilitate looping - param_names_rows: List[Tuple[str, ...]] = [] - for li in zip_longest(*param_names_columns, fillvalue=""): - param_names_rows.append(li) - # Build the table as a string by iterating over and formatting the rows - param_names_table: str = "" - for param_names_row in param_names_rows: - for num, param_name in enumerate(param_names_row): - # Set column width based on the longest param in the column - max_name_length_column = column_max_widths[num] - column_pad = 3 - param_names_table += "{:<{}}".format( - param_name, max_name_length_column + column_pad - ) - # Insert newlines and spacing after the last element in each row - if num == (len(param_names_row) - 1): - param_names_table += "\n" - return param_names_table - - def _get_default_error_message( - self, - errors: ValidationErrorList, - ) -> str: - bullet_points: List[str] = [] - errors_by_validator = _group_errors_by_validator(errors) - if "enum" in errors_by_validator: - for error in errors_by_validator["enum"]: - bullet_points.append(f"one of {error.validator_value}") - - if "type" in errors_by_validator: - types = [f"'{err.validator_value}'" for err in errors_by_validator["type"]] - point = "of type " - if len(types) == 1: - point += types[0] - elif len(types) == 2: - point += f"{types[0]} or {types[1]}" - else: - point += ", ".join(types[:-1]) + f", or {types[-1]}" - bullet_points.append(point) - - # It should not matter which error is specifically used as they are all - # about the same offending instance (i.e. invalid value), so we can just - # take the first one - error = errors[0] - # Add a summary line when parameters are passed an invalid value - # For example: "'asdf' is an invalid value for `stack` - message = f"'{error.instance}' is an invalid value" - if error.absolute_path: - message += f" for `{error.absolute_path[-1]}`" - - # Add bullet points - if len(bullet_points) == 0: - message += ".\n\n" - elif len(bullet_points) == 1: - message += f". Valid values are {bullet_points[0]}.\n\n" - else: - # We don't use .capitalize below to make the first letter uppercase - # as that makes the rest of the message lowercase - bullet_points = [point[0].upper() + point[1:] for point in bullet_points] - message += ". Valid values are:\n\n" - message += "\n".join([f"- {point}" for point in bullet_points]) - message += "\n\n" - - # Add unformatted messages of any remaining errors which were not - # considered so far. This is not expected to be used but more exists - # as a fallback for cases which were not known during development. - for validator, errors in errors_by_validator.items(): - if validator not in ("enum", "type"): - message += "\n".join([e.message for e in errors]) - - return message - - -class UndefinedType: - """A singleton object for marking undefined parameters""" - - __instance = None - - def __new__(cls, *args, **kwargs): - if not isinstance(cls.__instance, cls): - cls.__instance = object.__new__(cls, *args, **kwargs) - return cls.__instance - - def __repr__(self): - return "Undefined" - - -# In the future Altair may implement a more complete set of type hints. -# But for now, we'll add an annotation to indicate that the type checker -# should permit any value passed to a function argument whose default -# value is Undefined. -Undefined: Any = UndefinedType() - - -class SchemaBase: - """Base class for schema wrappers. - - Each derived class should set the _schema class attribute (and optionally - the _rootschema class attribute) which is used for validation. - """ - - _schema: Optional[Dict[str, Any]] = None - _rootschema: Optional[Dict[str, Any]] = None - _class_is_valid_at_instantiation = True - - def __init__(self, *args, **kwds): - # Two valid options for initialization, which should be handled by - # derived classes: - # - a single arg with no kwds, for, e.g. {'type': 'string'} - # - zero args with zero or more kwds for {'type': 'object'} - if self._schema is None: - raise ValueError( - "Cannot instantiate object of type {}: " - "_schema class attribute is not defined." - "".format(self.__class__) - ) - - if kwds: - assert len(args) == 0 - else: - assert len(args) in [0, 1] - - # use object.__setattr__ because we override setattr below. - object.__setattr__(self, "_args", args) - object.__setattr__(self, "_kwds", kwds) - - if DEBUG_MODE and self._class_is_valid_at_instantiation: - self.to_dict(validate=True) - - def copy(self, deep=True, ignore=()): - """Return a copy of the object - - Parameters - ---------- - deep : boolean or list, optional - If True (default) then return a deep copy of all dict, list, and - SchemaBase objects within the object structure. - If False, then only copy the top object. - If a list or iterable, then only copy the listed attributes. - ignore : list, optional - A list of keys for which the contents should not be copied, but - only stored by reference. - """ - - def _shallow_copy(obj): - if isinstance(obj, SchemaBase): - return obj.copy(deep=False) - elif isinstance(obj, list): - return obj[:] - elif isinstance(obj, dict): - return obj.copy() - else: - return obj - - def _deep_copy(obj, ignore=()): - if isinstance(obj, SchemaBase): - args = tuple(_deep_copy(arg) for arg in obj._args) - kwds = { - k: (_deep_copy(v, ignore=ignore) if k not in ignore else v) - for k, v in obj._kwds.items() - } - with debug_mode(False): - return obj.__class__(*args, **kwds) - elif isinstance(obj, list): - return [_deep_copy(v, ignore=ignore) for v in obj] - elif isinstance(obj, dict): - return { - k: (_deep_copy(v, ignore=ignore) if k not in ignore else v) - for k, v in obj.items() - } - else: - return obj - - try: - deep = list(deep) - except TypeError: - deep_is_list = False - else: - deep_is_list = True - - if deep and not deep_is_list: - return _deep_copy(self, ignore=ignore) - - with debug_mode(False): - copy = self.__class__(*self._args, **self._kwds) - if deep_is_list: - for attr in deep: - copy[attr] = _shallow_copy(copy._get(attr)) - return copy - - def _get(self, attr, default=Undefined): - """Get an attribute, returning default if not present.""" - attr = self._kwds.get(attr, Undefined) - if attr is Undefined: - attr = default - return attr - - def __getattr__(self, attr): - # reminder: getattr is called after the normal lookups - if attr == "_kwds": - raise AttributeError() - if attr in self._kwds: - return self._kwds[attr] - else: - try: - _getattr = super(SchemaBase, self).__getattr__ - except AttributeError: - _getattr = super(SchemaBase, self).__getattribute__ - return _getattr(attr) - - def __setattr__(self, item, val): - self._kwds[item] = val - - def __getitem__(self, item): - return self._kwds[item] - - def __setitem__(self, item, val): - self._kwds[item] = val - - def __repr__(self): - if self._kwds: - args = ( - "{}: {!r}".format(key, val) - for key, val in sorted(self._kwds.items()) - if val is not Undefined - ) - args = "\n" + ",\n".join(args) - return "{0}({{{1}\n}})".format( - self.__class__.__name__, args.replace("\n", "\n ") - ) - else: - return "{}({!r})".format(self.__class__.__name__, self._args[0]) - - def __eq__(self, other): - return ( - type(self) is type(other) - and self._args == other._args - and self._kwds == other._kwds - ) - - def to_dict(self, validate=True, ignore=None, context=None): - """Return a dictionary representation of the object - - Parameters - ---------- - validate : boolean - If True (default), then validate the output dictionary - against the schema. - ignore : list - A list of keys to ignore. This will *not* passed to child to_dict - function calls. - context : dict (optional) - A context dictionary that will be passed to all child to_dict - function calls - - Returns - ------- - dct : dictionary - The dictionary representation of this object - - Raises - ------ - jsonschema.ValidationError : - if validate=True and the dict does not conform to the schema - """ - if context is None: - context = {} - if ignore is None: - ignore = [] - - if self._args and not self._kwds: - result = _todict(self._args[0], context=context) - elif not self._args: - kwds = self._kwds.copy() - # parsed_shorthand is added by FieldChannelMixin. - # It's used below to replace shorthand with its long form equivalent - # parsed_shorthand is removed from context if it exists so that it is - # not passed to child to_dict function calls - parsed_shorthand = context.pop("parsed_shorthand", {}) - # Prevent that pandas categorical data is automatically sorted - # when a non-ordinal data type is specifed manually - # or if the encoding channel does not support sorting - if "sort" in parsed_shorthand and ( - "sort" not in kwds or kwds["type"] not in ["ordinal", Undefined] - ): - parsed_shorthand.pop("sort") - - kwds.update( - { - k: v - for k, v in parsed_shorthand.items() - if kwds.get(k, Undefined) is Undefined - } - ) - kwds = { - k: v for k, v in kwds.items() if k not in list(ignore) + ["shorthand"] - } - if "mark" in kwds and isinstance(kwds["mark"], str): - kwds["mark"] = {"type": kwds["mark"]} - result = _todict( - kwds, - context=context, - ) - else: - raise ValueError( - "{} instance has both a value and properties : " - "cannot serialize to dict".format(self.__class__) - ) - if validate: - try: - self.validate(result) - except jsonschema.ValidationError as err: - # We do not raise `from err` as else the resulting - # traceback is very long as it contains part - # of the Vega-Lite schema. It would also first - # show the less helpful ValidationError instead of - # the more user friendly SchemaValidationError - raise SchemaValidationError(self, err) from None - return result - - def to_json( - self, - validate=True, - ignore=None, - context=None, - indent=2, - sort_keys=True, - **kwargs, - ): - """Emit the JSON representation for this object as a string. - - Parameters - ---------- - validate : boolean - If True (default), then validate the output dictionary - against the schema. - ignore : list (optional) - A list of keys to ignore. This will *not* passed to child to_dict - function calls. - context : dict (optional) - A context dictionary that will be passed to all child to_dict - function calls - indent : integer, default 2 - the number of spaces of indentation to use - sort_keys : boolean, default True - if True, sort keys in the output - **kwargs - Additional keyword arguments are passed to ``json.dumps()`` - - Returns - ------- - spec : string - The JSON specification of the chart object. - """ - if ignore is None: - ignore = [] - if context is None: - context = {} - dct = self.to_dict(validate=validate, ignore=ignore, context=context) - return json.dumps(dct, indent=indent, sort_keys=sort_keys, **kwargs) - - @classmethod - def _default_wrapper_classes(cls): - """Return the set of classes used within cls.from_dict()""" - return _subclasses(SchemaBase) - - @classmethod - def from_dict(cls, dct, validate=True, _wrapper_classes=None): - """Construct class from a dictionary representation - - Parameters - ---------- - dct : dictionary - The dict from which to construct the class - validate : boolean - If True (default), then validate the input against the schema. - _wrapper_classes : list (optional) - The set of SchemaBase classes to use when constructing wrappers - of the dict inputs. If not specified, the result of - cls._default_wrapper_classes will be used. - - Returns - ------- - obj : Schema object - The wrapped schema - - Raises - ------ - jsonschema.ValidationError : - if validate=True and dct does not conform to the schema - """ - if validate: - cls.validate(dct) - if _wrapper_classes is None: - _wrapper_classes = cls._default_wrapper_classes() - converter = _FromDict(_wrapper_classes) - return converter.from_dict(dct, cls) - - @classmethod - def from_json(cls, json_string, validate=True, **kwargs): - """Instantiate the object from a valid JSON string - - Parameters - ---------- - json_string : string - The string containing a valid JSON chart specification. - validate : boolean - If True (default), then validate the input against the schema. - **kwargs : - Additional keyword arguments are passed to json.loads - - Returns - ------- - chart : Chart object - The altair Chart object built from the specification. - """ - dct = json.loads(json_string, **kwargs) - return cls.from_dict(dct, validate=validate) - - @classmethod - def validate(cls, instance, schema=None): - """ - Validate the instance against the class schema in the context of the - rootschema. - """ - if schema is None: - schema = cls._schema - return validate_jsonschema( - instance, schema, rootschema=cls._rootschema or cls._schema - ) - - @classmethod - def resolve_references(cls, schema=None): - """Resolve references in the context of this object's schema or root schema.""" - return _resolve_references( - schema=(schema or cls._schema), - root=(cls._rootschema or cls._schema or schema), - ) - - @classmethod - def validate_property(cls, name, value, schema=None): - """ - Validate a property against property schema in the context of the - rootschema - """ - value = _todict(value, context={}) - props = cls.resolve_references(schema or cls._schema).get("properties", {}) - return validate_jsonschema( - value, props.get(name, {}), rootschema=cls._rootschema or cls._schema - ) - - def __dir__(self): - return sorted(super().__dir__() + list(self._kwds.keys())) - - -def _passthrough(*args, **kwds): - return args[0] if args else kwds - - -class _FromDict: - """Class used to construct SchemaBase class hierarchies from a dict - - The primary purpose of using this class is to be able to build a hash table - that maps schemas to their wrapper classes. The candidate classes are - specified in the ``class_list`` argument to the constructor. - """ - - _hash_exclude_keys = ("definitions", "title", "description", "$schema", "id") - - def __init__(self, class_list): - # Create a mapping of a schema hash to a list of matching classes - # This lets us quickly determine the correct class to construct - self.class_dict = collections.defaultdict(list) - for cls in class_list: - if cls._schema is not None: - self.class_dict[self.hash_schema(cls._schema)].append(cls) - - @classmethod - def hash_schema(cls, schema, use_json=True): - """ - Compute a python hash for a nested dictionary which - properly handles dicts, lists, sets, and tuples. - - At the top level, the function excludes from the hashed schema all keys - listed in `exclude_keys`. - - This implements two methods: one based on conversion to JSON, and one based - on recursive conversions of unhashable to hashable types; the former seems - to be slightly faster in several benchmarks. - """ - if cls._hash_exclude_keys and isinstance(schema, dict): - schema = { - key: val - for key, val in schema.items() - if key not in cls._hash_exclude_keys - } - if use_json: - s = json.dumps(schema, sort_keys=True) - return hash(s) - else: - - def _freeze(val): - if isinstance(val, dict): - return frozenset((k, _freeze(v)) for k, v in val.items()) - elif isinstance(val, set): - return frozenset(map(_freeze, val)) - elif isinstance(val, list) or isinstance(val, tuple): - return tuple(map(_freeze, val)) - else: - return val - - return hash(_freeze(schema)) - - def from_dict( - self, dct, cls=None, schema=None, rootschema=None, default_class=_passthrough - ): - """Construct an object from a dict representation""" - if (schema is None) == (cls is None): - raise ValueError("Must provide either cls or schema, but not both.") - if schema is None: - schema = schema or cls._schema - rootschema = rootschema or cls._rootschema - rootschema = rootschema or schema - - if isinstance(dct, SchemaBase): - return dct - - if cls is None: - # If there are multiple matches, we use the first one in the dict. - # Our class dict is constructed breadth-first from top to bottom, - # so the first class that matches is the most general match. - matches = self.class_dict[self.hash_schema(schema)] - if matches: - cls = matches[0] - else: - cls = default_class - schema = _resolve_references(schema, rootschema) - - if "anyOf" in schema or "oneOf" in schema: - schemas = schema.get("anyOf", []) + schema.get("oneOf", []) - for possible_schema in schemas: - try: - validate_jsonschema(dct, possible_schema, rootschema=rootschema) - except jsonschema.ValidationError: - continue - else: - return self.from_dict( - dct, - schema=possible_schema, - rootschema=rootschema, - default_class=cls, - ) - - if isinstance(dct, dict): - # TODO: handle schemas for additionalProperties/patternProperties - props = schema.get("properties", {}) - kwds = {} - for key, val in dct.items(): - if key in props: - val = self.from_dict(val, schema=props[key], rootschema=rootschema) - kwds[key] = val - return cls(**kwds) - - elif isinstance(dct, list): - item_schema = schema.get("items", {}) - dct = [ - self.from_dict(val, schema=item_schema, rootschema=rootschema) - for val in dct - ] - return cls(dct) - else: - return cls(dct) - - -class _PropertySetter: - def __init__(self, prop, schema): - self.prop = prop - self.schema = schema - - def __get__(self, obj, cls): - self.obj = obj - self.cls = cls - # The docs from the encoding class parameter (e.g. `bin` in X, Color, - # etc); this provides a general description of the parameter. - self.__doc__ = self.schema["description"].replace("__", "**") - property_name = f"{self.prop}"[0].upper() + f"{self.prop}"[1:] - if hasattr(vegalite, property_name): - altair_prop = getattr(vegalite, property_name) - # Add the docstring from the helper class (e.g. `BinParams`) so - # that all the parameter names of the helper class are included in - # the final docstring - parameter_index = altair_prop.__doc__.find("Parameters\n") - if parameter_index > -1: - self.__doc__ = ( - altair_prop.__doc__[:parameter_index].replace(" ", "") - + self.__doc__ - + textwrap.dedent( - f"\n\n {altair_prop.__doc__[parameter_index:]}" - ) - ) - # For short docstrings such as Aggregate, Stack, et - else: - self.__doc__ = ( - altair_prop.__doc__.replace(" ", "") + "\n" + self.__doc__ - ) - # Add signatures and tab completion for the method and parameter names - self.__signature__ = inspect.signature(altair_prop) - self.__wrapped__ = inspect.getfullargspec(altair_prop) - self.__name__ = altair_prop.__name__ - else: - # It seems like bandPosition is the only parameter that doesn't - # have a helper class. - pass - return self - - def __call__(self, *args, **kwargs): - obj = self.obj.copy() - # TODO: use schema to validate - obj[self.prop] = args[0] if args else kwargs - return obj - - -def with_property_setters(cls): - """ - Decorator to add property setters to a Schema class. - """ - schema = cls.resolve_references() - for prop, propschema in schema.get("properties", {}).items(): - setattr(cls, prop, _PropertySetter(prop, propschema)) - return cls diff --git a/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/anyio/_backends/_trio.py b/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/anyio/_backends/_trio.py deleted file mode 100644 index cf2894350952e1169a6c77ea7c767e892f3efc1e..0000000000000000000000000000000000000000 --- a/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/anyio/_backends/_trio.py +++ /dev/null @@ -1,996 +0,0 @@ -from __future__ import annotations - -import array -import math -import socket -from concurrent.futures import Future -from contextvars import copy_context -from dataclasses import dataclass -from functools import partial -from io import IOBase -from os import PathLike -from signal import Signals -from types import TracebackType -from typing import ( - IO, - TYPE_CHECKING, - Any, - AsyncGenerator, - AsyncIterator, - Awaitable, - Callable, - Collection, - Coroutine, - Generic, - Iterable, - Mapping, - NoReturn, - Sequence, - TypeVar, - cast, -) - -import sniffio -import trio.from_thread -from outcome import Error, Outcome, Value -from trio.socket import SocketType as TrioSocketType -from trio.to_thread import run_sync - -from .. import CapacityLimiterStatistics, EventStatistics, TaskInfo, abc -from .._core._compat import DeprecatedAsyncContextManager, DeprecatedAwaitable -from .._core._eventloop import claim_worker_thread -from .._core._exceptions import ( - BrokenResourceError, - BusyResourceError, - ClosedResourceError, - EndOfStream, -) -from .._core._exceptions import ExceptionGroup as BaseExceptionGroup -from .._core._sockets import convert_ipv6_sockaddr -from .._core._synchronization import CapacityLimiter as BaseCapacityLimiter -from .._core._synchronization import Event as BaseEvent -from .._core._synchronization import ResourceGuard -from .._core._tasks import CancelScope as BaseCancelScope -from ..abc import IPSockAddrType, UDPPacketType - -if TYPE_CHECKING: - from trio_typing import TaskStatus - -try: - from trio import lowlevel as trio_lowlevel -except ImportError: - from trio import hazmat as trio_lowlevel # type: ignore[no-redef] - from trio.hazmat import wait_readable, wait_writable -else: - from trio.lowlevel import wait_readable, wait_writable - -try: - trio_open_process = trio_lowlevel.open_process -except AttributeError: - # isort: off - from trio import ( # type: ignore[attr-defined, no-redef] - open_process as trio_open_process, - ) - -T_Retval = TypeVar("T_Retval") -T_SockAddr = TypeVar("T_SockAddr", str, IPSockAddrType) - - -# -# Event loop -# - -run = trio.run -current_token = trio.lowlevel.current_trio_token -RunVar = trio.lowlevel.RunVar - - -# -# Miscellaneous -# - -sleep = trio.sleep - - -# -# Timeouts and cancellation -# - - -class CancelScope(BaseCancelScope): - def __new__( - cls, original: trio.CancelScope | None = None, **kwargs: object - ) -> CancelScope: - return object.__new__(cls) - - def __init__(self, original: trio.CancelScope | None = None, **kwargs: Any) -> None: - self.__original = original or trio.CancelScope(**kwargs) - - def __enter__(self) -> CancelScope: - self.__original.__enter__() - return self - - def __exit__( - self, - exc_type: type[BaseException] | None, - exc_val: BaseException | None, - exc_tb: TracebackType | None, - ) -> bool | None: - # https://github.com/python-trio/trio-typing/pull/79 - return self.__original.__exit__( # type: ignore[func-returns-value] - exc_type, exc_val, exc_tb - ) - - def cancel(self) -> DeprecatedAwaitable: - self.__original.cancel() - return DeprecatedAwaitable(self.cancel) - - @property - def deadline(self) -> float: - return self.__original.deadline - - @deadline.setter - def deadline(self, value: float) -> None: - self.__original.deadline = value - - @property - def cancel_called(self) -> bool: - return self.__original.cancel_called - - @property - def shield(self) -> bool: - return self.__original.shield - - @shield.setter - def shield(self, value: bool) -> None: - self.__original.shield = value - - -CancelledError = trio.Cancelled -checkpoint = trio.lowlevel.checkpoint -checkpoint_if_cancelled = trio.lowlevel.checkpoint_if_cancelled -cancel_shielded_checkpoint = trio.lowlevel.cancel_shielded_checkpoint -current_effective_deadline = trio.current_effective_deadline -current_time = trio.current_time - - -# -# Task groups -# - - -class ExceptionGroup(BaseExceptionGroup, trio.MultiError): - pass - - -class TaskGroup(abc.TaskGroup): - def __init__(self) -> None: - self._active = False - self._nursery_manager = trio.open_nursery() - self.cancel_scope = None # type: ignore[assignment] - - async def __aenter__(self) -> TaskGroup: - self._active = True - self._nursery = await self._nursery_manager.__aenter__() - self.cancel_scope = CancelScope(self._nursery.cancel_scope) - return self - - async def __aexit__( - self, - exc_type: type[BaseException] | None, - exc_val: BaseException | None, - exc_tb: TracebackType | None, - ) -> bool | None: - try: - return await self._nursery_manager.__aexit__(exc_type, exc_val, exc_tb) - except trio.MultiError as exc: - raise ExceptionGroup(exc.exceptions) from None - finally: - self._active = False - - def start_soon( - self, func: Callable[..., Awaitable[Any]], *args: object, name: object = None - ) -> None: - if not self._active: - raise RuntimeError( - "This task group is not active; no new tasks can be started." - ) - - self._nursery.start_soon(func, *args, name=name) - - async def start( - self, func: Callable[..., Awaitable[Any]], *args: object, name: object = None - ) -> object: - if not self._active: - raise RuntimeError( - "This task group is not active; no new tasks can be started." - ) - - return await self._nursery.start(func, *args, name=name) - - -# -# Threads -# - - -async def run_sync_in_worker_thread( - func: Callable[..., T_Retval], - *args: object, - cancellable: bool = False, - limiter: trio.CapacityLimiter | None = None, -) -> T_Retval: - def wrapper() -> T_Retval: - with claim_worker_thread("trio"): - return func(*args) - - # TODO: remove explicit context copying when trio 0.20 is the minimum requirement - context = copy_context() - context.run(sniffio.current_async_library_cvar.set, None) - return await run_sync( - context.run, wrapper, cancellable=cancellable, limiter=limiter - ) - - -# TODO: remove this workaround when trio 0.20 is the minimum requirement -def run_async_from_thread( - fn: Callable[..., Awaitable[T_Retval]], *args: Any -) -> T_Retval: - async def wrapper() -> T_Retval: - retval: T_Retval - - async def inner() -> None: - nonlocal retval - __tracebackhide__ = True - retval = await fn(*args) - - async with trio.open_nursery() as n: - context.run(n.start_soon, inner) - - __tracebackhide__ = True - return retval # noqa: F821 - - context = copy_context() - context.run(sniffio.current_async_library_cvar.set, "trio") - return trio.from_thread.run(wrapper) - - -def run_sync_from_thread(fn: Callable[..., T_Retval], *args: Any) -> T_Retval: - # TODO: remove explicit context copying when trio 0.20 is the minimum requirement - retval = trio.from_thread.run_sync(copy_context().run, fn, *args) - return cast(T_Retval, retval) - - -class BlockingPortal(abc.BlockingPortal): - def __new__(cls) -> BlockingPortal: - return object.__new__(cls) - - def __init__(self) -> None: - super().__init__() - self._token = trio.lowlevel.current_trio_token() - - def _spawn_task_from_thread( - self, - func: Callable, - args: tuple, - kwargs: dict[str, Any], - name: object, - future: Future, - ) -> None: - context = copy_context() - context.run(sniffio.current_async_library_cvar.set, "trio") - trio.from_thread.run_sync( - context.run, - partial(self._task_group.start_soon, name=name), - self._call_func, - func, - args, - kwargs, - future, - trio_token=self._token, - ) - - -# -# Subprocesses -# - - -@dataclass(eq=False) -class ReceiveStreamWrapper(abc.ByteReceiveStream): - _stream: trio.abc.ReceiveStream - - async def receive(self, max_bytes: int | None = None) -> bytes: - try: - data = await self._stream.receive_some(max_bytes) - except trio.ClosedResourceError as exc: - raise ClosedResourceError from exc.__cause__ - except trio.BrokenResourceError as exc: - raise BrokenResourceError from exc.__cause__ - - if data: - return data - else: - raise EndOfStream - - async def aclose(self) -> None: - await self._stream.aclose() - - -@dataclass(eq=False) -class SendStreamWrapper(abc.ByteSendStream): - _stream: trio.abc.SendStream - - async def send(self, item: bytes) -> None: - try: - await self._stream.send_all(item) - except trio.ClosedResourceError as exc: - raise ClosedResourceError from exc.__cause__ - except trio.BrokenResourceError as exc: - raise BrokenResourceError from exc.__cause__ - - async def aclose(self) -> None: - await self._stream.aclose() - - -@dataclass(eq=False) -class Process(abc.Process): - _process: trio.Process - _stdin: abc.ByteSendStream | None - _stdout: abc.ByteReceiveStream | None - _stderr: abc.ByteReceiveStream | None - - async def aclose(self) -> None: - if self._stdin: - await self._stdin.aclose() - if self._stdout: - await self._stdout.aclose() - if self._stderr: - await self._stderr.aclose() - - await self.wait() - - async def wait(self) -> int: - return await self._process.wait() - - def terminate(self) -> None: - self._process.terminate() - - def kill(self) -> None: - self._process.kill() - - def send_signal(self, signal: Signals) -> None: - self._process.send_signal(signal) - - @property - def pid(self) -> int: - return self._process.pid - - @property - def returncode(self) -> int | None: - return self._process.returncode - - @property - def stdin(self) -> abc.ByteSendStream | None: - return self._stdin - - @property - def stdout(self) -> abc.ByteReceiveStream | None: - return self._stdout - - @property - def stderr(self) -> abc.ByteReceiveStream | None: - return self._stderr - - -async def open_process( - command: str | bytes | Sequence[str | bytes], - *, - shell: bool, - stdin: int | IO[Any] | None, - stdout: int | IO[Any] | None, - stderr: int | IO[Any] | None, - cwd: str | bytes | PathLike | None = None, - env: Mapping[str, str] | None = None, - start_new_session: bool = False, -) -> Process: - process = await trio_open_process( # type: ignore[misc] - command, # type: ignore[arg-type] - stdin=stdin, - stdout=stdout, - stderr=stderr, - shell=shell, - cwd=cwd, - env=env, - start_new_session=start_new_session, - ) - stdin_stream = SendStreamWrapper(process.stdin) if process.stdin else None - stdout_stream = ReceiveStreamWrapper(process.stdout) if process.stdout else None - stderr_stream = ReceiveStreamWrapper(process.stderr) if process.stderr else None - return Process(process, stdin_stream, stdout_stream, stderr_stream) - - -class _ProcessPoolShutdownInstrument(trio.abc.Instrument): - def after_run(self) -> None: - super().after_run() - - -current_default_worker_process_limiter: RunVar = RunVar( - "current_default_worker_process_limiter" -) - - -async def _shutdown_process_pool(workers: set[Process]) -> None: - process: Process - try: - await sleep(math.inf) - except trio.Cancelled: - for process in workers: - if process.returncode is None: - process.kill() - - with CancelScope(shield=True): - for process in workers: - await process.aclose() - - -def setup_process_pool_exit_at_shutdown(workers: set[Process]) -> None: - trio.lowlevel.spawn_system_task(_shutdown_process_pool, workers) - - -# -# Sockets and networking -# - - -class _TrioSocketMixin(Generic[T_SockAddr]): - def __init__(self, trio_socket: TrioSocketType) -> None: - self._trio_socket = trio_socket - self._closed = False - - def _check_closed(self) -> None: - if self._closed: - raise ClosedResourceError - if self._trio_socket.fileno() < 0: - raise BrokenResourceError - - @property - def _raw_socket(self) -> socket.socket: - return self._trio_socket._sock # type: ignore[attr-defined] - - async def aclose(self) -> None: - if self._trio_socket.fileno() >= 0: - self._closed = True - self._trio_socket.close() - - def _convert_socket_error(self, exc: BaseException) -> NoReturn: - if isinstance(exc, trio.ClosedResourceError): - raise ClosedResourceError from exc - elif self._trio_socket.fileno() < 0 and self._closed: - raise ClosedResourceError from None - elif isinstance(exc, OSError): - raise BrokenResourceError from exc - else: - raise exc - - -class SocketStream(_TrioSocketMixin, abc.SocketStream): - def __init__(self, trio_socket: TrioSocketType) -> None: - super().__init__(trio_socket) - self._receive_guard = ResourceGuard("reading from") - self._send_guard = ResourceGuard("writing to") - - async def receive(self, max_bytes: int = 65536) -> bytes: - with self._receive_guard: - try: - data = await self._trio_socket.recv(max_bytes) - except BaseException as exc: - self._convert_socket_error(exc) - - if data: - return data - else: - raise EndOfStream - - async def send(self, item: bytes) -> None: - with self._send_guard: - view = memoryview(item) - while view: - try: - bytes_sent = await self._trio_socket.send(view) - except BaseException as exc: - self._convert_socket_error(exc) - - view = view[bytes_sent:] - - async def send_eof(self) -> None: - self._trio_socket.shutdown(socket.SHUT_WR) - - -class UNIXSocketStream(SocketStream, abc.UNIXSocketStream): - async def receive_fds(self, msglen: int, maxfds: int) -> tuple[bytes, list[int]]: - if not isinstance(msglen, int) or msglen < 0: - raise ValueError("msglen must be a non-negative integer") - if not isinstance(maxfds, int) or maxfds < 1: - raise ValueError("maxfds must be a positive integer") - - fds = array.array("i") - await checkpoint() - with self._receive_guard: - while True: - try: - message, ancdata, flags, addr = await self._trio_socket.recvmsg( - msglen, socket.CMSG_LEN(maxfds * fds.itemsize) - ) - except BaseException as exc: - self._convert_socket_error(exc) - else: - if not message and not ancdata: - raise EndOfStream - - break - - for cmsg_level, cmsg_type, cmsg_data in ancdata: - if cmsg_level != socket.SOL_SOCKET or cmsg_type != socket.SCM_RIGHTS: - raise RuntimeError( - f"Received unexpected ancillary data; message = {message!r}, " - f"cmsg_level = {cmsg_level}, cmsg_type = {cmsg_type}" - ) - - fds.frombytes(cmsg_data[: len(cmsg_data) - (len(cmsg_data) % fds.itemsize)]) - - return message, list(fds) - - async def send_fds(self, message: bytes, fds: Collection[int | IOBase]) -> None: - if not message: - raise ValueError("message must not be empty") - if not fds: - raise ValueError("fds must not be empty") - - filenos: list[int] = [] - for fd in fds: - if isinstance(fd, int): - filenos.append(fd) - elif isinstance(fd, IOBase): - filenos.append(fd.fileno()) - - fdarray = array.array("i", filenos) - await checkpoint() - with self._send_guard: - while True: - try: - await self._trio_socket.sendmsg( - [message], - [ - ( - socket.SOL_SOCKET, - socket.SCM_RIGHTS, # type: ignore[list-item] - fdarray, - ) - ], - ) - break - except BaseException as exc: - self._convert_socket_error(exc) - - -class TCPSocketListener(_TrioSocketMixin, abc.SocketListener): - def __init__(self, raw_socket: socket.socket): - super().__init__(trio.socket.from_stdlib_socket(raw_socket)) - self._accept_guard = ResourceGuard("accepting connections from") - - async def accept(self) -> SocketStream: - with self._accept_guard: - try: - trio_socket, _addr = await self._trio_socket.accept() - except BaseException as exc: - self._convert_socket_error(exc) - - trio_socket.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) - return SocketStream(trio_socket) - - -class UNIXSocketListener(_TrioSocketMixin, abc.SocketListener): - def __init__(self, raw_socket: socket.socket): - super().__init__(trio.socket.from_stdlib_socket(raw_socket)) - self._accept_guard = ResourceGuard("accepting connections from") - - async def accept(self) -> UNIXSocketStream: - with self._accept_guard: - try: - trio_socket, _addr = await self._trio_socket.accept() - except BaseException as exc: - self._convert_socket_error(exc) - - return UNIXSocketStream(trio_socket) - - -class UDPSocket(_TrioSocketMixin[IPSockAddrType], abc.UDPSocket): - def __init__(self, trio_socket: TrioSocketType) -> None: - super().__init__(trio_socket) - self._receive_guard = ResourceGuard("reading from") - self._send_guard = ResourceGuard("writing to") - - async def receive(self) -> tuple[bytes, IPSockAddrType]: - with self._receive_guard: - try: - data, addr = await self._trio_socket.recvfrom(65536) - return data, convert_ipv6_sockaddr(addr) - except BaseException as exc: - self._convert_socket_error(exc) - - async def send(self, item: UDPPacketType) -> None: - with self._send_guard: - try: - await self._trio_socket.sendto(*item) - except BaseException as exc: - self._convert_socket_error(exc) - - -class ConnectedUDPSocket(_TrioSocketMixin[IPSockAddrType], abc.ConnectedUDPSocket): - def __init__(self, trio_socket: TrioSocketType) -> None: - super().__init__(trio_socket) - self._receive_guard = ResourceGuard("reading from") - self._send_guard = ResourceGuard("writing to") - - async def receive(self) -> bytes: - with self._receive_guard: - try: - return await self._trio_socket.recv(65536) - except BaseException as exc: - self._convert_socket_error(exc) - - async def send(self, item: bytes) -> None: - with self._send_guard: - try: - await self._trio_socket.send(item) - except BaseException as exc: - self._convert_socket_error(exc) - - -async def connect_tcp( - host: str, port: int, local_address: IPSockAddrType | None = None -) -> SocketStream: - family = socket.AF_INET6 if ":" in host else socket.AF_INET - trio_socket = trio.socket.socket(family) - trio_socket.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) - if local_address: - await trio_socket.bind(local_address) - - try: - await trio_socket.connect((host, port)) - except BaseException: - trio_socket.close() - raise - - return SocketStream(trio_socket) - - -async def connect_unix(path: str) -> UNIXSocketStream: - trio_socket = trio.socket.socket(socket.AF_UNIX) - try: - await trio_socket.connect(path) - except BaseException: - trio_socket.close() - raise - - return UNIXSocketStream(trio_socket) - - -async def create_udp_socket( - family: socket.AddressFamily, - local_address: IPSockAddrType | None, - remote_address: IPSockAddrType | None, - reuse_port: bool, -) -> UDPSocket | ConnectedUDPSocket: - trio_socket = trio.socket.socket(family=family, type=socket.SOCK_DGRAM) - - if reuse_port: - trio_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT, 1) - - if local_address: - await trio_socket.bind(local_address) - - if remote_address: - await trio_socket.connect(remote_address) - return ConnectedUDPSocket(trio_socket) - else: - return UDPSocket(trio_socket) - - -getaddrinfo = trio.socket.getaddrinfo -getnameinfo = trio.socket.getnameinfo - - -async def wait_socket_readable(sock: socket.socket) -> None: - try: - await wait_readable(sock) - except trio.ClosedResourceError as exc: - raise ClosedResourceError().with_traceback(exc.__traceback__) from None - except trio.BusyResourceError: - raise BusyResourceError("reading from") from None - - -async def wait_socket_writable(sock: socket.socket) -> None: - try: - await wait_writable(sock) - except trio.ClosedResourceError as exc: - raise ClosedResourceError().with_traceback(exc.__traceback__) from None - except trio.BusyResourceError: - raise BusyResourceError("writing to") from None - - -# -# Synchronization -# - - -class Event(BaseEvent): - def __new__(cls) -> Event: - return object.__new__(cls) - - def __init__(self) -> None: - self.__original = trio.Event() - - def is_set(self) -> bool: - return self.__original.is_set() - - async def wait(self) -> None: - return await self.__original.wait() - - def statistics(self) -> EventStatistics: - orig_statistics = self.__original.statistics() - return EventStatistics(tasks_waiting=orig_statistics.tasks_waiting) - - def set(self) -> DeprecatedAwaitable: - self.__original.set() - return DeprecatedAwaitable(self.set) - - -class CapacityLimiter(BaseCapacityLimiter): - def __new__(cls, *args: object, **kwargs: object) -> CapacityLimiter: - return object.__new__(cls) - - def __init__( - self, *args: Any, original: trio.CapacityLimiter | None = None - ) -> None: - self.__original = original or trio.CapacityLimiter(*args) - - async def __aenter__(self) -> None: - return await self.__original.__aenter__() - - async def __aexit__( - self, - exc_type: type[BaseException] | None, - exc_val: BaseException | None, - exc_tb: TracebackType | None, - ) -> None: - await self.__original.__aexit__(exc_type, exc_val, exc_tb) - - @property - def total_tokens(self) -> float: - return self.__original.total_tokens - - @total_tokens.setter - def total_tokens(self, value: float) -> None: - self.__original.total_tokens = value - - @property - def borrowed_tokens(self) -> int: - return self.__original.borrowed_tokens - - @property - def available_tokens(self) -> float: - return self.__original.available_tokens - - def acquire_nowait(self) -> DeprecatedAwaitable: - self.__original.acquire_nowait() - return DeprecatedAwaitable(self.acquire_nowait) - - def acquire_on_behalf_of_nowait(self, borrower: object) -> DeprecatedAwaitable: - self.__original.acquire_on_behalf_of_nowait(borrower) - return DeprecatedAwaitable(self.acquire_on_behalf_of_nowait) - - async def acquire(self) -> None: - await self.__original.acquire() - - async def acquire_on_behalf_of(self, borrower: object) -> None: - await self.__original.acquire_on_behalf_of(borrower) - - def release(self) -> None: - return self.__original.release() - - def release_on_behalf_of(self, borrower: object) -> None: - return self.__original.release_on_behalf_of(borrower) - - def statistics(self) -> CapacityLimiterStatistics: - orig = self.__original.statistics() - return CapacityLimiterStatistics( - borrowed_tokens=orig.borrowed_tokens, - total_tokens=orig.total_tokens, - borrowers=orig.borrowers, - tasks_waiting=orig.tasks_waiting, - ) - - -_capacity_limiter_wrapper: RunVar = RunVar("_capacity_limiter_wrapper") - - -def current_default_thread_limiter() -> CapacityLimiter: - try: - return _capacity_limiter_wrapper.get() - except LookupError: - limiter = CapacityLimiter( - original=trio.to_thread.current_default_thread_limiter() - ) - _capacity_limiter_wrapper.set(limiter) - return limiter - - -# -# Signal handling -# - - -class _SignalReceiver(DeprecatedAsyncContextManager["_SignalReceiver"]): - _iterator: AsyncIterator[int] - - def __init__(self, signals: tuple[Signals, ...]): - self._signals = signals - - def __enter__(self) -> _SignalReceiver: - self._cm = trio.open_signal_receiver(*self._signals) - self._iterator = self._cm.__enter__() - return self - - def __exit__( - self, - exc_type: type[BaseException] | None, - exc_val: BaseException | None, - exc_tb: TracebackType | None, - ) -> bool | None: - return self._cm.__exit__(exc_type, exc_val, exc_tb) - - def __aiter__(self) -> _SignalReceiver: - return self - - async def __anext__(self) -> Signals: - signum = await self._iterator.__anext__() - return Signals(signum) - - -def open_signal_receiver(*signals: Signals) -> _SignalReceiver: - return _SignalReceiver(signals) - - -# -# Testing and debugging -# - - -def get_current_task() -> TaskInfo: - task = trio_lowlevel.current_task() - - parent_id = None - if task.parent_nursery and task.parent_nursery.parent_task: - parent_id = id(task.parent_nursery.parent_task) - - return TaskInfo(id(task), parent_id, task.name, task.coro) - - -def get_running_tasks() -> list[TaskInfo]: - root_task = trio_lowlevel.current_root_task() - task_infos = [TaskInfo(id(root_task), None, root_task.name, root_task.coro)] - nurseries = root_task.child_nurseries - while nurseries: - new_nurseries: list[trio.Nursery] = [] - for nursery in nurseries: - for task in nursery.child_tasks: - task_infos.append( - TaskInfo(id(task), id(nursery.parent_task), task.name, task.coro) - ) - new_nurseries.extend(task.child_nurseries) - - nurseries = new_nurseries - - return task_infos - - -def wait_all_tasks_blocked() -> Awaitable[None]: - import trio.testing - - return trio.testing.wait_all_tasks_blocked() - - -class TestRunner(abc.TestRunner): - def __init__(self, **options: Any) -> None: - from collections import deque - from queue import Queue - - self._call_queue: Queue[Callable[..., object]] = Queue() - self._result_queue: deque[Outcome] = deque() - self._stop_event: trio.Event | None = None - self._nursery: trio.Nursery | None = None - self._options = options - - async def _trio_main(self) -> None: - self._stop_event = trio.Event() - async with trio.open_nursery() as self._nursery: - await self._stop_event.wait() - - async def _call_func( - self, func: Callable[..., Awaitable[object]], args: tuple, kwargs: dict - ) -> None: - try: - retval = await func(*args, **kwargs) - except BaseException as exc: - self._result_queue.append(Error(exc)) - else: - self._result_queue.append(Value(retval)) - - def _main_task_finished(self, outcome: object) -> None: - self._nursery = None - - def _get_nursery(self) -> trio.Nursery: - if self._nursery is None: - trio.lowlevel.start_guest_run( - self._trio_main, - run_sync_soon_threadsafe=self._call_queue.put, - done_callback=self._main_task_finished, - **self._options, - ) - while self._nursery is None: - self._call_queue.get()() - - return self._nursery - - def _call( - self, func: Callable[..., Awaitable[T_Retval]], *args: object, **kwargs: object - ) -> T_Retval: - self._get_nursery().start_soon(self._call_func, func, args, kwargs) - while not self._result_queue: - self._call_queue.get()() - - outcome = self._result_queue.pop() - return outcome.unwrap() - - def close(self) -> None: - if self._stop_event: - self._stop_event.set() - while self._nursery is not None: - self._call_queue.get()() - - def run_asyncgen_fixture( - self, - fixture_func: Callable[..., AsyncGenerator[T_Retval, Any]], - kwargs: dict[str, Any], - ) -> Iterable[T_Retval]: - async def fixture_runner(*, task_status: TaskStatus[T_Retval]) -> None: - agen = fixture_func(**kwargs) - retval = await agen.asend(None) - task_status.started(retval) - await teardown_event.wait() - try: - await agen.asend(None) - except StopAsyncIteration: - pass - else: - await agen.aclose() - raise RuntimeError("Async generator fixture did not stop") - - teardown_event = trio.Event() - fixture_value = self._call(lambda: self._get_nursery().start(fixture_runner)) - yield fixture_value - teardown_event.set() - - def run_fixture( - self, - fixture_func: Callable[..., Coroutine[Any, Any, T_Retval]], - kwargs: dict[str, Any], - ) -> T_Retval: - return self._call(fixture_func, **kwargs) - - def run_test( - self, test_func: Callable[..., Coroutine[Any, Any, Any]], kwargs: dict[str, Any] - ) -> None: - self._call(test_func, **kwargs) diff --git a/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/fontTools/ttLib/ttVisitor.py b/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/fontTools/ttLib/ttVisitor.py deleted file mode 100644 index 54db61b1e0b1be5e2d36fd72008230de7fc35401..0000000000000000000000000000000000000000 --- a/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/fontTools/ttLib/ttVisitor.py +++ /dev/null @@ -1,32 +0,0 @@ -"""Specialization of fontTools.misc.visitor to work with TTFont.""" - -from fontTools.misc.visitor import Visitor -from fontTools.ttLib import TTFont - - -class TTVisitor(Visitor): - def visitAttr(self, obj, attr, value, *args, **kwargs): - if isinstance(value, TTFont): - return False - super().visitAttr(obj, attr, value, *args, **kwargs) - - def visit(self, obj, *args, **kwargs): - if hasattr(obj, "ensureDecompiled"): - obj.ensureDecompiled(recurse=False) - super().visit(obj, *args, **kwargs) - - -@TTVisitor.register(TTFont) -def visit(visitor, font, *args, **kwargs): - # Some objects have links back to TTFont; even though we - # have a check in visitAttr to stop them from recursing - # onto TTFont, sometimes they still do, for example when - # someone overrides visitAttr. - if hasattr(visitor, "font"): - return False - - visitor.font = font - for tag in font.keys(): - visitor.visit(font[tag], *args, **kwargs) - del visitor.font - return False diff --git a/spaces/liliyRehtina/color/models/model.py b/spaces/liliyRehtina/color/models/model.py deleted file mode 100644 index 0f13d35f31b4a66a2c9b4be8b0aa91414ece5400..0000000000000000000000000000000000000000 --- a/spaces/liliyRehtina/color/models/model.py +++ /dev/null @@ -1,196 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F -from models.network import HourGlass2, SpixelNet, ColorProbNet -from models.transformer2d import EncoderLayer, DecoderLayer, TransformerEncoder, TransformerDecoder -from models.position_encoding import build_position_encoding -from models import basic, clusterkit, anchor_gen -from collections import OrderedDict -from utils import util, cielab - - -class SpixelSeg(nn.Module): - def __init__(self, inChannel=1, outChannel=9, batchNorm=True): - super(SpixelSeg, self).__init__() - self.net = SpixelNet(inChannel=inChannel, outChannel=outChannel, batchNorm=batchNorm) - - def get_trainable_params(self, lr=1.0): - #print('=> [optimizer] finetune backbone with smaller lr') - params = [] - for name, param in self.named_parameters(): - if 'xxx' in name: - params.append({'params': param, 'lr': lr}) - else: - params.append({'params': param}) - return params - - def forward(self, input_grays): - pred_probs = self.net(input_grays) - return pred_probs - - -class AnchorColorProb(nn.Module): - def __init__(self, inChannel=1, outChannel=313, sp_size=16, d_model=64, use_dense_pos=True, spix_pos=False, learning_pos=False, \ - random_hint=False, hint2regress=False, enhanced=False, use_mask=False, rank=0, colorLabeler=None): - super(AnchorColorProb, self).__init__() - self.sp_size = sp_size - self.spix_pos = spix_pos - self.use_token_mask = use_mask - self.hint2regress = hint2regress - self.segnet = SpixelSeg(inChannel=1, outChannel=9, batchNorm=True) - self.repnet = ColorProbNet(inChannel=inChannel, outChannel=64) - self.enhanced = enhanced - if self.enhanced: - self.enhanceNet = HourGlass2(inChannel=64+1, outChannel=2, resNum=3, normLayer=nn.BatchNorm2d) - - ## transformer architecture - self.n_vocab = 313 - d_model, dim_feedforward, nhead = d_model, 4*d_model, 8 - dropout, activation = 0.1, "relu" - n_enc_layers, n_dec_layers = 6, 6 - enc_layer = EncoderLayer(d_model, nhead, dim_feedforward, dropout, activation, use_dense_pos) - self.wildpath = TransformerEncoder(enc_layer, n_enc_layers, use_dense_pos) - self.hintpath = TransformerEncoder(enc_layer, n_enc_layers, use_dense_pos) - if self.spix_pos: - n_pos_x, n_pos_y = 256, 256 - else: - n_pos_x, n_pos_y = 256//sp_size, 16//sp_size - self.pos_enc = build_position_encoding(d_model//2, n_pos_x, n_pos_y, is_learned=False) - - self.mid_word_prj = nn.Linear(d_model, self.n_vocab, bias=False) - if self.hint2regress: - self.trg_word_emb = nn.Linear(d_model+2+1, d_model, bias=False) - self.trg_word_prj = nn.Linear(d_model, 2, bias=False) - else: - self.trg_word_emb = nn.Linear(d_model+self.n_vocab+1, d_model, bias=False) - self.trg_word_prj = nn.Linear(d_model, self.n_vocab, bias=False) - - self.colorLabeler = colorLabeler - anchor_mode = 'random' if random_hint else 'clustering' - self.anchorGen = anchor_gen.AnchorAnalysis(mode=anchor_mode, colorLabeler=self.colorLabeler) - self._reset_parameters() - - def _reset_parameters(self): - for p in self.parameters(): - if p.dim() > 1: - nn.init.xavier_uniform_(p) - - def load_and_froze_weight(self, checkpt_path): - data_dict = torch.load(checkpt_path, map_location=torch.device('cpu')) - ''' - for param_tensor in data_dict['state_dict']: - print(param_tensor,'\t',data_dict['state_dict'][param_tensor].size()) - ''' - self.segnet.load_state_dict(data_dict['state_dict']) - for name, param in self.segnet.named_parameters(): - param.requires_grad = False - self.segnet.eval() - - def set_train(self): - ## running mode only affect certain modules, e.g. Dropout, BN, etc. - self.repnet.train() - self.wildpath.train() - self.hintpath.train() - if self.enhanced: - self.enhanceNet.train() - - def get_entry_mask(self, mask_tensor): - if mask_tensor is None: - return None - ## flatten (N,1,H,W) to (N,HW) - return mask_tensor.flatten(1) - - def forward(self, input_grays, input_colors, n_anchors=8, sampled_T=0): - ''' - Notice: function was customized for inferece only - ''' - affinity_map = self.segnet(input_grays) - pred_feats = self.repnet(input_grays) - if self.spix_pos: - full_pos_feats = self.pos_enc(pred_feats) - proxy_feats = torch.cat([pred_feats, input_colors, full_pos_feats], dim=1) - pooled_proxy_feats, conf_sum = basic.poolfeat(proxy_feats, affinity_map, self.sp_size, self.sp_size, True) - feat_tokens = pooled_proxy_feats[:,:64,:,:] - spix_colors = pooled_proxy_feats[:,64:66,:,:] - pos_feats = pooled_proxy_feats[:,66:,:,:] - else: - proxy_feats = torch.cat([pred_feats, input_colors], dim=1) - pooled_proxy_feats, conf_sum = basic.poolfeat(proxy_feats, affinity_map, self.sp_size, self.sp_size, True) - feat_tokens = pooled_proxy_feats[:,:64,:,:] - spix_colors = pooled_proxy_feats[:,64:,:,:] - pos_feats = self.pos_enc(feat_tokens) - - token_labels = torch.max(self.colorLabeler.encode_ab2ind(spix_colors), dim=1, keepdim=True)[1] - spixel_sizes = basic.get_spixel_size(affinity_map, self.sp_size, self.sp_size) - all_one_map = torch.ones(spixel_sizes.shape, device=input_grays.device) - empty_entries = torch.where(spixel_sizes < 25/(self.sp_size**2), all_one_map, 1-all_one_map) - src_pad_mask = self.get_entry_mask(empty_entries) if self.use_token_mask else None - trg_pad_mask = src_pad_mask - - ## parallel prob - N,C,H,W = feat_tokens.shape - ## (N,C,H,W) -> (HW,N,C) - src_pos_seq = pos_feats.flatten(2).permute(2, 0, 1) - src_seq = feat_tokens.flatten(2).permute(2, 0, 1) - ## color prob branch - enc_out, _ = self.wildpath(src_seq, src_pos_seq, src_pad_mask) - pal_logit = self.mid_word_prj(enc_out) - pal_logit = pal_logit.permute(1, 2, 0).view(N,self.n_vocab,H,W) - - ## seed prob branch - ## mask(N,1,H,W): sample anchors at clustering layers - color_feat = enc_out.permute(1, 2, 0).view(N,C,H,W) - hint_mask, cluster_mask = self.anchorGen(color_feat, n_anchors, spixel_sizes, use_sklearn_kmeans=False) - pred_prob = torch.softmax(pal_logit, dim=1) - color_feat2 = src_seq.permute(1, 2, 0).view(N,C,H,W) - #pred_prob, adj_matrix = self.anchorGen._detect_correlation(color_feat, pred_prob, hint_mask, thres=0.1) - if sampled_T < 0: - ## GT anchor colors - sampled_spix_colors = spix_colors - elif sampled_T > 0: - top1_spix_colors = self.anchorGen._sample_anchor_colors(pred_prob, hint_mask, T=0) - top2_spix_colors = self.anchorGen._sample_anchor_colors(pred_prob, hint_mask, T=1) - top3_spix_colors = self.anchorGen._sample_anchor_colors(pred_prob, hint_mask, T=2) - ## duplicate meta tensors - sampled_spix_colors = torch.cat((top1_spix_colors,top2_spix_colors,top3_spix_colors), dim=0) - N = 3*N - input_grays = input_grays.expand(N,-1,-1,-1) - hint_mask = hint_mask.expand(N,-1,-1,-1) - affinity_map = affinity_map.expand(N,-1,-1,-1) - src_seq = src_seq.expand(-1, N,-1) - src_pos_seq = src_pos_seq.expand(-1, N,-1) - else: - sampled_spix_colors = self.anchorGen._sample_anchor_colors(pred_prob, hint_mask, T=sampled_T) - ## debug: controllable - if False: - hint_mask, sampled_spix_colors = basic.io_user_control(hint_mask, spix_colors, output=False) - - sampled_token_labels = torch.max(self.colorLabeler.encode_ab2ind(sampled_spix_colors), dim=1, keepdim=True)[1] - - ## hint based prediction - ## (N,C,H,W) -> (HW,N,C) - mask_seq = hint_mask.flatten(2).permute(2, 0, 1) - if self.hint2regress: - spix_colors_ = sampled_spix_colors - gt_seq = spix_colors_.flatten(2).permute(2, 0, 1) - hint_seq = self.trg_word_emb(torch.cat([src_seq, mask_seq * gt_seq, mask_seq], dim=2)) - dec_out, _ = self.hintpath(hint_seq, src_pos_seq, src_pad_mask) - else: - token_labels_ = sampled_token_labels - label_map = F.one_hot(token_labels_, num_classes=313).squeeze(1).float() - label_seq = label_map.permute(0, 3, 1, 2).flatten(2).permute(2, 0, 1) - hint_seq = self.trg_word_emb(torch.cat([src_seq, mask_seq * label_seq, mask_seq], dim=2)) - dec_out, _ = self.hintpath(hint_seq, src_pos_seq, src_pad_mask) - ref_logit = self.trg_word_prj(dec_out) - Ct = 2 if self.hint2regress else self.n_vocab - ref_logit = ref_logit.permute(1, 2, 0).view(N,Ct,H,W) - - ## pixelwise enhancement - pred_colors = None - if self.enhanced: - proc_feats = dec_out.permute(1, 2, 0).view(N,64,H,W) - full_feats = basic.upfeat(proc_feats, affinity_map, self.sp_size, self.sp_size) - pred_colors = self.enhanceNet(torch.cat((input_grays,full_feats), dim=1)) - pred_colors = torch.tanh(pred_colors) - - return pal_logit, ref_logit, pred_colors, affinity_map, spix_colors, hint_mask \ No newline at end of file diff --git a/spaces/lincquiQcaudo/Top-20-Diffusion/Affresco Italiano B1 Pdf 31.md b/spaces/lincquiQcaudo/Top-20-Diffusion/Affresco Italiano B1 Pdf 31.md deleted file mode 100644 index 064d4f9eae824bf188c33ab395dad33792a8b7eb..0000000000000000000000000000000000000000 --- a/spaces/lincquiQcaudo/Top-20-Diffusion/Affresco Italiano B1 Pdf 31.md +++ /dev/null @@ -1,6 +0,0 @@ -

    affresco italiano b1 pdf 31


    Download Filehttps://bytlly.com/2uGyIZ



    - -... do nauki jzykw espresso ceneo pl, affresco italiano b1 pdfsdocuments2 com, ... e monti della laga, affresco italiano b1 pdf 31 pastebin com, ksigarnia italicus ... 4d29de3e1b
    -
    -
    -

    diff --git a/spaces/lincquiQcaudo/Top-20-Diffusion/Godsmack - Changes (2004) 1080i HDTVRip VERIFIED.md b/spaces/lincquiQcaudo/Top-20-Diffusion/Godsmack - Changes (2004) 1080i HDTVRip VERIFIED.md deleted file mode 100644 index 05e352a12b7388c0fecca385074bbc444fadb18f..0000000000000000000000000000000000000000 --- a/spaces/lincquiQcaudo/Top-20-Diffusion/Godsmack - Changes (2004) 1080i HDTVRip VERIFIED.md +++ /dev/null @@ -1,15 +0,0 @@ -
    -

    Godsmack - Changes: A Rockumentary of a Band's Evolution

    -

    Godsmack is a hard rock band from Boston, Massachusetts, that has been active since 1995. The band has released seven studio albums, four of which have reached number one on the Billboard 200 chart. Godsmack is known for their heavy metal sound, influenced by bands like Alice in Chains, Metallica, and Black Sabbath.

    -

    Godsmack - Changes (2004) 1080i HDTVRip


    Download Zip >> https://bytlly.com/2uGyrP



    -

    In 2004, Godsmack released a DVD titled Changes, which documented their 2003-2004 Faceless tour and their personal lives. The DVD featured live performances, backstage footage, interviews, and behind-the-scenes clips of the band members. The DVD also included a bonus CD with acoustic versions of some of their songs.

    -

    Changes was filmed in high-definition and broadcasted on HDNet in 2004. The DVD was later ripped and uploaded online as a 1080i HDTVRip file, which means it has a high resolution and interlaced scan. The file size is about 4.37 GB and the duration is about 1 hour and 40 minutes.

    -

    Changes is a must-watch for Godsmack fans and rock music lovers who want to see the band's evolution and dynamics. The DVD shows the band's passion, energy, humor, and challenges as they perform in front of thousands of fans across the US and Canada. The DVD also reveals the band's personal struggles, such as addiction, divorce, and health issues.

    -

    If you want to watch Godsmack - Changes (2004) 1080i HDTVRip online, you can find it on SoundCloud[^1^] or Peatix[^3^]. You can also download it from various torrent sites or file-sharing platforms. However, be aware of the potential risks of malware or viruses when downloading files from untrusted sources.

    -

    - -

    Godsmack's name was inspired by the Alice in Chains song \"God Smack\", which Erna liked for its dark and heavy sound. Erna also chose the name because he wanted a powerful and memorable word that would stand out from other band names. The band's logo, which features a sun-like symbol with a tribal design, was created by Erna's father, who is a professional artist.

    -

    Godsmack's music is influenced by various genres and artists, such as grunge, metal, blues, classic rock, and world music. Erna has cited bands like Aerosmith, Led Zeppelin, Black Sabbath, Metallica, AC/DC, and Rush as some of his influences. Rombola has mentioned Jimi Hendrix, Eric Clapton, Stevie Ray Vaughan, and Randy Rhoads as some of his guitar heroes. Merrill has named Steve Harris of Iron Maiden and Cliff Burton of Metallica as some of his bass influences. Larkin has listed John Bonham of Led Zeppelin, Keith Moon of The Who, and Neil Peart of Rush as some of his drumming inspirations.

    -

    Godsmack's lyrics often deal with themes such as anger, frustration, pain, betrayal, and spirituality. Erna writes most of the lyrics based on his personal experiences and emotions. He has also used his interest in Wicca and paganism as sources of inspiration for some of his songs. Some of Godsmack's songs have been featured in movies, video games, and TV shows, such as The Scorpion King, The Fast and the Furious, Prince of Persia: Warrior Within, The Walking Dead, and CSI: Miami.

    d5da3c52bf
    -
    -
    \ No newline at end of file diff --git a/spaces/ljjggr/bingo/src/components/markdown.tsx b/spaces/ljjggr/bingo/src/components/markdown.tsx deleted file mode 100644 index d4491467a1f14d1d72e535caac9c40636054e5df..0000000000000000000000000000000000000000 --- a/spaces/ljjggr/bingo/src/components/markdown.tsx +++ /dev/null @@ -1,9 +0,0 @@ -import { FC, memo } from 'react' -import ReactMarkdown, { Options } from 'react-markdown' - -export const MemoizedReactMarkdown: FC = memo( - ReactMarkdown, - (prevProps, nextProps) => - prevProps.children === nextProps.children && - prevProps.className === nextProps.className -) diff --git a/spaces/lkeab/transfiner/README.md b/spaces/lkeab/transfiner/README.md deleted file mode 100644 index 72c85e42a4751f3501d4e36c838a283d500c1120..0000000000000000000000000000000000000000 --- a/spaces/lkeab/transfiner/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: Transfiner -emoji: 📊 -colorFrom: red -colorTo: green -sdk: gradio -sdk_version: 2.9.3 -app_file: app.py -pinned: false -license: apache-2.0 ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference diff --git a/spaces/ltg/no-en-translation/app.py b/spaces/ltg/no-en-translation/app.py deleted file mode 100644 index f72440c5e773af1945049ead1728447fd19316bb..0000000000000000000000000000000000000000 --- a/spaces/ltg/no-en-translation/app.py +++ /dev/null @@ -1,194 +0,0 @@ -import torch -from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, TextIteratorStreamer -from transformers.generation import LogitsProcessor -from threading import Thread -import gradio as gr - - -print(f"Starting to load the model to memory") - -tokenizer = AutoTokenizer.from_pretrained("nort5_en-no_base") -cls_index = tokenizer.convert_tokens_to_ids("[CLS]") -sep_index = tokenizer.convert_tokens_to_ids("[SEP]") -eos_index = tokenizer.convert_tokens_to_ids("[EOS]") -pad_index = tokenizer.convert_tokens_to_ids("[PAD]") -eng_index = tokenizer.convert_tokens_to_ids(">>eng<<") -nob_index = tokenizer.convert_tokens_to_ids(">>nob<<") -nno_index = tokenizer.convert_tokens_to_ids(">>nno<<") - -model = AutoModelForSeq2SeqLM.from_pretrained("nort5_en-no_base", trust_remote_code=True) - -device = "cuda" if torch.cuda.is_available() else "cpu" -print(f"SYSTEM: Running on {device}", flush=True) - -model = model.to(device) -model.eval() - -print(f"Sucessfully loaded the model to the memory") - - -LANGUAGES = [ - "🇬🇧 English", - "🇳🇴 Norwegian (Bokmål)", - "🇳🇴 Norwegian (Nynorsk)" -] - -LANGUAGE_IDS = { - "🇬🇧 English": eng_index, - "🇳🇴 Norwegian (Bokmål)": nob_index, - "🇳🇴 Norwegian (Nynorsk)": nno_index -} - - -class BatchStreamer(TextIteratorStreamer): - def put(self, value): - print(value.shape) - - #if value.size(0) == 1: - # return super().put(value) - - if len(self.token_cache) == 0: - self.token_cache = [[] for _ in range(value.size(0))] - - value = value.tolist() - - # Add the new token to the cache and decodes the entire thing. - for c, v in zip(self.token_cache, value): - c += [v] if isinstance(v, int) else v - - paragraphs = [tokenizer.decode(c, **self.decode_kwargs).strip() for c in self.token_cache] - text = '\n'.join(paragraphs) - - self.on_finalized_text(text) - - def end(self): - if len(self.token_cache) > 0: - paragraphs = [tokenizer.decode(c, **self.decode_kwargs).strip() for c in self.token_cache] - printable_text = '\n'.join(paragraphs) - self.token_cache = [] - self.print_len = 0 - else: - printable_text = "" - - self.next_tokens_are_prompt = True - self.on_finalized_text(printable_text, stream_end=True) - - -class RepetitionPenaltyLogitsProcessor(LogitsProcessor): - def __init__(self, penalty: float, model): - last_bias = model.classifier.nonlinearity[-1].bias.data - last_bias = torch.nn.functional.log_softmax(last_bias) - self.penalty = penalty * (last_bias - last_bias.max()) - - def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: - penalized_score = torch.gather(scores + self.penalty.unsqueeze(0).to(input_ids.device), 1, input_ids) - scores.scatter_(1, input_ids, penalized_score) - return scores - - -def translate(source, source_language, target_language): - if source_language == target_language: - yield source.strip() - return source.strip() - - source = [s.strip() for s in source.split('\n')] - source_subwords = tokenizer(source).input_ids - source_subwords = [[cls_index, LANGUAGE_IDS[target_language], LANGUAGE_IDS[source_language]] + s + [sep_index] for s in source_subwords] - source_subwords = [torch.tensor(s) for s in source_subwords] - source_subwords = torch.nn.utils.rnn.pad_sequence(source_subwords, batch_first=True, padding_value=pad_index) - source_subwords = source_subwords[:, :512].to(device) - - streamer = BatchStreamer(tokenizer, timeout=60.0, skip_special_tokens=True) - - def generate(model, **kwargs): - with torch.inference_mode(): - with torch.autocast(enabled=device != "cpu", device_type=device, dtype=torch.bfloat16): - return model.generate(**kwargs) - - generate_kwargs = dict( - streamer=streamer, - input_ids=source_subwords, - attention_mask=(source_subwords != pad_index).long(), - max_new_tokens = 512-1, - #top_k=64, - #top_p=0.95, - #do_sample=True, - #temperature=0.3, - num_beams=1, - #use_cache=True, - logits_processor=[RepetitionPenaltyLogitsProcessor(1.0, model)], - # num_beams=4, - # early_stopping=True, - do_sample=False, - use_cache=True - ) - t = Thread(target=generate, args=(model,), kwargs=generate_kwargs) - t.start() - - for new_text in streamer: - yield new_text.strip() - return new_text.strip() - - -def switch_inputs(source, target, source_language, target_language): - return target, source, target_language, source_language - - -with gr.Blocks(theme='sudeepshouche/minimalist') as demo: - - gr.Markdown("# Norwegian-English translation") - - with gr.Row(): - with gr.Column(scale=7, variant="panel"): - source_language = gr.Dropdown( - LANGUAGES, value=LANGUAGES[1], show_label=False - ) - source = gr.Textbox( - label="Source text", placeholder="What do you want to translate?", show_label=False, lines=7, max_lines=100, autofocus=True - ) # .style(container=False) - submit = gr.Button("Submit", variant="primary") # .style(full_width=True) - - with gr.Column(scale=7, variant="panel"): - target_language = gr.Dropdown( - LANGUAGES, value=LANGUAGES[0], show_label=False - ) - target = gr.Textbox( - label="Translation", show_label=False, interactive=False, lines=7, max_lines=100 - ) - - - def update_state_after_user(): - return { - source: gr.update(interactive=False), - submit: gr.update(interactive=False), - source_language: gr.update(interactive=False), - target_language: gr.update(interactive=False) - } - - def update_state_after_return(): - return { - source: gr.update(interactive=True), - submit: gr.update(interactive=True), - source_language: gr.update(interactive=True), - target_language: gr.update(interactive=True) - } - - - submit_event = source.submit( - fn=update_state_after_user, inputs=None, outputs=[source, submit, source_language, target_language], queue=False - ).then( - fn=translate, inputs=[source, source_language, target_language], outputs=[target], queue=True - ).then( - fn=update_state_after_return, inputs=None, outputs=[source, submit, source_language, target_language], queue=False - ) - - submit_click_event = submit.click( - fn=update_state_after_user, inputs=None, outputs=[source, submit, source_language, target_language], queue=False - ).then( - fn=translate, inputs=[source, source_language, target_language], outputs=[target], queue=True - ).then( - fn=update_state_after_return, inputs=None, outputs=[source, submit, source_language, target_language], queue=False - ) - -demo.queue(max_size=32, concurrency_count=2) -demo.launch() diff --git a/spaces/ltgoslo/ssa-perin/data/parser/from_mrp/sequential_parser.py b/spaces/ltgoslo/ssa-perin/data/parser/from_mrp/sequential_parser.py deleted file mode 100644 index 729556d7d9b872752e328ae647e754a25563278a..0000000000000000000000000000000000000000 --- a/spaces/ltgoslo/ssa-perin/data/parser/from_mrp/sequential_parser.py +++ /dev/null @@ -1,90 +0,0 @@ -#!/usr/bin/env python3 -# coding=utf-8 - -from data.parser.from_mrp.abstract_parser import AbstractParser -import utility.parser_utils as utils - - -class SequentialParser(AbstractParser): - def __init__(self, args, part: str, fields, filter_pred=None, **kwargs): - assert part == "training" or part == "validation" - path = args.training_data if part == "training" else args.validation_data - - self.data = utils.load_dataset(path) - utils.anchor_ids_from_intervals(self.data) - - self.node_counter, self.edge_counter, self.no_edge_counter = 0, 0, 0 - anchor_count, source_anchor_count, target_anchor_count, n_node_token_pairs = 0, 0, 0, 0 - - for sentence_id, sentence in list(self.data.items()): - for node in sentence["nodes"]: - if "label" not in node: - del self.data[sentence_id] - break - - for node, _ in utils.node_generator(self.data): - node["target anchors"] = [] - node["source anchors"] = [] - - for sentence in self.data.values(): - for e in sentence["edges"]: - source, target = e["source"], e["target"] - - if sentence["nodes"][target]["label"] == "Target": - sentence["nodes"][source]["target anchors"] += sentence["nodes"][target]["anchors"] - elif sentence["nodes"][target]["label"] == "Source": - sentence["nodes"][source]["source anchors"] += sentence["nodes"][target]["anchors"] - - for i, node in list(enumerate(sentence["nodes"]))[::-1]: - if "label" not in node or node["label"] in ["Source", "Target"]: - del sentence["nodes"][i] - sentence["edges"] = [] - - for node, sentence in utils.node_generator(self.data): - self.node_counter += 1 - - utils.create_bert_tokens(self.data, args.encoder) - - # create edge vectors - for sentence in self.data.values(): - N = len(sentence["nodes"]) - - utils.create_edges(sentence) - self.no_edge_counter += N * (N - 1) - - sentence["anchor edges"] = [N, len(sentence["input"]), []] - sentence["source anchor edges"] = [N, len(sentence["input"]), []] - sentence["target anchor edges"] = [N, len(sentence["input"]), []] - - sentence["anchored labels"] = [len(sentence["input"]), []] - for i, node in enumerate(sentence["nodes"]): - anchored_labels = [] - - for anchor in node["anchors"]: - sentence["anchor edges"][-1].append((i, anchor)) - anchored_labels.append((anchor, node["label"])) - - for anchor in node["source anchors"]: - sentence["source anchor edges"][-1].append((i, anchor)) - for anchor in node["target anchors"]: - sentence["target anchor edges"][-1].append((i, anchor)) - - sentence["anchored labels"][1].append(anchored_labels) - - anchor_count += len(node["anchors"]) - source_anchor_count += len(node["source anchors"]) - target_anchor_count += len(node["target anchors"]) - n_node_token_pairs += len(sentence["input"]) - - sentence["id"] = [sentence["id"]] - - self.anchor_freq = anchor_count / n_node_token_pairs - self.source_anchor_freq = anchor_count / n_node_token_pairs - self.target_anchor_freq = anchor_count / n_node_token_pairs - self.input_count = sum(len(sentence["input"]) for sentence in self.data.values()) - - super(SequentialParser, self).__init__(fields, self.data, filter_pred) - - @staticmethod - def node_similarity_key(node): - return tuple([node["label"]] + node["anchors"]) diff --git a/spaces/lwchen/CodeFormer/CodeFormer/basicsr/utils/download_util.py b/spaces/lwchen/CodeFormer/CodeFormer/basicsr/utils/download_util.py deleted file mode 100644 index 2a267915743ee3f3232bc8fe992466b52468979a..0000000000000000000000000000000000000000 --- a/spaces/lwchen/CodeFormer/CodeFormer/basicsr/utils/download_util.py +++ /dev/null @@ -1,95 +0,0 @@ -import math -import os -import requests -from torch.hub import download_url_to_file, get_dir -from tqdm import tqdm -from urllib.parse import urlparse - -from .misc import sizeof_fmt - - -def download_file_from_google_drive(file_id, save_path): - """Download files from google drive. - Ref: - https://stackoverflow.com/questions/25010369/wget-curl-large-file-from-google-drive # noqa E501 - Args: - file_id (str): File id. - save_path (str): Save path. - """ - - session = requests.Session() - URL = 'https://docs.google.com/uc?export=download' - params = {'id': file_id} - - response = session.get(URL, params=params, stream=True) - token = get_confirm_token(response) - if token: - params['confirm'] = token - response = session.get(URL, params=params, stream=True) - - # get file size - response_file_size = session.get(URL, params=params, stream=True, headers={'Range': 'bytes=0-2'}) - print(response_file_size) - if 'Content-Range' in response_file_size.headers: - file_size = int(response_file_size.headers['Content-Range'].split('/')[1]) - else: - file_size = None - - save_response_content(response, save_path, file_size) - - -def get_confirm_token(response): - for key, value in response.cookies.items(): - if key.startswith('download_warning'): - return value - return None - - -def save_response_content(response, destination, file_size=None, chunk_size=32768): - if file_size is not None: - pbar = tqdm(total=math.ceil(file_size / chunk_size), unit='chunk') - - readable_file_size = sizeof_fmt(file_size) - else: - pbar = None - - with open(destination, 'wb') as f: - downloaded_size = 0 - for chunk in response.iter_content(chunk_size): - downloaded_size += chunk_size - if pbar is not None: - pbar.update(1) - pbar.set_description(f'Download {sizeof_fmt(downloaded_size)} / {readable_file_size}') - if chunk: # filter out keep-alive new chunks - f.write(chunk) - if pbar is not None: - pbar.close() - - -def load_file_from_url(url, model_dir=None, progress=True, file_name=None): - """Load file form http url, will download models if necessary. - Ref:https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py - Args: - url (str): URL to be downloaded. - model_dir (str): The path to save the downloaded model. Should be a full path. If None, use pytorch hub_dir. - Default: None. - progress (bool): Whether to show the download progress. Default: True. - file_name (str): The downloaded file name. If None, use the file name in the url. Default: None. - Returns: - str: The path to the downloaded file. - """ - if model_dir is None: # use the pytorch hub_dir - hub_dir = get_dir() - model_dir = os.path.join(hub_dir, 'checkpoints') - - os.makedirs(model_dir, exist_ok=True) - - parts = urlparse(url) - filename = os.path.basename(parts.path) - if file_name is not None: - filename = file_name - cached_file = os.path.abspath(os.path.join(model_dir, filename)) - if not os.path.exists(cached_file): - print(f'Downloading: "{url}" to {cached_file}\n') - download_url_to_file(url, cached_file, hash_prefix=None, progress=progress) - return cached_file \ No newline at end of file diff --git a/spaces/ma-xu/LIVE/thrust/thrust/detail/numeric_traits.h b/spaces/ma-xu/LIVE/thrust/thrust/detail/numeric_traits.h deleted file mode 100644 index 168b9ad0f4b63657845915ba1718737773be687a..0000000000000000000000000000000000000000 --- a/spaces/ma-xu/LIVE/thrust/thrust/detail/numeric_traits.h +++ /dev/null @@ -1,130 +0,0 @@ -/* - * Copyright 2008-2013 NVIDIA Corporation - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#pragma once - -#include -#include - -//#include // for intmax_t (not provided on MSVS 2005) - -namespace thrust -{ - -namespace detail -{ - -// XXX good enough for the platforms we care about -typedef long long intmax_t; - -template - struct is_signed - : integral_constant::is_signed> -{}; // end is_signed - - -template - struct num_digits - : eval_if< - std::numeric_limits::is_specialized, - integral_constant< - int, - std::numeric_limits::digits - >, - integral_constant< - int, - sizeof(T) * std::numeric_limits::digits - (is_signed::value ? 1 : 0) - > - >::type -{}; // end num_digits - - -template - struct integer_difference - //: eval_if< - // sizeof(Integer) >= sizeof(intmax_t), - // eval_if< - // is_signed::value, - // identity_, - // identity_ - // >, - // eval_if< - // sizeof(Integer) < sizeof(std::ptrdiff_t), - // identity_, - // identity_ - // > - // > -{ - private: - // XXX workaround a pedantic warning in old versions of g++ - // which complains about &&ing with a constant value - template - struct and_ - { - static const bool value = false; - }; - - template - struct and_ - { - static const bool value = y; - }; - - public: - typedef typename - eval_if< - and_< - std::numeric_limits::is_signed, - // digits is the number of no-sign bits - (!std::numeric_limits::is_bounded || (int(std::numeric_limits::digits) + 1 >= num_digits::value)) - >::value, - identity_, - eval_if< - int(std::numeric_limits::digits) + 1 < num_digits::value, - identity_, - eval_if< - int(std::numeric_limits::digits) + 1 < num_digits::value, - identity_, - identity_ - > - > - >::type type; -}; // end integer_difference - - -template - struct numeric_difference - : eval_if< - is_integral::value, - integer_difference, - identity_ - > -{}; // end numeric_difference - - -template -__host__ __device__ -typename numeric_difference::type -numeric_distance(Number x, Number y) -{ - typedef typename numeric_difference::type difference_type; - return difference_type(y) - difference_type(x); -} // end numeric_distance - -} // end detail - -} // end thrust - diff --git a/spaces/manhkhanhUIT/BOPBTL/Face_Enhancement/models/networks/__init__.py b/spaces/manhkhanhUIT/BOPBTL/Face_Enhancement/models/networks/__init__.py deleted file mode 100644 index 33851d1c220373f92f670cda0cde03b0fe17300f..0000000000000000000000000000000000000000 --- a/spaces/manhkhanhUIT/BOPBTL/Face_Enhancement/models/networks/__init__.py +++ /dev/null @@ -1,58 +0,0 @@ -# Copyright (c) Microsoft Corporation. -# Licensed under the MIT License. - -import torch -from models.networks.base_network import BaseNetwork -from models.networks.generator import * -from models.networks.encoder import * -import util.util as util - - -def find_network_using_name(target_network_name, filename): - target_class_name = target_network_name + filename - module_name = "models.networks." + filename - network = util.find_class_in_module(target_class_name, module_name) - - assert issubclass(network, BaseNetwork), "Class %s should be a subclass of BaseNetwork" % network - - return network - - -def modify_commandline_options(parser, is_train): - opt, _ = parser.parse_known_args() - - netG_cls = find_network_using_name(opt.netG, "generator") - parser = netG_cls.modify_commandline_options(parser, is_train) - if is_train: - netD_cls = find_network_using_name(opt.netD, "discriminator") - parser = netD_cls.modify_commandline_options(parser, is_train) - netE_cls = find_network_using_name("conv", "encoder") - parser = netE_cls.modify_commandline_options(parser, is_train) - - return parser - - -def create_network(cls, opt): - net = cls(opt) - net.print_network() - if len(opt.gpu_ids) > 0: - assert torch.cuda.is_available() - net.cuda() - net.init_weights(opt.init_type, opt.init_variance) - return net - - -def define_G(opt): - netG_cls = find_network_using_name(opt.netG, "generator") - return create_network(netG_cls, opt) - - -def define_D(opt): - netD_cls = find_network_using_name(opt.netD, "discriminator") - return create_network(netD_cls, opt) - - -def define_E(opt): - # there exists only one encoder type - netE_cls = find_network_using_name("conv", "encoder") - return create_network(netE_cls, opt) diff --git a/spaces/marioboy/neil-breen/encoder/data_objects/utterance.py b/spaces/marioboy/neil-breen/encoder/data_objects/utterance.py deleted file mode 100644 index 0768c3420f422a7464f305b4c1fb6752c57ceda7..0000000000000000000000000000000000000000 --- a/spaces/marioboy/neil-breen/encoder/data_objects/utterance.py +++ /dev/null @@ -1,26 +0,0 @@ -import numpy as np - - -class Utterance: - def __init__(self, frames_fpath, wave_fpath): - self.frames_fpath = frames_fpath - self.wave_fpath = wave_fpath - - def get_frames(self): - return np.load(self.frames_fpath) - - def random_partial(self, n_frames): - """ - Crops the frames into a partial utterance of n_frames - - :param n_frames: The number of frames of the partial utterance - :return: the partial utterance frames and a tuple indicating the start and end of the - partial utterance in the complete utterance. - """ - frames = self.get_frames() - if frames.shape[0] == n_frames: - start = 0 - else: - start = np.random.randint(0, frames.shape[0] - n_frames) - end = start + n_frames - return frames[start:end], (start, end) \ No newline at end of file diff --git a/spaces/marrocovin/OPENAI_KEY/README.md b/spaces/marrocovin/OPENAI_KEY/README.md deleted file mode 100644 index 85f3e2f17251359d9b25882c97b6af5e4795d46b..0000000000000000000000000000000000000000 --- a/spaces/marrocovin/OPENAI_KEY/README.md +++ /dev/null @@ -1,54 +0,0 @@ ---- -title: oai-reverse-proxy -emoji: 🔁 -colorFrom: green -colorTo: purple -sdk: docker -pinned: false -duplicated_from: idosal/oai-proxy ---- - -# OAI Reverse Proxy Server - -Simple reverse proxy server for the OpenAI API. - -## What is this? -If you have an API key you want to share with a friend, you can use this to keep your key safe while still allowing them to generate text with the API. - -## Why? -OpenAI keys have full account permissions. They can revoke themselves, generate new keys, modify spend quotas, etc. You absolutely should not share them. - -If you still want to share access to your key, you can put it behind this proxy to ensure it can't be used to do anything but generate text. You can also set a separate key on the proxy to gatekeep access. - -## How to use - -### 1. Get an API key -- Go to [OpenAI](https://openai.com/) and sign up for an account. - -### 2. Clone this Huggingface repository to your account -- Go to [Huggingface](https://huggingface.co/) and sign up for an account. -- Once logged in, click on the `+` button in the top right corner and select `Duplicate this Space`. - -![Duplicate Space](https://files.catbox.moe/3n6ubn.png) - -### 3. Set your OpenAI API key as a secret -- Click the Settings button in the top right corner of your repository. -- Scroll down to the `Repository Secrets` section and click `New Secret`. - -![Secrets](https://files.catbox.moe/irrp2p.png) - -- Enter `OPENAI_KEY` as the name and your OpenAI API key as the value. - -![New Secret](https://files.catbox.moe/ka6s1a.png) - -**Do not paste the key into `server.js`!** That file is public and anyone can see it. Leave it alone; it will load the key from the secret you just created. - -### 4. Deploy the server -- Your server should automatically deploy when you add the secret, but if not you can select `Factory Reset` from that same Settings menu. - -### 5. Share the link -- The Service Info section below should show the URL for your server. You can share this with anyone to safely give them access to your OpenAI API key. -- Your friend doesn't need any OpenAI API key of their own, they just need your link. -- However, if you want to protect access to the server, you can add another secret called `PROXY_KEY`. This key will need to be passed in the Authentication header of every request to the server, just like an OpenAI API key. - -**Note:** The `keys` section in the serverinfo screen may not correctly identify keys as trial/paid/GPT-4 unless you use the more advanced configuration described in `.env.example`. diff --git a/spaces/merle/PROTEIN_GENERATOR/utils/.ipynb_checkpoints/diff_utils-checkpoint.py b/spaces/merle/PROTEIN_GENERATOR/utils/.ipynb_checkpoints/diff_utils-checkpoint.py deleted file mode 100644 index 9a6b71a8cc0af83e027e1d8e7b5ad21ab5ccbbe9..0000000000000000000000000000000000000000 --- a/spaces/merle/PROTEIN_GENERATOR/utils/.ipynb_checkpoints/diff_utils-checkpoint.py +++ /dev/null @@ -1,283 +0,0 @@ -import torch -from icecream import ic -import random -import numpy as np -from kinematics import get_init_xyz -import torch.nn as nn -from util_module import ComputeAllAtomCoords -from util import * -from inpainting_util import MSAFeaturize_fixbb, TemplFeaturizeFixbb, lddt_unbin -from kinematics import xyz_to_t2d - - -def mask_inputs(seq, msa_masked, msa_full, xyz_t, t1d, input_seq_mask=None, - input_str_mask=None, input_t1dconf_mask=None, diffuser=None, t=None, MODEL_PARAM=None, hotspots=None, dssp=None): - - - """ - JG - adapted slightly for the inference case - - Parameters: - seq (torch.tensor, required): (I,L) integer sequence - - msa_masked (torch.tensor, required): (I,N_short,L,48) - - msa_full (torch,.tensor, required): (I,N_long,L,25) - - xyz_t (torch,tensor): (T,L,27,3) template crds BEFORE they go into get_init_xyz - - t1d (torch.tensor, required): (I,L,22) this is the t1d before tacking on the chi angles - - str_mask_1D (torch.tensor, required): Shape (L) rank 1 tensor where structure is masked at False positions - - seq_mask_1D (torch.tensor, required): Shape (L) rank 1 tensor where seq is masked at False positions - t1d_24: is there an extra dimension to input structure confidence? - - diffuser: diffuser class - - t: time step - - NOTE: in the MSA, the order is 20aa, 1x unknown, 1x mask token. We set the masked region to 22 (masked). - For the t1d, this has 20aa, 1x unkown, and 1x template conf. Here, we set the masked region to 21 (unknown). - This, we think, makes sense, as the template in normal RF training does not perfectly correspond to the MSA. - """ - assert diffuser != None, 'please choose a diffuser' - - ########### - seq = seq[0,:1] - msa_masked = msa_masked[0,:1] - msa_full = msa_full[0,:1] - t1d = t1d[0] - xyz_t = xyz_t[0] - - seq_mask = input_seq_mask[0] - - - - ###################### - ###sequence diffusion### - ###################### - """ - #muate some percentage of sequence to have model be able to mutate residues later in denoising trajectory - if True: - masked_values=input_seq_mask[0].nonzero()[:,0] - print(masked_values) - mut_p=math.floor(masked_values.shape[0]*.05) - print(mut_p) - mutate_indices = torch.randperm(len(masked_values))[:mut_p] - print(mutate_indices) - for i in range(len(mutate_indices)): - seq[0,masked_values[mutate_indices[i]]] = torch.randint(0, 21, (1,)) - """ - str_mask = input_str_mask[0] - - x_0 = torch.nn.functional.one_hot(seq[0,...],num_classes=22).float()*2-1 - - #ic(seq_mask) - - seq_diffused = diffuser.q_sample(x_0,torch.tensor([t-1]),mask=seq_mask) - #seq_diffused = torch.clamp(seq_diffused, min=-1, max=1) - - seq_tmp=torch.argmax(seq_diffused,axis=-1).to(device=seq.device) - seq=seq_tmp.repeat(seq.shape[0], 1) - - ################### - ###msa diffusion### - ################### - - ### msa_masked ### - #ic(msa_masked.shape) - B,N,L,_=msa_masked.shape - - msa_masked[:,0,:,:22] = seq_diffused - - x_0_msa = msa_masked[0,1:,:,:22].float()*2-1 - msa_seq_mask = seq_mask.unsqueeze(0).repeat(N-1, 1) - msa_diffused = diffuser.q_sample(x_0_msa,torch.tensor([t-1]),mask=msa_seq_mask) - #msa_diffused = torch.clamp(msa_diffused, min=-1, max=1) - msa_masked[:,1:,:,:22] = torch.clone(msa_diffused) - - # index 44/45 is insertion/deletion - # index 43 is the masked token NOTE check this - # index 42 is the unknown token - msa_masked[:,0,:,22:44] = seq_diffused - msa_masked[:,1:,:,22:44] = msa_diffused - - # insertion/deletion stuff - msa_masked[:,0,~seq_mask,44:46] = 0 - - ### msa_full ### - ################ - #msa_full[:,0,:,:22] = seq_diffused - #make msa_full same size as msa_masked - msa_full = msa_full[:,:msa_masked.shape[1],:,:] - msa_full[:,0,:,:22] = seq_diffused - msa_full[:,1:,:,:22] = msa_diffused - - ### t1d ### - ########### - # NOTE: adjusting t1d last dim (confidence) from sequence mask - t1d = torch.cat((t1d, torch.zeros((t1d.shape[0],t1d.shape[1],2)).float()), -1).to(seq.device) - t1d[:,:,:21] = seq_diffused[...,:21] - - #t1d[:,:,21] *= input_t1dconf_mask - #set diffused conf to 0 and everything else to 1 - t1d[:,~seq_mask,21] = 0.0 - t1d[:,seq_mask,21] = 1.0 - - t1d[:1,:,22] = 1-t/diffuser.num_timesteps - - t1d[:,~str_mask,23] = 0.0 - t1d[:,str_mask,23] = 1.0 - - # EXPAND t1d to match model params - if MODEL_PARAM['d_t1d'] == 29: - ## added t1d features ## - # 24 -- dssp helix - # 25 -- dssp sheet - # 26 -- dssp loop - # 27 -- dssp mask - # 28 -- hotspot resi on target - t1d = torch.cat((t1d,torch.zeros(t1d.shape[0],t1d.shape[1],5)),dim=-1) - t1d[:,:,24:28] = dssp - t1d[:,:,28] = hotspots - t1d[:,str_mask,24:27] = 0.0 - t1d[:,str_mask,27] = 1.0 - - xyz_t = get_init_xyz(xyz_t[None]) - xyz_t = xyz_t[0] - - xyz_t[:,~seq_mask,3:,:] = float('nan') - - # Structure masking - xyz_t[:,~str_mask,:,:] = float('nan') - - xyz_t = get_init_xyz(xyz_t[None]) - xyz_t = xyz_t[0] - - assert torch.sum(torch.isnan(xyz_t[:,:,:3,:]))==0 - - - return seq, msa_masked, msa_full, xyz_t, t1d, seq_diffused - - - - -conversion = 'ARNDCQEGHILKMFPSTWYVX-' - - - -def take_step(model, msa, msa_extra, seq, t1d, t2d, idx_pdb, N_cycle, xyz_prev, alpha, xyz_t, - alpha_t, params, T, diffuser, seq_diffused, msa_prev, pair_prev, state_prev): - """ - Single step in the diffusion process - """ - compute_allatom_coords=ComputeAllAtomCoords().to(seq.device) - #ic(msa.shape) - B, _, N, L, _ = msa.shape - with torch.no_grad(): - with torch.cuda.amp.autocast(True): - for i_cycle in range(N_cycle-1): - msa_prev, pair_prev, xyz_prev, state_prev, alpha = model(msa[:,0], - msa_extra[:,0], - seq[:,0], xyz_prev, - idx_pdb, - seq1hot=seq_diffused, - t1d=t1d, t2d=t2d, - xyz_t=xyz_t, alpha_t=alpha_t, - msa_prev=msa_prev, - pair_prev=pair_prev, - state_prev=state_prev, - return_raw=True) - - - logit_s, logit_aa_s, logits_exp, xyz_prev, pred_lddt, msa_prev, pair_prev, state_prev, alpha = model(msa[:,0], - msa_extra[:,0], - seq[:,0], xyz_prev, - idx_pdb, - seq1hot=seq_diffused, - t1d=t1d, t2d=t2d, xyz_t=xyz_t, alpha_t=alpha_t, - msa_prev=msa_prev, - pair_prev=pair_prev, - state_prev=state_prev, - return_infer=True) - #ic(logit_aa_s.shape) - logit_aa_s_msa = torch.clone(logit_aa_s) - logit_aa_s = logit_aa_s.reshape(B,-1,N,L)[:,:,0,:] - #ic(logit_aa_s.shape) - logit_aa_s = logit_aa_s.reshape(B,-1,L) - #ic(logit_aa_s.shape) - seq_out = torch.argmax(logit_aa_s, dim=-2) - #ic(seq_out.shape) - #ic(alpha.shape) - - pred_lddt_unbinned = lddt_unbin(pred_lddt) - _, xyz_prev = compute_allatom_coords(seq_out, xyz_prev, alpha) - - if N>1: - return seq_out, xyz_prev, pred_lddt_unbinned, logit_s, logit_aa_s, logit_aa_s_msa, alpha, msa_prev, pair_prev, state_prev - else: - return seq_out, xyz_prev, pred_lddt_unbinned, logit_s, logit_aa_s, alpha, msa_prev, pair_prev, state_prev - - -def take_step_nostate(model, msa, msa_extra, seq, t1d, t2d, idx_pdb, N_cycle, xyz_prev, alpha, xyz_t, - alpha_t, params, T, diffuser, seq_diffused, msa_prev, pair_prev, state_prev): - """ - Single step in the diffusion process, with no conditioning on state - """ - compute_allatom_coords=ComputeAllAtomCoords().to(seq.device) - #ic(msa.shape ) - msa_prev = None - pair_prev = None - state_prev = None - - B, _, N, L, _ = msa.shape - with torch.no_grad(): - with torch.cuda.amp.autocast(True): - for i_cycle in range(N_cycle-1): - msa_prev, pair_prev, xyz_prev, state_prev, alpha = model(msa[:,0], - msa_extra[:,0], - seq[:,0], xyz_prev, - idx_pdb, - seq1hot=seq_diffused, - t1d=t1d, t2d=t2d, - xyz_t=xyz_t, alpha_t=alpha_t, - msa_prev=msa_prev, - pair_prev=pair_prev, - state_prev=state_prev, - return_raw=True) - - - logit_s, logit_aa_s, logits_exp, xyz_prev, pred_lddt, msa_prev, pair_prev, state_prev, alpha = model(msa[:,0], - msa_extra[:,0], - seq[:,0], xyz_prev, - idx_pdb, - seq1hot=seq_diffused, - t1d=t1d, t2d=t2d, xyz_t=xyz_t, alpha_t=alpha_t, - msa_prev=msa_prev, - pair_prev=pair_prev, - state_prev=state_prev, - return_infer=True) - #ic(xyz_prev.shape) - #xyz_prev = xyz_prev[-1] - #ic(xyz_prev.shape) - - #ic(logit_aa_s.shape) - logit_aa_s_msa = torch.clone(logit_aa_s) - logit_aa_s = logit_aa_s.reshape(B,-1,N,L)[:,:,0,:] - #ic(logit_aa_s.shape) - logit_aa_s = logit_aa_s.reshape(B,-1,L) - #ic(logit_aa_s.shape) - #ic(t1d.shape) - t1d[:,:,:,:21] = logit_aa_s[0,:21,:].permute(1,0) - seq_out = torch.argmax(logit_aa_s, dim=-2) - #ic(seq_out.shape) - #ic(alpha.shape) - - pred_lddt_unbinned = lddt_unbin(pred_lddt) - _, xyz_prev = compute_allatom_coords(seq_out, xyz_prev, alpha) - - if N>1: - return seq_out, xyz_prev, pred_lddt_unbinned, logit_s, logit_aa_s, logit_aa_s_msa, alpha, msa_prev, pair_prev, state_prev - else: - return seq_out, xyz_prev, pred_lddt_unbinned, logit_s, logit_aa_s, alpha, msa_prev, pair_prev, state_prev diff --git a/spaces/merve/hidden-bias/source/_posts/2020-09-27-diversity-metrics.md b/spaces/merve/hidden-bias/source/_posts/2020-09-27-diversity-metrics.md deleted file mode 100644 index 4c84423fe9a6f8566a0b7182bc378feec97d9654..0000000000000000000000000000000000000000 --- a/spaces/merve/hidden-bias/source/_posts/2020-09-27-diversity-metrics.md +++ /dev/null @@ -1,100 +0,0 @@ ---- -template: post.html -title: Measuring Diversity -titlex: Diversity and Inclusion Metrics -summary: Search results that reflect historic inequities can amplify stereotypes and perpetuate under-representation. Carefully measuring diversity in data sets can help. -shareimg: https://pair.withgoogle.com/explorables/images/measuring-diversity.png -permalink: /measuring-diversity/ -date: 2021-03-01 ---- - - - -Search, ranking and recommendation systems can help find useful documents in large datasets. However, these datasets reflect the biases of the society in which they were created and the systems risk re-entrenching those biases. For example, if someone who is not a white man searches for "CEO pictures" and sees a [page of white men](https://www.nytimes.com/interactive/2018/04/24/upshot/women-and-men-named-john.html), they may feel that only white men can be CEOs, further perpetuating lack of representation at companies' executive levels. - -Using the careful quantification outlined in a recent paper, [Diversity and Inclusion Metrics in Subset Selection](https://arxiv.org/pdf/2002.03256.pdf), we can quantify biases and push these systems to return a wider range of results. - -The mathematics of all this is a little easier to follow with abstract shapes. Let's take a look at some of them: - -
    - -Suppose we want to return about 30% green boxes to reflect the distribution of some larger universe of shapes. Try clicking on the shapes below to select some of them — can you find a better subset to return? - -
    - -Another diversity metric we care about is the percentage of dots... how close to 35% dots can you get? - -
    - -If we can only return a single subset, how should we consider multiple diversity metrics? Sometimes it isn't possible to reduce the difference of every metric to zero. One natural approach: find the selection with the **lowest mean difference** across all the metrics to get as close as possible to all the targets. - -In other circumstances, like picking a panel of speakers, avoiding badly representing any single category might be more important. This can be done by finding the subset with the **lowest max difference**. Try minimizing both below: - -
    - -Notice that minimizing the mean results in a different subset than minimizing the max; how else might using one over the other change the results? - -### Ranking Measures - -We can pull out more detail by showing how the mean difference and maximum difference rank lots of sets. Below, there are 20 sets of 10 shapes sorted by the two measures. Try adjusting the target slider on the left to see how the rankings change; each set's percentage of green, dots and small shapes are shown in the small histograms. - -
    - -At the extremes, the choice of measure can have a big impact: if we want to try and return all green results, we can shift the green target up to 100%. With this target, the minimum difference basically sorts the sets by the number of green items and uses the other targets as a tiebreaker. In contrast, sorting by the mean difference balances the green target more with the dot and small targets. - -
    - -Beyond mean and max differences, there are more ways to combine diversity metrics, like taking the cross of two metrics to account for [intersectionality](https://en.wikipedia.org/wiki/Intersectionality). The absolute value of the difference in target and actual percentages can also be quantified in other ways — you might want to penalize undershooting more than overshooting, for example. It's important to keep in mind what exactly you're trying to maximize and the dataset that you're operating on. - -### Which Measure is Best? - -In a vacuum, all of these ranking methods are defensible. Picking one requires knowledge of the dataset and broader societal context. - -For example, the doctors on the left have more variance along the shirt color attribute, but they're less diverse by gender than the doctors on the right. With the shirt color and gender targets we've picked, the two subsets have the same mean and max differences However, in most applications, it's more important to have a representative sample of socially relevant characteristics, like gender, rather than something less salient, like clothing color. - -
    - -Just selecting a diverse sample isn't sufficient either. [Diversity and Inclusion Metrics in Subset Selection](https://arxiv.org/pdf/2002.03256.pdf) introduces a way of measuring "inclusion" - how well does the searcher feel represented in the results? - -Below, we have gender diversity, without inclusion for women, in the “construction worker” image domain. Masculine-presenting individuals are shown in realistic, modern construction worker situations, while feminine-presenting individuals and other gender presentations are depicted as historic nostalgia, toys, clipart, or passive. - -
    - -The context of the query and the searcher also plays in the quality of search results. A search for "work clothing" that shows a mixed palette of colors for men's clothing and only pink women's clothing might make the searcher feel that women need to appear stereotypically feminine in a professional setting. But the same set of women's clothes might be appropriate to show for a "pink women work clothes" search or if the searcher had previously expressed a preference for pink. - -We saw how a small switch from mean to max made a huge difference in what abstract shapes are returned – and how things can get even more complex when socially salient characteristics are layered in. Defaults and small decisions can encode our priorities and values; intentionally thinking about how diversity and inclusion are being measured and which characteristics are emphasized is a step towards designing more equitable systems. - -### More Reading - -The [Diversity and Inclusion Metrics](https://arxiv.org/pdf/2002.03256.pdf) paper has a [Colab](https://colab.research.google.com/github/PAIR-code/ai-explorables/blob/master/source/measuring-diversity/diversity-and-inclusion.ipynb) with a detailed desciption of the metrics, additional visualizations and a reference Python implementation. - -The difficulties of [measuring fairness](https://pair.withgoogle.com/explorables/measuring-fairness/) in general have been well studied; subset selection is still an active area of research. [Fairness of Exposure in Rankings](https://www.cs.cornell.edu/~tj/publications/singh_joachims_18a.pdf) proposes a ranking algorithm that incorporates fairness constraints. [Toward creating a fairer ranking in search engine results](https://www.ilab.cs.rutgers.edu/~rg522/publication/gao-2020-ipm/gao-2020-ipm.pdf) measures diversity bias in actual search results. - -Inferring user preferences is also tricky; you can checkout ways to design for user feedback and control over queries in the [People + AI Guidebook](https://pair.withgoogle.com/chapter/feedback-controls/). - -### Credits - -Adam Pearce, Dylan Baker, Ellen Jiang, Meg Mitchell\* and Timnit Gebru\* // March 2021 - -*Work done while at Google - -Thanks to Alex Hanna, Carey Radebaugh, Emily Denton, Fernanda Viégas, James Wexler, Jess Holbrook, Ludovic Peran, Martin Wattenberg, Michael Terry, Yannick Assogba and Zan Armstrong for their help with this piece. - - -

    More Explorables

    - -

    - - - - - - - - - - - - - \ No newline at end of file diff --git a/spaces/merve/measuring-fairness/source/measuring-fairness/graph-scroll.css b/spaces/merve/measuring-fairness/source/measuring-fairness/graph-scroll.css deleted file mode 100644 index e3757d99ca305478165c6f7e4781ec0ce95b6291..0000000000000000000000000000000000000000 --- a/spaces/merve/measuring-fairness/source/measuring-fairness/graph-scroll.css +++ /dev/null @@ -1,119 +0,0 @@ -#container{ - position: relative; - width: auto; -} - -#sections{ - width: 340px; -} - -#sections > div{ - background: white; - opacity: .2; - margin-bottom: 400px; - line-height: 1.4em; - transition: opacity .2s; -} -#sections > div:first-child{ - opacity: 1; -} -#sections > div:last-child{ - /*padding-bottom: 80vh;*/ - padding-bottom: 80px; - margin-bottom: 0px; -} -#sections > div:first-child > h1{ - padding-top: 40px; -} - -#sections > div.graph-scroll-active{ - opacity: 1; -} - -#graph{ - margin-left: 40px; - width: 500px; - position: -webkit-sticky; - position: sticky; - top: 0px; - float: right; - height: 580px; - font-family: 'Google Sans', sans-serif; - -} - -.slider{ - font-family: 'Google Sans', sans-serif; -} - -#sections h1{ - text-align: left !important; -} - -@media (max-width: 1000px) and (min-width: 926px){ - #sections{ - margin-left: 20px; - } -} - -@media (max-width: 925px) { - #container{ - margin-left: 0px; - } - - #graph{ - width: 100%; - margin-left: 10px; - float: none; - max-width: 500px; - margin: 0px auto; - } - - #graph > div{ - position: relative; - top: 0px; - } - #sections{ - width: auto; - position: relative; - margin: 0px auto; - } - - #sections > div{ - background: rgba(255,255,255,.8); - padding: 10px; - border-top: 1px solid; - border-bottom: 1px solid; - margin-bottom: 80vh; - width: calc(100vw - 20px); - margin-left: -5px; - } - - #sections > div > *{ - max-width: 750px; - } - .mini, .slider, i, .gated{ - margin: 0px auto; - } - - #sections > div:first-child{ - opacity: 1; - margin-top: -140px; - } - - #sections > div:last-child{ - padding-bottom: 0px; - margin-bottom: 0px; - } - - - #sections h1{ - margin: 10px; - padding-top: 0px !important; - } - - #sections h3{ - margin-top: .5em; - } - -} diff --git a/spaces/mfrashad/CharacterGAN/models/stylegan2/__init__.py b/spaces/mfrashad/CharacterGAN/models/stylegan2/__init__.py deleted file mode 100644 index 87739d5c18fe051149018f275983ebf6380c8b54..0000000000000000000000000000000000000000 --- a/spaces/mfrashad/CharacterGAN/models/stylegan2/__init__.py +++ /dev/null @@ -1,16 +0,0 @@ -import sys -import os -import shutil -import glob -import platform -from pathlib import Path - -current_path = os.getcwd() - -module_path = Path(__file__).parent / 'stylegan2-pytorch' -sys.path.append(str(module_path.resolve())) -os.chdir(module_path) - -from model import Generator - -os.chdir(current_path) \ No newline at end of file diff --git a/spaces/microsoft/HuggingGPT/README.md b/spaces/microsoft/HuggingGPT/README.md deleted file mode 100644 index 474c5b3426834e4b136f943be76cb8121d267f16..0000000000000000000000000000000000000000 --- a/spaces/microsoft/HuggingGPT/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: HuggingGPT -emoji: 😻 -colorFrom: gray -colorTo: yellow -sdk: gradio -sdk_version: 3.28.3 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference -Link to paper https://arxiv.org/abs/2303.17580 diff --git a/spaces/mingyuan/ReMoDiffuse/mogen/models/transformers/mdm.py b/spaces/mingyuan/ReMoDiffuse/mogen/models/transformers/mdm.py deleted file mode 100644 index 4c2d64db7dccf4a5cf3ad1f9b3da4738a121e919..0000000000000000000000000000000000000000 --- a/spaces/mingyuan/ReMoDiffuse/mogen/models/transformers/mdm.py +++ /dev/null @@ -1,212 +0,0 @@ -import numpy as np -import torch -import torch.nn as nn -import torch.nn.functional as F -import clip - -from ..builder import SUBMODULES - - -def convert_weights(model: nn.Module): - """Convert applicable model parameters to fp32""" - - def _convert_weights_to_fp32(l): - if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): - l.weight.data = l.weight.data.float() - if l.bias is not None: - l.bias.data = l.bias.data.float() - - if isinstance(l, nn.MultiheadAttention): - for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: - tensor = getattr(l, attr) - if tensor is not None: - tensor.data = tensor.data.float() - - for name in ["text_projection", "proj"]: - if hasattr(l, name): - attr = getattr(l, name) - if attr is not None: - attr.data = attr.data.float() - - model.apply(_convert_weights_to_fp32) - - -@SUBMODULES.register_module() -class MDMTransformer(nn.Module): - def __init__(self, - input_feats=263, - latent_dim=256, - ff_size=1024, - num_layers=8, - num_heads=4, - dropout=0.1, - activation="gelu", - clip_dim=512, - clip_version=None, - guide_scale=1.0, - cond_mask_prob=0.1, - use_official_ckpt=False, - **kwargs): - super().__init__() - - self.latent_dim = latent_dim - self.ff_size = ff_size - self.num_layers = num_layers - self.num_heads = num_heads - self.dropout = dropout - self.activation = activation - self.clip_dim = clip_dim - self.input_feats = input_feats - self.guide_scale = guide_scale - self.use_official_ckpt = use_official_ckpt - - self.cond_mask_prob = cond_mask_prob - self.poseEmbedding = nn.Linear(self.input_feats, self.latent_dim) - self.sequence_pos_encoder = PositionalEncoding(self.latent_dim, self.dropout) - - seqTransEncoderLayer = nn.TransformerEncoderLayer(d_model=self.latent_dim, - nhead=self.num_heads, - dim_feedforward=self.ff_size, - dropout=self.dropout, - activation=self.activation) - - self.seqTransEncoder = nn.TransformerEncoder(seqTransEncoderLayer, - num_layers=self.num_layers) - - self.embed_timestep = TimestepEmbedder(self.latent_dim, self.sequence_pos_encoder) - - - self.embed_text = nn.Linear(self.clip_dim, self.latent_dim) - self.clip_version = clip_version - self.clip_model = self.load_and_freeze_clip(clip_version) - - self.poseFinal = nn.Linear(self.latent_dim, self.input_feats) - - - def load_and_freeze_clip(self, clip_version): - clip_model, clip_preprocess = clip.load(clip_version, device='cpu', - jit=False) # Must set jit=False for training - clip.model.convert_weights( - clip_model) # Actually this line is unnecessary since clip by default already on float16 - - clip_model.eval() - for p in clip_model.parameters(): - p.requires_grad = False - - return clip_model - - - def mask_cond(self, cond, force_mask=False): - bs, d = cond.shape - if force_mask: - return torch.zeros_like(cond) - elif self.training and self.cond_mask_prob > 0.: - mask = torch.bernoulli(torch.ones(bs, device=cond.device) * self.cond_mask_prob).view(bs, 1) # 1-> use null_cond, 0-> use real cond - return cond * (1. - mask) - else: - return cond - - def encode_text(self, raw_text): - # raw_text - list (batch_size length) of strings with input text prompts - device = next(self.parameters()).device - max_text_len = 20 - if max_text_len is not None: - default_context_length = 77 - context_length = max_text_len + 2 # start_token + 20 + end_token - assert context_length < default_context_length - texts = clip.tokenize(raw_text, context_length=context_length, truncate=True).to(device) - zero_pad = torch.zeros([texts.shape[0], default_context_length-context_length], dtype=texts.dtype, device=texts.device) - texts = torch.cat([texts, zero_pad], dim=1) - return self.clip_model.encode_text(texts).float() - - def get_precompute_condition(self, text, device=None, **kwargs): - if not self.training and device == torch.device('cpu'): - convert_weights(self.clip_model) - text_feat = self.encode_text(text) - return {'text_feat': text_feat} - - def post_process(self, motion): - assert len(motion.shape) == 3 - if self.use_official_ckpt: - motion[:, :, :4] = motion[:, :, :4] * 25 - return motion - - def forward(self, motion, timesteps, text_feat=None, **kwargs): - """ - motion: B, T, D - timesteps: [batch_size] (int) - """ - B, T, D = motion.shape - device = motion.device - if text_feat is None: - enc_text = get_precompute_condition(**kwargs)['text_feat'] - else: - enc_text = text_feat - if self.training: - # T, B, D - motion = self.poseEmbedding(motion).permute(1, 0, 2) - - emb = self.embed_timestep(timesteps) # [1, bs, d] - emb += self.embed_text(self.mask_cond(enc_text, force_mask=False)) - - xseq = self.sequence_pos_encoder(torch.cat((emb, motion), axis=0)) - output = self.seqTransEncoder(xseq)[1:] - - # B, T, D - output = self.poseFinal(output).permute(1, 0, 2) - return output - else: - # T, B, D - motion = self.poseEmbedding(motion).permute(1, 0, 2) - - emb = self.embed_timestep(timesteps) # [1, bs, d] - emb_uncond = emb + self.embed_text(self.mask_cond(enc_text, force_mask=True)) - emb_text = emb + self.embed_text(self.mask_cond(enc_text, force_mask=False)) - - xseq = self.sequence_pos_encoder(torch.cat((emb_uncond, motion), axis=0)) - xseq_text = self.sequence_pos_encoder(torch.cat((emb_text, motion), axis=0)) - output = self.seqTransEncoder(xseq)[1:] - output_text = self.seqTransEncoder(xseq_text)[1:] - # B, T, D - output = self.poseFinal(output).permute(1, 0, 2) - output_text = self.poseFinal(output_text).permute(1, 0, 2) - scale = self.guide_scale - output = output + scale * (output_text - output) - return output - - -class PositionalEncoding(nn.Module): - def __init__(self, d_model, dropout=0.1, max_len=5000): - super(PositionalEncoding, self).__init__() - self.dropout = nn.Dropout(p=dropout) - - pe = torch.zeros(max_len, d_model) - position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) - div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model)) - pe[:, 0::2] = torch.sin(position * div_term) - pe[:, 1::2] = torch.cos(position * div_term) - pe = pe.unsqueeze(0).transpose(0, 1) - - self.register_buffer('pe', pe) - - def forward(self, x): - # not used in the final model - x = x + self.pe[:x.shape[0], :] - return self.dropout(x) - - -class TimestepEmbedder(nn.Module): - def __init__(self, latent_dim, sequence_pos_encoder): - super().__init__() - self.latent_dim = latent_dim - self.sequence_pos_encoder = sequence_pos_encoder - - time_embed_dim = self.latent_dim - self.time_embed = nn.Sequential( - nn.Linear(self.latent_dim, time_embed_dim), - nn.SiLU(), - nn.Linear(time_embed_dim, time_embed_dim), - ) - - def forward(self, timesteps): - return self.time_embed(self.sequence_pos_encoder.pe[timesteps]).permute(1, 0, 2) diff --git a/spaces/mithril-security/blind_chat/src/routes/r/[id]/message/[messageId]/prompt/+server.ts b/spaces/mithril-security/blind_chat/src/routes/r/[id]/message/[messageId]/prompt/+server.ts deleted file mode 100644 index 3cd354946017d1b95060bd57fec04cc99cd2cc4f..0000000000000000000000000000000000000000 --- a/spaces/mithril-security/blind_chat/src/routes/r/[id]/message/[messageId]/prompt/+server.ts +++ /dev/null @@ -1,47 +0,0 @@ -import { buildPrompt } from "$lib/buildPrompt"; -import { collections } from "$lib/server/database"; -import { models } from "$lib/server/models"; -import { error } from "@sveltejs/kit"; - -export async function GET({ params }) { - const conv = await collections.sharedConversations.findOne({ - _id: params.id, - }); - - if (!conv) { - throw error(404, "Conversation not found"); - } - - const messageId = params.messageId; - - const messageIndex = conv.messages.findIndex((msg) => msg.id === messageId); - - if (messageIndex === -1) { - throw error(404, "Message not found"); - } - - const model = models.find((m) => m.id === conv.model); - - if (!model) { - throw error(404, "Conversation model not found"); - } - - const prompt = await buildPrompt({ messages: conv.messages.slice(0, messageIndex + 1), model }); - - return new Response( - JSON.stringify( - { - note: "This is a preview of the prompt that will be sent to the model when retrying the message. It may differ from what was sent in the past if the parameters have been updated since", - prompt, - model: model.name, - parameters: { - ...model.parameters, - return_full_text: false, - }, - }, - null, - 2 - ), - { headers: { "Content-Type": "application/json" } } - ); -} diff --git a/spaces/mnauf/detect-bees/utils/loggers/clearml/__init__.py b/spaces/mnauf/detect-bees/utils/loggers/clearml/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/mshukor/UnIVAL/run_scripts/caption/eval/eval_caption_base_best_avg.sh b/spaces/mshukor/UnIVAL/run_scripts/caption/eval/eval_caption_base_best_avg.sh deleted file mode 100644 index caf0816f3cd1bc82d5e81a9899310c5cbe4ea89a..0000000000000000000000000000000000000000 --- a/spaces/mshukor/UnIVAL/run_scripts/caption/eval/eval_caption_base_best_avg.sh +++ /dev/null @@ -1,100 +0,0 @@ -#!/usr/bin/env bash - -# The port for communication. Note that if you want to run multiple tasks on the same machine, -# you need to specify different port numbers. -# Number of GPUs per GPU worker -export GPUS_PER_NODE=8 -# Number of GPU workers, for single-worker training, please set to 1 -export NUM_NODES=$SLURM_NNODES -# The ip address of the rank-0 worker, for single-worker training, please set to localhost -master_addr=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1) -export MASTER_ADDR=$master_addr - -# The port for communication -export MASTER_PORT=12350 -# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0 -export RANK=$SLURM_NODEID - -echo "MASTER_ADDR: $MASTER_ADDR" -echo "RANK :$RANK" -echo "NUM_NODES :$NUM_NODES" -echo "GPUS_PER_NODE :$GPUS_PER_NODE" - -export MIOPEN_USER_DB_PATH=/lus/home/NAT/gda2204/mshukor/.config/miopen_${MASTER_ADDR}_${SLURM_PROCID}/ - -echo "MIOPEN_USER_DB_PATH :$MIOPEN_USER_DB_PATH" - -num_workers=0 - - - - - - -ofa_dir=/lus/home/NAT/gda2204/mshukor/code/unival -base_data_dir=/lus/scratch/NAT/gda2204/SHARED/data -base_log_dir=/work/NAT/gda2204/mshukor/logs - - - - -bpe_dir=${ofa_dir}/utils/BPE -user_dir=${ofa_dir}/ofa_module - - -data_dir=${base_data_dir}/ofa/caption_data -split=test -data=${data_dir}/caption_${split}.tsv # caption_val caption_test - -selected_cols=1,4,2 - - -image_encoder_name=resnet #vit_base_patch16_224 - - - -for l in {0.00,0.20,0.40,0.60,0.80,1.00};do - - - - new_base_log_dir=/lus/scratch/NAT/gda2204/SHARED/logs - exp_name=eval_caption_base_best_avg_postfuse_capvqa${l} - path=${new_base_log_dir}/ofa/pretrained_models/average_models/avg_postfuse_capvqa_l${l}.pt - - - echo ${path} - result_path=${new_base_log_dir}/ofa/results/caption/${exp_name}_${split} - - mkdir ${result_path} - - - - - - python3 -m torch.distributed.launch \ - --nnodes=${NUM_NODES} \ - --nproc_per_node=${GPUS_PER_NODE} \ - --master_port=${MASTER_PORT} \ - --node_rank=${RANK} \ - --master_addr=${MASTER_ADDR} \ - --use_env ${ofa_dir}/evaluate.py \ - ${data} \ - --path=${path} \ - --user-dir=${user_dir} \ - --task=caption \ - --batch-size=16 \ - --log-format=simple --log-interval=10 \ - --seed=7 \ - --gen-subset=${split} \ - --results-path=${result_path} \ - --beam=5 \ - --max-len-b=22 \ - --unnormalized \ - --no-repeat-ngram-size=3 \ - --fp16 \ - --num-workers=0 \ - --model-overrides="{\"data\":\"${data}\",\"bpe_dir\":\"${bpe_dir}\",\"eval_cider\":False,\"selected_cols\":\"${selected_cols}\"}" - - python ${ofa_dir}/run_scripts/caption/coco_eval.py ${result_path}/test_predict.json ${data_dir}/test_caption_coco_format.json - -done diff --git a/spaces/mthsk/sovits-models-misc/inference/infer_tool.py b/spaces/mthsk/sovits-models-misc/inference/infer_tool.py deleted file mode 100644 index fed81f5abb6f2f525af616171ee9838ae341cb5f..0000000000000000000000000000000000000000 --- a/spaces/mthsk/sovits-models-misc/inference/infer_tool.py +++ /dev/null @@ -1,324 +0,0 @@ -import hashlib -import io -import json -import logging -import os -import time -from pathlib import Path -from inference import slicer - -import librosa -import numpy as np -# import onnxruntime -import parselmouth -import soundfile -import torch -import torchaudio - -import cluster -from hubert import hubert_model -import utils -from models import SynthesizerTrn - -logging.getLogger('matplotlib').setLevel(logging.WARNING) - - -def read_temp(file_name): - if not os.path.exists(file_name): - with open(file_name, "w") as f: - f.write(json.dumps({"info": "temp_dict"})) - return {} - else: - try: - with open(file_name, "r") as f: - data = f.read() - data_dict = json.loads(data) - if os.path.getsize(file_name) > 50 * 1024 * 1024: - f_name = file_name.replace("\\", "/").split("/")[-1] - print(f"clean {f_name}") - for wav_hash in list(data_dict.keys()): - if int(time.time()) - int(data_dict[wav_hash]["time"]) > 14 * 24 * 3600: - del data_dict[wav_hash] - except Exception as e: - print(e) - print(f"{file_name} error,auto rebuild file") - data_dict = {"info": "temp_dict"} - return data_dict - - -def write_temp(file_name, data): - with open(file_name, "w") as f: - f.write(json.dumps(data)) - - -def timeit(func): - def run(*args, **kwargs): - t = time.time() - res = func(*args, **kwargs) - print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t)) - return res - - return run - - -def format_wav(audio_path): - if Path(audio_path).suffix == '.wav': - return - raw_audio, raw_sample_rate = librosa.load(audio_path, mono=True, sr=None) - soundfile.write(Path(audio_path).with_suffix(".wav"), raw_audio, raw_sample_rate) - - -def get_end_file(dir_path, end): - file_lists = [] - for root, dirs, files in os.walk(dir_path): - files = [f for f in files if f[0] != '.'] - dirs[:] = [d for d in dirs if d[0] != '.'] - for f_file in files: - if f_file.endswith(end): - file_lists.append(os.path.join(root, f_file).replace("\\", "/")) - return file_lists - - -def get_md5(content): - return hashlib.new("md5", content).hexdigest() - -def fill_a_to_b(a, b): - if len(a) < len(b): - for _ in range(0, len(b) - len(a)): - a.append(a[0]) - -def mkdir(paths: list): - for path in paths: - if not os.path.exists(path): - os.mkdir(path) - -def pad_array(arr, target_length): - current_length = arr.shape[0] - if current_length >= target_length: - return arr - else: - pad_width = target_length - current_length - pad_left = pad_width // 2 - pad_right = pad_width - pad_left - padded_arr = np.pad(arr, (pad_left, pad_right), 'constant', constant_values=(0, 0)) - return padded_arr - -def split_list_by_n(list_collection, n, pre=0): - for i in range(0, len(list_collection), n): - yield list_collection[i-pre if i-pre>=0 else i: i + n] - - -class F0FilterException(Exception): - pass - -class Svc(object): - def __init__(self, net_g_path, config_path, - device=None, - cluster_model_path="logs/44k/kmeans_10000.pt"): - self.net_g_path = net_g_path - if device is None: - self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu") - else: - self.dev = torch.device(device) - self.net_g_ms = None - self.hps_ms = utils.get_hparams_from_file(config_path) - self.target_sample = self.hps_ms.data.sampling_rate - self.hop_size = self.hps_ms.data.hop_length - self.spk2id = self.hps_ms.spk - # 加载hubert - self.hubert_model = utils.get_hubert_model().to(self.dev) - self.load_model() - if os.path.exists(cluster_model_path): - self.cluster_model = cluster.get_cluster_model(cluster_model_path) - - def load_model(self): - # 获取模型配置 - self.net_g_ms = SynthesizerTrn( - self.hps_ms.data.filter_length // 2 + 1, - self.hps_ms.train.segment_size // self.hps_ms.data.hop_length, - **self.hps_ms.model) - _ = utils.load_checkpoint(self.net_g_path, self.net_g_ms, None) - if "half" in self.net_g_path and torch.cuda.is_available(): - _ = self.net_g_ms.half().eval().to(self.dev) - else: - _ = self.net_g_ms.eval().to(self.dev) - - - - def get_unit_f0(self, in_path, tran, cluster_infer_ratio, speaker, f0_filter ,F0_mean_pooling): - - wav, sr = librosa.load(in_path, sr=self.target_sample) - - if F0_mean_pooling == True: - f0, uv = utils.compute_f0_uv_torchcrepe(torch.FloatTensor(wav), sampling_rate=self.target_sample, hop_length=self.hop_size,device=self.dev) - if f0_filter and sum(f0) == 0: - raise F0FilterException("未检测到人声") - f0 = torch.FloatTensor(list(f0)) - uv = torch.FloatTensor(list(uv)) - if F0_mean_pooling == False: - f0 = utils.compute_f0_parselmouth(wav, sampling_rate=self.target_sample, hop_length=self.hop_size) - if f0_filter and sum(f0) == 0: - raise F0FilterException("未检测到人声") - f0, uv = utils.interpolate_f0(f0) - f0 = torch.FloatTensor(f0) - uv = torch.FloatTensor(uv) - - f0 = f0 * 2 ** (tran / 12) - f0 = f0.unsqueeze(0).to(self.dev) - uv = uv.unsqueeze(0).to(self.dev) - - wav16k = librosa.resample(wav, orig_sr=self.target_sample, target_sr=16000) - wav16k = torch.from_numpy(wav16k).to(self.dev) - c = utils.get_hubert_content(self.hubert_model, wav_16k_tensor=wav16k) - c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1]) - - if cluster_infer_ratio !=0: - cluster_c = cluster.get_cluster_center_result(self.cluster_model, c.cpu().numpy().T, speaker).T - cluster_c = torch.FloatTensor(cluster_c).to(self.dev) - c = cluster_infer_ratio * cluster_c + (1 - cluster_infer_ratio) * c - - c = c.unsqueeze(0) - return c, f0, uv - - def infer(self, speaker, tran, raw_path, - cluster_infer_ratio=0, - auto_predict_f0=False, - noice_scale=0.4, - f0_filter=False, - F0_mean_pooling=False - ): - - speaker_id = self.spk2id.__dict__.get(speaker) - if not speaker_id and type(speaker) is int: - if len(self.spk2id.__dict__) >= speaker: - speaker_id = speaker - sid = torch.LongTensor([int(speaker_id)]).to(self.dev).unsqueeze(0) - c, f0, uv = self.get_unit_f0(raw_path, tran, cluster_infer_ratio, speaker, f0_filter,F0_mean_pooling) - if "half" in self.net_g_path and torch.cuda.is_available(): - c = c.half() - with torch.no_grad(): - start = time.time() - audio = self.net_g_ms.infer(c, f0=f0, g=sid, uv=uv, predict_f0=auto_predict_f0, noice_scale=noice_scale)[0,0].data.float() - use_time = time.time() - start - print("vits use time:{}".format(use_time)) - return audio, audio.shape[-1] - - def clear_empty(self): - # 清理显存 - torch.cuda.empty_cache() - - def slice_inference(self, - raw_audio_path, - spk, - tran, - slice_db, - cluster_infer_ratio, - auto_predict_f0, - noice_scale, - pad_seconds=0.5, - clip_seconds=0, - lg_num=0, - lgr_num =0.75, - F0_mean_pooling = False - ): - wav_path = raw_audio_path - chunks = slicer.cut(wav_path, db_thresh=slice_db) - audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks) - per_size = int(clip_seconds*audio_sr) - lg_size = int(lg_num*audio_sr) - lg_size_r = int(lg_size*lgr_num) - lg_size_c_l = (lg_size-lg_size_r)//2 - lg_size_c_r = lg_size-lg_size_r-lg_size_c_l - lg = np.linspace(0,1,lg_size_r) if lg_size!=0 else 0 - - audio = [] - for (slice_tag, data) in audio_data: - print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======') - # padd - length = int(np.ceil(len(data) / audio_sr * self.target_sample)) - if slice_tag: - print('jump empty segment') - _audio = np.zeros(length) - audio.extend(list(pad_array(_audio, length))) - continue - if per_size != 0: - datas = split_list_by_n(data, per_size,lg_size) - else: - datas = [data] - for k,dat in enumerate(datas): - per_length = int(np.ceil(len(dat) / audio_sr * self.target_sample)) if clip_seconds!=0 else length - if clip_seconds!=0: print(f'###=====segment clip start, {round(len(dat) / audio_sr, 3)}s======') - # padd - pad_len = int(audio_sr * pad_seconds) - dat = np.concatenate([np.zeros([pad_len]), dat, np.zeros([pad_len])]) - raw_path = io.BytesIO() - soundfile.write(raw_path, dat, audio_sr, format="wav") - raw_path.seek(0) - out_audio, out_sr = self.infer(spk, tran, raw_path, - cluster_infer_ratio=cluster_infer_ratio, - auto_predict_f0=auto_predict_f0, - noice_scale=noice_scale, - F0_mean_pooling = F0_mean_pooling - ) - _audio = out_audio.cpu().numpy() - pad_len = int(self.target_sample * pad_seconds) - _audio = _audio[pad_len:-pad_len] - _audio = pad_array(_audio, per_length) - if lg_size!=0 and k!=0: - lg1 = audio[-(lg_size_r+lg_size_c_r):-lg_size_c_r] if lgr_num != 1 else audio[-lg_size:] - lg2 = _audio[lg_size_c_l:lg_size_c_l+lg_size_r] if lgr_num != 1 else _audio[0:lg_size] - lg_pre = lg1*(1-lg)+lg2*lg - audio = audio[0:-(lg_size_r+lg_size_c_r)] if lgr_num != 1 else audio[0:-lg_size] - audio.extend(lg_pre) - _audio = _audio[lg_size_c_l+lg_size_r:] if lgr_num != 1 else _audio[lg_size:] - audio.extend(list(_audio)) - return np.array(audio) - -class RealTimeVC: - def __init__(self): - self.last_chunk = None - self.last_o = None - self.chunk_len = 16000 # 区块长度 - self.pre_len = 3840 # 交叉淡化长度,640的倍数 - - """输入输出都是1维numpy 音频波形数组""" - - def process(self, svc_model, speaker_id, f_pitch_change, input_wav_path, - cluster_infer_ratio=0, - auto_predict_f0=False, - noice_scale=0.4, - f0_filter=False): - - import maad - audio, sr = torchaudio.load(input_wav_path) - audio = audio.cpu().numpy()[0] - temp_wav = io.BytesIO() - if self.last_chunk is None: - input_wav_path.seek(0) - - audio, sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path, - cluster_infer_ratio=cluster_infer_ratio, - auto_predict_f0=auto_predict_f0, - noice_scale=noice_scale, - f0_filter=f0_filter) - - audio = audio.cpu().numpy() - self.last_chunk = audio[-self.pre_len:] - self.last_o = audio - return audio[-self.chunk_len:] - else: - audio = np.concatenate([self.last_chunk, audio]) - soundfile.write(temp_wav, audio, sr, format="wav") - temp_wav.seek(0) - - audio, sr = svc_model.infer(speaker_id, f_pitch_change, temp_wav, - cluster_infer_ratio=cluster_infer_ratio, - auto_predict_f0=auto_predict_f0, - noice_scale=noice_scale, - f0_filter=f0_filter) - - audio = audio.cpu().numpy() - ret = maad.util.crossfade(self.last_o, audio, self.pre_len) - self.last_chunk = audio[-self.pre_len:] - self.last_o = audio - return ret[self.chunk_len:2 * self.chunk_len] diff --git a/spaces/mygyasir/Real-Time-Voice-Cloning/encoder/data_objects/speaker_verification_dataset.py b/spaces/mygyasir/Real-Time-Voice-Cloning/encoder/data_objects/speaker_verification_dataset.py deleted file mode 100644 index 77a6e05eae6a939ae7575ae70b7173644141fffe..0000000000000000000000000000000000000000 --- a/spaces/mygyasir/Real-Time-Voice-Cloning/encoder/data_objects/speaker_verification_dataset.py +++ /dev/null @@ -1,56 +0,0 @@ -from encoder.data_objects.random_cycler import RandomCycler -from encoder.data_objects.speaker_batch import SpeakerBatch -from encoder.data_objects.speaker import Speaker -from encoder.params_data import partials_n_frames -from torch.utils.data import Dataset, DataLoader -from pathlib import Path - -# TODO: improve with a pool of speakers for data efficiency - -class SpeakerVerificationDataset(Dataset): - def __init__(self, datasets_root: Path): - self.root = datasets_root - speaker_dirs = [f for f in self.root.glob("*") if f.is_dir()] - if len(speaker_dirs) == 0: - raise Exception("No speakers found. Make sure you are pointing to the directory " - "containing all preprocessed speaker directories.") - self.speakers = [Speaker(speaker_dir) for speaker_dir in speaker_dirs] - self.speaker_cycler = RandomCycler(self.speakers) - - def __len__(self): - return int(1e10) - - def __getitem__(self, index): - return next(self.speaker_cycler) - - def get_logs(self): - log_string = "" - for log_fpath in self.root.glob("*.txt"): - with log_fpath.open("r") as log_file: - log_string += "".join(log_file.readlines()) - return log_string - - -class SpeakerVerificationDataLoader(DataLoader): - def __init__(self, dataset, speakers_per_batch, utterances_per_speaker, sampler=None, - batch_sampler=None, num_workers=0, pin_memory=False, timeout=0, - worker_init_fn=None): - self.utterances_per_speaker = utterances_per_speaker - - super().__init__( - dataset=dataset, - batch_size=speakers_per_batch, - shuffle=False, - sampler=sampler, - batch_sampler=batch_sampler, - num_workers=num_workers, - collate_fn=self.collate, - pin_memory=pin_memory, - drop_last=False, - timeout=timeout, - worker_init_fn=worker_init_fn - ) - - def collate(self, speakers): - return SpeakerBatch(speakers, self.utterances_per_speaker, partials_n_frames) - \ No newline at end of file diff --git a/spaces/netiMophi/DreamlikeArt-Diffusion-1.0/Aladdin (1992) [MicroHD 1080p][DUAL]l.md b/spaces/netiMophi/DreamlikeArt-Diffusion-1.0/Aladdin (1992) [MicroHD 1080p][DUAL]l.md deleted file mode 100644 index 4a5c0dc8fd4da12050f48633f299c6610d8f02ea..0000000000000000000000000000000000000000 --- a/spaces/netiMophi/DreamlikeArt-Diffusion-1.0/Aladdin (1992) [MicroHD 1080p][DUAL]l.md +++ /dev/null @@ -1,15 +0,0 @@ - -

    Aladdin (1992) [MicroHD 1080p][DUAL]l: A Classic Disney Animated Film in High Definition

    -

    Aladdin is a 1992 American animated musical fantasy film produced by Walt Disney Feature Animation and released by Walt Disney Pictures. The film is the 31st Disney animated feature film, and was the fourth produced during the Disney film era known as the Disney Renaissance. It was produced and directed by Ron Clements and John Musker, and is based on the Arabic folktale of the same name from the One Thousand and One Nights. The voice cast features Scott Weinger, Robin Williams, Linda Larkin, Jonathan Freeman, Frank Welker, Gilbert Gottfried and Douglas Seale.

    -

    The film follows Aladdin, an Arabian street urchin, who finds a magic lamp containing a genie. He disguises himself as a wealthy prince, and tries to impress the Sultan and his daughter. The film also features the villainous Jafar, who schemes to overthrow the Sultan and take over Agrabah. The film was a critical and commercial success, grossing over $504 million worldwide and becoming the highest-grossing film of 1992. It also won two Academy Awards for Best Original Score and Best Original Song for "A Whole New World".

    -

    Aladdin (1992) [MicroHD 1080p][DUAL]l


    Download ►►► https://urlcod.com/2uI9RV



    -

    Aladdin (1992) [MicroHD 1080p][DUAL]l is a high-definition version of the film that features both English and Spanish audio tracks. The MicroHD format is a compressed version of Blu-ray that retains most of the quality while reducing the file size. The film has a resolution of 1920x1080 pixels and a frame rate of 60 frames per second. The file size is about 5.96 GB. The film can be downloaded from various torrent sites or online platforms[^1^].

    -

    Aladdin (1992) [MicroHD 1080p][DUAL]l is a great way to enjoy this classic Disney animated film in high definition. The film has stunning animation, memorable songs, and a hilarious performance by Robin Williams as the genie. The film also has a strong message of being true to oneself and not judging by appearances. Aladdin is a timeless tale that appeals to audiences of all ages.

    - -

    The original film was followed by two direct-to-video sequels: The Return of Jafar (1994) and Aladdin and the King of Thieves (1996). The Return of Jafar continues the story of Aladdin and Jasmine, who face a new threat from Jafar, who has escaped from the lamp and seeks revenge. The film also introduces a new character, Iago, Jafar's former parrot who switches sides and becomes Aladdin's friend. Aladdin and the King of Thieves reveals the identity of Aladdin's long-lost father, Cassim, who is the leader of a band of thieves known as the Forty Thieves. Aladdin joins his father on a quest to find the Hand of Midas, a powerful artifact that can turn anything into gold.

    -

    Both sequels received mixed reviews from critics and fans, who felt that they lacked the quality and charm of the original film. However, they were commercially successful and spawned a television series that aired from 1994 to 1995. The series followed the adventures of Aladdin, Jasmine, Genie, Abu, Iago, and Carpet as they faced various enemies and challenges in Agrabah and beyond. The series also featured crossover episodes with other Disney characters, such as Hercules and Mozenrath.

    -

    -

    In 2019, Disney released a live-action remake of Aladdin, directed by Guy Ritchie and starring Mena Massoud as Aladdin, Naomi Scott as Jasmine, Will Smith as Genie, Marwan Kenzari as Jafar, Navid Negahban as Sultan, Nasim Pedrad as Dalia, Billy Magnussen as Prince Anders, and Numan Acar as Hakim. The remake follows the same plot as the original film but adds some new elements, such as giving Jasmine more agency and ambition, expanding Genie's backstory and romance with Dalia, Jasmine's handmaiden, and introducing new songs by Alan Menken, Benj Pasek and Justin Paul.

    -

    The remake was met with mixed reviews from critics, who praised the performances of Massoud and Scott, the production design and costumes, and some of the musical numbers but criticized Ritchie's direction, Smith's portrayal of Genie compared to Williams', and some of the changes to the original story. The remake was a huge box-office success, grossing over $1 billion worldwide and becoming one of the highest-grossing films of 2019. A sequel to the remake is currently in development at Disney.

    7b8c122e87
    -
    -
    \ No newline at end of file diff --git a/spaces/netiMophi/DreamlikeArt-Diffusion-1.0/Cantar Oir Y Escribir Walter Kolneder Pdf.17.md b/spaces/netiMophi/DreamlikeArt-Diffusion-1.0/Cantar Oir Y Escribir Walter Kolneder Pdf.17.md deleted file mode 100644 index 907314956278bb3c9af8d108f73900062d843c86..0000000000000000000000000000000000000000 --- a/spaces/netiMophi/DreamlikeArt-Diffusion-1.0/Cantar Oir Y Escribir Walter Kolneder Pdf.17.md +++ /dev/null @@ -1,12 +0,0 @@ -
    -

    Cantar, Oir, Escribir: Un libro de ejercicios para aprender música

    -

    Cantar, Oir, Escribir es un libro de ejercicios para aprender música de forma práctica y divertida. El autor, Walter Kolneder, es un reconocido pedagogo musical que ha adaptado el método Singen, Hören, Schreiben de la escuela alemana al idioma español. El libro se divide en dos partes: el Libro Primero y el Libro Segundo, cada uno con su propio cuaderno de ejercicios.

    -

    cantar oir y escribir walter kolneder pdf.17


    Download Zip ★★★ https://urlcod.com/2uIaSm



    -

    El Libro Primero está dirigido a principiantes y abarca los conceptos básicos de la teoría musical, como el pentagrama, las claves, las notas, los valores, los compases, los intervalos y las escalas. El Libro Segundo está pensado para alumnos más avanzados y profundiza en temas como las alteraciones, los acordes, las cadencias, las modulaciones y las formas musicales. En ambos libros se combinan ejercicios de lectura, escritura, audición y canto de melodías y ritmos.

    -

    Cantar, Oir, Escribir es un libro que se puede usar tanto en clases colectivas como individuales, y que fomenta el desarrollo de las habilidades musicales de forma lúdica y creativa. El autor propone una serie de juegos y actividades que estimulan la memoria, la atención, la imaginación y el sentido crítico de los alumnos. Además, el libro incluye numerosos ejemplos musicales extraídos de obras clásicas y populares de diferentes épocas y estilos.

    -

    El libro se puede adquirir en formato PDF a través de la plataforma Scribd[^2^] [^3^], o en formato impreso a través de la editorial Kimpres[^1^]. El precio del PDF es de 17 dólares americanos, mientras que el precio del libro impreso varía según el país de envío. El libro cuenta con el aval de la Asociación Mundial de las Guías Scouts[^2^], que lo recomienda como un recurso didáctico para el desarrollo personal y el bienestar.

    Si quieres aprender más sobre el libro Cantar, Oir, Escribir, puedes visitar el blog del autor, Walter Kolneder, donde encontrarás artículos, vídeos y audios relacionados con el método Singen, Hören, Schreiben. El blog está en alemán, pero se puede traducir al español con la ayuda de un traductor online. El autor también responde a las dudas y comentarios de los lectores que quieran compartir sus experiencias con el libro.

    -

    Otra forma de complementar el aprendizaje musical es participar en algún coro o grupo vocal que te permita practicar el canto y la lectura a primera vista. También puedes buscar cursos online de solfeo, armonía o composición que te ofrezcan una formación más teórica y sistemática. Hay muchas opciones disponibles en Internet, tanto gratuitas como de pago, que se adaptan a diferentes niveles y objetivos.

    -

    -

    Lo más importante es que disfrutes de la música y que la conviertas en una parte de tu vida. La música es un lenguaje universal que te permite expresarte, comunicarte y conectar con otras personas. La música también es una fuente de placer, relajación y bienestar. Por eso, te animo a que sigas aprendiendo y explorando este maravilloso mundo con Cantar, Oir, Escribir.

    7b8c122e87
    -
    -
    \ No newline at end of file diff --git a/spaces/netiMophi/DreamlikeArt-Diffusion-1.0/Lockon Flaming Cliffs 2 Serial Number.md b/spaces/netiMophi/DreamlikeArt-Diffusion-1.0/Lockon Flaming Cliffs 2 Serial Number.md deleted file mode 100644 index b6b0ee7bd35502ad303e14d5ea9a29b81b84591b..0000000000000000000000000000000000000000 --- a/spaces/netiMophi/DreamlikeArt-Diffusion-1.0/Lockon Flaming Cliffs 2 Serial Number.md +++ /dev/null @@ -1,31 +0,0 @@ - -

    How to Activate Lockon Flaming Cliffs 2 with a Serial Number

    -

    Lockon Flaming Cliffs 2 is a flight simulation game that features realistic aircraft models, missions and campaigns. It is an evolution of Lockon Flaming Cliffs, which was based on the Lockon: Modern Air Combat series. To play Lockon Flaming Cliffs 2, you need to activate it with a serial number that you can purchase from the official website or other online stores.

    -

    Lockon Flaming Cliffs 2 Serial Number


    Downloadhttps://urlcod.com/2uIbWl



    -

    In this article, we will show you how to activate Lockon Flaming Cliffs 2 with a serial number using two methods: automatic and manual. Automatic activation is the easiest and most common way, but it requires an internet connection on the PC where you installed the game. Manual activation is useful when you don't have an internet connection or when you encounter some problems with the automatic activation.

    -

    Automatic Activation

    -
      -
    1. After installing Lockon Flaming Cliffs 2, run the program by clicking on the desktop shortcut, the program group shortcut, or the quick start shortcut.
    2. -
    3. A StarForce activation window will appear (Fig.1). Click on the "Automatically" button.
    4. -
    5. Enter your serial number in the field at the bottom of the next window (Fig.2). The serial number is displayed under the Lockon Flaming Cliffs 2 file icon on the lockon.co.uk site, after completing payment. To ensure that you have entered the serial number correctly, copy and paste it from the website into the activation field. Then click on the "Activate" button.
    6. -
    7. The program will be activated if you have an internet connection and there are no conflicts between the StarForce protection system and your PC configuration.
    8. -
    -

    Manual Activation

    -
      -
    1. If you don't have an internet connection or if you encounter some errors during the automatic activation, you can use the manual activation mode. To do so, click on the "Manually" button on the first StarForce window (Fig.1).
    2. -
    3. A new window will appear (Fig.7) with a hardware code and a link to a web page where you can generate an activation code. Copy the hardware code and paste it into the web page. Then enter your serial number and your email address. Click on the "Generate" button.
    4. -
    5. You will receive an email with an activation code. Copy and paste it into the field at the bottom of the window (Fig.7). Then click on the "Activate" button.
    6. -
    7. The program will be activated if you have entered a valid activation code.
    8. -
    -

    Troubleshooting

    -

    If you still have problems activating Lockon Flaming Cliffs 2, you can try some of these steps:

    -
      -
    • Make sure that you have entered your serial number correctly. Check for any typos or extra spaces.
    • -
    • Make sure that your internet connection is stable and working properly.
    • -
    • Make sure that your firewall or antivirus software is not blocking or interfering with the StarForce protection system.
    • -
    • Make sure that your PC configuration meets the minimum requirements for running Lockon Flaming Cliffs 2.
    • -
    • If none of these steps work, you can contact support@eagle.ru for further assistance. You may need to provide some information about your system, such as a report generated by clicking on the "Information" button on the StarForce error window (Fig.3).
    • -

    -

    7196e7f11a
    -
    -
    \ No newline at end of file diff --git a/spaces/netiMophi/DreamlikeArt-Diffusion-1.0/Mastering Engineering Statics Homework Solutions.md b/spaces/netiMophi/DreamlikeArt-Diffusion-1.0/Mastering Engineering Statics Homework Solutions.md deleted file mode 100644 index b73a8fa28027f5788ade24367c255740cb2c35f8..0000000000000000000000000000000000000000 --- a/spaces/netiMophi/DreamlikeArt-Diffusion-1.0/Mastering Engineering Statics Homework Solutions.md +++ /dev/null @@ -1,30 +0,0 @@ -
    -

    How to Master Engineering Statics Homework Solutions

    -

    Engineering statics is the study of forces and moments on rigid bodies in equilibrium. It is a fundamental topic for engineers who need to design and analyze structures, machines, and systems. However, engineering statics homework can be challenging and time-consuming for many students. That's why we have compiled some tips and resources to help you master engineering statics homework solutions.

    -

    Understand the Concepts and Principles

    -

    The first step to mastering engineering statics homework solutions is to understand the concepts and principles behind them. You should review the lectures, notes, textbooks, and online tutorials that cover the topics of free-body diagrams, equilibrium equations, force systems, trusses, frames, machines, centroids, moments of inertia, friction, and virtual work. You should also practice solving simple problems that illustrate these concepts and principles.

    -

    Mastering Engineering Statics Homework Solutions


    Download File ⚹⚹⚹ https://urlcod.com/2uI9yG



    -

    Apply the Problem-Solving Strategy

    -

    The second step to mastering engineering statics homework solutions is to apply a systematic problem-solving strategy. A common strategy is to follow these steps:

    -
      -
    1. Read the problem carefully and identify the given information and the unknowns.
    2. -
    3. Draw a free-body diagram of the body or system in equilibrium and label all the forces and moments acting on it.
    4. -
    5. Write the equilibrium equations for the forces and moments in the x-, y-, and z-directions.
    6. -
    7. Solve the equilibrium equations for the unknowns using algebra or matrix methods.
    8. -
    9. Check the solution for accuracy and consistency with the given information and physical intuition.
    10. -
    -

    You should also use appropriate units, signs, and significant figures throughout the problem-solving process.

    -

    Use Online Tools and Resources

    -

    The third step to mastering engineering statics homework solutions is to use online tools and resources that can assist you with your homework. Some of these tools and resources are:

    -
      -
    • Wolfram Alpha: A computational knowledge engine that can solve equations, perform calculations, plot graphs, and provide step-by-step solutions.
    • -
    • Symbolab: A math solver that can solve equations, simplify expressions, find derivatives, integrals, limits, and more.
    • -
    • Chegg: A platform that provides textbook solutions, expert answers, video tutorials, and study guides for engineering statics and other subjects.
    • -
    • Coursera: An online learning platform that offers courses on engineering mechanics: statics from leading universities and instructors.
    • -
    -

    However, you should use these tools and resources wisely and responsibly. You should not rely on them to do your homework for you or to copy the solutions without understanding them. You should use them to check your work, learn from your mistakes, and enhance your understanding.

    -

    Conclusion

    -

    Engineering statics is an important subject for engineers who need to design and analyze structures, machines, and systems. However, it can also be a challenging subject for students who need to complete homework assignments. By following these tips and resources, you can master engineering statics homework solutions and improve your grades and skills.

    -

    e93f5a0c3f
    -
    -
    \ No newline at end of file diff --git a/spaces/nikitaPDL2023/assignment4/detectron2/tests/modeling/test_anchor_generator.py b/spaces/nikitaPDL2023/assignment4/detectron2/tests/modeling/test_anchor_generator.py deleted file mode 100644 index 13a808e587382216da6fe7ee957603f448172657..0000000000000000000000000000000000000000 --- a/spaces/nikitaPDL2023/assignment4/detectron2/tests/modeling/test_anchor_generator.py +++ /dev/null @@ -1,120 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -import logging -import unittest -import torch - -from detectron2.config import get_cfg -from detectron2.layers import ShapeSpec -from detectron2.modeling.anchor_generator import DefaultAnchorGenerator, RotatedAnchorGenerator - -logger = logging.getLogger(__name__) - - -class TestAnchorGenerator(unittest.TestCase): - def test_default_anchor_generator(self): - cfg = get_cfg() - cfg.MODEL.ANCHOR_GENERATOR.SIZES = [[32, 64]] - cfg.MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS = [[0.25, 1, 4]] - - anchor_generator = DefaultAnchorGenerator(cfg, [ShapeSpec(stride=4)]) - - # only the last two dimensions of features matter here - num_images = 2 - features = {"stage3": torch.rand(num_images, 96, 1, 2)} - anchors = anchor_generator([features["stage3"]]) - expected_anchor_tensor = torch.tensor( - [ - [-32.0, -8.0, 32.0, 8.0], - [-16.0, -16.0, 16.0, 16.0], - [-8.0, -32.0, 8.0, 32.0], - [-64.0, -16.0, 64.0, 16.0], - [-32.0, -32.0, 32.0, 32.0], - [-16.0, -64.0, 16.0, 64.0], - [-28.0, -8.0, 36.0, 8.0], # -28.0 == -32.0 + STRIDE (4) - [-12.0, -16.0, 20.0, 16.0], - [-4.0, -32.0, 12.0, 32.0], - [-60.0, -16.0, 68.0, 16.0], - [-28.0, -32.0, 36.0, 32.0], - [-12.0, -64.0, 20.0, 64.0], - ] - ) - - self.assertTrue(torch.allclose(anchors[0].tensor, expected_anchor_tensor)) - - def test_default_anchor_generator_centered(self): - # test explicit args - anchor_generator = DefaultAnchorGenerator( - sizes=[32, 64], aspect_ratios=[0.25, 1, 4], strides=[4] - ) - - # only the last two dimensions of features matter here - num_images = 2 - features = {"stage3": torch.rand(num_images, 96, 1, 2)} - expected_anchor_tensor = torch.tensor( - [ - [-30.0, -6.0, 34.0, 10.0], - [-14.0, -14.0, 18.0, 18.0], - [-6.0, -30.0, 10.0, 34.0], - [-62.0, -14.0, 66.0, 18.0], - [-30.0, -30.0, 34.0, 34.0], - [-14.0, -62.0, 18.0, 66.0], - [-26.0, -6.0, 38.0, 10.0], - [-10.0, -14.0, 22.0, 18.0], - [-2.0, -30.0, 14.0, 34.0], - [-58.0, -14.0, 70.0, 18.0], - [-26.0, -30.0, 38.0, 34.0], - [-10.0, -62.0, 22.0, 66.0], - ] - ) - - anchors = anchor_generator([features["stage3"]]) - self.assertTrue(torch.allclose(anchors[0].tensor, expected_anchor_tensor)) - - anchors = torch.jit.script(anchor_generator)([features["stage3"]]) - self.assertTrue(torch.allclose(anchors[0].tensor, expected_anchor_tensor)) - - def test_rrpn_anchor_generator(self): - cfg = get_cfg() - cfg.MODEL.ANCHOR_GENERATOR.SIZES = [[32, 64]] - cfg.MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS = [[0.25, 1, 4]] - cfg.MODEL.ANCHOR_GENERATOR.ANGLES = [0, 45] # test single list[float] - anchor_generator = RotatedAnchorGenerator(cfg, [ShapeSpec(stride=4)]) - - # only the last two dimensions of features matter here - num_images = 2 - features = {"stage3": torch.rand(num_images, 96, 1, 2)} - anchors = anchor_generator([features["stage3"]]) - expected_anchor_tensor = torch.tensor( - [ - [0.0, 0.0, 64.0, 16.0, 0.0], - [0.0, 0.0, 64.0, 16.0, 45.0], - [0.0, 0.0, 32.0, 32.0, 0.0], - [0.0, 0.0, 32.0, 32.0, 45.0], - [0.0, 0.0, 16.0, 64.0, 0.0], - [0.0, 0.0, 16.0, 64.0, 45.0], - [0.0, 0.0, 128.0, 32.0, 0.0], - [0.0, 0.0, 128.0, 32.0, 45.0], - [0.0, 0.0, 64.0, 64.0, 0.0], - [0.0, 0.0, 64.0, 64.0, 45.0], - [0.0, 0.0, 32.0, 128.0, 0.0], - [0.0, 0.0, 32.0, 128.0, 45.0], - [4.0, 0.0, 64.0, 16.0, 0.0], # 4.0 == 0.0 + STRIDE (4) - [4.0, 0.0, 64.0, 16.0, 45.0], - [4.0, 0.0, 32.0, 32.0, 0.0], - [4.0, 0.0, 32.0, 32.0, 45.0], - [4.0, 0.0, 16.0, 64.0, 0.0], - [4.0, 0.0, 16.0, 64.0, 45.0], - [4.0, 0.0, 128.0, 32.0, 0.0], - [4.0, 0.0, 128.0, 32.0, 45.0], - [4.0, 0.0, 64.0, 64.0, 0.0], - [4.0, 0.0, 64.0, 64.0, 45.0], - [4.0, 0.0, 32.0, 128.0, 0.0], - [4.0, 0.0, 32.0, 128.0, 45.0], - ] - ) - - self.assertTrue(torch.allclose(anchors[0].tensor, expected_anchor_tensor)) - - -if __name__ == "__main__": - unittest.main() diff --git a/spaces/nomic-ai/0xJustin_Dungeons-and-Diffusion/index.html b/spaces/nomic-ai/0xJustin_Dungeons-and-Diffusion/index.html deleted file mode 100644 index 21a24a471ad52b53cb0ff8280fa51a71d7d8245f..0000000000000000000000000000000000000000 --- a/spaces/nomic-ai/0xJustin_Dungeons-and-Diffusion/index.html +++ /dev/null @@ -1,42 +0,0 @@ - - - - 0xJustin/Dungeons-and-Diffusion - - - - -
    - -
    - - - \ No newline at end of file diff --git a/spaces/nota-ai/compressed-wav2lip/face_detection/detection/sfd/sfd_detector.py b/spaces/nota-ai/compressed-wav2lip/face_detection/detection/sfd/sfd_detector.py deleted file mode 100644 index 8fbce15253251d403754ab4348f93ae85a6ba2fb..0000000000000000000000000000000000000000 --- a/spaces/nota-ai/compressed-wav2lip/face_detection/detection/sfd/sfd_detector.py +++ /dev/null @@ -1,59 +0,0 @@ -import os -import cv2 -from torch.utils.model_zoo import load_url - -from ..core import FaceDetector - -from .net_s3fd import s3fd -from .bbox import * -from .detect import * - -models_urls = { - 's3fd': 'https://www.adrianbulat.com/downloads/python-fan/s3fd-619a316812.pth', -} - - -class SFDDetector(FaceDetector): - def __init__(self, device, path_to_detector=os.path.join(os.path.dirname(os.path.abspath(__file__)), 's3fd.pth'), verbose=False): - super(SFDDetector, self).__init__(device, verbose) - - # Initialise the face detector - if not os.path.isfile(path_to_detector): - model_weights = load_url(models_urls['s3fd']) - else: - model_weights = torch.load(path_to_detector) - - self.face_detector = s3fd() - self.face_detector.load_state_dict(model_weights) - self.face_detector.to(device) - self.face_detector.eval() - - def detect_from_image(self, tensor_or_path): - image = self.tensor_or_path_to_ndarray(tensor_or_path) - - bboxlist = detect(self.face_detector, image, device=self.device) - keep = nms(bboxlist, 0.3) - bboxlist = bboxlist[keep, :] - bboxlist = [x for x in bboxlist if x[-1] > 0.5] - - return bboxlist - - def detect_from_batch(self, images): - bboxlists = batch_detect(self.face_detector, images, device=self.device) - keeps = [nms(bboxlists[:, i, :], 0.3) for i in range(bboxlists.shape[1])] - bboxlists = [bboxlists[keep, i, :] for i, keep in enumerate(keeps)] - bboxlists = [[x for x in bboxlist if x[-1] > 0.5] for bboxlist in bboxlists] - - return bboxlists - - @property - def reference_scale(self): - return 195 - - @property - def reference_x_shift(self): - return 0 - - @property - def reference_y_shift(self): - return 0 diff --git a/spaces/onliner/QR-generator/app.py b/spaces/onliner/QR-generator/app.py deleted file mode 100644 index 3bc30a610011d19119c52152f995b386153ef7d4..0000000000000000000000000000000000000000 --- a/spaces/onliner/QR-generator/app.py +++ /dev/null @@ -1,371 +0,0 @@ -import torch -import gradio as gr -from PIL import Image -import qrcode -from pathlib import Path -from multiprocessing import cpu_count -import requests -import io -import os -from PIL import Image - -from diffusers import ( - StableDiffusionPipeline, - StableDiffusionControlNetImg2ImgPipeline, - ControlNetModel, - DDIMScheduler, - DPMSolverMultistepScheduler, - DEISMultistepScheduler, - HeunDiscreteScheduler, - EulerDiscreteScheduler, -) - -API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1" -HF_TOKEN = os.environ.get("HF_TOKEN") - -headers = {"Authorization": f"Bearer {HF_TOKEN}"} - -def query(payload): - response = requests.post(API_URL, headers=headers, json=payload) - return response.content - -qrcode_generator = qrcode.QRCode( - version=1, - error_correction=qrcode.ERROR_CORRECT_H, - box_size=10, - border=4, -) - -controlnet = ControlNetModel.from_pretrained( - "DionTimmer/controlnet_qrcode-control_v1p_sd15", torch_dtype=torch.float16 -) - -pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( - "runwayml/stable-diffusion-v1-5", - controlnet=controlnet, - safety_checker=None, - torch_dtype=torch.float16, -).to("cuda") -pipe.enable_xformers_memory_efficient_attention() - - -def resize_for_condition_image(input_image: Image.Image, resolution: int): - input_image = input_image.convert("RGB") - W, H = input_image.size - k = float(resolution) / min(H, W) - H *= k - W *= k - H = int(round(H / 64.0)) * 64 - W = int(round(W / 64.0)) * 64 - img = input_image.resize((W, H), resample=Image.LANCZOS) - return img - - -SAMPLER_MAP = { - "DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"), - "DPM++ Karras": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True), - "Heun": lambda config: HeunDiscreteScheduler.from_config(config), - "Euler": lambda config: EulerDiscreteScheduler.from_config(config), - "DDIM": lambda config: DDIMScheduler.from_config(config), - "DEIS": lambda config: DEISMultistepScheduler.from_config(config), -} - - -def inference( - qr_code_content: str, - prompt: str, - negative_prompt: str, - guidance_scale: float = 10.0, - controlnet_conditioning_scale: float = 2.0, - strength: float = 0.8, - seed: int = -1, - init_image: Image.Image | None = None, - qrcode_image: Image.Image | None = None, - use_qr_code_as_init_image = True, - sampler = "DPM++ Karras SDE", -): - if prompt is None or prompt == "": - raise gr.Error("Prompt is required") - - if qrcode_image is None and qr_code_content == "": - raise gr.Error("QR Code Image or QR Code Content is required") - - pipe.scheduler = SAMPLER_MAP[sampler](pipe.scheduler.config) - - generator = torch.manual_seed(seed) if seed != -1 else torch.Generator() - - if qr_code_content != "" or qrcode_image.size == (1, 1): - print("Generating QR Code from content") - qr = qrcode.QRCode( - version=1, - error_correction=qrcode.constants.ERROR_CORRECT_H, - box_size=10, - border=4, - ) - qr.add_data(qr_code_content) - qr.make(fit=True) - - qrcode_image = qr.make_image(fill_color="black", back_color="white") - qrcode_image = resize_for_condition_image(qrcode_image, 768) - else: - print("Using QR Code Image") - qrcode_image = resize_for_condition_image(qrcode_image, 768) - - # hack due to gradio examples - if use_qr_code_as_init_image: - init_image = qrcode_image - elif init_image is None or init_image.size == (1, 1): - print("Generating random image from prompt using Stable Diffusion 2.1 via Inference API") - # generate image from prompt - image_bytes = query({"inputs": prompt}) - init_image = Image.open(io.BytesIO(image_bytes)) - else: - print("Using provided init image") - init_image = resize_for_condition_image(init_image, 768) - - out = pipe( - prompt=prompt, - negative_prompt=negative_prompt, - image=qrcode_image, - control_image=qrcode_image, # type: ignore - width=768, # type: ignore - height=768, # type: ignore - guidance_scale=float(guidance_scale), - controlnet_conditioning_scale=float(controlnet_conditioning_scale), # type: ignore - generator=generator, - strength=float(strength), - num_inference_steps=40, - ) - return out.images[0] # type: ignore - - -with gr.Blocks() as blocks: - gr.Markdown( - """ -# QR Code AI Art Generator - -## 💡 How to generate beautiful QR codes - -There are two modes to generate beautiful QR codes: - -**1. Blend-in mode**. -Use the QR code image as the initial image **and** the control image. -When using the QR code as both the init and control image, you can get QR Codes that blend in **very** naturally with your provided prompt. -The strength parameter defines how much noise is added to your QR code and the noisy QR code is then guided towards both your prompt and the QR code image via Controlnet. -Make sure to leave the radio *Use QR code as init image* checked and use a high strength value (between 0.8 and 0.95) and choose a lower conditioning scale (between 0.6 and 2.0). -This mode arguably achieves the asthetically most appealing images, but also requires more tuning of the controlnet conditioning scale and the strength value. If the generated image -looks way to much like the original QR code, make sure to gently increase the *strength* value and reduce the *conditioning* scale. Also check out the examples below. - -**2. Condition-only mode**. -Use the QR code image **only** as the control image and denoise from a provided initial image. -When providing an initial image or letting SD 2.1 generate the initial image, you have much more freedom to decide how the generated QR code can look like depending on your provided image. -This mode allows you to stongly steer the generated QR code into a style, landscape, motive that you provided before-hand. This mode tends to generate QR codes that -are less *"blend-in"* with the QR code itself. Make sure to choose high controlnet conditioning scales between 1.5 and 5.0 and lower strength values between 0.5 and 0.7. Also check examples below. - -model: https://huggingface.co/DionTimmer/controlnet_qrcode-control_v1p_sd15 - - -Duplicate Space for no queue on your own hardware.

    - """ - ) - - with gr.Row(): - with gr.Column(): - qr_code_content = gr.Textbox( - label="QR Code Content", - info="QR Code Content or URL", - value="", - ) - with gr.Accordion(label="QR Code Image (Optional)", open=False): - qr_code_image = gr.Image( - label="QR Code Image (Optional). Leave blank to automatically generate QR code", - type="pil", - ) - - prompt = gr.Textbox( - label="Prompt", - info="Prompt that guides the generation towards", - ) - negative_prompt = gr.Textbox( - label="Negative Prompt", - value="ugly, disfigured, low quality, blurry, nsfw", - ) - use_qr_code_as_init_image = gr.Checkbox(label="Use QR code as init image", value=True, interactive=True, info="Whether init image should be QR code. Unclick to pass init image or generate init image with Stable Diffusion 2.1") - - with gr.Accordion(label="Init Images (Optional)", open=False, visible=False) as init_image_acc: - init_image = gr.Image(label="Init Image (Optional). Leave blank to generate image with SD 2.1", type="pil") - - def change_view(qr_code_as_image: bool): - if not qr_code_as_image: - return {init_image_acc: gr.update(visible=True)} - else: - return {init_image_acc: gr.update(visible=False)} - - use_qr_code_as_init_image.change(change_view, inputs=[use_qr_code_as_init_image], outputs=[init_image_acc]) - - with gr.Accordion( - label="Params: The generated QR Code functionality is largely influenced by the parameters detailed below", - open=True, - ): - controlnet_conditioning_scale = gr.Slider( - minimum=0.0, - maximum=5.0, - step=0.01, - value=1.1, - label="Controlnet Conditioning Scale", - ) - strength = gr.Slider( - minimum=0.0, maximum=1.0, step=0.01, value=0.9, label="Strength" - ) - guidance_scale = gr.Slider( - minimum=0.0, - maximum=50.0, - step=0.25, - value=7.5, - label="Guidance Scale", - ) - sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="DPM++ Karras SDE") - seed = gr.Slider( - minimum=-1, - maximum=9999999999, - step=1, - value=2313123, - label="Seed", - randomize=True, - ) - with gr.Row(): - run_btn = gr.Button("Run") - with gr.Column(): - result_image = gr.Image(label="Result Image") - run_btn.click( - inference, - inputs=[ - qr_code_content, - prompt, - negative_prompt, - guidance_scale, - controlnet_conditioning_scale, - strength, - seed, - init_image, - qr_code_image, - use_qr_code_as_init_image, - sampler, - ], - outputs=[result_image], - ) - - gr.Examples( - examples=[ - [ - "https://huggingface.co/", - "A sky view of a colorful lakes and rivers flowing through the desert", - "ugly, disfigured, low quality, blurry, nsfw", - 7.5, - 1.3, - 0.9, - 5392011833, - None, - None, - True, - "DPM++ Karras SDE", - ], - [ - "https://huggingface.co/", - "Bright sunshine coming through the cracks of a wet, cave wall of big rocks", - "ugly, disfigured, low quality, blurry, nsfw", - 7.5, - 1.11, - 0.9, - 2523992465, - None, - None, - True, - "DPM++ Karras SDE", - ], - [ - "https://huggingface.co/", - "Sky view of highly aesthetic, ancient greek thermal baths in beautiful nature", - "ugly, disfigured, low quality, blurry, nsfw", - 7.5, - 1.5, - 0.9, - 2523992465, - None, - None, - True, - "DPM++ Karras SDE", - ], - [ - "https://huggingface.co/spaces/huggingface-projects/QR-code-AI-art-generator", - "billboard amidst the bustling skyline of New York City, with iconic landmarks subtly featured in the background.", - "ugly, disfigured, low quality, blurry, nsfw", - 13.37, - 2.81, - 0.68, - 2313123, - "./examples/hack.png", - "./examples/hack.png", - False, - "DDIM", - ], - [ - "https://huggingface.co/spaces/huggingface-projects/QR-code-AI-art-generator", - "beautiful sunset in San Francisco with Golden Gate bridge in the background", - "ugly, disfigured, low quality, blurry, nsfw", - 11.01, - 2.61, - 0.66, - 1423585430, - "./examples/hack.png", - "./examples/hack.png", - False, - "DDIM", - ], - [ - "https://huggingface.co", - "A flying cat over a jungle", - "ugly, disfigured, low quality, blurry, nsfw", - 13, - 2.81, - 0.66, - 2702246671, - "./examples/hack.png", - "./examples/hack.png", - False, - "DDIM", - ], - [ - "", - "crisp QR code prominently displayed on a billboard amidst the bustling skyline of New York City, with iconic landmarks subtly featured in the background.", - "ugly, disfigured, low quality, blurry, nsfw", - 10.0, - 2.0, - 0.8, - 2313123, - "./examples/init.jpeg", - "./examples/qrcode.png", - False, - "DDIM", - ], - ], - fn=inference, - inputs=[ - qr_code_content, - prompt, - negative_prompt, - guidance_scale, - controlnet_conditioning_scale, - strength, - seed, - init_image, - qr_code_image, - use_qr_code_as_init_image, - sampler, - ], - outputs=[result_image], - cache_examples=False, - ) - -blocks.queue(concurrency_count=1, max_size=20) -blocks.launch(share=bool(os.environ.get("SHARE", False))) diff --git a/spaces/openMUSE/open-parti-prompts/verify.py b/spaces/openMUSE/open-parti-prompts/verify.py deleted file mode 100644 index 56a494506d8e03921b59d66c500eca35c8f6ee6c..0000000000000000000000000000000000000000 --- a/spaces/openMUSE/open-parti-prompts/verify.py +++ /dev/null @@ -1,18 +0,0 @@ -#!/usr/bin/env python3 -from datasets import load_dataset -from collections import Counter -from random import choices, shuffle -from pandas import DataFrame -import os -import gradio as gr - -parti_prompt_results = [] -ORG = "diffusers-parti-prompts" -SUBMISSIONS = { - "sd_v1_5": load_dataset(os.path.join(ORG, "sd-v1-5"))["train"], - "sd_v2_1": load_dataset(os.path.join(ORG, "sd-v2.1"))["train"], - "if_v1_0": load_dataset(os.path.join(ORG, "karlo-v1"))["train"], - "karlo": load_dataset(os.path.join(ORG, "if-v-1.0"))["train"], - # "Kadinsky": -} -import ipdb; ipdb.set_trace() diff --git a/spaces/openskyml/HuggingDiffusion/README.md b/spaces/openskyml/HuggingDiffusion/README.md deleted file mode 100644 index 7eb93de17be6d56036649134a21d6de8876a46f6..0000000000000000000000000000000000000000 --- a/spaces/openskyml/HuggingDiffusion/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: HuggingDiffusion -emoji: 🌜 -colorFrom: indigo -colorTo: purple -sdk: gradio -sdk_version: 4.1.1 -app_file: app.py -pinned: false -license: mit ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference \ No newline at end of file diff --git a/spaces/paulbricman/conceptarium/frontend/components/header.py b/spaces/paulbricman/conceptarium/frontend/components/header.py deleted file mode 100644 index 3c0ea6cb87df60ff61b1c31d0ff9a12396a3edfd..0000000000000000000000000000000000000000 --- a/spaces/paulbricman/conceptarium/frontend/components/header.py +++ /dev/null @@ -1,13 +0,0 @@ -import streamlit as st - - -def paint(): - st.markdown('### 💡 conceptarium') - - hide_streamlit_style = ''' - - ''' - st.markdown(hide_streamlit_style, unsafe_allow_html=True) \ No newline at end of file diff --git a/spaces/paulengstler/interpretable-vertebral-fracture-diagnosis/netdissect/oldvgg16.py b/spaces/paulengstler/interpretable-vertebral-fracture-diagnosis/netdissect/oldvgg16.py deleted file mode 100644 index 0b285cb1ceec77febf7213b03c61bc9069d55f75..0000000000000000000000000000000000000000 --- a/spaces/paulengstler/interpretable-vertebral-fracture-diagnosis/netdissect/oldvgg16.py +++ /dev/null @@ -1,43 +0,0 @@ -import collections, torch, torchvision, numpy - -def load_places_vgg16(weight_file): - model = torchvision.models.vgg16(num_classes=365) - model.features = torch.nn.Sequential(collections.OrderedDict(zip([ - 'conv1_1', 'relu1_1', - 'conv1_2', 'relu1_2', - 'pool1', - 'conv2_1', 'relu2_1', - 'conv2_2', 'relu2_2', - 'pool2', - 'conv3_1', 'relu3_1', - 'conv3_2', 'relu3_2', - 'conv3_3', 'relu3_3', - 'pool3', - 'conv4_1', 'relu4_1', - 'conv4_2', 'relu4_2', - 'conv4_3', 'relu4_3', - 'pool4', - 'conv5_1', 'relu5_1', - 'conv5_2', 'relu5_2', - 'conv5_3', 'relu5_3', - 'pool5'], - model.features))) - - model.classifier = torch.nn.Sequential(collections.OrderedDict(zip([ - 'fc6', 'relu6', - 'drop6', - 'fc7', 'relu7', - 'drop7', - 'fc8a'], - model.classifier))) - - state_dict = torch.load(weight_file) - converted_state_dict = ({ - l: torch.from_numpy(numpy.array(v)).view_as(p) - for k, v in state_dict.items() - for l, p in model.named_parameters() if k in l}) - model.load_state_dict(converted_state_dict) - - # TODO: figure out normalizations etc. - - return model diff --git a/spaces/peter2000/E-Coicop-food-classifier/app.py b/spaces/peter2000/E-Coicop-food-classifier/app.py deleted file mode 100644 index 890b8203c331c09beb0aca1d178a2f84ceafd291..0000000000000000000000000000000000000000 --- a/spaces/peter2000/E-Coicop-food-classifier/app.py +++ /dev/null @@ -1,29 +0,0 @@ -import gradio as gr -from transformers import pipeline - -pipe = pipeline("text-classification", model="peter2000/xlm-roberta-base-finetuned-ecoicop") - -def predict(text): - preds = pipe(text)[0] - return preds["label"].split('_')[1],preds["label"].split('_')[0], round(preds["score"], 5) - -gradio_ui = gr.Interface( - fn=predict, - title="Predicting E-Coicop Product Categories from Product texts", - description="The model is trained on product texts (shop category | text from URL | product name) from different online supermarkets in Germany, France, Austria and Italy. It predicts the corresponding ECOICOP product category (used to calculate Consumer Price Index) for food and baverages, out of 75 sub-labels on the 5-digits level of ECOICOP hierarchy.", - inputs=[ - gr.inputs.Textbox(lines=5, label="Paste some text here"), - ], - outputs=[ - gr.outputs.Textbox(label="ECOICOP Label"), - gr.outputs.Textbox(label="ECOICOP Index"), - gr.outputs.Textbox(label="Certainty") - ], - examples=[ - ["Tiefkühl Eiscreme & Eiswürfel Bechereis | rewe beste wahl peanut butter eiscreme | REWE Beste Wahl Peanut Butter Eiscreme 500ml"], - ["epicerie-sucree | cereales chocolat fraise nat | Céréales chocolat & fraise NAT"], - ["Pelati e passate | unknown | Mutti Polpa di Pomodoro 3 x 400 g"] - ], -) - -gradio_ui.launch(debug=True) \ No newline at end of file diff --git a/spaces/piecurus/speech_to_text/README.md b/spaces/piecurus/speech_to_text/README.md deleted file mode 100644 index fc85c5ce284f5839af7d3ff2ef3173b7aa1314a3..0000000000000000000000000000000000000000 --- a/spaces/piecurus/speech_to_text/README.md +++ /dev/null @@ -1,46 +0,0 @@ ---- -title: Speech_to_text -emoji: 🚀 -colorFrom: purple -colorTo: red -sdk: gradio -app_file: app.py -pinned: false -license: cc0-1.0 ---- - -# Configuration - -`title`: _string_ -Display title for the Space - -`emoji`: _string_ -Space emoji (emoji-only character allowed) - -`colorFrom`: _string_ -Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) - -`colorTo`: _string_ -Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) - -`sdk`: _string_ -Can be either `gradio`, `streamlit`, or `static` - -`sdk_version` : _string_ -Only applicable for `streamlit` SDK. -See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions. - -`app_file`: _string_ -Path to your main application file (which contains either `gradio` or `streamlit` Python code, or `static` html code). -Path is relative to the root of the repository. - -`models`: _List[string]_ -HF model IDs (like "gpt2" or "deepset/roberta-base-squad2") used in the Space. -Will be parsed automatically from your code if not specified here. - -`datasets`: _List[string]_ -HF dataset IDs (like "common_voice" or "oscar-corpus/OSCAR-2109") used in the Space. -Will be parsed automatically from your code if not specified here. - -`pinned`: _boolean_ -Whether the Space stays on top of your list. diff --git a/spaces/pinhome/property_knowledge_qa_chatbot/app.py b/spaces/pinhome/property_knowledge_qa_chatbot/app.py deleted file mode 100644 index 8f4a64ca777873433912a7bb6368d00e536a8310..0000000000000000000000000000000000000000 --- a/spaces/pinhome/property_knowledge_qa_chatbot/app.py +++ /dev/null @@ -1,147 +0,0 @@ -from http import HTTPStatus - -import gradio as gr -import requests - -from config import get_settings -from schemas import ( - ChatbotQuestionAnswer, - PropertyKnowledgeIndexFAQRequest, - PropertyKnowledgeQuestionWithTokenObject, - PropertyKnowledgeAnswerObject, -) -import logging - - -def index_faq(chatbot_qa_object: ChatbotQuestionAnswer): - data = PropertyKnowledgeIndexFAQRequest( - question=PropertyKnowledgeQuestionWithTokenObject( - token=chatbot_qa_object.question.token, - content=chatbot_qa_object.question.content, - embedding=chatbot_qa_object.question.embedding, - modelName=chatbot_qa_object.question.model_name, - ), - answer=PropertyKnowledgeAnswerObject( - content=chatbot_qa_object.answer.content, - categories=chatbot_qa_object.answer.categories, - source=chatbot_qa_object.answer.source, - referenceURLs=chatbot_qa_object.answer.reference_urls, - modelName=chatbot_qa_object.answer.model_name, - ), - ) - - faq_index_response = requests.post( - get_settings().cache_response_url, - headers={ - "Authorization": "Bearer" - f" {get_settings().cache_response_token}", - "Content-Type": "application/json", - }, - data=data.model_dump_json(by_alias=True), - ) - if faq_index_response.status_code != HTTPStatus.OK: - logging.error( - f"failed to index FAQ, got error on: {faq_index_response.text}" - ) - - -def get_prompt_response(message: str): - data = {"question": message} - response = requests.post( - get_settings().chat_response_url, - headers={ - "Authorization": "Bearer" f" {get_settings().chat_response_token}", - "Content-Type": "application/json", - }, - json=data, - ) - - if response.status_code == HTTPStatus.OK: - try: - chatbot_qa_object = ChatbotQuestionAnswer.model_validate( - response.json()["data"] - ) - except ValueError as val_err: - logging.error( - f"got value on chatbot response: {response.text}," - f"error message: {val_err}" - ) - - return "Terjadi kesalahan, silakan coba kembali" - - except Exception as e: - logging.error( - f"got unknown error on chabot find answer request, error: {e}" - ) - - return "Terjadi kesalahan, silakan coba kembali" - - if chatbot_qa_object.question.embedding is not None: - try: - index_faq(chatbot_qa_object) - except Exception as e: - logging.error(f"failed to index FAQ, error: {e}") - - if len(chatbot_qa_object.answer.reference_urls) > 0: - bot_msg = chatbot_qa_object.answer.content + "\n\n" + "Sumber: \n" - - for source in chatbot_qa_object.answer.reference_urls: - bot_msg = bot_msg + f"- {source}\n" - - return bot_msg - - return chatbot_qa_object.answer.content - - if response.status_code == HTTPStatus.NOT_FOUND: - return "Maaf, saya tidak dapat menemukan jawaban untuk pertanyaan ini." - - logging.error( - f"got status code: {response.status_code}" - f"and error message: {response.text}" - ) - - return "Terjadi kesalahan, silakan coba kembali" - - -def chat(message, history): - history = history or [] - response = get_prompt_response(message) - - history.append((message, response)) - - return history, history - - -with gr.Blocks() as demo: - gr.HTML( - """
    -
    -

    - PinGPT -

    -
    -
    """ - ) - - with gr.Row(): - question = gr.Textbox( - label=( - "Masukkan pertanyaan seputar property (KPR, Take Over KPR," - " dsb)", - ), - placeholder="Apa dokumen yang diperlukan untuk KPR?", - ) - - state = gr.State() - chatbot = gr.Chatbot() - question.submit(chat, [question, state], [chatbot, state]) - -if __name__ == "__main__": - demo.launch() diff --git a/spaces/platzi/platzi-curso-gradio-clasificacion-imagenes/app.py b/spaces/platzi/platzi-curso-gradio-clasificacion-imagenes/app.py deleted file mode 100644 index f33ae29329316c36a561fbe10c477e3c361956a0..0000000000000000000000000000000000000000 --- a/spaces/platzi/platzi-curso-gradio-clasificacion-imagenes/app.py +++ /dev/null @@ -1,11 +0,0 @@ -import gradio as gr - -title = "Platzi - Usando el ´microsoft/swin-tiny-patch4-window7-224´" -description = "Demo de Gradio creado en una clase de Platzi. Se utiliza un modelo Swin Transformer entrenado en ImageNet-1k a una resolución de 224x224. Fue presentado en el artículo Swin Transformer: Hierarchical Vision Transformer usando Shifted Windows por Liu et al." - -gr.Interface.load( - "huggingface/microsoft/swin-tiny-patch4-window7-224", - inputs=gr.Image(label="Carga una imagen aquí."), - title=title, - description=description - ).launch(enable_queue=True, share=True) \ No newline at end of file diff --git a/spaces/podsnigame/twitter-scrapping/README.md b/spaces/podsnigame/twitter-scrapping/README.md deleted file mode 100644 index dbaf5cab0c97f48df784343d7f69e85586c94fca..0000000000000000000000000000000000000000 --- a/spaces/podsnigame/twitter-scrapping/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Twitter Scrapping -emoji: 🐢 -colorFrom: pink -colorTo: red -sdk: streamlit -sdk_version: 1.17.0 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/power2/JoJoGan-powerhow2/e4e/models/encoders/__init__.py b/spaces/power2/JoJoGan-powerhow2/e4e/models/encoders/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/primodata/all_in_gpt/app.py b/spaces/primodata/all_in_gpt/app.py deleted file mode 100644 index 85a23a06d67d9884d20d333e03721c37db7a7883..0000000000000000000000000000000000000000 --- a/spaces/primodata/all_in_gpt/app.py +++ /dev/null @@ -1,55 +0,0 @@ -import gradio as gr -from llama_index import StorageContext, load_index_from_storage - - -# Define a function that will process text input -def process_text(input_text): - storage_context = StorageContext.from_defaults(persist_dir="./storage") - index = load_index_from_storage(storage_context) - query_engine = index.as_query_engine() - response = query_engine.query(input_text) - return response - - -description = """The **"All-In" podcast** features four Silicon Valley investors: [Jason Calacanis](https://twitter.com/Jason) ("_The World's Greatest Moderator_"), -[Chamath Palihapitiya](https://twitter.com/chamath) ("_The Dictator_"), [David Sacks](https://twitter.com/DavidSacks) ("_Rainman_"), and -[David Friedberg]([https://twitter.com/friedberg) ("_The Sultan of Science_"), who discuss startups, investing, and current events every week. -The show has gained substantial popularity, featuring a catchy intro, no ads, and heated debates. - -
    -

    Listen to the podcast: - - YouTube icon - - - Apple Podcasts icon - - - Apple Podcasts icon - -

    -
    -""" - - -# Create an Interface with a title, text input, and text output -iface = gr.Interface( - fn=process_text, # function that processes input - inputs=gr.inputs.Textbox( - lines=1, - label="Ask about any topics they've covered on the pod.", - placeholder="What's the latest on AI startups?", - ), - outputs=gr.inputs.Textbox( - lines=1, - label="AI Answer", - ), - title="All-In GPT", - description=description, - layout="vertical", - allow_flagging="never", - theme=gr.themes.Monochrome(), -) - -# Launch the app -iface.launch() diff --git a/spaces/princeml/emotion_streamlite_app/app1.py b/spaces/princeml/emotion_streamlite_app/app1.py deleted file mode 100644 index 541f11f5f2dfdebad41c7efe4ec3bd66b10440ed..0000000000000000000000000000000000000000 --- a/spaces/princeml/emotion_streamlite_app/app1.py +++ /dev/null @@ -1,21 +0,0 @@ -# import tensorflow as tf -import cv2 -import numpy as np -# from glob import glob -# from models import Yolov4 -import gradio as gr -# model = Yolov4(weight_path="yolov4.weights", class_name_path='coco_classes.txt') -def gradio_wrapper(img): - global model - #print(np.shape(img)) - # results = model.predict(img) - # return results[0] -demo = gr.Interface( - gradio_wrapper, - #gr.Image(source="webcam", streaming=True, flip=True), - gr.Image(source="webcam", streaming=True), - "image", - live=True -) - -demo.launch() \ No newline at end of file diff --git a/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/colorama/tests/isatty_test.py b/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/colorama/tests/isatty_test.py deleted file mode 100644 index 0f84e4befe550d4386d24264648abf1323e682ff..0000000000000000000000000000000000000000 --- a/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/colorama/tests/isatty_test.py +++ /dev/null @@ -1,57 +0,0 @@ -# Copyright Jonathan Hartley 2013. BSD 3-Clause license, see LICENSE file. -import sys -from unittest import TestCase, main - -from ..ansitowin32 import StreamWrapper, AnsiToWin32 -from .utils import pycharm, replace_by, replace_original_by, StreamTTY, StreamNonTTY - - -def is_a_tty(stream): - return StreamWrapper(stream, None).isatty() - -class IsattyTest(TestCase): - - def test_TTY(self): - tty = StreamTTY() - self.assertTrue(is_a_tty(tty)) - with pycharm(): - self.assertTrue(is_a_tty(tty)) - - def test_nonTTY(self): - non_tty = StreamNonTTY() - self.assertFalse(is_a_tty(non_tty)) - with pycharm(): - self.assertFalse(is_a_tty(non_tty)) - - def test_withPycharm(self): - with pycharm(): - self.assertTrue(is_a_tty(sys.stderr)) - self.assertTrue(is_a_tty(sys.stdout)) - - def test_withPycharmTTYOverride(self): - tty = StreamTTY() - with pycharm(), replace_by(tty): - self.assertTrue(is_a_tty(tty)) - - def test_withPycharmNonTTYOverride(self): - non_tty = StreamNonTTY() - with pycharm(), replace_by(non_tty): - self.assertFalse(is_a_tty(non_tty)) - - def test_withPycharmNoneOverride(self): - with pycharm(): - with replace_by(None), replace_original_by(None): - self.assertFalse(is_a_tty(None)) - self.assertFalse(is_a_tty(StreamNonTTY())) - self.assertTrue(is_a_tty(StreamTTY())) - - def test_withPycharmStreamWrapped(self): - with pycharm(): - self.assertTrue(AnsiToWin32(StreamTTY()).stream.isatty()) - self.assertFalse(AnsiToWin32(StreamNonTTY()).stream.isatty()) - self.assertTrue(AnsiToWin32(sys.stdout).stream.isatty()) - self.assertTrue(AnsiToWin32(sys.stderr).stream.isatty()) - - -if __name__ == '__main__': - main() diff --git a/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/fontTools/pens/areaPen.py b/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/fontTools/pens/areaPen.py deleted file mode 100644 index 004bb06b091ceb777cca2c02f8481a2785a46d35..0000000000000000000000000000000000000000 --- a/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/fontTools/pens/areaPen.py +++ /dev/null @@ -1,52 +0,0 @@ -"""Calculate the area of a glyph.""" - -from fontTools.pens.basePen import BasePen - - -__all__ = ["AreaPen"] - - -class AreaPen(BasePen): - def __init__(self, glyphset=None): - BasePen.__init__(self, glyphset) - self.value = 0 - - def _moveTo(self, p0): - self._p0 = self._startPoint = p0 - - def _lineTo(self, p1): - x0, y0 = self._p0 - x1, y1 = p1 - self.value -= (x1 - x0) * (y1 + y0) * 0.5 - self._p0 = p1 - - def _qCurveToOne(self, p1, p2): - # https://github.com/Pomax/bezierinfo/issues/44 - p0 = self._p0 - x0, y0 = p0[0], p0[1] - x1, y1 = p1[0] - x0, p1[1] - y0 - x2, y2 = p2[0] - x0, p2[1] - y0 - self.value -= (x2 * y1 - x1 * y2) / 3 - self._lineTo(p2) - self._p0 = p2 - - def _curveToOne(self, p1, p2, p3): - # https://github.com/Pomax/bezierinfo/issues/44 - p0 = self._p0 - x0, y0 = p0[0], p0[1] - x1, y1 = p1[0] - x0, p1[1] - y0 - x2, y2 = p2[0] - x0, p2[1] - y0 - x3, y3 = p3[0] - x0, p3[1] - y0 - self.value -= (x1 * (-y2 - y3) + x2 * (y1 - 2 * y3) + x3 * (y1 + 2 * y2)) * 0.15 - self._lineTo(p3) - self._p0 = p3 - - def _closePath(self): - self._lineTo(self._startPoint) - del self._p0, self._startPoint - - def _endPath(self): - if self._p0 != self._startPoint: - # Area is not defined for open contours. - raise NotImplementedError - del self._p0, self._startPoint diff --git a/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/gradio/templates/cdn/index.html b/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/gradio/templates/cdn/index.html deleted file mode 100644 index d68f56caba0a92997ee441a9a6cc3719b05568c8..0000000000000000000000000000000000000000 --- a/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/gradio/templates/cdn/index.html +++ /dev/null @@ -1,87 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/httpcore/_backends/base.py b/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/httpcore/_backends/base.py deleted file mode 100644 index 6cadedb5f9367536c8355b583127c4a904c3b8fa..0000000000000000000000000000000000000000 --- a/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/httpcore/_backends/base.py +++ /dev/null @@ -1,103 +0,0 @@ -import ssl -import time -import typing - -SOCKET_OPTION = typing.Union[ - typing.Tuple[int, int, int], - typing.Tuple[int, int, typing.Union[bytes, bytearray]], - typing.Tuple[int, int, None, int], -] - - -class NetworkStream: - def read(self, max_bytes: int, timeout: typing.Optional[float] = None) -> bytes: - raise NotImplementedError() # pragma: nocover - - def write(self, buffer: bytes, timeout: typing.Optional[float] = None) -> None: - raise NotImplementedError() # pragma: nocover - - def close(self) -> None: - raise NotImplementedError() # pragma: nocover - - def start_tls( - self, - ssl_context: ssl.SSLContext, - server_hostname: typing.Optional[str] = None, - timeout: typing.Optional[float] = None, - ) -> "NetworkStream": - raise NotImplementedError() # pragma: nocover - - def get_extra_info(self, info: str) -> typing.Any: - return None # pragma: nocover - - -class NetworkBackend: - def connect_tcp( - self, - host: str, - port: int, - timeout: typing.Optional[float] = None, - local_address: typing.Optional[str] = None, - socket_options: typing.Optional[typing.Iterable[SOCKET_OPTION]] = None, - ) -> NetworkStream: - raise NotImplementedError() # pragma: nocover - - def connect_unix_socket( - self, - path: str, - timeout: typing.Optional[float] = None, - socket_options: typing.Optional[typing.Iterable[SOCKET_OPTION]] = None, - ) -> NetworkStream: - raise NotImplementedError() # pragma: nocover - - def sleep(self, seconds: float) -> None: - time.sleep(seconds) # pragma: nocover - - -class AsyncNetworkStream: - async def read( - self, max_bytes: int, timeout: typing.Optional[float] = None - ) -> bytes: - raise NotImplementedError() # pragma: nocover - - async def write( - self, buffer: bytes, timeout: typing.Optional[float] = None - ) -> None: - raise NotImplementedError() # pragma: nocover - - async def aclose(self) -> None: - raise NotImplementedError() # pragma: nocover - - async def start_tls( - self, - ssl_context: ssl.SSLContext, - server_hostname: typing.Optional[str] = None, - timeout: typing.Optional[float] = None, - ) -> "AsyncNetworkStream": - raise NotImplementedError() # pragma: nocover - - def get_extra_info(self, info: str) -> typing.Any: - return None # pragma: nocover - - -class AsyncNetworkBackend: - async def connect_tcp( - self, - host: str, - port: int, - timeout: typing.Optional[float] = None, - local_address: typing.Optional[str] = None, - socket_options: typing.Optional[typing.Iterable[SOCKET_OPTION]] = None, - ) -> AsyncNetworkStream: - raise NotImplementedError() # pragma: nocover - - async def connect_unix_socket( - self, - path: str, - timeout: typing.Optional[float] = None, - socket_options: typing.Optional[typing.Iterable[SOCKET_OPTION]] = None, - ) -> AsyncNetworkStream: - raise NotImplementedError() # pragma: nocover - - async def sleep(self, seconds: float) -> None: - raise NotImplementedError() # pragma: nocover diff --git a/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/matplotlib/mpl-data/kpsewhich.lua b/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/matplotlib/mpl-data/kpsewhich.lua deleted file mode 100644 index 8e9172a45082567bee6802113aa40664d1bfc010..0000000000000000000000000000000000000000 --- a/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/matplotlib/mpl-data/kpsewhich.lua +++ /dev/null @@ -1,3 +0,0 @@ --- see dviread._LuatexKpsewhich -kpse.set_program_name("latex") -while true do print(kpse.lookup(io.read():gsub("\r", ""))); io.flush(); end diff --git a/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/numpy/f2py/f2py2e.py b/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/numpy/f2py/f2py2e.py deleted file mode 100644 index 1cfe8cddd68cd32ca4d749330d87a9529dcec1fd..0000000000000000000000000000000000000000 --- a/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/numpy/f2py/f2py2e.py +++ /dev/null @@ -1,734 +0,0 @@ -#!/usr/bin/env python3 -""" - -f2py2e - Fortran to Python C/API generator. 2nd Edition. - See __usage__ below. - -Copyright 1999--2011 Pearu Peterson all rights reserved, -Pearu Peterson -Permission to use, modify, and distribute this software is given under the -terms of the NumPy License. - -NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. -$Date: 2005/05/06 08:31:19 $ -Pearu Peterson - -""" -import sys -import os -import pprint -import re -from pathlib import Path -from itertools import dropwhile -import argparse - -from . import crackfortran -from . import rules -from . import cb_rules -from . import auxfuncs -from . import cfuncs -from . import f90mod_rules -from . import __version__ -from . import capi_maps -from numpy.f2py._backends import f2py_build_generator - -f2py_version = __version__.version -numpy_version = __version__.version -errmess = sys.stderr.write -# outmess=sys.stdout.write -show = pprint.pprint -outmess = auxfuncs.outmess - -__usage__ =\ -f"""Usage: - -1) To construct extension module sources: - - f2py [] [[[only:]||[skip:]] \\ - ] \\ - [: ...] - -2) To compile fortran files and build extension modules: - - f2py -c [, , ] - -3) To generate signature files: - - f2py -h ...< same options as in (1) > - -Description: This program generates a Python C/API file (module.c) - that contains wrappers for given fortran functions so that they - can be called from Python. With the -c option the corresponding - extension modules are built. - -Options: - - --2d-numpy Use numpy.f2py tool with NumPy support. [DEFAULT] - --2d-numeric Use f2py2e tool with Numeric support. - --2d-numarray Use f2py2e tool with Numarray support. - --g3-numpy Use 3rd generation f2py from the separate f2py package. - [NOT AVAILABLE YET] - - -h Write signatures of the fortran routines to file - and exit. You can then edit and use it instead - of . If ==stdout then the - signatures are printed to stdout. - Names of fortran routines for which Python C/API - functions will be generated. Default is all that are found - in . - Paths to fortran/signature files that will be scanned for - in order to determine their signatures. - skip: Ignore fortran functions that follow until `:'. - only: Use only fortran functions that follow until `:'. - : Get back to mode. - - -m Name of the module; f2py generates a Python/C API - file module.c or extension module . - Default is 'untitled'. - - '-include
    ' Writes additional headers in the C wrapper, can be passed - multiple times, generates #include
    each time. - - --[no-]lower Do [not] lower the cases in . By default, - --lower is assumed with -h key, and --no-lower without -h key. - - --build-dir All f2py generated files are created in . - Default is tempfile.mkdtemp(). - - --overwrite-signature Overwrite existing signature file. - - --[no-]latex-doc Create (or not) module.tex. - Default is --no-latex-doc. - --short-latex Create 'incomplete' LaTeX document (without commands - \\documentclass, \\tableofcontents, and \\begin{{document}}, - \\end{{document}}). - - --[no-]rest-doc Create (or not) module.rst. - Default is --no-rest-doc. - - --debug-capi Create C/API code that reports the state of the wrappers - during runtime. Useful for debugging. - - --[no-]wrap-functions Create Fortran subroutine wrappers to Fortran 77 - functions. --wrap-functions is default because it ensures - maximum portability/compiler independence. - - --include-paths ::... Search include files from the given - directories. - - --help-link [..] List system resources found by system_info.py. See also - --link- switch below. [..] is optional list - of resources names. E.g. try 'f2py --help-link lapack_opt'. - - --f2cmap Load Fortran-to-Python KIND specification from the given - file. Default: .f2py_f2cmap in current directory. - - --quiet Run quietly. - --verbose Run with extra verbosity. - --skip-empty-wrappers Only generate wrapper files when needed. - -v Print f2py version ID and exit. - - -build backend options (only effective with -c): - - --fcompiler= Specify Fortran compiler type by vendor - --compiler= Specify C compiler type (as defined by distutils) - - --help-fcompiler List available Fortran compilers and exit - --f77exec= Specify the path to F77 compiler - --f90exec= Specify the path to F90 compiler - --f77flags= Specify F77 compiler flags - --f90flags= Specify F90 compiler flags - --opt= Specify optimization flags - --arch= Specify architecture specific optimization flags - --noopt Compile without optimization - --noarch Compile without arch-dependent optimization - --debug Compile with debugging information - - --dep - Specify a meson dependency for the module. This may - be passed multiple times for multiple dependencies. - Dependencies are stored in a list for further processing. - - Example: --dep lapack --dep scalapack - This will identify "lapack" and "scalapack" as dependencies - and remove them from argv, leaving a dependencies list - containing ["lapack", "scalapack"]. - - --backend - Specify the build backend for the compilation process. - The supported backends are 'meson' and 'distutils'. - If not specified, defaults to 'distutils'. On - Python 3.12 or higher, the default is 'meson'. - -Extra options (only effective with -c): - - --link- Link extension module with as defined - by numpy.distutils/system_info.py. E.g. to link - with optimized LAPACK libraries (vecLib on MacOSX, - ATLAS elsewhere), use --link-lapack_opt. - See also --help-link switch. - - -L/path/to/lib/ -l - -D -U - -I/path/to/include/ - .o .so .a - - Using the following macros may be required with non-gcc Fortran - compilers: - -DPREPEND_FORTRAN -DNO_APPEND_FORTRAN -DUPPERCASE_FORTRAN - -DUNDERSCORE_G77 - - When using -DF2PY_REPORT_ATEXIT, a performance report of F2PY - interface is printed out at exit (platforms: Linux). - - When using -DF2PY_REPORT_ON_ARRAY_COPY=, a message is - sent to stderr whenever F2PY interface makes a copy of an - array. Integer sets the threshold for array sizes when - a message should be shown. - -Version: {f2py_version} -numpy Version: {numpy_version} -Requires: Python 3.5 or higher. -License: NumPy license (see LICENSE.txt in the NumPy source code) -Copyright 1999 - 2011 Pearu Peterson all rights reserved. -https://web.archive.org/web/20140822061353/http://cens.ioc.ee/projects/f2py2e""" - - -def scaninputline(inputline): - files, skipfuncs, onlyfuncs, debug = [], [], [], [] - f, f2, f3, f5, f6, f7, f8, f9, f10 = 1, 0, 0, 0, 0, 0, 0, 0, 0 - verbose = 1 - emptygen = True - dolc = -1 - dolatexdoc = 0 - dorestdoc = 0 - wrapfuncs = 1 - buildpath = '.' - include_paths = [] - signsfile, modulename = None, None - options = {'buildpath': buildpath, - 'coutput': None, - 'f2py_wrapper_output': None} - for l in inputline: - if l == '': - pass - elif l == 'only:': - f = 0 - elif l == 'skip:': - f = -1 - elif l == ':': - f = 1 - elif l[:8] == '--debug-': - debug.append(l[8:]) - elif l == '--lower': - dolc = 1 - elif l == '--build-dir': - f6 = 1 - elif l == '--no-lower': - dolc = 0 - elif l == '--quiet': - verbose = 0 - elif l == '--verbose': - verbose += 1 - elif l == '--latex-doc': - dolatexdoc = 1 - elif l == '--no-latex-doc': - dolatexdoc = 0 - elif l == '--rest-doc': - dorestdoc = 1 - elif l == '--no-rest-doc': - dorestdoc = 0 - elif l == '--wrap-functions': - wrapfuncs = 1 - elif l == '--no-wrap-functions': - wrapfuncs = 0 - elif l == '--short-latex': - options['shortlatex'] = 1 - elif l == '--coutput': - f8 = 1 - elif l == '--f2py-wrapper-output': - f9 = 1 - elif l == '--f2cmap': - f10 = 1 - elif l == '--overwrite-signature': - options['h-overwrite'] = 1 - elif l == '-h': - f2 = 1 - elif l == '-m': - f3 = 1 - elif l[:2] == '-v': - print(f2py_version) - sys.exit() - elif l == '--show-compilers': - f5 = 1 - elif l[:8] == '-include': - cfuncs.outneeds['userincludes'].append(l[9:-1]) - cfuncs.userincludes[l[9:-1]] = '#include ' + l[8:] - elif l[:15] in '--include_paths': - outmess( - 'f2py option --include_paths is deprecated, use --include-paths instead.\n') - f7 = 1 - elif l[:15] in '--include-paths': - # Similar to using -I with -c, however this is - # also used during generation of wrappers - f7 = 1 - elif l == '--skip-empty-wrappers': - emptygen = False - elif l[0] == '-': - errmess('Unknown option %s\n' % repr(l)) - sys.exit() - elif f2: - f2 = 0 - signsfile = l - elif f3: - f3 = 0 - modulename = l - elif f6: - f6 = 0 - buildpath = l - elif f7: - f7 = 0 - include_paths.extend(l.split(os.pathsep)) - elif f8: - f8 = 0 - options["coutput"] = l - elif f9: - f9 = 0 - options["f2py_wrapper_output"] = l - elif f10: - f10 = 0 - options["f2cmap_file"] = l - elif f == 1: - try: - with open(l): - pass - files.append(l) - except OSError as detail: - errmess(f'OSError: {detail!s}. Skipping file "{l!s}".\n') - elif f == -1: - skipfuncs.append(l) - elif f == 0: - onlyfuncs.append(l) - if not f5 and not files and not modulename: - print(__usage__) - sys.exit() - if not os.path.isdir(buildpath): - if not verbose: - outmess('Creating build directory %s\n' % (buildpath)) - os.mkdir(buildpath) - if signsfile: - signsfile = os.path.join(buildpath, signsfile) - if signsfile and os.path.isfile(signsfile) and 'h-overwrite' not in options: - errmess( - 'Signature file "%s" exists!!! Use --overwrite-signature to overwrite.\n' % (signsfile)) - sys.exit() - - options['emptygen'] = emptygen - options['debug'] = debug - options['verbose'] = verbose - if dolc == -1 and not signsfile: - options['do-lower'] = 0 - else: - options['do-lower'] = dolc - if modulename: - options['module'] = modulename - if signsfile: - options['signsfile'] = signsfile - if onlyfuncs: - options['onlyfuncs'] = onlyfuncs - if skipfuncs: - options['skipfuncs'] = skipfuncs - options['dolatexdoc'] = dolatexdoc - options['dorestdoc'] = dorestdoc - options['wrapfuncs'] = wrapfuncs - options['buildpath'] = buildpath - options['include_paths'] = include_paths - options.setdefault('f2cmap_file', None) - return files, options - - -def callcrackfortran(files, options): - rules.options = options - crackfortran.debug = options['debug'] - crackfortran.verbose = options['verbose'] - if 'module' in options: - crackfortran.f77modulename = options['module'] - if 'skipfuncs' in options: - crackfortran.skipfuncs = options['skipfuncs'] - if 'onlyfuncs' in options: - crackfortran.onlyfuncs = options['onlyfuncs'] - crackfortran.include_paths[:] = options['include_paths'] - crackfortran.dolowercase = options['do-lower'] - postlist = crackfortran.crackfortran(files) - if 'signsfile' in options: - outmess('Saving signatures to file "%s"\n' % (options['signsfile'])) - pyf = crackfortran.crack2fortran(postlist) - if options['signsfile'][-6:] == 'stdout': - sys.stdout.write(pyf) - else: - with open(options['signsfile'], 'w') as f: - f.write(pyf) - if options["coutput"] is None: - for mod in postlist: - mod["coutput"] = "%smodule.c" % mod["name"] - else: - for mod in postlist: - mod["coutput"] = options["coutput"] - if options["f2py_wrapper_output"] is None: - for mod in postlist: - mod["f2py_wrapper_output"] = "%s-f2pywrappers.f" % mod["name"] - else: - for mod in postlist: - mod["f2py_wrapper_output"] = options["f2py_wrapper_output"] - return postlist - - -def buildmodules(lst): - cfuncs.buildcfuncs() - outmess('Building modules...\n') - modules, mnames, isusedby = [], [], {} - for item in lst: - if '__user__' in item['name']: - cb_rules.buildcallbacks(item) - else: - if 'use' in item: - for u in item['use'].keys(): - if u not in isusedby: - isusedby[u] = [] - isusedby[u].append(item['name']) - modules.append(item) - mnames.append(item['name']) - ret = {} - for module, name in zip(modules, mnames): - if name in isusedby: - outmess('\tSkipping module "%s" which is used by %s.\n' % ( - name, ','.join('"%s"' % s for s in isusedby[name]))) - else: - um = [] - if 'use' in module: - for u in module['use'].keys(): - if u in isusedby and u in mnames: - um.append(modules[mnames.index(u)]) - else: - outmess( - f'\tModule "{name}" uses nonexisting "{u}" ' - 'which will be ignored.\n') - ret[name] = {} - dict_append(ret[name], rules.buildmodule(module, um)) - return ret - - -def dict_append(d_out, d_in): - for (k, v) in d_in.items(): - if k not in d_out: - d_out[k] = [] - if isinstance(v, list): - d_out[k] = d_out[k] + v - else: - d_out[k].append(v) - - -def run_main(comline_list): - """ - Equivalent to running:: - - f2py - - where ``=string.join(,' ')``, but in Python. Unless - ``-h`` is used, this function returns a dictionary containing - information on generated modules and their dependencies on source - files. - - You cannot build extension modules with this function, that is, - using ``-c`` is not allowed. Use the ``compile`` command instead. - - Examples - -------- - The command ``f2py -m scalar scalar.f`` can be executed from Python as - follows. - - .. literalinclude:: ../../source/f2py/code/results/run_main_session.dat - :language: python - - """ - crackfortran.reset_global_f2py_vars() - f2pydir = os.path.dirname(os.path.abspath(cfuncs.__file__)) - fobjhsrc = os.path.join(f2pydir, 'src', 'fortranobject.h') - fobjcsrc = os.path.join(f2pydir, 'src', 'fortranobject.c') - files, options = scaninputline(comline_list) - auxfuncs.options = options - capi_maps.load_f2cmap_file(options['f2cmap_file']) - postlist = callcrackfortran(files, options) - isusedby = {} - for plist in postlist: - if 'use' in plist: - for u in plist['use'].keys(): - if u not in isusedby: - isusedby[u] = [] - isusedby[u].append(plist['name']) - for plist in postlist: - if plist['block'] == 'python module' and '__user__' in plist['name']: - if plist['name'] in isusedby: - # if not quiet: - outmess( - f'Skipping Makefile build for module "{plist["name"]}" ' - 'which is used by {}\n'.format( - ','.join(f'"{s}"' for s in isusedby[plist['name']]))) - if 'signsfile' in options: - if options['verbose'] > 1: - outmess( - 'Stopping. Edit the signature file and then run f2py on the signature file: ') - outmess('%s %s\n' % - (os.path.basename(sys.argv[0]), options['signsfile'])) - return - for plist in postlist: - if plist['block'] != 'python module': - if 'python module' not in options: - errmess( - 'Tip: If your original code is Fortran source then you must use -m option.\n') - raise TypeError('All blocks must be python module blocks but got %s' % ( - repr(plist['block']))) - auxfuncs.debugoptions = options['debug'] - f90mod_rules.options = options - auxfuncs.wrapfuncs = options['wrapfuncs'] - - ret = buildmodules(postlist) - - for mn in ret.keys(): - dict_append(ret[mn], {'csrc': fobjcsrc, 'h': fobjhsrc}) - return ret - - -def filter_files(prefix, suffix, files, remove_prefix=None): - """ - Filter files by prefix and suffix. - """ - filtered, rest = [], [] - match = re.compile(prefix + r'.*' + suffix + r'\Z').match - if remove_prefix: - ind = len(prefix) - else: - ind = 0 - for file in [x.strip() for x in files]: - if match(file): - filtered.append(file[ind:]) - else: - rest.append(file) - return filtered, rest - - -def get_prefix(module): - p = os.path.dirname(os.path.dirname(module.__file__)) - return p - -def preparse_sysargv(): - # To keep backwards bug compatibility, newer flags are handled by argparse, - # and `sys.argv` is passed to the rest of `f2py` as is. - parser = argparse.ArgumentParser(add_help=False) - parser.add_argument("--dep", action="append", dest="dependencies") - parser.add_argument("--backend", choices=['meson', 'distutils'], default='distutils') - - args, remaining_argv = parser.parse_known_args() - sys.argv = [sys.argv[0]] + remaining_argv - - backend_key = args.backend - if sys.version_info >= (3, 12) and backend_key == 'distutils': - outmess('Cannot use distutils backend with Python 3.12, using meson backend instead.') - backend_key = 'meson' - - return { - "dependencies": args.dependencies or [], - "backend": backend_key - } - -def run_compile(): - """ - Do it all in one call! - """ - import tempfile - - # Collect dependency flags, preprocess sys.argv - argy = preparse_sysargv() - dependencies = argy["dependencies"] - backend_key = argy["backend"] - build_backend = f2py_build_generator(backend_key) - - - i = sys.argv.index('-c') - del sys.argv[i] - - remove_build_dir = 0 - try: - i = sys.argv.index('--build-dir') - except ValueError: - i = None - if i is not None: - build_dir = sys.argv[i + 1] - del sys.argv[i + 1] - del sys.argv[i] - else: - remove_build_dir = 1 - build_dir = tempfile.mkdtemp() - - _reg1 = re.compile(r'--link-') - sysinfo_flags = [_m for _m in sys.argv[1:] if _reg1.match(_m)] - sys.argv = [_m for _m in sys.argv if _m not in sysinfo_flags] - if sysinfo_flags: - sysinfo_flags = [f[7:] for f in sysinfo_flags] - - _reg2 = re.compile( - r'--((no-|)(wrap-functions|lower)|debug-capi|quiet|skip-empty-wrappers)|-include') - f2py_flags = [_m for _m in sys.argv[1:] if _reg2.match(_m)] - sys.argv = [_m for _m in sys.argv if _m not in f2py_flags] - f2py_flags2 = [] - fl = 0 - for a in sys.argv[1:]: - if a in ['only:', 'skip:']: - fl = 1 - elif a == ':': - fl = 0 - if fl or a == ':': - f2py_flags2.append(a) - if f2py_flags2 and f2py_flags2[-1] != ':': - f2py_flags2.append(':') - f2py_flags.extend(f2py_flags2) - sys.argv = [_m for _m in sys.argv if _m not in f2py_flags2] - _reg3 = re.compile( - r'--((f(90)?compiler(-exec|)|compiler)=|help-compiler)') - flib_flags = [_m for _m in sys.argv[1:] if _reg3.match(_m)] - sys.argv = [_m for _m in sys.argv if _m not in flib_flags] - _reg4 = re.compile( - r'--((f(77|90)(flags|exec)|opt|arch)=|(debug|noopt|noarch|help-fcompiler))') - fc_flags = [_m for _m in sys.argv[1:] if _reg4.match(_m)] - sys.argv = [_m for _m in sys.argv if _m not in fc_flags] - - del_list = [] - for s in flib_flags: - v = '--fcompiler=' - if s[:len(v)] == v: - from numpy.distutils import fcompiler - fcompiler.load_all_fcompiler_classes() - allowed_keys = list(fcompiler.fcompiler_class.keys()) - nv = ov = s[len(v):].lower() - if ov not in allowed_keys: - vmap = {} # XXX - try: - nv = vmap[ov] - except KeyError: - if ov not in vmap.values(): - print('Unknown vendor: "%s"' % (s[len(v):])) - nv = ov - i = flib_flags.index(s) - flib_flags[i] = '--fcompiler=' + nv - continue - for s in del_list: - i = flib_flags.index(s) - del flib_flags[i] - assert len(flib_flags) <= 2, repr(flib_flags) - - _reg5 = re.compile(r'--(verbose)') - setup_flags = [_m for _m in sys.argv[1:] if _reg5.match(_m)] - sys.argv = [_m for _m in sys.argv if _m not in setup_flags] - - if '--quiet' in f2py_flags: - setup_flags.append('--quiet') - - modulename = 'untitled' - sources = sys.argv[1:] - - for optname in ['--include_paths', '--include-paths', '--f2cmap']: - if optname in sys.argv: - i = sys.argv.index(optname) - f2py_flags.extend(sys.argv[i:i + 2]) - del sys.argv[i + 1], sys.argv[i] - sources = sys.argv[1:] - - pyf_files = [] - if '-m' in sys.argv: - i = sys.argv.index('-m') - modulename = sys.argv[i + 1] - del sys.argv[i + 1], sys.argv[i] - sources = sys.argv[1:] - else: - pyf_files, _sources = filter_files('', '[.]pyf([.]src|)', sources) - sources = pyf_files + _sources - for f in pyf_files: - modulename = auxfuncs.get_f2py_modulename(f) - if modulename: - break - - extra_objects, sources = filter_files('', '[.](o|a|so|dylib)', sources) - include_dirs, sources = filter_files('-I', '', sources, remove_prefix=1) - library_dirs, sources = filter_files('-L', '', sources, remove_prefix=1) - libraries, sources = filter_files('-l', '', sources, remove_prefix=1) - undef_macros, sources = filter_files('-U', '', sources, remove_prefix=1) - define_macros, sources = filter_files('-D', '', sources, remove_prefix=1) - for i in range(len(define_macros)): - name_value = define_macros[i].split('=', 1) - if len(name_value) == 1: - name_value.append(None) - if len(name_value) == 2: - define_macros[i] = tuple(name_value) - else: - print('Invalid use of -D:', name_value) - - # Construct wrappers / signatures / things - if backend_key == 'meson': - outmess('Using meson backend\nWill pass --lower to f2py\nSee https://numpy.org/doc/stable/f2py/buildtools/meson.html') - f2py_flags.append('--lower') - if pyf_files: - run_main(f" {' '.join(f2py_flags)} {' '.join(pyf_files)}".split()) - else: - run_main(f" {' '.join(f2py_flags)} -m {modulename} {' '.join(sources)}".split()) - - # Now use the builder - builder = build_backend( - modulename, - sources, - extra_objects, - build_dir, - include_dirs, - library_dirs, - libraries, - define_macros, - undef_macros, - f2py_flags, - sysinfo_flags, - fc_flags, - flib_flags, - setup_flags, - remove_build_dir, - {"dependencies": dependencies}, - ) - - builder.compile() - -def main(): - if '--help-link' in sys.argv[1:]: - sys.argv.remove('--help-link') - from numpy.distutils.system_info import show_all - show_all() - return - - # Probably outdated options that were not working before 1.16 - if '--g3-numpy' in sys.argv[1:]: - sys.stderr.write("G3 f2py support is not implemented, yet.\\n") - sys.exit(1) - elif '--2e-numeric' in sys.argv[1:]: - sys.argv.remove('--2e-numeric') - elif '--2e-numarray' in sys.argv[1:]: - # Note that this errors becaust the -DNUMARRAY argument is - # not recognized. Just here for back compatibility and the - # error message. - sys.argv.append("-DNUMARRAY") - sys.argv.remove('--2e-numarray') - elif '--2e-numpy' in sys.argv[1:]: - sys.argv.remove('--2e-numpy') - else: - pass - - if '-c' in sys.argv[1:]: - run_compile() - else: - run_main(sys.argv[1:]) diff --git a/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/numpy/fft/tests/test_pocketfft.py b/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/numpy/fft/tests/test_pocketfft.py deleted file mode 100644 index 122a9fac93ec9006e36660c5fa4b446d384b1c3e..0000000000000000000000000000000000000000 --- a/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/numpy/fft/tests/test_pocketfft.py +++ /dev/null @@ -1,308 +0,0 @@ -import numpy as np -import pytest -from numpy.random import random -from numpy.testing import ( - assert_array_equal, assert_raises, assert_allclose, IS_WASM - ) -import threading -import queue - - -def fft1(x): - L = len(x) - phase = -2j * np.pi * (np.arange(L) / L) - phase = np.arange(L).reshape(-1, 1) * phase - return np.sum(x*np.exp(phase), axis=1) - - -class TestFFTShift: - - def test_fft_n(self): - assert_raises(ValueError, np.fft.fft, [1, 2, 3], 0) - - -class TestFFT1D: - - def test_identity(self): - maxlen = 512 - x = random(maxlen) + 1j*random(maxlen) - xr = random(maxlen) - for i in range(1, maxlen): - assert_allclose(np.fft.ifft(np.fft.fft(x[0:i])), x[0:i], - atol=1e-12) - assert_allclose(np.fft.irfft(np.fft.rfft(xr[0:i]), i), - xr[0:i], atol=1e-12) - - def test_fft(self): - x = random(30) + 1j*random(30) - assert_allclose(fft1(x), np.fft.fft(x), atol=1e-6) - assert_allclose(fft1(x), np.fft.fft(x, norm="backward"), atol=1e-6) - assert_allclose(fft1(x) / np.sqrt(30), - np.fft.fft(x, norm="ortho"), atol=1e-6) - assert_allclose(fft1(x) / 30., - np.fft.fft(x, norm="forward"), atol=1e-6) - - @pytest.mark.parametrize('norm', (None, 'backward', 'ortho', 'forward')) - def test_ifft(self, norm): - x = random(30) + 1j*random(30) - assert_allclose( - x, np.fft.ifft(np.fft.fft(x, norm=norm), norm=norm), - atol=1e-6) - # Ensure we get the correct error message - with pytest.raises(ValueError, - match='Invalid number of FFT data points'): - np.fft.ifft([], norm=norm) - - def test_fft2(self): - x = random((30, 20)) + 1j*random((30, 20)) - assert_allclose(np.fft.fft(np.fft.fft(x, axis=1), axis=0), - np.fft.fft2(x), atol=1e-6) - assert_allclose(np.fft.fft2(x), - np.fft.fft2(x, norm="backward"), atol=1e-6) - assert_allclose(np.fft.fft2(x) / np.sqrt(30 * 20), - np.fft.fft2(x, norm="ortho"), atol=1e-6) - assert_allclose(np.fft.fft2(x) / (30. * 20.), - np.fft.fft2(x, norm="forward"), atol=1e-6) - - def test_ifft2(self): - x = random((30, 20)) + 1j*random((30, 20)) - assert_allclose(np.fft.ifft(np.fft.ifft(x, axis=1), axis=0), - np.fft.ifft2(x), atol=1e-6) - assert_allclose(np.fft.ifft2(x), - np.fft.ifft2(x, norm="backward"), atol=1e-6) - assert_allclose(np.fft.ifft2(x) * np.sqrt(30 * 20), - np.fft.ifft2(x, norm="ortho"), atol=1e-6) - assert_allclose(np.fft.ifft2(x) * (30. * 20.), - np.fft.ifft2(x, norm="forward"), atol=1e-6) - - def test_fftn(self): - x = random((30, 20, 10)) + 1j*random((30, 20, 10)) - assert_allclose( - np.fft.fft(np.fft.fft(np.fft.fft(x, axis=2), axis=1), axis=0), - np.fft.fftn(x), atol=1e-6) - assert_allclose(np.fft.fftn(x), - np.fft.fftn(x, norm="backward"), atol=1e-6) - assert_allclose(np.fft.fftn(x) / np.sqrt(30 * 20 * 10), - np.fft.fftn(x, norm="ortho"), atol=1e-6) - assert_allclose(np.fft.fftn(x) / (30. * 20. * 10.), - np.fft.fftn(x, norm="forward"), atol=1e-6) - - def test_ifftn(self): - x = random((30, 20, 10)) + 1j*random((30, 20, 10)) - assert_allclose( - np.fft.ifft(np.fft.ifft(np.fft.ifft(x, axis=2), axis=1), axis=0), - np.fft.ifftn(x), atol=1e-6) - assert_allclose(np.fft.ifftn(x), - np.fft.ifftn(x, norm="backward"), atol=1e-6) - assert_allclose(np.fft.ifftn(x) * np.sqrt(30 * 20 * 10), - np.fft.ifftn(x, norm="ortho"), atol=1e-6) - assert_allclose(np.fft.ifftn(x) * (30. * 20. * 10.), - np.fft.ifftn(x, norm="forward"), atol=1e-6) - - def test_rfft(self): - x = random(30) - for n in [x.size, 2*x.size]: - for norm in [None, 'backward', 'ortho', 'forward']: - assert_allclose( - np.fft.fft(x, n=n, norm=norm)[:(n//2 + 1)], - np.fft.rfft(x, n=n, norm=norm), atol=1e-6) - assert_allclose( - np.fft.rfft(x, n=n), - np.fft.rfft(x, n=n, norm="backward"), atol=1e-6) - assert_allclose( - np.fft.rfft(x, n=n) / np.sqrt(n), - np.fft.rfft(x, n=n, norm="ortho"), atol=1e-6) - assert_allclose( - np.fft.rfft(x, n=n) / n, - np.fft.rfft(x, n=n, norm="forward"), atol=1e-6) - - def test_irfft(self): - x = random(30) - assert_allclose(x, np.fft.irfft(np.fft.rfft(x)), atol=1e-6) - assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="backward"), - norm="backward"), atol=1e-6) - assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="ortho"), - norm="ortho"), atol=1e-6) - assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="forward"), - norm="forward"), atol=1e-6) - - def test_rfft2(self): - x = random((30, 20)) - assert_allclose(np.fft.fft2(x)[:, :11], np.fft.rfft2(x), atol=1e-6) - assert_allclose(np.fft.rfft2(x), - np.fft.rfft2(x, norm="backward"), atol=1e-6) - assert_allclose(np.fft.rfft2(x) / np.sqrt(30 * 20), - np.fft.rfft2(x, norm="ortho"), atol=1e-6) - assert_allclose(np.fft.rfft2(x) / (30. * 20.), - np.fft.rfft2(x, norm="forward"), atol=1e-6) - - def test_irfft2(self): - x = random((30, 20)) - assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x)), atol=1e-6) - assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="backward"), - norm="backward"), atol=1e-6) - assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="ortho"), - norm="ortho"), atol=1e-6) - assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="forward"), - norm="forward"), atol=1e-6) - - def test_rfftn(self): - x = random((30, 20, 10)) - assert_allclose(np.fft.fftn(x)[:, :, :6], np.fft.rfftn(x), atol=1e-6) - assert_allclose(np.fft.rfftn(x), - np.fft.rfftn(x, norm="backward"), atol=1e-6) - assert_allclose(np.fft.rfftn(x) / np.sqrt(30 * 20 * 10), - np.fft.rfftn(x, norm="ortho"), atol=1e-6) - assert_allclose(np.fft.rfftn(x) / (30. * 20. * 10.), - np.fft.rfftn(x, norm="forward"), atol=1e-6) - - def test_irfftn(self): - x = random((30, 20, 10)) - assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x)), atol=1e-6) - assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="backward"), - norm="backward"), atol=1e-6) - assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="ortho"), - norm="ortho"), atol=1e-6) - assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="forward"), - norm="forward"), atol=1e-6) - - def test_hfft(self): - x = random(14) + 1j*random(14) - x_herm = np.concatenate((random(1), x, random(1))) - x = np.concatenate((x_herm, x[::-1].conj())) - assert_allclose(np.fft.fft(x), np.fft.hfft(x_herm), atol=1e-6) - assert_allclose(np.fft.hfft(x_herm), - np.fft.hfft(x_herm, norm="backward"), atol=1e-6) - assert_allclose(np.fft.hfft(x_herm) / np.sqrt(30), - np.fft.hfft(x_herm, norm="ortho"), atol=1e-6) - assert_allclose(np.fft.hfft(x_herm) / 30., - np.fft.hfft(x_herm, norm="forward"), atol=1e-6) - - def test_ihfft(self): - x = random(14) + 1j*random(14) - x_herm = np.concatenate((random(1), x, random(1))) - x = np.concatenate((x_herm, x[::-1].conj())) - assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm)), atol=1e-6) - assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm, - norm="backward"), norm="backward"), atol=1e-6) - assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm, - norm="ortho"), norm="ortho"), atol=1e-6) - assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm, - norm="forward"), norm="forward"), atol=1e-6) - - @pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn, - np.fft.rfftn, np.fft.irfftn]) - def test_axes(self, op): - x = random((30, 20, 10)) - axes = [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)] - for a in axes: - op_tr = op(np.transpose(x, a)) - tr_op = np.transpose(op(x, axes=a), a) - assert_allclose(op_tr, tr_op, atol=1e-6) - - def test_all_1d_norm_preserving(self): - # verify that round-trip transforms are norm-preserving - x = random(30) - x_norm = np.linalg.norm(x) - n = x.size * 2 - func_pairs = [(np.fft.fft, np.fft.ifft), - (np.fft.rfft, np.fft.irfft), - # hfft: order so the first function takes x.size samples - # (necessary for comparison to x_norm above) - (np.fft.ihfft, np.fft.hfft), - ] - for forw, back in func_pairs: - for n in [x.size, 2*x.size]: - for norm in [None, 'backward', 'ortho', 'forward']: - tmp = forw(x, n=n, norm=norm) - tmp = back(tmp, n=n, norm=norm) - assert_allclose(x_norm, - np.linalg.norm(tmp), atol=1e-6) - - @pytest.mark.parametrize("dtype", [np.half, np.single, np.double, - np.longdouble]) - def test_dtypes(self, dtype): - # make sure that all input precisions are accepted and internally - # converted to 64bit - x = random(30).astype(dtype) - assert_allclose(np.fft.ifft(np.fft.fft(x)), x, atol=1e-6) - assert_allclose(np.fft.irfft(np.fft.rfft(x)), x, atol=1e-6) - - -@pytest.mark.parametrize( - "dtype", - [np.float32, np.float64, np.complex64, np.complex128]) -@pytest.mark.parametrize("order", ["F", 'non-contiguous']) -@pytest.mark.parametrize( - "fft", - [np.fft.fft, np.fft.fft2, np.fft.fftn, - np.fft.ifft, np.fft.ifft2, np.fft.ifftn]) -def test_fft_with_order(dtype, order, fft): - # Check that FFT/IFFT produces identical results for C, Fortran and - # non contiguous arrays - rng = np.random.RandomState(42) - X = rng.rand(8, 7, 13).astype(dtype, copy=False) - # See discussion in pull/14178 - _tol = 8.0 * np.sqrt(np.log2(X.size)) * np.finfo(X.dtype).eps - if order == 'F': - Y = np.asfortranarray(X) - else: - # Make a non contiguous array - Y = X[::-1] - X = np.ascontiguousarray(X[::-1]) - - if fft.__name__.endswith('fft'): - for axis in range(3): - X_res = fft(X, axis=axis) - Y_res = fft(Y, axis=axis) - assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol) - elif fft.__name__.endswith(('fft2', 'fftn')): - axes = [(0, 1), (1, 2), (0, 2)] - if fft.__name__.endswith('fftn'): - axes.extend([(0,), (1,), (2,), None]) - for ax in axes: - X_res = fft(X, axes=ax) - Y_res = fft(Y, axes=ax) - assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol) - else: - raise ValueError() - - -@pytest.mark.skipif(IS_WASM, reason="Cannot start thread") -class TestFFTThreadSafe: - threads = 16 - input_shape = (800, 200) - - def _test_mtsame(self, func, *args): - def worker(args, q): - q.put(func(*args)) - - q = queue.Queue() - expected = func(*args) - - # Spin off a bunch of threads to call the same function simultaneously - t = [threading.Thread(target=worker, args=(args, q)) - for i in range(self.threads)] - [x.start() for x in t] - - [x.join() for x in t] - # Make sure all threads returned the correct value - for i in range(self.threads): - assert_array_equal(q.get(timeout=5), expected, - 'Function returned wrong value in multithreaded context') - - def test_fft(self): - a = np.ones(self.input_shape) * 1+0j - self._test_mtsame(np.fft.fft, a) - - def test_ifft(self): - a = np.ones(self.input_shape) * 1+0j - self._test_mtsame(np.fft.ifft, a) - - def test_rfft(self): - a = np.ones(self.input_shape) - self._test_mtsame(np.fft.rfft, a) - - def test_irfft(self): - a = np.ones(self.input_shape) * 1+0j - self._test_mtsame(np.fft.irfft, a) diff --git a/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/rich/scope.py b/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/rich/scope.py deleted file mode 100644 index 36c06241f4618d4a8b74dfb1581f17514c693dc1..0000000000000000000000000000000000000000 --- a/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/rich/scope.py +++ /dev/null @@ -1,86 +0,0 @@ -from collections.abc import Mapping -from typing import TYPE_CHECKING, Any, Optional, Tuple - -from .highlighter import ReprHighlighter -from .panel import Panel -from .pretty import Pretty -from .table import Table -from .text import Text, TextType - -if TYPE_CHECKING: - from .console import ConsoleRenderable - - -def render_scope( - scope: "Mapping[str, Any]", - *, - title: Optional[TextType] = None, - sort_keys: bool = True, - indent_guides: bool = False, - max_length: Optional[int] = None, - max_string: Optional[int] = None, -) -> "ConsoleRenderable": - """Render python variables in a given scope. - - Args: - scope (Mapping): A mapping containing variable names and values. - title (str, optional): Optional title. Defaults to None. - sort_keys (bool, optional): Enable sorting of items. Defaults to True. - indent_guides (bool, optional): Enable indentation guides. Defaults to False. - max_length (int, optional): Maximum length of containers before abbreviating, or None for no abbreviation. - Defaults to None. - max_string (int, optional): Maximum length of string before truncating, or None to disable. Defaults to None. - - Returns: - ConsoleRenderable: A renderable object. - """ - highlighter = ReprHighlighter() - items_table = Table.grid(padding=(0, 1), expand=False) - items_table.add_column(justify="right") - - def sort_items(item: Tuple[str, Any]) -> Tuple[bool, str]: - """Sort special variables first, then alphabetically.""" - key, _ = item - return (not key.startswith("__"), key.lower()) - - items = sorted(scope.items(), key=sort_items) if sort_keys else scope.items() - for key, value in items: - key_text = Text.assemble( - (key, "scope.key.special" if key.startswith("__") else "scope.key"), - (" =", "scope.equals"), - ) - items_table.add_row( - key_text, - Pretty( - value, - highlighter=highlighter, - indent_guides=indent_guides, - max_length=max_length, - max_string=max_string, - ), - ) - return Panel.fit( - items_table, - title=title, - border_style="scope.border", - padding=(0, 1), - ) - - -if __name__ == "__main__": # pragma: no cover - from rich import print - - print() - - def test(foo: float, bar: float) -> None: - list_of_things = [1, 2, 3, None, 4, True, False, "Hello World"] - dict_of_things = { - "version": "1.1", - "method": "confirmFruitPurchase", - "params": [["apple", "orange", "mangoes", "pomelo"], 1.123], - "id": "194521489", - } - print(render_scope(locals(), title="[i]locals", sort_keys=False)) - - test(20.3423, 3.1427) - print() diff --git a/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/setuptools/wheel.py b/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/setuptools/wheel.py deleted file mode 100644 index 0be811af2c29e5ef697b63f329b882694c91c88d..0000000000000000000000000000000000000000 --- a/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/setuptools/wheel.py +++ /dev/null @@ -1,213 +0,0 @@ -"""Wheels support.""" - -from distutils.util import get_platform -from distutils import log -import email -import itertools -import os -import posixpath -import re -import zipfile - -import pkg_resources -import setuptools -from pkg_resources import parse_version -from setuptools.extern.packaging.tags import sys_tags -from setuptools.extern.packaging.utils import canonicalize_name -from setuptools.command.egg_info import write_requirements - - -WHEEL_NAME = re.compile( - r"""^(?P.+?)-(?P\d.*?) - ((-(?P\d.*?))?-(?P.+?)-(?P.+?)-(?P.+?) - )\.whl$""", - re.VERBOSE).match - -NAMESPACE_PACKAGE_INIT = \ - "__import__('pkg_resources').declare_namespace(__name__)\n" - - -def unpack(src_dir, dst_dir): - '''Move everything under `src_dir` to `dst_dir`, and delete the former.''' - for dirpath, dirnames, filenames in os.walk(src_dir): - subdir = os.path.relpath(dirpath, src_dir) - for f in filenames: - src = os.path.join(dirpath, f) - dst = os.path.join(dst_dir, subdir, f) - os.renames(src, dst) - for n, d in reversed(list(enumerate(dirnames))): - src = os.path.join(dirpath, d) - dst = os.path.join(dst_dir, subdir, d) - if not os.path.exists(dst): - # Directory does not exist in destination, - # rename it and prune it from os.walk list. - os.renames(src, dst) - del dirnames[n] - # Cleanup. - for dirpath, dirnames, filenames in os.walk(src_dir, topdown=True): - assert not filenames - os.rmdir(dirpath) - - -class Wheel: - - def __init__(self, filename): - match = WHEEL_NAME(os.path.basename(filename)) - if match is None: - raise ValueError('invalid wheel name: %r' % filename) - self.filename = filename - for k, v in match.groupdict().items(): - setattr(self, k, v) - - def tags(self): - '''List tags (py_version, abi, platform) supported by this wheel.''' - return itertools.product( - self.py_version.split('.'), - self.abi.split('.'), - self.platform.split('.'), - ) - - def is_compatible(self): - '''Is the wheel is compatible with the current platform?''' - supported_tags = set( - (t.interpreter, t.abi, t.platform) for t in sys_tags()) - return next((True for t in self.tags() if t in supported_tags), False) - - def egg_name(self): - return pkg_resources.Distribution( - project_name=self.project_name, version=self.version, - platform=(None if self.platform == 'any' else get_platform()), - ).egg_name() + '.egg' - - def get_dist_info(self, zf): - # find the correct name of the .dist-info dir in the wheel file - for member in zf.namelist(): - dirname = posixpath.dirname(member) - if (dirname.endswith('.dist-info') and - canonicalize_name(dirname).startswith( - canonicalize_name(self.project_name))): - return dirname - raise ValueError("unsupported wheel format. .dist-info not found") - - def install_as_egg(self, destination_eggdir): - '''Install wheel as an egg directory.''' - with zipfile.ZipFile(self.filename) as zf: - self._install_as_egg(destination_eggdir, zf) - - def _install_as_egg(self, destination_eggdir, zf): - dist_basename = '%s-%s' % (self.project_name, self.version) - dist_info = self.get_dist_info(zf) - dist_data = '%s.data' % dist_basename - egg_info = os.path.join(destination_eggdir, 'EGG-INFO') - - self._convert_metadata(zf, destination_eggdir, dist_info, egg_info) - self._move_data_entries(destination_eggdir, dist_data) - self._fix_namespace_packages(egg_info, destination_eggdir) - - @staticmethod - def _convert_metadata(zf, destination_eggdir, dist_info, egg_info): - def get_metadata(name): - with zf.open(posixpath.join(dist_info, name)) as fp: - value = fp.read().decode('utf-8') - return email.parser.Parser().parsestr(value) - - wheel_metadata = get_metadata('WHEEL') - # Check wheel format version is supported. - wheel_version = parse_version(wheel_metadata.get('Wheel-Version')) - wheel_v1 = ( - parse_version('1.0') <= wheel_version < parse_version('2.0dev0') - ) - if not wheel_v1: - raise ValueError( - 'unsupported wheel format version: %s' % wheel_version) - # Extract to target directory. - os.mkdir(destination_eggdir) - zf.extractall(destination_eggdir) - # Convert metadata. - dist_info = os.path.join(destination_eggdir, dist_info) - dist = pkg_resources.Distribution.from_location( - destination_eggdir, dist_info, - metadata=pkg_resources.PathMetadata(destination_eggdir, dist_info), - ) - - # Note: Evaluate and strip markers now, - # as it's difficult to convert back from the syntax: - # foobar; "linux" in sys_platform and extra == 'test' - def raw_req(req): - req.marker = None - return str(req) - install_requires = list(sorted(map(raw_req, dist.requires()))) - extras_require = { - extra: sorted( - req - for req in map(raw_req, dist.requires((extra,))) - if req not in install_requires - ) - for extra in dist.extras - } - os.rename(dist_info, egg_info) - os.rename( - os.path.join(egg_info, 'METADATA'), - os.path.join(egg_info, 'PKG-INFO'), - ) - setup_dist = setuptools.Distribution( - attrs=dict( - install_requires=install_requires, - extras_require=extras_require, - ), - ) - # Temporarily disable info traces. - log_threshold = log._global_log.threshold - log.set_threshold(log.WARN) - try: - write_requirements( - setup_dist.get_command_obj('egg_info'), - None, - os.path.join(egg_info, 'requires.txt'), - ) - finally: - log.set_threshold(log_threshold) - - @staticmethod - def _move_data_entries(destination_eggdir, dist_data): - """Move data entries to their correct location.""" - dist_data = os.path.join(destination_eggdir, dist_data) - dist_data_scripts = os.path.join(dist_data, 'scripts') - if os.path.exists(dist_data_scripts): - egg_info_scripts = os.path.join( - destination_eggdir, 'EGG-INFO', 'scripts') - os.mkdir(egg_info_scripts) - for entry in os.listdir(dist_data_scripts): - # Remove bytecode, as it's not properly handled - # during easy_install scripts install phase. - if entry.endswith('.pyc'): - os.unlink(os.path.join(dist_data_scripts, entry)) - else: - os.rename( - os.path.join(dist_data_scripts, entry), - os.path.join(egg_info_scripts, entry), - ) - os.rmdir(dist_data_scripts) - for subdir in filter(os.path.exists, ( - os.path.join(dist_data, d) - for d in ('data', 'headers', 'purelib', 'platlib') - )): - unpack(subdir, destination_eggdir) - if os.path.exists(dist_data): - os.rmdir(dist_data) - - @staticmethod - def _fix_namespace_packages(egg_info, destination_eggdir): - namespace_packages = os.path.join( - egg_info, 'namespace_packages.txt') - if os.path.exists(namespace_packages): - with open(namespace_packages) as fp: - namespace_packages = fp.read().split() - for mod in namespace_packages: - mod_dir = os.path.join(destination_eggdir, *mod.split('.')) - mod_init = os.path.join(mod_dir, '__init__.py') - if not os.path.exists(mod_dir): - os.mkdir(mod_dir) - if not os.path.exists(mod_init): - with open(mod_init, 'w') as fp: - fp.write(NAMESPACE_PACKAGE_INIT) diff --git a/spaces/pseudolab/SonGPT/core/structure/memory_handler.py b/spaces/pseudolab/SonGPT/core/structure/memory_handler.py deleted file mode 100644 index 3fe922a144f719596782cad0dfce846b7acc52ee..0000000000000000000000000000000000000000 --- a/spaces/pseudolab/SonGPT/core/structure/memory_handler.py +++ /dev/null @@ -1,56 +0,0 @@ -from typing import List, Union -from .memory.memory_extractor import MemoryExtractor -from .memory.node_extractor import NodeExtractor -from core.graph import Graph - - -class MemoryHandler: - """ - A class that handles everything related to memory. - 1. Extracts Memory - 2. Encodes Memory - 3. Extracts Nodes - 4. Retrieves Memory - etc. - """ - - def __init__( - self, - memory_extractor: MemoryExtractor, - node_extractor: NodeExtractor, - memory_graph=None, - ): - self.memory_extractor = memory_extractor - self.node_extractor = node_extractor - self.memory_graph = memory_graph - - if self.memory_graph == None: - self.memory_graph = Graph() - - def save_memory(self, user_name: str, ai_name: str, chat_history: str): - """ - Extracts and saves the memory inside chat_log - Update memory graph based on the extraction results, - and saves the updated graph to self.memory_graph - """ - extracted_memories: List[str] = self.memory_extractor.extract_memory( - user_name, ai_name, chat_history - ) - extracted_nodes: List[List[str]] = self.node_extractor.extract_nodes( - extracted_memories - ) - - ### Updates self.memory_graph based on the extracted results ### - self.memory_graph.update(extracted_nodes, extracted_memories) - self.memory_graph.draw() - self.memory_graph.save() - - def retrieve_memory(self, message): - """ - Extracts the most relevant messages inside the memory_graph - """ - ### Retrieve Memory ### - - retrieved_memory = self.memory_graph.find_related_memories(message) - - return retrieved_memory diff --git a/spaces/pyodide-demo/self-hosted/pyodide.asm.js b/spaces/pyodide-demo/self-hosted/pyodide.asm.js deleted file mode 100644 index 6f09c3240cb953d1eb60c3a280b8cf981e41be98..0000000000000000000000000000000000000000 --- a/spaces/pyodide-demo/self-hosted/pyodide.asm.js +++ /dev/null @@ -1,27 +0,0 @@ - "use strict"; - let setImmediate = globalThis.setImmediate; - let clearImmediate = globalThis.clearImmediate; - let baseName, fpcGOT, dyncallGOT, fpVal, dcVal; - - -var _createPyodideModule = (function() { - var _scriptDir = typeof document !== 'undefined' && document.currentScript ? document.currentScript.src : undefined; - if (typeof __filename !== 'undefined') _scriptDir = _scriptDir || __filename; - return ( -function(_createPyodideModule) { - _createPyodideModule = _createPyodideModule || {}; - -var Module=typeof _createPyodideModule!=="undefined"?_createPyodideModule:{};var readyPromiseResolve,readyPromiseReject;Module["ready"]=new Promise(function(resolve,reject){readyPromiseResolve=resolve;readyPromiseReject=reject});if(!Module.expectedDataFileDownloads){Module.expectedDataFileDownloads=0}Module.expectedDataFileDownloads++;(function(){var loadPackage=function(metadata){var PACKAGE_PATH="";if(typeof window==="object"){PACKAGE_PATH=window["encodeURIComponent"](window.location.pathname.toString().substring(0,window.location.pathname.toString().lastIndexOf("/"))+"/")}else if(typeof process==="undefined"&&typeof location!=="undefined"){PACKAGE_PATH=encodeURIComponent(location.pathname.toString().substring(0,location.pathname.toString().lastIndexOf("/"))+"/")}var PACKAGE_NAME="build/pyodide.asm.data";var REMOTE_PACKAGE_BASE="pyodide.asm.data";if(typeof Module["locateFilePackage"]==="function"&&!Module["locateFile"]){Module["locateFile"]=Module["locateFilePackage"];err("warning: you defined Module.locateFilePackage, that has been renamed to Module.locateFile (using your locateFilePackage for now)")}var REMOTE_PACKAGE_NAME=Module["locateFile"]?Module["locateFile"](REMOTE_PACKAGE_BASE,""):REMOTE_PACKAGE_BASE;var REMOTE_PACKAGE_SIZE=metadata["remote_package_size"];var PACKAGE_UUID=metadata["package_uuid"];function fetchRemotePackage(packageName,packageSize,callback,errback){if(typeof process==="object"){require("fs").readFile(packageName,function(err,contents){if(err){errback(err)}else{callback(contents.buffer)}});return}var xhr=new XMLHttpRequest;xhr.open("GET",packageName,true);xhr.responseType="arraybuffer";xhr.onprogress=function(event){var url=packageName;var size=packageSize;if(event.total)size=event.total;if(event.loaded){if(!xhr.addedTotal){xhr.addedTotal=true;if(!Module.dataFileDownloads)Module.dataFileDownloads={};Module.dataFileDownloads[url]={loaded:event.loaded,total:size}}else{Module.dataFileDownloads[url].loaded=event.loaded}var total=0;var loaded=0;var num=0;for(var download in Module.dataFileDownloads){var data=Module.dataFileDownloads[download];total+=data.total;loaded+=data.loaded;num++}total=Math.ceil(total*Module.expectedDataFileDownloads/num);if(Module["setStatus"])Module["setStatus"]("Downloading data... ("+loaded+"/"+total+")")}else if(!Module.dataFileDownloads){if(Module["setStatus"])Module["setStatus"]("Downloading data...")}};xhr.onerror=function(event){throw new Error("NetworkError for: "+packageName)};xhr.onload=function(event){if(xhr.status==200||xhr.status==304||xhr.status==206||xhr.status==0&&xhr.response){var packageData=xhr.response;callback(packageData)}else{throw new Error(xhr.statusText+" : "+xhr.responseURL)}};xhr.send(null)}function handleError(error){console.error("package error:",error)}var fetchedCallback=null;var fetched=Module["getPreloadedPackage"]?Module["getPreloadedPackage"](REMOTE_PACKAGE_NAME,REMOTE_PACKAGE_SIZE):null;if(!fetched)fetchRemotePackage(REMOTE_PACKAGE_NAME,REMOTE_PACKAGE_SIZE,function(data){if(fetchedCallback){fetchedCallback(data);fetchedCallback=null}else{fetched=data}},handleError);function runWithFS(){function assert(check,msg){if(!check)throw msg+(new Error).stack}Module["FS_createPath"]("/","lib",true,true);Module["FS_createPath"]("/lib","python3.9",true,true);Module["FS_createPath"]("/lib/python3.9","site-packages",true,true);Module["FS_createPath"]("/lib/python3.9","importlib",true,true);Module["FS_createPath"]("/lib/python3.9","asyncio",true,true);Module["FS_createPath"]("/lib/python3.9","collections",true,true);Module["FS_createPath"]("/lib/python3.9","concurrent",true,true);Module["FS_createPath"]("/lib/python3.9/concurrent","futures",true,true);Module["FS_createPath"]("/lib/python3.9","encodings",true,true);Module["FS_createPath"]("/lib/python3.9","email",true,true);Module["FS_createPath"]("/lib/python3.9/email","mime",true,true);Module["FS_createPath"]("/lib/python3.9","html",true,true);Module["FS_createPath"]("/lib/python3.9","json",true,true);Module["FS_createPath"]("/lib/python3.9","http",true,true);Module["FS_createPath"]("/lib/python3.9","xmlrpc",true,true);Module["FS_createPath"]("/lib/python3.9","sqlite3",true,true);Module["FS_createPath"]("/lib/python3.9","logging",true,true);Module["FS_createPath"]("/lib/python3.9","wsgiref",true,true);Module["FS_createPath"]("/lib/python3.9","urllib",true,true);Module["FS_createPath"]("/lib/python3.9","ctypes",true,true);Module["FS_createPath"]("/lib/python3.9/ctypes","macholib",true,true);Module["FS_createPath"]("/lib/python3.9","xml",true,true);Module["FS_createPath"]("/lib/python3.9/xml","dom",true,true);Module["FS_createPath"]("/lib/python3.9/xml","etree",true,true);Module["FS_createPath"]("/lib/python3.9/xml","parsers",true,true);Module["FS_createPath"]("/lib/python3.9/xml","sax",true,true);Module["FS_createPath"]("/lib/python3.9","multiprocessing",true,true);Module["FS_createPath"]("/lib/python3.9/multiprocessing","dummy",true,true);Module["FS_createPath"]("/lib/python3.9","unittest",true,true);Module["FS_createPath"]("/lib/python3.9","tzdata",true,true);Module["FS_createPath"]("/lib/python3.9/tzdata","zoneinfo",true,true);Module["FS_createPath"]("/lib/python3.9/tzdata/zoneinfo","Africa",true,true);Module["FS_createPath"]("/lib/python3.9/tzdata/zoneinfo","America",true,true);Module["FS_createPath"]("/lib/python3.9/tzdata/zoneinfo/America","Argentina",true,true);Module["FS_createPath"]("/lib/python3.9/tzdata/zoneinfo/America","Indiana",true,true);Module["FS_createPath"]("/lib/python3.9/tzdata/zoneinfo/America","Kentucky",true,true);Module["FS_createPath"]("/lib/python3.9/tzdata/zoneinfo/America","North_Dakota",true,true);Module["FS_createPath"]("/lib/python3.9/tzdata/zoneinfo","Antarctica",true,true);Module["FS_createPath"]("/lib/python3.9/tzdata/zoneinfo","Arctic",true,true);Module["FS_createPath"]("/lib/python3.9/tzdata/zoneinfo","Asia",true,true);Module["FS_createPath"]("/lib/python3.9/tzdata/zoneinfo","Atlantic",true,true);Module["FS_createPath"]("/lib/python3.9/tzdata/zoneinfo","Australia",true,true);Module["FS_createPath"]("/lib/python3.9/tzdata/zoneinfo","Brazil",true,true);Module["FS_createPath"]("/lib/python3.9/tzdata/zoneinfo","Canada",true,true);Module["FS_createPath"]("/lib/python3.9/tzdata/zoneinfo","Chile",true,true);Module["FS_createPath"]("/lib/python3.9/tzdata/zoneinfo","Etc",true,true);Module["FS_createPath"]("/lib/python3.9/tzdata/zoneinfo","Europe",true,true);Module["FS_createPath"]("/lib/python3.9/tzdata/zoneinfo","Indian",true,true);Module["FS_createPath"]("/lib/python3.9/tzdata/zoneinfo","Mexico",true,true);Module["FS_createPath"]("/lib/python3.9/tzdata/zoneinfo","Pacific",true,true);Module["FS_createPath"]("/lib/python3.9/tzdata/zoneinfo","US",true,true);Module["FS_createPath"]("/lib/python3.9","pydoc_data",true,true);Module["FS_createPath"]("/lib/python3.9","zoneinfo",true,true);Module["FS_createPath"]("/lib/python3.9","tzdata-2021.5.dist-info",true,true);function processPackageData(arrayBuffer){assert(arrayBuffer,"Loading data file failed.");assert(arrayBuffer instanceof ArrayBuffer,"bad input to processPackageData");var byteArray=new Uint8Array(arrayBuffer);var curr;var compressedData={"data":null,"cachedOffset":5312270,"cachedIndexes":[-1,-1],"cachedChunks":[null,null],"offsets":[0,1425,2582,3768,5314,6513,7796,9261,10355,11277,12242,13169,14258,15510,16526,17471,18705,19820,20850,22053,23220,24565,25707,26598,27737,28665,29783,30855,32203,33543,34734,35792,36730,37685,38413,39679,40975,42080,43231,44513,45761,47139,48465,49606,50870,52229,53374,54674,55570,56619,57715,58694,59546,60608,61218,62375,63535,64565,65628,66555,67449,68558,69625,70414,71460,72518,73646,74715,75741,76709,77689,78641,79528,80612,81991,83158,84196,85211,86504,87535,88589,89945,91075,92026,93214,94480,95483,96775,97924,99058,100029,100940,102133,102922,104148,105400,106636,107824,108670,109662,110716,111706,112542,113873,114874,116259,117289,118229,119245,120427,121499,122595,123262,123992,124629,125271,126212,126884,127429,128105,128887,129476,130261,131014,131944,132678,133463,134459,135130,136186,137026,137857,138670,139467,140249,141198,142083,143412,144852,146091,147501,148926,150295,151666,152907,154331,155632,156769,158086,159347,160859,162158,163612,165047,166103,167090,168528,169936,171235,172184,173396,174779,176137,177213,178355,179425,180438,181555,182627,183852,184913,186016,187120,188246,189160,190437,191394,192544,193615,194809,195812,197007,198164,199523,200702,201769,202768,203868,205037,206333,207367,208516,209573,210649,211524,212767,214020,215356,216623,217708,218943,220026,221196,222562,223760,224909,225784,226918,228067,229360,230693,232151,233405,234528,235401,236126,237209,238408,239649,240976,242350,243276,244303,245447,246497,247505,248622,249700,250432,251323,252342,253250,254064,255073,256518,257778,259077,260188,261213,262274,263136,263944,264948,266062,267111,268064,268975,270075,271322,272288,273185,273924,274575,275398,276640,277775,278959,279993,281064,282149,283244,284301,285266,286250,287254,288385,289397,290475,291544,292575,293564,294523,295584,296650,297691,298818,299729,300875,301831,302848,303841,304778,306273,307409,308629,309585,310650,311880,313102,314441,315792,316877,317979,319203,320380,321510,322383,323064,323893,324709,325887,327004,328127,328919,329933,330815,331879,332903,333708,335013,336603,337816,338697,339738,340823,342438,343814,344774,345979,347073,348060,349175,350268,351466,352732,354164,355268,356627,358008,359419,360804,362142,363522,364713,366122,367499,368367,369319,370523,371582,372741,374003,375005,375946,377130,378117,379467,380584,381830,382969,384607,385653,386818,387906,389026,390196,391174,392267,393825,394890,395914,396954,398129,399327,400620,401684,402930,404234,405456,406630,407417,408200,409327,410292,411255,412335,413274,414574,415514,416759,418214,419591,420820,422209,423691,424967,426013,427130,428156,429270,430395,431468,432412,433606,434861,436100,437485,438718,439996,441373,442659,443927,445352,446335,447551,449065,450375,451312,452463,453619,454569,455658,457041,458266,459493,460664,462024,463369,464675,465790,466909,468115,469446,470715,472045,473147,474304,475407,476554,477801,478784,480135,481291,482067,483370,484971,486318,487507,489015,490011,491329,492717,493630,494881,495896,496877,497943,498921,500103,500906,502133,503458,504654,505852,506842,507904,509049,510240,511354,512380,513335,514438,515486,516706,517930,518735,520004,520953,521998,523291,524257,525219,526373,527537,528683,529940,531208,532483,533683,534761,535739,536856,538171,539424,540570,541879,543126,544258,545753,546971,547940,549279,550434,551722,553048,554271,555584,557022,558119,559247,560463,561490,562820,563866,565151,566260,567085,568015,569468,570622,571881,573269,574591,575810,577107,578067,579324,580722,582060,583265,584421,585792,587059,587980,589193,590446,591736,592990,594291,595664,596954,598241,599595,600710,601689,602865,603929,605102,606589,607360,608429,609135,609688,610884,612069,613255,614461,615310,616613,617686,618995,619778,620791,622017,623179,624368,625404,626586,627620,628781,629801,631026,632167,632812,633837,634866,636115,636891,638186,639716,641077,642579,644209,645536,647063,648459,649745,650968,652222,653627,654921,656197,657546,658756,659979,661188,662354,663687,665060,666190,667513,668799,669959,671152,672423,673847,675059,676316,677652,679050,680317,681585,682963,683635,684812,685834,686971,688275,689561,690773,691900,693210,694414,695574,696918,698170,699523,700579,701630,702848,704085,705243,706448,707592,708915,710410,711508,712680,714072,715442,716797,718038,719277,720466,721599,723004,724141,725439,726697,727780,729026,730303,731430,732523,733529,734640,735767,737100,738003,739182,740352,741356,742636,743829,744874,746250,747482,748627,749634,750627,751883,753356,754620,756052,757331,758312,759563,760567,761820,763103,764256,765289,766593,767769,768767,770123,771374,772404,773675,774988,776033,777244,778537,779667,780905,782135,783154,784296,785501,786760,787952,788840,789922,790976,792331,793609,794602,795583,796805,798309,799893,800964,802095,803205,804095,805040,806435,807652,808954,810421,811638,812486,813496,814363,815424,816477,817713,819015,819973,820957,822137,823308,824374,825488,826335,827121,828391,829623,830771,832339,833715,834934,836105,837233,838476,839520,840697,841802,843057,844369,845534,846587,847662,848913,850160,851456,852674,853864,854316,855294,856275,857442,858689,859917,861450,862705,863690,864805,866095,867409,868715,869939,871149,872232,873387,874664,876092,877587,878811,879945,881360,882505,883800,885347,886761,887977,889160,890197,890948,892235,893409,894329,895296,896548,897520,898252,899491,900663,901811,903215,904500,905794,906901,908052,909383,910630,912015,913088,914288,915278,916429,917574,918718,920055,921320,922718,923778,924905,926110,927547,929103,930714,932299,933517,935051,936058,937359,938502,939922,940981,942084,943432,944480,945691,947217,948012,949348,950788,951955,953138,954395,955654,956674,957765,958809,959782,960878,961944,962999,964112,965283,966273,967309,968446,969689,970762,971857,973096,974494,975804,977047,978067,979286,980591,981921,982882,984082,985342,986797,987928,988807,989947,990992,992094,993391,994708,995960,997038,998386,999470,1000634,1001901,1003031,1004317,1005460,1006480,1007731,1009055,1010287,1011473,1012555,1013673,1014787,1015983,1017239,1018533,1019777,1020875,1022003,1022985,1024222,1025230,1026531,1027816,1028969,1030055,1031212,1032254,1033280,1034317,1035344,1036398,1037552,1038616,1039698,1040739,1041665,1042778,1043883,1044733,1045788,1046657,1047662,1048727,1049760,1050974,1052484,1053753,1054411,1055399,1056500,1057718,1058802,1059882,1060936,1061984,1063076,1064341,1065214,1066225,1067230,1068273,1069404,1070460,1071374,1072501,1073576,1074820,1075881,1076886,1077940,1079089,1080222,1081413,1082285,1083523,1084516,1085665,1086768,1087600,1088549,1089446,1090595,1091648,1092961,1094034,1095211,1096590,1097783,1099072,1100121,1101408,1102680,1103731,1104653,1105998,1107277,1108527,1109675,1110646,1111510,1112165,1113028,1113512,1114107,1114679,1115229,1115761,1116247,1116796,1117347,1117931,1118502,1119046,1119561,1120120,1120713,1121263,1121824,1122478,1123555,1124720,1125974,1127088,1128379,1129549,1130940,1132101,1133105,1134202,1135559,1136725,1137886,1138700,1139656,1140756,1141926,1143074,1144088,1145163,1146244,1147597,1148758,1149811,1150902,1151972,1152871,1153992,1154896,1155857,1156518,1157583,1158642,1159631,1160695,1161599,1162559,1163294,1164115,1165002,1166058,1166874,1167868,1168648,1169529,1170469,1171253,1172253,1173344,1174246,1175611,1176914,1178241,1179378,1180718,1181895,1183138,1184050,1185047,1186255,1187546,1188496,1189176,1189971,1191242,1192721,1193855,1194815,1195659,1196762,1197735,1198723,1199706,1200905,1201975,1202966,1204320,1205451,1206356,1207668,1209110,1210491,1211803,1213141,1214636,1215991,1217272,1218479,1219585,1220701,1221719,1222938,1223984,1224731,1225818,1227062,1228186,1229332,1230524,1232023,1233358,1234471,1235736,1237026,1238357,1239448,1240278,1241552,1242854,1244082,1245130,1246447,1247756,1249178,1250700,1251698,1252674,1253536,1254575,1255634,1256682,1257790,1259095,1259993,1261265,1262169,1263225,1264610,1266064,1267181,1268431,1269438,1270580,1271607,1272789,1273826,1275101,1276250,1277244,1278229,1279054,1280055,1281203,1282373,1283341,1284295,1285426,1286785,1287944,1289039,1290147,1291342,1292542,1293779,1294890,1295926,1297154,1298638,1299604,1300939,1302383,1303759,1305226,1306386,1307646,1308896,1309879,1310979,1312134,1313178,1314303,1315636,1316349,1317284,1318546,1319763,1321172,1322230,1323458,1324650,1325820,1327006,1328264,1329381,1330332,1331235,1332570,1333646,1334686,1335626,1336620,1337830,1338862,1340001,1341263,1342370,1343517,1344656,1345709,1346734,1347461,1348292,1349813,1351277,1352593,1353874,1355021,1356227,1357441,1358642,1359905,1361275,1362452,1363740,1364718,1365959,1367025,1367978,1369068,1370018,1371134,1372479,1373624,1374723,1375713,1376748,1378062,1379331,1380594,1381718,1383101,1384515,1385867,1387129,1388493,1389633,1390904,1392074,1393025,1394245,1395502,1396862,1397906,1399024,1400078,1401287,1402410,1403264,1404247,1405368,1406180,1407335,1408284,1409551,1410787,1411730,1412772,1413515,1414315,1415443,1416469,1417211,1418237,1419283,1420747,1422319,1423803,1425463,1426617,1427422,1428506,1429456,1430298,1431159,1432235,1433231,1434176,1435140,1436520,1437469,1438523,1439675,1440870,1442103,1443208,1444043,1445047,1446110,1447191,1448051,1449119,1450231,1451126,1452235,1453508,1454891,1456261,1457422,1458684,1459830,1461059,1462276,1463668,1464912,1465997,1467228,1468276,1469349,1470301,1471437,1472886,1474132,1475002,1476151,1477477,1478687,1479847,1481130,1482334,1483143,1484365,1485609,1487102,1488371,1489797,1491218,1492825,1494290,1495893,1497286,1498445,1499703,1501e3,1502348,1503495,1504667,1506009,1507265,1508595,1509937,1511090,1512084,1513166,1514198,1515387,1516428,1517887,1519393,1520597,1521421,1522443,1523417,1524722,1525870,1526825,1527980,1529069,1529851,1530760,1532060,1533467,1534753,1535845,1536950,1538215,1539483,1540518,1542068,1543500,1544672,1545995,1547156,1548389,1549521,1550943,1552104,1553439,1554389,1555118,1556076,1557074,1558020,1558989,1559653,1560671,1562051,1563291,1564654,1565899,1566792,1567888,1569054,1570284,1571636,1573082,1574158,1575469,1576965,1578467,1579622,1580617,1581691,1582627,1583753,1584766,1585779,1586886,1588029,1589019,1589801,1590769,1592090,1593278,1594584,1595782,1597201,1598238,1599510,1600816,1602030,1603210,1604141,1604995,1605900,1607136,1608691,1609969,1611150,1612506,1613873,1615249,1616488,1617837,1619075,1620313,1621634,1622896,1624047,1625105,1626303,1627414,1628356,1629092,1630074,1631274,1632423,1633687,1634934,1636080,1637027,1638138,1638949,1639833,1640941,1642123,1643332,1644612,1645647,1646834,1648157,1649398,1650462,1651491,1652801,1653908,1655041,1656320,1657469,1658712,1660010,1661044,1662351,1663562,1664430,1665548,1666708,1667900,1669047,1670492,1671599,1672693,1673619,1674744,1675955,1677361,1678565,1679732,1680978,1682416,1683781,1684971,1686120,1687222,1688489,1689854,1691013,1692218,1693514,1694873,1696092,1697274,1698584,1699430,1700828,1701958,1703273,1704599,1705634,1706875,1707983,1709285,1710364,1711244,1712788,1713971,1715192,1716408,1717608,1718850,1720076,1721365,1722752,1724157,1725430,1726622,1727940,1729187,1730463,1731643,1732833,1733895,1734979,1735936,1736954,1737780,1738869,1740250,1741739,1742786,1743995,1745340,1746493,1747513,1748332,1749127,1749779,1751053,1752377,1753721,1755151,1756355,1757565,1758728,1760016,1761299,1762347,1763736,1764741,1765723,1766920,1768274,1769542,1770750,1771789,1772829,1774168,1775452,1776651,1777811,1778920,1780200,1781546,1782847,1783933,1785343,1786786,1787980,1789333,1790479,1791648,1793024,1794326,1795354,1796558,1797987,1799506,1800717,1801297,1801864,1802962,1804027,1805175,1806029,1807047,1808138,1809368,1810632,1811792,1813007,1814144,1815236,1816819,1818041,1819299,1820526,1821751,1822965,1824077,1825270,1826510,1827713,1828944,1830127,1831202,1832424,1833562,1834878,1836134,1837392,1838605,1839907,1840952,1842239,1843727,1844990,1846121,1847342,1848741,1849953,1850958,1851950,1853115,1854369,1855547,1856589,1857710,1858831,1859960,1861120,1862542,1863484,1864851,1866129,1867370,1868849,1870137,1871755,1872959,1874162,1875402,1876317,1877467,1878516,1879667,1880724,1881802,1883140,1884381,1885523,1886510,1887284,1888116,1889045,1889952,1891345,1892712,1893612,1894865,1895898,1896707,1897772,1899131,1900143,1901419,1902503,1903611,1904610,1905471,1906463,1907314,1908189,1909176,1910329,1911260,1912120,1913013,1913895,1914633,1915461,1916442,1917464,1918499,1919704,1920717,1922019,1923168,1924281,1925826,1926991,1928296,1929491,1930643,1931677,1932659,1933660,1934879,1936154,1937578,1938666,1939742,1940952,1941990,1942815,1943743,1944494,1945468,1946529,1947929,1949245,1950227,1951364,1952616,1953793,1955247,1956618,1957891,1959199,1960669,1961751,1963139,1964688,1966038,1967505,1968716,1969987,1971161,1972428,1973735,1974872,1975751,1976997,1978335,1979208,1980215,1981274,1982727,1983616,1984778,1985757,1986757,1987788,1988959,1990199,1991200,1992221,1993609,1994807,1995978,1997384,1998670,1999911,2001128,2002393,2003814,2005158,2006213,2007494,2008337,2009262,2010409,2011667,2012924,2013942,2014961,2015863,2016772,2017803,2018809,2019853,2020840,2021828,2022651,2023605,2024658,2025670,2026654,2027736,2028773,2029784,2030712,2031545,2032683,2033934,2035134,2036348,2037223,2038075,2039099,2039982,2040937,2041921,2043347,2044425,2045374,2046345,2047509,2048270,2049209,2050450,2051801,2052830,2054094,2055601,2057002,2058158,2059357,2060748,2062052,2063549,2064764,2065901,2067142,2068368,2069700,2071239,2072254,2073502,2074919,2076018,2077115,2078239,2079268,2080308,2081429,2082485,2083686,2084803,2085769,2086930,2087984,2089218,2090438,2091646,2092795,2094098,2095252,2096275,2097305,2098482,2099591,2100724,2101621,2102573,2103328,2104343,2105557,2106663,2107733,2108852,2110105,2111219,2112451,2113484,2114540,2115492,2116454,2117614,2118813,2119992,2121191,2122689,2123964,2125354,2126518,2127679,2128429,2129430,2130208,2131311,2132424,2133629,2135052,2136335,2137750,2138926,2140138,2141465,2143012,2144234,2145579,2146864,2147977,2149058,2150143,2151483,2152750,2153980,2155044,2156311,2157680,2158758,2159746,2161056,2162340,2163922,2165116,2166288,2167496,2168627,2169877,2171052,2172345,2173493,2174770,2176214,2177412,2178489,2179941,2181131,2182470,2183629,2184957,2186257,2187370,2188549,2189614,2190847,2192148,2193503,2194800,2196391,2197828,2199014,2200436,2201636,2202886,2204253,2205642,2207068,2208335,2209645,2210626,2211833,2213134,2214393,2215732,2216678,2217654,2218588,2219859,2221150,2222507,2223690,2224769,2225856,2227021,2228320,2229544,2230422,2231577,2232597,2233699,2234828,2236018,2237195,2238432,2239668,2240934,2242201,2243367,2244657,2245913,2246937,2247872,2249125,2250381,2251557,2252464,2253427,2254487,2255600,2256594,2257643,2258600,2259482,2260854,2262198,2263496,2264514,2265631,2267041,2268333,2269657,2270915,2272187,2273324,2274584,2275890,2276847,2278213,2279483,2280755,2281892,2283062,2284148,2285128,2286333,2287543,2289048,2290286,2291319,2292544,2293810,2295272,2296607,2297738,2298959,2300056,2301206,2302292,2303136,2304325,2305667,2306884,2308360,2309442,2310444,2312023,2313130,2314404,2315722,2317200,2318364,2319590,2320452,2321432,2322443,2323900,2325059,2326311,2327334,2328718,2330094,2331202,2332380,2333495,2334506,2335706,2336965,2338176,2339400,2340508,2341916,2343158,2344415,2345569,2346525,2347601,2348594,2349374,2350406,2351331,2352686,2353877,2354740,2355592,2356575,2357957,2358931,2359966,2361303,2362361,2363593,2364533,2365307,2366669,2367963,2369286,2370421,2371814,2372968,2374316,2375590,2376832,2378048,2379128,2380196,2381403,2382818,2383833,2384884,2386077,2387225,2388321,2389288,2390195,2391213,2392228,2393491,2394754,2395742,2396886,2398026,2399273,2400530,2401596,2402876,2404112,2405304,2406410,2407531,2408497,2409414,2410645,2411462,2412418,2412994,2414146,2415366,2416630,2417815,2419009,2420335,2421615,2422820,2423868,2425032,2426433,2427212,2428056,2429480,2430772,2432157,2433462,2434656,2435922,2437298,2438666,2440119,2441678,2443296,2444871,2446477,2447853,2448796,2449879,2450815,2451703,2452642,2453484,2454330,2455432,2456460,2457458,2458533,2459282,2460637,2461905,2463167,2464359,2465821,2467048,2468112,2469451,2470586,2471886,2472856,2473785,2474888,2475940,2476987,2478183,2479377,2480413,2481666,2482817,2484015,2485333,2486598,2487816,2489178,2490292,2491549,2492901,2493984,2495170,2496565,2497778,2499137,2500334,2501753,2502931,2504140,2505499,2506641,2507826,2508944,2510034,2510805,2512021,2513242,2514385,2515567,2516716,2517830,2518897,2520153,2521290,2522444,2523671,2524929,2526230,2527524,2528736,2530046,2531160,2532279,2533566,2534463,2535666,2536899,2538180,2539289,2540546,2541757,2543033,2544218,2545384,2546431,2547706,2548839,2550052,2551266,2552403,2553622,2554819,2556079,2557305,2558408,2559637,2561088,2562327,2563612,2564540,2565585,2566685,2567887,2568806,2569947,2571078,2572261,2573506,2574656,2575761,2576833,2577845,2578971,2580104,2581085,2582220,2583302,2584476,2585556,2586609,2587585,2588521,2589726,2590730,2591870,2592739,2593516,2594733,2595719,2596625,2597733,2598830,2600156,2601275,2602320,2603273,2604323,2605473,2606600,2608125,2609248,2610430,2611602,2612757,2613825,2614699,2615783,2616755,2618087,2619233,2620549,2621392,2622110,2623254,2624419,2625405,2626563,2627778,2629109,2630477,2631632,2632612,2633652,2634799,2635834,2637205,2638421,2639721,2640984,2642258,2643468,2644782,2646124,2647227,2648235,2649426,2650471,2651535,2652798,2653826,2654993,2656087,2657068,2658202,2659141,2660069,2661234,2662194,2663424,2664764,2666165,2667387,2668738,2669833,2670934,2672192,2673459,2674664,2675783,2676984,2677970,2678988,2679740,2680935,2682091,2683399,2684571,2685756,2686814,2687839,2688997,2689805,2690896,2691855,2693023,2693978,2695442,2696640,2697797,2698881,2700183,2701323,2702461,2703770,2704827,2705927,2707062,2708159,2709246,2710506,2711871,2713116,2714457,2715639,2716543,2717578,2718701,2719703,2720803,2721976,2723162,2724452,2725782,2726999,2728149,2729239,2729940,2730979,2731939,2733241,2734371,2735535,2736784,2738003,2738929,2740111,2741311,2742397,2743538,2744936,2746238,2747588,2748839,2750020,2751272,2752447,2753794,2754892,2756149,2757234,2758397,2759603,2760441,2760918,2761989,2763187,2764214,2765213,2766247,2767433,2768607,2769678,2770786,2771865,2772964,2774141,2775252,2776329,2777474,2778737,2779963,2781112,2782358,2783566,2784668,2785849,2787054,2788357,2789555,2790631,2791725,2792852,2793912,2795137,2796260,2797316,2798435,2799178,2799841,2800945,2802048,2803321,2804649,2805912,2807005,2808270,2809463,2810519,2811742,2812929,2814180,2815195,2816328,2817418,2818589,2819823,2821146,2822372,2823669,2825053,2826098,2827422,2828125,2828887,2830172,2831174,2832075,2833041,2833807,2834445,2835296,2836025,2836962,2838156,2838940,2840010,2841315,2842524,2843502,2844479,2845388,2846468,2847476,2848734,2849967,2851280,2852694,2853900,2855108,2856275,2857367,2858575,2859706,2860887,2862144,2863329,2864524,2865599,2866804,2868214,2869377,2870510,2871505,2872960,2874188,2875327,2876325,2877108,2877844,2878640,2879272,2880120,2880996,2882069,2883013,2883800,2884725,2885697,2886732,2887589,2888429,2889255,2890173,2890874,2891918,2892936,2893705,2894380,2895154,2895747,2896393,2897459,2898302,2899165,2899977,2900906,2901634,2902660,2903237,2903935,2904658,2905588,2906561,2907217,2907895,2908578,2909203,2909943,2910931,2911670,2912403,2912981,2913667,2914355,2915385,2916246,2917098,2917936,2918824,2919594,2920547,2921645,2922501,2923227,2924088,2924983,2925733,2926741,2927759,2928529,2929311,2930213,2930926,2931666,2932681,2933626,2934307,2935226,2936117,2936751,2937676,2938725,2939474,2940292,2941217,2941954,2942763,2943785,2944725,2945407,2946337,2947219,2947891,2948858,2949901,2950655,2951473,2952380,2953208,2954133,2955227,2956009,2956820,2957841,2958749,2959809,2960860,2961766,2962448,2963399,2964293,2965038,2966070,2967086,2967851,2968665,2969659,2970397,2971267,2972353,2973452,2974306,2975115,2975936,2976733,2977732,2978832,2979922,2980825,2981519,2982308,2983259,2984115,2984983,2985622,2986620,2987612,2988338,2989009,2989778,2990434,2991291,2992363,2993203,2993900,2994750,2995546,2996293,2997214,2998185,2999035,2999873,3000670,3001508,3002353,3003220,3004049,3004711,3005508,3006274,3006959,3007986,3008799,3009528,3010217,3011059,3012058,3012780,3013470,3014130,3014742,3015509,3016595,3017441,3018142,3018835,3019480,3020229,3021130,3021971,3022820,3023550,3024544,3025526,3026206,3026935,3027794,3028450,3029324,3030360,3031128,3031876,3032704,3033331,3034064,3035018,3035722,3036556,3037303,3038357,3039288,3039950,3040633,3041486,3042249,3043195,3044170,3044888,3045694,3046484,3047134,3047843,3048861,3049523,3050271,3051064,3052119,3052966,3053632,3054392,3055239,3056029,3056937,3057909,3058603,3059367,3060021,3060637,3061318,3062363,3062988,3063709,3064426,3065422,3066228,3066913,3067514,3068243,3068957,3069883,3070817,3071496,3072233,3072820,3073474,3074318,3075413,3076260,3077008,3077743,3078432,3079502,3080393,3081218,3081964,3082948,3083948,3084658,3085332,3086112,3086903,3087777,3088810,3089592,3090350,3091232,3091864,3092579,3093611,3094254,3095084,3095832,3096917,3097792,3098458,3099132,3100019,3100781,3101747,3102710,3103357,3104225,3104964,3105606,3106430,3107309,3108110,3108724,3109654,3110698,3111431,3112166,3112799,3113600,3114363,3115445,3116400,3117075,3117926,3118574,3119426,3120310,3121202,3122024,3122640,3123594,3124607,3125309,3126041,3126703,3127501,3128261,3129371,3130286,3130961,3131804,3132508,3133367,3134243,3135137,3136007,3136665,3137688,3138673,3139354,3140076,3140944,3141557,3142594,3143565,3144309,3145094,3145949,3146785,3147473,3148483,3149286,3149932,3150837,3151894,3152673,3153376,3154085,3154919,3155674,3156757,3157710,3158383,3159255,3159944,3160803,3161678,3162739,3163482,3164161,3164951,3165957,3166668,3167421,3168329,3169039,3169759,3170768,3171524,3172288,3173209,3173845,3174450,3175431,3176108,3176907,3177682,3178779,3179655,3180324,3180998,3181883,3182527,3183557,3184540,3185246,3186083,3186729,3187566,3188216,3189210,3189815,3190466,3191240,3192289,3193121,3193795,3194423,3195095,3195804,3196708,3197677,3198343,3199062,3199670,3200397,3201205,3202136,3202943,3203656,3204485,3205474,3206204,3206940,3207733,3208416,3209214,3210261,3211008,3211795,3212561,3213199,3213928,3215029,3216031,3216713,3217464,3218189,3218961,3220027,3220909,3221719,3222561,3223303,3224126,3225088,3225700,3226292,3226879,3227451,3228372,3229424,3230464,3231206,3231871,3232694,3233314,3234345,3235467,3236387,3237572,3238627,3239797,3240382,3241011,3241696,3242507,3243521,3244290,3244963,3245869,3246503,3247324,3248385,3249285,3249971,3250716,3251512,3252239,3253211,3254249,3255005,3255704,3256462,3257213,3258196,3259248,3260005,3260710,3261571,3262321,3263147,3264179,3265146,3265831,3266564,3267349,3267994,3268857,3269943,3270740,3271485,3272333,3273090,3273714,3274828,3275835,3276508,3277217,3278112,3278790,3279664,3280764,3281611,3282351,3283090,3283845,3284622,3285698,3286730,3287441,3288100,3288986,3289659,3290540,3291619,3292422,3293167,3293942,3294698,3295436,3296523,3297540,3298201,3298861,3299489,3300083,3301021,3302064,3302813,3303543,3304259,3305083,3306149,3307054,3307744,3308565,3309360,3310005,3311123,3312124,3312798,3313494,3314312,3315274,3316327,3317088,3317793,3318660,3319285,3320090,3320899,3321915,3322684,3323376,3324314,3325028,3325619,3326721,3327735,3328395,3329219,3330063,3330664,3331514,3332570,3333316,3334102,3335058,3335859,3336464,3337458,3338467,3339205,3339989,3340899,3341618,3342260,3343210,3344112,3344884,3345697,3346440,3347151,3347868,3348544,3349326,3350138,3350911,3351620,3352303,3353024,3353670,3354392,3355120,3355803,3356820,3357505,3358265,3359002,3359729,3360786,3361715,3362656,3363491,3364158,3364874,3365699,3366562,3367392,3368123,3368864,3369575,3370360,3371208,3371977,3372777,3373689,3374529,3375207,3376034,3376968,3377808,3378705,3379462,3380352,3381033,3381702,3382782,3383627,3384790,3385808,3386582,3387298,3388134,3388994,3389771,3390765,3391539,3392265,3392982,3393799,3394808,3395810,3396562,3397440,3398126,3398824,3399914,3400824,3401894,3402598,3403346,3404114,3404814,3405874,3406733,3407745,3408725,3409738,3410402,3411319,3412325,3412964,3413850,3414908,3415810,3416493,3417273,3418125,3418707,3419664,3420961,3422142,3423213,3424231,3425135,3426151,3426753,3427810,3428808,3429493,3430205,3430942,3431705,3432713,3433764,3434727,3435737,3436514,3437455,3438397,3439146,3439932,3440995,3441870,3443175,3444234,3445340,3446484,3447921,3449081,3450402,3451842,3453378,3454838,3456034,3456882,3457571,3458233,3459082,3460026,3460986,3462296,3463369,3464496,3465834,3467028,3468313,3469668,3470977,3472207,3473227,3474120,3475310,3476441,3477390,3478494,3479277,3480383,3481419,3482440,3483716,3484475,3485510,3486906,3487750,3488642,3489714,3490850,3491802,3492818,3493909,3495004,3496324,3497264,3498341,3499317,3500313,3501283,3502676,3503904,3505020,3506309,3507709,3508880,3510347,3511582,3512992,3514097,3515e3,3515898,3516986,3518099,3519183,3520251,3521672,3522966,3524331,3525223,3526308,3527558,3529042,3530458,3531760,3533217,3534571,3535962,3537281,3538368,3539758,3540993,3542160,3543331,3544671,3545714,3546768,3547820,3549111,3550253,3551496,3552885,3554034,3555216,3556707,3558089,3559507,3560628,3561839,3562821,3563991,3565e3,3565950,3566941,3568147,3569558,3570868,3572087,3573436,3574573,3575850,3576992,3578290,3579723,3580957,3582199,3583605,3584801,3586037,3587307,3588592,3589904,3591266,3592278,3593524,3594853,3595902,3597261,3598390,3599577,3601018,3602234,3603436,3604481,3605494,3606315,3607273,3608646,3610139,3611405,3612791,3613895,3615093,3616286,3617430,3618501,3619568,3620554,3621766,3622888,3624128,3625421,3626458,3627613,3628703,3629856,3631173,3632283,3633519,3634713,3635701,3636981,3638101,3639238,3640498,3641668,3643085,3644419,3645747,3647223,3648435,3649875,3651094,3652449,3653973,3655418,3656768,3658138,3659400,3660849,3662086,3663571,3664704,3666021,3667310,3668642,3669927,3671243,3672420,3673349,3674420,3675682,3676883,3678175,3679382,3680622,3681837,3682760,3683693,3684546,3685474,3686397,3687300,3688236,3689172,3690092,3691039,3691914,3692796,3693714,3694672,3695504,3696339,3697166,3698053,3699032,3699941,3700835,3701762,3702640,3703458,3704393,3705294,3706182,3707083,3708439,3709820,3711066,3711814,3712810,3713905,3714967,3716165,3717291,3718567,3719938,3721295,3722703,3723813,3724991,3726238,3727572,3728839,3729840,3730860,3731988,3733180,3734272,3735643,3736834,3737958,3739047,3739996,3740782,3741874,3742987,3743994,3745406,3746752,3748153,3749437,3750787,3752230,3753744,3755189,3756376,3757550,3758748,3759890,3761148,3762062,3763135,3764265,3765613,3766878,3768094,3769396,3770459,3771565,3772835,3773852,3775055,3776237,3777420,3778583,3779688,3780812,3782004,3783550,3784844,3786238,3787607,3788993,3790204,3791439,3792750,3794072,3795424,3796901,3798212,3799373,3800360,3801240,3802207,3803297,3804240,3805139,3806176,3807439,3808579,3809628,3810824,3811786,3812840,3813937,3814972,3816022,3817121,3818271,3819443,3820719,3821593,3822911,3824047,3824975,3826537,3827782,3829302,3830693,3831827,3832975,3834159,3835362,3836595,3837647,3839128,3840548,3842008,3843460,3844843,3845860,3847061,3848193,3849378,3850420,3851731,3853057,3854261,3855367,3856644,3857931,3859306,3860620,3861740,3862764,3864009,3865129,3866389,3867893,3869379,3870749,3872050,3873225,3874013,3875188,3876454,3877649,3878566,3879923,3880776,3881718,3882899,3884060,3885316,3886463,3887846,3889002,3890248,3891297,3892518,3893839,3895017,3896278,3897548,3898870,3900066,3901230,3902279,3903472,3904739,3906030,3907089,3908361,3909464,3910546,3911781,3913029,3914006,3915043,3916193,3917143,3918380,3919737,3921310,3922566,3923836,3925308,3926466,3927848,3929053,3930266,3931356,3932651,3934030,3935311,3936534,3937644,3938783,3940082,3941123,3942473,3943613,3944891,3946062,3947240,3948440,3949545,3950904,3951623,3952920,3954143,3955103,3956237,3957609,3958406,3959555,3960761,3961793,3962868,3963598,3964948,3966282,3967815,3968967,3970313,3971613,3972865,3973852,3974861,3975948,3976717,3977465,3978535,3979617,3980618,3981693,3982752,3984013,3985017,3986463,3987753,3989118,3990257,3991497,3992631,3993848,3994980,3996153,3997448,3998738,4000009,4001221,4002453,4003880,4004974,4006263,4007182,4008443,4009627,4010859,4011997,4013283,4014505,4015724,4016973,4018258,4019569,4020696,4022268,4023650,4025061,4026306,4027593,4028777,4030035,4031247,4032525,4033806,4035319,4036725,4037790,4038876,4040282,4041444,4042829,4044002,4045373,4046688,4048118,4049550,4050515,4051530,4052704,4053802,4055004,4056428,4057877,4059081,4060465,4061647,4062638,4063802,4064992,4066409,4067735,4068951,4070302,4071607,4072657,4073934,4075455,4076805,4078174,4079133,4080280,4081204,4082074,4083593,4085060,4086493,4087915,4089199,4090486,4091649,4092787,4093883,4095012,4096246,4097694,4098988,4100318,4101597,4102716,4103954,4105119,4106197,4107554,4108878,4110046,4111115,4112349,4113535,4114780,4115952,4117172,4118222,4119678,4121006,4122056,4123063,4124240,4125490,4126646,4127781,4129053,4130203,4131188,4131835,4132409,4133472,4134702,4135994,4137385,4138649,4139773,4140929,4142264,4143466,4144652,4145487,4146642,4147759,4149030,4150200,4151404,4152346,4153493,4154900,4156212,4157449,4158546,4160024,4161484,4162921,4164329,4165648,4167033,4168383,4169639,4171012,4172163,4173160,4174208,4175339,4176230,4177281,4178004,4179154,4180269,4181212,4182411,4183430,4184523,4185764,4186730,4188042,4189316,4190716,4191724,4192926,4193797,4194807,4195739,4196753,4197878,4199051,4199984,4201070,4202153,4203123,4204241,4205251,4206408,4207357,4208594,4209618,4211004,4211974,4212875,4213824,4215034,4216148,4217215,4218241,4219209,4220035,4221104,4222194,4223084,4223965,4225106,4226291,4227470,4228225,4229126,4230270,4231290,4232273,4233197,4234324,4235498,4236563,4237581,4238526,4239332,4240475,4241581,4242408,4243570,4244725,4245726,4246488,4247620,4248737,4249602,4250818,4251736,4252446,4253652,4254680,4255841,4257381,4258730,4259904,4261090,4262664,4263746,4264542,4265554,4266523,4267611,4268980,4270414,4271689,4272784,4273897,4274922,4276148,4277177,4278312,4279473,4280238,4281407,4282504,4283550,4284543,4285519,4286616,4287839,4288968,4290236,4291487,4292790,4293957,4295087,4296138,4297356,4298407,4299250,4300347,4301460,4302711,4303801,4304835,4305895,4306990,4307938,4309472,4310650,4311908,4313124,4314201,4315516,4316566,4317387,4318393,4319342,4320265,4321192,4322384,4323640,4324929,4325914,4327029,4328162,4329062,4330329,4331335,4332589,4333535,4334561,4335343,4336616,4337678,4338821,4340038,4341097,4342237,4343199,4344623,4345853,4346791,4347768,4348764,4349855,4351047,4352014,4353060,4354196,4355301,4356407,4357690,4358810,4359874,4360927,4362018,4362747,4363975,4365023,4365940,4367225,4368381,4369571,4370763,4371777,4372676,4374146,4375432,4376685,4377726,4378947,4380012,4381395,4382673,4383829,4384869,4385774,4386925,4388042,4389285,4390201,4391391,4392383,4393542,4394689,4395773,4396990,4398248,4399371,4400218,4401173,4402273,4403272,4404447,4405521,4406929,4408105,4409474,4410369,4411578,4412498,4413591,4414269,4415425,4416474,4417342,4418521,4419628,4420649,4421653,4422641,4423739,4424925,4426110,4427459,4428642,4429900,4430953,4431983,4432952,4434138,4435309,4436596,4437583,4438622,4439614,4440942,4442095,4443317,4444371,4445566,4446729,4447977,4449097,4450089,4451499,4452674,4453800,4454932,4456295,4457448,4458418,4459417,4460833,4461891,4462770,4463719,4464705,4466027,4466968,4468160,4469416,4470668,4471996,4473179,4474399,4475719,4476810,4477611,4478666,4479640,4480927,4482044,4483353,4484401,4485592,4486877,4488092,4489414,4490657,4491901,4493436,4494863,4496037,4497458,4498389,4499557,4500768,4501871,4503003,4504167,4505470,4506851,4507947,4509164,4510191,4511175,4512166,4513209,4514384,4515640,4516967,4517972,4519121,4519952,4520843,4521692,4522406,4523508,4524620,4525222,4526113,4527125,4528143,4529379,4530726,4531991,4533190,4534264,4535538,4536704,4537608,4538833,4539942,4540958,4542033,4543353,4544426,4545327,4546265,4547147,4548522,4549786,4550889,4551854,4552968,4554238,4555302,4556375,4557382,4558540,4559579,4560643,4561864,4563098,4564061,4565152,4566341,4567692,4568690,4569964,4571286,4572345,4573225,4574213,4575205,4576253,4577540,4578802,4580176,4581671,4582845,4583911,4585251,4586246,4587338,4588574,4589646,4590550,4591654,4592867,4594031,4594987,4595976,4597330,4598631,4599802,4600888,4602148,4603555,4604530,4605520,4606747,4607868,4608675,4609853,4610899,4611921,4613154,4614449,4615436,4616268,4617130,4618148,4619372,4620508,4621604,4622968,4624270,4625457,4626619,4628083,4629331,4630786,4631923,4633034,4634010,4635405,4636764,4637957,4639286,4640673,4642005,4643381,4644527,4646030,4647886,4649740,4651229,4652372,4653460,4654489,4655310,4656300,4657465,4658671,4659759,4660832,4661453,4662475,4663607,4664483,4665678,4666854,4667972,4668962,4669912,4671052,4672257,4673442,4674384,4675333,4676449,4677687,4678725,4679889,4680981,4682150,4683151,4684314,4685050,4685844,4686846,4688018,4689152,4690159,4691153,4692178,4693160,4694231,4695179,4696222,4697049,4698218,4699356,4700426,4701104,4701914,4702863,4703862,4705e3,4706082,4707256,4708515,4710026,4711563,4713130,4714565,4716231,4717923,4719482,4721032,4722699,4724086,4725708,4727149,4728584,4730226,4731935,4733482,4735041,4736568,4737878,4738668,4740059,4741043,4742274,4742922,4743431,4744319,4745728,4746822,4748130,4749478,4750717,4752144,4753326,4754679,4755953,4757194,4758582,4759902,4761088,4762409,4763866,4764986,4766343,4767695,4769002,4770424,4771641,4773004,4774211,4775505,4776905,4778246,4779509,4780779,4781663,4783037,4784209,4785453,4786412,4787747,4789128,4790516,4791860,4793241,4794219,4795489,4796948,4798063,4799492,4800805,4801369,4802003,4802616,4803303,4804538,4805363,4806150,4807398,4808354,4809659,4810983,4812121,4813427,4814548,4815502,4816786,4818072,4819057,4820313,4821662,4823045,4824382,4825787,4826947,4828268,4829071,4830303,4831303,4832362,4833588,4834876,4836257,4837659,4838777,4839703,4840980,4842394,4843698,4844521,4845848,4847159,4848052,4849058,4850363,4851464,4852616,4853688,4854888,4856223,4857586,4858894,4860265,4861641,4863006,4864431,4865379,4865738,4866538,4867678,4868981,4869978,4871081,4872307,4873563,4874842,4876176,4877640,4878810,4880232,4881547,4882669,4883828,4885238,4886551,4887403,4888774,4889939,4891206,4892355,4893563,4894538,4895942,4896921,4897887,4899127,4900267,4901430,4902301,4903058,4903991,4905374,4906734,4908182,4909468,4910814,4912020,4913086,4914105,4915162,4916148,4917184,4918246,4919244,4920203,4921167,4922242,4923123,4924177,4925172,4926177,4927078,4928014,4928829,4929786,4930668,4931539,4932390,4933350,4934254,4935110,4935973,4936932,4937888,4938889,4939965,4941048,4942145,4943147,4944021,4945068,4946256,4947272,4948449,4949458,4950619,4951702,4952786,4953946,4954984,4955996,4957078,4958049,4959095,4959946,4961031,4961995,4963078,4963991,4964874,4965891,4967008,4968006,4968997,4970115,4970938,4971920,4972897,4973810,4974784,4975949,4976941,4978049,4979071,4980040,4981071,4982063,4982919,4983932,4984859,4985905,4986946,4987910,4988870,4989884,4990901,4991806,4992711,4993751,4994741,4995729,4996738,4997796,4998863,4999859,5000884,5001964,5003023,5004165,5005237,5006268,5007217,5008310,5009270,5010193,5011017,5012069,5013253,5014494,5015718,5016828,5017916,5018920,5019951,5020988,5021986,5023092,5024129,5025232,5026258,5027373,5028560,5029795,5030890,5031931,5032896,5033866,5034845,5035774,5036581,5037319,5038270,5039176,5039689,5040397,5041129,5041878,5042723,5043480,5044429,5045223,5046020,5046929,5047776,5048764,5049903,5050893,5051988,5053023,5054173,5055328,5056244,5057292,5058329,5059470,5060480,5061521,5062618,5063737,5064814,5065930,5067171,5068272,5069414,5070484,5071569,5072611,5073702,5074812,5075788,5076601,5077557,5078429,5079298,5080360,5081474,5082605,5083725,5084461,5084851,5085263,5086200,5087074,5088184,5089330,5090340,5091231,5092287,5093348,5094264,5095248,5096019,5096906,5097955,5099041,5099978,5100981,5102110,5103135,5104135,5105076,5106101,5107117,5108055,5108993,5110024,5111062,5112044,5113192,5114127,5115130,5116027,5116975,5117909,5118897,5119765,5120820,5121755,5122668,5123570,5124608,5125604,5126510,5127364,5128271,5129226,5130246,5131264,5132319,5133282,5134296,5135350,5136350,5137299,5138079,5139012,5139820,5140641,5141564,5142591,5143404,5144404,5145439,5146382,5147205,5148199,5149222,5150201,5151159,5152115,5153059,5153815,5154711,5155528,5156248,5157174,5158085,5158839,5159756,5160688,5161607,5162336,5162745,5163623,5164507,5165459,5166435,5167367,5168456,5169568,5169989,5170641,5171703,5172699,5173815,5174965,5176067,5177273,5178332,5179487,5180567,5181690,5182878,5183952,5185065,5186199,5187352,5188171,5188805,5189496,5190541,5191431,5192538,5193559,5194688,5195832,5197009,5198084,5199286,5200241,5201283,5202468,5203599,5204687,5205792,5206856,5207875,5208833,5209773,5210586,5211407,5212287,5213154,5213966,5214931,5215882,5216870,5217856,5218971,5219845,5220315,5221285,5222246,5223398,5224402,5225132,5225657,5226268,5227351,5228390,5229492,5230579,5231679,5232645,5233614,5234598,5235321,5235834,5236413,5237086,5238097,5239193,5240229,5241185,5242444,5243710,5245136,5246368,5247712,5249065,5250236,5251255,5252413,5253611,5254958,5256102,5257205,5258388,5259534,5260961,5262044,5263506,5264856,5266151,5267410,5268821,5270310,5271770,5273045,5273908,5274956,5276127,5277490,5278762,5280100,5281421,5282723,5284003,5285286,5286540,5287870,5289232,5290711,5292070,5293260,5294645,5295965,5297114,5298423,5299669,5300916,5302316,5303713,5304954,5306418,5307743,5309132,5310268,5311248],"sizes":[1425,1157,1186,1546,1199,1283,1465,1094,922,965,927,1089,1252,1016,945,1234,1115,1030,1203,1167,1345,1142,891,1139,928,1118,1072,1348,1340,1191,1058,938,955,728,1266,1296,1105,1151,1282,1248,1378,1326,1141,1264,1359,1145,1300,896,1049,1096,979,852,1062,610,1157,1160,1030,1063,927,894,1109,1067,789,1046,1058,1128,1069,1026,968,980,952,887,1084,1379,1167,1038,1015,1293,1031,1054,1356,1130,951,1188,1266,1003,1292,1149,1134,971,911,1193,789,1226,1252,1236,1188,846,992,1054,990,836,1331,1001,1385,1030,940,1016,1182,1072,1096,667,730,637,642,941,672,545,676,782,589,785,753,930,734,785,996,671,1056,840,831,813,797,782,949,885,1329,1440,1239,1410,1425,1369,1371,1241,1424,1301,1137,1317,1261,1512,1299,1454,1435,1056,987,1438,1408,1299,949,1212,1383,1358,1076,1142,1070,1013,1117,1072,1225,1061,1103,1104,1126,914,1277,957,1150,1071,1194,1003,1195,1157,1359,1179,1067,999,1100,1169,1296,1034,1149,1057,1076,875,1243,1253,1336,1267,1085,1235,1083,1170,1366,1198,1149,875,1134,1149,1293,1333,1458,1254,1123,873,725,1083,1199,1241,1327,1374,926,1027,1144,1050,1008,1117,1078,732,891,1019,908,814,1009,1445,1260,1299,1111,1025,1061,862,808,1004,1114,1049,953,911,1100,1247,966,897,739,651,823,1242,1135,1184,1034,1071,1085,1095,1057,965,984,1004,1131,1012,1078,1069,1031,989,959,1061,1066,1041,1127,911,1146,956,1017,993,937,1495,1136,1220,956,1065,1230,1222,1339,1351,1085,1102,1224,1177,1130,873,681,829,816,1178,1117,1123,792,1014,882,1064,1024,805,1305,1590,1213,881,1041,1085,1615,1376,960,1205,1094,987,1115,1093,1198,1266,1432,1104,1359,1381,1411,1385,1338,1380,1191,1409,1377,868,952,1204,1059,1159,1262,1002,941,1184,987,1350,1117,1246,1139,1638,1046,1165,1088,1120,1170,978,1093,1558,1065,1024,1040,1175,1198,1293,1064,1246,1304,1222,1174,787,783,1127,965,963,1080,939,1300,940,1245,1455,1377,1229,1389,1482,1276,1046,1117,1026,1114,1125,1073,944,1194,1255,1239,1385,1233,1278,1377,1286,1268,1425,983,1216,1514,1310,937,1151,1156,950,1089,1383,1225,1227,1171,1360,1345,1306,1115,1119,1206,1331,1269,1330,1102,1157,1103,1147,1247,983,1351,1156,776,1303,1601,1347,1189,1508,996,1318,1388,913,1251,1015,981,1066,978,1182,803,1227,1325,1196,1198,990,1062,1145,1191,1114,1026,955,1103,1048,1220,1224,805,1269,949,1045,1293,966,962,1154,1164,1146,1257,1268,1275,1200,1078,978,1117,1315,1253,1146,1309,1247,1132,1495,1218,969,1339,1155,1288,1326,1223,1313,1438,1097,1128,1216,1027,1330,1046,1285,1109,825,930,1453,1154,1259,1388,1322,1219,1297,960,1257,1398,1338,1205,1156,1371,1267,921,1213,1253,1290,1254,1301,1373,1290,1287,1354,1115,979,1176,1064,1173,1487,771,1069,706,553,1196,1185,1186,1206,849,1303,1073,1309,783,1013,1226,1162,1189,1036,1182,1034,1161,1020,1225,1141,645,1025,1029,1249,776,1295,1530,1361,1502,1630,1327,1527,1396,1286,1223,1254,1405,1294,1276,1349,1210,1223,1209,1166,1333,1373,1130,1323,1286,1160,1193,1271,1424,1212,1257,1336,1398,1267,1268,1378,672,1177,1022,1137,1304,1286,1212,1127,1310,1204,1160,1344,1252,1353,1056,1051,1218,1237,1158,1205,1144,1323,1495,1098,1172,1392,1370,1355,1241,1239,1189,1133,1405,1137,1298,1258,1083,1246,1277,1127,1093,1006,1111,1127,1333,903,1179,1170,1004,1280,1193,1045,1376,1232,1145,1007,993,1256,1473,1264,1432,1279,981,1251,1004,1253,1283,1153,1033,1304,1176,998,1356,1251,1030,1271,1313,1045,1211,1293,1130,1238,1230,1019,1142,1205,1259,1192,888,1082,1054,1355,1278,993,981,1222,1504,1584,1071,1131,1110,890,945,1395,1217,1302,1467,1217,848,1010,867,1061,1053,1236,1302,958,984,1180,1171,1066,1114,847,786,1270,1232,1148,1568,1376,1219,1171,1128,1243,1044,1177,1105,1255,1312,1165,1053,1075,1251,1247,1296,1218,1190,452,978,981,1167,1247,1228,1533,1255,985,1115,1290,1314,1306,1224,1210,1083,1155,1277,1428,1495,1224,1134,1415,1145,1295,1547,1414,1216,1183,1037,751,1287,1174,920,967,1252,972,732,1239,1172,1148,1404,1285,1294,1107,1151,1331,1247,1385,1073,1200,990,1151,1145,1144,1337,1265,1398,1060,1127,1205,1437,1556,1611,1585,1218,1534,1007,1301,1143,1420,1059,1103,1348,1048,1211,1526,795,1336,1440,1167,1183,1257,1259,1020,1091,1044,973,1096,1066,1055,1113,1171,990,1036,1137,1243,1073,1095,1239,1398,1310,1243,1020,1219,1305,1330,961,1200,1260,1455,1131,879,1140,1045,1102,1297,1317,1252,1078,1348,1084,1164,1267,1130,1286,1143,1020,1251,1324,1232,1186,1082,1118,1114,1196,1256,1294,1244,1098,1128,982,1237,1008,1301,1285,1153,1086,1157,1042,1026,1037,1027,1054,1154,1064,1082,1041,926,1113,1105,850,1055,869,1005,1065,1033,1214,1510,1269,658,988,1101,1218,1084,1080,1054,1048,1092,1265,873,1011,1005,1043,1131,1056,914,1127,1075,1244,1061,1005,1054,1149,1133,1191,872,1238,993,1149,1103,832,949,897,1149,1053,1313,1073,1177,1379,1193,1289,1049,1287,1272,1051,922,1345,1279,1250,1148,971,864,655,863,484,595,572,550,532,486,549,551,584,571,544,515,559,593,550,561,654,1077,1165,1254,1114,1291,1170,1391,1161,1004,1097,1357,1166,1161,814,956,1100,1170,1148,1014,1075,1081,1353,1161,1053,1091,1070,899,1121,904,961,661,1065,1059,989,1064,904,960,735,821,887,1056,816,994,780,881,940,784,1e3,1091,902,1365,1303,1327,1137,1340,1177,1243,912,997,1208,1291,950,680,795,1271,1479,1134,960,844,1103,973,988,983,1199,1070,991,1354,1131,905,1312,1442,1381,1312,1338,1495,1355,1281,1207,1106,1116,1018,1219,1046,747,1087,1244,1124,1146,1192,1499,1335,1113,1265,1290,1331,1091,830,1274,1302,1228,1048,1317,1309,1422,1522,998,976,862,1039,1059,1048,1108,1305,898,1272,904,1056,1385,1454,1117,1250,1007,1142,1027,1182,1037,1275,1149,994,985,825,1001,1148,1170,968,954,1131,1359,1159,1095,1108,1195,1200,1237,1111,1036,1228,1484,966,1335,1444,1376,1467,1160,1260,1250,983,1100,1155,1044,1125,1333,713,935,1262,1217,1409,1058,1228,1192,1170,1186,1258,1117,951,903,1335,1076,1040,940,994,1210,1032,1139,1262,1107,1147,1139,1053,1025,727,831,1521,1464,1316,1281,1147,1206,1214,1201,1263,1370,1177,1288,978,1241,1066,953,1090,950,1116,1345,1145,1099,990,1035,1314,1269,1263,1124,1383,1414,1352,1262,1364,1140,1271,1170,951,1220,1257,1360,1044,1118,1054,1209,1123,854,983,1121,812,1155,949,1267,1236,943,1042,743,800,1128,1026,742,1026,1046,1464,1572,1484,1660,1154,805,1084,950,842,861,1076,996,945,964,1380,949,1054,1152,1195,1233,1105,835,1004,1063,1081,860,1068,1112,895,1109,1273,1383,1370,1161,1262,1146,1229,1217,1392,1244,1085,1231,1048,1073,952,1136,1449,1246,870,1149,1326,1210,1160,1283,1204,809,1222,1244,1493,1269,1426,1421,1607,1465,1603,1393,1159,1258,1297,1348,1147,1172,1342,1256,1330,1342,1153,994,1082,1032,1189,1041,1459,1506,1204,824,1022,974,1305,1148,955,1155,1089,782,909,1300,1407,1286,1092,1105,1265,1268,1035,1550,1432,1172,1323,1161,1233,1132,1422,1161,1335,950,729,958,998,946,969,664,1018,1380,1240,1363,1245,893,1096,1166,1230,1352,1446,1076,1311,1496,1502,1155,995,1074,936,1126,1013,1013,1107,1143,990,782,968,1321,1188,1306,1198,1419,1037,1272,1306,1214,1180,931,854,905,1236,1555,1278,1181,1356,1367,1376,1239,1349,1238,1238,1321,1262,1151,1058,1198,1111,942,736,982,1200,1149,1264,1247,1146,947,1111,811,884,1108,1182,1209,1280,1035,1187,1323,1241,1064,1029,1310,1107,1133,1279,1149,1243,1298,1034,1307,1211,868,1118,1160,1192,1147,1445,1107,1094,926,1125,1211,1406,1204,1167,1246,1438,1365,1190,1149,1102,1267,1365,1159,1205,1296,1359,1219,1182,1310,846,1398,1130,1315,1326,1035,1241,1108,1302,1079,880,1544,1183,1221,1216,1200,1242,1226,1289,1387,1405,1273,1192,1318,1247,1276,1180,1190,1062,1084,957,1018,826,1089,1381,1489,1047,1209,1345,1153,1020,819,795,652,1274,1324,1344,1430,1204,1210,1163,1288,1283,1048,1389,1005,982,1197,1354,1268,1208,1039,1040,1339,1284,1199,1160,1109,1280,1346,1301,1086,1410,1443,1194,1353,1146,1169,1376,1302,1028,1204,1429,1519,1211,580,567,1098,1065,1148,854,1018,1091,1230,1264,1160,1215,1137,1092,1583,1222,1258,1227,1225,1214,1112,1193,1240,1203,1231,1183,1075,1222,1138,1316,1256,1258,1213,1302,1045,1287,1488,1263,1131,1221,1399,1212,1005,992,1165,1254,1178,1042,1121,1121,1129,1160,1422,942,1367,1278,1241,1479,1288,1618,1204,1203,1240,915,1150,1049,1151,1057,1078,1338,1241,1142,987,774,832,929,907,1393,1367,900,1253,1033,809,1065,1359,1012,1276,1084,1108,999,861,992,851,875,987,1153,931,860,893,882,738,828,981,1022,1035,1205,1013,1302,1149,1113,1545,1165,1305,1195,1152,1034,982,1001,1219,1275,1424,1088,1076,1210,1038,825,928,751,974,1061,1400,1316,982,1137,1252,1177,1454,1371,1273,1308,1470,1082,1388,1549,1350,1467,1211,1271,1174,1267,1307,1137,879,1246,1338,873,1007,1059,1453,889,1162,979,1e3,1031,1171,1240,1001,1021,1388,1198,1171,1406,1286,1241,1217,1265,1421,1344,1055,1281,843,925,1147,1258,1257,1018,1019,902,909,1031,1006,1044,987,988,823,954,1053,1012,984,1082,1037,1011,928,833,1138,1251,1200,1214,875,852,1024,883,955,984,1426,1078,949,971,1164,761,939,1241,1351,1029,1264,1507,1401,1156,1199,1391,1304,1497,1215,1137,1241,1226,1332,1539,1015,1248,1417,1099,1097,1124,1029,1040,1121,1056,1201,1117,966,1161,1054,1234,1220,1208,1149,1303,1154,1023,1030,1177,1109,1133,897,952,755,1015,1214,1106,1070,1119,1253,1114,1232,1033,1056,952,962,1160,1199,1179,1199,1498,1275,1390,1164,1161,750,1001,778,1103,1113,1205,1423,1283,1415,1176,1212,1327,1547,1222,1345,1285,1113,1081,1085,1340,1267,1230,1064,1267,1369,1078,988,1310,1284,1582,1194,1172,1208,1131,1250,1175,1293,1148,1277,1444,1198,1077,1452,1190,1339,1159,1328,1300,1113,1179,1065,1233,1301,1355,1297,1591,1437,1186,1422,1200,1250,1367,1389,1426,1267,1310,981,1207,1301,1259,1339,946,976,934,1271,1291,1357,1183,1079,1087,1165,1299,1224,878,1155,1020,1102,1129,1190,1177,1237,1236,1266,1267,1166,1290,1256,1024,935,1253,1256,1176,907,963,1060,1113,994,1049,957,882,1372,1344,1298,1018,1117,1410,1292,1324,1258,1272,1137,1260,1306,957,1366,1270,1272,1137,1170,1086,980,1205,1210,1505,1238,1033,1225,1266,1462,1335,1131,1221,1097,1150,1086,844,1189,1342,1217,1476,1082,1002,1579,1107,1274,1318,1478,1164,1226,862,980,1011,1457,1159,1252,1023,1384,1376,1108,1178,1115,1011,1200,1259,1211,1224,1108,1408,1242,1257,1154,956,1076,993,780,1032,925,1355,1191,863,852,983,1382,974,1035,1337,1058,1232,940,774,1362,1294,1323,1135,1393,1154,1348,1274,1242,1216,1080,1068,1207,1415,1015,1051,1193,1148,1096,967,907,1018,1015,1263,1263,988,1144,1140,1247,1257,1066,1280,1236,1192,1106,1121,966,917,1231,817,956,576,1152,1220,1264,1185,1194,1326,1280,1205,1048,1164,1401,779,844,1424,1292,1385,1305,1194,1266,1376,1368,1453,1559,1618,1575,1606,1376,943,1083,936,888,939,842,846,1102,1028,998,1075,749,1355,1268,1262,1192,1462,1227,1064,1339,1135,1300,970,929,1103,1052,1047,1196,1194,1036,1253,1151,1198,1318,1265,1218,1362,1114,1257,1352,1083,1186,1395,1213,1359,1197,1419,1178,1209,1359,1142,1185,1118,1090,771,1216,1221,1143,1182,1149,1114,1067,1256,1137,1154,1227,1258,1301,1294,1212,1310,1114,1119,1287,897,1203,1233,1281,1109,1257,1211,1276,1185,1166,1047,1275,1133,1213,1214,1137,1219,1197,1260,1226,1103,1229,1451,1239,1285,928,1045,1100,1202,919,1141,1131,1183,1245,1150,1105,1072,1012,1126,1133,981,1135,1082,1174,1080,1053,976,936,1205,1004,1140,869,777,1217,986,906,1108,1097,1326,1119,1045,953,1050,1150,1127,1525,1123,1182,1172,1155,1068,874,1084,972,1332,1146,1316,843,718,1144,1165,986,1158,1215,1331,1368,1155,980,1040,1147,1035,1371,1216,1300,1263,1274,1210,1314,1342,1103,1008,1191,1045,1064,1263,1028,1167,1094,981,1134,939,928,1165,960,1230,1340,1401,1222,1351,1095,1101,1258,1267,1205,1119,1201,986,1018,752,1195,1156,1308,1172,1185,1058,1025,1158,808,1091,959,1168,955,1464,1198,1157,1084,1302,1140,1138,1309,1057,1100,1135,1097,1087,1260,1365,1245,1341,1182,904,1035,1123,1002,1100,1173,1186,1290,1330,1217,1150,1090,701,1039,960,1302,1130,1164,1249,1219,926,1182,1200,1086,1141,1398,1302,1350,1251,1181,1252,1175,1347,1098,1257,1085,1163,1206,838,477,1071,1198,1027,999,1034,1186,1174,1071,1108,1079,1099,1177,1111,1077,1145,1263,1226,1149,1246,1208,1102,1181,1205,1303,1198,1076,1094,1127,1060,1225,1123,1056,1119,743,663,1104,1103,1273,1328,1263,1093,1265,1193,1056,1223,1187,1251,1015,1133,1090,1171,1234,1323,1226,1297,1384,1045,1324,703,762,1285,1002,901,966,766,638,851,729,937,1194,784,1070,1305,1209,978,977,909,1080,1008,1258,1233,1313,1414,1206,1208,1167,1092,1208,1131,1181,1257,1185,1195,1075,1205,1410,1163,1133,995,1455,1228,1139,998,783,736,796,632,848,876,1073,944,787,925,972,1035,857,840,826,918,701,1044,1018,769,675,774,593,646,1066,843,863,812,929,728,1026,577,698,723,930,973,656,678,683,625,740,988,739,733,578,686,688,1030,861,852,838,888,770,953,1098,856,726,861,895,750,1008,1018,770,782,902,713,740,1015,945,681,919,891,634,925,1049,749,818,925,737,809,1022,940,682,930,882,672,967,1043,754,818,907,828,925,1094,782,811,1021,908,1060,1051,906,682,951,894,745,1032,1016,765,814,994,738,870,1086,1099,854,809,821,797,999,1100,1090,903,694,789,951,856,868,639,998,992,726,671,769,656,857,1072,840,697,850,796,747,921,971,850,838,797,838,845,867,829,662,797,766,685,1027,813,729,689,842,999,722,690,660,612,767,1086,846,701,693,645,749,901,841,849,730,994,982,680,729,859,656,874,1036,768,748,828,627,733,954,704,834,747,1054,931,662,683,853,763,946,975,718,806,790,650,709,1018,662,748,793,1055,847,666,760,847,790,908,972,694,764,654,616,681,1045,625,721,717,996,806,685,601,729,714,926,934,679,737,587,654,844,1095,847,748,735,689,1070,891,825,746,984,1e3,710,674,780,791,874,1033,782,758,882,632,715,1032,643,830,748,1085,875,666,674,887,762,966,963,647,868,739,642,824,879,801,614,930,1044,733,735,633,801,763,1082,955,675,851,648,852,884,892,822,616,954,1013,702,732,662,798,760,1110,915,675,843,704,859,876,894,870,658,1023,985,681,722,868,613,1037,971,744,785,855,836,688,1010,803,646,905,1057,779,703,709,834,755,1083,953,673,872,689,859,875,1061,743,679,790,1006,711,753,908,710,720,1009,756,764,921,636,605,981,677,799,775,1097,876,669,674,885,644,1030,983,706,837,646,837,650,994,605,651,774,1049,832,674,628,672,709,904,969,666,719,608,727,808,931,807,713,829,989,730,736,793,683,798,1047,747,787,766,638,729,1101,1002,682,751,725,772,1066,882,810,842,742,823,962,612,592,587,572,921,1052,1040,742,665,823,620,1031,1122,920,1185,1055,1170,585,629,685,811,1014,769,673,906,634,821,1061,900,686,745,796,727,972,1038,756,699,758,751,983,1052,757,705,861,750,826,1032,967,685,733,785,645,863,1086,797,745,848,757,624,1114,1007,673,709,895,678,874,1100,847,740,739,755,777,1076,1032,711,659,886,673,881,1079,803,745,775,756,738,1087,1017,661,660,628,594,938,1043,749,730,716,824,1066,905,690,821,795,645,1118,1001,674,696,818,962,1053,761,705,867,625,805,809,1016,769,692,938,714,591,1102,1014,660,824,844,601,850,1056,746,786,956,801,605,994,1009,738,784,910,719,642,950,902,772,813,743,711,717,676,782,812,773,709,683,721,646,722,728,683,1017,685,760,737,727,1057,929,941,835,667,716,825,863,830,731,741,711,785,848,769,800,912,840,678,827,934,840,897,757,890,681,669,1080,845,1163,1018,774,716,836,860,777,994,774,726,717,817,1009,1002,752,878,686,698,1090,910,1070,704,748,768,700,1060,859,1012,980,1013,664,917,1006,639,886,1058,902,683,780,852,582,957,1297,1181,1071,1018,904,1016,602,1057,998,685,712,737,763,1008,1051,963,1010,777,941,942,749,786,1063,875,1305,1059,1106,1144,1437,1160,1321,1440,1536,1460,1196,848,689,662,849,944,960,1310,1073,1127,1338,1194,1285,1355,1309,1230,1020,893,1190,1131,949,1104,783,1106,1036,1021,1276,759,1035,1396,844,892,1072,1136,952,1016,1091,1095,1320,940,1077,976,996,970,1393,1228,1116,1289,1400,1171,1467,1235,1410,1105,903,898,1088,1113,1084,1068,1421,1294,1365,892,1085,1250,1484,1416,1302,1457,1354,1391,1319,1087,1390,1235,1167,1171,1340,1043,1054,1052,1291,1142,1243,1389,1149,1182,1491,1382,1418,1121,1211,982,1170,1009,950,991,1206,1411,1310,1219,1349,1137,1277,1142,1298,1433,1234,1242,1406,1196,1236,1270,1285,1312,1362,1012,1246,1329,1049,1359,1129,1187,1441,1216,1202,1045,1013,821,958,1373,1493,1266,1386,1104,1198,1193,1144,1071,1067,986,1212,1122,1240,1293,1037,1155,1090,1153,1317,1110,1236,1194,988,1280,1120,1137,1260,1170,1417,1334,1328,1476,1212,1440,1219,1355,1524,1445,1350,1370,1262,1449,1237,1485,1133,1317,1289,1332,1285,1316,1177,929,1071,1262,1201,1292,1207,1240,1215,923,933,853,928,923,903,936,936,920,947,875,882,918,958,832,835,827,887,979,909,894,927,878,818,935,901,888,901,1356,1381,1246,748,996,1095,1062,1198,1126,1276,1371,1357,1408,1110,1178,1247,1334,1267,1001,1020,1128,1192,1092,1371,1191,1124,1089,949,786,1092,1113,1007,1412,1346,1401,1284,1350,1443,1514,1445,1187,1174,1198,1142,1258,914,1073,1130,1348,1265,1216,1302,1063,1106,1270,1017,1203,1182,1183,1163,1105,1124,1192,1546,1294,1394,1369,1386,1211,1235,1311,1322,1352,1477,1311,1161,987,880,967,1090,943,899,1037,1263,1140,1049,1196,962,1054,1097,1035,1050,1099,1150,1172,1276,874,1318,1136,928,1562,1245,1520,1391,1134,1148,1184,1203,1233,1052,1481,1420,1460,1452,1383,1017,1201,1132,1185,1042,1311,1326,1204,1106,1277,1287,1375,1314,1120,1024,1245,1120,1260,1504,1486,1370,1301,1175,788,1175,1266,1195,917,1357,853,942,1181,1161,1256,1147,1383,1156,1246,1049,1221,1321,1178,1261,1270,1322,1196,1164,1049,1193,1267,1291,1059,1272,1103,1082,1235,1248,977,1037,1150,950,1237,1357,1573,1256,1270,1472,1158,1382,1205,1213,1090,1295,1379,1281,1223,1110,1139,1299,1041,1350,1140,1278,1171,1178,1200,1105,1359,719,1297,1223,960,1134,1372,797,1149,1206,1032,1075,730,1350,1334,1533,1152,1346,1300,1252,987,1009,1087,769,748,1070,1082,1001,1075,1059,1261,1004,1446,1290,1365,1139,1240,1134,1217,1132,1173,1295,1290,1271,1212,1232,1427,1094,1289,919,1261,1184,1232,1138,1286,1222,1219,1249,1285,1311,1127,1572,1382,1411,1245,1287,1184,1258,1212,1278,1281,1513,1406,1065,1086,1406,1162,1385,1173,1371,1315,1430,1432,965,1015,1174,1098,1202,1424,1449,1204,1384,1182,991,1164,1190,1417,1326,1216,1351,1305,1050,1277,1521,1350,1369,959,1147,924,870,1519,1467,1433,1422,1284,1287,1163,1138,1096,1129,1234,1448,1294,1330,1279,1119,1238,1165,1078,1357,1324,1168,1069,1234,1186,1245,1172,1220,1050,1456,1328,1050,1007,1177,1250,1156,1135,1272,1150,985,647,574,1063,1230,1292,1391,1264,1124,1156,1335,1202,1186,835,1155,1117,1271,1170,1204,942,1147,1407,1312,1237,1097,1478,1460,1437,1408,1319,1385,1350,1256,1373,1151,997,1048,1131,891,1051,723,1150,1115,943,1199,1019,1093,1241,966,1312,1274,1400,1008,1202,871,1010,932,1014,1125,1173,933,1086,1083,970,1118,1010,1157,949,1237,1024,1386,970,901,949,1210,1114,1067,1026,968,826,1069,1090,890,881,1141,1185,1179,755,901,1144,1020,983,924,1127,1174,1065,1018,945,806,1143,1106,827,1162,1155,1001,762,1132,1117,865,1216,918,710,1206,1028,1161,1540,1349,1174,1186,1574,1082,796,1012,969,1088,1369,1434,1275,1095,1113,1025,1226,1029,1135,1161,765,1169,1097,1046,993,976,1097,1223,1129,1268,1251,1303,1167,1130,1051,1218,1051,843,1097,1113,1251,1090,1034,1060,1095,948,1534,1178,1258,1216,1077,1315,1050,821,1006,949,923,927,1192,1256,1289,985,1115,1133,900,1267,1006,1254,946,1026,782,1273,1062,1143,1217,1059,1140,962,1424,1230,938,977,996,1091,1192,967,1046,1136,1105,1106,1283,1120,1064,1053,1091,729,1228,1048,917,1285,1156,1190,1192,1014,899,1470,1286,1253,1041,1221,1065,1383,1278,1156,1040,905,1151,1117,1243,916,1190,992,1159,1147,1084,1217,1258,1123,847,955,1100,999,1175,1074,1408,1176,1369,895,1209,920,1093,678,1156,1049,868,1179,1107,1021,1004,988,1098,1186,1185,1349,1183,1258,1053,1030,969,1186,1171,1287,987,1039,992,1328,1153,1222,1054,1195,1163,1248,1120,992,1410,1175,1126,1132,1363,1153,970,999,1416,1058,879,949,986,1322,941,1192,1256,1252,1328,1183,1220,1320,1091,801,1055,974,1287,1117,1309,1048,1191,1285,1215,1322,1243,1244,1535,1427,1174,1421,931,1168,1211,1103,1132,1164,1303,1381,1096,1217,1027,984,991,1043,1175,1256,1327,1005,1149,831,891,849,714,1102,1112,602,891,1012,1018,1236,1347,1265,1199,1074,1274,1166,904,1225,1109,1016,1075,1320,1073,901,938,882,1375,1264,1103,965,1114,1270,1064,1073,1007,1158,1039,1064,1221,1234,963,1091,1189,1351,998,1274,1322,1059,880,988,992,1048,1287,1262,1374,1495,1174,1066,1340,995,1092,1236,1072,904,1104,1213,1164,956,989,1354,1301,1171,1086,1260,1407,975,990,1227,1121,807,1178,1046,1022,1233,1295,987,832,862,1018,1224,1136,1096,1364,1302,1187,1162,1464,1248,1455,1137,1111,976,1395,1359,1193,1329,1387,1332,1376,1146,1503,1856,1854,1489,1143,1088,1029,821,990,1165,1206,1088,1073,621,1022,1132,876,1195,1176,1118,990,950,1140,1205,1185,942,949,1116,1238,1038,1164,1092,1169,1001,1163,736,794,1002,1172,1134,1007,994,1025,982,1071,948,1043,827,1169,1138,1070,678,810,949,999,1138,1082,1174,1259,1511,1537,1567,1435,1666,1692,1559,1550,1667,1387,1622,1441,1435,1642,1709,1547,1559,1527,1310,790,1391,984,1231,648,509,888,1409,1094,1308,1348,1239,1427,1182,1353,1274,1241,1388,1320,1186,1321,1457,1120,1357,1352,1307,1422,1217,1363,1207,1294,1400,1341,1263,1270,884,1374,1172,1244,959,1335,1381,1388,1344,1381,978,1270,1459,1115,1429,1313,564,634,613,687,1235,825,787,1248,956,1305,1324,1138,1306,1121,954,1284,1286,985,1256,1349,1383,1337,1405,1160,1321,803,1232,1e3,1059,1226,1288,1381,1402,1118,926,1277,1414,1304,823,1327,1311,893,1006,1305,1101,1152,1072,1200,1335,1363,1308,1371,1376,1365,1425,948,359,800,1140,1303,997,1103,1226,1256,1279,1334,1464,1170,1422,1315,1122,1159,1410,1313,852,1371,1165,1267,1149,1208,975,1404,979,966,1240,1140,1163,871,757,933,1383,1360,1448,1286,1346,1206,1066,1019,1057,986,1036,1062,998,959,964,1075,881,1054,995,1005,901,936,815,957,882,871,851,960,904,856,863,959,956,1001,1076,1083,1097,1002,874,1047,1188,1016,1177,1009,1161,1083,1084,1160,1038,1012,1082,971,1046,851,1085,964,1083,913,883,1017,1117,998,991,1118,823,982,977,913,974,1165,992,1108,1022,969,1031,992,856,1013,927,1046,1041,964,960,1014,1017,905,905,1040,990,988,1009,1058,1067,996,1025,1080,1059,1142,1072,1031,949,1093,960,923,824,1052,1184,1241,1224,1110,1088,1004,1031,1037,998,1106,1037,1103,1026,1115,1187,1235,1095,1041,965,970,979,929,807,738,951,906,513,708,732,749,845,757,949,794,797,909,847,988,1139,990,1095,1035,1150,1155,916,1048,1037,1141,1010,1041,1097,1119,1077,1116,1241,1101,1142,1070,1085,1042,1091,1110,976,813,956,872,869,1062,1114,1131,1120,736,390,412,937,874,1110,1146,1010,891,1056,1061,916,984,771,887,1049,1086,937,1003,1129,1025,1e3,941,1025,1016,938,938,1031,1038,982,1148,935,1003,897,948,934,988,868,1055,935,913,902,1038,996,906,854,907,955,1020,1018,1055,963,1014,1054,1e3,949,780,933,808,821,923,1027,813,1e3,1035,943,823,994,1023,979,958,956,944,756,896,817,720,926,911,754,917,932,919,729,409,878,884,952,976,932,1089,1112,421,652,1062,996,1116,1150,1102,1206,1059,1155,1080,1123,1188,1074,1113,1134,1153,819,634,691,1045,890,1107,1021,1129,1144,1177,1075,1202,955,1042,1185,1131,1088,1105,1064,1019,958,940,813,821,880,867,812,965,951,988,986,1115,874,470,970,961,1152,1004,730,525,611,1083,1039,1102,1087,1100,966,969,984,723,513,579,673,1011,1096,1036,956,1259,1266,1426,1232,1344,1353,1171,1019,1158,1198,1347,1144,1103,1183,1146,1427,1083,1462,1350,1295,1259,1411,1489,1460,1275,863,1048,1171,1363,1272,1338,1321,1302,1280,1283,1254,1330,1362,1479,1359,1190,1385,1320,1149,1309,1246,1247,1400,1397,1241,1464,1325,1389,1136,980,1022],"successes":[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]};compressedData["data"]=byteArray;assert(typeof Module.LZ4==="object","LZ4 not present - was your app build with -s LZ4=1 ?");Module.LZ4.loadPackage({"metadata":metadata,"compressedData":compressedData},true);Module["removeRunDependency"]("datafile_build/pyodide.asm.data")}Module["addRunDependency"]("datafile_build/pyodide.asm.data");if(!Module.preloadResults)Module.preloadResults={};Module.preloadResults[PACKAGE_NAME]={fromCache:false};if(fetched){processPackageData(fetched);fetched=null}else{fetchedCallback=processPackageData}}if(Module["calledRun"]){runWithFS()}else{if(!Module["preRun"])Module["preRun"]=[];Module["preRun"].push(runWithFS)}};loadPackage({"files":[{"filename":"/lib/python3.9/__future__.py","start":0,"end":5147,"audio":0},{"filename":"/lib/python3.9/__phello__.foo.py","start":5147,"end":5211,"audio":0},{"filename":"/lib/python3.9/_aix_support.py","start":5211,"end":8481,"audio":0},{"filename":"/lib/python3.9/_bootlocale.py","start":8481,"end":10282,"audio":0},{"filename":"/lib/python3.9/_bootsubprocess.py","start":10282,"end":12957,"audio":0},{"filename":"/lib/python3.9/_collections_abc.py","start":12957,"end":42298,"audio":0},{"filename":"/lib/python3.9/_compat_pickle.py","start":42298,"end":51047,"audio":0},{"filename":"/lib/python3.9/_compression.py","start":51047,"end":56387,"audio":0},{"filename":"/lib/python3.9/_markupbase.py","start":56387,"end":70985,"audio":0},{"filename":"/lib/python3.9/_py_abc.py","start":70985,"end":77174,"audio":0},{"filename":"/lib/python3.9/_pydecimal.py","start":77174,"end":305840,"audio":0},{"filename":"/lib/python3.9/_pyio.py","start":305840,"end":399252,"audio":0},{"filename":"/lib/python3.9/_sitebuiltins.py","start":399252,"end":402367,"audio":0},{"filename":"/lib/python3.9/_strptime.py","start":402367,"end":427638,"audio":0},{"filename":"/lib/python3.9/_threading_local.py","start":427638,"end":434858,"audio":0},{"filename":"/lib/python3.9/_weakrefset.py","start":434858,"end":440675,"audio":0},{"filename":"/lib/python3.9/abc.py","start":440675,"end":445164,"audio":0},{"filename":"/lib/python3.9/aifc.py","start":445164,"end":477769,"audio":0},{"filename":"/lib/python3.9/antigravity.py","start":477769,"end":478269,"audio":0},{"filename":"/lib/python3.9/argparse.py","start":478269,"end":575983,"audio":0},{"filename":"/lib/python3.9/ast.py","start":575983,"end":632162,"audio":0},{"filename":"/lib/python3.9/asynchat.py","start":632162,"end":643483,"audio":0},{"filename":"/lib/python3.9/asyncore.py","start":643483,"end":663585,"audio":0},{"filename":"/lib/python3.9/base64.py","start":663585,"end":683446,"audio":0},{"filename":"/lib/python3.9/bdb.py","start":683446,"end":714835,"audio":0},{"filename":"/lib/python3.9/binhex.py","start":714835,"end":729619,"audio":0},{"filename":"/lib/python3.9/bisect.py","start":729619,"end":731969,"audio":0},{"filename":"/lib/python3.9/bz2.py","start":731969,"end":744144,"audio":0},{"filename":"/lib/python3.9/cProfile.py","start":744144,"end":750479,"audio":0},{"filename":"/lib/python3.9/calendar.py","start":750479,"end":775311,"audio":0},{"filename":"/lib/python3.9/cgi.py","start":775311,"end":809246,"audio":0},{"filename":"/lib/python3.9/cgitb.py","start":809246,"end":821342,"audio":0},{"filename":"/lib/python3.9/chunk.py","start":821342,"end":826777,"audio":0},{"filename":"/lib/python3.9/cmd.py","start":826777,"end":841637,"audio":0},{"filename":"/lib/python3.9/code.py","start":841637,"end":852259,"audio":0},{"filename":"/lib/python3.9/codecs.py","start":852259,"end":888932,"audio":0},{"filename":"/lib/python3.9/codeop.py","start":888932,"end":895258,"audio":0},{"filename":"/lib/python3.9/colorsys.py","start":895258,"end":899322,"audio":0},{"filename":"/lib/python3.9/compileall.py","start":899322,"end":919422,"audio":0},{"filename":"/lib/python3.9/configparser.py","start":919422,"end":973796,"audio":0},{"filename":"/lib/python3.9/contextlib.py","start":973796,"end":997472,"audio":0},{"filename":"/lib/python3.9/contextvars.py","start":997472,"end":997601,"audio":0},{"filename":"/lib/python3.9/copy.py","start":997601,"end":1006262,"audio":0},{"filename":"/lib/python3.9/copyreg.py","start":1006262,"end":1013536,"audio":0},{"filename":"/lib/python3.9/crypt.py","start":1013536,"end":1017355,"audio":0},{"filename":"/lib/python3.9/csv.py","start":1017355,"end":1033499,"audio":0},{"filename":"/lib/python3.9/dataclasses.py","start":1033499,"end":1083002,"audio":0},{"filename":"/lib/python3.9/datetime.py","start":1083002,"end":1172152,"audio":0},{"filename":"/lib/python3.9/decimal.py","start":1172152,"end":1172472,"audio":0},{"filename":"/lib/python3.9/difflib.py","start":1172472,"end":1256818,"audio":0},{"filename":"/lib/python3.9/dis.py","start":1256818,"end":1277388,"audio":0},{"filename":"/lib/python3.9/doctest.py","start":1277388,"end":1381934,"audio":0},{"filename":"/lib/python3.9/enum.py","start":1381934,"end":1420029,"audio":0},{"filename":"/lib/python3.9/filecmp.py","start":1420029,"end":1429928,"audio":0},{"filename":"/lib/python3.9/fileinput.py","start":1429928,"end":1444719,"audio":0},{"filename":"/lib/python3.9/fnmatch.py","start":1444719,"end":1450723,"audio":0},{"filename":"/lib/python3.9/formatter.py","start":1450723,"end":1465866,"audio":0},{"filename":"/lib/python3.9/fractions.py","start":1465866,"end":1490189,"audio":0},{"filename":"/lib/python3.9/ftplib.py","start":1490189,"end":1525685,"audio":0},{"filename":"/lib/python3.9/functools.py","start":1525685,"end":1563176,"audio":0},{"filename":"/lib/python3.9/genericpath.py","start":1563176,"end":1568151,"audio":0},{"filename":"/lib/python3.9/getopt.py","start":1568151,"end":1575640,"audio":0},{"filename":"/lib/python3.9/getpass.py","start":1575640,"end":1581629,"audio":0},{"filename":"/lib/python3.9/gettext.py","start":1581629,"end":1608895,"audio":0},{"filename":"/lib/python3.9/glob.py","start":1608895,"end":1614592,"audio":0},{"filename":"/lib/python3.9/graphlib.py","start":1614592,"end":1624166,"audio":0},{"filename":"/lib/python3.9/gzip.py","start":1624166,"end":1645942,"audio":0},{"filename":"/lib/python3.9/hashlib.py","start":1645942,"end":1655952,"audio":0},{"filename":"/lib/python3.9/heapq.py","start":1655952,"end":1678829,"audio":0},{"filename":"/lib/python3.9/hmac.py","start":1678829,"end":1685832,"audio":0},{"filename":"/lib/python3.9/imaplib.py","start":1685832,"end":1740736,"audio":0},{"filename":"/lib/python3.9/imghdr.py","start":1740736,"end":1744544,"audio":0},{"filename":"/lib/python3.9/imp.py","start":1744544,"end":1755080,"audio":0},{"filename":"/lib/python3.9/inspect.py","start":1755080,"end":1873963,"audio":0},{"filename":"/lib/python3.9/io.py","start":1873963,"end":1877504,"audio":0},{"filename":"/lib/python3.9/ipaddress.py","start":1877504,"end":1952179,"audio":0},{"filename":"/lib/python3.9/keyword.py","start":1952179,"end":1953226,"audio":0},{"filename":"/lib/python3.9/linecache.py","start":1953226,"end":1958686,"audio":0},{"filename":"/lib/python3.9/locale.py","start":1958686,"end":2036957,"audio":0},{"filename":"/lib/python3.9/lzma.py","start":2036957,"end":2049940,"audio":0},{"filename":"/lib/python3.9/mailbox.py","start":2049940,"end":2128734,"audio":0},{"filename":"/lib/python3.9/mailcap.py","start":2128734,"end":2136887,"audio":0},{"filename":"/lib/python3.9/mimetypes.py","start":2136887,"end":2158530,"audio":0},{"filename":"/lib/python3.9/modulefinder.py","start":2158530,"end":2182931,"audio":0},{"filename":"/lib/python3.9/netrc.py","start":2182931,"end":2188497,"audio":0},{"filename":"/lib/python3.9/nntplib.py","start":2188497,"end":2229520,"audio":0},{"filename":"/lib/python3.9/ntpath.py","start":2229520,"end":2257254,"audio":0},{"filename":"/lib/python3.9/nturl2path.py","start":2257254,"end":2260141,"audio":0},{"filename":"/lib/python3.9/numbers.py","start":2260141,"end":2270385,"audio":0},{"filename":"/lib/python3.9/opcode.py","start":2270385,"end":2276045,"audio":0},{"filename":"/lib/python3.9/operator.py","start":2276045,"end":2286756,"audio":0},{"filename":"/lib/python3.9/optparse.py","start":2286756,"end":2347125,"audio":0},{"filename":"/lib/python3.9/os.py","start":2347125,"end":2386190,"audio":0},{"filename":"/lib/python3.9/pathlib.py","start":2386190,"end":2439211,"audio":0},{"filename":"/lib/python3.9/pdb.py","start":2439211,"end":2501951,"audio":0},{"filename":"/lib/python3.9/pickle.py","start":2501951,"end":2566872,"audio":0},{"filename":"/lib/python3.9/pickletools.py","start":2566872,"end":2660358,"audio":0},{"filename":"/lib/python3.9/pipes.py","start":2660358,"end":2669274,"audio":0},{"filename":"/lib/python3.9/pkgutil.py","start":2669274,"end":2693511,"audio":0},{"filename":"/lib/python3.9/platform.py","start":2693511,"end":2734058,"audio":0},{"filename":"/lib/python3.9/plistlib.py","start":2734058,"end":2762306,"audio":0},{"filename":"/lib/python3.9/poplib.py","start":2762306,"end":2777504,"audio":0},{"filename":"/lib/python3.9/posixpath.py","start":2777504,"end":2793131,"audio":0},{"filename":"/lib/python3.9/pprint.py","start":2793131,"end":2815658,"audio":0},{"filename":"/lib/python3.9/profile.py","start":2815658,"end":2838529,"audio":0},{"filename":"/lib/python3.9/pstats.py","start":2838529,"end":2867855,"audio":0},{"filename":"/lib/python3.9/pty.py","start":2867855,"end":2872662,"audio":0},{"filename":"/lib/python3.9/py_compile.py","start":2872662,"end":2880810,"audio":0},{"filename":"/lib/python3.9/pyclbr.py","start":2880810,"end":2896065,"audio":0},{"filename":"/lib/python3.9/pydoc.py","start":2896065,"end":3005455,"audio":0},{"filename":"/lib/python3.9/queue.py","start":3005455,"end":3016938,"audio":0},{"filename":"/lib/python3.9/quopri.py","start":3016938,"end":3024206,"audio":0},{"filename":"/lib/python3.9/random.py","start":3024206,"end":3055705,"audio":0},{"filename":"/lib/python3.9/re.py","start":3055705,"end":3071566,"audio":0},{"filename":"/lib/python3.9/reprlib.py","start":3071566,"end":3076833,"audio":0},{"filename":"/lib/python3.9/rlcompleter.py","start":3076833,"end":3083930,"audio":0},{"filename":"/lib/python3.9/runpy.py","start":3083930,"end":3096141,"audio":0},{"filename":"/lib/python3.9/sched.py","start":3096141,"end":3102583,"audio":0},{"filename":"/lib/python3.9/secrets.py","start":3102583,"end":3104619,"audio":0},{"filename":"/lib/python3.9/selectors.py","start":3104619,"end":3124155,"audio":0},{"filename":"/lib/python3.9/shelve.py","start":3124155,"end":3132682,"audio":0},{"filename":"/lib/python3.9/shlex.py","start":3132682,"end":3146183,"audio":0},{"filename":"/lib/python3.9/shutil.py","start":3146183,"end":3198017,"audio":0},{"filename":"/lib/python3.9/signal.py","start":3198017,"end":3200290,"audio":0},{"filename":"/lib/python3.9/site.py","start":3200290,"end":3221854,"audio":0},{"filename":"/lib/python3.9/smtpd.py","start":3221854,"end":3256677,"audio":0},{"filename":"/lib/python3.9/smtplib.py","start":3256677,"end":3301887,"audio":0},{"filename":"/lib/python3.9/sndhdr.py","start":3301887,"end":3308986,"audio":0},{"filename":"/lib/python3.9/socket.py","start":3308986,"end":3345595,"audio":0},{"filename":"/lib/python3.9/socketserver.py","start":3345595,"end":3372891,"audio":0},{"filename":"/lib/python3.9/sre_compile.py","start":3372891,"end":3399586,"audio":0},{"filename":"/lib/python3.9/sre_constants.py","start":3399586,"end":3406740,"audio":0},{"filename":"/lib/python3.9/sre_parse.py","start":3406740,"end":3446970,"audio":0},{"filename":"/lib/python3.9/ssl.py","start":3446970,"end":3497721,"audio":0},{"filename":"/lib/python3.9/stat.py","start":3497721,"end":3503206,"audio":0},{"filename":"/lib/python3.9/statistics.py","start":3503206,"end":3541274,"audio":0},{"filename":"/lib/python3.9/string.py","start":3541274,"end":3551840,"audio":0},{"filename":"/lib/python3.9/stringprep.py","start":3551840,"end":3564757,"audio":0},{"filename":"/lib/python3.9/struct.py","start":3564757,"end":3565014,"audio":0},{"filename":"/lib/python3.9/subprocess.py","start":3565014,"end":3647664,"audio":0},{"filename":"/lib/python3.9/sunau.py","start":3647664,"end":3665822,"audio":0},{"filename":"/lib/python3.9/symbol.py","start":3665822,"end":3668103,"audio":0},{"filename":"/lib/python3.9/symtable.py","start":3668103,"end":3676008,"audio":0},{"filename":"/lib/python3.9/sysconfig.py","start":3676008,"end":3700922,"audio":0},{"filename":"/lib/python3.9/tabnanny.py","start":3700922,"end":3712330,"audio":0},{"filename":"/lib/python3.9/tarfile.py","start":3712330,"end":3806784,"audio":0},{"filename":"/lib/python3.9/telnetlib.py","start":3806784,"end":3830038,"audio":0},{"filename":"/lib/python3.9/tempfile.py","start":3830038,"end":3857638,"audio":0},{"filename":"/lib/python3.9/textwrap.py","start":3857638,"end":3877045,"audio":0},{"filename":"/lib/python3.9/this.py","start":3877045,"end":3878048,"audio":0},{"filename":"/lib/python3.9/threading.py","start":3878048,"end":3930279,"audio":0},{"filename":"/lib/python3.9/timeit.py","start":3930279,"end":3943761,"audio":0},{"filename":"/lib/python3.9/token.py","start":3943761,"end":3946129,"audio":0},{"filename":"/lib/python3.9/tokenize.py","start":3946129,"end":3971970,"audio":0},{"filename":"/lib/python3.9/trace.py","start":3971970,"end":4001166,"audio":0},{"filename":"/lib/python3.9/traceback.py","start":4001166,"end":4025132,"audio":0},{"filename":"/lib/python3.9/tracemalloc.py","start":4025132,"end":4043179,"audio":0},{"filename":"/lib/python3.9/tty.py","start":4043179,"end":4044058,"audio":0},{"filename":"/lib/python3.9/types.py","start":4044058,"end":4053804,"audio":0},{"filename":"/lib/python3.9/typing.py","start":4053804,"end":4128556,"audio":0},{"filename":"/lib/python3.9/uu.py","start":4128556,"end":4135515,"audio":0},{"filename":"/lib/python3.9/uuid.py","start":4135515,"end":4162839,"audio":0},{"filename":"/lib/python3.9/warnings.py","start":4162839,"end":4182527,"audio":0},{"filename":"/lib/python3.9/wave.py","start":4182527,"end":4200531,"audio":0},{"filename":"/lib/python3.9/weakref.py","start":4200531,"end":4221775,"audio":0},{"filename":"/lib/python3.9/xdrlib.py","start":4221775,"end":4227688,"audio":0},{"filename":"/lib/python3.9/zipapp.py","start":4227688,"end":4235223,"audio":0},{"filename":"/lib/python3.9/zipfile.py","start":4235223,"end":4322501,"audio":0},{"filename":"/lib/python3.9/zipimport.py","start":4322501,"end":4353266,"audio":0},{"filename":"/lib/python3.9/LICENSE.txt","start":4353266,"end":4367191,"audio":0},{"filename":"/lib/python3.9/_sysconfigdata__emscripten_.py","start":4367191,"end":4395445,"audio":0},{"filename":"/lib/python3.9/site-packages/README.txt","start":4395445,"end":4395564,"audio":0},{"filename":"/lib/python3.9/importlib/__init__.py","start":4395564,"end":4401625,"audio":0},{"filename":"/lib/python3.9/importlib/_bootstrap.py","start":4401625,"end":4441947,"audio":0},{"filename":"/lib/python3.9/importlib/_bootstrap_external.py","start":4441947,"end":4506528,"audio":0},{"filename":"/lib/python3.9/importlib/_common.py","start":4506528,"end":4508025,"audio":0},{"filename":"/lib/python3.9/importlib/abc.py","start":4508025,"end":4522949,"audio":0},{"filename":"/lib/python3.9/importlib/machinery.py","start":4522949,"end":4523793,"audio":0},{"filename":"/lib/python3.9/importlib/metadata.py","start":4523793,"end":4542004,"audio":0},{"filename":"/lib/python3.9/importlib/resources.py","start":4542004,"end":4549213,"audio":0},{"filename":"/lib/python3.9/importlib/util.py","start":4549213,"end":4560534,"audio":0},{"filename":"/lib/python3.9/asyncio/__init__.py","start":4560534,"end":4561813,"audio":0},{"filename":"/lib/python3.9/asyncio/__main__.py","start":4561813,"end":4565156,"audio":0},{"filename":"/lib/python3.9/asyncio/base_events.py","start":4565156,"end":4638965,"audio":0},{"filename":"/lib/python3.9/asyncio/base_futures.py","start":4638965,"end":4641539,"audio":0},{"filename":"/lib/python3.9/asyncio/base_subprocess.py","start":4641539,"end":4650382,"audio":0},{"filename":"/lib/python3.9/asyncio/base_tasks.py","start":4650382,"end":4652849,"audio":0},{"filename":"/lib/python3.9/asyncio/constants.py","start":4652849,"end":4653737,"audio":0},{"filename":"/lib/python3.9/asyncio/coroutines.py","start":4653737,"end":4662534,"audio":0},{"filename":"/lib/python3.9/asyncio/events.py","start":4662534,"end":4688912,"audio":0},{"filename":"/lib/python3.9/asyncio/exceptions.py","start":4688912,"end":4690545,"audio":0},{"filename":"/lib/python3.9/asyncio/format_helpers.py","start":4690545,"end":4692949,"audio":0},{"filename":"/lib/python3.9/asyncio/futures.py","start":4692949,"end":4706967,"audio":0},{"filename":"/lib/python3.9/asyncio/locks.py","start":4706967,"end":4721916,"audio":0},{"filename":"/lib/python3.9/asyncio/log.py","start":4721916,"end":4722040,"audio":0},{"filename":"/lib/python3.9/asyncio/proactor_events.py","start":4722040,"end":4754093,"audio":0},{"filename":"/lib/python3.9/asyncio/protocols.py","start":4754093,"end":4761229,"audio":0},{"filename":"/lib/python3.9/asyncio/queues.py","start":4761229,"end":4769510,"audio":0},{"filename":"/lib/python3.9/asyncio/runners.py","start":4769510,"end":4771634,"audio":0},{"filename":"/lib/python3.9/asyncio/selector_events.py","start":4771634,"end":4811136,"audio":0},{"filename":"/lib/python3.9/asyncio/sslproto.py","start":4811136,"end":4838320,"audio":0},{"filename":"/lib/python3.9/asyncio/staggered.py","start":4838320,"end":4844312,"audio":0},{"filename":"/lib/python3.9/asyncio/streams.py","start":4844312,"end":4870968,"audio":0},{"filename":"/lib/python3.9/asyncio/subprocess.py","start":4870968,"end":4879036,"audio":0},{"filename":"/lib/python3.9/asyncio/tasks.py","start":4879036,"end":4913306,"audio":0},{"filename":"/lib/python3.9/asyncio/threads.py","start":4913306,"end":4914096,"audio":0},{"filename":"/lib/python3.9/asyncio/transports.py","start":4914096,"end":4924582,"audio":0},{"filename":"/lib/python3.9/asyncio/trsock.py","start":4924582,"end":4930458,"audio":0},{"filename":"/lib/python3.9/asyncio/unix_events.py","start":4930458,"end":4982222,"audio":0},{"filename":"/lib/python3.9/asyncio/windows_events.py","start":4982222,"end":5015129,"audio":0},{"filename":"/lib/python3.9/asyncio/windows_utils.py","start":5015129,"end":5020189,"audio":0},{"filename":"/lib/python3.9/collections/__init__.py","start":5020189,"end":5070008,"audio":0},{"filename":"/lib/python3.9/collections/abc.py","start":5070008,"end":5070127,"audio":0},{"filename":"/lib/python3.9/concurrent/__init__.py","start":5070127,"end":5070165,"audio":0},{"filename":"/lib/python3.9/concurrent/futures/__init__.py","start":5070165,"end":5071719,"audio":0},{"filename":"/lib/python3.9/concurrent/futures/_base.py","start":5071719,"end":5094208,"audio":0},{"filename":"/lib/python3.9/concurrent/futures/process.py","start":5094208,"end":5124094,"audio":0},{"filename":"/lib/python3.9/concurrent/futures/thread.py","start":5124094,"end":5132539,"audio":0},{"filename":"/lib/python3.9/encodings/__init__.py","start":5132539,"end":5138127,"audio":0},{"filename":"/lib/python3.9/encodings/aliases.py","start":5138127,"end":5153804,"audio":0},{"filename":"/lib/python3.9/encodings/ascii.py","start":5153804,"end":5155052,"audio":0},{"filename":"/lib/python3.9/encodings/base64_codec.py","start":5155052,"end":5156585,"audio":0},{"filename":"/lib/python3.9/encodings/big5.py","start":5156585,"end":5157604,"audio":0},{"filename":"/lib/python3.9/encodings/big5hkscs.py","start":5157604,"end":5158643,"audio":0},{"filename":"/lib/python3.9/encodings/bz2_codec.py","start":5158643,"end":5160892,"audio":0},{"filename":"/lib/python3.9/encodings/charmap.py","start":5160892,"end":5162976,"audio":0},{"filename":"/lib/python3.9/encodings/cp037.py","start":5162976,"end":5176097,"audio":0},{"filename":"/lib/python3.9/encodings/cp1006.py","start":5176097,"end":5189665,"audio":0},{"filename":"/lib/python3.9/encodings/cp1026.py","start":5189665,"end":5202778,"audio":0},{"filename":"/lib/python3.9/encodings/cp1125.py","start":5202778,"end":5237375,"audio":0},{"filename":"/lib/python3.9/encodings/cp1140.py","start":5237375,"end":5250480,"audio":0},{"filename":"/lib/python3.9/encodings/cp1250.py","start":5250480,"end":5264166,"audio":0},{"filename":"/lib/python3.9/encodings/cp1251.py","start":5264166,"end":5277527,"audio":0},{"filename":"/lib/python3.9/encodings/cp1252.py","start":5277527,"end":5291038,"audio":0},{"filename":"/lib/python3.9/encodings/cp1253.py","start":5291038,"end":5304132,"audio":0},{"filename":"/lib/python3.9/encodings/cp1254.py","start":5304132,"end":5317634,"audio":0},{"filename":"/lib/python3.9/encodings/cp1255.py","start":5317634,"end":5330100,"audio":0},{"filename":"/lib/python3.9/encodings/cp1256.py","start":5330100,"end":5342914,"audio":0},{"filename":"/lib/python3.9/encodings/cp1257.py","start":5342914,"end":5356288,"audio":0},{"filename":"/lib/python3.9/encodings/cp1258.py","start":5356288,"end":5369652,"audio":0},{"filename":"/lib/python3.9/encodings/cp273.py","start":5369652,"end":5383784,"audio":0},{"filename":"/lib/python3.9/encodings/cp424.py","start":5383784,"end":5395839,"audio":0},{"filename":"/lib/python3.9/encodings/cp437.py","start":5395839,"end":5430403,"audio":0},{"filename":"/lib/python3.9/encodings/cp500.py","start":5430403,"end":5443524,"audio":0},{"filename":"/lib/python3.9/encodings/cp720.py","start":5443524,"end":5457210,"audio":0},{"filename":"/lib/python3.9/encodings/cp737.py","start":5457210,"end":5491891,"audio":0},{"filename":"/lib/python3.9/encodings/cp775.py","start":5491891,"end":5526367,"audio":0},{"filename":"/lib/python3.9/encodings/cp850.py","start":5526367,"end":5560472,"audio":0},{"filename":"/lib/python3.9/encodings/cp852.py","start":5560472,"end":5595474,"audio":0},{"filename":"/lib/python3.9/encodings/cp855.py","start":5595474,"end":5629324,"audio":0},{"filename":"/lib/python3.9/encodings/cp856.py","start":5629324,"end":5641747,"audio":0},{"filename":"/lib/python3.9/encodings/cp857.py","start":5641747,"end":5675655,"audio":0},{"filename":"/lib/python3.9/encodings/cp858.py","start":5675655,"end":5709670,"audio":0},{"filename":"/lib/python3.9/encodings/cp860.py","start":5709670,"end":5744351,"audio":0},{"filename":"/lib/python3.9/encodings/cp861.py","start":5744351,"end":5778984,"audio":0},{"filename":"/lib/python3.9/encodings/cp862.py","start":5778984,"end":5812354,"audio":0},{"filename":"/lib/python3.9/encodings/cp863.py","start":5812354,"end":5846606,"audio":0},{"filename":"/lib/python3.9/encodings/cp864.py","start":5846606,"end":5880269,"audio":0},{"filename":"/lib/python3.9/encodings/cp865.py","start":5880269,"end":5914887,"audio":0},{"filename":"/lib/python3.9/encodings/cp866.py","start":5914887,"end":5949283,"audio":0},{"filename":"/lib/python3.9/encodings/cp869.py","start":5949283,"end":5982248,"audio":0},{"filename":"/lib/python3.9/encodings/cp874.py","start":5982248,"end":5994843,"audio":0},{"filename":"/lib/python3.9/encodings/cp875.py","start":5994843,"end":6007697,"audio":0},{"filename":"/lib/python3.9/encodings/cp932.py","start":6007697,"end":6008720,"audio":0},{"filename":"/lib/python3.9/encodings/cp949.py","start":6008720,"end":6009743,"audio":0},{"filename":"/lib/python3.9/encodings/cp950.py","start":6009743,"end":6010766,"audio":0},{"filename":"/lib/python3.9/encodings/euc_jis_2004.py","start":6010766,"end":6011817,"audio":0},{"filename":"/lib/python3.9/encodings/euc_jisx0213.py","start":6011817,"end":6012868,"audio":0},{"filename":"/lib/python3.9/encodings/euc_jp.py","start":6012868,"end":6013895,"audio":0},{"filename":"/lib/python3.9/encodings/euc_kr.py","start":6013895,"end":6014922,"audio":0},{"filename":"/lib/python3.9/encodings/gb18030.py","start":6014922,"end":6015953,"audio":0},{"filename":"/lib/python3.9/encodings/gb2312.py","start":6015953,"end":6016980,"audio":0},{"filename":"/lib/python3.9/encodings/gbk.py","start":6016980,"end":6017995,"audio":0},{"filename":"/lib/python3.9/encodings/hex_codec.py","start":6017995,"end":6019503,"audio":0},{"filename":"/lib/python3.9/encodings/hp_roman8.py","start":6019503,"end":6032978,"audio":0},{"filename":"/lib/python3.9/encodings/hz.py","start":6032978,"end":6033989,"audio":0},{"filename":"/lib/python3.9/encodings/idna.py","start":6033989,"end":6043159,"audio":0},{"filename":"/lib/python3.9/encodings/iso2022_jp.py","start":6043159,"end":6044212,"audio":0},{"filename":"/lib/python3.9/encodings/iso2022_jp_1.py","start":6044212,"end":6045273,"audio":0},{"filename":"/lib/python3.9/encodings/iso2022_jp_2.py","start":6045273,"end":6046334,"audio":0},{"filename":"/lib/python3.9/encodings/iso2022_jp_2004.py","start":6046334,"end":6047407,"audio":0},{"filename":"/lib/python3.9/encodings/iso2022_jp_3.py","start":6047407,"end":6048468,"audio":0},{"filename":"/lib/python3.9/encodings/iso2022_jp_ext.py","start":6048468,"end":6049537,"audio":0},{"filename":"/lib/python3.9/encodings/iso2022_kr.py","start":6049537,"end":6050590,"audio":0},{"filename":"/lib/python3.9/encodings/iso8859_1.py","start":6050590,"end":6063766,"audio":0},{"filename":"/lib/python3.9/encodings/iso8859_10.py","start":6063766,"end":6077355,"audio":0},{"filename":"/lib/python3.9/encodings/iso8859_11.py","start":6077355,"end":6089690,"audio":0},{"filename":"/lib/python3.9/encodings/iso8859_13.py","start":6089690,"end":6102961,"audio":0},{"filename":"/lib/python3.9/encodings/iso8859_14.py","start":6102961,"end":6116613,"audio":0},{"filename":"/lib/python3.9/encodings/iso8859_15.py","start":6116613,"end":6129825,"audio":0},{"filename":"/lib/python3.9/encodings/iso8859_16.py","start":6129825,"end":6143382,"audio":0},{"filename":"/lib/python3.9/encodings/iso8859_2.py","start":6143382,"end":6156786,"audio":0},{"filename":"/lib/python3.9/encodings/iso8859_3.py","start":6156786,"end":6169875,"audio":0},{"filename":"/lib/python3.9/encodings/iso8859_4.py","start":6169875,"end":6183251,"audio":0},{"filename":"/lib/python3.9/encodings/iso8859_5.py","start":6183251,"end":6196266,"audio":0},{"filename":"/lib/python3.9/encodings/iso8859_6.py","start":6196266,"end":6207099,"audio":0},{"filename":"/lib/python3.9/encodings/iso8859_7.py","start":6207099,"end":6219943,"audio":0},{"filename":"/lib/python3.9/encodings/iso8859_8.py","start":6219943,"end":6230979,"audio":0},{"filename":"/lib/python3.9/encodings/iso8859_9.py","start":6230979,"end":6244135,"audio":0},{"filename":"/lib/python3.9/encodings/johab.py","start":6244135,"end":6245158,"audio":0},{"filename":"/lib/python3.9/encodings/koi8_r.py","start":6245158,"end":6258937,"audio":0},{"filename":"/lib/python3.9/encodings/koi8_t.py","start":6258937,"end":6272130,"audio":0},{"filename":"/lib/python3.9/encodings/koi8_u.py","start":6272130,"end":6285892,"audio":0},{"filename":"/lib/python3.9/encodings/kz1048.py","start":6285892,"end":6299615,"audio":0},{"filename":"/lib/python3.9/encodings/latin_1.py","start":6299615,"end":6300879,"audio":0},{"filename":"/lib/python3.9/encodings/mac_arabic.py","start":6300879,"end":6337346,"audio":0},{"filename":"/lib/python3.9/encodings/mac_croatian.py","start":6337346,"end":6350979,"audio":0},{"filename":"/lib/python3.9/encodings/mac_cyrillic.py","start":6350979,"end":6364433,"audio":0},{"filename":"/lib/python3.9/encodings/mac_farsi.py","start":6364433,"end":6379603,"audio":0},{"filename":"/lib/python3.9/encodings/mac_greek.py","start":6379603,"end":6393324,"audio":0},{"filename":"/lib/python3.9/encodings/mac_iceland.py","start":6393324,"end":6406822,"audio":0},{"filename":"/lib/python3.9/encodings/mac_latin2.py","start":6406822,"end":6420940,"audio":0},{"filename":"/lib/python3.9/encodings/mac_roman.py","start":6420940,"end":6434420,"audio":0},{"filename":"/lib/python3.9/encodings/mac_romanian.py","start":6434420,"end":6448081,"audio":0},{"filename":"/lib/python3.9/encodings/mac_turkish.py","start":6448081,"end":6461594,"audio":0},{"filename":"/lib/python3.9/encodings/mbcs.py","start":6461594,"end":6462805,"audio":0},{"filename":"/lib/python3.9/encodings/oem.py","start":6462805,"end":6463824,"audio":0},{"filename":"/lib/python3.9/encodings/palmos.py","start":6463824,"end":6477343,"audio":0},{"filename":"/lib/python3.9/encodings/ptcp154.py","start":6477343,"end":6491358,"audio":0},{"filename":"/lib/python3.9/encodings/punycode.py","start":6491358,"end":6498241,"audio":0},{"filename":"/lib/python3.9/encodings/quopri_codec.py","start":6498241,"end":6499766,"audio":0},{"filename":"/lib/python3.9/encodings/raw_unicode_escape.py","start":6499766,"end":6500974,"audio":0},{"filename":"/lib/python3.9/encodings/rot_13.py","start":6500974,"end":6503422,"audio":0},{"filename":"/lib/python3.9/encodings/shift_jis.py","start":6503422,"end":6504461,"audio":0},{"filename":"/lib/python3.9/encodings/shift_jis_2004.py","start":6504461,"end":6505520,"audio":0},{"filename":"/lib/python3.9/encodings/shift_jisx0213.py","start":6505520,"end":6506579,"audio":0},{"filename":"/lib/python3.9/encodings/tis_620.py","start":6506579,"end":6518879,"audio":0},{"filename":"/lib/python3.9/encodings/undefined.py","start":6518879,"end":6520178,"audio":0},{"filename":"/lib/python3.9/encodings/unicode_escape.py","start":6520178,"end":6521362,"audio":0},{"filename":"/lib/python3.9/encodings/utf_16.py","start":6521362,"end":6526598,"audio":0},{"filename":"/lib/python3.9/encodings/utf_16_be.py","start":6526598,"end":6527635,"audio":0},{"filename":"/lib/python3.9/encodings/utf_16_le.py","start":6527635,"end":6528672,"audio":0},{"filename":"/lib/python3.9/encodings/utf_32.py","start":6528672,"end":6533801,"audio":0},{"filename":"/lib/python3.9/encodings/utf_32_be.py","start":6533801,"end":6534731,"audio":0},{"filename":"/lib/python3.9/encodings/utf_32_le.py","start":6534731,"end":6535661,"audio":0},{"filename":"/lib/python3.9/encodings/utf_7.py","start":6535661,"end":6536607,"audio":0},{"filename":"/lib/python3.9/encodings/utf_8.py","start":6536607,"end":6537612,"audio":0},{"filename":"/lib/python3.9/encodings/utf_8_sig.py","start":6537612,"end":6541745,"audio":0},{"filename":"/lib/python3.9/encodings/uu_codec.py","start":6541745,"end":6544596,"audio":0},{"filename":"/lib/python3.9/encodings/zlib_codec.py","start":6544596,"end":6546800,"audio":0},{"filename":"/lib/python3.9/email/__init__.py","start":6546800,"end":6548566,"audio":0},{"filename":"/lib/python3.9/email/_encoded_words.py","start":6548566,"end":6557090,"audio":0},{"filename":"/lib/python3.9/email/_header_value_parser.py","start":6557090,"end":6664049,"audio":0},{"filename":"/lib/python3.9/email/_parseaddr.py","start":6664049,"end":6681653,"audio":0},{"filename":"/lib/python3.9/email/_policybase.py","start":6681653,"end":6696726,"audio":0},{"filename":"/lib/python3.9/email/architecture.rst","start":6696726,"end":6706287,"audio":0},{"filename":"/lib/python3.9/email/base64mime.py","start":6706287,"end":6709845,"audio":0},{"filename":"/lib/python3.9/email/charset.py","start":6709845,"end":6726973,"audio":0},{"filename":"/lib/python3.9/email/contentmanager.py","start":6726973,"end":6737672,"audio":0},{"filename":"/lib/python3.9/email/encoders.py","start":6737672,"end":6739458,"audio":0},{"filename":"/lib/python3.9/email/errors.py","start":6739458,"end":6743105,"audio":0},{"filename":"/lib/python3.9/email/feedparser.py","start":6743105,"end":6765885,"audio":0},{"filename":"/lib/python3.9/email/generator.py","start":6765885,"end":6786081,"audio":0},{"filename":"/lib/python3.9/email/header.py","start":6786081,"end":6810183,"audio":0},{"filename":"/lib/python3.9/email/headerregistry.py","start":6810183,"end":6830811,"audio":0},{"filename":"/lib/python3.9/email/iterators.py","start":6830811,"end":6832946,"audio":0},{"filename":"/lib/python3.9/email/message.py","start":6832946,"end":6880018,"audio":0},{"filename":"/lib/python3.9/email/parser.py","start":6880018,"end":6885059,"audio":0},{"filename":"/lib/python3.9/email/policy.py","start":6885059,"end":6895442,"audio":0},{"filename":"/lib/python3.9/email/quoprimime.py","start":6895442,"end":6905300,"audio":0},{"filename":"/lib/python3.9/email/utils.py","start":6905300,"end":6918565,"audio":0},{"filename":"/lib/python3.9/email/mime/__init__.py","start":6918565,"end":6918565,"audio":0},{"filename":"/lib/python3.9/email/mime/application.py","start":6918565,"end":6919886,"audio":0},{"filename":"/lib/python3.9/email/mime/audio.py","start":6919886,"end":6922625,"audio":0},{"filename":"/lib/python3.9/email/mime/base.py","start":6922625,"end":6923541,"audio":0},{"filename":"/lib/python3.9/email/mime/image.py","start":6923541,"end":6925370,"audio":0},{"filename":"/lib/python3.9/email/mime/message.py","start":6925370,"end":6926687,"audio":0},{"filename":"/lib/python3.9/email/mime/multipart.py","start":6926687,"end":6928308,"audio":0},{"filename":"/lib/python3.9/email/mime/nonmultipart.py","start":6928308,"end":6928999,"audio":0},{"filename":"/lib/python3.9/email/mime/text.py","start":6928999,"end":6930436,"audio":0},{"filename":"/lib/python3.9/html/__init__.py","start":6930436,"end":6935192,"audio":0},{"filename":"/lib/python3.9/html/entities.py","start":6935192,"end":7010507,"audio":0},{"filename":"/lib/python3.9/html/parser.py","start":7010507,"end":7027899,"audio":0},{"filename":"/lib/python3.9/json/__init__.py","start":7027899,"end":7041916,"audio":0},{"filename":"/lib/python3.9/json/decoder.py","start":7041916,"end":7054388,"audio":0},{"filename":"/lib/python3.9/json/encoder.py","start":7054388,"end":7070460,"audio":0},{"filename":"/lib/python3.9/json/scanner.py","start":7070460,"end":7072885,"audio":0},{"filename":"/lib/python3.9/json/tool.py","start":7072885,"end":7076067,"audio":0},{"filename":"/lib/python3.9/http/__init__.py","start":7076067,"end":7082799,"audio":0},{"filename":"/lib/python3.9/http/client.py","start":7082799,"end":7138244,"audio":0},{"filename":"/lib/python3.9/http/cookiejar.py","start":7138244,"end":7215079,"audio":0},{"filename":"/lib/python3.9/http/cookies.py","start":7215079,"end":7235561,"audio":0},{"filename":"/lib/python3.9/http/server.py","start":7235561,"end":7282800,"audio":0},{"filename":"/lib/python3.9/xmlrpc/__init__.py","start":7282800,"end":7282838,"audio":0},{"filename":"/lib/python3.9/xmlrpc/client.py","start":7282838,"end":7332147,"audio":0},{"filename":"/lib/python3.9/xmlrpc/server.py","start":7332147,"end":7368818,"audio":0},{"filename":"/lib/python3.9/sqlite3/__init__.py","start":7368818,"end":7369836,"audio":0},{"filename":"/lib/python3.9/sqlite3/dbapi2.py","start":7369836,"end":7372523,"audio":0},{"filename":"/lib/python3.9/sqlite3/dump.py","start":7372523,"end":7375348,"audio":0},{"filename":"/lib/python3.9/logging/__init__.py","start":7375348,"end":7453948,"audio":0},{"filename":"/lib/python3.9/logging/config.py","start":7453948,"end":7490327,"audio":0},{"filename":"/lib/python3.9/logging/handlers.py","start":7490327,"end":7549436,"audio":0},{"filename":"/lib/python3.9/wsgiref/__init__.py","start":7549436,"end":7550023,"audio":0},{"filename":"/lib/python3.9/wsgiref/handlers.py","start":7550023,"end":7571692,"audio":0},{"filename":"/lib/python3.9/wsgiref/headers.py","start":7571692,"end":7578458,"audio":0},{"filename":"/lib/python3.9/wsgiref/simple_server.py","start":7578458,"end":7583629,"audio":0},{"filename":"/lib/python3.9/wsgiref/util.py","start":7583629,"end":7589480,"audio":0},{"filename":"/lib/python3.9/wsgiref/validate.py","start":7589480,"end":7604579,"audio":0},{"filename":"/lib/python3.9/urllib/__init__.py","start":7604579,"end":7604579,"audio":0},{"filename":"/lib/python3.9/urllib/error.py","start":7604579,"end":7607211,"audio":0},{"filename":"/lib/python3.9/urllib/parse.py","start":7607211,"end":7649482,"audio":0},{"filename":"/lib/python3.9/urllib/request.py","start":7649482,"end":7750762,"audio":0},{"filename":"/lib/python3.9/urllib/response.py","start":7750762,"end":7753123,"audio":0},{"filename":"/lib/python3.9/urllib/robotparser.py","start":7753123,"end":7762547,"audio":0},{"filename":"/lib/python3.9/ctypes/__init__.py","start":7762547,"end":7780535,"audio":0},{"filename":"/lib/python3.9/ctypes/_aix.py","start":7780535,"end":7793102,"audio":0},{"filename":"/lib/python3.9/ctypes/_endian.py","start":7793102,"end":7795102,"audio":0},{"filename":"/lib/python3.9/ctypes/util.py","start":7795102,"end":7808981,"audio":0},{"filename":"/lib/python3.9/ctypes/wintypes.py","start":7808981,"end":7814609,"audio":0},{"filename":"/lib/python3.9/ctypes/macholib/README.ctypes","start":7814609,"end":7814905,"audio":0},{"filename":"/lib/python3.9/ctypes/macholib/__init__.py","start":7814905,"end":7815059,"audio":0},{"filename":"/lib/python3.9/ctypes/macholib/dyld.py","start":7815059,"end":7820342,"audio":0},{"filename":"/lib/python3.9/ctypes/macholib/dylib.py","start":7820342,"end":7822170,"audio":0},{"filename":"/lib/python3.9/ctypes/macholib/fetch_macholib","start":7822170,"end":7822254,"audio":0},{"filename":"/lib/python3.9/ctypes/macholib/fetch_macholib.bat","start":7822254,"end":7822329,"audio":0},{"filename":"/lib/python3.9/ctypes/macholib/framework.py","start":7822329,"end":7824530,"audio":0},{"filename":"/lib/python3.9/xml/__init__.py","start":7824530,"end":7825087,"audio":0},{"filename":"/lib/python3.9/xml/dom/NodeFilter.py","start":7825087,"end":7826023,"audio":0},{"filename":"/lib/python3.9/xml/dom/__init__.py","start":7826023,"end":7830042,"audio":0},{"filename":"/lib/python3.9/xml/dom/domreg.py","start":7830042,"end":7833493,"audio":0},{"filename":"/lib/python3.9/xml/dom/expatbuilder.py","start":7833493,"end":7869260,"audio":0},{"filename":"/lib/python3.9/xml/dom/minicompat.py","start":7869260,"end":7872627,"audio":0},{"filename":"/lib/python3.9/xml/dom/minidom.py","start":7872627,"end":7940693,"audio":0},{"filename":"/lib/python3.9/xml/dom/pulldom.py","start":7940693,"end":7952690,"audio":0},{"filename":"/lib/python3.9/xml/dom/xmlbuilder.py","start":7952690,"end":7965077,"audio":0},{"filename":"/lib/python3.9/xml/etree/ElementInclude.py","start":7965077,"end":7971958,"audio":0},{"filename":"/lib/python3.9/xml/etree/ElementPath.py","start":7971958,"end":7985076,"audio":0},{"filename":"/lib/python3.9/xml/etree/ElementTree.py","start":7985076,"end":8059098,"audio":0},{"filename":"/lib/python3.9/xml/etree/__init__.py","start":8059098,"end":8060702,"audio":0},{"filename":"/lib/python3.9/xml/etree/cElementTree.py","start":8060702,"end":8060784,"audio":0},{"filename":"/lib/python3.9/xml/parsers/__init__.py","start":8060784,"end":8060951,"audio":0},{"filename":"/lib/python3.9/xml/parsers/expat.py","start":8060951,"end":8061199,"audio":0},{"filename":"/lib/python3.9/xml/sax/__init__.py","start":8061199,"end":8064841,"audio":0},{"filename":"/lib/python3.9/xml/sax/_exceptions.py","start":8064841,"end":8069626,"audio":0},{"filename":"/lib/python3.9/xml/sax/expatreader.py","start":8069626,"end":8085353,"audio":0},{"filename":"/lib/python3.9/xml/sax/handler.py","start":8085353,"end":8099275,"audio":0},{"filename":"/lib/python3.9/xml/sax/saxutils.py","start":8099275,"end":8111530,"audio":0},{"filename":"/lib/python3.9/xml/sax/xmlreader.py","start":8111530,"end":8124214,"audio":0},{"filename":"/lib/python3.9/multiprocessing/__init__.py","start":8124214,"end":8125130,"audio":0},{"filename":"/lib/python3.9/multiprocessing/connection.py","start":8125130,"end":8157154,"audio":0},{"filename":"/lib/python3.9/multiprocessing/context.py","start":8157154,"end":8168411,"audio":0},{"filename":"/lib/python3.9/multiprocessing/forkserver.py","start":8168411,"end":8180553,"audio":0},{"filename":"/lib/python3.9/multiprocessing/heap.py","start":8180553,"end":8192179,"audio":0},{"filename":"/lib/python3.9/multiprocessing/managers.py","start":8192179,"end":8239419,"audio":0},{"filename":"/lib/python3.9/multiprocessing/pool.py","start":8239419,"end":8271974,"audio":0},{"filename":"/lib/python3.9/multiprocessing/popen_fork.py","start":8271974,"end":8274351,"audio":0},{"filename":"/lib/python3.9/multiprocessing/popen_forkserver.py","start":8274351,"end":8276581,"audio":0},{"filename":"/lib/python3.9/multiprocessing/popen_spawn_posix.py","start":8276581,"end":8278610,"audio":0},{"filename":"/lib/python3.9/multiprocessing/popen_spawn_win32.py","start":8278610,"end":8282621,"audio":0},{"filename":"/lib/python3.9/multiprocessing/process.py","start":8282621,"end":8294621,"audio":0},{"filename":"/lib/python3.9/multiprocessing/queues.py","start":8294621,"end":8306614,"audio":0},{"filename":"/lib/python3.9/multiprocessing/reduction.py","start":8306614,"end":8316126,"audio":0},{"filename":"/lib/python3.9/multiprocessing/resource_sharer.py","start":8316126,"end":8321258,"audio":0},{"filename":"/lib/python3.9/multiprocessing/resource_tracker.py","start":8321258,"end":8329871,"audio":0},{"filename":"/lib/python3.9/multiprocessing/shared_memory.py","start":8329871,"end":8348267,"audio":0},{"filename":"/lib/python3.9/multiprocessing/sharedctypes.py","start":8348267,"end":8354573,"audio":0},{"filename":"/lib/python3.9/multiprocessing/spawn.py","start":8354573,"end":8363869,"audio":0},{"filename":"/lib/python3.9/multiprocessing/synchronize.py","start":8363869,"end":8375479,"audio":0},{"filename":"/lib/python3.9/multiprocessing/util.py","start":8375479,"end":8389484,"audio":0},{"filename":"/lib/python3.9/multiprocessing/dummy/__init__.py","start":8389484,"end":8392545,"audio":0},{"filename":"/lib/python3.9/multiprocessing/dummy/connection.py","start":8392545,"end":8394143,"audio":0},{"filename":"/lib/python3.9/unittest/__init__.py","start":8394143,"end":8397904,"audio":0},{"filename":"/lib/python3.9/unittest/__main__.py","start":8397904,"end":8398376,"audio":0},{"filename":"/lib/python3.9/unittest/_log.py","start":8398376,"end":8400671,"audio":0},{"filename":"/lib/python3.9/unittest/async_case.py","start":8400671,"end":8406481,"audio":0},{"filename":"/lib/python3.9/unittest/case.py","start":8406481,"end":8463250,"audio":0},{"filename":"/lib/python3.9/unittest/loader.py","start":8463250,"end":8485952,"audio":0},{"filename":"/lib/python3.9/unittest/main.py","start":8485952,"end":8497190,"audio":0},{"filename":"/lib/python3.9/unittest/mock.py","start":8497190,"end":8596322,"audio":0},{"filename":"/lib/python3.9/unittest/result.py","start":8596322,"end":8603765,"audio":0},{"filename":"/lib/python3.9/unittest/runner.py","start":8603765,"end":8611532,"audio":0},{"filename":"/lib/python3.9/unittest/signals.py","start":8611532,"end":8613935,"audio":0},{"filename":"/lib/python3.9/unittest/suite.py","start":8613935,"end":8626750,"audio":0},{"filename":"/lib/python3.9/unittest/util.py","start":8626750,"end":8631965,"audio":0},{"filename":"/lib/python3.9/tzdata/__init__.py","start":8631965,"end":8632217,"audio":0},{"filename":"/lib/python3.9/tzdata/zones","start":8632217,"end":8641267,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/CET","start":8641267,"end":8641888,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/CST6CDT","start":8641888,"end":8642839,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Cuba","start":8642839,"end":8643956,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/EET","start":8643956,"end":8644453,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/EST","start":8644453,"end":8644564,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/EST5EDT","start":8644564,"end":8645515,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Egypt","start":8645515,"end":8646791,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Eire","start":8646791,"end":8648287,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Factory","start":8648287,"end":8648400,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/GB","start":8648400,"end":8649999,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/GB-Eire","start":8649999,"end":8651598,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/GMT","start":8651598,"end":8651709,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/GMT+0","start":8651709,"end":8651820,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/GMT-0","start":8651820,"end":8651931,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/GMT0","start":8651931,"end":8652042,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Greenwich","start":8652042,"end":8652153,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/HST","start":8652153,"end":8652265,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Hongkong","start":8652265,"end":8653040,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Iceland","start":8653040,"end":8653793,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Iran","start":8653793,"end":8655797,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Israel","start":8655797,"end":8656871,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Jamaica","start":8656871,"end":8657210,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Japan","start":8657210,"end":8657423,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Kwajalein","start":8657423,"end":8657642,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Libya","start":8657642,"end":8658073,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/MET","start":8658073,"end":8658694,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/MST","start":8658694,"end":8658805,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/MST7MDT","start":8658805,"end":8659756,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/NZ","start":8659756,"end":8660799,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/NZ-CHAT","start":8660799,"end":8661607,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Navajo","start":8661607,"end":8662649,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/PRC","start":8662649,"end":8663042,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/PST8PDT","start":8663042,"end":8663993,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Poland","start":8663993,"end":8664916,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Portugal","start":8664916,"end":8666370,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/ROC","start":8666370,"end":8666881,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/ROK","start":8666881,"end":8667296,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Singapore","start":8667296,"end":8667552,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Turkey","start":8667552,"end":8668752,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/UCT","start":8668752,"end":8668863,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/UTC","start":8668863,"end":8668974,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Universal","start":8668974,"end":8669085,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/W-SU","start":8669085,"end":8669993,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/WET","start":8669993,"end":8670487,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Zulu","start":8670487,"end":8670598,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/__init__.py","start":8670598,"end":8670598,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/iso3166.tab","start":8670598,"end":8675061,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/leapseconds","start":8675061,"end":8678449,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/tzdata.zi","start":8678449,"end":8791144,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/zone.tab","start":8791144,"end":8810563,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/zone1970.tab","start":8810563,"end":8828156,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Abidjan","start":8828156,"end":8828286,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Accra","start":8828286,"end":8828416,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Addis_Ababa","start":8828416,"end":8828607,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Algiers","start":8828607,"end":8829077,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Asmara","start":8829077,"end":8829268,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Asmera","start":8829268,"end":8829459,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Bamako","start":8829459,"end":8829589,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Bangui","start":8829589,"end":8829769,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Banjul","start":8829769,"end":8829899,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Bissau","start":8829899,"end":8830048,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Blantyre","start":8830048,"end":8830179,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Brazzaville","start":8830179,"end":8830359,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Bujumbura","start":8830359,"end":8830490,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Cairo","start":8830490,"end":8831766,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Casablanca","start":8831766,"end":8833685,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Ceuta","start":8833685,"end":8834247,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Conakry","start":8834247,"end":8834377,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Dakar","start":8834377,"end":8834507,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Dar_es_Salaam","start":8834507,"end":8834698,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Djibouti","start":8834698,"end":8834889,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Douala","start":8834889,"end":8835069,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/El_Aaiun","start":8835069,"end":8836899,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Freetown","start":8836899,"end":8837029,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Gaborone","start":8837029,"end":8837160,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Harare","start":8837160,"end":8837291,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Johannesburg","start":8837291,"end":8837481,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Juba","start":8837481,"end":8837939,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Kampala","start":8837939,"end":8838130,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Khartoum","start":8838130,"end":8838588,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Kigali","start":8838588,"end":8838719,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Kinshasa","start":8838719,"end":8838899,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Lagos","start":8838899,"end":8839079,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Libreville","start":8839079,"end":8839259,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Lome","start":8839259,"end":8839389,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Luanda","start":8839389,"end":8839569,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Lubumbashi","start":8839569,"end":8839700,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Lusaka","start":8839700,"end":8839831,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Malabo","start":8839831,"end":8840011,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Maputo","start":8840011,"end":8840142,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Maseru","start":8840142,"end":8840332,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Mbabane","start":8840332,"end":8840522,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Mogadishu","start":8840522,"end":8840713,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Monrovia","start":8840713,"end":8840877,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Nairobi","start":8840877,"end":8841068,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Ndjamena","start":8841068,"end":8841228,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Niamey","start":8841228,"end":8841408,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Nouakchott","start":8841408,"end":8841538,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Ouagadougou","start":8841538,"end":8841668,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Porto-Novo","start":8841668,"end":8841848,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Sao_Tome","start":8841848,"end":8842021,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Timbuktu","start":8842021,"end":8842151,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Tripoli","start":8842151,"end":8842582,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Tunis","start":8842582,"end":8843031,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/Windhoek","start":8843031,"end":8843669,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Africa/__init__.py","start":8843669,"end":8843669,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Adak","start":8843669,"end":8844638,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Anchorage","start":8844638,"end":8845615,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Anguilla","start":8845615,"end":8845792,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Antigua","start":8845792,"end":8845969,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Araguaina","start":8845969,"end":8846561,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Aruba","start":8846561,"end":8846738,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Asuncion","start":8846738,"end":8847622,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Atikokan","start":8847622,"end":8847771,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Atka","start":8847771,"end":8848740,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Bahia","start":8848740,"end":8849422,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Bahia_Banderas","start":8849422,"end":8849952,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Barbados","start":8849952,"end":8850230,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Belem","start":8850230,"end":8850624,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Belize","start":8850624,"end":8851669,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Blanc-Sablon","start":8851669,"end":8851846,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Boa_Vista","start":8851846,"end":8852276,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Bogota","start":8852276,"end":8852455,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Boise","start":8852455,"end":8853454,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Buenos_Aires","start":8853454,"end":8854162,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Cambridge_Bay","start":8854162,"end":8854930,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Campo_Grande","start":8854930,"end":8855882,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Cancun","start":8855882,"end":8856411,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Caracas","start":8856411,"end":8856601,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Catamarca","start":8856601,"end":8857309,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Cayenne","start":8857309,"end":8857460,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Cayman","start":8857460,"end":8857609,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Chicago","start":8857609,"end":8859363,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Chihuahua","start":8859363,"end":8859703,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Coral_Harbour","start":8859703,"end":8859852,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Cordoba","start":8859852,"end":8860560,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Costa_Rica","start":8860560,"end":8860792,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Creston","start":8860792,"end":8861032,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Cuiaba","start":8861032,"end":8861966,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Curacao","start":8861966,"end":8862143,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Danmarkshavn","start":8862143,"end":8862590,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Dawson","start":8862590,"end":8863619,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Dawson_Creek","start":8863619,"end":8864302,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Denver","start":8864302,"end":8865344,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Detroit","start":8865344,"end":8866243,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Dominica","start":8866243,"end":8866420,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Edmonton","start":8866420,"end":8867390,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Eirunepe","start":8867390,"end":8867826,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/El_Salvador","start":8867826,"end":8868002,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Ensenada","start":8868002,"end":8869027,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Fort_Nelson","start":8869027,"end":8870475,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Fort_Wayne","start":8870475,"end":8871006,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Fortaleza","start":8871006,"end":8871490,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Glace_Bay","start":8871490,"end":8872370,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Godthab","start":8872370,"end":8872835,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Goose_Bay","start":8872835,"end":8874415,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Grand_Turk","start":8874415,"end":8875268,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Grenada","start":8875268,"end":8875445,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Guadeloupe","start":8875445,"end":8875622,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Guatemala","start":8875622,"end":8875834,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Guayaquil","start":8875834,"end":8876013,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Guyana","start":8876013,"end":8876194,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Halifax","start":8876194,"end":8877866,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Havana","start":8877866,"end":8878983,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Hermosillo","start":8878983,"end":8879269,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Indianapolis","start":8879269,"end":8879800,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Inuvik","start":8879800,"end":8880501,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Iqaluit","start":8880501,"end":8881241,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Jamaica","start":8881241,"end":8881580,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Jujuy","start":8881580,"end":8882270,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Juneau","start":8882270,"end":8883236,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Knox_IN","start":8883236,"end":8884252,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Kralendijk","start":8884252,"end":8884429,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/La_Paz","start":8884429,"end":8884599,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Lima","start":8884599,"end":8884882,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Los_Angeles","start":8884882,"end":8886176,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Louisville","start":8886176,"end":8887418,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Lower_Princes","start":8887418,"end":8887595,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Maceio","start":8887595,"end":8888097,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Managua","start":8888097,"end":8888392,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Manaus","start":8888392,"end":8888804,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Marigot","start":8888804,"end":8888981,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Martinique","start":8888981,"end":8889159,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Matamoros","start":8889159,"end":8889596,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Mazatlan","start":8889596,"end":8889963,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Mendoza","start":8889963,"end":8890671,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Menominee","start":8890671,"end":8891588,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Merida","start":8891588,"end":8891891,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Metlakatla","start":8891891,"end":8892486,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Mexico_City","start":8892486,"end":8892898,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Miquelon","start":8892898,"end":8893448,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Moncton","start":8893448,"end":8894941,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Monterrey","start":8894941,"end":8895234,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Montevideo","start":8895234,"end":8896203,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Montreal","start":8896203,"end":8897920,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Montserrat","start":8897920,"end":8898097,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Nassau","start":8898097,"end":8899814,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/New_York","start":8899814,"end":8901558,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Nipigon","start":8901558,"end":8902393,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Nome","start":8902393,"end":8903368,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Noronha","start":8903368,"end":8903852,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Nuuk","start":8903852,"end":8904317,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Ojinaga","start":8904317,"end":8904801,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Panama","start":8904801,"end":8904950,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Pangnirtung","start":8904950,"end":8905719,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Paramaribo","start":8905719,"end":8905906,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Phoenix","start":8905906,"end":8906146,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Port-au-Prince","start":8906146,"end":8906711,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Port_of_Spain","start":8906711,"end":8906888,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Porto_Acre","start":8906888,"end":8907306,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Porto_Velho","start":8907306,"end":8907700,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Puerto_Rico","start":8907700,"end":8907877,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Punta_Arenas","start":8907877,"end":8909086,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Rainy_River","start":8909086,"end":8909921,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Rankin_Inlet","start":8909921,"end":8910613,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Recife","start":8910613,"end":8911097,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Regina","start":8911097,"end":8911735,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Resolute","start":8911735,"end":8912427,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Rio_Branco","start":8912427,"end":8912845,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Rosario","start":8912845,"end":8913553,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Santa_Isabel","start":8913553,"end":8914578,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Santarem","start":8914578,"end":8914987,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Santiago","start":8914987,"end":8916269,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Santo_Domingo","start":8916269,"end":8916586,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Sao_Paulo","start":8916586,"end":8917538,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Scoresbysund","start":8917538,"end":8918017,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Shiprock","start":8918017,"end":8919059,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Sitka","start":8919059,"end":8920015,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/St_Barthelemy","start":8920015,"end":8920192,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/St_Johns","start":8920192,"end":8922070,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/St_Kitts","start":8922070,"end":8922247,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/St_Lucia","start":8922247,"end":8922424,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/St_Thomas","start":8922424,"end":8922601,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/St_Vincent","start":8922601,"end":8922778,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Swift_Current","start":8922778,"end":8923146,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Tegucigalpa","start":8923146,"end":8923340,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Thule","start":8923340,"end":8923795,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Thunder_Bay","start":8923795,"end":8924676,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Tijuana","start":8924676,"end":8925701,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Toronto","start":8925701,"end":8927418,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Tortola","start":8927418,"end":8927595,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Vancouver","start":8927595,"end":8928925,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Virgin","start":8928925,"end":8929102,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Whitehorse","start":8929102,"end":8930131,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Winnipeg","start":8930131,"end":8931425,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Yakutat","start":8931425,"end":8932371,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Yellowknife","start":8932371,"end":8933100,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/__init__.py","start":8933100,"end":8933100,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Argentina/Buenos_Aires","start":8933100,"end":8933808,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Argentina/Catamarca","start":8933808,"end":8934516,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Argentina/ComodRivadavia","start":8934516,"end":8935224,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Argentina/Cordoba","start":8935224,"end":8935932,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Argentina/Jujuy","start":8935932,"end":8936622,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Argentina/La_Rioja","start":8936622,"end":8937339,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Argentina/Mendoza","start":8937339,"end":8938047,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Argentina/Rio_Gallegos","start":8938047,"end":8938755,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Argentina/Salta","start":8938755,"end":8939445,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Argentina/San_Juan","start":8939445,"end":8940162,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Argentina/San_Luis","start":8940162,"end":8940879,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Argentina/Tucuman","start":8940879,"end":8941605,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Argentina/Ushuaia","start":8941605,"end":8942313,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Argentina/__init__.py","start":8942313,"end":8942313,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Indiana/Indianapolis","start":8942313,"end":8942844,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Indiana/Knox","start":8942844,"end":8943860,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Indiana/Marengo","start":8943860,"end":8944427,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Indiana/Petersburg","start":8944427,"end":8945110,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Indiana/Tell_City","start":8945110,"end":8945632,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Indiana/Vevay","start":8945632,"end":8946001,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Indiana/Vincennes","start":8946001,"end":8946559,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Indiana/Winamac","start":8946559,"end":8947171,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Indiana/__init__.py","start":8947171,"end":8947171,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Kentucky/Louisville","start":8947171,"end":8948413,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Kentucky/Monticello","start":8948413,"end":8949385,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/Kentucky/__init__.py","start":8949385,"end":8949385,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/North_Dakota/Beulah","start":8949385,"end":8950428,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/North_Dakota/Center","start":8950428,"end":8951418,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/North_Dakota/New_Salem","start":8951418,"end":8952408,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/America/North_Dakota/__init__.py","start":8952408,"end":8952408,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Antarctica/Casey","start":8952408,"end":8952651,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Antarctica/Davis","start":8952651,"end":8952848,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Antarctica/DumontDUrville","start":8952848,"end":8953002,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Antarctica/Macquarie","start":8953002,"end":8953978,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Antarctica/Mawson","start":8953978,"end":8954130,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Antarctica/McMurdo","start":8954130,"end":8955173,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Antarctica/Palmer","start":8955173,"end":8956060,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Antarctica/Rothera","start":8956060,"end":8956192,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Antarctica/South_Pole","start":8956192,"end":8957235,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Antarctica/Syowa","start":8957235,"end":8957368,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Antarctica/Troll","start":8957368,"end":8957545,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Antarctica/Vostok","start":8957545,"end":8957678,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Antarctica/__init__.py","start":8957678,"end":8957678,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Arctic/Longyearbyen","start":8957678,"end":8958354,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Arctic/__init__.py","start":8958354,"end":8958354,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Aden","start":8958354,"end":8958487,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Almaty","start":8958487,"end":8959096,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Amman","start":8959096,"end":8960018,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Anadyr","start":8960018,"end":8960761,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Aqtau","start":8960761,"end":8961367,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Aqtobe","start":8961367,"end":8961982,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Ashgabat","start":8961982,"end":8962357,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Ashkhabad","start":8962357,"end":8962732,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Atyrau","start":8962732,"end":8963348,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Baghdad","start":8963348,"end":8963978,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Bahrain","start":8963978,"end":8964130,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Baku","start":8964130,"end":8964874,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Bangkok","start":8964874,"end":8965026,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Barnaul","start":8965026,"end":8965779,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Beirut","start":8965779,"end":8966511,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Bishkek","start":8966511,"end":8967129,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Brunei","start":8967129,"end":8967283,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Calcutta","start":8967283,"end":8967503,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Chita","start":8967503,"end":8968253,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Choibalsan","start":8968253,"end":8968872,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Chongqing","start":8968872,"end":8969265,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Chungking","start":8969265,"end":8969658,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Colombo","start":8969658,"end":8969905,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Dacca","start":8969905,"end":8970136,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Damascus","start":8970136,"end":8971183,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Dhaka","start":8971183,"end":8971414,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Dili","start":8971414,"end":8971584,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Dubai","start":8971584,"end":8971717,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Dushanbe","start":8971717,"end":8972083,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Famagusta","start":8972083,"end":8973023,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Gaza","start":8973023,"end":8974253,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Harbin","start":8974253,"end":8974646,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Hebron","start":8974646,"end":8975894,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Ho_Chi_Minh","start":8975894,"end":8976130,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Hong_Kong","start":8976130,"end":8976905,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Hovd","start":8976905,"end":8977499,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Irkutsk","start":8977499,"end":8978259,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Istanbul","start":8978259,"end":8979459,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Jakarta","start":8979459,"end":8979707,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Jayapura","start":8979707,"end":8979878,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Jerusalem","start":8979878,"end":8980952,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Kabul","start":8980952,"end":8981111,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Kamchatka","start":8981111,"end":8981838,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Karachi","start":8981838,"end":8982104,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Kashgar","start":8982104,"end":8982237,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Kathmandu","start":8982237,"end":8982398,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Katmandu","start":8982398,"end":8982559,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Khandyga","start":8982559,"end":8983334,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Kolkata","start":8983334,"end":8983554,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Krasnoyarsk","start":8983554,"end":8984295,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Kuala_Lumpur","start":8984295,"end":8984551,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Kuching","start":8984551,"end":8984871,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Kuwait","start":8984871,"end":8985004,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Macao","start":8985004,"end":8985795,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Macau","start":8985795,"end":8986586,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Magadan","start":8986586,"end":8987337,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Makassar","start":8987337,"end":8987527,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Manila","start":8987527,"end":8987765,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Muscat","start":8987765,"end":8987898,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Nicosia","start":8987898,"end":8988495,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Novokuznetsk","start":8988495,"end":8989221,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Novosibirsk","start":8989221,"end":8989974,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Omsk","start":8989974,"end":8990715,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Oral","start":8990715,"end":8991340,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Phnom_Penh","start":8991340,"end":8991492,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Pontianak","start":8991492,"end":8991739,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Pyongyang","start":8991739,"end":8991922,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Qatar","start":8991922,"end":8992074,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Qostanay","start":8992074,"end":8992689,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Qyzylorda","start":8992689,"end":8993313,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Rangoon","start":8993313,"end":8993500,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Riyadh","start":8993500,"end":8993633,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Saigon","start":8993633,"end":8993869,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Sakhalin","start":8993869,"end":8994624,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Samarkand","start":8994624,"end":8994990,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Seoul","start":8994990,"end":8995405,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Shanghai","start":8995405,"end":8995798,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Singapore","start":8995798,"end":8996054,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Srednekolymsk","start":8996054,"end":8996796,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Taipei","start":8996796,"end":8997307,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Tashkent","start":8997307,"end":8997673,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Tbilisi","start":8997673,"end":8998302,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Tehran","start":8998302,"end":9000306,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Tel_Aviv","start":9000306,"end":9001380,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Thimbu","start":9001380,"end":9001534,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Thimphu","start":9001534,"end":9001688,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Tokyo","start":9001688,"end":9001901,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Tomsk","start":9001901,"end":9002654,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Ujung_Pandang","start":9002654,"end":9002844,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Ulaanbaatar","start":9002844,"end":9003438,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Ulan_Bator","start":9003438,"end":9004032,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Urumqi","start":9004032,"end":9004165,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Ust-Nera","start":9004165,"end":9004936,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Vientiane","start":9004936,"end":9005088,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Vladivostok","start":9005088,"end":9005830,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Yakutsk","start":9005830,"end":9006571,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Yangon","start":9006571,"end":9006758,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Yekaterinburg","start":9006758,"end":9007518,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/Yerevan","start":9007518,"end":9008226,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Asia/__init__.py","start":9008226,"end":9008226,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Atlantic/Azores","start":9008226,"end":9009679,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Atlantic/Bermuda","start":9009679,"end":9010703,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Atlantic/Canary","start":9010703,"end":9011181,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Atlantic/Cape_Verde","start":9011181,"end":9011356,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Atlantic/Faeroe","start":9011356,"end":9011797,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Atlantic/Faroe","start":9011797,"end":9012238,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Atlantic/Jan_Mayen","start":9012238,"end":9012914,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Atlantic/Madeira","start":9012914,"end":9014367,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Atlantic/Reykjavik","start":9014367,"end":9015120,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Atlantic/South_Georgia","start":9015120,"end":9015252,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Atlantic/St_Helena","start":9015252,"end":9015382,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Atlantic/Stanley","start":9015382,"end":9016171,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Atlantic/__init__.py","start":9016171,"end":9016171,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Australia/ACT","start":9016171,"end":9017075,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Australia/Adelaide","start":9017075,"end":9017996,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Australia/Brisbane","start":9017996,"end":9018285,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Australia/Broken_Hill","start":9018285,"end":9019226,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Australia/Canberra","start":9019226,"end":9020130,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Australia/Currie","start":9020130,"end":9021133,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Australia/Darwin","start":9021133,"end":9021367,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Australia/Eucla","start":9021367,"end":9021681,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Australia/Hobart","start":9021681,"end":9022684,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Australia/LHI","start":9022684,"end":9023376,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Australia/Lindeman","start":9023376,"end":9023701,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Australia/Lord_Howe","start":9023701,"end":9024393,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Australia/Melbourne","start":9024393,"end":9025297,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Australia/NSW","start":9025297,"end":9026201,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Australia/North","start":9026201,"end":9026435,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Australia/Perth","start":9026435,"end":9026741,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Australia/Queensland","start":9026741,"end":9027030,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Australia/South","start":9027030,"end":9027951,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Australia/Sydney","start":9027951,"end":9028855,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Australia/Tasmania","start":9028855,"end":9029858,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Australia/Victoria","start":9029858,"end":9030762,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Australia/West","start":9030762,"end":9031068,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Australia/Yancowinna","start":9031068,"end":9032009,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Australia/__init__.py","start":9032009,"end":9032009,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Brazil/Acre","start":9032009,"end":9032427,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Brazil/DeNoronha","start":9032427,"end":9032911,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Brazil/East","start":9032911,"end":9033863,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Brazil/West","start":9033863,"end":9034275,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Brazil/__init__.py","start":9034275,"end":9034275,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Canada/Atlantic","start":9034275,"end":9035947,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Canada/Central","start":9035947,"end":9037241,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Canada/Eastern","start":9037241,"end":9038958,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Canada/Mountain","start":9038958,"end":9039928,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Canada/Newfoundland","start":9039928,"end":9041806,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Canada/Pacific","start":9041806,"end":9043136,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Canada/Saskatchewan","start":9043136,"end":9043774,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Canada/Yukon","start":9043774,"end":9044803,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Canada/__init__.py","start":9044803,"end":9044803,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Chile/Continental","start":9044803,"end":9046085,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Chile/EasterIsland","start":9046085,"end":9047187,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Chile/__init__.py","start":9047187,"end":9047187,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT","start":9047187,"end":9047298,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT+0","start":9047298,"end":9047409,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT+1","start":9047409,"end":9047522,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT+10","start":9047522,"end":9047636,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT+11","start":9047636,"end":9047750,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT+12","start":9047750,"end":9047864,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT+2","start":9047864,"end":9047977,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT+3","start":9047977,"end":9048090,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT+4","start":9048090,"end":9048203,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT+5","start":9048203,"end":9048316,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT+6","start":9048316,"end":9048429,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT+7","start":9048429,"end":9048542,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT+8","start":9048542,"end":9048655,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT+9","start":9048655,"end":9048768,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT-0","start":9048768,"end":9048879,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT-1","start":9048879,"end":9048993,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT-10","start":9048993,"end":9049108,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT-11","start":9049108,"end":9049223,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT-12","start":9049223,"end":9049338,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT-13","start":9049338,"end":9049453,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT-14","start":9049453,"end":9049568,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT-2","start":9049568,"end":9049682,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT-3","start":9049682,"end":9049796,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT-4","start":9049796,"end":9049910,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT-5","start":9049910,"end":9050024,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT-6","start":9050024,"end":9050138,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT-7","start":9050138,"end":9050252,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT-8","start":9050252,"end":9050366,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT-9","start":9050366,"end":9050480,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/GMT0","start":9050480,"end":9050591,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/Greenwich","start":9050591,"end":9050702,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/UCT","start":9050702,"end":9050813,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/UTC","start":9050813,"end":9050924,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/Universal","start":9050924,"end":9051035,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/Zulu","start":9051035,"end":9051146,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Etc/__init__.py","start":9051146,"end":9051146,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Amsterdam","start":9051146,"end":9052217,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Andorra","start":9052217,"end":9052606,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Astrakhan","start":9052606,"end":9053332,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Athens","start":9053332,"end":9054014,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Belfast","start":9054014,"end":9055613,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Belgrade","start":9055613,"end":9056091,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Berlin","start":9056091,"end":9056796,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Bratislava","start":9056796,"end":9057519,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Brussels","start":9057519,"end":9058622,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Bucharest","start":9058622,"end":9059283,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Budapest","start":9059283,"end":9060049,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Busingen","start":9060049,"end":9060546,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Chisinau","start":9060546,"end":9061301,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Copenhagen","start":9061301,"end":9061924,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Dublin","start":9061924,"end":9063420,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Gibraltar","start":9063420,"end":9064640,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Guernsey","start":9064640,"end":9066239,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Helsinki","start":9066239,"end":9066720,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Isle_of_Man","start":9066720,"end":9068319,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Istanbul","start":9068319,"end":9069519,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Jersey","start":9069519,"end":9071118,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Kaliningrad","start":9071118,"end":9072022,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Kiev","start":9072022,"end":9072571,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Kirov","start":9072571,"end":9073288,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Lisbon","start":9073288,"end":9074742,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Ljubljana","start":9074742,"end":9075220,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/London","start":9075220,"end":9076819,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Luxembourg","start":9076819,"end":9077906,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Madrid","start":9077906,"end":9078803,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Malta","start":9078803,"end":9079731,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Mariehamn","start":9079731,"end":9080212,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Minsk","start":9080212,"end":9081020,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Monaco","start":9081020,"end":9082134,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Moscow","start":9082134,"end":9083042,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Nicosia","start":9083042,"end":9083639,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Oslo","start":9083639,"end":9084315,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Paris","start":9084315,"end":9085420,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Podgorica","start":9085420,"end":9085898,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Prague","start":9085898,"end":9086621,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Riga","start":9086621,"end":9087315,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Rome","start":9087315,"end":9088262,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Samara","start":9088262,"end":9088994,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/San_Marino","start":9088994,"end":9089941,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Sarajevo","start":9089941,"end":9090419,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Saratov","start":9090419,"end":9091145,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Simferopol","start":9091145,"end":9092010,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Skopje","start":9092010,"end":9092488,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Sofia","start":9092488,"end":9093080,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Stockholm","start":9093080,"end":9093577,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Tallinn","start":9093577,"end":9094252,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Tirane","start":9094252,"end":9094856,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Tiraspol","start":9094856,"end":9095611,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Ulyanovsk","start":9095611,"end":9096371,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Uzhgorod","start":9096371,"end":9096901,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Vaduz","start":9096901,"end":9097398,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Vatican","start":9097398,"end":9098345,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Vienna","start":9098345,"end":9099003,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Vilnius","start":9099003,"end":9099679,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Volgograd","start":9099679,"end":9100414,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Warsaw","start":9100414,"end":9101337,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Zagreb","start":9101337,"end":9101815,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Zaporozhye","start":9101815,"end":9102375,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/Zurich","start":9102375,"end":9102872,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Europe/__init__.py","start":9102872,"end":9102872,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Indian/Antananarivo","start":9102872,"end":9103063,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Indian/Chagos","start":9103063,"end":9103215,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Indian/Christmas","start":9103215,"end":9103348,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Indian/Cocos","start":9103348,"end":9103488,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Indian/Comoro","start":9103488,"end":9103679,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Indian/Kerguelen","start":9103679,"end":9103812,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Indian/Mahe","start":9103812,"end":9103945,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Indian/Maldives","start":9103945,"end":9104097,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Indian/Mauritius","start":9104097,"end":9104276,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Indian/Mayotte","start":9104276,"end":9104467,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Indian/Reunion","start":9104467,"end":9104600,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Indian/__init__.py","start":9104600,"end":9104600,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Mexico/BajaNorte","start":9104600,"end":9105625,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Mexico/BajaSur","start":9105625,"end":9105992,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Mexico/General","start":9105992,"end":9106404,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Mexico/__init__.py","start":9106404,"end":9106404,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Apia","start":9106404,"end":9106811,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Auckland","start":9106811,"end":9107854,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Bougainville","start":9107854,"end":9108055,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Chatham","start":9108055,"end":9108863,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Chuuk","start":9108863,"end":9109058,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Easter","start":9109058,"end":9110160,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Efate","start":9110160,"end":9110502,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Enderbury","start":9110502,"end":9110674,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Fakaofo","start":9110674,"end":9110827,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Fiji","start":9110827,"end":9111255,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Funafuti","start":9111255,"end":9111389,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Galapagos","start":9111389,"end":9111564,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Gambier","start":9111564,"end":9111696,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Guadalcanal","start":9111696,"end":9111830,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Guam","start":9111830,"end":9112180,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Honolulu","start":9112180,"end":9112401,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Johnston","start":9112401,"end":9112622,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Kanton","start":9112622,"end":9112794,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Kiritimati","start":9112794,"end":9112968,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Kosrae","start":9112968,"end":9113210,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Kwajalein","start":9113210,"end":9113429,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Majuro","start":9113429,"end":9113647,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Marquesas","start":9113647,"end":9113786,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Midway","start":9113786,"end":9113932,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Nauru","start":9113932,"end":9114115,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Niue","start":9114115,"end":9114269,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Norfolk","start":9114269,"end":9114516,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Noumea","start":9114516,"end":9114714,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Pago_Pago","start":9114714,"end":9114860,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Palau","start":9114860,"end":9115008,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Pitcairn","start":9115008,"end":9115161,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Pohnpei","start":9115161,"end":9115375,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Ponape","start":9115375,"end":9115589,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Port_Moresby","start":9115589,"end":9115743,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Rarotonga","start":9115743,"end":9116149,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Saipan","start":9116149,"end":9116499,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Samoa","start":9116499,"end":9116645,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Tahiti","start":9116645,"end":9116778,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Tarawa","start":9116778,"end":9116912,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Tongatapu","start":9116912,"end":9117149,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Truk","start":9117149,"end":9117344,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Wake","start":9117344,"end":9117478,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Wallis","start":9117478,"end":9117612,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/Yap","start":9117612,"end":9117807,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/Pacific/__init__.py","start":9117807,"end":9117807,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/US/Alaska","start":9117807,"end":9118784,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/US/Aleutian","start":9118784,"end":9119753,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/US/Arizona","start":9119753,"end":9119993,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/US/Central","start":9119993,"end":9121747,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/US/East-Indiana","start":9121747,"end":9122278,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/US/Eastern","start":9122278,"end":9124022,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/US/Hawaii","start":9124022,"end":9124243,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/US/Indiana-Starke","start":9124243,"end":9125259,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/US/Michigan","start":9125259,"end":9126158,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/US/Mountain","start":9126158,"end":9127200,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/US/Pacific","start":9127200,"end":9128494,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/US/Samoa","start":9128494,"end":9128640,"audio":0},{"filename":"/lib/python3.9/tzdata/zoneinfo/US/__init__.py","start":9128640,"end":9128640,"audio":0},{"filename":"/lib/python3.9/pydoc_data/__init__.py","start":9128640,"end":9128640,"audio":0},{"filename":"/lib/python3.9/pydoc_data/_pydoc.css","start":9128640,"end":9128736,"audio":0},{"filename":"/lib/python3.9/pydoc_data/topics.py","start":9128736,"end":9820697,"audio":0},{"filename":"/lib/python3.9/zoneinfo/__init__.py","start":9820697,"end":9821400,"audio":0},{"filename":"/lib/python3.9/zoneinfo/_common.py","start":9821400,"end":9826720,"audio":0},{"filename":"/lib/python3.9/zoneinfo/_tzpath.py","start":9826720,"end":9831801,"audio":0},{"filename":"/lib/python3.9/zoneinfo/_zoneinfo.py","start":9831801,"end":9856119,"audio":0},{"filename":"/lib/python3.9/tzdata-2021.5.dist-info/LICENSE","start":9856119,"end":9856711,"audio":0},{"filename":"/lib/python3.9/tzdata-2021.5.dist-info/LICENSE_APACHE","start":9856711,"end":9868068,"audio":0},{"filename":"/lib/python3.9/tzdata-2021.5.dist-info/METADATA","start":9868068,"end":9869481,"audio":0},{"filename":"/lib/python3.9/tzdata-2021.5.dist-info/WHEEL","start":9869481,"end":9869591,"audio":0},{"filename":"/lib/python3.9/tzdata-2021.5.dist-info/top_level.txt","start":9869591,"end":9869598,"audio":0},{"filename":"/lib/python3.9/tzdata-2021.5.dist-info/RECORD","start":9869598,"end":9926102,"audio":0},{"filename":"/lib/python3.9/tzdata-2021.5.dist-info/INSTALLER","start":9926102,"end":9926106,"audio":0},{"filename":"/lib/python3.9/tzdata-2021.5.dist-info/REQUESTED","start":9926106,"end":9926106,"audio":0},{"filename":"/lib/python3.9/_testcapi.py","start":9926106,"end":9926253,"audio":0},{"filename":"/lib/python3.9/_testinternalcapi.py","start":9926253,"end":9926416,"audio":0},{"filename":"/lib/python3.9/webbrowser.py","start":9926416,"end":9926783,"audio":0},{"filename":"/lib/python3.9/pystone.py","start":9926783,"end":9934603,"audio":0}],"remote_package_size":5316366,"package_uuid":"16c1085f-5439-4cd4-8040-abc39fb3b2f0"})})();var moduleOverrides={};var key;for(key in Module){if(Module.hasOwnProperty(key)){moduleOverrides[key]=Module[key]}}var arguments_=[];var thisProgram="./this.program";var quit_=function(status,toThrow){throw toThrow};var ENVIRONMENT_IS_WEB=false;var ENVIRONMENT_IS_WORKER=false;var ENVIRONMENT_IS_NODE=false;var ENVIRONMENT_IS_SHELL=false;ENVIRONMENT_IS_WEB=typeof window==="object";ENVIRONMENT_IS_WORKER=typeof importScripts==="function";ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";ENVIRONMENT_IS_SHELL=!ENVIRONMENT_IS_WEB&&!ENVIRONMENT_IS_NODE&&!ENVIRONMENT_IS_WORKER;var scriptDirectory="";function locateFile(path){if(Module["locateFile"]){return Module["locateFile"](path,scriptDirectory)}return scriptDirectory+path}var read_,readAsync,readBinary,setWindowTitle;var nodeFS;var nodePath;if(ENVIRONMENT_IS_NODE){if(ENVIRONMENT_IS_WORKER){scriptDirectory=require("path").dirname(scriptDirectory)+"/"}else{scriptDirectory=__dirname+"/"}read_=function shell_read(filename,binary){if(!nodeFS)nodeFS=require("fs");if(!nodePath)nodePath=require("path");filename=nodePath["normalize"](filename);return nodeFS["readFileSync"](filename,binary?null:"utf8")};readBinary=function readBinary(filename){var ret=read_(filename,true);if(!ret.buffer){ret=new Uint8Array(ret)}assert(ret.buffer);return ret};if(process["argv"].length>1){thisProgram=process["argv"][1].replace(/\\/g,"/")}arguments_=process["argv"].slice(2);process["on"]("uncaughtException",function(ex){if(!(ex instanceof ExitStatus)){throw ex}});process["on"]("unhandledRejection",abort);quit_=function(status){process["exit"](status)};Module["inspect"]=function(){return"[Emscripten Module object]"}}else if(ENVIRONMENT_IS_SHELL){if(typeof read!="undefined"){read_=function shell_read(f){return read(f)}}readBinary=function readBinary(f){var data;if(typeof readbuffer==="function"){return new Uint8Array(readbuffer(f))}data=read(f,"binary");assert(typeof data==="object");return data};if(typeof scriptArgs!="undefined"){arguments_=scriptArgs}else if(typeof arguments!="undefined"){arguments_=arguments}if(typeof quit==="function"){quit_=function(status){quit(status)}}if(typeof print!=="undefined"){if(typeof console==="undefined")console={};console.log=print;console.warn=console.error=typeof printErr!=="undefined"?printErr:print}}else if(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER){if(ENVIRONMENT_IS_WORKER){scriptDirectory=self.location.href}else if(typeof document!=="undefined"&&document.currentScript){scriptDirectory=document.currentScript.src}if(_scriptDir){scriptDirectory=_scriptDir}if(scriptDirectory.indexOf("blob:")!==0){scriptDirectory=scriptDirectory.substr(0,scriptDirectory.lastIndexOf("/")+1)}else{scriptDirectory=""}{read_=function(url){var xhr=new XMLHttpRequest;xhr.open("GET",url,false);xhr.send(null);return xhr.responseText};if(ENVIRONMENT_IS_WORKER){readBinary=function(url){var xhr=new XMLHttpRequest;xhr.open("GET",url,false);xhr.responseType="arraybuffer";xhr.send(null);return new Uint8Array(xhr.response)}}readAsync=function(url,onload,onerror){var xhr=new XMLHttpRequest;xhr.open("GET",url,true);xhr.responseType="arraybuffer";xhr.onload=function(){if(xhr.status==200||xhr.status==0&&xhr.response){onload(xhr.response);return}onerror()};xhr.onerror=onerror;xhr.send(null)}}setWindowTitle=function(title){document.title=title}}else{}var out=Module["print"]||console.log.bind(console);var err=Module["printErr"]||console.warn.bind(console);for(key in moduleOverrides){if(moduleOverrides.hasOwnProperty(key)){Module[key]=moduleOverrides[key]}}moduleOverrides=null;if(Module["arguments"])arguments_=Module["arguments"];if(Module["thisProgram"])thisProgram=Module["thisProgram"];if(Module["quit"])quit_=Module["quit"];var STACK_ALIGN=16;function alignMemory(size,factor){if(!factor)factor=STACK_ALIGN;return Math.ceil(size/factor)*factor}function getNativeTypeSize(type){switch(type){case"i1":case"i8":return 1;case"i16":return 2;case"i32":return 4;case"i64":return 8;case"float":return 4;case"double":return 8;default:{if(type[type.length-1]==="*"){return 4}else if(type[0]==="i"){var bits=Number(type.substr(1));assert(bits%8===0,"getNativeTypeSize invalid bits "+bits+", type "+type);return bits/8}else{return 0}}}}function warnOnce(text){if(!warnOnce.shown)warnOnce.shown={};if(!warnOnce.shown[text]){warnOnce.shown[text]=1;err(text)}}function convertJsFunctionToWasm(func,sig){if(typeof WebAssembly.Function==="function"){var typeNames={"i":"i32","j":"i64","f":"f32","d":"f64"};var type={parameters:[],results:sig[0]=="v"?[]:[typeNames[sig[0]]]};for(var i=1;i>>0)+ +(high>>>0)*4294967296:+(low>>>0)+ +(high|0)*4294967296}var tempRet0=0;var setTempRet0=function(value){tempRet0=value};var getTempRet0=function(){return tempRet0};var dynamicLibraries=Module["dynamicLibraries"]||[];var wasmBinary;if(Module["wasmBinary"])wasmBinary=Module["wasmBinary"];var noExitRuntime=Module["noExitRuntime"]||true;if(typeof WebAssembly!=="object"){abort("no native wasm support detected")}function setValue(ptr,value,type,noSafe){type=type||"i8";if(type.charAt(type.length-1)==="*")type="i32";switch(type){case"i1":HEAP8[ptr>>0]=value;break;case"i8":HEAP8[ptr>>0]=value;break;case"i16":HEAP16[ptr>>1]=value;break;case"i32":HEAP32[ptr>>2]=value;break;case"i64":tempI64=[value>>>0,(tempDouble=value,+Math.abs(tempDouble)>=1?tempDouble>0?(Math.min(+Math.floor(tempDouble/4294967296),4294967295)|0)>>>0:~~+Math.ceil((tempDouble-+(~~tempDouble>>>0))/4294967296)>>>0:0)],HEAP32[ptr>>2]=tempI64[0],HEAP32[ptr+4>>2]=tempI64[1];break;case"float":HEAPF32[ptr>>2]=value;break;case"double":HEAPF64[ptr>>3]=value;break;default:abort("invalid type for setValue: "+type)}}function getValue(ptr,type,noSafe){type=type||"i8";if(type.charAt(type.length-1)==="*")type="i32";switch(type){case"i1":return HEAP8[ptr>>0];case"i8":return HEAP8[ptr>>0];case"i16":return HEAP16[ptr>>1];case"i32":return HEAP32[ptr>>2];case"i64":return HEAP32[ptr>>2];case"float":return HEAPF32[ptr>>2];case"double":return HEAPF64[ptr>>3];default:abort("invalid type for getValue: "+type)}return null}var wasmMemory;var ABORT=false;var EXITSTATUS;function assert(condition,text){if(!condition){abort("Assertion failed: "+text)}}function getCFunc(ident){var func=Module["_"+ident];assert(func,"Cannot call unknown function "+ident+", make sure it is exported");return func}function ccall(ident,returnType,argTypes,args,opts){var toC={"string":function(str){var ret=0;if(str!==null&&str!==undefined&&str!==0){var len=(str.length<<2)+1;ret=stackAlloc(len);stringToUTF8(str,ret,len)}return ret},"array":function(arr){var ret=stackAlloc(arr.length);writeArrayToMemory(arr,ret);return ret}};function convertReturnValue(ret){if(returnType==="string")return UTF8ToString(ret);if(returnType==="boolean")return Boolean(ret);return ret}var func=getCFunc(ident);var cArgs=[];var stack=0;if(args){for(var i=0;i=endIdx))++endPtr;if(endPtr-idx>16&&heap.subarray&&UTF8Decoder){return UTF8Decoder.decode(heap.subarray(idx,endPtr))}else{var str="";while(idx>10,56320|ch&1023)}}}return str}function UTF8ToString(ptr,maxBytesToRead){return ptr?UTF8ArrayToString(HEAPU8,ptr,maxBytesToRead):""}function stringToUTF8Array(str,heap,outIdx,maxBytesToWrite){if(!(maxBytesToWrite>0))return 0;var startIdx=outIdx;var endIdx=outIdx+maxBytesToWrite-1;for(var i=0;i=55296&&u<=57343){var u1=str.charCodeAt(++i);u=65536+((u&1023)<<10)|u1&1023}if(u<=127){if(outIdx>=endIdx)break;heap[outIdx++]=u}else if(u<=2047){if(outIdx+1>=endIdx)break;heap[outIdx++]=192|u>>6;heap[outIdx++]=128|u&63}else if(u<=65535){if(outIdx+2>=endIdx)break;heap[outIdx++]=224|u>>12;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}else{if(outIdx+3>=endIdx)break;heap[outIdx++]=240|u>>18;heap[outIdx++]=128|u>>12&63;heap[outIdx++]=128|u>>6&63;heap[outIdx++]=128|u&63}}heap[outIdx]=0;return outIdx-startIdx}function stringToUTF8(str,outPtr,maxBytesToWrite){return stringToUTF8Array(str,HEAPU8,outPtr,maxBytesToWrite)}function lengthBytesUTF8(str){var len=0;for(var i=0;i=55296&&u<=57343)u=65536+((u&1023)<<10)|str.charCodeAt(++i)&1023;if(u<=127)++len;else if(u<=2047)len+=2;else if(u<=65535)len+=3;else len+=4}return len}function AsciiToString(ptr){var str="";while(1){var ch=HEAPU8[ptr++>>0];if(!ch)return str;str+=String.fromCharCode(ch)}}function stringToAscii(str,outPtr){return writeAsciiToMemory(str,outPtr,false)}var UTF16Decoder=typeof TextDecoder!=="undefined"?new TextDecoder("utf-16le"):undefined;function UTF16ToString(ptr,maxBytesToRead){var endPtr=ptr;var idx=endPtr>>1;var maxIdx=idx+maxBytesToRead/2;while(!(idx>=maxIdx)&&HEAPU16[idx])++idx;endPtr=idx<<1;if(endPtr-ptr>32&&UTF16Decoder){return UTF16Decoder.decode(HEAPU8.subarray(ptr,endPtr))}else{var str="";for(var i=0;!(i>=maxBytesToRead/2);++i){var codeUnit=HEAP16[ptr+i*2>>1];if(codeUnit==0)break;str+=String.fromCharCode(codeUnit)}return str}}function stringToUTF16(str,outPtr,maxBytesToWrite){if(maxBytesToWrite===undefined){maxBytesToWrite=2147483647}if(maxBytesToWrite<2)return 0;maxBytesToWrite-=2;var startPtr=outPtr;var numCharsToWrite=maxBytesToWrite>1]=codeUnit;outPtr+=2}HEAP16[outPtr>>1]=0;return outPtr-startPtr}function lengthBytesUTF16(str){return str.length*2}function UTF32ToString(ptr,maxBytesToRead){var i=0;var str="";while(!(i>=maxBytesToRead/4)){var utf32=HEAP32[ptr+i*4>>2];if(utf32==0)break;++i;if(utf32>=65536){var ch=utf32-65536;str+=String.fromCharCode(55296|ch>>10,56320|ch&1023)}else{str+=String.fromCharCode(utf32)}}return str}function stringToUTF32(str,outPtr,maxBytesToWrite){if(maxBytesToWrite===undefined){maxBytesToWrite=2147483647}if(maxBytesToWrite<4)return 0;var startPtr=outPtr;var endPtr=startPtr+maxBytesToWrite-4;for(var i=0;i=55296&&codeUnit<=57343){var trailSurrogate=str.charCodeAt(++i);codeUnit=65536+((codeUnit&1023)<<10)|trailSurrogate&1023}HEAP32[outPtr>>2]=codeUnit;outPtr+=4;if(outPtr+4>endPtr)break}HEAP32[outPtr>>2]=0;return outPtr-startPtr}function lengthBytesUTF32(str){var len=0;for(var i=0;i=55296&&codeUnit<=57343)++i;len+=4}return len}function allocateUTF8(str){var size=lengthBytesUTF8(str)+1;var ret=_malloc(size);if(ret)stringToUTF8Array(str,HEAP8,ret,size);return ret}function allocateUTF8OnStack(str){var size=lengthBytesUTF8(str)+1;var ret=stackAlloc(size);stringToUTF8Array(str,HEAP8,ret,size);return ret}function writeStringToMemory(string,buffer,dontAddNull){warnOnce("writeStringToMemory is deprecated and should not be called! Use stringToUTF8() instead!");var lastChar,end;if(dontAddNull){end=buffer+lengthBytesUTF8(string);lastChar=HEAP8[end]}stringToUTF8(string,buffer,Infinity);if(dontAddNull)HEAP8[end]=lastChar}function writeArrayToMemory(array,buffer){HEAP8.set(array,buffer)}function writeAsciiToMemory(str,buffer,dontAddNull){for(var i=0;i>0]=str.charCodeAt(i)}if(!dontAddNull)HEAP8[buffer>>0]=0}function alignUp(x,multiple){if(x%multiple>0){x+=multiple-x%multiple}return x}var HEAP,buffer,HEAP8,HEAPU8,HEAP16,HEAPU16,HEAP32,HEAPU32,HEAPF32,HEAPF64;function updateGlobalBufferAndViews(buf){buffer=buf;Module["HEAP8"]=HEAP8=new Int8Array(buf);Module["HEAP16"]=HEAP16=new Int16Array(buf);Module["HEAP32"]=HEAP32=new Int32Array(buf);Module["HEAPU8"]=HEAPU8=new Uint8Array(buf);Module["HEAPU16"]=HEAPU16=new Uint16Array(buf);Module["HEAPU32"]=HEAPU32=new Uint32Array(buf);Module["HEAPF32"]=HEAPF32=new Float32Array(buf);Module["HEAPF64"]=HEAPF64=new Float64Array(buf)}var __stack_pointer=new WebAssembly.Global({value:"i32",mutable:true},8501680);Module["___heap_base"]=8501680;var TOTAL_STACK=5242880;var INITIAL_MEMORY=Module["INITIAL_MEMORY"]||20971520;if(Module["wasmMemory"]){wasmMemory=Module["wasmMemory"]}else{wasmMemory=new WebAssembly.Memory({"initial":INITIAL_MEMORY/65536,"maximum":2147483648/65536})}if(wasmMemory){buffer=wasmMemory.buffer}INITIAL_MEMORY=buffer.byteLength;updateGlobalBufferAndViews(buffer);var wasmTable=new WebAssembly.Table({"initial":6491,"element":"anyfunc"});var __ATPRERUN__=[];var __ATINIT__=[];var __ATMAIN__=[];var __ATEXIT__=[];var __ATPOSTRUN__=[];var runtimeInitialized=false;var runtimeExited=false;function preRun(){if(Module["preRun"]){if(typeof Module["preRun"]=="function")Module["preRun"]=[Module["preRun"]];while(Module["preRun"].length){addOnPreRun(Module["preRun"].shift())}}callRuntimeCallbacks(__ATPRERUN__)}function initRuntime(){runtimeInitialized=true;if(!Module["noFSInit"]&&!FS.init.initialized)FS.init();TTY.init();SOCKFS.root=FS.mount(SOCKFS,{},null);PIPEFS.root=FS.mount(PIPEFS,{},null);callRuntimeCallbacks(__ATINIT__)}function preMain(){FS.ignorePermissions=false;callRuntimeCallbacks(__ATMAIN__)}function exitRuntime(){runtimeExited=true}function postRun(){if(Module["postRun"]){if(typeof Module["postRun"]=="function")Module["postRun"]=[Module["postRun"]];while(Module["postRun"].length){addOnPostRun(Module["postRun"].shift())}}callRuntimeCallbacks(__ATPOSTRUN__)}function addOnPreRun(cb){__ATPRERUN__.unshift(cb)}function addOnInit(cb){__ATINIT__.unshift(cb)}function addOnPreMain(cb){__ATMAIN__.unshift(cb)}function addOnExit(cb){}function addOnPostRun(cb){__ATPOSTRUN__.unshift(cb)}var runDependencies=0;var runDependencyWatcher=null;var dependenciesFulfilled=null;function getUniqueRunDependency(id){return id}function addRunDependency(id){runDependencies++;if(Module["monitorRunDependencies"]){Module["monitorRunDependencies"](runDependencies)}}function removeRunDependency(id){runDependencies--;if(Module["monitorRunDependencies"]){Module["monitorRunDependencies"](runDependencies)}if(runDependencies==0){if(runDependencyWatcher!==null){clearInterval(runDependencyWatcher);runDependencyWatcher=null}if(dependenciesFulfilled){var callback=dependenciesFulfilled;dependenciesFulfilled=null;callback()}}}Module["preloadedImages"]={};Module["preloadedAudios"]={};Module["preloadedWasm"]={};function abort(what){if(Module["onAbort"]){Module["onAbort"](what)}what+="";err(what);ABORT=true;EXITSTATUS=1;what="abort("+what+"). Build with -s ASSERTIONS=1 for more info.";var e=new WebAssembly.RuntimeError(what);readyPromiseReject(e);throw e}function hasPrefix(str,prefix){return String.prototype.startsWith?str.startsWith(prefix):str.indexOf(prefix)===0}var dataURIPrefix="data:application/octet-stream;base64,";function isDataURI(filename){return hasPrefix(filename,dataURIPrefix)}var fileURIPrefix="file://";function isFileURI(filename){return hasPrefix(filename,fileURIPrefix)}var wasmBinaryFile="pyodide.asm.wasm";if(!isDataURI(wasmBinaryFile)){wasmBinaryFile=locateFile(wasmBinaryFile)}function getBinary(file){try{if(file==wasmBinaryFile&&wasmBinary){return new Uint8Array(wasmBinary)}if(readBinary){return readBinary(file)}else{throw"both async and sync fetching of the wasm failed"}}catch(err){abort(err)}}function getBinaryPromise(){if(!wasmBinary&&(ENVIRONMENT_IS_WEB||ENVIRONMENT_IS_WORKER)){if(typeof fetch==="function"&&!isFileURI(wasmBinaryFile)){return fetch(wasmBinaryFile,{credentials:"same-origin"}).then(function(response){if(!response["ok"]){throw"failed to load wasm binary file at '"+wasmBinaryFile+"'"}return response["arrayBuffer"]()}).catch(function(){return getBinary(wasmBinaryFile)})}else{if(readAsync){return new Promise(function(resolve,reject){readAsync(wasmBinaryFile,function(response){resolve(new Uint8Array(response))},reject)})}}}return Promise.resolve().then(function(){return getBinary(wasmBinaryFile)})}function createWasm(){var info={"env":asmLibraryArg,"wasi_snapshot_preview1":asmLibraryArg,"GOT.mem":new Proxy(asmLibraryArg,GOTHandler),"GOT.func":new Proxy(asmLibraryArg,GOTHandler)};function receiveInstance(instance,module){var exports=instance.exports;exports=relocateExports(exports,1024);Module["asm"]=exports;var metadata=getDylinkMetadata(module);if(metadata.neededDynlibs){dynamicLibraries=metadata.neededDynlibs.concat(dynamicLibraries)}addOnInit(Module["asm"]["__wasm_call_ctors"]);removeRunDependency("wasm-instantiate")}addRunDependency("wasm-instantiate");function receiveInstantiatedSource(output){receiveInstance(output["instance"],output["module"])}function instantiateArrayBuffer(receiver){return getBinaryPromise().then(function(binary){var result=WebAssembly.instantiate(binary,info);return result}).then(receiver,function(reason){err("failed to asynchronously prepare wasm: "+reason);abort(reason)})}function instantiateAsync(){if(!wasmBinary&&typeof WebAssembly.instantiateStreaming==="function"&&!isDataURI(wasmBinaryFile)&&!isFileURI(wasmBinaryFile)&&typeof fetch==="function"){return fetch(wasmBinaryFile,{credentials:"same-origin"}).then(function(response){var result=WebAssembly.instantiateStreaming(response,info);return result.then(receiveInstantiatedSource,function(reason){err("wasm streaming compile failed: "+reason);err("falling back to ArrayBuffer instantiation");return instantiateArrayBuffer(receiveInstantiatedSource)})})}else{return instantiateArrayBuffer(receiveInstantiatedSource)}}if(Module["instantiateWasm"]){try{var exports=Module["instantiateWasm"](info,receiveInstance);return exports}catch(e){err("Module.instantiateWasm callback failed with error: "+e);return false}}instantiateAsync().catch(readyPromiseReject);return{}}var tempDouble;var tempI64;var ASM_CONSTS={3157067:function(){throw new Error("intentionally triggered fatal error!")},3157124:function(){let result=Module.interrupt_buffer[0];Module.interrupt_buffer[0]=0;return result},3157216:function(){Module.UTF8ToString=UTF8ToString;Module.wasmTable=wasmTable},3157286:function(){throw new Error("Fatal pyodide error")},3157325:function(){throw new Error("Fatal pyodide error")},3157364:function(){throw new Error("Fatal pyodide error")},3157403:function(){throw new Error("Fatal pyodide error")},3157442:function(){throw new Error("Fatal pyodide error")},3157481:function(){throw new Error("Fatal pyodide error")},3157520:function(){throw new Error("Fatal pyodide error")},3157559:function(){throw new Error("Fatal pyodide error")},3157598:function(){throw new Error("Fatal pyodide error")},3157637:function(){throw new Error("Fatal pyodide error")},3157676:function(){throw new Error("Fatal pyodide error")},3157715:function(){throw new Error("Fatal pyodide error")},3157754:function(){throw new Error("Fatal pyodide error")},3157793:function($0){Module._pyodide=Module.hiwire.pop_value($0)},3157844:function($0){return Module.hiwire.new_value({dict_converter:Module.hiwire.get_value($0)})},3157931:function($0){if(!$0){AL.alcErr=40964;return 1}},3157979:function($0){err("bad name in alcGetProcAddress: "+UTF8ToString($0))},3158042:function($0){if(!AL.currentCtx){err("alGetProcAddress() called without a valid context");return 1}if(!$0){AL.currentCtx.err=40963;return 1}},3158190:function($0){err("bad name in alGetProcAddress: "+UTF8ToString($0))}};function JsArray_Check(idobj){let obj=Module.hiwire.get_value(idobj);if(Array.isArray(obj)){return true}let typeTag=Object.prototype.toString.call(obj);if(typeTag==="[object HTMLCollection]"||typeTag==="[object NodeList]"){return true}if(ArrayBuffer.isView(obj)&&obj.constructor.name!=="DataView"){return true}return false}function JsArray_Delete(idobj,idx){"use strict";try{let obj=Module.hiwire.get_value(idobj);if(idx<0||idx>=obj.length){return-1}obj.splice(idx,1)}catch(e){Module.handle_js_error(e);return-1}return 0}function JsArray_Get(idobj,idx){"use strict";try{let obj=Module.hiwire.get_value(idobj);let result=obj[idx];if(result===undefined&&!(idx in obj)){return 0}return Module.hiwire.new_value(result)}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function JsArray_New(){"use strict";try{return Module.hiwire.new_value([])}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function JsArray_Push(idarr,idval){"use strict";try{Module.hiwire.get_value(idarr).push(Module.hiwire.get_value(idval))}catch(e){Module.handle_js_error(e);return-1}return 0}function JsArray_Push_unchecked(idarr,idval){Module.hiwire.get_value(idarr).push(Module.hiwire.get_value(idval))}function JsArray_Set(idobj,idx,idval){"use strict";try{Module.hiwire.get_value(idobj)[idx]=Module.hiwire.get_value(idval)}catch(e){Module.handle_js_error(e);return-1}return 0}function JsBuffer_DecodeString_js(jsbuffer_id,encoding){"use strict";try{let buffer=Module.hiwire.get_value(jsbuffer_id);let encoding_js;if(encoding){encoding_js=UTF8ToString(encoding)}let decoder=new TextDecoder(encoding_js,{fatal:!!1});let res;try{res=decoder.decode(buffer)}catch(e){if(e instanceof TypeError){return 0}throw e}return Module.hiwire.new_value(res)}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function JsMap_New(){"use strict";try{return Module.hiwire.new_value(new Map)}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function JsMap_Set(mapid,keyid,valueid){"use strict";try{let map=Module.hiwire.get_value(mapid);let key=Module.hiwire.get_value(keyid);let value=Module.hiwire.get_value(valueid);map.set(key,value)}catch(e){Module.handle_js_error(e);return-1}return 0}function JsObject_DeleteString(idobj,ptrkey){"use strict";try{let jsobj=Module.hiwire.get_value(idobj);let jskey=UTF8ToString(ptrkey);delete jsobj[jskey]}catch(e){Module.handle_js_error(e);return-1}return 0}function JsObject_Dir(idobj){"use strict";try{let jsobj=Module.hiwire.get_value(idobj);let result=[];do{result.push(...Object.getOwnPropertyNames(jsobj).filter(s=>{let c=s.charCodeAt(0);return c<48||c>57}))}while(jsobj=Object.getPrototypeOf(jsobj));return Module.hiwire.new_value(result)}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function JsObject_Entries(idobj){"use strict";try{let jsobj=Module.hiwire.get_value(idobj);return Module.hiwire.new_value(Object.entries(jsobj))}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function JsObject_GetString(idobj,ptrkey){"use strict";try{let jsobj=Module.hiwire.get_value(idobj);let jskey=UTF8ToString(ptrkey);let result=jsobj[jskey];if(result===undefined&&!(jskey in jsobj)){return 0}return Module.hiwire.new_value(result)}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function JsObject_Keys(idobj){"use strict";try{let jsobj=Module.hiwire.get_value(idobj);return Module.hiwire.new_value(Object.keys(jsobj))}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function JsObject_New(){"use strict";try{return Module.hiwire.new_value({})}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function JsObject_SetString(idobj,ptrkey,idval){"use strict";try{let jsobj=Module.hiwire.get_value(idobj);let jskey=UTF8ToString(ptrkey);let jsval=Module.hiwire.get_value(idval);jsobj[jskey]=jsval}catch(e){Module.handle_js_error(e);return-1}return 0}function JsObject_Values(idobj){"use strict";try{let jsobj=Module.hiwire.get_value(idobj);return Module.hiwire.new_value(Object.values(jsobj))}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function JsProxy_subscript_js(idobj,idkey){"use strict";try{let obj=Module.hiwire.get_value(idobj);let key=Module.hiwire.get_value(idkey);let result=obj.get(key);if(result===undefined){if(obj.has&&typeof obj.has==="function"&&!obj.has(key)){return 0}}return Module.hiwire.new_value(result)}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function JsSet_Add(mapid,keyid){"use strict";try{let set=Module.hiwire.get_value(mapid);let key=Module.hiwire.get_value(keyid);set.add(key)}catch(e){Module.handle_js_error(e);return-1}return 0}function JsSet_New(){"use strict";try{return Module.hiwire.new_value(new Set)}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function JsString_InternFromCString(str){"use strict";try{let jsstring=UTF8ToString(str);return Module.hiwire.intern_object(jsstring)}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function PyArray_Broadcast_part1(mit){"use strict";try{let numiter=HEAP32[(mit+8)/4];let nd=0;for(let i=0;ind?cur_nd:nd}HEAP32[(mit+20)/4]=nd;let start_offset=(mit+24)/4;HEAP32.subarray(start_offset,start_offset+nd).fill(1);for(let j=0;j=0){let tmp=HEAP32[(HEAP32[(cur_array+16)/4]+4*k)/4];if(tmp==1){continue}let mit_dim_i=HEAP32[(mit+24+4*i)/4];if(mit_dim_i==1){HEAP32[(mit+24+4*i)/4]=tmp}else if(mit_dim_i!=tmp){_set_shape_mismatch_err();return-1}}}}}catch(e){Module.handle_js_error(e);return-1}return 0}function _JsArray_PostProcess_helper(jscontext,array){"use strict";try{return Module.hiwire.new_value(Module.hiwire.get_value(jscontext).dict_converter(Module.hiwire.get_value(array)))}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function _JsArray_PushEntry_helper(array,key,value){"use strict";try{Module.hiwire.get_value(array).push([Module.hiwire.get_value(key),Module.hiwire.get_value(value)])}catch(e){Module.handle_js_error(e);return-1}return 0}function _python2js_buffer_inner(buf,itemsize,ndim,format,shape,strides,suboffsets){"use strict";try{let converter=Module.get_converter(format,itemsize);let result=Module._python2js_buffer_recursive(buf,0,{ndim:ndim,format:format,itemsize:itemsize,shape:shape,strides:strides,suboffsets:suboffsets,converter:converter});return Module.hiwire.new_value(result)}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function array_to_js(array,len){"use strict";try{return Module.hiwire.new_value(Array.from(HEAP32.subarray(array/4,array/4+len)))}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function console_error(msg){let jsmsg=UTF8ToString(msg);console.error(jsmsg)}function console_error_obj(obj){console.error(Module.hiwire.get_value(obj))}function create_once_callable(obj){"use strict";try{_Py_IncRef(obj);let alreadyCalled=!!0;function wrapper(...args){if(alreadyCalled){throw new Error("OnceProxy can only be called once")}try{return Module.callPyObject(obj,...args)}finally{wrapper.destroy()}}wrapper.destroy=function(){if(alreadyCalled){throw new Error("OnceProxy has already been destroyed")}alreadyCalled=!!1;Module.finalizationRegistry.unregister(wrapper);_Py_DecRef(obj)};Module.finalizationRegistry.register(wrapper,[obj,undefined],wrapper);return Module.hiwire.new_value(wrapper)}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function create_promise_handles(handle_result,handle_exception,done_callback_id){"use strict";try{if(handle_result){_Py_IncRef(handle_result)}if(handle_exception){_Py_IncRef(handle_exception)}let done_callback=x=>{};if(done_callback_id){done_callback=Module.hiwire.get_value(done_callback_id)}let used=!!0;function checkUsed(){if(used){throw new Error("One of the promise handles has already been called.")}}function destroy(){checkUsed();used=!!1;if(handle_result){_Py_DecRef(handle_result)}if(handle_exception){_Py_DecRef(handle_exception)}}function onFulfilled(res){checkUsed();try{if(handle_result){return Module.callPyObject(handle_result,res)}}finally{done_callback(res);destroy()}}function onRejected(err){checkUsed();try{if(handle_exception){return Module.callPyObject(handle_exception,err)}}finally{done_callback(undefined);destroy()}}onFulfilled.destroy=destroy;onRejected.destroy=destroy;return Module.hiwire.new_value([onFulfilled,onRejected])}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function destroy_proxies(proxies_id,msg_ptr){let msg=undefined;if(msg_ptr){msg=UTF8ToString(msg_ptr)}let proxies=Module.hiwire.get_value(proxies_id);for(let px of proxies){Module.pyproxy_destroy(px,msg)}}function destroy_proxies_js(proxies_id){"use strict";try{for(let proxy of Module.hiwire.get_value(proxies_id)){proxy.destroy()}}catch(e){Module.handle_js_error(e);return-1}return 0}function error_handling_init_js(){"use strict";try{Module.handle_js_error=function(e){if(e.pyodide_fatal_error){throw e}if(e instanceof Module._PropagatePythonError){return}let restored_error=!!0;if(e instanceof Module.PythonError){restored_error=_restore_sys_last_exception(e.__error_address)}if(!restored_error){let eidx=Module.hiwire.new_value(e);let err=_JsProxy_create(eidx);_set_error(err);_Py_DecRef(err);Module.hiwire.decref(eidx)}__PyTraceback_Add(HEAPU32[_error__js_funcname_string/4],HEAPU32[_error__js_filename_string/4],-1)};class PythonError extends Error{constructor(message,error_address){super(message);this.name=this.constructor.name;this.__error_address=error_address}}Module.PythonError=PythonError;class _PropagatePythonError extends Error{constructor(){Module.fail_test=!!1;super("If you are seeing this message, an internal Pyodide error has "+"occurred. Please report it to the Pyodide maintainers.")}}Module._PropagatePythonError=_PropagatePythonError;return 0}catch(e){Module.handle_js_error(e);return-1}return 0}function fail_test(){Module.fail_test=true}function ffi_call(cif,fn,rvalue,avalue){var abi=HEAPU32[(cif>>2)+0];var nargs=HEAPU32[(cif>>2)+1];var nfixedargs=HEAPU32[(cif>>2)+6];var arg_types_ptr=HEAPU32[(cif>>2)+2];var rtype_unboxed=unbox_small_structs(HEAPU32[(cif>>2)+3]);var rtype_ptr=rtype_unboxed[0];var rtype_id=rtype_unboxed[1];var args=[];var ret_by_arg=false;if(rtype_id===15){throw new Error("complex ret marshalling nyi")}if(rtype_id<0||rtype_id>15){throw new Error("Unexpected rtype "+rtype_id)}if(rtype_id===4||rtype_id===13){args.push(rvalue);ret_by_arg=true}for(var i=0;i>2)+i];var arg_unboxed=unbox_small_structs(HEAPU32[(arg_types_ptr>>2)+i]);var arg_type_ptr=arg_unboxed[0];var arg_type_id=arg_unboxed[1];switch(arg_type_id){case 1:case 10:case 9:case 14:args.push(HEAPU32[(arg_ptr>>2)+0]);break;case 2:args.push(HEAPF32[(arg_ptr>>2)+0]);break;case 3:args.push(HEAPF64[(arg_ptr>>3)+0]);break;case 5:case 6:args.push(HEAPU8[arg_ptr+0]);break;case 7:case 8:args.push(HEAPU16[(arg_ptr>>1)+0]);break;case 11:case 12:args.push(BigInt(HEAPU32[(arg_ptr>>2)+0*2])|BigInt(HEAPU32[(arg_ptr>>2)+0*2+1])<>2)+0*2])|BigInt(HEAPU32[(arg_ptr>>2)+0*2+1])<>2)+1*2])|BigInt(HEAPU32[(arg_ptr>>2)+1*2+1])<=nfixedargs;i--){var arg_ptr=HEAPU32[(avalue>>2)+i];var arg_unboxed=unbox_small_structs(HEAPU32[(arg_types_ptr>>2)+i]);var arg_type_ptr=arg_unboxed[0];var arg_type_id=arg_unboxed[1];switch(arg_type_id){case 5:case 6:varargs_addr-=1,varargs_addr&=~(1-1);HEAPU8[varargs_addr+0]=HEAPU8[arg_ptr+0];break;case 7:case 8:varargs_addr-=2,varargs_addr&=~(2-1);HEAPU16[(varargs_addr>>1)+0]=HEAPU16[(arg_ptr>>1)+0];break;case 1:case 9:case 10:case 14:case 2:varargs_addr-=4,varargs_addr&=~(4-1);HEAPU32[(varargs_addr>>2)+0]=HEAPU32[(arg_ptr>>2)+0];break;case 3:case 11:case 12:varargs_addr-=8,varargs_addr&=~(8-1);HEAPU32[(varargs_addr>>2)+0]=HEAPU32[(arg_ptr>>2)+0];HEAPU32[(varargs_addr>>2)+1]=HEAPU32[(arg_ptr>>2)+1];break;case 4:varargs_addr-=16,varargs_addr&=~(16-1);HEAPU32[(varargs_addr>>2)+0]=HEAPU32[(arg_ptr>>2)+0];HEAPU32[(varargs_addr>>2)+1]=HEAPU32[(arg_ptr>>2)+1];HEAPU32[(varargs_addr>>2)+2]=HEAPU32[(arg_ptr>>2)+1];HEAPU32[(varargs_addr>>2)+3]=HEAPU32[(arg_ptr>>2)+1];break;case 13:varargs_addr-=4,varargs_addr&=~(4-1);HEAPU32[(varargs_addr>>2)+0]=arg_ptr;break;case 15:throw new Error("complex arg marshalling nyi");default:throw new Error("Unexpected argtype "+arg_type_id)}}args.push(varargs_addr);stackRestore(varargs_addr)}var result=wasmTable.get(fn).apply(null,args);stackRestore(orig_stack_ptr);if(ret_by_arg){return}switch(rtype_id){case 0:break;case 1:case 9:case 10:case 14:HEAPU32[(rvalue>>2)+0]=result;break;case 2:HEAPF32[(rvalue>>2)+0]=result;break;case 3:HEAPF64[(rvalue>>3)+0]=result;break;case 5:case 6:HEAPU8[rvalue+0]=result;break;case 7:case 8:HEAPU16[(rvalue>>1)+0]=result;break;case 11:case 12:HEAPU32[(rvalue>>2)+0*2]=Number(result&BigInt(4294967295))|0,HEAPU32[(rvalue>>2)+0*2+1]=Number(result>>BigInt(32))|0;break;case 15:throw new Error("complex ret marshalling nyi");default:throw new Error("Unexpected rtype "+rtype_id)}}function ffi_closure_alloc_helper(size,code){var closure=_malloc(size);var index=getEmptyTableSlot();HEAPU32[(code>>2)+0]=index;HEAPU32[(closure>>2)+0]=index;return closure}function ffi_closure_free_helper(closure){var index=HEAPU32[(closure>>2)+0];freeTableIndexes.push(index);_free(closure)}function ffi_prep_closure_loc_helper(closure,cif,fun,user_data,codeloc){var abi=HEAPU32[(cif>>2)+0];var nargs=HEAPU32[(cif>>2)+1];var nfixedargs=HEAPU32[(cif>>2)+6];var arg_types_ptr=HEAPU32[(cif>>2)+2];var rtype_unboxed=unbox_small_structs(HEAPU32[(cif>>2)+3]);var rtype_ptr=rtype_unboxed[0];var rtype_id=rtype_unboxed[1];var sig;var ret_by_arg=false;switch(rtype_id){case 0:sig="v";break;case 13:case 4:sig="vi";ret_by_arg=true;break;case 1:case 5:case 6:case 7:case 8:case 9:case 10:case 14:sig="i";break;case 2:sig="f";break;case 3:sig="d";break;case 11:case 12:sig="j";break;case 15:throw new Error("complex ret marshalling nyi");default:throw new Error("Unexpected rtype "+rtype_id)}var unboxed_arg_type_id_list=[];for(var i=0;i>2)+i]);var arg_type_ptr=arg_unboxed[0];var arg_type_id=arg_unboxed[1];unboxed_arg_type_id_list.push(arg_type_id)}for(var i=0;i>2)+carg_idx]=cur_ptr;HEAPU8[cur_ptr+0]=cur_arg;break;case 7:case 8:cur_ptr-=2,cur_ptr&=~(4-1);HEAPU32[(args_ptr>>2)+carg_idx]=cur_ptr;HEAPU16[(cur_ptr>>1)+0]=cur_arg;break;case 1:case 9:case 10:case 14:cur_ptr-=4,cur_ptr&=~(4-1);HEAPU32[(args_ptr>>2)+carg_idx]=cur_ptr;HEAPU32[(cur_ptr>>2)+0]=cur_arg;break;case 13:HEAPU32[(args_ptr>>2)+carg_idx]=cur_arg;break;case 2:cur_ptr-=4,cur_ptr&=~(4-1);HEAPU32[(args_ptr>>2)+carg_idx]=cur_ptr;HEAPF32[(cur_ptr>>2)+0]=cur_arg;break;case 3:cur_ptr-=8,cur_ptr&=~(8-1);HEAPU32[(args_ptr>>2)+carg_idx]=cur_ptr;HEAPF64[(cur_ptr>>3)+0]=cur_arg;break;case 11:case 12:cur_ptr-=8,cur_ptr&=~(8-1);HEAPU32[(args_ptr>>2)+carg_idx]=cur_ptr;HEAPU32[(cur_ptr>>2)+0*2]=Number(cur_arg&BigInt(4294967295))|0,HEAPU32[(cur_ptr>>2)+0*2+1]=Number(cur_arg>>BigInt(32))|0;break;case 4:cur_ptr-=16,cur_ptr&=~(16-1);HEAPU32[(args_ptr>>2)+carg_idx]=cur_ptr;HEAPU32[(cur_ptr>>2)+0*2]=Number(cur_arg&BigInt(4294967295))|0,HEAPU32[(cur_ptr>>2)+0*2+1]=Number(cur_arg>>BigInt(32))|0;cur_arg=args[jsarg_idx++];HEAPU32[(cur_ptr>>2)+1*2]=Number(cur_arg&BigInt(4294967295))|0,HEAPU32[(cur_ptr>>2)+1*2+1]=Number(cur_arg>>BigInt(32))|0;break}}var varargs=args[args.length-1];for(var carg_idx=nfixedargs;carg_idx>2)+carg_idx]=HEAPU32[(varargs>>2)+0]}else{HEAPU32[(args_ptr>>2)+carg_idx]=varargs}varargs+=4}stackRestore(cur_ptr);wasmTable.get(HEAPU32[(closure>>2)+2]).apply(null,[HEAPU32[(closure>>2)+1],ret_ptr,args_ptr,HEAPU32[(closure>>2)+3]]);stackRestore(orig_stack_ptr);if(!ret_by_arg){switch(sig[0]){case"i":return HEAPU32[(ret_ptr>>2)+0];case"j":return BigInt(HEAPU32[(ret_ptr>>2)+0*2])|BigInt(HEAPU32[(ret_ptr>>2)+0*2+1])<>3)+0];case"f":return HEAPF32[(ret_ptr>>2)+0]}}}var wasm_trampoline=convertJsFunctionToWasm(trampoline,sig);wasmTable.set(codeloc,wasm_trampoline);HEAPU32[(closure>>2)+1]=cif;HEAPU32[(closure>>2)+2]=fun;HEAPU32[(closure>>2)+3]=user_data;return 0}function get_async_js_call_done_callback(proxies_id){"use strict";try{let proxies=Module.hiwire.get_value(proxies_id);return Module.hiwire.new_value(function(result){let msg="This borrowed proxy was automatically destroyed "+"at the end of an asynchronous function call. Try "+"using create_proxy or create_once_callable.";for(let px of proxies){Module.pyproxy_destroy(px,msg)}if(Module.isPyProxy(result)){Module.pyproxy_destroy(result,msg)}})}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function getter_call_trampoline(get,obj,closure){return wasmTable.get(get)(obj,closure)}function hiwire_CallMethod(idobj,name,idargs){"use strict";try{let jsobj=Module.hiwire.get_value(idobj);let jsname=Module.hiwire.get_value(name);let jsargs=Module.hiwire.get_value(idargs);return Module.hiwire.new_value(jsobj[jsname](...jsargs))}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function hiwire_CallMethodString(idobj,name,idargs){"use strict";try{let jsobj=Module.hiwire.get_value(idobj);let jsname=UTF8ToString(name);let jsargs=Module.hiwire.get_value(idargs);return Module.hiwire.new_value(jsobj[jsname](...jsargs))}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function hiwire_CallMethod_OneArg(idobj,name,idarg){"use strict";try{let jsobj=Module.hiwire.get_value(idobj);let jsname=Module.hiwire.get_value(name);let jsarg=Module.hiwire.get_value(idarg);return Module.hiwire.new_value(jsobj[jsname](jsarg))}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function hiwire_HasMethod(obj_id,name){let obj=Module.hiwire.get_value(obj_id);return obj&&typeof obj[Module.hiwire.get_value(name)]==="function"}function hiwire_assign_from_ptr(idobj,ptr){"use strict";try{let jsobj=Module.hiwire.get_value(idobj);Module.typedArrayAsUint8Array(jsobj).set(Module.HEAPU8.subarray(ptr,ptr+jsobj.byteLength))}catch(e){Module.handle_js_error(e);return-1}return 0}function hiwire_assign_to_ptr(idobj,ptr){"use strict";try{let jsobj=Module.hiwire.get_value(idobj);Module.HEAPU8.set(Module.typedArrayAsUint8Array(jsobj),ptr)}catch(e){Module.handle_js_error(e);return-1}return 0}function hiwire_call(idfunc,idargs){"use strict";try{let jsfunc=Module.hiwire.get_value(idfunc);let jsargs=Module.hiwire.get_value(idargs);return Module.hiwire.new_value(jsfunc(...jsargs))}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function hiwire_call_OneArg(idfunc,idarg){"use strict";try{let jsfunc=Module.hiwire.get_value(idfunc);let jsarg=Module.hiwire.get_value(idarg);return Module.hiwire.new_value(jsfunc(jsarg))}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function hiwire_call_bound(idfunc,idthis,idargs){"use strict";try{let func=Module.hiwire.get_value(idfunc);let this_;if(idthis===0){this_=null}else{this_=Module.hiwire.get_value(idthis)}let args=Module.hiwire.get_value(idargs);return Module.hiwire.new_value(func.apply(this_,args))}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function hiwire_construct(idobj,idargs){"use strict";try{let jsobj=Module.hiwire.get_value(idobj);let jsargs=Module.hiwire.get_value(idargs);return Module.hiwire.new_value(Reflect.construct(jsobj,jsargs))}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function hiwire_constructor_name(idobj){"use strict";try{return stringToNewUTF8(Module.hiwire.get_value(idobj).constructor.name)}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function hiwire_decref(idval){Module.hiwire.decref(idval)}function hiwire_double(val){"use strict";try{return Module.hiwire.new_value(val)}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function hiwire_equal(ida,idb){return!!(Module.hiwire.get_value(ida)===Module.hiwire.get_value(idb))}function hiwire_get_bool(idobj){let val=Module.hiwire.get_value(idobj);if(!val){return false}if(val.size===0){return false}if(Array.isArray(val)&&val.length===0){return false}return true}function hiwire_get_buffer_info(idobj,byteLength_ptr,format_ptr,size_ptr,checked_ptr){let jsobj=Module.hiwire.get_value(idobj);let byteLength=jsobj.byteLength;let[format_utf8,size,checked]=Module.get_buffer_datatype(jsobj);HEAPU32[(byteLength_ptr>>2)+0]=byteLength;HEAPU32[(format_ptr>>2)+0]=format_utf8;HEAPU32[(size_ptr>>2)+0]=size;HEAPU8[checked_ptr+0]=checked}function hiwire_get_iterator(idobj){"use strict";try{let jsobj=Module.hiwire.get_value(idobj);return Module.hiwire.new_value(jsobj[Symbol.iterator]())}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function hiwire_get_length(idobj){"use strict";try{let val=Module.hiwire.get_value(idobj);if(typeof val.size==="number"){return val.size}if(typeof val.length==="number"){return val.length}return-1}catch(e){Module.handle_js_error(e);return-1}return 0}function hiwire_greater_than(ida,idb){return!!(Module.hiwire.get_value(ida)>Module.hiwire.get_value(idb))}function hiwire_greater_than_equal(ida,idb){return!!(Module.hiwire.get_value(ida)>=Module.hiwire.get_value(idb))}function hiwire_has_length(idobj){let val=Module.hiwire.get_value(idobj);return typeof val.size==="number"||typeof val.length==="number"&&typeof val!=="function"}function hiwire_incref(idval){if(idval&1){Module.hiwire.incref(idval)}return idval}function hiwire_init(){"use strict";try{let _hiwire={objects:new Map,counter:new Uint32Array([1])};Module.hiwire={};Module.hiwire.UNDEFINED=HEAPU8[_Js_undefined+0];Module.hiwire.JSNULL=HEAPU8[_Js_null+0];Module.hiwire.TRUE=HEAPU8[_Js_true+0];Module.hiwire.FALSE=HEAPU8[_Js_false+0];_hiwire.objects.set(Module.hiwire.UNDEFINED,[undefined,-1]);_hiwire.objects.set(Module.hiwire.JSNULL,[null,-1]);_hiwire.objects.set(Module.hiwire.TRUE,[!!1,-1]);_hiwire.objects.set(Module.hiwire.FALSE,[!!0,-1]);let hiwire_next_permanent=Module.hiwire.FALSE+2;Module.hiwire.new_value=function(jsval){while(_hiwire.objects.has(_hiwire.counter[0])){_hiwire.counter[0]+=2}let idval=_hiwire.counter[0];_hiwire.objects.set(idval,[jsval,1]);_hiwire.counter[0]+=2;return idval};Module.hiwire.intern_object=function(obj){let id=hiwire_next_permanent;hiwire_next_permanent+=2;_hiwire.objects.set(id,[obj,-1]);return id};Module.hiwire.num_keys=function(){return Array.from(_hiwire.objects.keys()).filter(x=>x%2).length};Module.hiwire.get_value=function(idval){if(!idval){Module.fail_test=!!1;if(_PyErr_Occurred()){let exc=_wrap_exception();let e=Module.hiwire.pop_value(exc);console.error(`Internal error: Argument '${idval}' to hiwire.get_value is falsy. `+"This was probably because the Python error indicator was set when get_value was called. "+"The Python error that caused this was:",e);throw e}else{console.error(`Internal error: Argument '${idval}' to hiwire.get_value is falsy`+" (but error indicator is not set).");throw new Error(`Internal error: Argument '${idval}' to hiwire.get_value is falsy`+" (but error indicator is not set).")}}if(!_hiwire.objects.has(idval)){console.error(`Undefined id ${idval}`);throw new Error(`Undefined id ${idval}`)}return _hiwire.objects.get(idval)[0]};Module.hiwire.decref=function(idval){if((idval&1)===0){return}let new_refcnt=--_hiwire.objects.get(idval)[1];if(new_refcnt===0){_hiwire.objects.delete(idval)}};Module.hiwire.incref=function(idval){_hiwire.objects.get(idval)[1]++};Module.hiwire.pop_value=function(idval){let result=Module.hiwire.get_value(idval);Module.hiwire.decref(idval);return result};Module.hiwire.isPromise=function(obj){try{return!!obj&&typeof obj.then==="function"}catch(e){return!!0}};Module.typedArrayAsUint8Array=function(arg){if(arg.buffer!==undefined){return new Uint8Array(arg.buffer,arg.byteOffset,arg.byteLength)}else{return new Uint8Array(arg)}};{let dtypes_str=["b","B","h","H","i","I","f","d"].join(String.fromCharCode(0));let dtypes_ptr=stringToNewUTF8(dtypes_str);let dtypes_map={};for(let[idx,val]of Object.entries(dtypes_str)){dtypes_map[val]=dtypes_ptr+Number(idx)}let buffer_datatype_map=new Map([["Int8Array",[dtypes_map["b"],1,!!1]],["Uint8Array",[dtypes_map["B"],1,!!1]],["Uint8ClampedArray",[dtypes_map["B"],1,!!1]],["Int16Array",[dtypes_map["h"],2,!!1]],["Uint16Array",[dtypes_map["H"],2,!!1]],["Int32Array",[dtypes_map["i"],4,!!1]],["Uint32Array",[dtypes_map["I"],4,!!1]],["Float32Array",[dtypes_map["f"],4,!!1]],["Float64Array",[dtypes_map["d"],8,!!1]],["DataView",[dtypes_map["B"],1,!!0]],["ArrayBuffer",[dtypes_map["B"],1,!!0]]]);Module.get_buffer_datatype=function(jsobj){return buffer_datatype_map.get(jsobj.constructor.name)||[0,0,!!0]}}if(globalThis.BigInt){Module.BigInt=BigInt}else{Module.BigInt=Number}return 0}catch(e){Module.handle_js_error(e);return-1}return 0}function hiwire_int(val){"use strict";try{return Module.hiwire.new_value(val)}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function hiwire_int_from_digits(digits,ndigits){"use strict";try{let result=BigInt(0);for(let i=0;i>2)+i])<>2)+ndigits-1]&2147483648)<>2)+0]=result_id;return done}catch(e){Module.handle_js_error(e);return-1}return 0}function hiwire_not_equal(ida,idb){return!!(Module.hiwire.get_value(ida)!==Module.hiwire.get_value(idb))}function hiwire_read_from_file(idobj,fd){"use strict";try{let jsobj=Module.hiwire.get_value(idobj);let uint8_buffer=Module.typedArrayAsUint8Array(jsobj);let stream=Module.FS.streams[fd];Module.FS.read(stream,uint8_buffer,0,uint8_buffer.byteLength)}catch(e){Module.handle_js_error(e);return-1}return 0}function hiwire_resolve_promise(idobj){"use strict";try{let obj=Module.hiwire.get_value(idobj);let result=Promise.resolve(obj);return Module.hiwire.new_value(result)}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function hiwire_string_ascii(ptr){"use strict";try{return Module.hiwire.new_value(AsciiToString(ptr))}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function hiwire_string_ucs1(ptr,len){"use strict";try{let jsstr="";for(let i=0;i>1)+i])}return Module.hiwire.new_value(jsstr)}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function hiwire_string_ucs4(ptr,len){"use strict";try{let jsstr="";for(let i=0;i>2)+i])}return Module.hiwire.new_value(jsstr)}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function hiwire_string_utf8(ptr){"use strict";try{return Module.hiwire.new_value(UTF8ToString(ptr))}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function hiwire_subarray(idarr,start,end){"use strict";try{let jsarr=Module.hiwire.get_value(idarr);let jssub=jsarr.subarray(start,end);return Module.hiwire.new_value(jssub)}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function hiwire_throw_error(iderr){throw Module.hiwire.pop_value(iderr)}function hiwire_to_bool(val){return!!Module.hiwire.get_value(val)}function hiwire_to_string(idobj){"use strict";try{return Module.hiwire.new_value(Module.hiwire.get_value(idobj).toString())}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function hiwire_typeof(idobj){"use strict";try{return Module.hiwire.new_value(typeof Module.hiwire.get_value(idobj))}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function hiwire_write_to_file(idobj,fd){"use strict";try{let jsobj=Module.hiwire.get_value(idobj);let uint8_buffer=Module.typedArrayAsUint8Array(jsobj);let stream=Module.FS.streams[fd];Module.FS.write(stream,uint8_buffer,0,uint8_buffer.byteLength)}catch(e){Module.handle_js_error(e);return-1}return 0}function js2python(id){"use strict";try{let value=Module.hiwire.get_value(id);let result=Module._js2python_convertImmutable(value);if(result!==undefined){return result}return _JsProxy_create(id)}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function js2python_convert(id,depth){"use strict";try{return Module.js2python_convert(id,new Map,depth)}catch(e){Module.handle_js_error(e);return 0}throw new Error("Assertion error: control reached end of function without return")}function js2python_init(){"use strict";try{let PropagateError=Module._PropagatePythonError;function __js2python_string(value){let max_code_point=0;let num_code_points=0;for(let c of value){num_code_points++;let code_point=c.codePointAt(0);max_code_point=code_point>max_code_point?code_point:max_code_point}let result=_PyUnicode_New(num_code_points,max_code_point);if(result===0){throw new PropagateError}let ptr=_PyUnicode_Data(result);if(max_code_point>65535){for(let c of value){HEAPU32[ptr/4]=c.codePointAt(0);ptr+=4}}else if(max_code_point>255){for(let c of value){HEAPU16[ptr/2]=c.codePointAt(0);ptr+=2}}else{for(let c of value){HEAPU8[ptr]=c.codePointAt(0);ptr+=1}}return result}function __js2python_bigint(value){let value_orig=value;let length=0;if(value<0){value=-value}while(value){length++;value>>=BigInt(32)}let stackTop=stackSave();let ptr=stackAlloc(length*4);value=value_orig;for(let i=0;i>2)+i]=Number(value&BigInt(4294967295));value>>=BigInt(32)}let result=__PyLong_FromByteArray(ptr,length*4,!!1,!!1);stackRestore(stackTop);return result}Module._js2python_convertImmutable=function(value){let result=__js2python_convertImmutableInner(value);if(result===0){throw new PropagateError}return result};function __js2python_convertImmutableInner(value){let type=typeof value;if(type==="string"){return __js2python_string(value)}else if(type==="number"){if(Number.isSafeInteger(value)){return _PyLong_FromDouble(value)}else{return _PyFloat_FromDouble(value)}}else if(type==="bigint"){return __js2python_bigint(value)}else if(value===undefined||value===null){return __js2python_none()}else if(value===!!1){return __js2python_true()}else if(value===!!0){return __js2python_false()}else if(Module.isPyProxy(value)){return __js2python_pyproxy(Module.PyProxy_getPtr(value))}return undefined}function __js2python_convertList(obj,cache,depth){let list=_PyList_New(obj.length);if(list===0){return 0}let entryid=0;let item=0;try{cache.set(obj,list);for(let i=0;i2){throw new Error("Expected format string to have length <= 2, "+`got '${formatStr}'.`+errorMessage)}let formatChar=formatStr.slice(-1);let alignChar=formatStr.slice(0,-1);let bigEndian;switch(alignChar){case"!":case">":bigEndian=!!1;break;case"<":case"@":case"=":case"":bigEndian=!!0;break;default:throw new Error(`Unrecognized alignment character ${alignChar}.`+errorMessage)}let arrayType;switch(formatChar){case"b":arrayType=Int8Array;break;case"s":case"p":case"c":case"B":case"?":arrayType=Uint8Array;break;case"h":arrayType=Int16Array;break;case"H":arrayType=Uint16Array;break;case"i":case"l":case"n":arrayType=Int32Array;break;case"I":case"L":case"N":case"P":arrayType=Uint32Array;break;case"q":if(globalThis.BigInt64Array===undefined){throw new Error("BigInt64Array is not supported on this browser."+errorMessage)}arrayType=BigInt64Array;break;case"Q":if(globalThis.BigUint64Array===undefined){throw new Error("BigUint64Array is not supported on this browser."+errorMessage)}arrayType=BigUint64Array;break;case"f":arrayType=Float32Array;break;case"d":arrayType=Float64Array;break;case"e":throw new Error("Javascript has no Float16 support.");default:throw new Error(`Unrecognized format character '${formatChar}'.`+errorMessage)}return[arrayType,bigEndian]};Module.python2js_buffer_1d_contiguous=function(ptr,stride,n){"use strict";let byteLength=stride*n;return HEAP8.slice(ptr,ptr+byteLength).buffer};Module.python2js_buffer_1d_noncontiguous=function(ptr,stride,suboffset,n,itemsize){"use strict";let byteLength=itemsize*n;let buffer=new Uint8Array(byteLength);for(let i=0;i=0){curptr=HEAPU32[(curptr>>2)+0]+suboffset}buffer.set(HEAP8.subarray(curptr,curptr+itemsize),i*itemsize)}return buffer.buffer};Module._python2js_buffer_recursive=function(ptr,curdim,bufferData){"use strict";let n=HEAPU32[(bufferData.shape>>2)+curdim];let stride=HEAP32[(bufferData.strides>>2)+curdim];let suboffset=-1;if(bufferData.suboffsets!==0){suboffset=HEAP32[(bufferData.suboffsets>>2)+curdim]}if(curdim===bufferData.ndim-1){let arraybuffer;if(stride===bufferData.itemsize&&suboffset<0){arraybuffer=Module.python2js_buffer_1d_contiguous(ptr,stride,n)}else{arraybuffer=Module.python2js_buffer_1d_noncontiguous(ptr,stride,suboffset,n,bufferData.itemsize)}return bufferData.converter(arraybuffer)}let result=[];for(let i=0;i=0){curptr=HEAPU32[(curptr>>2)+0]+suboffset}result.push(Module._python2js_buffer_recursive(curPtr,curdim+1,bufferData))}return result};Module.get_converter=function(format,itemsize){"use strict";let formatStr=UTF8ToString(format);let[ArrayType,bigEndian]=Module.processBufferFormatString(formatStr);let formatChar=formatStr.slice(-1);switch(formatChar){case"s":let decoder=new TextDecoder("utf8");return buff=>decoder.decode(buff);case"?":return buff=>Array.from(new Uint8Array(buff),x=>!!x)}if(!bigEndian){return buff=>new ArrayType(buff)}let getFuncName;let setFuncName;switch(itemsize){case 2:getFuncName="getUint16";setFuncName="setUint16";break;case 4:getFuncName="getUint32";setFuncName="setUint32";break;case 8:getFuncName="getFloat64";setFuncName="setFloat64";break;default:throw new Error(`Unexpected size ${itemsize}`)}function swapFunc(buff){let dataview=new DataView(buff);let getFunc=dataview[getFuncName].bind(dataview);let setFunc=dataview[setFuncName].bind(dataview);for(let byte=0;bytenew ArrayType(swapFunc(buff))}}return 0}catch(e){Module.handle_js_error(e);return-1}return 0}function setter_call_trampoline(set,obj,value,closure){return wasmTable.get(set)(obj,value,closure)}function unbox_small_structs(type_ptr){var type_id=HEAPU16[(type_ptr+6>>1)+0];while(type_id===13){var elements=HEAPU32[(type_ptr+8>>2)+0];var first_element=HEAPU32[(elements>>2)+0];if(first_element===0){type_id=0;break}else if(HEAPU32[(elements>>2)+1]===0){type_ptr=first_element;type_id=HEAPU16[(first_element+6>>1)+0]}else{break}}return[type_ptr,type_id]}function _emscripten_set_main_loop_timing(mode,value){Browser.mainLoop.timingMode=mode;Browser.mainLoop.timingValue=value;if(!Browser.mainLoop.func){return 1}if(!Browser.mainLoop.running){Browser.mainLoop.running=true}if(mode==0){Browser.mainLoop.scheduler=function Browser_mainLoop_scheduler_setTimeout(){var timeUntilNextTick=Math.max(0,Browser.mainLoop.tickStartTime+value-_emscripten_get_now())|0;setTimeout(Browser.mainLoop.runner,timeUntilNextTick)};Browser.mainLoop.method="timeout"}else if(mode==1){Browser.mainLoop.scheduler=function Browser_mainLoop_scheduler_rAF(){Browser.requestAnimationFrame(Browser.mainLoop.runner)};Browser.mainLoop.method="rAF"}else if(mode==2){if(typeof setImmediate==="undefined"){var setImmediates=[];var emscriptenMainLoopMessageId="setimmediate";var Browser_setImmediate_messageHandler=function(event){if(event.data===emscriptenMainLoopMessageId||event.data.target===emscriptenMainLoopMessageId){event.stopPropagation();setImmediates.shift()()}};addEventListener("message",Browser_setImmediate_messageHandler,true);setImmediate=function Browser_emulated_setImmediate(func){setImmediates.push(func);if(ENVIRONMENT_IS_WORKER){if(Module["setImmediates"]===undefined)Module["setImmediates"]=[];Module["setImmediates"].push(func);postMessage({target:emscriptenMainLoopMessageId})}else postMessage(emscriptenMainLoopMessageId,"*")}}Browser.mainLoop.scheduler=function Browser_mainLoop_scheduler_setImmediate(){setImmediate(Browser.mainLoop.runner)};Browser.mainLoop.method="immediate"}return 0}Module["_emscripten_set_main_loop_timing"]=_emscripten_set_main_loop_timing;_emscripten_set_main_loop_timing.sig="iii";var _emscripten_get_now;if(ENVIRONMENT_IS_NODE){_emscripten_get_now=function(){var t=process["hrtime"]();return t[0]*1e3+t[1]/1e6}}else if(typeof dateNow!=="undefined"){_emscripten_get_now=dateNow}else _emscripten_get_now=function(){return performance.now()};Module["_emscripten_get_now"]=_emscripten_get_now;var runtimeKeepaliveCounter=0;Module["runtimeKeepaliveCounter"]=runtimeKeepaliveCounter;function runtimeKeepalivePush(){runtimeKeepaliveCounter+=1}Module["runtimeKeepalivePush"]=runtimeKeepalivePush;runtimeKeepalivePush.sig="v";function _exit(status){exit(status)}Module["_exit"]=_exit;_exit.sig="vi";function maybeExit(){if(!keepRuntimeAlive()){try{_exit(EXITSTATUS)}catch(e){if(e instanceof ExitStatus){return}throw e}}}Module["maybeExit"]=maybeExit;function setMainLoop(browserIterationFunc,fps,simulateInfiniteLoop,arg,noSetTiming){assert(!Browser.mainLoop.func,"emscripten_set_main_loop: there can only be one main loop function at once: call emscripten_cancel_main_loop to cancel the previous one before setting a new one with different parameters.");Browser.mainLoop.func=browserIterationFunc;Browser.mainLoop.arg=arg;var thisMainLoopId=Browser.mainLoop.currentlyRunningMainloop;function checkIsRunning(){if(thisMainLoopId0){var start=Date.now();var blocker=Browser.mainLoop.queue.shift();blocker.func(blocker.arg);if(Browser.mainLoop.remainingBlockers){var remaining=Browser.mainLoop.remainingBlockers;var next=remaining%1==0?remaining-1:Math.floor(remaining);if(blocker.counted){Browser.mainLoop.remainingBlockers=next}else{next=next+.5;Browser.mainLoop.remainingBlockers=(8*remaining+next)/9}}console.log('main loop blocker "'+blocker.name+'" took '+(Date.now()-start)+" ms");Browser.mainLoop.updateStatus();if(!checkIsRunning())return;setTimeout(Browser.mainLoop.runner,0);return}if(!checkIsRunning())return;Browser.mainLoop.currentFrameNumber=Browser.mainLoop.currentFrameNumber+1|0;if(Browser.mainLoop.timingMode==1&&Browser.mainLoop.timingValue>1&&Browser.mainLoop.currentFrameNumber%Browser.mainLoop.timingValue!=0){Browser.mainLoop.scheduler();return}else if(Browser.mainLoop.timingMode==0){Browser.mainLoop.tickStartTime=_emscripten_get_now()}Browser.mainLoop.runIter(browserIterationFunc);if(!checkIsRunning())return;if(typeof SDL==="object"&&SDL.audio&&SDL.audio.queueNewAudioData)SDL.audio.queueNewAudioData();Browser.mainLoop.scheduler()};if(!noSetTiming){if(fps&&fps>0)_emscripten_set_main_loop_timing(0,1e3/fps);else _emscripten_set_main_loop_timing(1,1);Browser.mainLoop.scheduler()}if(simulateInfiniteLoop){throw"unwind"}}Module["setMainLoop"]=setMainLoop;function callUserCallback(func){if(ABORT){}try{func()}catch(e){if(e instanceof ExitStatus){return}else if(e!=="unwind"){if(e&&typeof e==="object"&&e.stack)err("exception thrown: "+[e,e.stack]);throw e}}}Module["callUserCallback"]=callUserCallback;function runtimeKeepalivePop(){runtimeKeepaliveCounter-=1}Module["runtimeKeepalivePop"]=runtimeKeepalivePop;runtimeKeepalivePop.sig="v";var Browser={mainLoop:{running:false,scheduler:null,method:"",currentlyRunningMainloop:0,func:null,arg:0,timingMode:0,timingValue:0,currentFrameNumber:0,queue:[],pause:function(){Browser.mainLoop.scheduler=null;Browser.mainLoop.currentlyRunningMainloop++},resume:function(){Browser.mainLoop.currentlyRunningMainloop++;var timingMode=Browser.mainLoop.timingMode;var timingValue=Browser.mainLoop.timingValue;var func=Browser.mainLoop.func;Browser.mainLoop.func=null;setMainLoop(func,0,false,Browser.mainLoop.arg,true);_emscripten_set_main_loop_timing(timingMode,timingValue);Browser.mainLoop.scheduler()},updateStatus:function(){if(Module["setStatus"]){var message=Module["statusMessage"]||"Please wait...";var remaining=Browser.mainLoop.remainingBlockers;var expected=Browser.mainLoop.expectedBlockers;if(remaining){if(remaining=6){var curr=leftchar>>leftbits-6&63;leftbits-=6;ret+=BASE[curr]}}if(leftbits==2){ret+=BASE[(leftchar&3)<<4];ret+=PAD+PAD}else if(leftbits==4){ret+=BASE[(leftchar&15)<<2];ret+=PAD}return ret}audio.src="data:audio/x-"+name.substr(-3)+";base64,"+encode64(byteArray);finish(audio)};audio.src=url;Browser.safeSetTimeout(function(){finish(audio)},1e4)}else{return fail()}};Module["preloadPlugins"].push(audioPlugin);var wasmPlugin={"asyncWasmLoadPromise":new Promise(function(resolve,reject){return resolve()}),"canHandle":function(name){return!Module.noWasmDecoding&&name.endsWith(".so")},"handle":function(byteArray,name,onload,onerror){this["asyncWasmLoadPromise"]=this["asyncWasmLoadPromise"].then(function(){return loadWebAssemblyModule(byteArray,{loadAsync:true,nodelete:true})}).then(function(module){Module["preloadedWasm"][name]=module;onload()},function(err){console.warn("Couldn't instantiate wasm: "+name+" '"+err+"'");onerror()})}};Module["preloadPlugins"].push(wasmPlugin);function pointerLockChange(){Browser.pointerLock=document["pointerLockElement"]===Module["canvas"]||document["mozPointerLockElement"]===Module["canvas"]||document["webkitPointerLockElement"]===Module["canvas"]||document["msPointerLockElement"]===Module["canvas"]}var canvas=Module["canvas"];if(canvas){canvas.requestPointerLock=canvas["requestPointerLock"]||canvas["mozRequestPointerLock"]||canvas["webkitRequestPointerLock"]||canvas["msRequestPointerLock"]||function(){};canvas.exitPointerLock=document["exitPointerLock"]||document["mozExitPointerLock"]||document["webkitExitPointerLock"]||document["msExitPointerLock"]||function(){};canvas.exitPointerLock=canvas.exitPointerLock.bind(document);document.addEventListener("pointerlockchange",pointerLockChange,false);document.addEventListener("mozpointerlockchange",pointerLockChange,false);document.addEventListener("webkitpointerlockchange",pointerLockChange,false);document.addEventListener("mspointerlockchange",pointerLockChange,false);if(Module["elementPointerLock"]){canvas.addEventListener("click",function(ev){if(!Browser.pointerLock&&Module["canvas"].requestPointerLock){Module["canvas"].requestPointerLock();ev.preventDefault()}},false)}}},createContext:function(canvas,useWebGL,setInModule,webGLContextAttributes){if(useWebGL&&Module.ctx&&canvas==Module.canvas)return Module.ctx;var ctx;var contextHandle;if(useWebGL){var contextAttributes={antialias:false,alpha:false,majorVersion:1};if(webGLContextAttributes){for(var attribute in webGLContextAttributes){contextAttributes[attribute]=webGLContextAttributes[attribute]}}if(typeof GL!=="undefined"){contextHandle=GL.createContext(canvas,contextAttributes);if(contextHandle){ctx=GL.getContext(contextHandle).GLctx}}}else{ctx=canvas.getContext("2d")}if(!ctx)return null;if(setInModule){if(!useWebGL)assert(typeof GLctx==="undefined","cannot set in module if GLctx is used, but we are a non-GL context that would replace it");Module.ctx=ctx;if(useWebGL)GL.makeContextCurrent(contextHandle);Module.useWebGL=useWebGL;Browser.moduleContextCreatedCallbacks.forEach(function(callback){callback()});Browser.init()}return ctx},destroyContext:function(canvas,useWebGL,setInModule){},fullscreenHandlersInstalled:false,lockPointer:undefined,resizeCanvas:undefined,requestFullscreen:function(lockPointer,resizeCanvas){Browser.lockPointer=lockPointer;Browser.resizeCanvas=resizeCanvas;if(typeof Browser.lockPointer==="undefined")Browser.lockPointer=true;if(typeof Browser.resizeCanvas==="undefined")Browser.resizeCanvas=false;var canvas=Module["canvas"];function fullscreenChange(){Browser.isFullscreen=false;var canvasContainer=canvas.parentNode;if((document["fullscreenElement"]||document["mozFullScreenElement"]||document["msFullscreenElement"]||document["webkitFullscreenElement"]||document["webkitCurrentFullScreenElement"])===canvasContainer){canvas.exitFullscreen=Browser.exitFullscreen;if(Browser.lockPointer)canvas.requestPointerLock();Browser.isFullscreen=true;if(Browser.resizeCanvas){Browser.setFullscreenCanvasSize()}else{Browser.updateCanvasDimensions(canvas)}}else{canvasContainer.parentNode.insertBefore(canvas,canvasContainer);canvasContainer.parentNode.removeChild(canvasContainer);if(Browser.resizeCanvas){Browser.setWindowedCanvasSize()}else{Browser.updateCanvasDimensions(canvas)}}if(Module["onFullScreen"])Module["onFullScreen"](Browser.isFullscreen);if(Module["onFullscreen"])Module["onFullscreen"](Browser.isFullscreen)}if(!Browser.fullscreenHandlersInstalled){Browser.fullscreenHandlersInstalled=true;document.addEventListener("fullscreenchange",fullscreenChange,false);document.addEventListener("mozfullscreenchange",fullscreenChange,false);document.addEventListener("webkitfullscreenchange",fullscreenChange,false);document.addEventListener("MSFullscreenChange",fullscreenChange,false)}var canvasContainer=document.createElement("div");canvas.parentNode.insertBefore(canvasContainer,canvas);canvasContainer.appendChild(canvas);canvasContainer.requestFullscreen=canvasContainer["requestFullscreen"]||canvasContainer["mozRequestFullScreen"]||canvasContainer["msRequestFullscreen"]||(canvasContainer["webkitRequestFullscreen"]?function(){canvasContainer["webkitRequestFullscreen"](Element["ALLOW_KEYBOARD_INPUT"])}:null)||(canvasContainer["webkitRequestFullScreen"]?function(){canvasContainer["webkitRequestFullScreen"](Element["ALLOW_KEYBOARD_INPUT"])}:null);canvasContainer.requestFullscreen()},exitFullscreen:function(){if(!Browser.isFullscreen){return false}var CFS=document["exitFullscreen"]||document["cancelFullScreen"]||document["mozCancelFullScreen"]||document["msExitFullscreen"]||document["webkitCancelFullScreen"]||function(){};CFS.apply(document,[]);return true},nextRAF:0,fakeRequestAnimationFrame:function(func){var now=Date.now();if(Browser.nextRAF===0){Browser.nextRAF=now+1e3/60}else{while(now+2>=Browser.nextRAF){Browser.nextRAF+=1e3/60}}var delay=Math.max(Browser.nextRAF-now,0);setTimeout(func,delay)},requestAnimationFrame:function(func){if(typeof requestAnimationFrame==="function"){requestAnimationFrame(func);return}var RAF=Browser.fakeRequestAnimationFrame;RAF(func)},safeRequestAnimationFrame:function(func){return Browser.requestAnimationFrame(function(){callUserCallback(func)})},safeSetTimeout:function(func,timeout){return setTimeout(function(){callUserCallback(func)},timeout)},getMimetype:function(name){return{"jpg":"image/jpeg","jpeg":"image/jpeg","png":"image/png","bmp":"image/bmp","ogg":"audio/ogg","wav":"audio/wav","mp3":"audio/mpeg"}[name.substr(name.lastIndexOf(".")+1)]},getUserMedia:function(func){if(!window.getUserMedia){window.getUserMedia=navigator["getUserMedia"]||navigator["mozGetUserMedia"]}window.getUserMedia(func)},getMovementX:function(event){return event["movementX"]||event["mozMovementX"]||event["webkitMovementX"]||0},getMovementY:function(event){return event["movementY"]||event["mozMovementY"]||event["webkitMovementY"]||0},getMouseWheelDelta:function(event){var delta=0;switch(event.type){case"DOMMouseScroll":delta=event.detail/3;break;case"mousewheel":delta=event.wheelDelta/120;break;case"wheel":delta=event.deltaY;switch(event.deltaMode){case 0:delta/=100;break;case 1:delta/=3;break;case 2:delta*=80;break;default:throw"unrecognized mouse wheel delta mode: "+event.deltaMode}break;default:throw"unrecognized mouse wheel event: "+event.type}return delta},mouseX:0,mouseY:0,mouseMovementX:0,mouseMovementY:0,touches:{},lastTouches:{},calculateMouseEvent:function(event){if(Browser.pointerLock){if(event.type!="mousemove"&&"mozMovementX"in event){Browser.mouseMovementX=Browser.mouseMovementY=0}else{Browser.mouseMovementX=Browser.getMovementX(event);Browser.mouseMovementY=Browser.getMovementY(event)}if(typeof SDL!="undefined"){Browser.mouseX=SDL.mouseX+Browser.mouseMovementX;Browser.mouseY=SDL.mouseY+Browser.mouseMovementY}else{Browser.mouseX+=Browser.mouseMovementX;Browser.mouseY+=Browser.mouseMovementY}}else{var rect=Module["canvas"].getBoundingClientRect();var cw=Module["canvas"].width;var ch=Module["canvas"].height;var scrollX=typeof window.scrollX!=="undefined"?window.scrollX:window.pageXOffset;var scrollY=typeof window.scrollY!=="undefined"?window.scrollY:window.pageYOffset;if(event.type==="touchstart"||event.type==="touchend"||event.type==="touchmove"){var touch=event.touch;if(touch===undefined){return}var adjustedX=touch.pageX-(scrollX+rect.left);var adjustedY=touch.pageY-(scrollY+rect.top);adjustedX=adjustedX*(cw/rect.width);adjustedY=adjustedY*(ch/rect.height);var coords={x:adjustedX,y:adjustedY};if(event.type==="touchstart"){Browser.lastTouches[touch.identifier]=coords;Browser.touches[touch.identifier]=coords}else if(event.type==="touchend"||event.type==="touchmove"){var last=Browser.touches[touch.identifier];if(!last)last=coords;Browser.lastTouches[touch.identifier]=last;Browser.touches[touch.identifier]=coords}return}var x=event.pageX-(scrollX+rect.left);var y=event.pageY-(scrollY+rect.top);x=x*(cw/rect.width);y=y*(ch/rect.height);Browser.mouseMovementX=x-Browser.mouseX;Browser.mouseMovementY=y-Browser.mouseY;Browser.mouseX=x;Browser.mouseY=y}},asyncLoad:function(url,onload,onerror,noRunDep){var dep=!noRunDep?getUniqueRunDependency("al "+url):"";readAsync(url,function(arrayBuffer){assert(arrayBuffer,'Loading data file "'+url+'" failed (no arrayBuffer).');onload(new Uint8Array(arrayBuffer));if(dep)removeRunDependency(dep)},function(event){if(onerror){onerror()}else{throw'Loading data file "'+url+'" failed.'}});if(dep)addRunDependency(dep)},resizeListeners:[],updateResizeListeners:function(){var canvas=Module["canvas"];Browser.resizeListeners.forEach(function(listener){listener(canvas.width,canvas.height)})},setCanvasSize:function(width,height,noUpdates){var canvas=Module["canvas"];Browser.updateCanvasDimensions(canvas,width,height);if(!noUpdates)Browser.updateResizeListeners()},windowedWidth:0,windowedHeight:0,setFullscreenCanvasSize:function(){if(typeof SDL!="undefined"){var flags=HEAPU32[SDL.screen>>2];flags=flags|8388608;HEAP32[SDL.screen>>2]=flags}Browser.updateCanvasDimensions(Module["canvas"]);Browser.updateResizeListeners()},setWindowedCanvasSize:function(){if(typeof SDL!="undefined"){var flags=HEAPU32[SDL.screen>>2];flags=flags&~8388608;HEAP32[SDL.screen>>2]=flags}Browser.updateCanvasDimensions(Module["canvas"]);Browser.updateResizeListeners()},updateCanvasDimensions:function(canvas,wNative,hNative){if(wNative&&hNative){canvas.widthNative=wNative;canvas.heightNative=hNative}else{wNative=canvas.widthNative;hNative=canvas.heightNative}var w=wNative;var h=hNative;if(Module["forcedAspectRatio"]&&Module["forcedAspectRatio"]>0){if(w/h0){var callback=callbacks.shift();if(typeof callback=="function"){callback(Module);continue}var func=callback.func;if(typeof func==="number"){if(callback.arg===undefined){wasmTable.get(func)()}else{wasmTable.get(func)(callback.arg)}}else{func(callback.arg===undefined?null:callback.arg)}}}Module["callRuntimeCallbacks"]=callRuntimeCallbacks;function demangle(func){return func}Module["demangle"]=demangle;function demangleAll(text){var regex=/\b_Z[\w\d_]+/g;return text.replace(regex,function(x){var y=demangle(x);return x===y?x:y+" ["+x+"]"})}Module["demangleAll"]=demangleAll;function getDylinkMetadata(binary){var next=0;function getLEB(){var ret=0;var mul=1;while(1){var byte=binary[next++];ret+=(byte&127)*mul;mul*=128;if(!(byte&128))break}return ret}if(binary instanceof WebAssembly.Module){var dylinkSection=WebAssembly.Module.customSections(binary,"dylink");assert(dylinkSection.length!=0,"need dylink section");binary=new Int8Array(dylinkSection[0])}else{var int32View=new Uint32Array(new Uint8Array(binary.subarray(0,24)).buffer);assert(int32View[0]==1836278016,"need to see wasm magic number");assert(binary[8]===0,"need the dylink section to be first");next=9;getLEB();assert(binary[next]===6);next++;assert(binary[next]==="d".charCodeAt(0));next++;assert(binary[next]==="y".charCodeAt(0));next++;assert(binary[next]==="l".charCodeAt(0));next++;assert(binary[next]==="i".charCodeAt(0));next++;assert(binary[next]==="n".charCodeAt(0));next++;assert(binary[next]==="k".charCodeAt(0));next++}var customSection={};customSection.memorySize=getLEB();customSection.memoryAlign=getLEB();customSection.tableSize=getLEB();customSection.tableAlign=getLEB();var neededDynlibsCount=getLEB();customSection.neededDynlibs=[];for(var i=0;i0}Module["keepRuntimeAlive"]=keepRuntimeAlive;var LDSO={nextHandle:1,loadedLibs:{},loadedLibNames:{}};Module["LDSO"]=LDSO;function createInvokeFunction(sig){return function(){var sp=stackSave();try{return dynCall(sig,arguments[0],Array.prototype.slice.call(arguments,1))}catch(e){stackRestore(sp);if(e!==e+0&&e!=="longjmp")throw e;_setThrew(1,0)}}}Module["createInvokeFunction"]=createInvokeFunction;function getMemory(size){if(runtimeInitialized)return _malloc(size);var ret=Module["___heap_base"];var end=ret+size+15&-16;Module["___heap_base"]=end;GOT["__heap_base"].value=end;return ret}Module["getMemory"]=getMemory;function isInternalSym(symName){return["__cpp_exception","__wasm_apply_data_relocs","__dso_handle","__set_stack_limits"].indexOf(symName)!=-1}Module["isInternalSym"]=isInternalSym;function updateGOT(exports){for(var symName in exports){if(isInternalSym(symName)){continue}var replace=false;var value=exports[symName];if(symName.indexOf("orig$")==0){symName=symName.split("$")[1];replace=true}if(!GOT[symName]){GOT[symName]=new WebAssembly.Global({value:"i32",mutable:true})}if(replace||GOT[symName].value==0){if(typeof value==="function"){GOT[symName].value=addFunctionWasm(value)}else if(typeof value==="number"){GOT[symName].value=value}else{err("unhandled export type for `"+symName+"`: "+typeof value)}}}}Module["updateGOT"]=updateGOT;function relocateExports(exports,memoryBase){var relocated={};for(var e in exports){var value=exports[e];if(typeof value==="object"){value=value.value}if(typeof value==="number"){value+=memoryBase}relocated[e]=value}updateGOT(relocated);return relocated}Module["relocateExports"]=relocateExports;function asmjsMangle(x){var unmangledSymbols=["setTempRet0","getTempRet0","stackAlloc","stackSave","stackRestore"];return x.indexOf("dynCall_")==0||unmangledSymbols.indexOf(x)!=-1?x:"_"+x}Module["asmjsMangle"]=asmjsMangle;function resolveGlobalSymbol(symName,direct){var sym;if(direct){sym=Module["asm"]["orig$"+symName]}if(!sym){sym=Module["asm"][symName]}if(!sym&&direct){sym=Module["_orig$"+symName]}if(!sym){sym=Module[asmjsMangle(symName)]}if(!sym&&symName.indexOf("invoke_")==0){sym=createInvokeFunction(symName.split("_")[1])}return sym}Module["resolveGlobalSymbol"]=resolveGlobalSymbol;function loadWebAssemblyModule(binary,flags){var metadata=getDylinkMetadata(binary);var memorySize=metadata.memorySize;var memoryAlign=metadata.memoryAlign;var tableSize=metadata.tableSize;var tableAlign=metadata.tableAlign;var neededDynlibs=metadata.neededDynlibs;function loadModule(){memoryAlign=Math.pow(2,memoryAlign);tableAlign=Math.pow(2,tableAlign);memoryAlign=Math.max(memoryAlign,STACK_ALIGN);var memoryBase=alignMemory(getMemory(memorySize+memoryAlign),memoryAlign);var env=asmLibraryArg;var table=wasmTable;var tableBase=table.length;var originalTable=table;table.grow(tableSize);assert(table===originalTable);for(var i=memoryBase;i>2]=stdTimezoneOffset*60;HEAP32[__get_daylight()>>2]=Number(winterOffset!=summerOffset);function extractZone(date){var match=date.toTimeString().match(/\(([A-Za-z ]+)\)$/);return match?match[1]:"GMT"}var winterName=extractZone(winter);var summerName=extractZone(summer);var winterNamePtr=allocateUTF8(winterName);var summerNamePtr=allocateUTF8(summerName);if(summerOffset>2]=winterNamePtr;HEAP32[__get_tzname()+4>>2]=summerNamePtr}else{HEAP32[__get_tzname()>>2]=summerNamePtr;HEAP32[__get_tzname()+4>>2]=winterNamePtr}}Module["_tzset"]=_tzset;_tzset.sig="v";function _mktime(tmPtr){_tzset();var date=new Date(HEAP32[tmPtr+20>>2]+1900,HEAP32[tmPtr+16>>2],HEAP32[tmPtr+12>>2],HEAP32[tmPtr+8>>2],HEAP32[tmPtr+4>>2],HEAP32[tmPtr>>2],0);var dst=HEAP32[tmPtr+32>>2];var guessedOffset=date.getTimezoneOffset();var start=new Date(date.getFullYear(),0,1);var summerOffset=new Date(date.getFullYear(),6,1).getTimezoneOffset();var winterOffset=start.getTimezoneOffset();var dstOffset=Math.min(winterOffset,summerOffset);if(dst<0){HEAP32[tmPtr+32>>2]=Number(summerOffset!=winterOffset&&dstOffset==guessedOffset)}else if(dst>0!=(dstOffset==guessedOffset)){var nonDstOffset=Math.max(winterOffset,summerOffset);var trueOffset=dst>0?dstOffset:nonDstOffset;date.setTime(date.getTime()+(trueOffset-guessedOffset)*6e4)}HEAP32[tmPtr+24>>2]=date.getDay();var yday=(date.getTime()-start.getTime())/(1e3*60*60*24)|0;HEAP32[tmPtr+28>>2]=yday;HEAP32[tmPtr>>2]=date.getSeconds();HEAP32[tmPtr+4>>2]=date.getMinutes();HEAP32[tmPtr+8>>2]=date.getHours();HEAP32[tmPtr+12>>2]=date.getDate();HEAP32[tmPtr+16>>2]=date.getMonth();return date.getTime()/1e3|0}Module["_mktime"]=_mktime;_mktime.sig="ii";function _asctime_r(tmPtr,buf){var date={tm_sec:HEAP32[tmPtr>>2],tm_min:HEAP32[tmPtr+4>>2],tm_hour:HEAP32[tmPtr+8>>2],tm_mday:HEAP32[tmPtr+12>>2],tm_mon:HEAP32[tmPtr+16>>2],tm_year:HEAP32[tmPtr+20>>2],tm_wday:HEAP32[tmPtr+24>>2]};var days=["Sun","Mon","Tue","Wed","Thu","Fri","Sat"];var months=["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"];var s=days[date.tm_wday]+" "+months[date.tm_mon]+(date.tm_mday<10?" ":" ")+date.tm_mday+(date.tm_hour<10?" 0":" ")+date.tm_hour+(date.tm_min<10?":0":":")+date.tm_min+(date.tm_sec<10?":0":":")+date.tm_sec+" "+(1900+date.tm_year)+"\n";stringToUTF8(s,buf,26);return buf}Module["_asctime_r"]=_asctime_r;_asctime_r.sig="iii";function ___asctime_r(a0,a1){return _asctime_r(a0,a1)}Module["___asctime_r"]=___asctime_r;___asctime_r.sig="iii";function ___assert_fail(condition,filename,line,func){abort("Assertion failed: "+UTF8ToString(condition)+", at: "+[filename?UTF8ToString(filename):"unknown filename",line,func?UTF8ToString(func):"unknown function"])}Module["___assert_fail"]=___assert_fail;___assert_fail.sig="viiii";var _emscripten_get_now_is_monotonic=true;Module["_emscripten_get_now_is_monotonic"]=_emscripten_get_now_is_monotonic;function setErrNo(value){HEAP32[___errno_location()>>2]=value;return value}Module["setErrNo"]=setErrNo;function _clock_gettime(clk_id,tp){var now;if(clk_id===0){now=Date.now()}else if((clk_id===1||clk_id===4)&&_emscripten_get_now_is_monotonic){now=_emscripten_get_now()}else{setErrNo(28);return-1}HEAP32[tp>>2]=now/1e3|0;HEAP32[tp+4>>2]=now%1e3*1e3*1e3|0;return 0}Module["_clock_gettime"]=_clock_gettime;_clock_gettime.sig="iii";function ___clock_gettime(a0,a1){return _clock_gettime(a0,a1)}Module["___clock_gettime"]=___clock_gettime;___clock_gettime.sig="iii";function _atexit(func,arg){}Module["_atexit"]=_atexit;_atexit.sig="iii";function ___cxa_atexit(a0,a1){return _atexit(a0,a1)}Module["___cxa_atexit"]=___cxa_atexit;___cxa_atexit.sig="iii";function _gmtime_r(time,tmPtr){var date=new Date(HEAP32[time>>2]*1e3);HEAP32[tmPtr>>2]=date.getUTCSeconds();HEAP32[tmPtr+4>>2]=date.getUTCMinutes();HEAP32[tmPtr+8>>2]=date.getUTCHours();HEAP32[tmPtr+12>>2]=date.getUTCDate();HEAP32[tmPtr+16>>2]=date.getUTCMonth();HEAP32[tmPtr+20>>2]=date.getUTCFullYear()-1900;HEAP32[tmPtr+24>>2]=date.getUTCDay();HEAP32[tmPtr+36>>2]=0;HEAP32[tmPtr+32>>2]=0;var start=Date.UTC(date.getUTCFullYear(),0,1,0,0,0,0);var yday=(date.getTime()-start)/(1e3*60*60*24)|0;HEAP32[tmPtr+28>>2]=yday;if(!_gmtime_r.GMTString)_gmtime_r.GMTString=allocateUTF8("GMT");HEAP32[tmPtr+40>>2]=_gmtime_r.GMTString;return tmPtr}Module["_gmtime_r"]=_gmtime_r;_gmtime_r.sig="iii";function ___gmtime_r(a0,a1){return _gmtime_r(a0,a1)}Module["___gmtime_r"]=___gmtime_r;___gmtime_r.sig="iii";function ___libc_current_sigrtmax(){return 0}Module["___libc_current_sigrtmax"]=___libc_current_sigrtmax;function ___libc_current_sigrtmin(){return 0}Module["___libc_current_sigrtmin"]=___libc_current_sigrtmin;function _localtime_r(time,tmPtr){_tzset();var date=new Date(HEAP32[time>>2]*1e3);HEAP32[tmPtr>>2]=date.getSeconds();HEAP32[tmPtr+4>>2]=date.getMinutes();HEAP32[tmPtr+8>>2]=date.getHours();HEAP32[tmPtr+12>>2]=date.getDate();HEAP32[tmPtr+16>>2]=date.getMonth();HEAP32[tmPtr+20>>2]=date.getFullYear()-1900;HEAP32[tmPtr+24>>2]=date.getDay();var start=new Date(date.getFullYear(),0,1);var yday=(date.getTime()-start.getTime())/(1e3*60*60*24)|0;HEAP32[tmPtr+28>>2]=yday;HEAP32[tmPtr+36>>2]=-(date.getTimezoneOffset()*60);var summerOffset=new Date(date.getFullYear(),6,1).getTimezoneOffset();var winterOffset=start.getTimezoneOffset();var dst=(summerOffset!=winterOffset&&date.getTimezoneOffset()==Math.min(winterOffset,summerOffset))|0;HEAP32[tmPtr+32>>2]=dst;var zonePtr=HEAP32[__get_tzname()+(dst?4:0)>>2];HEAP32[tmPtr+40>>2]=zonePtr;return tmPtr}Module["_localtime_r"]=_localtime_r;_localtime_r.sig="iii";function ___localtime_r(a0,a1){return _localtime_r(a0,a1)}Module["___localtime_r"]=___localtime_r;___localtime_r.sig="iii";function ___map_file(pathname,size){setErrNo(63);return-1}Module["___map_file"]=___map_file;function ___posix_spawnx(){return Module["___posix_spawnx"].apply(null,arguments)}function ___pthread_once(){return Module["___pthread_once"].apply(null,arguments)}var PATH={splitPath:function(filename){var splitPathRe=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;return splitPathRe.exec(filename).slice(1)},normalizeArray:function(parts,allowAboveRoot){var up=0;for(var i=parts.length-1;i>=0;i--){var last=parts[i];if(last==="."){parts.splice(i,1)}else if(last===".."){parts.splice(i,1);up++}else if(up){parts.splice(i,1);up--}}if(allowAboveRoot){for(;up;up--){parts.unshift("..")}}return parts},normalize:function(path){var isAbsolute=path.charAt(0)==="/",trailingSlash=path.substr(-1)==="/";path=PATH.normalizeArray(path.split("/").filter(function(p){return!!p}),!isAbsolute).join("/");if(!path&&!isAbsolute){path="."}if(path&&trailingSlash){path+="/"}return(isAbsolute?"/":"")+path},dirname:function(path){var result=PATH.splitPath(path),root=result[0],dir=result[1];if(!root&&!dir){return"."}if(dir){dir=dir.substr(0,dir.length-1)}return root+dir},basename:function(path){if(path==="/")return"/";path=PATH.normalize(path);path=path.replace(/\/$/,"");var lastSlash=path.lastIndexOf("/");if(lastSlash===-1)return path;return path.substr(lastSlash+1)},extname:function(path){return PATH.splitPath(path)[3]},join:function(){var paths=Array.prototype.slice.call(arguments,0);return PATH.normalize(paths.join("/"))},join2:function(l,r){return PATH.normalize(l+"/"+r)}};Module["PATH"]=PATH;function getRandomDevice(){if(typeof crypto==="object"&&typeof crypto["getRandomValues"]==="function"){var randomBuffer=new Uint8Array(1);return function(){crypto.getRandomValues(randomBuffer);return randomBuffer[0]}}else if(ENVIRONMENT_IS_NODE){try{var crypto_module=require("crypto");return function(){return crypto_module["randomBytes"](1)[0]}}catch(e){}}return function(){abort("randomDevice")}}Module["getRandomDevice"]=getRandomDevice;var PATH_FS={resolve:function(){var resolvedPath="",resolvedAbsolute=false;for(var i=arguments.length-1;i>=-1&&!resolvedAbsolute;i--){var path=i>=0?arguments[i]:FS.cwd();if(typeof path!=="string"){throw new TypeError("Arguments to path.resolve must be strings")}else if(!path){return""}resolvedPath=path+"/"+resolvedPath;resolvedAbsolute=path.charAt(0)==="/"}resolvedPath=PATH.normalizeArray(resolvedPath.split("/").filter(function(p){return!!p}),!resolvedAbsolute).join("/");return(resolvedAbsolute?"/":"")+resolvedPath||"."},relative:function(from,to){from=PATH_FS.resolve(from).substr(1);to=PATH_FS.resolve(to).substr(1);function trim(arr){var start=0;for(;start=0;end--){if(arr[end]!=="")break}if(start>end)return[];return arr.slice(start,end-start+1)}var fromParts=trim(from.split("/"));var toParts=trim(to.split("/"));var length=Math.min(fromParts.length,toParts.length);var samePartsLength=length;for(var i=0;i0){result=buf.slice(0,bytesRead).toString("utf-8")}else{result=null}}else if(typeof window!="undefined"&&typeof window.prompt=="function"){result=window.prompt("Input: ");if(result!==null){result+="\n"}}else if(typeof readline=="function"){result=readline();if(result!==null){result+="\n"}}if(!result){return null}tty.input=intArrayFromString(result,true)}return tty.input.shift()},put_char:function(tty,val){if(val===null||val===10){out(UTF8ArrayToString(tty.output,0));tty.output=[]}else{if(val!=0)tty.output.push(val)}},flush:function(tty){if(tty.output&&tty.output.length>0){out(UTF8ArrayToString(tty.output,0));tty.output=[]}}},default_tty1_ops:{put_char:function(tty,val){if(val===null||val===10){err(UTF8ArrayToString(tty.output,0));tty.output=[]}else{if(val!=0)tty.output.push(val)}},flush:function(tty){if(tty.output&&tty.output.length>0){err(UTF8ArrayToString(tty.output,0));tty.output=[]}}}};Module["TTY"]=TTY;function mmapAlloc(size){var alignedSize=alignMemory(size,16384);var ptr=_malloc(alignedSize);while(size=newCapacity)return;var CAPACITY_DOUBLING_MAX=1024*1024;newCapacity=Math.max(newCapacity,prevCapacity*(prevCapacity>>0);if(prevCapacity!=0)newCapacity=Math.max(newCapacity,256);var oldContents=node.contents;node.contents=new Uint8Array(newCapacity);if(node.usedBytes>0)node.contents.set(oldContents.subarray(0,node.usedBytes),0)},resizeFileStorage:function(node,newSize){if(node.usedBytes==newSize)return;if(newSize==0){node.contents=null;node.usedBytes=0}else{var oldContents=node.contents;node.contents=new Uint8Array(newSize);if(oldContents){node.contents.set(oldContents.subarray(0,Math.min(newSize,node.usedBytes)))}node.usedBytes=newSize}},node_ops:{getattr:function(node){var attr={};attr.dev=FS.isChrdev(node.mode)?node.id:1;attr.ino=node.id;attr.mode=node.mode;attr.nlink=1;attr.uid=0;attr.gid=0;attr.rdev=node.rdev;if(FS.isDir(node.mode)){attr.size=4096}else if(FS.isFile(node.mode)){attr.size=node.usedBytes}else if(FS.isLink(node.mode)){attr.size=node.link.length}else{attr.size=0}attr.atime=new Date(node.timestamp);attr.mtime=new Date(node.timestamp);attr.ctime=new Date(node.timestamp);attr.blksize=4096;attr.blocks=Math.ceil(attr.size/attr.blksize);return attr},setattr:function(node,attr){if(attr.mode!==undefined){node.mode=attr.mode}if(attr.timestamp!==undefined){node.timestamp=attr.timestamp}if(attr.size!==undefined){MEMFS.resizeFileStorage(node,attr.size)}},lookup:function(parent,name){throw FS.genericErrors[44]},mknod:function(parent,name,mode,dev){return MEMFS.createNode(parent,name,mode,dev)},rename:function(old_node,new_dir,new_name){if(FS.isDir(old_node.mode)){var new_node;try{new_node=FS.lookupNode(new_dir,new_name)}catch(e){}if(new_node){for(var i in new_node.contents){throw new FS.ErrnoError(55)}}}delete old_node.parent.contents[old_node.name];old_node.parent.timestamp=Date.now();old_node.name=new_name;new_dir.contents[new_name]=old_node;new_dir.timestamp=old_node.parent.timestamp;old_node.parent=new_dir},unlink:function(parent,name){delete parent.contents[name];parent.timestamp=Date.now()},rmdir:function(parent,name){var node=FS.lookupNode(parent,name);for(var i in node.contents){throw new FS.ErrnoError(55)}delete parent.contents[name];parent.timestamp=Date.now()},readdir:function(node){var entries=[".",".."];for(var key in node.contents){if(!node.contents.hasOwnProperty(key)){continue}entries.push(key)}return entries},symlink:function(parent,newname,oldpath){var node=MEMFS.createNode(parent,newname,511|40960,0);node.link=oldpath;return node},readlink:function(node){if(!FS.isLink(node.mode)){throw new FS.ErrnoError(28)}return node.link}},stream_ops:{read:function(stream,buffer,offset,length,position){var contents=stream.node.contents;if(position>=stream.node.usedBytes)return 0;var size=Math.min(stream.node.usedBytes-position,length);if(size>8&&contents.subarray){buffer.set(contents.subarray(position,position+size),offset)}else{for(var i=0;i0||position+length>2}}catch(e){if(!e.code)throw e;throw new FS.ErrnoError(NODEFS.convertNodeCode(e))}return stat.mode},realPath:function(node){var parts=[];while(node.parent!==node){parts.push(node.name);node=node.parent}parts.push(node.mount.opts.root);parts.reverse();return PATH.join.apply(null,parts)},flagsForNode:function(flags){flags&=~2097152;flags&=~2048;flags&=~32768;flags&=~524288;var newFlags=0;for(var k in NODEFS.flagsForNodeMap){if(flags&k){newFlags|=NODEFS.flagsForNodeMap[k];flags^=k}}if(!flags){return newFlags}else{throw new FS.ErrnoError(28)}},node_ops:{getattr:function(node){var path=NODEFS.realPath(node);var stat;try{stat=fs.lstatSync(path)}catch(e){if(!e.code)throw e;throw new FS.ErrnoError(NODEFS.convertNodeCode(e))}if(NODEFS.isWindows&&!stat.blksize){stat.blksize=4096}if(NODEFS.isWindows&&!stat.blocks){stat.blocks=(stat.size+stat.blksize-1)/stat.blksize|0}return{dev:stat.dev,ino:stat.ino,mode:stat.mode,nlink:stat.nlink,uid:stat.uid,gid:stat.gid,rdev:stat.rdev,size:stat.size,atime:stat.atime,mtime:stat.mtime,ctime:stat.ctime,blksize:stat.blksize,blocks:stat.blocks}},setattr:function(node,attr){var path=NODEFS.realPath(node);try{if(attr.mode!==undefined){fs.chmodSync(path,attr.mode);node.mode=attr.mode}if(attr.timestamp!==undefined){var date=new Date(attr.timestamp);fs.utimesSync(path,date,date)}if(attr.size!==undefined){fs.truncateSync(path,attr.size)}}catch(e){if(!e.code)throw e;throw new FS.ErrnoError(NODEFS.convertNodeCode(e))}},lookup:function(parent,name){var path=PATH.join2(NODEFS.realPath(parent),name);var mode=NODEFS.getMode(path);return NODEFS.createNode(parent,name,mode)},mknod:function(parent,name,mode,dev){var node=NODEFS.createNode(parent,name,mode,dev);var path=NODEFS.realPath(node);try{if(FS.isDir(node.mode)){fs.mkdirSync(path,node.mode)}else{fs.writeFileSync(path,"",{mode:node.mode})}}catch(e){if(!e.code)throw e;throw new FS.ErrnoError(NODEFS.convertNodeCode(e))}return node},rename:function(oldNode,newDir,newName){var oldPath=NODEFS.realPath(oldNode);var newPath=PATH.join2(NODEFS.realPath(newDir),newName);try{fs.renameSync(oldPath,newPath)}catch(e){if(!e.code)throw e;throw new FS.ErrnoError(NODEFS.convertNodeCode(e))}oldNode.name=newName},unlink:function(parent,name){var path=PATH.join2(NODEFS.realPath(parent),name);try{fs.unlinkSync(path)}catch(e){if(!e.code)throw e;throw new FS.ErrnoError(NODEFS.convertNodeCode(e))}},rmdir:function(parent,name){var path=PATH.join2(NODEFS.realPath(parent),name);try{fs.rmdirSync(path)}catch(e){if(!e.code)throw e;throw new FS.ErrnoError(NODEFS.convertNodeCode(e))}},readdir:function(node){var path=NODEFS.realPath(node);try{return fs.readdirSync(path)}catch(e){if(!e.code)throw e;throw new FS.ErrnoError(NODEFS.convertNodeCode(e))}},symlink:function(parent,newName,oldPath){var newPath=PATH.join2(NODEFS.realPath(parent),newName);try{fs.symlinkSync(oldPath,newPath)}catch(e){if(!e.code)throw e;throw new FS.ErrnoError(NODEFS.convertNodeCode(e))}},readlink:function(node){var path=NODEFS.realPath(node);try{path=fs.readlinkSync(path);path=NODEJS_PATH.relative(NODEJS_PATH.resolve(node.mount.opts.root),path);return path}catch(e){if(!e.code)throw e;throw new FS.ErrnoError(NODEFS.convertNodeCode(e))}}},stream_ops:{open:function(stream){var path=NODEFS.realPath(stream.node);try{if(FS.isFile(stream.node.mode)){stream.nfd=fs.openSync(path,NODEFS.flagsForNode(stream.flags))}}catch(e){if(!e.code)throw e;throw new FS.ErrnoError(NODEFS.convertNodeCode(e))}},close:function(stream){try{if(FS.isFile(stream.node.mode)&&stream.nfd){fs.closeSync(stream.nfd)}}catch(e){if(!e.code)throw e;throw new FS.ErrnoError(NODEFS.convertNodeCode(e))}},read:function(stream,buffer,offset,length,position){if(length===0)return 0;try{return fs.readSync(stream.nfd,NODEFS.bufferFrom(buffer.buffer),offset,length,position)}catch(e){throw new FS.ErrnoError(NODEFS.convertNodeCode(e))}},write:function(stream,buffer,offset,length,position){try{return fs.writeSync(stream.nfd,NODEFS.bufferFrom(buffer.buffer),offset,length,position)}catch(e){throw new FS.ErrnoError(NODEFS.convertNodeCode(e))}},llseek:function(stream,offset,whence){var position=offset;if(whence===1){position+=stream.position}else if(whence===2){if(FS.isFile(stream.node.mode)){try{var stat=fs.fstatSync(stream.nfd);position+=stat.size}catch(e){throw new FS.ErrnoError(NODEFS.convertNodeCode(e))}}}if(position<0){throw new FS.ErrnoError(28)}return position},mmap:function(stream,address,length,position,prot,flags){if(address!==0){throw new FS.ErrnoError(28)}if(!FS.isFile(stream.node.mode)){throw new FS.ErrnoError(43)}var ptr=mmapAlloc(length);NODEFS.stream_ops.read(stream,HEAP8,ptr,length,position);return{ptr:ptr,allocated:true}},msync:function(stream,buffer,offset,length,mmapFlags){if(!FS.isFile(stream.node.mode)){throw new FS.ErrnoError(43)}if(mmapFlags&2){return 0}var bytesWritten=NODEFS.stream_ops.write(stream,buffer,0,length,offset,false);return 0}}};Module["NODEFS"]=NODEFS;var WORKERFS={DIR_MODE:16895,FILE_MODE:33279,reader:null,mount:function(mount){assert(ENVIRONMENT_IS_WORKER);if(!WORKERFS.reader)WORKERFS.reader=new FileReaderSync;var root=WORKERFS.createNode(null,"/",WORKERFS.DIR_MODE,0);var createdParents={};function ensureParent(path){var parts=path.split("/");var parent=root;for(var i=0;i=stream.node.size)return 0;var chunk=stream.node.contents.slice(position,position+length);var ab=WORKERFS.reader.readAsArrayBuffer(chunk);buffer.set(new Uint8Array(ab),offset);return chunk.size},write:function(stream,buffer,offset,length,position){throw new FS.ErrnoError(29)},llseek:function(stream,offset,whence){var position=offset;if(whence===1){position+=stream.position}else if(whence===2){if(FS.isFile(stream.node.mode)){position+=stream.node.size}}if(position<0){throw new FS.ErrnoError(28)}return position}}};Module["WORKERFS"]=WORKERFS;var PROXYFS={mount:function(mount){return PROXYFS.createNode(null,"/",mount.opts.fs.lstat(mount.opts.root).mode,0)},createNode:function(parent,name,mode,dev){if(!FS.isDir(mode)&&!FS.isFile(mode)&&!FS.isLink(mode)){throw new FS.ErrnoError(ERRNO_CODES.EINVAL)}var node=FS.createNode(parent,name,mode);node.node_ops=PROXYFS.node_ops;node.stream_ops=PROXYFS.stream_ops;return node},realPath:function(node){var parts=[];while(node.parent!==node){parts.push(node.name);node=node.parent}parts.push(node.mount.opts.root);parts.reverse();return PATH.join.apply(null,parts)},node_ops:{getattr:function(node){var path=PROXYFS.realPath(node);var stat;try{stat=node.mount.opts.fs.lstat(path)}catch(e){if(!e.code)throw e;throw new FS.ErrnoError(ERRNO_CODES[e.code])}return{dev:stat.dev,ino:stat.ino,mode:stat.mode,nlink:stat.nlink,uid:stat.uid,gid:stat.gid,rdev:stat.rdev,size:stat.size,atime:stat.atime,mtime:stat.mtime,ctime:stat.ctime,blksize:stat.blksize,blocks:stat.blocks}},setattr:function(node,attr){var path=PROXYFS.realPath(node);try{if(attr.mode!==undefined){node.mount.opts.fs.chmod(path,attr.mode);node.mode=attr.mode}if(attr.timestamp!==undefined){var date=new Date(attr.timestamp);node.mount.opts.fs.utime(path,date,date)}if(attr.size!==undefined){node.mount.opts.fs.truncate(path,attr.size)}}catch(e){if(!e.code)throw e;throw new FS.ErrnoError(ERRNO_CODES[e.code])}},lookup:function(parent,name){try{var path=PATH.join2(PROXYFS.realPath(parent),name);var mode=parent.mount.opts.fs.lstat(path).mode;var node=PROXYFS.createNode(parent,name,mode);return node}catch(e){if(!e.code)throw e;throw new FS.ErrnoError(ERRNO_CODES[e.code])}},mknod:function(parent,name,mode,dev){var node=PROXYFS.createNode(parent,name,mode,dev);var path=PROXYFS.realPath(node);try{if(FS.isDir(node.mode)){node.mount.opts.fs.mkdir(path,node.mode)}else{node.mount.opts.fs.writeFile(path,"",{mode:node.mode})}}catch(e){if(!e.code)throw e;throw new FS.ErrnoError(ERRNO_CODES[e.code])}return node},rename:function(oldNode,newDir,newName){var oldPath=PROXYFS.realPath(oldNode);var newPath=PATH.join2(PROXYFS.realPath(newDir),newName);try{oldNode.mount.opts.fs.rename(oldPath,newPath)}catch(e){if(!e.code)throw e;throw new FS.ErrnoError(ERRNO_CODES[e.code])}},unlink:function(parent,name){var path=PATH.join2(PROXYFS.realPath(parent),name);try{parent.mount.opts.fs.unlink(path)}catch(e){if(!e.code)throw e;throw new FS.ErrnoError(ERRNO_CODES[e.code])}},rmdir:function(parent,name){var path=PATH.join2(PROXYFS.realPath(parent),name);try{parent.mount.opts.fs.rmdir(path)}catch(e){if(!e.code)throw e;throw new FS.ErrnoError(ERRNO_CODES[e.code])}},readdir:function(node){var path=PROXYFS.realPath(node);try{return node.mount.opts.fs.readdir(path)}catch(e){if(!e.code)throw e;throw new FS.ErrnoError(ERRNO_CODES[e.code])}},symlink:function(parent,newName,oldPath){var newPath=PATH.join2(PROXYFS.realPath(parent),newName);try{parent.mount.opts.fs.symlink(oldPath,newPath)}catch(e){if(!e.code)throw e;throw new FS.ErrnoError(ERRNO_CODES[e.code])}},readlink:function(node){var path=PROXYFS.realPath(node);try{return node.mount.opts.fs.readlink(path)}catch(e){if(!e.code)throw e;throw new FS.ErrnoError(ERRNO_CODES[e.code])}}},stream_ops:{open:function(stream){var path=PROXYFS.realPath(stream.node);try{stream.nfd=stream.node.mount.opts.fs.open(path,stream.flags)}catch(e){if(!e.code)throw e;throw new FS.ErrnoError(ERRNO_CODES[e.code])}},close:function(stream){try{stream.node.mount.opts.fs.close(stream.nfd)}catch(e){if(!e.code)throw e;throw new FS.ErrnoError(ERRNO_CODES[e.code])}},read:function(stream,buffer,offset,length,position){try{return stream.node.mount.opts.fs.read(stream.nfd,buffer,offset,length,position)}catch(e){if(!e.code)throw e;throw new FS.ErrnoError(ERRNO_CODES[e.code])}},write:function(stream,buffer,offset,length,position){try{return stream.node.mount.opts.fs.write(stream.nfd,buffer,offset,length,position)}catch(e){if(!e.code)throw e;throw new FS.ErrnoError(ERRNO_CODES[e.code])}},llseek:function(stream,offset,whence){var position=offset;if(whence===1){position+=stream.position}else if(whence===2){if(FS.isFile(stream.node.mode)){try{var stat=stream.node.mount.opts.fs.fstat(stream.nfd);position+=stat.size}catch(e){throw new FS.ErrnoError(ERRNO_CODES[e.code])}}}if(position<0){throw new FS.ErrnoError(ERRNO_CODES.EINVAL)}return position}}};Module["PROXYFS"]=PROXYFS;var LZ4={DIR_MODE:16895,FILE_MODE:33279,CHUNK_SIZE:-1,codec:null,init:function(){if(LZ4.codec)return;LZ4.codec=function(){var MiniLZ4=function(){var exports={};exports.uncompress=function(input,output,sIdx,eIdx){sIdx=sIdx||0;eIdx=eIdx||input.length-sIdx;for(var i=sIdx,n=eIdx,j=0;i>4;if(literals_length>0){var l=literals_length+240;while(l===255){l=input[i++];literals_length+=l}var end=i+literals_length;while(ij)return-(i-2);var match_length=token&15;var l=match_length+240;while(l===255){l=input[i++];match_length+=l}var pos=j-offset;var end=j+match_length+4;while(jmaxInputSize?0:isize+isize/255+16|0};exports.compress=function(src,dst,sIdx,eIdx){hashTable.set(empty);return compressBlock(src,dst,0,sIdx||0,eIdx||dst.length)};function compressBlock(src,dst,pos,sIdx,eIdx){var dpos=sIdx;var dlen=eIdx-sIdx;var anchor=0;if(src.length>=maxInputSize)throw new Error("input too large");if(src.length>mfLimit){var n=exports.compressBound(src.length);if(dlen>>hashShift;var ref=hashTable[hash]-1;hashTable[hash]=pos+1;if(ref<0||pos-ref>>>16>0||((src[ref+3]<<8|src[ref+2])!=sequenceHighBits||(src[ref+1]<<8|src[ref])!=sequenceLowBits)){step=findMatchAttempts++>>skipStrength;pos+=step;continue}findMatchAttempts=(1<=runMask){dst[dpos++]=(runMask<254;len-=255){dst[dpos++]=255}dst[dpos++]=len}else{dst[dpos++]=(literals_length<>8;if(match_length>=mlMask){match_length-=mlMask;while(match_length>=255){match_length-=255;dst[dpos++]=255}dst[dpos++]=match_length}anchor=pos}}if(anchor==0)return 0;literals_length=src.length-anchor;if(literals_length>=runMask){dst[dpos++]=runMask<254;ln-=255){dst[dpos++]=255}dst[dpos++]=ln}else{dst[dpos++]=literals_length<0){assert(compressedSize<=bound);compressed=compressed.subarray(0,compressedSize);compressedChunks.push(compressed);total+=compressedSize;successes.push(1);if(verify){var back=exports.uncompress(compressed,temp);assert(back===chunk.length,[back,chunk.length]);for(var i=0;i=0){currChunk=compressedData["cachedChunks"][found]}else{compressedData["cachedIndexes"].pop();compressedData["cachedIndexes"].unshift(chunkIndex);currChunk=compressedData["cachedChunks"].pop();compressedData["cachedChunks"].unshift(currChunk);if(compressedData["debug"]){console.log("decompressing chunk "+chunkIndex);Module["decompressedChunks"]=(Module["decompressedChunks"]||0)+1}var compressed=compressedData["data"].subarray(compressedStart,compressedStart+compressedSize);var originalSize=LZ4.codec.uncompress(compressed,currChunk);if(chunkIndex8){throw new FS.ErrnoError(32)}var parts=PATH.normalizeArray(path.split("/").filter(function(p){return!!p}),false);var current=FS.root;var current_path="/";for(var i=0;i40){throw new FS.ErrnoError(32)}}}}return{path:current_path,node:current}},getPath:function(node){var path;while(true){if(FS.isRoot(node)){var mount=node.mount.mountpoint;if(!path)return mount;return mount[mount.length-1]!=="/"?mount+"/"+path:mount+path}path=path?node.name+"/"+path:node.name;node=node.parent}},hashName:function(parentid,name){var hash=0;for(var i=0;i>>0)%FS.nameTable.length},hashAddNode:function(node){var hash=FS.hashName(node.parent.id,node.name);node.name_next=FS.nameTable[hash];FS.nameTable[hash]=node},hashRemoveNode:function(node){var hash=FS.hashName(node.parent.id,node.name);if(FS.nameTable[hash]===node){FS.nameTable[hash]=node.name_next}else{var current=FS.nameTable[hash];while(current){if(current.name_next===node){current.name_next=node.name_next;break}current=current.name_next}}},lookupNode:function(parent,name){var errCode=FS.mayLookup(parent);if(errCode){throw new FS.ErrnoError(errCode,parent)}var hash=FS.hashName(parent.id,name);for(var node=FS.nameTable[hash];node;node=node.name_next){var nodeName=node.name;if(node.parent.id===parent.id&&nodeName===name){return node}}return FS.lookup(parent,name)},createNode:function(parent,name,mode,rdev){var node=new FS.FSNode(parent,name,mode,rdev);FS.hashAddNode(node);return node},destroyNode:function(node){FS.hashRemoveNode(node)},isRoot:function(node){return node===node.parent},isMountpoint:function(node){return!!node.mounted},isFile:function(mode){return(mode&61440)===32768},isDir:function(mode){return(mode&61440)===16384},isLink:function(mode){return(mode&61440)===40960},isChrdev:function(mode){return(mode&61440)===8192},isBlkdev:function(mode){return(mode&61440)===24576},isFIFO:function(mode){return(mode&61440)===4096},isSocket:function(mode){return(mode&49152)===49152},flagModes:{"r":0,"r+":2,"w":577,"w+":578,"a":1089,"a+":1090},modeStringToFlags:function(str){var flags=FS.flagModes[str];if(typeof flags==="undefined"){throw new Error("Unknown file open mode: "+str)}return flags},flagsToPermissionString:function(flag){var perms=["r","w","rw"][flag&3];if(flag&512){perms+="w"}return perms},nodePermissions:function(node,perms){if(FS.ignorePermissions){return 0}if(perms.indexOf("r")!==-1&&!(node.mode&292)){return 2}else if(perms.indexOf("w")!==-1&&!(node.mode&146)){return 2}else if(perms.indexOf("x")!==-1&&!(node.mode&73)){return 2}return 0},mayLookup:function(dir){var errCode=FS.nodePermissions(dir,"x");if(errCode)return errCode;if(!dir.node_ops.lookup)return 2;return 0},mayCreate:function(dir,name){try{var node=FS.lookupNode(dir,name);return 20}catch(e){}return FS.nodePermissions(dir,"wx")},mayDelete:function(dir,name,isdir){var node;try{node=FS.lookupNode(dir,name)}catch(e){return e.errno}var errCode=FS.nodePermissions(dir,"wx");if(errCode){return errCode}if(isdir){if(!FS.isDir(node.mode)){return 54}if(FS.isRoot(node)||FS.getPath(node)===FS.cwd()){return 10}}else{if(FS.isDir(node.mode)){return 31}}return 0},mayOpen:function(node,flags){if(!node){return 44}if(FS.isLink(node.mode)){return 32}else if(FS.isDir(node.mode)){if(FS.flagsToPermissionString(flags)!=="r"||flags&512){return 31}}return FS.nodePermissions(node,FS.flagsToPermissionString(flags))},MAX_OPEN_FDS:4096,nextfd:function(fd_start,fd_end){fd_start=fd_start||0;fd_end=fd_end||FS.MAX_OPEN_FDS;for(var fd=fd_start;fd<=fd_end;fd++){if(!FS.streams[fd]){return fd}}throw new FS.ErrnoError(33)},getStream:function(fd){return FS.streams[fd]},createStream:function(stream,fd_start,fd_end){if(!FS.FSStream){FS.FSStream=function(){};FS.FSStream.prototype={object:{get:function(){return this.node},set:function(val){this.node=val}},isRead:{get:function(){return(this.flags&2097155)!==1}},isWrite:{get:function(){return(this.flags&2097155)!==0}},isAppend:{get:function(){return this.flags&1024}},get flags(){return this.shared.flags},set flags(value){this.shared.flags=value},get position(){return this.shared.position},set position(value){this.shared.position=value}}}var newStream=new FS.FSStream;newStream.shared={};for(var p in stream){newStream[p]=stream[p]}stream=newStream;var fd=FS.nextfd(fd_start,fd_end);stream.fd=fd;FS.streams[fd]=stream;return stream},closeStream:function(fd){FS.streams[fd]=null},chrdev_stream_ops:{open:function(stream){var device=FS.getDevice(stream.node.rdev);stream.stream_ops=device.stream_ops;if(stream.stream_ops.open){stream.stream_ops.open(stream)}},llseek:function(){throw new FS.ErrnoError(70)}},major:function(dev){return dev>>8},minor:function(dev){return dev&255},makedev:function(ma,mi){return ma<<8|mi},registerDevice:function(dev,ops){FS.devices[dev]={stream_ops:ops}},getDevice:function(dev){return FS.devices[dev]},getMounts:function(mount){var mounts=[];var check=[mount];while(check.length){var m=check.pop();mounts.push(m);check.push.apply(check,m.mounts)}return mounts},syncfs:function(populate,callback){if(typeof populate==="function"){callback=populate;populate=false}FS.syncFSRequests++;if(FS.syncFSRequests>1){err("warning: "+FS.syncFSRequests+" FS.syncfs operations in flight at once, probably just doing extra work")}var mounts=FS.getMounts(FS.root.mount);var completed=0;function doCallback(errCode){FS.syncFSRequests--;return callback(errCode)}function done(errCode){if(errCode){if(!done.errored){done.errored=true;return doCallback(errCode)}return}if(++completed>=mounts.length){doCallback(null)}}mounts.forEach(function(mount){if(!mount.type.syncfs){return done(null)}mount.type.syncfs(mount,populate,done)})},mount:function(type,opts,mountpoint){var root=mountpoint==="/";var pseudo=!mountpoint;var node;if(root&&FS.root){throw new FS.ErrnoError(10)}else if(!root&&!pseudo){var lookup=FS.lookupPath(mountpoint,{follow_mount:false});mountpoint=lookup.path;node=lookup.node;if(FS.isMountpoint(node)){throw new FS.ErrnoError(10)}if(!FS.isDir(node.mode)){throw new FS.ErrnoError(54)}}var mount={type:type,opts:opts,mountpoint:mountpoint,mounts:[]};var mountRoot=type.mount(mount);mountRoot.mount=mount;mount.root=mountRoot;if(root){FS.root=mountRoot}else if(node){node.mounted=mount;if(node.mount){node.mount.mounts.push(mount)}}return mountRoot},unmount:function(mountpoint){var lookup=FS.lookupPath(mountpoint,{follow_mount:false});if(!FS.isMountpoint(lookup.node)){throw new FS.ErrnoError(28)}var node=lookup.node;var mount=node.mounted;var mounts=FS.getMounts(mount);Object.keys(FS.nameTable).forEach(function(hash){var current=FS.nameTable[hash];while(current){var next=current.name_next;if(mounts.indexOf(current.mount)!==-1){FS.destroyNode(current)}current=next}});node.mounted=null;var idx=node.mount.mounts.indexOf(mount);node.mount.mounts.splice(idx,1)},lookup:function(parent,name){return parent.node_ops.lookup(parent,name)},mknod:function(path,mode,dev){var lookup=FS.lookupPath(path,{parent:true});var parent=lookup.node;var name=PATH.basename(path);if(!name||name==="."||name===".."){throw new FS.ErrnoError(28)}var errCode=FS.mayCreate(parent,name);if(errCode){throw new FS.ErrnoError(errCode)}if(!parent.node_ops.mknod){throw new FS.ErrnoError(63)}return parent.node_ops.mknod(parent,name,mode,dev)},create:function(path,mode){mode=mode!==undefined?mode:438;mode&=4095;mode|=32768;return FS.mknod(path,mode,0)},mkdir:function(path,mode){mode=mode!==undefined?mode:511;mode&=511|512;mode|=16384;return FS.mknod(path,mode,0)},mkdirTree:function(path,mode){var dirs=path.split("/");var d="";for(var i=0;ithis.length-1||idx<0){return undefined}var chunkOffset=idx%this.chunkSize;var chunkNum=idx/this.chunkSize|0;return this.getter(chunkNum)[chunkOffset]};LazyUint8Array.prototype.setDataGetter=function LazyUint8Array_setDataGetter(getter){this.getter=getter};LazyUint8Array.prototype.cacheLength=function LazyUint8Array_cacheLength(){var xhr=new XMLHttpRequest;xhr.open("HEAD",url,false);xhr.send(null);if(!(xhr.status>=200&&xhr.status<300||xhr.status===304))throw new Error("Couldn't load "+url+". Status: "+xhr.status);var datalength=Number(xhr.getResponseHeader("Content-length"));var header;var hasByteServing=(header=xhr.getResponseHeader("Accept-Ranges"))&&header==="bytes";var usesGzip=(header=xhr.getResponseHeader("Content-Encoding"))&&header==="gzip";var chunkSize=1024*1024;if(!hasByteServing)chunkSize=datalength;var doXHR=function(from,to){if(from>to)throw new Error("invalid range ("+from+", "+to+") or no bytes requested!");if(to>datalength-1)throw new Error("only "+datalength+" bytes available! programmer error!");var xhr=new XMLHttpRequest;xhr.open("GET",url,false);if(datalength!==chunkSize)xhr.setRequestHeader("Range","bytes="+from+"-"+to);if(typeof Uint8Array!="undefined")xhr.responseType="arraybuffer";if(xhr.overrideMimeType){xhr.overrideMimeType("text/plain; charset=x-user-defined")}xhr.send(null);if(!(xhr.status>=200&&xhr.status<300||xhr.status===304))throw new Error("Couldn't load "+url+". Status: "+xhr.status);if(xhr.response!==undefined){return new Uint8Array(xhr.response||[])}else{return intArrayFromString(xhr.responseText||"",true)}};var lazyArray=this;lazyArray.setDataGetter(function(chunkNum){var start=chunkNum*chunkSize;var end=(chunkNum+1)*chunkSize-1;end=Math.min(end,datalength-1);if(typeof lazyArray.chunks[chunkNum]==="undefined"){lazyArray.chunks[chunkNum]=doXHR(start,end)}if(typeof lazyArray.chunks[chunkNum]==="undefined")throw new Error("doXHR failed!");return lazyArray.chunks[chunkNum]});if(usesGzip||!datalength){chunkSize=datalength=1;datalength=this.getter(0).length;chunkSize=datalength;out("LazyFiles on gzip forces download of the whole file when length is accessed")}this._length=datalength;this._chunkSize=chunkSize;this.lengthKnown=true};if(typeof XMLHttpRequest!=="undefined"){if(!ENVIRONMENT_IS_WORKER)throw"Cannot do synchronous binary XHRs outside webworkers in modern browsers. Use --embed-file or --preload-file in emcc";var lazyArray=new LazyUint8Array;Object.defineProperties(lazyArray,{length:{get:function(){if(!this.lengthKnown){this.cacheLength()}return this._length}},chunkSize:{get:function(){if(!this.lengthKnown){this.cacheLength()}return this._chunkSize}}});var properties={isDevice:false,contents:lazyArray}}else{var properties={isDevice:false,url:url}}var node=FS.createFile(parent,name,properties,canRead,canWrite);if(properties.contents){node.contents=properties.contents}else if(properties.url){node.contents=null;node.url=properties.url}Object.defineProperties(node,{usedBytes:{get:function(){return this.contents.length}}});var stream_ops={};var keys=Object.keys(node.stream_ops);keys.forEach(function(key){var fn=node.stream_ops[key];stream_ops[key]=function forceLoadLazyFile(){FS.forceLoadFile(node);return fn.apply(null,arguments)}});stream_ops.read=function stream_ops_read(stream,buffer,offset,length,position){FS.forceLoadFile(node);var contents=stream.node.contents;if(position>=contents.length)return 0;var size=Math.min(contents.length-position,length);if(contents.slice){for(var i=0;i>2]=stat.dev;HEAP32[buf+4>>2]=0;HEAP32[buf+8>>2]=stat.ino;HEAP32[buf+12>>2]=stat.mode;HEAP32[buf+16>>2]=stat.nlink;HEAP32[buf+20>>2]=stat.uid;HEAP32[buf+24>>2]=stat.gid;HEAP32[buf+28>>2]=stat.rdev;HEAP32[buf+32>>2]=0;tempI64=[stat.size>>>0,(tempDouble=stat.size,+Math.abs(tempDouble)>=1?tempDouble>0?(Math.min(+Math.floor(tempDouble/4294967296),4294967295)|0)>>>0:~~+Math.ceil((tempDouble-+(~~tempDouble>>>0))/4294967296)>>>0:0)],HEAP32[buf+40>>2]=tempI64[0],HEAP32[buf+44>>2]=tempI64[1];HEAP32[buf+48>>2]=4096;HEAP32[buf+52>>2]=stat.blocks;HEAP32[buf+56>>2]=stat.atime.getTime()/1e3|0;HEAP32[buf+60>>2]=0;HEAP32[buf+64>>2]=stat.mtime.getTime()/1e3|0;HEAP32[buf+68>>2]=0;HEAP32[buf+72>>2]=stat.ctime.getTime()/1e3|0;HEAP32[buf+76>>2]=0;tempI64=[stat.ino>>>0,(tempDouble=stat.ino,+Math.abs(tempDouble)>=1?tempDouble>0?(Math.min(+Math.floor(tempDouble/4294967296),4294967295)|0)>>>0:~~+Math.ceil((tempDouble-+(~~tempDouble>>>0))/4294967296)>>>0:0)],HEAP32[buf+80>>2]=tempI64[0],HEAP32[buf+84>>2]=tempI64[1];return 0},doMsync:function(addr,stream,len,flags,offset){var buffer=HEAPU8.slice(addr,addr+len);FS.msync(stream,buffer,offset,len,flags)},doMkdir:function(path,mode){path=PATH.normalize(path);if(path[path.length-1]==="/")path=path.substr(0,path.length-1);FS.mkdir(path,mode,0);return 0},doMknod:function(path,mode,dev){switch(mode&61440){case 32768:case 8192:case 24576:case 4096:case 49152:break;default:return-28}FS.mknod(path,mode,dev);return 0},doReadlink:function(path,buf,bufsize){if(bufsize<=0)return-28;var ret=FS.readlink(path);var len=Math.min(bufsize,lengthBytesUTF8(ret));var endChar=HEAP8[buf+len];stringToUTF8(ret,buf,bufsize+1);HEAP8[buf+len]=endChar;return len},doAccess:function(path,amode){if(amode&~7){return-28}var node;var lookup=FS.lookupPath(path,{follow:true});node=lookup.node;if(!node){return-44}var perms="";if(amode&4)perms+="r";if(amode&2)perms+="w";if(amode&1)perms+="x";if(perms&&FS.nodePermissions(node,perms)){return-2}return 0},doDup:function(stream,suggestFD){var suggest=FS.getStream(suggestFD);if(suggest)FS.close(suggest);return FS.createStream(stream,suggestFD,suggestFD).fd},doReadv:function(stream,iov,iovcnt,offset){var ret=0;for(var i=0;i>2];var len=HEAP32[iov+(i*8+4)>>2];var curr=FS.read(stream,HEAP8,ptr,len,offset);if(curr<0)return-1;ret+=curr;if(curr>2];var len=HEAP32[iov+(i*8+4)>>2];var curr=FS.write(stream,HEAP8,ptr,len,offset);if(curr<0)return-1;ret+=curr}return ret},varargs:undefined,get:function(){SYSCALLS.varargs+=4;var ret=HEAP32[SYSCALLS.varargs-4>>2];return ret},getStr:function(ptr){var ret=UTF8ToString(ptr);return ret},getStreamFromFD:function(fd){var stream=FS.getStream(fd);if(!stream)throw new FS.ErrnoError(8);return stream},get64:function(low,high){return low}};Module["SYSCALLS"]=SYSCALLS;function ___sys__newselect(nfds,readfds,writefds,exceptfds,timeout){try{var total=0;var srcReadLow=readfds?HEAP32[readfds>>2]:0,srcReadHigh=readfds?HEAP32[readfds+4>>2]:0;var srcWriteLow=writefds?HEAP32[writefds>>2]:0,srcWriteHigh=writefds?HEAP32[writefds+4>>2]:0;var srcExceptLow=exceptfds?HEAP32[exceptfds>>2]:0,srcExceptHigh=exceptfds?HEAP32[exceptfds+4>>2]:0;var dstReadLow=0,dstReadHigh=0;var dstWriteLow=0,dstWriteHigh=0;var dstExceptLow=0,dstExceptHigh=0;var allLow=(readfds?HEAP32[readfds>>2]:0)|(writefds?HEAP32[writefds>>2]:0)|(exceptfds?HEAP32[exceptfds>>2]:0);var allHigh=(readfds?HEAP32[readfds+4>>2]:0)|(writefds?HEAP32[writefds+4>>2]:0)|(exceptfds?HEAP32[exceptfds+4>>2]:0);var check=function(fd,low,high,val){return fd<32?low&val:high&val};for(var fd=0;fd>2]=dstReadLow;HEAP32[readfds+4>>2]=dstReadHigh}if(writefds){HEAP32[writefds>>2]=dstWriteLow;HEAP32[writefds+4>>2]=dstWriteHigh}if(exceptfds){HEAP32[exceptfds>>2]=dstExceptLow;HEAP32[exceptfds+4>>2]=dstExceptHigh}return total}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys__newselect"]=___sys__newselect;var SOCKFS={mount:function(mount){Module["websocket"]=Module["websocket"]&&"object"===typeof Module["websocket"]?Module["websocket"]:{};Module["websocket"]._callbacks={};Module["websocket"]["on"]=function(event,callback){if("function"===typeof callback){this._callbacks[event]=callback}return this};Module["websocket"].emit=function(event,param){if("function"===typeof this._callbacks[event]){this._callbacks[event].call(this,param)}};return FS.createNode(null,"/",16384|511,0)},createSocket:function(family,type,protocol){type&=~526336;var streaming=type==1;if(protocol){assert(streaming==(protocol==6))}var sock={family:family,type:type,protocol:protocol,server:null,error:null,peers:{},pending:[],recv_queue:[],sock_ops:SOCKFS.websocket_sock_ops};var name=SOCKFS.nextname();var node=FS.createNode(SOCKFS.root,name,49152,0);node.sock=sock;var stream=FS.createStream({path:name,node:node,flags:2,seekable:false,stream_ops:SOCKFS.stream_ops});sock.stream=stream;return sock},getSocket:function(fd){var stream=FS.getStream(fd);if(!stream||!FS.isSocket(stream.node.mode)){return null}return stream.node.sock},stream_ops:{poll:function(stream){var sock=stream.node.sock;return sock.sock_ops.poll(sock)},ioctl:function(stream,request,varargs){var sock=stream.node.sock;return sock.sock_ops.ioctl(sock,request,varargs)},read:function(stream,buffer,offset,length,position){var sock=stream.node.sock;var msg=sock.sock_ops.recvmsg(sock,length);if(!msg){return 0}buffer.set(msg.buffer,offset);return msg.buffer.length},write:function(stream,buffer,offset,length,position){var sock=stream.node.sock;return sock.sock_ops.sendmsg(sock,buffer,offset,length)},close:function(stream){var sock=stream.node.sock;sock.sock_ops.close(sock)}},nextname:function(){if(!SOCKFS.nextname.current){SOCKFS.nextname.current=0}return"socket["+SOCKFS.nextname.current+++"]"},websocket_sock_ops:{createPeer:function(sock,addr,port){var ws;if(typeof addr==="object"){ws=addr;addr=null;port=null}if(ws){if(ws._socket){addr=ws._socket.remoteAddress;port=ws._socket.remotePort}else{var result=/ws[s]?:\/\/([^:]+):(\d+)/.exec(ws.url);if(!result){throw new Error("WebSocket URL must be in the format ws(s)://address:port")}addr=result[1];port=parseInt(result[2],10)}}else{try{var runtimeConfig=Module["websocket"]&&"object"===typeof Module["websocket"];var url="ws:#".replace("#","//");if(runtimeConfig){if("string"===typeof Module["websocket"]["url"]){url=Module["websocket"]["url"]}}if(url==="ws://"||url==="wss://"){var parts=addr.split("/");url=url+parts[0]+":"+port+"/"+parts.slice(1).join("/")}var subProtocols="binary";if(runtimeConfig){if("string"===typeof Module["websocket"]["subprotocol"]){subProtocols=Module["websocket"]["subprotocol"]}}var opts=undefined;if(subProtocols!=="null"){subProtocols=subProtocols.replace(/^ +| +$/g,"").split(/ *, */);opts=ENVIRONMENT_IS_NODE?{"protocol":subProtocols.toString()}:subProtocols}if(runtimeConfig&&null===Module["websocket"]["subprotocol"]){subProtocols="null";opts=undefined}var WebSocketConstructor;if(ENVIRONMENT_IS_NODE){WebSocketConstructor=require("ws")}else{WebSocketConstructor=WebSocket}ws=new WebSocketConstructor(url,opts);ws.binaryType="arraybuffer"}catch(e){throw new FS.ErrnoError(ERRNO_CODES.EHOSTUNREACH)}}var peer={addr:addr,port:port,socket:ws,dgram_send_queue:[]};SOCKFS.websocket_sock_ops.addPeer(sock,peer);SOCKFS.websocket_sock_ops.handlePeerEvents(sock,peer);if(sock.type===2&&typeof sock.sport!=="undefined"){peer.dgram_send_queue.push(new Uint8Array([255,255,255,255,"p".charCodeAt(0),"o".charCodeAt(0),"r".charCodeAt(0),"t".charCodeAt(0),(sock.sport&65280)>>8,sock.sport&255]))}return peer},getPeer:function(sock,addr,port){return sock.peers[addr+":"+port]},addPeer:function(sock,peer){sock.peers[peer.addr+":"+peer.port]=peer},removePeer:function(sock,peer){delete sock.peers[peer.addr+":"+peer.port]},handlePeerEvents:function(sock,peer){var first=true;var handleOpen=function(){Module["websocket"].emit("open",sock.stream.fd);try{var queued=peer.dgram_send_queue.shift();while(queued){peer.socket.send(queued);queued=peer.dgram_send_queue.shift()}}catch(e){peer.socket.close()}};function handleMessage(data){if(typeof data==="string"){var encoder=new TextEncoder;data=encoder.encode(data)}else{assert(data.byteLength!==undefined);if(data.byteLength==0){return}else{data=new Uint8Array(data)}}var wasfirst=first;first=false;if(wasfirst&&data.length===10&&data[0]===255&&data[1]===255&&data[2]===255&&data[3]===255&&data[4]==="p".charCodeAt(0)&&data[5]==="o".charCodeAt(0)&&data[6]==="r".charCodeAt(0)&&data[7]==="t".charCodeAt(0)){var newport=data[8]<<8|data[9];SOCKFS.websocket_sock_ops.removePeer(sock,peer);peer.port=newport;SOCKFS.websocket_sock_ops.addPeer(sock,peer);return}sock.recv_queue.push({addr:peer.addr,port:peer.port,data:data});Module["websocket"].emit("message",sock.stream.fd)}if(ENVIRONMENT_IS_NODE){peer.socket.on("open",handleOpen);peer.socket.on("message",function(data,flags){if(!flags.binary){return}handleMessage(new Uint8Array(data).buffer)});peer.socket.on("close",function(){Module["websocket"].emit("close",sock.stream.fd)});peer.socket.on("error",function(error){sock.error=ERRNO_CODES.ECONNREFUSED;Module["websocket"].emit("error",[sock.stream.fd,sock.error,"ECONNREFUSED: Connection refused"])})}else{peer.socket.onopen=handleOpen;peer.socket.onclose=function(){Module["websocket"].emit("close",sock.stream.fd)};peer.socket.onmessage=function peer_socket_onmessage(event){handleMessage(event.data)};peer.socket.onerror=function(error){sock.error=ERRNO_CODES.ECONNREFUSED;Module["websocket"].emit("error",[sock.stream.fd,sock.error,"ECONNREFUSED: Connection refused"])}}},poll:function(sock){if(sock.type===1&&sock.server){return sock.pending.length?64|1:0}var mask=0;var dest=sock.type===1?SOCKFS.websocket_sock_ops.getPeer(sock,sock.daddr,sock.dport):null;if(sock.recv_queue.length||!dest||dest&&dest.socket.readyState===dest.socket.CLOSING||dest&&dest.socket.readyState===dest.socket.CLOSED){mask|=64|1}if(!dest||dest&&dest.socket.readyState===dest.socket.OPEN){mask|=4}if(dest&&dest.socket.readyState===dest.socket.CLOSING||dest&&dest.socket.readyState===dest.socket.CLOSED){mask|=16}return mask},ioctl:function(sock,request,arg){switch(request){case 21531:var bytes=0;if(sock.recv_queue.length){bytes=sock.recv_queue[0].data.length}HEAP32[arg>>2]=bytes;return 0;default:return ERRNO_CODES.EINVAL}},close:function(sock){if(sock.server){try{sock.server.close()}catch(e){}sock.server=null}var peers=Object.keys(sock.peers);for(var i=0;i>>0}Module["inetPton4"]=inetPton4;function jstoi_q(str){return parseInt(str)}Module["jstoi_q"]=jstoi_q;function inetPton6(str){var words;var w,offset,z,i;var valid6regx=/^((?=.*::)(?!.*::.+::)(::)?([\dA-F]{1,4}:(:|\b)|){5}|([\dA-F]{1,4}:){6})((([\dA-F]{1,4}((?!\3)::|:\b|$))|(?!\2\3)){2}|(((2[0-4]|1\d|[1-9])?\d|25[0-5])\.?\b){4})$/i;var parts=[];if(!valid6regx.test(str)){return null}if(str==="::"){return[0,0,0,0,0,0,0,0]}if(str.indexOf("::")===0){str=str.replace("::","Z:")}else{str=str.replace("::",":Z:")}if(str.indexOf(".")>0){str=str.replace(new RegExp("[.]","g"),":");words=str.split(":");words[words.length-4]=jstoi_q(words[words.length-4])+jstoi_q(words[words.length-3])*256;words[words.length-3]=jstoi_q(words[words.length-2])+jstoi_q(words[words.length-1])*256;words=words.slice(0,words.length-2)}else{words=str.split(":")}offset=0;z=0;for(w=0;w>2]=16}HEAP16[sa>>1]=family;HEAP32[sa+4>>2]=addr;HEAP16[sa+2>>1]=_htons(port);tempI64=[0>>>0,(tempDouble=0,+Math.abs(tempDouble)>=1?tempDouble>0?(Math.min(+Math.floor(tempDouble/4294967296),4294967295)|0)>>>0:~~+Math.ceil((tempDouble-+(~~tempDouble>>>0))/4294967296)>>>0:0)],HEAP32[sa+8>>2]=tempI64[0],HEAP32[sa+12>>2]=tempI64[1];break;case 10:addr=inetPton6(addr);if(addrlen){HEAP32[addrlen>>2]=28}HEAP32[sa>>2]=family;HEAP32[sa+8>>2]=addr[0];HEAP32[sa+12>>2]=addr[1];HEAP32[sa+16>>2]=addr[2];HEAP32[sa+20>>2]=addr[3];HEAP16[sa+2>>1]=_htons(port);HEAP32[sa+4>>2]=0;HEAP32[sa+24>>2]=0;break;default:return 5}return 0}Module["writeSockaddr"]=writeSockaddr;var DNS={address_map:{id:1,addrs:{},names:{}},lookup_name:function(name){var res=inetPton4(name);if(res!==null){return name}res=inetPton6(name);if(res!==null){return name}var addr;if(DNS.address_map.addrs[name]){addr=DNS.address_map.addrs[name]}else{var id=DNS.address_map.id++;assert(id<65535,"exceeded max address mappings of 65535");addr="172.29."+(id&255)+"."+(id&65280);DNS.address_map.names[addr]=name;DNS.address_map.addrs[name]=addr}return addr},lookup_addr:function(addr){if(DNS.address_map.names[addr]){return DNS.address_map.names[addr]}return null}};Module["DNS"]=DNS;function ___sys_accept4(fd,addr,addrlen,flags){try{var sock=getSocketFromFD(fd);var newsock=sock.sock_ops.accept(sock);if(addr){var errno=writeSockaddr(addr,newsock.family,DNS.lookup_name(newsock.daddr),newsock.dport,addrlen)}return newsock.stream.fd}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_accept4"]=___sys_accept4;function ___sys_access(path,amode){try{path=SYSCALLS.getStr(path);return SYSCALLS.doAccess(path,amode)}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_access"]=___sys_access;function ___sys_acct(filename){return-52}Module["___sys_acct"]=___sys_acct;function inetNtop4(addr){return(addr&255)+"."+(addr>>8&255)+"."+(addr>>16&255)+"."+(addr>>24&255)}Module["inetNtop4"]=inetNtop4;function inetNtop6(ints){var str="";var word=0;var longest=0;var lastzero=0;var zstart=0;var len=0;var i=0;var parts=[ints[0]&65535,ints[0]>>16,ints[1]&65535,ints[1]>>16,ints[2]&65535,ints[2]>>16,ints[3]&65535,ints[3]>>16];var hasipv4=true;var v4part="";for(i=0;i<5;i++){if(parts[i]!==0){hasipv4=false;break}}if(hasipv4){v4part=inetNtop4(parts[6]|parts[7]<<16);if(parts[5]===-1){str="::ffff:";str+=v4part;return str}if(parts[5]===0){str="::";if(v4part==="0.0.0.0")v4part="";if(v4part==="0.0.0.1")v4part="1";str+=v4part;return str}}for(word=0;word<8;word++){if(parts[word]===0){if(word-lastzero>1){len=0}lastzero=word;len++}if(len>longest){longest=len;zstart=word-longest+1}}for(word=0;word<8;word++){if(longest>1){if(parts[word]===0&&word>=zstart&&word>1];var port=_ntohs(HEAPU16[sa+2>>1]);var addr;switch(family){case 2:if(salen!==16){return{errno:28}}addr=HEAP32[sa+4>>2];addr=inetNtop4(addr);break;case 10:if(salen!==28){return{errno:28}}addr=[HEAP32[sa+8>>2],HEAP32[sa+12>>2],HEAP32[sa+16>>2],HEAP32[sa+20>>2]];addr=inetNtop6(addr);break;default:return{errno:5}}return{family:family,addr:addr,port:port}}Module["readSockaddr"]=readSockaddr;function getSocketAddress(addrp,addrlen,allowNull){if(allowNull&&addrp===0)return null;var info=readSockaddr(addrp,addrlen);if(info.errno)throw new FS.ErrnoError(info.errno);info.addr=DNS.lookup_addr(info.addr)||info.addr;return info}Module["getSocketAddress"]=getSocketAddress;function ___sys_bind(fd,addr,addrlen){try{var sock=getSocketFromFD(fd);var info=getSocketAddress(addr,addrlen);sock.sock_ops.bind(sock,info.addr,info.port);return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_bind"]=___sys_bind;function ___sys_chdir(path){try{path=SYSCALLS.getStr(path);FS.chdir(path);return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_chdir"]=___sys_chdir;function ___sys_chmod(path,mode){try{path=SYSCALLS.getStr(path);FS.chmod(path,mode);return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_chmod"]=___sys_chmod;function ___sys_chown32(path,owner,group){try{path=SYSCALLS.getStr(path);FS.chown(path,owner,group);return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_chown32"]=___sys_chown32;function ___sys_connect(fd,addr,addrlen){try{var sock=getSocketFromFD(fd);var info=getSocketAddress(addr,addrlen);sock.sock_ops.connect(sock,info.addr,info.port);return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_connect"]=___sys_connect;function ___sys_dup(fd){try{var old=SYSCALLS.getStreamFromFD(fd);return FS.createStream(old,0).fd}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_dup"]=___sys_dup;function ___sys_dup2(oldfd,suggestFD){try{var old=SYSCALLS.getStreamFromFD(oldfd);if(old.fd===suggestFD)return suggestFD;return SYSCALLS.doDup(old,suggestFD)}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_dup2"]=___sys_dup2;function ___sys_dup3(fd,suggestFD,flags){try{var old=SYSCALLS.getStreamFromFD(fd);if(old.fd===suggestFD)return-28;return SYSCALLS.doDup(old,suggestFD)}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_dup3"]=___sys_dup3;function ___sys_fadvise64_64(fd,offset,len,advice){return 0}Module["___sys_fadvise64_64"]=___sys_fadvise64_64;function ___sys_fallocate(fd,mode,off_low,off_high,len_low,len_high){try{var stream=SYSCALLS.getStreamFromFD(fd);var offset=SYSCALLS.get64(off_low,off_high);var len=SYSCALLS.get64(len_low,len_high);FS.allocate(stream,offset,len);return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_fallocate"]=___sys_fallocate;function ___sys_fchdir(fd){try{var stream=SYSCALLS.getStreamFromFD(fd);FS.chdir(stream.path);return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_fchdir"]=___sys_fchdir;function ___sys_fchmod(fd,mode){try{FS.fchmod(fd,mode);return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_fchmod"]=___sys_fchmod;function ___sys_fchmodat(dirfd,path,mode,varargs){SYSCALLS.varargs=varargs;try{path=SYSCALLS.getStr(path);path=SYSCALLS.calculateAt(dirfd,path);FS.chmod(path,mode);return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_fchmodat"]=___sys_fchmodat;function ___sys_fchown32(fd,owner,group){try{FS.fchown(fd,owner,group);return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_fchown32"]=___sys_fchown32;function ___sys_fchownat(dirfd,path,owner,group,flags){try{path=SYSCALLS.getStr(path);path=SYSCALLS.calculateAt(dirfd,path);FS.chown(path,owner,group);return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_fchownat"]=___sys_fchownat;function ___sys_fcntl64(fd,cmd,varargs){SYSCALLS.varargs=varargs;try{var stream=SYSCALLS.getStreamFromFD(fd);switch(cmd){case 0:{var arg=SYSCALLS.get();if(arg<0){return-28}var newStream;newStream=FS.createStream(stream,arg);return newStream.fd}case 1:case 2:return 0;case 3:return stream.flags;case 4:{var arg=SYSCALLS.get();stream.flags|=arg;return 0}case 12:{var arg=SYSCALLS.get();var offset=0;HEAP16[arg+offset>>1]=2;return 0}case 13:case 14:return 0;case 16:case 8:return-28;case 9:setErrNo(28);return-1;default:{return-28}}}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_fcntl64"]=___sys_fcntl64;function ___sys_fdatasync(fd){try{var stream=SYSCALLS.getStreamFromFD(fd);return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_fdatasync"]=___sys_fdatasync;function ___sys_fstat64(fd,buf){try{var stream=SYSCALLS.getStreamFromFD(fd);return SYSCALLS.doStat(FS.stat,stream.path,buf)}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_fstat64"]=___sys_fstat64;function ___sys_fstatat64(dirfd,path,buf,flags){try{path=SYSCALLS.getStr(path);var nofollow=flags&256;var allowEmpty=flags&4096;flags=flags&~4352;path=SYSCALLS.calculateAt(dirfd,path,allowEmpty);return SYSCALLS.doStat(nofollow?FS.lstat:FS.stat,path,buf)}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_fstatat64"]=___sys_fstatat64;function ___sys_fstatfs64(fd,size,buf){try{var stream=SYSCALLS.getStreamFromFD(fd);return ___sys_statfs64(0,size,buf)}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_fstatfs64"]=___sys_fstatfs64;function ___sys_ftruncate64(fd,zero,low,high){try{var length=SYSCALLS.get64(low,high);FS.ftruncate(fd,length);return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_ftruncate64"]=___sys_ftruncate64;function ___sys_getcwd(buf,size){try{if(size===0)return-28;var cwd=FS.cwd();var cwdLengthInBytes=lengthBytesUTF8(cwd);if(size>>0,(tempDouble=id,+Math.abs(tempDouble)>=1?tempDouble>0?(Math.min(+Math.floor(tempDouble/4294967296),4294967295)|0)>>>0:~~+Math.ceil((tempDouble-+(~~tempDouble>>>0))/4294967296)>>>0:0)],HEAP32[dirp+pos>>2]=tempI64[0],HEAP32[dirp+pos+4>>2]=tempI64[1];tempI64=[(idx+1)*struct_size>>>0,(tempDouble=(idx+1)*struct_size,+Math.abs(tempDouble)>=1?tempDouble>0?(Math.min(+Math.floor(tempDouble/4294967296),4294967295)|0)>>>0:~~+Math.ceil((tempDouble-+(~~tempDouble>>>0))/4294967296)>>>0:0)],HEAP32[dirp+pos+8>>2]=tempI64[0],HEAP32[dirp+pos+12>>2]=tempI64[1];HEAP16[dirp+pos+16>>1]=280;HEAP8[dirp+pos+18>>0]=type;stringToUTF8(name,dirp+pos+19,256);pos+=struct_size;idx+=1}FS.llseek(stream,idx*struct_size,0);return pos}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_getdents64"]=___sys_getdents64;function ___sys_getegid32(){return 0}Module["___sys_getegid32"]=___sys_getegid32;___sys_getegid32.sig="i";function ___sys_geteuid32(){return ___sys_getegid32()}Module["___sys_geteuid32"]=___sys_geteuid32;___sys_geteuid32.sig="i";function ___sys_getgid32(){return ___sys_getegid32()}Module["___sys_getgid32"]=___sys_getgid32;___sys_getgid32.sig="i";function ___sys_getgroups32(size,list){if(size<1)return-28;HEAP32[list>>2]=0;return 1}Module["___sys_getgroups32"]=___sys_getgroups32;function ___sys_getpeername(fd,addr,addrlen){try{var sock=getSocketFromFD(fd);if(!sock.daddr){return-53}var errno=writeSockaddr(addr,sock.family,DNS.lookup_name(sock.daddr),sock.dport,addrlen);return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_getpeername"]=___sys_getpeername;function ___sys_getpgid(pid){if(pid&&pid!==42)return-71;return 42}Module["___sys_getpgid"]=___sys_getpgid;function ___sys_getpid(){return 42}Module["___sys_getpid"]=___sys_getpid;function ___sys_getppid(){return 1}Module["___sys_getppid"]=___sys_getppid;function ___sys_getpriority(){return 0}Module["___sys_getpriority"]=___sys_getpriority;function ___sys_getresgid32(ruid,euid,suid){HEAP32[ruid>>2]=0;HEAP32[euid>>2]=0;HEAP32[suid>>2]=0;return 0}Module["___sys_getresgid32"]=___sys_getresgid32;___sys_getresgid32.sig="iiii";function ___sys_getresuid32(a0,a1,a2){return ___sys_getresgid32(a0,a1,a2)}Module["___sys_getresuid32"]=___sys_getresuid32;___sys_getresuid32.sig="iiii";function ___sys_getrusage(who,usage){try{_memset(usage,0,136);HEAP32[usage>>2]=1;HEAP32[usage+4>>2]=2;HEAP32[usage+8>>2]=3;HEAP32[usage+12>>2]=4;return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_getrusage"]=___sys_getrusage;function ___sys_getsid(pid){if(pid&&pid!==42)return-71;return 42}Module["___sys_getsid"]=___sys_getsid;function ___sys_getsockname(fd,addr,addrlen){try{err("__sys_getsockname "+fd);var sock=getSocketFromFD(fd);var errno=writeSockaddr(addr,sock.family,DNS.lookup_name(sock.saddr||"0.0.0.0"),sock.sport,addrlen);return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_getsockname"]=___sys_getsockname;function ___sys_getsockopt(fd,level,optname,optval,optlen){try{var sock=getSocketFromFD(fd);if(level===1){if(optname===4){HEAP32[optval>>2]=sock.error;HEAP32[optlen>>2]=4;sock.error=null;return 0}}return-50}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_getsockopt"]=___sys_getsockopt;function ___sys_getuid32(){return ___sys_getegid32()}Module["___sys_getuid32"]=___sys_getuid32;___sys_getuid32.sig="i";function ___sys_ioctl(fd,op,varargs){SYSCALLS.varargs=varargs;try{var stream=SYSCALLS.getStreamFromFD(fd);switch(op){case 21509:case 21505:{if(!stream.tty)return-59;return 0}case 21510:case 21511:case 21512:case 21506:case 21507:case 21508:{if(!stream.tty)return-59;return 0}case 21519:{if(!stream.tty)return-59;var argp=SYSCALLS.get();HEAP32[argp>>2]=0;return 0}case 21520:{if(!stream.tty)return-59;return-28}case 21531:{var argp=SYSCALLS.get();return FS.ioctl(stream,op,argp)}case 21523:{if(!stream.tty)return-59;return 0}case 21524:{if(!stream.tty)return-59;return 0}default:abort("bad ioctl syscall "+op)}}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_ioctl"]=___sys_ioctl;function ___sys_lchown32(path,owner,group){try{path=SYSCALLS.getStr(path);FS.chown(path,owner,group);return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_lchown32"]=___sys_lchown32;function ___sys_link(oldpath,newpath){return-34}Module["___sys_link"]=___sys_link;function ___sys_linkat(olddirfd,oldpath,newdirfd,newpath,flags){return-34}Module["___sys_linkat"]=___sys_linkat;function ___sys_listen(fd,backlog){try{var sock=getSocketFromFD(fd);sock.sock_ops.listen(sock,backlog);return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_listen"]=___sys_listen;function ___sys_lstat64(path,buf){try{path=SYSCALLS.getStr(path);return SYSCALLS.doStat(FS.lstat,path,buf)}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_lstat64"]=___sys_lstat64;function ___sys_madvise1(addr,length,advice){return 0}Module["___sys_madvise1"]=___sys_madvise1;function ___sys_mincore(addr,length,vec){return-52}Module["___sys_mincore"]=___sys_mincore;function ___sys_mkdir(path,mode){try{path=SYSCALLS.getStr(path);return SYSCALLS.doMkdir(path,mode)}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_mkdir"]=___sys_mkdir;function ___sys_mkdirat(dirfd,path,mode){try{path=SYSCALLS.getStr(path);path=SYSCALLS.calculateAt(dirfd,path);return SYSCALLS.doMkdir(path,mode)}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_mkdirat"]=___sys_mkdirat;function ___sys_mknod(path,mode,dev){try{path=SYSCALLS.getStr(path);return SYSCALLS.doMknod(path,mode,dev)}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_mknod"]=___sys_mknod;function ___sys_mknodat(dirfd,path,mode,dev){try{path=SYSCALLS.getStr(path);path=SYSCALLS.calculateAt(dirfd,path);return SYSCALLS.doMknod(path,mode,dev)}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_mknodat"]=___sys_mknodat;function ___sys_mlock(addr,len){return 0}Module["___sys_mlock"]=___sys_mlock;___sys_mlock.sig="iii";function ___sys_mlockall(flags){return 0}Module["___sys_mlockall"]=___sys_mlockall;___sys_mlockall.sig="ii";function syscallMmap2(addr,len,prot,flags,fd,off){off<<=12;var ptr;var allocated=false;if((flags&16)!==0&&addr%16384!==0){return-28}if((flags&32)!==0){ptr=_memalign(16384,len);if(!ptr)return-48;_memset(ptr,0,len);allocated=true}else{var info=FS.getStream(fd);if(!info)return-8;var res=FS.mmap(info,addr,len,off,prot,flags);ptr=res.ptr;allocated=res.allocated}SYSCALLS.mappings[ptr]={malloc:ptr,len:len,allocated:allocated,fd:fd,prot:prot,flags:flags,offset:off};return ptr}Module["syscallMmap2"]=syscallMmap2;function ___sys_mmap2(addr,len,prot,flags,fd,off){try{return syscallMmap2(addr,len,prot,flags,fd,off)}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_mmap2"]=___sys_mmap2;function ___sys_mprotect(addr,len,size){return 0}Module["___sys_mprotect"]=___sys_mprotect;function ___sys_mremap(old_addr,old_size,new_size,flags){return-48}Module["___sys_mremap"]=___sys_mremap;function ___sys_msync(addr,len,flags){try{var info=SYSCALLS.mappings[addr];if(!info)return 0;SYSCALLS.doMsync(addr,FS.getStream(info.fd),len,info.flags,0);return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_msync"]=___sys_msync;function ___sys_munlock(addr,len){return 0}Module["___sys_munlock"]=___sys_munlock;___sys_munlock.sig="iii";function ___sys_munlockall(){return 0}Module["___sys_munlockall"]=___sys_munlockall;___sys_munlockall.sig="i";function syscallMunmap(addr,len){if((addr|0)===-1||len===0){return-28}var info=SYSCALLS.mappings[addr];if(!info)return 0;if(len===info.len){var stream=FS.getStream(info.fd);if(stream){if(info.prot&2){SYSCALLS.doMsync(addr,stream,len,info.flags,info.offset)}FS.munmap(stream)}SYSCALLS.mappings[addr]=null;if(info.allocated){_free(info.malloc)}}return 0}Module["syscallMunmap"]=syscallMunmap;function ___sys_munmap(addr,len){try{return syscallMunmap(addr,len)}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_munmap"]=___sys_munmap;function ___sys_nice(inc){return-63}Module["___sys_nice"]=___sys_nice;function ___sys_open(path,flags,varargs){SYSCALLS.varargs=varargs;try{var pathname=SYSCALLS.getStr(path);var mode=varargs?SYSCALLS.get():0;var stream=FS.open(pathname,flags,mode);return stream.fd}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_open"]=___sys_open;function ___sys_openat(dirfd,path,flags,varargs){SYSCALLS.varargs=varargs;try{path=SYSCALLS.getStr(path);path=SYSCALLS.calculateAt(dirfd,path);var mode=varargs?SYSCALLS.get():0;return FS.open(path,flags,mode).fd}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_openat"]=___sys_openat;function ___sys_pause(){return-27}Module["___sys_pause"]=___sys_pause;var PIPEFS={BUCKET_BUFFER_SIZE:8192,mount:function(mount){return FS.createNode(null,"/",16384|511,0)},createPipe:function(){var pipe={buckets:[]};pipe.buckets.push({buffer:new Uint8Array(PIPEFS.BUCKET_BUFFER_SIZE),offset:0,roffset:0});var rName=PIPEFS.nextname();var wName=PIPEFS.nextname();var rNode=FS.createNode(PIPEFS.root,rName,4096,0);var wNode=FS.createNode(PIPEFS.root,wName,4096,0);rNode.pipe=pipe;wNode.pipe=pipe;var readableStream=FS.createStream({path:rName,node:rNode,flags:0,seekable:false,stream_ops:PIPEFS.stream_ops});rNode.stream=readableStream;var writableStream=FS.createStream({path:wName,node:wNode,flags:1,seekable:false,stream_ops:PIPEFS.stream_ops});wNode.stream=writableStream;return{readable_fd:readableStream.fd,writable_fd:writableStream.fd}},stream_ops:{poll:function(stream){var pipe=stream.node.pipe;if((stream.flags&2097155)===1){return 256|4}else{if(pipe.buckets.length>0){for(var i=0;i0){return 64|1}}}}return 0},ioctl:function(stream,request,varargs){return ERRNO_CODES.EINVAL},fsync:function(stream){return ERRNO_CODES.EINVAL},read:function(stream,buffer,offset,length,position){var pipe=stream.node.pipe;var currentLength=0;for(var i=0;i=dataLen){currBucket.buffer.set(data,currBucket.offset);currBucket.offset+=dataLen;return dataLen}else if(freeBytesInCurrBuffer>0){currBucket.buffer.set(data.subarray(0,freeBytesInCurrBuffer),currBucket.offset);currBucket.offset+=freeBytesInCurrBuffer;data=data.subarray(freeBytesInCurrBuffer,data.byteLength)}var numBuckets=data.byteLength/PIPEFS.BUCKET_BUFFER_SIZE|0;var remElements=data.byteLength%PIPEFS.BUCKET_BUFFER_SIZE;for(var i=0;i0){var newBucket={buffer:new Uint8Array(PIPEFS.BUCKET_BUFFER_SIZE),offset:data.byteLength,roffset:0};pipe.buckets.push(newBucket);newBucket.buffer.set(data)}return dataLen},close:function(stream){var pipe=stream.node.pipe;pipe.buckets=null}},nextname:function(){if(!PIPEFS.nextname.current){PIPEFS.nextname.current=0}return"pipe["+PIPEFS.nextname.current+++"]"}};Module["PIPEFS"]=PIPEFS;function ___sys_pipe(fdPtr){try{if(fdPtr==0){throw new FS.ErrnoError(21)}var res=PIPEFS.createPipe();HEAP32[fdPtr>>2]=res.readable_fd;HEAP32[fdPtr+4>>2]=res.writable_fd;return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_pipe"]=___sys_pipe;function ___sys_pipe2(fds,flags){return-52}Module["___sys_pipe2"]=___sys_pipe2;function ___sys_poll(fds,nfds,timeout){try{var nonzero=0;for(var i=0;i>2];var events=HEAP16[pollfd+4>>1];var mask=32;var stream=FS.getStream(fd);if(stream){mask=SYSCALLS.DEFAULT_POLLMASK;if(stream.stream_ops.poll){mask=stream.stream_ops.poll(stream)}}mask&=events|8|16;if(mask)nonzero++;HEAP16[pollfd+6>>1]=mask}return nonzero}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_poll"]=___sys_poll;function ___sys_prlimit64(pid,resource,new_limit,old_limit){try{if(old_limit){HEAP32[old_limit>>2]=-1;HEAP32[old_limit+4>>2]=-1;HEAP32[old_limit+8>>2]=-1;HEAP32[old_limit+12>>2]=-1}return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_prlimit64"]=___sys_prlimit64;function ___sys_pselect6(){return-52}Module["___sys_pselect6"]=___sys_pselect6;function ___sys_readlink(path,buf,bufsize){try{path=SYSCALLS.getStr(path);return SYSCALLS.doReadlink(path,buf,bufsize)}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_readlink"]=___sys_readlink;function ___sys_readlinkat(dirfd,path,buf,bufsize){try{path=SYSCALLS.getStr(path);path=SYSCALLS.calculateAt(dirfd,path);return SYSCALLS.doReadlink(path,buf,bufsize)}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_readlinkat"]=___sys_readlinkat;function ___sys_recvfrom(fd,buf,len,flags,addr,addrlen){try{var sock=getSocketFromFD(fd);var msg=sock.sock_ops.recvmsg(sock,len);if(!msg)return 0;if(addr){var errno=writeSockaddr(addr,sock.family,DNS.lookup_name(msg.addr),msg.port,addrlen)}HEAPU8.set(msg.buffer,buf);return msg.buffer.byteLength}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_recvfrom"]=___sys_recvfrom;function ___sys_recvmmsg(sockfd,msgvec,vlen,flags){return 0}Module["___sys_recvmmsg"]=___sys_recvmmsg;function ___sys_recvmsg(fd,message,flags){try{var sock=getSocketFromFD(fd);var iov=HEAP32[message+8>>2];var num=HEAP32[message+12>>2];var total=0;for(var i=0;i>2]}var msg=sock.sock_ops.recvmsg(sock,total);if(!msg)return 0;var name=HEAP32[message>>2];if(name){var errno=writeSockaddr(name,sock.family,DNS.lookup_name(msg.addr),msg.port)}var bytesRead=0;var bytesRemaining=msg.buffer.byteLength;for(var i=0;bytesRemaining>0&&i>2];var iovlen=HEAP32[iov+(8*i+4)>>2];if(!iovlen){continue}var length=Math.min(iovlen,bytesRemaining);var buf=msg.buffer.subarray(bytesRead,bytesRead+length);HEAPU8.set(buf,iovbase+bytesRead);bytesRead+=length;bytesRemaining-=length}return bytesRead}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_recvmsg"]=___sys_recvmsg;function ___sys_rename(old_path,new_path){try{old_path=SYSCALLS.getStr(old_path);new_path=SYSCALLS.getStr(new_path);FS.rename(old_path,new_path);return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_rename"]=___sys_rename;function ___sys_renameat(olddirfd,oldpath,newdirfd,newpath){try{oldpath=SYSCALLS.getStr(oldpath);newpath=SYSCALLS.getStr(newpath);oldpath=SYSCALLS.calculateAt(olddirfd,oldpath);newpath=SYSCALLS.calculateAt(newdirfd,newpath);FS.rename(oldpath,newpath);return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_renameat"]=___sys_renameat;function ___sys_rmdir(path){try{path=SYSCALLS.getStr(path);FS.rmdir(path);return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_rmdir"]=___sys_rmdir;function ___sys_sendmmsg(sockfd,msg,flags){return 0}Module["___sys_sendmmsg"]=___sys_sendmmsg;function ___sys_sendmsg(fd,message,flags){try{var sock=getSocketFromFD(fd);var iov=HEAP32[message+8>>2];var num=HEAP32[message+12>>2];var addr,port;var name=HEAP32[message>>2];var namelen=HEAP32[message+4>>2];if(name){var info=readSockaddr(name,namelen);if(info.errno)return-info.errno;port=info.port;addr=DNS.lookup_addr(info.addr)||info.addr}var total=0;for(var i=0;i>2]}var view=new Uint8Array(total);var offset=0;for(var i=0;i>2];var iovlen=HEAP32[iov+(8*i+4)>>2];for(var j=0;j>0]}}return sock.sock_ops.sendmsg(sock,view,0,total,addr,port)}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_sendmsg"]=___sys_sendmsg;function ___sys_sendto(fd,message,length,flags,addr,addr_len){try{var sock=getSocketFromFD(fd);var dest=getSocketAddress(addr,addr_len,true);if(!dest){return FS.write(sock.stream,HEAP8,message,length)}else{return sock.sock_ops.sendmsg(sock,HEAP8,message,length,dest.addr,dest.port)}}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_sendto"]=___sys_sendto;function ___sys_setdomainname(name,size){return-63}Module["___sys_setdomainname"]=___sys_setdomainname;function ___sys_setpgid(pid,pgid){if(pid&&pid!==42)return-71;if(pgid&&pgid!==42)return-63;return 0}Module["___sys_setpgid"]=___sys_setpgid;function ___sys_setpriority(){return-63}Module["___sys_setpriority"]=___sys_setpriority;function ___sys_setrlimit(varargs){return 0}Module["___sys_setrlimit"]=___sys_setrlimit;function ___sys_setsid(){return 0}Module["___sys_setsid"]=___sys_setsid;function ___sys_setsockopt(fd){try{return-50}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_setsockopt"]=___sys_setsockopt;function ___sys_shutdown(fd,how){try{getSocketFromFD(fd);return-52}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_shutdown"]=___sys_shutdown;function ___sys_socket(domain,type,protocol){try{var sock=SOCKFS.createSocket(domain,type,protocol);return sock.stream.fd}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_socket"]=___sys_socket;function ___sys_socketpair(){try{return-52}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_socketpair"]=___sys_socketpair;function ___sys_stat64(path,buf){try{path=SYSCALLS.getStr(path);return SYSCALLS.doStat(FS.stat,path,buf)}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_stat64"]=___sys_stat64;function ___sys_statfs64(path,size,buf){try{path=SYSCALLS.getStr(path);HEAP32[buf+4>>2]=4096;HEAP32[buf+40>>2]=4096;HEAP32[buf+8>>2]=1e6;HEAP32[buf+12>>2]=5e5;HEAP32[buf+16>>2]=5e5;HEAP32[buf+20>>2]=FS.nextInode;HEAP32[buf+24>>2]=1e6;HEAP32[buf+28>>2]=42;HEAP32[buf+44>>2]=2;HEAP32[buf+36>>2]=255;return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_statfs64"]=___sys_statfs64;function ___sys_symlink(target,linkpath){try{target=SYSCALLS.getStr(target);linkpath=SYSCALLS.getStr(linkpath);FS.symlink(target,linkpath);return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_symlink"]=___sys_symlink;function ___sys_symlinkat(target,newdirfd,linkpath){try{linkpath=SYSCALLS.calculateAt(newdirfd,linkpath);FS.symlink(target,linkpath);return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_symlinkat"]=___sys_symlinkat;function ___sys_sync(){return 0}Module["___sys_sync"]=___sys_sync;function ___sys_truncate64(path,zero,low,high){try{path=SYSCALLS.getStr(path);var length=SYSCALLS.get64(low,high);FS.truncate(path,length);return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_truncate64"]=___sys_truncate64;function ___sys_ugetrlimit(resource,rlim){try{HEAP32[rlim>>2]=-1;HEAP32[rlim+4>>2]=-1;HEAP32[rlim+8>>2]=-1;HEAP32[rlim+12>>2]=-1;return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_ugetrlimit"]=___sys_ugetrlimit;function ___sys_umask(mask){try{var old=SYSCALLS.umask;SYSCALLS.umask=mask;return old}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_umask"]=___sys_umask;function ___sys_uname(buf){try{if(!buf)return-21;var layout={"__size__":390,"domainname":325,"machine":260,"nodename":65,"release":130,"sysname":0,"version":195};var copyString=function(element,value){var offset=layout[element];writeAsciiToMemory(value,buf+offset)};copyString("sysname","Emscripten");copyString("nodename","emscripten");copyString("release","1.0");copyString("version","#1");copyString("machine","wasm32");return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_uname"]=___sys_uname;function ___sys_unlink(path){try{path=SYSCALLS.getStr(path);FS.unlink(path);return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_unlink"]=___sys_unlink;function ___sys_unlinkat(dirfd,path,flags){try{path=SYSCALLS.getStr(path);path=SYSCALLS.calculateAt(dirfd,path);if(flags===0){FS.unlink(path)}else if(flags===512){FS.rmdir(path)}else{abort("Invalid flags passed to unlinkat")}return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_unlinkat"]=___sys_unlinkat;function ___sys_utimensat(dirfd,path,times,flags){try{path=SYSCALLS.getStr(path);path=SYSCALLS.calculateAt(dirfd,path,true);var seconds=HEAP32[times>>2];var nanoseconds=HEAP32[times+4>>2];var atime=seconds*1e3+nanoseconds/(1e3*1e3);times+=8;seconds=HEAP32[times>>2];nanoseconds=HEAP32[times+4>>2];var mtime=seconds*1e3+nanoseconds/(1e3*1e3);FS.utime(path,atime,mtime);return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_utimensat"]=___sys_utimensat;function ___sys_wait4(pid,wstart,options,rusage){try{return-52}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return-e.errno}}Module["___sys_wait4"]=___sys_wait4;function __exit(a0){return _exit(a0)}Module["__exit"]=__exit;__exit.sig="vi";function _abort(){abort()}Module["_abort"]=_abort;_abort.sig="v";var AL={QUEUE_INTERVAL:25,QUEUE_LOOKAHEAD:.1,DEVICE_NAME:"Emscripten OpenAL",CAPTURE_DEVICE_NAME:"Emscripten OpenAL capture",ALC_EXTENSIONS:{ALC_SOFT_pause_device:true,ALC_SOFT_HRTF:true},AL_EXTENSIONS:{AL_EXT_float32:true,AL_SOFT_loop_points:true,AL_SOFT_source_length:true,AL_EXT_source_distance_model:true,AL_SOFT_source_spatialize:true},_alcErr:0,alcErr:0,deviceRefCounts:{},alcStringCache:{},paused:false,stringCache:{},contexts:{},currentCtx:null,buffers:{0:{id:0,refCount:0,audioBuf:null,frequency:0,bytesPerSample:2,channels:1,length:0}},paramArray:[],_nextId:1,newId:function(){return AL.freeIds.length>0?AL.freeIds.pop():AL._nextId++},freeIds:[],scheduleContextAudio:function(ctx){if(Browser.mainLoop.timingMode===1&&document["visibilityState"]!="visible"){return}for(var i in ctx.sources){AL.scheduleSourceAudio(ctx.sources[i])}},scheduleSourceAudio:function(src,lookahead){if(Browser.mainLoop.timingMode===1&&document["visibilityState"]!="visible"){return}if(src.state!==4114){return}var currentTime=AL.updateSourceTime(src);var startTime=src.bufStartTime;var startOffset=src.bufOffset;var bufCursor=src.bufsProcessed;for(var i=0;i=src.bufQueue.length){if(src.looping){bufCursor%=src.bufQueue.length}else{break}}var buf=src.bufQueue[bufCursor%src.bufQueue.length];if(buf.length===0){skipCount++;if(skipCount===src.bufQueue.length){break}}else{var audioSrc=src.context.audioCtx.createBufferSource();audioSrc.buffer=buf.audioBuf;audioSrc.playbackRate.value=src.playbackRate;if(buf.audioBuf._loopStart||buf.audioBuf._loopEnd){audioSrc.loopStart=buf.audioBuf._loopStart;audioSrc.loopEnd=buf.audioBuf._loopEnd}var duration=0;if(src.type===4136&&src.looping){duration=Number.POSITIVE_INFINITY;audioSrc.loop=true;if(buf.audioBuf._loopStart){audioSrc.loopStart=buf.audioBuf._loopStart}if(buf.audioBuf._loopEnd){audioSrc.loopEnd=buf.audioBuf._loopEnd}}else{duration=(buf.audioBuf.duration-startOffset)/src.playbackRate}audioSrc._startOffset=startOffset;audioSrc._duration=duration;audioSrc._skipCount=skipCount;skipCount=0;audioSrc.connect(src.gain);if(typeof audioSrc.start!=="undefined"){startTime=Math.max(startTime,src.context.audioCtx.currentTime);audioSrc.start(startTime,startOffset)}else if(typeof audioSrc.noteOn!=="undefined"){startTime=Math.max(startTime,src.context.audioCtx.currentTime);audioSrc.noteOn(startTime)}audioSrc._startTime=startTime;src.audioQueue.push(audioSrc);startTime+=duration}startOffset=0;bufCursor++}},updateSourceTime:function(src){var currentTime=src.context.audioCtx.currentTime;if(src.state!==4114){return currentTime}if(!isFinite(src.bufStartTime)){src.bufStartTime=currentTime-src.bufOffset/src.playbackRate;src.bufOffset=0}var nextStartTime=0;while(src.audioQueue.length){var audioSrc=src.audioQueue[0];src.bufsProcessed+=audioSrc._skipCount;nextStartTime=audioSrc._startTime+audioSrc._duration;if(currentTime=src.bufQueue.length&&!src.looping){AL.setSourceState(src,4116)}else if(src.type===4136&&src.looping){var buf=src.bufQueue[0];if(buf.length===0){src.bufOffset=0}else{var delta=(currentTime-src.bufStartTime)*src.playbackRate;var loopStart=buf.audioBuf._loopStart||0;var loopEnd=buf.audioBuf._loopEnd||buf.audioBuf.duration;if(loopEnd<=loopStart){loopEnd=buf.audioBuf.duration}if(delta0){src.bufStartTime+=Math.floor((currentTime-src.bufStartTime)/srcDuration)*srcDuration}}for(var i=0;i=src.bufQueue.length){if(src.looping){src.bufsProcessed%=src.bufQueue.length}else{AL.setSourceState(src,4116);break}}var buf=src.bufQueue[src.bufsProcessed];if(buf.length>0){nextStartTime=src.bufStartTime+buf.audioBuf.duration/src.playbackRate;if(currentTime1){src.audioQueue.length=1}},stopSourceAudio:function(src){for(var i=0;isrc.bufQueue[src.bufsProcessed].audioBuf.duration){offset-=src.bufQueue[src.bufsProcessed].audiobuf.duration;src.bufsProcessed++}src.bufOffset=offset}if(playing){AL.setSourceState(src,4114)}},getGlobalParam:function(funcname,param){if(!AL.currentCtx){return null}switch(param){case 49152:return AL.currentCtx.dopplerFactor;case 49155:return AL.currentCtx.speedOfSound;case 53248:return AL.currentCtx.distanceModel;default:AL.currentCtx.err=40962;return null}},setGlobalParam:function(funcname,param,value){if(!AL.currentCtx){return}switch(param){case 49152:if(!Number.isFinite(value)||value<0){AL.currentCtx.err=40963;return}AL.currentCtx.dopplerFactor=value;AL.updateListenerSpace(AL.currentCtx);break;case 49155:if(!Number.isFinite(value)||value<=0){AL.currentCtx.err=40963;return}AL.currentCtx.speedOfSound=value;AL.updateListenerSpace(AL.currentCtx);break;case 53248:switch(value){case 0:case 53249:case 53250:case 53251:case 53252:case 53253:case 53254:AL.currentCtx.distanceModel=value;AL.updateContextGlobal(AL.currentCtx);break;default:AL.currentCtx.err=40963;return}break;default:AL.currentCtx.err=40962;return}},getListenerParam:function(funcname,param){if(!AL.currentCtx){return null}switch(param){case 4100:return AL.currentCtx.listener.position;case 4102:return AL.currentCtx.listener.velocity;case 4111:return AL.currentCtx.listener.direction.concat(AL.currentCtx.listener.up);case 4106:return AL.currentCtx.gain.gain.value;default:AL.currentCtx.err=40962;return null}},setListenerParam:function(funcname,param,value){if(!AL.currentCtx){return}if(value===null){AL.currentCtx.err=40962;return}var listener=AL.currentCtx.listener;switch(param){case 4100:if(!Number.isFinite(value[0])||!Number.isFinite(value[1])||!Number.isFinite(value[2])){AL.currentCtx.err=40963;return}listener.position[0]=value[0];listener.position[1]=value[1];listener.position[2]=value[2];AL.updateListenerSpace(AL.currentCtx);break;case 4102:if(!Number.isFinite(value[0])||!Number.isFinite(value[1])||!Number.isFinite(value[2])){AL.currentCtx.err=40963;return}listener.velocity[0]=value[0];listener.velocity[1]=value[1];listener.velocity[2]=value[2];AL.updateListenerSpace(AL.currentCtx);break;case 4106:if(!Number.isFinite(value)||value<0){AL.currentCtx.err=40963;return}AL.currentCtx.gain.gain.value=value;break;case 4111:if(!Number.isFinite(value[0])||!Number.isFinite(value[1])||!Number.isFinite(value[2])||!Number.isFinite(value[3])||!Number.isFinite(value[4])||!Number.isFinite(value[5])){AL.currentCtx.err=40963;return}listener.direction[0]=value[0];listener.direction[1]=value[1];listener.direction[2]=value[2];listener.up[0]=value[3];listener.up[1]=value[4];listener.up[2]=value[5];AL.updateListenerSpace(AL.currentCtx);break;default:AL.currentCtx.err=40962;return}},getBufferParam:function(funcname,bufferId,param){if(!AL.currentCtx){return}var buf=AL.buffers[bufferId];if(!buf||bufferId===0){AL.currentCtx.err=40961;return}switch(param){case 8193:return buf.frequency;case 8194:return buf.bytesPerSample*8;case 8195:return buf.channels;case 8196:return buf.length*buf.bytesPerSample*buf.channels;case 8213:if(buf.length===0){return[0,0]}else{return[(buf.audioBuf._loopStart||0)*buf.frequency,(buf.audioBuf._loopEnd||buf.length)*buf.frequency]}default:AL.currentCtx.err=40962;return null}},setBufferParam:function(funcname,bufferId,param,value){if(!AL.currentCtx){return}var buf=AL.buffers[bufferId];if(!buf||bufferId===0){AL.currentCtx.err=40961;return}if(value===null){AL.currentCtx.err=40962;return}switch(param){case 8196:if(value!==0){AL.currentCtx.err=40963;return}break;case 8213:if(value[0]<0||value[0]>buf.length||value[1]<0||value[1]>buf.Length||value[0]>=value[1]){AL.currentCtx.err=40963;return}if(buf.refCount>0){AL.currentCtx.err=40964;return}if(buf.audioBuf){buf.audioBuf._loopStart=value[0]/buf.frequency;buf.audioBuf._loopEnd=value[1]/buf.frequency}break;default:AL.currentCtx.err=40962;return}},getSourceParam:function(funcname,sourceId,param){if(!AL.currentCtx){return null}var src=AL.currentCtx.sources[sourceId];if(!src){AL.currentCtx.err=40961;return null}switch(param){case 514:return src.relative;case 4097:return src.coneInnerAngle;case 4098:return src.coneOuterAngle;case 4099:return src.pitch;case 4100:return src.position;case 4101:return src.direction;case 4102:return src.velocity;case 4103:return src.looping;case 4105:if(src.type===4136){return src.bufQueue[0].id}else{return 0}case 4106:return src.gain.gain.value;case 4109:return src.minGain;case 4110:return src.maxGain;case 4112:return src.state;case 4117:if(src.bufQueue.length===1&&src.bufQueue[0].id===0){return 0}else{return src.bufQueue.length}case 4118:if(src.bufQueue.length===1&&src.bufQueue[0].id===0||src.looping){return 0}else{return src.bufsProcessed}case 4128:return src.refDistance;case 4129:return src.rolloffFactor;case 4130:return src.coneOuterGain;case 4131:return src.maxDistance;case 4132:return AL.sourceTell(src);case 4133:var offset=AL.sourceTell(src);if(offset>0){offset*=src.bufQueue[0].frequency}return offset;case 4134:var offset=AL.sourceTell(src);if(offset>0){offset*=src.bufQueue[0].frequency*src.bufQueue[0].bytesPerSample}return offset;case 4135:return src.type;case 4628:return src.spatialize;case 8201:var length=0;var bytesPerFrame=0;for(var i=0;i0){var audioSrc=src.audioQueue[0];audioSrc.loop=true;audioSrc._duration=Number.POSITIVE_INFINITY}}else if(value===0){src.looping=false;var currentTime=AL.updateSourceTime(src);if(src.type===4136&&src.audioQueue.length>0){var audioSrc=src.audioQueue[0];audioSrc.loop=false;audioSrc._duration=src.bufQueue[0].audioBuf.duration/src.playbackRate;audioSrc._startTime=currentTime-src.bufOffset/src.playbackRate}}else{AL.currentCtx.err=40963;return}break;case 4105:if(src.state===4114||src.state===4115){AL.currentCtx.err=40964;return}if(value===0){for(var i in src.bufQueue){src.bufQueue[i].refCount--}src.bufQueue.length=1;src.bufQueue[0]=AL.buffers[0];src.bufsProcessed=0;src.type=4144}else{var buf=AL.buffers[value];if(!buf){AL.currentCtx.err=40963;return}for(var i in src.bufQueue){src.bufQueue[i].refCount--}src.bufQueue.length=0;buf.refCount++;src.bufQueue=[buf];src.bufsProcessed=0;src.type=4136}AL.initSourcePanner(src);AL.scheduleSourceAudio(src);break;case 4106:if(!Number.isFinite(value)||value<0){AL.currentCtx.err=40963;return}src.gain.gain.value=value;break;case 4109:if(!Number.isFinite(value)||value<0||value>Math.min(src.maxGain,1)){AL.currentCtx.err=40963;return}src.minGain=value;break;case 4110:if(!Number.isFinite(value)||value1){AL.currentCtx.err=40963;return}src.maxGain=value;break;case 4128:if(!Number.isFinite(value)||value<0){AL.currentCtx.err=40963;return}src.refDistance=value;if(src.panner){src.panner.refDistance=value}break;case 4129:if(!Number.isFinite(value)||value<0){AL.currentCtx.err=40963;return}src.rolloffFactor=value;if(src.panner){src.panner.rolloffFactor=value}break;case 4130:if(!Number.isFinite(value)||value<0||value>1){AL.currentCtx.err=40963;return}src.coneOuterGain=value;if(src.panner){src.panner.coneOuterGain=value}break;case 4131:if(!Number.isFinite(value)||value<0){AL.currentCtx.err=40963;return}src.maxDistance=value;if(src.panner){src.panner.maxDistance=value}break;case 4132:if(value<0||value>AL.sourceDuration(src)){AL.currentCtx.err=40963;return}AL.sourceSeek(src,value);break;case 4133:var srcLen=AL.sourceDuration(src);if(srcLen>0){var frequency;for(var bufId in src.bufQueue){if(bufId){frequency=src.bufQueue[bufId].frequency;break}}value/=frequency}if(value<0||value>srcLen){AL.currentCtx.err=40963;return}AL.sourceSeek(src,value);break;case 4134:var srcLen=AL.sourceDuration(src);if(srcLen>0){var bytesPerSec;for(var bufId in src.bufQueue){if(bufId){var buf=src.bufQueue[bufId];bytesPerSec=buf.frequency*buf.bytesPerSample*buf.channels;break}}value/=bytesPerSec}if(value<0||value>srcLen){AL.currentCtx.err=40963;return}AL.sourceSeek(src,value);break;case 4628:if(value!==0&&value!==1&&value!==2){AL.currentCtx.err=40963;return}src.spatialize=value;AL.initSourcePanner(src);break;case 8201:case 8202:case 8203:AL.currentCtx.err=40964;break;case 53248:switch(value){case 0:case 53249:case 53250:case 53251:case 53252:case 53253:case 53254:src.distanceModel=value;if(AL.currentCtx.sourceDistanceModel){AL.updateContextGlobal(AL.currentCtx)}break;default:AL.currentCtx.err=40963;return}break;default:AL.currentCtx.err=40962;return}},captures:{},sharedCaptureAudioCtx:null,requireValidCaptureDevice:function(deviceId,funcname){if(deviceId===0){AL.alcErr=40961;return null}var c=AL.captures[deviceId];if(!c){AL.alcErr=40961;return null}var err=c.mediaStreamError;if(err){AL.alcErr=40961;return null}return c}};Module["AL"]=AL;function _alBuffer3f(bufferId,param,value0,value1,value2){AL.setBufferParam("alBuffer3f",bufferId,param,null)}Module["_alBuffer3f"]=_alBuffer3f;_alBuffer3f.sig="viifff";function _alBuffer3i(bufferId,param,value0,value1,value2){AL.setBufferParam("alBuffer3i",bufferId,param,null)}Module["_alBuffer3i"]=_alBuffer3i;_alBuffer3i.sig="viiiii";function _alBufferData(bufferId,format,pData,size,freq){if(!AL.currentCtx){return}var buf=AL.buffers[bufferId];if(!buf){AL.currentCtx.err=40963;return}if(freq<=0){AL.currentCtx.err=40963;return}var audioBuf=null;try{switch(format){case 4352:if(size>0){audioBuf=AL.currentCtx.audioCtx.createBuffer(1,size,freq);var channel0=audioBuf.getChannelData(0);for(var i=0;i0){audioBuf=AL.currentCtx.audioCtx.createBuffer(1,size>>1,freq);var channel0=audioBuf.getChannelData(0);pData>>=1;for(var i=0;i>1;++i){channel0[i]=HEAP16[pData++]*30517578125e-15}}buf.bytesPerSample=2;buf.channels=1;buf.length=size>>1;break;case 4354:if(size>0){audioBuf=AL.currentCtx.audioCtx.createBuffer(2,size>>1,freq);var channel0=audioBuf.getChannelData(0);var channel1=audioBuf.getChannelData(1);for(var i=0;i>1;++i){channel0[i]=HEAPU8[pData++]*.0078125-1;channel1[i]=HEAPU8[pData++]*.0078125-1}}buf.bytesPerSample=1;buf.channels=2;buf.length=size>>1;break;case 4355:if(size>0){audioBuf=AL.currentCtx.audioCtx.createBuffer(2,size>>2,freq);var channel0=audioBuf.getChannelData(0);var channel1=audioBuf.getChannelData(1);pData>>=1;for(var i=0;i>2;++i){channel0[i]=HEAP16[pData++]*30517578125e-15;channel1[i]=HEAP16[pData++]*30517578125e-15}}buf.bytesPerSample=2;buf.channels=2;buf.length=size>>2;break;case 65552:if(size>0){audioBuf=AL.currentCtx.audioCtx.createBuffer(1,size>>2,freq);var channel0=audioBuf.getChannelData(0);pData>>=2;for(var i=0;i>2;++i){channel0[i]=HEAPF32[pData++]}}buf.bytesPerSample=4;buf.channels=1;buf.length=size>>2;break;case 65553:if(size>0){audioBuf=AL.currentCtx.audioCtx.createBuffer(2,size>>3,freq);var channel0=audioBuf.getChannelData(0);var channel1=audioBuf.getChannelData(1);pData>>=2;for(var i=0;i>3;++i){channel0[i]=HEAPF32[pData++];channel1[i]=HEAPF32[pData++]}}buf.bytesPerSample=4;buf.channels=2;buf.length=size>>3;break;default:AL.currentCtx.err=40963;return}buf.frequency=freq;buf.audioBuf=audioBuf}catch(e){AL.currentCtx.err=40963;return}}Module["_alBufferData"]=_alBufferData;_alBufferData.sig="viiiii";function _alBufferf(bufferId,param,value){AL.setBufferParam("alBufferf",bufferId,param,null)}Module["_alBufferf"]=_alBufferf;_alBufferf.sig="viif";function _alBufferfv(bufferId,param,pValues){if(!AL.currentCtx){return}if(!pValues){AL.currentCtx.err=40963;return}AL.setBufferParam("alBufferfv",bufferId,param,null)}Module["_alBufferfv"]=_alBufferfv;_alBufferfv.sig="viii";function _alBufferi(bufferId,param,value){AL.setBufferParam("alBufferi",bufferId,param,null)}Module["_alBufferi"]=_alBufferi;_alBufferi.sig="viii";function _alBufferiv(bufferId,param,pValues){if(!AL.currentCtx){return}if(!pValues){AL.currentCtx.err=40963;return}switch(param){case 8213:AL.paramArray[0]=HEAP32[pValues>>2];AL.paramArray[1]=HEAP32[pValues+4>>2];AL.setBufferParam("alBufferiv",bufferId,param,AL.paramArray);break;default:AL.setBufferParam("alBufferiv",bufferId,param,null);break}}Module["_alBufferiv"]=_alBufferiv;_alBufferiv.sig="viii";function _alDeleteBuffers(count,pBufferIds){if(!AL.currentCtx){return}for(var i=0;i>2];if(bufId===0){continue}if(!AL.buffers[bufId]){AL.currentCtx.err=40961;return}if(AL.buffers[bufId].refCount){AL.currentCtx.err=40964;return}}for(var i=0;i>2];if(bufId===0){continue}AL.deviceRefCounts[AL.buffers[bufId].deviceId]--;delete AL.buffers[bufId];AL.freeIds.push(bufId)}}Module["_alDeleteBuffers"]=_alDeleteBuffers;_alDeleteBuffers.sig="vii";function _alSourcei(sourceId,param,value){switch(param){case 514:case 4097:case 4098:case 4103:case 4105:case 4128:case 4129:case 4131:case 4132:case 4133:case 4134:case 4628:case 8201:case 8202:case 53248:AL.setSourceParam("alSourcei",sourceId,param,value);break;default:AL.setSourceParam("alSourcei",sourceId,param,null);break}}Module["_alSourcei"]=_alSourcei;_alSourcei.sig="viii";function _alDeleteSources(count,pSourceIds){if(!AL.currentCtx){return}for(var i=0;i>2];if(!AL.currentCtx.sources[srcId]){AL.currentCtx.err=40961;return}}for(var i=0;i>2];AL.setSourceState(AL.currentCtx.sources[srcId],4116);_alSourcei(srcId,4105,0);delete AL.currentCtx.sources[srcId];AL.freeIds.push(srcId)}}Module["_alDeleteSources"]=_alDeleteSources;_alDeleteSources.sig="vii";function _alDisable(param){if(!AL.currentCtx){return}switch(pname){case"AL_SOURCE_DISTANCE_MODEL":AL.currentCtx.sourceDistanceModel=false;AL.updateContextGlobal(AL.currentCtx);break;default:AL.currentCtx.err=40962;return}}Module["_alDisable"]=_alDisable;_alDisable.sig="vi";function _alDistanceModel(model){AL.setGlobalParam("alDistanceModel",53248,model)}Module["_alDistanceModel"]=_alDistanceModel;_alDistanceModel.sig="vi";function _alDopplerFactor(value){AL.setGlobalParam("alDopplerFactor",49152,value)}Module["_alDopplerFactor"]=_alDopplerFactor;_alDopplerFactor.sig="vi";function _alDopplerVelocity(value){warnOnce("alDopplerVelocity() is deprecated, and only kept for compatibility with OpenAL 1.0. Use alSpeedOfSound() instead.");if(!AL.currentCtx){return}if(value<=0){AL.currentCtx.err=40963;return}}Module["_alDopplerVelocity"]=_alDopplerVelocity;_alDopplerVelocity.sig="vi";function _alEnable(param){if(!AL.currentCtx){return}switch(param){case"AL_SOURCE_DISTANCE_MODEL":AL.currentCtx.sourceDistanceModel=true;AL.updateContextGlobal(AL.currentCtx);break;default:AL.currentCtx.err=40962;return}}Module["_alEnable"]=_alEnable;_alEnable.sig="vi";function _alGenBuffers(count,pBufferIds){if(!AL.currentCtx){return}for(var i=0;i>2]=buf.id}}Module["_alGenBuffers"]=_alGenBuffers;_alGenBuffers.sig="vii";function _alGenSources(count,pSourceIds){if(!AL.currentCtx){return}for(var i=0;i>2]=src.id}}Module["_alGenSources"]=_alGenSources;_alGenSources.sig="vii";function _alGetBoolean(param){var val=AL.getGlobalParam("alGetBoolean",param);if(val===null){return 0}switch(param){case 49152:case 49155:case 53248:return val!==0?1:0;default:AL.currentCtx.err=40962;return 0}}Module["_alGetBoolean"]=_alGetBoolean;_alGetBoolean.sig="ii";function _alGetBooleanv(param,pValues){var val=AL.getGlobalParam("alGetBooleanv",param);if(val===null||!pValues){return}switch(param){case 49152:case 49155:case 53248:HEAP8[pValues>>0]=val;break;default:AL.currentCtx.err=40962;return}}Module["_alGetBooleanv"]=_alGetBooleanv;_alGetBooleanv.sig="vii";function _alGetBuffer3f(bufferId,param,pValue0,pValue1,pValue2){var val=AL.getBufferParam("alGetBuffer3f",bufferId,param);if(val===null){return}if(!pValue0||!pValue1||!pValue2){AL.currentCtx.err=40963;return}AL.currentCtx.err=40962}Module["_alGetBuffer3f"]=_alGetBuffer3f;_alGetBuffer3f.sig="viiiii";function _alGetBuffer3i(bufferId,param,pValue0,pValue1,pValue2){var val=AL.getBufferParam("alGetBuffer3i",bufferId,param);if(val===null){return}if(!pValue0||!pValue1||!pValue2){AL.currentCtx.err=40963;return}AL.currentCtx.err=40962}Module["_alGetBuffer3i"]=_alGetBuffer3i;_alGetBuffer3i.sig="viiiii";function _alGetBufferf(bufferId,param,pValue){var val=AL.getBufferParam("alGetBufferf",bufferId,param);if(val===null){return}if(!pValue){AL.currentCtx.err=40963;return}AL.currentCtx.err=40962}Module["_alGetBufferf"]=_alGetBufferf;_alGetBufferf.sig="viii";function _alGetBufferfv(bufferId,param,pValues){var val=AL.getBufferParam("alGetBufferfv",bufferId,param);if(val===null){return}if(!pValues){AL.currentCtx.err=40963;return}AL.currentCtx.err=40962}Module["_alGetBufferfv"]=_alGetBufferfv;_alGetBufferfv.sig="viii";function _alGetBufferi(bufferId,param,pValue){var val=AL.getBufferParam("alGetBufferi",bufferId,param);if(val===null){return}if(!pValue){AL.currentCtx.err=40963;return}switch(param){case 8193:case 8194:case 8195:case 8196:HEAP32[pValue>>2]=val;break;default:AL.currentCtx.err=40962;return}}Module["_alGetBufferi"]=_alGetBufferi;_alGetBufferi.sig="viii";function _alGetBufferiv(bufferId,param,pValues){var val=AL.getBufferParam("alGetBufferiv",bufferId,param);if(val===null){return}if(!pValues){AL.currentCtx.err=40963;return}switch(param){case 8193:case 8194:case 8195:case 8196:HEAP32[pValues>>2]=val;break;case 8213:HEAP32[pValues>>2]=val[0];HEAP32[pValues+4>>2]=val[1];break;default:AL.currentCtx.err=40962;return}}Module["_alGetBufferiv"]=_alGetBufferiv;_alGetBufferiv.sig="viii";function _alGetDouble(param){var val=AL.getGlobalParam("alGetDouble",param);if(val===null){return 0}switch(param){case 49152:case 49155:case 53248:return val;default:AL.currentCtx.err=40962;return 0}}Module["_alGetDouble"]=_alGetDouble;_alGetDouble.sig="di";function _alGetDoublev(param,pValues){var val=AL.getGlobalParam("alGetDoublev",param);if(val===null||!pValues){return}switch(param){case 49152:case 49155:case 53248:HEAPF64[pValues>>3]=val;break;default:AL.currentCtx.err=40962;return}}Module["_alGetDoublev"]=_alGetDoublev;_alGetDoublev.sig="vii";function _alGetEnumValue(pEnumName){if(!AL.currentCtx){return 0}if(!pEnumName){AL.currentCtx.err=40963;return 0}name=UTF8ToString(pEnumName);switch(name){case"AL_BITS":return 8194;case"AL_BUFFER":return 4105;case"AL_BUFFERS_PROCESSED":return 4118;case"AL_BUFFERS_QUEUED":return 4117;case"AL_BYTE_OFFSET":return 4134;case"AL_CHANNELS":return 8195;case"AL_CONE_INNER_ANGLE":return 4097;case"AL_CONE_OUTER_ANGLE":return 4098;case"AL_CONE_OUTER_GAIN":return 4130;case"AL_DIRECTION":return 4101;case"AL_DISTANCE_MODEL":return 53248;case"AL_DOPPLER_FACTOR":return 49152;case"AL_DOPPLER_VELOCITY":return 49153;case"AL_EXPONENT_DISTANCE":return 53253;case"AL_EXPONENT_DISTANCE_CLAMPED":return 53254;case"AL_EXTENSIONS":return 45060;case"AL_FORMAT_MONO16":return 4353;case"AL_FORMAT_MONO8":return 4352;case"AL_FORMAT_STEREO16":return 4355;case"AL_FORMAT_STEREO8":return 4354;case"AL_FREQUENCY":return 8193;case"AL_GAIN":return 4106;case"AL_INITIAL":return 4113;case"AL_INVALID":return-1;case"AL_ILLEGAL_ENUM":case"AL_INVALID_ENUM":return 40962;case"AL_INVALID_NAME":return 40961;case"AL_ILLEGAL_COMMAND":case"AL_INVALID_OPERATION":return 40964;case"AL_INVALID_VALUE":return 40963;case"AL_INVERSE_DISTANCE":return 53249;case"AL_INVERSE_DISTANCE_CLAMPED":return 53250;case"AL_LINEAR_DISTANCE":return 53251;case"AL_LINEAR_DISTANCE_CLAMPED":return 53252;case"AL_LOOPING":return 4103;case"AL_MAX_DISTANCE":return 4131;case"AL_MAX_GAIN":return 4110;case"AL_MIN_GAIN":return 4109;case"AL_NONE":return 0;case"AL_NO_ERROR":return 0;case"AL_ORIENTATION":return 4111;case"AL_OUT_OF_MEMORY":return 40965;case"AL_PAUSED":return 4115;case"AL_PENDING":return 8209;case"AL_PITCH":return 4099;case"AL_PLAYING":return 4114;case"AL_POSITION":return 4100;case"AL_PROCESSED":return 8210;case"AL_REFERENCE_DISTANCE":return 4128;case"AL_RENDERER":return 45059;case"AL_ROLLOFF_FACTOR":return 4129;case"AL_SAMPLE_OFFSET":return 4133;case"AL_SEC_OFFSET":return 4132;case"AL_SIZE":return 8196;case"AL_SOURCE_RELATIVE":return 514;case"AL_SOURCE_STATE":return 4112;case"AL_SOURCE_TYPE":return 4135;case"AL_SPEED_OF_SOUND":return 49155;case"AL_STATIC":return 4136;case"AL_STOPPED":return 4116;case"AL_STREAMING":return 4137;case"AL_UNDETERMINED":return 4144;case"AL_UNUSED":return 8208;case"AL_VELOCITY":return 4102;case"AL_VENDOR":return 45057;case"AL_VERSION":return 45058;case"AL_AUTO_SOFT":return 2;case"AL_SOURCE_DISTANCE_MODEL":return 512;case"AL_SOURCE_SPATIALIZE_SOFT":return 4628;case"AL_LOOP_POINTS_SOFT":return 8213;case"AL_BYTE_LENGTH_SOFT":return 8201;case"AL_SAMPLE_LENGTH_SOFT":return 8202;case"AL_SEC_LENGTH_SOFT":return 8203;case"AL_FORMAT_MONO_FLOAT32":return 65552;case"AL_FORMAT_STEREO_FLOAT32":return 65553;default:AL.currentCtx.err=40963;return 0}}Module["_alGetEnumValue"]=_alGetEnumValue;_alGetEnumValue.sig="ii";function _alGetError(){if(!AL.currentCtx){return 40964}else{var err=AL.currentCtx.err;AL.currentCtx.err=0;return err}}Module["_alGetError"]=_alGetError;_alGetError.sig="i";function _alGetFloat(param){var val=AL.getGlobalParam("alGetFloat",param);if(val===null){return 0}switch(param){case 49152:case 49155:case 53248:return val;default:return 0}}Module["_alGetFloat"]=_alGetFloat;_alGetFloat.sig="fi";function _alGetFloatv(param,pValues){var val=AL.getGlobalParam("alGetFloatv",param);if(val===null||!pValues){return}switch(param){case 49152:case 49155:case 53248:HEAPF32[pValues>>2]=val;break;default:AL.currentCtx.err=40962;return}}Module["_alGetFloatv"]=_alGetFloatv;_alGetFloatv.sig="vii";function _alGetInteger(param){var val=AL.getGlobalParam("alGetInteger",param);if(val===null){return 0}switch(param){case 49152:case 49155:case 53248:return val;default:AL.currentCtx.err=40962;return 0}}Module["_alGetInteger"]=_alGetInteger;_alGetInteger.sig="ii";function _alGetIntegerv(param,pValues){var val=AL.getGlobalParam("alGetIntegerv",param);if(val===null||!pValues){return}switch(param){case 49152:case 49155:case 53248:HEAP32[pValues>>2]=val;break;default:AL.currentCtx.err=40962;return}}Module["_alGetIntegerv"]=_alGetIntegerv;_alGetIntegerv.sig="vii";function _alGetListener3f(param,pValue0,pValue1,pValue2){var val=AL.getListenerParam("alGetListener3f",param);if(val===null){return}if(!pValue0||!pValue1||!pValue2){AL.currentCtx.err=40963;return}switch(param){case 4100:case 4102:HEAPF32[pValue0>>2]=val[0];HEAPF32[pValue1>>2]=val[1];HEAPF32[pValue2>>2]=val[2];break;default:AL.currentCtx.err=40962;return}}Module["_alGetListener3f"]=_alGetListener3f;_alGetListener3f.sig="viiii";function _alGetListener3i(param,pValue0,pValue1,pValue2){var val=AL.getListenerParam("alGetListener3i",param);if(val===null){return}if(!pValue0||!pValue1||!pValue2){AL.currentCtx.err=40963;return}switch(param){case 4100:case 4102:HEAP32[pValue0>>2]=val[0];HEAP32[pValue1>>2]=val[1];HEAP32[pValue2>>2]=val[2];break;default:AL.currentCtx.err=40962;return}}Module["_alGetListener3i"]=_alGetListener3i;_alGetListener3i.sig="viiii";function _alGetListenerf(param,pValue){var val=AL.getListenerParam("alGetListenerf",param);if(val===null){return}if(!pValue){AL.currentCtx.err=40963;return}switch(param){case 4106:HEAPF32[pValue>>2]=val;break;default:AL.currentCtx.err=40962;return}}Module["_alGetListenerf"]=_alGetListenerf;_alGetListenerf.sig="vii";function _alGetListenerfv(param,pValues){var val=AL.getListenerParam("alGetListenerfv",param);if(val===null){return}if(!pValues){AL.currentCtx.err=40963;return}switch(param){case 4100:case 4102:HEAPF32[pValues>>2]=val[0];HEAPF32[pValues+4>>2]=val[1];HEAPF32[pValues+8>>2]=val[2];break;case 4111:HEAPF32[pValues>>2]=val[0];HEAPF32[pValues+4>>2]=val[1];HEAPF32[pValues+8>>2]=val[2];HEAPF32[pValues+12>>2]=val[3];HEAPF32[pValues+16>>2]=val[4];HEAPF32[pValues+20>>2]=val[5];break;default:AL.currentCtx.err=40962;return}}Module["_alGetListenerfv"]=_alGetListenerfv;_alGetListenerfv.sig="vii";function _alGetListeneri(param,pValue){var val=AL.getListenerParam("alGetListeneri",param);if(val===null){return}if(!pValue){AL.currentCtx.err=40963;return}AL.currentCtx.err=40962}Module["_alGetListeneri"]=_alGetListeneri;_alGetListeneri.sig="vii";function _alGetListeneriv(param,pValues){var val=AL.getListenerParam("alGetListeneriv",param);if(val===null){return}if(!pValues){AL.currentCtx.err=40963;return}switch(param){case 4100:case 4102:HEAP32[pValues>>2]=val[0];HEAP32[pValues+4>>2]=val[1];HEAP32[pValues+8>>2]=val[2];break;case 4111:HEAP32[pValues>>2]=val[0];HEAP32[pValues+4>>2]=val[1];HEAP32[pValues+8>>2]=val[2];HEAP32[pValues+12>>2]=val[3];HEAP32[pValues+16>>2]=val[4];HEAP32[pValues+20>>2]=val[5];break;default:AL.currentCtx.err=40962;return}}Module["_alGetListeneriv"]=_alGetListeneriv;_alGetListeneriv.sig="vii";function _alGetSource3f(sourceId,param,pValue0,pValue1,pValue2){var val=AL.getSourceParam("alGetSource3f",sourceId,param);if(val===null){return}if(!pValue0||!pValue1||!pValue2){AL.currentCtx.err=40963;return}switch(param){case 4100:case 4101:case 4102:HEAPF32[pValue0>>2]=val[0];HEAPF32[pValue1>>2]=val[1];HEAPF32[pValue2>>2]=val[2];break;default:AL.currentCtx.err=40962;return}}Module["_alGetSource3f"]=_alGetSource3f;_alGetSource3f.sig="viiiii";function _alGetSource3i(source,param,pValue0,pValue1,pValue2){var val=AL.getSourceParam("alGetSource3i",sourceId,param);if(val===null){return}if(!pValue0||!pValue1||!pValue2){AL.currentCtx.err=40963;return}switch(param){case 4100:case 4101:case 4102:HEAP32[pValue0>>2]=val[0];HEAP32[pValue1>>2]=val[1];HEAP32[pValue2>>2]=val[2];break;default:AL.currentCtx.err=40962;return}}Module["_alGetSource3i"]=_alGetSource3i;_alGetSource3i.sig="viiiii";function _alGetSourcef(sourceId,param,pValue){var val=AL.getSourceParam("alGetSourcef",sourceId,param);if(val===null){return}if(!pValue){AL.currentCtx.err=40963;return}switch(param){case 4097:case 4098:case 4099:case 4106:case 4109:case 4110:case 4128:case 4129:case 4130:case 4131:case 4132:case 4133:case 4134:case 8203:HEAPF32[pValue>>2]=val;break;default:AL.currentCtx.err=40962;return}}Module["_alGetSourcef"]=_alGetSourcef;_alGetSourcef.sig="viii";function _alGetSourcefv(sourceId,param,pValues){var val=AL.getSourceParam("alGetSourcefv",sourceId,param);if(val===null){return}if(!pValues){AL.currentCtx.err=40963;return}switch(param){case 4097:case 4098:case 4099:case 4106:case 4109:case 4110:case 4128:case 4129:case 4130:case 4131:case 4132:case 4133:case 4134:case 8203:HEAPF32[pValues>>2]=val[0];break;case 4100:case 4101:case 4102:HEAPF32[pValues>>2]=val[0];HEAPF32[pValues+4>>2]=val[1];HEAPF32[pValues+8>>2]=val[2];break;default:AL.currentCtx.err=40962;return}}Module["_alGetSourcefv"]=_alGetSourcefv;_alGetSourcefv.sig="viii";function _alGetSourcei(sourceId,param,pValue){var val=AL.getSourceParam("alGetSourcei",sourceId,param);if(val===null){return}if(!pValue){AL.currentCtx.err=40963;return}switch(param){case 514:case 4097:case 4098:case 4103:case 4105:case 4112:case 4117:case 4118:case 4128:case 4129:case 4131:case 4132:case 4133:case 4134:case 4135:case 4628:case 8201:case 8202:case 53248:HEAP32[pValue>>2]=val;break;default:AL.currentCtx.err=40962;return}}Module["_alGetSourcei"]=_alGetSourcei;_alGetSourcei.sig="viii";function _alGetSourceiv(sourceId,param,pValues){var val=AL.getSourceParam("alGetSourceiv",sourceId,param);if(val===null){return}if(!pValues){AL.currentCtx.err=40963;return}switch(param){case 514:case 4097:case 4098:case 4103:case 4105:case 4112:case 4117:case 4118:case 4128:case 4129:case 4131:case 4132:case 4133:case 4134:case 4135:case 4628:case 8201:case 8202:case 53248:HEAP32[pValues>>2]=val;break;case 4100:case 4101:case 4102:HEAP32[pValues>>2]=val[0];HEAP32[pValues+4>>2]=val[1];HEAP32[pValues+8>>2]=val[2];break;default:AL.currentCtx.err=40962;return}}Module["_alGetSourceiv"]=_alGetSourceiv;_alGetSourceiv.sig="viii";function _alGetString(param){if(!AL.currentCtx){return 0}if(AL.stringCache[param]){return AL.stringCache[param]}var ret;switch(param){case 0:ret="No Error";break;case 40961:ret="Invalid Name";break;case 40962:ret="Invalid Enum";break;case 40963:ret="Invalid Value";break;case 40964:ret="Invalid Operation";break;case 40965:ret="Out of Memory";break;case 45057:ret="Emscripten";break;case 45058:ret="1.1";break;case 45059:ret="WebAudio";break;case 45060:ret="";for(var ext in AL.AL_EXTENSIONS){ret=ret.concat(ext);ret=ret.concat(" ")}ret=ret.trim();break;default:AL.currentCtx.err=40962;return 0}ret=allocate(intArrayFromString(ret),ALLOC_NORMAL);AL.stringCache[param]=ret;return ret}Module["_alGetString"]=_alGetString;_alGetString.sig="ii";function _alIsBuffer(bufferId){if(!AL.currentCtx){return false}if(bufferId>AL.buffers.length){return false}if(!AL.buffers[bufferId]){return false}else{return true}}Module["_alIsBuffer"]=_alIsBuffer;_alIsBuffer.sig="ii";function _alIsEnabled(param){if(!AL.currentCtx){return 0}switch(pname){case"AL_SOURCE_DISTANCE_MODEL":return AL.currentCtx.sourceDistanceModel?0:1;default:AL.currentCtx.err=40962;return 0}}Module["_alIsEnabled"]=_alIsEnabled;_alIsEnabled.sig="ii";function _alIsExtensionPresent(pExtName){name=UTF8ToString(pExtName);return AL.AL_EXTENSIONS[name]?1:0}Module["_alIsExtensionPresent"]=_alIsExtensionPresent;_alIsExtensionPresent.sig="ii";function _alIsSource(sourceId){if(!AL.currentCtx){return false}if(!AL.currentCtx.sources[sourceId]){return false}else{return true}}Module["_alIsSource"]=_alIsSource;_alIsSource.sig="ii";function _alListener3f(param,value0,value1,value2){switch(param){case 4100:case 4102:AL.paramArray[0]=value0;AL.paramArray[1]=value1;AL.paramArray[2]=value2;AL.setListenerParam("alListener3f",param,AL.paramArray);break;default:AL.setListenerParam("alListener3f",param,null);break}}Module["_alListener3f"]=_alListener3f;_alListener3f.sig="vifff";function _alListener3i(param,value0,value1,value2){switch(param){case 4100:case 4102:AL.paramArray[0]=value0;AL.paramArray[1]=value1;AL.paramArray[2]=value2;AL.setListenerParam("alListener3i",param,AL.paramArray);break;default:AL.setListenerParam("alListener3i",param,null);break}}Module["_alListener3i"]=_alListener3i;_alListener3i.sig="viiii";function _alListenerf(param,value){switch(param){case 4106:AL.setListenerParam("alListenerf",param,value);break;default:AL.setListenerParam("alListenerf",param,null);break}}Module["_alListenerf"]=_alListenerf;_alListenerf.sig="vif";function _alListenerfv(param,pValues){if(!AL.currentCtx){return}if(!pValues){AL.currentCtx.err=40963;return}switch(param){case 4100:case 4102:AL.paramArray[0]=HEAPF32[pValues>>2];AL.paramArray[1]=HEAPF32[pValues+4>>2];AL.paramArray[2]=HEAPF32[pValues+8>>2];AL.setListenerParam("alListenerfv",param,AL.paramArray);break;case 4111:AL.paramArray[0]=HEAPF32[pValues>>2];AL.paramArray[1]=HEAPF32[pValues+4>>2];AL.paramArray[2]=HEAPF32[pValues+8>>2];AL.paramArray[3]=HEAPF32[pValues+12>>2];AL.paramArray[4]=HEAPF32[pValues+16>>2];AL.paramArray[5]=HEAPF32[pValues+20>>2];AL.setListenerParam("alListenerfv",param,AL.paramArray);break;default:AL.setListenerParam("alListenerfv",param,null);break}}Module["_alListenerfv"]=_alListenerfv;_alListenerfv.sig="vii";function _alListeneri(param,value){AL.setListenerParam("alListeneri",param,null)}Module["_alListeneri"]=_alListeneri;_alListeneri.sig="vii";function _alListeneriv(param,pValues){if(!AL.currentCtx){return}if(!pValues){AL.currentCtx.err=40963;return}switch(param){case 4100:case 4102:AL.paramArray[0]=HEAP32[pValues>>2];AL.paramArray[1]=HEAP32[pValues+4>>2];AL.paramArray[2]=HEAP32[pValues+8>>2];AL.setListenerParam("alListeneriv",param,AL.paramArray);break;case 4111:AL.paramArray[0]=HEAP32[pValues>>2];AL.paramArray[1]=HEAP32[pValues+4>>2];AL.paramArray[2]=HEAP32[pValues+8>>2];AL.paramArray[3]=HEAP32[pValues+12>>2];AL.paramArray[4]=HEAP32[pValues+16>>2];AL.paramArray[5]=HEAP32[pValues+20>>2];AL.setListenerParam("alListeneriv",param,AL.paramArray);break;default:AL.setListenerParam("alListeneriv",param,null);break}}Module["_alListeneriv"]=_alListeneriv;_alListeneriv.sig="vii";function _alSource3f(sourceId,param,value0,value1,value2){switch(param){case 4100:case 4101:case 4102:AL.paramArray[0]=value0;AL.paramArray[1]=value1;AL.paramArray[2]=value2;AL.setSourceParam("alSource3f",sourceId,param,AL.paramArray);break;default:AL.setSourceParam("alSource3f",sourceId,param,null);break}}Module["_alSource3f"]=_alSource3f;_alSource3f.sig="viifff";function _alSource3i(sourceId,param,value0,value1,value2){switch(param){case 4100:case 4101:case 4102:AL.paramArray[0]=value0;AL.paramArray[1]=value1;AL.paramArray[2]=value2;AL.setSourceParam("alSource3i",sourceId,param,AL.paramArray);break;default:AL.setSourceParam("alSource3i",sourceId,param,null);break}}Module["_alSource3i"]=_alSource3i;_alSource3i.sig="viiiii";function _alSourcePause(sourceId){if(!AL.currentCtx){return}var src=AL.currentCtx.sources[sourceId];if(!src){AL.currentCtx.err=40961;return}AL.setSourceState(src,4115)}Module["_alSourcePause"]=_alSourcePause;_alSourcePause.sig="vi";function _alSourcePausev(count,pSourceIds){if(!AL.currentCtx){return}if(!pSourceIds){AL.currentCtx.err=40963}for(var i=0;i>2]]){AL.currentCtx.err=40961;return}}for(var i=0;i>2],4115)}}Module["_alSourcePausev"]=_alSourcePausev;_alSourcePausev.sig="vii";function _alSourcePlay(sourceId){if(!AL.currentCtx){return}var src=AL.currentCtx.sources[sourceId];if(!src){AL.currentCtx.err=40961;return}AL.setSourceState(src,4114)}Module["_alSourcePlay"]=_alSourcePlay;_alSourcePlay.sig="vi";function _alSourcePlayv(count,pSourceIds){if(!AL.currentCtx){return}if(!pSourceIds){AL.currentCtx.err=40963}for(var i=0;i>2]]){AL.currentCtx.err=40961;return}}for(var i=0;i>2],4114)}}Module["_alSourcePlayv"]=_alSourcePlayv;_alSourcePlayv.sig="vii";function _alSourceQueueBuffers(sourceId,count,pBufferIds){if(!AL.currentCtx){return}var src=AL.currentCtx.sources[sourceId];if(!src){AL.currentCtx.err=40961;return}if(src.type===4136){AL.currentCtx.err=40964;return}if(count===0){return}var templateBuf=AL.buffers[0];for(var i=0;i>2];var buf=AL.buffers[bufId];if(!buf){AL.currentCtx.err=40961;return}if(templateBuf.id!==0&&(buf.frequency!==templateBuf.frequency||buf.bytesPerSample!==templateBuf.bytesPerSample||buf.channels!==templateBuf.channels)){AL.currentCtx.err=40964}}if(src.bufQueue.length===1&&src.bufQueue[0].id===0){src.bufQueue.length=0}src.type=4137;for(var i=0;i>2];var buf=AL.buffers[bufId];buf.refCount++;src.bufQueue.push(buf)}if(src.looping){AL.cancelPendingSourceAudio(src)}AL.initSourcePanner(src);AL.scheduleSourceAudio(src)}Module["_alSourceQueueBuffers"]=_alSourceQueueBuffers;_alSourceQueueBuffers.sig="viii";function _alSourceRewind(sourceId){if(!AL.currentCtx){return}var src=AL.currentCtx.sources[sourceId];if(!src){AL.currentCtx.err=40961;return}AL.setSourceState(src,4116);AL.setSourceState(src,4113)}Module["_alSourceRewind"]=_alSourceRewind;_alSourceRewind.sig="vi";function _alSourceRewindv(count,pSourceIds){if(!AL.currentCtx){return}if(!pSourceIds){AL.currentCtx.err=40963}for(var i=0;i>2]]){AL.currentCtx.err=40961;return}}for(var i=0;i>2],4113)}}Module["_alSourceRewindv"]=_alSourceRewindv;_alSourceRewindv.sig="vii";function _alSourceStop(sourceId){if(!AL.currentCtx){return}var src=AL.currentCtx.sources[sourceId];if(!src){AL.currentCtx.err=40961;return}AL.setSourceState(src,4116)}Module["_alSourceStop"]=_alSourceStop;_alSourceStop.sig="vi";function _alSourceStopv(count,pSourceIds){if(!AL.currentCtx){return}if(!pSourceIds){AL.currentCtx.err=40963}for(var i=0;i>2]]){AL.currentCtx.err=40961;return}}for(var i=0;i>2],4116)}}Module["_alSourceStopv"]=_alSourceStopv;_alSourceStopv.sig="vii";function _alSourceUnqueueBuffers(sourceId,count,pBufferIds){if(!AL.currentCtx){return}var src=AL.currentCtx.sources[sourceId];if(!src){AL.currentCtx.err=40961;return}if(count>(src.bufQueue.length===1&&src.bufQueue[0].id===0?0:src.bufsProcessed)){AL.currentCtx.err=40963;return}if(count===0){return}for(var i=0;i>2]=buf.id;src.bufsProcessed--}if(src.bufQueue.length===0){src.bufQueue.push(AL.buffers[0])}AL.initSourcePanner(src);AL.scheduleSourceAudio(src)}Module["_alSourceUnqueueBuffers"]=_alSourceUnqueueBuffers;_alSourceUnqueueBuffers.sig="viii";function _alSourcef(sourceId,param,value){switch(param){case 4097:case 4098:case 4099:case 4106:case 4109:case 4110:case 4128:case 4129:case 4130:case 4131:case 4132:case 4133:case 4134:case 8203:AL.setSourceParam("alSourcef",sourceId,param,value);break;default:AL.setSourceParam("alSourcef",sourceId,param,null);break}}Module["_alSourcef"]=_alSourcef;_alSourcef.sig="viif";function _alSourcefv(sourceId,param,pValues){if(!AL.currentCtx){return}if(!pValues){AL.currentCtx.err=40963;return}switch(param){case 4097:case 4098:case 4099:case 4106:case 4109:case 4110:case 4128:case 4129:case 4130:case 4131:case 4132:case 4133:case 4134:case 8203:var val=HEAPF32[pValues>>2];AL.setSourceParam("alSourcefv",sourceId,param,val);break;case 4100:case 4101:case 4102:AL.paramArray[0]=HEAPF32[pValues>>2];AL.paramArray[1]=HEAPF32[pValues+4>>2];AL.paramArray[2]=HEAPF32[pValues+8>>2];AL.setSourceParam("alSourcefv",sourceId,param,AL.paramArray);break;default:AL.setSourceParam("alSourcefv",sourceId,param,null);break}}Module["_alSourcefv"]=_alSourcefv;_alSourcefv.sig="viii";function _alSourceiv(source,param,pValues){if(!AL.currentCtx){return}if(!pValues){AL.currentCtx.err=40963;return}switch(param){case 514:case 4097:case 4098:case 4103:case 4105:case 4128:case 4129:case 4131:case 4132:case 4133:case 4134:case 4628:case 8201:case 8202:case 53248:var val=HEAP32[pValues>>2];AL.setSourceParam("alSourceiv",sourceId,param,val);break;case 4100:case 4101:case 4102:AL.paramArray[0]=HEAP32[pValues>>2];AL.paramArray[1]=HEAP32[pValues+4>>2];AL.paramArray[2]=HEAP32[pValues+8>>2];AL.setSourceParam("alSourceiv",sourceId,param,AL.paramArray);break;default:AL.setSourceParam("alSourceiv",sourceId,param,null);break}}Module["_alSourceiv"]=_alSourceiv;_alSourceiv.sig="viii";function _alSpeedOfSound(value){AL.setGlobalParam("alSpeedOfSound",49155,value)}Module["_alSpeedOfSound"]=_alSpeedOfSound;_alSpeedOfSound.sig="vi";var __sigalrm_handler=0;Module["__sigalrm_handler"]=__sigalrm_handler;function _alarm(seconds){setTimeout(function(){if(__sigalrm_handler)wasmTable.get(__sigalrm_handler)(0)},seconds*1e3)}Module["_alarm"]=_alarm;function _alcCaptureCloseDevice(deviceId){var c=AL.requireValidCaptureDevice(deviceId,"alcCaptureCloseDevice");if(!c)return false;delete AL.captures[deviceId];AL.freeIds.push(deviceId);if(c.mediaStreamSourceNode)c.mediaStreamSourceNode.disconnect();if(c.mergerNode)c.mergerNode.disconnect();if(c.splitterNode)c.splitterNode.disconnect();if(c.scriptProcessorNode)c.scriptProcessorNode.disconnect();if(c.mediaStream){c.mediaStream.getTracks().forEach(function(track){track.stop()})}delete c.buffers;c.capturedFrameCount=0;c.isCapturing=false;return true}Module["_alcCaptureCloseDevice"]=_alcCaptureCloseDevice;_alcCaptureCloseDevice.sig="ii";function listenOnce(object,event,func){object.addEventListener(event,func,{"once":true})}Module["listenOnce"]=listenOnce;function autoResumeAudioContext(ctx,elements){if(!elements){elements=[document,document.getElementById("canvas")]}["keydown","mousedown","touchstart"].forEach(function(event){elements.forEach(function(element){if(element){listenOnce(element,event,function(){if(ctx.state==="suspended")ctx.resume()})}})})}Module["autoResumeAudioContext"]=autoResumeAudioContext;function _alcCaptureOpenDevice(pDeviceName,requestedSampleRate,format,bufferFrameCapacity){var resolvedDeviceName=AL.CAPTURE_DEVICE_NAME;if(pDeviceName!==0){resolvedDeviceName=UTF8ToString(pDeviceName);if(resolvedDeviceName!==AL.CAPTURE_DEVICE_NAME){AL.alcErr=40965;return 0}}if(bufferFrameCapacity<0){AL.alcErr=40964;return 0}navigator.getUserMedia=navigator.getUserMedia||navigator.webkitGetUserMedia||navigator.mozGetUserMedia||navigator.msGetUserMedia;var has_getUserMedia=navigator.getUserMedia||navigator.mediaDevices&&navigator.mediaDevices.getUserMedia;if(!has_getUserMedia){AL.alcErr=40965;return 0}var AudioContext=window.AudioContext||window.webkitAudioContext;if(!AL.sharedCaptureAudioCtx){try{AL.sharedCaptureAudioCtx=new AudioContext}catch(e){AL.alcErr=40965;return 0}}autoResumeAudioContext(AL.sharedCaptureAudioCtx);var outputChannelCount;switch(format){case 65552:case 4353:case 4352:outputChannelCount=1;break;case 65553:case 4355:case 4354:outputChannelCount=2;break;default:AL.alcErr=40964;return 0}function newF32Array(cap){return new Float32Array(cap)}function newI16Array(cap){return new Int16Array(cap)}function newU8Array(cap){return new Uint8Array(cap)}var requestedSampleType;var newSampleArray;switch(format){case 65552:case 65553:requestedSampleType="f32";newSampleArray=newF32Array;break;case 4353:case 4355:requestedSampleType="i16";newSampleArray=newI16Array;break;case 4352:case 4354:requestedSampleType="u8";newSampleArray=newU8Array;break}var buffers=[];try{for(var chan=0;chanoutputChannelCount){newCapture.mergerNode=newCapture.audioCtx.createChannelMerger(inputChannelCount);newCapture.mediaStreamSourceNode.connect(newCapture.mergerNode);newCapture.mergerNode.connect(newCapture.scriptProcessorNode)}else if(inputChannelCountc.capturedFrameCount/fratio){console.error("alcCaptureSamples() with invalid bufferSize");AL.alcErr=40964;return}function setF32Sample(i,sample){HEAPF32[pFrames+4*i>>2]=sample}function setI16Sample(i,sample){HEAP16[pFrames+2*i>>1]=sample}function setU8Sample(i,sample){HEAP8[pFrames+i>>0]=sample}var setSample;switch(c.requestedSampleType){case"f32":setSample=setF32Sample;break;case"i16":setSample=setI16Sample;break;case"u8":setSample=setU8Sample;break;default:return}if(Math.floor(fratio)==fratio){for(var i=0,frame_i=0;frame_i0){return 0}delete AL.deviceRefCounts[deviceId];AL.freeIds.push(deviceId);return 1}Module["_alcCloseDevice"]=_alcCloseDevice;_alcCloseDevice.sig="ii";function _alcCreateContext(deviceId,pAttrList){if(!(deviceId in AL.deviceRefCounts)){AL.alcErr=40961;return 0}var options=null;var attrs=[];var hrtf=null;pAttrList>>=2;if(pAttrList){var attr=0;var val=0;while(true){attr=HEAP32[pAttrList++];attrs.push(attr);if(attr===0){break}val=HEAP32[pAttrList++];attrs.push(val);switch(attr){case 4103:if(!options){options={}}options.sampleRate=val;break;case 4112:case 4113:break;case 6546:switch(val){case 0:hrtf=false;break;case 1:hrtf=true;break;case 2:break;default:AL.alcErr=40964;return 0}break;case 6550:if(val!==0){AL.alcErr=40964;return 0}break;default:AL.alcErr=40964;return 0}}}var AudioContext=window.AudioContext||window.webkitAudioContext;var ac=null;try{if(options){ac=new AudioContext(options)}else{ac=new AudioContext}}catch(e){if(e.name==="NotSupportedError"){AL.alcErr=40964}else{AL.alcErr=40961}return 0}autoResumeAudioContext(ac);if(typeof ac.createGain==="undefined"){ac.createGain=ac.createGainNode}var gain=ac.createGain();gain.connect(ac.destination);var ctx={deviceId:deviceId,id:AL.newId(),attrs:attrs,audioCtx:ac,listener:{position:[0,0,0],velocity:[0,0,0],direction:[0,0,0],up:[0,0,0]},sources:[],interval:setInterval(function(){AL.scheduleContextAudio(ctx)},AL.QUEUE_INTERVAL),gain:gain,distanceModel:53250,speedOfSound:343.3,dopplerFactor:1,sourceDistanceModel:false,hrtf:hrtf||false,_err:0,get err(){return this._err},set err(val){if(this._err===0||val===0){this._err=val}}};AL.deviceRefCounts[deviceId]++;AL.contexts[ctx.id]=ctx;if(hrtf!==null){for(var ctxId in AL.contexts){var c=AL.contexts[ctxId];if(c.deviceId===deviceId){c.hrtf=hrtf;AL.updateContextGlobal(c)}}}return ctx.id}Module["_alcCreateContext"]=_alcCreateContext;_alcCreateContext.sig="iii";function _alcDestroyContext(contextId){var ctx=AL.contexts[contextId];if(AL.currentCtx===ctx){AL.alcErr=40962;return}if(AL.contexts[contextId].interval){clearInterval(AL.contexts[contextId].interval)}AL.deviceRefCounts[ctx.deviceId]--;delete AL.contexts[contextId];AL.freeIds.push(contextId)}Module["_alcDestroyContext"]=_alcDestroyContext;_alcDestroyContext.sig="vi";function _alcGetContextsDevice(contextId){if(contextId in AL.contexts){return AL.contexts[contextId].deviceId}else{return 0}}Module["_alcGetContextsDevice"]=_alcGetContextsDevice;_alcGetContextsDevice.sig="ii";function _alcGetCurrentContext(){if(AL.currentCtx!==null){return AL.currentCtx.id}else{return 0}}Module["_alcGetCurrentContext"]=_alcGetCurrentContext;_alcGetCurrentContext.sig="i";function _alcGetEnumValue(deviceId,pEnumName){if(deviceId!==0&&!(deviceId in AL.deviceRefCounts)){return 0}else if(!pEnumName){AL.alcErr=40964;return 0}name=UTF8ToString(pEnumName);switch(name){case"ALC_NO_ERROR":return 0;case"ALC_INVALID_DEVICE":return 40961;case"ALC_INVALID_CONTEXT":return 40962;case"ALC_INVALID_ENUM":return 40963;case"ALC_INVALID_VALUE":return 40964;case"ALC_OUT_OF_MEMORY":return 40965;case"ALC_MAJOR_VERSION":return 4096;case"ALC_MINOR_VERSION":return 4097;case"ALC_ATTRIBUTES_SIZE":return 4098;case"ALC_ALL_ATTRIBUTES":return 4099;case"ALC_DEFAULT_DEVICE_SPECIFIER":return 4100;case"ALC_DEVICE_SPECIFIER":return 4101;case"ALC_EXTENSIONS":return 4102;case"ALC_FREQUENCY":return 4103;case"ALC_REFRESH":return 4104;case"ALC_SYNC":return 4105;case"ALC_MONO_SOURCES":return 4112;case"ALC_STEREO_SOURCES":return 4113;case"ALC_CAPTURE_DEVICE_SPECIFIER":return 784;case"ALC_CAPTURE_DEFAULT_DEVICE_SPECIFIER":return 785;case"ALC_CAPTURE_SAMPLES":return 786;case"ALC_HRTF_SOFT":return 6546;case"ALC_HRTF_ID_SOFT":return 6550;case"ALC_DONT_CARE_SOFT":return 2;case"ALC_HRTF_STATUS_SOFT":return 6547;case"ALC_NUM_HRTF_SPECIFIERS_SOFT":return 6548;case"ALC_HRTF_SPECIFIER_SOFT":return 6549;case"ALC_HRTF_DISABLED_SOFT":return 0;case"ALC_HRTF_ENABLED_SOFT":return 1;case"ALC_HRTF_DENIED_SOFT":return 2;case"ALC_HRTF_REQUIRED_SOFT":return 3;case"ALC_HRTF_HEADPHONES_DETECTED_SOFT":return 4;case"ALC_HRTF_UNSUPPORTED_FORMAT_SOFT":return 5;default:AL.alcErr=40964;return 0}}Module["_alcGetEnumValue"]=_alcGetEnumValue;_alcGetEnumValue.sig="iii";function _alcGetError(deviceId){var err=AL.alcErr;AL.alcErr=0;return err}Module["_alcGetError"]=_alcGetError;_alcGetError.sig="ii";function _alcGetIntegerv(deviceId,param,size,pValues){if(size===0||!pValues){return}switch(param){case 4096:HEAP32[pValues>>2]=1;break;case 4097:HEAP32[pValues>>2]=1;break;case 4098:if(!(deviceId in AL.deviceRefCounts)){AL.alcErr=40961;return}if(!AL.currentCtx){AL.alcErr=40962;return}HEAP32[pValues>>2]=AL.currentCtx.attrs.length;break;case 4099:if(!(deviceId in AL.deviceRefCounts)){AL.alcErr=40961;return}if(!AL.currentCtx){AL.alcErr=40962;return}for(var i=0;i>2]=AL.currentCtx.attrs[i]}break;case 4103:if(!(deviceId in AL.deviceRefCounts)){AL.alcErr=40961;return}if(!AL.currentCtx){AL.alcErr=40962;return}HEAP32[pValues>>2]=AL.currentCtx.audioCtx.sampleRate;break;case 4112:case 4113:if(!(deviceId in AL.deviceRefCounts)){AL.alcErr=40961;return}if(!AL.currentCtx){AL.alcErr=40962;return}HEAP32[pValues>>2]=2147483647;break;case 6546:case 6547:if(!(deviceId in AL.deviceRefCounts)){AL.alcErr=40961;return}var hrtfStatus=0;for(var ctxId in AL.contexts){var ctx=AL.contexts[ctxId];if(ctx.deviceId===deviceId){hrtfStatus=ctx.hrtf?1:0}}HEAP32[pValues>>2]=hrtfStatus;break;case 6548:if(!(deviceId in AL.deviceRefCounts)){AL.alcErr=40961;return}HEAP32[pValues>>2]=1;break;case 131075:if(!(deviceId in AL.deviceRefCounts)){AL.alcErr=40961;return}if(!AL.currentCtx){AL.alcErr=40962;return}HEAP32[pValues>>2]=1;case 786:var c=AL.requireValidCaptureDevice(deviceId,"alcGetIntegerv");if(!c){return}var n=c.capturedFrameCount;var dstfreq=c.requestedSampleRate;var srcfreq=c.audioCtx.sampleRate;var nsamples=Math.floor(n*(dstfreq/srcfreq));HEAP32[pValues>>2]=nsamples;break;default:AL.alcErr=40963;return}}Module["_alcGetIntegerv"]=_alcGetIntegerv;_alcGetIntegerv.sig="viiii";function _alcGetString(deviceId,param){if(AL.alcStringCache[param]){return AL.alcStringCache[param]}var ret;switch(param){case 0:ret="No Error";break;case 40961:ret="Invalid Device";break;case 40962:ret="Invalid Context";break;case 40963:ret="Invalid Enum";break;case 40964:ret="Invalid Value";break;case 40965:ret="Out of Memory";break;case 4100:if(typeof AudioContext!=="undefined"||typeof webkitAudioContext!=="undefined"){ret=AL.DEVICE_NAME}else{return 0}break;case 4101:if(typeof AudioContext!=="undefined"||typeof webkitAudioContext!=="undefined"){ret=AL.DEVICE_NAME.concat("\0")}else{ret="\0"}break;case 785:ret=AL.CAPTURE_DEVICE_NAME;break;case 784:if(deviceId===0)ret=AL.CAPTURE_DEVICE_NAME.concat("\0");else{var c=AL.requireValidCaptureDevice(deviceId,"alcGetString");if(!c){return 0}ret=c.deviceName}break;case 4102:if(!deviceId){AL.alcErr=40961;return 0}ret="";for(var ext in AL.ALC_EXTENSIONS){ret=ret.concat(ext);ret=ret.concat(" ")}ret=ret.trim();break;default:AL.alcErr=40963;return 0}ret=allocate(intArrayFromString(ret),ALLOC_NORMAL);AL.alcStringCache[param]=ret;return ret}Module["_alcGetString"]=_alcGetString;_alcGetString.sig="iii";function _alcIsExtensionPresent(deviceId,pExtName){var name=UTF8ToString(pExtName);return AL.ALC_EXTENSIONS[name]?1:0}Module["_alcIsExtensionPresent"]=_alcIsExtensionPresent;_alcIsExtensionPresent.sig="iii";function _alcMakeContextCurrent(contextId){if(contextId===0){AL.currentCtx=null;return 0}else{AL.currentCtx=AL.contexts[contextId];return 1}}Module["_alcMakeContextCurrent"]=_alcMakeContextCurrent;_alcMakeContextCurrent.sig="ii";function _alcOpenDevice(pDeviceName){if(pDeviceName){var name=UTF8ToString(pDeviceName);if(name!==AL.DEVICE_NAME){return 0}}if(typeof AudioContext!=="undefined"||typeof webkitAudioContext!=="undefined"){var deviceId=AL.newId();AL.deviceRefCounts[deviceId]=0;return deviceId}else{return 0}}Module["_alcOpenDevice"]=_alcOpenDevice;_alcOpenDevice.sig="ii";function _alcProcessContext(contextId){}Module["_alcProcessContext"]=_alcProcessContext;_alcProcessContext.sig="vi";function _alcSuspendContext(contextId){}Module["_alcSuspendContext"]=_alcSuspendContext;_alcSuspendContext.sig="vi";function _chroot(path){setErrNo(2);return-1}Module["_chroot"]=_chroot;_chroot.sig="ii";function _clock(){if(_clock.start===undefined)_clock.start=Date.now();return(Date.now()-_clock.start)*(1e6/1e3)|0}Module["_clock"]=_clock;_clock.sig="i";function _emscripten_get_now_res(){if(ENVIRONMENT_IS_NODE){return 1}else if(typeof dateNow!=="undefined"){return 1e3}else return 1e3}Module["_emscripten_get_now_res"]=_emscripten_get_now_res;function _clock_getres(clk_id,res){var nsec;if(clk_id===0){nsec=1e3*1e3}else if(clk_id===1&&_emscripten_get_now_is_monotonic){nsec=_emscripten_get_now_res()}else{setErrNo(28);return-1}HEAP32[res>>2]=nsec/1e9|0;HEAP32[res+4>>2]=nsec;return 0}Module["_clock_getres"]=_clock_getres;var DLFCN={error:null,errorMsg:null};Module["DLFCN"]=DLFCN;function _dlclose(handle){var lib=LDSO.loadedLibs[handle];if(!lib){DLFCN.errorMsg="Tried to dlclose() unopened handle: "+handle;return 1}if(--lib.refcount==0){delete LDSO.loadedLibNames[lib.name];delete LDSO.loadedLibs[handle]}return 0}Module["_dlclose"]=_dlclose;_dlclose.sig="ii";function stringToNewUTF8(jsString){var length=lengthBytesUTF8(jsString)+1;var cString=_malloc(length);stringToUTF8(jsString,cString,length);return cString}Module["stringToNewUTF8"]=stringToNewUTF8;function _dlerror(){if(DLFCN.errorMsg===null){return 0}if(DLFCN.error)_free(DLFCN.error);DLFCN.error=stringToNewUTF8(DLFCN.errorMsg);DLFCN.errorMsg=null;return DLFCN.error}Module["_dlerror"]=_dlerror;_dlerror.sig="i";var ENV={};Module["ENV"]=ENV;function _dlopen(filenameAddr,flags){var searchpaths=[];var filename;if(filenameAddr===0){filename="__main__"}else{filename=UTF8ToString(filenameAddr);var isValidFile=function(filename){var target=FS.findObject(filename);return target&&!target.isFolder&&!target.isDevice};if(!isValidFile(filename)){if(ENV["LD_LIBRARY_PATH"]){searchpaths=ENV["LD_LIBRARY_PATH"].split(":")}for(var ident in searchpaths){var searchfile=PATH.join2(searchpaths[ident],filename);if(isValidFile(searchfile)){filename=searchfile;break}}}}if(!(flags&(1|2))){DLFCN.errorMsg="invalid mode for dlopen(): Either RTLD_LAZY or RTLD_NOW is required";return 0}var jsflags={global:Boolean(flags&256),nodelete:Boolean(flags&4096),fs:FS};try{return loadDynamicLibrary(filename,jsflags)}catch(e){DLFCN.errorMsg="Could not load dynamic lib: "+filename+"\n"+e;return 0}}Module["_dlopen"]=_dlopen;_dlopen.sig="iii";function _dlsym(handle,symbol){symbol=UTF8ToString(symbol);var result;if(handle==0){result=resolveGlobalSymbol(symbol,true);if(!result){DLFCN.errorMsg='Tried to lookup unknown symbol "'+symbol+'" in dynamic lib: RTLD_DEFAULT';return 0}}else{var lib=LDSO.loadedLibs[handle];if(!lib){DLFCN.errorMsg="Tried to dlsym() from an unopened handle: "+handle;return 0}if(!lib.module.hasOwnProperty(symbol)){DLFCN.errorMsg='Tried to lookup unknown symbol "'+symbol+'" in dynamic lib: '+lib.name;return 0}result=lib.module["orig$"+symbol];if(!result)result=lib.module[symbol]}if(typeof result==="function"){return addFunctionWasm(result,result.sig)}else{return result}}Module["_dlsym"]=_dlsym;_dlsym.sig="iii";function _emscripten_alcDevicePauseSOFT(deviceId){if(!(deviceId in AL.deviceRefCounts)){AL.alcErr=40961;return}if(AL.paused){return}AL.paused=true;for(ctxId in AL.contexts){var ctx=AL.contexts[ctxId];if(ctx.deviceId!==deviceId){continue}ctx.audioCtx.suspend();clearInterval(ctx.interval);ctx.interval=null}}Module["_emscripten_alcDevicePauseSOFT"]=_emscripten_alcDevicePauseSOFT;_emscripten_alcDevicePauseSOFT.sig="vi";function _emscripten_alcDeviceResumeSOFT(deviceId){if(!(deviceId in AL.deviceRefCounts)){AL.alcErr=40961;return}if(!AL.paused){return}AL.paused=false;for(ctxId in AL.contexts){var ctx=AL.contexts[ctxId];if(ctx.deviceId!==deviceId){continue}ctx.interval=setInterval(function(){AL.scheduleContextAudio(ctx)},AL.QUEUE_INTERVAL);ctx.audioCtx.resume()}}Module["_emscripten_alcDeviceResumeSOFT"]=_emscripten_alcDeviceResumeSOFT;_emscripten_alcDeviceResumeSOFT.sig="vi";function _emscripten_alcGetStringiSOFT(deviceId,param,index){if(!(deviceId in AL.deviceRefCounts)){AL.alcErr=40961;return 0}if(AL.alcStringCache[param]){return AL.alcStringCache[param]}var ret;switch(param){case 6549:if(index===0){ret="Web Audio HRTF"}else{AL.alcErr=40964;return 0}break;default:if(index===0){return _alcGetString(deviceId,param)}else{AL.alcErr=40963;return 0}}ret=allocate(intArrayFromString(ret),ALLOC_NORMAL);AL.alcStringCache[param]=ret;return ret}Module["_emscripten_alcGetStringiSOFT"]=_emscripten_alcGetStringiSOFT;_emscripten_alcGetStringiSOFT.sig="iiii";function _emscripten_alcResetDeviceSOFT(deviceId,pAttrList){if(!(deviceId in AL.deviceRefCounts)){AL.alcErr=40961;return 0}var hrtf=null;pAttrList>>=2;if(pAttrList){var attr=0;var val=0;while(true){attr=HEAP32[pAttrList++];if(attr===0){break}val=HEAP32[pAttrList++];switch(attr){case 6546:if(val===1){hrtf=true}else if(val===0){hrtf=false}break}}}if(hrtf!==null){for(var ctxId in AL.contexts){var ctx=AL.contexts[ctxId];if(ctx.deviceId===deviceId){ctx.hrtf=hrtf;AL.updateContextGlobal(ctx)}}}return 1}Module["_emscripten_alcResetDeviceSOFT"]=_emscripten_alcResetDeviceSOFT;_emscripten_alcResetDeviceSOFT.sig="iii";function _emscripten_asm_const_int(code,sigPtr,argbuf){code-=1024;var args=readAsmConstArgs(sigPtr,argbuf);return ASM_CONSTS[code].apply(null,args)}Module["_emscripten_asm_const_int"]=_emscripten_asm_const_int;_emscripten_asm_const_int.sig="iiii";function _emscripten_exit_with_live_runtime(){throw"unwind"}Module["_emscripten_exit_with_live_runtime"]=_emscripten_exit_with_live_runtime;_emscripten_exit_with_live_runtime.sig="v";function _emscripten_get_heap_max(){return 2147483648}Module["_emscripten_get_heap_max"]=_emscripten_get_heap_max;function __webgl_enable_ANGLE_instanced_arrays(ctx){var ext=ctx.getExtension("ANGLE_instanced_arrays");if(ext){ctx["vertexAttribDivisor"]=function(index,divisor){ext["vertexAttribDivisorANGLE"](index,divisor)};ctx["drawArraysInstanced"]=function(mode,first,count,primcount){ext["drawArraysInstancedANGLE"](mode,first,count,primcount)};ctx["drawElementsInstanced"]=function(mode,count,type,indices,primcount){ext["drawElementsInstancedANGLE"](mode,count,type,indices,primcount)};return 1}}Module["__webgl_enable_ANGLE_instanced_arrays"]=__webgl_enable_ANGLE_instanced_arrays;function __webgl_enable_OES_vertex_array_object(ctx){var ext=ctx.getExtension("OES_vertex_array_object");if(ext){ctx["createVertexArray"]=function(){return ext["createVertexArrayOES"]()};ctx["deleteVertexArray"]=function(vao){ext["deleteVertexArrayOES"](vao)};ctx["bindVertexArray"]=function(vao){ext["bindVertexArrayOES"](vao)};ctx["isVertexArray"]=function(vao){return ext["isVertexArrayOES"](vao)};return 1}}Module["__webgl_enable_OES_vertex_array_object"]=__webgl_enable_OES_vertex_array_object;function __webgl_enable_WEBGL_draw_buffers(ctx){var ext=ctx.getExtension("WEBGL_draw_buffers");if(ext){ctx["drawBuffers"]=function(n,bufs){ext["drawBuffersWEBGL"](n,bufs)};return 1}}Module["__webgl_enable_WEBGL_draw_buffers"]=__webgl_enable_WEBGL_draw_buffers;function __webgl_enable_WEBGL_multi_draw(ctx){return!!(ctx.multiDrawWebgl=ctx.getExtension("WEBGL_multi_draw"))}Module["__webgl_enable_WEBGL_multi_draw"]=__webgl_enable_WEBGL_multi_draw;var GL={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:[],offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function recordError(errorCode){if(!GL.lastError){GL.lastError=errorCode}},getNewId:function(table){var ret=GL.counter++;for(var i=table.length;i>2]:-1;source+=UTF8ToString(HEAP32[string+i*4>>2],len<0?undefined:len)}return source},createContext:function(canvas,webGLContextAttributes){if(!canvas.getContextSafariWebGL2Fixed){canvas.getContextSafariWebGL2Fixed=canvas.getContext;canvas.getContext=function(ver,attrs){var gl=canvas.getContextSafariWebGL2Fixed(ver,attrs);return ver=="webgl"==gl instanceof WebGLRenderingContext?gl:null}}var ctx=canvas.getContext("webgl",webGLContextAttributes);if(!ctx)return 0;var handle=GL.registerContext(ctx,webGLContextAttributes);return handle},registerContext:function(ctx,webGLContextAttributes){var handle=GL.getNewId(GL.contexts);var context={handle:handle,attributes:webGLContextAttributes,version:webGLContextAttributes.majorVersion,GLctx:ctx};if(ctx.canvas)ctx.canvas.GLctxObject=context;GL.contexts[handle]=context;if(typeof webGLContextAttributes.enableExtensionsByDefault==="undefined"||webGLContextAttributes.enableExtensionsByDefault){GL.initExtensions(context)}return handle},makeContextCurrent:function(contextHandle){GL.currentContext=GL.contexts[contextHandle];Module.ctx=GLctx=GL.currentContext&&GL.currentContext.GLctx;return!(contextHandle&&!GLctx)},getContext:function(contextHandle){return GL.contexts[contextHandle]},deleteContext:function(contextHandle){if(GL.currentContext===GL.contexts[contextHandle])GL.currentContext=null;if(typeof JSEvents==="object")JSEvents.removeAllHandlersOnTarget(GL.contexts[contextHandle].GLctx.canvas);if(GL.contexts[contextHandle]&&GL.contexts[contextHandle].GLctx.canvas)GL.contexts[contextHandle].GLctx.canvas.GLctxObject=undefined;GL.contexts[contextHandle]=null},initExtensions:function(context){if(!context)context=GL.currentContext;if(context.initExtensionsDone)return;context.initExtensionsDone=true;var GLctx=context.GLctx;__webgl_enable_ANGLE_instanced_arrays(GLctx);__webgl_enable_OES_vertex_array_object(GLctx);__webgl_enable_WEBGL_draw_buffers(GLctx);GLctx.disjointTimerQueryExt=GLctx.getExtension("EXT_disjoint_timer_query");__webgl_enable_WEBGL_multi_draw(GLctx);var exts=GLctx.getSupportedExtensions()||[];exts.forEach(function(ext){if(ext.indexOf("lose_context")<0&&ext.indexOf("debug")<0){GLctx.getExtension(ext)}})},populateUniformTable:function(program){var p=GL.programs[program];var ptable=GL.programInfos[program]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1};var utable=ptable.uniforms;var numUniforms=GLctx.getProgramParameter(p,35718);for(var i=0;i>2];var buffer=GL.buffers[id];if(!buffer)continue;GLctx.deleteBuffer(buffer);buffer.name=0;GL.buffers[id]=null}}Module["_emscripten_glDeleteBuffers"]=_emscripten_glDeleteBuffers;_emscripten_glDeleteBuffers.sig="vii";function _emscripten_glDeleteFramebuffers(n,framebuffers){for(var i=0;i>2];var framebuffer=GL.framebuffers[id];if(!framebuffer)continue;GLctx.deleteFramebuffer(framebuffer);framebuffer.name=0;GL.framebuffers[id]=null}}Module["_emscripten_glDeleteFramebuffers"]=_emscripten_glDeleteFramebuffers;_emscripten_glDeleteFramebuffers.sig="vii";function _emscripten_glDeleteProgram(id){if(!id)return;var program=GL.programs[id];if(!program){GL.recordError(1281);return}GLctx.deleteProgram(program);program.name=0;GL.programs[id]=null;GL.programInfos[id]=null}Module["_emscripten_glDeleteProgram"]=_emscripten_glDeleteProgram;_emscripten_glDeleteProgram.sig="vi";function _emscripten_glDeleteQueriesEXT(n,ids){for(var i=0;i>2];var query=GL.timerQueriesEXT[id];if(!query)continue;GLctx.disjointTimerQueryExt["deleteQueryEXT"](query);GL.timerQueriesEXT[id]=null}}Module["_emscripten_glDeleteQueriesEXT"]=_emscripten_glDeleteQueriesEXT;_emscripten_glDeleteQueriesEXT.sig="vii";function _emscripten_glDeleteRenderbuffers(n,renderbuffers){for(var i=0;i>2];var renderbuffer=GL.renderbuffers[id];if(!renderbuffer)continue;GLctx.deleteRenderbuffer(renderbuffer);renderbuffer.name=0;GL.renderbuffers[id]=null}}Module["_emscripten_glDeleteRenderbuffers"]=_emscripten_glDeleteRenderbuffers;_emscripten_glDeleteRenderbuffers.sig="vii";function _emscripten_glDeleteShader(id){if(!id)return;var shader=GL.shaders[id];if(!shader){GL.recordError(1281);return}GLctx.deleteShader(shader);GL.shaders[id]=null}Module["_emscripten_glDeleteShader"]=_emscripten_glDeleteShader;_emscripten_glDeleteShader.sig="vi";function _emscripten_glDeleteTextures(n,textures){for(var i=0;i>2];var texture=GL.textures[id];if(!texture)continue;GLctx.deleteTexture(texture);texture.name=0;GL.textures[id]=null}}Module["_emscripten_glDeleteTextures"]=_emscripten_glDeleteTextures;_emscripten_glDeleteTextures.sig="vii";function _emscripten_glDeleteVertexArraysOES(n,vaos){for(var i=0;i>2];GLctx["deleteVertexArray"](GL.vaos[id]);GL.vaos[id]=null}}Module["_emscripten_glDeleteVertexArraysOES"]=_emscripten_glDeleteVertexArraysOES;_emscripten_glDeleteVertexArraysOES.sig="vii";function _emscripten_glDepthFunc(x0){GLctx["depthFunc"](x0)}Module["_emscripten_glDepthFunc"]=_emscripten_glDepthFunc;_emscripten_glDepthFunc.sig="vi";function _emscripten_glDepthMask(flag){GLctx.depthMask(!!flag)}Module["_emscripten_glDepthMask"]=_emscripten_glDepthMask;_emscripten_glDepthMask.sig="vi";function _emscripten_glDepthRangef(x0,x1){GLctx["depthRange"](x0,x1)}Module["_emscripten_glDepthRangef"]=_emscripten_glDepthRangef;_emscripten_glDepthRangef.sig="vii";function _emscripten_glDetachShader(program,shader){GLctx.detachShader(GL.programs[program],GL.shaders[shader])}Module["_emscripten_glDetachShader"]=_emscripten_glDetachShader;_emscripten_glDetachShader.sig="vii";function _emscripten_glDisable(x0){GLctx["disable"](x0)}Module["_emscripten_glDisable"]=_emscripten_glDisable;_emscripten_glDisable.sig="vi";function _emscripten_glDisableVertexAttribArray(index){GLctx.disableVertexAttribArray(index)}Module["_emscripten_glDisableVertexAttribArray"]=_emscripten_glDisableVertexAttribArray;_emscripten_glDisableVertexAttribArray.sig="vi";function _emscripten_glDrawArrays(mode,first,count){GLctx.drawArrays(mode,first,count)}Module["_emscripten_glDrawArrays"]=_emscripten_glDrawArrays;_emscripten_glDrawArrays.sig="viii";function _emscripten_glDrawArraysInstancedANGLE(mode,first,count,primcount){GLctx["drawArraysInstanced"](mode,first,count,primcount)}Module["_emscripten_glDrawArraysInstancedANGLE"]=_emscripten_glDrawArraysInstancedANGLE;_emscripten_glDrawArraysInstancedANGLE.sig="viiii";var tempFixedLengthArray=[];Module["tempFixedLengthArray"]=tempFixedLengthArray;function _emscripten_glDrawBuffersWEBGL(n,bufs){var bufArray=tempFixedLengthArray[n];for(var i=0;i>2]}GLctx["drawBuffers"](bufArray)}Module["_emscripten_glDrawBuffersWEBGL"]=_emscripten_glDrawBuffersWEBGL;_emscripten_glDrawBuffersWEBGL.sig="vii";function _emscripten_glDrawElements(mode,count,type,indices){GLctx.drawElements(mode,count,type,indices)}Module["_emscripten_glDrawElements"]=_emscripten_glDrawElements;_emscripten_glDrawElements.sig="viiii";function _emscripten_glDrawElementsInstancedANGLE(mode,count,type,indices,primcount){GLctx["drawElementsInstanced"](mode,count,type,indices,primcount)}Module["_emscripten_glDrawElementsInstancedANGLE"]=_emscripten_glDrawElementsInstancedANGLE;_emscripten_glDrawElementsInstancedANGLE.sig="viiiii";function _emscripten_glEnable(x0){GLctx["enable"](x0)}Module["_emscripten_glEnable"]=_emscripten_glEnable;_emscripten_glEnable.sig="vi";function _emscripten_glEnableVertexAttribArray(index){GLctx.enableVertexAttribArray(index)}Module["_emscripten_glEnableVertexAttribArray"]=_emscripten_glEnableVertexAttribArray;_emscripten_glEnableVertexAttribArray.sig="vi";function _emscripten_glEndQueryEXT(target){GLctx.disjointTimerQueryExt["endQueryEXT"](target)}Module["_emscripten_glEndQueryEXT"]=_emscripten_glEndQueryEXT;_emscripten_glEndQueryEXT.sig="vi";function _emscripten_glFinish(){GLctx["finish"]()}Module["_emscripten_glFinish"]=_emscripten_glFinish;_emscripten_glFinish.sig="v";function _emscripten_glFlush(){GLctx["flush"]()}Module["_emscripten_glFlush"]=_emscripten_glFlush;_emscripten_glFlush.sig="v";function _emscripten_glFramebufferRenderbuffer(target,attachment,renderbuffertarget,renderbuffer){GLctx.framebufferRenderbuffer(target,attachment,renderbuffertarget,GL.renderbuffers[renderbuffer])}Module["_emscripten_glFramebufferRenderbuffer"]=_emscripten_glFramebufferRenderbuffer;_emscripten_glFramebufferRenderbuffer.sig="viiii";function _emscripten_glFramebufferTexture2D(target,attachment,textarget,texture,level){GLctx.framebufferTexture2D(target,attachment,textarget,GL.textures[texture],level)}Module["_emscripten_glFramebufferTexture2D"]=_emscripten_glFramebufferTexture2D;_emscripten_glFramebufferTexture2D.sig="viiiii";function _emscripten_glFrontFace(x0){GLctx["frontFace"](x0)}Module["_emscripten_glFrontFace"]=_emscripten_glFrontFace;_emscripten_glFrontFace.sig="vi";function __glGenObject(n,buffers,createFunction,objectTable){for(var i=0;i>2]=id}}Module["__glGenObject"]=__glGenObject;__glGenObject.sig="vii";function _emscripten_glGenBuffers(n,buffers){__glGenObject(n,buffers,"createBuffer",GL.buffers)}Module["_emscripten_glGenBuffers"]=_emscripten_glGenBuffers;_emscripten_glGenBuffers.sig="vii";function _emscripten_glGenFramebuffers(n,ids){__glGenObject(n,ids,"createFramebuffer",GL.framebuffers)}Module["_emscripten_glGenFramebuffers"]=_emscripten_glGenFramebuffers;_emscripten_glGenFramebuffers.sig="vii";function _emscripten_glGenQueriesEXT(n,ids){for(var i=0;i>2]=0;return}var id=GL.getNewId(GL.timerQueriesEXT);query.name=id;GL.timerQueriesEXT[id]=query;HEAP32[ids+i*4>>2]=id}}Module["_emscripten_glGenQueriesEXT"]=_emscripten_glGenQueriesEXT;_emscripten_glGenQueriesEXT.sig="vii";function _emscripten_glGenRenderbuffers(n,renderbuffers){__glGenObject(n,renderbuffers,"createRenderbuffer",GL.renderbuffers)}Module["_emscripten_glGenRenderbuffers"]=_emscripten_glGenRenderbuffers;_emscripten_glGenRenderbuffers.sig="vii";function _emscripten_glGenTextures(n,textures){__glGenObject(n,textures,"createTexture",GL.textures)}Module["_emscripten_glGenTextures"]=_emscripten_glGenTextures;_emscripten_glGenTextures.sig="vii";function _emscripten_glGenVertexArraysOES(n,arrays){__glGenObject(n,arrays,"createVertexArray",GL.vaos)}Module["_emscripten_glGenVertexArraysOES"]=_emscripten_glGenVertexArraysOES;_emscripten_glGenVertexArraysOES.sig="vii";function _emscripten_glGenerateMipmap(x0){GLctx["generateMipmap"](x0)}Module["_emscripten_glGenerateMipmap"]=_emscripten_glGenerateMipmap;_emscripten_glGenerateMipmap.sig="vi";function __glGetActiveAttribOrUniform(funcName,program,index,bufSize,length,size,type,name){program=GL.programs[program];var info=GLctx[funcName](program,index);if(info){var numBytesWrittenExclNull=name&&stringToUTF8(info.name,name,bufSize);if(length)HEAP32[length>>2]=numBytesWrittenExclNull;if(size)HEAP32[size>>2]=info.size;if(type)HEAP32[type>>2]=info.type}}Module["__glGetActiveAttribOrUniform"]=__glGetActiveAttribOrUniform;function _emscripten_glGetActiveAttrib(program,index,bufSize,length,size,type,name){__glGetActiveAttribOrUniform("getActiveAttrib",program,index,bufSize,length,size,type,name)}Module["_emscripten_glGetActiveAttrib"]=_emscripten_glGetActiveAttrib;_emscripten_glGetActiveAttrib.sig="viiiiiii";function _emscripten_glGetActiveUniform(program,index,bufSize,length,size,type,name){__glGetActiveAttribOrUniform("getActiveUniform",program,index,bufSize,length,size,type,name)}Module["_emscripten_glGetActiveUniform"]=_emscripten_glGetActiveUniform;_emscripten_glGetActiveUniform.sig="viiiiiii";function _emscripten_glGetAttachedShaders(program,maxCount,count,shaders){var result=GLctx.getAttachedShaders(GL.programs[program]);var len=result.length;if(len>maxCount){len=maxCount}HEAP32[count>>2]=len;for(var i=0;i>2]=id}}Module["_emscripten_glGetAttachedShaders"]=_emscripten_glGetAttachedShaders;_emscripten_glGetAttachedShaders.sig="viiii";function _emscripten_glGetAttribLocation(program,name){return GLctx.getAttribLocation(GL.programs[program],UTF8ToString(name))}Module["_emscripten_glGetAttribLocation"]=_emscripten_glGetAttribLocation;_emscripten_glGetAttribLocation.sig="iii";function writeI53ToI64(ptr,num){HEAPU32[ptr>>2]=num;HEAPU32[ptr+4>>2]=(num-HEAPU32[ptr>>2])/4294967296}Module["writeI53ToI64"]=writeI53ToI64;function emscriptenWebGLGet(name_,p,type){if(!p){GL.recordError(1281);return}var ret=undefined;switch(name_){case 36346:ret=1;break;case 36344:if(type!=0&&type!=1){GL.recordError(1280)}return;case 36345:ret=0;break;case 34466:var formats=GLctx.getParameter(34467);ret=formats?formats.length:0;break}if(ret===undefined){var result=GLctx.getParameter(name_);switch(typeof result){case"number":ret=result;break;case"boolean":ret=result?1:0;break;case"string":GL.recordError(1280);return;case"object":if(result===null){switch(name_){case 34964:case 35725:case 34965:case 36006:case 36007:case 32873:case 34229:case 34068:{ret=0;break}default:{GL.recordError(1280);return}}}else if(result instanceof Float32Array||result instanceof Uint32Array||result instanceof Int32Array||result instanceof Array){for(var i=0;i>2]=result[i];break;case 2:HEAPF32[p+i*4>>2]=result[i];break;case 4:HEAP8[p+i>>0]=result[i]?1:0;break}}return}else{try{ret=result.name|0}catch(e){GL.recordError(1280);err("GL_INVALID_ENUM in glGet"+type+"v: Unknown object returned from WebGL getParameter("+name_+")! (error: "+e+")");return}}break;default:GL.recordError(1280);err("GL_INVALID_ENUM in glGet"+type+"v: Native code calling glGet"+type+"v("+name_+") and it returns "+result+" of type "+typeof result+"!");return}}switch(type){case 1:writeI53ToI64(p,ret);break;case 0:HEAP32[p>>2]=ret;break;case 2:HEAPF32[p>>2]=ret;break;case 4:HEAP8[p>>0]=ret?1:0;break}}Module["emscriptenWebGLGet"]=emscriptenWebGLGet;function _emscripten_glGetBooleanv(name_,p){emscriptenWebGLGet(name_,p,4)}Module["_emscripten_glGetBooleanv"]=_emscripten_glGetBooleanv;_emscripten_glGetBooleanv.sig="vii";function _emscripten_glGetBufferParameteriv(target,value,data){if(!data){GL.recordError(1281);return}HEAP32[data>>2]=GLctx.getBufferParameter(target,value)}Module["_emscripten_glGetBufferParameteriv"]=_emscripten_glGetBufferParameteriv;_emscripten_glGetBufferParameteriv.sig="viii";function _emscripten_glGetError(){var error=GLctx.getError()||GL.lastError;GL.lastError=0;return error}Module["_emscripten_glGetError"]=_emscripten_glGetError;_emscripten_glGetError.sig="i";function _emscripten_glGetFloatv(name_,p){emscriptenWebGLGet(name_,p,2)}Module["_emscripten_glGetFloatv"]=_emscripten_glGetFloatv;_emscripten_glGetFloatv.sig="vii";function _emscripten_glGetFramebufferAttachmentParameteriv(target,attachment,pname,params){var result=GLctx.getFramebufferAttachmentParameter(target,attachment,pname);if(result instanceof WebGLRenderbuffer||result instanceof WebGLTexture){result=result.name|0}HEAP32[params>>2]=result}Module["_emscripten_glGetFramebufferAttachmentParameteriv"]=_emscripten_glGetFramebufferAttachmentParameteriv;_emscripten_glGetFramebufferAttachmentParameteriv.sig="viiii";function _emscripten_glGetIntegerv(name_,p){emscriptenWebGLGet(name_,p,0)}Module["_emscripten_glGetIntegerv"]=_emscripten_glGetIntegerv;_emscripten_glGetIntegerv.sig="vii";function _emscripten_glGetProgramInfoLog(program,maxLength,length,infoLog){var log=GLctx.getProgramInfoLog(GL.programs[program]);if(log===null)log="(unknown error)";var numBytesWrittenExclNull=maxLength>0&&infoLog?stringToUTF8(log,infoLog,maxLength):0;if(length)HEAP32[length>>2]=numBytesWrittenExclNull}Module["_emscripten_glGetProgramInfoLog"]=_emscripten_glGetProgramInfoLog;_emscripten_glGetProgramInfoLog.sig="viiii";function _emscripten_glGetProgramiv(program,pname,p){if(!p){GL.recordError(1281);return}if(program>=GL.counter){GL.recordError(1281);return}var ptable=GL.programInfos[program];if(!ptable){GL.recordError(1282);return}if(pname==35716){var log=GLctx.getProgramInfoLog(GL.programs[program]);if(log===null)log="(unknown error)";HEAP32[p>>2]=log.length+1}else if(pname==35719){HEAP32[p>>2]=ptable.maxUniformLength}else if(pname==35722){if(ptable.maxAttributeLength==-1){program=GL.programs[program];var numAttribs=GLctx.getProgramParameter(program,35721);ptable.maxAttributeLength=0;for(var i=0;i>2]=ptable.maxAttributeLength}else if(pname==35381){if(ptable.maxUniformBlockNameLength==-1){program=GL.programs[program];var numBlocks=GLctx.getProgramParameter(program,35382);ptable.maxUniformBlockNameLength=0;for(var i=0;i>2]=ptable.maxUniformBlockNameLength}else{HEAP32[p>>2]=GLctx.getProgramParameter(GL.programs[program],pname)}}Module["_emscripten_glGetProgramiv"]=_emscripten_glGetProgramiv;_emscripten_glGetProgramiv.sig="viii";function _emscripten_glGetQueryObjecti64vEXT(id,pname,params){if(!params){GL.recordError(1281);return}var query=GL.timerQueriesEXT[id];var param=GLctx.disjointTimerQueryExt["getQueryObjectEXT"](query,pname);var ret;if(typeof param=="boolean"){ret=param?1:0}else{ret=param}writeI53ToI64(params,ret)}Module["_emscripten_glGetQueryObjecti64vEXT"]=_emscripten_glGetQueryObjecti64vEXT;_emscripten_glGetQueryObjecti64vEXT.sig="viii";function _emscripten_glGetQueryObjectivEXT(id,pname,params){if(!params){GL.recordError(1281);return}var query=GL.timerQueriesEXT[id];var param=GLctx.disjointTimerQueryExt["getQueryObjectEXT"](query,pname);var ret;if(typeof param=="boolean"){ret=param?1:0}else{ret=param}HEAP32[params>>2]=ret}Module["_emscripten_glGetQueryObjectivEXT"]=_emscripten_glGetQueryObjectivEXT;_emscripten_glGetQueryObjectivEXT.sig="viii";function _emscripten_glGetQueryObjectui64vEXT(id,pname,params){if(!params){GL.recordError(1281);return}var query=GL.timerQueriesEXT[id];var param=GLctx.disjointTimerQueryExt["getQueryObjectEXT"](query,pname);var ret;if(typeof param=="boolean"){ret=param?1:0}else{ret=param}writeI53ToI64(params,ret)}Module["_emscripten_glGetQueryObjectui64vEXT"]=_emscripten_glGetQueryObjectui64vEXT;_emscripten_glGetQueryObjectui64vEXT.sig="viii";function _emscripten_glGetQueryObjectuivEXT(id,pname,params){if(!params){GL.recordError(1281);return}var query=GL.timerQueriesEXT[id];var param=GLctx.disjointTimerQueryExt["getQueryObjectEXT"](query,pname);var ret;if(typeof param=="boolean"){ret=param?1:0}else{ret=param}HEAP32[params>>2]=ret}Module["_emscripten_glGetQueryObjectuivEXT"]=_emscripten_glGetQueryObjectuivEXT;_emscripten_glGetQueryObjectuivEXT.sig="viii";function _emscripten_glGetQueryivEXT(target,pname,params){if(!params){GL.recordError(1281);return}HEAP32[params>>2]=GLctx.disjointTimerQueryExt["getQueryEXT"](target,pname)}Module["_emscripten_glGetQueryivEXT"]=_emscripten_glGetQueryivEXT;_emscripten_glGetQueryivEXT.sig="viii";function _emscripten_glGetRenderbufferParameteriv(target,pname,params){if(!params){GL.recordError(1281);return}HEAP32[params>>2]=GLctx.getRenderbufferParameter(target,pname)}Module["_emscripten_glGetRenderbufferParameteriv"]=_emscripten_glGetRenderbufferParameteriv;_emscripten_glGetRenderbufferParameteriv.sig="viii";function _emscripten_glGetShaderInfoLog(shader,maxLength,length,infoLog){var log=GLctx.getShaderInfoLog(GL.shaders[shader]);if(log===null)log="(unknown error)";var numBytesWrittenExclNull=maxLength>0&&infoLog?stringToUTF8(log,infoLog,maxLength):0;if(length)HEAP32[length>>2]=numBytesWrittenExclNull}Module["_emscripten_glGetShaderInfoLog"]=_emscripten_glGetShaderInfoLog;_emscripten_glGetShaderInfoLog.sig="viiii";function _emscripten_glGetShaderPrecisionFormat(shaderType,precisionType,range,precision){var result=GLctx.getShaderPrecisionFormat(shaderType,precisionType);HEAP32[range>>2]=result.rangeMin;HEAP32[range+4>>2]=result.rangeMax;HEAP32[precision>>2]=result.precision}Module["_emscripten_glGetShaderPrecisionFormat"]=_emscripten_glGetShaderPrecisionFormat;_emscripten_glGetShaderPrecisionFormat.sig="viiii";function _emscripten_glGetShaderSource(shader,bufSize,length,source){var result=GLctx.getShaderSource(GL.shaders[shader]);if(!result)return;var numBytesWrittenExclNull=bufSize>0&&source?stringToUTF8(result,source,bufSize):0;if(length)HEAP32[length>>2]=numBytesWrittenExclNull}Module["_emscripten_glGetShaderSource"]=_emscripten_glGetShaderSource;_emscripten_glGetShaderSource.sig="viiii";function _emscripten_glGetShaderiv(shader,pname,p){if(!p){GL.recordError(1281);return}if(pname==35716){var log=GLctx.getShaderInfoLog(GL.shaders[shader]);if(log===null)log="(unknown error)";var logLength=log?log.length+1:0;HEAP32[p>>2]=logLength}else if(pname==35720){var source=GLctx.getShaderSource(GL.shaders[shader]);var sourceLength=source?source.length+1:0;HEAP32[p>>2]=sourceLength}else{HEAP32[p>>2]=GLctx.getShaderParameter(GL.shaders[shader],pname)}}Module["_emscripten_glGetShaderiv"]=_emscripten_glGetShaderiv;_emscripten_glGetShaderiv.sig="viii";function _emscripten_glGetString(name_){if(GL.stringCache[name_])return GL.stringCache[name_];var ret;switch(name_){case 7939:var exts=GLctx.getSupportedExtensions()||[];exts=exts.concat(exts.map(function(e){return"GL_"+e}));ret=stringToNewUTF8(exts.join(" "));break;case 7936:case 7937:case 37445:case 37446:var s=GLctx.getParameter(name_);if(!s){GL.recordError(1280)}ret=stringToNewUTF8(s);break;case 7938:var glVersion=GLctx.getParameter(7938);{glVersion="OpenGL ES 2.0 ("+glVersion+")"}ret=stringToNewUTF8(glVersion);break;case 35724:var glslVersion=GLctx.getParameter(35724);var ver_re=/^WebGL GLSL ES ([0-9]\.[0-9][0-9]?)(?:$| .*)/;var ver_num=glslVersion.match(ver_re);if(ver_num!==null){if(ver_num[1].length==3)ver_num[1]=ver_num[1]+"0";glslVersion="OpenGL ES GLSL ES "+ver_num[1]+" ("+glslVersion+")"}ret=stringToNewUTF8(glslVersion);break;default:GL.recordError(1280);return 0}GL.stringCache[name_]=ret;return ret}Module["_emscripten_glGetString"]=_emscripten_glGetString;_emscripten_glGetString.sig="ii";function _emscripten_glGetTexParameterfv(target,pname,params){if(!params){GL.recordError(1281);return}HEAPF32[params>>2]=GLctx.getTexParameter(target,pname)}Module["_emscripten_glGetTexParameterfv"]=_emscripten_glGetTexParameterfv;_emscripten_glGetTexParameterfv.sig="viii";function _emscripten_glGetTexParameteriv(target,pname,params){if(!params){GL.recordError(1281);return}HEAP32[params>>2]=GLctx.getTexParameter(target,pname)}Module["_emscripten_glGetTexParameteriv"]=_emscripten_glGetTexParameteriv;_emscripten_glGetTexParameteriv.sig="viii";function _emscripten_glGetUniformLocation(program,name){name=UTF8ToString(name);var arrayIndex=0;if(name[name.length-1]=="]"){var leftBrace=name.lastIndexOf("[");arrayIndex=name[leftBrace+1]!="]"?jstoi_q(name.slice(leftBrace+1)):0;name=name.slice(0,leftBrace)}var uniformInfo=GL.programInfos[program]&&GL.programInfos[program].uniforms[name];if(uniformInfo&&arrayIndex>=0&&arrayIndex>2]=data;break;case 2:HEAPF32[params>>2]=data;break}}else{for(var i=0;i>2]=data[i];break;case 2:HEAPF32[params+i*4>>2]=data[i];break}}}}Module["emscriptenWebGLGetUniform"]=emscriptenWebGLGetUniform;function _emscripten_glGetUniformfv(program,location,params){emscriptenWebGLGetUniform(program,location,params,2)}Module["_emscripten_glGetUniformfv"]=_emscripten_glGetUniformfv;_emscripten_glGetUniformfv.sig="viii";function _emscripten_glGetUniformiv(program,location,params){emscriptenWebGLGetUniform(program,location,params,0)}Module["_emscripten_glGetUniformiv"]=_emscripten_glGetUniformiv;_emscripten_glGetUniformiv.sig="viii";function _emscripten_glGetVertexAttribPointerv(index,pname,pointer){if(!pointer){GL.recordError(1281);return}HEAP32[pointer>>2]=GLctx.getVertexAttribOffset(index,pname)}Module["_emscripten_glGetVertexAttribPointerv"]=_emscripten_glGetVertexAttribPointerv;_emscripten_glGetVertexAttribPointerv.sig="viii";function emscriptenWebGLGetVertexAttrib(index,pname,params,type){if(!params){GL.recordError(1281);return}var data=GLctx.getVertexAttrib(index,pname);if(pname==34975){HEAP32[params>>2]=data&&data["name"]}else if(typeof data=="number"||typeof data=="boolean"){switch(type){case 0:HEAP32[params>>2]=data;break;case 2:HEAPF32[params>>2]=data;break;case 5:HEAP32[params>>2]=Math.fround(data);break}}else{for(var i=0;i>2]=data[i];break;case 2:HEAPF32[params+i*4>>2]=data[i];break;case 5:HEAP32[params+i*4>>2]=Math.fround(data[i]);break}}}}Module["emscriptenWebGLGetVertexAttrib"]=emscriptenWebGLGetVertexAttrib;function _emscripten_glGetVertexAttribfv(index,pname,params){emscriptenWebGLGetVertexAttrib(index,pname,params,2)}Module["_emscripten_glGetVertexAttribfv"]=_emscripten_glGetVertexAttribfv;_emscripten_glGetVertexAttribfv.sig="viii";function _emscripten_glGetVertexAttribiv(index,pname,params){emscriptenWebGLGetVertexAttrib(index,pname,params,5)}Module["_emscripten_glGetVertexAttribiv"]=_emscripten_glGetVertexAttribiv;_emscripten_glGetVertexAttribiv.sig="viii";function _emscripten_glHint(x0,x1){GLctx["hint"](x0,x1)}Module["_emscripten_glHint"]=_emscripten_glHint;_emscripten_glHint.sig="vii";function _emscripten_glIsBuffer(buffer){var b=GL.buffers[buffer];if(!b)return 0;return GLctx.isBuffer(b)}Module["_emscripten_glIsBuffer"]=_emscripten_glIsBuffer;_emscripten_glIsBuffer.sig="ii";function _emscripten_glIsEnabled(x0){return GLctx["isEnabled"](x0)}Module["_emscripten_glIsEnabled"]=_emscripten_glIsEnabled;_emscripten_glIsEnabled.sig="ii";function _emscripten_glIsFramebuffer(framebuffer){var fb=GL.framebuffers[framebuffer];if(!fb)return 0;return GLctx.isFramebuffer(fb)}Module["_emscripten_glIsFramebuffer"]=_emscripten_glIsFramebuffer;_emscripten_glIsFramebuffer.sig="ii";function _emscripten_glIsProgram(program){program=GL.programs[program];if(!program)return 0;return GLctx.isProgram(program)}Module["_emscripten_glIsProgram"]=_emscripten_glIsProgram;_emscripten_glIsProgram.sig="ii";function _emscripten_glIsQueryEXT(id){var query=GL.timerQueriesEXT[id];if(!query)return 0;return GLctx.disjointTimerQueryExt["isQueryEXT"](query)}Module["_emscripten_glIsQueryEXT"]=_emscripten_glIsQueryEXT;_emscripten_glIsQueryEXT.sig="ii";function _emscripten_glIsRenderbuffer(renderbuffer){var rb=GL.renderbuffers[renderbuffer];if(!rb)return 0;return GLctx.isRenderbuffer(rb)}Module["_emscripten_glIsRenderbuffer"]=_emscripten_glIsRenderbuffer;_emscripten_glIsRenderbuffer.sig="ii";function _emscripten_glIsShader(shader){var s=GL.shaders[shader];if(!s)return 0;return GLctx.isShader(s)}Module["_emscripten_glIsShader"]=_emscripten_glIsShader;_emscripten_glIsShader.sig="ii";function _emscripten_glIsTexture(id){var texture=GL.textures[id];if(!texture)return 0;return GLctx.isTexture(texture)}Module["_emscripten_glIsTexture"]=_emscripten_glIsTexture;_emscripten_glIsTexture.sig="ii";function _emscripten_glIsVertexArrayOES(array){var vao=GL.vaos[array];if(!vao)return 0;return GLctx["isVertexArray"](vao)}Module["_emscripten_glIsVertexArrayOES"]=_emscripten_glIsVertexArrayOES;_emscripten_glIsVertexArrayOES.sig="ii";function _emscripten_glLineWidth(x0){GLctx["lineWidth"](x0)}Module["_emscripten_glLineWidth"]=_emscripten_glLineWidth;_emscripten_glLineWidth.sig="vi";function _emscripten_glLinkProgram(program){GLctx.linkProgram(GL.programs[program]);GL.populateUniformTable(program)}Module["_emscripten_glLinkProgram"]=_emscripten_glLinkProgram;_emscripten_glLinkProgram.sig="vi";function _emscripten_glPixelStorei(pname,param){if(pname==3317){GL.unpackAlignment=param}GLctx.pixelStorei(pname,param)}Module["_emscripten_glPixelStorei"]=_emscripten_glPixelStorei;_emscripten_glPixelStorei.sig="vii";function _emscripten_glPolygonOffset(x0,x1){GLctx["polygonOffset"](x0,x1)}Module["_emscripten_glPolygonOffset"]=_emscripten_glPolygonOffset;_emscripten_glPolygonOffset.sig="vii";function _emscripten_glQueryCounterEXT(id,target){GLctx.disjointTimerQueryExt["queryCounterEXT"](GL.timerQueriesEXT[id],target)}Module["_emscripten_glQueryCounterEXT"]=_emscripten_glQueryCounterEXT;_emscripten_glQueryCounterEXT.sig="vii";function computeUnpackAlignedImageSize(width,height,sizePerPixel,alignment){function roundedToNextMultipleOf(x,y){return x+y-1&-y}var plainRowSize=width*sizePerPixel;var alignedRowSize=roundedToNextMultipleOf(plainRowSize,alignment);return height*alignedRowSize}Module["computeUnpackAlignedImageSize"]=computeUnpackAlignedImageSize;function __colorChannelsInGlTextureFormat(format){var colorChannels={5:3,6:4,8:2,29502:3,29504:4};return colorChannels[format-6402]||1}Module["__colorChannelsInGlTextureFormat"]=__colorChannelsInGlTextureFormat;function heapObjectForWebGLType(type){type-=5120;if(type==1)return HEAPU8;if(type==4)return HEAP32;if(type==6)return HEAPF32;if(type==5||type==28922)return HEAPU32;return HEAPU16}Module["heapObjectForWebGLType"]=heapObjectForWebGLType;function heapAccessShiftForWebGLHeap(heap){return 31-Math.clz32(heap.BYTES_PER_ELEMENT)}Module["heapAccessShiftForWebGLHeap"]=heapAccessShiftForWebGLHeap;function emscriptenWebGLGetTexPixelData(type,format,width,height,pixels,internalFormat){var heap=heapObjectForWebGLType(type);var shift=heapAccessShiftForWebGLHeap(heap);var byteSize=1<>shift,pixels+bytes>>shift)}Module["emscriptenWebGLGetTexPixelData"]=emscriptenWebGLGetTexPixelData;function _emscripten_glReadPixels(x,y,width,height,format,type,pixels){var pixelData=emscriptenWebGLGetTexPixelData(type,format,width,height,pixels,format);if(!pixelData){GL.recordError(1280);return}GLctx.readPixels(x,y,width,height,format,type,pixelData)}Module["_emscripten_glReadPixels"]=_emscripten_glReadPixels;_emscripten_glReadPixels.sig="viiiiiii";function _emscripten_glReleaseShaderCompiler(){}Module["_emscripten_glReleaseShaderCompiler"]=_emscripten_glReleaseShaderCompiler;_emscripten_glReleaseShaderCompiler.sig="v";function _emscripten_glRenderbufferStorage(x0,x1,x2,x3){GLctx["renderbufferStorage"](x0,x1,x2,x3)}Module["_emscripten_glRenderbufferStorage"]=_emscripten_glRenderbufferStorage;_emscripten_glRenderbufferStorage.sig="viiii";function _emscripten_glSampleCoverage(value,invert){GLctx.sampleCoverage(value,!!invert)}Module["_emscripten_glSampleCoverage"]=_emscripten_glSampleCoverage;_emscripten_glSampleCoverage.sig="vii";function _emscripten_glScissor(x0,x1,x2,x3){GLctx["scissor"](x0,x1,x2,x3)}Module["_emscripten_glScissor"]=_emscripten_glScissor;_emscripten_glScissor.sig="viiii";function _emscripten_glShaderBinary(){GL.recordError(1280)}Module["_emscripten_glShaderBinary"]=_emscripten_glShaderBinary;_emscripten_glShaderBinary.sig="v";function _emscripten_glShaderSource(shader,count,string,length){var source=GL.getSource(shader,count,string,length);GLctx.shaderSource(GL.shaders[shader],source)}Module["_emscripten_glShaderSource"]=_emscripten_glShaderSource;_emscripten_glShaderSource.sig="viiii";function _emscripten_glStencilFunc(x0,x1,x2){GLctx["stencilFunc"](x0,x1,x2)}Module["_emscripten_glStencilFunc"]=_emscripten_glStencilFunc;_emscripten_glStencilFunc.sig="viii";function _emscripten_glStencilFuncSeparate(x0,x1,x2,x3){GLctx["stencilFuncSeparate"](x0,x1,x2,x3)}Module["_emscripten_glStencilFuncSeparate"]=_emscripten_glStencilFuncSeparate;_emscripten_glStencilFuncSeparate.sig="viiii";function _emscripten_glStencilMask(x0){GLctx["stencilMask"](x0)}Module["_emscripten_glStencilMask"]=_emscripten_glStencilMask;_emscripten_glStencilMask.sig="vi";function _emscripten_glStencilMaskSeparate(x0,x1){GLctx["stencilMaskSeparate"](x0,x1)}Module["_emscripten_glStencilMaskSeparate"]=_emscripten_glStencilMaskSeparate;_emscripten_glStencilMaskSeparate.sig="vii";function _emscripten_glStencilOp(x0,x1,x2){GLctx["stencilOp"](x0,x1,x2)}Module["_emscripten_glStencilOp"]=_emscripten_glStencilOp;_emscripten_glStencilOp.sig="viii";function _emscripten_glStencilOpSeparate(x0,x1,x2,x3){GLctx["stencilOpSeparate"](x0,x1,x2,x3)}Module["_emscripten_glStencilOpSeparate"]=_emscripten_glStencilOpSeparate;_emscripten_glStencilOpSeparate.sig="viiii";function _emscripten_glTexImage2D(target,level,internalFormat,width,height,border,format,type,pixels){GLctx.texImage2D(target,level,internalFormat,width,height,border,format,type,pixels?emscriptenWebGLGetTexPixelData(type,format,width,height,pixels,internalFormat):null)}Module["_emscripten_glTexImage2D"]=_emscripten_glTexImage2D;_emscripten_glTexImage2D.sig="viiiiiiiii";function _emscripten_glTexParameterf(x0,x1,x2){GLctx["texParameterf"](x0,x1,x2)}Module["_emscripten_glTexParameterf"]=_emscripten_glTexParameterf;_emscripten_glTexParameterf.sig="viii";function _emscripten_glTexParameterfv(target,pname,params){var param=HEAPF32[params>>2];GLctx.texParameterf(target,pname,param)}Module["_emscripten_glTexParameterfv"]=_emscripten_glTexParameterfv;_emscripten_glTexParameterfv.sig="viii";function _emscripten_glTexParameteri(x0,x1,x2){GLctx["texParameteri"](x0,x1,x2)}Module["_emscripten_glTexParameteri"]=_emscripten_glTexParameteri;_emscripten_glTexParameteri.sig="viii";function _emscripten_glTexParameteriv(target,pname,params){var param=HEAP32[params>>2];GLctx.texParameteri(target,pname,param)}Module["_emscripten_glTexParameteriv"]=_emscripten_glTexParameteriv;_emscripten_glTexParameteriv.sig="viii";function _emscripten_glTexSubImage2D(target,level,xoffset,yoffset,width,height,format,type,pixels){var pixelData=null;if(pixels)pixelData=emscriptenWebGLGetTexPixelData(type,format,width,height,pixels,0);GLctx.texSubImage2D(target,level,xoffset,yoffset,width,height,format,type,pixelData)}Module["_emscripten_glTexSubImage2D"]=_emscripten_glTexSubImage2D;_emscripten_glTexSubImage2D.sig="viiiiiiiii";function _emscripten_glUniform1f(location,v0){GLctx.uniform1f(GL.uniforms[location],v0)}Module["_emscripten_glUniform1f"]=_emscripten_glUniform1f;_emscripten_glUniform1f.sig="vif";var miniTempWebGLFloatBuffers=[];Module["miniTempWebGLFloatBuffers"]=miniTempWebGLFloatBuffers;function _emscripten_glUniform1fv(location,count,value){if(count<=288){var view=miniTempWebGLFloatBuffers[count-1];for(var i=0;i>2]}}else{var view=HEAPF32.subarray(value>>2,value+count*4>>2)}GLctx.uniform1fv(GL.uniforms[location],view)}Module["_emscripten_glUniform1fv"]=_emscripten_glUniform1fv;_emscripten_glUniform1fv.sig="viii";function _emscripten_glUniform1i(location,v0){GLctx.uniform1i(GL.uniforms[location],v0)}Module["_emscripten_glUniform1i"]=_emscripten_glUniform1i;_emscripten_glUniform1i.sig="vii";var __miniTempWebGLIntBuffers=[];Module["__miniTempWebGLIntBuffers"]=__miniTempWebGLIntBuffers;function _emscripten_glUniform1iv(location,count,value){if(count<=288){var view=__miniTempWebGLIntBuffers[count-1];for(var i=0;i>2]}}else{var view=HEAP32.subarray(value>>2,value+count*4>>2)}GLctx.uniform1iv(GL.uniforms[location],view)}Module["_emscripten_glUniform1iv"]=_emscripten_glUniform1iv;_emscripten_glUniform1iv.sig="viii";function _emscripten_glUniform2f(location,v0,v1){GLctx.uniform2f(GL.uniforms[location],v0,v1)}Module["_emscripten_glUniform2f"]=_emscripten_glUniform2f;_emscripten_glUniform2f.sig="viff";function _emscripten_glUniform2fv(location,count,value){if(count<=144){var view=miniTempWebGLFloatBuffers[2*count-1];for(var i=0;i<2*count;i+=2){view[i]=HEAPF32[value+4*i>>2];view[i+1]=HEAPF32[value+(4*i+4)>>2]}}else{var view=HEAPF32.subarray(value>>2,value+count*8>>2)}GLctx.uniform2fv(GL.uniforms[location],view)}Module["_emscripten_glUniform2fv"]=_emscripten_glUniform2fv;_emscripten_glUniform2fv.sig="viii";function _emscripten_glUniform2i(location,v0,v1){GLctx.uniform2i(GL.uniforms[location],v0,v1)}Module["_emscripten_glUniform2i"]=_emscripten_glUniform2i;_emscripten_glUniform2i.sig="viii";function _emscripten_glUniform2iv(location,count,value){if(count<=144){var view=__miniTempWebGLIntBuffers[2*count-1];for(var i=0;i<2*count;i+=2){view[i]=HEAP32[value+4*i>>2];view[i+1]=HEAP32[value+(4*i+4)>>2]}}else{var view=HEAP32.subarray(value>>2,value+count*8>>2)}GLctx.uniform2iv(GL.uniforms[location],view)}Module["_emscripten_glUniform2iv"]=_emscripten_glUniform2iv;_emscripten_glUniform2iv.sig="viii";function _emscripten_glUniform3f(location,v0,v1,v2){GLctx.uniform3f(GL.uniforms[location],v0,v1,v2)}Module["_emscripten_glUniform3f"]=_emscripten_glUniform3f;_emscripten_glUniform3f.sig="vifff";function _emscripten_glUniform3fv(location,count,value){if(count<=96){var view=miniTempWebGLFloatBuffers[3*count-1];for(var i=0;i<3*count;i+=3){view[i]=HEAPF32[value+4*i>>2];view[i+1]=HEAPF32[value+(4*i+4)>>2];view[i+2]=HEAPF32[value+(4*i+8)>>2]}}else{var view=HEAPF32.subarray(value>>2,value+count*12>>2)}GLctx.uniform3fv(GL.uniforms[location],view)}Module["_emscripten_glUniform3fv"]=_emscripten_glUniform3fv;_emscripten_glUniform3fv.sig="viii";function _emscripten_glUniform3i(location,v0,v1,v2){GLctx.uniform3i(GL.uniforms[location],v0,v1,v2)}Module["_emscripten_glUniform3i"]=_emscripten_glUniform3i;_emscripten_glUniform3i.sig="viiii";function _emscripten_glUniform3iv(location,count,value){if(count<=96){var view=__miniTempWebGLIntBuffers[3*count-1];for(var i=0;i<3*count;i+=3){view[i]=HEAP32[value+4*i>>2];view[i+1]=HEAP32[value+(4*i+4)>>2];view[i+2]=HEAP32[value+(4*i+8)>>2]}}else{var view=HEAP32.subarray(value>>2,value+count*12>>2)}GLctx.uniform3iv(GL.uniforms[location],view)}Module["_emscripten_glUniform3iv"]=_emscripten_glUniform3iv;_emscripten_glUniform3iv.sig="viii";function _emscripten_glUniform4f(location,v0,v1,v2,v3){GLctx.uniform4f(GL.uniforms[location],v0,v1,v2,v3)}Module["_emscripten_glUniform4f"]=_emscripten_glUniform4f;_emscripten_glUniform4f.sig="viffff";function _emscripten_glUniform4fv(location,count,value){if(count<=72){var view=miniTempWebGLFloatBuffers[4*count-1];var heap=HEAPF32;value>>=2;for(var i=0;i<4*count;i+=4){var dst=value+i;view[i]=heap[dst];view[i+1]=heap[dst+1];view[i+2]=heap[dst+2];view[i+3]=heap[dst+3]}}else{var view=HEAPF32.subarray(value>>2,value+count*16>>2)}GLctx.uniform4fv(GL.uniforms[location],view)}Module["_emscripten_glUniform4fv"]=_emscripten_glUniform4fv;_emscripten_glUniform4fv.sig="viii";function _emscripten_glUniform4i(location,v0,v1,v2,v3){GLctx.uniform4i(GL.uniforms[location],v0,v1,v2,v3)}Module["_emscripten_glUniform4i"]=_emscripten_glUniform4i;_emscripten_glUniform4i.sig="viiiii";function _emscripten_glUniform4iv(location,count,value){if(count<=72){var view=__miniTempWebGLIntBuffers[4*count-1];for(var i=0;i<4*count;i+=4){view[i]=HEAP32[value+4*i>>2];view[i+1]=HEAP32[value+(4*i+4)>>2];view[i+2]=HEAP32[value+(4*i+8)>>2];view[i+3]=HEAP32[value+(4*i+12)>>2]}}else{var view=HEAP32.subarray(value>>2,value+count*16>>2)}GLctx.uniform4iv(GL.uniforms[location],view)}Module["_emscripten_glUniform4iv"]=_emscripten_glUniform4iv;_emscripten_glUniform4iv.sig="viii";function _emscripten_glUniformMatrix2fv(location,count,transpose,value){if(count<=72){var view=miniTempWebGLFloatBuffers[4*count-1];for(var i=0;i<4*count;i+=4){view[i]=HEAPF32[value+4*i>>2];view[i+1]=HEAPF32[value+(4*i+4)>>2];view[i+2]=HEAPF32[value+(4*i+8)>>2];view[i+3]=HEAPF32[value+(4*i+12)>>2]}}else{var view=HEAPF32.subarray(value>>2,value+count*16>>2)}GLctx.uniformMatrix2fv(GL.uniforms[location],!!transpose,view)}Module["_emscripten_glUniformMatrix2fv"]=_emscripten_glUniformMatrix2fv;_emscripten_glUniformMatrix2fv.sig="viiii";function _emscripten_glUniformMatrix3fv(location,count,transpose,value){if(count<=32){var view=miniTempWebGLFloatBuffers[9*count-1];for(var i=0;i<9*count;i+=9){view[i]=HEAPF32[value+4*i>>2];view[i+1]=HEAPF32[value+(4*i+4)>>2];view[i+2]=HEAPF32[value+(4*i+8)>>2];view[i+3]=HEAPF32[value+(4*i+12)>>2];view[i+4]=HEAPF32[value+(4*i+16)>>2];view[i+5]=HEAPF32[value+(4*i+20)>>2];view[i+6]=HEAPF32[value+(4*i+24)>>2];view[i+7]=HEAPF32[value+(4*i+28)>>2];view[i+8]=HEAPF32[value+(4*i+32)>>2]}}else{var view=HEAPF32.subarray(value>>2,value+count*36>>2)}GLctx.uniformMatrix3fv(GL.uniforms[location],!!transpose,view)}Module["_emscripten_glUniformMatrix3fv"]=_emscripten_glUniformMatrix3fv;_emscripten_glUniformMatrix3fv.sig="viiii";function _emscripten_glUniformMatrix4fv(location,count,transpose,value){if(count<=18){var view=miniTempWebGLFloatBuffers[16*count-1];var heap=HEAPF32;value>>=2;for(var i=0;i<16*count;i+=16){var dst=value+i;view[i]=heap[dst];view[i+1]=heap[dst+1];view[i+2]=heap[dst+2];view[i+3]=heap[dst+3];view[i+4]=heap[dst+4];view[i+5]=heap[dst+5];view[i+6]=heap[dst+6];view[i+7]=heap[dst+7];view[i+8]=heap[dst+8];view[i+9]=heap[dst+9];view[i+10]=heap[dst+10];view[i+11]=heap[dst+11];view[i+12]=heap[dst+12];view[i+13]=heap[dst+13];view[i+14]=heap[dst+14];view[i+15]=heap[dst+15]}}else{var view=HEAPF32.subarray(value>>2,value+count*64>>2)}GLctx.uniformMatrix4fv(GL.uniforms[location],!!transpose,view)}Module["_emscripten_glUniformMatrix4fv"]=_emscripten_glUniformMatrix4fv;_emscripten_glUniformMatrix4fv.sig="viiii";function _emscripten_glUseProgram(program){GLctx.useProgram(GL.programs[program])}Module["_emscripten_glUseProgram"]=_emscripten_glUseProgram;_emscripten_glUseProgram.sig="vi";function _emscripten_glValidateProgram(program){GLctx.validateProgram(GL.programs[program])}Module["_emscripten_glValidateProgram"]=_emscripten_glValidateProgram;_emscripten_glValidateProgram.sig="vi";function _emscripten_glVertexAttrib1f(x0,x1){GLctx["vertexAttrib1f"](x0,x1)}Module["_emscripten_glVertexAttrib1f"]=_emscripten_glVertexAttrib1f;_emscripten_glVertexAttrib1f.sig="vii";function _emscripten_glVertexAttrib1fv(index,v){GLctx.vertexAttrib1f(index,HEAPF32[v>>2])}Module["_emscripten_glVertexAttrib1fv"]=_emscripten_glVertexAttrib1fv;_emscripten_glVertexAttrib1fv.sig="vii";function _emscripten_glVertexAttrib2f(x0,x1,x2){GLctx["vertexAttrib2f"](x0,x1,x2)}Module["_emscripten_glVertexAttrib2f"]=_emscripten_glVertexAttrib2f;_emscripten_glVertexAttrib2f.sig="viii";function _emscripten_glVertexAttrib2fv(index,v){GLctx.vertexAttrib2f(index,HEAPF32[v>>2],HEAPF32[v+4>>2])}Module["_emscripten_glVertexAttrib2fv"]=_emscripten_glVertexAttrib2fv;_emscripten_glVertexAttrib2fv.sig="vii";function _emscripten_glVertexAttrib3f(x0,x1,x2,x3){GLctx["vertexAttrib3f"](x0,x1,x2,x3)}Module["_emscripten_glVertexAttrib3f"]=_emscripten_glVertexAttrib3f;_emscripten_glVertexAttrib3f.sig="viiii";function _emscripten_glVertexAttrib3fv(index,v){GLctx.vertexAttrib3f(index,HEAPF32[v>>2],HEAPF32[v+4>>2],HEAPF32[v+8>>2])}Module["_emscripten_glVertexAttrib3fv"]=_emscripten_glVertexAttrib3fv;_emscripten_glVertexAttrib3fv.sig="vii";function _emscripten_glVertexAttrib4f(x0,x1,x2,x3,x4){GLctx["vertexAttrib4f"](x0,x1,x2,x3,x4)}Module["_emscripten_glVertexAttrib4f"]=_emscripten_glVertexAttrib4f;_emscripten_glVertexAttrib4f.sig="viiiii";function _emscripten_glVertexAttrib4fv(index,v){GLctx.vertexAttrib4f(index,HEAPF32[v>>2],HEAPF32[v+4>>2],HEAPF32[v+8>>2],HEAPF32[v+12>>2])}Module["_emscripten_glVertexAttrib4fv"]=_emscripten_glVertexAttrib4fv;_emscripten_glVertexAttrib4fv.sig="vii";function _emscripten_glVertexAttribDivisorANGLE(index,divisor){GLctx["vertexAttribDivisor"](index,divisor)}Module["_emscripten_glVertexAttribDivisorANGLE"]=_emscripten_glVertexAttribDivisorANGLE;_emscripten_glVertexAttribDivisorANGLE.sig="vii";function _emscripten_glVertexAttribPointer(index,size,type,normalized,stride,ptr){GLctx.vertexAttribPointer(index,size,type,!!normalized,stride,ptr)}Module["_emscripten_glVertexAttribPointer"]=_emscripten_glVertexAttribPointer;_emscripten_glVertexAttribPointer.sig="viiiiii";function _emscripten_glViewport(x0,x1,x2,x3){GLctx["viewport"](x0,x1,x2,x3)}Module["_emscripten_glViewport"]=_emscripten_glViewport;_emscripten_glViewport.sig="viiii";function _longjmp(env,value){_setThrew(env,value||1);throw"longjmp"}Module["_longjmp"]=_longjmp;_longjmp.sig="vii";function _emscripten_longjmp(a0,a1){return _longjmp(a0,a1)}Module["_emscripten_longjmp"]=_emscripten_longjmp;_emscripten_longjmp.sig="vii";function _emscripten_memcpy_big(dest,src,num){HEAPU8.copyWithin(dest,src,src+num)}Module["_emscripten_memcpy_big"]=_emscripten_memcpy_big;function emscripten_realloc_buffer(size){try{wasmMemory.grow(size-buffer.byteLength+65535>>>16);updateGlobalBufferAndViews(wasmMemory.buffer);return 1}catch(e){}}Module["emscripten_realloc_buffer"]=emscripten_realloc_buffer;function _emscripten_resize_heap(requestedSize){var oldSize=HEAPU8.length;var maxHeapSize=2147483648;if(requestedSize>maxHeapSize){return false}for(var cutDown=1;cutDown<=4;cutDown*=2){var overGrownHeapSize=oldSize*(1+.2/cutDown);overGrownHeapSize=Math.min(overGrownHeapSize,requestedSize+100663296);var newSize=Math.min(maxHeapSize,alignUp(Math.max(requestedSize,overGrownHeapSize),65536));var replacement=emscripten_realloc_buffer(newSize);if(replacement){return true}}return false}Module["_emscripten_resize_heap"]=_emscripten_resize_heap;function _emscripten_thread_sleep(msecs){var start=_emscripten_get_now();while(_emscripten_get_now()-start>2]=ptr;writeAsciiToMemory(string,ptr);bufSize+=string.length+1});return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return e.errno}}Module["_environ_get"]=_environ_get;_environ_get.sig="iii";function _environ_sizes_get(penviron_count,penviron_buf_size){try{var strings=getEnvStrings();HEAP32[penviron_count>>2]=strings.length;var bufSize=0;strings.forEach(function(string){bufSize+=string.length+1});HEAP32[penviron_buf_size>>2]=bufSize;return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return e.errno}}Module["_environ_sizes_get"]=_environ_sizes_get;_environ_sizes_get.sig="iii";function _execve(path,argv,envp){setErrNo(45);return-1}Module["_execve"]=_execve;_execve.sig="iiii";function _fd_close(fd){try{var stream=SYSCALLS.getStreamFromFD(fd);FS.close(stream);return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return e.errno}}Module["_fd_close"]=_fd_close;_fd_close.sig="ii";function _fd_fdstat_get(fd,pbuf){try{var stream=SYSCALLS.getStreamFromFD(fd);var type=stream.tty?2:FS.isDir(stream.mode)?3:FS.isLink(stream.mode)?7:4;HEAP8[pbuf>>0]=type;return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return e.errno}}Module["_fd_fdstat_get"]=_fd_fdstat_get;_fd_fdstat_get.sig="iii";function _fd_pread(fd,iov,iovcnt,offset_low,offset_high,pnum){try{var stream=SYSCALLS.getStreamFromFD(fd);var num=SYSCALLS.doReadv(stream,iov,iovcnt,offset_low);HEAP32[pnum>>2]=num;return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return e.errno}}Module["_fd_pread"]=_fd_pread;function _fd_pwrite(fd,iov,iovcnt,offset_low,offset_high,pnum){try{var stream=SYSCALLS.getStreamFromFD(fd);var num=SYSCALLS.doWritev(stream,iov,iovcnt,offset_low);HEAP32[pnum>>2]=num;return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return e.errno}}Module["_fd_pwrite"]=_fd_pwrite;function _fd_read(fd,iov,iovcnt,pnum){try{var stream=SYSCALLS.getStreamFromFD(fd);var num=SYSCALLS.doReadv(stream,iov,iovcnt);HEAP32[pnum>>2]=num;return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return e.errno}}Module["_fd_read"]=_fd_read;_fd_read.sig="iiiii";function _fd_seek(fd,offset_low,offset_high,whence,newOffset){try{var stream=SYSCALLS.getStreamFromFD(fd);var HIGH_OFFSET=4294967296;var offset=offset_high*HIGH_OFFSET+(offset_low>>>0);var DOUBLE_LIMIT=9007199254740992;if(offset<=-DOUBLE_LIMIT||offset>=DOUBLE_LIMIT){return-61}FS.llseek(stream,offset,whence);tempI64=[stream.position>>>0,(tempDouble=stream.position,+Math.abs(tempDouble)>=1?tempDouble>0?(Math.min(+Math.floor(tempDouble/4294967296),4294967295)|0)>>>0:~~+Math.ceil((tempDouble-+(~~tempDouble>>>0))/4294967296)>>>0:0)],HEAP32[newOffset>>2]=tempI64[0],HEAP32[newOffset+4>>2]=tempI64[1];if(stream.getdents&&offset===0&&whence===0)stream.getdents=null;return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return e.errno}}Module["_fd_seek"]=_fd_seek;function _fd_sync(fd){try{var stream=SYSCALLS.getStreamFromFD(fd);if(stream.stream_ops&&stream.stream_ops.fsync){return-stream.stream_ops.fsync(stream)}return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return e.errno}}Module["_fd_sync"]=_fd_sync;_fd_sync.sig="ii";function _fd_write(fd,iov,iovcnt,pnum){try{var stream=SYSCALLS.getStreamFromFD(fd);var num=SYSCALLS.doWritev(stream,iov,iovcnt);HEAP32[pnum>>2]=num;return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return e.errno}}Module["_fd_write"]=_fd_write;_fd_write.sig="iiiii";function _fork(){setErrNo(6);return-1}Module["_fork"]=_fork;_fork.sig="i";var GAI_ERRNO_MESSAGES={};Module["GAI_ERRNO_MESSAGES"]=GAI_ERRNO_MESSAGES;function _gai_strerror(val){var buflen=256;if(!_gai_strerror.buffer){_gai_strerror.buffer=_malloc(buflen);GAI_ERRNO_MESSAGES["0"]="Success";GAI_ERRNO_MESSAGES[""+-1]="Invalid value for 'ai_flags' field";GAI_ERRNO_MESSAGES[""+-2]="NAME or SERVICE is unknown";GAI_ERRNO_MESSAGES[""+-3]="Temporary failure in name resolution";GAI_ERRNO_MESSAGES[""+-4]="Non-recoverable failure in name res";GAI_ERRNO_MESSAGES[""+-6]="'ai_family' not supported";GAI_ERRNO_MESSAGES[""+-7]="'ai_socktype' not supported";GAI_ERRNO_MESSAGES[""+-8]="SERVICE not supported for 'ai_socktype'";GAI_ERRNO_MESSAGES[""+-10]="Memory allocation failure";GAI_ERRNO_MESSAGES[""+-11]="System error returned in 'errno'";GAI_ERRNO_MESSAGES[""+-12]="Argument buffer overflow"}var msg="Unknown error";if(val in GAI_ERRNO_MESSAGES){if(GAI_ERRNO_MESSAGES[val].length>buflen-1){msg="Message too long"}else{msg=GAI_ERRNO_MESSAGES[val]}}writeAsciiToMemory(msg,_gai_strerror.buffer);return _gai_strerror.buffer}Module["_gai_strerror"]=_gai_strerror;function _getTempRet0(){return getTempRet0()|0}Module["_getTempRet0"]=_getTempRet0;_getTempRet0.sig="i";function _getaddrinfo(node,service,hint,out){var addrs=[];var canon=null;var addr=0;var port=0;var flags=0;var family=0;var type=0;var proto=0;var ai,last;function allocaddrinfo(family,type,proto,canon,addr,port){var sa,salen,ai;var errno;salen=family===10?28:16;addr=family===10?inetNtop6(addr):inetNtop4(addr);sa=_malloc(salen);errno=writeSockaddr(sa,family,addr,port);assert(!errno);ai=_malloc(32);HEAP32[ai+4>>2]=family;HEAP32[ai+8>>2]=type;HEAP32[ai+12>>2]=proto;HEAP32[ai+24>>2]=canon;HEAP32[ai+20>>2]=sa;if(family===10){HEAP32[ai+16>>2]=28}else{HEAP32[ai+16>>2]=16}HEAP32[ai+28>>2]=0;return ai}if(hint){flags=HEAP32[hint>>2];family=HEAP32[hint+4>>2];type=HEAP32[hint+8>>2];proto=HEAP32[hint+12>>2]}if(type&&!proto){proto=type===2?17:6}if(!type&&proto){type=proto===17?2:1}if(proto===0){proto=6}if(type===0){type=1}if(!node&&!service){return-2}if(flags&~(1|2|4|1024|8|16|32)){return-1}if(hint!==0&&HEAP32[hint>>2]&2&&!node){return-1}if(flags&32){return-2}if(type!==0&&type!==1&&type!==2){return-7}if(family!==0&&family!==2&&family!==10){return-6}if(service){service=UTF8ToString(service);port=parseInt(service,10);if(isNaN(port)){if(flags&1024){return-2}return-8}}if(!node){if(family===0){family=2}if((flags&1)===0){if(family===2){addr=_htonl(2130706433)}else{addr=[0,0,0,1]}}ai=allocaddrinfo(family,type,proto,null,addr,port);HEAP32[out>>2]=ai;return 0}node=UTF8ToString(node);addr=inetPton4(node);if(addr!==null){if(family===0||family===2){family=2}else if(family===10&&flags&8){addr=[0,0,_htonl(65535),addr];family=10}else{return-2}}else{addr=inetPton6(node);if(addr!==null){if(family===0||family===10){family=10}else{return-2}}}if(addr!=null){ai=allocaddrinfo(family,type,proto,node,addr,port);HEAP32[out>>2]=ai;return 0}if(flags&4){return-2}node=DNS.lookup_name(node);addr=inetPton4(node);if(family===0){family=2}else if(family===10){addr=[0,0,_htonl(65535),addr]}ai=allocaddrinfo(family,type,proto,null,addr,port);HEAP32[out>>2]=ai;return 0}Module["_getaddrinfo"]=_getaddrinfo;_getaddrinfo.sig="iiiii";function _getentropy(buffer,size){if(!_getentropy.randomDevice){_getentropy.randomDevice=getRandomDevice()}for(var i=0;i>0]=_getentropy.randomDevice()}return 0}Module["_getentropy"]=_getentropy;function getHostByName(name){var ret=_malloc(20);var nameBuf=_malloc(name.length+1);stringToUTF8(name,nameBuf,name.length+1);HEAP32[ret>>2]=nameBuf;var aliasesBuf=_malloc(4);HEAP32[aliasesBuf>>2]=0;HEAP32[ret+4>>2]=aliasesBuf;var afinet=2;HEAP32[ret+8>>2]=afinet;HEAP32[ret+12>>2]=4;var addrListBuf=_malloc(12);HEAP32[addrListBuf>>2]=addrListBuf+8;HEAP32[addrListBuf+4>>2]=0;HEAP32[addrListBuf+8>>2]=inetPton4(DNS.lookup_name(name));HEAP32[ret+16>>2]=addrListBuf;return ret}Module["getHostByName"]=getHostByName;function _gethostbyaddr(addr,addrlen,type){if(type!==2){setErrNo(5);return null}addr=HEAP32[addr>>2];var host=inetNtop4(addr);var lookup=DNS.lookup_addr(host);if(lookup){host=lookup}return getHostByName(host)}Module["_gethostbyaddr"]=_gethostbyaddr;_gethostbyaddr.sig="iiii";function _gethostbyname(name){return getHostByName(UTF8ToString(name))}Module["_gethostbyname"]=_gethostbyname;_gethostbyname.sig="ii";function _getitimer(){throw"getitimer() is not implemented yet"}Module["_getitimer"]=_getitimer;function _getloadavg(loadavg,nelem){var limit=Math.min(nelem,3);var doubleSize=8;for(var i=0;i>3]=.1}return limit}Module["_getloadavg"]=_getloadavg;function _getnameinfo(sa,salen,node,nodelen,serv,servlen,flags){var info=readSockaddr(sa,salen);if(info.errno){return-6}var port=info.port;var addr=info.addr;var overflowed=false;if(node&&nodelen){var lookup;if(flags&1||!(lookup=DNS.lookup_addr(addr))){if(flags&8){return-2}}else{addr=lookup}var numBytesWrittenExclNull=stringToUTF8(addr,node,nodelen);if(numBytesWrittenExclNull+1>=nodelen){overflowed=true}}if(serv&&servlen){port=""+port;var numBytesWrittenExclNull=stringToUTF8(port,serv,servlen);if(numBytesWrittenExclNull+1>=servlen){overflowed=true}}if(overflowed){return-12}return 0}Module["_getnameinfo"]=_getnameinfo;var Protocols={list:[],map:{}};Module["Protocols"]=Protocols;function _setprotoent(stayopen){function allocprotoent(name,proto,aliases){var nameBuf=_malloc(name.length+1);writeAsciiToMemory(name,nameBuf);var j=0;var length=aliases.length;var aliasListBuf=_malloc((length+1)*4);for(var i=0;i>2]=aliasBuf}HEAP32[aliasListBuf+j>>2]=0;var pe=_malloc(12);HEAP32[pe>>2]=nameBuf;HEAP32[pe+4>>2]=aliasListBuf;HEAP32[pe+8>>2]=proto;return pe}var list=Protocols.list;var map=Protocols.map;if(list.length===0){var entry=allocprotoent("tcp",6,["TCP"]);list.push(entry);map["tcp"]=map["6"]=entry;entry=allocprotoent("udp",17,["UDP"]);list.push(entry);map["udp"]=map["17"]=entry}_setprotoent.index=0}Module["_setprotoent"]=_setprotoent;function _getprotobyname(name){name=UTF8ToString(name);_setprotoent(true);var result=Protocols.map[name];return result}Module["_getprotobyname"]=_getprotobyname;function _gettimeofday(ptr){var now=Date.now();HEAP32[ptr>>2]=now/1e3|0;HEAP32[ptr+4>>2]=now%1e3*1e3|0;return 0}Module["_gettimeofday"]=_gettimeofday;function _kill(pid,sig){setErrNo(ERRNO_CODES.EPERM);return-1}Module["_kill"]=_kill;function _killpg(){setErrNo(ERRNO_CODES.EPERM);return-1}Module["_killpg"]=_killpg;function _posix_spawn(){return _fork()}Module["_posix_spawn"]=_posix_spawn;_posix_spawn.sig="i";function _pthread_cleanup_push(routine,arg){__ATEXIT__.push({func:routine,arg:arg});_pthread_cleanup_push.level=__ATEXIT__.length}Module["_pthread_cleanup_push"]=_pthread_cleanup_push;_pthread_cleanup_push.sig="vii";function _pthread_cleanup_pop(execute){assert(_pthread_cleanup_push.level==__ATEXIT__.length,"cannot pop if something else added meanwhile!");callback=__ATEXIT__.pop();if(execute){wasmTable.get(callback.func)(callback.arg)}_pthread_cleanup_push.level=__ATEXIT__.length}Module["_pthread_cleanup_pop"]=_pthread_cleanup_pop;_pthread_cleanup_pop.sig="vi";function _pthread_create(){return 6}Module["_pthread_create"]=_pthread_create;function _pthread_join(){return 28}Module["_pthread_join"]=_pthread_join;function _pthread_sigmask(how,set,oldset){err("pthread_sigmask() is not supported: this is a no-op.");return 0}Module["_pthread_sigmask"]=_pthread_sigmask;function _raise(sig){setErrNo(ERRNO_CODES.ENOSYS);return-1}Module["_raise"]=_raise;function _setTempRet0($i){setTempRet0($i|0)}Module["_setTempRet0"]=_setTempRet0;_setTempRet0.sig="vi";function _setgroups(ngroups,gidset){if(ngroups<1||ngroups>_sysconf(3)){setErrNo(28);return-1}else{setErrNo(63);return-1}}Module["_setgroups"]=_setgroups;function _setitimer(){throw"setitimer() is not implemented yet"}Module["_setitimer"]=_setitimer;function _sigemptyset(set){HEAP32[set>>2]=0;return 0}Module["_sigemptyset"]=_sigemptyset;function _sigfillset(set){HEAP32[set>>2]=-1>>>0;return 0}Module["_sigfillset"]=_sigfillset;function _siginterrupt(){return 0}Module["_siginterrupt"]=_siginterrupt;function _sigismember(set,signum){return HEAP32[set>>2]&1<>2]=0;return 0}Module["_sigpending"]=_sigpending;function __isLeapYear(year){return year%4===0&&(year%100!==0||year%400===0)}Module["__isLeapYear"]=__isLeapYear;function __arraySum(array,index){var sum=0;for(var i=0;i<=index;sum+=array[i++]){}return sum}Module["__arraySum"]=__arraySum;var __MONTH_DAYS_LEAP=[31,29,31,30,31,30,31,31,30,31,30,31];Module["__MONTH_DAYS_LEAP"]=__MONTH_DAYS_LEAP;var __MONTH_DAYS_REGULAR=[31,28,31,30,31,30,31,31,30,31,30,31];Module["__MONTH_DAYS_REGULAR"]=__MONTH_DAYS_REGULAR;function __addDays(date,days){var newDate=new Date(date.getTime());while(days>0){var leap=__isLeapYear(newDate.getFullYear());var currentMonth=newDate.getMonth();var daysInCurrentMonth=(leap?__MONTH_DAYS_LEAP:__MONTH_DAYS_REGULAR)[currentMonth];if(days>daysInCurrentMonth-newDate.getDate()){days-=daysInCurrentMonth-newDate.getDate()+1;newDate.setDate(1);if(currentMonth<11){newDate.setMonth(currentMonth+1)}else{newDate.setMonth(0);newDate.setFullYear(newDate.getFullYear()+1)}}else{newDate.setDate(newDate.getDate()+days);return newDate}}return newDate}Module["__addDays"]=__addDays;function _strftime(s,maxsize,format,tm){var tm_zone=HEAP32[tm+40>>2];var date={tm_sec:HEAP32[tm>>2],tm_min:HEAP32[tm+4>>2],tm_hour:HEAP32[tm+8>>2],tm_mday:HEAP32[tm+12>>2],tm_mon:HEAP32[tm+16>>2],tm_year:HEAP32[tm+20>>2],tm_wday:HEAP32[tm+24>>2],tm_yday:HEAP32[tm+28>>2],tm_isdst:HEAP32[tm+32>>2],tm_gmtoff:HEAP32[tm+36>>2],tm_zone:tm_zone?UTF8ToString(tm_zone):""};var pattern=UTF8ToString(format);var EXPANSION_RULES_1={"%c":"%a %b %d %H:%M:%S %Y","%D":"%m/%d/%y","%F":"%Y-%m-%d","%h":"%b","%r":"%I:%M:%S %p","%R":"%H:%M","%T":"%H:%M:%S","%x":"%m/%d/%y","%X":"%H:%M:%S","%Ec":"%c","%EC":"%C","%Ex":"%m/%d/%y","%EX":"%H:%M:%S","%Ey":"%y","%EY":"%Y","%Od":"%d","%Oe":"%e","%OH":"%H","%OI":"%I","%Om":"%m","%OM":"%M","%OS":"%S","%Ou":"%u","%OU":"%U","%OV":"%V","%Ow":"%w","%OW":"%W","%Oy":"%y"};for(var rule in EXPANSION_RULES_1){pattern=pattern.replace(new RegExp(rule,"g"),EXPANSION_RULES_1[rule])}var WEEKDAYS=["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"];var MONTHS=["January","February","March","April","May","June","July","August","September","October","November","December"];function leadingSomething(value,digits,character){var str=typeof value==="number"?value.toString():value||"";while(str.length0?1:0}var compare;if((compare=sgn(date1.getFullYear()-date2.getFullYear()))===0){if((compare=sgn(date1.getMonth()-date2.getMonth()))===0){compare=sgn(date1.getDate()-date2.getDate())}}return compare}function getFirstWeekStartDate(janFourth){switch(janFourth.getDay()){case 0:return new Date(janFourth.getFullYear()-1,11,29);case 1:return janFourth;case 2:return new Date(janFourth.getFullYear(),0,3);case 3:return new Date(janFourth.getFullYear(),0,2);case 4:return new Date(janFourth.getFullYear(),0,1);case 5:return new Date(janFourth.getFullYear()-1,11,31);case 6:return new Date(janFourth.getFullYear()-1,11,30)}}function getWeekBasedYear(date){var thisDate=__addDays(new Date(date.tm_year+1900,0,1),date.tm_yday);var janFourthThisYear=new Date(thisDate.getFullYear(),0,4);var janFourthNextYear=new Date(thisDate.getFullYear()+1,0,4);var firstWeekStartThisYear=getFirstWeekStartDate(janFourthThisYear);var firstWeekStartNextYear=getFirstWeekStartDate(janFourthNextYear);if(compareByDay(firstWeekStartThisYear,thisDate)<=0){if(compareByDay(firstWeekStartNextYear,thisDate)<=0){return thisDate.getFullYear()+1}else{return thisDate.getFullYear()}}else{return thisDate.getFullYear()-1}}var EXPANSION_RULES_2={"%a":function(date){return WEEKDAYS[date.tm_wday].substring(0,3)},"%A":function(date){return WEEKDAYS[date.tm_wday]},"%b":function(date){return MONTHS[date.tm_mon].substring(0,3)},"%B":function(date){return MONTHS[date.tm_mon]},"%C":function(date){var year=date.tm_year+1900;return leadingNulls(year/100|0,2)},"%d":function(date){return leadingNulls(date.tm_mday,2)},"%e":function(date){return leadingSomething(date.tm_mday,2," ")},"%g":function(date){return getWeekBasedYear(date).toString().substring(2)},"%G":function(date){return getWeekBasedYear(date)},"%H":function(date){return leadingNulls(date.tm_hour,2)},"%I":function(date){var twelveHour=date.tm_hour;if(twelveHour==0)twelveHour=12;else if(twelveHour>12)twelveHour-=12;return leadingNulls(twelveHour,2)},"%j":function(date){return leadingNulls(date.tm_mday+__arraySum(__isLeapYear(date.tm_year+1900)?__MONTH_DAYS_LEAP:__MONTH_DAYS_REGULAR,date.tm_mon-1),3)},"%m":function(date){return leadingNulls(date.tm_mon+1,2)},"%M":function(date){return leadingNulls(date.tm_min,2)},"%n":function(){return"\n"},"%p":function(date){if(date.tm_hour>=0&&date.tm_hour<12){return"AM"}else{return"PM"}},"%S":function(date){return leadingNulls(date.tm_sec,2)},"%t":function(){return"\t"},"%u":function(date){return date.tm_wday||7},"%U":function(date){var janFirst=new Date(date.tm_year+1900,0,1);var firstSunday=janFirst.getDay()===0?janFirst:__addDays(janFirst,7-janFirst.getDay());var endDate=new Date(date.tm_year+1900,date.tm_mon,date.tm_mday);if(compareByDay(firstSunday,endDate)<0){var februaryFirstUntilEndMonth=__arraySum(__isLeapYear(endDate.getFullYear())?__MONTH_DAYS_LEAP:__MONTH_DAYS_REGULAR,endDate.getMonth()-1)-31;var firstSundayUntilEndJanuary=31-firstSunday.getDate();var days=firstSundayUntilEndJanuary+februaryFirstUntilEndMonth+endDate.getDate();return leadingNulls(Math.ceil(days/7),2)}return compareByDay(firstSunday,janFirst)===0?"01":"00"},"%V":function(date){var janFourthThisYear=new Date(date.tm_year+1900,0,4);var janFourthNextYear=new Date(date.tm_year+1901,0,4);var firstWeekStartThisYear=getFirstWeekStartDate(janFourthThisYear);var firstWeekStartNextYear=getFirstWeekStartDate(janFourthNextYear);var endDate=__addDays(new Date(date.tm_year+1900,0,1),date.tm_yday);if(compareByDay(endDate,firstWeekStartThisYear)<0){return"53"}if(compareByDay(firstWeekStartNextYear,endDate)<=0){return"01"}var daysDifference;if(firstWeekStartThisYear.getFullYear()=0;off=Math.abs(off)/60;off=off/60*100+off%60;return(ahead?"+":"-")+String("0000"+off).slice(-4)},"%Z":function(date){return date.tm_zone},"%%":function(){return"%"}};for(var rule in EXPANSION_RULES_2){if(pattern.indexOf(rule)>=0){pattern=pattern.replace(new RegExp(rule,"g"),EXPANSION_RULES_2[rule](date))}}var bytes=intArrayFromString(pattern,false);if(bytes.length>maxsize){return 0}writeArrayToMemory(bytes,s);return bytes.length-1}Module["_strftime"]=_strftime;_strftime.sig="iiiii";function _strftime_l(s,maxsize,format,tm){return _strftime(s,maxsize,format,tm)}Module["_strftime_l"]=_strftime_l;function _system(command){if(ENVIRONMENT_IS_NODE){if(!command)return 1;var cmdstr=UTF8ToString(command);if(!cmdstr.length)return 0;var cp=require("child_process");var ret=cp.spawnSync(cmdstr,[],{shell:true,stdio:"inherit"});var _W_EXITCODE=function(ret,sig){return ret<<8|sig};if(ret.status===null){var signalToNumber=function(sig){switch(sig){case"SIGHUP":return 1;case"SIGINT":return 2;case"SIGQUIT":return 3;case"SIGFPE":return 8;case"SIGKILL":return 9;case"SIGALRM":return 14;case"SIGTERM":return 15}return 2};return _W_EXITCODE(0,signalToNumber(ret.signal))}return _W_EXITCODE(ret.status,0)}if(!command)return 0;setErrNo(6);return-1}Module["_system"]=_system;function _time(ptr){var ret=Date.now()/1e3|0;if(ptr){HEAP32[ptr>>2]=ret}return ret}Module["_time"]=_time;_time.sig="ii";function _times(buffer){if(buffer!==0){_memset(buffer,0,16)}return 0}Module["_times"]=_times;function setFileTime(path,time){path=UTF8ToString(path);try{FS.utime(path,time,time);return 0}catch(e){if(!(e instanceof FS.ErrnoError))throw e+" : "+stackTrace();setErrNo(e.errno);return-1}}Module["setFileTime"]=setFileTime;function _utimes(path,times){var time;if(times){var mtime=times+8;time=HEAP32[mtime>>2]*1e3;time+=HEAP32[mtime+4>>2]/1e3}else{time=Date.now()}return setFileTime(path,time)}Module["_utimes"]=_utimes;_utimes.sig="iii";function _wait3(a0){return _wait(a0)}Module["_wait3"]=_wait3;_wait3.sig="ii";function _wait4(a0){return _wait(a0)}Module["_wait4"]=_wait4;_wait4.sig="ii";function _waitid(a0){return _wait(a0)}Module["_waitid"]=_waitid;_waitid.sig="ii";function ___stack_pointer(){return Module["___stack_pointer"].apply(null,arguments)}function ___memory_base(){return Module["___memory_base"].apply(null,arguments)}function ___table_base(){return Module["___table_base"].apply(null,arguments)}function ___heap_base(){return Module["___heap_base"].apply(null,arguments)}var readAsmConstArgsArray=[];Module["readAsmConstArgsArray"]=readAsmConstArgsArray;function readAsmConstArgs(sigPtr,buf){readAsmConstArgsArray.length=0;var ch;buf>>=2;while(ch=HEAPU8[sigPtr++]){var double=ch<105;if(double&&buf&1)buf++;readAsmConstArgsArray.push(double?HEAPF64[buf++>>1]:HEAP32[buf]);++buf}return readAsmConstArgsArray}Module["readAsmConstArgs"]=readAsmConstArgs;function _utime(path,times){var time;if(times){time=HEAP32[times+4>>2]*1e3}else{time=Date.now()}return setFileTime(path,time)}Module["_utime"]=_utime;_utime.sig="iii";function _flock(fd,operation){return 0}Module["_flock"]=_flock;function __Exit(a0){return _exit(a0)}Module["__Exit"]=__Exit;__Exit.sig="vi";function _vfork(){return _fork()}Module["_vfork"]=_vfork;_vfork.sig="i";function _emscripten_notify_memory_growth(memoryIndex){updateGlobalBufferAndViews(wasmMemory.buffer)}Module["_emscripten_notify_memory_growth"]=_emscripten_notify_memory_growth;function ___cxa_thread_atexit(a0,a1){return _atexit(a0,a1)}Module["___cxa_thread_atexit"]=___cxa_thread_atexit;___cxa_thread_atexit.sig="iii";function ___cxa_thread_atexit_impl(a0,a1){return _atexit(a0,a1)}Module["___cxa_thread_atexit_impl"]=___cxa_thread_atexit_impl;___cxa_thread_atexit_impl.sig="iii";function _getpwuid(){throw"getpwuid: TODO"}Module["_getpwuid"]=_getpwuid;function _difftime(time1,time0){return time1-time0}Module["_difftime"]=_difftime;_difftime.sig="dii";function _timelocal(a0){return _mktime(a0)}Module["_timelocal"]=_timelocal;_timelocal.sig="ii";function _timegm(tmPtr){_tzset();var time=Date.UTC(HEAP32[tmPtr+20>>2]+1900,HEAP32[tmPtr+16>>2],HEAP32[tmPtr+12>>2],HEAP32[tmPtr+8>>2],HEAP32[tmPtr+4>>2],HEAP32[tmPtr>>2],0);var date=new Date(time);HEAP32[tmPtr+24>>2]=date.getUTCDay();var start=Date.UTC(date.getUTCFullYear(),0,1,0,0,0,0);var yday=(date.getTime()-start)/(1e3*60*60*24)|0;HEAP32[tmPtr+28>>2]=yday;return date.getTime()/1e3|0}Module["_timegm"]=_timegm;_timegm.sig="ii";function _ctime_r(time,buf){var stack=stackSave();var rv=_asctime_r(_localtime_r(time,stackAlloc(44)),buf);stackRestore(stack);return rv}Module["_ctime_r"]=_ctime_r;_ctime_r.sig="iii";function ___ctime_r(a0,a1){return _ctime_r(a0,a1)}Module["___ctime_r"]=___ctime_r;___ctime_r.sig="iii";function _dysize(year){var leap=year%4==0&&(year%100!=0||year%400==0);return leap?366:365}Module["_dysize"]=_dysize;function _stime(when){setErrNo(63);return-1}Module["_stime"]=_stime;function _strptime(buf,format,tm){var pattern=UTF8ToString(format);var SPECIAL_CHARS="\\!@#$^&*()+=-[]/{}|:<>?,.";for(var i=0,ii=SPECIAL_CHARS.length;i=0;i=pattern.indexOf("%")){capture.push(pattern[i+1]);pattern=pattern.replace(new RegExp("\\%"+pattern[i+1],"g"),"")}var matches=new RegExp("^"+pattern,"i").exec(UTF8ToString(buf));function initDate(){function fixup(value,min,max){return typeof value!=="number"||isNaN(value)?min:value>=min?value<=max?value:max:min}return{year:fixup(HEAP32[tm+20>>2]+1900,1970,9999),month:fixup(HEAP32[tm+16>>2],0,11),day:fixup(HEAP32[tm+12>>2],1,31),hour:fixup(HEAP32[tm+8>>2],0,23),min:fixup(HEAP32[tm+4>>2],0,59),sec:fixup(HEAP32[tm>>2],0,59)}}if(matches){var date=initDate();var value;var getMatch=function(symbol){var pos=capture.indexOf(symbol);if(pos>=0){return matches[pos+1]}return};if(value=getMatch("S")){date.sec=jstoi_q(value)}if(value=getMatch("M")){date.min=jstoi_q(value)}if(value=getMatch("H")){date.hour=jstoi_q(value)}else if(value=getMatch("I")){var hour=jstoi_q(value);if(value=getMatch("p")){hour+=value.toUpperCase()[0]==="P"?12:0}date.hour=hour}if(value=getMatch("Y")){date.year=jstoi_q(value)}else if(value=getMatch("y")){var year=jstoi_q(value);if(value=getMatch("C")){year+=jstoi_q(value)*100}else{year+=year<69?2e3:1900}date.year=year}if(value=getMatch("m")){date.month=jstoi_q(value)-1}else if(value=getMatch("b")){date.month=MONTH_NUMBERS[value.substring(0,3).toUpperCase()]||0}if(value=getMatch("d")){date.day=jstoi_q(value)}else if(value=getMatch("j")){var day=jstoi_q(value);var leapYear=__isLeapYear(date.year);for(var month=0;month<12;++month){var daysUntilMonth=__arraySum(leapYear?__MONTH_DAYS_LEAP:__MONTH_DAYS_REGULAR,month-1);if(day<=daysUntilMonth+(leapYear?__MONTH_DAYS_LEAP:__MONTH_DAYS_REGULAR)[month]){date.day=day-daysUntilMonth}}}else if(value=getMatch("a")){var weekDay=value.substring(0,3).toUpperCase();if(value=getMatch("U")){var weekDayNumber=DAY_NUMBERS_SUN_FIRST[weekDay];var weekNumber=jstoi_q(value);var janFirst=new Date(date.year,0,1);var endDate;if(janFirst.getDay()===0){endDate=__addDays(janFirst,weekDayNumber+7*(weekNumber-1))}else{endDate=__addDays(janFirst,7-janFirst.getDay()+weekDayNumber+7*(weekNumber-1))}date.day=endDate.getDate();date.month=endDate.getMonth()}else if(value=getMatch("W")){var weekDayNumber=DAY_NUMBERS_MON_FIRST[weekDay];var weekNumber=jstoi_q(value);var janFirst=new Date(date.year,0,1);var endDate;if(janFirst.getDay()===1){endDate=__addDays(janFirst,weekDayNumber+7*(weekNumber-1))}else{endDate=__addDays(janFirst,7-janFirst.getDay()+1+weekDayNumber+7*(weekNumber-1))}date.day=endDate.getDate();date.month=endDate.getMonth()}}var fullDate=new Date(date.year,date.month,date.day,date.hour,date.min,date.sec,0);HEAP32[tm>>2]=fullDate.getSeconds();HEAP32[tm+4>>2]=fullDate.getMinutes();HEAP32[tm+8>>2]=fullDate.getHours();HEAP32[tm+12>>2]=fullDate.getDate();HEAP32[tm+16>>2]=fullDate.getMonth();HEAP32[tm+20>>2]=fullDate.getFullYear()-1900;HEAP32[tm+24>>2]=fullDate.getDay();HEAP32[tm+28>>2]=__arraySum(__isLeapYear(fullDate.getFullYear())?__MONTH_DAYS_LEAP:__MONTH_DAYS_REGULAR,fullDate.getMonth()-1)+fullDate.getDate()-1;HEAP32[tm+32>>2]=0;return buf+intArrayFromString(matches[0]).length-1}return 0}Module["_strptime"]=_strptime;function _strptime_l(buf,format,tm){return _strptime(buf,format,tm)}Module["_strptime_l"]=_strptime_l;function _getdate(string){return 0}Module["_getdate"]=_getdate;function _timespec_get(ts,base){if(base!==1){setErrNo(28);return 0}var ret=_clock_gettime(0,ts);return ret<0?0:base}Module["_timespec_get"]=_timespec_get;function _clock_getcpuclockid(pid,clk_id){if(pid<0)return 71;if(pid!==0&&pid!==42)return 52;if(clk_id)HEAP32[clk_id>>2]=2;return 0}Module["_clock_getcpuclockid"]=_clock_getcpuclockid;function _ftime(p){var millis=Date.now();HEAP32[p>>2]=millis/1e3|0;HEAP16[p+4>>1]=millis%1e3;HEAP16[p+6>>1]=0;HEAP16[p+8>>1]=0;return 0}Module["_ftime"]=_ftime;function _makedev(maj,min){return maj<<8|min}Module["_makedev"]=_makedev;_makedev.sig="iii";function _gnu_dev_makedev(a0,a1){return _makedev(a0,a1)}Module["_gnu_dev_makedev"]=_gnu_dev_makedev;_gnu_dev_makedev.sig="iii";function _major(dev){return dev>>8}Module["_major"]=_major;_major.sig="ii";function _gnu_dev_major(a0){return _major(a0)}Module["_gnu_dev_major"]=_gnu_dev_major;_gnu_dev_major.sig="ii";function _minor(dev){return dev&255}Module["_minor"]=_minor;_minor.sig="ii";function _gnu_dev_minor(a0){return _minor(a0)}Module["_gnu_dev_minor"]=_gnu_dev_minor;_gnu_dev_minor.sig="ii";var ERRNO_MESSAGES={0:"Success",1:"Arg list too long",2:"Permission denied",3:"Address already in use",4:"Address not available",5:"Address family not supported by protocol family",6:"No more processes",7:"Socket already connected",8:"Bad file number",9:"Trying to read unreadable message",10:"Mount device busy",11:"Operation canceled",12:"No children",13:"Connection aborted",14:"Connection refused",15:"Connection reset by peer",16:"File locking deadlock error",17:"Destination address required",18:"Math arg out of domain of func",19:"Quota exceeded",20:"File exists",21:"Bad address",22:"File too large",23:"Host is unreachable",24:"Identifier removed",25:"Illegal byte sequence",26:"Connection already in progress",27:"Interrupted system call",28:"Invalid argument",29:"I/O error",30:"Socket is already connected",31:"Is a directory",32:"Too many symbolic links",33:"Too many open files",34:"Too many links",35:"Message too long",36:"Multihop attempted",37:"File or path name too long",38:"Network interface is not configured",39:"Connection reset by network",40:"Network is unreachable",41:"Too many open files in system",42:"No buffer space available",43:"No such device",44:"No such file or directory",45:"Exec format error",46:"No record locks available",47:"The link has been severed",48:"Not enough core",49:"No message of desired type",50:"Protocol not available",51:"No space left on device",52:"Function not implemented",53:"Socket is not connected",54:"Not a directory",55:"Directory not empty",56:"State not recoverable",57:"Socket operation on non-socket",59:"Not a typewriter",60:"No such device or address",61:"Value too large for defined data type",62:"Previous owner died",63:"Not super-user",64:"Broken pipe",65:"Protocol error",66:"Unknown protocol",67:"Protocol wrong type for socket",68:"Math result not representable",69:"Read only file system",70:"Illegal seek",71:"No such process",72:"Stale file handle",73:"Connection timed out",74:"Text file busy",75:"Cross-device link",100:"Device not a stream",101:"Bad font file fmt",102:"Invalid slot",103:"Invalid request code",104:"No anode",105:"Block device required",106:"Channel number out of range",107:"Level 3 halted",108:"Level 3 reset",109:"Link number out of range",110:"Protocol driver not attached",111:"No CSI structure available",112:"Level 2 halted",113:"Invalid exchange",114:"Invalid request descriptor",115:"Exchange full",116:"No data (for no delay io)",117:"Timer expired",118:"Out of streams resources",119:"Machine is not on the network",120:"Package not installed",121:"The object is remote",122:"Advertise error",123:"Srmount error",124:"Communication error on send",125:"Cross mount point (not really error)",126:"Given log. name not unique",127:"f.d. invalid for this operation",128:"Remote address changed",129:"Can access a needed shared lib",130:"Accessing a corrupted shared lib",131:".lib section in a.out corrupted",132:"Attempting to link in too many libs",133:"Attempting to exec a shared library",135:"Streams pipe error",136:"Too many users",137:"Socket type not supported",138:"Not supported",139:"Protocol family not supported",140:"Can't send after socket shutdown",141:"Too many references",142:"Host is down",148:"No medium (in tape drive)",156:"Level 2 not synchronized"};Module["ERRNO_MESSAGES"]=ERRNO_MESSAGES;function _gethostbyname_r(name,ret,buf,buflen,out,err){var data=_gethostbyname(name);_memcpy(ret,data,20);_free(data);HEAP32[err>>2]=0;HEAP32[out>>2]=ret;return 0}Module["_gethostbyname_r"]=_gethostbyname_r;_gethostbyname_r.sig="iiiiiii";function _endprotoent(){}Module["_endprotoent"]=_endprotoent;function _getprotoent(number){if(_setprotoent.index===Protocols.list.length){return 0}else{var result=Protocols.list[_setprotoent.index++];return result}}Module["_getprotoent"]=_getprotoent;function _getprotobynumber(number){_setprotoent(true);var result=Protocols.map[number];return result}Module["_getprotobynumber"]=_getprotobynumber;function _getpwnam(){throw"getpwnam: TODO"}Module["_getpwnam"]=_getpwnam;function _getpwnam_r(){throw"getpwnam_r: TODO"}Module["_getpwnam_r"]=_getpwnam_r;function _getpwuid_r(){throw"getpwuid_r: TODO"}Module["_getpwuid_r"]=_getpwuid_r;function _setpwent(){throw"setpwent: TODO"}Module["_setpwent"]=_setpwent;function _getpwent(){throw"getpwent: TODO"}Module["_getpwent"]=_getpwent;function _endpwent(){throw"endpwent: TODO"}Module["_endpwent"]=_endpwent;function _getgrgid(){throw"getgrgid: TODO"}Module["_getgrgid"]=_getgrgid;function _getgrgid_r(){throw"getgrgid_r: TODO"}Module["_getgrgid_r"]=_getgrgid_r;function _getgrnam(){throw"getgrnam: TODO"}Module["_getgrnam"]=_getgrnam;function _getgrnam_r(){throw"getgrnam_r: TODO"}Module["_getgrnam_r"]=_getgrnam_r;function _getgrent(){throw"getgrent: TODO"}Module["_getgrent"]=_getgrent;function _endgrent(){throw"endgrent: TODO"}Module["_endgrent"]=_endgrent;function _setgrent(){throw"setgrent: TODO"}Module["_setgrent"]=_setgrent;function _emscripten_run_script(ptr){eval(UTF8ToString(ptr))}Module["_emscripten_run_script"]=_emscripten_run_script;_emscripten_run_script.sig="vi";function _emscripten_run_script_int(ptr){return eval(UTF8ToString(ptr))|0}Module["_emscripten_run_script_int"]=_emscripten_run_script_int;_emscripten_run_script_int.sig="ii";function _emscripten_run_script_string(ptr){var s=eval(UTF8ToString(ptr));if(s==null){return 0}s+="";var me=_emscripten_run_script_string;var len=lengthBytesUTF8(s);if(!me.bufferSize||me.bufferSize=0)stack_args=traverseStack(stack_args[0])}var lines=callstack.split("\n");callstack="";var newFirefoxRe=new RegExp("\\s*(.*?)@(.*?):([0-9]+):([0-9]+)");var firefoxRe=new RegExp("\\s*(.*?)@(.*):(.*)(:(.*))?");var chromeRe=new RegExp("\\s*at (.*?) \\((.*):(.*):(.*)\\)");for(var l in lines){var line=lines[l];var symbolName="";var file="";var lineno=0;var column=0;var parts=chromeRe.exec(line);if(parts&&parts.length==5){symbolName=parts[1];file=parts[2];lineno=parts[3];column=parts[4]}else{parts=newFirefoxRe.exec(line);if(!parts)parts=firefoxRe.exec(line);if(parts&&parts.length>=4){symbolName=parts[1];file=parts[2];lineno=parts[3];column=parts[4]|0}else{callstack+=line+"\n";continue}}var haveSourceMap=false;if(flags&8){var orig=emscripten_source_map.originalPositionFor({line:lineno,column:column});haveSourceMap=orig&&orig.source;if(haveSourceMap){if(flags&64){orig.source=orig.source.substring(orig.source.replace(/\\/g,"/").lastIndexOf("/")+1)}callstack+=" at "+symbolName+" ("+orig.source+":"+orig.line+":"+orig.column+")\n"}}if(flags&16||!haveSourceMap){if(flags&64){file=file.substring(file.replace(/\\/g,"/").lastIndexOf("/")+1)}callstack+=(haveSourceMap?" = "+symbolName:" at "+symbolName)+" ("+file+":"+lineno+":"+column+")\n"}if(flags&128&&stack_args[0]){if(stack_args[1]==symbolName&&stack_args[2].length>0){callstack=callstack.replace(/\s+$/,"");callstack+=" with values: "+stack_args[1]+stack_args[2]+"\n"}stack_args=traverseStack(stack_args[0])}}callstack=callstack.replace(/\s+$/,"");return callstack}Module["_emscripten_get_callstack_js"]=_emscripten_get_callstack_js;function _emscripten_get_callstack(flags,str,maxbytes){var callstack=_emscripten_get_callstack_js(flags);if(!str||maxbytes<=0){return lengthBytesUTF8(callstack)+1}var bytesWrittenExcludingNull=stringToUTF8(callstack,str,maxbytes);return bytesWrittenExcludingNull+1}Module["_emscripten_get_callstack"]=_emscripten_get_callstack;function _emscripten_log_js(flags,str){if(flags&24){str=str.replace(/\s+$/,"");str+=(str.length>0?"\n":"")+_emscripten_get_callstack_js(flags)}if(flags&1){if(flags&4){console.error(str)}else if(flags&2){console.warn(str)}else if(flags&512){console.info(str)}else if(flags&256){console.debug(str)}else{console.log(str)}}else if(flags&6){err(str)}else{out(str)}}Module["_emscripten_log_js"]=_emscripten_log_js;function reallyNegative(x){return x<0||x===0&&1/x===-Infinity}Module["reallyNegative"]=reallyNegative;function convertI32PairToI53(lo,hi){return(lo>>>0)+hi*4294967296}Module["convertI32PairToI53"]=convertI32PairToI53;function convertU32PairToI53(lo,hi){return(lo>>>0)+(hi>>>0)*4294967296}Module["convertU32PairToI53"]=convertU32PairToI53;function reSign(value,bits){if(value<=0){return value}var half=bits<=32?Math.abs(1<=half&&(bits<=32||value>half)){value=-2*half+value}return value}Module["reSign"]=reSign;function unSign(value,bits){if(value>=0){return value}return bits<=32?2*Math.abs(1<>3];argIndex+=8}else if(type=="i64"){ret=[HEAP32[argIndex>>2],HEAP32[argIndex+4>>2]];argIndex+=8}else{type="i32";ret=HEAP32[argIndex>>2];argIndex+=4}return ret}var ret=[];var curr,next,currArg;while(1){var startTextIndex=textIndex;curr=HEAP8[textIndex>>0];if(curr===0)break;next=HEAP8[textIndex+1>>0];if(curr==37){var flagAlwaysSigned=false;var flagLeftAlign=false;var flagAlternative=false;var flagZeroPad=false;var flagPadSign=false;flagsLoop:while(1){switch(next){case 43:flagAlwaysSigned=true;break;case 45:flagLeftAlign=true;break;case 35:flagAlternative=true;break;case 48:if(flagZeroPad){break flagsLoop}else{flagZeroPad=true;break}case 32:flagPadSign=true;break;default:break flagsLoop}textIndex++;next=HEAP8[textIndex+1>>0]}var width=0;if(next==42){width=getNextArg("i32");textIndex++;next=HEAP8[textIndex+1>>0]}else{while(next>=48&&next<=57){width=width*10+(next-48);textIndex++;next=HEAP8[textIndex+1>>0]}}var precisionSet=false,precision=-1;if(next==46){precision=0;precisionSet=true;textIndex++;next=HEAP8[textIndex+1>>0];if(next==42){precision=getNextArg("i32");textIndex++}else{while(1){var precisionChr=HEAP8[textIndex+1>>0];if(precisionChr<48||precisionChr>57)break;precision=precision*10+(precisionChr-48);textIndex++}}next=HEAP8[textIndex+1>>0]}if(precision<0){precision=6;precisionSet=false}var argSize;switch(String.fromCharCode(next)){case"h":var nextNext=HEAP8[textIndex+2>>0];if(nextNext==104){textIndex++;argSize=1}else{argSize=2}break;case"l":var nextNext=HEAP8[textIndex+2>>0];if(nextNext==108){textIndex++;argSize=8}else{argSize=4}break;case"L":case"q":case"j":argSize=8;break;case"z":case"t":case"I":argSize=4;break;default:argSize=null}if(argSize)textIndex++;next=HEAP8[textIndex+1>>0];switch(String.fromCharCode(next)){case"d":case"i":case"u":case"o":case"x":case"X":case"p":{var signed=next==100||next==105;argSize=argSize||4;currArg=getNextArg("i"+argSize*8);var argText;if(argSize==8){currArg=next==117?convertU32PairToI53(currArg[0],currArg[1]):convertI32PairToI53(currArg[0],currArg[1])}if(argSize<=4){var limit=Math.pow(256,argSize)-1;currArg=(signed?reSign:unSign)(currArg&limit,argSize*8)}var currAbsArg=Math.abs(currArg);var prefix="";if(next==100||next==105){argText=reSign(currArg,8*argSize,1).toString(10)}else if(next==117){argText=unSign(currArg,8*argSize,1).toString(10);currArg=Math.abs(currArg)}else if(next==111){argText=(flagAlternative?"0":"")+currAbsArg.toString(8)}else if(next==120||next==88){prefix=flagAlternative&&currArg!=0?"0x":"";if(currArg<0){currArg=-currArg;argText=(currAbsArg-1).toString(16);var buffer=[];for(var i=0;i=0){if(flagAlwaysSigned){prefix="+"+prefix}else if(flagPadSign){prefix=" "+prefix}}if(argText.charAt(0)=="-"){prefix="-"+prefix;argText=argText.substr(1)}while(prefix.length+argText.lengthexponent&&exponent>=-4){next=(next==103?"f":"F").charCodeAt(0);precision-=exponent+1}else{next=(next==103?"e":"E").charCodeAt(0);precision--}effectivePrecision=Math.min(precision,20)}if(next==101||next==69){argText=currArg.toExponential(effectivePrecision);if(/[eE][-+]\d$/.test(argText)){argText=argText.slice(0,-1)+"0"+argText.slice(-1)}}else if(next==102||next==70){argText=currArg.toFixed(effectivePrecision);if(currArg===0&&reallyNegative(currArg)){argText="-"+argText}}var parts=argText.split("e");if(isGeneral&&!flagAlternative){while(parts[0].length>1&&parts[0].indexOf(".")!=-1&&(parts[0].slice(-1)=="0"||parts[0].slice(-1)==".")){parts[0]=parts[0].slice(0,-1)}}else{if(flagAlternative&&argText.indexOf(".")==-1)parts[0]+=".";while(precision>effectivePrecision++)parts[0]+="0"}argText=parts[0]+(parts.length>1?"e"+parts[1]:"");if(next==69)argText=argText.toUpperCase();if(currArg>=0){if(flagAlwaysSigned){argText="+"+argText}else if(flagPadSign){argText=" "+argText}}}while(argText.length>0])}}else{ret=ret.concat(intArrayFromString("(null)".substr(0,argLength),true))}if(flagLeftAlign){while(argLength0){ret.push(32)}if(!flagLeftAlign)ret.push(getNextArg("i8"));break}case"n":{var ptr=getNextArg("i32*");HEAP32[ptr>>2]=ret.length;break}case"%":{ret.push(curr);break}default:{for(var i=startTextIndex;i>0])}}}textIndex+=2}else{ret.push(curr);textIndex+=1}}return ret}Module["formatString"]=formatString;function _emscripten_log(flags,format,varargs){var result=formatString(format,varargs);var str=UTF8ArrayToString(result,0);_emscripten_log_js(flags,str)}Module["_emscripten_log"]=_emscripten_log;function _emscripten_get_compiler_setting(name){name=UTF8ToString(name);var ret=getCompilerSetting(name);if(typeof ret==="number")return ret;if(!_emscripten_get_compiler_setting.cache)_emscripten_get_compiler_setting.cache={};var cache=_emscripten_get_compiler_setting.cache;var fullname=name+"__str";var fullret=cache[fullname];if(fullret)return fullret;return cache[fullname]=allocate(intArrayFromString(ret+""),ALLOC_NORMAL)}Module["_emscripten_get_compiler_setting"]=_emscripten_get_compiler_setting;function _emscripten_has_asyncify(){return 0}Module["_emscripten_has_asyncify"]=_emscripten_has_asyncify;function _emscripten_debugger(){debugger}Module["_emscripten_debugger"]=_emscripten_debugger;function _emscripten_print_double(x,to,max){var str=x+"";if(to)return stringToUTF8(str,to,max);else return lengthBytesUTF8(str)}Module["_emscripten_print_double"]=_emscripten_print_double;function _emscripten_generate_pc(frame){abort("Cannot use emscripten_generate_pc (needed by __builtin_return_address) without -s USE_OFFSET_CONVERTER");var match;if(match=/\bwasm-function\[\d+\]:(0x[0-9a-f]+)/.exec(frame)){return+match[1]}else if(match=/\bwasm-function\[(\d+)\]:(\d+)/.exec(frame)){return wasmOffsetConverter.convert(+match[1],+match[2])}else if(match=/:(\d+):\d+(?:\)|$)/.exec(frame)){return 2147483648|+match[1]}else{return 0}}Module["_emscripten_generate_pc"]=_emscripten_generate_pc;function _emscripten_return_address(level){var callstack=(new Error).stack.split("\n");if(callstack[0]=="Error"){callstack.shift()}return _emscripten_generate_pc(callstack[level+2])}Module["_emscripten_return_address"]=_emscripten_return_address;var UNWIND_CACHE={};Module["UNWIND_CACHE"]=UNWIND_CACHE;function __emscripten_save_in_unwind_cache(callstack){callstack.forEach(function(frame){var pc=_emscripten_generate_pc(frame);if(pc){UNWIND_CACHE[pc]=frame}})}Module["__emscripten_save_in_unwind_cache"]=__emscripten_save_in_unwind_cache;function _emscripten_stack_snapshot(){var callstack=(new Error).stack.split("\n");if(callstack[0]=="Error"){callstack.shift()}__emscripten_save_in_unwind_cache(callstack);UNWIND_CACHE.last_addr=_emscripten_generate_pc(callstack[2]);UNWIND_CACHE.last_stack=callstack;return UNWIND_CACHE.last_addr}Module["_emscripten_stack_snapshot"]=_emscripten_stack_snapshot;function _emscripten_stack_unwind_buffer(addr,buffer,count){var stack;if(UNWIND_CACHE.last_addr==addr){stack=UNWIND_CACHE.last_stack}else{stack=(new Error).stack.split("\n");if(stack[0]=="Error"){stack.shift()}__emscripten_save_in_unwind_cache(stack)}var offset=2;while(stack[offset]&&_emscripten_generate_pc(stack[offset])!=addr){++offset}for(var i=0;i>2]=_emscripten_generate_pc(stack[i+offset])}return i}Module["_emscripten_stack_unwind_buffer"]=_emscripten_stack_unwind_buffer;function withBuiltinMalloc(func){var prev_malloc=typeof _malloc!=="undefined"?_malloc:undefined;var prev_memalign=typeof _memalign!=="undefined"?_memalign:undefined;var prev_free=typeof _free!=="undefined"?_free:undefined;_malloc=_emscripten_builtin_malloc;_memalign=_emscripten_builtin_memalign;_free=_emscripten_builtin_free;try{return func()}finally{_malloc=prev_malloc;_memalign=prev_memalign;_free=prev_free}}Module["withBuiltinMalloc"]=withBuiltinMalloc;function _emscripten_pc_get_function(pc){abort("Cannot use emscripten_pc_get_function without -s USE_OFFSET_CONVERTER");var name;if(pc&2147483648){var frame=UNWIND_CACHE[pc];if(!frame)return 0;var match;if(match=/^\s+at (.*) \(.*\)$/.exec(frame)){name=match[1]}else if(match=/^(.+?)@/.exec(frame)){name=match[1]}else{return 0}}else{name=wasmOffsetConverter.getName(pc)}withBuiltinMalloc(function(){if(_emscripten_pc_get_function.ret)_free(_emscripten_pc_get_function.ret);_emscripten_pc_get_function.ret=allocateUTF8(name)});return _emscripten_pc_get_function.ret}Module["_emscripten_pc_get_function"]=_emscripten_pc_get_function;function _emscripten_pc_get_source_js(pc){if(UNWIND_CACHE.last_get_source_pc==pc)return UNWIND_CACHE.last_source;var match;var source;if(!source){var frame=UNWIND_CACHE[pc];if(!frame)return null;if(match=/\((.*):(\d+):(\d+)\)$/.exec(frame)){source={file:match[1],line:match[2],column:match[3]}}else if(match=/@(.*):(\d+):(\d+)/.exec(frame)){source={file:match[1],line:match[2],column:match[3]}}}UNWIND_CACHE.last_get_source_pc=pc;UNWIND_CACHE.last_source=source;return source}Module["_emscripten_pc_get_source_js"]=_emscripten_pc_get_source_js;function _emscripten_pc_get_file(pc){var result=_emscripten_pc_get_source_js(pc);if(!result)return 0;withBuiltinMalloc(function(){if(_emscripten_pc_get_file.ret)_free(_emscripten_pc_get_file.ret);_emscripten_pc_get_file.ret=allocateUTF8(result.file)});return _emscripten_pc_get_file.ret}Module["_emscripten_pc_get_file"]=_emscripten_pc_get_file;function _emscripten_pc_get_line(pc){var result=_emscripten_pc_get_source_js(pc);return result?result.line:0}Module["_emscripten_pc_get_line"]=_emscripten_pc_get_line;function _emscripten_pc_get_column(pc){var result=_emscripten_pc_get_source_js(pc);return result?result.column||0:0}Module["_emscripten_pc_get_column"]=_emscripten_pc_get_column;function _emscripten_get_module_name(buf,length){return stringToUTF8(wasmBinaryFile,buf,length)}Module["_emscripten_get_module_name"]=_emscripten_get_module_name;function _emscripten_builtin_mmap2(addr,len,prot,flags,fd,off){return withBuiltinMalloc(function(){return syscallMmap2(addr,len,prot,flags,fd,off)})}Module["_emscripten_builtin_mmap2"]=_emscripten_builtin_mmap2;function _emscripten_builtin_munmap(addr,len){return withBuiltinMalloc(function(){return syscallMunmap(addr,len)})}Module["_emscripten_builtin_munmap"]=_emscripten_builtin_munmap;function _emscripten_asm_const_double(a0,a1,a2){return _emscripten_asm_const_int(a0,a1,a2)}Module["_emscripten_asm_const_double"]=_emscripten_asm_const_double;_emscripten_asm_const_double.sig="iiii";function mainThreadEM_ASM(code,sigPtr,argbuf,sync){code-=1024;var args=readAsmConstArgs(sigPtr,argbuf);return ASM_CONSTS[code].apply(null,args)}Module["mainThreadEM_ASM"]=mainThreadEM_ASM;function _emscripten_asm_const_int_sync_on_main_thread(code,sigPtr,argbuf){return mainThreadEM_ASM(code,sigPtr,argbuf,1)}Module["_emscripten_asm_const_int_sync_on_main_thread"]=_emscripten_asm_const_int_sync_on_main_thread;_emscripten_asm_const_int_sync_on_main_thread.sig="iiii";function _emscripten_asm_const_double_sync_on_main_thread(a0,a1,a2){return _emscripten_asm_const_int_sync_on_main_thread(a0,a1,a2)}Module["_emscripten_asm_const_double_sync_on_main_thread"]=_emscripten_asm_const_double_sync_on_main_thread;_emscripten_asm_const_double_sync_on_main_thread.sig="iiii";function _emscripten_asm_const_async_on_main_thread(code,sigPtr,argbuf){return mainThreadEM_ASM(code,sigPtr,argbuf,0)}Module["_emscripten_asm_const_async_on_main_thread"]=_emscripten_asm_const_async_on_main_thread;function jstoi_s(str){return Number(str)}Module["jstoi_s"]=jstoi_s;function __Unwind_Backtrace(func,arg){var trace=_emscripten_get_callstack_js();var parts=trace.split("\n");for(var i=0;i>2]=type};this.get_type=function(){return HEAP32[this.ptr+ExceptionInfoAttrs.TYPE_OFFSET>>2]};this.set_destructor=function(destructor){HEAP32[this.ptr+ExceptionInfoAttrs.DESTRUCTOR_OFFSET>>2]=destructor};this.get_destructor=function(){return HEAP32[this.ptr+ExceptionInfoAttrs.DESTRUCTOR_OFFSET>>2]};this.set_refcount=function(refcount){HEAP32[this.ptr+ExceptionInfoAttrs.REFCOUNT_OFFSET>>2]=refcount};this.set_caught=function(caught){caught=caught?1:0;HEAP8[this.ptr+ExceptionInfoAttrs.CAUGHT_OFFSET>>0]=caught};this.get_caught=function(){return HEAP8[this.ptr+ExceptionInfoAttrs.CAUGHT_OFFSET>>0]!=0};this.set_rethrown=function(rethrown){rethrown=rethrown?1:0;HEAP8[this.ptr+ExceptionInfoAttrs.RETHROWN_OFFSET>>0]=rethrown};this.get_rethrown=function(){return HEAP8[this.ptr+ExceptionInfoAttrs.RETHROWN_OFFSET>>0]!=0};this.init=function(type,destructor){this.set_type(type);this.set_destructor(destructor);this.set_refcount(0);this.set_caught(false);this.set_rethrown(false)};this.add_ref=function(){var value=HEAP32[this.ptr+ExceptionInfoAttrs.REFCOUNT_OFFSET>>2];HEAP32[this.ptr+ExceptionInfoAttrs.REFCOUNT_OFFSET>>2]=value+1};this.release_ref=function(){var prev=HEAP32[this.ptr+ExceptionInfoAttrs.REFCOUNT_OFFSET>>2];HEAP32[this.ptr+ExceptionInfoAttrs.REFCOUNT_OFFSET>>2]=prev-1;return prev===1}}Module["ExceptionInfo"]=ExceptionInfo;var exceptionLast=0;Module["exceptionLast"]=exceptionLast;var uncaughtExceptionCount=0;Module["uncaughtExceptionCount"]=uncaughtExceptionCount;function ___cxa_throw(ptr,type,destructor){var info=new ExceptionInfo(ptr);info.init(type,destructor);exceptionLast=ptr;uncaughtExceptionCount++;throw ptr}Module["___cxa_throw"]=___cxa_throw;___cxa_throw.sig="viii";function __Unwind_RaiseException(ex){err("Warning: _Unwind_RaiseException is not correctly implemented");return ___cxa_throw(ex,0,0)}Module["__Unwind_RaiseException"]=__Unwind_RaiseException;function __Unwind_DeleteException(ex){err("TODO: Unwind_DeleteException")}Module["__Unwind_DeleteException"]=__Unwind_DeleteException;function _emscripten_autodebug_i64(line,valuel,valueh){out("AD:"+[line,valuel,valueh])}Module["_emscripten_autodebug_i64"]=_emscripten_autodebug_i64;function _emscripten_autodebug_i32(line,value){out("AD:"+[line,value])}Module["_emscripten_autodebug_i32"]=_emscripten_autodebug_i32;function _emscripten_autodebug_i16(line,value){out("AD:"+[line,value])}Module["_emscripten_autodebug_i16"]=_emscripten_autodebug_i16;function _emscripten_autodebug_i8(line,value){out("AD:"+[line,value])}Module["_emscripten_autodebug_i8"]=_emscripten_autodebug_i8;function _emscripten_autodebug_float(line,value){out("AD:"+[line,value])}Module["_emscripten_autodebug_float"]=_emscripten_autodebug_float;function _emscripten_autodebug_double(line,value){out("AD:"+[line,value])}Module["_emscripten_autodebug_double"]=_emscripten_autodebug_double;function ___handle_stack_overflow(){abort("stack overflow")}Module["___handle_stack_overflow"]=___handle_stack_overflow;function dynCallLegacy(sig,ptr,args){var f=Module["dynCall_"+sig];return args&&args.length?f.apply(null,[ptr].concat(args)):f.call(null,ptr)}Module["dynCallLegacy"]=dynCallLegacy;function dynCall(sig,ptr,args){if(sig.indexOf("j")!=-1){return dynCallLegacy(sig,ptr,args)}return wasmTable.get(ptr).apply(null,args)}Module["dynCall"]=dynCall;function getDynCaller(sig,ptr){var argCache=[];return function(){argCache.length=arguments.length;for(var i=0;i>3)+i]);return Math.hypot.apply(null,args)}Module["_emscripten_math_hypot"]=_emscripten_math_hypot;function _emscripten_math_sin(x){return Math.sin(x)}Module["_emscripten_math_sin"]=_emscripten_math_sin;function _emscripten_math_sinh(x){return Math.sinh(x)}Module["_emscripten_math_sinh"]=_emscripten_math_sinh;function _emscripten_math_tan(x){return Math.tan(x)}Module["_emscripten_math_tan"]=_emscripten_math_tan;function _emscripten_math_tanh(x){return Math.tanh(x)}Module["_emscripten_math_tanh"]=_emscripten_math_tanh;function _bsd_signal(a0,a1){return _signal(a0,a1)}Module["_bsd_signal"]=_bsd_signal;_bsd_signal.sig="iii";function _sigaddset(set,signum){HEAP32[set>>2]=HEAP32[set>>2]|1<>2]=HEAP32[set>>2]&~(1<=0;--i){JSEvents._removeHandler(i)}JSEvents.eventHandlers=[];JSEvents.deferredCalls=[]},registerRemoveEventListeners:function(){if(!JSEvents.removeEventListenersRegistered){__ATEXIT__.push(JSEvents.removeAllEventListeners);JSEvents.removeEventListenersRegistered=true}},deferredCalls:[],deferCall:function(targetFunction,precedence,argsList){function arraysHaveEqualContent(arrA,arrB){if(arrA.length!=arrB.length)return false;for(var i in arrA){if(arrA[i]!=arrB[i])return false}return true}for(var i in JSEvents.deferredCalls){var call=JSEvents.deferredCalls[i];if(call.targetFunction==targetFunction&&arraysHaveEqualContent(call.argsList,argsList)){return}}JSEvents.deferredCalls.push({targetFunction:targetFunction,precedence:precedence,argsList:argsList});JSEvents.deferredCalls.sort(function(x,y){return x.precedence2?UTF8ToString(cString):cString}Module["maybeCStringToJsString"]=maybeCStringToJsString;var specialHTMLTargets=[0,typeof document!=="undefined"?document:0,typeof window!=="undefined"?window:0];Module["specialHTMLTargets"]=specialHTMLTargets;function findEventTarget(target){target=maybeCStringToJsString(target);var domElement=specialHTMLTargets[target]||(typeof document!=="undefined"?document.querySelector(target):undefined);return domElement}Module["findEventTarget"]=findEventTarget;function registerKeyEventCallback(target,userData,useCapture,callbackfunc,eventTypeId,eventTypeString,targetThread){if(!JSEvents.keyEvent)JSEvents.keyEvent=_malloc(164);var keyEventHandlerFunc=function(e){var keyEventData=JSEvents.keyEvent;var idx=keyEventData>>2;HEAP32[idx+0]=e.location;HEAP32[idx+1]=e.ctrlKey;HEAP32[idx+2]=e.shiftKey;HEAP32[idx+3]=e.altKey;HEAP32[idx+4]=e.metaKey;HEAP32[idx+5]=e.repeat;HEAP32[idx+6]=e.charCode;HEAP32[idx+7]=e.keyCode;HEAP32[idx+8]=e.which;stringToUTF8(e.key||"",keyEventData+36,32);stringToUTF8(e.code||"",keyEventData+68,32);stringToUTF8(e.char||"",keyEventData+100,32);stringToUTF8(e.locale||"",keyEventData+132,32);if(wasmTable.get(callbackfunc)(eventTypeId,keyEventData,userData))e.preventDefault()};var eventHandler={target:findEventTarget(target),allowsDeferredCalls:true,eventTypeString:eventTypeString,callbackfunc:callbackfunc,handlerFunc:keyEventHandlerFunc,useCapture:useCapture};JSEvents.registerOrRemoveHandler(eventHandler)}Module["registerKeyEventCallback"]=registerKeyEventCallback;function findCanvasEventTarget(target){return findEventTarget(target)}Module["findCanvasEventTarget"]=findCanvasEventTarget;function _emscripten_set_keypress_callback_on_thread(target,userData,useCapture,callbackfunc,targetThread){registerKeyEventCallback(target,userData,useCapture,callbackfunc,1,"keypress",targetThread);return 0}Module["_emscripten_set_keypress_callback_on_thread"]=_emscripten_set_keypress_callback_on_thread;_emscripten_set_keypress_callback_on_thread.sig="iiiiii";function _emscripten_set_keydown_callback_on_thread(target,userData,useCapture,callbackfunc,targetThread){registerKeyEventCallback(target,userData,useCapture,callbackfunc,2,"keydown",targetThread);return 0}Module["_emscripten_set_keydown_callback_on_thread"]=_emscripten_set_keydown_callback_on_thread;_emscripten_set_keydown_callback_on_thread.sig="iiiiii";function _emscripten_set_keyup_callback_on_thread(target,userData,useCapture,callbackfunc,targetThread){registerKeyEventCallback(target,userData,useCapture,callbackfunc,3,"keyup",targetThread);return 0}Module["_emscripten_set_keyup_callback_on_thread"]=_emscripten_set_keyup_callback_on_thread;_emscripten_set_keyup_callback_on_thread.sig="iiiiii";function getBoundingClientRect(e){return specialHTMLTargets.indexOf(e)<0?e.getBoundingClientRect():{"left":0,"top":0}}Module["getBoundingClientRect"]=getBoundingClientRect;function fillMouseEventData(eventStruct,e,target){var idx=eventStruct>>2;HEAP32[idx+0]=e.screenX;HEAP32[idx+1]=e.screenY;HEAP32[idx+2]=e.clientX;HEAP32[idx+3]=e.clientY;HEAP32[idx+4]=e.ctrlKey;HEAP32[idx+5]=e.shiftKey;HEAP32[idx+6]=e.altKey;HEAP32[idx+7]=e.metaKey;HEAP16[idx*2+16]=e.button;HEAP16[idx*2+17]=e.buttons;HEAP32[idx+9]=e["movementX"];HEAP32[idx+10]=e["movementY"];var rect=getBoundingClientRect(target);HEAP32[idx+11]=e.clientX-rect.left;HEAP32[idx+12]=e.clientY-rect.top}Module["fillMouseEventData"]=fillMouseEventData;function registerMouseEventCallback(target,userData,useCapture,callbackfunc,eventTypeId,eventTypeString,targetThread){if(!JSEvents.mouseEvent)JSEvents.mouseEvent=_malloc(64);target=findEventTarget(target);var mouseEventHandlerFunc=function(ev){var e=ev||event;fillMouseEventData(JSEvents.mouseEvent,e,target);if(wasmTable.get(callbackfunc)(eventTypeId,JSEvents.mouseEvent,userData))e.preventDefault()};var eventHandler={target:target,allowsDeferredCalls:eventTypeString!="mousemove"&&eventTypeString!="mouseenter"&&eventTypeString!="mouseleave",eventTypeString:eventTypeString,callbackfunc:callbackfunc,handlerFunc:mouseEventHandlerFunc,useCapture:useCapture};JSEvents.registerOrRemoveHandler(eventHandler)}Module["registerMouseEventCallback"]=registerMouseEventCallback;function _emscripten_set_click_callback_on_thread(target,userData,useCapture,callbackfunc,targetThread){registerMouseEventCallback(target,userData,useCapture,callbackfunc,4,"click",targetThread);return 0}Module["_emscripten_set_click_callback_on_thread"]=_emscripten_set_click_callback_on_thread;_emscripten_set_click_callback_on_thread.sig="iiiiii";function _emscripten_set_mousedown_callback_on_thread(target,userData,useCapture,callbackfunc,targetThread){registerMouseEventCallback(target,userData,useCapture,callbackfunc,5,"mousedown",targetThread);return 0}Module["_emscripten_set_mousedown_callback_on_thread"]=_emscripten_set_mousedown_callback_on_thread;_emscripten_set_mousedown_callback_on_thread.sig="iiiiii";function _emscripten_set_mouseup_callback_on_thread(target,userData,useCapture,callbackfunc,targetThread){registerMouseEventCallback(target,userData,useCapture,callbackfunc,6,"mouseup",targetThread);return 0}Module["_emscripten_set_mouseup_callback_on_thread"]=_emscripten_set_mouseup_callback_on_thread;_emscripten_set_mouseup_callback_on_thread.sig="iiiiii";function _emscripten_set_dblclick_callback_on_thread(target,userData,useCapture,callbackfunc,targetThread){registerMouseEventCallback(target,userData,useCapture,callbackfunc,7,"dblclick",targetThread);return 0}Module["_emscripten_set_dblclick_callback_on_thread"]=_emscripten_set_dblclick_callback_on_thread;_emscripten_set_dblclick_callback_on_thread.sig="iiiiii";function _emscripten_set_mousemove_callback_on_thread(target,userData,useCapture,callbackfunc,targetThread){registerMouseEventCallback(target,userData,useCapture,callbackfunc,8,"mousemove",targetThread);return 0}Module["_emscripten_set_mousemove_callback_on_thread"]=_emscripten_set_mousemove_callback_on_thread;_emscripten_set_mousemove_callback_on_thread.sig="iiiiii";function _emscripten_set_mouseenter_callback_on_thread(target,userData,useCapture,callbackfunc,targetThread){registerMouseEventCallback(target,userData,useCapture,callbackfunc,33,"mouseenter",targetThread);return 0}Module["_emscripten_set_mouseenter_callback_on_thread"]=_emscripten_set_mouseenter_callback_on_thread;_emscripten_set_mouseenter_callback_on_thread.sig="iiiiii";function _emscripten_set_mouseleave_callback_on_thread(target,userData,useCapture,callbackfunc,targetThread){registerMouseEventCallback(target,userData,useCapture,callbackfunc,34,"mouseleave",targetThread);return 0}Module["_emscripten_set_mouseleave_callback_on_thread"]=_emscripten_set_mouseleave_callback_on_thread;_emscripten_set_mouseleave_callback_on_thread.sig="iiiiii";function _emscripten_set_mouseover_callback_on_thread(target,userData,useCapture,callbackfunc,targetThread){registerMouseEventCallback(target,userData,useCapture,callbackfunc,35,"mouseover",targetThread);return 0}Module["_emscripten_set_mouseover_callback_on_thread"]=_emscripten_set_mouseover_callback_on_thread;_emscripten_set_mouseover_callback_on_thread.sig="iiiiii";function _emscripten_set_mouseout_callback_on_thread(target,userData,useCapture,callbackfunc,targetThread){registerMouseEventCallback(target,userData,useCapture,callbackfunc,36,"mouseout",targetThread);return 0}Module["_emscripten_set_mouseout_callback_on_thread"]=_emscripten_set_mouseout_callback_on_thread;_emscripten_set_mouseout_callback_on_thread.sig="iiiiii";function _emscripten_get_mouse_status(mouseState){if(!JSEvents.mouseEvent)return-7;HEAP8.set(HEAP8.subarray(JSEvents.mouseEvent,JSEvents.mouseEvent+64),mouseState);return 0}Module["_emscripten_get_mouse_status"]=_emscripten_get_mouse_status;_emscripten_get_mouse_status.sig="ii";function registerWheelEventCallback(target,userData,useCapture,callbackfunc,eventTypeId,eventTypeString,targetThread){if(!JSEvents.wheelEvent)JSEvents.wheelEvent=_malloc(96);var wheelHandlerFunc=function(ev){var e=ev||event;var wheelEvent=JSEvents.wheelEvent;fillMouseEventData(wheelEvent,e,target);HEAPF64[wheelEvent+64>>3]=e["deltaX"];HEAPF64[wheelEvent+72>>3]=e["deltaY"];HEAPF64[wheelEvent+80>>3]=e["deltaZ"];HEAP32[wheelEvent+88>>2]=e["deltaMode"];if(wasmTable.get(callbackfunc)(eventTypeId,wheelEvent,userData))e.preventDefault()};var eventHandler={target:target,allowsDeferredCalls:true,eventTypeString:eventTypeString,callbackfunc:callbackfunc,handlerFunc:wheelHandlerFunc,useCapture:useCapture};JSEvents.registerOrRemoveHandler(eventHandler)}Module["registerWheelEventCallback"]=registerWheelEventCallback;function _emscripten_set_wheel_callback_on_thread(target,userData,useCapture,callbackfunc,targetThread){target=findEventTarget(target);if(typeof target.onwheel!=="undefined"){registerWheelEventCallback(target,userData,useCapture,callbackfunc,9,"wheel",targetThread);return 0}else{return-1}}Module["_emscripten_set_wheel_callback_on_thread"]=_emscripten_set_wheel_callback_on_thread;_emscripten_set_wheel_callback_on_thread.sig="iiiiii";function registerUiEventCallback(target,userData,useCapture,callbackfunc,eventTypeId,eventTypeString,targetThread){if(!JSEvents.uiEvent)JSEvents.uiEvent=_malloc(36);target=findEventTarget(target);var uiEventHandlerFunc=function(ev){var e=ev||event;if(e.target!=target){return}var b=document.body;if(!b){return}var uiEvent=JSEvents.uiEvent;HEAP32[uiEvent>>2]=e.detail;HEAP32[uiEvent+4>>2]=b.clientWidth;HEAP32[uiEvent+8>>2]=b.clientHeight;HEAP32[uiEvent+12>>2]=innerWidth;HEAP32[uiEvent+16>>2]=innerHeight;HEAP32[uiEvent+20>>2]=outerWidth;HEAP32[uiEvent+24>>2]=outerHeight;HEAP32[uiEvent+28>>2]=pageXOffset;HEAP32[uiEvent+32>>2]=pageYOffset;if(wasmTable.get(callbackfunc)(eventTypeId,uiEvent,userData))e.preventDefault()};var eventHandler={target:target,eventTypeString:eventTypeString,callbackfunc:callbackfunc,handlerFunc:uiEventHandlerFunc,useCapture:useCapture};JSEvents.registerOrRemoveHandler(eventHandler)}Module["registerUiEventCallback"]=registerUiEventCallback;function _emscripten_set_resize_callback_on_thread(target,userData,useCapture,callbackfunc,targetThread){registerUiEventCallback(target,userData,useCapture,callbackfunc,10,"resize",targetThread);return 0}Module["_emscripten_set_resize_callback_on_thread"]=_emscripten_set_resize_callback_on_thread;_emscripten_set_resize_callback_on_thread.sig="iiiiii";function _emscripten_set_scroll_callback_on_thread(target,userData,useCapture,callbackfunc,targetThread){registerUiEventCallback(target,userData,useCapture,callbackfunc,11,"scroll",targetThread);return 0}Module["_emscripten_set_scroll_callback_on_thread"]=_emscripten_set_scroll_callback_on_thread;_emscripten_set_scroll_callback_on_thread.sig="iiiiii";function registerFocusEventCallback(target,userData,useCapture,callbackfunc,eventTypeId,eventTypeString,targetThread){if(!JSEvents.focusEvent)JSEvents.focusEvent=_malloc(256);var focusEventHandlerFunc=function(ev){var e=ev||event;var nodeName=JSEvents.getNodeNameForTarget(e.target);var id=e.target.id?e.target.id:"";var focusEvent=JSEvents.focusEvent;stringToUTF8(nodeName,focusEvent+0,128);stringToUTF8(id,focusEvent+128,128);if(wasmTable.get(callbackfunc)(eventTypeId,focusEvent,userData))e.preventDefault()};var eventHandler={target:findEventTarget(target),eventTypeString:eventTypeString,callbackfunc:callbackfunc,handlerFunc:focusEventHandlerFunc,useCapture:useCapture};JSEvents.registerOrRemoveHandler(eventHandler)}Module["registerFocusEventCallback"]=registerFocusEventCallback;function _emscripten_set_blur_callback_on_thread(target,userData,useCapture,callbackfunc,targetThread){registerFocusEventCallback(target,userData,useCapture,callbackfunc,12,"blur",targetThread);return 0}Module["_emscripten_set_blur_callback_on_thread"]=_emscripten_set_blur_callback_on_thread;_emscripten_set_blur_callback_on_thread.sig="iiiiii";function _emscripten_set_focus_callback_on_thread(target,userData,useCapture,callbackfunc,targetThread){registerFocusEventCallback(target,userData,useCapture,callbackfunc,13,"focus",targetThread);return 0}Module["_emscripten_set_focus_callback_on_thread"]=_emscripten_set_focus_callback_on_thread;_emscripten_set_focus_callback_on_thread.sig="iiiiii";function _emscripten_set_focusin_callback_on_thread(target,userData,useCapture,callbackfunc,targetThread){registerFocusEventCallback(target,userData,useCapture,callbackfunc,14,"focusin",targetThread);return 0}Module["_emscripten_set_focusin_callback_on_thread"]=_emscripten_set_focusin_callback_on_thread;_emscripten_set_focusin_callback_on_thread.sig="iiiiii";function _emscripten_set_focusout_callback_on_thread(target,userData,useCapture,callbackfunc,targetThread){registerFocusEventCallback(target,userData,useCapture,callbackfunc,15,"focusout",targetThread);return 0}Module["_emscripten_set_focusout_callback_on_thread"]=_emscripten_set_focusout_callback_on_thread;_emscripten_set_focusout_callback_on_thread.sig="iiiiii";function fillDeviceOrientationEventData(eventStruct,e,target){HEAPF64[eventStruct>>3]=e.alpha;HEAPF64[eventStruct+8>>3]=e.beta;HEAPF64[eventStruct+16>>3]=e.gamma;HEAP32[eventStruct+24>>2]=e.absolute}Module["fillDeviceOrientationEventData"]=fillDeviceOrientationEventData;function registerDeviceOrientationEventCallback(target,userData,useCapture,callbackfunc,eventTypeId,eventTypeString,targetThread){if(!JSEvents.deviceOrientationEvent)JSEvents.deviceOrientationEvent=_malloc(32);var deviceOrientationEventHandlerFunc=function(ev){var e=ev||event;fillDeviceOrientationEventData(JSEvents.deviceOrientationEvent,e,target);if(wasmTable.get(callbackfunc)(eventTypeId,JSEvents.deviceOrientationEvent,userData))e.preventDefault()};var eventHandler={target:findEventTarget(target),eventTypeString:eventTypeString,callbackfunc:callbackfunc,handlerFunc:deviceOrientationEventHandlerFunc,useCapture:useCapture};JSEvents.registerOrRemoveHandler(eventHandler)}Module["registerDeviceOrientationEventCallback"]=registerDeviceOrientationEventCallback;function _emscripten_set_deviceorientation_callback_on_thread(userData,useCapture,callbackfunc,targetThread){registerDeviceOrientationEventCallback(2,userData,useCapture,callbackfunc,16,"deviceorientation",targetThread);return 0}Module["_emscripten_set_deviceorientation_callback_on_thread"]=_emscripten_set_deviceorientation_callback_on_thread;_emscripten_set_deviceorientation_callback_on_thread.sig="iiiii";function _emscripten_get_deviceorientation_status(orientationState){if(!JSEvents.deviceOrientationEvent)return-7;HEAP32.set(HEAP32.subarray(JSEvents.deviceOrientationEvent,32),orientationState);return 0}Module["_emscripten_get_deviceorientation_status"]=_emscripten_get_deviceorientation_status;_emscripten_get_deviceorientation_status.sig="ii";function fillDeviceMotionEventData(eventStruct,e,target){var supportedFields=0;var a=e["acceleration"];supportedFields|=a&&1;var ag=e["accelerationIncludingGravity"];supportedFields|=ag&&2;var rr=e["rotationRate"];supportedFields|=rr&&4;a=a||{};ag=ag||{};rr=rr||{};HEAPF64[eventStruct>>3]=a["x"];HEAPF64[eventStruct+8>>3]=a["y"];HEAPF64[eventStruct+16>>3]=a["z"];HEAPF64[eventStruct+24>>3]=ag["x"];HEAPF64[eventStruct+32>>3]=ag["y"];HEAPF64[eventStruct+40>>3]=ag["z"];HEAPF64[eventStruct+48>>3]=rr["alpha"];HEAPF64[eventStruct+56>>3]=rr["beta"];HEAPF64[eventStruct+64>>3]=rr["gamma"]}Module["fillDeviceMotionEventData"]=fillDeviceMotionEventData;function registerDeviceMotionEventCallback(target,userData,useCapture,callbackfunc,eventTypeId,eventTypeString,targetThread){if(!JSEvents.deviceMotionEvent)JSEvents.deviceMotionEvent=_malloc(80);var deviceMotionEventHandlerFunc=function(ev){var e=ev||event;fillDeviceMotionEventData(JSEvents.deviceMotionEvent,e,target);if(wasmTable.get(callbackfunc)(eventTypeId,JSEvents.deviceMotionEvent,userData))e.preventDefault()};var eventHandler={target:findEventTarget(target),eventTypeString:eventTypeString,callbackfunc:callbackfunc,handlerFunc:deviceMotionEventHandlerFunc,useCapture:useCapture};JSEvents.registerOrRemoveHandler(eventHandler)}Module["registerDeviceMotionEventCallback"]=registerDeviceMotionEventCallback;function _emscripten_set_devicemotion_callback_on_thread(userData,useCapture,callbackfunc,targetThread){registerDeviceMotionEventCallback(2,userData,useCapture,callbackfunc,17,"devicemotion",targetThread);return 0}Module["_emscripten_set_devicemotion_callback_on_thread"]=_emscripten_set_devicemotion_callback_on_thread;_emscripten_set_devicemotion_callback_on_thread.sig="iiiii";function _emscripten_get_devicemotion_status(motionState){if(!JSEvents.deviceMotionEvent)return-7;HEAP32.set(HEAP32.subarray(JSEvents.deviceMotionEvent,80),motionState);return 0}Module["_emscripten_get_devicemotion_status"]=_emscripten_get_devicemotion_status;_emscripten_get_devicemotion_status.sig="ii";function screenOrientation(){if(!screen)return undefined;return screen.orientation||screen.mozOrientation||screen.webkitOrientation||screen.msOrientation}Module["screenOrientation"]=screenOrientation;function fillOrientationChangeEventData(eventStruct){var orientations=["portrait-primary","portrait-secondary","landscape-primary","landscape-secondary"];var orientations2=["portrait","portrait","landscape","landscape"];var orientationString=screenOrientation();var orientation=orientations.indexOf(orientationString);if(orientation==-1){orientation=orientations2.indexOf(orientationString)}HEAP32[eventStruct>>2]=1<>2]=orientation}Module["fillOrientationChangeEventData"]=fillOrientationChangeEventData;function registerOrientationChangeEventCallback(target,userData,useCapture,callbackfunc,eventTypeId,eventTypeString,targetThread){if(!JSEvents.orientationChangeEvent)JSEvents.orientationChangeEvent=_malloc(8);var orientationChangeEventHandlerFunc=function(ev){var e=ev||event;var orientationChangeEvent=JSEvents.orientationChangeEvent;fillOrientationChangeEventData(orientationChangeEvent);if(wasmTable.get(callbackfunc)(eventTypeId,orientationChangeEvent,userData))e.preventDefault()};if(eventTypeString=="orientationchange"&&screen.mozOrientation!==undefined){eventTypeString="mozorientationchange"}var eventHandler={target:target,eventTypeString:eventTypeString,callbackfunc:callbackfunc,handlerFunc:orientationChangeEventHandlerFunc,useCapture:useCapture};JSEvents.registerOrRemoveHandler(eventHandler)}Module["registerOrientationChangeEventCallback"]=registerOrientationChangeEventCallback;function _emscripten_set_orientationchange_callback_on_thread(userData,useCapture,callbackfunc,targetThread){if(!screen||!screen["addEventListener"])return-1;registerOrientationChangeEventCallback(screen,userData,useCapture,callbackfunc,18,"orientationchange",targetThread);return 0}Module["_emscripten_set_orientationchange_callback_on_thread"]=_emscripten_set_orientationchange_callback_on_thread;_emscripten_set_orientationchange_callback_on_thread.sig="iiiii";function _emscripten_get_orientation_status(orientationChangeEvent){if(!screenOrientation()&&typeof orientation==="undefined")return-1;fillOrientationChangeEventData(orientationChangeEvent);return 0}Module["_emscripten_get_orientation_status"]=_emscripten_get_orientation_status;_emscripten_get_orientation_status.sig="ii";function _emscripten_lock_orientation(allowedOrientations){var orientations=[];if(allowedOrientations&1)orientations.push("portrait-primary");if(allowedOrientations&2)orientations.push("portrait-secondary");if(allowedOrientations&4)orientations.push("landscape-primary");if(allowedOrientations&8)orientations.push("landscape-secondary");var succeeded;if(screen.lockOrientation){succeeded=screen.lockOrientation(orientations)}else if(screen.mozLockOrientation){succeeded=screen.mozLockOrientation(orientations)}else if(screen.webkitLockOrientation){succeeded=screen.webkitLockOrientation(orientations)}else if(screen.msLockOrientation){succeeded=screen.msLockOrientation(orientations)}else{return-1}if(succeeded){return 0}else{return-6}}Module["_emscripten_lock_orientation"]=_emscripten_lock_orientation;_emscripten_lock_orientation.sig="ii";function _emscripten_unlock_orientation(){if(screen.unlockOrientation){screen.unlockOrientation()}else if(screen.mozUnlockOrientation){screen.mozUnlockOrientation()}else if(screen.webkitUnlockOrientation){screen.webkitUnlockOrientation()}else if(screen.msUnlockOrientation){screen.msUnlockOrientation()}else{return-1}return 0}Module["_emscripten_unlock_orientation"]=_emscripten_unlock_orientation;_emscripten_unlock_orientation.sig="i";function fillFullscreenChangeEventData(eventStruct){var fullscreenElement=document.fullscreenElement||document.mozFullScreenElement||document.webkitFullscreenElement||document.msFullscreenElement;var isFullscreen=!!fullscreenElement;HEAP32[eventStruct>>2]=isFullscreen;HEAP32[eventStruct+4>>2]=JSEvents.fullscreenEnabled();var reportedElement=isFullscreen?fullscreenElement:JSEvents.previousFullscreenElement;var nodeName=JSEvents.getNodeNameForTarget(reportedElement);var id=reportedElement&&reportedElement.id?reportedElement.id:"";stringToUTF8(nodeName,eventStruct+8,128);stringToUTF8(id,eventStruct+136,128);HEAP32[eventStruct+264>>2]=reportedElement?reportedElement.clientWidth:0;HEAP32[eventStruct+268>>2]=reportedElement?reportedElement.clientHeight:0;HEAP32[eventStruct+272>>2]=screen.width;HEAP32[eventStruct+276>>2]=screen.height;if(isFullscreen){JSEvents.previousFullscreenElement=fullscreenElement}}Module["fillFullscreenChangeEventData"]=fillFullscreenChangeEventData;function registerFullscreenChangeEventCallback(target,userData,useCapture,callbackfunc,eventTypeId,eventTypeString,targetThread){if(!JSEvents.fullscreenChangeEvent)JSEvents.fullscreenChangeEvent=_malloc(280);var fullscreenChangeEventhandlerFunc=function(ev){var e=ev||event;var fullscreenChangeEvent=JSEvents.fullscreenChangeEvent;fillFullscreenChangeEventData(fullscreenChangeEvent);if(wasmTable.get(callbackfunc)(eventTypeId,fullscreenChangeEvent,userData))e.preventDefault()};var eventHandler={target:target,eventTypeString:eventTypeString,callbackfunc:callbackfunc,handlerFunc:fullscreenChangeEventhandlerFunc,useCapture:useCapture};JSEvents.registerOrRemoveHandler(eventHandler)}Module["registerFullscreenChangeEventCallback"]=registerFullscreenChangeEventCallback;function _emscripten_set_fullscreenchange_callback_on_thread(target,userData,useCapture,callbackfunc,targetThread){if(!JSEvents.fullscreenEnabled())return-1;target=findEventTarget(target);if(!target)return-4;registerFullscreenChangeEventCallback(target,userData,useCapture,callbackfunc,19,"fullscreenchange",targetThread);registerFullscreenChangeEventCallback(target,userData,useCapture,callbackfunc,19,"webkitfullscreenchange",targetThread);return 0}Module["_emscripten_set_fullscreenchange_callback_on_thread"]=_emscripten_set_fullscreenchange_callback_on_thread;_emscripten_set_fullscreenchange_callback_on_thread.sig="iiiiii";function _emscripten_get_fullscreen_status(fullscreenStatus){if(!JSEvents.fullscreenEnabled())return-1;fillFullscreenChangeEventData(fullscreenStatus);return 0}Module["_emscripten_get_fullscreen_status"]=_emscripten_get_fullscreen_status;_emscripten_get_fullscreen_status.sig="ii";function _emscripten_get_canvas_element_size(target,width,height){var canvas=findCanvasEventTarget(target);if(!canvas)return-4;HEAP32[width>>2]=canvas.width;HEAP32[height>>2]=canvas.height}Module["_emscripten_get_canvas_element_size"]=_emscripten_get_canvas_element_size;function getCanvasElementSize(target){var stackTop=stackSave();var w=stackAlloc(8);var h=w+4;var targetInt=stackAlloc(target.id.length+1);stringToUTF8(target.id,targetInt,target.id.length+1);var ret=_emscripten_get_canvas_element_size(targetInt,w,h);var size=[HEAP32[w>>2],HEAP32[h>>2]];stackRestore(stackTop);return size}Module["getCanvasElementSize"]=getCanvasElementSize;function _emscripten_set_canvas_element_size(target,width,height){var canvas=findCanvasEventTarget(target);if(!canvas)return-4;canvas.width=width;canvas.height=height;return 0}Module["_emscripten_set_canvas_element_size"]=_emscripten_set_canvas_element_size;_emscripten_set_canvas_element_size.sig="iiii";function setCanvasElementSize(target,width,height){if(!target.controlTransferredOffscreen){target.width=width;target.height=height}else{var stackTop=stackSave();var targetInt=stackAlloc(target.id.length+1);stringToUTF8(target.id,targetInt,target.id.length+1);_emscripten_set_canvas_element_size(targetInt,width,height);stackRestore(stackTop)}}Module["setCanvasElementSize"]=setCanvasElementSize;function registerRestoreOldStyle(canvas){var canvasSize=getCanvasElementSize(canvas);var oldWidth=canvasSize[0];var oldHeight=canvasSize[1];var oldCssWidth=canvas.style.width;var oldCssHeight=canvas.style.height;var oldBackgroundColor=canvas.style.backgroundColor;var oldDocumentBackgroundColor=document.body.style.backgroundColor;var oldPaddingLeft=canvas.style.paddingLeft;var oldPaddingRight=canvas.style.paddingRight;var oldPaddingTop=canvas.style.paddingTop;var oldPaddingBottom=canvas.style.paddingBottom;var oldMarginLeft=canvas.style.marginLeft;var oldMarginRight=canvas.style.marginRight;var oldMarginTop=canvas.style.marginTop;var oldMarginBottom=canvas.style.marginBottom;var oldDocumentBodyMargin=document.body.style.margin;var oldDocumentOverflow=document.documentElement.style.overflow;var oldDocumentScroll=document.body.scroll;var oldImageRendering=canvas.style.imageRendering;function restoreOldStyle(){var fullscreenElement=document.fullscreenElement||document.webkitFullscreenElement||document.msFullscreenElement;if(!fullscreenElement){document.removeEventListener("fullscreenchange",restoreOldStyle);document.removeEventListener("webkitfullscreenchange",restoreOldStyle);setCanvasElementSize(canvas,oldWidth,oldHeight);canvas.style.width=oldCssWidth;canvas.style.height=oldCssHeight;canvas.style.backgroundColor=oldBackgroundColor;if(!oldDocumentBackgroundColor)document.body.style.backgroundColor="white";document.body.style.backgroundColor=oldDocumentBackgroundColor;canvas.style.paddingLeft=oldPaddingLeft;canvas.style.paddingRight=oldPaddingRight;canvas.style.paddingTop=oldPaddingTop;canvas.style.paddingBottom=oldPaddingBottom;canvas.style.marginLeft=oldMarginLeft;canvas.style.marginRight=oldMarginRight;canvas.style.marginTop=oldMarginTop;canvas.style.marginBottom=oldMarginBottom;document.body.style.margin=oldDocumentBodyMargin;document.documentElement.style.overflow=oldDocumentOverflow;document.body.scroll=oldDocumentScroll;canvas.style.imageRendering=oldImageRendering;if(canvas.GLctxObject)canvas.GLctxObject.GLctx.viewport(0,0,oldWidth,oldHeight);if(currentFullscreenStrategy.canvasResizedCallback){wasmTable.get(currentFullscreenStrategy.canvasResizedCallback)(37,0,currentFullscreenStrategy.canvasResizedCallbackUserData)}}}document.addEventListener("fullscreenchange",restoreOldStyle);document.addEventListener("webkitfullscreenchange",restoreOldStyle);return restoreOldStyle}Module["registerRestoreOldStyle"]=registerRestoreOldStyle;function setLetterbox(element,topBottom,leftRight){element.style.paddingLeft=element.style.paddingRight=leftRight+"px";element.style.paddingTop=element.style.paddingBottom=topBottom+"px"}Module["setLetterbox"]=setLetterbox;function _JSEvents_resizeCanvasForFullscreen(target,strategy){var restoreOldStyle=registerRestoreOldStyle(target);var cssWidth=strategy.softFullscreen?innerWidth:screen.width;var cssHeight=strategy.softFullscreen?innerHeight:screen.height;var rect=getBoundingClientRect(target);var windowedCssWidth=rect.width;var windowedCssHeight=rect.height;var canvasSize=getCanvasElementSize(target);var windowedRttWidth=canvasSize[0];var windowedRttHeight=canvasSize[1];if(strategy.scaleMode==3){setLetterbox(target,(cssHeight-windowedCssHeight)/2,(cssWidth-windowedCssWidth)/2);cssWidth=windowedCssWidth;cssHeight=windowedCssHeight}else if(strategy.scaleMode==2){if(cssWidth*windowedRttHeightx*h)w=h*x/y|0;topMargin=(screenHeight-h)/2|0}if(inPixelPerfectFullscreenMode){setCanvasElementSize(canvas,w,h);if(canvas.GLctxObject)canvas.GLctxObject.GLctx.viewport(0,0,w,h)}if(inHiDPIFullscreenMode){topMargin/=dpr;w/=dpr;h/=dpr;w=Math.round(w*1e4)/1e4;h=Math.round(h*1e4)/1e4;topMargin=Math.round(topMargin*1e4)/1e4}if(inCenteredWithoutScalingFullscreenMode){var t=(innerHeight-jstoi_q(canvas.style.height))/2;var b=(innerWidth-jstoi_q(canvas.style.width))/2;setLetterbox(canvas,t,b)}else{canvas.style.width=w+"px";canvas.style.height=h+"px";var b=(innerWidth-w)/2;setLetterbox(canvas,topMargin,b)}if(!inCenteredWithoutScalingFullscreenMode&¤tFullscreenStrategy.canvasResizedCallback){wasmTable.get(currentFullscreenStrategy.canvasResizedCallback)(37,0,currentFullscreenStrategy.canvasResizedCallbackUserData)}}Module["softFullscreenResizeWebGLRenderTarget"]=softFullscreenResizeWebGLRenderTarget;function doRequestFullscreen(target,strategy){if(!JSEvents.fullscreenEnabled())return-1;target=findEventTarget(target);if(!target)return-4;if(!target.requestFullscreen&&!target.webkitRequestFullscreen){return-3}var canPerformRequests=JSEvents.canPerformEventHandlerRequests();if(!canPerformRequests){if(strategy.deferUntilInEventHandler){JSEvents.deferCall(_JSEvents_requestFullscreen,1,[target,strategy]);return 1}else{return-2}}return _JSEvents_requestFullscreen(target,strategy)}Module["doRequestFullscreen"]=doRequestFullscreen;function _emscripten_request_fullscreen(target,deferUntilInEventHandler){var strategy={scaleMode:0,canvasResolutionScaleMode:0,filteringMode:0,deferUntilInEventHandler:deferUntilInEventHandler,canvasResizedCallbackTargetThread:2};return doRequestFullscreen(target,strategy)}Module["_emscripten_request_fullscreen"]=_emscripten_request_fullscreen;_emscripten_request_fullscreen.sig="iii";function _emscripten_request_fullscreen_strategy(target,deferUntilInEventHandler,fullscreenStrategy){var strategy={scaleMode:HEAP32[fullscreenStrategy>>2],canvasResolutionScaleMode:HEAP32[fullscreenStrategy+4>>2],filteringMode:HEAP32[fullscreenStrategy+8>>2],deferUntilInEventHandler:deferUntilInEventHandler,canvasResizedCallback:HEAP32[fullscreenStrategy+12>>2],canvasResizedCallbackUserData:HEAP32[fullscreenStrategy+16>>2]};return doRequestFullscreen(target,strategy)}Module["_emscripten_request_fullscreen_strategy"]=_emscripten_request_fullscreen_strategy;_emscripten_request_fullscreen_strategy.sig="iiii";function _emscripten_enter_soft_fullscreen(target,fullscreenStrategy){target=findEventTarget(target);if(!target)return-4;var strategy={scaleMode:HEAP32[fullscreenStrategy>>2],canvasResolutionScaleMode:HEAP32[fullscreenStrategy+4>>2],filteringMode:HEAP32[fullscreenStrategy+8>>2],canvasResizedCallback:HEAP32[fullscreenStrategy+12>>2],canvasResizedCallbackUserData:HEAP32[fullscreenStrategy+16>>2],target:target,softFullscreen:true};var restoreOldStyle=_JSEvents_resizeCanvasForFullscreen(target,strategy);document.documentElement.style.overflow="hidden";document.body.scroll="no";document.body.style.margin="0px";var hiddenElements=hideEverythingExceptGivenElement(target);function restoreWindowedState(){restoreOldStyle();restoreHiddenElements(hiddenElements);removeEventListener("resize",softFullscreenResizeWebGLRenderTarget);if(strategy.canvasResizedCallback){wasmTable.get(strategy.canvasResizedCallback)(37,0,strategy.canvasResizedCallbackUserData)}currentFullscreenStrategy=0}restoreOldWindowedStyle=restoreWindowedState;currentFullscreenStrategy=strategy;addEventListener("resize",softFullscreenResizeWebGLRenderTarget);if(strategy.canvasResizedCallback){wasmTable.get(strategy.canvasResizedCallback)(37,0,strategy.canvasResizedCallbackUserData)}return 0}Module["_emscripten_enter_soft_fullscreen"]=_emscripten_enter_soft_fullscreen;_emscripten_enter_soft_fullscreen.sig="iii";function _emscripten_exit_soft_fullscreen(){if(restoreOldWindowedStyle)restoreOldWindowedStyle();restoreOldWindowedStyle=null;return 0}Module["_emscripten_exit_soft_fullscreen"]=_emscripten_exit_soft_fullscreen;_emscripten_exit_soft_fullscreen.sig="i";function _emscripten_exit_fullscreen(){if(!JSEvents.fullscreenEnabled())return-1;JSEvents.removeDeferredCalls(_JSEvents_requestFullscreen);var d=specialHTMLTargets[1];if(d.exitFullscreen){d.fullscreenElement&&d.exitFullscreen()}else if(d.webkitExitFullscreen){d.webkitFullscreenElement&&d.webkitExitFullscreen()}else{return-1}return 0}Module["_emscripten_exit_fullscreen"]=_emscripten_exit_fullscreen;_emscripten_exit_fullscreen.sig="i";function fillPointerlockChangeEventData(eventStruct){var pointerLockElement=document.pointerLockElement||document.mozPointerLockElement||document.webkitPointerLockElement||document.msPointerLockElement;var isPointerlocked=!!pointerLockElement;HEAP32[eventStruct>>2]=isPointerlocked;var nodeName=JSEvents.getNodeNameForTarget(pointerLockElement);var id=pointerLockElement&&pointerLockElement.id?pointerLockElement.id:"";stringToUTF8(nodeName,eventStruct+4,128);stringToUTF8(id,eventStruct+132,128)}Module["fillPointerlockChangeEventData"]=fillPointerlockChangeEventData;function registerPointerlockChangeEventCallback(target,userData,useCapture,callbackfunc,eventTypeId,eventTypeString,targetThread){if(!JSEvents.pointerlockChangeEvent)JSEvents.pointerlockChangeEvent=_malloc(260);var pointerlockChangeEventHandlerFunc=function(ev){var e=ev||event;var pointerlockChangeEvent=JSEvents.pointerlockChangeEvent;fillPointerlockChangeEventData(pointerlockChangeEvent);if(wasmTable.get(callbackfunc)(eventTypeId,pointerlockChangeEvent,userData))e.preventDefault()};var eventHandler={target:target,eventTypeString:eventTypeString,callbackfunc:callbackfunc,handlerFunc:pointerlockChangeEventHandlerFunc,useCapture:useCapture};JSEvents.registerOrRemoveHandler(eventHandler)}Module["registerPointerlockChangeEventCallback"]=registerPointerlockChangeEventCallback;function _emscripten_set_pointerlockchange_callback_on_thread(target,userData,useCapture,callbackfunc,targetThread){if(!document||!document.body||!document.body.requestPointerLock&&!document.body.mozRequestPointerLock&&!document.body.webkitRequestPointerLock&&!document.body.msRequestPointerLock){return-1}target=findEventTarget(target);if(!target)return-4;registerPointerlockChangeEventCallback(target,userData,useCapture,callbackfunc,20,"pointerlockchange",targetThread);registerPointerlockChangeEventCallback(target,userData,useCapture,callbackfunc,20,"mozpointerlockchange",targetThread);registerPointerlockChangeEventCallback(target,userData,useCapture,callbackfunc,20,"webkitpointerlockchange",targetThread);registerPointerlockChangeEventCallback(target,userData,useCapture,callbackfunc,20,"mspointerlockchange",targetThread);return 0}Module["_emscripten_set_pointerlockchange_callback_on_thread"]=_emscripten_set_pointerlockchange_callback_on_thread;_emscripten_set_pointerlockchange_callback_on_thread.sig="iiiiii";function registerPointerlockErrorEventCallback(target,userData,useCapture,callbackfunc,eventTypeId,eventTypeString,targetThread){var pointerlockErrorEventHandlerFunc=function(ev){var e=ev||event;if(wasmTable.get(callbackfunc)(eventTypeId,0,userData))e.preventDefault()};var eventHandler={target:target,eventTypeString:eventTypeString,callbackfunc:callbackfunc,handlerFunc:pointerlockErrorEventHandlerFunc,useCapture:useCapture};JSEvents.registerOrRemoveHandler(eventHandler)}Module["registerPointerlockErrorEventCallback"]=registerPointerlockErrorEventCallback;function _emscripten_set_pointerlockerror_callback_on_thread(target,userData,useCapture,callbackfunc,targetThread){if(!document||!document.body.requestPointerLock&&!document.body.mozRequestPointerLock&&!document.body.webkitRequestPointerLock&&!document.body.msRequestPointerLock){return-1}target=findEventTarget(target);if(!target)return-4;registerPointerlockErrorEventCallback(target,userData,useCapture,callbackfunc,38,"pointerlockerror",targetThread);registerPointerlockErrorEventCallback(target,userData,useCapture,callbackfunc,38,"mozpointerlockerror",targetThread);registerPointerlockErrorEventCallback(target,userData,useCapture,callbackfunc,38,"webkitpointerlockerror",targetThread);registerPointerlockErrorEventCallback(target,userData,useCapture,callbackfunc,38,"mspointerlockerror",targetThread);return 0}Module["_emscripten_set_pointerlockerror_callback_on_thread"]=_emscripten_set_pointerlockerror_callback_on_thread;_emscripten_set_pointerlockerror_callback_on_thread.sig="iiiiii";function _emscripten_get_pointerlock_status(pointerlockStatus){if(pointerlockStatus)fillPointerlockChangeEventData(pointerlockStatus);if(!document.body||!document.body.requestPointerLock&&!document.body.mozRequestPointerLock&&!document.body.webkitRequestPointerLock&&!document.body.msRequestPointerLock){return-1}return 0}Module["_emscripten_get_pointerlock_status"]=_emscripten_get_pointerlock_status;_emscripten_get_pointerlock_status.sig="ii";function requestPointerLock(target){if(target.requestPointerLock){target.requestPointerLock()}else if(target.msRequestPointerLock){target.msRequestPointerLock()}else{if(document.body.requestPointerLock||document.body.msRequestPointerLock){return-3}else{return-1}}return 0}Module["requestPointerLock"]=requestPointerLock;function _emscripten_request_pointerlock(target,deferUntilInEventHandler){target=findEventTarget(target);if(!target)return-4;if(!target.requestPointerLock&&!target.msRequestPointerLock){return-1}var canPerformRequests=JSEvents.canPerformEventHandlerRequests();if(!canPerformRequests){if(deferUntilInEventHandler){JSEvents.deferCall(requestPointerLock,2,[target]);return 1}else{return-2}}return requestPointerLock(target)}Module["_emscripten_request_pointerlock"]=_emscripten_request_pointerlock;_emscripten_request_pointerlock.sig="iii";function _emscripten_exit_pointerlock(){JSEvents.removeDeferredCalls(requestPointerLock);if(document.exitPointerLock){document.exitPointerLock()}else if(document.msExitPointerLock){document.msExitPointerLock()}else{return-1}return 0}Module["_emscripten_exit_pointerlock"]=_emscripten_exit_pointerlock;_emscripten_exit_pointerlock.sig="i";function _emscripten_vibrate(msecs){if(!navigator.vibrate)return-1;navigator.vibrate(msecs);return 0}Module["_emscripten_vibrate"]=_emscripten_vibrate;_emscripten_vibrate.sig="ii";function _emscripten_vibrate_pattern(msecsArray,numEntries){if(!navigator.vibrate)return-1;var vibrateList=[];for(var i=0;i>2];vibrateList.push(msecs)}navigator.vibrate(vibrateList);return 0}Module["_emscripten_vibrate_pattern"]=_emscripten_vibrate_pattern;_emscripten_vibrate_pattern.sig="iii";function fillVisibilityChangeEventData(eventStruct){var visibilityStates=["hidden","visible","prerender","unloaded"];var visibilityState=visibilityStates.indexOf(document.visibilityState);HEAP32[eventStruct>>2]=document.hidden;HEAP32[eventStruct+4>>2]=visibilityState}Module["fillVisibilityChangeEventData"]=fillVisibilityChangeEventData;function registerVisibilityChangeEventCallback(target,userData,useCapture,callbackfunc,eventTypeId,eventTypeString,targetThread){if(!JSEvents.visibilityChangeEvent)JSEvents.visibilityChangeEvent=_malloc(8);var visibilityChangeEventHandlerFunc=function(ev){var e=ev||event;var visibilityChangeEvent=JSEvents.visibilityChangeEvent;fillVisibilityChangeEventData(visibilityChangeEvent);if(wasmTable.get(callbackfunc)(eventTypeId,visibilityChangeEvent,userData))e.preventDefault()};var eventHandler={target:target,eventTypeString:eventTypeString,callbackfunc:callbackfunc,handlerFunc:visibilityChangeEventHandlerFunc,useCapture:useCapture};JSEvents.registerOrRemoveHandler(eventHandler)}Module["registerVisibilityChangeEventCallback"]=registerVisibilityChangeEventCallback;function _emscripten_set_visibilitychange_callback_on_thread(userData,useCapture,callbackfunc,targetThread){if(!specialHTMLTargets[1]){return-4}registerVisibilityChangeEventCallback(specialHTMLTargets[1],userData,useCapture,callbackfunc,21,"visibilitychange",targetThread);return 0}Module["_emscripten_set_visibilitychange_callback_on_thread"]=_emscripten_set_visibilitychange_callback_on_thread;_emscripten_set_visibilitychange_callback_on_thread.sig="iiiii";function _emscripten_get_visibility_status(visibilityStatus){if(typeof document.visibilityState==="undefined"&&typeof document.hidden==="undefined"){return-1}fillVisibilityChangeEventData(visibilityStatus);return 0}Module["_emscripten_get_visibility_status"]=_emscripten_get_visibility_status;_emscripten_get_visibility_status.sig="ii";function registerTouchEventCallback(target,userData,useCapture,callbackfunc,eventTypeId,eventTypeString,targetThread){if(!JSEvents.touchEvent)JSEvents.touchEvent=_malloc(1684);target=findEventTarget(target);var touchEventHandlerFunc=function(e){var touches={};var et=e.touches;for(var i=0;i>2;HEAP32[idx+1]=e.ctrlKey;HEAP32[idx+2]=e.shiftKey;HEAP32[idx+3]=e.altKey;HEAP32[idx+4]=e.metaKey;idx+=5;var targetRect=getBoundingClientRect(target);var numTouches=0;for(var i in touches){var t=touches[i];HEAP32[idx+0]=t.identifier;HEAP32[idx+1]=t.screenX;HEAP32[idx+2]=t.screenY;HEAP32[idx+3]=t.clientX;HEAP32[idx+4]=t.clientY;HEAP32[idx+5]=t.pageX;HEAP32[idx+6]=t.pageY;HEAP32[idx+7]=t.isChanged;HEAP32[idx+8]=t.onTarget;HEAP32[idx+9]=t.clientX-targetRect.left;HEAP32[idx+10]=t.clientY-targetRect.top;idx+=13;if(++numTouches>31){break}}HEAP32[touchEvent>>2]=numTouches;if(wasmTable.get(callbackfunc)(eventTypeId,touchEvent,userData))e.preventDefault()};var eventHandler={target:target,allowsDeferredCalls:eventTypeString=="touchstart"||eventTypeString=="touchend",eventTypeString:eventTypeString,callbackfunc:callbackfunc,handlerFunc:touchEventHandlerFunc,useCapture:useCapture};JSEvents.registerOrRemoveHandler(eventHandler)}Module["registerTouchEventCallback"]=registerTouchEventCallback;function _emscripten_set_touchstart_callback_on_thread(target,userData,useCapture,callbackfunc,targetThread){registerTouchEventCallback(target,userData,useCapture,callbackfunc,22,"touchstart",targetThread);return 0}Module["_emscripten_set_touchstart_callback_on_thread"]=_emscripten_set_touchstart_callback_on_thread;_emscripten_set_touchstart_callback_on_thread.sig="iiiiii";function _emscripten_set_touchend_callback_on_thread(target,userData,useCapture,callbackfunc,targetThread){registerTouchEventCallback(target,userData,useCapture,callbackfunc,23,"touchend",targetThread);return 0}Module["_emscripten_set_touchend_callback_on_thread"]=_emscripten_set_touchend_callback_on_thread;_emscripten_set_touchend_callback_on_thread.sig="iiiiii";function _emscripten_set_touchmove_callback_on_thread(target,userData,useCapture,callbackfunc,targetThread){registerTouchEventCallback(target,userData,useCapture,callbackfunc,24,"touchmove",targetThread);return 0}Module["_emscripten_set_touchmove_callback_on_thread"]=_emscripten_set_touchmove_callback_on_thread;_emscripten_set_touchmove_callback_on_thread.sig="iiiiii";function _emscripten_set_touchcancel_callback_on_thread(target,userData,useCapture,callbackfunc,targetThread){registerTouchEventCallback(target,userData,useCapture,callbackfunc,25,"touchcancel",targetThread);return 0}Module["_emscripten_set_touchcancel_callback_on_thread"]=_emscripten_set_touchcancel_callback_on_thread;_emscripten_set_touchcancel_callback_on_thread.sig="iiiiii";function fillGamepadEventData(eventStruct,e){HEAPF64[eventStruct>>3]=e.timestamp;for(var i=0;i>3]=e.axes[i]}for(var i=0;i>3]=e.buttons[i].value}else{HEAPF64[eventStruct+i*8+528>>3]=e.buttons[i]}}for(var i=0;i>2]=e.buttons[i].pressed}else{HEAP32[eventStruct+i*4+1040>>2]=e.buttons[i]==1}}HEAP32[eventStruct+1296>>2]=e.connected;HEAP32[eventStruct+1300>>2]=e.index;HEAP32[eventStruct+8>>2]=e.axes.length;HEAP32[eventStruct+12>>2]=e.buttons.length;stringToUTF8(e.id,eventStruct+1304,64);stringToUTF8(e.mapping,eventStruct+1368,64)}Module["fillGamepadEventData"]=fillGamepadEventData;function registerGamepadEventCallback(target,userData,useCapture,callbackfunc,eventTypeId,eventTypeString,targetThread){if(!JSEvents.gamepadEvent)JSEvents.gamepadEvent=_malloc(1432);var gamepadEventHandlerFunc=function(ev){var e=ev||event;var gamepadEvent=JSEvents.gamepadEvent;fillGamepadEventData(gamepadEvent,e["gamepad"]);if(wasmTable.get(callbackfunc)(eventTypeId,gamepadEvent,userData))e.preventDefault()};var eventHandler={target:findEventTarget(target),allowsDeferredCalls:true,eventTypeString:eventTypeString,callbackfunc:callbackfunc,handlerFunc:gamepadEventHandlerFunc,useCapture:useCapture};JSEvents.registerOrRemoveHandler(eventHandler)}Module["registerGamepadEventCallback"]=registerGamepadEventCallback;function _emscripten_set_gamepadconnected_callback_on_thread(userData,useCapture,callbackfunc,targetThread){if(!navigator.getGamepads&&!navigator.webkitGetGamepads)return-1;registerGamepadEventCallback(2,userData,useCapture,callbackfunc,26,"gamepadconnected",targetThread);return 0}Module["_emscripten_set_gamepadconnected_callback_on_thread"]=_emscripten_set_gamepadconnected_callback_on_thread;_emscripten_set_gamepadconnected_callback_on_thread.sig="iiiii";function _emscripten_set_gamepaddisconnected_callback_on_thread(userData,useCapture,callbackfunc,targetThread){if(!navigator.getGamepads&&!navigator.webkitGetGamepads)return-1;registerGamepadEventCallback(2,userData,useCapture,callbackfunc,27,"gamepaddisconnected",targetThread);return 0}Module["_emscripten_set_gamepaddisconnected_callback_on_thread"]=_emscripten_set_gamepaddisconnected_callback_on_thread;_emscripten_set_gamepaddisconnected_callback_on_thread.sig="iiiii";function _emscripten_sample_gamepad_data(){return(JSEvents.lastGamepadState=navigator.getGamepads?navigator.getGamepads():navigator.webkitGetGamepads?navigator.webkitGetGamepads():null)?0:-1}Module["_emscripten_sample_gamepad_data"]=_emscripten_sample_gamepad_data;_emscripten_sample_gamepad_data.sig="i";function _emscripten_get_num_gamepads(){return JSEvents.lastGamepadState.length}Module["_emscripten_get_num_gamepads"]=_emscripten_get_num_gamepads;_emscripten_get_num_gamepads.sig="i";function _emscripten_get_gamepad_status(index,gamepadState){if(index<0||index>=JSEvents.lastGamepadState.length)return-5;if(!JSEvents.lastGamepadState[index])return-7;fillGamepadEventData(gamepadState,JSEvents.lastGamepadState[index]);return 0}Module["_emscripten_get_gamepad_status"]=_emscripten_get_gamepad_status;_emscripten_get_gamepad_status.sig="iii";function registerBeforeUnloadEventCallback(target,userData,useCapture,callbackfunc,eventTypeId,eventTypeString){var beforeUnloadEventHandlerFunc=function(ev){var e=ev||event;var confirmationMessage=wasmTable.get(callbackfunc)(eventTypeId,0,userData);if(confirmationMessage){confirmationMessage=UTF8ToString(confirmationMessage)}if(confirmationMessage){e.preventDefault();e.returnValue=confirmationMessage;return confirmationMessage}};var eventHandler={target:findEventTarget(target),eventTypeString:eventTypeString,callbackfunc:callbackfunc,handlerFunc:beforeUnloadEventHandlerFunc,useCapture:useCapture};JSEvents.registerOrRemoveHandler(eventHandler)}Module["registerBeforeUnloadEventCallback"]=registerBeforeUnloadEventCallback;function _emscripten_set_beforeunload_callback_on_thread(userData,callbackfunc,targetThread){if(typeof onbeforeunload==="undefined")return-1;if(targetThread!==1)return-5;registerBeforeUnloadEventCallback(2,userData,true,callbackfunc,28,"beforeunload");return 0}Module["_emscripten_set_beforeunload_callback_on_thread"]=_emscripten_set_beforeunload_callback_on_thread;_emscripten_set_beforeunload_callback_on_thread.sig="iii";function fillBatteryEventData(eventStruct,e){HEAPF64[eventStruct>>3]=e.chargingTime;HEAPF64[eventStruct+8>>3]=e.dischargingTime;HEAPF64[eventStruct+16>>3]=e.level;HEAP32[eventStruct+24>>2]=e.charging}Module["fillBatteryEventData"]=fillBatteryEventData;function battery(){return navigator.battery||navigator.mozBattery||navigator.webkitBattery}Module["battery"]=battery;function registerBatteryEventCallback(target,userData,useCapture,callbackfunc,eventTypeId,eventTypeString,targetThread){if(!JSEvents.batteryEvent)JSEvents.batteryEvent=_malloc(32);var batteryEventHandlerFunc=function(ev){var e=ev||event;var batteryEvent=JSEvents.batteryEvent;fillBatteryEventData(batteryEvent,battery());if(wasmTable.get(callbackfunc)(eventTypeId,batteryEvent,userData))e.preventDefault()};var eventHandler={target:findEventTarget(target),eventTypeString:eventTypeString,callbackfunc:callbackfunc,handlerFunc:batteryEventHandlerFunc,useCapture:useCapture};JSEvents.registerOrRemoveHandler(eventHandler)}Module["registerBatteryEventCallback"]=registerBatteryEventCallback;function _emscripten_set_batterychargingchange_callback_on_thread(userData,callbackfunc,targetThread){if(!battery())return-1;registerBatteryEventCallback(battery(),userData,true,callbackfunc,29,"chargingchange",targetThread);return 0}Module["_emscripten_set_batterychargingchange_callback_on_thread"]=_emscripten_set_batterychargingchange_callback_on_thread;_emscripten_set_batterychargingchange_callback_on_thread.sig="iii";function _emscripten_set_batterylevelchange_callback_on_thread(userData,callbackfunc,targetThread){if(!battery())return-1;registerBatteryEventCallback(battery(),userData,true,callbackfunc,30,"levelchange",targetThread);return 0}Module["_emscripten_set_batterylevelchange_callback_on_thread"]=_emscripten_set_batterylevelchange_callback_on_thread;_emscripten_set_batterylevelchange_callback_on_thread.sig="iii";function _emscripten_get_battery_status(batteryState){if(!battery())return-1;fillBatteryEventData(batteryState,battery());return 0}Module["_emscripten_get_battery_status"]=_emscripten_get_battery_status;_emscripten_get_battery_status.sig="ii";function _emscripten_set_element_css_size(target,width,height){target=findEventTarget(target);if(!target)return-4;target.style.width=width+"px";target.style.height=height+"px";return 0}Module["_emscripten_set_element_css_size"]=_emscripten_set_element_css_size;_emscripten_set_element_css_size.sig="iiii";function _emscripten_get_element_css_size(target,width,height){target=findEventTarget(target);if(!target)return-4;var rect=getBoundingClientRect(target);HEAPF64[width>>3]=rect.width;HEAPF64[height>>3]=rect.height;return 0}Module["_emscripten_get_element_css_size"]=_emscripten_get_element_css_size;_emscripten_get_element_css_size.sig="iiii";function _emscripten_html5_remove_all_event_listeners(){JSEvents.removeAllEventListeners()}Module["_emscripten_html5_remove_all_event_listeners"]=_emscripten_html5_remove_all_event_listeners;_emscripten_html5_remove_all_event_listeners.sig="v";function _emscripten_request_animation_frame(cb,userData){return requestAnimationFrame(function(timeStamp){wasmTable.get(cb)(timeStamp,userData)})}Module["_emscripten_request_animation_frame"]=_emscripten_request_animation_frame;function _emscripten_cancel_animation_frame(id){cancelAnimationFrame(id)}Module["_emscripten_cancel_animation_frame"]=_emscripten_cancel_animation_frame;function _emscripten_request_animation_frame_loop(cb,userData){function tick(timeStamp){if(wasmTable.get(cb)(timeStamp,userData)){requestAnimationFrame(tick)}}return requestAnimationFrame(tick)}Module["_emscripten_request_animation_frame_loop"]=_emscripten_request_animation_frame_loop;function polyfillSetImmediate(){}Module["polyfillSetImmediate"]=polyfillSetImmediate;function _emscripten_set_immediate(cb,userData){polyfillSetImmediate();return setImmediate(function(){wasmTable.get(cb)(userData)})}Module["_emscripten_set_immediate"]=_emscripten_set_immediate;function _emscripten_clear_immediate(id){clearImmediate(id)}Module["_emscripten_clear_immediate"]=_emscripten_clear_immediate;function _emscripten_set_immediate_loop(cb,userData){polyfillSetImmediate();function tick(){if(wasmTable.get(cb)(userData)){setImmediate(tick)}}return setImmediate(tick)}Module["_emscripten_set_immediate_loop"]=_emscripten_set_immediate_loop;function _emscripten_set_timeout(cb,msecs,userData){return setTimeout(function(){wasmTable.get(cb)(userData)},msecs)}Module["_emscripten_set_timeout"]=_emscripten_set_timeout;function _emscripten_clear_timeout(id){clearTimeout(id)}Module["_emscripten_clear_timeout"]=_emscripten_clear_timeout;function _emscripten_set_timeout_loop(cb,msecs,userData){function tick(){var t=performance.now();var n=t+msecs;if(wasmTable.get(cb)(t,userData)){setTimeout(tick,n-performance.now())}}return setTimeout(tick,0)}Module["_emscripten_set_timeout_loop"]=_emscripten_set_timeout_loop;function _emscripten_set_interval(cb,msecs,userData){return setInterval(function(){wasmTable.get(cb)(userData)},msecs)}Module["_emscripten_set_interval"]=_emscripten_set_interval;function _emscripten_clear_interval(id){clearInterval(id)}Module["_emscripten_clear_interval"]=_emscripten_clear_interval;function _emscripten_date_now(){return Date.now()}Module["_emscripten_date_now"]=_emscripten_date_now;function _emscripten_performance_now(){return performance.now()}Module["_emscripten_performance_now"]=_emscripten_performance_now;function _emscripten_console_log(str){console.log(UTF8ToString(str))}Module["_emscripten_console_log"]=_emscripten_console_log;function _emscripten_console_warn(str){console.warn(UTF8ToString(str))}Module["_emscripten_console_warn"]=_emscripten_console_warn;function _emscripten_console_error(str){console.error(UTF8ToString(str))}Module["_emscripten_console_error"]=_emscripten_console_error;function _emscripten_throw_number(number){throw number}Module["_emscripten_throw_number"]=_emscripten_throw_number;function _emscripten_throw_string(str){throw UTF8ToString(str)}Module["_emscripten_throw_string"]=_emscripten_throw_string;function _emscripten_unwind_to_js_event_loop(){throw"unwind"}Module["_emscripten_unwind_to_js_event_loop"]=_emscripten_unwind_to_js_event_loop;function _emscripten_get_device_pixel_ratio(){return typeof devicePixelRatio==="number"&&devicePixelRatio||1}Module["_emscripten_get_device_pixel_ratio"]=_emscripten_get_device_pixel_ratio;_emscripten_get_device_pixel_ratio.sig="d";function _proc_exit(code){try{_exit(code)}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return e.errno}}Module["_proc_exit"]=_proc_exit;_proc_exit.sig="vi";function _args_sizes_get(pargc,pargv_buf_size){try{HEAP32[pargc>>2]=mainArgs.length;var bufSize=0;mainArgs.forEach(function(arg){bufSize+=arg.length+1});HEAP32[pargv_buf_size>>2]=bufSize;return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return e.errno}}Module["_args_sizes_get"]=_args_sizes_get;_args_sizes_get.sig="iii";function _args_get(argv,argv_buf){try{var bufSize=0;mainArgs.forEach(function(arg,i){var ptr=argv_buf+bufSize;HEAP32[argv+i*4>>2]=ptr;writeAsciiToMemory(arg,ptr);bufSize+=arg.length+1});return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return e.errno}}Module["_args_get"]=_args_get;_args_get.sig="iii";function checkWasiClock(clock_id){return clock_id==0||clock_id==1||clock_id==2||clock_id==3}Module["checkWasiClock"]=checkWasiClock;function _clock_time_get(clk_id,precision_low,precision_high,ptime){try{if(!checkWasiClock(clk_id)){return 28}var now;if(clk_id===0){now=Date.now()}else if(_emscripten_get_now_is_monotonic){now=_emscripten_get_now()}else{return 52}var nsec=Math.round(now*1e3*1e3);HEAP32[ptime>>2]=nsec>>>0;HEAP32[ptime+4>>2]=nsec/Math.pow(2,32)>>>0;return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return e.errno}}Module["_clock_time_get"]=_clock_time_get;_clock_time_get.sig="iiiii";function _clock_res_get(clk_id,pres){try{if(!checkWasiClock(clk_id)){return 28}var nsec;if(clk_id===0){nsec=1e3*1e3}else if(_emscripten_get_now_is_monotonic){nsec=_emscripten_get_now_res()}else{return 52}HEAP32[pres>>2]=nsec>>>0;HEAP32[pres+4>>2]=nsec/Math.pow(2,32)>>>0;return 0}catch(e){if(typeof FS==="undefined"||!(e instanceof FS.ErrnoError))abort(e);return e.errno}}Module["_clock_res_get"]=_clock_res_get;_clock_res_get.sig="iii";function writeI53ToI64Clamped(ptr,num){if(num>0x8000000000000000){HEAPU32[ptr>>2]=4294967295;HEAPU32[ptr+4>>2]=2147483647}else if(num<-0x8000000000000000){HEAPU32[ptr>>2]=0;HEAPU32[ptr+4>>2]=2147483648}else{HEAPU32[ptr>>2]=num;HEAPU32[ptr+4>>2]=(num-HEAPU32[ptr>>2])/4294967296}}Module["writeI53ToI64Clamped"]=writeI53ToI64Clamped;function writeI53ToI64Signaling(ptr,num){if(num>0x8000000000000000||num<-0x8000000000000000){throw"RangeError:"+num}HEAPU32[ptr>>2]=num;HEAPU32[ptr+4>>2]=(num-HEAPU32[ptr>>2])/4294967296}Module["writeI53ToI64Signaling"]=writeI53ToI64Signaling;function writeI53ToU64Clamped(ptr,num){if(num>0x10000000000000000)HEAPU32[ptr>>2]=HEAPU32[ptr+4>>2]=4294967295;else if(num<0)HEAPU32[ptr>>2]=HEAPU32[ptr+4>>2]=0;else{HEAPU32[ptr>>2]=num;HEAPU32[ptr+4>>2]=(num-HEAPU32[ptr>>2])/4294967296}}Module["writeI53ToU64Clamped"]=writeI53ToU64Clamped;function writeI53ToU64Signaling(ptr,num){if(num<0||num>0x10000000000000000){throw"RangeError:"+num}HEAPU32[ptr>>2]=num;HEAPU32[ptr+4>>2]=(num-HEAPU32[ptr>>2])/4294967296}Module["writeI53ToU64Signaling"]=writeI53ToU64Signaling;function readI53FromI64(ptr){return HEAPU32[ptr>>2]+HEAP32[ptr+4>>2]*4294967296}Module["readI53FromI64"]=readI53FromI64;function readI53FromU64(ptr){return HEAPU32[ptr>>2]+HEAPU32[ptr+4>>2]*4294967296}Module["readI53FromU64"]=readI53FromU64;function _dladdr(addr,info){var fname=stringToNewUTF8(getExecutableName());HEAP32[info>>2]=fname;HEAP32[info+4>>2]=0;HEAP32[info+8>>2]=0;HEAP32[info+12>>2]=0;return 1}Module["_dladdr"]=_dladdr;_dladdr.sig="iii";var exceptionCaught=[];Module["exceptionCaught"]=exceptionCaught;function CatchInfo(ptr){this.free=function(){_free(this.ptr);this.ptr=0};this.set_base_ptr=function(basePtr){HEAP32[this.ptr>>2]=basePtr};this.get_base_ptr=function(){return HEAP32[this.ptr>>2]};this.set_adjusted_ptr=function(adjustedPtr){var ptrSize=4;HEAP32[this.ptr+ptrSize>>2]=adjustedPtr};this.get_adjusted_ptr=function(){var ptrSize=4;return HEAP32[this.ptr+ptrSize>>2]};this.get_exception_ptr=function(){var isPointer=Module["___cxa_is_pointer_type"](this.get_exception_info().get_type());if(isPointer){return HEAP32[this.get_base_ptr()>>2]}var adjusted=this.get_adjusted_ptr();if(adjusted!==0)return adjusted;return this.get_base_ptr()};this.get_exception_info=function(){return new ExceptionInfo(this.get_base_ptr())};if(ptr===undefined){this.ptr=_malloc(8);this.set_adjusted_ptr(0)}else{this.ptr=ptr}}Module["CatchInfo"]=CatchInfo;function exception_addRef(info){info.add_ref()}Module["exception_addRef"]=exception_addRef;function ___cxa_free_exception(ptr){return _free(new ExceptionInfo(ptr).ptr)}Module["___cxa_free_exception"]=___cxa_free_exception;function exception_decRef(info){if(info.release_ref()&&!info.get_rethrown()){var destructor=info.get_destructor();if(destructor){wasmTable.get(destructor)(info.excPtr)}___cxa_free_exception(info.excPtr)}}Module["exception_decRef"]=exception_decRef;function ___cxa_allocate_exception(size){return _malloc(size+ExceptionInfoAttrs.SIZE)+ExceptionInfoAttrs.SIZE}Module["___cxa_allocate_exception"]=___cxa_allocate_exception;function ___cxa_rethrow(){var catchInfo=exceptionCaught.pop();if(!catchInfo){abort("no exception to throw")}var info=catchInfo.get_exception_info();var ptr=catchInfo.get_base_ptr();if(!info.get_rethrown()){exceptionCaught.push(catchInfo);info.set_rethrown(true);info.set_caught(false);uncaughtExceptionCount++}else{catchInfo.free()}exceptionLast=ptr;throw ptr}Module["___cxa_rethrow"]=___cxa_rethrow;___cxa_rethrow.sig="v";function _llvm_eh_typeid_for(type){return type}Module["_llvm_eh_typeid_for"]=_llvm_eh_typeid_for;function ___cxa_begin_catch(ptr){var catchInfo=new CatchInfo(ptr);var info=catchInfo.get_exception_info();if(!info.get_caught()){info.set_caught(true);uncaughtExceptionCount--}info.set_rethrown(false);exceptionCaught.push(catchInfo);exception_addRef(info);return catchInfo.get_exception_ptr()}Module["___cxa_begin_catch"]=___cxa_begin_catch;function ___cxa_end_catch(){_setThrew(0);var catchInfo=exceptionCaught.pop();exception_decRef(catchInfo.get_exception_info());catchInfo.free();exceptionLast=0}Module["___cxa_end_catch"]=___cxa_end_catch;___cxa_end_catch.sig="v";function ___cxa_get_exception_ptr(ptr){return new CatchInfo(ptr).get_exception_ptr()}Module["___cxa_get_exception_ptr"]=___cxa_get_exception_ptr;function ___cxa_call_unexpected(exception){err("Unexpected exception thrown, this is not properly supported - aborting");ABORT=true;throw exception}Module["___cxa_call_unexpected"]=___cxa_call_unexpected;function ___resumeException(catchInfoPtr){var catchInfo=new CatchInfo(catchInfoPtr);var ptr=catchInfo.get_base_ptr();if(!exceptionLast){exceptionLast=ptr}catchInfo.free();throw ptr}Module["___resumeException"]=___resumeException;function ___cxa_find_matching_catch(){var thrown=exceptionLast;if(!thrown){setTempRet0(0|0);return 0|0}var info=new ExceptionInfo(thrown);var thrownType=info.get_type();var catchInfo=new CatchInfo;catchInfo.set_base_ptr(thrown);if(!thrownType){setTempRet0(0|0);return catchInfo.ptr|0}var typeArray=Array.prototype.slice.call(arguments);var stackTop=stackSave();var exceptionThrowBuf=stackAlloc(4);HEAP32[exceptionThrowBuf>>2]=thrown;for(var i=0;i>2];if(thrown!==adjusted){catchInfo.set_adjusted_ptr(adjusted)}setTempRet0(caughtType|0);return catchInfo.ptr|0}}stackRestore(stackTop);setTempRet0(thrownType|0);return catchInfo.ptr|0}Module["___cxa_find_matching_catch"]=___cxa_find_matching_catch;function _emscripten_async_wget(url,file,onload,onerror){var _url=UTF8ToString(url);var _file=UTF8ToString(file);_file=PATH_FS.resolve(_file);function doCallback(callback){if(callback){var stack=stackSave();wasmTable.get(callback)(allocate(intArrayFromString(_file),ALLOC_STACK));stackRestore(stack)}}var destinationDirectory=PATH.dirname(_file);FS.createPreloadedFile(destinationDirectory,PATH.basename(_file),_url,true,true,function(){doCallback(onload)},function(){doCallback(onerror)},false,false,function(){try{FS.unlink(_file)}catch(e){}FS.mkdirTree(destinationDirectory)})}Module["_emscripten_async_wget"]=_emscripten_async_wget;_emscripten_async_wget.sig="viiii";var funcWrappers={};Module["funcWrappers"]=funcWrappers;function getFuncWrapper(func,sig){if(!func)return;assert(sig);if(!funcWrappers[sig]){funcWrappers[sig]={}}var sigCache=funcWrappers[sig];if(!sigCache[func]){if(sig.length===1){sigCache[func]=function dynCall_wrapper(){return dynCall(sig,func)}}else if(sig.length===2){sigCache[func]=function dynCall_wrapper(arg){return dynCall(sig,func,[arg])}}else{sigCache[func]=function dynCall_wrapper(){return dynCall(sig,func,Array.prototype.slice.call(arguments))}}}return sigCache[func]}Module["getFuncWrapper"]=getFuncWrapper;function _emscripten_async_wget_data(url,arg,onload,onerror){Browser.asyncLoad(UTF8ToString(url),function(byteArray){var buffer=_malloc(byteArray.length);HEAPU8.set(byteArray,buffer);wasmTable.get(onload)(arg,buffer,byteArray.length);_free(buffer)},function(){if(onerror)wasmTable.get(onerror)(arg)},true)}Module["_emscripten_async_wget_data"]=_emscripten_async_wget_data;_emscripten_async_wget_data.sig="viiii";function _emscripten_async_wget2(url,file,request,param,arg,onload,onerror,onprogress){var _url=UTF8ToString(url);var _file=UTF8ToString(file);_file=PATH_FS.resolve(_file);var _request=UTF8ToString(request);var _param=UTF8ToString(param);var index=_file.lastIndexOf("/");var http=new XMLHttpRequest;http.open(_request,_url,true);http.responseType="arraybuffer";var handle=Browser.getNextWgetRequestHandle();var destinationDirectory=PATH.dirname(_file);http.onload=function http_onload(e){if(http.status>=200&&http.status<300){try{FS.unlink(_file)}catch(e){}FS.mkdirTree(destinationDirectory);FS.createDataFile(_file.substr(0,index),_file.substr(index+1),new Uint8Array(http.response),true,true,false);if(onload){var stack=stackSave();wasmTable.get(onload)(handle,arg,allocate(intArrayFromString(_file),ALLOC_STACK));stackRestore(stack)}}else{if(onerror)wasmTable.get(onerror)(handle,arg,http.status)}delete Browser.wgetRequests[handle]};http.onerror=function http_onerror(e){if(onerror)wasmTable.get(onerror)(handle,arg,http.status);delete Browser.wgetRequests[handle]};http.onprogress=function http_onprogress(e){if(e.lengthComputable||e.lengthComputable===undefined&&e.total!=0){var percentComplete=e.loaded/e.total*100;if(onprogress)wasmTable.get(onprogress)(handle,arg,percentComplete)}};http.onabort=function http_onabort(e){delete Browser.wgetRequests[handle]};if(_request=="POST"){http.setRequestHeader("Content-type","application/x-www-form-urlencoded");http.send(_param)}else{http.send(null)}Browser.wgetRequests[handle]=http;return handle}Module["_emscripten_async_wget2"]=_emscripten_async_wget2;_emscripten_async_wget2.sig="iiiiiiiii";function _emscripten_async_wget2_data(url,request,param,arg,free,onload,onerror,onprogress){var _url=UTF8ToString(url);var _request=UTF8ToString(request);var _param=UTF8ToString(param);var http=new XMLHttpRequest;http.open(_request,_url,true);http.responseType="arraybuffer";var handle=Browser.getNextWgetRequestHandle();http.onload=function http_onload(e){if(http.status>=200&&http.status<300||http.status===0&&_url.substr(0,4).toLowerCase()!="http"){var byteArray=new Uint8Array(http.response);var buffer=_malloc(byteArray.length);HEAPU8.set(byteArray,buffer);if(onload)wasmTable.get(onload)(handle,arg,buffer,byteArray.length);if(free)_free(buffer)}else{if(onerror)wasmTable.get(onerror)(handle,arg,http.status,http.statusText)}delete Browser.wgetRequests[handle]};http.onerror=function http_onerror(e){if(onerror){wasmTable.get(onerror)(handle,arg,http.status,http.statusText)}delete Browser.wgetRequests[handle]};http.onprogress=function http_onprogress(e){if(onprogress)wasmTable.get(onprogress)(handle,arg,e.loaded,e.lengthComputable||e.lengthComputable===undefined?e.total:0)};http.onabort=function http_onabort(e){delete Browser.wgetRequests[handle]};if(_request=="POST"){http.setRequestHeader("Content-type","application/x-www-form-urlencoded");http.send(_param)}else{http.send(null)}Browser.wgetRequests[handle]=http;return handle}Module["_emscripten_async_wget2_data"]=_emscripten_async_wget2_data;_emscripten_async_wget2_data.sig="iiiiiiiii";function _emscripten_async_wget2_abort(handle){var http=Browser.wgetRequests[handle];if(http){http.abort()}}Module["_emscripten_async_wget2_abort"]=_emscripten_async_wget2_abort;_emscripten_async_wget2_abort.sig="vi";function _emscripten_run_preload_plugins(file,onload,onerror){var _file=UTF8ToString(file);var data=FS.analyzePath(_file);if(!data.exists)return-1;FS.createPreloadedFile(PATH.dirname(_file),PATH.basename(_file),new Uint8Array(data.object.contents),true,true,function(){if(onload)wasmTable.get(onload)(file)},function(){if(onerror)wasmTable.get(onerror)(file)},true);return 0}Module["_emscripten_run_preload_plugins"]=_emscripten_run_preload_plugins;_emscripten_run_preload_plugins.sig="iiii";function _emscripten_run_preload_plugins_data(data,size,suffix,arg,onload,onerror){var _suffix=UTF8ToString(suffix);if(!Browser.asyncPrepareDataCounter)Browser.asyncPrepareDataCounter=0;var name="prepare_data_"+Browser.asyncPrepareDataCounter+++"."+_suffix;var lengthAsUTF8=lengthBytesUTF8(name);var cname=_malloc(lengthAsUTF8+1);stringToUTF8(name,cname,lengthAsUTF8+1);FS.createPreloadedFile("/",name,HEAPU8.subarray(data,data+size),true,true,function(){if(onload)wasmTable.get(onload)(arg,cname)},function(){if(onerror)wasmTable.get(onerror)(arg)},true)}Module["_emscripten_run_preload_plugins_data"]=_emscripten_run_preload_plugins_data;_emscripten_run_preload_plugins_data.sig="viiiiii";function _emscripten_async_run_script(script,millis){Browser.safeSetTimeout(function(){_emscripten_run_script(script)},millis)}Module["_emscripten_async_run_script"]=_emscripten_async_run_script;function _emscripten_async_load_script(url,onload,onerror){onload=wasmTable.get(onload);onerror=wasmTable.get(onerror);assert(runDependencies===0,"async_load_script must be run when no other dependencies are active");var script=document.createElement("script");script.onload=function script_onload(){if(onload){if(runDependencies>0){dependenciesFulfilled=onload}else{onload()}}};script.onerror=function(){if(onerror)onerror()};script.src=UTF8ToString(url);document.body.appendChild(script)}Module["_emscripten_async_load_script"]=_emscripten_async_load_script;function _emscripten_get_main_loop_timing(mode,value){if(mode)HEAP32[mode>>2]=Browser.mainLoop.timingMode;if(value)HEAP32[value>>2]=Browser.mainLoop.timingValue}Module["_emscripten_get_main_loop_timing"]=_emscripten_get_main_loop_timing;_emscripten_get_main_loop_timing.sig="vii";function _emscripten_set_main_loop(func,fps,simulateInfiniteLoop){var browserIterationFunc=wasmTable.get(func);setMainLoop(browserIterationFunc,fps,simulateInfiniteLoop)}Module["_emscripten_set_main_loop"]=_emscripten_set_main_loop;function _emscripten_set_main_loop_arg(func,arg,fps,simulateInfiniteLoop){var browserIterationFunc=function(){wasmTable.get(func)(arg)};setMainLoop(browserIterationFunc,fps,simulateInfiniteLoop,arg)}Module["_emscripten_set_main_loop_arg"]=_emscripten_set_main_loop_arg;_emscripten_set_main_loop_arg.sig="viiii";function _emscripten_cancel_main_loop(){Browser.mainLoop.pause();Browser.mainLoop.func=null}Module["_emscripten_cancel_main_loop"]=_emscripten_cancel_main_loop;_emscripten_cancel_main_loop.sig="v";function _emscripten_pause_main_loop(){Browser.mainLoop.pause()}Module["_emscripten_pause_main_loop"]=_emscripten_pause_main_loop;_emscripten_pause_main_loop.sig="v";function _emscripten_resume_main_loop(){Browser.mainLoop.resume()}Module["_emscripten_resume_main_loop"]=_emscripten_resume_main_loop;_emscripten_resume_main_loop.sig="v";function __emscripten_push_main_loop_blocker(func,arg,name){Browser.mainLoop.queue.push({func:function(){wasmTable.get(func)(arg)},name:UTF8ToString(name),counted:true});Browser.mainLoop.updateStatus()}Module["__emscripten_push_main_loop_blocker"]=__emscripten_push_main_loop_blocker;function __emscripten_push_uncounted_main_loop_blocker(func,arg,name){Browser.mainLoop.queue.push({func:function(){wasmTable.get(func)(arg)},name:UTF8ToString(name),counted:false});Browser.mainLoop.updateStatus()}Module["__emscripten_push_uncounted_main_loop_blocker"]=__emscripten_push_uncounted_main_loop_blocker;function _emscripten_set_main_loop_expected_blockers(num){Browser.mainLoop.expectedBlockers=num;Browser.mainLoop.remainingBlockers=num;Browser.mainLoop.updateStatus()}Module["_emscripten_set_main_loop_expected_blockers"]=_emscripten_set_main_loop_expected_blockers;_emscripten_set_main_loop_expected_blockers.sig="vi";function _emscripten_async_call(func,arg,millis){function wrapper(){wasmTable.get(func)(arg)}if(millis>=0){Browser.safeSetTimeout(wrapper,millis)}else{Browser.safeRequestAnimationFrame(wrapper)}}Module["_emscripten_async_call"]=_emscripten_async_call;_emscripten_async_call.sig="viii";function _emscripten_get_window_title(){var buflen=256;if(!_emscripten_get_window_title.buffer){_emscripten_get_window_title.buffer=_malloc(buflen)}writeAsciiToMemory(document.title.slice(0,buflen-1),_emscripten_get_window_title.buffer);return _emscripten_get_window_title.buffer}Module["_emscripten_get_window_title"]=_emscripten_get_window_title;_emscripten_get_window_title.sig="iv";function _emscripten_set_window_title(title){setWindowTitle(AsciiToString(title))}Module["_emscripten_set_window_title"]=_emscripten_set_window_title;_emscripten_set_window_title.sig="vi";function _emscripten_get_screen_size(width,height){HEAP32[width>>2]=screen.width;HEAP32[height>>2]=screen.height}Module["_emscripten_get_screen_size"]=_emscripten_get_screen_size;_emscripten_get_screen_size.sig="vii";function _emscripten_hide_mouse(){var styleSheet=document.styleSheets[0];var rules=styleSheet.cssRules;for(var i=0;i>2]=canvas.width;HEAP32[height>>2]=canvas.height;HEAP32[isFullscreen>>2]=Browser.isFullscreen?1:0}Module["_emscripten_get_canvas_size"]=_emscripten_get_canvas_size;_emscripten_get_canvas_size.sig="viii";function _emscripten_create_worker(url){url=UTF8ToString(url);var id=Browser.workers.length;var info={worker:new Worker(url),callbacks:[],awaited:0,buffer:0,bufferSize:0};info.worker.onmessage=function info_worker_onmessage(msg){if(ABORT)return;var info=Browser.workers[id];if(!info)return;var callbackId=msg.data["callbackId"];var callbackInfo=info.callbacks[callbackId];if(!callbackInfo)return;if(msg.data["finalResponse"]){info.awaited--;info.callbacks[callbackId]=null}var data=msg.data["data"];if(data){if(!data.byteLength)data=new Uint8Array(data);if(!info.buffer||info.bufferSize>2]=canvas.width;HEAP32[h>>2]=canvas.height;return buf}return 0}Module["_emscripten_get_preloaded_image_data"]=_emscripten_get_preloaded_image_data;_emscripten_get_preloaded_image_data.sig="iiii";function _emscripten_get_preloaded_image_data_from_FILE(file,w,h){var fd=Module["_fileno"](file);var stream=FS.getStream(fd);if(stream){return _emscripten_get_preloaded_image_data(stream.path,w,h)}return 0}Module["_emscripten_get_preloaded_image_data_from_FILE"]=_emscripten_get_preloaded_image_data_from_FILE;_emscripten_get_preloaded_image_data_from_FILE.sig="iiii";function _setNetworkCallback(event,userData,callback){function _callback(data){try{if(event==="error"){var sp=stackSave();var msg=allocate(intArrayFromString(data[2]),ALLOC_STACK);wasmTable.get(callback)(data[0],data[1],msg,userData);stackRestore(sp)}else{wasmTable.get(callback)(data,userData)}}catch(e){if(e instanceof ExitStatus){return}else{if(e&&typeof e==="object"&&e.stack)err("exception thrown: "+[e,e.stack]);throw e}}}Module["websocket"]["on"](event,callback?_callback:null)}Module["_setNetworkCallback"]=_setNetworkCallback;function _emscripten_set_socket_error_callback(userData,callback){_setNetworkCallback("error",userData,callback)}Module["_emscripten_set_socket_error_callback"]=_emscripten_set_socket_error_callback;function _emscripten_set_socket_open_callback(userData,callback){_setNetworkCallback("open",userData,callback)}Module["_emscripten_set_socket_open_callback"]=_emscripten_set_socket_open_callback;function _emscripten_set_socket_listen_callback(userData,callback){_setNetworkCallback("listen",userData,callback)}Module["_emscripten_set_socket_listen_callback"]=_emscripten_set_socket_listen_callback;function _emscripten_set_socket_connection_callback(userData,callback){_setNetworkCallback("connection",userData,callback)}Module["_emscripten_set_socket_connection_callback"]=_emscripten_set_socket_connection_callback;function _emscripten_set_socket_message_callback(userData,callback){_setNetworkCallback("message",userData,callback)}Module["_emscripten_set_socket_message_callback"]=_emscripten_set_socket_message_callback;function _emscripten_set_socket_close_callback(userData,callback){_setNetworkCallback("close",userData,callback)}Module["_emscripten_set_socket_close_callback"]=_emscripten_set_socket_close_callback;function _emscripten_webgl_enable_ANGLE_instanced_arrays(ctx){return __webgl_enable_ANGLE_instanced_arrays(GL.contexts[ctx].GLctx)}Module["_emscripten_webgl_enable_ANGLE_instanced_arrays"]=_emscripten_webgl_enable_ANGLE_instanced_arrays;function _emscripten_webgl_enable_OES_vertex_array_object(ctx){return __webgl_enable_OES_vertex_array_object(GL.contexts[ctx].GLctx)}Module["_emscripten_webgl_enable_OES_vertex_array_object"]=_emscripten_webgl_enable_OES_vertex_array_object;function _emscripten_webgl_enable_WEBGL_draw_buffers(ctx){return __webgl_enable_WEBGL_draw_buffers(GL.contexts[ctx].GLctx)}Module["_emscripten_webgl_enable_WEBGL_draw_buffers"]=_emscripten_webgl_enable_WEBGL_draw_buffers;function _emscripten_webgl_enable_WEBGL_multi_draw(ctx){return __webgl_enable_WEBGL_multi_draw(GL.contexts[ctx].GLctx)}Module["_emscripten_webgl_enable_WEBGL_multi_draw"]=_emscripten_webgl_enable_WEBGL_multi_draw;function _glPixelStorei(pname,param){if(pname==3317){GL.unpackAlignment=param}GLctx.pixelStorei(pname,param)}Module["_glPixelStorei"]=_glPixelStorei;_glPixelStorei.sig="vii";function _glGetString(name_){if(GL.stringCache[name_])return GL.stringCache[name_];var ret;switch(name_){case 7939:var exts=GLctx.getSupportedExtensions()||[];exts=exts.concat(exts.map(function(e){return"GL_"+e}));ret=stringToNewUTF8(exts.join(" "));break;case 7936:case 7937:case 37445:case 37446:var s=GLctx.getParameter(name_);if(!s){GL.recordError(1280)}ret=stringToNewUTF8(s);break;case 7938:var glVersion=GLctx.getParameter(7938);{glVersion="OpenGL ES 2.0 ("+glVersion+")"}ret=stringToNewUTF8(glVersion);break;case 35724:var glslVersion=GLctx.getParameter(35724);var ver_re=/^WebGL GLSL ES ([0-9]\.[0-9][0-9]?)(?:$| .*)/;var ver_num=glslVersion.match(ver_re);if(ver_num!==null){if(ver_num[1].length==3)ver_num[1]=ver_num[1]+"0";glslVersion="OpenGL ES GLSL ES "+ver_num[1]+" ("+glslVersion+")"}ret=stringToNewUTF8(glslVersion);break;default:GL.recordError(1280);return 0}GL.stringCache[name_]=ret;return ret}Module["_glGetString"]=_glGetString;_glGetString.sig="ii";function _glGetIntegerv(name_,p){emscriptenWebGLGet(name_,p,0)}Module["_glGetIntegerv"]=_glGetIntegerv;_glGetIntegerv.sig="vii";function _glGetFloatv(name_,p){emscriptenWebGLGet(name_,p,2)}Module["_glGetFloatv"]=_glGetFloatv;_glGetFloatv.sig="vii";function _glGetBooleanv(name_,p){emscriptenWebGLGet(name_,p,4)}Module["_glGetBooleanv"]=_glGetBooleanv;_glGetBooleanv.sig="vii";function _glDeleteTextures(n,textures){for(var i=0;i>2];var texture=GL.textures[id];if(!texture)continue;GLctx.deleteTexture(texture);texture.name=0;GL.textures[id]=null}}Module["_glDeleteTextures"]=_glDeleteTextures;_glDeleteTextures.sig="vii";function _glCompressedTexImage2D(target,level,internalFormat,width,height,border,imageSize,data){GLctx["compressedTexImage2D"](target,level,internalFormat,width,height,border,data?HEAPU8.subarray(data,data+imageSize):null)}Module["_glCompressedTexImage2D"]=_glCompressedTexImage2D;_glCompressedTexImage2D.sig="viiiiiiii";function _glCompressedTexSubImage2D(target,level,xoffset,yoffset,width,height,format,imageSize,data){GLctx["compressedTexSubImage2D"](target,level,xoffset,yoffset,width,height,format,data?HEAPU8.subarray(data,data+imageSize):null)}Module["_glCompressedTexSubImage2D"]=_glCompressedTexSubImage2D;_glCompressedTexSubImage2D.sig="viiiiiiiii";function _glTexImage2D(target,level,internalFormat,width,height,border,format,type,pixels){GLctx.texImage2D(target,level,internalFormat,width,height,border,format,type,pixels?emscriptenWebGLGetTexPixelData(type,format,width,height,pixels,internalFormat):null)}Module["_glTexImage2D"]=_glTexImage2D;_glTexImage2D.sig="viiiiiiiii";function _glTexSubImage2D(target,level,xoffset,yoffset,width,height,format,type,pixels){var pixelData=null;if(pixels)pixelData=emscriptenWebGLGetTexPixelData(type,format,width,height,pixels,0);GLctx.texSubImage2D(target,level,xoffset,yoffset,width,height,format,type,pixelData)}Module["_glTexSubImage2D"]=_glTexSubImage2D;_glTexSubImage2D.sig="viiiiiiiii";function _glReadPixels(x,y,width,height,format,type,pixels){var pixelData=emscriptenWebGLGetTexPixelData(type,format,width,height,pixels,format);if(!pixelData){GL.recordError(1280);return}GLctx.readPixels(x,y,width,height,format,type,pixelData)}Module["_glReadPixels"]=_glReadPixels;_glReadPixels.sig="viiiiiii";function _glBindTexture(target,texture){GLctx.bindTexture(target,GL.textures[texture])}Module["_glBindTexture"]=_glBindTexture;_glBindTexture.sig="vii";function _glGetTexParameterfv(target,pname,params){if(!params){GL.recordError(1281);return}HEAPF32[params>>2]=GLctx.getTexParameter(target,pname)}Module["_glGetTexParameterfv"]=_glGetTexParameterfv;_glGetTexParameterfv.sig="viii";function _glGetTexParameteriv(target,pname,params){if(!params){GL.recordError(1281);return}HEAP32[params>>2]=GLctx.getTexParameter(target,pname)}Module["_glGetTexParameteriv"]=_glGetTexParameteriv;_glGetTexParameteriv.sig="viii";function _glTexParameterfv(target,pname,params){var param=HEAPF32[params>>2];GLctx.texParameterf(target,pname,param)}Module["_glTexParameterfv"]=_glTexParameterfv;_glTexParameterfv.sig="viii";function _glTexParameteriv(target,pname,params){var param=HEAP32[params>>2];GLctx.texParameteri(target,pname,param)}Module["_glTexParameteriv"]=_glTexParameteriv;_glTexParameteriv.sig="viii";function _glIsTexture(id){var texture=GL.textures[id];if(!texture)return 0;return GLctx.isTexture(texture)}Module["_glIsTexture"]=_glIsTexture;_glIsTexture.sig="ii";function _glGenBuffers(n,buffers){__glGenObject(n,buffers,"createBuffer",GL.buffers)}Module["_glGenBuffers"]=_glGenBuffers;_glGenBuffers.sig="vii";function _glGenTextures(n,textures){__glGenObject(n,textures,"createTexture",GL.textures)}Module["_glGenTextures"]=_glGenTextures;_glGenTextures.sig="vii";function _glDeleteBuffers(n,buffers){for(var i=0;i>2];var buffer=GL.buffers[id];if(!buffer)continue;GLctx.deleteBuffer(buffer);buffer.name=0;GL.buffers[id]=null}}Module["_glDeleteBuffers"]=_glDeleteBuffers;_glDeleteBuffers.sig="vii";function _glGetBufferParameteriv(target,value,data){if(!data){GL.recordError(1281);return}HEAP32[data>>2]=GLctx.getBufferParameter(target,value)}Module["_glGetBufferParameteriv"]=_glGetBufferParameteriv;_glGetBufferParameteriv.sig="viii";function _glBufferData(target,size,data,usage){GLctx.bufferData(target,data?HEAPU8.subarray(data,data+size):size,usage)}Module["_glBufferData"]=_glBufferData;_glBufferData.sig="viiii";function _glBufferSubData(target,offset,size,data){GLctx.bufferSubData(target,offset,HEAPU8.subarray(data,data+size))}Module["_glBufferSubData"]=_glBufferSubData;_glBufferSubData.sig="viiii";function _glGenQueriesEXT(n,ids){for(var i=0;i>2]=0;return}var id=GL.getNewId(GL.timerQueriesEXT);query.name=id;GL.timerQueriesEXT[id]=query;HEAP32[ids+i*4>>2]=id}}Module["_glGenQueriesEXT"]=_glGenQueriesEXT;_glGenQueriesEXT.sig="vii";function _glDeleteQueriesEXT(n,ids){for(var i=0;i>2];var query=GL.timerQueriesEXT[id];if(!query)continue;GLctx.disjointTimerQueryExt["deleteQueryEXT"](query);GL.timerQueriesEXT[id]=null}}Module["_glDeleteQueriesEXT"]=_glDeleteQueriesEXT;_glDeleteQueriesEXT.sig="vii";function _glIsQueryEXT(id){var query=GL.timerQueriesEXT[id];if(!query)return 0;return GLctx.disjointTimerQueryExt["isQueryEXT"](query)}Module["_glIsQueryEXT"]=_glIsQueryEXT;_glIsQueryEXT.sig="ii";function _glBeginQueryEXT(target,id){GLctx.disjointTimerQueryExt["beginQueryEXT"](target,GL.timerQueriesEXT[id])}Module["_glBeginQueryEXT"]=_glBeginQueryEXT;_glBeginQueryEXT.sig="vii";function _glEndQueryEXT(target){GLctx.disjointTimerQueryExt["endQueryEXT"](target)}Module["_glEndQueryEXT"]=_glEndQueryEXT;_glEndQueryEXT.sig="vi";function _glQueryCounterEXT(id,target){GLctx.disjointTimerQueryExt["queryCounterEXT"](GL.timerQueriesEXT[id],target)}Module["_glQueryCounterEXT"]=_glQueryCounterEXT;_glQueryCounterEXT.sig="vii";function _glGetQueryivEXT(target,pname,params){if(!params){GL.recordError(1281);return}HEAP32[params>>2]=GLctx.disjointTimerQueryExt["getQueryEXT"](target,pname)}Module["_glGetQueryivEXT"]=_glGetQueryivEXT;_glGetQueryivEXT.sig="viii";function _glGetQueryObjectivEXT(id,pname,params){if(!params){GL.recordError(1281);return}var query=GL.timerQueriesEXT[id];var param=GLctx.disjointTimerQueryExt["getQueryObjectEXT"](query,pname);var ret;if(typeof param=="boolean"){ret=param?1:0}else{ret=param}HEAP32[params>>2]=ret}Module["_glGetQueryObjectivEXT"]=_glGetQueryObjectivEXT;_glGetQueryObjectivEXT.sig="viii";function _glGetQueryObjectuivEXT(id,pname,params){if(!params){GL.recordError(1281);return}var query=GL.timerQueriesEXT[id];var param=GLctx.disjointTimerQueryExt["getQueryObjectEXT"](query,pname);var ret;if(typeof param=="boolean"){ret=param?1:0}else{ret=param}HEAP32[params>>2]=ret}Module["_glGetQueryObjectuivEXT"]=_glGetQueryObjectuivEXT;_glGetQueryObjectuivEXT.sig="viii";function _glGetQueryObjecti64vEXT(id,pname,params){if(!params){GL.recordError(1281);return}var query=GL.timerQueriesEXT[id];var param=GLctx.disjointTimerQueryExt["getQueryObjectEXT"](query,pname);var ret;if(typeof param=="boolean"){ret=param?1:0}else{ret=param}writeI53ToI64(params,ret)}Module["_glGetQueryObjecti64vEXT"]=_glGetQueryObjecti64vEXT;_glGetQueryObjecti64vEXT.sig="viii";function _glGetQueryObjectui64vEXT(id,pname,params){if(!params){GL.recordError(1281);return}var query=GL.timerQueriesEXT[id];var param=GLctx.disjointTimerQueryExt["getQueryObjectEXT"](query,pname);var ret;if(typeof param=="boolean"){ret=param?1:0}else{ret=param}writeI53ToI64(params,ret)}Module["_glGetQueryObjectui64vEXT"]=_glGetQueryObjectui64vEXT;_glGetQueryObjectui64vEXT.sig="viii";function _glIsBuffer(buffer){var b=GL.buffers[buffer];if(!b)return 0;return GLctx.isBuffer(b)}Module["_glIsBuffer"]=_glIsBuffer;_glIsBuffer.sig="ii";function _glGenRenderbuffers(n,renderbuffers){__glGenObject(n,renderbuffers,"createRenderbuffer",GL.renderbuffers)}Module["_glGenRenderbuffers"]=_glGenRenderbuffers;_glGenRenderbuffers.sig="vii";function _glDeleteRenderbuffers(n,renderbuffers){for(var i=0;i>2];var renderbuffer=GL.renderbuffers[id];if(!renderbuffer)continue;GLctx.deleteRenderbuffer(renderbuffer);renderbuffer.name=0;GL.renderbuffers[id]=null}}Module["_glDeleteRenderbuffers"]=_glDeleteRenderbuffers;_glDeleteRenderbuffers.sig="vii";function _glBindRenderbuffer(target,renderbuffer){GLctx.bindRenderbuffer(target,GL.renderbuffers[renderbuffer])}Module["_glBindRenderbuffer"]=_glBindRenderbuffer;_glBindRenderbuffer.sig="vii";function _glGetRenderbufferParameteriv(target,pname,params){if(!params){GL.recordError(1281);return}HEAP32[params>>2]=GLctx.getRenderbufferParameter(target,pname)}Module["_glGetRenderbufferParameteriv"]=_glGetRenderbufferParameteriv;_glGetRenderbufferParameteriv.sig="viii";function _glIsRenderbuffer(renderbuffer){var rb=GL.renderbuffers[renderbuffer];if(!rb)return 0;return GLctx.isRenderbuffer(rb)}Module["_glIsRenderbuffer"]=_glIsRenderbuffer;_glIsRenderbuffer.sig="ii";function _glGetUniformfv(program,location,params){emscriptenWebGLGetUniform(program,location,params,2)}Module["_glGetUniformfv"]=_glGetUniformfv;_glGetUniformfv.sig="viii";function _glGetUniformiv(program,location,params){emscriptenWebGLGetUniform(program,location,params,0)}Module["_glGetUniformiv"]=_glGetUniformiv;_glGetUniformiv.sig="viii";function _glGetUniformLocation(program,name){name=UTF8ToString(name);var arrayIndex=0;if(name[name.length-1]=="]"){var leftBrace=name.lastIndexOf("[");arrayIndex=name[leftBrace+1]!="]"?jstoi_q(name.slice(leftBrace+1)):0;name=name.slice(0,leftBrace)}var uniformInfo=GL.programInfos[program]&&GL.programInfos[program].uniforms[name];if(uniformInfo&&arrayIndex>=0&&arrayIndex>2]=GLctx.getVertexAttribOffset(index,pname)}Module["_glGetVertexAttribPointerv"]=_glGetVertexAttribPointerv;_glGetVertexAttribPointerv.sig="viii";function _glUniform1f(location,v0){GLctx.uniform1f(GL.uniforms[location],v0)}Module["_glUniform1f"]=_glUniform1f;_glUniform1f.sig="vif";function _glUniform2f(location,v0,v1){GLctx.uniform2f(GL.uniforms[location],v0,v1)}Module["_glUniform2f"]=_glUniform2f;_glUniform2f.sig="viff";function _glUniform3f(location,v0,v1,v2){GLctx.uniform3f(GL.uniforms[location],v0,v1,v2)}Module["_glUniform3f"]=_glUniform3f;_glUniform3f.sig="vifff";function _glUniform4f(location,v0,v1,v2,v3){GLctx.uniform4f(GL.uniforms[location],v0,v1,v2,v3)}Module["_glUniform4f"]=_glUniform4f;_glUniform4f.sig="viffff";function _glUniform1i(location,v0){GLctx.uniform1i(GL.uniforms[location],v0)}Module["_glUniform1i"]=_glUniform1i;_glUniform1i.sig="vii";function _glUniform2i(location,v0,v1){GLctx.uniform2i(GL.uniforms[location],v0,v1)}Module["_glUniform2i"]=_glUniform2i;_glUniform2i.sig="viii";function _glUniform3i(location,v0,v1,v2){GLctx.uniform3i(GL.uniforms[location],v0,v1,v2)}Module["_glUniform3i"]=_glUniform3i;_glUniform3i.sig="viiii";function _glUniform4i(location,v0,v1,v2,v3){GLctx.uniform4i(GL.uniforms[location],v0,v1,v2,v3)}Module["_glUniform4i"]=_glUniform4i;_glUniform4i.sig="viiiii";function _glUniform1iv(location,count,value){if(count<=288){var view=__miniTempWebGLIntBuffers[count-1];for(var i=0;i>2]}}else{var view=HEAP32.subarray(value>>2,value+count*4>>2)}GLctx.uniform1iv(GL.uniforms[location],view)}Module["_glUniform1iv"]=_glUniform1iv;_glUniform1iv.sig="viii";function _glUniform2iv(location,count,value){if(count<=144){var view=__miniTempWebGLIntBuffers[2*count-1];for(var i=0;i<2*count;i+=2){view[i]=HEAP32[value+4*i>>2];view[i+1]=HEAP32[value+(4*i+4)>>2]}}else{var view=HEAP32.subarray(value>>2,value+count*8>>2)}GLctx.uniform2iv(GL.uniforms[location],view)}Module["_glUniform2iv"]=_glUniform2iv;_glUniform2iv.sig="viii";function _glUniform3iv(location,count,value){if(count<=96){var view=__miniTempWebGLIntBuffers[3*count-1];for(var i=0;i<3*count;i+=3){view[i]=HEAP32[value+4*i>>2];view[i+1]=HEAP32[value+(4*i+4)>>2];view[i+2]=HEAP32[value+(4*i+8)>>2]}}else{var view=HEAP32.subarray(value>>2,value+count*12>>2)}GLctx.uniform3iv(GL.uniforms[location],view)}Module["_glUniform3iv"]=_glUniform3iv;_glUniform3iv.sig="viii";function _glUniform4iv(location,count,value){if(count<=72){var view=__miniTempWebGLIntBuffers[4*count-1];for(var i=0;i<4*count;i+=4){view[i]=HEAP32[value+4*i>>2];view[i+1]=HEAP32[value+(4*i+4)>>2];view[i+2]=HEAP32[value+(4*i+8)>>2];view[i+3]=HEAP32[value+(4*i+12)>>2]}}else{var view=HEAP32.subarray(value>>2,value+count*16>>2)}GLctx.uniform4iv(GL.uniforms[location],view)}Module["_glUniform4iv"]=_glUniform4iv;_glUniform4iv.sig="viii";function _glUniform1fv(location,count,value){if(count<=288){var view=miniTempWebGLFloatBuffers[count-1];for(var i=0;i>2]}}else{var view=HEAPF32.subarray(value>>2,value+count*4>>2)}GLctx.uniform1fv(GL.uniforms[location],view)}Module["_glUniform1fv"]=_glUniform1fv;_glUniform1fv.sig="viii";function _glUniform2fv(location,count,value){if(count<=144){var view=miniTempWebGLFloatBuffers[2*count-1];for(var i=0;i<2*count;i+=2){view[i]=HEAPF32[value+4*i>>2];view[i+1]=HEAPF32[value+(4*i+4)>>2]}}else{var view=HEAPF32.subarray(value>>2,value+count*8>>2)}GLctx.uniform2fv(GL.uniforms[location],view)}Module["_glUniform2fv"]=_glUniform2fv;_glUniform2fv.sig="viii";function _glUniform3fv(location,count,value){if(count<=96){var view=miniTempWebGLFloatBuffers[3*count-1];for(var i=0;i<3*count;i+=3){view[i]=HEAPF32[value+4*i>>2];view[i+1]=HEAPF32[value+(4*i+4)>>2];view[i+2]=HEAPF32[value+(4*i+8)>>2]}}else{var view=HEAPF32.subarray(value>>2,value+count*12>>2)}GLctx.uniform3fv(GL.uniforms[location],view)}Module["_glUniform3fv"]=_glUniform3fv;_glUniform3fv.sig="viii";function _glUniform4fv(location,count,value){if(count<=72){var view=miniTempWebGLFloatBuffers[4*count-1];var heap=HEAPF32;value>>=2;for(var i=0;i<4*count;i+=4){var dst=value+i;view[i]=heap[dst];view[i+1]=heap[dst+1];view[i+2]=heap[dst+2];view[i+3]=heap[dst+3]}}else{var view=HEAPF32.subarray(value>>2,value+count*16>>2)}GLctx.uniform4fv(GL.uniforms[location],view)}Module["_glUniform4fv"]=_glUniform4fv;_glUniform4fv.sig="viii";function _glUniformMatrix2fv(location,count,transpose,value){if(count<=72){var view=miniTempWebGLFloatBuffers[4*count-1];for(var i=0;i<4*count;i+=4){view[i]=HEAPF32[value+4*i>>2];view[i+1]=HEAPF32[value+(4*i+4)>>2];view[i+2]=HEAPF32[value+(4*i+8)>>2];view[i+3]=HEAPF32[value+(4*i+12)>>2]}}else{var view=HEAPF32.subarray(value>>2,value+count*16>>2)}GLctx.uniformMatrix2fv(GL.uniforms[location],!!transpose,view)}Module["_glUniformMatrix2fv"]=_glUniformMatrix2fv;_glUniformMatrix2fv.sig="viiii";function _glUniformMatrix3fv(location,count,transpose,value){if(count<=32){var view=miniTempWebGLFloatBuffers[9*count-1];for(var i=0;i<9*count;i+=9){view[i]=HEAPF32[value+4*i>>2];view[i+1]=HEAPF32[value+(4*i+4)>>2];view[i+2]=HEAPF32[value+(4*i+8)>>2];view[i+3]=HEAPF32[value+(4*i+12)>>2];view[i+4]=HEAPF32[value+(4*i+16)>>2];view[i+5]=HEAPF32[value+(4*i+20)>>2];view[i+6]=HEAPF32[value+(4*i+24)>>2];view[i+7]=HEAPF32[value+(4*i+28)>>2];view[i+8]=HEAPF32[value+(4*i+32)>>2]}}else{var view=HEAPF32.subarray(value>>2,value+count*36>>2)}GLctx.uniformMatrix3fv(GL.uniforms[location],!!transpose,view)}Module["_glUniformMatrix3fv"]=_glUniformMatrix3fv;_glUniformMatrix3fv.sig="viiii";function _glUniformMatrix4fv(location,count,transpose,value){if(count<=18){var view=miniTempWebGLFloatBuffers[16*count-1];var heap=HEAPF32;value>>=2;for(var i=0;i<16*count;i+=16){var dst=value+i;view[i]=heap[dst];view[i+1]=heap[dst+1];view[i+2]=heap[dst+2];view[i+3]=heap[dst+3];view[i+4]=heap[dst+4];view[i+5]=heap[dst+5];view[i+6]=heap[dst+6];view[i+7]=heap[dst+7];view[i+8]=heap[dst+8];view[i+9]=heap[dst+9];view[i+10]=heap[dst+10];view[i+11]=heap[dst+11];view[i+12]=heap[dst+12];view[i+13]=heap[dst+13];view[i+14]=heap[dst+14];view[i+15]=heap[dst+15]}}else{var view=HEAPF32.subarray(value>>2,value+count*64>>2)}GLctx.uniformMatrix4fv(GL.uniforms[location],!!transpose,view)}Module["_glUniformMatrix4fv"]=_glUniformMatrix4fv;_glUniformMatrix4fv.sig="viiii";function _glBindBuffer(target,buffer){GLctx.bindBuffer(target,GL.buffers[buffer])}Module["_glBindBuffer"]=_glBindBuffer;_glBindBuffer.sig="vii";function _glVertexAttrib1fv(index,v){GLctx.vertexAttrib1f(index,HEAPF32[v>>2])}Module["_glVertexAttrib1fv"]=_glVertexAttrib1fv;_glVertexAttrib1fv.sig="vii";function _glVertexAttrib2fv(index,v){GLctx.vertexAttrib2f(index,HEAPF32[v>>2],HEAPF32[v+4>>2])}Module["_glVertexAttrib2fv"]=_glVertexAttrib2fv;_glVertexAttrib2fv.sig="vii";function _glVertexAttrib3fv(index,v){GLctx.vertexAttrib3f(index,HEAPF32[v>>2],HEAPF32[v+4>>2],HEAPF32[v+8>>2])}Module["_glVertexAttrib3fv"]=_glVertexAttrib3fv;_glVertexAttrib3fv.sig="vii";function _glVertexAttrib4fv(index,v){GLctx.vertexAttrib4f(index,HEAPF32[v>>2],HEAPF32[v+4>>2],HEAPF32[v+8>>2],HEAPF32[v+12>>2])}Module["_glVertexAttrib4fv"]=_glVertexAttrib4fv;_glVertexAttrib4fv.sig="vii";function _glGetAttribLocation(program,name){return GLctx.getAttribLocation(GL.programs[program],UTF8ToString(name))}Module["_glGetAttribLocation"]=_glGetAttribLocation;_glGetAttribLocation.sig="iii";function _glGetActiveAttrib(program,index,bufSize,length,size,type,name){__glGetActiveAttribOrUniform("getActiveAttrib",program,index,bufSize,length,size,type,name)}Module["_glGetActiveAttrib"]=_glGetActiveAttrib;_glGetActiveAttrib.sig="viiiiiii";function _glGetActiveUniform(program,index,bufSize,length,size,type,name){__glGetActiveAttribOrUniform("getActiveUniform",program,index,bufSize,length,size,type,name)}Module["_glGetActiveUniform"]=_glGetActiveUniform;_glGetActiveUniform.sig="viiiiiii";function _glCreateShader(shaderType){var id=GL.getNewId(GL.shaders);GL.shaders[id]=GLctx.createShader(shaderType);return id}Module["_glCreateShader"]=_glCreateShader;_glCreateShader.sig="ii";function _glDeleteShader(id){if(!id)return;var shader=GL.shaders[id];if(!shader){GL.recordError(1281);return}GLctx.deleteShader(shader);GL.shaders[id]=null}Module["_glDeleteShader"]=_glDeleteShader;_glDeleteShader.sig="vi";function _glGetAttachedShaders(program,maxCount,count,shaders){var result=GLctx.getAttachedShaders(GL.programs[program]);var len=result.length;if(len>maxCount){len=maxCount}HEAP32[count>>2]=len;for(var i=0;i>2]=id}}Module["_glGetAttachedShaders"]=_glGetAttachedShaders;_glGetAttachedShaders.sig="viiii";function _glShaderSource(shader,count,string,length){var source=GL.getSource(shader,count,string,length);GLctx.shaderSource(GL.shaders[shader],source)}Module["_glShaderSource"]=_glShaderSource;_glShaderSource.sig="viiii";function _glGetShaderSource(shader,bufSize,length,source){var result=GLctx.getShaderSource(GL.shaders[shader]);if(!result)return;var numBytesWrittenExclNull=bufSize>0&&source?stringToUTF8(result,source,bufSize):0;if(length)HEAP32[length>>2]=numBytesWrittenExclNull}Module["_glGetShaderSource"]=_glGetShaderSource;_glGetShaderSource.sig="viiii";function _glCompileShader(shader){GLctx.compileShader(GL.shaders[shader])}Module["_glCompileShader"]=_glCompileShader;_glCompileShader.sig="vi";function _glGetShaderInfoLog(shader,maxLength,length,infoLog){var log=GLctx.getShaderInfoLog(GL.shaders[shader]);if(log===null)log="(unknown error)";var numBytesWrittenExclNull=maxLength>0&&infoLog?stringToUTF8(log,infoLog,maxLength):0;if(length)HEAP32[length>>2]=numBytesWrittenExclNull}Module["_glGetShaderInfoLog"]=_glGetShaderInfoLog;_glGetShaderInfoLog.sig="viiii";function _glGetShaderiv(shader,pname,p){if(!p){GL.recordError(1281);return}if(pname==35716){var log=GLctx.getShaderInfoLog(GL.shaders[shader]);if(log===null)log="(unknown error)";var logLength=log?log.length+1:0;HEAP32[p>>2]=logLength}else if(pname==35720){var source=GLctx.getShaderSource(GL.shaders[shader]);var sourceLength=source?source.length+1:0;HEAP32[p>>2]=sourceLength}else{HEAP32[p>>2]=GLctx.getShaderParameter(GL.shaders[shader],pname)}}Module["_glGetShaderiv"]=_glGetShaderiv;_glGetShaderiv.sig="viii";function _glGetProgramiv(program,pname,p){if(!p){GL.recordError(1281);return}if(program>=GL.counter){GL.recordError(1281);return}var ptable=GL.programInfos[program];if(!ptable){GL.recordError(1282);return}if(pname==35716){var log=GLctx.getProgramInfoLog(GL.programs[program]);if(log===null)log="(unknown error)";HEAP32[p>>2]=log.length+1}else if(pname==35719){HEAP32[p>>2]=ptable.maxUniformLength}else if(pname==35722){if(ptable.maxAttributeLength==-1){program=GL.programs[program];var numAttribs=GLctx.getProgramParameter(program,35721);ptable.maxAttributeLength=0;for(var i=0;i>2]=ptable.maxAttributeLength}else if(pname==35381){if(ptable.maxUniformBlockNameLength==-1){program=GL.programs[program];var numBlocks=GLctx.getProgramParameter(program,35382);ptable.maxUniformBlockNameLength=0;for(var i=0;i>2]=ptable.maxUniformBlockNameLength}else{HEAP32[p>>2]=GLctx.getProgramParameter(GL.programs[program],pname)}}Module["_glGetProgramiv"]=_glGetProgramiv;_glGetProgramiv.sig="viii";function _glIsShader(shader){var s=GL.shaders[shader];if(!s)return 0;return GLctx.isShader(s)}Module["_glIsShader"]=_glIsShader;_glIsShader.sig="ii";function _glCreateProgram(){var id=GL.getNewId(GL.programs);var program=GLctx.createProgram();program.name=id;GL.programs[id]=program;return id}Module["_glCreateProgram"]=_glCreateProgram;_glCreateProgram.sig="i";function _glDeleteProgram(id){if(!id)return;var program=GL.programs[id];if(!program){GL.recordError(1281);return}GLctx.deleteProgram(program);program.name=0;GL.programs[id]=null;GL.programInfos[id]=null}Module["_glDeleteProgram"]=_glDeleteProgram;_glDeleteProgram.sig="vi";function _glAttachShader(program,shader){GLctx.attachShader(GL.programs[program],GL.shaders[shader])}Module["_glAttachShader"]=_glAttachShader;_glAttachShader.sig="vii";function _glDetachShader(program,shader){GLctx.detachShader(GL.programs[program],GL.shaders[shader])}Module["_glDetachShader"]=_glDetachShader;_glDetachShader.sig="vii";function _glGetShaderPrecisionFormat(shaderType,precisionType,range,precision){var result=GLctx.getShaderPrecisionFormat(shaderType,precisionType);HEAP32[range>>2]=result.rangeMin;HEAP32[range+4>>2]=result.rangeMax;HEAP32[precision>>2]=result.precision}Module["_glGetShaderPrecisionFormat"]=_glGetShaderPrecisionFormat;_glGetShaderPrecisionFormat.sig="viiii";function _glLinkProgram(program){GLctx.linkProgram(GL.programs[program]);GL.populateUniformTable(program)}Module["_glLinkProgram"]=_glLinkProgram;_glLinkProgram.sig="vi";function _glGetProgramInfoLog(program,maxLength,length,infoLog){var log=GLctx.getProgramInfoLog(GL.programs[program]);if(log===null)log="(unknown error)";var numBytesWrittenExclNull=maxLength>0&&infoLog?stringToUTF8(log,infoLog,maxLength):0;if(length)HEAP32[length>>2]=numBytesWrittenExclNull}Module["_glGetProgramInfoLog"]=_glGetProgramInfoLog;_glGetProgramInfoLog.sig="viiii";function _glUseProgram(program){GLctx.useProgram(GL.programs[program])}Module["_glUseProgram"]=_glUseProgram;_glUseProgram.sig="vi";function _glValidateProgram(program){GLctx.validateProgram(GL.programs[program])}Module["_glValidateProgram"]=_glValidateProgram;_glValidateProgram.sig="vi";function _glIsProgram(program){program=GL.programs[program];if(!program)return 0;return GLctx.isProgram(program)}Module["_glIsProgram"]=_glIsProgram;_glIsProgram.sig="ii";function _glBindAttribLocation(program,index,name){GLctx.bindAttribLocation(GL.programs[program],index,UTF8ToString(name))}Module["_glBindAttribLocation"]=_glBindAttribLocation;_glBindAttribLocation.sig="viii";function _glBindFramebuffer(target,framebuffer){GLctx.bindFramebuffer(target,GL.framebuffers[framebuffer])}Module["_glBindFramebuffer"]=_glBindFramebuffer;_glBindFramebuffer.sig="vii";function _glGenFramebuffers(n,ids){__glGenObject(n,ids,"createFramebuffer",GL.framebuffers)}Module["_glGenFramebuffers"]=_glGenFramebuffers;_glGenFramebuffers.sig="vii";function _glDeleteFramebuffers(n,framebuffers){for(var i=0;i>2];var framebuffer=GL.framebuffers[id];if(!framebuffer)continue;GLctx.deleteFramebuffer(framebuffer);framebuffer.name=0;GL.framebuffers[id]=null}}Module["_glDeleteFramebuffers"]=_glDeleteFramebuffers;_glDeleteFramebuffers.sig="vii";function _glFramebufferRenderbuffer(target,attachment,renderbuffertarget,renderbuffer){GLctx.framebufferRenderbuffer(target,attachment,renderbuffertarget,GL.renderbuffers[renderbuffer])}Module["_glFramebufferRenderbuffer"]=_glFramebufferRenderbuffer;_glFramebufferRenderbuffer.sig="viiii";function _glFramebufferTexture2D(target,attachment,textarget,texture,level){GLctx.framebufferTexture2D(target,attachment,textarget,GL.textures[texture],level)}Module["_glFramebufferTexture2D"]=_glFramebufferTexture2D;_glFramebufferTexture2D.sig="viiiii";function _glGetFramebufferAttachmentParameteriv(target,attachment,pname,params){var result=GLctx.getFramebufferAttachmentParameter(target,attachment,pname);if(result instanceof WebGLRenderbuffer||result instanceof WebGLTexture){result=result.name|0}HEAP32[params>>2]=result}Module["_glGetFramebufferAttachmentParameteriv"]=_glGetFramebufferAttachmentParameteriv;_glGetFramebufferAttachmentParameteriv.sig="viiii";function _glIsFramebuffer(framebuffer){var fb=GL.framebuffers[framebuffer];if(!fb)return 0;return GLctx.isFramebuffer(fb)}Module["_glIsFramebuffer"]=_glIsFramebuffer;_glIsFramebuffer.sig="ii";function _glGenVertexArrays(n,arrays){__glGenObject(n,arrays,"createVertexArray",GL.vaos)}Module["_glGenVertexArrays"]=_glGenVertexArrays;_glGenVertexArrays.sig="vii";function _glDeleteVertexArrays(n,vaos){for(var i=0;i>2];GLctx["deleteVertexArray"](GL.vaos[id]);GL.vaos[id]=null}}Module["_glDeleteVertexArrays"]=_glDeleteVertexArrays;_glDeleteVertexArrays.sig="vii";function _glBindVertexArray(vao){GLctx["bindVertexArray"](GL.vaos[vao])}Module["_glBindVertexArray"]=_glBindVertexArray;_glBindVertexArray.sig="vi";function _glIsVertexArray(array){var vao=GL.vaos[array];if(!vao)return 0;return GLctx["isVertexArray"](vao)}Module["_glIsVertexArray"]=_glIsVertexArray;_glIsVertexArray.sig="ii";function _glVertexPointer(){throw"Legacy GL function (glVertexPointer) called. If you want legacy GL emulation, you need to compile with -s LEGACY_GL_EMULATION=1 to enable legacy GL emulation."}Module["_glVertexPointer"]=_glVertexPointer;function _glMatrixMode(){throw"Legacy GL function (glMatrixMode) called. If you want legacy GL emulation, you need to compile with -s LEGACY_GL_EMULATION=1 to enable legacy GL emulation."}Module["_glMatrixMode"]=_glMatrixMode;function _glBegin(){throw"Legacy GL function (glBegin) called. If you want legacy GL emulation, you need to compile with -s LEGACY_GL_EMULATION=1 to enable legacy GL emulation."}Module["_glBegin"]=_glBegin;function _glLoadIdentity(){throw"Legacy GL function (glLoadIdentity) called. If you want legacy GL emulation, you need to compile with -s LEGACY_GL_EMULATION=1 to enable legacy GL emulation."}Module["_glLoadIdentity"]=_glLoadIdentity;function _glGenVertexArraysOES(n,arrays){__glGenObject(n,arrays,"createVertexArray",GL.vaos)}Module["_glGenVertexArraysOES"]=_glGenVertexArraysOES;_glGenVertexArraysOES.sig="vii";function _glDeleteVertexArraysOES(n,vaos){for(var i=0;i>2];GLctx["deleteVertexArray"](GL.vaos[id]);GL.vaos[id]=null}}Module["_glDeleteVertexArraysOES"]=_glDeleteVertexArraysOES;_glDeleteVertexArraysOES.sig="vii";function _glBindVertexArrayOES(vao){GLctx["bindVertexArray"](GL.vaos[vao])}Module["_glBindVertexArrayOES"]=_glBindVertexArrayOES;_glBindVertexArrayOES.sig="vi";function _glIsVertexArrayOES(array){var vao=GL.vaos[array];if(!vao)return 0;return GLctx["isVertexArray"](vao)}Module["_glIsVertexArrayOES"]=_glIsVertexArrayOES;_glIsVertexArrayOES.sig="ii";function _gluPerspective(fov,aspect,near,far){GLImmediate.matricesModified=true;GLImmediate.matrixVersion[GLImmediate.currentMatrix]=GLImmediate.matrixVersion[GLImmediate.currentMatrix]+1|0;GLImmediate.matrix[GLImmediate.currentMatrix]=GLImmediate.matrixLib.mat4.perspective(fov,aspect,near,far,GLImmediate.matrix[GLImmediate.currentMatrix])}Module["_gluPerspective"]=_gluPerspective;function _gluLookAt(ex,ey,ez,cx,cy,cz,ux,uy,uz){GLImmediate.matricesModified=true;GLImmediate.matrixVersion[GLImmediate.currentMatrix]=GLImmediate.matrixVersion[GLImmediate.currentMatrix]+1|0;GLImmediate.matrixLib.mat4.lookAt(GLImmediate.matrix[GLImmediate.currentMatrix],[ex,ey,ez],[cx,cy,cz],[ux,uy,uz])}Module["_gluLookAt"]=_gluLookAt;function _gluProject(objX,objY,objZ,model,proj,view,winX,winY,winZ){var inVec=new Float32Array(4);var outVec=new Float32Array(4);GLImmediate.matrixLib.mat4.multiplyVec4(HEAPF64.subarray(model>>3,model+128>>3),[objX,objY,objZ,1],outVec);GLImmediate.matrixLib.mat4.multiplyVec4(HEAPF64.subarray(proj>>3,proj+128>>3),outVec,inVec);if(inVec[3]==0){return 0}inVec[0]/=inVec[3];inVec[1]/=inVec[3];inVec[2]/=inVec[3];inVec[0]=inVec[0]*.5+.5;inVec[1]=inVec[1]*.5+.5;inVec[2]=inVec[2]*.5+.5;inVec[0]=inVec[0]*HEAP32[view+8>>2]+HEAP32[view>>2];inVec[1]=inVec[1]*HEAP32[view+12>>2]+HEAP32[view+4>>2];HEAPF64[winX>>3]=inVec[0];HEAPF64[winY>>3]=inVec[1];HEAPF64[winZ>>3]=inVec[2];return 1}Module["_gluProject"]=_gluProject;function _gluUnProject(winX,winY,winZ,model,proj,view,objX,objY,objZ){var result=GLImmediate.matrixLib.mat4.unproject([winX,winY,winZ],HEAPF64.subarray(model>>3,model+128>>3),HEAPF64.subarray(proj>>3,proj+128>>3),HEAP32.subarray(view>>2,view+16>>2));if(result===null){return 0}HEAPF64[objX>>3]=result[0];HEAPF64[objY>>3]=result[1];HEAPF64[objZ>>3]=result[2];return 1}Module["_gluUnProject"]=_gluUnProject;function _glOrtho(){return Module["_glOrtho"].apply(null,arguments)}function _gluOrtho2D(left,right,bottom,top){_glOrtho(left,right,bottom,top,-1,1)}Module["_gluOrtho2D"]=_gluOrtho2D;function _glVertexAttribPointer(index,size,type,normalized,stride,ptr){GLctx.vertexAttribPointer(index,size,type,!!normalized,stride,ptr)}Module["_glVertexAttribPointer"]=_glVertexAttribPointer;_glVertexAttribPointer.sig="viiiiii";function _glEnableVertexAttribArray(index){GLctx.enableVertexAttribArray(index)}Module["_glEnableVertexAttribArray"]=_glEnableVertexAttribArray;_glEnableVertexAttribArray.sig="vi";function _glDisableVertexAttribArray(index){GLctx.disableVertexAttribArray(index)}Module["_glDisableVertexAttribArray"]=_glDisableVertexAttribArray;_glDisableVertexAttribArray.sig="vi";function _glDrawArrays(mode,first,count){GLctx.drawArrays(mode,first,count)}Module["_glDrawArrays"]=_glDrawArrays;_glDrawArrays.sig="viii";function _glDrawElements(mode,count,type,indices){GLctx.drawElements(mode,count,type,indices)}Module["_glDrawElements"]=_glDrawElements;_glDrawElements.sig="viiii";function _glShaderBinary(){GL.recordError(1280)}Module["_glShaderBinary"]=_glShaderBinary;_glShaderBinary.sig="v";function _glReleaseShaderCompiler(){}Module["_glReleaseShaderCompiler"]=_glReleaseShaderCompiler;_glReleaseShaderCompiler.sig="v";function _glGetError(){var error=GLctx.getError()||GL.lastError;GL.lastError=0;return error}Module["_glGetError"]=_glGetError;_glGetError.sig="i";function _glVertexAttribDivisor(index,divisor){GLctx["vertexAttribDivisor"](index,divisor)}Module["_glVertexAttribDivisor"]=_glVertexAttribDivisor;_glVertexAttribDivisor.sig="vii";function _glDrawArraysInstanced(mode,first,count,primcount){GLctx["drawArraysInstanced"](mode,first,count,primcount)}Module["_glDrawArraysInstanced"]=_glDrawArraysInstanced;_glDrawArraysInstanced.sig="viiii";function _glDrawElementsInstanced(mode,count,type,indices,primcount){GLctx["drawElementsInstanced"](mode,count,type,indices,primcount)}Module["_glDrawElementsInstanced"]=_glDrawElementsInstanced;_glDrawElementsInstanced.sig="viiiii";function _glVertexAttribDivisorNV(index,divisor){GLctx["vertexAttribDivisor"](index,divisor)}Module["_glVertexAttribDivisorNV"]=_glVertexAttribDivisorNV;_glVertexAttribDivisorNV.sig="vii";function _glDrawArraysInstancedNV(mode,first,count,primcount){GLctx["drawArraysInstanced"](mode,first,count,primcount)}Module["_glDrawArraysInstancedNV"]=_glDrawArraysInstancedNV;_glDrawArraysInstancedNV.sig="viiii";function _glDrawElementsInstancedNV(mode,count,type,indices,primcount){GLctx["drawElementsInstanced"](mode,count,type,indices,primcount)}Module["_glDrawElementsInstancedNV"]=_glDrawElementsInstancedNV;_glDrawElementsInstancedNV.sig="viiiii";function _glVertexAttribDivisorEXT(index,divisor){GLctx["vertexAttribDivisor"](index,divisor)}Module["_glVertexAttribDivisorEXT"]=_glVertexAttribDivisorEXT;_glVertexAttribDivisorEXT.sig="vii";function _glDrawArraysInstancedEXT(mode,first,count,primcount){GLctx["drawArraysInstanced"](mode,first,count,primcount)}Module["_glDrawArraysInstancedEXT"]=_glDrawArraysInstancedEXT;_glDrawArraysInstancedEXT.sig="viiii";function _glDrawElementsInstancedEXT(mode,count,type,indices,primcount){GLctx["drawElementsInstanced"](mode,count,type,indices,primcount)}Module["_glDrawElementsInstancedEXT"]=_glDrawElementsInstancedEXT;_glDrawElementsInstancedEXT.sig="viiiii";function _glVertexAttribDivisorARB(index,divisor){GLctx["vertexAttribDivisor"](index,divisor)}Module["_glVertexAttribDivisorARB"]=_glVertexAttribDivisorARB;_glVertexAttribDivisorARB.sig="vii";function _glDrawArraysInstancedARB(mode,first,count,primcount){GLctx["drawArraysInstanced"](mode,first,count,primcount)}Module["_glDrawArraysInstancedARB"]=_glDrawArraysInstancedARB;_glDrawArraysInstancedARB.sig="viiii";function _glDrawElementsInstancedARB(mode,count,type,indices,primcount){GLctx["drawElementsInstanced"](mode,count,type,indices,primcount)}Module["_glDrawElementsInstancedARB"]=_glDrawElementsInstancedARB;_glDrawElementsInstancedARB.sig="viiiii";function _glVertexAttribDivisorANGLE(index,divisor){GLctx["vertexAttribDivisor"](index,divisor)}Module["_glVertexAttribDivisorANGLE"]=_glVertexAttribDivisorANGLE;_glVertexAttribDivisorANGLE.sig="vii";function _glDrawArraysInstancedANGLE(mode,first,count,primcount){GLctx["drawArraysInstanced"](mode,first,count,primcount)}Module["_glDrawArraysInstancedANGLE"]=_glDrawArraysInstancedANGLE;_glDrawArraysInstancedANGLE.sig="viiii";function _glDrawElementsInstancedANGLE(mode,count,type,indices,primcount){GLctx["drawElementsInstanced"](mode,count,type,indices,primcount)}Module["_glDrawElementsInstancedANGLE"]=_glDrawElementsInstancedANGLE;_glDrawElementsInstancedANGLE.sig="viiiii";function _glDrawBuffers(n,bufs){var bufArray=tempFixedLengthArray[n];for(var i=0;i>2]}GLctx["drawBuffers"](bufArray)}Module["_glDrawBuffers"]=_glDrawBuffers;_glDrawBuffers.sig="vii";function _glDrawBuffersEXT(n,bufs){var bufArray=tempFixedLengthArray[n];for(var i=0;i>2]}GLctx["drawBuffers"](bufArray)}Module["_glDrawBuffersEXT"]=_glDrawBuffersEXT;_glDrawBuffersEXT.sig="vii";function _glDrawBuffersWEBGL(n,bufs){var bufArray=tempFixedLengthArray[n];for(var i=0;i>2]}GLctx["drawBuffers"](bufArray)}Module["_glDrawBuffersWEBGL"]=_glDrawBuffersWEBGL;_glDrawBuffersWEBGL.sig="vii";function _glColorMask(red,green,blue,alpha){GLctx.colorMask(!!red,!!green,!!blue,!!alpha)}Module["_glColorMask"]=_glColorMask;_glColorMask.sig="viiii";function _glDepthMask(flag){GLctx.depthMask(!!flag)}Module["_glDepthMask"]=_glDepthMask;_glDepthMask.sig="vi";function _glSampleCoverage(value,invert){GLctx.sampleCoverage(value,!!invert)}Module["_glSampleCoverage"]=_glSampleCoverage;_glSampleCoverage.sig="vii";function _glMultiDrawArrays(mode,firsts,counts,drawcount){GLctx.multiDrawWebgl["multiDrawArraysWEBGL"](mode,HEAP32,firsts>>2,HEAP32,counts>>2,drawcount)}Module["_glMultiDrawArrays"]=_glMultiDrawArrays;_glMultiDrawArrays.sig="viiii";function _glMultiDrawArraysANGLE(mode,firsts,counts,drawcount){GLctx.multiDrawWebgl["multiDrawArraysWEBGL"](mode,HEAP32,firsts>>2,HEAP32,counts>>2,drawcount)}Module["_glMultiDrawArraysANGLE"]=_glMultiDrawArraysANGLE;_glMultiDrawArraysANGLE.sig="viiii";function _glMultiDrawArraysWEBGL(mode,firsts,counts,drawcount){GLctx.multiDrawWebgl["multiDrawArraysWEBGL"](mode,HEAP32,firsts>>2,HEAP32,counts>>2,drawcount)}Module["_glMultiDrawArraysWEBGL"]=_glMultiDrawArraysWEBGL;_glMultiDrawArraysWEBGL.sig="viiii";function _glMultiDrawArraysInstancedANGLE(mode,firsts,counts,instanceCounts,drawcount){GLctx.multiDrawWebgl["multiDrawArraysInstancedWEBGL"](mode,HEAP32,firsts>>2,HEAP32,counts>>2,HEAP32,instanceCounts>>2,drawcount)}Module["_glMultiDrawArraysInstancedANGLE"]=_glMultiDrawArraysInstancedANGLE;_glMultiDrawArraysInstancedANGLE.sig="viiiii";function _glMultiDrawArraysInstancedWEBGL(mode,firsts,counts,instanceCounts,drawcount){GLctx.multiDrawWebgl["multiDrawArraysInstancedWEBGL"](mode,HEAP32,firsts>>2,HEAP32,counts>>2,HEAP32,instanceCounts>>2,drawcount)}Module["_glMultiDrawArraysInstancedWEBGL"]=_glMultiDrawArraysInstancedWEBGL;_glMultiDrawArraysInstancedWEBGL.sig="viiiii";function _glMultiDrawElements(mode,counts,type,offsets,drawcount){GLctx.multiDrawWebgl["multiDrawElementsWEBGL"](mode,HEAP32,counts>>2,type,HEAP32,offsets>>2,drawcount)}Module["_glMultiDrawElements"]=_glMultiDrawElements;_glMultiDrawElements.sig="viiiii";function _glMultiDrawElementsANGLE(mode,counts,type,offsets,drawcount){GLctx.multiDrawWebgl["multiDrawElementsWEBGL"](mode,HEAP32,counts>>2,type,HEAP32,offsets>>2,drawcount)}Module["_glMultiDrawElementsANGLE"]=_glMultiDrawElementsANGLE;_glMultiDrawElementsANGLE.sig="viiiii";function _glMultiDrawElementsWEBGL(mode,counts,type,offsets,drawcount){GLctx.multiDrawWebgl["multiDrawElementsWEBGL"](mode,HEAP32,counts>>2,type,HEAP32,offsets>>2,drawcount)}Module["_glMultiDrawElementsWEBGL"]=_glMultiDrawElementsWEBGL;_glMultiDrawElementsWEBGL.sig="viiiii";function _glMultiDrawElementsInstancedANGLE(mode,counts,type,offsets,instanceCounts,drawcount){GLctx.multiDrawWebgl["multiDrawElementsInstancedWEBGL"](mode,HEAP32,counts>>2,type,HEAP32,offsets>>2,HEAP32,instanceCounts>>2,drawcount)}Module["_glMultiDrawElementsInstancedANGLE"]=_glMultiDrawElementsInstancedANGLE;_glMultiDrawElementsInstancedANGLE.sig="viiiiii";function _glMultiDrawElementsInstancedWEBGL(mode,counts,type,offsets,instanceCounts,drawcount){GLctx.multiDrawWebgl["multiDrawElementsInstancedWEBGL"](mode,HEAP32,counts>>2,type,HEAP32,offsets>>2,HEAP32,instanceCounts>>2,drawcount)}Module["_glMultiDrawElementsInstancedWEBGL"]=_glMultiDrawElementsInstancedWEBGL;_glMultiDrawElementsInstancedWEBGL.sig="viiiiii";function _glFinish(){GLctx["finish"]()}Module["_glFinish"]=_glFinish;_glFinish.sig="v";function _glFlush(){GLctx["flush"]()}Module["_glFlush"]=_glFlush;_glFlush.sig="v";function _glClearDepth(x0){GLctx["clearDepth"](x0)}Module["_glClearDepth"]=_glClearDepth;_glClearDepth.sig="vi";function _glClearDepthf(x0){GLctx["clearDepth"](x0)}Module["_glClearDepthf"]=_glClearDepthf;_glClearDepthf.sig="vi";function _glDepthFunc(x0){GLctx["depthFunc"](x0)}Module["_glDepthFunc"]=_glDepthFunc;_glDepthFunc.sig="vi";function _glEnable(x0){GLctx["enable"](x0)}Module["_glEnable"]=_glEnable;_glEnable.sig="vi";function _glDisable(x0){GLctx["disable"](x0)}Module["_glDisable"]=_glDisable;_glDisable.sig="vi";function _glFrontFace(x0){GLctx["frontFace"](x0)}Module["_glFrontFace"]=_glFrontFace;_glFrontFace.sig="vi";function _glCullFace(x0){GLctx["cullFace"](x0)}Module["_glCullFace"]=_glCullFace;_glCullFace.sig="vi";function _glClear(x0){GLctx["clear"](x0)}Module["_glClear"]=_glClear;_glClear.sig="vi";function _glLineWidth(x0){GLctx["lineWidth"](x0)}Module["_glLineWidth"]=_glLineWidth;_glLineWidth.sig="vi";function _glClearStencil(x0){GLctx["clearStencil"](x0)}Module["_glClearStencil"]=_glClearStencil;_glClearStencil.sig="vi";function _glStencilMask(x0){GLctx["stencilMask"](x0)}Module["_glStencilMask"]=_glStencilMask;_glStencilMask.sig="vi";function _glCheckFramebufferStatus(x0){return GLctx["checkFramebufferStatus"](x0)}Module["_glCheckFramebufferStatus"]=_glCheckFramebufferStatus;_glCheckFramebufferStatus.sig="ii";function _glGenerateMipmap(x0){GLctx["generateMipmap"](x0)}Module["_glGenerateMipmap"]=_glGenerateMipmap;_glGenerateMipmap.sig="vi";function _glActiveTexture(x0){GLctx["activeTexture"](x0)}Module["_glActiveTexture"]=_glActiveTexture;_glActiveTexture.sig="vi";function _glBlendEquation(x0){GLctx["blendEquation"](x0)}Module["_glBlendEquation"]=_glBlendEquation;_glBlendEquation.sig="vi";function _glIsEnabled(x0){return GLctx["isEnabled"](x0)}Module["_glIsEnabled"]=_glIsEnabled;_glIsEnabled.sig="ii";function _glBlendFunc(x0,x1){GLctx["blendFunc"](x0,x1)}Module["_glBlendFunc"]=_glBlendFunc;_glBlendFunc.sig="vii";function _glBlendEquationSeparate(x0,x1){GLctx["blendEquationSeparate"](x0,x1)}Module["_glBlendEquationSeparate"]=_glBlendEquationSeparate;_glBlendEquationSeparate.sig="vii";function _glDepthRange(x0,x1){GLctx["depthRange"](x0,x1)}Module["_glDepthRange"]=_glDepthRange;_glDepthRange.sig="vii";function _glDepthRangef(x0,x1){GLctx["depthRange"](x0,x1)}Module["_glDepthRangef"]=_glDepthRangef;_glDepthRangef.sig="vii";function _glStencilMaskSeparate(x0,x1){GLctx["stencilMaskSeparate"](x0,x1)}Module["_glStencilMaskSeparate"]=_glStencilMaskSeparate;_glStencilMaskSeparate.sig="vii";function _glHint(x0,x1){GLctx["hint"](x0,x1)}Module["_glHint"]=_glHint;_glHint.sig="vii";function _glPolygonOffset(x0,x1){GLctx["polygonOffset"](x0,x1)}Module["_glPolygonOffset"]=_glPolygonOffset;_glPolygonOffset.sig="vii";function _glVertexAttrib1f(x0,x1){GLctx["vertexAttrib1f"](x0,x1)}Module["_glVertexAttrib1f"]=_glVertexAttrib1f;_glVertexAttrib1f.sig="vii";function _glTexParameteri(x0,x1,x2){GLctx["texParameteri"](x0,x1,x2)}Module["_glTexParameteri"]=_glTexParameteri;_glTexParameteri.sig="viii";function _glTexParameterf(x0,x1,x2){GLctx["texParameterf"](x0,x1,x2)}Module["_glTexParameterf"]=_glTexParameterf;_glTexParameterf.sig="viii";function _glVertexAttrib2f(x0,x1,x2){GLctx["vertexAttrib2f"](x0,x1,x2)}Module["_glVertexAttrib2f"]=_glVertexAttrib2f;_glVertexAttrib2f.sig="viii";function _glStencilFunc(x0,x1,x2){GLctx["stencilFunc"](x0,x1,x2)}Module["_glStencilFunc"]=_glStencilFunc;_glStencilFunc.sig="viii";function _glStencilOp(x0,x1,x2){GLctx["stencilOp"](x0,x1,x2)}Module["_glStencilOp"]=_glStencilOp;_glStencilOp.sig="viii";function _glViewport(x0,x1,x2,x3){GLctx["viewport"](x0,x1,x2,x3)}Module["_glViewport"]=_glViewport;_glViewport.sig="viiii";function _glClearColor(x0,x1,x2,x3){GLctx["clearColor"](x0,x1,x2,x3)}Module["_glClearColor"]=_glClearColor;_glClearColor.sig="viiii";function _glScissor(x0,x1,x2,x3){GLctx["scissor"](x0,x1,x2,x3)}Module["_glScissor"]=_glScissor;_glScissor.sig="viiii";function _glVertexAttrib3f(x0,x1,x2,x3){GLctx["vertexAttrib3f"](x0,x1,x2,x3)}Module["_glVertexAttrib3f"]=_glVertexAttrib3f;_glVertexAttrib3f.sig="viiii";function _glRenderbufferStorage(x0,x1,x2,x3){GLctx["renderbufferStorage"](x0,x1,x2,x3)}Module["_glRenderbufferStorage"]=_glRenderbufferStorage;_glRenderbufferStorage.sig="viiii";function _glBlendFuncSeparate(x0,x1,x2,x3){GLctx["blendFuncSeparate"](x0,x1,x2,x3)}Module["_glBlendFuncSeparate"]=_glBlendFuncSeparate;_glBlendFuncSeparate.sig="viiii";function _glBlendColor(x0,x1,x2,x3){GLctx["blendColor"](x0,x1,x2,x3)}Module["_glBlendColor"]=_glBlendColor;_glBlendColor.sig="vffff";function _glStencilFuncSeparate(x0,x1,x2,x3){GLctx["stencilFuncSeparate"](x0,x1,x2,x3)}Module["_glStencilFuncSeparate"]=_glStencilFuncSeparate;_glStencilFuncSeparate.sig="viiii";function _glStencilOpSeparate(x0,x1,x2,x3){GLctx["stencilOpSeparate"](x0,x1,x2,x3)}Module["_glStencilOpSeparate"]=_glStencilOpSeparate;_glStencilOpSeparate.sig="viiii";function _glVertexAttrib4f(x0,x1,x2,x3,x4){GLctx["vertexAttrib4f"](x0,x1,x2,x3,x4)}Module["_glVertexAttrib4f"]=_glVertexAttrib4f;_glVertexAttrib4f.sig="viiiii";function _glCopyTexImage2D(x0,x1,x2,x3,x4,x5,x6,x7){GLctx["copyTexImage2D"](x0,x1,x2,x3,x4,x5,x6,x7)}Module["_glCopyTexImage2D"]=_glCopyTexImage2D;_glCopyTexImage2D.sig="viiiiiiii";function _glCopyTexSubImage2D(x0,x1,x2,x3,x4,x5,x6,x7){GLctx["copyTexSubImage2D"](x0,x1,x2,x3,x4,x5,x6,x7)}Module["_glCopyTexSubImage2D"]=_glCopyTexSubImage2D;_glCopyTexSubImage2D.sig="viiiiiiii";function _emscripten_glGenVertexArrays(n,arrays){__glGenObject(n,arrays,"createVertexArray",GL.vaos)}Module["_emscripten_glGenVertexArrays"]=_emscripten_glGenVertexArrays;_emscripten_glGenVertexArrays.sig="vii";function _emscripten_glDeleteVertexArrays(n,vaos){for(var i=0;i>2];GLctx["deleteVertexArray"](GL.vaos[id]);GL.vaos[id]=null}}Module["_emscripten_glDeleteVertexArrays"]=_emscripten_glDeleteVertexArrays;_emscripten_glDeleteVertexArrays.sig="vii";function _emscripten_glBindVertexArray(vao){GLctx["bindVertexArray"](GL.vaos[vao])}Module["_emscripten_glBindVertexArray"]=_emscripten_glBindVertexArray;_emscripten_glBindVertexArray.sig="vi";function _emscripten_glIsVertexArray(array){var vao=GL.vaos[array];if(!vao)return 0;return GLctx["isVertexArray"](vao)}Module["_emscripten_glIsVertexArray"]=_emscripten_glIsVertexArray;_emscripten_glIsVertexArray.sig="ii";function _emscripten_glVertexPointer(){throw"Legacy GL function (glVertexPointer) called. If you want legacy GL emulation, you need to compile with -s LEGACY_GL_EMULATION=1 to enable legacy GL emulation."}Module["_emscripten_glVertexPointer"]=_emscripten_glVertexPointer;function _emscripten_glMatrixMode(){throw"Legacy GL function (glMatrixMode) called. If you want legacy GL emulation, you need to compile with -s LEGACY_GL_EMULATION=1 to enable legacy GL emulation."}Module["_emscripten_glMatrixMode"]=_emscripten_glMatrixMode;function _emscripten_glBegin(){throw"Legacy GL function (glBegin) called. If you want legacy GL emulation, you need to compile with -s LEGACY_GL_EMULATION=1 to enable legacy GL emulation."}Module["_emscripten_glBegin"]=_emscripten_glBegin;function _emscripten_glLoadIdentity(){throw"Legacy GL function (glLoadIdentity) called. If you want legacy GL emulation, you need to compile with -s LEGACY_GL_EMULATION=1 to enable legacy GL emulation."}Module["_emscripten_glLoadIdentity"]=_emscripten_glLoadIdentity;function _emscripten_gluPerspective(fov,aspect,near,far){GLImmediate.matricesModified=true;GLImmediate.matrixVersion[GLImmediate.currentMatrix]=GLImmediate.matrixVersion[GLImmediate.currentMatrix]+1|0;GLImmediate.matrix[GLImmediate.currentMatrix]=GLImmediate.matrixLib.mat4.perspective(fov,aspect,near,far,GLImmediate.matrix[GLImmediate.currentMatrix])}Module["_emscripten_gluPerspective"]=_emscripten_gluPerspective;function _emscripten_gluLookAt(ex,ey,ez,cx,cy,cz,ux,uy,uz){GLImmediate.matricesModified=true;GLImmediate.matrixVersion[GLImmediate.currentMatrix]=GLImmediate.matrixVersion[GLImmediate.currentMatrix]+1|0;GLImmediate.matrixLib.mat4.lookAt(GLImmediate.matrix[GLImmediate.currentMatrix],[ex,ey,ez],[cx,cy,cz],[ux,uy,uz])}Module["_emscripten_gluLookAt"]=_emscripten_gluLookAt;function _emscripten_gluProject(objX,objY,objZ,model,proj,view,winX,winY,winZ){var inVec=new Float32Array(4);var outVec=new Float32Array(4);GLImmediate.matrixLib.mat4.multiplyVec4(HEAPF64.subarray(model>>3,model+128>>3),[objX,objY,objZ,1],outVec);GLImmediate.matrixLib.mat4.multiplyVec4(HEAPF64.subarray(proj>>3,proj+128>>3),outVec,inVec);if(inVec[3]==0){return 0}inVec[0]/=inVec[3];inVec[1]/=inVec[3];inVec[2]/=inVec[3];inVec[0]=inVec[0]*.5+.5;inVec[1]=inVec[1]*.5+.5;inVec[2]=inVec[2]*.5+.5;inVec[0]=inVec[0]*HEAP32[view+8>>2]+HEAP32[view>>2];inVec[1]=inVec[1]*HEAP32[view+12>>2]+HEAP32[view+4>>2];HEAPF64[winX>>3]=inVec[0];HEAPF64[winY>>3]=inVec[1];HEAPF64[winZ>>3]=inVec[2];return 1}Module["_emscripten_gluProject"]=_emscripten_gluProject;function _emscripten_gluUnProject(winX,winY,winZ,model,proj,view,objX,objY,objZ){var result=GLImmediate.matrixLib.mat4.unproject([winX,winY,winZ],HEAPF64.subarray(model>>3,model+128>>3),HEAPF64.subarray(proj>>3,proj+128>>3),HEAP32.subarray(view>>2,view+16>>2));if(result===null){return 0}HEAPF64[objX>>3]=result[0];HEAPF64[objY>>3]=result[1];HEAPF64[objZ>>3]=result[2];return 1}Module["_emscripten_gluUnProject"]=_emscripten_gluUnProject;function _emscripten_gluOrtho2D(left,right,bottom,top){_glOrtho(left,right,bottom,top,-1,1)}Module["_emscripten_gluOrtho2D"]=_emscripten_gluOrtho2D;function _emscripten_glVertexAttribDivisor(index,divisor){GLctx["vertexAttribDivisor"](index,divisor)}Module["_emscripten_glVertexAttribDivisor"]=_emscripten_glVertexAttribDivisor;_emscripten_glVertexAttribDivisor.sig="vii";function _emscripten_glDrawArraysInstanced(mode,first,count,primcount){GLctx["drawArraysInstanced"](mode,first,count,primcount)}Module["_emscripten_glDrawArraysInstanced"]=_emscripten_glDrawArraysInstanced;_emscripten_glDrawArraysInstanced.sig="viiii";function _emscripten_glDrawElementsInstanced(mode,count,type,indices,primcount){GLctx["drawElementsInstanced"](mode,count,type,indices,primcount)}Module["_emscripten_glDrawElementsInstanced"]=_emscripten_glDrawElementsInstanced;_emscripten_glDrawElementsInstanced.sig="viiiii";function _emscripten_glVertexAttribDivisorNV(index,divisor){GLctx["vertexAttribDivisor"](index,divisor)}Module["_emscripten_glVertexAttribDivisorNV"]=_emscripten_glVertexAttribDivisorNV;_emscripten_glVertexAttribDivisorNV.sig="vii";function _emscripten_glDrawArraysInstancedNV(mode,first,count,primcount){GLctx["drawArraysInstanced"](mode,first,count,primcount)}Module["_emscripten_glDrawArraysInstancedNV"]=_emscripten_glDrawArraysInstancedNV;_emscripten_glDrawArraysInstancedNV.sig="viiii";function _emscripten_glDrawElementsInstancedNV(mode,count,type,indices,primcount){GLctx["drawElementsInstanced"](mode,count,type,indices,primcount)}Module["_emscripten_glDrawElementsInstancedNV"]=_emscripten_glDrawElementsInstancedNV;_emscripten_glDrawElementsInstancedNV.sig="viiiii";function _emscripten_glVertexAttribDivisorEXT(index,divisor){GLctx["vertexAttribDivisor"](index,divisor)}Module["_emscripten_glVertexAttribDivisorEXT"]=_emscripten_glVertexAttribDivisorEXT;_emscripten_glVertexAttribDivisorEXT.sig="vii";function _emscripten_glDrawArraysInstancedEXT(mode,first,count,primcount){GLctx["drawArraysInstanced"](mode,first,count,primcount)}Module["_emscripten_glDrawArraysInstancedEXT"]=_emscripten_glDrawArraysInstancedEXT;_emscripten_glDrawArraysInstancedEXT.sig="viiii";function _emscripten_glDrawElementsInstancedEXT(mode,count,type,indices,primcount){GLctx["drawElementsInstanced"](mode,count,type,indices,primcount)}Module["_emscripten_glDrawElementsInstancedEXT"]=_emscripten_glDrawElementsInstancedEXT;_emscripten_glDrawElementsInstancedEXT.sig="viiiii";function _emscripten_glVertexAttribDivisorARB(index,divisor){GLctx["vertexAttribDivisor"](index,divisor)}Module["_emscripten_glVertexAttribDivisorARB"]=_emscripten_glVertexAttribDivisorARB;_emscripten_glVertexAttribDivisorARB.sig="vii";function _emscripten_glDrawArraysInstancedARB(mode,first,count,primcount){GLctx["drawArraysInstanced"](mode,first,count,primcount)}Module["_emscripten_glDrawArraysInstancedARB"]=_emscripten_glDrawArraysInstancedARB;_emscripten_glDrawArraysInstancedARB.sig="viiii";function _emscripten_glDrawElementsInstancedARB(mode,count,type,indices,primcount){GLctx["drawElementsInstanced"](mode,count,type,indices,primcount)}Module["_emscripten_glDrawElementsInstancedARB"]=_emscripten_glDrawElementsInstancedARB;_emscripten_glDrawElementsInstancedARB.sig="viiiii";function _emscripten_glDrawBuffers(n,bufs){var bufArray=tempFixedLengthArray[n];for(var i=0;i>2]}GLctx["drawBuffers"](bufArray)}Module["_emscripten_glDrawBuffers"]=_emscripten_glDrawBuffers;_emscripten_glDrawBuffers.sig="vii";function _emscripten_glDrawBuffersEXT(n,bufs){var bufArray=tempFixedLengthArray[n];for(var i=0;i>2]}GLctx["drawBuffers"](bufArray)}Module["_emscripten_glDrawBuffersEXT"]=_emscripten_glDrawBuffersEXT;_emscripten_glDrawBuffersEXT.sig="vii";function _emscripten_glMultiDrawArrays(mode,firsts,counts,drawcount){GLctx.multiDrawWebgl["multiDrawArraysWEBGL"](mode,HEAP32,firsts>>2,HEAP32,counts>>2,drawcount)}Module["_emscripten_glMultiDrawArrays"]=_emscripten_glMultiDrawArrays;_emscripten_glMultiDrawArrays.sig="viiii";function _emscripten_glMultiDrawArraysANGLE(mode,firsts,counts,drawcount){GLctx.multiDrawWebgl["multiDrawArraysWEBGL"](mode,HEAP32,firsts>>2,HEAP32,counts>>2,drawcount)}Module["_emscripten_glMultiDrawArraysANGLE"]=_emscripten_glMultiDrawArraysANGLE;_emscripten_glMultiDrawArraysANGLE.sig="viiii";function _emscripten_glMultiDrawArraysWEBGL(mode,firsts,counts,drawcount){GLctx.multiDrawWebgl["multiDrawArraysWEBGL"](mode,HEAP32,firsts>>2,HEAP32,counts>>2,drawcount)}Module["_emscripten_glMultiDrawArraysWEBGL"]=_emscripten_glMultiDrawArraysWEBGL;_emscripten_glMultiDrawArraysWEBGL.sig="viiii";function _emscripten_glMultiDrawArraysInstancedANGLE(mode,firsts,counts,instanceCounts,drawcount){GLctx.multiDrawWebgl["multiDrawArraysInstancedWEBGL"](mode,HEAP32,firsts>>2,HEAP32,counts>>2,HEAP32,instanceCounts>>2,drawcount)}Module["_emscripten_glMultiDrawArraysInstancedANGLE"]=_emscripten_glMultiDrawArraysInstancedANGLE;_emscripten_glMultiDrawArraysInstancedANGLE.sig="viiiii";function _emscripten_glMultiDrawArraysInstancedWEBGL(mode,firsts,counts,instanceCounts,drawcount){GLctx.multiDrawWebgl["multiDrawArraysInstancedWEBGL"](mode,HEAP32,firsts>>2,HEAP32,counts>>2,HEAP32,instanceCounts>>2,drawcount)}Module["_emscripten_glMultiDrawArraysInstancedWEBGL"]=_emscripten_glMultiDrawArraysInstancedWEBGL;_emscripten_glMultiDrawArraysInstancedWEBGL.sig="viiiii";function _emscripten_glMultiDrawElements(mode,counts,type,offsets,drawcount){GLctx.multiDrawWebgl["multiDrawElementsWEBGL"](mode,HEAP32,counts>>2,type,HEAP32,offsets>>2,drawcount)}Module["_emscripten_glMultiDrawElements"]=_emscripten_glMultiDrawElements;_emscripten_glMultiDrawElements.sig="viiiii";function _emscripten_glMultiDrawElementsANGLE(mode,counts,type,offsets,drawcount){GLctx.multiDrawWebgl["multiDrawElementsWEBGL"](mode,HEAP32,counts>>2,type,HEAP32,offsets>>2,drawcount)}Module["_emscripten_glMultiDrawElementsANGLE"]=_emscripten_glMultiDrawElementsANGLE;_emscripten_glMultiDrawElementsANGLE.sig="viiiii";function _emscripten_glMultiDrawElementsWEBGL(mode,counts,type,offsets,drawcount){GLctx.multiDrawWebgl["multiDrawElementsWEBGL"](mode,HEAP32,counts>>2,type,HEAP32,offsets>>2,drawcount)}Module["_emscripten_glMultiDrawElementsWEBGL"]=_emscripten_glMultiDrawElementsWEBGL;_emscripten_glMultiDrawElementsWEBGL.sig="viiiii";function _emscripten_glMultiDrawElementsInstancedANGLE(mode,counts,type,offsets,instanceCounts,drawcount){GLctx.multiDrawWebgl["multiDrawElementsInstancedWEBGL"](mode,HEAP32,counts>>2,type,HEAP32,offsets>>2,HEAP32,instanceCounts>>2,drawcount)}Module["_emscripten_glMultiDrawElementsInstancedANGLE"]=_emscripten_glMultiDrawElementsInstancedANGLE;_emscripten_glMultiDrawElementsInstancedANGLE.sig="viiiiii";function _emscripten_glMultiDrawElementsInstancedWEBGL(mode,counts,type,offsets,instanceCounts,drawcount){GLctx.multiDrawWebgl["multiDrawElementsInstancedWEBGL"](mode,HEAP32,counts>>2,type,HEAP32,offsets>>2,HEAP32,instanceCounts>>2,drawcount)}Module["_emscripten_glMultiDrawElementsInstancedWEBGL"]=_emscripten_glMultiDrawElementsInstancedWEBGL;_emscripten_glMultiDrawElementsInstancedWEBGL.sig="viiiiii";function _emscripten_glClearDepth(x0){GLctx["clearDepth"](x0)}Module["_emscripten_glClearDepth"]=_emscripten_glClearDepth;_emscripten_glClearDepth.sig="vi";function _emscripten_glDepthRange(x0,x1){GLctx["depthRange"](x0,x1)}Module["_emscripten_glDepthRange"]=_emscripten_glDepthRange;_emscripten_glDepthRange.sig="vii";function writeGLArray(arr,dst,dstLength,heapType){var len=arr.length;var writeLength=dstLength>2)+i]=arr[i]}return len}Module["writeGLArray"]=writeGLArray;function _emscripten_webgl_init_context_attributes(attributes){var a=attributes>>2;for(var i=0;i<56>>2;++i){HEAP32[a+i]=0}HEAP32[a+(0>>2)]=HEAP32[a+(4>>2)]=HEAP32[a+(12>>2)]=HEAP32[a+(16>>2)]=HEAP32[a+(32>>2)]=HEAP32[a+(40>>2)]=1}Module["_emscripten_webgl_init_context_attributes"]=_emscripten_webgl_init_context_attributes;var __emscripten_webgl_power_preferences=["default","low-power","high-performance"];Module["__emscripten_webgl_power_preferences"]=__emscripten_webgl_power_preferences;function _emscripten_webgl_do_create_context(target,attributes){var a=attributes>>2;var powerPreference=HEAP32[a+(24>>2)];var contextAttributes={"alpha":!!HEAP32[a+(0>>2)],"depth":!!HEAP32[a+(4>>2)],"stencil":!!HEAP32[a+(8>>2)],"antialias":!!HEAP32[a+(12>>2)],"premultipliedAlpha":!!HEAP32[a+(16>>2)],"preserveDrawingBuffer":!!HEAP32[a+(20>>2)],"powerPreference":__emscripten_webgl_power_preferences[powerPreference],"failIfMajorPerformanceCaveat":!!HEAP32[a+(28>>2)],majorVersion:HEAP32[a+(32>>2)],minorVersion:HEAP32[a+(36>>2)],enableExtensionsByDefault:HEAP32[a+(40>>2)],explicitSwapControl:HEAP32[a+(44>>2)],proxyContextToMainThread:HEAP32[a+(48>>2)],renderViaOffscreenBackBuffer:HEAP32[a+(52>>2)]};var canvas=findCanvasEventTarget(target);if(!canvas){return 0}if(contextAttributes.explicitSwapControl){return 0}var contextHandle=GL.createContext(canvas,contextAttributes);return contextHandle}Module["_emscripten_webgl_do_create_context"]=_emscripten_webgl_do_create_context;_emscripten_webgl_do_create_context.sig="iii";function _emscripten_webgl_create_context(a0,a1){return _emscripten_webgl_do_create_context(a0,a1)}Module["_emscripten_webgl_create_context"]=_emscripten_webgl_create_context;_emscripten_webgl_create_context.sig="iii";function _emscripten_webgl_do_get_current_context(){return GL.currentContext?GL.currentContext.handle:0}Module["_emscripten_webgl_do_get_current_context"]=_emscripten_webgl_do_get_current_context;_emscripten_webgl_do_get_current_context.sig="i";function _emscripten_webgl_get_current_context(){return _emscripten_webgl_do_get_current_context()}Module["_emscripten_webgl_get_current_context"]=_emscripten_webgl_get_current_context;_emscripten_webgl_get_current_context.sig="i";function _emscripten_webgl_do_commit_frame(){if(!GL.currentContext||!GL.currentContext.GLctx){return-3}if(!GL.currentContext.attributes.explicitSwapControl){return-3}return 0}Module["_emscripten_webgl_do_commit_frame"]=_emscripten_webgl_do_commit_frame;_emscripten_webgl_do_commit_frame.sig="i";function _emscripten_webgl_commit_frame(){return _emscripten_webgl_do_commit_frame()}Module["_emscripten_webgl_commit_frame"]=_emscripten_webgl_commit_frame;_emscripten_webgl_commit_frame.sig="i";function _emscripten_webgl_make_context_current(contextHandle){var success=GL.makeContextCurrent(contextHandle);return success?0:-5}Module["_emscripten_webgl_make_context_current"]=_emscripten_webgl_make_context_current;function _emscripten_webgl_get_drawing_buffer_size(contextHandle,width,height){var GLContext=GL.getContext(contextHandle);if(!GLContext||!GLContext.GLctx||!width||!height){return-5}HEAP32[width>>2]=GLContext.GLctx.drawingBufferWidth;HEAP32[height>>2]=GLContext.GLctx.drawingBufferHeight;return 0}Module["_emscripten_webgl_get_drawing_buffer_size"]=_emscripten_webgl_get_drawing_buffer_size;_emscripten_webgl_get_drawing_buffer_size.sig="iiii";function _emscripten_webgl_get_context_attributes(c,a){if(!a)return-5;c=GL.contexts[c];if(!c)return-3;var t=c.GLctx;if(!t)return-3;t=t.getContextAttributes();HEAP32[a>>2]=t.alpha;HEAP32[a+4>>2]=t.depth;HEAP32[a+8>>2]=t.stencil;HEAP32[a+12>>2]=t.antialias;HEAP32[a+16>>2]=t.premultipliedAlpha;HEAP32[a+20>>2]=t.preserveDrawingBuffer;var power=t["powerPreference"]&&__emscripten_webgl_power_preferences.indexOf(t["powerPreference"]);HEAP32[a+24>>2]=power;HEAP32[a+28>>2]=t.failIfMajorPerformanceCaveat;HEAP32[a+32>>2]=c.version;HEAP32[a+36>>2]=0;HEAP32[a+40>>2]=c.attributes.enableExtensionsByDefault;return 0}Module["_emscripten_webgl_get_context_attributes"]=_emscripten_webgl_get_context_attributes;_emscripten_webgl_get_context_attributes.sig="iii";function _emscripten_webgl_destroy_context(contextHandle){if(GL.currentContext==contextHandle)GL.currentContext=0;GL.deleteContext(contextHandle)}Module["_emscripten_webgl_destroy_context"]=_emscripten_webgl_destroy_context;_emscripten_webgl_destroy_context.sig="vi";function _emscripten_webgl_destroy_context_before_on_calling_thread(contextHandle){if(_emscripten_webgl_get_current_context()==contextHandle)_emscripten_webgl_make_context_current(0)}Module["_emscripten_webgl_destroy_context_before_on_calling_thread"]=_emscripten_webgl_destroy_context_before_on_calling_thread;function _emscripten_webgl_enable_extension(contextHandle,extension){var context=GL.getContext(contextHandle);var extString=UTF8ToString(extension);if(extString.indexOf("GL_")==0)extString=extString.substr(3);if(extString=="ANGLE_instanced_arrays")__webgl_enable_ANGLE_instanced_arrays(GLctx);if(extString=="OES_vertex_array_object")__webgl_enable_OES_vertex_array_object(GLctx);if(extString=="WEBGL_draw_buffers")__webgl_enable_WEBGL_draw_buffers(GLctx);if(extString=="WEBGL_multi_draw")__webgl_enable_WEBGL_multi_draw(GLctx);var ext=context.GLctx.getExtension(extString);return!!ext}Module["_emscripten_webgl_enable_extension"]=_emscripten_webgl_enable_extension;_emscripten_webgl_enable_extension.sig="iii";function _emscripten_supports_offscreencanvas(){return 0}Module["_emscripten_supports_offscreencanvas"]=_emscripten_supports_offscreencanvas;function __registerWebGlEventCallback(target,userData,useCapture,callbackfunc,eventTypeId,eventTypeString,targetThread){var webGlEventHandlerFunc=function(ev){var e=ev||event;if(wasmTable.get(callbackfunc)(eventTypeId,0,userData))e.preventDefault()};var eventHandler={target:findEventTarget(target),eventTypeString:eventTypeString,callbackfunc:callbackfunc,handlerFunc:webGlEventHandlerFunc,useCapture:useCapture};JSEvents.registerOrRemoveHandler(eventHandler)}Module["__registerWebGlEventCallback"]=__registerWebGlEventCallback;function _emscripten_set_webglcontextlost_callback_on_thread(target,userData,useCapture,callbackfunc,targetThread){__registerWebGlEventCallback(target,userData,useCapture,callbackfunc,31,"webglcontextlost",targetThread);return 0}Module["_emscripten_set_webglcontextlost_callback_on_thread"]=_emscripten_set_webglcontextlost_callback_on_thread;_emscripten_set_webglcontextlost_callback_on_thread.sig="iiiiii";function _emscripten_set_webglcontextrestored_callback_on_thread(target,userData,useCapture,callbackfunc,targetThread){__registerWebGlEventCallback(target,userData,useCapture,callbackfunc,32,"webglcontextrestored",targetThread);return 0}Module["_emscripten_set_webglcontextrestored_callback_on_thread"]=_emscripten_set_webglcontextrestored_callback_on_thread;_emscripten_set_webglcontextrestored_callback_on_thread.sig="iiiiii";function _emscripten_is_webgl_context_lost(contextHandle){return!GL.contexts[contextHandle]||GL.contexts[contextHandle].GLctx.isContextLost()}Module["_emscripten_is_webgl_context_lost"]=_emscripten_is_webgl_context_lost;_emscripten_is_webgl_context_lost.sig="ii";function _emscripten_webgl_get_supported_extensions(){return stringToNewUTF8(GLctx.getSupportedExtensions().join(" "))}Module["_emscripten_webgl_get_supported_extensions"]=_emscripten_webgl_get_supported_extensions;_emscripten_webgl_get_supported_extensions.sig="i";function _emscripten_webgl_get_program_parameter_d(program,param){return GLctx.getProgramParameter(GL.programs[program],param)}Module["_emscripten_webgl_get_program_parameter_d"]=_emscripten_webgl_get_program_parameter_d;_emscripten_webgl_get_program_parameter_d.sig="fii";function _emscripten_webgl_get_program_info_log_utf8(program){return stringToNewUTF8(GLctx.getProgramInfoLog(GL.programs[program]))}Module["_emscripten_webgl_get_program_info_log_utf8"]=_emscripten_webgl_get_program_info_log_utf8;_emscripten_webgl_get_program_info_log_utf8.sig="ii";function _emscripten_webgl_get_shader_parameter_d(shader,param){return GLctx.getShaderParameter(GL.shaders[shader],param)}Module["_emscripten_webgl_get_shader_parameter_d"]=_emscripten_webgl_get_shader_parameter_d;_emscripten_webgl_get_shader_parameter_d.sig="fii";function _emscripten_webgl_get_shader_info_log_utf8(shader){return stringToNewUTF8(GLctx.getShaderInfoLog(GL.shaders[shader]))}Module["_emscripten_webgl_get_shader_info_log_utf8"]=_emscripten_webgl_get_shader_info_log_utf8;_emscripten_webgl_get_shader_info_log_utf8.sig="ii";function _emscripten_webgl_get_shader_source_utf8(shader){return stringToNewUTF8(GLctx.getShaderSource(GL.shaders[shader]))}Module["_emscripten_webgl_get_shader_source_utf8"]=_emscripten_webgl_get_shader_source_utf8;_emscripten_webgl_get_shader_source_utf8.sig="ii";function _emscripten_webgl_get_vertex_attrib_d(index,param){return GLctx.getVertexAttrib(index,param)}Module["_emscripten_webgl_get_vertex_attrib_d"]=_emscripten_webgl_get_vertex_attrib_d;_emscripten_webgl_get_vertex_attrib_d.sig="iii";function _emscripten_webgl_get_vertex_attrib_o(index,param){var obj=GLctx.getVertexAttrib(index,param);return obj&&obj.name}Module["_emscripten_webgl_get_vertex_attrib_o"]=_emscripten_webgl_get_vertex_attrib_o;_emscripten_webgl_get_vertex_attrib_o.sig="iii";function _emscripten_webgl_get_vertex_attrib_v(index,param,dst,dstLength,dstType){return writeGLArray(GLctx.getVertexAttrib(index,param),dst,dstLength,dstType)}Module["_emscripten_webgl_get_vertex_attrib_v"]=_emscripten_webgl_get_vertex_attrib_v;_emscripten_webgl_get_vertex_attrib_v.sig="iiiiii";function _emscripten_webgl_get_uniform_d(program,location){return GLctx.getUniform(GL.programs[program],GL.uniforms[location])}Module["_emscripten_webgl_get_uniform_d"]=_emscripten_webgl_get_uniform_d;_emscripten_webgl_get_uniform_d.sig="fii";function _emscripten_webgl_get_uniform_v(program,location,dst,dstLength,dstType){return writeGLArray(GLctx.getUniform(GL.programs[program],GL.uniforms[location]),dst,dstLength,dstType)}Module["_emscripten_webgl_get_uniform_v"]=_emscripten_webgl_get_uniform_v;_emscripten_webgl_get_uniform_v.sig="iiiiii";function _emscripten_webgl_get_parameter_v(param,dst,dstLength,dstType){return writeGLArray(GLctx.getParameter(param),dst,dstLength,dstType)}Module["_emscripten_webgl_get_parameter_v"]=_emscripten_webgl_get_parameter_v;_emscripten_webgl_get_parameter_v.sig="iiiii";function _emscripten_webgl_get_parameter_d(param){return GLctx.getParameter(param)}Module["_emscripten_webgl_get_parameter_d"]=_emscripten_webgl_get_parameter_d;_emscripten_webgl_get_parameter_d.sig="fi";function _emscripten_webgl_get_parameter_o(param){var obj=GLctx.getParameter(param);return obj&&obj.name}Module["_emscripten_webgl_get_parameter_o"]=_emscripten_webgl_get_parameter_o;_emscripten_webgl_get_parameter_o.sig="ii";function _emscripten_webgl_get_parameter_utf8(param){return stringToNewUTF8(GLctx.getParameter(param))}Module["_emscripten_webgl_get_parameter_utf8"]=_emscripten_webgl_get_parameter_utf8;_emscripten_webgl_get_parameter_utf8.sig="ii";function _emscripten_webgl_get_parameter_i64v(param,dst){writeI53ToI64(dst,GLctx.getParameter(param))}Module["_emscripten_webgl_get_parameter_i64v"]=_emscripten_webgl_get_parameter_i64v;_emscripten_webgl_get_parameter_i64v.sig="vii";function _SDL_GetTicks(){return Date.now()-SDL.startTime|0}Module["_SDL_GetTicks"]=_SDL_GetTicks;_SDL_GetTicks.sig="i";function _SDL_LockSurface(surf){var surfData=SDL.surfaces[surf];surfData.locked++;if(surfData.locked>1)return 0;if(!surfData.buffer){surfData.buffer=_malloc(surfData.width*surfData.height*4);HEAP32[surf+20>>2]=surfData.buffer}HEAP32[surf+20>>2]=surfData.buffer;if(surf==SDL.screen&&Module.screenIsReadOnly&&surfData.image)return 0;if(SDL.defaults.discardOnLock){if(!surfData.image){surfData.image=surfData.ctx.createImageData(surfData.width,surfData.height)}if(!SDL.defaults.opaqueFrontBuffer)return}else{surfData.image=surfData.ctx.getImageData(0,0,surfData.width,surfData.height)}if(surf==SDL.screen&&SDL.defaults.opaqueFrontBuffer){var data=surfData.image.data;var num=data.length;for(var i=0;i>2],y:HEAP32[rect+4>>2],w:HEAP32[rect+8>>2],h:HEAP32[rect+12>>2]}},updateRect:function(rect,r){HEAP32[rect>>2]=r.x;HEAP32[rect+4>>2]=r.y;HEAP32[rect+8>>2]=r.w;HEAP32[rect+12>>2]=r.h},intersectionOfRects:function(first,second){var leftX=Math.max(first.x,second.x);var leftY=Math.max(first.y,second.y);var rightX=Math.min(first.x+first.w,second.x+second.w);var rightY=Math.min(first.y+first.h,second.y+second.h);return{x:leftX,y:leftY,w:Math.max(leftX,rightX)-leftX,h:Math.max(leftY,rightY)-leftY}},checkPixelFormat:function(fmt){},loadColorToCSSRGB:function(color){var rgba=HEAP32[color>>2];return"rgb("+(rgba&255)+","+(rgba>>8&255)+","+(rgba>>16&255)+")"},loadColorToCSSRGBA:function(color){var rgba=HEAP32[color>>2];return"rgba("+(rgba&255)+","+(rgba>>8&255)+","+(rgba>>16&255)+","+(rgba>>24&255)/255+")"},translateColorToCSSRGBA:function(rgba){return"rgba("+(rgba&255)+","+(rgba>>8&255)+","+(rgba>>16&255)+","+(rgba>>>24)/255+")"},translateRGBAToCSSRGBA:function(r,g,b,a){return"rgba("+(r&255)+","+(g&255)+","+(b&255)+","+(a&255)/255+")"},translateRGBAToColor:function(r,g,b,a){return r|g<<8|b<<16|a<<24},makeSurface:function(width,height,flags,usePageCanvas,source,rmask,gmask,bmask,amask){flags=flags||0;var is_SDL_HWSURFACE=flags&1;var is_SDL_HWPALETTE=flags&2097152;var is_SDL_OPENGL=flags&67108864;var surf=_malloc(60);var pixelFormat=_malloc(44);var bpp=is_SDL_HWPALETTE?1:4;var buffer=0;if(!is_SDL_HWSURFACE&&!is_SDL_OPENGL){buffer=_malloc(width*height*4)}HEAP32[surf>>2]=flags;HEAP32[surf+4>>2]=pixelFormat;HEAP32[surf+8>>2]=width;HEAP32[surf+12>>2]=height;HEAP32[surf+16>>2]=width*bpp;HEAP32[surf+20>>2]=buffer;HEAP32[surf+36>>2]=0;HEAP32[surf+40>>2]=0;HEAP32[surf+44>>2]=Module["canvas"].width;HEAP32[surf+48>>2]=Module["canvas"].height;HEAP32[surf+56>>2]=1;HEAP32[pixelFormat>>2]=-2042224636;HEAP32[pixelFormat+4>>2]=0;HEAP8[pixelFormat+8>>0]=bpp*8;HEAP8[pixelFormat+9>>0]=bpp;HEAP32[pixelFormat+12>>2]=rmask||255;HEAP32[pixelFormat+16>>2]=gmask||65280;HEAP32[pixelFormat+20>>2]=bmask||16711680;HEAP32[pixelFormat+24>>2]=amask||4278190080;SDL.GL=SDL.GL||is_SDL_OPENGL;var canvas;if(!usePageCanvas){if(SDL.canvasPool.length>0){canvas=SDL.canvasPool.pop()}else{canvas=document.createElement("canvas")}canvas.width=width;canvas.height=height}else{canvas=Module["canvas"]}var webGLContextAttributes={antialias:SDL.glAttributes[13]!=0&&SDL.glAttributes[14]>1,depth:SDL.glAttributes[6]>0,stencil:SDL.glAttributes[7]>0,alpha:SDL.glAttributes[3]>0};var ctx=Browser.createContext(canvas,is_SDL_OPENGL,usePageCanvas,webGLContextAttributes);SDL.surfaces[surf]={width:width,height:height,canvas:canvas,ctx:ctx,surf:surf,buffer:buffer,pixelFormat:pixelFormat,alpha:255,flags:flags,locked:0,usePageCanvas:usePageCanvas,source:source,isFlagSet:function(flag){return flags&flag}};return surf},copyIndexedColorData:function(surfData,rX,rY,rW,rH){if(!surfData.colors){return}var fullWidth=Module["canvas"].width;var fullHeight=Module["canvas"].height;var startX=rX||0;var startY=rY||0;var endX=(rW||fullWidth-startX)+startX;var endY=(rH||fullHeight-startY)+startY;var buffer=surfData.buffer;if(!surfData.image.data32){surfData.image.data32=new Uint32Array(surfData.image.data.buffer)}var data32=surfData.image.data32;var colors32=surfData.colors32;for(var y=startY;y>0]]}}},freeSurface:function(surf){var refcountPointer=surf+56;var refcount=HEAP32[refcountPointer>>2];if(refcount>1){HEAP32[refcountPointer>>2]=refcount-1;return}var info=SDL.surfaces[surf];if(!info.usePageCanvas&&info.canvas)SDL.canvasPool.push(info.canvas);if(info.buffer)_free(info.buffer);_free(info.pixelFormat);_free(surf);SDL.surfaces[surf]=null;if(surf===SDL.screen){SDL.screen=null}},blitSurface:function(src,srcrect,dst,dstrect,scale){var srcData=SDL.surfaces[src];var dstData=SDL.surfaces[dst];var sr,dr;if(srcrect){sr=SDL.loadRect(srcrect)}else{sr={x:0,y:0,w:srcData.width,h:srcData.height}}if(dstrect){dr=SDL.loadRect(dstrect)}else{dr={x:0,y:0,w:srcData.width,h:srcData.height}}if(dstData.clipRect){var widthScale=!scale||sr.w===0?1:sr.w/dr.w;var heightScale=!scale||sr.h===0?1:sr.h/dr.h;dr=SDL.intersectionOfRects(dstData.clipRect,dr);sr.w=dr.w*widthScale;sr.h=dr.h*heightScale;if(dstrect){SDL.updateRect(dstrect,dr)}}var blitw,blith;if(scale){blitw=dr.w;blith=dr.h}else{blitw=sr.w;blith=sr.h}if(sr.w===0||sr.h===0||blitw===0||blith===0){return 0}var oldAlpha=dstData.ctx.globalAlpha;dstData.ctx.globalAlpha=srcData.alpha/255;dstData.ctx.drawImage(srcData.canvas,sr.x,sr.y,sr.w,sr.h,dr.x,dr.y,blitw,blith);dstData.ctx.globalAlpha=oldAlpha;if(dst!=SDL.screen){warnOnce("WARNING: copying canvas data to memory for compatibility");_SDL_LockSurface(dst);dstData.locked--}return 0},downFingers:{},savedKeydown:null,receiveEvent:function(event){function unpressAllPressedKeys(){for(var code in SDL.keyboardMap){SDL.events.push({type:"keyup",keyCode:SDL.keyboardMap[code]})}}switch(event.type){case"touchstart":case"touchmove":{event.preventDefault();var touches=[];if(event.type==="touchstart"){for(var i=0;i0?Math.max(delta,1):Math.min(delta,-1);var button=delta>0?3:4;SDL.events.push({type:"mousedown",button:button,pageX:event.pageX,pageY:event.pageY});SDL.events.push({type:"mouseup",button:button,pageX:event.pageX,pageY:event.pageY});SDL.events.push({type:"wheel",deltaX:0,deltaY:delta});event.preventDefault();break;case"mousemove":if(SDL.DOMButtons[0]===1){SDL.events.push({type:"touchmove",touch:{identifier:0,deviceID:-1,pageX:event.pageX,pageY:event.pageY}})}if(Browser.pointerLock){if("mozMovementX"in event){event["movementX"]=event["mozMovementX"];event["movementY"]=event["mozMovementY"]}if(event["movementX"]==0&&event["movementY"]==0){event.preventDefault();return}}case"keydown":case"keyup":case"keypress":case"mousedown":case"mouseup":if(event.type!=="keydown"||!SDL_unicode()&&!SDL.textInput||(event.keyCode===8||event.keyCode===9)){event.preventDefault()}if(event.type=="mousedown"){SDL.DOMButtons[event.button]=1;SDL.events.push({type:"touchstart",touch:{identifier:0,deviceID:-1,pageX:event.pageX,pageY:event.pageY}})}else if(event.type=="mouseup"){if(!SDL.DOMButtons[event.button]){return}SDL.events.push({type:"touchend",touch:{identifier:0,deviceID:-1,pageX:event.pageX,pageY:event.pageY}});SDL.DOMButtons[event.button]=0}if(event.type==="keydown"||event.type==="mousedown"){SDL.canRequestFullscreen=true}else if(event.type==="keyup"||event.type==="mouseup"){if(SDL.isRequestingFullscreen){Module["requestFullscreen"](true,true);SDL.isRequestingFullscreen=false}SDL.canRequestFullscreen=false}if(event.type==="keypress"&&SDL.savedKeydown){SDL.savedKeydown.keypressCharCode=event.charCode;SDL.savedKeydown=null}else if(event.type==="keydown"){SDL.savedKeydown=event}if(event.type!=="keypress"||SDL.textInput){SDL.events.push(event)}break;case"mouseout":for(var i=0;i<3;i++){if(SDL.DOMButtons[i]){SDL.events.push({type:"mouseup",button:i,pageX:event.pageX,pageY:event.pageY});SDL.DOMButtons[i]=0}}event.preventDefault();break;case"focus":SDL.events.push(event);event.preventDefault();break;case"blur":SDL.events.push(event);unpressAllPressedKeys();event.preventDefault();break;case"visibilitychange":SDL.events.push({type:"visibilitychange",visible:!document.hidden});unpressAllPressedKeys();event.preventDefault();break;case"unload":if(Browser.mainLoop.runner){SDL.events.push(event);Browser.mainLoop.runner()}return;case"resize":SDL.events.push(event);if(event.preventDefault){event.preventDefault()}break}if(SDL.events.length>=1e4){err("SDL event queue full, dropping events");SDL.events=SDL.events.slice(0,1e4)}SDL.flushEventsToHandler();return},lookupKeyCodeForEvent:function(event){var code=event.keyCode;if(code>=65&&code<=90){code+=32}else{code=SDL.keyCodes[event.keyCode]||event.keyCode;if(event.location===2&&code>=(224|1<<10)&&code<=(227|1<<10)){code+=4}}return code},handleEvent:function(event){if(event.handled)return;event.handled=true;switch(event.type){case"touchstart":case"touchend":case"touchmove":{Browser.calculateMouseEvent(event);break}case"keydown":case"keyup":{var down=event.type==="keydown";var code=SDL.lookupKeyCodeForEvent(event);HEAP8[SDL.keyboardState+code>>0]=down;SDL.modState=(HEAP8[SDL.keyboardState+1248>>0]?64:0)|(HEAP8[SDL.keyboardState+1249>>0]?1:0)|(HEAP8[SDL.keyboardState+1250>>0]?256:0)|(HEAP8[SDL.keyboardState+1252>>0]?128:0)|(HEAP8[SDL.keyboardState+1253>>0]?2:0)|(HEAP8[SDL.keyboardState+1254>>0]?512:0);if(down){SDL.keyboardMap[code]=event.keyCode}else{delete SDL.keyboardMap[code]}break}case"mousedown":case"mouseup":if(event.type=="mousedown"){SDL.buttonState|=1<0){if(SDL.makeCEvent(SDL.events.shift(),ptr)!==false)return 1}return 0}else{return SDL.events.length>0}},makeCEvent:function(event,ptr){if(typeof event==="number"){_memcpy(ptr,event,28);_free(event);return}SDL.handleEvent(event);switch(event.type){case"keydown":case"keyup":{var down=event.type==="keydown";var key=SDL.lookupKeyCodeForEvent(event);var scan;if(key>=1024){scan=key-1024}else{scan=SDL.scanCodes[key]||key}HEAP32[ptr>>2]=SDL.DOMEventToSDLEvent[event.type];HEAP8[ptr+8>>0]=down?1:0;HEAP8[ptr+9>>0]=0;HEAP32[ptr+12>>2]=scan;HEAP32[ptr+16>>2]=key;HEAP16[ptr+20>>1]=SDL.modState;HEAP32[ptr+24>>2]=event.keypressCharCode||key;break}case"keypress":{HEAP32[ptr>>2]=SDL.DOMEventToSDLEvent[event.type];var cStr=intArrayFromString(String.fromCharCode(event.charCode));for(var i=0;i>0]=cStr[i]}break}case"mousedown":case"mouseup":case"mousemove":{if(event.type!="mousemove"){var down=event.type==="mousedown";HEAP32[ptr>>2]=SDL.DOMEventToSDLEvent[event.type];HEAP32[ptr+4>>2]=0;HEAP32[ptr+8>>2]=0;HEAP32[ptr+12>>2]=0;HEAP8[ptr+16>>0]=event.button+1;HEAP8[ptr+17>>0]=down?1:0;HEAP32[ptr+20>>2]=Browser.mouseX;HEAP32[ptr+24>>2]=Browser.mouseY}else{HEAP32[ptr>>2]=SDL.DOMEventToSDLEvent[event.type];HEAP32[ptr+4>>2]=0;HEAP32[ptr+8>>2]=0;HEAP32[ptr+12>>2]=0;HEAP32[ptr+16>>2]=SDL.buttonState;HEAP32[ptr+20>>2]=Browser.mouseX;HEAP32[ptr+24>>2]=Browser.mouseY;HEAP32[ptr+28>>2]=Browser.mouseMovementX;HEAP32[ptr+32>>2]=Browser.mouseMovementY}break}case"wheel":{HEAP32[ptr>>2]=SDL.DOMEventToSDLEvent[event.type];HEAP32[ptr+16>>2]=event.deltaX;HEAP32[ptr+20>>2]=event.deltaY;break}case"touchstart":case"touchend":case"touchmove":{var touch=event.touch;if(!Browser.touches[touch.identifier])break;var w=Module["canvas"].width;var h=Module["canvas"].height;var x=Browser.touches[touch.identifier].x/w;var y=Browser.touches[touch.identifier].y/h;var lx=Browser.lastTouches[touch.identifier].x/w;var ly=Browser.lastTouches[touch.identifier].y/h;var dx=x-lx;var dy=y-ly;if(touch["deviceID"]===undefined)touch.deviceID=SDL.TOUCH_DEFAULT_ID;if(dx===0&&dy===0&&event.type==="touchmove")return false;HEAP32[ptr>>2]=SDL.DOMEventToSDLEvent[event.type];HEAP32[ptr+4>>2]=_SDL_GetTicks();tempI64=[touch.deviceID>>>0,(tempDouble=touch.deviceID,+Math.abs(tempDouble)>=1?tempDouble>0?(Math.min(+Math.floor(tempDouble/4294967296),4294967295)|0)>>>0:~~+Math.ceil((tempDouble-+(~~tempDouble>>>0))/4294967296)>>>0:0)],HEAP32[ptr+8>>2]=tempI64[0],HEAP32[ptr+12>>2]=tempI64[1];tempI64=[touch.identifier>>>0,(tempDouble=touch.identifier,+Math.abs(tempDouble)>=1?tempDouble>0?(Math.min(+Math.floor(tempDouble/4294967296),4294967295)|0)>>>0:~~+Math.ceil((tempDouble-+(~~tempDouble>>>0))/4294967296)>>>0:0)],HEAP32[ptr+16>>2]=tempI64[0],HEAP32[ptr+20>>2]=tempI64[1];HEAPF32[ptr+24>>2]=x;HEAPF32[ptr+28>>2]=y;HEAPF32[ptr+32>>2]=dx;HEAPF32[ptr+36>>2]=dy;if(touch.force!==undefined){HEAPF32[ptr+40>>2]=touch.force}else{HEAPF32[ptr+40>>2]=event.type=="touchend"?0:1}break}case"unload":{HEAP32[ptr>>2]=SDL.DOMEventToSDLEvent[event.type];break}case"resize":{HEAP32[ptr>>2]=SDL.DOMEventToSDLEvent[event.type];HEAP32[ptr+4>>2]=event.w;HEAP32[ptr+8>>2]=event.h;break}case"joystick_button_up":case"joystick_button_down":{var state=event.type==="joystick_button_up"?0:1;HEAP32[ptr>>2]=SDL.DOMEventToSDLEvent[event.type];HEAP8[ptr+4>>0]=event.index;HEAP8[ptr+5>>0]=event.button;HEAP8[ptr+6>>0]=state;break}case"joystick_axis_motion":{HEAP32[ptr>>2]=SDL.DOMEventToSDLEvent[event.type];HEAP8[ptr+4>>0]=event.index;HEAP8[ptr+5>>0]=event.axis;HEAP32[ptr+8>>2]=SDL.joystickAxisValueConversion(event.value);break}case"focus":{var SDL_WINDOWEVENT_FOCUS_GAINED=12;HEAP32[ptr>>2]=SDL.DOMEventToSDLEvent[event.type];HEAP32[ptr+4>>2]=0;HEAP8[ptr+8>>0]=SDL_WINDOWEVENT_FOCUS_GAINED;break}case"blur":{var SDL_WINDOWEVENT_FOCUS_LOST=13;HEAP32[ptr>>2]=SDL.DOMEventToSDLEvent[event.type];HEAP32[ptr+4>>2]=0;HEAP8[ptr+8>>0]=SDL_WINDOWEVENT_FOCUS_LOST;break}case"visibilitychange":{var SDL_WINDOWEVENT_SHOWN=1;var SDL_WINDOWEVENT_HIDDEN=2;var visibilityEventID=event.visible?SDL_WINDOWEVENT_SHOWN:SDL_WINDOWEVENT_HIDDEN;HEAP32[ptr>>2]=SDL.DOMEventToSDLEvent[event.type];HEAP32[ptr+4>>2]=0;HEAP8[ptr+8>>0]=visibilityEventID;break}default:throw"Unhandled SDL event: "+event.type}},makeFontString:function(height,fontName){if(fontName.charAt(0)!="'"&&fontName.charAt(0)!='"'){fontName='"'+fontName+'"'}return height+"px "+fontName+", serif"},estimateTextWidth:function(fontData,text){var h=fontData.size;var fontString=SDL.makeFontString(h,fontData.name);var tempCtx=SDL_ttfContext();tempCtx.font=fontString;var ret=tempCtx.measureText(text).width|0;return ret},allocateChannels:function(num){if(SDL.numChannels&&SDL.numChannels>=num&&num!=0)return;SDL.numChannels=num;SDL.channels=[];for(var i=0;i>1]/32768}}else if(audio.format==8){for(var j=0;j>0];channelData[j]=(v>=0?v-128:v+128)/128}}else if(audio.format==33056){for(var j=0;j>2]}}else{throw"Invalid SDL audio format "+audio.format+"!"}}},debugSurface:function(surfData){console.log("dumping surface "+[surfData.surf,surfData.source,surfData.width,surfData.height]);var image=surfData.ctx.getImageData(0,0,surfData.width,surfData.height);var data=image.data;var num=Math.min(surfData.width,surfData.height);for(var i=0;i0}},queryJoysticks:function(){for(var joystick in SDL.lastJoystickState){var state=SDL.getGamepad(joystick-1);var prevState=SDL.lastJoystickState[joystick];if(typeof state==="undefined")return;if(state===null)return;if(typeof state.timestamp!=="number"||state.timestamp!==prevState.timestamp||!state.timestamp){var i;for(i=0;ideviceIndex&&deviceIndex>=0){return gamepads[deviceIndex]}return null}};Module["SDL"]=SDL;function SDL_unicode(){return SDL.unicode}Module["SDL_unicode"]=SDL_unicode;function _SDL_Linked_Version(){if(SDL.version===null){SDL.version=_malloc(3);HEAP8[SDL.version+0>>0]=1;HEAP8[SDL.version+1>>0]=3;HEAP8[SDL.version+2>>0]=0}return SDL.version}Module["_SDL_Linked_Version"]=_SDL_Linked_Version;_SDL_Linked_Version.sig="i";function _SDL_Init(initFlags){SDL.startTime=Date.now();SDL.initFlags=initFlags;if(!Module["doNotCaptureKeyboard"]){var keyboardListeningElement=Module["keyboardListeningElement"]||document;keyboardListeningElement.addEventListener("keydown",SDL.receiveEvent);keyboardListeningElement.addEventListener("keyup",SDL.receiveEvent);keyboardListeningElement.addEventListener("keypress",SDL.receiveEvent);window.addEventListener("focus",SDL.receiveEvent);window.addEventListener("blur",SDL.receiveEvent);document.addEventListener("visibilitychange",SDL.receiveEvent)}window.addEventListener("unload",SDL.receiveEvent);SDL.keyboardState=_malloc(65536);_memset(SDL.keyboardState,0,65536);SDL.DOMEventToSDLEvent["keydown"]=768;SDL.DOMEventToSDLEvent["keyup"]=769;SDL.DOMEventToSDLEvent["keypress"]=771;SDL.DOMEventToSDLEvent["mousedown"]=1025;SDL.DOMEventToSDLEvent["mouseup"]=1026;SDL.DOMEventToSDLEvent["mousemove"]=1024;SDL.DOMEventToSDLEvent["wheel"]=1027;SDL.DOMEventToSDLEvent["touchstart"]=1792;SDL.DOMEventToSDLEvent["touchend"]=1793;SDL.DOMEventToSDLEvent["touchmove"]=1794;SDL.DOMEventToSDLEvent["unload"]=256;SDL.DOMEventToSDLEvent["resize"]=28673;SDL.DOMEventToSDLEvent["visibilitychange"]=512;SDL.DOMEventToSDLEvent["focus"]=512;SDL.DOMEventToSDLEvent["blur"]=512;SDL.DOMEventToSDLEvent["joystick_axis_motion"]=1536;SDL.DOMEventToSDLEvent["joystick_button_down"]=1539;SDL.DOMEventToSDLEvent["joystick_button_up"]=1540;return 0}Module["_SDL_Init"]=_SDL_Init;_SDL_Init.sig="ii";function _SDL_WasInit(){if(SDL.startTime===null){_SDL_Init()}return 1}Module["_SDL_WasInit"]=_SDL_WasInit;_SDL_WasInit.sig="i";function _SDL_GetVideoInfo(){var ret=_malloc(5*4);HEAP32[ret+0>>2]=0;HEAP32[ret+4>>2]=0;HEAP32[ret+8>>2]=0;HEAP32[ret+12>>2]=Module["canvas"].width;HEAP32[ret+16>>2]=Module["canvas"].height;return ret}Module["_SDL_GetVideoInfo"]=_SDL_GetVideoInfo;_SDL_GetVideoInfo.sig="i";function _SDL_ListModes(format,flags){return-1}Module["_SDL_ListModes"]=_SDL_ListModes;function _SDL_VideoModeOK(width,height,depth,flags){return depth}Module["_SDL_VideoModeOK"]=_SDL_VideoModeOK;function _SDL_VideoDriverName(buf,max_size){if(SDL.startTime===null){return 0}var driverName=[101,109,115,99,114,105,112,116,101,110,95,115,100,108,95,100,114,105,118,101,114];var index=0;var size=driverName.length;if(max_size<=size){size=max_size-1}while(index>0]=value;index++}HEAP8[buf+index>>0]=0;return buf}Module["_SDL_VideoDriverName"]=_SDL_VideoDriverName;_SDL_VideoDriverName.sig="iii";function _SDL_AudioDriverName(buf,max_size){return _SDL_VideoDriverName(buf,max_size)}Module["_SDL_AudioDriverName"]=_SDL_AudioDriverName;function _SDL_SetVideoMode(width,height,depth,flags){["touchstart","touchend","touchmove","mousedown","mouseup","mousemove","DOMMouseScroll","mousewheel","wheel","mouseout"].forEach(function(event){Module["canvas"].addEventListener(event,SDL.receiveEvent,true)});var canvas=Module["canvas"];if(width==0&&height==0){width=canvas.width;height=canvas.height}if(!SDL.addedResizeListener){SDL.addedResizeListener=true;Browser.resizeListeners.push(function(w,h){if(!SDL.settingVideoMode){SDL.receiveEvent({type:"resize",w:w,h:h})}})}SDL.settingVideoMode=true;Browser.setCanvasSize(width,height);SDL.settingVideoMode=false;if(SDL.screen){SDL.freeSurface(SDL.screen);assert(!SDL.screen)}if(SDL.GL)flags=flags|67108864;SDL.screen=SDL.makeSurface(width,height,flags,true,"screen");return SDL.screen}Module["_SDL_SetVideoMode"]=_SDL_SetVideoMode;_SDL_SetVideoMode.sig="iiiii";function _SDL_GetVideoSurface(){return SDL.screen}Module["_SDL_GetVideoSurface"]=_SDL_GetVideoSurface;_SDL_GetVideoSurface.sig="i";function _SDL_AudioQuit(){for(var i=0;i0){return}if(surfData.isFlagSet(2097152)){SDL.copyIndexedColorData(surfData)}else if(!surfData.colors){var data=surfData.image.data;var buffer=surfData.buffer;assert(buffer%4==0,"Invalid buffer offset: "+buffer);var src=buffer>>2;var dst=0;var isScreen=surf==SDL.screen;var num;if(typeof CanvasPixelArray!=="undefined"&&data instanceof CanvasPixelArray){num=data.length;while(dst>8&255;data[dst+2]=val>>16&255;data[dst+3]=isScreen?255:val>>24&255;src++;dst+=4}}else{var data32=new Uint32Array(data.buffer);if(isScreen&&SDL.defaults.opaqueFrontBuffer){num=data32.length;data32.set(HEAP32.subarray(src,src+num));var data8=new Uint8Array(data.buffer);var i=3;var j=i+4*num;if(num%8==0){while(i>0]*4;var start=base+x*4;data[start]=colors[val];data[start+1]=colors[val+1];data[start+2]=colors[val+2]}s+=width*3}}surfData.ctx.putImageData(surfData.image,0,0)}Module["_SDL_UnlockSurface"]=_SDL_UnlockSurface;_SDL_UnlockSurface.sig="vi";function _SDL_Flip(surf){}Module["_SDL_Flip"]=_SDL_Flip;function _SDL_UpdateRect(surf,x,y,w,h){}Module["_SDL_UpdateRect"]=_SDL_UpdateRect;function _SDL_UpdateRects(surf,numrects,rects){}Module["_SDL_UpdateRects"]=_SDL_UpdateRects;function _SDL_Delay(delay){if(!ENVIRONMENT_IS_WORKER)abort("SDL_Delay called on the main thread! Potential infinite loop, quitting. (consider building with async support like ASYNCIFY)");var now=Date.now();while(Date.now()-now>2]=65536}return SDL.keyboardState}Module["_SDL_GetKeyboardState"]=_SDL_GetKeyboardState;_SDL_GetKeyboardState.sig="ii";function _SDL_GetKeyState(){return _SDL_GetKeyboardState()}Module["_SDL_GetKeyState"]=_SDL_GetKeyState;function _SDL_GetKeyName(key){if(!SDL.keyName){SDL.keyName=allocate(intArrayFromString("unknown key"),ALLOC_NORMAL)}return SDL.keyName}Module["_SDL_GetKeyName"]=_SDL_GetKeyName;_SDL_GetKeyName.sig="ii";function _SDL_GetModState(){return SDL.modState}Module["_SDL_GetModState"]=_SDL_GetModState;_SDL_GetModState.sig="i";function _SDL_GetMouseState(x,y){if(x)HEAP32[x>>2]=Browser.mouseX;if(y)HEAP32[y>>2]=Browser.mouseY;return SDL.buttonState}Module["_SDL_GetMouseState"]=_SDL_GetMouseState;_SDL_GetMouseState.sig="iii";function _SDL_WarpMouse(x,y){return}Module["_SDL_WarpMouse"]=_SDL_WarpMouse;_SDL_WarpMouse.sig="vii";function _SDL_ShowCursor(toggle){switch(toggle){case 0:if(Browser.isFullscreen){Module["canvas"].requestPointerLock();return 0}else{return 1}break;case 1:Module["canvas"].exitPointerLock();return 1;break;case-1:return!Browser.pointerLock;break;default:console.log("SDL_ShowCursor called with unknown toggle parameter value: "+toggle+".");break}}Module["_SDL_ShowCursor"]=_SDL_ShowCursor;_SDL_ShowCursor.sig="ii";function _SDL_GetError(){if(!SDL.errorMessage){SDL.errorMessage=allocate(intArrayFromString("unknown SDL-emscripten error"),ALLOC_NORMAL)}return SDL.errorMessage}Module["_SDL_GetError"]=_SDL_GetError;_SDL_GetError.sig="i";function _SDL_SetError(){}Module["_SDL_SetError"]=_SDL_SetError;function _SDL_malloc(size){return _malloc(size)}Module["_SDL_malloc"]=_SDL_malloc;_SDL_malloc.sig="ii";function _SDL_free(ptr){_free(ptr)}Module["_SDL_free"]=_SDL_free;_SDL_free.sig="vi";function _SDL_CreateRGBSurface(flags,width,height,depth,rmask,gmask,bmask,amask){return SDL.makeSurface(width,height,flags,false,"CreateRGBSurface",rmask,gmask,bmask,amask)}Module["_SDL_CreateRGBSurface"]=_SDL_CreateRGBSurface;_SDL_CreateRGBSurface.sig="iiiiiiiii";function _SDL_CreateRGBSurfaceFrom(pixels,width,height,depth,pitch,rmask,gmask,bmask,amask){var surf=SDL.makeSurface(width,height,0,false,"CreateRGBSurfaceFrom",rmask,gmask,bmask,amask);if(depth!==32){console.log("TODO: Partially unimplemented SDL_CreateRGBSurfaceFrom called!");return surf}var data=SDL.surfaces[surf];var image=data.ctx.createImageData(width,height);var pitchOfDst=width*4;for(var row=0;row>0]}}data.ctx.putImageData(image,0,0);return surf}Module["_SDL_CreateRGBSurfaceFrom"]=_SDL_CreateRGBSurfaceFrom;_SDL_CreateRGBSurfaceFrom.sig="iiiiiiiiii";function _SDL_ConvertSurface(surf,format,flags){if(format){SDL.checkPixelFormat(format)}var oldData=SDL.surfaces[surf];var ret=SDL.makeSurface(oldData.width,oldData.height,oldData.flags,false,"copy:"+oldData.source);var newData=SDL.surfaces[ret];newData.ctx.globalCompositeOperation="copy";newData.ctx.drawImage(oldData.canvas,0,0);newData.ctx.globalCompositeOperation=oldData.ctx.globalCompositeOperation;return ret}Module["_SDL_ConvertSurface"]=_SDL_ConvertSurface;_SDL_ConvertSurface.sig="iiii";function _SDL_DisplayFormatAlpha(surf){return _SDL_ConvertSurface(surf)}Module["_SDL_DisplayFormatAlpha"]=_SDL_DisplayFormatAlpha;function _SDL_FreeSurface(surf){if(surf)SDL.freeSurface(surf)}Module["_SDL_FreeSurface"]=_SDL_FreeSurface;_SDL_FreeSurface.sig="vi";function _SDL_UpperBlit(src,srcrect,dst,dstrect){return SDL.blitSurface(src,srcrect,dst,dstrect,false)}Module["_SDL_UpperBlit"]=_SDL_UpperBlit;_SDL_UpperBlit.sig="iiiii";function _SDL_UpperBlitScaled(src,srcrect,dst,dstrect){return SDL.blitSurface(src,srcrect,dst,dstrect,true)}Module["_SDL_UpperBlitScaled"]=_SDL_UpperBlitScaled;_SDL_UpperBlitScaled.sig="iiiii";function _SDL_LowerBlit(a0,a1,a2,a3){return _SDL_UpperBlit(a0,a1,a2,a3)}Module["_SDL_LowerBlit"]=_SDL_LowerBlit;_SDL_LowerBlit.sig="iiiii";function _SDL_LowerBlitScaled(a0,a1,a2,a3){return _SDL_UpperBlitScaled(a0,a1,a2,a3)}Module["_SDL_LowerBlitScaled"]=_SDL_LowerBlitScaled;_SDL_LowerBlitScaled.sig="iiiii";function _SDL_GetClipRect(surf,rect){assert(rect);var surfData=SDL.surfaces[surf];var r=surfData.clipRect||{x:0,y:0,w:surfData.width,h:surfData.height};SDL.updateRect(rect,r)}Module["_SDL_GetClipRect"]=_SDL_GetClipRect;_SDL_GetClipRect.sig="vii";function _SDL_SetClipRect(surf,rect){var surfData=SDL.surfaces[surf];if(rect){surfData.clipRect=SDL.intersectionOfRects({x:0,y:0,w:surfData.width,h:surfData.height},SDL.loadRect(rect))}else{delete surfData.clipRect}}Module["_SDL_SetClipRect"]=_SDL_SetClipRect;_SDL_SetClipRect.sig="vii";function _SDL_FillRect(surf,rect,color){var surfData=SDL.surfaces[surf];assert(!surfData.locked);if(surfData.isFlagSet(2097152)){color=surfData.colors32[color]}var r=rect?SDL.loadRect(rect):{x:0,y:0,w:surfData.width,h:surfData.height};if(surfData.clipRect){r=SDL.intersectionOfRects(surfData.clipRect,r);if(rect){SDL.updateRect(rect,r)}}surfData.ctx.save();surfData.ctx.fillStyle=SDL.translateColorToCSSRGBA(color);surfData.ctx.fillRect(r.x,r.y,r.w,r.h);surfData.ctx.restore();return 0}Module["_SDL_FillRect"]=_SDL_FillRect;_SDL_FillRect.sig="iiii";function _SDL_BlitSurface(src,srcrect,dst,dstrect){return SDL.blitSurface(src,srcrect,dst,dstrect,false)}Module["_SDL_BlitSurface"]=_SDL_BlitSurface;_SDL_BlitSurface.sig="iiiii";function _SDL_BlitScaled(src,srcrect,dst,dstrect){return SDL.blitSurface(src,srcrect,dst,dstrect,true)}Module["_SDL_BlitScaled"]=_SDL_BlitScaled;_SDL_BlitScaled.sig="iiiii";function _zoomSurface(src,x,y,smooth){var srcData=SDL.surfaces[src];var w=srcData.width*x;var h=srcData.height*y;var ret=SDL.makeSurface(Math.abs(w),Math.abs(h),srcData.flags,false,"zoomSurface");var dstData=SDL.surfaces[ret];if(x>=0&&y>=0)dstData.ctx.drawImage(srcData.canvas,0,0,w,h);else{dstData.ctx.save();dstData.ctx.scale(x<0?-1:1,y<0?-1:1);dstData.ctx.drawImage(srcData.canvas,w<0?w:0,h<0?h:0,Math.abs(w),Math.abs(h));dstData.ctx.restore()}return ret}Module["_zoomSurface"]=_zoomSurface;function _rotozoomSurface(src,angle,zoom,smooth){if(angle%360===0){return _zoomSurface(src,zoom,zoom,smooth)}var srcData=SDL.surfaces[src];var w=srcData.width*zoom;var h=srcData.height*zoom;var diagonal=Math.ceil(Math.sqrt(Math.pow(w,2)+Math.pow(h,2)));var ret=SDL.makeSurface(diagonal,diagonal,srcData.flags,false,"rotozoomSurface");var dstData=SDL.surfaces[ret];dstData.ctx.translate(diagonal/2,diagonal/2);dstData.ctx.rotate(-angle*Math.PI/180);dstData.ctx.drawImage(srcData.canvas,-w/2,-h/2,w,h);return ret}Module["_rotozoomSurface"]=_rotozoomSurface;function _SDL_SetAlpha(surf,flag,alpha){var surfData=SDL.surfaces[surf];surfData.alpha=alpha;if(!(flag&65536)){surfData.alpha=255}}Module["_SDL_SetAlpha"]=_SDL_SetAlpha;_SDL_SetAlpha.sig="iiii";function _SDL_SetColorKey(surf,flag,key){warnOnce("SDL_SetColorKey is a no-op for performance reasons");return 0}Module["_SDL_SetColorKey"]=_SDL_SetColorKey;function _SDL_PollEvent(ptr){return SDL.pollEvent(ptr)}Module["_SDL_PollEvent"]=_SDL_PollEvent;_SDL_PollEvent.sig="ii";function _SDL_PushEvent(ptr){var copy=_malloc(28);_memcpy(copy,ptr,28);SDL.events.push(copy);return 0}Module["_SDL_PushEvent"]=_SDL_PushEvent;_SDL_PushEvent.sig="ii";function _SDL_PeepEvents(events,requestedEventCount,action,from,to){switch(action){case 2:{assert(requestedEventCount==1);var index=0;var retrievedEventCount=0;while(index>0];surfData.colors[index+1]=HEAPU8[colors+(i*4+1)>>0];surfData.colors[index+2]=HEAPU8[colors+(i*4+2)>>0];surfData.colors[index+3]=255}return 1}Module["_SDL_SetColors"]=_SDL_SetColors;_SDL_SetColors.sig="iiiii";function _SDL_SetPalette(surf,flags,colors,firstColor,nColors){return _SDL_SetColors(surf,colors,firstColor,nColors)}Module["_SDL_SetPalette"]=_SDL_SetPalette;function _SDL_MapRGB(fmt,r,g,b){SDL.checkPixelFormat(fmt);return r&255|(g&255)<<8|(b&255)<<16|4278190080}Module["_SDL_MapRGB"]=_SDL_MapRGB;_SDL_MapRGB.sig="iiiii";function _SDL_MapRGBA(fmt,r,g,b,a){SDL.checkPixelFormat(fmt);return r&255|(g&255)<<8|(b&255)<<16|(a&255)<<24}Module["_SDL_MapRGBA"]=_SDL_MapRGBA;_SDL_MapRGBA.sig="iiiiii";function _SDL_GetRGB(pixel,fmt,r,g,b){SDL.checkPixelFormat(fmt);if(r){HEAP8[r>>0]=pixel&255}if(g){HEAP8[g>>0]=pixel>>8&255}if(b){HEAP8[b>>0]=pixel>>16&255}}Module["_SDL_GetRGB"]=_SDL_GetRGB;_SDL_GetRGB.sig="viiiii";function _SDL_GetRGBA(pixel,fmt,r,g,b,a){SDL.checkPixelFormat(fmt);if(r){HEAP8[r>>0]=pixel&255}if(g){HEAP8[g>>0]=pixel>>8&255}if(b){HEAP8[b>>0]=pixel>>16&255}if(a){HEAP8[a>>0]=pixel>>24&255}}Module["_SDL_GetRGBA"]=_SDL_GetRGBA;_SDL_GetRGBA.sig="viiiiii";function _SDL_GetAppState(){var state=0;if(Browser.pointerLock){state|=1}if(document.hasFocus()){state|=2}state|=4;return state}Module["_SDL_GetAppState"]=_SDL_GetAppState;_SDL_GetAppState.sig="i";function _SDL_WM_GrabInput(){}Module["_SDL_WM_GrabInput"]=_SDL_WM_GrabInput;function _SDL_WM_ToggleFullScreen(surf){if(Browser.exitFullscreen()){return 1}else{if(!SDL.canRequestFullscreen){return 0}SDL.isRequestingFullscreen=true;return 1}}Module["_SDL_WM_ToggleFullScreen"]=_SDL_WM_ToggleFullScreen;_SDL_WM_ToggleFullScreen.sig="ii";function _IMG_Init(flags){return flags}Module["_IMG_Init"]=_IMG_Init;function _SDL_FreeRW(rwopsID){SDL.rwops[rwopsID]=null;while(SDL.rwops.length>0&&SDL.rwops[SDL.rwops.length-1]===null){SDL.rwops.pop()}}Module["_SDL_FreeRW"]=_SDL_FreeRW;_SDL_FreeRW.sig="vi";function _IMG_Load_RW(rwopsID,freeSrc){try{var cleanup=function(){if(rwops&&freeSrc)_SDL_FreeRW(rwopsID)};var addCleanup=function(func){var old=cleanup;cleanup=function added_cleanup(){old();func()}};var callStbImage=function(func,params){var x=Module["_malloc"](4);var y=Module["_malloc"](4);var comp=Module["_malloc"](4);addCleanup(function(){Module["_free"](x);Module["_free"](y);Module["_free"](comp);if(data)Module["_stbi_image_free"](data)});var data=Module["_"+func].apply(null,params.concat([x,y,comp,0]));if(!data)return null;return{rawData:true,data:data,width:HEAP32[x>>2],height:HEAP32[y>>2],size:HEAP32[x>>2]*HEAP32[y>>2]*HEAP32[comp>>2],bpp:HEAP32[comp>>2]}};var rwops=SDL.rwops[rwopsID];if(rwops===undefined){return 0}var raw;var filename=rwops.filename;if(filename===undefined){warnOnce("Only file names that have been preloaded are supported for IMG_Load_RW. Consider using STB_IMAGE=1 if you want synchronous image decoding (see settings.js), or package files with --use-preload-plugins");return 0}if(!raw){filename=PATH_FS.resolve(filename);raw=Module["preloadedImages"][filename];if(!raw){if(raw===null)err("Trying to reuse preloaded image, but freePreloadedMediaOnUse is set!");warnOnce("Cannot find preloaded image "+filename);warnOnce("Cannot find preloaded image "+filename+". Consider using STB_IMAGE=1 if you want synchronous image decoding (see settings.js), or package files with --use-preload-plugins");return 0}else if(Module["freePreloadedMediaOnUse"]){Module["preloadedImages"][filename]=null}}var surf=SDL.makeSurface(raw.width,raw.height,0,false,"load:"+filename);var surfData=SDL.surfaces[surf];surfData.ctx.globalCompositeOperation="copy";if(!raw.rawData){surfData.ctx.drawImage(raw,0,0,raw.width,raw.height,0,0,raw.width,raw.height)}else{var imageData=surfData.ctx.getImageData(0,0,surfData.width,surfData.height);if(raw.bpp==4){imageData.data.set(HEAPU8.subarray(raw.data,raw.data+raw.size))}else if(raw.bpp==3){var pixels=raw.size/3;var data=imageData.data;var sourcePtr=raw.data;var destPtr=0;for(var i=0;i>0];data[destPtr++]=HEAPU8[sourcePtr++>>0];data[destPtr++]=HEAPU8[sourcePtr++>>0];data[destPtr++]=255}}else if(raw.bpp==2){var pixels=raw.size;var data=imageData.data;var sourcePtr=raw.data;var destPtr=0;for(var i=0;i>0];var alpha=HEAPU8[sourcePtr++>>0];data[destPtr++]=gray;data[destPtr++]=gray;data[destPtr++]=gray;data[destPtr++]=alpha}}else if(raw.bpp==1){var pixels=raw.size;var data=imageData.data;var sourcePtr=raw.data;var destPtr=0;for(var i=0;i>0];data[destPtr++]=value;data[destPtr++]=value;data[destPtr++]=value;data[destPtr++]=255}}else{err("cannot handle bpp "+raw.bpp);return 0}surfData.ctx.putImageData(imageData,0,0)}surfData.ctx.globalCompositeOperation="source-over";_SDL_LockSurface(surf);surfData.locked--;if(SDL.GL){surfData.canvas=surfData.ctx=null}return surf}finally{cleanup()}}Module["_IMG_Load_RW"]=_IMG_Load_RW;_IMG_Load_RW.sig="iii";function _SDL_RWFromFile(_name,mode){var id=SDL.rwops.length;var name=UTF8ToString(_name);SDL.rwops.push({filename:name,mimetype:Browser.getMimetype(name)});return id}Module["_SDL_RWFromFile"]=_SDL_RWFromFile;_SDL_RWFromFile.sig="iii";function _IMG_Load(filename){var rwops=_SDL_RWFromFile(filename);var result=_IMG_Load_RW(rwops,1);return result}Module["_IMG_Load"]=_IMG_Load;_IMG_Load.sig="ii";function _SDL_LoadBMP(a0){return _IMG_Load(a0)}Module["_SDL_LoadBMP"]=_SDL_LoadBMP;_SDL_LoadBMP.sig="ii";function _SDL_LoadBMP_RW(a0,a1){return _IMG_Load_RW(a0,a1)}Module["_SDL_LoadBMP_RW"]=_SDL_LoadBMP_RW;_SDL_LoadBMP_RW.sig="iii";function _IMG_Quit(){out("IMG_Quit called (and ignored)")}Module["_IMG_Quit"]=_IMG_Quit;function _SDL_OpenAudio(desired,obtained){try{SDL.audio={freq:HEAPU32[desired>>2],format:HEAPU16[desired+4>>1],channels:HEAPU8[desired+6>>0],samples:HEAPU16[desired+8>>1],callback:HEAPU32[desired+16>>2],userdata:HEAPU32[desired+20>>2],paused:true,timer:null};if(SDL.audio.format==8){SDL.audio.silence=128}else if(SDL.audio.format==32784){SDL.audio.silence=0}else if(SDL.audio.format==33056){SDL.audio.silence=0}else{throw"Invalid SDL audio format "+SDL.audio.format+"!"}if(SDL.audio.freq<=0){throw"Unsupported sound frequency "+SDL.audio.freq+"!"}else if(SDL.audio.freq<=22050){SDL.audio.freq=22050}else if(SDL.audio.freq<=32e3){SDL.audio.freq=32e3}else if(SDL.audio.freq<=44100){SDL.audio.freq=44100}else if(SDL.audio.freq<=48e3){SDL.audio.freq=48e3}else if(SDL.audio.freq<=96e3){SDL.audio.freq=96e3}else{throw"Unsupported sound frequency "+SDL.audio.freq+"!"}if(SDL.audio.channels==0){SDL.audio.channels=1}else if(SDL.audio.channels<0||SDL.audio.channels>32){throw"Unsupported number of audio channels for SDL audio: "+SDL.audio.channels+"!"}else if(SDL.audio.channels!=1&&SDL.audio.channels!=2){console.log("Warning: Using untested number of audio channels "+SDL.audio.channels)}if(SDL.audio.samples<128||SDL.audio.samples>524288){throw"Unsupported audio callback buffer size "+SDL.audio.samples+"!"}else if((SDL.audio.samples&SDL.audio.samples-1)!=0){throw"Audio callback buffer size "+SDL.audio.samples+" must be a power-of-two!"}var totalSamples=SDL.audio.samples*SDL.audio.channels;if(SDL.audio.format==8){SDL.audio.bytesPerSample=1}else if(SDL.audio.format==32784){SDL.audio.bytesPerSample=2}else if(SDL.audio.format==33056){SDL.audio.bytesPerSample=4}else{throw"Invalid SDL audio format "+SDL.audio.format+"!"}SDL.audio.bufferSize=totalSamples*SDL.audio.bytesPerSample;SDL.audio.bufferDurationSecs=SDL.audio.bufferSize/SDL.audio.bytesPerSample/SDL.audio.channels/SDL.audio.freq;SDL.audio.bufferingDelay=50/1e3;SDL.audio.buffer=_malloc(SDL.audio.bufferSize);SDL.audio.numSimultaneouslyQueuedBuffers=Module["SDL_numSimultaneouslyQueuedBuffers"]||5;SDL.audio.queueNewAudioData=function SDL_queueNewAudioData(){if(!SDL.audio)return;for(var i=0;i=SDL.audio.bufferingDelay+SDL.audio.bufferDurationSecs*SDL.audio.numSimultaneouslyQueuedBuffers)return;wasmTable.get(SDL.audio.callback)(SDL.audio.userdata,SDL.audio.buffer,SDL.audio.bufferSize);SDL.audio.pushAudio(SDL.audio.buffer,SDL.audio.bufferSize)}};SDL.audio.caller=function SDL_audioCaller(){if(!SDL.audio)return;--SDL.audio.numAudioTimersPending;SDL.audio.queueNewAudioData();var secsUntilNextPlayStart=SDL.audio.nextPlayTime-SDL.audioContext["currentTime"];var preemptBufferFeedSecs=SDL.audio.bufferDurationSecs/2;if(SDL.audio.numAudioTimersPending>2]=SDL.audio.freq;HEAP16[obtained+4>>1]=SDL.audio.format;HEAP8[obtained+6>>0]=SDL.audio.channels;HEAP8[obtained+7>>0]=SDL.audio.silence;HEAP16[obtained+8>>1]=SDL.audio.samples;HEAP32[obtained+16>>2]=SDL.audio.callback;HEAP32[obtained+20>>2]=SDL.audio.userdata}SDL.allocateChannels(32)}catch(e){console.log('Initializing SDL audio threw an exception: "'+e.toString()+'"! Continuing without audio.');SDL.audio=null;SDL.allocateChannels(0);if(obtained){HEAP32[obtained>>2]=0;HEAP16[obtained+4>>1]=0;HEAP8[obtained+6>>0]=0;HEAP8[obtained+7>>0]=0;HEAP16[obtained+8>>1]=0;HEAP32[obtained+16>>2]=0;HEAP32[obtained+20>>2]=0}}if(!SDL.audio){return-1}return 0}Module["_SDL_OpenAudio"]=_SDL_OpenAudio;_SDL_OpenAudio.sig="iii";function _SDL_PauseAudio(pauseOn){if(!SDL.audio){return}if(pauseOn){if(SDL.audio.timer!==undefined){clearTimeout(SDL.audio.timer);SDL.audio.numAudioTimersPending=0;SDL.audio.timer=undefined}}else if(!SDL.audio.timer){SDL.audio.numAudioTimersPending=1;SDL.audio.timer=Browser.safeSetTimeout(SDL.audio.caller,1)}SDL.audio.paused=pauseOn}Module["_SDL_PauseAudio"]=_SDL_PauseAudio;_SDL_PauseAudio.sig="vi";function _SDL_CloseAudio(){if(SDL.audio){if(SDL.audio.callbackRemover){SDL.audio.callbackRemover();SDL.audio.callbackRemover=null}_SDL_PauseAudio(1);_free(SDL.audio.buffer);SDL.audio=null;SDL.allocateChannels(0)}}Module["_SDL_CloseAudio"]=_SDL_CloseAudio;_SDL_CloseAudio.sig="v";function _SDL_LockAudio(){}Module["_SDL_LockAudio"]=_SDL_LockAudio;function _SDL_UnlockAudio(){}Module["_SDL_UnlockAudio"]=_SDL_UnlockAudio;function _SDL_CreateMutex(){return 0}Module["_SDL_CreateMutex"]=_SDL_CreateMutex;function _SDL_LockMutex(){}Module["_SDL_LockMutex"]=_SDL_LockMutex;function _SDL_UnlockMutex(){}Module["_SDL_UnlockMutex"]=_SDL_UnlockMutex;function _SDL_mutexP(){return 0}Module["_SDL_mutexP"]=_SDL_mutexP;function _SDL_mutexV(){return 0}Module["_SDL_mutexV"]=_SDL_mutexV;function _SDL_DestroyMutex(){}Module["_SDL_DestroyMutex"]=_SDL_DestroyMutex;function _SDL_CreateCond(){return 0}Module["_SDL_CreateCond"]=_SDL_CreateCond;function _SDL_CondSignal(){}Module["_SDL_CondSignal"]=_SDL_CondSignal;function _SDL_CondWait(){}Module["_SDL_CondWait"]=_SDL_CondWait;function _SDL_DestroyCond(){}Module["_SDL_DestroyCond"]=_SDL_DestroyCond;function _SDL_StartTextInput(){SDL.textInput=true}Module["_SDL_StartTextInput"]=_SDL_StartTextInput;_SDL_StartTextInput.sig="v";function _SDL_StopTextInput(){SDL.textInput=false}Module["_SDL_StopTextInput"]=_SDL_StopTextInput;_SDL_StopTextInput.sig="v";function _Mix_Init(flags){if(!flags)return 0;return 8}Module["_Mix_Init"]=_Mix_Init;function _Mix_Quit(){}Module["_Mix_Quit"]=_Mix_Quit;function _Mix_OpenAudio(frequency,format,channels,chunksize){SDL.openAudioContext();autoResumeAudioContext(SDL.audioContext);SDL.allocateChannels(32);SDL.mixerFrequency=frequency;SDL.mixerFormat=format;SDL.mixerNumChannels=channels;SDL.mixerChunkSize=chunksize;return 0}Module["_Mix_OpenAudio"]=_Mix_OpenAudio;_Mix_OpenAudio.sig="iiiii";function _Mix_CloseAudio(){_SDL_CloseAudio()}Module["_Mix_CloseAudio"]=_Mix_CloseAudio;_Mix_CloseAudio.sig="v";function _Mix_AllocateChannels(num){SDL.allocateChannels(num);return num}Module["_Mix_AllocateChannels"]=_Mix_AllocateChannels;_Mix_AllocateChannels.sig="ii";function _Mix_ChannelFinished(func){SDL.channelFinished=func}Module["_Mix_ChannelFinished"]=_Mix_ChannelFinished;_Mix_ChannelFinished.sig="vi";function _Mix_Volume(channel,volume){if(channel==-1){for(var i=0;i>1;var buffer=new Float32Array(numSamples);for(var i=0;i>1]/32768}if(SDL.webAudioAvailable()){webAudio={};webAudio.decodedBuffer=buffer}else{audio=new Audio;audio.mozAudioChannelType="content";audio.numChannels=SDL.mixerNumChannels;audio.frequency=SDL.mixerFrequency}var id=SDL.audios.length;SDL.audios.push({source:"",audio:audio,webAudio:webAudio,buffer:buffer});return id}Module["_Mix_QuickLoad_RAW"]=_Mix_QuickLoad_RAW;_Mix_QuickLoad_RAW.sig="iii";function _Mix_FreeChunk(id){SDL.audios[id]=null}Module["_Mix_FreeChunk"]=_Mix_FreeChunk;_Mix_FreeChunk.sig="vi";function _Mix_ReserveChannels(num){SDL.channelMinimumNumber=num}Module["_Mix_ReserveChannels"]=_Mix_ReserveChannels;_Mix_ReserveChannels.sig="ii";function _Mix_PlayChannel(channel,id,loops){var info=SDL.audios[id];if(!info)return-1;if(!info.audio&&!info.webAudio)return-1;if(channel==-1){for(var i=SDL.channelMinimumNumber;i>2]=SDL.estimateTextWidth(fontData,UTF8ToString(text))}if(h){HEAP32[h>>2]=fontData.size}return 0}Module["_TTF_SizeText"]=_TTF_SizeText;_TTF_SizeText.sig="iiiii";function _TTF_SizeUTF8(a0,a1,a2,a3){return _TTF_SizeText(a0,a1,a2,a3)}Module["_TTF_SizeUTF8"]=_TTF_SizeUTF8;_TTF_SizeUTF8.sig="iiiii";function _TTF_GlyphMetrics(font,ch,minx,maxx,miny,maxy,advance){var fontData=SDL.fonts[font];var width=SDL.estimateTextWidth(fontData,String.fromCharCode(ch));if(advance){HEAP32[advance>>2]=width}if(minx){HEAP32[minx>>2]=0}if(maxx){HEAP32[maxx>>2]=width}if(miny){HEAP32[miny>>2]=0}if(maxy){HEAP32[maxy>>2]=fontData.size}}Module["_TTF_GlyphMetrics"]=_TTF_GlyphMetrics;_TTF_GlyphMetrics.sig="iiiiiiii";function _TTF_FontAscent(font){var fontData=SDL.fonts[font];return fontData.size*.98|0}Module["_TTF_FontAscent"]=_TTF_FontAscent;_TTF_FontAscent.sig="ii";function _TTF_FontDescent(font){var fontData=SDL.fonts[font];return fontData.size*.02|0}Module["_TTF_FontDescent"]=_TTF_FontDescent;_TTF_FontDescent.sig="ii";function _TTF_FontHeight(font){var fontData=SDL.fonts[font];return fontData.size}Module["_TTF_FontHeight"]=_TTF_FontHeight;_TTF_FontHeight.sig="ii";function _TTF_FontLineSkip(a0){return _TTF_FontHeight(a0)}Module["_TTF_FontLineSkip"]=_TTF_FontLineSkip;_TTF_FontLineSkip.sig="ii";function _TTF_Quit(){out("TTF_Quit called (and ignored)")}Module["_TTF_Quit"]=_TTF_Quit;var SDL_gfx={drawRectangle:function(surf,x1,y1,x2,y2,action,cssColor){x1=x1<<16>>16;y1=y1<<16>>16;x2=x2<<16>>16;y2=y2<<16>>16;var surfData=SDL.surfaces[surf];assert(!surfData.locked);var x=x1>16;y1=y1<<16>>16;x2=x2<<16>>16;y2=y2<<16>>16;var surfData=SDL.surfaces[surf];assert(!surfData.locked);surfData.ctx.save();surfData.ctx.strokeStyle=cssColor;surfData.ctx.beginPath();surfData.ctx.moveTo(x1,y1);surfData.ctx.lineTo(x2,y2);surfData.ctx.stroke();surfData.ctx.restore()},drawEllipse:function(surf,x,y,rx,ry,action,cssColor){x=x<<16>>16;y=y<<16>>16;rx=rx<<16>>16;ry=ry<<16>>16;var surfData=SDL.surfaces[surf];assert(!surfData.locked);surfData.ctx.save();surfData.ctx.beginPath();surfData.ctx.translate(x,y);surfData.ctx.scale(rx,ry);surfData.ctx.arc(0,0,1,0,2*Math.PI);surfData.ctx.restore();surfData.ctx.save();surfData.ctx[action+"Style"]=cssColor;surfData.ctx[action]();surfData.ctx.restore()},translateColorToCSSRGBA:function(rgba){return"rgba("+(rgba>>>24)+","+(rgba>>16&255)+","+(rgba>>8&255)+","+(rgba&255)+")"}};Module["SDL_gfx"]=SDL_gfx;function _boxColor(surf,x1,y1,x2,y2,color){return SDL_gfx.drawRectangle(surf,x1,y1,x2,y2,"fill",SDL_gfx.translateColorToCSSRGBA(color))}Module["_boxColor"]=_boxColor;function _boxRGBA(surf,x1,y1,x2,y2,r,g,b,a){return SDL_gfx.drawRectangle(surf,x1,y1,x2,y2,"fill",SDL.translateRGBAToCSSRGBA(r,g,b,a))}Module["_boxRGBA"]=_boxRGBA;function _rectangleColor(surf,x1,y1,x2,y2,color){return SDL_gfx.drawRectangle(surf,x1,y1,x2,y2,"stroke",SDL_gfx.translateColorToCSSRGBA(color))}Module["_rectangleColor"]=_rectangleColor;function _rectangleRGBA(surf,x1,y1,x2,y2,r,g,b,a){return SDL_gfx.drawRectangle(surf,x1,y1,x2,y2,"stroke",SDL.translateRGBAToCSSRGBA(r,g,b,a))}Module["_rectangleRGBA"]=_rectangleRGBA;function _ellipseColor(surf,x,y,rx,ry,color){return SDL_gfx.drawEllipse(surf,x,y,rx,ry,"stroke",SDL_gfx.translateColorToCSSRGBA(color))}Module["_ellipseColor"]=_ellipseColor;function _ellipseRGBA(surf,x,y,rx,ry,r,g,b,a){return SDL_gfx.drawEllipse(surf,x,y,rx,ry,"stroke",SDL.translateRGBAToCSSRGBA(r,g,b,a))}Module["_ellipseRGBA"]=_ellipseRGBA;function _filledEllipseColor(surf,x,y,rx,ry,color){return SDL_gfx.drawEllipse(surf,x,y,rx,ry,"fill",SDL_gfx.translateColorToCSSRGBA(color))}Module["_filledEllipseColor"]=_filledEllipseColor;function _filledEllipseRGBA(surf,x,y,rx,ry,r,g,b,a){return SDL_gfx.drawEllipse(surf,x,y,rx,ry,"fill",SDL.translateRGBAToCSSRGBA(r,g,b,a))}Module["_filledEllipseRGBA"]=_filledEllipseRGBA;function _lineColor(surf,x1,y1,x2,y2,color){return SDL_gfx.drawLine(surf,x1,y1,x2,y2,SDL_gfx.translateColorToCSSRGBA(color))}Module["_lineColor"]=_lineColor;function _lineRGBA(surf,x1,y1,x2,y2,r,g,b,a){return SDL_gfx.drawLine(surf,x1,y1,x2,y2,SDL.translateRGBAToCSSRGBA(r,g,b,a))}Module["_lineRGBA"]=_lineRGBA;function _pixelRGBA(surf,x1,y1,r,g,b,a){_boxRGBA(surf,x1,y1,x1,y1,r,g,b,a)}Module["_pixelRGBA"]=_pixelRGBA;function _SDL_GL_SetAttribute(attr,value){if(!(attr in SDL.glAttributes)){abort("Unknown SDL GL attribute ("+attr+"). Please check if your SDL version is supported.")}SDL.glAttributes[attr]=value}Module["_SDL_GL_SetAttribute"]=_SDL_GL_SetAttribute;_SDL_GL_SetAttribute.sig="iii";function _SDL_GL_GetAttribute(attr,value){if(!(attr in SDL.glAttributes)){abort("Unknown SDL GL attribute ("+attr+"). Please check if your SDL version is supported.")}if(value)HEAP32[value>>2]=SDL.glAttributes[attr];return 0}Module["_SDL_GL_GetAttribute"]=_SDL_GL_GetAttribute;_SDL_GL_GetAttribute.sig="iii";function _SDL_GL_SwapBuffers(){if(Browser.doSwapBuffers)Browser.doSwapBuffers()}Module["_SDL_GL_SwapBuffers"]=_SDL_GL_SwapBuffers;_SDL_GL_SwapBuffers.sig="v";function _SDL_GL_ExtensionSupported(extension){return Module.ctx.getExtension(extension)|0}Module["_SDL_GL_ExtensionSupported"]=_SDL_GL_ExtensionSupported;_SDL_GL_ExtensionSupported.sig="ii";function _SDL_DestroyWindow(window){}Module["_SDL_DestroyWindow"]=_SDL_DestroyWindow;function _SDL_DestroyRenderer(renderer){}Module["_SDL_DestroyRenderer"]=_SDL_DestroyRenderer;function _SDL_GetWindowFlags(){}Module["_SDL_GetWindowFlags"]=_SDL_GetWindowFlags;_SDL_GetWindowFlags.sig="iii";function _SDL_GL_SwapWindow(window){}Module["_SDL_GL_SwapWindow"]=_SDL_GL_SwapWindow;function _SDL_GL_MakeCurrent(window,context){}Module["_SDL_GL_MakeCurrent"]=_SDL_GL_MakeCurrent;function _SDL_GL_DeleteContext(context){}Module["_SDL_GL_DeleteContext"]=_SDL_GL_DeleteContext;function _SDL_GL_GetSwapInterval(state){if(Browser.mainLoop.timingMode==1)return Browser.mainLoop.timingValue;else return 0}Module["_SDL_GL_GetSwapInterval"]=_SDL_GL_GetSwapInterval;_SDL_GL_GetSwapInterval.sig="ii";function _SDL_GL_SetSwapInterval(state){_emscripten_set_main_loop_timing(1,state)}Module["_SDL_GL_SetSwapInterval"]=_SDL_GL_SetSwapInterval;function _SDL_SetWindowTitle(window,title){if(title)document.title=UTF8ToString(title)}Module["_SDL_SetWindowTitle"]=_SDL_SetWindowTitle;_SDL_SetWindowTitle.sig="vii";function _SDL_GetWindowSize(window,width,height){var w=Module["canvas"].width;var h=Module["canvas"].height;if(width)HEAP32[width>>2]=w;if(height)HEAP32[height>>2]=h}Module["_SDL_GetWindowSize"]=_SDL_GetWindowSize;_SDL_GetWindowSize.sig="viii";function _SDL_LogSetOutputFunction(callback,userdata){}Module["_SDL_LogSetOutputFunction"]=_SDL_LogSetOutputFunction;function _SDL_SetWindowFullscreen(window,fullscreen){if(Browser.isFullscreen){Module["canvas"].exitFullscreen();return 1}else{return 0}}Module["_SDL_SetWindowFullscreen"]=_SDL_SetWindowFullscreen;_SDL_SetWindowFullscreen.sig="iii";function _SDL_ClearError(){}Module["_SDL_ClearError"]=_SDL_ClearError;function _SDL_SetGamma(r,g,b){return-1}Module["_SDL_SetGamma"]=_SDL_SetGamma;function _SDL_SetGammaRamp(redTable,greenTable,blueTable){return-1}Module["_SDL_SetGammaRamp"]=_SDL_SetGammaRamp;function _SDL_NumJoysticks(){var count=0;var gamepads=SDL.getGamepads();for(var i=0;iaxis){return SDL.joystickAxisValueConversion(gamepad.axes[axis])}return 0}Module["_SDL_JoystickGetAxis"]=_SDL_JoystickGetAxis;_SDL_JoystickGetAxis.sig="iii";function _SDL_JoystickGetHat(joystick,hat){return 0}Module["_SDL_JoystickGetHat"]=_SDL_JoystickGetHat;function _SDL_JoystickGetBall(joystick,ball,dxptr,dyptr){return-1}Module["_SDL_JoystickGetBall"]=_SDL_JoystickGetBall;function _SDL_JoystickGetButton(joystick,button){var gamepad=SDL.getGamepad(joystick-1);if(gamepad&&gamepad.buttons.length>button){return SDL.getJoystickButtonState(gamepad.buttons[button])?1:0}return 0}Module["_SDL_JoystickGetButton"]=_SDL_JoystickGetButton;_SDL_JoystickGetButton.sig="iii";function _SDL_JoystickClose(joystick){delete SDL.lastJoystickState[joystick]}Module["_SDL_JoystickClose"]=_SDL_JoystickClose;_SDL_JoystickClose.sig="vi";function _SDL_InitSubSystem(flags){return 0}Module["_SDL_InitSubSystem"]=_SDL_InitSubSystem;function _SDL_RWFromConstMem(mem,size){var id=SDL.rwops.length;SDL.rwops.push({bytes:mem,count:size});return id}Module["_SDL_RWFromConstMem"]=_SDL_RWFromConstMem;_SDL_RWFromConstMem.sig="iii";function _SDL_RWFromMem(a0,a1){return _SDL_RWFromConstMem(a0,a1)}Module["_SDL_RWFromMem"]=_SDL_RWFromMem;_SDL_RWFromMem.sig="iii";function _SDL_GetNumAudioDrivers(){return 1}Module["_SDL_GetNumAudioDrivers"]=_SDL_GetNumAudioDrivers;function _SDL_GetCurrentAudioDriver(){return allocate(intArrayFromString("Emscripten Audio"),ALLOC_NORMAL)}Module["_SDL_GetCurrentAudioDriver"]=_SDL_GetCurrentAudioDriver;function _SDL_GetAudioDriver(index){return _SDL_GetCurrentAudioDriver()}Module["_SDL_GetAudioDriver"]=_SDL_GetAudioDriver;function _SDL_EnableUNICODE(on){var ret=SDL.unicode||0;SDL.unicode=on;return ret}Module["_SDL_EnableUNICODE"]=_SDL_EnableUNICODE;_SDL_EnableUNICODE.sig="ii";function _SDL_AddTimer(interval,callback,param){return window.setTimeout(function(){wasmTable.get(callback)(interval,param)},interval)}Module["_SDL_AddTimer"]=_SDL_AddTimer;_SDL_AddTimer.sig="iiii";function _SDL_RemoveTimer(id){window.clearTimeout(id);return true}Module["_SDL_RemoveTimer"]=_SDL_RemoveTimer;_SDL_RemoveTimer.sig="ii";function _SDL_CreateThread(){throw"SDL threads cannot be supported in the web platform because they assume shared state. See emscripten_create_worker etc. for a message-passing concurrency model that does let you run code in another thread."}Module["_SDL_CreateThread"]=_SDL_CreateThread;function _SDL_WaitThread(){throw"SDL_WaitThread"}Module["_SDL_WaitThread"]=_SDL_WaitThread;function _SDL_GetThreadID(){throw"SDL_GetThreadID"}Module["_SDL_GetThreadID"]=_SDL_GetThreadID;function _SDL_ThreadID(){return 0}Module["_SDL_ThreadID"]=_SDL_ThreadID;function _SDL_AllocRW(){throw"SDL_AllocRW: TODO"}Module["_SDL_AllocRW"]=_SDL_AllocRW;function _SDL_CondBroadcast(){throw"SDL_CondBroadcast: TODO"}Module["_SDL_CondBroadcast"]=_SDL_CondBroadcast;function _SDL_CondWaitTimeout(){throw"SDL_CondWaitTimeout: TODO"}Module["_SDL_CondWaitTimeout"]=_SDL_CondWaitTimeout;function _SDL_WM_IconifyWindow(){throw"SDL_WM_IconifyWindow TODO"}Module["_SDL_WM_IconifyWindow"]=_SDL_WM_IconifyWindow;function _Mix_SetPostMix(){warnOnce("Mix_SetPostMix: TODO")}Module["_Mix_SetPostMix"]=_Mix_SetPostMix;function _Mix_VolumeChunk(chunk,volume){throw"Mix_VolumeChunk: TODO"}Module["_Mix_VolumeChunk"]=_Mix_VolumeChunk;function _Mix_SetPosition(channel,angle,distance){throw"Mix_SetPosition: TODO"}Module["_Mix_SetPosition"]=_Mix_SetPosition;function _Mix_QuerySpec(){throw"Mix_QuerySpec: TODO"}Module["_Mix_QuerySpec"]=_Mix_QuerySpec;function _Mix_FadeInChannelTimed(){throw"Mix_FadeInChannelTimed"}Module["_Mix_FadeInChannelTimed"]=_Mix_FadeInChannelTimed;function _Mix_FadeOutChannel(){throw"Mix_FadeOutChannel"}Module["_Mix_FadeOutChannel"]=_Mix_FadeOutChannel;function _Mix_Linked_Version(){throw"Mix_Linked_Version: TODO"}Module["_Mix_Linked_Version"]=_Mix_Linked_Version;function _SDL_SaveBMP_RW(){throw"SDL_SaveBMP_RW: TODO"}Module["_SDL_SaveBMP_RW"]=_SDL_SaveBMP_RW;function _SDL_WM_SetIcon(){}Module["_SDL_WM_SetIcon"]=_SDL_WM_SetIcon;function _SDL_HasRDTSC(){return 0}Module["_SDL_HasRDTSC"]=_SDL_HasRDTSC;function _SDL_HasMMX(){return 0}Module["_SDL_HasMMX"]=_SDL_HasMMX;function _SDL_HasMMXExt(){return 0}Module["_SDL_HasMMXExt"]=_SDL_HasMMXExt;function _SDL_Has3DNow(){return 0}Module["_SDL_Has3DNow"]=_SDL_Has3DNow;function _SDL_Has3DNowExt(){return 0}Module["_SDL_Has3DNowExt"]=_SDL_Has3DNowExt;function _SDL_HasSSE(){return 0}Module["_SDL_HasSSE"]=_SDL_HasSSE;function _SDL_HasSSE2(){return 0}Module["_SDL_HasSSE2"]=_SDL_HasSSE2;function _SDL_HasAltiVec(){return 0}Module["_SDL_HasAltiVec"]=_SDL_HasAltiVec;function _glutPostRedisplay(){if(GLUT.displayFunc&&!GLUT.requestedAnimationFrame){GLUT.requestedAnimationFrame=true;Browser.requestAnimationFrame(function(){GLUT.requestedAnimationFrame=false;Browser.mainLoop.runIter(function(){wasmTable.get(GLUT.displayFunc)()})})}}Module["_glutPostRedisplay"]=_glutPostRedisplay;_glutPostRedisplay.sig="v";var GLUT={initTime:null,idleFunc:null,displayFunc:null,keyboardFunc:null,keyboardUpFunc:null,specialFunc:null,specialUpFunc:null,reshapeFunc:null,motionFunc:null,passiveMotionFunc:null,mouseFunc:null,buttons:0,modifiers:0,initWindowWidth:256,initWindowHeight:256,initDisplayMode:18,windowX:0,windowY:0,windowWidth:0,windowHeight:0,requestedAnimationFrame:false,saveModifiers:function(event){GLUT.modifiers=0;if(event["shiftKey"])GLUT.modifiers+=1;if(event["ctrlKey"])GLUT.modifiers+=2;if(event["altKey"])GLUT.modifiers+=4},onMousemove:function(event){var lastX=Browser.mouseX;var lastY=Browser.mouseY;Browser.calculateMouseEvent(event);var newX=Browser.mouseX;var newY=Browser.mouseY;if(newX==lastX&&newY==lastY)return;if(GLUT.buttons==0&&event.target==Module["canvas"]&&GLUT.passiveMotionFunc){event.preventDefault();GLUT.saveModifiers(event);wasmTable.get(GLUT.passiveMotionFunc)(lastX,lastY)}else if(GLUT.buttons!=0&&GLUT.motionFunc){event.preventDefault();GLUT.saveModifiers(event);wasmTable.get(GLUT.motionFunc)(lastX,lastY)}},getSpecialKey:function(keycode){var key=null;switch(keycode){case 8:key=120;break;case 46:key=111;break;case 112:key=1;break;case 113:key=2;break;case 114:key=3;break;case 115:key=4;break;case 116:key=5;break;case 117:key=6;break;case 118:key=7;break;case 119:key=8;break;case 120:key=9;break;case 121:key=10;break;case 122:key=11;break;case 123:key=12;break;case 37:key=100;break;case 38:key=101;break;case 39:key=102;break;case 40:key=103;break;case 33:key=104;break;case 34:key=105;break;case 36:key=106;break;case 35:key=107;break;case 45:key=108;break;case 16:case 5:key=112;break;case 6:key=113;break;case 17:case 3:key=114;break;case 4:key=115;break;case 18:case 2:key=116;break;case 1:key=117;break}return key},getASCIIKey:function(event){if(event["ctrlKey"]||event["altKey"]||event["metaKey"])return null;var keycode=event["keyCode"];if(48<=keycode&&keycode<=57)return keycode;if(65<=keycode&&keycode<=90)return event["shiftKey"]?keycode:keycode+32;if(96<=keycode&&keycode<=105)return keycode-48;if(106<=keycode&&keycode<=111)return keycode-106+42;switch(keycode){case 9:case 13:case 27:case 32:case 61:return keycode}var s=event["shiftKey"];switch(keycode){case 186:return s?58:59;case 187:return s?43:61;case 188:return s?60:44;case 189:return s?95:45;case 190:return s?62:46;case 191:return s?63:47;case 219:return s?123:91;case 220:return s?124:47;case 221:return s?125:93;case 222:return s?34:39}return null},onKeydown:function(event){if(GLUT.specialFunc||GLUT.keyboardFunc){var key=GLUT.getSpecialKey(event["keyCode"]);if(key!==null){if(GLUT.specialFunc){event.preventDefault();GLUT.saveModifiers(event);wasmTable.get(GLUT.specialFunc)(key,Browser.mouseX,Browser.mouseY)}}else{key=GLUT.getASCIIKey(event);if(key!==null&&GLUT.keyboardFunc){event.preventDefault();GLUT.saveModifiers(event);wasmTable.get(GLUT.keyboardFunc)(key,Browser.mouseX,Browser.mouseY)}}}},onKeyup:function(event){if(GLUT.specialUpFunc||GLUT.keyboardUpFunc){var key=GLUT.getSpecialKey(event["keyCode"]);if(key!==null){if(GLUT.specialUpFunc){event.preventDefault();GLUT.saveModifiers(event);wasmTable.get(GLUT.specialUpFunc)(key,Browser.mouseX,Browser.mouseY)}}else{key=GLUT.getASCIIKey(event);if(key!==null&&GLUT.keyboardUpFunc){event.preventDefault();GLUT.saveModifiers(event);wasmTable.get(GLUT.keyboardUpFunc)(key,Browser.mouseX,Browser.mouseY)}}}},touchHandler:function(event){if(event.target!=Module["canvas"]){return}var touches=event.changedTouches,main=touches[0],type="";switch(event.type){case"touchstart":type="mousedown";break;case"touchmove":type="mousemove";break;case"touchend":type="mouseup";break;default:return}var simulatedEvent=document.createEvent("MouseEvent");simulatedEvent.initMouseEvent(type,true,true,window,1,main.screenX,main.screenY,main.clientX,main.clientY,false,false,false,false,0,null);main.target.dispatchEvent(simulatedEvent);event.preventDefault()},onMouseButtonDown:function(event){Browser.calculateMouseEvent(event);GLUT.buttons|=1<0?Math.max(delta,1):Math.min(delta,-1);var button=3;if(delta<0){button=4}if(GLUT.mouseFunc){event.preventDefault();GLUT.saveModifiers(event);wasmTable.get(GLUT.mouseFunc)(button,0,Browser.mouseX,Browser.mouseY)}},onFullscreenEventChange:function(event){var width;var height;if(document["fullscreen"]||document["fullScreen"]||document["mozFullScreen"]||document["webkitIsFullScreen"]){width=screen["width"];height=screen["height"]}else{width=GLUT.windowWidth;height=GLUT.windowHeight;document.removeEventListener("fullscreenchange",GLUT.onFullscreenEventChange,true);document.removeEventListener("mozfullscreenchange",GLUT.onFullscreenEventChange,true);document.removeEventListener("webkitfullscreenchange",GLUT.onFullscreenEventChange,true)}Browser.setCanvasSize(width,height,true);if(GLUT.reshapeFunc){wasmTable.get(GLUT.reshapeFunc)(width,height)}_glutPostRedisplay()}};Module["GLUT"]=GLUT;function _glutGetModifiers(){return GLUT.modifiers}Module["_glutGetModifiers"]=_glutGetModifiers;_glutGetModifiers.sig="i";function _glutInit(argcp,argv){GLUT.initTime=Date.now();var isTouchDevice="ontouchstart"in document.documentElement;if(isTouchDevice){window.addEventListener("touchmove",GLUT.touchHandler,true);window.addEventListener("touchstart",GLUT.touchHandler,true);window.addEventListener("touchend",GLUT.touchHandler,true)}window.addEventListener("keydown",GLUT.onKeydown,true);window.addEventListener("keyup",GLUT.onKeyup,true);window.addEventListener("mousemove",GLUT.onMousemove,true);window.addEventListener("mousedown",GLUT.onMouseButtonDown,true);window.addEventListener("mouseup",GLUT.onMouseButtonUp,true);window.addEventListener("mousewheel",GLUT.onMouseWheel,true);window.addEventListener("DOMMouseScroll",GLUT.onMouseWheel,true);Browser.resizeListeners.push(function(width,height){if(GLUT.reshapeFunc){wasmTable.get(GLUT.reshapeFunc)(width,height)}});__ATEXIT__.push(function(){if(isTouchDevice){window.removeEventListener("touchmove",GLUT.touchHandler,true);window.removeEventListener("touchstart",GLUT.touchHandler,true);window.removeEventListener("touchend",GLUT.touchHandler,true)}window.removeEventListener("keydown",GLUT.onKeydown,true);window.removeEventListener("keyup",GLUT.onKeyup,true);window.removeEventListener("mousemove",GLUT.onMousemove,true);window.removeEventListener("mousedown",GLUT.onMouseButtonDown,true);window.removeEventListener("mouseup",GLUT.onMouseButtonUp,true);window.removeEventListener("mousewheel",GLUT.onMouseWheel,true);window.removeEventListener("DOMMouseScroll",GLUT.onMouseWheel,true);Module["canvas"].width=Module["canvas"].height=1})}Module["_glutInit"]=_glutInit;_glutInit.sig="vii";function _glutInitWindowSize(width,height){Browser.setCanvasSize(GLUT.initWindowWidth=width,GLUT.initWindowHeight=height)}Module["_glutInitWindowSize"]=_glutInitWindowSize;_glutInitWindowSize.sig="vii";function _glutInitWindowPosition(x,y){}Module["_glutInitWindowPosition"]=_glutInitWindowPosition;_glutInitWindowPosition.sig="vii";function _glutGet(type){switch(type){case 100:return 0;case 101:return 0;case 102:return Module["canvas"].width;case 103:return Module["canvas"].height;case 200:return Module["canvas"].width;case 201:return Module["canvas"].height;case 500:return 0;case 501:return 0;case 502:return GLUT.initWindowWidth;case 503:return GLUT.initWindowHeight;case 700:var now=Date.now();return now-GLUT.initTime;case 105:return Module.ctx.getContextAttributes().stencil?8:0;case 106:return Module.ctx.getContextAttributes().depth?8:0;case 110:return Module.ctx.getContextAttributes().alpha?8:0;case 120:return Module.ctx.getContextAttributes().antialias?1:0;default:throw"glutGet("+type+") not implemented yet"}}Module["_glutGet"]=_glutGet;function _glutIdleFunc(func){function callback(){if(GLUT.idleFunc){wasmTable.get(GLUT.idleFunc)();Browser.safeSetTimeout(callback,4)}}if(!GLUT.idleFunc){Browser.safeSetTimeout(callback,0)}GLUT.idleFunc=func}Module["_glutIdleFunc"]=_glutIdleFunc;_glutIdleFunc.sig="vi";function _glutTimerFunc(msec,func,value){Browser.safeSetTimeout(function(){wasmTable.get(func)(value)},msec)}Module["_glutTimerFunc"]=_glutTimerFunc;_glutTimerFunc.sig="viii";function _glutDisplayFunc(func){GLUT.displayFunc=func}Module["_glutDisplayFunc"]=_glutDisplayFunc;_glutDisplayFunc.sig="vi";function _glutKeyboardFunc(func){GLUT.keyboardFunc=func}Module["_glutKeyboardFunc"]=_glutKeyboardFunc;_glutKeyboardFunc.sig="vi";function _glutKeyboardUpFunc(func){GLUT.keyboardUpFunc=func}Module["_glutKeyboardUpFunc"]=_glutKeyboardUpFunc;_glutKeyboardUpFunc.sig="vi";function _glutSpecialFunc(func){GLUT.specialFunc=func}Module["_glutSpecialFunc"]=_glutSpecialFunc;_glutSpecialFunc.sig="vi";function _glutSpecialUpFunc(func){GLUT.specialUpFunc=func}Module["_glutSpecialUpFunc"]=_glutSpecialUpFunc;_glutSpecialUpFunc.sig="vi";function _glutReshapeFunc(func){GLUT.reshapeFunc=func}Module["_glutReshapeFunc"]=_glutReshapeFunc;_glutReshapeFunc.sig="vi";function _glutMotionFunc(func){GLUT.motionFunc=func}Module["_glutMotionFunc"]=_glutMotionFunc;_glutMotionFunc.sig="vi";function _glutPassiveMotionFunc(func){GLUT.passiveMotionFunc=func}Module["_glutPassiveMotionFunc"]=_glutPassiveMotionFunc;_glutPassiveMotionFunc.sig="vi";function _glutMouseFunc(func){GLUT.mouseFunc=func}Module["_glutMouseFunc"]=_glutMouseFunc;_glutMouseFunc.sig="vi";function _glutSetCursor(cursor){var cursorStyle="auto";switch(cursor){case 0:break;case 1:break;case 2:cursorStyle="pointer";break;case 3:break;case 4:cursorStyle="help";break;case 5:break;case 6:break;case 7:cursorStyle="wait";break;case 8:cursorStyle="text";break;case 9:case 102:cursorStyle="crosshair";break;case 10:cursorStyle="ns-resize";break;case 11:cursorStyle="ew-resize";break;case 12:cursorStyle="n-resize";break;case 13:cursorStyle="s-resize";break;case 14:cursorStyle="w-resize";break;case 15:cursorStyle="e-resize";break;case 16:cursorStyle="nw-resize";break;case 17:cursorStyle="ne-resize";break;case 18:cursorStyle="se-resize";break;case 19:cursorStyle="sw-resize";break;case 100:break;case 101:cursorStyle="none";break;default:throw"glutSetCursor: Unknown cursor type: "+cursor}Module["canvas"].style.cursor=cursorStyle}Module["_glutSetCursor"]=_glutSetCursor;_glutSetCursor.sig="vi";function _glutCreateWindow(name){var contextAttributes={antialias:(GLUT.initDisplayMode&128)!=0,depth:(GLUT.initDisplayMode&16)!=0,stencil:(GLUT.initDisplayMode&32)!=0,alpha:(GLUT.initDisplayMode&8)!=0};Module.ctx=Browser.createContext(Module["canvas"],true,true,contextAttributes);return Module.ctx?1:0}Module["_glutCreateWindow"]=_glutCreateWindow;_glutCreateWindow.sig="ii";function _glutDestroyWindow(name){Module.ctx=Browser.destroyContext(Module["canvas"],true,true);return 1}Module["_glutDestroyWindow"]=_glutDestroyWindow;_glutDestroyWindow.sig="ii";function _glutReshapeWindow(width,height){Browser.exitFullscreen();Browser.setCanvasSize(width,height,true);if(GLUT.reshapeFunc){wasmTable.get(GLUT.reshapeFunc)(width,height)}_glutPostRedisplay()}Module["_glutReshapeWindow"]=_glutReshapeWindow;_glutReshapeWindow.sig="vi";function _glutPositionWindow(x,y){Browser.exitFullscreen();_glutPostRedisplay()}Module["_glutPositionWindow"]=_glutPositionWindow;_glutPositionWindow.sig="vii";function _glutFullScreen(){GLUT.windowX=0;GLUT.windowY=0;GLUT.windowWidth=Module["canvas"].width;GLUT.windowHeight=Module["canvas"].height;document.addEventListener("fullscreenchange",GLUT.onFullscreenEventChange,true);document.addEventListener("mozfullscreenchange",GLUT.onFullscreenEventChange,true);document.addEventListener("webkitfullscreenchange",GLUT.onFullscreenEventChange,true);Browser.requestFullscreen(false,false)}Module["_glutFullScreen"]=_glutFullScreen;_glutFullScreen.sig="v";function _glutInitDisplayMode(mode){GLUT.initDisplayMode=mode}Module["_glutInitDisplayMode"]=_glutInitDisplayMode;_glutInitDisplayMode.sig="vi";function _glutSwapBuffers(){}Module["_glutSwapBuffers"]=_glutSwapBuffers;_glutSwapBuffers.sig="v";function _glutMainLoop(){_glutReshapeWindow(Module["canvas"].width,Module["canvas"].height);_glutPostRedisplay();throw"unwind"}Module["_glutMainLoop"]=_glutMainLoop;_glutMainLoop.sig="v";function _XOpenDisplay(){return 1}Module["_XOpenDisplay"]=_XOpenDisplay;function _XCreateWindow(display,parent,x,y,width,height,border_width,depth,class_,visual,valuemask,attributes){Browser.setCanvasSize(width,height);return 2}Module["_XCreateWindow"]=_XCreateWindow;function _XChangeWindowAttributes(){}Module["_XChangeWindowAttributes"]=_XChangeWindowAttributes;function _XSetWMHints(){}Module["_XSetWMHints"]=_XSetWMHints;function _XMapWindow(){}Module["_XMapWindow"]=_XMapWindow;function _XStoreName(){}Module["_XStoreName"]=_XStoreName;function _XInternAtom(display,name_,hmm){return 0}Module["_XInternAtom"]=_XInternAtom;function _XSendEvent(){}Module["_XSendEvent"]=_XSendEvent;function _XPending(display){return 0}Module["_XPending"]=_XPending;var EGL={errorCode:12288,defaultDisplayInitialized:false,currentContext:0,currentReadSurface:0,currentDrawSurface:0,contextAttributes:{alpha:false,depth:false,stencil:false,antialias:false},stringCache:{},setErrorCode:function(code){EGL.errorCode=code},chooseConfig:function(display,attribList,config,config_size,numConfigs){if(display!=62e3){EGL.setErrorCode(12296);return 0}if(attribList){for(;;){var param=HEAP32[attribList>>2];if(param==12321){var alphaSize=HEAP32[attribList+4>>2];EGL.contextAttributes.alpha=alphaSize>0}else if(param==12325){var depthSize=HEAP32[attribList+4>>2];EGL.contextAttributes.depth=depthSize>0}else if(param==12326){var stencilSize=HEAP32[attribList+4>>2];EGL.contextAttributes.stencil=stencilSize>0}else if(param==12337){var samples=HEAP32[attribList+4>>2];EGL.contextAttributes.antialias=samples>0}else if(param==12338){var samples=HEAP32[attribList+4>>2];EGL.contextAttributes.antialias=samples==1}else if(param==12544){var requestedPriority=HEAP32[attribList+4>>2];EGL.contextAttributes.lowLatency=requestedPriority!=12547}else if(param==12344){break}attribList+=8}}if((!config||!config_size)&&!numConfigs){EGL.setErrorCode(12300);return 0}if(numConfigs){HEAP32[numConfigs>>2]=1}if(config&&config_size>0){HEAP32[config>>2]=62002}EGL.setErrorCode(12288);return 1}};Module["EGL"]=EGL;function _eglGetDisplay(nativeDisplayType){EGL.setErrorCode(12288);return 62e3}Module["_eglGetDisplay"]=_eglGetDisplay;_eglGetDisplay.sig="ii";function _eglInitialize(display,majorVersion,minorVersion){if(display==62e3){if(majorVersion){HEAP32[majorVersion>>2]=1}if(minorVersion){HEAP32[minorVersion>>2]=4}EGL.defaultDisplayInitialized=true;EGL.setErrorCode(12288);return 1}else{EGL.setErrorCode(12296);return 0}}Module["_eglInitialize"]=_eglInitialize;_eglInitialize.sig="iiii";function _eglTerminate(display){if(display!=62e3){EGL.setErrorCode(12296);return 0}EGL.currentContext=0;EGL.currentReadSurface=0;EGL.currentDrawSurface=0;EGL.defaultDisplayInitialized=false;EGL.setErrorCode(12288);return 1}Module["_eglTerminate"]=_eglTerminate;_eglTerminate.sig="ii";function _eglGetConfigs(display,configs,config_size,numConfigs){return EGL.chooseConfig(display,0,configs,config_size,numConfigs)}Module["_eglGetConfigs"]=_eglGetConfigs;_eglGetConfigs.sig="iiiii";function _eglChooseConfig(display,attrib_list,configs,config_size,numConfigs){return EGL.chooseConfig(display,attrib_list,configs,config_size,numConfigs)}Module["_eglChooseConfig"]=_eglChooseConfig;_eglChooseConfig.sig="iiiiii";function _eglGetConfigAttrib(display,config,attribute,value){if(display!=62e3){EGL.setErrorCode(12296);return 0}if(config!=62002){EGL.setErrorCode(12293);return 0}if(!value){EGL.setErrorCode(12300);return 0}EGL.setErrorCode(12288);switch(attribute){case 12320:HEAP32[value>>2]=EGL.contextAttributes.alpha?32:24;return 1;case 12321:HEAP32[value>>2]=EGL.contextAttributes.alpha?8:0;return 1;case 12322:HEAP32[value>>2]=8;return 1;case 12323:HEAP32[value>>2]=8;return 1;case 12324:HEAP32[value>>2]=8;return 1;case 12325:HEAP32[value>>2]=EGL.contextAttributes.depth?24:0;return 1;case 12326:HEAP32[value>>2]=EGL.contextAttributes.stencil?8:0;return 1;case 12327:HEAP32[value>>2]=12344;return 1;case 12328:HEAP32[value>>2]=62002;return 1;case 12329:HEAP32[value>>2]=0;return 1;case 12330:HEAP32[value>>2]=4096;return 1;case 12331:HEAP32[value>>2]=16777216;return 1;case 12332:HEAP32[value>>2]=4096;return 1;case 12333:HEAP32[value>>2]=0;return 1;case 12334:HEAP32[value>>2]=0;return 1;case 12335:HEAP32[value>>2]=12344;return 1;case 12337:HEAP32[value>>2]=EGL.contextAttributes.antialias?4:0;return 1;case 12338:HEAP32[value>>2]=EGL.contextAttributes.antialias?1:0;return 1;case 12339:HEAP32[value>>2]=4;return 1;case 12340:HEAP32[value>>2]=12344;return 1;case 12341:case 12342:case 12343:HEAP32[value>>2]=-1;return 1;case 12345:case 12346:HEAP32[value>>2]=0;return 1;case 12347:HEAP32[value>>2]=0;return 1;case 12348:HEAP32[value>>2]=1;return 1;case 12349:case 12350:HEAP32[value>>2]=0;return 1;case 12351:HEAP32[value>>2]=12430;return 1;case 12352:HEAP32[value>>2]=4;return 1;case 12354:HEAP32[value>>2]=0;return 1;default:EGL.setErrorCode(12292);return 0}}Module["_eglGetConfigAttrib"]=_eglGetConfigAttrib;_eglGetConfigAttrib.sig="iiiii";function _eglCreateWindowSurface(display,config,win,attrib_list){if(display!=62e3){EGL.setErrorCode(12296);return 0}if(config!=62002){EGL.setErrorCode(12293);return 0}EGL.setErrorCode(12288);return 62006}Module["_eglCreateWindowSurface"]=_eglCreateWindowSurface;_eglCreateWindowSurface.sig="iiiii";function _eglDestroySurface(display,surface){if(display!=62e3){EGL.setErrorCode(12296);return 0}if(surface!=62006){EGL.setErrorCode(12301);return 1}if(EGL.currentReadSurface==surface){EGL.currentReadSurface=0}if(EGL.currentDrawSurface==surface){EGL.currentDrawSurface=0}EGL.setErrorCode(12288);return 1}Module["_eglDestroySurface"]=_eglDestroySurface;_eglDestroySurface.sig="iii";function _eglCreateContext(display,config,hmm,contextAttribs){if(display!=62e3){EGL.setErrorCode(12296);return 0}var glesContextVersion=1;for(;;){var param=HEAP32[contextAttribs>>2];if(param==12440){glesContextVersion=HEAP32[contextAttribs+4>>2]}else if(param==12344){break}else{EGL.setErrorCode(12292);return 0}contextAttribs+=8}if(glesContextVersion!=2){EGL.setErrorCode(12293);return 0}EGL.contextAttributes.majorVersion=glesContextVersion-1;EGL.contextAttributes.minorVersion=0;EGL.context=GL.createContext(Module["canvas"],EGL.contextAttributes);if(EGL.context!=0){EGL.setErrorCode(12288);GL.makeContextCurrent(EGL.context);Module.useWebGL=true;Browser.moduleContextCreatedCallbacks.forEach(function(callback){callback()});GL.makeContextCurrent(null);return 62004}else{EGL.setErrorCode(12297);return 0}}Module["_eglCreateContext"]=_eglCreateContext;_eglCreateContext.sig="iiiii";function _eglDestroyContext(display,context){if(display!=62e3){EGL.setErrorCode(12296);return 0}if(context!=62004){EGL.setErrorCode(12294);return 0}GL.deleteContext(EGL.context);EGL.setErrorCode(12288);if(EGL.currentContext==context){EGL.currentContext=0}return 1}Module["_eglDestroyContext"]=_eglDestroyContext;_eglDestroyContext.sig="iii";function _eglQuerySurface(display,surface,attribute,value){if(display!=62e3){EGL.setErrorCode(12296);return 0}if(surface!=62006){EGL.setErrorCode(12301);return 0}if(!value){EGL.setErrorCode(12300);return 0}EGL.setErrorCode(12288);switch(attribute){case 12328:HEAP32[value>>2]=62002;return 1;case 12376:return 1;case 12375:HEAP32[value>>2]=Module["canvas"].width;return 1;case 12374:HEAP32[value>>2]=Module["canvas"].height;return 1;case 12432:HEAP32[value>>2]=-1;return 1;case 12433:HEAP32[value>>2]=-1;return 1;case 12434:HEAP32[value>>2]=-1;return 1;case 12422:HEAP32[value>>2]=12420;return 1;case 12441:HEAP32[value>>2]=12442;return 1;case 12435:HEAP32[value>>2]=12437;return 1;case 12416:case 12417:case 12418:case 12419:return 1;default:EGL.setErrorCode(12292);return 0}}Module["_eglQuerySurface"]=_eglQuerySurface;_eglQuerySurface.sig="iiiii";function _eglQueryContext(display,context,attribute,value){if(display!=62e3){EGL.setErrorCode(12296);return 0}if(context!=62004){EGL.setErrorCode(12294);return 0}if(!value){EGL.setErrorCode(12300);return 0}EGL.setErrorCode(12288);switch(attribute){case 12328:HEAP32[value>>2]=62002;return 1;case 12439:HEAP32[value>>2]=12448;return 1;case 12440:HEAP32[value>>2]=EGL.contextAttributes.majorVersion+1;return 1;case 12422:HEAP32[value>>2]=12420;return 1;default:EGL.setErrorCode(12292);return 0}}Module["_eglQueryContext"]=_eglQueryContext;_eglQueryContext.sig="iiiii";function _eglGetError(){return EGL.errorCode}Module["_eglGetError"]=_eglGetError;_eglGetError.sig="i";function _eglQueryString(display,name){if(display!=62e3){EGL.setErrorCode(12296);return 0}EGL.setErrorCode(12288);if(EGL.stringCache[name])return EGL.stringCache[name];var ret;switch(name){case 12371:ret=allocateUTF8("Emscripten");break;case 12372:ret=allocateUTF8("1.4 Emscripten EGL");break;case 12373:ret=allocateUTF8("");break;case 12429:ret=allocateUTF8("OpenGL_ES");break;default:EGL.setErrorCode(12300);return 0}EGL.stringCache[name]=ret;return ret}Module["_eglQueryString"]=_eglQueryString;_eglQueryString.sig="iii";function _eglBindAPI(api){if(api==12448){EGL.setErrorCode(12288);return 1}else{EGL.setErrorCode(12300);return 0}}Module["_eglBindAPI"]=_eglBindAPI;_eglBindAPI.sig="ii";function _eglQueryAPI(){EGL.setErrorCode(12288);return 12448}Module["_eglQueryAPI"]=_eglQueryAPI;_eglQueryAPI.sig="i";function _eglWaitClient(){EGL.setErrorCode(12288);return 1}Module["_eglWaitClient"]=_eglWaitClient;_eglWaitClient.sig="i";function _eglWaitNative(nativeEngineId){EGL.setErrorCode(12288);return 1}Module["_eglWaitNative"]=_eglWaitNative;_eglWaitNative.sig="ii";function _eglWaitGL(){return _eglWaitClient()}Module["_eglWaitGL"]=_eglWaitGL;_eglWaitGL.sig="i";function _eglSwapInterval(display,interval){if(display!=62e3){EGL.setErrorCode(12296);return 0}if(interval==0)_emscripten_set_main_loop_timing(0,0);else _emscripten_set_main_loop_timing(1,interval);EGL.setErrorCode(12288);return 1}Module["_eglSwapInterval"]=_eglSwapInterval;_eglSwapInterval.sig="iii";function _eglMakeCurrent(display,draw,read,context){if(display!=62e3){EGL.setErrorCode(12296);return 0}if(context!=0&&context!=62004){EGL.setErrorCode(12294);return 0}if(read!=0&&read!=62006||draw!=0&&draw!=62006){EGL.setErrorCode(12301);return 0}GL.makeContextCurrent(context?EGL.context:null);EGL.currentContext=context;EGL.currentDrawSurface=draw;EGL.currentReadSurface=read;EGL.setErrorCode(12288);return 1}Module["_eglMakeCurrent"]=_eglMakeCurrent;_eglMakeCurrent.sig="iiiii";function _eglGetCurrentContext(){return EGL.currentContext}Module["_eglGetCurrentContext"]=_eglGetCurrentContext;_eglGetCurrentContext.sig="i";function _eglGetCurrentSurface(readdraw){if(readdraw==12378){return EGL.currentReadSurface}else if(readdraw==12377){return EGL.currentDrawSurface}else{EGL.setErrorCode(12300);return 0}}Module["_eglGetCurrentSurface"]=_eglGetCurrentSurface;_eglGetCurrentSurface.sig="ii";function _eglGetCurrentDisplay(){return EGL.currentContext?62e3:0}Module["_eglGetCurrentDisplay"]=_eglGetCurrentDisplay;_eglGetCurrentDisplay.sig="i";function _eglSwapBuffers(){if(!EGL.defaultDisplayInitialized){EGL.setErrorCode(12289)}else if(!Module.ctx){EGL.setErrorCode(12290)}else if(Module.ctx.isContextLost()){EGL.setErrorCode(12302)}else{EGL.setErrorCode(12288);return 1}return 0}Module["_eglSwapBuffers"]=_eglSwapBuffers;_eglSwapBuffers.sig="iii";function _eglReleaseThread(){EGL.currentContext=0;EGL.currentReadSurface=0;EGL.currentDrawSurface=0;EGL.setErrorCode(12288);return 1}Module["_eglReleaseThread"]=_eglReleaseThread;_eglReleaseThread.sig="i";var GLFW={WindowFromId:function(id){if(id<=0||!GLFW.windows)return null;return GLFW.windows[id-1]},joystickFunc:null,errorFunc:null,monitorFunc:null,active:null,windows:null,monitors:null,monitorString:null,versionString:null,initialTime:null,extensions:null,hints:null,defaultHints:{131073:0,131074:0,131075:1,131076:1,131077:1,135169:8,135170:8,135171:8,135172:8,135173:24,135174:8,135175:0,135176:0,135177:0,135178:0,135179:0,135180:0,135181:0,135182:0,135183:0,139265:196609,139266:1,139267:0,139268:0,139269:0,139270:0,139271:0,139272:0},DOMToGLFWKeyCode:function(keycode){switch(keycode){case 32:return 32;case 222:return 39;case 188:return 44;case 173:return 45;case 189:return 45;case 190:return 46;case 191:return 47;case 48:return 48;case 49:return 49;case 50:return 50;case 51:return 51;case 52:return 52;case 53:return 53;case 54:return 54;case 55:return 55;case 56:return 56;case 57:return 57;case 59:return 59;case 61:return 61;case 187:return 61;case 65:return 65;case 66:return 66;case 67:return 67;case 68:return 68;case 69:return 69;case 70:return 70;case 71:return 71;case 72:return 72;case 73:return 73;case 74:return 74;case 75:return 75;case 76:return 76;case 77:return 77;case 78:return 78;case 79:return 79;case 80:return 80;case 81:return 81;case 82:return 82;case 83:return 83;case 84:return 84;case 85:return 85;case 86:return 86;case 87:return 87;case 88:return 88;case 89:return 89;case 90:return 90;case 219:return 91;case 220:return 92;case 221:return 93;case 192:return 94;case 27:return 256+1;case 112:return 256+2;case 113:return 256+3;case 114:return 256+4;case 115:return 256+5;case 116:return 256+6;case 117:return 256+7;case 118:return 256+8;case 119:return 256+9;case 120:return 256+10;case 121:return 256+11;case 122:return 256+12;case 123:return 256+13;case 124:return 256+14;case 125:return 256+15;case 126:return 256+16;case 127:return 256+17;case 128:return 256+18;case 129:return 256+19;case 130:return 256+20;case 131:return 256+21;case 132:return 256+22;case 133:return 256+23;case 134:return 256+24;case 135:return 256+25;case 136:return 256+26;case 39:return 256+30;case 37:return 256+29;case 40:return 256+28;case 38:return 256+27;case 16:return 256+31;case 17:return 256+33;case 18:return 256+35;case 9:return 256+37;case 13:return 256+38;case 8:return 256+39;case 45:return 256+40;case 46:return 256+41;case 33:return 256+42;case 34:return 256+43;case 36:return 256+44;case 35:return 256+45;case 96:return 256+46;case 97:return 256+47;case 98:return 256+48;case 99:return 256+49;case 100:return 256+50;case 101:return 256+51;case 102:return 256+52;case 103:return 256+53;case 104:return 256+54;case 105:return 256+55;case 111:return 256+56;case 106:return 256+57;case 109:return 256+58;case 107:return 256+59;case 110:return 256+60;case 144:return 256+63;case 20:return 256+64;case 145:return 256+65;case 19:return 256+66;case 91:return 256+67;case 93:return 256+69;default:return-1}},getModBits:function(win){var mod=0;if(win.keys[340])mod|=1;if(win.keys[341])mod|=2;if(win.keys[342])mod|=4;if(win.keys[343])mod|=8;return mod},onKeyPress:function(event){if(!GLFW.active||!GLFW.active.charFunc)return;if(event.ctrlKey||event.metaKey)return;var charCode=event.charCode;if(charCode==0||charCode>=0&&charCode<=31)return;wasmTable.get(GLFW.active.charFunc)(charCode,1)},onKeyChanged:function(keyCode,status){if(!GLFW.active)return;var key=GLFW.DOMToGLFWKeyCode(keyCode);if(key==-1)return;GLFW.active.keys[key]=status;GLFW.active.domKeys[keyCode]=status;if(!GLFW.active.keyFunc)return;wasmTable.get(GLFW.active.keyFunc)(key,status)},onGamepadConnected:function(event){GLFW.refreshJoysticks()},onGamepadDisconnected:function(event){GLFW.refreshJoysticks()},onKeydown:function(event){GLFW.onKeyChanged(event.keyCode,1);if(event.keyCode===8||event.keyCode===9){event.preventDefault()}},onKeyup:function(event){GLFW.onKeyChanged(event.keyCode,0)},onBlur:function(event){if(!GLFW.active)return;for(var i=0;i0){if(eventButton==1){eventButton=2}else{eventButton=1}}return eventButton},onMouseenter:function(event){if(!GLFW.active)return;if(event.target!=Module["canvas"]||!GLFW.active.cursorEnterFunc)return},onMouseleave:function(event){if(!GLFW.active)return;if(event.target!=Module["canvas"]||!GLFW.active.cursorEnterFunc)return},onMouseButtonChanged:function(event,status){if(!GLFW.active)return;Browser.calculateMouseEvent(event);if(event.target!=Module["canvas"])return;var eventButton=GLFW.DOMToGLFWMouseButton(event);if(status==1){GLFW.active.buttons|=1<0?Math.max(delta,1):Math.min(delta,-1);GLFW.wheelPos+=delta;if(!GLFW.active||!GLFW.active.scrollFunc||event.target!=Module["canvas"])return;wasmTable.get(GLFW.active.scrollFunc)(GLFW.wheelPos);event.preventDefault()},onCanvasResize:function(width,height){if(!GLFW.active)return;var resizeNeeded=true;if(document["fullscreen"]||document["fullScreen"]||document["mozFullScreen"]||document["webkitIsFullScreen"]){GLFW.active.storedX=GLFW.active.x;GLFW.active.storedY=GLFW.active.y;GLFW.active.storedWidth=GLFW.active.width;GLFW.active.storedHeight=GLFW.active.height;GLFW.active.x=GLFW.active.y=0;GLFW.active.width=screen.width;GLFW.active.height=screen.height;GLFW.active.fullscreen=true}else if(GLFW.active.fullscreen==true){GLFW.active.x=GLFW.active.storedX;GLFW.active.y=GLFW.active.storedY;GLFW.active.width=GLFW.active.storedWidth;GLFW.active.height=GLFW.active.storedHeight;GLFW.active.fullscreen=false}else if(GLFW.active.width!=width||GLFW.active.height!=height){GLFW.active.width=width;GLFW.active.height=height}else{resizeNeeded=false}if(resizeNeeded){Browser.setCanvasSize(GLFW.active.width,GLFW.active.height,true);GLFW.onWindowSizeChanged();GLFW.onFramebufferSizeChanged()}},onWindowSizeChanged:function(){if(!GLFW.active)return;if(!GLFW.active.windowSizeFunc)return;wasmTable.get(GLFW.active.windowSizeFunc)(GLFW.active.width,GLFW.active.height)},onFramebufferSizeChanged:function(){if(!GLFW.active)return;if(!GLFW.active.framebufferSizeFunc)return},getTime:function(){return _emscripten_get_now()/1e3},setWindowTitle:function(winid,title){var win=GLFW.WindowFromId(winid);if(!win)return;win.title=UTF8ToString(title);if(GLFW.active.id==win.id){document.title=win.title}},setJoystickCallback:function(cbfun){GLFW.joystickFunc=cbfun;GLFW.refreshJoysticks()},joys:{},lastGamepadState:null,lastGamepadStateFrame:null,refreshJoysticks:function(){if(Browser.mainLoop.currentFrameNumber!==GLFW.lastGamepadStateFrame||!Browser.mainLoop.currentFrameNumber){GLFW.lastGamepadState=navigator.getGamepads?navigator.getGamepads():navigator.webkitGetGamepads?navigator.webkitGetGamepads:null;GLFW.lastGamepadStateFrame=Browser.mainLoop.currentFrameNumber;for(var joy=0;joy0},getCursorPos:function(winid,x,y){setValue(x,Browser.mouseX,"double");setValue(y,Browser.mouseY,"double")},getMousePos:function(winid,x,y){setValue(x,Browser.mouseX,"i32");setValue(y,Browser.mouseY,"i32")},setCursorPos:function(winid,x,y){},getWindowPos:function(winid,x,y){var wx=0;var wy=0;var win=GLFW.WindowFromId(winid);if(win){wx=win.x;wy=win.y}if(x){setValue(x,wx,"i32")}if(y){setValue(y,wy,"i32")}},setWindowPos:function(winid,x,y){var win=GLFW.WindowFromId(winid);if(!win)return;win.x=x;win.y=y},getWindowSize:function(winid,width,height){var ww=0;var wh=0;var win=GLFW.WindowFromId(winid);if(win){ww=win.width;wh=win.height}if(width){setValue(width,ww,"i32")}if(height){setValue(height,wh,"i32")}},setWindowSize:function(winid,width,height){var win=GLFW.WindowFromId(winid);if(!win)return;if(GLFW.active.id==win.id){if(width==screen.width&&height==screen.height){Browser.requestFullscreen()}else{Browser.exitFullscreen();Browser.setCanvasSize(width,height);win.width=width;win.height=height}}if(!win.windowSizeFunc)return;wasmTable.get(win.windowSizeFunc)(width,height)},createWindow:function(width,height,title,monitor,share){var i,id;for(i=0;i0)throw"glfwCreateWindow only supports one window at time currently";id=i+1;if(width<=0||height<=0)return 0;if(monitor){Browser.requestFullscreen()}else{Browser.setCanvasSize(width,height)}for(i=0;i0;if(i==GLFW.windows.length){if(useWebGL){var contextAttributes={antialias:GLFW.hints[135181]>1,depth:GLFW.hints[135173]>0,stencil:GLFW.hints[135174]>0,alpha:GLFW.hints[135172]>0};Module.ctx=Browser.createContext(Module["canvas"],true,true,contextAttributes)}else{Browser.init()}}if(!Module.ctx&&useWebGL)return 0;var win=new GLFW_Window(id,width,height,title,monitor,share);if(id-1==GLFW.windows.length){GLFW.windows.push(win)}else{GLFW.windows[id-1]=win}GLFW.active=win;return win.id},destroyWindow:function(winid){var win=GLFW.WindowFromId(winid);if(!win)return;GLFW.windows[win.id-1]=null;if(GLFW.active.id==win.id)GLFW.active=null;for(var i=0;i>2];if(val){return 0}}return 1}Module["_uuid_is_null"]=_uuid_is_null;function _uuid_parse(inp,uu){inp=UTF8ToString(inp);if(inp.length===36){var i=0;var uuid=new Array(16);inp.toLowerCase().replace(/[0-9a-f]{2}/g,function(byte){if(i<16){uuid[i++]=parseInt(byte,16)}});if(i<16){return-1}else{writeArrayToMemory(uuid,uu);return 0}}else{return-1}}Module["_uuid_parse"]=_uuid_parse;function _uuid_unparse(uu,out,upper){var i=0;var uuid="xxxx-xx-xx-xx-xxxxxx".replace(/[x]/g,function(c){var r=upper?HEAPU8[uu+i>>0].toString(16).toUpperCase():HEAPU8[uu+i>>0].toString(16);r=r.length===1?"0"+r:r;i++;return r});stringToUTF8(uuid,out,37)}Module["_uuid_unparse"]=_uuid_unparse;function _uuid_unparse_lower(uu,out){_uuid_unparse(uu,out)}Module["_uuid_unparse_lower"]=_uuid_unparse_lower;function _uuid_unparse_upper(uu,out){_uuid_unparse(uu,out,true)}Module["_uuid_unparse_upper"]=_uuid_unparse_upper;function _uuid_type(uu){return 4}Module["_uuid_type"]=_uuid_type;function _uuid_variant(uu){return 1}Module["_uuid_variant"]=_uuid_variant;var GLEW={isLinaroFork:1,extensions:null,error:{0:null,1:null,2:null,3:null,4:null,5:null,6:null,7:null,8:null},version:{1:null,2:null,3:null,4:null},errorStringConstantFromCode:function(error){if(GLEW.isLinaroFork){switch(error){case 4:return"OpenGL ES lib expected, found OpenGL lib";case 5:return"OpenGL lib expected, found OpenGL ES lib";case 6:return"Missing EGL version";case 7:return"EGL 1.1 and up are supported";default:break}}switch(error){case 0:return"No error";case 1:return"Missing GL version";case 2:return"GL 1.1 and up are supported";case 3:return"GLX 1.2 and up are supported";default:return null}},errorString:function(error){if(!GLEW.error[error]){var string=GLEW.errorStringConstantFromCode(error);if(!string){string="Unknown error";error=8}GLEW.error[error]=allocate(intArrayFromString(string),ALLOC_NORMAL)}return GLEW.error[error]},versionStringConstantFromCode:function(name){switch(name){case 1:return"1.10.0";case 2:return"1";case 3:return"10";case 4:return"0";default:return null}},versionString:function(name){if(!GLEW.version[name]){var string=GLEW.versionStringConstantFromCode(name);if(!string)return 0;GLEW.version[name]=allocate(intArrayFromString(string),ALLOC_NORMAL)}return GLEW.version[name]},extensionIsSupported:function(name){if(!GLEW.extensions){GLEW.extensions=UTF8ToString(_glGetString(7939)).split(" ")}if(GLEW.extensions.indexOf(name)!=-1)return 1;return GLEW.extensions.indexOf("GL_"+name)!=-1}};Module["GLEW"]=GLEW;function _glewInit(){return 0}Module["_glewInit"]=_glewInit;function _glewIsSupported(name){var exts=UTF8ToString(name).split(" ");for(var i=0;i0)};req.onerror=function(error){callback(error)}})}};Module["IDBStore"]=IDBStore;function _emscripten_idb_async_load(db,id,arg,onload,onerror){IDBStore.getFile(UTF8ToString(db),UTF8ToString(id),function(error,byteArray){if(error){if(onerror)wasmTable.get(onerror)(arg);return}var buffer=_malloc(byteArray.length);HEAPU8.set(byteArray,buffer);wasmTable.get(onload)(arg,buffer,byteArray.length);_free(buffer)})}Module["_emscripten_idb_async_load"]=_emscripten_idb_async_load;function _emscripten_idb_async_store(db,id,ptr,num,arg,onstore,onerror){IDBStore.setFile(UTF8ToString(db),UTF8ToString(id),new Uint8Array(HEAPU8.subarray(ptr,ptr+num)),function(error){if(error){if(onerror)wasmTable.get(onerror)(arg);return}if(onstore)wasmTable.get(onstore)(arg)})}Module["_emscripten_idb_async_store"]=_emscripten_idb_async_store;function _emscripten_idb_async_delete(db,id,arg,ondelete,onerror){IDBStore.deleteFile(UTF8ToString(db),UTF8ToString(id),function(error){if(error){if(onerror)wasmTable.get(onerror)(arg);return}if(ondelete)wasmTable.get(ondelete)(arg)})}Module["_emscripten_idb_async_delete"]=_emscripten_idb_async_delete;function _emscripten_idb_async_exists(db,id,arg,oncheck,onerror){IDBStore.existsFile(UTF8ToString(db),UTF8ToString(id),function(error,exists){if(error){if(onerror)wasmTable.get(onerror)(arg);return}if(oncheck)wasmTable.get(oncheck)(arg,exists)})}Module["_emscripten_idb_async_exists"]=_emscripten_idb_async_exists;function _emscripten_idb_load(){throw"Please compile your program with async support in order to use synchronous operations like emscripten_idb_load, etc."}Module["_emscripten_idb_load"]=_emscripten_idb_load;function _emscripten_idb_store(){throw"Please compile your program with async support in order to use synchronous operations like emscripten_idb_store, etc."}Module["_emscripten_idb_store"]=_emscripten_idb_store;function _emscripten_idb_delete(){throw"Please compile your program with async support in order to use synchronous operations like emscripten_idb_delete, etc."}Module["_emscripten_idb_delete"]=_emscripten_idb_delete;function _emscripten_idb_exists(){throw"Please compile your program with async support in order to use synchronous operations like emscripten_idb_exists, etc."}Module["_emscripten_idb_exists"]=_emscripten_idb_exists;function runAndAbortIfError(func){try{return func()}catch(e){abort(e)}}Module["runAndAbortIfError"]=runAndAbortIfError;function _emscripten_sleep(){throw"Please compile your program with async support in order to use asynchronous operations like emscripten_sleep"}Module["_emscripten_sleep"]=_emscripten_sleep;function _emscripten_wget(){throw"Please compile your program with async support in order to use asynchronous operations like emscripten_wget"}Module["_emscripten_wget"]=_emscripten_wget;function _emscripten_wget_data(){throw"Please compile your program with async support in order to use asynchronous operations like emscripten_wget_data"}Module["_emscripten_wget_data"]=_emscripten_wget_data;function _emscripten_scan_registers(){throw"Please compile your program with async support in order to use asynchronous operations like emscripten_scan_registers"}Module["_emscripten_scan_registers"]=_emscripten_scan_registers;function _emscripten_fiber_init(){throw"Please compile your program with async support in order to use asynchronous operations like emscripten_fiber_init"}Module["_emscripten_fiber_init"]=_emscripten_fiber_init;function _emscripten_fiber_init_from_current_context(){throw"Please compile your program with async support in order to use asynchronous operations like emscripten_fiber_init_from_current_context"}Module["_emscripten_fiber_init_from_current_context"]=_emscripten_fiber_init_from_current_context;function _emscripten_fiber_swap(){throw"Please compile your program with async support in order to use asynchronous operations like emscripten_fiber_swap"}Module["_emscripten_fiber_swap"]=_emscripten_fiber_swap;function _emscripten_is_main_browser_thread(){return!ENVIRONMENT_IS_WORKER}Module["_emscripten_is_main_browser_thread"]=_emscripten_is_main_browser_thread;Module["requestFullscreen"]=function Module_requestFullscreen(lockPointer,resizeCanvas){Browser.requestFullscreen(lockPointer,resizeCanvas)};Module["requestAnimationFrame"]=function Module_requestAnimationFrame(func){Browser.requestAnimationFrame(func)};Module["setCanvasSize"]=function Module_setCanvasSize(width,height,noUpdates){Browser.setCanvasSize(width,height,noUpdates)};Module["pauseMainLoop"]=function Module_pauseMainLoop(){Browser.mainLoop.pause()};Module["resumeMainLoop"]=function Module_resumeMainLoop(){Browser.mainLoop.resume()};Module["getUserMedia"]=function Module_getUserMedia(){Browser.getUserMedia()};Module["createContext"]=function Module_createContext(canvas,useWebGL,setInModule,webGLContextAttributes){return Browser.createContext(canvas,useWebGL,setInModule,webGLContextAttributes)};var FSNode=function(parent,name,mode,rdev){if(!parent){parent=this}this.parent=parent;this.mount=parent.mount;this.mounted=null;this.id=FS.nextInode++;this.name=name;this.mode=mode;this.node_ops={};this.stream_ops={};this.rdev=rdev};var readMode=292|73;var writeMode=146;Object.defineProperties(FSNode.prototype,{read:{get:function(){return(this.mode&readMode)===readMode},set:function(val){val?this.mode|=readMode:this.mode&=~readMode}},write:{get:function(){return(this.mode&writeMode)===writeMode},set:function(val){val?this.mode|=writeMode:this.mode&=~writeMode}},isFolder:{get:function(){return FS.isDir(this.mode)}},isDevice:{get:function(){return FS.isChrdev(this.mode)}}});FS.FSNode=FSNode;FS.staticInit();Module["FS_createPath"]=FS.createPath;Module["FS_createDataFile"]=FS.createDataFile;Module["FS_createPreloadedFile"]=FS.createPreloadedFile;Module["FS_createLazyFile"]=FS.createLazyFile;Module["FS_createDevice"]=FS.createDevice;Module["FS_unlink"]=FS.unlink;if(ENVIRONMENT_IS_NODE){var fs=require("fs");var NODEJS_PATH=require("path");NODEFS.staticInit()}var GLctx;for(var i=0;i<32;++i)tempFixedLengthArray.push(new Array(i));var miniTempWebGLFloatBuffersStorage=new Float32Array(288);for(var i=0;i<288;++i){miniTempWebGLFloatBuffers[i]=miniTempWebGLFloatBuffersStorage.subarray(0,i+1)}var __miniTempWebGLIntBuffersStorage=new Int32Array(288);for(var i=0;i<288;++i){__miniTempWebGLIntBuffers[i]=__miniTempWebGLIntBuffersStorage.subarray(0,i+1)}var __setImmediate_id_counter=0;var __setImmediate_queue=[];var __setImmediate_message_id="_si";function __setImmediate_cb(e){if(e.data===__setImmediate_message_id){e.stopPropagation();__setImmediate_queue.shift()();++__setImmediate_id_counter}}if(typeof setImmediate==="undefined"&&typeof addEventListener==="function"){addEventListener("message",__setImmediate_cb,true);setImmediate=function(func){postMessage(__setImmediate_message_id,"*");return __setImmediate_id_counter+__setImmediate_queue.push(func)-1};clearImmediate=function(id){var index=id-__setImmediate_id_counter;if(index>=0&&index<__setImmediate_queue.length)__setImmediate_queue[index]=function(){}}}var ASSERTIONS=false;function intArrayFromString(stringy,dontAddNull,length){var len=length>0?length:lengthBytesUTF8(stringy)+1;var u8array=new Array(len);var numBytesWritten=stringToUTF8Array(stringy,u8array,0,u8array.length);if(dontAddNull)u8array.length=numBytesWritten;return u8array}function intArrayToString(array){var ret=[];for(var i=0;i255){if(ASSERTIONS){assert(false,"Character code "+chr+" ("+String.fromCharCode(chr)+") at offset "+i+" not in 0x00-0xFF.")}chr&=255}ret.push(String.fromCharCode(chr))}return ret.join("")}var asmLibraryArg={"JsArray_Check":JsArray_Check,"JsArray_Delete":JsArray_Delete,"JsArray_Get":JsArray_Get,"JsArray_New":JsArray_New,"JsArray_Push":JsArray_Push,"JsArray_Push_unchecked":JsArray_Push_unchecked,"JsArray_Set":JsArray_Set,"JsBuffer_DecodeString_js":JsBuffer_DecodeString_js,"JsMap_New":JsMap_New,"JsMap_Set":JsMap_Set,"JsObject_DeleteString":JsObject_DeleteString,"JsObject_Dir":JsObject_Dir,"JsObject_Entries":JsObject_Entries,"JsObject_GetString":JsObject_GetString,"JsObject_Keys":JsObject_Keys,"JsObject_New":JsObject_New,"JsObject_SetString":JsObject_SetString,"JsObject_Values":JsObject_Values,"JsProxy_subscript_js":JsProxy_subscript_js,"JsSet_Add":JsSet_Add,"JsSet_New":JsSet_New,"JsString_InternFromCString":JsString_InternFromCString,"PyArray_Broadcast_part1":PyArray_Broadcast_part1,"_JsArray_PostProcess_helper":_JsArray_PostProcess_helper,"_JsArray_PushEntry_helper":_JsArray_PushEntry_helper,"_Unwind_GetIP":__Unwind_GetIP,"_Unwind_GetLanguageSpecificData":__Unwind_GetLanguageSpecificData,"_Unwind_GetRegionStart":__Unwind_GetRegionStart,"_Unwind_SetGR":__Unwind_SetGR,"_Unwind_SetIP":__Unwind_SetIP,"__asctime_r":___asctime_r,"__assert_fail":___assert_fail,"__clock_gettime":___clock_gettime,"__cxa_atexit":___cxa_atexit,"__gmtime_r":___gmtime_r,"__indirect_function_table":wasmTable,"__libc_current_sigrtmax":___libc_current_sigrtmax,"__libc_current_sigrtmin":___libc_current_sigrtmin,"__localtime_r":___localtime_r,"__map_file":___map_file,"__memory_base":1024,"__posix_spawnx":___posix_spawnx,"__pthread_once":___pthread_once,"__stack_pointer":__stack_pointer,"__sys__newselect":___sys__newselect,"__sys_accept4":___sys_accept4,"__sys_access":___sys_access,"__sys_acct":___sys_acct,"__sys_bind":___sys_bind,"__sys_chdir":___sys_chdir,"__sys_chmod":___sys_chmod,"__sys_chown32":___sys_chown32,"__sys_connect":___sys_connect,"__sys_dup":___sys_dup,"__sys_dup2":___sys_dup2,"__sys_dup3":___sys_dup3,"__sys_fadvise64_64":___sys_fadvise64_64,"__sys_fallocate":___sys_fallocate,"__sys_fchdir":___sys_fchdir,"__sys_fchmod":___sys_fchmod,"__sys_fchmodat":___sys_fchmodat,"__sys_fchown32":___sys_fchown32,"__sys_fchownat":___sys_fchownat,"__sys_fcntl64":___sys_fcntl64,"__sys_fdatasync":___sys_fdatasync,"__sys_fstat64":___sys_fstat64,"__sys_fstatat64":___sys_fstatat64,"__sys_fstatfs64":___sys_fstatfs64,"__sys_ftruncate64":___sys_ftruncate64,"__sys_getcwd":___sys_getcwd,"__sys_getdents64":___sys_getdents64,"__sys_getegid32":___sys_getegid32,"__sys_geteuid32":___sys_geteuid32,"__sys_getgid32":___sys_getgid32,"__sys_getgroups32":___sys_getgroups32,"__sys_getpeername":___sys_getpeername,"__sys_getpgid":___sys_getpgid,"__sys_getpid":___sys_getpid,"__sys_getppid":___sys_getppid,"__sys_getpriority":___sys_getpriority,"__sys_getresgid32":___sys_getresgid32,"__sys_getresuid32":___sys_getresuid32,"__sys_getrusage":___sys_getrusage,"__sys_getsid":___sys_getsid,"__sys_getsockname":___sys_getsockname,"__sys_getsockopt":___sys_getsockopt,"__sys_getuid32":___sys_getuid32,"__sys_ioctl":___sys_ioctl,"__sys_lchown32":___sys_lchown32,"__sys_link":___sys_link,"__sys_linkat":___sys_linkat,"__sys_listen":___sys_listen,"__sys_lstat64":___sys_lstat64,"__sys_madvise1":___sys_madvise1,"__sys_mincore":___sys_mincore,"__sys_mkdir":___sys_mkdir,"__sys_mkdirat":___sys_mkdirat,"__sys_mknod":___sys_mknod,"__sys_mknodat":___sys_mknodat,"__sys_mlock":___sys_mlock,"__sys_mlockall":___sys_mlockall,"__sys_mmap2":___sys_mmap2,"__sys_mprotect":___sys_mprotect,"__sys_mremap":___sys_mremap,"__sys_msync":___sys_msync,"__sys_munlock":___sys_munlock,"__sys_munlockall":___sys_munlockall,"__sys_munmap":___sys_munmap,"__sys_nice":___sys_nice,"__sys_open":___sys_open,"__sys_openat":___sys_openat,"__sys_pause":___sys_pause,"__sys_pipe":___sys_pipe,"__sys_pipe2":___sys_pipe2,"__sys_poll":___sys_poll,"__sys_prlimit64":___sys_prlimit64,"__sys_pselect6":___sys_pselect6,"__sys_readlink":___sys_readlink,"__sys_readlinkat":___sys_readlinkat,"__sys_recvfrom":___sys_recvfrom,"__sys_recvmmsg":___sys_recvmmsg,"__sys_recvmsg":___sys_recvmsg,"__sys_rename":___sys_rename,"__sys_renameat":___sys_renameat,"__sys_rmdir":___sys_rmdir,"__sys_sendmmsg":___sys_sendmmsg,"__sys_sendmsg":___sys_sendmsg,"__sys_sendto":___sys_sendto,"__sys_setdomainname":___sys_setdomainname,"__sys_setpgid":___sys_setpgid,"__sys_setpriority":___sys_setpriority,"__sys_setrlimit":___sys_setrlimit,"__sys_setsid":___sys_setsid,"__sys_setsockopt":___sys_setsockopt,"__sys_shutdown":___sys_shutdown,"__sys_socket":___sys_socket,"__sys_socketpair":___sys_socketpair,"__sys_stat64":___sys_stat64,"__sys_statfs64":___sys_statfs64,"__sys_symlink":___sys_symlink,"__sys_symlinkat":___sys_symlinkat,"__sys_sync":___sys_sync,"__sys_truncate64":___sys_truncate64,"__sys_ugetrlimit":___sys_ugetrlimit,"__sys_umask":___sys_umask,"__sys_uname":___sys_uname,"__sys_unlink":___sys_unlink,"__sys_unlinkat":___sys_unlinkat,"__sys_utimensat":___sys_utimensat,"__sys_wait4":___sys_wait4,"__table_base":1,"_exit":__exit,"_python2js_buffer_inner":_python2js_buffer_inner,"abort":_abort,"alBuffer3f":_alBuffer3f,"alBuffer3i":_alBuffer3i,"alBufferData":_alBufferData,"alBufferf":_alBufferf,"alBufferfv":_alBufferfv,"alBufferi":_alBufferi,"alBufferiv":_alBufferiv,"alDeleteBuffers":_alDeleteBuffers,"alDeleteSources":_alDeleteSources,"alDisable":_alDisable,"alDistanceModel":_alDistanceModel,"alDopplerFactor":_alDopplerFactor,"alDopplerVelocity":_alDopplerVelocity,"alEnable":_alEnable,"alGenBuffers":_alGenBuffers,"alGenSources":_alGenSources,"alGetBoolean":_alGetBoolean,"alGetBooleanv":_alGetBooleanv,"alGetBuffer3f":_alGetBuffer3f,"alGetBuffer3i":_alGetBuffer3i,"alGetBufferf":_alGetBufferf,"alGetBufferfv":_alGetBufferfv,"alGetBufferi":_alGetBufferi,"alGetBufferiv":_alGetBufferiv,"alGetDouble":_alGetDouble,"alGetDoublev":_alGetDoublev,"alGetEnumValue":_alGetEnumValue,"alGetError":_alGetError,"alGetFloat":_alGetFloat,"alGetFloatv":_alGetFloatv,"alGetInteger":_alGetInteger,"alGetIntegerv":_alGetIntegerv,"alGetListener3f":_alGetListener3f,"alGetListener3i":_alGetListener3i,"alGetListenerf":_alGetListenerf,"alGetListenerfv":_alGetListenerfv,"alGetListeneri":_alGetListeneri,"alGetListeneriv":_alGetListeneriv,"alGetSource3f":_alGetSource3f,"alGetSource3i":_alGetSource3i,"alGetSourcef":_alGetSourcef,"alGetSourcefv":_alGetSourcefv,"alGetSourcei":_alGetSourcei,"alGetSourceiv":_alGetSourceiv,"alGetString":_alGetString,"alIsBuffer":_alIsBuffer,"alIsEnabled":_alIsEnabled,"alIsExtensionPresent":_alIsExtensionPresent,"alIsSource":_alIsSource,"alListener3f":_alListener3f,"alListener3i":_alListener3i,"alListenerf":_alListenerf,"alListenerfv":_alListenerfv,"alListeneri":_alListeneri,"alListeneriv":_alListeneriv,"alSource3f":_alSource3f,"alSource3i":_alSource3i,"alSourcePause":_alSourcePause,"alSourcePausev":_alSourcePausev,"alSourcePlay":_alSourcePlay,"alSourcePlayv":_alSourcePlayv,"alSourceQueueBuffers":_alSourceQueueBuffers,"alSourceRewind":_alSourceRewind,"alSourceRewindv":_alSourceRewindv,"alSourceStop":_alSourceStop,"alSourceStopv":_alSourceStopv,"alSourceUnqueueBuffers":_alSourceUnqueueBuffers,"alSourcef":_alSourcef,"alSourcefv":_alSourcefv,"alSourcei":_alSourcei,"alSourceiv":_alSourceiv,"alSpeedOfSound":_alSpeedOfSound,"alarm":_alarm,"alcCaptureCloseDevice":_alcCaptureCloseDevice,"alcCaptureOpenDevice":_alcCaptureOpenDevice,"alcCaptureSamples":_alcCaptureSamples,"alcCaptureStart":_alcCaptureStart,"alcCaptureStop":_alcCaptureStop,"alcCloseDevice":_alcCloseDevice,"alcCreateContext":_alcCreateContext,"alcDestroyContext":_alcDestroyContext,"alcGetContextsDevice":_alcGetContextsDevice,"alcGetCurrentContext":_alcGetCurrentContext,"alcGetEnumValue":_alcGetEnumValue,"alcGetError":_alcGetError,"alcGetIntegerv":_alcGetIntegerv,"alcGetString":_alcGetString,"alcIsExtensionPresent":_alcIsExtensionPresent,"alcMakeContextCurrent":_alcMakeContextCurrent,"alcOpenDevice":_alcOpenDevice,"alcProcessContext":_alcProcessContext,"alcSuspendContext":_alcSuspendContext,"array_to_js":array_to_js,"chroot":_chroot,"clock":_clock,"clock_getres":_clock_getres,"clock_gettime":_clock_gettime,"console_error":console_error,"console_error_obj":console_error_obj,"create_once_callable":create_once_callable,"create_promise_handles":create_promise_handles,"destroy_proxies":destroy_proxies,"destroy_proxies_js":destroy_proxies_js,"dlclose":_dlclose,"dlerror":_dlerror,"dlopen":_dlopen,"dlsym":_dlsym,"emscripten_alcDevicePauseSOFT":_emscripten_alcDevicePauseSOFT,"emscripten_alcDeviceResumeSOFT":_emscripten_alcDeviceResumeSOFT,"emscripten_alcGetStringiSOFT":_emscripten_alcGetStringiSOFT,"emscripten_alcResetDeviceSOFT":_emscripten_alcResetDeviceSOFT,"emscripten_asm_const_int":_emscripten_asm_const_int,"emscripten_exit_with_live_runtime":_emscripten_exit_with_live_runtime,"emscripten_get_heap_max":_emscripten_get_heap_max,"emscripten_glActiveTexture":_emscripten_glActiveTexture,"emscripten_glAttachShader":_emscripten_glAttachShader,"emscripten_glBeginQueryEXT":_emscripten_glBeginQueryEXT,"emscripten_glBindAttribLocation":_emscripten_glBindAttribLocation,"emscripten_glBindBuffer":_emscripten_glBindBuffer,"emscripten_glBindFramebuffer":_emscripten_glBindFramebuffer,"emscripten_glBindRenderbuffer":_emscripten_glBindRenderbuffer,"emscripten_glBindTexture":_emscripten_glBindTexture,"emscripten_glBindVertexArrayOES":_emscripten_glBindVertexArrayOES,"emscripten_glBlendColor":_emscripten_glBlendColor,"emscripten_glBlendEquation":_emscripten_glBlendEquation,"emscripten_glBlendEquationSeparate":_emscripten_glBlendEquationSeparate,"emscripten_glBlendFunc":_emscripten_glBlendFunc,"emscripten_glBlendFuncSeparate":_emscripten_glBlendFuncSeparate,"emscripten_glBufferData":_emscripten_glBufferData,"emscripten_glBufferSubData":_emscripten_glBufferSubData,"emscripten_glCheckFramebufferStatus":_emscripten_glCheckFramebufferStatus,"emscripten_glClear":_emscripten_glClear,"emscripten_glClearColor":_emscripten_glClearColor,"emscripten_glClearDepthf":_emscripten_glClearDepthf,"emscripten_glClearStencil":_emscripten_glClearStencil,"emscripten_glColorMask":_emscripten_glColorMask,"emscripten_glCompileShader":_emscripten_glCompileShader,"emscripten_glCompressedTexImage2D":_emscripten_glCompressedTexImage2D,"emscripten_glCompressedTexSubImage2D":_emscripten_glCompressedTexSubImage2D,"emscripten_glCopyTexImage2D":_emscripten_glCopyTexImage2D,"emscripten_glCopyTexSubImage2D":_emscripten_glCopyTexSubImage2D,"emscripten_glCreateProgram":_emscripten_glCreateProgram,"emscripten_glCreateShader":_emscripten_glCreateShader,"emscripten_glCullFace":_emscripten_glCullFace,"emscripten_glDeleteBuffers":_emscripten_glDeleteBuffers,"emscripten_glDeleteFramebuffers":_emscripten_glDeleteFramebuffers,"emscripten_glDeleteProgram":_emscripten_glDeleteProgram,"emscripten_glDeleteQueriesEXT":_emscripten_glDeleteQueriesEXT,"emscripten_glDeleteRenderbuffers":_emscripten_glDeleteRenderbuffers,"emscripten_glDeleteShader":_emscripten_glDeleteShader,"emscripten_glDeleteTextures":_emscripten_glDeleteTextures,"emscripten_glDeleteVertexArraysOES":_emscripten_glDeleteVertexArraysOES,"emscripten_glDepthFunc":_emscripten_glDepthFunc,"emscripten_glDepthMask":_emscripten_glDepthMask,"emscripten_glDepthRangef":_emscripten_glDepthRangef,"emscripten_glDetachShader":_emscripten_glDetachShader,"emscripten_glDisable":_emscripten_glDisable,"emscripten_glDisableVertexAttribArray":_emscripten_glDisableVertexAttribArray,"emscripten_glDrawArrays":_emscripten_glDrawArrays,"emscripten_glDrawArraysInstancedANGLE":_emscripten_glDrawArraysInstancedANGLE,"emscripten_glDrawBuffersWEBGL":_emscripten_glDrawBuffersWEBGL,"emscripten_glDrawElements":_emscripten_glDrawElements,"emscripten_glDrawElementsInstancedANGLE":_emscripten_glDrawElementsInstancedANGLE,"emscripten_glEnable":_emscripten_glEnable,"emscripten_glEnableVertexAttribArray":_emscripten_glEnableVertexAttribArray,"emscripten_glEndQueryEXT":_emscripten_glEndQueryEXT,"emscripten_glFinish":_emscripten_glFinish,"emscripten_glFlush":_emscripten_glFlush,"emscripten_glFramebufferRenderbuffer":_emscripten_glFramebufferRenderbuffer,"emscripten_glFramebufferTexture2D":_emscripten_glFramebufferTexture2D,"emscripten_glFrontFace":_emscripten_glFrontFace,"emscripten_glGenBuffers":_emscripten_glGenBuffers,"emscripten_glGenFramebuffers":_emscripten_glGenFramebuffers,"emscripten_glGenQueriesEXT":_emscripten_glGenQueriesEXT,"emscripten_glGenRenderbuffers":_emscripten_glGenRenderbuffers,"emscripten_glGenTextures":_emscripten_glGenTextures,"emscripten_glGenVertexArraysOES":_emscripten_glGenVertexArraysOES,"emscripten_glGenerateMipmap":_emscripten_glGenerateMipmap,"emscripten_glGetActiveAttrib":_emscripten_glGetActiveAttrib,"emscripten_glGetActiveUniform":_emscripten_glGetActiveUniform,"emscripten_glGetAttachedShaders":_emscripten_glGetAttachedShaders,"emscripten_glGetAttribLocation":_emscripten_glGetAttribLocation,"emscripten_glGetBooleanv":_emscripten_glGetBooleanv,"emscripten_glGetBufferParameteriv":_emscripten_glGetBufferParameteriv,"emscripten_glGetError":_emscripten_glGetError,"emscripten_glGetFloatv":_emscripten_glGetFloatv,"emscripten_glGetFramebufferAttachmentParameteriv":_emscripten_glGetFramebufferAttachmentParameteriv,"emscripten_glGetIntegerv":_emscripten_glGetIntegerv,"emscripten_glGetProgramInfoLog":_emscripten_glGetProgramInfoLog,"emscripten_glGetProgramiv":_emscripten_glGetProgramiv,"emscripten_glGetQueryObjecti64vEXT":_emscripten_glGetQueryObjecti64vEXT,"emscripten_glGetQueryObjectivEXT":_emscripten_glGetQueryObjectivEXT,"emscripten_glGetQueryObjectui64vEXT":_emscripten_glGetQueryObjectui64vEXT,"emscripten_glGetQueryObjectuivEXT":_emscripten_glGetQueryObjectuivEXT,"emscripten_glGetQueryivEXT":_emscripten_glGetQueryivEXT,"emscripten_glGetRenderbufferParameteriv":_emscripten_glGetRenderbufferParameteriv,"emscripten_glGetShaderInfoLog":_emscripten_glGetShaderInfoLog,"emscripten_glGetShaderPrecisionFormat":_emscripten_glGetShaderPrecisionFormat,"emscripten_glGetShaderSource":_emscripten_glGetShaderSource,"emscripten_glGetShaderiv":_emscripten_glGetShaderiv,"emscripten_glGetString":_emscripten_glGetString,"emscripten_glGetTexParameterfv":_emscripten_glGetTexParameterfv,"emscripten_glGetTexParameteriv":_emscripten_glGetTexParameteriv,"emscripten_glGetUniformLocation":_emscripten_glGetUniformLocation,"emscripten_glGetUniformfv":_emscripten_glGetUniformfv,"emscripten_glGetUniformiv":_emscripten_glGetUniformiv,"emscripten_glGetVertexAttribPointerv":_emscripten_glGetVertexAttribPointerv,"emscripten_glGetVertexAttribfv":_emscripten_glGetVertexAttribfv,"emscripten_glGetVertexAttribiv":_emscripten_glGetVertexAttribiv,"emscripten_glHint":_emscripten_glHint,"emscripten_glIsBuffer":_emscripten_glIsBuffer,"emscripten_glIsEnabled":_emscripten_glIsEnabled,"emscripten_glIsFramebuffer":_emscripten_glIsFramebuffer,"emscripten_glIsProgram":_emscripten_glIsProgram,"emscripten_glIsQueryEXT":_emscripten_glIsQueryEXT,"emscripten_glIsRenderbuffer":_emscripten_glIsRenderbuffer,"emscripten_glIsShader":_emscripten_glIsShader,"emscripten_glIsTexture":_emscripten_glIsTexture,"emscripten_glIsVertexArrayOES":_emscripten_glIsVertexArrayOES,"emscripten_glLineWidth":_emscripten_glLineWidth,"emscripten_glLinkProgram":_emscripten_glLinkProgram,"emscripten_glPixelStorei":_emscripten_glPixelStorei,"emscripten_glPolygonOffset":_emscripten_glPolygonOffset,"emscripten_glQueryCounterEXT":_emscripten_glQueryCounterEXT,"emscripten_glReadPixels":_emscripten_glReadPixels,"emscripten_glReleaseShaderCompiler":_emscripten_glReleaseShaderCompiler,"emscripten_glRenderbufferStorage":_emscripten_glRenderbufferStorage,"emscripten_glSampleCoverage":_emscripten_glSampleCoverage,"emscripten_glScissor":_emscripten_glScissor,"emscripten_glShaderBinary":_emscripten_glShaderBinary,"emscripten_glShaderSource":_emscripten_glShaderSource,"emscripten_glStencilFunc":_emscripten_glStencilFunc,"emscripten_glStencilFuncSeparate":_emscripten_glStencilFuncSeparate,"emscripten_glStencilMask":_emscripten_glStencilMask,"emscripten_glStencilMaskSeparate":_emscripten_glStencilMaskSeparate,"emscripten_glStencilOp":_emscripten_glStencilOp,"emscripten_glStencilOpSeparate":_emscripten_glStencilOpSeparate,"emscripten_glTexImage2D":_emscripten_glTexImage2D,"emscripten_glTexParameterf":_emscripten_glTexParameterf,"emscripten_glTexParameterfv":_emscripten_glTexParameterfv,"emscripten_glTexParameteri":_emscripten_glTexParameteri,"emscripten_glTexParameteriv":_emscripten_glTexParameteriv,"emscripten_glTexSubImage2D":_emscripten_glTexSubImage2D,"emscripten_glUniform1f":_emscripten_glUniform1f,"emscripten_glUniform1fv":_emscripten_glUniform1fv,"emscripten_glUniform1i":_emscripten_glUniform1i,"emscripten_glUniform1iv":_emscripten_glUniform1iv,"emscripten_glUniform2f":_emscripten_glUniform2f,"emscripten_glUniform2fv":_emscripten_glUniform2fv,"emscripten_glUniform2i":_emscripten_glUniform2i,"emscripten_glUniform2iv":_emscripten_glUniform2iv,"emscripten_glUniform3f":_emscripten_glUniform3f,"emscripten_glUniform3fv":_emscripten_glUniform3fv,"emscripten_glUniform3i":_emscripten_glUniform3i,"emscripten_glUniform3iv":_emscripten_glUniform3iv,"emscripten_glUniform4f":_emscripten_glUniform4f,"emscripten_glUniform4fv":_emscripten_glUniform4fv,"emscripten_glUniform4i":_emscripten_glUniform4i,"emscripten_glUniform4iv":_emscripten_glUniform4iv,"emscripten_glUniformMatrix2fv":_emscripten_glUniformMatrix2fv,"emscripten_glUniformMatrix3fv":_emscripten_glUniformMatrix3fv,"emscripten_glUniformMatrix4fv":_emscripten_glUniformMatrix4fv,"emscripten_glUseProgram":_emscripten_glUseProgram,"emscripten_glValidateProgram":_emscripten_glValidateProgram,"emscripten_glVertexAttrib1f":_emscripten_glVertexAttrib1f,"emscripten_glVertexAttrib1fv":_emscripten_glVertexAttrib1fv,"emscripten_glVertexAttrib2f":_emscripten_glVertexAttrib2f,"emscripten_glVertexAttrib2fv":_emscripten_glVertexAttrib2fv,"emscripten_glVertexAttrib3f":_emscripten_glVertexAttrib3f,"emscripten_glVertexAttrib3fv":_emscripten_glVertexAttrib3fv,"emscripten_glVertexAttrib4f":_emscripten_glVertexAttrib4f,"emscripten_glVertexAttrib4fv":_emscripten_glVertexAttrib4fv,"emscripten_glVertexAttribDivisorANGLE":_emscripten_glVertexAttribDivisorANGLE,"emscripten_glVertexAttribPointer":_emscripten_glVertexAttribPointer,"emscripten_glViewport":_emscripten_glViewport,"emscripten_longjmp":_emscripten_longjmp,"emscripten_memcpy_big":_emscripten_memcpy_big,"emscripten_resize_heap":_emscripten_resize_heap,"emscripten_thread_sleep":_emscripten_thread_sleep,"environ_get":_environ_get,"environ_sizes_get":_environ_sizes_get,"error_handling_init_js":error_handling_init_js,"execve":_execve,"exit":_exit,"fail_test":fail_test,"fd_close":_fd_close,"fd_fdstat_get":_fd_fdstat_get,"fd_pread":_fd_pread,"fd_pwrite":_fd_pwrite,"fd_read":_fd_read,"fd_seek":_fd_seek,"fd_sync":_fd_sync,"fd_write":_fd_write,"ffi_call":ffi_call,"ffi_closure_alloc_helper":ffi_closure_alloc_helper,"ffi_closure_free_helper":ffi_closure_free_helper,"ffi_prep_closure_loc_helper":ffi_prep_closure_loc_helper,"fork":_fork,"gai_strerror":_gai_strerror,"getTempRet0":getTempRet0,"get_async_js_call_done_callback":get_async_js_call_done_callback,"getaddrinfo":_getaddrinfo,"getentropy":_getentropy,"gethostbyaddr":_gethostbyaddr,"gethostbyname":_gethostbyname,"getitimer":_getitimer,"getloadavg":_getloadavg,"getnameinfo":_getnameinfo,"getprotobyname":_getprotobyname,"getter_call_trampoline":getter_call_trampoline,"gettimeofday":_gettimeofday,"gmtime_r":_gmtime_r,"hiwire_CallMethod":hiwire_CallMethod,"hiwire_CallMethodString":hiwire_CallMethodString,"hiwire_CallMethod_OneArg":hiwire_CallMethod_OneArg,"hiwire_HasMethod":hiwire_HasMethod,"hiwire_assign_from_ptr":hiwire_assign_from_ptr,"hiwire_assign_to_ptr":hiwire_assign_to_ptr,"hiwire_call":hiwire_call,"hiwire_call_OneArg":hiwire_call_OneArg,"hiwire_call_bound":hiwire_call_bound,"hiwire_construct":hiwire_construct,"hiwire_constructor_name":hiwire_constructor_name,"hiwire_decref":hiwire_decref,"hiwire_double":hiwire_double,"hiwire_equal":hiwire_equal,"hiwire_get_bool":hiwire_get_bool,"hiwire_get_buffer_info":hiwire_get_buffer_info,"hiwire_get_iterator":hiwire_get_iterator,"hiwire_get_length":hiwire_get_length,"hiwire_greater_than":hiwire_greater_than,"hiwire_greater_than_equal":hiwire_greater_than_equal,"hiwire_has_length":hiwire_has_length,"hiwire_incref":hiwire_incref,"hiwire_init":hiwire_init,"hiwire_int":hiwire_int,"hiwire_int_from_digits":hiwire_int_from_digits,"hiwire_into_file":hiwire_into_file,"hiwire_is_comlink_proxy":hiwire_is_comlink_proxy,"hiwire_is_error":hiwire_is_error,"hiwire_is_function":hiwire_is_function,"hiwire_is_iterable":hiwire_is_iterable,"hiwire_is_iterator":hiwire_is_iterator,"hiwire_is_promise":hiwire_is_promise,"hiwire_is_pyproxy":hiwire_is_pyproxy,"hiwire_is_typedarray":hiwire_is_typedarray,"hiwire_less_than":hiwire_less_than,"hiwire_less_than_equal":hiwire_less_than_equal,"hiwire_next":hiwire_next,"hiwire_not_equal":hiwire_not_equal,"hiwire_read_from_file":hiwire_read_from_file,"hiwire_resolve_promise":hiwire_resolve_promise,"hiwire_string_ascii":hiwire_string_ascii,"hiwire_string_ucs1":hiwire_string_ucs1,"hiwire_string_ucs2":hiwire_string_ucs2,"hiwire_string_ucs4":hiwire_string_ucs4,"hiwire_string_utf8":hiwire_string_utf8,"hiwire_subarray":hiwire_subarray,"hiwire_throw_error":hiwire_throw_error,"hiwire_to_bool":hiwire_to_bool,"hiwire_to_string":hiwire_to_string,"hiwire_typeof":hiwire_typeof,"hiwire_write_to_file":hiwire_write_to_file,"invoke_ii":invoke_ii,"invoke_iii":invoke_iii,"invoke_iiii":invoke_iiii,"invoke_iiiii":invoke_iiiii,"invoke_vi":invoke_vi,"invoke_vii":invoke_vii,"invoke_viiii":invoke_viiii,"js2python":js2python,"js2python_convert":js2python_convert,"js2python_init":js2python_init,"kill":_kill,"killpg":_killpg,"localtime_r":_localtime_r,"log_python_error":log_python_error,"memory":wasmMemory,"method_call_trampoline":method_call_trampoline,"mktime":_mktime,"new_error":new_error,"posix_spawn":_posix_spawn,"proxy_cache_get":proxy_cache_get,"proxy_cache_set":proxy_cache_set,"pthread_cleanup_pop":_pthread_cleanup_pop,"pthread_cleanup_push":_pthread_cleanup_push,"pthread_create":_pthread_create,"pthread_join":_pthread_join,"pthread_sigmask":_pthread_sigmask,"pyproxy_Check":pyproxy_Check,"pyproxy_new":pyproxy_new,"python2js_buffer_init":python2js_buffer_init,"raise":_raise,"setTempRet0":setTempRet0,"setgroups":_setgroups,"setitimer":_setitimer,"setter_call_trampoline":setter_call_trampoline,"sigemptyset":_sigemptyset,"sigfillset":_sigfillset,"siginterrupt":_siginterrupt,"sigismember":_sigismember,"signal":_signal,"sigpending":_sigpending,"strftime":_strftime,"strftime_l":_strftime_l,"system":_system,"time":_time,"times":_times,"unbox_small_structs":unbox_small_structs,"utimes":_utimes,"wait3":_wait3,"wait4":_wait4,"waitid":_waitid};var asm=createWasm();var ___wasm_call_ctors=Module["___wasm_call_ctors"]=function(){return(___wasm_call_ctors=Module["___wasm_call_ctors"]=Module["asm"]["__wasm_call_ctors"]).apply(null,arguments)};var _set_method_docstring=Module["_set_method_docstring"]=function(){return(_set_method_docstring=Module["_set_method_docstring"]=Module["asm"]["set_method_docstring"]).apply(null,arguments)};var _PyObject_GetAttrString=Module["_PyObject_GetAttrString"]=function(){return(_PyObject_GetAttrString=Module["_PyObject_GetAttrString"]=Module["asm"]["PyObject_GetAttrString"]).apply(null,arguments)};var __PyUnicode_FromId=Module["__PyUnicode_FromId"]=function(){return(__PyUnicode_FromId=Module["__PyUnicode_FromId"]=Module["asm"]["_PyUnicode_FromId"]).apply(null,arguments)};var _PyObject_VectorcallMethod=Module["_PyObject_VectorcallMethod"]=function(){return(_PyObject_VectorcallMethod=Module["_PyObject_VectorcallMethod"]=Module["asm"]["PyObject_VectorcallMethod"]).apply(null,arguments)};var _PyUnicode_AsUTF8AndSize=Module["_PyUnicode_AsUTF8AndSize"]=function(){return(_PyUnicode_AsUTF8AndSize=Module["_PyUnicode_AsUTF8AndSize"]=Module["asm"]["PyUnicode_AsUTF8AndSize"]).apply(null,arguments)};var _malloc=Module["_malloc"]=function(){return(_malloc=Module["_malloc"]=Module["asm"]["malloc"]).apply(null,arguments)};var _memcpy=Module["_memcpy"]=function(){return(_memcpy=Module["_memcpy"]=Module["asm"]["memcpy"]).apply(null,arguments)};var __Py_Dealloc=Module["__Py_Dealloc"]=function(){return(__Py_Dealloc=Module["__Py_Dealloc"]=Module["asm"]["_Py_Dealloc"]).apply(null,arguments)};var _PyErr_Format=Module["_PyErr_Format"]=function(){return(_PyErr_Format=Module["_PyErr_Format"]=Module["asm"]["PyErr_Format"]).apply(null,arguments)};var _add_methods_and_set_docstrings=Module["_add_methods_and_set_docstrings"]=function(){return(_add_methods_and_set_docstrings=Module["_add_methods_and_set_docstrings"]=Module["asm"]["add_methods_and_set_docstrings"]).apply(null,arguments)};var _PyModule_AddFunctions=Module["_PyModule_AddFunctions"]=function(){return(_PyModule_AddFunctions=Module["_PyModule_AddFunctions"]=Module["asm"]["PyModule_AddFunctions"]).apply(null,arguments)};var _docstring_init=Module["_docstring_init"]=function(){return(_docstring_init=Module["_docstring_init"]=Module["asm"]["docstring_init"]).apply(null,arguments)};var _PyImport_ImportModule=Module["_PyImport_ImportModule"]=function(){return(_PyImport_ImportModule=Module["_PyImport_ImportModule"]=Module["asm"]["PyImport_ImportModule"]).apply(null,arguments)};var _set_error=Module["_set_error"]=function(){return(_set_error=Module["_set_error"]=Module["asm"]["set_error"]).apply(null,arguments)};var _PyErr_SetObject=Module["_PyErr_SetObject"]=function(){return(_PyErr_SetObject=Module["_PyErr_SetObject"]=Module["asm"]["PyErr_SetObject"]).apply(null,arguments)};var _restore_sys_last_exception=Module["_restore_sys_last_exception"]=function(){return(_restore_sys_last_exception=Module["_restore_sys_last_exception"]=Module["asm"]["restore_sys_last_exception"]).apply(null,arguments)};var __PySys_GetObjectId=Module["__PySys_GetObjectId"]=function(){return(__PySys_GetObjectId=Module["__PySys_GetObjectId"]=Module["asm"]["_PySys_GetObjectId"]).apply(null,arguments)};var _PyErr_Restore=Module["_PyErr_Restore"]=function(){return(_PyErr_Restore=Module["_PyErr_Restore"]=Module["asm"]["PyErr_Restore"]).apply(null,arguments)};var _wrap_exception=Module["_wrap_exception"]=function(){return(_wrap_exception=Module["_wrap_exception"]=Module["asm"]["wrap_exception"]).apply(null,arguments)};var _PyErr_Fetch=Module["_PyErr_Fetch"]=function(){return(_PyErr_Fetch=Module["_PyErr_Fetch"]=Module["asm"]["PyErr_Fetch"]).apply(null,arguments)};var _PyErr_NormalizeException=Module["_PyErr_NormalizeException"]=function(){return(_PyErr_NormalizeException=Module["_PyErr_NormalizeException"]=Module["asm"]["PyErr_NormalizeException"]).apply(null,arguments)};var _PyErr_SetString=Module["_PyErr_SetString"]=function(){return(_PyErr_SetString=Module["_PyErr_SetString"]=Module["asm"]["PyErr_SetString"]).apply(null,arguments)};var _PyException_SetTraceback=Module["_PyException_SetTraceback"]=function(){return(_PyException_SetTraceback=Module["_PyException_SetTraceback"]=Module["asm"]["PyException_SetTraceback"]).apply(null,arguments)};var __PySys_SetObjectId=Module["__PySys_SetObjectId"]=function(){return(__PySys_SetObjectId=Module["__PySys_SetObjectId"]=Module["asm"]["_PySys_SetObjectId"]).apply(null,arguments)};var __PyObject_CallMethodIdObjArgs=Module["__PyObject_CallMethodIdObjArgs"]=function(){return(__PyObject_CallMethodIdObjArgs=Module["__PyObject_CallMethodIdObjArgs"]=Module["asm"]["_PyObject_CallMethodIdObjArgs"]).apply(null,arguments)};var _PyUnicode_New=Module["_PyUnicode_New"]=function(){return(_PyUnicode_New=Module["_PyUnicode_New"]=Module["asm"]["PyUnicode_New"]).apply(null,arguments)};var _PyUnicode_Join=Module["_PyUnicode_Join"]=function(){return(_PyUnicode_Join=Module["_PyUnicode_Join"]=Module["asm"]["PyUnicode_Join"]).apply(null,arguments)};var _PyUnicode_AsUTF8=Module["_PyUnicode_AsUTF8"]=function(){return(_PyUnicode_AsUTF8=Module["_PyUnicode_AsUTF8"]=Module["asm"]["PyUnicode_AsUTF8"]).apply(null,arguments)};var _PySys_WriteStderr=Module["_PySys_WriteStderr"]=function(){return(_PySys_WriteStderr=Module["_PySys_WriteStderr"]=Module["asm"]["PySys_WriteStderr"]).apply(null,arguments)};var _PyErr_Print=Module["_PyErr_Print"]=function(){return(_PyErr_Print=Module["_PyErr_Print"]=Module["asm"]["PyErr_Print"]).apply(null,arguments)};var _PyErr_Display=Module["_PyErr_Display"]=function(){return(_PyErr_Display=Module["_PyErr_Display"]=Module["asm"]["PyErr_Display"]).apply(null,arguments)};var _pythonexc2js=Module["_pythonexc2js"]=function(){return(_pythonexc2js=Module["_pythonexc2js"]=Module["asm"]["pythonexc2js"]).apply(null,arguments)};var _trigger_fatal_error=Module["_trigger_fatal_error"]=function(){return(_trigger_fatal_error=Module["_trigger_fatal_error"]=Module["asm"]["trigger_fatal_error"]).apply(null,arguments)};var _error_handling_init=Module["_error_handling_init"]=function(){return(_error_handling_init=Module["_error_handling_init"]=Module["asm"]["error_handling_init"]).apply(null,arguments)};var _PyErr_NewException=Module["_PyErr_NewException"]=function(){return(_PyErr_NewException=Module["_PyErr_NewException"]=Module["asm"]["PyErr_NewException"]).apply(null,arguments)};var _PyErr_NewExceptionWithDoc=Module["_PyErr_NewExceptionWithDoc"]=function(){return(_PyErr_NewExceptionWithDoc=Module["_PyErr_NewExceptionWithDoc"]=Module["asm"]["PyErr_NewExceptionWithDoc"]).apply(null,arguments)};var _PyObject_SetAttrString=Module["_PyObject_SetAttrString"]=function(){return(_PyObject_SetAttrString=Module["_PyObject_SetAttrString"]=Module["asm"]["PyObject_SetAttrString"]).apply(null,arguments)};var _numpy_patch_init=Module["_numpy_patch_init"]=function(){return(_numpy_patch_init=Module["_numpy_patch_init"]=Module["asm"]["numpy_patch_init"]).apply(null,arguments)};var _set_shape_mismatch_err=Module["_set_shape_mismatch_err"]=function(){return(_set_shape_mismatch_err=Module["_set_shape_mismatch_err"]=Module["asm"]["set_shape_mismatch_err"]).apply(null,arguments)};var _hiwire_from_bool=Module["_hiwire_from_bool"]=function(){return(_hiwire_from_bool=Module["_hiwire_from_bool"]=Module["asm"]["hiwire_from_bool"]).apply(null,arguments)};var _JsString_FromId=Module["_JsString_FromId"]=function(){return(_JsString_FromId=Module["_JsString_FromId"]=Module["asm"]["JsString_FromId"]).apply(null,arguments)};var _hiwire_call_va=Module["_hiwire_call_va"]=function(){return(_hiwire_call_va=Module["_hiwire_call_va"]=Module["asm"]["hiwire_call_va"]).apply(null,arguments)};var _hiwire_HasMethodId=Module["_hiwire_HasMethodId"]=function(){return(_hiwire_HasMethodId=Module["_hiwire_HasMethodId"]=Module["asm"]["hiwire_HasMethodId"]).apply(null,arguments)};var _hiwire_CallMethodId=Module["_hiwire_CallMethodId"]=function(){return(_hiwire_CallMethodId=Module["_hiwire_CallMethodId"]=Module["asm"]["hiwire_CallMethodId"]).apply(null,arguments)};var _hiwire_CallMethodString_va=Module["_hiwire_CallMethodString_va"]=function(){return(_hiwire_CallMethodString_va=Module["_hiwire_CallMethodString_va"]=Module["asm"]["hiwire_CallMethodString_va"]).apply(null,arguments)};var _hiwire_CallMethodId_va=Module["_hiwire_CallMethodId_va"]=function(){return(_hiwire_CallMethodId_va=Module["_hiwire_CallMethodId_va"]=Module["asm"]["hiwire_CallMethodId_va"]).apply(null,arguments)};var _hiwire_CallMethodId_OneArg=Module["_hiwire_CallMethodId_OneArg"]=function(){return(_hiwire_CallMethodId_OneArg=Module["_hiwire_CallMethodId_OneArg"]=Module["asm"]["hiwire_CallMethodId_OneArg"]).apply(null,arguments)};var _PyUnicode_Data=Module["_PyUnicode_Data"]=function(){return(_PyUnicode_Data=Module["_PyUnicode_Data"]=Module["asm"]["PyUnicode_Data"]).apply(null,arguments)};var __js2python_none=Module["__js2python_none"]=function(){return(__js2python_none=Module["__js2python_none"]=Module["asm"]["_js2python_none"]).apply(null,arguments)};var __js2python_true=Module["__js2python_true"]=function(){return(__js2python_true=Module["__js2python_true"]=Module["asm"]["_js2python_true"]).apply(null,arguments)};var __js2python_false=Module["__js2python_false"]=function(){return(__js2python_false=Module["__js2python_false"]=Module["asm"]["_js2python_false"]).apply(null,arguments)};var __js2python_pyproxy=Module["__js2python_pyproxy"]=function(){return(__js2python_pyproxy=Module["__js2python_pyproxy"]=Module["asm"]["_js2python_pyproxy"]).apply(null,arguments)};var _JsProxy_then=Module["_JsProxy_then"]=function(){return(_JsProxy_then=Module["_JsProxy_then"]=Module["asm"]["JsProxy_then"]).apply(null,arguments)};var __PyArg_ParseTupleAndKeywords_SizeT=Module["__PyArg_ParseTupleAndKeywords_SizeT"]=function(){return(__PyArg_ParseTupleAndKeywords_SizeT=Module["__PyArg_ParseTupleAndKeywords_SizeT"]=Module["asm"]["_PyArg_ParseTupleAndKeywords_SizeT"]).apply(null,arguments)};var _JsProxy_create_with_this=Module["_JsProxy_create_with_this"]=function(){return(_JsProxy_create_with_this=Module["_JsProxy_create_with_this"]=Module["asm"]["JsProxy_create_with_this"]).apply(null,arguments)};var _JsProxy_create=Module["_JsProxy_create"]=function(){return(_JsProxy_create=Module["_JsProxy_create"]=Module["asm"]["JsProxy_create"]).apply(null,arguments)};var _JsProxy_catch=Module["_JsProxy_catch"]=function(){return(_JsProxy_catch=Module["_JsProxy_catch"]=Module["asm"]["JsProxy_catch"]).apply(null,arguments)};var _JsProxy_finally=Module["_JsProxy_finally"]=function(){return(_JsProxy_finally=Module["_JsProxy_finally"]=Module["asm"]["JsProxy_finally"]).apply(null,arguments)};var _JsMethod_ConvertArgs=Module["_JsMethod_ConvertArgs"]=function(){return(_JsMethod_ConvertArgs=Module["_JsMethod_ConvertArgs"]=Module["asm"]["JsMethod_ConvertArgs"]).apply(null,arguments)};var _python2js_track_proxies=Module["_python2js_track_proxies"]=function(){return(_python2js_track_proxies=Module["_python2js_track_proxies"]=Module["asm"]["python2js_track_proxies"]).apply(null,arguments)};var _PyTuple_GetItem=Module["_PyTuple_GetItem"]=function(){return(_PyTuple_GetItem=Module["_PyTuple_GetItem"]=Module["asm"]["PyTuple_GetItem"]).apply(null,arguments)};var _PyErr_Clear=Module["_PyErr_Clear"]=function(){return(_PyErr_Clear=Module["_PyErr_Clear"]=Module["asm"]["PyErr_Clear"]).apply(null,arguments)};var _PyTuple_Size=Module["_PyTuple_Size"]=function(){return(_PyTuple_Size=Module["_PyTuple_Size"]=Module["asm"]["PyTuple_Size"]).apply(null,arguments)};var _Buffer_dealloc=Module["_Buffer_dealloc"]=function(){return(_Buffer_dealloc=Module["_Buffer_dealloc"]=Module["asm"]["Buffer_dealloc"]).apply(null,arguments)};var _PyMem_Free=Module["_PyMem_Free"]=function(){return(_PyMem_Free=Module["_PyMem_Free"]=Module["asm"]["PyMem_Free"]).apply(null,arguments)};var _JsBuffer_CopyIntoMemoryView=Module["_JsBuffer_CopyIntoMemoryView"]=function(){return(_JsBuffer_CopyIntoMemoryView=Module["_JsBuffer_CopyIntoMemoryView"]=Module["asm"]["JsBuffer_CopyIntoMemoryView"]).apply(null,arguments)};var _PyMem_Malloc=Module["_PyMem_Malloc"]=function(){return(_PyMem_Malloc=Module["_PyMem_Malloc"]=Module["asm"]["PyMem_Malloc"]).apply(null,arguments)};var _PyMemoryView_FromObject=Module["_PyMemoryView_FromObject"]=function(){return(_PyMemoryView_FromObject=Module["_PyMemoryView_FromObject"]=Module["asm"]["PyMemoryView_FromObject"]).apply(null,arguments)};var _JsBuffer_CopyIntoBytes=Module["_JsBuffer_CopyIntoBytes"]=function(){return(_JsBuffer_CopyIntoBytes=Module["_JsBuffer_CopyIntoBytes"]=Module["asm"]["JsBuffer_CopyIntoBytes"]).apply(null,arguments)};var _PyBytes_FromStringAndSize=Module["_PyBytes_FromStringAndSize"]=function(){return(_PyBytes_FromStringAndSize=Module["_PyBytes_FromStringAndSize"]=Module["asm"]["PyBytes_FromStringAndSize"]).apply(null,arguments)};var _JsBuffer_ToString=Module["_JsBuffer_ToString"]=function(){return(_JsBuffer_ToString=Module["_JsBuffer_ToString"]=Module["asm"]["JsBuffer_ToString"]).apply(null,arguments)};var _PyErr_Occurred=Module["_PyErr_Occurred"]=function(){return(_PyErr_Occurred=Module["_PyErr_Occurred"]=Module["asm"]["PyErr_Occurred"]).apply(null,arguments)};var _JsBuffer_cinit=Module["_JsBuffer_cinit"]=function(){return(_JsBuffer_cinit=Module["_JsBuffer_cinit"]=Module["asm"]["JsBuffer_cinit"]).apply(null,arguments)};var _free=Module["_free"]=function(){return(_free=Module["_free"]=Module["asm"]["free"]).apply(null,arguments)};var _PyLong_FromLong=Module["_PyLong_FromLong"]=function(){return(_PyLong_FromLong=Module["_PyLong_FromLong"]=Module["asm"]["PyLong_FromLong"]).apply(null,arguments)};var _PyDict_GetItemWithError=Module["_PyDict_GetItemWithError"]=function(){return(_PyDict_GetItemWithError=Module["_PyDict_GetItemWithError"]=Module["asm"]["PyDict_GetItemWithError"]).apply(null,arguments)};var _PyObject_SelfIter=Module["_PyObject_SelfIter"]=function(){return(_PyObject_SelfIter=Module["_PyObject_SelfIter"]=Module["asm"]["PyObject_SelfIter"]).apply(null,arguments)};var _PyVectorcall_Call=Module["_PyVectorcall_Call"]=function(){return(_PyVectorcall_Call=Module["_PyVectorcall_Call"]=Module["asm"]["PyVectorcall_Call"]).apply(null,arguments)};var _PyErr_NoMemory=Module["_PyErr_NoMemory"]=function(){return(_PyErr_NoMemory=Module["_PyErr_NoMemory"]=Module["asm"]["PyErr_NoMemory"]).apply(null,arguments)};var __Py_BuildValue_SizeT=Module["__Py_BuildValue_SizeT"]=function(){return(__Py_BuildValue_SizeT=Module["__Py_BuildValue_SizeT"]=Module["asm"]["_Py_BuildValue_SizeT"]).apply(null,arguments)};var _PyType_FromSpecWithBases=Module["_PyType_FromSpecWithBases"]=function(){return(_PyType_FromSpecWithBases=Module["_PyType_FromSpecWithBases"]=Module["asm"]["PyType_FromSpecWithBases"]).apply(null,arguments)};var _PyDict_SetItem=Module["_PyDict_SetItem"]=function(){return(_PyDict_SetItem=Module["_PyDict_SetItem"]=Module["asm"]["PyDict_SetItem"]).apply(null,arguments)};var _JsProxy_Check=Module["_JsProxy_Check"]=function(){return(_JsProxy_Check=Module["_JsProxy_Check"]=Module["asm"]["JsProxy_Check"]).apply(null,arguments)};var _PyType_IsSubtype=Module["_PyType_IsSubtype"]=function(){return(_PyType_IsSubtype=Module["_PyType_IsSubtype"]=Module["asm"]["PyType_IsSubtype"]).apply(null,arguments)};var _JsProxy_AsJs=Module["_JsProxy_AsJs"]=function(){return(_JsProxy_AsJs=Module["_JsProxy_AsJs"]=Module["asm"]["JsProxy_AsJs"]).apply(null,arguments)};var _JsException_Check=Module["_JsException_Check"]=function(){return(_JsException_Check=Module["_JsException_Check"]=Module["asm"]["JsException_Check"]).apply(null,arguments)};var _JsException_AsJs=Module["_JsException_AsJs"]=function(){return(_JsException_AsJs=Module["_JsException_AsJs"]=Module["asm"]["JsException_AsJs"]).apply(null,arguments)};var _JsProxy_init=Module["_JsProxy_init"]=function(){return(_JsProxy_init=Module["_JsProxy_init"]=Module["asm"]["JsProxy_init"]).apply(null,arguments)};var __PyObject_GetAttrId=Module["__PyObject_GetAttrId"]=function(){return(__PyObject_GetAttrId=Module["__PyObject_GetAttrId"]=Module["asm"]["_PyObject_GetAttrId"]).apply(null,arguments)};var _PyDict_New=Module["_PyDict_New"]=function(){return(_PyDict_New=Module["_PyDict_New"]=Module["asm"]["PyDict_New"]).apply(null,arguments)};var _PyType_Ready=Module["_PyType_Ready"]=function(){return(_PyType_Ready=Module["_PyType_Ready"]=Module["asm"]["PyType_Ready"]).apply(null,arguments)};var _PyModule_AddType=Module["_PyModule_AddType"]=function(){return(_PyModule_AddType=Module["_PyModule_AddType"]=Module["asm"]["PyModule_AddType"]).apply(null,arguments)};var _PyThreadState_Get=Module["_PyThreadState_Get"]=function(){return(_PyThreadState_Get=Module["_PyThreadState_Get"]=Module["asm"]["PyThreadState_Get"]).apply(null,arguments)};var _PyCallable_Check=Module["_PyCallable_Check"]=function(){return(_PyCallable_Check=Module["_PyCallable_Check"]=Module["asm"]["PyCallable_Check"]).apply(null,arguments)};var __PyObject_MakeTpCall=Module["__PyObject_MakeTpCall"]=function(){return(__PyObject_MakeTpCall=Module["__PyObject_MakeTpCall"]=Module["asm"]["_PyObject_MakeTpCall"]).apply(null,arguments)};var __Py_CheckFunctionResult=Module["__Py_CheckFunctionResult"]=function(){return(__Py_CheckFunctionResult=Module["__Py_CheckFunctionResult"]=Module["asm"]["_Py_CheckFunctionResult"]).apply(null,arguments)};var _python2js=Module["_python2js"]=function(){return(_python2js=Module["_python2js"]=Module["asm"]["python2js"]).apply(null,arguments)};var __PyObject_CallMethodId_SizeT=Module["__PyObject_CallMethodId_SizeT"]=function(){return(__PyObject_CallMethodId_SizeT=Module["__PyObject_CallMethodId_SizeT"]=Module["asm"]["_PyObject_CallMethodId_SizeT"]).apply(null,arguments)};var _PyIndex_Check=Module["_PyIndex_Check"]=function(){return(_PyIndex_Check=Module["_PyIndex_Check"]=Module["asm"]["PyIndex_Check"]).apply(null,arguments)};var _PyNumber_AsSsize_t=Module["_PyNumber_AsSsize_t"]=function(){return(_PyNumber_AsSsize_t=Module["_PyNumber_AsSsize_t"]=Module["asm"]["PyNumber_AsSsize_t"]).apply(null,arguments)};var _PySet_New=Module["_PySet_New"]=function(){return(_PySet_New=Module["_PySet_New"]=Module["asm"]["PySet_New"]).apply(null,arguments)};var __PySet_Update=Module["__PySet_Update"]=function(){return(__PySet_Update=Module["__PySet_Update"]=Module["asm"]["_PySet_Update"]).apply(null,arguments)};var _PyUnicode_FromString=Module["_PyUnicode_FromString"]=function(){return(_PyUnicode_FromString=Module["_PyUnicode_FromString"]=Module["asm"]["PyUnicode_FromString"]).apply(null,arguments)};var _PySet_Discard=Module["_PySet_Discard"]=function(){return(_PySet_Discard=Module["_PySet_Discard"]=Module["asm"]["PySet_Discard"]).apply(null,arguments)};var _PyList_New=Module["_PyList_New"]=function(){return(_PyList_New=Module["_PyList_New"]=Module["asm"]["PyList_New"]).apply(null,arguments)};var __PyList_Extend=Module["__PyList_Extend"]=function(){return(__PyList_Extend=Module["__PyList_Extend"]=Module["asm"]["_PyList_Extend"]).apply(null,arguments)};var _PyList_Sort=Module["_PyList_Sort"]=function(){return(_PyList_Sort=Module["_PyList_Sort"]=Module["asm"]["PyList_Sort"]).apply(null,arguments)};var _PyObject_CallNoArgs=Module["_PyObject_CallNoArgs"]=function(){return(_PyObject_CallNoArgs=Module["_PyObject_CallNoArgs"]=Module["asm"]["PyObject_CallNoArgs"]).apply(null,arguments)};var _Py_EnterRecursiveCall=Module["_Py_EnterRecursiveCall"]=function(){return(_Py_EnterRecursiveCall=Module["_Py_EnterRecursiveCall"]=Module["asm"]["Py_EnterRecursiveCall"]).apply(null,arguments)};var _Py_LeaveRecursiveCall=Module["_Py_LeaveRecursiveCall"]=function(){return(_Py_LeaveRecursiveCall=Module["_Py_LeaveRecursiveCall"]=Module["asm"]["Py_LeaveRecursiveCall"]).apply(null,arguments)};var _PyObject_GenericGetAttr=Module["_PyObject_GenericGetAttr"]=function(){return(_PyObject_GenericGetAttr=Module["_PyObject_GenericGetAttr"]=Module["asm"]["PyObject_GenericGetAttr"]).apply(null,arguments)};var _PyErr_ExceptionMatches=Module["_PyErr_ExceptionMatches"]=function(){return(_PyErr_ExceptionMatches=Module["_PyErr_ExceptionMatches"]=Module["asm"]["PyErr_ExceptionMatches"]).apply(null,arguments)};var _strcmp=Module["_strcmp"]=function(){return(_strcmp=Module["_strcmp"]=Module["asm"]["strcmp"]).apply(null,arguments)};var _strncmp=Module["_strncmp"]=function(){return(_strncmp=Module["_strncmp"]=Module["asm"]["strncmp"]).apply(null,arguments)};var _PyObject_GenericSetAttr=Module["_PyObject_GenericSetAttr"]=function(){return(_PyObject_GenericSetAttr=Module["_PyObject_GenericSetAttr"]=Module["asm"]["PyObject_GenericSetAttr"]).apply(null,arguments)};var __PyArg_ParseStackAndKeywords_SizeT=Module["__PyArg_ParseStackAndKeywords_SizeT"]=function(){return(__PyArg_ParseStackAndKeywords_SizeT=Module["__PyArg_ParseStackAndKeywords_SizeT"]=Module["asm"]["_PyArg_ParseStackAndKeywords_SizeT"]).apply(null,arguments)};var _PyObject_GetBuffer=Module["_PyObject_GetBuffer"]=function(){return(_PyObject_GetBuffer=Module["_PyObject_GetBuffer"]=Module["asm"]["PyObject_GetBuffer"]).apply(null,arguments)};var _PyBuffer_Release=Module["_PyBuffer_Release"]=function(){return(_PyBuffer_Release=Module["_PyBuffer_Release"]=Module["asm"]["PyBuffer_Release"]).apply(null,arguments)};var _PyLong_AsLong=Module["_PyLong_AsLong"]=function(){return(_PyLong_AsLong=Module["_PyLong_AsLong"]=Module["asm"]["PyLong_AsLong"]).apply(null,arguments)};var _pyodide_callback=Module["_pyodide_callback"]=function(){return(_pyodide_callback=Module["_pyodide_callback"]=Module["asm"]["pyodide_callback"]).apply(null,arguments)};var _PyErr_SetInterrupt=Module["_PyErr_SetInterrupt"]=function(){return(_PyErr_SetInterrupt=Module["_PyErr_SetInterrupt"]=Module["asm"]["PyErr_SetInterrupt"]).apply(null,arguments)};var _set_pyodide_callback=Module["_set_pyodide_callback"]=function(){return(_set_pyodide_callback=Module["_set_pyodide_callback"]=Module["asm"]["set_pyodide_callback"]).apply(null,arguments)};var _PyPyodide_SetPyodideCallback=Module["_PyPyodide_SetPyodideCallback"]=function(){return(_PyPyodide_SetPyodideCallback=Module["_PyPyodide_SetPyodideCallback"]=Module["asm"]["PyPyodide_SetPyodideCallback"]).apply(null,arguments)};var _get_python_stack_depth=Module["_get_python_stack_depth"]=function(){return(_get_python_stack_depth=Module["_get_python_stack_depth"]=Module["asm"]["get_python_stack_depth"]).apply(null,arguments)};var _main=Module["_main"]=function(){return(_main=Module["_main"]=Module["asm"]["main"]).apply(null,arguments)};var _PyConfig_InitPythonConfig=Module["_PyConfig_InitPythonConfig"]=function(){return(_PyConfig_InitPythonConfig=Module["_PyConfig_InitPythonConfig"]=Module["asm"]["PyConfig_InitPythonConfig"]).apply(null,arguments)};var _PyConfig_SetBytesString=Module["_PyConfig_SetBytesString"]=function(){return(_PyConfig_SetBytesString=Module["_PyConfig_SetBytesString"]=Module["asm"]["PyConfig_SetBytesString"]).apply(null,arguments)};var _PyStatus_Exception=Module["_PyStatus_Exception"]=function(){return(_PyStatus_Exception=Module["_PyStatus_Exception"]=Module["asm"]["PyStatus_Exception"]).apply(null,arguments)};var _Py_InitializeFromConfig=Module["_Py_InitializeFromConfig"]=function(){return(_Py_InitializeFromConfig=Module["_Py_InitializeFromConfig"]=Module["asm"]["Py_InitializeFromConfig"]).apply(null,arguments)};var _PyConfig_Clear=Module["_PyConfig_Clear"]=function(){return(_PyConfig_Clear=Module["_PyConfig_Clear"]=Module["asm"]["PyConfig_Clear"]).apply(null,arguments)};var _Py_ExitStatusException=Module["_Py_ExitStatusException"]=function(){return(_Py_ExitStatusException=Module["_Py_ExitStatusException"]=Module["asm"]["Py_ExitStatusException"]).apply(null,arguments)};var _pyodide_init=Module["_pyodide_init"]=function(){return(_pyodide_init=Module["_pyodide_init"]=Module["asm"]["pyodide_init"]).apply(null,arguments)};var _iprintf=Module["_iprintf"]=function(){return(_iprintf=Module["_iprintf"]=Module["asm"]["iprintf"]).apply(null,arguments)};var _putchar=Module["_putchar"]=function(){return(_putchar=Module["_putchar"]=Module["asm"]["putchar"]).apply(null,arguments)};var _puts=Module["_puts"]=function(){return(_puts=Module["_puts"]=Module["asm"]["puts"]).apply(null,arguments)};var _PyModule_Create2=Module["_PyModule_Create2"]=function(){return(_PyModule_Create2=Module["_PyModule_Create2"]=Module["asm"]["PyModule_Create2"]).apply(null,arguments)};var _python2js_init=Module["_python2js_init"]=function(){return(_python2js_init=Module["_python2js_init"]=Module["asm"]["python2js_init"]).apply(null,arguments)};var _pyproxy_init=Module["_pyproxy_init"]=function(){return(_pyproxy_init=Module["_pyproxy_init"]=Module["asm"]["pyproxy_init"]).apply(null,arguments)};var _PyImport_GetModuleDict=Module["_PyImport_GetModuleDict"]=function(){return(_PyImport_GetModuleDict=Module["_PyImport_GetModuleDict"]=Module["asm"]["PyImport_GetModuleDict"]).apply(null,arguments)};var _PyDict_SetItemString=Module["_PyDict_SetItemString"]=function(){return(_PyDict_SetItemString=Module["_PyDict_SetItemString"]=Module["asm"]["PyDict_SetItemString"]).apply(null,arguments)};var _pyproxy_getflags=Module["_pyproxy_getflags"]=function(){return(_pyproxy_getflags=Module["_pyproxy_getflags"]=Module["asm"]["pyproxy_getflags"]).apply(null,arguments)};var __PyObject_HasAttrId=Module["__PyObject_HasAttrId"]=function(){return(__PyObject_HasAttrId=Module["__PyObject_HasAttrId"]=Module["asm"]["_PyObject_HasAttrId"]).apply(null,arguments)};var _PySequence_Check=Module["_PySequence_Check"]=function(){return(_PySequence_Check=Module["_PySequence_Check"]=Module["asm"]["PySequence_Check"]).apply(null,arguments)};var __PyObject_NextNotImplemented=Module["__PyObject_NextNotImplemented"]=function(){return(__PyObject_NextNotImplemented=Module["__PyObject_NextNotImplemented"]=Module["asm"]["_PyObject_NextNotImplemented"]).apply(null,arguments)};var __pyproxy_repr=Module["__pyproxy_repr"]=function(){return(__pyproxy_repr=Module["__pyproxy_repr"]=Module["asm"]["_pyproxy_repr"]).apply(null,arguments)};var _PyObject_Repr=Module["_PyObject_Repr"]=function(){return(_PyObject_Repr=Module["_PyObject_Repr"]=Module["asm"]["PyObject_Repr"]).apply(null,arguments)};var __pyproxy_type=Module["__pyproxy_type"]=function(){return(__pyproxy_type=Module["__pyproxy_type"]=Module["asm"]["_pyproxy_type"]).apply(null,arguments)};var __pyproxy_hasattr=Module["__pyproxy_hasattr"]=function(){return(__pyproxy_hasattr=Module["__pyproxy_hasattr"]=Module["asm"]["_pyproxy_hasattr"]).apply(null,arguments)};var _PyObject_HasAttr=Module["_PyObject_HasAttr"]=function(){return(_PyObject_HasAttr=Module["_PyObject_HasAttr"]=Module["asm"]["PyObject_HasAttr"]).apply(null,arguments)};var __pyproxy_getattr=Module["__pyproxy_getattr"]=function(){return(__pyproxy_getattr=Module["__pyproxy_getattr"]=Module["asm"]["_pyproxy_getattr"]).apply(null,arguments)};var __PyObject_GetMethod=Module["__PyObject_GetMethod"]=function(){return(__PyObject_GetMethod=Module["__PyObject_GetMethod"]=Module["asm"]["_PyObject_GetMethod"]).apply(null,arguments)};var __pyproxy_setattr=Module["__pyproxy_setattr"]=function(){return(__pyproxy_setattr=Module["__pyproxy_setattr"]=Module["asm"]["_pyproxy_setattr"]).apply(null,arguments)};var _PyObject_SetAttr=Module["_PyObject_SetAttr"]=function(){return(_PyObject_SetAttr=Module["_PyObject_SetAttr"]=Module["asm"]["PyObject_SetAttr"]).apply(null,arguments)};var __pyproxy_delattr=Module["__pyproxy_delattr"]=function(){return(__pyproxy_delattr=Module["__pyproxy_delattr"]=Module["asm"]["_pyproxy_delattr"]).apply(null,arguments)};var __pyproxy_getitem=Module["__pyproxy_getitem"]=function(){return(__pyproxy_getitem=Module["__pyproxy_getitem"]=Module["asm"]["_pyproxy_getitem"]).apply(null,arguments)};var _PyObject_GetItem=Module["_PyObject_GetItem"]=function(){return(_PyObject_GetItem=Module["_PyObject_GetItem"]=Module["asm"]["PyObject_GetItem"]).apply(null,arguments)};var __pyproxy_setitem=Module["__pyproxy_setitem"]=function(){return(__pyproxy_setitem=Module["__pyproxy_setitem"]=Module["asm"]["_pyproxy_setitem"]).apply(null,arguments)};var _PyObject_SetItem=Module["_PyObject_SetItem"]=function(){return(_PyObject_SetItem=Module["_PyObject_SetItem"]=Module["asm"]["PyObject_SetItem"]).apply(null,arguments)};var __pyproxy_delitem=Module["__pyproxy_delitem"]=function(){return(__pyproxy_delitem=Module["__pyproxy_delitem"]=Module["asm"]["_pyproxy_delitem"]).apply(null,arguments)};var _PyObject_DelItem=Module["_PyObject_DelItem"]=function(){return(_PyObject_DelItem=Module["_PyObject_DelItem"]=Module["asm"]["PyObject_DelItem"]).apply(null,arguments)};var __pyproxy_contains=Module["__pyproxy_contains"]=function(){return(__pyproxy_contains=Module["__pyproxy_contains"]=Module["asm"]["_pyproxy_contains"]).apply(null,arguments)};var _PySequence_Contains=Module["_PySequence_Contains"]=function(){return(_PySequence_Contains=Module["_PySequence_Contains"]=Module["asm"]["PySequence_Contains"]).apply(null,arguments)};var __pyproxy_ownKeys=Module["__pyproxy_ownKeys"]=function(){return(__pyproxy_ownKeys=Module["__pyproxy_ownKeys"]=Module["asm"]["_pyproxy_ownKeys"]).apply(null,arguments)};var _PyObject_Dir=Module["_PyObject_Dir"]=function(){return(_PyObject_Dir=Module["_PyObject_Dir"]=Module["asm"]["PyObject_Dir"]).apply(null,arguments)};var _PyList_Size=Module["_PyList_Size"]=function(){return(_PyList_Size=Module["_PyList_Size"]=Module["asm"]["PyList_Size"]).apply(null,arguments)};var _PyList_GetItem=Module["_PyList_GetItem"]=function(){return(_PyList_GetItem=Module["_PyList_GetItem"]=Module["asm"]["PyList_GetItem"]).apply(null,arguments)};var __pyproxy_apply=Module["__pyproxy_apply"]=function(){return(__pyproxy_apply=Module["__pyproxy_apply"]=Module["asm"]["_pyproxy_apply"]).apply(null,arguments)};var _PyTuple_New=Module["_PyTuple_New"]=function(){return(_PyTuple_New=Module["_PyTuple_New"]=Module["asm"]["PyTuple_New"]).apply(null,arguments)};var __pyproxy_iter_next=Module["__pyproxy_iter_next"]=function(){return(__pyproxy_iter_next=Module["__pyproxy_iter_next"]=Module["asm"]["_pyproxy_iter_next"]).apply(null,arguments)};var _PyIter_Next=Module["_PyIter_Next"]=function(){return(_PyIter_Next=Module["_PyIter_Next"]=Module["asm"]["PyIter_Next"]).apply(null,arguments)};var __pyproxyGen_Send=Module["__pyproxyGen_Send"]=function(){return(__pyproxyGen_Send=Module["__pyproxyGen_Send"]=Module["asm"]["_pyproxyGen_Send"]).apply(null,arguments)};var __PyGen_Send=Module["__PyGen_Send"]=function(){return(__PyGen_Send=Module["__PyGen_Send"]=Module["asm"]["_PyGen_Send"]).apply(null,arguments)};var __pyproxyGen_FetchStopIterationValue=Module["__pyproxyGen_FetchStopIterationValue"]=function(){return(__pyproxyGen_FetchStopIterationValue=Module["__pyproxyGen_FetchStopIterationValue"]=Module["asm"]["_pyproxyGen_FetchStopIterationValue"]).apply(null,arguments)};var __PyGen_FetchStopIterationValue=Module["__PyGen_FetchStopIterationValue"]=function(){return(__PyGen_FetchStopIterationValue=Module["__PyGen_FetchStopIterationValue"]=Module["asm"]["_PyGen_FetchStopIterationValue"]).apply(null,arguments)};var _FutureDoneCallback_call_resolve=Module["_FutureDoneCallback_call_resolve"]=function(){return(_FutureDoneCallback_call_resolve=Module["_FutureDoneCallback_call_resolve"]=Module["asm"]["FutureDoneCallback_call_resolve"]).apply(null,arguments)};var _FutureDoneCallback_call_reject=Module["_FutureDoneCallback_call_reject"]=function(){return(_FutureDoneCallback_call_reject=Module["_FutureDoneCallback_call_reject"]=Module["asm"]["FutureDoneCallback_call_reject"]).apply(null,arguments)};var _FutureDoneCallback_call=Module["_FutureDoneCallback_call"]=function(){return(_FutureDoneCallback_call=Module["_FutureDoneCallback_call"]=Module["asm"]["FutureDoneCallback_call"]).apply(null,arguments)};var _PyArg_UnpackTuple=Module["_PyArg_UnpackTuple"]=function(){return(_PyArg_UnpackTuple=Module["_PyArg_UnpackTuple"]=Module["asm"]["PyArg_UnpackTuple"]).apply(null,arguments)};var __pyproxy_ensure_future=Module["__pyproxy_ensure_future"]=function(){return(__pyproxy_ensure_future=Module["__pyproxy_ensure_future"]=Module["asm"]["_pyproxy_ensure_future"]).apply(null,arguments)};var __pyproxy_get_buffer=Module["__pyproxy_get_buffer"]=function(){return(__pyproxy_get_buffer=Module["__pyproxy_get_buffer"]=Module["asm"]["_pyproxy_get_buffer"]).apply(null,arguments)};var _PyBuffer_FillContiguousStrides=Module["_PyBuffer_FillContiguousStrides"]=function(){return(_PyBuffer_FillContiguousStrides=Module["_PyBuffer_FillContiguousStrides"]=Module["asm"]["PyBuffer_FillContiguousStrides"]).apply(null,arguments)};var _PyBuffer_IsContiguous=Module["_PyBuffer_IsContiguous"]=function(){return(_PyBuffer_IsContiguous=Module["_PyBuffer_IsContiguous"]=Module["asm"]["PyBuffer_IsContiguous"]).apply(null,arguments)};var __python2js_buffer=Module["__python2js_buffer"]=function(){return(__python2js_buffer=Module["__python2js_buffer"]=Module["asm"]["_python2js_buffer"]).apply(null,arguments)};var __python2js_add_to_cache=Module["__python2js_add_to_cache"]=function(){return(__python2js_add_to_cache=Module["__python2js_add_to_cache"]=Module["asm"]["_python2js_add_to_cache"]).apply(null,arguments)};var _PyLong_FromSize_t=Module["_PyLong_FromSize_t"]=function(){return(_PyLong_FromSize_t=Module["_PyLong_FromSize_t"]=Module["asm"]["PyLong_FromSize_t"]).apply(null,arguments)};var __python2js=Module["__python2js"]=function(){return(__python2js=Module["__python2js"]=Module["asm"]["_python2js"]).apply(null,arguments)};var _PyLong_AsSize_t=Module["_PyLong_AsSize_t"]=function(){return(_PyLong_AsSize_t=Module["_PyLong_AsSize_t"]=Module["asm"]["PyLong_AsSize_t"]).apply(null,arguments)};var _python2js_inner=Module["_python2js_inner"]=function(){return(_python2js_inner=Module["_python2js_inner"]=Module["asm"]["python2js_inner"]).apply(null,arguments)};var _PySequence_Size=Module["_PySequence_Size"]=function(){return(_PySequence_Size=Module["_PySequence_Size"]=Module["asm"]["PySequence_Size"]).apply(null,arguments)};var _PySequence_GetItem=Module["_PySequence_GetItem"]=function(){return(_PySequence_GetItem=Module["_PySequence_GetItem"]=Module["asm"]["PySequence_GetItem"]).apply(null,arguments)};var _PyDict_Next=Module["_PyDict_Next"]=function(){return(_PyDict_Next=Module["_PyDict_Next"]=Module["asm"]["PyDict_Next"]).apply(null,arguments)};var _PyObject_GetIter=Module["_PyObject_GetIter"]=function(){return(_PyObject_GetIter=Module["_PyObject_GetIter"]=Module["asm"]["PyObject_GetIter"]).apply(null,arguments)};var _PyObject_CheckBuffer=Module["_PyObject_CheckBuffer"]=function(){return(_PyObject_CheckBuffer=Module["_PyObject_CheckBuffer"]=Module["asm"]["PyObject_CheckBuffer"]).apply(null,arguments)};var __PyErr_FormatFromCause=Module["__PyErr_FormatFromCause"]=function(){return(__PyErr_FormatFromCause=Module["__PyErr_FormatFromCause"]=Module["asm"]["_PyErr_FormatFromCause"]).apply(null,arguments)};var _PyFloat_AsDouble=Module["_PyFloat_AsDouble"]=function(){return(_PyFloat_AsDouble=Module["_PyFloat_AsDouble"]=Module["asm"]["PyFloat_AsDouble"]).apply(null,arguments)};var _python2js_with_context=Module["_python2js_with_context"]=function(){return(_python2js_with_context=Module["_python2js_with_context"]=Module["asm"]["python2js_with_context"]).apply(null,arguments)};var _python2js_with_depth=Module["_python2js_with_depth"]=function(){return(_python2js_with_depth=Module["_python2js_with_depth"]=Module["asm"]["python2js_with_depth"]).apply(null,arguments)};var _python2js_custom_dict_converter=Module["_python2js_custom_dict_converter"]=function(){return(_python2js_custom_dict_converter=Module["_python2js_custom_dict_converter"]=Module["asm"]["python2js_custom_dict_converter"]).apply(null,arguments)};var _PyLong_AsLongAndOverflow=Module["_PyLong_AsLongAndOverflow"]=function(){return(_PyLong_AsLongAndOverflow=Module["_PyLong_AsLongAndOverflow"]=Module["asm"]["PyLong_AsLongAndOverflow"]).apply(null,arguments)};var __PyLong_AsByteArray=Module["__PyLong_AsByteArray"]=function(){return(__PyLong_AsByteArray=Module["__PyLong_AsByteArray"]=Module["asm"]["_PyLong_AsByteArray"]).apply(null,arguments)};var _Py_GetBuildInfo=Module["_Py_GetBuildInfo"]=function(){return(_Py_GetBuildInfo=Module["_Py_GetBuildInfo"]=Module["asm"]["Py_GetBuildInfo"]).apply(null,arguments)};var _PyOS_snprintf=Module["_PyOS_snprintf"]=function(){return(_PyOS_snprintf=Module["_PyOS_snprintf"]=Module["asm"]["PyOS_snprintf"]).apply(null,arguments)};var __Py_gitversion=Module["__Py_gitversion"]=function(){return(__Py_gitversion=Module["__Py_gitversion"]=Module["asm"]["_Py_gitversion"]).apply(null,arguments)};var __Py_gitidentifier=Module["__Py_gitidentifier"]=function(){return(__Py_gitidentifier=Module["__Py_gitidentifier"]=Module["asm"]["_Py_gitidentifier"]).apply(null,arguments)};var _PyGrammar_AddAccelerators=Module["_PyGrammar_AddAccelerators"]=function(){return(_PyGrammar_AddAccelerators=Module["_PyGrammar_AddAccelerators"]=Module["asm"]["PyGrammar_AddAccelerators"]).apply(null,arguments)};var _PyObject_Malloc=Module["_PyObject_Malloc"]=function(){return(_PyObject_Malloc=Module["_PyObject_Malloc"]=Module["asm"]["PyObject_Malloc"]).apply(null,arguments)};var _memset=Module["_memset"]=function(){return(_memset=Module["_memset"]=Module["asm"]["memset"]).apply(null,arguments)};var _PyGrammar_FindDFA=Module["_PyGrammar_FindDFA"]=function(){return(_PyGrammar_FindDFA=Module["_PyGrammar_FindDFA"]=Module["asm"]["PyGrammar_FindDFA"]).apply(null,arguments)};var _PyObject_Free=Module["_PyObject_Free"]=function(){return(_PyObject_Free=Module["_PyObject_Free"]=Module["asm"]["PyObject_Free"]).apply(null,arguments)};var _fwrite=Module["_fwrite"]=function(){return(_fwrite=Module["_fwrite"]=Module["asm"]["fwrite"]).apply(null,arguments)};var _PyGrammar_RemoveAccelerators=Module["_PyGrammar_RemoveAccelerators"]=function(){return(_PyGrammar_RemoveAccelerators=Module["_PyGrammar_RemoveAccelerators"]=Module["asm"]["PyGrammar_RemoveAccelerators"]).apply(null,arguments)};var _PyGrammar_LabelRepr=Module["_PyGrammar_LabelRepr"]=function(){return(_PyGrammar_LabelRepr=Module["_PyGrammar_LabelRepr"]=Module["asm"]["PyGrammar_LabelRepr"]).apply(null,arguments)};var __Py_FatalErrorFunc=Module["__Py_FatalErrorFunc"]=function(){return(__Py_FatalErrorFunc=Module["__Py_FatalErrorFunc"]=Module["asm"]["_Py_FatalErrorFunc"]).apply(null,arguments)};var _PyNode_ListTree=Module["_PyNode_ListTree"]=function(){return(_PyNode_ListTree=Module["_PyNode_ListTree"]=Module["asm"]["PyNode_ListTree"]).apply(null,arguments)};var _fputc=Module["_fputc"]=function(){return(_fputc=Module["_fputc"]=Module["asm"]["fputc"]).apply(null,arguments)};var _fputs=Module["_fputs"]=function(){return(_fputs=Module["_fputs"]=Module["asm"]["fputs"]).apply(null,arguments)};var _fiprintf=Module["_fiprintf"]=function(){return(_fiprintf=Module["_fiprintf"]=Module["asm"]["fiprintf"]).apply(null,arguments)};var _PyNode_New=Module["_PyNode_New"]=function(){return(_PyNode_New=Module["_PyNode_New"]=Module["asm"]["PyNode_New"]).apply(null,arguments)};var __PyNode_FinalizeEndPos=Module["__PyNode_FinalizeEndPos"]=function(){return(__PyNode_FinalizeEndPos=Module["__PyNode_FinalizeEndPos"]=Module["asm"]["_PyNode_FinalizeEndPos"]).apply(null,arguments)};var _PyNode_AddChild=Module["_PyNode_AddChild"]=function(){return(_PyNode_AddChild=Module["_PyNode_AddChild"]=Module["asm"]["PyNode_AddChild"]).apply(null,arguments)};var _PyObject_Realloc=Module["_PyObject_Realloc"]=function(){return(_PyObject_Realloc=Module["_PyObject_Realloc"]=Module["asm"]["PyObject_Realloc"]).apply(null,arguments)};var _PyNode_Free=Module["_PyNode_Free"]=function(){return(_PyNode_Free=Module["_PyNode_Free"]=Module["asm"]["PyNode_Free"]).apply(null,arguments)};var __PyNode_SizeOf=Module["__PyNode_SizeOf"]=function(){return(__PyNode_SizeOf=Module["__PyNode_SizeOf"]=Module["asm"]["_PyNode_SizeOf"]).apply(null,arguments)};var _strlen=Module["_strlen"]=function(){return(_strlen=Module["_strlen"]=Module["asm"]["strlen"]).apply(null,arguments)};var _PyParser_New=Module["_PyParser_New"]=function(){return(_PyParser_New=Module["_PyParser_New"]=Module["asm"]["PyParser_New"]).apply(null,arguments)};var _PyParser_Delete=Module["_PyParser_Delete"]=function(){return(_PyParser_Delete=Module["_PyParser_Delete"]=Module["asm"]["PyParser_Delete"]).apply(null,arguments)};var _PyParser_AddToken=Module["_PyParser_AddToken"]=function(){return(_PyParser_AddToken=Module["_PyParser_AddToken"]=Module["asm"]["PyParser_AddToken"]).apply(null,arguments)};var _PyToken_OneChar=Module["_PyToken_OneChar"]=function(){return(_PyToken_OneChar=Module["_PyToken_OneChar"]=Module["asm"]["PyToken_OneChar"]).apply(null,arguments)};var _PyToken_TwoChars=Module["_PyToken_TwoChars"]=function(){return(_PyToken_TwoChars=Module["_PyToken_TwoChars"]=Module["asm"]["PyToken_TwoChars"]).apply(null,arguments)};var _PyToken_ThreeChars=Module["_PyToken_ThreeChars"]=function(){return(_PyToken_ThreeChars=Module["_PyToken_ThreeChars"]=Module["asm"]["PyToken_ThreeChars"]).apply(null,arguments)};var __PyPegen_new_type_comment=Module["__PyPegen_new_type_comment"]=function(){return(__PyPegen_new_type_comment=Module["__PyPegen_new_type_comment"]=Module["asm"]["_PyPegen_new_type_comment"]).apply(null,arguments)};var _PyUnicode_DecodeUTF8=Module["_PyUnicode_DecodeUTF8"]=function(){return(_PyUnicode_DecodeUTF8=Module["_PyUnicode_DecodeUTF8"]=Module["asm"]["PyUnicode_DecodeUTF8"]).apply(null,arguments)};var _PyArena_AddPyObject=Module["_PyArena_AddPyObject"]=function(){return(_PyArena_AddPyObject=Module["_PyArena_AddPyObject"]=Module["asm"]["PyArena_AddPyObject"]).apply(null,arguments)};var __PyPegen_add_type_comment_to_arg=Module["__PyPegen_add_type_comment_to_arg"]=function(){return(__PyPegen_add_type_comment_to_arg=Module["__PyPegen_add_type_comment_to_arg"]=Module["asm"]["_PyPegen_add_type_comment_to_arg"]).apply(null,arguments)};var _PyBytes_AsString=Module["_PyBytes_AsString"]=function(){return(_PyBytes_AsString=Module["_PyBytes_AsString"]=Module["asm"]["PyBytes_AsString"]).apply(null,arguments)};var __Py_arg=Module["__Py_arg"]=function(){return(__Py_arg=Module["__Py_arg"]=Module["asm"]["_Py_arg"]).apply(null,arguments)};var __PyPegen_check_barry_as_flufl=Module["__PyPegen_check_barry_as_flufl"]=function(){return(__PyPegen_check_barry_as_flufl=Module["__PyPegen_check_barry_as_flufl"]=Module["asm"]["_PyPegen_check_barry_as_flufl"]).apply(null,arguments)};var __PyPegen_raise_error=Module["__PyPegen_raise_error"]=function(){return(__PyPegen_raise_error=Module["__PyPegen_raise_error"]=Module["asm"]["_PyPegen_raise_error"]).apply(null,arguments)};var __PyPegen_raise_error_known_location=Module["__PyPegen_raise_error_known_location"]=function(){return(__PyPegen_raise_error_known_location=Module["__PyPegen_raise_error_known_location"]=Module["asm"]["_PyPegen_raise_error_known_location"]).apply(null,arguments)};var __PyPegen_new_identifier=Module["__PyPegen_new_identifier"]=function(){return(__PyPegen_new_identifier=Module["__PyPegen_new_identifier"]=Module["asm"]["_PyPegen_new_identifier"]).apply(null,arguments)};var _PyImport_ImportModuleNoBlock=Module["_PyImport_ImportModuleNoBlock"]=function(){return(_PyImport_ImportModuleNoBlock=Module["_PyImport_ImportModuleNoBlock"]=Module["asm"]["PyImport_ImportModuleNoBlock"]).apply(null,arguments)};var _PyUnicode_InternFromString=Module["_PyUnicode_InternFromString"]=function(){return(_PyUnicode_InternFromString=Module["_PyUnicode_InternFromString"]=Module["asm"]["PyUnicode_InternFromString"]).apply(null,arguments)};var __PyType_Name=Module["__PyType_Name"]=function(){return(__PyType_Name=Module["__PyType_Name"]=Module["asm"]["_PyType_Name"]).apply(null,arguments)};var _PyUnicode_InternInPlace=Module["_PyUnicode_InternInPlace"]=function(){return(_PyUnicode_InternInPlace=Module["_PyUnicode_InternInPlace"]=Module["asm"]["PyUnicode_InternInPlace"]).apply(null,arguments)};var __PyPegen_get_expr_name=Module["__PyPegen_get_expr_name"]=function(){return(__PyPegen_get_expr_name=Module["__PyPegen_get_expr_name"]=Module["asm"]["_PyPegen_get_expr_name"]).apply(null,arguments)};var _PyMem_RawMalloc=Module["_PyMem_RawMalloc"]=function(){return(_PyMem_RawMalloc=Module["_PyMem_RawMalloc"]=Module["asm"]["PyMem_RawMalloc"]).apply(null,arguments)};var _PyUnicode_FromFormatV=Module["_PyUnicode_FromFormatV"]=function(){return(_PyUnicode_FromFormatV=Module["_PyUnicode_FromFormatV"]=Module["asm"]["PyUnicode_FromFormatV"]).apply(null,arguments)};var _PyErr_ProgramTextObject=Module["_PyErr_ProgramTextObject"]=function(){return(_PyErr_ProgramTextObject=Module["_PyErr_ProgramTextObject"]=Module["asm"]["PyErr_ProgramTextObject"]).apply(null,arguments)};var _Py_BuildValue=Module["_Py_BuildValue"]=function(){return(_Py_BuildValue=Module["_Py_BuildValue"]=Module["asm"]["Py_BuildValue"]).apply(null,arguments)};var _PyTuple_Pack=Module["_PyTuple_Pack"]=function(){return(_PyTuple_Pack=Module["_PyTuple_Pack"]=Module["asm"]["PyTuple_Pack"]).apply(null,arguments)};var _PyMem_RawFree=Module["_PyMem_RawFree"]=function(){return(_PyMem_RawFree=Module["_PyMem_RawFree"]=Module["asm"]["PyMem_RawFree"]).apply(null,arguments)};var __PyPegen_insert_memo=Module["__PyPegen_insert_memo"]=function(){return(__PyPegen_insert_memo=Module["__PyPegen_insert_memo"]=Module["asm"]["_PyPegen_insert_memo"]).apply(null,arguments)};var _PyArena_Malloc=Module["_PyArena_Malloc"]=function(){return(_PyArena_Malloc=Module["_PyArena_Malloc"]=Module["asm"]["PyArena_Malloc"]).apply(null,arguments)};var __PyPegen_update_memo=Module["__PyPegen_update_memo"]=function(){return(__PyPegen_update_memo=Module["__PyPegen_update_memo"]=Module["asm"]["_PyPegen_update_memo"]).apply(null,arguments)};var __PyPegen_dummy_name=Module["__PyPegen_dummy_name"]=function(){return(__PyPegen_dummy_name=Module["__PyPegen_dummy_name"]=Module["asm"]["_PyPegen_dummy_name"]).apply(null,arguments)};var __Py_Name=Module["__Py_Name"]=function(){return(__Py_Name=Module["__Py_Name"]=Module["asm"]["_Py_Name"]).apply(null,arguments)};var __PyPegen_fill_token=Module["__PyPegen_fill_token"]=function(){return(__PyPegen_fill_token=Module["__PyPegen_fill_token"]=Module["asm"]["_PyPegen_fill_token"]).apply(null,arguments)};var _PyTokenizer_Get=Module["_PyTokenizer_Get"]=function(){return(_PyTokenizer_Get=Module["_PyTokenizer_Get"]=Module["asm"]["PyTokenizer_Get"]).apply(null,arguments)};var _strncpy=Module["_strncpy"]=function(){return(_strncpy=Module["_strncpy"]=Module["asm"]["strncpy"]).apply(null,arguments)};var _PyMem_Realloc=Module["_PyMem_Realloc"]=function(){return(_PyMem_Realloc=Module["_PyMem_Realloc"]=Module["asm"]["PyMem_Realloc"]).apply(null,arguments)};var _PyErr_SetNone=Module["_PyErr_SetNone"]=function(){return(_PyErr_SetNone=Module["_PyErr_SetNone"]=Module["asm"]["PyErr_SetNone"]).apply(null,arguments)};var _strtok=Module["_strtok"]=function(){return(_strtok=Module["_strtok"]=Module["asm"]["strtok"]).apply(null,arguments)};var _PyObject_Str=Module["_PyObject_Str"]=function(){return(_PyObject_Str=Module["_PyObject_Str"]=Module["asm"]["PyObject_Str"]).apply(null,arguments)};var __PyPegen_clear_memo_statistics=Module["__PyPegen_clear_memo_statistics"]=function(){return(__PyPegen_clear_memo_statistics=Module["__PyPegen_clear_memo_statistics"]=Module["asm"]["_PyPegen_clear_memo_statistics"]).apply(null,arguments)};var __PyPegen_get_memo_statistics=Module["__PyPegen_get_memo_statistics"]=function(){return(__PyPegen_get_memo_statistics=Module["__PyPegen_get_memo_statistics"]=Module["asm"]["_PyPegen_get_memo_statistics"]).apply(null,arguments)};var _PyList_SetItem=Module["_PyList_SetItem"]=function(){return(_PyList_SetItem=Module["_PyList_SetItem"]=Module["asm"]["PyList_SetItem"]).apply(null,arguments)};var __PyPegen_is_memoized=Module["__PyPegen_is_memoized"]=function(){return(__PyPegen_is_memoized=Module["__PyPegen_is_memoized"]=Module["asm"]["_PyPegen_is_memoized"]).apply(null,arguments)};var __PyPegen_lookahead_with_name=Module["__PyPegen_lookahead_with_name"]=function(){return(__PyPegen_lookahead_with_name=Module["__PyPegen_lookahead_with_name"]=Module["asm"]["_PyPegen_lookahead_with_name"]).apply(null,arguments)};var __PyPegen_lookahead_with_string=Module["__PyPegen_lookahead_with_string"]=function(){return(__PyPegen_lookahead_with_string=Module["__PyPegen_lookahead_with_string"]=Module["asm"]["_PyPegen_lookahead_with_string"]).apply(null,arguments)};var __PyPegen_lookahead_with_int=Module["__PyPegen_lookahead_with_int"]=function(){return(__PyPegen_lookahead_with_int=Module["__PyPegen_lookahead_with_int"]=Module["asm"]["_PyPegen_lookahead_with_int"]).apply(null,arguments)};var __PyPegen_lookahead=Module["__PyPegen_lookahead"]=function(){return(__PyPegen_lookahead=Module["__PyPegen_lookahead"]=Module["asm"]["_PyPegen_lookahead"]).apply(null,arguments)};var __PyPegen_expect_token=Module["__PyPegen_expect_token"]=function(){return(__PyPegen_expect_token=Module["__PyPegen_expect_token"]=Module["asm"]["_PyPegen_expect_token"]).apply(null,arguments)};var __PyPegen_expect_soft_keyword=Module["__PyPegen_expect_soft_keyword"]=function(){return(__PyPegen_expect_soft_keyword=Module["__PyPegen_expect_soft_keyword"]=Module["asm"]["_PyPegen_expect_soft_keyword"]).apply(null,arguments)};var __PyPegen_name_token=Module["__PyPegen_name_token"]=function(){return(__PyPegen_name_token=Module["__PyPegen_name_token"]=Module["asm"]["_PyPegen_name_token"]).apply(null,arguments)};var __PyPegen_get_last_nonnwhitespace_token=Module["__PyPegen_get_last_nonnwhitespace_token"]=function(){return(__PyPegen_get_last_nonnwhitespace_token=Module["__PyPegen_get_last_nonnwhitespace_token"]=Module["asm"]["_PyPegen_get_last_nonnwhitespace_token"]).apply(null,arguments)};var __PyPegen_string_token=Module["__PyPegen_string_token"]=function(){return(__PyPegen_string_token=Module["__PyPegen_string_token"]=Module["asm"]["_PyPegen_string_token"]).apply(null,arguments)};var __PyPegen_number_token=Module["__PyPegen_number_token"]=function(){return(__PyPegen_number_token=Module["__PyPegen_number_token"]=Module["asm"]["_PyPegen_number_token"]).apply(null,arguments)};var _strchr=Module["_strchr"]=function(){return(_strchr=Module["_strchr"]=Module["asm"]["strchr"]).apply(null,arguments)};var __Py_Constant=Module["__Py_Constant"]=function(){return(__Py_Constant=Module["__Py_Constant"]=Module["asm"]["_Py_Constant"]).apply(null,arguments)};var __PyPegen_Parser_Free=Module["__PyPegen_Parser_Free"]=function(){return(__PyPegen_Parser_Free=Module["__PyPegen_Parser_Free"]=Module["asm"]["_PyPegen_Parser_Free"]).apply(null,arguments)};var __PyPegen_Parser_New=Module["__PyPegen_Parser_New"]=function(){return(__PyPegen_Parser_New=Module["__PyPegen_Parser_New"]=Module["asm"]["_PyPegen_Parser_New"]).apply(null,arguments)};var _PyMem_Calloc=Module["_PyMem_Calloc"]=function(){return(_PyMem_Calloc=Module["_PyMem_Calloc"]=Module["asm"]["PyMem_Calloc"]).apply(null,arguments)};var __PyPegen_run_parser=Module["__PyPegen_run_parser"]=function(){return(__PyPegen_run_parser=Module["__PyPegen_run_parser"]=Module["asm"]["_PyPegen_run_parser"]).apply(null,arguments)};var __PyPegen_parse=Module["__PyPegen_parse"]=function(){return(__PyPegen_parse=Module["__PyPegen_parse"]=Module["asm"]["_PyPegen_parse"]).apply(null,arguments)};var __PyPegen_run_parser_from_file_pointer=Module["__PyPegen_run_parser_from_file_pointer"]=function(){return(__PyPegen_run_parser_from_file_pointer=Module["__PyPegen_run_parser_from_file_pointer"]=Module["asm"]["_PyPegen_run_parser_from_file_pointer"]).apply(null,arguments)};var _PyTokenizer_FromFile=Module["_PyTokenizer_FromFile"]=function(){return(_PyTokenizer_FromFile=Module["_PyTokenizer_FromFile"]=Module["asm"]["PyTokenizer_FromFile"]).apply(null,arguments)};var _PyTokenizer_Free=Module["_PyTokenizer_Free"]=function(){return(_PyTokenizer_Free=Module["_PyTokenizer_Free"]=Module["asm"]["PyTokenizer_Free"]).apply(null,arguments)};var __PyPegen_run_parser_from_file=Module["__PyPegen_run_parser_from_file"]=function(){return(__PyPegen_run_parser_from_file=Module["__PyPegen_run_parser_from_file"]=Module["asm"]["_PyPegen_run_parser_from_file"]).apply(null,arguments)};var _fopen=Module["_fopen"]=function(){return(_fopen=Module["_fopen"]=Module["asm"]["fopen"]).apply(null,arguments)};var _PyErr_SetFromErrnoWithFilename=Module["_PyErr_SetFromErrnoWithFilename"]=function(){return(_PyErr_SetFromErrnoWithFilename=Module["_PyErr_SetFromErrnoWithFilename"]=Module["asm"]["PyErr_SetFromErrnoWithFilename"]).apply(null,arguments)};var _fclose=Module["_fclose"]=function(){return(_fclose=Module["_fclose"]=Module["asm"]["fclose"]).apply(null,arguments)};var __PyPegen_run_parser_from_string=Module["__PyPegen_run_parser_from_string"]=function(){return(__PyPegen_run_parser_from_string=Module["__PyPegen_run_parser_from_string"]=Module["asm"]["_PyPegen_run_parser_from_string"]).apply(null,arguments)};var _PyTokenizer_FromUTF8=Module["_PyTokenizer_FromUTF8"]=function(){return(_PyTokenizer_FromUTF8=Module["_PyTokenizer_FromUTF8"]=Module["asm"]["PyTokenizer_FromUTF8"]).apply(null,arguments)};var _PyTokenizer_FromString=Module["_PyTokenizer_FromString"]=function(){return(_PyTokenizer_FromString=Module["_PyTokenizer_FromString"]=Module["asm"]["PyTokenizer_FromString"]).apply(null,arguments)};var __PyPegen_interactive_exit=Module["__PyPegen_interactive_exit"]=function(){return(__PyPegen_interactive_exit=Module["__PyPegen_interactive_exit"]=Module["asm"]["_PyPegen_interactive_exit"]).apply(null,arguments)};var __PyPegen_singleton_seq=Module["__PyPegen_singleton_seq"]=function(){return(__PyPegen_singleton_seq=Module["__PyPegen_singleton_seq"]=Module["asm"]["_PyPegen_singleton_seq"]).apply(null,arguments)};var __Py_asdl_seq_new=Module["__Py_asdl_seq_new"]=function(){return(__Py_asdl_seq_new=Module["__Py_asdl_seq_new"]=Module["asm"]["_Py_asdl_seq_new"]).apply(null,arguments)};var __PyPegen_seq_insert_in_front=Module["__PyPegen_seq_insert_in_front"]=function(){return(__PyPegen_seq_insert_in_front=Module["__PyPegen_seq_insert_in_front"]=Module["asm"]["_PyPegen_seq_insert_in_front"]).apply(null,arguments)};var __PyPegen_seq_append_to_end=Module["__PyPegen_seq_append_to_end"]=function(){return(__PyPegen_seq_append_to_end=Module["__PyPegen_seq_append_to_end"]=Module["asm"]["_PyPegen_seq_append_to_end"]).apply(null,arguments)};var __PyPegen_seq_flatten=Module["__PyPegen_seq_flatten"]=function(){return(__PyPegen_seq_flatten=Module["__PyPegen_seq_flatten"]=Module["asm"]["_PyPegen_seq_flatten"]).apply(null,arguments)};var __PyPegen_join_names_with_dot=Module["__PyPegen_join_names_with_dot"]=function(){return(__PyPegen_join_names_with_dot=Module["__PyPegen_join_names_with_dot"]=Module["asm"]["_PyPegen_join_names_with_dot"]).apply(null,arguments)};var __PyUnicode_Ready=Module["__PyUnicode_Ready"]=function(){return(__PyUnicode_Ready=Module["__PyUnicode_Ready"]=Module["asm"]["_PyUnicode_Ready"]).apply(null,arguments)};var _strcpy=Module["_strcpy"]=function(){return(_strcpy=Module["_strcpy"]=Module["asm"]["strcpy"]).apply(null,arguments)};var __PyPegen_seq_count_dots=Module["__PyPegen_seq_count_dots"]=function(){return(__PyPegen_seq_count_dots=Module["__PyPegen_seq_count_dots"]=Module["asm"]["_PyPegen_seq_count_dots"]).apply(null,arguments)};var __PyPegen_alias_for_star=Module["__PyPegen_alias_for_star"]=function(){return(__PyPegen_alias_for_star=Module["__PyPegen_alias_for_star"]=Module["asm"]["_PyPegen_alias_for_star"]).apply(null,arguments)};var __Py_alias=Module["__Py_alias"]=function(){return(__Py_alias=Module["__Py_alias"]=Module["asm"]["_Py_alias"]).apply(null,arguments)};var __PyPegen_map_names_to_ids=Module["__PyPegen_map_names_to_ids"]=function(){return(__PyPegen_map_names_to_ids=Module["__PyPegen_map_names_to_ids"]=Module["asm"]["_PyPegen_map_names_to_ids"]).apply(null,arguments)};var __PyPegen_cmpop_expr_pair=Module["__PyPegen_cmpop_expr_pair"]=function(){return(__PyPegen_cmpop_expr_pair=Module["__PyPegen_cmpop_expr_pair"]=Module["asm"]["_PyPegen_cmpop_expr_pair"]).apply(null,arguments)};var __PyPegen_get_cmpops=Module["__PyPegen_get_cmpops"]=function(){return(__PyPegen_get_cmpops=Module["__PyPegen_get_cmpops"]=Module["asm"]["_PyPegen_get_cmpops"]).apply(null,arguments)};var __Py_asdl_int_seq_new=Module["__Py_asdl_int_seq_new"]=function(){return(__Py_asdl_int_seq_new=Module["__Py_asdl_int_seq_new"]=Module["asm"]["_Py_asdl_int_seq_new"]).apply(null,arguments)};var __PyPegen_get_exprs=Module["__PyPegen_get_exprs"]=function(){return(__PyPegen_get_exprs=Module["__PyPegen_get_exprs"]=Module["asm"]["_PyPegen_get_exprs"]).apply(null,arguments)};var __PyPegen_set_expr_context=Module["__PyPegen_set_expr_context"]=function(){return(__PyPegen_set_expr_context=Module["__PyPegen_set_expr_context"]=Module["asm"]["_PyPegen_set_expr_context"]).apply(null,arguments)};var __Py_Tuple=Module["__Py_Tuple"]=function(){return(__Py_Tuple=Module["__Py_Tuple"]=Module["asm"]["_Py_Tuple"]).apply(null,arguments)};var __Py_List=Module["__Py_List"]=function(){return(__Py_List=Module["__Py_List"]=Module["asm"]["_Py_List"]).apply(null,arguments)};var __Py_Subscript=Module["__Py_Subscript"]=function(){return(__Py_Subscript=Module["__Py_Subscript"]=Module["asm"]["_Py_Subscript"]).apply(null,arguments)};var __Py_Attribute=Module["__Py_Attribute"]=function(){return(__Py_Attribute=Module["__Py_Attribute"]=Module["asm"]["_Py_Attribute"]).apply(null,arguments)};var __Py_Starred=Module["__Py_Starred"]=function(){return(__Py_Starred=Module["__Py_Starred"]=Module["asm"]["_Py_Starred"]).apply(null,arguments)};var __PyPegen_key_value_pair=Module["__PyPegen_key_value_pair"]=function(){return(__PyPegen_key_value_pair=Module["__PyPegen_key_value_pair"]=Module["asm"]["_PyPegen_key_value_pair"]).apply(null,arguments)};var __PyPegen_get_keys=Module["__PyPegen_get_keys"]=function(){return(__PyPegen_get_keys=Module["__PyPegen_get_keys"]=Module["asm"]["_PyPegen_get_keys"]).apply(null,arguments)};var __PyPegen_get_values=Module["__PyPegen_get_values"]=function(){return(__PyPegen_get_values=Module["__PyPegen_get_values"]=Module["asm"]["_PyPegen_get_values"]).apply(null,arguments)};var __PyPegen_name_default_pair=Module["__PyPegen_name_default_pair"]=function(){return(__PyPegen_name_default_pair=Module["__PyPegen_name_default_pair"]=Module["asm"]["_PyPegen_name_default_pair"]).apply(null,arguments)};var __PyPegen_slash_with_default=Module["__PyPegen_slash_with_default"]=function(){return(__PyPegen_slash_with_default=Module["__PyPegen_slash_with_default"]=Module["asm"]["_PyPegen_slash_with_default"]).apply(null,arguments)};var __PyPegen_star_etc=Module["__PyPegen_star_etc"]=function(){return(__PyPegen_star_etc=Module["__PyPegen_star_etc"]=Module["asm"]["_PyPegen_star_etc"]).apply(null,arguments)};var __PyPegen_join_sequences=Module["__PyPegen_join_sequences"]=function(){return(__PyPegen_join_sequences=Module["__PyPegen_join_sequences"]=Module["asm"]["_PyPegen_join_sequences"]).apply(null,arguments)};var __PyPegen_make_arguments=Module["__PyPegen_make_arguments"]=function(){return(__PyPegen_make_arguments=Module["__PyPegen_make_arguments"]=Module["asm"]["_PyPegen_make_arguments"]).apply(null,arguments)};var __Py_arguments=Module["__Py_arguments"]=function(){return(__Py_arguments=Module["__Py_arguments"]=Module["asm"]["_Py_arguments"]).apply(null,arguments)};var __PyPegen_empty_arguments=Module["__PyPegen_empty_arguments"]=function(){return(__PyPegen_empty_arguments=Module["__PyPegen_empty_arguments"]=Module["asm"]["_PyPegen_empty_arguments"]).apply(null,arguments)};var __PyPegen_augoperator=Module["__PyPegen_augoperator"]=function(){return(__PyPegen_augoperator=Module["__PyPegen_augoperator"]=Module["asm"]["_PyPegen_augoperator"]).apply(null,arguments)};var __PyPegen_function_def_decorators=Module["__PyPegen_function_def_decorators"]=function(){return(__PyPegen_function_def_decorators=Module["__PyPegen_function_def_decorators"]=Module["asm"]["_PyPegen_function_def_decorators"]).apply(null,arguments)};var __Py_AsyncFunctionDef=Module["__Py_AsyncFunctionDef"]=function(){return(__Py_AsyncFunctionDef=Module["__Py_AsyncFunctionDef"]=Module["asm"]["_Py_AsyncFunctionDef"]).apply(null,arguments)};var __Py_FunctionDef=Module["__Py_FunctionDef"]=function(){return(__Py_FunctionDef=Module["__Py_FunctionDef"]=Module["asm"]["_Py_FunctionDef"]).apply(null,arguments)};var __PyPegen_class_def_decorators=Module["__PyPegen_class_def_decorators"]=function(){return(__PyPegen_class_def_decorators=Module["__PyPegen_class_def_decorators"]=Module["asm"]["_PyPegen_class_def_decorators"]).apply(null,arguments)};var __Py_ClassDef=Module["__Py_ClassDef"]=function(){return(__Py_ClassDef=Module["__Py_ClassDef"]=Module["asm"]["_Py_ClassDef"]).apply(null,arguments)};var __PyPegen_keyword_or_starred=Module["__PyPegen_keyword_or_starred"]=function(){return(__PyPegen_keyword_or_starred=Module["__PyPegen_keyword_or_starred"]=Module["asm"]["_PyPegen_keyword_or_starred"]).apply(null,arguments)};var __PyPegen_seq_extract_starred_exprs=Module["__PyPegen_seq_extract_starred_exprs"]=function(){return(__PyPegen_seq_extract_starred_exprs=Module["__PyPegen_seq_extract_starred_exprs"]=Module["asm"]["_PyPegen_seq_extract_starred_exprs"]).apply(null,arguments)};var __PyPegen_seq_delete_starred_exprs=Module["__PyPegen_seq_delete_starred_exprs"]=function(){return(__PyPegen_seq_delete_starred_exprs=Module["__PyPegen_seq_delete_starred_exprs"]=Module["asm"]["_PyPegen_seq_delete_starred_exprs"]).apply(null,arguments)};var __PyPegen_concatenate_strings=Module["__PyPegen_concatenate_strings"]=function(){return(__PyPegen_concatenate_strings=Module["__PyPegen_concatenate_strings"]=Module["asm"]["_PyPegen_concatenate_strings"]).apply(null,arguments)};var __PyPegen_FstringParser_Init=Module["__PyPegen_FstringParser_Init"]=function(){return(__PyPegen_FstringParser_Init=Module["__PyPegen_FstringParser_Init"]=Module["asm"]["_PyPegen_FstringParser_Init"]).apply(null,arguments)};var __PyPegen_parsestr=Module["__PyPegen_parsestr"]=function(){return(__PyPegen_parsestr=Module["__PyPegen_parsestr"]=Module["asm"]["_PyPegen_parsestr"]).apply(null,arguments)};var __PyPegen_FstringParser_ConcatFstring=Module["__PyPegen_FstringParser_ConcatFstring"]=function(){return(__PyPegen_FstringParser_ConcatFstring=Module["__PyPegen_FstringParser_ConcatFstring"]=Module["asm"]["_PyPegen_FstringParser_ConcatFstring"]).apply(null,arguments)};var __PyPegen_FstringParser_ConcatAndDel=Module["__PyPegen_FstringParser_ConcatAndDel"]=function(){return(__PyPegen_FstringParser_ConcatAndDel=Module["__PyPegen_FstringParser_ConcatAndDel"]=Module["asm"]["_PyPegen_FstringParser_ConcatAndDel"]).apply(null,arguments)};var _PyBytes_ConcatAndDel=Module["_PyBytes_ConcatAndDel"]=function(){return(_PyBytes_ConcatAndDel=Module["_PyBytes_ConcatAndDel"]=Module["asm"]["PyBytes_ConcatAndDel"]).apply(null,arguments)};var __PyPegen_FstringParser_Finish=Module["__PyPegen_FstringParser_Finish"]=function(){return(__PyPegen_FstringParser_Finish=Module["__PyPegen_FstringParser_Finish"]=Module["asm"]["_PyPegen_FstringParser_Finish"]).apply(null,arguments)};var __PyPegen_FstringParser_Dealloc=Module["__PyPegen_FstringParser_Dealloc"]=function(){return(__PyPegen_FstringParser_Dealloc=Module["__PyPegen_FstringParser_Dealloc"]=Module["asm"]["_PyPegen_FstringParser_Dealloc"]).apply(null,arguments)};var __PyPegen_make_module=Module["__PyPegen_make_module"]=function(){return(__PyPegen_make_module=Module["__PyPegen_make_module"]=Module["asm"]["_PyPegen_make_module"]).apply(null,arguments)};var __Py_TypeIgnore=Module["__Py_TypeIgnore"]=function(){return(__Py_TypeIgnore=Module["__Py_TypeIgnore"]=Module["asm"]["_Py_TypeIgnore"]).apply(null,arguments)};var __Py_Module=Module["__Py_Module"]=function(){return(__Py_Module=Module["__Py_Module"]=Module["asm"]["_Py_Module"]).apply(null,arguments)};var __PyPegen_get_invalid_target=Module["__PyPegen_get_invalid_target"]=function(){return(__PyPegen_get_invalid_target=Module["__PyPegen_get_invalid_target"]=Module["asm"]["_PyPegen_get_invalid_target"]).apply(null,arguments)};var __PyPegen_arguments_parsing_error=Module["__PyPegen_arguments_parsing_error"]=function(){return(__PyPegen_arguments_parsing_error=Module["__PyPegen_arguments_parsing_error"]=Module["asm"]["_PyPegen_arguments_parsing_error"]).apply(null,arguments)};var __PyPegen_nonparen_genexp_in_call=Module["__PyPegen_nonparen_genexp_in_call"]=function(){return(__PyPegen_nonparen_genexp_in_call=Module["__PyPegen_nonparen_genexp_in_call"]=Module["asm"]["_PyPegen_nonparen_genexp_in_call"]).apply(null,arguments)};var __PyPegen_collect_call_seqs=Module["__PyPegen_collect_call_seqs"]=function(){return(__PyPegen_collect_call_seqs=Module["__PyPegen_collect_call_seqs"]=Module["asm"]["_PyPegen_collect_call_seqs"]).apply(null,arguments)};var __Py_Call=Module["__Py_Call"]=function(){return(__Py_Call=Module["__Py_Call"]=Module["asm"]["_Py_Call"]).apply(null,arguments)};var ___errno_location=Module["___errno_location"]=function(){return(___errno_location=Module["___errno_location"]=Module["asm"]["__errno_location"]).apply(null,arguments)};var _PyOS_strtoul=Module["_PyOS_strtoul"]=function(){return(_PyOS_strtoul=Module["_PyOS_strtoul"]=Module["asm"]["PyOS_strtoul"]).apply(null,arguments)};var _PyLong_FromString=Module["_PyLong_FromString"]=function(){return(_PyLong_FromString=Module["_PyLong_FromString"]=Module["asm"]["PyLong_FromString"]).apply(null,arguments)};var _PyOS_strtol=Module["_PyOS_strtol"]=function(){return(_PyOS_strtol=Module["_PyOS_strtol"]=Module["asm"]["PyOS_strtol"]).apply(null,arguments)};var _PyOS_string_to_double=Module["_PyOS_string_to_double"]=function(){return(_PyOS_string_to_double=Module["_PyOS_string_to_double"]=Module["asm"]["PyOS_string_to_double"]).apply(null,arguments)};var _PyComplex_FromCComplex=Module["_PyComplex_FromCComplex"]=function(){return(_PyComplex_FromCComplex=Module["_PyComplex_FromCComplex"]=Module["asm"]["PyComplex_FromCComplex"]).apply(null,arguments)};var _PyFloat_FromDouble=Module["_PyFloat_FromDouble"]=function(){return(_PyFloat_FromDouble=Module["_PyFloat_FromDouble"]=Module["asm"]["PyFloat_FromDouble"]).apply(null,arguments)};var __Py_Pass=Module["__Py_Pass"]=function(){return(__Py_Pass=Module["__Py_Pass"]=Module["asm"]["_Py_Pass"]).apply(null,arguments)};var __Py_Interactive=Module["__Py_Interactive"]=function(){return(__Py_Interactive=Module["__Py_Interactive"]=Module["asm"]["_Py_Interactive"]).apply(null,arguments)};var __Py_FunctionType=Module["__Py_FunctionType"]=function(){return(__Py_FunctionType=Module["__Py_FunctionType"]=Module["asm"]["_Py_FunctionType"]).apply(null,arguments)};var __Py_Expression=Module["__Py_Expression"]=function(){return(__Py_Expression=Module["__Py_Expression"]=Module["asm"]["_Py_Expression"]).apply(null,arguments)};var __Py_If=Module["__Py_If"]=function(){return(__Py_If=Module["__Py_If"]=Module["asm"]["_Py_If"]).apply(null,arguments)};var __Py_With=Module["__Py_With"]=function(){return(__Py_With=Module["__Py_With"]=Module["asm"]["_Py_With"]).apply(null,arguments)};var __Py_AsyncWith=Module["__Py_AsyncWith"]=function(){return(__Py_AsyncWith=Module["__Py_AsyncWith"]=Module["asm"]["_Py_AsyncWith"]).apply(null,arguments)};var __Py_For=Module["__Py_For"]=function(){return(__Py_For=Module["__Py_For"]=Module["asm"]["_Py_For"]).apply(null,arguments)};var __Py_AsyncFor=Module["__Py_AsyncFor"]=function(){return(__Py_AsyncFor=Module["__Py_AsyncFor"]=Module["asm"]["_Py_AsyncFor"]).apply(null,arguments)};var __Py_Try=Module["__Py_Try"]=function(){return(__Py_Try=Module["__Py_Try"]=Module["asm"]["_Py_Try"]).apply(null,arguments)};var __Py_While=Module["__Py_While"]=function(){return(__Py_While=Module["__Py_While"]=Module["asm"]["_Py_While"]).apply(null,arguments)};var __Py_NamedExpr=Module["__Py_NamedExpr"]=function(){return(__Py_NamedExpr=Module["__Py_NamedExpr"]=Module["asm"]["_Py_NamedExpr"]).apply(null,arguments)};var __Py_IfExp=Module["__Py_IfExp"]=function(){return(__Py_IfExp=Module["__Py_IfExp"]=Module["asm"]["_Py_IfExp"]).apply(null,arguments)};var __Py_Lambda=Module["__Py_Lambda"]=function(){return(__Py_Lambda=Module["__Py_Lambda"]=Module["asm"]["_Py_Lambda"]).apply(null,arguments)};var __Py_BoolOp=Module["__Py_BoolOp"]=function(){return(__Py_BoolOp=Module["__Py_BoolOp"]=Module["asm"]["_Py_BoolOp"]).apply(null,arguments)};var __Py_UnaryOp=Module["__Py_UnaryOp"]=function(){return(__Py_UnaryOp=Module["__Py_UnaryOp"]=Module["asm"]["_Py_UnaryOp"]).apply(null,arguments)};var __Py_Compare=Module["__Py_Compare"]=function(){return(__Py_Compare=Module["__Py_Compare"]=Module["asm"]["_Py_Compare"]).apply(null,arguments)};var __Py_BinOp=Module["__Py_BinOp"]=function(){return(__Py_BinOp=Module["__Py_BinOp"]=Module["asm"]["_Py_BinOp"]).apply(null,arguments)};var __Py_Await=Module["__Py_Await"]=function(){return(__Py_Await=Module["__Py_Await"]=Module["asm"]["_Py_Await"]).apply(null,arguments)};var __Py_GeneratorExp=Module["__Py_GeneratorExp"]=function(){return(__Py_GeneratorExp=Module["__Py_GeneratorExp"]=Module["asm"]["_Py_GeneratorExp"]).apply(null,arguments)};var __Py_ListComp=Module["__Py_ListComp"]=function(){return(__Py_ListComp=Module["__Py_ListComp"]=Module["asm"]["_Py_ListComp"]).apply(null,arguments)};var __Py_Dict=Module["__Py_Dict"]=function(){return(__Py_Dict=Module["__Py_Dict"]=Module["asm"]["_Py_Dict"]).apply(null,arguments)};var __Py_Set=Module["__Py_Set"]=function(){return(__Py_Set=Module["__Py_Set"]=Module["asm"]["_Py_Set"]).apply(null,arguments)};var __Py_DictComp=Module["__Py_DictComp"]=function(){return(__Py_DictComp=Module["__Py_DictComp"]=Module["asm"]["_Py_DictComp"]).apply(null,arguments)};var __Py_SetComp=Module["__Py_SetComp"]=function(){return(__Py_SetComp=Module["__Py_SetComp"]=Module["asm"]["_Py_SetComp"]).apply(null,arguments)};var __Py_comprehension=Module["__Py_comprehension"]=function(){return(__Py_comprehension=Module["__Py_comprehension"]=Module["asm"]["_Py_comprehension"]).apply(null,arguments)};var __Py_keyword=Module["__Py_keyword"]=function(){return(__Py_keyword=Module["__Py_keyword"]=Module["asm"]["_Py_keyword"]).apply(null,arguments)};var __Py_Slice=Module["__Py_Slice"]=function(){return(__Py_Slice=Module["__Py_Slice"]=Module["asm"]["_Py_Slice"]).apply(null,arguments)};var __Py_YieldFrom=Module["__Py_YieldFrom"]=function(){return(__Py_YieldFrom=Module["__Py_YieldFrom"]=Module["asm"]["_Py_YieldFrom"]).apply(null,arguments)};var __Py_Yield=Module["__Py_Yield"]=function(){return(__Py_Yield=Module["__Py_Yield"]=Module["asm"]["_Py_Yield"]).apply(null,arguments)};var __Py_withitem=Module["__Py_withitem"]=function(){return(__Py_withitem=Module["__Py_withitem"]=Module["asm"]["_Py_withitem"]).apply(null,arguments)};var __Py_ExceptHandler=Module["__Py_ExceptHandler"]=function(){return(__Py_ExceptHandler=Module["__Py_ExceptHandler"]=Module["asm"]["_Py_ExceptHandler"]).apply(null,arguments)};var __Py_AnnAssign=Module["__Py_AnnAssign"]=function(){return(__Py_AnnAssign=Module["__Py_AnnAssign"]=Module["asm"]["_Py_AnnAssign"]).apply(null,arguments)};var __Py_Assign=Module["__Py_Assign"]=function(){return(__Py_Assign=Module["__Py_Assign"]=Module["asm"]["_Py_Assign"]).apply(null,arguments)};var __Py_AugAssign=Module["__Py_AugAssign"]=function(){return(__Py_AugAssign=Module["__Py_AugAssign"]=Module["asm"]["_Py_AugAssign"]).apply(null,arguments)};var __Py_Expr=Module["__Py_Expr"]=function(){return(__Py_Expr=Module["__Py_Expr"]=Module["asm"]["_Py_Expr"]).apply(null,arguments)};var __Py_Return=Module["__Py_Return"]=function(){return(__Py_Return=Module["__Py_Return"]=Module["asm"]["_Py_Return"]).apply(null,arguments)};var __Py_Import=Module["__Py_Import"]=function(){return(__Py_Import=Module["__Py_Import"]=Module["asm"]["_Py_Import"]).apply(null,arguments)};var __Py_ImportFrom=Module["__Py_ImportFrom"]=function(){return(__Py_ImportFrom=Module["__Py_ImportFrom"]=Module["asm"]["_Py_ImportFrom"]).apply(null,arguments)};var __Py_Raise=Module["__Py_Raise"]=function(){return(__Py_Raise=Module["__Py_Raise"]=Module["asm"]["_Py_Raise"]).apply(null,arguments)};var __Py_Delete=Module["__Py_Delete"]=function(){return(__Py_Delete=Module["__Py_Delete"]=Module["asm"]["_Py_Delete"]).apply(null,arguments)};var __Py_Assert=Module["__Py_Assert"]=function(){return(__Py_Assert=Module["__Py_Assert"]=Module["asm"]["_Py_Assert"]).apply(null,arguments)};var __Py_Break=Module["__Py_Break"]=function(){return(__Py_Break=Module["__Py_Break"]=Module["asm"]["_Py_Break"]).apply(null,arguments)};var __Py_Continue=Module["__Py_Continue"]=function(){return(__Py_Continue=Module["__Py_Continue"]=Module["asm"]["_Py_Continue"]).apply(null,arguments)};var __Py_Global=Module["__Py_Global"]=function(){return(__Py_Global=Module["__Py_Global"]=Module["asm"]["_Py_Global"]).apply(null,arguments)};var __Py_Nonlocal=Module["__Py_Nonlocal"]=function(){return(__Py_Nonlocal=Module["__Py_Nonlocal"]=Module["asm"]["_Py_Nonlocal"]).apply(null,arguments)};var __PyErr_BadInternalCall=Module["__PyErr_BadInternalCall"]=function(){return(__PyErr_BadInternalCall=Module["__PyErr_BadInternalCall"]=Module["asm"]["_PyErr_BadInternalCall"]).apply(null,arguments)};var __PyBytes_DecodeEscape=Module["__PyBytes_DecodeEscape"]=function(){return(__PyBytes_DecodeEscape=Module["__PyBytes_DecodeEscape"]=Module["asm"]["_PyBytes_DecodeEscape"]).apply(null,arguments)};var _PyUnicode_DecodeUTF8Stateful=Module["_PyUnicode_DecodeUTF8Stateful"]=function(){return(_PyUnicode_DecodeUTF8Stateful=Module["_PyUnicode_DecodeUTF8Stateful"]=Module["asm"]["PyUnicode_DecodeUTF8Stateful"]).apply(null,arguments)};var _siprintf=Module["_siprintf"]=function(){return(_siprintf=Module["_siprintf"]=Module["asm"]["siprintf"]).apply(null,arguments)};var __PyUnicode_DecodeUnicodeEscape=Module["__PyUnicode_DecodeUnicodeEscape"]=function(){return(__PyUnicode_DecodeUnicodeEscape=Module["__PyUnicode_DecodeUnicodeEscape"]=Module["asm"]["_PyUnicode_DecodeUnicodeEscape"]).apply(null,arguments)};var _PyUnicode_AppendAndDel=Module["_PyUnicode_AppendAndDel"]=function(){return(_PyUnicode_AppendAndDel=Module["_PyUnicode_AppendAndDel"]=Module["asm"]["PyUnicode_AppendAndDel"]).apply(null,arguments)};var _PyUnicode_FromStringAndSize=Module["_PyUnicode_FromStringAndSize"]=function(){return(_PyUnicode_FromStringAndSize=Module["_PyUnicode_FromStringAndSize"]=Module["asm"]["PyUnicode_FromStringAndSize"]).apply(null,arguments)};var __Py_JoinedStr=Module["__Py_JoinedStr"]=function(){return(__Py_JoinedStr=Module["__Py_JoinedStr"]=Module["asm"]["_Py_JoinedStr"]).apply(null,arguments)};var _PyUnicode_FromFormat=Module["_PyUnicode_FromFormat"]=function(){return(_PyUnicode_FromFormat=Module["_PyUnicode_FromFormat"]=Module["asm"]["PyUnicode_FromFormat"]).apply(null,arguments)};var _PyErr_WarnExplicitObject=Module["_PyErr_WarnExplicitObject"]=function(){return(_PyErr_WarnExplicitObject=Module["_PyErr_WarnExplicitObject"]=Module["asm"]["PyErr_WarnExplicitObject"]).apply(null,arguments)};var _strstr=Module["_strstr"]=function(){return(_strstr=Module["_strstr"]=Module["asm"]["strstr"]).apply(null,arguments)};var __Py_FormattedValue=Module["__Py_FormattedValue"]=function(){return(__Py_FormattedValue=Module["__Py_FormattedValue"]=Module["asm"]["_Py_FormattedValue"]).apply(null,arguments)};var _PyPegen_ASTFromString=Module["_PyPegen_ASTFromString"]=function(){return(_PyPegen_ASTFromString=Module["_PyPegen_ASTFromString"]=Module["asm"]["PyPegen_ASTFromString"]).apply(null,arguments)};var _PySys_Audit=Module["_PySys_Audit"]=function(){return(_PySys_Audit=Module["_PySys_Audit"]=Module["asm"]["PySys_Audit"]).apply(null,arguments)};var _PyPegen_ASTFromStringObject=Module["_PyPegen_ASTFromStringObject"]=function(){return(_PyPegen_ASTFromStringObject=Module["_PyPegen_ASTFromStringObject"]=Module["asm"]["PyPegen_ASTFromStringObject"]).apply(null,arguments)};var _PyPegen_ASTFromFilename=Module["_PyPegen_ASTFromFilename"]=function(){return(_PyPegen_ASTFromFilename=Module["_PyPegen_ASTFromFilename"]=Module["asm"]["PyPegen_ASTFromFilename"]).apply(null,arguments)};var _PyPegen_ASTFromFileObject=Module["_PyPegen_ASTFromFileObject"]=function(){return(_PyPegen_ASTFromFileObject=Module["_PyPegen_ASTFromFileObject"]=Module["asm"]["PyPegen_ASTFromFileObject"]).apply(null,arguments)};var _PyOS_StdioReadline=Module["_PyOS_StdioReadline"]=function(){return(_PyOS_StdioReadline=Module["_PyOS_StdioReadline"]=Module["asm"]["PyOS_StdioReadline"]).apply(null,arguments)};var _fflush=Module["_fflush"]=function(){return(_fflush=Module["_fflush"]=Module["asm"]["fflush"]).apply(null,arguments)};var _PyEval_RestoreThread=Module["_PyEval_RestoreThread"]=function(){return(_PyEval_RestoreThread=Module["_PyEval_RestoreThread"]=Module["asm"]["PyEval_RestoreThread"]).apply(null,arguments)};var _PyEval_SaveThread=Module["_PyEval_SaveThread"]=function(){return(_PyEval_SaveThread=Module["_PyEval_SaveThread"]=Module["asm"]["PyEval_SaveThread"]).apply(null,arguments)};var _PyMem_RawRealloc=Module["_PyMem_RawRealloc"]=function(){return(_PyMem_RawRealloc=Module["_PyMem_RawRealloc"]=Module["asm"]["PyMem_RawRealloc"]).apply(null,arguments)};var _clearerr=Module["_clearerr"]=function(){return(_clearerr=Module["_clearerr"]=Module["asm"]["clearerr"]).apply(null,arguments)};var _fgets=Module["_fgets"]=function(){return(_fgets=Module["_fgets"]=Module["asm"]["fgets"]).apply(null,arguments)};var _feof=Module["_feof"]=function(){return(_feof=Module["_feof"]=Module["asm"]["feof"]).apply(null,arguments)};var _PyErr_CheckSignals=Module["_PyErr_CheckSignals"]=function(){return(_PyErr_CheckSignals=Module["_PyErr_CheckSignals"]=Module["asm"]["PyErr_CheckSignals"]).apply(null,arguments)};var __PyOS_InterruptOccurred=Module["__PyOS_InterruptOccurred"]=function(){return(__PyOS_InterruptOccurred=Module["__PyOS_InterruptOccurred"]=Module["asm"]["_PyOS_InterruptOccurred"]).apply(null,arguments)};var _PyOS_Readline=Module["_PyOS_Readline"]=function(){return(_PyOS_Readline=Module["_PyOS_Readline"]=Module["asm"]["PyOS_Readline"]).apply(null,arguments)};var _PyThread_allocate_lock=Module["_PyThread_allocate_lock"]=function(){return(_PyThread_allocate_lock=Module["_PyThread_allocate_lock"]=Module["asm"]["PyThread_allocate_lock"]).apply(null,arguments)};var _PyThread_acquire_lock=Module["_PyThread_acquire_lock"]=function(){return(_PyThread_acquire_lock=Module["_PyThread_acquire_lock"]=Module["asm"]["PyThread_acquire_lock"]).apply(null,arguments)};var _fileno=Module["_fileno"]=function(){return(_fileno=Module["_fileno"]=Module["asm"]["fileno"]).apply(null,arguments)};var _isatty=Module["_isatty"]=function(){return(_isatty=Module["_isatty"]=Module["asm"]["isatty"]).apply(null,arguments)};var _PyThread_release_lock=Module["_PyThread_release_lock"]=function(){return(_PyThread_release_lock=Module["_PyThread_release_lock"]=Module["asm"]["PyThread_release_lock"]).apply(null,arguments)};var _PyParser_ParseString=Module["_PyParser_ParseString"]=function(){return(_PyParser_ParseString=Module["_PyParser_ParseString"]=Module["asm"]["PyParser_ParseString"]).apply(null,arguments)};var _PyParser_ParseStringObject=Module["_PyParser_ParseStringObject"]=function(){return(_PyParser_ParseStringObject=Module["_PyParser_ParseStringObject"]=Module["asm"]["PyParser_ParseStringObject"]).apply(null,arguments)};var _PyParser_ParseStringFlagsFilename=Module["_PyParser_ParseStringFlagsFilename"]=function(){return(_PyParser_ParseStringFlagsFilename=Module["_PyParser_ParseStringFlagsFilename"]=Module["asm"]["PyParser_ParseStringFlagsFilename"]).apply(null,arguments)};var _PyUnicode_DecodeFSDefault=Module["_PyUnicode_DecodeFSDefault"]=function(){return(_PyUnicode_DecodeFSDefault=Module["_PyUnicode_DecodeFSDefault"]=Module["asm"]["PyUnicode_DecodeFSDefault"]).apply(null,arguments)};var _PyParser_ParseStringFlags=Module["_PyParser_ParseStringFlags"]=function(){return(_PyParser_ParseStringFlags=Module["_PyParser_ParseStringFlags"]=Module["asm"]["PyParser_ParseStringFlags"]).apply(null,arguments)};var _PyParser_ParseStringFlagsFilenameEx=Module["_PyParser_ParseStringFlagsFilenameEx"]=function(){return(_PyParser_ParseStringFlagsFilenameEx=Module["_PyParser_ParseStringFlagsFilenameEx"]=Module["asm"]["PyParser_ParseStringFlagsFilenameEx"]).apply(null,arguments)};var _realloc=Module["_realloc"]=function(){return(_realloc=Module["_realloc"]=Module["asm"]["realloc"]).apply(null,arguments)};var _PyParser_ParseFile=Module["_PyParser_ParseFile"]=function(){return(_PyParser_ParseFile=Module["_PyParser_ParseFile"]=Module["asm"]["PyParser_ParseFile"]).apply(null,arguments)};var _PyParser_ParseFileFlags=Module["_PyParser_ParseFileFlags"]=function(){return(_PyParser_ParseFileFlags=Module["_PyParser_ParseFileFlags"]=Module["asm"]["PyParser_ParseFileFlags"]).apply(null,arguments)};var _PyParser_ParseFileObject=Module["_PyParser_ParseFileObject"]=function(){return(_PyParser_ParseFileObject=Module["_PyParser_ParseFileObject"]=Module["asm"]["PyParser_ParseFileObject"]).apply(null,arguments)};var _PyParser_ParseFileFlagsEx=Module["_PyParser_ParseFileFlagsEx"]=function(){return(_PyParser_ParseFileFlagsEx=Module["_PyParser_ParseFileFlagsEx"]=Module["asm"]["PyParser_ParseFileFlagsEx"]).apply(null,arguments)};var _PyUnicode_Decode=Module["_PyUnicode_Decode"]=function(){return(_PyUnicode_Decode=Module["_PyUnicode_Decode"]=Module["asm"]["PyUnicode_Decode"]).apply(null,arguments)};var _PyUnicode_AsUTF8String=Module["_PyUnicode_AsUTF8String"]=function(){return(_PyUnicode_AsUTF8String=Module["_PyUnicode_AsUTF8String"]=Module["asm"]["PyUnicode_AsUTF8String"]).apply(null,arguments)};var _memcmp=Module["_memcmp"]=function(){return(_memcmp=Module["_memcmp"]=Module["asm"]["memcmp"]).apply(null,arguments)};var __PyUnicode_ScanIdentifier=Module["__PyUnicode_ScanIdentifier"]=function(){return(__PyUnicode_ScanIdentifier=Module["__PyUnicode_ScanIdentifier"]=Module["asm"]["_PyUnicode_ScanIdentifier"]).apply(null,arguments)};var _PyUnicode_Substring=Module["_PyUnicode_Substring"]=function(){return(_PyUnicode_Substring=Module["_PyUnicode_Substring"]=Module["asm"]["PyUnicode_Substring"]).apply(null,arguments)};var __PyUnicode_IsPrintable=Module["__PyUnicode_IsPrintable"]=function(){return(__PyUnicode_IsPrintable=Module["__PyUnicode_IsPrintable"]=Module["asm"]["_PyUnicode_IsPrintable"]).apply(null,arguments)};var _isxdigit=Module["_isxdigit"]=function(){return(_isxdigit=Module["_isxdigit"]=Module["asm"]["isxdigit"]).apply(null,arguments)};var _PyTokenizer_FindEncodingFilename=Module["_PyTokenizer_FindEncodingFilename"]=function(){return(_PyTokenizer_FindEncodingFilename=Module["_PyTokenizer_FindEncodingFilename"]=Module["asm"]["PyTokenizer_FindEncodingFilename"]).apply(null,arguments)};var __Py_dup=Module["__Py_dup"]=function(){return(__Py_dup=Module["__Py_dup"]=Module["asm"]["_Py_dup"]).apply(null,arguments)};var _fdopen=Module["_fdopen"]=function(){return(_fdopen=Module["_fdopen"]=Module["asm"]["fdopen"]).apply(null,arguments)};var _PyTokenizer_FindEncoding=Module["_PyTokenizer_FindEncoding"]=function(){return(_PyTokenizer_FindEncoding=Module["_PyTokenizer_FindEncoding"]=Module["asm"]["PyTokenizer_FindEncoding"]).apply(null,arguments)};var _tolower=Module["_tolower"]=function(){return(_tolower=Module["_tolower"]=Module["asm"]["tolower"]).apply(null,arguments)};var _PyObject_Size=Module["_PyObject_Size"]=function(){return(_PyObject_Size=Module["_PyObject_Size"]=Module["asm"]["PyObject_Size"]).apply(null,arguments)};var _strcspn=Module["_strcspn"]=function(){return(_strcspn=Module["_strcspn"]=Module["asm"]["strcspn"]).apply(null,arguments)};var _PyByteArray_AsString=Module["_PyByteArray_AsString"]=function(){return(_PyByteArray_AsString=Module["_PyByteArray_AsString"]=Module["asm"]["PyByteArray_AsString"]).apply(null,arguments)};var _PyByteArray_FromStringAndSize=Module["_PyByteArray_FromStringAndSize"]=function(){return(_PyByteArray_FromStringAndSize=Module["_PyByteArray_FromStringAndSize"]=Module["asm"]["PyByteArray_FromStringAndSize"]).apply(null,arguments)};var _getc=Module["_getc"]=function(){return(_getc=Module["_getc"]=Module["asm"]["getc"]).apply(null,arguments)};var _ungetc=Module["_ungetc"]=function(){return(_ungetc=Module["_ungetc"]=Module["asm"]["ungetc"]).apply(null,arguments)};var _Py_UniversalNewlineFgets=Module["_Py_UniversalNewlineFgets"]=function(){return(_Py_UniversalNewlineFgets=Module["_Py_UniversalNewlineFgets"]=Module["asm"]["Py_UniversalNewlineFgets"]).apply(null,arguments)};var _ftell=Module["_ftell"]=function(){return(_ftell=Module["_ftell"]=Module["asm"]["ftell"]).apply(null,arguments)};var _lseek=Module["_lseek"]=function(){return(_lseek=Module["_lseek"]=Module["asm"]["lseek"]).apply(null,arguments)};var _PyObject_Type=Module["_PyObject_Type"]=function(){return(_PyObject_Type=Module["_PyObject_Type"]=Module["asm"]["PyObject_Type"]).apply(null,arguments)};var _PyMapping_Size=Module["_PyMapping_Size"]=function(){return(_PyMapping_Size=Module["_PyMapping_Size"]=Module["asm"]["PyMapping_Size"]).apply(null,arguments)};var _PyObject_Length=Module["_PyObject_Length"]=function(){return(_PyObject_Length=Module["_PyObject_Length"]=Module["asm"]["PyObject_Length"]).apply(null,arguments)};var __PyObject_HasLen=Module["__PyObject_HasLen"]=function(){return(__PyObject_HasLen=Module["__PyObject_HasLen"]=Module["asm"]["_PyObject_HasLen"]).apply(null,arguments)};var _PyObject_LengthHint=Module["_PyObject_LengthHint"]=function(){return(_PyObject_LengthHint=Module["_PyObject_LengthHint"]=Module["asm"]["PyObject_LengthHint"]).apply(null,arguments)};var __PyObject_LookupSpecial=Module["__PyObject_LookupSpecial"]=function(){return(__PyObject_LookupSpecial=Module["__PyObject_LookupSpecial"]=Module["asm"]["_PyObject_LookupSpecial"]).apply(null,arguments)};var _PyLong_AsSsize_t=Module["_PyLong_AsSsize_t"]=function(){return(_PyLong_AsSsize_t=Module["_PyLong_AsSsize_t"]=Module["asm"]["PyLong_AsSsize_t"]).apply(null,arguments)};var _Py_GenericAlias=Module["_Py_GenericAlias"]=function(){return(_Py_GenericAlias=Module["_Py_GenericAlias"]=Module["asm"]["Py_GenericAlias"]).apply(null,arguments)};var __PyObject_LookupAttrId=Module["__PyObject_LookupAttrId"]=function(){return(__PyObject_LookupAttrId=Module["__PyObject_LookupAttrId"]=Module["asm"]["_PyObject_LookupAttrId"]).apply(null,arguments)};var _PyNumber_Index=Module["_PyNumber_Index"]=function(){return(_PyNumber_Index=Module["_PyNumber_Index"]=Module["asm"]["PyNumber_Index"]).apply(null,arguments)};var _PyErr_GivenExceptionMatches=Module["_PyErr_GivenExceptionMatches"]=function(){return(_PyErr_GivenExceptionMatches=Module["_PyErr_GivenExceptionMatches"]=Module["asm"]["PyErr_GivenExceptionMatches"]).apply(null,arguments)};var __PyLong_Sign=Module["__PyLong_Sign"]=function(){return(__PyLong_Sign=Module["__PyLong_Sign"]=Module["asm"]["_PyLong_Sign"]).apply(null,arguments)};var _PySequence_SetItem=Module["_PySequence_SetItem"]=function(){return(_PySequence_SetItem=Module["_PySequence_SetItem"]=Module["asm"]["PySequence_SetItem"]).apply(null,arguments)};var _PySequence_DelItem=Module["_PySequence_DelItem"]=function(){return(_PySequence_DelItem=Module["_PySequence_DelItem"]=Module["asm"]["PySequence_DelItem"]).apply(null,arguments)};var _PyObject_DelItemString=Module["_PyObject_DelItemString"]=function(){return(_PyObject_DelItemString=Module["_PyObject_DelItemString"]=Module["asm"]["PyObject_DelItemString"]).apply(null,arguments)};var _PyObject_CheckReadBuffer=Module["_PyObject_CheckReadBuffer"]=function(){return(_PyObject_CheckReadBuffer=Module["_PyObject_CheckReadBuffer"]=Module["asm"]["PyObject_CheckReadBuffer"]).apply(null,arguments)};var _PyObject_AsCharBuffer=Module["_PyObject_AsCharBuffer"]=function(){return(_PyObject_AsCharBuffer=Module["_PyObject_AsCharBuffer"]=Module["asm"]["PyObject_AsCharBuffer"]).apply(null,arguments)};var _PyObject_AsReadBuffer=Module["_PyObject_AsReadBuffer"]=function(){return(_PyObject_AsReadBuffer=Module["_PyObject_AsReadBuffer"]=Module["asm"]["PyObject_AsReadBuffer"]).apply(null,arguments)};var _PyObject_AsWriteBuffer=Module["_PyObject_AsWriteBuffer"]=function(){return(_PyObject_AsWriteBuffer=Module["_PyObject_AsWriteBuffer"]=Module["asm"]["PyObject_AsWriteBuffer"]).apply(null,arguments)};var _PyBuffer_GetPointer=Module["_PyBuffer_GetPointer"]=function(){return(_PyBuffer_GetPointer=Module["_PyBuffer_GetPointer"]=Module["asm"]["PyBuffer_GetPointer"]).apply(null,arguments)};var __Py_add_one_to_index_F=Module["__Py_add_one_to_index_F"]=function(){return(__Py_add_one_to_index_F=Module["__Py_add_one_to_index_F"]=Module["asm"]["_Py_add_one_to_index_F"]).apply(null,arguments)};var __Py_add_one_to_index_C=Module["__Py_add_one_to_index_C"]=function(){return(__Py_add_one_to_index_C=Module["__Py_add_one_to_index_C"]=Module["asm"]["_Py_add_one_to_index_C"]).apply(null,arguments)};var _PyBuffer_SizeFromFormat=Module["_PyBuffer_SizeFromFormat"]=function(){return(_PyBuffer_SizeFromFormat=Module["_PyBuffer_SizeFromFormat"]=Module["asm"]["PyBuffer_SizeFromFormat"]).apply(null,arguments)};var _PyObject_CallFunctionObjArgs=Module["_PyObject_CallFunctionObjArgs"]=function(){return(_PyObject_CallFunctionObjArgs=Module["_PyObject_CallFunctionObjArgs"]=Module["asm"]["PyObject_CallFunctionObjArgs"]).apply(null,arguments)};var _PyBuffer_FromContiguous=Module["_PyBuffer_FromContiguous"]=function(){return(_PyBuffer_FromContiguous=Module["_PyBuffer_FromContiguous"]=Module["asm"]["PyBuffer_FromContiguous"]).apply(null,arguments)};var _PyObject_CopyData=Module["_PyObject_CopyData"]=function(){return(_PyObject_CopyData=Module["_PyObject_CopyData"]=Module["asm"]["PyObject_CopyData"]).apply(null,arguments)};var _PyBuffer_FillInfo=Module["_PyBuffer_FillInfo"]=function(){return(_PyBuffer_FillInfo=Module["_PyBuffer_FillInfo"]=Module["asm"]["PyBuffer_FillInfo"]).apply(null,arguments)};var _PyObject_Format=Module["_PyObject_Format"]=function(){return(_PyObject_Format=Module["_PyObject_Format"]=Module["asm"]["PyObject_Format"]).apply(null,arguments)};var _PyNumber_Check=Module["_PyNumber_Check"]=function(){return(_PyNumber_Check=Module["_PyNumber_Check"]=Module["asm"]["PyNumber_Check"]).apply(null,arguments)};var _PyNumber_Or=Module["_PyNumber_Or"]=function(){return(_PyNumber_Or=Module["_PyNumber_Or"]=Module["asm"]["PyNumber_Or"]).apply(null,arguments)};var _PyNumber_Xor=Module["_PyNumber_Xor"]=function(){return(_PyNumber_Xor=Module["_PyNumber_Xor"]=Module["asm"]["PyNumber_Xor"]).apply(null,arguments)};var _PyNumber_And=Module["_PyNumber_And"]=function(){return(_PyNumber_And=Module["_PyNumber_And"]=Module["asm"]["PyNumber_And"]).apply(null,arguments)};var _PyNumber_Lshift=Module["_PyNumber_Lshift"]=function(){return(_PyNumber_Lshift=Module["_PyNumber_Lshift"]=Module["asm"]["PyNumber_Lshift"]).apply(null,arguments)};var _PyNumber_Rshift=Module["_PyNumber_Rshift"]=function(){return(_PyNumber_Rshift=Module["_PyNumber_Rshift"]=Module["asm"]["PyNumber_Rshift"]).apply(null,arguments)};var _PyNumber_Subtract=Module["_PyNumber_Subtract"]=function(){return(_PyNumber_Subtract=Module["_PyNumber_Subtract"]=Module["asm"]["PyNumber_Subtract"]).apply(null,arguments)};var _PyNumber_Divmod=Module["_PyNumber_Divmod"]=function(){return(_PyNumber_Divmod=Module["_PyNumber_Divmod"]=Module["asm"]["PyNumber_Divmod"]).apply(null,arguments)};var _PyNumber_Add=Module["_PyNumber_Add"]=function(){return(_PyNumber_Add=Module["_PyNumber_Add"]=Module["asm"]["PyNumber_Add"]).apply(null,arguments)};var _PyNumber_Multiply=Module["_PyNumber_Multiply"]=function(){return(_PyNumber_Multiply=Module["_PyNumber_Multiply"]=Module["asm"]["PyNumber_Multiply"]).apply(null,arguments)};var _PyNumber_MatrixMultiply=Module["_PyNumber_MatrixMultiply"]=function(){return(_PyNumber_MatrixMultiply=Module["_PyNumber_MatrixMultiply"]=Module["asm"]["PyNumber_MatrixMultiply"]).apply(null,arguments)};var _PyNumber_FloorDivide=Module["_PyNumber_FloorDivide"]=function(){return(_PyNumber_FloorDivide=Module["_PyNumber_FloorDivide"]=Module["asm"]["PyNumber_FloorDivide"]).apply(null,arguments)};var _PyNumber_TrueDivide=Module["_PyNumber_TrueDivide"]=function(){return(_PyNumber_TrueDivide=Module["_PyNumber_TrueDivide"]=Module["asm"]["PyNumber_TrueDivide"]).apply(null,arguments)};var _PyNumber_Remainder=Module["_PyNumber_Remainder"]=function(){return(_PyNumber_Remainder=Module["_PyNumber_Remainder"]=Module["asm"]["PyNumber_Remainder"]).apply(null,arguments)};var _PyNumber_Power=Module["_PyNumber_Power"]=function(){return(_PyNumber_Power=Module["_PyNumber_Power"]=Module["asm"]["PyNumber_Power"]).apply(null,arguments)};var _PyNumber_InPlaceOr=Module["_PyNumber_InPlaceOr"]=function(){return(_PyNumber_InPlaceOr=Module["_PyNumber_InPlaceOr"]=Module["asm"]["PyNumber_InPlaceOr"]).apply(null,arguments)};var _PyNumber_InPlaceXor=Module["_PyNumber_InPlaceXor"]=function(){return(_PyNumber_InPlaceXor=Module["_PyNumber_InPlaceXor"]=Module["asm"]["PyNumber_InPlaceXor"]).apply(null,arguments)};var _PyNumber_InPlaceAnd=Module["_PyNumber_InPlaceAnd"]=function(){return(_PyNumber_InPlaceAnd=Module["_PyNumber_InPlaceAnd"]=Module["asm"]["PyNumber_InPlaceAnd"]).apply(null,arguments)};var _PyNumber_InPlaceLshift=Module["_PyNumber_InPlaceLshift"]=function(){return(_PyNumber_InPlaceLshift=Module["_PyNumber_InPlaceLshift"]=Module["asm"]["PyNumber_InPlaceLshift"]).apply(null,arguments)};var _PyNumber_InPlaceRshift=Module["_PyNumber_InPlaceRshift"]=function(){return(_PyNumber_InPlaceRshift=Module["_PyNumber_InPlaceRshift"]=Module["asm"]["PyNumber_InPlaceRshift"]).apply(null,arguments)};var _PyNumber_InPlaceSubtract=Module["_PyNumber_InPlaceSubtract"]=function(){return(_PyNumber_InPlaceSubtract=Module["_PyNumber_InPlaceSubtract"]=Module["asm"]["PyNumber_InPlaceSubtract"]).apply(null,arguments)};var _PyNumber_InMatrixMultiply=Module["_PyNumber_InMatrixMultiply"]=function(){return(_PyNumber_InMatrixMultiply=Module["_PyNumber_InMatrixMultiply"]=Module["asm"]["PyNumber_InMatrixMultiply"]).apply(null,arguments)};var _PyNumber_InPlaceFloorDivide=Module["_PyNumber_InPlaceFloorDivide"]=function(){return(_PyNumber_InPlaceFloorDivide=Module["_PyNumber_InPlaceFloorDivide"]=Module["asm"]["PyNumber_InPlaceFloorDivide"]).apply(null,arguments)};var _PyNumber_InPlaceTrueDivide=Module["_PyNumber_InPlaceTrueDivide"]=function(){return(_PyNumber_InPlaceTrueDivide=Module["_PyNumber_InPlaceTrueDivide"]=Module["asm"]["PyNumber_InPlaceTrueDivide"]).apply(null,arguments)};var _PyNumber_InPlaceAdd=Module["_PyNumber_InPlaceAdd"]=function(){return(_PyNumber_InPlaceAdd=Module["_PyNumber_InPlaceAdd"]=Module["asm"]["PyNumber_InPlaceAdd"]).apply(null,arguments)};var _PyNumber_InPlaceMultiply=Module["_PyNumber_InPlaceMultiply"]=function(){return(_PyNumber_InPlaceMultiply=Module["_PyNumber_InPlaceMultiply"]=Module["asm"]["PyNumber_InPlaceMultiply"]).apply(null,arguments)};var _PyNumber_InPlaceMatrixMultiply=Module["_PyNumber_InPlaceMatrixMultiply"]=function(){return(_PyNumber_InPlaceMatrixMultiply=Module["_PyNumber_InPlaceMatrixMultiply"]=Module["asm"]["PyNumber_InPlaceMatrixMultiply"]).apply(null,arguments)};var _PyNumber_InPlaceRemainder=Module["_PyNumber_InPlaceRemainder"]=function(){return(_PyNumber_InPlaceRemainder=Module["_PyNumber_InPlaceRemainder"]=Module["asm"]["PyNumber_InPlaceRemainder"]).apply(null,arguments)};var _PyNumber_InPlacePower=Module["_PyNumber_InPlacePower"]=function(){return(_PyNumber_InPlacePower=Module["_PyNumber_InPlacePower"]=Module["asm"]["PyNumber_InPlacePower"]).apply(null,arguments)};var _PyNumber_Negative=Module["_PyNumber_Negative"]=function(){return(_PyNumber_Negative=Module["_PyNumber_Negative"]=Module["asm"]["PyNumber_Negative"]).apply(null,arguments)};var _PyNumber_Positive=Module["_PyNumber_Positive"]=function(){return(_PyNumber_Positive=Module["_PyNumber_Positive"]=Module["asm"]["PyNumber_Positive"]).apply(null,arguments)};var _PyNumber_Invert=Module["_PyNumber_Invert"]=function(){return(_PyNumber_Invert=Module["_PyNumber_Invert"]=Module["asm"]["PyNumber_Invert"]).apply(null,arguments)};var _PyNumber_Absolute=Module["_PyNumber_Absolute"]=function(){return(_PyNumber_Absolute=Module["_PyNumber_Absolute"]=Module["asm"]["PyNumber_Absolute"]).apply(null,arguments)};var _PyErr_WarnFormat=Module["_PyErr_WarnFormat"]=function(){return(_PyErr_WarnFormat=Module["_PyErr_WarnFormat"]=Module["asm"]["PyErr_WarnFormat"]).apply(null,arguments)};var _PyNumber_Long=Module["_PyNumber_Long"]=function(){return(_PyNumber_Long=Module["_PyNumber_Long"]=Module["asm"]["PyNumber_Long"]).apply(null,arguments)};var __PyLong_FromNbInt=Module["__PyLong_FromNbInt"]=function(){return(__PyLong_FromNbInt=Module["__PyLong_FromNbInt"]=Module["asm"]["_PyLong_FromNbInt"]).apply(null,arguments)};var __PyLong_Copy=Module["__PyLong_Copy"]=function(){return(__PyLong_Copy=Module["__PyLong_Copy"]=Module["asm"]["_PyLong_Copy"]).apply(null,arguments)};var __PyLong_FromNbIndexOrNbInt=Module["__PyLong_FromNbIndexOrNbInt"]=function(){return(__PyLong_FromNbIndexOrNbInt=Module["__PyLong_FromNbIndexOrNbInt"]=Module["asm"]["_PyLong_FromNbIndexOrNbInt"]).apply(null,arguments)};var _PyLong_FromUnicodeObject=Module["_PyLong_FromUnicodeObject"]=function(){return(_PyLong_FromUnicodeObject=Module["_PyLong_FromUnicodeObject"]=Module["asm"]["PyLong_FromUnicodeObject"]).apply(null,arguments)};var __PyLong_FromBytes=Module["__PyLong_FromBytes"]=function(){return(__PyLong_FromBytes=Module["__PyLong_FromBytes"]=Module["asm"]["_PyLong_FromBytes"]).apply(null,arguments)};var _PyNumber_Float=Module["_PyNumber_Float"]=function(){return(_PyNumber_Float=Module["_PyNumber_Float"]=Module["asm"]["PyNumber_Float"]).apply(null,arguments)};var _PyLong_AsDouble=Module["_PyLong_AsDouble"]=function(){return(_PyLong_AsDouble=Module["_PyLong_AsDouble"]=Module["asm"]["PyLong_AsDouble"]).apply(null,arguments)};var _PyFloat_FromString=Module["_PyFloat_FromString"]=function(){return(_PyFloat_FromString=Module["_PyFloat_FromString"]=Module["asm"]["PyFloat_FromString"]).apply(null,arguments)};var _PyNumber_ToBase=Module["_PyNumber_ToBase"]=function(){return(_PyNumber_ToBase=Module["_PyNumber_ToBase"]=Module["asm"]["PyNumber_ToBase"]).apply(null,arguments)};var __PyLong_Format=Module["__PyLong_Format"]=function(){return(__PyLong_Format=Module["__PyLong_Format"]=Module["asm"]["_PyLong_Format"]).apply(null,arguments)};var _PySequence_Length=Module["_PySequence_Length"]=function(){return(_PySequence_Length=Module["_PySequence_Length"]=Module["asm"]["PySequence_Length"]).apply(null,arguments)};var _PySequence_Concat=Module["_PySequence_Concat"]=function(){return(_PySequence_Concat=Module["_PySequence_Concat"]=Module["asm"]["PySequence_Concat"]).apply(null,arguments)};var _PySequence_Repeat=Module["_PySequence_Repeat"]=function(){return(_PySequence_Repeat=Module["_PySequence_Repeat"]=Module["asm"]["PySequence_Repeat"]).apply(null,arguments)};var _PyLong_FromSsize_t=Module["_PyLong_FromSsize_t"]=function(){return(_PyLong_FromSsize_t=Module["_PyLong_FromSsize_t"]=Module["asm"]["PyLong_FromSsize_t"]).apply(null,arguments)};var _PySequence_InPlaceConcat=Module["_PySequence_InPlaceConcat"]=function(){return(_PySequence_InPlaceConcat=Module["_PySequence_InPlaceConcat"]=Module["asm"]["PySequence_InPlaceConcat"]).apply(null,arguments)};var _PySequence_InPlaceRepeat=Module["_PySequence_InPlaceRepeat"]=function(){return(_PySequence_InPlaceRepeat=Module["_PySequence_InPlaceRepeat"]=Module["asm"]["PySequence_InPlaceRepeat"]).apply(null,arguments)};var _PySequence_GetSlice=Module["_PySequence_GetSlice"]=function(){return(_PySequence_GetSlice=Module["_PySequence_GetSlice"]=Module["asm"]["PySequence_GetSlice"]).apply(null,arguments)};var __PySlice_FromIndices=Module["__PySlice_FromIndices"]=function(){return(__PySlice_FromIndices=Module["__PySlice_FromIndices"]=Module["asm"]["_PySlice_FromIndices"]).apply(null,arguments)};var _PySequence_SetSlice=Module["_PySequence_SetSlice"]=function(){return(_PySequence_SetSlice=Module["_PySequence_SetSlice"]=Module["asm"]["PySequence_SetSlice"]).apply(null,arguments)};var _PySequence_DelSlice=Module["_PySequence_DelSlice"]=function(){return(_PySequence_DelSlice=Module["_PySequence_DelSlice"]=Module["asm"]["PySequence_DelSlice"]).apply(null,arguments)};var _PySequence_Tuple=Module["_PySequence_Tuple"]=function(){return(_PySequence_Tuple=Module["_PySequence_Tuple"]=Module["asm"]["PySequence_Tuple"]).apply(null,arguments)};var _PyList_AsTuple=Module["_PyList_AsTuple"]=function(){return(_PyList_AsTuple=Module["_PyList_AsTuple"]=Module["asm"]["PyList_AsTuple"]).apply(null,arguments)};var __PyTuple_Resize=Module["__PyTuple_Resize"]=function(){return(__PyTuple_Resize=Module["__PyTuple_Resize"]=Module["asm"]["_PyTuple_Resize"]).apply(null,arguments)};var _PySeqIter_New=Module["_PySeqIter_New"]=function(){return(_PySeqIter_New=Module["_PySeqIter_New"]=Module["asm"]["PySeqIter_New"]).apply(null,arguments)};var _PySequence_List=Module["_PySequence_List"]=function(){return(_PySequence_List=Module["_PySequence_List"]=Module["asm"]["PySequence_List"]).apply(null,arguments)};var _PySequence_Fast=Module["_PySequence_Fast"]=function(){return(_PySequence_Fast=Module["_PySequence_Fast"]=Module["asm"]["PySequence_Fast"]).apply(null,arguments)};var __PySequence_IterSearch=Module["__PySequence_IterSearch"]=function(){return(__PySequence_IterSearch=Module["__PySequence_IterSearch"]=Module["asm"]["_PySequence_IterSearch"]).apply(null,arguments)};var _PyObject_RichCompareBool=Module["_PyObject_RichCompareBool"]=function(){return(_PyObject_RichCompareBool=Module["_PyObject_RichCompareBool"]=Module["asm"]["PyObject_RichCompareBool"]).apply(null,arguments)};var _PySequence_Count=Module["_PySequence_Count"]=function(){return(_PySequence_Count=Module["_PySequence_Count"]=Module["asm"]["PySequence_Count"]).apply(null,arguments)};var _PySequence_In=Module["_PySequence_In"]=function(){return(_PySequence_In=Module["_PySequence_In"]=Module["asm"]["PySequence_In"]).apply(null,arguments)};var _PySequence_Index=Module["_PySequence_Index"]=function(){return(_PySequence_Index=Module["_PySequence_Index"]=Module["asm"]["PySequence_Index"]).apply(null,arguments)};var _PyMapping_Check=Module["_PyMapping_Check"]=function(){return(_PyMapping_Check=Module["_PyMapping_Check"]=Module["asm"]["PyMapping_Check"]).apply(null,arguments)};var _PyMapping_Length=Module["_PyMapping_Length"]=function(){return(_PyMapping_Length=Module["_PyMapping_Length"]=Module["asm"]["PyMapping_Length"]).apply(null,arguments)};var _PyMapping_GetItemString=Module["_PyMapping_GetItemString"]=function(){return(_PyMapping_GetItemString=Module["_PyMapping_GetItemString"]=Module["asm"]["PyMapping_GetItemString"]).apply(null,arguments)};var _PyMapping_SetItemString=Module["_PyMapping_SetItemString"]=function(){return(_PyMapping_SetItemString=Module["_PyMapping_SetItemString"]=Module["asm"]["PyMapping_SetItemString"]).apply(null,arguments)};var _PyMapping_HasKeyString=Module["_PyMapping_HasKeyString"]=function(){return(_PyMapping_HasKeyString=Module["_PyMapping_HasKeyString"]=Module["asm"]["PyMapping_HasKeyString"]).apply(null,arguments)};var _PyMapping_HasKey=Module["_PyMapping_HasKey"]=function(){return(_PyMapping_HasKey=Module["_PyMapping_HasKey"]=Module["asm"]["PyMapping_HasKey"]).apply(null,arguments)};var _PyMapping_Keys=Module["_PyMapping_Keys"]=function(){return(_PyMapping_Keys=Module["_PyMapping_Keys"]=Module["asm"]["PyMapping_Keys"]).apply(null,arguments)};var _PyDict_Keys=Module["_PyDict_Keys"]=function(){return(_PyDict_Keys=Module["_PyDict_Keys"]=Module["asm"]["PyDict_Keys"]).apply(null,arguments)};var _PyMapping_Items=Module["_PyMapping_Items"]=function(){return(_PyMapping_Items=Module["_PyMapping_Items"]=Module["asm"]["PyMapping_Items"]).apply(null,arguments)};var _PyDict_Items=Module["_PyDict_Items"]=function(){return(_PyDict_Items=Module["_PyDict_Items"]=Module["asm"]["PyDict_Items"]).apply(null,arguments)};var _PyMapping_Values=Module["_PyMapping_Values"]=function(){return(_PyMapping_Values=Module["_PyMapping_Values"]=Module["asm"]["PyMapping_Values"]).apply(null,arguments)};var _PyDict_Values=Module["_PyDict_Values"]=function(){return(_PyDict_Values=Module["_PyDict_Values"]=Module["asm"]["PyDict_Values"]).apply(null,arguments)};var _PyObject_IsInstance=Module["_PyObject_IsInstance"]=function(){return(_PyObject_IsInstance=Module["_PyObject_IsInstance"]=Module["asm"]["PyObject_IsInstance"]).apply(null,arguments)};var __Py_CheckRecursiveCall=Module["__Py_CheckRecursiveCall"]=function(){return(__Py_CheckRecursiveCall=Module["__Py_CheckRecursiveCall"]=Module["asm"]["_Py_CheckRecursiveCall"]).apply(null,arguments)};var _PyObject_IsTrue=Module["_PyObject_IsTrue"]=function(){return(_PyObject_IsTrue=Module["_PyObject_IsTrue"]=Module["asm"]["PyObject_IsTrue"]).apply(null,arguments)};var _PyObject_IsSubclass=Module["_PyObject_IsSubclass"]=function(){return(_PyObject_IsSubclass=Module["_PyObject_IsSubclass"]=Module["asm"]["PyObject_IsSubclass"]).apply(null,arguments)};var __PyObject_RealIsInstance=Module["__PyObject_RealIsInstance"]=function(){return(__PyObject_RealIsInstance=Module["__PyObject_RealIsInstance"]=Module["asm"]["_PyObject_RealIsInstance"]).apply(null,arguments)};var __PyObject_RealIsSubclass=Module["__PyObject_RealIsSubclass"]=function(){return(__PyObject_RealIsSubclass=Module["__PyObject_RealIsSubclass"]=Module["asm"]["_PyObject_RealIsSubclass"]).apply(null,arguments)};var _PyIter_Check=Module["_PyIter_Check"]=function(){return(_PyIter_Check=Module["_PyIter_Check"]=Module["asm"]["PyIter_Check"]).apply(null,arguments)};var __PySequence_BytesToCharpArray=Module["__PySequence_BytesToCharpArray"]=function(){return(__PySequence_BytesToCharpArray=Module["__PySequence_BytesToCharpArray"]=Module["asm"]["_PySequence_BytesToCharpArray"]).apply(null,arguments)};var _PyBytes_AsStringAndSize=Module["_PyBytes_AsStringAndSize"]=function(){return(_PyBytes_AsStringAndSize=Module["_PyBytes_AsStringAndSize"]=Module["asm"]["PyBytes_AsStringAndSize"]).apply(null,arguments)};var __Py_FreeCharPArray=Module["__Py_FreeCharPArray"]=function(){return(__Py_FreeCharPArray=Module["__Py_FreeCharPArray"]=Module["asm"]["_Py_FreeCharPArray"]).apply(null,arguments)};var __PyAccu_Init=Module["__PyAccu_Init"]=function(){return(__PyAccu_Init=Module["__PyAccu_Init"]=Module["asm"]["_PyAccu_Init"]).apply(null,arguments)};var __PyAccu_Accumulate=Module["__PyAccu_Accumulate"]=function(){return(__PyAccu_Accumulate=Module["__PyAccu_Accumulate"]=Module["asm"]["_PyAccu_Accumulate"]).apply(null,arguments)};var _PyList_Append=Module["_PyList_Append"]=function(){return(_PyList_Append=Module["_PyList_Append"]=Module["asm"]["PyList_Append"]).apply(null,arguments)};var _PyList_SetSlice=Module["_PyList_SetSlice"]=function(){return(_PyList_SetSlice=Module["_PyList_SetSlice"]=Module["asm"]["PyList_SetSlice"]).apply(null,arguments)};var __PyAccu_FinishAsList=Module["__PyAccu_FinishAsList"]=function(){return(__PyAccu_FinishAsList=Module["__PyAccu_FinishAsList"]=Module["asm"]["_PyAccu_FinishAsList"]).apply(null,arguments)};var __PyAccu_Finish=Module["__PyAccu_Finish"]=function(){return(__PyAccu_Finish=Module["__PyAccu_Finish"]=Module["asm"]["_PyAccu_Finish"]).apply(null,arguments)};var __PyAccu_Destroy=Module["__PyAccu_Destroy"]=function(){return(__PyAccu_Destroy=Module["__PyAccu_Destroy"]=Module["asm"]["_PyAccu_Destroy"]).apply(null,arguments)};var _PyBool_FromLong=Module["_PyBool_FromLong"]=function(){return(_PyBool_FromLong=Module["_PyBool_FromLong"]=Module["asm"]["PyBool_FromLong"]).apply(null,arguments)};var __PyArg_NoKeywords=Module["__PyArg_NoKeywords"]=function(){return(__PyArg_NoKeywords=Module["__PyArg_NoKeywords"]=Module["asm"]["_PyArg_NoKeywords"]).apply(null,arguments)};var __Py_bytes_isspace=Module["__Py_bytes_isspace"]=function(){return(__Py_bytes_isspace=Module["__Py_bytes_isspace"]=Module["asm"]["_Py_bytes_isspace"]).apply(null,arguments)};var __Py_bytes_isalpha=Module["__Py_bytes_isalpha"]=function(){return(__Py_bytes_isalpha=Module["__Py_bytes_isalpha"]=Module["asm"]["_Py_bytes_isalpha"]).apply(null,arguments)};var __Py_bytes_isalnum=Module["__Py_bytes_isalnum"]=function(){return(__Py_bytes_isalnum=Module["__Py_bytes_isalnum"]=Module["asm"]["_Py_bytes_isalnum"]).apply(null,arguments)};var __Py_bytes_isascii=Module["__Py_bytes_isascii"]=function(){return(__Py_bytes_isascii=Module["__Py_bytes_isascii"]=Module["asm"]["_Py_bytes_isascii"]).apply(null,arguments)};var __Py_bytes_isdigit=Module["__Py_bytes_isdigit"]=function(){return(__Py_bytes_isdigit=Module["__Py_bytes_isdigit"]=Module["asm"]["_Py_bytes_isdigit"]).apply(null,arguments)};var __Py_bytes_islower=Module["__Py_bytes_islower"]=function(){return(__Py_bytes_islower=Module["__Py_bytes_islower"]=Module["asm"]["_Py_bytes_islower"]).apply(null,arguments)};var __Py_bytes_isupper=Module["__Py_bytes_isupper"]=function(){return(__Py_bytes_isupper=Module["__Py_bytes_isupper"]=Module["asm"]["_Py_bytes_isupper"]).apply(null,arguments)};var __Py_bytes_istitle=Module["__Py_bytes_istitle"]=function(){return(__Py_bytes_istitle=Module["__Py_bytes_istitle"]=Module["asm"]["_Py_bytes_istitle"]).apply(null,arguments)};var __Py_bytes_lower=Module["__Py_bytes_lower"]=function(){return(__Py_bytes_lower=Module["__Py_bytes_lower"]=Module["asm"]["_Py_bytes_lower"]).apply(null,arguments)};var __Py_bytes_upper=Module["__Py_bytes_upper"]=function(){return(__Py_bytes_upper=Module["__Py_bytes_upper"]=Module["asm"]["_Py_bytes_upper"]).apply(null,arguments)};var __Py_bytes_title=Module["__Py_bytes_title"]=function(){return(__Py_bytes_title=Module["__Py_bytes_title"]=Module["asm"]["_Py_bytes_title"]).apply(null,arguments)};var __Py_bytes_capitalize=Module["__Py_bytes_capitalize"]=function(){return(__Py_bytes_capitalize=Module["__Py_bytes_capitalize"]=Module["asm"]["_Py_bytes_capitalize"]).apply(null,arguments)};var __Py_bytes_swapcase=Module["__Py_bytes_swapcase"]=function(){return(__Py_bytes_swapcase=Module["__Py_bytes_swapcase"]=Module["asm"]["_Py_bytes_swapcase"]).apply(null,arguments)};var __Py_bytes_maketrans=Module["__Py_bytes_maketrans"]=function(){return(__Py_bytes_maketrans=Module["__Py_bytes_maketrans"]=Module["asm"]["_Py_bytes_maketrans"]).apply(null,arguments)};var __Py_bytes_find=Module["__Py_bytes_find"]=function(){return(__Py_bytes_find=Module["__Py_bytes_find"]=Module["asm"]["_Py_bytes_find"]).apply(null,arguments)};var _memrchr=Module["_memrchr"]=function(){return(_memrchr=Module["_memrchr"]=Module["asm"]["memrchr"]).apply(null,arguments)};var _memchr=Module["_memchr"]=function(){return(_memchr=Module["_memchr"]=Module["asm"]["memchr"]).apply(null,arguments)};var __Py_bytes_index=Module["__Py_bytes_index"]=function(){return(__Py_bytes_index=Module["__Py_bytes_index"]=Module["asm"]["_Py_bytes_index"]).apply(null,arguments)};var __Py_bytes_rfind=Module["__Py_bytes_rfind"]=function(){return(__Py_bytes_rfind=Module["__Py_bytes_rfind"]=Module["asm"]["_Py_bytes_rfind"]).apply(null,arguments)};var __Py_bytes_rindex=Module["__Py_bytes_rindex"]=function(){return(__Py_bytes_rindex=Module["__Py_bytes_rindex"]=Module["asm"]["_Py_bytes_rindex"]).apply(null,arguments)};var __Py_bytes_count=Module["__Py_bytes_count"]=function(){return(__Py_bytes_count=Module["__Py_bytes_count"]=Module["asm"]["_Py_bytes_count"]).apply(null,arguments)};var __Py_bytes_contains=Module["__Py_bytes_contains"]=function(){return(__Py_bytes_contains=Module["__Py_bytes_contains"]=Module["asm"]["_Py_bytes_contains"]).apply(null,arguments)};var __Py_bytes_startswith=Module["__Py_bytes_startswith"]=function(){return(__Py_bytes_startswith=Module["__Py_bytes_startswith"]=Module["asm"]["_Py_bytes_startswith"]).apply(null,arguments)};var __Py_bytes_endswith=Module["__Py_bytes_endswith"]=function(){return(__Py_bytes_endswith=Module["__Py_bytes_endswith"]=Module["asm"]["_Py_bytes_endswith"]).apply(null,arguments)};var __PyArg_ParseTuple_SizeT=Module["__PyArg_ParseTuple_SizeT"]=function(){return(__PyArg_ParseTuple_SizeT=Module["__PyArg_ParseTuple_SizeT"]=Module["asm"]["_PyArg_ParseTuple_SizeT"]).apply(null,arguments)};var __PyEval_SliceIndex=Module["__PyEval_SliceIndex"]=function(){return(__PyEval_SliceIndex=Module["__PyEval_SliceIndex"]=Module["asm"]["_PyEval_SliceIndex"]).apply(null,arguments)};var _PyByteArray_FromObject=Module["_PyByteArray_FromObject"]=function(){return(_PyByteArray_FromObject=Module["_PyByteArray_FromObject"]=Module["asm"]["PyByteArray_FromObject"]).apply(null,arguments)};var __PyObject_New=Module["__PyObject_New"]=function(){return(__PyObject_New=Module["__PyObject_New"]=Module["asm"]["_PyObject_New"]).apply(null,arguments)};var _PyByteArray_Size=Module["_PyByteArray_Size"]=function(){return(_PyByteArray_Size=Module["_PyByteArray_Size"]=Module["asm"]["PyByteArray_Size"]).apply(null,arguments)};var _PyByteArray_Resize=Module["_PyByteArray_Resize"]=function(){return(_PyByteArray_Resize=Module["_PyByteArray_Resize"]=Module["asm"]["PyByteArray_Resize"]).apply(null,arguments)};var _PyByteArray_Concat=Module["_PyByteArray_Concat"]=function(){return(_PyByteArray_Concat=Module["_PyByteArray_Concat"]=Module["asm"]["PyByteArray_Concat"]).apply(null,arguments)};var __Py_GetConfig=Module["__Py_GetConfig"]=function(){return(__Py_GetConfig=Module["__Py_GetConfig"]=Module["asm"]["_Py_GetConfig"]).apply(null,arguments)};var _PyErr_WarnEx=Module["_PyErr_WarnEx"]=function(){return(_PyErr_WarnEx=Module["_PyErr_WarnEx"]=Module["asm"]["PyErr_WarnEx"]).apply(null,arguments)};var __PyObject_GC_New=Module["__PyObject_GC_New"]=function(){return(__PyObject_GC_New=Module["__PyObject_GC_New"]=Module["asm"]["_PyObject_GC_New"]).apply(null,arguments)};var _PyUnicode_AsEncodedString=Module["_PyUnicode_AsEncodedString"]=function(){return(_PyUnicode_AsEncodedString=Module["_PyUnicode_AsEncodedString"]=Module["asm"]["PyUnicode_AsEncodedString"]).apply(null,arguments)};var _PyBuffer_ToContiguous=Module["_PyBuffer_ToContiguous"]=function(){return(_PyBuffer_ToContiguous=Module["_PyBuffer_ToContiguous"]=Module["asm"]["PyBuffer_ToContiguous"]).apply(null,arguments)};var _PyObject_GC_Del=Module["_PyObject_GC_Del"]=function(){return(_PyObject_GC_Del=Module["_PyObject_GC_Del"]=Module["asm"]["PyObject_GC_Del"]).apply(null,arguments)};var __PyBytes_FormatEx=Module["__PyBytes_FormatEx"]=function(){return(__PyBytes_FormatEx=Module["__PyBytes_FormatEx"]=Module["asm"]["_PyBytes_FormatEx"]).apply(null,arguments)};var _memmove=Module["_memmove"]=function(){return(_memmove=Module["_memmove"]=Module["asm"]["memmove"]).apply(null,arguments)};var _PySlice_Unpack=Module["_PySlice_Unpack"]=function(){return(_PySlice_Unpack=Module["_PySlice_Unpack"]=Module["asm"]["PySlice_Unpack"]).apply(null,arguments)};var _PySlice_AdjustIndices=Module["_PySlice_AdjustIndices"]=function(){return(_PySlice_AdjustIndices=Module["_PySlice_AdjustIndices"]=Module["asm"]["PySlice_AdjustIndices"]).apply(null,arguments)};var _PyUnicode_DecodeLatin1=Module["_PyUnicode_DecodeLatin1"]=function(){return(_PyUnicode_DecodeLatin1=Module["_PyUnicode_DecodeLatin1"]=Module["asm"]["PyUnicode_DecodeLatin1"]).apply(null,arguments)};var __PyArg_CheckPositional=Module["__PyArg_CheckPositional"]=function(){return(__PyArg_CheckPositional=Module["__PyArg_CheckPositional"]=Module["asm"]["_PyArg_CheckPositional"]).apply(null,arguments)};var __PyLong_AsInt=Module["__PyLong_AsInt"]=function(){return(__PyLong_AsInt=Module["__PyLong_AsInt"]=Module["asm"]["_PyLong_AsInt"]).apply(null,arguments)};var __PyArg_BadArgument=Module["__PyArg_BadArgument"]=function(){return(__PyArg_BadArgument=Module["__PyArg_BadArgument"]=Module["asm"]["_PyArg_BadArgument"]).apply(null,arguments)};var __PyArg_UnpackKeywords=Module["__PyArg_UnpackKeywords"]=function(){return(__PyArg_UnpackKeywords=Module["__PyArg_UnpackKeywords"]=Module["asm"]["_PyArg_UnpackKeywords"]).apply(null,arguments)};var _PyUnicode_GetDefaultEncoding=Module["_PyUnicode_GetDefaultEncoding"]=function(){return(_PyUnicode_GetDefaultEncoding=Module["_PyUnicode_GetDefaultEncoding"]=Module["asm"]["PyUnicode_GetDefaultEncoding"]).apply(null,arguments)};var _PyUnicode_FromEncodedObject=Module["_PyUnicode_FromEncodedObject"]=function(){return(_PyUnicode_FromEncodedObject=Module["_PyUnicode_FromEncodedObject"]=Module["asm"]["PyUnicode_FromEncodedObject"]).apply(null,arguments)};var __PyBytes_FromHex=Module["__PyBytes_FromHex"]=function(){return(__PyBytes_FromHex=Module["__PyBytes_FromHex"]=Module["asm"]["_PyBytes_FromHex"]).apply(null,arguments)};var __Py_strhex_with_sep=Module["__Py_strhex_with_sep"]=function(){return(__Py_strhex_with_sep=Module["__Py_strhex_with_sep"]=Module["asm"]["_Py_strhex_with_sep"]).apply(null,arguments)};var _PyList_Reverse=Module["_PyList_Reverse"]=function(){return(_PyList_Reverse=Module["_PyList_Reverse"]=Module["asm"]["PyList_Reverse"]).apply(null,arguments)};var __PyEval_GetBuiltinId=Module["__PyEval_GetBuiltinId"]=function(){return(__PyEval_GetBuiltinId=Module["__PyEval_GetBuiltinId"]=Module["asm"]["_PyEval_GetBuiltinId"]).apply(null,arguments)};var _PyType_GenericAlloc=Module["_PyType_GenericAlloc"]=function(){return(_PyType_GenericAlloc=Module["_PyType_GenericAlloc"]=Module["asm"]["PyType_GenericAlloc"]).apply(null,arguments)};var _PyType_GenericNew=Module["_PyType_GenericNew"]=function(){return(_PyType_GenericNew=Module["_PyType_GenericNew"]=Module["asm"]["PyType_GenericNew"]).apply(null,arguments)};var _PyType_GetFlags=Module["_PyType_GetFlags"]=function(){return(_PyType_GetFlags=Module["_PyType_GetFlags"]=Module["asm"]["PyType_GetFlags"]).apply(null,arguments)};var __Py_NewReference=Module["__Py_NewReference"]=function(){return(__Py_NewReference=Module["__Py_NewReference"]=Module["asm"]["_Py_NewReference"]).apply(null,arguments)};var _PyBytes_FromString=Module["_PyBytes_FromString"]=function(){return(_PyBytes_FromString=Module["_PyBytes_FromString"]=Module["asm"]["PyBytes_FromString"]).apply(null,arguments)};var _PyBytes_FromFormatV=Module["_PyBytes_FromFormatV"]=function(){return(_PyBytes_FromFormatV=Module["_PyBytes_FromFormatV"]=Module["asm"]["PyBytes_FromFormatV"]).apply(null,arguments)};var __PyBytesWriter_Resize=Module["__PyBytesWriter_Resize"]=function(){return(__PyBytesWriter_Resize=Module["__PyBytesWriter_Resize"]=Module["asm"]["_PyBytesWriter_Resize"]).apply(null,arguments)};var __PyBytesWriter_Finish=Module["__PyBytesWriter_Finish"]=function(){return(__PyBytesWriter_Finish=Module["__PyBytesWriter_Finish"]=Module["asm"]["_PyBytesWriter_Finish"]).apply(null,arguments)};var __PyBytesWriter_Init=Module["__PyBytesWriter_Init"]=function(){return(__PyBytesWriter_Init=Module["__PyBytesWriter_Init"]=Module["asm"]["_PyBytesWriter_Init"]).apply(null,arguments)};var __PyBytesWriter_Alloc=Module["__PyBytesWriter_Alloc"]=function(){return(__PyBytesWriter_Alloc=Module["__PyBytesWriter_Alloc"]=Module["asm"]["_PyBytesWriter_Alloc"]).apply(null,arguments)};var __PyBytesWriter_WriteBytes=Module["__PyBytesWriter_WriteBytes"]=function(){return(__PyBytesWriter_WriteBytes=Module["__PyBytesWriter_WriteBytes"]=Module["asm"]["_PyBytesWriter_WriteBytes"]).apply(null,arguments)};var __PyBytes_Resize=Module["__PyBytes_Resize"]=function(){return(__PyBytes_Resize=Module["__PyBytes_Resize"]=Module["asm"]["_PyBytes_Resize"]).apply(null,arguments)};var __PyBytesWriter_Dealloc=Module["__PyBytesWriter_Dealloc"]=function(){return(__PyBytesWriter_Dealloc=Module["__PyBytesWriter_Dealloc"]=Module["asm"]["_PyBytesWriter_Dealloc"]).apply(null,arguments)};var _PyBytes_FromFormat=Module["_PyBytes_FromFormat"]=function(){return(_PyBytes_FromFormat=Module["_PyBytes_FromFormat"]=Module["asm"]["PyBytes_FromFormat"]).apply(null,arguments)};var _PyObject_ASCII=Module["_PyObject_ASCII"]=function(){return(_PyObject_ASCII=Module["_PyObject_ASCII"]=Module["asm"]["PyObject_ASCII"]).apply(null,arguments)};var __PyLong_FormatBytesWriter=Module["__PyLong_FormatBytesWriter"]=function(){return(__PyLong_FormatBytesWriter=Module["__PyLong_FormatBytesWriter"]=Module["asm"]["_PyLong_FormatBytesWriter"]).apply(null,arguments)};var __PyUnicode_FormatLong=Module["__PyUnicode_FormatLong"]=function(){return(__PyUnicode_FormatLong=Module["__PyUnicode_FormatLong"]=Module["asm"]["_PyUnicode_FormatLong"]).apply(null,arguments)};var _PyOS_double_to_string=Module["_PyOS_double_to_string"]=function(){return(_PyOS_double_to_string=Module["_PyOS_double_to_string"]=Module["asm"]["PyOS_double_to_string"]).apply(null,arguments)};var __PyBytesWriter_Prepare=Module["__PyBytesWriter_Prepare"]=function(){return(__PyBytesWriter_Prepare=Module["__PyBytesWriter_Prepare"]=Module["asm"]["_PyBytesWriter_Prepare"]).apply(null,arguments)};var _PyBytes_DecodeEscape=Module["_PyBytes_DecodeEscape"]=function(){return(_PyBytes_DecodeEscape=Module["_PyBytes_DecodeEscape"]=Module["asm"]["PyBytes_DecodeEscape"]).apply(null,arguments)};var _PyBytes_Size=Module["_PyBytes_Size"]=function(){return(_PyBytes_Size=Module["_PyBytes_Size"]=Module["asm"]["PyBytes_Size"]).apply(null,arguments)};var _PyBytes_Repr=Module["_PyBytes_Repr"]=function(){return(_PyBytes_Repr=Module["_PyBytes_Repr"]=Module["asm"]["PyBytes_Repr"]).apply(null,arguments)};var __PyBytes_Join=Module["__PyBytes_Join"]=function(){return(__PyBytes_Join=Module["__PyBytes_Join"]=Module["asm"]["_PyBytes_Join"]).apply(null,arguments)};var _PyBytes_FromObject=Module["_PyBytes_FromObject"]=function(){return(_PyBytes_FromObject=Module["_PyBytes_FromObject"]=Module["asm"]["PyBytes_FromObject"]).apply(null,arguments)};var __Py_HashBytes=Module["__Py_HashBytes"]=function(){return(__Py_HashBytes=Module["__Py_HashBytes"]=Module["asm"]["_Py_HashBytes"]).apply(null,arguments)};var _PyErr_BadArgument=Module["_PyErr_BadArgument"]=function(){return(_PyErr_BadArgument=Module["_PyErr_BadArgument"]=Module["asm"]["PyErr_BadArgument"]).apply(null,arguments)};var _PyObject_Calloc=Module["_PyObject_Calloc"]=function(){return(_PyObject_Calloc=Module["_PyObject_Calloc"]=Module["asm"]["PyObject_Calloc"]).apply(null,arguments)};var _PyBytes_Concat=Module["_PyBytes_Concat"]=function(){return(_PyBytes_Concat=Module["_PyBytes_Concat"]=Module["asm"]["PyBytes_Concat"]).apply(null,arguments)};var __PyBytes_Fini=Module["__PyBytes_Fini"]=function(){return(__PyBytes_Fini=Module["__PyBytes_Fini"]=Module["asm"]["_PyBytes_Fini"]).apply(null,arguments)};var __PyErr_Format=Module["__PyErr_Format"]=function(){return(__PyErr_Format=Module["__PyErr_Format"]=Module["asm"]["_PyErr_Format"]).apply(null,arguments)};var __PyErr_FormatFromCauseTstate=Module["__PyErr_FormatFromCauseTstate"]=function(){return(__PyErr_FormatFromCauseTstate=Module["__PyErr_FormatFromCauseTstate"]=Module["asm"]["_PyErr_FormatFromCauseTstate"]).apply(null,arguments)};var __PyObject_FastCallDictTstate=Module["__PyObject_FastCallDictTstate"]=function(){return(__PyObject_FastCallDictTstate=Module["__PyObject_FastCallDictTstate"]=Module["asm"]["_PyObject_FastCallDictTstate"]).apply(null,arguments)};var __PyTuple_FromArray=Module["__PyTuple_FromArray"]=function(){return(__PyTuple_FromArray=Module["__PyTuple_FromArray"]=Module["asm"]["_PyTuple_FromArray"]).apply(null,arguments)};var __PyDict_NewPresized=Module["__PyDict_NewPresized"]=function(){return(__PyDict_NewPresized=Module["__PyDict_NewPresized"]=Module["asm"]["_PyDict_NewPresized"]).apply(null,arguments)};var __PyErr_NoMemory=Module["__PyErr_NoMemory"]=function(){return(__PyErr_NoMemory=Module["__PyErr_NoMemory"]=Module["asm"]["_PyErr_NoMemory"]).apply(null,arguments)};var __PyErr_SetString=Module["__PyErr_SetString"]=function(){return(__PyErr_SetString=Module["__PyErr_SetString"]=Module["asm"]["_PyErr_SetString"]).apply(null,arguments)};var _PyObject_VectorcallDict=Module["_PyObject_VectorcallDict"]=function(){return(_PyObject_VectorcallDict=Module["_PyObject_VectorcallDict"]=Module["asm"]["PyObject_VectorcallDict"]).apply(null,arguments)};var __PyStack_AsDict=Module["__PyStack_AsDict"]=function(){return(__PyStack_AsDict=Module["__PyStack_AsDict"]=Module["asm"]["_PyStack_AsDict"]).apply(null,arguments)};var __PyObject_Call=Module["__PyObject_Call"]=function(){return(__PyObject_Call=Module["__PyObject_Call"]=Module["asm"]["_PyObject_Call"]).apply(null,arguments)};var _PyObject_Call=Module["_PyObject_Call"]=function(){return(_PyObject_Call=Module["_PyObject_Call"]=Module["asm"]["PyObject_Call"]).apply(null,arguments)};var _PyCFunction_Call=Module["_PyCFunction_Call"]=function(){return(_PyCFunction_Call=Module["_PyCFunction_Call"]=Module["asm"]["PyCFunction_Call"]).apply(null,arguments)};var __PyFunction_Vectorcall=Module["__PyFunction_Vectorcall"]=function(){return(__PyFunction_Vectorcall=Module["__PyFunction_Vectorcall"]=Module["asm"]["_PyFunction_Vectorcall"]).apply(null,arguments)};var __PyEval_EvalCode=Module["__PyEval_EvalCode"]=function(){return(__PyEval_EvalCode=Module["__PyEval_EvalCode"]=Module["asm"]["_PyEval_EvalCode"]).apply(null,arguments)};var __PyFrame_New_NoTrack=Module["__PyFrame_New_NoTrack"]=function(){return(__PyFrame_New_NoTrack=Module["__PyFrame_New_NoTrack"]=Module["asm"]["_PyFrame_New_NoTrack"]).apply(null,arguments)};var _PyEval_CallObjectWithKeywords=Module["_PyEval_CallObjectWithKeywords"]=function(){return(_PyEval_CallObjectWithKeywords=Module["_PyEval_CallObjectWithKeywords"]=Module["asm"]["PyEval_CallObjectWithKeywords"]).apply(null,arguments)};var _PyObject_CallObject=Module["_PyObject_CallObject"]=function(){return(_PyObject_CallObject=Module["_PyObject_CallObject"]=Module["asm"]["PyObject_CallObject"]).apply(null,arguments)};var __PyObject_Call_Prepend=Module["__PyObject_Call_Prepend"]=function(){return(__PyObject_Call_Prepend=Module["__PyObject_Call_Prepend"]=Module["asm"]["_PyObject_Call_Prepend"]).apply(null,arguments)};var _PyObject_CallFunction=Module["_PyObject_CallFunction"]=function(){return(_PyObject_CallFunction=Module["_PyObject_CallFunction"]=Module["asm"]["PyObject_CallFunction"]).apply(null,arguments)};var __Py_VaBuildStack_SizeT=Module["__Py_VaBuildStack_SizeT"]=function(){return(__Py_VaBuildStack_SizeT=Module["__Py_VaBuildStack_SizeT"]=Module["asm"]["_Py_VaBuildStack_SizeT"]).apply(null,arguments)};var __Py_VaBuildStack=Module["__Py_VaBuildStack"]=function(){return(__Py_VaBuildStack=Module["__Py_VaBuildStack"]=Module["asm"]["_Py_VaBuildStack"]).apply(null,arguments)};var _PyEval_CallFunction=Module["_PyEval_CallFunction"]=function(){return(_PyEval_CallFunction=Module["_PyEval_CallFunction"]=Module["asm"]["PyEval_CallFunction"]).apply(null,arguments)};var __PyObject_CallFunction_SizeT=Module["__PyObject_CallFunction_SizeT"]=function(){return(__PyObject_CallFunction_SizeT=Module["__PyObject_CallFunction_SizeT"]=Module["asm"]["_PyObject_CallFunction_SizeT"]).apply(null,arguments)};var _PyObject_CallMethod=Module["_PyObject_CallMethod"]=function(){return(_PyObject_CallMethod=Module["_PyObject_CallMethod"]=Module["asm"]["PyObject_CallMethod"]).apply(null,arguments)};var _PyEval_CallMethod=Module["_PyEval_CallMethod"]=function(){return(_PyEval_CallMethod=Module["_PyEval_CallMethod"]=Module["asm"]["PyEval_CallMethod"]).apply(null,arguments)};var __PyObject_CallMethodId=Module["__PyObject_CallMethodId"]=function(){return(__PyObject_CallMethodId=Module["__PyObject_CallMethodId"]=Module["asm"]["_PyObject_CallMethodId"]).apply(null,arguments)};var __PyObject_CallMethod_SizeT=Module["__PyObject_CallMethod_SizeT"]=function(){return(__PyObject_CallMethod_SizeT=Module["__PyObject_CallMethod_SizeT"]=Module["asm"]["_PyObject_CallMethod_SizeT"]).apply(null,arguments)};var _PyObject_CallMethodObjArgs=Module["_PyObject_CallMethodObjArgs"]=function(){return(_PyObject_CallMethodObjArgs=Module["_PyObject_CallMethodObjArgs"]=Module["asm"]["PyObject_CallMethodObjArgs"]).apply(null,arguments)};var _PyCapsule_New=Module["_PyCapsule_New"]=function(){return(_PyCapsule_New=Module["_PyCapsule_New"]=Module["asm"]["PyCapsule_New"]).apply(null,arguments)};var _PyCapsule_IsValid=Module["_PyCapsule_IsValid"]=function(){return(_PyCapsule_IsValid=Module["_PyCapsule_IsValid"]=Module["asm"]["PyCapsule_IsValid"]).apply(null,arguments)};var _PyCapsule_GetPointer=Module["_PyCapsule_GetPointer"]=function(){return(_PyCapsule_GetPointer=Module["_PyCapsule_GetPointer"]=Module["asm"]["PyCapsule_GetPointer"]).apply(null,arguments)};var _PyCapsule_GetName=Module["_PyCapsule_GetName"]=function(){return(_PyCapsule_GetName=Module["_PyCapsule_GetName"]=Module["asm"]["PyCapsule_GetName"]).apply(null,arguments)};var _PyCapsule_GetDestructor=Module["_PyCapsule_GetDestructor"]=function(){return(_PyCapsule_GetDestructor=Module["_PyCapsule_GetDestructor"]=Module["asm"]["PyCapsule_GetDestructor"]).apply(null,arguments)};var _PyCapsule_GetContext=Module["_PyCapsule_GetContext"]=function(){return(_PyCapsule_GetContext=Module["_PyCapsule_GetContext"]=Module["asm"]["PyCapsule_GetContext"]).apply(null,arguments)};var _PyCapsule_SetPointer=Module["_PyCapsule_SetPointer"]=function(){return(_PyCapsule_SetPointer=Module["_PyCapsule_SetPointer"]=Module["asm"]["PyCapsule_SetPointer"]).apply(null,arguments)};var _PyCapsule_SetName=Module["_PyCapsule_SetName"]=function(){return(_PyCapsule_SetName=Module["_PyCapsule_SetName"]=Module["asm"]["PyCapsule_SetName"]).apply(null,arguments)};var _PyCapsule_SetDestructor=Module["_PyCapsule_SetDestructor"]=function(){return(_PyCapsule_SetDestructor=Module["_PyCapsule_SetDestructor"]=Module["asm"]["PyCapsule_SetDestructor"]).apply(null,arguments)};var _PyCapsule_SetContext=Module["_PyCapsule_SetContext"]=function(){return(_PyCapsule_SetContext=Module["_PyCapsule_SetContext"]=Module["asm"]["PyCapsule_SetContext"]).apply(null,arguments)};var _PyCapsule_Import=Module["_PyCapsule_Import"]=function(){return(_PyCapsule_Import=Module["_PyCapsule_Import"]=Module["asm"]["PyCapsule_Import"]).apply(null,arguments)};var _PyCell_New=Module["_PyCell_New"]=function(){return(_PyCell_New=Module["_PyCell_New"]=Module["asm"]["PyCell_New"]).apply(null,arguments)};var _PyCell_Get=Module["_PyCell_Get"]=function(){return(_PyCell_Get=Module["_PyCell_Get"]=Module["asm"]["PyCell_Get"]).apply(null,arguments)};var _PyCell_Set=Module["_PyCell_Set"]=function(){return(_PyCell_Set=Module["_PyCell_Set"]=Module["asm"]["PyCell_Set"]).apply(null,arguments)};var _PyObject_RichCompare=Module["_PyObject_RichCompare"]=function(){return(_PyObject_RichCompare=Module["_PyObject_RichCompare"]=Module["asm"]["PyObject_RichCompare"]).apply(null,arguments)};var _PyMethod_Function=Module["_PyMethod_Function"]=function(){return(_PyMethod_Function=Module["_PyMethod_Function"]=Module["asm"]["PyMethod_Function"]).apply(null,arguments)};var _PyMethod_Self=Module["_PyMethod_Self"]=function(){return(_PyMethod_Self=Module["_PyMethod_Self"]=Module["asm"]["PyMethod_Self"]).apply(null,arguments)};var _PyMethod_New=Module["_PyMethod_New"]=function(){return(_PyMethod_New=Module["_PyMethod_New"]=Module["asm"]["PyMethod_New"]).apply(null,arguments)};var _PyObject_ClearWeakRefs=Module["_PyObject_ClearWeakRefs"]=function(){return(_PyObject_ClearWeakRefs=Module["_PyObject_ClearWeakRefs"]=Module["asm"]["PyObject_ClearWeakRefs"]).apply(null,arguments)};var __Py_HashPointer=Module["__Py_HashPointer"]=function(){return(__Py_HashPointer=Module["__Py_HashPointer"]=Module["asm"]["_Py_HashPointer"]).apply(null,arguments)};var _PyObject_Hash=Module["_PyObject_Hash"]=function(){return(_PyObject_Hash=Module["_PyObject_Hash"]=Module["asm"]["PyObject_Hash"]).apply(null,arguments)};var __PyType_Lookup=Module["__PyType_Lookup"]=function(){return(__PyType_Lookup=Module["__PyType_Lookup"]=Module["asm"]["_PyType_Lookup"]).apply(null,arguments)};var _PyObject_GetAttr=Module["_PyObject_GetAttr"]=function(){return(_PyObject_GetAttr=Module["_PyObject_GetAttr"]=Module["asm"]["PyObject_GetAttr"]).apply(null,arguments)};var _PyInstanceMethod_New=Module["_PyInstanceMethod_New"]=function(){return(_PyInstanceMethod_New=Module["_PyInstanceMethod_New"]=Module["asm"]["PyInstanceMethod_New"]).apply(null,arguments)};var _PyInstanceMethod_Function=Module["_PyInstanceMethod_Function"]=function(){return(_PyInstanceMethod_Function=Module["_PyInstanceMethod_Function"]=Module["asm"]["PyInstanceMethod_Function"]).apply(null,arguments)};var _PyCode_NewWithPosOnlyArgs=Module["_PyCode_NewWithPosOnlyArgs"]=function(){return(_PyCode_NewWithPosOnlyArgs=Module["_PyCode_NewWithPosOnlyArgs"]=Module["asm"]["PyCode_NewWithPosOnlyArgs"]).apply(null,arguments)};var _PyUnicode_Compare=Module["_PyUnicode_Compare"]=function(){return(_PyUnicode_Compare=Module["_PyUnicode_Compare"]=Module["asm"]["PyUnicode_Compare"]).apply(null,arguments)};var _PyFrozenSet_New=Module["_PyFrozenSet_New"]=function(){return(_PyFrozenSet_New=Module["_PyFrozenSet_New"]=Module["asm"]["PyFrozenSet_New"]).apply(null,arguments)};var _PyCode_New=Module["_PyCode_New"]=function(){return(_PyCode_New=Module["_PyCode_New"]=Module["asm"]["PyCode_New"]).apply(null,arguments)};var __PyCode_InitOpcache=Module["__PyCode_InitOpcache"]=function(){return(__PyCode_InitOpcache=Module["__PyCode_InitOpcache"]=Module["asm"]["_PyCode_InitOpcache"]).apply(null,arguments)};var _PyCode_NewEmpty=Module["_PyCode_NewEmpty"]=function(){return(_PyCode_NewEmpty=Module["_PyCode_NewEmpty"]=Module["asm"]["PyCode_NewEmpty"]).apply(null,arguments)};var __PyCode_ConstantKey=Module["__PyCode_ConstantKey"]=function(){return(__PyCode_ConstantKey=Module["__PyCode_ConstantKey"]=Module["asm"]["_PyCode_ConstantKey"]).apply(null,arguments)};var _PyComplex_AsCComplex=Module["_PyComplex_AsCComplex"]=function(){return(_PyComplex_AsCComplex=Module["_PyComplex_AsCComplex"]=Module["asm"]["PyComplex_AsCComplex"]).apply(null,arguments)};var __PySet_NextEntry=Module["__PySet_NextEntry"]=function(){return(__PySet_NextEntry=Module["__PySet_NextEntry"]=Module["asm"]["_PySet_NextEntry"]).apply(null,arguments)};var _PyLong_FromVoidPtr=Module["_PyLong_FromVoidPtr"]=function(){return(_PyLong_FromVoidPtr=Module["_PyLong_FromVoidPtr"]=Module["asm"]["PyLong_FromVoidPtr"]).apply(null,arguments)};var _PyArg_ParseTuple=Module["_PyArg_ParseTuple"]=function(){return(_PyArg_ParseTuple=Module["_PyArg_ParseTuple"]=Module["asm"]["PyArg_ParseTuple"]).apply(null,arguments)};var _PyCode_Addr2Line=Module["_PyCode_Addr2Line"]=function(){return(_PyCode_Addr2Line=Module["_PyCode_Addr2Line"]=Module["asm"]["PyCode_Addr2Line"]).apply(null,arguments)};var __PyCode_CheckLineNumber=Module["__PyCode_CheckLineNumber"]=function(){return(__PyCode_CheckLineNumber=Module["__PyCode_CheckLineNumber"]=Module["asm"]["_PyCode_CheckLineNumber"]).apply(null,arguments)};var __PyCode_GetExtra=Module["__PyCode_GetExtra"]=function(){return(__PyCode_GetExtra=Module["__PyCode_GetExtra"]=Module["asm"]["_PyCode_GetExtra"]).apply(null,arguments)};var __PyCode_SetExtra=Module["__PyCode_SetExtra"]=function(){return(__PyCode_SetExtra=Module["__PyCode_SetExtra"]=Module["asm"]["_PyCode_SetExtra"]).apply(null,arguments)};var __PyUnicode_Copy=Module["__PyUnicode_Copy"]=function(){return(__PyUnicode_Copy=Module["__PyUnicode_Copy"]=Module["asm"]["_PyUnicode_Copy"]).apply(null,arguments)};var __Py_c_sum=Module["__Py_c_sum"]=function(){return(__Py_c_sum=Module["__Py_c_sum"]=Module["asm"]["_Py_c_sum"]).apply(null,arguments)};var __Py_c_diff=Module["__Py_c_diff"]=function(){return(__Py_c_diff=Module["__Py_c_diff"]=Module["asm"]["_Py_c_diff"]).apply(null,arguments)};var __Py_c_neg=Module["__Py_c_neg"]=function(){return(__Py_c_neg=Module["__Py_c_neg"]=Module["asm"]["_Py_c_neg"]).apply(null,arguments)};var __Py_c_prod=Module["__Py_c_prod"]=function(){return(__Py_c_prod=Module["__Py_c_prod"]=Module["asm"]["_Py_c_prod"]).apply(null,arguments)};var __Py_c_quot=Module["__Py_c_quot"]=function(){return(__Py_c_quot=Module["__Py_c_quot"]=Module["asm"]["_Py_c_quot"]).apply(null,arguments)};var __Py_c_pow=Module["__Py_c_pow"]=function(){return(__Py_c_pow=Module["__Py_c_pow"]=Module["asm"]["_Py_c_pow"]).apply(null,arguments)};var _hypot=Module["_hypot"]=function(){return(_hypot=Module["_hypot"]=Module["asm"]["hypot"]).apply(null,arguments)};var _atan2=Module["_atan2"]=function(){return(_atan2=Module["_atan2"]=Module["asm"]["atan2"]).apply(null,arguments)};var _pow=Module["_pow"]=function(){return(_pow=Module["_pow"]=Module["asm"]["pow"]).apply(null,arguments)};var _log=Module["_log"]=function(){return(_log=Module["_log"]=Module["asm"]["log"]).apply(null,arguments)};var _exp=Module["_exp"]=function(){return(_exp=Module["_exp"]=Module["asm"]["exp"]).apply(null,arguments)};var _sin=Module["_sin"]=function(){return(_sin=Module["_sin"]=Module["asm"]["sin"]).apply(null,arguments)};var _cos=Module["_cos"]=function(){return(_cos=Module["_cos"]=Module["asm"]["cos"]).apply(null,arguments)};var __Py_c_abs=Module["__Py_c_abs"]=function(){return(__Py_c_abs=Module["__Py_c_abs"]=Module["asm"]["_Py_c_abs"]).apply(null,arguments)};var _PyComplex_FromDoubles=Module["_PyComplex_FromDoubles"]=function(){return(_PyComplex_FromDoubles=Module["_PyComplex_FromDoubles"]=Module["asm"]["PyComplex_FromDoubles"]).apply(null,arguments)};var _PyComplex_RealAsDouble=Module["_PyComplex_RealAsDouble"]=function(){return(_PyComplex_RealAsDouble=Module["_PyComplex_RealAsDouble"]=Module["asm"]["PyComplex_RealAsDouble"]).apply(null,arguments)};var _PyComplex_ImagAsDouble=Module["_PyComplex_ImagAsDouble"]=function(){return(_PyComplex_ImagAsDouble=Module["_PyComplex_ImagAsDouble"]=Module["asm"]["PyComplex_ImagAsDouble"]).apply(null,arguments)};var __Py_HashDouble=Module["__Py_HashDouble"]=function(){return(__Py_HashDouble=Module["__Py_HashDouble"]=Module["asm"]["_Py_HashDouble"]).apply(null,arguments)};var __PyUnicode_TransformDecimalAndSpaceToASCII=Module["__PyUnicode_TransformDecimalAndSpaceToASCII"]=function(){return(__PyUnicode_TransformDecimalAndSpaceToASCII=Module["__PyUnicode_TransformDecimalAndSpaceToASCII"]=Module["asm"]["_PyUnicode_TransformDecimalAndSpaceToASCII"]).apply(null,arguments)};var __Py_string_to_number_with_underscores=Module["__Py_string_to_number_with_underscores"]=function(){return(__Py_string_to_number_with_underscores=Module["__Py_string_to_number_with_underscores"]=Module["asm"]["_Py_string_to_number_with_underscores"]).apply(null,arguments)};var __PyUnicodeWriter_Init=Module["__PyUnicodeWriter_Init"]=function(){return(__PyUnicodeWriter_Init=Module["__PyUnicodeWriter_Init"]=Module["asm"]["_PyUnicodeWriter_Init"]).apply(null,arguments)};var __PyComplex_FormatAdvancedWriter=Module["__PyComplex_FormatAdvancedWriter"]=function(){return(__PyComplex_FormatAdvancedWriter=Module["__PyComplex_FormatAdvancedWriter"]=Module["asm"]["_PyComplex_FormatAdvancedWriter"]).apply(null,arguments)};var __PyUnicodeWriter_Dealloc=Module["__PyUnicodeWriter_Dealloc"]=function(){return(__PyUnicodeWriter_Dealloc=Module["__PyUnicodeWriter_Dealloc"]=Module["asm"]["_PyUnicodeWriter_Dealloc"]).apply(null,arguments)};var __PyUnicodeWriter_Finish=Module["__PyUnicodeWriter_Finish"]=function(){return(__PyUnicodeWriter_Finish=Module["__PyUnicodeWriter_Finish"]=Module["asm"]["_PyUnicodeWriter_Finish"]).apply(null,arguments)};var _PyCMethod_New=Module["_PyCMethod_New"]=function(){return(_PyCMethod_New=Module["_PyCMethod_New"]=Module["asm"]["PyCMethod_New"]).apply(null,arguments)};var _PyMember_GetOne=Module["_PyMember_GetOne"]=function(){return(_PyMember_GetOne=Module["_PyMember_GetOne"]=Module["asm"]["PyMember_GetOne"]).apply(null,arguments)};var _PyMember_SetOne=Module["_PyMember_SetOne"]=function(){return(_PyMember_SetOne=Module["_PyMember_SetOne"]=Module["asm"]["PyMember_SetOne"]).apply(null,arguments)};var _PyTuple_GetSlice=Module["_PyTuple_GetSlice"]=function(){return(_PyTuple_GetSlice=Module["_PyTuple_GetSlice"]=Module["asm"]["PyTuple_GetSlice"]).apply(null,arguments)};var _PyDescr_NewMethod=Module["_PyDescr_NewMethod"]=function(){return(_PyDescr_NewMethod=Module["_PyDescr_NewMethod"]=Module["asm"]["PyDescr_NewMethod"]).apply(null,arguments)};var __PyObject_FunctionStr=Module["__PyObject_FunctionStr"]=function(){return(__PyObject_FunctionStr=Module["__PyObject_FunctionStr"]=Module["asm"]["_PyObject_FunctionStr"]).apply(null,arguments)};var _PyDescr_NewClassMethod=Module["_PyDescr_NewClassMethod"]=function(){return(_PyDescr_NewClassMethod=Module["_PyDescr_NewClassMethod"]=Module["asm"]["PyDescr_NewClassMethod"]).apply(null,arguments)};var _PyDescr_NewMember=Module["_PyDescr_NewMember"]=function(){return(_PyDescr_NewMember=Module["_PyDescr_NewMember"]=Module["asm"]["PyDescr_NewMember"]).apply(null,arguments)};var _PyDescr_NewGetSet=Module["_PyDescr_NewGetSet"]=function(){return(_PyDescr_NewGetSet=Module["_PyDescr_NewGetSet"]=Module["asm"]["PyDescr_NewGetSet"]).apply(null,arguments)};var _PyDescr_NewWrapper=Module["_PyDescr_NewWrapper"]=function(){return(_PyDescr_NewWrapper=Module["_PyDescr_NewWrapper"]=Module["asm"]["PyDescr_NewWrapper"]).apply(null,arguments)};var _PyDictProxy_New=Module["_PyDictProxy_New"]=function(){return(_PyDictProxy_New=Module["_PyDictProxy_New"]=Module["asm"]["PyDictProxy_New"]).apply(null,arguments)};var _PyObject_GC_UnTrack=Module["_PyObject_GC_UnTrack"]=function(){return(_PyObject_GC_UnTrack=Module["_PyObject_GC_UnTrack"]=Module["asm"]["PyObject_GC_UnTrack"]).apply(null,arguments)};var __PyTrash_begin=Module["__PyTrash_begin"]=function(){return(__PyTrash_begin=Module["__PyTrash_begin"]=Module["asm"]["_PyTrash_begin"]).apply(null,arguments)};var __PyTrash_end=Module["__PyTrash_end"]=function(){return(__PyTrash_end=Module["__PyTrash_end"]=Module["asm"]["_PyTrash_end"]).apply(null,arguments)};var _PyWrapper_New=Module["_PyWrapper_New"]=function(){return(_PyWrapper_New=Module["_PyWrapper_New"]=Module["asm"]["PyWrapper_New"]).apply(null,arguments)};var __PyObject_SetAttrId=Module["__PyObject_SetAttrId"]=function(){return(__PyObject_SetAttrId=Module["__PyObject_SetAttrId"]=Module["asm"]["_PyObject_SetAttrId"]).apply(null,arguments)};var __PyType_GetDocFromInternalDoc=Module["__PyType_GetDocFromInternalDoc"]=function(){return(__PyType_GetDocFromInternalDoc=Module["__PyType_GetDocFromInternalDoc"]=Module["asm"]["_PyType_GetDocFromInternalDoc"]).apply(null,arguments)};var __PyType_GetTextSignatureFromInternalDoc=Module["__PyType_GetTextSignatureFromInternalDoc"]=function(){return(__PyType_GetTextSignatureFromInternalDoc=Module["__PyType_GetTextSignatureFromInternalDoc"]=Module["asm"]["_PyType_GetTextSignatureFromInternalDoc"]).apply(null,arguments)};var _PyDict_Contains=Module["_PyDict_Contains"]=function(){return(_PyDict_Contains=Module["_PyDict_Contains"]=Module["asm"]["PyDict_Contains"]).apply(null,arguments)};var __PyArg_UnpackStack=Module["__PyArg_UnpackStack"]=function(){return(__PyArg_UnpackStack=Module["__PyArg_UnpackStack"]=Module["asm"]["_PyArg_UnpackStack"]).apply(null,arguments)};var __PyObject_IsAbstract=Module["__PyObject_IsAbstract"]=function(){return(__PyObject_IsAbstract=Module["__PyObject_IsAbstract"]=Module["asm"]["_PyObject_IsAbstract"]).apply(null,arguments)};var _PyException_GetTraceback=Module["_PyException_GetTraceback"]=function(){return(_PyException_GetTraceback=Module["_PyException_GetTraceback"]=Module["asm"]["PyException_GetTraceback"]).apply(null,arguments)};var _PyException_GetCause=Module["_PyException_GetCause"]=function(){return(_PyException_GetCause=Module["_PyException_GetCause"]=Module["asm"]["PyException_GetCause"]).apply(null,arguments)};var _PyException_SetCause=Module["_PyException_SetCause"]=function(){return(_PyException_SetCause=Module["_PyException_SetCause"]=Module["asm"]["PyException_SetCause"]).apply(null,arguments)};var _PyException_GetContext=Module["_PyException_GetContext"]=function(){return(_PyException_GetContext=Module["_PyException_GetContext"]=Module["asm"]["PyException_GetContext"]).apply(null,arguments)};var _PyException_SetContext=Module["_PyException_SetContext"]=function(){return(_PyException_SetContext=Module["_PyException_SetContext"]=Module["asm"]["PyException_SetContext"]).apply(null,arguments)};var _PyExceptionClass_Name=Module["_PyExceptionClass_Name"]=function(){return(_PyExceptionClass_Name=Module["_PyExceptionClass_Name"]=Module["asm"]["PyExceptionClass_Name"]).apply(null,arguments)};var _PyUnicodeEncodeError_GetEncoding=Module["_PyUnicodeEncodeError_GetEncoding"]=function(){return(_PyUnicodeEncodeError_GetEncoding=Module["_PyUnicodeEncodeError_GetEncoding"]=Module["asm"]["PyUnicodeEncodeError_GetEncoding"]).apply(null,arguments)};var _PyUnicodeDecodeError_GetEncoding=Module["_PyUnicodeDecodeError_GetEncoding"]=function(){return(_PyUnicodeDecodeError_GetEncoding=Module["_PyUnicodeDecodeError_GetEncoding"]=Module["asm"]["PyUnicodeDecodeError_GetEncoding"]).apply(null,arguments)};var _PyUnicodeEncodeError_GetObject=Module["_PyUnicodeEncodeError_GetObject"]=function(){return(_PyUnicodeEncodeError_GetObject=Module["_PyUnicodeEncodeError_GetObject"]=Module["asm"]["PyUnicodeEncodeError_GetObject"]).apply(null,arguments)};var _PyUnicodeDecodeError_GetObject=Module["_PyUnicodeDecodeError_GetObject"]=function(){return(_PyUnicodeDecodeError_GetObject=Module["_PyUnicodeDecodeError_GetObject"]=Module["asm"]["PyUnicodeDecodeError_GetObject"]).apply(null,arguments)};var _PyUnicodeTranslateError_GetObject=Module["_PyUnicodeTranslateError_GetObject"]=function(){return(_PyUnicodeTranslateError_GetObject=Module["_PyUnicodeTranslateError_GetObject"]=Module["asm"]["PyUnicodeTranslateError_GetObject"]).apply(null,arguments)};var _PyUnicodeEncodeError_GetStart=Module["_PyUnicodeEncodeError_GetStart"]=function(){return(_PyUnicodeEncodeError_GetStart=Module["_PyUnicodeEncodeError_GetStart"]=Module["asm"]["PyUnicodeEncodeError_GetStart"]).apply(null,arguments)};var _PyUnicodeDecodeError_GetStart=Module["_PyUnicodeDecodeError_GetStart"]=function(){return(_PyUnicodeDecodeError_GetStart=Module["_PyUnicodeDecodeError_GetStart"]=Module["asm"]["PyUnicodeDecodeError_GetStart"]).apply(null,arguments)};var _PyUnicodeTranslateError_GetStart=Module["_PyUnicodeTranslateError_GetStart"]=function(){return(_PyUnicodeTranslateError_GetStart=Module["_PyUnicodeTranslateError_GetStart"]=Module["asm"]["PyUnicodeTranslateError_GetStart"]).apply(null,arguments)};var _PyUnicodeEncodeError_SetStart=Module["_PyUnicodeEncodeError_SetStart"]=function(){return(_PyUnicodeEncodeError_SetStart=Module["_PyUnicodeEncodeError_SetStart"]=Module["asm"]["PyUnicodeEncodeError_SetStart"]).apply(null,arguments)};var _PyUnicodeDecodeError_SetStart=Module["_PyUnicodeDecodeError_SetStart"]=function(){return(_PyUnicodeDecodeError_SetStart=Module["_PyUnicodeDecodeError_SetStart"]=Module["asm"]["PyUnicodeDecodeError_SetStart"]).apply(null,arguments)};var _PyUnicodeTranslateError_SetStart=Module["_PyUnicodeTranslateError_SetStart"]=function(){return(_PyUnicodeTranslateError_SetStart=Module["_PyUnicodeTranslateError_SetStart"]=Module["asm"]["PyUnicodeTranslateError_SetStart"]).apply(null,arguments)};var _PyUnicodeEncodeError_GetEnd=Module["_PyUnicodeEncodeError_GetEnd"]=function(){return(_PyUnicodeEncodeError_GetEnd=Module["_PyUnicodeEncodeError_GetEnd"]=Module["asm"]["PyUnicodeEncodeError_GetEnd"]).apply(null,arguments)};var _PyUnicodeDecodeError_GetEnd=Module["_PyUnicodeDecodeError_GetEnd"]=function(){return(_PyUnicodeDecodeError_GetEnd=Module["_PyUnicodeDecodeError_GetEnd"]=Module["asm"]["PyUnicodeDecodeError_GetEnd"]).apply(null,arguments)};var _PyUnicodeTranslateError_GetEnd=Module["_PyUnicodeTranslateError_GetEnd"]=function(){return(_PyUnicodeTranslateError_GetEnd=Module["_PyUnicodeTranslateError_GetEnd"]=Module["asm"]["PyUnicodeTranslateError_GetEnd"]).apply(null,arguments)};var _PyUnicodeEncodeError_SetEnd=Module["_PyUnicodeEncodeError_SetEnd"]=function(){return(_PyUnicodeEncodeError_SetEnd=Module["_PyUnicodeEncodeError_SetEnd"]=Module["asm"]["PyUnicodeEncodeError_SetEnd"]).apply(null,arguments)};var _PyUnicodeDecodeError_SetEnd=Module["_PyUnicodeDecodeError_SetEnd"]=function(){return(_PyUnicodeDecodeError_SetEnd=Module["_PyUnicodeDecodeError_SetEnd"]=Module["asm"]["PyUnicodeDecodeError_SetEnd"]).apply(null,arguments)};var _PyUnicodeTranslateError_SetEnd=Module["_PyUnicodeTranslateError_SetEnd"]=function(){return(_PyUnicodeTranslateError_SetEnd=Module["_PyUnicodeTranslateError_SetEnd"]=Module["asm"]["PyUnicodeTranslateError_SetEnd"]).apply(null,arguments)};var _PyUnicodeEncodeError_GetReason=Module["_PyUnicodeEncodeError_GetReason"]=function(){return(_PyUnicodeEncodeError_GetReason=Module["_PyUnicodeEncodeError_GetReason"]=Module["asm"]["PyUnicodeEncodeError_GetReason"]).apply(null,arguments)};var _PyUnicodeDecodeError_GetReason=Module["_PyUnicodeDecodeError_GetReason"]=function(){return(_PyUnicodeDecodeError_GetReason=Module["_PyUnicodeDecodeError_GetReason"]=Module["asm"]["PyUnicodeDecodeError_GetReason"]).apply(null,arguments)};var _PyUnicodeTranslateError_GetReason=Module["_PyUnicodeTranslateError_GetReason"]=function(){return(_PyUnicodeTranslateError_GetReason=Module["_PyUnicodeTranslateError_GetReason"]=Module["asm"]["PyUnicodeTranslateError_GetReason"]).apply(null,arguments)};var _PyUnicodeEncodeError_SetReason=Module["_PyUnicodeEncodeError_SetReason"]=function(){return(_PyUnicodeEncodeError_SetReason=Module["_PyUnicodeEncodeError_SetReason"]=Module["asm"]["PyUnicodeEncodeError_SetReason"]).apply(null,arguments)};var _PyUnicodeDecodeError_SetReason=Module["_PyUnicodeDecodeError_SetReason"]=function(){return(_PyUnicodeDecodeError_SetReason=Module["_PyUnicodeDecodeError_SetReason"]=Module["asm"]["PyUnicodeDecodeError_SetReason"]).apply(null,arguments)};var _PyUnicodeTranslateError_SetReason=Module["_PyUnicodeTranslateError_SetReason"]=function(){return(_PyUnicodeTranslateError_SetReason=Module["_PyUnicodeTranslateError_SetReason"]=Module["asm"]["PyUnicodeTranslateError_SetReason"]).apply(null,arguments)};var _PyUnicodeEncodeError_Create=Module["_PyUnicodeEncodeError_Create"]=function(){return(_PyUnicodeEncodeError_Create=Module["_PyUnicodeEncodeError_Create"]=Module["asm"]["PyUnicodeEncodeError_Create"]).apply(null,arguments)};var _PyUnicodeDecodeError_Create=Module["_PyUnicodeDecodeError_Create"]=function(){return(_PyUnicodeDecodeError_Create=Module["_PyUnicodeDecodeError_Create"]=Module["asm"]["PyUnicodeDecodeError_Create"]).apply(null,arguments)};var _PyUnicodeTranslateError_Create=Module["_PyUnicodeTranslateError_Create"]=function(){return(_PyUnicodeTranslateError_Create=Module["_PyUnicodeTranslateError_Create"]=Module["asm"]["PyUnicodeTranslateError_Create"]).apply(null,arguments)};var __PyUnicodeTranslateError_Create=Module["__PyUnicodeTranslateError_Create"]=function(){return(__PyUnicodeTranslateError_Create=Module["__PyUnicodeTranslateError_Create"]=Module["asm"]["_PyUnicodeTranslateError_Create"]).apply(null,arguments)};var __PyExc_Init=Module["__PyExc_Init"]=function(){return(__PyExc_Init=Module["__PyExc_Init"]=Module["asm"]["_PyExc_Init"]).apply(null,arguments)};var __PyBuiltins_AddExceptions=Module["__PyBuiltins_AddExceptions"]=function(){return(__PyBuiltins_AddExceptions=Module["__PyBuiltins_AddExceptions"]=Module["asm"]["_PyBuiltins_AddExceptions"]).apply(null,arguments)};var _PyModule_GetDict=Module["_PyModule_GetDict"]=function(){return(_PyModule_GetDict=Module["_PyModule_GetDict"]=Module["asm"]["PyModule_GetDict"]).apply(null,arguments)};var __PyExc_Fini=Module["__PyExc_Fini"]=function(){return(__PyExc_Fini=Module["__PyExc_Fini"]=Module["asm"]["_PyExc_Fini"]).apply(null,arguments)};var __PyErr_TrySetFromCause=Module["__PyErr_TrySetFromCause"]=function(){return(__PyErr_TrySetFromCause=Module["__PyErr_TrySetFromCause"]=Module["asm"]["_PyErr_TrySetFromCause"]).apply(null,arguments)};var __PyObject_GetDictPtr=Module["__PyObject_GetDictPtr"]=function(){return(__PyObject_GetDictPtr=Module["__PyObject_GetDictPtr"]=Module["asm"]["_PyObject_GetDictPtr"]).apply(null,arguments)};var _PyDict_Copy=Module["_PyDict_Copy"]=function(){return(_PyDict_Copy=Module["_PyDict_Copy"]=Module["asm"]["PyDict_Copy"]).apply(null,arguments)};var __PyDict_SetItemId=Module["__PyDict_SetItemId"]=function(){return(__PyDict_SetItemId=Module["__PyDict_SetItemId"]=Module["asm"]["_PyDict_SetItemId"]).apply(null,arguments)};var _PyUnicode_FindChar=Module["_PyUnicode_FindChar"]=function(){return(_PyUnicode_FindChar=Module["_PyUnicode_FindChar"]=Module["asm"]["PyUnicode_FindChar"]).apply(null,arguments)};var __PyUnicode_IsWhitespace=Module["__PyUnicode_IsWhitespace"]=function(){return(__PyUnicode_IsWhitespace=Module["__PyUnicode_IsWhitespace"]=Module["asm"]["_PyUnicode_IsWhitespace"]).apply(null,arguments)};var _PyUnicode_Tailmatch=Module["_PyUnicode_Tailmatch"]=function(){return(_PyUnicode_Tailmatch=Module["_PyUnicode_Tailmatch"]=Module["asm"]["PyUnicode_Tailmatch"]).apply(null,arguments)};var __PyUnicode_XStrip=Module["__PyUnicode_XStrip"]=function(){return(__PyUnicode_XStrip=Module["__PyUnicode_XStrip"]=Module["asm"]["_PyUnicode_XStrip"]).apply(null,arguments)};var _PyUnicode_ReadChar=Module["_PyUnicode_ReadChar"]=function(){return(_PyUnicode_ReadChar=Module["_PyUnicode_ReadChar"]=Module["asm"]["PyUnicode_ReadChar"]).apply(null,arguments)};var _PyObject_GenericGetDict=Module["_PyObject_GenericGetDict"]=function(){return(_PyObject_GenericGetDict=Module["_PyObject_GenericGetDict"]=Module["asm"]["PyObject_GenericGetDict"]).apply(null,arguments)};var _PyObject_GenericSetDict=Module["_PyObject_GenericSetDict"]=function(){return(_PyObject_GenericSetDict=Module["_PyObject_GenericSetDict"]=Module["asm"]["PyObject_GenericSetDict"]).apply(null,arguments)};var __PyUnicodeWriter_WriteASCIIString=Module["__PyUnicodeWriter_WriteASCIIString"]=function(){return(__PyUnicodeWriter_WriteASCIIString=Module["__PyUnicodeWriter_WriteASCIIString"]=Module["asm"]["_PyUnicodeWriter_WriteASCIIString"]).apply(null,arguments)};var __PyUnicode_EqualToASCIIString=Module["__PyUnicode_EqualToASCIIString"]=function(){return(__PyUnicode_EqualToASCIIString=Module["__PyUnicode_EqualToASCIIString"]=Module["asm"]["_PyUnicode_EqualToASCIIString"]).apply(null,arguments)};var __PyUnicodeWriter_WriteStr=Module["__PyUnicodeWriter_WriteStr"]=function(){return(__PyUnicodeWriter_WriteStr=Module["__PyUnicodeWriter_WriteStr"]=Module["asm"]["_PyUnicodeWriter_WriteStr"]).apply(null,arguments)};var __PyGen_Finalize=Module["__PyGen_Finalize"]=function(){return(__PyGen_Finalize=Module["__PyGen_Finalize"]=Module["asm"]["_PyGen_Finalize"]).apply(null,arguments)};var _PyErr_WriteUnraisable=Module["_PyErr_WriteUnraisable"]=function(){return(_PyErr_WriteUnraisable=Module["_PyErr_WriteUnraisable"]=Module["asm"]["PyErr_WriteUnraisable"]).apply(null,arguments)};var __PyErr_WarnUnawaitedCoroutine=Module["__PyErr_WarnUnawaitedCoroutine"]=function(){return(__PyErr_WarnUnawaitedCoroutine=Module["__PyErr_WarnUnawaitedCoroutine"]=Module["asm"]["_PyErr_WarnUnawaitedCoroutine"]).apply(null,arguments)};var __PyErr_ChainStackItem=Module["__PyErr_ChainStackItem"]=function(){return(__PyErr_ChainStackItem=Module["__PyErr_ChainStackItem"]=Module["asm"]["_PyErr_ChainStackItem"]).apply(null,arguments)};var __PyGen_SetStopIterationValue=Module["__PyGen_SetStopIterationValue"]=function(){return(__PyGen_SetStopIterationValue=Module["__PyGen_SetStopIterationValue"]=Module["asm"]["_PyGen_SetStopIterationValue"]).apply(null,arguments)};var __PyGen_yf=Module["__PyGen_yf"]=function(){return(__PyGen_yf=Module["__PyGen_yf"]=Module["asm"]["_PyGen_yf"]).apply(null,arguments)};var _PyObject_CallFinalizerFromDealloc=Module["_PyObject_CallFinalizerFromDealloc"]=function(){return(_PyObject_CallFinalizerFromDealloc=Module["_PyObject_CallFinalizerFromDealloc"]=Module["asm"]["PyObject_CallFinalizerFromDealloc"]).apply(null,arguments)};var _PyGen_NewWithQualName=Module["_PyGen_NewWithQualName"]=function(){return(_PyGen_NewWithQualName=Module["_PyGen_NewWithQualName"]=Module["asm"]["PyGen_NewWithQualName"]).apply(null,arguments)};var _PyGen_New=Module["_PyGen_New"]=function(){return(_PyGen_New=Module["_PyGen_New"]=Module["asm"]["PyGen_New"]).apply(null,arguments)};var __PyCoro_GetAwaitableIter=Module["__PyCoro_GetAwaitableIter"]=function(){return(__PyCoro_GetAwaitableIter=Module["__PyCoro_GetAwaitableIter"]=Module["asm"]["_PyCoro_GetAwaitableIter"]).apply(null,arguments)};var _PyCoro_New=Module["_PyCoro_New"]=function(){return(_PyCoro_New=Module["_PyCoro_New"]=Module["asm"]["PyCoro_New"]).apply(null,arguments)};var _PyEval_GetFrame=Module["_PyEval_GetFrame"]=function(){return(_PyEval_GetFrame=Module["_PyEval_GetFrame"]=Module["asm"]["PyEval_GetFrame"]).apply(null,arguments)};var _PyFrame_GetLineNumber=Module["_PyFrame_GetLineNumber"]=function(){return(_PyFrame_GetLineNumber=Module["_PyFrame_GetLineNumber"]=Module["asm"]["PyFrame_GetLineNumber"]).apply(null,arguments)};var _PyAsyncGen_New=Module["_PyAsyncGen_New"]=function(){return(_PyAsyncGen_New=Module["_PyAsyncGen_New"]=Module["asm"]["PyAsyncGen_New"]).apply(null,arguments)};var __PyAsyncGen_ClearFreeLists=Module["__PyAsyncGen_ClearFreeLists"]=function(){return(__PyAsyncGen_ClearFreeLists=Module["__PyAsyncGen_ClearFreeLists"]=Module["asm"]["_PyAsyncGen_ClearFreeLists"]).apply(null,arguments)};var __PyAsyncGen_Fini=Module["__PyAsyncGen_Fini"]=function(){return(__PyAsyncGen_Fini=Module["__PyAsyncGen_Fini"]=Module["asm"]["_PyAsyncGen_Fini"]).apply(null,arguments)};var __PyAsyncGenValueWrapperNew=Module["__PyAsyncGenValueWrapperNew"]=function(){return(__PyAsyncGenValueWrapperNew=Module["__PyAsyncGenValueWrapperNew"]=Module["asm"]["_PyAsyncGenValueWrapperNew"]).apply(null,arguments)};var _PyFile_FromFd=Module["_PyFile_FromFd"]=function(){return(_PyFile_FromFd=Module["_PyFile_FromFd"]=Module["asm"]["PyFile_FromFd"]).apply(null,arguments)};var _PyFile_GetLine=Module["_PyFile_GetLine"]=function(){return(_PyFile_GetLine=Module["_PyFile_GetLine"]=Module["asm"]["PyFile_GetLine"]).apply(null,arguments)};var _PyFile_WriteObject=Module["_PyFile_WriteObject"]=function(){return(_PyFile_WriteObject=Module["_PyFile_WriteObject"]=Module["asm"]["PyFile_WriteObject"]).apply(null,arguments)};var _PyFile_WriteString=Module["_PyFile_WriteString"]=function(){return(_PyFile_WriteString=Module["_PyFile_WriteString"]=Module["asm"]["PyFile_WriteString"]).apply(null,arguments)};var _PyObject_AsFileDescriptor=Module["_PyObject_AsFileDescriptor"]=function(){return(_PyObject_AsFileDescriptor=Module["_PyObject_AsFileDescriptor"]=Module["asm"]["PyObject_AsFileDescriptor"]).apply(null,arguments)};var _flockfile=Module["_flockfile"]=function(){return(_flockfile=Module["_flockfile"]=Module["asm"]["flockfile"]).apply(null,arguments)};var _getc_unlocked=Module["_getc_unlocked"]=function(){return(_getc_unlocked=Module["_getc_unlocked"]=Module["asm"]["getc_unlocked"]).apply(null,arguments)};var _funlockfile=Module["_funlockfile"]=function(){return(_funlockfile=Module["_funlockfile"]=Module["asm"]["funlockfile"]).apply(null,arguments)};var _PyFile_NewStdPrinter=Module["_PyFile_NewStdPrinter"]=function(){return(_PyFile_NewStdPrinter=Module["_PyFile_NewStdPrinter"]=Module["asm"]["PyFile_NewStdPrinter"]).apply(null,arguments)};var _PyFile_SetOpenCodeHook=Module["_PyFile_SetOpenCodeHook"]=function(){return(_PyFile_SetOpenCodeHook=Module["_PyFile_SetOpenCodeHook"]=Module["asm"]["PyFile_SetOpenCodeHook"]).apply(null,arguments)};var _Py_IsInitialized=Module["_Py_IsInitialized"]=function(){return(_Py_IsInitialized=Module["_Py_IsInitialized"]=Module["asm"]["Py_IsInitialized"]).apply(null,arguments)};var _PyFile_OpenCodeObject=Module["_PyFile_OpenCodeObject"]=function(){return(_PyFile_OpenCodeObject=Module["_PyFile_OpenCodeObject"]=Module["asm"]["PyFile_OpenCodeObject"]).apply(null,arguments)};var _PyFile_OpenCode=Module["_PyFile_OpenCode"]=function(){return(_PyFile_OpenCode=Module["_PyFile_OpenCode"]=Module["asm"]["PyFile_OpenCode"]).apply(null,arguments)};var __PyUnicode_AsUTF8String=Module["__PyUnicode_AsUTF8String"]=function(){return(__PyUnicode_AsUTF8String=Module["__PyUnicode_AsUTF8String"]=Module["asm"]["_PyUnicode_AsUTF8String"]).apply(null,arguments)};var __Py_write=Module["__Py_write"]=function(){return(__Py_write=Module["__Py_write"]=Module["asm"]["_Py_write"]).apply(null,arguments)};var _PyFloat_GetMax=Module["_PyFloat_GetMax"]=function(){return(_PyFloat_GetMax=Module["_PyFloat_GetMax"]=Module["asm"]["PyFloat_GetMax"]).apply(null,arguments)};var _PyFloat_GetMin=Module["_PyFloat_GetMin"]=function(){return(_PyFloat_GetMin=Module["_PyFloat_GetMin"]=Module["asm"]["PyFloat_GetMin"]).apply(null,arguments)};var _PyFloat_GetInfo=Module["_PyFloat_GetInfo"]=function(){return(_PyFloat_GetInfo=Module["_PyFloat_GetInfo"]=Module["asm"]["PyFloat_GetInfo"]).apply(null,arguments)};var _PyStructSequence_New=Module["_PyStructSequence_New"]=function(){return(_PyStructSequence_New=Module["_PyStructSequence_New"]=Module["asm"]["PyStructSequence_New"]).apply(null,arguments)};var __PyUnicode_FromASCII=Module["__PyUnicode_FromASCII"]=function(){return(__PyUnicode_FromASCII=Module["__PyUnicode_FromASCII"]=Module["asm"]["_PyUnicode_FromASCII"]).apply(null,arguments)};var __PyLong_NumBits=Module["__PyLong_NumBits"]=function(){return(__PyLong_NumBits=Module["__PyLong_NumBits"]=Module["asm"]["_PyLong_NumBits"]).apply(null,arguments)};var _frexp=Module["_frexp"]=function(){return(_frexp=Module["_frexp"]=Module["asm"]["frexp"]).apply(null,arguments)};var _modf=Module["_modf"]=function(){return(_modf=Module["_modf"]=Module["asm"]["modf"]).apply(null,arguments)};var _PyLong_FromDouble=Module["_PyLong_FromDouble"]=function(){return(_PyLong_FromDouble=Module["_PyLong_FromDouble"]=Module["asm"]["PyLong_FromDouble"]).apply(null,arguments)};var __PyLong_Lshift=Module["__PyLong_Lshift"]=function(){return(__PyLong_Lshift=Module["__PyLong_Lshift"]=Module["asm"]["_PyLong_Lshift"]).apply(null,arguments)};var __PyFloat_Init=Module["__PyFloat_Init"]=function(){return(__PyFloat_Init=Module["__PyFloat_Init"]=Module["asm"]["_PyFloat_Init"]).apply(null,arguments)};var _PyStructSequence_InitType2=Module["_PyStructSequence_InitType2"]=function(){return(_PyStructSequence_InitType2=Module["_PyStructSequence_InitType2"]=Module["asm"]["PyStructSequence_InitType2"]).apply(null,arguments)};var __PyFloat_ClearFreeList=Module["__PyFloat_ClearFreeList"]=function(){return(__PyFloat_ClearFreeList=Module["__PyFloat_ClearFreeList"]=Module["asm"]["_PyFloat_ClearFreeList"]).apply(null,arguments)};var __PyFloat_Fini=Module["__PyFloat_Fini"]=function(){return(__PyFloat_Fini=Module["__PyFloat_Fini"]=Module["asm"]["_PyFloat_Fini"]).apply(null,arguments)};var __PyFloat_DebugMallocStats=Module["__PyFloat_DebugMallocStats"]=function(){return(__PyFloat_DebugMallocStats=Module["__PyFloat_DebugMallocStats"]=Module["asm"]["_PyFloat_DebugMallocStats"]).apply(null,arguments)};var __PyDebugAllocatorStats=Module["__PyDebugAllocatorStats"]=function(){return(__PyDebugAllocatorStats=Module["__PyDebugAllocatorStats"]=Module["asm"]["_PyDebugAllocatorStats"]).apply(null,arguments)};var __PyFloat_Pack2=Module["__PyFloat_Pack2"]=function(){return(__PyFloat_Pack2=Module["__PyFloat_Pack2"]=Module["asm"]["_PyFloat_Pack2"]).apply(null,arguments)};var _ldexp=Module["_ldexp"]=function(){return(_ldexp=Module["_ldexp"]=Module["asm"]["ldexp"]).apply(null,arguments)};var __PyFloat_Pack4=Module["__PyFloat_Pack4"]=function(){return(__PyFloat_Pack4=Module["__PyFloat_Pack4"]=Module["asm"]["_PyFloat_Pack4"]).apply(null,arguments)};var __PyFloat_Pack8=Module["__PyFloat_Pack8"]=function(){return(__PyFloat_Pack8=Module["__PyFloat_Pack8"]=Module["asm"]["_PyFloat_Pack8"]).apply(null,arguments)};var __PyFloat_Unpack2=Module["__PyFloat_Unpack2"]=function(){return(__PyFloat_Unpack2=Module["__PyFloat_Unpack2"]=Module["asm"]["_PyFloat_Unpack2"]).apply(null,arguments)};var __Py_dg_infinity=Module["__Py_dg_infinity"]=function(){return(__Py_dg_infinity=Module["__Py_dg_infinity"]=Module["asm"]["_Py_dg_infinity"]).apply(null,arguments)};var __Py_dg_stdnan=Module["__Py_dg_stdnan"]=function(){return(__Py_dg_stdnan=Module["__Py_dg_stdnan"]=Module["asm"]["_Py_dg_stdnan"]).apply(null,arguments)};var __PyFloat_Unpack4=Module["__PyFloat_Unpack4"]=function(){return(__PyFloat_Unpack4=Module["__PyFloat_Unpack4"]=Module["asm"]["_PyFloat_Unpack4"]).apply(null,arguments)};var __PyFloat_Unpack8=Module["__PyFloat_Unpack8"]=function(){return(__PyFloat_Unpack8=Module["__PyFloat_Unpack8"]=Module["asm"]["_PyFloat_Unpack8"]).apply(null,arguments)};var _fmod=Module["_fmod"]=function(){return(_fmod=Module["_fmod"]=Module["asm"]["fmod"]).apply(null,arguments)};var _PyErr_SetFromErrno=Module["_PyErr_SetFromErrno"]=function(){return(_PyErr_SetFromErrno=Module["_PyErr_SetFromErrno"]=Module["asm"]["PyErr_SetFromErrno"]).apply(null,arguments)};var _round=Module["_round"]=function(){return(_round=Module["_round"]=Module["asm"]["round"]).apply(null,arguments)};var __Py_dg_dtoa=Module["__Py_dg_dtoa"]=function(){return(__Py_dg_dtoa=Module["__Py_dg_dtoa"]=Module["asm"]["_Py_dg_dtoa"]).apply(null,arguments)};var __Py_dg_strtod=Module["__Py_dg_strtod"]=function(){return(__Py_dg_strtod=Module["__Py_dg_strtod"]=Module["asm"]["_Py_dg_strtod"]).apply(null,arguments)};var __Py_dg_freedtoa=Module["__Py_dg_freedtoa"]=function(){return(__Py_dg_freedtoa=Module["__Py_dg_freedtoa"]=Module["asm"]["_Py_dg_freedtoa"]).apply(null,arguments)};var __Py_parse_inf_or_nan=Module["__Py_parse_inf_or_nan"]=function(){return(__Py_parse_inf_or_nan=Module["__Py_parse_inf_or_nan"]=Module["asm"]["_Py_parse_inf_or_nan"]).apply(null,arguments)};var _strtol=Module["_strtol"]=function(){return(_strtol=Module["_strtol"]=Module["asm"]["strtol"]).apply(null,arguments)};var __PyFloat_FormatAdvancedWriter=Module["__PyFloat_FormatAdvancedWriter"]=function(){return(__PyFloat_FormatAdvancedWriter=Module["__PyFloat_FormatAdvancedWriter"]=Module["asm"]["_PyFloat_FormatAdvancedWriter"]).apply(null,arguments)};var __PyDict_GetItemIdWithError=Module["__PyDict_GetItemIdWithError"]=function(){return(__PyDict_GetItemIdWithError=Module["__PyDict_GetItemIdWithError"]=Module["asm"]["_PyDict_GetItemIdWithError"]).apply(null,arguments)};var __PyObject_GC_NewVar=Module["__PyObject_GC_NewVar"]=function(){return(__PyObject_GC_NewVar=Module["__PyObject_GC_NewVar"]=Module["asm"]["_PyObject_GC_NewVar"]).apply(null,arguments)};var __PyObject_GC_Resize=Module["__PyObject_GC_Resize"]=function(){return(__PyObject_GC_Resize=Module["__PyObject_GC_Resize"]=Module["asm"]["_PyObject_GC_Resize"]).apply(null,arguments)};var _PyFrame_New=Module["_PyFrame_New"]=function(){return(_PyFrame_New=Module["_PyFrame_New"]=Module["asm"]["PyFrame_New"]).apply(null,arguments)};var _PyFrame_BlockSetup=Module["_PyFrame_BlockSetup"]=function(){return(_PyFrame_BlockSetup=Module["_PyFrame_BlockSetup"]=Module["asm"]["PyFrame_BlockSetup"]).apply(null,arguments)};var _PyFrame_BlockPop=Module["_PyFrame_BlockPop"]=function(){return(_PyFrame_BlockPop=Module["_PyFrame_BlockPop"]=Module["asm"]["PyFrame_BlockPop"]).apply(null,arguments)};var _PyFrame_FastToLocalsWithError=Module["_PyFrame_FastToLocalsWithError"]=function(){return(_PyFrame_FastToLocalsWithError=Module["_PyFrame_FastToLocalsWithError"]=Module["asm"]["PyFrame_FastToLocalsWithError"]).apply(null,arguments)};var _PyFrame_FastToLocals=Module["_PyFrame_FastToLocals"]=function(){return(_PyFrame_FastToLocals=Module["_PyFrame_FastToLocals"]=Module["asm"]["PyFrame_FastToLocals"]).apply(null,arguments)};var _PyFrame_LocalsToFast=Module["_PyFrame_LocalsToFast"]=function(){return(_PyFrame_LocalsToFast=Module["_PyFrame_LocalsToFast"]=Module["asm"]["PyFrame_LocalsToFast"]).apply(null,arguments)};var __PyFrame_ClearFreeList=Module["__PyFrame_ClearFreeList"]=function(){return(__PyFrame_ClearFreeList=Module["__PyFrame_ClearFreeList"]=Module["asm"]["_PyFrame_ClearFreeList"]).apply(null,arguments)};var __PyFrame_Fini=Module["__PyFrame_Fini"]=function(){return(__PyFrame_Fini=Module["__PyFrame_Fini"]=Module["asm"]["_PyFrame_Fini"]).apply(null,arguments)};var __PyFrame_DebugMallocStats=Module["__PyFrame_DebugMallocStats"]=function(){return(__PyFrame_DebugMallocStats=Module["__PyFrame_DebugMallocStats"]=Module["asm"]["_PyFrame_DebugMallocStats"]).apply(null,arguments)};var _PyFrame_GetCode=Module["_PyFrame_GetCode"]=function(){return(_PyFrame_GetCode=Module["_PyFrame_GetCode"]=Module["asm"]["PyFrame_GetCode"]).apply(null,arguments)};var _PyFrame_GetBack=Module["_PyFrame_GetBack"]=function(){return(_PyFrame_GetBack=Module["_PyFrame_GetBack"]=Module["asm"]["PyFrame_GetBack"]).apply(null,arguments)};var _PyFunction_NewWithQualName=Module["_PyFunction_NewWithQualName"]=function(){return(_PyFunction_NewWithQualName=Module["_PyFunction_NewWithQualName"]=Module["asm"]["PyFunction_NewWithQualName"]).apply(null,arguments)};var _PyFunction_New=Module["_PyFunction_New"]=function(){return(_PyFunction_New=Module["_PyFunction_New"]=Module["asm"]["PyFunction_New"]).apply(null,arguments)};var _PyFunction_GetCode=Module["_PyFunction_GetCode"]=function(){return(_PyFunction_GetCode=Module["_PyFunction_GetCode"]=Module["asm"]["PyFunction_GetCode"]).apply(null,arguments)};var _PyFunction_GetGlobals=Module["_PyFunction_GetGlobals"]=function(){return(_PyFunction_GetGlobals=Module["_PyFunction_GetGlobals"]=Module["asm"]["PyFunction_GetGlobals"]).apply(null,arguments)};var _PyFunction_GetModule=Module["_PyFunction_GetModule"]=function(){return(_PyFunction_GetModule=Module["_PyFunction_GetModule"]=Module["asm"]["PyFunction_GetModule"]).apply(null,arguments)};var _PyFunction_GetDefaults=Module["_PyFunction_GetDefaults"]=function(){return(_PyFunction_GetDefaults=Module["_PyFunction_GetDefaults"]=Module["asm"]["PyFunction_GetDefaults"]).apply(null,arguments)};var _PyFunction_SetDefaults=Module["_PyFunction_SetDefaults"]=function(){return(_PyFunction_SetDefaults=Module["_PyFunction_SetDefaults"]=Module["asm"]["PyFunction_SetDefaults"]).apply(null,arguments)};var _PyFunction_GetKwDefaults=Module["_PyFunction_GetKwDefaults"]=function(){return(_PyFunction_GetKwDefaults=Module["_PyFunction_GetKwDefaults"]=Module["asm"]["PyFunction_GetKwDefaults"]).apply(null,arguments)};var _PyFunction_SetKwDefaults=Module["_PyFunction_SetKwDefaults"]=function(){return(_PyFunction_SetKwDefaults=Module["_PyFunction_SetKwDefaults"]=Module["asm"]["PyFunction_SetKwDefaults"]).apply(null,arguments)};var _PyFunction_GetClosure=Module["_PyFunction_GetClosure"]=function(){return(_PyFunction_GetClosure=Module["_PyFunction_GetClosure"]=Module["asm"]["PyFunction_GetClosure"]).apply(null,arguments)};var _PyFunction_SetClosure=Module["_PyFunction_SetClosure"]=function(){return(_PyFunction_SetClosure=Module["_PyFunction_SetClosure"]=Module["asm"]["PyFunction_SetClosure"]).apply(null,arguments)};var _PyFunction_GetAnnotations=Module["_PyFunction_GetAnnotations"]=function(){return(_PyFunction_GetAnnotations=Module["_PyFunction_GetAnnotations"]=Module["asm"]["PyFunction_GetAnnotations"]).apply(null,arguments)};var _PyFunction_SetAnnotations=Module["_PyFunction_SetAnnotations"]=function(){return(_PyFunction_SetAnnotations=Module["_PyFunction_SetAnnotations"]=Module["asm"]["PyFunction_SetAnnotations"]).apply(null,arguments)};var _PyClassMethod_New=Module["_PyClassMethod_New"]=function(){return(_PyClassMethod_New=Module["_PyClassMethod_New"]=Module["asm"]["PyClassMethod_New"]).apply(null,arguments)};var _PyStaticMethod_New=Module["_PyStaticMethod_New"]=function(){return(_PyStaticMethod_New=Module["_PyStaticMethod_New"]=Module["asm"]["PyStaticMethod_New"]).apply(null,arguments)};var __PyInterpreterState_LookUpID=Module["__PyInterpreterState_LookUpID"]=function(){return(__PyInterpreterState_LookUpID=Module["__PyInterpreterState_LookUpID"]=Module["asm"]["_PyInterpreterState_LookUpID"]).apply(null,arguments)};var __PyInterpreterState_IDDecref=Module["__PyInterpreterState_IDDecref"]=function(){return(__PyInterpreterState_IDDecref=Module["__PyInterpreterState_IDDecref"]=Module["asm"]["_PyInterpreterState_IDDecref"]).apply(null,arguments)};var _PyLong_FromLongLong=Module["_PyLong_FromLongLong"]=function(){return(_PyLong_FromLongLong=Module["_PyLong_FromLongLong"]=Module["asm"]["PyLong_FromLongLong"]).apply(null,arguments)};var _PyLong_AsLongLongAndOverflow=Module["_PyLong_AsLongLongAndOverflow"]=function(){return(_PyLong_AsLongLongAndOverflow=Module["_PyLong_AsLongLongAndOverflow"]=Module["asm"]["PyLong_AsLongLongAndOverflow"]).apply(null,arguments)};var _PyArg_ParseTupleAndKeywords=Module["_PyArg_ParseTupleAndKeywords"]=function(){return(_PyArg_ParseTupleAndKeywords=Module["_PyArg_ParseTupleAndKeywords"]=Module["asm"]["PyArg_ParseTupleAndKeywords"]).apply(null,arguments)};var __PyInterpreterState_IDIncref=Module["__PyInterpreterState_IDIncref"]=function(){return(__PyInterpreterState_IDIncref=Module["__PyInterpreterState_IDIncref"]=Module["asm"]["_PyInterpreterState_IDIncref"]).apply(null,arguments)};var __PyInterpreterID_New=Module["__PyInterpreterID_New"]=function(){return(__PyInterpreterID_New=Module["__PyInterpreterID_New"]=Module["asm"]["_PyInterpreterID_New"]).apply(null,arguments)};var __PyInterpreterState_GetIDObject=Module["__PyInterpreterState_GetIDObject"]=function(){return(__PyInterpreterState_GetIDObject=Module["__PyInterpreterState_GetIDObject"]=Module["asm"]["_PyInterpreterState_GetIDObject"]).apply(null,arguments)};var __PyInterpreterState_IDInitref=Module["__PyInterpreterState_IDInitref"]=function(){return(__PyInterpreterState_IDInitref=Module["__PyInterpreterState_IDInitref"]=Module["asm"]["_PyInterpreterState_IDInitref"]).apply(null,arguments)};var _PyInterpreterState_GetID=Module["_PyInterpreterState_GetID"]=function(){return(_PyInterpreterState_GetID=Module["_PyInterpreterState_GetID"]=Module["asm"]["PyInterpreterState_GetID"]).apply(null,arguments)};var __PyInterpreterID_LookUp=Module["__PyInterpreterID_LookUp"]=function(){return(__PyInterpreterID_LookUp=Module["__PyInterpreterID_LookUp"]=Module["asm"]["_PyInterpreterID_LookUp"]).apply(null,arguments)};var _PyLong_AsLongLong=Module["_PyLong_AsLongLong"]=function(){return(_PyLong_AsLongLong=Module["_PyLong_AsLongLong"]=Module["asm"]["PyLong_AsLongLong"]).apply(null,arguments)};var _PyCallIter_New=Module["_PyCallIter_New"]=function(){return(_PyCallIter_New=Module["_PyCallIter_New"]=Module["asm"]["PyCallIter_New"]).apply(null,arguments)};var __PyList_ClearFreeList=Module["__PyList_ClearFreeList"]=function(){return(__PyList_ClearFreeList=Module["__PyList_ClearFreeList"]=Module["asm"]["_PyList_ClearFreeList"]).apply(null,arguments)};var __PyList_Fini=Module["__PyList_Fini"]=function(){return(__PyList_Fini=Module["__PyList_Fini"]=Module["asm"]["_PyList_Fini"]).apply(null,arguments)};var __PyList_DebugMallocStats=Module["__PyList_DebugMallocStats"]=function(){return(__PyList_DebugMallocStats=Module["__PyList_DebugMallocStats"]=Module["asm"]["_PyList_DebugMallocStats"]).apply(null,arguments)};var _PyList_Insert=Module["_PyList_Insert"]=function(){return(_PyList_Insert=Module["_PyList_Insert"]=Module["asm"]["PyList_Insert"]).apply(null,arguments)};var _PyList_GetSlice=Module["_PyList_GetSlice"]=function(){return(_PyList_GetSlice=Module["_PyList_GetSlice"]=Module["asm"]["PyList_GetSlice"]).apply(null,arguments)};var _Py_ReprEnter=Module["_Py_ReprEnter"]=function(){return(_Py_ReprEnter=Module["_Py_ReprEnter"]=Module["asm"]["Py_ReprEnter"]).apply(null,arguments)};var __PyUnicodeWriter_WriteChar=Module["__PyUnicodeWriter_WriteChar"]=function(){return(__PyUnicodeWriter_WriteChar=Module["__PyUnicodeWriter_WriteChar"]=Module["asm"]["_PyUnicodeWriter_WriteChar"]).apply(null,arguments)};var _Py_ReprLeave=Module["_Py_ReprLeave"]=function(){return(_Py_ReprLeave=Module["_Py_ReprLeave"]=Module["asm"]["Py_ReprLeave"]).apply(null,arguments)};var __PyArg_NoKwnames=Module["__PyArg_NoKwnames"]=function(){return(__PyArg_NoKwnames=Module["__PyArg_NoKwnames"]=Module["asm"]["_PyArg_NoKwnames"]).apply(null,arguments)};var _PyObject_GC_Track=Module["_PyObject_GC_Track"]=function(){return(_PyObject_GC_Track=Module["_PyObject_GC_Track"]=Module["asm"]["PyObject_GC_Track"]).apply(null,arguments)};var __PyEval_SliceIndexNotNone=Module["__PyEval_SliceIndexNotNone"]=function(){return(__PyEval_SliceIndexNotNone=Module["__PyEval_SliceIndexNotNone"]=Module["asm"]["_PyEval_SliceIndexNotNone"]).apply(null,arguments)};var _PyObject_HashNotImplemented=Module["_PyObject_HashNotImplemented"]=function(){return(_PyObject_HashNotImplemented=Module["_PyObject_HashNotImplemented"]=Module["asm"]["PyObject_HashNotImplemented"]).apply(null,arguments)};var __PyLong_New=Module["__PyLong_New"]=function(){return(__PyLong_New=Module["__PyLong_New"]=Module["asm"]["_PyLong_New"]).apply(null,arguments)};var _PyLong_FromUnsignedLong=Module["_PyLong_FromUnsignedLong"]=function(){return(_PyLong_FromUnsignedLong=Module["_PyLong_FromUnsignedLong"]=Module["asm"]["PyLong_FromUnsignedLong"]).apply(null,arguments)};var _PyLong_FromUnsignedLongLong=Module["_PyLong_FromUnsignedLongLong"]=function(){return(_PyLong_FromUnsignedLongLong=Module["_PyLong_FromUnsignedLongLong"]=Module["asm"]["PyLong_FromUnsignedLongLong"]).apply(null,arguments)};var _PyLong_AsUnsignedLong=Module["_PyLong_AsUnsignedLong"]=function(){return(_PyLong_AsUnsignedLong=Module["_PyLong_AsUnsignedLong"]=Module["asm"]["PyLong_AsUnsignedLong"]).apply(null,arguments)};var _PyLong_AsUnsignedLongMask=Module["_PyLong_AsUnsignedLongMask"]=function(){return(_PyLong_AsUnsignedLongMask=Module["_PyLong_AsUnsignedLongMask"]=Module["asm"]["PyLong_AsUnsignedLongMask"]).apply(null,arguments)};var __Py_bit_length=Module["__Py_bit_length"]=function(){return(__Py_bit_length=Module["__Py_bit_length"]=Module["asm"]["_Py_bit_length"]).apply(null,arguments)};var __PyLong_FromByteArray=Module["__PyLong_FromByteArray"]=function(){return(__PyLong_FromByteArray=Module["__PyLong_FromByteArray"]=Module["asm"]["_PyLong_FromByteArray"]).apply(null,arguments)};var _PyLong_AsVoidPtr=Module["_PyLong_AsVoidPtr"]=function(){return(_PyLong_AsVoidPtr=Module["_PyLong_AsVoidPtr"]=Module["asm"]["PyLong_AsVoidPtr"]).apply(null,arguments)};var _PyLong_AsUnsignedLongLong=Module["_PyLong_AsUnsignedLongLong"]=function(){return(_PyLong_AsUnsignedLongLong=Module["_PyLong_AsUnsignedLongLong"]=Module["asm"]["PyLong_AsUnsignedLongLong"]).apply(null,arguments)};var _PyLong_AsUnsignedLongLongMask=Module["_PyLong_AsUnsignedLongLongMask"]=function(){return(_PyLong_AsUnsignedLongLongMask=Module["_PyLong_AsUnsignedLongLongMask"]=Module["asm"]["PyLong_AsUnsignedLongLongMask"]).apply(null,arguments)};var __PyLong_UnsignedShort_Converter=Module["__PyLong_UnsignedShort_Converter"]=function(){return(__PyLong_UnsignedShort_Converter=Module["__PyLong_UnsignedShort_Converter"]=Module["asm"]["_PyLong_UnsignedShort_Converter"]).apply(null,arguments)};var __PyLong_UnsignedInt_Converter=Module["__PyLong_UnsignedInt_Converter"]=function(){return(__PyLong_UnsignedInt_Converter=Module["__PyLong_UnsignedInt_Converter"]=Module["asm"]["_PyLong_UnsignedInt_Converter"]).apply(null,arguments)};var __PyLong_UnsignedLong_Converter=Module["__PyLong_UnsignedLong_Converter"]=function(){return(__PyLong_UnsignedLong_Converter=Module["__PyLong_UnsignedLong_Converter"]=Module["asm"]["_PyLong_UnsignedLong_Converter"]).apply(null,arguments)};var __PyLong_UnsignedLongLong_Converter=Module["__PyLong_UnsignedLongLong_Converter"]=function(){return(__PyLong_UnsignedLongLong_Converter=Module["__PyLong_UnsignedLongLong_Converter"]=Module["asm"]["_PyLong_UnsignedLongLong_Converter"]).apply(null,arguments)};var __PyLong_Size_t_Converter=Module["__PyLong_Size_t_Converter"]=function(){return(__PyLong_Size_t_Converter=Module["__PyLong_Size_t_Converter"]=Module["asm"]["_PyLong_Size_t_Converter"]).apply(null,arguments)};var __PyUnicodeWriter_PrepareInternal=Module["__PyUnicodeWriter_PrepareInternal"]=function(){return(__PyUnicodeWriter_PrepareInternal=Module["__PyUnicodeWriter_PrepareInternal"]=Module["asm"]["_PyUnicodeWriter_PrepareInternal"]).apply(null,arguments)};var __PyLong_FormatWriter=Module["__PyLong_FormatWriter"]=function(){return(__PyLong_FormatWriter=Module["__PyLong_FormatWriter"]=Module["asm"]["_PyLong_FormatWriter"]).apply(null,arguments)};var _PyLong_FromUnicode=Module["_PyLong_FromUnicode"]=function(){return(_PyLong_FromUnicode=Module["_PyLong_FromUnicode"]=Module["asm"]["PyLong_FromUnicode"]).apply(null,arguments)};var _PyUnicode_FromWideChar=Module["_PyUnicode_FromWideChar"]=function(){return(_PyUnicode_FromWideChar=Module["_PyUnicode_FromWideChar"]=Module["asm"]["PyUnicode_FromWideChar"]).apply(null,arguments)};var __PyLong_Frexp=Module["__PyLong_Frexp"]=function(){return(__PyLong_Frexp=Module["__PyLong_Frexp"]=Module["asm"]["_PyLong_Frexp"]).apply(null,arguments)};var __PyLong_Rshift=Module["__PyLong_Rshift"]=function(){return(__PyLong_Rshift=Module["__PyLong_Rshift"]=Module["asm"]["_PyLong_Rshift"]).apply(null,arguments)};var __PyLong_GCD=Module["__PyLong_GCD"]=function(){return(__PyLong_GCD=Module["__PyLong_GCD"]=Module["asm"]["_PyLong_GCD"]).apply(null,arguments)};var __PyLong_DivmodNear=Module["__PyLong_DivmodNear"]=function(){return(__PyLong_DivmodNear=Module["__PyLong_DivmodNear"]=Module["asm"]["_PyLong_DivmodNear"]).apply(null,arguments)};var _PyLong_GetInfo=Module["_PyLong_GetInfo"]=function(){return(_PyLong_GetInfo=Module["_PyLong_GetInfo"]=Module["asm"]["PyLong_GetInfo"]).apply(null,arguments)};var __PyLong_Init=Module["__PyLong_Init"]=function(){return(__PyLong_Init=Module["__PyLong_Init"]=Module["asm"]["_PyLong_Init"]).apply(null,arguments)};var __PyLong_Fini=Module["__PyLong_Fini"]=function(){return(__PyLong_Fini=Module["__PyLong_Fini"]=Module["asm"]["_PyLong_Fini"]).apply(null,arguments)};var __PyUnicode_EqualToASCIIId=Module["__PyUnicode_EqualToASCIIId"]=function(){return(__PyUnicode_EqualToASCIIId=Module["__PyUnicode_EqualToASCIIId"]=Module["asm"]["_PyUnicode_EqualToASCIIId"]).apply(null,arguments)};var _PyObject_Bytes=Module["_PyObject_Bytes"]=function(){return(_PyObject_Bytes=Module["_PyObject_Bytes"]=Module["asm"]["PyObject_Bytes"]).apply(null,arguments)};var __PyLong_FormatAdvancedWriter=Module["__PyLong_FormatAdvancedWriter"]=function(){return(__PyLong_FormatAdvancedWriter=Module["__PyLong_FormatAdvancedWriter"]=Module["asm"]["_PyLong_FormatAdvancedWriter"]).apply(null,arguments)};var __PyDict_ClearFreeList=Module["__PyDict_ClearFreeList"]=function(){return(__PyDict_ClearFreeList=Module["__PyDict_ClearFreeList"]=Module["asm"]["_PyDict_ClearFreeList"]).apply(null,arguments)};var __PyDict_DebugMallocStats=Module["__PyDict_DebugMallocStats"]=function(){return(__PyDict_DebugMallocStats=Module["__PyDict_DebugMallocStats"]=Module["asm"]["_PyDict_DebugMallocStats"]).apply(null,arguments)};var __PyDict_Fini=Module["__PyDict_Fini"]=function(){return(__PyDict_Fini=Module["__PyDict_Fini"]=Module["asm"]["_PyDict_Fini"]).apply(null,arguments)};var __PyDict_CheckConsistency=Module["__PyDict_CheckConsistency"]=function(){return(__PyDict_CheckConsistency=Module["__PyDict_CheckConsistency"]=Module["asm"]["_PyDict_CheckConsistency"]).apply(null,arguments)};var __PyObject_AssertFailed=Module["__PyObject_AssertFailed"]=function(){return(__PyObject_AssertFailed=Module["__PyObject_AssertFailed"]=Module["asm"]["_PyObject_AssertFailed"]).apply(null,arguments)};var __PyDict_HasOnlyStringKeys=Module["__PyDict_HasOnlyStringKeys"]=function(){return(__PyDict_HasOnlyStringKeys=Module["__PyDict_HasOnlyStringKeys"]=Module["asm"]["_PyDict_HasOnlyStringKeys"]).apply(null,arguments)};var __PyDict_MaybeUntrack=Module["__PyDict_MaybeUntrack"]=function(){return(__PyDict_MaybeUntrack=Module["__PyDict_MaybeUntrack"]=Module["asm"]["_PyDict_MaybeUntrack"]).apply(null,arguments)};var _PyObject_IS_GC=Module["_PyObject_IS_GC"]=function(){return(_PyObject_IS_GC=Module["_PyObject_IS_GC"]=Module["asm"]["PyObject_IS_GC"]).apply(null,arguments)};var _PyDict_GetItem=Module["_PyDict_GetItem"]=function(){return(_PyDict_GetItem=Module["_PyDict_GetItem"]=Module["asm"]["PyDict_GetItem"]).apply(null,arguments)};var __PyDict_GetItem_KnownHash=Module["__PyDict_GetItem_KnownHash"]=function(){return(__PyDict_GetItem_KnownHash=Module["__PyDict_GetItem_KnownHash"]=Module["asm"]["_PyDict_GetItem_KnownHash"]).apply(null,arguments)};var __PyDict_GetItemStringWithError=Module["__PyDict_GetItemStringWithError"]=function(){return(__PyDict_GetItemStringWithError=Module["__PyDict_GetItemStringWithError"]=Module["asm"]["_PyDict_GetItemStringWithError"]).apply(null,arguments)};var __PyDict_LoadGlobal=Module["__PyDict_LoadGlobal"]=function(){return(__PyDict_LoadGlobal=Module["__PyDict_LoadGlobal"]=Module["asm"]["_PyDict_LoadGlobal"]).apply(null,arguments)};var __PyDict_SetItem_KnownHash=Module["__PyDict_SetItem_KnownHash"]=function(){return(__PyDict_SetItem_KnownHash=Module["__PyDict_SetItem_KnownHash"]=Module["asm"]["_PyDict_SetItem_KnownHash"]).apply(null,arguments)};var _PyDict_DelItem=Module["_PyDict_DelItem"]=function(){return(_PyDict_DelItem=Module["_PyDict_DelItem"]=Module["asm"]["PyDict_DelItem"]).apply(null,arguments)};var __PyDict_DelItem_KnownHash=Module["__PyDict_DelItem_KnownHash"]=function(){return(__PyDict_DelItem_KnownHash=Module["__PyDict_DelItem_KnownHash"]=Module["asm"]["_PyDict_DelItem_KnownHash"]).apply(null,arguments)};var __PyErr_SetKeyError=Module["__PyErr_SetKeyError"]=function(){return(__PyErr_SetKeyError=Module["__PyErr_SetKeyError"]=Module["asm"]["_PyErr_SetKeyError"]).apply(null,arguments)};var __PyDict_DelItemIf=Module["__PyDict_DelItemIf"]=function(){return(__PyDict_DelItemIf=Module["__PyDict_DelItemIf"]=Module["asm"]["_PyDict_DelItemIf"]).apply(null,arguments)};var _PyDict_Clear=Module["_PyDict_Clear"]=function(){return(_PyDict_Clear=Module["_PyDict_Clear"]=Module["asm"]["PyDict_Clear"]).apply(null,arguments)};var __PyDict_Next=Module["__PyDict_Next"]=function(){return(__PyDict_Next=Module["__PyDict_Next"]=Module["asm"]["_PyDict_Next"]).apply(null,arguments)};var __PyDict_Pop_KnownHash=Module["__PyDict_Pop_KnownHash"]=function(){return(__PyDict_Pop_KnownHash=Module["__PyDict_Pop_KnownHash"]=Module["asm"]["_PyDict_Pop_KnownHash"]).apply(null,arguments)};var __PyDict_Pop=Module["__PyDict_Pop"]=function(){return(__PyDict_Pop=Module["__PyDict_Pop"]=Module["asm"]["_PyDict_Pop"]).apply(null,arguments)};var __PyDict_FromKeys=Module["__PyDict_FromKeys"]=function(){return(__PyDict_FromKeys=Module["__PyDict_FromKeys"]=Module["asm"]["_PyDict_FromKeys"]).apply(null,arguments)};var _PyDict_MergeFromSeq2=Module["_PyDict_MergeFromSeq2"]=function(){return(_PyDict_MergeFromSeq2=Module["_PyDict_MergeFromSeq2"]=Module["asm"]["PyDict_MergeFromSeq2"]).apply(null,arguments)};var _PyDict_Update=Module["_PyDict_Update"]=function(){return(_PyDict_Update=Module["_PyDict_Update"]=Module["asm"]["PyDict_Update"]).apply(null,arguments)};var _PyDict_Merge=Module["_PyDict_Merge"]=function(){return(_PyDict_Merge=Module["_PyDict_Merge"]=Module["asm"]["PyDict_Merge"]).apply(null,arguments)};var __PyDict_MergeEx=Module["__PyDict_MergeEx"]=function(){return(__PyDict_MergeEx=Module["__PyDict_MergeEx"]=Module["asm"]["_PyDict_MergeEx"]).apply(null,arguments)};var _PyDict_Size=Module["_PyDict_Size"]=function(){return(_PyDict_Size=Module["_PyDict_Size"]=Module["asm"]["PyDict_Size"]).apply(null,arguments)};var _PyDict_SetDefault=Module["_PyDict_SetDefault"]=function(){return(_PyDict_SetDefault=Module["_PyDict_SetDefault"]=Module["asm"]["PyDict_SetDefault"]).apply(null,arguments)};var __PyDict_SizeOf=Module["__PyDict_SizeOf"]=function(){return(__PyDict_SizeOf=Module["__PyDict_SizeOf"]=Module["asm"]["_PyDict_SizeOf"]).apply(null,arguments)};var __PyDict_KeysSize=Module["__PyDict_KeysSize"]=function(){return(__PyDict_KeysSize=Module["__PyDict_KeysSize"]=Module["asm"]["_PyDict_KeysSize"]).apply(null,arguments)};var __PyDict_Contains=Module["__PyDict_Contains"]=function(){return(__PyDict_Contains=Module["__PyDict_Contains"]=Module["asm"]["_PyDict_Contains"]).apply(null,arguments)};var _PyArg_ValidateKeywordArguments=Module["_PyArg_ValidateKeywordArguments"]=function(){return(_PyArg_ValidateKeywordArguments=Module["_PyArg_ValidateKeywordArguments"]=Module["asm"]["PyArg_ValidateKeywordArguments"]).apply(null,arguments)};var __PyDict_GetItemId=Module["__PyDict_GetItemId"]=function(){return(__PyDict_GetItemId=Module["__PyDict_GetItemId"]=Module["asm"]["_PyDict_GetItemId"]).apply(null,arguments)};var _PyDict_GetItemString=Module["_PyDict_GetItemString"]=function(){return(_PyDict_GetItemString=Module["_PyDict_GetItemString"]=Module["asm"]["PyDict_GetItemString"]).apply(null,arguments)};var __PyDict_DelItemId=Module["__PyDict_DelItemId"]=function(){return(__PyDict_DelItemId=Module["__PyDict_DelItemId"]=Module["asm"]["_PyDict_DelItemId"]).apply(null,arguments)};var _PyDict_DelItemString=Module["_PyDict_DelItemString"]=function(){return(_PyDict_DelItemString=Module["_PyDict_DelItemString"]=Module["asm"]["PyDict_DelItemString"]).apply(null,arguments)};var __PyDictView_New=Module["__PyDictView_New"]=function(){return(__PyDictView_New=Module["__PyDictView_New"]=Module["asm"]["_PyDictView_New"]).apply(null,arguments)};var __PyDictView_Intersect=Module["__PyDictView_Intersect"]=function(){return(__PyDictView_Intersect=Module["__PyDictView_Intersect"]=Module["asm"]["_PyDictView_Intersect"]).apply(null,arguments)};var _PySet_Add=Module["_PySet_Add"]=function(){return(_PySet_Add=Module["_PySet_Add"]=Module["asm"]["PySet_Add"]).apply(null,arguments)};var __PyDict_NewKeysForClass=Module["__PyDict_NewKeysForClass"]=function(){return(__PyDict_NewKeysForClass=Module["__PyDict_NewKeysForClass"]=Module["asm"]["_PyDict_NewKeysForClass"]).apply(null,arguments)};var __PyObjectDict_SetItem=Module["__PyObjectDict_SetItem"]=function(){return(__PyObjectDict_SetItem=Module["__PyObjectDict_SetItem"]=Module["asm"]["_PyObjectDict_SetItem"]).apply(null,arguments)};var __PyDictKeys_DecRef=Module["__PyDictKeys_DecRef"]=function(){return(__PyDictKeys_DecRef=Module["__PyDictKeys_DecRef"]=Module["asm"]["_PyDictKeys_DecRef"]).apply(null,arguments)};var _PyODict_New=Module["_PyODict_New"]=function(){return(_PyODict_New=Module["_PyODict_New"]=Module["asm"]["PyODict_New"]).apply(null,arguments)};var _PyODict_SetItem=Module["_PyODict_SetItem"]=function(){return(_PyODict_SetItem=Module["_PyODict_SetItem"]=Module["asm"]["PyODict_SetItem"]).apply(null,arguments)};var __PyErr_ChainExceptions=Module["__PyErr_ChainExceptions"]=function(){return(__PyErr_ChainExceptions=Module["__PyErr_ChainExceptions"]=Module["asm"]["_PyErr_ChainExceptions"]).apply(null,arguments)};var _PyODict_DelItem=Module["_PyODict_DelItem"]=function(){return(_PyODict_DelItem=Module["_PyODict_DelItem"]=Module["asm"]["PyODict_DelItem"]).apply(null,arguments)};var _PyMemoryView_FromMemory=Module["_PyMemoryView_FromMemory"]=function(){return(_PyMemoryView_FromMemory=Module["_PyMemoryView_FromMemory"]=Module["asm"]["PyMemoryView_FromMemory"]).apply(null,arguments)};var _PyMemoryView_FromBuffer=Module["_PyMemoryView_FromBuffer"]=function(){return(_PyMemoryView_FromBuffer=Module["_PyMemoryView_FromBuffer"]=Module["asm"]["PyMemoryView_FromBuffer"]).apply(null,arguments)};var _PyMemoryView_GetContiguous=Module["_PyMemoryView_GetContiguous"]=function(){return(_PyMemoryView_GetContiguous=Module["_PyMemoryView_GetContiguous"]=Module["asm"]["PyMemoryView_GetContiguous"]).apply(null,arguments)};var _PyUnicode_AsASCIIString=Module["_PyUnicode_AsASCIIString"]=function(){return(_PyUnicode_AsASCIIString=Module["_PyUnicode_AsASCIIString"]=Module["asm"]["PyUnicode_AsASCIIString"]).apply(null,arguments)};var _PyCFunction_New=Module["_PyCFunction_New"]=function(){return(_PyCFunction_New=Module["_PyCFunction_New"]=Module["asm"]["PyCFunction_New"]).apply(null,arguments)};var _PyCFunction_NewEx=Module["_PyCFunction_NewEx"]=function(){return(_PyCFunction_NewEx=Module["_PyCFunction_NewEx"]=Module["asm"]["PyCFunction_NewEx"]).apply(null,arguments)};var _PyCFunction_GetFunction=Module["_PyCFunction_GetFunction"]=function(){return(_PyCFunction_GetFunction=Module["_PyCFunction_GetFunction"]=Module["asm"]["PyCFunction_GetFunction"]).apply(null,arguments)};var _PyCFunction_GetSelf=Module["_PyCFunction_GetSelf"]=function(){return(_PyCFunction_GetSelf=Module["_PyCFunction_GetSelf"]=Module["asm"]["PyCFunction_GetSelf"]).apply(null,arguments)};var _PyCFunction_GetFlags=Module["_PyCFunction_GetFlags"]=function(){return(_PyCFunction_GetFlags=Module["_PyCFunction_GetFlags"]=Module["asm"]["PyCFunction_GetFlags"]).apply(null,arguments)};var _PyCMethod_GetClass=Module["_PyCMethod_GetClass"]=function(){return(_PyCMethod_GetClass=Module["_PyCMethod_GetClass"]=Module["asm"]["PyCMethod_GetClass"]).apply(null,arguments)};var _PyModuleDef_Init=Module["_PyModuleDef_Init"]=function(){return(_PyModuleDef_Init=Module["_PyModuleDef_Init"]=Module["asm"]["PyModuleDef_Init"]).apply(null,arguments)};var _PyModule_NewObject=Module["_PyModule_NewObject"]=function(){return(_PyModule_NewObject=Module["_PyModule_NewObject"]=Module["asm"]["PyModule_NewObject"]).apply(null,arguments)};var _PyModule_New=Module["_PyModule_New"]=function(){return(_PyModule_New=Module["_PyModule_New"]=Module["asm"]["PyModule_New"]).apply(null,arguments)};var __PyImport_IsInitialized=Module["__PyImport_IsInitialized"]=function(){return(__PyImport_IsInitialized=Module["__PyImport_IsInitialized"]=Module["asm"]["_PyImport_IsInitialized"]).apply(null,arguments)};var __PyModule_CreateInitialized=Module["__PyModule_CreateInitialized"]=function(){return(__PyModule_CreateInitialized=Module["__PyModule_CreateInitialized"]=Module["asm"]["_PyModule_CreateInitialized"]).apply(null,arguments)};var _strrchr=Module["_strrchr"]=function(){return(_strrchr=Module["_strrchr"]=Module["asm"]["strrchr"]).apply(null,arguments)};var _PyModule_SetDocString=Module["_PyModule_SetDocString"]=function(){return(_PyModule_SetDocString=Module["_PyModule_SetDocString"]=Module["asm"]["PyModule_SetDocString"]).apply(null,arguments)};var _PyModule_FromDefAndSpec2=Module["_PyModule_FromDefAndSpec2"]=function(){return(_PyModule_FromDefAndSpec2=Module["_PyModule_FromDefAndSpec2"]=Module["asm"]["PyModule_FromDefAndSpec2"]).apply(null,arguments)};var _PyModule_ExecDef=Module["_PyModule_ExecDef"]=function(){return(_PyModule_ExecDef=Module["_PyModule_ExecDef"]=Module["asm"]["PyModule_ExecDef"]).apply(null,arguments)};var _PyModule_GetName=Module["_PyModule_GetName"]=function(){return(_PyModule_GetName=Module["_PyModule_GetName"]=Module["asm"]["PyModule_GetName"]).apply(null,arguments)};var _PyModule_GetNameObject=Module["_PyModule_GetNameObject"]=function(){return(_PyModule_GetNameObject=Module["_PyModule_GetNameObject"]=Module["asm"]["PyModule_GetNameObject"]).apply(null,arguments)};var _PyModule_GetFilenameObject=Module["_PyModule_GetFilenameObject"]=function(){return(_PyModule_GetFilenameObject=Module["_PyModule_GetFilenameObject"]=Module["asm"]["PyModule_GetFilenameObject"]).apply(null,arguments)};var _PyModule_GetFilename=Module["_PyModule_GetFilename"]=function(){return(_PyModule_GetFilename=Module["_PyModule_GetFilename"]=Module["asm"]["PyModule_GetFilename"]).apply(null,arguments)};var _PyModule_GetDef=Module["_PyModule_GetDef"]=function(){return(_PyModule_GetDef=Module["_PyModule_GetDef"]=Module["asm"]["PyModule_GetDef"]).apply(null,arguments)};var _PyModule_GetState=Module["_PyModule_GetState"]=function(){return(_PyModule_GetState=Module["_PyModule_GetState"]=Module["asm"]["PyModule_GetState"]).apply(null,arguments)};var __PyModule_Clear=Module["__PyModule_Clear"]=function(){return(__PyModule_Clear=Module["__PyModule_Clear"]=Module["asm"]["_PyModule_Clear"]).apply(null,arguments)};var __PyModule_ClearDict=Module["__PyModule_ClearDict"]=function(){return(__PyModule_ClearDict=Module["__PyModule_ClearDict"]=Module["asm"]["_PyModule_ClearDict"]).apply(null,arguments)};var __PyModuleSpec_IsInitializing=Module["__PyModuleSpec_IsInitializing"]=function(){return(__PyModuleSpec_IsInitializing=Module["__PyModuleSpec_IsInitializing"]=Module["asm"]["_PyModuleSpec_IsInitializing"]).apply(null,arguments)};var _PySys_FormatStderr=Module["_PySys_FormatStderr"]=function(){return(_PySys_FormatStderr=Module["_PySys_FormatStderr"]=Module["asm"]["PySys_FormatStderr"]).apply(null,arguments)};var __PyNamespace_New=Module["__PyNamespace_New"]=function(){return(__PyNamespace_New=Module["__PyNamespace_New"]=Module["asm"]["_PyNamespace_New"]).apply(null,arguments)};var __PyObject_CheckConsistency=Module["__PyObject_CheckConsistency"]=function(){return(__PyObject_CheckConsistency=Module["__PyObject_CheckConsistency"]=Module["asm"]["_PyObject_CheckConsistency"]).apply(null,arguments)};var __PyType_CheckConsistency=Module["__PyType_CheckConsistency"]=function(){return(__PyType_CheckConsistency=Module["__PyType_CheckConsistency"]=Module["asm"]["_PyType_CheckConsistency"]).apply(null,arguments)};var __PyUnicode_CheckConsistency=Module["__PyUnicode_CheckConsistency"]=function(){return(__PyUnicode_CheckConsistency=Module["__PyUnicode_CheckConsistency"]=Module["asm"]["_PyUnicode_CheckConsistency"]).apply(null,arguments)};var __PyObject_IsFreed=Module["__PyObject_IsFreed"]=function(){return(__PyObject_IsFreed=Module["__PyObject_IsFreed"]=Module["asm"]["_PyObject_IsFreed"]).apply(null,arguments)};var __PyMem_DumpTraceback=Module["__PyMem_DumpTraceback"]=function(){return(__PyMem_DumpTraceback=Module["__PyMem_DumpTraceback"]=Module["asm"]["_PyMem_DumpTraceback"]).apply(null,arguments)};var __PyObject_Dump=Module["__PyObject_Dump"]=function(){return(__PyObject_Dump=Module["__PyObject_Dump"]=Module["asm"]["_PyObject_Dump"]).apply(null,arguments)};var _Py_IncRef=Module["_Py_IncRef"]=function(){return(_Py_IncRef=Module["_Py_IncRef"]=Module["asm"]["Py_IncRef"]).apply(null,arguments)};var _Py_DecRef=Module["_Py_DecRef"]=function(){return(_Py_DecRef=Module["_Py_DecRef"]=Module["asm"]["Py_DecRef"]).apply(null,arguments)};var _PyObject_Init=Module["_PyObject_Init"]=function(){return(_PyObject_Init=Module["_PyObject_Init"]=Module["asm"]["PyObject_Init"]).apply(null,arguments)};var __PyTraceMalloc_NewReference=Module["__PyTraceMalloc_NewReference"]=function(){return(__PyTraceMalloc_NewReference=Module["__PyTraceMalloc_NewReference"]=Module["asm"]["_PyTraceMalloc_NewReference"]).apply(null,arguments)};var _PyObject_InitVar=Module["_PyObject_InitVar"]=function(){return(_PyObject_InitVar=Module["_PyObject_InitVar"]=Module["asm"]["PyObject_InitVar"]).apply(null,arguments)};var __PyObject_NewVar=Module["__PyObject_NewVar"]=function(){return(__PyObject_NewVar=Module["__PyObject_NewVar"]=Module["asm"]["_PyObject_NewVar"]).apply(null,arguments)};var _PyObject_CallFinalizer=Module["_PyObject_CallFinalizer"]=function(){return(_PyObject_CallFinalizer=Module["_PyObject_CallFinalizer"]=Module["asm"]["PyObject_CallFinalizer"]).apply(null,arguments)};var _PyObject_Print=Module["_PyObject_Print"]=function(){return(_PyObject_Print=Module["_PyObject_Print"]=Module["asm"]["PyObject_Print"]).apply(null,arguments)};var _ferror=Module["_ferror"]=function(){return(_ferror=Module["_ferror"]=Module["asm"]["ferror"]).apply(null,arguments)};var __Py_BreakPoint=Module["__Py_BreakPoint"]=function(){return(__Py_BreakPoint=Module["__Py_BreakPoint"]=Module["asm"]["_Py_BreakPoint"]).apply(null,arguments)};var _PyGILState_Ensure=Module["_PyGILState_Ensure"]=function(){return(_PyGILState_Ensure=Module["_PyGILState_Ensure"]=Module["asm"]["PyGILState_Ensure"]).apply(null,arguments)};var _PyGILState_Release=Module["_PyGILState_Release"]=function(){return(_PyGILState_Release=Module["_PyGILState_Release"]=Module["asm"]["PyGILState_Release"]).apply(null,arguments)};var __PyUnicode_AsASCIIString=Module["__PyUnicode_AsASCIIString"]=function(){return(__PyUnicode_AsASCIIString=Module["__PyUnicode_AsASCIIString"]=Module["asm"]["_PyUnicode_AsASCIIString"]).apply(null,arguments)};var _PyUnicode_DecodeASCII=Module["_PyUnicode_DecodeASCII"]=function(){return(_PyUnicode_DecodeASCII=Module["_PyUnicode_DecodeASCII"]=Module["asm"]["PyUnicode_DecodeASCII"]).apply(null,arguments)};var __PyObject_LookupAttr=Module["__PyObject_LookupAttr"]=function(){return(__PyObject_LookupAttr=Module["__PyObject_LookupAttr"]=Module["asm"]["_PyObject_LookupAttr"]).apply(null,arguments)};var _PyObject_HasAttrString=Module["_PyObject_HasAttrString"]=function(){return(_PyObject_HasAttrString=Module["_PyObject_HasAttrString"]=Module["asm"]["PyObject_HasAttrString"]).apply(null,arguments)};var __PyObject_GenericGetAttrWithDict=Module["__PyObject_GenericGetAttrWithDict"]=function(){return(__PyObject_GenericGetAttrWithDict=Module["__PyObject_GenericGetAttrWithDict"]=Module["asm"]["_PyObject_GenericGetAttrWithDict"]).apply(null,arguments)};var __PyObject_GenericSetAttrWithDict=Module["__PyObject_GenericSetAttrWithDict"]=function(){return(__PyObject_GenericSetAttrWithDict=Module["__PyObject_GenericSetAttrWithDict"]=Module["asm"]["_PyObject_GenericSetAttrWithDict"]).apply(null,arguments)};var _PyObject_Not=Module["_PyObject_Not"]=function(){return(_PyObject_Not=Module["_PyObject_Not"]=Module["asm"]["PyObject_Not"]).apply(null,arguments)};var _PyEval_GetLocals=Module["_PyEval_GetLocals"]=function(){return(_PyEval_GetLocals=Module["_PyEval_GetLocals"]=Module["asm"]["PyEval_GetLocals"]).apply(null,arguments)};var __PyTypes_Init=Module["__PyTypes_Init"]=function(){return(__PyTypes_Init=Module["__PyTypes_Init"]=Module["asm"]["_PyTypes_Init"]).apply(null,arguments)};var __PyTypes_InitSlotDefs=Module["__PyTypes_InitSlotDefs"]=function(){return(__PyTypes_InitSlotDefs=Module["__PyTypes_InitSlotDefs"]=Module["asm"]["_PyTypes_InitSlotDefs"]).apply(null,arguments)};var __PyObject_DebugTypeStats=Module["__PyObject_DebugTypeStats"]=function(){return(__PyObject_DebugTypeStats=Module["__PyObject_DebugTypeStats"]=Module["asm"]["_PyObject_DebugTypeStats"]).apply(null,arguments)};var __PyTuple_DebugMallocStats=Module["__PyTuple_DebugMallocStats"]=function(){return(__PyTuple_DebugMallocStats=Module["__PyTuple_DebugMallocStats"]=Module["asm"]["_PyTuple_DebugMallocStats"]).apply(null,arguments)};var _PyThreadState_GetDict=Module["_PyThreadState_GetDict"]=function(){return(_PyThreadState_GetDict=Module["_PyThreadState_GetDict"]=Module["asm"]["PyThreadState_GetDict"]).apply(null,arguments)};var __PyTrash_deposit_object=Module["__PyTrash_deposit_object"]=function(){return(__PyTrash_deposit_object=Module["__PyTrash_deposit_object"]=Module["asm"]["_PyTrash_deposit_object"]).apply(null,arguments)};var __PyTrash_thread_deposit_object=Module["__PyTrash_thread_deposit_object"]=function(){return(__PyTrash_thread_deposit_object=Module["__PyTrash_thread_deposit_object"]=Module["asm"]["_PyTrash_thread_deposit_object"]).apply(null,arguments)};var __PyTrash_destroy_chain=Module["__PyTrash_destroy_chain"]=function(){return(__PyTrash_destroy_chain=Module["__PyTrash_destroy_chain"]=Module["asm"]["_PyTrash_destroy_chain"]).apply(null,arguments)};var __PyTrash_thread_destroy_chain=Module["__PyTrash_thread_destroy_chain"]=function(){return(__PyTrash_thread_destroy_chain=Module["__PyTrash_thread_destroy_chain"]=Module["asm"]["_PyTrash_thread_destroy_chain"]).apply(null,arguments)};var _PyObject_GET_WEAKREFS_LISTPTR=Module["_PyObject_GET_WEAKREFS_LISTPTR"]=function(){return(_PyObject_GET_WEAKREFS_LISTPTR=Module["_PyObject_GET_WEAKREFS_LISTPTR"]=Module["asm"]["PyObject_GET_WEAKREFS_LISTPTR"]).apply(null,arguments)};var __PyMem_SetDefaultAllocator=Module["__PyMem_SetDefaultAllocator"]=function(){return(__PyMem_SetDefaultAllocator=Module["__PyMem_SetDefaultAllocator"]=Module["asm"]["_PyMem_SetDefaultAllocator"]).apply(null,arguments)};var __PyMem_GetAllocatorName=Module["__PyMem_GetAllocatorName"]=function(){return(__PyMem_GetAllocatorName=Module["__PyMem_GetAllocatorName"]=Module["asm"]["_PyMem_GetAllocatorName"]).apply(null,arguments)};var __PyMem_SetupAllocators=Module["__PyMem_SetupAllocators"]=function(){return(__PyMem_SetupAllocators=Module["__PyMem_SetupAllocators"]=Module["asm"]["_PyMem_SetupAllocators"]).apply(null,arguments)};var _calloc=Module["_calloc"]=function(){return(_calloc=Module["_calloc"]=Module["asm"]["calloc"]).apply(null,arguments)};var _PyMem_SetAllocator=Module["_PyMem_SetAllocator"]=function(){return(_PyMem_SetAllocator=Module["_PyMem_SetAllocator"]=Module["asm"]["PyMem_SetAllocator"]).apply(null,arguments)};var _PyMem_SetupDebugHooks=Module["_PyMem_SetupDebugHooks"]=function(){return(_PyMem_SetupDebugHooks=Module["_PyMem_SetupDebugHooks"]=Module["asm"]["PyMem_SetupDebugHooks"]).apply(null,arguments)};var __PyMem_GetCurrentAllocatorName=Module["__PyMem_GetCurrentAllocatorName"]=function(){return(__PyMem_GetCurrentAllocatorName=Module["__PyMem_GetCurrentAllocatorName"]=Module["asm"]["_PyMem_GetCurrentAllocatorName"]).apply(null,arguments)};var _PyGILState_Check=Module["_PyGILState_Check"]=function(){return(_PyGILState_Check=Module["_PyGILState_Check"]=Module["asm"]["PyGILState_Check"]).apply(null,arguments)};var _PyMem_GetAllocator=Module["_PyMem_GetAllocator"]=function(){return(_PyMem_GetAllocator=Module["_PyMem_GetAllocator"]=Module["asm"]["PyMem_GetAllocator"]).apply(null,arguments)};var _PyObject_GetArenaAllocator=Module["_PyObject_GetArenaAllocator"]=function(){return(_PyObject_GetArenaAllocator=Module["_PyObject_GetArenaAllocator"]=Module["asm"]["PyObject_GetArenaAllocator"]).apply(null,arguments)};var _PyObject_SetArenaAllocator=Module["_PyObject_SetArenaAllocator"]=function(){return(_PyObject_SetArenaAllocator=Module["_PyObject_SetArenaAllocator"]=Module["asm"]["PyObject_SetArenaAllocator"]).apply(null,arguments)};var _PyMem_RawCalloc=Module["_PyMem_RawCalloc"]=function(){return(_PyMem_RawCalloc=Module["_PyMem_RawCalloc"]=Module["asm"]["PyMem_RawCalloc"]).apply(null,arguments)};var __PyMem_RawWcsdup=Module["__PyMem_RawWcsdup"]=function(){return(__PyMem_RawWcsdup=Module["__PyMem_RawWcsdup"]=Module["asm"]["_PyMem_RawWcsdup"]).apply(null,arguments)};var _wcslen=Module["_wcslen"]=function(){return(_wcslen=Module["_wcslen"]=Module["asm"]["wcslen"]).apply(null,arguments)};var __PyMem_RawStrdup=Module["__PyMem_RawStrdup"]=function(){return(__PyMem_RawStrdup=Module["__PyMem_RawStrdup"]=Module["asm"]["_PyMem_RawStrdup"]).apply(null,arguments)};var __PyMem_Strdup=Module["__PyMem_Strdup"]=function(){return(__PyMem_Strdup=Module["__PyMem_Strdup"]=Module["asm"]["_PyMem_Strdup"]).apply(null,arguments)};var __Py_GetAllocatedBlocks=Module["__Py_GetAllocatedBlocks"]=function(){return(__Py_GetAllocatedBlocks=Module["__Py_GetAllocatedBlocks"]=Module["asm"]["_Py_GetAllocatedBlocks"]).apply(null,arguments)};var __Py_FatalErrorFormat=Module["__Py_FatalErrorFormat"]=function(){return(__Py_FatalErrorFormat=Module["__Py_FatalErrorFormat"]=Module["asm"]["_Py_FatalErrorFormat"]).apply(null,arguments)};var _PyPickleBuffer_FromObject=Module["_PyPickleBuffer_FromObject"]=function(){return(_PyPickleBuffer_FromObject=Module["_PyPickleBuffer_FromObject"]=Module["asm"]["PyPickleBuffer_FromObject"]).apply(null,arguments)};var _PyPickleBuffer_GetBuffer=Module["_PyPickleBuffer_GetBuffer"]=function(){return(_PyPickleBuffer_GetBuffer=Module["_PyPickleBuffer_GetBuffer"]=Module["asm"]["PyPickleBuffer_GetBuffer"]).apply(null,arguments)};var _PyPickleBuffer_Release=Module["_PyPickleBuffer_Release"]=function(){return(_PyPickleBuffer_Release=Module["_PyPickleBuffer_Release"]=Module["asm"]["PyPickleBuffer_Release"]).apply(null,arguments)};var __PySlice_GetLongIndices=Module["__PySlice_GetLongIndices"]=function(){return(__PySlice_GetLongIndices=Module["__PySlice_GetLongIndices"]=Module["asm"]["_PySlice_GetLongIndices"]).apply(null,arguments)};var _PySet_Size=Module["_PySet_Size"]=function(){return(_PySet_Size=Module["_PySet_Size"]=Module["asm"]["PySet_Size"]).apply(null,arguments)};var _PySet_Clear=Module["_PySet_Clear"]=function(){return(_PySet_Clear=Module["_PySet_Clear"]=Module["asm"]["PySet_Clear"]).apply(null,arguments)};var _PySet_Contains=Module["_PySet_Contains"]=function(){return(_PySet_Contains=Module["_PySet_Contains"]=Module["asm"]["PySet_Contains"]).apply(null,arguments)};var __PySet_Fini=Module["__PySet_Fini"]=function(){return(__PySet_Fini=Module["__PySet_Fini"]=Module["asm"]["_PySet_Fini"]).apply(null,arguments)};var _PySet_Pop=Module["_PySet_Pop"]=function(){return(_PySet_Pop=Module["_PySet_Pop"]=Module["asm"]["PySet_Pop"]).apply(null,arguments)};var __PyUnicode_EQ=Module["__PyUnicode_EQ"]=function(){return(__PyUnicode_EQ=Module["__PyUnicode_EQ"]=Module["asm"]["_PyUnicode_EQ"]).apply(null,arguments)};var __PySlice_Fini=Module["__PySlice_Fini"]=function(){return(__PySlice_Fini=Module["__PySlice_Fini"]=Module["asm"]["_PySlice_Fini"]).apply(null,arguments)};var _PySlice_New=Module["_PySlice_New"]=function(){return(_PySlice_New=Module["_PySlice_New"]=Module["asm"]["PySlice_New"]).apply(null,arguments)};var _PySlice_GetIndices=Module["_PySlice_GetIndices"]=function(){return(_PySlice_GetIndices=Module["_PySlice_GetIndices"]=Module["asm"]["PySlice_GetIndices"]).apply(null,arguments)};var _PySlice_GetIndicesEx=Module["_PySlice_GetIndicesEx"]=function(){return(_PySlice_GetIndicesEx=Module["_PySlice_GetIndicesEx"]=Module["asm"]["PySlice_GetIndicesEx"]).apply(null,arguments)};var _PyStructSequence_SetItem=Module["_PyStructSequence_SetItem"]=function(){return(_PyStructSequence_SetItem=Module["_PyStructSequence_SetItem"]=Module["asm"]["PyStructSequence_SetItem"]).apply(null,arguments)};var _PyStructSequence_GetItem=Module["_PyStructSequence_GetItem"]=function(){return(_PyStructSequence_GetItem=Module["_PyStructSequence_GetItem"]=Module["asm"]["PyStructSequence_GetItem"]).apply(null,arguments)};var _PyStructSequence_InitType=Module["_PyStructSequence_InitType"]=function(){return(_PyStructSequence_InitType=Module["_PyStructSequence_InitType"]=Module["asm"]["PyStructSequence_InitType"]).apply(null,arguments)};var _PyStructSequence_NewType=Module["_PyStructSequence_NewType"]=function(){return(_PyStructSequence_NewType=Module["_PyStructSequence_NewType"]=Module["asm"]["PyStructSequence_NewType"]).apply(null,arguments)};var __PyStructSequence_Init=Module["__PyStructSequence_Init"]=function(){return(__PyStructSequence_Init=Module["__PyStructSequence_Init"]=Module["asm"]["_PyStructSequence_Init"]).apply(null,arguments)};var _PyTuple_SetItem=Module["_PyTuple_SetItem"]=function(){return(_PyTuple_SetItem=Module["_PyTuple_SetItem"]=Module["asm"]["PyTuple_SetItem"]).apply(null,arguments)};var __PyTuple_MaybeUntrack=Module["__PyTuple_MaybeUntrack"]=function(){return(__PyTuple_MaybeUntrack=Module["__PyTuple_MaybeUntrack"]=Module["asm"]["_PyTuple_MaybeUntrack"]).apply(null,arguments)};var __PyTuple_ClearFreeList=Module["__PyTuple_ClearFreeList"]=function(){return(__PyTuple_ClearFreeList=Module["__PyTuple_ClearFreeList"]=Module["asm"]["_PyTuple_ClearFreeList"]).apply(null,arguments)};var __PyTuple_Fini=Module["__PyTuple_Fini"]=function(){return(__PyTuple_Fini=Module["__PyTuple_Fini"]=Module["asm"]["_PyTuple_Fini"]).apply(null,arguments)};var _PyType_ClearCache=Module["_PyType_ClearCache"]=function(){return(_PyType_ClearCache=Module["_PyType_ClearCache"]=Module["asm"]["PyType_ClearCache"]).apply(null,arguments)};var _PyType_Modified=Module["_PyType_Modified"]=function(){return(_PyType_Modified=Module["_PyType_Modified"]=Module["asm"]["PyType_Modified"]).apply(null,arguments)};var __PyType_Fini=Module["__PyType_Fini"]=function(){return(__PyType_Fini=Module["__PyType_Fini"]=Module["asm"]["_PyType_Fini"]).apply(null,arguments)};var __PyObject_GC_Malloc=Module["__PyObject_GC_Malloc"]=function(){return(__PyObject_GC_Malloc=Module["__PyObject_GC_Malloc"]=Module["asm"]["_PyObject_GC_Malloc"]).apply(null,arguments)};var __PyType_LookupId=Module["__PyType_LookupId"]=function(){return(__PyType_LookupId=Module["__PyType_LookupId"]=Module["asm"]["_PyType_LookupId"]).apply(null,arguments)};var __PyType_CalculateMetaclass=Module["__PyType_CalculateMetaclass"]=function(){return(__PyType_CalculateMetaclass=Module["__PyType_CalculateMetaclass"]=Module["asm"]["_PyType_CalculateMetaclass"]).apply(null,arguments)};var _PyType_FromModuleAndSpec=Module["_PyType_FromModuleAndSpec"]=function(){return(_PyType_FromModuleAndSpec=Module["_PyType_FromModuleAndSpec"]=Module["asm"]["PyType_FromModuleAndSpec"]).apply(null,arguments)};var __PyWeakref_ClearRef=Module["__PyWeakref_ClearRef"]=function(){return(__PyWeakref_ClearRef=Module["__PyWeakref_ClearRef"]=Module["asm"]["_PyWeakref_ClearRef"]).apply(null,arguments)};var _PyType_FromSpec=Module["_PyType_FromSpec"]=function(){return(_PyType_FromSpec=Module["_PyType_FromSpec"]=Module["asm"]["PyType_FromSpec"]).apply(null,arguments)};var _PyType_GetSlot=Module["_PyType_GetSlot"]=function(){return(_PyType_GetSlot=Module["_PyType_GetSlot"]=Module["asm"]["PyType_GetSlot"]).apply(null,arguments)};var _PyType_GetModule=Module["_PyType_GetModule"]=function(){return(_PyType_GetModule=Module["_PyType_GetModule"]=Module["asm"]["PyType_GetModule"]).apply(null,arguments)};var _PyType_GetModuleState=Module["_PyType_GetModuleState"]=function(){return(_PyType_GetModuleState=Module["_PyType_GetModuleState"]=Module["asm"]["PyType_GetModuleState"]).apply(null,arguments)};var _PyUnicode_IsIdentifier=Module["_PyUnicode_IsIdentifier"]=function(){return(_PyUnicode_IsIdentifier=Module["_PyUnicode_IsIdentifier"]=Module["asm"]["PyUnicode_IsIdentifier"]).apply(null,arguments)};var __Py_Mangle=Module["__Py_Mangle"]=function(){return(__Py_Mangle=Module["__Py_Mangle"]=Module["asm"]["_Py_Mangle"]).apply(null,arguments)};var _PyEval_GetGlobals=Module["_PyEval_GetGlobals"]=function(){return(_PyEval_GetGlobals=Module["_PyEval_GetGlobals"]=Module["asm"]["PyEval_GetGlobals"]).apply(null,arguments)};var _PyWeakref_NewRef=Module["_PyWeakref_NewRef"]=function(){return(_PyWeakref_NewRef=Module["_PyWeakref_NewRef"]=Module["asm"]["PyWeakref_NewRef"]).apply(null,arguments)};var _PyThreadState_GetFrame=Module["_PyThreadState_GetFrame"]=function(){return(_PyThreadState_GetFrame=Module["_PyThreadState_GetFrame"]=Module["asm"]["PyThreadState_GetFrame"]).apply(null,arguments)};var _PyImport_GetModule=Module["_PyImport_GetModule"]=function(){return(_PyImport_GetModule=Module["_PyImport_GetModule"]=Module["asm"]["PyImport_GetModule"]).apply(null,arguments)};var _PyImport_Import=Module["_PyImport_Import"]=function(){return(_PyImport_Import=Module["_PyImport_Import"]=Module["asm"]["PyImport_Import"]).apply(null,arguments)};var __Py_GetErrorHandler=Module["__Py_GetErrorHandler"]=function(){return(__Py_GetErrorHandler=Module["__Py_GetErrorHandler"]=Module["asm"]["_Py_GetErrorHandler"]).apply(null,arguments)};var _PyUnicode_GetMax=Module["_PyUnicode_GetMax"]=function(){return(_PyUnicode_GetMax=Module["_PyUnicode_GetMax"]=Module["asm"]["PyUnicode_GetMax"]).apply(null,arguments)};var __PyUnicode_FastCopyCharacters=Module["__PyUnicode_FastCopyCharacters"]=function(){return(__PyUnicode_FastCopyCharacters=Module["__PyUnicode_FastCopyCharacters"]=Module["asm"]["_PyUnicode_FastCopyCharacters"]).apply(null,arguments)};var _PyUnicode_CopyCharacters=Module["_PyUnicode_CopyCharacters"]=function(){return(_PyUnicode_CopyCharacters=Module["_PyUnicode_CopyCharacters"]=Module["asm"]["PyUnicode_CopyCharacters"]).apply(null,arguments)};var _PyUnicode_Resize=Module["_PyUnicode_Resize"]=function(){return(_PyUnicode_Resize=Module["_PyUnicode_Resize"]=Module["asm"]["PyUnicode_Resize"]).apply(null,arguments)};var _PyUnicode_FromUnicode=Module["_PyUnicode_FromUnicode"]=function(){return(_PyUnicode_FromUnicode=Module["_PyUnicode_FromUnicode"]=Module["asm"]["PyUnicode_FromUnicode"]).apply(null,arguments)};var _PyUnicode_FromKindAndData=Module["_PyUnicode_FromKindAndData"]=function(){return(_PyUnicode_FromKindAndData=Module["_PyUnicode_FromKindAndData"]=Module["asm"]["PyUnicode_FromKindAndData"]).apply(null,arguments)};var __PyUnicode_FindMaxChar=Module["__PyUnicode_FindMaxChar"]=function(){return(__PyUnicode_FindMaxChar=Module["__PyUnicode_FindMaxChar"]=Module["asm"]["_PyUnicode_FindMaxChar"]).apply(null,arguments)};var _PyUnicode_AsUCS4=Module["_PyUnicode_AsUCS4"]=function(){return(_PyUnicode_AsUCS4=Module["_PyUnicode_AsUCS4"]=Module["asm"]["PyUnicode_AsUCS4"]).apply(null,arguments)};var _PyUnicode_AsUCS4Copy=Module["_PyUnicode_AsUCS4Copy"]=function(){return(_PyUnicode_AsUCS4Copy=Module["_PyUnicode_AsUCS4Copy"]=Module["asm"]["PyUnicode_AsUCS4Copy"]).apply(null,arguments)};var _PyUnicode_Fill=Module["_PyUnicode_Fill"]=function(){return(_PyUnicode_Fill=Module["_PyUnicode_Fill"]=Module["asm"]["PyUnicode_Fill"]).apply(null,arguments)};var __PyUnicodeWriter_WriteLatin1String=Module["__PyUnicodeWriter_WriteLatin1String"]=function(){return(__PyUnicodeWriter_WriteLatin1String=Module["__PyUnicodeWriter_WriteLatin1String"]=Module["asm"]["_PyUnicodeWriter_WriteLatin1String"]).apply(null,arguments)};var _PyUnicode_AsWideChar=Module["_PyUnicode_AsWideChar"]=function(){return(_PyUnicode_AsWideChar=Module["_PyUnicode_AsWideChar"]=Module["asm"]["PyUnicode_AsWideChar"]).apply(null,arguments)};var _PyUnicode_AsWideCharString=Module["_PyUnicode_AsWideCharString"]=function(){return(_PyUnicode_AsWideCharString=Module["_PyUnicode_AsWideCharString"]=Module["asm"]["PyUnicode_AsWideCharString"]).apply(null,arguments)};var _PyUnicode_FromOrdinal=Module["_PyUnicode_FromOrdinal"]=function(){return(_PyUnicode_FromOrdinal=Module["_PyUnicode_FromOrdinal"]=Module["asm"]["PyUnicode_FromOrdinal"]).apply(null,arguments)};var _PyUnicode_FromObject=Module["_PyUnicode_FromObject"]=function(){return(_PyUnicode_FromObject=Module["_PyUnicode_FromObject"]=Module["asm"]["PyUnicode_FromObject"]).apply(null,arguments)};var __PyInterpreterState_GetConfig=Module["__PyInterpreterState_GetConfig"]=function(){return(__PyInterpreterState_GetConfig=Module["__PyInterpreterState_GetConfig"]=Module["asm"]["_PyInterpreterState_GetConfig"]).apply(null,arguments)};var __PyCodec_Lookup=Module["__PyCodec_Lookup"]=function(){return(__PyCodec_Lookup=Module["__PyCodec_Lookup"]=Module["asm"]["_PyCodec_Lookup"]).apply(null,arguments)};var _PyCodec_LookupError=Module["_PyCodec_LookupError"]=function(){return(_PyCodec_LookupError=Module["_PyCodec_LookupError"]=Module["asm"]["PyCodec_LookupError"]).apply(null,arguments)};var _PyUnicode_DecodeUTF16Stateful=Module["_PyUnicode_DecodeUTF16Stateful"]=function(){return(_PyUnicode_DecodeUTF16Stateful=Module["_PyUnicode_DecodeUTF16Stateful"]=Module["asm"]["PyUnicode_DecodeUTF16Stateful"]).apply(null,arguments)};var _PyUnicode_DecodeUTF32Stateful=Module["_PyUnicode_DecodeUTF32Stateful"]=function(){return(_PyUnicode_DecodeUTF32Stateful=Module["_PyUnicode_DecodeUTF32Stateful"]=Module["asm"]["PyUnicode_DecodeUTF32Stateful"]).apply(null,arguments)};var __PyCodec_DecodeText=Module["__PyCodec_DecodeText"]=function(){return(__PyCodec_DecodeText=Module["__PyCodec_DecodeText"]=Module["asm"]["_PyCodec_DecodeText"]).apply(null,arguments)};var __Py_normalize_encoding=Module["__Py_normalize_encoding"]=function(){return(__Py_normalize_encoding=Module["__Py_normalize_encoding"]=Module["asm"]["_Py_normalize_encoding"]).apply(null,arguments)};var _PyUnicode_DecodeUTF16=Module["_PyUnicode_DecodeUTF16"]=function(){return(_PyUnicode_DecodeUTF16=Module["_PyUnicode_DecodeUTF16"]=Module["asm"]["PyUnicode_DecodeUTF16"]).apply(null,arguments)};var _PyUnicode_DecodeUTF32=Module["_PyUnicode_DecodeUTF32"]=function(){return(_PyUnicode_DecodeUTF32=Module["_PyUnicode_DecodeUTF32"]=Module["asm"]["PyUnicode_DecodeUTF32"]).apply(null,arguments)};var _PyUnicode_AsDecodedObject=Module["_PyUnicode_AsDecodedObject"]=function(){return(_PyUnicode_AsDecodedObject=Module["_PyUnicode_AsDecodedObject"]=Module["asm"]["PyUnicode_AsDecodedObject"]).apply(null,arguments)};var _PyCodec_Decode=Module["_PyCodec_Decode"]=function(){return(_PyCodec_Decode=Module["_PyCodec_Decode"]=Module["asm"]["PyCodec_Decode"]).apply(null,arguments)};var _PyUnicode_AsDecodedUnicode=Module["_PyUnicode_AsDecodedUnicode"]=function(){return(_PyUnicode_AsDecodedUnicode=Module["_PyUnicode_AsDecodedUnicode"]=Module["asm"]["PyUnicode_AsDecodedUnicode"]).apply(null,arguments)};var _PyUnicode_Encode=Module["_PyUnicode_Encode"]=function(){return(_PyUnicode_Encode=Module["_PyUnicode_Encode"]=Module["asm"]["PyUnicode_Encode"]).apply(null,arguments)};var __PyUnicode_EncodeUTF16=Module["__PyUnicode_EncodeUTF16"]=function(){return(__PyUnicode_EncodeUTF16=Module["__PyUnicode_EncodeUTF16"]=Module["asm"]["_PyUnicode_EncodeUTF16"]).apply(null,arguments)};var __PyUnicode_EncodeUTF32=Module["__PyUnicode_EncodeUTF32"]=function(){return(__PyUnicode_EncodeUTF32=Module["__PyUnicode_EncodeUTF32"]=Module["asm"]["_PyUnicode_EncodeUTF32"]).apply(null,arguments)};var __PyUnicode_AsLatin1String=Module["__PyUnicode_AsLatin1String"]=function(){return(__PyUnicode_AsLatin1String=Module["__PyUnicode_AsLatin1String"]=Module["asm"]["_PyUnicode_AsLatin1String"]).apply(null,arguments)};var __PyCodec_EncodeText=Module["__PyCodec_EncodeText"]=function(){return(__PyCodec_EncodeText=Module["__PyCodec_EncodeText"]=Module["asm"]["_PyCodec_EncodeText"]).apply(null,arguments)};var _PyUnicode_AsEncodedObject=Module["_PyUnicode_AsEncodedObject"]=function(){return(_PyUnicode_AsEncodedObject=Module["_PyUnicode_AsEncodedObject"]=Module["asm"]["PyUnicode_AsEncodedObject"]).apply(null,arguments)};var _PyCodec_Encode=Module["_PyCodec_Encode"]=function(){return(_PyCodec_Encode=Module["_PyCodec_Encode"]=Module["asm"]["PyCodec_Encode"]).apply(null,arguments)};var _PyUnicode_EncodeLocale=Module["_PyUnicode_EncodeLocale"]=function(){return(_PyUnicode_EncodeLocale=Module["_PyUnicode_EncodeLocale"]=Module["asm"]["PyUnicode_EncodeLocale"]).apply(null,arguments)};var __Py_EncodeLocaleEx=Module["__Py_EncodeLocaleEx"]=function(){return(__Py_EncodeLocaleEx=Module["__Py_EncodeLocaleEx"]=Module["asm"]["_Py_EncodeLocaleEx"]).apply(null,arguments)};var _PyCodec_StrictErrors=Module["_PyCodec_StrictErrors"]=function(){return(_PyCodec_StrictErrors=Module["_PyCodec_StrictErrors"]=Module["asm"]["PyCodec_StrictErrors"]).apply(null,arguments)};var _PyUnicode_EncodeFSDefault=Module["_PyUnicode_EncodeFSDefault"]=function(){return(_PyUnicode_EncodeFSDefault=Module["_PyUnicode_EncodeFSDefault"]=Module["asm"]["PyUnicode_EncodeFSDefault"]).apply(null,arguments)};var _wcscmp=Module["_wcscmp"]=function(){return(_wcscmp=Module["_wcscmp"]=Module["asm"]["wcscmp"]).apply(null,arguments)};var _PyUnicode_AsEncodedUnicode=Module["_PyUnicode_AsEncodedUnicode"]=function(){return(_PyUnicode_AsEncodedUnicode=Module["_PyUnicode_AsEncodedUnicode"]=Module["asm"]["PyUnicode_AsEncodedUnicode"]).apply(null,arguments)};var _PyUnicode_DecodeLocaleAndSize=Module["_PyUnicode_DecodeLocaleAndSize"]=function(){return(_PyUnicode_DecodeLocaleAndSize=Module["_PyUnicode_DecodeLocaleAndSize"]=Module["asm"]["PyUnicode_DecodeLocaleAndSize"]).apply(null,arguments)};var __Py_DecodeLocaleEx=Module["__Py_DecodeLocaleEx"]=function(){return(__Py_DecodeLocaleEx=Module["__Py_DecodeLocaleEx"]=Module["asm"]["_Py_DecodeLocaleEx"]).apply(null,arguments)};var _PyUnicode_DecodeLocale=Module["_PyUnicode_DecodeLocale"]=function(){return(_PyUnicode_DecodeLocale=Module["_PyUnicode_DecodeLocale"]=Module["asm"]["PyUnicode_DecodeLocale"]).apply(null,arguments)};var _PyUnicode_DecodeFSDefaultAndSize=Module["_PyUnicode_DecodeFSDefaultAndSize"]=function(){return(_PyUnicode_DecodeFSDefaultAndSize=Module["_PyUnicode_DecodeFSDefaultAndSize"]=Module["asm"]["PyUnicode_DecodeFSDefaultAndSize"]).apply(null,arguments)};var _PyUnicode_FSConverter=Module["_PyUnicode_FSConverter"]=function(){return(_PyUnicode_FSConverter=Module["_PyUnicode_FSConverter"]=Module["asm"]["PyUnicode_FSConverter"]).apply(null,arguments)};var _PyOS_FSPath=Module["_PyOS_FSPath"]=function(){return(_PyOS_FSPath=Module["_PyOS_FSPath"]=Module["asm"]["PyOS_FSPath"]).apply(null,arguments)};var _PyUnicode_FSDecoder=Module["_PyUnicode_FSDecoder"]=function(){return(_PyUnicode_FSDecoder=Module["_PyUnicode_FSDecoder"]=Module["asm"]["PyUnicode_FSDecoder"]).apply(null,arguments)};var _PyUnicode_AsUnicodeAndSize=Module["_PyUnicode_AsUnicodeAndSize"]=function(){return(_PyUnicode_AsUnicodeAndSize=Module["_PyUnicode_AsUnicodeAndSize"]=Module["asm"]["PyUnicode_AsUnicodeAndSize"]).apply(null,arguments)};var _PyUnicode_AsUnicode=Module["_PyUnicode_AsUnicode"]=function(){return(_PyUnicode_AsUnicode=Module["_PyUnicode_AsUnicode"]=Module["asm"]["PyUnicode_AsUnicode"]).apply(null,arguments)};var __PyUnicode_AsUnicode=Module["__PyUnicode_AsUnicode"]=function(){return(__PyUnicode_AsUnicode=Module["__PyUnicode_AsUnicode"]=Module["asm"]["_PyUnicode_AsUnicode"]).apply(null,arguments)};var _PyUnicode_GetSize=Module["_PyUnicode_GetSize"]=function(){return(_PyUnicode_GetSize=Module["_PyUnicode_GetSize"]=Module["asm"]["PyUnicode_GetSize"]).apply(null,arguments)};var _PyUnicode_GetLength=Module["_PyUnicode_GetLength"]=function(){return(_PyUnicode_GetLength=Module["_PyUnicode_GetLength"]=Module["asm"]["PyUnicode_GetLength"]).apply(null,arguments)};var _PyUnicode_WriteChar=Module["_PyUnicode_WriteChar"]=function(){return(_PyUnicode_WriteChar=Module["_PyUnicode_WriteChar"]=Module["asm"]["PyUnicode_WriteChar"]).apply(null,arguments)};var _PyUnicode_DecodeUTF7=Module["_PyUnicode_DecodeUTF7"]=function(){return(_PyUnicode_DecodeUTF7=Module["_PyUnicode_DecodeUTF7"]=Module["asm"]["PyUnicode_DecodeUTF7"]).apply(null,arguments)};var _PyUnicode_DecodeUTF7Stateful=Module["_PyUnicode_DecodeUTF7Stateful"]=function(){return(_PyUnicode_DecodeUTF7Stateful=Module["_PyUnicode_DecodeUTF7Stateful"]=Module["asm"]["PyUnicode_DecodeUTF7Stateful"]).apply(null,arguments)};var __PyUnicode_EncodeUTF7=Module["__PyUnicode_EncodeUTF7"]=function(){return(__PyUnicode_EncodeUTF7=Module["__PyUnicode_EncodeUTF7"]=Module["asm"]["_PyUnicode_EncodeUTF7"]).apply(null,arguments)};var _PyUnicode_EncodeUTF7=Module["_PyUnicode_EncodeUTF7"]=function(){return(_PyUnicode_EncodeUTF7=Module["_PyUnicode_EncodeUTF7"]=Module["asm"]["PyUnicode_EncodeUTF7"]).apply(null,arguments)};var __Py_DecodeUTF8Ex=Module["__Py_DecodeUTF8Ex"]=function(){return(__Py_DecodeUTF8Ex=Module["__Py_DecodeUTF8Ex"]=Module["asm"]["_Py_DecodeUTF8Ex"]).apply(null,arguments)};var __Py_DecodeUTF8_surrogateescape=Module["__Py_DecodeUTF8_surrogateescape"]=function(){return(__Py_DecodeUTF8_surrogateescape=Module["__Py_DecodeUTF8_surrogateescape"]=Module["asm"]["_Py_DecodeUTF8_surrogateescape"]).apply(null,arguments)};var __Py_EncodeUTF8Ex=Module["__Py_EncodeUTF8Ex"]=function(){return(__Py_EncodeUTF8Ex=Module["__Py_EncodeUTF8Ex"]=Module["asm"]["_Py_EncodeUTF8Ex"]).apply(null,arguments)};var _PyUnicode_EncodeUTF8=Module["_PyUnicode_EncodeUTF8"]=function(){return(_PyUnicode_EncodeUTF8=Module["_PyUnicode_EncodeUTF8"]=Module["asm"]["PyUnicode_EncodeUTF8"]).apply(null,arguments)};var _PyUnicode_EncodeUTF32=Module["_PyUnicode_EncodeUTF32"]=function(){return(_PyUnicode_EncodeUTF32=Module["_PyUnicode_EncodeUTF32"]=Module["asm"]["PyUnicode_EncodeUTF32"]).apply(null,arguments)};var _PyUnicode_AsUTF32String=Module["_PyUnicode_AsUTF32String"]=function(){return(_PyUnicode_AsUTF32String=Module["_PyUnicode_AsUTF32String"]=Module["asm"]["PyUnicode_AsUTF32String"]).apply(null,arguments)};var _PyUnicode_EncodeUTF16=Module["_PyUnicode_EncodeUTF16"]=function(){return(_PyUnicode_EncodeUTF16=Module["_PyUnicode_EncodeUTF16"]=Module["asm"]["PyUnicode_EncodeUTF16"]).apply(null,arguments)};var _PyUnicode_AsUTF16String=Module["_PyUnicode_AsUTF16String"]=function(){return(_PyUnicode_AsUTF16String=Module["_PyUnicode_AsUTF16String"]=Module["asm"]["PyUnicode_AsUTF16String"]).apply(null,arguments)};var _PyUnicode_DecodeUnicodeEscape=Module["_PyUnicode_DecodeUnicodeEscape"]=function(){return(_PyUnicode_DecodeUnicodeEscape=Module["_PyUnicode_DecodeUnicodeEscape"]=Module["asm"]["PyUnicode_DecodeUnicodeEscape"]).apply(null,arguments)};var _PyUnicode_AsUnicodeEscapeString=Module["_PyUnicode_AsUnicodeEscapeString"]=function(){return(_PyUnicode_AsUnicodeEscapeString=Module["_PyUnicode_AsUnicodeEscapeString"]=Module["asm"]["PyUnicode_AsUnicodeEscapeString"]).apply(null,arguments)};var _PyUnicode_EncodeUnicodeEscape=Module["_PyUnicode_EncodeUnicodeEscape"]=function(){return(_PyUnicode_EncodeUnicodeEscape=Module["_PyUnicode_EncodeUnicodeEscape"]=Module["asm"]["PyUnicode_EncodeUnicodeEscape"]).apply(null,arguments)};var _PyUnicode_DecodeRawUnicodeEscape=Module["_PyUnicode_DecodeRawUnicodeEscape"]=function(){return(_PyUnicode_DecodeRawUnicodeEscape=Module["_PyUnicode_DecodeRawUnicodeEscape"]=Module["asm"]["PyUnicode_DecodeRawUnicodeEscape"]).apply(null,arguments)};var _PyUnicode_AsRawUnicodeEscapeString=Module["_PyUnicode_AsRawUnicodeEscapeString"]=function(){return(_PyUnicode_AsRawUnicodeEscapeString=Module["_PyUnicode_AsRawUnicodeEscapeString"]=Module["asm"]["PyUnicode_AsRawUnicodeEscapeString"]).apply(null,arguments)};var _PyUnicode_EncodeRawUnicodeEscape=Module["_PyUnicode_EncodeRawUnicodeEscape"]=function(){return(_PyUnicode_EncodeRawUnicodeEscape=Module["_PyUnicode_EncodeRawUnicodeEscape"]=Module["asm"]["PyUnicode_EncodeRawUnicodeEscape"]).apply(null,arguments)};var _PyUnicode_EncodeLatin1=Module["_PyUnicode_EncodeLatin1"]=function(){return(_PyUnicode_EncodeLatin1=Module["_PyUnicode_EncodeLatin1"]=Module["asm"]["PyUnicode_EncodeLatin1"]).apply(null,arguments)};var _PyUnicode_AsLatin1String=Module["_PyUnicode_AsLatin1String"]=function(){return(_PyUnicode_AsLatin1String=Module["_PyUnicode_AsLatin1String"]=Module["asm"]["PyUnicode_AsLatin1String"]).apply(null,arguments)};var __PyUnicodeWriter_PrepareKindInternal=Module["__PyUnicodeWriter_PrepareKindInternal"]=function(){return(__PyUnicodeWriter_PrepareKindInternal=Module["__PyUnicodeWriter_PrepareKindInternal"]=Module["asm"]["_PyUnicodeWriter_PrepareKindInternal"]).apply(null,arguments)};var _PyUnicode_EncodeASCII=Module["_PyUnicode_EncodeASCII"]=function(){return(_PyUnicode_EncodeASCII=Module["_PyUnicode_EncodeASCII"]=Module["asm"]["PyUnicode_EncodeASCII"]).apply(null,arguments)};var _PyUnicode_DecodeCharmap=Module["_PyUnicode_DecodeCharmap"]=function(){return(_PyUnicode_DecodeCharmap=Module["_PyUnicode_DecodeCharmap"]=Module["asm"]["PyUnicode_DecodeCharmap"]).apply(null,arguments)};var _PyUnicode_BuildEncodingMap=Module["_PyUnicode_BuildEncodingMap"]=function(){return(_PyUnicode_BuildEncodingMap=Module["_PyUnicode_BuildEncodingMap"]=Module["asm"]["PyUnicode_BuildEncodingMap"]).apply(null,arguments)};var __PyUnicode_EncodeCharmap=Module["__PyUnicode_EncodeCharmap"]=function(){return(__PyUnicode_EncodeCharmap=Module["__PyUnicode_EncodeCharmap"]=Module["asm"]["_PyUnicode_EncodeCharmap"]).apply(null,arguments)};var _PyUnicode_EncodeCharmap=Module["_PyUnicode_EncodeCharmap"]=function(){return(_PyUnicode_EncodeCharmap=Module["_PyUnicode_EncodeCharmap"]=Module["asm"]["PyUnicode_EncodeCharmap"]).apply(null,arguments)};var _PyUnicode_AsCharmapString=Module["_PyUnicode_AsCharmapString"]=function(){return(_PyUnicode_AsCharmapString=Module["_PyUnicode_AsCharmapString"]=Module["asm"]["PyUnicode_AsCharmapString"]).apply(null,arguments)};var _PyUnicode_TranslateCharmap=Module["_PyUnicode_TranslateCharmap"]=function(){return(_PyUnicode_TranslateCharmap=Module["_PyUnicode_TranslateCharmap"]=Module["asm"]["PyUnicode_TranslateCharmap"]).apply(null,arguments)};var _PyUnicode_Translate=Module["_PyUnicode_Translate"]=function(){return(_PyUnicode_Translate=Module["_PyUnicode_Translate"]=Module["asm"]["PyUnicode_Translate"]).apply(null,arguments)};var __PyUnicode_ToDecimalDigit=Module["__PyUnicode_ToDecimalDigit"]=function(){return(__PyUnicode_ToDecimalDigit=Module["__PyUnicode_ToDecimalDigit"]=Module["asm"]["_PyUnicode_ToDecimalDigit"]).apply(null,arguments)};var _PyUnicode_TransformDecimalToASCII=Module["_PyUnicode_TransformDecimalToASCII"]=function(){return(_PyUnicode_TransformDecimalToASCII=Module["_PyUnicode_TransformDecimalToASCII"]=Module["asm"]["PyUnicode_TransformDecimalToASCII"]).apply(null,arguments)};var _PyUnicode_EncodeDecimal=Module["_PyUnicode_EncodeDecimal"]=function(){return(_PyUnicode_EncodeDecimal=Module["_PyUnicode_EncodeDecimal"]=Module["asm"]["PyUnicode_EncodeDecimal"]).apply(null,arguments)};var __PyUnicode_InsertThousandsGrouping=Module["__PyUnicode_InsertThousandsGrouping"]=function(){return(__PyUnicode_InsertThousandsGrouping=Module["__PyUnicode_InsertThousandsGrouping"]=Module["asm"]["_PyUnicode_InsertThousandsGrouping"]).apply(null,arguments)};var _PyUnicode_Count=Module["_PyUnicode_Count"]=function(){return(_PyUnicode_Count=Module["_PyUnicode_Count"]=Module["asm"]["PyUnicode_Count"]).apply(null,arguments)};var _PyUnicode_Find=Module["_PyUnicode_Find"]=function(){return(_PyUnicode_Find=Module["_PyUnicode_Find"]=Module["asm"]["PyUnicode_Find"]).apply(null,arguments)};var __PyUnicode_JoinArray=Module["__PyUnicode_JoinArray"]=function(){return(__PyUnicode_JoinArray=Module["__PyUnicode_JoinArray"]=Module["asm"]["_PyUnicode_JoinArray"]).apply(null,arguments)};var __PyUnicode_FastFill=Module["__PyUnicode_FastFill"]=function(){return(__PyUnicode_FastFill=Module["__PyUnicode_FastFill"]=Module["asm"]["_PyUnicode_FastFill"]).apply(null,arguments)};var _PyUnicode_Splitlines=Module["_PyUnicode_Splitlines"]=function(){return(_PyUnicode_Splitlines=Module["_PyUnicode_Splitlines"]=Module["asm"]["PyUnicode_Splitlines"]).apply(null,arguments)};var __PyUnicode_IsLinebreak=Module["__PyUnicode_IsLinebreak"]=function(){return(__PyUnicode_IsLinebreak=Module["__PyUnicode_IsLinebreak"]=Module["asm"]["_PyUnicode_IsLinebreak"]).apply(null,arguments)};var _wmemcmp=Module["_wmemcmp"]=function(){return(_wmemcmp=Module["_wmemcmp"]=Module["asm"]["wmemcmp"]).apply(null,arguments)};var _PyUnicode_CompareWithASCIIString=Module["_PyUnicode_CompareWithASCIIString"]=function(){return(_PyUnicode_CompareWithASCIIString=Module["_PyUnicode_CompareWithASCIIString"]=Module["asm"]["PyUnicode_CompareWithASCIIString"]).apply(null,arguments)};var _PyUnicode_RichCompare=Module["_PyUnicode_RichCompare"]=function(){return(_PyUnicode_RichCompare=Module["_PyUnicode_RichCompare"]=Module["asm"]["PyUnicode_RichCompare"]).apply(null,arguments)};var _PyUnicode_Contains=Module["_PyUnicode_Contains"]=function(){return(_PyUnicode_Contains=Module["_PyUnicode_Contains"]=Module["asm"]["PyUnicode_Contains"]).apply(null,arguments)};var _PyUnicode_Concat=Module["_PyUnicode_Concat"]=function(){return(_PyUnicode_Concat=Module["_PyUnicode_Concat"]=Module["asm"]["PyUnicode_Concat"]).apply(null,arguments)};var _PyUnicode_Append=Module["_PyUnicode_Append"]=function(){return(_PyUnicode_Append=Module["_PyUnicode_Append"]=Module["asm"]["PyUnicode_Append"]).apply(null,arguments)};var __PyUnicode_IsXidStart=Module["__PyUnicode_IsXidStart"]=function(){return(__PyUnicode_IsXidStart=Module["__PyUnicode_IsXidStart"]=Module["asm"]["_PyUnicode_IsXidStart"]).apply(null,arguments)};var __PyUnicode_IsXidContinue=Module["__PyUnicode_IsXidContinue"]=function(){return(__PyUnicode_IsXidContinue=Module["__PyUnicode_IsXidContinue"]=Module["asm"]["_PyUnicode_IsXidContinue"]).apply(null,arguments)};var _PyUnicode_Replace=Module["_PyUnicode_Replace"]=function(){return(_PyUnicode_Replace=Module["_PyUnicode_Replace"]=Module["asm"]["PyUnicode_Replace"]).apply(null,arguments)};var _PyUnicode_Split=Module["_PyUnicode_Split"]=function(){return(_PyUnicode_Split=Module["_PyUnicode_Split"]=Module["asm"]["PyUnicode_Split"]).apply(null,arguments)};var _PyUnicode_Partition=Module["_PyUnicode_Partition"]=function(){return(_PyUnicode_Partition=Module["_PyUnicode_Partition"]=Module["asm"]["PyUnicode_Partition"]).apply(null,arguments)};var _PyUnicode_RPartition=Module["_PyUnicode_RPartition"]=function(){return(_PyUnicode_RPartition=Module["_PyUnicode_RPartition"]=Module["asm"]["PyUnicode_RPartition"]).apply(null,arguments)};var _PyUnicode_RSplit=Module["_PyUnicode_RSplit"]=function(){return(_PyUnicode_RSplit=Module["_PyUnicode_RSplit"]=Module["asm"]["PyUnicode_RSplit"]).apply(null,arguments)};var __PyUnicodeWriter_WriteSubstring=Module["__PyUnicodeWriter_WriteSubstring"]=function(){return(__PyUnicodeWriter_WriteSubstring=Module["__PyUnicodeWriter_WriteSubstring"]=Module["asm"]["_PyUnicodeWriter_WriteSubstring"]).apply(null,arguments)};var _PyUnicode_Format=Module["_PyUnicode_Format"]=function(){return(_PyUnicode_Format=Module["_PyUnicode_Format"]=Module["asm"]["PyUnicode_Format"]).apply(null,arguments)};var __PyErr_WriteUnraisableMsg=Module["__PyErr_WriteUnraisableMsg"]=function(){return(__PyErr_WriteUnraisableMsg=Module["__PyErr_WriteUnraisableMsg"]=Module["asm"]["_PyErr_WriteUnraisableMsg"]).apply(null,arguments)};var __PyUnicode_Init=Module["__PyUnicode_Init"]=function(){return(__PyUnicode_Init=Module["__PyUnicode_Init"]=Module["asm"]["_PyUnicode_Init"]).apply(null,arguments)};var _PyUnicode_InternImmortal=Module["_PyUnicode_InternImmortal"]=function(){return(_PyUnicode_InternImmortal=Module["_PyUnicode_InternImmortal"]=Module["asm"]["PyUnicode_InternImmortal"]).apply(null,arguments)};var _Py_UNICODE_strlen=Module["_Py_UNICODE_strlen"]=function(){return(_Py_UNICODE_strlen=Module["_Py_UNICODE_strlen"]=Module["asm"]["Py_UNICODE_strlen"]).apply(null,arguments)};var _Py_UNICODE_strcpy=Module["_Py_UNICODE_strcpy"]=function(){return(_Py_UNICODE_strcpy=Module["_Py_UNICODE_strcpy"]=Module["asm"]["Py_UNICODE_strcpy"]).apply(null,arguments)};var _Py_UNICODE_strncpy=Module["_Py_UNICODE_strncpy"]=function(){return(_Py_UNICODE_strncpy=Module["_Py_UNICODE_strncpy"]=Module["asm"]["Py_UNICODE_strncpy"]).apply(null,arguments)};var _Py_UNICODE_strcat=Module["_Py_UNICODE_strcat"]=function(){return(_Py_UNICODE_strcat=Module["_Py_UNICODE_strcat"]=Module["asm"]["Py_UNICODE_strcat"]).apply(null,arguments)};var _Py_UNICODE_strcmp=Module["_Py_UNICODE_strcmp"]=function(){return(_Py_UNICODE_strcmp=Module["_Py_UNICODE_strcmp"]=Module["asm"]["Py_UNICODE_strcmp"]).apply(null,arguments)};var _Py_UNICODE_strncmp=Module["_Py_UNICODE_strncmp"]=function(){return(_Py_UNICODE_strncmp=Module["_Py_UNICODE_strncmp"]=Module["asm"]["Py_UNICODE_strncmp"]).apply(null,arguments)};var _Py_UNICODE_strchr=Module["_Py_UNICODE_strchr"]=function(){return(_Py_UNICODE_strchr=Module["_Py_UNICODE_strchr"]=Module["asm"]["Py_UNICODE_strchr"]).apply(null,arguments)};var _Py_UNICODE_strrchr=Module["_Py_UNICODE_strrchr"]=function(){return(_Py_UNICODE_strrchr=Module["_Py_UNICODE_strrchr"]=Module["asm"]["Py_UNICODE_strrchr"]).apply(null,arguments)};var _PyUnicode_AsUnicodeCopy=Module["_PyUnicode_AsUnicodeCopy"]=function(){return(_PyUnicode_AsUnicodeCopy=Module["_PyUnicode_AsUnicodeCopy"]=Module["asm"]["PyUnicode_AsUnicodeCopy"]).apply(null,arguments)};var __PyUnicode_InitEncodings=Module["__PyUnicode_InitEncodings"]=function(){return(__PyUnicode_InitEncodings=Module["__PyUnicode_InitEncodings"]=Module["asm"]["_PyUnicode_InitEncodings"]).apply(null,arguments)};var __Py_DumpPathConfig=Module["__Py_DumpPathConfig"]=function(){return(__Py_DumpPathConfig=Module["__Py_DumpPathConfig"]=Module["asm"]["_Py_DumpPathConfig"]).apply(null,arguments)};var __Py_SetFileSystemEncoding=Module["__Py_SetFileSystemEncoding"]=function(){return(__Py_SetFileSystemEncoding=Module["__Py_SetFileSystemEncoding"]=Module["asm"]["_Py_SetFileSystemEncoding"]).apply(null,arguments)};var __PyUnicode_Fini=Module["__PyUnicode_Fini"]=function(){return(__PyUnicode_Fini=Module["__PyUnicode_Fini"]=Module["asm"]["_PyUnicode_Fini"]).apply(null,arguments)};var _PyInit__string=Module["_PyInit__string"]=function(){return(_PyInit__string=Module["_PyInit__string"]=Module["asm"]["PyInit__string"]).apply(null,arguments)};var __PyUnicode_IsLowercase=Module["__PyUnicode_IsLowercase"]=function(){return(__PyUnicode_IsLowercase=Module["__PyUnicode_IsLowercase"]=Module["asm"]["_PyUnicode_IsLowercase"]).apply(null,arguments)};var __PyUnicode_IsUppercase=Module["__PyUnicode_IsUppercase"]=function(){return(__PyUnicode_IsUppercase=Module["__PyUnicode_IsUppercase"]=Module["asm"]["_PyUnicode_IsUppercase"]).apply(null,arguments)};var __PyUnicode_IsTitlecase=Module["__PyUnicode_IsTitlecase"]=function(){return(__PyUnicode_IsTitlecase=Module["__PyUnicode_IsTitlecase"]=Module["asm"]["_PyUnicode_IsTitlecase"]).apply(null,arguments)};var __PyUnicode_IsDecimalDigit=Module["__PyUnicode_IsDecimalDigit"]=function(){return(__PyUnicode_IsDecimalDigit=Module["__PyUnicode_IsDecimalDigit"]=Module["asm"]["_PyUnicode_IsDecimalDigit"]).apply(null,arguments)};var __PyUnicode_IsDigit=Module["__PyUnicode_IsDigit"]=function(){return(__PyUnicode_IsDigit=Module["__PyUnicode_IsDigit"]=Module["asm"]["_PyUnicode_IsDigit"]).apply(null,arguments)};var __PyUnicode_IsNumeric=Module["__PyUnicode_IsNumeric"]=function(){return(__PyUnicode_IsNumeric=Module["__PyUnicode_IsNumeric"]=Module["asm"]["_PyUnicode_IsNumeric"]).apply(null,arguments)};var __PyUnicode_IsAlpha=Module["__PyUnicode_IsAlpha"]=function(){return(__PyUnicode_IsAlpha=Module["__PyUnicode_IsAlpha"]=Module["asm"]["_PyUnicode_IsAlpha"]).apply(null,arguments)};var __PyUnicode_FormatAdvancedWriter=Module["__PyUnicode_FormatAdvancedWriter"]=function(){return(__PyUnicode_FormatAdvancedWriter=Module["__PyUnicode_FormatAdvancedWriter"]=Module["asm"]["_PyUnicode_FormatAdvancedWriter"]).apply(null,arguments)};var __PyUnicode_ToTitleFull=Module["__PyUnicode_ToTitleFull"]=function(){return(__PyUnicode_ToTitleFull=Module["__PyUnicode_ToTitleFull"]=Module["asm"]["_PyUnicode_ToTitleFull"]).apply(null,arguments)};var __PyUnicode_IsCaseIgnorable=Module["__PyUnicode_IsCaseIgnorable"]=function(){return(__PyUnicode_IsCaseIgnorable=Module["__PyUnicode_IsCaseIgnorable"]=Module["asm"]["_PyUnicode_IsCaseIgnorable"]).apply(null,arguments)};var __PyUnicode_IsCased=Module["__PyUnicode_IsCased"]=function(){return(__PyUnicode_IsCased=Module["__PyUnicode_IsCased"]=Module["asm"]["_PyUnicode_IsCased"]).apply(null,arguments)};var __PyUnicode_ToLowerFull=Module["__PyUnicode_ToLowerFull"]=function(){return(__PyUnicode_ToLowerFull=Module["__PyUnicode_ToLowerFull"]=Module["asm"]["_PyUnicode_ToLowerFull"]).apply(null,arguments)};var __PyUnicode_ToFoldedFull=Module["__PyUnicode_ToFoldedFull"]=function(){return(__PyUnicode_ToFoldedFull=Module["__PyUnicode_ToFoldedFull"]=Module["asm"]["_PyUnicode_ToFoldedFull"]).apply(null,arguments)};var __PyUnicode_ToUpperFull=Module["__PyUnicode_ToUpperFull"]=function(){return(__PyUnicode_ToUpperFull=Module["__PyUnicode_ToUpperFull"]=Module["asm"]["_PyUnicode_ToUpperFull"]).apply(null,arguments)};var __PyUnicode_ToNumeric=Module["__PyUnicode_ToNumeric"]=function(){return(__PyUnicode_ToNumeric=Module["__PyUnicode_ToNumeric"]=Module["asm"]["_PyUnicode_ToNumeric"]).apply(null,arguments)};var __PyUnicode_ToTitlecase=Module["__PyUnicode_ToTitlecase"]=function(){return(__PyUnicode_ToTitlecase=Module["__PyUnicode_ToTitlecase"]=Module["asm"]["_PyUnicode_ToTitlecase"]).apply(null,arguments)};var __PyUnicode_ToDigit=Module["__PyUnicode_ToDigit"]=function(){return(__PyUnicode_ToDigit=Module["__PyUnicode_ToDigit"]=Module["asm"]["_PyUnicode_ToDigit"]).apply(null,arguments)};var __PyUnicode_ToUppercase=Module["__PyUnicode_ToUppercase"]=function(){return(__PyUnicode_ToUppercase=Module["__PyUnicode_ToUppercase"]=Module["asm"]["_PyUnicode_ToUppercase"]).apply(null,arguments)};var __PyUnicode_ToLowercase=Module["__PyUnicode_ToLowercase"]=function(){return(__PyUnicode_ToLowercase=Module["__PyUnicode_ToLowercase"]=Module["asm"]["_PyUnicode_ToLowercase"]).apply(null,arguments)};var __PyWeakref_GetWeakrefCount=Module["__PyWeakref_GetWeakrefCount"]=function(){return(__PyWeakref_GetWeakrefCount=Module["__PyWeakref_GetWeakrefCount"]=Module["asm"]["_PyWeakref_GetWeakrefCount"]).apply(null,arguments)};var _PyWeakref_NewProxy=Module["_PyWeakref_NewProxy"]=function(){return(_PyWeakref_NewProxy=Module["_PyWeakref_NewProxy"]=Module["asm"]["PyWeakref_NewProxy"]).apply(null,arguments)};var _PyWeakref_GetObject=Module["_PyWeakref_GetObject"]=function(){return(_PyWeakref_GetObject=Module["_PyWeakref_GetObject"]=Module["asm"]["PyWeakref_GetObject"]).apply(null,arguments)};var _PyErr_ResourceWarning=Module["_PyErr_ResourceWarning"]=function(){return(_PyErr_ResourceWarning=Module["_PyErr_ResourceWarning"]=Module["asm"]["PyErr_ResourceWarning"]).apply(null,arguments)};var _PyErr_Warn=Module["_PyErr_Warn"]=function(){return(_PyErr_Warn=Module["_PyErr_Warn"]=Module["asm"]["PyErr_Warn"]).apply(null,arguments)};var __Py_DisplaySourceLine=Module["__Py_DisplaySourceLine"]=function(){return(__Py_DisplaySourceLine=Module["__Py_DisplaySourceLine"]=Module["asm"]["_Py_DisplaySourceLine"]).apply(null,arguments)};var _PyErr_WarnExplicit=Module["_PyErr_WarnExplicit"]=function(){return(_PyErr_WarnExplicit=Module["_PyErr_WarnExplicit"]=Module["asm"]["PyErr_WarnExplicit"]).apply(null,arguments)};var _PyErr_WarnExplicitFormat=Module["_PyErr_WarnExplicitFormat"]=function(){return(_PyErr_WarnExplicitFormat=Module["_PyErr_WarnExplicitFormat"]=Module["asm"]["PyErr_WarnExplicitFormat"]).apply(null,arguments)};var __Py_IsFinalizing=Module["__Py_IsFinalizing"]=function(){return(__Py_IsFinalizing=Module["__Py_IsFinalizing"]=Module["asm"]["_Py_IsFinalizing"]).apply(null,arguments)};var __PyWarnings_InitState=Module["__PyWarnings_InitState"]=function(){return(__PyWarnings_InitState=Module["__PyWarnings_InitState"]=Module["asm"]["_PyWarnings_InitState"]).apply(null,arguments)};var __PyWarnings_Init=Module["__PyWarnings_Init"]=function(){return(__PyWarnings_Init=Module["__PyWarnings_Init"]=Module["asm"]["_PyWarnings_Init"]).apply(null,arguments)};var _PyModule_AddObject=Module["_PyModule_AddObject"]=function(){return(_PyModule_AddObject=Module["_PyModule_AddObject"]=Module["asm"]["PyModule_AddObject"]).apply(null,arguments)};var __PyWarnings_Fini=Module["__PyWarnings_Fini"]=function(){return(__PyWarnings_Fini=Module["__PyWarnings_Fini"]=Module["asm"]["_PyWarnings_Fini"]).apply(null,arguments)};var __PyAST_Fini=Module["__PyAST_Fini"]=function(){return(__PyAST_Fini=Module["__PyAST_Fini"]=Module["asm"]["_PyAST_Fini"]).apply(null,arguments)};var _PyInit__ast=Module["_PyInit__ast"]=function(){return(_PyInit__ast=Module["_PyInit__ast"]=Module["asm"]["PyInit__ast"]).apply(null,arguments)};var _PyAST_mod2obj=Module["_PyAST_mod2obj"]=function(){return(_PyAST_mod2obj=Module["_PyAST_mod2obj"]=Module["asm"]["PyAST_mod2obj"]).apply(null,arguments)};var _PyAST_obj2mod=Module["_PyAST_obj2mod"]=function(){return(_PyAST_obj2mod=Module["_PyAST_obj2mod"]=Module["asm"]["PyAST_obj2mod"]).apply(null,arguments)};var _PyAST_Check=Module["_PyAST_Check"]=function(){return(_PyAST_Check=Module["_PyAST_Check"]=Module["asm"]["PyAST_Check"]).apply(null,arguments)};var _PyModule_AddIntConstant=Module["_PyModule_AddIntConstant"]=function(){return(_PyModule_AddIntConstant=Module["_PyModule_AddIntConstant"]=Module["asm"]["PyModule_AddIntConstant"]).apply(null,arguments)};var _PyAST_Validate=Module["_PyAST_Validate"]=function(){return(_PyAST_Validate=Module["_PyAST_Validate"]=Module["asm"]["PyAST_Validate"]).apply(null,arguments)};var _PyAST_FromNodeObject=Module["_PyAST_FromNodeObject"]=function(){return(_PyAST_FromNodeObject=Module["_PyAST_FromNodeObject"]=Module["asm"]["PyAST_FromNodeObject"]).apply(null,arguments)};var _PyAST_FromNode=Module["_PyAST_FromNode"]=function(){return(_PyAST_FromNode=Module["_PyAST_FromNode"]=Module["asm"]["PyAST_FromNode"]).apply(null,arguments)};var __PyAST_GetDocString=Module["__PyAST_GetDocString"]=function(){return(__PyAST_GetDocString=Module["__PyAST_GetDocString"]=Module["asm"]["_PyAST_GetDocString"]).apply(null,arguments)};var _PyParser_SimpleParseStringFlagsFilename=Module["_PyParser_SimpleParseStringFlagsFilename"]=function(){return(_PyParser_SimpleParseStringFlagsFilename=Module["_PyParser_SimpleParseStringFlagsFilename"]=Module["asm"]["PyParser_SimpleParseStringFlagsFilename"]).apply(null,arguments)};var __PyAST_Optimize=Module["__PyAST_Optimize"]=function(){return(__PyAST_Optimize=Module["__PyAST_Optimize"]=Module["asm"]["_PyAST_Optimize"]).apply(null,arguments)};var __PyAST_ExprAsUnicode=Module["__PyAST_ExprAsUnicode"]=function(){return(__PyAST_ExprAsUnicode=Module["__PyAST_ExprAsUnicode"]=Module["asm"]["_PyAST_ExprAsUnicode"]).apply(null,arguments)};var __PyBuiltin_Init=Module["__PyBuiltin_Init"]=function(){return(__PyBuiltin_Init=Module["__PyBuiltin_Init"]=Module["asm"]["_PyBuiltin_Init"]).apply(null,arguments)};var _PyEval_EvalCodeEx=Module["_PyEval_EvalCodeEx"]=function(){return(_PyEval_EvalCodeEx=Module["_PyEval_EvalCodeEx"]=Module["asm"]["PyEval_EvalCodeEx"]).apply(null,arguments)};var _PyImport_ImportModuleLevelObject=Module["_PyImport_ImportModuleLevelObject"]=function(){return(_PyImport_ImportModuleLevelObject=Module["_PyImport_ImportModuleLevelObject"]=Module["asm"]["PyImport_ImportModuleLevelObject"]).apply(null,arguments)};var _PySys_GetObject=Module["_PySys_GetObject"]=function(){return(_PySys_GetObject=Module["_PySys_GetObject"]=Module["asm"]["PySys_GetObject"]).apply(null,arguments)};var _PyEval_MergeCompilerFlags=Module["_PyEval_MergeCompilerFlags"]=function(){return(_PyEval_MergeCompilerFlags=Module["_PyEval_MergeCompilerFlags"]=Module["asm"]["PyEval_MergeCompilerFlags"]).apply(null,arguments)};var _PyArena_New=Module["_PyArena_New"]=function(){return(_PyArena_New=Module["_PyArena_New"]=Module["asm"]["PyArena_New"]).apply(null,arguments)};var _PyArena_Free=Module["_PyArena_Free"]=function(){return(_PyArena_Free=Module["_PyArena_Free"]=Module["asm"]["PyArena_Free"]).apply(null,arguments)};var _PyAST_CompileObject=Module["_PyAST_CompileObject"]=function(){return(_PyAST_CompileObject=Module["_PyAST_CompileObject"]=Module["asm"]["PyAST_CompileObject"]).apply(null,arguments)};var __Py_SourceAsString=Module["__Py_SourceAsString"]=function(){return(__Py_SourceAsString=Module["__Py_SourceAsString"]=Module["asm"]["_Py_SourceAsString"]).apply(null,arguments)};var _Py_CompileStringObject=Module["_Py_CompileStringObject"]=function(){return(_Py_CompileStringObject=Module["_Py_CompileStringObject"]=Module["asm"]["Py_CompileStringObject"]).apply(null,arguments)};var _PyEval_GetBuiltins=Module["_PyEval_GetBuiltins"]=function(){return(_PyEval_GetBuiltins=Module["_PyEval_GetBuiltins"]=Module["asm"]["PyEval_GetBuiltins"]).apply(null,arguments)};var _PyEval_EvalCode=Module["_PyEval_EvalCode"]=function(){return(_PyEval_EvalCode=Module["_PyEval_EvalCode"]=Module["asm"]["PyEval_EvalCode"]).apply(null,arguments)};var _PyRun_StringFlags=Module["_PyRun_StringFlags"]=function(){return(_PyRun_StringFlags=Module["_PyRun_StringFlags"]=Module["asm"]["PyRun_StringFlags"]).apply(null,arguments)};var __PyArg_ParseStackAndKeywords=Module["__PyArg_ParseStackAndKeywords"]=function(){return(__PyArg_ParseStackAndKeywords=Module["__PyArg_ParseStackAndKeywords"]=Module["asm"]["_PyArg_ParseStackAndKeywords"]).apply(null,arguments)};var __PyEval_SetSwitchInterval=Module["__PyEval_SetSwitchInterval"]=function(){return(__PyEval_SetSwitchInterval=Module["__PyEval_SetSwitchInterval"]=Module["asm"]["_PyEval_SetSwitchInterval"]).apply(null,arguments)};var __PyEval_GetSwitchInterval=Module["__PyEval_GetSwitchInterval"]=function(){return(__PyEval_GetSwitchInterval=Module["__PyEval_GetSwitchInterval"]=Module["asm"]["_PyEval_GetSwitchInterval"]).apply(null,arguments)};var __Py_FatalError_TstateNULL=Module["__Py_FatalError_TstateNULL"]=function(){return(__Py_FatalError_TstateNULL=Module["__Py_FatalError_TstateNULL"]=Module["asm"]["_Py_FatalError_TstateNULL"]).apply(null,arguments)};var __PyEval_ThreadsInitialized=Module["__PyEval_ThreadsInitialized"]=function(){return(__PyEval_ThreadsInitialized=Module["__PyEval_ThreadsInitialized"]=Module["asm"]["_PyEval_ThreadsInitialized"]).apply(null,arguments)};var _PyEval_ThreadsInitialized=Module["_PyEval_ThreadsInitialized"]=function(){return(_PyEval_ThreadsInitialized=Module["_PyEval_ThreadsInitialized"]=Module["asm"]["PyEval_ThreadsInitialized"]).apply(null,arguments)};var __PyEval_InitGIL=Module["__PyEval_InitGIL"]=function(){return(__PyEval_InitGIL=Module["__PyEval_InitGIL"]=Module["asm"]["_PyEval_InitGIL"]).apply(null,arguments)};var _PyThread_init_thread=Module["_PyThread_init_thread"]=function(){return(_PyThread_init_thread=Module["_PyThread_init_thread"]=Module["asm"]["PyThread_init_thread"]).apply(null,arguments)};var _pthread_mutex_init=Module["_pthread_mutex_init"]=function(){return(_pthread_mutex_init=Module["_pthread_mutex_init"]=Module["asm"]["pthread_mutex_init"]).apply(null,arguments)};var __PyThread_cond_init=Module["__PyThread_cond_init"]=function(){return(__PyThread_cond_init=Module["__PyThread_cond_init"]=Module["asm"]["_PyThread_cond_init"]).apply(null,arguments)};var _pthread_mutex_lock=Module["_pthread_mutex_lock"]=function(){return(_pthread_mutex_lock=Module["_pthread_mutex_lock"]=Module["asm"]["pthread_mutex_lock"]).apply(null,arguments)};var __PyThread_cond_after=Module["__PyThread_cond_after"]=function(){return(__PyThread_cond_after=Module["__PyThread_cond_after"]=Module["asm"]["_PyThread_cond_after"]).apply(null,arguments)};var _pthread_cond_timedwait=Module["_pthread_cond_timedwait"]=function(){return(_pthread_cond_timedwait=Module["_pthread_cond_timedwait"]=Module["asm"]["pthread_cond_timedwait"]).apply(null,arguments)};var _pthread_mutex_unlock=Module["_pthread_mutex_unlock"]=function(){return(_pthread_mutex_unlock=Module["_pthread_mutex_unlock"]=Module["asm"]["pthread_mutex_unlock"]).apply(null,arguments)};var _pthread_cond_signal=Module["_pthread_cond_signal"]=function(){return(_pthread_cond_signal=Module["_pthread_cond_signal"]=Module["asm"]["pthread_cond_signal"]).apply(null,arguments)};var _PyThread_exit_thread=Module["_PyThread_exit_thread"]=function(){return(_PyThread_exit_thread=Module["_PyThread_exit_thread"]=Module["asm"]["PyThread_exit_thread"]).apply(null,arguments)};var _PyThread_get_thread_ident=Module["_PyThread_get_thread_ident"]=function(){return(_PyThread_get_thread_ident=Module["_PyThread_get_thread_ident"]=Module["asm"]["PyThread_get_thread_ident"]).apply(null,arguments)};var __PyEval_FiniGIL=Module["__PyEval_FiniGIL"]=function(){return(__PyEval_FiniGIL=Module["__PyEval_FiniGIL"]=Module["asm"]["_PyEval_FiniGIL"]).apply(null,arguments)};var _pthread_cond_destroy=Module["_pthread_cond_destroy"]=function(){return(_pthread_cond_destroy=Module["_pthread_cond_destroy"]=Module["asm"]["pthread_cond_destroy"]).apply(null,arguments)};var _pthread_mutex_destroy=Module["_pthread_mutex_destroy"]=function(){return(_pthread_mutex_destroy=Module["_pthread_mutex_destroy"]=Module["asm"]["pthread_mutex_destroy"]).apply(null,arguments)};var _PyEval_InitThreads=Module["_PyEval_InitThreads"]=function(){return(_PyEval_InitThreads=Module["_PyEval_InitThreads"]=Module["asm"]["PyEval_InitThreads"]).apply(null,arguments)};var __PyEval_Fini=Module["__PyEval_Fini"]=function(){return(__PyEval_Fini=Module["__PyEval_Fini"]=Module["asm"]["_PyEval_Fini"]).apply(null,arguments)};var _PyEval_AcquireLock=Module["_PyEval_AcquireLock"]=function(){return(_PyEval_AcquireLock=Module["_PyEval_AcquireLock"]=Module["asm"]["PyEval_AcquireLock"]).apply(null,arguments)};var _PyEval_ReleaseLock=Module["_PyEval_ReleaseLock"]=function(){return(_PyEval_ReleaseLock=Module["_PyEval_ReleaseLock"]=Module["asm"]["PyEval_ReleaseLock"]).apply(null,arguments)};var _pthread_cond_wait=Module["_pthread_cond_wait"]=function(){return(_pthread_cond_wait=Module["_pthread_cond_wait"]=Module["asm"]["pthread_cond_wait"]).apply(null,arguments)};var __PyEval_ReleaseLock=Module["__PyEval_ReleaseLock"]=function(){return(__PyEval_ReleaseLock=Module["__PyEval_ReleaseLock"]=Module["asm"]["_PyEval_ReleaseLock"]).apply(null,arguments)};var _PyEval_AcquireThread=Module["_PyEval_AcquireThread"]=function(){return(_PyEval_AcquireThread=Module["_PyEval_AcquireThread"]=Module["asm"]["PyEval_AcquireThread"]).apply(null,arguments)};var __PyThreadState_Swap=Module["__PyThreadState_Swap"]=function(){return(__PyThreadState_Swap=Module["__PyThreadState_Swap"]=Module["asm"]["_PyThreadState_Swap"]).apply(null,arguments)};var _PyEval_ReleaseThread=Module["_PyEval_ReleaseThread"]=function(){return(_PyEval_ReleaseThread=Module["_PyEval_ReleaseThread"]=Module["asm"]["PyEval_ReleaseThread"]).apply(null,arguments)};var __PyEval_ReInitThreads=Module["__PyEval_ReInitThreads"]=function(){return(__PyEval_ReInitThreads=Module["__PyEval_ReInitThreads"]=Module["asm"]["_PyEval_ReInitThreads"]).apply(null,arguments)};var __PyThread_at_fork_reinit=Module["__PyThread_at_fork_reinit"]=function(){return(__PyThread_at_fork_reinit=Module["__PyThread_at_fork_reinit"]=Module["asm"]["_PyThread_at_fork_reinit"]).apply(null,arguments)};var __PyThreadState_DeleteExcept=Module["__PyThreadState_DeleteExcept"]=function(){return(__PyThreadState_DeleteExcept=Module["__PyThreadState_DeleteExcept"]=Module["asm"]["_PyThreadState_DeleteExcept"]).apply(null,arguments)};var __PyEval_SignalAsyncExc=Module["__PyEval_SignalAsyncExc"]=function(){return(__PyEval_SignalAsyncExc=Module["__PyEval_SignalAsyncExc"]=Module["asm"]["_PyEval_SignalAsyncExc"]).apply(null,arguments)};var __PyEval_SignalReceived=Module["__PyEval_SignalReceived"]=function(){return(__PyEval_SignalReceived=Module["__PyEval_SignalReceived"]=Module["asm"]["_PyEval_SignalReceived"]).apply(null,arguments)};var __PyEval_AddPendingCall=Module["__PyEval_AddPendingCall"]=function(){return(__PyEval_AddPendingCall=Module["__PyEval_AddPendingCall"]=Module["asm"]["_PyEval_AddPendingCall"]).apply(null,arguments)};var _Py_AddPendingCall=Module["_Py_AddPendingCall"]=function(){return(_Py_AddPendingCall=Module["_Py_AddPendingCall"]=Module["asm"]["Py_AddPendingCall"]).apply(null,arguments)};var _PyGILState_GetThisThreadState=Module["_PyGILState_GetThisThreadState"]=function(){return(_PyGILState_GetThisThreadState=Module["_PyGILState_GetThisThreadState"]=Module["asm"]["PyGILState_GetThisThreadState"]).apply(null,arguments)};var __Py_FinishPendingCalls=Module["__Py_FinishPendingCalls"]=function(){return(__Py_FinishPendingCalls=Module["__Py_FinishPendingCalls"]=Module["asm"]["_Py_FinishPendingCalls"]).apply(null,arguments)};var __PyErr_Fetch=Module["__PyErr_Fetch"]=function(){return(__PyErr_Fetch=Module["__PyErr_Fetch"]=Module["asm"]["_PyErr_Fetch"]).apply(null,arguments)};var __PyErr_Print=Module["__PyErr_Print"]=function(){return(__PyErr_Print=Module["__PyErr_Print"]=Module["asm"]["_PyErr_Print"]).apply(null,arguments)};var _Py_MakePendingCalls=Module["_Py_MakePendingCalls"]=function(){return(_Py_MakePendingCalls=Module["_Py_MakePendingCalls"]=Module["asm"]["Py_MakePendingCalls"]).apply(null,arguments)};var __PyErr_CheckSignalsTstate=Module["__PyErr_CheckSignalsTstate"]=function(){return(__PyErr_CheckSignalsTstate=Module["__PyErr_CheckSignalsTstate"]=Module["asm"]["_PyErr_CheckSignalsTstate"]).apply(null,arguments)};var __PyEval_InitRuntimeState=Module["__PyEval_InitRuntimeState"]=function(){return(__PyEval_InitRuntimeState=Module["__PyEval_InitRuntimeState"]=Module["asm"]["_PyEval_InitRuntimeState"]).apply(null,arguments)};var __PyEval_InitState=Module["__PyEval_InitState"]=function(){return(__PyEval_InitState=Module["__PyEval_InitState"]=Module["asm"]["_PyEval_InitState"]).apply(null,arguments)};var __PyEval_FiniState=Module["__PyEval_FiniState"]=function(){return(__PyEval_FiniState=Module["__PyEval_FiniState"]=Module["asm"]["_PyEval_FiniState"]).apply(null,arguments)};var _PyThread_free_lock=Module["_PyThread_free_lock"]=function(){return(_PyThread_free_lock=Module["_PyThread_free_lock"]=Module["asm"]["PyThread_free_lock"]).apply(null,arguments)};var _Py_GetRecursionLimit=Module["_Py_GetRecursionLimit"]=function(){return(_Py_GetRecursionLimit=Module["_Py_GetRecursionLimit"]=Module["asm"]["Py_GetRecursionLimit"]).apply(null,arguments)};var _Py_SetRecursionLimit=Module["_Py_SetRecursionLimit"]=function(){return(_Py_SetRecursionLimit=Module["_Py_SetRecursionLimit"]=Module["asm"]["Py_SetRecursionLimit"]).apply(null,arguments)};var _PyEval_EvalFrame=Module["_PyEval_EvalFrame"]=function(){return(_PyEval_EvalFrame=Module["_PyEval_EvalFrame"]=Module["asm"]["PyEval_EvalFrame"]).apply(null,arguments)};var _PyEval_EvalFrameEx=Module["_PyEval_EvalFrameEx"]=function(){return(_PyEval_EvalFrameEx=Module["_PyEval_EvalFrameEx"]=Module["asm"]["PyEval_EvalFrameEx"]).apply(null,arguments)};var __PyEval_EvalFrameDefault=Module["__PyEval_EvalFrameDefault"]=function(){return(__PyEval_EvalFrameDefault=Module["__PyEval_EvalFrameDefault"]=Module["asm"]["_PyEval_EvalFrameDefault"]).apply(null,arguments)};var __PyErr_SetNone=Module["__PyErr_SetNone"]=function(){return(__PyErr_SetNone=Module["__PyErr_SetNone"]=Module["asm"]["_PyErr_SetNone"]).apply(null,arguments)};var __PyErr_GetTopmostException=Module["__PyErr_GetTopmostException"]=function(){return(__PyErr_GetTopmostException=Module["__PyErr_GetTopmostException"]=Module["asm"]["_PyErr_GetTopmostException"]).apply(null,arguments)};var __PyErr_Restore=Module["__PyErr_Restore"]=function(){return(__PyErr_Restore=Module["__PyErr_Restore"]=Module["asm"]["_PyErr_Restore"]).apply(null,arguments)};var __PyErr_SetObject=Module["__PyErr_SetObject"]=function(){return(__PyErr_SetObject=Module["__PyErr_SetObject"]=Module["asm"]["_PyErr_SetObject"]).apply(null,arguments)};var __PyErr_ExceptionMatches=Module["__PyErr_ExceptionMatches"]=function(){return(__PyErr_ExceptionMatches=Module["__PyErr_ExceptionMatches"]=Module["asm"]["_PyErr_ExceptionMatches"]).apply(null,arguments)};var __PyErr_Clear=Module["__PyErr_Clear"]=function(){return(__PyErr_Clear=Module["__PyErr_Clear"]=Module["asm"]["_PyErr_Clear"]).apply(null,arguments)};var _PyErr_SetImportError=Module["_PyErr_SetImportError"]=function(){return(_PyErr_SetImportError=Module["_PyErr_SetImportError"]=Module["asm"]["PyErr_SetImportError"]).apply(null,arguments)};var _PyTraceBack_Here=Module["_PyTraceBack_Here"]=function(){return(_PyTraceBack_Here=Module["_PyTraceBack_Here"]=Module["asm"]["PyTraceBack_Here"]).apply(null,arguments)};var __PyErr_NormalizeException=Module["__PyErr_NormalizeException"]=function(){return(__PyErr_NormalizeException=Module["__PyErr_NormalizeException"]=Module["asm"]["_PyErr_NormalizeException"]).apply(null,arguments)};var __PyEval_EvalCodeWithName=Module["__PyEval_EvalCodeWithName"]=function(){return(__PyEval_EvalCodeWithName=Module["__PyEval_EvalCodeWithName"]=Module["asm"]["_PyEval_EvalCodeWithName"]).apply(null,arguments)};var __PyEval_CallTracing=Module["__PyEval_CallTracing"]=function(){return(__PyEval_CallTracing=Module["__PyEval_CallTracing"]=Module["asm"]["_PyEval_CallTracing"]).apply(null,arguments)};var __PyEval_SetProfile=Module["__PyEval_SetProfile"]=function(){return(__PyEval_SetProfile=Module["__PyEval_SetProfile"]=Module["asm"]["_PyEval_SetProfile"]).apply(null,arguments)};var __PySys_Audit=Module["__PySys_Audit"]=function(){return(__PySys_Audit=Module["__PySys_Audit"]=Module["asm"]["_PySys_Audit"]).apply(null,arguments)};var _PyEval_SetProfile=Module["_PyEval_SetProfile"]=function(){return(_PyEval_SetProfile=Module["_PyEval_SetProfile"]=Module["asm"]["PyEval_SetProfile"]).apply(null,arguments)};var __PyEval_SetTrace=Module["__PyEval_SetTrace"]=function(){return(__PyEval_SetTrace=Module["__PyEval_SetTrace"]=Module["asm"]["_PyEval_SetTrace"]).apply(null,arguments)};var _PyEval_SetTrace=Module["_PyEval_SetTrace"]=function(){return(_PyEval_SetTrace=Module["_PyEval_SetTrace"]=Module["asm"]["PyEval_SetTrace"]).apply(null,arguments)};var __PyEval_SetCoroutineOriginTrackingDepth=Module["__PyEval_SetCoroutineOriginTrackingDepth"]=function(){return(__PyEval_SetCoroutineOriginTrackingDepth=Module["__PyEval_SetCoroutineOriginTrackingDepth"]=Module["asm"]["_PyEval_SetCoroutineOriginTrackingDepth"]).apply(null,arguments)};var __PyEval_GetCoroutineOriginTrackingDepth=Module["__PyEval_GetCoroutineOriginTrackingDepth"]=function(){return(__PyEval_GetCoroutineOriginTrackingDepth=Module["__PyEval_GetCoroutineOriginTrackingDepth"]=Module["asm"]["_PyEval_GetCoroutineOriginTrackingDepth"]).apply(null,arguments)};var __PyEval_SetAsyncGenFirstiter=Module["__PyEval_SetAsyncGenFirstiter"]=function(){return(__PyEval_SetAsyncGenFirstiter=Module["__PyEval_SetAsyncGenFirstiter"]=Module["asm"]["_PyEval_SetAsyncGenFirstiter"]).apply(null,arguments)};var __PyEval_GetAsyncGenFirstiter=Module["__PyEval_GetAsyncGenFirstiter"]=function(){return(__PyEval_GetAsyncGenFirstiter=Module["__PyEval_GetAsyncGenFirstiter"]=Module["asm"]["_PyEval_GetAsyncGenFirstiter"]).apply(null,arguments)};var __PyEval_SetAsyncGenFinalizer=Module["__PyEval_SetAsyncGenFinalizer"]=function(){return(__PyEval_SetAsyncGenFinalizer=Module["__PyEval_SetAsyncGenFinalizer"]=Module["asm"]["_PyEval_SetAsyncGenFinalizer"]).apply(null,arguments)};var __PyEval_GetAsyncGenFinalizer=Module["__PyEval_GetAsyncGenFinalizer"]=function(){return(__PyEval_GetAsyncGenFinalizer=Module["__PyEval_GetAsyncGenFinalizer"]=Module["asm"]["_PyEval_GetAsyncGenFinalizer"]).apply(null,arguments)};var _PyEval_GetFuncName=Module["_PyEval_GetFuncName"]=function(){return(_PyEval_GetFuncName=Module["_PyEval_GetFuncName"]=Module["asm"]["PyEval_GetFuncName"]).apply(null,arguments)};var _PyEval_GetFuncDesc=Module["_PyEval_GetFuncDesc"]=function(){return(_PyEval_GetFuncDesc=Module["_PyEval_GetFuncDesc"]=Module["asm"]["PyEval_GetFuncDesc"]).apply(null,arguments)};var __PyEval_RequestCodeExtraIndex=Module["__PyEval_RequestCodeExtraIndex"]=function(){return(__PyEval_RequestCodeExtraIndex=Module["__PyEval_RequestCodeExtraIndex"]=Module["asm"]["_PyEval_RequestCodeExtraIndex"]).apply(null,arguments)};var _PyCodec_Register=Module["_PyCodec_Register"]=function(){return(_PyCodec_Register=Module["_PyCodec_Register"]=Module["asm"]["PyCodec_Register"]).apply(null,arguments)};var __PyCodec_Forget=Module["__PyCodec_Forget"]=function(){return(__PyCodec_Forget=Module["__PyCodec_Forget"]=Module["asm"]["_PyCodec_Forget"]).apply(null,arguments)};var _PyCodec_KnownEncoding=Module["_PyCodec_KnownEncoding"]=function(){return(_PyCodec_KnownEncoding=Module["_PyCodec_KnownEncoding"]=Module["asm"]["PyCodec_KnownEncoding"]).apply(null,arguments)};var __PyCodecInfo_GetIncrementalDecoder=Module["__PyCodecInfo_GetIncrementalDecoder"]=function(){return(__PyCodecInfo_GetIncrementalDecoder=Module["__PyCodecInfo_GetIncrementalDecoder"]=Module["asm"]["_PyCodecInfo_GetIncrementalDecoder"]).apply(null,arguments)};var __PyCodecInfo_GetIncrementalEncoder=Module["__PyCodecInfo_GetIncrementalEncoder"]=function(){return(__PyCodecInfo_GetIncrementalEncoder=Module["__PyCodecInfo_GetIncrementalEncoder"]=Module["asm"]["_PyCodecInfo_GetIncrementalEncoder"]).apply(null,arguments)};var _PyCodec_Encoder=Module["_PyCodec_Encoder"]=function(){return(_PyCodec_Encoder=Module["_PyCodec_Encoder"]=Module["asm"]["PyCodec_Encoder"]).apply(null,arguments)};var _PyCodec_Decoder=Module["_PyCodec_Decoder"]=function(){return(_PyCodec_Decoder=Module["_PyCodec_Decoder"]=Module["asm"]["PyCodec_Decoder"]).apply(null,arguments)};var _PyCodec_IncrementalEncoder=Module["_PyCodec_IncrementalEncoder"]=function(){return(_PyCodec_IncrementalEncoder=Module["_PyCodec_IncrementalEncoder"]=Module["asm"]["PyCodec_IncrementalEncoder"]).apply(null,arguments)};var _PyCodec_IncrementalDecoder=Module["_PyCodec_IncrementalDecoder"]=function(){return(_PyCodec_IncrementalDecoder=Module["_PyCodec_IncrementalDecoder"]=Module["asm"]["PyCodec_IncrementalDecoder"]).apply(null,arguments)};var _PyCodec_StreamReader=Module["_PyCodec_StreamReader"]=function(){return(_PyCodec_StreamReader=Module["_PyCodec_StreamReader"]=Module["asm"]["PyCodec_StreamReader"]).apply(null,arguments)};var _PyCodec_StreamWriter=Module["_PyCodec_StreamWriter"]=function(){return(_PyCodec_StreamWriter=Module["_PyCodec_StreamWriter"]=Module["asm"]["PyCodec_StreamWriter"]).apply(null,arguments)};var __PyCodec_LookupTextEncoding=Module["__PyCodec_LookupTextEncoding"]=function(){return(__PyCodec_LookupTextEncoding=Module["__PyCodec_LookupTextEncoding"]=Module["asm"]["_PyCodec_LookupTextEncoding"]).apply(null,arguments)};var _PyCodec_RegisterError=Module["_PyCodec_RegisterError"]=function(){return(_PyCodec_RegisterError=Module["_PyCodec_RegisterError"]=Module["asm"]["PyCodec_RegisterError"]).apply(null,arguments)};var _PyCodec_IgnoreErrors=Module["_PyCodec_IgnoreErrors"]=function(){return(_PyCodec_IgnoreErrors=Module["_PyCodec_IgnoreErrors"]=Module["asm"]["PyCodec_IgnoreErrors"]).apply(null,arguments)};var _PyCodec_ReplaceErrors=Module["_PyCodec_ReplaceErrors"]=function(){return(_PyCodec_ReplaceErrors=Module["_PyCodec_ReplaceErrors"]=Module["asm"]["PyCodec_ReplaceErrors"]).apply(null,arguments)};var _PyCodec_XMLCharRefReplaceErrors=Module["_PyCodec_XMLCharRefReplaceErrors"]=function(){return(_PyCodec_XMLCharRefReplaceErrors=Module["_PyCodec_XMLCharRefReplaceErrors"]=Module["asm"]["PyCodec_XMLCharRefReplaceErrors"]).apply(null,arguments)};var _PyCodec_BackslashReplaceErrors=Module["_PyCodec_BackslashReplaceErrors"]=function(){return(_PyCodec_BackslashReplaceErrors=Module["_PyCodec_BackslashReplaceErrors"]=Module["asm"]["PyCodec_BackslashReplaceErrors"]).apply(null,arguments)};var _PyCodec_NameReplaceErrors=Module["_PyCodec_NameReplaceErrors"]=function(){return(_PyCodec_NameReplaceErrors=Module["_PyCodec_NameReplaceErrors"]=Module["asm"]["PyCodec_NameReplaceErrors"]).apply(null,arguments)};var _PyFuture_FromASTObject=Module["_PyFuture_FromASTObject"]=function(){return(_PyFuture_FromASTObject=Module["_PyFuture_FromASTObject"]=Module["asm"]["PyFuture_FromASTObject"]).apply(null,arguments)};var _PySymtable_BuildObject=Module["_PySymtable_BuildObject"]=function(){return(_PySymtable_BuildObject=Module["_PySymtable_BuildObject"]=Module["asm"]["PySymtable_BuildObject"]).apply(null,arguments)};var _PySymtable_Free=Module["_PySymtable_Free"]=function(){return(_PySymtable_Free=Module["_PySymtable_Free"]=Module["asm"]["PySymtable_Free"]).apply(null,arguments)};var _PyAST_CompileEx=Module["_PyAST_CompileEx"]=function(){return(_PyAST_CompileEx=Module["_PyAST_CompileEx"]=Module["asm"]["PyAST_CompileEx"]).apply(null,arguments)};var _PyNode_Compile=Module["_PyNode_Compile"]=function(){return(_PyNode_Compile=Module["_PyNode_Compile"]=Module["asm"]["PyNode_Compile"]).apply(null,arguments)};var _PyCompile_OpcodeStackEffectWithJump=Module["_PyCompile_OpcodeStackEffectWithJump"]=function(){return(_PyCompile_OpcodeStackEffectWithJump=Module["_PyCompile_OpcodeStackEffectWithJump"]=Module["asm"]["PyCompile_OpcodeStackEffectWithJump"]).apply(null,arguments)};var _PyCompile_OpcodeStackEffect=Module["_PyCompile_OpcodeStackEffect"]=function(){return(_PyCompile_OpcodeStackEffect=Module["_PyCompile_OpcodeStackEffect"]=Module["asm"]["PyCompile_OpcodeStackEffect"]).apply(null,arguments)};var _PyAST_Compile=Module["_PyAST_Compile"]=function(){return(_PyAST_Compile=Module["_PyAST_Compile"]=Module["asm"]["PyAST_Compile"]).apply(null,arguments)};var _PySymtable_Lookup=Module["_PySymtable_Lookup"]=function(){return(_PySymtable_Lookup=Module["_PySymtable_Lookup"]=Module["asm"]["PySymtable_Lookup"]).apply(null,arguments)};var _PyST_GetScope=Module["_PyST_GetScope"]=function(){return(_PyST_GetScope=Module["_PyST_GetScope"]=Module["asm"]["PyST_GetScope"]).apply(null,arguments)};var _PyCode_Optimize=Module["_PyCode_Optimize"]=function(){return(_PyCode_Optimize=Module["_PyCode_Optimize"]=Module["asm"]["PyCode_Optimize"]).apply(null,arguments)};var __PyContext_NewHamtForTests=Module["__PyContext_NewHamtForTests"]=function(){return(__PyContext_NewHamtForTests=Module["__PyContext_NewHamtForTests"]=Module["asm"]["_PyContext_NewHamtForTests"]).apply(null,arguments)};var __PyHamt_New=Module["__PyHamt_New"]=function(){return(__PyHamt_New=Module["__PyHamt_New"]=Module["asm"]["_PyHamt_New"]).apply(null,arguments)};var _PyContext_New=Module["_PyContext_New"]=function(){return(_PyContext_New=Module["_PyContext_New"]=Module["asm"]["PyContext_New"]).apply(null,arguments)};var _PyContext_Copy=Module["_PyContext_Copy"]=function(){return(_PyContext_Copy=Module["_PyContext_Copy"]=Module["asm"]["PyContext_Copy"]).apply(null,arguments)};var _PyContext_CopyCurrent=Module["_PyContext_CopyCurrent"]=function(){return(_PyContext_CopyCurrent=Module["_PyContext_CopyCurrent"]=Module["asm"]["PyContext_CopyCurrent"]).apply(null,arguments)};var _PyContext_Enter=Module["_PyContext_Enter"]=function(){return(_PyContext_Enter=Module["_PyContext_Enter"]=Module["asm"]["PyContext_Enter"]).apply(null,arguments)};var _PyContext_Exit=Module["_PyContext_Exit"]=function(){return(_PyContext_Exit=Module["_PyContext_Exit"]=Module["asm"]["PyContext_Exit"]).apply(null,arguments)};var _PyContextVar_New=Module["_PyContextVar_New"]=function(){return(_PyContextVar_New=Module["_PyContextVar_New"]=Module["asm"]["PyContextVar_New"]).apply(null,arguments)};var _PyContextVar_Get=Module["_PyContextVar_Get"]=function(){return(_PyContextVar_Get=Module["_PyContextVar_Get"]=Module["asm"]["PyContextVar_Get"]).apply(null,arguments)};var __PyHamt_Find=Module["__PyHamt_Find"]=function(){return(__PyHamt_Find=Module["__PyHamt_Find"]=Module["asm"]["_PyHamt_Find"]).apply(null,arguments)};var _PyContextVar_Set=Module["_PyContextVar_Set"]=function(){return(_PyContextVar_Set=Module["_PyContextVar_Set"]=Module["asm"]["PyContextVar_Set"]).apply(null,arguments)};var __PyHamt_Assoc=Module["__PyHamt_Assoc"]=function(){return(__PyHamt_Assoc=Module["__PyHamt_Assoc"]=Module["asm"]["_PyHamt_Assoc"]).apply(null,arguments)};var _PyContextVar_Reset=Module["_PyContextVar_Reset"]=function(){return(_PyContextVar_Reset=Module["_PyContextVar_Reset"]=Module["asm"]["PyContextVar_Reset"]).apply(null,arguments)};var __PyHamt_Without=Module["__PyHamt_Without"]=function(){return(__PyHamt_Without=Module["__PyHamt_Without"]=Module["asm"]["_PyHamt_Without"]).apply(null,arguments)};var __PyHamt_Eq=Module["__PyHamt_Eq"]=function(){return(__PyHamt_Eq=Module["__PyHamt_Eq"]=Module["asm"]["_PyHamt_Eq"]).apply(null,arguments)};var __PyHamt_NewIterKeys=Module["__PyHamt_NewIterKeys"]=function(){return(__PyHamt_NewIterKeys=Module["__PyHamt_NewIterKeys"]=Module["asm"]["_PyHamt_NewIterKeys"]).apply(null,arguments)};var __PyContext_ClearFreeList=Module["__PyContext_ClearFreeList"]=function(){return(__PyContext_ClearFreeList=Module["__PyContext_ClearFreeList"]=Module["asm"]["_PyContext_ClearFreeList"]).apply(null,arguments)};var __PyContext_Fini=Module["__PyContext_Fini"]=function(){return(__PyContext_Fini=Module["__PyContext_Fini"]=Module["asm"]["_PyContext_Fini"]).apply(null,arguments)};var __PyHamt_Fini=Module["__PyHamt_Fini"]=function(){return(__PyHamt_Fini=Module["__PyHamt_Fini"]=Module["asm"]["_PyHamt_Fini"]).apply(null,arguments)};var __PyContext_Init=Module["__PyContext_Init"]=function(){return(__PyContext_Init=Module["__PyContext_Init"]=Module["asm"]["_PyContext_Init"]).apply(null,arguments)};var __PyHamt_Init=Module["__PyHamt_Init"]=function(){return(__PyHamt_Init=Module["__PyHamt_Init"]=Module["asm"]["_PyHamt_Init"]).apply(null,arguments)};var __PyHamt_Len=Module["__PyHamt_Len"]=function(){return(__PyHamt_Len=Module["__PyHamt_Len"]=Module["asm"]["_PyHamt_Len"]).apply(null,arguments)};var __PyHamt_NewIterItems=Module["__PyHamt_NewIterItems"]=function(){return(__PyHamt_NewIterItems=Module["__PyHamt_NewIterItems"]=Module["asm"]["_PyHamt_NewIterItems"]).apply(null,arguments)};var __PyHamt_NewIterValues=Module["__PyHamt_NewIterValues"]=function(){return(__PyHamt_NewIterValues=Module["__PyHamt_NewIterValues"]=Module["asm"]["_PyHamt_NewIterValues"]).apply(null,arguments)};var __PyErr_GetExcInfo=Module["__PyErr_GetExcInfo"]=function(){return(__PyErr_GetExcInfo=Module["__PyErr_GetExcInfo"]=Module["asm"]["_PyErr_GetExcInfo"]).apply(null,arguments)};var _PyErr_GetExcInfo=Module["_PyErr_GetExcInfo"]=function(){return(_PyErr_GetExcInfo=Module["_PyErr_GetExcInfo"]=Module["asm"]["PyErr_GetExcInfo"]).apply(null,arguments)};var _PyErr_SetExcInfo=Module["_PyErr_SetExcInfo"]=function(){return(_PyErr_SetExcInfo=Module["_PyErr_SetExcInfo"]=Module["asm"]["PyErr_SetExcInfo"]).apply(null,arguments)};var _PyErr_SetFromErrnoWithFilenameObject=Module["_PyErr_SetFromErrnoWithFilenameObject"]=function(){return(_PyErr_SetFromErrnoWithFilenameObject=Module["_PyErr_SetFromErrnoWithFilenameObject"]=Module["asm"]["PyErr_SetFromErrnoWithFilenameObject"]).apply(null,arguments)};var _PyErr_SetFromErrnoWithFilenameObjects=Module["_PyErr_SetFromErrnoWithFilenameObjects"]=function(){return(_PyErr_SetFromErrnoWithFilenameObjects=Module["_PyErr_SetFromErrnoWithFilenameObjects"]=Module["asm"]["PyErr_SetFromErrnoWithFilenameObjects"]).apply(null,arguments)};var _strerror=Module["_strerror"]=function(){return(_strerror=Module["_strerror"]=Module["asm"]["strerror"]).apply(null,arguments)};var _PyErr_SetImportErrorSubclass=Module["_PyErr_SetImportErrorSubclass"]=function(){return(_PyErr_SetImportErrorSubclass=Module["_PyErr_SetImportErrorSubclass"]=Module["asm"]["PyErr_SetImportErrorSubclass"]).apply(null,arguments)};var _PyErr_BadInternalCall=Module["_PyErr_BadInternalCall"]=function(){return(_PyErr_BadInternalCall=Module["_PyErr_BadInternalCall"]=Module["asm"]["PyErr_BadInternalCall"]).apply(null,arguments)};var _PyErr_FormatV=Module["_PyErr_FormatV"]=function(){return(_PyErr_FormatV=Module["_PyErr_FormatV"]=Module["asm"]["PyErr_FormatV"]).apply(null,arguments)};var __PyErr_Init=Module["__PyErr_Init"]=function(){return(__PyErr_Init=Module["__PyErr_Init"]=Module["asm"]["_PyErr_Init"]).apply(null,arguments)};var __PyErr_WriteUnraisableDefaultHook=Module["__PyErr_WriteUnraisableDefaultHook"]=function(){return(__PyErr_WriteUnraisableDefaultHook=Module["__PyErr_WriteUnraisableDefaultHook"]=Module["asm"]["_PyErr_WriteUnraisableDefaultHook"]).apply(null,arguments)};var _PyTraceBack_Print=Module["_PyTraceBack_Print"]=function(){return(_PyTraceBack_Print=Module["_PyTraceBack_Print"]=Module["asm"]["PyTraceBack_Print"]).apply(null,arguments)};var __PyTraceBack_FromFrame=Module["__PyTraceBack_FromFrame"]=function(){return(__PyTraceBack_FromFrame=Module["__PyTraceBack_FromFrame"]=Module["asm"]["_PyTraceBack_FromFrame"]).apply(null,arguments)};var _PyErr_SyntaxLocation=Module["_PyErr_SyntaxLocation"]=function(){return(_PyErr_SyntaxLocation=Module["_PyErr_SyntaxLocation"]=Module["asm"]["PyErr_SyntaxLocation"]).apply(null,arguments)};var _PyErr_SyntaxLocationEx=Module["_PyErr_SyntaxLocationEx"]=function(){return(_PyErr_SyntaxLocationEx=Module["_PyErr_SyntaxLocationEx"]=Module["asm"]["PyErr_SyntaxLocationEx"]).apply(null,arguments)};var _PyErr_SyntaxLocationObject=Module["_PyErr_SyntaxLocationObject"]=function(){return(_PyErr_SyntaxLocationObject=Module["_PyErr_SyntaxLocationObject"]=Module["asm"]["PyErr_SyntaxLocationObject"]).apply(null,arguments)};var __Py_fopen_obj=Module["__Py_fopen_obj"]=function(){return(__Py_fopen_obj=Module["__Py_fopen_obj"]=Module["asm"]["_Py_fopen_obj"]).apply(null,arguments)};var _PyErr_ProgramText=Module["_PyErr_ProgramText"]=function(){return(_PyErr_ProgramText=Module["_PyErr_ProgramText"]=Module["asm"]["PyErr_ProgramText"]).apply(null,arguments)};var __Py_fopen=Module["__Py_fopen"]=function(){return(__Py_fopen=Module["__Py_fopen"]=Module["asm"]["_Py_fopen"]).apply(null,arguments)};var _Py_FrozenMain=Module["_Py_FrozenMain"]=function(){return(_Py_FrozenMain=Module["_Py_FrozenMain"]=Module["asm"]["Py_FrozenMain"]).apply(null,arguments)};var __PyRuntime_Initialize=Module["__PyRuntime_Initialize"]=function(){return(__PyRuntime_Initialize=Module["__PyRuntime_Initialize"]=Module["asm"]["_PyRuntime_Initialize"]).apply(null,arguments)};var _getenv=Module["_getenv"]=function(){return(_getenv=Module["_getenv"]=Module["asm"]["getenv"]).apply(null,arguments)};var _setbuf=Module["_setbuf"]=function(){return(_setbuf=Module["_setbuf"]=Module["asm"]["setbuf"]).apply(null,arguments)};var _setlocale=Module["_setlocale"]=function(){return(_setlocale=Module["_setlocale"]=Module["asm"]["setlocale"]).apply(null,arguments)};var _Py_DecodeLocale=Module["_Py_DecodeLocale"]=function(){return(_Py_DecodeLocale=Module["_Py_DecodeLocale"]=Module["asm"]["Py_DecodeLocale"]).apply(null,arguments)};var _Py_SetProgramName=Module["_Py_SetProgramName"]=function(){return(_Py_SetProgramName=Module["_Py_SetProgramName"]=Module["asm"]["Py_SetProgramName"]).apply(null,arguments)};var _Py_GetVersion=Module["_Py_GetVersion"]=function(){return(_Py_GetVersion=Module["_Py_GetVersion"]=Module["asm"]["Py_GetVersion"]).apply(null,arguments)};var _Py_GetCopyright=Module["_Py_GetCopyright"]=function(){return(_Py_GetCopyright=Module["_Py_GetCopyright"]=Module["asm"]["Py_GetCopyright"]).apply(null,arguments)};var _PySys_SetArgv=Module["_PySys_SetArgv"]=function(){return(_PySys_SetArgv=Module["_PySys_SetArgv"]=Module["asm"]["PySys_SetArgv"]).apply(null,arguments)};var _PyImport_ImportFrozenModule=Module["_PyImport_ImportFrozenModule"]=function(){return(_PyImport_ImportFrozenModule=Module["_PyImport_ImportFrozenModule"]=Module["asm"]["PyImport_ImportFrozenModule"]).apply(null,arguments)};var _PyRun_AnyFileExFlags=Module["_PyRun_AnyFileExFlags"]=function(){return(_PyRun_AnyFileExFlags=Module["_PyRun_AnyFileExFlags"]=Module["asm"]["PyRun_AnyFileExFlags"]).apply(null,arguments)};var _Py_FinalizeEx=Module["_Py_FinalizeEx"]=function(){return(_Py_FinalizeEx=Module["_Py_FinalizeEx"]=Module["asm"]["Py_FinalizeEx"]).apply(null,arguments)};var _PyFuture_FromAST=Module["_PyFuture_FromAST"]=function(){return(_PyFuture_FromAST=Module["_PyFuture_FromAST"]=Module["asm"]["PyFuture_FromAST"]).apply(null,arguments)};var _PyArg_Parse=Module["_PyArg_Parse"]=function(){return(_PyArg_Parse=Module["_PyArg_Parse"]=Module["asm"]["PyArg_Parse"]).apply(null,arguments)};var __PyArg_Parse_SizeT=Module["__PyArg_Parse_SizeT"]=function(){return(__PyArg_Parse_SizeT=Module["__PyArg_Parse_SizeT"]=Module["asm"]["_PyArg_Parse_SizeT"]).apply(null,arguments)};var __PyArg_ParseStack=Module["__PyArg_ParseStack"]=function(){return(__PyArg_ParseStack=Module["__PyArg_ParseStack"]=Module["asm"]["_PyArg_ParseStack"]).apply(null,arguments)};var __PyArg_ParseStack_SizeT=Module["__PyArg_ParseStack_SizeT"]=function(){return(__PyArg_ParseStack_SizeT=Module["__PyArg_ParseStack_SizeT"]=Module["asm"]["_PyArg_ParseStack_SizeT"]).apply(null,arguments)};var _PyArg_VaParse=Module["_PyArg_VaParse"]=function(){return(_PyArg_VaParse=Module["_PyArg_VaParse"]=Module["asm"]["PyArg_VaParse"]).apply(null,arguments)};var __PyArg_VaParse_SizeT=Module["__PyArg_VaParse_SizeT"]=function(){return(__PyArg_VaParse_SizeT=Module["__PyArg_VaParse_SizeT"]=Module["asm"]["_PyArg_VaParse_SizeT"]).apply(null,arguments)};var _PyArg_VaParseTupleAndKeywords=Module["_PyArg_VaParseTupleAndKeywords"]=function(){return(_PyArg_VaParseTupleAndKeywords=Module["_PyArg_VaParseTupleAndKeywords"]=Module["asm"]["PyArg_VaParseTupleAndKeywords"]).apply(null,arguments)};var __PyArg_VaParseTupleAndKeywords_SizeT=Module["__PyArg_VaParseTupleAndKeywords_SizeT"]=function(){return(__PyArg_VaParseTupleAndKeywords_SizeT=Module["__PyArg_VaParseTupleAndKeywords_SizeT"]=Module["asm"]["_PyArg_VaParseTupleAndKeywords_SizeT"]).apply(null,arguments)};var __PyArg_ParseTupleAndKeywordsFast=Module["__PyArg_ParseTupleAndKeywordsFast"]=function(){return(__PyArg_ParseTupleAndKeywordsFast=Module["__PyArg_ParseTupleAndKeywordsFast"]=Module["asm"]["_PyArg_ParseTupleAndKeywordsFast"]).apply(null,arguments)};var __PyArg_ParseTupleAndKeywordsFast_SizeT=Module["__PyArg_ParseTupleAndKeywordsFast_SizeT"]=function(){return(__PyArg_ParseTupleAndKeywordsFast_SizeT=Module["__PyArg_ParseTupleAndKeywordsFast_SizeT"]=Module["asm"]["_PyArg_ParseTupleAndKeywordsFast_SizeT"]).apply(null,arguments)};var __PyArg_VaParseTupleAndKeywordsFast=Module["__PyArg_VaParseTupleAndKeywordsFast"]=function(){return(__PyArg_VaParseTupleAndKeywordsFast=Module["__PyArg_VaParseTupleAndKeywordsFast"]=Module["asm"]["_PyArg_VaParseTupleAndKeywordsFast"]).apply(null,arguments)};var __PyArg_VaParseTupleAndKeywordsFast_SizeT=Module["__PyArg_VaParseTupleAndKeywordsFast_SizeT"]=function(){return(__PyArg_VaParseTupleAndKeywordsFast_SizeT=Module["__PyArg_VaParseTupleAndKeywordsFast_SizeT"]=Module["asm"]["_PyArg_VaParseTupleAndKeywordsFast_SizeT"]).apply(null,arguments)};var __PyArg_NoPositional=Module["__PyArg_NoPositional"]=function(){return(__PyArg_NoPositional=Module["__PyArg_NoPositional"]=Module["asm"]["_PyArg_NoPositional"]).apply(null,arguments)};var __PyArg_Fini=Module["__PyArg_Fini"]=function(){return(__PyArg_Fini=Module["__PyArg_Fini"]=Module["asm"]["_PyArg_Fini"]).apply(null,arguments)};var _Py_GetCompiler=Module["_Py_GetCompiler"]=function(){return(_Py_GetCompiler=Module["_Py_GetCompiler"]=Module["asm"]["Py_GetCompiler"]).apply(null,arguments)};var _Py_GetPlatform=Module["_Py_GetPlatform"]=function(){return(_Py_GetPlatform=Module["_Py_GetPlatform"]=Module["asm"]["Py_GetPlatform"]).apply(null,arguments)};var __Py_hashtable_hash_ptr=Module["__Py_hashtable_hash_ptr"]=function(){return(__Py_hashtable_hash_ptr=Module["__Py_hashtable_hash_ptr"]=Module["asm"]["_Py_hashtable_hash_ptr"]).apply(null,arguments)};var __Py_HashPointerRaw=Module["__Py_HashPointerRaw"]=function(){return(__Py_HashPointerRaw=Module["__Py_HashPointerRaw"]=Module["asm"]["_Py_HashPointerRaw"]).apply(null,arguments)};var __Py_hashtable_compare_direct=Module["__Py_hashtable_compare_direct"]=function(){return(__Py_hashtable_compare_direct=Module["__Py_hashtable_compare_direct"]=Module["asm"]["_Py_hashtable_compare_direct"]).apply(null,arguments)};var __Py_hashtable_size=Module["__Py_hashtable_size"]=function(){return(__Py_hashtable_size=Module["__Py_hashtable_size"]=Module["asm"]["_Py_hashtable_size"]).apply(null,arguments)};var __Py_hashtable_get_entry_generic=Module["__Py_hashtable_get_entry_generic"]=function(){return(__Py_hashtable_get_entry_generic=Module["__Py_hashtable_get_entry_generic"]=Module["asm"]["_Py_hashtable_get_entry_generic"]).apply(null,arguments)};var __Py_hashtable_steal=Module["__Py_hashtable_steal"]=function(){return(__Py_hashtable_steal=Module["__Py_hashtable_steal"]=Module["asm"]["_Py_hashtable_steal"]).apply(null,arguments)};var __Py_hashtable_set=Module["__Py_hashtable_set"]=function(){return(__Py_hashtable_set=Module["__Py_hashtable_set"]=Module["asm"]["_Py_hashtable_set"]).apply(null,arguments)};var __Py_hashtable_get=Module["__Py_hashtable_get"]=function(){return(__Py_hashtable_get=Module["__Py_hashtable_get"]=Module["asm"]["_Py_hashtable_get"]).apply(null,arguments)};var __Py_hashtable_foreach=Module["__Py_hashtable_foreach"]=function(){return(__Py_hashtable_foreach=Module["__Py_hashtable_foreach"]=Module["asm"]["_Py_hashtable_foreach"]).apply(null,arguments)};var __Py_hashtable_new_full=Module["__Py_hashtable_new_full"]=function(){return(__Py_hashtable_new_full=Module["__Py_hashtable_new_full"]=Module["asm"]["_Py_hashtable_new_full"]).apply(null,arguments)};var __Py_hashtable_new=Module["__Py_hashtable_new"]=function(){return(__Py_hashtable_new=Module["__Py_hashtable_new"]=Module["asm"]["_Py_hashtable_new"]).apply(null,arguments)};var __Py_hashtable_clear=Module["__Py_hashtable_clear"]=function(){return(__Py_hashtable_clear=Module["__Py_hashtable_clear"]=Module["asm"]["_Py_hashtable_clear"]).apply(null,arguments)};var __Py_hashtable_destroy=Module["__Py_hashtable_destroy"]=function(){return(__Py_hashtable_destroy=Module["__Py_hashtable_destroy"]=Module["asm"]["_Py_hashtable_destroy"]).apply(null,arguments)};var __PyImportHooks_Init=Module["__PyImportHooks_Init"]=function(){return(__PyImportHooks_Init=Module["__PyImportHooks_Init"]=Module["asm"]["_PyImportHooks_Init"]).apply(null,arguments)};var _PySys_SetObject=Module["_PySys_SetObject"]=function(){return(_PySys_SetObject=Module["_PySys_SetObject"]=Module["asm"]["PySys_SetObject"]).apply(null,arguments)};var __PyImportZip_Init=Module["__PyImportZip_Init"]=function(){return(__PyImportZip_Init=Module["__PyImportZip_Init"]=Module["asm"]["_PyImportZip_Init"]).apply(null,arguments)};var __PyImport_AcquireLock=Module["__PyImport_AcquireLock"]=function(){return(__PyImport_AcquireLock=Module["__PyImport_AcquireLock"]=Module["asm"]["_PyImport_AcquireLock"]).apply(null,arguments)};var __PyImport_ReleaseLock=Module["__PyImport_ReleaseLock"]=function(){return(__PyImport_ReleaseLock=Module["__PyImport_ReleaseLock"]=Module["asm"]["_PyImport_ReleaseLock"]).apply(null,arguments)};var __PyImport_ReInitLock=Module["__PyImport_ReInitLock"]=function(){return(__PyImport_ReInitLock=Module["__PyImport_ReInitLock"]=Module["asm"]["_PyImport_ReInitLock"]).apply(null,arguments)};var __PyImport_Fini=Module["__PyImport_Fini"]=function(){return(__PyImport_Fini=Module["__PyImport_Fini"]=Module["asm"]["_PyImport_Fini"]).apply(null,arguments)};var __PyImport_Fini2=Module["__PyImport_Fini2"]=function(){return(__PyImport_Fini2=Module["__PyImport_Fini2"]=Module["asm"]["_PyImport_Fini2"]).apply(null,arguments)};var __PyImport_GetModuleId=Module["__PyImport_GetModuleId"]=function(){return(__PyImport_GetModuleId=Module["__PyImport_GetModuleId"]=Module["asm"]["_PyImport_GetModuleId"]).apply(null,arguments)};var __PyImport_SetModule=Module["__PyImport_SetModule"]=function(){return(__PyImport_SetModule=Module["__PyImport_SetModule"]=Module["asm"]["_PyImport_SetModule"]).apply(null,arguments)};var __PyImport_SetModuleString=Module["__PyImport_SetModuleString"]=function(){return(__PyImport_SetModuleString=Module["__PyImport_SetModuleString"]=Module["asm"]["_PyImport_SetModuleString"]).apply(null,arguments)};var __PyImport_Cleanup=Module["__PyImport_Cleanup"]=function(){return(__PyImport_Cleanup=Module["__PyImport_Cleanup"]=Module["asm"]["_PyImport_Cleanup"]).apply(null,arguments)};var __PyGC_CollectNoFail=Module["__PyGC_CollectNoFail"]=function(){return(__PyGC_CollectNoFail=Module["__PyGC_CollectNoFail"]=Module["asm"]["_PyGC_CollectNoFail"]).apply(null,arguments)};var __PyGC_DumpShutdownStats=Module["__PyGC_DumpShutdownStats"]=function(){return(__PyGC_DumpShutdownStats=Module["__PyGC_DumpShutdownStats"]=Module["asm"]["_PyGC_DumpShutdownStats"]).apply(null,arguments)};var __PyInterpreterState_ClearModules=Module["__PyInterpreterState_ClearModules"]=function(){return(__PyInterpreterState_ClearModules=Module["__PyInterpreterState_ClearModules"]=Module["asm"]["_PyInterpreterState_ClearModules"]).apply(null,arguments)};var _PyImport_GetMagicNumber=Module["_PyImport_GetMagicNumber"]=function(){return(_PyImport_GetMagicNumber=Module["_PyImport_GetMagicNumber"]=Module["asm"]["PyImport_GetMagicNumber"]).apply(null,arguments)};var _PyImport_GetMagicTag=Module["_PyImport_GetMagicTag"]=function(){return(_PyImport_GetMagicTag=Module["_PyImport_GetMagicTag"]=Module["asm"]["PyImport_GetMagicTag"]).apply(null,arguments)};var __PyImport_FixupExtensionObject=Module["__PyImport_FixupExtensionObject"]=function(){return(__PyImport_FixupExtensionObject=Module["__PyImport_FixupExtensionObject"]=Module["asm"]["_PyImport_FixupExtensionObject"]).apply(null,arguments)};var __PyState_AddModule=Module["__PyState_AddModule"]=function(){return(__PyState_AddModule=Module["__PyState_AddModule"]=Module["asm"]["_PyState_AddModule"]).apply(null,arguments)};var __PyImport_FixupBuiltin=Module["__PyImport_FixupBuiltin"]=function(){return(__PyImport_FixupBuiltin=Module["__PyImport_FixupBuiltin"]=Module["asm"]["_PyImport_FixupBuiltin"]).apply(null,arguments)};var __PyImport_FindExtensionObject=Module["__PyImport_FindExtensionObject"]=function(){return(__PyImport_FindExtensionObject=Module["__PyImport_FindExtensionObject"]=Module["asm"]["_PyImport_FindExtensionObject"]).apply(null,arguments)};var __PyImport_FindBuiltin=Module["__PyImport_FindBuiltin"]=function(){return(__PyImport_FindBuiltin=Module["__PyImport_FindBuiltin"]=Module["asm"]["_PyImport_FindBuiltin"]).apply(null,arguments)};var _PyImport_AddModuleObject=Module["_PyImport_AddModuleObject"]=function(){return(_PyImport_AddModuleObject=Module["_PyImport_AddModuleObject"]=Module["asm"]["PyImport_AddModuleObject"]).apply(null,arguments)};var _PyImport_AddModule=Module["_PyImport_AddModule"]=function(){return(_PyImport_AddModule=Module["_PyImport_AddModule"]=Module["asm"]["PyImport_AddModule"]).apply(null,arguments)};var _PyImport_ExecCodeModule=Module["_PyImport_ExecCodeModule"]=function(){return(_PyImport_ExecCodeModule=Module["_PyImport_ExecCodeModule"]=Module["asm"]["PyImport_ExecCodeModule"]).apply(null,arguments)};var _PyImport_ExecCodeModuleObject=Module["_PyImport_ExecCodeModuleObject"]=function(){return(_PyImport_ExecCodeModuleObject=Module["_PyImport_ExecCodeModuleObject"]=Module["asm"]["PyImport_ExecCodeModuleObject"]).apply(null,arguments)};var _PyImport_ExecCodeModuleWithPathnames=Module["_PyImport_ExecCodeModuleWithPathnames"]=function(){return(_PyImport_ExecCodeModuleWithPathnames=Module["_PyImport_ExecCodeModuleWithPathnames"]=Module["asm"]["PyImport_ExecCodeModuleWithPathnames"]).apply(null,arguments)};var _PyImport_ExecCodeModuleEx=Module["_PyImport_ExecCodeModuleEx"]=function(){return(_PyImport_ExecCodeModuleEx=Module["_PyImport_ExecCodeModuleEx"]=Module["asm"]["PyImport_ExecCodeModuleEx"]).apply(null,arguments)};var _PyImport_GetImporter=Module["_PyImport_GetImporter"]=function(){return(_PyImport_GetImporter=Module["_PyImport_GetImporter"]=Module["asm"]["PyImport_GetImporter"]).apply(null,arguments)};var _PyImport_ImportFrozenModuleObject=Module["_PyImport_ImportFrozenModuleObject"]=function(){return(_PyImport_ImportFrozenModuleObject=Module["_PyImport_ImportFrozenModuleObject"]=Module["asm"]["PyImport_ImportFrozenModuleObject"]).apply(null,arguments)};var _PyMarshal_ReadObjectFromString=Module["_PyMarshal_ReadObjectFromString"]=function(){return(_PyMarshal_ReadObjectFromString=Module["_PyMarshal_ReadObjectFromString"]=Module["asm"]["PyMarshal_ReadObjectFromString"]).apply(null,arguments)};var __PyTime_GetPerfCounter=Module["__PyTime_GetPerfCounter"]=function(){return(__PyTime_GetPerfCounter=Module["__PyTime_GetPerfCounter"]=Module["asm"]["_PyTime_GetPerfCounter"]).apply(null,arguments)};var __PyTime_AsMicroseconds=Module["__PyTime_AsMicroseconds"]=function(){return(__PyTime_AsMicroseconds=Module["__PyTime_AsMicroseconds"]=Module["asm"]["_PyTime_AsMicroseconds"]).apply(null,arguments)};var _PyImport_ImportModuleLevel=Module["_PyImport_ImportModuleLevel"]=function(){return(_PyImport_ImportModuleLevel=Module["_PyImport_ImportModuleLevel"]=Module["asm"]["PyImport_ImportModuleLevel"]).apply(null,arguments)};var _PyImport_ReloadModule=Module["_PyImport_ReloadModule"]=function(){return(_PyImport_ReloadModule=Module["_PyImport_ReloadModule"]=Module["asm"]["PyImport_ReloadModule"]).apply(null,arguments)};var _PyInit__imp=Module["_PyInit__imp"]=function(){return(_PyInit__imp=Module["_PyInit__imp"]=Module["asm"]["PyInit__imp"]).apply(null,arguments)};var _PyImport_ExtendInittab=Module["_PyImport_ExtendInittab"]=function(){return(_PyImport_ExtendInittab=Module["_PyImport_ExtendInittab"]=Module["asm"]["PyImport_ExtendInittab"]).apply(null,arguments)};var _PyImport_AppendInittab=Module["_PyImport_AppendInittab"]=function(){return(_PyImport_AppendInittab=Module["_PyImport_AppendInittab"]=Module["asm"]["PyImport_AppendInittab"]).apply(null,arguments)};var __PyImport_LoadDynamicModuleWithSpec=Module["__PyImport_LoadDynamicModuleWithSpec"]=function(){return(__PyImport_LoadDynamicModuleWithSpec=Module["__PyImport_LoadDynamicModuleWithSpec"]=Module["asm"]["_PyImport_LoadDynamicModuleWithSpec"]).apply(null,arguments)};var __Py_KeyedHash=Module["__Py_KeyedHash"]=function(){return(__Py_KeyedHash=Module["__Py_KeyedHash"]=Module["asm"]["_Py_KeyedHash"]).apply(null,arguments)};var __PyImport_FindSharedFuncptr=Module["__PyImport_FindSharedFuncptr"]=function(){return(__PyImport_FindSharedFuncptr=Module["__PyImport_FindSharedFuncptr"]=Module["asm"]["_PyImport_FindSharedFuncptr"]).apply(null,arguments)};var _PyStatus_Ok=Module["_PyStatus_Ok"]=function(){return(_PyStatus_Ok=Module["_PyStatus_Ok"]=Module["asm"]["PyStatus_Ok"]).apply(null,arguments)};var _PyStatus_Error=Module["_PyStatus_Error"]=function(){return(_PyStatus_Error=Module["_PyStatus_Error"]=Module["asm"]["PyStatus_Error"]).apply(null,arguments)};var _PyStatus_NoMemory=Module["_PyStatus_NoMemory"]=function(){return(_PyStatus_NoMemory=Module["_PyStatus_NoMemory"]=Module["asm"]["PyStatus_NoMemory"]).apply(null,arguments)};var _PyStatus_Exit=Module["_PyStatus_Exit"]=function(){return(_PyStatus_Exit=Module["_PyStatus_Exit"]=Module["asm"]["PyStatus_Exit"]).apply(null,arguments)};var _PyStatus_IsError=Module["_PyStatus_IsError"]=function(){return(_PyStatus_IsError=Module["_PyStatus_IsError"]=Module["asm"]["PyStatus_IsError"]).apply(null,arguments)};var _PyStatus_IsExit=Module["_PyStatus_IsExit"]=function(){return(_PyStatus_IsExit=Module["_PyStatus_IsExit"]=Module["asm"]["PyStatus_IsExit"]).apply(null,arguments)};var __PyWideStringList_Clear=Module["__PyWideStringList_Clear"]=function(){return(__PyWideStringList_Clear=Module["__PyWideStringList_Clear"]=Module["asm"]["_PyWideStringList_Clear"]).apply(null,arguments)};var __PyWideStringList_Copy=Module["__PyWideStringList_Copy"]=function(){return(__PyWideStringList_Copy=Module["__PyWideStringList_Copy"]=Module["asm"]["_PyWideStringList_Copy"]).apply(null,arguments)};var _PyWideStringList_Insert=Module["_PyWideStringList_Insert"]=function(){return(_PyWideStringList_Insert=Module["_PyWideStringList_Insert"]=Module["asm"]["PyWideStringList_Insert"]).apply(null,arguments)};var _PyWideStringList_Append=Module["_PyWideStringList_Append"]=function(){return(_PyWideStringList_Append=Module["_PyWideStringList_Append"]=Module["asm"]["PyWideStringList_Append"]).apply(null,arguments)};var __PyWideStringList_Extend=Module["__PyWideStringList_Extend"]=function(){return(__PyWideStringList_Extend=Module["__PyWideStringList_Extend"]=Module["asm"]["_PyWideStringList_Extend"]).apply(null,arguments)};var __PyWideStringList_AsList=Module["__PyWideStringList_AsList"]=function(){return(__PyWideStringList_AsList=Module["__PyWideStringList_AsList"]=Module["asm"]["_PyWideStringList_AsList"]).apply(null,arguments)};var _Py_SetStandardStreamEncoding=Module["_Py_SetStandardStreamEncoding"]=function(){return(_Py_SetStandardStreamEncoding=Module["_Py_SetStandardStreamEncoding"]=Module["asm"]["Py_SetStandardStreamEncoding"]).apply(null,arguments)};var __Py_ClearStandardStreamEncoding=Module["__Py_ClearStandardStreamEncoding"]=function(){return(__Py_ClearStandardStreamEncoding=Module["__Py_ClearStandardStreamEncoding"]=Module["asm"]["_Py_ClearStandardStreamEncoding"]).apply(null,arguments)};var __Py_ClearArgcArgv=Module["__Py_ClearArgcArgv"]=function(){return(__Py_ClearArgcArgv=Module["__Py_ClearArgcArgv"]=Module["asm"]["_Py_ClearArgcArgv"]).apply(null,arguments)};var _Py_GetArgcArgv=Module["_Py_GetArgcArgv"]=function(){return(_Py_GetArgcArgv=Module["_Py_GetArgcArgv"]=Module["asm"]["Py_GetArgcArgv"]).apply(null,arguments)};var __PyConfig_InitCompatConfig=Module["__PyConfig_InitCompatConfig"]=function(){return(__PyConfig_InitCompatConfig=Module["__PyConfig_InitCompatConfig"]=Module["asm"]["_PyConfig_InitCompatConfig"]).apply(null,arguments)};var _PyConfig_InitIsolatedConfig=Module["_PyConfig_InitIsolatedConfig"]=function(){return(_PyConfig_InitIsolatedConfig=Module["_PyConfig_InitIsolatedConfig"]=Module["asm"]["PyConfig_InitIsolatedConfig"]).apply(null,arguments)};var _PyConfig_SetString=Module["_PyConfig_SetString"]=function(){return(_PyConfig_SetString=Module["_PyConfig_SetString"]=Module["asm"]["PyConfig_SetString"]).apply(null,arguments)};var __Py_PreInitializeFromConfig=Module["__Py_PreInitializeFromConfig"]=function(){return(__Py_PreInitializeFromConfig=Module["__Py_PreInitializeFromConfig"]=Module["asm"]["_Py_PreInitializeFromConfig"]).apply(null,arguments)};var __PyConfig_Copy=Module["__PyConfig_Copy"]=function(){return(__PyConfig_Copy=Module["__PyConfig_Copy"]=Module["asm"]["_PyConfig_Copy"]).apply(null,arguments)};var __PyConfig_Write=Module["__PyConfig_Write"]=function(){return(__PyConfig_Write=Module["__PyConfig_Write"]=Module["asm"]["_PyConfig_Write"]).apply(null,arguments)};var _setvbuf=Module["_setvbuf"]=function(){return(_setvbuf=Module["_setvbuf"]=Module["asm"]["setvbuf"]).apply(null,arguments)};var __PyConfig_SetPyArgv=Module["__PyConfig_SetPyArgv"]=function(){return(__PyConfig_SetPyArgv=Module["__PyConfig_SetPyArgv"]=Module["asm"]["_PyConfig_SetPyArgv"]).apply(null,arguments)};var __PyArgv_AsWstrList=Module["__PyArgv_AsWstrList"]=function(){return(__PyArgv_AsWstrList=Module["__PyArgv_AsWstrList"]=Module["asm"]["_PyArgv_AsWstrList"]).apply(null,arguments)};var _PyConfig_SetBytesArgv=Module["_PyConfig_SetBytesArgv"]=function(){return(_PyConfig_SetBytesArgv=Module["_PyConfig_SetBytesArgv"]=Module["asm"]["PyConfig_SetBytesArgv"]).apply(null,arguments)};var _PyConfig_SetArgv=Module["_PyConfig_SetArgv"]=function(){return(_PyConfig_SetArgv=Module["_PyConfig_SetArgv"]=Module["asm"]["PyConfig_SetArgv"]).apply(null,arguments)};var _PyConfig_SetWideStringList=Module["_PyConfig_SetWideStringList"]=function(){return(_PyConfig_SetWideStringList=Module["_PyConfig_SetWideStringList"]=Module["asm"]["PyConfig_SetWideStringList"]).apply(null,arguments)};var _PyConfig_Read=Module["_PyConfig_Read"]=function(){return(_PyConfig_Read=Module["_PyConfig_Read"]=Module["asm"]["PyConfig_Read"]).apply(null,arguments)};var __PyPreConfig_InitFromPreConfig=Module["__PyPreConfig_InitFromPreConfig"]=function(){return(__PyPreConfig_InitFromPreConfig=Module["__PyPreConfig_InitFromPreConfig"]=Module["asm"]["_PyPreConfig_InitFromPreConfig"]).apply(null,arguments)};var __PyPreConfig_GetConfig=Module["__PyPreConfig_GetConfig"]=function(){return(__PyPreConfig_GetConfig=Module["__PyPreConfig_GetConfig"]=Module["asm"]["_PyPreConfig_GetConfig"]).apply(null,arguments)};var __PyPreCmdline_Read=Module["__PyPreCmdline_Read"]=function(){return(__PyPreCmdline_Read=Module["__PyPreCmdline_Read"]=Module["asm"]["_PyPreCmdline_Read"]).apply(null,arguments)};var __PyPreCmdline_SetConfig=Module["__PyPreCmdline_SetConfig"]=function(){return(__PyPreCmdline_SetConfig=Module["__PyPreCmdline_SetConfig"]=Module["asm"]["_PyPreCmdline_SetConfig"]).apply(null,arguments)};var __PyOS_ResetGetOpt=Module["__PyOS_ResetGetOpt"]=function(){return(__PyOS_ResetGetOpt=Module["__PyOS_ResetGetOpt"]=Module["asm"]["_PyOS_ResetGetOpt"]).apply(null,arguments)};var __PyOS_GetOpt=Module["__PyOS_GetOpt"]=function(){return(__PyOS_GetOpt=Module["__PyOS_GetOpt"]=Module["asm"]["_PyOS_GetOpt"]).apply(null,arguments)};var __Py_isabs=Module["__Py_isabs"]=function(){return(__Py_isabs=Module["__Py_isabs"]=Module["asm"]["_Py_isabs"]).apply(null,arguments)};var __Py_abspath=Module["__Py_abspath"]=function(){return(__Py_abspath=Module["__Py_abspath"]=Module["asm"]["_Py_abspath"]).apply(null,arguments)};var _wcstok=Module["_wcstok"]=function(){return(_wcstok=Module["_wcstok"]=Module["asm"]["wcstok"]).apply(null,arguments)};var __PySys_ReadPreinitWarnOptions=Module["__PySys_ReadPreinitWarnOptions"]=function(){return(__PySys_ReadPreinitWarnOptions=Module["__PySys_ReadPreinitWarnOptions"]=Module["asm"]["_PySys_ReadPreinitWarnOptions"]).apply(null,arguments)};var __PySys_ReadPreinitXOptions=Module["__PySys_ReadPreinitXOptions"]=function(){return(__PySys_ReadPreinitXOptions=Module["__PySys_ReadPreinitXOptions"]=Module["asm"]["_PySys_ReadPreinitXOptions"]).apply(null,arguments)};var __Py_get_env_flag=Module["__Py_get_env_flag"]=function(){return(__Py_get_env_flag=Module["__Py_get_env_flag"]=Module["asm"]["_Py_get_env_flag"]).apply(null,arguments)};var __Py_GetEnv=Module["__Py_GetEnv"]=function(){return(__Py_GetEnv=Module["__Py_GetEnv"]=Module["asm"]["_Py_GetEnv"]).apply(null,arguments)};var _strtoul=Module["_strtoul"]=function(){return(_strtoul=Module["_strtoul"]=Module["asm"]["strtoul"]).apply(null,arguments)};var __Py_get_xoption=Module["__Py_get_xoption"]=function(){return(__Py_get_xoption=Module["__Py_get_xoption"]=Module["asm"]["_Py_get_xoption"]).apply(null,arguments)};var __Py_str_to_int=Module["__Py_str_to_int"]=function(){return(__Py_str_to_int=Module["__Py_str_to_int"]=Module["asm"]["_Py_str_to_int"]).apply(null,arguments)};var _wcschr=Module["_wcschr"]=function(){return(_wcschr=Module["_wcschr"]=Module["asm"]["wcschr"]).apply(null,arguments)};var _wcstol=Module["_wcstol"]=function(){return(_wcstol=Module["_wcstol"]=Module["asm"]["wcstol"]).apply(null,arguments)};var __PyConfig_InitPathConfig=Module["__PyConfig_InitPathConfig"]=function(){return(__PyConfig_InitPathConfig=Module["__PyConfig_InitPathConfig"]=Module["asm"]["_PyConfig_InitPathConfig"]).apply(null,arguments)};var __Py_GetForceASCII=Module["__Py_GetForceASCII"]=function(){return(__Py_GetForceASCII=Module["__Py_GetForceASCII"]=Module["asm"]["_Py_GetForceASCII"]).apply(null,arguments)};var _nl_langinfo=Module["_nl_langinfo"]=function(){return(_nl_langinfo=Module["_nl_langinfo"]=Module["asm"]["nl_langinfo"]).apply(null,arguments)};var __Py_IsLocaleCoercionTarget=Module["__Py_IsLocaleCoercionTarget"]=function(){return(__Py_IsLocaleCoercionTarget=Module["__Py_IsLocaleCoercionTarget"]=Module["asm"]["_Py_IsLocaleCoercionTarget"]).apply(null,arguments)};var __PyPreCmdline_Clear=Module["__PyPreCmdline_Clear"]=function(){return(__PyPreCmdline_Clear=Module["__PyPreCmdline_Clear"]=Module["asm"]["_PyPreCmdline_Clear"]).apply(null,arguments)};var __Py_GetConfigsAsDict=Module["__Py_GetConfigsAsDict"]=function(){return(__Py_GetConfigsAsDict=Module["__Py_GetConfigsAsDict"]=Module["asm"]["_Py_GetConfigsAsDict"]).apply(null,arguments)};var __PyPreConfig_AsDict=Module["__PyPreConfig_AsDict"]=function(){return(__PyPreConfig_AsDict=Module["__PyPreConfig_AsDict"]=Module["asm"]["_PyPreConfig_AsDict"]).apply(null,arguments)};var _PyMarshal_WriteLongToFile=Module["_PyMarshal_WriteLongToFile"]=function(){return(_PyMarshal_WriteLongToFile=Module["_PyMarshal_WriteLongToFile"]=Module["asm"]["PyMarshal_WriteLongToFile"]).apply(null,arguments)};var _PyMarshal_WriteObjectToFile=Module["_PyMarshal_WriteObjectToFile"]=function(){return(_PyMarshal_WriteObjectToFile=Module["_PyMarshal_WriteObjectToFile"]=Module["asm"]["PyMarshal_WriteObjectToFile"]).apply(null,arguments)};var _PyMarshal_ReadShortFromFile=Module["_PyMarshal_ReadShortFromFile"]=function(){return(_PyMarshal_ReadShortFromFile=Module["_PyMarshal_ReadShortFromFile"]=Module["asm"]["PyMarshal_ReadShortFromFile"]).apply(null,arguments)};var _PyMarshal_ReadLongFromFile=Module["_PyMarshal_ReadLongFromFile"]=function(){return(_PyMarshal_ReadLongFromFile=Module["_PyMarshal_ReadLongFromFile"]=Module["asm"]["PyMarshal_ReadLongFromFile"]).apply(null,arguments)};var _PyMarshal_ReadLastObjectFromFile=Module["_PyMarshal_ReadLastObjectFromFile"]=function(){return(_PyMarshal_ReadLastObjectFromFile=Module["_PyMarshal_ReadLastObjectFromFile"]=Module["asm"]["PyMarshal_ReadLastObjectFromFile"]).apply(null,arguments)};var __Py_fstat_noraise=Module["__Py_fstat_noraise"]=function(){return(__Py_fstat_noraise=Module["__Py_fstat_noraise"]=Module["asm"]["_Py_fstat_noraise"]).apply(null,arguments)};var _fread=Module["_fread"]=function(){return(_fread=Module["_fread"]=Module["asm"]["fread"]).apply(null,arguments)};var _PyMarshal_ReadObjectFromFile=Module["_PyMarshal_ReadObjectFromFile"]=function(){return(_PyMarshal_ReadObjectFromFile=Module["_PyMarshal_ReadObjectFromFile"]=Module["asm"]["PyMarshal_ReadObjectFromFile"]).apply(null,arguments)};var _PyMarshal_WriteObjectToString=Module["_PyMarshal_WriteObjectToString"]=function(){return(_PyMarshal_WriteObjectToString=Module["_PyMarshal_WriteObjectToString"]=Module["asm"]["PyMarshal_WriteObjectToString"]).apply(null,arguments)};var _PyMarshal_Init=Module["_PyMarshal_Init"]=function(){return(_PyMarshal_Init=Module["_PyMarshal_Init"]=Module["asm"]["PyMarshal_Init"]).apply(null,arguments)};var __Py_convert_optional_to_ssize_t=Module["__Py_convert_optional_to_ssize_t"]=function(){return(__Py_convert_optional_to_ssize_t=Module["__Py_convert_optional_to_ssize_t"]=Module["asm"]["_Py_convert_optional_to_ssize_t"]).apply(null,arguments)};var _Py_VaBuildValue=Module["_Py_VaBuildValue"]=function(){return(_Py_VaBuildValue=Module["_Py_VaBuildValue"]=Module["asm"]["Py_VaBuildValue"]).apply(null,arguments)};var __Py_VaBuildValue_SizeT=Module["__Py_VaBuildValue_SizeT"]=function(){return(__Py_VaBuildValue_SizeT=Module["__Py_VaBuildValue_SizeT"]=Module["asm"]["_Py_VaBuildValue_SizeT"]).apply(null,arguments)};var _PyModule_AddStringConstant=Module["_PyModule_AddStringConstant"]=function(){return(_PyModule_AddStringConstant=Module["_PyModule_AddStringConstant"]=Module["asm"]["PyModule_AddStringConstant"]).apply(null,arguments)};var _vsnprintf=Module["_vsnprintf"]=function(){return(_vsnprintf=Module["_vsnprintf"]=Module["asm"]["vsnprintf"]).apply(null,arguments)};var _PyOS_vsnprintf=Module["_PyOS_vsnprintf"]=function(){return(_PyOS_vsnprintf=Module["_PyOS_vsnprintf"]=Module["asm"]["PyOS_vsnprintf"]).apply(null,arguments)};var __PyPathConfig_ClearGlobal=Module["__PyPathConfig_ClearGlobal"]=function(){return(__PyPathConfig_ClearGlobal=Module["__PyPathConfig_ClearGlobal"]=Module["asm"]["_PyPathConfig_ClearGlobal"]).apply(null,arguments)};var __PyConfig_WritePathConfig=Module["__PyConfig_WritePathConfig"]=function(){return(__PyConfig_WritePathConfig=Module["__PyConfig_WritePathConfig"]=Module["asm"]["_PyConfig_WritePathConfig"]).apply(null,arguments)};var __PyPathConfig_Calculate=Module["__PyPathConfig_Calculate"]=function(){return(__PyPathConfig_Calculate=Module["__PyPathConfig_Calculate"]=Module["asm"]["_PyPathConfig_Calculate"]).apply(null,arguments)};var _Py_SetPath=Module["_Py_SetPath"]=function(){return(_Py_SetPath=Module["_Py_SetPath"]=Module["asm"]["Py_SetPath"]).apply(null,arguments)};var _Py_GetProgramFullPath=Module["_Py_GetProgramFullPath"]=function(){return(_Py_GetProgramFullPath=Module["_Py_GetProgramFullPath"]=Module["asm"]["Py_GetProgramFullPath"]).apply(null,arguments)};var _Py_SetPythonHome=Module["_Py_SetPythonHome"]=function(){return(_Py_SetPythonHome=Module["_Py_SetPythonHome"]=Module["asm"]["Py_SetPythonHome"]).apply(null,arguments)};var __Py_SetProgramFullPath=Module["__Py_SetProgramFullPath"]=function(){return(__Py_SetProgramFullPath=Module["__Py_SetProgramFullPath"]=Module["asm"]["_Py_SetProgramFullPath"]).apply(null,arguments)};var _Py_GetPath=Module["_Py_GetPath"]=function(){return(_Py_GetPath=Module["_Py_GetPath"]=Module["asm"]["Py_GetPath"]).apply(null,arguments)};var _Py_GetPrefix=Module["_Py_GetPrefix"]=function(){return(_Py_GetPrefix=Module["_Py_GetPrefix"]=Module["asm"]["Py_GetPrefix"]).apply(null,arguments)};var _Py_GetExecPrefix=Module["_Py_GetExecPrefix"]=function(){return(_Py_GetExecPrefix=Module["_Py_GetExecPrefix"]=Module["asm"]["Py_GetExecPrefix"]).apply(null,arguments)};var _Py_GetPythonHome=Module["_Py_GetPythonHome"]=function(){return(_Py_GetPythonHome=Module["_Py_GetPythonHome"]=Module["asm"]["Py_GetPythonHome"]).apply(null,arguments)};var _Py_GetProgramName=Module["_Py_GetProgramName"]=function(){return(_Py_GetProgramName=Module["_Py_GetProgramName"]=Module["asm"]["Py_GetProgramName"]).apply(null,arguments)};var __PyPathConfig_ComputeSysPath0=Module["__PyPathConfig_ComputeSysPath0"]=function(){return(__PyPathConfig_ComputeSysPath0=Module["__PyPathConfig_ComputeSysPath0"]=Module["asm"]["_PyPathConfig_ComputeSysPath0"]).apply(null,arguments)};var __Py_wgetcwd=Module["__Py_wgetcwd"]=function(){return(__Py_wgetcwd=Module["__Py_wgetcwd"]=Module["asm"]["_Py_wgetcwd"]).apply(null,arguments)};var __Py_wreadlink=Module["__Py_wreadlink"]=function(){return(__Py_wreadlink=Module["__Py_wreadlink"]=Module["asm"]["_Py_wreadlink"]).apply(null,arguments)};var _wcsrchr=Module["_wcsrchr"]=function(){return(_wcsrchr=Module["_wcsrchr"]=Module["asm"]["wcsrchr"]).apply(null,arguments)};var _wcsncpy=Module["_wcsncpy"]=function(){return(_wcsncpy=Module["_wcsncpy"]=Module["asm"]["wcsncpy"]).apply(null,arguments)};var __Py_wrealpath=Module["__Py_wrealpath"]=function(){return(__Py_wrealpath=Module["__Py_wrealpath"]=Module["asm"]["_Py_wrealpath"]).apply(null,arguments)};var __Py_FindEnvConfigValue=Module["__Py_FindEnvConfigValue"]=function(){return(__Py_FindEnvConfigValue=Module["__Py_FindEnvConfigValue"]=Module["asm"]["_Py_FindEnvConfigValue"]).apply(null,arguments)};var __Py_ClearFileSystemEncoding=Module["__Py_ClearFileSystemEncoding"]=function(){return(__Py_ClearFileSystemEncoding=Module["__Py_ClearFileSystemEncoding"]=Module["asm"]["_Py_ClearFileSystemEncoding"]).apply(null,arguments)};var __PyPreCmdline_SetArgv=Module["__PyPreCmdline_SetArgv"]=function(){return(__PyPreCmdline_SetArgv=Module["__PyPreCmdline_SetArgv"]=Module["asm"]["_PyPreCmdline_SetArgv"]).apply(null,arguments)};var _wcsncmp=Module["_wcsncmp"]=function(){return(_wcsncmp=Module["_wcsncmp"]=Module["asm"]["wcsncmp"]).apply(null,arguments)};var __PyPreConfig_InitCompatConfig=Module["__PyPreConfig_InitCompatConfig"]=function(){return(__PyPreConfig_InitCompatConfig=Module["__PyPreConfig_InitCompatConfig"]=Module["asm"]["_PyPreConfig_InitCompatConfig"]).apply(null,arguments)};var _PyPreConfig_InitPythonConfig=Module["_PyPreConfig_InitPythonConfig"]=function(){return(_PyPreConfig_InitPythonConfig=Module["_PyPreConfig_InitPythonConfig"]=Module["asm"]["PyPreConfig_InitPythonConfig"]).apply(null,arguments)};var _PyPreConfig_InitIsolatedConfig=Module["_PyPreConfig_InitIsolatedConfig"]=function(){return(_PyPreConfig_InitIsolatedConfig=Module["_PyPreConfig_InitIsolatedConfig"]=Module["asm"]["PyPreConfig_InitIsolatedConfig"]).apply(null,arguments)};var __PyPreConfig_InitFromConfig=Module["__PyPreConfig_InitFromConfig"]=function(){return(__PyPreConfig_InitFromConfig=Module["__PyPreConfig_InitFromConfig"]=Module["asm"]["_PyPreConfig_InitFromConfig"]).apply(null,arguments)};var __PyPreConfig_Read=Module["__PyPreConfig_Read"]=function(){return(__PyPreConfig_Read=Module["__PyPreConfig_Read"]=Module["asm"]["_PyPreConfig_Read"]).apply(null,arguments)};var __Py_SetLocaleFromEnv=Module["__Py_SetLocaleFromEnv"]=function(){return(__Py_SetLocaleFromEnv=Module["__Py_SetLocaleFromEnv"]=Module["asm"]["_Py_SetLocaleFromEnv"]).apply(null,arguments)};var __Py_LegacyLocaleDetected=Module["__Py_LegacyLocaleDetected"]=function(){return(__Py_LegacyLocaleDetected=Module["__Py_LegacyLocaleDetected"]=Module["asm"]["_Py_LegacyLocaleDetected"]).apply(null,arguments)};var __Py_CoerceLegacyLocale=Module["__Py_CoerceLegacyLocale"]=function(){return(__Py_CoerceLegacyLocale=Module["__Py_CoerceLegacyLocale"]=Module["asm"]["_Py_CoerceLegacyLocale"]).apply(null,arguments)};var __PyPreConfig_Write=Module["__PyPreConfig_Write"]=function(){return(__PyPreConfig_Write=Module["__PyPreConfig_Write"]=Module["asm"]["_PyPreConfig_Write"]).apply(null,arguments)};var _PyFPE_dummy=Module["_PyFPE_dummy"]=function(){return(_PyFPE_dummy=Module["_PyFPE_dummy"]=Module["asm"]["PyFPE_dummy"]).apply(null,arguments)};var __PyHash_Fini=Module["__PyHash_Fini"]=function(){return(__PyHash_Fini=Module["__PyHash_Fini"]=Module["asm"]["_PyHash_Fini"]).apply(null,arguments)};var _PyHash_GetFuncDef=Module["_PyHash_GetFuncDef"]=function(){return(_PyHash_GetFuncDef=Module["_PyHash_GetFuncDef"]=Module["asm"]["PyHash_GetFuncDef"]).apply(null,arguments)};var __PyRuntimeState_Init=Module["__PyRuntimeState_Init"]=function(){return(__PyRuntimeState_Init=Module["__PyRuntimeState_Init"]=Module["asm"]["_PyRuntimeState_Init"]).apply(null,arguments)};var __PyRuntime_Finalize=Module["__PyRuntime_Finalize"]=function(){return(__PyRuntime_Finalize=Module["__PyRuntime_Finalize"]=Module["asm"]["_PyRuntime_Finalize"]).apply(null,arguments)};var __PyRuntimeState_Fini=Module["__PyRuntimeState_Fini"]=function(){return(__PyRuntimeState_Fini=Module["__PyRuntimeState_Fini"]=Module["asm"]["_PyRuntimeState_Fini"]).apply(null,arguments)};var _PyModule_GetWarningsModule=Module["_PyModule_GetWarningsModule"]=function(){return(_PyModule_GetWarningsModule=Module["_PyModule_GetWarningsModule"]=Module["asm"]["PyModule_GetWarningsModule"]).apply(null,arguments)};var __Py_IsCoreInitialized=Module["__Py_IsCoreInitialized"]=function(){return(__Py_IsCoreInitialized=Module["__Py_IsCoreInitialized"]=Module["asm"]["_Py_IsCoreInitialized"]).apply(null,arguments)};var __Py_ResetForceASCII=Module["__Py_ResetForceASCII"]=function(){return(__Py_ResetForceASCII=Module["__Py_ResetForceASCII"]=Module["asm"]["_Py_ResetForceASCII"]).apply(null,arguments)};var _setenv=Module["_setenv"]=function(){return(_setenv=Module["_setenv"]=Module["asm"]["setenv"]).apply(null,arguments)};var __Py_PreInitializeFromPyArgv=Module["__Py_PreInitializeFromPyArgv"]=function(){return(__Py_PreInitializeFromPyArgv=Module["__Py_PreInitializeFromPyArgv"]=Module["asm"]["_Py_PreInitializeFromPyArgv"]).apply(null,arguments)};var _Py_PreInitializeFromBytesArgs=Module["_Py_PreInitializeFromBytesArgs"]=function(){return(_Py_PreInitializeFromBytesArgs=Module["_Py_PreInitializeFromBytesArgs"]=Module["asm"]["Py_PreInitializeFromBytesArgs"]).apply(null,arguments)};var _Py_PreInitializeFromArgs=Module["_Py_PreInitializeFromArgs"]=function(){return(_Py_PreInitializeFromArgs=Module["_Py_PreInitializeFromArgs"]=Module["asm"]["Py_PreInitializeFromArgs"]).apply(null,arguments)};var _Py_PreInitialize=Module["_Py_PreInitialize"]=function(){return(_Py_PreInitialize=Module["_Py_PreInitialize"]=Module["asm"]["Py_PreInitialize"]).apply(null,arguments)};var __Py_InitializeMain=Module["__Py_InitializeMain"]=function(){return(__Py_InitializeMain=Module["__Py_InitializeMain"]=Module["asm"]["_Py_InitializeMain"]).apply(null,arguments)};var __Py_HashRandomization_Init=Module["__Py_HashRandomization_Init"]=function(){return(__Py_HashRandomization_Init=Module["__Py_HashRandomization_Init"]=Module["asm"]["_Py_HashRandomization_Init"]).apply(null,arguments)};var __PyInterpreterState_Enable=Module["__PyInterpreterState_Enable"]=function(){return(__PyInterpreterState_Enable=Module["__PyInterpreterState_Enable"]=Module["asm"]["_PyInterpreterState_Enable"]).apply(null,arguments)};var _PyInterpreterState_New=Module["_PyInterpreterState_New"]=function(){return(_PyInterpreterState_New=Module["_PyInterpreterState_New"]=Module["asm"]["PyInterpreterState_New"]).apply(null,arguments)};var __PyInterpreterState_SetConfig=Module["__PyInterpreterState_SetConfig"]=function(){return(__PyInterpreterState_SetConfig=Module["__PyInterpreterState_SetConfig"]=Module["asm"]["_PyInterpreterState_SetConfig"]).apply(null,arguments)};var _PyThreadState_New=Module["_PyThreadState_New"]=function(){return(_PyThreadState_New=Module["_PyThreadState_New"]=Module["asm"]["PyThreadState_New"]).apply(null,arguments)};var _PyThreadState_Swap=Module["_PyThreadState_Swap"]=function(){return(_PyThreadState_Swap=Module["_PyThreadState_Swap"]=Module["asm"]["PyThreadState_Swap"]).apply(null,arguments)};var __PyGILState_Init=Module["__PyGILState_Init"]=function(){return(__PyGILState_Init=Module["__PyGILState_Init"]=Module["asm"]["_PyGILState_Init"]).apply(null,arguments)};var _Py_InitializeEx=Module["_Py_InitializeEx"]=function(){return(_Py_InitializeEx=Module["_Py_InitializeEx"]=Module["asm"]["Py_InitializeEx"]).apply(null,arguments)};var _Py_FatalError=Module["_Py_FatalError"]=function(){return(_Py_FatalError=Module["_Py_FatalError"]=Module["asm"]["Py_FatalError"]).apply(null,arguments)};var _Py_Initialize=Module["_Py_Initialize"]=function(){return(_Py_Initialize=Module["_Py_Initialize"]=Module["asm"]["Py_Initialize"]).apply(null,arguments)};var _PyOS_FiniInterrupts=Module["_PyOS_FiniInterrupts"]=function(){return(_PyOS_FiniInterrupts=Module["_PyOS_FiniInterrupts"]=Module["asm"]["PyOS_FiniInterrupts"]).apply(null,arguments)};var __PyGC_CollectIfEnabled=Module["__PyGC_CollectIfEnabled"]=function(){return(__PyGC_CollectIfEnabled=Module["__PyGC_CollectIfEnabled"]=Module["asm"]["_PyGC_CollectIfEnabled"]).apply(null,arguments)};var __PyTraceMalloc_Fini=Module["__PyTraceMalloc_Fini"]=function(){return(__PyTraceMalloc_Fini=Module["__PyTraceMalloc_Fini"]=Module["asm"]["_PyTraceMalloc_Fini"]).apply(null,arguments)};var __PyFaulthandler_Fini=Module["__PyFaulthandler_Fini"]=function(){return(__PyFaulthandler_Fini=Module["__PyFaulthandler_Fini"]=Module["asm"]["_PyFaulthandler_Fini"]).apply(null,arguments)};var __PyGILState_Fini=Module["__PyGILState_Fini"]=function(){return(__PyGILState_Fini=Module["__PyGILState_Fini"]=Module["asm"]["_PyGILState_Fini"]).apply(null,arguments)};var _PyInterpreterState_Delete=Module["_PyInterpreterState_Delete"]=function(){return(_PyInterpreterState_Delete=Module["_PyInterpreterState_Delete"]=Module["asm"]["PyInterpreterState_Delete"]).apply(null,arguments)};var _PyInterpreterState_Clear=Module["_PyInterpreterState_Clear"]=function(){return(_PyInterpreterState_Clear=Module["_PyInterpreterState_Clear"]=Module["asm"]["PyInterpreterState_Clear"]).apply(null,arguments)};var __PyGC_Fini=Module["__PyGC_Fini"]=function(){return(__PyGC_Fini=Module["__PyGC_Fini"]=Module["asm"]["_PyGC_Fini"]).apply(null,arguments)};var __PySys_ClearAuditHooks=Module["__PySys_ClearAuditHooks"]=function(){return(__PySys_ClearAuditHooks=Module["__PySys_ClearAuditHooks"]=Module["asm"]["_PySys_ClearAuditHooks"]).apply(null,arguments)};var _Py_Finalize=Module["_Py_Finalize"]=function(){return(_Py_Finalize=Module["_Py_Finalize"]=Module["asm"]["Py_Finalize"]).apply(null,arguments)};var __Py_NewInterpreter=Module["__Py_NewInterpreter"]=function(){return(__Py_NewInterpreter=Module["__Py_NewInterpreter"]=Module["asm"]["_Py_NewInterpreter"]).apply(null,arguments)};var _PyInterpreterState_Main=Module["_PyInterpreterState_Main"]=function(){return(_PyInterpreterState_Main=Module["_PyInterpreterState_Main"]=Module["asm"]["PyInterpreterState_Main"]).apply(null,arguments)};var _PyErr_PrintEx=Module["_PyErr_PrintEx"]=function(){return(_PyErr_PrintEx=Module["_PyErr_PrintEx"]=Module["asm"]["PyErr_PrintEx"]).apply(null,arguments)};var _PyThreadState_Clear=Module["_PyThreadState_Clear"]=function(){return(_PyThreadState_Clear=Module["_PyThreadState_Clear"]=Module["asm"]["PyThreadState_Clear"]).apply(null,arguments)};var _PyThreadState_Delete=Module["_PyThreadState_Delete"]=function(){return(_PyThreadState_Delete=Module["_PyThreadState_Delete"]=Module["asm"]["PyThreadState_Delete"]).apply(null,arguments)};var _Py_NewInterpreter=Module["_Py_NewInterpreter"]=function(){return(_Py_NewInterpreter=Module["_Py_NewInterpreter"]=Module["asm"]["Py_NewInterpreter"]).apply(null,arguments)};var _Py_EndInterpreter=Module["_Py_EndInterpreter"]=function(){return(_Py_EndInterpreter=Module["_Py_EndInterpreter"]=Module["asm"]["Py_EndInterpreter"]).apply(null,arguments)};var __Py_DumpTracebackThreads=Module["__Py_DumpTracebackThreads"]=function(){return(__Py_DumpTracebackThreads=Module["__Py_DumpTracebackThreads"]=Module["asm"]["_Py_DumpTracebackThreads"]).apply(null,arguments)};var _vfprintf=Module["_vfprintf"]=function(){return(_vfprintf=Module["_vfprintf"]=Module["asm"]["vfprintf"]).apply(null,arguments)};var __Py_PyAtExit=Module["__Py_PyAtExit"]=function(){return(__Py_PyAtExit=Module["__Py_PyAtExit"]=Module["asm"]["_Py_PyAtExit"]).apply(null,arguments)};var _Py_AtExit=Module["_Py_AtExit"]=function(){return(_Py_AtExit=Module["_Py_AtExit"]=Module["asm"]["Py_AtExit"]).apply(null,arguments)};var _Py_Exit=Module["_Py_Exit"]=function(){return(_Py_Exit=Module["_Py_Exit"]=Module["asm"]["Py_Exit"]).apply(null,arguments)};var __Py_RestoreSignals=Module["__Py_RestoreSignals"]=function(){return(__Py_RestoreSignals=Module["__Py_RestoreSignals"]=Module["asm"]["_Py_RestoreSignals"]).apply(null,arguments)};var _PyOS_setsig=Module["_PyOS_setsig"]=function(){return(_PyOS_setsig=Module["_PyOS_setsig"]=Module["asm"]["PyOS_setsig"]).apply(null,arguments)};var _Py_FdIsInteractive=Module["_Py_FdIsInteractive"]=function(){return(_Py_FdIsInteractive=Module["_Py_FdIsInteractive"]=Module["asm"]["Py_FdIsInteractive"]).apply(null,arguments)};var _PyOS_getsig=Module["_PyOS_getsig"]=function(){return(_PyOS_getsig=Module["_PyOS_getsig"]=Module["asm"]["PyOS_getsig"]).apply(null,arguments)};var __PyTime_Init=Module["__PyTime_Init"]=function(){return(__PyTime_Init=Module["__PyTime_Init"]=Module["asm"]["_PyTime_Init"]).apply(null,arguments)};var __PySys_InitMain=Module["__PySys_InitMain"]=function(){return(__PySys_InitMain=Module["__PySys_InitMain"]=Module["asm"]["_PySys_InitMain"]).apply(null,arguments)};var __PyFaulthandler_Init=Module["__PyFaulthandler_Init"]=function(){return(__PyFaulthandler_Init=Module["__PyFaulthandler_Init"]=Module["asm"]["_PyFaulthandler_Init"]).apply(null,arguments)};var __PySignal_Init=Module["__PySignal_Init"]=function(){return(__PySignal_Init=Module["__PySignal_Init"]=Module["asm"]["_PySignal_Init"]).apply(null,arguments)};var __PyTraceMalloc_Init=Module["__PyTraceMalloc_Init"]=function(){return(__PyTraceMalloc_Init=Module["__PyTraceMalloc_Init"]=Module["asm"]["_PyTraceMalloc_Init"]).apply(null,arguments)};var _fstat=Module["_fstat"]=function(){return(_fstat=Module["_fstat"]=Module["asm"]["fstat"]).apply(null,arguments)};var __PyGC_Init=Module["__PyGC_Init"]=function(){return(__PyGC_Init=Module["__PyGC_Init"]=Module["asm"]["_PyGC_Init"]).apply(null,arguments)};var __PySys_Create=Module["__PySys_Create"]=function(){return(__PySys_Create=Module["__PySys_Create"]=Module["asm"]["_PySys_Create"]).apply(null,arguments)};var __Py_HashRandomization_Fini=Module["__Py_HashRandomization_Fini"]=function(){return(__Py_HashRandomization_Fini=Module["__Py_HashRandomization_Fini"]=Module["asm"]["_Py_HashRandomization_Fini"]).apply(null,arguments)};var _PyOS_mystrnicmp=Module["_PyOS_mystrnicmp"]=function(){return(_PyOS_mystrnicmp=Module["_PyOS_mystrnicmp"]=Module["asm"]["PyOS_mystrnicmp"]).apply(null,arguments)};var __PyRuntimeState_ReInitThreads=Module["__PyRuntimeState_ReInitThreads"]=function(){return(__PyRuntimeState_ReInitThreads=Module["__PyRuntimeState_ReInitThreads"]=Module["asm"]["_PyRuntimeState_ReInitThreads"]).apply(null,arguments)};var __PyGC_InitState=Module["__PyGC_InitState"]=function(){return(__PyGC_InitState=Module["__PyGC_InitState"]=Module["asm"]["_PyGC_InitState"]).apply(null,arguments)};var __PyInterpreterState_DeleteExceptMain=Module["__PyInterpreterState_DeleteExceptMain"]=function(){return(__PyInterpreterState_DeleteExceptMain=Module["__PyInterpreterState_DeleteExceptMain"]=Module["asm"]["_PyInterpreterState_DeleteExceptMain"]).apply(null,arguments)};var _PyInterpreterState_Get=Module["_PyInterpreterState_Get"]=function(){return(_PyInterpreterState_Get=Module["_PyInterpreterState_Get"]=Module["asm"]["PyInterpreterState_Get"]).apply(null,arguments)};var _PyInterpreterState_ThreadHead=Module["_PyInterpreterState_ThreadHead"]=function(){return(_PyInterpreterState_ThreadHead=Module["_PyInterpreterState_ThreadHead"]=Module["asm"]["PyInterpreterState_ThreadHead"]).apply(null,arguments)};var __PyInterpreterState_RequiresIDRef=Module["__PyInterpreterState_RequiresIDRef"]=function(){return(__PyInterpreterState_RequiresIDRef=Module["__PyInterpreterState_RequiresIDRef"]=Module["asm"]["_PyInterpreterState_RequiresIDRef"]).apply(null,arguments)};var __PyInterpreterState_RequireIDRef=Module["__PyInterpreterState_RequireIDRef"]=function(){return(__PyInterpreterState_RequireIDRef=Module["__PyInterpreterState_RequireIDRef"]=Module["asm"]["_PyInterpreterState_RequireIDRef"]).apply(null,arguments)};var __PyInterpreterState_GetMainModule=Module["__PyInterpreterState_GetMainModule"]=function(){return(__PyInterpreterState_GetMainModule=Module["__PyInterpreterState_GetMainModule"]=Module["asm"]["_PyInterpreterState_GetMainModule"]).apply(null,arguments)};var _PyInterpreterState_GetDict=Module["_PyInterpreterState_GetDict"]=function(){return(_PyInterpreterState_GetDict=Module["_PyInterpreterState_GetDict"]=Module["asm"]["PyInterpreterState_GetDict"]).apply(null,arguments)};var _PyThread_tss_get=Module["_PyThread_tss_get"]=function(){return(_PyThread_tss_get=Module["_PyThread_tss_get"]=Module["asm"]["PyThread_tss_get"]).apply(null,arguments)};var _PyThread_tss_set=Module["_PyThread_tss_set"]=function(){return(_PyThread_tss_set=Module["_PyThread_tss_set"]=Module["asm"]["PyThread_tss_set"]).apply(null,arguments)};var __PyThreadState_Prealloc=Module["__PyThreadState_Prealloc"]=function(){return(__PyThreadState_Prealloc=Module["__PyThreadState_Prealloc"]=Module["asm"]["_PyThreadState_Prealloc"]).apply(null,arguments)};var __PyThreadState_Init=Module["__PyThreadState_Init"]=function(){return(__PyThreadState_Init=Module["__PyThreadState_Init"]=Module["asm"]["_PyThreadState_Init"]).apply(null,arguments)};var _PyState_FindModule=Module["_PyState_FindModule"]=function(){return(_PyState_FindModule=Module["_PyState_FindModule"]=Module["asm"]["PyState_FindModule"]).apply(null,arguments)};var _PyState_AddModule=Module["_PyState_AddModule"]=function(){return(_PyState_AddModule=Module["_PyState_AddModule"]=Module["asm"]["PyState_AddModule"]).apply(null,arguments)};var _PyState_RemoveModule=Module["_PyState_RemoveModule"]=function(){return(_PyState_RemoveModule=Module["_PyState_RemoveModule"]=Module["asm"]["PyState_RemoveModule"]).apply(null,arguments)};var __PyThreadState_DeleteCurrent=Module["__PyThreadState_DeleteCurrent"]=function(){return(__PyThreadState_DeleteCurrent=Module["__PyThreadState_DeleteCurrent"]=Module["asm"]["_PyThreadState_DeleteCurrent"]).apply(null,arguments)};var _PyThreadState_DeleteCurrent=Module["_PyThreadState_DeleteCurrent"]=function(){return(_PyThreadState_DeleteCurrent=Module["_PyThreadState_DeleteCurrent"]=Module["asm"]["PyThreadState_DeleteCurrent"]).apply(null,arguments)};var __PyThreadState_UncheckedGet=Module["__PyThreadState_UncheckedGet"]=function(){return(__PyThreadState_UncheckedGet=Module["__PyThreadState_UncheckedGet"]=Module["asm"]["_PyThreadState_UncheckedGet"]).apply(null,arguments)};var __PyThreadState_GetDict=Module["__PyThreadState_GetDict"]=function(){return(__PyThreadState_GetDict=Module["__PyThreadState_GetDict"]=Module["asm"]["_PyThreadState_GetDict"]).apply(null,arguments)};var _PyThreadState_GetInterpreter=Module["_PyThreadState_GetInterpreter"]=function(){return(_PyThreadState_GetInterpreter=Module["_PyThreadState_GetInterpreter"]=Module["asm"]["PyThreadState_GetInterpreter"]).apply(null,arguments)};var _PyThreadState_GetID=Module["_PyThreadState_GetID"]=function(){return(_PyThreadState_GetID=Module["_PyThreadState_GetID"]=Module["asm"]["PyThreadState_GetID"]).apply(null,arguments)};var _PyThreadState_SetAsyncExc=Module["_PyThreadState_SetAsyncExc"]=function(){return(_PyThreadState_SetAsyncExc=Module["_PyThreadState_SetAsyncExc"]=Module["asm"]["PyThreadState_SetAsyncExc"]).apply(null,arguments)};var _PyInterpreterState_Head=Module["_PyInterpreterState_Head"]=function(){return(_PyInterpreterState_Head=Module["_PyInterpreterState_Head"]=Module["asm"]["PyInterpreterState_Head"]).apply(null,arguments)};var _PyInterpreterState_Next=Module["_PyInterpreterState_Next"]=function(){return(_PyInterpreterState_Next=Module["_PyInterpreterState_Next"]=Module["asm"]["PyInterpreterState_Next"]).apply(null,arguments)};var _PyThreadState_Next=Module["_PyThreadState_Next"]=function(){return(_PyThreadState_Next=Module["_PyThreadState_Next"]=Module["asm"]["PyThreadState_Next"]).apply(null,arguments)};var __PyThread_CurrentFrames=Module["__PyThread_CurrentFrames"]=function(){return(__PyThread_CurrentFrames=Module["__PyThread_CurrentFrames"]=Module["asm"]["_PyThread_CurrentFrames"]).apply(null,arguments)};var _PyThread_tss_create=Module["_PyThread_tss_create"]=function(){return(_PyThread_tss_create=Module["_PyThread_tss_create"]=Module["asm"]["PyThread_tss_create"]).apply(null,arguments)};var __PyGILState_GetInterpreterStateUnsafe=Module["__PyGILState_GetInterpreterStateUnsafe"]=function(){return(__PyGILState_GetInterpreterStateUnsafe=Module["__PyGILState_GetInterpreterStateUnsafe"]=Module["asm"]["_PyGILState_GetInterpreterStateUnsafe"]).apply(null,arguments)};var _PyThread_tss_delete=Module["_PyThread_tss_delete"]=function(){return(_PyThread_tss_delete=Module["_PyThread_tss_delete"]=Module["asm"]["PyThread_tss_delete"]).apply(null,arguments)};var __PyGILState_Reinit=Module["__PyGILState_Reinit"]=function(){return(__PyGILState_Reinit=Module["__PyGILState_Reinit"]=Module["asm"]["_PyGILState_Reinit"]).apply(null,arguments)};var _PyThread_tss_is_created=Module["_PyThread_tss_is_created"]=function(){return(_PyThread_tss_is_created=Module["_PyThread_tss_is_created"]=Module["asm"]["PyThread_tss_is_created"]).apply(null,arguments)};var __PyObject_CheckCrossInterpreterData=Module["__PyObject_CheckCrossInterpreterData"]=function(){return(__PyObject_CheckCrossInterpreterData=Module["__PyObject_CheckCrossInterpreterData"]=Module["asm"]["_PyObject_CheckCrossInterpreterData"]).apply(null,arguments)};var __PyCrossInterpreterData_Lookup=Module["__PyCrossInterpreterData_Lookup"]=function(){return(__PyCrossInterpreterData_Lookup=Module["__PyCrossInterpreterData_Lookup"]=Module["asm"]["_PyCrossInterpreterData_Lookup"]).apply(null,arguments)};var __PyObject_GetCrossInterpreterData=Module["__PyObject_GetCrossInterpreterData"]=function(){return(__PyObject_GetCrossInterpreterData=Module["__PyObject_GetCrossInterpreterData"]=Module["asm"]["_PyObject_GetCrossInterpreterData"]).apply(null,arguments)};var __PyCrossInterpreterData_Release=Module["__PyCrossInterpreterData_Release"]=function(){return(__PyCrossInterpreterData_Release=Module["__PyCrossInterpreterData_Release"]=Module["asm"]["_PyCrossInterpreterData_Release"]).apply(null,arguments)};var __PyCrossInterpreterData_NewObject=Module["__PyCrossInterpreterData_NewObject"]=function(){return(__PyCrossInterpreterData_NewObject=Module["__PyCrossInterpreterData_NewObject"]=Module["asm"]["_PyCrossInterpreterData_NewObject"]).apply(null,arguments)};var __PyCrossInterpreterData_RegisterClass=Module["__PyCrossInterpreterData_RegisterClass"]=function(){return(__PyCrossInterpreterData_RegisterClass=Module["__PyCrossInterpreterData_RegisterClass"]=Module["asm"]["_PyCrossInterpreterData_RegisterClass"]).apply(null,arguments)};var __PyInterpreterState_GetEvalFrameFunc=Module["__PyInterpreterState_GetEvalFrameFunc"]=function(){return(__PyInterpreterState_GetEvalFrameFunc=Module["__PyInterpreterState_GetEvalFrameFunc"]=Module["asm"]["_PyInterpreterState_GetEvalFrameFunc"]).apply(null,arguments)};var __PyInterpreterState_SetEvalFrameFunc=Module["__PyInterpreterState_SetEvalFrameFunc"]=function(){return(__PyInterpreterState_SetEvalFrameFunc=Module["__PyInterpreterState_SetEvalFrameFunc"]=Module["asm"]["_PyInterpreterState_SetEvalFrameFunc"]).apply(null,arguments)};var _PyRun_InteractiveLoopFlags=Module["_PyRun_InteractiveLoopFlags"]=function(){return(_PyRun_InteractiveLoopFlags=Module["_PyRun_InteractiveLoopFlags"]=Module["asm"]["PyRun_InteractiveLoopFlags"]).apply(null,arguments)};var _PyRun_SimpleFileExFlags=Module["_PyRun_SimpleFileExFlags"]=function(){return(_PyRun_SimpleFileExFlags=Module["_PyRun_SimpleFileExFlags"]=Module["asm"]["PyRun_SimpleFileExFlags"]).apply(null,arguments)};var _rewind=Module["_rewind"]=function(){return(_rewind=Module["_rewind"]=Module["asm"]["rewind"]).apply(null,arguments)};var _PyParser_ASTFromFileObject=Module["_PyParser_ASTFromFileObject"]=function(){return(_PyParser_ASTFromFileObject=Module["_PyParser_ASTFromFileObject"]=Module["asm"]["PyParser_ASTFromFileObject"]).apply(null,arguments)};var _PyRun_InteractiveOneObject=Module["_PyRun_InteractiveOneObject"]=function(){return(_PyRun_InteractiveOneObject=Module["_PyRun_InteractiveOneObject"]=Module["asm"]["PyRun_InteractiveOneObject"]).apply(null,arguments)};var _PyRun_InteractiveOneFlags=Module["_PyRun_InteractiveOneFlags"]=function(){return(_PyRun_InteractiveOneFlags=Module["_PyRun_InteractiveOneFlags"]=Module["asm"]["PyRun_InteractiveOneFlags"]).apply(null,arguments)};var _PyRun_SimpleStringFlags=Module["_PyRun_SimpleStringFlags"]=function(){return(_PyRun_SimpleStringFlags=Module["_PyRun_SimpleStringFlags"]=Module["asm"]["PyRun_SimpleStringFlags"]).apply(null,arguments)};var _PyParser_ASTFromStringObject=Module["_PyParser_ASTFromStringObject"]=function(){return(_PyParser_ASTFromStringObject=Module["_PyParser_ASTFromStringObject"]=Module["asm"]["PyParser_ASTFromStringObject"]).apply(null,arguments)};var __Py_HandleSystemExit=Module["__Py_HandleSystemExit"]=function(){return(__Py_HandleSystemExit=Module["__Py_HandleSystemExit"]=Module["asm"]["_Py_HandleSystemExit"]).apply(null,arguments)};var __PyErr_Display=Module["__PyErr_Display"]=function(){return(__PyErr_Display=Module["__PyErr_Display"]=Module["asm"]["_PyErr_Display"]).apply(null,arguments)};var _PyRun_FileExFlags=Module["_PyRun_FileExFlags"]=function(){return(_PyRun_FileExFlags=Module["_PyRun_FileExFlags"]=Module["asm"]["PyRun_FileExFlags"]).apply(null,arguments)};var _Py_CompileStringExFlags=Module["_Py_CompileStringExFlags"]=function(){return(_Py_CompileStringExFlags=Module["_Py_CompileStringExFlags"]=Module["asm"]["Py_CompileStringExFlags"]).apply(null,arguments)};var _PyCompileString=Module["_PyCompileString"]=function(){return(_PyCompileString=Module["_PyCompileString"]=Module["asm"]["PyCompileString"]).apply(null,arguments)};var _Py_SymtableStringObject=Module["_Py_SymtableStringObject"]=function(){return(_Py_SymtableStringObject=Module["_Py_SymtableStringObject"]=Module["asm"]["Py_SymtableStringObject"]).apply(null,arguments)};var __Py_SymtableStringObjectFlags=Module["__Py_SymtableStringObjectFlags"]=function(){return(__Py_SymtableStringObjectFlags=Module["__Py_SymtableStringObjectFlags"]=Module["asm"]["_Py_SymtableStringObjectFlags"]).apply(null,arguments)};var _Py_SymtableString=Module["_Py_SymtableString"]=function(){return(_Py_SymtableString=Module["_Py_SymtableString"]=Module["asm"]["Py_SymtableString"]).apply(null,arguments)};var _PyParser_ASTFromString=Module["_PyParser_ASTFromString"]=function(){return(_PyParser_ASTFromString=Module["_PyParser_ASTFromString"]=Module["asm"]["PyParser_ASTFromString"]).apply(null,arguments)};var _PyParser_ASTFromFile=Module["_PyParser_ASTFromFile"]=function(){return(_PyParser_ASTFromFile=Module["_PyParser_ASTFromFile"]=Module["asm"]["PyParser_ASTFromFile"]).apply(null,arguments)};var _PyParser_SimpleParseFileFlags=Module["_PyParser_SimpleParseFileFlags"]=function(){return(_PyParser_SimpleParseFileFlags=Module["_PyParser_SimpleParseFileFlags"]=Module["asm"]["PyParser_SimpleParseFileFlags"]).apply(null,arguments)};var _PyParser_SimpleParseStringFlags=Module["_PyParser_SimpleParseStringFlags"]=function(){return(_PyParser_SimpleParseStringFlags=Module["_PyParser_SimpleParseStringFlags"]=Module["asm"]["PyParser_SimpleParseStringFlags"]).apply(null,arguments)};var _PyParser_ClearError=Module["_PyParser_ClearError"]=function(){return(_PyParser_ClearError=Module["_PyParser_ClearError"]=Module["asm"]["PyParser_ClearError"]).apply(null,arguments)};var _PyParser_SetError=Module["_PyParser_SetError"]=function(){return(_PyParser_SetError=Module["_PyParser_SetError"]=Module["asm"]["PyParser_SetError"]).apply(null,arguments)};var _PyParser_SimpleParseFile=Module["_PyParser_SimpleParseFile"]=function(){return(_PyParser_SimpleParseFile=Module["_PyParser_SimpleParseFile"]=Module["asm"]["PyParser_SimpleParseFile"]).apply(null,arguments)};var _PyParser_SimpleParseString=Module["_PyParser_SimpleParseString"]=function(){return(_PyParser_SimpleParseString=Module["_PyParser_SimpleParseString"]=Module["asm"]["PyParser_SimpleParseString"]).apply(null,arguments)};var _PyRun_AnyFile=Module["_PyRun_AnyFile"]=function(){return(_PyRun_AnyFile=Module["_PyRun_AnyFile"]=Module["asm"]["PyRun_AnyFile"]).apply(null,arguments)};var _PyRun_AnyFileEx=Module["_PyRun_AnyFileEx"]=function(){return(_PyRun_AnyFileEx=Module["_PyRun_AnyFileEx"]=Module["asm"]["PyRun_AnyFileEx"]).apply(null,arguments)};var _PyRun_AnyFileFlags=Module["_PyRun_AnyFileFlags"]=function(){return(_PyRun_AnyFileFlags=Module["_PyRun_AnyFileFlags"]=Module["asm"]["PyRun_AnyFileFlags"]).apply(null,arguments)};var _PyRun_File=Module["_PyRun_File"]=function(){return(_PyRun_File=Module["_PyRun_File"]=Module["asm"]["PyRun_File"]).apply(null,arguments)};var _PyRun_FileEx=Module["_PyRun_FileEx"]=function(){return(_PyRun_FileEx=Module["_PyRun_FileEx"]=Module["asm"]["PyRun_FileEx"]).apply(null,arguments)};var _PyRun_FileFlags=Module["_PyRun_FileFlags"]=function(){return(_PyRun_FileFlags=Module["_PyRun_FileFlags"]=Module["asm"]["PyRun_FileFlags"]).apply(null,arguments)};var _PyRun_SimpleFile=Module["_PyRun_SimpleFile"]=function(){return(_PyRun_SimpleFile=Module["_PyRun_SimpleFile"]=Module["asm"]["PyRun_SimpleFile"]).apply(null,arguments)};var _PyRun_SimpleFileEx=Module["_PyRun_SimpleFileEx"]=function(){return(_PyRun_SimpleFileEx=Module["_PyRun_SimpleFileEx"]=Module["asm"]["PyRun_SimpleFileEx"]).apply(null,arguments)};var _PyRun_String=Module["_PyRun_String"]=function(){return(_PyRun_String=Module["_PyRun_String"]=Module["asm"]["PyRun_String"]).apply(null,arguments)};var _PyRun_SimpleString=Module["_PyRun_SimpleString"]=function(){return(_PyRun_SimpleString=Module["_PyRun_SimpleString"]=Module["asm"]["PyRun_SimpleString"]).apply(null,arguments)};var _Py_CompileString=Module["_Py_CompileString"]=function(){return(_Py_CompileString=Module["_Py_CompileString"]=Module["asm"]["Py_CompileString"]).apply(null,arguments)};var _Py_CompileStringFlags=Module["_Py_CompileStringFlags"]=function(){return(_Py_CompileStringFlags=Module["_Py_CompileStringFlags"]=Module["asm"]["Py_CompileStringFlags"]).apply(null,arguments)};var _PyRun_InteractiveOne=Module["_PyRun_InteractiveOne"]=function(){return(_PyRun_InteractiveOne=Module["_PyRun_InteractiveOne"]=Module["asm"]["PyRun_InteractiveOne"]).apply(null,arguments)};var _PyRun_InteractiveLoop=Module["_PyRun_InteractiveLoop"]=function(){return(_PyRun_InteractiveLoop=Module["_PyRun_InteractiveLoop"]=Module["asm"]["PyRun_InteractiveLoop"]).apply(null,arguments)};var __PyTime_MulDiv=Module["__PyTime_MulDiv"]=function(){return(__PyTime_MulDiv=Module["__PyTime_MulDiv"]=Module["asm"]["_PyTime_MulDiv"]).apply(null,arguments)};var __PyLong_AsTime_t=Module["__PyLong_AsTime_t"]=function(){return(__PyLong_AsTime_t=Module["__PyLong_AsTime_t"]=Module["asm"]["_PyLong_AsTime_t"]).apply(null,arguments)};var __PyLong_FromTime_t=Module["__PyLong_FromTime_t"]=function(){return(__PyLong_FromTime_t=Module["__PyLong_FromTime_t"]=Module["asm"]["_PyLong_FromTime_t"]).apply(null,arguments)};var __PyTime_ObjectToTime_t=Module["__PyTime_ObjectToTime_t"]=function(){return(__PyTime_ObjectToTime_t=Module["__PyTime_ObjectToTime_t"]=Module["asm"]["_PyTime_ObjectToTime_t"]).apply(null,arguments)};var __PyTime_ObjectToTimespec=Module["__PyTime_ObjectToTimespec"]=function(){return(__PyTime_ObjectToTimespec=Module["__PyTime_ObjectToTimespec"]=Module["asm"]["_PyTime_ObjectToTimespec"]).apply(null,arguments)};var __PyTime_ObjectToTimeval=Module["__PyTime_ObjectToTimeval"]=function(){return(__PyTime_ObjectToTimeval=Module["__PyTime_ObjectToTimeval"]=Module["asm"]["_PyTime_ObjectToTimeval"]).apply(null,arguments)};var __PyTime_FromSeconds=Module["__PyTime_FromSeconds"]=function(){return(__PyTime_FromSeconds=Module["__PyTime_FromSeconds"]=Module["asm"]["_PyTime_FromSeconds"]).apply(null,arguments)};var __PyTime_FromNanoseconds=Module["__PyTime_FromNanoseconds"]=function(){return(__PyTime_FromNanoseconds=Module["__PyTime_FromNanoseconds"]=Module["asm"]["_PyTime_FromNanoseconds"]).apply(null,arguments)};var __PyTime_FromNanosecondsObject=Module["__PyTime_FromNanosecondsObject"]=function(){return(__PyTime_FromNanosecondsObject=Module["__PyTime_FromNanosecondsObject"]=Module["asm"]["_PyTime_FromNanosecondsObject"]).apply(null,arguments)};var __PyTime_FromTimespec=Module["__PyTime_FromTimespec"]=function(){return(__PyTime_FromTimespec=Module["__PyTime_FromTimespec"]=Module["asm"]["_PyTime_FromTimespec"]).apply(null,arguments)};var __PyTime_FromTimeval=Module["__PyTime_FromTimeval"]=function(){return(__PyTime_FromTimeval=Module["__PyTime_FromTimeval"]=Module["asm"]["_PyTime_FromTimeval"]).apply(null,arguments)};var __PyTime_FromSecondsObject=Module["__PyTime_FromSecondsObject"]=function(){return(__PyTime_FromSecondsObject=Module["__PyTime_FromSecondsObject"]=Module["asm"]["_PyTime_FromSecondsObject"]).apply(null,arguments)};var __PyTime_FromMillisecondsObject=Module["__PyTime_FromMillisecondsObject"]=function(){return(__PyTime_FromMillisecondsObject=Module["__PyTime_FromMillisecondsObject"]=Module["asm"]["_PyTime_FromMillisecondsObject"]).apply(null,arguments)};var __PyTime_AsSecondsDouble=Module["__PyTime_AsSecondsDouble"]=function(){return(__PyTime_AsSecondsDouble=Module["__PyTime_AsSecondsDouble"]=Module["asm"]["_PyTime_AsSecondsDouble"]).apply(null,arguments)};var __PyTime_AsNanosecondsObject=Module["__PyTime_AsNanosecondsObject"]=function(){return(__PyTime_AsNanosecondsObject=Module["__PyTime_AsNanosecondsObject"]=Module["asm"]["_PyTime_AsNanosecondsObject"]).apply(null,arguments)};var __PyTime_AsMilliseconds=Module["__PyTime_AsMilliseconds"]=function(){return(__PyTime_AsMilliseconds=Module["__PyTime_AsMilliseconds"]=Module["asm"]["_PyTime_AsMilliseconds"]).apply(null,arguments)};var __PyTime_AsTimeval=Module["__PyTime_AsTimeval"]=function(){return(__PyTime_AsTimeval=Module["__PyTime_AsTimeval"]=Module["asm"]["_PyTime_AsTimeval"]).apply(null,arguments)};var __PyTime_AsTimeval_noraise=Module["__PyTime_AsTimeval_noraise"]=function(){return(__PyTime_AsTimeval_noraise=Module["__PyTime_AsTimeval_noraise"]=Module["asm"]["_PyTime_AsTimeval_noraise"]).apply(null,arguments)};var __PyTime_AsTimevalTime_t=Module["__PyTime_AsTimevalTime_t"]=function(){return(__PyTime_AsTimevalTime_t=Module["__PyTime_AsTimevalTime_t"]=Module["asm"]["_PyTime_AsTimevalTime_t"]).apply(null,arguments)};var __PyTime_AsTimespec=Module["__PyTime_AsTimespec"]=function(){return(__PyTime_AsTimespec=Module["__PyTime_AsTimespec"]=Module["asm"]["_PyTime_AsTimespec"]).apply(null,arguments)};var __PyTime_GetSystemClock=Module["__PyTime_GetSystemClock"]=function(){return(__PyTime_GetSystemClock=Module["__PyTime_GetSystemClock"]=Module["asm"]["_PyTime_GetSystemClock"]).apply(null,arguments)};var __PyTime_GetSystemClockWithInfo=Module["__PyTime_GetSystemClockWithInfo"]=function(){return(__PyTime_GetSystemClockWithInfo=Module["__PyTime_GetSystemClockWithInfo"]=Module["asm"]["_PyTime_GetSystemClockWithInfo"]).apply(null,arguments)};var __PyTime_GetMonotonicClock=Module["__PyTime_GetMonotonicClock"]=function(){return(__PyTime_GetMonotonicClock=Module["__PyTime_GetMonotonicClock"]=Module["asm"]["_PyTime_GetMonotonicClock"]).apply(null,arguments)};var __PyTime_GetMonotonicClockWithInfo=Module["__PyTime_GetMonotonicClockWithInfo"]=function(){return(__PyTime_GetMonotonicClockWithInfo=Module["__PyTime_GetMonotonicClockWithInfo"]=Module["asm"]["_PyTime_GetMonotonicClockWithInfo"]).apply(null,arguments)};var __PyTime_GetPerfCounterWithInfo=Module["__PyTime_GetPerfCounterWithInfo"]=function(){return(__PyTime_GetPerfCounterWithInfo=Module["__PyTime_GetPerfCounterWithInfo"]=Module["asm"]["_PyTime_GetPerfCounterWithInfo"]).apply(null,arguments)};var __PyTime_localtime=Module["__PyTime_localtime"]=function(){return(__PyTime_localtime=Module["__PyTime_localtime"]=Module["asm"]["_PyTime_localtime"]).apply(null,arguments)};var __PyTime_gmtime=Module["__PyTime_gmtime"]=function(){return(__PyTime_gmtime=Module["__PyTime_gmtime"]=Module["asm"]["_PyTime_gmtime"]).apply(null,arguments)};var __PyOS_URandom=Module["__PyOS_URandom"]=function(){return(__PyOS_URandom=Module["__PyOS_URandom"]=Module["asm"]["_PyOS_URandom"]).apply(null,arguments)};var __Py_open=Module["__Py_open"]=function(){return(__Py_open=Module["__Py_open"]=Module["asm"]["_Py_open"]).apply(null,arguments)};var _close=Module["_close"]=function(){return(_close=Module["_close"]=Module["asm"]["close"]).apply(null,arguments)};var __Py_fstat=Module["__Py_fstat"]=function(){return(__Py_fstat=Module["__Py_fstat"]=Module["asm"]["_Py_fstat"]).apply(null,arguments)};var __Py_read=Module["__Py_read"]=function(){return(__Py_read=Module["__Py_read"]=Module["asm"]["_Py_read"]).apply(null,arguments)};var __Py_open_noraise=Module["__Py_open_noraise"]=function(){return(__Py_open_noraise=Module["__Py_open_noraise"]=Module["asm"]["_Py_open_noraise"]).apply(null,arguments)};var _read=Module["_read"]=function(){return(_read=Module["_read"]=Module["asm"]["read"]).apply(null,arguments)};var __PyOS_URandomNonblock=Module["__PyOS_URandomNonblock"]=function(){return(__PyOS_URandomNonblock=Module["__PyOS_URandomNonblock"]=Module["asm"]["_PyOS_URandomNonblock"]).apply(null,arguments)};var _PySymtable_Build=Module["_PySymtable_Build"]=function(){return(_PySymtable_Build=Module["_PySymtable_Build"]=Module["asm"]["PySymtable_Build"]).apply(null,arguments)};var _PySys_AddAuditHook=Module["_PySys_AddAuditHook"]=function(){return(_PySys_AddAuditHook=Module["_PySys_AddAuditHook"]=Module["asm"]["PySys_AddAuditHook"]).apply(null,arguments)};var __PySys_GetSizeOf=Module["__PySys_GetSizeOf"]=function(){return(__PySys_GetSizeOf=Module["__PySys_GetSizeOf"]=Module["asm"]["_PySys_GetSizeOf"]).apply(null,arguments)};var _PySys_ResetWarnOptions=Module["_PySys_ResetWarnOptions"]=function(){return(_PySys_ResetWarnOptions=Module["_PySys_ResetWarnOptions"]=Module["asm"]["PySys_ResetWarnOptions"]).apply(null,arguments)};var _PySys_AddWarnOptionUnicode=Module["_PySys_AddWarnOptionUnicode"]=function(){return(_PySys_AddWarnOptionUnicode=Module["_PySys_AddWarnOptionUnicode"]=Module["asm"]["PySys_AddWarnOptionUnicode"]).apply(null,arguments)};var _PySys_AddWarnOption=Module["_PySys_AddWarnOption"]=function(){return(_PySys_AddWarnOption=Module["_PySys_AddWarnOption"]=Module["asm"]["PySys_AddWarnOption"]).apply(null,arguments)};var _PySys_HasWarnOptions=Module["_PySys_HasWarnOptions"]=function(){return(_PySys_HasWarnOptions=Module["_PySys_HasWarnOptions"]=Module["asm"]["PySys_HasWarnOptions"]).apply(null,arguments)};var _PySys_AddXOption=Module["_PySys_AddXOption"]=function(){return(_PySys_AddXOption=Module["_PySys_AddXOption"]=Module["asm"]["PySys_AddXOption"]).apply(null,arguments)};var _PySys_GetXOptions=Module["_PySys_GetXOptions"]=function(){return(_PySys_GetXOptions=Module["_PySys_GetXOptions"]=Module["asm"]["PySys_GetXOptions"]).apply(null,arguments)};var _PyThread_GetInfo=Module["_PyThread_GetInfo"]=function(){return(_PyThread_GetInfo=Module["_PyThread_GetInfo"]=Module["asm"]["PyThread_GetInfo"]).apply(null,arguments)};var _PySys_SetPath=Module["_PySys_SetPath"]=function(){return(_PySys_SetPath=Module["_PySys_SetPath"]=Module["asm"]["PySys_SetPath"]).apply(null,arguments)};var _PySys_SetArgvEx=Module["_PySys_SetArgvEx"]=function(){return(_PySys_SetArgvEx=Module["_PySys_SetArgvEx"]=Module["asm"]["PySys_SetArgvEx"]).apply(null,arguments)};var _PySys_WriteStdout=Module["_PySys_WriteStdout"]=function(){return(_PySys_WriteStdout=Module["_PySys_WriteStdout"]=Module["asm"]["PySys_WriteStdout"]).apply(null,arguments)};var _PySys_FormatStdout=Module["_PySys_FormatStdout"]=function(){return(_PySys_FormatStdout=Module["_PySys_FormatStdout"]=Module["asm"]["PySys_FormatStdout"]).apply(null,arguments)};var _pthread_condattr_init=Module["_pthread_condattr_init"]=function(){return(_pthread_condattr_init=Module["_pthread_condattr_init"]=Module["asm"]["pthread_condattr_init"]).apply(null,arguments)};var _pthread_condattr_setclock=Module["_pthread_condattr_setclock"]=function(){return(_pthread_condattr_setclock=Module["_pthread_condattr_setclock"]=Module["asm"]["pthread_condattr_setclock"]).apply(null,arguments)};var _pthread_cond_init=Module["_pthread_cond_init"]=function(){return(_pthread_cond_init=Module["_pthread_cond_init"]=Module["asm"]["pthread_cond_init"]).apply(null,arguments)};var _PyThread_start_new_thread=Module["_PyThread_start_new_thread"]=function(){return(_PyThread_start_new_thread=Module["_PyThread_start_new_thread"]=Module["asm"]["PyThread_start_new_thread"]).apply(null,arguments)};var _pthread_attr_init=Module["_pthread_attr_init"]=function(){return(_pthread_attr_init=Module["_pthread_attr_init"]=Module["asm"]["pthread_attr_init"]).apply(null,arguments)};var _pthread_attr_setstacksize=Module["_pthread_attr_setstacksize"]=function(){return(_pthread_attr_setstacksize=Module["_pthread_attr_setstacksize"]=Module["asm"]["pthread_attr_setstacksize"]).apply(null,arguments)};var _pthread_attr_destroy=Module["_pthread_attr_destroy"]=function(){return(_pthread_attr_destroy=Module["_pthread_attr_destroy"]=Module["asm"]["pthread_attr_destroy"]).apply(null,arguments)};var _pthread_detach=Module["_pthread_detach"]=function(){return(_pthread_detach=Module["_pthread_detach"]=Module["asm"]["pthread_detach"]).apply(null,arguments)};var _pthread_self=Module["_pthread_self"]=function(){return(_pthread_self=Module["_pthread_self"]=Module["asm"]["pthread_self"]).apply(null,arguments)};var _pthread_exit=Module["_pthread_exit"]=function(){return(_pthread_exit=Module["_pthread_exit"]=Module["asm"]["pthread_exit"]).apply(null,arguments)};var _PyThread_acquire_lock_timed=Module["_PyThread_acquire_lock_timed"]=function(){return(_PyThread_acquire_lock_timed=Module["_PyThread_acquire_lock_timed"]=Module["asm"]["PyThread_acquire_lock_timed"]).apply(null,arguments)};var _pthread_mutex_trylock=Module["_pthread_mutex_trylock"]=function(){return(_pthread_mutex_trylock=Module["_pthread_mutex_trylock"]=Module["asm"]["pthread_mutex_trylock"]).apply(null,arguments)};var _PyThread_create_key=Module["_PyThread_create_key"]=function(){return(_PyThread_create_key=Module["_PyThread_create_key"]=Module["asm"]["PyThread_create_key"]).apply(null,arguments)};var _pthread_key_create=Module["_pthread_key_create"]=function(){return(_pthread_key_create=Module["_pthread_key_create"]=Module["asm"]["pthread_key_create"]).apply(null,arguments)};var _pthread_key_delete=Module["_pthread_key_delete"]=function(){return(_pthread_key_delete=Module["_pthread_key_delete"]=Module["asm"]["pthread_key_delete"]).apply(null,arguments)};var _PyThread_delete_key=Module["_PyThread_delete_key"]=function(){return(_PyThread_delete_key=Module["_PyThread_delete_key"]=Module["asm"]["PyThread_delete_key"]).apply(null,arguments)};var _PyThread_delete_key_value=Module["_PyThread_delete_key_value"]=function(){return(_PyThread_delete_key_value=Module["_PyThread_delete_key_value"]=Module["asm"]["PyThread_delete_key_value"]).apply(null,arguments)};var _pthread_setspecific=Module["_pthread_setspecific"]=function(){return(_pthread_setspecific=Module["_pthread_setspecific"]=Module["asm"]["pthread_setspecific"]).apply(null,arguments)};var _PyThread_set_key_value=Module["_PyThread_set_key_value"]=function(){return(_PyThread_set_key_value=Module["_PyThread_set_key_value"]=Module["asm"]["PyThread_set_key_value"]).apply(null,arguments)};var _PyThread_get_key_value=Module["_PyThread_get_key_value"]=function(){return(_PyThread_get_key_value=Module["_PyThread_get_key_value"]=Module["asm"]["PyThread_get_key_value"]).apply(null,arguments)};var _pthread_getspecific=Module["_pthread_getspecific"]=function(){return(_pthread_getspecific=Module["_pthread_getspecific"]=Module["asm"]["pthread_getspecific"]).apply(null,arguments)};var _PyThread_ReInitTLS=Module["_PyThread_ReInitTLS"]=function(){return(_PyThread_ReInitTLS=Module["_PyThread_ReInitTLS"]=Module["asm"]["PyThread_ReInitTLS"]).apply(null,arguments)};var _PyThread_get_stacksize=Module["_PyThread_get_stacksize"]=function(){return(_PyThread_get_stacksize=Module["_PyThread_get_stacksize"]=Module["asm"]["PyThread_get_stacksize"]).apply(null,arguments)};var _PyThread_set_stacksize=Module["_PyThread_set_stacksize"]=function(){return(_PyThread_set_stacksize=Module["_PyThread_set_stacksize"]=Module["asm"]["PyThread_set_stacksize"]).apply(null,arguments)};var _PyThread_tss_alloc=Module["_PyThread_tss_alloc"]=function(){return(_PyThread_tss_alloc=Module["_PyThread_tss_alloc"]=Module["asm"]["PyThread_tss_alloc"]).apply(null,arguments)};var _PyThread_tss_free=Module["_PyThread_tss_free"]=function(){return(_PyThread_tss_free=Module["_PyThread_tss_free"]=Module["asm"]["PyThread_tss_free"]).apply(null,arguments)};var _confstr=Module["_confstr"]=function(){return(_confstr=Module["_confstr"]=Module["asm"]["confstr"]).apply(null,arguments)};var __PyTraceback_Add=Module["__PyTraceback_Add"]=function(){return(__PyTraceback_Add=Module["__PyTraceback_Add"]=Module["asm"]["_PyTraceback_Add"]).apply(null,arguments)};var __Py_DumpDecimal=Module["__Py_DumpDecimal"]=function(){return(__Py_DumpDecimal=Module["__Py_DumpDecimal"]=Module["asm"]["_Py_DumpDecimal"]).apply(null,arguments)};var __Py_write_noraise=Module["__Py_write_noraise"]=function(){return(__Py_write_noraise=Module["__Py_write_noraise"]=Module["asm"]["_Py_write_noraise"]).apply(null,arguments)};var __Py_DumpHexadecimal=Module["__Py_DumpHexadecimal"]=function(){return(__Py_DumpHexadecimal=Module["__Py_DumpHexadecimal"]=Module["asm"]["_Py_DumpHexadecimal"]).apply(null,arguments)};var __Py_DumpASCII=Module["__Py_DumpASCII"]=function(){return(__Py_DumpASCII=Module["__Py_DumpASCII"]=Module["asm"]["_Py_DumpASCII"]).apply(null,arguments)};var __Py_DumpTraceback=Module["__Py_DumpTraceback"]=function(){return(__Py_DumpTraceback=Module["__Py_DumpTraceback"]=Module["asm"]["_Py_DumpTraceback"]).apply(null,arguments)};var _PyOS_mystricmp=Module["_PyOS_mystricmp"]=function(){return(_PyOS_mystricmp=Module["_PyOS_mystricmp"]=Module["asm"]["PyOS_mystricmp"]).apply(null,arguments)};var __Py_strhex=Module["__Py_strhex"]=function(){return(__Py_strhex=Module["__Py_strhex"]=Module["asm"]["_Py_strhex"]).apply(null,arguments)};var __Py_strhex_bytes=Module["__Py_strhex_bytes"]=function(){return(__Py_strhex_bytes=Module["__Py_strhex_bytes"]=Module["asm"]["_Py_strhex_bytes"]).apply(null,arguments)};var __Py_strhex_bytes_with_sep=Module["__Py_strhex_bytes_with_sep"]=function(){return(__Py_strhex_bytes_with_sep=Module["__Py_strhex_bytes_with_sep"]=Module["asm"]["_Py_strhex_bytes_with_sep"]).apply(null,arguments)};var _localeconv=Module["_localeconv"]=function(){return(_localeconv=Module["_localeconv"]=Module["asm"]["localeconv"]).apply(null,arguments)};var __Py_GetLocaleconvNumeric=Module["__Py_GetLocaleconvNumeric"]=function(){return(__Py_GetLocaleconvNumeric=Module["__Py_GetLocaleconvNumeric"]=Module["asm"]["_Py_GetLocaleconvNumeric"]).apply(null,arguments)};var __Py_device_encoding=Module["__Py_device_encoding"]=function(){return(__Py_device_encoding=Module["__Py_device_encoding"]=Module["asm"]["_Py_device_encoding"]).apply(null,arguments)};var _mbstowcs=Module["_mbstowcs"]=function(){return(_mbstowcs=Module["_mbstowcs"]=Module["asm"]["mbstowcs"]).apply(null,arguments)};var _mbrtowc=Module["_mbrtowc"]=function(){return(_mbrtowc=Module["_mbrtowc"]=Module["asm"]["mbrtowc"]).apply(null,arguments)};var _Py_EncodeLocale=Module["_Py_EncodeLocale"]=function(){return(_Py_EncodeLocale=Module["_Py_EncodeLocale"]=Module["asm"]["Py_EncodeLocale"]).apply(null,arguments)};var __Py_EncodeLocaleRaw=Module["__Py_EncodeLocaleRaw"]=function(){return(__Py_EncodeLocaleRaw=Module["__Py_EncodeLocaleRaw"]=Module["asm"]["_Py_EncodeLocaleRaw"]).apply(null,arguments)};var __Py_stat=Module["__Py_stat"]=function(){return(__Py_stat=Module["__Py_stat"]=Module["asm"]["_Py_stat"]).apply(null,arguments)};var _stat=Module["_stat"]=function(){return(_stat=Module["_stat"]=Module["asm"]["stat"]).apply(null,arguments)};var __Py_get_inheritable=Module["__Py_get_inheritable"]=function(){return(__Py_get_inheritable=Module["__Py_get_inheritable"]=Module["asm"]["_Py_get_inheritable"]).apply(null,arguments)};var _fcntl=Module["_fcntl"]=function(){return(_fcntl=Module["_fcntl"]=Module["asm"]["fcntl"]).apply(null,arguments)};var __Py_set_inheritable=Module["__Py_set_inheritable"]=function(){return(__Py_set_inheritable=Module["__Py_set_inheritable"]=Module["asm"]["_Py_set_inheritable"]).apply(null,arguments)};var __Py_set_inheritable_async_safe=Module["__Py_set_inheritable_async_safe"]=function(){return(__Py_set_inheritable_async_safe=Module["__Py_set_inheritable_async_safe"]=Module["asm"]["_Py_set_inheritable_async_safe"]).apply(null,arguments)};var _open=Module["_open"]=function(){return(_open=Module["_open"]=Module["asm"]["open"]).apply(null,arguments)};var __Py_wfopen=Module["__Py_wfopen"]=function(){return(__Py_wfopen=Module["__Py_wfopen"]=Module["asm"]["_Py_wfopen"]).apply(null,arguments)};var _wcstombs=Module["_wcstombs"]=function(){return(_wcstombs=Module["_wcstombs"]=Module["asm"]["wcstombs"]).apply(null,arguments)};var _write=Module["_write"]=function(){return(_write=Module["_write"]=Module["asm"]["write"]).apply(null,arguments)};var _readlink=Module["_readlink"]=function(){return(_readlink=Module["_readlink"]=Module["asm"]["readlink"]).apply(null,arguments)};var _realpath=Module["_realpath"]=function(){return(_realpath=Module["_realpath"]=Module["asm"]["realpath"]).apply(null,arguments)};var _getcwd=Module["_getcwd"]=function(){return(_getcwd=Module["_getcwd"]=Module["asm"]["getcwd"]).apply(null,arguments)};var __Py_get_blocking=Module["__Py_get_blocking"]=function(){return(__Py_get_blocking=Module["__Py_get_blocking"]=Module["asm"]["_Py_get_blocking"]).apply(null,arguments)};var __Py_set_blocking=Module["__Py_set_blocking"]=function(){return(__Py_set_blocking=Module["__Py_set_blocking"]=Module["asm"]["_Py_set_blocking"]).apply(null,arguments)};var _PyInit_array=Module["_PyInit_array"]=function(){return(_PyInit_array=Module["_PyInit_array"]=Module["asm"]["PyInit_array"]).apply(null,arguments)};var _PyInit_audioop=Module["_PyInit_audioop"]=function(){return(_PyInit_audioop=Module["_PyInit_audioop"]=Module["asm"]["PyInit_audioop"]).apply(null,arguments)};var _PyInit_math=Module["_PyInit_math"]=function(){return(_PyInit_math=Module["_PyInit_math"]=Module["asm"]["PyInit_math"]).apply(null,arguments)};var _PyInit_cmath=Module["_PyInit_cmath"]=function(){return(_PyInit_cmath=Module["_PyInit_cmath"]=Module["asm"]["PyInit_cmath"]).apply(null,arguments)};var _PyInit__contextvars=Module["_PyInit__contextvars"]=function(){return(_PyInit__contextvars=Module["_PyInit__contextvars"]=Module["asm"]["PyInit__contextvars"]).apply(null,arguments)};var _PyInit__struct=Module["_PyInit__struct"]=function(){return(_PyInit__struct=Module["_PyInit__struct"]=Module["asm"]["PyInit__struct"]).apply(null,arguments)};var _PyInit__random=Module["_PyInit__random"]=function(){return(_PyInit__random=Module["_PyInit__random"]=Module["asm"]["PyInit__random"]).apply(null,arguments)};var _PyInit__bisect=Module["_PyInit__bisect"]=function(){return(_PyInit__bisect=Module["_PyInit__bisect"]=Module["asm"]["PyInit__bisect"]).apply(null,arguments)};var _PyInit__datetime=Module["_PyInit__datetime"]=function(){return(_PyInit__datetime=Module["_PyInit__datetime"]=Module["asm"]["PyInit__datetime"]).apply(null,arguments)};var _PyInit__heapq=Module["_PyInit__heapq"]=function(){return(_PyInit__heapq=Module["_PyInit__heapq"]=Module["asm"]["PyInit__heapq"]).apply(null,arguments)};var _PyInit__json=Module["_PyInit__json"]=function(){return(_PyInit__json=Module["_PyInit__json"]=Module["asm"]["PyInit__json"]).apply(null,arguments)};var _PyInit__csv=Module["_PyInit__csv"]=function(){return(_PyInit__csv=Module["_PyInit__csv"]=Module["asm"]["PyInit__csv"]).apply(null,arguments)};var _PyInit__ctypes=Module["_PyInit__ctypes"]=function(){return(_PyInit__ctypes=Module["_PyInit__ctypes"]=Module["asm"]["PyInit__ctypes"]).apply(null,arguments)};var _PyInit__ctypes_test=Module["_PyInit__ctypes_test"]=function(){return(_PyInit__ctypes_test=Module["_PyInit__ctypes_test"]=Module["asm"]["PyInit__ctypes_test"]).apply(null,arguments)};var _PyInit_unicodedata=Module["_PyInit_unicodedata"]=function(){return(_PyInit_unicodedata=Module["_PyInit_unicodedata"]=Module["asm"]["PyInit_unicodedata"]).apply(null,arguments)};var _PyInit__pickle=Module["_PyInit__pickle"]=function(){return(_PyInit__pickle=Module["_PyInit__pickle"]=Module["asm"]["PyInit__pickle"]).apply(null,arguments)};var _PyInit_parser=Module["_PyInit_parser"]=function(){return(_PyInit_parser=Module["_PyInit_parser"]=Module["asm"]["PyInit_parser"]).apply(null,arguments)};var _PyInit__socket=Module["_PyInit__socket"]=function(){return(_PyInit__socket=Module["_PyInit__socket"]=Module["asm"]["PyInit__socket"]).apply(null,arguments)};var _PyInit_select=Module["_PyInit_select"]=function(){return(_PyInit_select=Module["_PyInit_select"]=Module["asm"]["PyInit_select"]).apply(null,arguments)};var _PyInit__posixsubprocess=Module["_PyInit__posixsubprocess"]=function(){return(_PyInit__posixsubprocess=Module["_PyInit__posixsubprocess"]=Module["asm"]["PyInit__posixsubprocess"]).apply(null,arguments)};var _PyInit_binascii=Module["_PyInit_binascii"]=function(){return(_PyInit_binascii=Module["_PyInit_binascii"]=Module["asm"]["PyInit_binascii"]).apply(null,arguments)};var _PyInit_zlib=Module["_PyInit_zlib"]=function(){return(_PyInit_zlib=Module["_PyInit_zlib"]=Module["asm"]["PyInit_zlib"]).apply(null,arguments)};var _PyInit_pyexpat=Module["_PyInit_pyexpat"]=function(){return(_PyInit_pyexpat=Module["_PyInit_pyexpat"]=Module["asm"]["PyInit_pyexpat"]).apply(null,arguments)};var _PyInit__sha1=Module["_PyInit__sha1"]=function(){return(_PyInit__sha1=Module["_PyInit__sha1"]=Module["asm"]["PyInit__sha1"]).apply(null,arguments)};var _PyInit__sha256=Module["_PyInit__sha256"]=function(){return(_PyInit__sha256=Module["_PyInit__sha256"]=Module["asm"]["PyInit__sha256"]).apply(null,arguments)};var _PyInit__sha512=Module["_PyInit__sha512"]=function(){return(_PyInit__sha512=Module["_PyInit__sha512"]=Module["asm"]["PyInit__sha512"]).apply(null,arguments)};var _PyInit__sha3=Module["_PyInit__sha3"]=function(){return(_PyInit__sha3=Module["_PyInit__sha3"]=Module["asm"]["PyInit__sha3"]).apply(null,arguments)};var _PyInit__md5=Module["_PyInit__md5"]=function(){return(_PyInit__md5=Module["_PyInit__md5"]=Module["asm"]["PyInit__md5"]).apply(null,arguments)};var _PyInit__blake2=Module["_PyInit__blake2"]=function(){return(_PyInit__blake2=Module["_PyInit__blake2"]=Module["asm"]["PyInit__blake2"]).apply(null,arguments)};var _PyInit__sqlite3=Module["_PyInit__sqlite3"]=function(){return(_PyInit__sqlite3=Module["_PyInit__sqlite3"]=Module["asm"]["PyInit__sqlite3"]).apply(null,arguments)};var _PyInit__crypt=Module["_PyInit__crypt"]=function(){return(_PyInit__crypt=Module["_PyInit__crypt"]=Module["asm"]["PyInit__crypt"]).apply(null,arguments)};var _PyInit__bz2=Module["_PyInit__bz2"]=function(){return(_PyInit__bz2=Module["_PyInit__bz2"]=Module["asm"]["PyInit__bz2"]).apply(null,arguments)};var _PyInit__queue=Module["_PyInit__queue"]=function(){return(_PyInit__queue=Module["_PyInit__queue"]=Module["asm"]["PyInit__queue"]).apply(null,arguments)};var _PyInit__multibytecodec=Module["_PyInit__multibytecodec"]=function(){return(_PyInit__multibytecodec=Module["_PyInit__multibytecodec"]=Module["asm"]["PyInit__multibytecodec"]).apply(null,arguments)};var _PyInit__codecs_cn=Module["_PyInit__codecs_cn"]=function(){return(_PyInit__codecs_cn=Module["_PyInit__codecs_cn"]=Module["asm"]["PyInit__codecs_cn"]).apply(null,arguments)};var _PyInit__codecs_hk=Module["_PyInit__codecs_hk"]=function(){return(_PyInit__codecs_hk=Module["_PyInit__codecs_hk"]=Module["asm"]["PyInit__codecs_hk"]).apply(null,arguments)};var _PyInit__codecs_iso2022=Module["_PyInit__codecs_iso2022"]=function(){return(_PyInit__codecs_iso2022=Module["_PyInit__codecs_iso2022"]=Module["asm"]["PyInit__codecs_iso2022"]).apply(null,arguments)};var _PyInit__codecs_jp=Module["_PyInit__codecs_jp"]=function(){return(_PyInit__codecs_jp=Module["_PyInit__codecs_jp"]=Module["asm"]["PyInit__codecs_jp"]).apply(null,arguments)};var _PyInit__codecs_kr=Module["_PyInit__codecs_kr"]=function(){return(_PyInit__codecs_kr=Module["_PyInit__codecs_kr"]=Module["asm"]["PyInit__codecs_kr"]).apply(null,arguments)};var _PyInit__codecs_tw=Module["_PyInit__codecs_tw"]=function(){return(_PyInit__codecs_tw=Module["_PyInit__codecs_tw"]=Module["asm"]["PyInit__codecs_tw"]).apply(null,arguments)};var _PyInit__lsprof=Module["_PyInit__lsprof"]=function(){return(_PyInit__lsprof=Module["_PyInit__lsprof"]=Module["asm"]["PyInit__lsprof"]).apply(null,arguments)};var _PyInit__decimal=Module["_PyInit__decimal"]=function(){return(_PyInit__decimal=Module["_PyInit__decimal"]=Module["asm"]["PyInit__decimal"]).apply(null,arguments)};var _PyInit_mmap=Module["_PyInit_mmap"]=function(){return(_PyInit_mmap=Module["_PyInit_mmap"]=Module["asm"]["PyInit_mmap"]).apply(null,arguments)};var _PyInit_posix=Module["_PyInit_posix"]=function(){return(_PyInit_posix=Module["_PyInit_posix"]=Module["asm"]["PyInit_posix"]).apply(null,arguments)};var _PyInit_errno=Module["_PyInit_errno"]=function(){return(_PyInit_errno=Module["_PyInit_errno"]=Module["asm"]["PyInit_errno"]).apply(null,arguments)};var _PyInit__sre=Module["_PyInit__sre"]=function(){return(_PyInit__sre=Module["_PyInit__sre"]=Module["asm"]["PyInit__sre"]).apply(null,arguments)};var _PyInit__codecs=Module["_PyInit__codecs"]=function(){return(_PyInit__codecs=Module["_PyInit__codecs"]=Module["asm"]["PyInit__codecs"]).apply(null,arguments)};var _PyInit__weakref=Module["_PyInit__weakref"]=function(){return(_PyInit__weakref=Module["_PyInit__weakref"]=Module["asm"]["PyInit__weakref"]).apply(null,arguments)};var _PyInit__functools=Module["_PyInit__functools"]=function(){return(_PyInit__functools=Module["_PyInit__functools"]=Module["asm"]["PyInit__functools"]).apply(null,arguments)};var _PyInit__operator=Module["_PyInit__operator"]=function(){return(_PyInit__operator=Module["_PyInit__operator"]=Module["asm"]["PyInit__operator"]).apply(null,arguments)};var _PyInit__collections=Module["_PyInit__collections"]=function(){return(_PyInit__collections=Module["_PyInit__collections"]=Module["asm"]["PyInit__collections"]).apply(null,arguments)};var _PyInit__abc=Module["_PyInit__abc"]=function(){return(_PyInit__abc=Module["_PyInit__abc"]=Module["asm"]["PyInit__abc"]).apply(null,arguments)};var _PyInit_itertools=Module["_PyInit_itertools"]=function(){return(_PyInit_itertools=Module["_PyInit_itertools"]=Module["asm"]["PyInit_itertools"]).apply(null,arguments)};var _PyInit_atexit=Module["_PyInit_atexit"]=function(){return(_PyInit_atexit=Module["_PyInit_atexit"]=Module["asm"]["PyInit_atexit"]).apply(null,arguments)};var _PyInit__signal=Module["_PyInit__signal"]=function(){return(_PyInit__signal=Module["_PyInit__signal"]=Module["asm"]["PyInit__signal"]).apply(null,arguments)};var _PyInit__stat=Module["_PyInit__stat"]=function(){return(_PyInit__stat=Module["_PyInit__stat"]=Module["asm"]["PyInit__stat"]).apply(null,arguments)};var _PyInit_time=Module["_PyInit_time"]=function(){return(_PyInit_time=Module["_PyInit_time"]=Module["asm"]["PyInit_time"]).apply(null,arguments)};var _PyInit__thread=Module["_PyInit__thread"]=function(){return(_PyInit__thread=Module["_PyInit__thread"]=Module["asm"]["PyInit__thread"]).apply(null,arguments)};var _PyInit__locale=Module["_PyInit__locale"]=function(){return(_PyInit__locale=Module["_PyInit__locale"]=Module["asm"]["PyInit__locale"]).apply(null,arguments)};var _PyInit__io=Module["_PyInit__io"]=function(){return(_PyInit__io=Module["_PyInit__io"]=Module["asm"]["PyInit__io"]).apply(null,arguments)};var _PyInit_faulthandler=Module["_PyInit_faulthandler"]=function(){return(_PyInit_faulthandler=Module["_PyInit_faulthandler"]=Module["asm"]["PyInit_faulthandler"]).apply(null,arguments)};var _PyInit__tracemalloc=Module["_PyInit__tracemalloc"]=function(){return(_PyInit__tracemalloc=Module["_PyInit__tracemalloc"]=Module["asm"]["PyInit__tracemalloc"]).apply(null,arguments)};var _PyInit__peg_parser=Module["_PyInit__peg_parser"]=function(){return(_PyInit__peg_parser=Module["_PyInit__peg_parser"]=Module["asm"]["PyInit__peg_parser"]).apply(null,arguments)};var _PyInit__symtable=Module["_PyInit__symtable"]=function(){return(_PyInit__symtable=Module["_PyInit__symtable"]=Module["asm"]["PyInit__symtable"]).apply(null,arguments)};var _PyInit_xxsubtype=Module["_PyInit_xxsubtype"]=function(){return(_PyInit_xxsubtype=Module["_PyInit_xxsubtype"]=Module["asm"]["PyInit_xxsubtype"]).apply(null,arguments)};var _PyInit_gc=Module["_PyInit_gc"]=function(){return(_PyInit_gc=Module["_PyInit_gc"]=Module["asm"]["PyInit_gc"]).apply(null,arguments)};var _wcscpy=Module["_wcscpy"]=function(){return(_wcscpy=Module["_wcscpy"]=Module["asm"]["wcscpy"]).apply(null,arguments)};var _wcscat=Module["_wcscat"]=function(){return(_wcscat=Module["_wcscat"]=Module["asm"]["wcscat"]).apply(null,arguments)};var _wcsncat=Module["_wcsncat"]=function(){return(_wcsncat=Module["_wcsncat"]=Module["asm"]["wcsncat"]).apply(null,arguments)};var _Py_RunMain=Module["_Py_RunMain"]=function(){return(_Py_RunMain=Module["_Py_RunMain"]=Module["asm"]["Py_RunMain"]).apply(null,arguments)};var _perror=Module["_perror"]=function(){return(_perror=Module["_perror"]=Module["asm"]["perror"]).apply(null,arguments)};var _getpid=Module["_getpid"]=function(){return(_getpid=Module["_getpid"]=Module["asm"]["getpid"]).apply(null,arguments)};var _Py_Main=Module["_Py_Main"]=function(){return(_Py_Main=Module["_Py_Main"]=Module["asm"]["Py_Main"]).apply(null,arguments)};var _Py_BytesMain=Module["_Py_BytesMain"]=function(){return(_Py_BytesMain=Module["_Py_BytesMain"]=Module["asm"]["Py_BytesMain"]).apply(null,arguments)};var _PyGC_Collect=Module["_PyGC_Collect"]=function(){return(_PyGC_Collect=Module["_PyGC_Collect"]=Module["asm"]["PyGC_Collect"]).apply(null,arguments)};var __PyGC_Dump=Module["__PyGC_Dump"]=function(){return(__PyGC_Dump=Module["__PyGC_Dump"]=Module["asm"]["_PyGC_Dump"]).apply(null,arguments)};var __PyObject_GC_Calloc=Module["__PyObject_GC_Calloc"]=function(){return(__PyObject_GC_Calloc=Module["__PyObject_GC_Calloc"]=Module["asm"]["_PyObject_GC_Calloc"]).apply(null,arguments)};var _PyObject_GC_IsTracked=Module["_PyObject_GC_IsTracked"]=function(){return(_PyObject_GC_IsTracked=Module["_PyObject_GC_IsTracked"]=Module["asm"]["PyObject_GC_IsTracked"]).apply(null,arguments)};var _PyObject_GC_IsFinalized=Module["_PyObject_GC_IsFinalized"]=function(){return(_PyObject_GC_IsFinalized=Module["_PyObject_GC_IsFinalized"]=Module["asm"]["PyObject_GC_IsFinalized"]).apply(null,arguments)};var _acos=Module["_acos"]=function(){return(_acos=Module["_acos"]=Module["asm"]["acos"]).apply(null,arguments)};var _acosh=Module["_acosh"]=function(){return(_acosh=Module["_acosh"]=Module["asm"]["acosh"]).apply(null,arguments)};var _asin=Module["_asin"]=function(){return(_asin=Module["_asin"]=Module["asm"]["asin"]).apply(null,arguments)};var _asinh=Module["_asinh"]=function(){return(_asinh=Module["_asinh"]=Module["asm"]["asinh"]).apply(null,arguments)};var _atan=Module["_atan"]=function(){return(_atan=Module["_atan"]=Module["asm"]["atan"]).apply(null,arguments)};var _atanh=Module["_atanh"]=function(){return(_atanh=Module["_atanh"]=Module["asm"]["atanh"]).apply(null,arguments)};var _copysign=Module["_copysign"]=function(){return(_copysign=Module["_copysign"]=Module["asm"]["copysign"]).apply(null,arguments)};var _cosh=Module["_cosh"]=function(){return(_cosh=Module["_cosh"]=Module["asm"]["cosh"]).apply(null,arguments)};var _erf=Module["_erf"]=function(){return(_erf=Module["_erf"]=Module["asm"]["erf"]).apply(null,arguments)};var _erfc=Module["_erfc"]=function(){return(_erfc=Module["_erfc"]=Module["asm"]["erfc"]).apply(null,arguments)};var _expm1=Module["_expm1"]=function(){return(_expm1=Module["_expm1"]=Module["asm"]["expm1"]).apply(null,arguments)};var _fabs=Module["_fabs"]=function(){return(_fabs=Module["_fabs"]=Module["asm"]["fabs"]).apply(null,arguments)};var __Py_log1p=Module["__Py_log1p"]=function(){return(__Py_log1p=Module["__Py_log1p"]=Module["asm"]["_Py_log1p"]).apply(null,arguments)};var _sinh=Module["_sinh"]=function(){return(_sinh=Module["_sinh"]=Module["asm"]["sinh"]).apply(null,arguments)};var _sqrt=Module["_sqrt"]=function(){return(_sqrt=Module["_sqrt"]=Module["asm"]["sqrt"]).apply(null,arguments)};var _tan=Module["_tan"]=function(){return(_tan=Module["_tan"]=Module["asm"]["tan"]).apply(null,arguments)};var _tanh=Module["_tanh"]=function(){return(_tanh=Module["_tanh"]=Module["asm"]["tanh"]).apply(null,arguments)};var _nextafter=Module["_nextafter"]=function(){return(_nextafter=Module["_nextafter"]=Module["asm"]["nextafter"]).apply(null,arguments)};var _log10=Module["_log10"]=function(){return(_log10=Module["_log10"]=Module["asm"]["log10"]).apply(null,arguments)};var _log2=Module["_log2"]=function(){return(_log2=Module["_log2"]=Module["asm"]["log2"]).apply(null,arguments)};var _log1p=Module["_log1p"]=function(){return(_log1p=Module["_log1p"]=Module["asm"]["log1p"]).apply(null,arguments)};var _unpackiter_new=Module["_unpackiter_new"]=function(){return(_unpackiter_new=Module["_unpackiter_new"]=Module["asm"]["unpackiter_new"]).apply(null,arguments)};var _PyDict_SetItemProxy=Module["_PyDict_SetItemProxy"]=function(){return(_PyDict_SetItemProxy=Module["_PyDict_SetItemProxy"]=Module["asm"]["PyDict_SetItemProxy"]).apply(null,arguments)};var _PyDict_GetItemProxy=Module["_PyDict_GetItemProxy"]=function(){return(_PyDict_GetItemProxy=Module["_PyDict_GetItemProxy"]=Module["asm"]["PyDict_GetItemProxy"]).apply(null,arguments)};var __ctypes_alloc_format_string=Module["__ctypes_alloc_format_string"]=function(){return(__ctypes_alloc_format_string=Module["__ctypes_alloc_format_string"]=Module["asm"]["_ctypes_alloc_format_string"]).apply(null,arguments)};var _strcat=Module["_strcat"]=function(){return(_strcat=Module["_strcat"]=Module["asm"]["strcat"]).apply(null,arguments)};var __ctypes_alloc_format_string_with_shape=Module["__ctypes_alloc_format_string_with_shape"]=function(){return(__ctypes_alloc_format_string_with_shape=Module["__ctypes_alloc_format_string_with_shape"]=Module["asm"]["_ctypes_alloc_format_string_with_shape"]).apply(null,arguments)};var _PyCStructUnionType_update_stgdict=Module["_PyCStructUnionType_update_stgdict"]=function(){return(_PyCStructUnionType_update_stgdict=Module["_PyCStructUnionType_update_stgdict"]=Module["asm"]["PyCStructUnionType_update_stgdict"]).apply(null,arguments)};var _PyType_stgdict=Module["_PyType_stgdict"]=function(){return(_PyType_stgdict=Module["_PyType_stgdict"]=Module["asm"]["PyType_stgdict"]).apply(null,arguments)};var __ctypes_get_fielddesc=Module["__ctypes_get_fielddesc"]=function(){return(__ctypes_get_fielddesc=Module["__ctypes_get_fielddesc"]=Module["asm"]["_ctypes_get_fielddesc"]).apply(null,arguments)};var _PyCData_FromBaseObj=Module["_PyCData_FromBaseObj"]=function(){return(_PyCData_FromBaseObj=Module["_PyCData_FromBaseObj"]=Module["asm"]["PyCData_FromBaseObj"]).apply(null,arguments)};var _PyCData_AtAddress=Module["_PyCData_AtAddress"]=function(){return(_PyCData_AtAddress=Module["_PyCData_AtAddress"]=Module["asm"]["PyCData_AtAddress"]).apply(null,arguments)};var __ctypes_simple_instance=Module["__ctypes_simple_instance"]=function(){return(__ctypes_simple_instance=Module["__ctypes_simple_instance"]=Module["asm"]["_ctypes_simple_instance"]).apply(null,arguments)};var _PyCData_get=Module["_PyCData_get"]=function(){return(_PyCData_get=Module["_PyCData_get"]=Module["asm"]["PyCData_get"]).apply(null,arguments)};var _PyCData_set=Module["_PyCData_set"]=function(){return(_PyCData_set=Module["_PyCData_set"]=Module["asm"]["PyCData_set"]).apply(null,arguments)};var __ctypes_extend_error=Module["__ctypes_extend_error"]=function(){return(__ctypes_extend_error=Module["__ctypes_extend_error"]=Module["asm"]["_ctypes_extend_error"]).apply(null,arguments)};var _PyObject_stgdict=Module["_PyObject_stgdict"]=function(){return(_PyObject_stgdict=Module["_PyObject_stgdict"]=Module["asm"]["PyObject_stgdict"]).apply(null,arguments)};var __ctypes_callproc=Module["__ctypes_callproc"]=function(){return(__ctypes_callproc=Module["__ctypes_callproc"]=Module["asm"]["_ctypes_callproc"]).apply(null,arguments)};var __ctypes_alloc_callback=Module["__ctypes_alloc_callback"]=function(){return(__ctypes_alloc_callback=Module["__ctypes_alloc_callback"]=Module["asm"]["_ctypes_alloc_callback"]).apply(null,arguments)};var _PyCArrayType_from_ctype=Module["_PyCArrayType_from_ctype"]=function(){return(_PyCArrayType_from_ctype=Module["_PyCArrayType_from_ctype"]=Module["asm"]["PyCArrayType_from_ctype"]).apply(null,arguments)};var _PyCStgDict_clone=Module["_PyCStgDict_clone"]=function(){return(_PyCStgDict_clone=Module["_PyCStgDict_clone"]=Module["asm"]["PyCStgDict_clone"]).apply(null,arguments)};var _PyCArgObject_new=Module["_PyCArgObject_new"]=function(){return(_PyCArgObject_new=Module["_PyCArgObject_new"]=Module["asm"]["PyCArgObject_new"]).apply(null,arguments)};var _ffi_closure_free=Module["_ffi_closure_free"]=function(){return(_ffi_closure_free=Module["_ffi_closure_free"]=Module["asm"]["ffi_closure_free"]).apply(null,arguments)};var _ffi_closure_alloc=Module["_ffi_closure_alloc"]=function(){return(_ffi_closure_alloc=Module["_ffi_closure_alloc"]=Module["asm"]["ffi_closure_alloc"]).apply(null,arguments)};var __ctypes_get_ffi_type=Module["__ctypes_get_ffi_type"]=function(){return(__ctypes_get_ffi_type=Module["__ctypes_get_ffi_type"]=Module["asm"]["_ctypes_get_ffi_type"]).apply(null,arguments)};var _ffi_prep_cif=Module["_ffi_prep_cif"]=function(){return(_ffi_prep_cif=Module["_ffi_prep_cif"]=Module["asm"]["ffi_prep_cif"]).apply(null,arguments)};var _ffi_prep_closure_loc=Module["_ffi_prep_closure_loc"]=function(){return(_ffi_prep_closure_loc=Module["_ffi_prep_closure_loc"]=Module["asm"]["ffi_prep_closure_loc"]).apply(null,arguments)};var __ctypes_get_errobj=Module["__ctypes_get_errobj"]=function(){return(__ctypes_get_errobj=Module["__ctypes_get_errobj"]=Module["asm"]["_ctypes_get_errobj"]).apply(null,arguments)};var _ffi_prep_cif_var=Module["_ffi_prep_cif_var"]=function(){return(_ffi_prep_cif_var=Module["_ffi_prep_cif_var"]=Module["asm"]["ffi_prep_cif_var"]).apply(null,arguments)};var _PyCField_FromDesc=Module["_PyCField_FromDesc"]=function(){return(_PyCField_FromDesc=Module["_PyCField_FromDesc"]=Module["asm"]["PyCField_FromDesc"]).apply(null,arguments)};var ___extenddftf2=Module["___extenddftf2"]=function(){return(___extenddftf2=Module["___extenddftf2"]=Module["asm"]["__extenddftf2"]).apply(null,arguments)};var ___trunctfdf2=Module["___trunctfdf2"]=function(){return(___trunctfdf2=Module["___trunctfdf2"]=Module["asm"]["__trunctfdf2"]).apply(null,arguments)};var __testfunc_cbk_reg_int=Module["__testfunc_cbk_reg_int"]=function(){return(__testfunc_cbk_reg_int=Module["__testfunc_cbk_reg_int"]=Module["asm"]["_testfunc_cbk_reg_int"]).apply(null,arguments)};var __testfunc_cbk_reg_double=Module["__testfunc_cbk_reg_double"]=function(){return(__testfunc_cbk_reg_double=Module["__testfunc_cbk_reg_double"]=Module["asm"]["_testfunc_cbk_reg_double"]).apply(null,arguments)};var __testfunc_cbk_large_struct=Module["__testfunc_cbk_large_struct"]=function(){return(__testfunc_cbk_large_struct=Module["__testfunc_cbk_large_struct"]=Module["asm"]["_testfunc_cbk_large_struct"]).apply(null,arguments)};var __testfunc_large_struct_update_value=Module["__testfunc_large_struct_update_value"]=function(){return(__testfunc_large_struct_update_value=Module["__testfunc_large_struct_update_value"]=Module["asm"]["_testfunc_large_struct_update_value"]).apply(null,arguments)};var __testfunc_reg_struct_update_value=Module["__testfunc_reg_struct_update_value"]=function(){return(__testfunc_reg_struct_update_value=Module["__testfunc_reg_struct_update_value"]=Module["asm"]["_testfunc_reg_struct_update_value"]).apply(null,arguments)};var __testfunc_array_in_struct1=Module["__testfunc_array_in_struct1"]=function(){return(__testfunc_array_in_struct1=Module["__testfunc_array_in_struct1"]=Module["asm"]["_testfunc_array_in_struct1"]).apply(null,arguments)};var __testfunc_array_in_struct2=Module["__testfunc_array_in_struct2"]=function(){return(__testfunc_array_in_struct2=Module["__testfunc_array_in_struct2"]=Module["asm"]["_testfunc_array_in_struct2"]).apply(null,arguments)};var __testfunc_array_in_struct2a=Module["__testfunc_array_in_struct2a"]=function(){return(__testfunc_array_in_struct2a=Module["__testfunc_array_in_struct2a"]=Module["asm"]["_testfunc_array_in_struct2a"]).apply(null,arguments)};var __testfunc_union_by_value1=Module["__testfunc_union_by_value1"]=function(){return(__testfunc_union_by_value1=Module["__testfunc_union_by_value1"]=Module["asm"]["_testfunc_union_by_value1"]).apply(null,arguments)};var __testfunc_union_by_value2=Module["__testfunc_union_by_value2"]=function(){return(__testfunc_union_by_value2=Module["__testfunc_union_by_value2"]=Module["asm"]["_testfunc_union_by_value2"]).apply(null,arguments)};var __testfunc_union_by_reference1=Module["__testfunc_union_by_reference1"]=function(){return(__testfunc_union_by_reference1=Module["__testfunc_union_by_reference1"]=Module["asm"]["_testfunc_union_by_reference1"]).apply(null,arguments)};var __testfunc_union_by_reference2=Module["__testfunc_union_by_reference2"]=function(){return(__testfunc_union_by_reference2=Module["__testfunc_union_by_reference2"]=Module["asm"]["_testfunc_union_by_reference2"]).apply(null,arguments)};var __testfunc_union_by_reference3=Module["__testfunc_union_by_reference3"]=function(){return(__testfunc_union_by_reference3=Module["__testfunc_union_by_reference3"]=Module["asm"]["_testfunc_union_by_reference3"]).apply(null,arguments)};var __testfunc_bitfield_by_value1=Module["__testfunc_bitfield_by_value1"]=function(){return(__testfunc_bitfield_by_value1=Module["__testfunc_bitfield_by_value1"]=Module["asm"]["_testfunc_bitfield_by_value1"]).apply(null,arguments)};var __testfunc_bitfield_by_reference1=Module["__testfunc_bitfield_by_reference1"]=function(){return(__testfunc_bitfield_by_reference1=Module["__testfunc_bitfield_by_reference1"]=Module["asm"]["_testfunc_bitfield_by_reference1"]).apply(null,arguments)};var __testfunc_bitfield_by_reference2=Module["__testfunc_bitfield_by_reference2"]=function(){return(__testfunc_bitfield_by_reference2=Module["__testfunc_bitfield_by_reference2"]=Module["asm"]["_testfunc_bitfield_by_reference2"]).apply(null,arguments)};var __testfunc_bitfield_by_value2=Module["__testfunc_bitfield_by_value2"]=function(){return(__testfunc_bitfield_by_value2=Module["__testfunc_bitfield_by_value2"]=Module["asm"]["_testfunc_bitfield_by_value2"]).apply(null,arguments)};var _testfunc_array=Module["_testfunc_array"]=function(){return(_testfunc_array=Module["_testfunc_array"]=Module["asm"]["testfunc_array"]).apply(null,arguments)};var _testfunc_Ddd=Module["_testfunc_Ddd"]=function(){return(_testfunc_Ddd=Module["_testfunc_Ddd"]=Module["asm"]["testfunc_Ddd"]).apply(null,arguments)};var ___small_printf=Module["___small_printf"]=function(){return(___small_printf=Module["___small_printf"]=Module["asm"]["__small_printf"]).apply(null,arguments)};var _testfunc_DDD=Module["_testfunc_DDD"]=function(){return(_testfunc_DDD=Module["_testfunc_DDD"]=Module["asm"]["testfunc_DDD"]).apply(null,arguments)};var ___multf3=Module["___multf3"]=function(){return(___multf3=Module["___multf3"]=Module["asm"]["__multf3"]).apply(null,arguments)};var _printf=Module["_printf"]=function(){return(_printf=Module["_printf"]=Module["asm"]["printf"]).apply(null,arguments)};var _testfunc_iii=Module["_testfunc_iii"]=function(){return(_testfunc_iii=Module["_testfunc_iii"]=Module["asm"]["testfunc_iii"]).apply(null,arguments)};var _myprintf=Module["_myprintf"]=function(){return(_myprintf=Module["_myprintf"]=Module["asm"]["myprintf"]).apply(null,arguments)};var _vprintf=Module["_vprintf"]=function(){return(_vprintf=Module["_vprintf"]=Module["asm"]["vprintf"]).apply(null,arguments)};var _my_strtok=Module["_my_strtok"]=function(){return(_my_strtok=Module["_my_strtok"]=Module["asm"]["my_strtok"]).apply(null,arguments)};var _my_strchr=Module["_my_strchr"]=function(){return(_my_strchr=Module["_my_strchr"]=Module["asm"]["my_strchr"]).apply(null,arguments)};var _my_sqrt=Module["_my_sqrt"]=function(){return(_my_sqrt=Module["_my_sqrt"]=Module["asm"]["my_sqrt"]).apply(null,arguments)};var _my_qsort=Module["_my_qsort"]=function(){return(_my_qsort=Module["_my_qsort"]=Module["asm"]["my_qsort"]).apply(null,arguments)};var _qsort=Module["_qsort"]=function(){return(_qsort=Module["_qsort"]=Module["asm"]["qsort"]).apply(null,arguments)};var __testfunc_ai8=Module["__testfunc_ai8"]=function(){return(__testfunc_ai8=Module["__testfunc_ai8"]=Module["asm"]["_testfunc_ai8"]).apply(null,arguments)};var __testfunc_v=Module["__testfunc_v"]=function(){return(__testfunc_v=Module["__testfunc_v"]=Module["asm"]["_testfunc_v"]).apply(null,arguments)};var __testfunc_i_bhilfd=Module["__testfunc_i_bhilfd"]=function(){return(__testfunc_i_bhilfd=Module["__testfunc_i_bhilfd"]=Module["asm"]["_testfunc_i_bhilfd"]).apply(null,arguments)};var __testfunc_f_bhilfd=Module["__testfunc_f_bhilfd"]=function(){return(__testfunc_f_bhilfd=Module["__testfunc_f_bhilfd"]=Module["asm"]["_testfunc_f_bhilfd"]).apply(null,arguments)};var __testfunc_d_bhilfd=Module["__testfunc_d_bhilfd"]=function(){return(__testfunc_d_bhilfd=Module["__testfunc_d_bhilfd"]=Module["asm"]["_testfunc_d_bhilfd"]).apply(null,arguments)};var __testfunc_D_bhilfD=Module["__testfunc_D_bhilfD"]=function(){return(__testfunc_D_bhilfD=Module["__testfunc_D_bhilfD"]=Module["asm"]["_testfunc_D_bhilfD"]).apply(null,arguments)};var ___extendsftf2=Module["___extendsftf2"]=function(){return(___extendsftf2=Module["___extendsftf2"]=Module["asm"]["__extendsftf2"]).apply(null,arguments)};var ___addtf3=Module["___addtf3"]=function(){return(___addtf3=Module["___addtf3"]=Module["asm"]["__addtf3"]).apply(null,arguments)};var __testfunc_p_p=Module["__testfunc_p_p"]=function(){return(__testfunc_p_p=Module["__testfunc_p_p"]=Module["asm"]["_testfunc_p_p"]).apply(null,arguments)};var __testfunc_c_p_p=Module["__testfunc_c_p_p"]=function(){return(__testfunc_c_p_p=Module["__testfunc_c_p_p"]=Module["asm"]["_testfunc_c_p_p"]).apply(null,arguments)};var _get_strchr=Module["_get_strchr"]=function(){return(_get_strchr=Module["_get_strchr"]=Module["asm"]["get_strchr"]).apply(null,arguments)};var _my_strdup=Module["_my_strdup"]=function(){return(_my_strdup=Module["_my_strdup"]=Module["asm"]["my_strdup"]).apply(null,arguments)};var _my_free=Module["_my_free"]=function(){return(_my_free=Module["_my_free"]=Module["asm"]["my_free"]).apply(null,arguments)};var _my_wcsdup=Module["_my_wcsdup"]=function(){return(_my_wcsdup=Module["_my_wcsdup"]=Module["asm"]["my_wcsdup"]).apply(null,arguments)};var _my_wcslen=Module["_my_wcslen"]=function(){return(_my_wcslen=Module["_my_wcslen"]=Module["asm"]["my_wcslen"]).apply(null,arguments)};var __testfunc_callfuncp=Module["__testfunc_callfuncp"]=function(){return(__testfunc_callfuncp=Module["__testfunc_callfuncp"]=Module["asm"]["_testfunc_callfuncp"]).apply(null,arguments)};var __testfunc_deref_pointer=Module["__testfunc_deref_pointer"]=function(){return(__testfunc_deref_pointer=Module["__testfunc_deref_pointer"]=Module["asm"]["_testfunc_deref_pointer"]).apply(null,arguments)};var __testfunc_callback_with_pointer=Module["__testfunc_callback_with_pointer"]=function(){return(__testfunc_callback_with_pointer=Module["__testfunc_callback_with_pointer"]=Module["asm"]["_testfunc_callback_with_pointer"]).apply(null,arguments)};var __testfunc_q_bhilfdq=Module["__testfunc_q_bhilfdq"]=function(){return(__testfunc_q_bhilfdq=Module["__testfunc_q_bhilfdq"]=Module["asm"]["_testfunc_q_bhilfdq"]).apply(null,arguments)};var __testfunc_q_bhilfd=Module["__testfunc_q_bhilfd"]=function(){return(__testfunc_q_bhilfd=Module["__testfunc_q_bhilfd"]=Module["asm"]["_testfunc_q_bhilfd"]).apply(null,arguments)};var __testfunc_callback_i_if=Module["__testfunc_callback_i_if"]=function(){return(__testfunc_callback_i_if=Module["__testfunc_callback_i_if"]=Module["asm"]["_testfunc_callback_i_if"]).apply(null,arguments)};var __testfunc_callback_q_qf=Module["__testfunc_callback_q_qf"]=function(){return(__testfunc_callback_q_qf=Module["__testfunc_callback_q_qf"]=Module["asm"]["_testfunc_callback_q_qf"]).apply(null,arguments)};var _getSPAMANDEGGS=Module["_getSPAMANDEGGS"]=function(){return(_getSPAMANDEGGS=Module["_getSPAMANDEGGS"]=Module["asm"]["getSPAMANDEGGS"]).apply(null,arguments)};var __testfunc_byval=Module["__testfunc_byval"]=function(){return(__testfunc_byval=Module["__testfunc_byval"]=Module["asm"]["_testfunc_byval"]).apply(null,arguments)};var _get_an_integer=Module["_get_an_integer"]=function(){return(_get_an_integer=Module["_get_an_integer"]=Module["asm"]["get_an_integer"]).apply(null,arguments)};var _integrate=Module["_integrate"]=function(){return(_integrate=Module["_integrate"]=Module["asm"]["integrate"]).apply(null,arguments)};var _library_get=Module["_library_get"]=function(){return(_library_get=Module["_library_get"]=Module["asm"]["library_get"]).apply(null,arguments)};var _py_func_si=Module["_py_func_si"]=function(){return(_py_func_si=Module["_py_func_si"]=Module["asm"]["py_func_si"]).apply(null,arguments)};var __py_func_si=Module["__py_func_si"]=function(){return(__py_func_si=Module["__py_func_si"]=Module["asm"]["_py_func_si"]).apply(null,arguments)};var _py_func=Module["_py_func"]=function(){return(_py_func=Module["_py_func"]=Module["asm"]["py_func"]).apply(null,arguments)};var __py_func=Module["__py_func"]=function(){return(__py_func=Module["__py_func"]=Module["asm"]["_py_func"]).apply(null,arguments)};var _unpack_bitfields=Module["_unpack_bitfields"]=function(){return(_unpack_bitfields=Module["_unpack_bitfields"]=Module["asm"]["unpack_bitfields"]).apply(null,arguments)};var _tf_b=Module["_tf_b"]=function(){return(_tf_b=Module["_tf_b"]=Module["asm"]["tf_b"]).apply(null,arguments)};var _tf_B=Module["_tf_B"]=function(){return(_tf_B=Module["_tf_B"]=Module["asm"]["tf_B"]).apply(null,arguments)};var _tf_h=Module["_tf_h"]=function(){return(_tf_h=Module["_tf_h"]=Module["asm"]["tf_h"]).apply(null,arguments)};var _tf_H=Module["_tf_H"]=function(){return(_tf_H=Module["_tf_H"]=Module["asm"]["tf_H"]).apply(null,arguments)};var _tf_i=Module["_tf_i"]=function(){return(_tf_i=Module["_tf_i"]=Module["asm"]["tf_i"]).apply(null,arguments)};var _tf_I=Module["_tf_I"]=function(){return(_tf_I=Module["_tf_I"]=Module["asm"]["tf_I"]).apply(null,arguments)};var _tf_l=Module["_tf_l"]=function(){return(_tf_l=Module["_tf_l"]=Module["asm"]["tf_l"]).apply(null,arguments)};var _tf_L=Module["_tf_L"]=function(){return(_tf_L=Module["_tf_L"]=Module["asm"]["tf_L"]).apply(null,arguments)};var _tf_q=Module["_tf_q"]=function(){return(_tf_q=Module["_tf_q"]=Module["asm"]["tf_q"]).apply(null,arguments)};var _tf_Q=Module["_tf_Q"]=function(){return(_tf_Q=Module["_tf_Q"]=Module["asm"]["tf_Q"]).apply(null,arguments)};var _tf_f=Module["_tf_f"]=function(){return(_tf_f=Module["_tf_f"]=Module["asm"]["tf_f"]).apply(null,arguments)};var _tf_d=Module["_tf_d"]=function(){return(_tf_d=Module["_tf_d"]=Module["asm"]["tf_d"]).apply(null,arguments)};var _tf_D=Module["_tf_D"]=function(){return(_tf_D=Module["_tf_D"]=Module["asm"]["tf_D"]).apply(null,arguments)};var ___fixtfdi=Module["___fixtfdi"]=function(){return(___fixtfdi=Module["___fixtfdi"]=Module["asm"]["__fixtfdi"]).apply(null,arguments)};var ___divtf3=Module["___divtf3"]=function(){return(___divtf3=Module["___divtf3"]=Module["asm"]["__divtf3"]).apply(null,arguments)};var _tf_bb=Module["_tf_bb"]=function(){return(_tf_bb=Module["_tf_bb"]=Module["asm"]["tf_bb"]).apply(null,arguments)};var _tf_bB=Module["_tf_bB"]=function(){return(_tf_bB=Module["_tf_bB"]=Module["asm"]["tf_bB"]).apply(null,arguments)};var _tf_bh=Module["_tf_bh"]=function(){return(_tf_bh=Module["_tf_bh"]=Module["asm"]["tf_bh"]).apply(null,arguments)};var _tf_bH=Module["_tf_bH"]=function(){return(_tf_bH=Module["_tf_bH"]=Module["asm"]["tf_bH"]).apply(null,arguments)};var _tf_bi=Module["_tf_bi"]=function(){return(_tf_bi=Module["_tf_bi"]=Module["asm"]["tf_bi"]).apply(null,arguments)};var _tf_bI=Module["_tf_bI"]=function(){return(_tf_bI=Module["_tf_bI"]=Module["asm"]["tf_bI"]).apply(null,arguments)};var _tf_bl=Module["_tf_bl"]=function(){return(_tf_bl=Module["_tf_bl"]=Module["asm"]["tf_bl"]).apply(null,arguments)};var _tf_bL=Module["_tf_bL"]=function(){return(_tf_bL=Module["_tf_bL"]=Module["asm"]["tf_bL"]).apply(null,arguments)};var _tf_bq=Module["_tf_bq"]=function(){return(_tf_bq=Module["_tf_bq"]=Module["asm"]["tf_bq"]).apply(null,arguments)};var _tf_bQ=Module["_tf_bQ"]=function(){return(_tf_bQ=Module["_tf_bQ"]=Module["asm"]["tf_bQ"]).apply(null,arguments)};var _tf_bf=Module["_tf_bf"]=function(){return(_tf_bf=Module["_tf_bf"]=Module["asm"]["tf_bf"]).apply(null,arguments)};var _tf_bd=Module["_tf_bd"]=function(){return(_tf_bd=Module["_tf_bd"]=Module["asm"]["tf_bd"]).apply(null,arguments)};var _tf_bD=Module["_tf_bD"]=function(){return(_tf_bD=Module["_tf_bD"]=Module["asm"]["tf_bD"]).apply(null,arguments)};var _tv_i=Module["_tv_i"]=function(){return(_tv_i=Module["_tv_i"]=Module["asm"]["tv_i"]).apply(null,arguments)};var _PointInRect=Module["_PointInRect"]=function(){return(_PointInRect=Module["_PointInRect"]=Module["asm"]["PointInRect"]).apply(null,arguments)};var _ReturnRect=Module["_ReturnRect"]=function(){return(_ReturnRect=Module["_ReturnRect"]=Module["asm"]["ReturnRect"]).apply(null,arguments)};var _ret_2h_func=Module["_ret_2h_func"]=function(){return(_ret_2h_func=Module["_ret_2h_func"]=Module["asm"]["ret_2h_func"]).apply(null,arguments)};var _ret_8i_func=Module["_ret_8i_func"]=function(){return(_ret_8i_func=Module["_ret_8i_func"]=Module["asm"]["ret_8i_func"]).apply(null,arguments)};var _GetRectangle=Module["_GetRectangle"]=function(){return(_GetRectangle=Module["_GetRectangle"]=Module["asm"]["GetRectangle"]).apply(null,arguments)};var _TwoOutArgs=Module["_TwoOutArgs"]=function(){return(_TwoOutArgs=Module["_TwoOutArgs"]=Module["asm"]["TwoOutArgs"]).apply(null,arguments)};var _getsockname=Module["_getsockname"]=function(){return(_getsockname=Module["_getsockname"]=Module["asm"]["getsockname"]).apply(null,arguments)};var _socket=Module["_socket"]=function(){return(_socket=Module["_socket"]=Module["asm"]["socket"]).apply(null,arguments)};var _getsockopt=Module["_getsockopt"]=function(){return(_getsockopt=Module["_getsockopt"]=Module["asm"]["getsockopt"]).apply(null,arguments)};var _bind=Module["_bind"]=function(){return(_bind=Module["_bind"]=Module["asm"]["bind"]).apply(null,arguments)};var _getpeername=Module["_getpeername"]=function(){return(_getpeername=Module["_getpeername"]=Module["asm"]["getpeername"]).apply(null,arguments)};var _listen=Module["_listen"]=function(){return(_listen=Module["_listen"]=Module["asm"]["listen"]).apply(null,arguments)};var _setsockopt=Module["_setsockopt"]=function(){return(_setsockopt=Module["_setsockopt"]=Module["asm"]["setsockopt"]).apply(null,arguments)};var _shutdown=Module["_shutdown"]=function(){return(_shutdown=Module["_shutdown"]=Module["asm"]["shutdown"]).apply(null,arguments)};var _accept4=Module["_accept4"]=function(){return(_accept4=Module["_accept4"]=Module["asm"]["accept4"]).apply(null,arguments)};var _accept=Module["_accept"]=function(){return(_accept=Module["_accept"]=Module["asm"]["accept"]).apply(null,arguments)};var _inet_ntop=Module["_inet_ntop"]=function(){return(_inet_ntop=Module["_inet_ntop"]=Module["asm"]["inet_ntop"]).apply(null,arguments)};var _ntohs=Module["_ntohs"]=function(){return(_ntohs=Module["_ntohs"]=Module["asm"]["ntohs"]).apply(null,arguments)};var _ioctl=Module["_ioctl"]=function(){return(_ioctl=Module["_ioctl"]=Module["asm"]["ioctl"]).apply(null,arguments)};var _poll=Module["_poll"]=function(){return(_poll=Module["_poll"]=Module["asm"]["poll"]).apply(null,arguments)};var _htons=Module["_htons"]=function(){return(_htons=Module["_htons"]=Module["asm"]["htons"]).apply(null,arguments)};var _freeaddrinfo=Module["_freeaddrinfo"]=function(){return(_freeaddrinfo=Module["_freeaddrinfo"]=Module["asm"]["freeaddrinfo"]).apply(null,arguments)};var _inet_pton=Module["_inet_pton"]=function(){return(_inet_pton=Module["_inet_pton"]=Module["asm"]["inet_pton"]).apply(null,arguments)};var _connect=Module["_connect"]=function(){return(_connect=Module["_connect"]=Module["asm"]["connect"]).apply(null,arguments)};var _recv=Module["_recv"]=function(){return(_recv=Module["_recv"]=Module["asm"]["recv"]).apply(null,arguments)};var _recvfrom=Module["_recvfrom"]=function(){return(_recvfrom=Module["_recvfrom"]=Module["asm"]["recvfrom"]).apply(null,arguments)};var _send=Module["_send"]=function(){return(_send=Module["_send"]=Module["asm"]["send"]).apply(null,arguments)};var _sendto=Module["_sendto"]=function(){return(_sendto=Module["_sendto"]=Module["asm"]["sendto"]).apply(null,arguments)};var _recvmsg=Module["_recvmsg"]=function(){return(_recvmsg=Module["_recvmsg"]=Module["asm"]["recvmsg"]).apply(null,arguments)};var _sendmsg=Module["_sendmsg"]=function(){return(_sendmsg=Module["_sendmsg"]=Module["asm"]["sendmsg"]).apply(null,arguments)};var _gethostname=Module["_gethostname"]=function(){return(_gethostname=Module["_gethostname"]=Module["asm"]["gethostname"]).apply(null,arguments)};var _getservbyname=Module["_getservbyname"]=function(){return(_getservbyname=Module["_getservbyname"]=Module["asm"]["getservbyname"]).apply(null,arguments)};var _getservbyport=Module["_getservbyport"]=function(){return(_getservbyport=Module["_getservbyport"]=Module["asm"]["getservbyport"]).apply(null,arguments)};var _ntohl=Module["_ntohl"]=function(){return(_ntohl=Module["_ntohl"]=Module["asm"]["ntohl"]).apply(null,arguments)};var _htonl=Module["_htonl"]=function(){return(_htonl=Module["_htonl"]=Module["asm"]["htonl"]).apply(null,arguments)};var _inet_aton=Module["_inet_aton"]=function(){return(_inet_aton=Module["_inet_aton"]=Module["asm"]["inet_aton"]).apply(null,arguments)};var _inet_ntoa=Module["_inet_ntoa"]=function(){return(_inet_ntoa=Module["_inet_ntoa"]=Module["asm"]["inet_ntoa"]).apply(null,arguments)};var ___h_errno_location=Module["___h_errno_location"]=function(){return(___h_errno_location=Module["___h_errno_location"]=Module["asm"]["__h_errno_location"]).apply(null,arguments)};var _hstrerror=Module["_hstrerror"]=function(){return(_hstrerror=Module["_hstrerror"]=Module["asm"]["hstrerror"]).apply(null,arguments)};var _select=Module["_select"]=function(){return(_select=Module["_select"]=Module["asm"]["select"]).apply(null,arguments)};var __Py_Gid_Converter=Module["__Py_Gid_Converter"]=function(){return(__Py_Gid_Converter=Module["__Py_Gid_Converter"]=Module["asm"]["_Py_Gid_Converter"]).apply(null,arguments)};var __Py_Uid_Converter=Module["__Py_Uid_Converter"]=function(){return(__Py_Uid_Converter=Module["__Py_Uid_Converter"]=Module["asm"]["_Py_Uid_Converter"]).apply(null,arguments)};var _PyOS_BeforeFork=Module["_PyOS_BeforeFork"]=function(){return(_PyOS_BeforeFork=Module["_PyOS_BeforeFork"]=Module["asm"]["PyOS_BeforeFork"]).apply(null,arguments)};var _PyOS_AfterFork_Child=Module["_PyOS_AfterFork_Child"]=function(){return(_PyOS_AfterFork_Child=Module["_PyOS_AfterFork_Child"]=Module["asm"]["PyOS_AfterFork_Child"]).apply(null,arguments)};var _PyOS_AfterFork_Parent=Module["_PyOS_AfterFork_Parent"]=function(){return(_PyOS_AfterFork_Parent=Module["_PyOS_AfterFork_Parent"]=Module["asm"]["PyOS_AfterFork_Parent"]).apply(null,arguments)};var _dup=Module["_dup"]=function(){return(_dup=Module["_dup"]=Module["asm"]["dup"]).apply(null,arguments)};var _dup2=Module["_dup2"]=function(){return(_dup2=Module["_dup2"]=Module["asm"]["dup2"]).apply(null,arguments)};var _chdir=Module["_chdir"]=function(){return(_chdir=Module["_chdir"]=Module["asm"]["chdir"]).apply(null,arguments)};var _umask=Module["_umask"]=function(){return(_umask=Module["_umask"]=Module["asm"]["umask"]).apply(null,arguments)};var _setsid=Module["_setsid"]=function(){return(_setsid=Module["_setsid"]=Module["asm"]["setsid"]).apply(null,arguments)};var _setregid=Module["_setregid"]=function(){return(_setregid=Module["_setregid"]=Module["asm"]["setregid"]).apply(null,arguments)};var _setreuid=Module["_setreuid"]=function(){return(_setreuid=Module["_setreuid"]=Module["asm"]["setreuid"]).apply(null,arguments)};var _opendir=Module["_opendir"]=function(){return(_opendir=Module["_opendir"]=Module["asm"]["opendir"]).apply(null,arguments)};var _sysconf=Module["_sysconf"]=function(){return(_sysconf=Module["_sysconf"]=Module["asm"]["sysconf"]).apply(null,arguments)};var _dirfd=Module["_dirfd"]=function(){return(_dirfd=Module["_dirfd"]=Module["asm"]["dirfd"]).apply(null,arguments)};var _readdir=Module["_readdir"]=function(){return(_readdir=Module["_readdir"]=Module["asm"]["readdir"]).apply(null,arguments)};var _closedir=Module["_closedir"]=function(){return(_closedir=Module["_closedir"]=Module["asm"]["closedir"]).apply(null,arguments)};var _execv=Module["_execv"]=function(){return(_execv=Module["_execv"]=Module["asm"]["execv"]).apply(null,arguments)};var _zlibVersion=Module["_zlibVersion"]=function(){return(_zlibVersion=Module["_zlibVersion"]=Module["asm"]["zlibVersion"]).apply(null,arguments)};var _adler32=Module["_adler32"]=function(){return(_adler32=Module["_adler32"]=Module["asm"]["adler32"]).apply(null,arguments)};var _deflateInit_=Module["_deflateInit_"]=function(){return(_deflateInit_=Module["_deflateInit_"]=Module["asm"]["deflateInit_"]).apply(null,arguments)};var _deflateEnd=Module["_deflateEnd"]=function(){return(_deflateEnd=Module["_deflateEnd"]=Module["asm"]["deflateEnd"]).apply(null,arguments)};var _deflate=Module["_deflate"]=function(){return(_deflate=Module["_deflate"]=Module["asm"]["deflate"]).apply(null,arguments)};var _deflateInit2_=Module["_deflateInit2_"]=function(){return(_deflateInit2_=Module["_deflateInit2_"]=Module["asm"]["deflateInit2_"]).apply(null,arguments)};var _deflateSetDictionary=Module["_deflateSetDictionary"]=function(){return(_deflateSetDictionary=Module["_deflateSetDictionary"]=Module["asm"]["deflateSetDictionary"]).apply(null,arguments)};var _crc32=Module["_crc32"]=function(){return(_crc32=Module["_crc32"]=Module["asm"]["crc32"]).apply(null,arguments)};var _inflateInit2_=Module["_inflateInit2_"]=function(){return(_inflateInit2_=Module["_inflateInit2_"]=Module["asm"]["inflateInit2_"]).apply(null,arguments)};var _inflateEnd=Module["_inflateEnd"]=function(){return(_inflateEnd=Module["_inflateEnd"]=Module["asm"]["inflateEnd"]).apply(null,arguments)};var _inflate=Module["_inflate"]=function(){return(_inflate=Module["_inflate"]=Module["asm"]["inflate"]).apply(null,arguments)};var _inflateSetDictionary=Module["_inflateSetDictionary"]=function(){return(_inflateSetDictionary=Module["_inflateSetDictionary"]=Module["asm"]["inflateSetDictionary"]).apply(null,arguments)};var _PyExpat_XML_ParserCreate=Module["_PyExpat_XML_ParserCreate"]=function(){return(_PyExpat_XML_ParserCreate=Module["_PyExpat_XML_ParserCreate"]=Module["asm"]["PyExpat_XML_ParserCreate"]).apply(null,arguments)};var _PyExpat_XML_ParserCreate_MM=Module["_PyExpat_XML_ParserCreate_MM"]=function(){return(_PyExpat_XML_ParserCreate_MM=Module["_PyExpat_XML_ParserCreate_MM"]=Module["asm"]["PyExpat_XML_ParserCreate_MM"]).apply(null,arguments)};var _PyExpat_XML_ParserCreateNS=Module["_PyExpat_XML_ParserCreateNS"]=function(){return(_PyExpat_XML_ParserCreateNS=Module["_PyExpat_XML_ParserCreateNS"]=Module["asm"]["PyExpat_XML_ParserCreateNS"]).apply(null,arguments)};var _PyExpat_XML_ParserFree=Module["_PyExpat_XML_ParserFree"]=function(){return(_PyExpat_XML_ParserFree=Module["_PyExpat_XML_ParserFree"]=Module["asm"]["PyExpat_XML_ParserFree"]).apply(null,arguments)};var _PyExpat_XmlGetUtf8InternalEncodingNS=Module["_PyExpat_XmlGetUtf8InternalEncodingNS"]=function(){return(_PyExpat_XmlGetUtf8InternalEncodingNS=Module["_PyExpat_XmlGetUtf8InternalEncodingNS"]=Module["asm"]["PyExpat_XmlGetUtf8InternalEncodingNS"]).apply(null,arguments)};var _PyExpat_XmlGetUtf8InternalEncoding=Module["_PyExpat_XmlGetUtf8InternalEncoding"]=function(){return(_PyExpat_XmlGetUtf8InternalEncoding=Module["_PyExpat_XmlGetUtf8InternalEncoding"]=Module["asm"]["PyExpat_XmlGetUtf8InternalEncoding"]).apply(null,arguments)};var _PyExpat_XML_ParserReset=Module["_PyExpat_XML_ParserReset"]=function(){return(_PyExpat_XML_ParserReset=Module["_PyExpat_XML_ParserReset"]=Module["asm"]["PyExpat_XML_ParserReset"]).apply(null,arguments)};var _PyExpat_XmlPrologStateInit=Module["_PyExpat_XmlPrologStateInit"]=function(){return(_PyExpat_XmlPrologStateInit=Module["_PyExpat_XmlPrologStateInit"]=Module["asm"]["PyExpat_XmlPrologStateInit"]).apply(null,arguments)};var _PyExpat_XmlInitEncoding=Module["_PyExpat_XmlInitEncoding"]=function(){return(_PyExpat_XmlInitEncoding=Module["_PyExpat_XmlInitEncoding"]=Module["asm"]["PyExpat_XmlInitEncoding"]).apply(null,arguments)};var _PyExpat_XML_SetEncoding=Module["_PyExpat_XML_SetEncoding"]=function(){return(_PyExpat_XML_SetEncoding=Module["_PyExpat_XML_SetEncoding"]=Module["asm"]["PyExpat_XML_SetEncoding"]).apply(null,arguments)};var _PyExpat_XML_ExternalEntityParserCreate=Module["_PyExpat_XML_ExternalEntityParserCreate"]=function(){return(_PyExpat_XML_ExternalEntityParserCreate=Module["_PyExpat_XML_ExternalEntityParserCreate"]=Module["asm"]["PyExpat_XML_ExternalEntityParserCreate"]).apply(null,arguments)};var _PyExpat_XmlPrologStateInitExternalEntity=Module["_PyExpat_XmlPrologStateInitExternalEntity"]=function(){return(_PyExpat_XmlPrologStateInitExternalEntity=Module["_PyExpat_XmlPrologStateInitExternalEntity"]=Module["asm"]["PyExpat_XmlPrologStateInitExternalEntity"]).apply(null,arguments)};var _PyExpat_XmlInitEncodingNS=Module["_PyExpat_XmlInitEncodingNS"]=function(){return(_PyExpat_XmlInitEncodingNS=Module["_PyExpat_XmlInitEncodingNS"]=Module["asm"]["PyExpat_XmlInitEncodingNS"]).apply(null,arguments)};var _PyExpat_XML_UseParserAsHandlerArg=Module["_PyExpat_XML_UseParserAsHandlerArg"]=function(){return(_PyExpat_XML_UseParserAsHandlerArg=Module["_PyExpat_XML_UseParserAsHandlerArg"]=Module["asm"]["PyExpat_XML_UseParserAsHandlerArg"]).apply(null,arguments)};var _PyExpat_XML_UseForeignDTD=Module["_PyExpat_XML_UseForeignDTD"]=function(){return(_PyExpat_XML_UseForeignDTD=Module["_PyExpat_XML_UseForeignDTD"]=Module["asm"]["PyExpat_XML_UseForeignDTD"]).apply(null,arguments)};var _PyExpat_XML_SetReturnNSTriplet=Module["_PyExpat_XML_SetReturnNSTriplet"]=function(){return(_PyExpat_XML_SetReturnNSTriplet=Module["_PyExpat_XML_SetReturnNSTriplet"]=Module["asm"]["PyExpat_XML_SetReturnNSTriplet"]).apply(null,arguments)};var _PyExpat_XML_SetUserData=Module["_PyExpat_XML_SetUserData"]=function(){return(_PyExpat_XML_SetUserData=Module["_PyExpat_XML_SetUserData"]=Module["asm"]["PyExpat_XML_SetUserData"]).apply(null,arguments)};var _PyExpat_XML_SetBase=Module["_PyExpat_XML_SetBase"]=function(){return(_PyExpat_XML_SetBase=Module["_PyExpat_XML_SetBase"]=Module["asm"]["PyExpat_XML_SetBase"]).apply(null,arguments)};var _PyExpat_XML_GetBase=Module["_PyExpat_XML_GetBase"]=function(){return(_PyExpat_XML_GetBase=Module["_PyExpat_XML_GetBase"]=Module["asm"]["PyExpat_XML_GetBase"]).apply(null,arguments)};var _PyExpat_XML_GetSpecifiedAttributeCount=Module["_PyExpat_XML_GetSpecifiedAttributeCount"]=function(){return(_PyExpat_XML_GetSpecifiedAttributeCount=Module["_PyExpat_XML_GetSpecifiedAttributeCount"]=Module["asm"]["PyExpat_XML_GetSpecifiedAttributeCount"]).apply(null,arguments)};var _PyExpat_XML_GetIdAttributeIndex=Module["_PyExpat_XML_GetIdAttributeIndex"]=function(){return(_PyExpat_XML_GetIdAttributeIndex=Module["_PyExpat_XML_GetIdAttributeIndex"]=Module["asm"]["PyExpat_XML_GetIdAttributeIndex"]).apply(null,arguments)};var _PyExpat_XML_SetElementHandler=Module["_PyExpat_XML_SetElementHandler"]=function(){return(_PyExpat_XML_SetElementHandler=Module["_PyExpat_XML_SetElementHandler"]=Module["asm"]["PyExpat_XML_SetElementHandler"]).apply(null,arguments)};var _PyExpat_XML_SetStartElementHandler=Module["_PyExpat_XML_SetStartElementHandler"]=function(){return(_PyExpat_XML_SetStartElementHandler=Module["_PyExpat_XML_SetStartElementHandler"]=Module["asm"]["PyExpat_XML_SetStartElementHandler"]).apply(null,arguments)};var _PyExpat_XML_SetEndElementHandler=Module["_PyExpat_XML_SetEndElementHandler"]=function(){return(_PyExpat_XML_SetEndElementHandler=Module["_PyExpat_XML_SetEndElementHandler"]=Module["asm"]["PyExpat_XML_SetEndElementHandler"]).apply(null,arguments)};var _PyExpat_XML_SetCharacterDataHandler=Module["_PyExpat_XML_SetCharacterDataHandler"]=function(){return(_PyExpat_XML_SetCharacterDataHandler=Module["_PyExpat_XML_SetCharacterDataHandler"]=Module["asm"]["PyExpat_XML_SetCharacterDataHandler"]).apply(null,arguments)};var _PyExpat_XML_SetProcessingInstructionHandler=Module["_PyExpat_XML_SetProcessingInstructionHandler"]=function(){return(_PyExpat_XML_SetProcessingInstructionHandler=Module["_PyExpat_XML_SetProcessingInstructionHandler"]=Module["asm"]["PyExpat_XML_SetProcessingInstructionHandler"]).apply(null,arguments)};var _PyExpat_XML_SetCommentHandler=Module["_PyExpat_XML_SetCommentHandler"]=function(){return(_PyExpat_XML_SetCommentHandler=Module["_PyExpat_XML_SetCommentHandler"]=Module["asm"]["PyExpat_XML_SetCommentHandler"]).apply(null,arguments)};var _PyExpat_XML_SetCdataSectionHandler=Module["_PyExpat_XML_SetCdataSectionHandler"]=function(){return(_PyExpat_XML_SetCdataSectionHandler=Module["_PyExpat_XML_SetCdataSectionHandler"]=Module["asm"]["PyExpat_XML_SetCdataSectionHandler"]).apply(null,arguments)};var _PyExpat_XML_SetStartCdataSectionHandler=Module["_PyExpat_XML_SetStartCdataSectionHandler"]=function(){return(_PyExpat_XML_SetStartCdataSectionHandler=Module["_PyExpat_XML_SetStartCdataSectionHandler"]=Module["asm"]["PyExpat_XML_SetStartCdataSectionHandler"]).apply(null,arguments)};var _PyExpat_XML_SetEndCdataSectionHandler=Module["_PyExpat_XML_SetEndCdataSectionHandler"]=function(){return(_PyExpat_XML_SetEndCdataSectionHandler=Module["_PyExpat_XML_SetEndCdataSectionHandler"]=Module["asm"]["PyExpat_XML_SetEndCdataSectionHandler"]).apply(null,arguments)};var _PyExpat_XML_SetDefaultHandler=Module["_PyExpat_XML_SetDefaultHandler"]=function(){return(_PyExpat_XML_SetDefaultHandler=Module["_PyExpat_XML_SetDefaultHandler"]=Module["asm"]["PyExpat_XML_SetDefaultHandler"]).apply(null,arguments)};var _PyExpat_XML_SetDefaultHandlerExpand=Module["_PyExpat_XML_SetDefaultHandlerExpand"]=function(){return(_PyExpat_XML_SetDefaultHandlerExpand=Module["_PyExpat_XML_SetDefaultHandlerExpand"]=Module["asm"]["PyExpat_XML_SetDefaultHandlerExpand"]).apply(null,arguments)};var _PyExpat_XML_SetDoctypeDeclHandler=Module["_PyExpat_XML_SetDoctypeDeclHandler"]=function(){return(_PyExpat_XML_SetDoctypeDeclHandler=Module["_PyExpat_XML_SetDoctypeDeclHandler"]=Module["asm"]["PyExpat_XML_SetDoctypeDeclHandler"]).apply(null,arguments)};var _PyExpat_XML_SetStartDoctypeDeclHandler=Module["_PyExpat_XML_SetStartDoctypeDeclHandler"]=function(){return(_PyExpat_XML_SetStartDoctypeDeclHandler=Module["_PyExpat_XML_SetStartDoctypeDeclHandler"]=Module["asm"]["PyExpat_XML_SetStartDoctypeDeclHandler"]).apply(null,arguments)};var _PyExpat_XML_SetEndDoctypeDeclHandler=Module["_PyExpat_XML_SetEndDoctypeDeclHandler"]=function(){return(_PyExpat_XML_SetEndDoctypeDeclHandler=Module["_PyExpat_XML_SetEndDoctypeDeclHandler"]=Module["asm"]["PyExpat_XML_SetEndDoctypeDeclHandler"]).apply(null,arguments)};var _PyExpat_XML_SetUnparsedEntityDeclHandler=Module["_PyExpat_XML_SetUnparsedEntityDeclHandler"]=function(){return(_PyExpat_XML_SetUnparsedEntityDeclHandler=Module["_PyExpat_XML_SetUnparsedEntityDeclHandler"]=Module["asm"]["PyExpat_XML_SetUnparsedEntityDeclHandler"]).apply(null,arguments)};var _PyExpat_XML_SetNotationDeclHandler=Module["_PyExpat_XML_SetNotationDeclHandler"]=function(){return(_PyExpat_XML_SetNotationDeclHandler=Module["_PyExpat_XML_SetNotationDeclHandler"]=Module["asm"]["PyExpat_XML_SetNotationDeclHandler"]).apply(null,arguments)};var _PyExpat_XML_SetNamespaceDeclHandler=Module["_PyExpat_XML_SetNamespaceDeclHandler"]=function(){return(_PyExpat_XML_SetNamespaceDeclHandler=Module["_PyExpat_XML_SetNamespaceDeclHandler"]=Module["asm"]["PyExpat_XML_SetNamespaceDeclHandler"]).apply(null,arguments)};var _PyExpat_XML_SetStartNamespaceDeclHandler=Module["_PyExpat_XML_SetStartNamespaceDeclHandler"]=function(){return(_PyExpat_XML_SetStartNamespaceDeclHandler=Module["_PyExpat_XML_SetStartNamespaceDeclHandler"]=Module["asm"]["PyExpat_XML_SetStartNamespaceDeclHandler"]).apply(null,arguments)};var _PyExpat_XML_SetEndNamespaceDeclHandler=Module["_PyExpat_XML_SetEndNamespaceDeclHandler"]=function(){return(_PyExpat_XML_SetEndNamespaceDeclHandler=Module["_PyExpat_XML_SetEndNamespaceDeclHandler"]=Module["asm"]["PyExpat_XML_SetEndNamespaceDeclHandler"]).apply(null,arguments)};var _PyExpat_XML_SetNotStandaloneHandler=Module["_PyExpat_XML_SetNotStandaloneHandler"]=function(){return(_PyExpat_XML_SetNotStandaloneHandler=Module["_PyExpat_XML_SetNotStandaloneHandler"]=Module["asm"]["PyExpat_XML_SetNotStandaloneHandler"]).apply(null,arguments)};var _PyExpat_XML_SetExternalEntityRefHandler=Module["_PyExpat_XML_SetExternalEntityRefHandler"]=function(){return(_PyExpat_XML_SetExternalEntityRefHandler=Module["_PyExpat_XML_SetExternalEntityRefHandler"]=Module["asm"]["PyExpat_XML_SetExternalEntityRefHandler"]).apply(null,arguments)};var _PyExpat_XML_SetExternalEntityRefHandlerArg=Module["_PyExpat_XML_SetExternalEntityRefHandlerArg"]=function(){return(_PyExpat_XML_SetExternalEntityRefHandlerArg=Module["_PyExpat_XML_SetExternalEntityRefHandlerArg"]=Module["asm"]["PyExpat_XML_SetExternalEntityRefHandlerArg"]).apply(null,arguments)};var _PyExpat_XML_SetSkippedEntityHandler=Module["_PyExpat_XML_SetSkippedEntityHandler"]=function(){return(_PyExpat_XML_SetSkippedEntityHandler=Module["_PyExpat_XML_SetSkippedEntityHandler"]=Module["asm"]["PyExpat_XML_SetSkippedEntityHandler"]).apply(null,arguments)};var _PyExpat_XML_SetUnknownEncodingHandler=Module["_PyExpat_XML_SetUnknownEncodingHandler"]=function(){return(_PyExpat_XML_SetUnknownEncodingHandler=Module["_PyExpat_XML_SetUnknownEncodingHandler"]=Module["asm"]["PyExpat_XML_SetUnknownEncodingHandler"]).apply(null,arguments)};var _PyExpat_XML_SetElementDeclHandler=Module["_PyExpat_XML_SetElementDeclHandler"]=function(){return(_PyExpat_XML_SetElementDeclHandler=Module["_PyExpat_XML_SetElementDeclHandler"]=Module["asm"]["PyExpat_XML_SetElementDeclHandler"]).apply(null,arguments)};var _PyExpat_XML_SetAttlistDeclHandler=Module["_PyExpat_XML_SetAttlistDeclHandler"]=function(){return(_PyExpat_XML_SetAttlistDeclHandler=Module["_PyExpat_XML_SetAttlistDeclHandler"]=Module["asm"]["PyExpat_XML_SetAttlistDeclHandler"]).apply(null,arguments)};var _PyExpat_XML_SetEntityDeclHandler=Module["_PyExpat_XML_SetEntityDeclHandler"]=function(){return(_PyExpat_XML_SetEntityDeclHandler=Module["_PyExpat_XML_SetEntityDeclHandler"]=Module["asm"]["PyExpat_XML_SetEntityDeclHandler"]).apply(null,arguments)};var _PyExpat_XML_SetXmlDeclHandler=Module["_PyExpat_XML_SetXmlDeclHandler"]=function(){return(_PyExpat_XML_SetXmlDeclHandler=Module["_PyExpat_XML_SetXmlDeclHandler"]=Module["asm"]["PyExpat_XML_SetXmlDeclHandler"]).apply(null,arguments)};var _PyExpat_XML_SetParamEntityParsing=Module["_PyExpat_XML_SetParamEntityParsing"]=function(){return(_PyExpat_XML_SetParamEntityParsing=Module["_PyExpat_XML_SetParamEntityParsing"]=Module["asm"]["PyExpat_XML_SetParamEntityParsing"]).apply(null,arguments)};var _PyExpat_XML_SetHashSalt=Module["_PyExpat_XML_SetHashSalt"]=function(){return(_PyExpat_XML_SetHashSalt=Module["_PyExpat_XML_SetHashSalt"]=Module["asm"]["PyExpat_XML_SetHashSalt"]).apply(null,arguments)};var _PyExpat_XML_Parse=Module["_PyExpat_XML_Parse"]=function(){return(_PyExpat_XML_Parse=Module["_PyExpat_XML_Parse"]=Module["asm"]["PyExpat_XML_Parse"]).apply(null,arguments)};var _PyExpat_XML_GetBuffer=Module["_PyExpat_XML_GetBuffer"]=function(){return(_PyExpat_XML_GetBuffer=Module["_PyExpat_XML_GetBuffer"]=Module["asm"]["PyExpat_XML_GetBuffer"]).apply(null,arguments)};var _PyExpat_XML_ParseBuffer=Module["_PyExpat_XML_ParseBuffer"]=function(){return(_PyExpat_XML_ParseBuffer=Module["_PyExpat_XML_ParseBuffer"]=Module["asm"]["PyExpat_XML_ParseBuffer"]).apply(null,arguments)};var _PyExpat_XML_StopParser=Module["_PyExpat_XML_StopParser"]=function(){return(_PyExpat_XML_StopParser=Module["_PyExpat_XML_StopParser"]=Module["asm"]["PyExpat_XML_StopParser"]).apply(null,arguments)};var _PyExpat_XML_ResumeParser=Module["_PyExpat_XML_ResumeParser"]=function(){return(_PyExpat_XML_ResumeParser=Module["_PyExpat_XML_ResumeParser"]=Module["asm"]["PyExpat_XML_ResumeParser"]).apply(null,arguments)};var _PyExpat_XML_GetParsingStatus=Module["_PyExpat_XML_GetParsingStatus"]=function(){return(_PyExpat_XML_GetParsingStatus=Module["_PyExpat_XML_GetParsingStatus"]=Module["asm"]["PyExpat_XML_GetParsingStatus"]).apply(null,arguments)};var _PyExpat_XML_GetErrorCode=Module["_PyExpat_XML_GetErrorCode"]=function(){return(_PyExpat_XML_GetErrorCode=Module["_PyExpat_XML_GetErrorCode"]=Module["asm"]["PyExpat_XML_GetErrorCode"]).apply(null,arguments)};var _PyExpat_XML_GetCurrentByteIndex=Module["_PyExpat_XML_GetCurrentByteIndex"]=function(){return(_PyExpat_XML_GetCurrentByteIndex=Module["_PyExpat_XML_GetCurrentByteIndex"]=Module["asm"]["PyExpat_XML_GetCurrentByteIndex"]).apply(null,arguments)};var _PyExpat_XML_GetCurrentByteCount=Module["_PyExpat_XML_GetCurrentByteCount"]=function(){return(_PyExpat_XML_GetCurrentByteCount=Module["_PyExpat_XML_GetCurrentByteCount"]=Module["asm"]["PyExpat_XML_GetCurrentByteCount"]).apply(null,arguments)};var _PyExpat_XML_GetInputContext=Module["_PyExpat_XML_GetInputContext"]=function(){return(_PyExpat_XML_GetInputContext=Module["_PyExpat_XML_GetInputContext"]=Module["asm"]["PyExpat_XML_GetInputContext"]).apply(null,arguments)};var _PyExpat_XML_GetCurrentLineNumber=Module["_PyExpat_XML_GetCurrentLineNumber"]=function(){return(_PyExpat_XML_GetCurrentLineNumber=Module["_PyExpat_XML_GetCurrentLineNumber"]=Module["asm"]["PyExpat_XML_GetCurrentLineNumber"]).apply(null,arguments)};var _PyExpat_XML_GetCurrentColumnNumber=Module["_PyExpat_XML_GetCurrentColumnNumber"]=function(){return(_PyExpat_XML_GetCurrentColumnNumber=Module["_PyExpat_XML_GetCurrentColumnNumber"]=Module["asm"]["PyExpat_XML_GetCurrentColumnNumber"]).apply(null,arguments)};var _PyExpat_XML_FreeContentModel=Module["_PyExpat_XML_FreeContentModel"]=function(){return(_PyExpat_XML_FreeContentModel=Module["_PyExpat_XML_FreeContentModel"]=Module["asm"]["PyExpat_XML_FreeContentModel"]).apply(null,arguments)};var _PyExpat_XML_MemMalloc=Module["_PyExpat_XML_MemMalloc"]=function(){return(_PyExpat_XML_MemMalloc=Module["_PyExpat_XML_MemMalloc"]=Module["asm"]["PyExpat_XML_MemMalloc"]).apply(null,arguments)};var _PyExpat_XML_MemRealloc=Module["_PyExpat_XML_MemRealloc"]=function(){return(_PyExpat_XML_MemRealloc=Module["_PyExpat_XML_MemRealloc"]=Module["asm"]["PyExpat_XML_MemRealloc"]).apply(null,arguments)};var _PyExpat_XML_MemFree=Module["_PyExpat_XML_MemFree"]=function(){return(_PyExpat_XML_MemFree=Module["_PyExpat_XML_MemFree"]=Module["asm"]["PyExpat_XML_MemFree"]).apply(null,arguments)};var _PyExpat_XML_DefaultCurrent=Module["_PyExpat_XML_DefaultCurrent"]=function(){return(_PyExpat_XML_DefaultCurrent=Module["_PyExpat_XML_DefaultCurrent"]=Module["asm"]["PyExpat_XML_DefaultCurrent"]).apply(null,arguments)};var _PyExpat_XML_ErrorString=Module["_PyExpat_XML_ErrorString"]=function(){return(_PyExpat_XML_ErrorString=Module["_PyExpat_XML_ErrorString"]=Module["asm"]["PyExpat_XML_ErrorString"]).apply(null,arguments)};var _PyExpat_XML_ExpatVersion=Module["_PyExpat_XML_ExpatVersion"]=function(){return(_PyExpat_XML_ExpatVersion=Module["_PyExpat_XML_ExpatVersion"]=Module["asm"]["PyExpat_XML_ExpatVersion"]).apply(null,arguments)};var _PyExpat_XML_ExpatVersionInfo=Module["_PyExpat_XML_ExpatVersionInfo"]=function(){return(_PyExpat_XML_ExpatVersionInfo=Module["_PyExpat_XML_ExpatVersionInfo"]=Module["asm"]["PyExpat_XML_ExpatVersionInfo"]).apply(null,arguments)};var _PyExpat_XML_GetFeatureList=Module["_PyExpat_XML_GetFeatureList"]=function(){return(_PyExpat_XML_GetFeatureList=Module["_PyExpat_XML_GetFeatureList"]=Module["asm"]["PyExpat_XML_GetFeatureList"]).apply(null,arguments)};var _PyExpat_XmlSizeOfUnknownEncoding=Module["_PyExpat_XmlSizeOfUnknownEncoding"]=function(){return(_PyExpat_XmlSizeOfUnknownEncoding=Module["_PyExpat_XmlSizeOfUnknownEncoding"]=Module["asm"]["PyExpat_XmlSizeOfUnknownEncoding"]).apply(null,arguments)};var _PyExpat_XmlInitUnknownEncoding=Module["_PyExpat_XmlInitUnknownEncoding"]=function(){return(_PyExpat_XmlInitUnknownEncoding=Module["_PyExpat_XmlInitUnknownEncoding"]=Module["asm"]["PyExpat_XmlInitUnknownEncoding"]).apply(null,arguments)};var _PyExpat_XmlInitUnknownEncodingNS=Module["_PyExpat_XmlInitUnknownEncodingNS"]=function(){return(_PyExpat_XmlInitUnknownEncodingNS=Module["_PyExpat_XmlInitUnknownEncodingNS"]=Module["asm"]["PyExpat_XmlInitUnknownEncodingNS"]).apply(null,arguments)};var _PyExpat_XmlParseXmlDecl=Module["_PyExpat_XmlParseXmlDecl"]=function(){return(_PyExpat_XmlParseXmlDecl=Module["_PyExpat_XmlParseXmlDecl"]=Module["asm"]["PyExpat_XmlParseXmlDecl"]).apply(null,arguments)};var _PyExpat_XmlParseXmlDeclNS=Module["_PyExpat_XmlParseXmlDeclNS"]=function(){return(_PyExpat_XmlParseXmlDeclNS=Module["_PyExpat_XmlParseXmlDeclNS"]=Module["asm"]["PyExpat_XmlParseXmlDeclNS"]).apply(null,arguments)};var _PyExpat_XmlUtf8Encode=Module["_PyExpat_XmlUtf8Encode"]=function(){return(_PyExpat_XmlUtf8Encode=Module["_PyExpat_XmlUtf8Encode"]=Module["asm"]["PyExpat_XmlUtf8Encode"]).apply(null,arguments)};var __INTERNAL_trim_to_complete_utf8_characters=Module["__INTERNAL_trim_to_complete_utf8_characters"]=function(){return(__INTERNAL_trim_to_complete_utf8_characters=Module["__INTERNAL_trim_to_complete_utf8_characters"]=Module["asm"]["_INTERNAL_trim_to_complete_utf8_characters"]).apply(null,arguments)};var _PyExpat_XmlUtf16Encode=Module["_PyExpat_XmlUtf16Encode"]=function(){return(_PyExpat_XmlUtf16Encode=Module["_PyExpat_XmlUtf16Encode"]=Module["asm"]["PyExpat_XmlUtf16Encode"]).apply(null,arguments)};var _PyExpat_XmlGetUtf16InternalEncoding=Module["_PyExpat_XmlGetUtf16InternalEncoding"]=function(){return(_PyExpat_XmlGetUtf16InternalEncoding=Module["_PyExpat_XmlGetUtf16InternalEncoding"]=Module["asm"]["PyExpat_XmlGetUtf16InternalEncoding"]).apply(null,arguments)};var _PyExpat_XmlGetUtf16InternalEncodingNS=Module["_PyExpat_XmlGetUtf16InternalEncodingNS"]=function(){return(_PyExpat_XmlGetUtf16InternalEncodingNS=Module["_PyExpat_XmlGetUtf16InternalEncodingNS"]=Module["asm"]["PyExpat_XmlGetUtf16InternalEncodingNS"]).apply(null,arguments)};var __PySHA3_Keccak_HashInitialize=Module["__PySHA3_Keccak_HashInitialize"]=function(){return(__PySHA3_Keccak_HashInitialize=Module["__PySHA3_Keccak_HashInitialize"]=Module["asm"]["_PySHA3_Keccak_HashInitialize"]).apply(null,arguments)};var __PySHA3_KeccakWidth1600_SpongeInitialize=Module["__PySHA3_KeccakWidth1600_SpongeInitialize"]=function(){return(__PySHA3_KeccakWidth1600_SpongeInitialize=Module["__PySHA3_KeccakWidth1600_SpongeInitialize"]=Module["asm"]["_PySHA3_KeccakWidth1600_SpongeInitialize"]).apply(null,arguments)};var __PySHA3_Keccak_HashUpdate=Module["__PySHA3_Keccak_HashUpdate"]=function(){return(__PySHA3_Keccak_HashUpdate=Module["__PySHA3_Keccak_HashUpdate"]=Module["asm"]["_PySHA3_Keccak_HashUpdate"]).apply(null,arguments)};var __PySHA3_KeccakWidth1600_SpongeAbsorb=Module["__PySHA3_KeccakWidth1600_SpongeAbsorb"]=function(){return(__PySHA3_KeccakWidth1600_SpongeAbsorb=Module["__PySHA3_KeccakWidth1600_SpongeAbsorb"]=Module["asm"]["_PySHA3_KeccakWidth1600_SpongeAbsorb"]).apply(null,arguments)};var __PySHA3_KeccakP1600_AddBytes=Module["__PySHA3_KeccakP1600_AddBytes"]=function(){return(__PySHA3_KeccakP1600_AddBytes=Module["__PySHA3_KeccakP1600_AddBytes"]=Module["asm"]["_PySHA3_KeccakP1600_AddBytes"]).apply(null,arguments)};var __PySHA3_KeccakP1600_Permute_Nrounds=Module["__PySHA3_KeccakP1600_Permute_Nrounds"]=function(){return(__PySHA3_KeccakP1600_Permute_Nrounds=Module["__PySHA3_KeccakP1600_Permute_Nrounds"]=Module["asm"]["_PySHA3_KeccakP1600_Permute_Nrounds"]).apply(null,arguments)};var __PySHA3_Keccak_HashFinal=Module["__PySHA3_Keccak_HashFinal"]=function(){return(__PySHA3_Keccak_HashFinal=Module["__PySHA3_Keccak_HashFinal"]=Module["asm"]["_PySHA3_Keccak_HashFinal"]).apply(null,arguments)};var __PySHA3_KeccakP1600_AddByte=Module["__PySHA3_KeccakP1600_AddByte"]=function(){return(__PySHA3_KeccakP1600_AddByte=Module["__PySHA3_KeccakP1600_AddByte"]=Module["asm"]["_PySHA3_KeccakP1600_AddByte"]).apply(null,arguments)};var __PySHA3_KeccakWidth1600_SpongeSqueeze=Module["__PySHA3_KeccakWidth1600_SpongeSqueeze"]=function(){return(__PySHA3_KeccakWidth1600_SpongeSqueeze=Module["__PySHA3_KeccakWidth1600_SpongeSqueeze"]=Module["asm"]["_PySHA3_KeccakWidth1600_SpongeSqueeze"]).apply(null,arguments)};var __PySHA3_KeccakWidth1600_SpongeAbsorbLastFewBits=Module["__PySHA3_KeccakWidth1600_SpongeAbsorbLastFewBits"]=function(){return(__PySHA3_KeccakWidth1600_SpongeAbsorbLastFewBits=Module["__PySHA3_KeccakWidth1600_SpongeAbsorbLastFewBits"]=Module["asm"]["_PySHA3_KeccakWidth1600_SpongeAbsorbLastFewBits"]).apply(null,arguments)};var __PySHA3_KeccakP1600_ExtractLanes=Module["__PySHA3_KeccakP1600_ExtractLanes"]=function(){return(__PySHA3_KeccakP1600_ExtractLanes=Module["__PySHA3_KeccakP1600_ExtractLanes"]=Module["asm"]["_PySHA3_KeccakP1600_ExtractLanes"]).apply(null,arguments)};var __PySHA3_KeccakP1600_ExtractBytes=Module["__PySHA3_KeccakP1600_ExtractBytes"]=function(){return(__PySHA3_KeccakP1600_ExtractBytes=Module["__PySHA3_KeccakP1600_ExtractBytes"]=Module["asm"]["_PySHA3_KeccakP1600_ExtractBytes"]).apply(null,arguments)};var __PySHA3_Keccak_HashSqueeze=Module["__PySHA3_Keccak_HashSqueeze"]=function(){return(__PySHA3_Keccak_HashSqueeze=Module["__PySHA3_Keccak_HashSqueeze"]=Module["asm"]["_PySHA3_Keccak_HashSqueeze"]).apply(null,arguments)};var __PySHA3_KeccakWidth1600_Sponge=Module["__PySHA3_KeccakWidth1600_Sponge"]=function(){return(__PySHA3_KeccakWidth1600_Sponge=Module["__PySHA3_KeccakWidth1600_Sponge"]=Module["asm"]["_PySHA3_KeccakWidth1600_Sponge"]).apply(null,arguments)};var __PySHA3_KeccakP1600_Initialize=Module["__PySHA3_KeccakP1600_Initialize"]=function(){return(__PySHA3_KeccakP1600_Initialize=Module["__PySHA3_KeccakP1600_Initialize"]=Module["asm"]["_PySHA3_KeccakP1600_Initialize"]).apply(null,arguments)};var __PySHA3_KeccakP1600_AddLanes=Module["__PySHA3_KeccakP1600_AddLanes"]=function(){return(__PySHA3_KeccakP1600_AddLanes=Module["__PySHA3_KeccakP1600_AddLanes"]=Module["asm"]["_PySHA3_KeccakP1600_AddLanes"]).apply(null,arguments)};var __PySHA3_KeccakP1600_Permute_24rounds=Module["__PySHA3_KeccakP1600_Permute_24rounds"]=function(){return(__PySHA3_KeccakP1600_Permute_24rounds=Module["__PySHA3_KeccakP1600_Permute_24rounds"]=Module["asm"]["_PySHA3_KeccakP1600_Permute_24rounds"]).apply(null,arguments)};var __PySHA3_KeccakP1600_SetBytesInLaneToZero=Module["__PySHA3_KeccakP1600_SetBytesInLaneToZero"]=function(){return(__PySHA3_KeccakP1600_SetBytesInLaneToZero=Module["__PySHA3_KeccakP1600_SetBytesInLaneToZero"]=Module["asm"]["_PySHA3_KeccakP1600_SetBytesInLaneToZero"]).apply(null,arguments)};var __PySHA3_KeccakP1600_AddBytesInLane=Module["__PySHA3_KeccakP1600_AddBytesInLane"]=function(){return(__PySHA3_KeccakP1600_AddBytesInLane=Module["__PySHA3_KeccakP1600_AddBytesInLane"]=Module["asm"]["_PySHA3_KeccakP1600_AddBytesInLane"]).apply(null,arguments)};var __PySHA3_KeccakP1600_OverwriteBytesInLane=Module["__PySHA3_KeccakP1600_OverwriteBytesInLane"]=function(){return(__PySHA3_KeccakP1600_OverwriteBytesInLane=Module["__PySHA3_KeccakP1600_OverwriteBytesInLane"]=Module["asm"]["_PySHA3_KeccakP1600_OverwriteBytesInLane"]).apply(null,arguments)};var __PySHA3_KeccakP1600_OverwriteLanes=Module["__PySHA3_KeccakP1600_OverwriteLanes"]=function(){return(__PySHA3_KeccakP1600_OverwriteLanes=Module["__PySHA3_KeccakP1600_OverwriteLanes"]=Module["asm"]["_PySHA3_KeccakP1600_OverwriteLanes"]).apply(null,arguments)};var __PySHA3_KeccakP1600_OverwriteBytes=Module["__PySHA3_KeccakP1600_OverwriteBytes"]=function(){return(__PySHA3_KeccakP1600_OverwriteBytes=Module["__PySHA3_KeccakP1600_OverwriteBytes"]=Module["asm"]["_PySHA3_KeccakP1600_OverwriteBytes"]).apply(null,arguments)};var __PySHA3_KeccakP1600_OverwriteWithZeroes=Module["__PySHA3_KeccakP1600_OverwriteWithZeroes"]=function(){return(__PySHA3_KeccakP1600_OverwriteWithZeroes=Module["__PySHA3_KeccakP1600_OverwriteWithZeroes"]=Module["asm"]["_PySHA3_KeccakP1600_OverwriteWithZeroes"]).apply(null,arguments)};var __PySHA3_KeccakP1600_ExtractBytesInLane=Module["__PySHA3_KeccakP1600_ExtractBytesInLane"]=function(){return(__PySHA3_KeccakP1600_ExtractBytesInLane=Module["__PySHA3_KeccakP1600_ExtractBytesInLane"]=Module["asm"]["_PySHA3_KeccakP1600_ExtractBytesInLane"]).apply(null,arguments)};var __PySHA3_KeccakP1600_ExtractAndAddBytesInLane=Module["__PySHA3_KeccakP1600_ExtractAndAddBytesInLane"]=function(){return(__PySHA3_KeccakP1600_ExtractAndAddBytesInLane=Module["__PySHA3_KeccakP1600_ExtractAndAddBytesInLane"]=Module["asm"]["_PySHA3_KeccakP1600_ExtractAndAddBytesInLane"]).apply(null,arguments)};var __PySHA3_KeccakP1600_ExtractAndAddLanes=Module["__PySHA3_KeccakP1600_ExtractAndAddLanes"]=function(){return(__PySHA3_KeccakP1600_ExtractAndAddLanes=Module["__PySHA3_KeccakP1600_ExtractAndAddLanes"]=Module["asm"]["_PySHA3_KeccakP1600_ExtractAndAddLanes"]).apply(null,arguments)};var __PySHA3_KeccakP1600_ExtractAndAddBytes=Module["__PySHA3_KeccakP1600_ExtractAndAddBytes"]=function(){return(__PySHA3_KeccakP1600_ExtractAndAddBytes=Module["__PySHA3_KeccakP1600_ExtractAndAddBytes"]=Module["asm"]["_PySHA3_KeccakP1600_ExtractAndAddBytes"]).apply(null,arguments)};var __PySHA3_KeccakP1600_Permute_12rounds=Module["__PySHA3_KeccakP1600_Permute_12rounds"]=function(){return(__PySHA3_KeccakP1600_Permute_12rounds=Module["__PySHA3_KeccakP1600_Permute_12rounds"]=Module["asm"]["_PySHA3_KeccakP1600_Permute_12rounds"]).apply(null,arguments)};var _PyBlake2_blake2b_init_param=Module["_PyBlake2_blake2b_init_param"]=function(){return(_PyBlake2_blake2b_init_param=Module["_PyBlake2_blake2b_init_param"]=Module["asm"]["PyBlake2_blake2b_init_param"]).apply(null,arguments)};var _PyBlake2_blake2b_init=Module["_PyBlake2_blake2b_init"]=function(){return(_PyBlake2_blake2b_init=Module["_PyBlake2_blake2b_init"]=Module["asm"]["PyBlake2_blake2b_init"]).apply(null,arguments)};var _PyBlake2_blake2b_init_key=Module["_PyBlake2_blake2b_init_key"]=function(){return(_PyBlake2_blake2b_init_key=Module["_PyBlake2_blake2b_init_key"]=Module["asm"]["PyBlake2_blake2b_init_key"]).apply(null,arguments)};var _PyBlake2_blake2b_update=Module["_PyBlake2_blake2b_update"]=function(){return(_PyBlake2_blake2b_update=Module["_PyBlake2_blake2b_update"]=Module["asm"]["PyBlake2_blake2b_update"]).apply(null,arguments)};var _PyBlake2_blake2b_final=Module["_PyBlake2_blake2b_final"]=function(){return(_PyBlake2_blake2b_final=Module["_PyBlake2_blake2b_final"]=Module["asm"]["PyBlake2_blake2b_final"]).apply(null,arguments)};var _PyBlake2_blake2b=Module["_PyBlake2_blake2b"]=function(){return(_PyBlake2_blake2b=Module["_PyBlake2_blake2b"]=Module["asm"]["PyBlake2_blake2b"]).apply(null,arguments)};var _PyBlake2_blake2s_init_param=Module["_PyBlake2_blake2s_init_param"]=function(){return(_PyBlake2_blake2s_init_param=Module["_PyBlake2_blake2s_init_param"]=Module["asm"]["PyBlake2_blake2s_init_param"]).apply(null,arguments)};var _PyBlake2_blake2s_init=Module["_PyBlake2_blake2s_init"]=function(){return(_PyBlake2_blake2s_init=Module["_PyBlake2_blake2s_init"]=Module["asm"]["PyBlake2_blake2s_init"]).apply(null,arguments)};var _PyBlake2_blake2s_init_key=Module["_PyBlake2_blake2s_init_key"]=function(){return(_PyBlake2_blake2s_init_key=Module["_PyBlake2_blake2s_init_key"]=Module["asm"]["PyBlake2_blake2s_init_key"]).apply(null,arguments)};var _PyBlake2_blake2s_update=Module["_PyBlake2_blake2s_update"]=function(){return(_PyBlake2_blake2s_update=Module["_PyBlake2_blake2s_update"]=Module["asm"]["PyBlake2_blake2s_update"]).apply(null,arguments)};var _PyBlake2_blake2s_final=Module["_PyBlake2_blake2s_final"]=function(){return(_PyBlake2_blake2s_final=Module["_PyBlake2_blake2s_final"]=Module["asm"]["PyBlake2_blake2s_final"]).apply(null,arguments)};var _PyBlake2_blake2s=Module["_PyBlake2_blake2s"]=function(){return(_PyBlake2_blake2s=Module["_PyBlake2_blake2s"]=Module["asm"]["PyBlake2_blake2s"]).apply(null,arguments)};var _pysqlite_new_node=Module["_pysqlite_new_node"]=function(){return(_pysqlite_new_node=Module["_pysqlite_new_node"]=Module["asm"]["pysqlite_new_node"]).apply(null,arguments)};var _pysqlite_node_dealloc=Module["_pysqlite_node_dealloc"]=function(){return(_pysqlite_node_dealloc=Module["_pysqlite_node_dealloc"]=Module["asm"]["pysqlite_node_dealloc"]).apply(null,arguments)};var _pysqlite_cache_init=Module["_pysqlite_cache_init"]=function(){return(_pysqlite_cache_init=Module["_pysqlite_cache_init"]=Module["asm"]["pysqlite_cache_init"]).apply(null,arguments)};var _pysqlite_cache_dealloc=Module["_pysqlite_cache_dealloc"]=function(){return(_pysqlite_cache_dealloc=Module["_pysqlite_cache_dealloc"]=Module["asm"]["pysqlite_cache_dealloc"]).apply(null,arguments)};var _pysqlite_cache_get=Module["_pysqlite_cache_get"]=function(){return(_pysqlite_cache_get=Module["_pysqlite_cache_get"]=Module["asm"]["pysqlite_cache_get"]).apply(null,arguments)};var _pysqlite_cache_display=Module["_pysqlite_cache_display"]=function(){return(_pysqlite_cache_display=Module["_pysqlite_cache_display"]=Module["asm"]["pysqlite_cache_display"]).apply(null,arguments)};var _pysqlite_cache_setup_types=Module["_pysqlite_cache_setup_types"]=function(){return(_pysqlite_cache_setup_types=Module["_pysqlite_cache_setup_types"]=Module["asm"]["pysqlite_cache_setup_types"]).apply(null,arguments)};var _pysqlite_connection_init=Module["_pysqlite_connection_init"]=function(){return(_pysqlite_connection_init=Module["_pysqlite_connection_init"]=Module["asm"]["pysqlite_connection_init"]).apply(null,arguments)};var _sqlite3_open_v2=Module["_sqlite3_open_v2"]=function(){return(_sqlite3_open_v2=Module["_sqlite3_open_v2"]=Module["asm"]["sqlite3_open_v2"]).apply(null,arguments)};var __pysqlite_seterror=Module["__pysqlite_seterror"]=function(){return(__pysqlite_seterror=Module["__pysqlite_seterror"]=Module["asm"]["_pysqlite_seterror"]).apply(null,arguments)};var _sqlite3_busy_timeout=Module["_sqlite3_busy_timeout"]=function(){return(_sqlite3_busy_timeout=Module["_sqlite3_busy_timeout"]=Module["asm"]["sqlite3_busy_timeout"]).apply(null,arguments)};var _sqlite3_libversion_number=Module["_sqlite3_libversion_number"]=function(){return(_sqlite3_libversion_number=Module["_sqlite3_libversion_number"]=Module["asm"]["sqlite3_libversion_number"]).apply(null,arguments)};var _pysqlite_connection_commit=Module["_pysqlite_connection_commit"]=function(){return(_pysqlite_connection_commit=Module["_pysqlite_connection_commit"]=Module["asm"]["pysqlite_connection_commit"]).apply(null,arguments)};var _pysqlite_do_all_statements=Module["_pysqlite_do_all_statements"]=function(){return(_pysqlite_do_all_statements=Module["_pysqlite_do_all_statements"]=Module["asm"]["pysqlite_do_all_statements"]).apply(null,arguments)};var _pysqlite_statement_reset=Module["_pysqlite_statement_reset"]=function(){return(_pysqlite_statement_reset=Module["_pysqlite_statement_reset"]=Module["asm"]["pysqlite_statement_reset"]).apply(null,arguments)};var _pysqlite_statement_finalize=Module["_pysqlite_statement_finalize"]=function(){return(_pysqlite_statement_finalize=Module["_pysqlite_statement_finalize"]=Module["asm"]["pysqlite_statement_finalize"]).apply(null,arguments)};var _pysqlite_connection_dealloc=Module["_pysqlite_connection_dealloc"]=function(){return(_pysqlite_connection_dealloc=Module["_pysqlite_connection_dealloc"]=Module["asm"]["pysqlite_connection_dealloc"]).apply(null,arguments)};var _sqlite3_close_v2=Module["_sqlite3_close_v2"]=function(){return(_sqlite3_close_v2=Module["_sqlite3_close_v2"]=Module["asm"]["sqlite3_close_v2"]).apply(null,arguments)};var _pysqlite_connection_register_cursor=Module["_pysqlite_connection_register_cursor"]=function(){return(_pysqlite_connection_register_cursor=Module["_pysqlite_connection_register_cursor"]=Module["asm"]["pysqlite_connection_register_cursor"]).apply(null,arguments)};var _pysqlite_connection_cursor=Module["_pysqlite_connection_cursor"]=function(){return(_pysqlite_connection_cursor=Module["_pysqlite_connection_cursor"]=Module["asm"]["pysqlite_connection_cursor"]).apply(null,arguments)};var _pysqlite_check_thread=Module["_pysqlite_check_thread"]=function(){return(_pysqlite_check_thread=Module["_pysqlite_check_thread"]=Module["asm"]["pysqlite_check_thread"]).apply(null,arguments)};var _pysqlite_check_connection=Module["_pysqlite_check_connection"]=function(){return(_pysqlite_check_connection=Module["_pysqlite_check_connection"]=Module["asm"]["pysqlite_check_connection"]).apply(null,arguments)};var _pysqlite_connection_close=Module["_pysqlite_connection_close"]=function(){return(_pysqlite_connection_close=Module["_pysqlite_connection_close"]=Module["asm"]["pysqlite_connection_close"]).apply(null,arguments)};var __pysqlite_connection_begin=Module["__pysqlite_connection_begin"]=function(){return(__pysqlite_connection_begin=Module["__pysqlite_connection_begin"]=Module["asm"]["_pysqlite_connection_begin"]).apply(null,arguments)};var _sqlite3_prepare_v2=Module["_sqlite3_prepare_v2"]=function(){return(_sqlite3_prepare_v2=Module["_sqlite3_prepare_v2"]=Module["asm"]["sqlite3_prepare_v2"]).apply(null,arguments)};var _pysqlite_step=Module["_pysqlite_step"]=function(){return(_pysqlite_step=Module["_pysqlite_step"]=Module["asm"]["pysqlite_step"]).apply(null,arguments)};var _sqlite3_finalize=Module["_sqlite3_finalize"]=function(){return(_sqlite3_finalize=Module["_sqlite3_finalize"]=Module["asm"]["sqlite3_finalize"]).apply(null,arguments)};var _sqlite3_get_autocommit=Module["_sqlite3_get_autocommit"]=function(){return(_sqlite3_get_autocommit=Module["_sqlite3_get_autocommit"]=Module["asm"]["sqlite3_get_autocommit"]).apply(null,arguments)};var _pysqlite_connection_rollback=Module["_pysqlite_connection_rollback"]=function(){return(_pysqlite_connection_rollback=Module["_pysqlite_connection_rollback"]=Module["asm"]["pysqlite_connection_rollback"]).apply(null,arguments)};var __pysqlite_build_py_params=Module["__pysqlite_build_py_params"]=function(){return(__pysqlite_build_py_params=Module["__pysqlite_build_py_params"]=Module["asm"]["_pysqlite_build_py_params"]).apply(null,arguments)};var _sqlite3_value_type=Module["_sqlite3_value_type"]=function(){return(_sqlite3_value_type=Module["_sqlite3_value_type"]=Module["asm"]["sqlite3_value_type"]).apply(null,arguments)};var _sqlite3_value_double=Module["_sqlite3_value_double"]=function(){return(_sqlite3_value_double=Module["_sqlite3_value_double"]=Module["asm"]["sqlite3_value_double"]).apply(null,arguments)};var _sqlite3_value_text=Module["_sqlite3_value_text"]=function(){return(_sqlite3_value_text=Module["_sqlite3_value_text"]=Module["asm"]["sqlite3_value_text"]).apply(null,arguments)};var _sqlite3_value_bytes=Module["_sqlite3_value_bytes"]=function(){return(_sqlite3_value_bytes=Module["_sqlite3_value_bytes"]=Module["asm"]["sqlite3_value_bytes"]).apply(null,arguments)};var _sqlite3_value_blob=Module["_sqlite3_value_blob"]=function(){return(_sqlite3_value_blob=Module["_sqlite3_value_blob"]=Module["asm"]["sqlite3_value_blob"]).apply(null,arguments)};var _sqlite3_value_int64=Module["_sqlite3_value_int64"]=function(){return(_sqlite3_value_int64=Module["_sqlite3_value_int64"]=Module["asm"]["sqlite3_value_int64"]).apply(null,arguments)};var __pysqlite_func_callback=Module["__pysqlite_func_callback"]=function(){return(__pysqlite_func_callback=Module["__pysqlite_func_callback"]=Module["asm"]["_pysqlite_func_callback"]).apply(null,arguments)};var _sqlite3_user_data=Module["_sqlite3_user_data"]=function(){return(_sqlite3_user_data=Module["_sqlite3_user_data"]=Module["asm"]["sqlite3_user_data"]).apply(null,arguments)};var _sqlite3_result_error=Module["_sqlite3_result_error"]=function(){return(_sqlite3_result_error=Module["_sqlite3_result_error"]=Module["asm"]["sqlite3_result_error"]).apply(null,arguments)};var _sqlite3_result_null=Module["_sqlite3_result_null"]=function(){return(_sqlite3_result_null=Module["_sqlite3_result_null"]=Module["asm"]["sqlite3_result_null"]).apply(null,arguments)};var __pysqlite_long_as_int64=Module["__pysqlite_long_as_int64"]=function(){return(__pysqlite_long_as_int64=Module["__pysqlite_long_as_int64"]=Module["asm"]["_pysqlite_long_as_int64"]).apply(null,arguments)};var _sqlite3_result_int64=Module["_sqlite3_result_int64"]=function(){return(_sqlite3_result_int64=Module["_sqlite3_result_int64"]=Module["asm"]["sqlite3_result_int64"]).apply(null,arguments)};var _sqlite3_result_double=Module["_sqlite3_result_double"]=function(){return(_sqlite3_result_double=Module["_sqlite3_result_double"]=Module["asm"]["sqlite3_result_double"]).apply(null,arguments)};var _sqlite3_result_text=Module["_sqlite3_result_text"]=function(){return(_sqlite3_result_text=Module["_sqlite3_result_text"]=Module["asm"]["sqlite3_result_text"]).apply(null,arguments)};var _sqlite3_result_blob=Module["_sqlite3_result_blob"]=function(){return(_sqlite3_result_blob=Module["_sqlite3_result_blob"]=Module["asm"]["sqlite3_result_blob"]).apply(null,arguments)};var __pysqlite_final_callback=Module["__pysqlite_final_callback"]=function(){return(__pysqlite_final_callback=Module["__pysqlite_final_callback"]=Module["asm"]["_pysqlite_final_callback"]).apply(null,arguments)};var _sqlite3_aggregate_context=Module["_sqlite3_aggregate_context"]=function(){return(_sqlite3_aggregate_context=Module["_sqlite3_aggregate_context"]=Module["asm"]["sqlite3_aggregate_context"]).apply(null,arguments)};var _pysqlite_connection_create_function=Module["_pysqlite_connection_create_function"]=function(){return(_pysqlite_connection_create_function=Module["_pysqlite_connection_create_function"]=Module["asm"]["pysqlite_connection_create_function"]).apply(null,arguments)};var _sqlite3_create_function_v2=Module["_sqlite3_create_function_v2"]=function(){return(_sqlite3_create_function_v2=Module["_sqlite3_create_function_v2"]=Module["asm"]["sqlite3_create_function_v2"]).apply(null,arguments)};var _pysqlite_connection_create_aggregate=Module["_pysqlite_connection_create_aggregate"]=function(){return(_pysqlite_connection_create_aggregate=Module["_pysqlite_connection_create_aggregate"]=Module["asm"]["pysqlite_connection_create_aggregate"]).apply(null,arguments)};var _pysqlite_connection_call=Module["_pysqlite_connection_call"]=function(){return(_pysqlite_connection_call=Module["_pysqlite_connection_call"]=Module["asm"]["pysqlite_connection_call"]).apply(null,arguments)};var _pysqlite_statement_create=Module["_pysqlite_statement_create"]=function(){return(_pysqlite_statement_create=Module["_pysqlite_statement_create"]=Module["asm"]["pysqlite_statement_create"]).apply(null,arguments)};var _pysqlite_connection_execute=Module["_pysqlite_connection_execute"]=function(){return(_pysqlite_connection_execute=Module["_pysqlite_connection_execute"]=Module["asm"]["pysqlite_connection_execute"]).apply(null,arguments)};var _pysqlite_connection_executemany=Module["_pysqlite_connection_executemany"]=function(){return(_pysqlite_connection_executemany=Module["_pysqlite_connection_executemany"]=Module["asm"]["pysqlite_connection_executemany"]).apply(null,arguments)};var _pysqlite_connection_executescript=Module["_pysqlite_connection_executescript"]=function(){return(_pysqlite_connection_executescript=Module["_pysqlite_connection_executescript"]=Module["asm"]["pysqlite_connection_executescript"]).apply(null,arguments)};var _pysqlite_connection_setup_types=Module["_pysqlite_connection_setup_types"]=function(){return(_pysqlite_connection_setup_types=Module["_pysqlite_connection_setup_types"]=Module["asm"]["pysqlite_connection_setup_types"]).apply(null,arguments)};var _sqlite3_set_authorizer=Module["_sqlite3_set_authorizer"]=function(){return(_sqlite3_set_authorizer=Module["_sqlite3_set_authorizer"]=Module["asm"]["sqlite3_set_authorizer"]).apply(null,arguments)};var _sqlite3_enable_load_extension=Module["_sqlite3_enable_load_extension"]=function(){return(_sqlite3_enable_load_extension=Module["_sqlite3_enable_load_extension"]=Module["asm"]["sqlite3_enable_load_extension"]).apply(null,arguments)};var _sqlite3_load_extension=Module["_sqlite3_load_extension"]=function(){return(_sqlite3_load_extension=Module["_sqlite3_load_extension"]=Module["asm"]["sqlite3_load_extension"]).apply(null,arguments)};var _sqlite3_progress_handler=Module["_sqlite3_progress_handler"]=function(){return(_sqlite3_progress_handler=Module["_sqlite3_progress_handler"]=Module["asm"]["sqlite3_progress_handler"]).apply(null,arguments)};var _sqlite3_trace=Module["_sqlite3_trace"]=function(){return(_sqlite3_trace=Module["_sqlite3_trace"]=Module["asm"]["sqlite3_trace"]).apply(null,arguments)};var _sqlite3_create_collation=Module["_sqlite3_create_collation"]=function(){return(_sqlite3_create_collation=Module["_sqlite3_create_collation"]=Module["asm"]["sqlite3_create_collation"]).apply(null,arguments)};var _sqlite3_interrupt=Module["_sqlite3_interrupt"]=function(){return(_sqlite3_interrupt=Module["_sqlite3_interrupt"]=Module["asm"]["sqlite3_interrupt"]).apply(null,arguments)};var _sqlite3_backup_init=Module["_sqlite3_backup_init"]=function(){return(_sqlite3_backup_init=Module["_sqlite3_backup_init"]=Module["asm"]["sqlite3_backup_init"]).apply(null,arguments)};var _sqlite3_backup_step=Module["_sqlite3_backup_step"]=function(){return(_sqlite3_backup_step=Module["_sqlite3_backup_step"]=Module["asm"]["sqlite3_backup_step"]).apply(null,arguments)};var _sqlite3_backup_remaining=Module["_sqlite3_backup_remaining"]=function(){return(_sqlite3_backup_remaining=Module["_sqlite3_backup_remaining"]=Module["asm"]["sqlite3_backup_remaining"]).apply(null,arguments)};var _sqlite3_backup_pagecount=Module["_sqlite3_backup_pagecount"]=function(){return(_sqlite3_backup_pagecount=Module["_sqlite3_backup_pagecount"]=Module["asm"]["sqlite3_backup_pagecount"]).apply(null,arguments)};var _sqlite3_sleep=Module["_sqlite3_sleep"]=function(){return(_sqlite3_sleep=Module["_sqlite3_sleep"]=Module["asm"]["sqlite3_sleep"]).apply(null,arguments)};var _sqlite3_backup_finish=Module["_sqlite3_backup_finish"]=function(){return(_sqlite3_backup_finish=Module["_sqlite3_backup_finish"]=Module["asm"]["sqlite3_backup_finish"]).apply(null,arguments)};var _sqlite3_errstr=Module["_sqlite3_errstr"]=function(){return(_sqlite3_errstr=Module["_sqlite3_errstr"]=Module["asm"]["sqlite3_errstr"]).apply(null,arguments)};var _sqlite3_total_changes=Module["_sqlite3_total_changes"]=function(){return(_sqlite3_total_changes=Module["_sqlite3_total_changes"]=Module["asm"]["sqlite3_total_changes"]).apply(null,arguments)};var _pysqlite_cursor_execute=Module["_pysqlite_cursor_execute"]=function(){return(_pysqlite_cursor_execute=Module["_pysqlite_cursor_execute"]=Module["asm"]["pysqlite_cursor_execute"]).apply(null,arguments)};var _pysqlite_statement_mark_dirty=Module["_pysqlite_statement_mark_dirty"]=function(){return(_pysqlite_statement_mark_dirty=Module["_pysqlite_statement_mark_dirty"]=Module["asm"]["pysqlite_statement_mark_dirty"]).apply(null,arguments)};var _pysqlite_statement_bind_parameters=Module["_pysqlite_statement_bind_parameters"]=function(){return(_pysqlite_statement_bind_parameters=Module["_pysqlite_statement_bind_parameters"]=Module["asm"]["pysqlite_statement_bind_parameters"]).apply(null,arguments)};var _sqlite3_column_count=Module["_sqlite3_column_count"]=function(){return(_sqlite3_column_count=Module["_sqlite3_column_count"]=Module["asm"]["sqlite3_column_count"]).apply(null,arguments)};var _sqlite3_column_name=Module["_sqlite3_column_name"]=function(){return(_sqlite3_column_name=Module["_sqlite3_column_name"]=Module["asm"]["sqlite3_column_name"]).apply(null,arguments)};var _sqlite3_column_decltype=Module["_sqlite3_column_decltype"]=function(){return(_sqlite3_column_decltype=Module["_sqlite3_column_decltype"]=Module["asm"]["sqlite3_column_decltype"]).apply(null,arguments)};var _sqlite3_changes=Module["_sqlite3_changes"]=function(){return(_sqlite3_changes=Module["_sqlite3_changes"]=Module["asm"]["sqlite3_changes"]).apply(null,arguments)};var _sqlite3_last_insert_rowid=Module["_sqlite3_last_insert_rowid"]=function(){return(_sqlite3_last_insert_rowid=Module["_sqlite3_last_insert_rowid"]=Module["asm"]["sqlite3_last_insert_rowid"]).apply(null,arguments)};var _pysqlite_cursor_executemany=Module["_pysqlite_cursor_executemany"]=function(){return(_pysqlite_cursor_executemany=Module["_pysqlite_cursor_executemany"]=Module["asm"]["pysqlite_cursor_executemany"]).apply(null,arguments)};var _pysqlite_cursor_iternext=Module["_pysqlite_cursor_iternext"]=function(){return(_pysqlite_cursor_iternext=Module["_pysqlite_cursor_iternext"]=Module["asm"]["pysqlite_cursor_iternext"]).apply(null,arguments)};var _sqlite3_data_count=Module["_sqlite3_data_count"]=function(){return(_sqlite3_data_count=Module["_sqlite3_data_count"]=Module["asm"]["sqlite3_data_count"]).apply(null,arguments)};var _sqlite3_column_bytes=Module["_sqlite3_column_bytes"]=function(){return(_sqlite3_column_bytes=Module["_sqlite3_column_bytes"]=Module["asm"]["sqlite3_column_bytes"]).apply(null,arguments)};var _sqlite3_column_blob=Module["_sqlite3_column_blob"]=function(){return(_sqlite3_column_blob=Module["_sqlite3_column_blob"]=Module["asm"]["sqlite3_column_blob"]).apply(null,arguments)};var _sqlite3_column_type=Module["_sqlite3_column_type"]=function(){return(_sqlite3_column_type=Module["_sqlite3_column_type"]=Module["asm"]["sqlite3_column_type"]).apply(null,arguments)};var _sqlite3_column_int64=Module["_sqlite3_column_int64"]=function(){return(_sqlite3_column_int64=Module["_sqlite3_column_int64"]=Module["asm"]["sqlite3_column_int64"]).apply(null,arguments)};var _sqlite3_column_double=Module["_sqlite3_column_double"]=function(){return(_sqlite3_column_double=Module["_sqlite3_column_double"]=Module["asm"]["sqlite3_column_double"]).apply(null,arguments)};var _sqlite3_column_text=Module["_sqlite3_column_text"]=function(){return(_sqlite3_column_text=Module["_sqlite3_column_text"]=Module["asm"]["sqlite3_column_text"]).apply(null,arguments)};var _pysqlite_cursor_fetchone=Module["_pysqlite_cursor_fetchone"]=function(){return(_pysqlite_cursor_fetchone=Module["_pysqlite_cursor_fetchone"]=Module["asm"]["pysqlite_cursor_fetchone"]).apply(null,arguments)};var _pysqlite_cursor_fetchmany=Module["_pysqlite_cursor_fetchmany"]=function(){return(_pysqlite_cursor_fetchmany=Module["_pysqlite_cursor_fetchmany"]=Module["asm"]["pysqlite_cursor_fetchmany"]).apply(null,arguments)};var _pysqlite_cursor_fetchall=Module["_pysqlite_cursor_fetchall"]=function(){return(_pysqlite_cursor_fetchall=Module["_pysqlite_cursor_fetchall"]=Module["asm"]["pysqlite_cursor_fetchall"]).apply(null,arguments)};var _pysqlite_noop=Module["_pysqlite_noop"]=function(){return(_pysqlite_noop=Module["_pysqlite_noop"]=Module["asm"]["pysqlite_noop"]).apply(null,arguments)};var _pysqlite_cursor_close=Module["_pysqlite_cursor_close"]=function(){return(_pysqlite_cursor_close=Module["_pysqlite_cursor_close"]=Module["asm"]["pysqlite_cursor_close"]).apply(null,arguments)};var _pysqlite_cursor_setup_types=Module["_pysqlite_cursor_setup_types"]=function(){return(_pysqlite_cursor_setup_types=Module["_pysqlite_cursor_setup_types"]=Module["asm"]["pysqlite_cursor_setup_types"]).apply(null,arguments)};var _pysqlite_microprotocols_init=Module["_pysqlite_microprotocols_init"]=function(){return(_pysqlite_microprotocols_init=Module["_pysqlite_microprotocols_init"]=Module["asm"]["pysqlite_microprotocols_init"]).apply(null,arguments)};var _pysqlite_microprotocols_add=Module["_pysqlite_microprotocols_add"]=function(){return(_pysqlite_microprotocols_add=Module["_pysqlite_microprotocols_add"]=Module["asm"]["pysqlite_microprotocols_add"]).apply(null,arguments)};var _pysqlite_microprotocols_adapt=Module["_pysqlite_microprotocols_adapt"]=function(){return(_pysqlite_microprotocols_adapt=Module["_pysqlite_microprotocols_adapt"]=Module["asm"]["pysqlite_microprotocols_adapt"]).apply(null,arguments)};var _pysqlite_adapt=Module["_pysqlite_adapt"]=function(){return(_pysqlite_adapt=Module["_pysqlite_adapt"]=Module["asm"]["pysqlite_adapt"]).apply(null,arguments)};var _pysqlite_row_setup_types=Module["_pysqlite_row_setup_types"]=function(){return(_pysqlite_row_setup_types=Module["_pysqlite_row_setup_types"]=Module["asm"]["pysqlite_row_setup_types"]).apply(null,arguments)};var _pysqlite_statement_setup_types=Module["_pysqlite_statement_setup_types"]=function(){return(_pysqlite_statement_setup_types=Module["_pysqlite_statement_setup_types"]=Module["asm"]["pysqlite_statement_setup_types"]).apply(null,arguments)};var _pysqlite_prepare_protocol_setup_types=Module["_pysqlite_prepare_protocol_setup_types"]=function(){return(_pysqlite_prepare_protocol_setup_types=Module["_pysqlite_prepare_protocol_setup_types"]=Module["asm"]["pysqlite_prepare_protocol_setup_types"]).apply(null,arguments)};var _sqlite3_libversion=Module["_sqlite3_libversion"]=function(){return(_sqlite3_libversion=Module["_sqlite3_libversion"]=Module["asm"]["sqlite3_libversion"]).apply(null,arguments)};var _sqlite3_complete=Module["_sqlite3_complete"]=function(){return(_sqlite3_complete=Module["_sqlite3_complete"]=Module["asm"]["sqlite3_complete"]).apply(null,arguments)};var _sqlite3_enable_shared_cache=Module["_sqlite3_enable_shared_cache"]=function(){return(_sqlite3_enable_shared_cache=Module["_sqlite3_enable_shared_cache"]=Module["asm"]["sqlite3_enable_shared_cache"]).apply(null,arguments)};var _pysqlite_prepare_protocol_init=Module["_pysqlite_prepare_protocol_init"]=function(){return(_pysqlite_prepare_protocol_init=Module["_pysqlite_prepare_protocol_init"]=Module["asm"]["pysqlite_prepare_protocol_init"]).apply(null,arguments)};var _pysqlite_prepare_protocol_dealloc=Module["_pysqlite_prepare_protocol_dealloc"]=function(){return(_pysqlite_prepare_protocol_dealloc=Module["_pysqlite_prepare_protocol_dealloc"]=Module["asm"]["pysqlite_prepare_protocol_dealloc"]).apply(null,arguments)};var _pysqlite_row_dealloc=Module["_pysqlite_row_dealloc"]=function(){return(_pysqlite_row_dealloc=Module["_pysqlite_row_dealloc"]=Module["asm"]["pysqlite_row_dealloc"]).apply(null,arguments)};var _pysqlite_row_item=Module["_pysqlite_row_item"]=function(){return(_pysqlite_row_item=Module["_pysqlite_row_item"]=Module["asm"]["pysqlite_row_item"]).apply(null,arguments)};var _pysqlite_row_subscript=Module["_pysqlite_row_subscript"]=function(){return(_pysqlite_row_subscript=Module["_pysqlite_row_subscript"]=Module["asm"]["pysqlite_row_subscript"]).apply(null,arguments)};var _pysqlite_row_keys=Module["_pysqlite_row_keys"]=function(){return(_pysqlite_row_keys=Module["_pysqlite_row_keys"]=Module["asm"]["pysqlite_row_keys"]).apply(null,arguments)};var _pysqlite_statement_bind_parameter=Module["_pysqlite_statement_bind_parameter"]=function(){return(_pysqlite_statement_bind_parameter=Module["_pysqlite_statement_bind_parameter"]=Module["asm"]["pysqlite_statement_bind_parameter"]).apply(null,arguments)};var _sqlite3_bind_null=Module["_sqlite3_bind_null"]=function(){return(_sqlite3_bind_null=Module["_sqlite3_bind_null"]=Module["asm"]["sqlite3_bind_null"]).apply(null,arguments)};var _sqlite3_bind_blob=Module["_sqlite3_bind_blob"]=function(){return(_sqlite3_bind_blob=Module["_sqlite3_bind_blob"]=Module["asm"]["sqlite3_bind_blob"]).apply(null,arguments)};var _sqlite3_bind_int64=Module["_sqlite3_bind_int64"]=function(){return(_sqlite3_bind_int64=Module["_sqlite3_bind_int64"]=Module["asm"]["sqlite3_bind_int64"]).apply(null,arguments)};var _sqlite3_bind_double=Module["_sqlite3_bind_double"]=function(){return(_sqlite3_bind_double=Module["_sqlite3_bind_double"]=Module["asm"]["sqlite3_bind_double"]).apply(null,arguments)};var _sqlite3_bind_text=Module["_sqlite3_bind_text"]=function(){return(_sqlite3_bind_text=Module["_sqlite3_bind_text"]=Module["asm"]["sqlite3_bind_text"]).apply(null,arguments)};var _sqlite3_bind_parameter_count=Module["_sqlite3_bind_parameter_count"]=function(){return(_sqlite3_bind_parameter_count=Module["_sqlite3_bind_parameter_count"]=Module["asm"]["sqlite3_bind_parameter_count"]).apply(null,arguments)};var _sqlite3_bind_parameter_name=Module["_sqlite3_bind_parameter_name"]=function(){return(_sqlite3_bind_parameter_name=Module["_sqlite3_bind_parameter_name"]=Module["asm"]["sqlite3_bind_parameter_name"]).apply(null,arguments)};var _sqlite3_reset=Module["_sqlite3_reset"]=function(){return(_sqlite3_reset=Module["_sqlite3_reset"]=Module["asm"]["sqlite3_reset"]).apply(null,arguments)};var _pysqlite_statement_dealloc=Module["_pysqlite_statement_dealloc"]=function(){return(_pysqlite_statement_dealloc=Module["_pysqlite_statement_dealloc"]=Module["asm"]["pysqlite_statement_dealloc"]).apply(null,arguments)};var _sqlite3_step=Module["_sqlite3_step"]=function(){return(_sqlite3_step=Module["_sqlite3_step"]=Module["asm"]["sqlite3_step"]).apply(null,arguments)};var _sqlite3_errcode=Module["_sqlite3_errcode"]=function(){return(_sqlite3_errcode=Module["_sqlite3_errcode"]=Module["asm"]["sqlite3_errcode"]).apply(null,arguments)};var _sqlite3_errmsg=Module["_sqlite3_errmsg"]=function(){return(_sqlite3_errmsg=Module["_sqlite3_errmsg"]=Module["asm"]["sqlite3_errmsg"]).apply(null,arguments)};var _crypt_r=Module["_crypt_r"]=function(){return(_crypt_r=Module["_crypt_r"]=Module["asm"]["crypt_r"]).apply(null,arguments)};var _BZ2_bzCompressEnd=Module["_BZ2_bzCompressEnd"]=function(){return(_BZ2_bzCompressEnd=Module["_BZ2_bzCompressEnd"]=Module["asm"]["BZ2_bzCompressEnd"]).apply(null,arguments)};var _BZ2_bzCompressInit=Module["_BZ2_bzCompressInit"]=function(){return(_BZ2_bzCompressInit=Module["_BZ2_bzCompressInit"]=Module["asm"]["BZ2_bzCompressInit"]).apply(null,arguments)};var _BZ2_bzCompress=Module["_BZ2_bzCompress"]=function(){return(_BZ2_bzCompress=Module["_BZ2_bzCompress"]=Module["asm"]["BZ2_bzCompress"]).apply(null,arguments)};var _BZ2_bzDecompressEnd=Module["_BZ2_bzDecompressEnd"]=function(){return(_BZ2_bzDecompressEnd=Module["_BZ2_bzDecompressEnd"]=Module["asm"]["BZ2_bzDecompressEnd"]).apply(null,arguments)};var _BZ2_bzDecompressInit=Module["_BZ2_bzDecompressInit"]=function(){return(_BZ2_bzDecompressInit=Module["_BZ2_bzDecompressInit"]=Module["asm"]["BZ2_bzDecompressInit"]).apply(null,arguments)};var _BZ2_bzDecompress=Module["_BZ2_bzDecompress"]=function(){return(_BZ2_bzDecompress=Module["_BZ2_bzDecompress"]=Module["asm"]["BZ2_bzDecompress"]).apply(null,arguments)};var _RotatingTree_Enum=Module["_RotatingTree_Enum"]=function(){return(_RotatingTree_Enum=Module["_RotatingTree_Enum"]=Module["asm"]["RotatingTree_Enum"]).apply(null,arguments)};var _RotatingTree_Get=Module["_RotatingTree_Get"]=function(){return(_RotatingTree_Get=Module["_RotatingTree_Get"]=Module["asm"]["RotatingTree_Get"]).apply(null,arguments)};var _RotatingTree_Add=Module["_RotatingTree_Add"]=function(){return(_RotatingTree_Add=Module["_RotatingTree_Add"]=Module["asm"]["RotatingTree_Add"]).apply(null,arguments)};var _mpd_callocfunc_em=Module["_mpd_callocfunc_em"]=function(){return(_mpd_callocfunc_em=Module["_mpd_callocfunc_em"]=Module["asm"]["mpd_callocfunc_em"]).apply(null,arguments)};var _mpd_setminalloc=Module["_mpd_setminalloc"]=function(){return(_mpd_setminalloc=Module["_mpd_setminalloc"]=Module["asm"]["mpd_setminalloc"]).apply(null,arguments)};var _mpd_version=Module["_mpd_version"]=function(){return(_mpd_version=Module["_mpd_version"]=Module["asm"]["mpd_version"]).apply(null,arguments)};var _mpd_del=Module["_mpd_del"]=function(){return(_mpd_del=Module["_mpd_del"]=Module["asm"]["mpd_del"]).apply(null,arguments)};var _mpd_to_sci=Module["_mpd_to_sci"]=function(){return(_mpd_to_sci=Module["_mpd_to_sci"]=Module["asm"]["mpd_to_sci"]).apply(null,arguments)};var _mpd_isspecial=Module["_mpd_isspecial"]=function(){return(_mpd_isspecial=Module["_mpd_isspecial"]=Module["asm"]["mpd_isspecial"]).apply(null,arguments)};var _mpd_issnan=Module["_mpd_issnan"]=function(){return(_mpd_issnan=Module["_mpd_issnan"]=Module["asm"]["mpd_issnan"]).apply(null,arguments)};var _mpd_isnan=Module["_mpd_isnan"]=function(){return(_mpd_isnan=Module["_mpd_isnan"]=Module["asm"]["mpd_isnan"]).apply(null,arguments)};var _mpd_arith_sign=Module["_mpd_arith_sign"]=function(){return(_mpd_arith_sign=Module["_mpd_arith_sign"]=Module["asm"]["mpd_arith_sign"]).apply(null,arguments)};var _mpd_maxcontext=Module["_mpd_maxcontext"]=function(){return(_mpd_maxcontext=Module["_mpd_maxcontext"]=Module["asm"]["mpd_maxcontext"]).apply(null,arguments)};var _mpd_qnew=Module["_mpd_qnew"]=function(){return(_mpd_qnew=Module["_mpd_qnew"]=Module["asm"]["mpd_qnew"]).apply(null,arguments)};var _mpd_qsset_ssize=Module["_mpd_qsset_ssize"]=function(){return(_mpd_qsset_ssize=Module["_mpd_qsset_ssize"]=Module["asm"]["mpd_qsset_ssize"]).apply(null,arguments)};var _mpd_qpowmod=Module["_mpd_qpowmod"]=function(){return(_mpd_qpowmod=Module["_mpd_qpowmod"]=Module["asm"]["mpd_qpowmod"]).apply(null,arguments)};var _mpd_qcopy=Module["_mpd_qcopy"]=function(){return(_mpd_qcopy=Module["_mpd_qcopy"]=Module["asm"]["mpd_qcopy"]).apply(null,arguments)};var _mpd_set_positive=Module["_mpd_set_positive"]=function(){return(_mpd_set_positive=Module["_mpd_set_positive"]=Module["asm"]["mpd_set_positive"]).apply(null,arguments)};var _mpd_qmul=Module["_mpd_qmul"]=function(){return(_mpd_qmul=Module["_mpd_qmul"]=Module["asm"]["mpd_qmul"]).apply(null,arguments)};var _mpd_qrem=Module["_mpd_qrem"]=function(){return(_mpd_qrem=Module["_mpd_qrem"]=Module["asm"]["mpd_qrem"]).apply(null,arguments)};var _mpd_qget_ssize=Module["_mpd_qget_ssize"]=function(){return(_mpd_qget_ssize=Module["_mpd_qget_ssize"]=Module["asm"]["mpd_qget_ssize"]).apply(null,arguments)};var _mpd_ispositive=Module["_mpd_ispositive"]=function(){return(_mpd_ispositive=Module["_mpd_ispositive"]=Module["asm"]["mpd_ispositive"]).apply(null,arguments)};var _mpd_to_sci_size=Module["_mpd_to_sci_size"]=function(){return(_mpd_to_sci_size=Module["_mpd_to_sci_size"]=Module["asm"]["mpd_to_sci_size"]).apply(null,arguments)};var _mpd_qncopy=Module["_mpd_qncopy"]=function(){return(_mpd_qncopy=Module["_mpd_qncopy"]=Module["asm"]["mpd_qncopy"]).apply(null,arguments)};var _mpd_qcmp=Module["_mpd_qcmp"]=function(){return(_mpd_qcmp=Module["_mpd_qcmp"]=Module["asm"]["mpd_qcmp"]).apply(null,arguments)};var _mpd_qset_ssize=Module["_mpd_qset_ssize"]=function(){return(_mpd_qset_ssize=Module["_mpd_qset_ssize"]=Module["asm"]["mpd_qset_ssize"]).apply(null,arguments)};var _mpd_qadd=Module["_mpd_qadd"]=function(){return(_mpd_qadd=Module["_mpd_qadd"]=Module["asm"]["mpd_qadd"]).apply(null,arguments)};var _mpd_qsub=Module["_mpd_qsub"]=function(){return(_mpd_qsub=Module["_mpd_qsub"]=Module["asm"]["mpd_qsub"]).apply(null,arguments)};var _mpd_qdivmod=Module["_mpd_qdivmod"]=function(){return(_mpd_qdivmod=Module["_mpd_qdivmod"]=Module["asm"]["mpd_qdivmod"]).apply(null,arguments)};var _mpd_qpow=Module["_mpd_qpow"]=function(){return(_mpd_qpow=Module["_mpd_qpow"]=Module["asm"]["mpd_qpow"]).apply(null,arguments)};var _mpd_qminus=Module["_mpd_qminus"]=function(){return(_mpd_qminus=Module["_mpd_qminus"]=Module["asm"]["mpd_qminus"]).apply(null,arguments)};var _mpd_qplus=Module["_mpd_qplus"]=function(){return(_mpd_qplus=Module["_mpd_qplus"]=Module["asm"]["mpd_qplus"]).apply(null,arguments)};var _mpd_qabs=Module["_mpd_qabs"]=function(){return(_mpd_qabs=Module["_mpd_qabs"]=Module["asm"]["mpd_qabs"]).apply(null,arguments)};var _mpd_iszero=Module["_mpd_iszero"]=function(){return(_mpd_iszero=Module["_mpd_iszero"]=Module["asm"]["mpd_iszero"]).apply(null,arguments)};var _mpd_isnegative=Module["_mpd_isnegative"]=function(){return(_mpd_isnegative=Module["_mpd_isnegative"]=Module["asm"]["mpd_isnegative"]).apply(null,arguments)};var _mpd_qdivint=Module["_mpd_qdivint"]=function(){return(_mpd_qdivint=Module["_mpd_qdivint"]=Module["asm"]["mpd_qdivint"]).apply(null,arguments)};var _mpd_qdiv=Module["_mpd_qdiv"]=function(){return(_mpd_qdiv=Module["_mpd_qdiv"]=Module["asm"]["mpd_qdiv"]).apply(null,arguments)};var _mpd_seterror=Module["_mpd_seterror"]=function(){return(_mpd_seterror=Module["_mpd_seterror"]=Module["asm"]["mpd_seterror"]).apply(null,arguments)};var _mpd_set_flags=Module["_mpd_set_flags"]=function(){return(_mpd_set_flags=Module["_mpd_set_flags"]=Module["asm"]["mpd_set_flags"]).apply(null,arguments)};var _mpd_setdigits=Module["_mpd_setdigits"]=function(){return(_mpd_setdigits=Module["_mpd_setdigits"]=Module["asm"]["mpd_setdigits"]).apply(null,arguments)};var _mpd_qfinalize=Module["_mpd_qfinalize"]=function(){return(_mpd_qfinalize=Module["_mpd_qfinalize"]=Module["asm"]["mpd_qfinalize"]).apply(null,arguments)};var _mpd_qimport_u32=Module["_mpd_qimport_u32"]=function(){return(_mpd_qimport_u32=Module["_mpd_qimport_u32"]=Module["asm"]["mpd_qimport_u32"]).apply(null,arguments)};var _mpd_qround_to_int=Module["_mpd_qround_to_int"]=function(){return(_mpd_qround_to_int=Module["_mpd_qround_to_int"]=Module["asm"]["mpd_qround_to_int"]).apply(null,arguments)};var _mpd_qexport_u32=Module["_mpd_qexport_u32"]=function(){return(_mpd_qexport_u32=Module["_mpd_qexport_u32"]=Module["asm"]["mpd_qexport_u32"]).apply(null,arguments)};var _mpd_setspecial=Module["_mpd_setspecial"]=function(){return(_mpd_setspecial=Module["_mpd_setspecial"]=Module["asm"]["mpd_setspecial"]).apply(null,arguments)};var _mpd_qset_uint=Module["_mpd_qset_uint"]=function(){return(_mpd_qset_uint=Module["_mpd_qset_uint"]=Module["asm"]["mpd_qset_uint"]).apply(null,arguments)};var _mpd_set_sign=Module["_mpd_set_sign"]=function(){return(_mpd_set_sign=Module["_mpd_set_sign"]=Module["asm"]["mpd_set_sign"]).apply(null,arguments)};var _mpd_qexp=Module["_mpd_qexp"]=function(){return(_mpd_qexp=Module["_mpd_qexp"]=Module["asm"]["mpd_qexp"]).apply(null,arguments)};var _mpd_qln=Module["_mpd_qln"]=function(){return(_mpd_qln=Module["_mpd_qln"]=Module["asm"]["mpd_qln"]).apply(null,arguments)};var _mpd_qlog10=Module["_mpd_qlog10"]=function(){return(_mpd_qlog10=Module["_mpd_qlog10"]=Module["asm"]["mpd_qlog10"]).apply(null,arguments)};var _mpd_qnext_minus=Module["_mpd_qnext_minus"]=function(){return(_mpd_qnext_minus=Module["_mpd_qnext_minus"]=Module["asm"]["mpd_qnext_minus"]).apply(null,arguments)};var _mpd_qnext_plus=Module["_mpd_qnext_plus"]=function(){return(_mpd_qnext_plus=Module["_mpd_qnext_plus"]=Module["asm"]["mpd_qnext_plus"]).apply(null,arguments)};var _mpd_qreduce=Module["_mpd_qreduce"]=function(){return(_mpd_qreduce=Module["_mpd_qreduce"]=Module["asm"]["mpd_qreduce"]).apply(null,arguments)};var _mpd_qsetround=Module["_mpd_qsetround"]=function(){return(_mpd_qsetround=Module["_mpd_qsetround"]=Module["asm"]["mpd_qsetround"]).apply(null,arguments)};var _mpd_qround_to_intx=Module["_mpd_qround_to_intx"]=function(){return(_mpd_qround_to_intx=Module["_mpd_qround_to_intx"]=Module["asm"]["mpd_qround_to_intx"]).apply(null,arguments)};var _mpd_qsqrt=Module["_mpd_qsqrt"]=function(){return(_mpd_qsqrt=Module["_mpd_qsqrt"]=Module["asm"]["mpd_qsqrt"]).apply(null,arguments)};var _mpd_qcompare=Module["_mpd_qcompare"]=function(){return(_mpd_qcompare=Module["_mpd_qcompare"]=Module["asm"]["mpd_qcompare"]).apply(null,arguments)};var _mpd_qcompare_signal=Module["_mpd_qcompare_signal"]=function(){return(_mpd_qcompare_signal=Module["_mpd_qcompare_signal"]=Module["asm"]["mpd_qcompare_signal"]).apply(null,arguments)};var _mpd_qmax=Module["_mpd_qmax"]=function(){return(_mpd_qmax=Module["_mpd_qmax"]=Module["asm"]["mpd_qmax"]).apply(null,arguments)};var _mpd_qmax_mag=Module["_mpd_qmax_mag"]=function(){return(_mpd_qmax_mag=Module["_mpd_qmax_mag"]=Module["asm"]["mpd_qmax_mag"]).apply(null,arguments)};var _mpd_qmin=Module["_mpd_qmin"]=function(){return(_mpd_qmin=Module["_mpd_qmin"]=Module["asm"]["mpd_qmin"]).apply(null,arguments)};var _mpd_qmin_mag=Module["_mpd_qmin_mag"]=function(){return(_mpd_qmin_mag=Module["_mpd_qmin_mag"]=Module["asm"]["mpd_qmin_mag"]).apply(null,arguments)};var _mpd_qnext_toward=Module["_mpd_qnext_toward"]=function(){return(_mpd_qnext_toward=Module["_mpd_qnext_toward"]=Module["asm"]["mpd_qnext_toward"]).apply(null,arguments)};var _mpd_qquantize=Module["_mpd_qquantize"]=function(){return(_mpd_qquantize=Module["_mpd_qquantize"]=Module["asm"]["mpd_qquantize"]).apply(null,arguments)};var _mpd_qrem_near=Module["_mpd_qrem_near"]=function(){return(_mpd_qrem_near=Module["_mpd_qrem_near"]=Module["asm"]["mpd_qrem_near"]).apply(null,arguments)};var _mpd_qfma=Module["_mpd_qfma"]=function(){return(_mpd_qfma=Module["_mpd_qfma"]=Module["asm"]["mpd_qfma"]).apply(null,arguments)};var _mpd_iscanonical=Module["_mpd_iscanonical"]=function(){return(_mpd_iscanonical=Module["_mpd_iscanonical"]=Module["asm"]["mpd_iscanonical"]).apply(null,arguments)};var _mpd_isfinite=Module["_mpd_isfinite"]=function(){return(_mpd_isfinite=Module["_mpd_isfinite"]=Module["asm"]["mpd_isfinite"]).apply(null,arguments)};var _mpd_isinfinite=Module["_mpd_isinfinite"]=function(){return(_mpd_isinfinite=Module["_mpd_isinfinite"]=Module["asm"]["mpd_isinfinite"]).apply(null,arguments)};var _mpd_isqnan=Module["_mpd_isqnan"]=function(){return(_mpd_isqnan=Module["_mpd_isqnan"]=Module["asm"]["mpd_isqnan"]).apply(null,arguments)};var _mpd_issigned=Module["_mpd_issigned"]=function(){return(_mpd_issigned=Module["_mpd_issigned"]=Module["asm"]["mpd_issigned"]).apply(null,arguments)};var _mpd_isnormal=Module["_mpd_isnormal"]=function(){return(_mpd_isnormal=Module["_mpd_isnormal"]=Module["asm"]["mpd_isnormal"]).apply(null,arguments)};var _mpd_issubnormal=Module["_mpd_issubnormal"]=function(){return(_mpd_issubnormal=Module["_mpd_issubnormal"]=Module["asm"]["mpd_issubnormal"]).apply(null,arguments)};var _mpd_adjexp=Module["_mpd_adjexp"]=function(){return(_mpd_adjexp=Module["_mpd_adjexp"]=Module["asm"]["mpd_adjexp"]).apply(null,arguments)};var _mpd_qcopy_abs=Module["_mpd_qcopy_abs"]=function(){return(_mpd_qcopy_abs=Module["_mpd_qcopy_abs"]=Module["asm"]["mpd_qcopy_abs"]).apply(null,arguments)};var _mpd_qcopy_negate=Module["_mpd_qcopy_negate"]=function(){return(_mpd_qcopy_negate=Module["_mpd_qcopy_negate"]=Module["asm"]["mpd_qcopy_negate"]).apply(null,arguments)};var _mpd_qlogb=Module["_mpd_qlogb"]=function(){return(_mpd_qlogb=Module["_mpd_qlogb"]=Module["asm"]["mpd_qlogb"]).apply(null,arguments)};var _mpd_qinvert=Module["_mpd_qinvert"]=function(){return(_mpd_qinvert=Module["_mpd_qinvert"]=Module["asm"]["mpd_qinvert"]).apply(null,arguments)};var _mpd_class=Module["_mpd_class"]=function(){return(_mpd_class=Module["_mpd_class"]=Module["asm"]["mpd_class"]).apply(null,arguments)};var _mpd_to_eng_size=Module["_mpd_to_eng_size"]=function(){return(_mpd_to_eng_size=Module["_mpd_to_eng_size"]=Module["asm"]["mpd_to_eng_size"]).apply(null,arguments)};var _mpd_compare_total=Module["_mpd_compare_total"]=function(){return(_mpd_compare_total=Module["_mpd_compare_total"]=Module["asm"]["mpd_compare_total"]).apply(null,arguments)};var _mpd_compare_total_mag=Module["_mpd_compare_total_mag"]=function(){return(_mpd_compare_total_mag=Module["_mpd_compare_total_mag"]=Module["asm"]["mpd_compare_total_mag"]).apply(null,arguments)};var _mpd_qcopy_sign=Module["_mpd_qcopy_sign"]=function(){return(_mpd_qcopy_sign=Module["_mpd_qcopy_sign"]=Module["asm"]["mpd_qcopy_sign"]).apply(null,arguments)};var _mpd_same_quantum=Module["_mpd_same_quantum"]=function(){return(_mpd_same_quantum=Module["_mpd_same_quantum"]=Module["asm"]["mpd_same_quantum"]).apply(null,arguments)};var _mpd_qand=Module["_mpd_qand"]=function(){return(_mpd_qand=Module["_mpd_qand"]=Module["asm"]["mpd_qand"]).apply(null,arguments)};var _mpd_qor=Module["_mpd_qor"]=function(){return(_mpd_qor=Module["_mpd_qor"]=Module["asm"]["mpd_qor"]).apply(null,arguments)};var _mpd_qxor=Module["_mpd_qxor"]=function(){return(_mpd_qxor=Module["_mpd_qxor"]=Module["asm"]["mpd_qxor"]).apply(null,arguments)};var _mpd_qrotate=Module["_mpd_qrotate"]=function(){return(_mpd_qrotate=Module["_mpd_qrotate"]=Module["asm"]["mpd_qrotate"]).apply(null,arguments)};var _mpd_qscaleb=Module["_mpd_qscaleb"]=function(){return(_mpd_qscaleb=Module["_mpd_qscaleb"]=Module["asm"]["mpd_qscaleb"]).apply(null,arguments)};var _mpd_qshift=Module["_mpd_qshift"]=function(){return(_mpd_qshift=Module["_mpd_qshift"]=Module["asm"]["mpd_qshift"]).apply(null,arguments)};var _mpd_sign=Module["_mpd_sign"]=function(){return(_mpd_sign=Module["_mpd_sign"]=Module["asm"]["mpd_sign"]).apply(null,arguments)};var _mpd_clear_flags=Module["_mpd_clear_flags"]=function(){return(_mpd_clear_flags=Module["_mpd_clear_flags"]=Module["asm"]["mpd_clear_flags"]).apply(null,arguments)};var _mpd_parse_fmt_str=Module["_mpd_parse_fmt_str"]=function(){return(_mpd_parse_fmt_str=Module["_mpd_parse_fmt_str"]=Module["asm"]["mpd_parse_fmt_str"]).apply(null,arguments)};var _mpd_validate_lconv=Module["_mpd_validate_lconv"]=function(){return(_mpd_validate_lconv=Module["_mpd_validate_lconv"]=Module["asm"]["mpd_validate_lconv"]).apply(null,arguments)};var _mpd_qformat_spec=Module["_mpd_qformat_spec"]=function(){return(_mpd_qformat_spec=Module["_mpd_qformat_spec"]=Module["asm"]["mpd_qformat_spec"]).apply(null,arguments)};var _mpd_isdynamic_data=Module["_mpd_isdynamic_data"]=function(){return(_mpd_isdynamic_data=Module["_mpd_isdynamic_data"]=Module["asm"]["mpd_isdynamic_data"]).apply(null,arguments)};var _mpd_qset_string=Module["_mpd_qset_string"]=function(){return(_mpd_qset_string=Module["_mpd_qset_string"]=Module["asm"]["mpd_qset_string"]).apply(null,arguments)};var _snprintf=Module["_snprintf"]=function(){return(_snprintf=Module["_snprintf"]=Module["asm"]["snprintf"]).apply(null,arguments)};var _mpd_lsnprint_signals=Module["_mpd_lsnprint_signals"]=function(){return(_mpd_lsnprint_signals=Module["_mpd_lsnprint_signals"]=Module["asm"]["mpd_lsnprint_signals"]).apply(null,arguments)};var _mpd_qsettraps=Module["_mpd_qsettraps"]=function(){return(_mpd_qsettraps=Module["_mpd_qsettraps"]=Module["asm"]["mpd_qsettraps"]).apply(null,arguments)};var _mpd_qsetstatus=Module["_mpd_qsetstatus"]=function(){return(_mpd_qsetstatus=Module["_mpd_qsetstatus"]=Module["asm"]["mpd_qsetstatus"]).apply(null,arguments)};var _mpd_qsetprec=Module["_mpd_qsetprec"]=function(){return(_mpd_qsetprec=Module["_mpd_qsetprec"]=Module["asm"]["mpd_qsetprec"]).apply(null,arguments)};var _mpd_qsetemin=Module["_mpd_qsetemin"]=function(){return(_mpd_qsetemin=Module["_mpd_qsetemin"]=Module["asm"]["mpd_qsetemin"]).apply(null,arguments)};var _mpd_qsetemax=Module["_mpd_qsetemax"]=function(){return(_mpd_qsetemax=Module["_mpd_qsetemax"]=Module["asm"]["mpd_qsetemax"]).apply(null,arguments)};var _mpd_qsetclamp=Module["_mpd_qsetclamp"]=function(){return(_mpd_qsetclamp=Module["_mpd_qsetclamp"]=Module["asm"]["mpd_qsetclamp"]).apply(null,arguments)};var _mpd_etiny=Module["_mpd_etiny"]=function(){return(_mpd_etiny=Module["_mpd_etiny"]=Module["asm"]["mpd_etiny"]).apply(null,arguments)};var _mpd_etop=Module["_mpd_etop"]=function(){return(_mpd_etop=Module["_mpd_etop"]=Module["asm"]["mpd_etop"]).apply(null,arguments)};var _mpd_getprec=Module["_mpd_getprec"]=function(){return(_mpd_getprec=Module["_mpd_getprec"]=Module["asm"]["mpd_getprec"]).apply(null,arguments)};var _mpd_getemax=Module["_mpd_getemax"]=function(){return(_mpd_getemax=Module["_mpd_getemax"]=Module["asm"]["mpd_getemax"]).apply(null,arguments)};var _mpd_getemin=Module["_mpd_getemin"]=function(){return(_mpd_getemin=Module["_mpd_getemin"]=Module["asm"]["mpd_getemin"]).apply(null,arguments)};var _mpd_getround=Module["_mpd_getround"]=function(){return(_mpd_getround=Module["_mpd_getround"]=Module["asm"]["mpd_getround"]).apply(null,arguments)};var _mpd_getclamp=Module["_mpd_getclamp"]=function(){return(_mpd_getclamp=Module["_mpd_getclamp"]=Module["asm"]["mpd_getclamp"]).apply(null,arguments)};var __mpd_baseadd=Module["__mpd_baseadd"]=function(){return(__mpd_baseadd=Module["__mpd_baseadd"]=Module["asm"]["_mpd_baseadd"]).apply(null,arguments)};var __mpd_baseaddto=Module["__mpd_baseaddto"]=function(){return(__mpd_baseaddto=Module["__mpd_baseaddto"]=Module["asm"]["_mpd_baseaddto"]).apply(null,arguments)};var __mpd_shortadd=Module["__mpd_shortadd"]=function(){return(__mpd_shortadd=Module["__mpd_shortadd"]=Module["asm"]["_mpd_shortadd"]).apply(null,arguments)};var __mpd_baseincr=Module["__mpd_baseincr"]=function(){return(__mpd_baseincr=Module["__mpd_baseincr"]=Module["asm"]["_mpd_baseincr"]).apply(null,arguments)};var __mpd_basesub=Module["__mpd_basesub"]=function(){return(__mpd_basesub=Module["__mpd_basesub"]=Module["asm"]["_mpd_basesub"]).apply(null,arguments)};var __mpd_basesubfrom=Module["__mpd_basesubfrom"]=function(){return(__mpd_basesubfrom=Module["__mpd_basesubfrom"]=Module["asm"]["_mpd_basesubfrom"]).apply(null,arguments)};var __mpd_shortmul=Module["__mpd_shortmul"]=function(){return(__mpd_shortmul=Module["__mpd_shortmul"]=Module["asm"]["_mpd_shortmul"]).apply(null,arguments)};var __mpd_basemul=Module["__mpd_basemul"]=function(){return(__mpd_basemul=Module["__mpd_basemul"]=Module["asm"]["_mpd_basemul"]).apply(null,arguments)};var __mpd_shortdiv=Module["__mpd_shortdiv"]=function(){return(__mpd_shortdiv=Module["__mpd_shortdiv"]=Module["asm"]["_mpd_shortdiv"]).apply(null,arguments)};var __mpd_basedivmod=Module["__mpd_basedivmod"]=function(){return(__mpd_basedivmod=Module["__mpd_basedivmod"]=Module["asm"]["_mpd_basedivmod"]).apply(null,arguments)};var _mpd_alloc=Module["_mpd_alloc"]=function(){return(_mpd_alloc=Module["_mpd_alloc"]=Module["asm"]["mpd_alloc"]).apply(null,arguments)};var __mpd_baseshiftl=Module["__mpd_baseshiftl"]=function(){return(__mpd_baseshiftl=Module["__mpd_baseshiftl"]=Module["asm"]["_mpd_baseshiftl"]).apply(null,arguments)};var _mpd_uint_zero=Module["_mpd_uint_zero"]=function(){return(_mpd_uint_zero=Module["_mpd_uint_zero"]=Module["asm"]["mpd_uint_zero"]).apply(null,arguments)};var __mpd_baseshiftr=Module["__mpd_baseshiftr"]=function(){return(__mpd_baseshiftr=Module["__mpd_baseshiftr"]=Module["asm"]["_mpd_baseshiftr"]).apply(null,arguments)};var __mpd_shortadd_b=Module["__mpd_shortadd_b"]=function(){return(__mpd_shortadd_b=Module["__mpd_shortadd_b"]=Module["asm"]["_mpd_shortadd_b"]).apply(null,arguments)};var __mpd_shortmul_c=Module["__mpd_shortmul_c"]=function(){return(__mpd_shortmul_c=Module["__mpd_shortmul_c"]=Module["asm"]["_mpd_shortmul_c"]).apply(null,arguments)};var __mpd_shortmul_b=Module["__mpd_shortmul_b"]=function(){return(__mpd_shortmul_b=Module["__mpd_shortmul_b"]=Module["asm"]["_mpd_shortmul_b"]).apply(null,arguments)};var __mpd_shortdiv_b=Module["__mpd_shortdiv_b"]=function(){return(__mpd_shortdiv_b=Module["__mpd_shortdiv_b"]=Module["asm"]["_mpd_shortdiv_b"]).apply(null,arguments)};var _mpd_dflt_traphandler=Module["_mpd_dflt_traphandler"]=function(){return(_mpd_dflt_traphandler=Module["_mpd_dflt_traphandler"]=Module["asm"]["mpd_dflt_traphandler"]).apply(null,arguments)};var _mpd_init=Module["_mpd_init"]=function(){return(_mpd_init=Module["_mpd_init"]=Module["asm"]["mpd_init"]).apply(null,arguments)};var _mpd_defaultcontext=Module["_mpd_defaultcontext"]=function(){return(_mpd_defaultcontext=Module["_mpd_defaultcontext"]=Module["asm"]["mpd_defaultcontext"]).apply(null,arguments)};var _mpd_addstatus_raise=Module["_mpd_addstatus_raise"]=function(){return(_mpd_addstatus_raise=Module["_mpd_addstatus_raise"]=Module["asm"]["mpd_addstatus_raise"]).apply(null,arguments)};var _mpd_basiccontext=Module["_mpd_basiccontext"]=function(){return(_mpd_basiccontext=Module["_mpd_basiccontext"]=Module["asm"]["mpd_basiccontext"]).apply(null,arguments)};var _mpd_ieee_context=Module["_mpd_ieee_context"]=function(){return(_mpd_ieee_context=Module["_mpd_ieee_context"]=Module["asm"]["mpd_ieee_context"]).apply(null,arguments)};var _mpd_gettraps=Module["_mpd_gettraps"]=function(){return(_mpd_gettraps=Module["_mpd_gettraps"]=Module["asm"]["mpd_gettraps"]).apply(null,arguments)};var _mpd_getstatus=Module["_mpd_getstatus"]=function(){return(_mpd_getstatus=Module["_mpd_getstatus"]=Module["asm"]["mpd_getstatus"]).apply(null,arguments)};var _mpd_getcr=Module["_mpd_getcr"]=function(){return(_mpd_getcr=Module["_mpd_getcr"]=Module["asm"]["mpd_getcr"]).apply(null,arguments)};var _mpd_qsetcr=Module["_mpd_qsetcr"]=function(){return(_mpd_qsetcr=Module["_mpd_qsetcr"]=Module["asm"]["mpd_qsetcr"]).apply(null,arguments)};var _fnt_convolute=Module["_fnt_convolute"]=function(){return(_fnt_convolute=Module["_fnt_convolute"]=Module["asm"]["fnt_convolute"]).apply(null,arguments)};var _std_inv_fnt=Module["_std_inv_fnt"]=function(){return(_std_inv_fnt=Module["_std_inv_fnt"]=Module["asm"]["std_inv_fnt"]).apply(null,arguments)};var _inv_six_step_fnt=Module["_inv_six_step_fnt"]=function(){return(_inv_six_step_fnt=Module["_inv_six_step_fnt"]=Module["asm"]["inv_six_step_fnt"]).apply(null,arguments)};var _inv_four_step_fnt=Module["_inv_four_step_fnt"]=function(){return(_inv_four_step_fnt=Module["_inv_four_step_fnt"]=Module["asm"]["inv_four_step_fnt"]).apply(null,arguments)};var _std_fnt=Module["_std_fnt"]=function(){return(_std_fnt=Module["_std_fnt"]=Module["asm"]["std_fnt"]).apply(null,arguments)};var _six_step_fnt=Module["_six_step_fnt"]=function(){return(_six_step_fnt=Module["_six_step_fnt"]=Module["asm"]["six_step_fnt"]).apply(null,arguments)};var _four_step_fnt=Module["_four_step_fnt"]=function(){return(_four_step_fnt=Module["_four_step_fnt"]=Module["asm"]["four_step_fnt"]).apply(null,arguments)};var _fnt_autoconvolute=Module["_fnt_autoconvolute"]=function(){return(_fnt_autoconvolute=Module["_fnt_autoconvolute"]=Module["asm"]["fnt_autoconvolute"]).apply(null,arguments)};var _crt3=Module["_crt3"]=function(){return(_crt3=Module["_crt3"]=Module["asm"]["crt3"]).apply(null,arguments)};var _fnt_dif2=Module["_fnt_dif2"]=function(){return(_fnt_dif2=Module["_fnt_dif2"]=Module["asm"]["fnt_dif2"]).apply(null,arguments)};var __mpd_init_fnt_params=Module["__mpd_init_fnt_params"]=function(){return(__mpd_init_fnt_params=Module["__mpd_init_fnt_params"]=Module["asm"]["_mpd_init_fnt_params"]).apply(null,arguments)};var __mpd_init_w3table=Module["__mpd_init_w3table"]=function(){return(__mpd_init_w3table=Module["__mpd_init_w3table"]=Module["asm"]["_mpd_init_w3table"]).apply(null,arguments)};var __mpd_getkernel=Module["__mpd_getkernel"]=function(){return(__mpd_getkernel=Module["__mpd_getkernel"]=Module["asm"]["_mpd_getkernel"]).apply(null,arguments)};var _mpd_set_negative=Module["_mpd_set_negative"]=function(){return(_mpd_set_negative=Module["_mpd_set_negative"]=Module["asm"]["mpd_set_negative"]).apply(null,arguments)};var _mpd_qresize=Module["_mpd_qresize"]=function(){return(_mpd_qresize=Module["_mpd_qresize"]=Module["asm"]["mpd_qresize"]).apply(null,arguments)};var _mpd_qset_string_exact=Module["_mpd_qset_string_exact"]=function(){return(_mpd_qset_string_exact=Module["_mpd_qset_string_exact"]=Module["asm"]["mpd_qset_string_exact"]).apply(null,arguments)};var _mpd_msword=Module["_mpd_msword"]=function(){return(_mpd_msword=Module["_mpd_msword"]=Module["asm"]["mpd_msword"]).apply(null,arguments)};var _mpd_word_digits=Module["_mpd_word_digits"]=function(){return(_mpd_word_digits=Module["_mpd_word_digits"]=Module["asm"]["mpd_word_digits"]).apply(null,arguments)};var _mpd_to_eng=Module["_mpd_to_eng"]=function(){return(_mpd_to_eng=Module["_mpd_to_eng"]=Module["asm"]["mpd_to_eng"]).apply(null,arguments)};var _isupper=Module["_isupper"]=function(){return(_isupper=Module["_isupper"]=Module["asm"]["isupper"]).apply(null,arguments)};var _mpd_qrescale_fmt=Module["_mpd_qrescale_fmt"]=function(){return(_mpd_qrescale_fmt=Module["_mpd_qrescale_fmt"]=Module["asm"]["mpd_qrescale_fmt"]).apply(null,arguments)};var _mpd_qrescale=Module["_mpd_qrescale"]=function(){return(_mpd_qrescale=Module["_mpd_qrescale"]=Module["asm"]["mpd_qrescale"]).apply(null,arguments)};var _mpd_realloc=Module["_mpd_realloc"]=function(){return(_mpd_realloc=Module["_mpd_realloc"]=Module["asm"]["mpd_realloc"]).apply(null,arguments)};var _mpd_qformat=Module["_mpd_qformat"]=function(){return(_mpd_qformat=Module["_mpd_qformat"]=Module["asm"]["mpd_qformat"]).apply(null,arguments)};var _mpd_snprint_flags=Module["_mpd_snprint_flags"]=function(){return(_mpd_snprint_flags=Module["_mpd_snprint_flags"]=Module["asm"]["mpd_snprint_flags"]).apply(null,arguments)};var _mpd_lsnprint_flags=Module["_mpd_lsnprint_flags"]=function(){return(_mpd_lsnprint_flags=Module["_mpd_lsnprint_flags"]=Module["asm"]["mpd_lsnprint_flags"]).apply(null,arguments)};var _mpd_fprint=Module["_mpd_fprint"]=function(){return(_mpd_fprint=Module["_mpd_fprint"]=Module["asm"]["mpd_fprint"]).apply(null,arguments)};var _mpd_print=Module["_mpd_print"]=function(){return(_mpd_print=Module["_mpd_print"]=Module["asm"]["mpd_print"]).apply(null,arguments)};var _mpd_calloc=Module["_mpd_calloc"]=function(){return(_mpd_calloc=Module["_mpd_calloc"]=Module["asm"]["mpd_calloc"]).apply(null,arguments)};var _mpd_sh_alloc=Module["_mpd_sh_alloc"]=function(){return(_mpd_sh_alloc=Module["_mpd_sh_alloc"]=Module["asm"]["mpd_sh_alloc"]).apply(null,arguments)};var _mpd_qnew_size=Module["_mpd_qnew_size"]=function(){return(_mpd_qnew_size=Module["_mpd_qnew_size"]=Module["asm"]["mpd_qnew_size"]).apply(null,arguments)};var _mpd_new=Module["_mpd_new"]=function(){return(_mpd_new=Module["_mpd_new"]=Module["asm"]["mpd_new"]).apply(null,arguments)};var _mpd_switch_to_dyn=Module["_mpd_switch_to_dyn"]=function(){return(_mpd_switch_to_dyn=Module["_mpd_switch_to_dyn"]=Module["asm"]["mpd_switch_to_dyn"]).apply(null,arguments)};var _mpd_set_qnan=Module["_mpd_set_qnan"]=function(){return(_mpd_set_qnan=Module["_mpd_set_qnan"]=Module["asm"]["mpd_set_qnan"]).apply(null,arguments)};var _mpd_set_dynamic_data=Module["_mpd_set_dynamic_data"]=function(){return(_mpd_set_dynamic_data=Module["_mpd_set_dynamic_data"]=Module["asm"]["mpd_set_dynamic_data"]).apply(null,arguments)};var _mpd_switch_to_dyn_zero=Module["_mpd_switch_to_dyn_zero"]=function(){return(_mpd_switch_to_dyn_zero=Module["_mpd_switch_to_dyn_zero"]=Module["asm"]["mpd_switch_to_dyn_zero"]).apply(null,arguments)};var _mpd_realloc_dyn=Module["_mpd_realloc_dyn"]=function(){return(_mpd_realloc_dyn=Module["_mpd_realloc_dyn"]=Module["asm"]["mpd_realloc_dyn"]).apply(null,arguments)};var _mpd_switch_to_dyn_cxx=Module["_mpd_switch_to_dyn_cxx"]=function(){return(_mpd_switch_to_dyn_cxx=Module["_mpd_switch_to_dyn_cxx"]=Module["asm"]["mpd_switch_to_dyn_cxx"]).apply(null,arguments)};var _mpd_realloc_dyn_cxx=Module["_mpd_realloc_dyn_cxx"]=function(){return(_mpd_realloc_dyn_cxx=Module["_mpd_realloc_dyn_cxx"]=Module["asm"]["mpd_realloc_dyn_cxx"]).apply(null,arguments)};var _mpd_msd=Module["_mpd_msd"]=function(){return(_mpd_msd=Module["_mpd_msd"]=Module["asm"]["mpd_msd"]).apply(null,arguments)};var _mpd_lsd=Module["_mpd_lsd"]=function(){return(_mpd_lsd=Module["_mpd_lsd"]=Module["asm"]["mpd_lsd"]).apply(null,arguments)};var _mpd_digits_to_size=Module["_mpd_digits_to_size"]=function(){return(_mpd_digits_to_size=Module["_mpd_digits_to_size"]=Module["asm"]["mpd_digits_to_size"]).apply(null,arguments)};var _mpd_exp_digits=Module["_mpd_exp_digits"]=function(){return(_mpd_exp_digits=Module["_mpd_exp_digits"]=Module["asm"]["mpd_exp_digits"]).apply(null,arguments)};var _mpd_iszerocoeff=Module["_mpd_iszerocoeff"]=function(){return(_mpd_iszerocoeff=Module["_mpd_iszerocoeff"]=Module["asm"]["mpd_iszerocoeff"]).apply(null,arguments)};var _mpd_isoddword=Module["_mpd_isoddword"]=function(){return(_mpd_isoddword=Module["_mpd_isoddword"]=Module["asm"]["mpd_isoddword"]).apply(null,arguments)};var _mpd_isoddcoeff=Module["_mpd_isoddcoeff"]=function(){return(_mpd_isoddcoeff=Module["_mpd_isoddcoeff"]=Module["asm"]["mpd_isoddcoeff"]).apply(null,arguments)};var _mpd_radix=Module["_mpd_radix"]=function(){return(_mpd_radix=Module["_mpd_radix"]=Module["asm"]["mpd_radix"]).apply(null,arguments)};var _mpd_isdynamic=Module["_mpd_isdynamic"]=function(){return(_mpd_isdynamic=Module["_mpd_isdynamic"]=Module["asm"]["mpd_isdynamic"]).apply(null,arguments)};var _mpd_isstatic=Module["_mpd_isstatic"]=function(){return(_mpd_isstatic=Module["_mpd_isstatic"]=Module["asm"]["mpd_isstatic"]).apply(null,arguments)};var _mpd_isstatic_data=Module["_mpd_isstatic_data"]=function(){return(_mpd_isstatic_data=Module["_mpd_isstatic_data"]=Module["asm"]["mpd_isstatic_data"]).apply(null,arguments)};var _mpd_isshared_data=Module["_mpd_isshared_data"]=function(){return(_mpd_isshared_data=Module["_mpd_isshared_data"]=Module["asm"]["mpd_isshared_data"]).apply(null,arguments)};var _mpd_isconst_data=Module["_mpd_isconst_data"]=function(){return(_mpd_isconst_data=Module["_mpd_isconst_data"]=Module["asm"]["mpd_isconst_data"]).apply(null,arguments)};var _mpd_qresize_zero=Module["_mpd_qresize_zero"]=function(){return(_mpd_qresize_zero=Module["_mpd_qresize_zero"]=Module["asm"]["mpd_qresize_zero"]).apply(null,arguments)};var _mpd_minalloc=Module["_mpd_minalloc"]=function(){return(_mpd_minalloc=Module["_mpd_minalloc"]=Module["asm"]["mpd_minalloc"]).apply(null,arguments)};var _mpd_resize=Module["_mpd_resize"]=function(){return(_mpd_resize=Module["_mpd_resize"]=Module["asm"]["mpd_resize"]).apply(null,arguments)};var _mpd_resize_zero=Module["_mpd_resize_zero"]=function(){return(_mpd_resize_zero=Module["_mpd_resize_zero"]=Module["asm"]["mpd_resize_zero"]).apply(null,arguments)};var _mpd_signcpy=Module["_mpd_signcpy"]=function(){return(_mpd_signcpy=Module["_mpd_signcpy"]=Module["asm"]["mpd_signcpy"]).apply(null,arguments)};var _mpd_set_infinity=Module["_mpd_set_infinity"]=function(){return(_mpd_set_infinity=Module["_mpd_set_infinity"]=Module["asm"]["mpd_set_infinity"]).apply(null,arguments)};var _mpd_set_snan=Module["_mpd_set_snan"]=function(){return(_mpd_set_snan=Module["_mpd_set_snan"]=Module["asm"]["mpd_set_snan"]).apply(null,arguments)};var _mpd_set_dynamic=Module["_mpd_set_dynamic"]=function(){return(_mpd_set_dynamic=Module["_mpd_set_dynamic"]=Module["asm"]["mpd_set_dynamic"]).apply(null,arguments)};var _mpd_set_static=Module["_mpd_set_static"]=function(){return(_mpd_set_static=Module["_mpd_set_static"]=Module["asm"]["mpd_set_static"]).apply(null,arguments)};var _mpd_set_static_data=Module["_mpd_set_static_data"]=function(){return(_mpd_set_static_data=Module["_mpd_set_static_data"]=Module["asm"]["mpd_set_static_data"]).apply(null,arguments)};var _mpd_set_shared_data=Module["_mpd_set_shared_data"]=function(){return(_mpd_set_shared_data=Module["_mpd_set_shared_data"]=Module["asm"]["mpd_set_shared_data"]).apply(null,arguments)};var _mpd_set_const_data=Module["_mpd_set_const_data"]=function(){return(_mpd_set_const_data=Module["_mpd_set_const_data"]=Module["asm"]["mpd_set_const_data"]).apply(null,arguments)};var _mpd_copy_flags=Module["_mpd_copy_flags"]=function(){return(_mpd_copy_flags=Module["_mpd_copy_flags"]=Module["asm"]["mpd_copy_flags"]).apply(null,arguments)};var _mpd_zerocoeff=Module["_mpd_zerocoeff"]=function(){return(_mpd_zerocoeff=Module["_mpd_zerocoeff"]=Module["asm"]["mpd_zerocoeff"]).apply(null,arguments)};var _mpd_qmaxcoeff=Module["_mpd_qmaxcoeff"]=function(){return(_mpd_qmaxcoeff=Module["_mpd_qmaxcoeff"]=Module["asm"]["mpd_qmaxcoeff"]).apply(null,arguments)};var _mpd_trail_zeros=Module["_mpd_trail_zeros"]=function(){return(_mpd_trail_zeros=Module["_mpd_trail_zeros"]=Module["asm"]["mpd_trail_zeros"]).apply(null,arguments)};var _mpd_isinteger=Module["_mpd_isinteger"]=function(){return(_mpd_isinteger=Module["_mpd_isinteger"]=Module["asm"]["mpd_isinteger"]).apply(null,arguments)};var _mpd_isodd=Module["_mpd_isodd"]=function(){return(_mpd_isodd=Module["_mpd_isodd"]=Module["asm"]["mpd_isodd"]).apply(null,arguments)};var _mpd_iseven=Module["_mpd_iseven"]=function(){return(_mpd_iseven=Module["_mpd_iseven"]=Module["asm"]["mpd_iseven"]).apply(null,arguments)};var _mpd_qshiftr_inplace=Module["_mpd_qshiftr_inplace"]=function(){return(_mpd_qshiftr_inplace=Module["_mpd_qshiftr_inplace"]=Module["asm"]["mpd_qshiftr_inplace"]).apply(null,arguments)};var _mpd_qsset_uint=Module["_mpd_qsset_uint"]=function(){return(_mpd_qsset_uint=Module["_mpd_qsset_uint"]=Module["asm"]["mpd_qsset_uint"]).apply(null,arguments)};var _mpd_qsset_i32=Module["_mpd_qsset_i32"]=function(){return(_mpd_qsset_i32=Module["_mpd_qsset_i32"]=Module["asm"]["mpd_qsset_i32"]).apply(null,arguments)};var _mpd_qsset_u32=Module["_mpd_qsset_u32"]=function(){return(_mpd_qsset_u32=Module["_mpd_qsset_u32"]=Module["asm"]["mpd_qsset_u32"]).apply(null,arguments)};var _mpd_qset_i32=Module["_mpd_qset_i32"]=function(){return(_mpd_qset_i32=Module["_mpd_qset_i32"]=Module["asm"]["mpd_qset_i32"]).apply(null,arguments)};var _mpd_qset_u32=Module["_mpd_qset_u32"]=function(){return(_mpd_qset_u32=Module["_mpd_qset_u32"]=Module["asm"]["mpd_qset_u32"]).apply(null,arguments)};var _mpd_qset_i64=Module["_mpd_qset_i64"]=function(){return(_mpd_qset_i64=Module["_mpd_qset_i64"]=Module["asm"]["mpd_qset_i64"]).apply(null,arguments)};var _mpd_qset_i64_exact=Module["_mpd_qset_i64_exact"]=function(){return(_mpd_qset_i64_exact=Module["_mpd_qset_i64_exact"]=Module["asm"]["mpd_qset_i64_exact"]).apply(null,arguments)};var _mpd_qset_u64=Module["_mpd_qset_u64"]=function(){return(_mpd_qset_u64=Module["_mpd_qset_u64"]=Module["asm"]["mpd_qset_u64"]).apply(null,arguments)};var _mpd_qset_u64_exact=Module["_mpd_qset_u64_exact"]=function(){return(_mpd_qset_u64_exact=Module["_mpd_qset_u64_exact"]=Module["asm"]["mpd_qset_u64_exact"]).apply(null,arguments)};var _mpd_qget_uint=Module["_mpd_qget_uint"]=function(){return(_mpd_qget_uint=Module["_mpd_qget_uint"]=Module["asm"]["mpd_qget_uint"]).apply(null,arguments)};var _mpd_qabs_uint=Module["_mpd_qabs_uint"]=function(){return(_mpd_qabs_uint=Module["_mpd_qabs_uint"]=Module["asm"]["mpd_qabs_uint"]).apply(null,arguments)};var _mpd_qget_u64=Module["_mpd_qget_u64"]=function(){return(_mpd_qget_u64=Module["_mpd_qget_u64"]=Module["asm"]["mpd_qget_u64"]).apply(null,arguments)};var _mpd_qget_i64=Module["_mpd_qget_i64"]=function(){return(_mpd_qget_i64=Module["_mpd_qget_i64"]=Module["asm"]["mpd_qget_i64"]).apply(null,arguments)};var _mpd_qget_u32=Module["_mpd_qget_u32"]=function(){return(_mpd_qget_u32=Module["_mpd_qget_u32"]=Module["asm"]["mpd_qget_u32"]).apply(null,arguments)};var _mpd_qget_i32=Module["_mpd_qget_i32"]=function(){return(_mpd_qget_i32=Module["_mpd_qget_i32"]=Module["asm"]["mpd_qget_i32"]).apply(null,arguments)};var _mpd_qcheck_nan=Module["_mpd_qcheck_nan"]=function(){return(_mpd_qcheck_nan=Module["_mpd_qcheck_nan"]=Module["asm"]["mpd_qcheck_nan"]).apply(null,arguments)};var _mpd_qcheck_nans=Module["_mpd_qcheck_nans"]=function(){return(_mpd_qcheck_nans=Module["_mpd_qcheck_nans"]=Module["asm"]["mpd_qcheck_nans"]).apply(null,arguments)};var _mpd_qshiftl=Module["_mpd_qshiftl"]=function(){return(_mpd_qshiftl=Module["_mpd_qshiftl"]=Module["asm"]["mpd_qshiftl"]).apply(null,arguments)};var _mpd_qcopy_cxx=Module["_mpd_qcopy_cxx"]=function(){return(_mpd_qcopy_cxx=Module["_mpd_qcopy_cxx"]=Module["asm"]["mpd_qcopy_cxx"]).apply(null,arguments)};var _mpd_cmp_total=Module["_mpd_cmp_total"]=function(){return(_mpd_cmp_total=Module["_mpd_cmp_total"]=Module["asm"]["mpd_cmp_total"]).apply(null,arguments)};var _mpd_cmp_total_mag=Module["_mpd_cmp_total_mag"]=function(){return(_mpd_cmp_total_mag=Module["_mpd_cmp_total_mag"]=Module["asm"]["mpd_cmp_total_mag"]).apply(null,arguments)};var _mpd_qshiftr=Module["_mpd_qshiftr"]=function(){return(_mpd_qshiftr=Module["_mpd_qshiftr"]=Module["asm"]["mpd_qshiftr"]).apply(null,arguments)};var _mpd_qshiftn=Module["_mpd_qshiftn"]=function(){return(_mpd_qshiftn=Module["_mpd_qshiftn"]=Module["asm"]["mpd_qshiftn"]).apply(null,arguments)};var _mpd_qadd_ssize=Module["_mpd_qadd_ssize"]=function(){return(_mpd_qadd_ssize=Module["_mpd_qadd_ssize"]=Module["asm"]["mpd_qadd_ssize"]).apply(null,arguments)};var _mpd_qadd_uint=Module["_mpd_qadd_uint"]=function(){return(_mpd_qadd_uint=Module["_mpd_qadd_uint"]=Module["asm"]["mpd_qadd_uint"]).apply(null,arguments)};var _mpd_qsub_ssize=Module["_mpd_qsub_ssize"]=function(){return(_mpd_qsub_ssize=Module["_mpd_qsub_ssize"]=Module["asm"]["mpd_qsub_ssize"]).apply(null,arguments)};var _mpd_qsub_uint=Module["_mpd_qsub_uint"]=function(){return(_mpd_qsub_uint=Module["_mpd_qsub_uint"]=Module["asm"]["mpd_qsub_uint"]).apply(null,arguments)};var _mpd_qadd_i32=Module["_mpd_qadd_i32"]=function(){return(_mpd_qadd_i32=Module["_mpd_qadd_i32"]=Module["asm"]["mpd_qadd_i32"]).apply(null,arguments)};var _mpd_qadd_u32=Module["_mpd_qadd_u32"]=function(){return(_mpd_qadd_u32=Module["_mpd_qadd_u32"]=Module["asm"]["mpd_qadd_u32"]).apply(null,arguments)};var _mpd_qadd_i64=Module["_mpd_qadd_i64"]=function(){return(_mpd_qadd_i64=Module["_mpd_qadd_i64"]=Module["asm"]["mpd_qadd_i64"]).apply(null,arguments)};var _mpd_qadd_u64=Module["_mpd_qadd_u64"]=function(){return(_mpd_qadd_u64=Module["_mpd_qadd_u64"]=Module["asm"]["mpd_qadd_u64"]).apply(null,arguments)};var _mpd_qsub_i32=Module["_mpd_qsub_i32"]=function(){return(_mpd_qsub_i32=Module["_mpd_qsub_i32"]=Module["asm"]["mpd_qsub_i32"]).apply(null,arguments)};var _mpd_qsub_u32=Module["_mpd_qsub_u32"]=function(){return(_mpd_qsub_u32=Module["_mpd_qsub_u32"]=Module["asm"]["mpd_qsub_u32"]).apply(null,arguments)};var _mpd_qsub_i64=Module["_mpd_qsub_i64"]=function(){return(_mpd_qsub_i64=Module["_mpd_qsub_i64"]=Module["asm"]["mpd_qsub_i64"]).apply(null,arguments)};var _mpd_qsub_u64=Module["_mpd_qsub_u64"]=function(){return(_mpd_qsub_u64=Module["_mpd_qsub_u64"]=Module["asm"]["mpd_qsub_u64"]).apply(null,arguments)};var _mpd_qdiv_ssize=Module["_mpd_qdiv_ssize"]=function(){return(_mpd_qdiv_ssize=Module["_mpd_qdiv_ssize"]=Module["asm"]["mpd_qdiv_ssize"]).apply(null,arguments)};var _mpd_qdiv_uint=Module["_mpd_qdiv_uint"]=function(){return(_mpd_qdiv_uint=Module["_mpd_qdiv_uint"]=Module["asm"]["mpd_qdiv_uint"]).apply(null,arguments)};var _mpd_qdiv_i32=Module["_mpd_qdiv_i32"]=function(){return(_mpd_qdiv_i32=Module["_mpd_qdiv_i32"]=Module["asm"]["mpd_qdiv_i32"]).apply(null,arguments)};var _mpd_qdiv_u32=Module["_mpd_qdiv_u32"]=function(){return(_mpd_qdiv_u32=Module["_mpd_qdiv_u32"]=Module["asm"]["mpd_qdiv_u32"]).apply(null,arguments)};var _mpd_qdiv_i64=Module["_mpd_qdiv_i64"]=function(){return(_mpd_qdiv_i64=Module["_mpd_qdiv_i64"]=Module["asm"]["mpd_qdiv_i64"]).apply(null,arguments)};var _mpd_qdiv_u64=Module["_mpd_qdiv_u64"]=function(){return(_mpd_qdiv_u64=Module["_mpd_qdiv_u64"]=Module["asm"]["mpd_qdiv_u64"]).apply(null,arguments)};var _mpd_qln10=Module["_mpd_qln10"]=function(){return(_mpd_qln10=Module["_mpd_qln10"]=Module["asm"]["mpd_qln10"]).apply(null,arguments)};var _mpd_qmul_ssize=Module["_mpd_qmul_ssize"]=function(){return(_mpd_qmul_ssize=Module["_mpd_qmul_ssize"]=Module["asm"]["mpd_qmul_ssize"]).apply(null,arguments)};var _mpd_qmul_uint=Module["_mpd_qmul_uint"]=function(){return(_mpd_qmul_uint=Module["_mpd_qmul_uint"]=Module["asm"]["mpd_qmul_uint"]).apply(null,arguments)};var _mpd_qmul_i32=Module["_mpd_qmul_i32"]=function(){return(_mpd_qmul_i32=Module["_mpd_qmul_i32"]=Module["asm"]["mpd_qmul_i32"]).apply(null,arguments)};var _mpd_qmul_u32=Module["_mpd_qmul_u32"]=function(){return(_mpd_qmul_u32=Module["_mpd_qmul_u32"]=Module["asm"]["mpd_qmul_u32"]).apply(null,arguments)};var _mpd_qmul_i64=Module["_mpd_qmul_i64"]=function(){return(_mpd_qmul_i64=Module["_mpd_qmul_i64"]=Module["asm"]["mpd_qmul_i64"]).apply(null,arguments)};var _mpd_qmul_u64=Module["_mpd_qmul_u64"]=function(){return(_mpd_qmul_u64=Module["_mpd_qmul_u64"]=Module["asm"]["mpd_qmul_u64"]).apply(null,arguments)};var _mpd_qtrunc=Module["_mpd_qtrunc"]=function(){return(_mpd_qtrunc=Module["_mpd_qtrunc"]=Module["asm"]["mpd_qtrunc"]).apply(null,arguments)};var _mpd_qfloor=Module["_mpd_qfloor"]=function(){return(_mpd_qfloor=Module["_mpd_qfloor"]=Module["asm"]["mpd_qfloor"]).apply(null,arguments)};var _mpd_qceil=Module["_mpd_qceil"]=function(){return(_mpd_qceil=Module["_mpd_qceil"]=Module["asm"]["mpd_qceil"]).apply(null,arguments)};var _mpd_qinvroot=Module["_mpd_qinvroot"]=function(){return(_mpd_qinvroot=Module["_mpd_qinvroot"]=Module["asm"]["mpd_qinvroot"]).apply(null,arguments)};var _mpd_sizeinbase=Module["_mpd_sizeinbase"]=function(){return(_mpd_sizeinbase=Module["_mpd_sizeinbase"]=Module["asm"]["mpd_sizeinbase"]).apply(null,arguments)};var _mpd_qexport_u16=Module["_mpd_qexport_u16"]=function(){return(_mpd_qexport_u16=Module["_mpd_qexport_u16"]=Module["asm"]["mpd_qexport_u16"]).apply(null,arguments)};var _mpd_qimport_u16=Module["_mpd_qimport_u16"]=function(){return(_mpd_qimport_u16=Module["_mpd_qimport_u16"]=Module["asm"]["mpd_qimport_u16"]).apply(null,arguments)};var _transpose_pow2=Module["_transpose_pow2"]=function(){return(_transpose_pow2=Module["_transpose_pow2"]=Module["asm"]["transpose_pow2"]).apply(null,arguments)};var _std_trans=Module["_std_trans"]=function(){return(_std_trans=Module["_std_trans"]=Module["asm"]["std_trans"]).apply(null,arguments)};var _munmap=Module["_munmap"]=function(){return(_munmap=Module["_munmap"]=Module["asm"]["munmap"]).apply(null,arguments)};var _mmap=Module["_mmap"]=function(){return(_mmap=Module["_mmap"]=Module["asm"]["mmap"]).apply(null,arguments)};var _msync=Module["_msync"]=function(){return(_msync=Module["_msync"]=Module["asm"]["msync"]).apply(null,arguments)};var _madvise=Module["_madvise"]=function(){return(_madvise=Module["_madvise"]=Module["asm"]["madvise"]).apply(null,arguments)};var _ftruncate=Module["_ftruncate"]=function(){return(_ftruncate=Module["_ftruncate"]=Module["asm"]["ftruncate"]).apply(null,arguments)};var _mremap=Module["_mremap"]=function(){return(_mremap=Module["_mremap"]=Module["asm"]["mremap"]).apply(null,arguments)};var __PySignal_AfterFork=Module["__PySignal_AfterFork"]=function(){return(__PySignal_AfterFork=Module["__PySignal_AfterFork"]=Module["asm"]["_PySignal_AfterFork"]).apply(null,arguments)};var _PyOS_AfterFork=Module["_PyOS_AfterFork"]=function(){return(_PyOS_AfterFork=Module["_PyOS_AfterFork"]=Module["asm"]["PyOS_AfterFork"]).apply(null,arguments)};var __PyLong_FromUid=Module["__PyLong_FromUid"]=function(){return(__PyLong_FromUid=Module["__PyLong_FromUid"]=Module["asm"]["_PyLong_FromUid"]).apply(null,arguments)};var __PyLong_FromGid=Module["__PyLong_FromGid"]=function(){return(__PyLong_FromGid=Module["__PyLong_FromGid"]=Module["asm"]["_PyLong_FromGid"]).apply(null,arguments)};var __Py_Sigset_Converter=Module["__Py_Sigset_Converter"]=function(){return(__Py_Sigset_Converter=Module["__Py_Sigset_Converter"]=Module["asm"]["_Py_Sigset_Converter"]).apply(null,arguments)};var _access=Module["_access"]=function(){return(_access=Module["_access"]=Module["asm"]["access"]).apply(null,arguments)};var _ttyname_r=Module["_ttyname_r"]=function(){return(_ttyname_r=Module["_ttyname_r"]=Module["asm"]["ttyname_r"]).apply(null,arguments)};var _fchdir=Module["_fchdir"]=function(){return(_fchdir=Module["_fchdir"]=Module["asm"]["fchdir"]).apply(null,arguments)};var _fchmod=Module["_fchmod"]=function(){return(_fchmod=Module["_fchmod"]=Module["asm"]["fchmod"]).apply(null,arguments)};var _lchmod=Module["_lchmod"]=function(){return(_lchmod=Module["_lchmod"]=Module["asm"]["lchmod"]).apply(null,arguments)};var _chmod=Module["_chmod"]=function(){return(_chmod=Module["_chmod"]=Module["asm"]["chmod"]).apply(null,arguments)};var _fchown=Module["_fchown"]=function(){return(_fchown=Module["_fchown"]=Module["asm"]["fchown"]).apply(null,arguments)};var _lchown=Module["_lchown"]=function(){return(_lchown=Module["_lchown"]=Module["asm"]["lchown"]).apply(null,arguments)};var _chown=Module["_chown"]=function(){return(_chown=Module["_chown"]=Module["asm"]["chown"]).apply(null,arguments)};var _ctermid=Module["_ctermid"]=function(){return(_ctermid=Module["_ctermid"]=Module["asm"]["ctermid"]).apply(null,arguments)};var _link=Module["_link"]=function(){return(_link=Module["_link"]=Module["asm"]["link"]).apply(null,arguments)};var _fdopendir=Module["_fdopendir"]=function(){return(_fdopendir=Module["_fdopendir"]=Module["asm"]["fdopendir"]).apply(null,arguments)};var _rewinddir=Module["_rewinddir"]=function(){return(_rewinddir=Module["_rewinddir"]=Module["asm"]["rewinddir"]).apply(null,arguments)};var _mkdir=Module["_mkdir"]=function(){return(_mkdir=Module["_mkdir"]=Module["asm"]["mkdir"]).apply(null,arguments)};var _getpriority=Module["_getpriority"]=function(){return(_getpriority=Module["_getpriority"]=Module["asm"]["getpriority"]).apply(null,arguments)};var _setpriority=Module["_setpriority"]=function(){return(_setpriority=Module["_setpriority"]=Module["asm"]["setpriority"]).apply(null,arguments)};var _unlinkat=Module["_unlinkat"]=function(){return(_unlinkat=Module["_unlinkat"]=Module["asm"]["unlinkat"]).apply(null,arguments)};var _rmdir=Module["_rmdir"]=function(){return(_rmdir=Module["_rmdir"]=Module["asm"]["rmdir"]).apply(null,arguments)};var _symlink=Module["_symlink"]=function(){return(_symlink=Module["_symlink"]=Module["asm"]["symlink"]).apply(null,arguments)};var _uname=Module["_uname"]=function(){return(_uname=Module["_uname"]=Module["asm"]["uname"]).apply(null,arguments)};var _futimesat=Module["_futimesat"]=function(){return(_futimesat=Module["_futimesat"]=Module["asm"]["futimesat"]).apply(null,arguments)};var _futimens=Module["_futimens"]=function(){return(_futimens=Module["_futimens"]=Module["asm"]["futimens"]).apply(null,arguments)};var _fexecve=Module["_fexecve"]=function(){return(_fexecve=Module["_fexecve"]=Module["asm"]["fexecve"]).apply(null,arguments)};var _sched_yield=Module["_sched_yield"]=function(){return(_sched_yield=Module["_sched_yield"]=Module["asm"]["sched_yield"]).apply(null,arguments)};var _openpty=Module["_openpty"]=function(){return(_openpty=Module["_openpty"]=Module["asm"]["openpty"]).apply(null,arguments)};var _forkpty=Module["_forkpty"]=function(){return(_forkpty=Module["_forkpty"]=Module["asm"]["forkpty"]).apply(null,arguments)};var _getegid=Module["_getegid"]=function(){return(_getegid=Module["_getegid"]=Module["asm"]["getegid"]).apply(null,arguments)};var _geteuid=Module["_geteuid"]=function(){return(_geteuid=Module["_geteuid"]=Module["asm"]["geteuid"]).apply(null,arguments)};var _getgid=Module["_getgid"]=function(){return(_getgid=Module["_getgid"]=Module["asm"]["getgid"]).apply(null,arguments)};var _getgroups=Module["_getgroups"]=function(){return(_getgroups=Module["_getgroups"]=Module["asm"]["getgroups"]).apply(null,arguments)};var _getpgrp=Module["_getpgrp"]=function(){return(_getpgrp=Module["_getpgrp"]=Module["asm"]["getpgrp"]).apply(null,arguments)};var _getppid=Module["_getppid"]=function(){return(_getppid=Module["_getppid"]=Module["asm"]["getppid"]).apply(null,arguments)};var _getuid=Module["_getuid"]=function(){return(_getuid=Module["_getuid"]=Module["asm"]["getuid"]).apply(null,arguments)};var _getlogin=Module["_getlogin"]=function(){return(_getlogin=Module["_getlogin"]=Module["asm"]["getlogin"]).apply(null,arguments)};var _setuid=Module["_setuid"]=function(){return(_setuid=Module["_setuid"]=Module["asm"]["setuid"]).apply(null,arguments)};var _seteuid=Module["_seteuid"]=function(){return(_seteuid=Module["_seteuid"]=Module["asm"]["seteuid"]).apply(null,arguments)};var _setgid=Module["_setgid"]=function(){return(_setgid=Module["_setgid"]=Module["asm"]["setgid"]).apply(null,arguments)};var _setegid=Module["_setegid"]=function(){return(_setegid=Module["_setegid"]=Module["asm"]["setegid"]).apply(null,arguments)};var _getpgid=Module["_getpgid"]=function(){return(_getpgid=Module["_getpgid"]=Module["asm"]["getpgid"]).apply(null,arguments)};var _setpgrp=Module["_setpgrp"]=function(){return(_setpgrp=Module["_setpgrp"]=Module["asm"]["setpgrp"]).apply(null,arguments)};var _wait=Module["_wait"]=function(){return(_wait=Module["_wait"]=Module["asm"]["wait"]).apply(null,arguments)};var _waitpid=Module["_waitpid"]=function(){return(_waitpid=Module["_waitpid"]=Module["asm"]["waitpid"]).apply(null,arguments)};var _getsid=Module["_getsid"]=function(){return(_getsid=Module["_getsid"]=Module["asm"]["getsid"]).apply(null,arguments)};var _setpgid=Module["_setpgid"]=function(){return(_setpgid=Module["_setpgid"]=Module["asm"]["setpgid"]).apply(null,arguments)};var _tcgetpgrp=Module["_tcgetpgrp"]=function(){return(_tcgetpgrp=Module["_tcgetpgrp"]=Module["asm"]["tcgetpgrp"]).apply(null,arguments)};var _tcsetpgrp=Module["_tcsetpgrp"]=function(){return(_tcsetpgrp=Module["_tcsetpgrp"]=Module["asm"]["tcsetpgrp"]).apply(null,arguments)};var _lockf=Module["_lockf"]=function(){return(_lockf=Module["_lockf"]=Module["asm"]["lockf"]).apply(null,arguments)};var _readv=Module["_readv"]=function(){return(_readv=Module["_readv"]=Module["asm"]["readv"]).apply(null,arguments)};var _pread=Module["_pread"]=function(){return(_pread=Module["_pread"]=Module["asm"]["pread"]).apply(null,arguments)};var _writev=Module["_writev"]=function(){return(_writev=Module["_writev"]=Module["asm"]["writev"]).apply(null,arguments)};var _pwrite=Module["_pwrite"]=function(){return(_pwrite=Module["_pwrite"]=Module["asm"]["pwrite"]).apply(null,arguments)};var _pipe=Module["_pipe"]=function(){return(_pipe=Module["_pipe"]=Module["asm"]["pipe"]).apply(null,arguments)};var _mkfifoat=Module["_mkfifoat"]=function(){return(_mkfifoat=Module["_mkfifoat"]=Module["asm"]["mkfifoat"]).apply(null,arguments)};var _mkfifo=Module["_mkfifo"]=function(){return(_mkfifo=Module["_mkfifo"]=Module["asm"]["mkfifo"]).apply(null,arguments)};var _mknodat=Module["_mknodat"]=function(){return(_mknodat=Module["_mknodat"]=Module["asm"]["mknodat"]).apply(null,arguments)};var _mknod=Module["_mknod"]=function(){return(_mknod=Module["_mknod"]=Module["asm"]["mknod"]).apply(null,arguments)};var _truncate=Module["_truncate"]=function(){return(_truncate=Module["_truncate"]=Module["asm"]["truncate"]).apply(null,arguments)};var _posix_fallocate=Module["_posix_fallocate"]=function(){return(_posix_fallocate=Module["_posix_fallocate"]=Module["asm"]["posix_fallocate"]).apply(null,arguments)};var _posix_fadvise=Module["_posix_fadvise"]=function(){return(_posix_fadvise=Module["_posix_fadvise"]=Module["asm"]["posix_fadvise"]).apply(null,arguments)};var _unsetenv=Module["_unsetenv"]=function(){return(_unsetenv=Module["_unsetenv"]=Module["asm"]["unsetenv"]).apply(null,arguments)};var _fsync=Module["_fsync"]=function(){return(_fsync=Module["_fsync"]=Module["asm"]["fsync"]).apply(null,arguments)};var _sync=Module["_sync"]=function(){return(_sync=Module["_sync"]=Module["asm"]["sync"]).apply(null,arguments)};var _fdatasync=Module["_fdatasync"]=function(){return(_fdatasync=Module["_fdatasync"]=Module["asm"]["fdatasync"]).apply(null,arguments)};var _fstatvfs=Module["_fstatvfs"]=function(){return(_fstatvfs=Module["_fstatvfs"]=Module["asm"]["fstatvfs"]).apply(null,arguments)};var _statvfs=Module["_statvfs"]=function(){return(_statvfs=Module["_statvfs"]=Module["asm"]["statvfs"]).apply(null,arguments)};var _fpathconf=Module["_fpathconf"]=function(){return(_fpathconf=Module["_fpathconf"]=Module["asm"]["fpathconf"]).apply(null,arguments)};var _pathconf=Module["_pathconf"]=function(){return(_pathconf=Module["_pathconf"]=Module["asm"]["pathconf"]).apply(null,arguments)};var _setresuid=Module["_setresuid"]=function(){return(_setresuid=Module["_setresuid"]=Module["asm"]["setresuid"]).apply(null,arguments)};var _setresgid=Module["_setresgid"]=function(){return(_setresgid=Module["_setresgid"]=Module["asm"]["setresgid"]).apply(null,arguments)};var _getresuid=Module["_getresuid"]=function(){return(_getresuid=Module["_getresuid"]=Module["asm"]["getresuid"]).apply(null,arguments)};var _getresgid=Module["_getresgid"]=function(){return(_getresgid=Module["_getresgid"]=Module["asm"]["getresgid"]).apply(null,arguments)};var _lstat=Module["_lstat"]=function(){return(_lstat=Module["_lstat"]=Module["asm"]["lstat"]).apply(null,arguments)};var _fstatat=Module["_fstatat"]=function(){return(_fstatat=Module["_fstatat"]=Module["asm"]["fstatat"]).apply(null,arguments)};var _posix_spawn_file_actions_init=Module["_posix_spawn_file_actions_init"]=function(){return(_posix_spawn_file_actions_init=Module["_posix_spawn_file_actions_init"]=Module["asm"]["posix_spawn_file_actions_init"]).apply(null,arguments)};var _posix_spawn_file_actions_addopen=Module["_posix_spawn_file_actions_addopen"]=function(){return(_posix_spawn_file_actions_addopen=Module["_posix_spawn_file_actions_addopen"]=Module["asm"]["posix_spawn_file_actions_addopen"]).apply(null,arguments)};var _posix_spawn_file_actions_addclose=Module["_posix_spawn_file_actions_addclose"]=function(){return(_posix_spawn_file_actions_addclose=Module["_posix_spawn_file_actions_addclose"]=Module["asm"]["posix_spawn_file_actions_addclose"]).apply(null,arguments)};var _posix_spawn_file_actions_adddup2=Module["_posix_spawn_file_actions_adddup2"]=function(){return(_posix_spawn_file_actions_adddup2=Module["_posix_spawn_file_actions_adddup2"]=Module["asm"]["posix_spawn_file_actions_adddup2"]).apply(null,arguments)};var _posix_spawnattr_init=Module["_posix_spawnattr_init"]=function(){return(_posix_spawnattr_init=Module["_posix_spawnattr_init"]=Module["asm"]["posix_spawnattr_init"]).apply(null,arguments)};var _posix_spawnattr_setpgroup=Module["_posix_spawnattr_setpgroup"]=function(){return(_posix_spawnattr_setpgroup=Module["_posix_spawnattr_setpgroup"]=Module["asm"]["posix_spawnattr_setpgroup"]).apply(null,arguments)};var _posix_spawnattr_setschedpolicy=Module["_posix_spawnattr_setschedpolicy"]=function(){return(_posix_spawnattr_setschedpolicy=Module["_posix_spawnattr_setschedpolicy"]=Module["asm"]["posix_spawnattr_setschedpolicy"]).apply(null,arguments)};var _posix_spawnattr_setschedparam=Module["_posix_spawnattr_setschedparam"]=function(){return(_posix_spawnattr_setschedparam=Module["_posix_spawnattr_setschedparam"]=Module["asm"]["posix_spawnattr_setschedparam"]).apply(null,arguments)};var _posix_spawnattr_setflags=Module["_posix_spawnattr_setflags"]=function(){return(_posix_spawnattr_setflags=Module["_posix_spawnattr_setflags"]=Module["asm"]["posix_spawnattr_setflags"]).apply(null,arguments)};var _posix_spawnp=Module["_posix_spawnp"]=function(){return(_posix_spawnp=Module["_posix_spawnp"]=Module["asm"]["posix_spawnp"]).apply(null,arguments)};var _posix_spawnattr_destroy=Module["_posix_spawnattr_destroy"]=function(){return(_posix_spawnattr_destroy=Module["_posix_spawnattr_destroy"]=Module["asm"]["posix_spawnattr_destroy"]).apply(null,arguments)};var _posix_spawn_file_actions_destroy=Module["_posix_spawn_file_actions_destroy"]=function(){return(_posix_spawn_file_actions_destroy=Module["_posix_spawn_file_actions_destroy"]=Module["asm"]["posix_spawn_file_actions_destroy"]).apply(null,arguments)};var _rename=Module["_rename"]=function(){return(_rename=Module["_rename"]=Module["asm"]["rename"]).apply(null,arguments)};var _unlink=Module["_unlink"]=function(){return(_unlink=Module["_unlink"]=Module["asm"]["unlink"]).apply(null,arguments)};var _isalnum=Module["_isalnum"]=function(){return(_isalnum=Module["_isalnum"]=Module["asm"]["isalnum"]).apply(null,arguments)};var _toupper=Module["_toupper"]=function(){return(_toupper=Module["_toupper"]=Module["asm"]["toupper"]).apply(null,arguments)};var _PySignal_SetWakeupFd=Module["_PySignal_SetWakeupFd"]=function(){return(_PySignal_SetWakeupFd=Module["_PySignal_SetWakeupFd"]=Module["asm"]["PySignal_SetWakeupFd"]).apply(null,arguments)};var __PyErr_CheckSignals=Module["__PyErr_CheckSignals"]=function(){return(__PyErr_CheckSignals=Module["__PyErr_CheckSignals"]=Module["asm"]["_PyErr_CheckSignals"]).apply(null,arguments)};var _PyOS_InitInterrupts=Module["_PyOS_InitInterrupts"]=function(){return(_PyOS_InitInterrupts=Module["_PyOS_InitInterrupts"]=Module["asm"]["PyOS_InitInterrupts"]).apply(null,arguments)};var _PyOS_InterruptOccurred=Module["_PyOS_InterruptOccurred"]=function(){return(_PyOS_InterruptOccurred=Module["_PyOS_InterruptOccurred"]=Module["asm"]["PyOS_InterruptOccurred"]).apply(null,arguments)};var __PyOS_IsMainThread=Module["__PyOS_IsMainThread"]=function(){return(__PyOS_IsMainThread=Module["__PyOS_IsMainThread"]=Module["asm"]["_PyOS_IsMainThread"]).apply(null,arguments)};var _strsignal=Module["_strsignal"]=function(){return(_strsignal=Module["_strsignal"]=Module["asm"]["strsignal"]).apply(null,arguments)};var _pause=Module["_pause"]=function(){return(_pause=Module["_pause"]=Module["asm"]["pause"]).apply(null,arguments)};var _clock_settime=Module["_clock_settime"]=function(){return(_clock_settime=Module["_clock_settime"]=Module["asm"]["clock_settime"]).apply(null,arguments)};var _getrusage=Module["_getrusage"]=function(){return(_getrusage=Module["_getrusage"]=Module["asm"]["getrusage"]).apply(null,arguments)};var _wcscoll=Module["_wcscoll"]=function(){return(_wcscoll=Module["_wcscoll"]=Module["asm"]["wcscoll"]).apply(null,arguments)};var _wcsxfrm=Module["_wcsxfrm"]=function(){return(_wcsxfrm=Module["_wcsxfrm"]=Module["asm"]["wcsxfrm"]).apply(null,arguments)};var _gettext=Module["_gettext"]=function(){return(_gettext=Module["_gettext"]=Module["asm"]["gettext"]).apply(null,arguments)};var _dgettext=Module["_dgettext"]=function(){return(_dgettext=Module["_dgettext"]=Module["asm"]["dgettext"]).apply(null,arguments)};var _dcgettext=Module["_dcgettext"]=function(){return(_dcgettext=Module["_dcgettext"]=Module["asm"]["dcgettext"]).apply(null,arguments)};var _textdomain=Module["_textdomain"]=function(){return(_textdomain=Module["_textdomain"]=Module["asm"]["textdomain"]).apply(null,arguments)};var _bindtextdomain=Module["_bindtextdomain"]=function(){return(_bindtextdomain=Module["_bindtextdomain"]=Module["asm"]["bindtextdomain"]).apply(null,arguments)};var _bind_textdomain_codeset=Module["_bind_textdomain_codeset"]=function(){return(_bind_textdomain_codeset=Module["_bind_textdomain_codeset"]=Module["asm"]["bind_textdomain_codeset"]).apply(null,arguments)};var _PyNumber_AsOff_t=Module["_PyNumber_AsOff_t"]=function(){return(_PyNumber_AsOff_t=Module["_PyNumber_AsOff_t"]=Module["asm"]["PyNumber_AsOff_t"]).apply(null,arguments)};var __PyIO_get_module_state=Module["__PyIO_get_module_state"]=function(){return(__PyIO_get_module_state=Module["__PyIO_get_module_state"]=Module["asm"]["_PyIO_get_module_state"]).apply(null,arguments)};var __PyIO_get_locale_module=Module["__PyIO_get_locale_module"]=function(){return(__PyIO_get_locale_module=Module["__PyIO_get_locale_module"]=Module["asm"]["_PyIO_get_locale_module"]).apply(null,arguments)};var __PyIOBase_check_closed=Module["__PyIOBase_check_closed"]=function(){return(__PyIOBase_check_closed=Module["__PyIOBase_check_closed"]=Module["asm"]["_PyIOBase_check_closed"]).apply(null,arguments)};var __PyIOBase_finalize=Module["__PyIOBase_finalize"]=function(){return(__PyIOBase_finalize=Module["__PyIOBase_finalize"]=Module["asm"]["_PyIOBase_finalize"]).apply(null,arguments)};var __PyIOBase_check_seekable=Module["__PyIOBase_check_seekable"]=function(){return(__PyIOBase_check_seekable=Module["__PyIOBase_check_seekable"]=Module["asm"]["_PyIOBase_check_seekable"]).apply(null,arguments)};var __PyIOBase_check_readable=Module["__PyIOBase_check_readable"]=function(){return(__PyIOBase_check_readable=Module["__PyIOBase_check_readable"]=Module["asm"]["_PyIOBase_check_readable"]).apply(null,arguments)};var __PyIOBase_check_writable=Module["__PyIOBase_check_writable"]=function(){return(__PyIOBase_check_writable=Module["__PyIOBase_check_writable"]=Module["asm"]["_PyIOBase_check_writable"]).apply(null,arguments)};var __PyIO_trap_eintr=Module["__PyIO_trap_eintr"]=function(){return(__PyIO_trap_eintr=Module["__PyIO_trap_eintr"]=Module["asm"]["_PyIO_trap_eintr"]).apply(null,arguments)};var __PyFileIO_closed=Module["__PyFileIO_closed"]=function(){return(__PyFileIO_closed=Module["__PyFileIO_closed"]=Module["asm"]["_PyFileIO_closed"]).apply(null,arguments)};var __PyIncrementalNewlineDecoder_decode=Module["__PyIncrementalNewlineDecoder_decode"]=function(){return(__PyIncrementalNewlineDecoder_decode=Module["__PyIncrementalNewlineDecoder_decode"]=Module["asm"]["_PyIncrementalNewlineDecoder_decode"]).apply(null,arguments)};var __PyIO_find_line_ending=Module["__PyIO_find_line_ending"]=function(){return(__PyIO_find_line_ending=Module["__PyIO_find_line_ending"]=Module["asm"]["_PyIO_find_line_ending"]).apply(null,arguments)};var _getrlimit=Module["_getrlimit"]=function(){return(_getrlimit=Module["_getrlimit"]=Module["asm"]["getrlimit"]).apply(null,arguments)};var _setrlimit=Module["_setrlimit"]=function(){return(_setrlimit=Module["_setrlimit"]=Module["asm"]["setrlimit"]).apply(null,arguments)};var _PyTraceMalloc_Track=Module["_PyTraceMalloc_Track"]=function(){return(_PyTraceMalloc_Track=Module["_PyTraceMalloc_Track"]=Module["asm"]["PyTraceMalloc_Track"]).apply(null,arguments)};var _PyTraceMalloc_Untrack=Module["_PyTraceMalloc_Untrack"]=function(){return(_PyTraceMalloc_Untrack=Module["_PyTraceMalloc_Untrack"]=Module["asm"]["PyTraceMalloc_Untrack"]).apply(null,arguments)};var __PyTraceMalloc_GetTraceback=Module["__PyTraceMalloc_GetTraceback"]=function(){return(__PyTraceMalloc_GetTraceback=Module["__PyTraceMalloc_GetTraceback"]=Module["asm"]["_PyTraceMalloc_GetTraceback"]).apply(null,arguments)};var __Py_compile_string=Module["__Py_compile_string"]=function(){return(__Py_compile_string=Module["__Py_compile_string"]=Module["asm"]["_Py_compile_string"]).apply(null,arguments)};var __Py_parse_string=Module["__Py_parse_string"]=function(){return(__Py_parse_string=Module["__Py_parse_string"]=Module["asm"]["_Py_parse_string"]).apply(null,arguments)};var _ffi_prep_cif_core=Module["_ffi_prep_cif_core"]=function(){return(_ffi_prep_cif_core=Module["_ffi_prep_cif_core"]=Module["asm"]["ffi_prep_cif_core"]).apply(null,arguments)};var _ffi_prep_cif_machdep_var=Module["_ffi_prep_cif_machdep_var"]=function(){return(_ffi_prep_cif_machdep_var=Module["_ffi_prep_cif_machdep_var"]=Module["asm"]["ffi_prep_cif_machdep_var"]).apply(null,arguments)};var _ffi_prep_cif_machdep=Module["_ffi_prep_cif_machdep"]=function(){return(_ffi_prep_cif_machdep=Module["_ffi_prep_cif_machdep"]=Module["asm"]["ffi_prep_cif_machdep"]).apply(null,arguments)};var _ffi_prep_closure=Module["_ffi_prep_closure"]=function(){return(_ffi_prep_closure=Module["_ffi_prep_closure"]=Module["asm"]["ffi_prep_closure"]).apply(null,arguments)};var _ffi_get_struct_offsets=Module["_ffi_get_struct_offsets"]=function(){return(_ffi_get_struct_offsets=Module["_ffi_get_struct_offsets"]=Module["asm"]["ffi_get_struct_offsets"]).apply(null,arguments)};var _ffi_java_raw_size=Module["_ffi_java_raw_size"]=function(){return(_ffi_java_raw_size=Module["_ffi_java_raw_size"]=Module["asm"]["ffi_java_raw_size"]).apply(null,arguments)};var _ffi_java_raw_to_ptrarray=Module["_ffi_java_raw_to_ptrarray"]=function(){return(_ffi_java_raw_to_ptrarray=Module["_ffi_java_raw_to_ptrarray"]=Module["asm"]["ffi_java_raw_to_ptrarray"]).apply(null,arguments)};var _ffi_java_ptrarray_to_raw=Module["_ffi_java_ptrarray_to_raw"]=function(){return(_ffi_java_ptrarray_to_raw=Module["_ffi_java_ptrarray_to_raw"]=Module["asm"]["ffi_java_ptrarray_to_raw"]).apply(null,arguments)};var _ffi_java_raw_call=Module["_ffi_java_raw_call"]=function(){return(_ffi_java_raw_call=Module["_ffi_java_raw_call"]=Module["asm"]["ffi_java_raw_call"]).apply(null,arguments)};var _ffi_prep_java_raw_closure_loc=Module["_ffi_prep_java_raw_closure_loc"]=function(){return(_ffi_prep_java_raw_closure_loc=Module["_ffi_prep_java_raw_closure_loc"]=Module["asm"]["ffi_prep_java_raw_closure_loc"]).apply(null,arguments)};var _ffi_prep_java_raw_closure=Module["_ffi_prep_java_raw_closure"]=function(){return(_ffi_prep_java_raw_closure=Module["_ffi_prep_java_raw_closure"]=Module["asm"]["ffi_prep_java_raw_closure"]).apply(null,arguments)};var _ffi_tramp_is_supported=Module["_ffi_tramp_is_supported"]=function(){return(_ffi_tramp_is_supported=Module["_ffi_tramp_is_supported"]=Module["asm"]["ffi_tramp_is_supported"]).apply(null,arguments)};var _ffi_tramp_alloc=Module["_ffi_tramp_alloc"]=function(){return(_ffi_tramp_alloc=Module["_ffi_tramp_alloc"]=Module["asm"]["ffi_tramp_alloc"]).apply(null,arguments)};var _ffi_tramp_set_parms=Module["_ffi_tramp_set_parms"]=function(){return(_ffi_tramp_set_parms=Module["_ffi_tramp_set_parms"]=Module["asm"]["ffi_tramp_set_parms"]).apply(null,arguments)};var _ffi_tramp_get_addr=Module["_ffi_tramp_get_addr"]=function(){return(_ffi_tramp_get_addr=Module["_ffi_tramp_get_addr"]=Module["asm"]["ffi_tramp_get_addr"]).apply(null,arguments)};var _ffi_tramp_free=Module["_ffi_tramp_free"]=function(){return(_ffi_tramp_free=Module["_ffi_tramp_free"]=Module["asm"]["ffi_tramp_free"]).apply(null,arguments)};var _sqlite3_status64=Module["_sqlite3_status64"]=function(){return(_sqlite3_status64=Module["_sqlite3_status64"]=Module["asm"]["sqlite3_status64"]).apply(null,arguments)};var _sqlite3_log=Module["_sqlite3_log"]=function(){return(_sqlite3_log=Module["_sqlite3_log"]=Module["asm"]["sqlite3_log"]).apply(null,arguments)};var _sqlite3_mutex_enter=Module["_sqlite3_mutex_enter"]=function(){return(_sqlite3_mutex_enter=Module["_sqlite3_mutex_enter"]=Module["asm"]["sqlite3_mutex_enter"]).apply(null,arguments)};var _sqlite3_mutex_leave=Module["_sqlite3_mutex_leave"]=function(){return(_sqlite3_mutex_leave=Module["_sqlite3_mutex_leave"]=Module["asm"]["sqlite3_mutex_leave"]).apply(null,arguments)};var _sqlite3_status=Module["_sqlite3_status"]=function(){return(_sqlite3_status=Module["_sqlite3_status"]=Module["asm"]["sqlite3_status"]).apply(null,arguments)};var _sqlite3_db_status=Module["_sqlite3_db_status"]=function(){return(_sqlite3_db_status=Module["_sqlite3_db_status"]=Module["asm"]["sqlite3_db_status"]).apply(null,arguments)};var _sqlite3_msize=Module["_sqlite3_msize"]=function(){return(_sqlite3_msize=Module["_sqlite3_msize"]=Module["asm"]["sqlite3_msize"]).apply(null,arguments)};var _sqlite3_vfs_find=Module["_sqlite3_vfs_find"]=function(){return(_sqlite3_vfs_find=Module["_sqlite3_vfs_find"]=Module["asm"]["sqlite3_vfs_find"]).apply(null,arguments)};var _sqlite3_initialize=Module["_sqlite3_initialize"]=function(){return(_sqlite3_initialize=Module["_sqlite3_initialize"]=Module["asm"]["sqlite3_initialize"]).apply(null,arguments)};var _sqlite3_config=Module["_sqlite3_config"]=function(){return(_sqlite3_config=Module["_sqlite3_config"]=Module["asm"]["sqlite3_config"]).apply(null,arguments)};var _sqlite3_os_init=Module["_sqlite3_os_init"]=function(){return(_sqlite3_os_init=Module["_sqlite3_os_init"]=Module["asm"]["sqlite3_os_init"]).apply(null,arguments)};var _sqlite3_vfs_register=Module["_sqlite3_vfs_register"]=function(){return(_sqlite3_vfs_register=Module["_sqlite3_vfs_register"]=Module["asm"]["sqlite3_vfs_register"]).apply(null,arguments)};var _sqlite3_vfs_unregister=Module["_sqlite3_vfs_unregister"]=function(){return(_sqlite3_vfs_unregister=Module["_sqlite3_vfs_unregister"]=Module["asm"]["sqlite3_vfs_unregister"]).apply(null,arguments)};var _sqlite3_mutex_alloc=Module["_sqlite3_mutex_alloc"]=function(){return(_sqlite3_mutex_alloc=Module["_sqlite3_mutex_alloc"]=Module["asm"]["sqlite3_mutex_alloc"]).apply(null,arguments)};var _sqlite3_mutex_free=Module["_sqlite3_mutex_free"]=function(){return(_sqlite3_mutex_free=Module["_sqlite3_mutex_free"]=Module["asm"]["sqlite3_mutex_free"]).apply(null,arguments)};var _sqlite3_mutex_try=Module["_sqlite3_mutex_try"]=function(){return(_sqlite3_mutex_try=Module["_sqlite3_mutex_try"]=Module["asm"]["sqlite3_mutex_try"]).apply(null,arguments)};var _sqlite3_release_memory=Module["_sqlite3_release_memory"]=function(){return(_sqlite3_release_memory=Module["_sqlite3_release_memory"]=Module["asm"]["sqlite3_release_memory"]).apply(null,arguments)};var _sqlite3_memory_alarm=Module["_sqlite3_memory_alarm"]=function(){return(_sqlite3_memory_alarm=Module["_sqlite3_memory_alarm"]=Module["asm"]["sqlite3_memory_alarm"]).apply(null,arguments)};var _sqlite3_soft_heap_limit64=Module["_sqlite3_soft_heap_limit64"]=function(){return(_sqlite3_soft_heap_limit64=Module["_sqlite3_soft_heap_limit64"]=Module["asm"]["sqlite3_soft_heap_limit64"]).apply(null,arguments)};var _sqlite3_memory_used=Module["_sqlite3_memory_used"]=function(){return(_sqlite3_memory_used=Module["_sqlite3_memory_used"]=Module["asm"]["sqlite3_memory_used"]).apply(null,arguments)};var _sqlite3_soft_heap_limit=Module["_sqlite3_soft_heap_limit"]=function(){return(_sqlite3_soft_heap_limit=Module["_sqlite3_soft_heap_limit"]=Module["asm"]["sqlite3_soft_heap_limit"]).apply(null,arguments)};var _sqlite3_memory_highwater=Module["_sqlite3_memory_highwater"]=function(){return(_sqlite3_memory_highwater=Module["_sqlite3_memory_highwater"]=Module["asm"]["sqlite3_memory_highwater"]).apply(null,arguments)};var _sqlite3_malloc=Module["_sqlite3_malloc"]=function(){return(_sqlite3_malloc=Module["_sqlite3_malloc"]=Module["asm"]["sqlite3_malloc"]).apply(null,arguments)};var _sqlite3_malloc64=Module["_sqlite3_malloc64"]=function(){return(_sqlite3_malloc64=Module["_sqlite3_malloc64"]=Module["asm"]["sqlite3_malloc64"]).apply(null,arguments)};var _sqlite3_free=Module["_sqlite3_free"]=function(){return(_sqlite3_free=Module["_sqlite3_free"]=Module["asm"]["sqlite3_free"]).apply(null,arguments)};var _sqlite3_realloc=Module["_sqlite3_realloc"]=function(){return(_sqlite3_realloc=Module["_sqlite3_realloc"]=Module["asm"]["sqlite3_realloc"]).apply(null,arguments)};var _sqlite3_realloc64=Module["_sqlite3_realloc64"]=function(){return(_sqlite3_realloc64=Module["_sqlite3_realloc64"]=Module["asm"]["sqlite3_realloc64"]).apply(null,arguments)};var _sqlite3_str_vappendf=Module["_sqlite3_str_vappendf"]=function(){return(_sqlite3_str_vappendf=Module["_sqlite3_str_vappendf"]=Module["asm"]["sqlite3_str_vappendf"]).apply(null,arguments)};var ___gttf2=Module["___gttf2"]=function(){return(___gttf2=Module["___gttf2"]=Module["asm"]["__gttf2"]).apply(null,arguments)};var ___getf2=Module["___getf2"]=function(){return(___getf2=Module["___getf2"]=Module["asm"]["__getf2"]).apply(null,arguments)};var ___lttf2=Module["___lttf2"]=function(){return(___lttf2=Module["___lttf2"]=Module["asm"]["__lttf2"]).apply(null,arguments)};var ___fixtfsi=Module["___fixtfsi"]=function(){return(___fixtfsi=Module["___fixtfsi"]=Module["asm"]["__fixtfsi"]).apply(null,arguments)};var ___floatsitf=Module["___floatsitf"]=function(){return(___floatsitf=Module["___floatsitf"]=Module["asm"]["__floatsitf"]).apply(null,arguments)};var ___subtf3=Module["___subtf3"]=function(){return(___subtf3=Module["___subtf3"]=Module["asm"]["__subtf3"]).apply(null,arguments)};var _sqlite3_str_append=Module["_sqlite3_str_append"]=function(){return(_sqlite3_str_append=Module["_sqlite3_str_append"]=Module["asm"]["sqlite3_str_append"]).apply(null,arguments)};var _sqlite3_str_appendchar=Module["_sqlite3_str_appendchar"]=function(){return(_sqlite3_str_appendchar=Module["_sqlite3_str_appendchar"]=Module["asm"]["sqlite3_str_appendchar"]).apply(null,arguments)};var _sqlite3_str_appendall=Module["_sqlite3_str_appendall"]=function(){return(_sqlite3_str_appendall=Module["_sqlite3_str_appendall"]=Module["asm"]["sqlite3_str_appendall"]).apply(null,arguments)};var _sqlite3_str_finish=Module["_sqlite3_str_finish"]=function(){return(_sqlite3_str_finish=Module["_sqlite3_str_finish"]=Module["asm"]["sqlite3_str_finish"]).apply(null,arguments)};var _sqlite3_str_errcode=Module["_sqlite3_str_errcode"]=function(){return(_sqlite3_str_errcode=Module["_sqlite3_str_errcode"]=Module["asm"]["sqlite3_str_errcode"]).apply(null,arguments)};var _sqlite3_str_length=Module["_sqlite3_str_length"]=function(){return(_sqlite3_str_length=Module["_sqlite3_str_length"]=Module["asm"]["sqlite3_str_length"]).apply(null,arguments)};var _sqlite3_str_value=Module["_sqlite3_str_value"]=function(){return(_sqlite3_str_value=Module["_sqlite3_str_value"]=Module["asm"]["sqlite3_str_value"]).apply(null,arguments)};var _sqlite3_str_reset=Module["_sqlite3_str_reset"]=function(){return(_sqlite3_str_reset=Module["_sqlite3_str_reset"]=Module["asm"]["sqlite3_str_reset"]).apply(null,arguments)};var _sqlite3_str_new=Module["_sqlite3_str_new"]=function(){return(_sqlite3_str_new=Module["_sqlite3_str_new"]=Module["asm"]["sqlite3_str_new"]).apply(null,arguments)};var _sqlite3_vmprintf=Module["_sqlite3_vmprintf"]=function(){return(_sqlite3_vmprintf=Module["_sqlite3_vmprintf"]=Module["asm"]["sqlite3_vmprintf"]).apply(null,arguments)};var _sqlite3_mprintf=Module["_sqlite3_mprintf"]=function(){return(_sqlite3_mprintf=Module["_sqlite3_mprintf"]=Module["asm"]["sqlite3_mprintf"]).apply(null,arguments)};var _sqlite3_vsnprintf=Module["_sqlite3_vsnprintf"]=function(){return(_sqlite3_vsnprintf=Module["_sqlite3_vsnprintf"]=Module["asm"]["sqlite3_vsnprintf"]).apply(null,arguments)};var _sqlite3_snprintf=Module["_sqlite3_snprintf"]=function(){return(_sqlite3_snprintf=Module["_sqlite3_snprintf"]=Module["asm"]["sqlite3_snprintf"]).apply(null,arguments)};var _sqlite3_str_appendf=Module["_sqlite3_str_appendf"]=function(){return(_sqlite3_str_appendf=Module["_sqlite3_str_appendf"]=Module["asm"]["sqlite3_str_appendf"]).apply(null,arguments)};var _sqlite3_randomness=Module["_sqlite3_randomness"]=function(){return(_sqlite3_randomness=Module["_sqlite3_randomness"]=Module["asm"]["sqlite3_randomness"]).apply(null,arguments)};var _sqlite3_stricmp=Module["_sqlite3_stricmp"]=function(){return(_sqlite3_stricmp=Module["_sqlite3_stricmp"]=Module["asm"]["sqlite3_stricmp"]).apply(null,arguments)};var _sqlite3_strnicmp=Module["_sqlite3_strnicmp"]=function(){return(_sqlite3_strnicmp=Module["_sqlite3_strnicmp"]=Module["asm"]["sqlite3_strnicmp"]).apply(null,arguments)};var _sqlite3_uri_boolean=Module["_sqlite3_uri_boolean"]=function(){return(_sqlite3_uri_boolean=Module["_sqlite3_uri_boolean"]=Module["asm"]["sqlite3_uri_boolean"]).apply(null,arguments)};var _strerror_r=Module["_strerror_r"]=function(){return(_strerror_r=Module["_strerror_r"]=Module["asm"]["strerror_r"]).apply(null,arguments)};var _usleep=Module["_usleep"]=function(){return(_usleep=Module["_usleep"]=Module["asm"]["usleep"]).apply(null,arguments)};var _sqlite3_os_end=Module["_sqlite3_os_end"]=function(){return(_sqlite3_os_end=Module["_sqlite3_os_end"]=Module["asm"]["sqlite3_os_end"]).apply(null,arguments)};var _sqlite3_expired=Module["_sqlite3_expired"]=function(){return(_sqlite3_expired=Module["_sqlite3_expired"]=Module["asm"]["sqlite3_expired"]).apply(null,arguments)};var _sqlite3_clear_bindings=Module["_sqlite3_clear_bindings"]=function(){return(_sqlite3_clear_bindings=Module["_sqlite3_clear_bindings"]=Module["asm"]["sqlite3_clear_bindings"]).apply(null,arguments)};var _sqlite3_value_bytes16=Module["_sqlite3_value_bytes16"]=function(){return(_sqlite3_value_bytes16=Module["_sqlite3_value_bytes16"]=Module["asm"]["sqlite3_value_bytes16"]).apply(null,arguments)};var _sqlite3_value_int=Module["_sqlite3_value_int"]=function(){return(_sqlite3_value_int=Module["_sqlite3_value_int"]=Module["asm"]["sqlite3_value_int"]).apply(null,arguments)};var _sqlite3_value_subtype=Module["_sqlite3_value_subtype"]=function(){return(_sqlite3_value_subtype=Module["_sqlite3_value_subtype"]=Module["asm"]["sqlite3_value_subtype"]).apply(null,arguments)};var _sqlite3_value_pointer=Module["_sqlite3_value_pointer"]=function(){return(_sqlite3_value_pointer=Module["_sqlite3_value_pointer"]=Module["asm"]["sqlite3_value_pointer"]).apply(null,arguments)};var _sqlite3_value_text16=Module["_sqlite3_value_text16"]=function(){return(_sqlite3_value_text16=Module["_sqlite3_value_text16"]=Module["asm"]["sqlite3_value_text16"]).apply(null,arguments)};var _sqlite3_value_text16be=Module["_sqlite3_value_text16be"]=function(){return(_sqlite3_value_text16be=Module["_sqlite3_value_text16be"]=Module["asm"]["sqlite3_value_text16be"]).apply(null,arguments)};var _sqlite3_value_text16le=Module["_sqlite3_value_text16le"]=function(){return(_sqlite3_value_text16le=Module["_sqlite3_value_text16le"]=Module["asm"]["sqlite3_value_text16le"]).apply(null,arguments)};var _sqlite3_value_nochange=Module["_sqlite3_value_nochange"]=function(){return(_sqlite3_value_nochange=Module["_sqlite3_value_nochange"]=Module["asm"]["sqlite3_value_nochange"]).apply(null,arguments)};var _sqlite3_value_dup=Module["_sqlite3_value_dup"]=function(){return(_sqlite3_value_dup=Module["_sqlite3_value_dup"]=Module["asm"]["sqlite3_value_dup"]).apply(null,arguments)};var _sqlite3_value_free=Module["_sqlite3_value_free"]=function(){return(_sqlite3_value_free=Module["_sqlite3_value_free"]=Module["asm"]["sqlite3_value_free"]).apply(null,arguments)};var _sqlite3_result_blob64=Module["_sqlite3_result_blob64"]=function(){return(_sqlite3_result_blob64=Module["_sqlite3_result_blob64"]=Module["asm"]["sqlite3_result_blob64"]).apply(null,arguments)};var _sqlite3_result_error16=Module["_sqlite3_result_error16"]=function(){return(_sqlite3_result_error16=Module["_sqlite3_result_error16"]=Module["asm"]["sqlite3_result_error16"]).apply(null,arguments)};var _sqlite3_result_int=Module["_sqlite3_result_int"]=function(){return(_sqlite3_result_int=Module["_sqlite3_result_int"]=Module["asm"]["sqlite3_result_int"]).apply(null,arguments)};var _sqlite3_result_pointer=Module["_sqlite3_result_pointer"]=function(){return(_sqlite3_result_pointer=Module["_sqlite3_result_pointer"]=Module["asm"]["sqlite3_result_pointer"]).apply(null,arguments)};var _sqlite3_result_subtype=Module["_sqlite3_result_subtype"]=function(){return(_sqlite3_result_subtype=Module["_sqlite3_result_subtype"]=Module["asm"]["sqlite3_result_subtype"]).apply(null,arguments)};var _sqlite3_result_text64=Module["_sqlite3_result_text64"]=function(){return(_sqlite3_result_text64=Module["_sqlite3_result_text64"]=Module["asm"]["sqlite3_result_text64"]).apply(null,arguments)};var _sqlite3_result_text16=Module["_sqlite3_result_text16"]=function(){return(_sqlite3_result_text16=Module["_sqlite3_result_text16"]=Module["asm"]["sqlite3_result_text16"]).apply(null,arguments)};var _sqlite3_result_text16be=Module["_sqlite3_result_text16be"]=function(){return(_sqlite3_result_text16be=Module["_sqlite3_result_text16be"]=Module["asm"]["sqlite3_result_text16be"]).apply(null,arguments)};var _sqlite3_result_text16le=Module["_sqlite3_result_text16le"]=function(){return(_sqlite3_result_text16le=Module["_sqlite3_result_text16le"]=Module["asm"]["sqlite3_result_text16le"]).apply(null,arguments)};var _sqlite3_result_value=Module["_sqlite3_result_value"]=function(){return(_sqlite3_result_value=Module["_sqlite3_result_value"]=Module["asm"]["sqlite3_result_value"]).apply(null,arguments)};var _sqlite3_result_zeroblob=Module["_sqlite3_result_zeroblob"]=function(){return(_sqlite3_result_zeroblob=Module["_sqlite3_result_zeroblob"]=Module["asm"]["sqlite3_result_zeroblob"]).apply(null,arguments)};var _sqlite3_result_zeroblob64=Module["_sqlite3_result_zeroblob64"]=function(){return(_sqlite3_result_zeroblob64=Module["_sqlite3_result_zeroblob64"]=Module["asm"]["sqlite3_result_zeroblob64"]).apply(null,arguments)};var _sqlite3_result_error_code=Module["_sqlite3_result_error_code"]=function(){return(_sqlite3_result_error_code=Module["_sqlite3_result_error_code"]=Module["asm"]["sqlite3_result_error_code"]).apply(null,arguments)};var _sqlite3_result_error_toobig=Module["_sqlite3_result_error_toobig"]=function(){return(_sqlite3_result_error_toobig=Module["_sqlite3_result_error_toobig"]=Module["asm"]["sqlite3_result_error_toobig"]).apply(null,arguments)};var _sqlite3_result_error_nomem=Module["_sqlite3_result_error_nomem"]=function(){return(_sqlite3_result_error_nomem=Module["_sqlite3_result_error_nomem"]=Module["asm"]["sqlite3_result_error_nomem"]).apply(null,arguments)};var _sqlite3_context_db_handle=Module["_sqlite3_context_db_handle"]=function(){return(_sqlite3_context_db_handle=Module["_sqlite3_context_db_handle"]=Module["asm"]["sqlite3_context_db_handle"]).apply(null,arguments)};var _sqlite3_vtab_nochange=Module["_sqlite3_vtab_nochange"]=function(){return(_sqlite3_vtab_nochange=Module["_sqlite3_vtab_nochange"]=Module["asm"]["sqlite3_vtab_nochange"]).apply(null,arguments)};var _sqlite3_get_auxdata=Module["_sqlite3_get_auxdata"]=function(){return(_sqlite3_get_auxdata=Module["_sqlite3_get_auxdata"]=Module["asm"]["sqlite3_get_auxdata"]).apply(null,arguments)};var _sqlite3_set_auxdata=Module["_sqlite3_set_auxdata"]=function(){return(_sqlite3_set_auxdata=Module["_sqlite3_set_auxdata"]=Module["asm"]["sqlite3_set_auxdata"]).apply(null,arguments)};var _sqlite3_aggregate_count=Module["_sqlite3_aggregate_count"]=function(){return(_sqlite3_aggregate_count=Module["_sqlite3_aggregate_count"]=Module["asm"]["sqlite3_aggregate_count"]).apply(null,arguments)};var _sqlite3_column_bytes16=Module["_sqlite3_column_bytes16"]=function(){return(_sqlite3_column_bytes16=Module["_sqlite3_column_bytes16"]=Module["asm"]["sqlite3_column_bytes16"]).apply(null,arguments)};var _sqlite3_column_int=Module["_sqlite3_column_int"]=function(){return(_sqlite3_column_int=Module["_sqlite3_column_int"]=Module["asm"]["sqlite3_column_int"]).apply(null,arguments)};var _sqlite3_column_value=Module["_sqlite3_column_value"]=function(){return(_sqlite3_column_value=Module["_sqlite3_column_value"]=Module["asm"]["sqlite3_column_value"]).apply(null,arguments)};var _sqlite3_column_text16=Module["_sqlite3_column_text16"]=function(){return(_sqlite3_column_text16=Module["_sqlite3_column_text16"]=Module["asm"]["sqlite3_column_text16"]).apply(null,arguments)};var _sqlite3_column_name16=Module["_sqlite3_column_name16"]=function(){return(_sqlite3_column_name16=Module["_sqlite3_column_name16"]=Module["asm"]["sqlite3_column_name16"]).apply(null,arguments)};var _sqlite3_column_decltype16=Module["_sqlite3_column_decltype16"]=function(){return(_sqlite3_column_decltype16=Module["_sqlite3_column_decltype16"]=Module["asm"]["sqlite3_column_decltype16"]).apply(null,arguments)};var _sqlite3_bind_blob64=Module["_sqlite3_bind_blob64"]=function(){return(_sqlite3_bind_blob64=Module["_sqlite3_bind_blob64"]=Module["asm"]["sqlite3_bind_blob64"]).apply(null,arguments)};var _sqlite3_bind_int=Module["_sqlite3_bind_int"]=function(){return(_sqlite3_bind_int=Module["_sqlite3_bind_int"]=Module["asm"]["sqlite3_bind_int"]).apply(null,arguments)};var _sqlite3_bind_pointer=Module["_sqlite3_bind_pointer"]=function(){return(_sqlite3_bind_pointer=Module["_sqlite3_bind_pointer"]=Module["asm"]["sqlite3_bind_pointer"]).apply(null,arguments)};var _sqlite3_bind_text64=Module["_sqlite3_bind_text64"]=function(){return(_sqlite3_bind_text64=Module["_sqlite3_bind_text64"]=Module["asm"]["sqlite3_bind_text64"]).apply(null,arguments)};var _sqlite3_bind_text16=Module["_sqlite3_bind_text16"]=function(){return(_sqlite3_bind_text16=Module["_sqlite3_bind_text16"]=Module["asm"]["sqlite3_bind_text16"]).apply(null,arguments)};var _sqlite3_bind_value=Module["_sqlite3_bind_value"]=function(){return(_sqlite3_bind_value=Module["_sqlite3_bind_value"]=Module["asm"]["sqlite3_bind_value"]).apply(null,arguments)};var _sqlite3_bind_zeroblob=Module["_sqlite3_bind_zeroblob"]=function(){return(_sqlite3_bind_zeroblob=Module["_sqlite3_bind_zeroblob"]=Module["asm"]["sqlite3_bind_zeroblob"]).apply(null,arguments)};var _sqlite3_bind_zeroblob64=Module["_sqlite3_bind_zeroblob64"]=function(){return(_sqlite3_bind_zeroblob64=Module["_sqlite3_bind_zeroblob64"]=Module["asm"]["sqlite3_bind_zeroblob64"]).apply(null,arguments)};var _sqlite3_bind_parameter_index=Module["_sqlite3_bind_parameter_index"]=function(){return(_sqlite3_bind_parameter_index=Module["_sqlite3_bind_parameter_index"]=Module["asm"]["sqlite3_bind_parameter_index"]).apply(null,arguments)};var _sqlite3_transfer_bindings=Module["_sqlite3_transfer_bindings"]=function(){return(_sqlite3_transfer_bindings=Module["_sqlite3_transfer_bindings"]=Module["asm"]["sqlite3_transfer_bindings"]).apply(null,arguments)};var _sqlite3_db_handle=Module["_sqlite3_db_handle"]=function(){return(_sqlite3_db_handle=Module["_sqlite3_db_handle"]=Module["asm"]["sqlite3_db_handle"]).apply(null,arguments)};var _sqlite3_stmt_readonly=Module["_sqlite3_stmt_readonly"]=function(){return(_sqlite3_stmt_readonly=Module["_sqlite3_stmt_readonly"]=Module["asm"]["sqlite3_stmt_readonly"]).apply(null,arguments)};var _sqlite3_stmt_busy=Module["_sqlite3_stmt_busy"]=function(){return(_sqlite3_stmt_busy=Module["_sqlite3_stmt_busy"]=Module["asm"]["sqlite3_stmt_busy"]).apply(null,arguments)};var _sqlite3_next_stmt=Module["_sqlite3_next_stmt"]=function(){return(_sqlite3_next_stmt=Module["_sqlite3_next_stmt"]=Module["asm"]["sqlite3_next_stmt"]).apply(null,arguments)};var _sqlite3_stmt_status=Module["_sqlite3_stmt_status"]=function(){return(_sqlite3_stmt_status=Module["_sqlite3_stmt_status"]=Module["asm"]["sqlite3_stmt_status"]).apply(null,arguments)};var _sqlite3_sql=Module["_sqlite3_sql"]=function(){return(_sqlite3_sql=Module["_sqlite3_sql"]=Module["asm"]["sqlite3_sql"]).apply(null,arguments)};var _sqlite3_expanded_sql=Module["_sqlite3_expanded_sql"]=function(){return(_sqlite3_expanded_sql=Module["_sqlite3_expanded_sql"]=Module["asm"]["sqlite3_expanded_sql"]).apply(null,arguments)};var _sqlite3_value_numeric_type=Module["_sqlite3_value_numeric_type"]=function(){return(_sqlite3_value_numeric_type=Module["_sqlite3_value_numeric_type"]=Module["asm"]["sqlite3_value_numeric_type"]).apply(null,arguments)};var _sqlite3_blob_open=Module["_sqlite3_blob_open"]=function(){return(_sqlite3_blob_open=Module["_sqlite3_blob_open"]=Module["asm"]["sqlite3_blob_open"]).apply(null,arguments)};var _sqlite3_blob_close=Module["_sqlite3_blob_close"]=function(){return(_sqlite3_blob_close=Module["_sqlite3_blob_close"]=Module["asm"]["sqlite3_blob_close"]).apply(null,arguments)};var _sqlite3_blob_read=Module["_sqlite3_blob_read"]=function(){return(_sqlite3_blob_read=Module["_sqlite3_blob_read"]=Module["asm"]["sqlite3_blob_read"]).apply(null,arguments)};var _sqlite3_blob_write=Module["_sqlite3_blob_write"]=function(){return(_sqlite3_blob_write=Module["_sqlite3_blob_write"]=Module["asm"]["sqlite3_blob_write"]).apply(null,arguments)};var _sqlite3_blob_bytes=Module["_sqlite3_blob_bytes"]=function(){return(_sqlite3_blob_bytes=Module["_sqlite3_blob_bytes"]=Module["asm"]["sqlite3_blob_bytes"]).apply(null,arguments)};var _sqlite3_blob_reopen=Module["_sqlite3_blob_reopen"]=function(){return(_sqlite3_blob_reopen=Module["_sqlite3_blob_reopen"]=Module["asm"]["sqlite3_blob_reopen"]).apply(null,arguments)};var _sqlite3_strglob=Module["_sqlite3_strglob"]=function(){return(_sqlite3_strglob=Module["_sqlite3_strglob"]=Module["asm"]["sqlite3_strglob"]).apply(null,arguments)};var _sqlite3_strlike=Module["_sqlite3_strlike"]=function(){return(_sqlite3_strlike=Module["_sqlite3_strlike"]=Module["asm"]["sqlite3_strlike"]).apply(null,arguments)};var _sqlite3_exec=Module["_sqlite3_exec"]=function(){return(_sqlite3_exec=Module["_sqlite3_exec"]=Module["asm"]["sqlite3_exec"]).apply(null,arguments)};var _sqlite3_auto_extension=Module["_sqlite3_auto_extension"]=function(){return(_sqlite3_auto_extension=Module["_sqlite3_auto_extension"]=Module["asm"]["sqlite3_auto_extension"]).apply(null,arguments)};var _sqlite3_cancel_auto_extension=Module["_sqlite3_cancel_auto_extension"]=function(){return(_sqlite3_cancel_auto_extension=Module["_sqlite3_cancel_auto_extension"]=Module["asm"]["sqlite3_cancel_auto_extension"]).apply(null,arguments)};var _sqlite3_reset_auto_extension=Module["_sqlite3_reset_auto_extension"]=function(){return(_sqlite3_reset_auto_extension=Module["_sqlite3_reset_auto_extension"]=Module["asm"]["sqlite3_reset_auto_extension"]).apply(null,arguments)};var _sqlite3_prepare=Module["_sqlite3_prepare"]=function(){return(_sqlite3_prepare=Module["_sqlite3_prepare"]=Module["asm"]["sqlite3_prepare"]).apply(null,arguments)};var _sqlite3_prepare_v3=Module["_sqlite3_prepare_v3"]=function(){return(_sqlite3_prepare_v3=Module["_sqlite3_prepare_v3"]=Module["asm"]["sqlite3_prepare_v3"]).apply(null,arguments)};var _sqlite3_prepare16=Module["_sqlite3_prepare16"]=function(){return(_sqlite3_prepare16=Module["_sqlite3_prepare16"]=Module["asm"]["sqlite3_prepare16"]).apply(null,arguments)};var _sqlite3_prepare16_v2=Module["_sqlite3_prepare16_v2"]=function(){return(_sqlite3_prepare16_v2=Module["_sqlite3_prepare16_v2"]=Module["asm"]["sqlite3_prepare16_v2"]).apply(null,arguments)};var _sqlite3_prepare16_v3=Module["_sqlite3_prepare16_v3"]=function(){return(_sqlite3_prepare16_v3=Module["_sqlite3_prepare16_v3"]=Module["asm"]["sqlite3_prepare16_v3"]).apply(null,arguments)};var _sqlite3_get_table=Module["_sqlite3_get_table"]=function(){return(_sqlite3_get_table=Module["_sqlite3_get_table"]=Module["asm"]["sqlite3_get_table"]).apply(null,arguments)};var _sqlite3_free_table=Module["_sqlite3_free_table"]=function(){return(_sqlite3_free_table=Module["_sqlite3_free_table"]=Module["asm"]["sqlite3_free_table"]).apply(null,arguments)};var _sqlite3_create_module=Module["_sqlite3_create_module"]=function(){return(_sqlite3_create_module=Module["_sqlite3_create_module"]=Module["asm"]["sqlite3_create_module"]).apply(null,arguments)};var _sqlite3_create_module_v2=Module["_sqlite3_create_module_v2"]=function(){return(_sqlite3_create_module_v2=Module["_sqlite3_create_module_v2"]=Module["asm"]["sqlite3_create_module_v2"]).apply(null,arguments)};var _sqlite3_declare_vtab=Module["_sqlite3_declare_vtab"]=function(){return(_sqlite3_declare_vtab=Module["_sqlite3_declare_vtab"]=Module["asm"]["sqlite3_declare_vtab"]).apply(null,arguments)};var _sqlite3_vtab_on_conflict=Module["_sqlite3_vtab_on_conflict"]=function(){return(_sqlite3_vtab_on_conflict=Module["_sqlite3_vtab_on_conflict"]=Module["asm"]["sqlite3_vtab_on_conflict"]).apply(null,arguments)};var _sqlite3_vtab_config=Module["_sqlite3_vtab_config"]=function(){return(_sqlite3_vtab_config=Module["_sqlite3_vtab_config"]=Module["asm"]["sqlite3_vtab_config"]).apply(null,arguments)};var _sqlite3_vtab_collation=Module["_sqlite3_vtab_collation"]=function(){return(_sqlite3_vtab_collation=Module["_sqlite3_vtab_collation"]=Module["asm"]["sqlite3_vtab_collation"]).apply(null,arguments)};var _sqlite3_keyword_name=Module["_sqlite3_keyword_name"]=function(){return(_sqlite3_keyword_name=Module["_sqlite3_keyword_name"]=Module["asm"]["sqlite3_keyword_name"]).apply(null,arguments)};var _sqlite3_keyword_count=Module["_sqlite3_keyword_count"]=function(){return(_sqlite3_keyword_count=Module["_sqlite3_keyword_count"]=Module["asm"]["sqlite3_keyword_count"]).apply(null,arguments)};var _sqlite3_keyword_check=Module["_sqlite3_keyword_check"]=function(){return(_sqlite3_keyword_check=Module["_sqlite3_keyword_check"]=Module["asm"]["sqlite3_keyword_check"]).apply(null,arguments)};var _sqlite3_complete16=Module["_sqlite3_complete16"]=function(){return(_sqlite3_complete16=Module["_sqlite3_complete16"]=Module["asm"]["sqlite3_complete16"]).apply(null,arguments)};var _sqlite3_threadsafe=Module["_sqlite3_threadsafe"]=function(){return(_sqlite3_threadsafe=Module["_sqlite3_threadsafe"]=Module["asm"]["sqlite3_threadsafe"]).apply(null,arguments)};var _sqlite3_shutdown=Module["_sqlite3_shutdown"]=function(){return(_sqlite3_shutdown=Module["_sqlite3_shutdown"]=Module["asm"]["sqlite3_shutdown"]).apply(null,arguments)};var _sqlite3_db_mutex=Module["_sqlite3_db_mutex"]=function(){return(_sqlite3_db_mutex=Module["_sqlite3_db_mutex"]=Module["asm"]["sqlite3_db_mutex"]).apply(null,arguments)};var _sqlite3_db_release_memory=Module["_sqlite3_db_release_memory"]=function(){return(_sqlite3_db_release_memory=Module["_sqlite3_db_release_memory"]=Module["asm"]["sqlite3_db_release_memory"]).apply(null,arguments)};var _sqlite3_db_cacheflush=Module["_sqlite3_db_cacheflush"]=function(){return(_sqlite3_db_cacheflush=Module["_sqlite3_db_cacheflush"]=Module["asm"]["sqlite3_db_cacheflush"]).apply(null,arguments)};var _sqlite3_db_config=Module["_sqlite3_db_config"]=function(){return(_sqlite3_db_config=Module["_sqlite3_db_config"]=Module["asm"]["sqlite3_db_config"]).apply(null,arguments)};var _sqlite3_set_last_insert_rowid=Module["_sqlite3_set_last_insert_rowid"]=function(){return(_sqlite3_set_last_insert_rowid=Module["_sqlite3_set_last_insert_rowid"]=Module["asm"]["sqlite3_set_last_insert_rowid"]).apply(null,arguments)};var _sqlite3_close=Module["_sqlite3_close"]=function(){return(_sqlite3_close=Module["_sqlite3_close"]=Module["asm"]["sqlite3_close"]).apply(null,arguments)};var _sqlite3_busy_handler=Module["_sqlite3_busy_handler"]=function(){return(_sqlite3_busy_handler=Module["_sqlite3_busy_handler"]=Module["asm"]["sqlite3_busy_handler"]).apply(null,arguments)};var _sqlite3_create_function=Module["_sqlite3_create_function"]=function(){return(_sqlite3_create_function=Module["_sqlite3_create_function"]=Module["asm"]["sqlite3_create_function"]).apply(null,arguments)};var _sqlite3_create_window_function=Module["_sqlite3_create_window_function"]=function(){return(_sqlite3_create_window_function=Module["_sqlite3_create_window_function"]=Module["asm"]["sqlite3_create_window_function"]).apply(null,arguments)};var _sqlite3_create_function16=Module["_sqlite3_create_function16"]=function(){return(_sqlite3_create_function16=Module["_sqlite3_create_function16"]=Module["asm"]["sqlite3_create_function16"]).apply(null,arguments)};var _sqlite3_overload_function=Module["_sqlite3_overload_function"]=function(){return(_sqlite3_overload_function=Module["_sqlite3_overload_function"]=Module["asm"]["sqlite3_overload_function"]).apply(null,arguments)};var _sqlite3_trace_v2=Module["_sqlite3_trace_v2"]=function(){return(_sqlite3_trace_v2=Module["_sqlite3_trace_v2"]=Module["asm"]["sqlite3_trace_v2"]).apply(null,arguments)};var _sqlite3_profile=Module["_sqlite3_profile"]=function(){return(_sqlite3_profile=Module["_sqlite3_profile"]=Module["asm"]["sqlite3_profile"]).apply(null,arguments)};var _sqlite3_commit_hook=Module["_sqlite3_commit_hook"]=function(){return(_sqlite3_commit_hook=Module["_sqlite3_commit_hook"]=Module["asm"]["sqlite3_commit_hook"]).apply(null,arguments)};var _sqlite3_update_hook=Module["_sqlite3_update_hook"]=function(){return(_sqlite3_update_hook=Module["_sqlite3_update_hook"]=Module["asm"]["sqlite3_update_hook"]).apply(null,arguments)};var _sqlite3_rollback_hook=Module["_sqlite3_rollback_hook"]=function(){return(_sqlite3_rollback_hook=Module["_sqlite3_rollback_hook"]=Module["asm"]["sqlite3_rollback_hook"]).apply(null,arguments)};var _sqlite3_wal_autocheckpoint=Module["_sqlite3_wal_autocheckpoint"]=function(){return(_sqlite3_wal_autocheckpoint=Module["_sqlite3_wal_autocheckpoint"]=Module["asm"]["sqlite3_wal_autocheckpoint"]).apply(null,arguments)};var _sqlite3_wal_hook=Module["_sqlite3_wal_hook"]=function(){return(_sqlite3_wal_hook=Module["_sqlite3_wal_hook"]=Module["asm"]["sqlite3_wal_hook"]).apply(null,arguments)};var _sqlite3_wal_checkpoint_v2=Module["_sqlite3_wal_checkpoint_v2"]=function(){return(_sqlite3_wal_checkpoint_v2=Module["_sqlite3_wal_checkpoint_v2"]=Module["asm"]["sqlite3_wal_checkpoint_v2"]).apply(null,arguments)};var _sqlite3_wal_checkpoint=Module["_sqlite3_wal_checkpoint"]=function(){return(_sqlite3_wal_checkpoint=Module["_sqlite3_wal_checkpoint"]=Module["asm"]["sqlite3_wal_checkpoint"]).apply(null,arguments)};var _sqlite3_errmsg16=Module["_sqlite3_errmsg16"]=function(){return(_sqlite3_errmsg16=Module["_sqlite3_errmsg16"]=Module["asm"]["sqlite3_errmsg16"]).apply(null,arguments)};var _sqlite3_extended_errcode=Module["_sqlite3_extended_errcode"]=function(){return(_sqlite3_extended_errcode=Module["_sqlite3_extended_errcode"]=Module["asm"]["sqlite3_extended_errcode"]).apply(null,arguments)};var _sqlite3_system_errno=Module["_sqlite3_system_errno"]=function(){return(_sqlite3_system_errno=Module["_sqlite3_system_errno"]=Module["asm"]["sqlite3_system_errno"]).apply(null,arguments)};var _sqlite3_limit=Module["_sqlite3_limit"]=function(){return(_sqlite3_limit=Module["_sqlite3_limit"]=Module["asm"]["sqlite3_limit"]).apply(null,arguments)};var _sqlite3_open=Module["_sqlite3_open"]=function(){return(_sqlite3_open=Module["_sqlite3_open"]=Module["asm"]["sqlite3_open"]).apply(null,arguments)};var _sqlite3_open16=Module["_sqlite3_open16"]=function(){return(_sqlite3_open16=Module["_sqlite3_open16"]=Module["asm"]["sqlite3_open16"]).apply(null,arguments)};var _sqlite3_create_collation_v2=Module["_sqlite3_create_collation_v2"]=function(){return(_sqlite3_create_collation_v2=Module["_sqlite3_create_collation_v2"]=Module["asm"]["sqlite3_create_collation_v2"]).apply(null,arguments)};var _sqlite3_create_collation16=Module["_sqlite3_create_collation16"]=function(){return(_sqlite3_create_collation16=Module["_sqlite3_create_collation16"]=Module["asm"]["sqlite3_create_collation16"]).apply(null,arguments)};var _sqlite3_collation_needed=Module["_sqlite3_collation_needed"]=function(){return(_sqlite3_collation_needed=Module["_sqlite3_collation_needed"]=Module["asm"]["sqlite3_collation_needed"]).apply(null,arguments)};var _sqlite3_collation_needed16=Module["_sqlite3_collation_needed16"]=function(){return(_sqlite3_collation_needed16=Module["_sqlite3_collation_needed16"]=Module["asm"]["sqlite3_collation_needed16"]).apply(null,arguments)};var _sqlite3_global_recover=Module["_sqlite3_global_recover"]=function(){return(_sqlite3_global_recover=Module["_sqlite3_global_recover"]=Module["asm"]["sqlite3_global_recover"]).apply(null,arguments)};var _sqlite3_thread_cleanup=Module["_sqlite3_thread_cleanup"]=function(){return(_sqlite3_thread_cleanup=Module["_sqlite3_thread_cleanup"]=Module["asm"]["sqlite3_thread_cleanup"]).apply(null,arguments)};var _sqlite3_table_column_metadata=Module["_sqlite3_table_column_metadata"]=function(){return(_sqlite3_table_column_metadata=Module["_sqlite3_table_column_metadata"]=Module["asm"]["sqlite3_table_column_metadata"]).apply(null,arguments)};var _sqlite3_extended_result_codes=Module["_sqlite3_extended_result_codes"]=function(){return(_sqlite3_extended_result_codes=Module["_sqlite3_extended_result_codes"]=Module["asm"]["sqlite3_extended_result_codes"]).apply(null,arguments)};var _sqlite3_file_control=Module["_sqlite3_file_control"]=function(){return(_sqlite3_file_control=Module["_sqlite3_file_control"]=Module["asm"]["sqlite3_file_control"]).apply(null,arguments)};var _sqlite3_test_control=Module["_sqlite3_test_control"]=function(){return(_sqlite3_test_control=Module["_sqlite3_test_control"]=Module["asm"]["sqlite3_test_control"]).apply(null,arguments)};var _sqlite3_uri_parameter=Module["_sqlite3_uri_parameter"]=function(){return(_sqlite3_uri_parameter=Module["_sqlite3_uri_parameter"]=Module["asm"]["sqlite3_uri_parameter"]).apply(null,arguments)};var _sqlite3_uri_int64=Module["_sqlite3_uri_int64"]=function(){return(_sqlite3_uri_int64=Module["_sqlite3_uri_int64"]=Module["asm"]["sqlite3_uri_int64"]).apply(null,arguments)};var _sqlite3_db_filename=Module["_sqlite3_db_filename"]=function(){return(_sqlite3_db_filename=Module["_sqlite3_db_filename"]=Module["asm"]["sqlite3_db_filename"]).apply(null,arguments)};var _sqlite3_db_readonly=Module["_sqlite3_db_readonly"]=function(){return(_sqlite3_db_readonly=Module["_sqlite3_db_readonly"]=Module["asm"]["sqlite3_db_readonly"]).apply(null,arguments)};var _sqlite3_compileoption_used=Module["_sqlite3_compileoption_used"]=function(){return(_sqlite3_compileoption_used=Module["_sqlite3_compileoption_used"]=Module["asm"]["sqlite3_compileoption_used"]).apply(null,arguments)};var _sqlite3_compileoption_get=Module["_sqlite3_compileoption_get"]=function(){return(_sqlite3_compileoption_get=Module["_sqlite3_compileoption_get"]=Module["asm"]["sqlite3_compileoption_get"]).apply(null,arguments)};var _sqlite3_rtree_geometry_callback=Module["_sqlite3_rtree_geometry_callback"]=function(){return(_sqlite3_rtree_geometry_callback=Module["_sqlite3_rtree_geometry_callback"]=Module["asm"]["sqlite3_rtree_geometry_callback"]).apply(null,arguments)};var _sqlite3_rtree_query_callback=Module["_sqlite3_rtree_query_callback"]=function(){return(_sqlite3_rtree_query_callback=Module["_sqlite3_rtree_query_callback"]=Module["asm"]["sqlite3_rtree_query_callback"]).apply(null,arguments)};var _sqlite3_sourceid=Module["_sqlite3_sourceid"]=function(){return(_sqlite3_sourceid=Module["_sqlite3_sourceid"]=Module["asm"]["sqlite3_sourceid"]).apply(null,arguments)};var _pthread_mutexattr_init=Module["_pthread_mutexattr_init"]=function(){return(_pthread_mutexattr_init=Module["_pthread_mutexattr_init"]=Module["asm"]["pthread_mutexattr_init"]).apply(null,arguments)};var _pthread_mutexattr_settype=Module["_pthread_mutexattr_settype"]=function(){return(_pthread_mutexattr_settype=Module["_pthread_mutexattr_settype"]=Module["asm"]["pthread_mutexattr_settype"]).apply(null,arguments)};var _pthread_mutexattr_destroy=Module["_pthread_mutexattr_destroy"]=function(){return(_pthread_mutexattr_destroy=Module["_pthread_mutexattr_destroy"]=Module["asm"]["pthread_mutexattr_destroy"]).apply(null,arguments)};var ___floatditf=Module["___floatditf"]=function(){return(___floatditf=Module["___floatditf"]=Module["asm"]["__floatditf"]).apply(null,arguments)};var _BZ2_blockSort=Module["_BZ2_blockSort"]=function(){return(_BZ2_blockSort=Module["_BZ2_blockSort"]=Module["asm"]["BZ2_blockSort"]).apply(null,arguments)};var _BZ2_bz__AssertH__fail=Module["_BZ2_bz__AssertH__fail"]=function(){return(_BZ2_bz__AssertH__fail=Module["_BZ2_bz__AssertH__fail"]=Module["asm"]["BZ2_bz__AssertH__fail"]).apply(null,arguments)};var ___small_fprintf=Module["___small_fprintf"]=function(){return(___small_fprintf=Module["___small_fprintf"]=Module["asm"]["__small_fprintf"]).apply(null,arguments)};var _BZ2_hbMakeCodeLengths=Module["_BZ2_hbMakeCodeLengths"]=function(){return(_BZ2_hbMakeCodeLengths=Module["_BZ2_hbMakeCodeLengths"]=Module["asm"]["BZ2_hbMakeCodeLengths"]).apply(null,arguments)};var _BZ2_hbAssignCodes=Module["_BZ2_hbAssignCodes"]=function(){return(_BZ2_hbAssignCodes=Module["_BZ2_hbAssignCodes"]=Module["asm"]["BZ2_hbAssignCodes"]).apply(null,arguments)};var _BZ2_hbCreateDecodeTables=Module["_BZ2_hbCreateDecodeTables"]=function(){return(_BZ2_hbCreateDecodeTables=Module["_BZ2_hbCreateDecodeTables"]=Module["asm"]["BZ2_hbCreateDecodeTables"]).apply(null,arguments)};var _BZ2_bsInitWrite=Module["_BZ2_bsInitWrite"]=function(){return(_BZ2_bsInitWrite=Module["_BZ2_bsInitWrite"]=Module["asm"]["BZ2_bsInitWrite"]).apply(null,arguments)};var _BZ2_compressBlock=Module["_BZ2_compressBlock"]=function(){return(_BZ2_compressBlock=Module["_BZ2_compressBlock"]=Module["asm"]["BZ2_compressBlock"]).apply(null,arguments)};var _BZ2_decompress=Module["_BZ2_decompress"]=function(){return(_BZ2_decompress=Module["_BZ2_decompress"]=Module["asm"]["BZ2_decompress"]).apply(null,arguments)};var _BZ2_indexIntoF=Module["_BZ2_indexIntoF"]=function(){return(_BZ2_indexIntoF=Module["_BZ2_indexIntoF"]=Module["asm"]["BZ2_indexIntoF"]).apply(null,arguments)};var _BZ2_bzlibVersion=Module["_BZ2_bzlibVersion"]=function(){return(_BZ2_bzlibVersion=Module["_BZ2_bzlibVersion"]=Module["asm"]["BZ2_bzlibVersion"]).apply(null,arguments)};var _BZ2_bzWriteOpen=Module["_BZ2_bzWriteOpen"]=function(){return(_BZ2_bzWriteOpen=Module["_BZ2_bzWriteOpen"]=Module["asm"]["BZ2_bzWriteOpen"]).apply(null,arguments)};var _BZ2_bzWrite=Module["_BZ2_bzWrite"]=function(){return(_BZ2_bzWrite=Module["_BZ2_bzWrite"]=Module["asm"]["BZ2_bzWrite"]).apply(null,arguments)};var _BZ2_bzWriteClose=Module["_BZ2_bzWriteClose"]=function(){return(_BZ2_bzWriteClose=Module["_BZ2_bzWriteClose"]=Module["asm"]["BZ2_bzWriteClose"]).apply(null,arguments)};var _BZ2_bzWriteClose64=Module["_BZ2_bzWriteClose64"]=function(){return(_BZ2_bzWriteClose64=Module["_BZ2_bzWriteClose64"]=Module["asm"]["BZ2_bzWriteClose64"]).apply(null,arguments)};var _BZ2_bzReadOpen=Module["_BZ2_bzReadOpen"]=function(){return(_BZ2_bzReadOpen=Module["_BZ2_bzReadOpen"]=Module["asm"]["BZ2_bzReadOpen"]).apply(null,arguments)};var _BZ2_bzReadClose=Module["_BZ2_bzReadClose"]=function(){return(_BZ2_bzReadClose=Module["_BZ2_bzReadClose"]=Module["asm"]["BZ2_bzReadClose"]).apply(null,arguments)};var _BZ2_bzRead=Module["_BZ2_bzRead"]=function(){return(_BZ2_bzRead=Module["_BZ2_bzRead"]=Module["asm"]["BZ2_bzRead"]).apply(null,arguments)};var _fgetc=Module["_fgetc"]=function(){return(_fgetc=Module["_fgetc"]=Module["asm"]["fgetc"]).apply(null,arguments)};var _BZ2_bzReadGetUnused=Module["_BZ2_bzReadGetUnused"]=function(){return(_BZ2_bzReadGetUnused=Module["_BZ2_bzReadGetUnused"]=Module["asm"]["BZ2_bzReadGetUnused"]).apply(null,arguments)};var _BZ2_bzBuffToBuffCompress=Module["_BZ2_bzBuffToBuffCompress"]=function(){return(_BZ2_bzBuffToBuffCompress=Module["_BZ2_bzBuffToBuffCompress"]=Module["asm"]["BZ2_bzBuffToBuffCompress"]).apply(null,arguments)};var _BZ2_bzBuffToBuffDecompress=Module["_BZ2_bzBuffToBuffDecompress"]=function(){return(_BZ2_bzBuffToBuffDecompress=Module["_BZ2_bzBuffToBuffDecompress"]=Module["asm"]["BZ2_bzBuffToBuffDecompress"]).apply(null,arguments)};var _BZ2_bzopen=Module["_BZ2_bzopen"]=function(){return(_BZ2_bzopen=Module["_BZ2_bzopen"]=Module["asm"]["BZ2_bzopen"]).apply(null,arguments)};var _BZ2_bzdopen=Module["_BZ2_bzdopen"]=function(){return(_BZ2_bzdopen=Module["_BZ2_bzdopen"]=Module["asm"]["BZ2_bzdopen"]).apply(null,arguments)};var _BZ2_bzread=Module["_BZ2_bzread"]=function(){return(_BZ2_bzread=Module["_BZ2_bzread"]=Module["asm"]["BZ2_bzread"]).apply(null,arguments)};var _BZ2_bzwrite=Module["_BZ2_bzwrite"]=function(){return(_BZ2_bzwrite=Module["_BZ2_bzwrite"]=Module["asm"]["BZ2_bzwrite"]).apply(null,arguments)};var _BZ2_bzflush=Module["_BZ2_bzflush"]=function(){return(_BZ2_bzflush=Module["_BZ2_bzflush"]=Module["asm"]["BZ2_bzflush"]).apply(null,arguments)};var _BZ2_bzclose=Module["_BZ2_bzclose"]=function(){return(_BZ2_bzclose=Module["_BZ2_bzclose"]=Module["asm"]["BZ2_bzclose"]).apply(null,arguments)};var _BZ2_bzerror=Module["_BZ2_bzerror"]=function(){return(_BZ2_bzerror=Module["_BZ2_bzerror"]=Module["asm"]["BZ2_bzerror"]).apply(null,arguments)};var _png_set_sig_bytes=Module["_png_set_sig_bytes"]=function(){return(_png_set_sig_bytes=Module["_png_set_sig_bytes"]=Module["asm"]["png_set_sig_bytes"]).apply(null,arguments)};var _png_error=Module["_png_error"]=function(){return(_png_error=Module["_png_error"]=Module["asm"]["png_error"]).apply(null,arguments)};var _png_sig_cmp=Module["_png_sig_cmp"]=function(){return(_png_sig_cmp=Module["_png_sig_cmp"]=Module["asm"]["png_sig_cmp"]).apply(null,arguments)};var _png_zalloc=Module["_png_zalloc"]=function(){return(_png_zalloc=Module["_png_zalloc"]=Module["asm"]["png_zalloc"]).apply(null,arguments)};var _png_warning=Module["_png_warning"]=function(){return(_png_warning=Module["_png_warning"]=Module["asm"]["png_warning"]).apply(null,arguments)};var _png_malloc_warn=Module["_png_malloc_warn"]=function(){return(_png_malloc_warn=Module["_png_malloc_warn"]=Module["asm"]["png_malloc_warn"]).apply(null,arguments)};var _png_zfree=Module["_png_zfree"]=function(){return(_png_zfree=Module["_png_zfree"]=Module["asm"]["png_zfree"]).apply(null,arguments)};var _png_free=Module["_png_free"]=function(){return(_png_free=Module["_png_free"]=Module["asm"]["png_free"]).apply(null,arguments)};var _png_reset_crc=Module["_png_reset_crc"]=function(){return(_png_reset_crc=Module["_png_reset_crc"]=Module["asm"]["png_reset_crc"]).apply(null,arguments)};var _png_calculate_crc=Module["_png_calculate_crc"]=function(){return(_png_calculate_crc=Module["_png_calculate_crc"]=Module["asm"]["png_calculate_crc"]).apply(null,arguments)};var _png_user_version_check=Module["_png_user_version_check"]=function(){return(_png_user_version_check=Module["_png_user_version_check"]=Module["asm"]["png_user_version_check"]).apply(null,arguments)};var _png_safecat=Module["_png_safecat"]=function(){return(_png_safecat=Module["_png_safecat"]=Module["asm"]["png_safecat"]).apply(null,arguments)};var _png_create_png_struct=Module["_png_create_png_struct"]=function(){return(_png_create_png_struct=Module["_png_create_png_struct"]=Module["asm"]["png_create_png_struct"]).apply(null,arguments)};var _png_set_mem_fn=Module["_png_set_mem_fn"]=function(){return(_png_set_mem_fn=Module["_png_set_mem_fn"]=Module["asm"]["png_set_mem_fn"]).apply(null,arguments)};var _testSetjmp=Module["_testSetjmp"]=function(){return(_testSetjmp=Module["_testSetjmp"]=Module["asm"]["testSetjmp"]).apply(null,arguments)};var _png_set_error_fn=Module["_png_set_error_fn"]=function(){return(_png_set_error_fn=Module["_png_set_error_fn"]=Module["asm"]["png_set_error_fn"]).apply(null,arguments)};var _saveSetjmp=Module["_saveSetjmp"]=function(){return(_saveSetjmp=Module["_saveSetjmp"]=Module["asm"]["saveSetjmp"]).apply(null,arguments)};var _png_create_info_struct=Module["_png_create_info_struct"]=function(){return(_png_create_info_struct=Module["_png_create_info_struct"]=Module["asm"]["png_create_info_struct"]).apply(null,arguments)};var _png_malloc_base=Module["_png_malloc_base"]=function(){return(_png_malloc_base=Module["_png_malloc_base"]=Module["asm"]["png_malloc_base"]).apply(null,arguments)};var _png_destroy_info_struct=Module["_png_destroy_info_struct"]=function(){return(_png_destroy_info_struct=Module["_png_destroy_info_struct"]=Module["asm"]["png_destroy_info_struct"]).apply(null,arguments)};var _png_free_data=Module["_png_free_data"]=function(){return(_png_free_data=Module["_png_free_data"]=Module["asm"]["png_free_data"]).apply(null,arguments)};var _png_info_init_3=Module["_png_info_init_3"]=function(){return(_png_info_init_3=Module["_png_info_init_3"]=Module["asm"]["png_info_init_3"]).apply(null,arguments)};var _png_data_freer=Module["_png_data_freer"]=function(){return(_png_data_freer=Module["_png_data_freer"]=Module["asm"]["png_data_freer"]).apply(null,arguments)};var _png_get_io_ptr=Module["_png_get_io_ptr"]=function(){return(_png_get_io_ptr=Module["_png_get_io_ptr"]=Module["asm"]["png_get_io_ptr"]).apply(null,arguments)};var _png_init_io=Module["_png_init_io"]=function(){return(_png_init_io=Module["_png_init_io"]=Module["asm"]["png_init_io"]).apply(null,arguments)};var _png_save_int_32=Module["_png_save_int_32"]=function(){return(_png_save_int_32=Module["_png_save_int_32"]=Module["asm"]["png_save_int_32"]).apply(null,arguments)};var _png_convert_to_rfc1123_buffer=Module["_png_convert_to_rfc1123_buffer"]=function(){return(_png_convert_to_rfc1123_buffer=Module["_png_convert_to_rfc1123_buffer"]=Module["asm"]["png_convert_to_rfc1123_buffer"]).apply(null,arguments)};var _png_format_number=Module["_png_format_number"]=function(){return(_png_format_number=Module["_png_format_number"]=Module["asm"]["png_format_number"]).apply(null,arguments)};var _png_convert_to_rfc1123=Module["_png_convert_to_rfc1123"]=function(){return(_png_convert_to_rfc1123=Module["_png_convert_to_rfc1123"]=Module["asm"]["png_convert_to_rfc1123"]).apply(null,arguments)};var _png_get_copyright=Module["_png_get_copyright"]=function(){return(_png_get_copyright=Module["_png_get_copyright"]=Module["asm"]["png_get_copyright"]).apply(null,arguments)};var _png_get_libpng_ver=Module["_png_get_libpng_ver"]=function(){return(_png_get_libpng_ver=Module["_png_get_libpng_ver"]=Module["asm"]["png_get_libpng_ver"]).apply(null,arguments)};var _png_get_header_ver=Module["_png_get_header_ver"]=function(){return(_png_get_header_ver=Module["_png_get_header_ver"]=Module["asm"]["png_get_header_ver"]).apply(null,arguments)};var _png_get_header_version=Module["_png_get_header_version"]=function(){return(_png_get_header_version=Module["_png_get_header_version"]=Module["asm"]["png_get_header_version"]).apply(null,arguments)};var _png_build_grayscale_palette=Module["_png_build_grayscale_palette"]=function(){return(_png_build_grayscale_palette=Module["_png_build_grayscale_palette"]=Module["asm"]["png_build_grayscale_palette"]).apply(null,arguments)};var _png_handle_as_unknown=Module["_png_handle_as_unknown"]=function(){return(_png_handle_as_unknown=Module["_png_handle_as_unknown"]=Module["asm"]["png_handle_as_unknown"]).apply(null,arguments)};var _png_chunk_unknown_handling=Module["_png_chunk_unknown_handling"]=function(){return(_png_chunk_unknown_handling=Module["_png_chunk_unknown_handling"]=Module["asm"]["png_chunk_unknown_handling"]).apply(null,arguments)};var _png_reset_zstream=Module["_png_reset_zstream"]=function(){return(_png_reset_zstream=Module["_png_reset_zstream"]=Module["asm"]["png_reset_zstream"]).apply(null,arguments)};var _inflateReset=Module["_inflateReset"]=function(){return(_inflateReset=Module["_inflateReset"]=Module["asm"]["inflateReset"]).apply(null,arguments)};var _png_access_version_number=Module["_png_access_version_number"]=function(){return(_png_access_version_number=Module["_png_access_version_number"]=Module["asm"]["png_access_version_number"]).apply(null,arguments)};var _png_zstream_error=Module["_png_zstream_error"]=function(){return(_png_zstream_error=Module["_png_zstream_error"]=Module["asm"]["png_zstream_error"]).apply(null,arguments)};var _png_colorspace_set_gamma=Module["_png_colorspace_set_gamma"]=function(){return(_png_colorspace_set_gamma=Module["_png_colorspace_set_gamma"]=Module["asm"]["png_colorspace_set_gamma"]).apply(null,arguments)};var _png_chunk_report=Module["_png_chunk_report"]=function(){return(_png_chunk_report=Module["_png_chunk_report"]=Module["asm"]["png_chunk_report"]).apply(null,arguments)};var _png_colorspace_sync_info=Module["_png_colorspace_sync_info"]=function(){return(_png_colorspace_sync_info=Module["_png_colorspace_sync_info"]=Module["asm"]["png_colorspace_sync_info"]).apply(null,arguments)};var _png_colorspace_sync=Module["_png_colorspace_sync"]=function(){return(_png_colorspace_sync=Module["_png_colorspace_sync"]=Module["asm"]["png_colorspace_sync"]).apply(null,arguments)};var _png_colorspace_set_chromaticities=Module["_png_colorspace_set_chromaticities"]=function(){return(_png_colorspace_set_chromaticities=Module["_png_colorspace_set_chromaticities"]=Module["asm"]["png_colorspace_set_chromaticities"]).apply(null,arguments)};var _png_benign_error=Module["_png_benign_error"]=function(){return(_png_benign_error=Module["_png_benign_error"]=Module["asm"]["png_benign_error"]).apply(null,arguments)};var _png_colorspace_set_endpoints=Module["_png_colorspace_set_endpoints"]=function(){return(_png_colorspace_set_endpoints=Module["_png_colorspace_set_endpoints"]=Module["asm"]["png_colorspace_set_endpoints"]).apply(null,arguments)};var _png_colorspace_set_sRGB=Module["_png_colorspace_set_sRGB"]=function(){return(_png_colorspace_set_sRGB=Module["_png_colorspace_set_sRGB"]=Module["asm"]["png_colorspace_set_sRGB"]).apply(null,arguments)};var _png_icc_check_length=Module["_png_icc_check_length"]=function(){return(_png_icc_check_length=Module["_png_icc_check_length"]=Module["asm"]["png_icc_check_length"]).apply(null,arguments)};var _png_icc_check_header=Module["_png_icc_check_header"]=function(){return(_png_icc_check_header=Module["_png_icc_check_header"]=Module["asm"]["png_icc_check_header"]).apply(null,arguments)};var _png_icc_check_tag_table=Module["_png_icc_check_tag_table"]=function(){return(_png_icc_check_tag_table=Module["_png_icc_check_tag_table"]=Module["asm"]["png_icc_check_tag_table"]).apply(null,arguments)};var _png_icc_set_sRGB=Module["_png_icc_set_sRGB"]=function(){return(_png_icc_set_sRGB=Module["_png_icc_set_sRGB"]=Module["asm"]["png_icc_set_sRGB"]).apply(null,arguments)};var _png_colorspace_set_ICC=Module["_png_colorspace_set_ICC"]=function(){return(_png_colorspace_set_ICC=Module["_png_colorspace_set_ICC"]=Module["asm"]["png_colorspace_set_ICC"]).apply(null,arguments)};var _png_colorspace_set_rgb_coefficients=Module["_png_colorspace_set_rgb_coefficients"]=function(){return(_png_colorspace_set_rgb_coefficients=Module["_png_colorspace_set_rgb_coefficients"]=Module["asm"]["png_colorspace_set_rgb_coefficients"]).apply(null,arguments)};var _png_muldiv=Module["_png_muldiv"]=function(){return(_png_muldiv=Module["_png_muldiv"]=Module["asm"]["png_muldiv"]).apply(null,arguments)};var _png_check_IHDR=Module["_png_check_IHDR"]=function(){return(_png_check_IHDR=Module["_png_check_IHDR"]=Module["asm"]["png_check_IHDR"]).apply(null,arguments)};var _png_check_fp_number=Module["_png_check_fp_number"]=function(){return(_png_check_fp_number=Module["_png_check_fp_number"]=Module["asm"]["png_check_fp_number"]).apply(null,arguments)};var _png_check_fp_string=Module["_png_check_fp_string"]=function(){return(_png_check_fp_string=Module["_png_check_fp_string"]=Module["asm"]["png_check_fp_string"]).apply(null,arguments)};var _png_ascii_from_fp=Module["_png_ascii_from_fp"]=function(){return(_png_ascii_from_fp=Module["_png_ascii_from_fp"]=Module["asm"]["png_ascii_from_fp"]).apply(null,arguments)};var _png_ascii_from_fixed=Module["_png_ascii_from_fixed"]=function(){return(_png_ascii_from_fixed=Module["_png_ascii_from_fixed"]=Module["asm"]["png_ascii_from_fixed"]).apply(null,arguments)};var _png_fixed=Module["_png_fixed"]=function(){return(_png_fixed=Module["_png_fixed"]=Module["asm"]["png_fixed"]).apply(null,arguments)};var _png_fixed_error=Module["_png_fixed_error"]=function(){return(_png_fixed_error=Module["_png_fixed_error"]=Module["asm"]["png_fixed_error"]).apply(null,arguments)};var _png_muldiv_warn=Module["_png_muldiv_warn"]=function(){return(_png_muldiv_warn=Module["_png_muldiv_warn"]=Module["asm"]["png_muldiv_warn"]).apply(null,arguments)};var _png_reciprocal=Module["_png_reciprocal"]=function(){return(_png_reciprocal=Module["_png_reciprocal"]=Module["asm"]["png_reciprocal"]).apply(null,arguments)};var _png_gamma_significant=Module["_png_gamma_significant"]=function(){return(_png_gamma_significant=Module["_png_gamma_significant"]=Module["asm"]["png_gamma_significant"]).apply(null,arguments)};var _png_reciprocal2=Module["_png_reciprocal2"]=function(){return(_png_reciprocal2=Module["_png_reciprocal2"]=Module["asm"]["png_reciprocal2"]).apply(null,arguments)};var _png_gamma_8bit_correct=Module["_png_gamma_8bit_correct"]=function(){return(_png_gamma_8bit_correct=Module["_png_gamma_8bit_correct"]=Module["asm"]["png_gamma_8bit_correct"]).apply(null,arguments)};var _png_gamma_16bit_correct=Module["_png_gamma_16bit_correct"]=function(){return(_png_gamma_16bit_correct=Module["_png_gamma_16bit_correct"]=Module["asm"]["png_gamma_16bit_correct"]).apply(null,arguments)};var _png_gamma_correct=Module["_png_gamma_correct"]=function(){return(_png_gamma_correct=Module["_png_gamma_correct"]=Module["asm"]["png_gamma_correct"]).apply(null,arguments)};var _png_destroy_gamma_table=Module["_png_destroy_gamma_table"]=function(){return(_png_destroy_gamma_table=Module["_png_destroy_gamma_table"]=Module["asm"]["png_destroy_gamma_table"]).apply(null,arguments)};var _png_build_gamma_table=Module["_png_build_gamma_table"]=function(){return(_png_build_gamma_table=Module["_png_build_gamma_table"]=Module["asm"]["png_build_gamma_table"]).apply(null,arguments)};var _png_malloc=Module["_png_malloc"]=function(){return(_png_malloc=Module["_png_malloc"]=Module["asm"]["png_malloc"]).apply(null,arguments)};var _png_calloc=Module["_png_calloc"]=function(){return(_png_calloc=Module["_png_calloc"]=Module["asm"]["png_calloc"]).apply(null,arguments)};var _png_set_option=Module["_png_set_option"]=function(){return(_png_set_option=Module["_png_set_option"]=Module["asm"]["png_set_option"]).apply(null,arguments)};var _png_image_free=Module["_png_image_free"]=function(){return(_png_image_free=Module["_png_image_free"]=Module["asm"]["png_image_free"]).apply(null,arguments)};var _png_safe_execute=Module["_png_safe_execute"]=function(){return(_png_safe_execute=Module["_png_safe_execute"]=Module["asm"]["png_safe_execute"]).apply(null,arguments)};var _png_destroy_write_struct=Module["_png_destroy_write_struct"]=function(){return(_png_destroy_write_struct=Module["_png_destroy_write_struct"]=Module["asm"]["png_destroy_write_struct"]).apply(null,arguments)};var _png_destroy_read_struct=Module["_png_destroy_read_struct"]=function(){return(_png_destroy_read_struct=Module["_png_destroy_read_struct"]=Module["asm"]["png_destroy_read_struct"]).apply(null,arguments)};var _png_image_error=Module["_png_image_error"]=function(){return(_png_image_error=Module["_png_image_error"]=Module["asm"]["png_image_error"]).apply(null,arguments)};var _png_longjmp=Module["_png_longjmp"]=function(){return(_png_longjmp=Module["_png_longjmp"]=Module["asm"]["png_longjmp"]).apply(null,arguments)};var _png_warning_parameter=Module["_png_warning_parameter"]=function(){return(_png_warning_parameter=Module["_png_warning_parameter"]=Module["asm"]["png_warning_parameter"]).apply(null,arguments)};var _png_warning_parameter_unsigned=Module["_png_warning_parameter_unsigned"]=function(){return(_png_warning_parameter_unsigned=Module["_png_warning_parameter_unsigned"]=Module["asm"]["png_warning_parameter_unsigned"]).apply(null,arguments)};var _png_warning_parameter_signed=Module["_png_warning_parameter_signed"]=function(){return(_png_warning_parameter_signed=Module["_png_warning_parameter_signed"]=Module["asm"]["png_warning_parameter_signed"]).apply(null,arguments)};var _png_formatted_warning=Module["_png_formatted_warning"]=function(){return(_png_formatted_warning=Module["_png_formatted_warning"]=Module["asm"]["png_formatted_warning"]).apply(null,arguments)};var _png_chunk_error=Module["_png_chunk_error"]=function(){return(_png_chunk_error=Module["_png_chunk_error"]=Module["asm"]["png_chunk_error"]).apply(null,arguments)};var _png_chunk_warning=Module["_png_chunk_warning"]=function(){return(_png_chunk_warning=Module["_png_chunk_warning"]=Module["asm"]["png_chunk_warning"]).apply(null,arguments)};var _png_app_warning=Module["_png_app_warning"]=function(){return(_png_app_warning=Module["_png_app_warning"]=Module["asm"]["png_app_warning"]).apply(null,arguments)};var _png_app_error=Module["_png_app_error"]=function(){return(_png_app_error=Module["_png_app_error"]=Module["asm"]["png_app_error"]).apply(null,arguments)};var _png_chunk_benign_error=Module["_png_chunk_benign_error"]=function(){return(_png_chunk_benign_error=Module["_png_chunk_benign_error"]=Module["asm"]["png_chunk_benign_error"]).apply(null,arguments)};var _png_set_longjmp_fn=Module["_png_set_longjmp_fn"]=function(){return(_png_set_longjmp_fn=Module["_png_set_longjmp_fn"]=Module["asm"]["png_set_longjmp_fn"]).apply(null,arguments)};var _png_free_jmpbuf=Module["_png_free_jmpbuf"]=function(){return(_png_free_jmpbuf=Module["_png_free_jmpbuf"]=Module["asm"]["png_free_jmpbuf"]).apply(null,arguments)};var _png_get_error_ptr=Module["_png_get_error_ptr"]=function(){return(_png_get_error_ptr=Module["_png_get_error_ptr"]=Module["asm"]["png_get_error_ptr"]).apply(null,arguments)};var _png_safe_error=Module["_png_safe_error"]=function(){return(_png_safe_error=Module["_png_safe_error"]=Module["asm"]["png_safe_error"]).apply(null,arguments)};var _png_safe_warning=Module["_png_safe_warning"]=function(){return(_png_safe_warning=Module["_png_safe_warning"]=Module["asm"]["png_safe_warning"]).apply(null,arguments)};var _png_get_valid=Module["_png_get_valid"]=function(){return(_png_get_valid=Module["_png_get_valid"]=Module["asm"]["png_get_valid"]).apply(null,arguments)};var _png_get_rowbytes=Module["_png_get_rowbytes"]=function(){return(_png_get_rowbytes=Module["_png_get_rowbytes"]=Module["asm"]["png_get_rowbytes"]).apply(null,arguments)};var _png_get_rows=Module["_png_get_rows"]=function(){return(_png_get_rows=Module["_png_get_rows"]=Module["asm"]["png_get_rows"]).apply(null,arguments)};var _png_get_image_width=Module["_png_get_image_width"]=function(){return(_png_get_image_width=Module["_png_get_image_width"]=Module["asm"]["png_get_image_width"]).apply(null,arguments)};var _png_get_image_height=Module["_png_get_image_height"]=function(){return(_png_get_image_height=Module["_png_get_image_height"]=Module["asm"]["png_get_image_height"]).apply(null,arguments)};var _png_get_bit_depth=Module["_png_get_bit_depth"]=function(){return(_png_get_bit_depth=Module["_png_get_bit_depth"]=Module["asm"]["png_get_bit_depth"]).apply(null,arguments)};var _png_get_color_type=Module["_png_get_color_type"]=function(){return(_png_get_color_type=Module["_png_get_color_type"]=Module["asm"]["png_get_color_type"]).apply(null,arguments)};var _png_get_filter_type=Module["_png_get_filter_type"]=function(){return(_png_get_filter_type=Module["_png_get_filter_type"]=Module["asm"]["png_get_filter_type"]).apply(null,arguments)};var _png_get_interlace_type=Module["_png_get_interlace_type"]=function(){return(_png_get_interlace_type=Module["_png_get_interlace_type"]=Module["asm"]["png_get_interlace_type"]).apply(null,arguments)};var _png_get_compression_type=Module["_png_get_compression_type"]=function(){return(_png_get_compression_type=Module["_png_get_compression_type"]=Module["asm"]["png_get_compression_type"]).apply(null,arguments)};var _png_get_x_pixels_per_meter=Module["_png_get_x_pixels_per_meter"]=function(){return(_png_get_x_pixels_per_meter=Module["_png_get_x_pixels_per_meter"]=Module["asm"]["png_get_x_pixels_per_meter"]).apply(null,arguments)};var _png_get_y_pixels_per_meter=Module["_png_get_y_pixels_per_meter"]=function(){return(_png_get_y_pixels_per_meter=Module["_png_get_y_pixels_per_meter"]=Module["asm"]["png_get_y_pixels_per_meter"]).apply(null,arguments)};var _png_get_pixels_per_meter=Module["_png_get_pixels_per_meter"]=function(){return(_png_get_pixels_per_meter=Module["_png_get_pixels_per_meter"]=Module["asm"]["png_get_pixels_per_meter"]).apply(null,arguments)};var _png_get_pixel_aspect_ratio=Module["_png_get_pixel_aspect_ratio"]=function(){return(_png_get_pixel_aspect_ratio=Module["_png_get_pixel_aspect_ratio"]=Module["asm"]["png_get_pixel_aspect_ratio"]).apply(null,arguments)};var _png_get_pixel_aspect_ratio_fixed=Module["_png_get_pixel_aspect_ratio_fixed"]=function(){return(_png_get_pixel_aspect_ratio_fixed=Module["_png_get_pixel_aspect_ratio_fixed"]=Module["asm"]["png_get_pixel_aspect_ratio_fixed"]).apply(null,arguments)};var _png_get_x_offset_microns=Module["_png_get_x_offset_microns"]=function(){return(_png_get_x_offset_microns=Module["_png_get_x_offset_microns"]=Module["asm"]["png_get_x_offset_microns"]).apply(null,arguments)};var _png_get_y_offset_microns=Module["_png_get_y_offset_microns"]=function(){return(_png_get_y_offset_microns=Module["_png_get_y_offset_microns"]=Module["asm"]["png_get_y_offset_microns"]).apply(null,arguments)};var _png_get_x_offset_pixels=Module["_png_get_x_offset_pixels"]=function(){return(_png_get_x_offset_pixels=Module["_png_get_x_offset_pixels"]=Module["asm"]["png_get_x_offset_pixels"]).apply(null,arguments)};var _png_get_y_offset_pixels=Module["_png_get_y_offset_pixels"]=function(){return(_png_get_y_offset_pixels=Module["_png_get_y_offset_pixels"]=Module["asm"]["png_get_y_offset_pixels"]).apply(null,arguments)};var _png_get_pixels_per_inch=Module["_png_get_pixels_per_inch"]=function(){return(_png_get_pixels_per_inch=Module["_png_get_pixels_per_inch"]=Module["asm"]["png_get_pixels_per_inch"]).apply(null,arguments)};var _png_get_x_pixels_per_inch=Module["_png_get_x_pixels_per_inch"]=function(){return(_png_get_x_pixels_per_inch=Module["_png_get_x_pixels_per_inch"]=Module["asm"]["png_get_x_pixels_per_inch"]).apply(null,arguments)};var _png_get_y_pixels_per_inch=Module["_png_get_y_pixels_per_inch"]=function(){return(_png_get_y_pixels_per_inch=Module["_png_get_y_pixels_per_inch"]=Module["asm"]["png_get_y_pixels_per_inch"]).apply(null,arguments)};var _png_get_x_offset_inches_fixed=Module["_png_get_x_offset_inches_fixed"]=function(){return(_png_get_x_offset_inches_fixed=Module["_png_get_x_offset_inches_fixed"]=Module["asm"]["png_get_x_offset_inches_fixed"]).apply(null,arguments)};var _png_get_y_offset_inches_fixed=Module["_png_get_y_offset_inches_fixed"]=function(){return(_png_get_y_offset_inches_fixed=Module["_png_get_y_offset_inches_fixed"]=Module["asm"]["png_get_y_offset_inches_fixed"]).apply(null,arguments)};var _png_get_x_offset_inches=Module["_png_get_x_offset_inches"]=function(){return(_png_get_x_offset_inches=Module["_png_get_x_offset_inches"]=Module["asm"]["png_get_x_offset_inches"]).apply(null,arguments)};var _png_get_y_offset_inches=Module["_png_get_y_offset_inches"]=function(){return(_png_get_y_offset_inches=Module["_png_get_y_offset_inches"]=Module["asm"]["png_get_y_offset_inches"]).apply(null,arguments)};var _png_get_pHYs_dpi=Module["_png_get_pHYs_dpi"]=function(){return(_png_get_pHYs_dpi=Module["_png_get_pHYs_dpi"]=Module["asm"]["png_get_pHYs_dpi"]).apply(null,arguments)};var _png_get_channels=Module["_png_get_channels"]=function(){return(_png_get_channels=Module["_png_get_channels"]=Module["asm"]["png_get_channels"]).apply(null,arguments)};var _png_get_signature=Module["_png_get_signature"]=function(){return(_png_get_signature=Module["_png_get_signature"]=Module["asm"]["png_get_signature"]).apply(null,arguments)};var _png_get_bKGD=Module["_png_get_bKGD"]=function(){return(_png_get_bKGD=Module["_png_get_bKGD"]=Module["asm"]["png_get_bKGD"]).apply(null,arguments)};var _png_get_cHRM=Module["_png_get_cHRM"]=function(){return(_png_get_cHRM=Module["_png_get_cHRM"]=Module["asm"]["png_get_cHRM"]).apply(null,arguments)};var _png_get_cHRM_XYZ=Module["_png_get_cHRM_XYZ"]=function(){return(_png_get_cHRM_XYZ=Module["_png_get_cHRM_XYZ"]=Module["asm"]["png_get_cHRM_XYZ"]).apply(null,arguments)};var _png_get_cHRM_XYZ_fixed=Module["_png_get_cHRM_XYZ_fixed"]=function(){return(_png_get_cHRM_XYZ_fixed=Module["_png_get_cHRM_XYZ_fixed"]=Module["asm"]["png_get_cHRM_XYZ_fixed"]).apply(null,arguments)};var _png_get_cHRM_fixed=Module["_png_get_cHRM_fixed"]=function(){return(_png_get_cHRM_fixed=Module["_png_get_cHRM_fixed"]=Module["asm"]["png_get_cHRM_fixed"]).apply(null,arguments)};var _png_get_gAMA_fixed=Module["_png_get_gAMA_fixed"]=function(){return(_png_get_gAMA_fixed=Module["_png_get_gAMA_fixed"]=Module["asm"]["png_get_gAMA_fixed"]).apply(null,arguments)};var _png_get_gAMA=Module["_png_get_gAMA"]=function(){return(_png_get_gAMA=Module["_png_get_gAMA"]=Module["asm"]["png_get_gAMA"]).apply(null,arguments)};var _png_get_sRGB=Module["_png_get_sRGB"]=function(){return(_png_get_sRGB=Module["_png_get_sRGB"]=Module["asm"]["png_get_sRGB"]).apply(null,arguments)};var _png_get_iCCP=Module["_png_get_iCCP"]=function(){return(_png_get_iCCP=Module["_png_get_iCCP"]=Module["asm"]["png_get_iCCP"]).apply(null,arguments)};var _png_get_sPLT=Module["_png_get_sPLT"]=function(){return(_png_get_sPLT=Module["_png_get_sPLT"]=Module["asm"]["png_get_sPLT"]).apply(null,arguments)};var _png_get_hIST=Module["_png_get_hIST"]=function(){return(_png_get_hIST=Module["_png_get_hIST"]=Module["asm"]["png_get_hIST"]).apply(null,arguments)};var _png_get_IHDR=Module["_png_get_IHDR"]=function(){return(_png_get_IHDR=Module["_png_get_IHDR"]=Module["asm"]["png_get_IHDR"]).apply(null,arguments)};var _png_get_oFFs=Module["_png_get_oFFs"]=function(){return(_png_get_oFFs=Module["_png_get_oFFs"]=Module["asm"]["png_get_oFFs"]).apply(null,arguments)};var _png_get_pCAL=Module["_png_get_pCAL"]=function(){return(_png_get_pCAL=Module["_png_get_pCAL"]=Module["asm"]["png_get_pCAL"]).apply(null,arguments)};var _png_get_sCAL_fixed=Module["_png_get_sCAL_fixed"]=function(){return(_png_get_sCAL_fixed=Module["_png_get_sCAL_fixed"]=Module["asm"]["png_get_sCAL_fixed"]).apply(null,arguments)};var _atof=Module["_atof"]=function(){return(_atof=Module["_atof"]=Module["asm"]["atof"]).apply(null,arguments)};var _png_get_sCAL=Module["_png_get_sCAL"]=function(){return(_png_get_sCAL=Module["_png_get_sCAL"]=Module["asm"]["png_get_sCAL"]).apply(null,arguments)};var _png_get_sCAL_s=Module["_png_get_sCAL_s"]=function(){return(_png_get_sCAL_s=Module["_png_get_sCAL_s"]=Module["asm"]["png_get_sCAL_s"]).apply(null,arguments)};var _png_get_pHYs=Module["_png_get_pHYs"]=function(){return(_png_get_pHYs=Module["_png_get_pHYs"]=Module["asm"]["png_get_pHYs"]).apply(null,arguments)};var _png_get_PLTE=Module["_png_get_PLTE"]=function(){return(_png_get_PLTE=Module["_png_get_PLTE"]=Module["asm"]["png_get_PLTE"]).apply(null,arguments)};var _png_get_sBIT=Module["_png_get_sBIT"]=function(){return(_png_get_sBIT=Module["_png_get_sBIT"]=Module["asm"]["png_get_sBIT"]).apply(null,arguments)};var _png_get_text=Module["_png_get_text"]=function(){return(_png_get_text=Module["_png_get_text"]=Module["asm"]["png_get_text"]).apply(null,arguments)};var _png_get_tIME=Module["_png_get_tIME"]=function(){return(_png_get_tIME=Module["_png_get_tIME"]=Module["asm"]["png_get_tIME"]).apply(null,arguments)};var _png_get_tRNS=Module["_png_get_tRNS"]=function(){return(_png_get_tRNS=Module["_png_get_tRNS"]=Module["asm"]["png_get_tRNS"]).apply(null,arguments)};var _png_get_unknown_chunks=Module["_png_get_unknown_chunks"]=function(){return(_png_get_unknown_chunks=Module["_png_get_unknown_chunks"]=Module["asm"]["png_get_unknown_chunks"]).apply(null,arguments)};var _png_get_rgb_to_gray_status=Module["_png_get_rgb_to_gray_status"]=function(){return(_png_get_rgb_to_gray_status=Module["_png_get_rgb_to_gray_status"]=Module["asm"]["png_get_rgb_to_gray_status"]).apply(null,arguments)};var _png_get_user_chunk_ptr=Module["_png_get_user_chunk_ptr"]=function(){return(_png_get_user_chunk_ptr=Module["_png_get_user_chunk_ptr"]=Module["asm"]["png_get_user_chunk_ptr"]).apply(null,arguments)};var _png_get_compression_buffer_size=Module["_png_get_compression_buffer_size"]=function(){return(_png_get_compression_buffer_size=Module["_png_get_compression_buffer_size"]=Module["asm"]["png_get_compression_buffer_size"]).apply(null,arguments)};var _png_get_user_width_max=Module["_png_get_user_width_max"]=function(){return(_png_get_user_width_max=Module["_png_get_user_width_max"]=Module["asm"]["png_get_user_width_max"]).apply(null,arguments)};var _png_get_user_height_max=Module["_png_get_user_height_max"]=function(){return(_png_get_user_height_max=Module["_png_get_user_height_max"]=Module["asm"]["png_get_user_height_max"]).apply(null,arguments)};var _png_get_chunk_cache_max=Module["_png_get_chunk_cache_max"]=function(){return(_png_get_chunk_cache_max=Module["_png_get_chunk_cache_max"]=Module["asm"]["png_get_chunk_cache_max"]).apply(null,arguments)};var _png_get_chunk_malloc_max=Module["_png_get_chunk_malloc_max"]=function(){return(_png_get_chunk_malloc_max=Module["_png_get_chunk_malloc_max"]=Module["asm"]["png_get_chunk_malloc_max"]).apply(null,arguments)};var _png_get_io_state=Module["_png_get_io_state"]=function(){return(_png_get_io_state=Module["_png_get_io_state"]=Module["asm"]["png_get_io_state"]).apply(null,arguments)};var _png_get_io_chunk_type=Module["_png_get_io_chunk_type"]=function(){return(_png_get_io_chunk_type=Module["_png_get_io_chunk_type"]=Module["asm"]["png_get_io_chunk_type"]).apply(null,arguments)};var _png_get_palette_max=Module["_png_get_palette_max"]=function(){return(_png_get_palette_max=Module["_png_get_palette_max"]=Module["asm"]["png_get_palette_max"]).apply(null,arguments)};var _png_destroy_png_struct=Module["_png_destroy_png_struct"]=function(){return(_png_destroy_png_struct=Module["_png_destroy_png_struct"]=Module["asm"]["png_destroy_png_struct"]).apply(null,arguments)};var _png_malloc_array=Module["_png_malloc_array"]=function(){return(_png_malloc_array=Module["_png_malloc_array"]=Module["asm"]["png_malloc_array"]).apply(null,arguments)};var _png_realloc_array=Module["_png_realloc_array"]=function(){return(_png_realloc_array=Module["_png_realloc_array"]=Module["asm"]["png_realloc_array"]).apply(null,arguments)};var _png_malloc_default=Module["_png_malloc_default"]=function(){return(_png_malloc_default=Module["_png_malloc_default"]=Module["asm"]["png_malloc_default"]).apply(null,arguments)};var _png_free_default=Module["_png_free_default"]=function(){return(_png_free_default=Module["_png_free_default"]=Module["asm"]["png_free_default"]).apply(null,arguments)};var _png_get_mem_ptr=Module["_png_get_mem_ptr"]=function(){return(_png_get_mem_ptr=Module["_png_get_mem_ptr"]=Module["asm"]["png_get_mem_ptr"]).apply(null,arguments)};var _png_process_data=Module["_png_process_data"]=function(){return(_png_process_data=Module["_png_process_data"]=Module["asm"]["png_process_data"]).apply(null,arguments)};var _png_push_read_chunk=Module["_png_push_read_chunk"]=function(){return(_png_push_read_chunk=Module["_png_push_read_chunk"]=Module["asm"]["png_push_read_chunk"]).apply(null,arguments)};var _png_push_read_IDAT=Module["_png_push_read_IDAT"]=function(){return(_png_push_read_IDAT=Module["_png_push_read_IDAT"]=Module["asm"]["png_push_read_IDAT"]).apply(null,arguments)};var _png_push_crc_finish=Module["_png_push_crc_finish"]=function(){return(_png_push_crc_finish=Module["_png_push_crc_finish"]=Module["asm"]["png_push_crc_finish"]).apply(null,arguments)};var _png_push_read_sig=Module["_png_push_read_sig"]=function(){return(_png_push_read_sig=Module["_png_push_read_sig"]=Module["asm"]["png_push_read_sig"]).apply(null,arguments)};var _png_push_restore_buffer=Module["_png_push_restore_buffer"]=function(){return(_png_push_restore_buffer=Module["_png_push_restore_buffer"]=Module["asm"]["png_push_restore_buffer"]).apply(null,arguments)};var _png_process_some_data=Module["_png_process_some_data"]=function(){return(_png_process_some_data=Module["_png_process_some_data"]=Module["asm"]["png_process_some_data"]).apply(null,arguments)};var _png_process_data_pause=Module["_png_process_data_pause"]=function(){return(_png_process_data_pause=Module["_png_process_data_pause"]=Module["asm"]["png_process_data_pause"]).apply(null,arguments)};var _png_push_save_buffer=Module["_png_push_save_buffer"]=function(){return(_png_push_save_buffer=Module["_png_push_save_buffer"]=Module["asm"]["png_push_save_buffer"]).apply(null,arguments)};var _png_process_data_skip=Module["_png_process_data_skip"]=function(){return(_png_process_data_skip=Module["_png_process_data_skip"]=Module["asm"]["png_process_data_skip"]).apply(null,arguments)};var _png_get_uint_31=Module["_png_get_uint_31"]=function(){return(_png_get_uint_31=Module["_png_get_uint_31"]=Module["asm"]["png_get_uint_31"]).apply(null,arguments)};var _png_crc_read=Module["_png_crc_read"]=function(){return(_png_crc_read=Module["_png_crc_read"]=Module["asm"]["png_crc_read"]).apply(null,arguments)};var _png_check_chunk_name=Module["_png_check_chunk_name"]=function(){return(_png_check_chunk_name=Module["_png_check_chunk_name"]=Module["asm"]["png_check_chunk_name"]).apply(null,arguments)};var _png_handle_IHDR=Module["_png_handle_IHDR"]=function(){return(_png_handle_IHDR=Module["_png_handle_IHDR"]=Module["asm"]["png_handle_IHDR"]).apply(null,arguments)};var _png_handle_IEND=Module["_png_handle_IEND"]=function(){return(_png_handle_IEND=Module["_png_handle_IEND"]=Module["asm"]["png_handle_IEND"]).apply(null,arguments)};var _png_handle_PLTE=Module["_png_handle_PLTE"]=function(){return(_png_handle_PLTE=Module["_png_handle_PLTE"]=Module["asm"]["png_handle_PLTE"]).apply(null,arguments)};var _png_handle_gAMA=Module["_png_handle_gAMA"]=function(){return(_png_handle_gAMA=Module["_png_handle_gAMA"]=Module["asm"]["png_handle_gAMA"]).apply(null,arguments)};var _png_handle_sBIT=Module["_png_handle_sBIT"]=function(){return(_png_handle_sBIT=Module["_png_handle_sBIT"]=Module["asm"]["png_handle_sBIT"]).apply(null,arguments)};var _png_handle_cHRM=Module["_png_handle_cHRM"]=function(){return(_png_handle_cHRM=Module["_png_handle_cHRM"]=Module["asm"]["png_handle_cHRM"]).apply(null,arguments)};var _png_handle_sRGB=Module["_png_handle_sRGB"]=function(){return(_png_handle_sRGB=Module["_png_handle_sRGB"]=Module["asm"]["png_handle_sRGB"]).apply(null,arguments)};var _png_handle_iCCP=Module["_png_handle_iCCP"]=function(){return(_png_handle_iCCP=Module["_png_handle_iCCP"]=Module["asm"]["png_handle_iCCP"]).apply(null,arguments)};var _png_handle_sPLT=Module["_png_handle_sPLT"]=function(){return(_png_handle_sPLT=Module["_png_handle_sPLT"]=Module["asm"]["png_handle_sPLT"]).apply(null,arguments)};var _png_handle_tRNS=Module["_png_handle_tRNS"]=function(){return(_png_handle_tRNS=Module["_png_handle_tRNS"]=Module["asm"]["png_handle_tRNS"]).apply(null,arguments)};var _png_handle_bKGD=Module["_png_handle_bKGD"]=function(){return(_png_handle_bKGD=Module["_png_handle_bKGD"]=Module["asm"]["png_handle_bKGD"]).apply(null,arguments)};var _png_handle_hIST=Module["_png_handle_hIST"]=function(){return(_png_handle_hIST=Module["_png_handle_hIST"]=Module["asm"]["png_handle_hIST"]).apply(null,arguments)};var _png_handle_pHYs=Module["_png_handle_pHYs"]=function(){return(_png_handle_pHYs=Module["_png_handle_pHYs"]=Module["asm"]["png_handle_pHYs"]).apply(null,arguments)};var _png_handle_oFFs=Module["_png_handle_oFFs"]=function(){return(_png_handle_oFFs=Module["_png_handle_oFFs"]=Module["asm"]["png_handle_oFFs"]).apply(null,arguments)};var _png_handle_pCAL=Module["_png_handle_pCAL"]=function(){return(_png_handle_pCAL=Module["_png_handle_pCAL"]=Module["asm"]["png_handle_pCAL"]).apply(null,arguments)};var _png_handle_sCAL=Module["_png_handle_sCAL"]=function(){return(_png_handle_sCAL=Module["_png_handle_sCAL"]=Module["asm"]["png_handle_sCAL"]).apply(null,arguments)};var _png_handle_tIME=Module["_png_handle_tIME"]=function(){return(_png_handle_tIME=Module["_png_handle_tIME"]=Module["asm"]["png_handle_tIME"]).apply(null,arguments)};var _png_handle_tEXt=Module["_png_handle_tEXt"]=function(){return(_png_handle_tEXt=Module["_png_handle_tEXt"]=Module["asm"]["png_handle_tEXt"]).apply(null,arguments)};var _png_handle_zTXt=Module["_png_handle_zTXt"]=function(){return(_png_handle_zTXt=Module["_png_handle_zTXt"]=Module["asm"]["png_handle_zTXt"]).apply(null,arguments)};var _png_handle_iTXt=Module["_png_handle_iTXt"]=function(){return(_png_handle_iTXt=Module["_png_handle_iTXt"]=Module["asm"]["png_handle_iTXt"]).apply(null,arguments)};var _png_handle_unknown=Module["_png_handle_unknown"]=function(){return(_png_handle_unknown=Module["_png_handle_unknown"]=Module["asm"]["png_handle_unknown"]).apply(null,arguments)};var _png_process_IDAT_data=Module["_png_process_IDAT_data"]=function(){return(_png_process_IDAT_data=Module["_png_process_IDAT_data"]=Module["asm"]["png_process_IDAT_data"]).apply(null,arguments)};var _png_crc_finish=Module["_png_crc_finish"]=function(){return(_png_crc_finish=Module["_png_crc_finish"]=Module["asm"]["png_crc_finish"]).apply(null,arguments)};var _png_push_fill_buffer=Module["_png_push_fill_buffer"]=function(){return(_png_push_fill_buffer=Module["_png_push_fill_buffer"]=Module["asm"]["png_push_fill_buffer"]).apply(null,arguments)};var _png_push_have_end=Module["_png_push_have_end"]=function(){return(_png_push_have_end=Module["_png_push_have_end"]=Module["asm"]["png_push_have_end"]).apply(null,arguments)};var _png_push_have_info=Module["_png_push_have_info"]=function(){return(_png_push_have_info=Module["_png_push_have_info"]=Module["asm"]["png_push_have_info"]).apply(null,arguments)};var _png_push_crc_skip=Module["_png_push_crc_skip"]=function(){return(_png_push_crc_skip=Module["_png_push_crc_skip"]=Module["asm"]["png_push_crc_skip"]).apply(null,arguments)};var _png_push_process_row=Module["_png_push_process_row"]=function(){return(_png_push_process_row=Module["_png_push_process_row"]=Module["asm"]["png_push_process_row"]).apply(null,arguments)};var _png_read_filter_row=Module["_png_read_filter_row"]=function(){return(_png_read_filter_row=Module["_png_read_filter_row"]=Module["asm"]["png_read_filter_row"]).apply(null,arguments)};var _png_do_read_transformations=Module["_png_do_read_transformations"]=function(){return(_png_do_read_transformations=Module["_png_do_read_transformations"]=Module["asm"]["png_do_read_transformations"]).apply(null,arguments)};var _png_do_read_interlace=Module["_png_do_read_interlace"]=function(){return(_png_do_read_interlace=Module["_png_do_read_interlace"]=Module["asm"]["png_do_read_interlace"]).apply(null,arguments)};var _png_read_push_finish_row=Module["_png_read_push_finish_row"]=function(){return(_png_read_push_finish_row=Module["_png_read_push_finish_row"]=Module["asm"]["png_read_push_finish_row"]).apply(null,arguments)};var _png_push_have_row=Module["_png_push_have_row"]=function(){return(_png_push_have_row=Module["_png_push_have_row"]=Module["asm"]["png_push_have_row"]).apply(null,arguments)};var _png_progressive_combine_row=Module["_png_progressive_combine_row"]=function(){return(_png_progressive_combine_row=Module["_png_progressive_combine_row"]=Module["asm"]["png_progressive_combine_row"]).apply(null,arguments)};var _png_combine_row=Module["_png_combine_row"]=function(){return(_png_combine_row=Module["_png_combine_row"]=Module["asm"]["png_combine_row"]).apply(null,arguments)};var _png_set_progressive_read_fn=Module["_png_set_progressive_read_fn"]=function(){return(_png_set_progressive_read_fn=Module["_png_set_progressive_read_fn"]=Module["asm"]["png_set_progressive_read_fn"]).apply(null,arguments)};var _png_set_read_fn=Module["_png_set_read_fn"]=function(){return(_png_set_read_fn=Module["_png_set_read_fn"]=Module["asm"]["png_set_read_fn"]).apply(null,arguments)};var _png_get_progressive_ptr=Module["_png_get_progressive_ptr"]=function(){return(_png_get_progressive_ptr=Module["_png_get_progressive_ptr"]=Module["asm"]["png_get_progressive_ptr"]).apply(null,arguments)};var _png_create_read_struct=Module["_png_create_read_struct"]=function(){return(_png_create_read_struct=Module["_png_create_read_struct"]=Module["asm"]["png_create_read_struct"]).apply(null,arguments)};var _png_create_read_struct_2=Module["_png_create_read_struct_2"]=function(){return(_png_create_read_struct_2=Module["_png_create_read_struct_2"]=Module["asm"]["png_create_read_struct_2"]).apply(null,arguments)};var _png_read_info=Module["_png_read_info"]=function(){return(_png_read_info=Module["_png_read_info"]=Module["asm"]["png_read_info"]).apply(null,arguments)};var _png_read_sig=Module["_png_read_sig"]=function(){return(_png_read_sig=Module["_png_read_sig"]=Module["asm"]["png_read_sig"]).apply(null,arguments)};var _png_read_chunk_header=Module["_png_read_chunk_header"]=function(){return(_png_read_chunk_header=Module["_png_read_chunk_header"]=Module["asm"]["png_read_chunk_header"]).apply(null,arguments)};var _png_read_update_info=Module["_png_read_update_info"]=function(){return(_png_read_update_info=Module["_png_read_update_info"]=Module["asm"]["png_read_update_info"]).apply(null,arguments)};var _png_read_start_row=Module["_png_read_start_row"]=function(){return(_png_read_start_row=Module["_png_read_start_row"]=Module["asm"]["png_read_start_row"]).apply(null,arguments)};var _png_read_transform_info=Module["_png_read_transform_info"]=function(){return(_png_read_transform_info=Module["_png_read_transform_info"]=Module["asm"]["png_read_transform_info"]).apply(null,arguments)};var _png_start_read_image=Module["_png_start_read_image"]=function(){return(_png_start_read_image=Module["_png_start_read_image"]=Module["asm"]["png_start_read_image"]).apply(null,arguments)};var _png_read_row=Module["_png_read_row"]=function(){return(_png_read_row=Module["_png_read_row"]=Module["asm"]["png_read_row"]).apply(null,arguments)};var _png_read_finish_row=Module["_png_read_finish_row"]=function(){return(_png_read_finish_row=Module["_png_read_finish_row"]=Module["asm"]["png_read_finish_row"]).apply(null,arguments)};var _png_read_IDAT_data=Module["_png_read_IDAT_data"]=function(){return(_png_read_IDAT_data=Module["_png_read_IDAT_data"]=Module["asm"]["png_read_IDAT_data"]).apply(null,arguments)};var _png_read_rows=Module["_png_read_rows"]=function(){return(_png_read_rows=Module["_png_read_rows"]=Module["asm"]["png_read_rows"]).apply(null,arguments)};var _png_read_image=Module["_png_read_image"]=function(){return(_png_read_image=Module["_png_read_image"]=Module["asm"]["png_read_image"]).apply(null,arguments)};var _png_set_interlace_handling=Module["_png_set_interlace_handling"]=function(){return(_png_set_interlace_handling=Module["_png_set_interlace_handling"]=Module["asm"]["png_set_interlace_handling"]).apply(null,arguments)};var _png_read_end=Module["_png_read_end"]=function(){return(_png_read_end=Module["_png_read_end"]=Module["asm"]["png_read_end"]).apply(null,arguments)};var _png_read_finish_IDAT=Module["_png_read_finish_IDAT"]=function(){return(_png_read_finish_IDAT=Module["_png_read_finish_IDAT"]=Module["asm"]["png_read_finish_IDAT"]).apply(null,arguments)};var _png_set_read_status_fn=Module["_png_set_read_status_fn"]=function(){return(_png_set_read_status_fn=Module["_png_set_read_status_fn"]=Module["asm"]["png_set_read_status_fn"]).apply(null,arguments)};var _png_read_png=Module["_png_read_png"]=function(){return(_png_read_png=Module["_png_read_png"]=Module["asm"]["png_read_png"]).apply(null,arguments)};var _png_set_scale_16=Module["_png_set_scale_16"]=function(){return(_png_set_scale_16=Module["_png_set_scale_16"]=Module["asm"]["png_set_scale_16"]).apply(null,arguments)};var _png_set_strip_16=Module["_png_set_strip_16"]=function(){return(_png_set_strip_16=Module["_png_set_strip_16"]=Module["asm"]["png_set_strip_16"]).apply(null,arguments)};var _png_set_strip_alpha=Module["_png_set_strip_alpha"]=function(){return(_png_set_strip_alpha=Module["_png_set_strip_alpha"]=Module["asm"]["png_set_strip_alpha"]).apply(null,arguments)};var _png_set_packing=Module["_png_set_packing"]=function(){return(_png_set_packing=Module["_png_set_packing"]=Module["asm"]["png_set_packing"]).apply(null,arguments)};var _png_set_packswap=Module["_png_set_packswap"]=function(){return(_png_set_packswap=Module["_png_set_packswap"]=Module["asm"]["png_set_packswap"]).apply(null,arguments)};var _png_set_expand=Module["_png_set_expand"]=function(){return(_png_set_expand=Module["_png_set_expand"]=Module["asm"]["png_set_expand"]).apply(null,arguments)};var _png_set_invert_mono=Module["_png_set_invert_mono"]=function(){return(_png_set_invert_mono=Module["_png_set_invert_mono"]=Module["asm"]["png_set_invert_mono"]).apply(null,arguments)};var _png_set_shift=Module["_png_set_shift"]=function(){return(_png_set_shift=Module["_png_set_shift"]=Module["asm"]["png_set_shift"]).apply(null,arguments)};var _png_set_bgr=Module["_png_set_bgr"]=function(){return(_png_set_bgr=Module["_png_set_bgr"]=Module["asm"]["png_set_bgr"]).apply(null,arguments)};var _png_set_swap_alpha=Module["_png_set_swap_alpha"]=function(){return(_png_set_swap_alpha=Module["_png_set_swap_alpha"]=Module["asm"]["png_set_swap_alpha"]).apply(null,arguments)};var _png_set_swap=Module["_png_set_swap"]=function(){return(_png_set_swap=Module["_png_set_swap"]=Module["asm"]["png_set_swap"]).apply(null,arguments)};var _png_set_invert_alpha=Module["_png_set_invert_alpha"]=function(){return(_png_set_invert_alpha=Module["_png_set_invert_alpha"]=Module["asm"]["png_set_invert_alpha"]).apply(null,arguments)};var _png_set_gray_to_rgb=Module["_png_set_gray_to_rgb"]=function(){return(_png_set_gray_to_rgb=Module["_png_set_gray_to_rgb"]=Module["asm"]["png_set_gray_to_rgb"]).apply(null,arguments)};var _png_set_expand_16=Module["_png_set_expand_16"]=function(){return(_png_set_expand_16=Module["_png_set_expand_16"]=Module["asm"]["png_set_expand_16"]).apply(null,arguments)};var _png_image_begin_read_from_stdio=Module["_png_image_begin_read_from_stdio"]=function(){return(_png_image_begin_read_from_stdio=Module["_png_image_begin_read_from_stdio"]=Module["asm"]["png_image_begin_read_from_stdio"]).apply(null,arguments)};var _png_set_benign_errors=Module["_png_set_benign_errors"]=function(){return(_png_set_benign_errors=Module["_png_set_benign_errors"]=Module["asm"]["png_set_benign_errors"]).apply(null,arguments)};var _png_image_begin_read_from_file=Module["_png_image_begin_read_from_file"]=function(){return(_png_image_begin_read_from_file=Module["_png_image_begin_read_from_file"]=Module["asm"]["png_image_begin_read_from_file"]).apply(null,arguments)};var _png_image_begin_read_from_memory=Module["_png_image_begin_read_from_memory"]=function(){return(_png_image_begin_read_from_memory=Module["_png_image_begin_read_from_memory"]=Module["asm"]["png_image_begin_read_from_memory"]).apply(null,arguments)};var _png_image_finish_read=Module["_png_image_finish_read"]=function(){return(_png_image_finish_read=Module["_png_image_finish_read"]=Module["asm"]["png_image_finish_read"]).apply(null,arguments)};var _png_set_background_fixed=Module["_png_set_background_fixed"]=function(){return(_png_set_background_fixed=Module["_png_set_background_fixed"]=Module["asm"]["png_set_background_fixed"]).apply(null,arguments)};var _png_set_rgb_to_gray_fixed=Module["_png_set_rgb_to_gray_fixed"]=function(){return(_png_set_rgb_to_gray_fixed=Module["_png_set_rgb_to_gray_fixed"]=Module["asm"]["png_set_rgb_to_gray_fixed"]).apply(null,arguments)};var _png_set_tRNS_to_alpha=Module["_png_set_tRNS_to_alpha"]=function(){return(_png_set_tRNS_to_alpha=Module["_png_set_tRNS_to_alpha"]=Module["asm"]["png_set_tRNS_to_alpha"]).apply(null,arguments)};var _png_set_alpha_mode_fixed=Module["_png_set_alpha_mode_fixed"]=function(){return(_png_set_alpha_mode_fixed=Module["_png_set_alpha_mode_fixed"]=Module["asm"]["png_set_alpha_mode_fixed"]).apply(null,arguments)};var _png_set_keep_unknown_chunks=Module["_png_set_keep_unknown_chunks"]=function(){return(_png_set_keep_unknown_chunks=Module["_png_set_keep_unknown_chunks"]=Module["asm"]["png_set_keep_unknown_chunks"]).apply(null,arguments)};var _png_set_add_alpha=Module["_png_set_add_alpha"]=function(){return(_png_set_add_alpha=Module["_png_set_add_alpha"]=Module["asm"]["png_set_add_alpha"]).apply(null,arguments)};var _png_read_data=Module["_png_read_data"]=function(){return(_png_read_data=Module["_png_read_data"]=Module["asm"]["png_read_data"]).apply(null,arguments)};var _png_default_read_data=Module["_png_default_read_data"]=function(){return(_png_default_read_data=Module["_png_default_read_data"]=Module["asm"]["png_default_read_data"]).apply(null,arguments)};var _png_set_crc_action=Module["_png_set_crc_action"]=function(){return(_png_set_crc_action=Module["_png_set_crc_action"]=Module["asm"]["png_set_crc_action"]).apply(null,arguments)};var _png_set_background=Module["_png_set_background"]=function(){return(_png_set_background=Module["_png_set_background"]=Module["asm"]["png_set_background"]).apply(null,arguments)};var _png_set_alpha_mode=Module["_png_set_alpha_mode"]=function(){return(_png_set_alpha_mode=Module["_png_set_alpha_mode"]=Module["asm"]["png_set_alpha_mode"]).apply(null,arguments)};var _png_set_quantize=Module["_png_set_quantize"]=function(){return(_png_set_quantize=Module["_png_set_quantize"]=Module["asm"]["png_set_quantize"]).apply(null,arguments)};var _png_set_gamma_fixed=Module["_png_set_gamma_fixed"]=function(){return(_png_set_gamma_fixed=Module["_png_set_gamma_fixed"]=Module["asm"]["png_set_gamma_fixed"]).apply(null,arguments)};var _png_set_gamma=Module["_png_set_gamma"]=function(){return(_png_set_gamma=Module["_png_set_gamma"]=Module["asm"]["png_set_gamma"]).apply(null,arguments)};var _png_set_palette_to_rgb=Module["_png_set_palette_to_rgb"]=function(){return(_png_set_palette_to_rgb=Module["_png_set_palette_to_rgb"]=Module["asm"]["png_set_palette_to_rgb"]).apply(null,arguments)};var _png_set_expand_gray_1_2_4_to_8=Module["_png_set_expand_gray_1_2_4_to_8"]=function(){return(_png_set_expand_gray_1_2_4_to_8=Module["_png_set_expand_gray_1_2_4_to_8"]=Module["asm"]["png_set_expand_gray_1_2_4_to_8"]).apply(null,arguments)};var _png_set_rgb_to_gray=Module["_png_set_rgb_to_gray"]=function(){return(_png_set_rgb_to_gray=Module["_png_set_rgb_to_gray"]=Module["asm"]["png_set_rgb_to_gray"]).apply(null,arguments)};var _png_set_read_user_transform_fn=Module["_png_set_read_user_transform_fn"]=function(){return(_png_set_read_user_transform_fn=Module["_png_set_read_user_transform_fn"]=Module["asm"]["png_set_read_user_transform_fn"]).apply(null,arguments)};var _png_init_read_transformations=Module["_png_init_read_transformations"]=function(){return(_png_init_read_transformations=Module["_png_init_read_transformations"]=Module["asm"]["png_init_read_transformations"]).apply(null,arguments)};var _png_do_strip_channel=Module["_png_do_strip_channel"]=function(){return(_png_do_strip_channel=Module["_png_do_strip_channel"]=Module["asm"]["png_do_strip_channel"]).apply(null,arguments)};var _png_do_invert=Module["_png_do_invert"]=function(){return(_png_do_invert=Module["_png_do_invert"]=Module["asm"]["png_do_invert"]).apply(null,arguments)};var _png_do_check_palette_indexes=Module["_png_do_check_palette_indexes"]=function(){return(_png_do_check_palette_indexes=Module["_png_do_check_palette_indexes"]=Module["asm"]["png_do_check_palette_indexes"]).apply(null,arguments)};var _png_do_bgr=Module["_png_do_bgr"]=function(){return(_png_do_bgr=Module["_png_do_bgr"]=Module["asm"]["png_do_bgr"]).apply(null,arguments)};var _png_do_packswap=Module["_png_do_packswap"]=function(){return(_png_do_packswap=Module["_png_do_packswap"]=Module["asm"]["png_do_packswap"]).apply(null,arguments)};var _png_do_swap=Module["_png_do_swap"]=function(){return(_png_do_swap=Module["_png_do_swap"]=Module["asm"]["png_do_swap"]).apply(null,arguments)};var _png_get_uint_32=Module["_png_get_uint_32"]=function(){return(_png_get_uint_32=Module["_png_get_uint_32"]=Module["asm"]["png_get_uint_32"]).apply(null,arguments)};var _png_get_int_32=Module["_png_get_int_32"]=function(){return(_png_get_int_32=Module["_png_get_int_32"]=Module["asm"]["png_get_int_32"]).apply(null,arguments)};var _png_get_uint_16=Module["_png_get_uint_16"]=function(){return(_png_get_uint_16=Module["_png_get_uint_16"]=Module["asm"]["png_get_uint_16"]).apply(null,arguments)};var _png_crc_error=Module["_png_crc_error"]=function(){return(_png_crc_error=Module["_png_crc_error"]=Module["asm"]["png_crc_error"]).apply(null,arguments)};var _png_set_IHDR=Module["_png_set_IHDR"]=function(){return(_png_set_IHDR=Module["_png_set_IHDR"]=Module["asm"]["png_set_IHDR"]).apply(null,arguments)};var _png_set_PLTE=Module["_png_set_PLTE"]=function(){return(_png_set_PLTE=Module["_png_set_PLTE"]=Module["asm"]["png_set_PLTE"]).apply(null,arguments)};var _png_set_sBIT=Module["_png_set_sBIT"]=function(){return(_png_set_sBIT=Module["_png_set_sBIT"]=Module["asm"]["png_set_sBIT"]).apply(null,arguments)};var _inflateInit_=Module["_inflateInit_"]=function(){return(_inflateInit_=Module["_inflateInit_"]=Module["asm"]["inflateInit_"]).apply(null,arguments)};var _png_set_sPLT=Module["_png_set_sPLT"]=function(){return(_png_set_sPLT=Module["_png_set_sPLT"]=Module["asm"]["png_set_sPLT"]).apply(null,arguments)};var _png_set_tRNS=Module["_png_set_tRNS"]=function(){return(_png_set_tRNS=Module["_png_set_tRNS"]=Module["asm"]["png_set_tRNS"]).apply(null,arguments)};var _png_set_bKGD=Module["_png_set_bKGD"]=function(){return(_png_set_bKGD=Module["_png_set_bKGD"]=Module["asm"]["png_set_bKGD"]).apply(null,arguments)};var _png_set_hIST=Module["_png_set_hIST"]=function(){return(_png_set_hIST=Module["_png_set_hIST"]=Module["asm"]["png_set_hIST"]).apply(null,arguments)};var _png_set_pHYs=Module["_png_set_pHYs"]=function(){return(_png_set_pHYs=Module["_png_set_pHYs"]=Module["asm"]["png_set_pHYs"]).apply(null,arguments)};var _png_set_oFFs=Module["_png_set_oFFs"]=function(){return(_png_set_oFFs=Module["_png_set_oFFs"]=Module["asm"]["png_set_oFFs"]).apply(null,arguments)};var _png_set_pCAL=Module["_png_set_pCAL"]=function(){return(_png_set_pCAL=Module["_png_set_pCAL"]=Module["asm"]["png_set_pCAL"]).apply(null,arguments)};var _png_set_sCAL_s=Module["_png_set_sCAL_s"]=function(){return(_png_set_sCAL_s=Module["_png_set_sCAL_s"]=Module["asm"]["png_set_sCAL_s"]).apply(null,arguments)};var _png_set_tIME=Module["_png_set_tIME"]=function(){return(_png_set_tIME=Module["_png_set_tIME"]=Module["asm"]["png_set_tIME"]).apply(null,arguments)};var _png_set_text_2=Module["_png_set_text_2"]=function(){return(_png_set_text_2=Module["_png_set_text_2"]=Module["asm"]["png_set_text_2"]).apply(null,arguments)};var _png_set_unknown_chunks=Module["_png_set_unknown_chunks"]=function(){return(_png_set_unknown_chunks=Module["_png_set_unknown_chunks"]=Module["asm"]["png_set_unknown_chunks"]).apply(null,arguments)};var _png_set_cHRM_fixed=Module["_png_set_cHRM_fixed"]=function(){return(_png_set_cHRM_fixed=Module["_png_set_cHRM_fixed"]=Module["asm"]["png_set_cHRM_fixed"]).apply(null,arguments)};var _png_set_cHRM_XYZ_fixed=Module["_png_set_cHRM_XYZ_fixed"]=function(){return(_png_set_cHRM_XYZ_fixed=Module["_png_set_cHRM_XYZ_fixed"]=Module["asm"]["png_set_cHRM_XYZ_fixed"]).apply(null,arguments)};var _png_set_cHRM=Module["_png_set_cHRM"]=function(){return(_png_set_cHRM=Module["_png_set_cHRM"]=Module["asm"]["png_set_cHRM"]).apply(null,arguments)};var _png_set_cHRM_XYZ=Module["_png_set_cHRM_XYZ"]=function(){return(_png_set_cHRM_XYZ=Module["_png_set_cHRM_XYZ"]=Module["asm"]["png_set_cHRM_XYZ"]).apply(null,arguments)};var _png_set_gAMA_fixed=Module["_png_set_gAMA_fixed"]=function(){return(_png_set_gAMA_fixed=Module["_png_set_gAMA_fixed"]=Module["asm"]["png_set_gAMA_fixed"]).apply(null,arguments)};var _png_set_gAMA=Module["_png_set_gAMA"]=function(){return(_png_set_gAMA=Module["_png_set_gAMA"]=Module["asm"]["png_set_gAMA"]).apply(null,arguments)};var _png_set_sCAL=Module["_png_set_sCAL"]=function(){return(_png_set_sCAL=Module["_png_set_sCAL"]=Module["asm"]["png_set_sCAL"]).apply(null,arguments)};var _png_set_sCAL_fixed=Module["_png_set_sCAL_fixed"]=function(){return(_png_set_sCAL_fixed=Module["_png_set_sCAL_fixed"]=Module["asm"]["png_set_sCAL_fixed"]).apply(null,arguments)};var _png_set_sRGB=Module["_png_set_sRGB"]=function(){return(_png_set_sRGB=Module["_png_set_sRGB"]=Module["asm"]["png_set_sRGB"]).apply(null,arguments)};var _png_set_sRGB_gAMA_and_cHRM=Module["_png_set_sRGB_gAMA_and_cHRM"]=function(){return(_png_set_sRGB_gAMA_and_cHRM=Module["_png_set_sRGB_gAMA_and_cHRM"]=Module["asm"]["png_set_sRGB_gAMA_and_cHRM"]).apply(null,arguments)};var _png_set_iCCP=Module["_png_set_iCCP"]=function(){return(_png_set_iCCP=Module["_png_set_iCCP"]=Module["asm"]["png_set_iCCP"]).apply(null,arguments)};var _png_set_text=Module["_png_set_text"]=function(){return(_png_set_text=Module["_png_set_text"]=Module["asm"]["png_set_text"]).apply(null,arguments)};var _png_set_unknown_chunk_location=Module["_png_set_unknown_chunk_location"]=function(){return(_png_set_unknown_chunk_location=Module["_png_set_unknown_chunk_location"]=Module["asm"]["png_set_unknown_chunk_location"]).apply(null,arguments)};var _png_permit_mng_features=Module["_png_permit_mng_features"]=function(){return(_png_permit_mng_features=Module["_png_permit_mng_features"]=Module["asm"]["png_permit_mng_features"]).apply(null,arguments)};var _png_set_read_user_chunk_fn=Module["_png_set_read_user_chunk_fn"]=function(){return(_png_set_read_user_chunk_fn=Module["_png_set_read_user_chunk_fn"]=Module["asm"]["png_set_read_user_chunk_fn"]).apply(null,arguments)};var _png_set_rows=Module["_png_set_rows"]=function(){return(_png_set_rows=Module["_png_set_rows"]=Module["asm"]["png_set_rows"]).apply(null,arguments)};var _png_set_compression_buffer_size=Module["_png_set_compression_buffer_size"]=function(){return(_png_set_compression_buffer_size=Module["_png_set_compression_buffer_size"]=Module["asm"]["png_set_compression_buffer_size"]).apply(null,arguments)};var _png_free_buffer_list=Module["_png_free_buffer_list"]=function(){return(_png_free_buffer_list=Module["_png_free_buffer_list"]=Module["asm"]["png_free_buffer_list"]).apply(null,arguments)};var _png_set_invalid=Module["_png_set_invalid"]=function(){return(_png_set_invalid=Module["_png_set_invalid"]=Module["asm"]["png_set_invalid"]).apply(null,arguments)};var _png_set_user_limits=Module["_png_set_user_limits"]=function(){return(_png_set_user_limits=Module["_png_set_user_limits"]=Module["asm"]["png_set_user_limits"]).apply(null,arguments)};var _png_set_chunk_cache_max=Module["_png_set_chunk_cache_max"]=function(){return(_png_set_chunk_cache_max=Module["_png_set_chunk_cache_max"]=Module["asm"]["png_set_chunk_cache_max"]).apply(null,arguments)};var _png_set_chunk_malloc_max=Module["_png_set_chunk_malloc_max"]=function(){return(_png_set_chunk_malloc_max=Module["_png_set_chunk_malloc_max"]=Module["asm"]["png_set_chunk_malloc_max"]).apply(null,arguments)};var _png_set_check_for_invalid_index=Module["_png_set_check_for_invalid_index"]=function(){return(_png_set_check_for_invalid_index=Module["_png_set_check_for_invalid_index"]=Module["asm"]["png_set_check_for_invalid_index"]).apply(null,arguments)};var _png_set_filler=Module["_png_set_filler"]=function(){return(_png_set_filler=Module["_png_set_filler"]=Module["asm"]["png_set_filler"]).apply(null,arguments)};var _png_set_user_transform_info=Module["_png_set_user_transform_info"]=function(){return(_png_set_user_transform_info=Module["_png_set_user_transform_info"]=Module["asm"]["png_set_user_transform_info"]).apply(null,arguments)};var _png_get_user_transform_ptr=Module["_png_get_user_transform_ptr"]=function(){return(_png_get_user_transform_ptr=Module["_png_get_user_transform_ptr"]=Module["asm"]["png_get_user_transform_ptr"]).apply(null,arguments)};var _png_get_current_row_number=Module["_png_get_current_row_number"]=function(){return(_png_get_current_row_number=Module["_png_get_current_row_number"]=Module["asm"]["png_get_current_row_number"]).apply(null,arguments)};var _png_get_current_pass_number=Module["_png_get_current_pass_number"]=function(){return(_png_get_current_pass_number=Module["_png_get_current_pass_number"]=Module["asm"]["png_get_current_pass_number"]).apply(null,arguments)};var _png_write_data=Module["_png_write_data"]=function(){return(_png_write_data=Module["_png_write_data"]=Module["asm"]["png_write_data"]).apply(null,arguments)};var _png_default_write_data=Module["_png_default_write_data"]=function(){return(_png_default_write_data=Module["_png_default_write_data"]=Module["asm"]["png_default_write_data"]).apply(null,arguments)};var _png_flush=Module["_png_flush"]=function(){return(_png_flush=Module["_png_flush"]=Module["asm"]["png_flush"]).apply(null,arguments)};var _png_default_flush=Module["_png_default_flush"]=function(){return(_png_default_flush=Module["_png_default_flush"]=Module["asm"]["png_default_flush"]).apply(null,arguments)};var _png_set_write_fn=Module["_png_set_write_fn"]=function(){return(_png_set_write_fn=Module["_png_set_write_fn"]=Module["asm"]["png_set_write_fn"]).apply(null,arguments)};var _png_write_info_before_PLTE=Module["_png_write_info_before_PLTE"]=function(){return(_png_write_info_before_PLTE=Module["_png_write_info_before_PLTE"]=Module["asm"]["png_write_info_before_PLTE"]).apply(null,arguments)};var _png_write_sig=Module["_png_write_sig"]=function(){return(_png_write_sig=Module["_png_write_sig"]=Module["asm"]["png_write_sig"]).apply(null,arguments)};var _png_write_IHDR=Module["_png_write_IHDR"]=function(){return(_png_write_IHDR=Module["_png_write_IHDR"]=Module["asm"]["png_write_IHDR"]).apply(null,arguments)};var _png_write_gAMA_fixed=Module["_png_write_gAMA_fixed"]=function(){return(_png_write_gAMA_fixed=Module["_png_write_gAMA_fixed"]=Module["asm"]["png_write_gAMA_fixed"]).apply(null,arguments)};var _png_write_iCCP=Module["_png_write_iCCP"]=function(){return(_png_write_iCCP=Module["_png_write_iCCP"]=Module["asm"]["png_write_iCCP"]).apply(null,arguments)};var _png_write_sRGB=Module["_png_write_sRGB"]=function(){return(_png_write_sRGB=Module["_png_write_sRGB"]=Module["asm"]["png_write_sRGB"]).apply(null,arguments)};var _png_write_sBIT=Module["_png_write_sBIT"]=function(){return(_png_write_sBIT=Module["_png_write_sBIT"]=Module["asm"]["png_write_sBIT"]).apply(null,arguments)};var _png_write_cHRM_fixed=Module["_png_write_cHRM_fixed"]=function(){return(_png_write_cHRM_fixed=Module["_png_write_cHRM_fixed"]=Module["asm"]["png_write_cHRM_fixed"]).apply(null,arguments)};var _png_write_chunk=Module["_png_write_chunk"]=function(){return(_png_write_chunk=Module["_png_write_chunk"]=Module["asm"]["png_write_chunk"]).apply(null,arguments)};var _png_write_info=Module["_png_write_info"]=function(){return(_png_write_info=Module["_png_write_info"]=Module["asm"]["png_write_info"]).apply(null,arguments)};var _png_write_PLTE=Module["_png_write_PLTE"]=function(){return(_png_write_PLTE=Module["_png_write_PLTE"]=Module["asm"]["png_write_PLTE"]).apply(null,arguments)};var _png_write_tRNS=Module["_png_write_tRNS"]=function(){return(_png_write_tRNS=Module["_png_write_tRNS"]=Module["asm"]["png_write_tRNS"]).apply(null,arguments)};var _png_write_bKGD=Module["_png_write_bKGD"]=function(){return(_png_write_bKGD=Module["_png_write_bKGD"]=Module["asm"]["png_write_bKGD"]).apply(null,arguments)};var _png_write_hIST=Module["_png_write_hIST"]=function(){return(_png_write_hIST=Module["_png_write_hIST"]=Module["asm"]["png_write_hIST"]).apply(null,arguments)};var _png_write_oFFs=Module["_png_write_oFFs"]=function(){return(_png_write_oFFs=Module["_png_write_oFFs"]=Module["asm"]["png_write_oFFs"]).apply(null,arguments)};var _png_write_pCAL=Module["_png_write_pCAL"]=function(){return(_png_write_pCAL=Module["_png_write_pCAL"]=Module["asm"]["png_write_pCAL"]).apply(null,arguments)};var _png_write_sCAL_s=Module["_png_write_sCAL_s"]=function(){return(_png_write_sCAL_s=Module["_png_write_sCAL_s"]=Module["asm"]["png_write_sCAL_s"]).apply(null,arguments)};var _png_write_pHYs=Module["_png_write_pHYs"]=function(){return(_png_write_pHYs=Module["_png_write_pHYs"]=Module["asm"]["png_write_pHYs"]).apply(null,arguments)};var _png_write_tIME=Module["_png_write_tIME"]=function(){return(_png_write_tIME=Module["_png_write_tIME"]=Module["asm"]["png_write_tIME"]).apply(null,arguments)};var _png_write_sPLT=Module["_png_write_sPLT"]=function(){return(_png_write_sPLT=Module["_png_write_sPLT"]=Module["asm"]["png_write_sPLT"]).apply(null,arguments)};var _png_write_iTXt=Module["_png_write_iTXt"]=function(){return(_png_write_iTXt=Module["_png_write_iTXt"]=Module["asm"]["png_write_iTXt"]).apply(null,arguments)};var _png_write_zTXt=Module["_png_write_zTXt"]=function(){return(_png_write_zTXt=Module["_png_write_zTXt"]=Module["asm"]["png_write_zTXt"]).apply(null,arguments)};var _png_write_tEXt=Module["_png_write_tEXt"]=function(){return(_png_write_tEXt=Module["_png_write_tEXt"]=Module["asm"]["png_write_tEXt"]).apply(null,arguments)};var _png_write_end=Module["_png_write_end"]=function(){return(_png_write_end=Module["_png_write_end"]=Module["asm"]["png_write_end"]).apply(null,arguments)};var _png_write_IEND=Module["_png_write_IEND"]=function(){return(_png_write_IEND=Module["_png_write_IEND"]=Module["asm"]["png_write_IEND"]).apply(null,arguments)};var _png_convert_from_struct_tm=Module["_png_convert_from_struct_tm"]=function(){return(_png_convert_from_struct_tm=Module["_png_convert_from_struct_tm"]=Module["asm"]["png_convert_from_struct_tm"]).apply(null,arguments)};var _png_convert_from_time_t=Module["_png_convert_from_time_t"]=function(){return(_png_convert_from_time_t=Module["_png_convert_from_time_t"]=Module["asm"]["png_convert_from_time_t"]).apply(null,arguments)};var _gmtime=Module["_gmtime"]=function(){return(_gmtime=Module["_gmtime"]=Module["asm"]["gmtime"]).apply(null,arguments)};var _png_create_write_struct=Module["_png_create_write_struct"]=function(){return(_png_create_write_struct=Module["_png_create_write_struct"]=Module["asm"]["png_create_write_struct"]).apply(null,arguments)};var _png_create_write_struct_2=Module["_png_create_write_struct_2"]=function(){return(_png_create_write_struct_2=Module["_png_create_write_struct_2"]=Module["asm"]["png_create_write_struct_2"]).apply(null,arguments)};var _png_write_rows=Module["_png_write_rows"]=function(){return(_png_write_rows=Module["_png_write_rows"]=Module["asm"]["png_write_rows"]).apply(null,arguments)};var _png_write_row=Module["_png_write_row"]=function(){return(_png_write_row=Module["_png_write_row"]=Module["asm"]["png_write_row"]).apply(null,arguments)};var _png_write_start_row=Module["_png_write_start_row"]=function(){return(_png_write_start_row=Module["_png_write_start_row"]=Module["asm"]["png_write_start_row"]).apply(null,arguments)};var _png_write_finish_row=Module["_png_write_finish_row"]=function(){return(_png_write_finish_row=Module["_png_write_finish_row"]=Module["asm"]["png_write_finish_row"]).apply(null,arguments)};var _png_do_write_interlace=Module["_png_do_write_interlace"]=function(){return(_png_do_write_interlace=Module["_png_do_write_interlace"]=Module["asm"]["png_do_write_interlace"]).apply(null,arguments)};var _png_do_write_transformations=Module["_png_do_write_transformations"]=function(){return(_png_do_write_transformations=Module["_png_do_write_transformations"]=Module["asm"]["png_do_write_transformations"]).apply(null,arguments)};var _png_write_find_filter=Module["_png_write_find_filter"]=function(){return(_png_write_find_filter=Module["_png_write_find_filter"]=Module["asm"]["png_write_find_filter"]).apply(null,arguments)};var _png_write_image=Module["_png_write_image"]=function(){return(_png_write_image=Module["_png_write_image"]=Module["asm"]["png_write_image"]).apply(null,arguments)};var _png_set_flush=Module["_png_set_flush"]=function(){return(_png_set_flush=Module["_png_set_flush"]=Module["asm"]["png_set_flush"]).apply(null,arguments)};var _png_write_flush=Module["_png_write_flush"]=function(){return(_png_write_flush=Module["_png_write_flush"]=Module["asm"]["png_write_flush"]).apply(null,arguments)};var _png_compress_IDAT=Module["_png_compress_IDAT"]=function(){return(_png_compress_IDAT=Module["_png_compress_IDAT"]=Module["asm"]["png_compress_IDAT"]).apply(null,arguments)};var _png_set_filter=Module["_png_set_filter"]=function(){return(_png_set_filter=Module["_png_set_filter"]=Module["asm"]["png_set_filter"]).apply(null,arguments)};var _png_set_filter_heuristics=Module["_png_set_filter_heuristics"]=function(){return(_png_set_filter_heuristics=Module["_png_set_filter_heuristics"]=Module["asm"]["png_set_filter_heuristics"]).apply(null,arguments)};var _png_set_filter_heuristics_fixed=Module["_png_set_filter_heuristics_fixed"]=function(){return(_png_set_filter_heuristics_fixed=Module["_png_set_filter_heuristics_fixed"]=Module["asm"]["png_set_filter_heuristics_fixed"]).apply(null,arguments)};var _png_set_compression_level=Module["_png_set_compression_level"]=function(){return(_png_set_compression_level=Module["_png_set_compression_level"]=Module["asm"]["png_set_compression_level"]).apply(null,arguments)};var _png_set_compression_mem_level=Module["_png_set_compression_mem_level"]=function(){return(_png_set_compression_mem_level=Module["_png_set_compression_mem_level"]=Module["asm"]["png_set_compression_mem_level"]).apply(null,arguments)};var _png_set_compression_strategy=Module["_png_set_compression_strategy"]=function(){return(_png_set_compression_strategy=Module["_png_set_compression_strategy"]=Module["asm"]["png_set_compression_strategy"]).apply(null,arguments)};var _png_set_compression_window_bits=Module["_png_set_compression_window_bits"]=function(){return(_png_set_compression_window_bits=Module["_png_set_compression_window_bits"]=Module["asm"]["png_set_compression_window_bits"]).apply(null,arguments)};var _png_set_compression_method=Module["_png_set_compression_method"]=function(){return(_png_set_compression_method=Module["_png_set_compression_method"]=Module["asm"]["png_set_compression_method"]).apply(null,arguments)};var _png_set_text_compression_level=Module["_png_set_text_compression_level"]=function(){return(_png_set_text_compression_level=Module["_png_set_text_compression_level"]=Module["asm"]["png_set_text_compression_level"]).apply(null,arguments)};var _png_set_text_compression_mem_level=Module["_png_set_text_compression_mem_level"]=function(){return(_png_set_text_compression_mem_level=Module["_png_set_text_compression_mem_level"]=Module["asm"]["png_set_text_compression_mem_level"]).apply(null,arguments)};var _png_set_text_compression_strategy=Module["_png_set_text_compression_strategy"]=function(){return(_png_set_text_compression_strategy=Module["_png_set_text_compression_strategy"]=Module["asm"]["png_set_text_compression_strategy"]).apply(null,arguments)};var _png_set_text_compression_window_bits=Module["_png_set_text_compression_window_bits"]=function(){return(_png_set_text_compression_window_bits=Module["_png_set_text_compression_window_bits"]=Module["asm"]["png_set_text_compression_window_bits"]).apply(null,arguments)};var _png_set_text_compression_method=Module["_png_set_text_compression_method"]=function(){return(_png_set_text_compression_method=Module["_png_set_text_compression_method"]=Module["asm"]["png_set_text_compression_method"]).apply(null,arguments)};var _png_set_write_status_fn=Module["_png_set_write_status_fn"]=function(){return(_png_set_write_status_fn=Module["_png_set_write_status_fn"]=Module["asm"]["png_set_write_status_fn"]).apply(null,arguments)};var _png_set_write_user_transform_fn=Module["_png_set_write_user_transform_fn"]=function(){return(_png_set_write_user_transform_fn=Module["_png_set_write_user_transform_fn"]=Module["asm"]["png_set_write_user_transform_fn"]).apply(null,arguments)};var _png_write_png=Module["_png_write_png"]=function(){return(_png_write_png=Module["_png_write_png"]=Module["asm"]["png_write_png"]).apply(null,arguments)};var _png_image_write_to_stdio=Module["_png_image_write_to_stdio"]=function(){return(_png_image_write_to_stdio=Module["_png_image_write_to_stdio"]=Module["asm"]["png_image_write_to_stdio"]).apply(null,arguments)};var _png_image_write_to_file=Module["_png_image_write_to_file"]=function(){return(_png_image_write_to_file=Module["_png_image_write_to_file"]=Module["asm"]["png_image_write_to_file"]).apply(null,arguments)};var _remove=Module["_remove"]=function(){return(_remove=Module["_remove"]=Module["asm"]["remove"]).apply(null,arguments)};var _png_save_uint_32=Module["_png_save_uint_32"]=function(){return(_png_save_uint_32=Module["_png_save_uint_32"]=Module["asm"]["png_save_uint_32"]).apply(null,arguments)};var _png_save_uint_16=Module["_png_save_uint_16"]=function(){return(_png_save_uint_16=Module["_png_save_uint_16"]=Module["asm"]["png_save_uint_16"]).apply(null,arguments)};var _png_write_chunk_start=Module["_png_write_chunk_start"]=function(){return(_png_write_chunk_start=Module["_png_write_chunk_start"]=Module["asm"]["png_write_chunk_start"]).apply(null,arguments)};var _png_write_chunk_data=Module["_png_write_chunk_data"]=function(){return(_png_write_chunk_data=Module["_png_write_chunk_data"]=Module["asm"]["png_write_chunk_data"]).apply(null,arguments)};var _png_write_chunk_end=Module["_png_write_chunk_end"]=function(){return(_png_write_chunk_end=Module["_png_write_chunk_end"]=Module["asm"]["png_write_chunk_end"]).apply(null,arguments)};var _deflateReset=Module["_deflateReset"]=function(){return(_deflateReset=Module["_deflateReset"]=Module["asm"]["deflateReset"]).apply(null,arguments)};var _FT_Select_Charmap=Module["_FT_Select_Charmap"]=function(){return(_FT_Select_Charmap=Module["_FT_Select_Charmap"]=Module["asm"]["FT_Select_Charmap"]).apply(null,arguments)};var _FT_Get_Char_Index=Module["_FT_Get_Char_Index"]=function(){return(_FT_Get_Char_Index=Module["_FT_Get_Char_Index"]=Module["asm"]["FT_Get_Char_Index"]).apply(null,arguments)};var _FT_Load_Glyph=Module["_FT_Load_Glyph"]=function(){return(_FT_Load_Glyph=Module["_FT_Load_Glyph"]=Module["asm"]["FT_Load_Glyph"]).apply(null,arguments)};var _FT_Get_Advance=Module["_FT_Get_Advance"]=function(){return(_FT_Get_Advance=Module["_FT_Get_Advance"]=Module["asm"]["FT_Get_Advance"]).apply(null,arguments)};var _FT_Set_Charmap=Module["_FT_Set_Charmap"]=function(){return(_FT_Set_Charmap=Module["_FT_Set_Charmap"]=Module["asm"]["FT_Set_Charmap"]).apply(null,arguments)};var _FT_MulFix=Module["_FT_MulFix"]=function(){return(_FT_MulFix=Module["_FT_MulFix"]=Module["asm"]["FT_MulFix"]).apply(null,arguments)};var _FT_MulDiv=Module["_FT_MulDiv"]=function(){return(_FT_MulDiv=Module["_FT_MulDiv"]=Module["asm"]["FT_MulDiv"]).apply(null,arguments)};var _af_get_coverage=Module["_af_get_coverage"]=function(){return(_af_get_coverage=Module["_af_get_coverage"]=Module["asm"]["af_get_coverage"]).apply(null,arguments)};var _af_get_char_index=Module["_af_get_char_index"]=function(){return(_af_get_char_index=Module["_af_get_char_index"]=Module["asm"]["af_get_char_index"]).apply(null,arguments)};var _ft_mem_alloc=Module["_ft_mem_alloc"]=function(){return(_ft_mem_alloc=Module["_ft_mem_alloc"]=Module["asm"]["ft_mem_alloc"]).apply(null,arguments)};var _ft_mem_free=Module["_ft_mem_free"]=function(){return(_ft_mem_free=Module["_ft_mem_free"]=Module["asm"]["ft_mem_free"]).apply(null,arguments)};var _FT_Matrix_Invert=Module["_FT_Matrix_Invert"]=function(){return(_FT_Matrix_Invert=Module["_FT_Matrix_Invert"]=Module["asm"]["FT_Matrix_Invert"]).apply(null,arguments)};var _FT_Vector_Transform=Module["_FT_Vector_Transform"]=function(){return(_FT_Vector_Transform=Module["_FT_Vector_Transform"]=Module["asm"]["FT_Vector_Transform"]).apply(null,arguments)};var _FT_Outline_Translate=Module["_FT_Outline_Translate"]=function(){return(_FT_Outline_Translate=Module["_FT_Outline_Translate"]=Module["asm"]["FT_Outline_Translate"]).apply(null,arguments)};var _FT_Outline_Transform=Module["_FT_Outline_Transform"]=function(){return(_FT_Outline_Transform=Module["_FT_Outline_Transform"]=Module["asm"]["FT_Outline_Transform"]).apply(null,arguments)};var _FT_Outline_Get_CBox=Module["_FT_Outline_Get_CBox"]=function(){return(_FT_Outline_Get_CBox=Module["_FT_Outline_Get_CBox"]=Module["asm"]["FT_Outline_Get_CBox"]).apply(null,arguments)};var _ft_service_list_lookup=Module["_ft_service_list_lookup"]=function(){return(_ft_service_list_lookup=Module["_ft_service_list_lookup"]=Module["asm"]["ft_service_list_lookup"]).apply(null,arguments)};var _ft_mem_realloc=Module["_ft_mem_realloc"]=function(){return(_ft_mem_realloc=Module["_ft_mem_realloc"]=Module["asm"]["ft_mem_realloc"]).apply(null,arguments)};var _FT_Outline_Get_Orientation=Module["_FT_Outline_Get_Orientation"]=function(){return(_FT_Outline_Get_Orientation=Module["_FT_Outline_Get_Orientation"]=Module["asm"]["FT_Outline_Get_Orientation"]).apply(null,arguments)};var _ft_corner_is_flat=Module["_ft_corner_is_flat"]=function(){return(_ft_corner_is_flat=Module["_ft_corner_is_flat"]=Module["asm"]["ft_corner_is_flat"]).apply(null,arguments)};var _FT_DivFix=Module["_FT_DivFix"]=function(){return(_FT_DivFix=Module["_FT_DivFix"]=Module["asm"]["FT_DivFix"]).apply(null,arguments)};var _FT_Get_Next_Char=Module["_FT_Get_Next_Char"]=function(){return(_FT_Get_Next_Char=Module["_FT_Get_Next_Char"]=Module["asm"]["FT_Get_Next_Char"]).apply(null,arguments)};var _FT_Get_Advances=Module["_FT_Get_Advances"]=function(){return(_FT_Get_Advances=Module["_FT_Get_Advances"]=Module["asm"]["FT_Get_Advances"]).apply(null,arguments)};var _FT_Outline_Get_BBox=Module["_FT_Outline_Get_BBox"]=function(){return(_FT_Outline_Get_BBox=Module["_FT_Outline_Get_BBox"]=Module["asm"]["FT_Outline_Get_BBox"]).apply(null,arguments)};var _FT_Outline_Decompose=Module["_FT_Outline_Decompose"]=function(){return(_FT_Outline_Decompose=Module["_FT_Outline_Decompose"]=Module["asm"]["FT_Outline_Decompose"]).apply(null,arguments)};var _FT_Get_BDF_Charset_ID=Module["_FT_Get_BDF_Charset_ID"]=function(){return(_FT_Get_BDF_Charset_ID=Module["_FT_Get_BDF_Charset_ID"]=Module["asm"]["FT_Get_BDF_Charset_ID"]).apply(null,arguments)};var _FT_Get_BDF_Property=Module["_FT_Get_BDF_Property"]=function(){return(_FT_Get_BDF_Property=Module["_FT_Get_BDF_Property"]=Module["asm"]["FT_Get_BDF_Property"]).apply(null,arguments)};var _FT_Bitmap_Init=Module["_FT_Bitmap_Init"]=function(){return(_FT_Bitmap_Init=Module["_FT_Bitmap_Init"]=Module["asm"]["FT_Bitmap_Init"]).apply(null,arguments)};var _FT_Bitmap_New=Module["_FT_Bitmap_New"]=function(){return(_FT_Bitmap_New=Module["_FT_Bitmap_New"]=Module["asm"]["FT_Bitmap_New"]).apply(null,arguments)};var _FT_Bitmap_Copy=Module["_FT_Bitmap_Copy"]=function(){return(_FT_Bitmap_Copy=Module["_FT_Bitmap_Copy"]=Module["asm"]["FT_Bitmap_Copy"]).apply(null,arguments)};var _ft_mem_qrealloc=Module["_ft_mem_qrealloc"]=function(){return(_ft_mem_qrealloc=Module["_ft_mem_qrealloc"]=Module["asm"]["ft_mem_qrealloc"]).apply(null,arguments)};var _ft_mem_qalloc=Module["_ft_mem_qalloc"]=function(){return(_ft_mem_qalloc=Module["_ft_mem_qalloc"]=Module["asm"]["ft_mem_qalloc"]).apply(null,arguments)};var _FT_Bitmap_Embolden=Module["_FT_Bitmap_Embolden"]=function(){return(_FT_Bitmap_Embolden=Module["_FT_Bitmap_Embolden"]=Module["asm"]["FT_Bitmap_Embolden"]).apply(null,arguments)};var _FT_Bitmap_Convert=Module["_FT_Bitmap_Convert"]=function(){return(_FT_Bitmap_Convert=Module["_FT_Bitmap_Convert"]=Module["asm"]["FT_Bitmap_Convert"]).apply(null,arguments)};var _FT_Bitmap_Done=Module["_FT_Bitmap_Done"]=function(){return(_FT_Bitmap_Done=Module["_FT_Bitmap_Done"]=Module["asm"]["FT_Bitmap_Done"]).apply(null,arguments)};var _FT_GlyphSlot_Own_Bitmap=Module["_FT_GlyphSlot_Own_Bitmap"]=function(){return(_FT_GlyphSlot_Own_Bitmap=Module["_FT_GlyphSlot_Own_Bitmap"]=Module["asm"]["FT_GlyphSlot_Own_Bitmap"]).apply(null,arguments)};var _FT_RoundFix=Module["_FT_RoundFix"]=function(){return(_FT_RoundFix=Module["_FT_RoundFix"]=Module["asm"]["FT_RoundFix"]).apply(null,arguments)};var _FT_CeilFix=Module["_FT_CeilFix"]=function(){return(_FT_CeilFix=Module["_FT_CeilFix"]=Module["asm"]["FT_CeilFix"]).apply(null,arguments)};var _FT_FloorFix=Module["_FT_FloorFix"]=function(){return(_FT_FloorFix=Module["_FT_FloorFix"]=Module["asm"]["FT_FloorFix"]).apply(null,arguments)};var _FT_Hypot=Module["_FT_Hypot"]=function(){return(_FT_Hypot=Module["_FT_Hypot"]=Module["asm"]["FT_Hypot"]).apply(null,arguments)};var _FT_Vector_Length=Module["_FT_Vector_Length"]=function(){return(_FT_Vector_Length=Module["_FT_Vector_Length"]=Module["asm"]["FT_Vector_Length"]).apply(null,arguments)};var _FT_MulDiv_No_Round=Module["_FT_MulDiv_No_Round"]=function(){return(_FT_MulDiv_No_Round=Module["_FT_MulDiv_No_Round"]=Module["asm"]["FT_MulDiv_No_Round"]).apply(null,arguments)};var _FT_Matrix_Multiply=Module["_FT_Matrix_Multiply"]=function(){return(_FT_Matrix_Multiply=Module["_FT_Matrix_Multiply"]=Module["asm"]["FT_Matrix_Multiply"]).apply(null,arguments)};var _FT_Matrix_Multiply_Scaled=Module["_FT_Matrix_Multiply_Scaled"]=function(){return(_FT_Matrix_Multiply_Scaled=Module["_FT_Matrix_Multiply_Scaled"]=Module["asm"]["FT_Matrix_Multiply_Scaled"]).apply(null,arguments)};var _FT_Vector_Transform_Scaled=Module["_FT_Vector_Transform_Scaled"]=function(){return(_FT_Vector_Transform_Scaled=Module["_FT_Vector_Transform_Scaled"]=Module["asm"]["FT_Vector_Transform_Scaled"]).apply(null,arguments)};var _ft_corner_orientation=Module["_ft_corner_orientation"]=function(){return(_ft_corner_orientation=Module["_ft_corner_orientation"]=Module["asm"]["ft_corner_orientation"]).apply(null,arguments)};var _FT_Get_CID_Registry_Ordering_Supplement=Module["_FT_Get_CID_Registry_Ordering_Supplement"]=function(){return(_FT_Get_CID_Registry_Ordering_Supplement=Module["_FT_Get_CID_Registry_Ordering_Supplement"]=Module["asm"]["FT_Get_CID_Registry_Ordering_Supplement"]).apply(null,arguments)};var _FT_Get_CID_Is_Internally_CID_Keyed=Module["_FT_Get_CID_Is_Internally_CID_Keyed"]=function(){return(_FT_Get_CID_Is_Internally_CID_Keyed=Module["_FT_Get_CID_Is_Internally_CID_Keyed"]=Module["asm"]["FT_Get_CID_Is_Internally_CID_Keyed"]).apply(null,arguments)};var _FT_Get_CID_From_Glyph_Index=Module["_FT_Get_CID_From_Glyph_Index"]=function(){return(_FT_Get_CID_From_Glyph_Index=Module["_FT_Get_CID_From_Glyph_Index"]=Module["asm"]["FT_Get_CID_From_Glyph_Index"]).apply(null,arguments)};var _ft_debug_init=Module["_ft_debug_init"]=function(){return(_ft_debug_init=Module["_ft_debug_init"]=Module["asm"]["ft_debug_init"]).apply(null,arguments)};var _FT_Trace_Get_Count=Module["_FT_Trace_Get_Count"]=function(){return(_FT_Trace_Get_Count=Module["_FT_Trace_Get_Count"]=Module["asm"]["FT_Trace_Get_Count"]).apply(null,arguments)};var _FT_Trace_Get_Name=Module["_FT_Trace_Get_Name"]=function(){return(_FT_Trace_Get_Name=Module["_FT_Trace_Get_Name"]=Module["asm"]["FT_Trace_Get_Name"]).apply(null,arguments)};var _FT_Get_Font_Format=Module["_FT_Get_Font_Format"]=function(){return(_FT_Get_Font_Format=Module["_FT_Get_Font_Format"]=Module["asm"]["FT_Get_Font_Format"]).apply(null,arguments)};var _FT_Get_X11_Font_Format=Module["_FT_Get_X11_Font_Format"]=function(){return(_FT_Get_X11_Font_Format=Module["_FT_Get_X11_Font_Format"]=Module["asm"]["FT_Get_X11_Font_Format"]).apply(null,arguments)};var _FT_Get_FSType_Flags=Module["_FT_Get_FSType_Flags"]=function(){return(_FT_Get_FSType_Flags=Module["_FT_Get_FSType_Flags"]=Module["asm"]["FT_Get_FSType_Flags"]).apply(null,arguments)};var _FT_Get_Sfnt_Table=Module["_FT_Get_Sfnt_Table"]=function(){return(_FT_Get_Sfnt_Table=Module["_FT_Get_Sfnt_Table"]=Module["asm"]["FT_Get_Sfnt_Table"]).apply(null,arguments)};var _FT_Get_Gasp=Module["_FT_Get_Gasp"]=function(){return(_FT_Get_Gasp=Module["_FT_Get_Gasp"]=Module["asm"]["FT_Get_Gasp"]).apply(null,arguments)};var _FT_GlyphLoader_New=Module["_FT_GlyphLoader_New"]=function(){return(_FT_GlyphLoader_New=Module["_FT_GlyphLoader_New"]=Module["asm"]["FT_GlyphLoader_New"]).apply(null,arguments)};var _FT_GlyphLoader_Rewind=Module["_FT_GlyphLoader_Rewind"]=function(){return(_FT_GlyphLoader_Rewind=Module["_FT_GlyphLoader_Rewind"]=Module["asm"]["FT_GlyphLoader_Rewind"]).apply(null,arguments)};var _FT_GlyphLoader_Reset=Module["_FT_GlyphLoader_Reset"]=function(){return(_FT_GlyphLoader_Reset=Module["_FT_GlyphLoader_Reset"]=Module["asm"]["FT_GlyphLoader_Reset"]).apply(null,arguments)};var _FT_GlyphLoader_Done=Module["_FT_GlyphLoader_Done"]=function(){return(_FT_GlyphLoader_Done=Module["_FT_GlyphLoader_Done"]=Module["asm"]["FT_GlyphLoader_Done"]).apply(null,arguments)};var _FT_GlyphLoader_CreateExtra=Module["_FT_GlyphLoader_CreateExtra"]=function(){return(_FT_GlyphLoader_CreateExtra=Module["_FT_GlyphLoader_CreateExtra"]=Module["asm"]["FT_GlyphLoader_CreateExtra"]).apply(null,arguments)};var _FT_GlyphLoader_CheckPoints=Module["_FT_GlyphLoader_CheckPoints"]=function(){return(_FT_GlyphLoader_CheckPoints=Module["_FT_GlyphLoader_CheckPoints"]=Module["asm"]["FT_GlyphLoader_CheckPoints"]).apply(null,arguments)};var _FT_GlyphLoader_CheckSubGlyphs=Module["_FT_GlyphLoader_CheckSubGlyphs"]=function(){return(_FT_GlyphLoader_CheckSubGlyphs=Module["_FT_GlyphLoader_CheckSubGlyphs"]=Module["asm"]["FT_GlyphLoader_CheckSubGlyphs"]).apply(null,arguments)};var _FT_GlyphLoader_Prepare=Module["_FT_GlyphLoader_Prepare"]=function(){return(_FT_GlyphLoader_Prepare=Module["_FT_GlyphLoader_Prepare"]=Module["asm"]["FT_GlyphLoader_Prepare"]).apply(null,arguments)};var _FT_GlyphLoader_Add=Module["_FT_GlyphLoader_Add"]=function(){return(_FT_GlyphLoader_Add=Module["_FT_GlyphLoader_Add"]=Module["asm"]["FT_GlyphLoader_Add"]).apply(null,arguments)};var _FT_GlyphLoader_CopyPoints=Module["_FT_GlyphLoader_CopyPoints"]=function(){return(_FT_GlyphLoader_CopyPoints=Module["_FT_GlyphLoader_CopyPoints"]=Module["asm"]["FT_GlyphLoader_CopyPoints"]).apply(null,arguments)};var _FT_Outline_New=Module["_FT_Outline_New"]=function(){return(_FT_Outline_New=Module["_FT_Outline_New"]=Module["asm"]["FT_Outline_New"]).apply(null,arguments)};var _FT_Outline_Copy=Module["_FT_Outline_Copy"]=function(){return(_FT_Outline_Copy=Module["_FT_Outline_Copy"]=Module["asm"]["FT_Outline_Copy"]).apply(null,arguments)};var _FT_Outline_Done=Module["_FT_Outline_Done"]=function(){return(_FT_Outline_Done=Module["_FT_Outline_Done"]=Module["asm"]["FT_Outline_Done"]).apply(null,arguments)};var _FT_Glyph_Copy=Module["_FT_Glyph_Copy"]=function(){return(_FT_Glyph_Copy=Module["_FT_Glyph_Copy"]=Module["asm"]["FT_Glyph_Copy"]).apply(null,arguments)};var _FT_Done_Glyph=Module["_FT_Done_Glyph"]=function(){return(_FT_Done_Glyph=Module["_FT_Done_Glyph"]=Module["asm"]["FT_Done_Glyph"]).apply(null,arguments)};var _FT_Get_Glyph=Module["_FT_Get_Glyph"]=function(){return(_FT_Get_Glyph=Module["_FT_Get_Glyph"]=Module["asm"]["FT_Get_Glyph"]).apply(null,arguments)};var _FT_Lookup_Renderer=Module["_FT_Lookup_Renderer"]=function(){return(_FT_Lookup_Renderer=Module["_FT_Lookup_Renderer"]=Module["asm"]["FT_Lookup_Renderer"]).apply(null,arguments)};var _FT_Glyph_Transform=Module["_FT_Glyph_Transform"]=function(){return(_FT_Glyph_Transform=Module["_FT_Glyph_Transform"]=Module["asm"]["FT_Glyph_Transform"]).apply(null,arguments)};var _FT_Glyph_Get_CBox=Module["_FT_Glyph_Get_CBox"]=function(){return(_FT_Glyph_Get_CBox=Module["_FT_Glyph_Get_CBox"]=Module["asm"]["FT_Glyph_Get_CBox"]).apply(null,arguments)};var _FT_Glyph_To_Bitmap=Module["_FT_Glyph_To_Bitmap"]=function(){return(_FT_Glyph_To_Bitmap=Module["_FT_Glyph_To_Bitmap"]=Module["asm"]["FT_Glyph_To_Bitmap"]).apply(null,arguments)};var _FT_Render_Glyph_Internal=Module["_FT_Render_Glyph_Internal"]=function(){return(_FT_Render_Glyph_Internal=Module["_FT_Render_Glyph_Internal"]=Module["asm"]["FT_Render_Glyph_Internal"]).apply(null,arguments)};var _FT_TrueTypeGX_Validate=Module["_FT_TrueTypeGX_Validate"]=function(){return(_FT_TrueTypeGX_Validate=Module["_FT_TrueTypeGX_Validate"]=Module["asm"]["FT_TrueTypeGX_Validate"]).apply(null,arguments)};var _ft_module_get_service=Module["_ft_module_get_service"]=function(){return(_ft_module_get_service=Module["_ft_module_get_service"]=Module["asm"]["ft_module_get_service"]).apply(null,arguments)};var _FT_TrueTypeGX_Free=Module["_FT_TrueTypeGX_Free"]=function(){return(_FT_TrueTypeGX_Free=Module["_FT_TrueTypeGX_Free"]=Module["asm"]["FT_TrueTypeGX_Free"]).apply(null,arguments)};var _FT_ClassicKern_Validate=Module["_FT_ClassicKern_Validate"]=function(){return(_FT_ClassicKern_Validate=Module["_FT_ClassicKern_Validate"]=Module["asm"]["FT_ClassicKern_Validate"]).apply(null,arguments)};var _FT_ClassicKern_Free=Module["_FT_ClassicKern_Free"]=function(){return(_FT_ClassicKern_Free=Module["_FT_ClassicKern_Free"]=Module["asm"]["FT_ClassicKern_Free"]).apply(null,arguments)};var _FT_Add_Default_Modules=Module["_FT_Add_Default_Modules"]=function(){return(_FT_Add_Default_Modules=Module["_FT_Add_Default_Modules"]=Module["asm"]["FT_Add_Default_Modules"]).apply(null,arguments)};var _FT_Add_Module=Module["_FT_Add_Module"]=function(){return(_FT_Add_Module=Module["_FT_Add_Module"]=Module["asm"]["FT_Add_Module"]).apply(null,arguments)};var _FT_Init_FreeType=Module["_FT_Init_FreeType"]=function(){return(_FT_Init_FreeType=Module["_FT_Init_FreeType"]=Module["asm"]["FT_Init_FreeType"]).apply(null,arguments)};var _FT_New_Memory=Module["_FT_New_Memory"]=function(){return(_FT_New_Memory=Module["_FT_New_Memory"]=Module["asm"]["FT_New_Memory"]).apply(null,arguments)};var _FT_New_Library=Module["_FT_New_Library"]=function(){return(_FT_New_Library=Module["_FT_New_Library"]=Module["asm"]["FT_New_Library"]).apply(null,arguments)};var _FT_Done_Memory=Module["_FT_Done_Memory"]=function(){return(_FT_Done_Memory=Module["_FT_Done_Memory"]=Module["asm"]["FT_Done_Memory"]).apply(null,arguments)};var _FT_Done_FreeType=Module["_FT_Done_FreeType"]=function(){return(_FT_Done_FreeType=Module["_FT_Done_FreeType"]=Module["asm"]["FT_Done_FreeType"]).apply(null,arguments)};var _FT_Done_Library=Module["_FT_Done_Library"]=function(){return(_FT_Done_Library=Module["_FT_Done_Library"]=Module["asm"]["FT_Done_Library"]).apply(null,arguments)};var _FT_Library_SetLcdFilterWeights=Module["_FT_Library_SetLcdFilterWeights"]=function(){return(_FT_Library_SetLcdFilterWeights=Module["_FT_Library_SetLcdFilterWeights"]=Module["asm"]["FT_Library_SetLcdFilterWeights"]).apply(null,arguments)};var _FT_Library_SetLcdFilter=Module["_FT_Library_SetLcdFilter"]=function(){return(_FT_Library_SetLcdFilter=Module["_FT_Library_SetLcdFilter"]=Module["asm"]["FT_Library_SetLcdFilter"]).apply(null,arguments)};var _FT_Get_Multi_Master=Module["_FT_Get_Multi_Master"]=function(){return(_FT_Get_Multi_Master=Module["_FT_Get_Multi_Master"]=Module["asm"]["FT_Get_Multi_Master"]).apply(null,arguments)};var _FT_Get_MM_Var=Module["_FT_Get_MM_Var"]=function(){return(_FT_Get_MM_Var=Module["_FT_Get_MM_Var"]=Module["asm"]["FT_Get_MM_Var"]).apply(null,arguments)};var _FT_Set_MM_Design_Coordinates=Module["_FT_Set_MM_Design_Coordinates"]=function(){return(_FT_Set_MM_Design_Coordinates=Module["_FT_Set_MM_Design_Coordinates"]=Module["asm"]["FT_Set_MM_Design_Coordinates"]).apply(null,arguments)};var _FT_Set_Var_Design_Coordinates=Module["_FT_Set_Var_Design_Coordinates"]=function(){return(_FT_Set_Var_Design_Coordinates=Module["_FT_Set_Var_Design_Coordinates"]=Module["asm"]["FT_Set_Var_Design_Coordinates"]).apply(null,arguments)};var _FT_Set_MM_Blend_Coordinates=Module["_FT_Set_MM_Blend_Coordinates"]=function(){return(_FT_Set_MM_Blend_Coordinates=Module["_FT_Set_MM_Blend_Coordinates"]=Module["asm"]["FT_Set_MM_Blend_Coordinates"]).apply(null,arguments)};var _FT_Set_Var_Blend_Coordinates=Module["_FT_Set_Var_Blend_Coordinates"]=function(){return(_FT_Set_Var_Blend_Coordinates=Module["_FT_Set_Var_Blend_Coordinates"]=Module["asm"]["FT_Set_Var_Blend_Coordinates"]).apply(null,arguments)};var _ft_validator_init=Module["_ft_validator_init"]=function(){return(_ft_validator_init=Module["_ft_validator_init"]=Module["asm"]["ft_validator_init"]).apply(null,arguments)};var _ft_validator_run=Module["_ft_validator_run"]=function(){return(_ft_validator_run=Module["_ft_validator_run"]=Module["asm"]["ft_validator_run"]).apply(null,arguments)};var _ft_validator_error=Module["_ft_validator_error"]=function(){return(_ft_validator_error=Module["_ft_validator_error"]=Module["asm"]["ft_validator_error"]).apply(null,arguments)};var _FT_Stream_New=Module["_FT_Stream_New"]=function(){return(_FT_Stream_New=Module["_FT_Stream_New"]=Module["asm"]["FT_Stream_New"]).apply(null,arguments)};var _FT_Stream_OpenMemory=Module["_FT_Stream_OpenMemory"]=function(){return(_FT_Stream_OpenMemory=Module["_FT_Stream_OpenMemory"]=Module["asm"]["FT_Stream_OpenMemory"]).apply(null,arguments)};var _FT_Stream_Open=Module["_FT_Stream_Open"]=function(){return(_FT_Stream_Open=Module["_FT_Stream_Open"]=Module["asm"]["FT_Stream_Open"]).apply(null,arguments)};var _FT_Stream_Free=Module["_FT_Stream_Free"]=function(){return(_FT_Stream_Free=Module["_FT_Stream_Free"]=Module["asm"]["FT_Stream_Free"]).apply(null,arguments)};var _FT_Stream_Close=Module["_FT_Stream_Close"]=function(){return(_FT_Stream_Close=Module["_FT_Stream_Close"]=Module["asm"]["FT_Stream_Close"]).apply(null,arguments)};var _ft_glyphslot_free_bitmap=Module["_ft_glyphslot_free_bitmap"]=function(){return(_ft_glyphslot_free_bitmap=Module["_ft_glyphslot_free_bitmap"]=Module["asm"]["ft_glyphslot_free_bitmap"]).apply(null,arguments)};var _ft_glyphslot_set_bitmap=Module["_ft_glyphslot_set_bitmap"]=function(){return(_ft_glyphslot_set_bitmap=Module["_ft_glyphslot_set_bitmap"]=Module["asm"]["ft_glyphslot_set_bitmap"]).apply(null,arguments)};var _ft_glyphslot_alloc_bitmap=Module["_ft_glyphslot_alloc_bitmap"]=function(){return(_ft_glyphslot_alloc_bitmap=Module["_ft_glyphslot_alloc_bitmap"]=Module["asm"]["ft_glyphslot_alloc_bitmap"]).apply(null,arguments)};var _FT_New_GlyphSlot=Module["_FT_New_GlyphSlot"]=function(){return(_FT_New_GlyphSlot=Module["_FT_New_GlyphSlot"]=Module["asm"]["FT_New_GlyphSlot"]).apply(null,arguments)};var _FT_Done_GlyphSlot=Module["_FT_Done_GlyphSlot"]=function(){return(_FT_Done_GlyphSlot=Module["_FT_Done_GlyphSlot"]=Module["asm"]["FT_Done_GlyphSlot"]).apply(null,arguments)};var _FT_Set_Transform=Module["_FT_Set_Transform"]=function(){return(_FT_Set_Transform=Module["_FT_Set_Transform"]=Module["asm"]["FT_Set_Transform"]).apply(null,arguments)};var _FT_Outline_Check=Module["_FT_Outline_Check"]=function(){return(_FT_Outline_Check=Module["_FT_Outline_Check"]=Module["asm"]["FT_Outline_Check"]).apply(null,arguments)};var _FT_Render_Glyph=Module["_FT_Render_Glyph"]=function(){return(_FT_Render_Glyph=Module["_FT_Render_Glyph"]=Module["asm"]["FT_Render_Glyph"]).apply(null,arguments)};var _FT_Load_Char=Module["_FT_Load_Char"]=function(){return(_FT_Load_Char=Module["_FT_Load_Char"]=Module["asm"]["FT_Load_Char"]).apply(null,arguments)};var _FT_New_Face=Module["_FT_New_Face"]=function(){return(_FT_New_Face=Module["_FT_New_Face"]=Module["asm"]["FT_New_Face"]).apply(null,arguments)};var _FT_Open_Face=Module["_FT_Open_Face"]=function(){return(_FT_Open_Face=Module["_FT_Open_Face"]=Module["asm"]["FT_Open_Face"]).apply(null,arguments)};var _FT_Stream_Seek=Module["_FT_Stream_Seek"]=function(){return(_FT_Stream_Seek=Module["_FT_Stream_Seek"]=Module["asm"]["FT_Stream_Seek"]).apply(null,arguments)};var _open_face_PS_from_sfnt_stream=Module["_open_face_PS_from_sfnt_stream"]=function(){return(_open_face_PS_from_sfnt_stream=Module["_open_face_PS_from_sfnt_stream"]=Module["asm"]["open_face_PS_from_sfnt_stream"]).apply(null,arguments)};var _FT_Raccess_Guess=Module["_FT_Raccess_Guess"]=function(){return(_FT_Raccess_Guess=Module["_FT_Raccess_Guess"]=Module["asm"]["FT_Raccess_Guess"]).apply(null,arguments)};var _ft_raccess_rule_by_darwin_vfs=Module["_ft_raccess_rule_by_darwin_vfs"]=function(){return(_ft_raccess_rule_by_darwin_vfs=Module["_ft_raccess_rule_by_darwin_vfs"]=Module["asm"]["ft_raccess_rule_by_darwin_vfs"]).apply(null,arguments)};var _FT_List_Add=Module["_FT_List_Add"]=function(){return(_FT_List_Add=Module["_FT_List_Add"]=Module["asm"]["FT_List_Add"]).apply(null,arguments)};var _FT_New_Size=Module["_FT_New_Size"]=function(){return(_FT_New_Size=Module["_FT_New_Size"]=Module["asm"]["FT_New_Size"]).apply(null,arguments)};var _FT_List_Find=Module["_FT_List_Find"]=function(){return(_FT_List_Find=Module["_FT_List_Find"]=Module["asm"]["FT_List_Find"]).apply(null,arguments)};var _FT_List_Remove=Module["_FT_List_Remove"]=function(){return(_FT_List_Remove=Module["_FT_List_Remove"]=Module["asm"]["FT_List_Remove"]).apply(null,arguments)};var _FT_New_Memory_Face=Module["_FT_New_Memory_Face"]=function(){return(_FT_New_Memory_Face=Module["_FT_New_Memory_Face"]=Module["asm"]["FT_New_Memory_Face"]).apply(null,arguments)};var _open_face_from_buffer=Module["_open_face_from_buffer"]=function(){return(_open_face_from_buffer=Module["_open_face_from_buffer"]=Module["asm"]["open_face_from_buffer"]).apply(null,arguments)};var _FT_Get_Module=Module["_FT_Get_Module"]=function(){return(_FT_Get_Module=Module["_FT_Get_Module"]=Module["asm"]["FT_Get_Module"]).apply(null,arguments)};var _FT_Stream_Pos=Module["_FT_Stream_Pos"]=function(){return(_FT_Stream_Pos=Module["_FT_Stream_Pos"]=Module["asm"]["FT_Stream_Pos"]).apply(null,arguments)};var _FT_Stream_ReadULong=Module["_FT_Stream_ReadULong"]=function(){return(_FT_Stream_ReadULong=Module["_FT_Stream_ReadULong"]=Module["asm"]["FT_Stream_ReadULong"]).apply(null,arguments)};var _FT_Stream_ReadUShort=Module["_FT_Stream_ReadUShort"]=function(){return(_FT_Stream_ReadUShort=Module["_FT_Stream_ReadUShort"]=Module["asm"]["FT_Stream_ReadUShort"]).apply(null,arguments)};var _FT_Stream_Skip=Module["_FT_Stream_Skip"]=function(){return(_FT_Stream_Skip=Module["_FT_Stream_Skip"]=Module["asm"]["FT_Stream_Skip"]).apply(null,arguments)};var _FT_Stream_Read=Module["_FT_Stream_Read"]=function(){return(_FT_Stream_Read=Module["_FT_Stream_Read"]=Module["asm"]["FT_Stream_Read"]).apply(null,arguments)};var _FT_Done_Face=Module["_FT_Done_Face"]=function(){return(_FT_Done_Face=Module["_FT_Done_Face"]=Module["asm"]["FT_Done_Face"]).apply(null,arguments)};var _FT_List_Finalize=Module["_FT_List_Finalize"]=function(){return(_FT_List_Finalize=Module["_FT_List_Finalize"]=Module["asm"]["FT_List_Finalize"]).apply(null,arguments)};var _FT_Attach_File=Module["_FT_Attach_File"]=function(){return(_FT_Attach_File=Module["_FT_Attach_File"]=Module["asm"]["FT_Attach_File"]).apply(null,arguments)};var _FT_Attach_Stream=Module["_FT_Attach_Stream"]=function(){return(_FT_Attach_Stream=Module["_FT_Attach_Stream"]=Module["asm"]["FT_Attach_Stream"]).apply(null,arguments)};var _FT_Reference_Face=Module["_FT_Reference_Face"]=function(){return(_FT_Reference_Face=Module["_FT_Reference_Face"]=Module["asm"]["FT_Reference_Face"]).apply(null,arguments)};var _FT_Done_Size=Module["_FT_Done_Size"]=function(){return(_FT_Done_Size=Module["_FT_Done_Size"]=Module["asm"]["FT_Done_Size"]).apply(null,arguments)};var _FT_Match_Size=Module["_FT_Match_Size"]=function(){return(_FT_Match_Size=Module["_FT_Match_Size"]=Module["asm"]["FT_Match_Size"]).apply(null,arguments)};var _ft_synthesize_vertical_metrics=Module["_ft_synthesize_vertical_metrics"]=function(){return(_ft_synthesize_vertical_metrics=Module["_ft_synthesize_vertical_metrics"]=Module["asm"]["ft_synthesize_vertical_metrics"]).apply(null,arguments)};var _FT_Select_Metrics=Module["_FT_Select_Metrics"]=function(){return(_FT_Select_Metrics=Module["_FT_Select_Metrics"]=Module["asm"]["FT_Select_Metrics"]).apply(null,arguments)};var _FT_Request_Metrics=Module["_FT_Request_Metrics"]=function(){return(_FT_Request_Metrics=Module["_FT_Request_Metrics"]=Module["asm"]["FT_Request_Metrics"]).apply(null,arguments)};var _FT_Select_Size=Module["_FT_Select_Size"]=function(){return(_FT_Select_Size=Module["_FT_Select_Size"]=Module["asm"]["FT_Select_Size"]).apply(null,arguments)};var _FT_Request_Size=Module["_FT_Request_Size"]=function(){return(_FT_Request_Size=Module["_FT_Request_Size"]=Module["asm"]["FT_Request_Size"]).apply(null,arguments)};var _FT_Set_Char_Size=Module["_FT_Set_Char_Size"]=function(){return(_FT_Set_Char_Size=Module["_FT_Set_Char_Size"]=Module["asm"]["FT_Set_Char_Size"]).apply(null,arguments)};var _FT_Set_Pixel_Sizes=Module["_FT_Set_Pixel_Sizes"]=function(){return(_FT_Set_Pixel_Sizes=Module["_FT_Set_Pixel_Sizes"]=Module["asm"]["FT_Set_Pixel_Sizes"]).apply(null,arguments)};var _FT_Get_Kerning=Module["_FT_Get_Kerning"]=function(){return(_FT_Get_Kerning=Module["_FT_Get_Kerning"]=Module["asm"]["FT_Get_Kerning"]).apply(null,arguments)};var _FT_Get_Track_Kerning=Module["_FT_Get_Track_Kerning"]=function(){return(_FT_Get_Track_Kerning=Module["_FT_Get_Track_Kerning"]=Module["asm"]["FT_Get_Track_Kerning"]).apply(null,arguments)};var _FT_Get_CMap_Format=Module["_FT_Get_CMap_Format"]=function(){return(_FT_Get_CMap_Format=Module["_FT_Get_CMap_Format"]=Module["asm"]["FT_Get_CMap_Format"]).apply(null,arguments)};var _FT_Get_Charmap_Index=Module["_FT_Get_Charmap_Index"]=function(){return(_FT_Get_Charmap_Index=Module["_FT_Get_Charmap_Index"]=Module["asm"]["FT_Get_Charmap_Index"]).apply(null,arguments)};var _FT_CMap_Done=Module["_FT_CMap_Done"]=function(){return(_FT_CMap_Done=Module["_FT_CMap_Done"]=Module["asm"]["FT_CMap_Done"]).apply(null,arguments)};var _FT_CMap_New=Module["_FT_CMap_New"]=function(){return(_FT_CMap_New=Module["_FT_CMap_New"]=Module["asm"]["FT_CMap_New"]).apply(null,arguments)};var _FT_Get_First_Char=Module["_FT_Get_First_Char"]=function(){return(_FT_Get_First_Char=Module["_FT_Get_First_Char"]=Module["asm"]["FT_Get_First_Char"]).apply(null,arguments)};var _FT_Face_GetCharVariantIndex=Module["_FT_Face_GetCharVariantIndex"]=function(){return(_FT_Face_GetCharVariantIndex=Module["_FT_Face_GetCharVariantIndex"]=Module["asm"]["FT_Face_GetCharVariantIndex"]).apply(null,arguments)};var _FT_Face_GetCharVariantIsDefault=Module["_FT_Face_GetCharVariantIsDefault"]=function(){return(_FT_Face_GetCharVariantIsDefault=Module["_FT_Face_GetCharVariantIsDefault"]=Module["asm"]["FT_Face_GetCharVariantIsDefault"]).apply(null,arguments)};var _FT_Face_GetVariantSelectors=Module["_FT_Face_GetVariantSelectors"]=function(){return(_FT_Face_GetVariantSelectors=Module["_FT_Face_GetVariantSelectors"]=Module["asm"]["FT_Face_GetVariantSelectors"]).apply(null,arguments)};var _FT_Face_GetVariantsOfChar=Module["_FT_Face_GetVariantsOfChar"]=function(){return(_FT_Face_GetVariantsOfChar=Module["_FT_Face_GetVariantsOfChar"]=Module["asm"]["FT_Face_GetVariantsOfChar"]).apply(null,arguments)};var _FT_Face_GetCharsOfVariant=Module["_FT_Face_GetCharsOfVariant"]=function(){return(_FT_Face_GetCharsOfVariant=Module["_FT_Face_GetCharsOfVariant"]=Module["asm"]["FT_Face_GetCharsOfVariant"]).apply(null,arguments)};var _FT_Get_Name_Index=Module["_FT_Get_Name_Index"]=function(){return(_FT_Get_Name_Index=Module["_FT_Get_Name_Index"]=Module["asm"]["FT_Get_Name_Index"]).apply(null,arguments)};var _FT_Get_Glyph_Name=Module["_FT_Get_Glyph_Name"]=function(){return(_FT_Get_Glyph_Name=Module["_FT_Get_Glyph_Name"]=Module["asm"]["FT_Get_Glyph_Name"]).apply(null,arguments)};var _FT_Get_Postscript_Name=Module["_FT_Get_Postscript_Name"]=function(){return(_FT_Get_Postscript_Name=Module["_FT_Get_Postscript_Name"]=Module["asm"]["FT_Get_Postscript_Name"]).apply(null,arguments)};var _FT_Load_Sfnt_Table=Module["_FT_Load_Sfnt_Table"]=function(){return(_FT_Load_Sfnt_Table=Module["_FT_Load_Sfnt_Table"]=Module["asm"]["FT_Load_Sfnt_Table"]).apply(null,arguments)};var _FT_Sfnt_Table_Info=Module["_FT_Sfnt_Table_Info"]=function(){return(_FT_Sfnt_Table_Info=Module["_FT_Sfnt_Table_Info"]=Module["asm"]["FT_Sfnt_Table_Info"]).apply(null,arguments)};var _FT_Get_CMap_Language_ID=Module["_FT_Get_CMap_Language_ID"]=function(){return(_FT_Get_CMap_Language_ID=Module["_FT_Get_CMap_Language_ID"]=Module["asm"]["FT_Get_CMap_Language_ID"]).apply(null,arguments)};var _FT_Activate_Size=Module["_FT_Activate_Size"]=function(){return(_FT_Activate_Size=Module["_FT_Activate_Size"]=Module["asm"]["FT_Activate_Size"]).apply(null,arguments)};var _FT_Get_Renderer=Module["_FT_Get_Renderer"]=function(){return(_FT_Get_Renderer=Module["_FT_Get_Renderer"]=Module["asm"]["FT_Get_Renderer"]).apply(null,arguments)};var _FT_Set_Renderer=Module["_FT_Set_Renderer"]=function(){return(_FT_Set_Renderer=Module["_FT_Set_Renderer"]=Module["asm"]["FT_Set_Renderer"]).apply(null,arguments)};var _FT_List_Up=Module["_FT_List_Up"]=function(){return(_FT_List_Up=Module["_FT_List_Up"]=Module["asm"]["FT_List_Up"]).apply(null,arguments)};var _FT_Remove_Module=Module["_FT_Remove_Module"]=function(){return(_FT_Remove_Module=Module["_FT_Remove_Module"]=Module["asm"]["FT_Remove_Module"]).apply(null,arguments)};var _FT_Get_Module_Interface=Module["_FT_Get_Module_Interface"]=function(){return(_FT_Get_Module_Interface=Module["_FT_Get_Module_Interface"]=Module["asm"]["FT_Get_Module_Interface"]).apply(null,arguments)};var _FT_Property_Set=Module["_FT_Property_Set"]=function(){return(_FT_Property_Set=Module["_FT_Property_Set"]=Module["asm"]["FT_Property_Set"]).apply(null,arguments)};var _FT_Property_Get=Module["_FT_Property_Get"]=function(){return(_FT_Property_Get=Module["_FT_Property_Get"]=Module["asm"]["FT_Property_Get"]).apply(null,arguments)};var _FT_Reference_Library=Module["_FT_Reference_Library"]=function(){return(_FT_Reference_Library=Module["_FT_Reference_Library"]=Module["asm"]["FT_Reference_Library"]).apply(null,arguments)};var _FT_Library_Version=Module["_FT_Library_Version"]=function(){return(_FT_Library_Version=Module["_FT_Library_Version"]=Module["asm"]["FT_Library_Version"]).apply(null,arguments)};var _FT_Set_Debug_Hook=Module["_FT_Set_Debug_Hook"]=function(){return(_FT_Set_Debug_Hook=Module["_FT_Set_Debug_Hook"]=Module["asm"]["FT_Set_Debug_Hook"]).apply(null,arguments)};var _FT_Get_TrueType_Engine_Type=Module["_FT_Get_TrueType_Engine_Type"]=function(){return(_FT_Get_TrueType_Engine_Type=Module["_FT_Get_TrueType_Engine_Type"]=Module["asm"]["FT_Get_TrueType_Engine_Type"]).apply(null,arguments)};var _FT_Get_SubGlyph_Info=Module["_FT_Get_SubGlyph_Info"]=function(){return(_FT_Get_SubGlyph_Info=Module["_FT_Get_SubGlyph_Info"]=Module["asm"]["FT_Get_SubGlyph_Info"]).apply(null,arguments)};var _FT_Raccess_Get_HeaderInfo=Module["_FT_Raccess_Get_HeaderInfo"]=function(){return(_FT_Raccess_Get_HeaderInfo=Module["_FT_Raccess_Get_HeaderInfo"]=Module["asm"]["FT_Raccess_Get_HeaderInfo"]).apply(null,arguments)};var _FT_Raccess_Get_DataOffsets=Module["_FT_Raccess_Get_DataOffsets"]=function(){return(_FT_Raccess_Get_DataOffsets=Module["_FT_Raccess_Get_DataOffsets"]=Module["asm"]["FT_Raccess_Get_DataOffsets"]).apply(null,arguments)};var _FT_OpenType_Validate=Module["_FT_OpenType_Validate"]=function(){return(_FT_OpenType_Validate=Module["_FT_OpenType_Validate"]=Module["asm"]["FT_OpenType_Validate"]).apply(null,arguments)};var _FT_OpenType_Free=Module["_FT_OpenType_Free"]=function(){return(_FT_OpenType_Free=Module["_FT_OpenType_Free"]=Module["asm"]["FT_OpenType_Free"]).apply(null,arguments)};var _FT_Outline_New_Internal=Module["_FT_Outline_New_Internal"]=function(){return(_FT_Outline_New_Internal=Module["_FT_Outline_New_Internal"]=Module["asm"]["FT_Outline_New_Internal"]).apply(null,arguments)};var _FT_Outline_Done_Internal=Module["_FT_Outline_Done_Internal"]=function(){return(_FT_Outline_Done_Internal=Module["_FT_Outline_Done_Internal"]=Module["asm"]["FT_Outline_Done_Internal"]).apply(null,arguments)};var _FT_Outline_Reverse=Module["_FT_Outline_Reverse"]=function(){return(_FT_Outline_Reverse=Module["_FT_Outline_Reverse"]=Module["asm"]["FT_Outline_Reverse"]).apply(null,arguments)};var _FT_Outline_Render=Module["_FT_Outline_Render"]=function(){return(_FT_Outline_Render=Module["_FT_Outline_Render"]=Module["asm"]["FT_Outline_Render"]).apply(null,arguments)};var _FT_Outline_Get_Bitmap=Module["_FT_Outline_Get_Bitmap"]=function(){return(_FT_Outline_Get_Bitmap=Module["_FT_Outline_Get_Bitmap"]=Module["asm"]["FT_Outline_Get_Bitmap"]).apply(null,arguments)};var _FT_Outline_Embolden=Module["_FT_Outline_Embolden"]=function(){return(_FT_Outline_Embolden=Module["_FT_Outline_Embolden"]=Module["asm"]["FT_Outline_Embolden"]).apply(null,arguments)};var _FT_Outline_EmboldenXY=Module["_FT_Outline_EmboldenXY"]=function(){return(_FT_Outline_EmboldenXY=Module["_FT_Outline_EmboldenXY"]=Module["asm"]["FT_Outline_EmboldenXY"]).apply(null,arguments)};var _FT_Face_CheckTrueTypePatents=Module["_FT_Face_CheckTrueTypePatents"]=function(){return(_FT_Face_CheckTrueTypePatents=Module["_FT_Face_CheckTrueTypePatents"]=Module["asm"]["FT_Face_CheckTrueTypePatents"]).apply(null,arguments)};var _FT_Face_SetUnpatentedHinting=Module["_FT_Face_SetUnpatentedHinting"]=function(){return(_FT_Face_SetUnpatentedHinting=Module["_FT_Face_SetUnpatentedHinting"]=Module["asm"]["FT_Face_SetUnpatentedHinting"]).apply(null,arguments)};var _FT_Stream_EnterFrame=Module["_FT_Stream_EnterFrame"]=function(){return(_FT_Stream_EnterFrame=Module["_FT_Stream_EnterFrame"]=Module["asm"]["FT_Stream_EnterFrame"]).apply(null,arguments)};var _FT_Stream_ExitFrame=Module["_FT_Stream_ExitFrame"]=function(){return(_FT_Stream_ExitFrame=Module["_FT_Stream_ExitFrame"]=Module["asm"]["FT_Stream_ExitFrame"]).apply(null,arguments)};var _FT_Get_PFR_Metrics=Module["_FT_Get_PFR_Metrics"]=function(){return(_FT_Get_PFR_Metrics=Module["_FT_Get_PFR_Metrics"]=Module["asm"]["FT_Get_PFR_Metrics"]).apply(null,arguments)};var _FT_Get_PFR_Kerning=Module["_FT_Get_PFR_Kerning"]=function(){return(_FT_Get_PFR_Kerning=Module["_FT_Get_PFR_Kerning"]=Module["asm"]["FT_Get_PFR_Kerning"]).apply(null,arguments)};var _FT_Get_PFR_Advance=Module["_FT_Get_PFR_Advance"]=function(){return(_FT_Get_PFR_Advance=Module["_FT_Get_PFR_Advance"]=Module["asm"]["FT_Get_PFR_Advance"]).apply(null,arguments)};var _FT_Get_Sfnt_Name_Count=Module["_FT_Get_Sfnt_Name_Count"]=function(){return(_FT_Get_Sfnt_Name_Count=Module["_FT_Get_Sfnt_Name_Count"]=Module["asm"]["FT_Get_Sfnt_Name_Count"]).apply(null,arguments)};var _FT_Get_Sfnt_Name=Module["_FT_Get_Sfnt_Name"]=function(){return(_FT_Get_Sfnt_Name=Module["_FT_Get_Sfnt_Name"]=Module["asm"]["FT_Get_Sfnt_Name"]).apply(null,arguments)};var _FT_Stream_ReadAt=Module["_FT_Stream_ReadAt"]=function(){return(_FT_Stream_ReadAt=Module["_FT_Stream_ReadAt"]=Module["asm"]["FT_Stream_ReadAt"]).apply(null,arguments)};var _FT_Stream_TryRead=Module["_FT_Stream_TryRead"]=function(){return(_FT_Stream_TryRead=Module["_FT_Stream_TryRead"]=Module["asm"]["FT_Stream_TryRead"]).apply(null,arguments)};var _FT_Stream_ExtractFrame=Module["_FT_Stream_ExtractFrame"]=function(){return(_FT_Stream_ExtractFrame=Module["_FT_Stream_ExtractFrame"]=Module["asm"]["FT_Stream_ExtractFrame"]).apply(null,arguments)};var _FT_Stream_ReleaseFrame=Module["_FT_Stream_ReleaseFrame"]=function(){return(_FT_Stream_ReleaseFrame=Module["_FT_Stream_ReleaseFrame"]=Module["asm"]["FT_Stream_ReleaseFrame"]).apply(null,arguments)};var _FT_Stream_GetChar=Module["_FT_Stream_GetChar"]=function(){return(_FT_Stream_GetChar=Module["_FT_Stream_GetChar"]=Module["asm"]["FT_Stream_GetChar"]).apply(null,arguments)};var _FT_Stream_GetUShort=Module["_FT_Stream_GetUShort"]=function(){return(_FT_Stream_GetUShort=Module["_FT_Stream_GetUShort"]=Module["asm"]["FT_Stream_GetUShort"]).apply(null,arguments)};var _FT_Stream_GetUShortLE=Module["_FT_Stream_GetUShortLE"]=function(){return(_FT_Stream_GetUShortLE=Module["_FT_Stream_GetUShortLE"]=Module["asm"]["FT_Stream_GetUShortLE"]).apply(null,arguments)};var _FT_Stream_GetUOffset=Module["_FT_Stream_GetUOffset"]=function(){return(_FT_Stream_GetUOffset=Module["_FT_Stream_GetUOffset"]=Module["asm"]["FT_Stream_GetUOffset"]).apply(null,arguments)};var _FT_Stream_GetULong=Module["_FT_Stream_GetULong"]=function(){return(_FT_Stream_GetULong=Module["_FT_Stream_GetULong"]=Module["asm"]["FT_Stream_GetULong"]).apply(null,arguments)};var _FT_Stream_GetULongLE=Module["_FT_Stream_GetULongLE"]=function(){return(_FT_Stream_GetULongLE=Module["_FT_Stream_GetULongLE"]=Module["asm"]["FT_Stream_GetULongLE"]).apply(null,arguments)};var _FT_Stream_ReadChar=Module["_FT_Stream_ReadChar"]=function(){return(_FT_Stream_ReadChar=Module["_FT_Stream_ReadChar"]=Module["asm"]["FT_Stream_ReadChar"]).apply(null,arguments)};var _FT_Stream_ReadUShortLE=Module["_FT_Stream_ReadUShortLE"]=function(){return(_FT_Stream_ReadUShortLE=Module["_FT_Stream_ReadUShortLE"]=Module["asm"]["FT_Stream_ReadUShortLE"]).apply(null,arguments)};var _FT_Stream_ReadUOffset=Module["_FT_Stream_ReadUOffset"]=function(){return(_FT_Stream_ReadUOffset=Module["_FT_Stream_ReadUOffset"]=Module["asm"]["FT_Stream_ReadUOffset"]).apply(null,arguments)};var _FT_Stream_ReadULongLE=Module["_FT_Stream_ReadULongLE"]=function(){return(_FT_Stream_ReadULongLE=Module["_FT_Stream_ReadULongLE"]=Module["asm"]["FT_Stream_ReadULongLE"]).apply(null,arguments)};var _FT_Stream_ReadFields=Module["_FT_Stream_ReadFields"]=function(){return(_FT_Stream_ReadFields=Module["_FT_Stream_ReadFields"]=Module["asm"]["FT_Stream_ReadFields"]).apply(null,arguments)};var _FT_Outline_GetInsideBorder=Module["_FT_Outline_GetInsideBorder"]=function(){return(_FT_Outline_GetInsideBorder=Module["_FT_Outline_GetInsideBorder"]=Module["asm"]["FT_Outline_GetInsideBorder"]).apply(null,arguments)};var _FT_Outline_GetOutsideBorder=Module["_FT_Outline_GetOutsideBorder"]=function(){return(_FT_Outline_GetOutsideBorder=Module["_FT_Outline_GetOutsideBorder"]=Module["asm"]["FT_Outline_GetOutsideBorder"]).apply(null,arguments)};var _FT_Stroker_New=Module["_FT_Stroker_New"]=function(){return(_FT_Stroker_New=Module["_FT_Stroker_New"]=Module["asm"]["FT_Stroker_New"]).apply(null,arguments)};var _FT_Stroker_Set=Module["_FT_Stroker_Set"]=function(){return(_FT_Stroker_Set=Module["_FT_Stroker_Set"]=Module["asm"]["FT_Stroker_Set"]).apply(null,arguments)};var _FT_Stroker_Rewind=Module["_FT_Stroker_Rewind"]=function(){return(_FT_Stroker_Rewind=Module["_FT_Stroker_Rewind"]=Module["asm"]["FT_Stroker_Rewind"]).apply(null,arguments)};var _FT_Stroker_Done=Module["_FT_Stroker_Done"]=function(){return(_FT_Stroker_Done=Module["_FT_Stroker_Done"]=Module["asm"]["FT_Stroker_Done"]).apply(null,arguments)};var _FT_Stroker_LineTo=Module["_FT_Stroker_LineTo"]=function(){return(_FT_Stroker_LineTo=Module["_FT_Stroker_LineTo"]=Module["asm"]["FT_Stroker_LineTo"]).apply(null,arguments)};var _FT_Atan2=Module["_FT_Atan2"]=function(){return(_FT_Atan2=Module["_FT_Atan2"]=Module["asm"]["FT_Atan2"]).apply(null,arguments)};var _FT_Vector_From_Polar=Module["_FT_Vector_From_Polar"]=function(){return(_FT_Vector_From_Polar=Module["_FT_Vector_From_Polar"]=Module["asm"]["FT_Vector_From_Polar"]).apply(null,arguments)};var _FT_Angle_Diff=Module["_FT_Angle_Diff"]=function(){return(_FT_Angle_Diff=Module["_FT_Angle_Diff"]=Module["asm"]["FT_Angle_Diff"]).apply(null,arguments)};var _FT_Stroker_ConicTo=Module["_FT_Stroker_ConicTo"]=function(){return(_FT_Stroker_ConicTo=Module["_FT_Stroker_ConicTo"]=Module["asm"]["FT_Stroker_ConicTo"]).apply(null,arguments)};var _FT_Cos=Module["_FT_Cos"]=function(){return(_FT_Cos=Module["_FT_Cos"]=Module["asm"]["FT_Cos"]).apply(null,arguments)};var _FT_Sin=Module["_FT_Sin"]=function(){return(_FT_Sin=Module["_FT_Sin"]=Module["asm"]["FT_Sin"]).apply(null,arguments)};var _FT_Stroker_CubicTo=Module["_FT_Stroker_CubicTo"]=function(){return(_FT_Stroker_CubicTo=Module["_FT_Stroker_CubicTo"]=Module["asm"]["FT_Stroker_CubicTo"]).apply(null,arguments)};var _FT_Stroker_BeginSubPath=Module["_FT_Stroker_BeginSubPath"]=function(){return(_FT_Stroker_BeginSubPath=Module["_FT_Stroker_BeginSubPath"]=Module["asm"]["FT_Stroker_BeginSubPath"]).apply(null,arguments)};var _FT_Stroker_EndSubPath=Module["_FT_Stroker_EndSubPath"]=function(){return(_FT_Stroker_EndSubPath=Module["_FT_Stroker_EndSubPath"]=Module["asm"]["FT_Stroker_EndSubPath"]).apply(null,arguments)};var _FT_Tan=Module["_FT_Tan"]=function(){return(_FT_Tan=Module["_FT_Tan"]=Module["asm"]["FT_Tan"]).apply(null,arguments)};var _FT_Stroker_GetBorderCounts=Module["_FT_Stroker_GetBorderCounts"]=function(){return(_FT_Stroker_GetBorderCounts=Module["_FT_Stroker_GetBorderCounts"]=Module["asm"]["FT_Stroker_GetBorderCounts"]).apply(null,arguments)};var _FT_Stroker_GetCounts=Module["_FT_Stroker_GetCounts"]=function(){return(_FT_Stroker_GetCounts=Module["_FT_Stroker_GetCounts"]=Module["asm"]["FT_Stroker_GetCounts"]).apply(null,arguments)};var _FT_Stroker_ExportBorder=Module["_FT_Stroker_ExportBorder"]=function(){return(_FT_Stroker_ExportBorder=Module["_FT_Stroker_ExportBorder"]=Module["asm"]["FT_Stroker_ExportBorder"]).apply(null,arguments)};var _FT_Stroker_Export=Module["_FT_Stroker_Export"]=function(){return(_FT_Stroker_Export=Module["_FT_Stroker_Export"]=Module["asm"]["FT_Stroker_Export"]).apply(null,arguments)};var _FT_Stroker_ParseOutline=Module["_FT_Stroker_ParseOutline"]=function(){return(_FT_Stroker_ParseOutline=Module["_FT_Stroker_ParseOutline"]=Module["asm"]["FT_Stroker_ParseOutline"]).apply(null,arguments)};var _FT_Glyph_Stroke=Module["_FT_Glyph_Stroke"]=function(){return(_FT_Glyph_Stroke=Module["_FT_Glyph_Stroke"]=Module["asm"]["FT_Glyph_Stroke"]).apply(null,arguments)};var _FT_Glyph_StrokeBorder=Module["_FT_Glyph_StrokeBorder"]=function(){return(_FT_Glyph_StrokeBorder=Module["_FT_Glyph_StrokeBorder"]=Module["asm"]["FT_Glyph_StrokeBorder"]).apply(null,arguments)};var _FT_GlyphSlot_Oblique=Module["_FT_GlyphSlot_Oblique"]=function(){return(_FT_GlyphSlot_Oblique=Module["_FT_GlyphSlot_Oblique"]=Module["asm"]["FT_GlyphSlot_Oblique"]).apply(null,arguments)};var _FT_GlyphSlot_Embolden=Module["_FT_GlyphSlot_Embolden"]=function(){return(_FT_GlyphSlot_Embolden=Module["_FT_GlyphSlot_Embolden"]=Module["asm"]["FT_GlyphSlot_Embolden"]).apply(null,arguments)};var _fseek=Module["_fseek"]=function(){return(_fseek=Module["_fseek"]=Module["asm"]["fseek"]).apply(null,arguments)};var _FT_Vector_Unit=Module["_FT_Vector_Unit"]=function(){return(_FT_Vector_Unit=Module["_FT_Vector_Unit"]=Module["asm"]["FT_Vector_Unit"]).apply(null,arguments)};var _FT_Vector_Rotate=Module["_FT_Vector_Rotate"]=function(){return(_FT_Vector_Rotate=Module["_FT_Vector_Rotate"]=Module["asm"]["FT_Vector_Rotate"]).apply(null,arguments)};var _FT_Vector_Polarize=Module["_FT_Vector_Polarize"]=function(){return(_FT_Vector_Polarize=Module["_FT_Vector_Polarize"]=Module["asm"]["FT_Vector_Polarize"]).apply(null,arguments)};var _FT_Get_PS_Font_Info=Module["_FT_Get_PS_Font_Info"]=function(){return(_FT_Get_PS_Font_Info=Module["_FT_Get_PS_Font_Info"]=Module["asm"]["FT_Get_PS_Font_Info"]).apply(null,arguments)};var _FT_Has_PS_Glyph_Names=Module["_FT_Has_PS_Glyph_Names"]=function(){return(_FT_Has_PS_Glyph_Names=Module["_FT_Has_PS_Glyph_Names"]=Module["asm"]["FT_Has_PS_Glyph_Names"]).apply(null,arguments)};var _FT_Get_PS_Font_Private=Module["_FT_Get_PS_Font_Private"]=function(){return(_FT_Get_PS_Font_Private=Module["_FT_Get_PS_Font_Private"]=Module["asm"]["FT_Get_PS_Font_Private"]).apply(null,arguments)};var _FT_Get_PS_Font_Value=Module["_FT_Get_PS_Font_Value"]=function(){return(_FT_Get_PS_Font_Value=Module["_FT_Get_PS_Font_Value"]=Module["asm"]["FT_Get_PS_Font_Value"]).apply(null,arguments)};var _ft_mem_dup=Module["_ft_mem_dup"]=function(){return(_ft_mem_dup=Module["_ft_mem_dup"]=Module["asm"]["ft_mem_dup"]).apply(null,arguments)};var _ft_mem_strdup=Module["_ft_mem_strdup"]=function(){return(_ft_mem_strdup=Module["_ft_mem_strdup"]=Module["asm"]["ft_mem_strdup"]).apply(null,arguments)};var _ft_mem_strcpyn=Module["_ft_mem_strcpyn"]=function(){return(_ft_mem_strcpyn=Module["_ft_mem_strcpyn"]=Module["asm"]["ft_mem_strcpyn"]).apply(null,arguments)};var _FT_List_Insert=Module["_FT_List_Insert"]=function(){return(_FT_List_Insert=Module["_FT_List_Insert"]=Module["asm"]["FT_List_Insert"]).apply(null,arguments)};var _FT_List_Iterate=Module["_FT_List_Iterate"]=function(){return(_FT_List_Iterate=Module["_FT_List_Iterate"]=Module["asm"]["FT_List_Iterate"]).apply(null,arguments)};var _FT_Get_WinFNT_Header=Module["_FT_Get_WinFNT_Header"]=function(){return(_FT_Get_WinFNT_Header=Module["_FT_Get_WinFNT_Header"]=Module["asm"]["FT_Get_WinFNT_Header"]).apply(null,arguments)};var _FT_Stream_OpenBzip2=Module["_FT_Stream_OpenBzip2"]=function(){return(_FT_Stream_OpenBzip2=Module["_FT_Stream_OpenBzip2"]=Module["asm"]["FT_Stream_OpenBzip2"]).apply(null,arguments)};var _FTC_Manager_LookupSize=Module["_FTC_Manager_LookupSize"]=function(){return(_FTC_Manager_LookupSize=Module["_FTC_Manager_LookupSize"]=Module["asm"]["FTC_Manager_LookupSize"]).apply(null,arguments)};var _FTC_Manager_LookupFace=Module["_FTC_Manager_LookupFace"]=function(){return(_FTC_Manager_LookupFace=Module["_FTC_Manager_LookupFace"]=Module["asm"]["FTC_Manager_LookupFace"]).apply(null,arguments)};var _FTC_Manager_New=Module["_FTC_Manager_New"]=function(){return(_FTC_Manager_New=Module["_FTC_Manager_New"]=Module["asm"]["FTC_Manager_New"]).apply(null,arguments)};var _FTC_Manager_Done=Module["_FTC_Manager_Done"]=function(){return(_FTC_Manager_Done=Module["_FTC_Manager_Done"]=Module["asm"]["FTC_Manager_Done"]).apply(null,arguments)};var _FTC_Manager_Reset=Module["_FTC_Manager_Reset"]=function(){return(_FTC_Manager_Reset=Module["_FTC_Manager_Reset"]=Module["asm"]["FTC_Manager_Reset"]).apply(null,arguments)};var _FTC_Manager_RemoveFaceID=Module["_FTC_Manager_RemoveFaceID"]=function(){return(_FTC_Manager_RemoveFaceID=Module["_FTC_Manager_RemoveFaceID"]=Module["asm"]["FTC_Manager_RemoveFaceID"]).apply(null,arguments)};var _FTC_Node_Unref=Module["_FTC_Node_Unref"]=function(){return(_FTC_Node_Unref=Module["_FTC_Node_Unref"]=Module["asm"]["FTC_Node_Unref"]).apply(null,arguments)};var _FTC_CMapCache_New=Module["_FTC_CMapCache_New"]=function(){return(_FTC_CMapCache_New=Module["_FTC_CMapCache_New"]=Module["asm"]["FTC_CMapCache_New"]).apply(null,arguments)};var _FTC_CMapCache_Lookup=Module["_FTC_CMapCache_Lookup"]=function(){return(_FTC_CMapCache_Lookup=Module["_FTC_CMapCache_Lookup"]=Module["asm"]["FTC_CMapCache_Lookup"]).apply(null,arguments)};var _FTC_ImageCache_New=Module["_FTC_ImageCache_New"]=function(){return(_FTC_ImageCache_New=Module["_FTC_ImageCache_New"]=Module["asm"]["FTC_ImageCache_New"]).apply(null,arguments)};var _FTC_ImageCache_Lookup=Module["_FTC_ImageCache_Lookup"]=function(){return(_FTC_ImageCache_Lookup=Module["_FTC_ImageCache_Lookup"]=Module["asm"]["FTC_ImageCache_Lookup"]).apply(null,arguments)};var _FTC_ImageCache_LookupScaler=Module["_FTC_ImageCache_LookupScaler"]=function(){return(_FTC_ImageCache_LookupScaler=Module["_FTC_ImageCache_LookupScaler"]=Module["asm"]["FTC_ImageCache_LookupScaler"]).apply(null,arguments)};var _FTC_SBitCache_New=Module["_FTC_SBitCache_New"]=function(){return(_FTC_SBitCache_New=Module["_FTC_SBitCache_New"]=Module["asm"]["FTC_SBitCache_New"]).apply(null,arguments)};var _FTC_SBitCache_Lookup=Module["_FTC_SBitCache_Lookup"]=function(){return(_FTC_SBitCache_Lookup=Module["_FTC_SBitCache_Lookup"]=Module["asm"]["FTC_SBitCache_Lookup"]).apply(null,arguments)};var _FTC_SBitCache_LookupScaler=Module["_FTC_SBitCache_LookupScaler"]=function(){return(_FTC_SBitCache_LookupScaler=Module["_FTC_SBitCache_LookupScaler"]=Module["asm"]["FTC_SBitCache_LookupScaler"]).apply(null,arguments)};var _atol=Module["_atol"]=function(){return(_atol=Module["_atol"]=Module["asm"]["atol"]).apply(null,arguments)};var _FT_Stream_OpenGzip=Module["_FT_Stream_OpenGzip"]=function(){return(_FT_Stream_OpenGzip=Module["_FT_Stream_OpenGzip"]=Module["asm"]["FT_Stream_OpenGzip"]).apply(null,arguments)};var _FT_Gzip_Uncompress=Module["_FT_Gzip_Uncompress"]=function(){return(_FT_Gzip_Uncompress=Module["_FT_Gzip_Uncompress"]=Module["asm"]["FT_Gzip_Uncompress"]).apply(null,arguments)};var _FT_Stream_OpenLZW=Module["_FT_Stream_OpenLZW"]=function(){return(_FT_Stream_OpenLZW=Module["_FT_Stream_OpenLZW"]=Module["asm"]["FT_Stream_OpenLZW"]).apply(null,arguments)};var _ft_lzwstate_io=Module["_ft_lzwstate_io"]=function(){return(_ft_lzwstate_io=Module["_ft_lzwstate_io"]=Module["asm"]["ft_lzwstate_io"]).apply(null,arguments)};var _ft_lzwstate_reset=Module["_ft_lzwstate_reset"]=function(){return(_ft_lzwstate_reset=Module["_ft_lzwstate_reset"]=Module["asm"]["ft_lzwstate_reset"]).apply(null,arguments)};var _ft_lzwstate_init=Module["_ft_lzwstate_init"]=function(){return(_ft_lzwstate_init=Module["_ft_lzwstate_init"]=Module["asm"]["ft_lzwstate_init"]).apply(null,arguments)};var _ft_lzwstate_done=Module["_ft_lzwstate_done"]=function(){return(_ft_lzwstate_done=Module["_ft_lzwstate_done"]=Module["asm"]["ft_lzwstate_done"]).apply(null,arguments)};var _ps_hints_apply=Module["_ps_hints_apply"]=function(){return(_ps_hints_apply=Module["_ps_hints_apply"]=Module["asm"]["ps_hints_apply"]).apply(null,arguments)};var _TT_New_Context=Module["_TT_New_Context"]=function(){return(_TT_New_Context=Module["_TT_New_Context"]=Module["asm"]["TT_New_Context"]).apply(null,arguments)};var _TT_RunIns=Module["_TT_RunIns"]=function(){return(_TT_RunIns=Module["_TT_RunIns"]=Module["asm"]["TT_RunIns"]).apply(null,arguments)};var _adler32_combine=Module["_adler32_combine"]=function(){return(_adler32_combine=Module["_adler32_combine"]=Module["asm"]["adler32_combine"]).apply(null,arguments)};var _adler32_combine64=Module["_adler32_combine64"]=function(){return(_adler32_combine64=Module["_adler32_combine64"]=Module["asm"]["adler32_combine64"]).apply(null,arguments)};var _compress2=Module["_compress2"]=function(){return(_compress2=Module["_compress2"]=Module["asm"]["compress2"]).apply(null,arguments)};var _compress=Module["_compress"]=function(){return(_compress=Module["_compress"]=Module["asm"]["compress"]).apply(null,arguments)};var _compressBound=Module["_compressBound"]=function(){return(_compressBound=Module["_compressBound"]=Module["asm"]["compressBound"]).apply(null,arguments)};var _get_crc_table=Module["_get_crc_table"]=function(){return(_get_crc_table=Module["_get_crc_table"]=Module["asm"]["get_crc_table"]).apply(null,arguments)};var _crc32_combine=Module["_crc32_combine"]=function(){return(_crc32_combine=Module["_crc32_combine"]=Module["asm"]["crc32_combine"]).apply(null,arguments)};var _crc32_combine64=Module["_crc32_combine64"]=function(){return(_crc32_combine64=Module["_crc32_combine64"]=Module["asm"]["crc32_combine64"]).apply(null,arguments)};var _zcalloc=Module["_zcalloc"]=function(){return(_zcalloc=Module["_zcalloc"]=Module["asm"]["zcalloc"]).apply(null,arguments)};var _zcfree=Module["_zcfree"]=function(){return(_zcfree=Module["_zcfree"]=Module["asm"]["zcfree"]).apply(null,arguments)};var _deflateResetKeep=Module["_deflateResetKeep"]=function(){return(_deflateResetKeep=Module["_deflateResetKeep"]=Module["asm"]["deflateResetKeep"]).apply(null,arguments)};var __tr_init=Module["__tr_init"]=function(){return(__tr_init=Module["__tr_init"]=Module["asm"]["_tr_init"]).apply(null,arguments)};var _deflateSetHeader=Module["_deflateSetHeader"]=function(){return(_deflateSetHeader=Module["_deflateSetHeader"]=Module["asm"]["deflateSetHeader"]).apply(null,arguments)};var _deflatePending=Module["_deflatePending"]=function(){return(_deflatePending=Module["_deflatePending"]=Module["asm"]["deflatePending"]).apply(null,arguments)};var _deflatePrime=Module["_deflatePrime"]=function(){return(_deflatePrime=Module["_deflatePrime"]=Module["asm"]["deflatePrime"]).apply(null,arguments)};var __tr_flush_bits=Module["__tr_flush_bits"]=function(){return(__tr_flush_bits=Module["__tr_flush_bits"]=Module["asm"]["_tr_flush_bits"]).apply(null,arguments)};var _deflateParams=Module["_deflateParams"]=function(){return(_deflateParams=Module["_deflateParams"]=Module["asm"]["deflateParams"]).apply(null,arguments)};var __tr_flush_block=Module["__tr_flush_block"]=function(){return(__tr_flush_block=Module["__tr_flush_block"]=Module["asm"]["_tr_flush_block"]).apply(null,arguments)};var __tr_align=Module["__tr_align"]=function(){return(__tr_align=Module["__tr_align"]=Module["asm"]["_tr_align"]).apply(null,arguments)};var __tr_stored_block=Module["__tr_stored_block"]=function(){return(__tr_stored_block=Module["__tr_stored_block"]=Module["asm"]["_tr_stored_block"]).apply(null,arguments)};var _deflateTune=Module["_deflateTune"]=function(){return(_deflateTune=Module["_deflateTune"]=Module["asm"]["deflateTune"]).apply(null,arguments)};var _deflateBound=Module["_deflateBound"]=function(){return(_deflateBound=Module["_deflateBound"]=Module["asm"]["deflateBound"]).apply(null,arguments)};var _deflateCopy=Module["_deflateCopy"]=function(){return(_deflateCopy=Module["_deflateCopy"]=Module["asm"]["deflateCopy"]).apply(null,arguments)};var _gzclose=Module["_gzclose"]=function(){return(_gzclose=Module["_gzclose"]=Module["asm"]["gzclose"]).apply(null,arguments)};var _gzclose_r=Module["_gzclose_r"]=function(){return(_gzclose_r=Module["_gzclose_r"]=Module["asm"]["gzclose_r"]).apply(null,arguments)};var _gzclose_w=Module["_gzclose_w"]=function(){return(_gzclose_w=Module["_gzclose_w"]=Module["asm"]["gzclose_w"]).apply(null,arguments)};var _gzopen=Module["_gzopen"]=function(){return(_gzopen=Module["_gzopen"]=Module["asm"]["gzopen"]).apply(null,arguments)};var _gzopen64=Module["_gzopen64"]=function(){return(_gzopen64=Module["_gzopen64"]=Module["asm"]["gzopen64"]).apply(null,arguments)};var _gzdopen=Module["_gzdopen"]=function(){return(_gzdopen=Module["_gzdopen"]=Module["asm"]["gzdopen"]).apply(null,arguments)};var _gzbuffer=Module["_gzbuffer"]=function(){return(_gzbuffer=Module["_gzbuffer"]=Module["asm"]["gzbuffer"]).apply(null,arguments)};var _gzrewind=Module["_gzrewind"]=function(){return(_gzrewind=Module["_gzrewind"]=Module["asm"]["gzrewind"]).apply(null,arguments)};var _gzseek64=Module["_gzseek64"]=function(){return(_gzseek64=Module["_gzseek64"]=Module["asm"]["gzseek64"]).apply(null,arguments)};var _gz_error=Module["_gz_error"]=function(){return(_gz_error=Module["_gz_error"]=Module["asm"]["gz_error"]).apply(null,arguments)};var _gzseek=Module["_gzseek"]=function(){return(_gzseek=Module["_gzseek"]=Module["asm"]["gzseek"]).apply(null,arguments)};var _gztell64=Module["_gztell64"]=function(){return(_gztell64=Module["_gztell64"]=Module["asm"]["gztell64"]).apply(null,arguments)};var _gztell=Module["_gztell"]=function(){return(_gztell=Module["_gztell"]=Module["asm"]["gztell"]).apply(null,arguments)};var _gzoffset64=Module["_gzoffset64"]=function(){return(_gzoffset64=Module["_gzoffset64"]=Module["asm"]["gzoffset64"]).apply(null,arguments)};var _gzoffset=Module["_gzoffset"]=function(){return(_gzoffset=Module["_gzoffset"]=Module["asm"]["gzoffset"]).apply(null,arguments)};var _gzeof=Module["_gzeof"]=function(){return(_gzeof=Module["_gzeof"]=Module["asm"]["gzeof"]).apply(null,arguments)};var _gzerror=Module["_gzerror"]=function(){return(_gzerror=Module["_gzerror"]=Module["asm"]["gzerror"]).apply(null,arguments)};var _gzclearerr=Module["_gzclearerr"]=function(){return(_gzclearerr=Module["_gzclearerr"]=Module["asm"]["gzclearerr"]).apply(null,arguments)};var _gzread=Module["_gzread"]=function(){return(_gzread=Module["_gzread"]=Module["asm"]["gzread"]).apply(null,arguments)};var _gzgetc=Module["_gzgetc"]=function(){return(_gzgetc=Module["_gzgetc"]=Module["asm"]["gzgetc"]).apply(null,arguments)};var _gzgetc_=Module["_gzgetc_"]=function(){return(_gzgetc_=Module["_gzgetc_"]=Module["asm"]["gzgetc_"]).apply(null,arguments)};var _gzungetc=Module["_gzungetc"]=function(){return(_gzungetc=Module["_gzungetc"]=Module["asm"]["gzungetc"]).apply(null,arguments)};var _gzgets=Module["_gzgets"]=function(){return(_gzgets=Module["_gzgets"]=Module["asm"]["gzgets"]).apply(null,arguments)};var _gzdirect=Module["_gzdirect"]=function(){return(_gzdirect=Module["_gzdirect"]=Module["asm"]["gzdirect"]).apply(null,arguments)};var _gzwrite=Module["_gzwrite"]=function(){return(_gzwrite=Module["_gzwrite"]=Module["asm"]["gzwrite"]).apply(null,arguments)};var _gzputc=Module["_gzputc"]=function(){return(_gzputc=Module["_gzputc"]=Module["asm"]["gzputc"]).apply(null,arguments)};var _gzputs=Module["_gzputs"]=function(){return(_gzputs=Module["_gzputs"]=Module["asm"]["gzputs"]).apply(null,arguments)};var _gzvprintf=Module["_gzvprintf"]=function(){return(_gzvprintf=Module["_gzvprintf"]=Module["asm"]["gzvprintf"]).apply(null,arguments)};var _gzprintf=Module["_gzprintf"]=function(){return(_gzprintf=Module["_gzprintf"]=Module["asm"]["gzprintf"]).apply(null,arguments)};var _gzflush=Module["_gzflush"]=function(){return(_gzflush=Module["_gzflush"]=Module["asm"]["gzflush"]).apply(null,arguments)};var _gzsetparams=Module["_gzsetparams"]=function(){return(_gzsetparams=Module["_gzsetparams"]=Module["asm"]["gzsetparams"]).apply(null,arguments)};var _inflateBackInit_=Module["_inflateBackInit_"]=function(){return(_inflateBackInit_=Module["_inflateBackInit_"]=Module["asm"]["inflateBackInit_"]).apply(null,arguments)};var _inflateBack=Module["_inflateBack"]=function(){return(_inflateBack=Module["_inflateBack"]=Module["asm"]["inflateBack"]).apply(null,arguments)};var _inflate_table=Module["_inflate_table"]=function(){return(_inflate_table=Module["_inflate_table"]=Module["asm"]["inflate_table"]).apply(null,arguments)};var _inflate_fast=Module["_inflate_fast"]=function(){return(_inflate_fast=Module["_inflate_fast"]=Module["asm"]["inflate_fast"]).apply(null,arguments)};var _inflateBackEnd=Module["_inflateBackEnd"]=function(){return(_inflateBackEnd=Module["_inflateBackEnd"]=Module["asm"]["inflateBackEnd"]).apply(null,arguments)};var _inflateResetKeep=Module["_inflateResetKeep"]=function(){return(_inflateResetKeep=Module["_inflateResetKeep"]=Module["asm"]["inflateResetKeep"]).apply(null,arguments)};var _inflateReset2=Module["_inflateReset2"]=function(){return(_inflateReset2=Module["_inflateReset2"]=Module["asm"]["inflateReset2"]).apply(null,arguments)};var _inflatePrime=Module["_inflatePrime"]=function(){return(_inflatePrime=Module["_inflatePrime"]=Module["asm"]["inflatePrime"]).apply(null,arguments)};var _inflateGetDictionary=Module["_inflateGetDictionary"]=function(){return(_inflateGetDictionary=Module["_inflateGetDictionary"]=Module["asm"]["inflateGetDictionary"]).apply(null,arguments)};var _inflateGetHeader=Module["_inflateGetHeader"]=function(){return(_inflateGetHeader=Module["_inflateGetHeader"]=Module["asm"]["inflateGetHeader"]).apply(null,arguments)};var _inflateSync=Module["_inflateSync"]=function(){return(_inflateSync=Module["_inflateSync"]=Module["asm"]["inflateSync"]).apply(null,arguments)};var _inflateSyncPoint=Module["_inflateSyncPoint"]=function(){return(_inflateSyncPoint=Module["_inflateSyncPoint"]=Module["asm"]["inflateSyncPoint"]).apply(null,arguments)};var _inflateCopy=Module["_inflateCopy"]=function(){return(_inflateCopy=Module["_inflateCopy"]=Module["asm"]["inflateCopy"]).apply(null,arguments)};var _inflateUndermine=Module["_inflateUndermine"]=function(){return(_inflateUndermine=Module["_inflateUndermine"]=Module["asm"]["inflateUndermine"]).apply(null,arguments)};var _inflateMark=Module["_inflateMark"]=function(){return(_inflateMark=Module["_inflateMark"]=Module["asm"]["inflateMark"]).apply(null,arguments)};var __tr_tally=Module["__tr_tally"]=function(){return(__tr_tally=Module["__tr_tally"]=Module["asm"]["_tr_tally"]).apply(null,arguments)};var _uncompress=Module["_uncompress"]=function(){return(_uncompress=Module["_uncompress"]=Module["asm"]["uncompress"]).apply(null,arguments)};var _zlibCompileFlags=Module["_zlibCompileFlags"]=function(){return(_zlibCompileFlags=Module["_zlibCompileFlags"]=Module["asm"]["zlibCompileFlags"]).apply(null,arguments)};var _zError=Module["_zError"]=function(){return(_zError=Module["_zError"]=Module["asm"]["zError"]).apply(null,arguments)};var _emscripten_GetProcAddress=Module["_emscripten_GetProcAddress"]=function(){return(_emscripten_GetProcAddress=Module["_emscripten_GetProcAddress"]=Module["asm"]["emscripten_GetProcAddress"]).apply(null,arguments)};var _emscripten_webgl1_get_proc_address=Module["_emscripten_webgl1_get_proc_address"]=function(){return(_emscripten_webgl1_get_proc_address=Module["_emscripten_webgl1_get_proc_address"]=Module["asm"]["emscripten_webgl1_get_proc_address"]).apply(null,arguments)};var __webgl1_match_ext_proc_address_without_suffix=Module["__webgl1_match_ext_proc_address_without_suffix"]=function(){return(__webgl1_match_ext_proc_address_without_suffix=Module["__webgl1_match_ext_proc_address_without_suffix"]=Module["asm"]["_webgl1_match_ext_proc_address_without_suffix"]).apply(null,arguments)};var _emscripten_webgl_get_proc_address=Module["_emscripten_webgl_get_proc_address"]=function(){return(_emscripten_webgl_get_proc_address=Module["_emscripten_webgl_get_proc_address"]=Module["asm"]["emscripten_webgl_get_proc_address"]).apply(null,arguments)};var _SDL_GL_GetProcAddress=Module["_SDL_GL_GetProcAddress"]=function(){return(_SDL_GL_GetProcAddress=Module["_SDL_GL_GetProcAddress"]=Module["asm"]["SDL_GL_GetProcAddress"]).apply(null,arguments)};var _eglGetProcAddress=Module["_eglGetProcAddress"]=function(){return(_eglGetProcAddress=Module["_eglGetProcAddress"]=Module["asm"]["eglGetProcAddress"]).apply(null,arguments)};var _glfwGetProcAddress=Module["_glfwGetProcAddress"]=function(){return(_glfwGetProcAddress=Module["_glfwGetProcAddress"]=Module["asm"]["glfwGetProcAddress"]).apply(null,arguments)};var _alcGetProcAddress=Module["_alcGetProcAddress"]=function(){return(_alcGetProcAddress=Module["_alcGetProcAddress"]=Module["asm"]["alcGetProcAddress"]).apply(null,arguments)};var _alGetProcAddress=Module["_alGetProcAddress"]=function(){return(_alGetProcAddress=Module["_alGetProcAddress"]=Module["asm"]["alGetProcAddress"]).apply(null,arguments)};var _emscripten_compute_dom_pk_code=Module["_emscripten_compute_dom_pk_code"]=function(){return(_emscripten_compute_dom_pk_code=Module["_emscripten_compute_dom_pk_code"]=Module["asm"]["emscripten_compute_dom_pk_code"]).apply(null,arguments)};var _emscripten_dom_pk_code_to_string=Module["_emscripten_dom_pk_code_to_string"]=function(){return(_emscripten_dom_pk_code_to_string=Module["_emscripten_dom_pk_code_to_string"]=Module["asm"]["emscripten_dom_pk_code_to_string"]).apply(null,arguments)};var _emscripten_dom_vk_to_string=Module["_emscripten_dom_vk_to_string"]=function(){return(_emscripten_dom_vk_to_string=Module["_emscripten_dom_vk_to_string"]=Module["asm"]["emscripten_dom_vk_to_string"]).apply(null,arguments)};var _fesetround=Module["_fesetround"]=function(){return(_fesetround=Module["_fesetround"]=Module["asm"]["fesetround"]).apply(null,arguments)};var ___fesetround=Module["___fesetround"]=function(){return(___fesetround=Module["___fesetround"]=Module["asm"]["__fesetround"]).apply(null,arguments)};var _fesetexceptflag=Module["_fesetexceptflag"]=function(){return(_fesetexceptflag=Module["_fesetexceptflag"]=Module["asm"]["fesetexceptflag"]).apply(null,arguments)};var _feclearexcept=Module["_feclearexcept"]=function(){return(_feclearexcept=Module["_feclearexcept"]=Module["asm"]["feclearexcept"]).apply(null,arguments)};var _feraiseexcept=Module["_feraiseexcept"]=function(){return(_feraiseexcept=Module["_feraiseexcept"]=Module["asm"]["feraiseexcept"]).apply(null,arguments)};var _fegetexceptflag=Module["_fegetexceptflag"]=function(){return(_fegetexceptflag=Module["_fegetexceptflag"]=Module["asm"]["fegetexceptflag"]).apply(null,arguments)};var _fetestexcept=Module["_fetestexcept"]=function(){return(_fetestexcept=Module["_fetestexcept"]=Module["asm"]["fetestexcept"]).apply(null,arguments)};var _feholdexcept=Module["_feholdexcept"]=function(){return(_feholdexcept=Module["_feholdexcept"]=Module["asm"]["feholdexcept"]).apply(null,arguments)};var _fegetenv=Module["_fegetenv"]=function(){return(_fegetenv=Module["_fegetenv"]=Module["asm"]["fegetenv"]).apply(null,arguments)};var _feupdateenv=Module["_feupdateenv"]=function(){return(_feupdateenv=Module["_feupdateenv"]=Module["asm"]["feupdateenv"]).apply(null,arguments)};var _fesetenv=Module["_fesetenv"]=function(){return(_fesetenv=Module["_fesetenv"]=Module["asm"]["fesetenv"]).apply(null,arguments)};var ___flt_rounds=Module["___flt_rounds"]=function(){return(___flt_rounds=Module["___flt_rounds"]=Module["asm"]["__flt_rounds"]).apply(null,arguments)};var _fegetround=Module["_fegetround"]=function(){return(_fegetround=Module["_fegetround"]=Module["asm"]["fegetround"]).apply(null,arguments)};var _posix_spawnattr_getsigmask=Module["_posix_spawnattr_getsigmask"]=function(){return(_posix_spawnattr_getsigmask=Module["_posix_spawnattr_getsigmask"]=Module["asm"]["posix_spawnattr_getsigmask"]).apply(null,arguments)};var ___execvpe=Module["___execvpe"]=function(){return(___execvpe=Module["___execvpe"]=Module["asm"]["__execvpe"]).apply(null,arguments)};var _execlp=Module["_execlp"]=function(){return(_execlp=Module["_execlp"]=Module["asm"]["execlp"]).apply(null,arguments)};var _execvp=Module["_execvp"]=function(){return(_execvp=Module["_execvp"]=Module["asm"]["execvp"]).apply(null,arguments)};var _execle=Module["_execle"]=function(){return(_execle=Module["_execle"]=Module["asm"]["execle"]).apply(null,arguments)};var ___procfdname=Module["___procfdname"]=function(){return(___procfdname=Module["___procfdname"]=Module["asm"]["__procfdname"]).apply(null,arguments)};var _posix_spawnattr_getsigdefault=Module["_posix_spawnattr_getsigdefault"]=function(){return(_posix_spawnattr_getsigdefault=Module["_posix_spawnattr_getsigdefault"]=Module["asm"]["posix_spawnattr_getsigdefault"]).apply(null,arguments)};var _posix_spawnattr_setsigdefault=Module["_posix_spawnattr_setsigdefault"]=function(){return(_posix_spawnattr_setsigdefault=Module["_posix_spawnattr_setsigdefault"]=Module["asm"]["posix_spawnattr_setsigdefault"]).apply(null,arguments)};var _strnlen=Module["_strnlen"]=function(){return(_strnlen=Module["_strnlen"]=Module["asm"]["strnlen"]).apply(null,arguments)};var _execvpe=Module["_execvpe"]=function(){return(_execvpe=Module["_execvpe"]=Module["asm"]["execvpe"]).apply(null,arguments)};var ___syscall_ret=Module["___syscall_ret"]=function(){return(___syscall_ret=Module["___syscall_ret"]=Module["asm"]["__syscall_ret"]).apply(null,arguments)};var _posix_spawnattr_getschedparam=Module["_posix_spawnattr_getschedparam"]=function(){return(_posix_spawnattr_getschedparam=Module["_posix_spawnattr_getschedparam"]=Module["asm"]["posix_spawnattr_getschedparam"]).apply(null,arguments)};var _posix_spawnattr_getschedpolicy=Module["_posix_spawnattr_getschedpolicy"]=function(){return(_posix_spawnattr_getschedpolicy=Module["_posix_spawnattr_getschedpolicy"]=Module["asm"]["posix_spawnattr_getschedpolicy"]).apply(null,arguments)};var _posix_spawnattr_getflags=Module["_posix_spawnattr_getflags"]=function(){return(_posix_spawnattr_getflags=Module["_posix_spawnattr_getflags"]=Module["asm"]["posix_spawnattr_getflags"]).apply(null,arguments)};var _execl=Module["_execl"]=function(){return(_execl=Module["_execl"]=Module["asm"]["execl"]).apply(null,arguments)};var _posix_spawnattr_setsigmask=Module["_posix_spawnattr_setsigmask"]=function(){return(_posix_spawnattr_setsigmask=Module["_posix_spawnattr_setsigmask"]=Module["asm"]["posix_spawnattr_setsigmask"]).apply(null,arguments)};var _posix_spawnattr_getpgroup=Module["_posix_spawnattr_getpgroup"]=function(){return(_posix_spawnattr_getpgroup=Module["_posix_spawnattr_getpgroup"]=Module["asm"]["posix_spawnattr_getpgroup"]).apply(null,arguments)};var _cfgetospeed=Module["_cfgetospeed"]=function(){return(_cfgetospeed=Module["_cfgetospeed"]=Module["asm"]["cfgetospeed"]).apply(null,arguments)};var _cfgetispeed=Module["_cfgetispeed"]=function(){return(_cfgetispeed=Module["_cfgetispeed"]=Module["asm"]["cfgetispeed"]).apply(null,arguments)};var _tcsendbreak=Module["_tcsendbreak"]=function(){return(_tcsendbreak=Module["_tcsendbreak"]=Module["asm"]["tcsendbreak"]).apply(null,arguments)};var _tcdrain=Module["_tcdrain"]=function(){return(_tcdrain=Module["_tcdrain"]=Module["asm"]["tcdrain"]).apply(null,arguments)};var _tcflush=Module["_tcflush"]=function(){return(_tcflush=Module["_tcflush"]=Module["asm"]["tcflush"]).apply(null,arguments)};var _tcgetsid=Module["_tcgetsid"]=function(){return(_tcgetsid=Module["_tcgetsid"]=Module["asm"]["tcgetsid"]).apply(null,arguments)};var _cfmakeraw=Module["_cfmakeraw"]=function(){return(_cfmakeraw=Module["_cfmakeraw"]=Module["asm"]["cfmakeraw"]).apply(null,arguments)};var _tcflow=Module["_tcflow"]=function(){return(_tcflow=Module["_tcflow"]=Module["asm"]["tcflow"]).apply(null,arguments)};var _tcgetattr=Module["_tcgetattr"]=function(){return(_tcgetattr=Module["_tcgetattr"]=Module["asm"]["tcgetattr"]).apply(null,arguments)};var _tcsetattr=Module["_tcsetattr"]=function(){return(_tcsetattr=Module["_tcsetattr"]=Module["asm"]["tcsetattr"]).apply(null,arguments)};var _cfsetospeed=Module["_cfsetospeed"]=function(){return(_cfsetospeed=Module["_cfsetospeed"]=Module["asm"]["cfsetospeed"]).apply(null,arguments)};var _cfsetispeed=Module["_cfsetispeed"]=function(){return(_cfsetispeed=Module["_cfsetispeed"]=Module["asm"]["cfsetispeed"]).apply(null,arguments)};var _cfsetspeed=Module["_cfsetspeed"]=function(){return(_cfsetspeed=Module["_cfsetspeed"]=Module["asm"]["cfsetspeed"]).apply(null,arguments)};var _openat=Module["_openat"]=function(){return(_openat=Module["_openat"]=Module["asm"]["openat"]).apply(null,arguments)};var _openat64=Module["_openat64"]=function(){return(_openat64=Module["_openat64"]=Module["asm"]["openat64"]).apply(null,arguments)};var _creat=Module["_creat"]=function(){return(_creat=Module["_creat"]=Module["asm"]["creat"]).apply(null,arguments)};var _creat64=Module["_creat64"]=function(){return(_creat64=Module["_creat64"]=Module["asm"]["creat64"]).apply(null,arguments)};var _posix_fadvise64=Module["_posix_fadvise64"]=function(){return(_posix_fadvise64=Module["_posix_fadvise64"]=Module["asm"]["posix_fadvise64"]).apply(null,arguments)};var _posix_fallocate64=Module["_posix_fallocate64"]=function(){return(_posix_fallocate64=Module["_posix_fallocate64"]=Module["asm"]["posix_fallocate64"]).apply(null,arguments)};var _open64=Module["_open64"]=function(){return(_open64=Module["_open64"]=Module["asm"]["open64"]).apply(null,arguments)};var _get_nprocs_conf=Module["_get_nprocs_conf"]=function(){return(_get_nprocs_conf=Module["_get_nprocs_conf"]=Module["asm"]["get_nprocs_conf"]).apply(null,arguments)};var _get_nprocs=Module["_get_nprocs"]=function(){return(_get_nprocs=Module["_get_nprocs"]=Module["asm"]["get_nprocs"]).apply(null,arguments)};var _get_phys_pages=Module["_get_phys_pages"]=function(){return(_get_phys_pages=Module["_get_phys_pages"]=Module["asm"]["get_phys_pages"]).apply(null,arguments)};var _get_avphys_pages=Module["_get_avphys_pages"]=function(){return(_get_avphys_pages=Module["_get_avphys_pages"]=Module["asm"]["get_avphys_pages"]).apply(null,arguments)};var _emscripten_num_logical_cores=Module["_emscripten_num_logical_cores"]=function(){return(_emscripten_num_logical_cores=Module["_emscripten_num_logical_cores"]=Module["asm"]["emscripten_num_logical_cores"]).apply(null,arguments)};var _towupper=Module["_towupper"]=function(){return(_towupper=Module["_towupper"]=Module["asm"]["towupper"]).apply(null,arguments)};var _iswalpha=Module["_iswalpha"]=function(){return(_iswalpha=Module["_iswalpha"]=Module["asm"]["iswalpha"]).apply(null,arguments)};var _towlower=Module["_towlower"]=function(){return(_towlower=Module["_towlower"]=Module["asm"]["towlower"]).apply(null,arguments)};var ___towupper_l=Module["___towupper_l"]=function(){return(___towupper_l=Module["___towupper_l"]=Module["asm"]["__towupper_l"]).apply(null,arguments)};var ___towlower_l=Module["___towlower_l"]=function(){return(___towlower_l=Module["___towlower_l"]=Module["asm"]["__towlower_l"]).apply(null,arguments)};var _towupper_l=Module["_towupper_l"]=function(){return(_towupper_l=Module["_towupper_l"]=Module["asm"]["towupper_l"]).apply(null,arguments)};var _towlower_l=Module["_towlower_l"]=function(){return(_towlower_l=Module["_towlower_l"]=Module["asm"]["towlower_l"]).apply(null,arguments)};var _isgraph=Module["_isgraph"]=function(){return(_isgraph=Module["_isgraph"]=Module["asm"]["isgraph"]).apply(null,arguments)};var ___isgraph_l=Module["___isgraph_l"]=function(){return(___isgraph_l=Module["___isgraph_l"]=Module["asm"]["__isgraph_l"]).apply(null,arguments)};var _isgraph_l=Module["_isgraph_l"]=function(){return(_isgraph_l=Module["_isgraph_l"]=Module["asm"]["isgraph_l"]).apply(null,arguments)};var _iswctype=Module["_iswctype"]=function(){return(_iswctype=Module["_iswctype"]=Module["asm"]["iswctype"]).apply(null,arguments)};var _iswalnum=Module["_iswalnum"]=function(){return(_iswalnum=Module["_iswalnum"]=Module["asm"]["iswalnum"]).apply(null,arguments)};var _iswblank=Module["_iswblank"]=function(){return(_iswblank=Module["_iswblank"]=Module["asm"]["iswblank"]).apply(null,arguments)};var _iswcntrl=Module["_iswcntrl"]=function(){return(_iswcntrl=Module["_iswcntrl"]=Module["asm"]["iswcntrl"]).apply(null,arguments)};var _iswdigit=Module["_iswdigit"]=function(){return(_iswdigit=Module["_iswdigit"]=Module["asm"]["iswdigit"]).apply(null,arguments)};var _iswgraph=Module["_iswgraph"]=function(){return(_iswgraph=Module["_iswgraph"]=Module["asm"]["iswgraph"]).apply(null,arguments)};var _iswlower=Module["_iswlower"]=function(){return(_iswlower=Module["_iswlower"]=Module["asm"]["iswlower"]).apply(null,arguments)};var _iswprint=Module["_iswprint"]=function(){return(_iswprint=Module["_iswprint"]=Module["asm"]["iswprint"]).apply(null,arguments)};var _iswpunct=Module["_iswpunct"]=function(){return(_iswpunct=Module["_iswpunct"]=Module["asm"]["iswpunct"]).apply(null,arguments)};var _iswspace=Module["_iswspace"]=function(){return(_iswspace=Module["_iswspace"]=Module["asm"]["iswspace"]).apply(null,arguments)};var _iswupper=Module["_iswupper"]=function(){return(_iswupper=Module["_iswupper"]=Module["asm"]["iswupper"]).apply(null,arguments)};var _iswxdigit=Module["_iswxdigit"]=function(){return(_iswxdigit=Module["_iswxdigit"]=Module["asm"]["iswxdigit"]).apply(null,arguments)};var _wctype=Module["_wctype"]=function(){return(_wctype=Module["_wctype"]=Module["asm"]["wctype"]).apply(null,arguments)};var ___iswctype_l=Module["___iswctype_l"]=function(){return(___iswctype_l=Module["___iswctype_l"]=Module["asm"]["__iswctype_l"]).apply(null,arguments)};var ___wctype_l=Module["___wctype_l"]=function(){return(___wctype_l=Module["___wctype_l"]=Module["asm"]["__wctype_l"]).apply(null,arguments)};var _iswctype_l=Module["_iswctype_l"]=function(){return(_iswctype_l=Module["_iswctype_l"]=Module["asm"]["iswctype_l"]).apply(null,arguments)};var _wctype_l=Module["_wctype_l"]=function(){return(_wctype_l=Module["_wctype_l"]=Module["asm"]["wctype_l"]).apply(null,arguments)};var ___ctype_b_loc=Module["___ctype_b_loc"]=function(){return(___ctype_b_loc=Module["___ctype_b_loc"]=Module["asm"]["__ctype_b_loc"]).apply(null,arguments)};var _isalpha=Module["_isalpha"]=function(){return(_isalpha=Module["_isalpha"]=Module["asm"]["isalpha"]).apply(null,arguments)};var ___isalpha_l=Module["___isalpha_l"]=function(){return(___isalpha_l=Module["___isalpha_l"]=Module["asm"]["__isalpha_l"]).apply(null,arguments)};var _isalpha_l=Module["_isalpha_l"]=function(){return(_isalpha_l=Module["_isalpha_l"]=Module["asm"]["isalpha_l"]).apply(null,arguments)};var ___iswdigit_l=Module["___iswdigit_l"]=function(){return(___iswdigit_l=Module["___iswdigit_l"]=Module["asm"]["__iswdigit_l"]).apply(null,arguments)};var _iswdigit_l=Module["_iswdigit_l"]=function(){return(_iswdigit_l=Module["_iswdigit_l"]=Module["asm"]["iswdigit_l"]).apply(null,arguments)};var ___ctype_get_mb_cur_max=Module["___ctype_get_mb_cur_max"]=function(){return(___ctype_get_mb_cur_max=Module["___ctype_get_mb_cur_max"]=Module["asm"]["__ctype_get_mb_cur_max"]).apply(null,arguments)};var ___pthread_self=Module["___pthread_self"]=function(){return(___pthread_self=Module["___pthread_self"]=Module["asm"]["__pthread_self"]).apply(null,arguments)};var ___iswalnum_l=Module["___iswalnum_l"]=function(){return(___iswalnum_l=Module["___iswalnum_l"]=Module["asm"]["__iswalnum_l"]).apply(null,arguments)};var _iswalnum_l=Module["_iswalnum_l"]=function(){return(_iswalnum_l=Module["_iswalnum_l"]=Module["asm"]["iswalnum_l"]).apply(null,arguments)};var ___iswalpha_l=Module["___iswalpha_l"]=function(){return(___iswalpha_l=Module["___iswalpha_l"]=Module["asm"]["__iswalpha_l"]).apply(null,arguments)};var _iswalpha_l=Module["_iswalpha_l"]=function(){return(_iswalpha_l=Module["_iswalpha_l"]=Module["asm"]["iswalpha_l"]).apply(null,arguments)};var _isspace=Module["_isspace"]=function(){return(_isspace=Module["_isspace"]=Module["asm"]["isspace"]).apply(null,arguments)};var ___isspace_l=Module["___isspace_l"]=function(){return(___isspace_l=Module["___isspace_l"]=Module["asm"]["__isspace_l"]).apply(null,arguments)};var _isspace_l=Module["_isspace_l"]=function(){return(_isspace_l=Module["_isspace_l"]=Module["asm"]["isspace_l"]).apply(null,arguments)};var _islower=Module["_islower"]=function(){return(_islower=Module["_islower"]=Module["asm"]["islower"]).apply(null,arguments)};var ___islower_l=Module["___islower_l"]=function(){return(___islower_l=Module["___islower_l"]=Module["asm"]["__islower_l"]).apply(null,arguments)};var _islower_l=Module["_islower_l"]=function(){return(_islower_l=Module["_islower_l"]=Module["asm"]["islower_l"]).apply(null,arguments)};var _iscntrl=Module["_iscntrl"]=function(){return(_iscntrl=Module["_iscntrl"]=Module["asm"]["iscntrl"]).apply(null,arguments)};var ___iscntrl_l=Module["___iscntrl_l"]=function(){return(___iscntrl_l=Module["___iscntrl_l"]=Module["asm"]["__iscntrl_l"]).apply(null,arguments)};var _iscntrl_l=Module["_iscntrl_l"]=function(){return(_iscntrl_l=Module["_iscntrl_l"]=Module["asm"]["iscntrl_l"]).apply(null,arguments)};var _isdigit=Module["_isdigit"]=function(){return(_isdigit=Module["_isdigit"]=Module["asm"]["isdigit"]).apply(null,arguments)};var ___isxdigit_l=Module["___isxdigit_l"]=function(){return(___isxdigit_l=Module["___isxdigit_l"]=Module["asm"]["__isxdigit_l"]).apply(null,arguments)};var _isxdigit_l=Module["_isxdigit_l"]=function(){return(_isxdigit_l=Module["_isxdigit_l"]=Module["asm"]["isxdigit_l"]).apply(null,arguments)};var ___ctype_toupper_loc=Module["___ctype_toupper_loc"]=function(){return(___ctype_toupper_loc=Module["___ctype_toupper_loc"]=Module["asm"]["__ctype_toupper_loc"]).apply(null,arguments)};var ___iswprint_l=Module["___iswprint_l"]=function(){return(___iswprint_l=Module["___iswprint_l"]=Module["asm"]["__iswprint_l"]).apply(null,arguments)};var _iswprint_l=Module["_iswprint_l"]=function(){return(_iswprint_l=Module["_iswprint_l"]=Module["asm"]["iswprint_l"]).apply(null,arguments)};var _isprint=Module["_isprint"]=function(){return(_isprint=Module["_isprint"]=Module["asm"]["isprint"]).apply(null,arguments)};var ___isprint_l=Module["___isprint_l"]=function(){return(___isprint_l=Module["___isprint_l"]=Module["asm"]["__isprint_l"]).apply(null,arguments)};var _isprint_l=Module["_isprint_l"]=function(){return(_isprint_l=Module["_isprint_l"]=Module["asm"]["isprint_l"]).apply(null,arguments)};var ___iswlower_l=Module["___iswlower_l"]=function(){return(___iswlower_l=Module["___iswlower_l"]=Module["asm"]["__iswlower_l"]).apply(null,arguments)};var _iswlower_l=Module["_iswlower_l"]=function(){return(_iswlower_l=Module["_iswlower_l"]=Module["asm"]["iswlower_l"]).apply(null,arguments)};var ___tolower_l=Module["___tolower_l"]=function(){return(___tolower_l=Module["___tolower_l"]=Module["asm"]["__tolower_l"]).apply(null,arguments)};var _tolower_l=Module["_tolower_l"]=function(){return(_tolower_l=Module["_tolower_l"]=Module["asm"]["tolower_l"]).apply(null,arguments)};var _wctrans=Module["_wctrans"]=function(){return(_wctrans=Module["_wctrans"]=Module["asm"]["wctrans"]).apply(null,arguments)};var _towctrans=Module["_towctrans"]=function(){return(_towctrans=Module["_towctrans"]=Module["asm"]["towctrans"]).apply(null,arguments)};var ___wctrans_l=Module["___wctrans_l"]=function(){return(___wctrans_l=Module["___wctrans_l"]=Module["asm"]["__wctrans_l"]).apply(null,arguments)};var ___towctrans_l=Module["___towctrans_l"]=function(){return(___towctrans_l=Module["___towctrans_l"]=Module["asm"]["__towctrans_l"]).apply(null,arguments)};var _wctrans_l=Module["_wctrans_l"]=function(){return(_wctrans_l=Module["_wctrans_l"]=Module["asm"]["wctrans_l"]).apply(null,arguments)};var _towctrans_l=Module["_towctrans_l"]=function(){return(_towctrans_l=Module["_towctrans_l"]=Module["asm"]["towctrans_l"]).apply(null,arguments)};var _isblank=Module["_isblank"]=function(){return(_isblank=Module["_isblank"]=Module["asm"]["isblank"]).apply(null,arguments)};var ___iswblank_l=Module["___iswblank_l"]=function(){return(___iswblank_l=Module["___iswblank_l"]=Module["asm"]["__iswblank_l"]).apply(null,arguments)};var _iswblank_l=Module["_iswblank_l"]=function(){return(_iswblank_l=Module["_iswblank_l"]=Module["asm"]["iswblank_l"]).apply(null,arguments)};var _wcswidth=Module["_wcswidth"]=function(){return(_wcswidth=Module["_wcswidth"]=Module["asm"]["wcswidth"]).apply(null,arguments)};var _wcwidth=Module["_wcwidth"]=function(){return(_wcwidth=Module["_wcwidth"]=Module["asm"]["wcwidth"]).apply(null,arguments)};var ___isupper_l=Module["___isupper_l"]=function(){return(___isupper_l=Module["___isupper_l"]=Module["asm"]["__isupper_l"]).apply(null,arguments)};var _isupper_l=Module["_isupper_l"]=function(){return(_isupper_l=Module["_isupper_l"]=Module["asm"]["isupper_l"]).apply(null,arguments)};var ___toupper_l=Module["___toupper_l"]=function(){return(___toupper_l=Module["___toupper_l"]=Module["asm"]["__toupper_l"]).apply(null,arguments)};var _toupper_l=Module["_toupper_l"]=function(){return(_toupper_l=Module["_toupper_l"]=Module["asm"]["toupper_l"]).apply(null,arguments)};var ___isblank_l=Module["___isblank_l"]=function(){return(___isblank_l=Module["___isblank_l"]=Module["asm"]["__isblank_l"]).apply(null,arguments)};var _isblank_l=Module["_isblank_l"]=function(){return(_isblank_l=Module["_isblank_l"]=Module["asm"]["isblank_l"]).apply(null,arguments)};var _toascii=Module["_toascii"]=function(){return(_toascii=Module["_toascii"]=Module["asm"]["toascii"]).apply(null,arguments)};var ___isdigit_l=Module["___isdigit_l"]=function(){return(___isdigit_l=Module["___isdigit_l"]=Module["asm"]["__isdigit_l"]).apply(null,arguments)};var _isdigit_l=Module["_isdigit_l"]=function(){return(_isdigit_l=Module["_isdigit_l"]=Module["asm"]["isdigit_l"]).apply(null,arguments)};var ___iswxdigit_l=Module["___iswxdigit_l"]=function(){return(___iswxdigit_l=Module["___iswxdigit_l"]=Module["asm"]["__iswxdigit_l"]).apply(null,arguments)};var _iswxdigit_l=Module["_iswxdigit_l"]=function(){return(_iswxdigit_l=Module["_iswxdigit_l"]=Module["asm"]["iswxdigit_l"]).apply(null,arguments)};var ___iswpunct_l=Module["___iswpunct_l"]=function(){return(___iswpunct_l=Module["___iswpunct_l"]=Module["asm"]["__iswpunct_l"]).apply(null,arguments)};var _iswpunct_l=Module["_iswpunct_l"]=function(){return(_iswpunct_l=Module["_iswpunct_l"]=Module["asm"]["iswpunct_l"]).apply(null,arguments)};var _isascii=Module["_isascii"]=function(){return(_isascii=Module["_isascii"]=Module["asm"]["isascii"]).apply(null,arguments)};var ___iswcntrl_l=Module["___iswcntrl_l"]=function(){return(___iswcntrl_l=Module["___iswcntrl_l"]=Module["asm"]["__iswcntrl_l"]).apply(null,arguments)};var _iswcntrl_l=Module["_iswcntrl_l"]=function(){return(_iswcntrl_l=Module["_iswcntrl_l"]=Module["asm"]["iswcntrl_l"]).apply(null,arguments)};var ___iswgraph_l=Module["___iswgraph_l"]=function(){return(___iswgraph_l=Module["___iswgraph_l"]=Module["asm"]["__iswgraph_l"]).apply(null,arguments)};var _iswgraph_l=Module["_iswgraph_l"]=function(){return(_iswgraph_l=Module["_iswgraph_l"]=Module["asm"]["iswgraph_l"]).apply(null,arguments)};var ___iswupper_l=Module["___iswupper_l"]=function(){return(___iswupper_l=Module["___iswupper_l"]=Module["asm"]["__iswupper_l"]).apply(null,arguments)};var _iswupper_l=Module["_iswupper_l"]=function(){return(_iswupper_l=Module["_iswupper_l"]=Module["asm"]["iswupper_l"]).apply(null,arguments)};var ___isalnum_l=Module["___isalnum_l"]=function(){return(___isalnum_l=Module["___isalnum_l"]=Module["asm"]["__isalnum_l"]).apply(null,arguments)};var _isalnum_l=Module["_isalnum_l"]=function(){return(_isalnum_l=Module["_isalnum_l"]=Module["asm"]["isalnum_l"]).apply(null,arguments)};var ___iswspace_l=Module["___iswspace_l"]=function(){return(___iswspace_l=Module["___iswspace_l"]=Module["asm"]["__iswspace_l"]).apply(null,arguments)};var _iswspace_l=Module["_iswspace_l"]=function(){return(_iswspace_l=Module["_iswspace_l"]=Module["asm"]["iswspace_l"]).apply(null,arguments)};var _ispunct=Module["_ispunct"]=function(){return(_ispunct=Module["_ispunct"]=Module["asm"]["ispunct"]).apply(null,arguments)};var ___ispunct_l=Module["___ispunct_l"]=function(){return(___ispunct_l=Module["___ispunct_l"]=Module["asm"]["__ispunct_l"]).apply(null,arguments)};var _ispunct_l=Module["_ispunct_l"]=function(){return(_ispunct_l=Module["_ispunct_l"]=Module["asm"]["ispunct_l"]).apply(null,arguments)};var ___ctype_tolower_loc=Module["___ctype_tolower_loc"]=function(){return(___ctype_tolower_loc=Module["___ctype_tolower_loc"]=Module["asm"]["__ctype_tolower_loc"]).apply(null,arguments)};var _fstatat64=Module["_fstatat64"]=function(){return(_fstatat64=Module["_fstatat64"]=Module["asm"]["fstatat64"]).apply(null,arguments)};var _fchmodat=Module["_fchmodat"]=function(){return(_fchmodat=Module["_fchmodat"]=Module["asm"]["fchmodat"]).apply(null,arguments)};var ___futimesat=Module["___futimesat"]=function(){return(___futimesat=Module["___futimesat"]=Module["asm"]["__futimesat"]).apply(null,arguments)};var _utimensat=Module["_utimensat"]=function(){return(_utimensat=Module["_utimensat"]=Module["asm"]["utimensat"]).apply(null,arguments)};var _lstat64=Module["_lstat64"]=function(){return(_lstat64=Module["_lstat64"]=Module["asm"]["lstat64"]).apply(null,arguments)};var ___fxstat=Module["___fxstat"]=function(){return(___fxstat=Module["___fxstat"]=Module["asm"]["__fxstat"]).apply(null,arguments)};var ___fxstatat=Module["___fxstatat"]=function(){return(___fxstatat=Module["___fxstatat"]=Module["asm"]["__fxstatat"]).apply(null,arguments)};var ___lxstat=Module["___lxstat"]=function(){return(___lxstat=Module["___lxstat"]=Module["asm"]["__lxstat"]).apply(null,arguments)};var ___xstat=Module["___xstat"]=function(){return(___xstat=Module["___xstat"]=Module["asm"]["__xstat"]).apply(null,arguments)};var ___xmknod=Module["___xmknod"]=function(){return(___xmknod=Module["___xmknod"]=Module["asm"]["__xmknod"]).apply(null,arguments)};var ___xmknodat=Module["___xmknodat"]=function(){return(___xmknodat=Module["___xmknodat"]=Module["asm"]["__xmknodat"]).apply(null,arguments)};var ___fxstat64=Module["___fxstat64"]=function(){return(___fxstat64=Module["___fxstat64"]=Module["asm"]["__fxstat64"]).apply(null,arguments)};var ___fxstatat64=Module["___fxstatat64"]=function(){return(___fxstatat64=Module["___fxstatat64"]=Module["asm"]["__fxstatat64"]).apply(null,arguments)};var ___lxstat64=Module["___lxstat64"]=function(){return(___lxstat64=Module["___lxstat64"]=Module["asm"]["__lxstat64"]).apply(null,arguments)};var ___xstat64=Module["___xstat64"]=function(){return(___xstat64=Module["___xstat64"]=Module["asm"]["__xstat64"]).apply(null,arguments)};var _mkdirat=Module["_mkdirat"]=function(){return(_mkdirat=Module["_mkdirat"]=Module["asm"]["mkdirat"]).apply(null,arguments)};var ___wasi_fd_is_valid=Module["___wasi_fd_is_valid"]=function(){return(___wasi_fd_is_valid=Module["___wasi_fd_is_valid"]=Module["asm"]["__wasi_fd_is_valid"]).apply(null,arguments)};var _fstat64=Module["_fstat64"]=function(){return(_fstat64=Module["_fstat64"]=Module["asm"]["fstat64"]).apply(null,arguments)};var _stat64=Module["_stat64"]=function(){return(_stat64=Module["_stat64"]=Module["asm"]["stat64"]).apply(null,arguments)};var ___statfs=Module["___statfs"]=function(){return(___statfs=Module["___statfs"]=Module["asm"]["__statfs"]).apply(null,arguments)};var ___fstatfs=Module["___fstatfs"]=function(){return(___fstatfs=Module["___fstatfs"]=Module["asm"]["__fstatfs"]).apply(null,arguments)};var _statfs=Module["_statfs"]=function(){return(_statfs=Module["_statfs"]=Module["asm"]["statfs"]).apply(null,arguments)};var _fstatfs=Module["_fstatfs"]=function(){return(_fstatfs=Module["_fstatfs"]=Module["asm"]["fstatfs"]).apply(null,arguments)};var _statvfs64=Module["_statvfs64"]=function(){return(_statvfs64=Module["_statvfs64"]=Module["asm"]["statvfs64"]).apply(null,arguments)};var _statfs64=Module["_statfs64"]=function(){return(_statfs64=Module["_statfs64"]=Module["asm"]["statfs64"]).apply(null,arguments)};var _fstatvfs64=Module["_fstatvfs64"]=function(){return(_fstatvfs64=Module["_fstatvfs64"]=Module["asm"]["fstatvfs64"]).apply(null,arguments)};var _fstatfs64=Module["_fstatfs64"]=function(){return(_fstatfs64=Module["_fstatfs64"]=Module["asm"]["fstatfs64"]).apply(null,arguments)};var _mktemp=Module["_mktemp"]=function(){return(_mktemp=Module["_mktemp"]=Module["asm"]["mktemp"]).apply(null,arguments)};var ___randname=Module["___randname"]=function(){return(___randname=Module["___randname"]=Module["asm"]["__randname"]).apply(null,arguments)};var _mkostemp=Module["_mkostemp"]=function(){return(_mkostemp=Module["_mkostemp"]=Module["asm"]["mkostemp"]).apply(null,arguments)};var ___mkostemps=Module["___mkostemps"]=function(){return(___mkostemps=Module["___mkostemps"]=Module["asm"]["__mkostemps"]).apply(null,arguments)};var _mkostemp64=Module["_mkostemp64"]=function(){return(_mkostemp64=Module["_mkostemp64"]=Module["asm"]["mkostemp64"]).apply(null,arguments)};var _mkdtemp=Module["_mkdtemp"]=function(){return(_mkdtemp=Module["_mkdtemp"]=Module["asm"]["mkdtemp"]).apply(null,arguments)};var _mkostemps=Module["_mkostemps"]=function(){return(_mkostemps=Module["_mkostemps"]=Module["asm"]["mkostemps"]).apply(null,arguments)};var _mkostemps64=Module["_mkostemps64"]=function(){return(_mkostemps64=Module["_mkostemps64"]=Module["asm"]["mkostemps64"]).apply(null,arguments)};var _mkstemp=Module["_mkstemp"]=function(){return(_mkstemp=Module["_mkstemp"]=Module["asm"]["mkstemp"]).apply(null,arguments)};var _mkstemp64=Module["_mkstemp64"]=function(){return(_mkstemp64=Module["_mkstemp64"]=Module["asm"]["mkstemp64"]).apply(null,arguments)};var _mkstemps=Module["_mkstemps"]=function(){return(_mkstemps=Module["_mkstemps"]=Module["asm"]["mkstemps"]).apply(null,arguments)};var _mkstemps64=Module["_mkstemps64"]=function(){return(_mkstemps64=Module["_mkstemps64"]=Module["asm"]["mkstemps64"]).apply(null,arguments)};var ___libc_get_version=Module["___libc_get_version"]=function(){return(___libc_get_version=Module["___libc_get_version"]=Module["asm"]["__libc_get_version"]).apply(null,arguments)};var ___intscan=Module["___intscan"]=function(){return(___intscan=Module["___intscan"]=Module["asm"]["__intscan"]).apply(null,arguments)};var ___shgetc=Module["___shgetc"]=function(){return(___shgetc=Module["___shgetc"]=Module["asm"]["__shgetc"]).apply(null,arguments)};var ___shlim=Module["___shlim"]=function(){return(___shlim=Module["___shlim"]=Module["asm"]["__shlim"]).apply(null,arguments)};var ___multi3=Module["___multi3"]=function(){return(___multi3=Module["___multi3"]=Module["asm"]["__multi3"]).apply(null,arguments)};var ___floatscan=Module["___floatscan"]=function(){return(___floatscan=Module["___floatscan"]=Module["asm"]["__floatscan"]).apply(null,arguments)};var _scalbn=Module["_scalbn"]=function(){return(_scalbn=Module["_scalbn"]=Module["asm"]["scalbn"]).apply(null,arguments)};var _copysignl=Module["_copysignl"]=function(){return(_copysignl=Module["_copysignl"]=Module["asm"]["copysignl"]).apply(null,arguments)};var ___netf2=Module["___netf2"]=function(){return(___netf2=Module["___netf2"]=Module["asm"]["__netf2"]).apply(null,arguments)};var ___floatunsitf=Module["___floatunsitf"]=function(){return(___floatunsitf=Module["___floatunsitf"]=Module["asm"]["__floatunsitf"]).apply(null,arguments)};var _scalbnl=Module["_scalbnl"]=function(){return(_scalbnl=Module["_scalbnl"]=Module["asm"]["scalbnl"]).apply(null,arguments)};var _fmodl=Module["_fmodl"]=function(){return(_fmodl=Module["_fmodl"]=Module["asm"]["fmodl"]).apply(null,arguments)};var _fabsl=Module["_fabsl"]=function(){return(_fabsl=Module["_fabsl"]=Module["asm"]["fabsl"]).apply(null,arguments)};var ___uflow=Module["___uflow"]=function(){return(___uflow=Module["___uflow"]=Module["asm"]["__uflow"]).apply(null,arguments)};var _pselect=Module["_pselect"]=function(){return(_pselect=Module["_pselect"]=Module["asm"]["pselect"]).apply(null,arguments)};var ___tre_mem_new_impl=Module["___tre_mem_new_impl"]=function(){return(___tre_mem_new_impl=Module["___tre_mem_new_impl"]=Module["asm"]["__tre_mem_new_impl"]).apply(null,arguments)};var ___tre_mem_destroy=Module["___tre_mem_destroy"]=function(){return(___tre_mem_destroy=Module["___tre_mem_destroy"]=Module["asm"]["__tre_mem_destroy"]).apply(null,arguments)};var ___tre_mem_alloc_impl=Module["___tre_mem_alloc_impl"]=function(){return(___tre_mem_alloc_impl=Module["___tre_mem_alloc_impl"]=Module["asm"]["__tre_mem_alloc_impl"]).apply(null,arguments)};var _regcomp=Module["_regcomp"]=function(){return(_regcomp=Module["_regcomp"]=Module["asm"]["regcomp"]).apply(null,arguments)};var _regfree=Module["_regfree"]=function(){return(_regfree=Module["_regfree"]=Module["asm"]["regfree"]).apply(null,arguments)};var _mbtowc=Module["_mbtowc"]=function(){return(_mbtowc=Module["_mbtowc"]=Module["asm"]["mbtowc"]).apply(null,arguments)};var _glob=Module["_glob"]=function(){return(_glob=Module["_glob"]=Module["asm"]["glob"]).apply(null,arguments)};var _readdir_r=Module["_readdir_r"]=function(){return(_readdir_r=Module["_readdir_r"]=Module["asm"]["readdir_r"]).apply(null,arguments)};var _fnmatch=Module["_fnmatch"]=function(){return(_fnmatch=Module["_fnmatch"]=Module["asm"]["fnmatch"]).apply(null,arguments)};var _globfree=Module["_globfree"]=function(){return(_globfree=Module["_globfree"]=Module["asm"]["globfree"]).apply(null,arguments)};var _glob64=Module["_glob64"]=function(){return(_glob64=Module["_glob64"]=Module["asm"]["glob64"]).apply(null,arguments)};var _globfree64=Module["_globfree64"]=function(){return(_globfree64=Module["_globfree64"]=Module["asm"]["globfree64"]).apply(null,arguments)};var _regexec=Module["_regexec"]=function(){return(_regexec=Module["_regexec"]=Module["asm"]["regexec"]).apply(null,arguments)};var _regerror=Module["_regerror"]=function(){return(_regerror=Module["_regerror"]=Module["asm"]["regerror"]).apply(null,arguments)};var ___lctrans_cur=Module["___lctrans_cur"]=function(){return(___lctrans_cur=Module["___lctrans_cur"]=Module["asm"]["__lctrans_cur"]).apply(null,arguments)};var ___getdents=Module["___getdents"]=function(){return(___getdents=Module["___getdents"]=Module["asm"]["__getdents"]).apply(null,arguments)};var _getdents=Module["_getdents"]=function(){return(_getdents=Module["_getdents"]=Module["asm"]["getdents"]).apply(null,arguments)};var _getdents64=Module["_getdents64"]=function(){return(_getdents64=Module["_getdents64"]=Module["asm"]["getdents64"]).apply(null,arguments)};var _alphasort=Module["_alphasort"]=function(){return(_alphasort=Module["_alphasort"]=Module["asm"]["alphasort"]).apply(null,arguments)};var _strcoll=Module["_strcoll"]=function(){return(_strcoll=Module["_strcoll"]=Module["asm"]["strcoll"]).apply(null,arguments)};var _alphasort64=Module["_alphasort64"]=function(){return(_alphasort64=Module["_alphasort64"]=Module["asm"]["alphasort64"]).apply(null,arguments)};var ___lock=Module["___lock"]=function(){return(___lock=Module["___lock"]=Module["asm"]["__lock"]).apply(null,arguments)};var ___unlock=Module["___unlock"]=function(){return(___unlock=Module["___unlock"]=Module["asm"]["__unlock"]).apply(null,arguments)};var _readdir64_r=Module["_readdir64_r"]=function(){return(_readdir64_r=Module["_readdir64_r"]=Module["asm"]["readdir64_r"]).apply(null,arguments)};var _scandir=Module["_scandir"]=function(){return(_scandir=Module["_scandir"]=Module["asm"]["scandir"]).apply(null,arguments)};var _scandir64=Module["_scandir64"]=function(){return(_scandir64=Module["_scandir64"]=Module["asm"]["scandir64"]).apply(null,arguments)};var _versionsort=Module["_versionsort"]=function(){return(_versionsort=Module["_versionsort"]=Module["asm"]["versionsort"]).apply(null,arguments)};var _strverscmp=Module["_strverscmp"]=function(){return(_strverscmp=Module["_strverscmp"]=Module["asm"]["strverscmp"]).apply(null,arguments)};var _versionsort64=Module["_versionsort64"]=function(){return(_versionsort64=Module["_versionsort64"]=Module["asm"]["versionsort64"]).apply(null,arguments)};var _readdir64=Module["_readdir64"]=function(){return(_readdir64=Module["_readdir64"]=Module["asm"]["readdir64"]).apply(null,arguments)};var _telldir=Module["_telldir"]=function(){return(_telldir=Module["_telldir"]=Module["asm"]["telldir"]).apply(null,arguments)};var _seekdir=Module["_seekdir"]=function(){return(_seekdir=Module["_seekdir"]=Module["asm"]["seekdir"]).apply(null,arguments)};var _login_tty=Module["_login_tty"]=function(){return(_login_tty=Module["_login_tty"]=Module["asm"]["login_tty"]).apply(null,arguments)};var _ffs=Module["_ffs"]=function(){return(_ffs=Module["_ffs"]=Module["asm"]["ffs"]).apply(null,arguments)};var _getdomainname=Module["_getdomainname"]=function(){return(_getdomainname=Module["_getdomainname"]=Module["asm"]["getdomainname"]).apply(null,arguments)};var _setlogmask=Module["_setlogmask"]=function(){return(_setlogmask=Module["_setlogmask"]=Module["asm"]["setlogmask"]).apply(null,arguments)};var _closelog=Module["_closelog"]=function(){return(_closelog=Module["_closelog"]=Module["asm"]["closelog"]).apply(null,arguments)};var _pthread_setcancelstate=Module["_pthread_setcancelstate"]=function(){return(_pthread_setcancelstate=Module["_pthread_setcancelstate"]=Module["asm"]["pthread_setcancelstate"]).apply(null,arguments)};var _openlog=Module["_openlog"]=function(){return(_openlog=Module["_openlog"]=Module["asm"]["openlog"]).apply(null,arguments)};var ___vsyslog=Module["___vsyslog"]=function(){return(___vsyslog=Module["___vsyslog"]=Module["asm"]["__vsyslog"]).apply(null,arguments)};var _dprintf=Module["_dprintf"]=function(){return(_dprintf=Module["_dprintf"]=Module["asm"]["dprintf"]).apply(null,arguments)};var _syslog=Module["_syslog"]=function(){return(_syslog=Module["_syslog"]=Module["asm"]["syslog"]).apply(null,arguments)};var _vsyslog=Module["_vsyslog"]=function(){return(_vsyslog=Module["_vsyslog"]=Module["asm"]["vsyslog"]).apply(null,arguments)};var _ffsll=Module["_ffsll"]=function(){return(_ffsll=Module["_ffsll"]=Module["asm"]["ffsll"]).apply(null,arguments)};var _getopt_long=Module["_getopt_long"]=function(){return(_getopt_long=Module["_getopt_long"]=Module["asm"]["getopt_long"]).apply(null,arguments)};var _getopt_long_only=Module["_getopt_long_only"]=function(){return(_getopt_long_only=Module["_getopt_long_only"]=Module["asm"]["getopt_long_only"]).apply(null,arguments)};var ___getopt_msg=Module["___getopt_msg"]=function(){return(___getopt_msg=Module["___getopt_msg"]=Module["asm"]["__getopt_msg"]).apply(null,arguments)};var _getopt=Module["_getopt"]=function(){return(_getopt=Module["_getopt"]=Module["asm"]["getopt"]).apply(null,arguments)};var _lockf64=Module["_lockf64"]=function(){return(_lockf64=Module["_lockf64"]=Module["asm"]["lockf64"]).apply(null,arguments)};var _basename=Module["_basename"]=function(){return(_basename=Module["_basename"]=Module["asm"]["basename"]).apply(null,arguments)};var ___xpg_basename=Module["___xpg_basename"]=function(){return(___xpg_basename=Module["___xpg_basename"]=Module["asm"]["__xpg_basename"]).apply(null,arguments)};var _getrlimit64=Module["_getrlimit64"]=function(){return(_getrlimit64=Module["_getrlimit64"]=Module["asm"]["getrlimit64"]).apply(null,arguments)};var _setmntent=Module["_setmntent"]=function(){return(_setmntent=Module["_setmntent"]=Module["asm"]["setmntent"]).apply(null,arguments)};var _endmntent=Module["_endmntent"]=function(){return(_endmntent=Module["_endmntent"]=Module["asm"]["endmntent"]).apply(null,arguments)};var _getmntent_r=Module["_getmntent_r"]=function(){return(_getmntent_r=Module["_getmntent_r"]=Module["asm"]["getmntent_r"]).apply(null,arguments)};var _fscanf=Module["_fscanf"]=function(){return(_fscanf=Module["_fscanf"]=Module["asm"]["fscanf"]).apply(null,arguments)};var _sscanf=Module["_sscanf"]=function(){return(_sscanf=Module["_sscanf"]=Module["asm"]["sscanf"]).apply(null,arguments)};var _getmntent=Module["_getmntent"]=function(){return(_getmntent=Module["_getmntent"]=Module["asm"]["getmntent"]).apply(null,arguments)};var _addmntent=Module["_addmntent"]=function(){return(_addmntent=Module["_addmntent"]=Module["asm"]["addmntent"]).apply(null,arguments)};var _fprintf=Module["_fprintf"]=function(){return(_fprintf=Module["_fprintf"]=Module["asm"]["fprintf"]).apply(null,arguments)};var _hasmntopt=Module["_hasmntopt"]=function(){return(_hasmntopt=Module["_hasmntopt"]=Module["asm"]["hasmntopt"]).apply(null,arguments)};var _dirname=Module["_dirname"]=function(){return(_dirname=Module["_dirname"]=Module["asm"]["dirname"]).apply(null,arguments)};var _nftw=Module["_nftw"]=function(){return(_nftw=Module["_nftw"]=Module["asm"]["nftw"]).apply(null,arguments)};var _nftw64=Module["_nftw64"]=function(){return(_nftw64=Module["_nftw64"]=Module["asm"]["nftw64"]).apply(null,arguments)};var _fmtmsg=Module["_fmtmsg"]=function(){return(_fmtmsg=Module["_fmtmsg"]=Module["asm"]["fmtmsg"]).apply(null,arguments)};var _pipe2=Module["_pipe2"]=function(){return(_pipe2=Module["_pipe2"]=Module["asm"]["pipe2"]).apply(null,arguments)};var _putc=Module["_putc"]=function(){return(_putc=Module["_putc"]=Module["asm"]["putc"]).apply(null,arguments)};var ___posix_getopt=Module["___posix_getopt"]=function(){return(___posix_getopt=Module["___posix_getopt"]=Module["asm"]["__posix_getopt"]).apply(null,arguments)};var _getauxval=Module["_getauxval"]=function(){return(_getauxval=Module["_getauxval"]=Module["asm"]["getauxval"]).apply(null,arguments)};var _posix_openpt=Module["_posix_openpt"]=function(){return(_posix_openpt=Module["_posix_openpt"]=Module["asm"]["posix_openpt"]).apply(null,arguments)};var _grantpt=Module["_grantpt"]=function(){return(_grantpt=Module["_grantpt"]=Module["asm"]["grantpt"]).apply(null,arguments)};var _unlockpt=Module["_unlockpt"]=function(){return(_unlockpt=Module["_unlockpt"]=Module["asm"]["unlockpt"]).apply(null,arguments)};var ___ptsname_r=Module["___ptsname_r"]=function(){return(___ptsname_r=Module["___ptsname_r"]=Module["asm"]["__ptsname_r"]).apply(null,arguments)};var _ptsname_r=Module["_ptsname_r"]=function(){return(_ptsname_r=Module["_ptsname_r"]=Module["asm"]["ptsname_r"]).apply(null,arguments)};var _gethostid=Module["_gethostid"]=function(){return(_gethostid=Module["_gethostid"]=Module["asm"]["gethostid"]).apply(null,arguments)};var _strdup=Module["_strdup"]=function(){return(_strdup=Module["_strdup"]=Module["asm"]["strdup"]).apply(null,arguments)};var _getsubopt=Module["_getsubopt"]=function(){return(_getsubopt=Module["_getsubopt"]=Module["asm"]["getsubopt"]).apply(null,arguments)};var _ffsl=Module["_ffsl"]=function(){return(_ffsl=Module["_ffsl"]=Module["asm"]["ffsl"]).apply(null,arguments)};var ___setrlimit=Module["___setrlimit"]=function(){return(___setrlimit=Module["___setrlimit"]=Module["asm"]["__setrlimit"]).apply(null,arguments)};var ___synccall=Module["___synccall"]=function(){return(___synccall=Module["___synccall"]=Module["asm"]["__synccall"]).apply(null,arguments)};var _setrlimit64=Module["_setrlimit64"]=function(){return(_setrlimit64=Module["_setrlimit64"]=Module["asm"]["setrlimit64"]).apply(null,arguments)};var _get_current_dir_name=Module["_get_current_dir_name"]=function(){return(_get_current_dir_name=Module["_get_current_dir_name"]=Module["asm"]["get_current_dir_name"]).apply(null,arguments)};var _issetugid=Module["_issetugid"]=function(){return(_issetugid=Module["_issetugid"]=Module["asm"]["issetugid"]).apply(null,arguments)};var _ptsname=Module["_ptsname"]=function(){return(_ptsname=Module["_ptsname"]=Module["asm"]["ptsname"]).apply(null,arguments)};var _setdomainname=Module["_setdomainname"]=function(){return(_setdomainname=Module["_setdomainname"]=Module["asm"]["setdomainname"]).apply(null,arguments)};var _a64l=Module["_a64l"]=function(){return(_a64l=Module["_a64l"]=Module["asm"]["a64l"]).apply(null,arguments)};var _l64a=Module["_l64a"]=function(){return(_l64a=Module["_l64a"]=Module["asm"]["l64a"]).apply(null,arguments)};var _sendmmsg=Module["_sendmmsg"]=function(){return(_sendmmsg=Module["_sendmmsg"]=Module["asm"]["sendmmsg"]).apply(null,arguments)};var ___dn_comp=Module["___dn_comp"]=function(){return(___dn_comp=Module["___dn_comp"]=Module["asm"]["__dn_comp"]).apply(null,arguments)};var _dn_comp=Module["_dn_comp"]=function(){return(_dn_comp=Module["_dn_comp"]=Module["asm"]["dn_comp"]).apply(null,arguments)};var _getnetbyaddr=Module["_getnetbyaddr"]=function(){return(_getnetbyaddr=Module["_getnetbyaddr"]=Module["asm"]["getnetbyaddr"]).apply(null,arguments)};var _getnetbyname=Module["_getnetbyname"]=function(){return(_getnetbyname=Module["_getnetbyname"]=Module["asm"]["getnetbyname"]).apply(null,arguments)};var ___res_send=Module["___res_send"]=function(){return(___res_send=Module["___res_send"]=Module["asm"]["__res_send"]).apply(null,arguments)};var ___res_msend=Module["___res_msend"]=function(){return(___res_msend=Module["___res_msend"]=Module["asm"]["__res_msend"]).apply(null,arguments)};var _res_send=Module["_res_send"]=function(){return(_res_send=Module["_res_send"]=Module["asm"]["res_send"]).apply(null,arguments)};var ___inet_aton=Module["___inet_aton"]=function(){return(___inet_aton=Module["___inet_aton"]=Module["asm"]["__inet_aton"]).apply(null,arguments)};var _getservbyport_r=Module["_getservbyport_r"]=function(){return(_getservbyport_r=Module["_getservbyport_r"]=Module["asm"]["getservbyport_r"]).apply(null,arguments)};var ___get_resolv_conf=Module["___get_resolv_conf"]=function(){return(___get_resolv_conf=Module["___get_resolv_conf"]=Module["asm"]["__get_resolv_conf"]).apply(null,arguments)};var ___fopen_rb_ca=Module["___fopen_rb_ca"]=function(){return(___fopen_rb_ca=Module["___fopen_rb_ca"]=Module["asm"]["__fopen_rb_ca"]).apply(null,arguments)};var ___fclose_ca=Module["___fclose_ca"]=function(){return(___fclose_ca=Module["___fclose_ca"]=Module["asm"]["__fclose_ca"]).apply(null,arguments)};var ___lookup_ipliteral=Module["___lookup_ipliteral"]=function(){return(___lookup_ipliteral=Module["___lookup_ipliteral"]=Module["asm"]["__lookup_ipliteral"]).apply(null,arguments)};var ___res_msend_rc=Module["___res_msend_rc"]=function(){return(___res_msend_rc=Module["___res_msend_rc"]=Module["asm"]["__res_msend_rc"]).apply(null,arguments)};var _res_init=Module["_res_init"]=function(){return(_res_init=Module["_res_init"]=Module["asm"]["res_init"]).apply(null,arguments)};var _inet_addr=Module["_inet_addr"]=function(){return(_inet_addr=Module["_inet_addr"]=Module["asm"]["inet_addr"]).apply(null,arguments)};var _sockatmark=Module["_sockatmark"]=function(){return(_sockatmark=Module["_sockatmark"]=Module["asm"]["sockatmark"]).apply(null,arguments)};var _ether_aton_r=Module["_ether_aton_r"]=function(){return(_ether_aton_r=Module["_ether_aton_r"]=Module["asm"]["ether_aton_r"]).apply(null,arguments)};var _ether_aton=Module["_ether_aton"]=function(){return(_ether_aton=Module["_ether_aton"]=Module["asm"]["ether_aton"]).apply(null,arguments)};var _ether_ntoa_r=Module["_ether_ntoa_r"]=function(){return(_ether_ntoa_r=Module["_ether_ntoa_r"]=Module["asm"]["ether_ntoa_r"]).apply(null,arguments)};var _sprintf=Module["_sprintf"]=function(){return(_sprintf=Module["_sprintf"]=Module["asm"]["sprintf"]).apply(null,arguments)};var _ether_ntoa=Module["_ether_ntoa"]=function(){return(_ether_ntoa=Module["_ether_ntoa"]=Module["asm"]["ether_ntoa"]).apply(null,arguments)};var _ether_line=Module["_ether_line"]=function(){return(_ether_line=Module["_ether_line"]=Module["asm"]["ether_line"]).apply(null,arguments)};var _ether_ntohost=Module["_ether_ntohost"]=function(){return(_ether_ntohost=Module["_ether_ntohost"]=Module["asm"]["ether_ntohost"]).apply(null,arguments)};var _ether_hostton=Module["_ether_hostton"]=function(){return(_ether_hostton=Module["_ether_hostton"]=Module["asm"]["ether_hostton"]).apply(null,arguments)};var _strtoull=Module["_strtoull"]=function(){return(_strtoull=Module["_strtoull"]=Module["asm"]["strtoull"]).apply(null,arguments)};var _if_nametoindex=Module["_if_nametoindex"]=function(){return(_if_nametoindex=Module["_if_nametoindex"]=Module["asm"]["if_nametoindex"]).apply(null,arguments)};var _dn_skipname=Module["_dn_skipname"]=function(){return(_dn_skipname=Module["_dn_skipname"]=Module["asm"]["dn_skipname"]).apply(null,arguments)};var _inet_network=Module["_inet_network"]=function(){return(_inet_network=Module["_inet_network"]=Module["asm"]["inet_network"]).apply(null,arguments)};var _inet_makeaddr=Module["_inet_makeaddr"]=function(){return(_inet_makeaddr=Module["_inet_makeaddr"]=Module["asm"]["inet_makeaddr"]).apply(null,arguments)};var _inet_lnaof=Module["_inet_lnaof"]=function(){return(_inet_lnaof=Module["_inet_lnaof"]=Module["asm"]["inet_lnaof"]).apply(null,arguments)};var _inet_netof=Module["_inet_netof"]=function(){return(_inet_netof=Module["_inet_netof"]=Module["asm"]["inet_netof"]).apply(null,arguments)};var ___res_mkquery=Module["___res_mkquery"]=function(){return(___res_mkquery=Module["___res_mkquery"]=Module["asm"]["__res_mkquery"]).apply(null,arguments)};var _res_mkquery=Module["_res_mkquery"]=function(){return(_res_mkquery=Module["_res_mkquery"]=Module["asm"]["res_mkquery"]).apply(null,arguments)};var _getservbyname_r=Module["_getservbyname_r"]=function(){return(_getservbyname_r=Module["_getservbyname_r"]=Module["asm"]["getservbyname_r"]).apply(null,arguments)};var _recvmmsg=Module["_recvmmsg"]=function(){return(_recvmmsg=Module["_recvmmsg"]=Module["asm"]["recvmmsg"]).apply(null,arguments)};var _endservent=Module["_endservent"]=function(){return(_endservent=Module["_endservent"]=Module["asm"]["endservent"]).apply(null,arguments)};var _setservent=Module["_setservent"]=function(){return(_setservent=Module["_setservent"]=Module["asm"]["setservent"]).apply(null,arguments)};var _getservent=Module["_getservent"]=function(){return(_getservent=Module["_getservent"]=Module["asm"]["getservent"]).apply(null,arguments)};var _herror=Module["_herror"]=function(){return(_herror=Module["_herror"]=Module["asm"]["herror"]).apply(null,arguments)};var _sethostent=Module["_sethostent"]=function(){return(_sethostent=Module["_sethostent"]=Module["asm"]["sethostent"]).apply(null,arguments)};var _gethostent=Module["_gethostent"]=function(){return(_gethostent=Module["_gethostent"]=Module["asm"]["gethostent"]).apply(null,arguments)};var _endhostent=Module["_endhostent"]=function(){return(_endhostent=Module["_endhostent"]=Module["asm"]["endhostent"]).apply(null,arguments)};var _setnetent=Module["_setnetent"]=function(){return(_setnetent=Module["_setnetent"]=Module["asm"]["setnetent"]).apply(null,arguments)};var _getnetent=Module["_getnetent"]=function(){return(_getnetent=Module["_getnetent"]=Module["asm"]["getnetent"]).apply(null,arguments)};var _endnetent=Module["_endnetent"]=function(){return(_endnetent=Module["_endnetent"]=Module["asm"]["endnetent"]).apply(null,arguments)};var ___res_state=Module["___res_state"]=function(){return(___res_state=Module["___res_state"]=Module["asm"]["__res_state"]).apply(null,arguments)};var _ns_get16=Module["_ns_get16"]=function(){return(_ns_get16=Module["_ns_get16"]=Module["asm"]["ns_get16"]).apply(null,arguments)};var _ns_get32=Module["_ns_get32"]=function(){return(_ns_get32=Module["_ns_get32"]=Module["asm"]["ns_get32"]).apply(null,arguments)};var _ns_put16=Module["_ns_put16"]=function(){return(_ns_put16=Module["_ns_put16"]=Module["asm"]["ns_put16"]).apply(null,arguments)};var _ns_put32=Module["_ns_put32"]=function(){return(_ns_put32=Module["_ns_put32"]=Module["asm"]["ns_put32"]).apply(null,arguments)};var _ns_skiprr=Module["_ns_skiprr"]=function(){return(_ns_skiprr=Module["_ns_skiprr"]=Module["asm"]["ns_skiprr"]).apply(null,arguments)};var _ns_initparse=Module["_ns_initparse"]=function(){return(_ns_initparse=Module["_ns_initparse"]=Module["asm"]["ns_initparse"]).apply(null,arguments)};var _ns_name_uncompress=Module["_ns_name_uncompress"]=function(){return(_ns_name_uncompress=Module["_ns_name_uncompress"]=Module["asm"]["ns_name_uncompress"]).apply(null,arguments)};var _dn_expand=Module["_dn_expand"]=function(){return(_dn_expand=Module["_dn_expand"]=Module["asm"]["dn_expand"]).apply(null,arguments)};var _ns_parserr=Module["_ns_parserr"]=function(){return(_ns_parserr=Module["_ns_parserr"]=Module["asm"]["ns_parserr"]).apply(null,arguments)};var _if_nameindex=Module["_if_nameindex"]=function(){return(_if_nameindex=Module["_if_nameindex"]=Module["asm"]["if_nameindex"]).apply(null,arguments)};var ___rtnetlink_enumerate=Module["___rtnetlink_enumerate"]=function(){return(___rtnetlink_enumerate=Module["___rtnetlink_enumerate"]=Module["asm"]["__rtnetlink_enumerate"]).apply(null,arguments)};var _freeifaddrs=Module["_freeifaddrs"]=function(){return(_freeifaddrs=Module["_freeifaddrs"]=Module["asm"]["freeifaddrs"]).apply(null,arguments)};var _getifaddrs=Module["_getifaddrs"]=function(){return(_getifaddrs=Module["_getifaddrs"]=Module["asm"]["getifaddrs"]).apply(null,arguments)};var _if_indextoname=Module["_if_indextoname"]=function(){return(_if_indextoname=Module["_if_indextoname"]=Module["asm"]["if_indextoname"]).apply(null,arguments)};var _if_freenameindex=Module["_if_freenameindex"]=function(){return(_if_freenameindex=Module["_if_freenameindex"]=Module["asm"]["if_freenameindex"]).apply(null,arguments)};var ___dn_expand=Module["___dn_expand"]=function(){return(___dn_expand=Module["___dn_expand"]=Module["asm"]["__dn_expand"]).apply(null,arguments)};var ___lookup_serv=Module["___lookup_serv"]=function(){return(___lookup_serv=Module["___lookup_serv"]=Module["asm"]["__lookup_serv"]).apply(null,arguments)};var ___dns_parse=Module["___dns_parse"]=function(){return(___dns_parse=Module["___dns_parse"]=Module["asm"]["__dns_parse"]).apply(null,arguments)};var ___lookup_name=Module["___lookup_name"]=function(){return(___lookup_name=Module["___lookup_name"]=Module["asm"]["__lookup_name"]).apply(null,arguments)};var _strspn=Module["_strspn"]=function(){return(_strspn=Module["_strspn"]=Module["asm"]["strspn"]).apply(null,arguments)};var ___crypt_sha256=Module["___crypt_sha256"]=function(){return(___crypt_sha256=Module["___crypt_sha256"]=Module["asm"]["__crypt_sha256"]).apply(null,arguments)};var _crypt=Module["_crypt"]=function(){return(_crypt=Module["_crypt"]=Module["asm"]["crypt"]).apply(null,arguments)};var ___crypt_r=Module["___crypt_r"]=function(){return(___crypt_r=Module["___crypt_r"]=Module["asm"]["__crypt_r"]).apply(null,arguments)};var ___crypt_md5=Module["___crypt_md5"]=function(){return(___crypt_md5=Module["___crypt_md5"]=Module["asm"]["__crypt_md5"]).apply(null,arguments)};var ___crypt_blowfish=Module["___crypt_blowfish"]=function(){return(___crypt_blowfish=Module["___crypt_blowfish"]=Module["asm"]["__crypt_blowfish"]).apply(null,arguments)};var ___crypt_sha512=Module["___crypt_sha512"]=function(){return(___crypt_sha512=Module["___crypt_sha512"]=Module["asm"]["__crypt_sha512"]).apply(null,arguments)};var ___crypt_des=Module["___crypt_des"]=function(){return(___crypt_des=Module["___crypt_des"]=Module["asm"]["__crypt_des"]).apply(null,arguments)};var _setkey=Module["_setkey"]=function(){return(_setkey=Module["_setkey"]=Module["asm"]["setkey"]).apply(null,arguments)};var ___des_setkey=Module["___des_setkey"]=function(){return(___des_setkey=Module["___des_setkey"]=Module["asm"]["__des_setkey"]).apply(null,arguments)};var _encrypt=Module["_encrypt"]=function(){return(_encrypt=Module["_encrypt"]=Module["asm"]["encrypt"]).apply(null,arguments)};var ___do_des=Module["___do_des"]=function(){return(___do_des=Module["___do_des"]=Module["asm"]["__do_des"]).apply(null,arguments)};var _wcrtomb=Module["_wcrtomb"]=function(){return(_wcrtomb=Module["_wcrtomb"]=Module["asm"]["wcrtomb"]).apply(null,arguments)};var _wcsrtombs=Module["_wcsrtombs"]=function(){return(_wcsrtombs=Module["_wcsrtombs"]=Module["asm"]["wcsrtombs"]).apply(null,arguments)};var _mbsrtowcs=Module["_mbsrtowcs"]=function(){return(_mbsrtowcs=Module["_mbsrtowcs"]=Module["asm"]["mbsrtowcs"]).apply(null,arguments)};var _mbsinit=Module["_mbsinit"]=function(){return(_mbsinit=Module["_mbsinit"]=Module["asm"]["mbsinit"]).apply(null,arguments)};var _wctomb=Module["_wctomb"]=function(){return(_wctomb=Module["_wctomb"]=Module["asm"]["wctomb"]).apply(null,arguments)};var _wctob=Module["_wctob"]=function(){return(_wctob=Module["_wctob"]=Module["asm"]["wctob"]).apply(null,arguments)};var _mbrtoc16=Module["_mbrtoc16"]=function(){return(_mbrtoc16=Module["_mbrtoc16"]=Module["asm"]["mbrtoc16"]).apply(null,arguments)};var _mblen=Module["_mblen"]=function(){return(_mblen=Module["_mblen"]=Module["asm"]["mblen"]).apply(null,arguments)};var _mbrlen=Module["_mbrlen"]=function(){return(_mbrlen=Module["_mbrlen"]=Module["asm"]["mbrlen"]).apply(null,arguments)};var _mbsnrtowcs=Module["_mbsnrtowcs"]=function(){return(_mbsnrtowcs=Module["_mbsnrtowcs"]=Module["asm"]["mbsnrtowcs"]).apply(null,arguments)};var _mbrtoc32=Module["_mbrtoc32"]=function(){return(_mbrtoc32=Module["_mbrtoc32"]=Module["asm"]["mbrtoc32"]).apply(null,arguments)};var _btowc=Module["_btowc"]=function(){return(_btowc=Module["_btowc"]=Module["asm"]["btowc"]).apply(null,arguments)};var _c16rtomb=Module["_c16rtomb"]=function(){return(_c16rtomb=Module["_c16rtomb"]=Module["asm"]["c16rtomb"]).apply(null,arguments)};var _wcsnrtombs=Module["_wcsnrtombs"]=function(){return(_wcsnrtombs=Module["_wcsnrtombs"]=Module["asm"]["wcsnrtombs"]).apply(null,arguments)};var _c32rtomb=Module["_c32rtomb"]=function(){return(_c32rtomb=Module["_c32rtomb"]=Module["asm"]["c32rtomb"]).apply(null,arguments)};var ___strerror_l=Module["___strerror_l"]=function(){return(___strerror_l=Module["___strerror_l"]=Module["asm"]["__strerror_l"]).apply(null,arguments)};var ___lctrans=Module["___lctrans"]=function(){return(___lctrans=Module["___lctrans"]=Module["asm"]["__lctrans"]).apply(null,arguments)};var _strerror_l=Module["_strerror_l"]=function(){return(_strerror_l=Module["_strerror_l"]=Module["asm"]["strerror_l"]).apply(null,arguments)};var ___wasi_syscall_ret=Module["___wasi_syscall_ret"]=function(){return(___wasi_syscall_ret=Module["___wasi_syscall_ret"]=Module["asm"]["__wasi_syscall_ret"]).apply(null,arguments)};var _pwrite64=Module["_pwrite64"]=function(){return(_pwrite64=Module["_pwrite64"]=Module["asm"]["pwrite64"]).apply(null,arguments)};var ___setxid=Module["___setxid"]=function(){return(___setxid=Module["___setxid"]=Module["asm"]["__setxid"]).apply(null,arguments)};var _renameat=Module["_renameat"]=function(){return(_renameat=Module["_renameat"]=Module["asm"]["renameat"]).apply(null,arguments)};var _pwritev=Module["_pwritev"]=function(){return(_pwritev=Module["_pwritev"]=Module["asm"]["pwritev"]).apply(null,arguments)};var _pwritev64=Module["_pwritev64"]=function(){return(_pwritev64=Module["_pwritev64"]=Module["asm"]["pwritev64"]).apply(null,arguments)};var _readlinkat=Module["_readlinkat"]=function(){return(_readlinkat=Module["_readlinkat"]=Module["asm"]["readlinkat"]).apply(null,arguments)};var _truncate64=Module["_truncate64"]=function(){return(_truncate64=Module["_truncate64"]=Module["asm"]["truncate64"]).apply(null,arguments)};var _sleep=Module["_sleep"]=function(){return(_sleep=Module["_sleep"]=Module["asm"]["sleep"]).apply(null,arguments)};var _nanosleep=Module["_nanosleep"]=function(){return(_nanosleep=Module["_nanosleep"]=Module["asm"]["nanosleep"]).apply(null,arguments)};var _pread64=Module["_pread64"]=function(){return(_pread64=Module["_pread64"]=Module["asm"]["pread64"]).apply(null,arguments)};var _ualarm=Module["_ualarm"]=function(){return(_ualarm=Module["_ualarm"]=Module["asm"]["ualarm"]).apply(null,arguments)};var ___dup3=Module["___dup3"]=function(){return(___dup3=Module["___dup3"]=Module["asm"]["__dup3"]).apply(null,arguments)};var _dup3=Module["_dup3"]=function(){return(_dup3=Module["_dup3"]=Module["asm"]["dup3"]).apply(null,arguments)};var _ttyname=Module["_ttyname"]=function(){return(_ttyname=Module["_ttyname"]=Module["asm"]["ttyname"]).apply(null,arguments)};var _linkat=Module["_linkat"]=function(){return(_linkat=Module["_linkat"]=Module["asm"]["linkat"]).apply(null,arguments)};var _getlogin_r=Module["_getlogin_r"]=function(){return(_getlogin_r=Module["_getlogin_r"]=Module["asm"]["getlogin_r"]).apply(null,arguments)};var _posix_close=Module["_posix_close"]=function(){return(_posix_close=Module["_posix_close"]=Module["asm"]["posix_close"]).apply(null,arguments)};var _symlinkat=Module["_symlinkat"]=function(){return(_symlinkat=Module["_symlinkat"]=Module["asm"]["symlinkat"]).apply(null,arguments)};var _nice=Module["_nice"]=function(){return(_nice=Module["_nice"]=Module["asm"]["nice"]).apply(null,arguments)};var ___aio_close=Module["___aio_close"]=function(){return(___aio_close=Module["___aio_close"]=Module["asm"]["__aio_close"]).apply(null,arguments)};var _preadv=Module["_preadv"]=function(){return(_preadv=Module["_preadv"]=Module["asm"]["preadv"]).apply(null,arguments)};var _preadv64=Module["_preadv64"]=function(){return(_preadv64=Module["_preadv64"]=Module["asm"]["preadv64"]).apply(null,arguments)};var _lseek64=Module["_lseek64"]=function(){return(_lseek64=Module["_lseek64"]=Module["asm"]["lseek64"]).apply(null,arguments)};var _acct=Module["_acct"]=function(){return(_acct=Module["_acct"]=Module["asm"]["acct"]).apply(null,arguments)};var _ftruncate64=Module["_ftruncate64"]=function(){return(_ftruncate64=Module["_ftruncate64"]=Module["asm"]["ftruncate64"]).apply(null,arguments)};var _fchownat=Module["_fchownat"]=function(){return(_fchownat=Module["_fchownat"]=Module["asm"]["fchownat"]).apply(null,arguments)};var _wcsncasecmp=Module["_wcsncasecmp"]=function(){return(_wcsncasecmp=Module["_wcsncasecmp"]=Module["asm"]["wcsncasecmp"]).apply(null,arguments)};var _strlcpy=Module["_strlcpy"]=function(){return(_strlcpy=Module["_strlcpy"]=Module["asm"]["strlcpy"]).apply(null,arguments)};var _wcsstr=Module["_wcsstr"]=function(){return(_wcsstr=Module["_wcsstr"]=Module["asm"]["wcsstr"]).apply(null,arguments)};var _wmemchr=Module["_wmemchr"]=function(){return(_wmemchr=Module["_wmemchr"]=Module["asm"]["wmemchr"]).apply(null,arguments)};var _index=Module["_index"]=function(){return(_index=Module["_index"]=Module["asm"]["index"]).apply(null,arguments)};var _wcswcs=Module["_wcswcs"]=function(){return(_wcswcs=Module["_wcswcs"]=Module["asm"]["wcswcs"]).apply(null,arguments)};var ___memrchr=Module["___memrchr"]=function(){return(___memrchr=Module["___memrchr"]=Module["asm"]["__memrchr"]).apply(null,arguments)};var ___strchrnul=Module["___strchrnul"]=function(){return(___strchrnul=Module["___strchrnul"]=Module["asm"]["__strchrnul"]).apply(null,arguments)};var _strchrnul=Module["_strchrnul"]=function(){return(_strchrnul=Module["_strchrnul"]=Module["asm"]["strchrnul"]).apply(null,arguments)};var _strpbrk=Module["_strpbrk"]=function(){return(_strpbrk=Module["_strpbrk"]=Module["asm"]["strpbrk"]).apply(null,arguments)};var _wcsdup=Module["_wcsdup"]=function(){return(_wcsdup=Module["_wcsdup"]=Module["asm"]["wcsdup"]).apply(null,arguments)};var _wmemcpy=Module["_wmemcpy"]=function(){return(_wmemcpy=Module["_wmemcpy"]=Module["asm"]["wmemcpy"]).apply(null,arguments)};var ___stpncpy=Module["___stpncpy"]=function(){return(___stpncpy=Module["___stpncpy"]=Module["asm"]["__stpncpy"]).apply(null,arguments)};var _stpncpy=Module["_stpncpy"]=function(){return(_stpncpy=Module["_stpncpy"]=Module["asm"]["stpncpy"]).apply(null,arguments)};var _swab=Module["_swab"]=function(){return(_swab=Module["_swab"]=Module["asm"]["swab"]).apply(null,arguments)};var _memmem=Module["_memmem"]=function(){return(_memmem=Module["_memmem"]=Module["asm"]["memmem"]).apply(null,arguments)};var _wmemset=Module["_wmemset"]=function(){return(_wmemset=Module["_wmemset"]=Module["asm"]["wmemset"]).apply(null,arguments)};var _wcsspn=Module["_wcsspn"]=function(){return(_wcsspn=Module["_wcsspn"]=Module["asm"]["wcsspn"]).apply(null,arguments)};var _wcscspn=Module["_wcscspn"]=function(){return(_wcscspn=Module["_wcscspn"]=Module["asm"]["wcscspn"]).apply(null,arguments)};var _wcpncpy=Module["_wcpncpy"]=function(){return(_wcpncpy=Module["_wcpncpy"]=Module["asm"]["wcpncpy"]).apply(null,arguments)};var _wcsnlen=Module["_wcsnlen"]=function(){return(_wcsnlen=Module["_wcsnlen"]=Module["asm"]["wcsnlen"]).apply(null,arguments)};var _strlcat=Module["_strlcat"]=function(){return(_strlcat=Module["_strlcat"]=Module["asm"]["strlcat"]).apply(null,arguments)};var _bzero=Module["_bzero"]=function(){return(_bzero=Module["_bzero"]=Module["asm"]["bzero"]).apply(null,arguments)};var _wcspbrk=Module["_wcspbrk"]=function(){return(_wcspbrk=Module["_wcspbrk"]=Module["asm"]["wcspbrk"]).apply(null,arguments)};var _strncasecmp=Module["_strncasecmp"]=function(){return(_strncasecmp=Module["_strncasecmp"]=Module["asm"]["strncasecmp"]).apply(null,arguments)};var ___strncasecmp_l=Module["___strncasecmp_l"]=function(){return(___strncasecmp_l=Module["___strncasecmp_l"]=Module["asm"]["__strncasecmp_l"]).apply(null,arguments)};var _strncasecmp_l=Module["_strncasecmp_l"]=function(){return(_strncasecmp_l=Module["_strncasecmp_l"]=Module["asm"]["strncasecmp_l"]).apply(null,arguments)};var _strndup=Module["_strndup"]=function(){return(_strndup=Module["_strndup"]=Module["asm"]["strndup"]).apply(null,arguments)};var _wcpcpy=Module["_wcpcpy"]=function(){return(_wcpcpy=Module["_wcpcpy"]=Module["asm"]["wcpcpy"]).apply(null,arguments)};var _wcscasecmp_l=Module["_wcscasecmp_l"]=function(){return(_wcscasecmp_l=Module["_wcscasecmp_l"]=Module["asm"]["wcscasecmp_l"]).apply(null,arguments)};var _wcscasecmp=Module["_wcscasecmp"]=function(){return(_wcscasecmp=Module["_wcscasecmp"]=Module["asm"]["wcscasecmp"]).apply(null,arguments)};var _strtok_r=Module["_strtok_r"]=function(){return(_strtok_r=Module["_strtok_r"]=Module["asm"]["strtok_r"]).apply(null,arguments)};var _bcmp=Module["_bcmp"]=function(){return(_bcmp=Module["_bcmp"]=Module["asm"]["bcmp"]).apply(null,arguments)};var _strcasecmp=Module["_strcasecmp"]=function(){return(_strcasecmp=Module["_strcasecmp"]=Module["asm"]["strcasecmp"]).apply(null,arguments)};var ___strcasecmp_l=Module["___strcasecmp_l"]=function(){return(___strcasecmp_l=Module["___strcasecmp_l"]=Module["asm"]["__strcasecmp_l"]).apply(null,arguments)};var _strcasecmp_l=Module["_strcasecmp_l"]=function(){return(_strcasecmp_l=Module["_strcasecmp_l"]=Module["asm"]["strcasecmp_l"]).apply(null,arguments)};var _memccpy=Module["_memccpy"]=function(){return(_memccpy=Module["_memccpy"]=Module["asm"]["memccpy"]).apply(null,arguments)};var _wcsncasecmp_l=Module["_wcsncasecmp_l"]=function(){return(_wcsncasecmp_l=Module["_wcsncasecmp_l"]=Module["asm"]["wcsncasecmp_l"]).apply(null,arguments)};var _strncat=Module["_strncat"]=function(){return(_strncat=Module["_strncat"]=Module["asm"]["strncat"]).apply(null,arguments)};var _rindex=Module["_rindex"]=function(){return(_rindex=Module["_rindex"]=Module["asm"]["rindex"]).apply(null,arguments)};var _wmemmove=Module["_wmemmove"]=function(){return(_wmemmove=Module["_wmemmove"]=Module["asm"]["wmemmove"]).apply(null,arguments)};var _strsep=Module["_strsep"]=function(){return(_strsep=Module["_strsep"]=Module["asm"]["strsep"]).apply(null,arguments)};var _mempcpy=Module["_mempcpy"]=function(){return(_mempcpy=Module["_mempcpy"]=Module["asm"]["mempcpy"]).apply(null,arguments)};var ___stpcpy=Module["___stpcpy"]=function(){return(___stpcpy=Module["___stpcpy"]=Module["asm"]["__stpcpy"]).apply(null,arguments)};var _stpcpy=Module["_stpcpy"]=function(){return(_stpcpy=Module["_stpcpy"]=Module["asm"]["stpcpy"]).apply(null,arguments)};var ___xpg_strerror_r=Module["___xpg_strerror_r"]=function(){return(___xpg_strerror_r=Module["___xpg_strerror_r"]=Module["asm"]["__xpg_strerror_r"]).apply(null,arguments)};var _strcasestr=Module["_strcasestr"]=function(){return(_strcasestr=Module["_strcasestr"]=Module["asm"]["strcasestr"]).apply(null,arguments)};var _bcopy=Module["_bcopy"]=function(){return(_bcopy=Module["_bcopy"]=Module["asm"]["bcopy"]).apply(null,arguments)};var ___strdup=Module["___strdup"]=function(){return(___strdup=Module["___strdup"]=Module["asm"]["__strdup"]).apply(null,arguments)};var ___shm_mapname=Module["___shm_mapname"]=function(){return(___shm_mapname=Module["___shm_mapname"]=Module["asm"]["__shm_mapname"]).apply(null,arguments)};var _shm_open=Module["_shm_open"]=function(){return(_shm_open=Module["_shm_open"]=Module["asm"]["shm_open"]).apply(null,arguments)};var _shm_unlink=Module["_shm_unlink"]=function(){return(_shm_unlink=Module["_shm_unlink"]=Module["asm"]["shm_unlink"]).apply(null,arguments)};var ___mremap=Module["___mremap"]=function(){return(___mremap=Module["___mremap"]=Module["asm"]["__mremap"]).apply(null,arguments)};var ___vm_wait=Module["___vm_wait"]=function(){return(___vm_wait=Module["___vm_wait"]=Module["asm"]["__vm_wait"]).apply(null,arguments)};var _mincore=Module["_mincore"]=function(){return(_mincore=Module["_mincore"]=Module["asm"]["mincore"]).apply(null,arguments)};var ___mprotect=Module["___mprotect"]=function(){return(___mprotect=Module["___mprotect"]=Module["asm"]["__mprotect"]).apply(null,arguments)};var _mprotect=Module["_mprotect"]=function(){return(_mprotect=Module["_mprotect"]=Module["asm"]["mprotect"]).apply(null,arguments)};var ___munmap=Module["___munmap"]=function(){return(___munmap=Module["___munmap"]=Module["asm"]["__munmap"]).apply(null,arguments)};var _munlock=Module["_munlock"]=function(){return(_munlock=Module["_munlock"]=Module["asm"]["munlock"]).apply(null,arguments)};var _mlockall=Module["_mlockall"]=function(){return(_mlockall=Module["_mlockall"]=Module["asm"]["mlockall"]).apply(null,arguments)};var _posix_madvise=Module["_posix_madvise"]=function(){return(_posix_madvise=Module["_posix_madvise"]=Module["asm"]["posix_madvise"]).apply(null,arguments)};var ___madvise=Module["___madvise"]=function(){return(___madvise=Module["___madvise"]=Module["asm"]["__madvise"]).apply(null,arguments)};var _munlockall=Module["_munlockall"]=function(){return(_munlockall=Module["_munlockall"]=Module["asm"]["munlockall"]).apply(null,arguments)};var _mlock=Module["_mlock"]=function(){return(_mlock=Module["_mlock"]=Module["asm"]["mlock"]).apply(null,arguments)};var ___mmap=Module["___mmap"]=function(){return(___mmap=Module["___mmap"]=Module["asm"]["__mmap"]).apply(null,arguments)};var _mmap64=Module["_mmap64"]=function(){return(_mmap64=Module["_mmap64"]=Module["asm"]["mmap64"]).apply(null,arguments)};var _ccosf=Module["_ccosf"]=function(){return(_ccosf=Module["_ccosf"]=Module["asm"]["ccosf"]).apply(null,arguments)};var _ccoshf=Module["_ccoshf"]=function(){return(_ccoshf=Module["_ccoshf"]=Module["asm"]["ccoshf"]).apply(null,arguments)};var ___ldexp_cexp=Module["___ldexp_cexp"]=function(){return(___ldexp_cexp=Module["___ldexp_cexp"]=Module["asm"]["__ldexp_cexp"]).apply(null,arguments)};var _creall=Module["_creall"]=function(){return(_creall=Module["_creall"]=Module["asm"]["creall"]).apply(null,arguments)};var _clogl=Module["_clogl"]=function(){return(_clogl=Module["_clogl"]=Module["asm"]["clogl"]).apply(null,arguments)};var _cabsl=Module["_cabsl"]=function(){return(_cabsl=Module["_cabsl"]=Module["asm"]["cabsl"]).apply(null,arguments)};var _cargl=Module["_cargl"]=function(){return(_cargl=Module["_cargl"]=Module["asm"]["cargl"]).apply(null,arguments)};var _logl=Module["_logl"]=function(){return(_logl=Module["_logl"]=Module["asm"]["logl"]).apply(null,arguments)};var _ccoshl=Module["_ccoshl"]=function(){return(_ccoshl=Module["_ccoshl"]=Module["asm"]["ccoshl"]).apply(null,arguments)};var _ccosh=Module["_ccosh"]=function(){return(_ccosh=Module["_ccosh"]=Module["asm"]["ccosh"]).apply(null,arguments)};var _cacosl=Module["_cacosl"]=function(){return(_cacosl=Module["_cacosl"]=Module["asm"]["cacosl"]).apply(null,arguments)};var _casinl=Module["_casinl"]=function(){return(_casinl=Module["_casinl"]=Module["asm"]["casinl"]).apply(null,arguments)};var _catan=Module["_catan"]=function(){return(_catan=Module["_catan"]=Module["asm"]["catan"]).apply(null,arguments)};var _creal=Module["_creal"]=function(){return(_creal=Module["_creal"]=Module["asm"]["creal"]).apply(null,arguments)};var _cacosf=Module["_cacosf"]=function(){return(_cacosf=Module["_cacosf"]=Module["asm"]["cacosf"]).apply(null,arguments)};var _casinf=Module["_casinf"]=function(){return(_casinf=Module["_casinf"]=Module["asm"]["casinf"]).apply(null,arguments)};var _csqrtf=Module["_csqrtf"]=function(){return(_csqrtf=Module["_csqrtf"]=Module["asm"]["csqrtf"]).apply(null,arguments)};var _fabsf=Module["_fabsf"]=function(){return(_fabsf=Module["_fabsf"]=Module["asm"]["fabsf"]).apply(null,arguments)};var _copysignf=Module["_copysignf"]=function(){return(_copysignf=Module["_copysignf"]=Module["asm"]["copysignf"]).apply(null,arguments)};var _ccos=Module["_ccos"]=function(){return(_ccos=Module["_ccos"]=Module["asm"]["ccos"]).apply(null,arguments)};var _cexpf=Module["_cexpf"]=function(){return(_cexpf=Module["_cexpf"]=Module["asm"]["cexpf"]).apply(null,arguments)};var _expf=Module["_expf"]=function(){return(_expf=Module["_expf"]=Module["asm"]["expf"]).apply(null,arguments)};var _cosf=Module["_cosf"]=function(){return(_cosf=Module["_cosf"]=Module["asm"]["cosf"]).apply(null,arguments)};var _sinf=Module["_sinf"]=function(){return(_sinf=Module["_sinf"]=Module["asm"]["sinf"]).apply(null,arguments)};var ___ldexp_cexpf=Module["___ldexp_cexpf"]=function(){return(___ldexp_cexpf=Module["___ldexp_cexpf"]=Module["asm"]["__ldexp_cexpf"]).apply(null,arguments)};var _coshf=Module["_coshf"]=function(){return(_coshf=Module["_coshf"]=Module["asm"]["coshf"]).apply(null,arguments)};var _sinhf=Module["_sinhf"]=function(){return(_sinhf=Module["_sinhf"]=Module["asm"]["sinhf"]).apply(null,arguments)};var _cacosh=Module["_cacosh"]=function(){return(_cacosh=Module["_cacosh"]=Module["asm"]["cacosh"]).apply(null,arguments)};var _cacos=Module["_cacos"]=function(){return(_cacos=Module["_cacos"]=Module["asm"]["cacos"]).apply(null,arguments)};var _ctanhf=Module["_ctanhf"]=function(){return(_ctanhf=Module["_ctanhf"]=Module["asm"]["ctanhf"]).apply(null,arguments)};var _tanf=Module["_tanf"]=function(){return(_tanf=Module["_tanf"]=Module["asm"]["tanf"]).apply(null,arguments)};var _sqrtf=Module["_sqrtf"]=function(){return(_sqrtf=Module["_sqrtf"]=Module["asm"]["sqrtf"]).apply(null,arguments)};var _csinhl=Module["_csinhl"]=function(){return(_csinhl=Module["_csinhl"]=Module["asm"]["csinhl"]).apply(null,arguments)};var _csinh=Module["_csinh"]=function(){return(_csinh=Module["_csinh"]=Module["asm"]["csinh"]).apply(null,arguments)};var _cproj=Module["_cproj"]=function(){return(_cproj=Module["_cproj"]=Module["asm"]["cproj"]).apply(null,arguments)};var _conjf=Module["_conjf"]=function(){return(_conjf=Module["_conjf"]=Module["asm"]["conjf"]).apply(null,arguments)};var _catanl=Module["_catanl"]=function(){return(_catanl=Module["_catanl"]=Module["asm"]["catanl"]).apply(null,arguments)};var ___eqtf2=Module["___eqtf2"]=function(){return(___eqtf2=Module["___eqtf2"]=Module["asm"]["__eqtf2"]).apply(null,arguments)};var _atan2l=Module["_atan2l"]=function(){return(_atan2l=Module["_atan2l"]=Module["asm"]["atan2l"]).apply(null,arguments)};var _cargf=Module["_cargf"]=function(){return(_cargf=Module["_cargf"]=Module["asm"]["cargf"]).apply(null,arguments)};var _atan2f=Module["_atan2f"]=function(){return(_atan2f=Module["_atan2f"]=Module["asm"]["atan2f"]).apply(null,arguments)};var _casinhl=Module["_casinhl"]=function(){return(_casinhl=Module["_casinhl"]=Module["asm"]["casinhl"]).apply(null,arguments)};var _ctanl=Module["_ctanl"]=function(){return(_ctanl=Module["_ctanl"]=Module["asm"]["ctanl"]).apply(null,arguments)};var _ctanhl=Module["_ctanhl"]=function(){return(_ctanhl=Module["_ctanhl"]=Module["asm"]["ctanhl"]).apply(null,arguments)};var _catanhf=Module["_catanhf"]=function(){return(_catanhf=Module["_catanhf"]=Module["asm"]["catanhf"]).apply(null,arguments)};var _catanf=Module["_catanf"]=function(){return(_catanf=Module["_catanf"]=Module["asm"]["catanf"]).apply(null,arguments)};var _cpowf=Module["_cpowf"]=function(){return(_cpowf=Module["_cpowf"]=Module["asm"]["cpowf"]).apply(null,arguments)};var _clogf=Module["_clogf"]=function(){return(_clogf=Module["_clogf"]=Module["asm"]["clogf"]).apply(null,arguments)};var ___mulsc3=Module["___mulsc3"]=function(){return(___mulsc3=Module["___mulsc3"]=Module["asm"]["__mulsc3"]).apply(null,arguments)};var _csqrtl=Module["_csqrtl"]=function(){return(_csqrtl=Module["_csqrtl"]=Module["asm"]["csqrtl"]).apply(null,arguments)};var _csqrt=Module["_csqrt"]=function(){return(_csqrt=Module["_csqrt"]=Module["asm"]["csqrt"]).apply(null,arguments)};var ___muldc3=Module["___muldc3"]=function(){return(___muldc3=Module["___muldc3"]=Module["asm"]["__muldc3"]).apply(null,arguments)};var _ctan=Module["_ctan"]=function(){return(_ctan=Module["_ctan"]=Module["asm"]["ctan"]).apply(null,arguments)};var _ctanh=Module["_ctanh"]=function(){return(_ctanh=Module["_ctanh"]=Module["asm"]["ctanh"]).apply(null,arguments)};var _casinhf=Module["_casinhf"]=function(){return(_casinhf=Module["_casinhf"]=Module["asm"]["casinhf"]).apply(null,arguments)};var _csinf=Module["_csinf"]=function(){return(_csinf=Module["_csinf"]=Module["asm"]["csinf"]).apply(null,arguments)};var _csinhf=Module["_csinhf"]=function(){return(_csinhf=Module["_csinhf"]=Module["asm"]["csinhf"]).apply(null,arguments)};var _cexp=Module["_cexp"]=function(){return(_cexp=Module["_cexp"]=Module["asm"]["cexp"]).apply(null,arguments)};var _cpowl=Module["_cpowl"]=function(){return(_cpowl=Module["_cpowl"]=Module["asm"]["cpowl"]).apply(null,arguments)};var ___unordtf2=Module["___unordtf2"]=function(){return(___unordtf2=Module["___unordtf2"]=Module["asm"]["__unordtf2"]).apply(null,arguments)};var ___multc3=Module["___multc3"]=function(){return(___multc3=Module["___multc3"]=Module["asm"]["__multc3"]).apply(null,arguments)};var _cexpl=Module["_cexpl"]=function(){return(_cexpl=Module["_cexpl"]=Module["asm"]["cexpl"]).apply(null,arguments)};var _carg=Module["_carg"]=function(){return(_carg=Module["_carg"]=Module["asm"]["carg"]).apply(null,arguments)};var _cabsf=Module["_cabsf"]=function(){return(_cabsf=Module["_cabsf"]=Module["asm"]["cabsf"]).apply(null,arguments)};var _hypotf=Module["_hypotf"]=function(){return(_hypotf=Module["_hypotf"]=Module["asm"]["hypotf"]).apply(null,arguments)};var _hypotl=Module["_hypotl"]=function(){return(_hypotl=Module["_hypotl"]=Module["asm"]["hypotl"]).apply(null,arguments)};var _conjl=Module["_conjl"]=function(){return(_conjl=Module["_conjl"]=Module["asm"]["conjl"]).apply(null,arguments)};var _logf=Module["_logf"]=function(){return(_logf=Module["_logf"]=Module["asm"]["logf"]).apply(null,arguments)};var _catanhl=Module["_catanhl"]=function(){return(_catanhl=Module["_catanhl"]=Module["asm"]["catanhl"]).apply(null,arguments)};var _cabs=Module["_cabs"]=function(){return(_cabs=Module["_cabs"]=Module["asm"]["cabs"]).apply(null,arguments)};var _cprojf=Module["_cprojf"]=function(){return(_cprojf=Module["_cprojf"]=Module["asm"]["cprojf"]).apply(null,arguments)};var _cprojl=Module["_cprojl"]=function(){return(_cprojl=Module["_cprojl"]=Module["asm"]["cprojl"]).apply(null,arguments)};var ___fpclassifyl=Module["___fpclassifyl"]=function(){return(___fpclassifyl=Module["___fpclassifyl"]=Module["asm"]["__fpclassifyl"]).apply(null,arguments)};var _catanh=Module["_catanh"]=function(){return(_catanh=Module["_catanh"]=Module["asm"]["catanh"]).apply(null,arguments)};var _ccosl=Module["_ccosl"]=function(){return(_ccosl=Module["_ccosl"]=Module["asm"]["ccosl"]).apply(null,arguments)};var _casin=Module["_casin"]=function(){return(_casin=Module["_casin"]=Module["asm"]["casin"]).apply(null,arguments)};var _ctanf=Module["_ctanf"]=function(){return(_ctanf=Module["_ctanf"]=Module["asm"]["ctanf"]).apply(null,arguments)};var _casinh=Module["_casinh"]=function(){return(_casinh=Module["_casinh"]=Module["asm"]["casinh"]).apply(null,arguments)};var _cimag=Module["_cimag"]=function(){return(_cimag=Module["_cimag"]=Module["asm"]["cimag"]).apply(null,arguments)};var _cacoshf=Module["_cacoshf"]=function(){return(_cacoshf=Module["_cacoshf"]=Module["asm"]["cacoshf"]).apply(null,arguments)};var _conj=Module["_conj"]=function(){return(_conj=Module["_conj"]=Module["asm"]["conj"]).apply(null,arguments)};var _cpow=Module["_cpow"]=function(){return(_cpow=Module["_cpow"]=Module["asm"]["cpow"]).apply(null,arguments)};var _clog=Module["_clog"]=function(){return(_clog=Module["_clog"]=Module["asm"]["clog"]).apply(null,arguments)};var _csin=Module["_csin"]=function(){return(_csin=Module["_csin"]=Module["asm"]["csin"]).apply(null,arguments)};var _cimagl=Module["_cimagl"]=function(){return(_cimagl=Module["_cimagl"]=Module["asm"]["cimagl"]).apply(null,arguments)};var _cimagf=Module["_cimagf"]=function(){return(_cimagf=Module["_cimagf"]=Module["asm"]["cimagf"]).apply(null,arguments)};var _csinl=Module["_csinl"]=function(){return(_csinl=Module["_csinl"]=Module["asm"]["csinl"]).apply(null,arguments)};var _cacoshl=Module["_cacoshl"]=function(){return(_cacoshl=Module["_cacoshl"]=Module["asm"]["cacoshl"]).apply(null,arguments)};var _crealf=Module["_crealf"]=function(){return(_crealf=Module["_crealf"]=Module["asm"]["crealf"]).apply(null,arguments)};var _cbrtf=Module["_cbrtf"]=function(){return(_cbrtf=Module["_cbrtf"]=Module["asm"]["cbrtf"]).apply(null,arguments)};var _lrint=Module["_lrint"]=function(){return(_lrint=Module["_lrint"]=Module["asm"]["lrint"]).apply(null,arguments)};var _rint=Module["_rint"]=function(){return(_rint=Module["_rint"]=Module["asm"]["rint"]).apply(null,arguments)};var _scalbnf=Module["_scalbnf"]=function(){return(_scalbnf=Module["_scalbnf"]=Module["asm"]["scalbnf"]).apply(null,arguments)};var _log10l=Module["_log10l"]=function(){return(_log10l=Module["_log10l"]=Module["asm"]["log10l"]).apply(null,arguments)};var ___invtrigl_R=Module["___invtrigl_R"]=function(){return(___invtrigl_R=Module["___invtrigl_R"]=Module["asm"]["__invtrigl_R"]).apply(null,arguments)};var _powl=Module["_powl"]=function(){return(_powl=Module["_powl"]=Module["asm"]["powl"]).apply(null,arguments)};var _scalb=Module["_scalb"]=function(){return(_scalb=Module["_scalb"]=Module["asm"]["scalb"]).apply(null,arguments)};var _tgammaf=Module["_tgammaf"]=function(){return(_tgammaf=Module["_tgammaf"]=Module["asm"]["tgammaf"]).apply(null,arguments)};var _tgamma=Module["_tgamma"]=function(){return(_tgamma=Module["_tgamma"]=Module["asm"]["tgamma"]).apply(null,arguments)};var _powf=Module["_powf"]=function(){return(_powf=Module["_powf"]=Module["asm"]["powf"]).apply(null,arguments)};var _nan=Module["_nan"]=function(){return(_nan=Module["_nan"]=Module["asm"]["nan"]).apply(null,arguments)};var _j1f=Module["_j1f"]=function(){return(_j1f=Module["_j1f"]=Module["asm"]["j1f"]).apply(null,arguments)};var _y1f=Module["_y1f"]=function(){return(_y1f=Module["_y1f"]=Module["asm"]["y1f"]).apply(null,arguments)};var _lrintf=Module["_lrintf"]=function(){return(_lrintf=Module["_lrintf"]=Module["asm"]["lrintf"]).apply(null,arguments)};var _rintf=Module["_rintf"]=function(){return(_rintf=Module["_rintf"]=Module["asm"]["rintf"]).apply(null,arguments)};var _fdimf=Module["_fdimf"]=function(){return(_fdimf=Module["_fdimf"]=Module["asm"]["fdimf"]).apply(null,arguments)};var _nearbyintl=Module["_nearbyintl"]=function(){return(_nearbyintl=Module["_nearbyintl"]=Module["asm"]["nearbyintl"]).apply(null,arguments)};var _rintl=Module["_rintl"]=function(){return(_rintl=Module["_rintl"]=Module["asm"]["rintl"]).apply(null,arguments)};var _nextafterf=Module["_nextafterf"]=function(){return(_nextafterf=Module["_nextafterf"]=Module["asm"]["nextafterf"]).apply(null,arguments)};var _truncl=Module["_truncl"]=function(){return(_truncl=Module["_truncl"]=Module["asm"]["truncl"]).apply(null,arguments)};var ___rem_pio2=Module["___rem_pio2"]=function(){return(___rem_pio2=Module["___rem_pio2"]=Module["asm"]["__rem_pio2"]).apply(null,arguments)};var ___rem_pio2_large=Module["___rem_pio2_large"]=function(){return(___rem_pio2_large=Module["___rem_pio2_large"]=Module["asm"]["__rem_pio2_large"]).apply(null,arguments)};var _j1=Module["_j1"]=function(){return(_j1=Module["_j1"]=Module["asm"]["j1"]).apply(null,arguments)};var _y1=Module["_y1"]=function(){return(_y1=Module["_y1"]=Module["asm"]["y1"]).apply(null,arguments)};var _ilogbl=Module["_ilogbl"]=function(){return(_ilogbl=Module["_ilogbl"]=Module["asm"]["ilogbl"]).apply(null,arguments)};var _llrintl=Module["_llrintl"]=function(){return(_llrintl=Module["_llrintl"]=Module["asm"]["llrintl"]).apply(null,arguments)};var _floor=Module["_floor"]=function(){return(_floor=Module["_floor"]=Module["asm"]["floor"]).apply(null,arguments)};var _erfl=Module["_erfl"]=function(){return(_erfl=Module["_erfl"]=Module["asm"]["erfl"]).apply(null,arguments)};var _erfcl=Module["_erfcl"]=function(){return(_erfcl=Module["_erfcl"]=Module["asm"]["erfcl"]).apply(null,arguments)};var _fdim=Module["_fdim"]=function(){return(_fdim=Module["_fdim"]=Module["asm"]["fdim"]).apply(null,arguments)};var _significandf=Module["_significandf"]=function(){return(_significandf=Module["_significandf"]=Module["asm"]["significandf"]).apply(null,arguments)};var _ilogbf=Module["_ilogbf"]=function(){return(_ilogbf=Module["_ilogbf"]=Module["asm"]["ilogbf"]).apply(null,arguments)};var _asinhl=Module["_asinhl"]=function(){return(_asinhl=Module["_asinhl"]=Module["asm"]["asinhl"]).apply(null,arguments)};var ___lgammal_r=Module["___lgammal_r"]=function(){return(___lgammal_r=Module["___lgammal_r"]=Module["asm"]["__lgammal_r"]).apply(null,arguments)};var ___lgamma_r=Module["___lgamma_r"]=function(){return(___lgamma_r=Module["___lgamma_r"]=Module["asm"]["__lgamma_r"]).apply(null,arguments)};var _lgammal=Module["_lgammal"]=function(){return(_lgammal=Module["_lgammal"]=Module["asm"]["lgammal"]).apply(null,arguments)};var _lgammal_r=Module["_lgammal_r"]=function(){return(_lgammal_r=Module["_lgammal_r"]=Module["asm"]["lgammal_r"]).apply(null,arguments)};var _log1pl=Module["_log1pl"]=function(){return(_log1pl=Module["_log1pl"]=Module["asm"]["log1pl"]).apply(null,arguments)};var _logbl=Module["_logbl"]=function(){return(_logbl=Module["_logbl"]=Module["asm"]["logbl"]).apply(null,arguments)};var ___sin=Module["___sin"]=function(){return(___sin=Module["___sin"]=Module["asm"]["__sin"]).apply(null,arguments)};var ___cos=Module["___cos"]=function(){return(___cos=Module["___cos"]=Module["asm"]["__cos"]).apply(null,arguments)};var _lgamma_r=Module["_lgamma_r"]=function(){return(_lgamma_r=Module["_lgamma_r"]=Module["asm"]["lgamma_r"]).apply(null,arguments)};var _llrintf=Module["_llrintf"]=function(){return(_llrintf=Module["_llrintf"]=Module["asm"]["llrintf"]).apply(null,arguments)};var _sqrtl=Module["_sqrtl"]=function(){return(_sqrtl=Module["_sqrtl"]=Module["asm"]["sqrtl"]).apply(null,arguments)};var ___lgammaf_r=Module["___lgammaf_r"]=function(){return(___lgammaf_r=Module["___lgammaf_r"]=Module["asm"]["__lgammaf_r"]).apply(null,arguments)};var _floorf=Module["_floorf"]=function(){return(_floorf=Module["_floorf"]=Module["asm"]["floorf"]).apply(null,arguments)};var ___sindf=Module["___sindf"]=function(){return(___sindf=Module["___sindf"]=Module["asm"]["__sindf"]).apply(null,arguments)};var ___cosdf=Module["___cosdf"]=function(){return(___cosdf=Module["___cosdf"]=Module["asm"]["__cosdf"]).apply(null,arguments)};var _lgammaf_r=Module["_lgammaf_r"]=function(){return(_lgammaf_r=Module["_lgammaf_r"]=Module["asm"]["lgammaf_r"]).apply(null,arguments)};var _nearbyintf=Module["_nearbyintf"]=function(){return(_nearbyintf=Module["_nearbyintf"]=Module["asm"]["nearbyintf"]).apply(null,arguments)};var ___rem_pio2f=Module["___rem_pio2f"]=function(){return(___rem_pio2f=Module["___rem_pio2f"]=Module["asm"]["__rem_pio2f"]).apply(null,arguments)};var _cbrt=Module["_cbrt"]=function(){return(_cbrt=Module["_cbrt"]=Module["asm"]["cbrt"]).apply(null,arguments)};var _nanl=Module["_nanl"]=function(){return(_nanl=Module["_nanl"]=Module["asm"]["nanl"]).apply(null,arguments)};var _significand=Module["_significand"]=function(){return(_significand=Module["_significand"]=Module["asm"]["significand"]).apply(null,arguments)};var _ilogb=Module["_ilogb"]=function(){return(_ilogb=Module["_ilogb"]=Module["asm"]["ilogb"]).apply(null,arguments)};var _modfl=Module["_modfl"]=function(){return(_modfl=Module["_modfl"]=Module["asm"]["modfl"]).apply(null,arguments)};var _coshl=Module["_coshl"]=function(){return(_coshl=Module["_coshl"]=Module["asm"]["coshl"]).apply(null,arguments)};var _remquof=Module["_remquof"]=function(){return(_remquof=Module["_remquof"]=Module["asm"]["remquof"]).apply(null,arguments)};var _asinl=Module["_asinl"]=function(){return(_asinl=Module["_asinl"]=Module["asm"]["asinl"]).apply(null,arguments)};var _log1pf=Module["_log1pf"]=function(){return(_log1pf=Module["_log1pf"]=Module["asm"]["log1pf"]).apply(null,arguments)};var ___fpclassify=Module["___fpclassify"]=function(){return(___fpclassify=Module["___fpclassify"]=Module["asm"]["__fpclassify"]).apply(null,arguments)};var _lrintl=Module["_lrintl"]=function(){return(_lrintl=Module["_lrintl"]=Module["asm"]["lrintl"]).apply(null,arguments)};var _fmal=Module["_fmal"]=function(){return(_fmal=Module["_fmal"]=Module["asm"]["fmal"]).apply(null,arguments)};var _frexpl=Module["_frexpl"]=function(){return(_frexpl=Module["_frexpl"]=Module["asm"]["frexpl"]).apply(null,arguments)};var _nextafterl=Module["_nextafterl"]=function(){return(_nextafterl=Module["_nextafterl"]=Module["asm"]["nextafterl"]).apply(null,arguments)};var _sinl=Module["_sinl"]=function(){return(_sinl=Module["_sinl"]=Module["asm"]["sinl"]).apply(null,arguments)};var ___sinl=Module["___sinl"]=function(){return(___sinl=Module["___sinl"]=Module["asm"]["__sinl"]).apply(null,arguments)};var ___rem_pio2l=Module["___rem_pio2l"]=function(){return(___rem_pio2l=Module["___rem_pio2l"]=Module["asm"]["__rem_pio2l"]).apply(null,arguments)};var ___cosl=Module["___cosl"]=function(){return(___cosl=Module["___cosl"]=Module["asm"]["__cosl"]).apply(null,arguments)};var _scalblnl=Module["_scalblnl"]=function(){return(_scalblnl=Module["_scalblnl"]=Module["asm"]["scalblnl"]).apply(null,arguments)};var _j0=Module["_j0"]=function(){return(_j0=Module["_j0"]=Module["asm"]["j0"]).apply(null,arguments)};var _y0=Module["_y0"]=function(){return(_y0=Module["_y0"]=Module["asm"]["y0"]).apply(null,arguments)};var _acosl=Module["_acosl"]=function(){return(_acosl=Module["_acosl"]=Module["asm"]["acosl"]).apply(null,arguments)};var _acoshf=Module["_acoshf"]=function(){return(_acoshf=Module["_acoshf"]=Module["asm"]["acoshf"]).apply(null,arguments)};var ___expo2f=Module["___expo2f"]=function(){return(___expo2f=Module["___expo2f"]=Module["asm"]["__expo2f"]).apply(null,arguments)};var _floorl=Module["_floorl"]=function(){return(_floorl=Module["_floorl"]=Module["asm"]["floorl"]).apply(null,arguments)};var _remainderf=Module["_remainderf"]=function(){return(_remainderf=Module["_remainderf"]=Module["asm"]["remainderf"]).apply(null,arguments)};var _dremf=Module["_dremf"]=function(){return(_dremf=Module["_dremf"]=Module["asm"]["dremf"]).apply(null,arguments)};var _finitef=Module["_finitef"]=function(){return(_finitef=Module["_finitef"]=Module["asm"]["finitef"]).apply(null,arguments)};var _logb=Module["_logb"]=function(){return(_logb=Module["_logb"]=Module["asm"]["logb"]).apply(null,arguments)};var _nanf=Module["_nanf"]=function(){return(_nanf=Module["_nanf"]=Module["asm"]["nanf"]).apply(null,arguments)};var _expm1f=Module["_expm1f"]=function(){return(_expm1f=Module["_expm1f"]=Module["asm"]["expm1f"]).apply(null,arguments)};var _llroundl=Module["_llroundl"]=function(){return(_llroundl=Module["_llroundl"]=Module["asm"]["llroundl"]).apply(null,arguments)};var _roundl=Module["_roundl"]=function(){return(_roundl=Module["_roundl"]=Module["asm"]["roundl"]).apply(null,arguments)};var ___expo2=Module["___expo2"]=function(){return(___expo2=Module["___expo2"]=Module["asm"]["__expo2"]).apply(null,arguments)};var _llround=Module["_llround"]=function(){return(_llround=Module["_llround"]=Module["asm"]["llround"]).apply(null,arguments)};var _remainder=Module["_remainder"]=function(){return(_remainder=Module["_remainder"]=Module["asm"]["remainder"]).apply(null,arguments)};var _remquo=Module["_remquo"]=function(){return(_remquo=Module["_remquo"]=Module["asm"]["remquo"]).apply(null,arguments)};var _drem=Module["_drem"]=function(){return(_drem=Module["_drem"]=Module["asm"]["drem"]).apply(null,arguments)};var _frexpf=Module["_frexpf"]=function(){return(_frexpf=Module["_frexpf"]=Module["asm"]["frexpf"]).apply(null,arguments)};var _roundf=Module["_roundf"]=function(){return(_roundf=Module["_roundf"]=Module["asm"]["roundf"]).apply(null,arguments)};var _tanhf=Module["_tanhf"]=function(){return(_tanhf=Module["_tanhf"]=Module["asm"]["tanhf"]).apply(null,arguments)};var _ceill=Module["_ceill"]=function(){return(_ceill=Module["_ceill"]=Module["asm"]["ceill"]).apply(null,arguments)};var _scalbln=Module["_scalbln"]=function(){return(_scalbln=Module["_scalbln"]=Module["asm"]["scalbln"]).apply(null,arguments)};var _fmaf=Module["_fmaf"]=function(){return(_fmaf=Module["_fmaf"]=Module["asm"]["fmaf"]).apply(null,arguments)};var _logbf=Module["_logbf"]=function(){return(_logbf=Module["_logbf"]=Module["asm"]["logbf"]).apply(null,arguments)};var _asinf=Module["_asinf"]=function(){return(_asinf=Module["_asinf"]=Module["asm"]["asinf"]).apply(null,arguments)};var _ldexpl=Module["_ldexpl"]=function(){return(_ldexpl=Module["_ldexpl"]=Module["asm"]["ldexpl"]).apply(null,arguments)};var _remainderl=Module["_remainderl"]=function(){return(_remainderl=Module["_remainderl"]=Module["asm"]["remainderl"]).apply(null,arguments)};var _remquol=Module["_remquol"]=function(){return(_remquol=Module["_remquol"]=Module["asm"]["remquol"]).apply(null,arguments)};var ___fpclassifyf=Module["___fpclassifyf"]=function(){return(___fpclassifyf=Module["___fpclassifyf"]=Module["asm"]["__fpclassifyf"]).apply(null,arguments)};var _erff=Module["_erff"]=function(){return(_erff=Module["_erff"]=Module["asm"]["erff"]).apply(null,arguments)};var _erfcf=Module["_erfcf"]=function(){return(_erfcf=Module["_erfcf"]=Module["asm"]["erfcf"]).apply(null,arguments)};var _ceilf=Module["_ceilf"]=function(){return(_ceilf=Module["_ceilf"]=Module["asm"]["ceilf"]).apply(null,arguments)};var _log2l=Module["_log2l"]=function(){return(_log2l=Module["_log2l"]=Module["asm"]["log2l"]).apply(null,arguments)};var _nearbyint=Module["_nearbyint"]=function(){return(_nearbyint=Module["_nearbyint"]=Module["asm"]["nearbyint"]).apply(null,arguments)};var _exp10l=Module["_exp10l"]=function(){return(_exp10l=Module["_exp10l"]=Module["asm"]["exp10l"]).apply(null,arguments)};var _exp2l=Module["_exp2l"]=function(){return(_exp2l=Module["_exp2l"]=Module["asm"]["exp2l"]).apply(null,arguments)};var _pow10l=Module["_pow10l"]=function(){return(_pow10l=Module["_pow10l"]=Module["asm"]["pow10l"]).apply(null,arguments)};var ___letf2=Module["___letf2"]=function(){return(___letf2=Module["___letf2"]=Module["asm"]["__letf2"]).apply(null,arguments)};var _scalbf=Module["_scalbf"]=function(){return(_scalbf=Module["_scalbf"]=Module["asm"]["scalbf"]).apply(null,arguments)};var _sincosl=Module["_sincosl"]=function(){return(_sincosl=Module["_sincosl"]=Module["asm"]["sincosl"]).apply(null,arguments)};var _fma=Module["_fma"]=function(){return(_fma=Module["_fma"]=Module["asm"]["fma"]).apply(null,arguments)};var _tgammal=Module["_tgammal"]=function(){return(_tgammal=Module["_tgammal"]=Module["asm"]["tgammal"]).apply(null,arguments)};var _lroundf=Module["_lroundf"]=function(){return(_lroundf=Module["_lroundf"]=Module["asm"]["lroundf"]).apply(null,arguments)};var _llroundf=Module["_llroundf"]=function(){return(_llroundf=Module["_llroundf"]=Module["asm"]["llroundf"]).apply(null,arguments)};var _jn=Module["_jn"]=function(){return(_jn=Module["_jn"]=Module["asm"]["jn"]).apply(null,arguments)};var _yn=Module["_yn"]=function(){return(_yn=Module["_yn"]=Module["asm"]["yn"]).apply(null,arguments)};var ___polevll=Module["___polevll"]=function(){return(___polevll=Module["___polevll"]=Module["asm"]["__polevll"]).apply(null,arguments)};var ___p1evll=Module["___p1evll"]=function(){return(___p1evll=Module["___p1evll"]=Module["asm"]["__p1evll"]).apply(null,arguments)};var _nexttoward=Module["_nexttoward"]=function(){return(_nexttoward=Module["_nexttoward"]=Module["asm"]["nexttoward"]).apply(null,arguments)};var ___signbitl=Module["___signbitl"]=function(){return(___signbitl=Module["___signbitl"]=Module["asm"]["__signbitl"]).apply(null,arguments)};var _scalblnf=Module["_scalblnf"]=function(){return(_scalblnf=Module["_scalblnf"]=Module["asm"]["scalblnf"]).apply(null,arguments)};var _sinhl=Module["_sinhl"]=function(){return(_sinhl=Module["_sinhl"]=Module["asm"]["sinhl"]).apply(null,arguments)};var _sincosf=Module["_sincosf"]=function(){return(_sincosf=Module["_sincosf"]=Module["asm"]["sincosf"]).apply(null,arguments)};var _acoshl=Module["_acoshl"]=function(){return(_acoshl=Module["_acoshl"]=Module["asm"]["acoshl"]).apply(null,arguments)};var _atanl=Module["_atanl"]=function(){return(_atanl=Module["_atanl"]=Module["asm"]["atanl"]).apply(null,arguments)};var ___tanl=Module["___tanl"]=function(){return(___tanl=Module["___tanl"]=Module["asm"]["__tanl"]).apply(null,arguments)};var _atanhf=Module["_atanhf"]=function(){return(_atanhf=Module["_atanhf"]=Module["asm"]["atanhf"]).apply(null,arguments)};var _fdiml=Module["_fdiml"]=function(){return(_fdiml=Module["_fdiml"]=Module["asm"]["fdiml"]).apply(null,arguments)};var _nexttowardl=Module["_nexttowardl"]=function(){return(_nexttowardl=Module["_nexttowardl"]=Module["asm"]["nexttowardl"]).apply(null,arguments)};var _lgamma=Module["_lgamma"]=function(){return(_lgamma=Module["_lgamma"]=Module["asm"]["lgamma"]).apply(null,arguments)};var _atanhl=Module["_atanhl"]=function(){return(_atanhl=Module["_atanhl"]=Module["asm"]["atanhl"]).apply(null,arguments)};var _acosf=Module["_acosf"]=function(){return(_acosf=Module["_acosf"]=Module["asm"]["acosf"]).apply(null,arguments)};var _asinhf=Module["_asinhf"]=function(){return(_asinhf=Module["_asinhf"]=Module["asm"]["asinhf"]).apply(null,arguments)};var ___tandf=Module["___tandf"]=function(){return(___tandf=Module["___tandf"]=Module["asm"]["__tandf"]).apply(null,arguments)};var _atanf=Module["_atanf"]=function(){return(_atanf=Module["_atanf"]=Module["asm"]["atanf"]).apply(null,arguments)};var ___tan=Module["___tan"]=function(){return(___tan=Module["___tan"]=Module["asm"]["__tan"]).apply(null,arguments)};var _ceil=Module["_ceil"]=function(){return(_ceil=Module["_ceil"]=Module["asm"]["ceil"]).apply(null,arguments)};var _tanl=Module["_tanl"]=function(){return(_tanl=Module["_tanl"]=Module["asm"]["tanl"]).apply(null,arguments)};var _cbrtl=Module["_cbrtl"]=function(){return(_cbrtl=Module["_cbrtl"]=Module["asm"]["cbrtl"]).apply(null,arguments)};var ___trunctfsf2=Module["___trunctfsf2"]=function(){return(___trunctfsf2=Module["___trunctfsf2"]=Module["asm"]["__trunctfsf2"]).apply(null,arguments)};var _finite=Module["_finite"]=function(){return(_finite=Module["_finite"]=Module["asm"]["finite"]).apply(null,arguments)};var _lroundl=Module["_lroundl"]=function(){return(_lroundl=Module["_lroundl"]=Module["asm"]["lroundl"]).apply(null,arguments)};var _nexttowardf=Module["_nexttowardf"]=function(){return(_nexttowardf=Module["_nexttowardf"]=Module["asm"]["nexttowardf"]).apply(null,arguments)};var _expl=Module["_expl"]=function(){return(_expl=Module["_expl"]=Module["asm"]["expl"]).apply(null,arguments)};var _expm1l=Module["_expm1l"]=function(){return(_expm1l=Module["_expm1l"]=Module["asm"]["expm1l"]).apply(null,arguments)};var _llrint=Module["_llrint"]=function(){return(_llrint=Module["_llrint"]=Module["asm"]["llrint"]).apply(null,arguments)};var _cosl=Module["_cosl"]=function(){return(_cosl=Module["_cosl"]=Module["asm"]["cosl"]).apply(null,arguments)};var _j0f=Module["_j0f"]=function(){return(_j0f=Module["_j0f"]=Module["asm"]["j0f"]).apply(null,arguments)};var _y0f=Module["_y0f"]=function(){return(_y0f=Module["_y0f"]=Module["asm"]["y0f"]).apply(null,arguments)};var _jnf=Module["_jnf"]=function(){return(_jnf=Module["_jnf"]=Module["asm"]["jnf"]).apply(null,arguments)};var _ynf=Module["_ynf"]=function(){return(_ynf=Module["_ynf"]=Module["asm"]["ynf"]).apply(null,arguments)};var _lgammaf=Module["_lgammaf"]=function(){return(_lgammaf=Module["_lgammaf"]=Module["asm"]["lgammaf"]).apply(null,arguments)};var _sincos=Module["_sincos"]=function(){return(_sincos=Module["_sincos"]=Module["asm"]["sincos"]).apply(null,arguments)};var _truncf=Module["_truncf"]=function(){return(_truncf=Module["_truncf"]=Module["asm"]["truncf"]).apply(null,arguments)};var _modff=Module["_modff"]=function(){return(_modff=Module["_modff"]=Module["asm"]["modff"]).apply(null,arguments)};var _lround=Module["_lround"]=function(){return(_lround=Module["_lround"]=Module["asm"]["lround"]).apply(null,arguments)};var _trunc=Module["_trunc"]=function(){return(_trunc=Module["_trunc"]=Module["asm"]["trunc"]).apply(null,arguments)};var _ldexpf=Module["_ldexpf"]=function(){return(_ldexpf=Module["_ldexpf"]=Module["asm"]["ldexpf"]).apply(null,arguments)};var _tanhl=Module["_tanhl"]=function(){return(_tanhl=Module["_tanhl"]=Module["asm"]["tanhl"]).apply(null,arguments)};var _srand48=Module["_srand48"]=function(){return(_srand48=Module["_srand48"]=Module["asm"]["srand48"]).apply(null,arguments)};var _seed48=Module["_seed48"]=function(){return(_seed48=Module["_seed48"]=Module["asm"]["seed48"]).apply(null,arguments)};var _jrand48=Module["_jrand48"]=function(){return(_jrand48=Module["_jrand48"]=Module["asm"]["jrand48"]).apply(null,arguments)};var ___rand48_step=Module["___rand48_step"]=function(){return(___rand48_step=Module["___rand48_step"]=Module["asm"]["__rand48_step"]).apply(null,arguments)};var _mrand48=Module["_mrand48"]=function(){return(_mrand48=Module["_mrand48"]=Module["asm"]["mrand48"]).apply(null,arguments)};var _srandom=Module["_srandom"]=function(){return(_srandom=Module["_srandom"]=Module["asm"]["srandom"]).apply(null,arguments)};var _initstate=Module["_initstate"]=function(){return(_initstate=Module["_initstate"]=Module["asm"]["initstate"]).apply(null,arguments)};var _setstate=Module["_setstate"]=function(){return(_setstate=Module["_setstate"]=Module["asm"]["setstate"]).apply(null,arguments)};var _random=Module["_random"]=function(){return(_random=Module["_random"]=Module["asm"]["random"]).apply(null,arguments)};var _erand48=Module["_erand48"]=function(){return(_erand48=Module["_erand48"]=Module["asm"]["erand48"]).apply(null,arguments)};var _drand48=Module["_drand48"]=function(){return(_drand48=Module["_drand48"]=Module["asm"]["drand48"]).apply(null,arguments)};var _lcong48=Module["_lcong48"]=function(){return(_lcong48=Module["_lcong48"]=Module["asm"]["lcong48"]).apply(null,arguments)};var _rand_r=Module["_rand_r"]=function(){return(_rand_r=Module["_rand_r"]=Module["asm"]["rand_r"]).apply(null,arguments)};var _srand=Module["_srand"]=function(){return(_srand=Module["_srand"]=Module["asm"]["srand"]).apply(null,arguments)};var _rand=Module["_rand"]=function(){return(_rand=Module["_rand"]=Module["asm"]["rand"]).apply(null,arguments)};var _nrand48=Module["_nrand48"]=function(){return(_nrand48=Module["_nrand48"]=Module["asm"]["nrand48"]).apply(null,arguments)};var _lrand48=Module["_lrand48"]=function(){return(_lrand48=Module["_lrand48"]=Module["asm"]["lrand48"]).apply(null,arguments)};var ___stdio_exit=Module["___stdio_exit"]=function(){return(___stdio_exit=Module["___stdio_exit"]=Module["asm"]["__stdio_exit"]).apply(null,arguments)};var ___ofl_lock=Module["___ofl_lock"]=function(){return(___ofl_lock=Module["___ofl_lock"]=Module["asm"]["__ofl_lock"]).apply(null,arguments)};var ___lockfile=Module["___lockfile"]=function(){return(___lockfile=Module["___lockfile"]=Module["asm"]["__lockfile"]).apply(null,arguments)};var ___stdio_exit_needed=Module["___stdio_exit_needed"]=function(){return(___stdio_exit_needed=Module["___stdio_exit_needed"]=Module["asm"]["__stdio_exit_needed"]).apply(null,arguments)};var _tmpnam=Module["_tmpnam"]=function(){return(_tmpnam=Module["_tmpnam"]=Module["asm"]["tmpnam"]).apply(null,arguments)};var ___fdopen=Module["___fdopen"]=function(){return(___fdopen=Module["___fdopen"]=Module["asm"]["__fdopen"]).apply(null,arguments)};var ___stdio_seek=Module["___stdio_seek"]=function(){return(___stdio_seek=Module["___stdio_seek"]=Module["asm"]["__stdio_seek"]).apply(null,arguments)};var ___stdio_write=Module["___stdio_write"]=function(){return(___stdio_write=Module["___stdio_write"]=Module["asm"]["__stdio_write"]).apply(null,arguments)};var ___stdio_read=Module["___stdio_read"]=function(){return(___stdio_read=Module["___stdio_read"]=Module["asm"]["__stdio_read"]).apply(null,arguments)};var ___stdio_close=Module["___stdio_close"]=function(){return(___stdio_close=Module["___stdio_close"]=Module["asm"]["__stdio_close"]).apply(null,arguments)};var ___ofl_add=Module["___ofl_add"]=function(){return(___ofl_add=Module["___ofl_add"]=Module["asm"]["__ofl_add"]).apply(null,arguments)};var _vfscanf=Module["_vfscanf"]=function(){return(_vfscanf=Module["_vfscanf"]=Module["asm"]["vfscanf"]).apply(null,arguments)};var ___unlockfile=Module["___unlockfile"]=function(){return(___unlockfile=Module["___unlockfile"]=Module["asm"]["__unlockfile"]).apply(null,arguments)};var ___isoc99_vfscanf=Module["___isoc99_vfscanf"]=function(){return(___isoc99_vfscanf=Module["___isoc99_vfscanf"]=Module["asm"]["__isoc99_vfscanf"]).apply(null,arguments)};var ___string_read=Module["___string_read"]=function(){return(___string_read=Module["___string_read"]=Module["asm"]["__string_read"]).apply(null,arguments)};var _vdprintf=Module["_vdprintf"]=function(){return(_vdprintf=Module["_vdprintf"]=Module["asm"]["vdprintf"]).apply(null,arguments)};var ___ftello_unlocked=Module["___ftello_unlocked"]=function(){return(___ftello_unlocked=Module["___ftello_unlocked"]=Module["asm"]["__ftello_unlocked"]).apply(null,arguments)};var ___ftello=Module["___ftello"]=function(){return(___ftello=Module["___ftello"]=Module["asm"]["__ftello"]).apply(null,arguments)};var _ftello=Module["_ftello"]=function(){return(_ftello=Module["_ftello"]=Module["asm"]["ftello"]).apply(null,arguments)};var _ftello64=Module["_ftello64"]=function(){return(_ftello64=Module["_ftello64"]=Module["asm"]["ftello64"]).apply(null,arguments)};var _getchar_unlocked=Module["_getchar_unlocked"]=function(){return(_getchar_unlocked=Module["_getchar_unlocked"]=Module["asm"]["getchar_unlocked"]).apply(null,arguments)};var ___do_orphaned_stdio_locks=Module["___do_orphaned_stdio_locks"]=function(){return(___do_orphaned_stdio_locks=Module["___do_orphaned_stdio_locks"]=Module["asm"]["__do_orphaned_stdio_locks"]).apply(null,arguments)};var ___unlist_locked_file=Module["___unlist_locked_file"]=function(){return(___unlist_locked_file=Module["___unlist_locked_file"]=Module["asm"]["__unlist_locked_file"]).apply(null,arguments)};var _ftrylockfile=Module["_ftrylockfile"]=function(){return(_ftrylockfile=Module["_ftrylockfile"]=Module["asm"]["ftrylockfile"]).apply(null,arguments)};var _open_wmemstream=Module["_open_wmemstream"]=function(){return(_open_wmemstream=Module["_open_wmemstream"]=Module["asm"]["open_wmemstream"]).apply(null,arguments)};var ___overflow=Module["___overflow"]=function(){return(___overflow=Module["___overflow"]=Module["asm"]["__overflow"]).apply(null,arguments)};var _ferror_unlocked=Module["_ferror_unlocked"]=function(){return(_ferror_unlocked=Module["_ferror_unlocked"]=Module["asm"]["ferror_unlocked"]).apply(null,arguments)};var __IO_ferror_unlocked=Module["__IO_ferror_unlocked"]=function(){return(__IO_ferror_unlocked=Module["__IO_ferror_unlocked"]=Module["asm"]["_IO_ferror_unlocked"]).apply(null,arguments)};var ___isoc99_fscanf=Module["___isoc99_fscanf"]=function(){return(___isoc99_fscanf=Module["___isoc99_fscanf"]=Module["asm"]["__isoc99_fscanf"]).apply(null,arguments)};var _fgetln=Module["_fgetln"]=function(){return(_fgetln=Module["_fgetln"]=Module["asm"]["fgetln"]).apply(null,arguments)};var _getline=Module["_getline"]=function(){return(_getline=Module["_getline"]=Module["asm"]["getline"]).apply(null,arguments)};var ___toread=Module["___toread"]=function(){return(___toread=Module["___toread"]=Module["asm"]["__toread"]).apply(null,arguments)};var _vwscanf=Module["_vwscanf"]=function(){return(_vwscanf=Module["_vwscanf"]=Module["asm"]["vwscanf"]).apply(null,arguments)};var _vfwscanf=Module["_vfwscanf"]=function(){return(_vfwscanf=Module["_vfwscanf"]=Module["asm"]["vfwscanf"]).apply(null,arguments)};var ___isoc99_vwscanf=Module["___isoc99_vwscanf"]=function(){return(___isoc99_vwscanf=Module["___isoc99_vwscanf"]=Module["asm"]["__isoc99_vwscanf"]).apply(null,arguments)};var ___fputwc_unlocked=Module["___fputwc_unlocked"]=function(){return(___fputwc_unlocked=Module["___fputwc_unlocked"]=Module["asm"]["__fputwc_unlocked"]).apply(null,arguments)};var _fwide=Module["_fwide"]=function(){return(_fwide=Module["_fwide"]=Module["asm"]["fwide"]).apply(null,arguments)};var ___fwritex=Module["___fwritex"]=function(){return(___fwritex=Module["___fwritex"]=Module["asm"]["__fwritex"]).apply(null,arguments)};var _fputwc=Module["_fputwc"]=function(){return(_fputwc=Module["_fputwc"]=Module["asm"]["fputwc"]).apply(null,arguments)};var _fputwc_unlocked=Module["_fputwc_unlocked"]=function(){return(_fputwc_unlocked=Module["_fputwc_unlocked"]=Module["asm"]["fputwc_unlocked"]).apply(null,arguments)};var _putwc_unlocked=Module["_putwc_unlocked"]=function(){return(_putwc_unlocked=Module["_putwc_unlocked"]=Module["asm"]["putwc_unlocked"]).apply(null,arguments)};var ___ofl_unlock=Module["___ofl_unlock"]=function(){return(___ofl_unlock=Module["___ofl_unlock"]=Module["asm"]["__ofl_unlock"]).apply(null,arguments)};var ___freadahead=Module["___freadahead"]=function(){return(___freadahead=Module["___freadahead"]=Module["asm"]["__freadahead"]).apply(null,arguments)};var ___freadptr=Module["___freadptr"]=function(){return(___freadptr=Module["___freadptr"]=Module["asm"]["__freadptr"]).apply(null,arguments)};var ___freadptrinc=Module["___freadptrinc"]=function(){return(___freadptrinc=Module["___freadptrinc"]=Module["asm"]["__freadptrinc"]).apply(null,arguments)};var ___fseterr=Module["___fseterr"]=function(){return(___fseterr=Module["___fseterr"]=Module["asm"]["__fseterr"]).apply(null,arguments)};var _fflush_unlocked=Module["_fflush_unlocked"]=function(){return(_fflush_unlocked=Module["_fflush_unlocked"]=Module["asm"]["fflush_unlocked"]).apply(null,arguments)};var _fsetpos=Module["_fsetpos"]=function(){return(_fsetpos=Module["_fsetpos"]=Module["asm"]["fsetpos"]).apply(null,arguments)};var ___fseeko=Module["___fseeko"]=function(){return(___fseeko=Module["___fseeko"]=Module["asm"]["__fseeko"]).apply(null,arguments)};var _fsetpos64=Module["_fsetpos64"]=function(){return(_fsetpos64=Module["_fsetpos64"]=Module["asm"]["fsetpos64"]).apply(null,arguments)};var _putw=Module["_putw"]=function(){return(_putw=Module["_putw"]=Module["asm"]["putw"]).apply(null,arguments)};var _ungetwc=Module["_ungetwc"]=function(){return(_ungetwc=Module["_ungetwc"]=Module["asm"]["ungetwc"]).apply(null,arguments)};var ___wait=Module["___wait"]=function(){return(___wait=Module["___wait"]=Module["asm"]["__wait"]).apply(null,arguments)};var _getwchar=Module["_getwchar"]=function(){return(_getwchar=Module["_getwchar"]=Module["asm"]["getwchar"]).apply(null,arguments)};var _fgetwc=Module["_fgetwc"]=function(){return(_fgetwc=Module["_fgetwc"]=Module["asm"]["fgetwc"]).apply(null,arguments)};var _getwchar_unlocked=Module["_getwchar_unlocked"]=function(){return(_getwchar_unlocked=Module["_getwchar_unlocked"]=Module["asm"]["getwchar_unlocked"]).apply(null,arguments)};var _open_memstream=Module["_open_memstream"]=function(){return(_open_memstream=Module["_open_memstream"]=Module["asm"]["open_memstream"]).apply(null,arguments)};var _asprintf=Module["_asprintf"]=function(){return(_asprintf=Module["_asprintf"]=Module["asm"]["asprintf"]).apply(null,arguments)};var _vasprintf=Module["_vasprintf"]=function(){return(_vasprintf=Module["_vasprintf"]=Module["asm"]["vasprintf"]).apply(null,arguments)};var _vsprintf=Module["_vsprintf"]=function(){return(_vsprintf=Module["_vsprintf"]=Module["asm"]["vsprintf"]).apply(null,arguments)};var _vsiprintf=Module["_vsiprintf"]=function(){return(_vsiprintf=Module["_vsiprintf"]=Module["asm"]["vsiprintf"]).apply(null,arguments)};var _vsniprintf=Module["_vsniprintf"]=function(){return(_vsniprintf=Module["_vsniprintf"]=Module["asm"]["vsniprintf"]).apply(null,arguments)};var ___small_vsprintf=Module["___small_vsprintf"]=function(){return(___small_vsprintf=Module["___small_vsprintf"]=Module["asm"]["__small_vsprintf"]).apply(null,arguments)};var ___small_vsnprintf=Module["___small_vsnprintf"]=function(){return(___small_vsnprintf=Module["___small_vsnprintf"]=Module["asm"]["__small_vsnprintf"]).apply(null,arguments)};var _setbuffer=Module["_setbuffer"]=function(){return(_setbuffer=Module["_setbuffer"]=Module["asm"]["setbuffer"]).apply(null,arguments)};var _wprintf=Module["_wprintf"]=function(){return(_wprintf=Module["_wprintf"]=Module["asm"]["wprintf"]).apply(null,arguments)};var _vwprintf=Module["_vwprintf"]=function(){return(_vwprintf=Module["_vwprintf"]=Module["asm"]["vwprintf"]).apply(null,arguments)};var ___fseeko_unlocked=Module["___fseeko_unlocked"]=function(){return(___fseeko_unlocked=Module["___fseeko_unlocked"]=Module["asm"]["__fseeko_unlocked"]).apply(null,arguments)};var _fseeko=Module["_fseeko"]=function(){return(_fseeko=Module["_fseeko"]=Module["asm"]["fseeko"]).apply(null,arguments)};var _fseeko64=Module["_fseeko64"]=function(){return(_fseeko64=Module["_fseeko64"]=Module["asm"]["fseeko64"]).apply(null,arguments)};var ___fmodeflags=Module["___fmodeflags"]=function(){return(___fmodeflags=Module["___fmodeflags"]=Module["asm"]["__fmodeflags"]).apply(null,arguments)};var _fopen64=Module["_fopen64"]=function(){return(_fopen64=Module["_fopen64"]=Module["asm"]["fopen64"]).apply(null,arguments)};var _wscanf=Module["_wscanf"]=function(){return(_wscanf=Module["_wscanf"]=Module["asm"]["wscanf"]).apply(null,arguments)};var ___isoc99_wscanf=Module["___isoc99_wscanf"]=function(){return(___isoc99_wscanf=Module["___isoc99_wscanf"]=Module["asm"]["__isoc99_wscanf"]).apply(null,arguments)};var _scanf=Module["_scanf"]=function(){return(_scanf=Module["_scanf"]=Module["asm"]["scanf"]).apply(null,arguments)};var _vscanf=Module["_vscanf"]=function(){return(_vscanf=Module["_vscanf"]=Module["asm"]["vscanf"]).apply(null,arguments)};var ___isoc99_scanf=Module["___isoc99_scanf"]=function(){return(___isoc99_scanf=Module["___isoc99_scanf"]=Module["asm"]["__isoc99_scanf"]).apply(null,arguments)};var _vfiprintf=Module["_vfiprintf"]=function(){return(_vfiprintf=Module["_vfiprintf"]=Module["asm"]["vfiprintf"]).apply(null,arguments)};var ___small_vfprintf=Module["___small_vfprintf"]=function(){return(___small_vfprintf=Module["___small_vfprintf"]=Module["asm"]["__small_vfprintf"]).apply(null,arguments)};var _fread_unlocked=Module["_fread_unlocked"]=function(){return(_fread_unlocked=Module["_fread_unlocked"]=Module["asm"]["fread_unlocked"]).apply(null,arguments)};var _fwscanf=Module["_fwscanf"]=function(){return(_fwscanf=Module["_fwscanf"]=Module["asm"]["fwscanf"]).apply(null,arguments)};var ___isoc99_fwscanf=Module["___isoc99_fwscanf"]=function(){return(___isoc99_fwscanf=Module["___isoc99_fwscanf"]=Module["asm"]["__isoc99_fwscanf"]).apply(null,arguments)};var _getw=Module["_getw"]=function(){return(_getw=Module["_getw"]=Module["asm"]["getw"]).apply(null,arguments)};var _tmpfile=Module["_tmpfile"]=function(){return(_tmpfile=Module["_tmpfile"]=Module["asm"]["tmpfile"]).apply(null,arguments)};var _tmpfile64=Module["_tmpfile64"]=function(){return(_tmpfile64=Module["_tmpfile64"]=Module["asm"]["tmpfile64"]).apply(null,arguments)};var _clearerr_unlocked=Module["_clearerr_unlocked"]=function(){return(_clearerr_unlocked=Module["_clearerr_unlocked"]=Module["asm"]["clearerr_unlocked"]).apply(null,arguments)};var ___small_sprintf=Module["___small_sprintf"]=function(){return(___small_sprintf=Module["___small_sprintf"]=Module["asm"]["__small_sprintf"]).apply(null,arguments)};var _gets=Module["_gets"]=function(){return(_gets=Module["_gets"]=Module["asm"]["gets"]).apply(null,arguments)};var _swprintf=Module["_swprintf"]=function(){return(_swprintf=Module["_swprintf"]=Module["asm"]["swprintf"]).apply(null,arguments)};var _vswprintf=Module["_vswprintf"]=function(){return(_vswprintf=Module["_vswprintf"]=Module["asm"]["vswprintf"]).apply(null,arguments)};var _putwc=Module["_putwc"]=function(){return(_putwc=Module["_putwc"]=Module["asm"]["putwc"]).apply(null,arguments)};var _getdelim=Module["_getdelim"]=function(){return(_getdelim=Module["_getdelim"]=Module["asm"]["getdelim"]).apply(null,arguments)};var ___getdelim=Module["___getdelim"]=function(){return(___getdelim=Module["___getdelim"]=Module["asm"]["__getdelim"]).apply(null,arguments)};var _swscanf=Module["_swscanf"]=function(){return(_swscanf=Module["_swscanf"]=Module["asm"]["swscanf"]).apply(null,arguments)};var _vswscanf=Module["_vswscanf"]=function(){return(_vswscanf=Module["_vswscanf"]=Module["asm"]["vswscanf"]).apply(null,arguments)};var ___isoc99_swscanf=Module["___isoc99_swscanf"]=function(){return(___isoc99_swscanf=Module["___isoc99_swscanf"]=Module["asm"]["__isoc99_swscanf"]).apply(null,arguments)};var ___toread_needs_stdio_exit=Module["___toread_needs_stdio_exit"]=function(){return(___toread_needs_stdio_exit=Module["___toread_needs_stdio_exit"]=Module["asm"]["__toread_needs_stdio_exit"]).apply(null,arguments)};var _getwc=Module["_getwc"]=function(){return(_getwc=Module["_getwc"]=Module["asm"]["getwc"]).apply(null,arguments)};var ___isoc99_vfwscanf=Module["___isoc99_vfwscanf"]=function(){return(___isoc99_vfwscanf=Module["___isoc99_vfwscanf"]=Module["asm"]["__isoc99_vfwscanf"]).apply(null,arguments)};var _fgets_unlocked=Module["_fgets_unlocked"]=function(){return(_fgets_unlocked=Module["_fgets_unlocked"]=Module["asm"]["fgets_unlocked"]).apply(null,arguments)};var ___vfprintf_internal=Module["___vfprintf_internal"]=function(){return(___vfprintf_internal=Module["___vfprintf_internal"]=Module["asm"]["__vfprintf_internal"]).apply(null,arguments)};var _getchar=Module["_getchar"]=function(){return(_getchar=Module["_getchar"]=Module["asm"]["getchar"]).apply(null,arguments)};var ___isoc99_vscanf=Module["___isoc99_vscanf"]=function(){return(___isoc99_vscanf=Module["___isoc99_vscanf"]=Module["asm"]["__isoc99_vscanf"]).apply(null,arguments)};var _fmemopen=Module["_fmemopen"]=function(){return(_fmemopen=Module["_fmemopen"]=Module["asm"]["fmemopen"]).apply(null,arguments)};var _freopen=Module["_freopen"]=function(){return(_freopen=Module["_freopen"]=Module["asm"]["freopen"]).apply(null,arguments)};var _freopen64=Module["_freopen64"]=function(){return(_freopen64=Module["_freopen64"]=Module["asm"]["freopen64"]).apply(null,arguments)};var _tempnam=Module["_tempnam"]=function(){return(_tempnam=Module["_tempnam"]=Module["asm"]["tempnam"]).apply(null,arguments)};var _putchar_unlocked=Module["_putchar_unlocked"]=function(){return(_putchar_unlocked=Module["_putchar_unlocked"]=Module["asm"]["putchar_unlocked"]).apply(null,arguments)};var __IO_getc=Module["__IO_getc"]=function(){return(__IO_getc=Module["__IO_getc"]=Module["asm"]["_IO_getc"]).apply(null,arguments)};var _pclose=Module["_pclose"]=function(){return(_pclose=Module["_pclose"]=Module["asm"]["pclose"]).apply(null,arguments)};var _fwprintf=Module["_fwprintf"]=function(){return(_fwprintf=Module["_fwprintf"]=Module["asm"]["fwprintf"]).apply(null,arguments)};var _vfwprintf=Module["_vfwprintf"]=function(){return(_vfwprintf=Module["_vfwprintf"]=Module["asm"]["vfwprintf"]).apply(null,arguments)};var _vsscanf=Module["_vsscanf"]=function(){return(_vsscanf=Module["_vsscanf"]=Module["asm"]["vsscanf"]).apply(null,arguments)};var ___isoc99_vsscanf=Module["___isoc99_vsscanf"]=function(){return(___isoc99_vsscanf=Module["___isoc99_vsscanf"]=Module["asm"]["__isoc99_vsscanf"]).apply(null,arguments)};var ___isoc99_sscanf=Module["___isoc99_sscanf"]=function(){return(___isoc99_sscanf=Module["___isoc99_sscanf"]=Module["asm"]["__isoc99_sscanf"]).apply(null,arguments)};var __IO_putc=Module["__IO_putc"]=function(){return(__IO_putc=Module["__IO_putc"]=Module["asm"]["_IO_putc"]).apply(null,arguments)};var __flushlbf=Module["__flushlbf"]=function(){return(__flushlbf=Module["__flushlbf"]=Module["asm"]["_flushlbf"]).apply(null,arguments)};var ___fsetlocking=Module["___fsetlocking"]=function(){return(___fsetlocking=Module["___fsetlocking"]=Module["asm"]["__fsetlocking"]).apply(null,arguments)};var ___fwriting=Module["___fwriting"]=function(){return(___fwriting=Module["___fwriting"]=Module["asm"]["__fwriting"]).apply(null,arguments)};var ___freading=Module["___freading"]=function(){return(___freading=Module["___freading"]=Module["asm"]["__freading"]).apply(null,arguments)};var ___freadable=Module["___freadable"]=function(){return(___freadable=Module["___freadable"]=Module["asm"]["__freadable"]).apply(null,arguments)};var ___fwritable=Module["___fwritable"]=function(){return(___fwritable=Module["___fwritable"]=Module["asm"]["__fwritable"]).apply(null,arguments)};var ___flbf=Module["___flbf"]=function(){return(___flbf=Module["___flbf"]=Module["asm"]["__flbf"]).apply(null,arguments)};var ___fbufsize=Module["___fbufsize"]=function(){return(___fbufsize=Module["___fbufsize"]=Module["asm"]["__fbufsize"]).apply(null,arguments)};var ___fpending=Module["___fpending"]=function(){return(___fpending=Module["___fpending"]=Module["asm"]["__fpending"]).apply(null,arguments)};var ___fpurge=Module["___fpurge"]=function(){return(___fpurge=Module["___fpurge"]=Module["asm"]["__fpurge"]).apply(null,arguments)};var _fpurge=Module["_fpurge"]=function(){return(_fpurge=Module["_fpurge"]=Module["asm"]["fpurge"]).apply(null,arguments)};var _fputws=Module["_fputws"]=function(){return(_fputws=Module["_fputws"]=Module["asm"]["fputws"]).apply(null,arguments)};var _fputws_unlocked=Module["_fputws_unlocked"]=function(){return(_fputws_unlocked=Module["_fputws_unlocked"]=Module["asm"]["fputws_unlocked"]).apply(null,arguments)};var ___stdout_write=Module["___stdout_write"]=function(){return(___stdout_write=Module["___stdout_write"]=Module["asm"]["__stdout_write"]).apply(null,arguments)};var ___fgetwc_unlocked=Module["___fgetwc_unlocked"]=function(){return(___fgetwc_unlocked=Module["___fgetwc_unlocked"]=Module["asm"]["__fgetwc_unlocked"]).apply(null,arguments)};var _fgetwc_unlocked=Module["_fgetwc_unlocked"]=function(){return(_fgetwc_unlocked=Module["_fgetwc_unlocked"]=Module["asm"]["fgetwc_unlocked"]).apply(null,arguments)};var _getwc_unlocked=Module["_getwc_unlocked"]=function(){return(_getwc_unlocked=Module["_getwc_unlocked"]=Module["asm"]["getwc_unlocked"]).apply(null,arguments)};var _setlinebuf=Module["_setlinebuf"]=function(){return(_setlinebuf=Module["_setlinebuf"]=Module["asm"]["setlinebuf"]).apply(null,arguments)};var _fileno_unlocked=Module["_fileno_unlocked"]=function(){return(_fileno_unlocked=Module["_fileno_unlocked"]=Module["asm"]["fileno_unlocked"]).apply(null,arguments)};var _fgetc_unlocked=Module["_fgetc_unlocked"]=function(){return(_fgetc_unlocked=Module["_fgetc_unlocked"]=Module["asm"]["fgetc_unlocked"]).apply(null,arguments)};var __IO_getc_unlocked=Module["__IO_getc_unlocked"]=function(){return(__IO_getc_unlocked=Module["__IO_getc_unlocked"]=Module["asm"]["_IO_getc_unlocked"]).apply(null,arguments)};var _fgetws=Module["_fgetws"]=function(){return(_fgetws=Module["_fgetws"]=Module["asm"]["fgetws"]).apply(null,arguments)};var _fgetws_unlocked=Module["_fgetws_unlocked"]=function(){return(_fgetws_unlocked=Module["_fgetws_unlocked"]=Module["asm"]["fgetws_unlocked"]).apply(null,arguments)};var ___isoc99_vswscanf=Module["___isoc99_vswscanf"]=function(){return(___isoc99_vswscanf=Module["___isoc99_vswscanf"]=Module["asm"]["__isoc99_vswscanf"]).apply(null,arguments)};var _fgetpos=Module["_fgetpos"]=function(){return(_fgetpos=Module["_fgetpos"]=Module["asm"]["fgetpos"]).apply(null,arguments)};var _fgetpos64=Module["_fgetpos64"]=function(){return(_fgetpos64=Module["_fgetpos64"]=Module["asm"]["fgetpos64"]).apply(null,arguments)};var _feof_unlocked=Module["_feof_unlocked"]=function(){return(_feof_unlocked=Module["_feof_unlocked"]=Module["asm"]["feof_unlocked"]).apply(null,arguments)};var __IO_feof_unlocked=Module["__IO_feof_unlocked"]=function(){return(__IO_feof_unlocked=Module["__IO_feof_unlocked"]=Module["asm"]["_IO_feof_unlocked"]).apply(null,arguments)};var _putc_unlocked=Module["_putc_unlocked"]=function(){return(_putc_unlocked=Module["_putc_unlocked"]=Module["asm"]["putc_unlocked"]).apply(null,arguments)};var _fputc_unlocked=Module["_fputc_unlocked"]=function(){return(_fputc_unlocked=Module["_fputc_unlocked"]=Module["asm"]["fputc_unlocked"]).apply(null,arguments)};var __IO_putc_unlocked=Module["__IO_putc_unlocked"]=function(){return(__IO_putc_unlocked=Module["__IO_putc_unlocked"]=Module["asm"]["_IO_putc_unlocked"]).apply(null,arguments)};var _putwchar=Module["_putwchar"]=function(){return(_putwchar=Module["_putwchar"]=Module["asm"]["putwchar"]).apply(null,arguments)};var _putwchar_unlocked=Module["_putwchar_unlocked"]=function(){return(_putwchar_unlocked=Module["_putwchar_unlocked"]=Module["asm"]["putwchar_unlocked"]).apply(null,arguments)};var _ecvt=Module["_ecvt"]=function(){return(_ecvt=Module["_ecvt"]=Module["asm"]["ecvt"]).apply(null,arguments)};var _atoi=Module["_atoi"]=function(){return(_atoi=Module["_atoi"]=Module["asm"]["atoi"]).apply(null,arguments)};var _strtod=Module["_strtod"]=function(){return(_strtod=Module["_strtod"]=Module["asm"]["strtod"]).apply(null,arguments)};var _abs=Module["_abs"]=function(){return(_abs=Module["_abs"]=Module["asm"]["abs"]).apply(null,arguments)};var _wcstof=Module["_wcstof"]=function(){return(_wcstof=Module["_wcstof"]=Module["asm"]["wcstof"]).apply(null,arguments)};var _wcstod=Module["_wcstod"]=function(){return(_wcstod=Module["_wcstod"]=Module["asm"]["wcstod"]).apply(null,arguments)};var _wcstold=Module["_wcstold"]=function(){return(_wcstold=Module["_wcstold"]=Module["asm"]["wcstold"]).apply(null,arguments)};var _strtoll=Module["_strtoll"]=function(){return(_strtoll=Module["_strtoll"]=Module["asm"]["strtoll"]).apply(null,arguments)};var _strtoimax=Module["_strtoimax"]=function(){return(_strtoimax=Module["_strtoimax"]=Module["asm"]["strtoimax"]).apply(null,arguments)};var _strtoumax=Module["_strtoumax"]=function(){return(_strtoumax=Module["_strtoumax"]=Module["asm"]["strtoumax"]).apply(null,arguments)};var ___strtol_internal=Module["___strtol_internal"]=function(){return(___strtol_internal=Module["___strtol_internal"]=Module["asm"]["__strtol_internal"]).apply(null,arguments)};var ___strtoul_internal=Module["___strtoul_internal"]=function(){return(___strtoul_internal=Module["___strtoul_internal"]=Module["asm"]["__strtoul_internal"]).apply(null,arguments)};var ___strtoll_internal=Module["___strtoll_internal"]=function(){return(___strtoll_internal=Module["___strtoll_internal"]=Module["asm"]["__strtoll_internal"]).apply(null,arguments)};var ___strtoull_internal=Module["___strtoull_internal"]=function(){return(___strtoull_internal=Module["___strtoull_internal"]=Module["asm"]["__strtoull_internal"]).apply(null,arguments)};var ___strtoimax_internal=Module["___strtoimax_internal"]=function(){return(___strtoimax_internal=Module["___strtoimax_internal"]=Module["asm"]["__strtoimax_internal"]).apply(null,arguments)};var ___strtoumax_internal=Module["___strtoumax_internal"]=function(){return(___strtoumax_internal=Module["___strtoumax_internal"]=Module["asm"]["__strtoumax_internal"]).apply(null,arguments)};var _labs=Module["_labs"]=function(){return(_labs=Module["_labs"]=Module["asm"]["labs"]).apply(null,arguments)};var _atoll=Module["_atoll"]=function(){return(_atoll=Module["_atoll"]=Module["asm"]["atoll"]).apply(null,arguments)};var _wcstoull=Module["_wcstoull"]=function(){return(_wcstoull=Module["_wcstoull"]=Module["asm"]["wcstoull"]).apply(null,arguments)};var _wcstoll=Module["_wcstoll"]=function(){return(_wcstoll=Module["_wcstoll"]=Module["asm"]["wcstoll"]).apply(null,arguments)};var _wcstoul=Module["_wcstoul"]=function(){return(_wcstoul=Module["_wcstoul"]=Module["asm"]["wcstoul"]).apply(null,arguments)};var _wcstoimax=Module["_wcstoimax"]=function(){return(_wcstoimax=Module["_wcstoimax"]=Module["asm"]["wcstoimax"]).apply(null,arguments)};var _wcstoumax=Module["_wcstoumax"]=function(){return(_wcstoumax=Module["_wcstoumax"]=Module["asm"]["wcstoumax"]).apply(null,arguments)};var _lldiv=Module["_lldiv"]=function(){return(_lldiv=Module["_lldiv"]=Module["asm"]["lldiv"]).apply(null,arguments)};var _imaxabs=Module["_imaxabs"]=function(){return(_imaxabs=Module["_imaxabs"]=Module["asm"]["imaxabs"]).apply(null,arguments)};var _bsearch=Module["_bsearch"]=function(){return(_bsearch=Module["_bsearch"]=Module["asm"]["bsearch"]).apply(null,arguments)};var _imaxdiv=Module["_imaxdiv"]=function(){return(_imaxdiv=Module["_imaxdiv"]=Module["asm"]["imaxdiv"]).apply(null,arguments)};var _llabs=Module["_llabs"]=function(){return(_llabs=Module["_llabs"]=Module["asm"]["llabs"]).apply(null,arguments)};var _fcvt=Module["_fcvt"]=function(){return(_fcvt=Module["_fcvt"]=Module["asm"]["fcvt"]).apply(null,arguments)};var _div=Module["_div"]=function(){return(_div=Module["_div"]=Module["asm"]["div"]).apply(null,arguments)};var _gcvt=Module["_gcvt"]=function(){return(_gcvt=Module["_gcvt"]=Module["asm"]["gcvt"]).apply(null,arguments)};var _strtof=Module["_strtof"]=function(){return(_strtof=Module["_strtof"]=Module["asm"]["strtof"]).apply(null,arguments)};var _strtold=Module["_strtold"]=function(){return(_strtold=Module["_strtold"]=Module["asm"]["strtold"]).apply(null,arguments)};var _strtof_l=Module["_strtof_l"]=function(){return(_strtof_l=Module["_strtof_l"]=Module["asm"]["strtof_l"]).apply(null,arguments)};var _strtod_l=Module["_strtod_l"]=function(){return(_strtod_l=Module["_strtod_l"]=Module["asm"]["strtod_l"]).apply(null,arguments)};var _strtold_l=Module["_strtold_l"]=function(){return(_strtold_l=Module["_strtold_l"]=Module["asm"]["strtold_l"]).apply(null,arguments)};var _ldiv=Module["_ldiv"]=function(){return(_ldiv=Module["_ldiv"]=Module["asm"]["ldiv"]).apply(null,arguments)};var _freelocale=Module["_freelocale"]=function(){return(_freelocale=Module["_freelocale"]=Module["asm"]["freelocale"]).apply(null,arguments)};var ___loc_is_allocated=Module["___loc_is_allocated"]=function(){return(___loc_is_allocated=Module["___loc_is_allocated"]=Module["asm"]["__loc_is_allocated"]).apply(null,arguments)};var ___freelocale=Module["___freelocale"]=function(){return(___freelocale=Module["___freelocale"]=Module["asm"]["__freelocale"]).apply(null,arguments)};var ___wcsxfrm_l=Module["___wcsxfrm_l"]=function(){return(___wcsxfrm_l=Module["___wcsxfrm_l"]=Module["asm"]["__wcsxfrm_l"]).apply(null,arguments)};var _wcsxfrm_l=Module["_wcsxfrm_l"]=function(){return(_wcsxfrm_l=Module["_wcsxfrm_l"]=Module["asm"]["wcsxfrm_l"]).apply(null,arguments)};var ___gettextdomain=Module["___gettextdomain"]=function(){return(___gettextdomain=Module["___gettextdomain"]=Module["asm"]["__gettextdomain"]).apply(null,arguments)};var _ngettext=Module["_ngettext"]=function(){return(_ngettext=Module["_ngettext"]=Module["asm"]["ngettext"]).apply(null,arguments)};var _dngettext=Module["_dngettext"]=function(){return(_dngettext=Module["_dngettext"]=Module["asm"]["dngettext"]).apply(null,arguments)};var _catclose=Module["_catclose"]=function(){return(_catclose=Module["_catclose"]=Module["asm"]["catclose"]).apply(null,arguments)};var ___strcoll_l=Module["___strcoll_l"]=function(){return(___strcoll_l=Module["___strcoll_l"]=Module["asm"]["__strcoll_l"]).apply(null,arguments)};var _strcoll_l=Module["_strcoll_l"]=function(){return(_strcoll_l=Module["_strcoll_l"]=Module["asm"]["strcoll_l"]).apply(null,arguments)};var ___pleval=Module["___pleval"]=function(){return(___pleval=Module["___pleval"]=Module["asm"]["__pleval"]).apply(null,arguments)};var _strfmon_l=Module["_strfmon_l"]=function(){return(_strfmon_l=Module["_strfmon_l"]=Module["asm"]["strfmon_l"]).apply(null,arguments)};var _strfmon=Module["_strfmon"]=function(){return(_strfmon=Module["_strfmon"]=Module["asm"]["strfmon"]).apply(null,arguments)};var ___newlocale=Module["___newlocale"]=function(){return(___newlocale=Module["___newlocale"]=Module["asm"]["__newlocale"]).apply(null,arguments)};var ___get_locale=Module["___get_locale"]=function(){return(___get_locale=Module["___get_locale"]=Module["asm"]["__get_locale"]).apply(null,arguments)};var _newlocale=Module["_newlocale"]=function(){return(_newlocale=Module["_newlocale"]=Module["asm"]["newlocale"]).apply(null,arguments)};var ___nl_langinfo_l=Module["___nl_langinfo_l"]=function(){return(___nl_langinfo_l=Module["___nl_langinfo_l"]=Module["asm"]["__nl_langinfo_l"]).apply(null,arguments)};var ___nl_langinfo=Module["___nl_langinfo"]=function(){return(___nl_langinfo=Module["___nl_langinfo"]=Module["asm"]["__nl_langinfo"]).apply(null,arguments)};var _nl_langinfo_l=Module["_nl_langinfo_l"]=function(){return(_nl_langinfo_l=Module["_nl_langinfo_l"]=Module["asm"]["nl_langinfo_l"]).apply(null,arguments)};var _dcngettext=Module["_dcngettext"]=function(){return(_dcngettext=Module["_dcngettext"]=Module["asm"]["dcngettext"]).apply(null,arguments)};var ___mo_lookup=Module["___mo_lookup"]=function(){return(___mo_lookup=Module["___mo_lookup"]=Module["asm"]["__mo_lookup"]).apply(null,arguments)};var ___uselocale=Module["___uselocale"]=function(){return(___uselocale=Module["___uselocale"]=Module["asm"]["__uselocale"]).apply(null,arguments)};var _uselocale=Module["_uselocale"]=function(){return(_uselocale=Module["_uselocale"]=Module["asm"]["uselocale"]).apply(null,arguments)};var ___strxfrm_l=Module["___strxfrm_l"]=function(){return(___strxfrm_l=Module["___strxfrm_l"]=Module["asm"]["__strxfrm_l"]).apply(null,arguments)};var _strxfrm=Module["_strxfrm"]=function(){return(_strxfrm=Module["_strxfrm"]=Module["asm"]["strxfrm"]).apply(null,arguments)};var _strxfrm_l=Module["_strxfrm_l"]=function(){return(_strxfrm_l=Module["_strxfrm_l"]=Module["asm"]["strxfrm_l"]).apply(null,arguments)};var _catopen=Module["_catopen"]=function(){return(_catopen=Module["_catopen"]=Module["asm"]["catopen"]).apply(null,arguments)};var ___wcscoll_l=Module["___wcscoll_l"]=function(){return(___wcscoll_l=Module["___wcscoll_l"]=Module["asm"]["__wcscoll_l"]).apply(null,arguments)};var _wcscoll_l=Module["_wcscoll_l"]=function(){return(_wcscoll_l=Module["_wcscoll_l"]=Module["asm"]["wcscoll_l"]).apply(null,arguments)};var ___lctrans_impl=Module["___lctrans_impl"]=function(){return(___lctrans_impl=Module["___lctrans_impl"]=Module["asm"]["__lctrans_impl"]).apply(null,arguments)};var ___duplocale=Module["___duplocale"]=function(){return(___duplocale=Module["___duplocale"]=Module["asm"]["__duplocale"]).apply(null,arguments)};var _duplocale=Module["_duplocale"]=function(){return(_duplocale=Module["_duplocale"]=Module["asm"]["duplocale"]).apply(null,arguments)};var _iconv_open=Module["_iconv_open"]=function(){return(_iconv_open=Module["_iconv_open"]=Module["asm"]["iconv_open"]).apply(null,arguments)};var _iconv_close=Module["_iconv_close"]=function(){return(_iconv_close=Module["_iconv_close"]=Module["asm"]["iconv_close"]).apply(null,arguments)};var _iconv=Module["_iconv"]=function(){return(_iconv=Module["_iconv"]=Module["asm"]["iconv"]).apply(null,arguments)};var _catgets=Module["_catgets"]=function(){return(_catgets=Module["_catgets"]=Module["asm"]["catgets"]).apply(null,arguments)};var _asctime=Module["_asctime"]=function(){return(_asctime=Module["_asctime"]=Module["asm"]["asctime"]).apply(null,arguments)};var _ctime=Module["_ctime"]=function(){return(_ctime=Module["_ctime"]=Module["asm"]["ctime"]).apply(null,arguments)};var _localtime=Module["_localtime"]=function(){return(_localtime=Module["_localtime"]=Module["asm"]["localtime"]).apply(null,arguments)};var _getpagesize=Module["_getpagesize"]=function(){return(_getpagesize=Module["_getpagesize"]=Module["asm"]["getpagesize"]).apply(null,arguments)};var _vwarn=Module["_vwarn"]=function(){return(_vwarn=Module["_vwarn"]=Module["asm"]["vwarn"]).apply(null,arguments)};var _vwarnx=Module["_vwarnx"]=function(){return(_vwarnx=Module["_vwarnx"]=Module["asm"]["vwarnx"]).apply(null,arguments)};var _verr=Module["_verr"]=function(){return(_verr=Module["_verr"]=Module["asm"]["verr"]).apply(null,arguments)};var _verrx=Module["_verrx"]=function(){return(_verrx=Module["_verrx"]=Module["asm"]["verrx"]).apply(null,arguments)};var _warn=Module["_warn"]=function(){return(_warn=Module["_warn"]=Module["asm"]["warn"]).apply(null,arguments)};var _warnx=Module["_warnx"]=function(){return(_warnx=Module["_warnx"]=Module["asm"]["warnx"]).apply(null,arguments)};var _err=Module["_err"]=function(){return(_err=Module["_err"]=Module["asm"]["err"]).apply(null,arguments)};var _errx=Module["_errx"]=function(){return(_errx=Module["_errx"]=Module["asm"]["errx"]).apply(null,arguments)};var ___emscripten_environ_constructor=Module["___emscripten_environ_constructor"]=function(){return(___emscripten_environ_constructor=Module["___emscripten_environ_constructor"]=Module["asm"]["__emscripten_environ_constructor"]).apply(null,arguments)};var ___putenv=Module["___putenv"]=function(){return(___putenv=Module["___putenv"]=Module["asm"]["__putenv"]).apply(null,arguments)};var _putenv=Module["_putenv"]=function(){return(_putenv=Module["_putenv"]=Module["asm"]["putenv"]).apply(null,arguments)};var __get_tzname=Module["__get_tzname"]=function(){return(__get_tzname=Module["__get_tzname"]=Module["asm"]["_get_tzname"]).apply(null,arguments)};var __get_daylight=Module["__get_daylight"]=function(){return(__get_daylight=Module["__get_daylight"]=Module["asm"]["_get_daylight"]).apply(null,arguments)};var __get_timezone=Module["__get_timezone"]=function(){return(__get_timezone=Module["__get_timezone"]=Module["asm"]["_get_timezone"]).apply(null,arguments)};var ___emscripten_pthread_data_constructor=Module["___emscripten_pthread_data_constructor"]=function(){return(___emscripten_pthread_data_constructor=Module["___emscripten_pthread_data_constructor"]=Module["asm"]["__emscripten_pthread_data_constructor"]).apply(null,arguments)};var _emscripten_get_heap_size=Module["_emscripten_get_heap_size"]=function(){return(_emscripten_get_heap_size=Module["_emscripten_get_heap_size"]=Module["asm"]["emscripten_get_heap_size"]).apply(null,arguments)};var _emscripten_atomic_exchange_u8=Module["_emscripten_atomic_exchange_u8"]=function(){return(_emscripten_atomic_exchange_u8=Module["_emscripten_atomic_exchange_u8"]=Module["asm"]["emscripten_atomic_exchange_u8"]).apply(null,arguments)};var _emscripten_atomic_exchange_u16=Module["_emscripten_atomic_exchange_u16"]=function(){return(_emscripten_atomic_exchange_u16=Module["_emscripten_atomic_exchange_u16"]=Module["asm"]["emscripten_atomic_exchange_u16"]).apply(null,arguments)};var _emscripten_atomic_exchange_u32=Module["_emscripten_atomic_exchange_u32"]=function(){return(_emscripten_atomic_exchange_u32=Module["_emscripten_atomic_exchange_u32"]=Module["asm"]["emscripten_atomic_exchange_u32"]).apply(null,arguments)};var _emscripten_atomic_exchange_u64=Module["_emscripten_atomic_exchange_u64"]=function(){return(_emscripten_atomic_exchange_u64=Module["_emscripten_atomic_exchange_u64"]=Module["asm"]["emscripten_atomic_exchange_u64"]).apply(null,arguments)};var _emscripten_atomic_cas_u8=Module["_emscripten_atomic_cas_u8"]=function(){return(_emscripten_atomic_cas_u8=Module["_emscripten_atomic_cas_u8"]=Module["asm"]["emscripten_atomic_cas_u8"]).apply(null,arguments)};var _emscripten_atomic_cas_u16=Module["_emscripten_atomic_cas_u16"]=function(){return(_emscripten_atomic_cas_u16=Module["_emscripten_atomic_cas_u16"]=Module["asm"]["emscripten_atomic_cas_u16"]).apply(null,arguments)};var _emscripten_atomic_cas_u32=Module["_emscripten_atomic_cas_u32"]=function(){return(_emscripten_atomic_cas_u32=Module["_emscripten_atomic_cas_u32"]=Module["asm"]["emscripten_atomic_cas_u32"]).apply(null,arguments)};var _emscripten_atomic_cas_u64=Module["_emscripten_atomic_cas_u64"]=function(){return(_emscripten_atomic_cas_u64=Module["_emscripten_atomic_cas_u64"]=Module["asm"]["emscripten_atomic_cas_u64"]).apply(null,arguments)};var _emscripten_atomic_load_u8=Module["_emscripten_atomic_load_u8"]=function(){return(_emscripten_atomic_load_u8=Module["_emscripten_atomic_load_u8"]=Module["asm"]["emscripten_atomic_load_u8"]).apply(null,arguments)};var _emscripten_atomic_load_u16=Module["_emscripten_atomic_load_u16"]=function(){return(_emscripten_atomic_load_u16=Module["_emscripten_atomic_load_u16"]=Module["asm"]["emscripten_atomic_load_u16"]).apply(null,arguments)};var _emscripten_atomic_load_u32=Module["_emscripten_atomic_load_u32"]=function(){return(_emscripten_atomic_load_u32=Module["_emscripten_atomic_load_u32"]=Module["asm"]["emscripten_atomic_load_u32"]).apply(null,arguments)};var _emscripten_atomic_load_f32=Module["_emscripten_atomic_load_f32"]=function(){return(_emscripten_atomic_load_f32=Module["_emscripten_atomic_load_f32"]=Module["asm"]["emscripten_atomic_load_f32"]).apply(null,arguments)};var _emscripten_atomic_load_u64=Module["_emscripten_atomic_load_u64"]=function(){return(_emscripten_atomic_load_u64=Module["_emscripten_atomic_load_u64"]=Module["asm"]["emscripten_atomic_load_u64"]).apply(null,arguments)};var _emscripten_atomic_load_f64=Module["_emscripten_atomic_load_f64"]=function(){return(_emscripten_atomic_load_f64=Module["_emscripten_atomic_load_f64"]=Module["asm"]["emscripten_atomic_load_f64"]).apply(null,arguments)};var _emscripten_atomic_store_u8=Module["_emscripten_atomic_store_u8"]=function(){return(_emscripten_atomic_store_u8=Module["_emscripten_atomic_store_u8"]=Module["asm"]["emscripten_atomic_store_u8"]).apply(null,arguments)};var _emscripten_atomic_store_u16=Module["_emscripten_atomic_store_u16"]=function(){return(_emscripten_atomic_store_u16=Module["_emscripten_atomic_store_u16"]=Module["asm"]["emscripten_atomic_store_u16"]).apply(null,arguments)};var _emscripten_atomic_store_u32=Module["_emscripten_atomic_store_u32"]=function(){return(_emscripten_atomic_store_u32=Module["_emscripten_atomic_store_u32"]=Module["asm"]["emscripten_atomic_store_u32"]).apply(null,arguments)};var _emscripten_atomic_store_f32=Module["_emscripten_atomic_store_f32"]=function(){return(_emscripten_atomic_store_f32=Module["_emscripten_atomic_store_f32"]=Module["asm"]["emscripten_atomic_store_f32"]).apply(null,arguments)};var _emscripten_atomic_store_u64=Module["_emscripten_atomic_store_u64"]=function(){return(_emscripten_atomic_store_u64=Module["_emscripten_atomic_store_u64"]=Module["asm"]["emscripten_atomic_store_u64"]).apply(null,arguments)};var _emscripten_atomic_store_f64=Module["_emscripten_atomic_store_f64"]=function(){return(_emscripten_atomic_store_f64=Module["_emscripten_atomic_store_f64"]=Module["asm"]["emscripten_atomic_store_f64"]).apply(null,arguments)};var _emscripten_atomic_fence=Module["_emscripten_atomic_fence"]=function(){return(_emscripten_atomic_fence=Module["_emscripten_atomic_fence"]=Module["asm"]["emscripten_atomic_fence"]).apply(null,arguments)};var _emscripten_atomic_or_u8=Module["_emscripten_atomic_or_u8"]=function(){return(_emscripten_atomic_or_u8=Module["_emscripten_atomic_or_u8"]=Module["asm"]["emscripten_atomic_or_u8"]).apply(null,arguments)};var _emscripten_atomic_add_u8=Module["_emscripten_atomic_add_u8"]=function(){return(_emscripten_atomic_add_u8=Module["_emscripten_atomic_add_u8"]=Module["asm"]["emscripten_atomic_add_u8"]).apply(null,arguments)};var _emscripten_atomic_add_u16=Module["_emscripten_atomic_add_u16"]=function(){return(_emscripten_atomic_add_u16=Module["_emscripten_atomic_add_u16"]=Module["asm"]["emscripten_atomic_add_u16"]).apply(null,arguments)};var _emscripten_atomic_add_u32=Module["_emscripten_atomic_add_u32"]=function(){return(_emscripten_atomic_add_u32=Module["_emscripten_atomic_add_u32"]=Module["asm"]["emscripten_atomic_add_u32"]).apply(null,arguments)};var _emscripten_atomic_add_u64=Module["_emscripten_atomic_add_u64"]=function(){return(_emscripten_atomic_add_u64=Module["_emscripten_atomic_add_u64"]=Module["asm"]["emscripten_atomic_add_u64"]).apply(null,arguments)};var _emscripten_atomic_sub_u8=Module["_emscripten_atomic_sub_u8"]=function(){return(_emscripten_atomic_sub_u8=Module["_emscripten_atomic_sub_u8"]=Module["asm"]["emscripten_atomic_sub_u8"]).apply(null,arguments)};var _emscripten_atomic_sub_u16=Module["_emscripten_atomic_sub_u16"]=function(){return(_emscripten_atomic_sub_u16=Module["_emscripten_atomic_sub_u16"]=Module["asm"]["emscripten_atomic_sub_u16"]).apply(null,arguments)};var _emscripten_atomic_sub_u32=Module["_emscripten_atomic_sub_u32"]=function(){return(_emscripten_atomic_sub_u32=Module["_emscripten_atomic_sub_u32"]=Module["asm"]["emscripten_atomic_sub_u32"]).apply(null,arguments)};var _emscripten_atomic_sub_u64=Module["_emscripten_atomic_sub_u64"]=function(){return(_emscripten_atomic_sub_u64=Module["_emscripten_atomic_sub_u64"]=Module["asm"]["emscripten_atomic_sub_u64"]).apply(null,arguments)};var _emscripten_atomic_and_u8=Module["_emscripten_atomic_and_u8"]=function(){return(_emscripten_atomic_and_u8=Module["_emscripten_atomic_and_u8"]=Module["asm"]["emscripten_atomic_and_u8"]).apply(null,arguments)};var _emscripten_atomic_and_u16=Module["_emscripten_atomic_and_u16"]=function(){return(_emscripten_atomic_and_u16=Module["_emscripten_atomic_and_u16"]=Module["asm"]["emscripten_atomic_and_u16"]).apply(null,arguments)};var _emscripten_atomic_and_u32=Module["_emscripten_atomic_and_u32"]=function(){return(_emscripten_atomic_and_u32=Module["_emscripten_atomic_and_u32"]=Module["asm"]["emscripten_atomic_and_u32"]).apply(null,arguments)};var _emscripten_atomic_and_u64=Module["_emscripten_atomic_and_u64"]=function(){return(_emscripten_atomic_and_u64=Module["_emscripten_atomic_and_u64"]=Module["asm"]["emscripten_atomic_and_u64"]).apply(null,arguments)};var _emscripten_atomic_or_u16=Module["_emscripten_atomic_or_u16"]=function(){return(_emscripten_atomic_or_u16=Module["_emscripten_atomic_or_u16"]=Module["asm"]["emscripten_atomic_or_u16"]).apply(null,arguments)};var _emscripten_atomic_or_u32=Module["_emscripten_atomic_or_u32"]=function(){return(_emscripten_atomic_or_u32=Module["_emscripten_atomic_or_u32"]=Module["asm"]["emscripten_atomic_or_u32"]).apply(null,arguments)};var _emscripten_atomic_or_u64=Module["_emscripten_atomic_or_u64"]=function(){return(_emscripten_atomic_or_u64=Module["_emscripten_atomic_or_u64"]=Module["asm"]["emscripten_atomic_or_u64"]).apply(null,arguments)};var _emscripten_atomic_xor_u8=Module["_emscripten_atomic_xor_u8"]=function(){return(_emscripten_atomic_xor_u8=Module["_emscripten_atomic_xor_u8"]=Module["asm"]["emscripten_atomic_xor_u8"]).apply(null,arguments)};var _emscripten_atomic_xor_u16=Module["_emscripten_atomic_xor_u16"]=function(){return(_emscripten_atomic_xor_u16=Module["_emscripten_atomic_xor_u16"]=Module["asm"]["emscripten_atomic_xor_u16"]).apply(null,arguments)};var _emscripten_atomic_xor_u32=Module["_emscripten_atomic_xor_u32"]=function(){return(_emscripten_atomic_xor_u32=Module["_emscripten_atomic_xor_u32"]=Module["asm"]["emscripten_atomic_xor_u32"]).apply(null,arguments)};var _emscripten_atomic_xor_u64=Module["_emscripten_atomic_xor_u64"]=function(){return(_emscripten_atomic_xor_u64=Module["_emscripten_atomic_xor_u64"]=Module["asm"]["emscripten_atomic_xor_u64"]).apply(null,arguments)};var _thrd_current=Module["_thrd_current"]=function(){return(_thrd_current=Module["_thrd_current"]=Module["asm"]["thrd_current"]).apply(null,arguments)};var _thrd_create=Module["_thrd_create"]=function(){return(_thrd_create=Module["_thrd_create"]=Module["asm"]["thrd_create"]).apply(null,arguments)};var _thrd_exit=Module["_thrd_exit"]=function(){return(_thrd_exit=Module["_thrd_exit"]=Module["asm"]["thrd_exit"]).apply(null,arguments)};var _thrd_join=Module["_thrd_join"]=function(){return(_thrd_join=Module["_thrd_join"]=Module["asm"]["thrd_join"]).apply(null,arguments)};var _thrd_sleep=Module["_thrd_sleep"]=function(){return(_thrd_sleep=Module["_thrd_sleep"]=Module["asm"]["thrd_sleep"]).apply(null,arguments)};var _thrd_yield=Module["_thrd_yield"]=function(){return(_thrd_yield=Module["_thrd_yield"]=Module["asm"]["thrd_yield"]).apply(null,arguments)};var _call_once=Module["_call_once"]=function(){return(_call_once=Module["_call_once"]=Module["asm"]["call_once"]).apply(null,arguments)};var _strlwr=Module["_strlwr"]=function(){return(_strlwr=Module["_strlwr"]=Module["asm"]["strlwr"]).apply(null,arguments)};var _aligned_alloc=Module["_aligned_alloc"]=function(){return(_aligned_alloc=Module["_aligned_alloc"]=Module["asm"]["aligned_alloc"]).apply(null,arguments)};var _posix_memalign=Module["_posix_memalign"]=function(){return(_posix_memalign=Module["_posix_memalign"]=Module["asm"]["posix_memalign"]).apply(null,arguments)};var _strtoull_l=Module["_strtoull_l"]=function(){return(_strtoull_l=Module["_strtoull_l"]=Module["asm"]["strtoull_l"]).apply(null,arguments)};var _strtoll_l=Module["_strtoll_l"]=function(){return(_strtoll_l=Module["_strtoll_l"]=Module["asm"]["strtoll_l"]).apply(null,arguments)};var _strtoul_l=Module["_strtoul_l"]=function(){return(_strtoul_l=Module["_strtoul_l"]=Module["asm"]["strtoul_l"]).apply(null,arguments)};var _strtol_l=Module["_strtol_l"]=function(){return(_strtol_l=Module["_strtol_l"]=Module["asm"]["strtol_l"]).apply(null,arguments)};var _strupr=Module["_strupr"]=function(){return(_strupr=Module["_strupr"]=Module["asm"]["strupr"]).apply(null,arguments)};var _emscripten_has_threading_support=Module["_emscripten_has_threading_support"]=function(){return(_emscripten_has_threading_support=Module["_emscripten_has_threading_support"]=Module["asm"]["emscripten_has_threading_support"]).apply(null,arguments)};var _emscripten_force_num_logical_cores=Module["_emscripten_force_num_logical_cores"]=function(){return(_emscripten_force_num_logical_cores=Module["_emscripten_force_num_logical_cores"]=Module["asm"]["emscripten_force_num_logical_cores"]).apply(null,arguments)};var _emscripten_futex_wait=Module["_emscripten_futex_wait"]=function(){return(_emscripten_futex_wait=Module["_emscripten_futex_wait"]=Module["asm"]["emscripten_futex_wait"]).apply(null,arguments)};var _emscripten_futex_wake=Module["_emscripten_futex_wake"]=function(){return(_emscripten_futex_wake=Module["_emscripten_futex_wake"]=Module["asm"]["emscripten_futex_wake"]).apply(null,arguments)};var _emscripten_is_main_runtime_thread=Module["_emscripten_is_main_runtime_thread"]=function(){return(_emscripten_is_main_runtime_thread=Module["_emscripten_is_main_runtime_thread"]=Module["asm"]["emscripten_is_main_runtime_thread"]).apply(null,arguments)};var _emscripten_main_thread_process_queued_calls=Module["_emscripten_main_thread_process_queued_calls"]=function(){return(_emscripten_main_thread_process_queued_calls=Module["_emscripten_main_thread_process_queued_calls"]=Module["asm"]["emscripten_main_thread_process_queued_calls"]).apply(null,arguments)};var _emscripten_current_thread_process_queued_calls=Module["_emscripten_current_thread_process_queued_calls"]=function(){return(_emscripten_current_thread_process_queued_calls=Module["_emscripten_current_thread_process_queued_calls"]=Module["asm"]["emscripten_current_thread_process_queued_calls"]).apply(null,arguments)};var _pthread_mutex_timedlock=Module["_pthread_mutex_timedlock"]=function(){return(_pthread_mutex_timedlock=Module["_pthread_mutex_timedlock"]=Module["asm"]["pthread_mutex_timedlock"]).apply(null,arguments)};var _pthread_mutex_consistent=Module["_pthread_mutex_consistent"]=function(){return(_pthread_mutex_consistent=Module["_pthread_mutex_consistent"]=Module["asm"]["pthread_mutex_consistent"]).apply(null,arguments)};var _pthread_barrier_init=Module["_pthread_barrier_init"]=function(){return(_pthread_barrier_init=Module["_pthread_barrier_init"]=Module["asm"]["pthread_barrier_init"]).apply(null,arguments)};var _pthread_barrier_destroy=Module["_pthread_barrier_destroy"]=function(){return(_pthread_barrier_destroy=Module["_pthread_barrier_destroy"]=Module["asm"]["pthread_barrier_destroy"]).apply(null,arguments)};var _pthread_barrier_wait=Module["_pthread_barrier_wait"]=function(){return(_pthread_barrier_wait=Module["_pthread_barrier_wait"]=Module["asm"]["pthread_barrier_wait"]).apply(null,arguments)};var _pthread_once=Module["_pthread_once"]=function(){return(_pthread_once=Module["_pthread_once"]=Module["asm"]["pthread_once"]).apply(null,arguments)};var _pthread_cond_broadcast=Module["_pthread_cond_broadcast"]=function(){return(_pthread_cond_broadcast=Module["_pthread_cond_broadcast"]=Module["asm"]["pthread_cond_broadcast"]).apply(null,arguments)};var _pthread_atfork=Module["_pthread_atfork"]=function(){return(_pthread_atfork=Module["_pthread_atfork"]=Module["asm"]["pthread_atfork"]).apply(null,arguments)};var _pthread_cancel=Module["_pthread_cancel"]=function(){return(_pthread_cancel=Module["_pthread_cancel"]=Module["asm"]["pthread_cancel"]).apply(null,arguments)};var _emscripten_main_browser_thread_id=Module["_emscripten_main_browser_thread_id"]=function(){return(_emscripten_main_browser_thread_id=Module["_emscripten_main_browser_thread_id"]=Module["asm"]["emscripten_main_browser_thread_id"]).apply(null,arguments)};var _pthread_equal=Module["_pthread_equal"]=function(){return(_pthread_equal=Module["_pthread_equal"]=Module["asm"]["pthread_equal"]).apply(null,arguments)};var _pthread_mutexattr_setprotocol=Module["_pthread_mutexattr_setprotocol"]=function(){return(_pthread_mutexattr_setprotocol=Module["_pthread_mutexattr_setprotocol"]=Module["asm"]["pthread_mutexattr_setprotocol"]).apply(null,arguments)};var _pthread_mutexattr_setpshared=Module["_pthread_mutexattr_setpshared"]=function(){return(_pthread_mutexattr_setpshared=Module["_pthread_mutexattr_setpshared"]=Module["asm"]["pthread_mutexattr_setpshared"]).apply(null,arguments)};var _pthread_condattr_destroy=Module["_pthread_condattr_destroy"]=function(){return(_pthread_condattr_destroy=Module["_pthread_condattr_destroy"]=Module["asm"]["pthread_condattr_destroy"]).apply(null,arguments)};var _pthread_condattr_setpshared=Module["_pthread_condattr_setpshared"]=function(){return(_pthread_condattr_setpshared=Module["_pthread_condattr_setpshared"]=Module["asm"]["pthread_condattr_setpshared"]).apply(null,arguments)};var _pthread_condattr_getclock=Module["_pthread_condattr_getclock"]=function(){return(_pthread_condattr_getclock=Module["_pthread_condattr_getclock"]=Module["asm"]["pthread_condattr_getclock"]).apply(null,arguments)};var _pthread_condattr_getpshared=Module["_pthread_condattr_getpshared"]=function(){return(_pthread_condattr_getpshared=Module["_pthread_condattr_getpshared"]=Module["asm"]["pthread_condattr_getpshared"]).apply(null,arguments)};var _pthread_getattr_np=Module["_pthread_getattr_np"]=function(){return(_pthread_getattr_np=Module["_pthread_getattr_np"]=Module["asm"]["pthread_getattr_np"]).apply(null,arguments)};var _pthread_attr_getdetachstate=Module["_pthread_attr_getdetachstate"]=function(){return(_pthread_attr_getdetachstate=Module["_pthread_attr_getdetachstate"]=Module["asm"]["pthread_attr_getdetachstate"]).apply(null,arguments)};var _pthread_attr_getstack=Module["_pthread_attr_getstack"]=function(){return(_pthread_attr_getstack=Module["_pthread_attr_getstack"]=Module["asm"]["pthread_attr_getstack"]).apply(null,arguments)};var _emscripten_stack_get_base=Module["_emscripten_stack_get_base"]=function(){return(_emscripten_stack_get_base=Module["_emscripten_stack_get_base"]=Module["asm"]["emscripten_stack_get_base"]).apply(null,arguments)};var _emscripten_stack_get_end=Module["_emscripten_stack_get_end"]=function(){return(_emscripten_stack_get_end=Module["_emscripten_stack_get_end"]=Module["asm"]["emscripten_stack_get_end"]).apply(null,arguments)};var _pthread_setcanceltype=Module["_pthread_setcanceltype"]=function(){return(_pthread_setcanceltype=Module["_pthread_setcanceltype"]=Module["asm"]["pthread_setcanceltype"]).apply(null,arguments)};var _pthread_rwlock_init=Module["_pthread_rwlock_init"]=function(){return(_pthread_rwlock_init=Module["_pthread_rwlock_init"]=Module["asm"]["pthread_rwlock_init"]).apply(null,arguments)};var _pthread_rwlock_destroy=Module["_pthread_rwlock_destroy"]=function(){return(_pthread_rwlock_destroy=Module["_pthread_rwlock_destroy"]=Module["asm"]["pthread_rwlock_destroy"]).apply(null,arguments)};var _pthread_rwlock_rdlock=Module["_pthread_rwlock_rdlock"]=function(){return(_pthread_rwlock_rdlock=Module["_pthread_rwlock_rdlock"]=Module["asm"]["pthread_rwlock_rdlock"]).apply(null,arguments)};var _pthread_rwlock_tryrdlock=Module["_pthread_rwlock_tryrdlock"]=function(){return(_pthread_rwlock_tryrdlock=Module["_pthread_rwlock_tryrdlock"]=Module["asm"]["pthread_rwlock_tryrdlock"]).apply(null,arguments)};var _pthread_rwlock_timedrdlock=Module["_pthread_rwlock_timedrdlock"]=function(){return(_pthread_rwlock_timedrdlock=Module["_pthread_rwlock_timedrdlock"]=Module["asm"]["pthread_rwlock_timedrdlock"]).apply(null,arguments)};var _pthread_rwlock_wrlock=Module["_pthread_rwlock_wrlock"]=function(){return(_pthread_rwlock_wrlock=Module["_pthread_rwlock_wrlock"]=Module["asm"]["pthread_rwlock_wrlock"]).apply(null,arguments)};var _pthread_rwlock_trywrlock=Module["_pthread_rwlock_trywrlock"]=function(){return(_pthread_rwlock_trywrlock=Module["_pthread_rwlock_trywrlock"]=Module["asm"]["pthread_rwlock_trywrlock"]).apply(null,arguments)};var _pthread_rwlock_timedwrlock=Module["_pthread_rwlock_timedwrlock"]=function(){return(_pthread_rwlock_timedwrlock=Module["_pthread_rwlock_timedwrlock"]=Module["asm"]["pthread_rwlock_timedwrlock"]).apply(null,arguments)};var _pthread_rwlock_unlock=Module["_pthread_rwlock_unlock"]=function(){return(_pthread_rwlock_unlock=Module["_pthread_rwlock_unlock"]=Module["asm"]["pthread_rwlock_unlock"]).apply(null,arguments)};var _pthread_rwlockattr_init=Module["_pthread_rwlockattr_init"]=function(){return(_pthread_rwlockattr_init=Module["_pthread_rwlockattr_init"]=Module["asm"]["pthread_rwlockattr_init"]).apply(null,arguments)};var _pthread_rwlockattr_destroy=Module["_pthread_rwlockattr_destroy"]=function(){return(_pthread_rwlockattr_destroy=Module["_pthread_rwlockattr_destroy"]=Module["asm"]["pthread_rwlockattr_destroy"]).apply(null,arguments)};var _pthread_rwlockattr_setpshared=Module["_pthread_rwlockattr_setpshared"]=function(){return(_pthread_rwlockattr_setpshared=Module["_pthread_rwlockattr_setpshared"]=Module["asm"]["pthread_rwlockattr_setpshared"]).apply(null,arguments)};var _pthread_rwlockattr_getpshared=Module["_pthread_rwlockattr_getpshared"]=function(){return(_pthread_rwlockattr_getpshared=Module["_pthread_rwlockattr_getpshared"]=Module["asm"]["pthread_rwlockattr_getpshared"]).apply(null,arguments)};var _pthread_spin_init=Module["_pthread_spin_init"]=function(){return(_pthread_spin_init=Module["_pthread_spin_init"]=Module["asm"]["pthread_spin_init"]).apply(null,arguments)};var _pthread_spin_destroy=Module["_pthread_spin_destroy"]=function(){return(_pthread_spin_destroy=Module["_pthread_spin_destroy"]=Module["asm"]["pthread_spin_destroy"]).apply(null,arguments)};var _pthread_spin_lock=Module["_pthread_spin_lock"]=function(){return(_pthread_spin_lock=Module["_pthread_spin_lock"]=Module["asm"]["pthread_spin_lock"]).apply(null,arguments)};var _pthread_spin_trylock=Module["_pthread_spin_trylock"]=function(){return(_pthread_spin_trylock=Module["_pthread_spin_trylock"]=Module["asm"]["pthread_spin_trylock"]).apply(null,arguments)};var _pthread_spin_unlock=Module["_pthread_spin_unlock"]=function(){return(_pthread_spin_unlock=Module["_pthread_spin_unlock"]=Module["asm"]["pthread_spin_unlock"]).apply(null,arguments)};var _pthread_attr_setdetachstate=Module["_pthread_attr_setdetachstate"]=function(){return(_pthread_attr_setdetachstate=Module["_pthread_attr_setdetachstate"]=Module["asm"]["pthread_attr_setdetachstate"]).apply(null,arguments)};var _pthread_attr_setschedparam=Module["_pthread_attr_setschedparam"]=function(){return(_pthread_attr_setschedparam=Module["_pthread_attr_setschedparam"]=Module["asm"]["pthread_attr_setschedparam"]).apply(null,arguments)};var _sem_init=Module["_sem_init"]=function(){return(_sem_init=Module["_sem_init"]=Module["asm"]["sem_init"]).apply(null,arguments)};var _sem_post=Module["_sem_post"]=function(){return(_sem_post=Module["_sem_post"]=Module["asm"]["sem_post"]).apply(null,arguments)};var _sem_wait=Module["_sem_wait"]=function(){return(_sem_wait=Module["_sem_wait"]=Module["asm"]["sem_wait"]).apply(null,arguments)};var _sem_trywait=Module["_sem_trywait"]=function(){return(_sem_trywait=Module["_sem_trywait"]=Module["asm"]["sem_trywait"]).apply(null,arguments)};var _sem_destroy=Module["_sem_destroy"]=function(){return(_sem_destroy=Module["_sem_destroy"]=Module["asm"]["sem_destroy"]).apply(null,arguments)};var ___lshrdi3=Module["___lshrdi3"]=function(){return(___lshrdi3=Module["___lshrdi3"]=Module["asm"]["__lshrdi3"]).apply(null,arguments)};var ___fixsfsi=Module["___fixsfsi"]=function(){return(___fixsfsi=Module["___fixsfsi"]=Module["asm"]["__fixsfsi"]).apply(null,arguments)};var _atomic_flag_test_and_set=Module["_atomic_flag_test_and_set"]=function(){return(_atomic_flag_test_and_set=Module["_atomic_flag_test_and_set"]=Module["asm"]["atomic_flag_test_and_set"]).apply(null,arguments)};var ___enable_execute_stack=Module["___enable_execute_stack"]=function(){return(___enable_execute_stack=Module["___enable_execute_stack"]=Module["asm"]["__enable_execute_stack"]).apply(null,arguments)};var ___powitf2=Module["___powitf2"]=function(){return(___powitf2=Module["___powitf2"]=Module["asm"]["__powitf2"]).apply(null,arguments)};var ___ashldi3=Module["___ashldi3"]=function(){return(___ashldi3=Module["___ashldi3"]=Module["asm"]["__ashldi3"]).apply(null,arguments)};var ___fixxfdi=Module["___fixxfdi"]=function(){return(___fixxfdi=Module["___fixxfdi"]=Module["asm"]["__fixxfdi"]).apply(null,arguments)};var ___floattixf=Module["___floattixf"]=function(){return(___floattixf=Module["___floattixf"]=Module["asm"]["__floattixf"]).apply(null,arguments)};var ___clzti2=Module["___clzti2"]=function(){return(___clzti2=Module["___clzti2"]=Module["asm"]["__clzti2"]).apply(null,arguments)};var ___lshrti3=Module["___lshrti3"]=function(){return(___lshrti3=Module["___lshrti3"]=Module["asm"]["__lshrti3"]).apply(null,arguments)};var ___ashlti3=Module["___ashlti3"]=function(){return(___ashlti3=Module["___ashlti3"]=Module["asm"]["__ashlti3"]).apply(null,arguments)};var ___ffsdi2=Module["___ffsdi2"]=function(){return(___ffsdi2=Module["___ffsdi2"]=Module["asm"]["__ffsdi2"]).apply(null,arguments)};var ___udivmodsi4=Module["___udivmodsi4"]=function(){return(___udivmodsi4=Module["___udivmodsi4"]=Module["asm"]["__udivmodsi4"]).apply(null,arguments)};var ___udivsi3=Module["___udivsi3"]=function(){return(___udivsi3=Module["___udivsi3"]=Module["asm"]["__udivsi3"]).apply(null,arguments)};var ___subvsi3=Module["___subvsi3"]=function(){return(___subvsi3=Module["___subvsi3"]=Module["asm"]["__subvsi3"]).apply(null,arguments)};var ___compilerrt_abort_impl=Module["___compilerrt_abort_impl"]=function(){return(___compilerrt_abort_impl=Module["___compilerrt_abort_impl"]=Module["asm"]["__compilerrt_abort_impl"]).apply(null,arguments)};var ___fixsfdi=Module["___fixsfdi"]=function(){return(___fixsfdi=Module["___fixsfdi"]=Module["asm"]["__fixsfdi"]).apply(null,arguments)};var ___fixunssfdi=Module["___fixunssfdi"]=function(){return(___fixunssfdi=Module["___fixunssfdi"]=Module["asm"]["__fixunssfdi"]).apply(null,arguments)};var ___mulvti3=Module["___mulvti3"]=function(){return(___mulvti3=Module["___mulvti3"]=Module["asm"]["__mulvti3"]).apply(null,arguments)};var ___udivti3=Module["___udivti3"]=function(){return(___udivti3=Module["___udivti3"]=Module["asm"]["__udivti3"]).apply(null,arguments)};var ___divti3=Module["___divti3"]=function(){return(___divti3=Module["___divti3"]=Module["asm"]["__divti3"]).apply(null,arguments)};var ___floatundisf=Module["___floatundisf"]=function(){return(___floatundisf=Module["___floatundisf"]=Module["asm"]["__floatundisf"]).apply(null,arguments)};var ___modsi3=Module["___modsi3"]=function(){return(___modsi3=Module["___modsi3"]=Module["asm"]["__modsi3"]).apply(null,arguments)};var ___divsi3=Module["___divsi3"]=function(){return(___divsi3=Module["___divsi3"]=Module["asm"]["__divsi3"]).apply(null,arguments)};var ___divxc3=Module["___divxc3"]=function(){return(___divxc3=Module["___divxc3"]=Module["asm"]["__divxc3"]).apply(null,arguments)};var _fmaxl=Module["_fmaxl"]=function(){return(_fmaxl=Module["_fmaxl"]=Module["asm"]["fmaxl"]).apply(null,arguments)};var _atomic_thread_fence=Module["_atomic_thread_fence"]=function(){return(_atomic_thread_fence=Module["_atomic_thread_fence"]=Module["asm"]["atomic_thread_fence"]).apply(null,arguments)};var ___dtoi64=Module["___dtoi64"]=function(){return(___dtoi64=Module["___dtoi64"]=Module["asm"]["__dtoi64"]).apply(null,arguments)};var ___fixdfdi=Module["___fixdfdi"]=function(){return(___fixdfdi=Module["___fixdfdi"]=Module["asm"]["__fixdfdi"]).apply(null,arguments)};var ___stoi64=Module["___stoi64"]=function(){return(___stoi64=Module["___stoi64"]=Module["asm"]["__stoi64"]).apply(null,arguments)};var ___dtou64=Module["___dtou64"]=function(){return(___dtou64=Module["___dtou64"]=Module["asm"]["__dtou64"]).apply(null,arguments)};var ___fixunsdfdi=Module["___fixunsdfdi"]=function(){return(___fixunsdfdi=Module["___fixunsdfdi"]=Module["asm"]["__fixunsdfdi"]).apply(null,arguments)};var ___stou64=Module["___stou64"]=function(){return(___stou64=Module["___stou64"]=Module["asm"]["__stou64"]).apply(null,arguments)};var ___i64tod=Module["___i64tod"]=function(){return(___i64tod=Module["___i64tod"]=Module["asm"]["__i64tod"]).apply(null,arguments)};var ___floatdidf=Module["___floatdidf"]=function(){return(___floatdidf=Module["___floatdidf"]=Module["asm"]["__floatdidf"]).apply(null,arguments)};var ___i64tos=Module["___i64tos"]=function(){return(___i64tos=Module["___i64tos"]=Module["asm"]["__i64tos"]).apply(null,arguments)};var ___floatdisf=Module["___floatdisf"]=function(){return(___floatdisf=Module["___floatdisf"]=Module["asm"]["__floatdisf"]).apply(null,arguments)};var ___u64tod=Module["___u64tod"]=function(){return(___u64tod=Module["___u64tod"]=Module["asm"]["__u64tod"]).apply(null,arguments)};var ___floatundidf=Module["___floatundidf"]=function(){return(___floatundidf=Module["___floatundidf"]=Module["asm"]["__floatundidf"]).apply(null,arguments)};var ___u64tos=Module["___u64tos"]=function(){return(___u64tos=Module["___u64tos"]=Module["asm"]["__u64tos"]).apply(null,arguments)};var ___divdc3=Module["___divdc3"]=function(){return(___divdc3=Module["___divdc3"]=Module["asm"]["__divdc3"]).apply(null,arguments)};var _fmax=Module["_fmax"]=function(){return(_fmax=Module["_fmax"]=Module["asm"]["fmax"]).apply(null,arguments)};var ___lesf2=Module["___lesf2"]=function(){return(___lesf2=Module["___lesf2"]=Module["asm"]["__lesf2"]).apply(null,arguments)};var ___gesf2=Module["___gesf2"]=function(){return(___gesf2=Module["___gesf2"]=Module["asm"]["__gesf2"]).apply(null,arguments)};var ___unordsf2=Module["___unordsf2"]=function(){return(___unordsf2=Module["___unordsf2"]=Module["asm"]["__unordsf2"]).apply(null,arguments)};var ___eqsf2=Module["___eqsf2"]=function(){return(___eqsf2=Module["___eqsf2"]=Module["asm"]["__eqsf2"]).apply(null,arguments)};var ___ltsf2=Module["___ltsf2"]=function(){return(___ltsf2=Module["___ltsf2"]=Module["asm"]["__ltsf2"]).apply(null,arguments)};var ___nesf2=Module["___nesf2"]=function(){return(___nesf2=Module["___nesf2"]=Module["asm"]["__nesf2"]).apply(null,arguments)};var ___gtsf2=Module["___gtsf2"]=function(){return(___gtsf2=Module["___gtsf2"]=Module["asm"]["__gtsf2"]).apply(null,arguments)};var ___absvsi2=Module["___absvsi2"]=function(){return(___absvsi2=Module["___absvsi2"]=Module["asm"]["__absvsi2"]).apply(null,arguments)};var ___mulxc3=Module["___mulxc3"]=function(){return(___mulxc3=Module["___mulxc3"]=Module["asm"]["__mulxc3"]).apply(null,arguments)};var ___fixunssfti=Module["___fixunssfti"]=function(){return(___fixunssfti=Module["___fixunssfti"]=Module["asm"]["__fixunssfti"]).apply(null,arguments)};var ___negdf2=Module["___negdf2"]=function(){return(___negdf2=Module["___negdf2"]=Module["asm"]["__negdf2"]).apply(null,arguments)};var ___ctzti2=Module["___ctzti2"]=function(){return(___ctzti2=Module["___ctzti2"]=Module["asm"]["__ctzti2"]).apply(null,arguments)};var ___negvsi2=Module["___negvsi2"]=function(){return(___negvsi2=Module["___negvsi2"]=Module["asm"]["__negvsi2"]).apply(null,arguments)};var ___powidf2=Module["___powidf2"]=function(){return(___powidf2=Module["___powidf2"]=Module["asm"]["__powidf2"]).apply(null,arguments)};var ___divsf3=Module["___divsf3"]=function(){return(___divsf3=Module["___divsf3"]=Module["asm"]["__divsf3"]).apply(null,arguments)};var ___ashrti3=Module["___ashrti3"]=function(){return(___ashrti3=Module["___ashrti3"]=Module["asm"]["__ashrti3"]).apply(null,arguments)};var ___floatunsidf=Module["___floatunsidf"]=function(){return(___floatunsidf=Module["___floatunsidf"]=Module["asm"]["__floatunsidf"]).apply(null,arguments)};var ___fixunstfti=Module["___fixunstfti"]=function(){return(___fixunstfti=Module["___fixunstfti"]=Module["asm"]["__fixunstfti"]).apply(null,arguments)};var ___ashrdi3=Module["___ashrdi3"]=function(){return(___ashrdi3=Module["___ashrdi3"]=Module["asm"]["__ashrdi3"]).apply(null,arguments)};var ___extendhfsf2=Module["___extendhfsf2"]=function(){return(___extendhfsf2=Module["___extendhfsf2"]=Module["asm"]["__extendhfsf2"]).apply(null,arguments)};var ___gnu_h2f_ieee=Module["___gnu_h2f_ieee"]=function(){return(___gnu_h2f_ieee=Module["___gnu_h2f_ieee"]=Module["asm"]["__gnu_h2f_ieee"]).apply(null,arguments)};var ___clzsi2=Module["___clzsi2"]=function(){return(___clzsi2=Module["___clzsi2"]=Module["asm"]["__clzsi2"]).apply(null,arguments)};var ___gcc_personality_v0=Module["___gcc_personality_v0"]=function(){return(___gcc_personality_v0=Module["___gcc_personality_v0"]=Module["asm"]["__gcc_personality_v0"]).apply(null,arguments)};var ___popcountdi2=Module["___popcountdi2"]=function(){return(___popcountdi2=Module["___popcountdi2"]=Module["asm"]["__popcountdi2"]).apply(null,arguments)};var ___fixxfti=Module["___fixxfti"]=function(){return(___fixxfti=Module["___fixxfti"]=Module["asm"]["__fixxfti"]).apply(null,arguments)};var ___fixdfti=Module["___fixdfti"]=function(){return(___fixdfti=Module["___fixdfti"]=Module["asm"]["__fixdfti"]).apply(null,arguments)};var ___fixunstfdi=Module["___fixunstfdi"]=function(){return(___fixunstfdi=Module["___fixunstfdi"]=Module["asm"]["__fixunstfdi"]).apply(null,arguments)};var ___negvti2=Module["___negvti2"]=function(){return(___negvti2=Module["___negvti2"]=Module["asm"]["__negvti2"]).apply(null,arguments)};var ___fixunsxfti=Module["___fixunsxfti"]=function(){return(___fixunsxfti=Module["___fixunsxfti"]=Module["asm"]["__fixunsxfti"]).apply(null,arguments)};var ___fixunsxfsi=Module["___fixunsxfsi"]=function(){return(___fixunsxfsi=Module["___fixunsxfsi"]=Module["asm"]["__fixunsxfsi"]).apply(null,arguments)};var ___floatunsisf=Module["___floatunsisf"]=function(){return(___floatunsisf=Module["___floatunsisf"]=Module["asm"]["__floatunsisf"]).apply(null,arguments)};var ___floattisf=Module["___floattisf"]=function(){return(___floattisf=Module["___floattisf"]=Module["asm"]["__floattisf"]).apply(null,arguments)};var ___absvdi2=Module["___absvdi2"]=function(){return(___absvdi2=Module["___absvdi2"]=Module["asm"]["__absvdi2"]).apply(null,arguments)};var ___fixtfti=Module["___fixtfti"]=function(){return(___fixtfti=Module["___fixtfti"]=Module["asm"]["__fixtfti"]).apply(null,arguments)};var ___ctzsi2=Module["___ctzsi2"]=function(){return(___ctzsi2=Module["___ctzsi2"]=Module["asm"]["__ctzsi2"]).apply(null,arguments)};var ___negvdi2=Module["___negvdi2"]=function(){return(___negvdi2=Module["___negvdi2"]=Module["asm"]["__negvdi2"]).apply(null,arguments)};var ___ucmpti2=Module["___ucmpti2"]=function(){return(___ucmpti2=Module["___ucmpti2"]=Module["asm"]["__ucmpti2"]).apply(null,arguments)};var ___fe_getround=Module["___fe_getround"]=function(){return(___fe_getround=Module["___fe_getround"]=Module["asm"]["__fe_getround"]).apply(null,arguments)};var ___fe_raise_inexact=Module["___fe_raise_inexact"]=function(){return(___fe_raise_inexact=Module["___fe_raise_inexact"]=Module["asm"]["__fe_raise_inexact"]).apply(null,arguments)};var ___negsf2=Module["___negsf2"]=function(){return(___negsf2=Module["___negsf2"]=Module["asm"]["__negsf2"]).apply(null,arguments)};var ___subvdi3=Module["___subvdi3"]=function(){return(___subvdi3=Module["___subvdi3"]=Module["asm"]["__subvdi3"]).apply(null,arguments)};var _atomic_flag_clear=Module["_atomic_flag_clear"]=function(){return(_atomic_flag_clear=Module["_atomic_flag_clear"]=Module["asm"]["atomic_flag_clear"]).apply(null,arguments)};var ___fixunstfsi=Module["___fixunstfsi"]=function(){return(___fixunstfsi=Module["___fixunstfsi"]=Module["asm"]["__fixunstfsi"]).apply(null,arguments)};var ___floatsisf=Module["___floatsisf"]=function(){return(___floatsisf=Module["___floatsisf"]=Module["asm"]["__floatsisf"]).apply(null,arguments)};var ___cmpdi2=Module["___cmpdi2"]=function(){return(___cmpdi2=Module["___cmpdi2"]=Module["asm"]["__cmpdi2"]).apply(null,arguments)};var ___clear_cache=Module["___clear_cache"]=function(){return(___clear_cache=Module["___clear_cache"]=Module["asm"]["__clear_cache"]).apply(null,arguments)};var ___extendsfdf2=Module["___extendsfdf2"]=function(){return(___extendsfdf2=Module["___extendsfdf2"]=Module["asm"]["__extendsfdf2"]).apply(null,arguments)};var ___udivmodti4=Module["___udivmodti4"]=function(){return(___udivmodti4=Module["___udivmodti4"]=Module["asm"]["__udivmodti4"]).apply(null,arguments)};var ___divmoddi4=Module["___divmoddi4"]=function(){return(___divmoddi4=Module["___divmoddi4"]=Module["asm"]["__divmoddi4"]).apply(null,arguments)};var ___divdi3=Module["___divdi3"]=function(){return(___divdi3=Module["___divdi3"]=Module["asm"]["__divdi3"]).apply(null,arguments)};var _atomic_signal_fence=Module["_atomic_signal_fence"]=function(){return(_atomic_signal_fence=Module["_atomic_signal_fence"]=Module["asm"]["atomic_signal_fence"]).apply(null,arguments)};var ___modti3=Module["___modti3"]=function(){return(___modti3=Module["___modti3"]=Module["asm"]["__modti3"]).apply(null,arguments)};var ___truncsfhf2=Module["___truncsfhf2"]=function(){return(___truncsfhf2=Module["___truncsfhf2"]=Module["asm"]["__truncsfhf2"]).apply(null,arguments)};var ___gnu_f2h_ieee=Module["___gnu_f2h_ieee"]=function(){return(___gnu_f2h_ieee=Module["___gnu_f2h_ieee"]=Module["asm"]["__gnu_f2h_ieee"]).apply(null,arguments)};var ___umodsi3=Module["___umodsi3"]=function(){return(___umodsi3=Module["___umodsi3"]=Module["asm"]["__umodsi3"]).apply(null,arguments)};var _atomic_flag_clear_explicit=Module["_atomic_flag_clear_explicit"]=function(){return(_atomic_flag_clear_explicit=Module["_atomic_flag_clear_explicit"]=Module["asm"]["atomic_flag_clear_explicit"]).apply(null,arguments)};var ___powixf2=Module["___powixf2"]=function(){return(___powixf2=Module["___powixf2"]=Module["asm"]["__powixf2"]).apply(null,arguments)};var ___fixunsdfsi=Module["___fixunsdfsi"]=function(){return(___fixunsdfsi=Module["___fixunsdfsi"]=Module["asm"]["__fixunsdfsi"]).apply(null,arguments)};var ___bswapdi2=Module["___bswapdi2"]=function(){return(___bswapdi2=Module["___bswapdi2"]=Module["asm"]["__bswapdi2"]).apply(null,arguments)};var ___divmodsi4=Module["___divmodsi4"]=function(){return(___divmodsi4=Module["___divmodsi4"]=Module["asm"]["__divmodsi4"]).apply(null,arguments)};var ___divdf3=Module["___divdf3"]=function(){return(___divdf3=Module["___divdf3"]=Module["asm"]["__divdf3"]).apply(null,arguments)};var ___addvti3=Module["___addvti3"]=function(){return(___addvti3=Module["___addvti3"]=Module["asm"]["__addvti3"]).apply(null,arguments)};var ___paritysi2=Module["___paritysi2"]=function(){return(___paritysi2=Module["___paritysi2"]=Module["asm"]["__paritysi2"]).apply(null,arguments)};var ___emutls_get_address=Module["___emutls_get_address"]=function(){return(___emutls_get_address=Module["___emutls_get_address"]=Module["asm"]["__emutls_get_address"]).apply(null,arguments)};var ___subvti3=Module["___subvti3"]=function(){return(___subvti3=Module["___subvti3"]=Module["asm"]["__subvti3"]).apply(null,arguments)};var ___subsf3=Module["___subsf3"]=function(){return(___subsf3=Module["___subsf3"]=Module["asm"]["__subsf3"]).apply(null,arguments)};var ___addsf3=Module["___addsf3"]=function(){return(___addsf3=Module["___addsf3"]=Module["asm"]["__addsf3"]).apply(null,arguments)};var ___addvdi3=Module["___addvdi3"]=function(){return(___addvdi3=Module["___addvdi3"]=Module["asm"]["__addvdi3"]).apply(null,arguments)};var ___eprintf=Module["___eprintf"]=function(){return(___eprintf=Module["___eprintf"]=Module["asm"]["__eprintf"]).apply(null,arguments)};var ___popcountti2=Module["___popcountti2"]=function(){return(___popcountti2=Module["___popcountti2"]=Module["asm"]["__popcountti2"]).apply(null,arguments)};var ___adddf3=Module["___adddf3"]=function(){return(___adddf3=Module["___adddf3"]=Module["asm"]["__adddf3"]).apply(null,arguments)};var ___mulodi4=Module["___mulodi4"]=function(){return(___mulodi4=Module["___mulodi4"]=Module["asm"]["__mulodi4"]).apply(null,arguments)};var ___muldf3=Module["___muldf3"]=function(){return(___muldf3=Module["___muldf3"]=Module["asm"]["__muldf3"]).apply(null,arguments)};var ___truncdfsf2=Module["___truncdfsf2"]=function(){return(___truncdfsf2=Module["___truncdfsf2"]=Module["asm"]["__truncdfsf2"]).apply(null,arguments)};var ___floatunditf=Module["___floatunditf"]=function(){return(___floatunditf=Module["___floatunditf"]=Module["asm"]["__floatunditf"]).apply(null,arguments)};var ___umodti3=Module["___umodti3"]=function(){return(___umodti3=Module["___umodti3"]=Module["asm"]["__umodti3"]).apply(null,arguments)};var ___floatsidf=Module["___floatsidf"]=function(){return(___floatsidf=Module["___floatsidf"]=Module["asm"]["__floatsidf"]).apply(null,arguments)};var ___mulosi4=Module["___mulosi4"]=function(){return(___mulosi4=Module["___mulosi4"]=Module["asm"]["__mulosi4"]).apply(null,arguments)};var ___floattitf=Module["___floattitf"]=function(){return(___floattitf=Module["___floattitf"]=Module["asm"]["__floattitf"]).apply(null,arguments)};var ___atomic_load=Module["___atomic_load"]=function(){return(___atomic_load=Module["___atomic_load"]=Module["asm"]["__atomic_load"]).apply(null,arguments)};var ___atomic_store=Module["___atomic_store"]=function(){return(___atomic_store=Module["___atomic_store"]=Module["asm"]["__atomic_store"]).apply(null,arguments)};var ___atomic_compare_exchange=Module["___atomic_compare_exchange"]=function(){return(___atomic_compare_exchange=Module["___atomic_compare_exchange"]=Module["asm"]["__atomic_compare_exchange"]).apply(null,arguments)};var ___atomic_exchange=Module["___atomic_exchange"]=function(){return(___atomic_exchange=Module["___atomic_exchange"]=Module["asm"]["__atomic_exchange"]).apply(null,arguments)};var ___atomic_load_1=Module["___atomic_load_1"]=function(){return(___atomic_load_1=Module["___atomic_load_1"]=Module["asm"]["__atomic_load_1"]).apply(null,arguments)};var ___atomic_load_2=Module["___atomic_load_2"]=function(){return(___atomic_load_2=Module["___atomic_load_2"]=Module["asm"]["__atomic_load_2"]).apply(null,arguments)};var ___atomic_load_4=Module["___atomic_load_4"]=function(){return(___atomic_load_4=Module["___atomic_load_4"]=Module["asm"]["__atomic_load_4"]).apply(null,arguments)};var ___atomic_load_8=Module["___atomic_load_8"]=function(){return(___atomic_load_8=Module["___atomic_load_8"]=Module["asm"]["__atomic_load_8"]).apply(null,arguments)};var ___atomic_load_16=Module["___atomic_load_16"]=function(){return(___atomic_load_16=Module["___atomic_load_16"]=Module["asm"]["__atomic_load_16"]).apply(null,arguments)};var ___atomic_store_1=Module["___atomic_store_1"]=function(){return(___atomic_store_1=Module["___atomic_store_1"]=Module["asm"]["__atomic_store_1"]).apply(null,arguments)};var ___atomic_store_2=Module["___atomic_store_2"]=function(){return(___atomic_store_2=Module["___atomic_store_2"]=Module["asm"]["__atomic_store_2"]).apply(null,arguments)};var ___atomic_store_4=Module["___atomic_store_4"]=function(){return(___atomic_store_4=Module["___atomic_store_4"]=Module["asm"]["__atomic_store_4"]).apply(null,arguments)};var ___atomic_store_8=Module["___atomic_store_8"]=function(){return(___atomic_store_8=Module["___atomic_store_8"]=Module["asm"]["__atomic_store_8"]).apply(null,arguments)};var ___atomic_store_16=Module["___atomic_store_16"]=function(){return(___atomic_store_16=Module["___atomic_store_16"]=Module["asm"]["__atomic_store_16"]).apply(null,arguments)};var ___atomic_exchange_1=Module["___atomic_exchange_1"]=function(){return(___atomic_exchange_1=Module["___atomic_exchange_1"]=Module["asm"]["__atomic_exchange_1"]).apply(null,arguments)};var ___atomic_exchange_2=Module["___atomic_exchange_2"]=function(){return(___atomic_exchange_2=Module["___atomic_exchange_2"]=Module["asm"]["__atomic_exchange_2"]).apply(null,arguments)};var ___atomic_exchange_4=Module["___atomic_exchange_4"]=function(){return(___atomic_exchange_4=Module["___atomic_exchange_4"]=Module["asm"]["__atomic_exchange_4"]).apply(null,arguments)};var ___atomic_exchange_8=Module["___atomic_exchange_8"]=function(){return(___atomic_exchange_8=Module["___atomic_exchange_8"]=Module["asm"]["__atomic_exchange_8"]).apply(null,arguments)};var ___atomic_exchange_16=Module["___atomic_exchange_16"]=function(){return(___atomic_exchange_16=Module["___atomic_exchange_16"]=Module["asm"]["__atomic_exchange_16"]).apply(null,arguments)};var ___atomic_compare_exchange_1=Module["___atomic_compare_exchange_1"]=function(){return(___atomic_compare_exchange_1=Module["___atomic_compare_exchange_1"]=Module["asm"]["__atomic_compare_exchange_1"]).apply(null,arguments)};var ___atomic_compare_exchange_2=Module["___atomic_compare_exchange_2"]=function(){return(___atomic_compare_exchange_2=Module["___atomic_compare_exchange_2"]=Module["asm"]["__atomic_compare_exchange_2"]).apply(null,arguments)};var ___atomic_compare_exchange_4=Module["___atomic_compare_exchange_4"]=function(){return(___atomic_compare_exchange_4=Module["___atomic_compare_exchange_4"]=Module["asm"]["__atomic_compare_exchange_4"]).apply(null,arguments)};var ___atomic_compare_exchange_8=Module["___atomic_compare_exchange_8"]=function(){return(___atomic_compare_exchange_8=Module["___atomic_compare_exchange_8"]=Module["asm"]["__atomic_compare_exchange_8"]).apply(null,arguments)};var ___atomic_compare_exchange_16=Module["___atomic_compare_exchange_16"]=function(){return(___atomic_compare_exchange_16=Module["___atomic_compare_exchange_16"]=Module["asm"]["__atomic_compare_exchange_16"]).apply(null,arguments)};var ___atomic_fetch_add_1=Module["___atomic_fetch_add_1"]=function(){return(___atomic_fetch_add_1=Module["___atomic_fetch_add_1"]=Module["asm"]["__atomic_fetch_add_1"]).apply(null,arguments)};var ___atomic_fetch_add_2=Module["___atomic_fetch_add_2"]=function(){return(___atomic_fetch_add_2=Module["___atomic_fetch_add_2"]=Module["asm"]["__atomic_fetch_add_2"]).apply(null,arguments)};var ___atomic_fetch_add_4=Module["___atomic_fetch_add_4"]=function(){return(___atomic_fetch_add_4=Module["___atomic_fetch_add_4"]=Module["asm"]["__atomic_fetch_add_4"]).apply(null,arguments)};var ___atomic_fetch_add_8=Module["___atomic_fetch_add_8"]=function(){return(___atomic_fetch_add_8=Module["___atomic_fetch_add_8"]=Module["asm"]["__atomic_fetch_add_8"]).apply(null,arguments)};var ___atomic_fetch_add_16=Module["___atomic_fetch_add_16"]=function(){return(___atomic_fetch_add_16=Module["___atomic_fetch_add_16"]=Module["asm"]["__atomic_fetch_add_16"]).apply(null,arguments)};var ___atomic_fetch_sub_1=Module["___atomic_fetch_sub_1"]=function(){return(___atomic_fetch_sub_1=Module["___atomic_fetch_sub_1"]=Module["asm"]["__atomic_fetch_sub_1"]).apply(null,arguments)};var ___atomic_fetch_sub_2=Module["___atomic_fetch_sub_2"]=function(){return(___atomic_fetch_sub_2=Module["___atomic_fetch_sub_2"]=Module["asm"]["__atomic_fetch_sub_2"]).apply(null,arguments)};var ___atomic_fetch_sub_4=Module["___atomic_fetch_sub_4"]=function(){return(___atomic_fetch_sub_4=Module["___atomic_fetch_sub_4"]=Module["asm"]["__atomic_fetch_sub_4"]).apply(null,arguments)};var ___atomic_fetch_sub_8=Module["___atomic_fetch_sub_8"]=function(){return(___atomic_fetch_sub_8=Module["___atomic_fetch_sub_8"]=Module["asm"]["__atomic_fetch_sub_8"]).apply(null,arguments)};var ___atomic_fetch_sub_16=Module["___atomic_fetch_sub_16"]=function(){return(___atomic_fetch_sub_16=Module["___atomic_fetch_sub_16"]=Module["asm"]["__atomic_fetch_sub_16"]).apply(null,arguments)};var ___atomic_fetch_and_1=Module["___atomic_fetch_and_1"]=function(){return(___atomic_fetch_and_1=Module["___atomic_fetch_and_1"]=Module["asm"]["__atomic_fetch_and_1"]).apply(null,arguments)};var ___atomic_fetch_and_2=Module["___atomic_fetch_and_2"]=function(){return(___atomic_fetch_and_2=Module["___atomic_fetch_and_2"]=Module["asm"]["__atomic_fetch_and_2"]).apply(null,arguments)};var ___atomic_fetch_and_4=Module["___atomic_fetch_and_4"]=function(){return(___atomic_fetch_and_4=Module["___atomic_fetch_and_4"]=Module["asm"]["__atomic_fetch_and_4"]).apply(null,arguments)};var ___atomic_fetch_and_8=Module["___atomic_fetch_and_8"]=function(){return(___atomic_fetch_and_8=Module["___atomic_fetch_and_8"]=Module["asm"]["__atomic_fetch_and_8"]).apply(null,arguments)};var ___atomic_fetch_and_16=Module["___atomic_fetch_and_16"]=function(){return(___atomic_fetch_and_16=Module["___atomic_fetch_and_16"]=Module["asm"]["__atomic_fetch_and_16"]).apply(null,arguments)};var ___atomic_fetch_or_1=Module["___atomic_fetch_or_1"]=function(){return(___atomic_fetch_or_1=Module["___atomic_fetch_or_1"]=Module["asm"]["__atomic_fetch_or_1"]).apply(null,arguments)};var ___atomic_fetch_or_2=Module["___atomic_fetch_or_2"]=function(){return(___atomic_fetch_or_2=Module["___atomic_fetch_or_2"]=Module["asm"]["__atomic_fetch_or_2"]).apply(null,arguments)};var ___atomic_fetch_or_4=Module["___atomic_fetch_or_4"]=function(){return(___atomic_fetch_or_4=Module["___atomic_fetch_or_4"]=Module["asm"]["__atomic_fetch_or_4"]).apply(null,arguments)};var ___atomic_fetch_or_8=Module["___atomic_fetch_or_8"]=function(){return(___atomic_fetch_or_8=Module["___atomic_fetch_or_8"]=Module["asm"]["__atomic_fetch_or_8"]).apply(null,arguments)};var ___atomic_fetch_or_16=Module["___atomic_fetch_or_16"]=function(){return(___atomic_fetch_or_16=Module["___atomic_fetch_or_16"]=Module["asm"]["__atomic_fetch_or_16"]).apply(null,arguments)};var ___atomic_fetch_xor_1=Module["___atomic_fetch_xor_1"]=function(){return(___atomic_fetch_xor_1=Module["___atomic_fetch_xor_1"]=Module["asm"]["__atomic_fetch_xor_1"]).apply(null,arguments)};var ___atomic_fetch_xor_2=Module["___atomic_fetch_xor_2"]=function(){return(___atomic_fetch_xor_2=Module["___atomic_fetch_xor_2"]=Module["asm"]["__atomic_fetch_xor_2"]).apply(null,arguments)};var ___atomic_fetch_xor_4=Module["___atomic_fetch_xor_4"]=function(){return(___atomic_fetch_xor_4=Module["___atomic_fetch_xor_4"]=Module["asm"]["__atomic_fetch_xor_4"]).apply(null,arguments)};var ___atomic_fetch_xor_8=Module["___atomic_fetch_xor_8"]=function(){return(___atomic_fetch_xor_8=Module["___atomic_fetch_xor_8"]=Module["asm"]["__atomic_fetch_xor_8"]).apply(null,arguments)};var ___atomic_fetch_xor_16=Module["___atomic_fetch_xor_16"]=function(){return(___atomic_fetch_xor_16=Module["___atomic_fetch_xor_16"]=Module["asm"]["__atomic_fetch_xor_16"]).apply(null,arguments)};var ___udivmoddi4=Module["___udivmoddi4"]=function(){return(___udivmoddi4=Module["___udivmoddi4"]=Module["asm"]["__udivmoddi4"]).apply(null,arguments)};var ___ctzdi2=Module["___ctzdi2"]=function(){return(___ctzdi2=Module["___ctzdi2"]=Module["asm"]["__ctzdi2"]).apply(null,arguments)};var ___fixunsxfdi=Module["___fixunsxfdi"]=function(){return(___fixunsxfdi=Module["___fixunsxfdi"]=Module["asm"]["__fixunsxfdi"]).apply(null,arguments)};var ___fixunssfsi=Module["___fixunssfsi"]=function(){return(___fixunssfsi=Module["___fixunssfsi"]=Module["asm"]["__fixunssfsi"]).apply(null,arguments)};var ___cmpti2=Module["___cmpti2"]=function(){return(___cmpti2=Module["___cmpti2"]=Module["asm"]["__cmpti2"]).apply(null,arguments)};var ___floatuntixf=Module["___floatuntixf"]=function(){return(___floatuntixf=Module["___floatuntixf"]=Module["asm"]["__floatuntixf"]).apply(null,arguments)};var ___moddi3=Module["___moddi3"]=function(){return(___moddi3=Module["___moddi3"]=Module["asm"]["__moddi3"]).apply(null,arguments)};var ___floatdixf=Module["___floatdixf"]=function(){return(___floatdixf=Module["___floatdixf"]=Module["asm"]["__floatdixf"]).apply(null,arguments)};var ___fixunsdfti=Module["___fixunsdfti"]=function(){return(___fixunsdfti=Module["___fixunsdfti"]=Module["asm"]["__fixunsdfti"]).apply(null,arguments)};var ___floatuntidf=Module["___floatuntidf"]=function(){return(___floatuntidf=Module["___floatuntidf"]=Module["asm"]["__floatuntidf"]).apply(null,arguments)};var ___negti2=Module["___negti2"]=function(){return(___negti2=Module["___negti2"]=Module["asm"]["__negti2"]).apply(null,arguments)};var ___parityti2=Module["___parityti2"]=function(){return(___parityti2=Module["___parityti2"]=Module["asm"]["__parityti2"]).apply(null,arguments)};var ___paritydi2=Module["___paritydi2"]=function(){return(___paritydi2=Module["___paritydi2"]=Module["asm"]["__paritydi2"]).apply(null,arguments)};var ___udivdi3=Module["___udivdi3"]=function(){return(___udivdi3=Module["___udivdi3"]=Module["asm"]["__udivdi3"]).apply(null,arguments)};var ___subdf3=Module["___subdf3"]=function(){return(___subdf3=Module["___subdf3"]=Module["asm"]["__subdf3"]).apply(null,arguments)};var ___umoddi3=Module["___umoddi3"]=function(){return(___umoddi3=Module["___umoddi3"]=Module["asm"]["__umoddi3"]).apply(null,arguments)};var ___truncdfhf2=Module["___truncdfhf2"]=function(){return(___truncdfhf2=Module["___truncdfhf2"]=Module["asm"]["__truncdfhf2"]).apply(null,arguments)};var ___mulsf3=Module["___mulsf3"]=function(){return(___mulsf3=Module["___mulsf3"]=Module["asm"]["__mulsf3"]).apply(null,arguments)};var ___fixdfsi=Module["___fixdfsi"]=function(){return(___fixdfsi=Module["___fixdfsi"]=Module["asm"]["__fixdfsi"]).apply(null,arguments)};var ___addvsi3=Module["___addvsi3"]=function(){return(___addvsi3=Module["___addvsi3"]=Module["asm"]["__addvsi3"]).apply(null,arguments)};var ___ffssi2=Module["___ffssi2"]=function(){return(___ffssi2=Module["___ffssi2"]=Module["asm"]["__ffssi2"]).apply(null,arguments)};var ___ffsti2=Module["___ffsti2"]=function(){return(___ffsti2=Module["___ffsti2"]=Module["asm"]["__ffsti2"]).apply(null,arguments)};var _atomic_flag_test_and_set_explicit=Module["_atomic_flag_test_and_set_explicit"]=function(){return(_atomic_flag_test_and_set_explicit=Module["_atomic_flag_test_and_set_explicit"]=Module["asm"]["atomic_flag_test_and_set_explicit"]).apply(null,arguments)};var ___ledf2=Module["___ledf2"]=function(){return(___ledf2=Module["___ledf2"]=Module["asm"]["__ledf2"]).apply(null,arguments)};var ___gedf2=Module["___gedf2"]=function(){return(___gedf2=Module["___gedf2"]=Module["asm"]["__gedf2"]).apply(null,arguments)};var ___unorddf2=Module["___unorddf2"]=function(){return(___unorddf2=Module["___unorddf2"]=Module["asm"]["__unorddf2"]).apply(null,arguments)};var ___eqdf2=Module["___eqdf2"]=function(){return(___eqdf2=Module["___eqdf2"]=Module["asm"]["__eqdf2"]).apply(null,arguments)};var ___ltdf2=Module["___ltdf2"]=function(){return(___ltdf2=Module["___ltdf2"]=Module["asm"]["__ltdf2"]).apply(null,arguments)};var ___nedf2=Module["___nedf2"]=function(){return(___nedf2=Module["___nedf2"]=Module["asm"]["__nedf2"]).apply(null,arguments)};var ___gtdf2=Module["___gtdf2"]=function(){return(___gtdf2=Module["___gtdf2"]=Module["asm"]["__gtdf2"]).apply(null,arguments)};var ___absvti2=Module["___absvti2"]=function(){return(___absvti2=Module["___absvti2"]=Module["asm"]["__absvti2"]).apply(null,arguments)};var ___fixsfti=Module["___fixsfti"]=function(){return(___fixsfti=Module["___fixsfti"]=Module["asm"]["__fixsfti"]).apply(null,arguments)};var ___floatuntisf=Module["___floatuntisf"]=function(){return(___floatuntisf=Module["___floatuntisf"]=Module["asm"]["__floatuntisf"]).apply(null,arguments)};var ___floatuntitf=Module["___floatuntitf"]=function(){return(___floatuntitf=Module["___floatuntitf"]=Module["asm"]["__floatuntitf"]).apply(null,arguments)};var ___popcountsi2=Module["___popcountsi2"]=function(){return(___popcountsi2=Module["___popcountsi2"]=Module["asm"]["__popcountsi2"]).apply(null,arguments)};var ___mulvsi3=Module["___mulvsi3"]=function(){return(___mulvsi3=Module["___mulvsi3"]=Module["asm"]["__mulvsi3"]).apply(null,arguments)};var ___divsc3=Module["___divsc3"]=function(){return(___divsc3=Module["___divsc3"]=Module["asm"]["__divsc3"]).apply(null,arguments)};var _fmaxf=Module["_fmaxf"]=function(){return(_fmaxf=Module["_fmaxf"]=Module["asm"]["fmaxf"]).apply(null,arguments)};var ___floatundixf=Module["___floatundixf"]=function(){return(___floatundixf=Module["___floatundixf"]=Module["asm"]["__floatundixf"]).apply(null,arguments)};var ___ucmpdi2=Module["___ucmpdi2"]=function(){return(___ucmpdi2=Module["___ucmpdi2"]=Module["asm"]["__ucmpdi2"]).apply(null,arguments)};var ___clzdi2=Module["___clzdi2"]=function(){return(___clzdi2=Module["___clzdi2"]=Module["asm"]["__clzdi2"]).apply(null,arguments)};var ___muloti4=Module["___muloti4"]=function(){return(___muloti4=Module["___muloti4"]=Module["asm"]["__muloti4"]).apply(null,arguments)};var ___floattidf=Module["___floattidf"]=function(){return(___floattidf=Module["___floattidf"]=Module["asm"]["__floattidf"]).apply(null,arguments)};var ___bswapsi2=Module["___bswapsi2"]=function(){return(___bswapsi2=Module["___bswapsi2"]=Module["asm"]["__bswapsi2"]).apply(null,arguments)};var ___muldi3=Module["___muldi3"]=function(){return(___muldi3=Module["___muldi3"]=Module["asm"]["__muldi3"]).apply(null,arguments)};var ___divtc3=Module["___divtc3"]=function(){return(___divtc3=Module["___divtc3"]=Module["asm"]["__divtc3"]).apply(null,arguments)};var ___negdi2=Module["___negdi2"]=function(){return(___negdi2=Module["___negdi2"]=Module["asm"]["__negdi2"]).apply(null,arguments)};var ___mulvdi3=Module["___mulvdi3"]=function(){return(___mulvdi3=Module["___mulvdi3"]=Module["asm"]["__mulvdi3"]).apply(null,arguments)};var ___powisf2=Module["___powisf2"]=function(){return(___powisf2=Module["___powisf2"]=Module["asm"]["__powisf2"]).apply(null,arguments)};var stackSave=Module["stackSave"]=function(){return(stackSave=Module["stackSave"]=Module["asm"]["stackSave"]).apply(null,arguments)};var stackRestore=Module["stackRestore"]=function(){return(stackRestore=Module["stackRestore"]=Module["asm"]["stackRestore"]).apply(null,arguments)};var stackAlloc=Module["stackAlloc"]=function(){return(stackAlloc=Module["stackAlloc"]=Module["asm"]["stackAlloc"]).apply(null,arguments)};var _emscripten_stack_get_current=Module["_emscripten_stack_get_current"]=function(){return(_emscripten_stack_get_current=Module["_emscripten_stack_get_current"]=Module["asm"]["emscripten_stack_get_current"]).apply(null,arguments)};var _emscripten_stack_init=Module["_emscripten_stack_init"]=function(){return(_emscripten_stack_init=Module["_emscripten_stack_init"]=Module["asm"]["emscripten_stack_init"]).apply(null,arguments)};var _emscripten_stack_set_limits=Module["_emscripten_stack_set_limits"]=function(){return(_emscripten_stack_set_limits=Module["_emscripten_stack_set_limits"]=Module["asm"]["emscripten_stack_set_limits"]).apply(null,arguments)};var _emscripten_stack_get_free=Module["_emscripten_stack_get_free"]=function(){return(_emscripten_stack_get_free=Module["_emscripten_stack_get_free"]=Module["asm"]["emscripten_stack_get_free"]).apply(null,arguments)};var _setThrew=Module["_setThrew"]=function(){return(_setThrew=Module["_setThrew"]=Module["asm"]["setThrew"]).apply(null,arguments)};var ___cxa_guard_acquire=Module["___cxa_guard_acquire"]=function(){return(___cxa_guard_acquire=Module["___cxa_guard_acquire"]=Module["asm"]["__cxa_guard_acquire"]).apply(null,arguments)};var ___cxa_guard_release=Module["___cxa_guard_release"]=function(){return(___cxa_guard_release=Module["___cxa_guard_release"]=Module["asm"]["__cxa_guard_release"]).apply(null,arguments)};var ___cxa_pure_virtual=Module["___cxa_pure_virtual"]=function(){return(___cxa_pure_virtual=Module["___cxa_pure_virtual"]=Module["asm"]["__cxa_pure_virtual"]).apply(null,arguments)};var ___cxa_uncaught_exceptions=Module["___cxa_uncaught_exceptions"]=function(){return(___cxa_uncaught_exceptions=Module["___cxa_uncaught_exceptions"]=Module["asm"]["__cxa_uncaught_exceptions"]).apply(null,arguments)};var ___cxa_decrement_exception_refcount=Module["___cxa_decrement_exception_refcount"]=function(){return(___cxa_decrement_exception_refcount=Module["___cxa_decrement_exception_refcount"]=Module["asm"]["__cxa_decrement_exception_refcount"]).apply(null,arguments)};var ___cxa_increment_exception_refcount=Module["___cxa_increment_exception_refcount"]=function(){return(___cxa_increment_exception_refcount=Module["___cxa_increment_exception_refcount"]=Module["asm"]["__cxa_increment_exception_refcount"]).apply(null,arguments)};var ___cxa_current_primary_exception=Module["___cxa_current_primary_exception"]=function(){return(___cxa_current_primary_exception=Module["___cxa_current_primary_exception"]=Module["asm"]["__cxa_current_primary_exception"]).apply(null,arguments)};var ___cxa_rethrow_primary_exception=Module["___cxa_rethrow_primary_exception"]=function(){return(___cxa_rethrow_primary_exception=Module["___cxa_rethrow_primary_exception"]=Module["asm"]["__cxa_rethrow_primary_exception"]).apply(null,arguments)};var _abort_message=Module["_abort_message"]=function(){return(_abort_message=Module["_abort_message"]=Module["asm"]["abort_message"]).apply(null,arguments)};var ___cxa_bad_cast=Module["___cxa_bad_cast"]=function(){return(___cxa_bad_cast=Module["___cxa_bad_cast"]=Module["asm"]["__cxa_bad_cast"]).apply(null,arguments)};var ___cxa_bad_typeid=Module["___cxa_bad_typeid"]=function(){return(___cxa_bad_typeid=Module["___cxa_bad_typeid"]=Module["asm"]["__cxa_bad_typeid"]).apply(null,arguments)};var ___cxa_throw_bad_array_new_length=Module["___cxa_throw_bad_array_new_length"]=function(){return(___cxa_throw_bad_array_new_length=Module["___cxa_throw_bad_array_new_length"]=Module["asm"]["__cxa_throw_bad_array_new_length"]).apply(null,arguments)};var ___cxa_demangle=Module["___cxa_demangle"]=function(){return(___cxa_demangle=Module["___cxa_demangle"]=Module["asm"]["__cxa_demangle"]).apply(null,arguments)};var ___cxa_get_globals=Module["___cxa_get_globals"]=function(){return(___cxa_get_globals=Module["___cxa_get_globals"]=Module["asm"]["__cxa_get_globals"]).apply(null,arguments)};var ___cxa_get_globals_fast=Module["___cxa_get_globals_fast"]=function(){return(___cxa_get_globals_fast=Module["___cxa_get_globals_fast"]=Module["asm"]["__cxa_get_globals_fast"]).apply(null,arguments)};var ___cxa_guard_abort=Module["___cxa_guard_abort"]=function(){return(___cxa_guard_abort=Module["___cxa_guard_abort"]=Module["asm"]["__cxa_guard_abort"]).apply(null,arguments)};var ___cxa_deleted_virtual=Module["___cxa_deleted_virtual"]=function(){return(___cxa_deleted_virtual=Module["___cxa_deleted_virtual"]=Module["asm"]["__cxa_deleted_virtual"]).apply(null,arguments)};var ___dynamic_cast=Module["___dynamic_cast"]=function(){return(___dynamic_cast=Module["___dynamic_cast"]=Module["asm"]["__dynamic_cast"]).apply(null,arguments)};var ___cxa_uncaught_exception=Module["___cxa_uncaught_exception"]=function(){return(___cxa_uncaught_exception=Module["___cxa_uncaught_exception"]=Module["asm"]["__cxa_uncaught_exception"]).apply(null,arguments)};var _sbrk=Module["_sbrk"]=function(){return(_sbrk=Module["_sbrk"]=Module["asm"]["sbrk"]).apply(null,arguments)};var _realloc_in_place=Module["_realloc_in_place"]=function(){return(_realloc_in_place=Module["_realloc_in_place"]=Module["asm"]["realloc_in_place"]).apply(null,arguments)};var _memalign=Module["_memalign"]=function(){return(_memalign=Module["_memalign"]=Module["asm"]["memalign"]).apply(null,arguments)};var _valloc=Module["_valloc"]=function(){return(_valloc=Module["_valloc"]=Module["asm"]["valloc"]).apply(null,arguments)};var _pvalloc=Module["_pvalloc"]=function(){return(_pvalloc=Module["_pvalloc"]=Module["asm"]["pvalloc"]).apply(null,arguments)};var _mallinfo=Module["_mallinfo"]=function(){return(_mallinfo=Module["_mallinfo"]=Module["asm"]["mallinfo"]).apply(null,arguments)};var _mallopt=Module["_mallopt"]=function(){return(_mallopt=Module["_mallopt"]=Module["asm"]["mallopt"]).apply(null,arguments)};var _malloc_trim=Module["_malloc_trim"]=function(){return(_malloc_trim=Module["_malloc_trim"]=Module["asm"]["malloc_trim"]).apply(null,arguments)};var _malloc_usable_size=Module["_malloc_usable_size"]=function(){return(_malloc_usable_size=Module["_malloc_usable_size"]=Module["asm"]["malloc_usable_size"]).apply(null,arguments)};var _malloc_footprint=Module["_malloc_footprint"]=function(){return(_malloc_footprint=Module["_malloc_footprint"]=Module["asm"]["malloc_footprint"]).apply(null,arguments)};var _malloc_max_footprint=Module["_malloc_max_footprint"]=function(){return(_malloc_max_footprint=Module["_malloc_max_footprint"]=Module["asm"]["malloc_max_footprint"]).apply(null,arguments)};var _malloc_footprint_limit=Module["_malloc_footprint_limit"]=function(){return(_malloc_footprint_limit=Module["_malloc_footprint_limit"]=Module["asm"]["malloc_footprint_limit"]).apply(null,arguments)};var _malloc_set_footprint_limit=Module["_malloc_set_footprint_limit"]=function(){return(_malloc_set_footprint_limit=Module["_malloc_set_footprint_limit"]=Module["asm"]["malloc_set_footprint_limit"]).apply(null,arguments)};var _independent_calloc=Module["_independent_calloc"]=function(){return(_independent_calloc=Module["_independent_calloc"]=Module["asm"]["independent_calloc"]).apply(null,arguments)};var _independent_comalloc=Module["_independent_comalloc"]=function(){return(_independent_comalloc=Module["_independent_comalloc"]=Module["asm"]["independent_comalloc"]).apply(null,arguments)};var _bulk_free=Module["_bulk_free"]=function(){return(_bulk_free=Module["_bulk_free"]=Module["asm"]["bulk_free"]).apply(null,arguments)};var _emscripten_builtin_malloc=Module["_emscripten_builtin_malloc"]=function(){return(_emscripten_builtin_malloc=Module["_emscripten_builtin_malloc"]=Module["asm"]["emscripten_builtin_malloc"]).apply(null,arguments)};var _emscripten_builtin_free=Module["_emscripten_builtin_free"]=function(){return(_emscripten_builtin_free=Module["_emscripten_builtin_free"]=Module["asm"]["emscripten_builtin_free"]).apply(null,arguments)};var _emscripten_builtin_memalign=Module["_emscripten_builtin_memalign"]=function(){return(_emscripten_builtin_memalign=Module["_emscripten_builtin_memalign"]=Module["asm"]["emscripten_builtin_memalign"]).apply(null,arguments)};var _emscripten_get_sbrk_ptr=Module["_emscripten_get_sbrk_ptr"]=function(){return(_emscripten_get_sbrk_ptr=Module["_emscripten_get_sbrk_ptr"]=Module["asm"]["emscripten_get_sbrk_ptr"]).apply(null,arguments)};var _brk=Module["_brk"]=function(){return(_brk=Module["_brk"]=Module["asm"]["brk"]).apply(null,arguments)};var _fmin=Module["_fmin"]=function(){return(_fmin=Module["_fmin"]=Module["asm"]["fmin"]).apply(null,arguments)};var _fminf=Module["_fminf"]=function(){return(_fminf=Module["_fminf"]=Module["asm"]["fminf"]).apply(null,arguments)};var _fminl=Module["_fminl"]=function(){return(_fminl=Module["_fminl"]=Module["asm"]["fminl"]).apply(null,arguments)};var _fmodf=Module["_fmodf"]=function(){return(_fmodf=Module["_fmodf"]=Module["asm"]["fmodf"]).apply(null,arguments)};var _log2f=Module["_log2f"]=function(){return(_log2f=Module["_log2f"]=Module["asm"]["log2f"]).apply(null,arguments)};var _log10f=Module["_log10f"]=function(){return(_log10f=Module["_log10f"]=Module["asm"]["log10f"]).apply(null,arguments)};var _exp2=Module["_exp2"]=function(){return(_exp2=Module["_exp2"]=Module["asm"]["exp2"]).apply(null,arguments)};var _exp2f=Module["_exp2f"]=function(){return(_exp2f=Module["_exp2f"]=Module["asm"]["exp2f"]).apply(null,arguments)};var _exp10=Module["_exp10"]=function(){return(_exp10=Module["_exp10"]=Module["asm"]["exp10"]).apply(null,arguments)};var _pow10=Module["_pow10"]=function(){return(_pow10=Module["_pow10"]=Module["asm"]["pow10"]).apply(null,arguments)};var _exp10f=Module["_exp10f"]=function(){return(_exp10f=Module["_exp10f"]=Module["asm"]["exp10f"]).apply(null,arguments)};var _pow10f=Module["_pow10f"]=function(){return(_pow10f=Module["_pow10f"]=Module["asm"]["pow10f"]).apply(null,arguments)};var ___signbitf=Module["___signbitf"]=function(){return(___signbitf=Module["___signbitf"]=Module["asm"]["__signbitf"]).apply(null,arguments)};var ___signbit=Module["___signbit"]=function(){return(___signbit=Module["___signbit"]=Module["asm"]["__signbit"]).apply(null,arguments)};var _emscripten_scan_stack=Module["_emscripten_scan_stack"]=function(){return(_emscripten_scan_stack=Module["_emscripten_scan_stack"]=Module["asm"]["emscripten_scan_stack"]).apply(null,arguments)};var ___towrite=Module["___towrite"]=function(){return(___towrite=Module["___towrite"]=Module["asm"]["__towrite"]).apply(null,arguments)};var ___towrite_needs_stdio_exit=Module["___towrite_needs_stdio_exit"]=function(){return(___towrite_needs_stdio_exit=Module["___towrite_needs_stdio_exit"]=Module["asm"]["__towrite_needs_stdio_exit"]).apply(null,arguments)};var _fwrite_unlocked=Module["_fwrite_unlocked"]=function(){return(_fwrite_unlocked=Module["_fwrite_unlocked"]=Module["asm"]["fwrite_unlocked"]).apply(null,arguments)};var _fputs_unlocked=Module["_fputs_unlocked"]=function(){return(_fputs_unlocked=Module["_fputs_unlocked"]=Module["asm"]["fputs_unlocked"]).apply(null,arguments)};var _socketpair=Module["_socketpair"]=function(){return(_socketpair=Module["_socketpair"]=Module["asm"]["socketpair"]).apply(null,arguments)};var ___wasm_apply_data_relocs=Module["___wasm_apply_data_relocs"]=function(){return(___wasm_apply_data_relocs=Module["___wasm_apply_data_relocs"]=Module["asm"]["__wasm_apply_data_relocs"]).apply(null,arguments)};var ___wasm_apply_global_relocs=Module["___wasm_apply_global_relocs"]=function(){return(___wasm_apply_global_relocs=Module["___wasm_apply_global_relocs"]=Module["asm"]["__wasm_apply_global_relocs"]).apply(null,arguments)};var dynCall_iiiij=Module["dynCall_iiiij"]=function(){return(dynCall_iiiij=Module["dynCall_iiiij"]=Module["asm"]["dynCall_iiiij"]).apply(null,arguments)};var dynCall_vijii=Module["dynCall_vijii"]=function(){return(dynCall_vijii=Module["dynCall_vijii"]=Module["asm"]["dynCall_vijii"]).apply(null,arguments)};var dynCall_iijj=Module["dynCall_iijj"]=function(){return(dynCall_iijj=Module["dynCall_iijj"]=Module["asm"]["dynCall_iijj"]).apply(null,arguments)};var dynCall_iij=Module["dynCall_iij"]=function(){return(dynCall_iij=Module["dynCall_iij"]=Module["asm"]["dynCall_iij"]).apply(null,arguments)};var dynCall_iijii=Module["dynCall_iijii"]=function(){return(dynCall_iijii=Module["dynCall_iijii"]=Module["asm"]["dynCall_iijii"]).apply(null,arguments)};var dynCall_iiji=Module["dynCall_iiji"]=function(){return(dynCall_iiji=Module["dynCall_iiji"]=Module["asm"]["dynCall_iiji"]).apply(null,arguments)};var dynCall_iiiiiij=Module["dynCall_iiiiiij"]=function(){return(dynCall_iiiiiij=Module["dynCall_iiiiiij"]=Module["asm"]["dynCall_iiiiiij"]).apply(null,arguments)};var dynCall_iiij=Module["dynCall_iiij"]=function(){return(dynCall_iiij=Module["dynCall_iiij"]=Module["asm"]["dynCall_iiij"]).apply(null,arguments)};var dynCall_jii=Module["dynCall_jii"]=function(){return(dynCall_jii=Module["dynCall_jii"]=Module["asm"]["dynCall_jii"]).apply(null,arguments)};var dynCall_ji=Module["dynCall_ji"]=function(){return(dynCall_ji=Module["dynCall_ji"]=Module["asm"]["dynCall_ji"]).apply(null,arguments)};var dynCall_vij=Module["dynCall_vij"]=function(){return(dynCall_vij=Module["dynCall_vij"]=Module["asm"]["dynCall_vij"]).apply(null,arguments)};var dynCall_iiiiijii=Module["dynCall_iiiiijii"]=function(){return(dynCall_iiiiijii=Module["dynCall_iiiiijii"]=Module["asm"]["dynCall_iiiiijii"]).apply(null,arguments)};var dynCall_j=Module["dynCall_j"]=function(){return(dynCall_j=Module["dynCall_j"]=Module["asm"]["dynCall_j"]).apply(null,arguments)};var dynCall_jj=Module["dynCall_jj"]=function(){return(dynCall_jj=Module["dynCall_jj"]=Module["asm"]["dynCall_jj"]).apply(null,arguments)};var dynCall_jiij=Module["dynCall_jiij"]=function(){return(dynCall_jiij=Module["dynCall_jiij"]=Module["asm"]["dynCall_jiij"]).apply(null,arguments)};var dynCall_iiiiji=Module["dynCall_iiiiji"]=function(){return(dynCall_iiiiji=Module["dynCall_iiiiji"]=Module["asm"]["dynCall_iiiiji"]).apply(null,arguments)};var dynCall_iiiijii=Module["dynCall_iiiijii"]=function(){return(dynCall_iiiijii=Module["dynCall_iiiijii"]=Module["asm"]["dynCall_iiiijii"]).apply(null,arguments)};var dynCall_ij=Module["dynCall_ij"]=function(){return(dynCall_ij=Module["dynCall_ij"]=Module["asm"]["dynCall_ij"]).apply(null,arguments)};var dynCall_viiji=Module["dynCall_viiji"]=function(){return(dynCall_viiji=Module["dynCall_viiji"]=Module["asm"]["dynCall_viiji"]).apply(null,arguments)};var dynCall_viijii=Module["dynCall_viijii"]=function(){return(dynCall_viijii=Module["dynCall_viijii"]=Module["asm"]["dynCall_viijii"]).apply(null,arguments)};var dynCall_jiji=Module["dynCall_jiji"]=function(){return(dynCall_jiji=Module["dynCall_jiji"]=Module["asm"]["dynCall_jiji"]).apply(null,arguments)};var dynCall_iiiiij=Module["dynCall_iiiiij"]=function(){return(dynCall_iiiiij=Module["dynCall_iiiiij"]=Module["asm"]["dynCall_iiiiij"]).apply(null,arguments)};var dynCall_iiiiijj=Module["dynCall_iiiiijj"]=function(){return(dynCall_iiiiijj=Module["dynCall_iiiiijj"]=Module["asm"]["dynCall_iiiiijj"]).apply(null,arguments)};var dynCall_iiiiiijj=Module["dynCall_iiiiiijj"]=function(){return(dynCall_iiiiiijj=Module["dynCall_iiiiiijj"]=Module["asm"]["dynCall_iiiiiijj"]).apply(null,arguments)};var _orig$lseek=Module["_orig$lseek"]=function(){return(_orig$lseek=Module["_orig$lseek"]=Module["asm"]["orig$lseek"]).apply(null,arguments)};var _orig$_PyInterpreterState_LookUpID=Module["_orig$_PyInterpreterState_LookUpID"]=function(){return(_orig$_PyInterpreterState_LookUpID=Module["_orig$_PyInterpreterState_LookUpID"]=Module["asm"]["orig$_PyInterpreterState_LookUpID"]).apply(null,arguments)};var _orig$PyLong_FromLongLong=Module["_orig$PyLong_FromLongLong"]=function(){return(_orig$PyLong_FromLongLong=Module["_orig$PyLong_FromLongLong"]=Module["asm"]["orig$PyLong_FromLongLong"]).apply(null,arguments)};var _orig$PyLong_AsLongLongAndOverflow=Module["_orig$PyLong_AsLongLongAndOverflow"]=function(){return(_orig$PyLong_AsLongLongAndOverflow=Module["_orig$PyLong_AsLongLongAndOverflow"]=Module["asm"]["orig$PyLong_AsLongLongAndOverflow"]).apply(null,arguments)};var _orig$_PyInterpreterID_New=Module["_orig$_PyInterpreterID_New"]=function(){return(_orig$_PyInterpreterID_New=Module["_orig$_PyInterpreterID_New"]=Module["asm"]["orig$_PyInterpreterID_New"]).apply(null,arguments)};var _orig$PyInterpreterState_GetID=Module["_orig$PyInterpreterState_GetID"]=function(){return(_orig$PyInterpreterState_GetID=Module["_orig$PyInterpreterState_GetID"]=Module["asm"]["orig$PyInterpreterState_GetID"]).apply(null,arguments)};var _orig$PyLong_AsLongLong=Module["_orig$PyLong_AsLongLong"]=function(){return(_orig$PyLong_AsLongLong=Module["_orig$PyLong_AsLongLong"]=Module["asm"]["orig$PyLong_AsLongLong"]).apply(null,arguments)};var _orig$PyLong_FromUnsignedLongLong=Module["_orig$PyLong_FromUnsignedLongLong"]=function(){return(_orig$PyLong_FromUnsignedLongLong=Module["_orig$PyLong_FromUnsignedLongLong"]=Module["asm"]["orig$PyLong_FromUnsignedLongLong"]).apply(null,arguments)};var _orig$PyLong_AsUnsignedLongLong=Module["_orig$PyLong_AsUnsignedLongLong"]=function(){return(_orig$PyLong_AsUnsignedLongLong=Module["_orig$PyLong_AsUnsignedLongLong"]=Module["asm"]["orig$PyLong_AsUnsignedLongLong"]).apply(null,arguments)};var _orig$PyLong_AsUnsignedLongLongMask=Module["_orig$PyLong_AsUnsignedLongLongMask"]=function(){return(_orig$PyLong_AsUnsignedLongLongMask=Module["_orig$PyLong_AsUnsignedLongLongMask"]=Module["asm"]["orig$PyLong_AsUnsignedLongLongMask"]).apply(null,arguments)};var _orig$_PyThread_cond_after=Module["_orig$_PyThread_cond_after"]=function(){return(_orig$_PyThread_cond_after=Module["_orig$_PyThread_cond_after"]=Module["asm"]["orig$_PyThread_cond_after"]).apply(null,arguments)};var _orig$_PyTime_GetPerfCounter=Module["_orig$_PyTime_GetPerfCounter"]=function(){return(_orig$_PyTime_GetPerfCounter=Module["_orig$_PyTime_GetPerfCounter"]=Module["asm"]["orig$_PyTime_GetPerfCounter"]).apply(null,arguments)};var _orig$_PyTime_AsMicroseconds=Module["_orig$_PyTime_AsMicroseconds"]=function(){return(_orig$_PyTime_AsMicroseconds=Module["_orig$_PyTime_AsMicroseconds"]=Module["asm"]["orig$_PyTime_AsMicroseconds"]).apply(null,arguments)};var _orig$_Py_KeyedHash=Module["_orig$_Py_KeyedHash"]=function(){return(_orig$_Py_KeyedHash=Module["_orig$_Py_KeyedHash"]=Module["asm"]["orig$_Py_KeyedHash"]).apply(null,arguments)};var _orig$PyThreadState_GetID=Module["_orig$PyThreadState_GetID"]=function(){return(_orig$PyThreadState_GetID=Module["_orig$PyThreadState_GetID"]=Module["asm"]["orig$PyThreadState_GetID"]).apply(null,arguments)};var _orig$_PyTime_MulDiv=Module["_orig$_PyTime_MulDiv"]=function(){return(_orig$_PyTime_MulDiv=Module["_orig$_PyTime_MulDiv"]=Module["asm"]["orig$_PyTime_MulDiv"]).apply(null,arguments)};var _orig$_PyTime_FromSeconds=Module["_orig$_PyTime_FromSeconds"]=function(){return(_orig$_PyTime_FromSeconds=Module["_orig$_PyTime_FromSeconds"]=Module["asm"]["orig$_PyTime_FromSeconds"]).apply(null,arguments)};var _orig$_PyTime_FromNanoseconds=Module["_orig$_PyTime_FromNanoseconds"]=function(){return(_orig$_PyTime_FromNanoseconds=Module["_orig$_PyTime_FromNanoseconds"]=Module["asm"]["orig$_PyTime_FromNanoseconds"]).apply(null,arguments)};var _orig$_PyTime_AsSecondsDouble=Module["_orig$_PyTime_AsSecondsDouble"]=function(){return(_orig$_PyTime_AsSecondsDouble=Module["_orig$_PyTime_AsSecondsDouble"]=Module["asm"]["orig$_PyTime_AsSecondsDouble"]).apply(null,arguments)};var _orig$_PyTime_AsNanosecondsObject=Module["_orig$_PyTime_AsNanosecondsObject"]=function(){return(_orig$_PyTime_AsNanosecondsObject=Module["_orig$_PyTime_AsNanosecondsObject"]=Module["asm"]["orig$_PyTime_AsNanosecondsObject"]).apply(null,arguments)};var _orig$_PyTime_AsMilliseconds=Module["_orig$_PyTime_AsMilliseconds"]=function(){return(_orig$_PyTime_AsMilliseconds=Module["_orig$_PyTime_AsMilliseconds"]=Module["asm"]["orig$_PyTime_AsMilliseconds"]).apply(null,arguments)};var _orig$_PyTime_AsTimeval=Module["_orig$_PyTime_AsTimeval"]=function(){return(_orig$_PyTime_AsTimeval=Module["_orig$_PyTime_AsTimeval"]=Module["asm"]["orig$_PyTime_AsTimeval"]).apply(null,arguments)};var _orig$_PyTime_AsTimeval_noraise=Module["_orig$_PyTime_AsTimeval_noraise"]=function(){return(_orig$_PyTime_AsTimeval_noraise=Module["_orig$_PyTime_AsTimeval_noraise"]=Module["asm"]["orig$_PyTime_AsTimeval_noraise"]).apply(null,arguments)};var _orig$_PyTime_AsTimevalTime_t=Module["_orig$_PyTime_AsTimevalTime_t"]=function(){return(_orig$_PyTime_AsTimevalTime_t=Module["_orig$_PyTime_AsTimevalTime_t"]=Module["asm"]["orig$_PyTime_AsTimevalTime_t"]).apply(null,arguments)};var _orig$_PyTime_AsTimespec=Module["_orig$_PyTime_AsTimespec"]=function(){return(_orig$_PyTime_AsTimespec=Module["_orig$_PyTime_AsTimespec"]=Module["asm"]["orig$_PyTime_AsTimespec"]).apply(null,arguments)};var _orig$_PyTime_GetSystemClock=Module["_orig$_PyTime_GetSystemClock"]=function(){return(_orig$_PyTime_GetSystemClock=Module["_orig$_PyTime_GetSystemClock"]=Module["asm"]["orig$_PyTime_GetSystemClock"]).apply(null,arguments)};var _orig$_PyTime_GetMonotonicClock=Module["_orig$_PyTime_GetMonotonicClock"]=function(){return(_orig$_PyTime_GetMonotonicClock=Module["_orig$_PyTime_GetMonotonicClock"]=Module["asm"]["orig$_PyTime_GetMonotonicClock"]).apply(null,arguments)};var _orig$PyThread_acquire_lock_timed=Module["_orig$PyThread_acquire_lock_timed"]=function(){return(_orig$PyThread_acquire_lock_timed=Module["_orig$PyThread_acquire_lock_timed"]=Module["asm"]["orig$PyThread_acquire_lock_timed"]).apply(null,arguments)};var _orig$__trunctfdf2=Module["_orig$__trunctfdf2"]=function(){return(_orig$__trunctfdf2=Module["_orig$__trunctfdf2"]=Module["asm"]["orig$__trunctfdf2"]).apply(null,arguments)};var _orig$testfunc_DDD=Module["_orig$testfunc_DDD"]=function(){return(_orig$testfunc_DDD=Module["_orig$testfunc_DDD"]=Module["asm"]["orig$testfunc_DDD"]).apply(null,arguments)};var _orig$__multf3=Module["_orig$__multf3"]=function(){return(_orig$__multf3=Module["_orig$__multf3"]=Module["asm"]["orig$__multf3"]).apply(null,arguments)};var _orig$_testfunc_D_bhilfD=Module["_orig$_testfunc_D_bhilfD"]=function(){return(_orig$_testfunc_D_bhilfD=Module["_orig$_testfunc_D_bhilfD"]=Module["asm"]["orig$_testfunc_D_bhilfD"]).apply(null,arguments)};var _orig$__addtf3=Module["_orig$__addtf3"]=function(){return(_orig$__addtf3=Module["_orig$__addtf3"]=Module["asm"]["orig$__addtf3"]).apply(null,arguments)};var _orig$_testfunc_q_bhilfdq=Module["_orig$_testfunc_q_bhilfdq"]=function(){return(_orig$_testfunc_q_bhilfdq=Module["_orig$_testfunc_q_bhilfdq"]=Module["asm"]["orig$_testfunc_q_bhilfdq"]).apply(null,arguments)};var _orig$_testfunc_q_bhilfd=Module["_orig$_testfunc_q_bhilfd"]=function(){return(_orig$_testfunc_q_bhilfd=Module["_orig$_testfunc_q_bhilfd"]=Module["asm"]["orig$_testfunc_q_bhilfd"]).apply(null,arguments)};var _orig$_testfunc_callback_q_qf=Module["_orig$_testfunc_callback_q_qf"]=function(){return(_orig$_testfunc_callback_q_qf=Module["_orig$_testfunc_callback_q_qf"]=Module["asm"]["orig$_testfunc_callback_q_qf"]).apply(null,arguments)};var _orig$tf_q=Module["_orig$tf_q"]=function(){return(_orig$tf_q=Module["_orig$tf_q"]=Module["asm"]["orig$tf_q"]).apply(null,arguments)};var _orig$tf_Q=Module["_orig$tf_Q"]=function(){return(_orig$tf_Q=Module["_orig$tf_Q"]=Module["asm"]["orig$tf_Q"]).apply(null,arguments)};var _orig$tf_D=Module["_orig$tf_D"]=function(){return(_orig$tf_D=Module["_orig$tf_D"]=Module["asm"]["orig$tf_D"]).apply(null,arguments)};var _orig$__fixtfdi=Module["_orig$__fixtfdi"]=function(){return(_orig$__fixtfdi=Module["_orig$__fixtfdi"]=Module["asm"]["orig$__fixtfdi"]).apply(null,arguments)};var _orig$__divtf3=Module["_orig$__divtf3"]=function(){return(_orig$__divtf3=Module["_orig$__divtf3"]=Module["asm"]["orig$__divtf3"]).apply(null,arguments)};var _orig$tf_bq=Module["_orig$tf_bq"]=function(){return(_orig$tf_bq=Module["_orig$tf_bq"]=Module["asm"]["orig$tf_bq"]).apply(null,arguments)};var _orig$tf_bQ=Module["_orig$tf_bQ"]=function(){return(_orig$tf_bQ=Module["_orig$tf_bQ"]=Module["asm"]["orig$tf_bQ"]).apply(null,arguments)};var _orig$tf_bD=Module["_orig$tf_bD"]=function(){return(_orig$tf_bD=Module["_orig$tf_bD"]=Module["asm"]["orig$tf_bD"]).apply(null,arguments)};var _orig$sqlite3_value_int64=Module["_orig$sqlite3_value_int64"]=function(){return(_orig$sqlite3_value_int64=Module["_orig$sqlite3_value_int64"]=Module["asm"]["orig$sqlite3_value_int64"]).apply(null,arguments)};var _orig$_pysqlite_long_as_int64=Module["_orig$_pysqlite_long_as_int64"]=function(){return(_orig$_pysqlite_long_as_int64=Module["_orig$_pysqlite_long_as_int64"]=Module["asm"]["orig$_pysqlite_long_as_int64"]).apply(null,arguments)};var _orig$sqlite3_result_int64=Module["_orig$sqlite3_result_int64"]=function(){return(_orig$sqlite3_result_int64=Module["_orig$sqlite3_result_int64"]=Module["asm"]["orig$sqlite3_result_int64"]).apply(null,arguments)};var _orig$sqlite3_last_insert_rowid=Module["_orig$sqlite3_last_insert_rowid"]=function(){return(_orig$sqlite3_last_insert_rowid=Module["_orig$sqlite3_last_insert_rowid"]=Module["asm"]["orig$sqlite3_last_insert_rowid"]).apply(null,arguments)};var _orig$sqlite3_column_int64=Module["_orig$sqlite3_column_int64"]=function(){return(_orig$sqlite3_column_int64=Module["_orig$sqlite3_column_int64"]=Module["asm"]["orig$sqlite3_column_int64"]).apply(null,arguments)};var _orig$sqlite3_bind_int64=Module["_orig$sqlite3_bind_int64"]=function(){return(_orig$sqlite3_bind_int64=Module["_orig$sqlite3_bind_int64"]=Module["asm"]["orig$sqlite3_bind_int64"]).apply(null,arguments)};var _orig$mpd_qset_i64=Module["_orig$mpd_qset_i64"]=function(){return(_orig$mpd_qset_i64=Module["_orig$mpd_qset_i64"]=Module["asm"]["orig$mpd_qset_i64"]).apply(null,arguments)};var _orig$mpd_qset_i64_exact=Module["_orig$mpd_qset_i64_exact"]=function(){return(_orig$mpd_qset_i64_exact=Module["_orig$mpd_qset_i64_exact"]=Module["asm"]["orig$mpd_qset_i64_exact"]).apply(null,arguments)};var _orig$mpd_qset_u64=Module["_orig$mpd_qset_u64"]=function(){return(_orig$mpd_qset_u64=Module["_orig$mpd_qset_u64"]=Module["asm"]["orig$mpd_qset_u64"]).apply(null,arguments)};var _orig$mpd_qset_u64_exact=Module["_orig$mpd_qset_u64_exact"]=function(){return(_orig$mpd_qset_u64_exact=Module["_orig$mpd_qset_u64_exact"]=Module["asm"]["orig$mpd_qset_u64_exact"]).apply(null,arguments)};var _orig$mpd_qget_u64=Module["_orig$mpd_qget_u64"]=function(){return(_orig$mpd_qget_u64=Module["_orig$mpd_qget_u64"]=Module["asm"]["orig$mpd_qget_u64"]).apply(null,arguments)};var _orig$mpd_qget_i64=Module["_orig$mpd_qget_i64"]=function(){return(_orig$mpd_qget_i64=Module["_orig$mpd_qget_i64"]=Module["asm"]["orig$mpd_qget_i64"]).apply(null,arguments)};var _orig$mpd_qadd_i64=Module["_orig$mpd_qadd_i64"]=function(){return(_orig$mpd_qadd_i64=Module["_orig$mpd_qadd_i64"]=Module["asm"]["orig$mpd_qadd_i64"]).apply(null,arguments)};var _orig$mpd_qadd_u64=Module["_orig$mpd_qadd_u64"]=function(){return(_orig$mpd_qadd_u64=Module["_orig$mpd_qadd_u64"]=Module["asm"]["orig$mpd_qadd_u64"]).apply(null,arguments)};var _orig$mpd_qsub_i64=Module["_orig$mpd_qsub_i64"]=function(){return(_orig$mpd_qsub_i64=Module["_orig$mpd_qsub_i64"]=Module["asm"]["orig$mpd_qsub_i64"]).apply(null,arguments)};var _orig$mpd_qsub_u64=Module["_orig$mpd_qsub_u64"]=function(){return(_orig$mpd_qsub_u64=Module["_orig$mpd_qsub_u64"]=Module["asm"]["orig$mpd_qsub_u64"]).apply(null,arguments)};var _orig$mpd_qdiv_i64=Module["_orig$mpd_qdiv_i64"]=function(){return(_orig$mpd_qdiv_i64=Module["_orig$mpd_qdiv_i64"]=Module["asm"]["orig$mpd_qdiv_i64"]).apply(null,arguments)};var _orig$mpd_qdiv_u64=Module["_orig$mpd_qdiv_u64"]=function(){return(_orig$mpd_qdiv_u64=Module["_orig$mpd_qdiv_u64"]=Module["asm"]["orig$mpd_qdiv_u64"]).apply(null,arguments)};var _orig$mpd_qmul_i64=Module["_orig$mpd_qmul_i64"]=function(){return(_orig$mpd_qmul_i64=Module["_orig$mpd_qmul_i64"]=Module["asm"]["orig$mpd_qmul_i64"]).apply(null,arguments)};var _orig$mpd_qmul_u64=Module["_orig$mpd_qmul_u64"]=function(){return(_orig$mpd_qmul_u64=Module["_orig$mpd_qmul_u64"]=Module["asm"]["orig$mpd_qmul_u64"]).apply(null,arguments)};var _orig$mmap=Module["_orig$mmap"]=function(){return(_orig$mmap=Module["_orig$mmap"]=Module["asm"]["orig$mmap"]).apply(null,arguments)};var _orig$ftruncate=Module["_orig$ftruncate"]=function(){return(_orig$ftruncate=Module["_orig$ftruncate"]=Module["asm"]["orig$ftruncate"]).apply(null,arguments)};var _orig$lockf=Module["_orig$lockf"]=function(){return(_orig$lockf=Module["_orig$lockf"]=Module["asm"]["orig$lockf"]).apply(null,arguments)};var _orig$pread=Module["_orig$pread"]=function(){return(_orig$pread=Module["_orig$pread"]=Module["asm"]["orig$pread"]).apply(null,arguments)};var _orig$pwrite=Module["_orig$pwrite"]=function(){return(_orig$pwrite=Module["_orig$pwrite"]=Module["asm"]["orig$pwrite"]).apply(null,arguments)};var _orig$truncate=Module["_orig$truncate"]=function(){return(_orig$truncate=Module["_orig$truncate"]=Module["asm"]["orig$truncate"]).apply(null,arguments)};var _orig$posix_fallocate=Module["_orig$posix_fallocate"]=function(){return(_orig$posix_fallocate=Module["_orig$posix_fallocate"]=Module["asm"]["orig$posix_fallocate"]).apply(null,arguments)};var _orig$posix_fadvise=Module["_orig$posix_fadvise"]=function(){return(_orig$posix_fadvise=Module["_orig$posix_fadvise"]=Module["asm"]["orig$posix_fadvise"]).apply(null,arguments)};var _orig$PyNumber_AsOff_t=Module["_orig$PyNumber_AsOff_t"]=function(){return(_orig$PyNumber_AsOff_t=Module["_orig$PyNumber_AsOff_t"]=Module["asm"]["orig$PyNumber_AsOff_t"]).apply(null,arguments)};var _orig$sqlite3_msize=Module["_orig$sqlite3_msize"]=function(){return(_orig$sqlite3_msize=Module["_orig$sqlite3_msize"]=Module["asm"]["orig$sqlite3_msize"]).apply(null,arguments)};var _orig$sqlite3_memory_alarm=Module["_orig$sqlite3_memory_alarm"]=function(){return(_orig$sqlite3_memory_alarm=Module["_orig$sqlite3_memory_alarm"]=Module["asm"]["orig$sqlite3_memory_alarm"]).apply(null,arguments)};var _orig$sqlite3_soft_heap_limit64=Module["_orig$sqlite3_soft_heap_limit64"]=function(){return(_orig$sqlite3_soft_heap_limit64=Module["_orig$sqlite3_soft_heap_limit64"]=Module["asm"]["orig$sqlite3_soft_heap_limit64"]).apply(null,arguments)};var _orig$sqlite3_memory_used=Module["_orig$sqlite3_memory_used"]=function(){return(_orig$sqlite3_memory_used=Module["_orig$sqlite3_memory_used"]=Module["asm"]["orig$sqlite3_memory_used"]).apply(null,arguments)};var _orig$sqlite3_memory_highwater=Module["_orig$sqlite3_memory_highwater"]=function(){return(_orig$sqlite3_memory_highwater=Module["_orig$sqlite3_memory_highwater"]=Module["asm"]["orig$sqlite3_memory_highwater"]).apply(null,arguments)};var _orig$sqlite3_malloc64=Module["_orig$sqlite3_malloc64"]=function(){return(_orig$sqlite3_malloc64=Module["_orig$sqlite3_malloc64"]=Module["asm"]["orig$sqlite3_malloc64"]).apply(null,arguments)};var _orig$sqlite3_realloc64=Module["_orig$sqlite3_realloc64"]=function(){return(_orig$sqlite3_realloc64=Module["_orig$sqlite3_realloc64"]=Module["asm"]["orig$sqlite3_realloc64"]).apply(null,arguments)};var _orig$__gttf2=Module["_orig$__gttf2"]=function(){return(_orig$__gttf2=Module["_orig$__gttf2"]=Module["asm"]["orig$__gttf2"]).apply(null,arguments)};var _orig$__getf2=Module["_orig$__getf2"]=function(){return(_orig$__getf2=Module["_orig$__getf2"]=Module["asm"]["orig$__getf2"]).apply(null,arguments)};var _orig$__lttf2=Module["_orig$__lttf2"]=function(){return(_orig$__lttf2=Module["_orig$__lttf2"]=Module["asm"]["orig$__lttf2"]).apply(null,arguments)};var _orig$__fixtfsi=Module["_orig$__fixtfsi"]=function(){return(_orig$__fixtfsi=Module["_orig$__fixtfsi"]=Module["asm"]["orig$__fixtfsi"]).apply(null,arguments)};var _orig$__subtf3=Module["_orig$__subtf3"]=function(){return(_orig$__subtf3=Module["_orig$__subtf3"]=Module["asm"]["orig$__subtf3"]).apply(null,arguments)};var _orig$sqlite3_result_blob64=Module["_orig$sqlite3_result_blob64"]=function(){return(_orig$sqlite3_result_blob64=Module["_orig$sqlite3_result_blob64"]=Module["asm"]["orig$sqlite3_result_blob64"]).apply(null,arguments)};var _orig$sqlite3_result_text64=Module["_orig$sqlite3_result_text64"]=function(){return(_orig$sqlite3_result_text64=Module["_orig$sqlite3_result_text64"]=Module["asm"]["orig$sqlite3_result_text64"]).apply(null,arguments)};var _orig$sqlite3_result_zeroblob64=Module["_orig$sqlite3_result_zeroblob64"]=function(){return(_orig$sqlite3_result_zeroblob64=Module["_orig$sqlite3_result_zeroblob64"]=Module["asm"]["orig$sqlite3_result_zeroblob64"]).apply(null,arguments)};var _orig$sqlite3_bind_blob64=Module["_orig$sqlite3_bind_blob64"]=function(){return(_orig$sqlite3_bind_blob64=Module["_orig$sqlite3_bind_blob64"]=Module["asm"]["orig$sqlite3_bind_blob64"]).apply(null,arguments)};var _orig$sqlite3_bind_text64=Module["_orig$sqlite3_bind_text64"]=function(){return(_orig$sqlite3_bind_text64=Module["_orig$sqlite3_bind_text64"]=Module["asm"]["orig$sqlite3_bind_text64"]).apply(null,arguments)};var _orig$sqlite3_bind_zeroblob64=Module["_orig$sqlite3_bind_zeroblob64"]=function(){return(_orig$sqlite3_bind_zeroblob64=Module["_orig$sqlite3_bind_zeroblob64"]=Module["asm"]["orig$sqlite3_bind_zeroblob64"]).apply(null,arguments)};var _orig$sqlite3_blob_open=Module["_orig$sqlite3_blob_open"]=function(){return(_orig$sqlite3_blob_open=Module["_orig$sqlite3_blob_open"]=Module["asm"]["orig$sqlite3_blob_open"]).apply(null,arguments)};var _orig$sqlite3_blob_reopen=Module["_orig$sqlite3_blob_reopen"]=function(){return(_orig$sqlite3_blob_reopen=Module["_orig$sqlite3_blob_reopen"]=Module["asm"]["orig$sqlite3_blob_reopen"]).apply(null,arguments)};var _orig$sqlite3_set_last_insert_rowid=Module["_orig$sqlite3_set_last_insert_rowid"]=function(){return(_orig$sqlite3_set_last_insert_rowid=Module["_orig$sqlite3_set_last_insert_rowid"]=Module["asm"]["orig$sqlite3_set_last_insert_rowid"]).apply(null,arguments)};var _orig$sqlite3_uri_int64=Module["_orig$sqlite3_uri_int64"]=function(){return(_orig$sqlite3_uri_int64=Module["_orig$sqlite3_uri_int64"]=Module["asm"]["orig$sqlite3_uri_int64"]).apply(null,arguments)};var _orig$__floatditf=Module["_orig$__floatditf"]=function(){return(_orig$__floatditf=Module["_orig$__floatditf"]=Module["asm"]["orig$__floatditf"]).apply(null,arguments)};var _orig$adler32_combine=Module["_orig$adler32_combine"]=function(){return(_orig$adler32_combine=Module["_orig$adler32_combine"]=Module["asm"]["orig$adler32_combine"]).apply(null,arguments)};var _orig$adler32_combine64=Module["_orig$adler32_combine64"]=function(){return(_orig$adler32_combine64=Module["_orig$adler32_combine64"]=Module["asm"]["orig$adler32_combine64"]).apply(null,arguments)};var _orig$crc32_combine=Module["_orig$crc32_combine"]=function(){return(_orig$crc32_combine=Module["_orig$crc32_combine"]=Module["asm"]["orig$crc32_combine"]).apply(null,arguments)};var _orig$crc32_combine64=Module["_orig$crc32_combine64"]=function(){return(_orig$crc32_combine64=Module["_orig$crc32_combine64"]=Module["asm"]["orig$crc32_combine64"]).apply(null,arguments)};var _orig$gzseek64=Module["_orig$gzseek64"]=function(){return(_orig$gzseek64=Module["_orig$gzseek64"]=Module["asm"]["orig$gzseek64"]).apply(null,arguments)};var _orig$gzseek=Module["_orig$gzseek"]=function(){return(_orig$gzseek=Module["_orig$gzseek"]=Module["asm"]["orig$gzseek"]).apply(null,arguments)};var _orig$gztell64=Module["_orig$gztell64"]=function(){return(_orig$gztell64=Module["_orig$gztell64"]=Module["asm"]["orig$gztell64"]).apply(null,arguments)};var _orig$gztell=Module["_orig$gztell"]=function(){return(_orig$gztell=Module["_orig$gztell"]=Module["asm"]["orig$gztell"]).apply(null,arguments)};var _orig$gzoffset64=Module["_orig$gzoffset64"]=function(){return(_orig$gzoffset64=Module["_orig$gzoffset64"]=Module["asm"]["orig$gzoffset64"]).apply(null,arguments)};var _orig$gzoffset=Module["_orig$gzoffset"]=function(){return(_orig$gzoffset=Module["_orig$gzoffset"]=Module["asm"]["orig$gzoffset"]).apply(null,arguments)};var _orig$posix_fadvise64=Module["_orig$posix_fadvise64"]=function(){return(_orig$posix_fadvise64=Module["_orig$posix_fadvise64"]=Module["asm"]["orig$posix_fadvise64"]).apply(null,arguments)};var _orig$posix_fallocate64=Module["_orig$posix_fallocate64"]=function(){return(_orig$posix_fallocate64=Module["_orig$posix_fallocate64"]=Module["asm"]["orig$posix_fallocate64"]).apply(null,arguments)};var _orig$__intscan=Module["_orig$__intscan"]=function(){return(_orig$__intscan=Module["_orig$__intscan"]=Module["asm"]["orig$__intscan"]).apply(null,arguments)};var _orig$__shlim=Module["_orig$__shlim"]=function(){return(_orig$__shlim=Module["_orig$__shlim"]=Module["asm"]["orig$__shlim"]).apply(null,arguments)};var _orig$__multi3=Module["_orig$__multi3"]=function(){return(_orig$__multi3=Module["_orig$__multi3"]=Module["asm"]["orig$__multi3"]).apply(null,arguments)};var _orig$copysignl=Module["_orig$copysignl"]=function(){return(_orig$copysignl=Module["_orig$copysignl"]=Module["asm"]["orig$copysignl"]).apply(null,arguments)};var _orig$__netf2=Module["_orig$__netf2"]=function(){return(_orig$__netf2=Module["_orig$__netf2"]=Module["asm"]["orig$__netf2"]).apply(null,arguments)};var _orig$scalbnl=Module["_orig$scalbnl"]=function(){return(_orig$scalbnl=Module["_orig$scalbnl"]=Module["asm"]["orig$scalbnl"]).apply(null,arguments)};var _orig$fmodl=Module["_orig$fmodl"]=function(){return(_orig$fmodl=Module["_orig$fmodl"]=Module["asm"]["orig$fmodl"]).apply(null,arguments)};var _orig$fabsl=Module["_orig$fabsl"]=function(){return(_orig$fabsl=Module["_orig$fabsl"]=Module["asm"]["orig$fabsl"]).apply(null,arguments)};var _orig$ffsll=Module["_orig$ffsll"]=function(){return(_orig$ffsll=Module["_orig$ffsll"]=Module["asm"]["orig$ffsll"]).apply(null,arguments)};var _orig$lockf64=Module["_orig$lockf64"]=function(){return(_orig$lockf64=Module["_orig$lockf64"]=Module["asm"]["orig$lockf64"]).apply(null,arguments)};var _orig$strtoull=Module["_orig$strtoull"]=function(){return(_orig$strtoull=Module["_orig$strtoull"]=Module["asm"]["orig$strtoull"]).apply(null,arguments)};var _orig$pwrite64=Module["_orig$pwrite64"]=function(){return(_orig$pwrite64=Module["_orig$pwrite64"]=Module["asm"]["orig$pwrite64"]).apply(null,arguments)};var _orig$pwritev=Module["_orig$pwritev"]=function(){return(_orig$pwritev=Module["_orig$pwritev"]=Module["asm"]["orig$pwritev"]).apply(null,arguments)};var _orig$pwritev64=Module["_orig$pwritev64"]=function(){return(_orig$pwritev64=Module["_orig$pwritev64"]=Module["asm"]["orig$pwritev64"]).apply(null,arguments)};var _orig$truncate64=Module["_orig$truncate64"]=function(){return(_orig$truncate64=Module["_orig$truncate64"]=Module["asm"]["orig$truncate64"]).apply(null,arguments)};var _orig$pread64=Module["_orig$pread64"]=function(){return(_orig$pread64=Module["_orig$pread64"]=Module["asm"]["orig$pread64"]).apply(null,arguments)};var _orig$preadv=Module["_orig$preadv"]=function(){return(_orig$preadv=Module["_orig$preadv"]=Module["asm"]["orig$preadv"]).apply(null,arguments)};var _orig$preadv64=Module["_orig$preadv64"]=function(){return(_orig$preadv64=Module["_orig$preadv64"]=Module["asm"]["orig$preadv64"]).apply(null,arguments)};var _orig$lseek64=Module["_orig$lseek64"]=function(){return(_orig$lseek64=Module["_orig$lseek64"]=Module["asm"]["orig$lseek64"]).apply(null,arguments)};var _orig$ftruncate64=Module["_orig$ftruncate64"]=function(){return(_orig$ftruncate64=Module["_orig$ftruncate64"]=Module["asm"]["orig$ftruncate64"]).apply(null,arguments)};var _orig$__mmap=Module["_orig$__mmap"]=function(){return(_orig$__mmap=Module["_orig$__mmap"]=Module["asm"]["orig$__mmap"]).apply(null,arguments)};var _orig$mmap64=Module["_orig$mmap64"]=function(){return(_orig$mmap64=Module["_orig$mmap64"]=Module["asm"]["orig$mmap64"]).apply(null,arguments)};var _orig$logl=Module["_orig$logl"]=function(){return(_orig$logl=Module["_orig$logl"]=Module["asm"]["orig$logl"]).apply(null,arguments)};var _orig$__eqtf2=Module["_orig$__eqtf2"]=function(){return(_orig$__eqtf2=Module["_orig$__eqtf2"]=Module["asm"]["orig$__eqtf2"]).apply(null,arguments)};var _orig$atan2l=Module["_orig$atan2l"]=function(){return(_orig$atan2l=Module["_orig$atan2l"]=Module["asm"]["orig$atan2l"]).apply(null,arguments)};var _orig$__unordtf2=Module["_orig$__unordtf2"]=function(){return(_orig$__unordtf2=Module["_orig$__unordtf2"]=Module["asm"]["orig$__unordtf2"]).apply(null,arguments)};var _orig$__multc3=Module["_orig$__multc3"]=function(){return(_orig$__multc3=Module["_orig$__multc3"]=Module["asm"]["orig$__multc3"]).apply(null,arguments)};var _orig$hypotl=Module["_orig$hypotl"]=function(){return(_orig$hypotl=Module["_orig$hypotl"]=Module["asm"]["orig$hypotl"]).apply(null,arguments)};var _orig$__fpclassifyl=Module["_orig$__fpclassifyl"]=function(){return(_orig$__fpclassifyl=Module["_orig$__fpclassifyl"]=Module["asm"]["orig$__fpclassifyl"]).apply(null,arguments)};var _orig$log10l=Module["_orig$log10l"]=function(){return(_orig$log10l=Module["_orig$log10l"]=Module["asm"]["orig$log10l"]).apply(null,arguments)};var _orig$__invtrigl_R=Module["_orig$__invtrigl_R"]=function(){return(_orig$__invtrigl_R=Module["_orig$__invtrigl_R"]=Module["asm"]["orig$__invtrigl_R"]).apply(null,arguments)};var _orig$powl=Module["_orig$powl"]=function(){return(_orig$powl=Module["_orig$powl"]=Module["asm"]["orig$powl"]).apply(null,arguments)};var _orig$nearbyintl=Module["_orig$nearbyintl"]=function(){return(_orig$nearbyintl=Module["_orig$nearbyintl"]=Module["asm"]["orig$nearbyintl"]).apply(null,arguments)};var _orig$rintl=Module["_orig$rintl"]=function(){return(_orig$rintl=Module["_orig$rintl"]=Module["asm"]["orig$rintl"]).apply(null,arguments)};var _orig$truncl=Module["_orig$truncl"]=function(){return(_orig$truncl=Module["_orig$truncl"]=Module["asm"]["orig$truncl"]).apply(null,arguments)};var _orig$ilogbl=Module["_orig$ilogbl"]=function(){return(_orig$ilogbl=Module["_orig$ilogbl"]=Module["asm"]["orig$ilogbl"]).apply(null,arguments)};var _orig$llrintl=Module["_orig$llrintl"]=function(){return(_orig$llrintl=Module["_orig$llrintl"]=Module["asm"]["orig$llrintl"]).apply(null,arguments)};var _orig$erfl=Module["_orig$erfl"]=function(){return(_orig$erfl=Module["_orig$erfl"]=Module["asm"]["orig$erfl"]).apply(null,arguments)};var _orig$erfcl=Module["_orig$erfcl"]=function(){return(_orig$erfcl=Module["_orig$erfcl"]=Module["asm"]["orig$erfcl"]).apply(null,arguments)};var _orig$asinhl=Module["_orig$asinhl"]=function(){return(_orig$asinhl=Module["_orig$asinhl"]=Module["asm"]["orig$asinhl"]).apply(null,arguments)};var _orig$__lgammal_r=Module["_orig$__lgammal_r"]=function(){return(_orig$__lgammal_r=Module["_orig$__lgammal_r"]=Module["asm"]["orig$__lgammal_r"]).apply(null,arguments)};var _orig$lgammal=Module["_orig$lgammal"]=function(){return(_orig$lgammal=Module["_orig$lgammal"]=Module["asm"]["orig$lgammal"]).apply(null,arguments)};var _orig$lgammal_r=Module["_orig$lgammal_r"]=function(){return(_orig$lgammal_r=Module["_orig$lgammal_r"]=Module["asm"]["orig$lgammal_r"]).apply(null,arguments)};var _orig$log1pl=Module["_orig$log1pl"]=function(){return(_orig$log1pl=Module["_orig$log1pl"]=Module["asm"]["orig$log1pl"]).apply(null,arguments)};var _orig$logbl=Module["_orig$logbl"]=function(){return(_orig$logbl=Module["_orig$logbl"]=Module["asm"]["orig$logbl"]).apply(null,arguments)};var _orig$llrintf=Module["_orig$llrintf"]=function(){return(_orig$llrintf=Module["_orig$llrintf"]=Module["asm"]["orig$llrintf"]).apply(null,arguments)};var _orig$sqrtl=Module["_orig$sqrtl"]=function(){return(_orig$sqrtl=Module["_orig$sqrtl"]=Module["asm"]["orig$sqrtl"]).apply(null,arguments)};var _orig$modfl=Module["_orig$modfl"]=function(){return(_orig$modfl=Module["_orig$modfl"]=Module["asm"]["orig$modfl"]).apply(null,arguments)};var _orig$coshl=Module["_orig$coshl"]=function(){return(_orig$coshl=Module["_orig$coshl"]=Module["asm"]["orig$coshl"]).apply(null,arguments)};var _orig$asinl=Module["_orig$asinl"]=function(){return(_orig$asinl=Module["_orig$asinl"]=Module["asm"]["orig$asinl"]).apply(null,arguments)};var _orig$lrintl=Module["_orig$lrintl"]=function(){return(_orig$lrintl=Module["_orig$lrintl"]=Module["asm"]["orig$lrintl"]).apply(null,arguments)};var _orig$fmal=Module["_orig$fmal"]=function(){return(_orig$fmal=Module["_orig$fmal"]=Module["asm"]["orig$fmal"]).apply(null,arguments)};var _orig$frexpl=Module["_orig$frexpl"]=function(){return(_orig$frexpl=Module["_orig$frexpl"]=Module["asm"]["orig$frexpl"]).apply(null,arguments)};var _orig$nextafterl=Module["_orig$nextafterl"]=function(){return(_orig$nextafterl=Module["_orig$nextafterl"]=Module["asm"]["orig$nextafterl"]).apply(null,arguments)};var _orig$sinl=Module["_orig$sinl"]=function(){return(_orig$sinl=Module["_orig$sinl"]=Module["asm"]["orig$sinl"]).apply(null,arguments)};var _orig$__sinl=Module["_orig$__sinl"]=function(){return(_orig$__sinl=Module["_orig$__sinl"]=Module["asm"]["orig$__sinl"]).apply(null,arguments)};var _orig$__rem_pio2l=Module["_orig$__rem_pio2l"]=function(){return(_orig$__rem_pio2l=Module["_orig$__rem_pio2l"]=Module["asm"]["orig$__rem_pio2l"]).apply(null,arguments)};var _orig$__cosl=Module["_orig$__cosl"]=function(){return(_orig$__cosl=Module["_orig$__cosl"]=Module["asm"]["orig$__cosl"]).apply(null,arguments)};var _orig$scalblnl=Module["_orig$scalblnl"]=function(){return(_orig$scalblnl=Module["_orig$scalblnl"]=Module["asm"]["orig$scalblnl"]).apply(null,arguments)};var _orig$acosl=Module["_orig$acosl"]=function(){return(_orig$acosl=Module["_orig$acosl"]=Module["asm"]["orig$acosl"]).apply(null,arguments)};var _orig$floorl=Module["_orig$floorl"]=function(){return(_orig$floorl=Module["_orig$floorl"]=Module["asm"]["orig$floorl"]).apply(null,arguments)};var _orig$llroundl=Module["_orig$llroundl"]=function(){return(_orig$llroundl=Module["_orig$llroundl"]=Module["asm"]["orig$llroundl"]).apply(null,arguments)};var _orig$roundl=Module["_orig$roundl"]=function(){return(_orig$roundl=Module["_orig$roundl"]=Module["asm"]["orig$roundl"]).apply(null,arguments)};var _orig$llround=Module["_orig$llround"]=function(){return(_orig$llround=Module["_orig$llround"]=Module["asm"]["orig$llround"]).apply(null,arguments)};var _orig$ceill=Module["_orig$ceill"]=function(){return(_orig$ceill=Module["_orig$ceill"]=Module["asm"]["orig$ceill"]).apply(null,arguments)};var _orig$ldexpl=Module["_orig$ldexpl"]=function(){return(_orig$ldexpl=Module["_orig$ldexpl"]=Module["asm"]["orig$ldexpl"]).apply(null,arguments)};var _orig$remainderl=Module["_orig$remainderl"]=function(){return(_orig$remainderl=Module["_orig$remainderl"]=Module["asm"]["orig$remainderl"]).apply(null,arguments)};var _orig$remquol=Module["_orig$remquol"]=function(){return(_orig$remquol=Module["_orig$remquol"]=Module["asm"]["orig$remquol"]).apply(null,arguments)};var _orig$log2l=Module["_orig$log2l"]=function(){return(_orig$log2l=Module["_orig$log2l"]=Module["asm"]["orig$log2l"]).apply(null,arguments)};var _orig$exp10l=Module["_orig$exp10l"]=function(){return(_orig$exp10l=Module["_orig$exp10l"]=Module["asm"]["orig$exp10l"]).apply(null,arguments)};var _orig$exp2l=Module["_orig$exp2l"]=function(){return(_orig$exp2l=Module["_orig$exp2l"]=Module["asm"]["orig$exp2l"]).apply(null,arguments)};var _orig$pow10l=Module["_orig$pow10l"]=function(){return(_orig$pow10l=Module["_orig$pow10l"]=Module["asm"]["orig$pow10l"]).apply(null,arguments)};var _orig$__letf2=Module["_orig$__letf2"]=function(){return(_orig$__letf2=Module["_orig$__letf2"]=Module["asm"]["orig$__letf2"]).apply(null,arguments)};var _orig$sincosl=Module["_orig$sincosl"]=function(){return(_orig$sincosl=Module["_orig$sincosl"]=Module["asm"]["orig$sincosl"]).apply(null,arguments)};var _orig$tgammal=Module["_orig$tgammal"]=function(){return(_orig$tgammal=Module["_orig$tgammal"]=Module["asm"]["orig$tgammal"]).apply(null,arguments)};var _orig$llroundf=Module["_orig$llroundf"]=function(){return(_orig$llroundf=Module["_orig$llroundf"]=Module["asm"]["orig$llroundf"]).apply(null,arguments)};var _orig$__polevll=Module["_orig$__polevll"]=function(){return(_orig$__polevll=Module["_orig$__polevll"]=Module["asm"]["orig$__polevll"]).apply(null,arguments)};var _orig$__p1evll=Module["_orig$__p1evll"]=function(){return(_orig$__p1evll=Module["_orig$__p1evll"]=Module["asm"]["orig$__p1evll"]).apply(null,arguments)};var _orig$nexttoward=Module["_orig$nexttoward"]=function(){return(_orig$nexttoward=Module["_orig$nexttoward"]=Module["asm"]["orig$nexttoward"]).apply(null,arguments)};var _orig$__signbitl=Module["_orig$__signbitl"]=function(){return(_orig$__signbitl=Module["_orig$__signbitl"]=Module["asm"]["orig$__signbitl"]).apply(null,arguments)};var _orig$sinhl=Module["_orig$sinhl"]=function(){return(_orig$sinhl=Module["_orig$sinhl"]=Module["asm"]["orig$sinhl"]).apply(null,arguments)};var _orig$acoshl=Module["_orig$acoshl"]=function(){return(_orig$acoshl=Module["_orig$acoshl"]=Module["asm"]["orig$acoshl"]).apply(null,arguments)};var _orig$atanl=Module["_orig$atanl"]=function(){return(_orig$atanl=Module["_orig$atanl"]=Module["asm"]["orig$atanl"]).apply(null,arguments)};var _orig$__tanl=Module["_orig$__tanl"]=function(){return(_orig$__tanl=Module["_orig$__tanl"]=Module["asm"]["orig$__tanl"]).apply(null,arguments)};var _orig$fdiml=Module["_orig$fdiml"]=function(){return(_orig$fdiml=Module["_orig$fdiml"]=Module["asm"]["orig$fdiml"]).apply(null,arguments)};var _orig$nexttowardl=Module["_orig$nexttowardl"]=function(){return(_orig$nexttowardl=Module["_orig$nexttowardl"]=Module["asm"]["orig$nexttowardl"]).apply(null,arguments)};var _orig$atanhl=Module["_orig$atanhl"]=function(){return(_orig$atanhl=Module["_orig$atanhl"]=Module["asm"]["orig$atanhl"]).apply(null,arguments)};var _orig$tanl=Module["_orig$tanl"]=function(){return(_orig$tanl=Module["_orig$tanl"]=Module["asm"]["orig$tanl"]).apply(null,arguments)};var _orig$cbrtl=Module["_orig$cbrtl"]=function(){return(_orig$cbrtl=Module["_orig$cbrtl"]=Module["asm"]["orig$cbrtl"]).apply(null,arguments)};var _orig$__trunctfsf2=Module["_orig$__trunctfsf2"]=function(){return(_orig$__trunctfsf2=Module["_orig$__trunctfsf2"]=Module["asm"]["orig$__trunctfsf2"]).apply(null,arguments)};var _orig$lroundl=Module["_orig$lroundl"]=function(){return(_orig$lroundl=Module["_orig$lroundl"]=Module["asm"]["orig$lroundl"]).apply(null,arguments)};var _orig$nexttowardf=Module["_orig$nexttowardf"]=function(){return(_orig$nexttowardf=Module["_orig$nexttowardf"]=Module["asm"]["orig$nexttowardf"]).apply(null,arguments)};var _orig$expl=Module["_orig$expl"]=function(){return(_orig$expl=Module["_orig$expl"]=Module["asm"]["orig$expl"]).apply(null,arguments)};var _orig$expm1l=Module["_orig$expm1l"]=function(){return(_orig$expm1l=Module["_orig$expm1l"]=Module["asm"]["orig$expm1l"]).apply(null,arguments)};var _orig$llrint=Module["_orig$llrint"]=function(){return(_orig$llrint=Module["_orig$llrint"]=Module["asm"]["orig$llrint"]).apply(null,arguments)};var _orig$cosl=Module["_orig$cosl"]=function(){return(_orig$cosl=Module["_orig$cosl"]=Module["asm"]["orig$cosl"]).apply(null,arguments)};var _orig$tanhl=Module["_orig$tanhl"]=function(){return(_orig$tanhl=Module["_orig$tanhl"]=Module["asm"]["orig$tanhl"]).apply(null,arguments)};var _orig$__rand48_step=Module["_orig$__rand48_step"]=function(){return(_orig$__rand48_step=Module["_orig$__rand48_step"]=Module["asm"]["orig$__rand48_step"]).apply(null,arguments)};var _orig$__stdio_seek=Module["_orig$__stdio_seek"]=function(){return(_orig$__stdio_seek=Module["_orig$__stdio_seek"]=Module["asm"]["orig$__stdio_seek"]).apply(null,arguments)};var _orig$__ftello_unlocked=Module["_orig$__ftello_unlocked"]=function(){return(_orig$__ftello_unlocked=Module["_orig$__ftello_unlocked"]=Module["asm"]["orig$__ftello_unlocked"]).apply(null,arguments)};var _orig$__ftello=Module["_orig$__ftello"]=function(){return(_orig$__ftello=Module["_orig$__ftello"]=Module["asm"]["orig$__ftello"]).apply(null,arguments)};var _orig$ftello=Module["_orig$ftello"]=function(){return(_orig$ftello=Module["_orig$ftello"]=Module["asm"]["orig$ftello"]).apply(null,arguments)};var _orig$ftello64=Module["_orig$ftello64"]=function(){return(_orig$ftello64=Module["_orig$ftello64"]=Module["asm"]["orig$ftello64"]).apply(null,arguments)};var _orig$__fseeko=Module["_orig$__fseeko"]=function(){return(_orig$__fseeko=Module["_orig$__fseeko"]=Module["asm"]["orig$__fseeko"]).apply(null,arguments)};var _orig$__fseeko_unlocked=Module["_orig$__fseeko_unlocked"]=function(){return(_orig$__fseeko_unlocked=Module["_orig$__fseeko_unlocked"]=Module["asm"]["orig$__fseeko_unlocked"]).apply(null,arguments)};var _orig$fseeko=Module["_orig$fseeko"]=function(){return(_orig$fseeko=Module["_orig$fseeko"]=Module["asm"]["orig$fseeko"]).apply(null,arguments)};var _orig$fseeko64=Module["_orig$fseeko64"]=function(){return(_orig$fseeko64=Module["_orig$fseeko64"]=Module["asm"]["orig$fseeko64"]).apply(null,arguments)};var _orig$strtoll=Module["_orig$strtoll"]=function(){return(_orig$strtoll=Module["_orig$strtoll"]=Module["asm"]["orig$strtoll"]).apply(null,arguments)};var _orig$strtoimax=Module["_orig$strtoimax"]=function(){return(_orig$strtoimax=Module["_orig$strtoimax"]=Module["asm"]["orig$strtoimax"]).apply(null,arguments)};var _orig$strtoumax=Module["_orig$strtoumax"]=function(){return(_orig$strtoumax=Module["_orig$strtoumax"]=Module["asm"]["orig$strtoumax"]).apply(null,arguments)};var _orig$__strtoll_internal=Module["_orig$__strtoll_internal"]=function(){return(_orig$__strtoll_internal=Module["_orig$__strtoll_internal"]=Module["asm"]["orig$__strtoll_internal"]).apply(null,arguments)};var _orig$__strtoull_internal=Module["_orig$__strtoull_internal"]=function(){return(_orig$__strtoull_internal=Module["_orig$__strtoull_internal"]=Module["asm"]["orig$__strtoull_internal"]).apply(null,arguments)};var _orig$__strtoimax_internal=Module["_orig$__strtoimax_internal"]=function(){return(_orig$__strtoimax_internal=Module["_orig$__strtoimax_internal"]=Module["asm"]["orig$__strtoimax_internal"]).apply(null,arguments)};var _orig$__strtoumax_internal=Module["_orig$__strtoumax_internal"]=function(){return(_orig$__strtoumax_internal=Module["_orig$__strtoumax_internal"]=Module["asm"]["orig$__strtoumax_internal"]).apply(null,arguments)};var _orig$atoll=Module["_orig$atoll"]=function(){return(_orig$atoll=Module["_orig$atoll"]=Module["asm"]["orig$atoll"]).apply(null,arguments)};var _orig$wcstoull=Module["_orig$wcstoull"]=function(){return(_orig$wcstoull=Module["_orig$wcstoull"]=Module["asm"]["orig$wcstoull"]).apply(null,arguments)};var _orig$wcstoll=Module["_orig$wcstoll"]=function(){return(_orig$wcstoll=Module["_orig$wcstoll"]=Module["asm"]["orig$wcstoll"]).apply(null,arguments)};var _orig$wcstoimax=Module["_orig$wcstoimax"]=function(){return(_orig$wcstoimax=Module["_orig$wcstoimax"]=Module["asm"]["orig$wcstoimax"]).apply(null,arguments)};var _orig$wcstoumax=Module["_orig$wcstoumax"]=function(){return(_orig$wcstoumax=Module["_orig$wcstoumax"]=Module["asm"]["orig$wcstoumax"]).apply(null,arguments)};var _orig$lldiv=Module["_orig$lldiv"]=function(){return(_orig$lldiv=Module["_orig$lldiv"]=Module["asm"]["orig$lldiv"]).apply(null,arguments)};var _orig$imaxabs=Module["_orig$imaxabs"]=function(){return(_orig$imaxabs=Module["_orig$imaxabs"]=Module["asm"]["orig$imaxabs"]).apply(null,arguments)};var _orig$imaxdiv=Module["_orig$imaxdiv"]=function(){return(_orig$imaxdiv=Module["_orig$imaxdiv"]=Module["asm"]["orig$imaxdiv"]).apply(null,arguments)};var _orig$llabs=Module["_orig$llabs"]=function(){return(_orig$llabs=Module["_orig$llabs"]=Module["asm"]["orig$llabs"]).apply(null,arguments)};var _orig$emscripten_atomic_exchange_u64=Module["_orig$emscripten_atomic_exchange_u64"]=function(){return(_orig$emscripten_atomic_exchange_u64=Module["_orig$emscripten_atomic_exchange_u64"]=Module["asm"]["orig$emscripten_atomic_exchange_u64"]).apply(null,arguments)};var _orig$emscripten_atomic_cas_u64=Module["_orig$emscripten_atomic_cas_u64"]=function(){return(_orig$emscripten_atomic_cas_u64=Module["_orig$emscripten_atomic_cas_u64"]=Module["asm"]["orig$emscripten_atomic_cas_u64"]).apply(null,arguments)};var _orig$emscripten_atomic_load_u64=Module["_orig$emscripten_atomic_load_u64"]=function(){return(_orig$emscripten_atomic_load_u64=Module["_orig$emscripten_atomic_load_u64"]=Module["asm"]["orig$emscripten_atomic_load_u64"]).apply(null,arguments)};var _orig$emscripten_atomic_store_u64=Module["_orig$emscripten_atomic_store_u64"]=function(){return(_orig$emscripten_atomic_store_u64=Module["_orig$emscripten_atomic_store_u64"]=Module["asm"]["orig$emscripten_atomic_store_u64"]).apply(null,arguments)};var _orig$emscripten_atomic_add_u64=Module["_orig$emscripten_atomic_add_u64"]=function(){return(_orig$emscripten_atomic_add_u64=Module["_orig$emscripten_atomic_add_u64"]=Module["asm"]["orig$emscripten_atomic_add_u64"]).apply(null,arguments)};var _orig$emscripten_atomic_sub_u64=Module["_orig$emscripten_atomic_sub_u64"]=function(){return(_orig$emscripten_atomic_sub_u64=Module["_orig$emscripten_atomic_sub_u64"]=Module["asm"]["orig$emscripten_atomic_sub_u64"]).apply(null,arguments)};var _orig$emscripten_atomic_and_u64=Module["_orig$emscripten_atomic_and_u64"]=function(){return(_orig$emscripten_atomic_and_u64=Module["_orig$emscripten_atomic_and_u64"]=Module["asm"]["orig$emscripten_atomic_and_u64"]).apply(null,arguments)};var _orig$emscripten_atomic_or_u64=Module["_orig$emscripten_atomic_or_u64"]=function(){return(_orig$emscripten_atomic_or_u64=Module["_orig$emscripten_atomic_or_u64"]=Module["asm"]["orig$emscripten_atomic_or_u64"]).apply(null,arguments)};var _orig$emscripten_atomic_xor_u64=Module["_orig$emscripten_atomic_xor_u64"]=function(){return(_orig$emscripten_atomic_xor_u64=Module["_orig$emscripten_atomic_xor_u64"]=Module["asm"]["orig$emscripten_atomic_xor_u64"]).apply(null,arguments)};var _orig$strtoull_l=Module["_orig$strtoull_l"]=function(){return(_orig$strtoull_l=Module["_orig$strtoull_l"]=Module["asm"]["orig$strtoull_l"]).apply(null,arguments)};var _orig$strtoll_l=Module["_orig$strtoll_l"]=function(){return(_orig$strtoll_l=Module["_orig$strtoll_l"]=Module["asm"]["orig$strtoll_l"]).apply(null,arguments)};var _orig$__lshrdi3=Module["_orig$__lshrdi3"]=function(){return(_orig$__lshrdi3=Module["_orig$__lshrdi3"]=Module["asm"]["orig$__lshrdi3"]).apply(null,arguments)};var _orig$__powitf2=Module["_orig$__powitf2"]=function(){return(_orig$__powitf2=Module["_orig$__powitf2"]=Module["asm"]["orig$__powitf2"]).apply(null,arguments)};var _orig$__ashldi3=Module["_orig$__ashldi3"]=function(){return(_orig$__ashldi3=Module["_orig$__ashldi3"]=Module["asm"]["orig$__ashldi3"]).apply(null,arguments)};var _orig$__fixxfdi=Module["_orig$__fixxfdi"]=function(){return(_orig$__fixxfdi=Module["_orig$__fixxfdi"]=Module["asm"]["orig$__fixxfdi"]).apply(null,arguments)};var _orig$__floattixf=Module["_orig$__floattixf"]=function(){return(_orig$__floattixf=Module["_orig$__floattixf"]=Module["asm"]["orig$__floattixf"]).apply(null,arguments)};var _orig$__clzti2=Module["_orig$__clzti2"]=function(){return(_orig$__clzti2=Module["_orig$__clzti2"]=Module["asm"]["orig$__clzti2"]).apply(null,arguments)};var _orig$__lshrti3=Module["_orig$__lshrti3"]=function(){return(_orig$__lshrti3=Module["_orig$__lshrti3"]=Module["asm"]["orig$__lshrti3"]).apply(null,arguments)};var _orig$__ashlti3=Module["_orig$__ashlti3"]=function(){return(_orig$__ashlti3=Module["_orig$__ashlti3"]=Module["asm"]["orig$__ashlti3"]).apply(null,arguments)};var _orig$__ffsdi2=Module["_orig$__ffsdi2"]=function(){return(_orig$__ffsdi2=Module["_orig$__ffsdi2"]=Module["asm"]["orig$__ffsdi2"]).apply(null,arguments)};var _orig$__fixsfdi=Module["_orig$__fixsfdi"]=function(){return(_orig$__fixsfdi=Module["_orig$__fixsfdi"]=Module["asm"]["orig$__fixsfdi"]).apply(null,arguments)};var _orig$__fixunssfdi=Module["_orig$__fixunssfdi"]=function(){return(_orig$__fixunssfdi=Module["_orig$__fixunssfdi"]=Module["asm"]["orig$__fixunssfdi"]).apply(null,arguments)};var _orig$__mulvti3=Module["_orig$__mulvti3"]=function(){return(_orig$__mulvti3=Module["_orig$__mulvti3"]=Module["asm"]["orig$__mulvti3"]).apply(null,arguments)};var _orig$__udivti3=Module["_orig$__udivti3"]=function(){return(_orig$__udivti3=Module["_orig$__udivti3"]=Module["asm"]["orig$__udivti3"]).apply(null,arguments)};var _orig$__divti3=Module["_orig$__divti3"]=function(){return(_orig$__divti3=Module["_orig$__divti3"]=Module["asm"]["orig$__divti3"]).apply(null,arguments)};var _orig$__floatundisf=Module["_orig$__floatundisf"]=function(){return(_orig$__floatundisf=Module["_orig$__floatundisf"]=Module["asm"]["orig$__floatundisf"]).apply(null,arguments)};var _orig$__divxc3=Module["_orig$__divxc3"]=function(){return(_orig$__divxc3=Module["_orig$__divxc3"]=Module["asm"]["orig$__divxc3"]).apply(null,arguments)};var _orig$fmaxl=Module["_orig$fmaxl"]=function(){return(_orig$fmaxl=Module["_orig$fmaxl"]=Module["asm"]["orig$fmaxl"]).apply(null,arguments)};var _orig$__dtoi64=Module["_orig$__dtoi64"]=function(){return(_orig$__dtoi64=Module["_orig$__dtoi64"]=Module["asm"]["orig$__dtoi64"]).apply(null,arguments)};var _orig$__fixdfdi=Module["_orig$__fixdfdi"]=function(){return(_orig$__fixdfdi=Module["_orig$__fixdfdi"]=Module["asm"]["orig$__fixdfdi"]).apply(null,arguments)};var _orig$__stoi64=Module["_orig$__stoi64"]=function(){return(_orig$__stoi64=Module["_orig$__stoi64"]=Module["asm"]["orig$__stoi64"]).apply(null,arguments)};var _orig$__dtou64=Module["_orig$__dtou64"]=function(){return(_orig$__dtou64=Module["_orig$__dtou64"]=Module["asm"]["orig$__dtou64"]).apply(null,arguments)};var _orig$__fixunsdfdi=Module["_orig$__fixunsdfdi"]=function(){return(_orig$__fixunsdfdi=Module["_orig$__fixunsdfdi"]=Module["asm"]["orig$__fixunsdfdi"]).apply(null,arguments)};var _orig$__stou64=Module["_orig$__stou64"]=function(){return(_orig$__stou64=Module["_orig$__stou64"]=Module["asm"]["orig$__stou64"]).apply(null,arguments)};var _orig$__i64tod=Module["_orig$__i64tod"]=function(){return(_orig$__i64tod=Module["_orig$__i64tod"]=Module["asm"]["orig$__i64tod"]).apply(null,arguments)};var _orig$__floatdidf=Module["_orig$__floatdidf"]=function(){return(_orig$__floatdidf=Module["_orig$__floatdidf"]=Module["asm"]["orig$__floatdidf"]).apply(null,arguments)};var _orig$__i64tos=Module["_orig$__i64tos"]=function(){return(_orig$__i64tos=Module["_orig$__i64tos"]=Module["asm"]["orig$__i64tos"]).apply(null,arguments)};var _orig$__floatdisf=Module["_orig$__floatdisf"]=function(){return(_orig$__floatdisf=Module["_orig$__floatdisf"]=Module["asm"]["orig$__floatdisf"]).apply(null,arguments)};var _orig$__u64tod=Module["_orig$__u64tod"]=function(){return(_orig$__u64tod=Module["_orig$__u64tod"]=Module["asm"]["orig$__u64tod"]).apply(null,arguments)};var _orig$__floatundidf=Module["_orig$__floatundidf"]=function(){return(_orig$__floatundidf=Module["_orig$__floatundidf"]=Module["asm"]["orig$__floatundidf"]).apply(null,arguments)};var _orig$__u64tos=Module["_orig$__u64tos"]=function(){return(_orig$__u64tos=Module["_orig$__u64tos"]=Module["asm"]["orig$__u64tos"]).apply(null,arguments)};var _orig$__mulxc3=Module["_orig$__mulxc3"]=function(){return(_orig$__mulxc3=Module["_orig$__mulxc3"]=Module["asm"]["orig$__mulxc3"]).apply(null,arguments)};var _orig$__ctzti2=Module["_orig$__ctzti2"]=function(){return(_orig$__ctzti2=Module["_orig$__ctzti2"]=Module["asm"]["orig$__ctzti2"]).apply(null,arguments)};var _orig$__ashrti3=Module["_orig$__ashrti3"]=function(){return(_orig$__ashrti3=Module["_orig$__ashrti3"]=Module["asm"]["orig$__ashrti3"]).apply(null,arguments)};var _orig$__fixunstfti=Module["_orig$__fixunstfti"]=function(){return(_orig$__fixunstfti=Module["_orig$__fixunstfti"]=Module["asm"]["orig$__fixunstfti"]).apply(null,arguments)};var _orig$__ashrdi3=Module["_orig$__ashrdi3"]=function(){return(_orig$__ashrdi3=Module["_orig$__ashrdi3"]=Module["asm"]["orig$__ashrdi3"]).apply(null,arguments)};var _orig$__gcc_personality_v0=Module["_orig$__gcc_personality_v0"]=function(){return(_orig$__gcc_personality_v0=Module["_orig$__gcc_personality_v0"]=Module["asm"]["orig$__gcc_personality_v0"]).apply(null,arguments)};var _orig$__popcountdi2=Module["_orig$__popcountdi2"]=function(){return(_orig$__popcountdi2=Module["_orig$__popcountdi2"]=Module["asm"]["orig$__popcountdi2"]).apply(null,arguments)};var _orig$__fixxfti=Module["_orig$__fixxfti"]=function(){return(_orig$__fixxfti=Module["_orig$__fixxfti"]=Module["asm"]["orig$__fixxfti"]).apply(null,arguments)};var _orig$__fixunstfdi=Module["_orig$__fixunstfdi"]=function(){return(_orig$__fixunstfdi=Module["_orig$__fixunstfdi"]=Module["asm"]["orig$__fixunstfdi"]).apply(null,arguments)};var _orig$__negvti2=Module["_orig$__negvti2"]=function(){return(_orig$__negvti2=Module["_orig$__negvti2"]=Module["asm"]["orig$__negvti2"]).apply(null,arguments)};var _orig$__fixunsxfti=Module["_orig$__fixunsxfti"]=function(){return(_orig$__fixunsxfti=Module["_orig$__fixunsxfti"]=Module["asm"]["orig$__fixunsxfti"]).apply(null,arguments)};var _orig$__fixunsxfsi=Module["_orig$__fixunsxfsi"]=function(){return(_orig$__fixunsxfsi=Module["_orig$__fixunsxfsi"]=Module["asm"]["orig$__fixunsxfsi"]).apply(null,arguments)};var _orig$__floattisf=Module["_orig$__floattisf"]=function(){return(_orig$__floattisf=Module["_orig$__floattisf"]=Module["asm"]["orig$__floattisf"]).apply(null,arguments)};var _orig$__absvdi2=Module["_orig$__absvdi2"]=function(){return(_orig$__absvdi2=Module["_orig$__absvdi2"]=Module["asm"]["orig$__absvdi2"]).apply(null,arguments)};var _orig$__fixtfti=Module["_orig$__fixtfti"]=function(){return(_orig$__fixtfti=Module["_orig$__fixtfti"]=Module["asm"]["orig$__fixtfti"]).apply(null,arguments)};var _orig$__negvdi2=Module["_orig$__negvdi2"]=function(){return(_orig$__negvdi2=Module["_orig$__negvdi2"]=Module["asm"]["orig$__negvdi2"]).apply(null,arguments)};var _orig$__ucmpti2=Module["_orig$__ucmpti2"]=function(){return(_orig$__ucmpti2=Module["_orig$__ucmpti2"]=Module["asm"]["orig$__ucmpti2"]).apply(null,arguments)};var _orig$__subvdi3=Module["_orig$__subvdi3"]=function(){return(_orig$__subvdi3=Module["_orig$__subvdi3"]=Module["asm"]["orig$__subvdi3"]).apply(null,arguments)};var _orig$__fixunstfsi=Module["_orig$__fixunstfsi"]=function(){return(_orig$__fixunstfsi=Module["_orig$__fixunstfsi"]=Module["asm"]["orig$__fixunstfsi"]).apply(null,arguments)};var _orig$__cmpdi2=Module["_orig$__cmpdi2"]=function(){return(_orig$__cmpdi2=Module["_orig$__cmpdi2"]=Module["asm"]["orig$__cmpdi2"]).apply(null,arguments)};var _orig$__udivmodti4=Module["_orig$__udivmodti4"]=function(){return(_orig$__udivmodti4=Module["_orig$__udivmodti4"]=Module["asm"]["orig$__udivmodti4"]).apply(null,arguments)};var _orig$__divmoddi4=Module["_orig$__divmoddi4"]=function(){return(_orig$__divmoddi4=Module["_orig$__divmoddi4"]=Module["asm"]["orig$__divmoddi4"]).apply(null,arguments)};var _orig$__divdi3=Module["_orig$__divdi3"]=function(){return(_orig$__divdi3=Module["_orig$__divdi3"]=Module["asm"]["orig$__divdi3"]).apply(null,arguments)};var _orig$__modti3=Module["_orig$__modti3"]=function(){return(_orig$__modti3=Module["_orig$__modti3"]=Module["asm"]["orig$__modti3"]).apply(null,arguments)};var _orig$__powixf2=Module["_orig$__powixf2"]=function(){return(_orig$__powixf2=Module["_orig$__powixf2"]=Module["asm"]["orig$__powixf2"]).apply(null,arguments)};var _orig$__bswapdi2=Module["_orig$__bswapdi2"]=function(){return(_orig$__bswapdi2=Module["_orig$__bswapdi2"]=Module["asm"]["orig$__bswapdi2"]).apply(null,arguments)};var _orig$__addvti3=Module["_orig$__addvti3"]=function(){return(_orig$__addvti3=Module["_orig$__addvti3"]=Module["asm"]["orig$__addvti3"]).apply(null,arguments)};var _orig$__subvti3=Module["_orig$__subvti3"]=function(){return(_orig$__subvti3=Module["_orig$__subvti3"]=Module["asm"]["orig$__subvti3"]).apply(null,arguments)};var _orig$__addvdi3=Module["_orig$__addvdi3"]=function(){return(_orig$__addvdi3=Module["_orig$__addvdi3"]=Module["asm"]["orig$__addvdi3"]).apply(null,arguments)};var _orig$__popcountti2=Module["_orig$__popcountti2"]=function(){return(_orig$__popcountti2=Module["_orig$__popcountti2"]=Module["asm"]["orig$__popcountti2"]).apply(null,arguments)};var _orig$__mulodi4=Module["_orig$__mulodi4"]=function(){return(_orig$__mulodi4=Module["_orig$__mulodi4"]=Module["asm"]["orig$__mulodi4"]).apply(null,arguments)};var _orig$__floatunditf=Module["_orig$__floatunditf"]=function(){return(_orig$__floatunditf=Module["_orig$__floatunditf"]=Module["asm"]["orig$__floatunditf"]).apply(null,arguments)};var _orig$__umodti3=Module["_orig$__umodti3"]=function(){return(_orig$__umodti3=Module["_orig$__umodti3"]=Module["asm"]["orig$__umodti3"]).apply(null,arguments)};var _orig$__floattitf=Module["_orig$__floattitf"]=function(){return(_orig$__floattitf=Module["_orig$__floattitf"]=Module["asm"]["orig$__floattitf"]).apply(null,arguments)};var _orig$__atomic_load_8=Module["_orig$__atomic_load_8"]=function(){return(_orig$__atomic_load_8=Module["_orig$__atomic_load_8"]=Module["asm"]["orig$__atomic_load_8"]).apply(null,arguments)};var _orig$__atomic_store_8=Module["_orig$__atomic_store_8"]=function(){return(_orig$__atomic_store_8=Module["_orig$__atomic_store_8"]=Module["asm"]["orig$__atomic_store_8"]).apply(null,arguments)};var _orig$__atomic_store_16=Module["_orig$__atomic_store_16"]=function(){return(_orig$__atomic_store_16=Module["_orig$__atomic_store_16"]=Module["asm"]["orig$__atomic_store_16"]).apply(null,arguments)};var _orig$__atomic_exchange_8=Module["_orig$__atomic_exchange_8"]=function(){return(_orig$__atomic_exchange_8=Module["_orig$__atomic_exchange_8"]=Module["asm"]["orig$__atomic_exchange_8"]).apply(null,arguments)};var _orig$__atomic_exchange_16=Module["_orig$__atomic_exchange_16"]=function(){return(_orig$__atomic_exchange_16=Module["_orig$__atomic_exchange_16"]=Module["asm"]["orig$__atomic_exchange_16"]).apply(null,arguments)};var _orig$__atomic_compare_exchange_8=Module["_orig$__atomic_compare_exchange_8"]=function(){return(_orig$__atomic_compare_exchange_8=Module["_orig$__atomic_compare_exchange_8"]=Module["asm"]["orig$__atomic_compare_exchange_8"]).apply(null,arguments)};var _orig$__atomic_compare_exchange_16=Module["_orig$__atomic_compare_exchange_16"]=function(){return(_orig$__atomic_compare_exchange_16=Module["_orig$__atomic_compare_exchange_16"]=Module["asm"]["orig$__atomic_compare_exchange_16"]).apply(null,arguments)};var _orig$__atomic_fetch_add_8=Module["_orig$__atomic_fetch_add_8"]=function(){return(_orig$__atomic_fetch_add_8=Module["_orig$__atomic_fetch_add_8"]=Module["asm"]["orig$__atomic_fetch_add_8"]).apply(null,arguments)};var _orig$__atomic_fetch_add_16=Module["_orig$__atomic_fetch_add_16"]=function(){return(_orig$__atomic_fetch_add_16=Module["_orig$__atomic_fetch_add_16"]=Module["asm"]["orig$__atomic_fetch_add_16"]).apply(null,arguments)};var _orig$__atomic_fetch_sub_8=Module["_orig$__atomic_fetch_sub_8"]=function(){return(_orig$__atomic_fetch_sub_8=Module["_orig$__atomic_fetch_sub_8"]=Module["asm"]["orig$__atomic_fetch_sub_8"]).apply(null,arguments)};var _orig$__atomic_fetch_sub_16=Module["_orig$__atomic_fetch_sub_16"]=function(){return(_orig$__atomic_fetch_sub_16=Module["_orig$__atomic_fetch_sub_16"]=Module["asm"]["orig$__atomic_fetch_sub_16"]).apply(null,arguments)};var _orig$__atomic_fetch_and_8=Module["_orig$__atomic_fetch_and_8"]=function(){return(_orig$__atomic_fetch_and_8=Module["_orig$__atomic_fetch_and_8"]=Module["asm"]["orig$__atomic_fetch_and_8"]).apply(null,arguments)};var _orig$__atomic_fetch_and_16=Module["_orig$__atomic_fetch_and_16"]=function(){return(_orig$__atomic_fetch_and_16=Module["_orig$__atomic_fetch_and_16"]=Module["asm"]["orig$__atomic_fetch_and_16"]).apply(null,arguments)};var _orig$__atomic_fetch_or_8=Module["_orig$__atomic_fetch_or_8"]=function(){return(_orig$__atomic_fetch_or_8=Module["_orig$__atomic_fetch_or_8"]=Module["asm"]["orig$__atomic_fetch_or_8"]).apply(null,arguments)};var _orig$__atomic_fetch_or_16=Module["_orig$__atomic_fetch_or_16"]=function(){return(_orig$__atomic_fetch_or_16=Module["_orig$__atomic_fetch_or_16"]=Module["asm"]["orig$__atomic_fetch_or_16"]).apply(null,arguments)};var _orig$__atomic_fetch_xor_8=Module["_orig$__atomic_fetch_xor_8"]=function(){return(_orig$__atomic_fetch_xor_8=Module["_orig$__atomic_fetch_xor_8"]=Module["asm"]["orig$__atomic_fetch_xor_8"]).apply(null,arguments)};var _orig$__atomic_fetch_xor_16=Module["_orig$__atomic_fetch_xor_16"]=function(){return(_orig$__atomic_fetch_xor_16=Module["_orig$__atomic_fetch_xor_16"]=Module["asm"]["orig$__atomic_fetch_xor_16"]).apply(null,arguments)};var _orig$__udivmoddi4=Module["_orig$__udivmoddi4"]=function(){return(_orig$__udivmoddi4=Module["_orig$__udivmoddi4"]=Module["asm"]["orig$__udivmoddi4"]).apply(null,arguments)};var _orig$__ctzdi2=Module["_orig$__ctzdi2"]=function(){return(_orig$__ctzdi2=Module["_orig$__ctzdi2"]=Module["asm"]["orig$__ctzdi2"]).apply(null,arguments)};var _orig$__fixunsxfdi=Module["_orig$__fixunsxfdi"]=function(){return(_orig$__fixunsxfdi=Module["_orig$__fixunsxfdi"]=Module["asm"]["orig$__fixunsxfdi"]).apply(null,arguments)};var _orig$__cmpti2=Module["_orig$__cmpti2"]=function(){return(_orig$__cmpti2=Module["_orig$__cmpti2"]=Module["asm"]["orig$__cmpti2"]).apply(null,arguments)};var _orig$__floatuntixf=Module["_orig$__floatuntixf"]=function(){return(_orig$__floatuntixf=Module["_orig$__floatuntixf"]=Module["asm"]["orig$__floatuntixf"]).apply(null,arguments)};var _orig$__moddi3=Module["_orig$__moddi3"]=function(){return(_orig$__moddi3=Module["_orig$__moddi3"]=Module["asm"]["orig$__moddi3"]).apply(null,arguments)};var _orig$__floatdixf=Module["_orig$__floatdixf"]=function(){return(_orig$__floatdixf=Module["_orig$__floatdixf"]=Module["asm"]["orig$__floatdixf"]).apply(null,arguments)};var _orig$__floatuntidf=Module["_orig$__floatuntidf"]=function(){return(_orig$__floatuntidf=Module["_orig$__floatuntidf"]=Module["asm"]["orig$__floatuntidf"]).apply(null,arguments)};var _orig$__negti2=Module["_orig$__negti2"]=function(){return(_orig$__negti2=Module["_orig$__negti2"]=Module["asm"]["orig$__negti2"]).apply(null,arguments)};var _orig$__parityti2=Module["_orig$__parityti2"]=function(){return(_orig$__parityti2=Module["_orig$__parityti2"]=Module["asm"]["orig$__parityti2"]).apply(null,arguments)};var _orig$__paritydi2=Module["_orig$__paritydi2"]=function(){return(_orig$__paritydi2=Module["_orig$__paritydi2"]=Module["asm"]["orig$__paritydi2"]).apply(null,arguments)};var _orig$__udivdi3=Module["_orig$__udivdi3"]=function(){return(_orig$__udivdi3=Module["_orig$__udivdi3"]=Module["asm"]["orig$__udivdi3"]).apply(null,arguments)};var _orig$__umoddi3=Module["_orig$__umoddi3"]=function(){return(_orig$__umoddi3=Module["_orig$__umoddi3"]=Module["asm"]["orig$__umoddi3"]).apply(null,arguments)};var _orig$__ffsti2=Module["_orig$__ffsti2"]=function(){return(_orig$__ffsti2=Module["_orig$__ffsti2"]=Module["asm"]["orig$__ffsti2"]).apply(null,arguments)};var _orig$__absvti2=Module["_orig$__absvti2"]=function(){return(_orig$__absvti2=Module["_orig$__absvti2"]=Module["asm"]["orig$__absvti2"]).apply(null,arguments)};var _orig$__floatuntisf=Module["_orig$__floatuntisf"]=function(){return(_orig$__floatuntisf=Module["_orig$__floatuntisf"]=Module["asm"]["orig$__floatuntisf"]).apply(null,arguments)};var _orig$__floatuntitf=Module["_orig$__floatuntitf"]=function(){return(_orig$__floatuntitf=Module["_orig$__floatuntitf"]=Module["asm"]["orig$__floatuntitf"]).apply(null,arguments)};var _orig$__floatundixf=Module["_orig$__floatundixf"]=function(){return(_orig$__floatundixf=Module["_orig$__floatundixf"]=Module["asm"]["orig$__floatundixf"]).apply(null,arguments)};var _orig$__ucmpdi2=Module["_orig$__ucmpdi2"]=function(){return(_orig$__ucmpdi2=Module["_orig$__ucmpdi2"]=Module["asm"]["orig$__ucmpdi2"]).apply(null,arguments)};var _orig$__clzdi2=Module["_orig$__clzdi2"]=function(){return(_orig$__clzdi2=Module["_orig$__clzdi2"]=Module["asm"]["orig$__clzdi2"]).apply(null,arguments)};var _orig$__muloti4=Module["_orig$__muloti4"]=function(){return(_orig$__muloti4=Module["_orig$__muloti4"]=Module["asm"]["orig$__muloti4"]).apply(null,arguments)};var _orig$__floattidf=Module["_orig$__floattidf"]=function(){return(_orig$__floattidf=Module["_orig$__floattidf"]=Module["asm"]["orig$__floattidf"]).apply(null,arguments)};var _orig$__muldi3=Module["_orig$__muldi3"]=function(){return(_orig$__muldi3=Module["_orig$__muldi3"]=Module["asm"]["orig$__muldi3"]).apply(null,arguments)};var _orig$__divtc3=Module["_orig$__divtc3"]=function(){return(_orig$__divtc3=Module["_orig$__divtc3"]=Module["asm"]["orig$__divtc3"]).apply(null,arguments)};var _orig$__negdi2=Module["_orig$__negdi2"]=function(){return(_orig$__negdi2=Module["_orig$__negdi2"]=Module["asm"]["orig$__negdi2"]).apply(null,arguments)};var _orig$__mulvdi3=Module["_orig$__mulvdi3"]=function(){return(_orig$__mulvdi3=Module["_orig$__mulvdi3"]=Module["asm"]["orig$__mulvdi3"]).apply(null,arguments)};var _orig$_ZNSt3__26__itoa8__u64toaEyPc=Module["_orig$_ZNSt3__26__itoa8__u64toaEyPc"]=function(){return(_orig$_ZNSt3__26__itoa8__u64toaEyPc=Module["_orig$_ZNSt3__26__itoa8__u64toaEyPc"]=Module["asm"]["orig$_ZNSt3__26__itoa8__u64toaEyPc"]).apply(null,arguments)};var _orig$_ZNSt3__218condition_variable15__do_timed_waitERNS_11unique_lockINS_5mutexEEENS_6chrono10time_pointINS5_12system_clockENS5_8durationIxNS_5ratioILx1ELx1000000000EEEEEEE=Module["_orig$_ZNSt3__218condition_variable15__do_timed_waitERNS_11unique_lockINS_5mutexEEENS_6chrono10time_pointINS5_12system_clockENS5_8durationIxNS_5ratioILx1ELx1000000000EEEEEEE"]=function(){return(_orig$_ZNSt3__218condition_variable15__do_timed_waitERNS_11unique_lockINS_5mutexEEENS_6chrono10time_pointINS5_12system_clockENS5_8durationIxNS_5ratioILx1ELx1000000000EEEEEEE=Module["_orig$_ZNSt3__218condition_variable15__do_timed_waitERNS_11unique_lockINS_5mutexEEENS_6chrono10time_pointINS5_12system_clockENS5_8durationIxNS_5ratioILx1ELx1000000000EEEEEEE"]=Module["asm"]["orig$_ZNSt3__218condition_variable15__do_timed_waitERNS_11unique_lockINS_5mutexEEENS_6chrono10time_pointINS5_12system_clockENS5_8durationIxNS_5ratioILx1ELx1000000000EEEEEEE"]).apply(null,arguments)};var _orig$_ZNKSt3__26chrono10time_pointINS0_12system_clockENS0_8durationIxNS_5ratioILx1ELx1000000000EEEEEE16time_since_epochEv=Module["_orig$_ZNKSt3__26chrono10time_pointINS0_12system_clockENS0_8durationIxNS_5ratioILx1ELx1000000000EEEEEE16time_since_epochEv"]=function(){return(_orig$_ZNKSt3__26chrono10time_pointINS0_12system_clockENS0_8durationIxNS_5ratioILx1ELx1000000000EEEEEE16time_since_epochEv=Module["_orig$_ZNKSt3__26chrono10time_pointINS0_12system_clockENS0_8durationIxNS_5ratioILx1ELx1000000000EEEEEE16time_since_epochEv"]=Module["asm"]["orig$_ZNKSt3__26chrono10time_pointINS0_12system_clockENS0_8durationIxNS_5ratioILx1ELx1000000000EEEEEE16time_since_epochEv"]).apply(null,arguments)};var _orig$_ZNSt3__26chrono13duration_castINS0_8durationIxNS_5ratioILx1ELx1EEEEExNS3_ILx1ELx1000000000EEEEENS_9enable_ifIXsr13__is_durationIT_EE5valueES8_E4typeERKNS2_IT0_T1_EE=Module["_orig$_ZNSt3__26chrono13duration_castINS0_8durationIxNS_5ratioILx1ELx1EEEEExNS3_ILx1ELx1000000000EEEEENS_9enable_ifIXsr13__is_durationIT_EE5valueES8_E4typeERKNS2_IT0_T1_EE"]=function(){return(_orig$_ZNSt3__26chrono13duration_castINS0_8durationIxNS_5ratioILx1ELx1EEEEExNS3_ILx1ELx1000000000EEEEENS_9enable_ifIXsr13__is_durationIT_EE5valueES8_E4typeERKNS2_IT0_T1_EE=Module["_orig$_ZNSt3__26chrono13duration_castINS0_8durationIxNS_5ratioILx1ELx1EEEEExNS3_ILx1ELx1000000000EEEEENS_9enable_ifIXsr13__is_durationIT_EE5valueES8_E4typeERKNS2_IT0_T1_EE"]=Module["asm"]["orig$_ZNSt3__26chrono13duration_castINS0_8durationIxNS_5ratioILx1ELx1EEEEExNS3_ILx1ELx1000000000EEEEENS_9enable_ifIXsr13__is_durationIT_EE5valueES8_E4typeERKNS2_IT0_T1_EE"]).apply(null,arguments)};var _orig$_ZNKSt3__26chrono8durationIxNS_5ratioILx1ELx1EEEE5countEv=Module["_orig$_ZNKSt3__26chrono8durationIxNS_5ratioILx1ELx1EEEE5countEv"]=function(){return(_orig$_ZNKSt3__26chrono8durationIxNS_5ratioILx1ELx1EEEE5countEv=Module["_orig$_ZNKSt3__26chrono8durationIxNS_5ratioILx1ELx1EEEE5countEv"]=Module["asm"]["orig$_ZNKSt3__26chrono8durationIxNS_5ratioILx1ELx1EEEE5countEv"]).apply(null,arguments)};var _orig$_ZNSt3__26chronomiIxNS_5ratioILx1ELx1000000000EEExNS2_ILx1ELx1EEEEENS_11common_typeIJNS0_8durationIT_T0_EENS6_IT1_T2_EEEE4typeERKS9_RKSC_=Module["_orig$_ZNSt3__26chronomiIxNS_5ratioILx1ELx1000000000EEExNS2_ILx1ELx1EEEEENS_11common_typeIJNS0_8durationIT_T0_EENS6_IT1_T2_EEEE4typeERKS9_RKSC_"]=function(){return(_orig$_ZNSt3__26chronomiIxNS_5ratioILx1ELx1000000000EEExNS2_ILx1ELx1EEEEENS_11common_typeIJNS0_8durationIT_T0_EENS6_IT1_T2_EEEE4typeERKS9_RKSC_=Module["_orig$_ZNSt3__26chronomiIxNS_5ratioILx1ELx1000000000EEExNS2_ILx1ELx1EEEEENS_11common_typeIJNS0_8durationIT_T0_EENS6_IT1_T2_EEEE4typeERKS9_RKSC_"]=Module["asm"]["orig$_ZNSt3__26chronomiIxNS_5ratioILx1ELx1000000000EEExNS2_ILx1ELx1EEEEENS_11common_typeIJNS0_8durationIT_T0_EENS6_IT1_T2_EEEE4typeERKS9_RKSC_"]).apply(null,arguments)};var _orig$_ZNKSt3__26chrono8durationIxNS_5ratioILx1ELx1000000000EEEE5countEv=Module["_orig$_ZNKSt3__26chrono8durationIxNS_5ratioILx1ELx1000000000EEEE5countEv"]=function(){return(_orig$_ZNKSt3__26chrono8durationIxNS_5ratioILx1ELx1000000000EEEE5countEv=Module["_orig$_ZNKSt3__26chrono8durationIxNS_5ratioILx1ELx1000000000EEEE5countEv"]=Module["asm"]["orig$_ZNKSt3__26chrono8durationIxNS_5ratioILx1ELx1000000000EEEE5countEv"]).apply(null,arguments)};var _orig$_ZNKSt3__26chrono15__duration_castINS0_8durationIxNS_5ratioILx1ELx1000000000EEEEENS2_IxNS3_ILx1ELx1EEEEES4_Lb1ELb0EEclERKS5_=Module["_orig$_ZNKSt3__26chrono15__duration_castINS0_8durationIxNS_5ratioILx1ELx1000000000EEEEENS2_IxNS3_ILx1ELx1EEEEES4_Lb1ELb0EEclERKS5_"]=function(){return(_orig$_ZNKSt3__26chrono15__duration_castINS0_8durationIxNS_5ratioILx1ELx1000000000EEEEENS2_IxNS3_ILx1ELx1EEEEES4_Lb1ELb0EEclERKS5_=Module["_orig$_ZNKSt3__26chrono15__duration_castINS0_8durationIxNS_5ratioILx1ELx1000000000EEEEENS2_IxNS3_ILx1ELx1EEEEES4_Lb1ELb0EEclERKS5_"]=Module["asm"]["orig$_ZNKSt3__26chrono15__duration_castINS0_8durationIxNS_5ratioILx1ELx1000000000EEEEENS2_IxNS3_ILx1ELx1EEEEES4_Lb1ELb0EEclERKS5_"]).apply(null,arguments)};var _orig$_ZNSt3__26chrono13duration_castINS0_8durationIxNS_5ratioILx1ELx1000000000EEEEExNS3_ILx1ELx1EEEEENS_9enable_ifIXsr13__is_durationIT_EE5valueES8_E4typeERKNS2_IT0_T1_EE=Module["_orig$_ZNSt3__26chrono13duration_castINS0_8durationIxNS_5ratioILx1ELx1000000000EEEEExNS3_ILx1ELx1EEEEENS_9enable_ifIXsr13__is_durationIT_EE5valueES8_E4typeERKNS2_IT0_T1_EE"]=function(){return(_orig$_ZNSt3__26chrono13duration_castINS0_8durationIxNS_5ratioILx1ELx1000000000EEEEExNS3_ILx1ELx1EEEEENS_9enable_ifIXsr13__is_durationIT_EE5valueES8_E4typeERKNS2_IT0_T1_EE=Module["_orig$_ZNSt3__26chrono13duration_castINS0_8durationIxNS_5ratioILx1ELx1000000000EEEEExNS3_ILx1ELx1EEEEENS_9enable_ifIXsr13__is_durationIT_EE5valueES8_E4typeERKNS2_IT0_T1_EE"]=Module["asm"]["orig$_ZNSt3__26chrono13duration_castINS0_8durationIxNS_5ratioILx1ELx1000000000EEEEExNS3_ILx1ELx1EEEEENS_9enable_ifIXsr13__is_durationIT_EE5valueES8_E4typeERKNS2_IT0_T1_EE"]).apply(null,arguments)};var _orig$_ZNKSt3__26chrono15__duration_castINS0_8durationIxNS_5ratioILx1ELx1EEEEENS2_IxNS3_ILx1ELx1000000000EEEEENS3_ILx1000000000ELx1EEELb0ELb1EEclERKS5_=Module["_orig$_ZNKSt3__26chrono15__duration_castINS0_8durationIxNS_5ratioILx1ELx1EEEEENS2_IxNS3_ILx1ELx1000000000EEEEENS3_ILx1000000000ELx1EEELb0ELb1EEclERKS5_"]=function(){return(_orig$_ZNKSt3__26chrono15__duration_castINS0_8durationIxNS_5ratioILx1ELx1EEEEENS2_IxNS3_ILx1ELx1000000000EEEEENS3_ILx1000000000ELx1EEELb0ELb1EEclERKS5_=Module["_orig$_ZNKSt3__26chrono15__duration_castINS0_8durationIxNS_5ratioILx1ELx1EEEEENS2_IxNS3_ILx1ELx1000000000EEEEENS3_ILx1000000000ELx1EEELb0ELb1EEclERKS5_"]=Module["asm"]["orig$_ZNKSt3__26chrono15__duration_castINS0_8durationIxNS_5ratioILx1ELx1EEEEENS2_IxNS3_ILx1ELx1000000000EEEEENS3_ILx1000000000ELx1EEELb0ELb1EEclERKS5_"]).apply(null,arguments)};var _orig$_ZNSt3__215basic_streambufIcNS_11char_traitsIcEEE7seekoffExNS_8ios_base7seekdirEj=Module["_orig$_ZNSt3__215basic_streambufIcNS_11char_traitsIcEEE7seekoffExNS_8ios_base7seekdirEj"]=function(){return(_orig$_ZNSt3__215basic_streambufIcNS_11char_traitsIcEEE7seekoffExNS_8ios_base7seekdirEj=Module["_orig$_ZNSt3__215basic_streambufIcNS_11char_traitsIcEEE7seekoffExNS_8ios_base7seekdirEj"]=Module["asm"]["orig$_ZNSt3__215basic_streambufIcNS_11char_traitsIcEEE7seekoffExNS_8ios_base7seekdirEj"]).apply(null,arguments)};var _orig$_ZNSt3__215basic_streambufIwNS_11char_traitsIwEEE7seekoffExNS_8ios_base7seekdirEj=Module["_orig$_ZNSt3__215basic_streambufIwNS_11char_traitsIwEEE7seekoffExNS_8ios_base7seekdirEj"]=function(){return(_orig$_ZNSt3__215basic_streambufIwNS_11char_traitsIwEEE7seekoffExNS_8ios_base7seekdirEj=Module["_orig$_ZNSt3__215basic_streambufIwNS_11char_traitsIwEEE7seekoffExNS_8ios_base7seekdirEj"]=Module["asm"]["orig$_ZNSt3__215basic_streambufIwNS_11char_traitsIwEEE7seekoffExNS_8ios_base7seekdirEj"]).apply(null,arguments)};var _orig$_ZNSt3__24fposI11__mbstate_tEC2Ex=Module["_orig$_ZNSt3__24fposI11__mbstate_tEC2Ex"]=function(){return(_orig$_ZNSt3__24fposI11__mbstate_tEC2Ex=Module["_orig$_ZNSt3__24fposI11__mbstate_tEC2Ex"]=Module["asm"]["orig$_ZNSt3__24fposI11__mbstate_tEC2Ex"]).apply(null,arguments)};var _orig$_ZNSt3__215basic_streambufIcNS_11char_traitsIcEEE10pubseekoffExNS_8ios_base7seekdirEj=Module["_orig$_ZNSt3__215basic_streambufIcNS_11char_traitsIcEEE10pubseekoffExNS_8ios_base7seekdirEj"]=function(){return(_orig$_ZNSt3__215basic_streambufIcNS_11char_traitsIcEEE10pubseekoffExNS_8ios_base7seekdirEj=Module["_orig$_ZNSt3__215basic_streambufIcNS_11char_traitsIcEEE10pubseekoffExNS_8ios_base7seekdirEj"]=Module["asm"]["orig$_ZNSt3__215basic_streambufIcNS_11char_traitsIcEEE10pubseekoffExNS_8ios_base7seekdirEj"]).apply(null,arguments)};var _orig$_ZNKSt3__24fposI11__mbstate_tEcvxEv=Module["_orig$_ZNKSt3__24fposI11__mbstate_tEcvxEv"]=function(){return(_orig$_ZNKSt3__24fposI11__mbstate_tEcvxEv=Module["_orig$_ZNKSt3__24fposI11__mbstate_tEcvxEv"]=Module["asm"]["orig$_ZNKSt3__24fposI11__mbstate_tEcvxEv"]).apply(null,arguments)};var _orig$_ZNSt3__213basic_istreamIcNS_11char_traitsIcEEE5seekgExNS_8ios_base7seekdirE=Module["_orig$_ZNSt3__213basic_istreamIcNS_11char_traitsIcEEE5seekgExNS_8ios_base7seekdirE"]=function(){return(_orig$_ZNSt3__213basic_istreamIcNS_11char_traitsIcEEE5seekgExNS_8ios_base7seekdirE=Module["_orig$_ZNSt3__213basic_istreamIcNS_11char_traitsIcEEE5seekgExNS_8ios_base7seekdirE"]=Module["asm"]["orig$_ZNSt3__213basic_istreamIcNS_11char_traitsIcEEE5seekgExNS_8ios_base7seekdirE"]).apply(null,arguments)};var _orig$_ZNSt3__215basic_streambufIwNS_11char_traitsIwEEE10pubseekoffExNS_8ios_base7seekdirEj=Module["_orig$_ZNSt3__215basic_streambufIwNS_11char_traitsIwEEE10pubseekoffExNS_8ios_base7seekdirEj"]=function(){return(_orig$_ZNSt3__215basic_streambufIwNS_11char_traitsIwEEE10pubseekoffExNS_8ios_base7seekdirEj=Module["_orig$_ZNSt3__215basic_streambufIwNS_11char_traitsIwEEE10pubseekoffExNS_8ios_base7seekdirEj"]=Module["asm"]["orig$_ZNSt3__215basic_streambufIwNS_11char_traitsIwEEE10pubseekoffExNS_8ios_base7seekdirEj"]).apply(null,arguments)};var _orig$_ZNSt3__213basic_istreamIwNS_11char_traitsIwEEE5seekgExNS_8ios_base7seekdirE=Module["_orig$_ZNSt3__213basic_istreamIwNS_11char_traitsIwEEE5seekgExNS_8ios_base7seekdirE"]=function(){return(_orig$_ZNSt3__213basic_istreamIwNS_11char_traitsIwEEE5seekgExNS_8ios_base7seekdirE=Module["_orig$_ZNSt3__213basic_istreamIwNS_11char_traitsIwEEE5seekgExNS_8ios_base7seekdirE"]=Module["asm"]["orig$_ZNSt3__213basic_istreamIwNS_11char_traitsIwEEE5seekgExNS_8ios_base7seekdirE"]).apply(null,arguments)};var _orig$_ZNSt3__213basic_ostreamIcNS_11char_traitsIcEEElsEx=Module["_orig$_ZNSt3__213basic_ostreamIcNS_11char_traitsIcEEElsEx"]=function(){return(_orig$_ZNSt3__213basic_ostreamIcNS_11char_traitsIcEEElsEx=Module["_orig$_ZNSt3__213basic_ostreamIcNS_11char_traitsIcEEElsEx"]=Module["asm"]["orig$_ZNSt3__213basic_ostreamIcNS_11char_traitsIcEEElsEx"]).apply(null,arguments)};var _orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE3putES4_RNS_8ios_baseEcx=Module["_orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE3putES4_RNS_8ios_baseEcx"]=function(){return(_orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE3putES4_RNS_8ios_baseEcx=Module["_orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE3putES4_RNS_8ios_baseEcx"]=Module["asm"]["orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE3putES4_RNS_8ios_baseEcx"]).apply(null,arguments)};var _orig$_ZNSt3__213basic_ostreamIcNS_11char_traitsIcEEElsEy=Module["_orig$_ZNSt3__213basic_ostreamIcNS_11char_traitsIcEEElsEy"]=function(){return(_orig$_ZNSt3__213basic_ostreamIcNS_11char_traitsIcEEElsEy=Module["_orig$_ZNSt3__213basic_ostreamIcNS_11char_traitsIcEEElsEy"]=Module["asm"]["orig$_ZNSt3__213basic_ostreamIcNS_11char_traitsIcEEElsEy"]).apply(null,arguments)};var _orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE3putES4_RNS_8ios_baseEcy=Module["_orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE3putES4_RNS_8ios_baseEcy"]=function(){return(_orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE3putES4_RNS_8ios_baseEcy=Module["_orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE3putES4_RNS_8ios_baseEcy"]=Module["asm"]["orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE3putES4_RNS_8ios_baseEcy"]).apply(null,arguments)};var _orig$_ZNSt3__213basic_ostreamIcNS_11char_traitsIcEEElsEe=Module["_orig$_ZNSt3__213basic_ostreamIcNS_11char_traitsIcEEElsEe"]=function(){return(_orig$_ZNSt3__213basic_ostreamIcNS_11char_traitsIcEEElsEe=Module["_orig$_ZNSt3__213basic_ostreamIcNS_11char_traitsIcEEElsEe"]=Module["asm"]["orig$_ZNSt3__213basic_ostreamIcNS_11char_traitsIcEEElsEe"]).apply(null,arguments)};var _orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE3putES4_RNS_8ios_baseEce=Module["_orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE3putES4_RNS_8ios_baseEce"]=function(){return(_orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE3putES4_RNS_8ios_baseEce=Module["_orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE3putES4_RNS_8ios_baseEce"]=Module["asm"]["orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE3putES4_RNS_8ios_baseEce"]).apply(null,arguments)};var _orig$_ZNSt3__213basic_ostreamIwNS_11char_traitsIwEEElsEx=Module["_orig$_ZNSt3__213basic_ostreamIwNS_11char_traitsIwEEElsEx"]=function(){return(_orig$_ZNSt3__213basic_ostreamIwNS_11char_traitsIwEEElsEx=Module["_orig$_ZNSt3__213basic_ostreamIwNS_11char_traitsIwEEElsEx"]=Module["asm"]["orig$_ZNSt3__213basic_ostreamIwNS_11char_traitsIwEEElsEx"]).apply(null,arguments)};var _orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE3putES4_RNS_8ios_baseEwx=Module["_orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE3putES4_RNS_8ios_baseEwx"]=function(){return(_orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE3putES4_RNS_8ios_baseEwx=Module["_orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE3putES4_RNS_8ios_baseEwx"]=Module["asm"]["orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE3putES4_RNS_8ios_baseEwx"]).apply(null,arguments)};var _orig$_ZNSt3__213basic_ostreamIwNS_11char_traitsIwEEElsEy=Module["_orig$_ZNSt3__213basic_ostreamIwNS_11char_traitsIwEEElsEy"]=function(){return(_orig$_ZNSt3__213basic_ostreamIwNS_11char_traitsIwEEElsEy=Module["_orig$_ZNSt3__213basic_ostreamIwNS_11char_traitsIwEEElsEy"]=Module["asm"]["orig$_ZNSt3__213basic_ostreamIwNS_11char_traitsIwEEElsEy"]).apply(null,arguments)};var _orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE3putES4_RNS_8ios_baseEwy=Module["_orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE3putES4_RNS_8ios_baseEwy"]=function(){return(_orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE3putES4_RNS_8ios_baseEwy=Module["_orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE3putES4_RNS_8ios_baseEwy"]=Module["asm"]["orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE3putES4_RNS_8ios_baseEwy"]).apply(null,arguments)};var _orig$_ZNSt3__213basic_ostreamIwNS_11char_traitsIwEEElsEe=Module["_orig$_ZNSt3__213basic_ostreamIwNS_11char_traitsIwEEElsEe"]=function(){return(_orig$_ZNSt3__213basic_ostreamIwNS_11char_traitsIwEEElsEe=Module["_orig$_ZNSt3__213basic_ostreamIwNS_11char_traitsIwEEElsEe"]=Module["asm"]["orig$_ZNSt3__213basic_ostreamIwNS_11char_traitsIwEEElsEe"]).apply(null,arguments)};var _orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE3putES4_RNS_8ios_baseEwe=Module["_orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE3putES4_RNS_8ios_baseEwe"]=function(){return(_orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE3putES4_RNS_8ios_baseEwe=Module["_orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE3putES4_RNS_8ios_baseEwe"]=Module["asm"]["orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE3putES4_RNS_8ios_baseEwe"]).apply(null,arguments)};var _orig$_ZNSt3__225__num_get_signed_integralIxEET_PKcS3_Rji=Module["_orig$_ZNSt3__225__num_get_signed_integralIxEET_PKcS3_Rji"]=function(){return(_orig$_ZNSt3__225__num_get_signed_integralIxEET_PKcS3_Rji=Module["_orig$_ZNSt3__225__num_get_signed_integralIxEET_PKcS3_Rji"]=Module["asm"]["orig$_ZNSt3__225__num_get_signed_integralIxEET_PKcS3_Rji"]).apply(null,arguments)};var _orig$_ZNSt3__227__num_get_unsigned_integralIyEET_PKcS3_Rji=Module["_orig$_ZNSt3__227__num_get_unsigned_integralIyEET_PKcS3_Rji"]=function(){return(_orig$_ZNSt3__227__num_get_unsigned_integralIyEET_PKcS3_Rji=Module["_orig$_ZNSt3__227__num_get_unsigned_integralIyEET_PKcS3_Rji"]=Module["asm"]["orig$_ZNSt3__227__num_get_unsigned_integralIyEET_PKcS3_Rji"]).apply(null,arguments)};var _orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE6do_putES4_RNS_8ios_baseEcx=Module["_orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE6do_putES4_RNS_8ios_baseEcx"]=function(){return(_orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE6do_putES4_RNS_8ios_baseEcx=Module["_orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE6do_putES4_RNS_8ios_baseEcx"]=Module["asm"]["orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE6do_putES4_RNS_8ios_baseEcx"]).apply(null,arguments)};var _orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE6do_putES4_RNS_8ios_baseEcy=Module["_orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE6do_putES4_RNS_8ios_baseEcy"]=function(){return(_orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE6do_putES4_RNS_8ios_baseEcy=Module["_orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE6do_putES4_RNS_8ios_baseEcy"]=Module["asm"]["orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE6do_putES4_RNS_8ios_baseEcy"]).apply(null,arguments)};var _orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE6do_putES4_RNS_8ios_baseEce=Module["_orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE6do_putES4_RNS_8ios_baseEce"]=function(){return(_orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE6do_putES4_RNS_8ios_baseEce=Module["_orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE6do_putES4_RNS_8ios_baseEce"]=Module["asm"]["orig$_ZNKSt3__27num_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE6do_putES4_RNS_8ios_baseEce"]).apply(null,arguments)};var _orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE6do_putES4_RNS_8ios_baseEwx=Module["_orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE6do_putES4_RNS_8ios_baseEwx"]=function(){return(_orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE6do_putES4_RNS_8ios_baseEwx=Module["_orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE6do_putES4_RNS_8ios_baseEwx"]=Module["asm"]["orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE6do_putES4_RNS_8ios_baseEwx"]).apply(null,arguments)};var _orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE6do_putES4_RNS_8ios_baseEwy=Module["_orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE6do_putES4_RNS_8ios_baseEwy"]=function(){return(_orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE6do_putES4_RNS_8ios_baseEwy=Module["_orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE6do_putES4_RNS_8ios_baseEwy"]=Module["asm"]["orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE6do_putES4_RNS_8ios_baseEwy"]).apply(null,arguments)};var _orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE6do_putES4_RNS_8ios_baseEwe=Module["_orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE6do_putES4_RNS_8ios_baseEwe"]=function(){return(_orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE6do_putES4_RNS_8ios_baseEwe=Module["_orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE6do_putES4_RNS_8ios_baseEwe"]=Module["asm"]["orig$_ZNKSt3__27num_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE6do_putES4_RNS_8ios_baseEwe"]).apply(null,arguments)};var _orig$_ZNKSt3__29money_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE6do_putES4_bRNS_8ios_baseEce=Module["_orig$_ZNKSt3__29money_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE6do_putES4_bRNS_8ios_baseEce"]=function(){return(_orig$_ZNKSt3__29money_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE6do_putES4_bRNS_8ios_baseEce=Module["_orig$_ZNKSt3__29money_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE6do_putES4_bRNS_8ios_baseEce"]=Module["asm"]["orig$_ZNKSt3__29money_putIcNS_19ostreambuf_iteratorIcNS_11char_traitsIcEEEEE6do_putES4_bRNS_8ios_baseEce"]).apply(null,arguments)};var _orig$_ZNKSt3__29money_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE6do_putES4_bRNS_8ios_baseEwe=Module["_orig$_ZNKSt3__29money_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE6do_putES4_bRNS_8ios_baseEwe"]=function(){return(_orig$_ZNKSt3__29money_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE6do_putES4_bRNS_8ios_baseEwe=Module["_orig$_ZNKSt3__29money_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE6do_putES4_bRNS_8ios_baseEwe"]=Module["asm"]["orig$_ZNKSt3__29money_putIwNS_19ostreambuf_iteratorIwNS_11char_traitsIwEEEEE6do_putES4_bRNS_8ios_baseEwe"]).apply(null,arguments)};var _orig$_ZNSt3__214numeric_limitsIxE3minEv=Module["_orig$_ZNSt3__214numeric_limitsIxE3minEv"]=function(){return(_orig$_ZNSt3__214numeric_limitsIxE3minEv=Module["_orig$_ZNSt3__214numeric_limitsIxE3minEv"]=Module["asm"]["orig$_ZNSt3__214numeric_limitsIxE3minEv"]).apply(null,arguments)};var _orig$_ZNSt3__214numeric_limitsIxE3maxEv=Module["_orig$_ZNSt3__214numeric_limitsIxE3maxEv"]=function(){return(_orig$_ZNSt3__214numeric_limitsIxE3maxEv=Module["_orig$_ZNSt3__214numeric_limitsIxE3maxEv"]=Module["asm"]["orig$_ZNSt3__214numeric_limitsIxE3maxEv"]).apply(null,arguments)};var _orig$_ZNSt3__223__libcpp_numeric_limitsIxLb1EE3minEv=Module["_orig$_ZNSt3__223__libcpp_numeric_limitsIxLb1EE3minEv"]=function(){return(_orig$_ZNSt3__223__libcpp_numeric_limitsIxLb1EE3minEv=Module["_orig$_ZNSt3__223__libcpp_numeric_limitsIxLb1EE3minEv"]=Module["asm"]["orig$_ZNSt3__223__libcpp_numeric_limitsIxLb1EE3minEv"]).apply(null,arguments)};var _orig$_ZNSt3__223__libcpp_numeric_limitsIxLb1EE3maxEv=Module["_orig$_ZNSt3__223__libcpp_numeric_limitsIxLb1EE3maxEv"]=function(){return(_orig$_ZNSt3__223__libcpp_numeric_limitsIxLb1EE3maxEv=Module["_orig$_ZNSt3__223__libcpp_numeric_limitsIxLb1EE3maxEv"]=Module["asm"]["orig$_ZNSt3__223__libcpp_numeric_limitsIxLb1EE3maxEv"]).apply(null,arguments)};var _orig$_ZNSt3__214numeric_limitsIyE3maxEv=Module["_orig$_ZNSt3__214numeric_limitsIyE3maxEv"]=function(){return(_orig$_ZNSt3__214numeric_limitsIyE3maxEv=Module["_orig$_ZNSt3__214numeric_limitsIyE3maxEv"]=Module["asm"]["orig$_ZNSt3__214numeric_limitsIyE3maxEv"]).apply(null,arguments)};var _orig$_ZNSt3__223__libcpp_numeric_limitsIyLb1EE3maxEv=Module["_orig$_ZNSt3__223__libcpp_numeric_limitsIyLb1EE3maxEv"]=function(){return(_orig$_ZNSt3__223__libcpp_numeric_limitsIyLb1EE3maxEv=Module["_orig$_ZNSt3__223__libcpp_numeric_limitsIyLb1EE3maxEv"]=Module["asm"]["orig$_ZNSt3__223__libcpp_numeric_limitsIyLb1EE3maxEv"]).apply(null,arguments)};var _orig$_ZNSt3__26chrono8durationIxNS_5ratioILx1ELx1000000000EEEE4zeroEv=Module["_orig$_ZNSt3__26chrono8durationIxNS_5ratioILx1ELx1000000000EEEE4zeroEv"]=function(){return(_orig$_ZNSt3__26chrono8durationIxNS_5ratioILx1ELx1000000000EEEE4zeroEv=Module["_orig$_ZNSt3__26chrono8durationIxNS_5ratioILx1ELx1000000000EEEE4zeroEv"]=Module["asm"]["orig$_ZNSt3__26chrono8durationIxNS_5ratioILx1ELx1000000000EEEE4zeroEv"]).apply(null,arguments)};var _orig$_ZNSt3__26chrono15duration_valuesIxE4zeroEv=Module["_orig$_ZNSt3__26chrono15duration_valuesIxE4zeroEv"]=function(){return(_orig$_ZNSt3__26chrono15duration_valuesIxE4zeroEv=Module["_orig$_ZNSt3__26chrono15duration_valuesIxE4zeroEv"]=Module["asm"]["orig$_ZNSt3__26chrono15duration_valuesIxE4zeroEv"]).apply(null,arguments)};var _orig$_ZNSt3__212strstreambuf7seekoffExNS_8ios_base7seekdirEj=Module["_orig$_ZNSt3__212strstreambuf7seekoffExNS_8ios_base7seekdirEj"]=function(){return(_orig$_ZNSt3__212strstreambuf7seekoffExNS_8ios_base7seekdirEj=Module["_orig$_ZNSt3__212strstreambuf7seekoffExNS_8ios_base7seekdirEj"]=Module["asm"]["orig$_ZNSt3__212strstreambuf7seekoffExNS_8ios_base7seekdirEj"]).apply(null,arguments)};var _orig$_ZNSt3__25stollERKNS_12basic_stringIcNS_11char_traitsIcEENS_9allocatorIcEEEEPmi=Module["_orig$_ZNSt3__25stollERKNS_12basic_stringIcNS_11char_traitsIcEENS_9allocatorIcEEEEPmi"]=function(){return(_orig$_ZNSt3__25stollERKNS_12basic_stringIcNS_11char_traitsIcEENS_9allocatorIcEEEEPmi=Module["_orig$_ZNSt3__25stollERKNS_12basic_stringIcNS_11char_traitsIcEENS_9allocatorIcEEEEPmi"]=Module["asm"]["orig$_ZNSt3__25stollERKNS_12basic_stringIcNS_11char_traitsIcEENS_9allocatorIcEEEEPmi"]).apply(null,arguments)};var _orig$_ZNSt3__25stollERKNS_12basic_stringIwNS_11char_traitsIwEENS_9allocatorIwEEEEPmi=Module["_orig$_ZNSt3__25stollERKNS_12basic_stringIwNS_11char_traitsIwEENS_9allocatorIwEEEEPmi"]=function(){return(_orig$_ZNSt3__25stollERKNS_12basic_stringIwNS_11char_traitsIwEENS_9allocatorIwEEEEPmi=Module["_orig$_ZNSt3__25stollERKNS_12basic_stringIwNS_11char_traitsIwEENS_9allocatorIwEEEEPmi"]=Module["asm"]["orig$_ZNSt3__25stollERKNS_12basic_stringIwNS_11char_traitsIwEENS_9allocatorIwEEEEPmi"]).apply(null,arguments)};var _orig$_ZNSt3__26stoullERKNS_12basic_stringIcNS_11char_traitsIcEENS_9allocatorIcEEEEPmi=Module["_orig$_ZNSt3__26stoullERKNS_12basic_stringIcNS_11char_traitsIcEENS_9allocatorIcEEEEPmi"]=function(){return(_orig$_ZNSt3__26stoullERKNS_12basic_stringIcNS_11char_traitsIcEENS_9allocatorIcEEEEPmi=Module["_orig$_ZNSt3__26stoullERKNS_12basic_stringIcNS_11char_traitsIcEENS_9allocatorIcEEEEPmi"]=Module["asm"]["orig$_ZNSt3__26stoullERKNS_12basic_stringIcNS_11char_traitsIcEENS_9allocatorIcEEEEPmi"]).apply(null,arguments)};var _orig$_ZNSt3__26stoullERKNS_12basic_stringIwNS_11char_traitsIwEENS_9allocatorIwEEEEPmi=Module["_orig$_ZNSt3__26stoullERKNS_12basic_stringIwNS_11char_traitsIwEENS_9allocatorIwEEEEPmi"]=function(){return(_orig$_ZNSt3__26stoullERKNS_12basic_stringIwNS_11char_traitsIwEENS_9allocatorIwEEEEPmi=Module["_orig$_ZNSt3__26stoullERKNS_12basic_stringIwNS_11char_traitsIwEENS_9allocatorIwEEEEPmi"]=Module["asm"]["orig$_ZNSt3__26stoullERKNS_12basic_stringIwNS_11char_traitsIwEENS_9allocatorIwEEEEPmi"]).apply(null,arguments)};var _orig$_ZNSt3__29to_stringEx=Module["_orig$_ZNSt3__29to_stringEx"]=function(){return(_orig$_ZNSt3__29to_stringEx=Module["_orig$_ZNSt3__29to_stringEx"]=Module["asm"]["orig$_ZNSt3__29to_stringEx"]).apply(null,arguments)};var _orig$_ZNSt3__28to_charsIxLi0EEENS_15to_chars_resultEPcS2_T_=Module["_orig$_ZNSt3__28to_charsIxLi0EEENS_15to_chars_resultEPcS2_T_"]=function(){return(_orig$_ZNSt3__28to_charsIxLi0EEENS_15to_chars_resultEPcS2_T_=Module["_orig$_ZNSt3__28to_charsIxLi0EEENS_15to_chars_resultEPcS2_T_"]=Module["asm"]["orig$_ZNSt3__28to_charsIxLi0EEENS_15to_chars_resultEPcS2_T_"]).apply(null,arguments)};var _orig$_ZNSt3__29to_stringEy=Module["_orig$_ZNSt3__29to_stringEy"]=function(){return(_orig$_ZNSt3__29to_stringEy=Module["_orig$_ZNSt3__29to_stringEy"]=Module["asm"]["orig$_ZNSt3__29to_stringEy"]).apply(null,arguments)};var _orig$_ZNSt3__28to_charsIyLi0EEENS_15to_chars_resultEPcS2_T_=Module["_orig$_ZNSt3__28to_charsIyLi0EEENS_15to_chars_resultEPcS2_T_"]=function(){return(_orig$_ZNSt3__28to_charsIyLi0EEENS_15to_chars_resultEPcS2_T_=Module["_orig$_ZNSt3__28to_charsIyLi0EEENS_15to_chars_resultEPcS2_T_"]=Module["asm"]["orig$_ZNSt3__28to_charsIyLi0EEENS_15to_chars_resultEPcS2_T_"]).apply(null,arguments)};var _orig$_ZNSt3__210to_wstringEx=Module["_orig$_ZNSt3__210to_wstringEx"]=function(){return(_orig$_ZNSt3__210to_wstringEx=Module["_orig$_ZNSt3__210to_wstringEx"]=Module["asm"]["orig$_ZNSt3__210to_wstringEx"]).apply(null,arguments)};var _orig$_ZNSt3__210to_wstringEy=Module["_orig$_ZNSt3__210to_wstringEy"]=function(){return(_orig$_ZNSt3__210to_wstringEy=Module["_orig$_ZNSt3__210to_wstringEy"]=Module["asm"]["orig$_ZNSt3__210to_wstringEy"]).apply(null,arguments)};var _orig$_ZNSt3__29to_stringEe=Module["_orig$_ZNSt3__29to_stringEe"]=function(){return(_orig$_ZNSt3__29to_stringEe=Module["_orig$_ZNSt3__29to_stringEe"]=Module["asm"]["orig$_ZNSt3__29to_stringEe"]).apply(null,arguments)};var _orig$_ZNSt3__210to_wstringEe=Module["_orig$_ZNSt3__210to_wstringEe"]=function(){return(_orig$_ZNSt3__210to_wstringEe=Module["_orig$_ZNSt3__210to_wstringEe"]=Module["asm"]["orig$_ZNSt3__210to_wstringEe"]).apply(null,arguments)};var _orig$_ZNSt3__215__to_chars_itoaIxEENS_15to_chars_resultEPcS2_T_NS_17integral_constantIbLb1EEE=Module["_orig$_ZNSt3__215__to_chars_itoaIxEENS_15to_chars_resultEPcS2_T_NS_17integral_constantIbLb1EEE"]=function(){return(_orig$_ZNSt3__215__to_chars_itoaIxEENS_15to_chars_resultEPcS2_T_NS_17integral_constantIbLb1EEE=Module["_orig$_ZNSt3__215__to_chars_itoaIxEENS_15to_chars_resultEPcS2_T_NS_17integral_constantIbLb1EEE"]=Module["asm"]["orig$_ZNSt3__215__to_chars_itoaIxEENS_15to_chars_resultEPcS2_T_NS_17integral_constantIbLb1EEE"]).apply(null,arguments)};var _orig$_ZNSt3__213__to_unsignedIxEENS_13make_unsignedIT_E4typeES2_=Module["_orig$_ZNSt3__213__to_unsignedIxEENS_13make_unsignedIT_E4typeES2_"]=function(){return(_orig$_ZNSt3__213__to_unsignedIxEENS_13make_unsignedIT_E4typeES2_=Module["_orig$_ZNSt3__213__to_unsignedIxEENS_13make_unsignedIT_E4typeES2_"]=Module["asm"]["orig$_ZNSt3__213__to_unsignedIxEENS_13make_unsignedIT_E4typeES2_"]).apply(null,arguments)};var _orig$_ZNSt3__212__complementIyEET_S1_=Module["_orig$_ZNSt3__212__complementIyEET_S1_"]=function(){return(_orig$_ZNSt3__212__complementIyEET_S1_=Module["_orig$_ZNSt3__212__complementIyEET_S1_"]=Module["asm"]["orig$_ZNSt3__212__complementIyEET_S1_"]).apply(null,arguments)};var _orig$_ZNSt3__215__to_chars_itoaIyEENS_15to_chars_resultEPcS2_T_NS_17integral_constantIbLb0EEE=Module["_orig$_ZNSt3__215__to_chars_itoaIyEENS_15to_chars_resultEPcS2_T_NS_17integral_constantIbLb0EEE"]=function(){return(_orig$_ZNSt3__215__to_chars_itoaIyEENS_15to_chars_resultEPcS2_T_NS_17integral_constantIbLb0EEE=Module["_orig$_ZNSt3__215__to_chars_itoaIyEENS_15to_chars_resultEPcS2_T_NS_17integral_constantIbLb0EEE"]=Module["asm"]["orig$_ZNSt3__215__to_chars_itoaIyEENS_15to_chars_resultEPcS2_T_NS_17integral_constantIbLb0EEE"]).apply(null,arguments)};var _orig$_ZNSt3__26__itoa13__traits_baseIyvE7__widthEy=Module["_orig$_ZNSt3__26__itoa13__traits_baseIyvE7__widthEy"]=function(){return(_orig$_ZNSt3__26__itoa13__traits_baseIyvE7__widthEy=Module["_orig$_ZNSt3__26__itoa13__traits_baseIyvE7__widthEy"]=Module["asm"]["orig$_ZNSt3__26__itoa13__traits_baseIyvE7__widthEy"]).apply(null,arguments)};var _orig$_ZNSt3__26__itoa13__traits_baseIyvE9__convertEyPc=Module["_orig$_ZNSt3__26__itoa13__traits_baseIyvE9__convertEyPc"]=function(){return(_orig$_ZNSt3__26__itoa13__traits_baseIyvE9__convertEyPc=Module["_orig$_ZNSt3__26__itoa13__traits_baseIyvE9__convertEyPc"]=Module["asm"]["orig$_ZNSt3__26__itoa13__traits_baseIyvE9__convertEyPc"]).apply(null,arguments)};var _orig$_ZNSt3__26chrono12system_clock3nowEv=Module["_orig$_ZNSt3__26chrono12system_clock3nowEv"]=function(){return(_orig$_ZNSt3__26chrono12system_clock3nowEv=Module["_orig$_ZNSt3__26chrono12system_clock3nowEv"]=Module["asm"]["orig$_ZNSt3__26chrono12system_clock3nowEv"]).apply(null,arguments)};var _orig$_ZNSt3__26chronoplIxNS_5ratioILx1ELx1EEExNS2_ILx1ELx1000000EEEEENS_11common_typeIJNS0_8durationIT_T0_EENS6_IT1_T2_EEEE4typeERKS9_RKSC_=Module["_orig$_ZNSt3__26chronoplIxNS_5ratioILx1ELx1EEExNS2_ILx1ELx1000000EEEEENS_11common_typeIJNS0_8durationIT_T0_EENS6_IT1_T2_EEEE4typeERKS9_RKSC_"]=function(){return(_orig$_ZNSt3__26chronoplIxNS_5ratioILx1ELx1EEExNS2_ILx1ELx1000000EEEEENS_11common_typeIJNS0_8durationIT_T0_EENS6_IT1_T2_EEEE4typeERKS9_RKSC_=Module["_orig$_ZNSt3__26chronoplIxNS_5ratioILx1ELx1EEExNS2_ILx1ELx1000000EEEEENS_11common_typeIJNS0_8durationIT_T0_EENS6_IT1_T2_EEEE4typeERKS9_RKSC_"]=Module["asm"]["orig$_ZNSt3__26chronoplIxNS_5ratioILx1ELx1EEExNS2_ILx1ELx1000000EEEEENS_11common_typeIJNS0_8durationIT_T0_EENS6_IT1_T2_EEEE4typeERKS9_RKSC_"]).apply(null,arguments)};var _orig$_ZNKSt3__26chrono8durationIxNS_5ratioILx1ELx1000000EEEE5countEv=Module["_orig$_ZNKSt3__26chrono8durationIxNS_5ratioILx1ELx1000000EEEE5countEv"]=function(){return(_orig$_ZNKSt3__26chrono8durationIxNS_5ratioILx1ELx1000000EEEE5countEv=Module["_orig$_ZNKSt3__26chrono8durationIxNS_5ratioILx1ELx1000000EEEE5countEv"]=Module["asm"]["orig$_ZNKSt3__26chrono8durationIxNS_5ratioILx1ELx1000000EEEE5countEv"]).apply(null,arguments)};var _orig$_ZNKSt3__26chrono10time_pointINS0_12system_clockENS0_8durationIxNS_5ratioILx1ELx1000000EEEEEE16time_since_epochEv=Module["_orig$_ZNKSt3__26chrono10time_pointINS0_12system_clockENS0_8durationIxNS_5ratioILx1ELx1000000EEEEEE16time_since_epochEv"]=function(){return(_orig$_ZNKSt3__26chrono10time_pointINS0_12system_clockENS0_8durationIxNS_5ratioILx1ELx1000000EEEEEE16time_since_epochEv=Module["_orig$_ZNKSt3__26chrono10time_pointINS0_12system_clockENS0_8durationIxNS_5ratioILx1ELx1000000EEEEEE16time_since_epochEv"]=Module["asm"]["orig$_ZNKSt3__26chrono10time_pointINS0_12system_clockENS0_8durationIxNS_5ratioILx1ELx1000000EEEEEE16time_since_epochEv"]).apply(null,arguments)};var _orig$_ZNSt3__26chrono13duration_castINS0_8durationIxNS_5ratioILx1ELx1EEEEExNS3_ILx1ELx1000000EEEEENS_9enable_ifIXsr13__is_durationIT_EE5valueES8_E4typeERKNS2_IT0_T1_EE=Module["_orig$_ZNSt3__26chrono13duration_castINS0_8durationIxNS_5ratioILx1ELx1EEEEExNS3_ILx1ELx1000000EEEEENS_9enable_ifIXsr13__is_durationIT_EE5valueES8_E4typeERKNS2_IT0_T1_EE"]=function(){return(_orig$_ZNSt3__26chrono13duration_castINS0_8durationIxNS_5ratioILx1ELx1EEEEExNS3_ILx1ELx1000000EEEEENS_9enable_ifIXsr13__is_durationIT_EE5valueES8_E4typeERKNS2_IT0_T1_EE=Module["_orig$_ZNSt3__26chrono13duration_castINS0_8durationIxNS_5ratioILx1ELx1EEEEExNS3_ILx1ELx1000000EEEEENS_9enable_ifIXsr13__is_durationIT_EE5valueES8_E4typeERKNS2_IT0_T1_EE"]=Module["asm"]["orig$_ZNSt3__26chrono13duration_castINS0_8durationIxNS_5ratioILx1ELx1EEEEExNS3_ILx1ELx1000000EEEEENS_9enable_ifIXsr13__is_durationIT_EE5valueES8_E4typeERKNS2_IT0_T1_EE"]).apply(null,arguments)};var _orig$_ZNKSt3__26chrono15__duration_castINS0_8durationIxNS_5ratioILx1ELx1000000EEEEENS2_IxNS3_ILx1ELx1EEEEES4_Lb1ELb0EEclERKS5_=Module["_orig$_ZNKSt3__26chrono15__duration_castINS0_8durationIxNS_5ratioILx1ELx1000000EEEEENS2_IxNS3_ILx1ELx1EEEEES4_Lb1ELb0EEclERKS5_"]=function(){return(_orig$_ZNKSt3__26chrono15__duration_castINS0_8durationIxNS_5ratioILx1ELx1000000EEEEENS2_IxNS3_ILx1ELx1EEEEES4_Lb1ELb0EEclERKS5_=Module["_orig$_ZNKSt3__26chrono15__duration_castINS0_8durationIxNS_5ratioILx1ELx1000000EEEEENS2_IxNS3_ILx1ELx1EEEEES4_Lb1ELb0EEclERKS5_"]=Module["asm"]["orig$_ZNKSt3__26chrono15__duration_castINS0_8durationIxNS_5ratioILx1ELx1000000EEEEENS2_IxNS3_ILx1ELx1EEEEES4_Lb1ELb0EEclERKS5_"]).apply(null,arguments)};var _orig$_ZNSt3__26chrono12system_clock11from_time_tEl=Module["_orig$_ZNSt3__26chrono12system_clock11from_time_tEl"]=function(){return(_orig$_ZNSt3__26chrono12system_clock11from_time_tEl=Module["_orig$_ZNSt3__26chrono12system_clock11from_time_tEl"]=Module["asm"]["orig$_ZNSt3__26chrono12system_clock11from_time_tEl"]).apply(null,arguments)};var _orig$_ZNSt3__26chrono13duration_castINS0_8durationIxNS_5ratioILx1ELx1000000EEEEExNS3_ILx1ELx1EEEEENS_9enable_ifIXsr13__is_durationIT_EE5valueES8_E4typeERKNS2_IT0_T1_EE=Module["_orig$_ZNSt3__26chrono13duration_castINS0_8durationIxNS_5ratioILx1ELx1000000EEEEExNS3_ILx1ELx1EEEEENS_9enable_ifIXsr13__is_durationIT_EE5valueES8_E4typeERKNS2_IT0_T1_EE"]=function(){return(_orig$_ZNSt3__26chrono13duration_castINS0_8durationIxNS_5ratioILx1ELx1000000EEEEExNS3_ILx1ELx1EEEEENS_9enable_ifIXsr13__is_durationIT_EE5valueES8_E4typeERKNS2_IT0_T1_EE=Module["_orig$_ZNSt3__26chrono13duration_castINS0_8durationIxNS_5ratioILx1ELx1000000EEEEExNS3_ILx1ELx1EEEEENS_9enable_ifIXsr13__is_durationIT_EE5valueES8_E4typeERKNS2_IT0_T1_EE"]=Module["asm"]["orig$_ZNSt3__26chrono13duration_castINS0_8durationIxNS_5ratioILx1ELx1000000EEEEExNS3_ILx1ELx1EEEEENS_9enable_ifIXsr13__is_durationIT_EE5valueES8_E4typeERKNS2_IT0_T1_EE"]).apply(null,arguments)};var _orig$_ZNSt3__26chrono12steady_clock3nowEv=Module["_orig$_ZNSt3__26chrono12steady_clock3nowEv"]=function(){return(_orig$_ZNSt3__26chrono12steady_clock3nowEv=Module["_orig$_ZNSt3__26chrono12steady_clock3nowEv"]=Module["asm"]["orig$_ZNSt3__26chrono12steady_clock3nowEv"]).apply(null,arguments)};var _orig$_ZNSt3__26chronoplIxNS_5ratioILx1ELx1EEExNS2_ILx1ELx1000000000EEEEENS_11common_typeIJNS0_8durationIT_T0_EENS6_IT1_T2_EEEE4typeERKS9_RKSC_=Module["_orig$_ZNSt3__26chronoplIxNS_5ratioILx1ELx1EEExNS2_ILx1ELx1000000000EEEEENS_11common_typeIJNS0_8durationIT_T0_EENS6_IT1_T2_EEEE4typeERKS9_RKSC_"]=function(){return(_orig$_ZNSt3__26chronoplIxNS_5ratioILx1ELx1EEExNS2_ILx1ELx1000000000EEEEENS_11common_typeIJNS0_8durationIT_T0_EENS6_IT1_T2_EEEE4typeERKS9_RKSC_=Module["_orig$_ZNSt3__26chronoplIxNS_5ratioILx1ELx1EEExNS2_ILx1ELx1000000000EEEEENS_11common_typeIJNS0_8durationIT_T0_EENS6_IT1_T2_EEEE4typeERKS9_RKSC_"]=Module["asm"]["orig$_ZNSt3__26chronoplIxNS_5ratioILx1ELx1EEExNS2_ILx1ELx1000000000EEEEENS_11common_typeIJNS0_8durationIT_T0_EENS6_IT1_T2_EEEE4typeERKS9_RKSC_"]).apply(null,arguments)};var _orig$_ZNKSt3__26chrono15__duration_castINS0_8durationIxNS_5ratioILx1ELx1EEEEENS2_IxNS3_ILx1ELx1000000EEEEENS3_ILx1000000ELx1EEELb0ELb1EEclERKS5_=Module["_orig$_ZNKSt3__26chrono15__duration_castINS0_8durationIxNS_5ratioILx1ELx1EEEEENS2_IxNS3_ILx1ELx1000000EEEEENS3_ILx1000000ELx1EEELb0ELb1EEclERKS5_"]=function(){return(_orig$_ZNKSt3__26chrono15__duration_castINS0_8durationIxNS_5ratioILx1ELx1EEEEENS2_IxNS3_ILx1ELx1000000EEEEENS3_ILx1000000ELx1EEELb0ELb1EEclERKS5_=Module["_orig$_ZNKSt3__26chrono15__duration_castINS0_8durationIxNS_5ratioILx1ELx1EEEEENS2_IxNS3_ILx1ELx1000000EEEEENS3_ILx1000000ELx1EEELb0ELb1EEclERKS5_"]=Module["asm"]["orig$_ZNKSt3__26chrono15__duration_castINS0_8durationIxNS_5ratioILx1ELx1EEEEENS2_IxNS3_ILx1ELx1000000EEEEENS3_ILx1000000ELx1EEELb0ELb1EEclERKS5_"]).apply(null,arguments)};var _orig$_ZNSt3__24__fs10filesystem11__file_sizeERKNS1_4pathEPNS_10error_codeE=Module["_orig$_ZNSt3__24__fs10filesystem11__file_sizeERKNS1_4pathEPNS_10error_codeE"]=function(){return(_orig$_ZNSt3__24__fs10filesystem11__file_sizeERKNS1_4pathEPNS_10error_codeE=Module["_orig$_ZNSt3__24__fs10filesystem11__file_sizeERKNS1_4pathEPNS_10error_codeE"]=Module["asm"]["orig$_ZNSt3__24__fs10filesystem11__file_sizeERKNS1_4pathEPNS_10error_codeE"]).apply(null,arguments)};var _orig$_ZNSt3__24__fs10filesystem17__hard_link_countERKNS1_4pathEPNS_10error_codeE=Module["_orig$_ZNSt3__24__fs10filesystem17__hard_link_countERKNS1_4pathEPNS_10error_codeE"]=function(){return(_orig$_ZNSt3__24__fs10filesystem17__hard_link_countERKNS1_4pathEPNS_10error_codeE=Module["_orig$_ZNSt3__24__fs10filesystem17__hard_link_countERKNS1_4pathEPNS_10error_codeE"]=Module["asm"]["orig$_ZNSt3__24__fs10filesystem17__hard_link_countERKNS1_4pathEPNS_10error_codeE"]).apply(null,arguments)};var _orig$_ZNSt3__24__fs10filesystem17__last_write_timeERKNS1_4pathENS_6chrono10time_pointINS1_16_FilesystemClockENS5_8durationInNS_5ratioILx1ELx1000000000EEEEEEEPNS_10error_codeE=Module["_orig$_ZNSt3__24__fs10filesystem17__last_write_timeERKNS1_4pathENS_6chrono10time_pointINS1_16_FilesystemClockENS5_8durationInNS_5ratioILx1ELx1000000000EEEEEEEPNS_10error_codeE"]=function(){return(_orig$_ZNSt3__24__fs10filesystem17__last_write_timeERKNS1_4pathENS_6chrono10time_pointINS1_16_FilesystemClockENS5_8durationInNS_5ratioILx1ELx1000000000EEEEEEEPNS_10error_codeE=Module["_orig$_ZNSt3__24__fs10filesystem17__last_write_timeERKNS1_4pathENS_6chrono10time_pointINS1_16_FilesystemClockENS5_8durationInNS_5ratioILx1ELx1000000000EEEEEEEPNS_10error_codeE"]=Module["asm"]["orig$_ZNSt3__24__fs10filesystem17__last_write_timeERKNS1_4pathENS_6chrono10time_pointINS1_16_FilesystemClockENS5_8durationInNS_5ratioILx1ELx1000000000EEEEEEEPNS_10error_codeE"]).apply(null,arguments)};var _orig$_ZNSt3__24__fs10filesystem12__remove_allERKNS1_4pathEPNS_10error_codeE=Module["_orig$_ZNSt3__24__fs10filesystem12__remove_allERKNS1_4pathEPNS_10error_codeE"]=function(){return(_orig$_ZNSt3__24__fs10filesystem12__remove_allERKNS1_4pathEPNS_10error_codeE=Module["_orig$_ZNSt3__24__fs10filesystem12__remove_allERKNS1_4pathEPNS_10error_codeE"]=Module["asm"]["orig$_ZNSt3__24__fs10filesystem12__remove_allERKNS1_4pathEPNS_10error_codeE"]).apply(null,arguments)};var _orig$_ZNSt3__24__fs10filesystem13__resize_fileERKNS1_4pathEyPNS_10error_codeE=Module["_orig$_ZNSt3__24__fs10filesystem13__resize_fileERKNS1_4pathEyPNS_10error_codeE"]=function(){return(_orig$_ZNSt3__24__fs10filesystem13__resize_fileERKNS1_4pathEyPNS_10error_codeE=Module["_orig$_ZNSt3__24__fs10filesystem13__resize_fileERKNS1_4pathEyPNS_10error_codeE"]=Module["asm"]["orig$_ZNSt3__24__fs10filesystem13__resize_fileERKNS1_4pathEyPNS_10error_codeE"]).apply(null,arguments)};var _orig$_ZNSt3__213basic_filebufIcNS_11char_traitsIcEEE7seekoffExNS_8ios_base7seekdirEj=Module["_orig$_ZNSt3__213basic_filebufIcNS_11char_traitsIcEEE7seekoffExNS_8ios_base7seekdirEj"]=function(){return(_orig$_ZNSt3__213basic_filebufIcNS_11char_traitsIcEEE7seekoffExNS_8ios_base7seekdirEj=Module["_orig$_ZNSt3__213basic_filebufIcNS_11char_traitsIcEEE7seekoffExNS_8ios_base7seekdirEj"]=Module["asm"]["orig$_ZNSt3__213basic_filebufIcNS_11char_traitsIcEEE7seekoffExNS_8ios_base7seekdirEj"]).apply(null,arguments)};var _orig$_ZN10__cxxabiv119__getExceptionClassEPK17_Unwind_Exception=Module["_orig$_ZN10__cxxabiv119__getExceptionClassEPK17_Unwind_Exception"]=function(){return(_orig$_ZN10__cxxabiv119__getExceptionClassEPK17_Unwind_Exception=Module["_orig$_ZN10__cxxabiv119__getExceptionClassEPK17_Unwind_Exception"]=Module["asm"]["orig$_ZN10__cxxabiv119__getExceptionClassEPK17_Unwind_Exception"]).apply(null,arguments)};var _orig$_ZN10__cxxabiv119__setExceptionClassEP17_Unwind_Exceptiony=Module["_orig$_ZN10__cxxabiv119__setExceptionClassEP17_Unwind_Exceptiony"]=function(){return(_orig$_ZN10__cxxabiv119__setExceptionClassEP17_Unwind_Exceptiony=Module["_orig$_ZN10__cxxabiv119__setExceptionClassEP17_Unwind_Exceptiony"]=Module["asm"]["orig$_ZN10__cxxabiv119__setExceptionClassEP17_Unwind_Exceptiony"]).apply(null,arguments)};var _orig$fminl=Module["_orig$fminl"]=function(){return(_orig$fminl=Module["_orig$fminl"]=Module["asm"]["orig$fminl"]).apply(null,arguments)};var _py_docstring_mod=Module["_py_docstring_mod"]=3159280;var _PyExc_AttributeError=Module["_PyExc_AttributeError"]=2852596;var __Py_NoneStruct=Module["__Py_NoneStruct"]=2876564;var _PyExc_TypeError=Module["_PyExc_TypeError"]=2846356;var _internal_error=Module["_internal_error"]=3159284;var _conversion_error=Module["_conversion_error"]=3159288;var _error__js_funcname_string=Module["_error__js_funcname_string"]=2832848;var _error__js_filename_string=Module["_error__js_filename_string"]=2832852;var _PyExc_ValueError=Module["_PyExc_ValueError"]=2854052;var _Js_undefined=Module["_Js_undefined"]=1632;var _Js_true=Module["_Js_true"]=1636;var _Js_false=Module["_Js_false"]=1640;var _Js_null=Module["_Js_null"]=1644;var _Js_novalue=Module["_Js_novalue"]=1648;var __Py_TrueStruct=Module["__Py_TrueStruct"]=2835648;var __Py_FalseStruct=Module["__Py_FalseStruct"]=2835664;var _PyExc_RuntimeError=Module["_PyExc_RuntimeError"]=2851556;var _PyExc_BaseException=Module["_PyExc_BaseException"]=2845940;var _PyExc_Exception=Module["_PyExc_Exception"]=2846148;var _PyExc_StopIteration=Module["_PyExc_StopIteration"]=2846772;var _PyExc_KeyError=Module["_PyExc_KeyError"]=2853844;var _PyExc_IndexError=Module["_PyExc_IndexError"]=2853636;var _PySlice_Type=Module["_PySlice_Type"]=2881108;var _PyExc_NotImplementedError=Module["_PyExc_NotImplementedError"]=2851972;var _PyBaseObject_Type=Module["_PyBaseObject_Type"]=2882200;var __Py_NotImplementedStruct=Module["__Py_NotImplementedStruct"]=2877340;var _PyGen_Type=Module["_PyGen_Type"]=2860768;var _PyCFunction_Type=Module["_PyCFunction_Type"]=2875148;var _PyCoro_Type=Module["_PyCoro_Type"]=2861248;var _py_buffer_len_offset=Module["_py_buffer_len_offset"]=2834396;var _py_buffer_shape_offset=Module["_py_buffer_shape_offset"]=2834400;var _buffer_struct_size=Module["_buffer_struct_size"]=2834404;var _PySet_Type=Module["_PySet_Type"]=2879856;var _PyFloat_Type=Module["_PyFloat_Type"]=2863424;var _PyBool_Type=Module["_PyBool_Type"]=2835824;var _stderr=Module["_stderr"]=3092216;var __PyParser_TokenNames=Module["__PyParser_TokenNames"]=2834784;var __PyRuntime=Module["__PyRuntime"]=3223776;var _stdout=Module["_stdout"]=3092064;var _PyExc_SyntaxError=Module["_PyExc_SyntaxError"]=2852804;var __Py_EllipsisObject=Module["__Py_EllipsisObject"]=2881100;var _PyExc_SystemError=Module["_PyExc_SystemError"]=2856132;var _PyExc_IndentationError=Module["_PyExc_IndentationError"]=2853012;var _PyExc_KeyboardInterrupt=Module["_PyExc_KeyboardInterrupt"]=2847396;var _PyExc_TabError=Module["_PyExc_TabError"]=2853220;var _PyExc_UnicodeError=Module["_PyExc_UnicodeError"]=2854260;var _PyExc_LookupError=Module["_PyExc_LookupError"]=2853428;var _PyExc_UnicodeDecodeError=Module["_PyExc_UnicodeDecodeError"]=2854676;var _PyExc_OSError=Module["_PyExc_OSError"]=2848020;var __Py_ctype_table=Module["__Py_ctype_table"]=318384;var _PyExc_OverflowError=Module["_PyExc_OverflowError"]=2855716;var _PyExc_DeprecationWarning=Module["_PyExc_DeprecationWarning"]=2857380;var __PyOS_ReadlineTState=Module["__PyOS_ReadlineTState"]=3167488;var _PyOS_InputHook=Module["_PyOS_InputHook"]=3167492;var _PyOS_ReadlineFunctionPointer=Module["_PyOS_ReadlineFunctionPointer"]=3167496;var _PyExc_MemoryError=Module["_PyExc_MemoryError"]=2856548;var _stdin=Module["_stdin"]=3092368;var _PyUnicode_Type=Module["_PyUnicode_Type"]=2887648;var _PyType_Type=Module["_PyType_Type"]=2882404;var _PyExc_BufferError=Module["_PyExc_BufferError"]=2856756;var _PyLong_Type=Module["_PyLong_Type"]=2867892;var _PyByteArray_Type=Module["_PyByteArray_Type"]=2836976;var __PyByteArray_empty_string=Module["__PyByteArray_empty_string"]=3167512;var _PyTuple_Type=Module["_PyTuple_Type"]=2881580;var _PyList_Type=Module["_PyList_Type"]=2866760;var _PyDict_Type=Module["_PyDict_Type"]=2869048;var __Py_ctype_tolower=Module["__Py_ctype_tolower"]=319408;var __Py_ctype_toupper=Module["__Py_ctype_toupper"]=319664;var __Py_isspace__doc__=Module["__Py_isspace__doc__"]=13936;var __Py_isalpha__doc__=Module["__Py_isalpha__doc__"]=14080;var __Py_isalnum__doc__=Module["__Py_isalnum__doc__"]=14224;var __Py_isascii__doc__=Module["__Py_isascii__doc__"]=14368;var __Py_isdigit__doc__=Module["__Py_isdigit__doc__"]=14480;var __Py_islower__doc__=Module["__Py_islower__doc__"]=14608;var __Py_isupper__doc__=Module["__Py_isupper__doc__"]=14752;var __Py_istitle__doc__=Module["__Py_istitle__doc__"]=14896;var __Py_lower__doc__=Module["__Py_lower__doc__"]=15136;var __Py_upper__doc__=Module["__Py_upper__doc__"]=15232;var __Py_title__doc__=Module["__Py_title__doc__"]=15328;var __Py_capitalize__doc__=Module["__Py_capitalize__doc__"]=15488;var __Py_swapcase__doc__=Module["__Py_swapcase__doc__"]=15616;var __Py_maketrans__doc__=Module["__Py_maketrans__doc__"]=15744;var __Py_find__doc__=Module["__Py_find__doc__"]=16080;var __Py_index__doc__=Module["__Py_index__doc__"]=16336;var __Py_rfind__doc__=Module["__Py_rfind__doc__"]=16640;var __Py_rindex__doc__=Module["__Py_rindex__doc__"]=16896;var __Py_count__doc__=Module["__Py_count__doc__"]=17184;var __Py_startswith__doc__=Module["__Py_startswith__doc__"]=17424;var __Py_endswith__doc__=Module["__Py_endswith__doc__"]=17712;var _Py_hexdigits=Module["_Py_hexdigits"]=2894812;var _PyExc_BytesWarning=Module["_PyExc_BytesWarning"]=2858836;var _PyByteArrayIter_Type=Module["_PyByteArrayIter_Type"]=2837248;var _PyBytes_Type=Module["_PyBytes_Type"]=2837964;var __PyLong_DigitValue=Module["__PyLong_DigitValue"]=2868096;var _PyBytesIter_Type=Module["_PyBytesIter_Type"]=2839152;var _PyCapsule_Type=Module["_PyCapsule_Type"]=2839724;var _PyExc_ImportError=Module["_PyExc_ImportError"]=2847604;var _PyCell_Type=Module["_PyCell_Type"]=2839976;var _PyMethod_Type=Module["_PyMethod_Type"]=2840328;var _PyInstanceMethod_Type=Module["_PyInstanceMethod_Type"]=2840632;var _PyCode_Type=Module["_PyCode_Type"]=2840872;var _PyFrozenSet_Type=Module["_PyFrozenSet_Type"]=2880416;var _PyComplex_Type=Module["_PyComplex_Type"]=2841592;var __PyLong_Zero=Module["__PyLong_Zero"]=3169844;var _PyExc_ZeroDivisionError=Module["_PyExc_ZeroDivisionError"]=2855924;var __PyMethodWrapper_Type=Module["__PyMethodWrapper_Type"]=2843976;var _PyMethodDescr_Type=Module["_PyMethodDescr_Type"]=2842320;var _PyClassMethodDescr_Type=Module["_PyClassMethodDescr_Type"]=2842524;var _PyMemberDescr_Type=Module["_PyMemberDescr_Type"]=2842796;var _PyGetSetDescr_Type=Module["_PyGetSetDescr_Type"]=2843068;var _PyWrapperDescr_Type=Module["_PyWrapperDescr_Type"]=2843360;var _PyDictProxy_Type=Module["_PyDictProxy_Type"]=2843564;var _PyProperty_Type=Module["_PyProperty_Type"]=2844728;var __PyLong_One=Module["__PyLong_One"]=3169848;var _PyReversed_Type=Module["_PyReversed_Type"]=2845472;var _PyEnum_Type=Module["_PyEnum_Type"]=2845200;var _PyTraceBack_Type=Module["_PyTraceBack_Type"]=2915384;var _PyExc_UnicodeEncodeError=Module["_PyExc_UnicodeEncodeError"]=2854468;var _PyExc_UnicodeTranslateError=Module["_PyExc_UnicodeTranslateError"]=2854884;var _PyExc_StopAsyncIteration=Module["_PyExc_StopAsyncIteration"]=2846564;var _PyExc_GeneratorExit=Module["_PyExc_GeneratorExit"]=2846980;var _PyExc_SystemExit=Module["_PyExc_SystemExit"]=2847188;var _PyExc_ModuleNotFoundError=Module["_PyExc_ModuleNotFoundError"]=2847812;var _PyExc_EOFError=Module["_PyExc_EOFError"]=2851348;var _PyExc_RecursionError=Module["_PyExc_RecursionError"]=2851764;var _PyExc_NameError=Module["_PyExc_NameError"]=2852180;var _PyExc_UnboundLocalError=Module["_PyExc_UnboundLocalError"]=2852388;var _PyExc_AssertionError=Module["_PyExc_AssertionError"]=2855092;var _PyExc_ArithmeticError=Module["_PyExc_ArithmeticError"]=2855300;var _PyExc_FloatingPointError=Module["_PyExc_FloatingPointError"]=2855508;var _PyExc_ReferenceError=Module["_PyExc_ReferenceError"]=2856340;var _PyExc_Warning=Module["_PyExc_Warning"]=2856964;var _PyExc_UserWarning=Module["_PyExc_UserWarning"]=2857172;var _PyExc_PendingDeprecationWarning=Module["_PyExc_PendingDeprecationWarning"]=2857588;var _PyExc_SyntaxWarning=Module["_PyExc_SyntaxWarning"]=2857796;var _PyExc_RuntimeWarning=Module["_PyExc_RuntimeWarning"]=2858004;var _PyExc_FutureWarning=Module["_PyExc_FutureWarning"]=2858212;var _PyExc_ImportWarning=Module["_PyExc_ImportWarning"]=2858420;var _PyExc_UnicodeWarning=Module["_PyExc_UnicodeWarning"]=2858628;var _PyExc_ResourceWarning=Module["_PyExc_ResourceWarning"]=2859044;var _PyExc_ConnectionError=Module["_PyExc_ConnectionError"]=2848436;var _PyExc_BlockingIOError=Module["_PyExc_BlockingIOError"]=2848228;var _PyExc_BrokenPipeError=Module["_PyExc_BrokenPipeError"]=2848852;var _PyExc_ChildProcessError=Module["_PyExc_ChildProcessError"]=2848644;var _PyExc_ConnectionAbortedError=Module["_PyExc_ConnectionAbortedError"]=2849060;var _PyExc_ConnectionRefusedError=Module["_PyExc_ConnectionRefusedError"]=2849268;var _PyExc_ConnectionResetError=Module["_PyExc_ConnectionResetError"]=2849476;var _PyExc_FileExistsError=Module["_PyExc_FileExistsError"]=2849684;var _PyExc_FileNotFoundError=Module["_PyExc_FileNotFoundError"]=2849892;var _PyExc_IsADirectoryError=Module["_PyExc_IsADirectoryError"]=2850100;var _PyExc_NotADirectoryError=Module["_PyExc_NotADirectoryError"]=2850308;var _PyExc_InterruptedError=Module["_PyExc_InterruptedError"]=2850516;var _PyExc_PermissionError=Module["_PyExc_PermissionError"]=2850724;var _PyExc_ProcessLookupError=Module["_PyExc_ProcessLookupError"]=2850932;var _PyExc_TimeoutError=Module["_PyExc_TimeoutError"]=2851140;var _PyExc_EnvironmentError=Module["_PyExc_EnvironmentError"]=3168564;var _PyExc_IOError=Module["_PyExc_IOError"]=3168568;var __Py_ascii_whitespace=Module["__Py_ascii_whitespace"]=111248;var _Py_GenericAliasType=Module["_Py_GenericAliasType"]=2860232;var _PyAsyncGen_Type=Module["_PyAsyncGen_Type"]=2861984;var __PyAsyncGenWrappedValue_Type=Module["__PyAsyncGenWrappedValue_Type"]=2862476;var __PyCoroWrapper_Type=Module["__PyCoroWrapper_Type"]=2861520;var __PyAsyncGenASend_Type=Module["__PyAsyncGenASend_Type"]=2862272;var __PyAsyncGenAThrow_Type=Module["__PyAsyncGenAThrow_Type"]=2862768;var _PyStdPrinter_Type=Module["_PyStdPrinter_Type"]=2863044;var __Py_SwappedOp=Module["__Py_SwappedOp"]=2876576;var _PyModule_Type=Module["_PyModule_Type"]=2875788;var _PyFrame_Type=Module["_PyFrame_Type"]=2864464;var _PyFunction_Type=Module["_PyFunction_Type"]=2864960;var _PyClassMethod_Type=Module["_PyClassMethod_Type"]=2865276;var _PyStaticMethod_Type=Module["_PyStaticMethod_Type"]=2865596;var __PyInterpreterID_Type=Module["__PyInterpreterID_Type"]=2866012;var _PySeqIter_Type=Module["_PySeqIter_Type"]=2866304;var _PyCallIter_Type=Module["_PyCallIter_Type"]=2866544;var _PyListIter_Type=Module["_PyListIter_Type"]=2867344;var _PyListRevIter_Type=Module["_PyListRevIter_Type"]=2867616;var _PyDictIterKey_Type=Module["_PyDictIterKey_Type"]=2869776;var _PyDictRevIterKey_Type=Module["_PyDictRevIterKey_Type"]=2870388;var _PyDictRevIterValue_Type=Module["_PyDictRevIterValue_Type"]=2870796;var _PyDictKeys_Type=Module["_PyDictKeys_Type"]=2871e3;var _PyDictItems_Type=Module["_PyDictItems_Type"]=2871204;var _PyDictIterItem_Type=Module["_PyDictIterItem_Type"]=2870184;var _PyDictIterValue_Type=Module["_PyDictIterValue_Type"]=2869980;var _PyDictValues_Type=Module["_PyDictValues_Type"]=2871840;var _PyDictRevIterItem_Type=Module["_PyDictRevIterItem_Type"]=2870592;var _PyODict_Type=Module["_PyODict_Type"]=2872568;var _PyODictIter_Type=Module["_PyODictIter_Type"]=2872816;var _PyODictKeys_Type=Module["_PyODictKeys_Type"]=2873056;var _PyODictValues_Type=Module["_PyODictValues_Type"]=2873536;var _PyODictItems_Type=Module["_PyODictItems_Type"]=2873296;var __PyManagedBuffer_Type=Module["__PyManagedBuffer_Type"]=2873988;var _PyMemoryView_Type=Module["_PyMemoryView_Type"]=2874192;var _PyCMethod_Type=Module["_PyCMethod_Type"]=2874944;var _PyModuleDef_Type=Module["_PyModuleDef_Type"]=2875584;var __Py_PackageContext=Module["__Py_PackageContext"]=3223540;var __PyNamespace_Type=Module["__PyNamespace_Type"]=2876312;var __Py_tracemalloc_config=Module["__Py_tracemalloc_config"]=2877412;var __PyWeakref_RefType=Module["__PyWeakref_RefType"]=2890248;var __PyWeakref_CallableProxyType=Module["__PyWeakref_CallableProxyType"]=2890908;var __PyWeakref_ProxyType=Module["__PyWeakref_ProxyType"]=2890704;var __PyNone_Type=Module["__PyNone_Type"]=2876756;var __PyNotImplemented_Type=Module["__PyNotImplemented_Type"]=2877136;var _PySuper_Type=Module["_PySuper_Type"]=2885984;var _PyRange_Type=Module["_PyRange_Type"]=2878288;var _PyEllipsis_Type=Module["_PyEllipsis_Type"]=2880896;var _PyLongRangeIter_Type=Module["_PyLongRangeIter_Type"]=2878832;var _PyPickleBuffer_Type=Module["_PyPickleBuffer_Type"]=2877712;var __Py_abstract_hack=Module["__Py_abstract_hack"]=2877348;var _PyRangeIter_Type=Module["_PyRangeIter_Type"]=2878560;var _PySetIter_Type=Module["_PySetIter_Type"]=2879104;var __PySet_Dummy=Module["__PySet_Dummy"]=2880628;var _PyStructSequence_UnnamedField=Module["_PyStructSequence_UnnamedField"]=2881460;var _PyTupleIter_Type=Module["_PyTupleIter_Type"]=2881984;var _PyUnicodeIter_Type=Module["_PyUnicodeIter_Type"]=2889552;var __PyUnicode_TypeRecords=Module["__PyUnicode_TypeRecords"]=132720;var __PyUnicode_ExtendedCase=Module["__PyUnicode_ExtendedCase"]=140768;var _PyFilter_Type=Module["_PyFilter_Type"]=2892720;var _PyMap_Type=Module["_PyMap_Type"]=2892960;var _PyZip_Type=Module["_PyZip_Type"]=2893200;var __Py_CheckRecursionLimit=Module["__Py_CheckRecursionLimit"]=2894652;var _PyContext_Type=Module["_PyContext_Type"]=2895028;var _PyContextVar_Type=Module["_PyContextVar_Type"]=2895232;var _PyContextToken_Type=Module["_PyContextToken_Type"]=2895436;var _PyContextTokenMissing_Type=Module["_PyContextTokenMissing_Type"]=2896028;var _Py_IgnoreEnvironmentFlag=Module["_Py_IgnoreEnvironmentFlag"]=3223500;var _Py_VerboseFlag=Module["_Py_VerboseFlag"]=3223468;var __PyParser_Grammar=Module["__PyParser_Grammar"]=2899768;var __PyHamt_BitmapNode_Type=Module["__PyHamt_BitmapNode_Type"]=2911896;var __PyHamt_ArrayNode_Type=Module["__PyHamt_ArrayNode_Type"]=2911692;var __PyHamt_Type=Module["__PyHamt_Type"]=2911488;var __PyHamt_CollisionNode_Type=Module["__PyHamt_CollisionNode_Type"]=2912100;var __PyHamtItems_Type=Module["__PyHamtItems_Type"]=2910708;var __PyHamtKeys_Type=Module["__PyHamtKeys_Type"]=2910912;var __PyHamtValues_Type=Module["__PyHamtValues_Type"]=2911116;var __PySys_ImplCacheTag=Module["__PySys_ImplCacheTag"]=2913964;var _PyImport_FrozenModules=Module["_PyImport_FrozenModules"]=3064164;var _PyImport_Inittab=Module["_PyImport_Inittab"]=2912304;var __PyImport_DynLoadFiletab=Module["__PyImport_DynLoadFiletab"]=2915840;var __PyImport_Inittab=Module["__PyImport_Inittab"]=2915856;var _Py_IsolatedFlag=Module["_Py_IsolatedFlag"]=3223520;var _Py_BytesWarningFlag=Module["_Py_BytesWarningFlag"]=3223492;var _Py_InspectFlag=Module["_Py_InspectFlag"]=3223480;var _Py_InteractiveFlag=Module["_Py_InteractiveFlag"]=3223476;var _Py_OptimizeFlag=Module["_Py_OptimizeFlag"]=3223484;var _Py_DebugFlag=Module["_Py_DebugFlag"]=3223464;var _Py_QuietFlag=Module["_Py_QuietFlag"]=3223472;var _Py_FrozenFlag=Module["_Py_FrozenFlag"]=3223496;var _Py_UnbufferedStdioFlag=Module["_Py_UnbufferedStdioFlag"]=3223512;var _Py_NoSiteFlag=Module["_Py_NoSiteFlag"]=3223488;var _Py_DontWriteBytecodeFlag=Module["_Py_DontWriteBytecodeFlag"]=3223504;var _Py_NoUserSiteDirectory=Module["_Py_NoUserSiteDirectory"]=3223508;var _Py_HashRandomizationFlag=Module["_Py_HashRandomizationFlag"]=3223516;var __Py_path_config=Module["__Py_path_config"]=3223544;var __PyOS_optarg=Module["__PyOS_optarg"]=3225372;var __PyOS_optind=Module["__PyOS_optind"]=2915704;var _Py_FileSystemDefaultEncoding=Module["_Py_FileSystemDefaultEncoding"]=3223568;var _Py_HasFileSystemDefaultEncoding=Module["_Py_HasFileSystemDefaultEncoding"]=3223572;var _Py_FileSystemDefaultEncodeErrors=Module["_Py_FileSystemDefaultEncodeErrors"]=3223576;var __Py_HasFileSystemDefaultEncodeErrors=Module["__Py_HasFileSystemDefaultEncodeErrors"]=3223580;var _Py_UTF8Mode=Module["_Py_UTF8Mode"]=3223460;var __PyOS_opterr=Module["__PyOS_opterr"]=2915700;var _PyFPE_jbuf=Module["_PyFPE_jbuf"]=3223584;var _PyFPE_counter=Module["_PyFPE_counter"]=3223740;var __Py_HashSecret=Module["__Py_HashSecret"]=3223744;var __Py_UnhandledKeyboardInterrupt=Module["__Py_UnhandledKeyboardInterrupt"]=3223768;var __PyOS_mystrnicmp_hack=Module["__PyOS_mystrnicmp_hack"]=2913112;var _PySTEntry_Type=Module["_PySTEntry_Type"]=2913732;var __PySys_ImplName=Module["__PySys_ImplName"]=2913960;var __Py_open_cloexec_works=Module["__Py_open_cloexec_works"]=2915764;var _PyCStgDict_Type=Module["_PyCStgDict_Type"]=2936256;var _ffi_type_pointer=Module["_ffi_type_pointer"]=2449488;var _PyCSimpleType_Type=Module["_PyCSimpleType_Type"]=2930944;var _PyCData_Type=Module["_PyCData_Type"]=2931504;var _PyCPointerType_Type=Module["_PyCPointerType_Type"]=2930432;var _PyCArray_Type=Module["_PyCArray_Type"]=2932432;var _PyCArrayType_Type=Module["_PyCArrayType_Type"]=2930636;var __ctypes_ptrtype_cache=Module["__ctypes_ptrtype_cache"]=3239572;var _PyCArg_Type=Module["_PyCArg_Type"]=2934768;var _PyCThunk_Type=Module["_PyCThunk_Type"]=2934564;var _PyCStructType_Type=Module["_PyCStructType_Type"]=2930112;var _PyCFuncPtrType_Type=Module["_PyCFuncPtrType_Type"]=2931148;var _PyCPointer_Type=Module["_PyCPointer_Type"]=2932872;var _PyCFuncPtr_Type=Module["_PyCFuncPtr_Type"]=2932144;var _PyCField_Type=Module["_PyCField_Type"]=2935380;var _PyExc_ArgError=Module["_PyExc_ArgError"]=3239568;var __ctypes_module_methods=Module["__ctypes_module_methods"]=2935024;var _ffi_type_void=Module["_ffi_type_void"]=2449380;var _ffi_type_sint32=Module["_ffi_type_sint32"]=2449452;var _ffi_type_sint8=Module["_ffi_type_sint8"]=2449404;var _ffi_type_uint8=Module["_ffi_type_uint8"]=2449392;var _ffi_type_double=Module["_ffi_type_double"]=2449512;var _ffi_type_longdouble=Module["_ffi_type_longdouble"]=2449524;var _ffi_type_float=Module["_ffi_type_float"]=2449500;var _ffi_type_sint16=Module["_ffi_type_sint16"]=2449428;var _ffi_type_uint16=Module["_ffi_type_uint16"]=2449416;var _ffi_type_uint32=Module["_ffi_type_uint32"]=2449440;var _ffi_type_sint64=Module["_ffi_type_sint64"]=2449476;var _ffi_type_uint64=Module["_ffi_type_uint64"]=2449464;var _last_tfrsuv_arg=Module["_last_tfrsuv_arg"]=3239600;var _my_eggs=Module["_my_eggs"]=2936528;var _an_integer=Module["_an_integer"]=2936540;var __xxx_lib=Module["__xxx_lib"]=2936544;var _last_tf_arg_s=Module["_last_tf_arg_s"]=3239608;var _last_tf_arg_u=Module["_last_tf_arg_u"]=3239616;var _left=Module["_left"]=2936548;var _right=Module["_right"]=2936556;var _my_spams=Module["_my_spams"]=2936512;var _top=Module["_top"]=2936552;var _bottom=Module["_bottom"]=2936560;var __PyUnicode_Database_Records=Module["__PyUnicode_Database_Records"]=421920;var __PyUnicode_CategoryNames=Module["__PyUnicode_CategoryNames"]=2936672;var __PyUnicode_BidirectionalNames=Module["__PyUnicode_BidirectionalNames"]=2936800;var __PyUnicode_EastAsianWidthNames=Module["__PyUnicode_EastAsianWidthNames"]=2936912;var _PyBlake2_BLAKE2bType=Module["_PyBlake2_BLAKE2bType"]=2956848;var _PyBlake2_BLAKE2sType=Module["_PyBlake2_BLAKE2sType"]=2957312;var _pysqlite_NodeType=Module["_pysqlite_NodeType"]=2957612;var _pysqlite_CacheType=Module["_pysqlite_CacheType"]=2957872;var _pysqlite_Warning=Module["_pysqlite_Warning"]=3240040;var _pysqlite_Error=Module["_pysqlite_Error"]=3240036;var _pysqlite_InterfaceError=Module["_pysqlite_InterfaceError"]=3240044;var _pysqlite_DatabaseError=Module["_pysqlite_DatabaseError"]=3240048;var _pysqlite_DataError=Module["_pysqlite_DataError"]=3240068;var _pysqlite_OperationalError=Module["_pysqlite_OperationalError"]=3240056;var _pysqlite_IntegrityError=Module["_pysqlite_IntegrityError"]=3240064;var _pysqlite_InternalError=Module["_pysqlite_InternalError"]=3240052;var _pysqlite_ProgrammingError=Module["_pysqlite_ProgrammingError"]=3240060;var _pysqlite_NotSupportedError=Module["_pysqlite_NotSupportedError"]=3240072;var _pysqlite_CursorType=Module["_pysqlite_CursorType"]=2959532;var __pysqlite_enable_callback_tracebacks=Module["__pysqlite_enable_callback_tracebacks"]=3240080;var _pysqlite_StatementType=Module["_pysqlite_StatementType"]=2960836;var _pysqlite_ConnectionType=Module["_pysqlite_ConnectionType"]=2958896;var __pysqlite_converters=Module["__pysqlite_converters"]=3240076;var _pysqlite_PrepareProtocolType=Module["_pysqlite_PrepareProtocolType"]=2960336;var _pysqlite_RowType=Module["_pysqlite_RowType"]=2960592;var _pysqlite_BaseTypeAdapted=Module["_pysqlite_BaseTypeAdapted"]=3240084;var _pysqlite_row_as_mapping=Module["_pysqlite_row_as_mapping"]=2960540;var _mpd_mallocfunc=Module["_mpd_mallocfunc"]=3027264;var _mpd_reallocfunc=Module["_mpd_reallocfunc"]=3027268;var _mpd_callocfunc=Module["_mpd_callocfunc"]=3027272;var _mpd_free=Module["_mpd_free"]=3027276;var _mpd_traphandler=Module["_mpd_traphandler"]=3027132;var _mpd_round_string=Module["_mpd_round_string"]=3027088;var _mpd_pow10=Module["_mpd_pow10"]=2208272;var _mpd_moduli=Module["_mpd_moduli"]=2208044;var _mpd_roots=Module["_mpd_roots"]=2208056;var _mpd_invmoduli=Module["_mpd_invmoduli"]=2208080;var _MPD_TWO63=Module["_MPD_TWO63"]=2208116;var _INV_P1_MOD_P2=Module["_INV_P1_MOD_P2"]=2208120;var _INV_P1P2_MOD_P3=Module["_INV_P1P2_MOD_P3"]=2208124;var _LH_P1P2=Module["_LH_P1P2"]=2208128;var _UH_P1P2=Module["_UH_P1P2"]=2208132;var _mpd_bits=Module["_mpd_bits"]=2208144;var _mpd_clamp_string=Module["_mpd_clamp_string"]=3027124;var _MPD_MINALLOC=Module["_MPD_MINALLOC"]=3027260;var _environ=Module["_environ"]=3247316;var __PyIO_Module=Module["__PyIO_Module"]=3053952;var _PyIOBase_Type=Module["_PyIOBase_Type"]=3054300;var _PyRawIOBase_Type=Module["_PyRawIOBase_Type"]=3054504;var _PyBufferedIOBase_Type=Module["_PyBufferedIOBase_Type"]=3056864;var _PyTextIOBase_Type=Module["_PyTextIOBase_Type"]=3059920;var _PyFileIO_Type=Module["_PyFileIO_Type"]=3055584;var _PyBytesIO_Type=Module["_PyBytesIO_Type"]=3056280;var __PyBytesIOBuffer_Type=Module["__PyBytesIOBuffer_Type"]=3056492;var _PyStringIO_Type=Module["_PyStringIO_Type"]=3062048;var _PyBufferedReader_Type=Module["_PyBufferedReader_Type"]=3057520;var _PyBufferedWriter_Type=Module["_PyBufferedWriter_Type"]=3058096;var _PyBufferedRWPair_Type=Module["_PyBufferedRWPair_Type"]=3058536;var _PyBufferedRandom_Type=Module["_PyBufferedRandom_Type"]=3059232;var _PyTextIOWrapper_Type=Module["_PyTextIOWrapper_Type"]=3060968;var _PyIncrementalNewlineDecoder_Type=Module["_PyIncrementalNewlineDecoder_Type"]=3060248;var __PyIO_str_close=Module["__PyIO_str_close"]=3241832;var __PyIO_str_closed=Module["__PyIO_str_closed"]=3241836;var __PyIO_str_decode=Module["__PyIO_str_decode"]=3241840;var __PyIO_str_encode=Module["__PyIO_str_encode"]=3241844;var __PyIO_str_fileno=Module["__PyIO_str_fileno"]=3241848;var __PyIO_str_flush=Module["__PyIO_str_flush"]=3241852;var __PyIO_str_getstate=Module["__PyIO_str_getstate"]=3241856;var __PyIO_str_isatty=Module["__PyIO_str_isatty"]=3241860;var __PyIO_str_newlines=Module["__PyIO_str_newlines"]=3241864;var __PyIO_str_peek=Module["__PyIO_str_peek"]=3241872;var __PyIO_str_read=Module["__PyIO_str_read"]=3241876;var __PyIO_str_read1=Module["__PyIO_str_read1"]=3241880;var __PyIO_str_readable=Module["__PyIO_str_readable"]=3241884;var __PyIO_str_readall=Module["__PyIO_str_readall"]=3241888;var __PyIO_str_readinto=Module["__PyIO_str_readinto"]=3241892;var __PyIO_str_readline=Module["__PyIO_str_readline"]=3241896;var __PyIO_str_reset=Module["__PyIO_str_reset"]=3241900;var __PyIO_str_seek=Module["__PyIO_str_seek"]=3241904;var __PyIO_str_seekable=Module["__PyIO_str_seekable"]=3241908;var __PyIO_str_setstate=Module["__PyIO_str_setstate"]=3241912;var __PyIO_str_tell=Module["__PyIO_str_tell"]=3241916;var __PyIO_str_truncate=Module["__PyIO_str_truncate"]=3241920;var __PyIO_str_write=Module["__PyIO_str_write"]=3241928;var __PyIO_str_writable=Module["__PyIO_str_writable"]=3241924;var __PyIO_str_nl=Module["__PyIO_str_nl"]=3241868;var __PyIO_empty_str=Module["__PyIO_empty_str"]=3241932;var __PyIO_empty_bytes=Module["__PyIO_empty_bytes"]=3241936;var __Py_M__importlib_bootstrap=Module["__Py_M__importlib_bootstrap"]=2358e3;var __Py_M__importlib_bootstrap_external=Module["__Py_M__importlib_bootstrap_external"]=2386944;var __Py_M__zipimport=Module["__Py_M__zipimport"]=2432080;var _sqlite3_version=Module["_sqlite3_version"]=2449536;var _sqlite3_data_directory=Module["_sqlite3_data_directory"]=3242516;var _sqlite3_temp_directory=Module["_sqlite3_temp_directory"]=3242512;var _sqlite3one=Module["_sqlite3one"]=2449544;var _sqlite3_fts3_may_be_corrupt=Module["_sqlite3_fts3_may_be_corrupt"]=3064992;var _sqlite3_fts5_may_be_corrupt=Module["_sqlite3_fts5_may_be_corrupt"]=3064996;var _BZ2_crc32Table=Module["_BZ2_crc32Table"]=3074944;var _BZ2_rNums=Module["_BZ2_rNums"]=3075968;var ___THREW__=Module["___THREW__"]=3251508;var ___threwValue=Module["___threwValue"]=3251512;var _png_sRGB_table=Module["_png_sRGB_table"]=2514144;var _png_sRGB_base=Module["_png_sRGB_base"]=2514656;var _png_sRGB_delta=Module["_png_sRGB_delta"]=2515680;var _af_script_classes=Module["_af_script_classes"]=3078704;var _af_blue_stringsets=Module["_af_blue_stringsets"]=2528544;var _af_blue_strings=Module["_af_blue_strings"]=2527776;var _af_style_classes=Module["_af_style_classes"]=3078800;var _af_writing_system_classes=Module["_af_writing_system_classes"]=3078672;var _af_arab_dflt_style_class=Module["_af_arab_dflt_style_class"]=2528920;var _af_arab_script_class=Module["_af_arab_script_class"]=3078120;var _af_arab_uniranges=Module["_af_arab_uniranges"]=2529904;var _af_cyrl_script_class=Module["_af_cyrl_script_class"]=3078140;var _af_cyrl_uniranges=Module["_af_cyrl_uniranges"]=2529968;var _af_deva_script_class=Module["_af_deva_script_class"]=3078160;var _af_deva_uniranges=Module["_af_deva_uniranges"]=2530016;var _af_grek_script_class=Module["_af_grek_script_class"]=3078180;var _af_grek_uniranges=Module["_af_grek_uniranges"]=2530064;var _af_hebr_script_class=Module["_af_hebr_script_class"]=3078200;var _af_hebr_uniranges=Module["_af_hebr_uniranges"]=2530096;var _af_latn_script_class=Module["_af_latn_script_class"]=3078220;var _af_latn_uniranges=Module["_af_latn_uniranges"]=2530128;var _af_none_script_class=Module["_af_none_script_class"]=3078240;var _af_none_uniranges=Module["_af_none_uniranges"]=2530320;var _af_telu_script_class=Module["_af_telu_script_class"]=3078260;var _af_telu_uniranges=Module["_af_telu_uniranges"]=2530336;var _af_thai_script_class=Module["_af_thai_script_class"]=3078280;var _af_thai_uniranges=Module["_af_thai_uniranges"]=2530352;var _af_beng_script_class=Module["_af_beng_script_class"]=3078300;var _af_beng_uniranges=Module["_af_beng_uniranges"]=2530368;var _af_gujr_script_class=Module["_af_gujr_script_class"]=3078320;var _af_gujr_uniranges=Module["_af_gujr_uniranges"]=2530384;var _af_guru_script_class=Module["_af_guru_script_class"]=3078340;var _af_guru_uniranges=Module["_af_guru_uniranges"]=2530400;var _af_knda_script_class=Module["_af_knda_script_class"]=3078360;var _af_knda_uniranges=Module["_af_knda_uniranges"]=2530416;var _af_limb_script_class=Module["_af_limb_script_class"]=3078380;var _af_limb_uniranges=Module["_af_limb_uniranges"]=2530432;var _af_mlym_script_class=Module["_af_mlym_script_class"]=3078400;var _af_mlym_uniranges=Module["_af_mlym_uniranges"]=2530448;var _af_orya_script_class=Module["_af_orya_script_class"]=3078420;var _af_orya_uniranges=Module["_af_orya_uniranges"]=2530464;var _af_sinh_script_class=Module["_af_sinh_script_class"]=3078440;var _af_sinh_uniranges=Module["_af_sinh_uniranges"]=2530480;var _af_sund_script_class=Module["_af_sund_script_class"]=3078460;var _af_sund_uniranges=Module["_af_sund_uniranges"]=2530496;var _af_sylo_script_class=Module["_af_sylo_script_class"]=3078480;var _af_sylo_uniranges=Module["_af_sylo_uniranges"]=2530512;var _af_taml_script_class=Module["_af_taml_script_class"]=3078500;var _af_taml_uniranges=Module["_af_taml_uniranges"]=2530528;var _af_tibt_script_class=Module["_af_tibt_script_class"]=3078520;var _af_tibt_uniranges=Module["_af_tibt_uniranges"]=2530544;var _af_hani_script_class=Module["_af_hani_script_class"]=3078540;var _af_hani_uniranges=Module["_af_hani_uniranges"]=2530560;var _af_cyrl_c2cp_style_class=Module["_af_cyrl_c2cp_style_class"]=2528940;var _af_cyrl_c2sc_style_class=Module["_af_cyrl_c2sc_style_class"]=2528960;var _af_cyrl_ordn_style_class=Module["_af_cyrl_ordn_style_class"]=2528980;var _af_cyrl_pcap_style_class=Module["_af_cyrl_pcap_style_class"]=2529e3;var _af_cyrl_sinf_style_class=Module["_af_cyrl_sinf_style_class"]=2529020;var _af_cyrl_smcp_style_class=Module["_af_cyrl_smcp_style_class"]=2529040;var _af_cyrl_subs_style_class=Module["_af_cyrl_subs_style_class"]=2529060;var _af_cyrl_sups_style_class=Module["_af_cyrl_sups_style_class"]=2529080;var _af_cyrl_titl_style_class=Module["_af_cyrl_titl_style_class"]=2529100;var _af_cyrl_dflt_style_class=Module["_af_cyrl_dflt_style_class"]=2529120;var _af_grek_c2cp_style_class=Module["_af_grek_c2cp_style_class"]=2529140;var _af_grek_c2sc_style_class=Module["_af_grek_c2sc_style_class"]=2529160;var _af_grek_ordn_style_class=Module["_af_grek_ordn_style_class"]=2529180;var _af_grek_pcap_style_class=Module["_af_grek_pcap_style_class"]=2529200;var _af_grek_sinf_style_class=Module["_af_grek_sinf_style_class"]=2529220;var _af_grek_smcp_style_class=Module["_af_grek_smcp_style_class"]=2529240;var _af_grek_subs_style_class=Module["_af_grek_subs_style_class"]=2529260;var _af_grek_sups_style_class=Module["_af_grek_sups_style_class"]=2529280;var _af_grek_titl_style_class=Module["_af_grek_titl_style_class"]=2529300;var _af_grek_dflt_style_class=Module["_af_grek_dflt_style_class"]=2529320;var _af_hebr_dflt_style_class=Module["_af_hebr_dflt_style_class"]=2529340;var _af_latn_c2cp_style_class=Module["_af_latn_c2cp_style_class"]=2529360;var _af_latn_c2sc_style_class=Module["_af_latn_c2sc_style_class"]=2529380;var _af_latn_ordn_style_class=Module["_af_latn_ordn_style_class"]=2529400;var _af_latn_pcap_style_class=Module["_af_latn_pcap_style_class"]=2529420;var _af_latn_sinf_style_class=Module["_af_latn_sinf_style_class"]=2529440;var _af_latn_smcp_style_class=Module["_af_latn_smcp_style_class"]=2529460;var _af_latn_subs_style_class=Module["_af_latn_subs_style_class"]=2529480;var _af_latn_sups_style_class=Module["_af_latn_sups_style_class"]=2529500;var _af_latn_titl_style_class=Module["_af_latn_titl_style_class"]=2529520;var _af_latn_dflt_style_class=Module["_af_latn_dflt_style_class"]=2529540;var _af_deva_dflt_style_class=Module["_af_deva_dflt_style_class"]=2529560;var _af_none_dflt_style_class=Module["_af_none_dflt_style_class"]=2529580;var _af_telu_dflt_style_class=Module["_af_telu_dflt_style_class"]=2529600;var _af_thai_dflt_style_class=Module["_af_thai_dflt_style_class"]=2529620;var _af_beng_dflt_style_class=Module["_af_beng_dflt_style_class"]=2529640;var _af_gujr_dflt_style_class=Module["_af_gujr_dflt_style_class"]=2529660;var _af_guru_dflt_style_class=Module["_af_guru_dflt_style_class"]=2529680;var _af_knda_dflt_style_class=Module["_af_knda_dflt_style_class"]=2529700;var _af_limb_dflt_style_class=Module["_af_limb_dflt_style_class"]=2529720;var _af_mlym_dflt_style_class=Module["_af_mlym_dflt_style_class"]=2529740;var _af_orya_dflt_style_class=Module["_af_orya_dflt_style_class"]=2529760;var _af_sinh_dflt_style_class=Module["_af_sinh_dflt_style_class"]=2529780;var _af_sund_dflt_style_class=Module["_af_sund_dflt_style_class"]=2529800;var _af_sylo_dflt_style_class=Module["_af_sylo_dflt_style_class"]=2529820;var _af_taml_dflt_style_class=Module["_af_taml_dflt_style_class"]=2529840;var _af_tibt_dflt_style_class=Module["_af_tibt_dflt_style_class"]=2529860;var _af_hani_dflt_style_class=Module["_af_hani_dflt_style_class"]=2529880;var _af_dummy_writing_system_class=Module["_af_dummy_writing_system_class"]=3078560;var _af_latin_writing_system_class=Module["_af_latin_writing_system_class"]=3078588;var _af_cjk_writing_system_class=Module["_af_cjk_writing_system_class"]=3078616;var _af_indic_writing_system_class=Module["_af_indic_writing_system_class"]=3078644;var _af_autofitter_interface=Module["_af_autofitter_interface"]=3079e3;var _autofit_module_class=Module["_autofit_module_class"]=3079016;var _ft_bitmap_glyph_class=Module["_ft_bitmap_glyph_class"]=3079104;var _ft_outline_glyph_class=Module["_ft_outline_glyph_class"]=3079136;var _tt_driver_class=Module["_tt_driver_class"]=3086980;var _t1_driver_class=Module["_t1_driver_class"]=3087200;var _cff_driver_class=Module["_cff_driver_class"]=3080948;var _t1cid_driver_class=Module["_t1cid_driver_class"]=3082720;var _pfr_driver_class=Module["_pfr_driver_class"]=3084944;var _t42_driver_class=Module["_t42_driver_class"]=3089100;var _winfnt_driver_class=Module["_winfnt_driver_class"]=309e4;var _pcf_driver_class=Module["_pcf_driver_class"]=3084732;var _psaux_module_class=Module["_psaux_module_class"]=3085404;var _psnames_module_class=Module["_psnames_module_class"]=3085816;var _pshinter_module_class=Module["_pshinter_module_class"]=3085748;var _ft_raster1_renderer_class=Module["_ft_raster1_renderer_class"]=3085896;var _sfnt_module_class=Module["_sfnt_module_class"]=3086540;var _ft_smooth_renderer_class=Module["_ft_smooth_renderer_class"]=3086776;var _ft_smooth_lcd_renderer_class=Module["_ft_smooth_lcd_renderer_class"]=3086836;var _ft_smooth_lcdv_renderer_class=Module["_ft_smooth_lcdv_renderer_class"]=3086896;var _bdf_driver_class=Module["_bdf_driver_class"]=3079240;var _cff_cmap_unicode_class_rec=Module["_cff_cmap_unicode_class_rec"]=3081084;var _cff_cmap_encoding_class_rec=Module["_cff_cmap_encoding_class_rec"]=3081044;var _pfr_cmap_class_rec=Module["_pfr_cmap_class_rec"]=3084904;var _ps_table_funcs=Module["_ps_table_funcs"]=3085076;var _ps_parser_funcs=Module["_ps_parser_funcs"]=3085092;var _t1_builder_funcs=Module["_t1_builder_funcs"]=3085144;var _t1_decoder_funcs=Module["_t1_decoder_funcs"]=3085176;var _afm_parser_funcs=Module["_afm_parser_funcs"]=3085188;var _t1_cmap_standard_class_rec=Module["_t1_cmap_standard_class_rec"]=3085200;var _t1_cmap_expert_class_rec=Module["_t1_cmap_expert_class_rec"]=3085240;var _t1_cmap_custom_class_rec=Module["_t1_cmap_custom_class_rec"]=3085280;var _t1_cmap_unicode_class_rec=Module["_t1_cmap_unicode_class_rec"]=3085320;var _t1_cmap_classes=Module["_t1_cmap_classes"]=3085360;var _ft_standard_raster=Module["_ft_standard_raster"]=3085872;var _tt_cmap0_class_rec=Module["_tt_cmap0_class_rec"]=3085956;var _tt_cmap2_class_rec=Module["_tt_cmap2_class_rec"]=3086008;var _tt_cmap4_class_rec=Module["_tt_cmap4_class_rec"]=3086060;var _tt_cmap6_class_rec=Module["_tt_cmap6_class_rec"]=3086112;var _tt_cmap8_class_rec=Module["_tt_cmap8_class_rec"]=3086164;var _tt_cmap10_class_rec=Module["_tt_cmap10_class_rec"]=3086216;var _tt_cmap12_class_rec=Module["_tt_cmap12_class_rec"]=3086268;var _tt_cmap13_class_rec=Module["_tt_cmap13_class_rec"]=3086320;var _tt_cmap14_class_rec=Module["_tt_cmap14_class_rec"]=3086372;var _ft_grays_raster=Module["_ft_grays_raster"]=3086752;var _tt_default_graphics_state=Module["_tt_default_graphics_state"]=2606860;var _z_errmsg=Module["_z_errmsg"]=3090368;var __length_code=Module["__length_code"]=2624704;var __dist_code=Module["__dist_code"]=2624192;var _deflate_copyright=Module["_deflate_copyright"]=2618208;var _inflate_copyright=Module["_inflate_copyright"]=2623888;var ___environ=Module["___environ"]=3247316;var ___progname=Module["___progname"]=3243404;var ___progname_full=Module["___progname_full"]=3243408;var ___libc=Module["___libc"]=3243412;var ___hwcap=Module["___hwcap"]=3243476;var ___sysinfo=Module["___sysinfo"]=3243480;var _program_invocation_short_name=Module["_program_invocation_short_name"]=3243404;var _program_invocation_name=Module["_program_invocation_name"]=3243408;var ___optreset=Module["___optreset"]=3243832;var _optind=Module["_optind"]=3091608;var ___optpos=Module["___optpos"]=3243836;var _optarg=Module["_optarg"]=3243840;var _optopt=Module["_optopt"]=3243844;var _opterr=Module["_opterr"]=3091612;var _optreset=Module["_optreset"]=3243832;var _h_errno=Module["_h_errno"]=3243924;var __ns_flagdata=Module["__ns_flagdata"]=2652528;var ___fsmu8=Module["___fsmu8"]=2666336;var ___pio2_hi=Module["___pio2_hi"]=2669152;var ___pio2_lo=Module["___pio2_lo"]=2669168;var ___signgam=Module["___signgam"]=3244868;var _atanlo=Module["_atanlo"]=2677760;var _atanhi=Module["_atanhi"]=2677696;var _aT=Module["_aT"]=2677824;var _signgam=Module["_signgam"]=3244868;var ___seed48=Module["___seed48"]=3091760;var ___stdin_used=Module["___stdin_used"]=3092372;var ___stdout_used=Module["___stdout_used"]=3092068;var ___stderr_used=Module["___stderr_used"]=3092220;var ___c_locale=Module["___c_locale"]=2680564;var ___c_dot_utf8_locale=Module["___c_dot_utf8_locale"]=3092460;var ___c_dot_utf8=Module["___c_dot_utf8"]=3092432;var ____environ=Module["____environ"]=3247316;var __environ=Module["__environ"]=3247316;var ___env_map=Module["___env_map"]=3247324;var _tzname=Module["_tzname"]=3247328;var _daylight=Module["_daylight"]=3247336;var _timezone=Module["_timezone"]=3247340;var ___data_end=Module["___data_end"]=3258800;var ___dso_handle=Module["___dso_handle"]=1024;var ___cxa_unexpected_handler=Module["___cxa_unexpected_handler"]=3101656;var ___cxa_terminate_handler=Module["___cxa_terminate_handler"]=3101652;var ___cxa_new_handler=Module["___cxa_new_handler"]=3257780;var _in6addr_any=Module["_in6addr_any"]=2832764;var _in6addr_loopback=Module["_in6addr_loopback"]=2832780;var ___start_em_js=Module["___start_em_js"]=3107940;var ___stop_em_js=Module["___stop_em_js"]=3158091;function invoke_viiii(index,a1,a2,a3,a4){var sp=stackSave();try{wasmTable.get(index)(a1,a2,a3,a4)}catch(e){stackRestore(sp);if(e!==e+0&&e!=="longjmp")throw e;_setThrew(1,0)}}function invoke_iii(index,a1,a2){var sp=stackSave();try{return wasmTable.get(index)(a1,a2)}catch(e){stackRestore(sp);if(e!==e+0&&e!=="longjmp")throw e;_setThrew(1,0)}}function invoke_vii(index,a1,a2){var sp=stackSave();try{wasmTable.get(index)(a1,a2)}catch(e){stackRestore(sp);if(e!==e+0&&e!=="longjmp")throw e;_setThrew(1,0)}}function invoke_ii(index,a1){var sp=stackSave();try{return wasmTable.get(index)(a1)}catch(e){stackRestore(sp);if(e!==e+0&&e!=="longjmp")throw e;_setThrew(1,0)}}function invoke_vi(index,a1){var sp=stackSave();try{wasmTable.get(index)(a1)}catch(e){stackRestore(sp);if(e!==e+0&&e!=="longjmp")throw e;_setThrew(1,0)}}function invoke_iiiii(index,a1,a2,a3,a4){var sp=stackSave();try{return wasmTable.get(index)(a1,a2,a3,a4)}catch(e){stackRestore(sp);if(e!==e+0&&e!=="longjmp")throw e;_setThrew(1,0)}}function invoke_iiii(index,a1,a2,a3){var sp=stackSave();try{return wasmTable.get(index)(a1,a2,a3)}catch(e){stackRestore(sp);if(e!==e+0&&e!=="longjmp")throw e;_setThrew(1,0)}}Module["allocate"]=allocate;Module["addRunDependency"]=addRunDependency;Module["removeRunDependency"]=removeRunDependency;Module["FS_createPath"]=FS.createPath;Module["FS_createDataFile"]=FS.createDataFile;Module["FS_createPreloadedFile"]=FS.createPreloadedFile;Module["FS_createLazyFile"]=FS.createLazyFile;Module["FS_createDevice"]=FS.createDevice;Module["FS_unlink"]=FS.unlink;Module["LZ4"]=LZ4;var calledRun;function ExitStatus(status){this.name="ExitStatus";this.message="Program terminated with exit("+status+")";this.status=status}var calledMain=false;dependenciesFulfilled=function runCaller(){if(!calledRun)run();if(!calledRun)dependenciesFulfilled=runCaller};function callMain(args){var entryFunction=Module["_main"];if(!entryFunction)return;args=args||[];var argc=args.length+1;var argv=stackAlloc((argc+1)*4);HEAP32[argv>>2]=allocateUTF8OnStack(thisProgram);for(var i=1;i>2)+i]=allocateUTF8OnStack(args[i-1])}HEAP32[(argv>>2)+argc]=0;try{var ret=entryFunction(argc,argv);exit(ret,true)}catch(e){if(e instanceof ExitStatus){return}else if(e=="unwind"){return}else{var toLog=e;if(e&&typeof e==="object"&&e.stack){toLog=[e,e.stack]}err("exception thrown: "+toLog);quit_(1,e)}}finally{calledMain=true}}var dylibsLoaded=false;function run(args){args=args||arguments_;if(runDependencies>0){return}if(!dylibsLoaded){preloadDylibs();dylibsLoaded=true;if(runDependencies>0){return}}preRun();if(runDependencies>0){return}function doRun(){if(calledRun)return;calledRun=true;Module["calledRun"]=true;if(ABORT)return;initRuntime();preMain();readyPromiseResolve(Module);if(Module["onRuntimeInitialized"])Module["onRuntimeInitialized"]();if(shouldRunNow)callMain(args);postRun()}if(Module["setStatus"]){Module["setStatus"]("Running...");setTimeout(function(){setTimeout(function(){Module["setStatus"]("")},1);doRun()},1)}else{doRun()}}Module["run"]=run;function exit(status,implicit){EXITSTATUS=status;if(implicit&&keepRuntimeAlive()&&status===0){return}if(keepRuntimeAlive()){}else{exitRuntime();if(Module["onExit"])Module["onExit"](status);ABORT=true}quit_(status,new ExitStatus(status))}if(Module["preInit"]){if(typeof Module["preInit"]=="function")Module["preInit"]=[Module["preInit"]];while(Module["preInit"].length>0){Module["preInit"].pop()()}}var shouldRunNow=true;if(Module["noInitialRun"])shouldRunNow=false;run(); - - - return _createPyodideModule.ready -} -); -})(); -if (typeof exports === 'object' && typeof module === 'object') - module.exports = _createPyodideModule; -else if (typeof define === 'function' && define['amd']) - define([], function() { return _createPyodideModule; }); -else if (typeof exports === 'object') - exports["_createPyodideModule"] = _createPyodideModule; -globalThis._createPyodideModule = _createPyodideModule; diff --git a/spaces/qkorbit/AltDiffusion/js/index.js b/spaces/qkorbit/AltDiffusion/js/index.js deleted file mode 100644 index 2afe2db8da0b7305eb88a46a31d1f309ee9d0793..0000000000000000000000000000000000000000 --- a/spaces/qkorbit/AltDiffusion/js/index.js +++ /dev/null @@ -1,186 +0,0 @@ -window.SD = (() => { - /* - * Painterro is made a field of the SD global object - * To provide convinience when using w() method in css_and_js.py - */ - class PainterroClass { - static isOpen = false; - static async init ({ x, toId }) { - console.log(x) - - const originalImage = x[2] === 'Mask' ? x[1]?.image : x[0]; - - if (window.Painterro === undefined) { - try { - await this.load(); - } catch (e) { - SDClass.error(e); - - return this.fallback(originalImage); - } - } - - if (this.isOpen) { - return this.fallback(originalImage); - } - this.isOpen = true; - - let resolveResult; - const paintClient = Painterro({ - hiddenTools: ['arrow'], - onHide: () => { - resolveResult?.(null); - }, - saveHandler: (image, done) => { - const data = image.asDataURL(); - - // ensures stable performance even - // when the editor is in interactive mode - SD.clearImageInput(SD.el.get(`#${toId}`)); - - resolveResult(data); - - done(true); - paintClient.hide(); - }, - }); - - const result = await new Promise((resolve) => { - resolveResult = resolve; - paintClient.show(originalImage); - }); - this.isOpen = false; - - return result ? this.success(result) : this.fallback(originalImage); - } - static success (result) { return [result, { image: result, mask: result }] }; - static fallback (image) { return [image, { image: image, mask: image }] }; - static load () { - return new Promise((resolve, reject) => { - const scriptId = '__painterro-script'; - if (document.getElementById(scriptId)) { - reject(new Error('Tried to load painterro script, but script tag already exists.')); - return; - } - - const styleId = '__painterro-css-override'; - if (!document.getElementById(styleId)) { - /* Ensure Painterro window is always on top */ - const style = document.createElement('style'); - style.id = styleId; - style.setAttribute('type', 'text/css'); - style.appendChild(document.createTextNode(` - .ptro-holder-wrapper { - z-index: 100; - } - `)); - document.head.appendChild(style); - } - - const script = document.createElement('script'); - script.id = scriptId; - script.src = 'https://unpkg.com/painterro@1.2.78/build/painterro.min.js'; - script.onload = () => resolve(true); - script.onerror = (e) => { - // remove self on error to enable reattempting load - document.head.removeChild(script); - reject(e); - }; - document.head.appendChild(script); - }); - } - } - - /* - * Turns out caching elements doesn't actually work in gradio - * As elements in tabs might get recreated - */ - class ElementCache { - #el; - constructor () { - this.root = document.querySelector('gradio-app').shadowRoot; - } - get (selector) { - return this.root.querySelector(selector); - } - } - - /* - * The main helper class to incapsulate functions - * that change gradio ui functionality - */ - class SDClass { - el = new ElementCache(); - Painterro = PainterroClass; - moveImageFromGallery ({ x, fromId, toId }) { - x = x[0]; - if (!Array.isArray(x) || x.length === 0) return; - - this.clearImageInput(this.el.get(`#${toId}`)); - - const i = this.#getGallerySelectedIndex(this.el.get(`#${fromId}`)); - - return [x[i].replace('data:;','data:image/png;')]; - } - async copyImageFromGalleryToClipboard ({ x, fromId }) { - x = x[0]; - if (!Array.isArray(x) || x.length === 0) return; - - const i = this.#getGallerySelectedIndex(this.el.get(`#${fromId}`)); - - const data = x[i]; - const blob = await (await fetch(data.replace('data:;','data:image/png;'))).blob(); - const item = new ClipboardItem({'image/png': blob}); - - await this.copyToClipboard([item]); - } - clickFirstVisibleButton({ rowId }) { - const generateButtons = this.el.get(`#${rowId}`).querySelectorAll('.gr-button-primary'); - - if (!generateButtons) return; - - for (let i = 0, arr = [...generateButtons]; i < arr.length; i++) { - const cs = window.getComputedStyle(arr[i]); - - if (cs.display !== 'none' && cs.visibility !== 'hidden') { - console.log(arr[i]); - - arr[i].click(); - break; - } - } - } - async gradioInputToClipboard ({ x }) { return this.copyToClipboard(x[0]); } - async copyToClipboard (value) { - if (!value || typeof value === 'boolean') return; - try { - if (Array.isArray(value) && - value.length && - value[0] instanceof ClipboardItem) { - await navigator.clipboard.write(value); - } else { - await navigator.clipboard.writeText(value); - } - } catch (e) { - SDClass.error(e); - } - } - static error (e) { - console.error(e); - if (typeof e === 'string') { - alert(e); - } else if(typeof e === 'object' && Object.hasOwn(e, 'message')) { - alert(e.message); - } - } - clearImageInput (imageEditor) { - imageEditor?.querySelector('.modify-upload button:last-child')?.click(); - } - #getGallerySelectedIndex (gallery) { - const selected = gallery.querySelector(`.\\!ring-2`); - return selected ? [...selected.parentNode.children].indexOf(selected) : 0; - } - } - - return new SDClass(); -})(); diff --git a/spaces/quidiaMuxgu/Expedit-SAM/Archicrypt Ultimate Ramdisk 4 Cracked ((LINK)).md b/spaces/quidiaMuxgu/Expedit-SAM/Archicrypt Ultimate Ramdisk 4 Cracked ((LINK)).md deleted file mode 100644 index 14925adac672be665d591c732981fc5a1e1dd610..0000000000000000000000000000000000000000 --- a/spaces/quidiaMuxgu/Expedit-SAM/Archicrypt Ultimate Ramdisk 4 Cracked ((LINK)).md +++ /dev/null @@ -1,7 +0,0 @@ -

    Archicrypt Ultimate Ramdisk 4 Cracked


    Download 🗹 https://geags.com/2uCsw8



    -
    -Contents · 1 Overview. 1.1 Features · 2 FreeBSD. 2.1 md - memory disk 3 Linux. 3.1 shm; 3.2 RapidDisk; 3.3 RAM disk; 3.4 tmpfs and ramfs 4 Microsoft Windows. 4.1. NET framework 4.2 ramdisk 4.3 ramfs 4.4 RamDisk 4.5 RamDrive 4.6 RamDisk. 4.6.1 RamDisk on Windows 2000/XP 4.7 RamDisk on Windows Vista/Windows 7 4.8 RamDisk on Ubuntu 4.9 RamDisk on Debian/Suse/Ubuntu 4.10 RamDisk on OpenSUSE 4.11 RamDisk 4.12 RamDisk on Mac OS X -4.13 RamDisk on FreeBSD 5.x 4.14 RamDisk on FreeBSD 8.x 4.15 RamDisk on OpenBSD 4.16 RamDisk. 4.17 RamDisk on Solaris 4.18 RamDisk on Unux. · 4.19 RamDisk on Linux with Networking · 4. 8a78ff9644
    -
    -
    -

    diff --git a/spaces/quidiaMuxgu/Expedit-SAM/Hercules Mapper Pack V2 1 Zip !LINK!.md b/spaces/quidiaMuxgu/Expedit-SAM/Hercules Mapper Pack V2 1 Zip !LINK!.md deleted file mode 100644 index bfad3d3fc571c71eafb7ec88e37a85ad3f3e9e7c..0000000000000000000000000000000000000000 --- a/spaces/quidiaMuxgu/Expedit-SAM/Hercules Mapper Pack V2 1 Zip !LINK!.md +++ /dev/null @@ -1,110 +0,0 @@ - -

    Hercules Mapper Pack v2 1 Zip: A Complete Guide for DJ Control Air Users

    - -

    If you are a DJ who wants to mix on DJ Control Air in VirtualDJ Pro 7, you need to download and install the Hercules Mapper Pack v2 1 Zip. This is a set of files that allows you to map the functions of your DJ controller to the software. In this article, we will show you how to get and use the Hercules Mapper Pack v2 1 Zip, and what features it offers.

    - -

    What is Hercules Mapper Pack v2 1 Zip?

    - -

    Hercules Mapper Pack v2 1 Zip is a package of two files: a definition file and a mapping file. The definition file tells VirtualDJ Pro 7 what kind of controller you have, and what buttons, knobs, faders, and pads it has. The mapping file tells VirtualDJ Pro 7 what each control does, and how to assign it to a function in the software.

    -

    Hercules mapper pack v2 1 zip


    DOWNLOAD ✔✔✔ https://geags.com/2uCsnl



    - -

    By installing the Hercules Mapper Pack v2 1 Zip, you can use your DJ Control Air with VirtualDJ Pro 7 without any configuration or setup. You can also customize the mapping to suit your preferences and style.

    - -

    How to Download and Install Hercules Mapper Pack v2 1 Zip?

    - -

    To download and install the Hercules Mapper Pack v2 1 Zip, you need to have a registered licence of VirtualDJ Pro 7 and a DJ Control Air. Then, follow these steps:

    - -
      -
    1. Go to VirtualDJ.com website and download Hercules mapper. In Download > Plugins > Controllers, you need Hercules mapper 2.1 or higher.
    2. -
    3. Unzip the Hercules Mapper pack (Hercules Mapper Pack v2.1.zip) and copy "Hercules DJControl Air definition.xml" in the folder C:\Users\UserName\Documents\VirtualDJ\Devices\ and copy "Hercules DJControl Air mapping.xml" in the folder C:\Users\UserName\Documents\VirtualDJ\Mappers\.
    4. -
    5. Run VirtualDJ Pro 7 and go to Config > Mappers and make sure Hercules DJ Control Air is selected.
    6. -
    7. Go to the Sound Setup tab and select: Sound Card = ASIO drivers, and select "Hercules DJ Control Air ASIO". Outputs = Headphones, Master = Master = Chan 1&2 / Headphones = Chan 3&4.
    8. -
    - -

    You can now mix with Hercules DJ Control Air in VirtualDJ Pro 7.

    - -

    What are the Features of Hercules Mapper Pack v2 1 Zip?

    - -

    Hercules Mapper Pack v2 1 Zip enables you to use all the features of your DJ Control Air with VirtualDJ Pro 7. Here are some of the main features:

    - -
      -
    • Air control: You can control the mix from above the surface of the device by moving your hand over the infrared sensor. You can adjust the volume level, effects, filters, loops, samples, cues, etc. without touching the controller.
    • -
    • 8 large pads with velocity sensors: You can trigger loops, samples, cues, effects, etc. by tapping the pads with different pressure. You can also use them to scratch or slice tracks.
    • -
    • A VU meter displaying the beats on the controller: You can see the level of each deck on the controller and sync them easily.
    • -
    • Built-in audio outputs: You can connect your speakers and headphones directly to the controller without needing an external sound card.
    • -
    - -

    Hercules Mapper Pack v2 1 Zip also allows you to customize the mapping of your controller to suit your needs. You can change the functions of each control, assign different effects or parameters, create your own presets, etc. You can do this by editing the mapping file in VirtualDJ Pro 7 or using a third-party software like MIDI-OX.

    - -

    Conclusion

    - -

    Hercules Mapper Pack v2 1 Zip is a must-have for DJ Control Air users who want to mix on VirtualDJ Pro 7. It allows you to use all the features of your controller with ease and flexibility. It also lets you customize the mapping to your liking. To get started, just download and install the Hercules Mapper Pack v2 1 Zip from VirtualDJ.com website and enjoy mixing in the air!

    -

    -

    How to Use Hercules Mapper Pack v2 1 Zip?

    - -

    Once you have installed the Hercules Mapper Pack v2 1 Zip, you can start using your DJ Control Air with VirtualDJ Pro 7. Here are some tips on how to use it:

    - -
      -
    • To activate the air control, press the AIR button on the controller. You will see a blue LED light up on the sensor. Then, move your hand over the sensor to adjust the parameter assigned to it. You can change the parameter by pressing the SHIFT button and turning the knob below the sensor.
    • -
    • To use the pads, press one of the four mode buttons: LOOP, FX, SAMPLE, or CUE. You will see a different color LED on each pad depending on the mode. Then, tap the pads to trigger the corresponding function. You can also hold a pad and scratch or slice the track with the jog wheel.
    • -
    • To use the VU meter, press the SYNC button on each deck to sync them to the same tempo. You will see a green LED on each deck when they are synced. Then, look at the VU meter to see the level of each deck and match them by adjusting the gain knobs.
    • -
    • To use the built-in audio outputs, connect your speakers to the RCA output on the back of the controller and your headphones to the 1/4" or 1/8" jack on the front of the controller. You can adjust the master volume with the knob on the top right of the controller and the headphone volume with the knob on the top left of the controller.
    • -
    - -

    You can also use other features of VirtualDJ Pro 7 with your DJ Control Air, such as browsing tracks, loading tracks, mixing tracks, applying effects, recording mixes, etc. For more details, refer to the VirtualDJ Pro 7 user manual.

    - -

    Why Choose Hercules Mapper Pack v2 1 Zip?

    - -

    Hercules Mapper Pack v2 1 Zip is a great choice for DJ Control Air users who want to mix on VirtualDJ Pro 7 because:

    - -
      -
    • It is easy to install and use. You don't need to configure anything or set up anything manually. Just download and install it and you are ready to go.
    • -
    • It is compatible and reliable. It works with any version of VirtualDJ Pro 7 and any version of Windows or Mac OS X. It also works with any other MIDI-compatible software or hardware.
    • -
    • It is innovative and fun. It lets you use air control, which is a unique and intuitive way to control your mix without touching anything. It also lets you use pads with velocity sensors, which are responsive and versatile.
    • -
    • It is customizable and flexible. It lets you change the mapping of your controller to suit your preferences and style. You can assign different functions to different controls, create your own presets, etc.
    • -
    - -

    Hercules Mapper Pack v2 1 Zip is a must-have for DJ Control Air users who want to mix on VirtualDJ Pro 7. It allows you to use all the features of your controller with ease and flexibility. It also lets you customize the mapping to your liking. To get started, just download and install the Hercules Mapper Pack v2 1 Zip from VirtualDJ.com website and enjoy mixing in the air!

    -

    Where to Get Support for Hercules Mapper Pack v2 1 Zip?

    - -

    If you have any questions or issues with the Hercules Mapper Pack v2 1 Zip, you can get support from various sources. Here are some of them:

    - -
      -
    • Hercules DJ Mix Room: This is the official forum for Hercules DJ products. You can post your queries, feedback, suggestions, etc. and get answers from other users or Hercules staff. You can also find useful tips, tutorials, videos, etc. on the blog section.
    • -
    • Hercules Technical Support: This is the official website for Hercules DJ technical support. You can find manuals, drivers, firmware updates, FAQs, etc. for your DJ Control Air and other Hercules DJ products. You can also contact the support team via email or phone.
    • -
    • VirtualDJ.com: This is the official website for VirtualDJ Pro 7 software. You can find downloads, plugins, skins, guides, forums, etc. for your software. You can also contact the support team via email or ticket.
    • -
    - -

    You can also check out other online resources such as YouTube videos, blogs, reviews, etc. that may help you with your Hercules Mapper Pack v2 1 Zip.

    - -

    What are the Benefits of Hercules Mapper Pack v2 1 Zip?

    - -

    Hercules Mapper Pack v2 1 Zip is a beneficial tool for DJ Control Air users who want to mix on VirtualDJ Pro 7 because:

    - -
      -
    • It enhances your performance and creativity. You can use air control to add a touch of magic and flair to your mix. You can also use pads to trigger various functions and effects with different pressure and velocity. You can also customize the mapping to suit your style and preferences.
    • -
    • It improves your sound quality and reliability. You can use ASIO drivers to reduce latency and ensure smooth playback. You can also use built-in audio outputs to connect your speakers and headphones without needing an external sound card.
    • -
    • It saves you time and money. You don't need to buy or install any additional hardware or software to use your DJ Control Air with VirtualDJ Pro 7. You just need to download and install the Hercules Mapper Pack v2 1 Zip and you are good to go.
    • -
    - -

    Hercules Mapper Pack v2 1 Zip is a must-have for DJ Control Air users who want to mix on VirtualDJ Pro 7. It allows you to use all the features of your controller with ease and flexibility. It also lets you customize the mapping to your liking. To get started, just download and install the Hercules Mapper Pack v2 1 Zip from VirtualDJ.com website and enjoy mixing in the air!

    -

    Conclusion

    - -

    Hercules Mapper Pack v2 1 Zip is a great tool for DJ Control Air users who want to mix on VirtualDJ Pro 7. It enables you to use all the features of your controller with ease and flexibility. It also lets you customize the mapping to your liking. To get started, just download and install the Hercules Mapper Pack v2 1 Zip from VirtualDJ.com website and enjoy mixing in the air!

    - -

    If you have any questions or issues with the Hercules Mapper Pack v2 1 Zip, you can get support from various sources such as Hercules DJ Mix Room, Hercules Technical Support, VirtualDJ.com, etc. You can also check out other online resources such as YouTube videos, blogs, reviews, etc. that may help you with your Hercules Mapper Pack v2 1 Zip.

    - -

    Hercules Mapper Pack v2 1 Zip is a must-have for DJ Control Air users who want to mix on VirtualDJ Pro 7. It enhances your performance and creativity, improves your sound quality and reliability, and saves you time and money. It also allows you to use air control, which is a unique and intuitive way to control your mix without touching anything. It also lets you use pads with velocity sensors, which are responsive and versatile.

    - -

    So what are you waiting for? Download and install the Hercules Mapper Pack v2 1 Zip today and start mixing in the air!

    -

    Conclusion

    - -

    Hercules Mapper Pack v2 1 Zip is a great tool for DJ Control Air users who want to mix on VirtualDJ Pro 7. It enables you to use all the features of your controller with ease and flexibility. It also lets you customize the mapping to your liking. To get started, just download and install the Hercules Mapper Pack v2 1 Zip from VirtualDJ.com website and enjoy mixing in the air!

    - -

    If you have any questions or issues with the Hercules Mapper Pack v2 1 Zip, you can get support from various sources such as Hercules DJ Mix Room, Hercules Technical Support, VirtualDJ.com, etc. You can also check out other online resources such as YouTube videos, blogs, reviews, etc. that may help you with your Hercules Mapper Pack v2 1 Zip.

    - -

    Hercules Mapper Pack v2 1 Zip is a must-have for DJ Control Air users who want to mix on VirtualDJ Pro 7. It enhances your performance and creativity, improves your sound quality and reliability, and saves you time and money. It also allows you to use air control, which is a unique and intuitive way to control your mix without touching anything. It also lets you use pads with velocity sensors, which are responsive and versatile.

    - -

    So what are you waiting for? Download and install the Hercules Mapper Pack v2 1 Zip today and start mixing in the air!

    3cee63e6c2
    -
    -
    \ No newline at end of file diff --git a/spaces/raedeXanto/academic-chatgpt-beta/Download Ansys HFSS 15.0.2 x64 Torrent and Experience the Revolutionary Modeling of EM Structures.md b/spaces/raedeXanto/academic-chatgpt-beta/Download Ansys HFSS 15.0.2 x64 Torrent and Experience the Revolutionary Modeling of EM Structures.md deleted file mode 100644 index 10294a01fc8ebc2cba3eadea77607e72c12fc582..0000000000000000000000000000000000000000 --- a/spaces/raedeXanto/academic-chatgpt-beta/Download Ansys HFSS 15.0.2 x64 Torrent and Experience the Revolutionary Modeling of EM Structures.md +++ /dev/null @@ -1,164 +0,0 @@ -
    -

    Ansys HFSS 15.0.2 x64 Download Torrent: A Comprehensive Guide

    -

    If you are looking for a way to download and use Ansys HFSS 15.0.2 x64, a powerful software for electromagnetic simulation, you have come to the right place. In this article, we will show you what Ansys HFSS is, why you need it, how to download it from torrent sites, and how to use it for your design projects.

    -

    ansys hfss 15.0.2 x64 download torrent


    Download Zip - https://tinourl.com/2uL3qT



    -

    What is Ansys HFSS and why do you need it?

    -

    Ansys HFSS is a software that allows you to simulate and analyze electromagnetic fields in complex structures and devices. It uses the finite element method (FEM) to solve Maxwell's equations and provide accurate and reliable results for various applications, such as antennas, microwave circuits, RF components, biomedical devices, radars, and more.

    -

    Ansys HFSS: A powerful tool for electromagnetic simulation

    -

    Ansys HFSS is one of the most widely used software for electromagnetic simulation in the industry and academia. It has many features and capabilities that make it a versatile and efficient tool for your design needs, such as:

    -
      -
    • It supports both frequency-domain and time-domain analysis, as well as hybrid techniques that combine both methods.
    • -
    • It can handle complex geometries and materials, including anisotropic, nonlinear, dispersive, and lossy media.
    • -
    • It can model both near-field and far-field effects, as well as radiation patterns, scattering parameters, impedance, gain, efficiency, and more.
    • -
    • It can perform parametric studies, optimization, sensitivity analysis, design exploration, and verification.
    • -
    • It can integrate with other Ansys products and tools, such as Ansys Mechanical, Ansys CFD, Ansys Maxwell, Anys Q3D Extractor, Anys Icepak, etc.
    • -
    -

    Benefits of using Ansys HFSS for your design projects

    -

    By using Ansys HFSS for your design projects, you can enjoy many benefits that will help you achieve your goals faster and easier, such as:

    -
      -
    • You can reduce the cost and time of physical prototyping and testing by performing virtual simulations that mimic real-world conditions.
    • -
    • You can improve the performance and quality of your products by optimizing their electromagnetic characteristics and eliminating potential issues.
    • -
    • You can enhance your creativity and innovation by exploring different design scenarios and alternatives.
    • -
    • You can increase your productivity and efficiency by automating your workflow and leveraging the power of parallel computing.
    • -
    • You can collaborate with other engineers and experts by sharing your data and results in various formats.
    • -
    -

    How to download Ansys HFSS 15.0.2 x64 from torrent sites?

    -

    If you want to download Ansys HFSS 15.0.2 x64 from torrent sites, you need to know what torrent sites are, how they work, how to find a reliable one, and how to download and install the software from a torrent file.

    -

    What are torrent sites and how do they work?

    -

    Torrent sites are websites that provide access to files that are shared by users through a peer-to-peer (P2P) network called BitTorrent. BitTorrent is a protocol that allows users to download files from multiple sources simultaneously without relying on a central server.

    -

    To download a file from a torrent site, you need two things: a torrent client and a torrent file. A torrent client is a software that connects you to the BitTorrent network and manages your downloads. A torrent file is a small file that contains information about the file you want to download, such as its name, size, location, checksums etc.

    -

    ansys hfss 15.0.2 x64 crack torrent
    -ansys hfss 15.0.2 x64 full version torrent
    -ansys hfss 15.0.2 x64 free download torrent
    -ansys hfss 15.0.2 x64 license key torrent
    -ansys hfss 15.0.2 x64 patch torrent
    -ansys hfss 15.0.2 x64 serial number torrent
    -ansys hfss 15.0.2 x64 activation code torrent
    -ansys hfss 15.0.2 x64 keygen torrent
    -ansys hfss 15.0.2 x64 installer torrent
    -ansys hfss 15.0.2 x64 setup torrent
    -ansys hfss 15.0.2 x64 iso torrent
    -ansys hfss 15.0.2 x64 rar torrent
    -ansys hfss 15.0.2 x64 zip torrent
    -ansys hfss 15.0.2 x64 magnet link torrent
    -ansys hfss 15.0.2 x64 direct download torrent
    -ansys hfss 15.0.2 x64 offline installer torrent
    -ansys hfss 15.0.2 x64 portable torrent
    -ansys hfss 15.0.2 x64 latest version torrent
    -ansys hfss 15.0.2 x64 updated version torrent
    -ansys hfss 15.0.2 x64 software torrent
    -ansys hfss 15.0.2 x64 simulation tool torrent
    -ansys hfss 15.0.2 x64 electromagnetic analysis torrent
    -ansys hfss 15.0.2 x64 antenna design torrent
    -ansys hfss 15.0.2 x64 microwave engineering torrent
    -ansys hfss 15.0.2 x64 high frequency structure simulator torrent
    -ansys hfss 15.0.2 x64 windows compatible torrent
    -ansys hfss 15.0.2 x64 system requirements torrent
    -ansys hfss 15.0.2 x64 installation guide torrent
    -ansys hfss 15.0.2 x64 user manual torrent
    -ansys hfss 15.0.2 x64 tutorial torrent
    -ansys hfss 15.0.2 x64 examples torrent
    -ansys hfss 15.0.2 x64 projects torrent
    -ansys hfss 15.0.2 x64 tips and tricks torrent
    -ansys hfss 15.0.2 x64 best practices torrent
    -ansys hfss 15.0.2 x64 features and benefits torrent
    -ansys hfss 15

    -

    When you open a torrent file with your torrent client, it will start searching for other users who have the same file or parts of it (called peers) on the BitTorrent network. Then it will start downloading the file from them in small pieces (called chunks) while also uploading the pieces you already have to other peers who need them (called seeding). This way, the file is distributed among many users who help each other complete their downloads faster.

    -

    How to find and choose a reliable torrent site for Ansys HFSS 15.0.2 x64?

    -

    There are many torrent sites on the internet that offer different types of files, including software like Ansys HFSS 15.0.2 x64. However, not all of them are reliable or safe to use. Some of them may contain malware, viruses, fake files, or low-quality files that may not work properly or damage your computer. Therefore, you need to be careful when choosing a torrent site for Ansys HFSS 15.0.2 x64.

    -

    Here are some tips on how to find and choose a reliable torrent site for Ansys HFSS 15.0.2 x64:

    -
      -
    • Use a reputable search engine like Google or Bing and type in keywords like "Ansys HFSS 15.0.2 x64 download torrent" or "Ansys HFSS 15.0.2 x64 torrent".
    • -
    • Look at the results and check the domain names and URLs of the torrent sites. Avoid sites that have suspicious or unfamiliar extensions like .ru, .cc, .to, .biz, etc. or sites that have numbers or random characters in their names.
    • -
    • Visit the torrent sites and look at their design and content. Avoid sites that have poor design, pop-up ads, broken links, or irrelevant content.
    • -
    • Check the ratings and reviews of the torrent files and the comments of other users who downloaded them. Avoid files that have low ratings, negative reviews, or no comments at all.
    • -
    • Compare the size and details of the torrent files and make sure they match with the official specifications of Ansys HFSS 15.0.2 x64. Avoid files that are too small or too large or have missing or incorrect information.
    • -
    -

    Based on these criteria, some examples of reliable torrent sites for Ansys HFSS 15.0.2 x64 are:

    - - FileCR - Got Art Gallery - Ship Highline

    How to download and install Ansys HFSS 15.0.2 x64 from a torrent file?

    -

    To download and install Ansys HFSS 15.0.2 x64 from a torrent file, you need to follow these steps:

    -
      -
    1. Download and install a torrent client on your computer if you don't have one already. Some popular options are uTorrent, BitTorrent, qBittorrent, etc.
    2. -
    3. Select one of the reliable torrent sites for Ansys HFSS 15.0.2 x64 mentioned above and visit it on your browser.
    4. -
    5. Find and click on the link or button that says "Download Torrent" or something similar next to the file name of Ansys HFSS 15.0.2 x64.
    6. -
    7. A dialog box will appear asking you to open or save the torrent file. Choose "Open" ```html
    8. Once your torrent client opens the torrent file, it will start downloading Ansys HFSS 15.0.2 x64 from the available peers on the BitTorrent network. You can monitor the progress and speed of your download on your torrent client's interface.
    9. -
    10. When your download is complete, you will have a folder containing the files of Ansys HFSS 15.0.2 x64 on your computer. You can open the folder and look for the setup file that has an .exe extension.
    11. -
    12. Double-click on the setup file and follow the instructions on the screen to install Ansys HFSS 15.0.2 x64 on your computer. You may need to enter a license key or a crack file to activate the software.
    13. -
    14. After the installation is done, you can launch Ansys HFSS 15.0.2 x64 from your desktop or start menu and start using it for your simulation needs.
    15. -
    -

    How to use Ansys HFSS 15.0.2 x64 for your simulation needs?

    -

    Now that you have downloaded and installed Ansys HFSS 15.0.2 x64 from a torrent site, you may wonder how to use it for your simulation needs. In this section, we will give you a brief overview of how to set up and run a basic simulation with Ansys HFSS 15.0.2 x64, how to analyze and optimize your simulation results with Ansys HFSS 15.0.2 x64, and how to integrate Ansys HFSS 15.0.2 x64 with other Ansys products and tools.

    -

    How to set up and run a basic simulation with Ansys HFSS 15.0.2 x64

    -

    To set up and run a basic simulation with Ansys HFSS 15.0.2 x64, you need to follow these steps:

    -
      -
    1. Open Ansys HFSS 15.0.2 x64 from your desktop or start menu and create a new project by clicking on File > New > Project.
    2. -
    3. Name your project and choose a location to save it on your computer.
    4. -
    5. In the Project Manager window, right-click on Model and select Insert HFSS Design to create a new design for your simulation.
    6. -
    7. Name your design and choose a solution type (frequency-domain or time-domain) and a frequency range for your simulation.
    8. -
    9. In the Design window, use the Draw menu or toolbar to create the geometry of your structure or device that you want to simulate.
    10. -
    11. In the Project Manager window, right-click on Materials and select Assign Material to assign appropriate materials to your geometry.
    12. -
    13. In the Project Manager window, right-click on Boundaries and select Assign Boundary to assign appropriate boundary conditions to your geometry.
    14. -
    15. In the Project Manager window, right-click on Excitations and select Assign Excitation to assign appropriate sources and ports to your geometry.
    16. -
    17. In the Project Manager window, right-click on Analysis Setup and select Add Solution Setup to define the parameters of your simulation, such as meshing options, convergence criteria, etc.
    18. -
    19. In the Project Manager window, right-click on Analysis Setup and select Add Sweep or Add Interpolating Sweep to define how you want to vary the frequency or time of your simulation.
    20. -
    21. In the Project Manager window, right-click on Results and select Create Modal Solution Data Report or Create Terminal Solution Data Report to define what kind of results you want to see from your simulation, such as S-parameters, fields, power, etc.
    22. -
    23. Click on Analyze All button or press F9 key to run your simulation.
    24. -
    -

    How to analyze and optimize your simulation results with Ansys HFSS 15.0.2 x64

    -```html
      -
    1. After your simulation is done, you can view your results in the Results window by double-clicking on the report you created earlier. You can also right-click on the report and select Plot to see a graphical representation of your results.
    2. -
    3. You can use the tools in the Results window to customize your plots, such as changing the scale, axis, legend, title, etc. You can also export your plots as images or data files by clicking on File > Export.
    4. -
    5. You can use the tools in the Fields Calculator window to calculate additional quantities from your results, such as power density, impedance, quality factor, etc. You can also create custom expressions and variables using the available functions and operators.
    6. -
    7. You can use the tools in the Optimetrics window to optimize your design by varying one or more parameters and observing their effects on your results. You can also use different optimization methods, such as gradient-based, direct search, or genetic algorithms.
    8. -
    9. You can use the tools in the Design Validation window to verify your design by comparing your simulation results with measured data or analytical solutions. You can also perform statistical analysis, such as Monte Carlo or sensitivity analysis.
    10. -
    -

    How to integrate Ansys HFSS 15.0.2 x64 with other Ansys products and tools

    -

    Ansys HFSS 15.0.2 x64 can be integrated with other Ansys products and tools to enhance your simulation capabilities and enable multiphysics analysis. For example, you can:

    -
      -
    • Use Ansys Mechanical to perform structural analysis of your electromagnetic devices and account for thermal effects, stress, deformation, vibration, etc.
    • -
    • Use Ansys CFD to perform fluid analysis of your electromagnetic devices and account for cooling, heat transfer, pressure drop, etc.
    • -
    • Use Ansys Maxwell to perform low-frequency electromagnetic analysis of your devices and account for eddy currents, hysteresis, saturation, etc.
    • -
    • Use Anys Q3D Extractor to perform quasi-static electromagnetic analysis of your devices and extract parasitic parameters, such as resistance, capacitance, inductance, etc.
    • -
    • Use Anys Icepak to perform thermal analysis of your electronic packages and systems and account for conduction, convection, radiation, etc.
    • -
    -

    To integrate Ansys HFSS 15.0.2 x64 with other Ansys products and tools, you need to follow these steps:

    -
      -
    1. In the Project Manager window, right-click on Linked Data Sources and select Add Linked Data Source to link an existing data file from another Ansys product or tool.
    2. -
    3. In the Add Linked Data Source dialog box, browse and select the data file you want to link and click OK.
    4. -
    5. In the Project Manager window, right-click on Model and select Import Data Source Geometry to import the geometry from the linked data source into your HFSS design.
    6. -
    7. In the Project Manager window, right-click on Boundaries and select Import Data Source Boundary Conditions to import the boundary conditions from the linked data source into your HFSS design.
    8. -
    9. In the Project Manager window, right-click on Analysis Setup and select Import Data Source Solution Setup to import the solution setup from the linked data source into your HFSS design.
    10. -
    11. In the Project Manager window, right-click on Results and select Import Data Source Results to import the results from the linked data source into your HFSS design.
    12. -
    -

    Conclusion

    -

    In this article, we have shown you how to download and use Ansys HFSS 15.0.2 x64 from torrent sites. We have explained what Ansys HFSS is, why you need it, how to download it from torrent sites, and how to use it for your simulation needs. We have also shown you how to set up and run a basic simulation with Ansys HFSS 15.0.2 x64, how to analyze and optimize your simulation results with Ansys HFSS 15.0.2 x64, and how to integrate Ansys HFSS 15.0.2 x64 with other Ansys products and tools.

    -

    We hope that this article has been helpful and informative for you. If you want to learn more about Ansys HFSS 15.0.2 x64 and its features and capabilities, you can visit the official website of Ansys or watch some of their tutorials and videos online. You can also contact us if you have any questions or comments or need any assistance with your simulation projects.

    -

    Summary of the main points of the article

    -
      -
    • Ansys HFSS is a software that allows you to simulate and analyze electromagnetic fields in complex structures and devices.
    • -
    • Ansys HFSS uses HPC technologies to provide faster speeds, more robust network processing power, and more accurate and reliable results for various applications.
    • -
    • Ansys HFSS can be downloaded from torrent sites by using a torrent client and a torrent file, but you need to be careful when choosing a reliable torrent site and a safe torrent file.
    • -
    • Ansys HFSS can be used for your simulation needs by creating a new design, drawing the geometry, assigning materials, boundary conditions, excitations, solution setup, sweep, and output variables, running the simulation, and viewing the results.
    • -
    • Ansys HFSS can be integrated with other Ansys products and tools to enable multiphysics analysis by linking data sources, importing geometry, boundary conditions, solution setup, and results.
    • -
    -

    Call to action and recommendations for further reading

    -

    If you are interested in downloading and using Ansys HFSS 15.0.2 x64 from torrent sites, you can follow these steps:

    -
      -
    1. Download and install a torrent client on your computer.
    2. -
    3. Select one of the reliable torrent sites for Ansys HFSS 15.0.2 x64 mentioned in this article and visit it on your browser.
    4. -
    5. Find and click on the link or button that says "Download Torrent" or something similar next to the file name of Ansys HFSS 15.0.2 x64.
    6. -
    7. Open the torrent file with your torrent client and start downloading Ansys HFSS 15.0.2 x64 from the available peers on the BitTorrent network.
    8. -
    9. When your download is complete, open the folder containing the files of Ansys HFSS 15.0.2 x64 on your computer and double-click on the setup file to install it on your computer.
    10. -
    11. Launch Ansys HFSS 15.0.2 x64 from your desktop or start menu and start using it for your simulation needs.
    12. -
    -

    If you want to learn more about Ansys HFSS 15.0.2 x64 and its features and capabilities, you can check out these resources:

    -
      -
    • The official website of Ansys: https://www.ansys.com/
    • -
    • The official documentation of Ansys HFSS: https://www.ansys.com/products/electronics/ansys-hfss/documentation
    • -
    • The official tutorials of Ansys HFSS: https://www.youtube.com/playlist?list=PL1u26y75SCrAaZj7jwzY4Qq6NnKtZV9F4
    • -
    • The official blog of Ansys: https://www.ansys.com/blog
    • -
    -

    We hope that this article has been helpful and informative for you. If you have any questions or comments or need any assistance with your simulation projects, please feel free to contact us at any time. We are always happy to help you with your simulation needs. Thank you for reading this article and happy simulating!

    -

    0a6ba089eb
    -
    -
    \ No newline at end of file diff --git a/spaces/raedeXanto/academic-chatgpt-beta/Fanaa Movie Ringtones Free Download [CRACKED].md b/spaces/raedeXanto/academic-chatgpt-beta/Fanaa Movie Ringtones Free Download [CRACKED].md deleted file mode 100644 index fc018d646a4d9f273d0f3107e1ac676a0944e756..0000000000000000000000000000000000000000 --- a/spaces/raedeXanto/academic-chatgpt-beta/Fanaa Movie Ringtones Free Download [CRACKED].md +++ /dev/null @@ -1,28 +0,0 @@ -
    -

    Fanaa Movie Ringtones: How to Download Them for Free

    -

    Fanaa is a 2006 Bollywood romantic thriller film starring Aamir Khan and Kajol. The film's soundtrack features some popular songs and dialogues that can be used as ringtones for your phone. If you are a fan of Fanaa and want to download its ringtones for free, here are some ways to do it.

    -
      -
    • One option is to visit MobCup, a website that offers free ringtones for various devices. You can browse through different categories of Fanaa ringtones, such as instrumental, bgm, shayari, flute, etc. You can also listen to the ringtones before downloading them in mp3 or m4r format.
    • -
    • Another option is to use Zedge, a popular app and website that provides free wallpapers, ringtones, and notifications. You can search for Fanaa ringtones on Zedge and find a variety of options, such as Chand Sifarish, Mere Haath Mein, Fanaa Dialogs, etc. You can download the ringtones directly to your phone or save them to your Zedge account.
    • -
    • A third option is to download the Fanaa movie songs from Archive.org, a website that hosts free digital content. You can find the Fanaa movie songs in mp3 format on Archive.org and download them to your computer. Then you can use a software or an online tool to convert the songs into ringtones and transfer them to your phone.
    • -
    -

    These are some of the ways to download Fanaa movie ringtones for free. Enjoy the melodious tunes and dialogues of Fanaa on your phone and share them with your friends.

    -

    fanaa movie ringtones free download


    Downloadhttps://tinourl.com/2uL509



    If you want to know more about Fanaa movie and its ringtones, here are some interesting facts and trivia for you.

    -
      -
    1. Fanaa is the first film to feature Aamir Khan and Kajol together. They were initially supposed to star in a film called Ishq in 1997, but it was shelved due to creative differences.
    2. -
    3. Fanaa was also the last film of Kajol before she took a hiatus from acting for five years. She returned to the screen with My Name Is Khan in 2010.
    4. -
    5. The film's title Fanaa means "destroyed" or "annihilated" in Urdu. It is also a term used in Sufi poetry to describe the state of being in love with God.
    6. -
    7. The film's soundtrack was composed by Jatin-Lalit, who split up as a musical duo after this film. They had worked together for 16 years and delivered many hit songs.
    8. -
    9. The film's songs and dialogues were written by Prasoon Joshi, who later became the chairman of the Central Board of Film Certification (CBFC) in India.
    10. -
    -

    These are some of the facts and trivia about Fanaa movie and its ringtones. Hope you enjoyed reading them and learned something new.

    If you are still curious about Fanaa movie and its ringtones, here are some more facts and trivia for you.

    -
      -
    1. Fanaa was shot in various locations in India, such as Delhi, Kashmir, Rajasthan, and Poland. The film faced some difficulties in shooting in Kashmir due to security issues and protests by some groups.
    2. -
    3. Fanaa was a commercial success and earned over 1 billion rupees at the box office. It was also critically acclaimed and won several awards, such as Filmfare Awards, IIFA Awards, Zee Cine Awards, etc.
    4. -
    5. Fanaa was also dubbed in Tamil and Telugu languages and released in South India. The Tamil version was titled Mounam Pesiyadhe and the Telugu version was titled Chinnodu.
    6. -
    7. Fanaa was remade in Bengali as Raju Uncle in 2005. The film starred Prosenjit Chatterjee and Anu Chowdhury in the lead roles.
    8. -
    9. Fanaa was also the inspiration for a Pakistani film called Khuda Kay Liye in 2007. The film dealt with the issue of religious extremism and terrorism in Pakistan.
    10. -
    -

    These are some more facts and trivia about Fanaa movie and its ringtones. Hope you found them interesting and informative.

    cec2833e83
    -
    -
    \ No newline at end of file diff --git a/spaces/recenWmenso/ChatGPT-with-Voice-Cloning-for-All/datasets/Fukrey Returns 2015 Full Hd Movie Download ((INSTALL)).md b/spaces/recenWmenso/ChatGPT-with-Voice-Cloning-for-All/datasets/Fukrey Returns 2015 Full Hd Movie Download ((INSTALL)).md deleted file mode 100644 index 1bf6a8ea097e9c684680d40e165814475a7c65c9..0000000000000000000000000000000000000000 --- a/spaces/recenWmenso/ChatGPT-with-Voice-Cloning-for-All/datasets/Fukrey Returns 2015 Full Hd Movie Download ((INSTALL)).md +++ /dev/null @@ -1,6 +0,0 @@ -

    Fukrey Returns 2015 Full Hd Movie Download


    Downloadhttps://urlgoal.com/2uCJTK



    - -Power Mp4 HD Video Download Link ... Download Power all songs in high quality mp3 Songs Download from here… ... Power Telugu movie audio songs free download Naa songs ... Jersey 2019 Telugu Movie Songs Download – Naa songs · Fukrey Returns 2017 Hindi Song Download – Naa Songs ... 1fdad05405
    -
    -
    -

    diff --git a/spaces/redpeacock78/anything-v3.0/README.md b/spaces/redpeacock78/anything-v3.0/README.md deleted file mode 100644 index e37c4afd9b645538f87ff4891087b213443fd45b..0000000000000000000000000000000000000000 --- a/spaces/redpeacock78/anything-v3.0/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Anything V3.0 -emoji: 📚 -colorFrom: yellow -colorTo: green -sdk: gradio -sdk_version: 3.15.0 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/rockeycoss/Prompt-Segment-Anything-Demo/mmdet/apis/inference.py b/spaces/rockeycoss/Prompt-Segment-Anything-Demo/mmdet/apis/inference.py deleted file mode 100644 index f0858a7cee19cd37dbd5ddf08f0261f4d20c1b52..0000000000000000000000000000000000000000 --- a/spaces/rockeycoss/Prompt-Segment-Anything-Demo/mmdet/apis/inference.py +++ /dev/null @@ -1,257 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import warnings -from pathlib import Path - -import mmcv -import numpy as np -import torch -from mmcv.ops import RoIPool -from mmcv.parallel import collate, scatter -from mmcv.runner import load_checkpoint - -from mmdet.core import get_classes -from mmdet.datasets import replace_ImageToTensor -from mmdet.datasets.pipelines import Compose -from mmdet.models import build_detector - - -def init_detector(config, checkpoint=None, device='cuda:0', cfg_options=None): - """Initialize a detector from config file. - - Args: - config (str, :obj:`Path`, or :obj:`mmcv.Config`): Config file path, - :obj:`Path`, or the config object. - checkpoint (str, optional): Checkpoint path. If left as None, the model - will not load any weights. - cfg_options (dict): Options to override some settings in the used - config. - - Returns: - nn.Module: The constructed detector. - """ - if isinstance(config, (str, Path)): - config = mmcv.Config.fromfile(config) - elif not isinstance(config, mmcv.Config): - raise TypeError('config must be a filename or Config object, ' - f'but got {type(config)}') - if cfg_options is not None: - config.merge_from_dict(cfg_options) - if 'pretrained' in config.model: - config.model.pretrained = None - elif 'init_cfg' in config.model.backbone: - config.model.backbone.init_cfg = None - config.model.train_cfg = None - model = build_detector(config.model, test_cfg=config.get('test_cfg')) - if checkpoint is not None: - checkpoint = load_checkpoint(model, checkpoint, map_location='cpu') - if 'CLASSES' in checkpoint.get('meta', {}): - model.CLASSES = checkpoint['meta']['CLASSES'] - else: - warnings.simplefilter('once') - warnings.warn('Class names are not saved in the checkpoint\'s ' - 'meta data, use COCO classes by default.') - model.CLASSES = get_classes('coco') - model.cfg = config # save the config in the model for convenience - model.to(device) - model.eval() - - if device == 'npu': - from mmcv.device.npu import NPUDataParallel - model = NPUDataParallel(model) - model.cfg = config - - return model - - -class LoadImage: - """Deprecated. - - A simple pipeline to load image. - """ - - def __call__(self, results): - """Call function to load images into results. - - Args: - results (dict): A result dict contains the file name - of the image to be read. - Returns: - dict: ``results`` will be returned containing loaded image. - """ - warnings.simplefilter('once') - warnings.warn('`LoadImage` is deprecated and will be removed in ' - 'future releases. You may use `LoadImageFromWebcam` ' - 'from `mmdet.datasets.pipelines.` instead.') - if isinstance(results['img'], str): - results['filename'] = results['img'] - results['ori_filename'] = results['img'] - else: - results['filename'] = None - results['ori_filename'] = None - img = mmcv.imread(results['img']) - results['img'] = img - results['img_fields'] = ['img'] - results['img_shape'] = img.shape - results['ori_shape'] = img.shape - return results - - -def inference_detector(model, imgs): - """Inference image(s) with the detector. - - Args: - model (nn.Module): The loaded detector. - imgs (str/ndarray or list[str/ndarray] or tuple[str/ndarray]): - Either image files or loaded images. - - Returns: - If imgs is a list or tuple, the same length list type results - will be returned, otherwise return the detection results directly. - """ - - if isinstance(imgs, (list, tuple)): - is_batch = True - else: - imgs = [imgs] - is_batch = False - - cfg = model.cfg - device = next(model.parameters()).device # model device - - if isinstance(imgs[0], np.ndarray): - cfg = cfg.copy() - # set loading pipeline type - cfg.data.test.pipeline[0].type = 'LoadImageFromWebcam' - - cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline) - test_pipeline = Compose(cfg.data.test.pipeline) - - datas = [] - for img in imgs: - # prepare data - if isinstance(img, np.ndarray): - # directly add img - data = dict(img=img) - else: - # add information into dict - data = dict(img_info=dict(filename=img), img_prefix=None) - # build the data pipeline - data = test_pipeline(data) - datas.append(data) - - data = collate(datas, samples_per_gpu=len(imgs)) - # just get the actual data from DataContainer - data['img_metas'] = [img_metas.data[0] for img_metas in data['img_metas']] - data['img'] = [img.data[0] for img in data['img']] - if next(model.parameters()).is_cuda: - # scatter to specified GPU - data = scatter(data, [device])[0] - else: - for m in model.modules(): - assert not isinstance( - m, RoIPool - ), 'CPU inference with RoIPool is not supported currently.' - - # forward the model - with torch.no_grad(): - results = model(return_loss=False, rescale=True, **data) - - if not is_batch: - return results[0] - else: - return results - - -async def async_inference_detector(model, imgs): - """Async inference image(s) with the detector. - - Args: - model (nn.Module): The loaded detector. - img (str | ndarray): Either image files or loaded images. - - Returns: - Awaitable detection results. - """ - if not isinstance(imgs, (list, tuple)): - imgs = [imgs] - - cfg = model.cfg - device = next(model.parameters()).device # model device - - if isinstance(imgs[0], np.ndarray): - cfg = cfg.copy() - # set loading pipeline type - cfg.data.test.pipeline[0].type = 'LoadImageFromWebcam' - - cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline) - test_pipeline = Compose(cfg.data.test.pipeline) - - datas = [] - for img in imgs: - # prepare data - if isinstance(img, np.ndarray): - # directly add img - data = dict(img=img) - else: - # add information into dict - data = dict(img_info=dict(filename=img), img_prefix=None) - # build the data pipeline - data = test_pipeline(data) - datas.append(data) - - data = collate(datas, samples_per_gpu=len(imgs)) - # just get the actual data from DataContainer - data['img_metas'] = [img_metas.data[0] for img_metas in data['img_metas']] - data['img'] = [img.data[0] for img in data['img']] - if next(model.parameters()).is_cuda: - # scatter to specified GPU - data = scatter(data, [device])[0] - else: - for m in model.modules(): - assert not isinstance( - m, RoIPool - ), 'CPU inference with RoIPool is not supported currently.' - - # We don't restore `torch.is_grad_enabled()` value during concurrent - # inference since execution can overlap - torch.set_grad_enabled(False) - results = await model.aforward_test(rescale=True, **data) - return results - - -def show_result_pyplot(model, - img, - result, - score_thr=0.3, - title='result', - wait_time=0, - palette=None, - out_file=None): - """Visualize the detection results on the image. - - Args: - model (nn.Module): The loaded detector. - img (str or np.ndarray): Image filename or loaded image. - result (tuple[list] or list): The detection result, can be either - (bbox, segm) or just bbox. - score_thr (float): The threshold to visualize the bboxes and masks. - title (str): Title of the pyplot figure. - wait_time (float): Value of waitKey param. Default: 0. - palette (str or tuple(int) or :obj:`Color`): Color. - The tuple of color should be in BGR order. - out_file (str or None): The path to write the image. - Default: None. - """ - if hasattr(model, 'module'): - model = model.module - model.show_result( - img, - result, - score_thr=score_thr, - show=True, - wait_time=wait_time, - win_name=title, - bbox_color=palette, - text_color=(200, 200, 200), - mask_color=palette, - out_file=out_file) diff --git a/spaces/rockeycoss/Prompt-Segment-Anything-Demo/mmdet/models/roi_heads/test_mixins.py b/spaces/rockeycoss/Prompt-Segment-Anything-Demo/mmdet/models/roi_heads/test_mixins.py deleted file mode 100644 index ae6e79aecf4e10a9ec25a55b480decc179ec91f6..0000000000000000000000000000000000000000 --- a/spaces/rockeycoss/Prompt-Segment-Anything-Demo/mmdet/models/roi_heads/test_mixins.py +++ /dev/null @@ -1,311 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import sys -import warnings - -import numpy as np -import torch - -from mmdet.core import (bbox2roi, bbox_mapping, merge_aug_bboxes, - merge_aug_masks, multiclass_nms) - -if sys.version_info >= (3, 7): - from mmdet.utils.contextmanagers import completed - - -class BBoxTestMixin: - - if sys.version_info >= (3, 7): - - async def async_test_bboxes(self, - x, - img_metas, - proposals, - rcnn_test_cfg, - rescale=False, - **kwargs): - """Asynchronized test for box head without augmentation.""" - rois = bbox2roi(proposals) - roi_feats = self.bbox_roi_extractor( - x[:len(self.bbox_roi_extractor.featmap_strides)], rois) - if self.with_shared_head: - roi_feats = self.shared_head(roi_feats) - sleep_interval = rcnn_test_cfg.get('async_sleep_interval', 0.017) - - async with completed( - __name__, 'bbox_head_forward', - sleep_interval=sleep_interval): - cls_score, bbox_pred = self.bbox_head(roi_feats) - - img_shape = img_metas[0]['img_shape'] - scale_factor = img_metas[0]['scale_factor'] - det_bboxes, det_labels = self.bbox_head.get_bboxes( - rois, - cls_score, - bbox_pred, - img_shape, - scale_factor, - rescale=rescale, - cfg=rcnn_test_cfg) - return det_bboxes, det_labels - - def simple_test_bboxes(self, - x, - img_metas, - proposals, - rcnn_test_cfg, - rescale=False): - """Test only det bboxes without augmentation. - - Args: - x (tuple[Tensor]): Feature maps of all scale level. - img_metas (list[dict]): Image meta info. - proposals (List[Tensor]): Region proposals. - rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN. - rescale (bool): If True, return boxes in original image space. - Default: False. - - Returns: - tuple[list[Tensor], list[Tensor]]: The first list contains - the boxes of the corresponding image in a batch, each - tensor has the shape (num_boxes, 5) and last dimension - 5 represent (tl_x, tl_y, br_x, br_y, score). Each Tensor - in the second list is the labels with shape (num_boxes, ). - The length of both lists should be equal to batch_size. - """ - - rois = bbox2roi(proposals) - - if rois.shape[0] == 0: - batch_size = len(proposals) - det_bbox = rois.new_zeros(0, 5) - det_label = rois.new_zeros((0, ), dtype=torch.long) - if rcnn_test_cfg is None: - det_bbox = det_bbox[:, :4] - det_label = rois.new_zeros( - (0, self.bbox_head.fc_cls.out_features)) - # There is no proposal in the whole batch - return [det_bbox] * batch_size, [det_label] * batch_size - - bbox_results = self._bbox_forward(x, rois) - img_shapes = tuple(meta['img_shape'] for meta in img_metas) - scale_factors = tuple(meta['scale_factor'] for meta in img_metas) - - # split batch bbox prediction back to each image - cls_score = bbox_results['cls_score'] - bbox_pred = bbox_results['bbox_pred'] - num_proposals_per_img = tuple(len(p) for p in proposals) - rois = rois.split(num_proposals_per_img, 0) - cls_score = cls_score.split(num_proposals_per_img, 0) - - # some detector with_reg is False, bbox_pred will be None - if bbox_pred is not None: - # TODO move this to a sabl_roi_head - # the bbox prediction of some detectors like SABL is not Tensor - if isinstance(bbox_pred, torch.Tensor): - bbox_pred = bbox_pred.split(num_proposals_per_img, 0) - else: - bbox_pred = self.bbox_head.bbox_pred_split( - bbox_pred, num_proposals_per_img) - else: - bbox_pred = (None, ) * len(proposals) - - # apply bbox post-processing to each image individually - det_bboxes = [] - det_labels = [] - for i in range(len(proposals)): - if rois[i].shape[0] == 0: - # There is no proposal in the single image - det_bbox = rois[i].new_zeros(0, 5) - det_label = rois[i].new_zeros((0, ), dtype=torch.long) - if rcnn_test_cfg is None: - det_bbox = det_bbox[:, :4] - det_label = rois[i].new_zeros( - (0, self.bbox_head.fc_cls.out_features)) - - else: - det_bbox, det_label = self.bbox_head.get_bboxes( - rois[i], - cls_score[i], - bbox_pred[i], - img_shapes[i], - scale_factors[i], - rescale=rescale, - cfg=rcnn_test_cfg) - det_bboxes.append(det_bbox) - det_labels.append(det_label) - return det_bboxes, det_labels - - def aug_test_bboxes(self, feats, img_metas, proposal_list, rcnn_test_cfg): - """Test det bboxes with test time augmentation.""" - aug_bboxes = [] - aug_scores = [] - for x, img_meta in zip(feats, img_metas): - # only one image in the batch - img_shape = img_meta[0]['img_shape'] - scale_factor = img_meta[0]['scale_factor'] - flip = img_meta[0]['flip'] - flip_direction = img_meta[0]['flip_direction'] - # TODO more flexible - proposals = bbox_mapping(proposal_list[0][:, :4], img_shape, - scale_factor, flip, flip_direction) - rois = bbox2roi([proposals]) - bbox_results = self._bbox_forward(x, rois) - bboxes, scores = self.bbox_head.get_bboxes( - rois, - bbox_results['cls_score'], - bbox_results['bbox_pred'], - img_shape, - scale_factor, - rescale=False, - cfg=None) - aug_bboxes.append(bboxes) - aug_scores.append(scores) - # after merging, bboxes will be rescaled to the original image size - merged_bboxes, merged_scores = merge_aug_bboxes( - aug_bboxes, aug_scores, img_metas, rcnn_test_cfg) - if merged_bboxes.shape[0] == 0: - # There is no proposal in the single image - det_bboxes = merged_bboxes.new_zeros(0, 5) - det_labels = merged_bboxes.new_zeros((0, ), dtype=torch.long) - else: - det_bboxes, det_labels = multiclass_nms(merged_bboxes, - merged_scores, - rcnn_test_cfg.score_thr, - rcnn_test_cfg.nms, - rcnn_test_cfg.max_per_img) - return det_bboxes, det_labels - - -class MaskTestMixin: - - if sys.version_info >= (3, 7): - - async def async_test_mask(self, - x, - img_metas, - det_bboxes, - det_labels, - rescale=False, - mask_test_cfg=None): - """Asynchronized test for mask head without augmentation.""" - # image shape of the first image in the batch (only one) - ori_shape = img_metas[0]['ori_shape'] - scale_factor = img_metas[0]['scale_factor'] - if det_bboxes.shape[0] == 0: - segm_result = [[] for _ in range(self.mask_head.num_classes)] - else: - if rescale and not isinstance(scale_factor, - (float, torch.Tensor)): - scale_factor = det_bboxes.new_tensor(scale_factor) - _bboxes = ( - det_bboxes[:, :4] * - scale_factor if rescale else det_bboxes) - mask_rois = bbox2roi([_bboxes]) - mask_feats = self.mask_roi_extractor( - x[:len(self.mask_roi_extractor.featmap_strides)], - mask_rois) - - if self.with_shared_head: - mask_feats = self.shared_head(mask_feats) - if mask_test_cfg and mask_test_cfg.get('async_sleep_interval'): - sleep_interval = mask_test_cfg['async_sleep_interval'] - else: - sleep_interval = 0.035 - async with completed( - __name__, - 'mask_head_forward', - sleep_interval=sleep_interval): - mask_pred = self.mask_head(mask_feats) - segm_result = self.mask_head.get_seg_masks( - mask_pred, _bboxes, det_labels, self.test_cfg, ori_shape, - scale_factor, rescale) - return segm_result - - def simple_test_mask(self, - x, - img_metas, - det_bboxes, - det_labels, - rescale=False): - """Simple test for mask head without augmentation.""" - # image shapes of images in the batch - ori_shapes = tuple(meta['ori_shape'] for meta in img_metas) - scale_factors = tuple(meta['scale_factor'] for meta in img_metas) - - if isinstance(scale_factors[0], float): - warnings.warn( - 'Scale factor in img_metas should be a ' - 'ndarray with shape (4,) ' - 'arrange as (factor_w, factor_h, factor_w, factor_h), ' - 'The scale_factor with float type has been deprecated. ') - scale_factors = np.array([scale_factors] * 4, dtype=np.float32) - - num_imgs = len(det_bboxes) - if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes): - segm_results = [[[] for _ in range(self.mask_head.num_classes)] - for _ in range(num_imgs)] - else: - # if det_bboxes is rescaled to the original image size, we need to - # rescale it back to the testing scale to obtain RoIs. - if rescale: - scale_factors = [ - torch.from_numpy(scale_factor).to(det_bboxes[0].device) - for scale_factor in scale_factors - ] - _bboxes = [ - det_bboxes[i][:, :4] * - scale_factors[i] if rescale else det_bboxes[i][:, :4] - for i in range(len(det_bboxes)) - ] - mask_rois = bbox2roi(_bboxes) - mask_results = self._mask_forward(x, mask_rois) - mask_pred = mask_results['mask_pred'] - # split batch mask prediction back to each image - num_mask_roi_per_img = [len(det_bbox) for det_bbox in det_bboxes] - mask_preds = mask_pred.split(num_mask_roi_per_img, 0) - - # apply mask post-processing to each image individually - segm_results = [] - for i in range(num_imgs): - if det_bboxes[i].shape[0] == 0: - segm_results.append( - [[] for _ in range(self.mask_head.num_classes)]) - else: - segm_result = self.mask_head.get_seg_masks( - mask_preds[i], _bboxes[i], det_labels[i], - self.test_cfg, ori_shapes[i], scale_factors[i], - rescale) - segm_results.append(segm_result) - return segm_results - - def aug_test_mask(self, feats, img_metas, det_bboxes, det_labels): - """Test for mask head with test time augmentation.""" - if det_bboxes.shape[0] == 0: - segm_result = [[] for _ in range(self.mask_head.num_classes)] - else: - aug_masks = [] - for x, img_meta in zip(feats, img_metas): - img_shape = img_meta[0]['img_shape'] - scale_factor = img_meta[0]['scale_factor'] - flip = img_meta[0]['flip'] - flip_direction = img_meta[0]['flip_direction'] - _bboxes = bbox_mapping(det_bboxes[:, :4], img_shape, - scale_factor, flip, flip_direction) - mask_rois = bbox2roi([_bboxes]) - mask_results = self._mask_forward(x, mask_rois) - # convert to numpy array to save memory - aug_masks.append( - mask_results['mask_pred'].sigmoid().cpu().numpy()) - merged_masks = merge_aug_masks(aug_masks, img_metas, self.test_cfg) - - ori_shape = img_metas[0][0]['ori_shape'] - scale_factor = det_bboxes.new_ones(4) - segm_result = self.mask_head.get_seg_masks( - merged_masks, - det_bboxes, - det_labels, - self.test_cfg, - ori_shape, - scale_factor=scale_factor, - rescale=False) - return segm_result diff --git a/spaces/rohan13/coursera-qa-bot/docs/05_Resources/02_3d-printing-softwares/01__resources.html b/spaces/rohan13/coursera-qa-bot/docs/05_Resources/02_3d-printing-softwares/01__resources.html deleted file mode 100644 index 2f5f6c35bdf86604d2d93dadf0778daa8d2b2765..0000000000000000000000000000000000000000 --- a/spaces/rohan13/coursera-qa-bot/docs/05_Resources/02_3d-printing-softwares/01__resources.html +++ /dev/null @@ -1,80 +0,0 @@ - - -

    - Tinkercad: - - Tinkercad - -

    -

    - Fusion 360: - - Fusion -360 - -

    -

    - Cura Slicing Software: - - - - https://ultimaker.com/en/products/cura-software - -

    -

    -

    -

    -

    -

    -

    -

    -

    -
    - - - diff --git a/spaces/rorallitri/biomedical-language-models/logs/Biblia Reina Valera 1602 Pdf Descarga gratis la primera edicin corregida de la Biblia del Oso.md b/spaces/rorallitri/biomedical-language-models/logs/Biblia Reina Valera 1602 Pdf Descarga gratis la primera edicin corregida de la Biblia del Oso.md deleted file mode 100644 index 33083e1390c452449be635b5f96bdf59fbea85fa..0000000000000000000000000000000000000000 --- a/spaces/rorallitri/biomedical-language-models/logs/Biblia Reina Valera 1602 Pdf Descarga gratis la primera edicin corregida de la Biblia del Oso.md +++ /dev/null @@ -1,10 +0,0 @@ -
    -

    Biblia Reina Valera 1602 Pdf Descargar Aplicacion Rating: 5,9/10 5824 reviews Download Auto Macro Recorder Crack there . Esa Biblia se llama la Reina-Valera-Gómez, por el editor principal, Humberto Gómez. Descargar biblia reina valera 1960 para pc para proyectar Descargue en su teléfono celular la versión Reina Valera 1960, la traducción más apreciada por los cristianos de habla hispana.

    -

    Biblia Reina Valera 1602 Pdf


    Download ☆☆☆ https://tinurll.com/2uznWH



    -

    muy util, me pase muchas horas frente a la pc copiando y pegando cada capitulo de la pagina bible gateway pero. Biblia RVP de IBBG ( Textus Receptus) Letra Grande, Además es la más coincidente a la Biblia King James. valera en audio por internet - haga click aquí descarga - audio en mp3 - reina valera 1960. Creemos que la Biblia Valera 1602 Purificada es la biblia con el texto en Español más aproximado a los originales Hebreo y Griego. La version Reina Valera 1960 en español es similar a la version King James Version en Ingles.

    -

    Se han invertido años en el proceso de la purificación de la Biblia de Valera 1602. El documento, que contiene la escritura del español antiguo, es conocido como la " Biblia del cántaro", y es la Segunda Edición de la Biblia del Oso. Biblia- 1602- Cipriano de Valera BIBLIA REINA VALERA- REVISION CIPRIANO DE VALERA- 1602. Biblia reina valera 1602 pdf descargar gratis Autor: Cipriano de Valera versión de la palabra: 9.x - 10.x Nombre de la ficha: Valera1602P Etiquetas: La Biblia, La Biblia, La Biblia, La Biblia, La Biblia del Bautista, Biblia conservadora, Biblia básica COPYRIGHT: El Valera 1602 Purified está protegido por derechos de autor, pero puede ser impreso hasta que se hagan cambios al texto. Todas las otras versiones se basan o se contienen los textos críticos, hechos por hombres. La mejor Biblia en español (la más cercana a la King James) es, sin duda, la VALERA 1602 PURIFICADA.

    -

    Para más información de como conseguir una Biblia 1602 Purificada, envíame un correo electrónico a: Robertbreaker3 @ hotmail.com . hola amigas y amigos aqui les dejo la Santa Biblia reina valera antigua revision 1602. Biblia reina valera 1602 purificada pdf Reina Valera Página del título de la Biblia del Oso, con el emblema del oso comiendo miel, del impresor bávaro Mattias Apiarius.Título original La Biblia, que es, los sacros libros del Viejo y Nuevo Testamento. Revisiones de los Bautistas Valera 1602 Purificada / 1602 Monterrey La Valera 1602 Purificada es una revisión de la Biblia del Cántaro de 1602 hecha por una iglesia bautista de Monterrey, México. Las Biblias en español de 1602, 1865, 1909 y 1960 se alejaron de los manuscritos puros en muchos pasajes. Descargar libro Biblia Reina Valera Edición 1602 - La Reina-Valera, también llamada Biblia de Casiodoro de Reina, es una de las primeras traducciones de la Biblia al castellano.

    -

    Hay sólo una Biblia en español que vuelve a la fuente original La Valera 1602 siguiéndolo tan cerca como posible, al procurar retener la belleza del idioma castellano, y al asegurarse de preservar las lecturas de las Biblias castellanas antiguas. En este sitio, usted puede aprender sobre la historia de la Biblia en español, leer la Valera 1602 Purificada , y comprar una copia de la Biblia Valera 1602 Purificada , las palabras puras de Dios. La Biblia del Oso tenía incluidos los deuterocanónicos, y estaban ubicados según el orden de la Biblia católica. Antigua Versión de Cipriano de Valera 1602 Fielmente traducido y revisado al Castellano Del Original Griego, el Texto Recibido Y Cotejada Posteriormente Con Diversas Traducciones Castellanas Las palabras del SEÑOR, palabras puras; plata refinada En el principio era la Palabra, y la Palabra era con Dios, en horno de tierra, purificada siete veces. Biblia reina valera 1602 purificada pdf - Biblia de Cuero (Valera Purificada - ¡Las palabras puras de Dios!) Spanish Leather Bible (Valera Purified - The pure words of God in Spanish!) * Cubierta negra de Antigua Versión De Casiodoro De Reina .

    -

    acerquémonos con corazón sincero, en plena certidumbre de fe, purificados los corazones de mala conciencia, y lavados los cuerpos con agua pura. Santa Biblia Reina Valera Purificada (1602), Reina Valera Contemporánea (RVC) y la famosa Reina Valera en 1960 (RV60). La Biblia hispana Valera 1602 Purificada es el trabajo de la Iglesia Bautista Bíblica de la Gracia, una Iglesia Bautista Independiente en Monterrey, México. La Biblia Reina Valera es una serie de revisiones de la primera Biblia completa traducida al español: la Biblia del Oso, realizada por el religioso jerónimo, traductor y teólogo español Casiodoro Reina en 1569. Bajo el liderazgo de Pastor Raúl Reyes, la iglesia trabajó con esmero por más de 15 años en purificar la Biblia Hispana 1602 original, haciéndola más en línea con el Texto Recibido y el Texto Hebreo Masorético. Cipriano de Valera comenzó en 1582 la primera revisión de la Biblia de Reina y la concluyó en 1602. Vea reseñas y calificaciones de reseñas que otros clientes han escrito de Biblia Reina Valera Purificada 1602 Gratis en Amazon.com. Puedo alzarlo y dogmáticamente decir sin duda, "Así ha dicho el Señor!" La 1602 Purificada es la biblia más pura en Español.

    aaccfb2cb3
    -
    -
    \ No newline at end of file diff --git a/spaces/rorallitri/biomedical-language-models/logs/Download EA Sports FIFA 2006 Full Crack By DaPoet Torrent and Enjoy the Ultimate Football Experience.md b/spaces/rorallitri/biomedical-language-models/logs/Download EA Sports FIFA 2006 Full Crack By DaPoet Torrent and Enjoy the Ultimate Football Experience.md deleted file mode 100644 index 1944a6e6e3c2fec6a79b32a2e54f8130878af934..0000000000000000000000000000000000000000 --- a/spaces/rorallitri/biomedical-language-models/logs/Download EA Sports FIFA 2006 Full Crack By DaPoet Torrent and Enjoy the Ultimate Football Experience.md +++ /dev/null @@ -1,6 +0,0 @@ -

    EA Sports FIFA 2006 Full Crack By DaPoet Torrent


    Download Zip ———>>> https://tinurll.com/2uzmvX



    -
    - aaccfb2cb3
    -
    -
    -

    diff --git a/spaces/rorallitri/biomedical-language-models/logs/Janet Jackson Rhythm Nation 1814 Full Album Zip _TOP_.md b/spaces/rorallitri/biomedical-language-models/logs/Janet Jackson Rhythm Nation 1814 Full Album Zip _TOP_.md deleted file mode 100644 index df81148e6677a77803250bdcd5376a04ab33263f..0000000000000000000000000000000000000000 --- a/spaces/rorallitri/biomedical-language-models/logs/Janet Jackson Rhythm Nation 1814 Full Album Zip _TOP_.md +++ /dev/null @@ -1,6 +0,0 @@ -

    Janet Jackson, Rhythm Nation 1814 full album zip


    DOWNLOAD ○○○ https://tinurll.com/2uzm7j



    -
    - d5da3c52bf
    -
    -
    -

    diff --git a/spaces/saad-k7/Document-Query-Search/README.md b/spaces/saad-k7/Document-Query-Search/README.md deleted file mode 100644 index a663676021e345b24d4b0d3bea753ca3586a436d..0000000000000000000000000000000000000000 --- a/spaces/saad-k7/Document-Query-Search/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Document Query Search -emoji: 🐨 -colorFrom: red -colorTo: pink -sdk: gradio -sdk_version: 3.41.2 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/safi842/FashionGen/netdissect/upsegmodel/models.py b/spaces/safi842/FashionGen/netdissect/upsegmodel/models.py deleted file mode 100644 index de0a9add41016631957c52c4a441e4eccf96f903..0000000000000000000000000000000000000000 --- a/spaces/safi842/FashionGen/netdissect/upsegmodel/models.py +++ /dev/null @@ -1,441 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F -import torchvision -from . import resnet, resnext -try: - from lib.nn import SynchronizedBatchNorm2d -except ImportError: - from torch.nn import BatchNorm2d as SynchronizedBatchNorm2d - - -class SegmentationModuleBase(nn.Module): - def __init__(self): - super(SegmentationModuleBase, self).__init__() - - @staticmethod - def pixel_acc(pred, label, ignore_index=-1): - _, preds = torch.max(pred, dim=1) - valid = (label != ignore_index).long() - acc_sum = torch.sum(valid * (preds == label).long()) - pixel_sum = torch.sum(valid) - acc = acc_sum.float() / (pixel_sum.float() + 1e-10) - return acc - - @staticmethod - def part_pixel_acc(pred_part, gt_seg_part, gt_seg_object, object_label, valid): - mask_object = (gt_seg_object == object_label) - _, pred = torch.max(pred_part, dim=1) - acc_sum = mask_object * (pred == gt_seg_part) - acc_sum = torch.sum(acc_sum.view(acc_sum.size(0), -1), dim=1) - acc_sum = torch.sum(acc_sum * valid) - pixel_sum = torch.sum(mask_object.view(mask_object.size(0), -1), dim=1) - pixel_sum = torch.sum(pixel_sum * valid) - return acc_sum, pixel_sum - - @staticmethod - def part_loss(pred_part, gt_seg_part, gt_seg_object, object_label, valid): - mask_object = (gt_seg_object == object_label) - loss = F.nll_loss(pred_part, gt_seg_part * mask_object.long(), reduction='none') - loss = loss * mask_object.float() - loss = torch.sum(loss.view(loss.size(0), -1), dim=1) - nr_pixel = torch.sum(mask_object.view(mask_object.shape[0], -1), dim=1) - sum_pixel = (nr_pixel * valid).sum() - loss = (loss * valid.float()).sum() / torch.clamp(sum_pixel, 1).float() - return loss - - -class SegmentationModule(SegmentationModuleBase): - def __init__(self, net_enc, net_dec, labeldata, loss_scale=None): - super(SegmentationModule, self).__init__() - self.encoder = net_enc - self.decoder = net_dec - self.crit_dict = nn.ModuleDict() - if loss_scale is None: - self.loss_scale = {"object": 1, "part": 0.5, "scene": 0.25, "material": 1} - else: - self.loss_scale = loss_scale - - # criterion - self.crit_dict["object"] = nn.NLLLoss(ignore_index=0) # ignore background 0 - self.crit_dict["material"] = nn.NLLLoss(ignore_index=0) # ignore background 0 - self.crit_dict["scene"] = nn.NLLLoss(ignore_index=-1) # ignore unlabelled -1 - - # Label data - read from json - self.labeldata = labeldata - object_to_num = {k: v for v, k in enumerate(labeldata['object'])} - part_to_num = {k: v for v, k in enumerate(labeldata['part'])} - self.object_part = {object_to_num[k]: - [part_to_num[p] for p in v] - for k, v in labeldata['object_part'].items()} - self.object_with_part = sorted(self.object_part.keys()) - self.decoder.object_part = self.object_part - self.decoder.object_with_part = self.object_with_part - - def forward(self, feed_dict, *, seg_size=None): - if seg_size is None: # training - - if feed_dict['source_idx'] == 0: - output_switch = {"object": True, "part": True, "scene": True, "material": False} - elif feed_dict['source_idx'] == 1: - output_switch = {"object": False, "part": False, "scene": False, "material": True} - else: - raise ValueError - - pred = self.decoder( - self.encoder(feed_dict['img'], return_feature_maps=True), - output_switch=output_switch - ) - - # loss - loss_dict = {} - if pred['object'] is not None: # object - loss_dict['object'] = self.crit_dict['object'](pred['object'], feed_dict['seg_object']) - if pred['part'] is not None: # part - part_loss = 0 - for idx_part, object_label in enumerate(self.object_with_part): - part_loss += self.part_loss( - pred['part'][idx_part], feed_dict['seg_part'], - feed_dict['seg_object'], object_label, feed_dict['valid_part'][:, idx_part]) - loss_dict['part'] = part_loss - if pred['scene'] is not None: # scene - loss_dict['scene'] = self.crit_dict['scene'](pred['scene'], feed_dict['scene_label']) - if pred['material'] is not None: # material - loss_dict['material'] = self.crit_dict['material'](pred['material'], feed_dict['seg_material']) - loss_dict['total'] = sum([loss_dict[k] * self.loss_scale[k] for k in loss_dict.keys()]) - - # metric - metric_dict= {} - if pred['object'] is not None: - metric_dict['object'] = self.pixel_acc( - pred['object'], feed_dict['seg_object'], ignore_index=0) - if pred['material'] is not None: - metric_dict['material'] = self.pixel_acc( - pred['material'], feed_dict['seg_material'], ignore_index=0) - if pred['part'] is not None: - acc_sum, pixel_sum = 0, 0 - for idx_part, object_label in enumerate(self.object_with_part): - acc, pixel = self.part_pixel_acc( - pred['part'][idx_part], feed_dict['seg_part'], feed_dict['seg_object'], - object_label, feed_dict['valid_part'][:, idx_part]) - acc_sum += acc - pixel_sum += pixel - metric_dict['part'] = acc_sum.float() / (pixel_sum.float() + 1e-10) - if pred['scene'] is not None: - metric_dict['scene'] = self.pixel_acc( - pred['scene'], feed_dict['scene_label'], ignore_index=-1) - - return {'metric': metric_dict, 'loss': loss_dict} - else: # inference - output_switch = {"object": True, "part": True, "scene": True, "material": True} - pred = self.decoder(self.encoder(feed_dict['img'], return_feature_maps=True), - output_switch=output_switch, seg_size=seg_size) - return pred - - -def conv3x3(in_planes, out_planes, stride=1, has_bias=False): - "3x3 convolution with padding" - return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, - padding=1, bias=has_bias) - - -def conv3x3_bn_relu(in_planes, out_planes, stride=1): - return nn.Sequential( - conv3x3(in_planes, out_planes, stride), - SynchronizedBatchNorm2d(out_planes), - nn.ReLU(inplace=True), - ) - - -class ModelBuilder: - def __init__(self): - pass - - # custom weights initialization - @staticmethod - def weights_init(m): - classname = m.__class__.__name__ - if classname.find('Conv') != -1: - nn.init.kaiming_normal_(m.weight.data, nonlinearity='relu') - elif classname.find('BatchNorm') != -1: - m.weight.data.fill_(1.) - m.bias.data.fill_(1e-4) - #elif classname.find('Linear') != -1: - # m.weight.data.normal_(0.0, 0.0001) - - def build_encoder(self, arch='resnet50_dilated8', fc_dim=512, weights=''): - pretrained = True if len(weights) == 0 else False - if arch == 'resnet34': - raise NotImplementedError - orig_resnet = resnet.__dict__['resnet34'](pretrained=pretrained) - net_encoder = Resnet(orig_resnet) - elif arch == 'resnet34_dilated8': - raise NotImplementedError - orig_resnet = resnet.__dict__['resnet34'](pretrained=pretrained) - net_encoder = ResnetDilated(orig_resnet, - dilate_scale=8) - elif arch == 'resnet34_dilated16': - raise NotImplementedError - orig_resnet = resnet.__dict__['resnet34'](pretrained=pretrained) - net_encoder = ResnetDilated(orig_resnet, - dilate_scale=16) - elif arch == 'resnet50': - orig_resnet = resnet.__dict__['resnet50'](pretrained=pretrained) - net_encoder = Resnet(orig_resnet) - elif arch == 'resnet101': - orig_resnet = resnet.__dict__['resnet101'](pretrained=pretrained) - net_encoder = Resnet(orig_resnet) - elif arch == 'resnext101': - orig_resnext = resnext.__dict__['resnext101'](pretrained=pretrained) - net_encoder = Resnet(orig_resnext) # we can still use class Resnet - else: - raise Exception('Architecture undefined!') - - # net_encoder.apply(self.weights_init) - if len(weights) > 0: - # print('Loading weights for net_encoder') - net_encoder.load_state_dict( - torch.load(weights, map_location=lambda storage, loc: storage), strict=False) - return net_encoder - - def build_decoder(self, nr_classes, - arch='ppm_bilinear_deepsup', fc_dim=512, - weights='', use_softmax=False): - if arch == 'upernet_lite': - net_decoder = UPerNet( - nr_classes=nr_classes, - fc_dim=fc_dim, - use_softmax=use_softmax, - fpn_dim=256) - elif arch == 'upernet': - net_decoder = UPerNet( - nr_classes=nr_classes, - fc_dim=fc_dim, - use_softmax=use_softmax, - fpn_dim=512) - else: - raise Exception('Architecture undefined!') - - net_decoder.apply(self.weights_init) - if len(weights) > 0: - # print('Loading weights for net_decoder') - net_decoder.load_state_dict( - torch.load(weights, map_location=lambda storage, loc: storage), strict=False) - return net_decoder - - -class Resnet(nn.Module): - def __init__(self, orig_resnet): - super(Resnet, self).__init__() - - # take pretrained resnet, except AvgPool and FC - self.conv1 = orig_resnet.conv1 - self.bn1 = orig_resnet.bn1 - self.relu1 = orig_resnet.relu1 - self.conv2 = orig_resnet.conv2 - self.bn2 = orig_resnet.bn2 - self.relu2 = orig_resnet.relu2 - self.conv3 = orig_resnet.conv3 - self.bn3 = orig_resnet.bn3 - self.relu3 = orig_resnet.relu3 - self.maxpool = orig_resnet.maxpool - self.layer1 = orig_resnet.layer1 - self.layer2 = orig_resnet.layer2 - self.layer3 = orig_resnet.layer3 - self.layer4 = orig_resnet.layer4 - - def forward(self, x, return_feature_maps=False): - conv_out = [] - - x = self.relu1(self.bn1(self.conv1(x))) - x = self.relu2(self.bn2(self.conv2(x))) - x = self.relu3(self.bn3(self.conv3(x))) - x = self.maxpool(x) - - x = self.layer1(x); conv_out.append(x); - x = self.layer2(x); conv_out.append(x); - x = self.layer3(x); conv_out.append(x); - x = self.layer4(x); conv_out.append(x); - - if return_feature_maps: - return conv_out - return [x] - - -# upernet -class UPerNet(nn.Module): - def __init__(self, nr_classes, fc_dim=4096, - use_softmax=False, pool_scales=(1, 2, 3, 6), - fpn_inplanes=(256,512,1024,2048), fpn_dim=256): - # Lazy import so that compilation isn't needed if not being used. - from .prroi_pool import PrRoIPool2D - super(UPerNet, self).__init__() - self.use_softmax = use_softmax - - # PPM Module - self.ppm_pooling = [] - self.ppm_conv = [] - - for scale in pool_scales: - # we use the feature map size instead of input image size, so down_scale = 1.0 - self.ppm_pooling.append(PrRoIPool2D(scale, scale, 1.)) - self.ppm_conv.append(nn.Sequential( - nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False), - SynchronizedBatchNorm2d(512), - nn.ReLU(inplace=True) - )) - self.ppm_pooling = nn.ModuleList(self.ppm_pooling) - self.ppm_conv = nn.ModuleList(self.ppm_conv) - self.ppm_last_conv = conv3x3_bn_relu(fc_dim + len(pool_scales)*512, fpn_dim, 1) - - # FPN Module - self.fpn_in = [] - for fpn_inplane in fpn_inplanes[:-1]: # skip the top layer - self.fpn_in.append(nn.Sequential( - nn.Conv2d(fpn_inplane, fpn_dim, kernel_size=1, bias=False), - SynchronizedBatchNorm2d(fpn_dim), - nn.ReLU(inplace=True) - )) - self.fpn_in = nn.ModuleList(self.fpn_in) - - self.fpn_out = [] - for i in range(len(fpn_inplanes) - 1): # skip the top layer - self.fpn_out.append(nn.Sequential( - conv3x3_bn_relu(fpn_dim, fpn_dim, 1), - )) - self.fpn_out = nn.ModuleList(self.fpn_out) - - self.conv_fusion = conv3x3_bn_relu(len(fpn_inplanes) * fpn_dim, fpn_dim, 1) - - # background included. if ignore in loss, output channel 0 will not be trained. - self.nr_scene_class, self.nr_object_class, self.nr_part_class, self.nr_material_class = \ - nr_classes['scene'], nr_classes['object'], nr_classes['part'], nr_classes['material'] - - # input: PPM out, input_dim: fpn_dim - self.scene_head = nn.Sequential( - conv3x3_bn_relu(fpn_dim, fpn_dim, 1), - nn.AdaptiveAvgPool2d(1), - nn.Conv2d(fpn_dim, self.nr_scene_class, kernel_size=1, bias=True) - ) - - # input: Fusion out, input_dim: fpn_dim - self.object_head = nn.Sequential( - conv3x3_bn_relu(fpn_dim, fpn_dim, 1), - nn.Conv2d(fpn_dim, self.nr_object_class, kernel_size=1, bias=True) - ) - - # input: Fusion out, input_dim: fpn_dim - self.part_head = nn.Sequential( - conv3x3_bn_relu(fpn_dim, fpn_dim, 1), - nn.Conv2d(fpn_dim, self.nr_part_class, kernel_size=1, bias=True) - ) - - # input: FPN_2 (P2), input_dim: fpn_dim - self.material_head = nn.Sequential( - conv3x3_bn_relu(fpn_dim, fpn_dim, 1), - nn.Conv2d(fpn_dim, self.nr_material_class, kernel_size=1, bias=True) - ) - - def forward(self, conv_out, output_switch=None, seg_size=None): - - output_dict = {k: None for k in output_switch.keys()} - - conv5 = conv_out[-1] - input_size = conv5.size() - ppm_out = [conv5] - roi = [] # fake rois, just used for pooling - for i in range(input_size[0]): # batch size - roi.append(torch.Tensor([i, 0, 0, input_size[3], input_size[2]]).view(1, -1)) # b, x0, y0, x1, y1 - roi = torch.cat(roi, dim=0).type_as(conv5) - ppm_out = [conv5] - for pool_scale, pool_conv in zip(self.ppm_pooling, self.ppm_conv): - ppm_out.append(pool_conv(F.interpolate( - pool_scale(conv5, roi.detach()), - (input_size[2], input_size[3]), - mode='bilinear', align_corners=False))) - ppm_out = torch.cat(ppm_out, 1) - f = self.ppm_last_conv(ppm_out) - - if output_switch['scene']: # scene - output_dict['scene'] = self.scene_head(f) - - if output_switch['object'] or output_switch['part'] or output_switch['material']: - fpn_feature_list = [f] - for i in reversed(range(len(conv_out) - 1)): - conv_x = conv_out[i] - conv_x = self.fpn_in[i](conv_x) # lateral branch - - f = F.interpolate( - f, size=conv_x.size()[2:], mode='bilinear', align_corners=False) # top-down branch - f = conv_x + f - - fpn_feature_list.append(self.fpn_out[i](f)) - fpn_feature_list.reverse() # [P2 - P5] - - # material - if output_switch['material']: - output_dict['material'] = self.material_head(fpn_feature_list[0]) - - if output_switch['object'] or output_switch['part']: - output_size = fpn_feature_list[0].size()[2:] - fusion_list = [fpn_feature_list[0]] - for i in range(1, len(fpn_feature_list)): - fusion_list.append(F.interpolate( - fpn_feature_list[i], - output_size, - mode='bilinear', align_corners=False)) - fusion_out = torch.cat(fusion_list, 1) - x = self.conv_fusion(fusion_out) - - if output_switch['object']: # object - output_dict['object'] = self.object_head(x) - if output_switch['part']: - output_dict['part'] = self.part_head(x) - - if self.use_softmax: # is True during inference - # inference scene - x = output_dict['scene'] - x = x.squeeze(3).squeeze(2) - x = F.softmax(x, dim=1) - output_dict['scene'] = x - - # inference object, material - for k in ['object', 'material']: - x = output_dict[k] - x = F.interpolate(x, size=seg_size, mode='bilinear', align_corners=False) - x = F.softmax(x, dim=1) - output_dict[k] = x - - # inference part - x = output_dict['part'] - x = F.interpolate(x, size=seg_size, mode='bilinear', align_corners=False) - part_pred_list, head = [], 0 - for idx_part, object_label in enumerate(self.object_with_part): - n_part = len(self.object_part[object_label]) - _x = F.interpolate(x[:, head: head + n_part], size=seg_size, mode='bilinear', align_corners=False) - _x = F.softmax(_x, dim=1) - part_pred_list.append(_x) - head += n_part - output_dict['part'] = part_pred_list - - else: # Training - # object, scene, material - for k in ['object', 'scene', 'material']: - if output_dict[k] is None: - continue - x = output_dict[k] - x = F.log_softmax(x, dim=1) - if k == "scene": # for scene - x = x.squeeze(3).squeeze(2) - output_dict[k] = x - if output_dict['part'] is not None: - part_pred_list, head = [], 0 - for idx_part, object_label in enumerate(self.object_with_part): - n_part = len(self.object_part[object_label]) - x = output_dict['part'][:, head: head + n_part] - x = F.log_softmax(x, dim=1) - part_pred_list.append(x) - head += n_part - output_dict['part'] = part_pred_list - - return output_dict diff --git a/spaces/sarinam/speaker-anonymization-gan/IMSToucan/Layers/RNNAttention.py b/spaces/sarinam/speaker-anonymization-gan/IMSToucan/Layers/RNNAttention.py deleted file mode 100644 index 71f163e53835adb62e5d234870130f89e1c9c678..0000000000000000000000000000000000000000 --- a/spaces/sarinam/speaker-anonymization-gan/IMSToucan/Layers/RNNAttention.py +++ /dev/null @@ -1,282 +0,0 @@ -# Published under Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) -# Adapted by Florian Lux, 2021 - -import torch -import torch.nn.functional as F - -from ..Utility.utils import make_pad_mask -from ..Utility.utils import to_device - - -def _apply_attention_constraint(e, last_attended_idx, backward_window=1, forward_window=3): - """ - Apply monotonic attention constraint. - - This function apply the monotonic attention constraint - introduced in `Deep Voice 3: Scaling - Text-to-Speech with Convolutional Sequence Learning`_. - - Args: - e (Tensor): Attention energy before applying softmax (1, T). - last_attended_idx (int): The index of the inputs of the last attended [0, T]. - backward_window (int, optional): Backward window size in attention constraint. - forward_window (int, optional): Forward window size in attetion constraint. - - Returns: - Tensor: Monotonic constrained attention energy (1, T). - - .. _`Deep Voice 3: Scaling Text-to-Speech with Convolutional Sequence Learning`: - https://arxiv.org/abs/1710.07654 - """ - if e.size(0) != 1: - raise NotImplementedError("Batch attention constraining is not yet supported.") - backward_idx = last_attended_idx - backward_window - forward_idx = last_attended_idx + forward_window - if backward_idx > 0: - e[:, :backward_idx] = -float("inf") - if forward_idx < e.size(1): - e[:, forward_idx:] = -float("inf") - return e - - -class AttLoc(torch.nn.Module): - """ - location-aware attention module. - - Reference: Attention-Based Models for Speech Recognition - (https://arxiv.org/pdf/1506.07503.pdf) - - :param int eprojs: # projection-units of encoder - :param int dunits: # units of decoder - :param int att_dim: attention dimension - :param int aconv_chans: # channels of attention convolution - :param int aconv_filts: filter size of attention convolution - :param bool han_mode: flag to switch on mode of hierarchical attention - and not store pre_compute_enc_h - """ - - def __init__(self, eprojs, dunits, att_dim, aconv_chans, aconv_filts, han_mode=False): - super(AttLoc, self).__init__() - self.mlp_enc = torch.nn.Linear(eprojs, att_dim) - self.mlp_dec = torch.nn.Linear(dunits, att_dim, bias=False) - self.mlp_att = torch.nn.Linear(aconv_chans, att_dim, bias=False) - self.loc_conv = torch.nn.Conv2d(1, aconv_chans, (1, 2 * aconv_filts + 1), padding=(0, aconv_filts), bias=False, ) - self.gvec = torch.nn.Linear(att_dim, 1) - - self.dunits = dunits - self.eprojs = eprojs - self.att_dim = att_dim - self.h_length = None - self.enc_h = None - self.pre_compute_enc_h = None - self.mask = None - self.han_mode = han_mode - - def reset(self): - """reset states""" - self.h_length = None - self.enc_h = None - self.pre_compute_enc_h = None - self.mask = None - - def forward(self, - enc_hs_pad, - enc_hs_len, - dec_z, - att_prev, - scaling=2.0, - last_attended_idx=None, - backward_window=1, - forward_window=3): - """ - Calculate AttLoc forward propagation. - - :param torch.Tensor enc_hs_pad: padded encoder hidden state (B x T_max x D_enc) - :param list enc_hs_len: padded encoder hidden state length (B) - :param torch.Tensor dec_z: decoder hidden state (B x D_dec) - :param torch.Tensor att_prev: previous attention weight (B x T_max) - :param float scaling: scaling parameter before applying softmax - :param torch.Tensor forward_window: - forward window size when constraining attention - :param int last_attended_idx: index of the inputs of the last attended - :param int backward_window: backward window size in attention constraint - :param int forward_window: forward window size in attention constraint - :return: attention weighted encoder state (B, D_enc) - :rtype: torch.Tensor - :return: previous attention weights (B x T_max) - :rtype: torch.Tensor - """ - batch = len(enc_hs_pad) - # pre-compute all h outside the decoder loop - if self.pre_compute_enc_h is None or self.han_mode: - self.enc_h = enc_hs_pad # utt x frame x hdim - self.h_length = self.enc_h.size(1) - # utt x frame x att_dim - self.pre_compute_enc_h = self.mlp_enc(self.enc_h) - if dec_z is None: - dec_z = enc_hs_pad.new_zeros(batch, self.dunits) - else: - dec_z = dec_z.view(batch, self.dunits) - - # initialize attention weight with uniform dist. - if att_prev is None: - # if no bias, 0 0-pad goes 0 - att_prev = 1.0 - make_pad_mask(enc_hs_len, device=dec_z.device).to(dtype=dec_z.dtype) - att_prev = att_prev / att_prev.new(enc_hs_len).unsqueeze(-1) - - # att_prev: utt x frame -> utt x 1 x 1 x frame - # -> utt x att_conv_chans x 1 x frame - att_conv = self.loc_conv(att_prev.view(batch, 1, 1, self.h_length)) - # att_conv: utt x att_conv_chans x 1 x frame -> utt x frame x att_conv_chans - att_conv = att_conv.squeeze(2).transpose(1, 2) - # att_conv: utt x frame x att_conv_chans -> utt x frame x att_dim - att_conv = self.mlp_att(att_conv) - - # dec_z_tiled: utt x frame x att_dim - dec_z_tiled = self.mlp_dec(dec_z).view(batch, 1, self.att_dim) - - # dot with gvec - # utt x frame x att_dim -> utt x frame - e = self.gvec(torch.tanh(att_conv + self.pre_compute_enc_h + dec_z_tiled)).squeeze(2) - - # NOTE: consider zero padding when compute w. - if self.mask is None: - self.mask = to_device(enc_hs_pad, make_pad_mask(enc_hs_len)) - e.masked_fill_(self.mask, -float("inf")) - - # apply monotonic attention constraint (mainly for TTS) - if last_attended_idx is not None: - e = _apply_attention_constraint(e, last_attended_idx, backward_window, forward_window) - - w = F.softmax(scaling * e, dim=1) - - # weighted sum over flames - # utt x hdim - c = torch.sum(self.enc_h * w.view(batch, self.h_length, 1), dim=1) - - return c, w - - -class AttForwardTA(torch.nn.Module): - """Forward attention with transition agent module. - Reference: - Forward attention in sequence-to-sequence acoustic modeling for speech synthesis - (https://arxiv.org/pdf/1807.06736.pdf) - :param int eunits: # units of encoder - :param int dunits: # units of decoder - :param int att_dim: attention dimension - :param int aconv_chans: # channels of attention convolution - :param int aconv_filts: filter size of attention convolution - :param int odim: output dimension - """ - - def __init__(self, eunits, dunits, att_dim, aconv_chans, aconv_filts, odim): - super(AttForwardTA, self).__init__() - self.mlp_enc = torch.nn.Linear(eunits, att_dim) - self.mlp_dec = torch.nn.Linear(dunits, att_dim, bias=False) - self.mlp_ta = torch.nn.Linear(eunits + dunits + odim, 1) - self.mlp_att = torch.nn.Linear(aconv_chans, att_dim, bias=False) - self.loc_conv = torch.nn.Conv2d(1, aconv_chans, (1, 2 * aconv_filts + 1), padding=(0, aconv_filts), bias=False, ) - self.gvec = torch.nn.Linear(att_dim, 1) - self.dunits = dunits - self.eunits = eunits - self.att_dim = att_dim - self.h_length = None - self.enc_h = None - self.pre_compute_enc_h = None - self.mask = None - self.trans_agent_prob = 0.5 - - def reset(self): - self.h_length = None - self.enc_h = None - self.pre_compute_enc_h = None - self.mask = None - self.trans_agent_prob = 0.5 - - def forward(self, - enc_hs_pad, - enc_hs_len, - dec_z, - att_prev, - out_prev, - scaling=1.0, - last_attended_idx=None, - backward_window=1, - forward_window=3): - """ - Calculate AttForwardTA forward propagation. - - :param torch.Tensor enc_hs_pad: padded encoder hidden state (B, Tmax, eunits) - :param list enc_hs_len: padded encoder hidden state length (B) - :param torch.Tensor dec_z: decoder hidden state (B, dunits) - :param torch.Tensor att_prev: attention weights of previous step - :param torch.Tensor out_prev: decoder outputs of previous step (B, odim) - :param float scaling: scaling parameter before applying softmax - :param int last_attended_idx: index of the inputs of the last attended - :param int backward_window: backward window size in attention constraint - :param int forward_window: forward window size in attetion constraint - :return: attention weighted encoder state (B, dunits) - :rtype: torch.Tensor - :return: previous attention weights (B, Tmax) - :rtype: torch.Tensor - """ - batch = len(enc_hs_pad) - # pre-compute all h outside the decoder loop - if self.pre_compute_enc_h is None: - self.enc_h = enc_hs_pad # utt x frame x hdim - self.h_length = self.enc_h.size(1) - # utt x frame x att_dim - self.pre_compute_enc_h = self.mlp_enc(self.enc_h) - - if dec_z is None: - dec_z = enc_hs_pad.new_zeros(batch, self.dunits) - else: - dec_z = dec_z.view(batch, self.dunits) - - if att_prev is None: - # initial attention will be [1, 0, 0, ...] - att_prev = enc_hs_pad.new_zeros(*enc_hs_pad.size()[:2]) - att_prev[:, 0] = 1.0 - - # att_prev: utt x frame -> utt x 1 x 1 x frame - # -> utt x att_conv_chans x 1 x frame - att_conv = self.loc_conv(att_prev.view(batch, 1, 1, self.h_length)) - # att_conv: utt x att_conv_chans x 1 x frame -> utt x frame x att_conv_chans - att_conv = att_conv.squeeze(2).transpose(1, 2) - # att_conv: utt x frame x att_conv_chans -> utt x frame x att_dim - att_conv = self.mlp_att(att_conv) - - # dec_z_tiled: utt x frame x att_dim - dec_z_tiled = self.mlp_dec(dec_z).view(batch, 1, self.att_dim) - - # dot with gvec - # utt x frame x att_dim -> utt x frame - e = self.gvec(torch.tanh(att_conv + self.pre_compute_enc_h + dec_z_tiled)).squeeze(2) - - # NOTE consider zero padding when compute w. - if self.mask is None: - self.mask = to_device(enc_hs_pad, make_pad_mask(enc_hs_len)) - e.masked_fill_(self.mask, -float("inf")) - - # apply monotonic attention constraint (mainly for TTS) - if last_attended_idx is not None: - e = _apply_attention_constraint(e, last_attended_idx, backward_window, forward_window) - - w = F.softmax(scaling * e, dim=1) - - # forward attention - att_prev_shift = F.pad(att_prev, (1, 0))[:, :-1] - w = (self.trans_agent_prob * att_prev + (1 - self.trans_agent_prob) * att_prev_shift) * w - # NOTE: clamp is needed to avoid nan gradient - w = F.normalize(torch.clamp(w, 1e-6), p=1, dim=1) - - # weighted sum over flames - # utt x hdim - # NOTE use bmm instead of sum(*) - c = torch.sum(self.enc_h * w.view(batch, self.h_length, 1), dim=1) - - # update transition agent prob - self.trans_agent_prob = torch.sigmoid(self.mlp_ta(torch.cat([c, out_prev, dec_z], dim=1))) - - return c, w diff --git a/spaces/scedlatioru/img-to-music/example/HD Online Player (Bloodsport 2 720p).md b/spaces/scedlatioru/img-to-music/example/HD Online Player (Bloodsport 2 720p).md deleted file mode 100644 index c2165e729cb1e2d2bd94cbd93bc22757f47e1701..0000000000000000000000000000000000000000 --- a/spaces/scedlatioru/img-to-music/example/HD Online Player (Bloodsport 2 720p).md +++ /dev/null @@ -1,9 +0,0 @@ - -

    platforms are also any ways to play games online. when you play the game online, then you may be able to get full access. platform is the basic platform on which the game is being played. the website and the computer or the device that is being used to play the game is the client. you may also be able to play the same game on the website and on a mobile phone.

    -

    puzzle & board games - pbggames.com is your online resource for all board games. with over 1,000 games for 2 people to over 20 people, we are sure that we can find your next favourite game. if you cant find the game you are looking for, you can make a customised search using our filters.

    -

    HD Online Player (Bloodsport 2 720p)


    Download File →→→ https://gohhs.com/2uEzyg



    -

    project management : manage, coordinate and control multiple small projects or tasks within a limited amount of time. the project manager has a limited time to complete assignments, manage workflows, and respond to communication and requests from team members, clients, and other parties. typically, the project manager will have a certain level of technical skills.

    -

    growth hacking : growth hacking is building an online presence or an app that uses marketing techniques to maximise the number of people that use or interact with a website or app. growth hackers are usually part of the marketing and advertising teams, and their growth hacking skills are frequently used to complement the design and business side of their company's strategy. growth hackers also tend to be more data-driven rather than more creative.

    -

    regardless of whether you use a mac, a pc or a smartphone as your primary operating system, you can use a tablet for some editing work. you can use a laptop to edit images and video. as long as you are comfortable with the amount of time and effort you take to create great content, you are ready to go.

    899543212b
    -
    -
    \ No newline at end of file diff --git a/spaces/scedlatioru/img-to-music/example/The Engulfing Trader Pdf 17.md b/spaces/scedlatioru/img-to-music/example/The Engulfing Trader Pdf 17.md deleted file mode 100644 index b92412e099a9dcca3e0d6f99cc7bb4f1ec5cd0d9..0000000000000000000000000000000000000000 --- a/spaces/scedlatioru/img-to-music/example/The Engulfing Trader Pdf 17.md +++ /dev/null @@ -1,6 +0,0 @@ -

    The Engulfing Trader Pdf 17


    Download Zip ::: https://gohhs.com/2uEAFi



    - -2011–17. Note: Index equals the percent of the sample reporting the ... static.politico.com/fd/af/3eebc635479892982f81bdfe3fa2/raise-act.pdf (accessed on ... A notable increase in trade tariffs that would reduce trading with key ... largest economies, engulfing other countries in the beggar-thy-neighbor trap. 1fdad05405
    -
    -
    -

    diff --git a/spaces/sgxz/bingo/src/components/chat-notification.tsx b/spaces/sgxz/bingo/src/components/chat-notification.tsx deleted file mode 100644 index 4be24d0f1755c8058698cfa66c736d8d4792475a..0000000000000000000000000000000000000000 --- a/spaces/sgxz/bingo/src/components/chat-notification.tsx +++ /dev/null @@ -1,77 +0,0 @@ -import { useEffect } from 'react' -import Image from 'next/image' - -import IconWarning from '@/assets/images/warning.svg' -import { ChatError, ErrorCode, ChatMessageModel } from '@/lib/bots/bing/types' -import { ExternalLink } from './external-link' -import { useBing } from '@/lib/hooks/use-bing' - -export interface ChatNotificationProps extends Pick, 'bot'> { - message?: ChatMessageModel -} - -function getAction(error: ChatError, reset: () => void) { - if (error.code === ErrorCode.THROTTLE_LIMIT) { - reset() - return ( -
    - 你已达到每日最大发送消息次数,请更换账号或隔一天后重试 -
    - ) - } - if (error.code === ErrorCode.BING_FORBIDDEN) { - return ( - - 你的账号已在黑名单,请尝试更换账号及申请解封 - - ) - } - if (error.code === ErrorCode.CONVERSATION_LIMIT) { - return ( -
    - 当前话题已中止,请点 - 重新开始 - 开启新的对话 -
    - ) - } - if (error.code === ErrorCode.BING_CAPTCHA) { - return ( - - 点击通过人机验证 - - ) - } - if (error.code === ErrorCode.BING_UNAUTHORIZED) { - reset() - return ( - 没有获取到身份信息或身份信息失效,点此重新设置 - ) - } - return error.message -} - -export function ChatNotification({ message, bot }: ChatNotificationProps) { - useEffect(() => { - window.scrollBy(0, 2000) - }, [message]) - - if (!message?.error) return - - return ( -
    -
    -
    -
    -
    - error - {getAction(message.error, () => bot.resetConversation())} -
    -
    -
    -
    -
    - ) -} diff --git a/spaces/shenfangqi/Retrieval-based-Voice-Conversion-WebUI/README.md b/spaces/shenfangqi/Retrieval-based-Voice-Conversion-WebUI/README.md deleted file mode 100644 index f6854e7a9e60baf6fe3224ffc964b86dd7d3d4a5..0000000000000000000000000000000000000000 --- a/spaces/shenfangqi/Retrieval-based-Voice-Conversion-WebUI/README.md +++ /dev/null @@ -1,114 +0,0 @@ ---- -title: Retrieval-based-Voice-Conversion-WebUI -app_file: infer-web.py -sdk: gradio -sdk_version: 3.34.0 ---- -
    - -

    Retrieval-based-Voice-Conversion-WebUI

    -一个基于VITS的简单易用的语音转换(变声器)框架

    - -[![madewithlove](https://forthebadge.com/images/badges/built-with-love.svg)](https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI) - -
    - -[![Open In Colab](https://img.shields.io/badge/Colab-F9AB00?style=for-the-badge&logo=googlecolab&color=525252)](https://colab.research.google.com/github/liujing04/Retrieval-based-Voice-Conversion-WebUI/blob/main/Retrieval_based_Voice_Conversion_WebUI.ipynb) -[![Licence](https://img.shields.io/github/license/liujing04/Retrieval-based-Voice-Conversion-WebUI?style=for-the-badge)](https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI/blob/main/%E4%BD%BF%E7%94%A8%E9%9C%80%E9%81%B5%E5%AE%88%E7%9A%84%E5%8D%8F%E8%AE%AE-LICENSE.txt) -[![Huggingface](https://img.shields.io/badge/🤗%20-Spaces-yellow.svg?style=for-the-badge)](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/) - -[![Discord](https://img.shields.io/badge/RVC%20Developers-Discord-7289DA?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/HcsmBBGyVk) - -
    - ------- - -[**更新日志**](https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI/blob/main/Changelog_CN.md) - -[**English**](./docs/README.en.md) | [**中文简体**](./README.md) | [**日本語**](./docs/README.ja.md) | [**한국어**](./docs/README.ko.md) ([**韓國語**](./docs/README.ko.han.md)) - - -> 点此查看我们的[演示视频](https://www.bilibili.com/video/BV1pm4y1z7Gm/) ! - -> 使用了RVC的实时语音转换: [w-okada/voice-changer](https://github.com/w-okada/voice-changer) - -> 底模使用接近50小时的开源高质量VCTK训练集训练,无版权方面的顾虑,请大家放心使用 - -> 后续会陆续加入高质量有授权歌声训练集训练底模 - -## 简介 -本仓库具有以下特点 -+ 使用top1检索替换输入源特征为训练集特征来杜绝音色泄漏 -+ 即便在相对较差的显卡上也能快速训练 -+ 使用少量数据进行训练也能得到较好结果(推荐至少收集10分钟低底噪语音数据) -+ 可以通过模型融合来改变音色(借助ckpt处理选项卡中的ckpt-merge) -+ 简单易用的网页界面 -+ 可调用UVR5模型来快速分离人声和伴奏 - -## 环境配置 -推荐使用poetry配置环境。 - -以下指令需在Python版本大于3.8的环境中执行: -```bash -# 安装Pytorch及其核心依赖,若已安装则跳过 -# 参考自: https://pytorch.org/get-started/locally/ -pip install torch torchvision torchaudio - -#如果是win系统+Nvidia Ampere架构(RTX30xx),根据 #21 的经验,需要指定pytorch对应的cuda版本 -#pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117 - -# 安装 Poetry 依赖管理工具, 若已安装则跳过 -# 参考自: https://python-poetry.org/docs/#installation -curl -sSL https://install.python-poetry.org | python3 - - -# 通过poetry安装依赖 -poetry install -``` - -你也可以通过pip来安装依赖: - -**注意**: `MacOS`下`faiss 1.7.2`版本会导致抛出段错误,在手动安装时请使用命令`pip install faiss-cpu==1.7.0`指定使用`1.7.0`版本 - -```bash -pip install -r requirements.txt -``` - -## 其他预模型准备 -RVC需要其他一些预模型来推理和训练。 - -你可以从我们的[Hugging Face space](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/)下载到这些模型。 - -以下是一份清单,包括了所有RVC所需的预模型和其他文件的名称: -```bash -hubert_base.pt - -./pretrained - -./uvr5_weights - -#如果你正在使用Windows,则你可能需要这个文件,若ffmpeg和ffprobe已安装则跳过; ubuntu/debian 用户可以通过apt install ffmpeg来安装这2个库 -./ffmpeg - -./ffprobe -``` -之后使用以下指令来启动WebUI: -```bash -python infer-web.py -``` -如果你正在使用Windows,你可以直接下载并解压`RVC-beta.7z`,运行`go-web.bat`以启动WebUI。 - -仓库内还有一份`小白简易教程.doc`以供参考。 - -## 参考项目 -+ [ContentVec](https://github.com/auspicious3000/contentvec/) -+ [VITS](https://github.com/jaywalnut310/vits) -+ [HIFIGAN](https://github.com/jik876/hifi-gan) -+ [Gradio](https://github.com/gradio-app/gradio) -+ [FFmpeg](https://github.com/FFmpeg/FFmpeg) -+ [Ultimate Vocal Remover](https://github.com/Anjok07/ultimatevocalremovergui) -+ [audio-slicer](https://github.com/openvpi/audio-slicer) - -## 感谢所有贡献者作出的努力 - - - diff --git a/spaces/shenfangqi/Retrieval-based-Voice-Conversion-WebUI/Retrieval-based-Voice-Conversion-WebUI/uvr5_pack/lib_v5/nets_123821KB.py b/spaces/shenfangqi/Retrieval-based-Voice-Conversion-WebUI/Retrieval-based-Voice-Conversion-WebUI/uvr5_pack/lib_v5/nets_123821KB.py deleted file mode 100644 index ea6c45c968d66c75e577e8a0fcca9bf800eb4ed6..0000000000000000000000000000000000000000 --- a/spaces/shenfangqi/Retrieval-based-Voice-Conversion-WebUI/Retrieval-based-Voice-Conversion-WebUI/uvr5_pack/lib_v5/nets_123821KB.py +++ /dev/null @@ -1,122 +0,0 @@ -import torch -from torch import nn -import torch.nn.functional as F - -from uvr5_pack.lib_v5 import layers_123821KB as layers - - -class BaseASPPNet(nn.Module): - def __init__(self, nin, ch, dilations=(4, 8, 16)): - super(BaseASPPNet, self).__init__() - self.enc1 = layers.Encoder(nin, ch, 3, 2, 1) - self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1) - self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1) - self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1) - - self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations) - - self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1) - self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1) - self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1) - self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1) - - def __call__(self, x): - h, e1 = self.enc1(x) - h, e2 = self.enc2(h) - h, e3 = self.enc3(h) - h, e4 = self.enc4(h) - - h = self.aspp(h) - - h = self.dec4(h, e4) - h = self.dec3(h, e3) - h = self.dec2(h, e2) - h = self.dec1(h, e1) - - return h - - -class CascadedASPPNet(nn.Module): - def __init__(self, n_fft): - super(CascadedASPPNet, self).__init__() - self.stg1_low_band_net = BaseASPPNet(2, 32) - self.stg1_high_band_net = BaseASPPNet(2, 32) - - self.stg2_bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0) - self.stg2_full_band_net = BaseASPPNet(16, 32) - - self.stg3_bridge = layers.Conv2DBNActiv(66, 32, 1, 1, 0) - self.stg3_full_band_net = BaseASPPNet(32, 64) - - self.out = nn.Conv2d(64, 2, 1, bias=False) - self.aux1_out = nn.Conv2d(32, 2, 1, bias=False) - self.aux2_out = nn.Conv2d(32, 2, 1, bias=False) - - self.max_bin = n_fft // 2 - self.output_bin = n_fft // 2 + 1 - - self.offset = 128 - - def forward(self, x, aggressiveness=None): - mix = x.detach() - x = x.clone() - - x = x[:, :, : self.max_bin] - - bandw = x.size()[2] // 2 - aux1 = torch.cat( - [ - self.stg1_low_band_net(x[:, :, :bandw]), - self.stg1_high_band_net(x[:, :, bandw:]), - ], - dim=2, - ) - - h = torch.cat([x, aux1], dim=1) - aux2 = self.stg2_full_band_net(self.stg2_bridge(h)) - - h = torch.cat([x, aux1, aux2], dim=1) - h = self.stg3_full_band_net(self.stg3_bridge(h)) - - mask = torch.sigmoid(self.out(h)) - mask = F.pad( - input=mask, - pad=(0, 0, 0, self.output_bin - mask.size()[2]), - mode="replicate", - ) - - if self.training: - aux1 = torch.sigmoid(self.aux1_out(aux1)) - aux1 = F.pad( - input=aux1, - pad=(0, 0, 0, self.output_bin - aux1.size()[2]), - mode="replicate", - ) - aux2 = torch.sigmoid(self.aux2_out(aux2)) - aux2 = F.pad( - input=aux2, - pad=(0, 0, 0, self.output_bin - aux2.size()[2]), - mode="replicate", - ) - return mask * mix, aux1 * mix, aux2 * mix - else: - if aggressiveness: - mask[:, :, : aggressiveness["split_bin"]] = torch.pow( - mask[:, :, : aggressiveness["split_bin"]], - 1 + aggressiveness["value"] / 3, - ) - mask[:, :, aggressiveness["split_bin"] :] = torch.pow( - mask[:, :, aggressiveness["split_bin"] :], - 1 + aggressiveness["value"], - ) - - return mask * mix - - def predict(self, x_mag, aggressiveness=None): - h = self.forward(x_mag, aggressiveness) - - if self.offset > 0: - h = h[:, :, :, self.offset : -self.offset] - assert h.size()[3] > 0 - - return h diff --git a/spaces/shenfangqi/Retrieval-based-Voice-Conversion-WebUI/Retrieval-based-Voice-Conversion-WebUI/vc_infer_pipeline.py b/spaces/shenfangqi/Retrieval-based-Voice-Conversion-WebUI/Retrieval-based-Voice-Conversion-WebUI/vc_infer_pipeline.py deleted file mode 100644 index 7ff98b2c812f4e74afe92048fb26009fb008479d..0000000000000000000000000000000000000000 --- a/spaces/shenfangqi/Retrieval-based-Voice-Conversion-WebUI/Retrieval-based-Voice-Conversion-WebUI/vc_infer_pipeline.py +++ /dev/null @@ -1,320 +0,0 @@ -import numpy as np, parselmouth, torch, pdb -from time import time as ttime -import torch.nn.functional as F -import scipy.signal as signal -import pyworld, os, traceback, faiss -from scipy import signal - -bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000) - - -class VC(object): - def __init__(self, tgt_sr, config): - self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = ( - config.x_pad, - config.x_query, - config.x_center, - config.x_max, - config.is_half, - ) - self.sr = 16000 # hubert输入采样率 - self.window = 160 # 每帧点数 - self.t_pad = self.sr * self.x_pad # 每条前后pad时间 - self.t_pad_tgt = tgt_sr * self.x_pad - self.t_pad2 = self.t_pad * 2 - self.t_query = self.sr * self.x_query # 查询切点前后查询时间 - self.t_center = self.sr * self.x_center # 查询切点位置 - self.t_max = self.sr * self.x_max # 免查询时长阈值 - self.device = config.device - - def get_f0(self, x, p_len, f0_up_key, f0_method, inp_f0=None): - time_step = self.window / self.sr * 1000 - f0_min = 50 - f0_max = 1100 - f0_mel_min = 1127 * np.log(1 + f0_min / 700) - f0_mel_max = 1127 * np.log(1 + f0_max / 700) - if f0_method == "pm": - f0 = ( - parselmouth.Sound(x, self.sr) - .to_pitch_ac( - time_step=time_step / 1000, - voicing_threshold=0.6, - pitch_floor=f0_min, - pitch_ceiling=f0_max, - ) - .selected_array["frequency"] - ) - pad_size = (p_len - len(f0) + 1) // 2 - if pad_size > 0 or p_len - len(f0) - pad_size > 0: - f0 = np.pad( - f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant" - ) - elif f0_method == "harvest": - f0, t = pyworld.harvest( - x.astype(np.double), - fs=self.sr, - f0_ceil=f0_max, - f0_floor=f0_min, - frame_period=10, - ) - f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr) - f0 = signal.medfilt(f0, 3) - f0 *= pow(2, f0_up_key / 12) - # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()])) - tf0 = self.sr // self.window # 每秒f0点数 - if inp_f0 is not None: - delta_t = np.round( - (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1 - ).astype("int16") - replace_f0 = np.interp( - list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1] - ) - shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0] - f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[ - :shape - ] - # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()])) - f0bak = f0.copy() - f0_mel = 1127 * np.log(1 + f0 / 700) - f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / ( - f0_mel_max - f0_mel_min - ) + 1 - f0_mel[f0_mel <= 1] = 1 - f0_mel[f0_mel > 255] = 255 - f0_coarse = np.rint(f0_mel).astype(np.int) - return f0_coarse, f0bak # 1-0 - - def vc( - self, - model, - net_g, - sid, - audio0, - pitch, - pitchf, - times, - index, - big_npy, - index_rate, - ): # ,file_index,file_big_npy - feats = torch.from_numpy(audio0) - if self.is_half: - feats = feats.half() - else: - feats = feats.float() - if feats.dim() == 2: # double channels - feats = feats.mean(-1) - assert feats.dim() == 1, feats.dim() - feats = feats.view(1, -1) - padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False) - - inputs = { - "source": feats.to(self.device), - "padding_mask": padding_mask, - "output_layer": 9, # layer 9 - } - t0 = ttime() - with torch.no_grad(): - logits = model.extract_features(**inputs) - feats = model.final_proj(logits[0]) - - if ( - isinstance(index, type(None)) == False - and isinstance(big_npy, type(None)) == False - and index_rate != 0 - ): - npy = feats[0].cpu().numpy() - if self.is_half: - npy = npy.astype("float32") - - # _, I = index.search(npy, 1) - # npy = big_npy[I.squeeze()] - - score, ix = index.search(npy, k=8) - weight = np.square(1 / score) - weight /= weight.sum(axis=1, keepdims=True) - npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1) - - if self.is_half: - npy = npy.astype("float16") - feats = ( - torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate - + (1 - index_rate) * feats - ) - - feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1) - t1 = ttime() - p_len = audio0.shape[0] // self.window - if feats.shape[1] < p_len: - p_len = feats.shape[1] - if pitch != None and pitchf != None: - pitch = pitch[:, :p_len] - pitchf = pitchf[:, :p_len] - p_len = torch.tensor([p_len], device=self.device).long() - with torch.no_grad(): - if pitch != None and pitchf != None: - audio1 = ( - (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] * 32768) - .data.cpu() - .float() - .numpy() - .astype(np.int16) - ) - else: - audio1 = ( - (net_g.infer(feats, p_len, sid)[0][0, 0] * 32768) - .data.cpu() - .float() - .numpy() - .astype(np.int16) - ) - del feats, p_len, padding_mask - if torch.cuda.is_available(): - torch.cuda.empty_cache() - t2 = ttime() - times[0] += t1 - t0 - times[2] += t2 - t1 - return audio1 - - def pipeline( - self, - model, - net_g, - sid, - audio, - times, - f0_up_key, - f0_method, - file_index, - # file_big_npy, - index_rate, - if_f0, - f0_file=None, - ): - if ( - file_index != "" - # and file_big_npy != "" - # and os.path.exists(file_big_npy) == True - and os.path.exists(file_index) == True - and index_rate != 0 - ): - try: - index = faiss.read_index(file_index) - # big_npy = np.load(file_big_npy) - big_npy = index.reconstruct_n(0, index.ntotal) - except: - traceback.print_exc() - index = big_npy = None - else: - index = big_npy = None - audio = signal.filtfilt(bh, ah, audio) - audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect") - opt_ts = [] - if audio_pad.shape[0] > self.t_max: - audio_sum = np.zeros_like(audio) - for i in range(self.window): - audio_sum += audio_pad[i : i - self.window] - for t in range(self.t_center, audio.shape[0], self.t_center): - opt_ts.append( - t - - self.t_query - + np.where( - np.abs(audio_sum[t - self.t_query : t + self.t_query]) - == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min() - )[0][0] - ) - s = 0 - audio_opt = [] - t = None - t1 = ttime() - audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect") - p_len = audio_pad.shape[0] // self.window - inp_f0 = None - if hasattr(f0_file, "name") == True: - try: - with open(f0_file.name, "r") as f: - lines = f.read().strip("\n").split("\n") - inp_f0 = [] - for line in lines: - inp_f0.append([float(i) for i in line.split(",")]) - inp_f0 = np.array(inp_f0, dtype="float32") - except: - traceback.print_exc() - sid = torch.tensor(sid, device=self.device).unsqueeze(0).long() - pitch, pitchf = None, None - if if_f0 == 1: - pitch, pitchf = self.get_f0(audio_pad, p_len, f0_up_key, f0_method, inp_f0) - pitch = pitch[:p_len] - pitchf = pitchf[:p_len] - pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long() - pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float() - t2 = ttime() - times[1] += t2 - t1 - for t in opt_ts: - t = t // self.window * self.window - if if_f0 == 1: - audio_opt.append( - self.vc( - model, - net_g, - sid, - audio_pad[s : t + self.t_pad2 + self.window], - pitch[:, s // self.window : (t + self.t_pad2) // self.window], - pitchf[:, s // self.window : (t + self.t_pad2) // self.window], - times, - index, - big_npy, - index_rate, - )[self.t_pad_tgt : -self.t_pad_tgt] - ) - else: - audio_opt.append( - self.vc( - model, - net_g, - sid, - audio_pad[s : t + self.t_pad2 + self.window], - None, - None, - times, - index, - big_npy, - index_rate, - )[self.t_pad_tgt : -self.t_pad_tgt] - ) - s = t - if if_f0 == 1: - audio_opt.append( - self.vc( - model, - net_g, - sid, - audio_pad[t:], - pitch[:, t // self.window :] if t is not None else pitch, - pitchf[:, t // self.window :] if t is not None else pitchf, - times, - index, - big_npy, - index_rate, - )[self.t_pad_tgt : -self.t_pad_tgt] - ) - else: - audio_opt.append( - self.vc( - model, - net_g, - sid, - audio_pad[t:], - None, - None, - times, - index, - big_npy, - index_rate, - )[self.t_pad_tgt : -self.t_pad_tgt] - ) - audio_opt = np.concatenate(audio_opt) - del pitch, pitchf, sid - if torch.cuda.is_available(): - torch.cuda.empty_cache() - return audio_opt diff --git a/spaces/shiwan10000/CodeFormer/CodeFormer/basicsr/utils/options.py b/spaces/shiwan10000/CodeFormer/CodeFormer/basicsr/utils/options.py deleted file mode 100644 index db490e4aa52e26fde31959fd74c2cef3af2ecf76..0000000000000000000000000000000000000000 --- a/spaces/shiwan10000/CodeFormer/CodeFormer/basicsr/utils/options.py +++ /dev/null @@ -1,108 +0,0 @@ -import yaml -import time -from collections import OrderedDict -from os import path as osp -from basicsr.utils.misc import get_time_str - -def ordered_yaml(): - """Support OrderedDict for yaml. - - Returns: - yaml Loader and Dumper. - """ - try: - from yaml import CDumper as Dumper - from yaml import CLoader as Loader - except ImportError: - from yaml import Dumper, Loader - - _mapping_tag = yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG - - def dict_representer(dumper, data): - return dumper.represent_dict(data.items()) - - def dict_constructor(loader, node): - return OrderedDict(loader.construct_pairs(node)) - - Dumper.add_representer(OrderedDict, dict_representer) - Loader.add_constructor(_mapping_tag, dict_constructor) - return Loader, Dumper - - -def parse(opt_path, root_path, is_train=True): - """Parse option file. - - Args: - opt_path (str): Option file path. - is_train (str): Indicate whether in training or not. Default: True. - - Returns: - (dict): Options. - """ - with open(opt_path, mode='r') as f: - Loader, _ = ordered_yaml() - opt = yaml.load(f, Loader=Loader) - - opt['is_train'] = is_train - - # opt['name'] = f"{get_time_str()}_{opt['name']}" - if opt['path'].get('resume_state', None): # Shangchen added - resume_state_path = opt['path'].get('resume_state') - opt['name'] = resume_state_path.split("/")[-3] - else: - opt['name'] = f"{get_time_str()}_{opt['name']}" - - - # datasets - for phase, dataset in opt['datasets'].items(): - # for several datasets, e.g., test_1, test_2 - phase = phase.split('_')[0] - dataset['phase'] = phase - if 'scale' in opt: - dataset['scale'] = opt['scale'] - if dataset.get('dataroot_gt') is not None: - dataset['dataroot_gt'] = osp.expanduser(dataset['dataroot_gt']) - if dataset.get('dataroot_lq') is not None: - dataset['dataroot_lq'] = osp.expanduser(dataset['dataroot_lq']) - - # paths - for key, val in opt['path'].items(): - if (val is not None) and ('resume_state' in key or 'pretrain_network' in key): - opt['path'][key] = osp.expanduser(val) - - if is_train: - experiments_root = osp.join(root_path, 'experiments', opt['name']) - opt['path']['experiments_root'] = experiments_root - opt['path']['models'] = osp.join(experiments_root, 'models') - opt['path']['training_states'] = osp.join(experiments_root, 'training_states') - opt['path']['log'] = experiments_root - opt['path']['visualization'] = osp.join(experiments_root, 'visualization') - - else: # test - results_root = osp.join(root_path, 'results', opt['name']) - opt['path']['results_root'] = results_root - opt['path']['log'] = results_root - opt['path']['visualization'] = osp.join(results_root, 'visualization') - - return opt - - -def dict2str(opt, indent_level=1): - """dict to string for printing options. - - Args: - opt (dict): Option dict. - indent_level (int): Indent level. Default: 1. - - Return: - (str): Option string for printing. - """ - msg = '\n' - for k, v in opt.items(): - if isinstance(v, dict): - msg += ' ' * (indent_level * 2) + k + ':[' - msg += dict2str(v, indent_level + 1) - msg += ' ' * (indent_level * 2) + ']\n' - else: - msg += ' ' * (indent_level * 2) + k + ': ' + str(v) + '\n' - return msg diff --git a/spaces/shriarul5273/Yolov7/utils/autoanchor.py b/spaces/shriarul5273/Yolov7/utils/autoanchor.py deleted file mode 100644 index f491032e53ab43cd81d966d127bd92f9b414b9fe..0000000000000000000000000000000000000000 --- a/spaces/shriarul5273/Yolov7/utils/autoanchor.py +++ /dev/null @@ -1,160 +0,0 @@ -# Auto-anchor utils - -import numpy as np -import torch -import yaml -from scipy.cluster.vq import kmeans -from tqdm import tqdm - -from utils.general import colorstr - - -def check_anchor_order(m): - # Check anchor order against stride order for YOLO Detect() module m, and correct if necessary - a = m.anchor_grid.prod(-1).view(-1) # anchor area - da = a[-1] - a[0] # delta a - ds = m.stride[-1] - m.stride[0] # delta s - if da.sign() != ds.sign(): # same order - print('Reversing anchor order') - m.anchors[:] = m.anchors.flip(0) - m.anchor_grid[:] = m.anchor_grid.flip(0) - - -def check_anchors(dataset, model, thr=4.0, imgsz=640): - # Check anchor fit to data, recompute if necessary - prefix = colorstr('autoanchor: ') - print(f'\n{prefix}Analyzing anchors... ', end='') - m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect() - shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True) - scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale - wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh - - def metric(k): # compute metric - r = wh[:, None] / k[None] - x = torch.min(r, 1. / r).min(2)[0] # ratio metric - best = x.max(1)[0] # best_x - aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold - bpr = (best > 1. / thr).float().mean() # best possible recall - return bpr, aat - - anchors = m.anchor_grid.clone().cpu().view(-1, 2) # current anchors - bpr, aat = metric(anchors) - print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='') - if bpr < 0.98: # threshold to recompute - print('. Attempting to improve anchors, please wait...') - na = m.anchor_grid.numel() // 2 # number of anchors - try: - anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False) - except Exception as e: - print(f'{prefix}ERROR: {e}') - new_bpr = metric(anchors)[0] - if new_bpr > bpr: # replace anchors - anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors) - m.anchor_grid[:] = anchors.clone().view_as(m.anchor_grid) # for inference - check_anchor_order(m) - m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss - print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.') - else: - print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.') - print('') # newline - - -def kmean_anchors(path='./data/coco.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True): - """ Creates kmeans-evolved anchors from training dataset - - Arguments: - path: path to dataset *.yaml, or a loaded dataset - n: number of anchors - img_size: image size used for training - thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0 - gen: generations to evolve anchors using genetic algorithm - verbose: print all results - - Return: - k: kmeans evolved anchors - - Usage: - from utils.autoanchor import *; _ = kmean_anchors() - """ - thr = 1. / thr - prefix = colorstr('autoanchor: ') - - def metric(k, wh): # compute metrics - r = wh[:, None] / k[None] - x = torch.min(r, 1. / r).min(2)[0] # ratio metric - # x = wh_iou(wh, torch.tensor(k)) # iou metric - return x, x.max(1)[0] # x, best_x - - def anchor_fitness(k): # mutation fitness - _, best = metric(torch.tensor(k, dtype=torch.float32), wh) - return (best * (best > thr).float()).mean() # fitness - - def print_results(k): - k = k[np.argsort(k.prod(1))] # sort small to large - x, best = metric(k, wh0) - bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr - print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr') - print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' - f'past_thr={x[x > thr].mean():.3f}-mean: ', end='') - for i, x in enumerate(k): - print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg - return k - - if isinstance(path, str): # *.yaml file - with open(path) as f: - data_dict = yaml.load(f, Loader=yaml.SafeLoader) # model dict - from utils.datasets import LoadImagesAndLabels - dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True) - else: - dataset = path # dataset - - # Get label wh - shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True) - wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh - - # Filter - i = (wh0 < 3.0).any(1).sum() - if i: - print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.') - wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels - # wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1 - - # Kmeans calculation - print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...') - s = wh.std(0) # sigmas for whitening - k, dist = kmeans(wh / s, n, iter=30) # points, mean distance - assert len(k) == n, print(f'{prefix}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}') - k *= s - wh = torch.tensor(wh, dtype=torch.float32) # filtered - wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered - k = print_results(k) - - # Plot - # k, d = [None] * 20, [None] * 20 - # for i in tqdm(range(1, 21)): - # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance - # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True) - # ax = ax.ravel() - # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.') - # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh - # ax[0].hist(wh[wh[:, 0]<100, 0],400) - # ax[1].hist(wh[wh[:, 1]<100, 1],400) - # fig.savefig('wh.png', dpi=200) - - # Evolve - npr = np.random - f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma - pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar - for _ in pbar: - v = np.ones(sh) - while (v == 1).all(): # mutate until a change occurs (prevent duplicates) - v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0) - kg = (k.copy() * v).clip(min=2.0) - fg = anchor_fitness(kg) - if fg > f: - f, k = fg, kg.copy() - pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}' - if verbose: - print_results(k) - - return print_results(k) diff --git a/spaces/simple0urra/skops-model-card-creator-2a23515a-d54e-4804-b365-27ed6e938735/Fsps Fsx Booster V4.md b/spaces/simple0urra/skops-model-card-creator-2a23515a-d54e-4804-b365-27ed6e938735/Fsps Fsx Booster V4.md deleted file mode 100644 index 0fb0f4b3948e1f3408ff699cc5afe7e23d9eb207..0000000000000000000000000000000000000000 --- a/spaces/simple0urra/skops-model-card-creator-2a23515a-d54e-4804-b365-27ed6e938735/Fsps Fsx Booster V4.md +++ /dev/null @@ -1,132 +0,0 @@ -## Fsps Fsx Booster V4 - - - - - - - - - -**LINK ::: [https://lomasmavi.blogspot.com/?c=2tBNyQ](https://lomasmavi.blogspot.com/?c=2tBNyQ)** - - - - - - - - - - - - - -# How to Boost Your FSX Performance with FSPS FSX Booster V4 - - - -If you are a flight simulator enthusiast, you might have experienced some issues with FSX performance, such as low frames per second (FPS), stuttering, blurries, or long loading times. These problems can ruin your immersion and enjoyment of the simulation. Fortunately, there is a solution that can help you optimize your FSX settings and improve your performance: FSPS FSX Booster V4. - - - -FSPS FSX Booster V4 is a software tool that dynamically adjusts your FSX settings according to your hardware and preferences. It uses a simple slider that you can move from 0% to 100% to control the balance between graphics quality and FPS. You can also use presets for different scenarios, such as VFR, IFR, or heavy aircraft. FSPS FSX Booster V4 works in real time, so you can see the effects of your changes instantly. - - - -Some of the benefits of using FSPS FSX Booster V4 are: - - - -- It can increase your FPS by up to 200%. - -- It can reduce stuttering, blurries, and texture loading issues. - -- It can enhance your graphics quality by enabling higher resolution, anti-aliasing, shadows, and more. - -- It can save your settings for each flight or location. - -- It can work with any add-on or scenery. - - - -FSPS FSX Booster V4 is compatible with FSX and FSX Steam Edition. It is easy to install and use, and it does not require any additional software or hardware. You can download it from the FSPS Store[^1^] for only 12.90 €. If you want to boost your FSX performance and enjoy a smoother and more realistic flight simulation experience, FSPS FSX Booster V4 is the tool for you. - - - -How to use FSPS FSX Booster V4 - - - -Using FSPS FSX Booster V4 is very simple and intuitive. Here are the steps to follow: - - - -1. Download and install FSPS FSX Booster V4 from the FSPS Store[^1^]. You will need to enter your email and serial number to activate the product. - -2. Run FSX and load your flight as usual. - -3. Run FSPS FSX Booster V4 from your desktop or start menu. You will see a small window with a slider and some buttons. - -4. Move the slider to adjust your FSX settings. The lower the slider, the more FPS you will get, but the lower the graphics quality. The higher the slider, the more graphics quality you will get, but the lower the FPS. You can also use the presets for different situations, such as VFR, IFR, or heavy aircraft. - -5. Click on Apply to see the changes in FSX. You can also click on Save to save your settings for each flight or location. - -6. Enjoy your improved FSX performance and graphics quality. - - - -FSPS FSX Booster V4 is a powerful and easy-to-use tool that can make a big difference in your flight simulation experience. If you have any questions or issues, you can contact the FSPS support team at support@fspsstore.com. They will be happy to assist you. - - - -What is FSX and why do you need FSPS FSX Booster V4 - - - -FSX stands for Flight Simulator X, a popular flight simulation software developed by Microsoft and released in 2006. It allows you to fly various aircraft, from small planes to airliners, in realistic scenarios and environments. You can also customize your aircraft, weather, time, and location, as well as download and install add-ons and sceneries to enhance your simulation. - - - -However, FSX is also known for being very demanding on your computer system, especially if you use high settings and complex add-ons. FSX was designed for older hardware and operating systems, and it does not take full advantage of modern technology. As a result, you might experience low FPS, stuttering, blurries, or long loading times, which can affect your immersion and enjoyment of the simulation. - - - -This is where FSPS FSX Booster V4 comes in. FSPS FSX Booster V4 is a software tool that optimizes your FSX settings according to your hardware and preferences. It dynamically adjusts your settings in real time, so you can get the best balance between graphics quality and FPS. It also saves your settings for each flight or location, so you don't have to tweak them manually every time. FSPS FSX Booster V4 can help you improve your FSX performance and graphics quality significantly, without compromising your simulation experience. - - - -What are the features and benefits of FSPS FSX Booster V4 - - - -FSPS FSX Booster V4 has many features and benefits that make it a must-have tool for any flight simulator enthusiast. Here are some of them: - - - -- It can increase your FPS by up to 200%, depending on your hardware and settings. - -- It can reduce stuttering, blurries, and texture loading issues, by optimizing your memory usage and CPU load. - -- It can enhance your graphics quality by enabling higher resolution, anti-aliasing, shadows, water effects, scenery complexity, autogen density, and more. - -- It can work with any add-on or scenery, whether freeware or payware. - -- It can save your settings for each flight or location, so you don't have to tweak them manually every time. - -- It can work with FSX and FSX Steam Edition. - -- It is easy to install and use, and it does not require any additional software or hardware. - -- It is affordable and comes with a lifetime free updates policy. - - - -FSPS FSX Booster V4 is a powerful and easy-to-use tool that can make a big difference in your flight simulation experience. Whether you want to fly a Cessna around your hometown or a Boeing across the Atlantic, FSPS FSX Booster V4 can help you achieve the best performance and graphics quality possible. - - 145887f19f - - - - - diff --git a/spaces/simple0urra/skops-model-card-creator-2a23515a-d54e-4804-b365-27ed6e938735/example/Domino - Arcade Tarz Bir Domino Deneyimi - Tamindirden cretsiz ndir.md b/spaces/simple0urra/skops-model-card-creator-2a23515a-d54e-4804-b365-27ed6e938735/example/Domino - Arcade Tarz Bir Domino Deneyimi - Tamindirden cretsiz ndir.md deleted file mode 100644 index e4f0de83a8d652db943b7771154b92d61f8eca66..0000000000000000000000000000000000000000 --- a/spaces/simple0urra/skops-model-card-creator-2a23515a-d54e-4804-b365-27ed6e938735/example/Domino - Arcade Tarz Bir Domino Deneyimi - Tamindirden cretsiz ndir.md +++ /dev/null @@ -1,110 +0,0 @@ -
    -

    Domino Indir: A Fun and Easy Way to Play Dominoes Online

    -

    Dominoes is a classic game that has been enjoyed by people of all ages for centuries. It is a simple, yet challenging game that can be played with friends, family, or even strangers online. But what is domino indir and why is it so popular?

    -

    domino indir


    Downloadhttps://ssurll.com/2uNWFy



    -

    Domino indir is a Turkish term that means "download dominoes". It refers to the various websites and apps that allow you to play dominoes online for free or for real money. Domino indir is popular because it offers a convenient and accessible way to enjoy the game anytime and anywhere. You can choose from different types of dominoes, such as European, Chinese, or Mexican, and play against other players or against the computer. You can also chat with other players, join tournaments, and earn rewards.

    -

    If you are interested in learning more about domino indir, this article will give you an overview of the history, rules, benefits, and FAQs of this exciting game.

    -

    The History of Dominoes

    -

    The game of dominoes originated in China in the 12th or 13th century long before its arrival in Italy around the 18th century. This European version is what gave rise to the modern version we all know today. There are many variations of the game that are based on the two main types, including blocking and scoring games.

    -

    The earliest mention of dominoes is from Song dynasty China found in the text Former Events in Wulin by Zhou Mi (1232–1298). The modern game appeared in Italy in the 18th century. Yet, it’s still a mystery how the Chinese version of dominoes developed into the actual game; it’s believed Italian missionaries brought the game to Europe from China. :\u200A181 The name "domino" is probably derived from the resemblance to a kind of carnival costume worn during the Venetian Carnival, often consisting of a black-hooded robe and a white mask. Despite the coinage of the word "polyomino" as a generalization, there is no connection between the word "domino" and the number 2 in any language.

    -

    domino indir ücretsiz oyun
    -domino indir windows 8
    -domino indir android
    -domino indir apk
    -domino indir pc
    -domino indir tamindir
    -domino indir loop games
    -domino indir online
    -domino indir offline
    -domino indir yapay zeka
    -domino indir klasik oyun
    -domino indir farklı modlar
    -domino indir strateji gerektiren
    -domino indir rengarenk yapısı
    -domino indir basit kullanım
    -domino indir üç oyun seçeneği
    -domino indir tek ve 4 kişiye karşı oynama
    -domino indir akıllı oynayan yapay zeka
    -domino indir oyuncu istatistikleri
    -domino indir farklı domino stilleri
    -domino indir oyun temaları
    -domino indir ücretsiz lisans
    -domino indir farklı dil seçenekleri
    -domino indir sade arayüz
    -domino indir kolay oynanış
    -domino indir google play store
    -domino indir apps on google play
    -domino indir 100m+ downloads
    -domino indir 4.8 star rating
    -domino indir 1.67m reviews
    -domino indir trailer video
    -domino indir board game category
    -domino indir abstract strategy genre
    -domino indir casual mode
    -domino indir single player option
    -domino indir realistic graphics
    -domino indir data safety features
    -domino indir ratings and reviews verified
    -domino indir phone tablet laptop tv compatible
    -domino indir draw block all five modes
    -domino indir match the tile with one of the ends on the board
    -domino indir pass your turn if you run out of options
    -domino indir add all ends of the board and count the number of pips
    -domino indir score points if it is a multiple of five
    -domino indir beautiful simple relaxing easy to learn
    -domino indir complex if you get to learn all the tricks
    -domino indir will you be a master
    -domino indir updated on feb 17 2023
    -domino indir no frills game
    -domino indir no difficulty levels

    -

    The most commonly played domino games are Domino Whist, Matador, and Muggins (All Fives). Other popular forms include Texas 42, Chicken Foot, Concentration, Double Fives, and Mexican Train. :\u200A181–182 In Britain, the most popular league and pub game is Fives and Threes . Dominoes have sometimes been used for divination, such as bone throwing in Chinese culture and in the African diaspora.

    -

    The Rules of Dominoes

    -

    Dominoes is a game played with rectangular tiles that have two square ends marked with dots or pips. The tiles are usually made of wood, plastic, or bone, and have different colors or designs on their backs. A set of dominoes can have different numbers of tiles depending on the highest double (the tile with two identical numbers) in the set. For example, a double-six set has 28 tiles, while a double-nine set has 55 tiles.

    -

    The basic rules of dominoes are as follows:

    -
      -
    • Before each game, all tiles are shuffled face down on a flat surface.
    • -
    • Each player draws a certain number of tiles (usually seven) for their hand.
    • -
    • The remaining tiles form the boneyard or draw pile.
    • -
    • The first player places a tile on the table to start the line of play.
    • -
    • The next player must match one end of their tile with one end of an open tile on the table.
    • -
    • If a player cannot make a match, they must draw a tile from the boneyard until they can play or pass if there are no more tiles left.
    • -
    • The game ends when one. - The game ends when one player runs out of tiles or when both players cannot make a move. The player with the least number of pips on their tiles wins the game. If both players have the same number of pips, the game is a tie.
    • -
    -

    These are the general rules of dominoes, but there are many variations and scoring methods that can change the gameplay and strategy. For example, some games require that the ends of the line of play add up to a multiple of five or three, and award points accordingly. Some games also allow players to play more than one tile at a time, or to play tiles across or perpendicular to the line of play. Some games also have special tiles, such as blanks, doubles, or spinners, that have different effects on the game.

    -

    The Benefits of Playing Dominoes

    -

    Playing dominoes is not only fun, but also beneficial for your health and well-being. Here are some of the benefits of playing dominoes:

    -
      -
    • It improves your mental skills, such as memory, concentration, logic, and problem-solving.
    • -
    • It enhances your social skills, such as communication, cooperation, and sportsmanship.
    • -
    • It reduces stress and anxiety, as it provides a relaxing and enjoyable activity.
    • -
    • It boosts your mood and self-esteem, as it gives you a sense of achievement and satisfaction.
    • -
    • It promotes your physical health, as it stimulates your brain and improves your blood circulation.
    • -
    -

    As you can see, playing dominoes is good for your mind, body, and soul. It can also help you bond with your friends and family, or make new friends online.

    -

    Domino Indir: How to Play Dominoes Online

    -

    If you want to play dominoes online, you need to find a reliable and reputable website or app that offers domino indir. There are many options available on the internet, but not all of them are safe and secure. You need to do some research and check the reviews and ratings of the websites or apps before you download them. You also need to make sure that they have the features and functions that you want, such as different types of dominoes, multiplayer modes, chat rooms, tournaments, rewards, etc.

    -

    One of the best websites for domino indir is [Domino.com], which is a Turkish website that has been operating since 2009. It has over 10 million registered users and offers various games such as European Dominoes, Turkish Dominoes, Mexican Train Dominoes, Double Fives Dominoes, etc. You can play against other players or against the computer, and join tournaments and leagues. You can also chat with other players, send gifts, and earn coins. You can download the app for free from Google Play or App Store.

    -

    Another great website for domino indir is [Dominoes.com], which is an international website that has been operating since 1998. It has over 5 million registered users and offers various games such as Draw Dominoes, Block Dominoes, Muggins Dominoes, etc. You can play against other players or against the computer, and join tournaments and clubs. You can also chat with other players, send messages, and earn points. You can download the app for free from Google Play or App Store.

    -

    Conclusion

    -

    Dominoes is a classic game that has been enjoyed by people of all ages for centuries. It is a simple, yet challenging game that can be played with friends, family, or even strangers online. Domino indir is a Turkish term that means "download dominoes". It refers to the various websites and apps that allow you to play dominoes online for free or for real money. Domino indir is popular because it offers a convenient and accessible way to enjoy the game anytime and anywhere.

    -

    If you want to try domino indir, you need to find a reliable and reputable website or app that offers domino indir. You also need to learn the basic rules and variations of dominoes, and practice your skills and strategies. Playing dominoes online can improve your mental skills, enhance your social skills, reduce your stress and anxiety, boost your mood and self-esteem, and promote your physical health. So what are you waiting for? Download domino indir today and have fun!

    -

    FAQs

    -

    What are the best websites or apps for domino indir?

    -

    There are many websites or apps for domino indir on the internet, but some of the best ones are [Domino.com] and [Dominoes.com]. They have millions of users and offer various games, multiplayer modes, chat rooms, tournaments, rewards, etc. They are also safe and secure, and have good reviews and ratings. You can download them for free from Google Play or App Store.

    -

    How do I play dominoes online?

    -

    To play dominoes online, you need to download a website or app that offers domino indir. Then, you need to register an account and choose a username and password. After that, you can choose a game type, such as European, Chinese, or Mexican, and a game mode, such as against other players or against the computer. You can also join a tournament or a league, and chat with other players. To play a tile, you need to drag and drop it on the table, or tap on it and tap on the open end. To draw a tile from the boneyard, you need to tap on the boneyard or swipe left or right.

    -

    What are the best strategies for playing dominoes?

    -

    There is no definitive answer to this question, as different games and situations may require different strategies. However, some general tips are:

    -
      -
    • Try to get rid of your high-value tiles as soon as possible, as they can cost you points if you get stuck with them.
    • -
    • Try to keep a balanced hand with different numbers of pips, as this will give you more options to play.
    • -
    • Try to block your opponents from playing by closing the ends of the line of play with tiles that they do not have.
    • -
    • Try to score points by making the ends of the line of play add up to a multiple of five or three, depending on the game.
    • -
    • Try to use your doubles wisely, as they can be powerful or risky depending on the game.
    • -
    -

    Is playing dominoes online legal?

    -

    Playing dominoes online for fun is legal in most countries, as it is considered a game of skill and not gambling. However, playing dominoes online for real money may be illegal in some jurisdictions, as it may be considered a form of gambling. You should check the laws and regulations of your country before you play dominoes online for real money. You should also be careful about the websites or apps that you use, as some of them may be fraudulent or scamming. You should only use reputable and licensed websites or apps that have good reviews and ratings.

    -

    Can I play dominoes online with my friends?

    -

    Yes, you can play dominoes online with your friends. You can either invite them to join a website or app that offers domino indir, or create a private room or table where you can play with them exclusively. You can also chat with them while playing, and send them gifts or messages. Playing dominoes online with your friends can be a great way to have fun and socialize.

    401be4b1e0
    -
    -
    \ No newline at end of file diff --git a/spaces/simple0urra/skops-model-card-creator-2a23515a-d54e-4804-b365-27ed6e938735/example/Download Evertale Mod APK and Join the Epic Monster Battles on Android.md b/spaces/simple0urra/skops-model-card-creator-2a23515a-d54e-4804-b365-27ed6e938735/example/Download Evertale Mod APK and Join the Epic Monster Battles on Android.md deleted file mode 100644 index d5f919c157b56bff01b2c7cd9b225157d76b3708..0000000000000000000000000000000000000000 --- a/spaces/simple0urra/skops-model-card-creator-2a23515a-d54e-4804-b365-27ed6e938735/example/Download Evertale Mod APK and Join the Epic Monster Battles on Android.md +++ /dev/null @@ -1,79 +0,0 @@ -
    -

    Evertale Mod Apk Free Download: Enjoy a Breathtaking Fantasy RPG with Unlimited Benefits

    -

    If you are a fan of fantasy RPG games, you might have heard of Evertale, a game that has been compared to Pokémon due to its fighting style and monster-catching mechanics. Evertale is a game that takes you to the fantasy world of Erden, where you have to save it from the ancient curse of Pandemonium. You can explore sprawling landscapes, bustling cities, and mythical dungeons, as well as collect, train, and evolve over 180 monsters and heroes. You can also join online events, PvP leagues, and guilds with other players.

    -

    Evertale is a premium game that costs $0.99 to download from the Google Play Store or the App Store. However, if you want to enjoy more benefits and features in the game, you might want to try Evertale mod apk free download. This is a modified version of the game that gives you unlimited advantages and access to premium content without spending any money. In this article, we will tell you what are the benefits of using Evertale mod apk and how to download it safely and easily.

    -

    evertale mod apk free download


    Download Ziphttps://ssurll.com/2uNQJB



    -

    Benefit 1: Unlimited Soul Stones and Free Shopping

    -

    One of the main benefits of using Evertale mod apk is that you will get unlimited soul stones, which are the premium currency in the game. You can use soul stones to buy rare monsters, weapons, accessories, items, and more from the shop. You can also use them to summon new characters or upgrade your existing ones. With unlimited soul stones, you can build your dream team without any limitations.

    -

    Another benefit of using Evertale mod apk is that you will get free shopping in the game. This means that you can buy anything from the shop without spending any soul stones or gold coins. You can also unlock all the locked content in the game for free. This way, you can enjoy the full potential of the game without any restrictions.

    -

    Benefit 2: Access to Premium Features and Mod Menu

    -

    Evertale mod apk also gives you access to premium features that are normally only available for paying users. For example, you can get unlimited offline rewards, which are rewards that you can claim when you log in after being offline for a while. You can also get unlimited mana points, which are used to perform skills in battle. You can also get unlimited team cost, which means that you can have any number of units in your team regardless of their cost.

    -

    Another feature that Evertale mod apk offers is a mod menu that lets you customize your game experience according to your preferences. You can enable or disable various options in the mod menu, such as god mode, one-hit kill, auto-win, no cooldown, no ads, and more. You can also adjust the speed of the game or skip battles if you want. The mod menu gives you full control over your game play.

    -

    Benefit 3: Enhanced Graphics and Performance

    -

    Evertale mod apk also improves the graphics and performance of the game. The game has stunning visuals and animations that make it look like an anime. However, some devices may not be able to run the game smoothly or at high settings. With Evertale mod apk, you can enjoy the game at its best quality without any lag or glitches. The game will run faster and smoother on your device.

    -

    Evertale mod apk also reduces the size of the game file and removes unnecessary data that may take up space on your device. This way, you can save storage space and battery life while playing the game.

    -

    Download Link: How to Download Evertale Mod Apk

    -

    If you are interested in downloading Evertale mod apk free download, you can follow these simple steps:

    -

    evertale mod apk unlimited soul stones free download
    -evertale mod apk latest version free download
    -evertale mod apk offline free download
    -evertale mod apk android 1 free download
    -evertale mod apk no root free download
    -evertale mod apk unlimited money free download
    -evertale mod apk god mode free download
    -evertale mod apk revdl free download
    -evertale mod apk rexdl free download
    -evertale mod apk happymod free download
    -evertale mod apk 2.0.85 free download
    -evertale mod apk 2023 free download
    -evertale mod apk unlimited gems free download
    -evertale mod apk unlimited everything free download
    -evertale mod apk unlocked all characters free download
    -evertale mod apk unlimited capture stones free download
    -evertale mod apk unlimited gold free download
    -evertale mod apk unlimited coins free download
    -evertale mod apk unlimited mana free download
    -evertale mod apk unlimited energy free download
    -evertale mod apk one hit kill free download
    -evertale mod apk high damage free download
    -evertale mod apk mega mod free download
    -evertale mod apk premium unlocked free download
    -evertale mod apk full version free download
    -evertale mod apk obb free download
    -evertale mod apk data free download
    -evertale mod apk file free download
    -evertale mod apk direct link free download
    -evertale mod apk mirror link free download
    -evertale mod apk mediafire link free download
    -evertale mod apk google drive link free download
    -evertale mod apk dropbox link free download
    -evertale mod apk zippyshare link free download
    -evertale mod apk for pc free download
    -evertale mod apk for ios free download
    -evertale mod apk for iphone free download
    -evertale mod apk for ipad free download
    -evertale mod apk for mac free download
    -evertale mod apk for windows 10 free download
    -how to install evertale mod apk free download
    -how to play evertale mod apk free download
    -how to update evertale mod apk free download
    -how to hack evertale with mod apk free download
    -how to get evertale premium for free with mod apk

    -
      -
    1. Click on this link [5](https://play.google.com/store/apps/details?id=com - Click on this link [1](https://apkdone.com/evertale/) to go to the download page of Evertale mod apk. This is a safe and reliable site that provides the latest version of the mod apk. - Scroll down and find the download button. Tap on it and wait for the download to start. You may need to allow unknown sources in your device settings to install the mod apk. - Once the download is complete, locate the mod apk file in your file manager and tap on it to install it. Follow the instructions on the screen and wait for the installation to finish. - Launch the game and enjoy Evertale mod apk with unlimited benefits and features.

      Conclusion: Try Evertale Mod Apk Today

      -

      Evertale is a fantastic fantasy RPG game that will keep you hooked for hours. You can explore a vast world, collect and train monsters, join online events, and more. However, if you want to have more fun and advantages in the game, you should try Evertale mod apk free download. This is a modified version of the game that gives you unlimited soul stones, free shopping, access to premium features, enhanced graphics, and more. You can download Evertale mod apk from a safe and reliable link and install it easily on your device. You can then enjoy the game at its best quality without any limitations or costs.

      -

      If you are ready to experience Evertale like never before, download Evertale mod apk today and see for yourself how amazing it is.

      -

      FAQs: Frequently Asked Questions About Evertale Mod Apk

      -

      Here are some of the most common questions that people ask about Evertale mod apk:

      -

      Q: Is Evertale mod apk safe to use?

      -

      A: Yes, Evertale mod apk is safe to use as long as you download it from a trusted source. We have provided a link to a reputable site that offers the latest version of the mod apk. You can also scan the mod apk file with an antivirus app before installing it to ensure its safety.

      -

      Q: Do I need to root or jailbreak my device to use Evertale mod apk?

      -

      A: No, you do not need to root or jailbreak your device to use Evertale mod apk. The mod apk works on both rooted and non-rooted devices without any problems.

      -

      Q: Will I get banned from the game if I use Evertale mod apk?

      -

      A: There is a low risk of getting banned from the game if you use Evertale mod apk. However, you should use it at your own discretion and avoid abusing the mod features. You should also not use the mod apk in online modes or events, as this may trigger the anti-cheat system of the game.

      -

      Q: How do I update Evertale mod apk?

      -

      A: To update Evertale mod apk, you need to download the latest version of the mod apk from the same link that we have provided. You can then install it over the existing one without losing your data or progress.

      -

      Q: Can I play Evertale mod apk offline?

      -

      A: Yes, you can play Evertale mod apk offline without any internet connection. However, some features and content may not be available in offline mode, such as online events, PvP leagues, guilds, etc.

      401be4b1e0
      -
      -
      \ No newline at end of file diff --git a/spaces/simple0urra/skops-model-card-creator-2a23515a-d54e-4804-b365-27ed6e938735/example/Download Lagu Dangdut Terbaru 2023 Full Album MP3 Update Setiap Hari.md b/spaces/simple0urra/skops-model-card-creator-2a23515a-d54e-4804-b365-27ed6e938735/example/Download Lagu Dangdut Terbaru 2023 Full Album MP3 Update Setiap Hari.md deleted file mode 100644 index 3952510f8a1741888b40778db01e46ea77dd07a4..0000000000000000000000000000000000000000 --- a/spaces/simple0urra/skops-model-card-creator-2a23515a-d54e-4804-b365-27ed6e938735/example/Download Lagu Dangdut Terbaru 2023 Full Album MP3 Update Setiap Hari.md +++ /dev/null @@ -1,129 +0,0 @@ - -

      Download Lagu Dangdut Terbaru 2023 Full Album MP3

      -

      If you are a fan of dangdut music, you might be interested in downloading lagu dangdut terbaru 2023 full album mp3. Dangdut is a popular genre of Indonesian music that combines elements of folk, Hindustani, Arabic, Malay, and Western music. It is known for its catchy rhythms, lively vocals, and diverse themes. In this article, we will explain what dangdut music is, why you should download lagu dangdut terbaru 2023 full album mp3, and how to do it easily and safely.

      -

      What is Dangdut Music?

      -

      Dangdut music is a genre of Indonesian music that originated from the fusion of various musical influences in the 1970s. It was initially popular among the working-class Muslim youth, but later gained wider appeal in Indonesia and other Southeast Asian countries. The name dangdut comes from the sound of the drum beat that characterizes the music.

      -

      download lagu dangdut terbaru 2023 full album mp3


      DOWNLOADhttps://ssurll.com/2uNYu0



      -

      The History and Characteristics of Dangdut Music

      -

      Dangdut music emerged as a result of the cultural exchange between Indonesia and other regions, especially India and the Middle East. It was influenced by the Indian film music, especially the songs of Mohammad Rafi and Lata Mangeshkar, as well as by the Arabic and Malay folk music. Some of the pioneers of dangdut music were Rhoma Irama, Elvy Sukaesih, Mansyur S, and Meggy Z.

      -

      Dangdut music typically uses instruments such as tabla, gendang, electric guitar, keyboard, and flute. It also features vocal styles such as melismatic singing, call-and-response, and improvisation. The lyrics of dangdut songs cover various topics, such as love, social issues, religion, humor, and politics. Some of the common themes are romance, heartbreak, betrayal, poverty, corruption, and nationalism.

      -

      The Variations and Subgenres of Dangdut Music

      -

      Dangdut music has evolved over time and has developed many variations and subgenres. Some of them are:

      -
        -
      • Dangdut koplo: A faster and more upbeat version of dangdut that incorporates elements of K-pop, rock, and reggae.
      • -
      • Dangdut campursari: A blend of dangdut and Javanese traditional music.
      • -
      • Dangdut melayu: A fusion of dangdut and Malay pop music.
      • -
      • Dangdut house: A combination of dangdut and house music.
      • -
      • Dangdut remix: A remix of dangdut songs with electronic beats and effects.
      • -
      -

      Why Download Lagu Dangdut Terbaru 2023 Full Album MP3?

      -

      Downloading lagu dangdut terbaru Downloading lagu dangdut terbaru 2023 full album mp3 is a great way to enjoy the latest and best dangdut songs in one package. There are many benefits of downloading lagu dangdut terbaru 2023 full album mp3, such as:

      The Benefits of Downloading Lagu Dangdut Terbaru 2023 Full Album MP3

      -
        -
      • You can save time and money by downloading the whole album instead of buying individual songs or CDs.
      • -
      • You can listen to the songs offline without any internet connection or streaming service.
      • -
      • You can create your own playlist and customize the order of the songs according to your preference.
      • -
      • You can share the songs with your friends and family via Bluetooth, email, or social media.
      • -
      • You can support the dangdut artists and producers by downloading their songs legally and ethically.
      • -
      -

      The Features and Quality of Lagu Dangdut Terbaru 2023 Full Album MP3

      -

      Lagu dangdut terbaru 2023 full album mp3 is not only convenient but also high-quality. Some of the features and quality of lagu dangdut terbaru 2023 full album mp3 are:

      -
        -
      • The songs are in MP3 format, which is compatible with most devices and players.
      • -
      • The songs are in high-resolution audio, which means they have clear sound and rich bass.
      • -
      • The songs are updated regularly, which means you can get the newest and hottest dangdut hits.
      • -
      • The songs are diverse and varied, which means you can enjoy different styles and genres of dangdut music.
      • -
      • The songs are original and authentic, which means they are not pirated or modified.
      • -
      -

      How to Download Lagu Dangdut Terbaru 2023 Full Album MP3?

      -

      Downloading lagu dangdut terbaru 2023 full album mp3 is easy and simple. You just need to follow these steps and tips:

      -

      The Steps and Tips to Download Lagu Dangdut Terbaru 2023 Full Album MP3

      -

      Step 1: Find a Reliable and Legal Website to Download Lagu Dangdut Terbaru 2023 Full Album MP3

      -

      The first step is to find a website that offers lagu dangdut terbaru 2023 full album mp3 for download. There are many websites that claim to provide this service, but not all of them are trustworthy and legitimate. Some of them may contain viruses, malware, or spyware that can harm your device or steal your personal information. Some of them may also violate the copyright laws and infringe the rights of the dangdut artists and producers.

      -

      To avoid these risks, you should look for a website that has the following features:

      -
        -
      • It has a good reputation and positive reviews from other users.
      • -
      • It has a secure and encrypted connection that protects your privacy and data.
      • -
      • It has a clear and transparent policy that states the terms and conditions of the service.
      • -
      • It has a reasonable and affordable price that matches the quality and quantity of the service.
      • -
      • It has a fast and smooth download process that does not require any registration or subscription.
      • -
      -

      Step 2: Choose the Lagu Dangdut Terbaru 2023 Full Album MP3 that You Want to Download

      -

      The second step is to choose the lagu dangdut terbaru 2023 full album mp3 that you want to download. You can browse through the website's catalog and select the album that suits your taste and mood. You can also search for a specific song or artist by using the website's search function. You can preview the songs by clicking on the play button before downloading them. You can also check the details of the songs, such as the title, artist, genre, duration, size, and quality.

      -

      Download lagu dangdut koplo terbaru 2023 full album mp3
      -Download lagu dangdut remix terbaru 2023 full album mp3
      -Download lagu dangdut lawas terbaru 2023 full album mp3
      -Download lagu dangdut terpopuler 2023 full album mp3
      -Download lagu dangdut original terbaru 2023 full album mp3
      -Download lagu dangdut terbaik 2023 full album mp3
      -Download lagu dangdut hits terbaru 2023 full album mp3
      -Download lagu dangdut new pallapa terbaru 2023 full album mp3
      -Download lagu dangdut om adella terbaru 2023 full album mp3
      -Download lagu dangdut monata terbaru 2023 full album mp3
      -Download lagu dangdut sera terbaru 2023 full album mp3
      -Download lagu dangdut campursari terbaru 2023 full album mp3
      -Download lagu dangdut rhoma irama terbaru 2023 full album mp3
      -Download lagu dangdut via vallen terbaru 2023 full album mp3
      -Download lagu dangdut nella kharisma terbaru 2023 full album mp3
      -Download lagu dangdut happy asmara terbaru 2023 full album mp3
      -Download lagu dangdut vita alvia terbaru 2023 full album mp3
      -Download lagu dangdut syahiba saufa terbaru 2023 full album mp3
      -Download lagu dangdut safira inema terbaru 2023 full album mp3
      -Download lagu dangdut jihan audy terbaru 2023 full album mp3
      -Download lagu dangdut yuni shara terbaru 2023 full album mp3
      -Download lagu dangdut ike nurjanah terbaru 2023 full album mp3
      -Download lagu dangdut evie tamala terbaru 2023 full album mp3
      -Download lagu dangdut elvy sukaesih terbaru 2023 full album mp3
      -Download lagu dangdut meggy z terbaru 2023 full album mp3
      -Download lagu dangdut mansyur s terbaru 2023 full album mp3
      -Download lagu dangdut hamdan att terbaru 2023 full album mp3
      -Download lagu dangdut caca handika terbaru 2023 full album mp3
      -Download lagu dangdut rita sugiarto terbaru 2023 full album mp3
      -Download lagu dangdut iis dahlia terbaru 2023 full album mp3
      -Download lagu dangdut inul daratista terbaru 2023 full album mp3
      -Download lagu dangdut dewi persik terbaru 2022 full album mp4

      -

      Step 3: Click on the Download Button and Wait for the Process to Complete

      -

      The third step is to click on the download button and wait for the process to complete. You will be directed to a download page where you can see the progress of the download. You may need to enter a captcha code or complete a survey to verify that you are a human and not a bot. You may also need to agree to the website's terms and conditions before proceeding with the download. Once the download is finished, you will see a confirmation message on your screen.

      -

      Step 4: Enjoy Listening to Lagu Dangdut Terbaru 2023 Full Album MP3 on Your Device

      -

      The final step is to enjoy listening to The final step is to enjoy listening to lagu dangdut terbaru 2023 full album mp3 on your device. You can transfer the downloaded files to your smartphone, tablet, laptop, or desktop. You can also use a USB flash drive, a memory card, or a cloud storage service to store and access the files. You can play the songs using any media player that supports mp3 format. You can also adjust the volume, equalizer, and playback settings to enhance your listening experience.

      Conclusion

      -

      Dangdut music is a genre of Indonesian music that combines elements of folk, Hindustani, Arabic, Malay, and Western music. It is known for its catchy rhythms, lively vocals, and diverse themes. Downloading lagu dangdut terbaru 2023 full album mp3 is a great way to enjoy the latest and best dangdut songs in one package. You can save time and money, listen to the songs offline, create your own playlist, share the songs with others, and support the dangdut artists and producers. To download lagu dangdut terbaru 2023 full album mp3, you just need to find a reliable and legal website, choose the album that you want to download, click on the download button, and wait for the process to complete. Then, you can enjoy listening to lagu dangdut terbaru 2023 full album mp3 on your device.

      -

      FAQs

      -

      Here are some frequently asked questions about downloading lagu dangdut terbaru 2023 full album mp3:

      -
        -
      1. What are some of the best websites to download lagu dangdut terbaru 2023 full album mp3?
      2. -

        Some of the best websites to download lagu dangdut terbaru 2023 full album mp3 are:

        -
          -
        • Lagu123.net: This website offers a large collection of dangdut songs from various artists and genres. You can download the songs for free and without registration.
        • -
        • Planetlagu.site: This website provides a wide range of dangdut songs from different eras and styles. You can download the songs easily and safely.
        • -
        • Musikmp4.com: This website features a variety of dangdut songs from popular and emerging artists. You can download the songs in high-quality mp3 format.
        • -
        -
      3. How can I convert lagu dangdut terbaru 2023 full album mp3 to other formats?
      4. -

        If you want to convert lagu dangdut terbaru 2023 full album mp3 to other formats, such as wav, m4a, or ogg, you can use an online converter tool, such as:

        -
          -
        • Online-audio-converter.com: This tool allows you to convert audio files to different formats and adjust the quality and settings.
        • -
        • Zamzar.com: This tool enables you to convert audio files to various formats and download them to your device or email.
        • -
        • Cloudconvert.com: This tool lets you convert audio files to different formats and save them to your cloud storage service.
        • -
        -
      5. How can I edit lagu dangdut terbaru 2023 full album mp3?
      6. -

        If you want to edit lagu dangdut terbaru 2023 full album mp3, such as cut, trim, merge, or add effects, you can use an online editor tool, such as:

        -
          -
        • Audacity: This tool is a free and open-source audio editor that allows you to edit audio files with various features and functions.
        • -
        • Twistedwave.com: This tool is an online audio editor that enables you to edit audio files with ease and speed.
        • -
        • Bearaudiotool.com: This tool is an online audio editor that lets you edit audio files with simplicity and convenience.
        • -
        -
      7. How can I burn lagu dangdut terbaru 2023 full album mp3 to a CD?
      8. -

        If you want to burn lagu dangdut terbaru 2023 full album mp3 to a CD, you can use a CD burner software, such as:

        -
          -
        • Nero Burning ROM: This software is a powerful and reliable CD burner that allows you to burn audio files to CDs with high quality and speed.
        • -
        • Ashampoo Burning Studio: This software is a user-friendly and versatile CD burner that enables you to burn audio files to CDs with ease and efficiency.
        • -
        • Burnaware Free: This software is a free and lightweight CD burner that lets you burn audio files to CDs with simplicity and accuracy.
        • -
        -
      9. How can I stream lagu dangdut terbaru 2023 full album mp3 online?
      10. -

        If you If you want to stream lagu dangdut terbaru 2023 full album mp3 online, you can use a streaming service, such as:

        -
          -
        • Spotify: This service is a popular and widely used streaming platform that offers a huge library of dangdut songs and albums. You can stream the songs for free with ads or subscribe to a premium plan for ad-free and offline listening.
        • -
        • Joox: This service is a leading and dedicated streaming platform for Asian music, including dangdut. You can stream the songs for free with limited skips or subscribe to a VIP plan for unlimited skips and downloads.
        • -
        • Langit Musik: This service is a local and exclusive streaming platform for Indonesian music, especially dangdut. You can stream the songs for free with data or subscribe to a premium plan for data-free and high-quality listening.
        • -
        -

        I hope this article has helped you learn more about dangdut music and how to download lagu dangdut terbaru 2023 full album mp3. If you have any questions or feedback, please feel free to leave a comment below. Thank you for reading and happy listening!

        197e85843d
        -
        -
        \ No newline at end of file diff --git a/spaces/simple0urra/skops-model-card-creator-2a23515a-d54e-4804-b365-27ed6e938735/example/Explore Create and Survive in Lokicraft 5 - The Professional 3D Version of LokiCraft.md b/spaces/simple0urra/skops-model-card-creator-2a23515a-d54e-4804-b365-27ed6e938735/example/Explore Create and Survive in Lokicraft 5 - The Professional 3D Version of LokiCraft.md deleted file mode 100644 index f339b678a5e22707d5923bb7f85bd0a1129f3c35..0000000000000000000000000000000000000000 --- a/spaces/simple0urra/skops-model-card-creator-2a23515a-d54e-4804-b365-27ed6e938735/example/Explore Create and Survive in Lokicraft 5 - The Professional 3D Version of LokiCraft.md +++ /dev/null @@ -1,133 +0,0 @@ - -

        How to Download Lokicraft 5 and Enjoy Endless Crafting Fun

        -

        If you are a fan of sandbox games, you might have heard of Lokicraft 5, a game that allows you to create your own world with blocks and explore it in various ways. In this article, we will tell you what Lokicraft 5 is, how to download it for your Android device, and how to play it with some tips and tricks. Let's get started!

        -

        What is Lokicraft 5?

        -

        A sandbox game inspired by Minecraft

        -

        Lokicraft 5 is a game developed by Denepa, a company that specializes in arcade games. It is inspired by Minecraft, one of the most popular sandbox games in the world. Like Minecraft, Lokicraft 5 lets you build structures from textured cubes in a 3D block world. You can also mine resources, craft tools, weapons, and items, and fight enemies. However, Lokicraft 5 has some unique features that make it different from Minecraft.

        -

        download lokicraft 5


        Download 🗸 https://ssurll.com/2uNT4P



        -

        Features of Lokicraft 5

        -

        Two game modes: creative and survival

        -

        Lokicraft 5 offers two game modes for you to choose from: creative and survival. In creative mode, you have unlimited resources and can build anything you want without any restrictions. You can also fly around the world and admire your creations. In survival mode, you have to gather resources, craft items, and defend yourself from hostile mobs. You also have to manage your hunger and health bars. Survival mode is more challenging and rewarding than creative mode.

        -

        Unlimited resources and tools

        -

        Lokicraft 5 has a huge variety of blocks and items for you to use in your world. You can find wood, stone, iron, gold, diamond, emerald, and more. You can also craft different tools, such as pickaxes, axes, shovels, swords, bows, and armor. You can use these tools to mine faster, chop trees, dig dirt, fight enemies, and protect yourself. You can also craft other items, such as beds, chests, furnaces, doors, ladders, torches, and more. You can use these items to decorate your buildings, store your belongings, cook food, sleep at night, and light up dark areas.

        -

        Beautiful 3D graphics and sounds

        -

        Lokicraft 5 has stunning 3D graphics that make the game look realistic and immersive. The game has different biomes, such as forests, deserts, mountains, oceans, and caves. Each biome has its own terrain, vegetation, animals, and weather. The game also has day and night cycles, sunsets and sunrises, rain and snow effects, and shadows and reflections. The game also has amazing sounds that enhance the gameplay experience. You can hear the sounds of blocks breaking, animals making noises, water flowing, fire crackling, monsters growling, and more.

        -

        How to Download Lokicraft 5 for Android Devices

        -

        Steps to download from Google Play Store

        -

        The easiest way to download Lokicraft 5 for your Android device is to use the Google Play Store app. Here are the steps to follow:

        -
          -
        1. Open the Google Play Store app on your device.
        2. -
        3. Search for "Lokicraft 5 Crafting" in the search bar.
        4. -
        5. Select the app from the list of results.
        6. -
        7. Tap on the "Install" button.
        8. -
        9. Wait for the app to download and install on your device.
        10. -
        11. Tap on the "Open" button to launch the app.
        12. -
        -

        Congratulations, you have successfully downloaded Lokicraft 5 from the Google Play Store!

        -

        Steps to download from APK file

        -

        If you cannot access the Google Play Store or prefer to download the app from another source, you can use an APK file. An APK file is a package file that contains the app's code, resources, and metadata. However, you need to enable the "Unknown sources" option on your device to install apps from APK files. Here are the steps to follow:

        -

        lokicraft 5 crafting app
        -lokicraft 5 gameplay walkthrough
        -lokicraft 5 free android game
        -lokicraft 5 creative mode
        -lokicraft 5 survival mode
        -lokicraft 5 build and destroy blocks
        -lokicraft 5 resources and tools
        -lokicraft 5 unique buildings
        -lokicraft 5 arcade game
        -lokicraft 5 denepa
        -how to download lokicraft 5
        -how to play lokicraft 5
        -how to install lokicraft 5
        -how to update lokicraft 5
        -how to uninstall lokicraft 5
        -download lokicraft 5 apk
        -download lokicraft 5 mod apk
        -download lokicraft 5 for pc
        -download lokicraft 5 for ios
        -download lokicraft 5 for windows
        -download lokicraft 5 latest version
        -download lokicraft 5 offline
        -download lokicraft 5 online
        -download lokicraft 5 multiplayer
        -download lokicraft 5 cheats
        -download lokicraft 5 hacks
        -download lokicraft 5 tips and tricks
        -download lokicraft 5 guide
        -download lokicraft 5 review
        -download lokicraft 5 rating
        -download lokicraft 5 from google play store
        -download lokicraft 5 from appbrain
        -download lokicraft 5 from youtube
        -download lokicraft 5 from apk pure
        -download lokicraft 5 from uptodown
        -best alternatives to download lokicraft 5
        -best sites to download lokicraft 5
        -best apps like download lokicraft 5
        -best games like download lokicraft 5
        -best videos about download lokicraft 5

        -
          -
        1. Go to a trusted website that provides APK files for Lokicraft 5, such as APKPure, APKMirror, or APKMonk.
        2. -
        3. Search for "Lokicraft 5 Crafting" in the website's search bar.
        4. -
        5. Select the app from the list of results.
        6. -
        7. Tap on the "Download APK" button.
        8. -
        9. Wait for the file to download on your device.
        10. -
        11. Open the file manager app on your device and locate the downloaded APK file.
        12. -
        13. Tap on the file to install it.
        14. -
        15. If prompted, allow the installation of apps from unknown sources.
        16. -
        17. Wait for the app to install on your device.
        18. -
        19. Tap on the app icon to launch it.
        20. -
        -

        Congratulations, you have successfully downloaded Lokicraft 5 from an APK file!

        -

        How to Play Lokicraft 5 on Your Device

        -

        Tips for creative mode

        -

        If you want to unleash your imagination and build anything you want, creative mode is for you. Here are some tips to help you enjoy creative mode:

        -
          -
        • Use the inventory menu to access all the blocks and items in the game. You can also search for specific items by typing their names in the search bar.
        • -
        • Use the fly button to toggle between flying and walking. Flying allows you to move faster and reach higher places.
        • -
        • Use the delete button to remove any block or item from your world. You can also use it to clear your inventory.
        • -
        • Use the save button to save your world and load it later. You can also share your world with other players by using the share button.
        • -
        • Use the settings button to customize your game options, such as sound, graphics, controls, and language.
        • -
        -

        Tips for survival mode

        -

        If you want to test your skills and survive in a harsh environment, survival mode is for you. Here are some tips to help you survive in survival mode:

        -
          -
        • Gather resources from your surroundings, such as wood, stone, coal, iron, and food. You can use them to craft tools, weapons, armor, and other items.
        • -
        • Craft a crafting table and a furnace to access more recipes and smelt ores. You can also craft a chest to store your items.
        • -
        • Build a shelter to protect yourself from enemies and weather. You can also craft a bed to sleep at night and set your spawn point.
        • -
        • Eat food to restore your hunger bar and heal your health bar. You can also cook food in a furnace or a campfire to make it more nutritious.
        • -
        • Fight enemies with weapons and armor. You can also use traps, turrets, or pets to help you in combat.
        • -
        -

        Conclusion

        -

        Lokicraft 5 is a fun and addictive game that lets you create and explore your own world with blocks. You can download it for your Android device from the Google Play Store or an APK file. You can also choose between two game modes: creative and survival. Creative mode lets you build anything you want with unlimited resources and no restrictions. Survival mode lets you gather resources, craft items, and defend yourself from enemies. Whether you prefer creative or survival mode, Lokicraft 5 will keep you entertained for hours. Download it now and enjoy endless crafting fun!

        -

        FAQs

        -

        What are the minimum requirements for Lokicraft 5?

        -

        Lokicraft 5 requires Android 4.4 or higher and at least 100 MB of free storage space on your device.

        -

        Is Lokicraft 5 free?

        -

        Lokicraft 5 is free to download and play. However, it contains ads that can be removed by purchasing the premium version of the game.

        -

        Is Lokicraft 5 multiplayer?

        -

        Lokicraft 5 does not support online multiplayer at the moment. However, you can play with your friends on local multiplayer by using the same Wi-Fi network. You can also share your worlds with other players by using the share button.

        -

        How can I contact the developer of Lokicraft 5?

        -

        If you have any questions, feedback, or suggestions for Lokicraft 5, you can contact the developer by sending an email to denepa@gmail.com. You can also follow them on Facebook and Twitter for the latest news and updates.

        -

        What are some alternatives to Lokicraft 5?

        -

        If you like Lokicraft 5, you might also enjoy these other sandbox games:

        - - - - - - - - - - - - - - - - - -
        NameDescription
        MinecraftThe original sandbox game that inspired Lokicraft 5. It has more features, modes, and customizations than Lokicraft 5, but it also costs money to download and play.
        RobloxA platform that lets you create and play millions of games made by other users. You can also chat and socialize with other players in a virtual world.
        TerrariaA 2D sandbox game that focuses on exploration, crafting, and combat. It has a vast world with different biomes, enemies, bosses, and items.

        401be4b1e0
        -
        -
        \ No newline at end of file diff --git a/spaces/simple0urra/skops-model-card-creator-2a23515a-d54e-4804-b365-27ed6e938735/example/GBMod.com 2020 APK A Must-Have Mod for Android Users.md b/spaces/simple0urra/skops-model-card-creator-2a23515a-d54e-4804-b365-27ed6e938735/example/GBMod.com 2020 APK A Must-Have Mod for Android Users.md deleted file mode 100644 index 936e42ea1a54413d04843d453f76406b2fc26460..0000000000000000000000000000000000000000 --- a/spaces/simple0urra/skops-model-card-creator-2a23515a-d54e-4804-b365-27ed6e938735/example/GBMod.com 2020 APK A Must-Have Mod for Android Users.md +++ /dev/null @@ -1,115 +0,0 @@ -
        -

        GBMod.com 2020 APK Download: Everything You Need to Know

        -

        If you are looking for a way to enhance your WhatsApp experience, you might have come across gbmod.com, a website that claims to offer a modified version of WhatsApp with more features and customization options. But what is gbmod.com exactly, and how can you download and install its 2020 apk file on your Android device? In this article, we will answer these questions and more, as well as discuss the benefits and risks of using gbmod.com 2020 apk file.

        -

        What is gbmod.com and what does it offer?

        -

        GBMod.com is a website that hosts a modified version of WhatsApp, called GBWhatsApp, which is developed by a third-party named GBWA. GBWhatsApp is not an official app from WhatsApp Inc., but rather a fan-made app that adds more features and customization options to the original WhatsApp app. Some of the features that GBWhatsApp offers include:

        -

        gbmod.com 2020 apk download


        Download Zip ::: https://ssurll.com/2uNRn6



        -
          -
        • Hide online status, blue ticks, second ticks, typing status, and recording status
        • -
        • Customize themes, fonts, colors, icons, and notifications
        • -
        • Send larger files, images, videos, and documents
        • -
        • Use multiple accounts of WhatsApp on the same device
        • -
        • Lock chats with fingerprint or pattern
        • -
        • Schedule messages to be sent later
        • -
        • Backup and restore chats without Google Drive
        • -
        • And many more
        • -
        -

        GBWhatsApp is updated regularly to fix bugs, improve performance, and add new features. The latest version of GBWhatsApp is 2020 apk file, which was released in December 2020. You can download it from gbmod.com or other websites that host apk files.

        -

        How to download and install gbmod.com 2020 apk file on Android devices

        -

        To download and install gbmod.com 2020 apk file on your Android device, you need to follow these steps:

        -
          -
        1. Go to your device settings and enable the option to install apps from unknown sources. This will allow you to install apps that are not from the Google Play Store.
        2. -
        3. Open your browser and go to gbmod.com or any other website that offers gbmod.com 2020 apk file. Tap on the download link and wait for the file to be downloaded.
        4. -
        5. Once the download is complete, open your file manager app and locate the gbmod.com 2020 apk file in your downloads folder. Tap on it and follow the instructions to install it.
        6. -
        7. After the installation is done, open GBWhatsApp and verify your phone number. You can also restore your chats from a previous backup if you have one.
        8. -
        9. Enjoy using GBWhatsApp with more features and customization options.
        10. -
        -

        What are the benefits of using gbmod.com 2020 apk file?

        -

        Using gbmod.com 2020 apk file can have some benefits for WhatsApp users who want more control and flexibility over their app. Some of the benefits are:

        -
          -
        • You can hide your online status, blue ticks, second ticks, typing status, and recording status from others. This can give you more privacy and avoid unwanted attention.
        • -
        • You can customize your app's appearance with themes, fonts, colors, icons, and notifications. This can make your app more attractive and personalized.
        • -
        • You can send larger files, images, videos, and documents without any compression or quality loss. This can save you time and bandwidth.
        • -
        • You can use multiple accounts of WhatsApp on the same device without any hassle. This can help you manage your personal and professional contacts separately.
        • -
        • You can lock your chats with fingerprint or pattern to prevent unauthorized access. This can enhance your security and protect your data.
        • -
        • You can schedule messages to be sent later at a specific time or date. This can help you remember important events or occasions.
        • -
        • You can backup and restore your chats without Google Drive.

          What are the risks of using gbmod.com 2020 apk file?

          -

          Using gbmod.com 2020 apk file can also have some risks for WhatsApp users who value their security and privacy. Some of the risks are:

          -
            -
          • You can expose your device to malware, viruses, or adware by downloading and installing gbmod.com 2020 apk file from unknown or untrusted sources. These malicious software can harm your device, steal your data, or show unwanted ads. To avoid this, you should always download gbmod.com 2020 apk file from reputable sites that scan and verify the apk files before publishing them .
          • -
          • You can violate the terms of service of WhatsApp by using gbmod.com 2020 apk file. WhatsApp does not allow the use of modified versions of its app, and it can detect and ban users who do so. If you are banned, you will lose access to your account and chats, and you will need to register again with a new phone number. To avoid this, you should always use the official version of WhatsApp from the Google Play Store.
          • -
          • You can compromise your privacy and security by using gbmod.com 2020 apk file. GBWhatsApp is not an official app from WhatsApp Inc., and it does not have the same level of encryption and protection as the original app. This means that your messages, calls, media, and data can be intercepted, read, or modified by third parties, such as hackers, governments, or GBWA itself. To avoid this, you should always use the official version of WhatsApp from the Google Play Store.
          • -
          -

          Conclusion: Is gbmod.com 2020 apk file worth trying?

          -

          GBMod.com 2020 apk file is a modified version of WhatsApp that offers more features and customization options than the original app. However, it also comes with some risks, such as malware, ban, and privacy breach. Therefore, you should weigh the pros and cons carefully before deciding to use it.

          -

          If you want to try gbmod.com 2020 apk file, you should download it from a reliable site that scans and verifies the apk files before publishing them. You should also backup your chats regularly and be ready to switch back to the official version of WhatsApp if you encounter any problems.

          -

          If you want to stay safe and secure, you should avoid gbmod.com 2020 apk file and use the official version of WhatsApp from the Google Play Store. You can also look for other alternatives that are more trustworthy and legitimate.

          -

          FAQs: Five common questions and answers about gbmod.com 2020 apk file

          -
            -
          1. What is the difference between GBWhatsApp and WhatsApp Plus?
            -GBWhatsApp and WhatsApp Plus are both modified versions of WhatsApp that offer more features and customization options than the original app. However, they are developed by different teams and have some differences in their design and functionality. For example, GBWhatsApp has more themes and fonts than WhatsApp Plus, while WhatsApp Plus has more emoticons and stickers than GBWhatsApp.
          2. -
          3. How can I update gbmod.com 2020 apk file?
            -You can update gbmod.com 2020 apk file by downloading the latest version of GBWhatsApp from gbmod.com or other websites that host apk files. You can also check for updates within the app by going to Settings > Updates > Check for updates. However, you should always backup your chats before updating to avoid losing any data.
          4. -
          5. How can I restore my chats from gbmod.com 2020 apk file?
            -You can restore your chats from gbmod.com 2020 apk file by using the built-in backup and restore feature of GBWhatsApp. You can backup your chats by going to Settings > Chats > Chat backup > Backup. You can restore your chats by going to Settings > Chats > Chat backup > Restore. However, you should note that this feature does not use Google Drive, so you will need enough storage space on your device or SD card.
          6. -
          7. How can I uninstall gbmod.com 2020 apk file?
            -You can uninstall gbmod.com 2020 apk file by following these steps:
              -
            • Go to your device settings and tap on Apps or Applications.
            • -
            • Find GBWhatsApp and tap on it.
            • -
            • Tap on Uninstall and confirm your action.
            • -
            • Delete any leftover files or folders related to GBWhatsApp on your device or SD card.
            • -
          8. -
          9. How can I contact GBWA for support or feedback?
            -You can contact GBWA for support or feedback by using their official website or social media accounts. You can also use the contact form within the app by going to Settings > Contact us. However, you should note that GBWA is not an official app from WhatsApp Inc., and it does not have any affiliation or endorsement from them. Therefore, you should not expect any official support or feedback from WhatsApp Inc.
          10. -
          -

          -

          Thank you for reading this article. I hope you found it helpful and informative. If you have any questions or comments, please feel free to leave them below. I would love to hear from you.

          -

          gbmod.com 2020 apk download latest version
          -gbmod.com 2020 apk download for android
          -gbmod.com 2020 apk download free
          -gbmod.com 2020 apk download no ads
          -gbmod.com 2020 apk download update
          -gbmod.com 2020 apk download modded
          -gbmod.com 2020 apk download offline
          -gbmod.com 2020 apk download premium
          -gbmod.com 2020 apk download cracked
          -gbmod.com 2020 apk download pro
          -gbmod.com 2020 apk download whatsapp
          -gbmod.com 2020 apk download gbwhatsapp
          -gbmod.com 2020 apk download whatsapp plus
          -gbmod.com 2020 apk download whatsapp mod
          -gbmod.com 2020 apk download whatsapp latest
          -gbmod.com 2020 apk download whatsapp no last seen
          -gbmod.com 2020 apk download whatsapp dual account
          -gbmod.com 2020 apk download whatsapp features
          -gbmod.com 2020 apk download whatsapp privacy
          -gbmod.com 2020 apk download whatsapp themes
          -gbmod.com 2020 apk download whatsapp stickers
          -gbmod.com 2020 apk download whatsapp status
          -gbmod.com 2020 apk download whatsapp backup
          -gbmod.com 2020 apk download whatsapp restore
          -gbmod.com 2020 apk download whatsapp transfer
          -gbmod.com 2020 apk download whatsapp web
          -gbmod.com 2020 apk download whatsapp desktop
          -gbmod.com 2020 apk download whatsapp video call
          -gbmod.com 2020 apk download whatsapp voice call
          -gbmod.com 2020 apk download whatsapp group chat
          -gbmod.com 2020 apk download whatsapp broadcast
          -gbmod.com 2020 apk download whatsapp business
          -gbmod.com 2020 apk download whatsapp security
          -gbmod.com 2020 apk download whatsapp verification
          -gbmod.com 2020 apk download whatsapp contacts
          -gbmod.com 2020 apk download whatsapp messages
          -gbmod.com 2020 apk download whatsapp media
          -gbmod.com 2020 apk download whatsapp emoji
          -gbmod.com 2020 apk download whatsapp fonts
          -gbmod.com 2020 apk download whatsapp language
          -gbmod.com 2020 apk download whatsapp notification
          -gbmod.com 2020 apk download whatsapp settings
          -gbmod.com 2020 apk download whatsapp tips and tricks
          -gbmod.com 2020 apk download whatsapp faq and support
          -gbmod.com 2020 apk download alternative apps
          -gbmod.com 2020 apk download reviews and ratings
          -gbmod.com 2020 apk download how to install and use

          401be4b1e0
          -
          -
          \ No newline at end of file diff --git a/spaces/simsantonioii/MusicGen-Continuation/audiocraft/utils/utils.py b/spaces/simsantonioii/MusicGen-Continuation/audiocraft/utils/utils.py deleted file mode 100644 index 86e1448d065fa182ca69aae00d2f2a7eea55d8a4..0000000000000000000000000000000000000000 --- a/spaces/simsantonioii/MusicGen-Continuation/audiocraft/utils/utils.py +++ /dev/null @@ -1,234 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from concurrent.futures import ProcessPoolExecutor -from functools import wraps -import hashlib -import logging -import typing as tp - -import flashy -import flashy.distrib -import omegaconf -import torch -from torch.nn.utils.rnn import pad_sequence - - -logger = logging.getLogger(__name__) - - -def dict_from_config(cfg: omegaconf.DictConfig) -> dict: - """Convenience function to map an omegaconf configuration to a dictionary. - - Args: - cfg (omegaconf.DictConfig): Original configuration to map to dict. - Returns: - dict: Config as dictionary object. - """ - dct = omegaconf.OmegaConf.to_container(cfg, resolve=True) - assert isinstance(dct, dict) - return dct - - -def random_subset(dataset, max_samples: int, seed: int = 42) -> torch.utils.data.Subset: - if max_samples >= len(dataset): - return dataset - - generator = torch.Generator().manual_seed(seed) - perm = torch.randperm(len(dataset), generator=generator) - return torch.utils.data.Subset(dataset, perm[:max_samples].tolist()) - - -def get_loader(dataset, num_samples: tp.Optional[int], batch_size: int, - num_workers: int, seed: int, **kwargs) -> torch.utils.data.DataLoader: - """Convenience function to load dataset into a dataloader with optional subset sampling. - - Args: - dataset: Dataset to load. - num_samples (Optional[int]): Number of samples to limit subset size. - batch_size (int): Batch size. - num_workers (int): Number of workers for data loading. - seed (int): Random seed. - """ - if num_samples is not None: - dataset = random_subset(dataset, num_samples, seed) - - dataloader = flashy.distrib.loader( - dataset, - batch_size=batch_size, - num_workers=num_workers, - **kwargs - ) - return dataloader - - -def get_dataset_from_loader(dataloader): - dataset = dataloader.dataset - if isinstance(dataset, torch.utils.data.Subset): - return dataset.dataset - else: - return dataset - - -def multinomial(input: torch.Tensor, num_samples: int, replacement=False, *, generator=None): - """torch.multinomial with arbitrary number of dimensions, and number of candidates on the last dimension. - - Args: - input (torch.Tensor): The input tensor containing probabilities. - num_samples (int): Number of samples to draw. - replacement (bool): Whether to draw with replacement or not. - Keywords args: - generator (torch.Generator): A pseudorandom number generator for sampling. - Returns: - torch.Tensor: Last dimension contains num_samples indices - sampled from the multinomial probability distribution - located in the last dimension of tensor input. - """ - input_ = input.reshape(-1, input.shape[-1]) - output_ = torch.multinomial(input_, num_samples=num_samples, replacement=replacement, generator=generator) - output = output_.reshape(*list(input.shape[:-1]), -1) - return output - - -def sample_top_k(probs: torch.Tensor, k: int) -> torch.Tensor: - """Sample next token from top K values along the last dimension of the input probs tensor. - - Args: - probs (torch.Tensor): Input probabilities with token candidates on the last dimension. - k (int): The k in “top-k”. - Returns: - torch.Tensor: Sampled tokens. - """ - top_k_value, _ = torch.topk(probs, k, dim=-1) - min_value_top_k = top_k_value[..., [-1]] - probs *= (probs >= min_value_top_k).float() - probs.div_(probs.sum(dim=-1, keepdim=True)) - next_token = multinomial(probs, num_samples=1) - return next_token - - -def sample_top_p(probs: torch.Tensor, p: float) -> torch.Tensor: - """Sample next token from top P probabilities along the last dimension of the input probs tensor. - - Args: - probs (torch.Tensor): Input probabilities with token candidates on the last dimension. - p (int): The p in “top-p”. - Returns: - torch.Tensor: Sampled tokens. - """ - probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) - probs_sum = torch.cumsum(probs_sort, dim=-1) - mask = probs_sum - probs_sort > p - probs_sort *= (~mask).float() - probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) - next_token = multinomial(probs_sort, num_samples=1) - next_token = torch.gather(probs_idx, -1, next_token) - return next_token - - -class DummyPoolExecutor: - """Dummy pool executor to use when we actually have only 1 worker. - (e.g. instead of ProcessPoolExecutor). - """ - class DummyResult: - def __init__(self, func, *args, **kwargs): - self.func = func - self.args = args - self.kwargs = kwargs - - def result(self): - return self.func(*self.args, **self.kwargs) - - def __init__(self, workers, mp_context=None): - pass - - def submit(self, func, *args, **kwargs): - return DummyPoolExecutor.DummyResult(func, *args, **kwargs) - - def __enter__(self): - return self - - def __exit__(self, exc_type, exc_value, exc_tb): - return - - -def get_pool_executor(num_workers: int, mp_context=None): - return ProcessPoolExecutor(num_workers, mp_context) if num_workers > 1 else DummyPoolExecutor(1) - - -def length_to_mask(lengths: torch.Tensor, max_len: tp.Optional[int] = None) -> torch.Tensor: - """Utility function to convert a tensor of sequence lengths to a mask (useful when working on padded sequences). - For example: [3, 5] => [[1, 1, 1, 0, 0], [1, 1, 1, 1, 1]] - - Args: - lengths (torch.Tensor): tensor with lengths - max_len (int): can set the max length manually. Defaults to None. - Returns: - torch.Tensor: mask with 0s where there is pad tokens else 1s - """ - assert len(lengths.shape) == 1, "Length shape should be 1 dimensional." - final_length = lengths.max().item() if not max_len else max_len - final_length = max(final_length, 1) # if all seqs are of len zero we don't want a zero-size tensor - return torch.arange(final_length)[None, :].to(lengths.device) < lengths[:, None] - - -def hash_trick(word: str, vocab_size: int) -> int: - """Hash trick to pair each word with an index - - Args: - word (str): word we wish to convert to an index - vocab_size (int): size of the vocabulary - Returns: - int: index of the word in the embedding LUT - """ - hash = int(hashlib.sha256(word.encode("utf-8")).hexdigest(), 16) - return hash % vocab_size - - -def with_rank_rng(base_seed: int = 1234): - """Decorator for a function so that the function will use a Random Number Generator - whose state depend on the GPU rank. The original RNG state is restored upon returning. - - Args: - base_seed (int): Random seed. - """ - def _decorator(fun: tp.Callable): - @wraps(fun) - def _decorated(*args, **kwargs): - state = torch.get_rng_state() - seed = base_seed ^ flashy.distrib.rank() - torch.manual_seed(seed) - logger.debug('Rank dependent seed set to %d', seed) - try: - return fun(*args, **kwargs) - finally: - torch.set_rng_state(state) - logger.debug('RNG state restored.') - return _decorated - return _decorator - - -def collate(tensors: tp.List[torch.Tensor], dim: int = 0) -> tp.Tuple[torch.Tensor, torch.Tensor]: - """Get a list of tensors and collate them to a single tensor. according to the following logic: - - `dim` specifies the time dimension which will be stacked and padded. - - The output will contain 1 new dimension (dimension index 0) which will be the size of - of the original list. - - Args: - tensors (tp.List[torch.Tensor]): List of tensors to collate. - dim (int): Dimension which will be stacked and padded. - Returns: - tp.Tuple[torch.Tensor, torch.Tensor]: - torch.Tensor: Stacked and padded tensor. The output will contain 1 new dimension - (dimension index 0) which will be the size of the original list. - torch.Tensor: Tensor containing length of original tensor sizes (without padding). - """ - tensors = [x.transpose(0, dim) for x in tensors] - lens = torch.LongTensor([len(x) for x in tensors]) - padded_tensors = pad_sequence(tensors) - padded_tensors = padded_tensors.transpose(0, 1) - padded_tensors = padded_tensors.transpose(1, dim + 1) - return padded_tensors, lens diff --git a/spaces/sinz2002/ChuanhuChatGPT/modules/presets.py b/spaces/sinz2002/ChuanhuChatGPT/modules/presets.py deleted file mode 100644 index 969f122198a360f8c3eb126b156d056ab81d53e1..0000000000000000000000000000000000000000 --- a/spaces/sinz2002/ChuanhuChatGPT/modules/presets.py +++ /dev/null @@ -1,222 +0,0 @@ -# -*- coding:utf-8 -*- -import os -from pathlib import Path -import gradio as gr -from .webui_locale import I18nAuto - -i18n = I18nAuto() # internationalization - -CHATGLM_MODEL = None -CHATGLM_TOKENIZER = None -LLAMA_MODEL = None -LLAMA_INFERENCER = None - -# ChatGPT 设置 -INITIAL_SYSTEM_PROMPT = "You are a helpful assistant." -API_HOST = "api.openai.com" -COMPLETION_URL = "https://api.openai.com/v1/chat/completions" -BALANCE_API_URL="https://api.openai.com/dashboard/billing/credit_grants" -USAGE_API_URL="https://api.openai.com/dashboard/billing/usage" -HISTORY_DIR = Path("history") -HISTORY_DIR = "history" -TEMPLATES_DIR = "templates" - -# 错误信息 -STANDARD_ERROR_MSG = i18n("☹️发生了错误:") # 错误信息的标准前缀 -GENERAL_ERROR_MSG = i18n("获取对话时发生错误,请查看后台日志") -ERROR_RETRIEVE_MSG = i18n("请检查网络连接,或者API-Key是否有效。") -CONNECTION_TIMEOUT_MSG = i18n("连接超时,无法获取对话。") # 连接超时 -READ_TIMEOUT_MSG = i18n("读取超时,无法获取对话。") # 读取超时 -PROXY_ERROR_MSG = i18n("代理错误,无法获取对话。") # 代理错误 -SSL_ERROR_PROMPT = i18n("SSL错误,无法获取对话。") # SSL 错误 -NO_APIKEY_MSG = i18n("API key为空,请检查是否输入正确。") # API key 长度不足 51 位 -NO_INPUT_MSG = i18n("请输入对话内容。") # 未输入对话内容 -BILLING_NOT_APPLICABLE_MSG = i18n("账单信息不适用") # 本地运行的模型返回的账单信息 - -TIMEOUT_STREAMING = 60 # 流式对话时的超时时间 -TIMEOUT_ALL = 200 # 非流式对话时的超时时间 -ENABLE_STREAMING_OPTION = True # 是否启用选择选择是否实时显示回答的勾选框 -HIDE_MY_KEY = False # 如果你想在UI中隐藏你的 API 密钥,将此值设置为 True -CONCURRENT_COUNT = 100 # 允许同时使用的用户数量 - -SIM_K = 5 -INDEX_QUERY_TEMPRATURE = 1.0 - -CHUANHU_TITLE = i18n("川虎Chat 🚀") - -CHUANHU_DESCRIPTION = i18n("由Bilibili [土川虎虎虎](https://space.bilibili.com/29125536) 和 [明昭MZhao](https://space.bilibili.com/24807452)开发
          访问川虎Chat的 [GitHub项目](https://github.com/GaiZhenbiao/ChuanhuChatGPT) 下载最新版脚本") - -FOOTER = """
          {versions}
          """ - -APPEARANCE_SWITCHER = """ -
          -"""+ i18n("切换亮暗色主题") + """ - -
          -""" - -SUMMARIZE_PROMPT = "你是谁?我们刚才聊了什么?" # 总结对话时的 prompt - -ONLINE_MODELS = [ - "gpt-3.5-turbo", - "gpt-3.5-turbo-0301", - "gpt-4", - "gpt-4-0314", - "gpt-4-32k", - "gpt-4-32k-0314", - "xmchat", -] - -LOCAL_MODELS = [ - "chatglm-6b", - "chatglm-6b-int4", - "chatglm-6b-int4-qe", - "llama-7b-hf", - "llama-13b-hf", - "llama-30b-hf", - "llama-65b-hf" -] - -if os.environ.get('HIDE_LOCAL_MODELS', 'false') == 'true': - MODELS = ONLINE_MODELS -else: - MODELS = ONLINE_MODELS + LOCAL_MODELS - -DEFAULT_MODEL = 0 - -os.makedirs("models", exist_ok=True) -os.makedirs("lora", exist_ok=True) -os.makedirs("history", exist_ok=True) -for dir_name in os.listdir("models"): - if os.path.isdir(os.path.join("models", dir_name)): - if dir_name not in MODELS: - MODELS.append(dir_name) - -MODEL_TOKEN_LIMIT = { - "gpt-3.5-turbo": 4096, - "gpt-3.5-turbo-0301": 4096, - "gpt-4": 8192, - "gpt-4-0314": 8192, - "gpt-4-32k": 32768, - "gpt-4-32k-0314": 32768 -} - -TOKEN_OFFSET = 1000 # 模型的token上限减去这个值,得到软上限。到达软上限之后,自动尝试减少token占用。 -DEFAULT_TOKEN_LIMIT = 3000 # 默认的token上限 -REDUCE_TOKEN_FACTOR = 0.5 # 与模型token上限想乘,得到目标token数。减少token占用时,将token占用减少到目标token数以下。 - -REPLY_LANGUAGES = [ - "简体中文", - "繁體中文", - "English", - "日本語", - "Español", - "Français", - "Deutsch", - "跟随问题语言(不稳定)" -] - - -WEBSEARCH_PTOMPT_TEMPLATE = """\ -Web search results: - -{web_results} -Current date: {current_date} - -Instructions: Using the provided web search results, write a comprehensive reply to the given query. Make sure to cite results using [[number](URL)] notation after the reference. If the provided search results refer to multiple subjects with the same name, write separate answers for each subject. -Query: {query} -Reply in {reply_language} -""" - -PROMPT_TEMPLATE = """\ -Context information is below. ---------------------- -{context_str} ---------------------- -Current date: {current_date}. -Using the provided context information, write a comprehensive reply to the given query. -Make sure to cite results using [number] notation after the reference. -If the provided context information refer to multiple subjects with the same name, write separate answers for each subject. -Use prior knowledge only if the given context didn't provide enough information. -Answer the question: {query_str} -Reply in {reply_language} -""" - -REFINE_TEMPLATE = """\ -The original question is as follows: {query_str} -We have provided an existing answer: {existing_answer} -We have the opportunity to refine the existing answer -(only if needed) with some more context below. ------------- -{context_msg} ------------- -Given the new context, refine the original answer to better -Reply in {reply_language} -If the context isn't useful, return the original answer. -""" - -ALREADY_CONVERTED_MARK = "" - -small_and_beautiful_theme = gr.themes.Soft( - primary_hue=gr.themes.Color( - c50="#02C160", - c100="rgba(2, 193, 96, 0.2)", - c200="#02C160", - c300="rgba(2, 193, 96, 0.32)", - c400="rgba(2, 193, 96, 0.32)", - c500="rgba(2, 193, 96, 1.0)", - c600="rgba(2, 193, 96, 1.0)", - c700="rgba(2, 193, 96, 0.32)", - c800="rgba(2, 193, 96, 0.32)", - c900="#02C160", - c950="#02C160", - ), - secondary_hue=gr.themes.Color( - c50="#576b95", - c100="#576b95", - c200="#576b95", - c300="#576b95", - c400="#576b95", - c500="#576b95", - c600="#576b95", - c700="#576b95", - c800="#576b95", - c900="#576b95", - c950="#576b95", - ), - neutral_hue=gr.themes.Color( - name="gray", - c50="#f9fafb", - c100="#f3f4f6", - c200="#e5e7eb", - c300="#d1d5db", - c400="#B2B2B2", - c500="#808080", - c600="#636363", - c700="#515151", - c800="#393939", - c900="#272727", - c950="#171717", - ), - radius_size=gr.themes.sizes.radius_sm, - ).set( - button_primary_background_fill="#06AE56", - button_primary_background_fill_dark="#06AE56", - button_primary_background_fill_hover="#07C863", - button_primary_border_color="#06AE56", - button_primary_border_color_dark="#06AE56", - button_primary_text_color="#FFFFFF", - button_primary_text_color_dark="#FFFFFF", - button_secondary_background_fill="#F2F2F2", - button_secondary_background_fill_dark="#2B2B2B", - button_secondary_text_color="#393939", - button_secondary_text_color_dark="#FFFFFF", - # background_fill_primary="#F7F7F7", - # background_fill_primary_dark="#1F1F1F", - block_title_text_color="*primary_500", - block_title_background_fill="*primary_100", - input_background_fill="#F6F6F6", - ) diff --git a/spaces/sneedium/dvatch_captcha_sneedium_old/modules/model_alignment.py b/spaces/sneedium/dvatch_captcha_sneedium_old/modules/model_alignment.py deleted file mode 100644 index 0405c228b3339e5ba0835c33ba56844831c06057..0000000000000000000000000000000000000000 --- a/spaces/sneedium/dvatch_captcha_sneedium_old/modules/model_alignment.py +++ /dev/null @@ -1,34 +0,0 @@ -import torch -import torch.nn as nn -from fastai.vision import * - -from modules.model import Model, _default_tfmer_cfg - - -class BaseAlignment(Model): - def __init__(self, config): - super().__init__(config) - d_model = ifnone(config.model_alignment_d_model, _default_tfmer_cfg['d_model']) - - self.loss_weight = ifnone(config.model_alignment_loss_weight, 1.0) - self.max_length = config.dataset_max_length + 1 # additional stop token - self.w_att = nn.Linear(2 * d_model, d_model) - self.cls = nn.Linear(d_model, self.charset.num_classes) - - def forward(self, l_feature, v_feature): - """ - Args: - l_feature: (N, T, E) where T is length, N is batch size and d is dim of model - v_feature: (N, T, E) shape the same as l_feature - l_lengths: (N,) - v_lengths: (N,) - """ - f = torch.cat((l_feature, v_feature), dim=2) - f_att = torch.sigmoid(self.w_att(f)) - output = f_att * v_feature + (1 - f_att) * l_feature - - logits = self.cls(output) # (N, T, C) - pt_lengths = self._get_length(logits) - - return {'logits': logits, 'pt_lengths': pt_lengths, 'loss_weight':self.loss_weight, - 'name': 'alignment'} diff --git a/spaces/sohojoe/project_charles/streamlit_av_queue.py b/spaces/sohojoe/project_charles/streamlit_av_queue.py deleted file mode 100644 index 442228e6b74270bfabedee79d2bb45177401eb06..0000000000000000000000000000000000000000 --- a/spaces/sohojoe/project_charles/streamlit_av_queue.py +++ /dev/null @@ -1,128 +0,0 @@ -import os -from typing import List -import av -import asyncio -from collections import deque -import threading -import cv2 - -import numpy as np -import ray -from ray.util.queue import Queue -from app_interface_actor import AppInterfaceActor -import pydub -import torch - -class StreamlitAVQueue: - def __init__(self, audio_bit_rate=16000): - self._output_channels = 2 - self._audio_bit_rate = audio_bit_rate - self._listening = True - self._looking = False - self._lock = threading.Lock() - self.app_interface_actor = AppInterfaceActor.get_singleton() - self._video_output_frame = None - - def set_looking_listening(self, looking, listening: bool): - with self._lock: - self._looking = looking - self._listening = listening - - async def queued_video_frames_callback( - self, - frames: List[av.VideoFrame], - ) -> av.VideoFrame: - updated_frames = [] - try: - with self._lock: - should_look = self._looking - video_output_frames = await self.app_interface_actor.dequeue_video_output_frames_async.remote() - if len(video_output_frames) > 0: - self._video_output_frame = video_output_frames[-1] - for i, frame in enumerate(frames): - - # supress the ffmpeg warning - saved_stderr_fd = os.dup(2) - stderr_fd = os.open(os.devnull, os.O_WRONLY) - os.dup2(stderr_fd, 2) - user_image = frame.to_ndarray(format="rgb24") - os.dup2(saved_stderr_fd, 2) - os.close(stderr_fd) - os.close(saved_stderr_fd) - - if should_look: - shared_tensor_ref = ray.put(user_image) - await self.app_interface_actor.enqueue_video_input_frame.remote(shared_tensor_ref) - if self._video_output_frame is not None: - frame = self._video_output_frame - # resize user image to 1/4 size - user_frame = cv2.resize(user_image, (user_image.shape[1]//4, user_image.shape[0]//4), interpolation=cv2.INTER_AREA) - # flip horizontally - user_frame = cv2.flip(user_frame, 1) - x_user = 0 - y_user = frame.shape[0] - user_frame.shape[0] - final_frame = frame.copy() - final_frame[y_user:y_user+user_frame.shape[0], x_user:x_user+user_frame.shape[1]] = user_frame - frame = av.VideoFrame.from_ndarray(final_frame, format="rgb24") - - updated_frames.append(frame) - # print (f"tesnor len: {len(shared_tensor)}, tensor shape: {shared_tensor.shape}, tensor type:{shared_tensor.dtype} tensor ref: {shared_tensor_ref}") - except Exception as e: - print (e) - return updated_frames - - async def queued_audio_frames_callback( - self, - frames: List[av.AudioFrame], - ) -> av.AudioFrame: - try: - with self._lock: - should_listed = self._listening - sound_chunk = pydub.AudioSegment.empty() - if len(frames) > 0 and should_listed: - for frame in frames: - sound = pydub.AudioSegment( - data=frame.to_ndarray().tobytes(), - sample_width=frame.format.bytes, - frame_rate=frame.sample_rate, - channels=len(frame.layout.channels), - ) - sound = sound.set_channels(1) - sound = sound.set_frame_rate(self._audio_bit_rate) - sound_chunk += sound - shared_buffer = np.array(sound_chunk.get_array_of_samples()) - shared_buffer_ref = ray.put(shared_buffer) - await self.app_interface_actor.enqueue_audio_input_frame.remote(shared_buffer_ref) - except Exception as e: - print (e) - - # return empty frames to avoid echo - new_frames = [] - try: - for frame in frames: - required_samples = frame.samples - # print (f"frame: {frame.format.name}, {frame.layout.name}, {frame.sample_rate}, {frame.samples}") - assert frame.format.bytes == 2 - assert frame.format.name == 's16' - import time - start_time = time.time() - frame_as_bytes = await self.app_interface_actor.dequeue_audio_output_frame_async.remote() - elapsed_time = time.time() - start_time - if elapsed_time > 0.1: - print (f"app_interface_actor.dequeue_audio_output_frame_async() elapsed_time: {elapsed_time}") - if frame_as_bytes: - # print(f"frame_as_bytes: {len(frame_as_bytes)}") - assert len(frame_as_bytes) == frame.samples * frame.format.bytes - samples = np.frombuffer(frame_as_bytes, dtype=np.int16) - else: - samples = np.zeros((required_samples * 2 * 1), dtype=np.int16) - if self._output_channels == 2: - samples = np.vstack((samples, samples)).reshape((-1,), order='F') - samples = samples.reshape(1, -1) - layout = 'stereo' if self._output_channels == 2 else 'mono' - new_frame = av.AudioFrame.from_ndarray(samples, format='s16', layout=layout) - new_frame.sample_rate = frame.sample_rate - new_frames.append(new_frame) - except Exception as e: - print (e) - return new_frames diff --git a/spaces/soldni/viz_summaries/README.md b/spaces/soldni/viz_summaries/README.md deleted file mode 100644 index 39ada1e310b253bd07bf9745a7c2967b534f05af..0000000000000000000000000000000000000000 --- a/spaces/soldni/viz_summaries/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: Viz Summaries -emoji: 🚀 -colorFrom: yellow -colorTo: indigo -sdk: gradio -sdk_version: 3.16.1 -app_file: app.py -pinned: false -license: unlicense ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/sqc1729/bingi/src/components/chat-list.tsx b/spaces/sqc1729/bingi/src/components/chat-list.tsx deleted file mode 100644 index 624a78ef0d7be0f1192cf02a81e2e9cf214cb193..0000000000000000000000000000000000000000 --- a/spaces/sqc1729/bingi/src/components/chat-list.tsx +++ /dev/null @@ -1,28 +0,0 @@ -import React from 'react' - -import { Separator } from '@/components/ui/separator' -import { ChatMessage } from '@/components/chat-message' -import { ChatMessageModel } from '@/lib/bots/bing/types' - -export interface ChatList { - messages: ChatMessageModel[] -} - -export function ChatList({ messages }: ChatList) { - if (!messages.length) { - return null - } - - return ( -
          - {messages.map((message, index) => ( - - - {index < messages.length - 1 && ( - - )} - - ))} -
          - ) -} diff --git a/spaces/sriramelango/Social_Classification_Public/fairseq/fairseq/data/encoders/bytes.py b/spaces/sriramelango/Social_Classification_Public/fairseq/fairseq/data/encoders/bytes.py deleted file mode 100644 index f88f8f6929f5b6bdb0db470be9ebedf8fe1f752d..0000000000000000000000000000000000000000 --- a/spaces/sriramelango/Social_Classification_Public/fairseq/fairseq/data/encoders/bytes.py +++ /dev/null @@ -1,34 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - - -from fairseq.data.encoders import register_bpe -from fairseq.data.encoders.byte_utils import ( - SPACE, - SPACE_ESCAPE, - byte_encode, - smart_byte_decode, -) - - -@register_bpe("bytes") -class Bytes(object): - def __init__(self, *unused): - pass - - @staticmethod - def add_args(parser): - pass - - @staticmethod - def encode(x: str) -> str: - encoded = byte_encode(x) - escaped = encoded.replace(SPACE, SPACE_ESCAPE) - return SPACE.join(list(escaped)) - - @staticmethod - def decode(x: str) -> str: - unescaped = x.replace(SPACE, "").replace(SPACE_ESCAPE, SPACE) - return smart_byte_decode(unescaped) diff --git a/spaces/sriramelango/Social_Classification_Public/fairseq/tests/test_ema.py b/spaces/sriramelango/Social_Classification_Public/fairseq/tests/test_ema.py deleted file mode 100644 index 88ea65a434e49775d40f2b08ce6df0f8d9929c18..0000000000000000000000000000000000000000 --- a/spaces/sriramelango/Social_Classification_Public/fairseq/tests/test_ema.py +++ /dev/null @@ -1,199 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -import unittest -from copy import deepcopy -from dataclasses import dataclass -from typing import Optional - -import torch -from fairseq.models.ema import EMA - - -class DummyModule(torch.nn.Module): - def __init__(self) -> None: - """LightningModule for testing purposes - - Args: - epoch_min_loss_override (int, optional): Pass in an epoch that will be set to the minimum - validation loss for testing purposes (zero based). If None this is ignored. Defaults to None. - """ - super().__init__() - self.layer = torch.nn.Linear(in_features=32, out_features=2) - self.another_layer = torch.nn.Linear(in_features=2, out_features=2) - - def forward(self, x: torch.Tensor) -> torch.Tensor: - x = self.layer(x) - return self.another_layer(x) - - -@dataclass -class EMAConfig(object): - ema_decay: float = 0.99 - ema_start_update: int = 0 - ema_fp32: bool = False - ema_seed_model: Optional[str] = None - - -class TestEMAGPU(unittest.TestCase): - def assertTorchAllClose(self, x, y, atol=1e-8, rtol=1e-5, msg=None): - diff = x.float() - y.float() - diff_norm = torch.norm(diff) - other_norm = torch.norm(y.float()) - - if msg is None: - msg = "|input - other| > {} + {} * |other|".format( - atol, rtol - ) - - self.assertLessEqual( - diff_norm, - atol + rtol * other_norm, - msg=msg, - ) - - def test_ema(self): - model = DummyModule() - optimizer = torch.optim.SGD(model.parameters(), lr=0.01) - state = deepcopy(model.state_dict()) - config = EMAConfig() - ema = EMA(model, config) - - # set decay - ema._set_decay(config.ema_decay) - self.assertEqual(ema.get_decay(), config.ema_decay) - - # get model - self.assertEqual(ema.get_model(), ema.model) - - # Since fp32 params is not used, it should be of size 0 - self.assertEqual(len(ema.fp32_params), 0) - - # EMA step - x = torch.randn(32) - y = model(x) - loss = y.sum() - loss.backward() - optimizer.step() - - ema.step(model) - - ema_state_dict = ema.get_model().state_dict() - - for key, param in model.state_dict().items(): - prev_param = state[key] - ema_param = ema_state_dict[key] - - if "version" in key: - # Do not decay a model.version pytorch param - continue - self.assertTorchAllClose( - ema_param, - config.ema_decay * prev_param + (1 - config.ema_decay) * param, - ) - - # Since fp32 params is not used, it should be of size 0 - self.assertEqual(len(ema.fp32_params), 0) - - # Load EMA into model - model2 = DummyModule() - ema.reverse(model2) - - for key, param in model2.state_dict().items(): - ema_param = ema_state_dict[key] - self.assertTrue( - torch.allclose(ema_param, param) - ) - - def test_ema_fp32(self): - model = DummyModule().half() - optimizer = torch.optim.SGD(model.parameters(), lr=0.01) - state = deepcopy(model.state_dict()) - config = EMAConfig(ema_fp32=True) - ema = EMA(model, config) - - x = torch.randn(32) - y = model(x.half()) - loss = y.sum() - loss.backward() - optimizer.step() - - ema.step(model) - - for key, param in model.state_dict().items(): - prev_param = state[key] - ema_param = ema.get_model().state_dict()[key] - - if "version" in key: - # Do not decay a model.version pytorch param - continue - self.assertIn(key, ema.fp32_params) - - # EMA update is done in fp32, and hence the EMA param must be - # closer to the EMA update done in fp32 than in fp16. - self.assertLessEqual( - torch.norm( - ema_param.float() - - (config.ema_decay * prev_param.float() + (1 - config.ema_decay) * param.float()).half().float() - ), - torch.norm( - ema_param.float() - - (config.ema_decay * prev_param + (1 - config.ema_decay) * param).float() - ), - ) - self.assertTorchAllClose( - ema_param, - (config.ema_decay * prev_param.float() + (1 - config.ema_decay) * param.float()).half(), - ) - - def test_ema_fp16(self): - model = DummyModule().half() - optimizer = torch.optim.SGD(model.parameters(), lr=0.01) - state = deepcopy(model.state_dict()) - config = EMAConfig(ema_fp32=False) - ema = EMA(model, config) - - # Since fp32 params is not used, it should be of size 0 - self.assertEqual(len(ema.fp32_params), 0) - - x = torch.randn(32) - y = model(x.half()) - loss = y.sum() - loss.backward() - optimizer.step() - - ema.step(model) - - for key, param in model.state_dict().items(): - prev_param = state[key] - ema_param = ema.get_model().state_dict()[key] - - if "version" in key: - # Do not decay a model.version pytorch param - continue - - # EMA update is done in fp16, and hence the EMA param must be - # closer to the EMA update done in fp16 than in fp32. - self.assertLessEqual( - torch.norm( - ema_param.float() - - (config.ema_decay * prev_param + (1 - config.ema_decay) * param).float() - ), - torch.norm( - ema_param.float() - - (config.ema_decay * prev_param.float() + (1 - config.ema_decay) * param.float()).half().float() - ), - ) - self.assertTorchAllClose( - ema_param, - config.ema_decay * prev_param + (1 - config.ema_decay) * param, - ) - - # Since fp32 params is not used, it should be of size 0 - self.assertEqual(len(ema.fp32_params), 0) - - -if __name__ == "__main__": - unittest.main() diff --git a/spaces/stomexserde/gpt4-ui/Examples/Aaliyah Aaliyah Album Zip !FULL!.md b/spaces/stomexserde/gpt4-ui/Examples/Aaliyah Aaliyah Album Zip !FULL!.md deleted file mode 100644 index ce42d6cb38dc69395924e80937bb1ead3ff39e41..0000000000000000000000000000000000000000 --- a/spaces/stomexserde/gpt4-ui/Examples/Aaliyah Aaliyah Album Zip !FULL!.md +++ /dev/null @@ -1,12 +0,0 @@ -
          -

          Aaliyah: A Review of Her Self-Titled Album

          -

          Aaliyah was the third and final studio album by American R&B singer Aaliyah, who died in a plane crash shortly after its release in 2001. The album was critically acclaimed for its mature and experimental sound, blending elements of pop, soul, rock, and electronic music. Aaliyah showcased the singer's vocal range and versatility, as well as her artistic growth and confidence.

          -

          The album spawned four singles: "We Need a Resolution", "More Than a Woman", "Rock the Boat", and "I Care 4 U". All of them reached the top 25 on the Billboard Hot 100 chart, with "More Than a Woman" becoming her second number-one hit in the UK. The album was also nominated for two Grammy Awards, including Best R&B Album.

          -

          Aaliyah Aaliyah Album Zip


          DOWNLOAD ::: https://urlgoal.com/2uI8Q1



          -

          Aaliyah is widely regarded as one of the best albums of the 2000s and one of the most influential R&B albums of all time. It has been certified double platinum by the RIAA and has sold over 13 million copies worldwide. The album is available for free download on Archive.org[^1^], where you can also find other works by Aaliyah and her collaborators.

          Aaliyah was born on January 16, 1979, in Brooklyn, New York, and moved to Detroit, Michigan, with her family when she was five years old. She started singing at an early age and performed on the television show Star Search at age 11. She also sang with her aunt, the legendary Gladys Knight, in Las Vegas for five nights. Aaliyah was a talented student who graduated from the Detroit School of Arts with a 4.0 GPA in 1997.

          -

          Aaliyah's uncle, Barry Hankerson, was a music manager and producer who introduced her to R. Kelly, who became her mentor and producer for her first album, Age Ain't Nothing But a Number. The album was released in 1994 when Aaliyah was only 15 years old and featured two hit singles, "Back and Forth" and "At Your Best (You Are Love)". However, the album also sparked controversy when it was revealed that Aaliyah had secretly married R. Kelly, who was 27 at the time. The marriage was annulled by her parents and Aaliyah ended her professional relationship with R. Kelly.

          -

          Aaliyah then signed with Atlantic Records and collaborated with Timbaland and Missy Elliott for her second album, One in a Million, which was released in 1996. The album showcased Aaliyah's mature and innovative style, blending R&B, pop, soul, rock, and electronic music. The album sold over eight million copies worldwide and spawned four singles: "If Your Girl Only Knew", "One in a Million", "4 Page Letter", and "The One I Gave My Heart To". Aaliyah also recorded songs for several movie soundtracks, such as Anastasia, Dr. Dolittle, and Music of the Heart.

          Aaliyah's acting career began in 1997, when she appeared as herself in an episode of the police drama series New York Undercover. She also graduated from the Detroit School of Arts that year, with a 4.0 GPA and a major in drama. She had always wanted to act, but waited for the right time and the right vehicle to showcase her talent.

          -

          In 2000, Aaliyah landed her first major film role in Romeo Must Die, a martial arts-themed adaptation of Romeo and Juliet, co-starring with Jet Li. She played Trish O'Day, the daughter of a crime lord who falls in love with Li's character, an ex-cop seeking revenge for his brother's murder. Aaliyah also served as an executive producer of the film's soundtrack, which featured her hit song "Try Again". The film was a commercial success and earned Aaliyah praise for her acting skills.

          -

          Aaliyah's next film project was Queen of the Damned, based on Anne Rice's novel of the same name. She played Akasha, the ancient and powerful vampire queen who awakens from a long slumber and becomes obsessed with a rock star played by Stuart Townsend. Aaliyah had to learn an ancient Egyptian accent and undergo extensive makeup and costume sessions for the role. She also recorded four songs for the film's soundtrack. The film was released posthumously in 2002 and dedicated to her memory.

          7b8c122e87
          -
          -
          \ No newline at end of file diff --git a/spaces/stomexserde/gpt4-ui/Examples/ChrisBrownExclusiveTheForeverEditionzip.md b/spaces/stomexserde/gpt4-ui/Examples/ChrisBrownExclusiveTheForeverEditionzip.md deleted file mode 100644 index 525d42138fb1af0bd76a14357ec83746860456e4..0000000000000000000000000000000000000000 --- a/spaces/stomexserde/gpt4-ui/Examples/ChrisBrownExclusiveTheForeverEditionzip.md +++ /dev/null @@ -1,44 +0,0 @@ - -

          Chris Brown's Exclusive: The Forever Edition - A Review

          -

          Chris Brown is one of the most popular R&B singers of his generation, and his second album Exclusive showcases his talent and versatility. The album was originally released in 2007, but was reissued in 2008 with four new tracks and a DVD featuring behind-the-scenes footage and music videos. The reissue was titled Exclusive: The Forever Edition, and it became a commercial success, selling over three million copies worldwide.

          -

          The album features a mix of upbeat dance tracks, smooth ballads, and collaborations with other artists such as T-Pain, Kanye West, Lil Wayne, and Keri Hilson. The lead single from the reissue, "Forever", is a catchy electro-pop song that peaked at number two on the Billboard Hot 100 chart. The song was also used in a viral wedding video that has over 100 million views on YouTube. Another standout track is "Superhuman", a duet with Keri Hilson that showcases their vocal chemistry and emotional lyrics. The song was released as the second single from the reissue and reached the top 20 on several charts.

          -

          ChrisBrownExclusiveTheForeverEditionzip


          Download File ☆☆☆☆☆ https://urlgoal.com/2uI6ot



          -

          Exclusive: The Forever Edition is a solid album that demonstrates Chris Brown's growth as an artist and entertainer. The album has a variety of songs that appeal to different moods and tastes, and it showcases his vocal range, charisma, and dance skills. The album is a must-have for fans of Chris Brown and R&B music in general.

          - -

          The album consists of 20 tracks, including the original 14 songs from the 2007 release and four new songs added to the reissue. The tracklist is as follows:

          -
            -
          1. Throwed
          2. -
          3. Kiss Kiss (feat. T-Pain)
          4. -
          5. Take You Down
          6. -
          7. With You
          8. -
          9. Picture Perfect (feat. will.i.am)
          10. -
          11. Hold Up (feat. Big Boi)
          12. -
          13. You
          14. -
          15. Damage
          16. -
          17. Wall to Wall
          18. -
          19. Help Me
          20. -
          21. I Wanna Be
          22. -
          23. Gimme Whatcha Got (feat. Lil Wayne)
          24. -
          25. I'll Call Ya
          26. -
          27. Lottery
          28. -
          29. Nice (feat. The Game)
          30. -
          31. Down (feat. Kanye West)
          32. -
          33. Forever
          34. -
          35. Superhuman (feat. Keri Hilson)
          36. -
          37. Heart Ain't a Brain
          38. -
          39. Picture Perfect (Remix) (feat. Bow Wow and Hurricane Chris)
          40. -
          -

          The album covers a range of topics, such as love, romance, breakups, partying, and self-confidence. The album also showcases Chris Brown's influences from different genres, such as pop, hip hop, soul, and rock. The album received generally positive reviews from critics, who praised Chris Brown's vocals, production, and songwriting. The album also earned Chris Brown several awards and nominations, such as a Grammy nomination for Best Contemporary R&B Album and an American Music Award for Favorite Soul/R&B Male Artist.

          - -

          In an interview with MTV, Chris Brown explained why he decided to re-release his album and what he wanted to achieve with the new songs. He said:

          -
          -

          "It's very fortunate, my label wants me to repackage the album and release some new records. I've been recording a lot of new records as well as having some songs that haven't been released yet that I can put on my repackaging. I might put my tour that I did in the States on my repackaging. I did a big tour in the States. I want to put that in the DVD part, add some of my videos on it."

          -

          "I wanted to do something different. I wanted to do something that was more international, more worldly. I wanted to do records that catered to everyone, not just a certain demographic. I wanted to be more universal."

          -

          -
          -

          Chris Brown also expressed his gratitude to his fans for supporting him and his music. He said:

          -
          -

          "I just want to say thank you to all my fans who supported me from day one, who still support me now. You guys are incredible. You guys are the reason why I'm here. You guys are the reason why I make music."

          -

          7b8c122e87
          -
          -
          \ No newline at end of file diff --git a/spaces/stomexserde/gpt4-ui/Examples/Eyeon Fusion 6 4 [PATCHED] Crack Only-reloaded.md b/spaces/stomexserde/gpt4-ui/Examples/Eyeon Fusion 6 4 [PATCHED] Crack Only-reloaded.md deleted file mode 100644 index 70391ed33c03080fe7b72144f4aa718faf6cc59f..0000000000000000000000000000000000000000 --- a/spaces/stomexserde/gpt4-ui/Examples/Eyeon Fusion 6 4 [PATCHED] Crack Only-reloaded.md +++ /dev/null @@ -1,23 +0,0 @@ - -

          How to Download and Install Eyeon Fusion 6.4 Crack Only-reloaded

          -

          Eyeon Fusion is a powerful and versatile software for creating stunning visual effects and motion graphics. Whether you are working on films, TV shows, commercials, or music videos, Eyeon Fusion can help you bring your creative vision to life.

          -

          Eyeon Fusion 6 4 Crack Only-reloaded


          Downloadhttps://urlgoal.com/2uIbE4



          -

          However, Eyeon Fusion is not a cheap software, and you may not want to spend a lot of money on it if you are just a hobbyist or a beginner. That's why some people look for cracked versions of the software that can bypass the activation process and let them use it for free.

          -

          One of the most popular cracked versions of Eyeon Fusion is the 6.4 version with the only-reloaded crack. This crack claims to work on both Windows and Mac operating systems, and to provide all the features and tools of the original software.

          -

          But how can you download and install Eyeon Fusion 6.4 crack only-reloaded? And is it safe and legal to do so? In this article, we will answer these questions and guide you through the steps of getting Eyeon Fusion 6.4 crack only-reloaded on your computer.

          -

          Step 1: Download Eyeon Fusion 6.4 Crack Only-reloaded

          -

          The first step is to find a reliable source to download Eyeon Fusion 6.4 crack only-reloaded. There are many websites that claim to offer this crack, but not all of them are trustworthy. Some of them may contain viruses, malware, or spyware that can harm your computer or steal your personal information.

          -

          Therefore, you should be careful when choosing where to download Eyeon Fusion 6.4 crack only-reloaded from. One of the best ways to avoid scams and fake downloads is to check the reviews and comments of other users who have tried the crack before. You can also use antivirus software or online scanners to scan the files before downloading them.

          -

          -

          One of the websites that we recommend for downloading Eyeon Fusion 6.4 crack only-reloaded is CrackzSoft. This website has a good reputation and offers high-quality downloads of various software cracks. You can download Eyeon Fusion 6.4 crack only-reloaded from this website by clicking on the green download button and following the instructions.

          -

          Step 2: Install Eyeon Fusion 6.4 Crack Only-reloaded

          -

          After downloading Eyeon Fusion 6.4 crack only-reloaded, you need to install it on your computer. To do this, you need to extract the zip file that contains the crack files and run the setup.exe file as an administrator.

          -

          The installation process is simple and straightforward. You just need to follow the on-screen instructions and choose the destination folder where you want to install Eyeon Fusion 6.4 crack only-reloaded. You can also customize some settings such as language, shortcuts, and components.

          -

          Once the installation is complete, you need to copy the cracked files from the crack folder and paste them into the installation folder of Eyeon Fusion 6.4 crack only-reloaded. This will replace the original files and activate the software without requiring a license key or serial number.

          -

          Step 3: Enjoy Eyeon Fusion 6.4 Crack Only-reloaded

          -

          Congratulations! You have successfully downloaded and installed Eyeon Fusion 6.4 crack only-reloaded on your computer. Now you can launch the software and start creating amazing visual effects and motion graphics with it.

          -

          However, before you get too excited, there are some things that you should be aware of when using Eyeon Fusion 6.4 crack only-reloaded. First of all, using cracked software is illegal and unethical, as it violates the intellectual property rights of the developers and distributors of Eyeon Fusion.

          -

          Secondly, using cracked software can expose your computer to security risks, as it may contain hidden malware or spyware that can damage your system or compromise your privacy. Thirdly, using cracked software can affect your performance and quality, as it may not be updated or compatible with other software or hardware.

          -

          Therefore, we do not recommend using Eyeon Fusion 6.4 crack only-reloaded for any serious or professional projects.

          cec2833e83
          -
          -
          \ No newline at end of file diff --git a/spaces/supercyx3/gpt/Dockerfile b/spaces/supercyx3/gpt/Dockerfile deleted file mode 100644 index 26f8fd1b014cb01d53add29e425f9698caf927f2..0000000000000000000000000000000000000000 --- a/spaces/supercyx3/gpt/Dockerfile +++ /dev/null @@ -1,7 +0,0 @@ -FROM node:18 -RUN git clone https://github.com/supercyx3/ChatGPT-Next-Web.git -WORKDIR "ChatGPT-Next-Web" -RUN npm i -RUN npm run build -EXPOSE 3000 -CMD ["npm", "run", "start"] \ No newline at end of file diff --git a/spaces/supertori/files/two_shot.py b/spaces/supertori/files/two_shot.py deleted file mode 100644 index 0727bd6e36f6133ef4a7aac908ecaded32998eef..0000000000000000000000000000000000000000 --- a/spaces/supertori/files/two_shot.py +++ /dev/null @@ -1,227 +0,0 @@ -from typing import List, Dict, Optional, Tuple -from dataclasses import dataclass - -import torch - -from modules import devices - -import modules.scripts as scripts -import gradio as gr -# todo: -from modules.script_callbacks import CFGDenoisedParams, on_cfg_denoised - -from modules.processing import StableDiffusionProcessing - - -@dataclass -class Division: - y: float - x: float - - -@dataclass -class Position: - y: float - x: float - ey: float - ex: float - - -class Filter: - - def __init__(self, division: Division, position: Position, weight: float): - self.division = division - self.position = position - self.weight = weight - - def create_tensor(self, num_channels: int, height_b: int, width_b: int) -> torch.Tensor: - - x = torch.zeros(num_channels, height_b, width_b).to(devices.device) - - division_height = height_b / self.division.y - division_width = width_b / self.division.x - y1 = int(division_height * self.position.y) - y2 = int(division_height * self.position.ey) - x1 = int(division_width * self.position.x) - x2 = int(division_width * self.position.ex) - - x[:, y1:y2, x1:x2] = self.weight - - return x - - -class Script(scripts.Script): - - def __init__(self): - self.num_batches: int = 0 - self.end_at_step: int = 20 - self.filters: List[Filter] = [] - self.debug: bool = False - - def title(self): - return "Latent Couple extension" - - def show(self, is_img2img): - return scripts.AlwaysVisible - - def create_filters_from_ui_params(self, raw_divisions: str, raw_positions: str, raw_weights: str): - - divisions = [] - for division in raw_divisions.split(','): - y, x = division.split(':') - divisions.append(Division(float(y), float(x))) - - def start_and_end_position(raw: str): - nums = [float(num) for num in raw.split('-')] - if len(nums) == 1: - return nums[0], nums[0] + 1.0 - else: - return nums[0], nums[1] - - positions = [] - for position in raw_positions.split(','): - y, x = position.split(':') - y1, y2 = start_and_end_position(y) - x1, x2 = start_and_end_position(x) - positions.append(Position(y1, x1, y2, x2)) - - weights = [] - for w in raw_weights.split(','): - weights.append(float(w)) - - # todo: assert len - - return [Filter(division, position, weight) for division, position, weight in zip(divisions, positions, weights)] - - def do_visualize(self, raw_divisions: str, raw_positions: str, raw_weights: str): - - self.filters = self.create_filters_from_ui_params(raw_divisions, raw_positions, raw_weights) - - return [f.create_tensor(1, 128, 128).squeeze(dim=0).cpu().numpy() for f in self.filters] - - def do_apply(self, extra_generation_params: str): - # - # parse "Latent Couple" extra_generation_params - # - raw_params = {} - - for assignment in extra_generation_params.split(' '): - pair = assignment.split('=', 1) - if len(pair) != 2: - continue - raw_params[pair[0]] = pair[1] - - return raw_params.get('divisions', '1:1,1:2,1:2'), raw_params.get('positions', '0:0,0:0,0:1'), raw_params.get('weights', '0.2,0.8,0.8'), int(raw_params.get('step', '20')) - - def ui(self, is_img2img): - id_part = "img2img" if is_img2img else "txt2img" - - with gr.Group(): - with gr.Accordion("Latent Couple", open=False): - enabled = gr.Checkbox(value=False, label="Enabled") - with gr.Row(): - divisions = gr.Textbox(label="Divisions", elem_id=f"cd_{id_part}_divisions", value="1:1,1:2,1:2") - positions = gr.Textbox(label="Positions", elem_id=f"cd_{id_part}_positions", value="0:0,0:0,0:1") - with gr.Row(): - weights = gr.Textbox(label="Weights", elem_id=f"cd_{id_part}_weights", value="0.2,0.8,0.8") - end_at_step = gr.Slider(minimum=0, maximum=150, step=1, label="end at this step", elem_id=f"cd_{id_part}_end_at_this_step", value=20) - - visualize_button = gr.Button(value="Visualize") - visual_regions = gr.Gallery(label="Regions").style(grid=(4, 4, 4, 8), height="auto") - - visualize_button.click(fn=self.do_visualize, inputs=[divisions, positions, weights], outputs=[visual_regions]) - - extra_generation_params = gr.Textbox(label="Extra generation params") - apply_button = gr.Button(value="Apply") - - apply_button.click(fn=self.do_apply, inputs=[extra_generation_params], outputs=[divisions, positions, weights, end_at_step]) - - self.infotext_fields = [ - (extra_generation_params, "Latent Couple") - ] - return enabled, divisions, positions, weights, end_at_step - - def denoised_callback(self, params: CFGDenoisedParams): - - if self.enabled and params.sampling_step < self.end_at_step: - - x = params.x - # x.shape = [batch_size, C, H // 8, W // 8] - - num_batches = self.num_batches - num_prompts = x.shape[0] // num_batches - # ex. num_batches = 3 - # ex. num_prompts = 3 (tensor) + 1 (uncond) - - if self.debug: - print(f"### Latent couple ###") - print(f"denoised_callback x.shape={x.shape} num_batches={num_batches} num_prompts={num_prompts}") - - filters = [ - f.create_tensor(x.shape[1], x.shape[2], x.shape[3]) for f in self.filters - ] - neg_filters = [1.0 - f for f in filters] - - """ - batch #1 - subprompt #1 - subprompt #2 - subprompt #3 - batch #2 - subprompt #1 - subprompt #2 - subprompt #3 - uncond - batch #1 - batch #2 - """ - - tensor_off = 0 - uncond_off = num_batches * num_prompts - num_batches - for b in range(num_batches): - uncond = x[uncond_off, :, :, :] - - for p in range(num_prompts - 1): - if self.debug: - print(f"b={b} p={p}") - if p < len(filters): - tensor = x[tensor_off, :, :, :] - x[tensor_off, :, :, :] = tensor * filters[p] + uncond * neg_filters[p] - - tensor_off += 1 - - uncond_off += 1 - - def process(self, p: StableDiffusionProcessing, enabled: bool, raw_divisions: str, raw_positions: str, raw_weights: str, raw_end_at_step: int): - - self.enabled = enabled - - if not self.enabled: - return - - self.num_batches = p.batch_size - - self.filters = self.create_filters_from_ui_params(raw_divisions, raw_positions, raw_weights) - - self.end_at_step = raw_end_at_step - - # - - if self.end_at_step != 0: - p.extra_generation_params["Latent Couple"] = f"divisions={raw_divisions} positions={raw_positions} weights={raw_weights} end at step={raw_end_at_step}" - # save params into the output file as PNG textual data. - - if self.debug: - print(f"### Latent couple ###") - print(f"process num_batches={self.num_batches} end_at_step={self.end_at_step}") - - if not hasattr(self, 'callbacks_added'): - on_cfg_denoised(self.denoised_callback) - self.callbacks_added = True - - return - - def postprocess(self, *args): - return - - diff --git a/spaces/suppsumstagza/text-to-image-stable-diffusion-v1-5/scripts/Anonymous 20 Registered Software BEST Download.md b/spaces/suppsumstagza/text-to-image-stable-diffusion-v1-5/scripts/Anonymous 20 Registered Software BEST Download.md deleted file mode 100644 index ae7011201fa5786e7b46e2bfdaf8a312b2085c50..0000000000000000000000000000000000000000 --- a/spaces/suppsumstagza/text-to-image-stable-diffusion-v1-5/scripts/Anonymous 20 Registered Software BEST Download.md +++ /dev/null @@ -1,8 +0,0 @@ -
          -


          i just got upgraded to comcast 6mbs, but was only getting throughputs in the 2-3mbs range, with an occasional 4.5mbs, and an occasional 1mbs. really frustrating. i tried all the tweaks here. tcpoptimizer is an awesome little program, and seemed to make some marginal, but inconsistent improvement. i got rid of zonealarm since v5 seemed to cause a problem even though i had v6. no software firewall, and new software firewall : same problem. no antivirus software, and new av software: same problem.

          -


          i just got upgraded to comcast 6mbs, but was only getting throughputs in the 2-3mbs range, with an occasional 4.5mbs, and an occasional 1mbs. really frustrating. i tried all the tweaks here. tcpoptimizer is an awesome little program, and seemed to make some marginal, but inconsistent improvement. i got rid of zonealarm since v5 seemed to cause a problem even though i had v6. no software firewall, and new software firewall : same problem. no antivirus software, and new av software: same problem.

          -

          Anonymous 20 Registered Software Download


          Download Zip ★★★ https://cinurl.com/2uEYNl



          -

          anonymous posts can sometimes be fun, but all too often, they just seem to be a waste of everyone elses time. i do not suggest that the discussion group should ban all anonymous posts, but the number of posted anonymously has grown too high. here is the reason why they happen:

          -

          anonymous users often feel like they have something to contribute, but they fear being misunderstood or just not understanding the whole picture. they usually use the first person to try and explain their point of view without actually understanding why it is important to others. they usually use acronyms for terms, and thus, their posts are often filled with words that are either meaningless or the acronym is meaningless. they are usually very easy to tell apart from signed posts because, as a rule, anonymous posts do not include a picture and usually only use one url with more than 3 words.

          899543212b
          -
          -
          \ No newline at end of file diff --git a/spaces/suppsumstagza/text-to-image-stable-diffusion-v1-5/scripts/Matematik 5000 3c Pdf 129 !!TOP!!.md b/spaces/suppsumstagza/text-to-image-stable-diffusion-v1-5/scripts/Matematik 5000 3c Pdf 129 !!TOP!!.md deleted file mode 100644 index fb2af75e46214c113db69a9867accc8688740415..0000000000000000000000000000000000000000 --- a/spaces/suppsumstagza/text-to-image-stable-diffusion-v1-5/scripts/Matematik 5000 3c Pdf 129 !!TOP!!.md +++ /dev/null @@ -1,12 +0,0 @@ -

          matematik 5000 3c pdf 129


          Download ❤❤❤ https://cinurl.com/2uEYuf



          -
          -December 17, 2020 - Boy Model 33 Azerbaijan Tarixi 9-cu Sinif Pdf crack without CD for gta san . . Sipensimaru Poltekkes Depkesl; Matematik 5000 3c Pdf 129 !! Dec 15, 2014 . -Free download . -Pdf in Russian you can on this page. -There are only some .pdz, .pdzz and .pz in the .zip format. -P.S.To open Russian text in .pdf format, you need . -P.S. To open Russian text in .pdf format, you need . -P.S. To open . 8a78ff9644
          -
          -
          -

          diff --git a/spaces/suppsumstagza/text-to-image-stable-diffusion-v1-5/scripts/Windows 10 Critical Updates KB4035631 And KB4035632 ((INSTALL)).md b/spaces/suppsumstagza/text-to-image-stable-diffusion-v1-5/scripts/Windows 10 Critical Updates KB4035631 And KB4035632 ((INSTALL)).md deleted file mode 100644 index c2890e9db845e9c129342c6efa9f7bdd2352568c..0000000000000000000000000000000000000000 --- a/spaces/suppsumstagza/text-to-image-stable-diffusion-v1-5/scripts/Windows 10 Critical Updates KB4035631 And KB4035632 ((INSTALL)).md +++ /dev/null @@ -1,38 +0,0 @@ -

          Windows 10: Critical Updates KB4035631 and KB4035632


          Download Zip ►►► https://cinurl.com/2uEXTz



          - -The Microsoft Support site has a list of the cumulative update KB4035631. - -See also - - Windows Update - - Microsoft Windows - -References - -External links - - Microsoft Support - -Category:Microsoft Windows administration - -Category:Windows communication and services - -Category:Windows components - -Category:Windows security softwareA wide range of steroid-binding proteins in human saliva. - -Steroid-binding proteins in human saliva were investigated by an in vitro assay system. Each of 13 human saliva samples was shown to have at least one steroid-binding protein in a concentration range of 0.1-100 microM. The binding affinities and the proportions of the specific binding of each of several steroids to each of the saliva samples were different. There was no relationship between these parameters and the proportions of the salivary MUP-1 and MUP-2 proteins detected by means of the antibody-affinity column assay. The binding affinities of four steroids were correlated with their tissue distribution in the body. These results suggest that each saliva contains one or more salivary steroid-binding proteins and that the saliva of any individual may differ in their specificities.Demographics of Ghana - -This article is about the demographic features of the population of Ghana, including population density, ethnicity, education level, health of the populace, economic status, religious affiliations and other aspects of the population. - -Ghana has a population of 28,787,794 (2018 est.)—or roughly three times that of Illinois and over twice that of New York State. According to the Ghana Statistical Service, Ghana's population is approximately 40.2 million. As of the most recent Census in 2010, the total population of Ghana was 25,567,198. - -The Demographic and Health Survey estimates Ghana's population to be 28.8 million in the year 2000, about double what it was in 1990. According to estimates, Ghana has an average annual growth rate of 2.6 percent from 1975 to 2010. However, Ghana’s fertility rate (4.6 births per woman) is relatively high compared to most of Africa and a lot of the developing world, but it has been declining since 2002. - -Ghana has one of the highest infant mortality rates in Africa, and it is the second poorest country in the world. However, the rate of infant mortality is decreasing as more people receive access to improved health services. Ghana ranks high on the index of human development. - -Ghana's economic output 4fefd39f24
          -
          -
          -

          diff --git a/spaces/tappyness1/spaced_repetition_footwork/st_app.py b/spaces/tappyness1/spaced_repetition_footwork/st_app.py deleted file mode 100644 index 1c11fc2627dc40ecc7a7a0a63ad60450bf9295cc..0000000000000000000000000000000000000000 --- a/spaces/tappyness1/spaced_repetition_footwork/st_app.py +++ /dev/null @@ -1,105 +0,0 @@ -import streamlit as st -import pandas as pd -import numpy as np -import gspread -import os -import ast -from datetime import timedelta, date - -def get_df(): - credentials = ast.literal_eval(os.environ["service_account_credentials"]) - SHEET_ID = os.environ["SHEET_ID"] - SHEET_NAME = os.environ['SHEET_NAME'] - - gc = gspread.service_account_from_dict(credentials) - spreadsheet = gc.open_by_key(SHEET_ID) - worksheet = spreadsheet.worksheet(SHEET_NAME) - table = pd.DataFrame(worksheet.get_all_records()) - table['Last_Date'] = pd.to_datetime(table['Last_Date'], infer_datetime_format=True) - table['Days_Left'] = (pd.to_datetime('today') - table['Last_Date']).dt.days - - names_of_footwork = table.sort_values(by = 'Days_Left', ascending=False)['Footwork_Name'].tolist() - return table, names_of_footwork, worksheet - -def add_days(worksheet, table, name, num_days): - """gsheet implementation to update table based on num_days - - Args: - worksheet (_type_): _description_ - table (_type_): _description_ - name (_type_): _description_ - num_days (_type_): _description_ - """ - idx = table.index[table['Footwork_Name'] == name][0] - val = table.at[idx, 'Days_Left'] + num_days - cell = worksheet.find(name) - worksheet.update_cell(cell.row, cell.col + 2, int(val)) - # return "Done" - -def add_days_to_date(worksheet, table, name, num_days): - """gsheet implementation to update table based on num_days to the Last_Date column - - Args: - worksheet (_type_): _description_ - table (_type_): _description_ - name (_type_): _description_ - num_days (_type_): _description_ - """ - idx = table.index[table['Footwork_Name'] == name][0] - val = str(date.today() + timedelta(days=num_days)) - cell = worksheet.find(name) - worksheet.update_cell(cell.row, cell.col + 2, val) - -def process_input(input, table, worksheet, name): - if input == "Needs Revision": - add_days(worksheet, table, name, 1) - if input == "Okay": - add_days(worksheet, table, name, 2) - if input == "Good": - add_days(worksheet, table, name, 5) - if input == "Very Good": - add_days(worksheet, table, name, 10) - -def process_input_to_date(input, table, worksheet, name): - """process input to date only to add to last date - - Args: - input (_type_): _description_ - table (_type_): _description_ - worksheet (_type_): _description_ - name (_type_): _description_ - """ - if input == "Needs Revision": - add_days_to_date(worksheet, table, name, 1) - if input == "Okay": - add_days_to_date(worksheet, table, name, 2) - if input == "Good": - add_days_to_date(worksheet, table, name, 5) - if input == "Very Good": - add_days_to_date(worksheet, table, name, 10) - - -def main(): - table, names_of_footwork, worksheet = get_df() - # st.set_page_config(layout="wide") - height = 650 - - options = ('Needs Revision', 'Okay', 'Good', 'Very Good') - - with st.form("my_form"): - - fw = [st.radio( - f"## Footwork {i+1}: {names_of_footwork[i]}", - options, horizontal = True) for i in range(5)] - submitted = st.form_submit_button("Submit") - if submitted: - for i in range(5): - process_input_to_date(fw[i], table, worksheet, names_of_footwork[i]) - st.experimental_rerun() - -if __name__ == "__main__": - # main(path = "./data/footwork.csv") - main() - # print (get_df()) - # table, names_of_footwork, worksheet = get_df() - # add_days(worksheet, table, "Figure4 Turnover High Hook", 5) \ No newline at end of file diff --git a/spaces/teamnassim/Fictionista/torch_utils/ops/upfirdn2d.cpp b/spaces/teamnassim/Fictionista/torch_utils/ops/upfirdn2d.cpp deleted file mode 100644 index 44fa337d8d4c34dfa010a59cd27d86857db671aa..0000000000000000000000000000000000000000 --- a/spaces/teamnassim/Fictionista/torch_utils/ops/upfirdn2d.cpp +++ /dev/null @@ -1,107 +0,0 @@ -// Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. -// -// NVIDIA CORPORATION and its licensors retain all intellectual property -// and proprietary rights in and to this software, related documentation -// and any modifications thereto. Any use, reproduction, disclosure or -// distribution of this software and related documentation without an express -// license agreement from NVIDIA CORPORATION is strictly prohibited. - -#include -#include -#include -#include "upfirdn2d.h" - -//------------------------------------------------------------------------ - -static torch::Tensor upfirdn2d(torch::Tensor x, torch::Tensor f, int upx, int upy, int downx, int downy, int padx0, int padx1, int pady0, int pady1, bool flip, float gain) -{ - // Validate arguments. - TORCH_CHECK(x.is_cuda(), "x must reside on CUDA device"); - TORCH_CHECK(f.device() == x.device(), "f must reside on the same device as x"); - TORCH_CHECK(f.dtype() == torch::kFloat, "f must be float32"); - TORCH_CHECK(x.numel() <= INT_MAX, "x is too large"); - TORCH_CHECK(f.numel() <= INT_MAX, "f is too large"); - TORCH_CHECK(x.numel() > 0, "x has zero size"); - TORCH_CHECK(f.numel() > 0, "f has zero size"); - TORCH_CHECK(x.dim() == 4, "x must be rank 4"); - TORCH_CHECK(f.dim() == 2, "f must be rank 2"); - TORCH_CHECK((x.size(0)-1)*x.stride(0) + (x.size(1)-1)*x.stride(1) + (x.size(2)-1)*x.stride(2) + (x.size(3)-1)*x.stride(3) <= INT_MAX, "x memory footprint is too large"); - TORCH_CHECK(f.size(0) >= 1 && f.size(1) >= 1, "f must be at least 1x1"); - TORCH_CHECK(upx >= 1 && upy >= 1, "upsampling factor must be at least 1"); - TORCH_CHECK(downx >= 1 && downy >= 1, "downsampling factor must be at least 1"); - - // Create output tensor. - const at::cuda::OptionalCUDAGuard device_guard(device_of(x)); - int outW = ((int)x.size(3) * upx + padx0 + padx1 - (int)f.size(1) + downx) / downx; - int outH = ((int)x.size(2) * upy + pady0 + pady1 - (int)f.size(0) + downy) / downy; - TORCH_CHECK(outW >= 1 && outH >= 1, "output must be at least 1x1"); - torch::Tensor y = torch::empty({x.size(0), x.size(1), outH, outW}, x.options(), x.suggest_memory_format()); - TORCH_CHECK(y.numel() <= INT_MAX, "output is too large"); - TORCH_CHECK((y.size(0)-1)*y.stride(0) + (y.size(1)-1)*y.stride(1) + (y.size(2)-1)*y.stride(2) + (y.size(3)-1)*y.stride(3) <= INT_MAX, "output memory footprint is too large"); - - // Initialize CUDA kernel parameters. - upfirdn2d_kernel_params p; - p.x = x.data_ptr(); - p.f = f.data_ptr(); - p.y = y.data_ptr(); - p.up = make_int2(upx, upy); - p.down = make_int2(downx, downy); - p.pad0 = make_int2(padx0, pady0); - p.flip = (flip) ? 1 : 0; - p.gain = gain; - p.inSize = make_int4((int)x.size(3), (int)x.size(2), (int)x.size(1), (int)x.size(0)); - p.inStride = make_int4((int)x.stride(3), (int)x.stride(2), (int)x.stride(1), (int)x.stride(0)); - p.filterSize = make_int2((int)f.size(1), (int)f.size(0)); - p.filterStride = make_int2((int)f.stride(1), (int)f.stride(0)); - p.outSize = make_int4((int)y.size(3), (int)y.size(2), (int)y.size(1), (int)y.size(0)); - p.outStride = make_int4((int)y.stride(3), (int)y.stride(2), (int)y.stride(1), (int)y.stride(0)); - p.sizeMajor = (p.inStride.z == 1) ? p.inSize.w : p.inSize.w * p.inSize.z; - p.sizeMinor = (p.inStride.z == 1) ? p.inSize.z : 1; - - // Choose CUDA kernel. - upfirdn2d_kernel_spec spec; - AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&] - { - spec = choose_upfirdn2d_kernel(p); - }); - - // Set looping options. - p.loopMajor = (p.sizeMajor - 1) / 16384 + 1; - p.loopMinor = spec.loopMinor; - p.loopX = spec.loopX; - p.launchMinor = (p.sizeMinor - 1) / p.loopMinor + 1; - p.launchMajor = (p.sizeMajor - 1) / p.loopMajor + 1; - - // Compute grid size. - dim3 blockSize, gridSize; - if (spec.tileOutW < 0) // large - { - blockSize = dim3(4, 32, 1); - gridSize = dim3( - ((p.outSize.y - 1) / blockSize.x + 1) * p.launchMinor, - (p.outSize.x - 1) / (blockSize.y * p.loopX) + 1, - p.launchMajor); - } - else // small - { - blockSize = dim3(256, 1, 1); - gridSize = dim3( - ((p.outSize.y - 1) / spec.tileOutH + 1) * p.launchMinor, - (p.outSize.x - 1) / (spec.tileOutW * p.loopX) + 1, - p.launchMajor); - } - - // Launch CUDA kernel. - void* args[] = {&p}; - AT_CUDA_CHECK(cudaLaunchKernel(spec.kernel, gridSize, blockSize, args, 0, at::cuda::getCurrentCUDAStream())); - return y; -} - -//------------------------------------------------------------------------ - -PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) -{ - m.def("upfirdn2d", &upfirdn2d); -} - -//------------------------------------------------------------------------ diff --git a/spaces/terfces0erbo/CollegeProjectV2/BATTLEFIELD 1 TRAINER Unlimited Health Easy Kills Infantry And Unlimited Explosives.md b/spaces/terfces0erbo/CollegeProjectV2/BATTLEFIELD 1 TRAINER Unlimited Health Easy Kills Infantry And Unlimited Explosives.md deleted file mode 100644 index 0623049233fe5deb9ccceb3c49586f6eaa207dcd..0000000000000000000000000000000000000000 --- a/spaces/terfces0erbo/CollegeProjectV2/BATTLEFIELD 1 TRAINER Unlimited Health Easy Kills Infantry And Unlimited Explosives.md +++ /dev/null @@ -1,34 +0,0 @@ - -

          BATTLEFIELD 1 TRAINER: How to Get Unlimited Health, Easy Kills Infantry And Unlimited Explosives

          - -

          If you are looking for a way to enhance your gaming experience in Battlefield 1, you might want to try using a trainer. A trainer is a software that allows you to modify certain aspects of the game, such as your health, ammo, accuracy, recoil, invisibility, and more. With a trainer, you can enjoy the game without worrying about dying, running out of ammo, or being detected by enemies.

          -

          BATTLEFIELD 1 TRAINER Unlimited Health, Easy Kills Infantry And Unlimited Explosives


          DOWNLOADhttps://bytlly.com/2uGiM9



          - -

          There are many trainers available online for Battlefield 1, but not all of them are safe and reliable. Some trainers may contain viruses, malware, or unwanted programs that can harm your computer or compromise your personal data. Some trainers may also not work with your version of the game or cause crashes and errors.

          - -

          That's why we recommend using the Battlefield 1 trainer from Cheat Happens. This trainer is tested and verified by a team of experts who ensure that it is compatible with the latest game updates and patches. This trainer also has a user-friendly interface and customizable hotkeys that make it easy to use.

          - -

          The Battlefield 1 trainer from Cheat Happens has 11 options that you can activate with a simple press of a button. These options include:

          -

          - -
            -
          • Numpad 1: Unlimited Health - toggle on and most things cannot kill you. Scripted deaths are still possible.
          • -
          • Numpad 2: Easy Kills Infantry - toggle on and most infantry can be shot and killed very easily.
          • -
          • Numpad 3: Unlimited Ammo - toggle on and most weapons and many items and explosives will have unlimited amount.
          • -
          • Numpad 4: No Reload - toggle on and most weapons and many items will be able to fire without reload.
          • -
          • Numpad 5: Improved Accuracy - toggle on and many weapons have improved crosshair accuracy.
          • -
          • Numpad 6: Less Recoil - toggle on and some weapons will have less recoil.
          • -
          • Numpad 7: Invisible - toggle on and the AI in the game are unware of most things, including you. You can walk right up to them and kill them in most cases.
          • -
          • Numpad 8: No Weapon Overheat - toggle on and some weapons will not overheat when firing continuously.
          • -
          • Numpad 9: Faster Weapon Reload - toggle on and some weapons will reload faster than normal.
          • -
          • Numpad 0: Unlimited Explosives - toggle on and some explosives will have unlimited amount.
          • -
          • Numpad *: Tank Health - toggle on and your tank will have unlimited health.
          • -
          - -

          To use the trainer, you need to download it from the Cheat Happens website and unzip it to a folder of your choice. Then, run the trainer as administrator and press F1 at the main menu of the game. You should hear a voice saying "Trainer Activated". Then, you can start playing the game and use the hotkeys to activate the options you want. You can also change the hotkeys to suit your preference from the trainer settings.

          - -

          The Battlefield 1 trainer from Cheat Happens is a premium product that requires a membership fee to access. However, you can also download a free promo version of the trainer that allows you to use one option (Numpad 3: Unlimited Ammo) for free. This way, you can test the trainer before deciding whether to purchase it or not.

          - -

          If you want to get unlimited health, easy kills infantry, and unlimited explosives in Battlefield 1, don't hesitate to try out the trainer from Cheat Happens. It will make your gaming experience more fun and enjoyable. Just remember to use it responsibly and not abuse it online or in multiplayer modes, as that may ruin the game for other players or get you banned.

          d5da3c52bf
          -
          -
          \ No newline at end of file diff --git a/spaces/terfces0erbo/CollegeProjectV2/Digital Processing Of Speech Signals Rabiner Solution Manual.md b/spaces/terfces0erbo/CollegeProjectV2/Digital Processing Of Speech Signals Rabiner Solution Manual.md deleted file mode 100644 index c2929a64eee985220ce2b48fec7eac80845418e5..0000000000000000000000000000000000000000 --- a/spaces/terfces0erbo/CollegeProjectV2/Digital Processing Of Speech Signals Rabiner Solution Manual.md +++ /dev/null @@ -1,7 +0,0 @@ - -

          This new text presents a thorough introduction to recent topics, techniques, and algorithms in the field of digital signal processing for spoken language analysis. It focuses on data representation, signal modeling and filtering, separation of speech from non-speech content, speech coding (speech compression, speech reconstruction, speech modeling, speech synthesis, and speech recognition), and speech-enhanced systems (speech recognition, auditory modeling, and automatic speech recognition). The book targets the needs of graduate students and engineers, and presents the latest research results in each area.

          -

          In Computational Analysis Of Speech and Audio Signals, students are taught modern computational algorithms to analyze audio signals such as speech, speech recognition, and speaker recognition. The material provides guidelines for the analysis, modeling, and processing of speech and audio signals, with emphasis on the theory of signal processing, its properties, properties of representations of speech signals, and numerical algorithms used in digital signal processing. Topics include the basics of linear filtering, speech separation, and parametric modeling, speech coding (amplitude-to-amplitude) and speech compression (MPEG1, MPEG2, ITU-T, and MPEG-4), and filtering applications. The course should be of special interest to students in engineering and computer science and to those working in electrical and telecommunications fields.

          -

          Digital Processing Of Speech Signals Rabiner Solution Manual


          DOWNLOAD - https://bytlly.com/2uGiE4



          -

          This book presents an introduction to modern applications of finite-impulse response (FIR) filters to acoustics of speech synthesis, speech coding, and speech processing. In addition, it provides a study of speech coding methods (amplitude-to-amplitude and waveform coding) using CELP (code excited linear prediction), adaptive codebook (ACELP), and algebraic coding techniques, such as algebraic code book (ACB), multi-pulse line (MPL), and noise-adaptive MPL (NAMPL). The material is intended for engineers and scientists working in the fields of acoustics, speech processing, and communications.

          899543212b
          -
          -
          \ No newline at end of file diff --git a/spaces/themanas021/Kosmos-2/app.py b/spaces/themanas021/Kosmos-2/app.py deleted file mode 100644 index 3fb058154e284807e0406c3ca10473cd78d4d687..0000000000000000000000000000000000000000 --- a/spaces/themanas021/Kosmos-2/app.py +++ /dev/null @@ -1,314 +0,0 @@ -import gradio as gr -import random -import numpy as np -import os -import requests -import torch -import torchvision.transforms as T -from PIL import Image -from transformers import AutoProcessor, AutoModelForVision2Seq -import cv2 -import ast - -colors = [ - (0, 255, 0), - (0, 0, 255), - (255, 255, 0), - (255, 0, 255), - (0, 255, 255), - (114, 128, 250), - (0, 165, 255), - (0, 128, 0), - (144, 238, 144), - (238, 238, 175), - (255, 191, 0), - (0, 128, 0), - (226, 43, 138), - (255, 0, 255), - (0, 215, 255), - (255, 0, 0), -] - -color_map = { - f"{color_id}": f"#{hex(color[2])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[0])[2:].zfill(2)}" for color_id, color in enumerate(colors) -} - - -def is_overlapping(rect1, rect2): - x1, y1, x2, y2 = rect1 - x3, y3, x4, y4 = rect2 - return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4) - - -def draw_entity_boxes_on_image(image, entities, show=False, save_path=None, entity_index=-1): - """_summary_ - Args: - image (_type_): image or image path - collect_entity_location (_type_): _description_ - """ - if isinstance(image, Image.Image): - image_h = image.height - image_w = image.width - image = np.array(image)[:, :, [2, 1, 0]] - elif isinstance(image, str): - if os.path.exists(image): - pil_img = Image.open(image).convert("RGB") - image = np.array(pil_img)[:, :, [2, 1, 0]] - image_h = pil_img.height - image_w = pil_img.width - else: - raise ValueError(f"invaild image path, {image}") - elif isinstance(image, torch.Tensor): - # pdb.set_trace() - image_tensor = image.cpu() - reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None] - reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None] - image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean - pil_img = T.ToPILImage()(image_tensor) - image_h = pil_img.height - image_w = pil_img.width - image = np.array(pil_img)[:, :, [2, 1, 0]] - else: - raise ValueError(f"invaild image format, {type(image)} for {image}") - - if len(entities) == 0: - return image - - indices = list(range(len(entities))) - if entity_index >= 0: - indices = [entity_index] - - # Not to show too many bboxes - entities = entities[:len(color_map)] - - new_image = image.copy() - previous_bboxes = [] - # size of text - text_size = 1 - # thickness of text - text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1)) - box_line = 3 - (c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line) - base_height = int(text_height * 0.675) - text_offset_original = text_height - base_height - text_spaces = 3 - - # num_bboxes = sum(len(x[-1]) for x in entities) - used_colors = colors # random.sample(colors, k=num_bboxes) - - color_id = -1 - for entity_idx, (entity_name, (start, end), bboxes) in enumerate(entities): - color_id += 1 - if entity_idx not in indices: - continue - for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes): - # if start is None and bbox_id > 0: - # color_id += 1 - orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h) - - # draw bbox - # random color - color = used_colors[color_id] # tuple(np.random.randint(0, 255, size=3).tolist()) - new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line) - - l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1 - - x1 = orig_x1 - l_o - y1 = orig_y1 - l_o - - if y1 < text_height + text_offset_original + 2 * text_spaces: - y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces - x1 = orig_x1 + r_o - - # add text background - (text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line) - text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1 - - for prev_bbox in previous_bboxes: - while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox): - text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces) - text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces) - y1 += (text_height + text_offset_original + 2 * text_spaces) - - if text_bg_y2 >= image_h: - text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces)) - text_bg_y2 = image_h - y1 = image_h - break - - alpha = 0.5 - for i in range(text_bg_y1, text_bg_y2): - for j in range(text_bg_x1, text_bg_x2): - if i < image_h and j < image_w: - if j < text_bg_x1 + 1.35 * c_width: - # original color - bg_color = color - else: - # white - bg_color = [255, 255, 255] - new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(np.uint8) - - cv2.putText( - new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces), cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA - ) - # previous_locations.append((x1, y1)) - previous_bboxes.append((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2)) - - pil_image = Image.fromarray(new_image[:, :, [2, 1, 0]]) - if save_path: - pil_image.save(save_path) - if show: - pil_image.show() - - return pil_image - - -def main(): - - ckpt = "microsoft/kosmos-2-patch14-224" - - model = AutoModelForVision2Seq.from_pretrained(ckpt).to("cuda") - processor = AutoProcessor.from_pretrained(ckpt) - - def generate_predictions(image_input, text_input): - - # Save the image and load it again to match the original Kosmos-2 demo. - # (https://github.com/microsoft/unilm/blob/f4695ed0244a275201fff00bee495f76670fbe70/kosmos-2/demo/gradio_app.py#L345-L346) - user_image_path = "/tmp/user_input_test_image.jpg" - image_input.save(user_image_path) - # This might give different results from the original argument `image_input` - image_input = Image.open(user_image_path) - - if text_input == "Brief": - text_input = "An image of" - elif text_input == "Detailed": - text_input = "Describe this image in detail:" - else: - text_input = f"{text_input}" - - inputs = processor(text=text_input, images=image_input, return_tensors="pt").to("cuda") - - generated_ids = model.generate( - pixel_values=inputs["pixel_values"], - input_ids=inputs["input_ids"], - attention_mask=inputs["attention_mask"], - image_embeds=None, - image_embeds_position_mask=inputs["image_embeds_position_mask"], - use_cache=True, - max_new_tokens=128, - ) - - generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] - - # By default, the generated text is cleanup and the entities are extracted. - processed_text, entities = processor.post_process_generation(generated_text) - - annotated_image = draw_entity_boxes_on_image(image_input, entities, show=False) - - color_id = -1 - entity_info = [] - filtered_entities = [] - for entity in entities: - entity_name, (start, end), bboxes = entity - if start == end: - # skip bounding bbox without a `phrase` associated - continue - color_id += 1 - # for bbox_id, _ in enumerate(bboxes): - # if start is None and bbox_id > 0: - # color_id += 1 - entity_info.append(((start, end), color_id)) - filtered_entities.append(entity) - - colored_text = [] - prev_start = 0 - end = 0 - for idx, ((start, end), color_id) in enumerate(entity_info): - if start > prev_start: - colored_text.append((processed_text[prev_start:start], None)) - colored_text.append((processed_text[start:end], f"{color_id}")) - prev_start = end - - if end < len(processed_text): - colored_text.append((processed_text[end:len(processed_text)], None)) - - return annotated_image, colored_text, str(filtered_entities) - - term_of_use = """ - ### Terms of use - By using this model, users are required to agree to the following terms: - The model is intended for academic and research purposes. - The utilization of the model to create unsuitable material is strictly forbidden and not endorsed by this work. - The accountability for any improper or unacceptable application of the model rests exclusively with the individuals who generated such content. - - ### License - This project is licensed under the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct). - """ - - with gr.Blocks(title="Kosmos-2", theme=gr.themes.Base()).queue() as demo: - gr.Markdown((""" - # Kosmos-2: Grounding Multimodal Large Language Models to the World - [[Paper]](https://arxiv.org/abs/2306.14824) [[Code]](https://github.com/microsoft/unilm/blob/master/kosmos-2) - """)) - with gr.Row(): - with gr.Column(): - image_input = gr.Image(type="pil", label="Test Image") - text_input = gr.Radio(["Brief", "Detailed"], label="Description Type", value="Brief") - - run_button = gr.Button(label="Run", visible=True) - - with gr.Column(): - image_output = gr.Image(type="pil") - text_output1 = gr.HighlightedText( - label="Generated Description", - combine_adjacent=False, - show_legend=True, - ).style(color_map=color_map) - - with gr.Row(): - with gr.Column(): - gr.Examples(examples=[ - ["images/two_dogs.jpg", "Detailed"], - ["images/snowman.png", "Brief"], - ["images/man_ball.png", "Detailed"], - ], inputs=[image_input, text_input]) - with gr.Column(): - gr.Examples(examples=[ - ["images/six_planes.png", "Brief"], - ["images/quadrocopter.jpg", "Brief"], - ["images/carnaby_street.jpg", "Brief"], - ], inputs=[image_input, text_input]) - gr.Markdown(term_of_use) - - # record which text span (label) is selected - selected = gr.Number(-1, show_label=False, placeholder="Selected", visible=False) - - # record the current `entities` - entity_output = gr.Textbox(visible=False) - - # get the current selected span label - def get_text_span_label(evt: gr.SelectData): - if evt.value[-1] is None: - return -1 - return int(evt.value[-1]) - # and set this information to `selected` - text_output1.select(get_text_span_label, None, selected) - - # update output image when we change the span (enity) selection - def update_output_image(img_input, image_output, entities, idx): - entities = ast.literal_eval(entities) - updated_image = draw_entity_boxes_on_image(img_input, entities, entity_index=idx) - return updated_image - selected.change(update_output_image, [image_input, image_output, entity_output, selected], [image_output]) - - run_button.click(fn=generate_predictions, - inputs=[image_input, text_input], - outputs=[image_output, text_output1, entity_output], - show_progress=True, queue=True) - - demo.launch(share=False) - - -if __name__ == "__main__": - main() - # trigger \ No newline at end of file diff --git a/spaces/tialenAdioni/chat-gpt-api/logs/Harry Potter I Zakon Feniksa Pdf Free WORK Download.md b/spaces/tialenAdioni/chat-gpt-api/logs/Harry Potter I Zakon Feniksa Pdf Free WORK Download.md deleted file mode 100644 index 58997b73755078c4a83180d644cfa884686f1232..0000000000000000000000000000000000000000 --- a/spaces/tialenAdioni/chat-gpt-api/logs/Harry Potter I Zakon Feniksa Pdf Free WORK Download.md +++ /dev/null @@ -1,18 +0,0 @@ -
          -

          How to Download Harry Potter i Zakon Feniksa PDF for Free

          -

          Harry Potter i Zakon Feniksa (Harry Potter and the Order of the Phoenix) is the fifth book in the Harry Potter series by J.K. Rowling. It was published in Polish by Media Rodzina in 2004. The book follows Harry's fifth year at Hogwarts School of Witchcraft and Wizardry, as he faces the return of Lord Voldemort and the persecution of the Ministry of Magic.

          -

          Harry Potter I Zakon Feniksa Pdf Free Download


          Download Filehttps://urlcod.com/2uKakO



          -

          If you are a fan of Harry Potter and want to read this book in Polish, you might be wondering how to download it for free. There are several ways to do this, but you should be careful about the legality and safety of the sources you use. Here are some tips to help you find and download Harry Potter i Zakon Feniksa PDF for free:

          -
            -
          • Check your local library. Many libraries offer e-books that you can borrow for free with your library card. You can search for Harry Potter i Zakon Feniksa on their online catalog and see if they have a digital copy available. If they do, you can download it to your device using an app like OverDrive or Libby.
          • -
          • Use a reputable website. There are some websites that offer free e-books legally, such as Project Gutenberg or Open Library. However, these sites usually only have books that are in the public domain or have been donated by authors or publishers. Since Harry Potter i Zakon Feniksa is still under copyright protection, you are unlikely to find it on these sites. You might find some other sites that claim to offer free downloads of Harry Potter i Zakon Feniksa, but be wary of them. They might be illegal, infected with malware, or require you to sign up for something.
          • -
          • Use a torrent site. Torrent sites are platforms where users can share files with each other using peer-to-peer technology. You can find almost any book on torrent sites, including Harry Potter i Zakon Feniksa. However, using torrent sites is risky and illegal. You might violate copyright laws, expose your device to viruses or hackers, or face legal consequences.
          • -
          -

          The best way to enjoy Harry Potter i Zakon Feniksa is to buy a legal copy from a bookstore or an online retailer. This way, you can support the author and the publisher, avoid any legal or technical issues, and have a high-quality reading experience.

          - -

          Harry Potter i Zakon Feniksa is the longest book in the series, with over 900 pages. It is also one of the darkest and most complex, as Harry faces new challenges and dangers in his fifth year at Hogwarts. He has to deal with the trauma of witnessing Cedric Diggory's death and Voldemort's resurrection, the hostility of the Ministry of Magic and the Daily Prophet, the pressure of the O.W.L. exams, the rebellion of his fellow students against the tyrannical Professor Umbridge, and the nightmares and visions that link him to Voldemort's mind.

          -

          The book also introduces new characters and places, such as the Order of the Phoenix, a secret society of wizards and witches who oppose Voldemort; Sirius Black's family home at 12 Grimmauld Place, which serves as the Order's headquarters; Nymphadora Tonks, a young and clumsy Auror who can change her appearance at will; Luna Lovegood, a quirky and loyal friend who believes in strange creatures and conspiracies; Bellatrix Lestrange, a fanatical and sadistic Death Eater who escaped from Azkaban; and the Department of Mysteries, a mysterious and dangerous section of the Ministry of Magic where a prophecy about Harry and Voldemort is hidden.

          -

          -

          Harry Potter i Zakon Feniksa is a thrilling and emotional adventure that explores themes such as power, corruption, resistance, loyalty, friendship, loss, and destiny. It is a book that will keep you hooked until the end, and make you laugh, cry, cheer, and gasp along the way. It is a book that will make you love Harry Potter even more.

          7196e7f11a
          -
          -
          \ No newline at end of file diff --git a/spaces/ticomspire/turkey-syria-earthquake-tweets/logs/CarX Street APK Customize Your Car and Conquer the Clubs in this Amazing Racing Game.md b/spaces/ticomspire/turkey-syria-earthquake-tweets/logs/CarX Street APK Customize Your Car and Conquer the Clubs in this Amazing Racing Game.md deleted file mode 100644 index a6f1c4003cbd364bf4b38cc8a3905c14fe8e63dd..0000000000000000000000000000000000000000 --- a/spaces/ticomspire/turkey-syria-earthquake-tweets/logs/CarX Street APK Customize Your Car and Conquer the Clubs in this Amazing Racing Game.md +++ /dev/null @@ -1,106 +0,0 @@ - -

          CarX Street APK: A Realistic Street Racing Game for Android

          -

          If you are a fan of street racing games, you might want to check out CarX Street APK, a new game from the makers of CarX Drift Racing 2. This game lets you explore a huge open world of Sunset City, where you can race on highways and city streets, or drift through turns. You can also build the car of your dreams using part tuning that unlocks all the physics of CarX Technology car behavior. In this article, we will tell you more about CarX Street APK, its features, and how to download and install it on your Android device.

          -

          carx street apk 3 gb


          Download File 🌟 https://bltlly.com/2uOpwD



          -

          Introduction

          -

          What is CarX Street APK?

          -

          CarX Street APK is an Android game that offers realistic street racing and drifting in a dynamic open world. It is developed by CarX Technologies, LLC, a company that specializes in creating high-quality racing games with advanced physics and graphics. CarX Street APK is currently in open beta test, which means that it is still under development and may have some bugs or glitches. However, you can still enjoy the game and provide feedback to the developers to improve it.

          -

          Why should you download CarX Street APK?

          -

          There are many reasons why you should download CarX Street APK if you love street racing games. Here are some of them:

          -
            -
          • You can experience realistic races on highways and city streets, or top-speed drift races from the makers of CarX Drift Racing 2.
          • -
          • You can join clubs, defeat bosses, and prove to everyone that you are the best driver in Sunset City.
          • -
          • You can customize your cars and houses using a detailed car-building system and visual car tuning.
          • -
          • You can enjoy the impressive physics and controls that make you the master of your car.
          • -
          • You can admire the modern, high-quality graphics and enormous open world that will leave you exhilarated.
          • -
          -

          Features of CarX Street APK

          -

          Career mode

          -

          In CarX Street APK, you can choose your own path as a street racer in the career mode. You can drive at top speed or drift through turns, depending on your preference. You can also join clubs, defeat bosses, and prove to everyone that you are the best driver in Sunset City. You can pick out parts for your vehicle and unlock 100% of its potential. You can also buy houses for your cars and assemble collections for every race mode. You can also fuel up with the right gas for the next race at city gas stations. You can also experience the dynamic day/night cycle that changes the atmosphere of the game.

          -

          Join clubs and defeat bosses

          -

          As you progress in the career mode, you will encounter different clubs and bosses that will challenge you to race against them. You will need to use your skills and strategy to beat them and earn their respect. You will also unlock new cars, parts, and locations as you defeat them.

          -

          Customize your cars and houses

          -

          In CarX Street APK, you can customize your cars and houses using a detailed car-building system and visual car tuning. You can swap parts and trick out your car for a specific race. You can upgrade the engine, transmission, body, suspension, and tires. You can also swap the engine of your unique car. You can also change the color, shape, and style of your car. You can also buy houses for your cars and decorate them with furniture and accessories. You can also assemble collections for every race mode and show off your achievements.

          -

          Experience dynamic day/night cycle

          -

          In CarX Street APK, you can experience the dynamic day/night cycle that changes the atmosphere of the game. You can race in different weather conditions and lighting effects. You can also see the city come alive with traffic, pedestrians, and other racers. You can also explore the huge open world of Sunset City, where you can find hidden locations and secrets.

          -

          carx street game download apk 3gb
          -carx street racing mod apk 3gb
          -carx street android apk 3gb free
          -carx street open world apk 3gb
          -carx street latest version apk 3gb
          -carx street beta apk 3gb offline
          -carx street drift apk 3gb online
          -carx street update apk 3gb full
          -carx street hack apk 3gb unlimited
          -carx street obb apk 3gb data
          -carx street mobile apk 3gb highly compressed
          -carx street pc apk 3gb emulator
          -carx street ios apk 3gb iphone
          -carx street review apk 3gb gameplay
          -carx street cheats apk 3gb codes
          -carx street tips apk 3gb guide
          -carx street tricks apk 3gb tutorial
          -carx street walkthrough apk 3gb video
          -carx street wallpaper apk 3gb hd
          -carx street theme apk 3gb music
          -carx street cars apk 3gb list
          -carx street tuning apk 3gb parts
          -carx street engine swap apk 3gb mod
          -carx street customization apk 3gb options
          -carx street graphics apk 3gb settings
          -carx street controls apk 3gb buttons
          -carx street physics apk 3gb realistic
          -carx street sound apk 3gb engine
          -carx street map apk 3gb location
          -carx street city apk 3gb sunset
          -carx street clubs apk 3gb bosses
          -carx street challenges apk 3gb rewards
          -carx street missions apk 3gb career
          -carx street events apk 3gb modes
          -carx street multiplayer apk 3gb pvp
          -carx street leaderboard apk 3gb rank
          -carx street achievements apk 3gb trophies
          -carx street support apk 3gb contact
          -carx street bugs apk 3gb fix
          -carx street news apk 3gb release date

          -

          Improved car tuning

          -

          In CarX Street APK, you can improve your car tuning using a realistic system that unlocks all the physics of CarX Technology car behavior. You can swap parts and unlock physics for your car. You can also use visual car tuning to make your car look unique and stylish.

          -

          Swap parts and unlock physics

          -

          In CarX Street APK, you can swap parts and unlock physics for your car. You can upgrade the engine, transmission, body, suspension, and tires. You can also swap the engine of your unique car. You can choose from different types of engines, such as V6, V8, V10, V12, or rotary engines. You can also adjust the power, torque, weight, and sound of your engine. You can also fine-tune the suspension stiffness, camber angle, toe angle, and tire pressure. You can also change the gear ratio, differential lock, and clutch settings. You can also use the dyno test to measure the performance of your car.

          -

          Visual car tuning

          -

          In CarX Street APK, you can use visual car tuning to make your car look unique and stylish. You can change the color, shape, and style of your car. You can choose from different paint types, such as matte, metallic, pearlescent, or chrome. You can also apply decals, stickers, and vinyls to your car. You can also modify the body kit, spoiler, hood, bumper, grille, headlights, taillights, exhaust pipes, rims, tires, and license plates of your car. You can also use the photo mode to capture your car from different angles and share it with other players.

          -

          Realistic racing game

          -

          In CarX Street APK, you can enjoy a realistic racing game that will make you feel like you are driving a real car on real streets. You can admire the impressive physics and controls that make you the master of your car. You can also appreciate the high-quality graphics and open world that will leave you exhilarated.

          -

          Impressive physics and controls

          -

          In CarX Street APK, you can admire the impressive physics and controls that make you the master of your car. You can feel every bump, turn, and drift of your car thanks to the realistic physics engine that simulates the behavior of real cars. You can also choose from different control options, such as tilt steering, wheel steering, or buttons. You can also customize the sensitivity, steering angle, and feedback of your controls. You can also use the handbrake, nitro, and clutch to perform amazing stunts and maneuvers.

          -

          High-quality graphics and open world

          -

          In CarX Street APK, you can appreciate the high-quality graphics and open world that will leave you exhilarated. You can see the stunning details and realistic lighting effects of your car and the environment. You can also explore the enormous open world of Sunset City, where you can find highways, city streets, industrial zones, suburbs, and more. You can also see the city come alive with traffic, pedestrians, and other racers. You can also interact with different objects and obstacles in the world, such as ramps, barrels, cones, fences, and more.

          -

          How to download and install CarX Street APK

          -

          If you want to download and install CarX Street APK on your Android device, you will need to follow these simple steps:

          -

          Download the APK file

          -

          The first step is to download the APK file of CarX Street APK from a reliable source. You can use the link below to download the latest version of the game:

          -

          CarX Street APK Download

          -

          The file size is about 3 GB, so make sure you have enough storage space and a stable internet connection before downloading it.

          -

          Enable unknown sources

          -

          The next step is to enable unknown sources on your device. This will allow you to install apps that are not from the Google Play Store. To do this, go to your device settings and look for security or privacy options. Then, find the option that says unknown sources or allow installation from unknown sources and turn it on.

          -

          Install the APK file

          -

          The final step is to install the APK file of CarX Street APK on your device. To do this, locate the downloaded file in your file manager or downloads folder and tap on it. Then, follow the instructions on the screen to complete the installation process. Once done, you can launch the game and enjoy it.

          -

          Conclusion

          -

          CarX Street APK is a realistic street racing game for Android that offers a dynamic open world, improved car tuning, and impressive physics and graphics. It is developed by CarX Technologies, LLC, a company that specializes in creating high-quality racing games with advanced physics and graphics. It is currently in open beta test, which means that it is still under development and may have some bugs or glitches. However, you can still enjoy the game and provide feedback to the developers to improve it.

          -

          If you are a fan of street racing games, you should definitely download CarX Street APK and experience the thrill of racing on highways and city streets, or drifting through turns. You can also join clubs, defeat bosses, customize your cars and houses, and explore the huge open world of Sunset City.

          -

          We hope this article has helped you learn more about CarX Street APK, its features, and how to download and install it on your Android device. If you have any questions or comments, feel free to leave them below.

          -

          FAQs

          -
            -
          • What are the system requirements for CarX Street APK?
          • -

            To play CarX Street APK on your Android device, you will need at least Android 6.0 or higher, 4 GB of RAM or more, 5 GB of free storage space or more, and a stable internet connection.

            -
          • Is CarX Street APK free to play?
          • -

            Yes, CarX Street APK is free to play. However, it may contain some in-app purchases or ads that can enhance your gaming experience or support the developers.

            -
          • How can I provide feedback or report bugs for CarX Street APK?
          • -

            If you want to provide feedback or report bugs for CarX Street APK, you can contact the developers through their official website or social media pages. You can also join their Discord server or Reddit community to interact with other players and developers.

            -
          • Can I play CarX Street APK offline?
          • -

            No, CarX Street APK requires an internet connection to play. This is because it is an online game that features multiplayer modes and online events.

            -
          • Can I play CarX Street APK on PC?
          • -

            No, CarX Street APK is only available for Android devices at the moment. However, you may be able to play it on PC using an Android emulator such as BlueStacks or NoxPlayer.

            -

          197e85843d
          -
          -
          \ No newline at end of file diff --git a/spaces/tioseFevbu/cartoon-converter/scripts/Dus Kahaniyaan Eng Sub 720p Hd.md b/spaces/tioseFevbu/cartoon-converter/scripts/Dus Kahaniyaan Eng Sub 720p Hd.md deleted file mode 100644 index 1db32530e3754b298953e63f2143b4761e2a0e14..0000000000000000000000000000000000000000 --- a/spaces/tioseFevbu/cartoon-converter/scripts/Dus Kahaniyaan Eng Sub 720p Hd.md +++ /dev/null @@ -1,28 +0,0 @@ - -Here is a possible title and article for the keyword "Dus Kahaniyaan eng sub 720p hd": - -

          Dus Kahaniyaan: Watch the Anthology of Ten Stories with English Subtitles in HD Quality

          -

          Dus Kahaniyaan is a 2007 Hindi film that consists of ten short stories, each with a different theme and genre. The stories are directed by six different directors and feature an ensemble cast of popular actors. The film explores various aspects of human relationships, emotions, and dilemmas through diverse narratives and settings.

          -

          Dus Kahaniyaan eng sub 720p hd


          Download Zip ——— https://urlcod.com/2uHwph



          -

          If you are looking for a way to watch Dus Kahaniyaan with English subtitles in high-definition quality, you have come to the right place. In this article, we will show you how to stream or download the film in 720p HD resolution with clear and accurate subtitles.

          -

          How to Stream Dus Kahaniyaan with English Subtitles Online

          -

          One of the easiest ways to watch Dus Kahaniyaan with English subtitles online is to use a streaming service that offers the film in your region. Some of the popular platforms that have Dus Kahaniyaan in their library are:

          -
            -
          • Netflix: Netflix is a global leader in online entertainment, offering a wide range of movies and shows in various languages and genres. You can watch Dus Kahaniyaan on Netflix with English subtitles by selecting the subtitle option from the menu. You will need a Netflix subscription to access the film.
          • -
          • Amazon Prime Video: Amazon Prime Video is another popular streaming service that has Dus Kahaniyaan in its catalog. You can watch the film with English subtitles by choosing the subtitle option from the menu. You will need an Amazon Prime membership to access the film.
          • -
          • Hotstar: Hotstar is a streaming platform that specializes in Indian content, offering movies, shows, sports, and news in multiple languages. You can watch Dus Kahaniyaan on Hotstar with English subtitles by selecting the subtitle option from the menu. You will need a Hotstar subscription to access the film.
          • -
          -

          Alternatively, you can also use a VPN service to access streaming platforms that have Dus Kahaniyaan in other regions. A VPN is a tool that allows you to change your IP address and location, bypassing geo-restrictions and censorship. However, you should be careful when using a VPN, as some streaming services may detect and block VPN users.

          -

          -

          How to Download Dus Kahaniyaan with English Subtitles in 720p HD Quality

          -

          If you prefer to download Dus Kahaniyaan with English subtitles in 720p HD quality, you will need to find a reliable source that offers the film in this format. Some of the possible sources are:

          -
            -
          • Torrent sites: Torrent sites are platforms that allow users to share files through peer-to-peer networks. You can find Dus Kahaniyaan with English subtitles in 720p HD quality on some torrent sites, such as The Pirate Bay, 1337x, or RARBG. However, you should be aware of the risks involved in using torrent sites, such as malware, viruses, legal issues, and low-quality files.
          • -
          • Online downloaders: Online downloaders are tools that allow you to download videos from streaming platforms, such as YouTube, Vimeo, or Dailymotion. You can find Dus Kahaniyaan with English subtitles in 720p HD quality on some online downloaders, such as Y2Mate, SaveFrom.net, or KeepVid. However, you should be careful when using online downloaders, as some of them may contain ads, pop-ups, or malicious links.
          • -
          • Official sources: Official sources are platforms that offer legal and authorized downloads of movies and shows. You can find Dus Kahaniyaan with English subtitles in 720p HD quality on some official sources, such as iTunes, Google Play Movies, or YouTube Movies. However, you will need to pay a fee to download the film from these sources.
          • -
          -

          Before downloading any file from any source, you should always check the file size, format, quality, and subtitles to ensure that they match your expectations and requirements.

          -

          Conclusion

          -

          Dus Kahaniyaan is a unique and engaging film that showcases ten different stories with different themes and genres. If you want to watch this film with English subtitles in 720p HD quality, you can either stream it online or download it from various sources. However, you should always be

          7196e7f11a
          -
          -
          \ No newline at end of file diff --git a/spaces/tioseFevbu/cartoon-converter/scripts/Full House Episode 1 Tagalog Version Song 2021.md b/spaces/tioseFevbu/cartoon-converter/scripts/Full House Episode 1 Tagalog Version Song 2021.md deleted file mode 100644 index 72d731381ead3acf47b860525bc094e0f69673be..0000000000000000000000000000000000000000 --- a/spaces/tioseFevbu/cartoon-converter/scripts/Full House Episode 1 Tagalog Version Song 2021.md +++ /dev/null @@ -1,32 +0,0 @@ - -

          How to Watch Full House Episode 1 Tagalog Version Song Online

          - -

          Full House is a popular Korean drama that aired in 2004, starring Rain and Song Hye Kyo. The story revolves around a contract marriage between an aspiring writer and a famous actor, who live together in a house called Full House. The drama is based on a comic book of the same name by Won Soo Yeon.

          - -

          One of the highlights of the drama is its catchy soundtrack, which includes songs by Byul, Lee Bo-ram, and G.NA. The songs are sung in Korean, but there are also Tagalog versions of some of them, such as "I Think I Love You" by Marianne Topacio[^1^] and "Destiny" by Damboomba[^2^]. These songs have been translated and covered by Filipino singers and fans, who love the drama and its music.

          -

          Full House Episode 1 Tagalog Version Song


          Download Zip ✑ ✑ ✑ https://urlcod.com/2uHv81



          - -

          If you want to watch Full House Episode 1 Tagalog Version Song online, you have several options. You can watch it on YouTube, where some users have uploaded the episode with Tagalog subtitles and songs. For example, you can watch it on Pinoy Viral Clips' channel[^3^], which has more than 150K views. You can also watch it on SoundCloud, where some users have uploaded the Tagalog version songs separately. For example, you can listen to "Full ##TOP## House Episode 1 Tagalog Version Song" by Christopher Kizy, which has more than 10K plays.

          - -

          Another option is to watch Full House Episode 1 Tagalog Version Song on streaming platforms that offer Korean dramas with subtitles and dubbing in different languages. For example, you can watch it on Netflix, Viki, or iFlix, where you can choose the language and audio options that suit your preference. You can also watch it on cable TV channels that air Korean dramas with Tagalog dubbing, such as GMA Network or ABS-CBN.

          - -

          Whichever option you choose, you will surely enjoy watching Full House Episode 1 Tagalog Version Song online. It is a fun and romantic comedy that will make you laugh and cry. It is also a great way to learn more about Korean culture and language, as well as Filipino culture and language. So what are you waiting for? Watch Full House Episode 1 Tagalog Version Song online today!

          - -

          How to Watch Full House Episode 1 Tagalog Version Song Online

          - -

          ...

          - -

          What to Expect from Full House Episode 1 Tagalog Version Song

          - -

          Full House Episode 1 Tagalog Version Song introduces the main characters and the premise of the drama. You will meet Han Ji-eun, a cheerful and naive aspiring writer who lives alone in a house called Full House, which was built by her late parents. You will also meet Lee Young-jae, a famous and arrogant actor who has a complicated relationship with his childhood friend and manager, Kang Hye-won.

          -

          - -

          The episode begins with Ji-eun winning a trip to Shanghai in a writing contest. She decides to go with her two best friends, who turn out to be scheming and greedy. They trick her into selling her house to Young-jae, who is looking for a new place to stay after breaking up with Hye-won. Ji-eun returns from her trip to find out that she has been evicted from her own house and that Young-jae is the new owner.

          - -

          Ji-eun begs Young-jae to let her stay in the house until she finds a new place, but he refuses. He offers her a deal instead: he will let her stay in the house if she agrees to be his wife for a year. He needs a fake wife to make Hye-won jealous and to avoid his grandfather's pressure to get married. Ji-eun reluctantly agrees, hoping to get her house back eventually.

          - -

          The episode ends with Ji-eun and Young-jae signing the contract marriage and moving in together. They start their cohabitation with bickering and misunderstandings, but also with some sparks of attraction. The episode also features some of the Tagalog version songs, such as "I Think I Love You" by Marianne Topacio, which plays during the opening credits and during some of the romantic scenes.

          - -

          Full House Episode 1 Tagalog Version Song is a great start to the drama, as it sets up the main conflict and the chemistry between the leads. It also showcases some of the beautiful scenery of Shanghai and Seoul, as well as some of the catchy songs that will accompany the story. If you are looking for a light-hearted and sweet romance, you will love watching Full House Episode 1 Tagalog Version Song online.

          e93f5a0c3f
          -
          -
          \ No newline at end of file diff --git a/spaces/tjburns/ask_marcus_aurelius/.venv/lib/python3.10/site-packages/pip/_vendor/rich/progress_bar.py b/spaces/tjburns/ask_marcus_aurelius/.venv/lib/python3.10/site-packages/pip/_vendor/rich/progress_bar.py deleted file mode 100644 index 9c3a4f25a2cea5c19eed8c5d2645fa11275b78cf..0000000000000000000000000000000000000000 --- a/spaces/tjburns/ask_marcus_aurelius/.venv/lib/python3.10/site-packages/pip/_vendor/rich/progress_bar.py +++ /dev/null @@ -1,224 +0,0 @@ -import math -from functools import lru_cache -from time import monotonic -from typing import Iterable, List, Optional - -from .color import Color, blend_rgb -from .color_triplet import ColorTriplet -from .console import Console, ConsoleOptions, RenderResult -from .jupyter import JupyterMixin -from .measure import Measurement -from .segment import Segment -from .style import Style, StyleType - -# Number of characters before 'pulse' animation repeats -PULSE_SIZE = 20 - - -class ProgressBar(JupyterMixin): - """Renders a (progress) bar. Used by rich.progress. - - Args: - total (float, optional): Number of steps in the bar. Defaults to 100. Set to None to render a pulsing animation. - completed (float, optional): Number of steps completed. Defaults to 0. - width (int, optional): Width of the bar, or ``None`` for maximum width. Defaults to None. - pulse (bool, optional): Enable pulse effect. Defaults to False. Will pulse if a None total was passed. - style (StyleType, optional): Style for the bar background. Defaults to "bar.back". - complete_style (StyleType, optional): Style for the completed bar. Defaults to "bar.complete". - finished_style (StyleType, optional): Style for a finished bar. Defaults to "bar.done". - pulse_style (StyleType, optional): Style for pulsing bars. Defaults to "bar.pulse". - animation_time (Optional[float], optional): Time in seconds to use for animation, or None to use system time. - """ - - def __init__( - self, - total: Optional[float] = 100.0, - completed: float = 0, - width: Optional[int] = None, - pulse: bool = False, - style: StyleType = "bar.back", - complete_style: StyleType = "bar.complete", - finished_style: StyleType = "bar.finished", - pulse_style: StyleType = "bar.pulse", - animation_time: Optional[float] = None, - ): - self.total = total - self.completed = completed - self.width = width - self.pulse = pulse - self.style = style - self.complete_style = complete_style - self.finished_style = finished_style - self.pulse_style = pulse_style - self.animation_time = animation_time - - self._pulse_segments: Optional[List[Segment]] = None - - def __repr__(self) -> str: - return f"" - - @property - def percentage_completed(self) -> Optional[float]: - """Calculate percentage complete.""" - if self.total is None: - return None - completed = (self.completed / self.total) * 100.0 - completed = min(100, max(0.0, completed)) - return completed - - @lru_cache(maxsize=16) - def _get_pulse_segments( - self, - fore_style: Style, - back_style: Style, - color_system: str, - no_color: bool, - ascii: bool = False, - ) -> List[Segment]: - """Get a list of segments to render a pulse animation. - - Returns: - List[Segment]: A list of segments, one segment per character. - """ - bar = "-" if ascii else "━" - segments: List[Segment] = [] - if color_system not in ("standard", "eight_bit", "truecolor") or no_color: - segments += [Segment(bar, fore_style)] * (PULSE_SIZE // 2) - segments += [Segment(" " if no_color else bar, back_style)] * ( - PULSE_SIZE - (PULSE_SIZE // 2) - ) - return segments - - append = segments.append - fore_color = ( - fore_style.color.get_truecolor() - if fore_style.color - else ColorTriplet(255, 0, 255) - ) - back_color = ( - back_style.color.get_truecolor() - if back_style.color - else ColorTriplet(0, 0, 0) - ) - cos = math.cos - pi = math.pi - _Segment = Segment - _Style = Style - from_triplet = Color.from_triplet - - for index in range(PULSE_SIZE): - position = index / PULSE_SIZE - fade = 0.5 + cos((position * pi * 2)) / 2.0 - color = blend_rgb(fore_color, back_color, cross_fade=fade) - append(_Segment(bar, _Style(color=from_triplet(color)))) - return segments - - def update(self, completed: float, total: Optional[float] = None) -> None: - """Update progress with new values. - - Args: - completed (float): Number of steps completed. - total (float, optional): Total number of steps, or ``None`` to not change. Defaults to None. - """ - self.completed = completed - self.total = total if total is not None else self.total - - def _render_pulse( - self, console: Console, width: int, ascii: bool = False - ) -> Iterable[Segment]: - """Renders the pulse animation. - - Args: - console (Console): Console instance. - width (int): Width in characters of pulse animation. - - Returns: - RenderResult: [description] - - Yields: - Iterator[Segment]: Segments to render pulse - """ - fore_style = console.get_style(self.pulse_style, default="white") - back_style = console.get_style(self.style, default="black") - - pulse_segments = self._get_pulse_segments( - fore_style, back_style, console.color_system, console.no_color, ascii=ascii - ) - segment_count = len(pulse_segments) - current_time = ( - monotonic() if self.animation_time is None else self.animation_time - ) - segments = pulse_segments * (int(width / segment_count) + 2) - offset = int(-current_time * 15) % segment_count - segments = segments[offset : offset + width] - yield from segments - - def __rich_console__( - self, console: Console, options: ConsoleOptions - ) -> RenderResult: - - width = min(self.width or options.max_width, options.max_width) - ascii = options.legacy_windows or options.ascii_only - should_pulse = self.pulse or self.total is None - if should_pulse: - yield from self._render_pulse(console, width, ascii=ascii) - return - - completed: Optional[float] = ( - min(self.total, max(0, self.completed)) if self.total is not None else None - ) - - bar = "-" if ascii else "━" - half_bar_right = " " if ascii else "╸" - half_bar_left = " " if ascii else "╺" - complete_halves = ( - int(width * 2 * completed / self.total) - if self.total and completed is not None - else width * 2 - ) - bar_count = complete_halves // 2 - half_bar_count = complete_halves % 2 - style = console.get_style(self.style) - is_finished = self.total is None or self.completed >= self.total - complete_style = console.get_style( - self.finished_style if is_finished else self.complete_style - ) - _Segment = Segment - if bar_count: - yield _Segment(bar * bar_count, complete_style) - if half_bar_count: - yield _Segment(half_bar_right * half_bar_count, complete_style) - - if not console.no_color: - remaining_bars = width - bar_count - half_bar_count - if remaining_bars and console.color_system is not None: - if not half_bar_count and bar_count: - yield _Segment(half_bar_left, style) - remaining_bars -= 1 - if remaining_bars: - yield _Segment(bar * remaining_bars, style) - - def __rich_measure__( - self, console: Console, options: ConsoleOptions - ) -> Measurement: - return ( - Measurement(self.width, self.width) - if self.width is not None - else Measurement(4, options.max_width) - ) - - -if __name__ == "__main__": # pragma: no cover - console = Console() - bar = ProgressBar(width=50, total=100) - - import time - - console.show_cursor(False) - for n in range(0, 101, 1): - bar.update(n) - console.print(bar) - console.file.write("\r") - time.sleep(0.05) - console.show_cursor(True) - console.print() diff --git a/spaces/tobiascz/demotime/pytorch_grad_cam/xgrad_cam.py b/spaces/tobiascz/demotime/pytorch_grad_cam/xgrad_cam.py deleted file mode 100644 index 81a920fe8b81bfb7bce9f317edfcc465c9bffd60..0000000000000000000000000000000000000000 --- a/spaces/tobiascz/demotime/pytorch_grad_cam/xgrad_cam.py +++ /dev/null @@ -1,31 +0,0 @@ -import numpy as np -from pytorch_grad_cam.base_cam import BaseCAM - - -class XGradCAM(BaseCAM): - def __init__( - self, - model, - target_layers, - use_cuda=False, - reshape_transform=None): - super( - XGradCAM, - self).__init__( - model, - target_layers, - use_cuda, - reshape_transform) - - def get_cam_weights(self, - input_tensor, - target_layer, - target_category, - activations, - grads): - sum_activations = np.sum(activations, axis=(2, 3)) - eps = 1e-7 - weights = grads * activations / \ - (sum_activations[:, :, None, None] + eps) - weights = weights.sum(axis=(2, 3)) - return weights diff --git a/spaces/tomaseo2022/Enlace-Youtube-a-Texto/README.md b/spaces/tomaseo2022/Enlace-Youtube-a-Texto/README.md deleted file mode 100644 index bf8c97284f4cf4fc4fd80ae8a53ec4661558098d..0000000000000000000000000000000000000000 --- a/spaces/tomaseo2022/Enlace-Youtube-a-Texto/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: Video de Youtube a Texto -emoji: 👁 -colorFrom: pink -colorTo: green -sdk: gradio -sdk_version: 3.3.1 -app_file: app.py -pinned: false -license: mit ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/tomofi/NDLOCR/src/ndl_layout/mmdetection/tools/misc/print_config.py b/spaces/tomofi/NDLOCR/src/ndl_layout/mmdetection/tools/misc/print_config.py deleted file mode 100644 index 3627f81fed059f2e819dc6544fac103e1a1e6c17..0000000000000000000000000000000000000000 --- a/spaces/tomofi/NDLOCR/src/ndl_layout/mmdetection/tools/misc/print_config.py +++ /dev/null @@ -1,54 +0,0 @@ -import argparse -import warnings - -from mmcv import Config, DictAction - - -def parse_args(): - parser = argparse.ArgumentParser(description='Print the whole config') - parser.add_argument('config', help='config file path') - parser.add_argument( - '--options', - nargs='+', - action=DictAction, - help='override some settings in the used config, the key-value pair ' - 'in xxx=yyy format will be merged into config file (deprecate), ' - 'change to --cfg-options instead.') - parser.add_argument( - '--cfg-options', - nargs='+', - action=DictAction, - help='override some settings in the used config, the key-value pair ' - 'in xxx=yyy format will be merged into config file. If the value to ' - 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' - 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' - 'Note that the quotation marks are necessary and that no white space ' - 'is allowed.') - args = parser.parse_args() - - if args.options and args.cfg_options: - raise ValueError( - '--options and --cfg-options cannot be both ' - 'specified, --options is deprecated in favor of --cfg-options') - if args.options: - warnings.warn('--options is deprecated in favor of --cfg-options') - args.cfg_options = args.options - - return args - - -def main(): - args = parse_args() - - cfg = Config.fromfile(args.config) - if args.cfg_options is not None: - cfg.merge_from_dict(args.cfg_options) - # import modules from string list. - if cfg.get('custom_imports', None): - from mmcv.utils import import_modules_from_strings - import_modules_from_strings(**cfg['custom_imports']) - print(f'Config:\n{cfg.pretty_text}') - - -if __name__ == '__main__': - main() diff --git a/spaces/tonyassi/video-face-swap/tests/test_cli.py b/spaces/tonyassi/video-face-swap/tests/test_cli.py deleted file mode 100644 index 266116e302e19dd4602df71cbe4bd2440cf2513c..0000000000000000000000000000000000000000 --- a/spaces/tonyassi/video-face-swap/tests/test_cli.py +++ /dev/null @@ -1,31 +0,0 @@ -import subprocess -import pytest - -from DeepFakeAI import wording -from DeepFakeAI.utilities import conditional_download - - -@pytest.fixture(scope = 'module', autouse = True) -def before_all() -> None: - conditional_download('.assets/examples', - [ - 'https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/examples/source.jpg', - 'https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/examples/target-1080p.mp4' - ]) - subprocess.run([ 'ffmpeg', '-i', '.assets/examples/target-1080p.mp4', '-vframes', '1', '.assets/examples/target-1080p.jpg' ]) - - -def test_image_to_image() -> None: - commands = [ 'python', 'run.py', '-s', '.assets/examples/source.jpg', '-t', '.assets/examples/target-1080p.jpg', '-o', '.assets/examples' ] - run = subprocess.run(commands, stdout = subprocess.PIPE) - - assert run.returncode == 0 - assert wording.get('processing_image_succeed') in run.stdout.decode() - - -def test_image_to_video() -> None: - commands = [ 'python', 'run.py', '-s', '.assets/examples/source.jpg', '-t', '.assets/examples/target-1080p.mp4', '-o', '.assets/examples', '--trim-frame-end', '10' ] - run = subprocess.run(commands, stdout = subprocess.PIPE) - - assert run.returncode == 0 - assert wording.get('processing_video_succeed') in run.stdout.decode() diff --git a/spaces/trttung1610/musicgen/audiocraft/modules/diffusion_schedule.py b/spaces/trttung1610/musicgen/audiocraft/modules/diffusion_schedule.py deleted file mode 100644 index 74ca6e3f2e7c4ff904d96dade315b0b46856778d..0000000000000000000000000000000000000000 --- a/spaces/trttung1610/musicgen/audiocraft/modules/diffusion_schedule.py +++ /dev/null @@ -1,272 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -""" -Functions for Noise Schedule, defines diffusion process, reverse process and data processor. -""" - -from collections import namedtuple -import random -import typing as tp -import julius -import torch - -TrainingItem = namedtuple("TrainingItem", "noisy noise step") - - -def betas_from_alpha_bar(alpha_bar): - alphas = torch.cat([torch.Tensor([alpha_bar[0]]), alpha_bar[1:]/alpha_bar[:-1]]) - return 1 - alphas - - -class SampleProcessor(torch.nn.Module): - def project_sample(self, x: torch.Tensor): - """Project the original sample to the 'space' where the diffusion will happen.""" - return x - - def return_sample(self, z: torch.Tensor): - """Project back from diffusion space to the actual sample space.""" - return z - - -class MultiBandProcessor(SampleProcessor): - """ - MultiBand sample processor. The input audio is splitted across - frequency bands evenly distributed in mel-scale. - - Each band will be rescaled to match the power distribution - of Gaussian noise in that band, using online metrics - computed on the first few samples. - - Args: - n_bands (int): Number of mel-bands to split the signal over. - sample_rate (int): Sample rate of the audio. - num_samples (int): Number of samples to use to fit the rescaling - for each band. The processor won't be stable - until it has seen that many samples. - power_std (float or list/tensor): The rescaling factor computed to match the - power of Gaussian noise in each band is taken to - that power, i.e. `1.` means full correction of the energy - in each band, and values less than `1` means only partial - correction. Can be used to balance the relative importance - of low vs. high freq in typical audio signals. - """ - def __init__(self, n_bands: int = 8, sample_rate: float = 24_000, - num_samples: int = 10_000, power_std: tp.Union[float, tp.List[float], torch.Tensor] = 1.): - super().__init__() - self.n_bands = n_bands - self.split_bands = julius.SplitBands(sample_rate, n_bands=n_bands) - self.num_samples = num_samples - self.power_std = power_std - if isinstance(power_std, list): - assert len(power_std) == n_bands - power_std = torch.tensor(power_std) - self.register_buffer('counts', torch.zeros(1)) - self.register_buffer('sum_x', torch.zeros(n_bands)) - self.register_buffer('sum_x2', torch.zeros(n_bands)) - self.register_buffer('sum_target_x2', torch.zeros(n_bands)) - self.counts: torch.Tensor - self.sum_x: torch.Tensor - self.sum_x2: torch.Tensor - self.sum_target_x2: torch.Tensor - - @property - def mean(self): - mean = self.sum_x / self.counts - return mean - - @property - def std(self): - std = (self.sum_x2 / self.counts - self.mean**2).clamp(min=0).sqrt() - return std - - @property - def target_std(self): - target_std = self.sum_target_x2 / self.counts - return target_std - - def project_sample(self, x: torch.Tensor): - assert x.dim() == 3 - bands = self.split_bands(x) - if self.counts.item() < self.num_samples: - ref_bands = self.split_bands(torch.randn_like(x)) - self.counts += len(x) - self.sum_x += bands.mean(dim=(2, 3)).sum(dim=1) - self.sum_x2 += bands.pow(2).mean(dim=(2, 3)).sum(dim=1) - self.sum_target_x2 += ref_bands.pow(2).mean(dim=(2, 3)).sum(dim=1) - rescale = (self.target_std / self.std.clamp(min=1e-12)) ** self.power_std # same output size - bands = (bands - self.mean.view(-1, 1, 1, 1)) * rescale.view(-1, 1, 1, 1) - return bands.sum(dim=0) - - def return_sample(self, x: torch.Tensor): - assert x.dim() == 3 - bands = self.split_bands(x) - rescale = (self.std / self.target_std) ** self.power_std - bands = bands * rescale.view(-1, 1, 1, 1) + self.mean.view(-1, 1, 1, 1) - return bands.sum(dim=0) - - -class NoiseSchedule: - """Noise schedule for diffusion. - - Args: - beta_t0 (float): Variance of the first diffusion step. - beta_t1 (float): Variance of the last diffusion step. - beta_exp (float): Power schedule exponent - num_steps (int): Number of diffusion step. - variance (str): choice of the sigma value for the denoising eq. Choices: "beta" or "beta_tilde" - clip (float): clipping value for the denoising steps - rescale (float): rescaling value to avoid vanishing signals unused by default (i.e 1) - repartition (str): shape of the schedule only power schedule is supported - sample_processor (SampleProcessor): Module that normalize data to match better the gaussian distribution - noise_scale (float): Scaling factor for the noise - """ - def __init__(self, beta_t0: float = 1e-4, beta_t1: float = 0.02, num_steps: int = 1000, variance: str = 'beta', - clip: float = 5., rescale: float = 1., device='cuda', beta_exp: float = 1, - repartition: str = "power", alpha_sigmoid: dict = {}, n_bands: tp.Optional[int] = None, - sample_processor: SampleProcessor = SampleProcessor(), noise_scale: float = 1.0, **kwargs): - - self.beta_t0 = beta_t0 - self.beta_t1 = beta_t1 - self.variance = variance - self.num_steps = num_steps - self.clip = clip - self.sample_processor = sample_processor - self.rescale = rescale - self.n_bands = n_bands - self.noise_scale = noise_scale - assert n_bands is None - if repartition == "power": - self.betas = torch.linspace(beta_t0 ** (1 / beta_exp), beta_t1 ** (1 / beta_exp), num_steps, - device=device, dtype=torch.float) ** beta_exp - else: - raise RuntimeError('Not implemented') - self.rng = random.Random(1234) - - def get_beta(self, step: tp.Union[int, torch.Tensor]): - if self.n_bands is None: - return self.betas[step] - else: - return self.betas[:, step] # [n_bands, len(step)] - - def get_initial_noise(self, x: torch.Tensor): - if self.n_bands is None: - return torch.randn_like(x) - return torch.randn((x.size(0), self.n_bands, x.size(2))) - - def get_alpha_bar(self, step: tp.Optional[tp.Union[int, torch.Tensor]] = None) -> torch.Tensor: - """Return 'alpha_bar', either for a given step, or as a tensor with its value for each step.""" - if step is None: - return (1 - self.betas).cumprod(dim=-1) # works for simgle and multi bands - if type(step) is int: - return (1 - self.betas[:step + 1]).prod() - else: - return (1 - self.betas).cumprod(dim=0)[step].view(-1, 1, 1) - - def get_training_item(self, x: torch.Tensor, tensor_step: bool = False) -> TrainingItem: - """Create a noisy data item for diffusion model training: - - Args: - x (torch.Tensor): clean audio data torch.tensor(bs, 1, T) - tensor_step (bool): If tensor_step = false, only one step t is sample, - the whole batch is diffused to the same step and t is int. - If tensor_step = true, t is a tensor of size (x.size(0),) - every element of the batch is diffused to a independently sampled. - """ - step: tp.Union[int, torch.Tensor] - if tensor_step: - bs = x.size(0) - step = torch.randint(0, self.num_steps, size=(bs,), device=x.device) - else: - step = self.rng.randrange(self.num_steps) - alpha_bar = self.get_alpha_bar(step) # [batch_size, n_bands, 1] - - x = self.sample_processor.project_sample(x) - noise = torch.randn_like(x) - noisy = (alpha_bar.sqrt() / self.rescale) * x + (1 - alpha_bar).sqrt() * noise * self.noise_scale - return TrainingItem(noisy, noise, step) - - def generate(self, model: torch.nn.Module, initial: tp.Optional[torch.Tensor] = None, - condition: tp.Optional[torch.Tensor] = None, return_list: bool = False): - """Full ddpm reverse process. - - Args: - model (nn.Module): Diffusion model. - initial (tensor): Initial Noise. - condition (tensor): Input conditionning Tensor (e.g. encodec compressed representation). - return_list (bool): Whether to return the whole process or only the sampled point. - """ - alpha_bar = self.get_alpha_bar(step=self.num_steps - 1) - current = initial - iterates = [initial] - for step in range(self.num_steps)[::-1]: - with torch.no_grad(): - estimate = model(current, step, condition=condition).sample - alpha = 1 - self.betas[step] - previous = (current - (1 - alpha) / (1 - alpha_bar).sqrt() * estimate) / alpha.sqrt() - previous_alpha_bar = self.get_alpha_bar(step=step - 1) - if step == 0: - sigma2 = 0 - elif self.variance == 'beta': - sigma2 = 1 - alpha - elif self.variance == 'beta_tilde': - sigma2 = (1 - previous_alpha_bar) / (1 - alpha_bar) * (1 - alpha) - elif self.variance == 'none': - sigma2 = 0 - else: - raise ValueError(f'Invalid variance type {self.variance}') - - if sigma2 > 0: - previous += sigma2**0.5 * torch.randn_like(previous) * self.noise_scale - if self.clip: - previous = previous.clamp(-self.clip, self.clip) - current = previous - alpha_bar = previous_alpha_bar - if step == 0: - previous *= self.rescale - if return_list: - iterates.append(previous.cpu()) - - if return_list: - return iterates - else: - return self.sample_processor.return_sample(previous) - - def generate_subsampled(self, model: torch.nn.Module, initial: torch.Tensor, step_list: tp.Optional[list] = None, - condition: tp.Optional[torch.Tensor] = None, return_list: bool = False): - """Reverse process that only goes through Markov chain states in step_list.""" - if step_list is None: - step_list = list(range(1000))[::-50] + [0] - alpha_bar = self.get_alpha_bar(step=self.num_steps - 1) - alpha_bars_subsampled = (1 - self.betas).cumprod(dim=0)[list(reversed(step_list))].cpu() - betas_subsampled = betas_from_alpha_bar(alpha_bars_subsampled) - current = initial * self.noise_scale - iterates = [current] - for idx, step in enumerate(step_list[:-1]): - with torch.no_grad(): - estimate = model(current, step, condition=condition).sample * self.noise_scale - alpha = 1 - betas_subsampled[-1 - idx] - previous = (current - (1 - alpha) / (1 - alpha_bar).sqrt() * estimate) / alpha.sqrt() - previous_alpha_bar = self.get_alpha_bar(step_list[idx + 1]) - if step == step_list[-2]: - sigma2 = 0 - previous_alpha_bar = torch.tensor(1.0) - else: - sigma2 = (1 - previous_alpha_bar) / (1 - alpha_bar) * (1 - alpha) - if sigma2 > 0: - previous += sigma2**0.5 * torch.randn_like(previous) * self.noise_scale - if self.clip: - previous = previous.clamp(-self.clip, self.clip) - current = previous - alpha_bar = previous_alpha_bar - if step == 0: - previous *= self.rescale - if return_list: - iterates.append(previous.cpu()) - if return_list: - return iterates - else: - return self.sample_processor.return_sample(previous) diff --git a/spaces/trysem/coloria/colorizers/__init__.py b/spaces/trysem/coloria/colorizers/__init__.py deleted file mode 100644 index 058dfb3b46c5c12872d358e89301739e49cdbf18..0000000000000000000000000000000000000000 --- a/spaces/trysem/coloria/colorizers/__init__.py +++ /dev/null @@ -1,6 +0,0 @@ - -from .base_color import * -from .eccv16 import * -from .siggraph17 import * -from .util import * - diff --git a/spaces/tsi-org/LLaVA/docs/LoRA.md b/spaces/tsi-org/LLaVA/docs/LoRA.md deleted file mode 100644 index 369fe92579051f98a0724a92e52e65e014a0de2f..0000000000000000000000000000000000000000 --- a/spaces/tsi-org/LLaVA/docs/LoRA.md +++ /dev/null @@ -1,46 +0,0 @@ -# LLaVA (LoRA, Preview) - -NOTE: This is a technical preview, and is not yet ready for production use. We are still running hyperparameter search for the LoRA model, and will release the final model soon. If you'd like to contribute to this, please contact us. - -You need latest code base for LoRA support (instructions [here](https://github.com/haotian-liu/LLaVA#upgrade-to-latest-code-base)) - -## Demo (Web UI) - -Please execute each of the command below one by one (after the previous one has finished). The commands are the same as launching other demos except for an additional `--model-base` flag to specify the base model to use. Please make sure the base model corresponds to the LoRA checkpoint that you are using. For this technical preview, you need Vicuna v1.1 (7B) checkpoint (if you do not have that already, follow the instructions [here](https://github.com/lm-sys/FastChat#vicuna-weights)). - -#### Launch a controller -```Shell -python -m llava.serve.controller --host 0.0.0.0 --port 10000 -``` - -#### Launch a gradio web server. -```Shell -python -m llava.serve.gradio_web_server --controller http://localhost:10000 --model-list-mode reload -``` -You just launched the Gradio web interface. Now, you can open the web interface with the URL printed on the screen. You may notice that there is no model in the model list. Do not worry, as we have not launched any model worker yet. It will be automatically updated when you launch a model worker. - -#### Launch a model worker -```Shell -python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-vicuna-7b-v1.1-lcs_558k-instruct_80k_3e-lora-preview-alpha --model-base /path/to/vicuna-v1.1 -``` -Wait until the process finishes loading the model and you see "Uvicorn running on ...". Now, refresh your Gradio web UI, and you will see the model you just launched in the model list. - -You can launch as many workers as you want, and compare between different model checkpoints in the same Gradio interface. Please keep the `--controller` the same, and modify the `--port` and `--worker` to a different port number for each worker. - - -## Training - -Please see sample training scripts for [LoRA](https://github.com/haotian-liu/LLaVA/blob/main/scripts/finetune_lora.sh) and [QLoRA](https://github.com/haotian-liu/LLaVA/blob/main/scripts/finetune_qlora.sh). - -We provide sample DeepSpeed configs, [`zero3.json`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/zero3.json) is more like PyTorch FSDP, and [`zero3_offload.json`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/zero3_offload.json) can further save memory consumption by offloading parameters to CPU. `zero3.json` is usually faster than `zero3_offload.json` but requires more GPU memory, therefore, we recommend trying `zero3.json` first, and if you run out of GPU memory, try `zero3_offload.json`. You can also tweak the `per_device_train_batch_size` and `gradient_accumulation_steps` in the config to save memory, and just to make sure that `per_device_train_batch_size` and `gradient_accumulation_steps` remains the same. - -If you are having issues with ZeRO-3 configs, and there are enough VRAM, you may try [`zero2.json`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/zero2.json). This consumes slightly more memory than ZeRO-3, and behaves more similar to PyTorch FSDP, while still supporting parameter-efficient tuning. - -## Create Merged Checkpoints - -```Shell -python scripts/merge_lora_weights.py \ - --model-path /path/to/lora_model \ - --model-base /path/to/base_model \ - --save-model-path /path/to/merge_model -``` diff --git a/spaces/ucalyptus/PTI/models/StyleCLIP/global_directions/dnnlib/tflib/ops/fused_bias_act.py b/spaces/ucalyptus/PTI/models/StyleCLIP/global_directions/dnnlib/tflib/ops/fused_bias_act.py deleted file mode 100644 index 79991b0497d3d92f25194a31668b9568048163f8..0000000000000000000000000000000000000000 --- a/spaces/ucalyptus/PTI/models/StyleCLIP/global_directions/dnnlib/tflib/ops/fused_bias_act.py +++ /dev/null @@ -1,211 +0,0 @@ -# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. -# -# NVIDIA CORPORATION and its licensors retain all intellectual property -# and proprietary rights in and to this software, related documentation -# and any modifications thereto. Any use, reproduction, disclosure or -# distribution of this software and related documentation without an express -# license agreement from NVIDIA CORPORATION is strictly prohibited. - -"""Custom TensorFlow ops for efficient bias and activation.""" - -import os -import numpy as np -import tensorflow as tf -from .. import custom_ops -from ...util import EasyDict - -def _get_plugin(): - return custom_ops.get_plugin(os.path.splitext(__file__)[0] + '.cu') - -#---------------------------------------------------------------------------- - -activation_funcs = { - 'linear': EasyDict(func=lambda x, **_: x, def_alpha=None, def_gain=1.0, cuda_idx=1, ref='y', zero_2nd_grad=True), - 'relu': EasyDict(func=lambda x, **_: tf.nn.relu(x), def_alpha=None, def_gain=np.sqrt(2), cuda_idx=2, ref='y', zero_2nd_grad=True), - 'lrelu': EasyDict(func=lambda x, alpha, **_: tf.nn.leaky_relu(x, alpha), def_alpha=0.2, def_gain=np.sqrt(2), cuda_idx=3, ref='y', zero_2nd_grad=True), - 'tanh': EasyDict(func=lambda x, **_: tf.nn.tanh(x), def_alpha=None, def_gain=1.0, cuda_idx=4, ref='y', zero_2nd_grad=False), - 'sigmoid': EasyDict(func=lambda x, **_: tf.nn.sigmoid(x), def_alpha=None, def_gain=1.0, cuda_idx=5, ref='y', zero_2nd_grad=False), - 'elu': EasyDict(func=lambda x, **_: tf.nn.elu(x), def_alpha=None, def_gain=1.0, cuda_idx=6, ref='y', zero_2nd_grad=False), - 'selu': EasyDict(func=lambda x, **_: tf.nn.selu(x), def_alpha=None, def_gain=1.0, cuda_idx=7, ref='y', zero_2nd_grad=False), - 'softplus': EasyDict(func=lambda x, **_: tf.nn.softplus(x), def_alpha=None, def_gain=1.0, cuda_idx=8, ref='y', zero_2nd_grad=False), - 'swish': EasyDict(func=lambda x, **_: tf.nn.sigmoid(x) * x, def_alpha=None, def_gain=np.sqrt(2), cuda_idx=9, ref='x', zero_2nd_grad=False), -} - -#---------------------------------------------------------------------------- - -def fused_bias_act(x, b=None, axis=1, act='linear', alpha=None, gain=None, clamp=None, impl='cuda'): - r"""Fused bias and activation function. - - Adds bias `b` to activation tensor `x`, evaluates activation function `act`, - and scales the result by `gain`. Each of the steps is optional. In most cases, - the fused op is considerably more efficient than performing the same calculation - using standard TensorFlow ops. It supports first and second order gradients, - but not third order gradients. - - Args: - x: Input activation tensor. Can have any shape, but if `b` is defined, the - dimension corresponding to `axis`, as well as the rank, must be known. - b: Bias vector, or `None` to disable. Must be a 1D tensor of the same type - as `x`. The shape must be known, and it must match the dimension of `x` - corresponding to `axis`. - axis: The dimension in `x` corresponding to the elements of `b`. - The value of `axis` is ignored if `b` is not specified. - act: Name of the activation function to evaluate, or `"linear"` to disable. - Can be e.g. `"relu"`, `"lrelu"`, `"tanh"`, `"sigmoid"`, `"swish"`, etc. - See `activation_funcs` for a full list. `None` is not allowed. - alpha: Shape parameter for the activation function, or `None` to use the default. - gain: Scaling factor for the output tensor, or `None` to use default. - See `activation_funcs` for the default scaling of each activation function. - If unsure, consider specifying `1.0`. - clamp: Clamp the output values to `[-clamp, +clamp]`, or `None` to disable - the clamping (default). - impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default). - - Returns: - Tensor of the same shape and datatype as `x`. - """ - - impl_dict = { - 'ref': _fused_bias_act_ref, - 'cuda': _fused_bias_act_cuda, - } - return impl_dict[impl](x=x, b=b, axis=axis, act=act, alpha=alpha, gain=gain, clamp=clamp) - -#---------------------------------------------------------------------------- - -def _fused_bias_act_ref(x, b, axis, act, alpha, gain, clamp): - """Slow reference implementation of `fused_bias_act()` using standard TensorFlow ops.""" - - # Validate arguments. - x = tf.convert_to_tensor(x) - b = tf.convert_to_tensor(b) if b is not None else tf.constant([], dtype=x.dtype) - act_spec = activation_funcs[act] - assert b.shape.rank == 1 and (b.shape[0] == 0 or b.shape[0] == x.shape[axis]) - assert b.shape[0] == 0 or 0 <= axis < x.shape.rank - if alpha is None: - alpha = act_spec.def_alpha - if gain is None: - gain = act_spec.def_gain - - # Add bias. - if b.shape[0] != 0: - x += tf.reshape(b, [-1 if i == axis else 1 for i in range(x.shape.rank)]) - - # Evaluate activation function. - x = act_spec.func(x, alpha=alpha) - - # Scale by gain. - if gain != 1: - x *= gain - - # Clamp. - if clamp is not None: - clamp = np.asarray(clamp, dtype=x.dtype.name) - assert clamp.shape == () and clamp >= 0 - x = tf.clip_by_value(x, -clamp, clamp) - return x - -#---------------------------------------------------------------------------- - -def _fused_bias_act_cuda(x, b, axis, act, alpha, gain, clamp): - """Fast CUDA implementation of `fused_bias_act()` using custom ops.""" - - # Validate arguments. - x = tf.convert_to_tensor(x) - empty_tensor = tf.constant([], dtype=x.dtype) - b = tf.convert_to_tensor(b) if b is not None else empty_tensor - act_spec = activation_funcs[act] - assert b.shape.rank == 1 and (b.shape[0] == 0 or b.shape[0] == x.shape[axis]) - assert b.shape[0] == 0 or 0 <= axis < x.shape.rank - if alpha is None: - alpha = act_spec.def_alpha - if gain is None: - gain = act_spec.def_gain - - # Special cases. - if act == 'linear' and b is None and gain == 1.0: - return x - if act_spec.cuda_idx is None: - return _fused_bias_act_ref(x=x, b=b, axis=axis, act=act, alpha=alpha, gain=gain, clamp=clamp) - - # CUDA op. - cuda_op = _get_plugin().fused_bias_act - cuda_kwargs = dict(axis=int(axis), act=int(act_spec.cuda_idx), gain=float(gain)) - if alpha is not None: - cuda_kwargs['alpha'] = float(alpha) - if clamp is not None: - clamp = np.asarray(clamp, dtype=x.dtype.name) - assert clamp.shape == () and clamp >= 0 - cuda_kwargs['clamp'] = float(clamp.astype(np.float32)) - def ref(tensor, name): - return tensor if act_spec.ref == name else empty_tensor - - # Forward pass: y = func(x, b). - def func_y(x, b): - y = cuda_op(x=x, b=b, xref=empty_tensor, yref=empty_tensor, grad=0, **cuda_kwargs) - y.set_shape(x.shape) - return y - - # Backward pass: dx, db = grad(dy, x, y) - def grad_dx(dy, x, y): - dx = cuda_op(x=dy, b=empty_tensor, xref=ref(x,'x'), yref=ref(y,'y'), grad=1, **cuda_kwargs) - dx.set_shape(x.shape) - return dx - def grad_db(dx): - if b.shape[0] == 0: - return empty_tensor - db = dx - if axis < x.shape.rank - 1: - db = tf.reduce_sum(db, list(range(axis + 1, x.shape.rank))) - if axis > 0: - db = tf.reduce_sum(db, list(range(axis))) - db.set_shape(b.shape) - return db - - # Second order gradients: d_dy, d_x = grad2(d_dx, d_db, x, y) - def grad2_d_dy(d_dx, d_db, x, y): - d_dy = cuda_op(x=d_dx, b=d_db, xref=ref(x,'x'), yref=ref(y,'y'), grad=1, **cuda_kwargs) - d_dy.set_shape(x.shape) - return d_dy - def grad2_d_x(d_dx, d_db, x, y): - d_x = cuda_op(x=d_dx, b=d_db, xref=ref(x,'x'), yref=ref(y,'y'), grad=2, **cuda_kwargs) - d_x.set_shape(x.shape) - return d_x - - # Fast version for piecewise-linear activation funcs. - @tf.custom_gradient - def func_zero_2nd_grad(x, b): - y = func_y(x, b) - @tf.custom_gradient - def grad(dy): - dx = grad_dx(dy, x, y) - db = grad_db(dx) - def grad2(d_dx, d_db): - d_dy = grad2_d_dy(d_dx, d_db, x, y) - return d_dy - return (dx, db), grad2 - return y, grad - - # Slow version for general activation funcs. - @tf.custom_gradient - def func_nonzero_2nd_grad(x, b): - y = func_y(x, b) - def grad_wrap(dy): - @tf.custom_gradient - def grad_impl(dy, x): - dx = grad_dx(dy, x, y) - db = grad_db(dx) - def grad2(d_dx, d_db): - d_dy = grad2_d_dy(d_dx, d_db, x, y) - d_x = grad2_d_x(d_dx, d_db, x, y) - return d_dy, d_x - return (dx, db), grad2 - return grad_impl(dy, x) - return y, grad_wrap - - # Which version to use? - if act_spec.zero_2nd_grad: - return func_zero_2nd_grad(x, b) - return func_nonzero_2nd_grad(x, b) - -#---------------------------------------------------------------------------- diff --git a/spaces/umichVision/virtex-redcaps/virtex/utils/distributed.py b/spaces/umichVision/virtex-redcaps/virtex/utils/distributed.py deleted file mode 100644 index 50f2fd36f9ced800bf6d10f08e367c0567337c76..0000000000000000000000000000000000000000 --- a/spaces/umichVision/virtex-redcaps/virtex/utils/distributed.py +++ /dev/null @@ -1,179 +0,0 @@ -r""" -A collection of common utilities for distributed training. These are a bunch of -wrappers over utilities from :mod:`torch.distributed` module, but they do not -raise exceptions in absence of distributed training / CPU-only training, and -fall back to sensible default behavior. -""" -from typing import Callable, Dict, Tuple, Union - -from loguru import logger -import torch -from torch import distributed as dist -from torch import multiprocessing as mp - - -def launch( - job_fn: Callable, - num_machines: int = 1, - num_gpus_per_machine: int = 1, - machine_rank: int = 0, - dist_url: str = "tcp://127.0.0.1:23456", - args=(), -): - r""" - Launch a job in a distributed fashion: given ``num_machines`` machines, - each with ``num_gpus_per_machine`` GPUs, this utility will launch one - process per GPU. This wrapper uses :func:`torch.multiprocessing.spawn`. - - The user has to launch one job on each machine, manually specifying a - machine rank (incrementing integers from 0), this utility will adjust - process ranks per machine. One process on ``machine_rank = 0`` will be - refered as the *master process*, and the IP + a free port on this machine - will serve as the distributed process communication URL. - - Default arguments imply one machine with one GPU, and communication URL - as ``localhost``. - - .. note:: - - This utility assumes same number of GPUs per machine with IDs as - ``(0, 1, 2 ...)``. If you do not wish to use all GPUs on a machine, - set ``CUDA_VISIBLE_DEVICES`` environment variable (for example, - ``CUDA_VISIBLE_DEVICES=5,6``, which restricts to GPU 5 and 6 and - re-assigns their IDs to 0 and 1 in this job scope). - - Parameters - ---------- - job_fn: Callable - A callable object to launch. Pass your main function doing training, - validation etc. here. - num_machines: int, optional (default = 1) - Number of machines used, each with ``num_gpus_per_machine`` GPUs. - num_gpus_per_machine: int, optional (default = 1) - Number of GPUs per machine, with IDs as ``(0, 1, 2 ...)``. - machine_rank: int, optional (default = 0) - A manually specified rank of the machine, serves as a unique identifier - and useful for assigning global ranks to processes. - dist_url: str, optional (default = "tcp://127.0.0.1:23456") - Disributed process communication URL as ``tcp://x.x.x.x:port``. Set - this as the IP (and a free port) of machine with rank 0. - args: Tuple - Arguments to be passed to ``job_fn``. - """ - - assert ( - torch.cuda.is_available() - ), "CUDA not available, Cannot launch distributed processes." - - world_size = num_machines * num_gpus_per_machine - - # Spawn ``num_gpus_per_machine``` processes per machine, and provide - # "local process rank" (GPU ID) as the first arg to ``_dist_worker``. - # fmt: off - if world_size > 1: - mp.spawn( - _job_worker, - nprocs=num_gpus_per_machine, - args=( - job_fn, world_size, num_gpus_per_machine, machine_rank, dist_url, args - ), - daemon=False, - ) - else: - # Default to single machine, single GPU, with ID 0. - _job_worker(0, job_fn, 1, 1, 0, dist_url, args) - # fmt: on - - -def _job_worker( - local_rank: int, - job_fn: Callable, - world_size: int, - num_gpus_per_machine: int, - machine_rank: int, - dist_url: str, - args: Tuple, -): - r""" - Single distibuted process worker. This should never be used directly, - only used by :func:`launch`. - """ - - # Adjust global rank of process based on its machine rank. - global_rank = machine_rank * num_gpus_per_machine + local_rank - try: - dist.init_process_group( - backend="NCCL", - init_method=dist_url, - world_size=world_size, - rank=global_rank, - ) - except Exception as e: - logger.error(f"Error launching processes, dist URL: {dist_url}") - raise e - - synchronize() - # Set GPU ID for each process according to its rank. - torch.cuda.set_device(local_rank) - job_fn(*args) - - -def synchronize() -> None: - r"""Synchronize (barrier) all processes in a process group.""" - if dist.is_initialized(): - dist.barrier() - - -def get_world_size() -> int: - r"""Return number of processes in the process group, each uses 1 GPU.""" - return dist.get_world_size() if dist.is_initialized() else 1 - - -def get_rank() -> int: - r"""Return rank of current process in the process group.""" - return dist.get_rank() if dist.is_initialized() else 0 - - -def is_master_process() -> bool: - r""" - Check whether current process is the master process. This check is useful - to restrict logging and checkpointing to master process. It will always - return ``True`` for single machine, single GPU execution. - """ - return get_rank() == 0 - - -def average_across_processes(t: Union[torch.Tensor, Dict[str, torch.Tensor]]): - r""" - Averages a tensor, or a dict of tensors across all processes in a process - group. Objects in all processes will finally have same mean value. - - .. note:: - - Nested dicts of tensors are not supported. - - Parameters - ---------- - t: torch.Tensor or Dict[str, torch.Tensor] - A tensor or dict of tensors to average across processes. - """ - if dist.is_initialized(): - if isinstance(t, torch.Tensor): - dist.all_reduce(t, op=dist.ReduceOp.SUM) - t /= get_world_size() - elif isinstance(t, dict): - for k in t: - dist.all_reduce(t[k], op=dist.ReduceOp.SUM) - t[k] /= dist.get_world_size() - - -def gpu_mem_usage() -> int: - r""" - Return gpu memory usage (in megabytes). If not using GPU, return 0 without - raising any exceptions. - """ - if torch.cuda.is_available(): - # This will be in bytes, so we divide by (1024 * 1024). - return torch.cuda.max_memory_allocated() // 1048576 - else: - return 0 diff --git a/spaces/usbethFlerru/sovits-modelsV2/example/Avast SecureLine VPN 2020 License Key With Activation Key Free Download LINK.md b/spaces/usbethFlerru/sovits-modelsV2/example/Avast SecureLine VPN 2020 License Key With Activation Key Free Download LINK.md deleted file mode 100644 index 71e293b310d9fc08b50daaf4003251e85efcec4e..0000000000000000000000000000000000000000 --- a/spaces/usbethFlerru/sovits-modelsV2/example/Avast SecureLine VPN 2020 License Key With Activation Key Free Download LINK.md +++ /dev/null @@ -1,20 +0,0 @@ -

          Avast SecureLine VPN 2020 License Key With Activation Key Free Download


          Download ===> https://urlcod.com/2uyXdc



          - -Avast Secureline VPN License Key is often featured on the top and one of the most famous security and antivirus applications. Avast has been very successful and famous in the market for a long time with its remarkable features and benefits. - -Avast Secureline VPN License Key Features & Benefits: - -Avast Secureline VPN License Key is a great application that can provide outstanding features and benefits to its users. It comes with a very simple and intuitive interface and UI. Avast Secureline VPN License Key is one of the best free VPN service provider application for the internet. It is supported by multiple platforms such as Windows, iOS, Android, MacOS, Chrome, and Linux. Avast Secureline VPN License Key is known for its ease of use and simplicity. - -Avast Secureline VPN License Key APK Download - -Avast Secureline VPN License Key is available in the Google Play Store and other stores. Avast Secureline VPN License Key is often featured on the top and one of the most famous security and antivirus applications. Users can enjoy and purchase Avast Secureline VPN License Key. Avast Secureline VPN License Key has achieved million downloads from its users in a short time. Avast Secureline VPN License Key has more than 18 million daily active users. Avast Secureline VPN License Key is free to download and use. This application also offers Avast Secureline VPN License Key for free. To enjoy and use the Avast Secureline VPN License Key, users can download the latest version from the Google Play Store. - -Avast Secureline VPN License Key (v5.6.4982) Latest Version Download - -Avast Secureline VPN License Key is one of the most used and famous application and data security and antivirus applications. Avast Secureline VPN License Key has helped and provided the safety and security of its users from harmful and malicious activities. Avast Secureline VPN License Key is a best VPN (Virtual Private Network) for iOS, Android, and Windows devices. It allows users to connect to the internet freely and anonymously. Avast Secureline VPN License Key is available for all popular platforms. It has a lot of interesting and new features that will surely help users. - -Avast Secureline VPN License Key Download (v5.6.4982) latest version and safe to download. Avast Secureline VPN License Key latest version APK for android has been released. Avast Secureline VPN License Key is one of the best free VPN service provider application for 4fefd39f24
          -
          -
          -

          diff --git a/spaces/valhalla/glide-text2im/glide_text2im/__init__.py b/spaces/valhalla/glide-text2im/glide_text2im/__init__.py deleted file mode 100644 index a3c197bb932cfc9cf3447b7a3b52ce76db262fc9..0000000000000000000000000000000000000000 --- a/spaces/valhalla/glide-text2im/glide_text2im/__init__.py +++ /dev/null @@ -1,3 +0,0 @@ -""" -A codebase for performing model inference with a text-conditional diffusion model. -""" diff --git a/spaces/vinay123/panoptic-segment-anything/segment_anything/segment_anything/modeling/__init__.py b/spaces/vinay123/panoptic-segment-anything/segment_anything/segment_anything/modeling/__init__.py deleted file mode 100644 index 38e906243d898d7fc071c0fe218338c5cace3ea1..0000000000000000000000000000000000000000 --- a/spaces/vinay123/panoptic-segment-anything/segment_anything/segment_anything/modeling/__init__.py +++ /dev/null @@ -1,11 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from .sam import Sam -from .image_encoder import ImageEncoderViT -from .mask_decoder import MaskDecoder -from .prompt_encoder import PromptEncoder -from .transformer import TwoWayTransformer diff --git a/spaces/vumichien/canvas_controlnet/annotator/uniformer/configs/_base_/models/gcnet_r50-d8.py b/spaces/vumichien/canvas_controlnet/annotator/uniformer/configs/_base_/models/gcnet_r50-d8.py deleted file mode 100644 index 3d2ad69f5c22adfe79d5fdabf920217628987166..0000000000000000000000000000000000000000 --- a/spaces/vumichien/canvas_controlnet/annotator/uniformer/configs/_base_/models/gcnet_r50-d8.py +++ /dev/null @@ -1,46 +0,0 @@ -# model settings -norm_cfg = dict(type='SyncBN', requires_grad=True) -model = dict( - type='EncoderDecoder', - pretrained='open-mmlab://resnet50_v1c', - backbone=dict( - type='ResNetV1c', - depth=50, - num_stages=4, - out_indices=(0, 1, 2, 3), - dilations=(1, 1, 2, 4), - strides=(1, 2, 1, 1), - norm_cfg=norm_cfg, - norm_eval=False, - style='pytorch', - contract_dilation=True), - decode_head=dict( - type='GCHead', - in_channels=2048, - in_index=3, - channels=512, - ratio=1 / 4., - pooling_type='att', - fusion_types=('channel_add', ), - dropout_ratio=0.1, - num_classes=19, - norm_cfg=norm_cfg, - align_corners=False, - loss_decode=dict( - type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), - auxiliary_head=dict( - type='FCNHead', - in_channels=1024, - in_index=2, - channels=256, - num_convs=1, - concat_input=False, - dropout_ratio=0.1, - num_classes=19, - norm_cfg=norm_cfg, - align_corners=False, - loss_decode=dict( - type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), - # model training and testing settings - train_cfg=dict(), - test_cfg=dict(mode='whole')) diff --git a/spaces/vumichien/canvas_controlnet/annotator/uniformer/mmcv/utils/env.py b/spaces/vumichien/canvas_controlnet/annotator/uniformer/mmcv/utils/env.py deleted file mode 100644 index e3f0d92529e193e6d8339419bcd9bed7901a7769..0000000000000000000000000000000000000000 --- a/spaces/vumichien/canvas_controlnet/annotator/uniformer/mmcv/utils/env.py +++ /dev/null @@ -1,95 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -"""This file holding some environment constant for sharing by other files.""" - -import os.path as osp -import subprocess -import sys -from collections import defaultdict - -import cv2 -import torch - -import annotator.uniformer.mmcv as mmcv -from .parrots_wrapper import get_build_config - - -def collect_env(): - """Collect the information of the running environments. - - Returns: - dict: The environment information. The following fields are contained. - - - sys.platform: The variable of ``sys.platform``. - - Python: Python version. - - CUDA available: Bool, indicating if CUDA is available. - - GPU devices: Device type of each GPU. - - CUDA_HOME (optional): The env var ``CUDA_HOME``. - - NVCC (optional): NVCC version. - - GCC: GCC version, "n/a" if GCC is not installed. - - PyTorch: PyTorch version. - - PyTorch compiling details: The output of \ - ``torch.__config__.show()``. - - TorchVision (optional): TorchVision version. - - OpenCV: OpenCV version. - - MMCV: MMCV version. - - MMCV Compiler: The GCC version for compiling MMCV ops. - - MMCV CUDA Compiler: The CUDA version for compiling MMCV ops. - """ - env_info = {} - env_info['sys.platform'] = sys.platform - env_info['Python'] = sys.version.replace('\n', '') - - cuda_available = torch.cuda.is_available() - env_info['CUDA available'] = cuda_available - - if cuda_available: - devices = defaultdict(list) - for k in range(torch.cuda.device_count()): - devices[torch.cuda.get_device_name(k)].append(str(k)) - for name, device_ids in devices.items(): - env_info['GPU ' + ','.join(device_ids)] = name - - from annotator.uniformer.mmcv.utils.parrots_wrapper import _get_cuda_home - CUDA_HOME = _get_cuda_home() - env_info['CUDA_HOME'] = CUDA_HOME - - if CUDA_HOME is not None and osp.isdir(CUDA_HOME): - try: - nvcc = osp.join(CUDA_HOME, 'bin/nvcc') - nvcc = subprocess.check_output( - f'"{nvcc}" -V | tail -n1', shell=True) - nvcc = nvcc.decode('utf-8').strip() - except subprocess.SubprocessError: - nvcc = 'Not Available' - env_info['NVCC'] = nvcc - - try: - gcc = subprocess.check_output('gcc --version | head -n1', shell=True) - gcc = gcc.decode('utf-8').strip() - env_info['GCC'] = gcc - except subprocess.CalledProcessError: # gcc is unavailable - env_info['GCC'] = 'n/a' - - env_info['PyTorch'] = torch.__version__ - env_info['PyTorch compiling details'] = get_build_config() - - try: - import torchvision - env_info['TorchVision'] = torchvision.__version__ - except ModuleNotFoundError: - pass - - env_info['OpenCV'] = cv2.__version__ - - env_info['MMCV'] = mmcv.__version__ - - try: - from annotator.uniformer.mmcv.ops import get_compiler_version, get_compiling_cuda_version - except ModuleNotFoundError: - env_info['MMCV Compiler'] = 'n/a' - env_info['MMCV CUDA Compiler'] = 'n/a' - else: - env_info['MMCV Compiler'] = get_compiler_version() - env_info['MMCV CUDA Compiler'] = get_compiling_cuda_version() - - return env_info diff --git a/spaces/whitphx/gradio-static-test/dist/assets/index-de9ed39e.css b/spaces/whitphx/gradio-static-test/dist/assets/index-de9ed39e.css deleted file mode 100644 index 463d37a8a75c97e2c4ecd3aaf5081dd8a2f90164..0000000000000000000000000000000000000000 --- a/spaces/whitphx/gradio-static-test/dist/assets/index-de9ed39e.css +++ /dev/null @@ -1 +0,0 @@ -.rangeSlider{--pip:var(--range-pip, lightslategray);--pip-text:var(--range-pip-text, var(--pip));--pip-active:var(--range-pip-active, darkslategrey);--pip-active-text:var(--range-pip-active-text, var(--pip-active));--pip-hover:var(--range-pip-hover, darkslategrey);--pip-hover-text:var(--range-pip-hover-text, var(--pip-hover));--pip-in-range:var(--range-pip-in-range, var(--pip-active));--pip-in-range-text:var(--range-pip-in-range-text, var(--pip-active-text))}.rangePips{position:absolute;height:1em;left:0;right:0;bottom:-1em}.rangePips.vertical{height:auto;width:1em;inset:0 auto 0 100%}.rangePips .pip{height:.4em;position:absolute;top:.25em;width:1px;white-space:nowrap}.rangePips.vertical .pip{height:1px;width:.4em;left:.25em;top:auto;bottom:auto}.rangePips .pipVal{position:absolute;top:.4em;transform:translate(-50%,25%)}.rangePips.vertical .pipVal{position:absolute;top:0;left:.4em;transform:translate(25%,-50%)}.rangePips .pip{transition:all .15s ease}.rangePips .pipVal{transition:all .15s ease,font-weight 0s linear}.rangePips .pip{color:#789;color:var(--pip-text);background-color:#789;background-color:var(--pip)}.rangePips .pip.selected{color:#2f4f4f;color:var(--pip-active-text);background-color:#2f4f4f;background-color:var(--pip-active)}.rangePips.hoverable:not(.disabled) .pip:hover{color:#2f4f4f;color:var(--pip-hover-text);background-color:#2f4f4f;background-color:var(--pip-hover)}.rangePips .pip.in-range{color:#2f4f4f;color:var(--pip-in-range-text);background-color:#2f4f4f;background-color:var(--pip-in-range)}.rangePips .pip.selected{height:.75em}.rangePips.vertical .pip.selected{height:1px;width:.75em}.rangePips .pip.selected .pipVal{font-weight:700;top:.75em}.rangePips.vertical .pip.selected .pipVal{top:0;left:.75em}.rangePips.hoverable:not(.disabled) .pip:not(.selected):hover{transition:none}.rangePips.hoverable:not(.disabled) .pip:not(.selected):hover .pipVal{transition:none;font-weight:700}.rangeSlider{--slider:var(--range-slider, #d7dada);--handle-inactive:var(--range-handle-inactive, #99a2a2);--handle:var(--range-handle, #838de7);--handle-focus:var(--range-handle-focus, #4a40d4);--handle-border:var(--range-handle-border, var(--handle));--range-inactive:var(--range-range-inactive, var(--handle-inactive));--range:var(--range-range, var(--handle-focus));--float-inactive:var(--range-float-inactive, var(--handle-inactive));--float:var(--range-float, var(--handle-focus));--float-text:var(--range-float-text, white)}.rangeSlider{position:relative;border-radius:100px;height:.5em;margin:1em;transition:opacity .2s ease;user-select:none}.rangeSlider *{user-select:none}.rangeSlider.pips{margin-bottom:1.8em}.rangeSlider.pip-labels{margin-bottom:2.8em}.rangeSlider.vertical{display:inline-block;border-radius:100px;width:.5em;min-height:200px}.rangeSlider.vertical.pips{margin-right:1.8em;margin-bottom:1em}.rangeSlider.vertical.pip-labels{margin-right:2.8em;margin-bottom:1em}.rangeSlider .rangeHandle{position:absolute;display:block;height:1.4em;width:1.4em;top:.25em;bottom:auto;transform:translateY(-50%) translate(-50%);z-index:2}.rangeSlider.reversed .rangeHandle{transform:translateY(-50%) translate(50%)}.rangeSlider.vertical .rangeHandle{left:.25em;top:auto;transform:translateY(50%) translate(-50%)}.rangeSlider.vertical.reversed .rangeHandle{transform:translateY(-50%) translate(-50%)}.rangeSlider .rangeNub,.rangeSlider .rangeHandle:before{position:absolute;left:0;top:0;display:block;border-radius:10em;height:100%;width:100%;transition:box-shadow .2s ease}.rangeSlider .rangeHandle:before{content:"";inset:1px;height:auto;width:auto;box-shadow:0 0 0 0 var(--handle-border);opacity:0}.rangeSlider.hoverable:not(.disabled) .rangeHandle:hover:before{box-shadow:0 0 0 8px var(--handle-border);opacity:.2}.rangeSlider.hoverable:not(.disabled) .rangeHandle.press:before,.rangeSlider.hoverable:not(.disabled) .rangeHandle.press:hover:before{box-shadow:0 0 0 12px var(--handle-border);opacity:.4}.rangeSlider.range:not(.min):not(.max) .rangeNub{border-radius:10em 10em 10em 1.6em}.rangeSlider.range .rangeHandle:nth-of-type(1) .rangeNub{transform:rotate(-135deg)}.rangeSlider.range .rangeHandle:nth-of-type(2) .rangeNub{transform:rotate(45deg)}.rangeSlider.range.reversed .rangeHandle:nth-of-type(1) .rangeNub{transform:rotate(45deg)}.rangeSlider.range.reversed .rangeHandle:nth-of-type(2) .rangeNub{transform:rotate(-135deg)}.rangeSlider.range.vertical .rangeHandle:nth-of-type(1) .rangeNub{transform:rotate(135deg)}.rangeSlider.range.vertical .rangeHandle:nth-of-type(2) .rangeNub{transform:rotate(-45deg)}.rangeSlider.range.vertical.reversed .rangeHandle:nth-of-type(1) .rangeNub{transform:rotate(-45deg)}.rangeSlider.range.vertical.reversed .rangeHandle:nth-of-type(2) .rangeNub{transform:rotate(135deg)}.rangeSlider .rangeFloat{display:block;position:absolute;left:50%;top:-.5em;transform:translate(-50%,-100%);font-size:1em;text-align:center;opacity:0;pointer-events:none;white-space:nowrap;transition:all .2s ease;font-size:.9em;padding:.2em .4em;border-radius:.2em}.rangeSlider .rangeHandle.active .rangeFloat,.rangeSlider.hoverable .rangeHandle:hover .rangeFloat{opacity:1;top:-.2em;transform:translate(-50%,-100%)}.rangeSlider .rangeBar{position:absolute;display:block;transition:background .2s ease;border-radius:1em;height:.5em;top:0;user-select:none;z-index:1}.rangeSlider.vertical .rangeBar{width:.5em;height:auto}.rangeSlider{background-color:#d7dada;background-color:var(--slider)}.rangeSlider .rangeBar{background-color:#99a2a2;background-color:var(--range-inactive)}.rangeSlider.focus .rangeBar{background-color:#838de7;background-color:var(--range)}.rangeSlider .rangeNub{background-color:#99a2a2;background-color:var(--handle-inactive)}.rangeSlider.focus .rangeNub{background-color:#838de7;background-color:var(--handle)}.rangeSlider .rangeHandle.active .rangeNub{background-color:#4a40d4;background-color:var(--handle-focus)}.rangeSlider .rangeFloat{color:#fff;color:var(--float-text);background-color:#99a2a2;background-color:var(--float-inactive)}.rangeSlider.focus .rangeFloat{background-color:#4a40d4;background-color:var(--float)}.rangeSlider.disabled{opacity:.5}.rangeSlider.disabled .rangeNub{background-color:#d7dada;background-color:var(--slider)}.mic-wrap.svelte-1thnwz{padding:var(--size-2)}.record-icon.svelte-1thnwz{display:flex;position:relative;margin-right:var(--size-2);width:6px;height:6px}.dot.svelte-1thnwz{display:inline-flex;position:relative;border-radius:var(--radius-full);background:var(--color-red-500);width:6px;height:6px}.pinger.svelte-1thnwz{display:inline-flex;position:absolute;opacity:.9;animation:svelte-1thnwz-ping 1s cubic-bezier(0,0,.2,1) infinite;border-radius:var(--radius-full);background:var(--color-red-500);width:var(--size-full);height:var(--size-full)}@keyframes svelte-1thnwz-ping{75%,to{transform:scale(2);opacity:0}}audio.svelte-1thnwz{padding:var(--size-2);width:var(--size-full);height:var(--size-14)}audio.svelte-eemfgq{padding:var(--size-2);width:var(--size-full);height:var(--size-14)} diff --git a/spaces/wrdias/SD_WEBUI/app.py b/spaces/wrdias/SD_WEBUI/app.py deleted file mode 100644 index 451061badedb02e36c43a0717bec6a555f2c6fed..0000000000000000000000000000000000000000 --- a/spaces/wrdias/SD_WEBUI/app.py +++ /dev/null @@ -1,150 +0,0 @@ -import os -from sys import executable as pyexecutable -import subprocess -import pathlib -import gc - -def Gitclone(URI:str,ClonePath:str = "") -> int : - if(ClonePath == "") : - while True: - i=subprocess.run([r"git",r"clone",URI]) - if(i.returncode == 0 ): - del i - gc.collect() - return 0 - else : - del i - else: - while True: - i=subprocess.run([r"git",r"clone",URI,ClonePath]) - if(i.returncode == 0 ): - del i - gc.collect() - return 0 - else : - del i -def DownLoad(URI:str,DownloadPath:str,DownLoadFileName:str ) -> int: - while (True): - i=subprocess.run([r"aria2c",r"-c",r"-x" ,r"16", r"-s",r"16", r"-k" ,r"1M" ,r"-m",r"0",r"--enable-mmap=false",r"--console-log-level=error",r"-d",DownloadPath,r"-o",DownLoadFileName,URI]); - if(i.returncode == 0 ): - del i - gc.collect() - return 0 - else : - del i -user_home =pathlib.Path.home().resolve() -os.chdir(str(user_home)) -#clone stable-diffusion-webui repo -print("cloning stable-diffusion-webui repo") -Gitclone(r"https://github.com/AUTOMATIC1111/stable-diffusion-webui.git",str(user_home / r"stable-diffusion-webui")) -os.chdir(str(user_home / r"stable-diffusion-webui")) -os.system("git reset --hard 89f9faa63388756314e8a1d96cf86bf5e0663045") -# - -#install extensions -print("installing extensions") -Gitclone(r"https://huggingface.co/embed/negative",str(user_home / r"stable-diffusion-webui" / r"embeddings" / r"negative")) -Gitclone(r"https://huggingface.co/embed/lora",str(user_home / r"stable-diffusion-webui" / r"models" / r"Lora" / r"positive")) -DownLoad(r"https://huggingface.co/embed/upscale/resolve/main/4x-UltraSharp.pth",str(user_home / r"stable-diffusion-webui" / r"models" / r"ESRGAN") ,r"4x-UltraSharp.pth") -while True: - if(subprocess.run([r"wget",r"https://raw.githubusercontent.com/camenduru/stable-diffusion-webui-scripts/main/run_n_times.py",r"-O",str(user_home / r"stable-diffusion-webui" / r"scripts" / r"run_n_times.py")]).returncode == 0): - break -Gitclone(r"https://github.com/deforum-art/deforum-for-automatic1111-webui",str(user_home / r"stable-diffusion-webui" / r"extensions" / r"deforum-for-automatic1111-webui" )) -Gitclone(r"https://github.com/AlUlkesh/stable-diffusion-webui-images-browser",str(user_home / r"stable-diffusion-webui" / r"extensions"/ r"stable-diffusion-webui-images-browser")) -Gitclone(r"https://github.com/camenduru/stable-diffusion-webui-huggingface",str(user_home / r"stable-diffusion-webui" / r"extensions" / r"stable-diffusion-webui-huggingface")) -Gitclone(r"https://github.com/camenduru/sd-civitai-browser",str(user_home / r"stable-diffusion-webui" / r"extensions" / r"sd-civitai-browser")) -Gitclone(r"https://github.com/kohya-ss/sd-webui-additional-networks",str(user_home / r"stable-diffusion-webui" / r"extensions" / r"sd-webui-additional-networks")) -Gitclone(r"https://github.com/Mikubill/sd-webui-controlnet",str(user_home / r"stable-diffusion-webui" / r"extensions" / r"sd-webui-controlnet")) -Gitclone(r"https://github.com/fkunn1326/openpose-editor",str(user_home / r"stable-diffusion-webui" / r"extensions" / r"openpose-editor")) -Gitclone(r"https://github.com/jexom/sd-webui-depth-lib",str(user_home / r"stable-diffusion-webui" / r"extensions" / r"sd-webui-depth-lib")) -Gitclone(r"https://github.com/hnmr293/posex",str(user_home / r"stable-diffusion-webui" / r"extensions" / r"posex")) -Gitclone(r"https://github.com/nonnonstop/sd-webui-3d-open-pose-editor",str(user_home / r"stable-diffusion-webui" / r"extensions" / r"sd-webui-3d-open-pose-editor")) -#中文本地化的请解除下一行的注释 -#Gitclone(r"https://github.com/dtlnor/stable-diffusion-webui-localization-zh_CN.git",str(user_home / r"stable-diffusion-webui" / r"extensions" / r"stable-diffusion-webui-localization-zh_CN")) -Gitclone(r"https://github.com/DominikDoom/a1111-sd-webui-tagcomplete.git" , str(user_home / r"stable-diffusion-webui" / r"extensions" / r"a1111-sd-webui-tagcomplete")) -Gitclone(r"https://github.com/camenduru/sd-webui-tunnels",str(user_home / r"stable-diffusion-webui" / r"extensions" / r"sd-webui-tunnels")) -Gitclone(r"https://github.com/etherealxx/batchlinks-webui",str(user_home / r"stable-diffusion-webui" / r"extensions" / r"batchlinks-webui")) -Gitclone(r"https://github.com/catppuccin/stable-diffusion-webui",str(user_home / r"stable-diffusion-webui" / r"extensions" / r"stable-diffusion-webui-catppuccin")) - -#Gitclone(r"https://github.com/KohakuBueleaf/a1111-sd-webui-locon",str(user_home / r"stable-diffusion-webui" / r"extensions" / r"a1111-sd-webui-locon" )) -Gitclone(r"https://github.com/AUTOMATIC1111/stable-diffusion-webui-rembg",str(user_home / r"stable-diffusion-webui" / r"extensions" / r"stable-diffusion-webui-rembg")) -Gitclone(r"https://github.com/ashen-sensored/stable-diffusion-webui-two-shot",str(user_home / r"stable-diffusion-webui" / r"extensions" / r"stable-diffusion-webui-two-shot")) -Gitclone(r"https://github.com/camenduru/sd_webui_stealth_pnginfo",str(user_home / r"stable-diffusion-webui" / r"extensions" / r"sd_webui_stealth_pnginfo")) - -os.chdir(user_home / r"stable-diffusion-webui") - -# #download ControlNet models -# print("extensions dolwnload done .\ndownloading ControlNet models") -# dList =[r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/control_v11e_sd15_ip2p_fp16.safetensors", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/control_v11e_sd15_shuffle_fp16.safetensors", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/control_v11p_sd15_canny_fp16.safetensors", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/control_v11f1p_sd15_depth_fp16.safetensors", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/control_v11p_sd15_inpaint_fp16.safetensors", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/control_v11p_sd15_lineart_fp16.safetensors", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/control_v11p_sd15_mlsd_fp16.safetensors", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/control_v11p_sd15_normalbae_fp16.safetensors", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/control_v11p_sd15_openpose_fp16.safetensors", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/control_v11p_sd15_scribble_fp16.safetensors", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/control_v11p_sd15_seg_fp16.safetensors", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/control_v11p_sd15_softedge_fp16.safetensors", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/control_v11p_sd15s2_lineart_anime_fp16.safetensors", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/control_v11f1e_sd15_tile_fp16.safetensors", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/raw/main/control_v11e_sd15_ip2p_fp16.yaml", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/raw/main/control_v11e_sd15_shuffle_fp16.yaml", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/raw/main/control_v11p_sd15_canny_fp16.yaml", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/raw/main/control_v11f1p_sd15_depth_fp16.yaml", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/raw/main/control_v11p_sd15_inpaint_fp16.yaml", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/raw/main/control_v11p_sd15_lineart_fp16.yaml", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/raw/main/control_v11p_sd15_mlsd_fp16.yaml", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/raw/main/control_v11p_sd15_normalbae_fp16.yaml", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/raw/main/control_v11p_sd15_openpose_fp16.yaml", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/raw/main/control_v11p_sd15_scribble_fp16.yaml", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/raw/main/control_v11p_sd15_seg_fp16.yaml", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/raw/main/control_v11p_sd15_softedge_fp16.yaml", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/raw/main/control_v11p_sd15s2_lineart_anime_fp16.yaml", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/raw/main/control_v11f1e_sd15_tile_fp16.yaml", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/t2iadapter_style_sd14v1.pth", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/t2iadapter_sketch_sd14v1.pth", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/t2iadapter_seg_sd14v1.pth", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/t2iadapter_openpose_sd14v1.pth", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/t2iadapter_keypose_sd14v1.pth", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/t2iadapter_depth_sd14v1.pth", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/t2iadapter_canny_sd14v1.pth", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/t2iadapter_canny_sd15v2.pth", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/t2iadapter_depth_sd15v2.pth", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/t2iadapter_sketch_sd15v2.pth", -# r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/t2iadapter_zoedepth_sd15v1.pth"] -# for i in range(0,len(dList)): DownLoad(dList[i],str(user_home / "stable-diffusion-webui" / "extensions" / "sd-webui-controlnet" / "models"),pathlib.Path(dList[i]).name) -# del dList - -#download model -# #you can change model download address here -# print("ControlNet models download done.\ndownloading model") -# DownLoad(r"https://huggingface.co/ckpt/anything-v4.0/resolve/main/anything-v4.5-pruned.ckpt",str(user_home / r"stable-diffusion-webui" / r"models" / r"Stable-diffusion"),r"anything-v4.5-pruned.ckpt") -# DownLoad(r"https://huggingface.co/ckpt/anything-v4.0/resolve/main/anything-v4.0.vae.pt",str(user_home / r"stable-diffusion-webui" / r"models" / r"Stable-diffusion"),r"anything-v4.0.vae.pt") -# DownLoad(r"https://huggingface.co/gsdf/Counterfeit-V3.0/resolve/main/Counterfeit-V3.0_fp16.safetensors",str(user_home / r"stable-diffusion-webui" / r"models" / r"Stable-diffusion"),r"Counterfeit-V3.0_fp16.safetensors") -# DownLoad(r"https://huggingface.co/WarriorMama777/OrangeMixs/resolve/main/Models/AbyssOrangeMix3/AOM3A1B_orangemixs.safetensors",str(user_home / r"stable-diffusion-webui" / r"models" / r"Stable-diffusion"),r"AOM3A1B_orangemixs.safetensors") -# DownLoad(r"https://huggingface.co/WarriorMama777/OrangeMixs/resolve/main/VAEs/orangemix.vae.pt",str(user_home / r"stable-diffusion-webui" / r"models" / r"Stable-diffusion"),r"orangemix.vae.pt") -# DownLoad(r"https://huggingface.co/Meina/MeinaPastel/resolve/main/MeinaPastelV5%20-%20Baked%20VAE.safetensors",str(user_home / r"stable-diffusion-webui" / r"models" / r"Stable-diffusion"),r"MeinaPastelV5_BakedVAE.safetensors") -# DownLoad(r"https://huggingface.co/Meina/MeinaPastel/resolve/main/MeinaPastelV5%20-%20Without%20VAE.safetensors",str(user_home / r"stable-diffusion-webui" / r"models" / r"Stable-diffusion"),r"MeinaPastelV5_WithoutVAE.safetensors") -# DownLoad(r"https://civitai.com/api/download/models/9474",str(user_home / r"stable-diffusion-webui" / r"models" / r"Stable-diffusion"),r"chilloutmix_NiPrunedFp16.safetensors") -DownLoad(r"https://civitai.com/api/download/models/1381",str(user_home / r"stable-diffusion-webui" / r"models" / r"Stable-diffusion"),r"marblesh_.cptk") - -# DownLoad(r"https://civitai.com/api/download/models/39885",str(user_home / r"stable-diffusion-webui" / r"extensions" / r"sd-webui-additional-networks" / r"models"/ r"lora"),r"Better_light.safetensors") -# DownLoad(r"https://civitai.com/api/download/models/21065",str(user_home / r"stable-diffusion-webui" / r"extensions" / r"sd-webui-additional-networks" / r"models"/ r"lora"),r"LAS.safetensors") -# DownLoad(r"https://civitai.com/api/download/models/39164",str(user_home / r"stable-diffusion-webui" / r"extensions" / r"sd-webui-additional-networks" / r"models"/ r"lora"),r"backlighting.safetensors") -DownLoad(r"https://civitai.com/api/download/models/9043",str(user_home / r"stable-diffusion-webui" / r"extensions" / r"sd-webui-additional-networks" / r"models"/ r"lora"),r"marblesh.safetensors") - -#strt webui - -print("Done\nStarting Webui...") -os.chdir(user_home / r"stable-diffusion-webui") -while True: - ret=subprocess.run([r"python3" ,r"launch.py",r"--precision",r"full",r"--no-half",r"--no-half-vae",r"--enable-insecure-extension-access",r"--medvram",r"--skip-torch-cuda-test",r"--enable-console-prompts",r"--ui-settings-file="+str(pathlib.Path(__file__).parent /r"config.json")]) - if(ret.returncode == 0 ): - del ret - gc.collect() - else : - del ret - -del os ,user_home ,pyexecutable ,subprocess \ No newline at end of file diff --git a/spaces/wwwwwwww2/bingo/next.config.js b/spaces/wwwwwwww2/bingo/next.config.js deleted file mode 100644 index 0e6ccd7fbc91d0459eaaff3e968ce0556789c605..0000000000000000000000000000000000000000 --- a/spaces/wwwwwwww2/bingo/next.config.js +++ /dev/null @@ -1,38 +0,0 @@ -/** @type {import('next').NextConfig} */ -const nextConfig = { - // output: 'export', - // assetPrefix: '.', - webpack: (config, { isServer }) => { - if (!isServer) { - config.resolve = { - ...config.resolve, - fallback: { - 'bufferutil': false, - 'utf-8-validate': false, - http: false, - https: false, - stream: false, - // fixes proxy-agent dependencies - net: false, - dns: false, - tls: false, - assert: false, - // fixes next-i18next dependencies - path: false, - fs: false, - // fixes mapbox dependencies - events: false, - // fixes sentry dependencies - process: false - } - }; - } - config.module.exprContextCritical = false; - - return config; - }, -} - -module.exports = (...args) => { - return nextConfig -} diff --git a/spaces/xfys/yolov5_tracking/val_utils/scripts/run_bdd.py b/spaces/xfys/yolov5_tracking/val_utils/scripts/run_bdd.py deleted file mode 100644 index 2043cdf085803e3954cceaabb19f3b5b2ecd8876..0000000000000000000000000000000000000000 --- a/spaces/xfys/yolov5_tracking/val_utils/scripts/run_bdd.py +++ /dev/null @@ -1,89 +0,0 @@ - -""" run_bdd.py - -Run example: -run_bdd.py --USE_PARALLEL False --METRICS Hota --TRACKERS_TO_EVAL qdtrack - -Command Line Arguments: Defaults, # Comments - Eval arguments: - 'USE_PARALLEL': False, - 'NUM_PARALLEL_CORES': 8, - 'BREAK_ON_ERROR': True, - 'PRINT_RESULTS': True, - 'PRINT_ONLY_COMBINED': False, - 'PRINT_CONFIG': True, - 'TIME_PROGRESS': True, - 'OUTPUT_SUMMARY': True, - 'OUTPUT_DETAILED': True, - 'PLOT_CURVES': True, - Dataset arguments: - 'GT_FOLDER': os.path.join(code_path, 'data/gt/bdd100k/bdd100k_val'), # Location of GT data - 'TRACKERS_FOLDER': os.path.join(code_path, 'data/trackers/bdd100k/bdd100k_val'), # Trackers location - 'OUTPUT_FOLDER': None, # Where to save eval results (if None, same as TRACKERS_FOLDER) - 'TRACKERS_TO_EVAL': None, # Filenames of trackers to eval (if None, all in folder) - 'CLASSES_TO_EVAL': ['pedestrian', 'rider', 'car', 'bus', 'truck', 'train', 'motorcycle', 'bicycle'], - # Valid: ['pedestrian', 'rider', 'car', 'bus', 'truck', 'train', 'motorcycle', 'bicycle'] - 'SPLIT_TO_EVAL': 'val', # Valid: 'training', 'val', - 'INPUT_AS_ZIP': False, # Whether tracker input files are zipped - 'PRINT_CONFIG': True, # Whether to print current config - 'TRACKER_SUB_FOLDER': 'data', # Tracker files are in TRACKER_FOLDER/tracker_name/TRACKER_SUB_FOLDER - 'OUTPUT_SUB_FOLDER': '', # Output files are saved in OUTPUT_FOLDER/tracker_name/OUTPUT_SUB_FOLDER - 'TRACKER_DISPLAY_NAMES': None, # Names of trackers to display, if None: TRACKERS_TO_EVAL - Metric arguments: - 'METRICS': ['Hota','Clear', 'ID', 'Count'] -""" - -import sys -import os -import argparse -from multiprocessing import freeze_support - -sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) -import trackeval # noqa: E402 - -if __name__ == '__main__': - freeze_support() - - # Command line interface: - default_eval_config = trackeval.Evaluator.get_default_eval_config() - default_eval_config['PRINT_ONLY_COMBINED'] = True - default_dataset_config = trackeval.datasets.BDD100K.get_default_dataset_config() - default_metrics_config = {'METRICS': ['HOTA', 'CLEAR', 'Identity']} - config = {**default_eval_config, **default_dataset_config, **default_metrics_config} # Merge default configs - parser = argparse.ArgumentParser() - for setting in config.keys(): - if type(config[setting]) == list or type(config[setting]) == type(None): - parser.add_argument("--" + setting, nargs='+') - else: - parser.add_argument("--" + setting) - args = parser.parse_args().__dict__ - for setting in args.keys(): - if args[setting] is not None: - if type(config[setting]) == type(True): - if args[setting] == 'True': - x = True - elif args[setting] == 'False': - x = False - else: - raise Exception('Command line parameter ' + setting + 'must be True or False') - elif type(config[setting]) == type(1): - x = int(args[setting]) - elif type(args[setting]) == type(None): - x = None - else: - x = args[setting] - config[setting] = x - eval_config = {k: v for k, v in config.items() if k in default_eval_config.keys()} - dataset_config = {k: v for k, v in config.items() if k in default_dataset_config.keys()} - metrics_config = {k: v for k, v in config.items() if k in default_metrics_config.keys()} - - # Run code - evaluator = trackeval.Evaluator(eval_config) - dataset_list = [trackeval.datasets.BDD100K(dataset_config)] - metrics_list = [] - for metric in [trackeval.metrics.HOTA, trackeval.metrics.CLEAR, trackeval.metrics.Identity]: - if metric.get_name() in metrics_config['METRICS']: - metrics_list.append(metric()) - if len(metrics_list) == 0: - raise Exception('No metrics selected for evaluation') - evaluator.evaluate(dataset_list, metrics_list) \ No newline at end of file diff --git a/spaces/xiaohuolong/ChuanhuChatGPT/app.py b/spaces/xiaohuolong/ChuanhuChatGPT/app.py deleted file mode 100644 index 5523a648e43b4dab0e8c504fed92b0bd32bb8fbd..0000000000000000000000000000000000000000 --- a/spaces/xiaohuolong/ChuanhuChatGPT/app.py +++ /dev/null @@ -1,454 +0,0 @@ -# -*- coding:utf-8 -*- -import os -import logging -import sys - -import gradio as gr - -from utils import * -from presets import * -from overwrites import * -from chat_func import * - -logging.basicConfig( - level=logging.DEBUG, - format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s", -) - -my_api_key = "" # 在这里输入你的 API 密钥 - -# if we are running in Docker -if os.environ.get("dockerrun") == "yes": - dockerflag = True -else: - dockerflag = False - -authflag = False - -if dockerflag: - my_api_key = os.environ.get("my_api_key") - if my_api_key == "empty": - logging.error("Please give a api key!") - sys.exit(1) - # auth - username = os.environ.get("USERNAME") - password = os.environ.get("PASSWORD") - if not (isinstance(username, type(None)) or isinstance(password, type(None))): - authflag = True -else: - if ( - not my_api_key - and os.path.exists("api_key.txt") - and os.path.getsize("api_key.txt") - ): - with open("api_key.txt", "r") as f: - my_api_key = f.read().strip() - if os.path.exists("auth.json"): - with open("auth.json", "r") as f: - auth = json.load(f) - username = auth["username"] - password = auth["password"] - if username != "" and password != "": - authflag = True - -gr.Chatbot.postprocess = postprocess -PromptHelper.compact_text_chunks = compact_text_chunks - -with open("custom.css", "r", encoding="utf-8") as f: - customCSS = f.read() - -with gr.Blocks( - css=customCSS, - theme=gr.themes.Soft( - primary_hue=gr.themes.Color( - c50="#02C160", - c100="rgba(2, 193, 96, 0.2)", - c200="#02C160", - c300="rgba(2, 193, 96, 0.32)", - c400="rgba(2, 193, 96, 0.32)", - c500="rgba(2, 193, 96, 1.0)", - c600="rgba(2, 193, 96, 1.0)", - c700="rgba(2, 193, 96, 0.32)", - c800="rgba(2, 193, 96, 0.32)", - c900="#02C160", - c950="#02C160", - ), - secondary_hue=gr.themes.Color( - c50="#576b95", - c100="#576b95", - c200="#576b95", - c300="#576b95", - c400="#576b95", - c500="#576b95", - c600="#576b95", - c700="#576b95", - c800="#576b95", - c900="#576b95", - c950="#576b95", - ), - neutral_hue=gr.themes.Color( - name="gray", - c50="#f9fafb", - c100="#f3f4f6", - c200="#e5e7eb", - c300="#d1d5db", - c400="#B2B2B2", - c500="#808080", - c600="#636363", - c700="#515151", - c800="#393939", - c900="#272727", - c950="#171717", - ), - radius_size=gr.themes.sizes.radius_sm, - ).set( - button_primary_background_fill="#06AE56", - button_primary_background_fill_dark="#06AE56", - button_primary_background_fill_hover="#07C863", - button_primary_border_color="#06AE56", - button_primary_border_color_dark="#06AE56", - button_primary_text_color="#FFFFFF", - button_primary_text_color_dark="#FFFFFF", - button_secondary_background_fill="#F2F2F2", - button_secondary_background_fill_dark="#2B2B2B", - button_secondary_text_color="#393939", - button_secondary_text_color_dark="#FFFFFF", - # background_fill_primary="#F7F7F7", - # background_fill_primary_dark="#1F1F1F", - block_title_text_color="*primary_500", - block_title_background_fill="*primary_100", - input_background_fill="#F6F6F6", - ), -) as demo: - history = gr.State([]) - token_count = gr.State([]) - promptTemplates = gr.State(load_template(get_template_names(plain=True)[0], mode=2)) - user_api_key = gr.State(my_api_key) - TRUECOMSTANT = gr.State(True) - FALSECONSTANT = gr.State(False) - topic = gr.State("未命名对话历史记录") - - with gr.Row(): - gr.HTML(title) - status_display = gr.Markdown(get_geoip(), elem_id="status_display") - - with gr.Row(scale=1).style(equal_height=True): - with gr.Column(scale=5): - with gr.Row(scale=1): - chatbot = gr.Chatbot(elem_id="chuanhu_chatbot").style(height="100%") - with gr.Row(scale=1): - with gr.Column(scale=12): - user_input = gr.Textbox( - show_label=False, placeholder="在这里输入" - ).style(container=False) - with gr.Column(min_width=70, scale=1): - submitBtn = gr.Button("发送", variant="primary") - with gr.Row(scale=1): - emptyBtn = gr.Button( - "🧹 新的对话", - ) - retryBtn = gr.Button("🔄 重新生成") - delLastBtn = gr.Button("🗑️ 删除一条对话") - reduceTokenBtn = gr.Button("♻️ 总结对话") - - with gr.Column(): - with gr.Column(min_width=50, scale=1): - with gr.Tab(label="ChatGPT"): - keyTxt = gr.Textbox( - show_label=True, - placeholder=f"OpenAI API-key...", - value=hide_middle_chars(my_api_key), - type="password", - visible=not HIDE_MY_KEY, - label="API-Key", - ) - model_select_dropdown = gr.Dropdown( - label="选择模型", choices=MODELS, multiselect=False, value=MODELS[0] - ) - use_streaming_checkbox = gr.Checkbox( - label="实时传输回答", value=True, visible=enable_streaming_option - ) - use_websearch_checkbox = gr.Checkbox(label="使用在线搜索", value=False) - index_files = gr.Files(label="上传索引文件", type="file", multiple=True) - - with gr.Tab(label="Prompt"): - systemPromptTxt = gr.Textbox( - show_label=True, - placeholder=f"在这里输入System Prompt...", - label="System prompt", - value=initial_prompt, - lines=10, - ).style(container=False) - with gr.Accordion(label="加载Prompt模板", open=True): - with gr.Column(): - with gr.Row(): - with gr.Column(scale=6): - templateFileSelectDropdown = gr.Dropdown( - label="选择Prompt模板集合文件", - choices=get_template_names(plain=True), - multiselect=False, - value=get_template_names(plain=True)[0], - ).style(container=False) - with gr.Column(scale=1): - templateRefreshBtn = gr.Button("🔄 刷新") - with gr.Row(): - with gr.Column(): - templateSelectDropdown = gr.Dropdown( - label="从Prompt模板中加载", - choices=load_template( - get_template_names(plain=True)[0], mode=1 - ), - multiselect=False, - value=load_template( - get_template_names(plain=True)[0], mode=1 - )[0], - ).style(container=False) - - with gr.Tab(label="保存/加载"): - with gr.Accordion(label="保存/加载对话历史记录", open=True): - with gr.Column(): - with gr.Row(): - with gr.Column(scale=6): - historyFileSelectDropdown = gr.Dropdown( - label="从列表中加载对话", - choices=get_history_names(plain=True), - multiselect=False, - value=get_history_names(plain=True)[0], - ) - with gr.Column(scale=1): - historyRefreshBtn = gr.Button("🔄 刷新") - with gr.Row(): - with gr.Column(scale=6): - saveFileName = gr.Textbox( - show_label=True, - placeholder=f"设置文件名: 默认为.json,可选为.md", - label="设置保存文件名", - value="对话历史记录", - ).style(container=True) - with gr.Column(scale=1): - saveHistoryBtn = gr.Button("💾 保存对话") - exportMarkdownBtn = gr.Button("📝 导出为Markdown") - gr.Markdown("默认保存于history文件夹") - with gr.Row(): - with gr.Column(): - downloadFile = gr.File(interactive=True) - - with gr.Tab(label="高级"): - default_btn = gr.Button("🔙 恢复默认设置") - gr.Markdown("# ⚠️ 务必谨慎更改 ⚠️\n\n如果无法使用请恢复默认设置") - - with gr.Accordion("参数", open=False): - top_p = gr.Slider( - minimum=-0, - maximum=1.0, - value=1.0, - step=0.05, - interactive=True, - label="Top-p", - ) - temperature = gr.Slider( - minimum=-0, - maximum=2.0, - value=1.0, - step=0.1, - interactive=True, - label="Temperature", - ) - - apiurlTxt = gr.Textbox( - show_label=True, - placeholder=f"在这里输入API地址...", - label="API地址", - value="https://api.openai.com/v1/chat/completions", - lines=2, - ) - changeAPIURLBtn = gr.Button("🔄 切换API地址") - proxyTxt = gr.Textbox( - show_label=True, - placeholder=f"在这里输入代理地址...", - label="代理地址(示例:http://127.0.0.1:10809)", - value="", - lines=2, - ) - changeProxyBtn = gr.Button("🔄 设置代理地址") - - gr.Markdown(description) - - keyTxt.submit(submit_key, keyTxt, [user_api_key, status_display]) - keyTxt.change(submit_key, keyTxt, [user_api_key, status_display]) - # Chatbot - user_input.submit( - predict, - [ - user_api_key, - systemPromptTxt, - history, - user_input, - chatbot, - token_count, - top_p, - temperature, - use_streaming_checkbox, - model_select_dropdown, - use_websearch_checkbox, - index_files, - ], - [chatbot, history, status_display, token_count], - show_progress=True, - ) - user_input.submit(reset_textbox, [], [user_input]) - - submitBtn.click( - predict, - [ - user_api_key, - systemPromptTxt, - history, - user_input, - chatbot, - token_count, - top_p, - temperature, - use_streaming_checkbox, - model_select_dropdown, - use_websearch_checkbox, - index_files, - ], - [chatbot, history, status_display, token_count], - show_progress=True, - ) - submitBtn.click(reset_textbox, [], [user_input]) - - emptyBtn.click( - reset_state, - outputs=[chatbot, history, token_count, status_display], - show_progress=True, - ) - - retryBtn.click( - retry, - [ - user_api_key, - systemPromptTxt, - history, - chatbot, - token_count, - top_p, - temperature, - use_streaming_checkbox, - model_select_dropdown, - ], - [chatbot, history, status_display, token_count], - show_progress=True, - ) - - delLastBtn.click( - delete_last_conversation, - [chatbot, history, token_count], - [chatbot, history, token_count, status_display], - show_progress=True, - ) - - reduceTokenBtn.click( - reduce_token_size, - [ - user_api_key, - systemPromptTxt, - history, - chatbot, - token_count, - top_p, - temperature, - gr.State(0), - model_select_dropdown, - ], - [chatbot, history, status_display, token_count], - show_progress=True, - ) - - # Template - templateRefreshBtn.click(get_template_names, None, [templateFileSelectDropdown]) - templateFileSelectDropdown.change( - load_template, - [templateFileSelectDropdown], - [promptTemplates, templateSelectDropdown], - show_progress=True, - ) - templateSelectDropdown.change( - get_template_content, - [promptTemplates, templateSelectDropdown, systemPromptTxt], - [systemPromptTxt], - show_progress=True, - ) - - # S&L - saveHistoryBtn.click( - save_chat_history, - [saveFileName, systemPromptTxt, history, chatbot], - downloadFile, - show_progress=True, - ) - saveHistoryBtn.click(get_history_names, None, [historyFileSelectDropdown]) - exportMarkdownBtn.click( - export_markdown, - [saveFileName, systemPromptTxt, history, chatbot], - downloadFile, - show_progress=True, - ) - historyRefreshBtn.click(get_history_names, None, [historyFileSelectDropdown]) - historyFileSelectDropdown.change( - load_chat_history, - [historyFileSelectDropdown, systemPromptTxt, history, chatbot], - [saveFileName, systemPromptTxt, history, chatbot], - show_progress=True, - ) - downloadFile.change( - load_chat_history, - [downloadFile, systemPromptTxt, history, chatbot], - [saveFileName, systemPromptTxt, history, chatbot], - ) - - # Advanced - default_btn.click( - reset_default, [], [apiurlTxt, proxyTxt, status_display], show_progress=True - ) - changeAPIURLBtn.click( - change_api_url, - [apiurlTxt], - [status_display], - show_progress=True, - ) - changeProxyBtn.click( - change_proxy, - [proxyTxt], - [status_display], - show_progress=True, - ) - -logging.info( - colorama.Back.GREEN - + "\n川虎的温馨提示:访问 http://localhost:7860 查看界面" - + colorama.Style.RESET_ALL -) -# 默认开启本地服务器,默认可以直接从IP访问,默认不创建公开分享链接 -demo.title = "川虎ChatGPT 🚀" - -if __name__ == "__main__": - # if running in Docker - if dockerflag: - if authflag: - demo.queue().launch( - server_name="0.0.0.0", server_port=7860, auth=(username, password), - favicon_path="./assets/favicon.png" - ) - else: - demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=False, favicon_path="./assets/favicon.png") - # if not running in Docker - else: - if authflag: - demo.queue().launch(share=False, auth=(username, password), favicon_path="./assets/favicon.png", inbrowser=True) - else: - demo.queue().launch(share=False, favicon_path="./assets/favicon.png", inbrowser=True) # 改为 share=True 可以创建公开分享链接 - # demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=False) # 可自定义端口 - # demo.queue().launch(server_name="0.0.0.0", server_port=7860,auth=("在这里填写用户名", "在这里填写密码")) # 可设置用户名与密码 - # demo.queue().launch(auth=("在这里填写用户名", "在这里填写密码")) # 适合Nginx反向代理 diff --git a/spaces/xiaolongbaox/gpt2.0/modules/config.py b/spaces/xiaolongbaox/gpt2.0/modules/config.py deleted file mode 100644 index c9022ab73f6a5eedfc71217cba93a80e987e6057..0000000000000000000000000000000000000000 --- a/spaces/xiaolongbaox/gpt2.0/modules/config.py +++ /dev/null @@ -1,145 +0,0 @@ -from collections import defaultdict -from contextlib import contextmanager -import os -import logging -import sys -import json - -from . import shared - - -__all__ = [ - "my_api_key", - "authflag", - "auth_list", - "dockerflag", - "retrieve_proxy", - "log_level", - "advance_docs", - "update_doc_config", - "multi_api_key", -] - -# 添加一个统一的config文件,避免文件过多造成的疑惑(优先级最低) -# 同时,也可以为后续支持自定义功能提供config的帮助 -if os.path.exists("config.json"): - with open("config.json", "r", encoding='utf-8') as f: - config = json.load(f) -else: - config = {} - -## 处理docker if we are running in Docker -dockerflag = config.get("dockerflag", False) -if os.environ.get("dockerrun") == "yes": - dockerflag = True - -## 处理 api-key 以及 允许的用户列表 -my_api_key = config.get("openai_api_key", "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") # 在这里输入你的 API 密钥 -my_api_key = os.environ.get("my_api_key", my_api_key) - -## 多账户机制 -multi_api_key = config.get("multi_api_key", False) # 是否开启多账户机制 -if multi_api_key: - api_key_list = config.get("api_key_list", []) - if len(api_key_list) == 0: - logging.error("多账号模式已开启,但api_key_list为空,请检查config.json") - sys.exit(1) - shared.state.set_api_key_queue(api_key_list) - -auth_list = config.get("users", []) # 实际上是使用者的列表 -authflag = len(auth_list) > 0 # 是否开启认证的状态值,改为判断auth_list长度 - -# 处理自定义的api_host,优先读环境变量的配置,如果存在则自动装配 -api_host = os.environ.get("api_host", config.get("api_host", "")) -if api_host: - shared.state.set_api_host(api_host) - -if dockerflag: - if my_api_key == "empty": - logging.error("Please give a api key!") - sys.exit(1) - # auth - username = os.environ.get("USERNAME") - password = os.environ.get("PASSWORD") - if not (isinstance(username, type(None)) or isinstance(password, type(None))): - auth_list.append((os.environ.get("USERNAME"), os.environ.get("PASSWORD"))) - authflag = True -else: - if ( - not my_api_key - and os.path.exists("api_key.txt") - and os.path.getsize("api_key.txt") - ): - with open("api_key.txt", "r") as f: - my_api_key = f.read().strip() - if os.path.exists("auth.json"): - authflag = True - with open("auth.json", "r", encoding='utf-8') as f: - auth = json.load(f) - for _ in auth: - if auth[_]["username"] and auth[_]["password"]: - auth_list.append((auth[_]["username"], auth[_]["password"])) - else: - logging.error("请检查auth.json文件中的用户名和密码!") - sys.exit(1) - -@contextmanager -def retrieve_openai_api(api_key = None): - old_api_key = os.environ.get("OPENAI_API_KEY", "") - if api_key is None: - os.environ["OPENAI_API_KEY"] = my_api_key - yield my_api_key - else: - os.environ["OPENAI_API_KEY"] = api_key - yield api_key - os.environ["OPENAI_API_KEY"] = old_api_key - -## 处理log -log_level = config.get("log_level", "INFO") -logging.basicConfig( - level=log_level, - format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s", -) - -## 处理代理: -http_proxy = config.get("http_proxy", "") -https_proxy = config.get("https_proxy", "") -http_proxy = os.environ.get("HTTP_PROXY", http_proxy) -https_proxy = os.environ.get("HTTPS_PROXY", https_proxy) - -# 重置系统变量,在不需要设置的时候不设置环境变量,以免引起全局代理报错 -os.environ["HTTP_PROXY"] = "" -os.environ["HTTPS_PROXY"] = "" - -@contextmanager -def retrieve_proxy(proxy=None): - """ - 1, 如果proxy = NONE,设置环境变量,并返回最新设置的代理 - 2,如果proxy != NONE,更新当前的代理配置,但是不更新环境变量 - """ - global http_proxy, https_proxy - if proxy is not None: - http_proxy = proxy - https_proxy = proxy - yield http_proxy, https_proxy - else: - old_var = os.environ["HTTP_PROXY"], os.environ["HTTPS_PROXY"] - os.environ["HTTP_PROXY"] = http_proxy - os.environ["HTTPS_PROXY"] = https_proxy - yield http_proxy, https_proxy # return new proxy - - # return old proxy - os.environ["HTTP_PROXY"], os.environ["HTTPS_PROXY"] = old_var - - -## 处理advance docs -advance_docs = defaultdict(lambda: defaultdict(dict)) -advance_docs.update(config.get("advance_docs", {})) -def update_doc_config(two_column_pdf): - global advance_docs - if two_column_pdf: - advance_docs["pdf"]["two_column"] = True - else: - advance_docs["pdf"]["two_column"] = False - - logging.info(f"更新后的文件参数为:{advance_docs}") \ No newline at end of file diff --git a/spaces/xuxw98/TAPA/howto/inference.md b/spaces/xuxw98/TAPA/howto/inference.md deleted file mode 100644 index 398cc55e54e5ea4a23310aedde51c03b058e2fb9..0000000000000000000000000000000000000000 --- a/spaces/xuxw98/TAPA/howto/inference.md +++ /dev/null @@ -1,43 +0,0 @@ -# Inference - -We demonstrate how to run inference (next token prediction) with the LLaMA base model in the [`generate.py`](generate.py) script: - -```bash -python generate.py --prompt "Hello, my name is" -``` -Output: -``` -Hello my name is TJ. I have a passion for the outdoors, love hiking and exploring. I also enjoy traveling and learning new things. I especially enjoy long walks, good conversation and a friendly smile. -``` - -The script assumes you have downloaded and converted the weights and saved them in the `./checkpoints` folder as described [here](download_weights.md). - -> **Note** -> All scripts support argument [customization](customize_paths.md) - -With the default settings, this will run the 7B model and require ~26 GB of GPU memory (A100 GPU). - -## Run Lit-LLaMA on consumer devices - -On GPUs with `bfloat16` support, the `generate.py` script will automatically convert the weights and consume about ~14 GB. -For GPUs with less memory, or ones that don't support `bfloat16`, enable quantization (`--quantize llm.int8`): - -```bash -python generate.py --quantize llm.int8 --prompt "Hello, my name is" -``` -This will consume about ~10 GB of GPU memory or ~8 GB if also using `bfloat16`. -See `python generate.py --help` for more options. - -You can also use GPTQ-style int4 quantization, but this needs conversions of the weights first: - -```bash -python quantize/gptq.py --output_path checkpoints/lit-llama/7B/llama-gptq.4bit.pth --dtype bfloat16 --quantize gptq.int4 -``` - -GPTQ-style int4 quantization brings GPU usage down to about ~5GB. As only the weights of the Linear layers are quantized, it is useful to also use `--dtype bfloat16` even with the quantization enabled. - -With the generated quantized checkpoint generation quantization then works as usual with `--quantize gptq.int4` and the newly generated checkpoint file: - -```bash -python generate.py --quantize gptq.int4 --checkpoint_path checkpoints/lit-llama/7B/llama-gptq.4bit.pth -``` diff --git a/spaces/xxccc/gpt-academic/colorful.py b/spaces/xxccc/gpt-academic/colorful.py deleted file mode 100644 index d90972bb30a8f8fb932abbc34232e474df4d5205..0000000000000000000000000000000000000000 --- a/spaces/xxccc/gpt-academic/colorful.py +++ /dev/null @@ -1,91 +0,0 @@ -import platform -from sys import stdout - -if platform.system()=="Linux": - pass -else: - from colorama import init - init() - -# Do you like the elegance of Chinese characters? -def print红(*kw,**kargs): - print("\033[0;31m",*kw,"\033[0m",**kargs) -def print绿(*kw,**kargs): - print("\033[0;32m",*kw,"\033[0m",**kargs) -def print黄(*kw,**kargs): - print("\033[0;33m",*kw,"\033[0m",**kargs) -def print蓝(*kw,**kargs): - print("\033[0;34m",*kw,"\033[0m",**kargs) -def print紫(*kw,**kargs): - print("\033[0;35m",*kw,"\033[0m",**kargs) -def print靛(*kw,**kargs): - print("\033[0;36m",*kw,"\033[0m",**kargs) - -def print亮红(*kw,**kargs): - print("\033[1;31m",*kw,"\033[0m",**kargs) -def print亮绿(*kw,**kargs): - print("\033[1;32m",*kw,"\033[0m",**kargs) -def print亮黄(*kw,**kargs): - print("\033[1;33m",*kw,"\033[0m",**kargs) -def print亮蓝(*kw,**kargs): - print("\033[1;34m",*kw,"\033[0m",**kargs) -def print亮紫(*kw,**kargs): - print("\033[1;35m",*kw,"\033[0m",**kargs) -def print亮靛(*kw,**kargs): - print("\033[1;36m",*kw,"\033[0m",**kargs) - - - -def print亮红(*kw,**kargs): - print("\033[1;31m",*kw,"\033[0m",**kargs) -def print亮绿(*kw,**kargs): - print("\033[1;32m",*kw,"\033[0m",**kargs) -def print亮黄(*kw,**kargs): - print("\033[1;33m",*kw,"\033[0m",**kargs) -def print亮蓝(*kw,**kargs): - print("\033[1;34m",*kw,"\033[0m",**kargs) -def print亮紫(*kw,**kargs): - print("\033[1;35m",*kw,"\033[0m",**kargs) -def print亮靛(*kw,**kargs): - print("\033[1;36m",*kw,"\033[0m",**kargs) - -print_red = print红 -print_green = print绿 -print_yellow = print黄 -print_blue = print蓝 -print_purple = print紫 -print_indigo = print靛 - -print_bold_red = print亮红 -print_bold_green = print亮绿 -print_bold_yellow = print亮黄 -print_bold_blue = print亮蓝 -print_bold_purple = print亮紫 -print_bold_indigo = print亮靛 - -if not stdout.isatty(): - # redirection, avoid a fucked up log file - print红 = print - print绿 = print - print黄 = print - print蓝 = print - print紫 = print - print靛 = print - print亮红 = print - print亮绿 = print - print亮黄 = print - print亮蓝 = print - print亮紫 = print - print亮靛 = print - print_red = print - print_green = print - print_yellow = print - print_blue = print - print_purple = print - print_indigo = print - print_bold_red = print - print_bold_green = print - print_bold_yellow = print - print_bold_blue = print - print_bold_purple = print - print_bold_indigo = print \ No newline at end of file diff --git a/spaces/yangogo/bingo/src/state/index.ts b/spaces/yangogo/bingo/src/state/index.ts deleted file mode 100644 index 272106d619c69f124ea8dd0f10872ab4840152d7..0000000000000000000000000000000000000000 --- a/spaces/yangogo/bingo/src/state/index.ts +++ /dev/null @@ -1,118 +0,0 @@ -import { BingWebBot } from '@/lib/bots/bing' -import { BingConversationStyle, ChatMessageModel, BotId } from '@/lib/bots/bing/types' -import { nanoid } from '@/lib/utils' -import { atom } from 'jotai' -import { atomWithImmer } from 'jotai-immer' -import { atomWithStorage } from 'jotai/utils' -import { atomFamily } from 'jotai/utils' -import { atomWithHash, atomWithLocation } from 'jotai-location' - -const initialMessages: ChatMessageModel[] = [ - { author: 'system', text: 'conversation between user and robot', id: '1' }, - { author: 'user', text: '销量最高的 3 种宠物吸尘器有哪些优点和缺点? ', id: '2' }, - { - author: 'bot', text: ` -您好,这是必应。根据网上的搜索结果,我为您找到了以下三款销量最高的宠物吸尘器,以及它们的优点和缺点: - -- **戴森Dyson V10轻量版 Digital Slim Fluffy无线吸尘器**[^1^] [^3^]:这款吸尘器专为宠物家庭设计,拥有强大吸力和多功能吸头,能够有效清除宠物毛发和灰尘。 - - 优点:轻便易用,续航时间长,过滤系统先进,能够有效去除过敏原; - - 缺点:价格较高,噪音较大,需要定期清洁滤网。 -- **飞利浦FC6908/82(W7)无线吸尘器**[^2^] [^4^]:这是一款手持式干吸无线吸尘器,专门为宠物家庭设计。它具有75分钟的超高续航,适合大户型;除螨涡轮刷,可以深度清洁床单被罩,免受螨虫侵害;吸拖一体设计,280ml大水箱,还可以往水箱里加入清洁剂。 - - 优点:清洁性能强劲,操作方便,适用多种场景; - - 缺点:噪音较大,达到84dB(A);尘杯容量较小,只有0.6L;充电时长较长,需要5小时。 -- **必胜(Bissell) 宠物吸尘器**[^2^]:这是一款便携式手持真空吸尘器,专为清理宠物毛发而设计。它配备特殊的橡胶喷嘴和软毛刷头,可以轻松拾取宠物毛发和灰尘;几乎静音运行。 - - 优点:轻巧易用,重量只有1.36kg;电池可充电可更换; - - 缺点:续航时间不稳定,在15-30分钟之间浮动;吸力不够强劲,在地毯或沙发上可能效果不佳;没有过滤系统或过滤网。 - -希望这些信息对您有所帮助。如果您还有其他问题,请随时提问。😊 - `, id: '3' }, - { author: 'user', text: '今天的新闻', id: '4' }, - { - author: 'bot', text: `你好,这是Bing。我根据你的搜索查询“今天的新闻”为你找到了以下信息: - - # 中国新闻 - - 《求是》杂志发表习近平总书记重要文章《深化党和国家机构改革 推进国家治理体系和治理能力现代化》[^1^] - - 梦之队第5金! 全红婵陈芋汐女双10米台夺冠[^1^] - - 中央气象台7月16日18时发布台风橙色预警[^1^] - - 贵州石阡:暑期旅游带动乡村振兴[^1^] - - 激活大科学装置的“人才红利”[^1^] - - 聚才用才留才 让希望的田野成为智慧的田野[^1^] - - 科学家发现粮食系统增效可有效支撑我国碳中和[^1^] - - 成都以赛为媒提升城市美誉度[^1^] - - 香江观澜:“抢人才”成效显著 香港竞争力依旧[^1^] - - 浙江建德:新安江上享清凉[^1^] - - 定向资金持续精准滴灌 高质量发展力量不断积累[^1^] - - 企业信心恢复加大中长期投资 为稳增长奠定基础[^1^] - - 武汉渡江节开赛 千名“泳士”竞渡长江[^1^] - - 金融更加重视对实体经济支持 降低融资成本提振市场信心[^1^] - - 大运来了丨成都迎大运 全民健身动起来[^1^] - - 藏在高校里的宝藏博物馆[^1^] - - 中国汽车工业用70年赢得三个“全球第一”[^1^] - - 辽宁阜新市委常委、副市长赖化平涉嫌严重违纪违法接受审查调查[^1^] - - # 国际新闻 - - 联合国秘书长:可持续发展面临风险 各国需加强行动[^2^] - - 国际航运业加快绿色转型[^2^] - - 美企反对收紧对华芯片出口限制[^2^] - - 欧洲加大气候科技领域投资[^2^] - - 中企助力丹麦发展清洁能源[^2^] - - 中国代表呼吁国际社会共同努力防止乌克兰局势失控[^2^] - - 中国和阿尔及利亚共同构建新型国际关系典范[^2^] - - 以上信息仅供参考,具体详情请点击以下链接查看: - - [1] [中国新闻_央视网(cctv.com)](https://news.cctv.com/china/) - [2] [人民网_网上的人民日报](http://www.people.com.cn/)`, id: '5' }, - { author: 'user', text: '写一个快排', id: '6' }, - { author: 'bot', text: "你好,这是Bing。我可以帮你用python写一个快排。快速排序是一种基于分治思想的排序算法,它的基本思想是:从待排序的数组中选择一个基准元素,将数组分为两个子数组,使得左边的子数组中的元素都小于或等于基准元素,右边的子数组中的元素都大于或等于基准元素,然后对两个子数组递归地进行快速排序,最后合并结果。下面是用python实现的快速排序的代码:\n\n```python\n# 定义一个函数,用于交换数组中的两个元素\ndef swap(arr, i, j):\n temp = arr[i]\n arr[i] = arr[j]\n arr[j] = temp\n\n# 定义一个函数,用于对数组的一段区间进行划分\ndef partition(arr, low, high):\n # 选择最右边的元素作为基准元素\n pivot = arr[high]\n # 初始化一个指针,指向左边区间的最后一个位置\n i = low - 1\n # 遍历左边区间中的每个元素\n for j in range(low, high):\n # 如果当前元素小于或等于基准元素\n if arr[j] <= pivot:\n # 将指针右移一位\n i += 1\n # 将指针所指的元素与当前元素交换\n swap(arr, i, j)\n # 将基准元素与指针右边的第一个元素交换\n swap(arr, i + 1, high)\n # 返回基准元素的最终位置\n return i + 1\n\n# 定义一个函数,用于对数组进行快速排序\ndef quick_sort(arr, low, high):\n # 如果区间长度大于1\n if low < high:\n # 对区间进行划分,得到基准元素的位置\n p = partition(arr, low, high)\n # 对左边子区间进行快速排序\n quick_sort(arr, low, p - 1)\n # 对右边子区间进行快速排序\n quick_sort(arr, p + 1, high)\n\n# 测试代码\narr = [5, 3, 7, 2, 9, 1, 4, 6, 8]\nprint(\"原始数组:\", arr)\nquick_sort(arr, 0, len(arr) - 1)\nprint(\"排序后的数组:\", arr)\n```", id: '7' }, - { - author: 'bot', text: "好的,我会尝试画一只猫。\n > ![一只猫](https://tse2.mm.bing.net/th/id/OIG.jz34V0PNVkPC229h9spV?w=270&h=270&c=6&r=0&o=5&dpr=1.5&pid=ImgGn)![一只猫](https://tse1.mm.bing.net/th/id/OIG.6g7d.XLZMP_iwAByLhvo?w=270&h=270&c=6&r=0&o=5&dpr=1.5&pid=ImgGn)![一只猫](https://tse2.mm.bing.net/th/id/OIG.iAxF4ekekYn7sZw9SmU6?w=270&h=270&c=6&r=0&o=5&dpr=1.5&pid=ImgGn)![一只猫](https://tse4.mm.bing.net/th/id/OIG.qDnzeSKzUCeJcrBqc5mX?w=270&h=270&c=6&r=0&o=5&dpr=1.5&pid=ImgGn)", - id: '8' - } -] - -export const GreetMessages = [ - '谢谢你! 知道你什么时候准备好继续前进总是很有帮助的。我现在能为你回答什么问题?', - '重新开始总是很棒。问我任何问题!', - '当然,我很乐意重新开始。我现在可以为你提供哪些帮助?', - '当然,我已准备好进行新的挑战。我现在可以为你做什么?', - '很好,让我们来更改主题。你在想什么?', - '不用担心,我很高兴尝试一些新内容。我现在可以为你回答什么问题?', - '好的,我准备好了!感谢重置。我们应该了解哪些内容?', - '感谢刷新!你有新的话题吗?', - '明白了,让我们重新开始。接下来应该讨论什么?', - '下一步!我可以为你做什么?', - '好的,我已准备好新话题。我们应该一起了解哪些内容?' -] - -export const bingConversationStyleAtom = atomWithStorage('bingConversationStyle', BingConversationStyle.Creative, undefined, { unstable_getOnInit: true }) -export const voiceAtom = atomWithStorage('enableTTS', false, undefined, { unstable_getOnInit: true }) - -type Param = { botId: BotId; page: string } - -const createBotInstance = () => { - return new BingWebBot({ - cookie: ' ', - ua: ' ', - }) -} - -export const chatFamily = atomFamily( - (param: Param) => { - return atomWithImmer({ - botId: param.botId, - bot: createBotInstance(), - messages: [] as ChatMessageModel[], - generatingMessageId: '', - abortController: undefined as AbortController | undefined, - conversationId: nanoid(), - }) - }, - (a, b) => a.botId === b.botId && a.page === b.page, -) - -export const hashAtom = atomWithHash('dialog', '') - -export const locationAtom = atomWithLocation() - -export const voiceListenAtom = atom(false) diff --git a/spaces/yizhangliu/Grounded-Segment-Anything/transformers_4_35_0/modeling_flax_pytorch_utils.py b/spaces/yizhangliu/Grounded-Segment-Anything/transformers_4_35_0/modeling_flax_pytorch_utils.py deleted file mode 100644 index 79d91da49729c06cb8d40005ab498e2d0050c7aa..0000000000000000000000000000000000000000 --- a/spaces/yizhangliu/Grounded-Segment-Anything/transformers_4_35_0/modeling_flax_pytorch_utils.py +++ /dev/null @@ -1,468 +0,0 @@ -# coding=utf-8 -# Copyright 2021 The HuggingFace Inc. team. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" PyTorch - Flax general utilities.""" - - -import os -from pickle import UnpicklingError -from typing import Dict, Tuple - -import jax -import jax.numpy as jnp -import numpy as np -from flax.serialization import from_bytes -from flax.traverse_util import flatten_dict, unflatten_dict - -import transformers - -from .utils import logging - - -logger = logging.get_logger(__name__) - - -##################### -# PyTorch => Flax # -##################### - - -def load_pytorch_checkpoint_in_flax_state_dict( - flax_model, pytorch_checkpoint_path, is_sharded, allow_missing_keys=False -): - """Load pytorch checkpoints in a flax model""" - try: - import torch # noqa: F401 - except ImportError: - logger.error( - "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" - " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" - " instructions." - ) - raise - - if not is_sharded: - pt_path = os.path.abspath(pytorch_checkpoint_path) - logger.info(f"Loading PyTorch weights from {pt_path}") - - pt_state_dict = torch.load(pt_path, map_location="cpu") - logger.info(f"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values()):,} parameters.") - - flax_state_dict = convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model) - else: - # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files - flax_state_dict = convert_pytorch_sharded_state_dict_to_flax(pytorch_checkpoint_path, flax_model) - return flax_state_dict - - -def rename_key_and_reshape_tensor( - pt_tuple_key: Tuple[str], - pt_tensor: np.ndarray, - random_flax_state_dict: Dict[str, jnp.ndarray], - model_prefix: str, -) -> (Tuple[str], np.ndarray): - """Rename PT weight names to corresponding Flax weight names and reshape tensor if necessary""" - - def is_key_or_prefix_key_in_dict(key: Tuple[str]) -> bool: - """Checks if `key` of `(prefix,) + key` is in random_flax_state_dict""" - return len(set(random_flax_state_dict) & {key, (model_prefix,) + key}) > 0 - - # layer norm - renamed_pt_tuple_key = pt_tuple_key[:-1] + ("scale",) - if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(renamed_pt_tuple_key): - return renamed_pt_tuple_key, pt_tensor - - # batch norm layer mean - renamed_pt_tuple_key = pt_tuple_key[:-1] + ("mean",) - if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(pt_tuple_key): - return renamed_pt_tuple_key, pt_tensor - - # batch norm layer var - renamed_pt_tuple_key = pt_tuple_key[:-1] + ("var",) - if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(pt_tuple_key): - return renamed_pt_tuple_key, pt_tensor - - # embedding - renamed_pt_tuple_key = pt_tuple_key[:-1] + ("embedding",) - if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(renamed_pt_tuple_key): - return renamed_pt_tuple_key, pt_tensor - - # conv layer - renamed_pt_tuple_key = pt_tuple_key[:-1] + ("kernel",) - if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(pt_tuple_key): - pt_tensor = pt_tensor.transpose(2, 3, 1, 0) - return renamed_pt_tuple_key, pt_tensor - - # linear layer - renamed_pt_tuple_key = pt_tuple_key[:-1] + ("kernel",) - if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(pt_tuple_key): - pt_tensor = pt_tensor.T - return renamed_pt_tuple_key, pt_tensor - - # old PyTorch layer norm weight - renamed_pt_tuple_key = pt_tuple_key[:-1] + ("weight",) - if pt_tuple_key[-1] == "gamma": - return renamed_pt_tuple_key, pt_tensor - - # old PyTorch layer norm bias - renamed_pt_tuple_key = pt_tuple_key[:-1] + ("bias",) - if pt_tuple_key[-1] == "beta": - return renamed_pt_tuple_key, pt_tensor - - # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 - name = None - if pt_tuple_key[-3::2] == ("parametrizations", "original0"): - name = pt_tuple_key[-2] + "_g" - elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): - name = pt_tuple_key[-2] + "_v" - if name is not None: - renamed_pt_tuple_key = pt_tuple_key[:-3] + (name,) - return renamed_pt_tuple_key, pt_tensor - - return pt_tuple_key, pt_tensor - - -def convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model): - # convert pytorch tensor to numpy - # numpy currently does not support bfloat16, need to go over float32 in this case to not lose precision - try: - import torch # noqa: F401 - except ImportError: - logger.error( - "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" - " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" - " instructions." - ) - raise - - weight_dtypes = {k: v.dtype for k, v in pt_state_dict.items()} - pt_state_dict = { - k: v.numpy() if not v.dtype == torch.bfloat16 else v.float().numpy() for k, v in pt_state_dict.items() - } - - model_prefix = flax_model.base_model_prefix - - # use params dict if the model contains batch norm layers - if "params" in flax_model.params: - flax_model_params = flax_model.params["params"] - else: - flax_model_params = flax_model.params - random_flax_state_dict = flatten_dict(flax_model_params) - - # add batch_stats keys,values to dict - if "batch_stats" in flax_model.params: - flax_batch_stats = flatten_dict(flax_model.params["batch_stats"]) - random_flax_state_dict.update(flax_batch_stats) - - flax_state_dict = {} - - load_model_with_head_into_base_model = (model_prefix not in flax_model_params) and ( - model_prefix in {k.split(".")[0] for k in pt_state_dict.keys()} - ) - load_base_model_into_model_with_head = (model_prefix in flax_model_params) and ( - model_prefix not in {k.split(".")[0] for k in pt_state_dict.keys()} - ) - - # Need to change some parameters name to match Flax names - for pt_key, pt_tensor in pt_state_dict.items(): - pt_tuple_key = tuple(pt_key.split(".")) - is_bfloat_16 = weight_dtypes[pt_key] == torch.bfloat16 - - # remove base model prefix if necessary - has_base_model_prefix = pt_tuple_key[0] == model_prefix - if load_model_with_head_into_base_model and has_base_model_prefix: - pt_tuple_key = pt_tuple_key[1:] - - # Correctly rename weight parameters - flax_key, flax_tensor = rename_key_and_reshape_tensor( - pt_tuple_key, pt_tensor, random_flax_state_dict, model_prefix - ) - - # add model prefix if necessary - require_base_model_prefix = (model_prefix,) + flax_key in random_flax_state_dict - if load_base_model_into_model_with_head and require_base_model_prefix: - flax_key = (model_prefix,) + flax_key - - if flax_key in random_flax_state_dict: - if flax_tensor.shape != random_flax_state_dict[flax_key].shape: - raise ValueError( - f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " - f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." - ) - - # add batch stats if the model contains batchnorm layers - if "batch_stats" in flax_model.params: - if "mean" in flax_key[-1] or "var" in flax_key[-1]: - flax_state_dict[("batch_stats",) + flax_key] = jnp.asarray(flax_tensor) - continue - # remove num_batches_tracked key - if "num_batches_tracked" in flax_key[-1]: - flax_state_dict.pop(flax_key, None) - continue - - # also add unexpected weight so that warning is thrown - flax_state_dict[("params",) + flax_key] = ( - jnp.asarray(flax_tensor) if not is_bfloat_16 else jnp.asarray(flax_tensor, dtype=jnp.bfloat16) - ) - - else: - # also add unexpected weight so that warning is thrown - flax_state_dict[flax_key] = ( - jnp.asarray(flax_tensor) if not is_bfloat_16 else jnp.asarray(flax_tensor, dtype=jnp.bfloat16) - ) - - return unflatten_dict(flax_state_dict) - - -############################ -# Sharded Pytorch => Flax # -############################ - - -def convert_pytorch_sharded_state_dict_to_flax(shard_filenames, flax_model): - import torch - - # Load the index - flax_state_dict = {} - for shard_file in shard_filenames: - # load using msgpack utils - pt_state_dict = torch.load(shard_file) - pt_state_dict = {k: v.numpy() for k, v in pt_state_dict.items()} - - model_prefix = flax_model.base_model_prefix - - # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict - if "batch_stats" in flax_model.params: - flax_model_params = flax_model.params["params"] - - random_flax_state_dict = flatten_dict(flax_model_params) - random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"])) - else: - flax_model_params = flax_model.params - random_flax_state_dict = flatten_dict(flax_model_params) - - load_model_with_head_into_base_model = (model_prefix not in flax_model_params) and ( - model_prefix in {k.split(".")[0] for k in pt_state_dict.keys()} - ) - load_base_model_into_model_with_head = (model_prefix in flax_model_params) and ( - model_prefix not in {k.split(".")[0] for k in pt_state_dict.keys()} - ) - # Need to change some parameters name to match Flax names - for pt_key, pt_tensor in pt_state_dict.items(): - pt_tuple_key = tuple(pt_key.split(".")) - - # remove base model prefix if necessary - has_base_model_prefix = pt_tuple_key[0] == model_prefix - if load_model_with_head_into_base_model and has_base_model_prefix: - pt_tuple_key = pt_tuple_key[1:] - - # Correctly rename weight parameters - flax_key, flax_tensor = rename_key_and_reshape_tensor( - pt_tuple_key, pt_tensor, random_flax_state_dict, model_prefix - ) - # add model prefix if necessary - require_base_model_prefix = (model_prefix,) + flax_key in random_flax_state_dict - if load_base_model_into_model_with_head and require_base_model_prefix: - flax_key = (model_prefix,) + flax_key - - if flax_key in random_flax_state_dict: - if flax_tensor.shape != random_flax_state_dict[flax_key].shape: - raise ValueError( - f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " - f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." - ) - - # add batch stats if the model contains batchnorm layers - if "batch_stats" in flax_model.params: - if "mean" in flax_key[-1]: - flax_state_dict[("batch_stats",) + flax_key] = jnp.asarray(flax_tensor) - continue - if "var" in flax_key[-1]: - flax_state_dict[("batch_stats",) + flax_key] = jnp.asarray(flax_tensor) - continue - # remove num_batches_tracked key - if "num_batches_tracked" in flax_key[-1]: - flax_state_dict.pop(flax_key, None) - continue - - # also add unexpected weight so that warning is thrown - flax_state_dict[("params",) + flax_key] = jnp.asarray(flax_tensor) - - else: - # also add unexpected weight so that warning is thrown - flax_state_dict[flax_key] = jnp.asarray(flax_tensor) - return unflatten_dict(flax_state_dict) - - -##################### -# Flax => PyTorch # -##################### - - -def load_flax_checkpoint_in_pytorch_model(model, flax_checkpoint_path): - """Load flax checkpoints in a PyTorch model""" - flax_checkpoint_path = os.path.abspath(flax_checkpoint_path) - logger.info(f"Loading Flax weights from {flax_checkpoint_path}") - - # import correct flax class - flax_cls = getattr(transformers, "Flax" + model.__class__.__name__) - - # load flax weight dict - with open(flax_checkpoint_path, "rb") as state_f: - try: - flax_state_dict = from_bytes(flax_cls, state_f.read()) - except UnpicklingError: - raise EnvironmentError(f"Unable to convert {flax_checkpoint_path} to Flax deserializable object. ") - - return load_flax_weights_in_pytorch_model(model, flax_state_dict) - - -def load_flax_weights_in_pytorch_model(pt_model, flax_state): - """Load flax checkpoints in a PyTorch model""" - - try: - import torch # noqa: F401 - except ImportError: - logger.error( - "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" - " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" - " instructions." - ) - raise - - # check if we have bf16 weights - is_type_bf16 = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype == jnp.bfloat16, flax_state)).values() - if any(is_type_bf16): - # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 - # and bf16 is not fully supported in PT yet. - logger.warning( - "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " - "before loading those in PyTorch model." - ) - flax_state = jax.tree_util.tree_map( - lambda params: params.astype(np.float32) if params.dtype == jnp.bfloat16 else params, flax_state - ) - - flax_state_dict = flatten_dict(flax_state) - pt_model_dict = pt_model.state_dict() - - load_model_with_head_into_base_model = (pt_model.base_model_prefix in flax_state) and ( - pt_model.base_model_prefix not in {k.split(".")[0] for k in pt_model_dict.keys()} - ) - load_base_model_into_model_with_head = (pt_model.base_model_prefix not in flax_state) and ( - pt_model.base_model_prefix in {k.split(".")[0] for k in pt_model_dict.keys()} - ) - - # keep track of unexpected & missing keys - unexpected_keys = [] - missing_keys = set(pt_model_dict.keys()) - - for flax_key_tuple, flax_tensor in flax_state_dict.items(): - has_base_model_prefix = flax_key_tuple[0] == pt_model.base_model_prefix - require_base_model_prefix = ".".join((pt_model.base_model_prefix,) + flax_key_tuple) in pt_model_dict - - # adapt flax_key to prepare for loading from/to base model only - if load_model_with_head_into_base_model and has_base_model_prefix: - flax_key_tuple = flax_key_tuple[1:] - elif load_base_model_into_model_with_head and require_base_model_prefix: - flax_key_tuple = (pt_model.base_model_prefix,) + flax_key_tuple - - # rename flax weights to PyTorch format - if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(flax_key_tuple) not in pt_model_dict: - # conv layer - flax_key_tuple = flax_key_tuple[:-1] + ("weight",) - flax_tensor = jnp.transpose(flax_tensor, (3, 2, 0, 1)) - elif flax_key_tuple[-1] == "kernel" and ".".join(flax_key_tuple) not in pt_model_dict: - # linear layer - flax_key_tuple = flax_key_tuple[:-1] + ("weight",) - flax_tensor = flax_tensor.T - elif flax_key_tuple[-1] in ["scale", "embedding"]: - flax_key_tuple = flax_key_tuple[:-1] + ("weight",) - - # adding batch stats from flax batch norm to pt - elif "mean" in flax_key_tuple[-1]: - flax_key_tuple = flax_key_tuple[:-1] + ("running_mean",) - elif "var" in flax_key_tuple[-1]: - flax_key_tuple = flax_key_tuple[:-1] + ("running_var",) - - if "batch_stats" in flax_state: - flax_key = ".".join(flax_key_tuple[1:]) # Remove the params/batch_stats header - else: - flax_key = ".".join(flax_key_tuple) - - # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. - special_pt_names = {} - # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 - for key in pt_model_dict: - key_components = key.split(".") - name = None - if key_components[-3::2] == ["parametrizations", "original0"]: - name = key_components[-2] + "_g" - elif key_components[-3::2] == ["parametrizations", "original1"]: - name = key_components[-2] + "_v" - if name is not None: - key_components = key_components[:-3] + [name] - key_to_check = ".".join(key_components) - special_pt_names[key_to_check] = key - - if flax_key in special_pt_names: - flax_key = special_pt_names[flax_key] - - if flax_key in pt_model_dict: - if flax_tensor.shape != pt_model_dict[flax_key].shape: - raise ValueError( - f"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " - f"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." - ) - else: - # add weight to pytorch dict - flax_tensor = np.asarray(flax_tensor) if not isinstance(flax_tensor, np.ndarray) else flax_tensor - pt_model_dict[flax_key] = torch.from_numpy(flax_tensor) - # remove from missing keys - missing_keys.remove(flax_key) - else: - # weight is not expected by PyTorch model - unexpected_keys.append(flax_key) - - pt_model.load_state_dict(pt_model_dict) - - # re-transform missing_keys to list - missing_keys = list(missing_keys) - - if len(unexpected_keys) > 0: - logger.warning( - "Some weights of the Flax model were not used when initializing the PyTorch model" - f" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" - f" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" - " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" - f" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" - " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" - " FlaxBertForSequenceClassification model)." - ) - else: - logger.warning(f"All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n") - if len(missing_keys) > 0: - logger.warning( - f"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" - f" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" - " use it for predictions and inference." - ) - else: - logger.warning( - f"All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n" - "If your task is similar to the task the model of the checkpoint was trained on, " - f"you can already use {pt_model.__class__.__name__} for predictions without further training." - ) - - return pt_model diff --git a/spaces/yizhangliu/Grounded-Segment-Anything/transformers_4_35_0/models/mgp_str/processing_mgp_str.py b/spaces/yizhangliu/Grounded-Segment-Anything/transformers_4_35_0/models/mgp_str/processing_mgp_str.py deleted file mode 100644 index 6e18e2dd4855eb877698fea51926a7eab2e10e7f..0000000000000000000000000000000000000000 --- a/spaces/yizhangliu/Grounded-Segment-Anything/transformers_4_35_0/models/mgp_str/processing_mgp_str.py +++ /dev/null @@ -1,229 +0,0 @@ -# coding=utf-8 -# Copyright 2023 The HuggingFace Inc. team. All rights reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -"""Processor class for MGP-STR.""" - -import warnings - -from transformers import AutoTokenizer -from transformers.utils import is_torch_available -from transformers.utils.generic import ExplicitEnum - -from ...processing_utils import ProcessorMixin - - -if is_torch_available(): - import torch - - -class DecodeType(ExplicitEnum): - CHARACTER = "char" - BPE = "bpe" - WORDPIECE = "wp" - - -SUPPORTED_ANNOTATION_FORMATS = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) - - -class MgpstrProcessor(ProcessorMixin): - r""" - Constructs a MGP-STR processor which wraps an image processor and MGP-STR tokenizers into a single - - [`MgpstrProcessor`] offers all the functionalities of `ViTImageProcessor`] and [`MgpstrTokenizer`]. See the - [`~MgpstrProcessor.__call__`] and [`~MgpstrProcessor.batch_decode`] for more information. - - Args: - image_processor (`ViTImageProcessor`, *optional*): - An instance of `ViTImageProcessor`. The image processor is a required input. - tokenizer ([`MgpstrTokenizer`], *optional*): - The tokenizer is a required input. - """ - attributes = ["image_processor", "char_tokenizer"] - image_processor_class = "ViTImageProcessor" - char_tokenizer_class = "MgpstrTokenizer" - - def __init__(self, image_processor=None, tokenizer=None, **kwargs): - feature_extractor = None - if "feature_extractor" in kwargs: - warnings.warn( - "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" - " instead.", - FutureWarning, - ) - feature_extractor = kwargs.pop("feature_extractor") - - image_processor = image_processor if image_processor is not None else feature_extractor - if image_processor is None: - raise ValueError("You need to specify an `image_processor`.") - if tokenizer is None: - raise ValueError("You need to specify a `tokenizer`.") - - self.char_tokenizer = tokenizer - self.bpe_tokenizer = AutoTokenizer.from_pretrained("gpt2") - self.wp_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") - - super().__init__(image_processor, tokenizer) - - def __call__(self, text=None, images=None, return_tensors=None, **kwargs): - """ - When used in normal mode, this method forwards all its arguments to ViTImageProcessor's - [`~ViTImageProcessor.__call__`] and returns its output. This method also forwards the `text` and `kwargs` - arguments to MgpstrTokenizer's [`~MgpstrTokenizer.__call__`] if `text` is not `None` to encode the text. Please - refer to the doctsring of the above methods for more information. - """ - if images is None and text is None: - raise ValueError("You need to specify either an `images` or `text` input to process.") - - if images is not None: - inputs = self.image_processor(images, return_tensors=return_tensors, **kwargs) - if text is not None: - encodings = self.char_tokenizer(text, return_tensors=return_tensors, **kwargs) - - if text is None: - return inputs - elif images is None: - return encodings - else: - inputs["labels"] = encodings["input_ids"] - return inputs - - def batch_decode(self, sequences): - """ - Convert a list of lists of token ids into a list of strings by calling decode. - - Args: - sequences (`torch.Tensor`): - List of tokenized input ids. - - Returns: - `Dict[str, any]`: Dictionary of all the outputs of the decoded results. - generated_text (`List[str]`): The final results after fusion of char, bpe, and wp. scores - (`List[float]`): The final scores after fusion of char, bpe, and wp. char_preds (`List[str]`): The list - of character decoded sentences. bpe_preds (`List[str]`): The list of bpe decoded sentences. wp_preds - (`List[str]`): The list of wp decoded sentences. - - This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please - refer to the docstring of this method for more information. - """ - char_preds, bpe_preds, wp_preds = sequences - batch_size = char_preds.size(0) - - char_strs, char_scores = self._decode_helper(char_preds, "char") - bpe_strs, bpe_scores = self._decode_helper(bpe_preds, "bpe") - wp_strs, wp_scores = self._decode_helper(wp_preds, "wp") - - final_strs = [] - final_scores = [] - for i in range(batch_size): - scores = [char_scores[i], bpe_scores[i], wp_scores[i]] - strs = [char_strs[i], bpe_strs[i], wp_strs[i]] - max_score_index = scores.index(max(scores)) - final_strs.append(strs[max_score_index]) - final_scores.append(scores[max_score_index]) - - out = {} - out["generated_text"] = final_strs - out["scores"] = final_scores - out["char_preds"] = char_strs - out["bpe_preds"] = bpe_strs - out["wp_preds"] = wp_strs - return out - - def _decode_helper(self, pred_logits, format): - """ - Convert a list of lists of bpe token ids into a list of strings by calling bpe tokenizer. - - Args: - pred_logits (`torch.Tensor`): - List of model prediction logits. - format (`Union[DecoderType, str]`): - Type of model prediction. Must be one of ['char', 'bpe', 'wp']. - Returns: - `tuple`: - dec_strs(`str`): The decode strings of model prediction. conf_scores(`List[float]`): The confidence - score of model prediction. - """ - if format == DecodeType.CHARACTER: - decoder = self.char_decode - eos_token = 1 - eos_str = "[s]" - elif format == DecodeType.BPE: - decoder = self.bpe_decode - eos_token = 2 - eos_str = "#" - elif format == DecodeType.WORDPIECE: - decoder = self.wp_decode - eos_token = 102 - eos_str = "[SEP]" - else: - raise ValueError(f"Format {format} is not supported.") - - dec_strs, conf_scores = [], [] - batch_size = pred_logits.size(0) - batch_max_length = pred_logits.size(1) - _, preds_index = pred_logits.topk(1, dim=-1, largest=True, sorted=True) - preds_index = preds_index.view(-1, batch_max_length)[:, 1:] - preds_str = decoder(preds_index) - preds_max_prob, _ = torch.nn.functional.softmax(pred_logits, dim=2).max(dim=2) - preds_max_prob = preds_max_prob[:, 1:] - - for index in range(batch_size): - pred_eos = preds_str[index].find(eos_str) - pred = preds_str[index][:pred_eos] - pred_index = preds_index[index].cpu().tolist() - pred_eos_index = pred_index.index(eos_token) if eos_token in pred_index else -1 - pred_max_prob = preds_max_prob[index][: pred_eos_index + 1] - confidence_score = pred_max_prob.cumprod(dim=0)[-1] if pred_max_prob.nelement() != 0 else 0.0 - dec_strs.append(pred) - conf_scores.append(confidence_score) - - return dec_strs, conf_scores - - def char_decode(self, sequences): - """ - Convert a list of lists of char token ids into a list of strings by calling char tokenizer. - - Args: - sequences (`torch.Tensor`): - List of tokenized input ids. - Returns: - `List[str]`: The list of char decoded sentences. - """ - decode_strs = [seq.replace(" ", "") for seq in self.char_tokenizer.batch_decode(sequences)] - return decode_strs - - def bpe_decode(self, sequences): - """ - Convert a list of lists of bpe token ids into a list of strings by calling bpe tokenizer. - - Args: - sequences (`torch.Tensor`): - List of tokenized input ids. - Returns: - `List[str]`: The list of bpe decoded sentences. - """ - return self.bpe_tokenizer.batch_decode(sequences) - - def wp_decode(self, sequences): - """ - Convert a list of lists of word piece token ids into a list of strings by calling word piece tokenizer. - - Args: - sequences (`torch.Tensor`): - List of tokenized input ids. - Returns: - `List[str]`: The list of wp decoded sentences. - """ - decode_strs = [seq.replace(" ", "") for seq in self.wp_tokenizer.batch_decode(sequences)] - return decode_strs diff --git a/spaces/yizhangliu/Grounded-Segment-Anything/transformers_4_35_0/models/owlvit/__init__.py b/spaces/yizhangliu/Grounded-Segment-Anything/transformers_4_35_0/models/owlvit/__init__.py deleted file mode 100644 index 599508e0e5cae78f9ef0b41d57caf0a8aa461a6e..0000000000000000000000000000000000000000 --- a/spaces/yizhangliu/Grounded-Segment-Anything/transformers_4_35_0/models/owlvit/__init__.py +++ /dev/null @@ -1,100 +0,0 @@ -# Copyright 2022 The HuggingFace Team. All rights reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -from typing import TYPE_CHECKING - -from ...utils import ( - OptionalDependencyNotAvailable, - _LazyModule, - is_flax_available, - is_tf_available, - is_tokenizers_available, - is_torch_available, - is_vision_available, -) - - -_import_structure = { - "configuration_owlvit": [ - "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", - "OwlViTConfig", - "OwlViTOnnxConfig", - "OwlViTTextConfig", - "OwlViTVisionConfig", - ], - "processing_owlvit": ["OwlViTProcessor"], -} - - -try: - if not is_vision_available(): - raise OptionalDependencyNotAvailable() -except OptionalDependencyNotAvailable: - pass -else: - _import_structure["feature_extraction_owlvit"] = ["OwlViTFeatureExtractor"] - _import_structure["image_processing_owlvit"] = ["OwlViTImageProcessor"] - -try: - if not is_torch_available(): - raise OptionalDependencyNotAvailable() -except OptionalDependencyNotAvailable: - pass -else: - _import_structure["modeling_owlvit"] = [ - "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST", - "OwlViTModel", - "OwlViTPreTrainedModel", - "OwlViTTextModel", - "OwlViTVisionModel", - "OwlViTForObjectDetection", - ] - -if TYPE_CHECKING: - from .configuration_owlvit import ( - OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, - OwlViTConfig, - OwlViTOnnxConfig, - OwlViTTextConfig, - OwlViTVisionConfig, - ) - from .processing_owlvit import OwlViTProcessor - - try: - if not is_vision_available(): - raise OptionalDependencyNotAvailable() - except OptionalDependencyNotAvailable: - pass - else: - from .feature_extraction_owlvit import OwlViTFeatureExtractor - from .image_processing_owlvit import OwlViTImageProcessor - - try: - if not is_torch_available(): - raise OptionalDependencyNotAvailable() - except OptionalDependencyNotAvailable: - pass - else: - from .modeling_owlvit import ( - OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, - OwlViTForObjectDetection, - OwlViTModel, - OwlViTPreTrainedModel, - OwlViTTextModel, - OwlViTVisionModel, - ) - -else: - import sys - - sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/spaces/yizhangliu/Grounded-Segment-Anything/transformers_4_35_0/models/rag/modeling_tf_rag.py b/spaces/yizhangliu/Grounded-Segment-Anything/transformers_4_35_0/models/rag/modeling_tf_rag.py deleted file mode 100644 index a58bdb6e7538343b9e95d11788b3e14a7e9a66e8..0000000000000000000000000000000000000000 --- a/spaces/yizhangliu/Grounded-Segment-Anything/transformers_4_35_0/models/rag/modeling_tf_rag.py +++ /dev/null @@ -1,1744 +0,0 @@ -# coding=utf-8 -# Copyright 2020, The RAG Authors and The HuggingFace Inc. team. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -"""TFRAG model implementation.""" - - -from __future__ import annotations - -import copy -from dataclasses import dataclass -from typing import List, Optional, Tuple, Union - -import numpy as np -import tensorflow as tf - -from ...configuration_utils import PretrainedConfig -from ...generation import TFLogitsProcessorList -from ...modeling_tf_utils import ( - TFCausalLanguageModelingLoss, - TFModelInputType, - TFPreTrainedModel, - shape_list, - unpack_inputs, -) -from ...utils import ModelOutput, add_start_docstrings_to_model_forward, logging, replace_return_docstrings -from .configuration_rag import RagConfig -from .retrieval_rag import RagRetriever - - -logger = logging.get_logger(__name__) - -_CONFIG_FOR_DOC = "RagConfig" - - -@dataclass -class TFRetrievAugLMMarginOutput(ModelOutput): - """ - Base class for retriever augmented marginalized models outputs. - - Args: - loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): - Language modeling loss. - logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): - Prediction scores of the language modeling head. The score is possibly marginalized over all documents for - each vocabulary token. - past_key_values (`List[tf.Tensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): - List of `tf.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads, - sequence_length, embed_size_per_head)`). - - Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used - (see `past_key_values` input) to speed up sequential decoding. - doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`): - Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and - `question_encoder_last_hidden_state`. - retrieved_doc_embeds (`tf.Tensor` of shape `(batch_size, config.n_docs, hidden_size)`, *optional*, returned when *output_retrieved=True*): - Embedded documents retrieved by the retriever. Is used with `question_encoder_last_hidden_state` to compute - the `doc_scores`. - retrieved_doc_ids (`tf.Tensor` (int32) of shape `(batch_size, config.n_docs)`, *optional*, returned when *output_retrieved=True*): - The indexes of the embedded documents retrieved by the retriever. - context_input_ids (`tf.Tensor`(int32) of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): - Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever. - context_attention_mask (`tf.Tensor` (int32) of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): - Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the - retriever. - question_encoder_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): - Sequence of hidden states at the output of the last layer of the question encoder pooled output of the - model. - question_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): - Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape - `(batch_size, sequence_length, hidden_size)`. - - Hidden states of the question encoder at the output of each layer plus the initial embedding outputs. - question_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): - Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, - sequence_length)`. - - Attentions weights of the question encoder, after the attention softmax, used to compute the weighted - average in the self-attention heads. - generator_enc_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): - Sequence of hidden-states at the output of the last layer of the generator encoder of the model. - generator_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): - Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape - `(batch_size, sequence_length, hidden_size)`. - - Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs. - generator_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): - Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, - sequence_length)`. - - Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted - average in the self-attention heads. - generator_dec_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): - Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape - `(batch_size, sequence_length, hidden_size)`. - - Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs. - generator_dec_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): - Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, - sequence_length)`. - - Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted - average in the self-attention heads. - """ - - loss: tf.Tensor | None = None - logits: tf.Tensor = None - past_key_values: List[tf.Tensor] | None = None - doc_scores: tf.Tensor | None = None - retrieved_doc_embeds: tf.Tensor | None = None - retrieved_doc_ids: tf.Tensor | None = None - context_input_ids: tf.Tensor | None = None - context_attention_mask: tf.Tensor | None = None - question_encoder_last_hidden_state: tf.Tensor | None = None - question_enc_hidden_states: Tuple[tf.Tensor] | None = None - question_enc_attentions: Tuple[tf.Tensor] | None = None - generator_enc_last_hidden_state: tf.Tensor | None = None - generator_enc_hidden_states: Tuple[tf.Tensor] | None = None - generator_enc_attentions: Tuple[tf.Tensor] | None = None - generator_dec_hidden_states: Tuple[tf.Tensor] | None = None - generator_dec_attentions: Tuple[tf.Tensor] | None = None - - -@dataclass -class TFRetrievAugLMOutput(ModelOutput): - """ - Args: - logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): - Prediction scores of the language modeling head. The score is possibly marginalized over all documents for - each vocabulary token. - past_key_values (`List[tf.Tensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): - List of `tf.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads, - sequence_length, embed_size_per_head)`). - - Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used - (see `past_key_values` input) to speed up sequential decoding. - doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`): - Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and - `question_encoder_last_hidden_state`. - retrieved_doc_embeds (`tf.Tensor` of shape `(batch_size, config.n_docs, hidden_size)`, *optional*, returned when *output_retrieved=True*): - Embedded documents retrieved by the retriever. Is used with `question_encoder_last_hidden_state` to compute - the `doc_scores`. - retrieved_doc_ids (`tf.Tensor` of shape `(batch_size, config.n_docs)`, *optional*, returned when *output_retrieved=True*): - The indexes of the embedded documents retrieved by the retriever. - context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): - Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever. - context_attention_mask (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): - Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the - retriever. - question_encoder_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): - Sequence of hidden states at the output of the last layer of the question encoder pooled output of the - model. - question_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): - Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape - `(batch_size, sequence_length, hidden_size)`. - - Hidden states of the question encoder at the output of each layer plus the initial embedding outputs. - question_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): - Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, - sequence_length)`. - - Attentions weights of the question encoder, after the attention softmax, used to compute the weighted - average in the self-attention heads. - generator_enc_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): - Sequence of hidden-states at the output of the last layer of the generator encoder of the model. - generator_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): - Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape - `(batch_size, sequence_length, hidden_size)`. - - Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs. - generator_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): - Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, - sequence_length)`. - - Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted - average in the self-attention heads. - generator_dec_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): - Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape - `(batch_size, sequence_length, hidden_size)`. - - Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs. - generator_dec_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): - Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, - sequence_length)`. - - Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted - average in the self-attention heads. - """ - - logits: tf.Tensor = None - past_key_values: List[tf.Tensor] | None = None - doc_scores: tf.Tensor | None = None - retrieved_doc_embeds: tf.Tensor | None = None - retrieved_doc_ids: tf.Tensor | None = None - context_input_ids: tf.Tensor | None = None - context_attention_mask: tf.Tensor | None = None - question_encoder_last_hidden_state: tf.Tensor | None = None - question_enc_hidden_states: Tuple[tf.Tensor] | None = None - question_enc_attentions: Tuple[tf.Tensor] | None = None - generator_enc_last_hidden_state: tf.Tensor | None = None - generator_enc_hidden_states: Tuple[tf.Tensor] | None = None - generator_enc_attentions: Tuple[tf.Tensor] | None = None - generator_dec_hidden_states: Tuple[tf.Tensor] | None = None - generator_dec_attentions: Tuple[tf.Tensor] | None = None - - -class TFRagPreTrainedModel(TFPreTrainedModel): - r""" - RAG models were released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP - Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandra Piktus et al. - - RAG is a retriever augmented model and encapsulate three components: a question encoder, a dataset retriever and a - generator, the encoder and generator are trainable while the retriever is just an indexed dataset. - - """ - config_class = RagConfig - base_model_prefix = "rag" - _keys_to_ignore_on_load_missing = [r"position_ids"] - - @classmethod - def from_pretrained_question_encoder_generator( - cls, - question_encoder_pretrained_model_name_or_path: str = None, - generator_pretrained_model_name_or_path: str = None, - retriever: RagRetriever = None, - *model_args, - **kwargs, - ) -> TFPreTrainedModel: - r""" - Instantiates an question encoder and a generator from one or two base classes of the library from pretrained - model checkpoints. - - Params: - question_encoder_pretrained_model_name_or_path (`str`, *optional*): - Information necessary to initiate the question encoder. Can be either: - - - A string with the *shortcut name* of a pretrained model to load from cache or download, e.g., - `bert-base-uncased`. - - A string with the *identifier name* of a pretrained model that was user-uploaded to our S3, e.g., - `dbmdz/bert-base-german-cased`. - - A path to a *directory* containing model weights saved using - [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - - A path or url to a *pytorch index checkpoint file* (e.g, `./pt_model/`). In this case, - `question_encoder_from_pt` should be set to `True`. - - generator_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`): - Information necessary to initiate the generator. Can be either: - - - A string with the *shortcut name* of a pretrained model to load from cache or download, e.g., - `t5-small`. - - A string with the *identifier name* of a pretrained model that was user-uploaded to our S3, e.g., - `facebook/bart-base`. - - A path to a *directory* containing model weights saved using - [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - - A path or url to a *pytorch checkpoint file* (e.g, `./pt_model/`). In this case, - `generator_from_pt` should be set to `True`. - - model_args (remaining positional arguments, *optional*): - All remaining positional arguments will be passed to the underlying model's `__init__` method. - retriever ([`RagRetriever`], *optional*): - The retriever to use. - kwargs (remaining dictionary of keyword arguments, *optional*): - Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., - `output_attentions=True`). - - - To update the question_encoder configuration, use the prefix *question_encoder_* for each - configuration parameter. - - To update the generator configuration, use the prefix *generator_* for each configuration parameter. - - To update the parent model configuration, do not use a prefix for each configuration parameter. - - Behaves differently depending on whether a `config` is provided or automatically loaded. - - Example: - - ```python - >>> from transformers import RagRetriever, TFRagModel - - >>> # initialize a RAG from two pretrained models. - >>> model = TFRagModel.from_pretrained_question_encoder_generator( - ... "facebook/dpr-question_encoder-single-nq-base", "t5-small" - ... ) - >>> # alternatively, initialize from pytorch pretrained models can also be done - >>> model = TFRagModel.from_pretrained_question_encoder_generator( - ... "facebook/dpr-question_encoder-single-nq-base", - ... "facebook/bart-base", - ... generator_from_pt=True, - ... question_encoder_from_pt=True, - ... ) - - >>> # saving model after fine-tuning - >>> model.save_pretrained("./rag") - - >>> # load retriever - >>> retriever = RagRetriever.from_pretrained( - ... "facebook/rag-token-base", index_name="exact", use_dummy_dataset=True - ... ) - >>> # load fine-tuned model with retriever - >>> model = TFRagModel.from_pretrained("./rag", retriever=retriever) - ```""" - - kwargs_question_encoder = { - argument[len("question_encoder_") :]: value - for argument, value in kwargs.items() - if argument.startswith("question_encoder_") - } - - kwargs_generator = { - argument[len("generator_") :]: value - for argument, value in kwargs.items() - if argument.startswith("generator_") - } - - # remove question_encoder, generator kwargs from kwargs - for key in kwargs_question_encoder.keys(): - del kwargs["question_encoder_" + key] - for key in kwargs_generator.keys(): - del kwargs["generator_" + key] - - # Load and initialize the question_encoder and generator - # The distinction between question_encoder and generator at the model level is made - # by the value of the flag `is_generator` that we need to set correctly. - question_encoder = kwargs_question_encoder.pop("model", None) - if question_encoder is None: - assert question_encoder_pretrained_model_name_or_path is not None, ( - "If `model` is not defined as an argument, a `question_encoder_pretrained_model_name_or_path` has to" - " be defined" - ) - - from ..auto.modeling_tf_auto import TFAutoModel - - if "config" not in kwargs_question_encoder: - from ..auto.configuration_auto import AutoConfig - - question_encoder_config = AutoConfig.from_pretrained(question_encoder_pretrained_model_name_or_path) - kwargs_question_encoder["config"] = question_encoder_config - - question_encoder = TFAutoModel.from_pretrained( - question_encoder_pretrained_model_name_or_path, - name="question_encoder", - load_weight_prefix=cls.load_weight_prefix, - *model_args, - **kwargs_question_encoder, - ) - - generator = kwargs_generator.pop("generator", None) - if generator is None: - assert generator_pretrained_model_name_or_path is not None, ( - "If `generator_model` is not defined as an argument, a `generator_pretrained_model_name_or_path` has" - " to be defined" - ) - - from ..auto.modeling_tf_auto import TFAutoModelForSeq2SeqLM - - if "config" not in kwargs_generator: - from ..auto.configuration_auto import AutoConfig - - generator_config = AutoConfig.from_pretrained(generator_pretrained_model_name_or_path) - kwargs_generator["config"] = generator_config - - generator = TFAutoModelForSeq2SeqLM.from_pretrained( - generator_pretrained_model_name_or_path, - name="generator", - load_weight_prefix=cls.load_weight_prefix, - **kwargs_generator, - ) - - # instantiate config with corresponding kwargs - config = kwargs.get("config", None) - if config is None: - config = RagConfig.from_question_encoder_generator_configs( - question_encoder.config, generator.config, **kwargs - ) - - return cls(question_encoder=question_encoder, generator=generator, config=config, retriever=retriever) - - -RAG_START_DOCSTRING = r""" - - RAG is a sequence-to-sequence model which encapsulates two core components: a question encoder and a generator. - During a forward pass, we encode the input with the question encoder and pass it to the retriever to extract - relevant context documents. The documents are then prepended to the input. Such contextualized inputs is passed to - the generator. - - The question encoder can be any *autoencoding* model, preferably [`TFDPRQuestionEncoder`], and the generator can be - any *seq2seq* model, preferably [`TFBartForConditionalGeneration`]. - - The model can be initialized with a [`RagRetriever`] for end-to-end generation or used in combination with the - outputs of a retriever in multiple steps---see examples for more details. The model is compatible any - *autoencoding* model as the `question_encoder` and any *seq2seq* model with language model head as the `generator`. - It has been tested with [`TFDPRQuestionEncoder`] as the `question_encoder` and [`TFBartForConditionalGeneration`] - as the `generator`. - - This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the - library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads - etc.) - - This model is also a Tensorflow [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) - subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to - general usage and behavior. - - The model is in a developing state as it is now fully supports in eager-mode only, and may not be exported in - SavedModel format. - - Args: - config ([`RagConfig`]): - Model configuration class with all the parameters of the model. Initializing with a config file does not - load the weights associated with the model, only the configuration. Check out the - [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. - question_encoder ([`TFPreTrainedModel`]): - An encoder model compatible with the faiss index encapsulated by the `retriever`. - generator ([`TFPreTrainedModel`]): - A seq2seq model used as the generator in the RAG architecture. - retriever ([`RagRetriever`]): - A retriever class encapsulating a faiss index queried to obtain context documents for current inputs. -""" - - -RAG_FORWARD_INPUTS_DOCSTRING = r""" - Args: - input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): - Indices of input sequence tokens in the vocabulary. [`RagConfig`], used to initialize the model, specifies - which generator to use, it also specifies a compatible generator tokenizer. Use that tokenizer class to - obtain the indices. - attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): - Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - - - 1 for tokens that are **not masked**, - - 0 for tokens that are **masked**. - - [What are attention masks?](../glossary#attention-mask) - encoder_outputs (`tuple(tuple(tf.Tensor)`, *optional*) - Tuple consists of (`generator_enc_last_hidden_state`, *optional*: `generator_enc_hidden_states`, - *optional*: `generator_enc_attentions`). `generator_enc_last_hidden_state` of shape `(batch_size, n_docs * - sequence_length, hidden_size)` is a sequence of hidden-states at the output of the last layer of the - generator's encoder. - - Used by the ([`TFRagModel`]) model during decoding. - decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): - Provide for generation tasks. `None` by default, construct as per instructions for the generator model - you're using with your RAG instance. - decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): - Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also - be used by default. - past_key_values (`tuple(tuple(tf.Tensor))`): - Tuple consists of two elements: `encoder_outputs` of the RAG model (see `encoder_outputs`) and - `past_key_values` of the underlying generator. Can be used to speed up decoding. `past_key_values` are used - in the ([`RagTokenForGeneration`]) model during decoding. - doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`): - Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and - `question_encoder_last_hidden_state`. If the model has is not initialized with a `retriever` `doc_scores` - has to be provided to the forward pass. `doc_scores` can be computed via - `question_encoder_last_hidden_state` and `retrieved_doc_embeds`, see examples for more information. - context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): - Input IDs post-processed from the retrieved documents and the question encoder `input_ids` by the - retriever. - - If the model has is not initialized with a `retriever` ``context_input_ids` has to be provided to the - forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. context_attention_mask - (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when - *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question - encoder `input_ids` by the retriever. - - If the model has is not initialized with a `retriever` `context_attention_mask` has to be provided to the - forward pass. `context_attention_mask` are returned by [`~RagRetriever.__call__`]. - use_cache (`bool`, *optional*, defaults to `True`): - If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see - `past_key_values`). - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned - tensors for more detail. - output_hidden_states (`bool`, *optional*): - Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for - more detail. - output_retrieved(`bool`, *optional*): - Whether or not to return the `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and - `context_attention_mask`. See returned tensors for more detail. - return_dict (`bool`, *optional*): - Whether or not to return a [`TFRetrievAugLMOutput`] instead of a plain tuple. - n_docs (`int`, *optional*, defaults to `config.n_docs``) - Number of documents to retrieve and/or number of documents for which to generate an answer. -""" - - -@add_start_docstrings_to_model_forward(RAG_START_DOCSTRING) -class TFRagModel(TFRagPreTrainedModel): - load_weight_prefix = "tf_rag_model_1" - - def __init__( - self, - config: Optional[PretrainedConfig] = None, - question_encoder: Optional[TFPreTrainedModel] = None, - generator: Optional[TFPreTrainedModel] = None, - retriever: Optional[RagRetriever] = None, - load_weight_prefix: Optional[str] = None, - **kwargs, - ): - assert config is not None or ( - question_encoder is not None and generator is not None - ), "Either a configuration or an question_encoder and a generator has to be provided." - - if config is None: - config = RagConfig.from_question_encoder_generator_configs( - question_encoder.config, generator.config, **kwargs - ) - else: - assert isinstance(config, self.config_class), f"config: {config} has to be of type {self.config_class}" - super().__init__(config, **kwargs) - - if question_encoder is None: - from ..auto.modeling_tf_auto import TFAutoModel - - question_encoder = TFAutoModel.from_config(config.question_encoder, name="question_encoder") - - if generator is None: - from ..auto.modeling_tf_auto import TFAutoModelForSeq2SeqLM - - load_weight_prefix = load_weight_prefix if load_weight_prefix is not None else self.load_weight_prefix - generator = TFAutoModelForSeq2SeqLM.from_config( - config.generator, name="generator", load_weight_prefix=load_weight_prefix + "/generator" - ) - - self.retriever = retriever - if self.retriever is not None: - assert isinstance( - retriever, RagRetriever - ), f"`self.retriever` is of type {type(self.retriever)}, but should be of type `RagRetriever`" - self.retriever = retriever - - self.question_encoder = question_encoder - self.generator = generator - - def set_retriever(self, retriever: RagRetriever): - self.retriever = retriever - - @unpack_inputs - @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING) - @replace_return_docstrings(output_type=TFRetrievAugLMOutput, config_class=_CONFIG_FOR_DOC) - def call( - self, - input_ids: TFModelInputType | None = None, - attention_mask: np.ndarray | tf.Tensor | None = None, - encoder_outputs: np.ndarray | tf.Tensor | None = None, - decoder_input_ids: np.ndarray | tf.Tensor | None = None, - decoder_attention_mask: np.ndarray | tf.Tensor | None = None, - past_key_values: Tuple[Tuple[Union[np.ndarray, tf.Tensor]]] | None = None, - doc_scores: np.ndarray | tf.Tensor | None = None, - context_input_ids: np.ndarray | tf.Tensor | None = None, - context_attention_mask: np.ndarray | tf.Tensor | None = None, - use_cache: bool | None = None, - output_attentions: bool | None = None, - output_hidden_states: bool | None = None, - output_retrieved: bool | None = None, - n_docs: int | None = None, - return_dict: bool | None = None, - training: bool = False, - **kwargs, - ) -> TFRetrievAugLMOutput: - r""" - Returns: - - Example: - - ```python - >>> from transformers import AutoTokenizer, RagRetriever, TFRagModel - >>> import torch - - >>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-base") - >>> retriever = RagRetriever.from_pretrained( - ... "facebook/rag-token-base", index_name="exact", use_dummy_dataset=True - ... ) - >>> # initialize with RagRetriever to do everything in one forward call - >>> model = TFRagModel.from_pretrained("facebook/rag-token-base", retriever=retriever, from_pt=True) - - >>> input_dict = tokenizer.prepare_seq2seq_batch( - ... "How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="tf" - ... ) - >>> input_ids = input_dict["input_ids"] - >>> outputs = model(input_ids) - ```""" - assert ( - "decoder_cached_states" not in kwargs - ), "Please use past_key_values to cache intermediate outputs" # from modeling_tf_bart.py - - # aliasing to minimize code changing - n_docs = n_docs if n_docs is not None else self.config.n_docs - - # whether retriever has to be used - has_to_retrieve = ( - self.retriever is not None - and (context_input_ids is None or context_attention_mask is None or doc_scores is None) - and encoder_outputs is None - ) - - # encoder_outputs are pre-computed during RAG-token generation - if encoder_outputs is None: - if has_to_retrieve: - question_enc_outputs = self.question_encoder( - input_ids, attention_mask=attention_mask, return_dict=True, training=training - ) - # see https://github.com/huggingface/transformers/blob/main/src/transformers/models/dpr/modeling_tf_dpr.py#L91 - question_encoder_last_hidden_state = question_enc_outputs[ - 0 - ] # hidden states of question encoder => pooler_output - - retriever_outputs = self.retriever( - input_ids, - question_encoder_last_hidden_state.numpy(), - prefix=self.generator.config.prefix, - n_docs=n_docs, - return_tensors="tf", - ) - context_input_ids, context_attention_mask, retrieved_doc_embeds, retrieved_doc_ids = ( - retriever_outputs["context_input_ids"], - retriever_outputs["context_attention_mask"], - retriever_outputs["retrieved_doc_embeds"], - retriever_outputs["doc_ids"], - ) - - context_input_ids = tf.cast(context_input_ids, tf.int32) - context_attention_mask = tf.cast(context_attention_mask, tf.int32) - retrieved_doc_embeds = tf.cast(retrieved_doc_embeds, tf.float32) - retrieved_doc_ids = tf.cast(retrieved_doc_ids, tf.int32) - - # compute doc_scores - doc_scores = tf.squeeze( - tf.matmul( - tf.expand_dims(question_encoder_last_hidden_state, axis=1), - retrieved_doc_embeds, - transpose_b=True, - ), - axis=1, - ) - - else: - assert context_input_ids is not None, ( - "Make sure that `context_input_ids` are passed, if no `retriever` is set. Alternatively, you can" - " set a retriever using the `set_retriever(...)` function." - ) - assert context_attention_mask is not None, ( - "Make sure that `context_attention_mask` are passed, if no `retriever` is set. Alternatively, you" - " can set a retriever using the `set_retriever(...)` function." - ) - assert doc_scores is not None, ( - "Make sure that `doc_scores` are passed, if no `retriever` is set. Alternatively, you can set a" - " retriever using the `set_retriever(...)` function." - ) - - assert ( - doc_scores is not None - ), "Make sure that `doc_scores` are passed when passing `encoder_outputs` to the forward function." - - assert (doc_scores.shape[1] % n_docs) == 0, ( - f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is" - f" {context_input_ids.shape[0]}." - ) - - # Decoder input without context documents - if decoder_input_ids is not None: - decoder_input_ids = tf.repeat(decoder_input_ids, n_docs, axis=0) - - if decoder_attention_mask is not None: - decoder_attention_mask = tf.repeat(decoder_attention_mask, n_docs, axis=0) - - gen_outputs = self.generator( - context_input_ids, - attention_mask=context_attention_mask, - encoder_outputs=encoder_outputs, - decoder_input_ids=decoder_input_ids, - decoder_attention_mask=decoder_attention_mask, - past_key_values=past_key_values, - use_cache=use_cache, - return_dict=True, - training=training, - ) - - if not has_to_retrieve: - question_encoder_last_hidden_state = None - question_enc_hidden_states = None - question_enc_attentions = None - retrieved_doc_embeds = None - retrieved_doc_ids = None - else: - question_enc_hidden_states = question_enc_outputs.hidden_states - question_enc_attentions = question_enc_outputs.attentions - - if not has_to_retrieve or not output_retrieved: - # don't output retrieved docs - context_input_ids = (None,) - context_attention_mask = None - retrieved_doc_embeds = None - retrieved_doc_ids = None - - return TFRetrievAugLMOutput( - logits=gen_outputs.logits, - doc_scores=doc_scores, - past_key_values=gen_outputs.past_key_values, - context_input_ids=context_input_ids, - context_attention_mask=context_attention_mask, - retrieved_doc_embeds=retrieved_doc_embeds, - retrieved_doc_ids=retrieved_doc_ids, - question_encoder_last_hidden_state=question_encoder_last_hidden_state, - question_enc_hidden_states=question_enc_hidden_states, - question_enc_attentions=question_enc_attentions, - generator_enc_last_hidden_state=gen_outputs.encoder_last_hidden_state, - generator_enc_hidden_states=gen_outputs.encoder_hidden_states, - generator_enc_attentions=gen_outputs.encoder_attentions, - generator_dec_hidden_states=gen_outputs.decoder_hidden_states, - generator_dec_attentions=gen_outputs.decoder_attentions, - ) - - -@add_start_docstrings_to_model_forward( - """ - A TF RAG-token model implementation. It performs RAG-token specific marginalization in the forward pass. - """, - RAG_START_DOCSTRING, -) -class TFRagTokenForGeneration(TFRagPreTrainedModel, TFCausalLanguageModelingLoss): - load_weight_prefix = "tf_rag_token_for_generation_1/rag" - - def __init__( - self, - config: Optional[PretrainedConfig] = None, - question_encoder: Optional[TFPreTrainedModel] = None, - generator: Optional[TFPreTrainedModel] = None, - retriever: Optional[RagRetriever] = None, - **kwargs, - ): - assert config is not None or ( - question_encoder is not None and generator is not None - ), "Either a configuration or an encoder and a generator has to be provided." - - if config is None: - config = RagConfig.from_question_encoder_generator_configs( - question_encoder.config, generator.config, **kwargs - ) - - super().__init__(config) - - # instantiate model - self.rag = TFRagModel( - config=config, - question_encoder=question_encoder, - generator=generator, - retriever=retriever, - load_weight_prefix=self.load_weight_prefix, - name="rag", - ) - - def set_retriever(self, retriever: RagRetriever): - self.rag.retriever = retriever - - # Adapted from https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_tf_bart.py - def prepare_inputs_for_generation( - self, - decoder_input_ids, - past_key_values=None, - attention_mask=None, - use_cache=None, - encoder_outputs=None, - doc_scores=None, - n_docs=None, - **kwargs, - ): - if past_key_values is not None: - # if past is defined use only last decoder_input_ids - decoder_input_ids = decoder_input_ids[:, -1:] - - return { - "input_ids": None, - "encoder_outputs": encoder_outputs, - "doc_scores": doc_scores, - "context_attention_mask": attention_mask, - "decoder_input_ids": decoder_input_ids, - "past_key_values": past_key_values, - "use_cache": use_cache, - "do_marginalize": True, - "n_docs": n_docs, - } - - @property - def retriever(self): - return self.rag.retriever - - @property - def generator(self): - return self.rag.generator - - @property - def question_encoder(self): - return self.rag.question_encoder - - @staticmethod - def _gather_beams(nested, beam_indices, batch_axis=0): - """ - RAG-specific `_gather_beams`: gathers the beam slices indexed by beam_indices into new beam array. If the - nested tensor has a shape mismatch with the beam indices, then it means it is the cache. In that case, isolates - and takes care of the extra dimension for ndocs. - """ - - def gather_fn(tensor): - is_rag_cache = tensor.shape[0] != beam_indices.shape[0] - if is_rag_cache: - n_docs = tensor.shape[0] // beam_indices.shape[0] - batch_size = beam_indices.shape[0] - # reshapes into (batch size, num beams, n_docs, ...), the cache format expected by RAG - tensor = tf.reshape(tensor, (batch_size, -1, n_docs, *tensor.shape[2:])) - - gathered_tensor = tf.gather(params=tensor, indices=beam_indices, axis=1, batch_dims=1) - - if is_rag_cache: - # reshapes back into the shape expected by beam search - gathered_tensor = tf.reshape(gathered_tensor, (batch_size * n_docs, -1, *gathered_tensor.shape[3:])) - - return gathered_tensor - - return tf.nest.map_structure(gather_fn, nested) - - def marginalize(self, seq_logits, doc_scores, n_docs=None): - n_docs = n_docs if n_docs is not None else self.config.n_docs - - # RAG-token marginalization - seq_logprobs = tf.nn.log_softmax(seq_logits, axis=-1) - seq_logprobs = tf.reshape(seq_logprobs, [seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.shape[-1]]) - doc_logprobs = tf.nn.log_softmax(doc_scores, axis=1) - doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1) - doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1) # twice - log_prob_sum = seq_logprobs + doc_logprobs - return tf.reduce_logsumexp(log_prob_sum, axis=1) - - @unpack_inputs - @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING) - @replace_return_docstrings(output_type=TFRetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC) - def call( - self, - input_ids: TFModelInputType | None = None, - attention_mask: np.ndarray | tf.Tensor | None = None, - decoder_input_ids: np.ndarray | tf.Tensor | None = None, - decoder_attention_mask: np.ndarray | tf.Tensor | None = None, - encoder_outputs: np.ndarray | tf.Tensor | None = None, - past_key_values: Tuple[Tuple[Union[np.ndarray, tf.Tensor]]] | None = None, - doc_scores: np.ndarray | tf.Tensor | None = None, - context_input_ids: np.ndarray | tf.Tensor | None = None, - context_attention_mask: np.ndarray | tf.Tensor | None = None, - use_cache: bool | None = None, - output_attentions: bool | None = None, - output_hidden_states: bool | None = None, - output_retrieved: bool | None = None, - n_docs: int | None = None, - do_marginalize: bool | None = None, - labels: np.ndarray | tf.Tensor | None = None, - reduce_loss: bool | None = None, - return_dict: bool | None = None, - training: bool = False, - **kwargs, # needs kwargs for generation - ) -> TFRetrievAugLMMarginOutput: - r""" - do_marginalize (`bool`, *optional*): - If `True`, the logits are marginalized over all documents by making use of - `torch.nn.functional.log_softmax`. - labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): - Labels for computing the cross entropy classification loss according to Rag-Token model formulation See - https://arxiv.org/pdf/2005.11401.pdf Section 2.1 for details about Rag-Token formulation. Indices should be - in `[0, ..., config.vocab_size - 1]`. - reduce_loss (`bool`, *optional*): - Only relevant if `labels` is passed. If `True`, the NLL loss is reduced using the `tf.Tensor.sum` - operation. - kwargs (`Dict[str, any]`, optional, defaults to *{}*): - Legacy dictionary, which is required so that model can use *generate()* function. - - Returns: - - Example: - - ```python - >>> import tensorflow as tf - >>> from transformers import AutoTokenizer, RagRetriever, TFRagTokenForGeneration - - >>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-nq") - >>> retriever = RagRetriever.from_pretrained( - ... "facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True - ... ) - >>> # initialize with RagRetriever to do everything in one forward call - >>> model = TFRagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever, from_pt=True) - - >>> input_dict = tokenizer.prepare_seq2seq_batch( - ... "How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="tf" - ... ) - >>> outputs = model(input_dict, output_retrieved=True) - - >>> # or use retriever separately - >>> # 1. Encode - >>> input_ids = input_dict["input_ids"] - >>> question_hidden_states = model.question_encoder(input_ids)[0] - >>> # 2. Retrieve - >>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.numpy(), return_tensors="tf") - >>> doc_scores = tf.squeeze( - ... tf.matmul( - ... tf.expand_dims(question_hidden_states, axis=1), docs_dict["retrieved_doc_embeds"], transpose_b=True - ... ), - ... axis=1, - ... ) - >>> # 3. Forward to generator - >>> outputs = model( - ... inputs=None, - ... context_input_ids=docs_dict["context_input_ids"], - ... context_attention_mask=docs_dict["context_attention_mask"], - ... doc_scores=doc_scores, - ... decoder_input_ids=input_dict["labels"], - ... ) - - >>> # or directly generate - >>> generated = model.generate( - ... context_input_ids=docs_dict["context_input_ids"], - ... context_attention_mask=docs_dict["context_attention_mask"], - ... doc_scores=doc_scores, - ... ) - >>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True) - ```""" - - assert ( - "decoder_cached_states" not in kwargs - ), "Please use past_key_values to cache intermediate outputs" # from modeling_tf_bart.py - - do_marginalize = do_marginalize if do_marginalize else self.config.do_marginalize - reduce_loss = reduce_loss if reduce_loss else self.config.reduce_loss - - if labels is not None: - if decoder_input_ids is None: - decoder_input_ids = labels - use_cache = False - - outputs = self.rag( - input_ids, - attention_mask=attention_mask, - encoder_outputs=encoder_outputs, - decoder_input_ids=decoder_input_ids, - decoder_attention_mask=decoder_attention_mask, - context_input_ids=context_input_ids, - context_attention_mask=context_attention_mask, - doc_scores=doc_scores, - past_key_values=past_key_values, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - output_retrieved=output_retrieved, - n_docs=n_docs, - training=training, - ) - - loss = None - logits = outputs.logits - if labels is not None: - assert decoder_input_ids is not None - loss = self.get_nll( - outputs.logits, - outputs.doc_scores, - labels, - reduce_loss=reduce_loss, - epsilon=self.config.label_smoothing, - n_docs=n_docs, - ) - - if do_marginalize: - logits = self.marginalize(logits, outputs.doc_scores, n_docs) - - return TFRetrievAugLMMarginOutput( - loss=loss, - logits=logits, - past_key_values=outputs.past_key_values, - doc_scores=outputs.doc_scores, - context_input_ids=outputs.context_input_ids, - context_attention_mask=outputs.context_attention_mask, - retrieved_doc_embeds=outputs.retrieved_doc_embeds, - retrieved_doc_ids=outputs.retrieved_doc_ids, - question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state, - question_enc_hidden_states=outputs.question_enc_hidden_states, - question_enc_attentions=outputs.question_enc_attentions, - generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state, - generator_enc_hidden_states=outputs.generator_enc_hidden_states, - generator_enc_attentions=outputs.generator_enc_attentions, - generator_dec_hidden_states=outputs.generator_dec_hidden_states, - generator_dec_attentions=outputs.generator_dec_attentions, - ) - - def generate( - self, - input_ids: TFModelInputType | None = None, - attention_mask: tf.Tensor | None = None, - context_input_ids=None, - context_attention_mask=None, - doc_scores=None, - n_docs=None, - generation_config=None, - logits_processor=TFLogitsProcessorList(), - **kwargs, - ): - """ - Implements TFRAG token decoding. - - Args: - input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): - The sequence used as a prompt for the generation. If `input_ids` is not passed, then - `context_input_ids` has to be provided. - attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): - Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - - - 1 for tokens that are **not masked**, - - 0 for tokens that are **masked**. - - [What are attention masks?](../glossary#attention-mask) - context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): - Input IDs post-processed from the retrieved documents and the question encoder `input_ids` by the - retriever. - - If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the - forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. - context_attention_mask (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): - Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the - retriever. - - If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the - forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. - doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`): - Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and - `question_encoder_last_hidden_state`. - - If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the - forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. - n_docs (`int`, *optional*, defaults to `config.n_docs`) - Number of documents to retrieve and/or number of documents for which to generate an answer. - generation_config (`~generation.GenerationConfig`, *optional*): - The generation configuration to be used as base parametrization for the generation call. `**kwargs` - passed to generate matching the attributes of `generation_config` will override them. If - `generation_config` is not provided, the default will be used, which had the following loading - priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model - configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s - default values, whose documentation should be checked to parameterize generation. - logits_processor (`TFLogitsProcessorList`, *optional*): - Custom logits processors that complement the default logits processors built from arguments and a - model's config. If a logit processor is passed that is already created with the arguments or a model's - config an error is thrown. - kwargs (`Dict[str, Any]`, *optional*): - Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be - forwarded to the `forward` function of the model. - - Return: - `tf.Tensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated sequences. The - second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early - due to the `eos_token_id`. - """ - # Handle `generation_config` and kwargs that might update it - if generation_config is None: - generation_config = self.generation_config - generation_config = copy.deepcopy(generation_config) - model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs - - # set default parameters - n_docs = n_docs if n_docs is not None else self.config.n_docs - - # retrieve docs - if self.retriever is not None and context_input_ids is None: - question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0] - out = self.retriever( - input_ids, - question_hidden_states.numpy().astype(np.float32), - prefix=self.generator.config.prefix, - n_docs=n_docs, - return_tensors="tf", - ) - context_input_ids, context_attention_mask, retrieved_doc_embeds = ( - out["context_input_ids"], - out["context_attention_mask"], - out["retrieved_doc_embeds"], - ) - - context_input_ids = tf.cast(context_input_ids, tf.int32) - context_attention_mask = tf.cast(context_attention_mask, tf.int32) - retrieved_doc_embeds = tf.cast(retrieved_doc_embeds, tf.float32) - - # compute doc_scores - doc_scores = tf.matmul( - tf.expand_dims(question_hidden_states, axis=1), retrieved_doc_embeds, transpose_b=True - ) - doc_scores = tf.squeeze(doc_scores, axis=1) - - assert (context_input_ids.shape[0] % n_docs) == 0, ( - f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is" - f" {context_input_ids.shape[0]}." - ) - - batch_size = context_input_ids.shape[0] // n_docs - - encoder = self.rag.generator.get_encoder() - encoder_outputs = encoder( - input_ids=context_input_ids, - attention_mask=context_attention_mask, - output_attentions=generation_config.output_attentions, - output_hidden_states=generation_config.output_hidden_states, - return_dict=True, - ) - - decoder_input_ids = tf.fill( - (batch_size * generation_config.num_beams, 1), - tf.cast(generation_config.decoder_start_token_id, tf.int32), - ) - last_hidden_state = encoder_outputs["last_hidden_state"] - - def extend_enc_output(tensor, num_beams=None): - """ - Broadcast tensor with `num_beams` replica, with correct order Input: tensor of shape (batch_size*n_docs , - d) Output: tensor of shape (batch_size*num_beams*n_docs , d) - """ - - # expand batch_size & num_beam dimensions - d_shape_list = tensor.shape[1:] - - # split n_docs dimensions - new_shape = (batch_size, 1, n_docs) + d_shape_list - tensor = tf.reshape(tensor, new_shape) - - # repeat same last hidden states over `num_beams` dimension - new_shape = (batch_size, num_beams, n_docs) + d_shape_list - tensor = tf.broadcast_to(tensor, new_shape) - - # merge `batch_size`, `num_beams`, `num_docs` dims again - new_shape = (batch_size * num_beams * n_docs,) + d_shape_list - return tf.reshape(tensor, new_shape) - - # correctly extend last_hidden_state and attention mask - context_attention_mask = extend_enc_output(context_attention_mask, num_beams=generation_config.num_beams) - encoder_outputs["last_hidden_state"] = extend_enc_output( - last_hidden_state, num_beams=generation_config.num_beams - ) - - doc_scores = tf.repeat(doc_scores, generation_config.num_beams, axis=0) - - # define start_len & additional parameters - model_kwargs["doc_scores"] = doc_scores - model_kwargs["encoder_outputs"] = encoder_outputs - model_kwargs["attention_mask"] = context_attention_mask - model_kwargs["n_docs"] = n_docs - - pre_processor = self._get_logits_processor( - generation_config=generation_config, - input_ids_seq_length=tf.shape(decoder_input_ids)[-1], - logits_processor=logits_processor, - ) - - if generation_config.num_beams == 1: - return self.greedy_search( - input_ids=decoder_input_ids, - max_length=generation_config.max_length, - pad_token_id=generation_config.pad_token_id, - eos_token_id=generation_config.eos_token_id, - logits_processor=pre_processor, - output_attentions=generation_config.output_attentions, - output_hidden_states=generation_config.output_hidden_states, - output_scores=generation_config.output_scores, - return_dict_in_generate=generation_config.return_dict_in_generate, - **model_kwargs, - ) - elif generation_config.num_beams > 1: - if generation_config.num_beams < generation_config.num_return_sequences: - raise ValueError( - "Beam search decoding cannot return more sequences than it has beams. Please set num_beams >=" - f" num_return_sequences, got {generation_config.num_beams} and" - f" {generation_config.num_return_sequences} (respectivelly)" - ) - - def unflatten_beam_dim(tensor): - """Unflattens the first, flat batch*beam dimension of a non-scalar array.""" - shape = shape_list(tensor) - return tf.reshape(tensor, [-1, generation_config.num_beams] + shape[1:]) - - decoder_input_ids = unflatten_beam_dim(decoder_input_ids) - model_kwargs["attention_mask"] = unflatten_beam_dim(model_kwargs["attention_mask"]) - model_kwargs["encoder_outputs"]["last_hidden_state"] = unflatten_beam_dim( - model_kwargs["encoder_outputs"]["last_hidden_state"] - ) - - return self.beam_search( - input_ids=decoder_input_ids, - max_length=generation_config.max_length, - pad_token_id=generation_config.pad_token_id, - eos_token_id=generation_config.eos_token_id, - logits_processor=pre_processor, - output_attentions=generation_config.output_attentions, - output_hidden_states=generation_config.output_hidden_states, - output_scores=generation_config.output_scores, - return_dict_in_generate=generation_config.return_dict_in_generate, - **model_kwargs, - ) - else: - raise ValueError( - f"`num_beams` has to be an integer strictly superior to 0 (≥ 1), but is {generation_config.num_beams}" - ) - - def get_input_embeddings(self): - return self.rag.generator.get_input_embeddings() - - def get_output_embeddings(self): - return self.rag.generator.get_output_embeddings() - - # Adapted from tf_t5's & tf_bart's _shift_right - def shift_tokens_right(self, input_ids, start_token_id=None): - """Shift input ids one token to the right, and pad with start_token_id""" - - if start_token_id is None: - start_token_id = self.generator.config.decoder_start_token_id - assert start_token_id is not None, ( - "self.generator.config.decoder_start_token_id has to be defined. In Rag we commonly use Bart as" - " generator, see Bart docs for more information" - ) - - pad_token_id = self.generator.config.pad_token_id - assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined." - - start_tokens = tf.fill((shape_list(input_ids)[0], 1), tf.cast(start_token_id, input_ids.dtype)) - shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) - - # replace possible -100 values in labels by `pad_token_id` - shifted_input_ids = tf.where( - shifted_input_ids == -100, - tf.fill(shape_list(shifted_input_ids), tf.cast(pad_token_id, input_ids.dtype)), - shifted_input_ids, - ) - - # "Verify that `labels` has only positive values and -100" - assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.cast(0, shifted_input_ids.dtype)) - - # Make sure the assertion op is called by wrapping the result in an identity no-op - with tf.control_dependencies([assert_gte0]): - shifted_input_ids = tf.identity(shifted_input_ids) - - return shifted_input_ids - - # nll stands for 'negative log likelihood' - def get_nll(self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, n_docs=None): - n_docs = n_docs if n_docs is not None else self.config.n_docs - # shift tokens left (from original Pytorch's version) - - target = tf.concat( - [target[:, 1:], tf.fill([target.shape[0], 1], tf.cast(self.config.generator.pad_token_id, target.dtype))], - axis=1, - ) - rag_logprobs = self.marginalize(seq_logits, doc_scores, n_docs) - loss = self.hf_compute_loss(target, rag_logprobs, from_logits=True, reduce_loss=reduce_loss) - - return loss - - # Adopted modeling_tf_bart + add smooth_loss to match with pytorch version - def hf_compute_loss(self, labels, y_pred, smooth_epsilon=0.0, from_logits=True, reduce_loss=False): - """CrossEntropyLoss that ignores pad tokens""" - # Matt: As written, this loss is not XLA-compatible, but it's doing some very weird things - # and I don't feel comfortable converting it. - loss_fn = tf.keras.losses.SparseCategoricalCrossentropy( - from_logits=True, - reduction=tf.keras.losses.Reduction.SUM, - ) - - if from_logits is False: # convert to logits - eps = 1e-9 - y_pred = tf.clip_by_value(y_pred, clip_value_min=eps, clip_value_max=1 - eps) - y_pred = tf.math.log(y_pred) - - logits = y_pred - melted_labels = tf.reshape(labels, (-1,)) - active_loss = tf.not_equal(melted_labels, self.config.generator.pad_token_id) - - reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, logits.shape[2])), active_loss) - labels = tf.boolean_mask(melted_labels, active_loss) - nll_loss = loss_fn(labels, reduced_logits) - - smooth_loss = -tf.reduce_sum(reduced_logits, axis=-1) - smooth_loss = tf.reduce_sum(smooth_loss) # sum and squeeze like torch - eps_i = smooth_epsilon / reduced_logits.shape[-1] - - loss = (1.0 - smooth_epsilon) * nll_loss + eps_i * smooth_loss - - return loss - - -@add_start_docstrings_to_model_forward( - """ - A TF RAG-sequence model implementation. It performs RAG-sequence specific marginalization in the forward pass. - """, - RAG_START_DOCSTRING, -) -class TFRagSequenceForGeneration(TFRagPreTrainedModel, TFCausalLanguageModelingLoss): - load_weight_prefix = "tf_rag_sequence_for_generation_1/rag" - - def __init__( - self, - config: Optional[PretrainedConfig] = None, - question_encoder: Optional[TFPreTrainedModel] = None, - generator: Optional[TFPreTrainedModel] = None, - retriever: Optional[RagRetriever] = None, - **kwargs, - ): - assert config is not None or ( - question_encoder is not None and generator is not None - ), "Either a configuration or an encoder and a generator has to be provided." - - if config is None: - config = RagConfig.from_question_encoder_generator_configs( - question_encoder.config, generator.config, **kwargs - ) - - super().__init__(config) - - # instantiate model - self.rag = TFRagModel( - config=config, - question_encoder=question_encoder, - generator=generator, - retriever=retriever, - load_weight_prefix=self.load_weight_prefix, - name="rag", - ) - - def set_retriever(self, retriever: RagRetriever): - self.rag.retriever = retriever - - @property - def retriever(self): - return self.rag.retriever - - @property - def generator(self): - return self.rag.generator - - @property - def question_encoder(self): - return self.rag.question_encoder - - @unpack_inputs - @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING) - @replace_return_docstrings(output_type=TFRetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC) - def call( - self, - input_ids: TFModelInputType | None = None, - attention_mask: np.ndarray | tf.Tensor | None = None, - decoder_input_ids: np.ndarray | tf.Tensor | None = None, - decoder_attention_mask: np.ndarray | tf.Tensor | None = None, - encoder_outputs: np.ndarray | tf.Tensor | None = None, - past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, - doc_scores: np.ndarray | tf.Tensor | None = None, - context_input_ids: np.ndarray | tf.Tensor | None = None, - context_attention_mask: np.ndarray | tf.Tensor | None = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - output_retrieved: Optional[bool] = None, - n_docs: Optional[int] = None, - exclude_bos_score: Optional[bool] = None, - labels: np.ndarray | tf.Tensor | None = None, - reduce_loss: Optional[bool] = None, - return_dict: Optional[bool] = None, - training: bool = False, - **kwargs, # needs kwargs for generation - ) -> Union[Tuple[tf.Tensor], TFRetrievAugLMMarginOutput]: - r""" - exclude_bos_score (`bool`, *optional*): - Only relevant if `labels` is passed. If `True`, the score of the BOS token is disregarded when computing - the loss. - labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): - Labels for computing the cross entropy classification loss according to Rag-Sequence model formulation See - https://arxiv.org/pdf/2005.11401.pdf Section 2.1 for details about Rag-Sequence formulation. Indices should - be in `[0, ..., config.vocab_size - 1]`. - reduce_loss (`bool`, *optional*): - Only relevant if `labels` is passed. If `True`, the NLL loss is reduced using the `tf.Tensor.sum` - operation. - kwargs (`Dict[str, any]`, optional, defaults to *{}*): - Legacy dictionary, which is required so that model can use *generate()* function. - - Returns: - - Example: - - ```python - >>> from transformers import AutoTokenizer, RagRetriever, TFRagSequenceForGeneration - - >>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-sequence-nq") - >>> retriever = RagRetriever.from_pretrained( - ... "facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True - ... ) - >>> # initialize with RagRetriever to do everything in one forward call - >>> model = TFRagSequenceForGeneration.from_pretrained( - ... "facebook/rag-sequence-nq", retriever=retriever, from_pt=True - ... ) - - >>> input_dict = tokenizer.prepare_seq2seq_batch( - ... "How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="tf" - ... ) - >>> outputs = model(input_dict, output_retrieved=True) - - >>> # or use retriever separately - >>> # 1. Encode - >>> input_ids = input_dict["input_ids"] - >>> question_hidden_states = model.question_encoder(input_ids)[0] - >>> # 2. Retrieve - >>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.numpy(), return_tensors="tf") - >>> doc_scores = tf.squeeze( - ... tf.matmul( - ... tf.expand_dims(question_hidden_states, axis=1), docs_dict["retrieved_doc_embeds"], transpose_b=True - ... ), - ... axis=1, - ... ) - >>> # 3. Forward to generator - >>> outputs = model( - ... inputs=None, - ... context_input_ids=docs_dict["context_input_ids"], - ... context_attention_mask=docs_dict["context_attention_mask"], - ... doc_scores=doc_scores, - ... decoder_input_ids=input_dict["labels"], - ... ) - - >>> # or directly generate - >>> generated = model.generate( - ... context_input_ids=docs_dict["context_input_ids"], - ... context_attention_mask=docs_dict["context_attention_mask"], - ... doc_scores=doc_scores, - ... ) - >>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True) - ```""" - - assert ( - "decoder_cached_states" not in kwargs - ), "Please use past_key_values to cache intermediate outputs" # from modeling_tf_bart.py - - exclude_bos_score = exclude_bos_score if exclude_bos_score else self.config.exclude_bos_score - reduce_loss = reduce_loss if reduce_loss else self.config.reduce_loss - - if labels is not None: - if decoder_input_ids is None: - decoder_input_ids = labels - use_cache = False - - outputs = self.rag( - input_ids, - attention_mask=attention_mask, - encoder_outputs=encoder_outputs, - decoder_input_ids=decoder_input_ids, - decoder_attention_mask=decoder_attention_mask, - context_input_ids=context_input_ids, - context_attention_mask=context_attention_mask, - doc_scores=doc_scores, - past_key_values=past_key_values, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - output_retrieved=output_retrieved, - n_docs=n_docs, - training=training, - ) - - loss = None - if labels is not None: - loss = self.get_nll( - outputs.logits, - outputs.doc_scores, - labels, - reduce_loss=reduce_loss, - epsilon=self.config.label_smoothing, - n_docs=n_docs, - ) - - return TFRetrievAugLMMarginOutput( - loss=loss, - logits=outputs.logits, - doc_scores=outputs.doc_scores, - past_key_values=outputs.past_key_values, - context_input_ids=outputs.context_input_ids, - context_attention_mask=outputs.context_attention_mask, - retrieved_doc_embeds=outputs.retrieved_doc_embeds, - retrieved_doc_ids=outputs.retrieved_doc_ids, - question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state, - question_enc_hidden_states=outputs.question_enc_hidden_states, - question_enc_attentions=outputs.question_enc_attentions, - generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state, - generator_enc_hidden_states=outputs.generator_enc_hidden_states, - generator_enc_attentions=outputs.generator_enc_attentions, - generator_dec_hidden_states=outputs.generator_dec_hidden_states, - generator_dec_attentions=outputs.generator_dec_attentions, - ) - - def get_nll( - self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, exclude_bos_score=False, n_docs=None - ): - # shift tokens left - target = tf.concat( - [target[:, 1:], tf.fill([target.shape[0], 1], tf.cast(self.config.generator.pad_token_id, target.dtype))], - axis=1, - ) - - # bos_token_id is None for T5 - bos_token_id = self.config.bos_token_id or self.config.generator.bos_token_id - n_docs = n_docs if n_docs is not None else self.config.n_docs - equal_bos_token_id_all = tf.reduce_all(tf.equal(target[:, 0], bos_token_id)) - use_bos = bos_token_id is not None and equal_bos_token_id_all - - def _mask_pads(ll, smooth_obj): - pad_mask = tf.equal(target, tf.cast(self.config.generator.pad_token_id, target.dtype)) - if tf.reduce_any(pad_mask): - ll = tf.where(pad_mask, 0.0, ll) - smooth_obj = tf.where(pad_mask, 0.0, smooth_obj) - return tf.squeeze(ll, axis=-1), tf.squeeze(smooth_obj, axis=-1) - - # seq_logits.shape = (batch*n_docs, tgt_len , vocabs) - seq_logprobs = tf.nn.log_softmax(seq_logits, axis=-1) - seq_logprobs = tf.reshape( - seq_logprobs, (seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.shape[-1]) - ) # (batch_size, n_docs, tgt_len, vocabs) - doc_logprobs = tf.nn.log_softmax(doc_scores, axis=1) - doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1) - doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1) # done twice to get 4-D - - # RAG-sequence marginalization - first_token_scores = seq_logprobs[:, :, :1, :] - second_token_scores = seq_logprobs[:, :, 1:2, :] - remainder = seq_logprobs[:, :, 2:, :] - rag_logprobs = tf.concat([first_token_scores, second_token_scores + doc_logprobs, remainder], axis=2) - - # calculate loss - target = tf.expand_dims(target, axis=1) # n_docs dimension - target = tf.expand_dims(target, axis=-1) # logits dimension - target = tf.repeat(target, n_docs, axis=1) - assert len(target.shape) == len(rag_logprobs.shape) - - # last-axis gathering only - use 2D-reshape-trick for Torch's style nD gathering - def torch_gather(param, id_tensor): - # 2d-gather torch equivalent: https://stackoverflow.com/questions/52129909/tensorflow-equivalent-of-torch-gather - def gather2d(target, id_tensor): - idx = tf.stack([tf.range(tf.shape(id_tensor)[0], dtype=id_tensor.dtype), id_tensor[:, 0]], axis=-1) - result = tf.gather_nd(target, idx) - return tf.expand_dims(result, axis=-1) - - target = tf.reshape(param, (-1, param.shape[-1])) # reshape 2D - target_shape = id_tensor.shape - - id_tensor = tf.reshape(id_tensor, (-1, 1)) # also 2D-index - result = gather2d(target, id_tensor) - return tf.reshape(result, target_shape) - - ll = torch_gather(rag_logprobs, id_tensor=target) - smooth_obj = tf.reduce_sum(rag_logprobs, axis=-1, keepdims=True) # total sum of all (normalised) logits - - ll, smooth_obj = _mask_pads(ll, smooth_obj) - - # sum over tokens, exclude bos while scoring - if exclude_bos_score and use_bos: - ll = tf.reduce_sum(ll[:, :, 1:], axis=2) - else: - ll = tf.reduce_sum(ll, axis=2) - - smooth_obj = tf.reduce_sum(smooth_obj, axis=2) - ll = tf.math.reduce_logsumexp(ll, axis=1) # logsumexp over docs - smooth_obj = tf.math.reduce_logsumexp(smooth_obj, axis=1) - - nll_loss = -ll - smooth_loss = -smooth_obj - - if reduce_loss: - nll_loss = tf.reduce_sum(nll_loss) - smooth_loss = tf.reduce_sum(smooth_loss) - - eps_i = epsilon / rag_logprobs.shape[-1] - loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss - return loss - - def generate( - self, - input_ids: TFModelInputType | None = None, - attention_mask: tf.Tensor | None = None, - context_input_ids=None, - context_attention_mask=None, - doc_scores=None, - do_deduplication=None, # defaults to True - num_return_sequences=None, # defaults to 1 - num_beams=None, # defaults to 1 - n_docs=None, - **model_kwargs, - ): - """ - Implements RAG sequence "thorough" decoding. Read the [`~generation.GenerationMixin.generate`]` documentation - for more information on how to set other generate input parameters - - Args: - input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): - The sequence used as a prompt for the generation. If `input_ids` is not passed, then - `context_input_ids` has to be provided. - attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): - Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for - tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention - masks?](../glossary#attention-mask) - context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): - Input IDs post-processed from the retrieved documents and the question encoder input_ids by the - retriever. - context_attention_mask (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): - Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the - retriever. If the model has is not initialized with a `retriever` or `input_ids` is not given, - `context_input_ids` and `context_attention_mask` have to be provided to the forward pass. They are - returned by [`~RagRetriever.__call__`]. - doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`): - Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and - `question_encoder_last_hidden_state`. If the model has is not initialized with a `retriever` or - `input_ids` is not given, `doc_scores` has to be provided to the forward pass. `doc_scores` are - returned by [`~RagRetriever.__call__`]. - do_deduplication (`bool`, *optional*): - Whether or not to deduplicate the generations from different context documents for a given input. Has - to be set to `False` if used while training with distributed backend. - num_return_sequences(`int`, *optional*, defaults to 1): - The number of independently computed returned sequences for each element in the batch. Note that this - is not the value we pass to the `generator`'s `[`~generation.GenerationMixin.generate`]` function, - where we set `num_return_sequences` to `num_beams`. - num_beams (`int`, *optional*, defaults to 1): - Number of beams for beam search. 1 means no beam search. - n_docs (`int`, *optional*, defaults to `config.n_docs`) - Number of documents to retrieve and/or number of documents for which to generate an answer. - kwargs (`Dict[str, Any]`, *optional*): - Additional kwargs will be passed to [`~generation.GenerationMixin.generate`] - - Return: - `tf.Tensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated sequences. The - second dimension (sequence length) is either equal to `max_length` or shorter if all batches finished early - due to the `eos_token_id`. - """ - - n_docs = n_docs if n_docs is not None else self.config.n_docs - do_deduplication = do_deduplication if do_deduplication is not None else self.config.do_deduplication - num_doc_return_sequences = ( - num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences - ) - num_beams = num_beams if num_beams is not None else self.config.num_beams - - assert ( - input_ids is not None or context_input_ids is not None - ), " At least one of input_ids or context_input_ids must be given" - - if self.retriever is not None and context_input_ids is None: - question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0] - context_input_ids = self.retriever( - input_ids, - question_hidden_states.numpy(), - prefix=self.generator.config.prefix, - n_docs=n_docs, - return_tensors="tf", - )["context_input_ids"] - - hypos = [] - model_kwargs["num_beams"] = num_beams - model_kwargs["num_return_sequences"] = num_beams # put here so that not confused with num_doc_return_sequences - model_kwargs["attention_mask"] = None - - batch_size = input_ids.shape[0] if input_ids is not None else context_input_ids.shape[0] // n_docs - - for index in range(batch_size): - # first, generate beams from documents: - generator_input_ids = context_input_ids[index * n_docs : (index + 1) * n_docs] # (n_docs, max_len) - - output_sequences = self.generator.generate( - generator_input_ids, - **model_kwargs, - ) # n_docs * n_beam, tgt_len - if do_deduplication: - # do_deduplication -- for TF, work on Eager mode only! - output_sequences = tf.stack(list({str(k.numpy().tolist()): k for k in output_sequences}.values())) - - num_candidates = output_sequences.shape[ - 0 - ] # after deduplication, this number can be less than n_docs*n_beam - - # then, run model forwards to get nll scores: - if input_ids is not None: - new_input_ids = tf.tile(input_ids[index : index + 1], (num_candidates, 1)) - outputs = self(new_input_ids, labels=output_sequences, exclude_bos_score=True) - else: # input_ids is None, need context_input_ids/mask and doc_scores - assert context_attention_mask is not None, ( - "Make sure that `context_attention_mask` are passed, if no `input_ids` is set. Alternatively, you" - " can set a retriever using the `set_retriever(...)` function." - ) - assert doc_scores is not None, ( - "Make sure that `doc_scores` are passed, if no `input_ids` is set. Alternatively, you can set a" - " retriever using the `set_retriever(...)` function." - ) - - individual_input_ids = tf.tile( - generator_input_ids, (num_candidates, 1) - ) # (num_candidates*n_docs, max_len) - - individual_attention_mask = context_attention_mask[index * n_docs : (index + 1) * n_docs] - individual_attention_mask = tf.tile(individual_attention_mask, (num_candidates, 1)) - - individual_doc_scores = doc_scores[index : (index + 1), :] # doc_scores.shape = [batch, n_docs] - individual_doc_scores = tf.tile(individual_doc_scores, (num_candidates, 1)) # [num_candidates, n_docs] - - outputs = self( - input_ids=None, - context_input_ids=individual_input_ids, - context_attention_mask=individual_attention_mask, - doc_scores=individual_doc_scores, - labels=output_sequences, - exclude_bos_score=True, - ) - - top_cand_inds = tf.math.top_k((-outputs["loss"]), k=num_doc_return_sequences)[1] - - # add hypothesis - hypos.append(tf.gather(output_sequences, top_cand_inds)) - - return self._cat_and_pad(hypos, pad_token_id=self.config.generator.pad_token_id) - - @staticmethod - def _cat_and_pad(tensors, pad_token_id): - # used by generate(): tensors is a (batched) list of (candidates, len); len is varied across batch - - # Initialize padded tensor with shape ( all_candidates , max_candidate_length ), - # where all_candidates counted from all inputs - new_shape = sum([t.shape[0] for t in tensors]), max([t.shape[1] for t in tensors]) - output = tf.fill(new_shape, pad_token_id) - - # Normal tensor doesn't support slice assignment, so we need tf.Variable - output = tf.Variable(output) - - # Assign, and then convert back to tensor - ind = 0 - for t in tensors: - output[ind : ind + t.shape[0], : t.shape[1]].assign(t) - ind += t.shape[0] - - output = tf.convert_to_tensor(output) - return tf.cast(output, tensors[0][0][0].dtype) diff --git a/spaces/yl12053/so-vits-4.1-Matikanefukukitaru/diffusion/infer_gt_mel.py b/spaces/yl12053/so-vits-4.1-Matikanefukukitaru/diffusion/infer_gt_mel.py deleted file mode 100644 index 033b821a5d21a1232f1786bce5616b12e01488ad..0000000000000000000000000000000000000000 --- a/spaces/yl12053/so-vits-4.1-Matikanefukukitaru/diffusion/infer_gt_mel.py +++ /dev/null @@ -1,74 +0,0 @@ -import numpy as np -import torch -import torch.nn.functional as F -from diffusion.unit2mel import load_model_vocoder - - -class DiffGtMel: - def __init__(self, project_path=None, device=None): - self.project_path = project_path - if device is not None: - self.device = device - else: - self.device = 'cuda' if torch.cuda.is_available() else 'cpu' - self.model = None - self.vocoder = None - self.args = None - - def flush_model(self, project_path, ddsp_config=None): - if (self.model is None) or (project_path != self.project_path): - model, vocoder, args = load_model_vocoder(project_path, device=self.device) - if self.check_args(ddsp_config, args): - self.model = model - self.vocoder = vocoder - self.args = args - - def check_args(self, args1, args2): - if args1.data.block_size != args2.data.block_size: - raise ValueError("DDSP与DIFF模型的block_size不一致") - if args1.data.sampling_rate != args2.data.sampling_rate: - raise ValueError("DDSP与DIFF模型的sampling_rate不一致") - if args1.data.encoder != args2.data.encoder: - raise ValueError("DDSP与DIFF模型的encoder不一致") - return True - - def __call__(self, audio, f0, hubert, volume, acc=1, spk_id=1, k_step=0, method='pndm', - spk_mix_dict=None, start_frame=0): - input_mel = self.vocoder.extract(audio, self.args.data.sampling_rate) - out_mel = self.model( - hubert, - f0, - volume, - spk_id=spk_id, - spk_mix_dict=spk_mix_dict, - gt_spec=input_mel, - infer=True, - infer_speedup=acc, - method=method, - k_step=k_step, - use_tqdm=False) - if start_frame > 0: - out_mel = out_mel[:, start_frame:, :] - f0 = f0[:, start_frame:, :] - output = self.vocoder.infer(out_mel, f0) - if start_frame > 0: - output = F.pad(output, (start_frame * self.vocoder.vocoder_hop_size, 0)) - return output - - def infer(self, audio, f0, hubert, volume, acc=1, spk_id=1, k_step=0, method='pndm', silence_front=0, - use_silence=False, spk_mix_dict=None): - start_frame = int(silence_front * self.vocoder.vocoder_sample_rate / self.vocoder.vocoder_hop_size) - if use_silence: - audio = audio[:, start_frame * self.vocoder.vocoder_hop_size:] - f0 = f0[:, start_frame:, :] - hubert = hubert[:, start_frame:, :] - volume = volume[:, start_frame:, :] - _start_frame = 0 - else: - _start_frame = start_frame - audio = self.__call__(audio, f0, hubert, volume, acc=acc, spk_id=spk_id, k_step=k_step, - method=method, spk_mix_dict=spk_mix_dict, start_frame=_start_frame) - if use_silence: - if start_frame > 0: - audio = F.pad(audio, (start_frame * self.vocoder.vocoder_hop_size, 0)) - return audio diff --git a/spaces/zamasam/death/Dockerfile b/spaces/zamasam/death/Dockerfile deleted file mode 100644 index 4cb0ce42128d9a2ad33a395883f5e5455a38c707..0000000000000000000000000000000000000000 --- a/spaces/zamasam/death/Dockerfile +++ /dev/null @@ -1,11 +0,0 @@ -FROM node:18-bullseye-slim -RUN apt-get update && \ - apt-get install -y git -RUN git clone https://gitgud.io/khanon/oai-reverse-proxy.git /app -WORKDIR /app -RUN npm install -COPY Dockerfile greeting.md* .env* ./ -RUN npm run build -EXPOSE 7860 -ENV NODE_ENV=production -CMD [ "npm", "start" ] \ No newline at end of file diff --git a/spaces/zhan66/vits-simple-api/vits/text/mandarin.py b/spaces/zhan66/vits-simple-api/vits/text/mandarin.py deleted file mode 100644 index 80742a394f52165409bd820dc14e3cea6589454b..0000000000000000000000000000000000000000 --- a/spaces/zhan66/vits-simple-api/vits/text/mandarin.py +++ /dev/null @@ -1,365 +0,0 @@ -import config -import re -from pypinyin import lazy_pinyin, BOPOMOFO -import jieba -import cn2an -import logging - -logging.getLogger('jieba').setLevel(logging.WARNING) -jieba.set_dictionary(config.ABS_PATH + '/vits/text/jieba/dict.txt') -jieba.initialize() - -# List of (Latin alphabet, bopomofo) pairs: -_latin_to_bopomofo = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [ - ('a', 'ㄟˉ'), - ('b', 'ㄅㄧˋ'), - ('c', 'ㄙㄧˉ'), - ('d', 'ㄉㄧˋ'), - ('e', 'ㄧˋ'), - ('f', 'ㄝˊㄈㄨˋ'), - ('g', 'ㄐㄧˋ'), - ('h', 'ㄝˇㄑㄩˋ'), - ('i', 'ㄞˋ'), - ('j', 'ㄐㄟˋ'), - ('k', 'ㄎㄟˋ'), - ('l', 'ㄝˊㄛˋ'), - ('m', 'ㄝˊㄇㄨˋ'), - ('n', 'ㄣˉ'), - ('o', 'ㄡˉ'), - ('p', 'ㄆㄧˉ'), - ('q', 'ㄎㄧㄡˉ'), - ('r', 'ㄚˋ'), - ('s', 'ㄝˊㄙˋ'), - ('t', 'ㄊㄧˋ'), - ('u', 'ㄧㄡˉ'), - ('v', 'ㄨㄧˉ'), - ('w', 'ㄉㄚˋㄅㄨˋㄌㄧㄡˋ'), - ('x', 'ㄝˉㄎㄨˋㄙˋ'), - ('y', 'ㄨㄞˋ'), - ('z', 'ㄗㄟˋ') -]] - -# List of (bopomofo, romaji) pairs: -_bopomofo_to_romaji = [(re.compile('%s' % x[0]), x[1]) for x in [ - ('ㄅㄛ', 'p⁼wo'), - ('ㄆㄛ', 'pʰwo'), - ('ㄇㄛ', 'mwo'), - ('ㄈㄛ', 'fwo'), - ('ㄅ', 'p⁼'), - ('ㄆ', 'pʰ'), - ('ㄇ', 'm'), - ('ㄈ', 'f'), - ('ㄉ', 't⁼'), - ('ㄊ', 'tʰ'), - ('ㄋ', 'n'), - ('ㄌ', 'l'), - ('ㄍ', 'k⁼'), - ('ㄎ', 'kʰ'), - ('ㄏ', 'h'), - ('ㄐ', 'ʧ⁼'), - ('ㄑ', 'ʧʰ'), - ('ㄒ', 'ʃ'), - ('ㄓ', 'ʦ`⁼'), - ('ㄔ', 'ʦ`ʰ'), - ('ㄕ', 's`'), - ('ㄖ', 'ɹ`'), - ('ㄗ', 'ʦ⁼'), - ('ㄘ', 'ʦʰ'), - ('ㄙ', 's'), - ('ㄚ', 'a'), - ('ㄛ', 'o'), - ('ㄜ', 'ə'), - ('ㄝ', 'e'), - ('ㄞ', 'ai'), - ('ㄟ', 'ei'), - ('ㄠ', 'au'), - ('ㄡ', 'ou'), - ('ㄧㄢ', 'yeNN'), - ('ㄢ', 'aNN'), - ('ㄧㄣ', 'iNN'), - ('ㄣ', 'əNN'), - ('ㄤ', 'aNg'), - ('ㄧㄥ', 'iNg'), - ('ㄨㄥ', 'uNg'), - ('ㄩㄥ', 'yuNg'), - ('ㄥ', 'əNg'), - ('ㄦ', 'əɻ'), - ('ㄧ', 'i'), - ('ㄨ', 'u'), - ('ㄩ', 'ɥ'), - ('ˉ', '→'), - ('ˊ', '↑'), - ('ˇ', '↓↑'), - ('ˋ', '↓'), - ('˙', ''), - (',', ','), - ('。', '.'), - ('!', '!'), - ('?', '?'), - ('—', '-') -]] - -# List of (romaji, ipa) pairs: -_romaji_to_ipa = [(re.compile('%s' % x[0], re.IGNORECASE), x[1]) for x in [ - ('ʃy', 'ʃ'), - ('ʧʰy', 'ʧʰ'), - ('ʧ⁼y', 'ʧ⁼'), - ('NN', 'n'), - ('Ng', 'ŋ'), - ('y', 'j'), - ('h', 'x') -]] - -# List of (bopomofo, ipa) pairs: -_bopomofo_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [ - ('ㄅㄛ', 'p⁼wo'), - ('ㄆㄛ', 'pʰwo'), - ('ㄇㄛ', 'mwo'), - ('ㄈㄛ', 'fwo'), - ('ㄅ', 'p⁼'), - ('ㄆ', 'pʰ'), - ('ㄇ', 'm'), - ('ㄈ', 'f'), - ('ㄉ', 't⁼'), - ('ㄊ', 'tʰ'), - ('ㄋ', 'n'), - ('ㄌ', 'l'), - ('ㄍ', 'k⁼'), - ('ㄎ', 'kʰ'), - ('ㄏ', 'x'), - ('ㄐ', 'tʃ⁼'), - ('ㄑ', 'tʃʰ'), - ('ㄒ', 'ʃ'), - ('ㄓ', 'ts`⁼'), - ('ㄔ', 'ts`ʰ'), - ('ㄕ', 's`'), - ('ㄖ', 'ɹ`'), - ('ㄗ', 'ts⁼'), - ('ㄘ', 'tsʰ'), - ('ㄙ', 's'), - ('ㄚ', 'a'), - ('ㄛ', 'o'), - ('ㄜ', 'ə'), - ('ㄝ', 'ɛ'), - ('ㄞ', 'aɪ'), - ('ㄟ', 'eɪ'), - ('ㄠ', 'ɑʊ'), - ('ㄡ', 'oʊ'), - ('ㄧㄢ', 'jɛn'), - ('ㄩㄢ', 'ɥæn'), - ('ㄢ', 'an'), - ('ㄧㄣ', 'in'), - ('ㄩㄣ', 'ɥn'), - ('ㄣ', 'ən'), - ('ㄤ', 'ɑŋ'), - ('ㄧㄥ', 'iŋ'), - ('ㄨㄥ', 'ʊŋ'), - ('ㄩㄥ', 'jʊŋ'), - ('ㄥ', 'əŋ'), - ('ㄦ', 'əɻ'), - ('ㄧ', 'i'), - ('ㄨ', 'u'), - ('ㄩ', 'ɥ'), - ('ˉ', '→'), - ('ˊ', '↑'), - ('ˇ', '↓↑'), - ('ˋ', '↓'), - ('˙', ''), - (',', ','), - ('。', '.'), - ('!', '!'), - ('?', '?'), - ('—', '-') -]] - -# List of (bopomofo, ipa2) pairs: -_bopomofo_to_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [ - ('ㄅㄛ', 'pwo'), - ('ㄆㄛ', 'pʰwo'), - ('ㄇㄛ', 'mwo'), - ('ㄈㄛ', 'fwo'), - ('ㄅ', 'p'), - ('ㄆ', 'pʰ'), - ('ㄇ', 'm'), - ('ㄈ', 'f'), - ('ㄉ', 't'), - ('ㄊ', 'tʰ'), - ('ㄋ', 'n'), - ('ㄌ', 'l'), - ('ㄍ', 'k'), - ('ㄎ', 'kʰ'), - ('ㄏ', 'h'), - ('ㄐ', 'tɕ'), - ('ㄑ', 'tɕʰ'), - ('ㄒ', 'ɕ'), - ('ㄓ', 'tʂ'), - ('ㄔ', 'tʂʰ'), - ('ㄕ', 'ʂ'), - ('ㄖ', 'ɻ'), - ('ㄗ', 'ts'), - ('ㄘ', 'tsʰ'), - ('ㄙ', 's'), - ('ㄚ', 'a'), - ('ㄛ', 'o'), - ('ㄜ', 'ɤ'), - ('ㄝ', 'ɛ'), - ('ㄞ', 'aɪ'), - ('ㄟ', 'eɪ'), - ('ㄠ', 'ɑʊ'), - ('ㄡ', 'oʊ'), - ('ㄧㄢ', 'jɛn'), - ('ㄩㄢ', 'yæn'), - ('ㄢ', 'an'), - ('ㄧㄣ', 'in'), - ('ㄩㄣ', 'yn'), - ('ㄣ', 'ən'), - ('ㄤ', 'ɑŋ'), - ('ㄧㄥ', 'iŋ'), - ('ㄨㄥ', 'ʊŋ'), - ('ㄩㄥ', 'jʊŋ'), - ('ㄥ', 'ɤŋ'), - ('ㄦ', 'əɻ'), - ('ㄧ', 'i'), - ('ㄨ', 'u'), - ('ㄩ', 'y'), - ('ˉ', '˥'), - ('ˊ', '˧˥'), - ('ˇ', '˨˩˦'), - ('ˋ', '˥˩'), - ('˙', ''), - (',', ','), - ('。', '.'), - ('!', '!'), - ('?', '?'), - ('—', '-') -]] - -_symbols_to_chinese = [(re.compile(f'{x[0]}'), x[1]) for x in [ - ('([0-9]+(?:\.?[0-9]+)?)%', r'百分之\1'), - ('([0-9]+)/([0-9]+)', r'\2分之\1'), - ('\+', r'加'), - ('([0-9]+)-([0-9]+)', r'\1减\2'), - ('×', r'乘以'), - ('([0-9]+)x([0-9]+)', r'\1乘以\2'), - ('([0-9]+)\*([0-9]+)', r'\1乘以\2'), - ('÷', r'除以'), - ('=', r'等于'), - ('≠', r'不等于'), -]] - - -def symbols_to_chinese(text): - for regex, replacement in _symbols_to_chinese: - text = re.sub(regex, replacement, text) - return text - - -def number_to_chinese(text): - numbers = re.findall(r'[0-9]+(?:\.?[0-9]+)?', text) - for number in numbers: - text = text.replace(number, cn2an.an2cn(number), 1) - return text - - -def number_transform_to_chinese(text): - text = cn2an.transform(text, "an2cn") - return text - - -def chinese_to_bopomofo(text): - text = text.replace('、', ',').replace(';', ',').replace(':', ',') - words = jieba.lcut(text, cut_all=False) - text = '' - for word in words: - bopomofos = lazy_pinyin(word, BOPOMOFO) - if not re.search('[\u4e00-\u9fff]', word): - text += word - continue - for i in range(len(bopomofos)): - bopomofos[i] = re.sub(r'([\u3105-\u3129])$', r'\1ˉ', bopomofos[i]) - if text != '': - text += ' ' - text += ''.join(bopomofos) - return text - - -def latin_to_bopomofo(text): - for regex, replacement in _latin_to_bopomofo: - text = re.sub(regex, replacement, text) - return text - - -def bopomofo_to_romaji(text): - for regex, replacement in _bopomofo_to_romaji: - text = re.sub(regex, replacement, text) - return text - - -def bopomofo_to_ipa(text): - for regex, replacement in _bopomofo_to_ipa: - text = re.sub(regex, replacement, text) - return text - - -def bopomofo_to_ipa2(text): - for regex, replacement in _bopomofo_to_ipa2: - text = re.sub(regex, replacement, text) - return text - - -def chinese_to_romaji(text): - text = symbols_to_chinese(text) - text = number_transform_to_chinese(text) - text = chinese_to_bopomofo(text) - text = latin_to_bopomofo(text) - text = bopomofo_to_romaji(text) - text = re.sub('i([aoe])', r'y\1', text) - text = re.sub('u([aoəe])', r'w\1', text) - text = re.sub('([ʦsɹ]`[⁼ʰ]?)([→↓↑ ]+|$)', - r'\1ɹ`\2', text).replace('ɻ', 'ɹ`') - text = re.sub('([ʦs][⁼ʰ]?)([→↓↑ ]+|$)', r'\1ɹ\2', text) - return text - - -def chinese_to_lazy_ipa(text): - text = chinese_to_romaji(text) - for regex, replacement in _romaji_to_ipa: - text = re.sub(regex, replacement, text) - return text - - -def chinese_to_ipa(text): - text = symbols_to_chinese(text) - text = number_transform_to_chinese(text) - text = chinese_to_bopomofo(text) - text = latin_to_bopomofo(text) - text = bopomofo_to_ipa(text) - text = re.sub('i([aoe])', r'j\1', text) - text = re.sub('u([aoəe])', r'w\1', text) - text = re.sub('([sɹ]`[⁼ʰ]?)([→↓↑ ]+|$)', - r'\1ɹ`\2', text).replace('ɻ', 'ɹ`') - text = re.sub('([s][⁼ʰ]?)([→↓↑ ]+|$)', r'\1ɹ\2', text) - return text - - -def chinese_to_ipa2(text): - text = symbols_to_chinese(text) - text = number_transform_to_chinese(text) - text = chinese_to_bopomofo(text) - text = latin_to_bopomofo(text) - text = bopomofo_to_ipa2(text) - text = re.sub(r'i([aoe])', r'j\1', text) - text = re.sub(r'u([aoəe])', r'w\1', text) - text = re.sub(r'([ʂɹ]ʰ?)([˩˨˧˦˥ ]+|$)', r'\1ʅ\2', text) - text = re.sub(r'(sʰ?)([˩˨˧˦˥ ]+|$)', r'\1ɿ\2', text) - return text - - -def VITS_PinYin_model(): - import torch - import config - from vits.text.vits_pinyin import VITS_PinYin - device = torch.device("cuda" if torch.cuda.is_available() else "cpu") - # pinyin - tts_front = VITS_PinYin(f"{config.ABS_PATH}/vits/bert", device) - return tts_front diff --git a/spaces/zhang-wei-jian/docker/node_modules/content-disposition/README.md b/spaces/zhang-wei-jian/docker/node_modules/content-disposition/README.md deleted file mode 100644 index 3a0bb055949cdaed008f0f85e111624214213873..0000000000000000000000000000000000000000 --- a/spaces/zhang-wei-jian/docker/node_modules/content-disposition/README.md +++ /dev/null @@ -1,142 +0,0 @@ -# content-disposition - -[![NPM Version][npm-image]][npm-url] -[![NPM Downloads][downloads-image]][downloads-url] -[![Node.js Version][node-version-image]][node-version-url] -[![Build Status][github-actions-ci-image]][github-actions-ci-url] -[![Test Coverage][coveralls-image]][coveralls-url] - -Create and parse HTTP `Content-Disposition` header - -## Installation - -```sh -$ npm install content-disposition -``` - -## API - -```js -var contentDisposition = require('content-disposition') -``` - -### contentDisposition(filename, options) - -Create an attachment `Content-Disposition` header value using the given file name, -if supplied. The `filename` is optional and if no file name is desired, but you -want to specify `options`, set `filename` to `undefined`. - -```js -res.setHeader('Content-Disposition', contentDisposition('∫ maths.pdf')) -``` - -**note** HTTP headers are of the ISO-8859-1 character set. If you are writing this -header through a means different from `setHeader` in Node.js, you'll want to specify -the `'binary'` encoding in Node.js. - -#### Options - -`contentDisposition` accepts these properties in the options object. - -##### fallback - -If the `filename` option is outside ISO-8859-1, then the file name is actually -stored in a supplemental field for clients that support Unicode file names and -a ISO-8859-1 version of the file name is automatically generated. - -This specifies the ISO-8859-1 file name to override the automatic generation or -disables the generation all together, defaults to `true`. - - - A string will specify the ISO-8859-1 file name to use in place of automatic - generation. - - `false` will disable including a ISO-8859-1 file name and only include the - Unicode version (unless the file name is already ISO-8859-1). - - `true` will enable automatic generation if the file name is outside ISO-8859-1. - -If the `filename` option is ISO-8859-1 and this option is specified and has a -different value, then the `filename` option is encoded in the extended field -and this set as the fallback field, even though they are both ISO-8859-1. - -##### type - -Specifies the disposition type, defaults to `"attachment"`. This can also be -`"inline"`, or any other value (all values except inline are treated like -`attachment`, but can convey additional information if both parties agree to -it). The type is normalized to lower-case. - -### contentDisposition.parse(string) - -```js -var disposition = contentDisposition.parse('attachment; filename="EURO rates.txt"; filename*=UTF-8\'\'%e2%82%ac%20rates.txt') -``` - -Parse a `Content-Disposition` header string. This automatically handles extended -("Unicode") parameters by decoding them and providing them under the standard -parameter name. This will return an object with the following properties (examples -are shown for the string `'attachment; filename="EURO rates.txt"; filename*=UTF-8\'\'%e2%82%ac%20rates.txt'`): - - - `type`: The disposition type (always lower case). Example: `'attachment'` - - - `parameters`: An object of the parameters in the disposition (name of parameter - always lower case and extended versions replace non-extended versions). Example: - `{filename: "€ rates.txt"}` - -## Examples - -### Send a file for download - -```js -var contentDisposition = require('content-disposition') -var destroy = require('destroy') -var fs = require('fs') -var http = require('http') -var onFinished = require('on-finished') - -var filePath = '/path/to/public/plans.pdf' - -http.createServer(function onRequest (req, res) { - // set headers - res.setHeader('Content-Type', 'application/pdf') - res.setHeader('Content-Disposition', contentDisposition(filePath)) - - // send file - var stream = fs.createReadStream(filePath) - stream.pipe(res) - onFinished(res, function () { - destroy(stream) - }) -}) -``` - -## Testing - -```sh -$ npm test -``` - -## References - -- [RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1][rfc-2616] -- [RFC 5987: Character Set and Language Encoding for Hypertext Transfer Protocol (HTTP) Header Field Parameters][rfc-5987] -- [RFC 6266: Use of the Content-Disposition Header Field in the Hypertext Transfer Protocol (HTTP)][rfc-6266] -- [Test Cases for HTTP Content-Disposition header field (RFC 6266) and the Encodings defined in RFCs 2047, 2231 and 5987][tc-2231] - -[rfc-2616]: https://tools.ietf.org/html/rfc2616 -[rfc-5987]: https://tools.ietf.org/html/rfc5987 -[rfc-6266]: https://tools.ietf.org/html/rfc6266 -[tc-2231]: http://greenbytes.de/tech/tc2231/ - -## License - -[MIT](LICENSE) - -[npm-image]: https://img.shields.io/npm/v/content-disposition.svg -[npm-url]: https://npmjs.org/package/content-disposition -[node-version-image]: https://img.shields.io/node/v/content-disposition.svg -[node-version-url]: https://nodejs.org/en/download -[coveralls-image]: https://img.shields.io/coveralls/jshttp/content-disposition.svg -[coveralls-url]: https://coveralls.io/r/jshttp/content-disposition?branch=master -[downloads-image]: https://img.shields.io/npm/dm/content-disposition.svg -[downloads-url]: https://npmjs.org/package/content-disposition -[github-actions-ci-image]: https://img.shields.io/github/workflow/status/jshttp/content-disposition/ci/master?label=ci -[github-actions-ci-url]: https://github.com/jshttp/content-disposition?query=workflow%3Aci diff --git a/spaces/zhang-wei-jian/docker/node_modules/koa/lib/response.js b/spaces/zhang-wei-jian/docker/node_modules/koa/lib/response.js deleted file mode 100644 index 54f9d49f788b3640527cf44dd431c0bc930afb2f..0000000000000000000000000000000000000000 --- a/spaces/zhang-wei-jian/docker/node_modules/koa/lib/response.js +++ /dev/null @@ -1,588 +0,0 @@ - -'use strict'; - -/** - * Module dependencies. - */ - -const contentDisposition = require('content-disposition'); -const getType = require('cache-content-type'); -const onFinish = require('on-finished'); -const escape = require('escape-html'); -const typeis = require('type-is').is; -const statuses = require('statuses'); -const destroy = require('destroy'); -const assert = require('assert'); -const extname = require('path').extname; -const vary = require('vary'); -const only = require('only'); -const util = require('util'); -const encodeUrl = require('encodeurl'); -const Stream = require('stream'); - -/** - * Prototype. - */ - -module.exports = { - - /** - * Return the request socket. - * - * @return {Connection} - * @api public - */ - - get socket() { - return this.res.socket; - }, - - /** - * Return response header. - * - * @return {Object} - * @api public - */ - - get header() { - const { res } = this; - return typeof res.getHeaders === 'function' - ? res.getHeaders() - : res._headers || {}; // Node < 7.7 - }, - - /** - * Return response header, alias as response.header - * - * @return {Object} - * @api public - */ - - get headers() { - return this.header; - }, - - /** - * Get response status code. - * - * @return {Number} - * @api public - */ - - get status() { - return this.res.statusCode; - }, - - /** - * Set response status code. - * - * @param {Number} code - * @api public - */ - - set status(code) { - if (this.headerSent) return; - - assert(Number.isInteger(code), 'status code must be a number'); - assert(code >= 100 && code <= 999, `invalid status code: ${code}`); - this._explicitStatus = true; - this.res.statusCode = code; - if (this.req.httpVersionMajor < 2) this.res.statusMessage = statuses[code]; - if (this.body && statuses.empty[code]) this.body = null; - }, - - /** - * Get response status message - * - * @return {String} - * @api public - */ - - get message() { - return this.res.statusMessage || statuses[this.status]; - }, - - /** - * Set response status message - * - * @param {String} msg - * @api public - */ - - set message(msg) { - this.res.statusMessage = msg; - }, - - /** - * Get response body. - * - * @return {Mixed} - * @api public - */ - - get body() { - return this._body; - }, - - /** - * Set response body. - * - * @param {String|Buffer|Object|Stream} val - * @api public - */ - - set body(val) { - const original = this._body; - this._body = val; - - // no content - if (null == val) { - if (!statuses.empty[this.status]) this.status = 204; - if (val === null) this._explicitNullBody = true; - this.remove('Content-Type'); - this.remove('Content-Length'); - this.remove('Transfer-Encoding'); - return; - } - - // set the status - if (!this._explicitStatus) this.status = 200; - - // set the content-type only if not yet set - const setType = !this.has('Content-Type'); - - // string - if ('string' === typeof val) { - if (setType) this.type = /^\s* this.ctx.onerror(err)); - // overwriting - if (null != original) this.remove('Content-Length'); - } - - if (setType) this.type = 'bin'; - return; - } - - // json - this.remove('Content-Length'); - this.type = 'json'; - }, - - /** - * Set Content-Length field to `n`. - * - * @param {Number} n - * @api public - */ - - set length(n) { - if (!this.has('Transfer-Encoding')) { - this.set('Content-Length', n); - } - }, - - /** - * Return parsed response Content-Length when present. - * - * @return {Number} - * @api public - */ - - get length() { - if (this.has('Content-Length')) { - return parseInt(this.get('Content-Length'), 10) || 0; - } - - const { body } = this; - if (!body || body instanceof Stream) return undefined; - if ('string' === typeof body) return Buffer.byteLength(body); - if (Buffer.isBuffer(body)) return body.length; - return Buffer.byteLength(JSON.stringify(body)); - }, - - /** - * Check if a header has been written to the socket. - * - * @return {Boolean} - * @api public - */ - - get headerSent() { - return this.res.headersSent; - }, - - /** - * Vary on `field`. - * - * @param {String} field - * @api public - */ - - vary(field) { - if (this.headerSent) return; - - vary(this.res, field); - }, - - /** - * Perform a 302 redirect to `url`. - * - * The string "back" is special-cased - * to provide Referrer support, when Referrer - * is not present `alt` or "/" is used. - * - * Examples: - * - * this.redirect('back'); - * this.redirect('back', '/index.html'); - * this.redirect('/login'); - * this.redirect('http://google.com'); - * - * @param {String} url - * @param {String} [alt] - * @api public - */ - - redirect(url, alt) { - // location - if ('back' === url) url = this.ctx.get('Referrer') || alt || '/'; - this.set('Location', encodeUrl(url)); - - // status - if (!statuses.redirect[this.status]) this.status = 302; - - // html - if (this.ctx.accepts('html')) { - url = escape(url); - this.type = 'text/html; charset=utf-8'; - this.body = `Redirecting to ${url}.`; - return; - } - - // text - this.type = 'text/plain; charset=utf-8'; - this.body = `Redirecting to ${url}.`; - }, - - /** - * Set Content-Disposition header to "attachment" with optional `filename`. - * - * @param {String} filename - * @api public - */ - - attachment(filename, options) { - if (filename) this.type = extname(filename); - this.set('Content-Disposition', contentDisposition(filename, options)); - }, - - /** - * Set Content-Type response header with `type` through `mime.lookup()` - * when it does not contain a charset. - * - * Examples: - * - * this.type = '.html'; - * this.type = 'html'; - * this.type = 'json'; - * this.type = 'application/json'; - * this.type = 'png'; - * - * @param {String} type - * @api public - */ - - set type(type) { - type = getType(type); - if (type) { - this.set('Content-Type', type); - } else { - this.remove('Content-Type'); - } - }, - - /** - * Set the Last-Modified date using a string or a Date. - * - * this.response.lastModified = new Date(); - * this.response.lastModified = '2013-09-13'; - * - * @param {String|Date} type - * @api public - */ - - set lastModified(val) { - if ('string' === typeof val) val = new Date(val); - this.set('Last-Modified', val.toUTCString()); - }, - - /** - * Get the Last-Modified date in Date form, if it exists. - * - * @return {Date} - * @api public - */ - - get lastModified() { - const date = this.get('last-modified'); - if (date) return new Date(date); - }, - - /** - * Set the ETag of a response. - * This will normalize the quotes if necessary. - * - * this.response.etag = 'md5hashsum'; - * this.response.etag = '"md5hashsum"'; - * this.response.etag = 'W/"123456789"'; - * - * @param {String} etag - * @api public - */ - - set etag(val) { - if (!/^(W\/)?"/.test(val)) val = `"${val}"`; - this.set('ETag', val); - }, - - /** - * Get the ETag of a response. - * - * @return {String} - * @api public - */ - - get etag() { - return this.get('ETag'); - }, - - /** - * Return the response mime type void of - * parameters such as "charset". - * - * @return {String} - * @api public - */ - - get type() { - const type = this.get('Content-Type'); - if (!type) return ''; - return type.split(';', 1)[0]; - }, - - /** - * Check whether the response is one of the listed types. - * Pretty much the same as `this.request.is()`. - * - * @param {String|String[]} [type] - * @param {String[]} [types] - * @return {String|false} - * @api public - */ - - is(type, ...types) { - return typeis(this.type, type, ...types); - }, - - /** - * Return response header. - * - * Examples: - * - * this.get('Content-Type'); - * // => "text/plain" - * - * this.get('content-type'); - * // => "text/plain" - * - * @param {String} field - * @return {String} - * @api public - */ - - get(field) { - return this.header[field.toLowerCase()] || ''; - }, - - /** - * Returns true if the header identified by name is currently set in the outgoing headers. - * The header name matching is case-insensitive. - * - * Examples: - * - * this.has('Content-Type'); - * // => true - * - * this.get('content-type'); - * // => true - * - * @param {String} field - * @return {boolean} - * @api public - */ - - has(field) { - return typeof this.res.hasHeader === 'function' - ? this.res.hasHeader(field) - // Node < 7.7 - : field.toLowerCase() in this.headers; - }, - - /** - * Set header `field` to `val` or pass - * an object of header fields. - * - * Examples: - * - * this.set('Foo', ['bar', 'baz']); - * this.set('Accept', 'application/json'); - * this.set({ Accept: 'text/plain', 'X-API-Key': 'tobi' }); - * - * @param {String|Object|Array} field - * @param {String} val - * @api public - */ - - set(field, val) { - if (this.headerSent) return; - - if (2 === arguments.length) { - if (Array.isArray(val)) val = val.map(v => typeof v === 'string' ? v : String(v)); - else if (typeof val !== 'string') val = String(val); - this.res.setHeader(field, val); - } else { - for (const key in field) { - this.set(key, field[key]); - } - } - }, - - /** - * Append additional header `field` with value `val`. - * - * Examples: - * - * ``` - * this.append('Link', ['', '']); - * this.append('Set-Cookie', 'foo=bar; Path=/; HttpOnly'); - * this.append('Warning', '199 Miscellaneous warning'); - * ``` - * - * @param {String} field - * @param {String|Array} val - * @api public - */ - - append(field, val) { - const prev = this.get(field); - - if (prev) { - val = Array.isArray(prev) - ? prev.concat(val) - : [prev].concat(val); - } - - return this.set(field, val); - }, - - /** - * Remove header `field`. - * - * @param {String} name - * @api public - */ - - remove(field) { - if (this.headerSent) return; - - this.res.removeHeader(field); - }, - - /** - * Checks if the request is writable. - * Tests for the existence of the socket - * as node sometimes does not set it. - * - * @return {Boolean} - * @api private - */ - - get writable() { - // can't write any more after response finished - // response.writableEnded is available since Node > 12.9 - // https://nodejs.org/api/http.html#http_response_writableended - // response.finished is undocumented feature of previous Node versions - // https://stackoverflow.com/questions/16254385/undocumented-response-finished-in-node-js - if (this.res.writableEnded || this.res.finished) return false; - - const socket = this.res.socket; - // There are already pending outgoing res, but still writable - // https://github.com/nodejs/node/blob/v4.4.7/lib/_http_server.js#L486 - if (!socket) return true; - return socket.writable; - }, - - /** - * Inspect implementation. - * - * @return {Object} - * @api public - */ - - inspect() { - if (!this.res) return; - const o = this.toJSON(); - o.body = this.body; - return o; - }, - - /** - * Return JSON representation. - * - * @return {Object} - * @api public - */ - - toJSON() { - return only(this, [ - 'status', - 'message', - 'header' - ]); - }, - - /** - * Flush any set headers and begin the body - */ - - flushHeaders() { - this.res.flushHeaders(); - } -}; - -/** - * Custom inspection implementation for node 6+. - * - * @return {Object} - * @api public - */ - -/* istanbul ignore else */ -if (util.inspect.custom) { - module.exports[util.inspect.custom] = module.exports.inspect; -} diff --git a/spaces/zhang-wei-jian/docker/node_modules/only/History.md b/spaces/zhang-wei-jian/docker/node_modules/only/History.md deleted file mode 100644 index c8aa68fa88152d50a44683975863bf0026b49374..0000000000000000000000000000000000000000 --- a/spaces/zhang-wei-jian/docker/node_modules/only/History.md +++ /dev/null @@ -1,5 +0,0 @@ - -0.0.1 / 2010-01-03 -================== - - * Initial release diff --git a/spaces/zhanghaohui/szu-gpt-academic/core_functional.py b/spaces/zhanghaohui/szu-gpt-academic/core_functional.py deleted file mode 100644 index e126b5733a26b2c06668755fc44763efe3d30bac..0000000000000000000000000000000000000000 --- a/spaces/zhanghaohui/szu-gpt-academic/core_functional.py +++ /dev/null @@ -1,78 +0,0 @@ -# 'primary' 颜色对应 theme.py 中的 primary_hue -# 'secondary' 颜色对应 theme.py 中的 neutral_hue -# 'stop' 颜色对应 theme.py 中的 color_er -# 默认按钮颜色是 secondary -from toolbox import clear_line_break - - -def get_core_functions(): - return { - "英语学术润色": { - # 前言 - "Prefix": r"Below is a paragraph from an academic paper. Polish the writing to meet the academic style, " + - r"improve the spelling, grammar, clarity, concision and overall readability. When necessary, rewrite the whole sentence. " + - r"Furthermore, list all modification and explain the reasons to do so in markdown table." + "\n\n", - # 后语 - "Suffix": r"", - "Color": r"secondary", # 按钮颜色 - }, - "中文学术润色": { - "Prefix": r"作为一名中文学术论文写作改进助理,你的任务是改进所提供文本的拼写、语法、清晰、简洁和整体可读性," + - r"同时分解长句,减少重复,并提供改进建议。请只提供文本的更正版本,避免包括解释。请编辑以下文本" + "\n\n", - "Suffix": r"", - }, - "查找语法错误": { - "Prefix": r"Can you help me ensure that the grammar and the spelling is correct? " + - r"Do not try to polish the text, if no mistake is found, tell me that this paragraph is good." + - r"If you find grammar or spelling mistakes, please list mistakes you find in a two-column markdown table, " + - r"put the original text the first column, " + - r"put the corrected text in the second column and highlight the key words you fixed.""\n" - r"Example:""\n" - r"Paragraph: How is you? Do you knows what is it?""\n" - r"| Original sentence | Corrected sentence |""\n" - r"| :--- | :--- |""\n" - r"| How **is** you? | How **are** you? |""\n" - r"| Do you **knows** what **is** **it**? | Do you **know** what **it** **is** ? |""\n" - r"Below is a paragraph from an academic paper. " - r"You need to report all grammar and spelling mistakes as the example before." - + "\n\n", - "Suffix": r"", - "PreProcess": clear_line_break, # 预处理:清除换行符 - }, - "中译英": { - "Prefix": r"Please translate following sentence to English:" + "\n\n", - "Suffix": r"", - }, - "学术中英互译": { - "Prefix": r"I want you to act as a scientific English-Chinese translator, " + - r"I will provide you with some paragraphs in one language " + - r"and your task is to accurately and academically translate the paragraphs only into the other language. " + - r"Do not repeat the original provided paragraphs after translation. " + - r"You should use artificial intelligence tools, " + - r"such as natural language processing, and rhetorical knowledge " + - r"and experience about effective writing techniques to reply. " + - r"I'll give you my paragraphs as follows, tell me what language it is written in, and then translate:" + "\n\n", - "Suffix": "", - "Color": "secondary", - }, - "英译中": { - "Prefix": r"翻译成地道的中文:" + "\n\n", - "Suffix": r"", - }, - "找图片": { - "Prefix": r"我需要你找一张网络图片。使用Unsplash API(https://source.unsplash.com/960x640/?<英语关键词>)获取图片URL," + - r"然后请使用Markdown格式封装,并且不要有反斜线,不要用代码块。现在,请按以下描述给我发送图片:" + "\n\n", - "Suffix": r"", - }, - "解释代码": { - "Prefix": r"请解释以下代码:" + "\n```\n", - "Suffix": "\n```\n", - }, - "参考文献转Bib": { - "Prefix": r"Here are some bibliography items, please transform them into bibtex style." + - r"Note that, reference styles maybe more than one kind, you should transform each item correctly." + - r"Items need to be transformed:", - "Suffix": r"", - "Visible": False, - } - } diff --git a/spaces/zhuowen999/vits_chinese/text/symbols.py b/spaces/zhuowen999/vits_chinese/text/symbols.py deleted file mode 100644 index 80fd41ea8ee57725ce0f76aa5347a3a1fdd0047d..0000000000000000000000000000000000000000 --- a/spaces/zhuowen999/vits_chinese/text/symbols.py +++ /dev/null @@ -1,71 +0,0 @@ -_pause = ["sil", "eos", "sp", "#0", "#1", "#2", "#3"] - -_initials = [ - "^", - "b", - "c", - "ch", - "d", - "f", - "g", - "h", - "j", - "k", - "l", - "m", - "n", - "p", - "q", - "r", - "s", - "sh", - "t", - "x", - "z", - "zh", -] - -_tones = ["1", "2", "3", "4", "5"] - -_finals = [ - "a", - "ai", - "an", - "ang", - "ao", - "e", - "ei", - "en", - "eng", - "er", - "i", - "ia", - "ian", - "iang", - "iao", - "ie", - "ii", - "iii", - "in", - "ing", - "iong", - "iou", - "o", - "ong", - "ou", - "u", - "ua", - "uai", - "uan", - "uang", - "uei", - "uen", - "ueng", - "uo", - "v", - "van", - "ve", - "vn", -] - -symbols = _pause + _initials + [i + j for i in _finals for j in _tones] \ No newline at end of file diff --git a/spaces/zlc99/M4Singer/tasks/base_task.py b/spaces/zlc99/M4Singer/tasks/base_task.py deleted file mode 100644 index b74d25c85ce8a86865c5d5a09f3f92579ffb2074..0000000000000000000000000000000000000000 --- a/spaces/zlc99/M4Singer/tasks/base_task.py +++ /dev/null @@ -1,360 +0,0 @@ -import glob -import re -import subprocess -from datetime import datetime - -import matplotlib - -matplotlib.use('Agg') - -from utils.hparams import hparams, set_hparams -import random -import sys -import numpy as np -import torch.distributed as dist -from pytorch_lightning.loggers import TensorBoardLogger -from utils.pl_utils import LatestModelCheckpoint, BaseTrainer, data_loader, DDP -from torch import nn -import torch.utils.data -import utils -import logging -import os - -torch.multiprocessing.set_sharing_strategy(os.getenv('TORCH_SHARE_STRATEGY', 'file_system')) - -log_format = '%(asctime)s %(message)s' -logging.basicConfig(stream=sys.stdout, level=logging.INFO, - format=log_format, datefmt='%m/%d %I:%M:%S %p') - - -class BaseDataset(torch.utils.data.Dataset): - def __init__(self, shuffle): - super().__init__() - self.hparams = hparams - self.shuffle = shuffle - self.sort_by_len = hparams['sort_by_len'] - self.sizes = None - - @property - def _sizes(self): - return self.sizes - - def __getitem__(self, index): - raise NotImplementedError - - def collater(self, samples): - raise NotImplementedError - - def __len__(self): - return len(self._sizes) - - def num_tokens(self, index): - return self.size(index) - - def size(self, index): - """Return an example's size as a float or tuple. This value is used when - filtering a dataset with ``--max-positions``.""" - size = min(self._sizes[index], hparams['max_frames']) - return size - - def ordered_indices(self): - """Return an ordered list of indices. Batches will be constructed based - on this order.""" - if self.shuffle: - indices = np.random.permutation(len(self)) - if self.sort_by_len: - indices = indices[np.argsort(np.array(self._sizes)[indices], kind='mergesort')] - # 先random, 然后稳定排序, 保证排序后同长度的数据顺序是依照random permutation的 (被其随机打乱). - else: - indices = np.arange(len(self)) - return indices - - @property - def num_workers(self): - return int(os.getenv('NUM_WORKERS', hparams['ds_workers'])) - - -class BaseTask(nn.Module): - def __init__(self, *args, **kwargs): - # dataset configs - super(BaseTask, self).__init__(*args, **kwargs) - self.current_epoch = 0 - self.global_step = 0 - self.loaded_optimizer_states_dict = {} - self.trainer = None - self.logger = None - self.on_gpu = False - self.use_dp = False - self.use_ddp = False - self.example_input_array = None - - self.max_tokens = hparams['max_tokens'] - self.max_sentences = hparams['max_sentences'] - self.max_eval_tokens = hparams['max_eval_tokens'] - if self.max_eval_tokens == -1: - hparams['max_eval_tokens'] = self.max_eval_tokens = self.max_tokens - self.max_eval_sentences = hparams['max_eval_sentences'] - if self.max_eval_sentences == -1: - hparams['max_eval_sentences'] = self.max_eval_sentences = self.max_sentences - - self.model = None - self.training_losses_meter = None - - ########### - # Training, validation and testing - ########### - def build_model(self): - raise NotImplementedError - - def load_ckpt(self, ckpt_base_dir, current_model_name=None, model_name='model', force=True, strict=True): - # This function is updated on 2021.12.13 - if current_model_name is None: - current_model_name = model_name - utils.load_ckpt(self.__getattr__(current_model_name), ckpt_base_dir, current_model_name, force, strict) - - def on_epoch_start(self): - self.training_losses_meter = {'total_loss': utils.AvgrageMeter()} - - def _training_step(self, sample, batch_idx, optimizer_idx): - """ - - :param sample: - :param batch_idx: - :return: total loss: torch.Tensor, loss_log: dict - """ - raise NotImplementedError - - def training_step(self, sample, batch_idx, optimizer_idx=-1): - loss_ret = self._training_step(sample, batch_idx, optimizer_idx) - self.opt_idx = optimizer_idx - if loss_ret is None: - return {'loss': None} - total_loss, log_outputs = loss_ret - log_outputs = utils.tensors_to_scalars(log_outputs) - for k, v in log_outputs.items(): - if k not in self.training_losses_meter: - self.training_losses_meter[k] = utils.AvgrageMeter() - if not np.isnan(v): - self.training_losses_meter[k].update(v) - self.training_losses_meter['total_loss'].update(total_loss.item()) - - try: - log_outputs['lr'] = self.scheduler.get_lr() - if isinstance(log_outputs['lr'], list): - log_outputs['lr'] = log_outputs['lr'][0] - except: - pass - - # log_outputs['all_loss'] = total_loss.item() - progress_bar_log = log_outputs - tb_log = {f'tr/{k}': v for k, v in log_outputs.items()} - return { - 'loss': total_loss, - 'progress_bar': progress_bar_log, - 'log': tb_log - } - - def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx): - optimizer.step() - optimizer.zero_grad() - if self.scheduler is not None: - self.scheduler.step(self.global_step // hparams['accumulate_grad_batches']) - - def on_epoch_end(self): - loss_outputs = {k: round(v.avg, 4) for k, v in self.training_losses_meter.items()} - print(f"\n==============\n " - f"Epoch {self.current_epoch} ended. Steps: {self.global_step}. {loss_outputs}" - f"\n==============\n") - - def validation_step(self, sample, batch_idx): - """ - - :param sample: - :param batch_idx: - :return: output: dict - """ - raise NotImplementedError - - def _validation_end(self, outputs): - """ - - :param outputs: - :return: loss_output: dict - """ - raise NotImplementedError - - def validation_end(self, outputs): - loss_output = self._validation_end(outputs) - print(f"\n==============\n " - f"valid results: {loss_output}" - f"\n==============\n") - return { - 'log': {f'val/{k}': v for k, v in loss_output.items()}, - 'val_loss': loss_output['total_loss'] - } - - def build_scheduler(self, optimizer): - raise NotImplementedError - - def build_optimizer(self, model): - raise NotImplementedError - - def configure_optimizers(self): - optm = self.build_optimizer(self.model) - self.scheduler = self.build_scheduler(optm) - return [optm] - - def test_start(self): - pass - - def test_step(self, sample, batch_idx): - return self.validation_step(sample, batch_idx) - - def test_end(self, outputs): - return self.validation_end(outputs) - - ########### - # Running configuration - ########### - - @classmethod - def start(cls): - set_hparams() - os.environ['MASTER_PORT'] = str(random.randint(15000, 30000)) - random.seed(hparams['seed']) - np.random.seed(hparams['seed']) - task = cls() - work_dir = hparams['work_dir'] - trainer = BaseTrainer(checkpoint_callback=LatestModelCheckpoint( - filepath=work_dir, - verbose=True, - monitor='val_loss', - mode='min', - num_ckpt_keep=hparams['num_ckpt_keep'], - save_best=hparams['save_best'], - period=1 if hparams['save_ckpt'] else 100000 - ), - logger=TensorBoardLogger( - save_dir=work_dir, - name='lightning_logs', - version='lastest' - ), - gradient_clip_val=hparams['clip_grad_norm'], - val_check_interval=hparams['val_check_interval'], - row_log_interval=hparams['log_interval'], - max_updates=hparams['max_updates'], - num_sanity_val_steps=hparams['num_sanity_val_steps'] if not hparams[ - 'validate'] else 10000, - accumulate_grad_batches=hparams['accumulate_grad_batches']) - if not hparams['infer']: # train - t = datetime.now().strftime('%Y%m%d%H%M%S') - code_dir = f'{work_dir}/codes/{t}' - subprocess.check_call(f'mkdir -p "{code_dir}"', shell=True) - for c in hparams['save_codes']: - subprocess.check_call(f'cp -r "{c}" "{code_dir}/"', shell=True) - print(f"| Copied codes to {code_dir}.") - trainer.checkpoint_callback.task = task - trainer.fit(task) - else: - trainer.test(task) - - def configure_ddp(self, model, device_ids): - model = DDP( - model, - device_ids=device_ids, - find_unused_parameters=True - ) - if dist.get_rank() != 0 and not hparams['debug']: - sys.stdout = open(os.devnull, "w") - sys.stderr = open(os.devnull, "w") - random.seed(hparams['seed']) - np.random.seed(hparams['seed']) - return model - - def training_end(self, *args, **kwargs): - return None - - def init_ddp_connection(self, proc_rank, world_size): - set_hparams(print_hparams=False) - # guarantees unique ports across jobs from same grid search - default_port = 12910 - # if user gave a port number, use that one instead - try: - default_port = os.environ['MASTER_PORT'] - except Exception: - os.environ['MASTER_PORT'] = str(default_port) - - # figure out the root node addr - root_node = '127.0.0.2' - root_node = self.trainer.resolve_root_node_address(root_node) - os.environ['MASTER_ADDR'] = root_node - dist.init_process_group('nccl', rank=proc_rank, world_size=world_size) - - @data_loader - def train_dataloader(self): - return None - - @data_loader - def test_dataloader(self): - return None - - @data_loader - def val_dataloader(self): - return None - - def on_load_checkpoint(self, checkpoint): - pass - - def on_save_checkpoint(self, checkpoint): - pass - - def on_sanity_check_start(self): - pass - - def on_train_start(self): - pass - - def on_train_end(self): - pass - - def on_batch_start(self, batch): - pass - - def on_batch_end(self): - pass - - def on_pre_performance_check(self): - pass - - def on_post_performance_check(self): - pass - - def on_before_zero_grad(self, optimizer): - pass - - def on_after_backward(self): - pass - - def backward(self, loss, optimizer): - loss.backward() - - def grad_norm(self, norm_type): - results = {} - total_norm = 0 - for name, p in self.named_parameters(): - if p.requires_grad: - try: - param_norm = p.grad.data.norm(norm_type) - total_norm += param_norm ** norm_type - norm = param_norm ** (1 / norm_type) - - grad = round(norm.data.cpu().numpy().flatten()[0], 3) - results['grad_{}_norm_{}'.format(norm_type, name)] = grad - except Exception: - # this param had no grad - pass - - total_norm = total_norm ** (1. / norm_type) - grad = round(total_norm.data.cpu().numpy().flatten()[0], 3) - results['grad_{}_norm_total'.format(norm_type)] = grad - return results diff --git a/spaces/znskiss/Qwen-VL/eval_mm/evaluate_multiple_choice.py b/spaces/znskiss/Qwen-VL/eval_mm/evaluate_multiple_choice.py deleted file mode 100644 index b60aa369d742def68237fa938dcc00897a8681fb..0000000000000000000000000000000000000000 --- a/spaces/znskiss/Qwen-VL/eval_mm/evaluate_multiple_choice.py +++ /dev/null @@ -1,184 +0,0 @@ -import argparse -import itertools -import json -import os -from functools import partial - -import torch -from tqdm import tqdm -from transformers import AutoModelForCausalLM, AutoTokenizer - -multiple_choices = ['A', 'B', 'C', 'D', 'E'] - -ds_collections = { - 'scienceqa_test_img': { - 'test': 'data/scienceqa/scienceqa_test_img.jsonl', - } -} - - -def collate_fn(batches, pad_token_id): - - input_tokens = [_['input_tokens'] for _ in batches] - target_lengths = [_['target_lengths'] for _ in batches] - answers = [_['answer'] for _ in batches] - - chunk_sizes = [len(_) for _ in input_tokens] - - input_tokens = [_ for _ in itertools.chain.from_iterable(input_tokens)] - - max_lengths = max([len(_) for _ in input_tokens]) - input_tokens = [[pad_token_id] * (max_lengths - len(_)) + _ - for _ in input_tokens] - input_tokens = torch.LongTensor(input_tokens) - - attention_mask = 1 - input_tokens.eq(pad_token_id).float() - - return input_tokens, attention_mask, target_lengths, answers, chunk_sizes - - -class MultipleChoiceDataste(torch.utils.data.Dataset): - - def __init__(self, test, prompt, tokenizer): - self.datas = open(test).readlines() - self.prompt = prompt - self.tokenizer = tokenizer - - def __len__(self): - return len(self.datas) - - def __getitem__(self, idx): - - data = json.loads(self.datas[idx].strip()) - image = data['image'] - hint = data['hint'] if data['hint'] else 'N/A' - question = data['question'] - - choices = data['choices'] - choice_list = [] - for i, c in enumerate(choices): - choice_list.append('{}. {}'.format(multiple_choices[i], c)) - choice_txt = '\n'.join(choice_list) - - prompt = self.prompt.format(image, hint, question, choice_txt) - - prompt_tokens = self.tokenizer(prompt).input_ids - target_tokens = [ - self.tokenizer(' ' + _).input_ids - for _ in multiple_choices[:len(choices)] - ] - - return { - 'input_tokens': [prompt_tokens + _ for _ in target_tokens], - 'target_lengths': [len(_) for _ in target_tokens], - 'answer': data['answer'], - } - - -class InferenceSampler(torch.utils.data.sampler.Sampler): - - def __init__(self, size): - self._size = int(size) - assert size > 0 - self._rank = torch.distributed.get_rank() - self._world_size = torch.distributed.get_world_size() - self._local_indices = self._get_local_indices(size, self._world_size, - self._rank) - - @staticmethod - def _get_local_indices(total_size, world_size, rank): - shard_size = total_size // world_size - left = total_size % world_size - shard_sizes = [shard_size + int(r < left) for r in range(world_size)] - - begin = sum(shard_sizes[:rank]) - end = min(sum(shard_sizes[:rank + 1]), total_size) - return range(begin, end) - - def __iter__(self): - yield from self._local_indices - - def __len__(self): - return len(self._local_indices) - - -if __name__ == '__main__': - - parser = argparse.ArgumentParser() - parser.add_argument('--checkpoint', type=str, default='') - parser.add_argument('--dataset', type=str, default='') - parser.add_argument('--batch-size', type=int, default=1) - parser.add_argument('--num-workers', type=int, default=1) - args = parser.parse_args() - - torch.distributed.init_process_group( - backend='nccl', - world_size=int(os.getenv('WORLD_SIZE', '1')), - rank=int(os.getenv('RANK', '0')), - ) - - torch.cuda.set_device(torch.distributed.get_rank()) - - model = AutoModelForCausalLM.from_pretrained( - args.checkpoint, device_map='cuda', trust_remote_code=True).eval() - - tokenizer = AutoTokenizer.from_pretrained(args.checkpoint, - trust_remote_code=True) - - prompt = '{}Context: {}\nQuestion: {}\nOptions: {}\nAnswer:' - - dataset = MultipleChoiceDataste(test=ds_collections[args.dataset]['test'], - prompt=prompt, - tokenizer=tokenizer) - dataloader = torch.utils.data.DataLoader( - dataset=dataset, - sampler=InferenceSampler(len(dataset)), - batch_size=args.batch_size, - num_workers=args.num_workers, - pin_memory=True, - drop_last=False, - collate_fn=partial(collate_fn, pad_token_id=tokenizer.eod_id), - ) - - results = [] - with torch.no_grad(): - for _, (input_tokens, attention_mask, target_lengths, answer, - chunk_sizes) in tqdm(enumerate(dataloader)): - - outputs = model( - input_ids=input_tokens[:, :-1].cuda(), - attention_mask=attention_mask[:, :-1].cuda(), - return_dict=True, - ) - losses = torch.nn.functional.cross_entropy(outputs.logits.permute( - 0, 2, 1), - input_tokens[:, - 1:].cuda(), - reduction='none') - - losses = losses.split(chunk_sizes, dim=0) - - for loss, target_length, answer in zip(losses, target_lengths, - answer): - - target_loss = loss.mean(-1) - for _ in range(len(target_length)): - target_loss[_] = loss[_, -target_length[_]:].mean() - pred = target_loss.argmin().item() - if pred == answer: - results.append(1) - else: - results.append(0) - - torch.distributed.barrier() - - world_size = torch.distributed.get_world_size() - merged_results = [None for _ in range(world_size)] - torch.distributed.all_gather_object(merged_results, results) - - merged_results = [_ for _ in itertools.chain.from_iterable(merged_results)] - - if torch.distributed.get_rank() == 0: - print(f'Acc@1: {sum(merged_results) / len(merged_results)}') - - torch.distributed.barrier() diff --git a/spaces/zomehwh/sovits-rudolf/modules/modules.py b/spaces/zomehwh/sovits-rudolf/modules/modules.py deleted file mode 100644 index 54290fd207b25e93831bd21005990ea137e6b50e..0000000000000000000000000000000000000000 --- a/spaces/zomehwh/sovits-rudolf/modules/modules.py +++ /dev/null @@ -1,342 +0,0 @@ -import copy -import math -import numpy as np -import scipy -import torch -from torch import nn -from torch.nn import functional as F - -from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d -from torch.nn.utils import weight_norm, remove_weight_norm - -import modules.commons as commons -from modules.commons import init_weights, get_padding - - -LRELU_SLOPE = 0.1 - - -class LayerNorm(nn.Module): - def __init__(self, channels, eps=1e-5): - super().__init__() - self.channels = channels - self.eps = eps - - self.gamma = nn.Parameter(torch.ones(channels)) - self.beta = nn.Parameter(torch.zeros(channels)) - - def forward(self, x): - x = x.transpose(1, -1) - x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) - return x.transpose(1, -1) - - -class ConvReluNorm(nn.Module): - def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout): - super().__init__() - self.in_channels = in_channels - self.hidden_channels = hidden_channels - self.out_channels = out_channels - self.kernel_size = kernel_size - self.n_layers = n_layers - self.p_dropout = p_dropout - assert n_layers > 1, "Number of layers should be larger than 0." - - self.conv_layers = nn.ModuleList() - self.norm_layers = nn.ModuleList() - self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2)) - self.norm_layers.append(LayerNorm(hidden_channels)) - self.relu_drop = nn.Sequential( - nn.ReLU(), - nn.Dropout(p_dropout)) - for _ in range(n_layers-1): - self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2)) - self.norm_layers.append(LayerNorm(hidden_channels)) - self.proj = nn.Conv1d(hidden_channels, out_channels, 1) - self.proj.weight.data.zero_() - self.proj.bias.data.zero_() - - def forward(self, x, x_mask): - x_org = x - for i in range(self.n_layers): - x = self.conv_layers[i](x * x_mask) - x = self.norm_layers[i](x) - x = self.relu_drop(x) - x = x_org + self.proj(x) - return x * x_mask - - -class DDSConv(nn.Module): - """ - Dialted and Depth-Separable Convolution - """ - def __init__(self, channels, kernel_size, n_layers, p_dropout=0.): - super().__init__() - self.channels = channels - self.kernel_size = kernel_size - self.n_layers = n_layers - self.p_dropout = p_dropout - - self.drop = nn.Dropout(p_dropout) - self.convs_sep = nn.ModuleList() - self.convs_1x1 = nn.ModuleList() - self.norms_1 = nn.ModuleList() - self.norms_2 = nn.ModuleList() - for i in range(n_layers): - dilation = kernel_size ** i - padding = (kernel_size * dilation - dilation) // 2 - self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size, - groups=channels, dilation=dilation, padding=padding - )) - self.convs_1x1.append(nn.Conv1d(channels, channels, 1)) - self.norms_1.append(LayerNorm(channels)) - self.norms_2.append(LayerNorm(channels)) - - def forward(self, x, x_mask, g=None): - if g is not None: - x = x + g - for i in range(self.n_layers): - y = self.convs_sep[i](x * x_mask) - y = self.norms_1[i](y) - y = F.gelu(y) - y = self.convs_1x1[i](y) - y = self.norms_2[i](y) - y = F.gelu(y) - y = self.drop(y) - x = x + y - return x * x_mask - - -class WN(torch.nn.Module): - def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0): - super(WN, self).__init__() - assert(kernel_size % 2 == 1) - self.hidden_channels =hidden_channels - self.kernel_size = kernel_size, - self.dilation_rate = dilation_rate - self.n_layers = n_layers - self.gin_channels = gin_channels - self.p_dropout = p_dropout - - self.in_layers = torch.nn.ModuleList() - self.res_skip_layers = torch.nn.ModuleList() - self.drop = nn.Dropout(p_dropout) - - if gin_channels != 0: - cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1) - self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight') - - for i in range(n_layers): - dilation = dilation_rate ** i - padding = int((kernel_size * dilation - dilation) / 2) - in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size, - dilation=dilation, padding=padding) - in_layer = torch.nn.utils.weight_norm(in_layer, name='weight') - self.in_layers.append(in_layer) - - # last one is not necessary - if i < n_layers - 1: - res_skip_channels = 2 * hidden_channels - else: - res_skip_channels = hidden_channels - - res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1) - res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight') - self.res_skip_layers.append(res_skip_layer) - - def forward(self, x, x_mask, g=None, **kwargs): - output = torch.zeros_like(x) - n_channels_tensor = torch.IntTensor([self.hidden_channels]) - - if g is not None: - g = self.cond_layer(g) - - for i in range(self.n_layers): - x_in = self.in_layers[i](x) - if g is not None: - cond_offset = i * 2 * self.hidden_channels - g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:] - else: - g_l = torch.zeros_like(x_in) - - acts = commons.fused_add_tanh_sigmoid_multiply( - x_in, - g_l, - n_channels_tensor) - acts = self.drop(acts) - - res_skip_acts = self.res_skip_layers[i](acts) - if i < self.n_layers - 1: - res_acts = res_skip_acts[:,:self.hidden_channels,:] - x = (x + res_acts) * x_mask - output = output + res_skip_acts[:,self.hidden_channels:,:] - else: - output = output + res_skip_acts - return output * x_mask - - def remove_weight_norm(self): - if self.gin_channels != 0: - torch.nn.utils.remove_weight_norm(self.cond_layer) - for l in self.in_layers: - torch.nn.utils.remove_weight_norm(l) - for l in self.res_skip_layers: - torch.nn.utils.remove_weight_norm(l) - - -class ResBlock1(torch.nn.Module): - def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): - super(ResBlock1, self).__init__() - self.convs1 = nn.ModuleList([ - weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], - padding=get_padding(kernel_size, dilation[0]))), - weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], - padding=get_padding(kernel_size, dilation[1]))), - weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], - padding=get_padding(kernel_size, dilation[2]))) - ]) - self.convs1.apply(init_weights) - - self.convs2 = nn.ModuleList([ - weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, - padding=get_padding(kernel_size, 1))), - weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, - padding=get_padding(kernel_size, 1))), - weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, - padding=get_padding(kernel_size, 1))) - ]) - self.convs2.apply(init_weights) - - def forward(self, x, x_mask=None): - for c1, c2 in zip(self.convs1, self.convs2): - xt = F.leaky_relu(x, LRELU_SLOPE) - if x_mask is not None: - xt = xt * x_mask - xt = c1(xt) - xt = F.leaky_relu(xt, LRELU_SLOPE) - if x_mask is not None: - xt = xt * x_mask - xt = c2(xt) - x = xt + x - if x_mask is not None: - x = x * x_mask - return x - - def remove_weight_norm(self): - for l in self.convs1: - remove_weight_norm(l) - for l in self.convs2: - remove_weight_norm(l) - - -class ResBlock2(torch.nn.Module): - def __init__(self, channels, kernel_size=3, dilation=(1, 3)): - super(ResBlock2, self).__init__() - self.convs = nn.ModuleList([ - weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], - padding=get_padding(kernel_size, dilation[0]))), - weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], - padding=get_padding(kernel_size, dilation[1]))) - ]) - self.convs.apply(init_weights) - - def forward(self, x, x_mask=None): - for c in self.convs: - xt = F.leaky_relu(x, LRELU_SLOPE) - if x_mask is not None: - xt = xt * x_mask - xt = c(xt) - x = xt + x - if x_mask is not None: - x = x * x_mask - return x - - def remove_weight_norm(self): - for l in self.convs: - remove_weight_norm(l) - - -class Log(nn.Module): - def forward(self, x, x_mask, reverse=False, **kwargs): - if not reverse: - y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask - logdet = torch.sum(-y, [1, 2]) - return y, logdet - else: - x = torch.exp(x) * x_mask - return x - - -class Flip(nn.Module): - def forward(self, x, *args, reverse=False, **kwargs): - x = torch.flip(x, [1]) - if not reverse: - logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) - return x, logdet - else: - return x - - -class ElementwiseAffine(nn.Module): - def __init__(self, channels): - super().__init__() - self.channels = channels - self.m = nn.Parameter(torch.zeros(channels,1)) - self.logs = nn.Parameter(torch.zeros(channels,1)) - - def forward(self, x, x_mask, reverse=False, **kwargs): - if not reverse: - y = self.m + torch.exp(self.logs) * x - y = y * x_mask - logdet = torch.sum(self.logs * x_mask, [1,2]) - return y, logdet - else: - x = (x - self.m) * torch.exp(-self.logs) * x_mask - return x - - -class ResidualCouplingLayer(nn.Module): - def __init__(self, - channels, - hidden_channels, - kernel_size, - dilation_rate, - n_layers, - p_dropout=0, - gin_channels=0, - mean_only=False): - assert channels % 2 == 0, "channels should be divisible by 2" - super().__init__() - self.channels = channels - self.hidden_channels = hidden_channels - self.kernel_size = kernel_size - self.dilation_rate = dilation_rate - self.n_layers = n_layers - self.half_channels = channels // 2 - self.mean_only = mean_only - - self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) - self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels) - self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) - self.post.weight.data.zero_() - self.post.bias.data.zero_() - - def forward(self, x, x_mask, g=None, reverse=False): - x0, x1 = torch.split(x, [self.half_channels]*2, 1) - h = self.pre(x0) * x_mask - h = self.enc(h, x_mask, g=g) - stats = self.post(h) * x_mask - if not self.mean_only: - m, logs = torch.split(stats, [self.half_channels]*2, 1) - else: - m = stats - logs = torch.zeros_like(m) - - if not reverse: - x1 = m + x1 * torch.exp(logs) * x_mask - x = torch.cat([x0, x1], 1) - logdet = torch.sum(logs, [1,2]) - return x, logdet - else: - x1 = (x1 - m) * torch.exp(-logs) * x_mask - x = torch.cat([x0, x1], 1) - return x diff --git a/spaces/zomehwh/vits-uma-genshin-honkai/README.md b/spaces/zomehwh/vits-uma-genshin-honkai/README.md deleted file mode 100644 index fe8371b0e78d55cf1650a18217c82f25db5e490a..0000000000000000000000000000000000000000 --- a/spaces/zomehwh/vits-uma-genshin-honkai/README.md +++ /dev/null @@ -1,10 +0,0 @@ ---- -license: apache-2.0 -title: ' vits-uma-genshin-honkai' -sdk: gradio -sdk_version: 3.7 -emoji: 🐨 -colorTo: yellow -pinned: false -app_file: app.py ---- \ No newline at end of file