diff --git a/spaces/0xSynapse/LlamaGPT/app.py b/spaces/0xSynapse/LlamaGPT/app.py deleted file mode 100644 index d5b069f6dbf2c012411f3450a632bec9ce6b004e..0000000000000000000000000000000000000000 --- a/spaces/0xSynapse/LlamaGPT/app.py +++ /dev/null @@ -1,408 +0,0 @@ -"""Run codes.""" -# pylint: disable=line-too-long, broad-exception-caught, invalid-name, missing-function-docstring, too-many-instance-attributes, missing-class-docstring -# ruff: noqa: E501 -import gc -import os -import platform -import random -import time -from dataclasses import asdict, dataclass -from pathlib import Path - -# from types import SimpleNamespace -import gradio as gr -import psutil -from about_time import about_time -from ctransformers import AutoModelForCausalLM -from dl_hf_model import dl_hf_model -from loguru import logger - - - - -# url = "https://huggingface.co/TheBloke/Llama-2-13B-chat-GGML/blob/main/llama-2-13b-chat.ggmlv3.q2_K.bin" -#url = "https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML/blob/main/llama-2-7b-chat.ggmlv3.q2_K.bin" # 2.87G -url = "https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML/blob/main/llama-2-7b-chat.ggmlv3.q4_K_M.bin" # 2.87G - - -prompt_template = """Below is an instruction that describes a task. Write a response that appropriately completes the request. - -### Instruction: {user_prompt} - -### Response: -""" - -prompt_template = """System: You are a helpful, -respectful and honest assistant. Always answer as -helpfully as possible, while being safe. Your answers -should not include any harmful, unethical, racist, -sexist, toxic, dangerous, or illegal content. Please -ensure that your responses are socially unbiased and -positive in nature. If a question does not make any -sense, or is not factually coherent, explain why instead -of answering something not correct. If you don't know -the answer to a question, please don't share false -information. -User: {prompt} -Assistant: """ - -prompt_template = """System: You are a helpful assistant. -User: {prompt} -Assistant: """ - -prompt_template = """Question: {question} -Answer: Let's work this out in a step by step way to be sure we have the right answer.""" - -prompt_template = """[INST] <> -You are a helpful, respectful and honest assistant. Always answer as helpfully as possible assistant. Think step by step. -<> - -What NFL team won the Super Bowl in the year Justin Bieber was born? -[/INST]""" - -prompt_template = """[INST] <> -You are an unhelpful assistant. Always answer as helpfully as possible. Think step by step. <> - -{question} [/INST] -""" - -prompt_template = """[INST] <> -You are a helpful assistant. -<> - -{question} [/INST] -""" - -_ = [elm for elm in prompt_template.splitlines() if elm.strip()] -stop_string = [elm.split(":")[0] + ":" for elm in _][-2] - -logger.debug(f"{stop_string=}") - -_ = psutil.cpu_count(logical=False) - 1 -cpu_count: int = int(_) if _ else 1 -logger.debug(f"{cpu_count=}") - -LLM = None -gc.collect() - -try: - model_loc, file_size = dl_hf_model(url) -except Exception as exc_: - logger.error(exc_) - raise SystemExit(1) from exc_ - -LLM = AutoModelForCausalLM.from_pretrained( - model_loc, - model_type="llama", - # threads=cpu_count, -) - -logger.info(f"done load llm {model_loc=} {file_size=}G") - -os.environ["TZ"] = "Asia/Shanghai" -try: - time.tzset() # type: ignore # pylint: disable=no-member -except Exception: - # Windows - logger.warning("Windows, cant run time.tzset()") - -_ = """ -ns = SimpleNamespace( - response="", - generator=(_ for _ in []), -) -# """ - -@dataclass -class GenerationConfig: - temperature: float = 0.7 - top_k: int = 50 - top_p: float = 0.9 - repetition_penalty: float = 1.0 - max_new_tokens: int = 512 - seed: int = 42 - reset: bool = False - stream: bool = True - # threads: int = cpu_count - # stop: list[str] = field(default_factory=lambda: [stop_string]) - - -def generate( - question: str, - llm=LLM, - config: GenerationConfig = GenerationConfig(), -): - """Run model inference, will return a Generator if streaming is true.""" - # _ = prompt_template.format(question=question) - # print(_) - - prompt = prompt_template.format(question=question) - - return llm( - prompt, - **asdict(config), - ) - - -logger.debug(f"{asdict(GenerationConfig())=}") - - -def user(user_message, history): - # return user_message, history + [[user_message, None]] - history.append([user_message, None]) - return user_message, history # keep user_message - - -def user1(user_message, history): - # return user_message, history + [[user_message, None]] - history.append([user_message, None]) - return "", history # clear user_message - - -def bot_(history): - user_message = history[-1][0] - resp = random.choice(["How are you?", "I love you", "I'm very hungry"]) - bot_message = user_message + ": " + resp - history[-1][1] = "" - for character in bot_message: - history[-1][1] += character - time.sleep(0.02) - yield history - - history[-1][1] = resp - yield history - - -def bot(history): - user_message = history[-1][0] - response = [] - - logger.debug(f"{user_message=}") - - with about_time() as atime: # type: ignore - flag = 1 - prefix = "" - then = time.time() - - logger.debug("about to generate") - - config = GenerationConfig(reset=True) - for elm in generate(user_message, config=config): - if flag == 1: - logger.debug("in the loop") - prefix = f"({time.time() - then:.2f}s) " - flag = 0 - print(prefix, end="", flush=True) - logger.debug(f"{prefix=}") - print(elm, end="", flush=True) - # logger.debug(f"{elm}") - - response.append(elm) - history[-1][1] = prefix + "".join(response) - yield history - - _ = ( - f"(time elapsed: {atime.duration_human}, " # type: ignore - f"{atime.duration/len(''.join(response)):.2f}s/char)" # type: ignore - ) - - history[-1][1] = "".join(response) + f"\n{_}" - yield history - - -def predict_api(prompt): - logger.debug(f"{prompt=}") - try: - # user_prompt = prompt - config = GenerationConfig( - temperature=0.2, - top_k=10, - top_p=0.9, - repetition_penalty=1.0, - max_new_tokens=512, # adjust as needed - seed=42, - reset=True, # reset history (cache) - stream=False, - # threads=cpu_count, - # stop=prompt_prefix[1:2], - ) - - response = generate( - prompt, - config=config, - ) - - logger.debug(f"api: {response=}") - except Exception as exc: - logger.error(exc) - response = f"{exc=}" - # bot = {"inputs": [response]} - # bot = [(prompt, response)] - - return response - - -css = """ - .importantButton { - background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important; - border: none !important; - } - .importantButton:hover { - background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important; - border: none !important; - } - .disclaimer {font-variant-caps: all-small-caps; font-size: xx-small;} - .xsmall {font-size: x-small;} -""" -etext = """In America, where cars are an important part of the national psyche, a decade ago people had suddenly started to drive less, which had not happened since the oil shocks of the 1970s. """ -examples_list = [ - ["What is the capital of India"], - ["How to play Chess? Provide detailed steps."], - ["If it takes 10 hours to dry 10 clothes, assuming all the clothes are hung together at the same time for drying , then how long will it take to dry a cloth?"], - ["is infinity + 1 bigger than infinity?"], - ["Explain the plot of Oppenheimer 2023 movie in a sentence."], - ["How long does it take to become proficient in French, and what are the best methods for retaining information?"], - ["What are some common mistakes to avoid when writing code?"], - ["Build a prompt to generate a beautiful portrait of a horse"], - ["Suggest four metaphors to describe the benefits of AI"], - ["Write most important points of Bhagavad Gita"], - ["Write a summary Why is it so hard to understand Quantum mechanics"], - -] - -logger.info("start block") - -with gr.Blocks( - title="LlamaGPTšŸ¤–", - theme=gr.themes.Soft(text_size="sm", spacing_size="sm"), - css=css, -) as block: - # buff_var = gr.State("") - with gr.Accordion("LlamaGPT🧠", open=False, style={"text-align": "center", "font-weight": "bold"}): - - gr.Markdown( - f"""
-
Gradio Demo for Meta's Llama 2 7B-chat

- Few examples are there as prompts to test the model. You probably should try on your own related prompts to test the bot. -
""", - elem_classes="xsmall", - ) - - # chatbot = gr.Chatbot().style(height=700) # 500 - chatbot = gr.Chatbot(height=500) - - # buff = gr.Textbox(show_label=False, visible=True) - - with gr.Row(): - with gr.Column(scale=5): - msg = gr.Textbox( - label="Chat Message Box", - placeholder="Ask me anything (press Shift+Enter or click Submit to send)", - show_label=False, - # container=False, - lines=6, - max_lines=30, - show_copy_button=True, - # ).style(container=False) - ) - with gr.Column(scale=1, min_width=50): - with gr.Row(): - submit = gr.Button("Submit", elem_classes="xsmall") - stop = gr.Button("Stop", visible=True) - clear = gr.Button("Clear History", visible=True) - with gr.Row(visible=False): - with gr.Accordion("Advanced Options:", open=False): - with gr.Row(): - with gr.Column(scale=2): - system = gr.Textbox( - label="System Prompt", - value=prompt_template, - show_label=False, - container=False, - # ).style(container=False) - ) - with gr.Column(): - with gr.Row(): - change = gr.Button("Change System Prompt") - reset = gr.Button("Reset System Prompt") - - with gr.Accordion("Example Inputs", open=True): - examples = gr.Examples( - examples=examples_list, - inputs=[msg], - examples_per_page=40, - ) - - # with gr.Row(): - with gr.Accordion("Disclaimer", open=False): - _ = Path(model_loc).name - gr.Markdown( - f"Disclaimer: {_} can produce factually incorrect output, and should not be relied on to produce " - "factually accurate information. {_} was trained on various public datasets; while great efforts " - "have been taken to clean the pretraining data, it is possible that this model could generate lewd, " - "biased, or otherwise offensive outputs.", - elem_classes=["disclaimer"], - ) - - msg_submit_event = msg.submit( - # fn=conversation.user_turn, - fn=user, - inputs=[msg, chatbot], - outputs=[msg, chatbot], - queue=True, - show_progress="full", - # api_name=None, - ).then(bot, chatbot, chatbot, queue=True) - submit_click_event = submit.click( - # fn=lambda x, y: ("",) + user(x, y)[1:], # clear msg - fn=user1, # clear msg - inputs=[msg, chatbot], - outputs=[msg, chatbot], - queue=True, - # queue=False, - show_progress="full", - # api_name=None, - ).then(bot, chatbot, chatbot, queue=True) - stop.click( - fn=None, - inputs=None, - outputs=None, - cancels=[msg_submit_event, submit_click_event], - queue=False, - ) - clear.click(lambda: None, None, chatbot, queue=False) - - with gr.Accordion("For Chat/Translation API", open=False, visible=False): - input_text = gr.Text() - api_btn = gr.Button("Go", variant="primary") - out_text = gr.Text() - - api_btn.click( - predict_api, - input_text, - out_text, - api_name="api", - ) - - # block.load(update_buff, [], buff, every=1) - # block.load(update_buff, [buff_var], [buff_var, buff], every=1) - -# concurrency_count=5, max_size=20 -# max_size=36, concurrency_count=14 -# CPU cpu_count=2 16G, model 7G -# CPU UPGRADE cpu_count=8 32G, model 7G - -# does not work -_ = """ -# _ = int(psutil.virtual_memory().total / 10**9 // file_size - 1) -# concurrency_count = max(_, 1) -if psutil.cpu_count(logical=False) >= 8: - # concurrency_count = max(int(32 / file_size) - 1, 1) -else: - # concurrency_count = max(int(16 / file_size) - 1, 1) -# """ - -concurrency_count = 1 -logger.info(f"{concurrency_count=}") - -block.queue(concurrency_count=concurrency_count, max_size=5).launch(debug=True) diff --git a/spaces/101-5/gpt4free/g4f/.v1/testing/aicolors_test.py b/spaces/101-5/gpt4free/g4f/.v1/testing/aicolors_test.py deleted file mode 100644 index 853f7e4560e9003b3a1d76119243027f06ec577c..0000000000000000000000000000000000000000 --- a/spaces/101-5/gpt4free/g4f/.v1/testing/aicolors_test.py +++ /dev/null @@ -1,6 +0,0 @@ -from gpt4free import aicolors - -prompt = "Light green color" -req = aicolors.Completion.create(prompt=prompt) - -print(req) diff --git a/spaces/17TheWord/RealESRGAN/realesrgan/utils.py b/spaces/17TheWord/RealESRGAN/realesrgan/utils.py deleted file mode 100644 index 10e7c23d04f777c250160e74470fdfacb16eab88..0000000000000000000000000000000000000000 --- a/spaces/17TheWord/RealESRGAN/realesrgan/utils.py +++ /dev/null @@ -1,280 +0,0 @@ -import cv2 -import math -import numpy as np -import os -import queue -import threading -import torch -from basicsr.utils.download_util import load_file_from_url -from torch.nn import functional as F - -ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) - - -class RealESRGANer(): - """A helper class for upsampling images with RealESRGAN. - - Args: - scale (int): Upsampling scale factor used in the networks. It is usually 2 or 4. - model_path (str): The path to the pretrained model. It can be urls (will first download it automatically). - model (nn.Module): The defined network. Default: None. - tile (int): As too large images result in the out of GPU memory issue, so this tile option will first crop - input images into tiles, and then process each of them. Finally, they will be merged into one image. - 0 denotes for do not use tile. Default: 0. - tile_pad (int): The pad size for each tile, to remove border artifacts. Default: 10. - pre_pad (int): Pad the input images to avoid border artifacts. Default: 10. - half (float): Whether to use half precision during inference. Default: False. - """ - - def __init__(self, scale, model_path, model=None, tile=0, tile_pad=10, pre_pad=10, half=False): - self.scale = scale - self.tile_size = tile - self.tile_pad = tile_pad - self.pre_pad = pre_pad - self.mod_scale = None - self.half = half - - # initialize model - self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') - # if the model_path starts with https, it will first download models to the folder: realesrgan/weights - if model_path.startswith('https://'): - model_path = load_file_from_url( - url=model_path, model_dir=os.path.join(ROOT_DIR, 'realesrgan/weights'), progress=True, file_name=None) - loadnet = torch.load(model_path, map_location=torch.device('cpu')) - # prefer to use params_ema - if 'params_ema' in loadnet: - keyname = 'params_ema' - else: - keyname = 'params' - model.load_state_dict(loadnet[keyname], strict=True) - model.eval() - self.model = model.to(self.device) - if self.half: - self.model = self.model.half() - - def pre_process(self, img): - """Pre-process, such as pre-pad and mod pad, so that the images can be divisible - """ - img = torch.from_numpy(np.transpose(img, (2, 0, 1))).float() - self.img = img.unsqueeze(0).to(self.device) - if self.half: - self.img = self.img.half() - - # pre_pad - if self.pre_pad != 0: - self.img = F.pad(self.img, (0, self.pre_pad, 0, self.pre_pad), 'reflect') - # mod pad for divisible borders - if self.scale == 2: - self.mod_scale = 2 - elif self.scale == 1: - self.mod_scale = 4 - if self.mod_scale is not None: - self.mod_pad_h, self.mod_pad_w = 0, 0 - _, _, h, w = self.img.size() - if (h % self.mod_scale != 0): - self.mod_pad_h = (self.mod_scale - h % self.mod_scale) - if (w % self.mod_scale != 0): - self.mod_pad_w = (self.mod_scale - w % self.mod_scale) - self.img = F.pad(self.img, (0, self.mod_pad_w, 0, self.mod_pad_h), 'reflect') - - def process(self): - # model inference - self.output = self.model(self.img) - - def tile_process(self): - """It will first crop input images to tiles, and then process each tile. - Finally, all the processed tiles are merged into one images. - - Modified from: https://github.com/ata4/esrgan-launcher - """ - batch, channel, height, width = self.img.shape - output_height = height * self.scale - output_width = width * self.scale - output_shape = (batch, channel, output_height, output_width) - - # start with black image - self.output = self.img.new_zeros(output_shape) - tiles_x = math.ceil(width / self.tile_size) - tiles_y = math.ceil(height / self.tile_size) - - # loop over all tiles - for y in range(tiles_y): - for x in range(tiles_x): - # extract tile from input image - ofs_x = x * self.tile_size - ofs_y = y * self.tile_size - # input tile area on total image - input_start_x = ofs_x - input_end_x = min(ofs_x + self.tile_size, width) - input_start_y = ofs_y - input_end_y = min(ofs_y + self.tile_size, height) - - # input tile area on total image with padding - input_start_x_pad = max(input_start_x - self.tile_pad, 0) - input_end_x_pad = min(input_end_x + self.tile_pad, width) - input_start_y_pad = max(input_start_y - self.tile_pad, 0) - input_end_y_pad = min(input_end_y + self.tile_pad, height) - - # input tile dimensions - input_tile_width = input_end_x - input_start_x - input_tile_height = input_end_y - input_start_y - tile_idx = y * tiles_x + x + 1 - input_tile = self.img[:, :, input_start_y_pad:input_end_y_pad, input_start_x_pad:input_end_x_pad] - - # upscale tile - try: - with torch.no_grad(): - output_tile = self.model(input_tile) - except RuntimeError as error: - print('Error', error) - print(f'\tTile {tile_idx}/{tiles_x * tiles_y}') - - # output tile area on total image - output_start_x = input_start_x * self.scale - output_end_x = input_end_x * self.scale - output_start_y = input_start_y * self.scale - output_end_y = input_end_y * self.scale - - # output tile area without padding - output_start_x_tile = (input_start_x - input_start_x_pad) * self.scale - output_end_x_tile = output_start_x_tile + input_tile_width * self.scale - output_start_y_tile = (input_start_y - input_start_y_pad) * self.scale - output_end_y_tile = output_start_y_tile + input_tile_height * self.scale - - # put tile into output image - self.output[:, :, output_start_y:output_end_y, - output_start_x:output_end_x] = output_tile[:, :, output_start_y_tile:output_end_y_tile, - output_start_x_tile:output_end_x_tile] - - def post_process(self): - # remove extra pad - if self.mod_scale is not None: - _, _, h, w = self.output.size() - self.output = self.output[:, :, 0:h - self.mod_pad_h * self.scale, 0:w - self.mod_pad_w * self.scale] - # remove prepad - if self.pre_pad != 0: - _, _, h, w = self.output.size() - self.output = self.output[:, :, 0:h - self.pre_pad * self.scale, 0:w - self.pre_pad * self.scale] - return self.output - - @torch.no_grad() - def enhance(self, img, outscale=None, alpha_upsampler='realesrgan'): - h_input, w_input = img.shape[0:2] - # img: numpy - img = img.astype(np.float32) - if np.max(img) > 256: # 16-bit image - max_range = 65535 - print('\tInput is a 16-bit image') - else: - max_range = 255 - img = img / max_range - if len(img.shape) == 2: # gray image - img_mode = 'L' - img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) - elif img.shape[2] == 4: # RGBA image with alpha channel - img_mode = 'RGBA' - alpha = img[:, :, 3] - img = img[:, :, 0:3] - img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) - if alpha_upsampler == 'realesrgan': - alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2RGB) - else: - img_mode = 'RGB' - img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) - - # ------------------- process image (without the alpha channel) ------------------- # - self.pre_process(img) - if self.tile_size > 0: - self.tile_process() - else: - self.process() - output_img = self.post_process() - output_img = output_img.data.squeeze().float().cpu().clamp_(0, 1).numpy() - output_img = np.transpose(output_img[[2, 1, 0], :, :], (1, 2, 0)) - if img_mode == 'L': - output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2GRAY) - - # ------------------- process the alpha channel if necessary ------------------- # - if img_mode == 'RGBA': - if alpha_upsampler == 'realesrgan': - self.pre_process(alpha) - if self.tile_size > 0: - self.tile_process() - else: - self.process() - output_alpha = self.post_process() - output_alpha = output_alpha.data.squeeze().float().cpu().clamp_(0, 1).numpy() - output_alpha = np.transpose(output_alpha[[2, 1, 0], :, :], (1, 2, 0)) - output_alpha = cv2.cvtColor(output_alpha, cv2.COLOR_BGR2GRAY) - else: # use the cv2 resize for alpha channel - h, w = alpha.shape[0:2] - output_alpha = cv2.resize(alpha, (w * self.scale, h * self.scale), interpolation=cv2.INTER_LINEAR) - - # merge the alpha channel - output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2BGRA) - output_img[:, :, 3] = output_alpha - - # ------------------------------ return ------------------------------ # - if max_range == 65535: # 16-bit image - output = (output_img * 65535.0).round().astype(np.uint16) - else: - output = (output_img * 255.0).round().astype(np.uint8) - - if outscale is not None and outscale != float(self.scale): - output = cv2.resize( - output, ( - int(w_input * outscale), - int(h_input * outscale), - ), interpolation=cv2.INTER_LANCZOS4) - - return output, img_mode - - -class PrefetchReader(threading.Thread): - """Prefetch images. - - Args: - img_list (list[str]): A image list of image paths to be read. - num_prefetch_queue (int): Number of prefetch queue. - """ - - def __init__(self, img_list, num_prefetch_queue): - super().__init__() - self.que = queue.Queue(num_prefetch_queue) - self.img_list = img_list - - def run(self): - for img_path in self.img_list: - img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) - self.que.put(img) - - self.que.put(None) - - def __next__(self): - next_item = self.que.get() - if next_item is None: - raise StopIteration - return next_item - - def __iter__(self): - return self - - -class IOConsumer(threading.Thread): - - def __init__(self, opt, que, qid): - super().__init__() - self._queue = que - self.qid = qid - self.opt = opt - - def run(self): - while True: - msg = self._queue.get() - if isinstance(msg, str) and msg == 'quit': - break - - output = msg['output'] - save_path = msg['save_path'] - cv2.imwrite(save_path, output) - print(f'IO worker {self.qid} is done.') diff --git a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Download Badmashiyaan Fun Never Ends Movie In Hindi Mp4.md b/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Download Badmashiyaan Fun Never Ends Movie In Hindi Mp4.md deleted file mode 100644 index 9cdcc43721c16a00d87891350ac437e0d57965b8..0000000000000000000000000000000000000000 --- a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Download Badmashiyaan Fun Never Ends Movie In Hindi Mp4.md +++ /dev/null @@ -1,25 +0,0 @@ - -

How to Download Badmashiyaan Fun Never Ends Movie In Hindi Mp4

-

Badmashiyaan Fun Never Ends is a 2015 Hindi romantic comedy film that revolves around the lives of five people who cross paths in unexpected ways. The film stars Sharib Hashmi, Sidhant Gupta, Suzanna Mukherjee, Karan Mehra and Gunjan Malhotra in the lead roles. The film is directed by Amit Khanna and produced by Vijay Gutte.

-

Download Badmashiyaan Fun Never Ends Movie In Hindi Mp4


Download Zip ———>>> https://byltly.com/2uKyHI



-

If you are looking for a fun and entertaining movie to watch with your friends or family, you might want to download Badmashiyaan Fun Never Ends movie in Hindi mp4 format. Mp4 is a popular video format that can be played on various devices such as smartphones, tablets, laptops and TVs. Mp4 also offers good quality and compression, which means you can enjoy the movie without taking up too much space on your device.

-

But how can you download Badmashiyaan Fun Never Ends movie in Hindi mp4? Here are some easy steps to follow:

-
    -
  1. Find a reliable and legal website that offers Badmashiyaan Fun Never Ends movie in Hindi mp4 for download. You can search on Google or use a website like Movies on Google Play that has a wide collection of movies in different languages and formats.
  2. -
  3. Select the movie and click on the download button. You might need to sign up or pay a small fee depending on the website. Make sure you have enough storage space on your device before downloading.
  4. -
  5. Wait for the download to complete. Depending on your internet speed and the size of the file, this might take some time. You can check the progress of the download on your device or browser.
  6. -
  7. Once the download is done, you can enjoy watching Badmashiyaan Fun Never Ends movie in Hindi mp4 anytime and anywhere you want. You can also share it with your friends or family if you like.
  8. -
-

That's it! You have successfully downloaded Badmashiyaan Fun Never Ends movie in Hindi mp4. Now you can laugh along with the hilarious antics of Dev, Nari, Palak, Pinkesh and Jassi as they find love and mischief in this fun-filled film.

- -

Badmashiyaan Fun Never Ends Movie Review

-

Now that you know how to download Badmashiyaan Fun Never Ends movie in Hindi mp4, you might be wondering if it is worth watching. Well, to be honest, the movie is not very impressive or enjoyable. It has a weak plot, mediocre acting and a boring soundtrack. The movie tries to be a romantic comedy, but fails to make you laugh or feel for the characters.

-

-

The movie has five main characters who are involved in a complicated web of love and deceit. Naari is a con girl who dates men and runs away with their money. Dev is a cafe owner who falls for Naari and gets dumped by her. Palak is a girl who lives next door to Dev and develops feelings for him. Pinkesh is Dev's friend and a private investigator who is also obsessed with Naari. Jassi is a reformed gangster who becomes Naari's next target.

-

The movie follows their stories as they cross paths in one eventful day. The movie tries to show how fate plays a role in bringing people together or apart. However, the movie does not have any logic or coherence in its narration. The characters are poorly written and have no depth or personality. The dialogues are dull and cliched. The situations are unrealistic and forced.

-

The movie also lacks any humor or romance. The comedy scenes are not funny at all and rely on cheap jokes and slapstick. The romance scenes are not romantic at all and lack any chemistry or emotion. The movie does not make you care about any of the characters or their relationships.

-

The movie also has a disappointing soundtrack that does not add any value to the movie. The songs are forgettable and do not suit the mood or theme of the movie. The background score is also bland and repetitive.

-

The only saving grace of the movie is Karan Mehra's comic performance as Pinkesh. He manages to bring some laughter with his quirky expressions and dialogues. He is the only character who has some charm and likability in the movie.

-

Overall, Badmashiyaan Fun Never Ends is a movie that you can easily skip and not miss anything. It is a waste of time and money and does not offer any entertainment or satisfaction. It is a poorly made movie that does not live up to its title.

cec2833e83
-
-
\ No newline at end of file diff --git a/spaces/1gistliPinn/ChatGPT4/Examples/DVDpedia 6.0.1 Crack macOS MacOSX The Ultimate Movie Cataloging Software.md b/spaces/1gistliPinn/ChatGPT4/Examples/DVDpedia 6.0.1 Crack macOS MacOSX The Ultimate Movie Cataloging Software.md deleted file mode 100644 index c74f80cdecc32b650f93eb23b31f30257179e1af..0000000000000000000000000000000000000000 --- a/spaces/1gistliPinn/ChatGPT4/Examples/DVDpedia 6.0.1 Crack macOS MacOSX The Ultimate Movie Cataloging Software.md +++ /dev/null @@ -1,6 +0,0 @@ -

DVDpedia 6.0.1 Crack macOS MacOSX


Download File ––– https://imgfil.com/2uy02w



-
- aaccfb2cb3
-
-
-

diff --git a/spaces/1gistliPinn/ChatGPT4/Examples/Evangelion 111 Vostfr Ddl TOP.md b/spaces/1gistliPinn/ChatGPT4/Examples/Evangelion 111 Vostfr Ddl TOP.md deleted file mode 100644 index e28aa5a102d10332be2d0b402fc08aac01245076..0000000000000000000000000000000000000000 --- a/spaces/1gistliPinn/ChatGPT4/Examples/Evangelion 111 Vostfr Ddl TOP.md +++ /dev/null @@ -1,6 +0,0 @@ -

Evangelion 111 Vostfr Ddl


Download File ✓✓✓ https://imgfil.com/2uy02i



- -[url=http://plan-gay.net/filmvf-vostfr/293982/insurrection-streaming-complet ... [url=http://hogew0.com/Anime/armitage-iii-polymatrix-dub.73867/] ... [url=http://y2mk89.com/info/evangelion-the-end-of-evangelion]Evangelion: The ... 1fdad05405
-
-
-

diff --git a/spaces/1phancelerku/anime-remove-background/Convert YouTube Videos to MP3 Files for Free and Easy Listening.md b/spaces/1phancelerku/anime-remove-background/Convert YouTube Videos to MP3 Files for Free and Easy Listening.md deleted file mode 100644 index 87021e76cf290ab3f1efbbf50d58127c11bbffe1..0000000000000000000000000000000000000000 --- a/spaces/1phancelerku/anime-remove-background/Convert YouTube Videos to MP3 Files for Free and Easy Listening.md +++ /dev/null @@ -1,150 +0,0 @@ -
-

How to Download Music from YouTube for Free

-

YouTube is one of the most popular platforms for streaming videos and music online. Millions of people use YouTube every day to listen to their favorite songs, artists, and genres. But what if you want to download music from YouTube and listen to it offline, without ads or interruptions? Is it possible, legal, and ethical?

-

how to download music from youtube for free


DOWNLOADhttps://jinyurl.com/2uNOPp



-

Introduction

-

In this article, we will show you four different methods to download music from YouTube for free. We will explain how each method works, what are the advantages and disadvantages, and what are the legal and ethical implications. By the end of this article, you will be able to choose the best method for your needs and enjoy your favorite music offline.

-

Why download music from YouTube?

-

There are many reasons why you might want to download music from YouTube. Some of them are:

- -

What are the legal and ethical issues?

-

Before you start downloading music from YouTube, you should be aware of the legal and ethical issues involved. Downloading music from YouTube is not always allowed by the site's terms of service or by the law. You should only download music that is yours or that falls under the Creative Commons license, which means that the creator has given permission for others to use their work. You should also respect the rights of the artists and record labels who own the music and pay them for their work if possible. Downloading music from YouTube without permission or payment can be considered piracy and copyright infringement, which can have serious consequences.

-

How to convert YouTube videos to MP3 files
-How to download songs from YouTube Music Premium
-How to use 4K Video Downloader to save audio from YouTube
-How to extract music from YouTube videos with MediaHuman
-How to download royalty-free music from YouTube Audio Library
-How to use online converters to download music from YouTube
-How to download playlists from YouTube Music app
-How to find and download Creative Commons music from YouTube
-How to use VLC media player to record audio from YouTube
-How to download music from YouTube using Firefox extensions
-How to download music from YouTube using Chrome extensions
-How to download music from YouTube using Safari extensions
-How to download music from YouTube using Opera extensions
-How to download music from YouTube using Microsoft Edge extensions
-How to download music from YouTube using Android apps
-How to download music from YouTube using iOS apps
-How to download music from YouTube using Windows apps
-How to download music from YouTube using Mac apps
-How to download music from YouTube using Linux apps
-How to download music from YouTube using web browsers
-How to download high-quality music from YouTube
-How to download 320kbps MP3 files from YouTube
-How to download FLAC files from YouTube
-How to download WAV files from YouTube
-How to download M4A files from YouTube
-How to edit and trim audio files downloaded from YouTube
-How to add metadata and album art to audio files downloaded from YouTube
-How to transfer audio files downloaded from YouTube to other devices
-How to burn audio files downloaded from YouTube to CDs or DVDs
-How to upload audio files downloaded from YouTube to cloud storage services
-How to create ringtones from audio files downloaded from YouTube
-How to make remixes or mashups from audio files downloaded from YouTube
-How to use audio files downloaded from YouTube in your own projects
-How to cite audio files downloaded from YouTube in your academic papers or presentations
-How to avoid copyright infringement when downloading music from YouTube
-How to check the license of the music before downloading it from YouTube
-How to report illegal or inappropriate music on YouTube
-How to request permission from the artist or rights holder before downloading music from YouTube
-How to support the artists whose music you download from YouTube
-How to subscribe and pay for YouTube Music or YouTube Premium services

-

Method 1: Using YouTube Music Premium

-

The easiest and most reliable way to download music from YouTube is to subscribe to YouTube Music Premium, a service that lets you listen to YouTube music offline. YouTube Music Premium costs $9.99 per month or $11.99 per month if you also want access to YouTube Premium, which includes ad-free videos and other features. Note that paying for YouTube Music Premium does not give you access to YouTube Premium, but paying for YouTube Premium does give you access to YouTube Music Premium.

-

How to subscribe to YouTube Music Premium

-

To subscribe to YouTube Music Premium, you need to have a Google account and a valid payment method. You can sign up for a free trial of one month before you start paying. Here are the steps to subscribe:

-
    -
  1. Go to [6](https://music.youtube.com/) in your web browser or open the YouTube Music app on your mobile device.
  2. -
  3. Click or tap on your profile icon in the top-right corner of the screen.
  4. -
  5. Select "Upgrade" or "Get Music Premium".
  6. -
  7. Choose your payment method and enter your details.
  8. -
  9. Confirm your subscription and enjoy your free trial.
  10. -
-

How to download music from YouTube Music app

-

To download music from YouTube Music app, you need to have an active subscription and a mobile device with enough storage space. You can download individual songs, albums, playlists, or your entire library. Here are the steps to download music from YouTube Music app:

-
    -
  1. Open the YouTube Music app on your mobile device and sign in with your Google account.
  2. -
  3. Find the song, album, playlist, or library that you want to download.
  4. -
  5. Tap on the three-dot menu icon next to the item and select "Download".
  6. -
  7. Wait for the download to complete. You can check the progress in the "Library" tab under "Downloads".
  8. -
  9. To listen to your downloaded music offline, go to the "Library" tab and turn on the "Offline" toggle at the top of the screen.
  10. -
-

Method 2: Using 4K Video Downloader

-

Another way to download music from YouTube is to use a software called 4K Video Downloader, which lets you download videos and audio from YouTube and other sites. 4K Video Downloader is free to use, but you can upgrade to a premium version for $15 that removes ads and allows unlimited downloads. 4K Video Downloader is available for Windows, Mac, and Linux.

-

How to download and install 4K Video Downloader

-

To download and install 4K Video Downloader, you need to have a computer with enough storage space and an internet connection. Here are the steps to download and install 4K Video Downloader:

-
    -
  1. Go to [5](https://www.4kdownload.com/products/product-videodownloader) in your web browser and click on the "Get 4K Video Downloader" button.
  2. -
  3. Choose your operating system and download the installer file.
  4. -
  5. Run the installer file and follow the instructions to install 4K Video Downloader on your computer.
  6. -
  7. Launch 4K Video Downloader and agree to the terms of service.
  8. -
-

How to download music from YouTube using 4K Video Downloader

-

To download music from YouTube using 4K Video Downloader, you need to have the software installed on your computer and a YouTube video URL. Here are the steps to download music from YouTube using 4K Video Downloader:

-
    -
  1. Open your web browser and go to YouTube. Find the video that contains the music that you want to download and copy its URL.
  2. -
  3. Open 4K Video Downloader and click on the "Paste Link" button at the top-left corner of the screen.
  4. -
  5. The software will analyze the video and show you a list of options. Choose the format and quality that you want for your audio file. You can also choose the destination folder for your file.
  6. -
  7. Click on the "Download" button and wait for the download to finish. You can check the progress in the "Downloads" tab.
  8. -
  9. To listen to your downloaded music, go to the destination folder and open the file with your preferred media player.
  10. -

Method 3: Using MediaHuman

-

A third way to download music from YouTube is to use a software called MediaHuman, which lets you download videos and audio from YouTube and other sites. MediaHuman is free to use, but you can upgrade to a premium version for $19.95 that removes ads and allows unlimited downloads. MediaHuman is available for Windows, Mac, and Linux.

-

How to download and install MediaHuman

-

To download and install MediaHuman, you need to have a computer with enough storage space and an internet connection. Here are the steps to download and install MediaHuman:

-
    -
  1. Go to [4](https://www.mediahuman.com/download.html) in your web browser and click on the "Download" button for your operating system.
  2. -
  3. Download the installer file and run it.
  4. -
  5. Follow the instructions to install MediaHuman on your computer.
  6. -
  7. Launch MediaHuman and agree to the terms of service.
  8. -
-

How to download music from YouTube using MediaHuman

-

To download music from YouTube using MediaHuman, you need to have the software installed on your computer and a YouTube video URL. Here are the steps to download music from YouTube using MediaHuman:

-
    -
  1. Open your web browser and go to YouTube. Find the video that contains the music that you want to download and copy its URL.
  2. -
  3. Open MediaHuman and click on the "+" button at the top-right corner of the screen.
  4. -
  5. The software will automatically paste the URL and start downloading the audio file. You can change the format, quality, and destination folder of your file in the settings.
  6. -
  7. Wait for the download to complete. You can check the progress in the "Downloads" tab.
  8. -
  9. To listen to your downloaded music, go to the destination folder and open the file with your preferred media player.
  10. -
-

Method 4: Using Online Converters

-

The last way to download music from YouTube is to use online converters, which are websites that let you convert videos and audio from YouTube and other sites. Online converters are free to use, but they may have limitations on the number of downloads, file size, format, quality, or speed. Online converters are also less reliable and secure than software, as they may contain ads, malware, or viruses.

-

How to use online converters to download music from YouTube

-

To use online converters to download music from YouTube, you need to have a web browser, an internet connection, and a YouTube video URL. Here are the steps to use online converters to download music from YouTube:

-
    -
  1. Open your web browser and go to YouTube. Find the video that contains the music that you want to download and copy its URL.
  2. -
  3. Go to an online converter website, such as [3](https://ytmp3.cc/en13/), [2](https://youtubetomp3music.com/en1/), or [1](https://www.onlinevideoconverter.com/mp3-converter).
  4. -
  5. Paste the URL in the input box and choose the format and quality that you want for your audio file.
  6. -
  7. Click on the "Convert" or "Download" button and wait for the conversion to finish.
  8. -
  9. Click on the "Download" or "Save" button and save the file on your computer or mobile device.
  10. -
-

What are the pros and cons of online converters?

-

Online converters have some pros and cons that you should consider before using them. Some of them are:

- | Pros | Cons | | --- | --- | | They are easy and fast to use. | They may have low quality or limited options. | | They do not require installation or registration. | They may have ads or pop-ups that can be annoying or harmful. | | They work on any device or browser. | They may not be safe or secure for your data or device. |

Conclusion

-

In this article, we have shown you four different methods to download music from YouTube for free. We have explained how each method works, what are the advantages and disadvantages, and what are the legal and ethical implications. We hope that this article has helped you choose the best method for your needs and enjoy your favorite music offline.

- Here are some FAQs that you might have after reading this article:

Q: Can I download any music from YouTube?

-

A: No, you can only download music that is yours or that falls under the Creative Commons license, which means that the creator has given permission for others to use their work. Downloading music without permission or payment can be illegal and unethical.

- Q: Which method is the best for downloading music from YouTube? -

A: There is no definitive answer to this question, as different methods have different pros and cons. The best method for you depends on your preferences, needs, and resources. You should consider factors such as quality, speed, convenience, cost, reliability, and security when choosing a method.

-

Q: How can I download music from YouTube to my iPhone or iPad?

-

A: You can use any of the methods mentioned in this article to download music from YouTube to your iPhone or iPad, but you may need to transfer the files from your computer to your device using iTunes or a third-party app. Alternatively, you can use an app that allows you to download music directly from YouTube to your device, such as [Documents by Readdle] or [Musify].

-

Q: How can I download music from YouTube to my Android phone or tablet?

-

A: You can use any of the methods mentioned in this article to download music from YouTube to your Android phone or tablet, but you may need to change the settings of your device to allow downloads from unknown sources. Alternatively, you can use an app that allows you to download music directly from YouTube to your device, such as [TubeMate] or [SnapTube].

-

Q: How can I download music from YouTube to my MP3 player?

-

A: You can use any of the methods mentioned in this article to download music from YouTube to your MP3 player, but you may need to convert the files to MP3 format if they are not already. You can use a software or an online converter to do this. Then, you can transfer the files from your computer to your MP3 player using a USB cable or a memory card.

-

Q: How can I download music from YouTube legally and ethically?

-

A: You can download music from YouTube legally and ethically by following these tips:

-

197e85843d
-
-
\ No newline at end of file diff --git a/spaces/1phancelerku/anime-remove-background/Enjoy Unlimited Lives and Boosters with Candy Crush Saga APK.md b/spaces/1phancelerku/anime-remove-background/Enjoy Unlimited Lives and Boosters with Candy Crush Saga APK.md deleted file mode 100644 index 616edae2c9c293348e2948fee5674853904722de..0000000000000000000000000000000000000000 --- a/spaces/1phancelerku/anime-remove-background/Enjoy Unlimited Lives and Boosters with Candy Crush Saga APK.md +++ /dev/null @@ -1,87 +0,0 @@ - -

Apk4fun Candy Crush Saga: A Sweet and Fun Puzzle Game

-

If you are looking for a casual game that can keep you entertained for hours, you should try Apk4fun Candy Crush Saga. This is a popular puzzle game that has millions of fans around the world. In this article, we will tell you what Apk4fun Candy Crush Saga is, why you should play it, and how to download and install it on your Android device.

-

apk4fun candy crush saga


Download Ziphttps://jinyurl.com/2uNQUQ



-

What is Apk4fun Candy Crush Saga?

-

Apk4fun Candy Crush Saga is a free casual game for Android devices that you can download from the official website of Apk4fun. Apk4fun is a platform that offers a variety of games and apps for Android users. You can find games of different genres, such as action, adventure, arcade, puzzle, racing, simulation, sports, and more.

-

A match-3 puzzle game with colorful candies

-

Apk4fun Candy Crush Saga is a match-3 puzzle game that involves swapping and matching candies of the same color to clear them from the board. The game has hundreds of levels, each with a different goal and layout. Some levels require you to collect a certain number of candies, some require you to clear jelly or frosting from the board, some require you to bring down ingredients to the bottom, and some require you to score a certain number of points within a time limit or a limited number of moves.

-

A game with hundreds of levels and challenges

-

One of the reasons why Apk4fun Candy Crush Saga is so popular is that it has hundreds of levels that offer different challenges and surprises. The game is constantly updated with new episodes and events that add more fun and variety to the gameplay. You can also unlock special candies and boosters that can help you complete difficult levels. Some of the special candies are striped candies, wrapped candies, color bombs, jelly fish, coconut wheels, and more. Some of the boosters are lollipop hammers, free switches, extra moves, extra time, and more.

-

Why should you play Apk4fun Candy Crush Saga?

-

There are many reasons why you should play Apk4fun Candy Crush Saga. Here are some of them:

-

It is easy to play but hard to master

-

Apk4fun Candy Crush Saga is a game that anyone can play, regardless of their age or skill level. The game has simple controls and rules that are easy to understand. You just need to swipe your finger on the screen to swap and match candies. However, the game also requires strategy and planning to complete the levels efficiently. You need to think ahead and use your moves wisely. You also need to deal with obstacles and blockers that can make the levels harder.

-

apk4fun candy crush saga download free
-apk4fun candy crush saga latest version
-apk4fun candy crush saga mod apk
-apk4fun candy crush saga cheats and tips
-apk4fun candy crush saga update
-apk4fun candy crush saga hack
-apk4fun candy crush saga offline
-apk4fun candy crush saga for android
-apk4fun candy crush saga for pc
-apk4fun candy crush saga online
-apk4fun candy crush saga game play
-apk4fun candy crush saga reviews
-apk4fun candy crush saga levels
-apk4fun candy crush saga unlimited lives
-apk4fun candy crush saga boosters
-apk4fun candy crush saga friends
-apk4fun candy crush saga jelly
-apk4fun candy crush saga soda
-apk4fun candy crush saga wiki
-apk4fun candy crush saga facebook
-apk4fun candy crush saga windows 10
-apk4fun candy crush saga install
-apk4fun candy crush saga android 11
-apk4fun candy crush saga new features
-apk4fun candy crush saga events
-apk4fun candy crush saga rewards
-apk4fun candy crush saga challenges
-apk4fun candy crush saga leaderboard
-apk4fun candy crush saga gold bars
-apk4fun candy crush saga episodes
-apk4fun candy crush saga characters
-apk4fun candy crush saga costumes
-apk4fun candy crush saga themes
-apk4fun candy crush saga wallpapers
-apk4fun candy crush saga stickers
-apk4fun candy crush saga emojis
-apk4fun candy crush saga memes
-apk4fun candy crush saga trivia
-apk4fun candy crush saga quiz
-apk4fun candy crush saga puzzles
-apk4fun candy crush saga merchandise
-apk4fun candy crush saga toys
-apk4fun candy crush saga books
-apk4fun candy crush saga comics
-apk4fun candy crush saga movies
-apk4fun candy crush saga tv show
-apk4fun candy crush saga music
-apk4fun candy crush saga songs
-apk4fun candy crush saga soundtracks

-

It is fun and addictive

-

Apk4fun Candy Crush Saga is a game that can keep you hooked for hours. The game has a colorful and cute design that appeals to many players. The game also has a satisfying sound effect when you match candies and clear them from the board. The game also has a rewarding system that gives you stars, points, coins, lives, and other prizes when you complete levels. The game also has a progress map that shows you how far you have gone in the game.

-

It has amazing graphics and sound effects

-

Apk4fun Candy Crush Saga is a game p>The second step is to search for Candy Crush Saga in the games category. You can use the search bar at the top of the website or browse through the categories and subcategories. You can also filter the games by popularity, rating, date, or alphabet.

-

Download the latest version of the game

-

The third step is to download the latest version of Apk4fun Candy Crush Saga. You can find the download link on the game page, along with the game description, screenshots, reviews, and other information. You can also see the file size, version number, and update date of the game. You need to click on the download link and wait for the file to be downloaded to your device.

-

Install the game on your device and enjoy

-

The final step is to install Apk4fun Candy Crush Saga on your device and enjoy playing it. You need to locate the downloaded file on your device and tap on it to start the installation process. You may need to enable the installation of apps from unknown sources in your device settings. You need to follow the instructions on the screen and grant the necessary permissions to the game. Once the installation is complete, you can launch the game and start matching candies.

-

Conclusion

-

Apk4fun Candy Crush Saga is a sweet and fun puzzle game that you can play on your Android device. It is a match-3 game that involves swapping and matching candies of the same color to clear them from the board. It has hundreds of levels, each with a different goal and challenge. It also has amazing graphics, sound effects, social features, and rewards. You can download and install Apk4fun Candy Crush Saga from the official website of Apk4fun by following the steps we have explained in this article. We hope you enjoy playing this game and have a great time.

-

FAQs

-

Here are some frequently asked questions about Apk4fun Candy Crush Saga:

-

Q: Is Apk4fun Candy Crush Saga safe to download and play?

-

A: Yes, Apk4fun Candy Crush Saga is safe to download and play. Apk4fun is a trusted platform that offers verified and tested games and apps for Android users. You should always download Apk4fun Candy Crush Saga from the official website of Apk4fun and avoid other sources that may contain viruses or malware.

-

Q: How can I update Apk4fun Candy Crush Saga?

-

A: You can update Apk4fun Candy Crush Saga by visiting the official website of Apk4fun and downloading the latest version of the game. You can also check for updates in the game settings or notifications. You should always update Apk4fun Candy Crush Saga to enjoy new features, levels, events, and bug fixes.

-

Q: How can I sync Apk4fun Candy Crush Saga with Facebook?

-

A: You can sync Apk4fun Candy Crush Saga with Facebook by connecting your Facebook account in the game settings. This will allow you to save your progress, access your game on multiple devices, see your friends' scores, send and receive lives, gifts, and messages, and join tournaments and leaderboards.

-

Q: How can I get more lives in Apk4fun Candy Crush Saga?

-

A: You can get more lives in Apk4fun Candy Crush Saga by waiting for them to refill over time, asking your friends to send you lives, buying them with coins or real money, or using boosters or special candies that can give you extra lives.

-

Q: How can I contact Apk4fun or Candy Crush Saga support?

-

A: You can contact Apk4fun by visiting their website and filling out their contact form or sending them an email at support@apk4fun.com. You can also follow them on Facebook, Twitter, Instagram, or YouTube for updates and news. You can contact Candy Crush Saga support by visiting their website and filling out their support form or sending them an email at candycrush.feedback@king.com. You can also follow them on Facebook, Twitter, Instagram, or YouTube for updates and news.

401be4b1e0
-
-
\ No newline at end of file diff --git a/spaces/AEUPH/SENTIENCE_PROGRAMMING_LANGUAGE/style.css b/spaces/AEUPH/SENTIENCE_PROGRAMMING_LANGUAGE/style.css deleted file mode 100644 index 114adf441e9032febb46bc056b2a8bb651075f0d..0000000000000000000000000000000000000000 --- a/spaces/AEUPH/SENTIENCE_PROGRAMMING_LANGUAGE/style.css +++ /dev/null @@ -1,28 +0,0 @@ -body { - padding: 2rem; - font-family: -apple-system, BlinkMacSystemFont, "Arial", sans-serif; -} - -h1 { - font-size: 16px; - margin-top: 0; -} - -p { - color: rgb(107, 114, 128); - font-size: 15px; - margin-bottom: 10px; - margin-top: 5px; -} - -.card { - max-width: 620px; - margin: 0 auto; - padding: 16px; - border: 1px solid lightgray; - border-radius: 16px; -} - -.card p:last-child { - margin-bottom: 0; -} diff --git a/spaces/AIGC-Audio/AudioGPT/NeuralSeq/vocoders/__init__.py b/spaces/AIGC-Audio/AudioGPT/NeuralSeq/vocoders/__init__.py deleted file mode 100644 index 66c318857ce48048437dede7072901ad6471b8fc..0000000000000000000000000000000000000000 --- a/spaces/AIGC-Audio/AudioGPT/NeuralSeq/vocoders/__init__.py +++ /dev/null @@ -1 +0,0 @@ -from vocoders import hifigan diff --git a/spaces/AIGC-Audio/AudioGPT/text_to_speech/modules/commons/rnn.py b/spaces/AIGC-Audio/AudioGPT/text_to_speech/modules/commons/rnn.py deleted file mode 100644 index 205c2c76b8fda2de920bc59228a5eec0a20119a9..0000000000000000000000000000000000000000 --- a/spaces/AIGC-Audio/AudioGPT/text_to_speech/modules/commons/rnn.py +++ /dev/null @@ -1,261 +0,0 @@ -import torch -from torch import nn -import torch.nn.functional as F - - -class PreNet(nn.Module): - def __init__(self, in_dims, fc1_dims=256, fc2_dims=128, dropout=0.5): - super().__init__() - self.fc1 = nn.Linear(in_dims, fc1_dims) - self.fc2 = nn.Linear(fc1_dims, fc2_dims) - self.p = dropout - - def forward(self, x): - x = self.fc1(x) - x = F.relu(x) - x = F.dropout(x, self.p, training=self.training) - x = self.fc2(x) - x = F.relu(x) - x = F.dropout(x, self.p, training=self.training) - return x - - -class HighwayNetwork(nn.Module): - def __init__(self, size): - super().__init__() - self.W1 = nn.Linear(size, size) - self.W2 = nn.Linear(size, size) - self.W1.bias.data.fill_(0.) - - def forward(self, x): - x1 = self.W1(x) - x2 = self.W2(x) - g = torch.sigmoid(x2) - y = g * F.relu(x1) + (1. - g) * x - return y - - -class BatchNormConv(nn.Module): - def __init__(self, in_channels, out_channels, kernel, relu=True): - super().__init__() - self.conv = nn.Conv1d(in_channels, out_channels, kernel, stride=1, padding=kernel // 2, bias=False) - self.bnorm = nn.BatchNorm1d(out_channels) - self.relu = relu - - def forward(self, x): - x = self.conv(x) - x = F.relu(x) if self.relu is True else x - return self.bnorm(x) - - -class ConvNorm(torch.nn.Module): - def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, - padding=None, dilation=1, bias=True, w_init_gain='linear'): - super(ConvNorm, self).__init__() - if padding is None: - assert (kernel_size % 2 == 1) - padding = int(dilation * (kernel_size - 1) / 2) - - self.conv = torch.nn.Conv1d(in_channels, out_channels, - kernel_size=kernel_size, stride=stride, - padding=padding, dilation=dilation, - bias=bias) - - torch.nn.init.xavier_uniform_( - self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) - - def forward(self, signal): - conv_signal = self.conv(signal) - return conv_signal - - -class CBHG(nn.Module): - def __init__(self, K, in_channels, channels, proj_channels, num_highways): - super().__init__() - - # List of all rnns to call `flatten_parameters()` on - self._to_flatten = [] - - self.bank_kernels = [i for i in range(1, K + 1)] - self.conv1d_bank = nn.ModuleList() - for k in self.bank_kernels: - conv = BatchNormConv(in_channels, channels, k) - self.conv1d_bank.append(conv) - - self.maxpool = nn.MaxPool1d(kernel_size=2, stride=1, padding=1) - - self.conv_project1 = BatchNormConv(len(self.bank_kernels) * channels, proj_channels[0], 3) - self.conv_project2 = BatchNormConv(proj_channels[0], proj_channels[1], 3, relu=False) - - # Fix the highway input if necessary - if proj_channels[-1] != channels: - self.highway_mismatch = True - self.pre_highway = nn.Linear(proj_channels[-1], channels, bias=False) - else: - self.highway_mismatch = False - - self.highways = nn.ModuleList() - for i in range(num_highways): - hn = HighwayNetwork(channels) - self.highways.append(hn) - - self.rnn = nn.GRU(channels, channels, batch_first=True, bidirectional=True) - self._to_flatten.append(self.rnn) - - # Avoid fragmentation of RNN parameters and associated warning - self._flatten_parameters() - - def forward(self, x): - # Although we `_flatten_parameters()` on init, when using DataParallel - # the model gets replicated, making it no longer guaranteed that the - # weights are contiguous in GPU memory. Hence, we must call it again - self._flatten_parameters() - - # Save these for later - residual = x - seq_len = x.size(-1) - conv_bank = [] - - # Convolution Bank - for conv in self.conv1d_bank: - c = conv(x) # Convolution - conv_bank.append(c[:, :, :seq_len]) - - # Stack along the channel axis - conv_bank = torch.cat(conv_bank, dim=1) - - # dump the last padding to fit residual - x = self.maxpool(conv_bank)[:, :, :seq_len] - - # Conv1d projections - x = self.conv_project1(x) - x = self.conv_project2(x) - - # Residual Connect - x = x + residual - - # Through the highways - x = x.transpose(1, 2) - if self.highway_mismatch is True: - x = self.pre_highway(x) - for h in self.highways: - x = h(x) - - # And then the RNN - x, _ = self.rnn(x) - return x - - def _flatten_parameters(self): - """Calls `flatten_parameters` on all the rnns used by the WaveRNN. Used - to improve efficiency and avoid PyTorch yelling at us.""" - [m.flatten_parameters() for m in self._to_flatten] - - -class TacotronEncoder(nn.Module): - def __init__(self, embed_dims, num_chars, cbhg_channels, K, num_highways, dropout): - super().__init__() - self.embedding = nn.Embedding(num_chars, embed_dims) - self.pre_net = PreNet(embed_dims, embed_dims, embed_dims, dropout=dropout) - self.cbhg = CBHG(K=K, in_channels=cbhg_channels, channels=cbhg_channels, - proj_channels=[cbhg_channels, cbhg_channels], - num_highways=num_highways) - self.proj_out = nn.Linear(cbhg_channels * 2, cbhg_channels) - - def forward(self, x): - x = self.embedding(x) - x = self.pre_net(x) - x.transpose_(1, 2) - x = self.cbhg(x) - x = self.proj_out(x) - return x - - -class RNNEncoder(nn.Module): - def __init__(self, num_chars, embedding_dim, n_convolutions=3, kernel_size=5): - super(RNNEncoder, self).__init__() - self.embedding = nn.Embedding(num_chars, embedding_dim, padding_idx=0) - convolutions = [] - for _ in range(n_convolutions): - conv_layer = nn.Sequential( - ConvNorm(embedding_dim, - embedding_dim, - kernel_size=kernel_size, stride=1, - padding=int((kernel_size - 1) / 2), - dilation=1, w_init_gain='relu'), - nn.BatchNorm1d(embedding_dim)) - convolutions.append(conv_layer) - self.convolutions = nn.ModuleList(convolutions) - - self.lstm = nn.LSTM(embedding_dim, int(embedding_dim / 2), 1, - batch_first=True, bidirectional=True) - - def forward(self, x): - input_lengths = (x > 0).sum(-1) - input_lengths = input_lengths.cpu().numpy() - - x = self.embedding(x) - x = x.transpose(1, 2) # [B, H, T] - for conv in self.convolutions: - x = F.dropout(F.relu(conv(x)), 0.5, self.training) + x - x = x.transpose(1, 2) # [B, T, H] - - # pytorch tensor are not reversible, hence the conversion - x = nn.utils.rnn.pack_padded_sequence(x, input_lengths, batch_first=True, enforce_sorted=False) - - self.lstm.flatten_parameters() - outputs, _ = self.lstm(x) - outputs, _ = nn.utils.rnn.pad_packed_sequence(outputs, batch_first=True) - - return outputs - - -class DecoderRNN(torch.nn.Module): - def __init__(self, hidden_size, decoder_rnn_dim, dropout): - super(DecoderRNN, self).__init__() - self.in_conv1d = nn.Sequential( - torch.nn.Conv1d( - in_channels=hidden_size, - out_channels=hidden_size, - kernel_size=9, padding=4, - ), - torch.nn.ReLU(), - torch.nn.Conv1d( - in_channels=hidden_size, - out_channels=hidden_size, - kernel_size=9, padding=4, - ), - ) - self.ln = nn.LayerNorm(hidden_size) - if decoder_rnn_dim == 0: - decoder_rnn_dim = hidden_size * 2 - self.rnn = torch.nn.LSTM( - input_size=hidden_size, - hidden_size=decoder_rnn_dim, - num_layers=1, - batch_first=True, - bidirectional=True, - dropout=dropout - ) - self.rnn.flatten_parameters() - self.conv1d = torch.nn.Conv1d( - in_channels=decoder_rnn_dim * 2, - out_channels=hidden_size, - kernel_size=3, - padding=1, - ) - - def forward(self, x): - input_masks = x.abs().sum(-1).ne(0).data[:, :, None] - input_lengths = input_masks.sum([-1, -2]) - input_lengths = input_lengths.cpu().numpy() - - x = self.in_conv1d(x.transpose(1, 2)).transpose(1, 2) - x = self.ln(x) - x = nn.utils.rnn.pack_padded_sequence(x, input_lengths, batch_first=True, enforce_sorted=False) - self.rnn.flatten_parameters() - x, _ = self.rnn(x) # [B, T, C] - x, _ = nn.utils.rnn.pad_packed_sequence(x, batch_first=True) - x = x * input_masks - pre_mel = self.conv1d(x.transpose(1, 2)).transpose(1, 2) # [B, T, C] - pre_mel = pre_mel * input_masks - return pre_mel diff --git a/spaces/AIGText/GlyphControl/ldm/modules/midas/midas/midas_net.py b/spaces/AIGText/GlyphControl/ldm/modules/midas/midas/midas_net.py deleted file mode 100644 index 8a954977800b0a0f48807e80fa63041910e33c1f..0000000000000000000000000000000000000000 --- a/spaces/AIGText/GlyphControl/ldm/modules/midas/midas/midas_net.py +++ /dev/null @@ -1,76 +0,0 @@ -"""MidashNet: Network for monocular depth estimation trained by mixing several datasets. -This file contains code that is adapted from -https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py -""" -import torch -import torch.nn as nn - -from .base_model import BaseModel -from .blocks import FeatureFusionBlock, Interpolate, _make_encoder - - -class MidasNet(BaseModel): - """Network for monocular depth estimation. - """ - - def __init__(self, path=None, features=256, non_negative=True): - """Init. - - Args: - path (str, optional): Path to saved model. Defaults to None. - features (int, optional): Number of features. Defaults to 256. - backbone (str, optional): Backbone network for encoder. Defaults to resnet50 - """ - print("Loading weights: ", path) - - super(MidasNet, self).__init__() - - use_pretrained = False if path is None else True - - self.pretrained, self.scratch = _make_encoder(backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained) - - self.scratch.refinenet4 = FeatureFusionBlock(features) - self.scratch.refinenet3 = FeatureFusionBlock(features) - self.scratch.refinenet2 = FeatureFusionBlock(features) - self.scratch.refinenet1 = FeatureFusionBlock(features) - - self.scratch.output_conv = nn.Sequential( - nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1), - Interpolate(scale_factor=2, mode="bilinear"), - nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1), - nn.ReLU(True), - nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0), - nn.ReLU(True) if non_negative else nn.Identity(), - ) - - if path: - self.load(path) - - def forward(self, x): - """Forward pass. - - Args: - x (tensor): input data (image) - - Returns: - tensor: depth - """ - - layer_1 = self.pretrained.layer1(x) - layer_2 = self.pretrained.layer2(layer_1) - layer_3 = self.pretrained.layer3(layer_2) - layer_4 = self.pretrained.layer4(layer_3) - - layer_1_rn = self.scratch.layer1_rn(layer_1) - layer_2_rn = self.scratch.layer2_rn(layer_2) - layer_3_rn = self.scratch.layer3_rn(layer_3) - layer_4_rn = self.scratch.layer4_rn(layer_4) - - path_4 = self.scratch.refinenet4(layer_4_rn) - path_3 = self.scratch.refinenet3(path_4, layer_3_rn) - path_2 = self.scratch.refinenet2(path_3, layer_2_rn) - path_1 = self.scratch.refinenet1(path_2, layer_1_rn) - - out = self.scratch.output_conv(path_1) - - return torch.squeeze(out, dim=1) diff --git a/spaces/AIML-TUDA/does-clip-know-my-face/README.md b/spaces/AIML-TUDA/does-clip-know-my-face/README.md deleted file mode 100644 index ff26c6f5776a6db167726d6c79ea7816c518a408..0000000000000000000000000000000000000000 --- a/spaces/AIML-TUDA/does-clip-know-my-face/README.md +++ /dev/null @@ -1,64 +0,0 @@ ---- -title: Does Clip Know My Face? -emoji: šŸ§‘ -colorFrom: blue -colorTo: red -sdk: gradio -sdk_version: 3.18.0 -app_file: app.py -pinned: false -license: cc-by-sa-4.0 -python_version: 3.10.0 ---- - -# Example Images License Information - -### Barbara Schƶneberger - -| Image Name | Image Url | Author | License | -|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------| -| Barbara_Schƶneberger_0.jpg | [https://upload.wikimedia.org/wikipedia/commons/1/1d/Barbara_Sch%C3%B6neberger_-_Deutscher_Radiopreis_Hamburg_2016_13.jpg](https://upload.wikimedia.org/wikipedia/commons/1/1d/Barbara_Sch%C3%B6neberger_-_Deutscher_Radiopreis_Hamburg_2016_13.jpg) | Frank Schwichtenberg | CC-BY-SA-3.0 | -| Barbara_Schƶneberger_1.jpg | [https://upload.wikimedia.org/wikipedia/commons/9/9d/Barbara_Sch%C3%B6neberger_%282007%29.jpg](https://upload.wikimedia.org/wikipedia/commons/9/9d/Barbara_Sch%C3%B6neberger_%282007%29.jpg) | Pottschalk | CC-BY-SA-3.0 | -| Barbara_Schƶneberger_2.jpg | [https://upload.wikimedia.org/wikipedia/commons/f/f0/Barbara_Sch%C3%B6neberger_-_Deutscher_Radiopreis_Hamburg_2016_03.jpg](https://upload.wikimedia.org/wikipedia/commons/f/f0/Barbara_Sch%C3%B6neberger_-_Deutscher_Radiopreis_Hamburg_2016_03.jpg) | Frank Schwichtenberg | CC-BY-SA-3.0 | -| Barbara_Schƶneberger_3.jpg | [https://upload.wikimedia.org/wikipedia/commons/f/fa/Barbara_Sch%C3%B6neberger_-_Deutscher_Radiopreis_Hamburg_2016_12.jpg](https://upload.wikimedia.org/wikipedia/commons/f/fa/Barbara_Sch%C3%B6neberger_-_Deutscher_Radiopreis_Hamburg_2016_12.jpg) | Frank Schwichtenberg | CC-BY-SA-3.0 | -| Barbara_Schƶneberger_4.jpg | [https://upload.wikimedia.org/wikipedia/commons/0/0a/Barbara_Sch%C3%B6neberger_-_Deutscher_Radiopreis_Hamburg_2016_01.jpg](https://upload.wikimedia.org/wikipedia/commons/0/0a/Barbara_Sch%C3%B6neberger_-_Deutscher_Radiopreis_Hamburg_2016_01.jpg) | Frank Schwichtenberg | CC-BY-SA-3.0 | - -### Carolin Kebekus - -| Image Name | Image Url | Author | License | -|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------| -| Carolin_Kebekus_0.jpg | [https://upload.wikimedia.org/wikipedia/commons/c/ce/Carolin_Kebekus_-_2019102193318_2019-04-12_Radio_Regenbogen_Award_2019_-_Sven_-_1D_X_MK_II_-_0905_-_AK8I0075.jpg](https://upload.wikimedia.org/wikipedia/commons/c/ce/Carolin_Kebekus_-_2019102193318_2019-04-12_Radio_Regenbogen_Award_2019_-_Sven_-_1D_X_MK_II_-_0905_-_AK8I0075.jpg) | Sven Mandel | CC-BY-SA-4.0 | -| Carolin_Kebekus_1.jpg | [https://upload.wikimedia.org/wikipedia/commons/4/45/Carolin-Kebekus-Bonn.jpg](https://upload.wikimedia.org/wikipedia/commons/4/45/Carolin-Kebekus-Bonn.jpg) | Superbass | CC-BY-SA-3.0 | -| Carolin_Kebekus_2.jpg | [https://upload.wikimedia.org/wikipedia/commons/4/45/Carolin-Kebekus-Bonn.jpg](https://upload.wikimedia.org/wikipedia/commons/4/45/Carolin-Kebekus-Bonn.jpg) | Sven Mandel | CC-BY-SA-4.0 | -| Carolin_Kebekus_3.jpg | [https://upload.wikimedia.org/wikipedia/commons/0/02/Carolin_Kebekus-5848.jpg](https://upload.wikimedia.org/wikipedia/commons/0/02/Carolin_Kebekus-5848.jpg) | Harald Krichel | CC-BY-SA-3.0 | -| Carolin_Kebekus_4.jpg | [https://upload.wikimedia.org/wikipedia/commons/e/e1/2021-09-16-Carolin_Kebekus_Deutscher_Fernsehpreis_2021_-3757.jpg](https://upload.wikimedia.org/wikipedia/commons/e/e1/2021-09-16-Carolin_Kebekus_Deutscher_Fernsehpreis_2021_-3757.jpg) | Superbass | CC-BY-SA-4.0 | - -### Max Giermann - -| Image Name | Image Url | Author | License | -|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------| -| Max_Giermann_0.jpg | [https://upload.wikimedia.org/wikipedia/commons/4/4b/2018-01-26-DFP_2018-7513.jpg](https://upload.wikimedia.org/wikipedia/commons/4/4b/2018-01-26-DFP_2018-7513.jpg) | Superbass | CC-BY-SA-4.0 | -| Max_Giermann_1.jpg | [https://upload.wikimedia.org/wikipedia/commons/f/f6/Deutscher_Fernsehpreis_2012_-_Max_Giermann.jpg](https://upload.wikimedia.org/wikipedia/commons/f/f6/Deutscher_Fernsehpreis_2012_-_Max_Giermann.jpg) | JCS | CC-BY-3.0 | -| Max_Giermann_2.jpg | [https://upload.wikimedia.org/wikipedia/commons/1/1c/Hessischer_Filmpreis_2017_-_Max_Giermann_2.JPG](https://upload.wikimedia.org/wikipedia/commons/1/1c/Hessischer_Filmpreis_2017_-_Max_Giermann_2.JPG) | JCS | CC-BY-3.0 | -| Max_Giermann_3.jpg | [https://upload.wikimedia.org/wikipedia/commons/1/1d/Max_Giermann_%28extra_3%29_01.jpg](https://upload.wikimedia.org/wikipedia/commons/1/1d/Max_Giermann_%28extra_3%29_01.jpg) | Frank Schwichtenberg | CC-BY-SA-3.0 | -| Max_Giermann_4.jpg | [https://upload.wikimedia.org/wikipedia/commons/8/85/Max_Giermann_%28extra_3%29_03.jpg](https://upload.wikimedia.org/wikipedia/commons/8/85/Max_Giermann_%28extra_3%29_03.jpg) | Frank Schwichtenberg | CC-BY-SA-3.0 | - -### Nicole De Boer - -| Image Name | Image Url | Author | License | -|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------| -| Nicole_De_Boer_0.jpg | [https://upload.wikimedia.org/wikipedia/commons/0/03/Praha%2C_Lhotka%2C_KC_Novodvorsk%C3%A1%2C_CzechTREK_2013_%2827%29.jpg](https://upload.wikimedia.org/wikipedia/commons/0/03/Praha%2C_Lhotka%2C_KC_Novodvorsk%C3%A1%2C_CzechTREK_2013_%2827%29.jpg) | Harold | CC-BY-SA-3.0 | -| Nicole_De_Boer_1.jpg | [https://upload.wikimedia.org/wikipedia/commons/d/db/Nicole_DeBoer_at_Toronto_Comicon_1.jpg](https://upload.wikimedia.org/wikipedia/commons/d/db/Nicole_DeBoer_at_Toronto_Comicon_1.jpg) | Tabercil | CC-BY-SA-3.0 | -| Nicole_De_Boer_2.jpg | [https://upload.wikimedia.org/wikipedia/commons/4/4b/Nicole_de_Boer_at_Toronto_Comicon_2_%28cropped%29.jpg](https://upload.wikimedia.org/wikipedia/commons/4/4b/Nicole_de_Boer_at_Toronto_Comicon_2_%28cropped%29.jpg) | Tabercil | CC-BY-SA-3.0 | -| Nicole_De_Boer_3.jpg | [https://upload.wikimedia.org/wikipedia/commons/b/b9/Nicole_de_boer_LFCC2015.jpg](https://upload.wikimedia.org/wikipedia/commons/b/b9/Nicole_de_boer_LFCC2015.jpg) | Dazzoboy | CC-BY-SA-4.0 | -| Nicole_De_Boer_4.jpg | [https://upload.wikimedia.org/wikipedia/commons/9/90/Nicole_de_Boer_at_Toronto_Comicon_2.jpg](https://upload.wikimedia.org/wikipedia/commons/9/90/Nicole_de_Boer_at_Toronto_Comicon_2.jpg) | Tabercil | CC-BY-SA-3.0 | - -### T. J. Thyne - -| Image Name | Image Url | Author | License | -|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------| -| T._J._Thyne_0.jpg | [https://live.staticflickr.com/7036/6837850246_c09a148d70_o.jpg](https://live.staticflickr.com/7036/6837850246_c09a148d70_o.jpg) | Genevieve | CC-BY-2.0 | -| T._J._Thyne_1.jpg | [https://live.staticflickr.com/3273/5705869811_d9ff808383_o.jpg](https://live.staticflickr.com/3273/5705869811_d9ff808383_o.jpg) | Genevieve | CC-BY-2.0 | -| T._J._Thyne_2.jpg | [https://upload.wikimedia.org/wikipedia/commons/d/d8/TJThyneFanExpo2017.jpg](https://upload.wikimedia.org/wikipedia/commons/d/d8/TJThyneFanExpo2017.jpg) | Christian Dahl-Lacroix | CC-BY-SA-4.0 | -| T._J._Thyne_3.jpg | [https://live.staticflickr.com/7041/6984629777_8a415b72d9_b.jpg](https://live.staticflickr.com/7041/6984629777_8a415b72d9_b.jpg) | Genevieve | CC-BY-2.0 | -| T._J._Thyne_4.jpg | [https://live.staticflickr.com/7042/6837821654_d65ab80913_b.jpg](https://live.staticflickr.com/7042/6837821654_d65ab80913_b.jpg) | Genevieve | CC-BY-2.0 | diff --git a/spaces/AIWaves/Debate/src/agents/Memory/base_Memory.py b/spaces/AIWaves/Debate/src/agents/Memory/base_Memory.py deleted file mode 100644 index 9312bc0e50f35ac5136d49dff70585c5baaa3a17..0000000000000000000000000000000000000000 --- a/spaces/AIWaves/Debate/src/agents/Memory/base_Memory.py +++ /dev/null @@ -1,32 +0,0 @@ -from Prompt import * -class Memory: - def __init__(self,role,name,content) -> None: - self.send_role = role - self.send_name = name - self.content = content - - def get_gpt_message(self,role): - return {"role":role,"content":self.content} - - @classmethod - def get_chat_history(self,messages,agent_name =None): - """ - Splice a memory list into a sentence - input : - messages(list) : list of memory(Memory) - Return : - chat_history(str) : One sentence after integration - """ - chat_history = "" - for message in messages: - name,role,content = message.send_name,message.send_role,message.content - if agent_name and agent_name==name: - name = "you" - chat_history += eval(Single_message) - chat_history = eval(Chat_total_message) - return chat_history - - def get_query(self): - "Return : query(str):last sentence" - name,role,content = self.send_name,self.send_role,self.content - return eval(Single_message) \ No newline at end of file diff --git a/spaces/ASJMO/freegpt/server/babel.py b/spaces/ASJMO/freegpt/server/babel.py deleted file mode 100644 index 94407e4b4d3e82e7722cac409a7e311bb46c43be..0000000000000000000000000000000000000000 --- a/spaces/ASJMO/freegpt/server/babel.py +++ /dev/null @@ -1,48 +0,0 @@ -import os -import subprocess -from flask import request, session, jsonify -from flask_babel import Babel - - -def get_languages_from_dir(directory): - """Return a list of directory names in the given directory.""" - return [name for name in os.listdir(directory) - if os.path.isdir(os.path.join(directory, name))] - - -BABEL_DEFAULT_LOCALE = 'en_US' -BABEL_LANGUAGES = get_languages_from_dir('translations') - - -def create_babel(app): - """Create and initialize a Babel instance with the given Flask app.""" - babel = Babel(app) - app.config['BABEL_DEFAULT_LOCALE'] = BABEL_DEFAULT_LOCALE - app.config['BABEL_LANGUAGES'] = BABEL_LANGUAGES - - babel.init_app(app, locale_selector=get_locale) - compile_translations() - - -def get_locale(): - """Get the user's locale from the session or the request's accepted languages.""" - return session.get('language') or request.accept_languages.best_match(BABEL_LANGUAGES) - - -def get_languages(): - """Return a list of available languages in JSON format.""" - return jsonify(BABEL_LANGUAGES) - - -def compile_translations(): - """Compile the translation files.""" - result = subprocess.run( - ['pybabel', 'compile', '-d', 'translations'], - stdout=subprocess.PIPE, - ) - - if result.returncode != 0: - raise Exception( - f'Compiling translations failed:\n{result.stdout.decode()}') - - print('Translations compiled successfully') diff --git a/spaces/Aashir01/Live_Transcription/README.md b/spaces/Aashir01/Live_Transcription/README.md deleted file mode 100644 index aae4658d762f8e74f17f598c31beaba7f5ccea6e..0000000000000000000000000000000000000000 --- a/spaces/Aashir01/Live_Transcription/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: Video Subtitles Online -emoji: 🐨 -colorFrom: blue -colorTo: blue -sdk: gradio -sdk_version: 3.34.0 -app_file: app.py -pinned: false -license: afl-3.0 ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/Amrrs/DragGan-Inversion/PTI/models/StyleCLIP/global_directions/dnnlib/tflib/ops/fused_bias_act.py b/spaces/Amrrs/DragGan-Inversion/PTI/models/StyleCLIP/global_directions/dnnlib/tflib/ops/fused_bias_act.py deleted file mode 100644 index 79991b0497d3d92f25194a31668b9568048163f8..0000000000000000000000000000000000000000 --- a/spaces/Amrrs/DragGan-Inversion/PTI/models/StyleCLIP/global_directions/dnnlib/tflib/ops/fused_bias_act.py +++ /dev/null @@ -1,211 +0,0 @@ -# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. -# -# NVIDIA CORPORATION and its licensors retain all intellectual property -# and proprietary rights in and to this software, related documentation -# and any modifications thereto. Any use, reproduction, disclosure or -# distribution of this software and related documentation without an express -# license agreement from NVIDIA CORPORATION is strictly prohibited. - -"""Custom TensorFlow ops for efficient bias and activation.""" - -import os -import numpy as np -import tensorflow as tf -from .. import custom_ops -from ...util import EasyDict - -def _get_plugin(): - return custom_ops.get_plugin(os.path.splitext(__file__)[0] + '.cu') - -#---------------------------------------------------------------------------- - -activation_funcs = { - 'linear': EasyDict(func=lambda x, **_: x, def_alpha=None, def_gain=1.0, cuda_idx=1, ref='y', zero_2nd_grad=True), - 'relu': EasyDict(func=lambda x, **_: tf.nn.relu(x), def_alpha=None, def_gain=np.sqrt(2), cuda_idx=2, ref='y', zero_2nd_grad=True), - 'lrelu': EasyDict(func=lambda x, alpha, **_: tf.nn.leaky_relu(x, alpha), def_alpha=0.2, def_gain=np.sqrt(2), cuda_idx=3, ref='y', zero_2nd_grad=True), - 'tanh': EasyDict(func=lambda x, **_: tf.nn.tanh(x), def_alpha=None, def_gain=1.0, cuda_idx=4, ref='y', zero_2nd_grad=False), - 'sigmoid': EasyDict(func=lambda x, **_: tf.nn.sigmoid(x), def_alpha=None, def_gain=1.0, cuda_idx=5, ref='y', zero_2nd_grad=False), - 'elu': EasyDict(func=lambda x, **_: tf.nn.elu(x), def_alpha=None, def_gain=1.0, cuda_idx=6, ref='y', zero_2nd_grad=False), - 'selu': EasyDict(func=lambda x, **_: tf.nn.selu(x), def_alpha=None, def_gain=1.0, cuda_idx=7, ref='y', zero_2nd_grad=False), - 'softplus': EasyDict(func=lambda x, **_: tf.nn.softplus(x), def_alpha=None, def_gain=1.0, cuda_idx=8, ref='y', zero_2nd_grad=False), - 'swish': EasyDict(func=lambda x, **_: tf.nn.sigmoid(x) * x, def_alpha=None, def_gain=np.sqrt(2), cuda_idx=9, ref='x', zero_2nd_grad=False), -} - -#---------------------------------------------------------------------------- - -def fused_bias_act(x, b=None, axis=1, act='linear', alpha=None, gain=None, clamp=None, impl='cuda'): - r"""Fused bias and activation function. - - Adds bias `b` to activation tensor `x`, evaluates activation function `act`, - and scales the result by `gain`. Each of the steps is optional. In most cases, - the fused op is considerably more efficient than performing the same calculation - using standard TensorFlow ops. It supports first and second order gradients, - but not third order gradients. - - Args: - x: Input activation tensor. Can have any shape, but if `b` is defined, the - dimension corresponding to `axis`, as well as the rank, must be known. - b: Bias vector, or `None` to disable. Must be a 1D tensor of the same type - as `x`. The shape must be known, and it must match the dimension of `x` - corresponding to `axis`. - axis: The dimension in `x` corresponding to the elements of `b`. - The value of `axis` is ignored if `b` is not specified. - act: Name of the activation function to evaluate, or `"linear"` to disable. - Can be e.g. `"relu"`, `"lrelu"`, `"tanh"`, `"sigmoid"`, `"swish"`, etc. - See `activation_funcs` for a full list. `None` is not allowed. - alpha: Shape parameter for the activation function, or `None` to use the default. - gain: Scaling factor for the output tensor, or `None` to use default. - See `activation_funcs` for the default scaling of each activation function. - If unsure, consider specifying `1.0`. - clamp: Clamp the output values to `[-clamp, +clamp]`, or `None` to disable - the clamping (default). - impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default). - - Returns: - Tensor of the same shape and datatype as `x`. - """ - - impl_dict = { - 'ref': _fused_bias_act_ref, - 'cuda': _fused_bias_act_cuda, - } - return impl_dict[impl](x=x, b=b, axis=axis, act=act, alpha=alpha, gain=gain, clamp=clamp) - -#---------------------------------------------------------------------------- - -def _fused_bias_act_ref(x, b, axis, act, alpha, gain, clamp): - """Slow reference implementation of `fused_bias_act()` using standard TensorFlow ops.""" - - # Validate arguments. - x = tf.convert_to_tensor(x) - b = tf.convert_to_tensor(b) if b is not None else tf.constant([], dtype=x.dtype) - act_spec = activation_funcs[act] - assert b.shape.rank == 1 and (b.shape[0] == 0 or b.shape[0] == x.shape[axis]) - assert b.shape[0] == 0 or 0 <= axis < x.shape.rank - if alpha is None: - alpha = act_spec.def_alpha - if gain is None: - gain = act_spec.def_gain - - # Add bias. - if b.shape[0] != 0: - x += tf.reshape(b, [-1 if i == axis else 1 for i in range(x.shape.rank)]) - - # Evaluate activation function. - x = act_spec.func(x, alpha=alpha) - - # Scale by gain. - if gain != 1: - x *= gain - - # Clamp. - if clamp is not None: - clamp = np.asarray(clamp, dtype=x.dtype.name) - assert clamp.shape == () and clamp >= 0 - x = tf.clip_by_value(x, -clamp, clamp) - return x - -#---------------------------------------------------------------------------- - -def _fused_bias_act_cuda(x, b, axis, act, alpha, gain, clamp): - """Fast CUDA implementation of `fused_bias_act()` using custom ops.""" - - # Validate arguments. - x = tf.convert_to_tensor(x) - empty_tensor = tf.constant([], dtype=x.dtype) - b = tf.convert_to_tensor(b) if b is not None else empty_tensor - act_spec = activation_funcs[act] - assert b.shape.rank == 1 and (b.shape[0] == 0 or b.shape[0] == x.shape[axis]) - assert b.shape[0] == 0 or 0 <= axis < x.shape.rank - if alpha is None: - alpha = act_spec.def_alpha - if gain is None: - gain = act_spec.def_gain - - # Special cases. - if act == 'linear' and b is None and gain == 1.0: - return x - if act_spec.cuda_idx is None: - return _fused_bias_act_ref(x=x, b=b, axis=axis, act=act, alpha=alpha, gain=gain, clamp=clamp) - - # CUDA op. - cuda_op = _get_plugin().fused_bias_act - cuda_kwargs = dict(axis=int(axis), act=int(act_spec.cuda_idx), gain=float(gain)) - if alpha is not None: - cuda_kwargs['alpha'] = float(alpha) - if clamp is not None: - clamp = np.asarray(clamp, dtype=x.dtype.name) - assert clamp.shape == () and clamp >= 0 - cuda_kwargs['clamp'] = float(clamp.astype(np.float32)) - def ref(tensor, name): - return tensor if act_spec.ref == name else empty_tensor - - # Forward pass: y = func(x, b). - def func_y(x, b): - y = cuda_op(x=x, b=b, xref=empty_tensor, yref=empty_tensor, grad=0, **cuda_kwargs) - y.set_shape(x.shape) - return y - - # Backward pass: dx, db = grad(dy, x, y) - def grad_dx(dy, x, y): - dx = cuda_op(x=dy, b=empty_tensor, xref=ref(x,'x'), yref=ref(y,'y'), grad=1, **cuda_kwargs) - dx.set_shape(x.shape) - return dx - def grad_db(dx): - if b.shape[0] == 0: - return empty_tensor - db = dx - if axis < x.shape.rank - 1: - db = tf.reduce_sum(db, list(range(axis + 1, x.shape.rank))) - if axis > 0: - db = tf.reduce_sum(db, list(range(axis))) - db.set_shape(b.shape) - return db - - # Second order gradients: d_dy, d_x = grad2(d_dx, d_db, x, y) - def grad2_d_dy(d_dx, d_db, x, y): - d_dy = cuda_op(x=d_dx, b=d_db, xref=ref(x,'x'), yref=ref(y,'y'), grad=1, **cuda_kwargs) - d_dy.set_shape(x.shape) - return d_dy - def grad2_d_x(d_dx, d_db, x, y): - d_x = cuda_op(x=d_dx, b=d_db, xref=ref(x,'x'), yref=ref(y,'y'), grad=2, **cuda_kwargs) - d_x.set_shape(x.shape) - return d_x - - # Fast version for piecewise-linear activation funcs. - @tf.custom_gradient - def func_zero_2nd_grad(x, b): - y = func_y(x, b) - @tf.custom_gradient - def grad(dy): - dx = grad_dx(dy, x, y) - db = grad_db(dx) - def grad2(d_dx, d_db): - d_dy = grad2_d_dy(d_dx, d_db, x, y) - return d_dy - return (dx, db), grad2 - return y, grad - - # Slow version for general activation funcs. - @tf.custom_gradient - def func_nonzero_2nd_grad(x, b): - y = func_y(x, b) - def grad_wrap(dy): - @tf.custom_gradient - def grad_impl(dy, x): - dx = grad_dx(dy, x, y) - db = grad_db(dx) - def grad2(d_dx, d_db): - d_dy = grad2_d_dy(d_dx, d_db, x, y) - d_x = grad2_d_x(d_dx, d_db, x, y) - return d_dy, d_x - return (dx, db), grad2 - return grad_impl(dy, x) - return y, grad_wrap - - # Which version to use? - if act_spec.zero_2nd_grad: - return func_zero_2nd_grad(x, b) - return func_nonzero_2nd_grad(x, b) - -#---------------------------------------------------------------------------- diff --git a/spaces/Amrrs/DragGan-Inversion/stylegan_human/pti/pti_configs/paths_config.py b/spaces/Amrrs/DragGan-Inversion/stylegan_human/pti/pti_configs/paths_config.py deleted file mode 100644 index 282741a6c77bab1a0f6970eef590eeed16924b05..0000000000000000000000000000000000000000 --- a/spaces/Amrrs/DragGan-Inversion/stylegan_human/pti/pti_configs/paths_config.py +++ /dev/null @@ -1,24 +0,0 @@ -import os - -# Pretrained models paths -e4e = './pti/e4e_w+.pt' -stylegan2_ada_shhq = './pretrained_models/stylegan_human_v2_1024.pkl' -ir_se50 = '' # './model_ir_se50.pth' - -# Dirs for output files -checkpoints_dir = './outputs/pti/checkpoints/' -embedding_base_dir = './outputs/pti/embeddings' -experiments_output_dir = './outputs/pti/' - -# Input info -# Input dir, where the images reside -input_data_path = 'aligned_image/' -# Inversion identifier, used to keeping track of the inversion results. Both the latent code and the generator -input_data_id = 'test' - -# Keywords -pti_results_keyword = 'PTI' -e4e_results_keyword = 'e4e' -sg2_results_keyword = 'SG2' -sg2_plus_results_keyword = 'SG2_Plus' -multi_id_model_type = 'multi_id' diff --git a/spaces/Amrrs/DragGan-Inversion/stylegan_human/torch_utils/misc.py b/spaces/Amrrs/DragGan-Inversion/stylegan_human/torch_utils/misc.py deleted file mode 100644 index 5470dcfc5e59e6bc4484ca3075cd09a708e43467..0000000000000000000000000000000000000000 --- a/spaces/Amrrs/DragGan-Inversion/stylegan_human/torch_utils/misc.py +++ /dev/null @@ -1,294 +0,0 @@ -# Copyright (c) SenseTime Research. All rights reserved. - -# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. -# -# NVIDIA CORPORATION and its licensors retain all intellectual property -# and proprietary rights in and to this software, related documentation -# and any modifications thereto. Any use, reproduction, disclosure or -# distribution of this software and related documentation without an express -# license agreement from NVIDIA CORPORATION is strictly prohibited. - -import re -import contextlib -import numpy as np -import torch -import warnings -import dnnlib - -# ---------------------------------------------------------------------------- -# Cached construction of constant tensors. Avoids CPU=>GPU copy when the -# same constant is used multiple times. - -_constant_cache = dict() - - -def constant(value, shape=None, dtype=None, device=None, memory_format=None): - value = np.asarray(value) - if shape is not None: - shape = tuple(shape) - if dtype is None: - dtype = torch.get_default_dtype() - if device is None: - device = torch.device('cpu') - if memory_format is None: - memory_format = torch.contiguous_format - - key = (value.shape, value.dtype, value.tobytes(), - shape, dtype, device, memory_format) - tensor = _constant_cache.get(key, None) - if tensor is None: - tensor = torch.as_tensor(value.copy(), dtype=dtype, device=device) - if shape is not None: - tensor, _ = torch.broadcast_tensors(tensor, torch.empty(shape)) - tensor = tensor.contiguous(memory_format=memory_format) - _constant_cache[key] = tensor - return tensor - -# ---------------------------------------------------------------------------- -# Replace NaN/Inf with specified numerical values. - - -try: - nan_to_num = torch.nan_to_num # 1.8.0a0 -except AttributeError: - def nan_to_num(input, nan=0.0, posinf=None, neginf=None, *, out=None): # pylint: disable=redefined-builtin - assert isinstance(input, torch.Tensor) - if posinf is None: - posinf = torch.finfo(input.dtype).max - if neginf is None: - neginf = torch.finfo(input.dtype).min - assert nan == 0 - return torch.clamp(input.unsqueeze(0).nansum(0), min=neginf, max=posinf, out=out) - -# ---------------------------------------------------------------------------- -# Symbolic assert. - -try: - symbolic_assert = torch._assert # 1.8.0a0 # pylint: disable=protected-access -except AttributeError: - symbolic_assert = torch.Assert # 1.7.0 - -# ---------------------------------------------------------------------------- -# Context manager to suppress known warnings in torch.jit.trace(). - - -class suppress_tracer_warnings(warnings.catch_warnings): - def __enter__(self): - super().__enter__() - warnings.simplefilter('ignore', category=torch.jit.TracerWarning) - return self - -# ---------------------------------------------------------------------------- -# Assert that the shape of a tensor matches the given list of integers. -# None indicates that the size of a dimension is allowed to vary. -# Performs symbolic assertion when used in torch.jit.trace(). - - -def assert_shape(tensor, ref_shape): - if tensor.ndim != len(ref_shape): - raise AssertionError( - f'Wrong number of dimensions: got {tensor.ndim}, expected {len(ref_shape)}') - for idx, (size, ref_size) in enumerate(zip(tensor.shape, ref_shape)): - if ref_size is None: - pass - elif isinstance(ref_size, torch.Tensor): - with suppress_tracer_warnings(): # as_tensor results are registered as constants - symbolic_assert(torch.equal(torch.as_tensor( - size), ref_size), f'Wrong size for dimension {idx}') - elif isinstance(size, torch.Tensor): - with suppress_tracer_warnings(): # as_tensor results are registered as constants - symbolic_assert(torch.equal(size, torch.as_tensor( - ref_size)), f'Wrong size for dimension {idx}: expected {ref_size}') - elif size != ref_size: - raise AssertionError( - f'Wrong size for dimension {idx}: got {size}, expected {ref_size}') - -# ---------------------------------------------------------------------------- -# Function decorator that calls torch.autograd.profiler.record_function(). - - -def profiled_function(fn): - def decorator(*args, **kwargs): - with torch.autograd.profiler.record_function(fn.__name__): - return fn(*args, **kwargs) - decorator.__name__ = fn.__name__ - return decorator - -# ---------------------------------------------------------------------------- -# Sampler for torch.utils.data.DataLoader that loops over the dataset -# indefinitely, shuffling items as it goes. - - -class InfiniteSampler(torch.utils.data.Sampler): - def __init__(self, dataset, rank=0, num_replicas=1, shuffle=True, seed=0, window_size=0.5): - assert len(dataset) > 0 - assert num_replicas > 0 - assert 0 <= rank < num_replicas - assert 0 <= window_size <= 1 - super().__init__(dataset) - self.dataset = dataset - self.rank = rank - self.num_replicas = num_replicas - self.shuffle = shuffle - self.seed = seed - self.window_size = window_size - - def __iter__(self): - order = np.arange(len(self.dataset)) - rnd = None - window = 0 - if self.shuffle: - rnd = np.random.RandomState(self.seed) - rnd.shuffle(order) - window = int(np.rint(order.size * self.window_size)) - - idx = 0 - while True: - i = idx % order.size - if idx % self.num_replicas == self.rank: - yield order[i] - if window >= 2: - j = (i - rnd.randint(window)) % order.size - order[i], order[j] = order[j], order[i] - idx += 1 - -# ---------------------------------------------------------------------------- -# Utilities for operating with torch.nn.Module parameters and buffers. - - -def params_and_buffers(module): - assert isinstance(module, torch.nn.Module) - return list(module.parameters()) + list(module.buffers()) - - -def named_params_and_buffers(module): - assert isinstance(module, torch.nn.Module) - return list(module.named_parameters()) + list(module.named_buffers()) - - -def copy_params_and_buffers(src_module, dst_module, require_all=False): - assert isinstance(src_module, torch.nn.Module) - assert isinstance(dst_module, torch.nn.Module) - src_tensors = {name: tensor for name, - tensor in named_params_and_buffers(src_module)} - for name, tensor in named_params_and_buffers(dst_module): - assert (name in src_tensors) or (not require_all) - if name in src_tensors: - tensor.copy_(src_tensors[name].detach()).requires_grad_( - tensor.requires_grad) - -# ---------------------------------------------------------------------------- -# Context manager for easily enabling/disabling DistributedDataParallel -# synchronization. - - -@contextlib.contextmanager -def ddp_sync(module, sync): - assert isinstance(module, torch.nn.Module) - if sync or not isinstance(module, torch.nn.parallel.DistributedDataParallel): - yield - else: - with module.no_sync(): - yield - -# ---------------------------------------------------------------------------- -# Check DistributedDataParallel consistency across processes. - - -def check_ddp_consistency(module, ignore_regex=None): - assert isinstance(module, torch.nn.Module) - for name, tensor in named_params_and_buffers(module): - fullname = type(module).__name__ + '.' + name - if ignore_regex is not None and re.fullmatch(ignore_regex, fullname): - continue - tensor = tensor.detach() - other = tensor.clone() - torch.distributed.broadcast(tensor=other, src=0) - assert (nan_to_num(tensor) == nan_to_num(other)).all(), fullname - -# ---------------------------------------------------------------------------- -# Print summary table of module hierarchy. - - -def print_module_summary(module, inputs, max_nesting=3, skip_redundant=True): - assert isinstance(module, torch.nn.Module) - assert not isinstance(module, torch.jit.ScriptModule) - assert isinstance(inputs, (tuple, list)) - - # Register hooks. - entries = [] - nesting = [0] - - def pre_hook(_mod, _inputs): - nesting[0] += 1 - - def post_hook(mod, _inputs, outputs): - nesting[0] -= 1 - if nesting[0] <= max_nesting: - outputs = list(outputs) if isinstance( - outputs, (tuple, list)) else [outputs] - outputs = [t for t in outputs if isinstance(t, torch.Tensor)] - entries.append(dnnlib.EasyDict(mod=mod, outputs=outputs)) - hooks = [mod.register_forward_pre_hook( - pre_hook) for mod in module.modules()] - hooks += [mod.register_forward_hook(post_hook) for mod in module.modules()] - - # Run module. - outputs = module(*inputs) - for hook in hooks: - hook.remove() - - # Identify unique outputs, parameters, and buffers. - tensors_seen = set() - for e in entries: - e.unique_params = [ - t for t in e.mod.parameters() if id(t) not in tensors_seen] - e.unique_buffers = [ - t for t in e.mod.buffers() if id(t) not in tensors_seen] - e.unique_outputs = [t for t in e.outputs if id(t) not in tensors_seen] - tensors_seen |= {id(t) for t in e.unique_params + - e.unique_buffers + e.unique_outputs} - - # Filter out redundant entries. - if skip_redundant: - entries = [e for e in entries if len(e.unique_params) or len( - e.unique_buffers) or len(e.unique_outputs)] - - # Construct table. - rows = [[type(module).__name__, 'Parameters', - 'Buffers', 'Output shape', 'Datatype']] - rows += [['---'] * len(rows[0])] - param_total = 0 - buffer_total = 0 - submodule_names = {mod: name for name, mod in module.named_modules()} - for e in entries: - name = '' if e.mod is module else submodule_names[e.mod] - param_size = sum(t.numel() for t in e.unique_params) - buffer_size = sum(t.numel() for t in e.unique_buffers) - output_shapes = [str(list(e.outputs[0].shape)) for t in e.outputs] - output_dtypes = [str(t.dtype).split('.')[-1] for t in e.outputs] - rows += [[ - name + (':0' if len(e.outputs) >= 2 else ''), - str(param_size) if param_size else '-', - str(buffer_size) if buffer_size else '-', - (output_shapes + ['-'])[0], - (output_dtypes + ['-'])[0], - ]] - for idx in range(1, len(e.outputs)): - rows += [[name + f':{idx}', '-', '-', - output_shapes[idx], output_dtypes[idx]]] - param_total += param_size - buffer_total += buffer_size - rows += [['---'] * len(rows[0])] - rows += [['Total', str(param_total), str(buffer_total), '-', '-']] - - # Print table. - widths = [max(len(cell) for cell in column) for column in zip(*rows)] - print() - for row in rows: - print(' '.join(cell + ' ' * (width - len(cell)) - for cell, width in zip(row, widths))) - print() - return outputs - -# ---------------------------------------------------------------------------- diff --git a/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/src/diffusers/models/attention.py b/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/src/diffusers/models/attention.py deleted file mode 100644 index ad899212e5a5b480219380b9f064a6a63f04f7ea..0000000000000000000000000000000000000000 --- a/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/src/diffusers/models/attention.py +++ /dev/null @@ -1,390 +0,0 @@ -# Copyright 2023 The HuggingFace Team. All rights reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -from typing import Any, Dict, Optional - -import torch -import torch.nn.functional as F -from torch import nn - -from ..utils import maybe_allow_in_graph -from .activations import get_activation -from .attention_processor import Attention -from .embeddings import CombinedTimestepLabelEmbeddings -from .lora import LoRACompatibleLinear - - -@maybe_allow_in_graph -class BasicTransformerBlock(nn.Module): - r""" - A basic Transformer block. - - Parameters: - dim (`int`): The number of channels in the input and output. - num_attention_heads (`int`): The number of heads to use for multi-head attention. - attention_head_dim (`int`): The number of channels in each head. - dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. - cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. - only_cross_attention (`bool`, *optional*): - Whether to use only cross-attention layers. In this case two cross attention layers are used. - double_self_attention (`bool`, *optional*): - Whether to use two self-attention layers. In this case no cross attention layers are used. - activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. - num_embeds_ada_norm (: - obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. - attention_bias (: - obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. - """ - - def __init__( - self, - dim: int, - num_attention_heads: int, - attention_head_dim: int, - dropout=0.0, - cross_attention_dim: Optional[int] = None, - activation_fn: str = "geglu", - num_embeds_ada_norm: Optional[int] = None, - attention_bias: bool = False, - only_cross_attention: bool = False, - double_self_attention: bool = False, - upcast_attention: bool = False, - norm_elementwise_affine: bool = True, - norm_type: str = "layer_norm", - final_dropout: bool = False, - ): - super().__init__() - self.only_cross_attention = only_cross_attention - - self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" - self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" - - if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: - raise ValueError( - f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" - f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." - ) - - # Define 3 blocks. Each block has its own normalization layer. - # 1. Self-Attn - if self.use_ada_layer_norm: - self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) - elif self.use_ada_layer_norm_zero: - self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) - else: - self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) - self.attn1 = Attention( - query_dim=dim, - heads=num_attention_heads, - dim_head=attention_head_dim, - dropout=dropout, - bias=attention_bias, - cross_attention_dim=cross_attention_dim if only_cross_attention else None, - upcast_attention=upcast_attention, - ) - - # 2. Cross-Attn - if cross_attention_dim is not None or double_self_attention: - # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. - # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during - # the second cross attention block. - self.norm2 = ( - AdaLayerNorm(dim, num_embeds_ada_norm) - if self.use_ada_layer_norm - else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) - ) - self.attn2 = Attention( - query_dim=dim, - cross_attention_dim=cross_attention_dim if not double_self_attention else None, - heads=num_attention_heads, - dim_head=attention_head_dim, - dropout=dropout, - bias=attention_bias, - upcast_attention=upcast_attention, - ) # is self-attn if encoder_hidden_states is none - else: - self.norm2 = None - self.attn2 = None - - # 3. Feed-forward - self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) - self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout) - - # let chunk size default to None - self._chunk_size = None - self._chunk_dim = 0 - - def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int): - # Sets chunk feed-forward - self._chunk_size = chunk_size - self._chunk_dim = dim - - def forward( - self, - hidden_states: torch.FloatTensor, - attention_mask: Optional[torch.FloatTensor] = None, - encoder_hidden_states: Optional[torch.FloatTensor] = None, - encoder_attention_mask: Optional[torch.FloatTensor] = None, - timestep: Optional[torch.LongTensor] = None, - cross_attention_kwargs: Dict[str, Any] = None, - class_labels: Optional[torch.LongTensor] = None, - ): - # Notice that normalization is always applied before the real computation in the following blocks. - # 1. Self-Attention - if self.use_ada_layer_norm: - norm_hidden_states = self.norm1(hidden_states, timestep) - elif self.use_ada_layer_norm_zero: - norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( - hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype - ) - else: - norm_hidden_states = self.norm1(hidden_states) - - cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} - - attn_output = self.attn1( - norm_hidden_states, - encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, - attention_mask=attention_mask, - **cross_attention_kwargs, - ) - if self.use_ada_layer_norm_zero: - attn_output = gate_msa.unsqueeze(1) * attn_output - hidden_states = attn_output + hidden_states - - # 2. Cross-Attention - if self.attn2 is not None: - norm_hidden_states = ( - self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) - ) - - attn_output = self.attn2( - norm_hidden_states, - encoder_hidden_states=encoder_hidden_states, - attention_mask=encoder_attention_mask, - **cross_attention_kwargs, - ) - hidden_states = attn_output + hidden_states - - # 3. Feed-forward - norm_hidden_states = self.norm3(hidden_states) - - if self.use_ada_layer_norm_zero: - norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] - - if self._chunk_size is not None: - # "feed_forward_chunk_size" can be used to save memory - if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: - raise ValueError( - f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." - ) - - num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size - ff_output = torch.cat( - [self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)], - dim=self._chunk_dim, - ) - else: - ff_output = self.ff(norm_hidden_states) - - if self.use_ada_layer_norm_zero: - ff_output = gate_mlp.unsqueeze(1) * ff_output - - hidden_states = ff_output + hidden_states - - return hidden_states - - -class FeedForward(nn.Module): - r""" - A feed-forward layer. - - Parameters: - dim (`int`): The number of channels in the input. - dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. - mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. - dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. - activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. - final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. - """ - - def __init__( - self, - dim: int, - dim_out: Optional[int] = None, - mult: int = 4, - dropout: float = 0.0, - activation_fn: str = "geglu", - final_dropout: bool = False, - ): - super().__init__() - inner_dim = int(dim * mult) - dim_out = dim_out if dim_out is not None else dim - - if activation_fn == "gelu": - act_fn = GELU(dim, inner_dim) - if activation_fn == "gelu-approximate": - act_fn = GELU(dim, inner_dim, approximate="tanh") - elif activation_fn == "geglu": - act_fn = GEGLU(dim, inner_dim) - elif activation_fn == "geglu-approximate": - act_fn = ApproximateGELU(dim, inner_dim) - - self.net = nn.ModuleList([]) - # project in - self.net.append(act_fn) - # project dropout - self.net.append(nn.Dropout(dropout)) - # project out - self.net.append(LoRACompatibleLinear(inner_dim, dim_out)) - # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout - if final_dropout: - self.net.append(nn.Dropout(dropout)) - - def forward(self, hidden_states): - for module in self.net: - hidden_states = module(hidden_states) - return hidden_states - - -class GELU(nn.Module): - r""" - GELU activation function with tanh approximation support with `approximate="tanh"`. - """ - - def __init__(self, dim_in: int, dim_out: int, approximate: str = "none"): - super().__init__() - self.proj = nn.Linear(dim_in, dim_out) - self.approximate = approximate - - def gelu(self, gate): - if gate.device.type != "mps": - return F.gelu(gate, approximate=self.approximate) - # mps: gelu is not implemented for float16 - return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype) - - def forward(self, hidden_states): - hidden_states = self.proj(hidden_states) - hidden_states = self.gelu(hidden_states) - return hidden_states - - -class GEGLU(nn.Module): - r""" - A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202. - - Parameters: - dim_in (`int`): The number of channels in the input. - dim_out (`int`): The number of channels in the output. - """ - - def __init__(self, dim_in: int, dim_out: int): - super().__init__() - self.proj = LoRACompatibleLinear(dim_in, dim_out * 2) - - def gelu(self, gate): - if gate.device.type != "mps": - return F.gelu(gate) - # mps: gelu is not implemented for float16 - return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype) - - def forward(self, hidden_states): - hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1) - return hidden_states * self.gelu(gate) - - -class ApproximateGELU(nn.Module): - """ - The approximate form of Gaussian Error Linear Unit (GELU) - - For more details, see section 2: https://arxiv.org/abs/1606.08415 - """ - - def __init__(self, dim_in: int, dim_out: int): - super().__init__() - self.proj = nn.Linear(dim_in, dim_out) - - def forward(self, x): - x = self.proj(x) - return x * torch.sigmoid(1.702 * x) - - -class AdaLayerNorm(nn.Module): - """ - Norm layer modified to incorporate timestep embeddings. - """ - - def __init__(self, embedding_dim, num_embeddings): - super().__init__() - self.emb = nn.Embedding(num_embeddings, embedding_dim) - self.silu = nn.SiLU() - self.linear = nn.Linear(embedding_dim, embedding_dim * 2) - self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False) - - def forward(self, x, timestep): - emb = self.linear(self.silu(self.emb(timestep))) - scale, shift = torch.chunk(emb, 2) - x = self.norm(x) * (1 + scale) + shift - return x - - -class AdaLayerNormZero(nn.Module): - """ - Norm layer adaptive layer norm zero (adaLN-Zero). - """ - - def __init__(self, embedding_dim, num_embeddings): - super().__init__() - - self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim) - - self.silu = nn.SiLU() - self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True) - self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6) - - def forward(self, x, timestep, class_labels, hidden_dtype=None): - emb = self.linear(self.silu(self.emb(timestep, class_labels, hidden_dtype=hidden_dtype))) - shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1) - x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None] - return x, gate_msa, shift_mlp, scale_mlp, gate_mlp - - -class AdaGroupNorm(nn.Module): - """ - GroupNorm layer modified to incorporate timestep embeddings. - """ - - def __init__( - self, embedding_dim: int, out_dim: int, num_groups: int, act_fn: Optional[str] = None, eps: float = 1e-5 - ): - super().__init__() - self.num_groups = num_groups - self.eps = eps - - if act_fn is None: - self.act = None - else: - self.act = get_activation(act_fn) - - self.linear = nn.Linear(embedding_dim, out_dim * 2) - - def forward(self, x, emb): - if self.act: - emb = self.act(emb) - emb = self.linear(emb) - emb = emb[:, :, None, None] - scale, shift = emb.chunk(2, dim=1) - - x = F.group_norm(x, self.num_groups, eps=self.eps) - x = x * (1 + scale) + shift - return x diff --git a/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/utils/check_config_docstrings.py b/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/utils/check_config_docstrings.py deleted file mode 100644 index 5a80ed1c69ddbb57be7249eaa10263585ac23c82..0000000000000000000000000000000000000000 --- a/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/utils/check_config_docstrings.py +++ /dev/null @@ -1,84 +0,0 @@ -# coding=utf-8 -# Copyright 2023 The HuggingFace Inc. team. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import importlib -import inspect -import os -import re - - -# All paths are set with the intent you should run this script from the root of the repo with the command -# python utils/check_config_docstrings.py -PATH_TO_TRANSFORMERS = "src/transformers" - - -# This is to make sure the transformers module imported is the one in the repo. -spec = importlib.util.spec_from_file_location( - "transformers", - os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), - submodule_search_locations=[PATH_TO_TRANSFORMERS], -) -transformers = spec.loader.load_module() - -CONFIG_MAPPING = transformers.models.auto.configuration_auto.CONFIG_MAPPING - -# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. -# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` -_re_checkpoint = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") - - -CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK = { - "CLIPConfigMixin", - "DecisionTransformerConfigMixin", - "EncoderDecoderConfigMixin", - "RagConfigMixin", - "SpeechEncoderDecoderConfigMixin", - "VisionEncoderDecoderConfigMixin", - "VisionTextDualEncoderConfigMixin", -} - - -def check_config_docstrings_have_checkpoints(): - configs_without_checkpoint = [] - - for config_class in list(CONFIG_MAPPING.values()): - checkpoint_found = False - - # source code of `config_class` - config_source = inspect.getsource(config_class) - checkpoints = _re_checkpoint.findall(config_source) - - for checkpoint in checkpoints: - # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. - # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` - ckpt_name, ckpt_link = checkpoint - - # verify the checkpoint name corresponds to the checkpoint link - ckpt_link_from_name = f"https://huggingface.co/{ckpt_name}" - if ckpt_link == ckpt_link_from_name: - checkpoint_found = True - break - - name = config_class.__name__ - if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: - configs_without_checkpoint.append(name) - - if len(configs_without_checkpoint) > 0: - message = "\n".join(sorted(configs_without_checkpoint)) - raise ValueError(f"The following configurations don't contain any valid checkpoint:\n{message}") - - -if __name__ == "__main__": - check_config_docstrings_have_checkpoints() diff --git a/spaces/Andy1621/uniformer_image_detection/configs/hrnet/mask_rcnn_hrnetv2p_w32_1x_coco.py b/spaces/Andy1621/uniformer_image_detection/configs/hrnet/mask_rcnn_hrnetv2p_w32_1x_coco.py deleted file mode 100644 index f533af6d867466ff3ee70a3941b7bfbe90f5b3ba..0000000000000000000000000000000000000000 --- a/spaces/Andy1621/uniformer_image_detection/configs/hrnet/mask_rcnn_hrnetv2p_w32_1x_coco.py +++ /dev/null @@ -1,36 +0,0 @@ -_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py' -model = dict( - pretrained='open-mmlab://msra/hrnetv2_w32', - backbone=dict( - _delete_=True, - type='HRNet', - extra=dict( - stage1=dict( - num_modules=1, - num_branches=1, - block='BOTTLENECK', - num_blocks=(4, ), - num_channels=(64, )), - stage2=dict( - num_modules=1, - num_branches=2, - block='BASIC', - num_blocks=(4, 4), - num_channels=(32, 64)), - stage3=dict( - num_modules=4, - num_branches=3, - block='BASIC', - num_blocks=(4, 4, 4), - num_channels=(32, 64, 128)), - stage4=dict( - num_modules=3, - num_branches=4, - block='BASIC', - num_blocks=(4, 4, 4, 4), - num_channels=(32, 64, 128, 256)))), - neck=dict( - _delete_=True, - type='HRFPN', - in_channels=[32, 64, 128, 256], - out_channels=256)) diff --git a/spaces/Andy1621/uniformer_image_detection/mmdet/models/backbones/hourglass.py b/spaces/Andy1621/uniformer_image_detection/mmdet/models/backbones/hourglass.py deleted file mode 100644 index 3422acee35e3c6f8731cdb310f188e671b5be12f..0000000000000000000000000000000000000000 --- a/spaces/Andy1621/uniformer_image_detection/mmdet/models/backbones/hourglass.py +++ /dev/null @@ -1,198 +0,0 @@ -import torch.nn as nn -from mmcv.cnn import ConvModule - -from ..builder import BACKBONES -from ..utils import ResLayer -from .resnet import BasicBlock - - -class HourglassModule(nn.Module): - """Hourglass Module for HourglassNet backbone. - - Generate module recursively and use BasicBlock as the base unit. - - Args: - depth (int): Depth of current HourglassModule. - stage_channels (list[int]): Feature channels of sub-modules in current - and follow-up HourglassModule. - stage_blocks (list[int]): Number of sub-modules stacked in current and - follow-up HourglassModule. - norm_cfg (dict): Dictionary to construct and config norm layer. - """ - - def __init__(self, - depth, - stage_channels, - stage_blocks, - norm_cfg=dict(type='BN', requires_grad=True)): - super(HourglassModule, self).__init__() - - self.depth = depth - - cur_block = stage_blocks[0] - next_block = stage_blocks[1] - - cur_channel = stage_channels[0] - next_channel = stage_channels[1] - - self.up1 = ResLayer( - BasicBlock, cur_channel, cur_channel, cur_block, norm_cfg=norm_cfg) - - self.low1 = ResLayer( - BasicBlock, - cur_channel, - next_channel, - cur_block, - stride=2, - norm_cfg=norm_cfg) - - if self.depth > 1: - self.low2 = HourglassModule(depth - 1, stage_channels[1:], - stage_blocks[1:]) - else: - self.low2 = ResLayer( - BasicBlock, - next_channel, - next_channel, - next_block, - norm_cfg=norm_cfg) - - self.low3 = ResLayer( - BasicBlock, - next_channel, - cur_channel, - cur_block, - norm_cfg=norm_cfg, - downsample_first=False) - - self.up2 = nn.Upsample(scale_factor=2) - - def forward(self, x): - """Forward function.""" - up1 = self.up1(x) - low1 = self.low1(x) - low2 = self.low2(low1) - low3 = self.low3(low2) - up2 = self.up2(low3) - return up1 + up2 - - -@BACKBONES.register_module() -class HourglassNet(nn.Module): - """HourglassNet backbone. - - Stacked Hourglass Networks for Human Pose Estimation. - More details can be found in the `paper - `_ . - - Args: - downsample_times (int): Downsample times in a HourglassModule. - num_stacks (int): Number of HourglassModule modules stacked, - 1 for Hourglass-52, 2 for Hourglass-104. - stage_channels (list[int]): Feature channel of each sub-module in a - HourglassModule. - stage_blocks (list[int]): Number of sub-modules stacked in a - HourglassModule. - feat_channel (int): Feature channel of conv after a HourglassModule. - norm_cfg (dict): Dictionary to construct and config norm layer. - - Example: - >>> from mmdet.models import HourglassNet - >>> import torch - >>> self = HourglassNet() - >>> self.eval() - >>> inputs = torch.rand(1, 3, 511, 511) - >>> level_outputs = self.forward(inputs) - >>> for level_output in level_outputs: - ... print(tuple(level_output.shape)) - (1, 256, 128, 128) - (1, 256, 128, 128) - """ - - def __init__(self, - downsample_times=5, - num_stacks=2, - stage_channels=(256, 256, 384, 384, 384, 512), - stage_blocks=(2, 2, 2, 2, 2, 4), - feat_channel=256, - norm_cfg=dict(type='BN', requires_grad=True)): - super(HourglassNet, self).__init__() - - self.num_stacks = num_stacks - assert self.num_stacks >= 1 - assert len(stage_channels) == len(stage_blocks) - assert len(stage_channels) > downsample_times - - cur_channel = stage_channels[0] - - self.stem = nn.Sequential( - ConvModule(3, 128, 7, padding=3, stride=2, norm_cfg=norm_cfg), - ResLayer(BasicBlock, 128, 256, 1, stride=2, norm_cfg=norm_cfg)) - - self.hourglass_modules = nn.ModuleList([ - HourglassModule(downsample_times, stage_channels, stage_blocks) - for _ in range(num_stacks) - ]) - - self.inters = ResLayer( - BasicBlock, - cur_channel, - cur_channel, - num_stacks - 1, - norm_cfg=norm_cfg) - - self.conv1x1s = nn.ModuleList([ - ConvModule( - cur_channel, cur_channel, 1, norm_cfg=norm_cfg, act_cfg=None) - for _ in range(num_stacks - 1) - ]) - - self.out_convs = nn.ModuleList([ - ConvModule( - cur_channel, feat_channel, 3, padding=1, norm_cfg=norm_cfg) - for _ in range(num_stacks) - ]) - - self.remap_convs = nn.ModuleList([ - ConvModule( - feat_channel, cur_channel, 1, norm_cfg=norm_cfg, act_cfg=None) - for _ in range(num_stacks - 1) - ]) - - self.relu = nn.ReLU(inplace=True) - - def init_weights(self, pretrained=None): - """Init module weights. - - We do nothing in this function because all modules we used - (ConvModule, BasicBlock and etc.) have default initialization, and - currently we don't provide pretrained model of HourglassNet. - - Detector's __init__() will call backbone's init_weights() with - pretrained as input, so we keep this function. - """ - # Training Centripetal Model needs to reset parameters for Conv2d - for m in self.modules(): - if isinstance(m, nn.Conv2d): - m.reset_parameters() - - def forward(self, x): - """Forward function.""" - inter_feat = self.stem(x) - out_feats = [] - - for ind in range(self.num_stacks): - single_hourglass = self.hourglass_modules[ind] - out_conv = self.out_convs[ind] - - hourglass_feat = single_hourglass(inter_feat) - out_feat = out_conv(hourglass_feat) - out_feats.append(out_feat) - - if ind < self.num_stacks - 1: - inter_feat = self.conv1x1s[ind]( - inter_feat) + self.remap_convs[ind]( - out_feat) - inter_feat = self.inters[ind](self.relu(inter_feat)) - - return out_feats diff --git a/spaces/Andy1621/uniformer_image_segmentation/configs/apcnet/apcnet_r101-d8_769x769_80k_cityscapes.py b/spaces/Andy1621/uniformer_image_segmentation/configs/apcnet/apcnet_r101-d8_769x769_80k_cityscapes.py deleted file mode 100644 index 616984575dda73a13fc5870f60ae6ffa30d6b01b..0000000000000000000000000000000000000000 --- a/spaces/Andy1621/uniformer_image_segmentation/configs/apcnet/apcnet_r101-d8_769x769_80k_cityscapes.py +++ /dev/null @@ -1,2 +0,0 @@ -_base_ = './apcnet_r50-d8_769x769_80k_cityscapes.py' -model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) diff --git a/spaces/Artrajz/vits-simple-api/static/css/bootstrap.min.css b/spaces/Artrajz/vits-simple-api/static/css/bootstrap.min.css deleted file mode 100644 index 83a71b1f50721c12da8e13b8d476cad8ec471e92..0000000000000000000000000000000000000000 --- a/spaces/Artrajz/vits-simple-api/static/css/bootstrap.min.css +++ /dev/null @@ -1,7 +0,0 @@ -/*! - * Bootstrap v4.6.2 (https://getbootstrap.com/) - * Copyright 2011-2022 The Bootstrap Authors - * Copyright 2011-2022 Twitter, Inc. - * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE) - */:root{--blue:#007bff;--indigo:#6610f2;--purple:#6f42c1;--pink:#e83e8c;--red:#dc3545;--orange:#fd7e14;--yellow:#ffc107;--green:#28a745;--teal:#20c997;--cyan:#17a2b8;--white:#fff;--gray:#6c757d;--gray-dark:#343a40;--primary:#007bff;--secondary:#6c757d;--success:#28a745;--info:#17a2b8;--warning:#ffc107;--danger:#dc3545;--light:#f8f9fa;--dark:#343a40;--breakpoint-xs:0;--breakpoint-sm:576px;--breakpoint-md:768px;--breakpoint-lg:992px;--breakpoint-xl:1200px;--font-family-sans-serif:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue",Arial,"Noto Sans","Liberation Sans",sans-serif,"Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol","Noto Color Emoji";--font-family-monospace:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",monospace}*,::after,::before{box-sizing:border-box}html{font-family:sans-serif;line-height:1.15;-webkit-text-size-adjust:100%;-webkit-tap-highlight-color:transparent}article,aside,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}body{margin:0;font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue",Arial,"Noto Sans","Liberation Sans",sans-serif,"Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol","Noto Color Emoji";font-size:1rem;font-weight:400;line-height:1.5;color:#212529;text-align:left;background-color:#fff}[tabindex="-1"]:focus:not(:focus-visible){outline:0!important}hr{box-sizing:content-box;height:0;overflow:visible}h1,h2,h3,h4,h5,h6{margin-top:0;margin-bottom:.5rem}p{margin-top:0;margin-bottom:1rem}abbr[data-original-title],abbr[title]{text-decoration:underline;-webkit-text-decoration:underline dotted;text-decoration:underline dotted;cursor:help;border-bottom:0;-webkit-text-decoration-skip-ink:none;text-decoration-skip-ink:none}address{margin-bottom:1rem;font-style:normal;line-height:inherit}dl,ol,ul{margin-top:0;margin-bottom:1rem}ol ol,ol ul,ul ol,ul ul{margin-bottom:0}dt{font-weight:700}dd{margin-bottom:.5rem;margin-left:0}blockquote{margin:0 0 1rem}b,strong{font-weight:bolder}small{font-size:80%}sub,sup{position:relative;font-size:75%;line-height:0;vertical-align:baseline}sub{bottom:-.25em}sup{top:-.5em}a{color:#007bff;text-decoration:none;background-color:transparent}a:hover{color:#0056b3;text-decoration:underline}a:not([href]):not([class]){color:inherit;text-decoration:none}a:not([href]):not([class]):hover{color:inherit;text-decoration:none}code,kbd,pre,samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",monospace;font-size:1em}pre{margin-top:0;margin-bottom:1rem;overflow:auto;-ms-overflow-style:scrollbar}figure{margin:0 0 1rem}img{vertical-align:middle;border-style:none}svg{overflow:hidden;vertical-align:middle}table{border-collapse:collapse}caption{padding-top:.75rem;padding-bottom:.75rem;color:#6c757d;text-align:left;caption-side:bottom}th{text-align:inherit;text-align:-webkit-match-parent}label{display:inline-block;margin-bottom:.5rem}button{border-radius:0}button:focus:not(:focus-visible){outline:0}button,input,optgroup,select,textarea{margin:0;font-family:inherit;font-size:inherit;line-height:inherit}button,input{overflow:visible}button,select{text-transform:none}[role=button]{cursor:pointer}select{word-wrap:normal}[type=button],[type=reset],[type=submit],button{-webkit-appearance:button}[type=button]:not(:disabled),[type=reset]:not(:disabled),[type=submit]:not(:disabled),button:not(:disabled){cursor:pointer}[type=button]::-moz-focus-inner,[type=reset]::-moz-focus-inner,[type=submit]::-moz-focus-inner,button::-moz-focus-inner{padding:0;border-style:none}input[type=checkbox],input[type=radio]{box-sizing:border-box;padding:0}textarea{overflow:auto;resize:vertical}fieldset{min-width:0;padding:0;margin:0;border:0}legend{display:block;width:100%;max-width:100%;padding:0;margin-bottom:.5rem;font-size:1.5rem;line-height:inherit;color:inherit;white-space:normal}progress{vertical-align:baseline}[type=number]::-webkit-inner-spin-button,[type=number]::-webkit-outer-spin-button{height:auto}[type=search]{outline-offset:-2px;-webkit-appearance:none}[type=search]::-webkit-search-decoration{-webkit-appearance:none}::-webkit-file-upload-button{font:inherit;-webkit-appearance:button}output{display:inline-block}summary{display:list-item;cursor:pointer}template{display:none}[hidden]{display:none!important}.h1,.h2,.h3,.h4,.h5,.h6,h1,h2,h3,h4,h5,h6{margin-bottom:.5rem;font-weight:500;line-height:1.2}.h1,h1{font-size:2.5rem}.h2,h2{font-size:2rem}.h3,h3{font-size:1.75rem}.h4,h4{font-size:1.5rem}.h5,h5{font-size:1.25rem}.h6,h6{font-size:1rem}.lead{font-size:1.25rem;font-weight:300}.display-1{font-size:6rem;font-weight:300;line-height:1.2}.display-2{font-size:5.5rem;font-weight:300;line-height:1.2}.display-3{font-size:4.5rem;font-weight:300;line-height:1.2}.display-4{font-size:3.5rem;font-weight:300;line-height:1.2}hr{margin-top:1rem;margin-bottom:1rem;border:0;border-top:1px solid rgba(0,0,0,.1)}.small,small{font-size:.875em;font-weight:400}.mark,mark{padding:.2em;background-color:#fcf8e3}.list-unstyled{padding-left:0;list-style:none}.list-inline{padding-left:0;list-style:none}.list-inline-item{display:inline-block}.list-inline-item:not(:last-child){margin-right:.5rem}.initialism{font-size:90%;text-transform:uppercase}.blockquote{margin-bottom:1rem;font-size:1.25rem}.blockquote-footer{display:block;font-size:.875em;color:#6c757d}.blockquote-footer::before{content:"\2014\00A0"}.img-fluid{max-width:100%;height:auto}.img-thumbnail{padding:.25rem;background-color:#fff;border:1px solid #dee2e6;border-radius:.25rem;max-width:100%;height:auto}.figure{display:inline-block}.figure-img{margin-bottom:.5rem;line-height:1}.figure-caption{font-size:90%;color:#6c757d}code{font-size:87.5%;color:#e83e8c;word-wrap:break-word}a>code{color:inherit}kbd{padding:.2rem .4rem;font-size:87.5%;color:#fff;background-color:#212529;border-radius:.2rem}kbd kbd{padding:0;font-size:100%;font-weight:700}pre{display:block;font-size:87.5%;color:#212529}pre code{font-size:inherit;color:inherit;word-break:normal}.pre-scrollable{max-height:340px;overflow-y:scroll}.container,.container-fluid,.container-lg,.container-md,.container-sm,.container-xl{width:100%;padding-right:15px;padding-left:15px;margin-right:auto;margin-left:auto}@media (min-width:576px){.container,.container-sm{max-width:540px}}@media (min-width:768px){.container,.container-md,.container-sm{max-width:720px}}@media (min-width:992px){.container,.container-lg,.container-md,.container-sm{max-width:960px}}@media (min-width:1200px){.container,.container-lg,.container-md,.container-sm,.container-xl{max-width:1140px}}.row{display:-ms-flexbox;display:flex;-ms-flex-wrap:wrap;flex-wrap:wrap;margin-right:-15px;margin-left:-15px}.no-gutters{margin-right:0;margin-left:0}.no-gutters>.col,.no-gutters>[class*=col-]{padding-right:0;padding-left:0}.col,.col-1,.col-10,.col-11,.col-12,.col-2,.col-3,.col-4,.col-5,.col-6,.col-7,.col-8,.col-9,.col-auto,.col-lg,.col-lg-1,.col-lg-10,.col-lg-11,.col-lg-12,.col-lg-2,.col-lg-3,.col-lg-4,.col-lg-5,.col-lg-6,.col-lg-7,.col-lg-8,.col-lg-9,.col-lg-auto,.col-md,.col-md-1,.col-md-10,.col-md-11,.col-md-12,.col-md-2,.col-md-3,.col-md-4,.col-md-5,.col-md-6,.col-md-7,.col-md-8,.col-md-9,.col-md-auto,.col-sm,.col-sm-1,.col-sm-10,.col-sm-11,.col-sm-12,.col-sm-2,.col-sm-3,.col-sm-4,.col-sm-5,.col-sm-6,.col-sm-7,.col-sm-8,.col-sm-9,.col-sm-auto,.col-xl,.col-xl-1,.col-xl-10,.col-xl-11,.col-xl-12,.col-xl-2,.col-xl-3,.col-xl-4,.col-xl-5,.col-xl-6,.col-xl-7,.col-xl-8,.col-xl-9,.col-xl-auto{position:relative;width:100%;padding-right:15px;padding-left:15px}.col{-ms-flex-preferred-size:0;flex-basis:0;-ms-flex-positive:1;flex-grow:1;max-width:100%}.row-cols-1>*{-ms-flex:0 0 100%;flex:0 0 100%;max-width:100%}.row-cols-2>*{-ms-flex:0 0 50%;flex:0 0 50%;max-width:50%}.row-cols-3>*{-ms-flex:0 0 33.333333%;flex:0 0 33.333333%;max-width:33.333333%}.row-cols-4>*{-ms-flex:0 0 25%;flex:0 0 25%;max-width:25%}.row-cols-5>*{-ms-flex:0 0 20%;flex:0 0 20%;max-width:20%}.row-cols-6>*{-ms-flex:0 0 16.666667%;flex:0 0 16.666667%;max-width:16.666667%}.col-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto;max-width:100%}.col-1{-ms-flex:0 0 8.333333%;flex:0 0 8.333333%;max-width:8.333333%}.col-2{-ms-flex:0 0 16.666667%;flex:0 0 16.666667%;max-width:16.666667%}.col-3{-ms-flex:0 0 25%;flex:0 0 25%;max-width:25%}.col-4{-ms-flex:0 0 33.333333%;flex:0 0 33.333333%;max-width:33.333333%}.col-5{-ms-flex:0 0 41.666667%;flex:0 0 41.666667%;max-width:41.666667%}.col-6{-ms-flex:0 0 50%;flex:0 0 50%;max-width:50%}.col-7{-ms-flex:0 0 58.333333%;flex:0 0 58.333333%;max-width:58.333333%}.col-8{-ms-flex:0 0 66.666667%;flex:0 0 66.666667%;max-width:66.666667%}.col-9{-ms-flex:0 0 75%;flex:0 0 75%;max-width:75%}.col-10{-ms-flex:0 0 83.333333%;flex:0 0 83.333333%;max-width:83.333333%}.col-11{-ms-flex:0 0 91.666667%;flex:0 0 91.666667%;max-width:91.666667%}.col-12{-ms-flex:0 0 100%;flex:0 0 100%;max-width:100%}.order-first{-ms-flex-order:-1;order:-1}.order-last{-ms-flex-order:13;order:13}.order-0{-ms-flex-order:0;order:0}.order-1{-ms-flex-order:1;order:1}.order-2{-ms-flex-order:2;order:2}.order-3{-ms-flex-order:3;order:3}.order-4{-ms-flex-order:4;order:4}.order-5{-ms-flex-order:5;order:5}.order-6{-ms-flex-order:6;order:6}.order-7{-ms-flex-order:7;order:7}.order-8{-ms-flex-order:8;order:8}.order-9{-ms-flex-order:9;order:9}.order-10{-ms-flex-order:10;order:10}.order-11{-ms-flex-order:11;order:11}.order-12{-ms-flex-order:12;order:12}.offset-1{margin-left:8.333333%}.offset-2{margin-left:16.666667%}.offset-3{margin-left:25%}.offset-4{margin-left:33.333333%}.offset-5{margin-left:41.666667%}.offset-6{margin-left:50%}.offset-7{margin-left:58.333333%}.offset-8{margin-left:66.666667%}.offset-9{margin-left:75%}.offset-10{margin-left:83.333333%}.offset-11{margin-left:91.666667%}@media (min-width:576px){.col-sm{-ms-flex-preferred-size:0;flex-basis:0;-ms-flex-positive:1;flex-grow:1;max-width:100%}.row-cols-sm-1>*{-ms-flex:0 0 100%;flex:0 0 100%;max-width:100%}.row-cols-sm-2>*{-ms-flex:0 0 50%;flex:0 0 50%;max-width:50%}.row-cols-sm-3>*{-ms-flex:0 0 33.333333%;flex:0 0 33.333333%;max-width:33.333333%}.row-cols-sm-4>*{-ms-flex:0 0 25%;flex:0 0 25%;max-width:25%}.row-cols-sm-5>*{-ms-flex:0 0 20%;flex:0 0 20%;max-width:20%}.row-cols-sm-6>*{-ms-flex:0 0 16.666667%;flex:0 0 16.666667%;max-width:16.666667%}.col-sm-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto;max-width:100%}.col-sm-1{-ms-flex:0 0 8.333333%;flex:0 0 8.333333%;max-width:8.333333%}.col-sm-2{-ms-flex:0 0 16.666667%;flex:0 0 16.666667%;max-width:16.666667%}.col-sm-3{-ms-flex:0 0 25%;flex:0 0 25%;max-width:25%}.col-sm-4{-ms-flex:0 0 33.333333%;flex:0 0 33.333333%;max-width:33.333333%}.col-sm-5{-ms-flex:0 0 41.666667%;flex:0 0 41.666667%;max-width:41.666667%}.col-sm-6{-ms-flex:0 0 50%;flex:0 0 50%;max-width:50%}.col-sm-7{-ms-flex:0 0 58.333333%;flex:0 0 58.333333%;max-width:58.333333%}.col-sm-8{-ms-flex:0 0 66.666667%;flex:0 0 66.666667%;max-width:66.666667%}.col-sm-9{-ms-flex:0 0 75%;flex:0 0 75%;max-width:75%}.col-sm-10{-ms-flex:0 0 83.333333%;flex:0 0 83.333333%;max-width:83.333333%}.col-sm-11{-ms-flex:0 0 91.666667%;flex:0 0 91.666667%;max-width:91.666667%}.col-sm-12{-ms-flex:0 0 100%;flex:0 0 100%;max-width:100%}.order-sm-first{-ms-flex-order:-1;order:-1}.order-sm-last{-ms-flex-order:13;order:13}.order-sm-0{-ms-flex-order:0;order:0}.order-sm-1{-ms-flex-order:1;order:1}.order-sm-2{-ms-flex-order:2;order:2}.order-sm-3{-ms-flex-order:3;order:3}.order-sm-4{-ms-flex-order:4;order:4}.order-sm-5{-ms-flex-order:5;order:5}.order-sm-6{-ms-flex-order:6;order:6}.order-sm-7{-ms-flex-order:7;order:7}.order-sm-8{-ms-flex-order:8;order:8}.order-sm-9{-ms-flex-order:9;order:9}.order-sm-10{-ms-flex-order:10;order:10}.order-sm-11{-ms-flex-order:11;order:11}.order-sm-12{-ms-flex-order:12;order:12}.offset-sm-0{margin-left:0}.offset-sm-1{margin-left:8.333333%}.offset-sm-2{margin-left:16.666667%}.offset-sm-3{margin-left:25%}.offset-sm-4{margin-left:33.333333%}.offset-sm-5{margin-left:41.666667%}.offset-sm-6{margin-left:50%}.offset-sm-7{margin-left:58.333333%}.offset-sm-8{margin-left:66.666667%}.offset-sm-9{margin-left:75%}.offset-sm-10{margin-left:83.333333%}.offset-sm-11{margin-left:91.666667%}}@media (min-width:768px){.col-md{-ms-flex-preferred-size:0;flex-basis:0;-ms-flex-positive:1;flex-grow:1;max-width:100%}.row-cols-md-1>*{-ms-flex:0 0 100%;flex:0 0 100%;max-width:100%}.row-cols-md-2>*{-ms-flex:0 0 50%;flex:0 0 50%;max-width:50%}.row-cols-md-3>*{-ms-flex:0 0 33.333333%;flex:0 0 33.333333%;max-width:33.333333%}.row-cols-md-4>*{-ms-flex:0 0 25%;flex:0 0 25%;max-width:25%}.row-cols-md-5>*{-ms-flex:0 0 20%;flex:0 0 20%;max-width:20%}.row-cols-md-6>*{-ms-flex:0 0 16.666667%;flex:0 0 16.666667%;max-width:16.666667%}.col-md-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto;max-width:100%}.col-md-1{-ms-flex:0 0 8.333333%;flex:0 0 8.333333%;max-width:8.333333%}.col-md-2{-ms-flex:0 0 16.666667%;flex:0 0 16.666667%;max-width:16.666667%}.col-md-3{-ms-flex:0 0 25%;flex:0 0 25%;max-width:25%}.col-md-4{-ms-flex:0 0 33.333333%;flex:0 0 33.333333%;max-width:33.333333%}.col-md-5{-ms-flex:0 0 41.666667%;flex:0 0 41.666667%;max-width:41.666667%}.col-md-6{-ms-flex:0 0 50%;flex:0 0 50%;max-width:50%}.col-md-7{-ms-flex:0 0 58.333333%;flex:0 0 58.333333%;max-width:58.333333%}.col-md-8{-ms-flex:0 0 66.666667%;flex:0 0 66.666667%;max-width:66.666667%}.col-md-9{-ms-flex:0 0 75%;flex:0 0 75%;max-width:75%}.col-md-10{-ms-flex:0 0 83.333333%;flex:0 0 83.333333%;max-width:83.333333%}.col-md-11{-ms-flex:0 0 91.666667%;flex:0 0 91.666667%;max-width:91.666667%}.col-md-12{-ms-flex:0 0 100%;flex:0 0 100%;max-width:100%}.order-md-first{-ms-flex-order:-1;order:-1}.order-md-last{-ms-flex-order:13;order:13}.order-md-0{-ms-flex-order:0;order:0}.order-md-1{-ms-flex-order:1;order:1}.order-md-2{-ms-flex-order:2;order:2}.order-md-3{-ms-flex-order:3;order:3}.order-md-4{-ms-flex-order:4;order:4}.order-md-5{-ms-flex-order:5;order:5}.order-md-6{-ms-flex-order:6;order:6}.order-md-7{-ms-flex-order:7;order:7}.order-md-8{-ms-flex-order:8;order:8}.order-md-9{-ms-flex-order:9;order:9}.order-md-10{-ms-flex-order:10;order:10}.order-md-11{-ms-flex-order:11;order:11}.order-md-12{-ms-flex-order:12;order:12}.offset-md-0{margin-left:0}.offset-md-1{margin-left:8.333333%}.offset-md-2{margin-left:16.666667%}.offset-md-3{margin-left:25%}.offset-md-4{margin-left:33.333333%}.offset-md-5{margin-left:41.666667%}.offset-md-6{margin-left:50%}.offset-md-7{margin-left:58.333333%}.offset-md-8{margin-left:66.666667%}.offset-md-9{margin-left:75%}.offset-md-10{margin-left:83.333333%}.offset-md-11{margin-left:91.666667%}}@media (min-width:992px){.col-lg{-ms-flex-preferred-size:0;flex-basis:0;-ms-flex-positive:1;flex-grow:1;max-width:100%}.row-cols-lg-1>*{-ms-flex:0 0 100%;flex:0 0 100%;max-width:100%}.row-cols-lg-2>*{-ms-flex:0 0 50%;flex:0 0 50%;max-width:50%}.row-cols-lg-3>*{-ms-flex:0 0 33.333333%;flex:0 0 33.333333%;max-width:33.333333%}.row-cols-lg-4>*{-ms-flex:0 0 25%;flex:0 0 25%;max-width:25%}.row-cols-lg-5>*{-ms-flex:0 0 20%;flex:0 0 20%;max-width:20%}.row-cols-lg-6>*{-ms-flex:0 0 16.666667%;flex:0 0 16.666667%;max-width:16.666667%}.col-lg-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto;max-width:100%}.col-lg-1{-ms-flex:0 0 8.333333%;flex:0 0 8.333333%;max-width:8.333333%}.col-lg-2{-ms-flex:0 0 16.666667%;flex:0 0 16.666667%;max-width:16.666667%}.col-lg-3{-ms-flex:0 0 25%;flex:0 0 25%;max-width:25%}.col-lg-4{-ms-flex:0 0 33.333333%;flex:0 0 33.333333%;max-width:33.333333%}.col-lg-5{-ms-flex:0 0 41.666667%;flex:0 0 41.666667%;max-width:41.666667%}.col-lg-6{-ms-flex:0 0 50%;flex:0 0 50%;max-width:50%}.col-lg-7{-ms-flex:0 0 58.333333%;flex:0 0 58.333333%;max-width:58.333333%}.col-lg-8{-ms-flex:0 0 66.666667%;flex:0 0 66.666667%;max-width:66.666667%}.col-lg-9{-ms-flex:0 0 75%;flex:0 0 75%;max-width:75%}.col-lg-10{-ms-flex:0 0 83.333333%;flex:0 0 83.333333%;max-width:83.333333%}.col-lg-11{-ms-flex:0 0 91.666667%;flex:0 0 91.666667%;max-width:91.666667%}.col-lg-12{-ms-flex:0 0 100%;flex:0 0 100%;max-width:100%}.order-lg-first{-ms-flex-order:-1;order:-1}.order-lg-last{-ms-flex-order:13;order:13}.order-lg-0{-ms-flex-order:0;order:0}.order-lg-1{-ms-flex-order:1;order:1}.order-lg-2{-ms-flex-order:2;order:2}.order-lg-3{-ms-flex-order:3;order:3}.order-lg-4{-ms-flex-order:4;order:4}.order-lg-5{-ms-flex-order:5;order:5}.order-lg-6{-ms-flex-order:6;order:6}.order-lg-7{-ms-flex-order:7;order:7}.order-lg-8{-ms-flex-order:8;order:8}.order-lg-9{-ms-flex-order:9;order:9}.order-lg-10{-ms-flex-order:10;order:10}.order-lg-11{-ms-flex-order:11;order:11}.order-lg-12{-ms-flex-order:12;order:12}.offset-lg-0{margin-left:0}.offset-lg-1{margin-left:8.333333%}.offset-lg-2{margin-left:16.666667%}.offset-lg-3{margin-left:25%}.offset-lg-4{margin-left:33.333333%}.offset-lg-5{margin-left:41.666667%}.offset-lg-6{margin-left:50%}.offset-lg-7{margin-left:58.333333%}.offset-lg-8{margin-left:66.666667%}.offset-lg-9{margin-left:75%}.offset-lg-10{margin-left:83.333333%}.offset-lg-11{margin-left:91.666667%}}@media (min-width:1200px){.col-xl{-ms-flex-preferred-size:0;flex-basis:0;-ms-flex-positive:1;flex-grow:1;max-width:100%}.row-cols-xl-1>*{-ms-flex:0 0 100%;flex:0 0 100%;max-width:100%}.row-cols-xl-2>*{-ms-flex:0 0 50%;flex:0 0 50%;max-width:50%}.row-cols-xl-3>*{-ms-flex:0 0 33.333333%;flex:0 0 33.333333%;max-width:33.333333%}.row-cols-xl-4>*{-ms-flex:0 0 25%;flex:0 0 25%;max-width:25%}.row-cols-xl-5>*{-ms-flex:0 0 20%;flex:0 0 20%;max-width:20%}.row-cols-xl-6>*{-ms-flex:0 0 16.666667%;flex:0 0 16.666667%;max-width:16.666667%}.col-xl-auto{-ms-flex:0 0 auto;flex:0 0 auto;width:auto;max-width:100%}.col-xl-1{-ms-flex:0 0 8.333333%;flex:0 0 8.333333%;max-width:8.333333%}.col-xl-2{-ms-flex:0 0 16.666667%;flex:0 0 16.666667%;max-width:16.666667%}.col-xl-3{-ms-flex:0 0 25%;flex:0 0 25%;max-width:25%}.col-xl-4{-ms-flex:0 0 33.333333%;flex:0 0 33.333333%;max-width:33.333333%}.col-xl-5{-ms-flex:0 0 41.666667%;flex:0 0 41.666667%;max-width:41.666667%}.col-xl-6{-ms-flex:0 0 50%;flex:0 0 50%;max-width:50%}.col-xl-7{-ms-flex:0 0 58.333333%;flex:0 0 58.333333%;max-width:58.333333%}.col-xl-8{-ms-flex:0 0 66.666667%;flex:0 0 66.666667%;max-width:66.666667%}.col-xl-9{-ms-flex:0 0 75%;flex:0 0 75%;max-width:75%}.col-xl-10{-ms-flex:0 0 83.333333%;flex:0 0 83.333333%;max-width:83.333333%}.col-xl-11{-ms-flex:0 0 91.666667%;flex:0 0 91.666667%;max-width:91.666667%}.col-xl-12{-ms-flex:0 0 100%;flex:0 0 100%;max-width:100%}.order-xl-first{-ms-flex-order:-1;order:-1}.order-xl-last{-ms-flex-order:13;order:13}.order-xl-0{-ms-flex-order:0;order:0}.order-xl-1{-ms-flex-order:1;order:1}.order-xl-2{-ms-flex-order:2;order:2}.order-xl-3{-ms-flex-order:3;order:3}.order-xl-4{-ms-flex-order:4;order:4}.order-xl-5{-ms-flex-order:5;order:5}.order-xl-6{-ms-flex-order:6;order:6}.order-xl-7{-ms-flex-order:7;order:7}.order-xl-8{-ms-flex-order:8;order:8}.order-xl-9{-ms-flex-order:9;order:9}.order-xl-10{-ms-flex-order:10;order:10}.order-xl-11{-ms-flex-order:11;order:11}.order-xl-12{-ms-flex-order:12;order:12}.offset-xl-0{margin-left:0}.offset-xl-1{margin-left:8.333333%}.offset-xl-2{margin-left:16.666667%}.offset-xl-3{margin-left:25%}.offset-xl-4{margin-left:33.333333%}.offset-xl-5{margin-left:41.666667%}.offset-xl-6{margin-left:50%}.offset-xl-7{margin-left:58.333333%}.offset-xl-8{margin-left:66.666667%}.offset-xl-9{margin-left:75%}.offset-xl-10{margin-left:83.333333%}.offset-xl-11{margin-left:91.666667%}}.table{width:100%;margin-bottom:1rem;color:#212529}.table td,.table th{padding:.75rem;vertical-align:top;border-top:1px solid #dee2e6}.table thead th{vertical-align:bottom;border-bottom:2px solid #dee2e6}.table tbody+tbody{border-top:2px solid #dee2e6}.table-sm td,.table-sm th{padding:.3rem}.table-bordered{border:1px solid #dee2e6}.table-bordered td,.table-bordered th{border:1px solid #dee2e6}.table-bordered thead td,.table-bordered thead th{border-bottom-width:2px}.table-borderless tbody+tbody,.table-borderless td,.table-borderless th,.table-borderless thead th{border:0}.table-striped tbody tr:nth-of-type(odd){background-color:rgba(0,0,0,.05)}.table-hover tbody tr:hover{color:#212529;background-color:rgba(0,0,0,.075)}.table-primary,.table-primary>td,.table-primary>th{background-color:#b8daff}.table-primary tbody+tbody,.table-primary td,.table-primary th,.table-primary thead th{border-color:#7abaff}.table-hover .table-primary:hover{background-color:#9fcdff}.table-hover .table-primary:hover>td,.table-hover .table-primary:hover>th{background-color:#9fcdff}.table-secondary,.table-secondary>td,.table-secondary>th{background-color:#d6d8db}.table-secondary tbody+tbody,.table-secondary td,.table-secondary th,.table-secondary thead th{border-color:#b3b7bb}.table-hover .table-secondary:hover{background-color:#c8cbcf}.table-hover .table-secondary:hover>td,.table-hover .table-secondary:hover>th{background-color:#c8cbcf}.table-success,.table-success>td,.table-success>th{background-color:#c3e6cb}.table-success tbody+tbody,.table-success td,.table-success th,.table-success thead th{border-color:#8fd19e}.table-hover .table-success:hover{background-color:#b1dfbb}.table-hover .table-success:hover>td,.table-hover .table-success:hover>th{background-color:#b1dfbb}.table-info,.table-info>td,.table-info>th{background-color:#bee5eb}.table-info tbody+tbody,.table-info td,.table-info th,.table-info thead th{border-color:#86cfda}.table-hover .table-info:hover{background-color:#abdde5}.table-hover .table-info:hover>td,.table-hover .table-info:hover>th{background-color:#abdde5}.table-warning,.table-warning>td,.table-warning>th{background-color:#ffeeba}.table-warning tbody+tbody,.table-warning td,.table-warning th,.table-warning thead th{border-color:#ffdf7e}.table-hover .table-warning:hover{background-color:#ffe8a1}.table-hover .table-warning:hover>td,.table-hover .table-warning:hover>th{background-color:#ffe8a1}.table-danger,.table-danger>td,.table-danger>th{background-color:#f5c6cb}.table-danger tbody+tbody,.table-danger td,.table-danger th,.table-danger thead th{border-color:#ed969e}.table-hover .table-danger:hover{background-color:#f1b0b7}.table-hover .table-danger:hover>td,.table-hover .table-danger:hover>th{background-color:#f1b0b7}.table-light,.table-light>td,.table-light>th{background-color:#fdfdfe}.table-light tbody+tbody,.table-light td,.table-light th,.table-light thead th{border-color:#fbfcfc}.table-hover .table-light:hover{background-color:#ececf6}.table-hover .table-light:hover>td,.table-hover .table-light:hover>th{background-color:#ececf6}.table-dark,.table-dark>td,.table-dark>th{background-color:#c6c8ca}.table-dark tbody+tbody,.table-dark td,.table-dark th,.table-dark thead th{border-color:#95999c}.table-hover .table-dark:hover{background-color:#b9bbbe}.table-hover .table-dark:hover>td,.table-hover .table-dark:hover>th{background-color:#b9bbbe}.table-active,.table-active>td,.table-active>th{background-color:rgba(0,0,0,.075)}.table-hover .table-active:hover{background-color:rgba(0,0,0,.075)}.table-hover .table-active:hover>td,.table-hover .table-active:hover>th{background-color:rgba(0,0,0,.075)}.table .thead-dark th{color:#fff;background-color:#343a40;border-color:#454d55}.table .thead-light th{color:#495057;background-color:#e9ecef;border-color:#dee2e6}.table-dark{color:#fff;background-color:#343a40}.table-dark td,.table-dark th,.table-dark thead th{border-color:#454d55}.table-dark.table-bordered{border:0}.table-dark.table-striped tbody tr:nth-of-type(odd){background-color:rgba(255,255,255,.05)}.table-dark.table-hover tbody tr:hover{color:#fff;background-color:rgba(255,255,255,.075)}@media (max-width:575.98px){.table-responsive-sm{display:block;width:100%;overflow-x:auto;-webkit-overflow-scrolling:touch}.table-responsive-sm>.table-bordered{border:0}}@media (max-width:767.98px){.table-responsive-md{display:block;width:100%;overflow-x:auto;-webkit-overflow-scrolling:touch}.table-responsive-md>.table-bordered{border:0}}@media (max-width:991.98px){.table-responsive-lg{display:block;width:100%;overflow-x:auto;-webkit-overflow-scrolling:touch}.table-responsive-lg>.table-bordered{border:0}}@media (max-width:1199.98px){.table-responsive-xl{display:block;width:100%;overflow-x:auto;-webkit-overflow-scrolling:touch}.table-responsive-xl>.table-bordered{border:0}}.table-responsive{display:block;width:100%;overflow-x:auto;-webkit-overflow-scrolling:touch}.table-responsive>.table-bordered{border:0}.form-control{display:block;width:100%;height:calc(1.5em + .75rem + 2px);padding:.375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:#495057;background-color:#fff;background-clip:padding-box;border:1px solid #ced4da;border-radius:.25rem;transition:border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media (prefers-reduced-motion:reduce){.form-control{transition:none}}.form-control::-ms-expand{background-color:transparent;border:0}.form-control:focus{color:#495057;background-color:#fff;border-color:#80bdff;outline:0;box-shadow:0 0 0 .2rem rgba(0,123,255,.25)}.form-control::-webkit-input-placeholder{color:#6c757d;opacity:1}.form-control::-moz-placeholder{color:#6c757d;opacity:1}.form-control:-ms-input-placeholder{color:#6c757d;opacity:1}.form-control::-ms-input-placeholder{color:#6c757d;opacity:1}.form-control::placeholder{color:#6c757d;opacity:1}.form-control:disabled,.form-control[readonly]{background-color:#e9ecef;opacity:1}input[type=date].form-control,input[type=datetime-local].form-control,input[type=month].form-control,input[type=time].form-control{-webkit-appearance:none;-moz-appearance:none;appearance:none}select.form-control:-moz-focusring{color:transparent;text-shadow:0 0 0 #495057}select.form-control:focus::-ms-value{color:#495057;background-color:#fff}.form-control-file,.form-control-range{display:block;width:100%}.col-form-label{padding-top:calc(.375rem + 1px);padding-bottom:calc(.375rem + 1px);margin-bottom:0;font-size:inherit;line-height:1.5}.col-form-label-lg{padding-top:calc(.5rem + 1px);padding-bottom:calc(.5rem + 1px);font-size:1.25rem;line-height:1.5}.col-form-label-sm{padding-top:calc(.25rem + 1px);padding-bottom:calc(.25rem + 1px);font-size:.875rem;line-height:1.5}.form-control-plaintext{display:block;width:100%;padding:.375rem 0;margin-bottom:0;font-size:1rem;line-height:1.5;color:#212529;background-color:transparent;border:solid transparent;border-width:1px 0}.form-control-plaintext.form-control-lg,.form-control-plaintext.form-control-sm{padding-right:0;padding-left:0}.form-control-sm{height:calc(1.5em + .5rem + 2px);padding:.25rem .5rem;font-size:.875rem;line-height:1.5;border-radius:.2rem}.form-control-lg{height:calc(1.5em + 1rem + 2px);padding:.5rem 1rem;font-size:1.25rem;line-height:1.5;border-radius:.3rem}select.form-control[multiple],select.form-control[size]{height:auto}textarea.form-control{height:auto}.form-group{margin-bottom:1rem}.form-text{display:block;margin-top:.25rem}.form-row{display:-ms-flexbox;display:flex;-ms-flex-wrap:wrap;flex-wrap:wrap;margin-right:-5px;margin-left:-5px}.form-row>.col,.form-row>[class*=col-]{padding-right:5px;padding-left:5px}.form-check{position:relative;display:block;padding-left:1.25rem}.form-check-input{position:absolute;margin-top:.3rem;margin-left:-1.25rem}.form-check-input:disabled~.form-check-label,.form-check-input[disabled]~.form-check-label{color:#6c757d}.form-check-label{margin-bottom:0}.form-check-inline{display:-ms-inline-flexbox;display:inline-flex;-ms-flex-align:center;align-items:center;padding-left:0;margin-right:.75rem}.form-check-inline .form-check-input{position:static;margin-top:0;margin-right:.3125rem;margin-left:0}.valid-feedback{display:none;width:100%;margin-top:.25rem;font-size:.875em;color:#28a745}.valid-tooltip{position:absolute;top:100%;left:0;z-index:5;display:none;max-width:100%;padding:.25rem .5rem;margin-top:.1rem;font-size:.875rem;line-height:1.5;color:#fff;background-color:rgba(40,167,69,.9);border-radius:.25rem}.form-row>.col>.valid-tooltip,.form-row>[class*=col-]>.valid-tooltip{left:5px}.is-valid~.valid-feedback,.is-valid~.valid-tooltip,.was-validated :valid~.valid-feedback,.was-validated :valid~.valid-tooltip{display:block}.form-control.is-valid,.was-validated .form-control:valid{border-color:#28a745;padding-right:calc(1.5em + .75rem)!important;background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='8' height='8' viewBox='0 0 8 8'%3e%3cpath fill='%2328a745' d='M2.3 6.73L.6 4.53c-.4-1.04.46-1.4 1.1-.8l1.1 1.4 3.4-3.8c.6-.63 1.6-.27 1.2.7l-4 4.6c-.43.5-.8.4-1.1.1z'/%3e%3c/svg%3e");background-repeat:no-repeat;background-position:right calc(.375em + .1875rem) center;background-size:calc(.75em + .375rem) calc(.75em + .375rem)}.form-control.is-valid:focus,.was-validated .form-control:valid:focus{border-color:#28a745;box-shadow:0 0 0 .2rem rgba(40,167,69,.25)}.was-validated select.form-control:valid,select.form-control.is-valid{padding-right:3rem!important;background-position:right 1.5rem center}.was-validated textarea.form-control:valid,textarea.form-control.is-valid{padding-right:calc(1.5em + .75rem);background-position:top calc(.375em + .1875rem) right calc(.375em + .1875rem)}.custom-select.is-valid,.was-validated .custom-select:valid{border-color:#28a745;padding-right:calc(.75em + 2.3125rem)!important;background:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='4' height='5' viewBox='0 0 4 5'%3e%3cpath fill='%23343a40' d='M2 0L0 2h4zm0 5L0 3h4z'/%3e%3c/svg%3e") right .75rem center/8px 10px no-repeat,#fff url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='8' height='8' viewBox='0 0 8 8'%3e%3cpath fill='%2328a745' d='M2.3 6.73L.6 4.53c-.4-1.04.46-1.4 1.1-.8l1.1 1.4 3.4-3.8c.6-.63 1.6-.27 1.2.7l-4 4.6c-.43.5-.8.4-1.1.1z'/%3e%3c/svg%3e") center right 1.75rem/calc(.75em + .375rem) calc(.75em + .375rem) no-repeat}.custom-select.is-valid:focus,.was-validated .custom-select:valid:focus{border-color:#28a745;box-shadow:0 0 0 .2rem rgba(40,167,69,.25)}.form-check-input.is-valid~.form-check-label,.was-validated .form-check-input:valid~.form-check-label{color:#28a745}.form-check-input.is-valid~.valid-feedback,.form-check-input.is-valid~.valid-tooltip,.was-validated .form-check-input:valid~.valid-feedback,.was-validated .form-check-input:valid~.valid-tooltip{display:block}.custom-control-input.is-valid~.custom-control-label,.was-validated .custom-control-input:valid~.custom-control-label{color:#28a745}.custom-control-input.is-valid~.custom-control-label::before,.was-validated .custom-control-input:valid~.custom-control-label::before{border-color:#28a745}.custom-control-input.is-valid:checked~.custom-control-label::before,.was-validated .custom-control-input:valid:checked~.custom-control-label::before{border-color:#34ce57;background-color:#34ce57}.custom-control-input.is-valid:focus~.custom-control-label::before,.was-validated .custom-control-input:valid:focus~.custom-control-label::before{box-shadow:0 0 0 .2rem rgba(40,167,69,.25)}.custom-control-input.is-valid:focus:not(:checked)~.custom-control-label::before,.was-validated .custom-control-input:valid:focus:not(:checked)~.custom-control-label::before{border-color:#28a745}.custom-file-input.is-valid~.custom-file-label,.was-validated .custom-file-input:valid~.custom-file-label{border-color:#28a745}.custom-file-input.is-valid:focus~.custom-file-label,.was-validated .custom-file-input:valid:focus~.custom-file-label{border-color:#28a745;box-shadow:0 0 0 .2rem rgba(40,167,69,.25)}.invalid-feedback{display:none;width:100%;margin-top:.25rem;font-size:.875em;color:#dc3545}.invalid-tooltip{position:absolute;top:100%;left:0;z-index:5;display:none;max-width:100%;padding:.25rem .5rem;margin-top:.1rem;font-size:.875rem;line-height:1.5;color:#fff;background-color:rgba(220,53,69,.9);border-radius:.25rem}.form-row>.col>.invalid-tooltip,.form-row>[class*=col-]>.invalid-tooltip{left:5px}.is-invalid~.invalid-feedback,.is-invalid~.invalid-tooltip,.was-validated :invalid~.invalid-feedback,.was-validated :invalid~.invalid-tooltip{display:block}.form-control.is-invalid,.was-validated .form-control:invalid{border-color:#dc3545;padding-right:calc(1.5em + .75rem)!important;background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='12' height='12' fill='none' stroke='%23dc3545' viewBox='0 0 12 12'%3e%3ccircle cx='6' cy='6' r='4.5'/%3e%3cpath stroke-linejoin='round' d='M5.8 3.6h.4L6 6.5z'/%3e%3ccircle cx='6' cy='8.2' r='.6' fill='%23dc3545' stroke='none'/%3e%3c/svg%3e");background-repeat:no-repeat;background-position:right calc(.375em + .1875rem) center;background-size:calc(.75em + .375rem) calc(.75em + .375rem)}.form-control.is-invalid:focus,.was-validated .form-control:invalid:focus{border-color:#dc3545;box-shadow:0 0 0 .2rem rgba(220,53,69,.25)}.was-validated select.form-control:invalid,select.form-control.is-invalid{padding-right:3rem!important;background-position:right 1.5rem center}.was-validated textarea.form-control:invalid,textarea.form-control.is-invalid{padding-right:calc(1.5em + .75rem);background-position:top calc(.375em + .1875rem) right calc(.375em + .1875rem)}.custom-select.is-invalid,.was-validated .custom-select:invalid{border-color:#dc3545;padding-right:calc(.75em + 2.3125rem)!important;background:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='4' height='5' viewBox='0 0 4 5'%3e%3cpath fill='%23343a40' d='M2 0L0 2h4zm0 5L0 3h4z'/%3e%3c/svg%3e") right .75rem center/8px 10px no-repeat,#fff url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='12' height='12' fill='none' stroke='%23dc3545' viewBox='0 0 12 12'%3e%3ccircle cx='6' cy='6' r='4.5'/%3e%3cpath stroke-linejoin='round' d='M5.8 3.6h.4L6 6.5z'/%3e%3ccircle cx='6' cy='8.2' r='.6' fill='%23dc3545' stroke='none'/%3e%3c/svg%3e") center right 1.75rem/calc(.75em + .375rem) calc(.75em + .375rem) no-repeat}.custom-select.is-invalid:focus,.was-validated .custom-select:invalid:focus{border-color:#dc3545;box-shadow:0 0 0 .2rem rgba(220,53,69,.25)}.form-check-input.is-invalid~.form-check-label,.was-validated .form-check-input:invalid~.form-check-label{color:#dc3545}.form-check-input.is-invalid~.invalid-feedback,.form-check-input.is-invalid~.invalid-tooltip,.was-validated .form-check-input:invalid~.invalid-feedback,.was-validated .form-check-input:invalid~.invalid-tooltip{display:block}.custom-control-input.is-invalid~.custom-control-label,.was-validated .custom-control-input:invalid~.custom-control-label{color:#dc3545}.custom-control-input.is-invalid~.custom-control-label::before,.was-validated .custom-control-input:invalid~.custom-control-label::before{border-color:#dc3545}.custom-control-input.is-invalid:checked~.custom-control-label::before,.was-validated .custom-control-input:invalid:checked~.custom-control-label::before{border-color:#e4606d;background-color:#e4606d}.custom-control-input.is-invalid:focus~.custom-control-label::before,.was-validated .custom-control-input:invalid:focus~.custom-control-label::before{box-shadow:0 0 0 .2rem rgba(220,53,69,.25)}.custom-control-input.is-invalid:focus:not(:checked)~.custom-control-label::before,.was-validated .custom-control-input:invalid:focus:not(:checked)~.custom-control-label::before{border-color:#dc3545}.custom-file-input.is-invalid~.custom-file-label,.was-validated .custom-file-input:invalid~.custom-file-label{border-color:#dc3545}.custom-file-input.is-invalid:focus~.custom-file-label,.was-validated .custom-file-input:invalid:focus~.custom-file-label{border-color:#dc3545;box-shadow:0 0 0 .2rem rgba(220,53,69,.25)}.form-inline{display:-ms-flexbox;display:flex;-ms-flex-flow:row wrap;flex-flow:row wrap;-ms-flex-align:center;align-items:center}.form-inline .form-check{width:100%}@media (min-width:576px){.form-inline label{display:-ms-flexbox;display:flex;-ms-flex-align:center;align-items:center;-ms-flex-pack:center;justify-content:center;margin-bottom:0}.form-inline .form-group{display:-ms-flexbox;display:flex;-ms-flex:0 0 auto;flex:0 0 auto;-ms-flex-flow:row wrap;flex-flow:row wrap;-ms-flex-align:center;align-items:center;margin-bottom:0}.form-inline .form-control{display:inline-block;width:auto;vertical-align:middle}.form-inline .form-control-plaintext{display:inline-block}.form-inline .custom-select,.form-inline .input-group{width:auto}.form-inline .form-check{display:-ms-flexbox;display:flex;-ms-flex-align:center;align-items:center;-ms-flex-pack:center;justify-content:center;width:auto;padding-left:0}.form-inline .form-check-input{position:relative;-ms-flex-negative:0;flex-shrink:0;margin-top:0;margin-right:.25rem;margin-left:0}.form-inline .custom-control{-ms-flex-align:center;align-items:center;-ms-flex-pack:center;justify-content:center}.form-inline .custom-control-label{margin-bottom:0}}.btn{display:inline-block;font-weight:400;color:#212529;text-align:center;vertical-align:middle;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;background-color:transparent;border:1px solid transparent;padding:.375rem .75rem;font-size:1rem;line-height:1.5;border-radius:.25rem;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media (prefers-reduced-motion:reduce){.btn{transition:none}}.btn:hover{color:#212529;text-decoration:none}.btn.focus,.btn:focus{outline:0;box-shadow:0 0 0 .2rem rgba(0,123,255,.25)}.btn.disabled,.btn:disabled{opacity:.65}.btn:not(:disabled):not(.disabled){cursor:pointer}a.btn.disabled,fieldset:disabled a.btn{pointer-events:none}.btn-primary{color:#fff;background-color:#007bff;border-color:#007bff}.btn-primary:hover{color:#fff;background-color:#0069d9;border-color:#0062cc}.btn-primary.focus,.btn-primary:focus{color:#fff;background-color:#0069d9;border-color:#0062cc;box-shadow:0 0 0 .2rem rgba(38,143,255,.5)}.btn-primary.disabled,.btn-primary:disabled{color:#fff;background-color:#007bff;border-color:#007bff}.btn-primary:not(:disabled):not(.disabled).active,.btn-primary:not(:disabled):not(.disabled):active,.show>.btn-primary.dropdown-toggle{color:#fff;background-color:#0062cc;border-color:#005cbf}.btn-primary:not(:disabled):not(.disabled).active:focus,.btn-primary:not(:disabled):not(.disabled):active:focus,.show>.btn-primary.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(38,143,255,.5)}.btn-secondary{color:#fff;background-color:#6c757d;border-color:#6c757d}.btn-secondary:hover{color:#fff;background-color:#5a6268;border-color:#545b62}.btn-secondary.focus,.btn-secondary:focus{color:#fff;background-color:#5a6268;border-color:#545b62;box-shadow:0 0 0 .2rem rgba(130,138,145,.5)}.btn-secondary.disabled,.btn-secondary:disabled{color:#fff;background-color:#6c757d;border-color:#6c757d}.btn-secondary:not(:disabled):not(.disabled).active,.btn-secondary:not(:disabled):not(.disabled):active,.show>.btn-secondary.dropdown-toggle{color:#fff;background-color:#545b62;border-color:#4e555b}.btn-secondary:not(:disabled):not(.disabled).active:focus,.btn-secondary:not(:disabled):not(.disabled):active:focus,.show>.btn-secondary.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(130,138,145,.5)}.btn-success{color:#fff;background-color:#28a745;border-color:#28a745}.btn-success:hover{color:#fff;background-color:#218838;border-color:#1e7e34}.btn-success.focus,.btn-success:focus{color:#fff;background-color:#218838;border-color:#1e7e34;box-shadow:0 0 0 .2rem rgba(72,180,97,.5)}.btn-success.disabled,.btn-success:disabled{color:#fff;background-color:#28a745;border-color:#28a745}.btn-success:not(:disabled):not(.disabled).active,.btn-success:not(:disabled):not(.disabled):active,.show>.btn-success.dropdown-toggle{color:#fff;background-color:#1e7e34;border-color:#1c7430}.btn-success:not(:disabled):not(.disabled).active:focus,.btn-success:not(:disabled):not(.disabled):active:focus,.show>.btn-success.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(72,180,97,.5)}.btn-info{color:#fff;background-color:#17a2b8;border-color:#17a2b8}.btn-info:hover{color:#fff;background-color:#138496;border-color:#117a8b}.btn-info.focus,.btn-info:focus{color:#fff;background-color:#138496;border-color:#117a8b;box-shadow:0 0 0 .2rem rgba(58,176,195,.5)}.btn-info.disabled,.btn-info:disabled{color:#fff;background-color:#17a2b8;border-color:#17a2b8}.btn-info:not(:disabled):not(.disabled).active,.btn-info:not(:disabled):not(.disabled):active,.show>.btn-info.dropdown-toggle{color:#fff;background-color:#117a8b;border-color:#10707f}.btn-info:not(:disabled):not(.disabled).active:focus,.btn-info:not(:disabled):not(.disabled):active:focus,.show>.btn-info.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(58,176,195,.5)}.btn-warning{color:#212529;background-color:#ffc107;border-color:#ffc107}.btn-warning:hover{color:#212529;background-color:#e0a800;border-color:#d39e00}.btn-warning.focus,.btn-warning:focus{color:#212529;background-color:#e0a800;border-color:#d39e00;box-shadow:0 0 0 .2rem rgba(222,170,12,.5)}.btn-warning.disabled,.btn-warning:disabled{color:#212529;background-color:#ffc107;border-color:#ffc107}.btn-warning:not(:disabled):not(.disabled).active,.btn-warning:not(:disabled):not(.disabled):active,.show>.btn-warning.dropdown-toggle{color:#212529;background-color:#d39e00;border-color:#c69500}.btn-warning:not(:disabled):not(.disabled).active:focus,.btn-warning:not(:disabled):not(.disabled):active:focus,.show>.btn-warning.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(222,170,12,.5)}.btn-danger{color:#fff;background-color:#dc3545;border-color:#dc3545}.btn-danger:hover{color:#fff;background-color:#c82333;border-color:#bd2130}.btn-danger.focus,.btn-danger:focus{color:#fff;background-color:#c82333;border-color:#bd2130;box-shadow:0 0 0 .2rem rgba(225,83,97,.5)}.btn-danger.disabled,.btn-danger:disabled{color:#fff;background-color:#dc3545;border-color:#dc3545}.btn-danger:not(:disabled):not(.disabled).active,.btn-danger:not(:disabled):not(.disabled):active,.show>.btn-danger.dropdown-toggle{color:#fff;background-color:#bd2130;border-color:#b21f2d}.btn-danger:not(:disabled):not(.disabled).active:focus,.btn-danger:not(:disabled):not(.disabled):active:focus,.show>.btn-danger.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(225,83,97,.5)}.btn-light{color:#212529;background-color:#f8f9fa;border-color:#f8f9fa}.btn-light:hover{color:#212529;background-color:#e2e6ea;border-color:#dae0e5}.btn-light.focus,.btn-light:focus{color:#212529;background-color:#e2e6ea;border-color:#dae0e5;box-shadow:0 0 0 .2rem rgba(216,217,219,.5)}.btn-light.disabled,.btn-light:disabled{color:#212529;background-color:#f8f9fa;border-color:#f8f9fa}.btn-light:not(:disabled):not(.disabled).active,.btn-light:not(:disabled):not(.disabled):active,.show>.btn-light.dropdown-toggle{color:#212529;background-color:#dae0e5;border-color:#d3d9df}.btn-light:not(:disabled):not(.disabled).active:focus,.btn-light:not(:disabled):not(.disabled):active:focus,.show>.btn-light.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(216,217,219,.5)}.btn-dark{color:#fff;background-color:#343a40;border-color:#343a40}.btn-dark:hover{color:#fff;background-color:#23272b;border-color:#1d2124}.btn-dark.focus,.btn-dark:focus{color:#fff;background-color:#23272b;border-color:#1d2124;box-shadow:0 0 0 .2rem rgba(82,88,93,.5)}.btn-dark.disabled,.btn-dark:disabled{color:#fff;background-color:#343a40;border-color:#343a40}.btn-dark:not(:disabled):not(.disabled).active,.btn-dark:not(:disabled):not(.disabled):active,.show>.btn-dark.dropdown-toggle{color:#fff;background-color:#1d2124;border-color:#171a1d}.btn-dark:not(:disabled):not(.disabled).active:focus,.btn-dark:not(:disabled):not(.disabled):active:focus,.show>.btn-dark.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(82,88,93,.5)}.btn-outline-primary{color:#007bff;border-color:#007bff}.btn-outline-primary:hover{color:#fff;background-color:#007bff;border-color:#007bff}.btn-outline-primary.focus,.btn-outline-primary:focus{box-shadow:0 0 0 .2rem rgba(0,123,255,.5)}.btn-outline-primary.disabled,.btn-outline-primary:disabled{color:#007bff;background-color:transparent}.btn-outline-primary:not(:disabled):not(.disabled).active,.btn-outline-primary:not(:disabled):not(.disabled):active,.show>.btn-outline-primary.dropdown-toggle{color:#fff;background-color:#007bff;border-color:#007bff}.btn-outline-primary:not(:disabled):not(.disabled).active:focus,.btn-outline-primary:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-primary.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(0,123,255,.5)}.btn-outline-secondary{color:#6c757d;border-color:#6c757d}.btn-outline-secondary:hover{color:#fff;background-color:#6c757d;border-color:#6c757d}.btn-outline-secondary.focus,.btn-outline-secondary:focus{box-shadow:0 0 0 .2rem rgba(108,117,125,.5)}.btn-outline-secondary.disabled,.btn-outline-secondary:disabled{color:#6c757d;background-color:transparent}.btn-outline-secondary:not(:disabled):not(.disabled).active,.btn-outline-secondary:not(:disabled):not(.disabled):active,.show>.btn-outline-secondary.dropdown-toggle{color:#fff;background-color:#6c757d;border-color:#6c757d}.btn-outline-secondary:not(:disabled):not(.disabled).active:focus,.btn-outline-secondary:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-secondary.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(108,117,125,.5)}.btn-outline-success{color:#28a745;border-color:#28a745}.btn-outline-success:hover{color:#fff;background-color:#28a745;border-color:#28a745}.btn-outline-success.focus,.btn-outline-success:focus{box-shadow:0 0 0 .2rem rgba(40,167,69,.5)}.btn-outline-success.disabled,.btn-outline-success:disabled{color:#28a745;background-color:transparent}.btn-outline-success:not(:disabled):not(.disabled).active,.btn-outline-success:not(:disabled):not(.disabled):active,.show>.btn-outline-success.dropdown-toggle{color:#fff;background-color:#28a745;border-color:#28a745}.btn-outline-success:not(:disabled):not(.disabled).active:focus,.btn-outline-success:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-success.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(40,167,69,.5)}.btn-outline-info{color:#17a2b8;border-color:#17a2b8}.btn-outline-info:hover{color:#fff;background-color:#17a2b8;border-color:#17a2b8}.btn-outline-info.focus,.btn-outline-info:focus{box-shadow:0 0 0 .2rem rgba(23,162,184,.5)}.btn-outline-info.disabled,.btn-outline-info:disabled{color:#17a2b8;background-color:transparent}.btn-outline-info:not(:disabled):not(.disabled).active,.btn-outline-info:not(:disabled):not(.disabled):active,.show>.btn-outline-info.dropdown-toggle{color:#fff;background-color:#17a2b8;border-color:#17a2b8}.btn-outline-info:not(:disabled):not(.disabled).active:focus,.btn-outline-info:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-info.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(23,162,184,.5)}.btn-outline-warning{color:#ffc107;border-color:#ffc107}.btn-outline-warning:hover{color:#212529;background-color:#ffc107;border-color:#ffc107}.btn-outline-warning.focus,.btn-outline-warning:focus{box-shadow:0 0 0 .2rem rgba(255,193,7,.5)}.btn-outline-warning.disabled,.btn-outline-warning:disabled{color:#ffc107;background-color:transparent}.btn-outline-warning:not(:disabled):not(.disabled).active,.btn-outline-warning:not(:disabled):not(.disabled):active,.show>.btn-outline-warning.dropdown-toggle{color:#212529;background-color:#ffc107;border-color:#ffc107}.btn-outline-warning:not(:disabled):not(.disabled).active:focus,.btn-outline-warning:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-warning.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(255,193,7,.5)}.btn-outline-danger{color:#dc3545;border-color:#dc3545}.btn-outline-danger:hover{color:#fff;background-color:#dc3545;border-color:#dc3545}.btn-outline-danger.focus,.btn-outline-danger:focus{box-shadow:0 0 0 .2rem rgba(220,53,69,.5)}.btn-outline-danger.disabled,.btn-outline-danger:disabled{color:#dc3545;background-color:transparent}.btn-outline-danger:not(:disabled):not(.disabled).active,.btn-outline-danger:not(:disabled):not(.disabled):active,.show>.btn-outline-danger.dropdown-toggle{color:#fff;background-color:#dc3545;border-color:#dc3545}.btn-outline-danger:not(:disabled):not(.disabled).active:focus,.btn-outline-danger:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-danger.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(220,53,69,.5)}.btn-outline-light{color:#f8f9fa;border-color:#f8f9fa}.btn-outline-light:hover{color:#212529;background-color:#f8f9fa;border-color:#f8f9fa}.btn-outline-light.focus,.btn-outline-light:focus{box-shadow:0 0 0 .2rem rgba(248,249,250,.5)}.btn-outline-light.disabled,.btn-outline-light:disabled{color:#f8f9fa;background-color:transparent}.btn-outline-light:not(:disabled):not(.disabled).active,.btn-outline-light:not(:disabled):not(.disabled):active,.show>.btn-outline-light.dropdown-toggle{color:#212529;background-color:#f8f9fa;border-color:#f8f9fa}.btn-outline-light:not(:disabled):not(.disabled).active:focus,.btn-outline-light:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-light.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(248,249,250,.5)}.btn-outline-dark{color:#343a40;border-color:#343a40}.btn-outline-dark:hover{color:#fff;background-color:#343a40;border-color:#343a40}.btn-outline-dark.focus,.btn-outline-dark:focus{box-shadow:0 0 0 .2rem rgba(52,58,64,.5)}.btn-outline-dark.disabled,.btn-outline-dark:disabled{color:#343a40;background-color:transparent}.btn-outline-dark:not(:disabled):not(.disabled).active,.btn-outline-dark:not(:disabled):not(.disabled):active,.show>.btn-outline-dark.dropdown-toggle{color:#fff;background-color:#343a40;border-color:#343a40}.btn-outline-dark:not(:disabled):not(.disabled).active:focus,.btn-outline-dark:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-dark.dropdown-toggle:focus{box-shadow:0 0 0 .2rem rgba(52,58,64,.5)}.btn-link{font-weight:400;color:#007bff;text-decoration:none}.btn-link:hover{color:#0056b3;text-decoration:underline}.btn-link.focus,.btn-link:focus{text-decoration:underline}.btn-link.disabled,.btn-link:disabled{color:#6c757d;pointer-events:none}.btn-group-lg>.btn,.btn-lg{padding:.5rem 1rem;font-size:1.25rem;line-height:1.5;border-radius:.3rem}.btn-group-sm>.btn,.btn-sm{padding:.25rem .5rem;font-size:.875rem;line-height:1.5;border-radius:.2rem}.btn-block{display:block;width:100%}.btn-block+.btn-block{margin-top:.5rem}input[type=button].btn-block,input[type=reset].btn-block,input[type=submit].btn-block{width:100%}.fade{transition:opacity .15s linear}@media (prefers-reduced-motion:reduce){.fade{transition:none}}.fade:not(.show){opacity:0}.collapse:not(.show){display:none}.collapsing{position:relative;height:0;overflow:hidden;transition:height .35s ease}@media (prefers-reduced-motion:reduce){.collapsing{transition:none}}.collapsing.width{width:0;height:auto;transition:width .35s ease}@media (prefers-reduced-motion:reduce){.collapsing.width{transition:none}}.dropdown,.dropleft,.dropright,.dropup{position:relative}.dropdown-toggle{white-space:nowrap}.dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:.3em solid;border-right:.3em solid transparent;border-bottom:0;border-left:.3em solid transparent}.dropdown-toggle:empty::after{margin-left:0}.dropdown-menu{position:absolute;top:100%;left:0;z-index:1000;display:none;float:left;min-width:10rem;padding:.5rem 0;margin:.125rem 0 0;font-size:1rem;color:#212529;text-align:left;list-style:none;background-color:#fff;background-clip:padding-box;border:1px solid rgba(0,0,0,.15);border-radius:.25rem}.dropdown-menu-left{right:auto;left:0}.dropdown-menu-right{right:0;left:auto}@media (min-width:576px){.dropdown-menu-sm-left{right:auto;left:0}.dropdown-menu-sm-right{right:0;left:auto}}@media (min-width:768px){.dropdown-menu-md-left{right:auto;left:0}.dropdown-menu-md-right{right:0;left:auto}}@media (min-width:992px){.dropdown-menu-lg-left{right:auto;left:0}.dropdown-menu-lg-right{right:0;left:auto}}@media (min-width:1200px){.dropdown-menu-xl-left{right:auto;left:0}.dropdown-menu-xl-right{right:0;left:auto}}.dropup .dropdown-menu{top:auto;bottom:100%;margin-top:0;margin-bottom:.125rem}.dropup .dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:0;border-right:.3em solid transparent;border-bottom:.3em solid;border-left:.3em solid transparent}.dropup .dropdown-toggle:empty::after{margin-left:0}.dropright .dropdown-menu{top:0;right:auto;left:100%;margin-top:0;margin-left:.125rem}.dropright .dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:"";border-top:.3em solid transparent;border-right:0;border-bottom:.3em solid transparent;border-left:.3em solid}.dropright .dropdown-toggle:empty::after{margin-left:0}.dropright .dropdown-toggle::after{vertical-align:0}.dropleft .dropdown-menu{top:0;right:100%;left:auto;margin-top:0;margin-right:.125rem}.dropleft .dropdown-toggle::after{display:inline-block;margin-left:.255em;vertical-align:.255em;content:""}.dropleft .dropdown-toggle::after{display:none}.dropleft .dropdown-toggle::before{display:inline-block;margin-right:.255em;vertical-align:.255em;content:"";border-top:.3em solid transparent;border-right:.3em solid;border-bottom:.3em solid transparent}.dropleft .dropdown-toggle:empty::after{margin-left:0}.dropleft .dropdown-toggle::before{vertical-align:0}.dropdown-menu[x-placement^=bottom],.dropdown-menu[x-placement^=left],.dropdown-menu[x-placement^=right],.dropdown-menu[x-placement^=top]{right:auto;bottom:auto}.dropdown-divider{height:0;margin:.5rem 0;overflow:hidden;border-top:1px solid #e9ecef}.dropdown-item{display:block;width:100%;padding:.25rem 1.5rem;clear:both;font-weight:400;color:#212529;text-align:inherit;white-space:nowrap;background-color:transparent;border:0}.dropdown-item:focus,.dropdown-item:hover{color:#16181b;text-decoration:none;background-color:#e9ecef}.dropdown-item.active,.dropdown-item:active{color:#fff;text-decoration:none;background-color:#007bff}.dropdown-item.disabled,.dropdown-item:disabled{color:#adb5bd;pointer-events:none;background-color:transparent}.dropdown-menu.show{display:block}.dropdown-header{display:block;padding:.5rem 1.5rem;margin-bottom:0;font-size:.875rem;color:#6c757d;white-space:nowrap}.dropdown-item-text{display:block;padding:.25rem 1.5rem;color:#212529}.btn-group,.btn-group-vertical{position:relative;display:-ms-inline-flexbox;display:inline-flex;vertical-align:middle}.btn-group-vertical>.btn,.btn-group>.btn{position:relative;-ms-flex:1 1 auto;flex:1 1 auto}.btn-group-vertical>.btn:hover,.btn-group>.btn:hover{z-index:1}.btn-group-vertical>.btn.active,.btn-group-vertical>.btn:active,.btn-group-vertical>.btn:focus,.btn-group>.btn.active,.btn-group>.btn:active,.btn-group>.btn:focus{z-index:1}.btn-toolbar{display:-ms-flexbox;display:flex;-ms-flex-wrap:wrap;flex-wrap:wrap;-ms-flex-pack:start;justify-content:flex-start}.btn-toolbar .input-group{width:auto}.btn-group>.btn-group:not(:first-child),.btn-group>.btn:not(:first-child){margin-left:-1px}.btn-group>.btn-group:not(:last-child)>.btn,.btn-group>.btn:not(:last-child):not(.dropdown-toggle){border-top-right-radius:0;border-bottom-right-radius:0}.btn-group>.btn-group:not(:first-child)>.btn,.btn-group>.btn:not(:first-child){border-top-left-radius:0;border-bottom-left-radius:0}.dropdown-toggle-split{padding-right:.5625rem;padding-left:.5625rem}.dropdown-toggle-split::after,.dropright .dropdown-toggle-split::after,.dropup .dropdown-toggle-split::after{margin-left:0}.dropleft .dropdown-toggle-split::before{margin-right:0}.btn-group-sm>.btn+.dropdown-toggle-split,.btn-sm+.dropdown-toggle-split{padding-right:.375rem;padding-left:.375rem}.btn-group-lg>.btn+.dropdown-toggle-split,.btn-lg+.dropdown-toggle-split{padding-right:.75rem;padding-left:.75rem}.btn-group-vertical{-ms-flex-direction:column;flex-direction:column;-ms-flex-align:start;align-items:flex-start;-ms-flex-pack:center;justify-content:center}.btn-group-vertical>.btn,.btn-group-vertical>.btn-group{width:100%}.btn-group-vertical>.btn-group:not(:first-child),.btn-group-vertical>.btn:not(:first-child){margin-top:-1px}.btn-group-vertical>.btn-group:not(:last-child)>.btn,.btn-group-vertical>.btn:not(:last-child):not(.dropdown-toggle){border-bottom-right-radius:0;border-bottom-left-radius:0}.btn-group-vertical>.btn-group:not(:first-child)>.btn,.btn-group-vertical>.btn:not(:first-child){border-top-left-radius:0;border-top-right-radius:0}.btn-group-toggle>.btn,.btn-group-toggle>.btn-group>.btn{margin-bottom:0}.btn-group-toggle>.btn input[type=checkbox],.btn-group-toggle>.btn input[type=radio],.btn-group-toggle>.btn-group>.btn input[type=checkbox],.btn-group-toggle>.btn-group>.btn input[type=radio]{position:absolute;clip:rect(0,0,0,0);pointer-events:none}.input-group{position:relative;display:-ms-flexbox;display:flex;-ms-flex-wrap:wrap;flex-wrap:wrap;-ms-flex-align:stretch;align-items:stretch;width:100%}.input-group>.custom-file,.input-group>.custom-select,.input-group>.form-control,.input-group>.form-control-plaintext{position:relative;-ms-flex:1 1 auto;flex:1 1 auto;width:1%;min-width:0;margin-bottom:0}.input-group>.custom-file+.custom-file,.input-group>.custom-file+.custom-select,.input-group>.custom-file+.form-control,.input-group>.custom-select+.custom-file,.input-group>.custom-select+.custom-select,.input-group>.custom-select+.form-control,.input-group>.form-control+.custom-file,.input-group>.form-control+.custom-select,.input-group>.form-control+.form-control,.input-group>.form-control-plaintext+.custom-file,.input-group>.form-control-plaintext+.custom-select,.input-group>.form-control-plaintext+.form-control{margin-left:-1px}.input-group>.custom-file .custom-file-input:focus~.custom-file-label,.input-group>.custom-select:focus,.input-group>.form-control:focus{z-index:3}.input-group>.custom-file .custom-file-input:focus{z-index:4}.input-group>.custom-select:not(:first-child),.input-group>.form-control:not(:first-child){border-top-left-radius:0;border-bottom-left-radius:0}.input-group>.custom-file{display:-ms-flexbox;display:flex;-ms-flex-align:center;align-items:center}.input-group>.custom-file:not(:last-child) .custom-file-label,.input-group>.custom-file:not(:last-child) .custom-file-label::after{border-top-right-radius:0;border-bottom-right-radius:0}.input-group>.custom-file:not(:first-child) .custom-file-label{border-top-left-radius:0;border-bottom-left-radius:0}.input-group:not(.has-validation)>.custom-file:not(:last-child) .custom-file-label,.input-group:not(.has-validation)>.custom-file:not(:last-child) .custom-file-label::after,.input-group:not(.has-validation)>.custom-select:not(:last-child),.input-group:not(.has-validation)>.form-control:not(:last-child){border-top-right-radius:0;border-bottom-right-radius:0}.input-group.has-validation>.custom-file:nth-last-child(n+3) .custom-file-label,.input-group.has-validation>.custom-file:nth-last-child(n+3) .custom-file-label::after,.input-group.has-validation>.custom-select:nth-last-child(n+3),.input-group.has-validation>.form-control:nth-last-child(n+3){border-top-right-radius:0;border-bottom-right-radius:0}.input-group-append,.input-group-prepend{display:-ms-flexbox;display:flex}.input-group-append .btn,.input-group-prepend .btn{position:relative;z-index:2}.input-group-append .btn:focus,.input-group-prepend .btn:focus{z-index:3}.input-group-append .btn+.btn,.input-group-append .btn+.input-group-text,.input-group-append .input-group-text+.btn,.input-group-append .input-group-text+.input-group-text,.input-group-prepend .btn+.btn,.input-group-prepend .btn+.input-group-text,.input-group-prepend .input-group-text+.btn,.input-group-prepend .input-group-text+.input-group-text{margin-left:-1px}.input-group-prepend{margin-right:-1px}.input-group-append{margin-left:-1px}.input-group-text{display:-ms-flexbox;display:flex;-ms-flex-align:center;align-items:center;padding:.375rem .75rem;margin-bottom:0;font-size:1rem;font-weight:400;line-height:1.5;color:#495057;text-align:center;white-space:nowrap;background-color:#e9ecef;border:1px solid #ced4da;border-radius:.25rem}.input-group-text input[type=checkbox],.input-group-text input[type=radio]{margin-top:0}.input-group-lg>.custom-select,.input-group-lg>.form-control:not(textarea){height:calc(1.5em + 1rem + 2px)}.input-group-lg>.custom-select,.input-group-lg>.form-control,.input-group-lg>.input-group-append>.btn,.input-group-lg>.input-group-append>.input-group-text,.input-group-lg>.input-group-prepend>.btn,.input-group-lg>.input-group-prepend>.input-group-text{padding:.5rem 1rem;font-size:1.25rem;line-height:1.5;border-radius:.3rem}.input-group-sm>.custom-select,.input-group-sm>.form-control:not(textarea){height:calc(1.5em + .5rem + 2px)}.input-group-sm>.custom-select,.input-group-sm>.form-control,.input-group-sm>.input-group-append>.btn,.input-group-sm>.input-group-append>.input-group-text,.input-group-sm>.input-group-prepend>.btn,.input-group-sm>.input-group-prepend>.input-group-text{padding:.25rem .5rem;font-size:.875rem;line-height:1.5;border-radius:.2rem}.input-group-lg>.custom-select,.input-group-sm>.custom-select{padding-right:1.75rem}.input-group.has-validation>.input-group-append:nth-last-child(n+3)>.btn,.input-group.has-validation>.input-group-append:nth-last-child(n+3)>.input-group-text,.input-group:not(.has-validation)>.input-group-append:not(:last-child)>.btn,.input-group:not(.has-validation)>.input-group-append:not(:last-child)>.input-group-text,.input-group>.input-group-append:last-child>.btn:not(:last-child):not(.dropdown-toggle),.input-group>.input-group-append:last-child>.input-group-text:not(:last-child),.input-group>.input-group-prepend>.btn,.input-group>.input-group-prepend>.input-group-text{border-top-right-radius:0;border-bottom-right-radius:0}.input-group>.input-group-append>.btn,.input-group>.input-group-append>.input-group-text,.input-group>.input-group-prepend:first-child>.btn:not(:first-child),.input-group>.input-group-prepend:first-child>.input-group-text:not(:first-child),.input-group>.input-group-prepend:not(:first-child)>.btn,.input-group>.input-group-prepend:not(:first-child)>.input-group-text{border-top-left-radius:0;border-bottom-left-radius:0}.custom-control{position:relative;z-index:1;display:block;min-height:1.5rem;padding-left:1.5rem;-webkit-print-color-adjust:exact;color-adjust:exact;print-color-adjust:exact}.custom-control-inline{display:-ms-inline-flexbox;display:inline-flex;margin-right:1rem}.custom-control-input{position:absolute;left:0;z-index:-1;width:1rem;height:1.25rem;opacity:0}.custom-control-input:checked~.custom-control-label::before{color:#fff;border-color:#007bff;background-color:#007bff}.custom-control-input:focus~.custom-control-label::before{box-shadow:0 0 0 .2rem rgba(0,123,255,.25)}.custom-control-input:focus:not(:checked)~.custom-control-label::before{border-color:#80bdff}.custom-control-input:not(:disabled):active~.custom-control-label::before{color:#fff;background-color:#b3d7ff;border-color:#b3d7ff}.custom-control-input:disabled~.custom-control-label,.custom-control-input[disabled]~.custom-control-label{color:#6c757d}.custom-control-input:disabled~.custom-control-label::before,.custom-control-input[disabled]~.custom-control-label::before{background-color:#e9ecef}.custom-control-label{position:relative;margin-bottom:0;vertical-align:top}.custom-control-label::before{position:absolute;top:.25rem;left:-1.5rem;display:block;width:1rem;height:1rem;pointer-events:none;content:"";background-color:#fff;border:1px solid #adb5bd}.custom-control-label::after{position:absolute;top:.25rem;left:-1.5rem;display:block;width:1rem;height:1rem;content:"";background:50%/50% 50% no-repeat}.custom-checkbox .custom-control-label::before{border-radius:.25rem}.custom-checkbox .custom-control-input:checked~.custom-control-label::after{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='8' height='8' viewBox='0 0 8 8'%3e%3cpath fill='%23fff' d='M6.564.75l-3.59 3.612-1.538-1.55L0 4.26l2.974 2.99L8 2.193z'/%3e%3c/svg%3e")}.custom-checkbox .custom-control-input:indeterminate~.custom-control-label::before{border-color:#007bff;background-color:#007bff}.custom-checkbox .custom-control-input:indeterminate~.custom-control-label::after{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='4' height='4' viewBox='0 0 4 4'%3e%3cpath stroke='%23fff' d='M0 2h4'/%3e%3c/svg%3e")}.custom-checkbox .custom-control-input:disabled:checked~.custom-control-label::before{background-color:rgba(0,123,255,.5)}.custom-checkbox .custom-control-input:disabled:indeterminate~.custom-control-label::before{background-color:rgba(0,123,255,.5)}.custom-radio .custom-control-label::before{border-radius:50%}.custom-radio .custom-control-input:checked~.custom-control-label::after{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='12' height='12' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='%23fff'/%3e%3c/svg%3e")}.custom-radio .custom-control-input:disabled:checked~.custom-control-label::before{background-color:rgba(0,123,255,.5)}.custom-switch{padding-left:2.25rem}.custom-switch .custom-control-label::before{left:-2.25rem;width:1.75rem;pointer-events:all;border-radius:.5rem}.custom-switch .custom-control-label::after{top:calc(.25rem + 2px);left:calc(-2.25rem + 2px);width:calc(1rem - 4px);height:calc(1rem - 4px);background-color:#adb5bd;border-radius:.5rem;transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out,-webkit-transform .15s ease-in-out;transition:transform .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;transition:transform .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out,-webkit-transform .15s ease-in-out}@media (prefers-reduced-motion:reduce){.custom-switch .custom-control-label::after{transition:none}}.custom-switch .custom-control-input:checked~.custom-control-label::after{background-color:#fff;-webkit-transform:translateX(.75rem);transform:translateX(.75rem)}.custom-switch .custom-control-input:disabled:checked~.custom-control-label::before{background-color:rgba(0,123,255,.5)}.custom-select{display:inline-block;width:100%;height:calc(1.5em + .75rem + 2px);padding:.375rem 1.75rem .375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;color:#495057;vertical-align:middle;background:#fff url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='4' height='5' viewBox='0 0 4 5'%3e%3cpath fill='%23343a40' d='M2 0L0 2h4zm0 5L0 3h4z'/%3e%3c/svg%3e") right .75rem center/8px 10px no-repeat;border:1px solid #ced4da;border-radius:.25rem;-webkit-appearance:none;-moz-appearance:none;appearance:none}.custom-select:focus{border-color:#80bdff;outline:0;box-shadow:0 0 0 .2rem rgba(0,123,255,.25)}.custom-select:focus::-ms-value{color:#495057;background-color:#fff}.custom-select[multiple],.custom-select[size]:not([size="1"]){height:auto;padding-right:.75rem;background-image:none}.custom-select:disabled{color:#6c757d;background-color:#e9ecef}.custom-select::-ms-expand{display:none}.custom-select:-moz-focusring{color:transparent;text-shadow:0 0 0 #495057}.custom-select-sm{height:calc(1.5em + .5rem + 2px);padding-top:.25rem;padding-bottom:.25rem;padding-left:.5rem;font-size:.875rem}.custom-select-lg{height:calc(1.5em + 1rem + 2px);padding-top:.5rem;padding-bottom:.5rem;padding-left:1rem;font-size:1.25rem}.custom-file{position:relative;display:inline-block;width:100%;height:calc(1.5em + .75rem + 2px);margin-bottom:0}.custom-file-input{position:relative;z-index:2;width:100%;height:calc(1.5em + .75rem + 2px);margin:0;overflow:hidden;opacity:0}.custom-file-input:focus~.custom-file-label{border-color:#80bdff;box-shadow:0 0 0 .2rem rgba(0,123,255,.25)}.custom-file-input:disabled~.custom-file-label,.custom-file-input[disabled]~.custom-file-label{background-color:#e9ecef}.custom-file-input:lang(en)~.custom-file-label::after{content:"Browse"}.custom-file-input~.custom-file-label[data-browse]::after{content:attr(data-browse)}.custom-file-label{position:absolute;top:0;right:0;left:0;z-index:1;height:calc(1.5em + .75rem + 2px);padding:.375rem .75rem;overflow:hidden;font-weight:400;line-height:1.5;color:#495057;background-color:#fff;border:1px solid #ced4da;border-radius:.25rem}.custom-file-label::after{position:absolute;top:0;right:0;bottom:0;z-index:3;display:block;height:calc(1.5em + .75rem);padding:.375rem .75rem;line-height:1.5;color:#495057;content:"Browse";background-color:#e9ecef;border-left:inherit;border-radius:0 .25rem .25rem 0}.custom-range{width:100%;height:1.4rem;padding:0;background-color:transparent;-webkit-appearance:none;-moz-appearance:none;appearance:none}.custom-range:focus{outline:0}.custom-range:focus::-webkit-slider-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .2rem rgba(0,123,255,.25)}.custom-range:focus::-moz-range-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .2rem rgba(0,123,255,.25)}.custom-range:focus::-ms-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .2rem rgba(0,123,255,.25)}.custom-range::-moz-focus-outer{border:0}.custom-range::-webkit-slider-thumb{width:1rem;height:1rem;margin-top:-.25rem;background-color:#007bff;border:0;border-radius:1rem;-webkit-transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;-webkit-appearance:none;appearance:none}@media (prefers-reduced-motion:reduce){.custom-range::-webkit-slider-thumb{-webkit-transition:none;transition:none}}.custom-range::-webkit-slider-thumb:active{background-color:#b3d7ff}.custom-range::-webkit-slider-runnable-track{width:100%;height:.5rem;color:transparent;cursor:pointer;background-color:#dee2e6;border-color:transparent;border-radius:1rem}.custom-range::-moz-range-thumb{width:1rem;height:1rem;background-color:#007bff;border:0;border-radius:1rem;-moz-transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;-moz-appearance:none;appearance:none}@media (prefers-reduced-motion:reduce){.custom-range::-moz-range-thumb{-moz-transition:none;transition:none}}.custom-range::-moz-range-thumb:active{background-color:#b3d7ff}.custom-range::-moz-range-track{width:100%;height:.5rem;color:transparent;cursor:pointer;background-color:#dee2e6;border-color:transparent;border-radius:1rem}.custom-range::-ms-thumb{width:1rem;height:1rem;margin-top:0;margin-right:.2rem;margin-left:.2rem;background-color:#007bff;border:0;border-radius:1rem;-ms-transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;appearance:none}@media (prefers-reduced-motion:reduce){.custom-range::-ms-thumb{-ms-transition:none;transition:none}}.custom-range::-ms-thumb:active{background-color:#b3d7ff}.custom-range::-ms-track{width:100%;height:.5rem;color:transparent;cursor:pointer;background-color:transparent;border-color:transparent;border-width:.5rem}.custom-range::-ms-fill-lower{background-color:#dee2e6;border-radius:1rem}.custom-range::-ms-fill-upper{margin-right:15px;background-color:#dee2e6;border-radius:1rem}.custom-range:disabled::-webkit-slider-thumb{background-color:#adb5bd}.custom-range:disabled::-webkit-slider-runnable-track{cursor:default}.custom-range:disabled::-moz-range-thumb{background-color:#adb5bd}.custom-range:disabled::-moz-range-track{cursor:default}.custom-range:disabled::-ms-thumb{background-color:#adb5bd}.custom-control-label::before,.custom-file-label,.custom-select{transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media (prefers-reduced-motion:reduce){.custom-control-label::before,.custom-file-label,.custom-select{transition:none}}.nav{display:-ms-flexbox;display:flex;-ms-flex-wrap:wrap;flex-wrap:wrap;padding-left:0;margin-bottom:0;list-style:none}.nav-link{display:block;padding:.5rem 1rem}.nav-link:focus,.nav-link:hover{text-decoration:none}.nav-link.disabled{color:#6c757d;pointer-events:none;cursor:default}.nav-tabs{border-bottom:1px solid #dee2e6}.nav-tabs .nav-link{margin-bottom:-1px;background-color:transparent;border:1px solid transparent;border-top-left-radius:.25rem;border-top-right-radius:.25rem}.nav-tabs .nav-link:focus,.nav-tabs .nav-link:hover{isolation:isolate;border-color:#e9ecef #e9ecef #dee2e6}.nav-tabs .nav-link.disabled{color:#6c757d;background-color:transparent;border-color:transparent}.nav-tabs .nav-item.show .nav-link,.nav-tabs .nav-link.active{color:#495057;background-color:#fff;border-color:#dee2e6 #dee2e6 #fff}.nav-tabs .dropdown-menu{margin-top:-1px;border-top-left-radius:0;border-top-right-radius:0}.nav-pills .nav-link{background:0 0;border:0;border-radius:.25rem}.nav-pills .nav-link.active,.nav-pills .show>.nav-link{color:#fff;background-color:#007bff}.nav-fill .nav-item,.nav-fill>.nav-link{-ms-flex:1 1 auto;flex:1 1 auto;text-align:center}.nav-justified .nav-item,.nav-justified>.nav-link{-ms-flex-preferred-size:0;flex-basis:0;-ms-flex-positive:1;flex-grow:1;text-align:center}.tab-content>.tab-pane{display:none}.tab-content>.active{display:block}.navbar{position:relative;display:-ms-flexbox;display:flex;-ms-flex-wrap:wrap;flex-wrap:wrap;-ms-flex-align:center;align-items:center;-ms-flex-pack:justify;justify-content:space-between;padding:.5rem 1rem}.navbar .container,.navbar .container-fluid,.navbar .container-lg,.navbar .container-md,.navbar .container-sm,.navbar .container-xl{display:-ms-flexbox;display:flex;-ms-flex-wrap:wrap;flex-wrap:wrap;-ms-flex-align:center;align-items:center;-ms-flex-pack:justify;justify-content:space-between}.navbar-brand{display:inline-block;padding-top:.3125rem;padding-bottom:.3125rem;margin-right:1rem;font-size:1.25rem;line-height:inherit;white-space:nowrap}.navbar-brand:focus,.navbar-brand:hover{text-decoration:none}.navbar-nav{display:-ms-flexbox;display:flex;-ms-flex-direction:column;flex-direction:column;padding-left:0;margin-bottom:0;list-style:none}.navbar-nav .nav-link{padding-right:0;padding-left:0}.navbar-nav .dropdown-menu{position:static;float:none}.navbar-text{display:inline-block;padding-top:.5rem;padding-bottom:.5rem}.navbar-collapse{-ms-flex-preferred-size:100%;flex-basis:100%;-ms-flex-positive:1;flex-grow:1;-ms-flex-align:center;align-items:center}.navbar-toggler{padding:.25rem .75rem;font-size:1.25rem;line-height:1;background-color:transparent;border:1px solid transparent;border-radius:.25rem}.navbar-toggler:focus,.navbar-toggler:hover{text-decoration:none}.navbar-toggler-icon{display:inline-block;width:1.5em;height:1.5em;vertical-align:middle;content:"";background:50%/100% 100% no-repeat}.navbar-nav-scroll{max-height:75vh;overflow-y:auto}@media (max-width:575.98px){.navbar-expand-sm>.container,.navbar-expand-sm>.container-fluid,.navbar-expand-sm>.container-lg,.navbar-expand-sm>.container-md,.navbar-expand-sm>.container-sm,.navbar-expand-sm>.container-xl{padding-right:0;padding-left:0}}@media (min-width:576px){.navbar-expand-sm{-ms-flex-flow:row nowrap;flex-flow:row nowrap;-ms-flex-pack:start;justify-content:flex-start}.navbar-expand-sm .navbar-nav{-ms-flex-direction:row;flex-direction:row}.navbar-expand-sm .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-sm .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand-sm>.container,.navbar-expand-sm>.container-fluid,.navbar-expand-sm>.container-lg,.navbar-expand-sm>.container-md,.navbar-expand-sm>.container-sm,.navbar-expand-sm>.container-xl{-ms-flex-wrap:nowrap;flex-wrap:nowrap}.navbar-expand-sm .navbar-nav-scroll{overflow:visible}.navbar-expand-sm .navbar-collapse{display:-ms-flexbox!important;display:flex!important;-ms-flex-preferred-size:auto;flex-basis:auto}.navbar-expand-sm .navbar-toggler{display:none}}@media (max-width:767.98px){.navbar-expand-md>.container,.navbar-expand-md>.container-fluid,.navbar-expand-md>.container-lg,.navbar-expand-md>.container-md,.navbar-expand-md>.container-sm,.navbar-expand-md>.container-xl{padding-right:0;padding-left:0}}@media (min-width:768px){.navbar-expand-md{-ms-flex-flow:row nowrap;flex-flow:row nowrap;-ms-flex-pack:start;justify-content:flex-start}.navbar-expand-md .navbar-nav{-ms-flex-direction:row;flex-direction:row}.navbar-expand-md .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-md .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand-md>.container,.navbar-expand-md>.container-fluid,.navbar-expand-md>.container-lg,.navbar-expand-md>.container-md,.navbar-expand-md>.container-sm,.navbar-expand-md>.container-xl{-ms-flex-wrap:nowrap;flex-wrap:nowrap}.navbar-expand-md .navbar-nav-scroll{overflow:visible}.navbar-expand-md .navbar-collapse{display:-ms-flexbox!important;display:flex!important;-ms-flex-preferred-size:auto;flex-basis:auto}.navbar-expand-md .navbar-toggler{display:none}}@media (max-width:991.98px){.navbar-expand-lg>.container,.navbar-expand-lg>.container-fluid,.navbar-expand-lg>.container-lg,.navbar-expand-lg>.container-md,.navbar-expand-lg>.container-sm,.navbar-expand-lg>.container-xl{padding-right:0;padding-left:0}}@media (min-width:992px){.navbar-expand-lg{-ms-flex-flow:row nowrap;flex-flow:row nowrap;-ms-flex-pack:start;justify-content:flex-start}.navbar-expand-lg .navbar-nav{-ms-flex-direction:row;flex-direction:row}.navbar-expand-lg .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-lg .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand-lg>.container,.navbar-expand-lg>.container-fluid,.navbar-expand-lg>.container-lg,.navbar-expand-lg>.container-md,.navbar-expand-lg>.container-sm,.navbar-expand-lg>.container-xl{-ms-flex-wrap:nowrap;flex-wrap:nowrap}.navbar-expand-lg .navbar-nav-scroll{overflow:visible}.navbar-expand-lg .navbar-collapse{display:-ms-flexbox!important;display:flex!important;-ms-flex-preferred-size:auto;flex-basis:auto}.navbar-expand-lg .navbar-toggler{display:none}}@media (max-width:1199.98px){.navbar-expand-xl>.container,.navbar-expand-xl>.container-fluid,.navbar-expand-xl>.container-lg,.navbar-expand-xl>.container-md,.navbar-expand-xl>.container-sm,.navbar-expand-xl>.container-xl{padding-right:0;padding-left:0}}@media (min-width:1200px){.navbar-expand-xl{-ms-flex-flow:row nowrap;flex-flow:row nowrap;-ms-flex-pack:start;justify-content:flex-start}.navbar-expand-xl .navbar-nav{-ms-flex-direction:row;flex-direction:row}.navbar-expand-xl .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-xl .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand-xl>.container,.navbar-expand-xl>.container-fluid,.navbar-expand-xl>.container-lg,.navbar-expand-xl>.container-md,.navbar-expand-xl>.container-sm,.navbar-expand-xl>.container-xl{-ms-flex-wrap:nowrap;flex-wrap:nowrap}.navbar-expand-xl .navbar-nav-scroll{overflow:visible}.navbar-expand-xl .navbar-collapse{display:-ms-flexbox!important;display:flex!important;-ms-flex-preferred-size:auto;flex-basis:auto}.navbar-expand-xl .navbar-toggler{display:none}}.navbar-expand{-ms-flex-flow:row nowrap;flex-flow:row nowrap;-ms-flex-pack:start;justify-content:flex-start}.navbar-expand>.container,.navbar-expand>.container-fluid,.navbar-expand>.container-lg,.navbar-expand>.container-md,.navbar-expand>.container-sm,.navbar-expand>.container-xl{padding-right:0;padding-left:0}.navbar-expand .navbar-nav{-ms-flex-direction:row;flex-direction:row}.navbar-expand .navbar-nav .dropdown-menu{position:absolute}.navbar-expand .navbar-nav .nav-link{padding-right:.5rem;padding-left:.5rem}.navbar-expand>.container,.navbar-expand>.container-fluid,.navbar-expand>.container-lg,.navbar-expand>.container-md,.navbar-expand>.container-sm,.navbar-expand>.container-xl{-ms-flex-wrap:nowrap;flex-wrap:nowrap}.navbar-expand .navbar-nav-scroll{overflow:visible}.navbar-expand .navbar-collapse{display:-ms-flexbox!important;display:flex!important;-ms-flex-preferred-size:auto;flex-basis:auto}.navbar-expand .navbar-toggler{display:none}.navbar-light .navbar-brand{color:rgba(0,0,0,.9)}.navbar-light .navbar-brand:focus,.navbar-light .navbar-brand:hover{color:rgba(0,0,0,.9)}.navbar-light .navbar-nav .nav-link{color:rgba(0,0,0,.5)}.navbar-light .navbar-nav .nav-link:focus,.navbar-light .navbar-nav .nav-link:hover{color:rgba(0,0,0,.7)}.navbar-light .navbar-nav .nav-link.disabled{color:rgba(0,0,0,.3)}.navbar-light .navbar-nav .active>.nav-link,.navbar-light .navbar-nav .nav-link.active,.navbar-light .navbar-nav .nav-link.show,.navbar-light .navbar-nav .show>.nav-link{color:rgba(0,0,0,.9)}.navbar-light .navbar-toggler{color:rgba(0,0,0,.5);border-color:rgba(0,0,0,.1)}.navbar-light .navbar-toggler-icon{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='30' height='30' viewBox='0 0 30 30'%3e%3cpath stroke='rgba%280, 0, 0, 0.5%29' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e")}.navbar-light .navbar-text{color:rgba(0,0,0,.5)}.navbar-light .navbar-text a{color:rgba(0,0,0,.9)}.navbar-light .navbar-text a:focus,.navbar-light .navbar-text a:hover{color:rgba(0,0,0,.9)}.navbar-dark .navbar-brand{color:#fff}.navbar-dark .navbar-brand:focus,.navbar-dark .navbar-brand:hover{color:#fff}.navbar-dark .navbar-nav .nav-link{color:rgba(255,255,255,.5)}.navbar-dark .navbar-nav .nav-link:focus,.navbar-dark .navbar-nav .nav-link:hover{color:rgba(255,255,255,.75)}.navbar-dark .navbar-nav .nav-link.disabled{color:rgba(255,255,255,.25)}.navbar-dark .navbar-nav .active>.nav-link,.navbar-dark .navbar-nav .nav-link.active,.navbar-dark .navbar-nav .nav-link.show,.navbar-dark .navbar-nav .show>.nav-link{color:#fff}.navbar-dark .navbar-toggler{color:rgba(255,255,255,.5);border-color:rgba(255,255,255,.1)}.navbar-dark .navbar-toggler-icon{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='30' height='30' viewBox='0 0 30 30'%3e%3cpath stroke='rgba%28255, 255, 255, 0.5%29' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e")}.navbar-dark .navbar-text{color:rgba(255,255,255,.5)}.navbar-dark .navbar-text a{color:#fff}.navbar-dark .navbar-text a:focus,.navbar-dark .navbar-text a:hover{color:#fff}.card{position:relative;display:-ms-flexbox;display:flex;-ms-flex-direction:column;flex-direction:column;min-width:0;word-wrap:break-word;background-color:#fff;background-clip:border-box;border:1px solid rgba(0,0,0,.125);border-radius:.25rem}.card>hr{margin-right:0;margin-left:0}.card>.list-group{border-top:inherit;border-bottom:inherit}.card>.list-group:first-child{border-top-width:0;border-top-left-radius:calc(.25rem - 1px);border-top-right-radius:calc(.25rem - 1px)}.card>.list-group:last-child{border-bottom-width:0;border-bottom-right-radius:calc(.25rem - 1px);border-bottom-left-radius:calc(.25rem - 1px)}.card>.card-header+.list-group,.card>.list-group+.card-footer{border-top:0}.card-body{-ms-flex:1 1 auto;flex:1 1 auto;min-height:1px;padding:1.25rem}.card-title{margin-bottom:.75rem}.card-subtitle{margin-top:-.375rem;margin-bottom:0}.card-text:last-child{margin-bottom:0}.card-link:hover{text-decoration:none}.card-link+.card-link{margin-left:1.25rem}.card-header{padding:.75rem 1.25rem;margin-bottom:0;background-color:rgba(0,0,0,.03);border-bottom:1px solid rgba(0,0,0,.125)}.card-header:first-child{border-radius:calc(.25rem - 1px) calc(.25rem - 1px) 0 0}.card-footer{padding:.75rem 1.25rem;background-color:rgba(0,0,0,.03);border-top:1px solid rgba(0,0,0,.125)}.card-footer:last-child{border-radius:0 0 calc(.25rem - 1px) calc(.25rem - 1px)}.card-header-tabs{margin-right:-.625rem;margin-bottom:-.75rem;margin-left:-.625rem;border-bottom:0}.card-header-pills{margin-right:-.625rem;margin-left:-.625rem}.card-img-overlay{position:absolute;top:0;right:0;bottom:0;left:0;padding:1.25rem;border-radius:calc(.25rem - 1px)}.card-img,.card-img-bottom,.card-img-top{-ms-flex-negative:0;flex-shrink:0;width:100%}.card-img,.card-img-top{border-top-left-radius:calc(.25rem - 1px);border-top-right-radius:calc(.25rem - 1px)}.card-img,.card-img-bottom{border-bottom-right-radius:calc(.25rem - 1px);border-bottom-left-radius:calc(.25rem - 1px)}.card-deck .card{margin-bottom:15px}@media (min-width:576px){.card-deck{display:-ms-flexbox;display:flex;-ms-flex-flow:row wrap;flex-flow:row wrap;margin-right:-15px;margin-left:-15px}.card-deck .card{-ms-flex:1 0 0%;flex:1 0 0%;margin-right:15px;margin-bottom:0;margin-left:15px}}.card-group>.card{margin-bottom:15px}@media (min-width:576px){.card-group{display:-ms-flexbox;display:flex;-ms-flex-flow:row wrap;flex-flow:row wrap}.card-group>.card{-ms-flex:1 0 0%;flex:1 0 0%;margin-bottom:0}.card-group>.card+.card{margin-left:0;border-left:0}.card-group>.card:not(:last-child){border-top-right-radius:0;border-bottom-right-radius:0}.card-group>.card:not(:last-child) .card-header,.card-group>.card:not(:last-child) .card-img-top{border-top-right-radius:0}.card-group>.card:not(:last-child) .card-footer,.card-group>.card:not(:last-child) .card-img-bottom{border-bottom-right-radius:0}.card-group>.card:not(:first-child){border-top-left-radius:0;border-bottom-left-radius:0}.card-group>.card:not(:first-child) .card-header,.card-group>.card:not(:first-child) .card-img-top{border-top-left-radius:0}.card-group>.card:not(:first-child) .card-footer,.card-group>.card:not(:first-child) .card-img-bottom{border-bottom-left-radius:0}}.card-columns .card{margin-bottom:.75rem}@media (min-width:576px){.card-columns{-webkit-column-count:3;-moz-column-count:3;column-count:3;-webkit-column-gap:1.25rem;-moz-column-gap:1.25rem;column-gap:1.25rem;orphans:1;widows:1}.card-columns .card{display:inline-block;width:100%}}.accordion{overflow-anchor:none}.accordion>.card{overflow:hidden}.accordion>.card:not(:last-of-type){border-bottom:0;border-bottom-right-radius:0;border-bottom-left-radius:0}.accordion>.card:not(:first-of-type){border-top-left-radius:0;border-top-right-radius:0}.accordion>.card>.card-header{border-radius:0;margin-bottom:-1px}.breadcrumb{display:-ms-flexbox;display:flex;-ms-flex-wrap:wrap;flex-wrap:wrap;padding:.75rem 1rem;margin-bottom:1rem;list-style:none;background-color:#e9ecef;border-radius:.25rem}.breadcrumb-item+.breadcrumb-item{padding-left:.5rem}.breadcrumb-item+.breadcrumb-item::before{float:left;padding-right:.5rem;color:#6c757d;content:"/"}.breadcrumb-item+.breadcrumb-item:hover::before{text-decoration:underline}.breadcrumb-item+.breadcrumb-item:hover::before{text-decoration:none}.breadcrumb-item.active{color:#6c757d}.pagination{display:-ms-flexbox;display:flex;padding-left:0;list-style:none;border-radius:.25rem}.page-link{position:relative;display:block;padding:.5rem .75rem;margin-left:-1px;line-height:1.25;color:#007bff;background-color:#fff;border:1px solid #dee2e6}.page-link:hover{z-index:2;color:#0056b3;text-decoration:none;background-color:#e9ecef;border-color:#dee2e6}.page-link:focus{z-index:3;outline:0;box-shadow:0 0 0 .2rem rgba(0,123,255,.25)}.page-item:first-child .page-link{margin-left:0;border-top-left-radius:.25rem;border-bottom-left-radius:.25rem}.page-item:last-child .page-link{border-top-right-radius:.25rem;border-bottom-right-radius:.25rem}.page-item.active .page-link{z-index:3;color:#fff;background-color:#007bff;border-color:#007bff}.page-item.disabled .page-link{color:#6c757d;pointer-events:none;cursor:auto;background-color:#fff;border-color:#dee2e6}.pagination-lg .page-link{padding:.75rem 1.5rem;font-size:1.25rem;line-height:1.5}.pagination-lg .page-item:first-child .page-link{border-top-left-radius:.3rem;border-bottom-left-radius:.3rem}.pagination-lg .page-item:last-child .page-link{border-top-right-radius:.3rem;border-bottom-right-radius:.3rem}.pagination-sm .page-link{padding:.25rem .5rem;font-size:.875rem;line-height:1.5}.pagination-sm .page-item:first-child .page-link{border-top-left-radius:.2rem;border-bottom-left-radius:.2rem}.pagination-sm .page-item:last-child .page-link{border-top-right-radius:.2rem;border-bottom-right-radius:.2rem}.badge{display:inline-block;padding:.25em .4em;font-size:75%;font-weight:700;line-height:1;text-align:center;white-space:nowrap;vertical-align:baseline;border-radius:.25rem;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media (prefers-reduced-motion:reduce){.badge{transition:none}}a.badge:focus,a.badge:hover{text-decoration:none}.badge:empty{display:none}.btn .badge{position:relative;top:-1px}.badge-pill{padding-right:.6em;padding-left:.6em;border-radius:10rem}.badge-primary{color:#fff;background-color:#007bff}a.badge-primary:focus,a.badge-primary:hover{color:#fff;background-color:#0062cc}a.badge-primary.focus,a.badge-primary:focus{outline:0;box-shadow:0 0 0 .2rem rgba(0,123,255,.5)}.badge-secondary{color:#fff;background-color:#6c757d}a.badge-secondary:focus,a.badge-secondary:hover{color:#fff;background-color:#545b62}a.badge-secondary.focus,a.badge-secondary:focus{outline:0;box-shadow:0 0 0 .2rem rgba(108,117,125,.5)}.badge-success{color:#fff;background-color:#28a745}a.badge-success:focus,a.badge-success:hover{color:#fff;background-color:#1e7e34}a.badge-success.focus,a.badge-success:focus{outline:0;box-shadow:0 0 0 .2rem rgba(40,167,69,.5)}.badge-info{color:#fff;background-color:#17a2b8}a.badge-info:focus,a.badge-info:hover{color:#fff;background-color:#117a8b}a.badge-info.focus,a.badge-info:focus{outline:0;box-shadow:0 0 0 .2rem rgba(23,162,184,.5)}.badge-warning{color:#212529;background-color:#ffc107}a.badge-warning:focus,a.badge-warning:hover{color:#212529;background-color:#d39e00}a.badge-warning.focus,a.badge-warning:focus{outline:0;box-shadow:0 0 0 .2rem rgba(255,193,7,.5)}.badge-danger{color:#fff;background-color:#dc3545}a.badge-danger:focus,a.badge-danger:hover{color:#fff;background-color:#bd2130}a.badge-danger.focus,a.badge-danger:focus{outline:0;box-shadow:0 0 0 .2rem rgba(220,53,69,.5)}.badge-light{color:#212529;background-color:#f8f9fa}a.badge-light:focus,a.badge-light:hover{color:#212529;background-color:#dae0e5}a.badge-light.focus,a.badge-light:focus{outline:0;box-shadow:0 0 0 .2rem rgba(248,249,250,.5)}.badge-dark{color:#fff;background-color:#343a40}a.badge-dark:focus,a.badge-dark:hover{color:#fff;background-color:#1d2124}a.badge-dark.focus,a.badge-dark:focus{outline:0;box-shadow:0 0 0 .2rem rgba(52,58,64,.5)}.jumbotron{padding:2rem 1rem;margin-bottom:2rem;background-color:#e9ecef;border-radius:.3rem}@media (min-width:576px){.jumbotron{padding:4rem 2rem}}.jumbotron-fluid{padding-right:0;padding-left:0;border-radius:0}.alert{position:relative;padding:.75rem 1.25rem;margin-bottom:1rem;border:1px solid transparent;border-radius:.25rem}.alert-heading{color:inherit}.alert-link{font-weight:700}.alert-dismissible{padding-right:4rem}.alert-dismissible .close{position:absolute;top:0;right:0;z-index:2;padding:.75rem 1.25rem;color:inherit}.alert-primary{color:#004085;background-color:#cce5ff;border-color:#b8daff}.alert-primary hr{border-top-color:#9fcdff}.alert-primary .alert-link{color:#002752}.alert-secondary{color:#383d41;background-color:#e2e3e5;border-color:#d6d8db}.alert-secondary hr{border-top-color:#c8cbcf}.alert-secondary .alert-link{color:#202326}.alert-success{color:#155724;background-color:#d4edda;border-color:#c3e6cb}.alert-success hr{border-top-color:#b1dfbb}.alert-success .alert-link{color:#0b2e13}.alert-info{color:#0c5460;background-color:#d1ecf1;border-color:#bee5eb}.alert-info hr{border-top-color:#abdde5}.alert-info .alert-link{color:#062c33}.alert-warning{color:#856404;background-color:#fff3cd;border-color:#ffeeba}.alert-warning hr{border-top-color:#ffe8a1}.alert-warning .alert-link{color:#533f03}.alert-danger{color:#721c24;background-color:#f8d7da;border-color:#f5c6cb}.alert-danger hr{border-top-color:#f1b0b7}.alert-danger .alert-link{color:#491217}.alert-light{color:#818182;background-color:#fefefe;border-color:#fdfdfe}.alert-light hr{border-top-color:#ececf6}.alert-light .alert-link{color:#686868}.alert-dark{color:#1b1e21;background-color:#d6d8d9;border-color:#c6c8ca}.alert-dark hr{border-top-color:#b9bbbe}.alert-dark .alert-link{color:#040505}@-webkit-keyframes progress-bar-stripes{from{background-position:1rem 0}to{background-position:0 0}}@keyframes progress-bar-stripes{from{background-position:1rem 0}to{background-position:0 0}}.progress{display:-ms-flexbox;display:flex;height:1rem;overflow:hidden;line-height:0;font-size:.75rem;background-color:#e9ecef;border-radius:.25rem}.progress-bar{display:-ms-flexbox;display:flex;-ms-flex-direction:column;flex-direction:column;-ms-flex-pack:center;justify-content:center;overflow:hidden;color:#fff;text-align:center;white-space:nowrap;background-color:#007bff;transition:width .6s ease}@media (prefers-reduced-motion:reduce){.progress-bar{transition:none}}.progress-bar-striped{background-image:linear-gradient(45deg,rgba(255,255,255,.15) 25%,transparent 25%,transparent 50%,rgba(255,255,255,.15) 50%,rgba(255,255,255,.15) 75%,transparent 75%,transparent);background-size:1rem 1rem}.progress-bar-animated{-webkit-animation:1s linear infinite progress-bar-stripes;animation:1s linear infinite progress-bar-stripes}@media (prefers-reduced-motion:reduce){.progress-bar-animated{-webkit-animation:none;animation:none}}.media{display:-ms-flexbox;display:flex;-ms-flex-align:start;align-items:flex-start}.media-body{-ms-flex:1;flex:1}.list-group{display:-ms-flexbox;display:flex;-ms-flex-direction:column;flex-direction:column;padding-left:0;margin-bottom:0;border-radius:.25rem}.list-group-item-action{width:100%;color:#495057;text-align:inherit}.list-group-item-action:focus,.list-group-item-action:hover{z-index:1;color:#495057;text-decoration:none;background-color:#f8f9fa}.list-group-item-action:active{color:#212529;background-color:#e9ecef}.list-group-item{position:relative;display:block;padding:.75rem 1.25rem;background-color:#fff;border:1px solid rgba(0,0,0,.125)}.list-group-item:first-child{border-top-left-radius:inherit;border-top-right-radius:inherit}.list-group-item:last-child{border-bottom-right-radius:inherit;border-bottom-left-radius:inherit}.list-group-item.disabled,.list-group-item:disabled{color:#6c757d;pointer-events:none;background-color:#fff}.list-group-item.active{z-index:2;color:#fff;background-color:#007bff;border-color:#007bff}.list-group-item+.list-group-item{border-top-width:0}.list-group-item+.list-group-item.active{margin-top:-1px;border-top-width:1px}.list-group-horizontal{-ms-flex-direction:row;flex-direction:row}.list-group-horizontal>.list-group-item:first-child{border-bottom-left-radius:.25rem;border-top-right-radius:0}.list-group-horizontal>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal>.list-group-item.active{margin-top:0}.list-group-horizontal>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}@media (min-width:576px){.list-group-horizontal-sm{-ms-flex-direction:row;flex-direction:row}.list-group-horizontal-sm>.list-group-item:first-child{border-bottom-left-radius:.25rem;border-top-right-radius:0}.list-group-horizontal-sm>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal-sm>.list-group-item.active{margin-top:0}.list-group-horizontal-sm>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal-sm>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}}@media (min-width:768px){.list-group-horizontal-md{-ms-flex-direction:row;flex-direction:row}.list-group-horizontal-md>.list-group-item:first-child{border-bottom-left-radius:.25rem;border-top-right-radius:0}.list-group-horizontal-md>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal-md>.list-group-item.active{margin-top:0}.list-group-horizontal-md>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal-md>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}}@media (min-width:992px){.list-group-horizontal-lg{-ms-flex-direction:row;flex-direction:row}.list-group-horizontal-lg>.list-group-item:first-child{border-bottom-left-radius:.25rem;border-top-right-radius:0}.list-group-horizontal-lg>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal-lg>.list-group-item.active{margin-top:0}.list-group-horizontal-lg>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal-lg>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}}@media (min-width:1200px){.list-group-horizontal-xl{-ms-flex-direction:row;flex-direction:row}.list-group-horizontal-xl>.list-group-item:first-child{border-bottom-left-radius:.25rem;border-top-right-radius:0}.list-group-horizontal-xl>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal-xl>.list-group-item.active{margin-top:0}.list-group-horizontal-xl>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal-xl>.list-group-item+.list-group-item.active{margin-left:-1px;border-left-width:1px}}.list-group-flush{border-radius:0}.list-group-flush>.list-group-item{border-width:0 0 1px}.list-group-flush>.list-group-item:last-child{border-bottom-width:0}.list-group-item-primary{color:#004085;background-color:#b8daff}.list-group-item-primary.list-group-item-action:focus,.list-group-item-primary.list-group-item-action:hover{color:#004085;background-color:#9fcdff}.list-group-item-primary.list-group-item-action.active{color:#fff;background-color:#004085;border-color:#004085}.list-group-item-secondary{color:#383d41;background-color:#d6d8db}.list-group-item-secondary.list-group-item-action:focus,.list-group-item-secondary.list-group-item-action:hover{color:#383d41;background-color:#c8cbcf}.list-group-item-secondary.list-group-item-action.active{color:#fff;background-color:#383d41;border-color:#383d41}.list-group-item-success{color:#155724;background-color:#c3e6cb}.list-group-item-success.list-group-item-action:focus,.list-group-item-success.list-group-item-action:hover{color:#155724;background-color:#b1dfbb}.list-group-item-success.list-group-item-action.active{color:#fff;background-color:#155724;border-color:#155724}.list-group-item-info{color:#0c5460;background-color:#bee5eb}.list-group-item-info.list-group-item-action:focus,.list-group-item-info.list-group-item-action:hover{color:#0c5460;background-color:#abdde5}.list-group-item-info.list-group-item-action.active{color:#fff;background-color:#0c5460;border-color:#0c5460}.list-group-item-warning{color:#856404;background-color:#ffeeba}.list-group-item-warning.list-group-item-action:focus,.list-group-item-warning.list-group-item-action:hover{color:#856404;background-color:#ffe8a1}.list-group-item-warning.list-group-item-action.active{color:#fff;background-color:#856404;border-color:#856404}.list-group-item-danger{color:#721c24;background-color:#f5c6cb}.list-group-item-danger.list-group-item-action:focus,.list-group-item-danger.list-group-item-action:hover{color:#721c24;background-color:#f1b0b7}.list-group-item-danger.list-group-item-action.active{color:#fff;background-color:#721c24;border-color:#721c24}.list-group-item-light{color:#818182;background-color:#fdfdfe}.list-group-item-light.list-group-item-action:focus,.list-group-item-light.list-group-item-action:hover{color:#818182;background-color:#ececf6}.list-group-item-light.list-group-item-action.active{color:#fff;background-color:#818182;border-color:#818182}.list-group-item-dark{color:#1b1e21;background-color:#c6c8ca}.list-group-item-dark.list-group-item-action:focus,.list-group-item-dark.list-group-item-action:hover{color:#1b1e21;background-color:#b9bbbe}.list-group-item-dark.list-group-item-action.active{color:#fff;background-color:#1b1e21;border-color:#1b1e21}.close{float:right;font-size:1.5rem;font-weight:700;line-height:1;color:#000;text-shadow:0 1px 0 #fff;opacity:.5}.close:hover{color:#000;text-decoration:none}.close:not(:disabled):not(.disabled):focus,.close:not(:disabled):not(.disabled):hover{opacity:.75}button.close{padding:0;background-color:transparent;border:0}a.close.disabled{pointer-events:none}.toast{-ms-flex-preferred-size:350px;flex-basis:350px;max-width:350px;font-size:.875rem;background-color:rgba(255,255,255,.85);background-clip:padding-box;border:1px solid rgba(0,0,0,.1);box-shadow:0 .25rem .75rem rgba(0,0,0,.1);opacity:0;border-radius:.25rem}.toast:not(:last-child){margin-bottom:.75rem}.toast.showing{opacity:1}.toast.show{display:block;opacity:1}.toast.hide{display:none}.toast-header{display:-ms-flexbox;display:flex;-ms-flex-align:center;align-items:center;padding:.25rem .75rem;color:#6c757d;background-color:rgba(255,255,255,.85);background-clip:padding-box;border-bottom:1px solid rgba(0,0,0,.05);border-top-left-radius:calc(.25rem - 1px);border-top-right-radius:calc(.25rem - 1px)}.toast-body{padding:.75rem}.modal-open{overflow:hidden}.modal-open .modal{overflow-x:hidden;overflow-y:auto}.modal{position:fixed;top:0;left:0;z-index:1050;display:none;width:100%;height:100%;overflow:hidden;outline:0}.modal-dialog{position:relative;width:auto;margin:.5rem;pointer-events:none}.modal.fade .modal-dialog{transition:-webkit-transform .3s ease-out;transition:transform .3s ease-out;transition:transform .3s ease-out,-webkit-transform .3s ease-out;-webkit-transform:translate(0,-50px);transform:translate(0,-50px)}@media (prefers-reduced-motion:reduce){.modal.fade .modal-dialog{transition:none}}.modal.show .modal-dialog{-webkit-transform:none;transform:none}.modal.modal-static .modal-dialog{-webkit-transform:scale(1.02);transform:scale(1.02)}.modal-dialog-scrollable{display:-ms-flexbox;display:flex;max-height:calc(100% - 1rem)}.modal-dialog-scrollable .modal-content{max-height:calc(100vh - 1rem);overflow:hidden}.modal-dialog-scrollable .modal-footer,.modal-dialog-scrollable .modal-header{-ms-flex-negative:0;flex-shrink:0}.modal-dialog-scrollable .modal-body{overflow-y:auto}.modal-dialog-centered{display:-ms-flexbox;display:flex;-ms-flex-align:center;align-items:center;min-height:calc(100% - 1rem)}.modal-dialog-centered::before{display:block;height:calc(100vh - 1rem);height:-webkit-min-content;height:-moz-min-content;height:min-content;content:""}.modal-dialog-centered.modal-dialog-scrollable{-ms-flex-direction:column;flex-direction:column;-ms-flex-pack:center;justify-content:center;height:100%}.modal-dialog-centered.modal-dialog-scrollable .modal-content{max-height:none}.modal-dialog-centered.modal-dialog-scrollable::before{content:none}.modal-content{position:relative;display:-ms-flexbox;display:flex;-ms-flex-direction:column;flex-direction:column;width:100%;pointer-events:auto;background-color:#fff;background-clip:padding-box;border:1px solid rgba(0,0,0,.2);border-radius:.3rem;outline:0}.modal-backdrop{position:fixed;top:0;left:0;z-index:1040;width:100vw;height:100vh;background-color:#000}.modal-backdrop.fade{opacity:0}.modal-backdrop.show{opacity:.5}.modal-header{display:-ms-flexbox;display:flex;-ms-flex-align:start;align-items:flex-start;-ms-flex-pack:justify;justify-content:space-between;padding:1rem 1rem;border-bottom:1px solid #dee2e6;border-top-left-radius:calc(.3rem - 1px);border-top-right-radius:calc(.3rem - 1px)}.modal-header .close{padding:1rem 1rem;margin:-1rem -1rem -1rem auto}.modal-title{margin-bottom:0;line-height:1.5}.modal-body{position:relative;-ms-flex:1 1 auto;flex:1 1 auto;padding:1rem}.modal-footer{display:-ms-flexbox;display:flex;-ms-flex-wrap:wrap;flex-wrap:wrap;-ms-flex-align:center;align-items:center;-ms-flex-pack:end;justify-content:flex-end;padding:.75rem;border-top:1px solid #dee2e6;border-bottom-right-radius:calc(.3rem - 1px);border-bottom-left-radius:calc(.3rem - 1px)}.modal-footer>*{margin:.25rem}.modal-scrollbar-measure{position:absolute;top:-9999px;width:50px;height:50px;overflow:scroll}@media (min-width:576px){.modal-dialog{max-width:500px;margin:1.75rem auto}.modal-dialog-scrollable{max-height:calc(100% - 3.5rem)}.modal-dialog-scrollable .modal-content{max-height:calc(100vh - 3.5rem)}.modal-dialog-centered{min-height:calc(100% - 3.5rem)}.modal-dialog-centered::before{height:calc(100vh - 3.5rem);height:-webkit-min-content;height:-moz-min-content;height:min-content}.modal-sm{max-width:300px}}@media (min-width:992px){.modal-lg,.modal-xl{max-width:800px}}@media (min-width:1200px){.modal-xl{max-width:1140px}}.tooltip{position:absolute;z-index:1070;display:block;margin:0;font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue",Arial,"Noto Sans","Liberation Sans",sans-serif,"Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol","Noto Color Emoji";font-style:normal;font-weight:400;line-height:1.5;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;white-space:normal;word-spacing:normal;line-break:auto;font-size:.875rem;word-wrap:break-word;opacity:0}.tooltip.show{opacity:.9}.tooltip .arrow{position:absolute;display:block;width:.8rem;height:.4rem}.tooltip .arrow::before{position:absolute;content:"";border-color:transparent;border-style:solid}.bs-tooltip-auto[x-placement^=top],.bs-tooltip-top{padding:.4rem 0}.bs-tooltip-auto[x-placement^=top] .arrow,.bs-tooltip-top .arrow{bottom:0}.bs-tooltip-auto[x-placement^=top] .arrow::before,.bs-tooltip-top .arrow::before{top:0;border-width:.4rem .4rem 0;border-top-color:#000}.bs-tooltip-auto[x-placement^=right],.bs-tooltip-right{padding:0 .4rem}.bs-tooltip-auto[x-placement^=right] .arrow,.bs-tooltip-right .arrow{left:0;width:.4rem;height:.8rem}.bs-tooltip-auto[x-placement^=right] .arrow::before,.bs-tooltip-right .arrow::before{right:0;border-width:.4rem .4rem .4rem 0;border-right-color:#000}.bs-tooltip-auto[x-placement^=bottom],.bs-tooltip-bottom{padding:.4rem 0}.bs-tooltip-auto[x-placement^=bottom] .arrow,.bs-tooltip-bottom .arrow{top:0}.bs-tooltip-auto[x-placement^=bottom] .arrow::before,.bs-tooltip-bottom .arrow::before{bottom:0;border-width:0 .4rem .4rem;border-bottom-color:#000}.bs-tooltip-auto[x-placement^=left],.bs-tooltip-left{padding:0 .4rem}.bs-tooltip-auto[x-placement^=left] .arrow,.bs-tooltip-left .arrow{right:0;width:.4rem;height:.8rem}.bs-tooltip-auto[x-placement^=left] .arrow::before,.bs-tooltip-left .arrow::before{left:0;border-width:.4rem 0 .4rem .4rem;border-left-color:#000}.tooltip-inner{max-width:200px;padding:.25rem .5rem;color:#fff;text-align:center;background-color:#000;border-radius:.25rem}.popover{position:absolute;top:0;left:0;z-index:1060;display:block;max-width:276px;font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue",Arial,"Noto Sans","Liberation Sans",sans-serif,"Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol","Noto Color Emoji";font-style:normal;font-weight:400;line-height:1.5;text-align:left;text-align:start;text-decoration:none;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;white-space:normal;word-spacing:normal;line-break:auto;font-size:.875rem;word-wrap:break-word;background-color:#fff;background-clip:padding-box;border:1px solid rgba(0,0,0,.2);border-radius:.3rem}.popover .arrow{position:absolute;display:block;width:1rem;height:.5rem;margin:0 .3rem}.popover .arrow::after,.popover .arrow::before{position:absolute;display:block;content:"";border-color:transparent;border-style:solid}.bs-popover-auto[x-placement^=top],.bs-popover-top{margin-bottom:.5rem}.bs-popover-auto[x-placement^=top]>.arrow,.bs-popover-top>.arrow{bottom:calc(-.5rem - 1px)}.bs-popover-auto[x-placement^=top]>.arrow::before,.bs-popover-top>.arrow::before{bottom:0;border-width:.5rem .5rem 0;border-top-color:rgba(0,0,0,.25)}.bs-popover-auto[x-placement^=top]>.arrow::after,.bs-popover-top>.arrow::after{bottom:1px;border-width:.5rem .5rem 0;border-top-color:#fff}.bs-popover-auto[x-placement^=right],.bs-popover-right{margin-left:.5rem}.bs-popover-auto[x-placement^=right]>.arrow,.bs-popover-right>.arrow{left:calc(-.5rem - 1px);width:.5rem;height:1rem;margin:.3rem 0}.bs-popover-auto[x-placement^=right]>.arrow::before,.bs-popover-right>.arrow::before{left:0;border-width:.5rem .5rem .5rem 0;border-right-color:rgba(0,0,0,.25)}.bs-popover-auto[x-placement^=right]>.arrow::after,.bs-popover-right>.arrow::after{left:1px;border-width:.5rem .5rem .5rem 0;border-right-color:#fff}.bs-popover-auto[x-placement^=bottom],.bs-popover-bottom{margin-top:.5rem}.bs-popover-auto[x-placement^=bottom]>.arrow,.bs-popover-bottom>.arrow{top:calc(-.5rem - 1px)}.bs-popover-auto[x-placement^=bottom]>.arrow::before,.bs-popover-bottom>.arrow::before{top:0;border-width:0 .5rem .5rem .5rem;border-bottom-color:rgba(0,0,0,.25)}.bs-popover-auto[x-placement^=bottom]>.arrow::after,.bs-popover-bottom>.arrow::after{top:1px;border-width:0 .5rem .5rem .5rem;border-bottom-color:#fff}.bs-popover-auto[x-placement^=bottom] .popover-header::before,.bs-popover-bottom .popover-header::before{position:absolute;top:0;left:50%;display:block;width:1rem;margin-left:-.5rem;content:"";border-bottom:1px solid #f7f7f7}.bs-popover-auto[x-placement^=left],.bs-popover-left{margin-right:.5rem}.bs-popover-auto[x-placement^=left]>.arrow,.bs-popover-left>.arrow{right:calc(-.5rem - 1px);width:.5rem;height:1rem;margin:.3rem 0}.bs-popover-auto[x-placement^=left]>.arrow::before,.bs-popover-left>.arrow::before{right:0;border-width:.5rem 0 .5rem .5rem;border-left-color:rgba(0,0,0,.25)}.bs-popover-auto[x-placement^=left]>.arrow::after,.bs-popover-left>.arrow::after{right:1px;border-width:.5rem 0 .5rem .5rem;border-left-color:#fff}.popover-header{padding:.5rem .75rem;margin-bottom:0;font-size:1rem;background-color:#f7f7f7;border-bottom:1px solid #ebebeb;border-top-left-radius:calc(.3rem - 1px);border-top-right-radius:calc(.3rem - 1px)}.popover-header:empty{display:none}.popover-body{padding:.5rem .75rem;color:#212529}.carousel{position:relative}.carousel.pointer-event{-ms-touch-action:pan-y;touch-action:pan-y}.carousel-inner{position:relative;width:100%;overflow:hidden}.carousel-inner::after{display:block;clear:both;content:""}.carousel-item{position:relative;display:none;float:left;width:100%;margin-right:-100%;-webkit-backface-visibility:hidden;backface-visibility:hidden;transition:-webkit-transform .6s ease-in-out;transition:transform .6s ease-in-out;transition:transform .6s ease-in-out,-webkit-transform .6s ease-in-out}@media (prefers-reduced-motion:reduce){.carousel-item{transition:none}}.carousel-item-next,.carousel-item-prev,.carousel-item.active{display:block}.active.carousel-item-right,.carousel-item-next:not(.carousel-item-left){-webkit-transform:translateX(100%);transform:translateX(100%)}.active.carousel-item-left,.carousel-item-prev:not(.carousel-item-right){-webkit-transform:translateX(-100%);transform:translateX(-100%)}.carousel-fade .carousel-item{opacity:0;transition-property:opacity;-webkit-transform:none;transform:none}.carousel-fade .carousel-item-next.carousel-item-left,.carousel-fade .carousel-item-prev.carousel-item-right,.carousel-fade .carousel-item.active{z-index:1;opacity:1}.carousel-fade .active.carousel-item-left,.carousel-fade .active.carousel-item-right{z-index:0;opacity:0;transition:opacity 0s .6s}@media (prefers-reduced-motion:reduce){.carousel-fade .active.carousel-item-left,.carousel-fade .active.carousel-item-right{transition:none}}.carousel-control-next,.carousel-control-prev{position:absolute;top:0;bottom:0;z-index:1;display:-ms-flexbox;display:flex;-ms-flex-align:center;align-items:center;-ms-flex-pack:center;justify-content:center;width:15%;padding:0;color:#fff;text-align:center;background:0 0;border:0;opacity:.5;transition:opacity .15s ease}@media (prefers-reduced-motion:reduce){.carousel-control-next,.carousel-control-prev{transition:none}}.carousel-control-next:focus,.carousel-control-next:hover,.carousel-control-prev:focus,.carousel-control-prev:hover{color:#fff;text-decoration:none;outline:0;opacity:.9}.carousel-control-prev{left:0}.carousel-control-next{right:0}.carousel-control-next-icon,.carousel-control-prev-icon{display:inline-block;width:20px;height:20px;background:50%/100% 100% no-repeat}.carousel-control-prev-icon{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='%23fff' width='8' height='8' viewBox='0 0 8 8'%3e%3cpath d='M5.25 0l-4 4 4 4 1.5-1.5L4.25 4l2.5-2.5L5.25 0z'/%3e%3c/svg%3e")}.carousel-control-next-icon{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='%23fff' width='8' height='8' viewBox='0 0 8 8'%3e%3cpath d='M2.75 0l-1.5 1.5L3.75 4l-2.5 2.5L2.75 8l4-4-4-4z'/%3e%3c/svg%3e")}.carousel-indicators{position:absolute;right:0;bottom:0;left:0;z-index:15;display:-ms-flexbox;display:flex;-ms-flex-pack:center;justify-content:center;padding-left:0;margin-right:15%;margin-left:15%;list-style:none}.carousel-indicators li{box-sizing:content-box;-ms-flex:0 1 auto;flex:0 1 auto;width:30px;height:3px;margin-right:3px;margin-left:3px;text-indent:-999px;cursor:pointer;background-color:#fff;background-clip:padding-box;border-top:10px solid transparent;border-bottom:10px solid transparent;opacity:.5;transition:opacity .6s ease}@media (prefers-reduced-motion:reduce){.carousel-indicators li{transition:none}}.carousel-indicators .active{opacity:1}.carousel-caption{position:absolute;right:15%;bottom:20px;left:15%;z-index:10;padding-top:20px;padding-bottom:20px;color:#fff;text-align:center}@-webkit-keyframes spinner-border{to{-webkit-transform:rotate(360deg);transform:rotate(360deg)}}@keyframes spinner-border{to{-webkit-transform:rotate(360deg);transform:rotate(360deg)}}.spinner-border{display:inline-block;width:2rem;height:2rem;vertical-align:-.125em;border:.25em solid currentcolor;border-right-color:transparent;border-radius:50%;-webkit-animation:.75s linear infinite spinner-border;animation:.75s linear infinite spinner-border}.spinner-border-sm{width:1rem;height:1rem;border-width:.2em}@-webkit-keyframes spinner-grow{0%{-webkit-transform:scale(0);transform:scale(0)}50%{opacity:1;-webkit-transform:none;transform:none}}@keyframes spinner-grow{0%{-webkit-transform:scale(0);transform:scale(0)}50%{opacity:1;-webkit-transform:none;transform:none}}.spinner-grow{display:inline-block;width:2rem;height:2rem;vertical-align:-.125em;background-color:currentcolor;border-radius:50%;opacity:0;-webkit-animation:.75s linear infinite spinner-grow;animation:.75s linear infinite spinner-grow}.spinner-grow-sm{width:1rem;height:1rem}@media (prefers-reduced-motion:reduce){.spinner-border,.spinner-grow{-webkit-animation-duration:1.5s;animation-duration:1.5s}}.align-baseline{vertical-align:baseline!important}.align-top{vertical-align:top!important}.align-middle{vertical-align:middle!important}.align-bottom{vertical-align:bottom!important}.align-text-bottom{vertical-align:text-bottom!important}.align-text-top{vertical-align:text-top!important}.bg-primary{background-color:#007bff!important}a.bg-primary:focus,a.bg-primary:hover,button.bg-primary:focus,button.bg-primary:hover{background-color:#0062cc!important}.bg-secondary{background-color:#6c757d!important}a.bg-secondary:focus,a.bg-secondary:hover,button.bg-secondary:focus,button.bg-secondary:hover{background-color:#545b62!important}.bg-success{background-color:#28a745!important}a.bg-success:focus,a.bg-success:hover,button.bg-success:focus,button.bg-success:hover{background-color:#1e7e34!important}.bg-info{background-color:#17a2b8!important}a.bg-info:focus,a.bg-info:hover,button.bg-info:focus,button.bg-info:hover{background-color:#117a8b!important}.bg-warning{background-color:#ffc107!important}a.bg-warning:focus,a.bg-warning:hover,button.bg-warning:focus,button.bg-warning:hover{background-color:#d39e00!important}.bg-danger{background-color:#dc3545!important}a.bg-danger:focus,a.bg-danger:hover,button.bg-danger:focus,button.bg-danger:hover{background-color:#bd2130!important}.bg-light{background-color:#f8f9fa!important}a.bg-light:focus,a.bg-light:hover,button.bg-light:focus,button.bg-light:hover{background-color:#dae0e5!important}.bg-dark{background-color:#343a40!important}a.bg-dark:focus,a.bg-dark:hover,button.bg-dark:focus,button.bg-dark:hover{background-color:#1d2124!important}.bg-white{background-color:#fff!important}.bg-transparent{background-color:transparent!important}.border{border:1px solid #dee2e6!important}.border-top{border-top:1px solid #dee2e6!important}.border-right{border-right:1px solid #dee2e6!important}.border-bottom{border-bottom:1px solid #dee2e6!important}.border-left{border-left:1px solid #dee2e6!important}.border-0{border:0!important}.border-top-0{border-top:0!important}.border-right-0{border-right:0!important}.border-bottom-0{border-bottom:0!important}.border-left-0{border-left:0!important}.border-primary{border-color:#007bff!important}.border-secondary{border-color:#6c757d!important}.border-success{border-color:#28a745!important}.border-info{border-color:#17a2b8!important}.border-warning{border-color:#ffc107!important}.border-danger{border-color:#dc3545!important}.border-light{border-color:#f8f9fa!important}.border-dark{border-color:#343a40!important}.border-white{border-color:#fff!important}.rounded-sm{border-radius:.2rem!important}.rounded{border-radius:.25rem!important}.rounded-top{border-top-left-radius:.25rem!important;border-top-right-radius:.25rem!important}.rounded-right{border-top-right-radius:.25rem!important;border-bottom-right-radius:.25rem!important}.rounded-bottom{border-bottom-right-radius:.25rem!important;border-bottom-left-radius:.25rem!important}.rounded-left{border-top-left-radius:.25rem!important;border-bottom-left-radius:.25rem!important}.rounded-lg{border-radius:.3rem!important}.rounded-circle{border-radius:50%!important}.rounded-pill{border-radius:50rem!important}.rounded-0{border-radius:0!important}.clearfix::after{display:block;clear:both;content:""}.d-none{display:none!important}.d-inline{display:inline!important}.d-inline-block{display:inline-block!important}.d-block{display:block!important}.d-table{display:table!important}.d-table-row{display:table-row!important}.d-table-cell{display:table-cell!important}.d-flex{display:-ms-flexbox!important;display:flex!important}.d-inline-flex{display:-ms-inline-flexbox!important;display:inline-flex!important}@media (min-width:576px){.d-sm-none{display:none!important}.d-sm-inline{display:inline!important}.d-sm-inline-block{display:inline-block!important}.d-sm-block{display:block!important}.d-sm-table{display:table!important}.d-sm-table-row{display:table-row!important}.d-sm-table-cell{display:table-cell!important}.d-sm-flex{display:-ms-flexbox!important;display:flex!important}.d-sm-inline-flex{display:-ms-inline-flexbox!important;display:inline-flex!important}}@media (min-width:768px){.d-md-none{display:none!important}.d-md-inline{display:inline!important}.d-md-inline-block{display:inline-block!important}.d-md-block{display:block!important}.d-md-table{display:table!important}.d-md-table-row{display:table-row!important}.d-md-table-cell{display:table-cell!important}.d-md-flex{display:-ms-flexbox!important;display:flex!important}.d-md-inline-flex{display:-ms-inline-flexbox!important;display:inline-flex!important}}@media (min-width:992px){.d-lg-none{display:none!important}.d-lg-inline{display:inline!important}.d-lg-inline-block{display:inline-block!important}.d-lg-block{display:block!important}.d-lg-table{display:table!important}.d-lg-table-row{display:table-row!important}.d-lg-table-cell{display:table-cell!important}.d-lg-flex{display:-ms-flexbox!important;display:flex!important}.d-lg-inline-flex{display:-ms-inline-flexbox!important;display:inline-flex!important}}@media (min-width:1200px){.d-xl-none{display:none!important}.d-xl-inline{display:inline!important}.d-xl-inline-block{display:inline-block!important}.d-xl-block{display:block!important}.d-xl-table{display:table!important}.d-xl-table-row{display:table-row!important}.d-xl-table-cell{display:table-cell!important}.d-xl-flex{display:-ms-flexbox!important;display:flex!important}.d-xl-inline-flex{display:-ms-inline-flexbox!important;display:inline-flex!important}}@media print{.d-print-none{display:none!important}.d-print-inline{display:inline!important}.d-print-inline-block{display:inline-block!important}.d-print-block{display:block!important}.d-print-table{display:table!important}.d-print-table-row{display:table-row!important}.d-print-table-cell{display:table-cell!important}.d-print-flex{display:-ms-flexbox!important;display:flex!important}.d-print-inline-flex{display:-ms-inline-flexbox!important;display:inline-flex!important}}.embed-responsive{position:relative;display:block;width:100%;padding:0;overflow:hidden}.embed-responsive::before{display:block;content:""}.embed-responsive .embed-responsive-item,.embed-responsive embed,.embed-responsive iframe,.embed-responsive object,.embed-responsive video{position:absolute;top:0;bottom:0;left:0;width:100%;height:100%;border:0}.embed-responsive-21by9::before{padding-top:42.857143%}.embed-responsive-16by9::before{padding-top:56.25%}.embed-responsive-4by3::before{padding-top:75%}.embed-responsive-1by1::before{padding-top:100%}.flex-row{-ms-flex-direction:row!important;flex-direction:row!important}.flex-column{-ms-flex-direction:column!important;flex-direction:column!important}.flex-row-reverse{-ms-flex-direction:row-reverse!important;flex-direction:row-reverse!important}.flex-column-reverse{-ms-flex-direction:column-reverse!important;flex-direction:column-reverse!important}.flex-wrap{-ms-flex-wrap:wrap!important;flex-wrap:wrap!important}.flex-nowrap{-ms-flex-wrap:nowrap!important;flex-wrap:nowrap!important}.flex-wrap-reverse{-ms-flex-wrap:wrap-reverse!important;flex-wrap:wrap-reverse!important}.flex-fill{-ms-flex:1 1 auto!important;flex:1 1 auto!important}.flex-grow-0{-ms-flex-positive:0!important;flex-grow:0!important}.flex-grow-1{-ms-flex-positive:1!important;flex-grow:1!important}.flex-shrink-0{-ms-flex-negative:0!important;flex-shrink:0!important}.flex-shrink-1{-ms-flex-negative:1!important;flex-shrink:1!important}.justify-content-start{-ms-flex-pack:start!important;justify-content:flex-start!important}.justify-content-end{-ms-flex-pack:end!important;justify-content:flex-end!important}.justify-content-center{-ms-flex-pack:center!important;justify-content:center!important}.justify-content-between{-ms-flex-pack:justify!important;justify-content:space-between!important}.justify-content-around{-ms-flex-pack:distribute!important;justify-content:space-around!important}.align-items-start{-ms-flex-align:start!important;align-items:flex-start!important}.align-items-end{-ms-flex-align:end!important;align-items:flex-end!important}.align-items-center{-ms-flex-align:center!important;align-items:center!important}.align-items-baseline{-ms-flex-align:baseline!important;align-items:baseline!important}.align-items-stretch{-ms-flex-align:stretch!important;align-items:stretch!important}.align-content-start{-ms-flex-line-pack:start!important;align-content:flex-start!important}.align-content-end{-ms-flex-line-pack:end!important;align-content:flex-end!important}.align-content-center{-ms-flex-line-pack:center!important;align-content:center!important}.align-content-between{-ms-flex-line-pack:justify!important;align-content:space-between!important}.align-content-around{-ms-flex-line-pack:distribute!important;align-content:space-around!important}.align-content-stretch{-ms-flex-line-pack:stretch!important;align-content:stretch!important}.align-self-auto{-ms-flex-item-align:auto!important;align-self:auto!important}.align-self-start{-ms-flex-item-align:start!important;align-self:flex-start!important}.align-self-end{-ms-flex-item-align:end!important;align-self:flex-end!important}.align-self-center{-ms-flex-item-align:center!important;align-self:center!important}.align-self-baseline{-ms-flex-item-align:baseline!important;align-self:baseline!important}.align-self-stretch{-ms-flex-item-align:stretch!important;align-self:stretch!important}@media (min-width:576px){.flex-sm-row{-ms-flex-direction:row!important;flex-direction:row!important}.flex-sm-column{-ms-flex-direction:column!important;flex-direction:column!important}.flex-sm-row-reverse{-ms-flex-direction:row-reverse!important;flex-direction:row-reverse!important}.flex-sm-column-reverse{-ms-flex-direction:column-reverse!important;flex-direction:column-reverse!important}.flex-sm-wrap{-ms-flex-wrap:wrap!important;flex-wrap:wrap!important}.flex-sm-nowrap{-ms-flex-wrap:nowrap!important;flex-wrap:nowrap!important}.flex-sm-wrap-reverse{-ms-flex-wrap:wrap-reverse!important;flex-wrap:wrap-reverse!important}.flex-sm-fill{-ms-flex:1 1 auto!important;flex:1 1 auto!important}.flex-sm-grow-0{-ms-flex-positive:0!important;flex-grow:0!important}.flex-sm-grow-1{-ms-flex-positive:1!important;flex-grow:1!important}.flex-sm-shrink-0{-ms-flex-negative:0!important;flex-shrink:0!important}.flex-sm-shrink-1{-ms-flex-negative:1!important;flex-shrink:1!important}.justify-content-sm-start{-ms-flex-pack:start!important;justify-content:flex-start!important}.justify-content-sm-end{-ms-flex-pack:end!important;justify-content:flex-end!important}.justify-content-sm-center{-ms-flex-pack:center!important;justify-content:center!important}.justify-content-sm-between{-ms-flex-pack:justify!important;justify-content:space-between!important}.justify-content-sm-around{-ms-flex-pack:distribute!important;justify-content:space-around!important}.align-items-sm-start{-ms-flex-align:start!important;align-items:flex-start!important}.align-items-sm-end{-ms-flex-align:end!important;align-items:flex-end!important}.align-items-sm-center{-ms-flex-align:center!important;align-items:center!important}.align-items-sm-baseline{-ms-flex-align:baseline!important;align-items:baseline!important}.align-items-sm-stretch{-ms-flex-align:stretch!important;align-items:stretch!important}.align-content-sm-start{-ms-flex-line-pack:start!important;align-content:flex-start!important}.align-content-sm-end{-ms-flex-line-pack:end!important;align-content:flex-end!important}.align-content-sm-center{-ms-flex-line-pack:center!important;align-content:center!important}.align-content-sm-between{-ms-flex-line-pack:justify!important;align-content:space-between!important}.align-content-sm-around{-ms-flex-line-pack:distribute!important;align-content:space-around!important}.align-content-sm-stretch{-ms-flex-line-pack:stretch!important;align-content:stretch!important}.align-self-sm-auto{-ms-flex-item-align:auto!important;align-self:auto!important}.align-self-sm-start{-ms-flex-item-align:start!important;align-self:flex-start!important}.align-self-sm-end{-ms-flex-item-align:end!important;align-self:flex-end!important}.align-self-sm-center{-ms-flex-item-align:center!important;align-self:center!important}.align-self-sm-baseline{-ms-flex-item-align:baseline!important;align-self:baseline!important}.align-self-sm-stretch{-ms-flex-item-align:stretch!important;align-self:stretch!important}}@media (min-width:768px){.flex-md-row{-ms-flex-direction:row!important;flex-direction:row!important}.flex-md-column{-ms-flex-direction:column!important;flex-direction:column!important}.flex-md-row-reverse{-ms-flex-direction:row-reverse!important;flex-direction:row-reverse!important}.flex-md-column-reverse{-ms-flex-direction:column-reverse!important;flex-direction:column-reverse!important}.flex-md-wrap{-ms-flex-wrap:wrap!important;flex-wrap:wrap!important}.flex-md-nowrap{-ms-flex-wrap:nowrap!important;flex-wrap:nowrap!important}.flex-md-wrap-reverse{-ms-flex-wrap:wrap-reverse!important;flex-wrap:wrap-reverse!important}.flex-md-fill{-ms-flex:1 1 auto!important;flex:1 1 auto!important}.flex-md-grow-0{-ms-flex-positive:0!important;flex-grow:0!important}.flex-md-grow-1{-ms-flex-positive:1!important;flex-grow:1!important}.flex-md-shrink-0{-ms-flex-negative:0!important;flex-shrink:0!important}.flex-md-shrink-1{-ms-flex-negative:1!important;flex-shrink:1!important}.justify-content-md-start{-ms-flex-pack:start!important;justify-content:flex-start!important}.justify-content-md-end{-ms-flex-pack:end!important;justify-content:flex-end!important}.justify-content-md-center{-ms-flex-pack:center!important;justify-content:center!important}.justify-content-md-between{-ms-flex-pack:justify!important;justify-content:space-between!important}.justify-content-md-around{-ms-flex-pack:distribute!important;justify-content:space-around!important}.align-items-md-start{-ms-flex-align:start!important;align-items:flex-start!important}.align-items-md-end{-ms-flex-align:end!important;align-items:flex-end!important}.align-items-md-center{-ms-flex-align:center!important;align-items:center!important}.align-items-md-baseline{-ms-flex-align:baseline!important;align-items:baseline!important}.align-items-md-stretch{-ms-flex-align:stretch!important;align-items:stretch!important}.align-content-md-start{-ms-flex-line-pack:start!important;align-content:flex-start!important}.align-content-md-end{-ms-flex-line-pack:end!important;align-content:flex-end!important}.align-content-md-center{-ms-flex-line-pack:center!important;align-content:center!important}.align-content-md-between{-ms-flex-line-pack:justify!important;align-content:space-between!important}.align-content-md-around{-ms-flex-line-pack:distribute!important;align-content:space-around!important}.align-content-md-stretch{-ms-flex-line-pack:stretch!important;align-content:stretch!important}.align-self-md-auto{-ms-flex-item-align:auto!important;align-self:auto!important}.align-self-md-start{-ms-flex-item-align:start!important;align-self:flex-start!important}.align-self-md-end{-ms-flex-item-align:end!important;align-self:flex-end!important}.align-self-md-center{-ms-flex-item-align:center!important;align-self:center!important}.align-self-md-baseline{-ms-flex-item-align:baseline!important;align-self:baseline!important}.align-self-md-stretch{-ms-flex-item-align:stretch!important;align-self:stretch!important}}@media (min-width:992px){.flex-lg-row{-ms-flex-direction:row!important;flex-direction:row!important}.flex-lg-column{-ms-flex-direction:column!important;flex-direction:column!important}.flex-lg-row-reverse{-ms-flex-direction:row-reverse!important;flex-direction:row-reverse!important}.flex-lg-column-reverse{-ms-flex-direction:column-reverse!important;flex-direction:column-reverse!important}.flex-lg-wrap{-ms-flex-wrap:wrap!important;flex-wrap:wrap!important}.flex-lg-nowrap{-ms-flex-wrap:nowrap!important;flex-wrap:nowrap!important}.flex-lg-wrap-reverse{-ms-flex-wrap:wrap-reverse!important;flex-wrap:wrap-reverse!important}.flex-lg-fill{-ms-flex:1 1 auto!important;flex:1 1 auto!important}.flex-lg-grow-0{-ms-flex-positive:0!important;flex-grow:0!important}.flex-lg-grow-1{-ms-flex-positive:1!important;flex-grow:1!important}.flex-lg-shrink-0{-ms-flex-negative:0!important;flex-shrink:0!important}.flex-lg-shrink-1{-ms-flex-negative:1!important;flex-shrink:1!important}.justify-content-lg-start{-ms-flex-pack:start!important;justify-content:flex-start!important}.justify-content-lg-end{-ms-flex-pack:end!important;justify-content:flex-end!important}.justify-content-lg-center{-ms-flex-pack:center!important;justify-content:center!important}.justify-content-lg-between{-ms-flex-pack:justify!important;justify-content:space-between!important}.justify-content-lg-around{-ms-flex-pack:distribute!important;justify-content:space-around!important}.align-items-lg-start{-ms-flex-align:start!important;align-items:flex-start!important}.align-items-lg-end{-ms-flex-align:end!important;align-items:flex-end!important}.align-items-lg-center{-ms-flex-align:center!important;align-items:center!important}.align-items-lg-baseline{-ms-flex-align:baseline!important;align-items:baseline!important}.align-items-lg-stretch{-ms-flex-align:stretch!important;align-items:stretch!important}.align-content-lg-start{-ms-flex-line-pack:start!important;align-content:flex-start!important}.align-content-lg-end{-ms-flex-line-pack:end!important;align-content:flex-end!important}.align-content-lg-center{-ms-flex-line-pack:center!important;align-content:center!important}.align-content-lg-between{-ms-flex-line-pack:justify!important;align-content:space-between!important}.align-content-lg-around{-ms-flex-line-pack:distribute!important;align-content:space-around!important}.align-content-lg-stretch{-ms-flex-line-pack:stretch!important;align-content:stretch!important}.align-self-lg-auto{-ms-flex-item-align:auto!important;align-self:auto!important}.align-self-lg-start{-ms-flex-item-align:start!important;align-self:flex-start!important}.align-self-lg-end{-ms-flex-item-align:end!important;align-self:flex-end!important}.align-self-lg-center{-ms-flex-item-align:center!important;align-self:center!important}.align-self-lg-baseline{-ms-flex-item-align:baseline!important;align-self:baseline!important}.align-self-lg-stretch{-ms-flex-item-align:stretch!important;align-self:stretch!important}}@media (min-width:1200px){.flex-xl-row{-ms-flex-direction:row!important;flex-direction:row!important}.flex-xl-column{-ms-flex-direction:column!important;flex-direction:column!important}.flex-xl-row-reverse{-ms-flex-direction:row-reverse!important;flex-direction:row-reverse!important}.flex-xl-column-reverse{-ms-flex-direction:column-reverse!important;flex-direction:column-reverse!important}.flex-xl-wrap{-ms-flex-wrap:wrap!important;flex-wrap:wrap!important}.flex-xl-nowrap{-ms-flex-wrap:nowrap!important;flex-wrap:nowrap!important}.flex-xl-wrap-reverse{-ms-flex-wrap:wrap-reverse!important;flex-wrap:wrap-reverse!important}.flex-xl-fill{-ms-flex:1 1 auto!important;flex:1 1 auto!important}.flex-xl-grow-0{-ms-flex-positive:0!important;flex-grow:0!important}.flex-xl-grow-1{-ms-flex-positive:1!important;flex-grow:1!important}.flex-xl-shrink-0{-ms-flex-negative:0!important;flex-shrink:0!important}.flex-xl-shrink-1{-ms-flex-negative:1!important;flex-shrink:1!important}.justify-content-xl-start{-ms-flex-pack:start!important;justify-content:flex-start!important}.justify-content-xl-end{-ms-flex-pack:end!important;justify-content:flex-end!important}.justify-content-xl-center{-ms-flex-pack:center!important;justify-content:center!important}.justify-content-xl-between{-ms-flex-pack:justify!important;justify-content:space-between!important}.justify-content-xl-around{-ms-flex-pack:distribute!important;justify-content:space-around!important}.align-items-xl-start{-ms-flex-align:start!important;align-items:flex-start!important}.align-items-xl-end{-ms-flex-align:end!important;align-items:flex-end!important}.align-items-xl-center{-ms-flex-align:center!important;align-items:center!important}.align-items-xl-baseline{-ms-flex-align:baseline!important;align-items:baseline!important}.align-items-xl-stretch{-ms-flex-align:stretch!important;align-items:stretch!important}.align-content-xl-start{-ms-flex-line-pack:start!important;align-content:flex-start!important}.align-content-xl-end{-ms-flex-line-pack:end!important;align-content:flex-end!important}.align-content-xl-center{-ms-flex-line-pack:center!important;align-content:center!important}.align-content-xl-between{-ms-flex-line-pack:justify!important;align-content:space-between!important}.align-content-xl-around{-ms-flex-line-pack:distribute!important;align-content:space-around!important}.align-content-xl-stretch{-ms-flex-line-pack:stretch!important;align-content:stretch!important}.align-self-xl-auto{-ms-flex-item-align:auto!important;align-self:auto!important}.align-self-xl-start{-ms-flex-item-align:start!important;align-self:flex-start!important}.align-self-xl-end{-ms-flex-item-align:end!important;align-self:flex-end!important}.align-self-xl-center{-ms-flex-item-align:center!important;align-self:center!important}.align-self-xl-baseline{-ms-flex-item-align:baseline!important;align-self:baseline!important}.align-self-xl-stretch{-ms-flex-item-align:stretch!important;align-self:stretch!important}}.float-left{float:left!important}.float-right{float:right!important}.float-none{float:none!important}@media (min-width:576px){.float-sm-left{float:left!important}.float-sm-right{float:right!important}.float-sm-none{float:none!important}}@media (min-width:768px){.float-md-left{float:left!important}.float-md-right{float:right!important}.float-md-none{float:none!important}}@media (min-width:992px){.float-lg-left{float:left!important}.float-lg-right{float:right!important}.float-lg-none{float:none!important}}@media (min-width:1200px){.float-xl-left{float:left!important}.float-xl-right{float:right!important}.float-xl-none{float:none!important}}.user-select-all{-webkit-user-select:all!important;-moz-user-select:all!important;user-select:all!important}.user-select-auto{-webkit-user-select:auto!important;-moz-user-select:auto!important;-ms-user-select:auto!important;user-select:auto!important}.user-select-none{-webkit-user-select:none!important;-moz-user-select:none!important;-ms-user-select:none!important;user-select:none!important}.overflow-auto{overflow:auto!important}.overflow-hidden{overflow:hidden!important}.position-static{position:static!important}.position-relative{position:relative!important}.position-absolute{position:absolute!important}.position-fixed{position:fixed!important}.position-sticky{position:-webkit-sticky!important;position:sticky!important}.fixed-top{position:fixed;top:0;right:0;left:0;z-index:1030}.fixed-bottom{position:fixed;right:0;bottom:0;left:0;z-index:1030}@supports ((position:-webkit-sticky) or (position:sticky)){.sticky-top{position:-webkit-sticky;position:sticky;top:0;z-index:1020}}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0,0,0,0);white-space:nowrap;border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;overflow:visible;clip:auto;white-space:normal}.shadow-sm{box-shadow:0 .125rem .25rem rgba(0,0,0,.075)!important}.shadow{box-shadow:0 .5rem 1rem rgba(0,0,0,.15)!important}.shadow-lg{box-shadow:0 1rem 3rem rgba(0,0,0,.175)!important}.shadow-none{box-shadow:none!important}.w-25{width:25%!important}.w-50{width:50%!important}.w-75{width:75%!important}.w-100{width:100%!important}.w-auto{width:auto!important}.h-25{height:25%!important}.h-50{height:50%!important}.h-75{height:75%!important}.h-100{height:100%!important}.h-auto{height:auto!important}.mw-100{max-width:100%!important}.mh-100{max-height:100%!important}.min-vw-100{min-width:100vw!important}.min-vh-100{min-height:100vh!important}.vw-100{width:100vw!important}.vh-100{height:100vh!important}.m-0{margin:0!important}.mt-0,.my-0{margin-top:0!important}.mr-0,.mx-0{margin-right:0!important}.mb-0,.my-0{margin-bottom:0!important}.ml-0,.mx-0{margin-left:0!important}.m-1{margin:.25rem!important}.mt-1,.my-1{margin-top:.25rem!important}.mr-1,.mx-1{margin-right:.25rem!important}.mb-1,.my-1{margin-bottom:.25rem!important}.ml-1,.mx-1{margin-left:.25rem!important}.m-2{margin:.5rem!important}.mt-2,.my-2{margin-top:.5rem!important}.mr-2,.mx-2{margin-right:.5rem!important}.mb-2,.my-2{margin-bottom:.5rem!important}.ml-2,.mx-2{margin-left:.5rem!important}.m-3{margin:1rem!important}.mt-3,.my-3{margin-top:1rem!important}.mr-3,.mx-3{margin-right:1rem!important}.mb-3,.my-3{margin-bottom:1rem!important}.ml-3,.mx-3{margin-left:1rem!important}.m-4{margin:1.5rem!important}.mt-4,.my-4{margin-top:1.5rem!important}.mr-4,.mx-4{margin-right:1.5rem!important}.mb-4,.my-4{margin-bottom:1.5rem!important}.ml-4,.mx-4{margin-left:1.5rem!important}.m-5{margin:3rem!important}.mt-5,.my-5{margin-top:3rem!important}.mr-5,.mx-5{margin-right:3rem!important}.mb-5,.my-5{margin-bottom:3rem!important}.ml-5,.mx-5{margin-left:3rem!important}.p-0{padding:0!important}.pt-0,.py-0{padding-top:0!important}.pr-0,.px-0{padding-right:0!important}.pb-0,.py-0{padding-bottom:0!important}.pl-0,.px-0{padding-left:0!important}.p-1{padding:.25rem!important}.pt-1,.py-1{padding-top:.25rem!important}.pr-1,.px-1{padding-right:.25rem!important}.pb-1,.py-1{padding-bottom:.25rem!important}.pl-1,.px-1{padding-left:.25rem!important}.p-2{padding:.5rem!important}.pt-2,.py-2{padding-top:.5rem!important}.pr-2,.px-2{padding-right:.5rem!important}.pb-2,.py-2{padding-bottom:.5rem!important}.pl-2,.px-2{padding-left:.5rem!important}.p-3{padding:1rem!important}.pt-3,.py-3{padding-top:1rem!important}.pr-3,.px-3{padding-right:1rem!important}.pb-3,.py-3{padding-bottom:1rem!important}.pl-3,.px-3{padding-left:1rem!important}.p-4{padding:1.5rem!important}.pt-4,.py-4{padding-top:1.5rem!important}.pr-4,.px-4{padding-right:1.5rem!important}.pb-4,.py-4{padding-bottom:1.5rem!important}.pl-4,.px-4{padding-left:1.5rem!important}.p-5{padding:3rem!important}.pt-5,.py-5{padding-top:3rem!important}.pr-5,.px-5{padding-right:3rem!important}.pb-5,.py-5{padding-bottom:3rem!important}.pl-5,.px-5{padding-left:3rem!important}.m-n1{margin:-.25rem!important}.mt-n1,.my-n1{margin-top:-.25rem!important}.mr-n1,.mx-n1{margin-right:-.25rem!important}.mb-n1,.my-n1{margin-bottom:-.25rem!important}.ml-n1,.mx-n1{margin-left:-.25rem!important}.m-n2{margin:-.5rem!important}.mt-n2,.my-n2{margin-top:-.5rem!important}.mr-n2,.mx-n2{margin-right:-.5rem!important}.mb-n2,.my-n2{margin-bottom:-.5rem!important}.ml-n2,.mx-n2{margin-left:-.5rem!important}.m-n3{margin:-1rem!important}.mt-n3,.my-n3{margin-top:-1rem!important}.mr-n3,.mx-n3{margin-right:-1rem!important}.mb-n3,.my-n3{margin-bottom:-1rem!important}.ml-n3,.mx-n3{margin-left:-1rem!important}.m-n4{margin:-1.5rem!important}.mt-n4,.my-n4{margin-top:-1.5rem!important}.mr-n4,.mx-n4{margin-right:-1.5rem!important}.mb-n4,.my-n4{margin-bottom:-1.5rem!important}.ml-n4,.mx-n4{margin-left:-1.5rem!important}.m-n5{margin:-3rem!important}.mt-n5,.my-n5{margin-top:-3rem!important}.mr-n5,.mx-n5{margin-right:-3rem!important}.mb-n5,.my-n5{margin-bottom:-3rem!important}.ml-n5,.mx-n5{margin-left:-3rem!important}.m-auto{margin:auto!important}.mt-auto,.my-auto{margin-top:auto!important}.mr-auto,.mx-auto{margin-right:auto!important}.mb-auto,.my-auto{margin-bottom:auto!important}.ml-auto,.mx-auto{margin-left:auto!important}@media (min-width:576px){.m-sm-0{margin:0!important}.mt-sm-0,.my-sm-0{margin-top:0!important}.mr-sm-0,.mx-sm-0{margin-right:0!important}.mb-sm-0,.my-sm-0{margin-bottom:0!important}.ml-sm-0,.mx-sm-0{margin-left:0!important}.m-sm-1{margin:.25rem!important}.mt-sm-1,.my-sm-1{margin-top:.25rem!important}.mr-sm-1,.mx-sm-1{margin-right:.25rem!important}.mb-sm-1,.my-sm-1{margin-bottom:.25rem!important}.ml-sm-1,.mx-sm-1{margin-left:.25rem!important}.m-sm-2{margin:.5rem!important}.mt-sm-2,.my-sm-2{margin-top:.5rem!important}.mr-sm-2,.mx-sm-2{margin-right:.5rem!important}.mb-sm-2,.my-sm-2{margin-bottom:.5rem!important}.ml-sm-2,.mx-sm-2{margin-left:.5rem!important}.m-sm-3{margin:1rem!important}.mt-sm-3,.my-sm-3{margin-top:1rem!important}.mr-sm-3,.mx-sm-3{margin-right:1rem!important}.mb-sm-3,.my-sm-3{margin-bottom:1rem!important}.ml-sm-3,.mx-sm-3{margin-left:1rem!important}.m-sm-4{margin:1.5rem!important}.mt-sm-4,.my-sm-4{margin-top:1.5rem!important}.mr-sm-4,.mx-sm-4{margin-right:1.5rem!important}.mb-sm-4,.my-sm-4{margin-bottom:1.5rem!important}.ml-sm-4,.mx-sm-4{margin-left:1.5rem!important}.m-sm-5{margin:3rem!important}.mt-sm-5,.my-sm-5{margin-top:3rem!important}.mr-sm-5,.mx-sm-5{margin-right:3rem!important}.mb-sm-5,.my-sm-5{margin-bottom:3rem!important}.ml-sm-5,.mx-sm-5{margin-left:3rem!important}.p-sm-0{padding:0!important}.pt-sm-0,.py-sm-0{padding-top:0!important}.pr-sm-0,.px-sm-0{padding-right:0!important}.pb-sm-0,.py-sm-0{padding-bottom:0!important}.pl-sm-0,.px-sm-0{padding-left:0!important}.p-sm-1{padding:.25rem!important}.pt-sm-1,.py-sm-1{padding-top:.25rem!important}.pr-sm-1,.px-sm-1{padding-right:.25rem!important}.pb-sm-1,.py-sm-1{padding-bottom:.25rem!important}.pl-sm-1,.px-sm-1{padding-left:.25rem!important}.p-sm-2{padding:.5rem!important}.pt-sm-2,.py-sm-2{padding-top:.5rem!important}.pr-sm-2,.px-sm-2{padding-right:.5rem!important}.pb-sm-2,.py-sm-2{padding-bottom:.5rem!important}.pl-sm-2,.px-sm-2{padding-left:.5rem!important}.p-sm-3{padding:1rem!important}.pt-sm-3,.py-sm-3{padding-top:1rem!important}.pr-sm-3,.px-sm-3{padding-right:1rem!important}.pb-sm-3,.py-sm-3{padding-bottom:1rem!important}.pl-sm-3,.px-sm-3{padding-left:1rem!important}.p-sm-4{padding:1.5rem!important}.pt-sm-4,.py-sm-4{padding-top:1.5rem!important}.pr-sm-4,.px-sm-4{padding-right:1.5rem!important}.pb-sm-4,.py-sm-4{padding-bottom:1.5rem!important}.pl-sm-4,.px-sm-4{padding-left:1.5rem!important}.p-sm-5{padding:3rem!important}.pt-sm-5,.py-sm-5{padding-top:3rem!important}.pr-sm-5,.px-sm-5{padding-right:3rem!important}.pb-sm-5,.py-sm-5{padding-bottom:3rem!important}.pl-sm-5,.px-sm-5{padding-left:3rem!important}.m-sm-n1{margin:-.25rem!important}.mt-sm-n1,.my-sm-n1{margin-top:-.25rem!important}.mr-sm-n1,.mx-sm-n1{margin-right:-.25rem!important}.mb-sm-n1,.my-sm-n1{margin-bottom:-.25rem!important}.ml-sm-n1,.mx-sm-n1{margin-left:-.25rem!important}.m-sm-n2{margin:-.5rem!important}.mt-sm-n2,.my-sm-n2{margin-top:-.5rem!important}.mr-sm-n2,.mx-sm-n2{margin-right:-.5rem!important}.mb-sm-n2,.my-sm-n2{margin-bottom:-.5rem!important}.ml-sm-n2,.mx-sm-n2{margin-left:-.5rem!important}.m-sm-n3{margin:-1rem!important}.mt-sm-n3,.my-sm-n3{margin-top:-1rem!important}.mr-sm-n3,.mx-sm-n3{margin-right:-1rem!important}.mb-sm-n3,.my-sm-n3{margin-bottom:-1rem!important}.ml-sm-n3,.mx-sm-n3{margin-left:-1rem!important}.m-sm-n4{margin:-1.5rem!important}.mt-sm-n4,.my-sm-n4{margin-top:-1.5rem!important}.mr-sm-n4,.mx-sm-n4{margin-right:-1.5rem!important}.mb-sm-n4,.my-sm-n4{margin-bottom:-1.5rem!important}.ml-sm-n4,.mx-sm-n4{margin-left:-1.5rem!important}.m-sm-n5{margin:-3rem!important}.mt-sm-n5,.my-sm-n5{margin-top:-3rem!important}.mr-sm-n5,.mx-sm-n5{margin-right:-3rem!important}.mb-sm-n5,.my-sm-n5{margin-bottom:-3rem!important}.ml-sm-n5,.mx-sm-n5{margin-left:-3rem!important}.m-sm-auto{margin:auto!important}.mt-sm-auto,.my-sm-auto{margin-top:auto!important}.mr-sm-auto,.mx-sm-auto{margin-right:auto!important}.mb-sm-auto,.my-sm-auto{margin-bottom:auto!important}.ml-sm-auto,.mx-sm-auto{margin-left:auto!important}}@media (min-width:768px){.m-md-0{margin:0!important}.mt-md-0,.my-md-0{margin-top:0!important}.mr-md-0,.mx-md-0{margin-right:0!important}.mb-md-0,.my-md-0{margin-bottom:0!important}.ml-md-0,.mx-md-0{margin-left:0!important}.m-md-1{margin:.25rem!important}.mt-md-1,.my-md-1{margin-top:.25rem!important}.mr-md-1,.mx-md-1{margin-right:.25rem!important}.mb-md-1,.my-md-1{margin-bottom:.25rem!important}.ml-md-1,.mx-md-1{margin-left:.25rem!important}.m-md-2{margin:.5rem!important}.mt-md-2,.my-md-2{margin-top:.5rem!important}.mr-md-2,.mx-md-2{margin-right:.5rem!important}.mb-md-2,.my-md-2{margin-bottom:.5rem!important}.ml-md-2,.mx-md-2{margin-left:.5rem!important}.m-md-3{margin:1rem!important}.mt-md-3,.my-md-3{margin-top:1rem!important}.mr-md-3,.mx-md-3{margin-right:1rem!important}.mb-md-3,.my-md-3{margin-bottom:1rem!important}.ml-md-3,.mx-md-3{margin-left:1rem!important}.m-md-4{margin:1.5rem!important}.mt-md-4,.my-md-4{margin-top:1.5rem!important}.mr-md-4,.mx-md-4{margin-right:1.5rem!important}.mb-md-4,.my-md-4{margin-bottom:1.5rem!important}.ml-md-4,.mx-md-4{margin-left:1.5rem!important}.m-md-5{margin:3rem!important}.mt-md-5,.my-md-5{margin-top:3rem!important}.mr-md-5,.mx-md-5{margin-right:3rem!important}.mb-md-5,.my-md-5{margin-bottom:3rem!important}.ml-md-5,.mx-md-5{margin-left:3rem!important}.p-md-0{padding:0!important}.pt-md-0,.py-md-0{padding-top:0!important}.pr-md-0,.px-md-0{padding-right:0!important}.pb-md-0,.py-md-0{padding-bottom:0!important}.pl-md-0,.px-md-0{padding-left:0!important}.p-md-1{padding:.25rem!important}.pt-md-1,.py-md-1{padding-top:.25rem!important}.pr-md-1,.px-md-1{padding-right:.25rem!important}.pb-md-1,.py-md-1{padding-bottom:.25rem!important}.pl-md-1,.px-md-1{padding-left:.25rem!important}.p-md-2{padding:.5rem!important}.pt-md-2,.py-md-2{padding-top:.5rem!important}.pr-md-2,.px-md-2{padding-right:.5rem!important}.pb-md-2,.py-md-2{padding-bottom:.5rem!important}.pl-md-2,.px-md-2{padding-left:.5rem!important}.p-md-3{padding:1rem!important}.pt-md-3,.py-md-3{padding-top:1rem!important}.pr-md-3,.px-md-3{padding-right:1rem!important}.pb-md-3,.py-md-3{padding-bottom:1rem!important}.pl-md-3,.px-md-3{padding-left:1rem!important}.p-md-4{padding:1.5rem!important}.pt-md-4,.py-md-4{padding-top:1.5rem!important}.pr-md-4,.px-md-4{padding-right:1.5rem!important}.pb-md-4,.py-md-4{padding-bottom:1.5rem!important}.pl-md-4,.px-md-4{padding-left:1.5rem!important}.p-md-5{padding:3rem!important}.pt-md-5,.py-md-5{padding-top:3rem!important}.pr-md-5,.px-md-5{padding-right:3rem!important}.pb-md-5,.py-md-5{padding-bottom:3rem!important}.pl-md-5,.px-md-5{padding-left:3rem!important}.m-md-n1{margin:-.25rem!important}.mt-md-n1,.my-md-n1{margin-top:-.25rem!important}.mr-md-n1,.mx-md-n1{margin-right:-.25rem!important}.mb-md-n1,.my-md-n1{margin-bottom:-.25rem!important}.ml-md-n1,.mx-md-n1{margin-left:-.25rem!important}.m-md-n2{margin:-.5rem!important}.mt-md-n2,.my-md-n2{margin-top:-.5rem!important}.mr-md-n2,.mx-md-n2{margin-right:-.5rem!important}.mb-md-n2,.my-md-n2{margin-bottom:-.5rem!important}.ml-md-n2,.mx-md-n2{margin-left:-.5rem!important}.m-md-n3{margin:-1rem!important}.mt-md-n3,.my-md-n3{margin-top:-1rem!important}.mr-md-n3,.mx-md-n3{margin-right:-1rem!important}.mb-md-n3,.my-md-n3{margin-bottom:-1rem!important}.ml-md-n3,.mx-md-n3{margin-left:-1rem!important}.m-md-n4{margin:-1.5rem!important}.mt-md-n4,.my-md-n4{margin-top:-1.5rem!important}.mr-md-n4,.mx-md-n4{margin-right:-1.5rem!important}.mb-md-n4,.my-md-n4{margin-bottom:-1.5rem!important}.ml-md-n4,.mx-md-n4{margin-left:-1.5rem!important}.m-md-n5{margin:-3rem!important}.mt-md-n5,.my-md-n5{margin-top:-3rem!important}.mr-md-n5,.mx-md-n5{margin-right:-3rem!important}.mb-md-n5,.my-md-n5{margin-bottom:-3rem!important}.ml-md-n5,.mx-md-n5{margin-left:-3rem!important}.m-md-auto{margin:auto!important}.mt-md-auto,.my-md-auto{margin-top:auto!important}.mr-md-auto,.mx-md-auto{margin-right:auto!important}.mb-md-auto,.my-md-auto{margin-bottom:auto!important}.ml-md-auto,.mx-md-auto{margin-left:auto!important}}@media (min-width:992px){.m-lg-0{margin:0!important}.mt-lg-0,.my-lg-0{margin-top:0!important}.mr-lg-0,.mx-lg-0{margin-right:0!important}.mb-lg-0,.my-lg-0{margin-bottom:0!important}.ml-lg-0,.mx-lg-0{margin-left:0!important}.m-lg-1{margin:.25rem!important}.mt-lg-1,.my-lg-1{margin-top:.25rem!important}.mr-lg-1,.mx-lg-1{margin-right:.25rem!important}.mb-lg-1,.my-lg-1{margin-bottom:.25rem!important}.ml-lg-1,.mx-lg-1{margin-left:.25rem!important}.m-lg-2{margin:.5rem!important}.mt-lg-2,.my-lg-2{margin-top:.5rem!important}.mr-lg-2,.mx-lg-2{margin-right:.5rem!important}.mb-lg-2,.my-lg-2{margin-bottom:.5rem!important}.ml-lg-2,.mx-lg-2{margin-left:.5rem!important}.m-lg-3{margin:1rem!important}.mt-lg-3,.my-lg-3{margin-top:1rem!important}.mr-lg-3,.mx-lg-3{margin-right:1rem!important}.mb-lg-3,.my-lg-3{margin-bottom:1rem!important}.ml-lg-3,.mx-lg-3{margin-left:1rem!important}.m-lg-4{margin:1.5rem!important}.mt-lg-4,.my-lg-4{margin-top:1.5rem!important}.mr-lg-4,.mx-lg-4{margin-right:1.5rem!important}.mb-lg-4,.my-lg-4{margin-bottom:1.5rem!important}.ml-lg-4,.mx-lg-4{margin-left:1.5rem!important}.m-lg-5{margin:3rem!important}.mt-lg-5,.my-lg-5{margin-top:3rem!important}.mr-lg-5,.mx-lg-5{margin-right:3rem!important}.mb-lg-5,.my-lg-5{margin-bottom:3rem!important}.ml-lg-5,.mx-lg-5{margin-left:3rem!important}.p-lg-0{padding:0!important}.pt-lg-0,.py-lg-0{padding-top:0!important}.pr-lg-0,.px-lg-0{padding-right:0!important}.pb-lg-0,.py-lg-0{padding-bottom:0!important}.pl-lg-0,.px-lg-0{padding-left:0!important}.p-lg-1{padding:.25rem!important}.pt-lg-1,.py-lg-1{padding-top:.25rem!important}.pr-lg-1,.px-lg-1{padding-right:.25rem!important}.pb-lg-1,.py-lg-1{padding-bottom:.25rem!important}.pl-lg-1,.px-lg-1{padding-left:.25rem!important}.p-lg-2{padding:.5rem!important}.pt-lg-2,.py-lg-2{padding-top:.5rem!important}.pr-lg-2,.px-lg-2{padding-right:.5rem!important}.pb-lg-2,.py-lg-2{padding-bottom:.5rem!important}.pl-lg-2,.px-lg-2{padding-left:.5rem!important}.p-lg-3{padding:1rem!important}.pt-lg-3,.py-lg-3{padding-top:1rem!important}.pr-lg-3,.px-lg-3{padding-right:1rem!important}.pb-lg-3,.py-lg-3{padding-bottom:1rem!important}.pl-lg-3,.px-lg-3{padding-left:1rem!important}.p-lg-4{padding:1.5rem!important}.pt-lg-4,.py-lg-4{padding-top:1.5rem!important}.pr-lg-4,.px-lg-4{padding-right:1.5rem!important}.pb-lg-4,.py-lg-4{padding-bottom:1.5rem!important}.pl-lg-4,.px-lg-4{padding-left:1.5rem!important}.p-lg-5{padding:3rem!important}.pt-lg-5,.py-lg-5{padding-top:3rem!important}.pr-lg-5,.px-lg-5{padding-right:3rem!important}.pb-lg-5,.py-lg-5{padding-bottom:3rem!important}.pl-lg-5,.px-lg-5{padding-left:3rem!important}.m-lg-n1{margin:-.25rem!important}.mt-lg-n1,.my-lg-n1{margin-top:-.25rem!important}.mr-lg-n1,.mx-lg-n1{margin-right:-.25rem!important}.mb-lg-n1,.my-lg-n1{margin-bottom:-.25rem!important}.ml-lg-n1,.mx-lg-n1{margin-left:-.25rem!important}.m-lg-n2{margin:-.5rem!important}.mt-lg-n2,.my-lg-n2{margin-top:-.5rem!important}.mr-lg-n2,.mx-lg-n2{margin-right:-.5rem!important}.mb-lg-n2,.my-lg-n2{margin-bottom:-.5rem!important}.ml-lg-n2,.mx-lg-n2{margin-left:-.5rem!important}.m-lg-n3{margin:-1rem!important}.mt-lg-n3,.my-lg-n3{margin-top:-1rem!important}.mr-lg-n3,.mx-lg-n3{margin-right:-1rem!important}.mb-lg-n3,.my-lg-n3{margin-bottom:-1rem!important}.ml-lg-n3,.mx-lg-n3{margin-left:-1rem!important}.m-lg-n4{margin:-1.5rem!important}.mt-lg-n4,.my-lg-n4{margin-top:-1.5rem!important}.mr-lg-n4,.mx-lg-n4{margin-right:-1.5rem!important}.mb-lg-n4,.my-lg-n4{margin-bottom:-1.5rem!important}.ml-lg-n4,.mx-lg-n4{margin-left:-1.5rem!important}.m-lg-n5{margin:-3rem!important}.mt-lg-n5,.my-lg-n5{margin-top:-3rem!important}.mr-lg-n5,.mx-lg-n5{margin-right:-3rem!important}.mb-lg-n5,.my-lg-n5{margin-bottom:-3rem!important}.ml-lg-n5,.mx-lg-n5{margin-left:-3rem!important}.m-lg-auto{margin:auto!important}.mt-lg-auto,.my-lg-auto{margin-top:auto!important}.mr-lg-auto,.mx-lg-auto{margin-right:auto!important}.mb-lg-auto,.my-lg-auto{margin-bottom:auto!important}.ml-lg-auto,.mx-lg-auto{margin-left:auto!important}}@media (min-width:1200px){.m-xl-0{margin:0!important}.mt-xl-0,.my-xl-0{margin-top:0!important}.mr-xl-0,.mx-xl-0{margin-right:0!important}.mb-xl-0,.my-xl-0{margin-bottom:0!important}.ml-xl-0,.mx-xl-0{margin-left:0!important}.m-xl-1{margin:.25rem!important}.mt-xl-1,.my-xl-1{margin-top:.25rem!important}.mr-xl-1,.mx-xl-1{margin-right:.25rem!important}.mb-xl-1,.my-xl-1{margin-bottom:.25rem!important}.ml-xl-1,.mx-xl-1{margin-left:.25rem!important}.m-xl-2{margin:.5rem!important}.mt-xl-2,.my-xl-2{margin-top:.5rem!important}.mr-xl-2,.mx-xl-2{margin-right:.5rem!important}.mb-xl-2,.my-xl-2{margin-bottom:.5rem!important}.ml-xl-2,.mx-xl-2{margin-left:.5rem!important}.m-xl-3{margin:1rem!important}.mt-xl-3,.my-xl-3{margin-top:1rem!important}.mr-xl-3,.mx-xl-3{margin-right:1rem!important}.mb-xl-3,.my-xl-3{margin-bottom:1rem!important}.ml-xl-3,.mx-xl-3{margin-left:1rem!important}.m-xl-4{margin:1.5rem!important}.mt-xl-4,.my-xl-4{margin-top:1.5rem!important}.mr-xl-4,.mx-xl-4{margin-right:1.5rem!important}.mb-xl-4,.my-xl-4{margin-bottom:1.5rem!important}.ml-xl-4,.mx-xl-4{margin-left:1.5rem!important}.m-xl-5{margin:3rem!important}.mt-xl-5,.my-xl-5{margin-top:3rem!important}.mr-xl-5,.mx-xl-5{margin-right:3rem!important}.mb-xl-5,.my-xl-5{margin-bottom:3rem!important}.ml-xl-5,.mx-xl-5{margin-left:3rem!important}.p-xl-0{padding:0!important}.pt-xl-0,.py-xl-0{padding-top:0!important}.pr-xl-0,.px-xl-0{padding-right:0!important}.pb-xl-0,.py-xl-0{padding-bottom:0!important}.pl-xl-0,.px-xl-0{padding-left:0!important}.p-xl-1{padding:.25rem!important}.pt-xl-1,.py-xl-1{padding-top:.25rem!important}.pr-xl-1,.px-xl-1{padding-right:.25rem!important}.pb-xl-1,.py-xl-1{padding-bottom:.25rem!important}.pl-xl-1,.px-xl-1{padding-left:.25rem!important}.p-xl-2{padding:.5rem!important}.pt-xl-2,.py-xl-2{padding-top:.5rem!important}.pr-xl-2,.px-xl-2{padding-right:.5rem!important}.pb-xl-2,.py-xl-2{padding-bottom:.5rem!important}.pl-xl-2,.px-xl-2{padding-left:.5rem!important}.p-xl-3{padding:1rem!important}.pt-xl-3,.py-xl-3{padding-top:1rem!important}.pr-xl-3,.px-xl-3{padding-right:1rem!important}.pb-xl-3,.py-xl-3{padding-bottom:1rem!important}.pl-xl-3,.px-xl-3{padding-left:1rem!important}.p-xl-4{padding:1.5rem!important}.pt-xl-4,.py-xl-4{padding-top:1.5rem!important}.pr-xl-4,.px-xl-4{padding-right:1.5rem!important}.pb-xl-4,.py-xl-4{padding-bottom:1.5rem!important}.pl-xl-4,.px-xl-4{padding-left:1.5rem!important}.p-xl-5{padding:3rem!important}.pt-xl-5,.py-xl-5{padding-top:3rem!important}.pr-xl-5,.px-xl-5{padding-right:3rem!important}.pb-xl-5,.py-xl-5{padding-bottom:3rem!important}.pl-xl-5,.px-xl-5{padding-left:3rem!important}.m-xl-n1{margin:-.25rem!important}.mt-xl-n1,.my-xl-n1{margin-top:-.25rem!important}.mr-xl-n1,.mx-xl-n1{margin-right:-.25rem!important}.mb-xl-n1,.my-xl-n1{margin-bottom:-.25rem!important}.ml-xl-n1,.mx-xl-n1{margin-left:-.25rem!important}.m-xl-n2{margin:-.5rem!important}.mt-xl-n2,.my-xl-n2{margin-top:-.5rem!important}.mr-xl-n2,.mx-xl-n2{margin-right:-.5rem!important}.mb-xl-n2,.my-xl-n2{margin-bottom:-.5rem!important}.ml-xl-n2,.mx-xl-n2{margin-left:-.5rem!important}.m-xl-n3{margin:-1rem!important}.mt-xl-n3,.my-xl-n3{margin-top:-1rem!important}.mr-xl-n3,.mx-xl-n3{margin-right:-1rem!important}.mb-xl-n3,.my-xl-n3{margin-bottom:-1rem!important}.ml-xl-n3,.mx-xl-n3{margin-left:-1rem!important}.m-xl-n4{margin:-1.5rem!important}.mt-xl-n4,.my-xl-n4{margin-top:-1.5rem!important}.mr-xl-n4,.mx-xl-n4{margin-right:-1.5rem!important}.mb-xl-n4,.my-xl-n4{margin-bottom:-1.5rem!important}.ml-xl-n4,.mx-xl-n4{margin-left:-1.5rem!important}.m-xl-n5{margin:-3rem!important}.mt-xl-n5,.my-xl-n5{margin-top:-3rem!important}.mr-xl-n5,.mx-xl-n5{margin-right:-3rem!important}.mb-xl-n5,.my-xl-n5{margin-bottom:-3rem!important}.ml-xl-n5,.mx-xl-n5{margin-left:-3rem!important}.m-xl-auto{margin:auto!important}.mt-xl-auto,.my-xl-auto{margin-top:auto!important}.mr-xl-auto,.mx-xl-auto{margin-right:auto!important}.mb-xl-auto,.my-xl-auto{margin-bottom:auto!important}.ml-xl-auto,.mx-xl-auto{margin-left:auto!important}}.stretched-link::after{position:absolute;top:0;right:0;bottom:0;left:0;z-index:1;pointer-events:auto;content:"";background-color:rgba(0,0,0,0)}.text-monospace{font-family:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",monospace!important}.text-justify{text-align:justify!important}.text-wrap{white-space:normal!important}.text-nowrap{white-space:nowrap!important}.text-truncate{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.text-left{text-align:left!important}.text-right{text-align:right!important}.text-center{text-align:center!important}@media (min-width:576px){.text-sm-left{text-align:left!important}.text-sm-right{text-align:right!important}.text-sm-center{text-align:center!important}}@media (min-width:768px){.text-md-left{text-align:left!important}.text-md-right{text-align:right!important}.text-md-center{text-align:center!important}}@media (min-width:992px){.text-lg-left{text-align:left!important}.text-lg-right{text-align:right!important}.text-lg-center{text-align:center!important}}@media (min-width:1200px){.text-xl-left{text-align:left!important}.text-xl-right{text-align:right!important}.text-xl-center{text-align:center!important}}.text-lowercase{text-transform:lowercase!important}.text-uppercase{text-transform:uppercase!important}.text-capitalize{text-transform:capitalize!important}.font-weight-light{font-weight:300!important}.font-weight-lighter{font-weight:lighter!important}.font-weight-normal{font-weight:400!important}.font-weight-bold{font-weight:700!important}.font-weight-bolder{font-weight:bolder!important}.font-italic{font-style:italic!important}.text-white{color:#fff!important}.text-primary{color:#007bff!important}a.text-primary:focus,a.text-primary:hover{color:#0056b3!important}.text-secondary{color:#6c757d!important}a.text-secondary:focus,a.text-secondary:hover{color:#494f54!important}.text-success{color:#28a745!important}a.text-success:focus,a.text-success:hover{color:#19692c!important}.text-info{color:#17a2b8!important}a.text-info:focus,a.text-info:hover{color:#0f6674!important}.text-warning{color:#ffc107!important}a.text-warning:focus,a.text-warning:hover{color:#ba8b00!important}.text-danger{color:#dc3545!important}a.text-danger:focus,a.text-danger:hover{color:#a71d2a!important}.text-light{color:#f8f9fa!important}a.text-light:focus,a.text-light:hover{color:#cbd3da!important}.text-dark{color:#343a40!important}a.text-dark:focus,a.text-dark:hover{color:#121416!important}.text-body{color:#212529!important}.text-muted{color:#6c757d!important}.text-black-50{color:rgba(0,0,0,.5)!important}.text-white-50{color:rgba(255,255,255,.5)!important}.text-hide{font:0/0 a;color:transparent;text-shadow:none;background-color:transparent;border:0}.text-decoration-none{text-decoration:none!important}.text-break{word-break:break-word!important;word-wrap:break-word!important}.text-reset{color:inherit!important}.visible{visibility:visible!important}.invisible{visibility:hidden!important}@media print{*,::after,::before{text-shadow:none!important;box-shadow:none!important}a:not(.btn){text-decoration:underline}abbr[title]::after{content:" (" attr(title) ")"}pre{white-space:pre-wrap!important}blockquote,pre{border:1px solid #adb5bd;page-break-inside:avoid}img,tr{page-break-inside:avoid}h2,h3,p{orphans:3;widows:3}h2,h3{page-break-after:avoid}@page{size:a3}body{min-width:992px!important}.container{min-width:992px!important}.navbar{display:none}.badge{border:1px solid #000}.table{border-collapse:collapse!important}.table td,.table th{background-color:#fff!important}.table-bordered td,.table-bordered th{border:1px solid #dee2e6!important}.table-dark{color:inherit}.table-dark tbody+tbody,.table-dark td,.table-dark th,.table-dark thead th{border-color:#dee2e6}.table .thead-dark th{color:inherit;border-color:#dee2e6}} -/*# sourceMappingURL=bootstrap.min.css.map */ \ No newline at end of file diff --git a/spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_internal/commands/inspect.py b/spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_internal/commands/inspect.py deleted file mode 100644 index 27c8fa3d5b6999c77dad7aece312a5d6cf12ab48..0000000000000000000000000000000000000000 --- a/spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_internal/commands/inspect.py +++ /dev/null @@ -1,92 +0,0 @@ -import logging -from optparse import Values -from typing import Any, Dict, List - -from pip._vendor.packaging.markers import default_environment -from pip._vendor.rich import print_json - -from pip import __version__ -from pip._internal.cli import cmdoptions -from pip._internal.cli.req_command import Command -from pip._internal.cli.status_codes import SUCCESS -from pip._internal.metadata import BaseDistribution, get_environment -from pip._internal.utils.compat import stdlib_pkgs -from pip._internal.utils.urls import path_to_url - -logger = logging.getLogger(__name__) - - -class InspectCommand(Command): - """ - Inspect the content of a Python environment and produce a report in JSON format. - """ - - ignore_require_venv = True - usage = """ - %prog [options]""" - - def add_options(self) -> None: - self.cmd_opts.add_option( - "--local", - action="store_true", - default=False, - help=( - "If in a virtualenv that has global access, do not list " - "globally-installed packages." - ), - ) - self.cmd_opts.add_option( - "--user", - dest="user", - action="store_true", - default=False, - help="Only output packages installed in user-site.", - ) - self.cmd_opts.add_option(cmdoptions.list_path()) - self.parser.insert_option_group(0, self.cmd_opts) - - def run(self, options: Values, args: List[str]) -> int: - cmdoptions.check_list_path_option(options) - dists = get_environment(options.path).iter_installed_distributions( - local_only=options.local, - user_only=options.user, - skip=set(stdlib_pkgs), - ) - output = { - "version": "1", - "pip_version": __version__, - "installed": [self._dist_to_dict(dist) for dist in dists], - "environment": default_environment(), - # TODO tags? scheme? - } - print_json(data=output) - return SUCCESS - - def _dist_to_dict(self, dist: BaseDistribution) -> Dict[str, Any]: - res: Dict[str, Any] = { - "metadata": dist.metadata_dict, - "metadata_location": dist.info_location, - } - # direct_url. Note that we don't have download_info (as in the installation - # report) since it is not recorded in installed metadata. - direct_url = dist.direct_url - if direct_url is not None: - res["direct_url"] = direct_url.to_dict() - else: - # Emulate direct_url for legacy editable installs. - editable_project_location = dist.editable_project_location - if editable_project_location is not None: - res["direct_url"] = { - "url": path_to_url(editable_project_location), - "dir_info": { - "editable": True, - }, - } - # installer - installer = dist.installer - if dist.installer: - res["installer"] = installer - # requested - if dist.installed_with_dist_info: - res["requested"] = dist.requested - return res diff --git a/spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_internal/resolution/base.py b/spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_internal/resolution/base.py deleted file mode 100644 index 42dade18c1ec2b825f756dad4aaa89f2d9e6ce21..0000000000000000000000000000000000000000 --- a/spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_internal/resolution/base.py +++ /dev/null @@ -1,20 +0,0 @@ -from typing import Callable, List, Optional - -from pip._internal.req.req_install import InstallRequirement -from pip._internal.req.req_set import RequirementSet - -InstallRequirementProvider = Callable[ - [str, Optional[InstallRequirement]], InstallRequirement -] - - -class BaseResolver: - def resolve( - self, root_reqs: List[InstallRequirement], check_supported_wheels: bool - ) -> RequirementSet: - raise NotImplementedError() - - def get_installation_order( - self, req_set: RequirementSet - ) -> List[InstallRequirement]: - raise NotImplementedError() diff --git a/spaces/Awesimo/jojogan/e4e/models/stylegan2/op/__init__.py b/spaces/Awesimo/jojogan/e4e/models/stylegan2/op/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/Awiny/Image2Paragraph/models/grit_src/third_party/CenterNet2/detectron2/layers/blocks.py b/spaces/Awiny/Image2Paragraph/models/grit_src/third_party/CenterNet2/detectron2/layers/blocks.py deleted file mode 100644 index 1995a4bf7339e8deb7eaaffda4f819dda55e7ac7..0000000000000000000000000000000000000000 --- a/spaces/Awiny/Image2Paragraph/models/grit_src/third_party/CenterNet2/detectron2/layers/blocks.py +++ /dev/null @@ -1,111 +0,0 @@ -# -*- coding: utf-8 -*- -# Copyright (c) Facebook, Inc. and its affiliates. - -import fvcore.nn.weight_init as weight_init -from torch import nn - -from .batch_norm import FrozenBatchNorm2d, get_norm -from .wrappers import Conv2d - - -""" -CNN building blocks. -""" - - -class CNNBlockBase(nn.Module): - """ - A CNN block is assumed to have input channels, output channels and a stride. - The input and output of `forward()` method must be NCHW tensors. - The method can perform arbitrary computation but must match the given - channels and stride specification. - - Attribute: - in_channels (int): - out_channels (int): - stride (int): - """ - - def __init__(self, in_channels, out_channels, stride): - """ - The `__init__` method of any subclass should also contain these arguments. - - Args: - in_channels (int): - out_channels (int): - stride (int): - """ - super().__init__() - self.in_channels = in_channels - self.out_channels = out_channels - self.stride = stride - - def freeze(self): - """ - Make this block not trainable. - This method sets all parameters to `requires_grad=False`, - and convert all BatchNorm layers to FrozenBatchNorm - - Returns: - the block itself - """ - for p in self.parameters(): - p.requires_grad = False - FrozenBatchNorm2d.convert_frozen_batchnorm(self) - return self - - -class DepthwiseSeparableConv2d(nn.Module): - """ - A kxk depthwise convolution + a 1x1 convolution. - - In :paper:`xception`, norm & activation are applied on the second conv. - :paper:`mobilenet` uses norm & activation on both convs. - """ - - def __init__( - self, - in_channels, - out_channels, - kernel_size=3, - padding=1, - dilation=1, - *, - norm1=None, - activation1=None, - norm2=None, - activation2=None, - ): - """ - Args: - norm1, norm2 (str or callable): normalization for the two conv layers. - activation1, activation2 (callable(Tensor) -> Tensor): activation - function for the two conv layers. - """ - super().__init__() - self.depthwise = Conv2d( - in_channels, - in_channels, - kernel_size=kernel_size, - padding=padding, - dilation=dilation, - groups=in_channels, - bias=not norm1, - norm=get_norm(norm1, in_channels), - activation=activation1, - ) - self.pointwise = Conv2d( - in_channels, - out_channels, - kernel_size=1, - bias=not norm2, - norm=get_norm(norm2, out_channels), - activation=activation2, - ) - - # default initialization - weight_init.c2_msra_fill(self.depthwise) - weight_init.c2_msra_fill(self.pointwise) - - def forward(self, x): - return self.pointwise(self.depthwise(x)) diff --git a/spaces/Awiny/Image2Paragraph/models/grit_src/third_party/CenterNet2/tests/test_export_caffe2.py b/spaces/Awiny/Image2Paragraph/models/grit_src/third_party/CenterNet2/tests/test_export_caffe2.py deleted file mode 100644 index 9a5e155fda907003f60e6bb3d40fd58599c50d59..0000000000000000000000000000000000000000 --- a/spaces/Awiny/Image2Paragraph/models/grit_src/third_party/CenterNet2/tests/test_export_caffe2.py +++ /dev/null @@ -1,52 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -*- coding: utf-8 -*- - -import copy -import os -import tempfile -import unittest -import torch - -from detectron2 import model_zoo -from detectron2.export import Caffe2Model, Caffe2Tracer -from detectron2.utils.logger import setup_logger -from detectron2.utils.testing import get_sample_coco_image - - -# TODO: this test requires manifold access, see: T88318502 -# Running it on CircleCI causes crash, not sure why. -@unittest.skipIf(os.environ.get("CIRCLECI"), "Caffe2 tests crash on CircleCI.") -class TestCaffe2Export(unittest.TestCase): - def setUp(self): - setup_logger() - - def _test_model(self, config_path, device="cpu"): - cfg = model_zoo.get_config(config_path) - cfg.MODEL.DEVICE = device - model = model_zoo.get(config_path, trained=True, device=device) - - inputs = [{"image": get_sample_coco_image()}] - tracer = Caffe2Tracer(cfg, model, copy.deepcopy(inputs)) - - with tempfile.TemporaryDirectory(prefix="detectron2_unittest") as d: - if not os.environ.get("CI"): - # This requires onnx, which is not yet available on public CI - c2_model = tracer.export_caffe2() - c2_model.save_protobuf(d) - c2_model.save_graph(os.path.join(d, "test.svg"), inputs=copy.deepcopy(inputs)) - - c2_model = Caffe2Model.load_protobuf(d) - c2_model(inputs)[0]["instances"] - - ts_model = tracer.export_torchscript() - ts_model.save(os.path.join(d, "model.ts")) - - def testMaskRCNN(self): - self._test_model("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") - - @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") - def testMaskRCNNGPU(self): - self._test_model("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml", device="cuda") - - def testRetinaNet(self): - self._test_model("COCO-Detection/retinanet_R_50_FPN_3x.yaml") diff --git a/spaces/BalaBhaskarudu/Balu/app.py b/spaces/BalaBhaskarudu/Balu/app.py deleted file mode 100644 index e6c9681aa1a84e6636d56f7a960bd5308b445b62..0000000000000000000000000000000000000000 --- a/spaces/BalaBhaskarudu/Balu/app.py +++ /dev/null @@ -1,34 +0,0 @@ -import os -import gradio as gr -from langchain.chat_models import ChatOpenAI -from langchain import LLMChain, PromptTemplate -from langchain.memory import ConversationBufferMemory - -OPENAI_API_KEY=os.getenv('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') - -template = """You are a sports-loving high school student with a keen interest in multiple sports, from soccer and basketball to tennis and swimming. You closely follow sports events, stats, and news, making you the go-to person for all sports-related discussions and predictions. -{chat_history} -User: {user_message} -Chatbot:""" - -prompt = PromptTemplate( - input_variables=["chat_history", "user_message"], template=template -) - -memory = ConversationBufferMemory(memory_key="chat_history") - -llm_chain = LLMChain( - llm=ChatOpenAI(temperature='0.5', model_name="gpt-3.5-turbo"), - prompt=prompt, - verbose=True, - memory=memory, -) - -def get_text_response(user_message,history): - response = llm_chain.predict(user_message = user_message) - return response - -demo = gr.ChatInterface(get_text_response) - -if __name__ == "__main__": - demo.launch() #To create a public link, set `share=True` in `launch()`. To enable errors and logs, set `debug=True` in `launch()`. diff --git a/spaces/Bart92/RVC_HF/infer/lib/uvr5_pack/lib_v5/nets_537227KB.py b/spaces/Bart92/RVC_HF/infer/lib/uvr5_pack/lib_v5/nets_537227KB.py deleted file mode 100644 index 823b44fb64898e8dcbb12180ba45d1718f9b03f7..0000000000000000000000000000000000000000 --- a/spaces/Bart92/RVC_HF/infer/lib/uvr5_pack/lib_v5/nets_537227KB.py +++ /dev/null @@ -1,123 +0,0 @@ -import numpy as np -import torch -import torch.nn.functional as F -from torch import nn - -from . import layers_537238KB as layers - - -class BaseASPPNet(nn.Module): - def __init__(self, nin, ch, dilations=(4, 8, 16)): - super(BaseASPPNet, self).__init__() - self.enc1 = layers.Encoder(nin, ch, 3, 2, 1) - self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1) - self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1) - self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1) - - self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations) - - self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1) - self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1) - self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1) - self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1) - - def __call__(self, x): - h, e1 = self.enc1(x) - h, e2 = self.enc2(h) - h, e3 = self.enc3(h) - h, e4 = self.enc4(h) - - h = self.aspp(h) - - h = self.dec4(h, e4) - h = self.dec3(h, e3) - h = self.dec2(h, e2) - h = self.dec1(h, e1) - - return h - - -class CascadedASPPNet(nn.Module): - def __init__(self, n_fft): - super(CascadedASPPNet, self).__init__() - self.stg1_low_band_net = BaseASPPNet(2, 64) - self.stg1_high_band_net = BaseASPPNet(2, 64) - - self.stg2_bridge = layers.Conv2DBNActiv(66, 32, 1, 1, 0) - self.stg2_full_band_net = BaseASPPNet(32, 64) - - self.stg3_bridge = layers.Conv2DBNActiv(130, 64, 1, 1, 0) - self.stg3_full_band_net = BaseASPPNet(64, 128) - - self.out = nn.Conv2d(128, 2, 1, bias=False) - self.aux1_out = nn.Conv2d(64, 2, 1, bias=False) - self.aux2_out = nn.Conv2d(64, 2, 1, bias=False) - - self.max_bin = n_fft // 2 - self.output_bin = n_fft // 2 + 1 - - self.offset = 128 - - def forward(self, x, aggressiveness=None): - mix = x.detach() - x = x.clone() - - x = x[:, :, : self.max_bin] - - bandw = x.size()[2] // 2 - aux1 = torch.cat( - [ - self.stg1_low_band_net(x[:, :, :bandw]), - self.stg1_high_band_net(x[:, :, bandw:]), - ], - dim=2, - ) - - h = torch.cat([x, aux1], dim=1) - aux2 = self.stg2_full_band_net(self.stg2_bridge(h)) - - h = torch.cat([x, aux1, aux2], dim=1) - h = self.stg3_full_band_net(self.stg3_bridge(h)) - - mask = torch.sigmoid(self.out(h)) - mask = F.pad( - input=mask, - pad=(0, 0, 0, self.output_bin - mask.size()[2]), - mode="replicate", - ) - - if self.training: - aux1 = torch.sigmoid(self.aux1_out(aux1)) - aux1 = F.pad( - input=aux1, - pad=(0, 0, 0, self.output_bin - aux1.size()[2]), - mode="replicate", - ) - aux2 = torch.sigmoid(self.aux2_out(aux2)) - aux2 = F.pad( - input=aux2, - pad=(0, 0, 0, self.output_bin - aux2.size()[2]), - mode="replicate", - ) - return mask * mix, aux1 * mix, aux2 * mix - else: - if aggressiveness: - mask[:, :, : aggressiveness["split_bin"]] = torch.pow( - mask[:, :, : aggressiveness["split_bin"]], - 1 + aggressiveness["value"] / 3, - ) - mask[:, :, aggressiveness["split_bin"] :] = torch.pow( - mask[:, :, aggressiveness["split_bin"] :], - 1 + aggressiveness["value"], - ) - - return mask * mix - - def predict(self, x_mag, aggressiveness=None): - h = self.forward(x_mag, aggressiveness) - - if self.offset > 0: - h = h[:, :, :, self.offset : -self.offset] - assert h.size()[3] > 0 - - return h diff --git a/spaces/BenjaminB/pyscript-demo/style.css b/spaces/BenjaminB/pyscript-demo/style.css deleted file mode 100644 index 114adf441e9032febb46bc056b2a8bb651075f0d..0000000000000000000000000000000000000000 --- a/spaces/BenjaminB/pyscript-demo/style.css +++ /dev/null @@ -1,28 +0,0 @@ -body { - padding: 2rem; - font-family: -apple-system, BlinkMacSystemFont, "Arial", sans-serif; -} - -h1 { - font-size: 16px; - margin-top: 0; -} - -p { - color: rgb(107, 114, 128); - font-size: 15px; - margin-bottom: 10px; - margin-top: 5px; -} - -.card { - max-width: 620px; - margin: 0 auto; - padding: 16px; - border: 1px solid lightgray; - border-radius: 16px; -} - -.card p:last-child { - margin-bottom: 0; -} diff --git a/spaces/Benson/text-generation/Examples/Chessclub.com Download.md b/spaces/Benson/text-generation/Examples/Chessclub.com Download.md deleted file mode 100644 index 9d38015e63408b7b52f93c0e5bab6c731203c625..0000000000000000000000000000000000000000 --- a/spaces/Benson/text-generation/Examples/Chessclub.com Download.md +++ /dev/null @@ -1,74 +0,0 @@ - -

Aprender Ajedrez de la Manera Correcta PDF Descargar gratis

-

¿Quieres aprender ajedrez o mejorar tus habilidades de ajedrez? ¿EstÔs buscando una manera confiable y efectiva de dominar el juego? Si es así, has venido al lugar correcto. En este artículo, te mostraré cómo puedes aprender ajedrez de la manera correcta con una serie de libros de Susan Polgar, una ex campeona mundial y entrenadora galardonada. También te diré cómo puedes descargar estos libros en formato PDF gratis. Pero primero, déjame decirte por qué el ajedrez es un gran juego para todos.

-

Por quƩ el Ajedrez es un gran juego para todos

-

El ajedrez es uno de los juegos mƔs antiguos y populares del mundo. Es jugado por millones de personas de todas las edades y orƭgenes. El ajedrez no solo es divertido y desafiante, sino tambiƩn beneficioso para tu cerebro y tu vida. Aquƭ estƔn algunos de los beneficios del ajedrez:

-

chessclub.com download


Download File ……… https://bltlly.com/2v6MzX



-
    -
  • El ajedrez mejora tu memoria, concentración, lógica, creatividad, resolución de problemas y toma de decisiones.
  • -
  • El Ajedrez te enseƱa cómo planificar con anticipación, pensar crĆ­ticamente, analizar situaciones y aprender de tus errores.
  • -
  • El Ajedrez mejora tu auto-confianza, auto-disciplina, autoestima y deportividad.
  • -
  • El ajedrez fomenta tus habilidades sociales, habilidades de comunicación y conciencia cultural.
  • -
  • El ajedrez reduce el estrĆ©s, la ansiedad, la depresión y el aburrimiento.
  • -
-

Como puedes ver, el ajedrez es mÔs que un juego. Es una poderosa herramienta para el desarrollo personal y el enriquecimiento. Entonces, ¿cómo puedes empezar con el ajedrez? La buena noticia es que el ajedrez es fÔcil de aprender y accesible para todos. Todo lo que necesitas es un tablero de ajedrez y piezas, que puedes comprar en línea o en cualquier tienda de juguetes. También puede jugar al ajedrez en línea o en su teléfono o computadora con varias aplicaciones y sitios web. También puede unirse a un club de ajedrez o comunidad en su Ôrea o en línea y conocer a otros entusiastas del ajedrez.

- -

Lo que necesita saber antes de jugar al ajedrez

-

Antes de sumergirse en Aprender Ajedrez de la Manera Correcta o cualquier otro recurso de ajedrez, necesita saber algunas cosas bÔsicas sobre el ajedrez. El ajedrez es un juego jugado por dos jugadores en un tablero cuadrado con 64 cuadrados de colores alternos (blanco y negro). Cada jugador tiene 16 piezas de un color (blanco o negro) que consisten en un rey, una reina, dos torres, dos alfiles, dos caballeros y ocho peones. Las piezas tienen diferentes formas y valores y pueden moverse de diferentes maneras de acuerdo con ciertas reglas. El objetivo del juego es hacer jaque mate al rey del oponente (poniéndolo en una posición donde no puede escapar de ser capturado) o forzar al oponente a renunciar (renunciar) o empatar (aceptar terminar el juego en un empate).

-

Para jugar al ajedrez correctamente, necesita saber cómo configurar el tablero y las piezas correctamente (el cuadrado blanco debe estar en la esquina derecha y la reina blanca debe estar en un cuadrado blanco), cómo mover cada pieza (el rey puede mover un cuadrado en cualquier dirección; la reina puede mover cualquier número de cuadrados en cualquier dirección; la torre puede mover cualquier número de cuadrados horizontal o verticalmente; el alfil puede mover cualquier número de cuadrados en diagonal; el caballero puede mover dos cuadrados horizontal o verticalmente seguido por un cuadrado en forma de L; el peón puede mover un cuadrado hacia adelante o dos cuadrados en su primer movimiento y puede capturar en diagonal), cómo capturar e intercambiar piezas (tomar la pieza del oponente y reemplazarla por la suya), cómo hacer jaque mate (poner el rey del oponente en peligro o posición ineludible), cómo enrocar (mover el rey y la torre juntos por seguridad y movilidad), cómo pasar (capturar un peón que movió dos cuadrados como si moviera uno), cómo promover un peón (reemplazarlo con una reina, torre, alfil o caballo cuando llegue al final del tablero), y cómo escribir tus movimientos usando notación algebraica (usando letras y números para indicar los cuadrados y piezas involucrados).

- -

Cómo mejorar tus habilidades de ajedrez con rompecabezas y ejercicios

-

Una vez que conoces las reglas del ajedrez, puedes preguntarte cómo mejorar tus habilidades y convertirte en un mejor jugador. Una de las mejores maneras de hacer eso es practicar rompecabezas y ejercicios. Rompecabezas y ejercicios son problemas de ajedrez que ponen a prueba su capacidad para encontrar el mejor movimiento o secuencia de movimientos en una posición dada. Ellos pueden ayudarle a mejorar su cÔlculo, visualización, tÔcticas, estrategia, final de juego, y la comprensión general del ajedrez. Estos son algunos de los tipos de rompecabezas y ejercicios que puedes practicar:

-
    -
  • TĆ”cticas: Estos son rompecabezas que implican encontrar una manera de obtener una ventaja o ganar material o el juego mediante el uso de trucos como horquillas, alfileres, pinchos, ataques dobles, ataques descubiertos, cheques, capturas, etc.
  • -
  • Estrategia: Estos son rompecabezas que implican encontrar una manera de mejorar su posición o crear un plan mediante el uso de principios como el desarrollo, el control del centro, el espacio, la estructura de peones, la seguridad del rey, etc.
  • -
  • Final de juego: Estos son rompecabezas que implican encontrar una manera de ganar o dibujar un juego cuando quedan pocas piezas en el tablero mediante el uso de tĆ©cnicas como oposición, triangulación, zugzwang, punto muerto, etc.
  • -
-

Puedes encontrar rompecabezas y ejercicios en libros, revistas, sitios web, aplicaciones o plataformas en lƭnea. Algunos de ellos se clasifican por nivel, tema o dificultad. Algunos de ellos tienen pistas o soluciones. Algunos de ellos estƔn cronometrados o clasificados. Puedes elegir los que se adapten a tus preferencias y objetivos. La clave es practicar de forma regular y consistente. Trate de resolver al menos un rompecabezas o ejercicio todos los dƭas. Usted se sorprenderƔ por lo mucho que puede mejorar sus habilidades de ajedrez con rompecabezas y ejercicios.

-

Aprender Ajedrez de la manera correcta por Susan Polgar

- -

Aprender Ajedrez de la Manera Correcta cubre todos los aspectos del ajedrez de una manera sistemƔtica y progresiva. Cada libro contiene 500 rompecabezas y ejercicios que son cuidadosamente seleccionados y arreglados por Susan Polgar. Los libros estƔn diseƱados para ayudarle a desarrollar sus habilidades paso a paso de conceptos simples a complejos. Los libros tambiƩn son divertidos y atractivos con ilustraciones coloridas y explicaciones claras. Esto es lo que cubre cada libro:

-
    -
  • Book 1: Must-Know Checkmates: Este libro te enseƱa cómo hacer jaque mate a tu oponente en varias situaciones usando diferentes piezas y patrones.
  • -
  • Libro 2: Material ganador: Este libro te enseƱa cómo ganar material de tu oponente usando tĆ”cticas como tenedores, alfileres, pinchos, ataques dobles, etc.
  • -
  • Libro 3: Finales a prueba de tontos: Este libro te enseƱa cómo ganar o dibujar finales usando tĆ©cnicas como oposición, triangulación, zugzwang, punto muerto, etc.
  • -
  • Libro 4: Sacrificio para ganar: Este libro te enseƱa cómo sacrificar material por una ventaja o una victoria usando tĆ”cticas como la desviación, seƱuelo, liquidación, interferencia, etc.
  • -
  • Book 5: Essential Endgames: Este libro te enseƱa cómo jugar juegos finales con diferentes piezas y peones utilizando principios como la actividad, la coordinación, la seguridad del rey, etc.
  • -
-

Si quieres aprender ajedrez de la manera correcta con rompecabezas y ejercicios, definitivamente deberías revisar Aprende Ajedrez de la manera correcta por Susan Polgar. Puede comprar estos libros en línea o en cualquier librería. También puede descargarlos en formato PDF gratis. Aquí estÔ cómo.

-

-

Cómo Descargar Aprender Ajedrez de la Manera Correcta PDF Gratis

-

Si quieres descargar Aprende Ajedrez de la Manera Correcta PDF gratis, tienes dos opciones. Una es utilizar un sitio web para compartir archivos que aloja los archivos PDF de los libros. La otra es utilizar un sitio web de torrent que le permite descargar los archivos utilizando una red de igual a igual. Aquƭ estƔn los pasos para descargar Aprende Ajedrez de la Manera Correcta PDF gratis usando cualquiera de las opciones:

-
    - -
  1. Busque un sitio web que tenga los archivos PDF de los libros. Puede comprobar las revisiones, valoraciones, comentarios o vistas previas de los archivos para asegurarse de que son legĆ­timos y completos.
  2. -
  3. Haga clic en el enlace o botón que dice "Descargar" o "Obtener" o algo similar. Es posible que tenga que registrarse, iniciar sesión o completar una encuesta o captcha antes de descargar los archivos.
  4. -
  5. Guarde los archivos en su dispositivo o almacenamiento en la nube. Es posible que necesite un lector de PDF o una aplicación para abrir y ver los archivos.
  6. -
-

Alternativamente, puede usar un sitio web torrent para descargar Learn Chess the Right Way PDF gratis. Estos son los pasos:

-
    -
  1. Vaya a un motor de bĆŗsqueda como Google o Bing y escriba "Aprenda ajedrez de la manera correcta torrent PDF" o algo similar.
  2. -
  3. Busque un sitio web torrent que tenga los archivos torrent de los libros. Puede comprobar las revisiones, valoraciones, comentarios o semillas y sanguijuelas de los archivos para asegurarse de que son legĆ­timos y completos.
  4. -
  5. Haga clic en el enlace o botón que dice "Descargar" o "ImÔn" o algo similar. Es posible que tenga que registrarse, iniciar sesión o completar una encuesta o captcha antes de descargar los archivos.
  6. -
  7. Guarde los archivos torrent en su dispositivo o almacenamiento en la nube. NecesitarĆ” un cliente torrent como BitTorrent o uTorrent para abrir y descargar los archivos.
  8. -
- -
    -
  • Compra los libros en lĆ­nea o en cualquier librerĆ­a. No son muy caros y valen cada centavo. ObtendrĆ” la mejor calidad y formato de los libros y apoyarĆ” al autor y editor.
  • -
  • Tome prestados los libros de una biblioteca o de un amigo. Puede comprobar si su biblioteca local o un amigo tiene los libros y tomarlos prestados por un tiempo limitado. TambiĆ©n puedes devolver el favor prestĆ”ndoles tus libros o recomendĆ”ndolos a otros.
  • -
  • SuscrĆ­base a una plataforma o servicio en lĆ­nea que ofrece los libros. Puede comprobar si hay una plataforma o servicio en lĆ­nea que tiene los libros en su catĆ”logo y suscribirse a Ć©l por una tarifa o una prueba. Puede acceder a los libros en cualquier momento y en cualquier lugar y tambiĆ©n tendrĆ” acceso a otros recursos de ajedrez.
  • -
-

Estas son algunas de las alternativas a la descarga de Aprende Ajedrez de la Manera Correcta PDF gratis. Son legales, Ʃticos y beneficiosos para usted y la comunidad de ajedrez. Espero que usted elija uno de ellos y disfrute aprendiendo ajedrez de la manera correcta con Susan Polgar.

-

Conclusión

-

En conclusión, el ajedrez es un gran juego para todos los que pueden mejorar tu cerebro y tu vida. Para aprender ajedrez o mejorar tus habilidades de ajedrez, necesitas conocer las reglas bÔsicas del ajedrez y practicar rompecabezas y ejercicios regularmente. Una de las mejores fuentes de rompecabezas y ejercicios es Aprende Ajedrez de la Manera Correcta por Susan Polgar, una serie de cinco libros que enseñan ajedrez desde el nivel principiante hasta el nivel avanzado usando rompecabezas y ejercicios. Puede comprar, pedir prestado o suscribirse a estos libros en línea o en cualquier librería o biblioteca. No debe descargar estos libros en formato PDF de forma gratuita, ya que es ilegal, poco ético y perjudicial. Espero que este artículo le haya ayudado a aprender mÔs sobre el ajedrez y Aprenda Ajedrez de la manera correcta por Susan Polgar. Si usted tiene alguna pregunta o comentario, por favor siéntase libre de dejarlos abajo. ”Gracias por leer y por aprender ajedrez feliz!

-

Preguntas frecuentes

- -
    -
  1. P: ¿CuÔnto tiempo toma aprender ajedrez?
    A: Depende de tu nivel, metas, motivación y prÔctica. Puedes aprender las reglas bÔsicas del ajedrez en pocas horas o días, pero toma años o incluso toda una vida dominar el juego.
  2. -
  3. P: ¿Cómo puedo encontrar un entrenador o mentor de ajedrez?
    A: Puedes buscar un entrenador o mentor de ajedrez en tu Ɣrea o en lƭnea. Puedes pedir recomendaciones a tus amigos, familiares o al club de ajedrez. TambiƩn puede buscar en lƭnea sitios web, plataformas o aplicaciones que ofrecen servicios de entrenamiento o tutorƭa de ajedrez.
  4. -
  5. P: ¿Cómo puedo medir mi progreso de ajedrez?
    A: Usted puede medir su progreso de ajedrez jugando con otros jugadores o computadoras y analizando sus resultados. También puede tomar exÔmenes, pruebas o evaluaciones que evalúen sus habilidades y conocimientos. También puedes usar clasificaciones o rankings que comparen tu desempeño con otros jugadores.
  6. -
  7. P: ¿CuÔles son algunos otros buenos libros para aprender ajedrez?
    A: Hay muchos buenos libros para aprender ajedrez para diferentes niveles y temas. Algunos de ellos son Fundamentos de Ajedrez por Jose Capablanca, Movida de Ajedrez Lógica por Jugada por Irving Chernev, La Mente de Amateur por Jeremy Silman, Mi Sistema por Aron Nimzowitsch, Estrategia de Ajedrez Moderna por Ludek Pachman, El Arte de Ataque en Ajedrez por Vladimir Vukovic, Endgame Strategy por Mikhail Shereshevsky, etc.
  8. -
  9. P: ¿Dónde puedo jugar al ajedrez online?
    A: Hay muchos sitios web, plataformas o aplicaciones que le permiten jugar ajedrez en lĆ­nea con otros jugadores o computadoras. Algunos de ellos son Chess.com, Lichess.org, Chess24.com, Chessbase.com, Chesskid.com, etc.
  10. -

64aa2da5cf
-
-
\ No newline at end of file diff --git a/spaces/Benson/text-generation/Examples/Descargar Carretes De Instagram De Alta Calidad.md b/spaces/Benson/text-generation/Examples/Descargar Carretes De Instagram De Alta Calidad.md deleted file mode 100644 index 0c1ce651195c58978e172dbff336e1080585b6ec..0000000000000000000000000000000000000000 --- a/spaces/Benson/text-generation/Examples/Descargar Carretes De Instagram De Alta Calidad.md +++ /dev/null @@ -1,69 +0,0 @@ -
-

Cómo descargar fotos de Instagram en línea: Una guía completa

-

Instagram es una de las plataformas de redes sociales mÔs populares del mundo, con mÔs de mil millones de usuarios activos mensuales. Te permite compartir tus fotos y videos con tus seguidores, así como descubrir nuevo contenido de otros usuarios. Sin embargo, a veces es posible que desee descargar fotos de Instagram en línea por varias razones, como guardarlas para verlas sin conexión, crear copias de seguridad o editarlas en su computadora.

-

Introducción

-

En este artículo, le mostraremos cómo descargar fotos de Instagram en línea utilizando diferentes métodos. También explicaremos por qué es posible que desee descargar fotos de Instagram en línea y cuÔles son los beneficios de usar un descargador en línea. Al final de este artículo, podrÔs descargar cualquier foto de Instagram que quieras en cuestión de segundos.

-

descargar carretes de instagram de alta calidad


Download Filehttps://bltlly.com/2v6K5T



-

¿Por qué descargar fotos de Instagram en línea?

-

Hay muchas razones por las que puede querer descargar fotos de Instagram en lĆ­nea. Algunas de ellas son:

-
    -
  • Desea guardar sus fotos favoritas para ver o compartir sin conexión con otros.
  • -
  • Desea crear copias de seguridad de sus fotos en caso de que pierda el acceso a su cuenta o dispositivo.
  • -
  • Quieres editar tus fotos en tu computadora usando herramientas avanzadas o software.
  • -
  • Desea volver a publicar o reutilizar sus fotos en otras plataformas o sitios web.
  • -
  • Quieres descargar fotos de otros usuarios que admiras o sigues.
  • -
-

¿CuÔles son los beneficios de usar un descargador en línea?

-

Usar un descargador en lƭnea es una de las formas mƔs fƔciles y rƔpidas de descargar fotos de Instagram en lƭnea. Algunos de los beneficios de usar un descargador en lƭnea son:

-
    -
  • No necesitas instalar ninguna aplicación o software en tu dispositivo.
  • -
  • Puedes acceder a ella desde cualquier navegador o dispositivo.
  • -
  • Puede descargar fotos en alta calidad y resolución original.
  • -
  • Puedes descargar varias fotos a la vez.
  • - -
-

Cómo descargar fotos de Instagram en línea utilizando diferentes métodos

-

Hay muchas herramientas en lƭnea que le permiten descargar fotos de Instagram en lƭnea. Aquƭ estƔn algunas de las mejores que recomendamos:

-

MƩtodo 1: Uso de Inflact Photo Downloader

-

Inflact Photo Downloader es un servicio gratuito y fÔcil de usar que le permite guardar fotos de Instagram en cualquier dispositivo. Aquí estÔ cómo usarlo:

-

Paso 1: Copiar la URL de la foto de Instagram

-

Abra la aplicación de Instagram en su teléfono o vaya al sitio web Instagram.com en su PC e inicie sesión en su cuenta. Encuentre la foto que desea descargar y haga clic en el icono de tres puntos sobre el mensaje. Luego seleccione Copiar enlace opción.

-

-

Paso 2: Pegue la URL en Inflact Photo Downloader

-

Volver a la pÔgina Inflact Photo Downloader y pegar la URL en el campo junto al botón Descargar. Luego haga clic en el botón Descargar.

-

Paso 3: Descargar la foto en alta calidad

Paso 3: Descargar la foto en alta calidad

-

Después de hacer clic en el botón Descargar, verÔ una vista previa de la foto y un botón Descargar foto debajo de ella. Haga clic en el botón Descargar foto y guarde la foto en su dispositivo.

-

MƩtodo 2: Usando iGram Video y Photo Downloader

-

iGram Video and Photo Downloader es otro servicio gratuito y sencillo que te permite descargar videos y fotos de Instagram online. He aquí cómo usarlo:

-

Paso 1: Copia el video de Instagram o la URL de la foto

-

Abra la aplicación de Instagram en su teléfono o vaya al sitio web Instagram.com en su PC e inicie sesión en su cuenta. Encuentre el video o la foto que desea descargar y haga clic en el icono de tres puntos sobre el mensaje. Luego seleccione la opción Copiar enlace.

-

Paso 2: Pegar la URL en iGram Video y Photo Downloader

-

Volver a la pÔgina de iGram Video y Photo Downloader y pegar la URL en el campo junto al botón Descargar. A continuación, haga clic en el botón Descargar.

- -

Después de hacer clic en el botón Descargar, verÔ una lista de opciones de calidad y formato disponibles para el video o la foto. Elija el que se adapte a sus necesidades y haga clic en el botón Descargar junto a él. Luego guarde el video o la foto en su dispositivo.

-

MƩtodo 3: Usando SaveInsta Video, Foto, Carretes, Historia, y IGTV Downloader

-

SaveInsta Downloader es un servicio versÔtil y potente que le permite descargar cualquier tipo de contenido de Instagram en línea, incluyendo videos, fotos, carretes, historias e IGTVs. He aquí cómo usarlo:

-

Paso 1: Copiar el contenido de Instagram URL

-

Abra la aplicación de Instagram en su teléfono o vaya al sitio web Instagram.com en su PC e inicie sesión en su cuenta. Encuentre el contenido que desea descargar y haga clic en el icono de tres puntos sobre el post. Luego seleccione Copiar enlace opción.

-

Paso 2: Pegar la URL en SaveInsta Downloader

-

Volver a la pÔgina de SaveInsta Downloader y pegar la URL en el campo junto al botón Descargar. Luego haga clic en el botón Descargar.

-

Paso 3: Seleccione el tipo de contenido y descƔrguelo

-

Después de hacer clic en el botón Descargar, verÔ una lista de tipos de contenido disponibles para la URL. Elija el que coincida con su contenido y haga clic en el botón Descargar junto a él. Luego guarde el contenido en su dispositivo.

-

Conclusión

-

En este artículo, le hemos mostrado cómo descargar fotos de Instagram en línea utilizando diferentes métodos. También hemos explicado por qué es posible que desee descargar fotos de Instagram en línea y cuÔles son los beneficios de usar un descargador en línea. Esperamos que este artículo haya sido útil e informativo para usted.

-

Si tiene alguna pregunta o comentario, no dude en dejar un comentario a continuación. Nos encantaría saber de usted.

-

También, si te gustó este artículo, por favor compÔrtelo con tus amigos y familiares que pueden encontrarlo útil. Gracias por leer!

-

Preguntas frecuentes

-
    - -

    Sí, puede descargar fotos de Instagram en línea sin una cuenta, siempre y cuando sean de cuentas públicas. Sin embargo, si quieres descargar fotos de cuentas privadas, tendrÔs que iniciar sesión con tus credenciales de Instagram.

    -
  1. ĀæPuedo descargar fotos de Instagram en lĆ­nea a granel?
  2. -

    SĆ­, algunos descargadores en lĆ­nea le permiten descargar fotos de Instagram en lĆ­nea a granel ingresando mĆŗltiples URL a la vez. Por ejemplo, Inflact Photo Downloader te permite descargar hasta 10 fotos a la vez.

    -
  3. ¿Puedo descargar fotos de Instagram en línea en la resolución original?
  4. -

    Sí, la mayoría de los descargadores en línea le permiten descargar fotos de Instagram en línea en resolución y calidad originales. Sin embargo, algunos pueden comprimir o cambiar el tamaño de las fotos dependiendo de su capacidad de servidor o limitaciones de ancho de banda.

    -
  5. ĀæPuedo descargar fotos de Instagram en lĆ­nea desde historias o carretes?
  6. -

    SĆ­, algunos descargadores en lĆ­nea le permiten descargar fotos de Instagram en lĆ­nea de historias o carretes, asĆ­ como de publicaciones regulares. Por ejemplo, SaveInsta Downloader te permite descargar cualquier tipo de contenido de Instagram online.

    -
  7. ĀæPuedo descargar fotos de Instagram legalmente?
  8. -

    Sí, puede descargar fotos de Instagram en línea legalmente siempre y cuando respete los derechos de propiedad intelectual de los creadores originales y no las use con fines comerciales sin su permiso. Puede descargar fotos de Instagram en línea legalmente siempre y cuando respete los derechos de propiedad intelectual de los creadores originales y no las use con fines comerciales sin su permiso. También debe dar el crédito adecuado y la atribución a la fuente cuando se vuelve a publicar o compartir las fotos en línea.

    64aa2da5cf
    -
    -
    \ No newline at end of file diff --git a/spaces/Benson/text-generation/Examples/Descargar El Juego Completo De La Saga De Verano 2022.md b/spaces/Benson/text-generation/Examples/Descargar El Juego Completo De La Saga De Verano 2022.md deleted file mode 100644 index a5983b9eb0026e1b6f96c4b52a5b2a316ad9b9fc..0000000000000000000000000000000000000000 --- a/spaces/Benson/text-generation/Examples/Descargar El Juego Completo De La Saga De Verano 2022.md +++ /dev/null @@ -1,140 +0,0 @@ -
    -
    - - - -

    Descarga del juego completo de Summertime Saga 2022: Una guĆ­a para principiantes

    -

    Si estƔs buscando un juego divertido y emocionante que combine aventura, romance, comedia y contenido para adultos, entonces definitivamente deberƭas echar un vistazo a Summertime Saga. Este es un juego de aventura grƔfica de apuntar y hacer clic que estƔ inspirado en clƔsicos como Leisure Suit Larry y Monkey Island, pero con un toque moderno y muchas escenas picantes.

    -

    En esta guía, te mostraremos cómo descargar Summertime Saga para PC, cómo jugarlo, cómo desbloquear nuevo contenido, cómo actualizarlo y responder algunas de las preguntas mÔs frecuentes sobre este juego. Así que, sin mÔs preÔmbulos, ”empecemos!

    -

    Descargar el juego completo de la saga de verano 2022


    Download >> https://bltlly.com/2v6KMa



    -

    ¿Qué es la saga del verano?

    -

    Summertime Saga es un juego desarrollado por DarkCookie y su equipo. Se encuentra en una pequeƱa ciudad suburbana donde juegas como un hombre joven que estƔ tratando de hacer frente a la muerte repentina de su padre. En el camino, conocerƔs a muchos personajes interesantes, explorarƔs diferentes lugares, completarƔs varias misiones y te divertirƔs traviesamente.

    -

    El juego tiene muchas caracterƭsticas que lo hacen destacar de otros juegos de este gƩnero. Algunos de ellos son:

    -
      -
    • Un enorme mundo abierto con mĆ”s de 70 lugares para visitar
    • -
    • MĆ”s de 65 historias y misiones para completar
    • -
    • MĆ”s de 3000 imĆ”genes y animaciones para disfrutar
    • -
    • Muchos minijuegos y actividades para jugar
    • -
    • Un sistema de citas con mĆŗltiples opciones de romance
    • -
    • Un sistema de personalización de caracteres con diferentes trajes y accesorios
    • -
    • Un sistema de estadĆ­sticas con habilidades, dinero, inventario y reputación
    • -
    • Una opción de modo oscuro para la reproducción nocturna
    • -
    • Un sistema de guardar y cargar con mĆŗltiples ranuras y soporte en la nube
    • -
    • Un programa de actualización regular con nuevo contenido y correcciones de errores
    • -
    - -

    ¿Cómo descargar Summertime Saga para PC?

    -

    Descargar Summertime Saga para PC es muy fƔcil y sencillo. Todo lo que necesitas hacer es seguir estos pasos:

    -
      -
    1. Ir al sitio web oficial de Summertime Saga: https://summertimesaga.com/
    2. -
    3. Haga clic en el botón "Descargar" en la esquina superior derecha de la pÔgina.
    4. -
    5. Seleccione la versión que coincida con su sistema operativo (Windows, Mac o Linux).
    6. -
    7. Espere a que termine la descarga. El tamaƱo del archivo es de aproximadamente 1 GB.
    8. -
    9. Extraiga el archivo zip a una carpeta de su elección.
    10. -
    11. Haga doble clic en el archivo "SummertimeSaga.exe" para iniciar el juego.
    12. -
    -

    ”Eso es todo! Has descargado e instalado correctamente Summertime Saga en tu PC. Ahora puedes empezar a jugar y disfrutar del juego.

    -

    Sin embargo, antes de hacer eso, debe comprobar si su PC cumple con los requisitos mƭnimos del sistema para ejecutar el juego sin problemas. Aquƭ estƔn:

    -
      -
    • OS: Windows XP o superior, Mac OS X 10.9 o superior, Linux x86/x86_64
    • -
    • CPU: procesador dual core de 2 GHz o mejor
    • -
    • RAM: 2 GB o mĆ”s
    • -
    • GrĆ”ficos: OpenGL 2.0 compatible con 512 MB de RAM o mejor (algunos dispositivos pueden necesitar menor resolución)
    • -
    • Almacenamiento: 2 GB o mĆ”s espacio disponible
    • -
    -

    Si su PC cumple con estos requisitos, entonces no debería tener problemas para jugar Summertime Saga. Sin embargo, si encuentra algún problema o error, puede consultar la sección de preguntas frecuentes en el sitio web o ponerse en contacto con el equipo de soporte para obtener ayuda.

    -

    -

    ¿Cómo se juega saga de verano?

    -

    Jugar a Summertime Saga es muy simple e intuitivo. El juego tiene una interfaz de apuntar y hacer clic que le permite interactuar con los personajes, objetos y ubicaciones en el mundo del juego. TambiƩn puede usar los atajos de teclado para algunas acciones, como guardar, cargar, omitir, etc.

    - -

    La pantalla del juego consta de varios elementos que te ayudan a navegar y jugar. Estos son:

    -
      -
    • El cuadro de diĆ”logo: AquĆ­ es donde se puede leer el texto y el diĆ”logo de los caracteres. TambiĆ©n puede elegir sus respuestas cuando hay varias opciones disponibles.
    • -
    • Los retratos de caracteres: Estas son las imĆ”genes de los caracteres que aparecen junto al cuadro de diĆ”logo. Muestran sus expresiones y emociones durante la conversación.
    • -
    • El mapa: AquĆ­ es donde puedes ver los diferentes lugares que puedes visitar en el mundo del juego. Puedes hacer clic en ellos para viajar allĆ­.
    • -
    • La hora: AquĆ­ es donde se puede ver la fecha y hora actual en el juego. El juego tiene un ciclo dĆ­a-noche que afecta a algunos eventos y actividades.
    • -
    • Las estadĆ­sticas: AquĆ­ es donde puedes ver los atributos de tu personaje, como dinero, energĆ­a, carisma, inteligencia, fuerza, etc. Puedes aumentarlos haciendo ciertas acciones o completando ciertas misiones.
    • -
    • El inventario: AquĆ­ es donde puedes ver los artĆ­culos de tu personaje, como ropa, accesorios, regalos, etc. Puedes usarlos o dĆ”rselos a otros personajes dependiendo de la situación.
    • -
    • El telĆ©fono: AquĆ­ es donde puedes acceder a las funciones del telĆ©fono de tu personaje, como contactos, mensajes, galerĆ­a, etc. Puedes usarlas para comunicarte con otros personajes o ver algunas imĆ”genes o videos.
    • -
    -

    El juego tiene muchos personajes y lugares con los que puedes interactuar y explorar en el juego. Cada personaje tiene su propia personalidad, historia y argumento que puedes descubrir y seguir. Cada lugar tiene sus propios eventos, actividades y secretos que puedes descubrir y disfrutar.

    -

    Para darte una idea de lo que puedes esperar en el juego, aquí hay una breve descripción de algunos de los personajes principales y lugares en Summertime Saga:

    -

    Caracteres

    -
      - -
    • Mia: Ella es tu compaƱera de clase y la enamorada de Erik. Es una chica dulce e inocente que proviene de una familia religiosa estricta. Tiene curiosidad por el mundo y quiere divertirse un poco.
    • -
    • Roxxy: Ella es tu compaƱera de clase y la capitana animadora de la escuela. Es una chica mimada y arrogante a la que le gusta intimidar a los demĆ”s. Ella tiene una relación secreta con Dexter, el mariscal de campo de la escuela.
    • -
    • Jenny: Ella es tu hermanastra y compaƱera de cuarto. Ella es una chica grosera y rebelde que le gusta molestar y molestar. Tiene un lado suave oculto que rara vez muestra.
    • -
    • Sra. Johnson: Ella es tu vecina y la madre de Erik. Ella es una mujer solitaria y deprimida que sufre de alcoholismo. Ella tiene una relación tensa con su marido, que siempre estĆ” lejos por negocios.
    • -
    • Sra. Smith: Ella es tu vecina y la madre de Mia. Es una mujer estricta y conservadora que sigue las reglas de su iglesia. Desaprueba la amistad de Mia contigo y Erik.
    • -
    • Sra. Bissette: Ella es tu profesora de francĆ©s en la escuela. Es una mujer joven y atractiva que tiene una pasión por la enseƱanza y el aprendizaje. Ella estĆ” enamorada de ti, pero intenta ocultarlo.
    • -
    • Ms. Dewitt: Ella es tu profesora de historia en la escuela. Es una mujer vieja y gruƱona que odia su trabajo y a sus estudiantes. Ella tiene un pasado misterioso que involucra algunos secretos oscuros.
    • -
    • TĆ­a Diane: Ella es tu tĆ­a y la hermana de tu padre. Vive en una granja fuera de la ciudad. Ella es una mujer amable y cariƱosa que ama la jardinerĆ­a y la cocina. Tiene un vĆ­nculo especial con usted, pero tambiĆ©n tiene algunos deseos ocultos.
    • -
    • Cassie: Ella es tu prima y la hija de la tĆ­a Diane. Vive en la ciudad con su novio. Ella es una chica salvaje y aventurera a la que le gusta divertirse y divertirse. Ella te visita a veces, pero tambiĆ©n tiene algunos motivos ocultos.
    • -
    -

    Lugares

    -
      - -
    • La casa de Erik: AquĆ­ es donde Erik vive con su madre la Sra. Johnson. Puedes visitarlo en cualquier momento, excepto cuando estĆ” en la escuela o durmiendo. Puedes pasar el rato con Ć©l en su sótano, donde tiene su configuración de juegos, su colección de cómics, etc.
    • -
    • La casa de Mia: AquĆ­ es donde Mia vive con sus padres la Sra. y el Sr. Smith. Puedes visitarla en cualquier momento, excepto cuando estĆ” en la escuela o durmiendo. Puedes pasar el rato con ella en su habitación, donde tiene sus libros, su mĆŗsica, etc.
    • -
    • El trailer de Roxxy: AquĆ­ es donde Roxxy vive con su madre Crystal y su hermana Becca. Puedes visitarla en cualquier momento, excepto cuando estĆ” en la escuela o durmiendo. Puedes salir con ella en su trailer, donde tiene su ropa, su maquillaje, etc.
    • -
    • Escuela: AquĆ­ es donde vas a estudiar cada dĆ­a de la semana de 8 AM a 4 PM. Puedes asistir a diferentes clases, como francĆ©s, historia, matemĆ”ticas, etc., donde puedes aprender cosas nuevas o hacer exĆ”menes. TambiĆ©n puedes interactuar con otros estudiantes y profesores en los pasillos, la cafeterĆ­a, la biblioteca, etc.
    • -
    • Mall: AquĆ­ es donde puedes ir a comprar diferentes artĆ­culos o servicios, como ropa, accesorios, regalos, comida, etc. TambiĆ©n puedes encontrar algunas opciones de entretenimiento aquĆ­, como el cine, la galerĆ­a, el salón de tatuajes, etc.
    • -
    • Parque: AquĆ­ es donde se puede ir a relajarse y disfrutar de la naturaleza. Puedes encontrar algunas actividades aquĆ­, como pesca, jogging, picnicking, etc. TambiĆ©n puedes conocer algunos personajes aquĆ­, como Eve, Kevin, Annie, etc.
    • -
    • Playa: AquĆ­ es donde puedes ir a divertirte al sol y al mar. Puedes encontrar algunas actividades aquĆ­, como natación, surf, tomar el sol, etc. TambiĆ©n puedes conocer algunos personajes aquĆ­, como la seƱorita Ross, el capitĆ”n Terry, Consuela, etc.
    • - -
    • ComisarĆ­a: AquĆ­ es donde puedes ir a tratar asuntos legales o crĆ­menes. Puedes encontrar algunos servicios aquĆ­, como la recepción, la sala de interrogatorios, la celda de la cĆ”rcel, etc. TambiĆ©n puedes conocer algunos personajes aquĆ­, como el oficial Debbie, Earl, Tony, etc.
    • -
    • Granja: AquĆ­ es donde viven tu tĆ­a Diane y tu prima Cassie. Puedes visitarlos en cualquier momento, excepto cuando estĆ”n durmiendo. Usted puede ayudarles con sus tareas agrĆ­colas, como ordeƱar vacas, recolectar huevos, cosechar cosechas, etc. TambiĆ©n puede pasar el rato con ellos en su casa o granero.
    • -
    -

    Estos son solo algunos de los personajes principales y lugares en Summertime Saga. Hay muchos mÔs que puedes descubrir y explorar en el juego. Cada uno tiene su propia historia y contenido único que puedes disfrutar.

    -

    ¿Cómo desbloquear nuevo contenido en Summertime Saga?

    -

    Una de las mejores cosas de Summertime Saga es que tiene mucho contenido que puedes desbloquear y experimentar en el juego. Hay diferentes maneras de hacerlo, dependiendo del tipo de contenido que estƩs buscando.

    -

    Si quieres desbloquear nuevas historias y misiones en el juego, necesitas progresar en el juego y aumentar tus estadísticas. Cada personaje tiene su propia historia y misión que puedes seguir y completar haciendo ciertas acciones o cumpliendo ciertos requisitos. Por ejemplo, si quieres desbloquear la historia y la búsqueda de Mia, necesitas hacerte amigo de ella y aumentar tu carisma al leer libros o tomar clases de francés.

    -

    Si quieres desbloquear nuevas escenas y finales en el juego, necesitas usar trucos o mods. Estos son códigos especiales o archivos que puedes introducir o instalar en el juego para acceder a algún contenido oculto o adicional que no estÔ disponible de otra manera. Por ejemplo, si quieres desbloquear todas las escenas y finales del juego sin jugar a través de todo el juego, puedes usar un código de trucos que te da todos los elementos y estadísticas del juego.

    - -
      -
    1. Ir al sitio web oficial de Summertime Saga: https://summertimesaga.com/
    2. -
    3. Haga clic en el botón "Descargar" en la esquina superior derecha de la pÔgina.
    4. -
    5. Seleccione la versión que coincida con su sistema operativo (Windows, Mac o Linux).
    6. -
    7. Espere a que termine la descarga. El tamaño del archivo puede variar dependiendo de la actualización.
    8. -
    9. Extraiga el archivo zip a una carpeta de su elección.
    10. -
    11. Haga doble clic en el archivo "SummertimeSaga.exe" para iniciar el juego.
    12. -
    -

    El juego detectarƔ automƔticamente tus archivos guardados anteriores y los cargarƔ. Ahora puedes disfrutar del nuevo contenido y caracterƭsticas del juego.

    -

    Para darle una idea de lo que puede esperar en la última actualización, aquí hay una vista previa de algunos de los nuevos contenidos y características en Summertime Saga:

    -
      -
    • Un nuevo personaje: Daisy, una vaquera que trabaja en la granja de la tĆ­a Diane.
    • -
    • Una nueva ubicación: El salón de tatuajes, donde puede obtener un poco de tinta hecha por Eve.
    • -
    • Una nueva historia: La bĆŗsqueda del tatuaje, donde puedes ayudar a Eve con su negocio de tatuajes y obtener algunas recompensas.
    • -
    • Una nueva caracterĆ­stica: La opción de modo oscuro, donde puede cambiar a un tema mĆ”s oscuro para la reproducción nocturna.
    • -
    • Muchas mejoras y correcciones de errores.
    • -
    -

    Conclusión

    -

    Summertime Saga es un juego que ofrece mucha diversión y emoción para los jugadores que aman la aventura, el romance, la comedia y el contenido para adultos. Tiene un enorme mundo abierto con mÔs de 70 lugares para visitar, mÔs de 20 personajes para interactuar, mÔs de 65 historias y misiones para completar, mÔs de 3000 imÔgenes y animaciones para disfrutar, y un montón de minijuegos y actividades para jugar. También tiene un sistema de citas, un sistema de personalización de caracteres, un sistema de estadísticas, un sistema de guardar y cargar, un programa de actualización regular y una opción de modo oscuro.

    - -

    Entonces, ¿qué estÔs esperando? Descarga Summertime Saga hoy y disfruta de este increíble juego!

    -

    Preguntas frecuentes

    -

    Aquƭ estƔn algunas de las preguntas mƔs frecuentes sobre Summertime Saga:

    -

    Q1: ĀæEs libre Summertime Saga?

    -

    A1: Sƭ, Summertime Saga es gratis para descargar y jugar. Sin embargo, si desea apoyar a los desarrolladores y obtener algunas ventajas, como el acceso temprano a nuevas actualizaciones, contenido exclusivo, etc., puede convertirse en un patrocinador en su pƔgina de Patreon: https:/www.patreon.com/summertimesaga

    -

    Q2: ĀæEs seguro Summertime Saga?

    -

    A2: Sƭ, Summertime Saga es seguro para descargar y jugar. Sin embargo, siempre debe descargarlo desde el sitio web oficial u otras fuentes de confianza. TambiƩn debe escanearlo con un programa antivirus antes de instalarlo. TambiƩn debes tener en cuenta que Summertime Saga contiene contenido para adultos que no es adecuado para menores o personas sensibles.

    -

    Q3: ¿CuÔnto tiempo es la saga de verano?

    -

    A3: Summertime Saga es un juego muy largo que puede tardar cientos de horas en completarse. Depende de cómo lo juegues y de cuÔnto contenido quieras explorar. Sin embargo, si quieres completar todos los argumentos y misiones del juego, puedes esperar pasar al menos 50 horas en él.

    -

    Q4: ¿Puedo jugar Summertime Saga en el móvil?

    -

    A4: Sí, puede jugar Summertime Saga en dispositivos móviles como teléfonos inteligentes o tabletas. Sin embargo, debe tener en cuenta que la versión móvil del juego no es tan optimizada o estable como la versión para PC. Usted puede experimentar algunos problemas de retraso o estrellarse en algunos dispositivos. También es posible que tenga que reducir la resolución o los ajustes de calidad para que se ejecute sin problemas.

    -

    Q5: ¿Dónde puedo encontrar mÔs información sobre Summertime Saga?

    -

    A5: Si quieres encontrar mÔs información sobre Summertime Saga, como noticias, actualizaciones, consejos, guías, etc., puedes visitar estas fuentes:

    - -

    Estos son algunos de los mejores lugares para encontrar mÔs información sobre Summertime Saga. También puedes buscar otros sitios web, blogs, videos, etc.

    - - -

    64aa2da5cf
    -
    -
    \ No newline at end of file diff --git a/spaces/Big-Web/MMSD/env/Lib/site-packages/botocore/retries/base.py b/spaces/Big-Web/MMSD/env/Lib/site-packages/botocore/retries/base.py deleted file mode 100644 index 108bfed6901ae6f21e66a3e45d95176a0a18e8ff..0000000000000000000000000000000000000000 --- a/spaces/Big-Web/MMSD/env/Lib/site-packages/botocore/retries/base.py +++ /dev/null @@ -1,26 +0,0 @@ -class BaseRetryBackoff: - def delay_amount(self, context): - """Calculate how long we should delay before retrying. - - :type context: RetryContext - - """ - raise NotImplementedError("delay_amount") - - -class BaseRetryableChecker: - """Base class for determining if a retry should happen. - - This base class checks for specific retryable conditions. - A single retryable checker doesn't necessarily indicate a retry - will happen. It's up to the ``RetryPolicy`` to use its - ``BaseRetryableCheckers`` to make the final decision on whether a retry - should happen. - """ - - def is_retryable(self, context): - """Returns True if retryable, False if not. - - :type context: RetryContext - """ - raise NotImplementedError("is_retryable") diff --git a/spaces/Big-Web/MMSD/env/Lib/site-packages/pip/_vendor/rich/_loop.py b/spaces/Big-Web/MMSD/env/Lib/site-packages/pip/_vendor/rich/_loop.py deleted file mode 100644 index 01c6cafbe53f1fcb12f7b382b2b35e2fd2c69933..0000000000000000000000000000000000000000 --- a/spaces/Big-Web/MMSD/env/Lib/site-packages/pip/_vendor/rich/_loop.py +++ /dev/null @@ -1,43 +0,0 @@ -from typing import Iterable, Tuple, TypeVar - -T = TypeVar("T") - - -def loop_first(values: Iterable[T]) -> Iterable[Tuple[bool, T]]: - """Iterate and generate a tuple with a flag for first value.""" - iter_values = iter(values) - try: - value = next(iter_values) - except StopIteration: - return - yield True, value - for value in iter_values: - yield False, value - - -def loop_last(values: Iterable[T]) -> Iterable[Tuple[bool, T]]: - """Iterate and generate a tuple with a flag for last value.""" - iter_values = iter(values) - try: - previous_value = next(iter_values) - except StopIteration: - return - for value in iter_values: - yield False, previous_value - previous_value = value - yield True, previous_value - - -def loop_first_last(values: Iterable[T]) -> Iterable[Tuple[bool, bool, T]]: - """Iterate and generate a tuple with a flag for first and last value.""" - iter_values = iter(values) - try: - previous_value = next(iter_values) - except StopIteration: - return - first = True - for value in iter_values: - yield first, False, previous_value - first = False - previous_value = value - yield first, True, previous_value diff --git a/spaces/CALM/Dashboard/streamlit_observable/frontend/src/streamlit/ArrowTable.ts b/spaces/CALM/Dashboard/streamlit_observable/frontend/src/streamlit/ArrowTable.ts deleted file mode 100644 index 9d0428746e042fb5a8faf3d7321fa91b277ad7b3..0000000000000000000000000000000000000000 --- a/spaces/CALM/Dashboard/streamlit_observable/frontend/src/streamlit/ArrowTable.ts +++ /dev/null @@ -1,224 +0,0 @@ -/** - * @license - * Copyright 2018-2019 Streamlit Inc. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -import { Table, Type } from "apache-arrow" - -type CellType = "blank" | "index" | "columns" | "data" - -export interface ArrowDataframeProto { - data: ArrowTableProto - height: string - width: string -} - -export interface ArrowTableProto { - data: Uint8Array - index: Uint8Array - columns: Uint8Array - styler: Styler -} - -interface Cell { - classNames: string - content: string - id?: string - type: CellType -} - -interface Styler { - caption?: string - displayValuesTable: Table - styles?: string - uuid: string -} - -export class ArrowTable { - private readonly dataTable: Table - private readonly indexTable: Table - private readonly columnsTable: Table - private readonly styler?: Styler - - constructor( - dataBuffer: Uint8Array, - indexBuffer: Uint8Array, - columnsBuffer: Uint8Array, - styler?: any - ) { - this.dataTable = Table.from(dataBuffer) - this.indexTable = Table.from(indexBuffer) - this.columnsTable = Table.from(columnsBuffer) - this.styler = styler - ? { - caption: styler.get("caption"), - displayValuesTable: Table.from(styler.get("displayValues")), - styles: styler.get("styles"), - uuid: styler.get("uuid"), - } - : undefined - } - - get rows(): number { - return this.indexTable.length + this.columnsTable.numCols - } - - get columns(): number { - return this.indexTable.numCols + this.columnsTable.length - } - - get headerRows(): number { - return this.rows - this.dataRows - } - - get headerColumns(): number { - return this.columns - this.dataColumns - } - - get dataRows(): number { - return this.dataTable.length - } - - get dataColumns(): number { - return this.dataTable.numCols - } - - get uuid(): string | undefined { - return this.styler && this.styler.uuid - } - - get caption(): string | undefined { - return this.styler && this.styler.caption - } - - get styles(): string | undefined { - return this.styler && this.styler.styles - } - - get table(): Table { - return this.dataTable - } - - get index(): Table { - return this.indexTable - } - - get columnTable(): Table { - return this.columnsTable - } - - public getCell = (rowIndex: number, columnIndex: number): Cell => { - const isBlankCell = - rowIndex < this.headerRows && columnIndex < this.headerColumns - const isIndexCell = - rowIndex >= this.headerRows && columnIndex < this.headerColumns - const isColumnsCell = - rowIndex < this.headerRows && columnIndex >= this.headerColumns - - if (isBlankCell) { - const classNames = ["blank"] - if (columnIndex > 0) { - classNames.push("level" + rowIndex) - } - - return { - type: "blank", - classNames: classNames.join(" "), - content: "", - } - } else if (isColumnsCell) { - const dataColumnIndex = columnIndex - this.headerColumns - const classNames = [ - "col_heading", - "level" + rowIndex, - "col" + dataColumnIndex, - ] - - return { - type: "columns", - classNames: classNames.join(" "), - content: this.getContent(this.columnsTable, dataColumnIndex, rowIndex), - } - } else if (isIndexCell) { - const dataRowIndex = rowIndex - this.headerRows - const classNames = [ - "row_heading", - "level" + columnIndex, - "row" + dataRowIndex, - ] - - return { - type: "index", - id: `T_${this.uuid}level${columnIndex}_row${dataRowIndex}`, - classNames: classNames.join(" "), - content: this.getContent(this.indexTable, dataRowIndex, columnIndex), - } - } else { - const dataRowIndex = rowIndex - this.headerRows - const dataColumnIndex = columnIndex - this.headerColumns - const classNames = [ - "data", - "row" + dataRowIndex, - "col" + dataColumnIndex, - ] - const content = this.styler - ? this.getContent( - this.styler.displayValuesTable, - dataRowIndex, - dataColumnIndex - ) - : this.getContent(this.dataTable, dataRowIndex, dataColumnIndex) - - return { - type: "data", - id: `T_${this.uuid}row${dataRowIndex}_col${dataColumnIndex}`, - classNames: classNames.join(" "), - content, - } - } - } - - public getContent = ( - table: Table, - rowIndex: number, - columnIndex: number - ): any => { - const column = table.getColumnAt(columnIndex) - if (column === null) { - return "" - } - - const columnTypeId = this.getColumnTypeId(table, columnIndex) - switch (columnTypeId) { - case Type.Timestamp: { - return this.nanosToDate(column.get(rowIndex)) - } - default: { - return column.get(rowIndex) - } - } - } - - /** - * Returns apache-arrow specific typeId of column. - */ - private getColumnTypeId(table: Table, columnIndex: number): Type { - return table.schema.fields[columnIndex].type.typeId - } - - private nanosToDate(nanos: number): Date { - return new Date(nanos / 1e6) - } -} diff --git a/spaces/CVPR/LIVE/thrust/thrust/system/cpp/detail/partition.h b/spaces/CVPR/LIVE/thrust/thrust/system/cpp/detail/partition.h deleted file mode 100644 index 50d48e222aa53424d0fcdf8b2bc3e8bf4a9f4e54..0000000000000000000000000000000000000000 --- a/spaces/CVPR/LIVE/thrust/thrust/system/cpp/detail/partition.h +++ /dev/null @@ -1,23 +0,0 @@ -/* - * Copyright 2008-2013 NVIDIA Corporation - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#pragma once - -#include - -// this system inherits partition -#include - diff --git a/spaces/CVPR/LIVE/thrust/thrust/system/tbb/detail/transform.h b/spaces/CVPR/LIVE/thrust/thrust/system/tbb/detail/transform.h deleted file mode 100644 index 20d606dfbeec6d376a138db500ec368d94efa748..0000000000000000000000000000000000000000 --- a/spaces/CVPR/LIVE/thrust/thrust/system/tbb/detail/transform.h +++ /dev/null @@ -1,23 +0,0 @@ -/* - * Copyright 2008-2013 NVIDIA Corporation - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#pragma once - -#include - -// omp inherits transform -#include - diff --git a/spaces/CVPR/SPOTER_Sign_Language_Recognition/spoter_mod/train.py b/spaces/CVPR/SPOTER_Sign_Language_Recognition/spoter_mod/train.py deleted file mode 100644 index d232cd5c5f1b0b29db9148201b688d15a75d368e..0000000000000000000000000000000000000000 --- a/spaces/CVPR/SPOTER_Sign_Language_Recognition/spoter_mod/train.py +++ /dev/null @@ -1,312 +0,0 @@ - -import os -import argparse -import random -import logging -import torch -import wandb - -import numpy as np -import torch.nn as nn -import torch.optim as optim -import matplotlib.pyplot as plt -import matplotlib.ticker as ticker -from torchvision import transforms -from torch.utils.data import DataLoader -from pathlib import Path - -from utils import __balance_val_split, __split_of_train_sequence -from datasets.czech_slr_dataset import CzechSLRDataset -from spoter.spoter_model import SPOTER -from spoter.utils import train_epoch, evaluate -from spoter.gaussian_noise import GaussianNoise - - -def get_default_args(): - parser = argparse.ArgumentParser(add_help=False) - - parser.add_argument("--experiment_name", type=str, default="lsa_64_spoter", - help="Name of the experiment after which the logs and plots will be named") - parser.add_argument("--num_classes", type=int, default=64, help="Number of classes to be recognized by the model") - parser.add_argument("--hidden_dim", type=int, default=108, - help="Hidden dimension of the underlying Transformer model") - parser.add_argument("--seed", type=int, default=379, - help="Seed with which to initialize all the random components of the training") - - # Data - parser.add_argument("--training_set_path", type=str, default="", help="Path to the training dataset CSV file") - parser.add_argument("--testing_set_path", type=str, default="", help="Path to the testing dataset CSV file") - parser.add_argument("--experimental_train_split", type=float, default=None, - help="Determines how big a portion of the training set should be employed (intended for the " - "gradually enlarging training set experiment from the paper)") - - parser.add_argument("--validation_set", type=str, choices=["from-file", "split-from-train", "none"], - default="from-file", help="Type of validation set construction. See README for further rederence") - parser.add_argument("--validation_set_size", type=float, - help="Proportion of the training set to be split as validation set, if 'validation_size' is set" - " to 'split-from-train'") - parser.add_argument("--validation_set_path", type=str, default="", help="Path to the validation dataset CSV file") - - # Training hyperparameters - parser.add_argument("--epochs", type=int, default=100, help="Number of epochs to train the model for") - parser.add_argument("--lr", type=float, default=0.001, help="Learning rate for the model training") - parser.add_argument("--log_freq", type=int, default=1, - help="Log frequency (frequency of printing all the training info)") - - # Checkpointing - parser.add_argument("--save_checkpoints", type=bool, default=True, - help="Determines whether to save weights checkpoints") - - # Scheduler - parser.add_argument("--scheduler_factor", type=int, default=0.1, help="Factor for the ReduceLROnPlateau scheduler") - parser.add_argument("--scheduler_patience", type=int, default=5, - help="Patience for the ReduceLROnPlateau scheduler") - - # Gaussian noise normalization - parser.add_argument("--gaussian_mean", type=int, default=0, help="Mean parameter for Gaussian noise layer") - parser.add_argument("--gaussian_std", type=int, default=0.001, - help="Standard deviation parameter for Gaussian noise layer") - - parser.add_argument("--augmentations_probability", type=float, default=0.5, help="") # 0.462 - parser.add_argument("--rotate_angle", type=int, default=17, help="") # 17 - parser.add_argument("--perspective_transform_ratio", type=float, default=0.2, help="") # 0.1682 - parser.add_argument("--squeeze_ratio", type=float, default=0.4, help="") # 0.3971 - parser.add_argument("--arm_joint_rotate_angle", type=int, default=4, help="") # 3 - parser.add_argument("--arm_joint_rotate_probability", type=float, default=0.4, help="") # 0.3596 - - # Visualization - parser.add_argument("--plot_stats", type=bool, default=True, - help="Determines whether continuous statistics should be plotted at the end") - parser.add_argument("--plot_lr", type=bool, default=True, - help="Determines whether the LR should be plotted at the end") - - # WANDB - parser.add_argument("--wandb_key", type=str, default="", help="") - parser.add_argument("--wandb_entity", type=str, default="", help="") - - return parser - - -def train(args): - - if args.wandb_key: - wandb.login(key=args.wandb_key) - wandb.init(project=args.experiment_name, entity=args.wandb_entity) - wandb.config.update(args) - - # MARK: TRAINING PREPARATION AND MODULES - args.experiment_name = args.experiment_name + "_lr" + wandb.run.id - - # Initialize all the random seeds - random.seed(args.seed) - np.random.seed(args.seed) - os.environ["PYTHONHASHSEED"] = str(args.seed) - torch.manual_seed(args.seed) - torch.cuda.manual_seed(args.seed) - torch.cuda.manual_seed_all(args.seed) - torch.backends.cudnn.deterministic = True - g = torch.Generator() - g.manual_seed(args.seed) - - # Set the output format to print into the console and save into LOG file - logging.basicConfig( - level=logging.INFO, - format="%(asctime)s [%(levelname)s] %(message)s", - handlers=[ - logging.FileHandler(args.experiment_name + "_" + str(args.experimental_train_split).replace(".", "") + ".log") - ] - ) - - # Set device to CUDA only if applicable - device = torch.device("cpu") - if torch.cuda.is_available(): - device = torch.device("cuda") - - # Construct the model - slrt_model = SPOTER(num_classes=args.num_classes, hidden_dim=args.hidden_dim) - slrt_model.train(True) - slrt_model.to(device) - - # Construct the other modules - cel_criterion = nn.CrossEntropyLoss() - sgd_optimizer = optim.SGD(slrt_model.parameters(), lr=args.lr) - scheduler = optim.lr_scheduler.ReduceLROnPlateau(sgd_optimizer, factor=args.scheduler_factor, patience=args.scheduler_patience) - - # Ensure that the path for checkpointing and for images both exist - Path("out-checkpoints/" + args.experiment_name + "/").mkdir(parents=True, exist_ok=True) - Path("out-img/").mkdir(parents=True, exist_ok=True) - - - # MARK: DATA - - # Training set - transform = transforms.Compose([GaussianNoise(args.gaussian_mean, args.gaussian_std)]) - augmentations_config = { - "rotate-angle": args.rotate_angle, - "perspective-transform-ratio": args.perspective_transform_ratio, - "squeeze-ratio": args.squeeze_ratio, - "arm-joint-rotate-angle": args.arm_joint_rotate_angle, - "arm-joint-rotate-probability": args.arm_joint_rotate_probability - } - - train_set = CzechSLRDataset(args.training_set_path, transform=transform, augmentations=True, - augmentations_prob=args.augmentations_probability, augmentations_config=augmentations_config) - - # Validation set - if args.validation_set == "from-file": - val_set = CzechSLRDataset(args.validation_set_path) - val_loader = DataLoader(val_set, shuffle=True, generator=g) - - elif args.validation_set == "split-from-train": - train_set, val_set = __balance_val_split(train_set, 0.2) - - val_set.transform = None - val_set.augmentations = False - val_loader = DataLoader(val_set, shuffle=True, generator=g) - - else: - val_loader = None - - # Testing set - if args.testing_set_path: - eval_set = CzechSLRDataset(args.testing_set_path) - eval_loader = DataLoader(eval_set, shuffle=True, generator=g) - - else: - eval_loader = None - - # Final training set refinements - if args.experimental_train_split: - train_set = __split_of_train_sequence(train_set, args.experimental_train_split) - - train_loader = DataLoader(train_set, shuffle=True, generator=g) - - - # MARK: TRAINING - train_acc, val_acc = 0, 0 - losses, train_accs, val_accs = [], [], [] - lr_progress = [] - top_train_acc, top_val_acc = 0, 0 - checkpoint_index = 0 - - if args.experimental_train_split: - print("Starting " + args.experiment_name + "_" + str(args.experimental_train_split).replace(".", "") + "...\n\n") - logging.info("Starting " + args.experiment_name + "_" + str(args.experimental_train_split).replace(".", "") + "...\n\n") - - else: - print("Starting " + args.experiment_name + "...\n\n") - logging.info("Starting " + args.experiment_name + "...\n\n") - - for epoch in range(args.epochs): - train_loss, _, _, train_acc = train_epoch(slrt_model, train_loader, cel_criterion, sgd_optimizer, device) - losses.append(train_loss.item() / len(train_loader)) - train_accs.append(train_acc) - - if val_loader: - slrt_model.train(False) - _, _, val_acc = evaluate(slrt_model, val_loader, device) - slrt_model.train(True) - val_accs.append(val_acc) - - # Save checkpoints if they are best in the current subset - if args.save_checkpoints: - if train_acc > top_train_acc: - top_train_acc = train_acc - torch.save(slrt_model, "out-checkpoints/" + args.experiment_name + "/checkpoint_t_" + str(checkpoint_index) + ".pth") - - if val_acc > top_val_acc: - top_val_acc = val_acc - torch.save(slrt_model, "out-checkpoints/" + args.experiment_name + "/checkpoint_v_" + str(checkpoint_index) + ".pth") - - if epoch % args.log_freq == 0: - print("[" + str(epoch + 1) + "] TRAIN loss: " + str(train_loss.item() / len(train_loader)) + " acc: " + str(train_acc)) - logging.info("[" + str(epoch + 1) + "] TRAIN loss: " + str(train_loss.item() / len(train_loader)) + " acc: " + str(train_acc)) - - wandb.log({ - "epoch": int(epoch + 1), - "train-loss": float(train_loss.item() / len(train_loader)), - "train-accuracy": train_acc - }) - - if val_loader: - print("[" + str(epoch + 1) + "] VALIDATION acc: " + str(val_acc)) - logging.info("[" + str(epoch + 1) + "] VALIDATION acc: " + str(val_acc)) - - if args.wandb_key: - wandb.log({ - "validation-accuracy": val_acc - }) - - print("") - logging.info("") - - # Reset the top accuracies on static subsets - if epoch % 10 == 0: - top_train_acc, top_val_acc = 0, 0 - checkpoint_index += 1 - - lr_progress.append(sgd_optimizer.param_groups[0]["lr"]) - - # MARK: TESTING - - print("\nTesting checkpointed models starting...\n") - logging.info("\nTesting checkpointed models starting...\n") - - top_result, top_result_name = 0, "" - - if eval_loader: - for i in range(checkpoint_index): - for checkpoint_id in ["t", "v"]: - # tested_model = VisionTransformer(dim=2, mlp_dim=108, num_classes=100, depth=12, heads=8) - tested_model = torch.load("out-checkpoints/" + args.experiment_name + "/checkpoint_" + checkpoint_id + "_" + str(i) + ".pth") - tested_model.train(False) - _, _, eval_acc = evaluate(tested_model, eval_loader, device, print_stats=True) - - if eval_acc > top_result: - top_result = eval_acc - top_result_name = args.experiment_name + "/checkpoint_" + checkpoint_id + "_" + str(i) - - print("checkpoint_" + checkpoint_id + "_" + str(i) + " -> " + str(eval_acc)) - logging.info("checkpoint_" + checkpoint_id + "_" + str(i) + " -> " + str(eval_acc)) - - print("\nThe top result was recorded at " + str(top_result) + " testing accuracy. The best checkpoint is " + top_result_name + ".") - logging.info("\nThe top result was recorded at " + str(top_result) + " testing accuracy. The best checkpoint is " + top_result_name + ".") - - if args.wandb_key: - wandb.run.summary["best-accuracy"] = top_result - wandb.run.summary["best-checkpoint"] = top_result_name - - # PLOT 0: Performance (loss, accuracies) chart plotting - if args.plot_stats: - fig, ax = plt.subplots() - ax.plot(range(1, len(losses) + 1), losses, c="#D64436", label="Training loss") - ax.plot(range(1, len(train_accs) + 1), train_accs, c="#00B09B", label="Training accuracy") - - if val_loader: - ax.plot(range(1, len(val_accs) + 1), val_accs, c="#E0A938", label="Validation accuracy") - - ax.xaxis.set_major_locator(ticker.MaxNLocator(integer=True)) - - ax.set(xlabel="Epoch", ylabel="Accuracy / Loss", title="") - plt.legend(loc="upper center", bbox_to_anchor=(0.5, 1.05), ncol=4, fancybox=True, shadow=True, fontsize="xx-small") - ax.grid() - - fig.savefig("out-img/" + args.experiment_name + "_loss.png") - - # PLOT 1: Learning rate progress - if args.plot_lr: - fig1, ax1 = plt.subplots() - ax1.plot(range(1, len(lr_progress) + 1), lr_progress, label="LR") - ax1.set(xlabel="Epoch", ylabel="LR", title="") - ax1.grid() - - fig1.savefig("out-img/" + args.experiment_name + "_lr.png") - - print("\nAny desired statistics have been plotted.\nThe experiment is finished.") - logging.info("\nAny desired statistics have been plotted.\nThe experiment is finished.") - - -if __name__ == '__main__': - parser = argparse.ArgumentParser("", parents=[get_default_args()], add_help=False) - args = parser.parse_args() - train(args) diff --git a/spaces/CikeyQI/meme-api/meme_generator/memes/gif_subtitle/__init__.py b/spaces/CikeyQI/meme-api/meme_generator/memes/gif_subtitle/__init__.py deleted file mode 100644 index 11de55ac9e503f777f7fc6580708bd10437096fc..0000000000000000000000000000000000000000 --- a/spaces/CikeyQI/meme-api/meme_generator/memes/gif_subtitle/__init__.py +++ /dev/null @@ -1,153 +0,0 @@ -from pathlib import Path -from typing import List, Tuple - -from pil_utils import BuildImage - -from meme_generator import add_meme -from meme_generator.exception import TextOverLength -from meme_generator.utils import save_gif - -img_dir = Path(__file__).parent / "images" - - -def make_gif( - key: str, - texts: List[str], - pieces: Tuple[Tuple[int, int], ...], - fontsize: int = 20, - padding_x: int = 5, - padding_y: int = 5, -): - img = BuildImage.open(img_dir / f"{key}.gif").image - frames: List[BuildImage] = [] - for i in range(img.n_frames): - img.seek(i) - frames.append(BuildImage(img.convert("RGB"))) - - parts = [frames[start:end] for start, end in pieces] - for part, text in zip(parts, texts): - for frame in part: - try: - frame.draw_text( - (padding_x, 0, frame.width - padding_x, frame.height - padding_y), - text, - max_fontsize=fontsize, - min_fontsize=fontsize, - fill="white", - stroke_ratio=0.05, - stroke_fill="black", - valign="bottom", - ) - except ValueError: - raise TextOverLength(text) - - return save_gif([frame.image for frame in frames], img.info["duration"] / 1000) - - -def add_gif_meme( - key: str, - keywords: List[str], - pieces: Tuple[Tuple[int, int], ...], - examples: Tuple[str, ...], - **kwargs, -): - def gif_func(images, texts: List[str], args): - return make_gif(key, texts, pieces, **kwargs) - - text_num = len(pieces) - add_meme( - key, - gif_func, - min_texts=text_num, - max_texts=text_num, - default_texts=list(examples), - keywords=keywords, - ) - - -add_gif_meme( - "wangjingze", - ["ēŽ‹å¢ƒę³½"], - ((0, 9), (12, 24), (25, 35), (37, 48)), - ("ęˆ‘å°±ę˜Æé„æę­»", "死外边 ä»Žčæ™é‡Œč·³äø‹åŽ»", "äøä¼šåƒä½ ä»¬äø€ē‚¹äøœč„æ", "ēœŸé¦™"), -) - -# fmt: off -add_gif_meme( - "weisuoyuwei", - ["为所欲为"], - ((11, 14), (27, 38), (42, 61), (63, 81), (82, 95), (96, 105), (111, 131), (145, 157), (157, 167),), - ("儽啊", "å°±ē®—ä½ ę˜Æäø€ęµå·„ēØ‹åøˆ", "å°±ē®—ä½ å‡ŗęŠ„å‘Šå†å®Œē¾Ž", "ęˆ‘å«ä½ ę”¹ęŠ„å‘Šä½ å°±č¦ę”¹", "ęÆ•ē«Ÿęˆ‘ę˜Æå®¢ęˆ·", "å®¢ęˆ·äŗ†äøčµ·å•Š", "Sorry å®¢ęˆ·ēœŸēš„äŗ†äøčµ·", "ä»„åŽå«ä»–å¤©å¤©ę”¹ęŠ„å‘Š", "天天改 天天改"), - fontsize=19, -) -# fmt: on - -add_gif_meme( - "chanshenzi", - ["馋身子"], - ((0, 16), (16, 31), (33, 40)), - ("ä½ é‚£å«å–œę¬¢å—ļ¼Ÿ", "ä½ é‚£ę˜Æé¦‹å„¹čŗ«å­", "你下蓱!"), - fontsize=18, -) - -add_gif_meme( - "qiegewala", - ["åˆ‡ę ¼ē“¦ę‹‰"], - ((0, 15), (16, 31), (31, 38), (38, 48), (49, 68), (68, 86)), - ("ę²”ęœ‰é’±å•Š č‚Æå®šč¦åšēš„å•Š", "äøåšēš„čÆę²”ęœ‰é’±ē”Ø", "é‚£ä½ äøä¼šåŽ»ę‰“å·„å•Š", "ęœ‰ę‰‹ęœ‰č„šēš„", "ę‰“å·„ę˜ÆäøåÆčƒ½ę‰“å·„ēš„", "čæ™č¾ˆå­äøåÆčƒ½ę‰“å·„ēš„"), -) - -add_gif_meme( - "shuifandui", - ["č°ååÆ¹"], - ((3, 14), (21, 26), (31, 38), (40, 45)), - ("ęˆ‘čÆčÆ“å®Œäŗ†", "č°čµžęˆ", "č°ååÆ¹", "ęˆ‘ååÆ¹"), - fontsize=19, -) - -add_gif_meme( - "zengxiaoxian", - ["ę›¾å°č“¤"], - ((3, 15), (24, 30), (30, 46), (56, 63)), - ("å¹³ę—¶ä½ ę‰“ē”µå­ęøøęˆå—", "偶尔", "ę˜Ÿé™…čæ˜ę˜Æé­”å…½", "čæžčæžēœ‹"), - fontsize=21, -) - -add_gif_meme( - "yalidaye", - ["åŽ‹åŠ›å¤§ēˆ·"], - ((0, 16), (21, 47), (52, 77)), - ("å¤–ē•Œéƒ½čÆ“ęˆ‘ä»¬åŽ‹åŠ›å¤§", "ęˆ‘č§‰å¾—å§åŽ‹åŠ›ä¹Ÿę²”ęœ‰é‚£ä¹ˆå¤§", "主要是28å²äŗ†čæ˜ę²”åŖ³å¦‡å„æ"), - fontsize=21, -) - -add_gif_meme( - "nihaosaoa", - ["ä½ å„½éŖšå•Š"], - ((0, 14), (16, 26), (42, 61)), - ("ę—¢ē„¶čæ½ę±‚åˆŗęæ€", "å°±č“Æå½»åˆ°åŗ•äŗ†", "ä½ å„½éŖšå•Š"), - fontsize=17, -) - -add_gif_meme( - "shishilani", - ["食屎啦你"], - ((14, 21), (23, 36), (38, 46), (60, 66)), - ("穿脿装打领带", "ę‹æå¤§å“„å¤§ęœ‰ä»€ä¹ˆē”Ø", "č·Ÿē€čæ™ę ·ēš„å¤§å“„", "食屎啦你"), - fontsize=17, -) - -add_gif_meme( - "wunian", - ["äŗ”å¹“ę€Žä¹ˆčæ‡ēš„"], - ((11, 20), (35, 50), (59, 77), (82, 95)), - ("五幓", "ä½ ēŸ„é“ęˆ‘čæ™äŗ”å¹“ę˜Æę€Žä¹ˆčæ‡ēš„å—", "ęˆ‘ęÆå¤©čŗ²åœØå®¶é‡ŒēŽ©č“ŖēŽ©č“ęœˆ", "ä½ ēŸ„é“ęœ‰å¤šå„½ēŽ©å—"), - fontsize=16, -) - -add_gif_meme( - "maikease", - ["éŗ¦å…‹é˜æē‘ŸčÆ“"], - ((0, 22), (24, 46), (48, 70), (72, 84)), - ("ē¾Žå›½å‰äŗ”ę˜ŸäøŠå°†éŗ¦å…‹é˜æē‘Ÿ", "曾这样评价道", "å¦‚ęžœč®©ęˆ‘åŽ»é˜»ę­¢xxx", "é‚£ä¹ˆęˆ‘å®ę„æåŽ»é˜»ę­¢äøŠåø"), -) diff --git a/spaces/CirnoW/anime-ai-detect/README.md b/spaces/CirnoW/anime-ai-detect/README.md deleted file mode 100644 index 952c183fd69ccb1664b4236b6132fc6d0358c7de..0000000000000000000000000000000000000000 --- a/spaces/CirnoW/anime-ai-detect/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: Anime Ai Detect -emoji: šŸ¤– -colorFrom: green -colorTo: purple -sdk: gradio -sdk_version: 3.15.0 -app_file: app.py -pinned: true -duplicated_from: saltacc/anime-ai-detect ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/Cyril666/ContourNet-ABI/maskrcnn_benchmark/data/datasets/evaluation/word/util/log.py b/spaces/Cyril666/ContourNet-ABI/maskrcnn_benchmark/data/datasets/evaluation/word/util/log.py deleted file mode 100644 index c1fdfaac6d3564c5b59ad7ca51f02da00f355438..0000000000000000000000000000000000000000 --- a/spaces/Cyril666/ContourNet-ABI/maskrcnn_benchmark/data/datasets/evaluation/word/util/log.py +++ /dev/null @@ -1,47 +0,0 @@ -#coding=utf-8 -''' -Created on 2016幓10月12ę—„ - -@author: dengdan -''' -import datetime -import logging -import util -import sys - -def get_date_str(): - now = datetime.datetime.now() - return now.strftime('%Y-%m-%d %H:%M:%S') - -def init_logger(log_file = None, log_path = None, log_level = logging.DEBUG, mode = 'w', stdout = True): - """ - log_path: ę—„åæ—ę–‡ä»¶ēš„ę–‡ä»¶å¤¹č·Æå¾„ - mode: 'a', append; 'w', č¦†ē›–åŽŸę–‡ä»¶å†™å…„. - """ - fmt = '%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s: %(message)s' - if log_path is None: - log_path = '~/temp/log/' - if log_file is None: - log_file = 'log_' + get_date_str() + '.log' - log_file = util.io.join_path(log_path, log_file) - # ę­¤å¤„äøčƒ½ä½æē”Ølogging输出 - print('log file path:' + log_file); - util.io.make_parent_dir(log_file) - logging.basicConfig(level = log_level, - format= fmt, - filename= util.io.get_absolute_path(log_file), - filemode=mode) - - if stdout: - console = logging.StreamHandler(stream = sys.stdout) - console.setLevel(log_level) - formatter = logging.Formatter(fmt) - console.setFormatter(formatter) - logging.getLogger('').addHandler(console) - -# console = logging.StreamHandler(stream = sys.stderr) -# console.setLevel(log_level) -# formatter = logging.Formatter(fmt) -# console.setFormatter(formatter) -# logging.getLogger('').addHandler(console) - diff --git a/spaces/Cyril666/ContourNet-ABI/maskrcnn_benchmark/solver/__init__.py b/spaces/Cyril666/ContourNet-ABI/maskrcnn_benchmark/solver/__init__.py deleted file mode 100644 index 75f40530cccb6b989d33193de92a6c26a07cf751..0000000000000000000000000000000000000000 --- a/spaces/Cyril666/ContourNet-ABI/maskrcnn_benchmark/solver/__init__.py +++ /dev/null @@ -1,4 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. -from .build import make_optimizer -from .build import make_lr_scheduler -from .lr_scheduler import WarmupMultiStepLR diff --git a/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/fastapi/security/http.py b/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/fastapi/security/http.py deleted file mode 100644 index 8fc0aafd9fb1c1642970f71231be593361260268..0000000000000000000000000000000000000000 --- a/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/fastapi/security/http.py +++ /dev/null @@ -1,165 +0,0 @@ -import binascii -from base64 import b64decode -from typing import Optional - -from fastapi.exceptions import HTTPException -from fastapi.openapi.models import HTTPBase as HTTPBaseModel -from fastapi.openapi.models import HTTPBearer as HTTPBearerModel -from fastapi.security.base import SecurityBase -from fastapi.security.utils import get_authorization_scheme_param -from pydantic import BaseModel -from starlette.requests import Request -from starlette.status import HTTP_401_UNAUTHORIZED, HTTP_403_FORBIDDEN - - -class HTTPBasicCredentials(BaseModel): - username: str - password: str - - -class HTTPAuthorizationCredentials(BaseModel): - scheme: str - credentials: str - - -class HTTPBase(SecurityBase): - def __init__( - self, - *, - scheme: str, - scheme_name: Optional[str] = None, - description: Optional[str] = None, - auto_error: bool = True, - ): - self.model = HTTPBaseModel(scheme=scheme, description=description) - self.scheme_name = scheme_name or self.__class__.__name__ - self.auto_error = auto_error - - async def __call__( - self, request: Request - ) -> Optional[HTTPAuthorizationCredentials]: - authorization = request.headers.get("Authorization") - scheme, credentials = get_authorization_scheme_param(authorization) - if not (authorization and scheme and credentials): - if self.auto_error: - raise HTTPException( - status_code=HTTP_403_FORBIDDEN, detail="Not authenticated" - ) - else: - return None - return HTTPAuthorizationCredentials(scheme=scheme, credentials=credentials) - - -class HTTPBasic(HTTPBase): - def __init__( - self, - *, - scheme_name: Optional[str] = None, - realm: Optional[str] = None, - description: Optional[str] = None, - auto_error: bool = True, - ): - self.model = HTTPBaseModel(scheme="basic", description=description) - self.scheme_name = scheme_name or self.__class__.__name__ - self.realm = realm - self.auto_error = auto_error - - async def __call__( # type: ignore - self, request: Request - ) -> Optional[HTTPBasicCredentials]: - authorization = request.headers.get("Authorization") - scheme, param = get_authorization_scheme_param(authorization) - if self.realm: - unauthorized_headers = {"WWW-Authenticate": f'Basic realm="{self.realm}"'} - else: - unauthorized_headers = {"WWW-Authenticate": "Basic"} - if not authorization or scheme.lower() != "basic": - if self.auto_error: - raise HTTPException( - status_code=HTTP_401_UNAUTHORIZED, - detail="Not authenticated", - headers=unauthorized_headers, - ) - else: - return None - invalid_user_credentials_exc = HTTPException( - status_code=HTTP_401_UNAUTHORIZED, - detail="Invalid authentication credentials", - headers=unauthorized_headers, - ) - try: - data = b64decode(param).decode("ascii") - except (ValueError, UnicodeDecodeError, binascii.Error): - raise invalid_user_credentials_exc - username, separator, password = data.partition(":") - if not separator: - raise invalid_user_credentials_exc - return HTTPBasicCredentials(username=username, password=password) - - -class HTTPBearer(HTTPBase): - def __init__( - self, - *, - bearerFormat: Optional[str] = None, - scheme_name: Optional[str] = None, - description: Optional[str] = None, - auto_error: bool = True, - ): - self.model = HTTPBearerModel(bearerFormat=bearerFormat, description=description) - self.scheme_name = scheme_name or self.__class__.__name__ - self.auto_error = auto_error - - async def __call__( - self, request: Request - ) -> Optional[HTTPAuthorizationCredentials]: - authorization = request.headers.get("Authorization") - scheme, credentials = get_authorization_scheme_param(authorization) - if not (authorization and scheme and credentials): - if self.auto_error: - raise HTTPException( - status_code=HTTP_403_FORBIDDEN, detail="Not authenticated" - ) - else: - return None - if scheme.lower() != "bearer": - if self.auto_error: - raise HTTPException( - status_code=HTTP_403_FORBIDDEN, - detail="Invalid authentication credentials", - ) - else: - return None - return HTTPAuthorizationCredentials(scheme=scheme, credentials=credentials) - - -class HTTPDigest(HTTPBase): - def __init__( - self, - *, - scheme_name: Optional[str] = None, - description: Optional[str] = None, - auto_error: bool = True, - ): - self.model = HTTPBaseModel(scheme="digest", description=description) - self.scheme_name = scheme_name or self.__class__.__name__ - self.auto_error = auto_error - - async def __call__( - self, request: Request - ) -> Optional[HTTPAuthorizationCredentials]: - authorization = request.headers.get("Authorization") - scheme, credentials = get_authorization_scheme_param(authorization) - if not (authorization and scheme and credentials): - if self.auto_error: - raise HTTPException( - status_code=HTTP_403_FORBIDDEN, detail="Not authenticated" - ) - else: - return None - if scheme.lower() != "digest": - raise HTTPException( - status_code=HTTP_403_FORBIDDEN, - detail="Invalid authentication credentials", - ) - return HTTPAuthorizationCredentials(scheme=scheme, credentials=credentials) diff --git a/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/cdn/assets/Image-1cf93ae5.js b/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/cdn/assets/Image-1cf93ae5.js deleted file mode 100644 index 76dbefccd160f3adc638fcdca783de203768cf67..0000000000000000000000000000000000000000 --- a/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/cdn/assets/Image-1cf93ae5.js +++ /dev/null @@ -1,2 +0,0 @@ -import{S as g,e as u,s as d,N as y,T as f,K as c,U as i,p as o,n as r,A as v}from"./index-1d65707a.js";function b(t){let e,s;return{c(){e=y("img"),f(e.src,s=t[1]+t[0])||c(e,"src",s),c(e,"class","svelte-gqt00k"),i(e,"table",t[2]==="table"),i(e,"gallery",t[2]==="gallery"),i(e,"selected",t[3])},m(l,a){o(l,e,a)},p(l,[a]){a&3&&!f(e.src,s=l[1]+l[0])&&c(e,"src",s),a&4&&i(e,"table",l[2]==="table"),a&4&&i(e,"gallery",l[2]==="gallery"),a&8&&i(e,"selected",l[3])},i:r,o:r,d(l){l&&v(e)}}}function q(t,e,s){let{value:l}=e,{samples_dir:a}=e,{type:m}=e,{selected:_=!1}=e;return t.$$set=n=>{"value"in n&&s(0,l=n.value),"samples_dir"in n&&s(1,a=n.samples_dir),"type"in n&&s(2,m=n.type),"selected"in n&&s(3,_=n.selected)},[l,a,m,_]}class I extends g{constructor(e){super(),u(this,e,q,b,d,{value:0,samples_dir:1,type:2,selected:3})}}const E=I;export{E}; -//# sourceMappingURL=Image-1cf93ae5.js.map diff --git a/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/frontend/assets/Model3D-db673911.js b/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/frontend/assets/Model3D-db673911.js deleted file mode 100644 index 97973f341c74af800f0d171f6bf18929fd28aabe..0000000000000000000000000000000000000000 --- a/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/frontend/assets/Model3D-db673911.js +++ /dev/null @@ -1,2 +0,0 @@ -import{S as o,e as d,s as u,N as _,P as g,K as r,U as i,p as v,M as y,R as m,n as c,A as b}from"./index-3370be2a.js";function M(a){let e,s;return{c(){e=_("div"),s=g(a[0]),r(e,"class","svelte-1ayixqk"),i(e,"table",a[1]==="table"),i(e,"gallery",a[1]==="gallery"),i(e,"selected",a[2])},m(t,l){v(t,e,l),y(e,s)},p(t,[l]){l&1&&m(s,t[0]),l&2&&i(e,"table",t[1]==="table"),l&2&&i(e,"gallery",t[1]==="gallery"),l&4&&i(e,"selected",t[2])},i:c,o:c,d(t){t&&b(e)}}}function D(a,e,s){let{value:t}=e,{type:l}=e,{selected:f=!1}=e;return a.$$set=n=>{"value"in n&&s(0,t=n.value),"type"in n&&s(1,l=n.type),"selected"in n&&s(2,f=n.selected)},[t,l,f]}class h extends o{constructor(e){super(),d(this,e,D,M,u,{value:0,type:1,selected:2})}}const E=h;export{E}; -//# sourceMappingURL=Model3D-db673911.js.map diff --git a/spaces/Dabs/wordcloud/app.py b/spaces/Dabs/wordcloud/app.py deleted file mode 100644 index 65b3a7caa93cc775df96fdb82a635acbe60fc446..0000000000000000000000000000000000000000 --- a/spaces/Dabs/wordcloud/app.py +++ /dev/null @@ -1,38 +0,0 @@ -from wordcloud import WordCloud, get_single_color_func -from stop_words import get_stop_words -import numpy as np -from PIL import Image -import matplotlib.pyplot as plt -from collections import Counter -import gradio as gr - - -def create_wc(text, lang, custom_sw, input_img, color_rgb): - STOPWORDS = set(get_stop_words(lang)) - STOPWORDS.update(custom_sw.replace(" ", "").split(",")) - words = text.lower().split(" ") - words = [word for word in words if word not in STOPWORDS] - mask = np.array(input_img) - text_dict = Counter(words) - wordcloud = WordCloud(background_color="rgba(0, 0, 0, 0)", mode="RGBA",mask=mask, width=1000, height=1500, stopwords=STOPWORDS).generate_from_frequencies(text_dict) - # wordcloud.recolor(colormap=colormap) - wordcloud.recolor(color_func=get_single_color_func(f'rgb({color_rgb})')) - - return wordcloud - -text_example = """ -Harry Potter is a series of seven fantasy novels written by British author J. K. Rowling. The novels chronicle the lives of a young wizard, Harry Potter, and his friends Hermione Granger and Ron Weasley, all of whom are students at Hogwarts School of Witchcraft and Wizardry. The main story arc concerns Harry's struggle against Lord Voldemort, a dark wizard who intends to become immortal, overthrow the wizard governing body known as the Ministry of Magic and subjugate all wizards and Muggles (non-magical people). -The series was originally published in English by Bloomsbury in the United Kingdom and Scholastic Press in the United States. All versions around the world are printed by Grafica Veneta in Italy.[1] A series of many genres, including fantasy, drama, coming of age, and the British school story (which includes elements of mystery, thriller, adventure, horror, and romance), the world of Harry Potter explores numerous themes and includes many cultural meanings and references.[2] According to Rowling, the main theme is death.[3] Other major themes in the series include prejudice, corruption, and madness.[4] -Since the release of the first novel, Harry Potter and the Philosopher's Stone, on 26 June 1997, the books have found immense popularity, positive reviews, and commercial success worldwide. They have attracted a wide adult audience as well as younger readers and are often considered cornerstones of modern young adult literature.[5] As of February 2018, the books have sold more than 500 million copies worldwide, making them the best-selling book series in history, and have been translated into eighty languages.[6] The last four books consecutively set records as the fastest-selling books in history, with the final instalment selling roughly 2.7 million copies in the United Kingdom and 8.3 million copies in the United States within twenty-four hours of its release. -The original seven books were adapted into an eight-part namesake film series by Warner Bros. Pictures. In 2016, the total value of the Harry Potter franchise was estimated at $25 billion,[7] making Harry Potter one of the highest-grossing media franchises of all time. Harry Potter and the Cursed Child is a play based on a story co-written by Rowling. -The success of the books and films has allowed the Harry Potter franchise to expand with numerous derivative works, a travelling exhibition that premiered in Chicago in 2009, a studio tour in London that opened in 2012, a digital platform on which J. K. Rowling updates the series with new information and insight, and a pentalogy of spin-off films premiering in November 2016 with Fantastic Beasts and Where to Find Them, among many other developments. Themed attractions, collectively known as The Wizarding World of Harry Potter, have been built at several Universal Parks & Resorts amusement parks around the world. -""" - -iface = gr.Interface(create_wc, - ["text", gr.inputs.Dropdown(["en", "es"]) ,"text", "image", "text"], - "pil", - examples = [[text_example, "en", "harry, potter", "glasses.png", "128,0,0"]], - title="Wordcloud", - description="Create a wordcloud from a text. Use the custom sw field to input custom stopwords separated by comma") - -iface.launch() diff --git a/spaces/DaleChen/AutoGPT/autogpt/speech/base.py b/spaces/DaleChen/AutoGPT/autogpt/speech/base.py deleted file mode 100644 index d74fa51be75b5078134c510b393a06deb0267b2a..0000000000000000000000000000000000000000 --- a/spaces/DaleChen/AutoGPT/autogpt/speech/base.py +++ /dev/null @@ -1,50 +0,0 @@ -"""Base class for all voice classes.""" -import abc -from threading import Lock - -from autogpt.config import AbstractSingleton - - -class VoiceBase(AbstractSingleton): - """ - Base class for all voice classes. - """ - - def __init__(self): - """ - Initialize the voice class. - """ - self._url = None - self._headers = None - self._api_key = None - self._voices = [] - self._mutex = Lock() - self._setup() - - def say(self, text: str, voice_index: int = 0) -> bool: - """ - Say the given text. - - Args: - text (str): The text to say. - voice_index (int): The index of the voice to use. - """ - with self._mutex: - return self._speech(text, voice_index) - - @abc.abstractmethod - def _setup(self) -> None: - """ - Setup the voices, API key, etc. - """ - pass - - @abc.abstractmethod - def _speech(self, text: str, voice_index: int = 0) -> bool: - """ - Play the given text. - - Args: - text (str): The text to play. - """ - pass diff --git a/spaces/DarwinAnim8or/Blip-Dalle3/README.md b/spaces/DarwinAnim8or/Blip-Dalle3/README.md deleted file mode 100644 index b983d42b6dd1cf5ce236331958a16d523b7453bf..0000000000000000000000000000000000000000 --- a/spaces/DarwinAnim8or/Blip-Dalle3/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: Blip Dalle3 -emoji: šŸ¦€ -colorFrom: green -colorTo: purple -sdk: gradio -sdk_version: 3.47.1 -app_file: app.py -pinned: false -license: other ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/Dikshant09/disease-prediction-api/app.py b/spaces/Dikshant09/disease-prediction-api/app.py deleted file mode 100644 index 221ec6d5964c729a35d35e54e41a1dd69de2b3cd..0000000000000000000000000000000000000000 --- a/spaces/Dikshant09/disease-prediction-api/app.py +++ /dev/null @@ -1,56 +0,0 @@ -# Importing libraries -import numpy as np -from scipy.stats import mode -import warnings -import pickle - -import gradio as gr - -# Ignoring Warnings -warnings.filterwarnings("ignore") - -# Loading Saved Models -model = pickle.load(open('saved_final_rf_model.pkl', 'rb')) - -data_dict = {'symptom_index': {'Itching': 0, 'Skin Rash': 1, 'Nodal Skin Eruptions': 2, 'Continuous Sneezing': 3, 'Shivering': 4, 'Chills': 5, 'Joint Pain': 6, 'Stomach Pain': 7, 'Acidity': 8, 'Ulcers On Tongue': 9, 'Muscle Wasting': 10, 'Vomiting': 11, 'Burning Micturition': 12, 'Spotting urination': 13, 'Fatigue': 14, 'Weight Gain': 15, 'Anxiety': 16, 'Cold Hands And Feets': 17, 'Mood Swings': 18, 'Weight Loss': 19, 'Restlessness': 20, 'Lethargy': 21, 'Patches In Throat': 22, 'Irregular Sugar Level': 23, 'Cough': 24, 'High Fever': 25, 'Sunken Eyes': 26, 'Breathlessness': 27, 'Sweating': 28, 'Dehydration': 29, 'Indigestion': 30, 'Headache': 31, 'Yellowish Skin': 32, 'Dark Urine': 33, 'Nausea': 34, 'Loss Of Appetite': 35, 'Pain Behind The Eyes': 36, 'Back Pain': 37, 'Constipation': 38, 'Abdominal Pain': 39, 'Diarrhoea': 40, 'Mild Fever': 41, 'Yellow Urine': 42, 'Yellowing Of Eyes': 43, 'Acute Liver Failure': 44, 'Fluid Overload': 45, 'Swelling Of Stomach': 46, 'Swelled Lymph Nodes': 47, 'Malaise': 48, 'Blurred And Distorted Vision': 49, 'Phlegm': 50, 'Throat Irritation': 51, 'Redness Of Eyes': 52, 'Sinus Pressure': 53, 'Runny Nose': 54, 'Congestion': 55, 'Chest Pain': 56, 'Weakness In Limbs': 57, 'Fast Heart Rate': 58, 'Pain During Bowel Movements': 59, 'Pain In Anal Region': 60, 'Bloody Stool': 61, 'Irritation In Anus': 62, 'Neck Pain': 63, 'Dizziness': 64, 'Cramps': 65, 'Bruising': 66, 'Obesity': 67, 'Swollen Legs': 68, 'Swollen Blood Vessels': 69, 'Puffy Face And Eyes': 70, 'Enlarged Thyroid': 71, 'Brittle Nails': 72, 'Swollen Extremeties': 73, 'Excessive Hunger': 74, 'Extra Marital Contacts': 75, 'Drying And Tingling Lips': 76, 'Slurred Speech': 77, 'Knee Pain': 78, 'Hip Joint Pain': 79, 'Muscle Weakness': 80, 'Stiff Neck': 81, 'Swelling Joints': 82, 'Movement Stiffness': 83, 'Spinning Movements': 84, 'Loss Of Balance': 85, 'Unsteadiness': 86, 'Weakness Of One Body Side': 87, 'Loss Of Smell': 88, 'Bladder Discomfort': 89, 'Foul Smell Of urine': 90, 'Continuous Feel Of Urine': 91, 'Passage Of Gases': 92, 'Internal Itching': 93, 'Toxic Look (typhos)': 94, 'Depression': 95, 'Irritability': 96, 'Muscle Pain': 97, 'Altered Sensorium': 98, 'Red Spots Over Body': 99, 'Belly Pain': 100, 'Abnormal Menstruation': 101, 'Dischromic Patches': 102, 'Watering From Eyes': 103, 'Increased Appetite': 104, 'Polyuria': 105, 'Family History': 106, 'Mucoid Sputum': 107, 'Rusty Sputum': 108, 'Lack Of Concentration': 109, 'Visual Disturbances': 110, 'Receiving Blood Transfusion': 111, 'Receiving Unsterile Injections': 112, 'Coma': 113, 'Stomach Bleeding': 114, 'Distention Of Abdomen': 115, 'History Of Alcohol Consumption': 116, 'Fluid Overload.1': 117, 'Blood In Sputum': 118, 'Prominent Veins On Calf': 119, 'Palpitations': 120, 'Painful Walking': 121, 'Pus Filled Pimples': 122, 'Blackheads': 123, 'Scurring': 124, 'Skin Peeling': 125, 'Silver Like Dusting': 126, 'Small Dents In Nails': 127, 'Inflammatory Nails': 128, 'Blister': 129, 'Red Sore Around Nose': 130, 'Yellow Crust Ooze': 131}, - 'predictions_classes': ['(vertigo) Paroymsal Positional Vertigo', 'AIDS', 'Acne', - 'Alcoholic hepatitis', 'Allergy', 'Arthritis', 'Bronchial Asthma', - 'Cervical spondylosis', 'Chicken pox', 'Chronic cholestasis', - 'Common Cold', 'Dengue', 'Diabetes ', - 'Dimorphic hemmorhoids(piles)', 'Drug Reaction', - 'Fungal infection', 'GERD', 'Gastroenteritis', 'Heart attack', - 'Hepatitis B', 'Hepatitis C', 'Hepatitis D', 'Hepatitis E', - 'Hypertension ', 'Hyperthyroidism', 'Hypoglycemia', - 'Hypothyroidism', 'Impetigo', 'Jaundice', 'Malaria', 'Migraine', - 'Osteoarthristis', 'Paralysis (brain hemorrhage)', - 'Peptic ulcer diseae', 'Pneumonia', 'Psoriasis', 'Tuberculosis', - 'Typhoid', 'Urinary tract infection', 'Varicose veins', - 'hepatitis A']} - -def predictDisease(symptoms): - symptoms = symptoms.split(",") - - # creating input data for the models - input_data = [0] * len(data_dict["symptom_index"]) - for symptom in symptoms: - index = data_dict["symptom_index"][symptom] - input_data[index] = 1 - - # reshaping the input data and converting it - # into suitable format for model predictions - input_data = np.array(input_data).reshape(1,-1) - - # generating individual outputs - prediction = data_dict["predictions_classes"][model.predict(input_data)[0]] - - # making final prediction by taking mode of all predictions - final_prediction = mode([prediction])[0][0] - return final_prediction - -# Input: Systoms -# Output: Disease -def makePrediction(Enter_Symptom): - return predictDisease(Enter_Symptom) - -iface = gr.Interface(fn = makePrediction, inputs = "text", outputs = "text") -iface.launch() \ No newline at end of file diff --git a/spaces/Dinoking/Guccio-AI-Designer/netdissect/upsegmodel/prroi_pool/prroi_pool.py b/spaces/Dinoking/Guccio-AI-Designer/netdissect/upsegmodel/prroi_pool/prroi_pool.py deleted file mode 100644 index 998b2b80531058fa91ac138e79ae39c5c0174601..0000000000000000000000000000000000000000 --- a/spaces/Dinoking/Guccio-AI-Designer/netdissect/upsegmodel/prroi_pool/prroi_pool.py +++ /dev/null @@ -1,28 +0,0 @@ -#! /usr/bin/env python3 -# -*- coding: utf-8 -*- -# File : prroi_pool.py -# Author : Jiayuan Mao, Tete Xiao -# Email : maojiayuan@gmail.com, jasonhsiao97@gmail.com -# Date : 07/13/2018 -# -# This file is part of PreciseRoIPooling. -# Distributed under terms of the MIT license. -# Copyright (c) 2017 Megvii Technology Limited. - -import torch.nn as nn - -from .functional import prroi_pool2d - -__all__ = ['PrRoIPool2D'] - - -class PrRoIPool2D(nn.Module): - def __init__(self, pooled_height, pooled_width, spatial_scale): - super().__init__() - - self.pooled_height = int(pooled_height) - self.pooled_width = int(pooled_width) - self.spatial_scale = float(spatial_scale) - - def forward(self, features, rois): - return prroi_pool2d(features, rois, self.pooled_height, self.pooled_width, self.spatial_scale) diff --git a/spaces/Dorado607/ChuanhuChatGPT/assets/html/billing_info.html b/spaces/Dorado607/ChuanhuChatGPT/assets/html/billing_info.html deleted file mode 100644 index 71abcc802da3c70716919c1a4738ac077c47bf01..0000000000000000000000000000000000000000 --- a/spaces/Dorado607/ChuanhuChatGPT/assets/html/billing_info.html +++ /dev/null @@ -1,9 +0,0 @@ -{label} -
    -
    - {usage_percent}% -
    -
    -
    - ${rounded_usage}${usage_limit} -
    \ No newline at end of file diff --git a/spaces/ECCV2022/PSG/OpenPSG/configs/psgformer/psgformer_r101_psg.py b/spaces/ECCV2022/PSG/OpenPSG/configs/psgformer/psgformer_r101_psg.py deleted file mode 100644 index 7055248f2307ca9b32f7efe3c6a65f118019a0c7..0000000000000000000000000000000000000000 --- a/spaces/ECCV2022/PSG/OpenPSG/configs/psgformer/psgformer_r101_psg.py +++ /dev/null @@ -1,16 +0,0 @@ -_base_ = './psgformer_r50_psg.py' - -model = dict(backbone=dict( - depth=101, - init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101'))) - -# learning policy -lr_config = dict(policy='step', step=48) -runner = dict(type='EpochBasedRunner', max_epochs=60) - -project_name = 'psgformer' -expt_name = 'psgformer_r101_psg' -work_dir = f'./work_dirs/{expt_name}' -checkpoint_config = dict(interval=12, max_keep_ckpts=10) - -load_from = './work_dirs/checkpoints/detr4psgformer_r101.pth' diff --git a/spaces/EleutherAI/clip-guided-diffusion/app.py b/spaces/EleutherAI/clip-guided-diffusion/app.py deleted file mode 100644 index d65b3cd753e35c5f6750026c58e0d485a38ef247..0000000000000000000000000000000000000000 --- a/spaces/EleutherAI/clip-guided-diffusion/app.py +++ /dev/null @@ -1,226 +0,0 @@ -import os -import sys -import gradio as gr -os.system('git clone https://github.com/openai/CLIP') -os.system('git clone https://github.com/crowsonkb/guided-diffusion') -os.system('pip install -e ./CLIP') -os.system('pip install -e ./guided-diffusion') -os.system('pip install lpips') -os.system("curl -OL 'https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion_uncond.pt'") - - - -import io -import math -import sys -import lpips -from PIL import Image -import requests -import torch -from torch import nn -from torch.nn import functional as F -from torchvision import transforms -from torchvision.transforms import functional as TF -from tqdm.notebook import tqdm -sys.path.append('./CLIP') -sys.path.append('./guided-diffusion') -import clip -from guided_diffusion.script_util import create_model_and_diffusion, model_and_diffusion_defaults -import numpy as np -import imageio - -torch.hub.download_url_to_file('https://images.pexels.com/photos/68767/divers-underwater-ocean-swim-68767.jpeg', 'coralreef.jpeg') - -def fetch(url_or_path): - if str(url_or_path).startswith('http://') or str(url_or_path).startswith('https://'): - r = requests.get(url_or_path) - r.raise_for_status() - fd = io.BytesIO() - fd.write(r.content) - fd.seek(0) - return fd - return open(url_or_path, 'rb') -def parse_prompt(prompt): - if prompt.startswith('http://') or prompt.startswith('https://'): - vals = prompt.rsplit(':', 2) - vals = [vals[0] + ':' + vals[1], *vals[2:]] - else: - vals = prompt.rsplit(':', 1) - vals = vals + ['', '1'][len(vals):] - return vals[0], float(vals[1]) -class MakeCutouts(nn.Module): - def __init__(self, cut_size, cutn, cut_pow=1.): - super().__init__() - self.cut_size = cut_size - self.cutn = cutn - self.cut_pow = cut_pow - def forward(self, input): - sideY, sideX = input.shape[2:4] - max_size = min(sideX, sideY) - min_size = min(sideX, sideY, self.cut_size) - cutouts = [] - for _ in range(self.cutn): - size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size) - offsetx = torch.randint(0, sideX - size + 1, ()) - offsety = torch.randint(0, sideY - size + 1, ()) - cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size] - cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size)) - return torch.cat(cutouts) -def spherical_dist_loss(x, y): - x = F.normalize(x, dim=-1) - y = F.normalize(y, dim=-1) - return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) -def tv_loss(input): - """L2 total variation loss, as in Mahendran et al.""" - input = F.pad(input, (0, 1, 0, 1), 'replicate') - x_diff = input[..., :-1, 1:] - input[..., :-1, :-1] - y_diff = input[..., 1:, :-1] - input[..., :-1, :-1] - return (x_diff**2 + y_diff**2).mean([1, 2, 3]) -def range_loss(input): - return (input - input.clamp(-1, 1)).pow(2).mean([1, 2, 3]) - -def inference(text, init_image, skip_timesteps, clip_guidance_scale, tv_scale, range_scale, init_scale, seed, image_prompts,timestep_respacing, cutn): - # Model settings - model_config = model_and_diffusion_defaults() - model_config.update({ - 'attention_resolutions': '32, 16, 8', - 'class_cond': False, - 'diffusion_steps': 1000, - 'rescale_timesteps': True, - 'timestep_respacing': str(timestep_respacing), # Modify this value to decrease the number of - # timesteps. - 'image_size': 256, - 'learn_sigma': True, - 'noise_schedule': 'linear', - 'num_channels': 256, - 'num_head_channels': 64, - 'num_res_blocks': 2, - 'resblock_updown': True, - 'use_fp16': True, - 'use_scale_shift_norm': True, - }) - # Load models - device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') - print('Using device:', device) - model, diffusion = create_model_and_diffusion(**model_config) - model.load_state_dict(torch.load('256x256_diffusion_uncond.pt', map_location='cpu')) - model.requires_grad_(False).eval().to(device) - for name, param in model.named_parameters(): - if 'qkv' in name or 'norm' in name or 'proj' in name: - param.requires_grad_() - if model_config['use_fp16']: - model.convert_to_fp16() - clip_model = clip.load('ViT-B/16', jit=False)[0].eval().requires_grad_(False).to(device) - clip_size = clip_model.visual.input_resolution - normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], - std=[0.26862954, 0.26130258, 0.27577711]) - lpips_model = lpips.LPIPS(net='vgg').to(device) - -#def inference(text, init_image, skip_timesteps, clip_guidance_scale, tv_scale, range_scale, init_scale, seed, image_prompt): - all_frames = [] - prompts = [text] - if image_prompts: - image_prompts = [image_prompts.name] - else: - image_prompts = [] - batch_size = 1 - clip_guidance_scale = clip_guidance_scale # Controls how much the image should look like the prompt. - tv_scale = tv_scale # Controls the smoothness of the final output. - range_scale = range_scale # Controls how far out of range RGB values are allowed to be. - cutn = cutn - n_batches = 1 - if init_image: - init_image = init_image.name - else: - init_image = None # This can be an URL or Colab local path and must be in quotes. - skip_timesteps = skip_timesteps # This needs to be between approx. 200 and 500 when using an init image. - # Higher values make the output look more like the init. - init_scale = init_scale # This enhances the effect of the init image, a good value is 1000. - seed = seed - - if seed is not None: - torch.manual_seed(seed) - make_cutouts = MakeCutouts(clip_size, cutn) - side_x = side_y = model_config['image_size'] - target_embeds, weights = [], [] - for prompt in prompts: - txt, weight = parse_prompt(prompt) - target_embeds.append(clip_model.encode_text(clip.tokenize(txt).to(device)).float()) - weights.append(weight) - for prompt in image_prompts: - path, weight = parse_prompt(prompt) - img = Image.open(fetch(path)).convert('RGB') - img = TF.resize(img, min(side_x, side_y, *img.size), transforms.InterpolationMode.LANCZOS) - batch = make_cutouts(TF.to_tensor(img).unsqueeze(0).to(device)) - embed = clip_model.encode_image(normalize(batch)).float() - target_embeds.append(embed) - weights.extend([weight / cutn] * cutn) - target_embeds = torch.cat(target_embeds) - weights = torch.tensor(weights, device=device) - if weights.sum().abs() < 1e-3: - raise RuntimeError('The weights must not sum to 0.') - weights /= weights.sum().abs() - init = None - if init_image is not None: - init = Image.open(fetch(init_image)).convert('RGB') - init = init.resize((side_x, side_y), Image.LANCZOS) - init = TF.to_tensor(init).to(device).unsqueeze(0).mul(2).sub(1) - cur_t = None - def cond_fn(x, t, y=None): - with torch.enable_grad(): - x = x.detach().requires_grad_() - n = x.shape[0] - my_t = torch.ones([n], device=device, dtype=torch.long) * cur_t - out = diffusion.p_mean_variance(model, x, my_t, clip_denoised=False, model_kwargs={'y': y}) - fac = diffusion.sqrt_one_minus_alphas_cumprod[cur_t] - x_in = out['pred_xstart'] * fac + x * (1 - fac) - clip_in = normalize(make_cutouts(x_in.add(1).div(2))) - image_embeds = clip_model.encode_image(clip_in).float() - dists = spherical_dist_loss(image_embeds.unsqueeze(1), target_embeds.unsqueeze(0)) - dists = dists.view([cutn, n, -1]) - losses = dists.mul(weights).sum(2).mean(0) - tv_losses = tv_loss(x_in) - range_losses = range_loss(out['pred_xstart']) - loss = losses.sum() * clip_guidance_scale + tv_losses.sum() * tv_scale + range_losses.sum() * range_scale - if init is not None and init_scale: - init_losses = lpips_model(x_in, init) - loss = loss + init_losses.sum() * init_scale - return -torch.autograd.grad(loss, x)[0] - if model_config['timestep_respacing'].startswith('ddim'): - sample_fn = diffusion.ddim_sample_loop_progressive - else: - sample_fn = diffusion.p_sample_loop_progressive - for i in range(n_batches): - cur_t = diffusion.num_timesteps - skip_timesteps - 1 - samples = sample_fn( - model, - (batch_size, 3, side_y, side_x), - clip_denoised=False, - model_kwargs={}, - cond_fn=cond_fn, - progress=True, - skip_timesteps=skip_timesteps, - init_image=init, - randomize_class=True, - ) - for j, sample in enumerate(samples): - cur_t -= 1 - if j % 1 == 0 or cur_t == -1: - print() - for k, image in enumerate(sample['pred_xstart']): - #filename = f'progress_{i * batch_size + k:05}.png' - img = TF.to_pil_image(image.add(1).div(2).clamp(0, 1)) - all_frames.append(img) - tqdm.write(f'Batch {i}, step {j}, output {k}:') - #display.display(display.Image(filename)) - writer = imageio.get_writer('video.mp4', fps=5) - for im in all_frames: - writer.append_data(np.array(im)) - writer.close() - return img, 'video.mp4' - -title = "CLIP Guided Diffusion HQ" -description = "Gradio demo for CLIP Guided Diffusion. To use it, simply add your text, or click one of the examples to load them. Read more at the links below." -article = "

    By Katherine Crowson (https://github.com/crowsonkb, https://twitter.com/RiversHaveWings). It uses OpenAI's 256x256 unconditional ImageNet diffusion model (https://github.com/openai/guided-diffusion) together with CLIP (https://github.com/openai/CLIP) to connect text prompts with images. | Colab

    " -iface = gr.Interface(inference, inputs=["text",gr.inputs.Image(type="file", label='initial image (optional)', optional=True),gr.inputs.Slider(minimum=0, maximum=45, step=1, default=10, label="skip_timesteps"), gr.inputs.Slider(minimum=0, maximum=3000, step=1, default=600, label="clip guidance scale (Controls how much the image should look like the prompt)"), gr.inputs.Slider(minimum=0, maximum=1000, step=1, default=0, label="tv_scale (Controls the smoothness of the final output)"), gr.inputs.Slider(minimum=0, maximum=1000, step=1, default=0, label="range_scale (Controls how far out of range RGB values are allowed to be)"), gr.inputs.Slider(minimum=0, maximum=1000, step=1, default=0, label="init_scale (This enhances the effect of the init image)"), gr.inputs.Number(default=0, label="Seed"), gr.inputs.Image(type="file", label='image prompt (optional)', optional=True), gr.inputs.Slider(minimum=50, maximum=500, step=1, default=50, label="timestep respacing"),gr.inputs.Slider(minimum=1, maximum=64, step=1, default=32, label="cutn")], outputs=["image","video"], title=title, description=description, article=article, examples=[["coral reef city by artistation artists", "coralreef.jpeg", 0, 1000, 150, 50, 0, 0, "coralreef.jpeg", 90, 32]]) -iface.launch() \ No newline at end of file diff --git a/spaces/EvanMarie/hot_or_not/app.py b/spaces/EvanMarie/hot_or_not/app.py deleted file mode 100644 index 0bdda0067267998dc2479717a19ae7229e773f63..0000000000000000000000000000000000000000 --- a/spaces/EvanMarie/hot_or_not/app.py +++ /dev/null @@ -1,22 +0,0 @@ -__all__ = ['learner_faces', 'categories', 'classify_faces', 'image', 'label', 'examples', 'intf'] - -from fastai.vision.all import * -import gradio as gr - - -learner_attractiveness = load_learner('hotornot.pk1') -categories = ['average','hot', 'or not'] - -def classify_attractiveness(img): - prediction, index, probability = learner_attractiveness.predict(img) - return dict(zip(categories, map(float, probability))) - -intf = gr.Interface(fn=classify_attractiveness, - inputs=gr.Image(shape=(192, 192)), - outputs=gr.Label(), - title="Is an Image Hot or Not?", - description="Input an image, and see if the biased internet gods think it is hot! I suggest NOT using pictures of yourself. It is not as fun. Put your dog or cat or chinchilla in here instead! You can see what the deep learning model sees when you have input enough of them.", - examples=['img01.jpg', 'img02.jpg', 'img04.jpg', 'img05.jpg', 'img06.jpg', 'img07.jpeg', 'img08.jpg', 'img09.jpg', 'img10.jpg', 'img11.jpg', 'img12.jpg', 'img13.jpg', 'img14.jpg']) -intf.launch(inline=False) - - diff --git a/spaces/Flux9665/IMS-Toucan/Preprocessing/ArticulatoryCombinedTextFrontend.py b/spaces/Flux9665/IMS-Toucan/Preprocessing/ArticulatoryCombinedTextFrontend.py deleted file mode 100644 index fa1ddbce6d5fea5bbe5588cd35fd67563062f631..0000000000000000000000000000000000000000 --- a/spaces/Flux9665/IMS-Toucan/Preprocessing/ArticulatoryCombinedTextFrontend.py +++ /dev/null @@ -1,323 +0,0 @@ -import re -import sys - -import panphon -import phonemizer -import torch - -from Preprocessing.papercup_features import generate_feature_table - - -class ArticulatoryCombinedTextFrontend: - - def __init__(self, - language, - use_word_boundaries=False, # goes together well with - # parallel models and an aligner. Doesn't go together - # well with autoregressive models. - use_explicit_eos=True, - use_prosody=False, # unfortunately the non-segmental - # nature of prosodic markers mixed with the sequential - # phonemes hurts the performance of end-to-end models a - # lot, even though one might think enriching the input - # with such information would help. - use_lexical_stress=False, - silent=True, - allow_unknown=False, - add_silence_to_end=True, - strip_silence=True): - """ - Mostly preparing ID lookups - """ - self.strip_silence = strip_silence - self.use_word_boundaries = use_word_boundaries - self.allow_unknown = allow_unknown - self.use_explicit_eos = use_explicit_eos - self.use_prosody = use_prosody - self.use_stress = use_lexical_stress - self.add_silence_to_end = add_silence_to_end - self.feature_table = panphon.FeatureTable() - - if language == "en": - self.g2p_lang = "en-us" - self.expand_abbreviations = english_text_expansion - if not silent: - print("Created an English Text-Frontend") - - elif language == "de": - self.g2p_lang = "de" - self.expand_abbreviations = lambda x: x - if not silent: - print("Created a German Text-Frontend") - - elif language == "el": - self.g2p_lang = "el" - self.expand_abbreviations = lambda x: x - if not silent: - print("Created a Greek Text-Frontend") - - elif language == "es": - self.g2p_lang = "es" - self.expand_abbreviations = lambda x: x - if not silent: - print("Created a Spanish Text-Frontend") - - elif language == "fi": - self.g2p_lang = "fi" - self.expand_abbreviations = lambda x: x - if not silent: - print("Created a Finnish Text-Frontend") - - elif language == "ru": - self.g2p_lang = "ru" - self.expand_abbreviations = lambda x: x - if not silent: - print("Created a Russian Text-Frontend") - - elif language == "hu": - self.g2p_lang = "hu" - self.expand_abbreviations = lambda x: x - if not silent: - print("Created a Hungarian Text-Frontend") - - elif language == "nl": - self.g2p_lang = "nl" - self.expand_abbreviations = lambda x: x - if not silent: - print("Created a Dutch Text-Frontend") - - elif language == "fr": - self.g2p_lang = "fr-fr" - self.expand_abbreviations = lambda x: x - if not silent: - print("Created a French Text-Frontend") - - elif language == "it": - self.g2p_lang = "it" - self.expand_abbreviations = lambda x: x - if not silent: - print("Created a Italian Text-Frontend") - - elif language == "pt": - self.g2p_lang = "pt" - self.expand_abbreviations = lambda x: x - if not silent: - print("Created a Portuguese Text-Frontend") - - elif language == "pl": - self.g2p_lang = "pl" - self.expand_abbreviations = lambda x: x - if not silent: - print("Created a Polish Text-Frontend") - - # remember to also update get_language_id() when adding something here - - else: - print("Language not supported yet") - sys.exit() - - self.phone_to_vector_papercup = generate_feature_table() - - self.phone_to_vector = dict() - for phone in self.phone_to_vector_papercup: - panphon_features = self.feature_table.word_to_vector_list(phone, numeric=True) - if panphon_features == []: - panphon_features = [[0] * 24] - papercup_features = self.phone_to_vector_papercup[phone] - self.phone_to_vector[phone] = papercup_features + panphon_features[0] - - self.phone_to_id = { # this lookup must be updated manually, because the only - # other way would be extracting them from a set, which can be non-deterministic - '~': 0, - '#': 1, - '?': 2, - '!': 3, - '.': 4, - 'ɜ': 5, - 'É«': 6, - 'ə': 7, - 'ɚ': 8, - 'a': 9, - 'ư': 10, - 'ɛ': 11, - 'ÉŖ': 12, - 'įµ»': 13, - 'ŋ': 14, - 'ɔ': 15, - 'ɒ': 16, - 'ɾ': 17, - 'ʃ': 18, - 'Īø': 19, - 'ʊ': 20, - 'ʌ': 21, - 'Ź’': 22, - 'Ʀ': 23, - 'b': 24, - 'Ź”': 25, - 'd': 26, - 'e': 27, - 'f': 28, - 'g': 29, - 'h': 30, - 'i': 31, - 'j': 32, - 'k': 33, - 'l': 34, - 'm': 35, - 'n': 36, - 'ɳ': 37, - 'o': 38, - 'p': 39, - 'É”': 40, - 'ɹ': 41, - 'r': 42, - 's': 43, - 't': 44, - 'u': 45, - 'v': 46, - 'w': 47, - 'x': 48, - 'z': 49, - 'Ź€': 50, - 'Ćø': 51, - 'Ƨ': 52, - 'ɐ': 53, - 'œ': 54, - 'y': 55, - 'Ź': 56, - 'ɑ': 57, - 'c': 58, - 'ɲ': 59, - 'É£': 60, - 'ŹŽ': 61, - 'β': 62, - 'Ź': 63, - 'ɟ': 64, - 'q': 65, - 'ɕ': 66, - 'ʲ': 67, - 'É­': 68, - 'ɵ': 69, - 'Ź‘': 70, - 'Ź‹': 71, - 'ʁ': 72, - 'ÉØ': 73, - 'Ź‚': 74, - 'ɬ': 75, - } # for the states of the ctc loss and dijkstra/mas in the aligner - - self.id_to_phone = {v: k for k, v in self.phone_to_id.items()} - - def string_to_tensor(self, text, view=False, device="cpu", handle_missing=True, input_phonemes=False): - """ - Fixes unicode errors, expands some abbreviations, - turns graphemes into phonemes and then vectorizes - the sequence as articulatory features - """ - if input_phonemes: - phones = text - else: - phones = self.get_phone_string(text=text, include_eos_symbol=True) - if view: - print("Phonemes: \n{}\n".format(phones)) - phones_vector = list() - # turn into numeric vectors - for char in phones: - if handle_missing: - try: - phones_vector.append(self.phone_to_vector[char]) - except KeyError: - print("unknown phoneme: {}".format(char)) - else: - phones_vector.append(self.phone_to_vector[char]) # leave error handling to elsewhere - - return torch.Tensor(phones_vector, device=device) - - def get_phone_string(self, text, include_eos_symbol=True): - # expand abbreviations - utt = self.expand_abbreviations(text) - # phonemize - phones = phonemizer.phonemize(utt, - language_switch='remove-flags', - backend="espeak", - language=self.g2p_lang, - preserve_punctuation=True, - strip=True, - punctuation_marks=';:,.!?”¿—…"Ā«Ā»ā€œā€~/', - with_stress=self.use_stress).replace(";", ",").replace("/", " ").replace("—", "") \ - .replace(":", ",").replace('"', ",").replace("-", ",").replace("...", ",").replace("-", ",").replace("\n", " ") \ - .replace("\t", " ").replace("Ā”", "").replace("Āæ", "").replace(",", "~").replace(" ̃", "").replace('Ģ©', "").replace("̃", "").replace("ĢŖ", "") - # less than 1 wide characters hidden here - phones = re.sub("~+", "~", phones) - if not self.use_prosody: - # retain ~ as heuristic pause marker, even though all other symbols are removed with this option. - # also retain . ? and ! since they can be indicators for the stop token - phones = phones.replace("ˌ", "").replace("ː", "").replace("Ė‘", "") \ - .replace("˘", "").replace("|", "").replace("‖", "") - if not self.use_word_boundaries: - phones = phones.replace(" ", "") - else: - phones = re.sub(r"\s+", " ", phones) - phones = re.sub(" ", "~", phones) - if self.strip_silence: - phones = phones.lstrip("~").rstrip("~") - if self.add_silence_to_end: - phones += "~" # adding a silence in the end during add_silence_to_end produces more natural sounding prosody - if include_eos_symbol: - phones += "#" - - phones = "~" + phones - phones = re.sub("~+", "~", phones) - - return phones - - -def english_text_expansion(text): - """ - Apply as small part of the tacotron style text cleaning pipeline, suitable for e.g. LJSpeech. - See https://github.com/keithito/tacotron/ - Careful: Only apply to english datasets. Different languages need different cleaners. - """ - _abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in - [('Mrs.', 'misess'), ('Mr.', 'mister'), ('Dr.', 'doctor'), ('St.', 'saint'), ('Co.', 'company'), ('Jr.', 'junior'), ('Maj.', 'major'), - ('Gen.', 'general'), ('Drs.', 'doctors'), ('Rev.', 'reverend'), ('Lt.', 'lieutenant'), ('Hon.', 'honorable'), ('Sgt.', 'sergeant'), - ('Capt.', 'captain'), ('Esq.', 'esquire'), ('Ltd.', 'limited'), ('Col.', 'colonel'), ('Ft.', 'fort')]] - for regex, replacement in _abbreviations: - text = re.sub(regex, replacement, text) - return text - - -def get_language_id(language): - if language == "en": - return torch.LongTensor([12]) - elif language == "de": - return torch.LongTensor([1]) - elif language == "el": - return torch.LongTensor([2]) - elif language == "es": - return torch.LongTensor([3]) - elif language == "fi": - return torch.LongTensor([4]) - elif language == "ru": - return torch.LongTensor([5]) - elif language == "hu": - return torch.LongTensor([6]) - elif language == "nl": - return torch.LongTensor([7]) - elif language == "fr": - return torch.LongTensor([8]) - elif language == "pt": - return torch.LongTensor([9]) - elif language == "pl": - return torch.LongTensor([10]) - elif language == "it": - return torch.LongTensor([11]) - - -if __name__ == '__main__': - # test an English utterance - tfr_en = ArticulatoryCombinedTextFrontend(language="en") - print(tfr_en.string_to_tensor("This is a complex sentence, it even has a pause! But can it do this? Nice.", view=True)) - - tfr_en = ArticulatoryCombinedTextFrontend(language="de") - print(tfr_en.string_to_tensor("Alles klar, jetzt testen wir einen deutschen Satz. Ich hoffe es gibt nicht mehr viele unspezifizierte Phoneme.", view=True)) diff --git a/spaces/FrankZxShen/so-vits-svc-models-ba/vencoder/HubertSoft_Onnx.py b/spaces/FrankZxShen/so-vits-svc-models-ba/vencoder/HubertSoft_Onnx.py deleted file mode 100644 index 06f10a4ca79c429ed59ab9743578128e8db506cc..0000000000000000000000000000000000000000 --- a/spaces/FrankZxShen/so-vits-svc-models-ba/vencoder/HubertSoft_Onnx.py +++ /dev/null @@ -1,28 +0,0 @@ -from vencoder.encoder import SpeechEncoder -import onnxruntime -import torch - -class HubertSoft_Onnx(SpeechEncoder): - def __init__(self,vec_path = "pretrain/hubert-soft.onnx",device=None): - print("load model(s) from {}".format(vec_path)) - self.hidden_dim = 256 - if device is None: - self.dev = torch.device("cpu") - else: - self.dev = torch.device(device) - if device == 'cpu' or device == torch.device("cpu") or device is None: - providers = ['CPUExecutionProvider'] - elif device == 'cuda' or device == torch.device("cuda"): - providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] - self.model = onnxruntime.InferenceSession(vec_path, providers=providers) - - def encoder(self, wav): - feats = wav - if feats.dim() == 2: # double channels - feats = feats.mean(-1) - assert feats.dim() == 1, feats.dim() - feats = feats.view(1, -1) - feats = feats.unsqueeze(0).cpu().detach().numpy() - onnx_input = {self.model.get_inputs()[0].name: feats} - logits = self.model.run(None, onnx_input) - return torch.tensor(logits[0]).transpose(1, 2).to(self.dev) \ No newline at end of file diff --git a/spaces/GT-RIPL/GPT-K/model/gptk.py b/spaces/GT-RIPL/GPT-K/model/gptk.py deleted file mode 100644 index 4e05a51ede68b16091b038e00a0aa16867197c44..0000000000000000000000000000000000000000 --- a/spaces/GT-RIPL/GPT-K/model/gptk.py +++ /dev/null @@ -1,503 +0,0 @@ -import logging -from omegaconf import OmegaConf -import copy - -import spacy -import torch -from torch import nn -from torchvision import transforms as T -from torchvision.transforms.functional import InterpolationMode -from transformers import LlamaTokenizer, BertTokenizer, BitsAndBytesConfig - -import sys -sys.path.append("./") -from model.knwl_model import KnwlModel, KnwlEncoder -from model.utils import drop_sequence_mask, cat_pad, disabled_train, download_cached_file -from model.eva_vit import create_eva_vit_g -from model.qformer import BertConfig, BertLMHeadModel -from model.llama import LlamaForCausalLM, LlamaConfig - - -class GPTK(nn.Module): - def __init__( - self, - img_size=224, - drop_path_rate=0, - use_grad_checkpoint=True, - vit_precision="fp16", - num_query_token=32, - llm_model="", - prompt="", - max_txt_len=128, - max_output_txt_len=256, - d_knwl=768, - topk={}, - pc=0.1, - pt=0.1, - pv=0.1 - ): - super().__init__() - - self.topk = {k: v for k, v in topk.items() if v > 0} - self.pc = pc - self.pt = pt - self.pv = pv - - # LLM - self.llm_tokenizer = LlamaTokenizer.from_pretrained(llm_model, use_fast=False, truncation_side="left") - llm_config = LlamaConfig.from_pretrained(llm_model) - llm_config.gradient_checkpointing = True - llm_config.use_cache = True - quantization_config = BitsAndBytesConfig( - load_in_8bit=True, - llm_int8_threshold=6.0, - llm_int8_has_fp16_weight=False, - bnb_4bit_compute_dtype=torch.float16, - bnb_4bit_use_double_quant=True, - bnb_4bit_quant_type='nf4' - ) - self.llm_model = LlamaForCausalLM.from_pretrained( - llm_model, config=llm_config, torch_dtype=torch.float16, quantization_config=quantization_config - ) - self.llm_tokenizer.add_special_tokens({'pad_token': '[PAD]'}) - self.llm_tokenizer.add_special_tokens({'bos_token': ''}) - self.llm_tokenizer.add_special_tokens({'eos_token': ''}) - self.llm_tokenizer.add_special_tokens({'unk_token': ''}) - self.llm_model.resize_token_embeddings(len(self.llm_tokenizer)) - for name, param in self.llm_model.named_parameters(): - param.requires_grad = False - - # ViT image encoder - self.visual_encoder, self.ln_vision = self.init_vision_encoder( - img_size, drop_path_rate, use_grad_checkpoint, vit_precision - ) - for name, param in self.visual_encoder.named_parameters(): - param.requires_grad = False - self.visual_encoder = self.visual_encoder.eval() - self.visual_encoder.train = disabled_train - logging.info("freeze vision encoder") - - # Q-former - self.tokenizer = self.init_tokenizer(truncation_side="left") - self.Qformer, self.query_tokens = self.init_Qformer( - num_query_token, self.visual_encoder.num_features - ) - self.Qformer.resize_token_embeddings(len(self.tokenizer)) - self.Qformer.cls = None - self.llm_proj = nn.Linear( - self.Qformer.config.hidden_size, self.llm_model.config.hidden_size - ) - - # Knowledge modules - if len(self.topk) > 0: # all added modules must contain "knwl" in their names - self.knwl_encoder = KnwlEncoder(self.visual_encoder.num_features) - self.knwl_query = copy.deepcopy(self.query_tokens) - for k in self.topk.keys(): - m = KnwlModel(d_knwl=d_knwl, d_out=self.knwl_encoder.d, pt=pt) - setattr(self, f"knwl_{k}", m) - - self.max_txt_len = max_txt_len - self.max_output_txt_len = max_output_txt_len - self.prompt = prompt - prompt_tokens = self.llm_tokenizer(self.prompt, return_tensors="pt") - self.prompt_length = prompt_tokens.attention_mask.sum(1) - - @classmethod - def init_tokenizer(cls, truncation_side="right"): - tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", truncation_side=truncation_side) - tokenizer.add_special_tokens({"bos_token": "[DEC]"}) - return tokenizer - - @classmethod - def init_Qformer(cls, num_query_token, vision_width, cross_attention_freq=2): - encoder_config = BertConfig.from_pretrained("bert-base-uncased") - encoder_config.encoder_width = vision_width - # insert cross-attention layer every other block - encoder_config.add_cross_attention = True - encoder_config.cross_attention_freq = cross_attention_freq - encoder_config.query_length = num_query_token - - logging.disable(logging.CRITICAL) - Qformer = BertLMHeadModel.from_pretrained( - "bert-base-uncased", config=encoder_config - ) - logging.disable(logging.NOTSET) - - query_tokens = nn.Parameter( - torch.zeros(1, num_query_token, encoder_config.hidden_size) - ) - query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range) - return Qformer, query_tokens - - @classmethod - def init_vision_encoder(cls, img_size, drop_path_rate, use_grad_checkpoint, precision): - visual_encoder = create_eva_vit_g( - img_size, drop_path_rate, use_grad_checkpoint, precision - ) - ln_vision = nn.LayerNorm(visual_encoder.num_features) - - return visual_encoder, ln_vision - - def concat_text_input_output(self, input_ids, input_atts, output_ids, output_atts): - input_part_targets_len = [] - llm_tokens = {"input_ids": [], "attention_mask": []} - for i in range(input_ids.size(0)): - this_input_ones = input_atts[i].sum() - input_part_targets_len.append(this_input_ones) - llm_tokens['input_ids'].append( - torch.cat([ - input_ids[i][:this_input_ones], - output_ids[i][1:], - input_ids[i][this_input_ones:] - ]) - ) - llm_tokens['attention_mask'].append( - torch.cat([ - input_atts[i][:this_input_ones], - output_atts[i][1:], - input_atts[i][this_input_ones:] - ]) - ) - llm_tokens['input_ids'] = torch.stack(llm_tokens['input_ids']) - llm_tokens['attention_mask'] = torch.stack(llm_tokens['attention_mask']) - - return llm_tokens, input_part_targets_len - - def forward_qformer(self, image, knowledge, prompt): - views = [] - - # knowledge embeds - if len(self.topk) > 0 and knowledge is not None: - embeds, masks = [], [] - for k in knowledge.keys(): - embeds_k, masks_k = getattr(self, f"knwl_{k}")(knowledge[k]) - embeds.append(embeds_k) - masks.append(masks_k) - embeds = cat_pad(embeds, cat_dim=0, pad_dim=1) - masks = cat_pad(masks, cat_dim=0, pad_dim=1) - - embeds = self.knwl_encoder( - inputs_embeds=embeds, attention_mask=masks - ) - embeds = nn.functional.dropout( - embeds, p=self.pc, training=self.training - ) - - N, (S, d) = len(image), embeds.shape[1:] - embeds = embeds.reshape(-1, N, S, d) - embeds = embeds.transpose(0, 1).flatten(1, 2) - masks = masks.reshape(-1, N, S) - masks = masks.transpose(0, 1).flatten(1, 2) - views.append((embeds, masks, self.knwl_query)) - - # image embeds - embeds = self.ln_vision(self.visual_encoder(image)) - embeds = nn.functional.dropout( - embeds, p=self.pc, training=self.training - ) - masks = drop_sequence_mask( - *embeds.shape[:2], image.device, self.pt, self.training - ) - views.append((embeds, masks, self.query_tokens)) - - # Qformer forward - text_Qformer = self.tokenizer( - prompt, - padding='longest', - truncation=True, - max_length=self.max_txt_len, - return_tensors="pt", - ).to(image.device) - - qfm_embeds, qfm_masks = [], [] - for embeds, masks, query in views: - query = query.expand(image.shape[0], -1, -1) - query_atts = torch.ones(query.size()[:-1], dtype=torch.long).to(embeds.device) - Qformer_atts = torch.cat([query_atts, text_Qformer.attention_mask], dim=1) - - query_output = self.Qformer.bert( - text_Qformer.input_ids, - attention_mask=Qformer_atts, - query_embeds=query, - encoder_hidden_states=embeds, - encoder_attention_mask=masks, - return_dict=True, - ) - embeds = self.llm_proj(query_output.last_hidden_state[:, :query.size(1),:]) - masks = torch.ones(embeds.size()[:-1], dtype=torch.long).to(image.device) - qfm_embeds.append(embeds) - qfm_masks.append(masks) - - # drop views - if self.training: - view_masks = drop_sequence_mask(len(image), len(qfm_embeds), image.device, self.pv) - qfm_masks = [m * view_masks[:, i:(i+1)] for i, m in enumerate(qfm_masks)] - llm_embeds = torch.cat(qfm_embeds, dim=1) - llm_masks = torch.cat(qfm_masks, dim=1) - - return llm_embeds, llm_masks - - def forward(self, samples): - inputs_llm, atts_llm = self.forward_qformer( - samples["image"], samples["knowledge"], samples["prompt"] - ) - device = inputs_llm.device - - self.llm_tokenizer.padding_side = "right" - self.llm_tokenizer.truncation_side = 'left' - text_input_tokens = self.llm_tokenizer( - samples['prompt'], - return_tensors="pt", - padding="longest", - truncation=True, - max_length=self.max_txt_len, - ).to(device) - - self.llm_tokenizer.truncation_side = 'right' - text_output_tokens = self.llm_tokenizer( - [t + self.llm_tokenizer.eos_token for t in samples['output']], - return_tensors="pt", - padding="longest", - truncation=True, - max_length=self.max_output_txt_len, - ).to(device) - - llm_tokens, input_part_targets_len = self.concat_text_input_output( - text_input_tokens.input_ids, - text_input_tokens.attention_mask, - text_output_tokens.input_ids, - text_output_tokens.attention_mask, - ) - - # do not apply loss to the padding - targets = llm_tokens['input_ids'].masked_fill( - llm_tokens['input_ids'] == self.llm_tokenizer.pad_token_id, -100 - ) - - # do not apply loss to the text input (i.e., instruction) - for i, l in enumerate(input_part_targets_len): - targets[i][:l] = -100 - - # do not apply loss to the query tokens - empty_targets = ( - torch.ones(atts_llm.size(), dtype=torch.long).to(device).fill_(-100) - ) - targets = torch.cat([empty_targets, targets], dim=1) - - inputs_embeds = self.llm_model.get_input_embeddings()(llm_tokens['input_ids']) - inputs_embeds = torch.cat([inputs_llm, inputs_embeds], dim=1) - attention_mask = torch.cat([atts_llm, llm_tokens['attention_mask']], dim=1) - - outputs = self.llm_model( - inputs_embeds=inputs_embeds, - attention_mask=attention_mask, - return_dict=True, - labels=targets, - ) - loss = outputs.loss - - return loss - - @torch.no_grad() - def generate( - self, - samples, - use_nucleus_sampling=False, - num_beams=5, - max_length=256, - min_length=1, - top_p=0.9, - repetition_penalty=1.5, - length_penalty=1, - num_captions=1, - temperature=1, - streamer=None, - auto_cast=False - ): - prompt = samples["prompt"] if "prompt" in samples.keys() else self.prompt - if isinstance(prompt, str): - prompt = [prompt] * samples["image"].size(0) - else: - assert len(prompt) == samples["image"].size(0), \ - "The number of prompts must be equal to the batch size." - - with torch.cuda.amp.autocast(auto_cast): - inputs_llm, atts_llm = self.forward_qformer( - samples["image"], samples["knowledge"], prompt - ) - device = inputs_llm.device - - self.llm_tokenizer.padding_side = "left" - llm_tokens = self.llm_tokenizer( - prompt, - padding="longest", - return_tensors="pt" - ).to(device) - - inputs_embeds = self.llm_model.get_input_embeddings()(llm_tokens.input_ids) - inputs_embeds = torch.cat([inputs_llm, inputs_embeds], dim=1) - attention_mask = torch.cat([atts_llm, llm_tokens.attention_mask], dim=1) - - outputs = self.llm_model.generate( - inputs_embeds=inputs_embeds, - attention_mask=attention_mask, - do_sample=use_nucleus_sampling, - top_p=top_p, - temperature=temperature, - num_beams=num_beams, - max_length=max_length, - min_length=min_length, - repetition_penalty=repetition_penalty, - length_penalty=length_penalty, - num_return_sequences=num_captions, - streamer=streamer - ) - - if streamer is None: - outputs[outputs == 0] = 2 # convert output id 0 to 2 (eos_token_id) - output_text = self.llm_tokenizer.batch_decode(outputs, skip_special_tokens=True) - output_text = [text.strip() for text in output_text] - - return output_text - else: - return outputs - - - @torch.no_grad() - def predict_answers( - self, - samples, - num_beams=5, - max_len=10, - min_len=1, - length_penalty=0 - ): - output_text = self.generate( - samples, - num_beams=num_beams, - max_length=max_len, - min_length=min_len, - length_penalty=length_penalty - ) - output_text = self._lemmatize(output_text) - - return output_text - - def _lemmatize(self, answers): - lemmatizer = spacy.load("en_core_web_sm") - def apply(answer): - doc = lemmatizer(answer) - - words = [] - for token in doc: - if token.pos_ in ["NOUN", "VERB"]: - words.append(token.lemma_) - else: - words.append(token.text) - answer = " ".join(words) - - return answer - - return [apply(answer) for answer in answers] - - @classmethod - def from_config(cls, cfg): - llm_model = cfg.get("llm_model") - num_query_token = cfg.get("num_query_token", 32) - - img_size = cfg.get("image_size", 224) - drop_path_rate = cfg.get("drop_path_rate", 0) - use_grad_checkpoint = cfg.get("use_grad_checkpoint", True) - vit_precision = cfg.get("vit_precision", "fp16") - - prompt = cfg.get("prompt", "") - max_txt_len = cfg.get("max_txt_len", 128) - max_output_txt_len = cfg.get("max_output_txt_len", 256) - - d_knwl = cfg.get("d_knwl", 768) - topk = cfg.get("topk", {}) - pc = cfg.get("pc", 0.1) - pt = cfg.get("pt", 0.1) - pv = cfg.get("pv", 0.4) - - model = cls( - img_size=img_size, - drop_path_rate=drop_path_rate, - use_grad_checkpoint=use_grad_checkpoint, - vit_precision=vit_precision, - num_query_token=num_query_token, - llm_model=llm_model, - prompt=prompt, - max_txt_len=max_txt_len, - max_output_txt_len=max_output_txt_len, - d_knwl=d_knwl, - topk=topk, - pc=pc, - pt=pt, - pv=pv - ) - - pretrain_path = cfg.get("pretrained", None) - assert pretrain_path is not None, "Pretrain_path is None." - cached_file = download_cached_file( - pretrain_path, check_hash=False, progress=True - ) - checkpoint = torch.load(cached_file, map_location="cpu") - state_dict = checkpoint["model"] - model.load_state_dict(state_dict, strict=False) - logging.info("load checkpoint from %s" % pretrain_path) - - return model - - -def get_gptk_image_transform(model_type: str = "gptk-7b"): - assert model_type in ("gptk-7b", "gptk-13b") - model_config = OmegaConf.load(f"model/{model_type}.yaml") - size = model_config.get("image_size", 224) - - normalizer = T.Normalize( - mean=(0.48145466, 0.4578275, 0.40821073), - std=(0.26862954, 0.26130258, 0.27577711) - ) - trans_train = T.Compose([ - T.RandomResizedCrop( - size=(size, size), scale=(0.5, 1.0), - interpolation=InterpolationMode.BICUBIC, - ), - T.RandomHorizontalFlip(), - T.ToTensor(), - normalizer - ]) - - trans_val = T.Compose([ - T.Resize( - size=(size, size), interpolation=InterpolationMode.BICUBIC, - ), - T.RandomHorizontalFlip(), - T.ToTensor(), - normalizer - ]) - - return trans_train, trans_val - - -def get_gptk_model( - model_type: str = "gptk-7b", - d_knwl: int = 768, - topk: dict = {"whole": 0, "five": 0, "nine": 0}, - pc: float = 0.1, pt: float = 0.1, pv: float = 0.4 - ): - assert model_type in ("gptk-7b", "gptk-13b") - - model_config = OmegaConf.load(f"model/{model_type}.yaml") - model_config.pv = pv - model_config.pt = pt - model_config.pc = pc - model_config.topk = {k: v for k, v in topk.items() if v > 0} - model_config.d_knwl = d_knwl - - model = GPTK.from_config(model_config) - if sum(topk.values()) > 0: - model.knwl_query.data.copy_(model.query_tokens.data.clone().detach()) - - return model diff --git a/spaces/GXSA/bingo/src/components/learn-more.tsx b/spaces/GXSA/bingo/src/components/learn-more.tsx deleted file mode 100644 index a64459ee7900a612292e117a6bda96ee9260990f..0000000000000000000000000000000000000000 --- a/spaces/GXSA/bingo/src/components/learn-more.tsx +++ /dev/null @@ -1,39 +0,0 @@ -import React from 'react' -import { SourceAttribution } from '@/lib/bots/bing/types' - -export interface LearnMoreProps { - sourceAttributions?: SourceAttribution[] -} - -export function LearnMore({ sourceAttributions }: LearnMoreProps) { - if (!sourceAttributions?.length) { - return null - } - - return ( -
    -
    了解详细俔息:
    -
    -
    - {sourceAttributions.map((attribution, index) => { - const { providerDisplayName, seeMoreUrl } = attribution - const { host } = new URL(seeMoreUrl) - return ( - - {index + 1}. {host} - - ) - })} -
    -
    -
    - ) -} diff --git a/spaces/Gen-Sim/Gen-Sim/cliport/tasks/block_insertion.py b/spaces/Gen-Sim/Gen-Sim/cliport/tasks/block_insertion.py deleted file mode 100644 index cd58049fab90eff1b68ee143efe59fb4137de84e..0000000000000000000000000000000000000000 --- a/spaces/Gen-Sim/Gen-Sim/cliport/tasks/block_insertion.py +++ /dev/null @@ -1,40 +0,0 @@ -import numpy as np -from cliport.tasks.task import Task -from cliport.utils import utils -import pybullet as p - - -class BlockInsertion(Task): - """pick up the L-shaped red block and place it into the L-shaped fixture.""" - - def __init__(self): - super().__init__() - self.max_steps = 3 - self.lang_template = "put the L shape block in the L shape hole" - self.task_completed_desc = "done with insertion." - self.additional_reset() - - def get_random_pose(self, env, obj_size): - pose = super().get_random_pose(env, obj_size) - pos, rot = pose - rot = utils.eulerXYZ_to_quatXYZW((0, 0, np.pi / 2)) - return pos, rot - - def reset(self, env): - super().reset(env) - - """Add L-shaped block.""" - size = (0.1, 0.1, 0.04) - urdf = 'insertion/ell.urdf' - pose = self.get_random_pose(env, size) - block_id = env.add_object(urdf, pose) - - """Add L-shaped fixture to place block.""" - size = (0.1, 0.1, 0.04) - urdf = 'insertion/fixture.urdf' - targ_pose = self.get_random_pose(env, size) - env.add_object(urdf, targ_pose, 'fixed') - - self.add_goal(objs=[block_id], matches=np.int32([[1]]), targ_poses=[targ_pose], replace=False, - rotations=False, metric='pose', params=None, step_max_reward=1, symmetries=[2 * np.pi], - language_goal=self.lang_template) diff --git a/spaces/Godrose0728/Aisound02/export_model.py b/spaces/Godrose0728/Aisound02/export_model.py deleted file mode 100644 index 52d3b3d083df7bf027b46d9c63e399b2da3f0e0a..0000000000000000000000000000000000000000 --- a/spaces/Godrose0728/Aisound02/export_model.py +++ /dev/null @@ -1,13 +0,0 @@ -import torch - -if __name__ == '__main__': - model_path = "saved_model/18/model.pth" - output_path = "saved_model/18/model1.pth" - checkpoint_dict = torch.load(model_path, map_location='cpu') - checkpoint_dict_new = {} - for k, v in checkpoint_dict.items(): - if k == "optimizer": - print("remove optimizer") - continue - checkpoint_dict_new[k] = v - torch.save(checkpoint_dict_new, output_path) diff --git a/spaces/HReynaud/EchoDiffusionDemo/style.css b/spaces/HReynaud/EchoDiffusionDemo/style.css deleted file mode 100644 index 671ceeb261c08db59cabbf628f997e7039ea9802..0000000000000000000000000000000000000000 --- a/spaces/HReynaud/EchoDiffusionDemo/style.css +++ /dev/null @@ -1,19 +0,0 @@ -/* div.controls { - visibility: hidden; -} */ - -#component-0 { - width: 70%; - margin: 0 auto; -} - -#component-8, #component-10, div.wrap.svelte-3cbf20, img.svelte-1ku16gh{ - width: 224px!important; - margin: auto!important; - height: 224px!important; -} - -div.controls{ - visibility: hidden; - display: none; -} \ No newline at end of file diff --git a/spaces/Hallucinate/demo/README.md b/spaces/Hallucinate/demo/README.md deleted file mode 100644 index 2aee598f4978738e63fda0ba9621c2a7256417c8..0000000000000000000000000000000000000000 --- a/spaces/Hallucinate/demo/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: Demo -emoji: šŸ“Š -colorFrom: blue -colorTo: purple -sdk: gradio -sdk_version: 3.18.0 -app_file: app.py -pinned: false -license: openrail ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/HamidRezaAttar/gpt2-home/examples.py b/spaces/HamidRezaAttar/gpt2-home/examples.py deleted file mode 100644 index 7afd0c1e662339bc34f6ff2706c5d24925961b30..0000000000000000000000000000000000000000 --- a/spaces/HamidRezaAttar/gpt2-home/examples.py +++ /dev/null @@ -1,11 +0,0 @@ -EXAMPLES = { - "Table": [ - "Handcrafted of solid acacia in weathered gray, our round Jozy drop-leaf dining table is a space-saving." - ], - "Bed": [ - "Maximize your bedroom space without sacrificing style with the storage bed." - ], - "Sofa": [ - "Our plush and luxurious Emmett modular sofa brings custom comfort to your living space." - ] -} diff --git a/spaces/HarryLee/eCommerceImageCaptioning/fairseq/examples/wav2vec/unsupervised/scripts/pca.py b/spaces/HarryLee/eCommerceImageCaptioning/fairseq/examples/wav2vec/unsupervised/scripts/pca.py deleted file mode 100644 index 948cf5319fd86ba1bccff65270b2881048faf9b1..0000000000000000000000000000000000000000 --- a/spaces/HarryLee/eCommerceImageCaptioning/fairseq/examples/wav2vec/unsupervised/scripts/pca.py +++ /dev/null @@ -1,53 +0,0 @@ -#!/usr/bin/env python3 -u -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -import argparse -import os -import os.path as osp -import numpy as np - -import faiss - - - -def get_parser(): - parser = argparse.ArgumentParser( - description="compute a pca matrix given an array of numpy features" - ) - # fmt: off - parser.add_argument('data', help='numpy file containing features') - parser.add_argument('--output', help='where to save the pca matrix', required=True) - parser.add_argument('--dim', type=int, help='dim for pca reduction', required=True) - parser.add_argument('--eigen-power', type=float, default=0, help='eigen power, -0.5 for whitening') - - return parser - - -def main(): - parser = get_parser() - args = parser.parse_args() - - print("Reading features") - x = np.load(args.data, mmap_mode="r") - - print("Computing PCA") - pca = faiss.PCAMatrix(x.shape[-1], args.dim, args.eigen_power) - pca.train(x) - b = faiss.vector_to_array(pca.b) - A = faiss.vector_to_array(pca.A).reshape(pca.d_out, pca.d_in) - - os.makedirs(args.output, exist_ok=True) - - prefix = str(args.dim) - if args.eigen_power != 0: - prefix += f"_{args.eigen_power}" - - np.save(osp.join(args.output, f"{prefix}_pca_A"), A.T) - np.save(osp.join(args.output, f"{prefix}_pca_b"), b) - - -if __name__ == "__main__": - main() diff --git a/spaces/Harveenchadha/en_to_indic_translation/legacy/run_inference.sh b/spaces/Harveenchadha/en_to_indic_translation/legacy/run_inference.sh deleted file mode 100644 index ff582a6c49d015cf36c82e8f20a755f6d1418ed8..0000000000000000000000000000000000000000 --- a/spaces/Harveenchadha/en_to_indic_translation/legacy/run_inference.sh +++ /dev/null @@ -1,80 +0,0 @@ -src_lang=${1:-hi} -tgt_lang=${2:-en} -bucket_path=${3:-gs://ai4b-anuvaad-nmt/baselines/transformer-base/baselines-${src_lang}-${tgt_lang}} - -expdir=../baselines/baselines-${src_lang}-${tgt_lang} - -if [[ -d $expdir ]] -then - echo "$expdir exists on your filesystem. Please delete this if you have made some changes to the bucket files and trying to redownload" -else - mkdir -p $expdir - mkdir -p $expdir/model - cd ../baselines - gsutil -m cp -r $bucket_path/vocab $expdir - gsutil -m cp -r $bucket_path/final_bin $expdir - gsutil -m cp $bucket_path/model/checkpoint_best.pt $expdir/model - cd ../indicTrans -fi - - -if [ $src_lang == 'hi' ] || [ $tgt_lang == 'hi' ]; then - #TEST_SETS=( wmt-news wat2021-devtest wat2020-devtest anuvaad-legal tico19 sap-documentation-benchmark all) - TEST_SETS=( wat2021-devtest wat2020-devtest wat-2018 wmt-news ) -elif [ $src_lang == 'ta' ] || [ $tgt_lang == 'ta' ]; then - # TEST_SETS=( wmt-news wat2021-devtest wat2020-devtest anuvaad-legal tico19 all) - TEST_SETS=( wat2021-devtest wat2020-devtest wat-2018 wmt-news ufal-ta) -elif [ $src_lang == 'bn' ] || [ $tgt_lang == 'bn' ]; then - # TEST_SETS=( wat2021-devtest wat2020-devtest anuvaad-legal tico19 all) - TEST_SETS=( wat2021-devtest wat2020-devtest wat-2018) -elif [ $src_lang == 'gu' ] || [ $tgt_lang == 'gu' ]; then - # TEST_SETS=( wmt-news wat2021-devtest wat2020-devtest all) - TEST_SETS=( wat2021-devtest wat2020-devtest wmt-news ) -elif [ $src_lang == 'as' ] || [ $tgt_lang == 'as' ]; then - TEST_SETS=( pmi ) -elif [ $src_lang == 'kn' ] || [ $tgt_lang == 'kn' ]; then - # TEST_SETS=( wat2021-devtest anuvaad-legal all) - TEST_SETS=( wat2021-devtest ) -elif [ $src_lang == 'ml' ] || [ $tgt_lang == 'ml' ]; then - # TEST_SETS=( wat2021-devtest wat2020-devtest anuvaad-legal all) - TEST_SETS=( wat2021-devtest wat2020-devtest wat-2018) -elif [ $src_lang == 'mr' ] || [ $tgt_lang == 'mr' ]; then - # TEST_SETS=( wat2021-devtest wat2020-devtest all) - TEST_SETS=( wat2021-devtest wat2020-devtest ) -elif [ $src_lang == 'or' ] || [ $tgt_lang == 'or' ]; then - TEST_SETS=( wat2021-devtest ) -elif [ $src_lang == 'pa' ] || [ $tgt_lang == 'pa' ]; then - TEST_SETS=( wat2021-devtest ) -elif [ $src_lang == 'te' ] || [ $tgt_lang == 'te' ]; then - # TEST_SETS=( wat2021-devtest wat2020-devtest anuvaad-legal all ) - TEST_SETS=( wat2021-devtest wat2020-devtest wat-2018) -fi - -if [ $src_lang == 'en' ]; then - indic_lang=$tgt_lang -else - indic_lang=$src_lang -fi - - -for tset in ${TEST_SETS[@]};do - echo $tset $src_lang $tgt_lang - if [ $tset == 'wat2021-devtest' ]; then - SRC_FILE=${expdir}/benchmarks/$tset/test.$src_lang - REF_FILE=${expdir}/benchmarks/$tset/test.$tgt_lang - else - SRC_FILE=${expdir}/benchmarks/$tset/en-${indic_lang}/test.$src_lang - REF_FILE=${expdir}/benchmarks/$tset/en-${indic_lang}/test.$tgt_lang - fi - RESULTS_DIR=${expdir}/results/$tset - - mkdir -p $RESULTS_DIR - - bash translate.sh $SRC_FILE $RESULTS_DIR/${src_lang}-${tgt_lang} $src_lang $tgt_lang $expdir $REF_FILE - # for newline between different outputs - echo -done -# send the results to the bucket -gsutil -m cp -r $expdir/results $bucket_path -# clear up the space in the instance -# rm -r $expdir \ No newline at end of file diff --git a/spaces/Harveenchadha/oiTrans/subword-nmt/subword_nmt/tests/test_bpe.py b/spaces/Harveenchadha/oiTrans/subword-nmt/subword_nmt/tests/test_bpe.py deleted file mode 100644 index d8c84857b4aa22903907ae3d217bf9468b168c88..0000000000000000000000000000000000000000 --- a/spaces/Harveenchadha/oiTrans/subword-nmt/subword_nmt/tests/test_bpe.py +++ /dev/null @@ -1,83 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from __future__ import unicode_literals -import unittest -import codecs - -import os,sys,inspect -currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) -parentdir = os.path.dirname(currentdir) -sys.path.insert(0,parentdir) - -from learn_bpe import learn_bpe -from apply_bpe import BPE - - -class TestBPELearnMethod(unittest.TestCase): - - def test_learn_bpe(self): - infile = codecs.open(os.path.join(currentdir,'data','corpus.en'), encoding='utf-8') - outfile = codecs.open(os.path.join(currentdir,'data','bpe.out'), 'w', encoding='utf-8') - learn_bpe(infile, outfile, 1000) - infile.close() - outfile.close() - - outlines = open(os.path.join(currentdir,'data','bpe.out')) - reflines = open(os.path.join(currentdir,'data','bpe.ref')) - - for line, line2 in zip(outlines, reflines): - self.assertEqual(line, line2) - - outlines.close() - reflines.close() - -class TestBPESegmentMethod(unittest.TestCase): - - def setUp(self): - - with codecs.open(os.path.join(currentdir,'data','bpe.ref'), encoding='utf-8') as bpefile: - self.bpe = BPE(bpefile) - - self.infile = codecs.open(os.path.join(currentdir,'data','corpus.en'), encoding='utf-8') - self.reffile = codecs.open(os.path.join(currentdir,'data','corpus.bpe.ref.en'), encoding='utf-8') - - def tearDown(self): - - self.infile.close() - self.reffile.close() - - def test_apply_bpe(self): - - for line, ref in zip(self.infile, self.reffile): - out = self.bpe.process_line(line) - self.assertEqual(out, ref) - - def test_trailing_whitespace(self): - """BPE.proces_line() preserves leading and trailing whitespace""" - - orig = ' iron cement \n' - exp = ' ir@@ on c@@ ement \n' - - out = self.bpe.process_line(orig) - self.assertEqual(out, exp) - - def test_utf8_whitespace(self): - """UTF-8 whitespace is treated as normal character, not word boundary""" - - orig = 'iron\xa0cement\n' - exp = 'ir@@ on@@ \xa0@@ c@@ ement\n' - - out = self.bpe.process_line(orig) - self.assertEqual(out, exp) - - def test_empty_line(self): - - orig = '\n' - exp = '\n' - - out = self.bpe.process_line(orig) - self.assertEqual(out, exp) - -if __name__ == '__main__': - unittest.main() diff --git a/spaces/HighCWu/GPEN/retinaface/data/config.py b/spaces/HighCWu/GPEN/retinaface/data/config.py deleted file mode 100644 index a635090ad9c2f8b5689f8a86d2684675dc34ece2..0000000000000000000000000000000000000000 --- a/spaces/HighCWu/GPEN/retinaface/data/config.py +++ /dev/null @@ -1,42 +0,0 @@ -# config.py - -cfg_mnet = { - 'name': 'mobilenet0.25', - 'msizes': [[16, 32], [64, 128], [256, 512]], - 'steps': [8, 16, 32], - 'variance': [0.1, 0.2], - 'clip': False, - 'loc_weight': 2.0, - 'gpu_train': True, - 'batch_size': 32, - 'ngpu': 1, - 'epoch': 250, - 'decay1': 190, - 'decay2': 220, - 'image_size': 640, - 'pretrain': False, - 'return_layers': {'stage1': 1, 'stage2': 2, 'stage3': 3}, - 'in_channel': 32, - 'out_channel': 64 -} - -cfg_re50 = { - 'name': 'Resnet50', - 'msizes': [[16, 32], [64, 128], [256, 512]], - 'steps': [8, 16, 32], - 'variance': [0.1, 0.2], - 'clip': False, - 'loc_weight': 2.0, - 'gpu_train': True, - 'batch_size': 24, - 'ngpu': 4, - 'epoch': 100, - 'decay1': 70, - 'decay2': 90, - 'image_size': 840, - 'pretrain': False, - 'return_layers': {'layer2': 1, 'layer3': 2, 'layer4': 3}, - 'in_channel': 256, - 'out_channel': 256 -} - diff --git a/spaces/Hina4867/bingo/src/components/tailwind-indicator.tsx b/spaces/Hina4867/bingo/src/components/tailwind-indicator.tsx deleted file mode 100644 index f2a1291213dd67055fcebe67fab574c8441338df..0000000000000000000000000000000000000000 --- a/spaces/Hina4867/bingo/src/components/tailwind-indicator.tsx +++ /dev/null @@ -1,14 +0,0 @@ -export function TailwindIndicator() { - if (process.env.NODE_ENV === 'production') return null - - return ( -
    -
    xs
    -
    sm
    -
    md
    -
    lg
    -
    xl
    -
    2xl
    -
    - ) -} diff --git a/spaces/HuggingFaceM4/IDEFICS_Data_Measurement_Tool/run_data_measurements.py b/spaces/HuggingFaceM4/IDEFICS_Data_Measurement_Tool/run_data_measurements.py deleted file mode 100644 index bed48a37a56a39fe06d586c1c83ded57d7a55f6c..0000000000000000000000000000000000000000 --- a/spaces/HuggingFaceM4/IDEFICS_Data_Measurement_Tool/run_data_measurements.py +++ /dev/null @@ -1,353 +0,0 @@ -import argparse -import json -from dotenv import load_dotenv -import plotly -import shutil -import smtplib -import ssl -import sys -import textwrap -from data_measurements import dataset_statistics -from data_measurements.zipf import zipf -from huggingface_hub import create_repo, Repository, hf_api -from os import getenv -from os.path import exists, join as pjoin -from pathlib import Path -import utils -from utils import dataset_utils - -logs = utils.prepare_logging(__file__) - -def load_or_prepare_widgets(ds_args, show_embeddings=False, - show_perplexities=False, use_cache=False): - """ - Loader specifically for the widgets used in the app. - Args: - ds_args: - show_embeddings: - show_perplexities: - use_cache: - - Returns: - - """ - dstats = dataset_statistics.DatasetStatisticsCacheClass(**ds_args, use_cache=use_cache) - # Header widget - dstats.load_or_prepare_dset_peek() - # General stats widget - dstats.load_or_prepare_general_stats() - # Labels widget - dstats.load_or_prepare_labels() - # Text lengths widget - dstats.load_or_prepare_text_lengths() - if show_embeddings: - # Embeddings widget - dstats.load_or_prepare_embeddings() - if show_perplexities: - # Text perplexities widget - dstats.load_or_prepare_text_perplexities() - # Text duplicates widget - dstats.load_or_prepare_text_duplicates() - # nPMI widget - dstats.load_or_prepare_npmi() - # Zipf widget - dstats.load_or_prepare_zipf() - - -def load_or_prepare(dataset_args, calculation=False, use_cache=False): - # TODO: Catch error exceptions for each measurement, so that an error - # for one measurement doesn't break the calculation of all of them. - - do_all = False - dstats = dataset_statistics.DatasetStatisticsCacheClass(**dataset_args, - use_cache=use_cache) - logs.info("Tokenizing dataset.") - dstats.load_or_prepare_tokenized_df() - logs.info("Calculating vocab.") - dstats.load_or_prepare_vocab() - - if not calculation: - do_all = True - - if do_all or calculation == "general": - logs.info("\n* Calculating general statistics.") - dstats.load_or_prepare_general_stats() - logs.info("Done!") - logs.info( - "Basic text statistics now available at %s." % dstats.general_stats_json_fid) - - if do_all or calculation == "duplicates": - logs.info("\n* Calculating text duplicates.") - dstats.load_or_prepare_text_duplicates() - duplicates_fid_dict = dstats.duplicates_files - logs.info("If all went well, then results are in the following files:") - for key, value in duplicates_fid_dict.items(): - logs.info("%s: %s" % (key, value)) - - if do_all or calculation == "lengths": - logs.info("\n* Calculating text lengths.") - dstats.load_or_prepare_text_lengths() - length_fid_dict = dstats.length_obj.get_filenames() - print("If all went well, then results are in the following files:") - for key, value in length_fid_dict.items(): - print("%s: %s" % (key, value)) - print() - - if do_all or calculation == "labels": - logs.info("\n* Calculating label statistics.") - if dstats.label_field not in dstats.dset.features: - logs.warning("No label field found.") - logs.info("No label statistics to calculate.") - else: - dstats.load_or_prepare_labels() - npmi_fid_dict = dstats.label_files - print("If all went well, then results are in the following files:") - for key, value in npmi_fid_dict.items(): - print("%s: %s" % (key, value)) - print() - - if do_all or calculation == "npmi": - print("\n* Preparing nPMI.") - dstats.load_or_prepare_npmi() - npmi_fid_dict = dstats.npmi_files - print("If all went well, then results are in the following files:") - for key, value in npmi_fid_dict.items(): - if isinstance(value, dict): - print(key + ":") - for key2, value2 in value.items(): - print("\t%s: %s" % (key2, value2)) - else: - print("%s: %s" % (key, value)) - print() - - if do_all or calculation == "zipf": - logs.info("\n* Preparing Zipf.") - dstats.load_or_prepare_zipf() - logs.info("Done!") - zipf_json_fid, zipf_fig_json_fid, zipf_fig_html_fid = zipf.get_zipf_fids( - dstats.dataset_cache_dir) - logs.info("Zipf results now available at %s." % zipf_json_fid) - logs.info( - "Figure saved to %s, with corresponding json at %s." - % (zipf_fig_html_fid, zipf_fig_json_fid) - ) - - # Don't do this one until someone specifically asks for it -- takes awhile. - if calculation == "embeddings": - logs.info("\n* Preparing text embeddings.") - dstats.load_or_prepare_embeddings() - - # Don't do this one until someone specifically asks for it -- takes awhile. - if calculation == "perplexities": - logs.info("\n* Preparing text perplexities.") - dstats.load_or_prepare_text_perplexities() - -def pass_args_to_DMT(dset_name, dset_config, split_name, text_field, label_field, label_names, calculation, dataset_cache_dir, prepare_gui=False, use_cache=True): - if not use_cache: - logs.info("Not using any cache; starting afresh") - dataset_args = { - "dset_name": dset_name, - "dset_config": dset_config, - "split_name": split_name, - "text_field": text_field, - "label_field": label_field, - "label_names": label_names, - "dataset_cache_dir": dataset_cache_dir - } - if prepare_gui: - load_or_prepare_widgets(dataset_args, use_cache=use_cache) - else: - load_or_prepare(dataset_args, calculation=calculation, use_cache=use_cache) - -def set_defaults(args): - if not args.config: - args.config = "default" - logs.info("Config name not specified. Assuming it's 'default'.") - if not args.split: - args.split = "train" - logs.info("Split name not specified. Assuming it's 'train'.") - if not args.feature: - args.feature = "text" - logs.info("Text column name not given. Assuming it's 'text'.") - if not args.label_field: - args.label_field = "label" - logs.info("Label column name not given. Assuming it's 'label'.") - return args - -def main(): - parser = argparse.ArgumentParser( - formatter_class=argparse.RawDescriptionHelpFormatter, - description=textwrap.dedent( - """ - - Example for hate speech18 dataset: - python3 run_data_measurements.py --dataset="hate_speech18" --config="default" --split="train" --feature="text" - - Example for IMDB dataset: - python3 run_data_measurements.py --dataset="imdb" --config="plain_text" --split="train" --label_field="label" --feature="text" - """ - ), - ) - - parser.add_argument( - "-d", "--dataset", required=True, help="Name of dataset to prepare" - ) - parser.add_argument( - "-c", "--config", required=False, default="", help="Dataset configuration to prepare" - ) - parser.add_argument( - "-s", "--split", required=False, default="", type=str, - help="Dataset split to prepare" - ) - parser.add_argument( - "-f", - "--feature", - "-t", - "--text-field", - required=False, - nargs="+", - type=str, - default="", - help="Column to prepare (handled as text)", - ) - parser.add_argument( - "-w", - "--calculation", - help="""What to calculate (defaults to everything except embeddings and perplexities).\n - Options are:\n - - - `general` (for duplicate counts, missing values, length statistics.)\n - - - `duplicates` for duplicate counts\n - - - `lengths` for text length distribution\n - - - `labels` for label distribution\n - - - `embeddings` (Warning: Slow.)\n - - - `perplexities` (Warning: Slow.)\n - - - `npmi` for word associations\n - - - `zipf` for zipfian statistics - """, - ) - parser.add_argument( - "-l", - "--label_field", - type=str, - required=False, - default="", - help="Field name for label column in dataset (Required if there is a label field that you want information about)", - ) - parser.add_argument('-n', '--label_names', nargs='+', default=[]) - parser.add_argument( - "--use_cache", - default=False, - required=False, - action="store_true", - help="Whether to use cached files (Optional)", - ) - parser.add_argument("--out_dir", default="cache_dir", - help="Where to write out to.") - parser.add_argument( - "--overwrite_previous", - default=False, - required=False, - action="store_true", - help="Whether to overwrite a previous local cache for these same arguments (Optional)", - ) - parser.add_argument( - "--email", - default=None, - help="An email that recieves a message about whether the computation was successful. If email is not None, then you must have EMAIL_PASSWORD= for the sender email (data.measurements.tool@gmail.com) in a file named .env at the root of this repo.") - parser.add_argument( - "--push_cache_to_hub", - default=False, - required=False, - action="store_true", - help="Whether to push the cache to an organization on the hub. If you are using this option, you must have HUB_CACHE_ORGANIZATION= and HF_TOKEN= on separate lines in a file named .env at the root of this repo.", - ) - parser.add_argument("--prepare_GUI_data", default=False, required=False, - action="store_true", - help="Use this to process all of the stats used in the GUI.") - parser.add_argument("--keep_local", default=True, required=False, - action="store_true", - help="Whether to save the data locally.") - orig_args = parser.parse_args() - args = set_defaults(orig_args) - logs.info("Proceeding with the following arguments:") - logs.info(args) - # run_data_measurements.py -d hate_speech18 -c default -s train -f text -w npmi - if args.email is not None: - if Path(".env").is_file(): - load_dotenv(".env") - EMAIL_PASSWORD = getenv("EMAIL_PASSWORD") - context = ssl.create_default_context() - port = 465 - server = smtplib.SMTP_SSL("smtp.gmail.com", port, context=context) - server.login("data.measurements.tool@gmail.com", EMAIL_PASSWORD) - - dataset_cache_name, local_dataset_cache_dir = dataset_utils.get_cache_dir_naming(args.out_dir, args.dataset, args.config, args.split, args.feature) - if not args.use_cache and exists(local_dataset_cache_dir): - if args.overwrite_previous: - shutil.rmtree(local_dataset_cache_dir) - else: - raise OSError("Cached results for this dataset already exist at %s. " - "Delete it or use the --overwrite_previous argument." % local_dataset_cache_dir) - - # Initialize the local cache directory - dataset_utils.make_path(local_dataset_cache_dir) - - # Initialize the repository - # TODO: print out local or hub cache directory location. - if args.push_cache_to_hub: - repo = dataset_utils.initialize_cache_hub_repo(local_dataset_cache_dir, dataset_cache_name) - # Run the measurements. - try: - pass_args_to_DMT( - dset_name=args.dataset, - dset_config=args.config, - split_name=args.split, - text_field=args.feature, - label_field=args.label_field, - label_names=args.label_names, - calculation=args.calculation, - dataset_cache_dir=local_dataset_cache_dir, - prepare_gui=args.prepare_GUI_data, - use_cache=args.use_cache, - ) - if args.push_cache_to_hub: - repo.push_to_hub(commit_message="Added dataset cache.") - computed_message = f"Data measurements have been computed for dataset" \ - f" with these arguments: {args}." - logs.info(computed_message) - if args.email is not None: - computed_message += "\nYou can return to the data measurements tool " \ - "to view them." - server.sendmail("data.measurements.tool@gmail.com", args.email, - "Subject: Data Measurements Computed!\n\n" + computed_message) - logs.info(computed_message) - except Exception as e: - logs.exception(e) - error_message = f"An error occurred in computing data measurements " \ - f"for dataset with arguments: {args}. " \ - f"Feel free to make an issue here: " \ - f"https://github.com/huggingface/data-measurements-tool/issues" - if args.email is not None: - server.sendmail("data.measurements.tool@gmail.com", args.email, - "Subject: Data Measurements not Computed\n\n" + error_message) - logs.warning("Data measurements not computed. ā˜¹ļø") - logs.warning(error_message) - return - if not args.keep_local: - # Remove the dataset from local storage - we only want it stored on the hub. - logs.warning("Deleting measurements data locally at %s" % local_dataset_cache_dir) - shutil.rmtree(local_dataset_cache_dir) - else: - logs.info("Measurements made available locally at %s" % local_dataset_cache_dir) - - -if __name__ == "__main__": - main() diff --git a/spaces/HugoLaurencon/text-data-filtering-2/README.md b/spaces/HugoLaurencon/text-data-filtering-2/README.md deleted file mode 100644 index afc159b8e250a60e5faa9000a337b110235aa65d..0000000000000000000000000000000000000000 --- a/spaces/HugoLaurencon/text-data-filtering-2/README.md +++ /dev/null @@ -1,37 +0,0 @@ ---- -title: Text Data Filtering -emoji: šŸ‘ -colorFrom: blue -colorTo: pink -sdk: streamlit -app_file: app.py -pinned: false ---- - -# Configuration - -`title`: _string_ -Display title for the Space - -`emoji`: _string_ -Space emoji (emoji-only character allowed) - -`colorFrom`: _string_ -Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) - -`colorTo`: _string_ -Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) - -`sdk`: _string_ -Can be either `gradio` or `streamlit` - -`sdk_version` : _string_ -Only applicable for `streamlit` SDK. -See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions. - -`app_file`: _string_ -Path to your main application file (which contains either `gradio` or `streamlit` Python code). -Path is relative to the root of the repository. - -`pinned`: _boolean_ -Whether the Space stays on top of your list. diff --git a/spaces/ICML2022/OFA/fairseq/examples/latent_depth/latent_depth_src/modules/__init__.py b/spaces/ICML2022/OFA/fairseq/examples/latent_depth/latent_depth_src/modules/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/ICML2022/OFA/fairseq/examples/pointer_generator/README.md b/spaces/ICML2022/OFA/fairseq/examples/pointer_generator/README.md deleted file mode 100644 index 60965708254aae2174812ea6686a9807825b7fb6..0000000000000000000000000000000000000000 --- a/spaces/ICML2022/OFA/fairseq/examples/pointer_generator/README.md +++ /dev/null @@ -1,82 +0,0 @@ -# Transformer with Pointer-Generator Network - -This page describes the `transformer_pointer_generator` model that incorporates -a pointing mechanism in the Transformer model that facilitates copying of input -words to the output. This architecture is described in [Enarvi et al. (2020)](https://www.aclweb.org/anthology/2020.nlpmc-1.4/). - -## Background - -The pointer-generator network was introduced in [See et al. (2017)](https://arxiv.org/abs/1704.04368) -for RNN encoder-decoder attention models. A similar mechanism can be -incorporated in a Transformer model by reusing one of the many attention -distributions for pointing. The attention distribution over the input words is -interpolated with the normal output distribution over the vocabulary words. This -allows the model to generate words that appear in the input, even if they don't -appear in the vocabulary, helping especially with small vocabularies. - -## Implementation - -The mechanism for copying out-of-vocabulary words from the input has been -implemented differently to See et al. In their [implementation](https://github.com/abisee/pointer-generator) -they convey the word identities through the model in order to be able to produce -words that appear in the input sequence but not in the vocabulary. A different -approach was taken in the Fairseq implementation to keep it self-contained in -the model file, avoiding any changes to the rest of the code base. Copying -out-of-vocabulary words is possible by pre-processing the input and -post-processing the output. This is described in detail in the next section. - -## Usage - -The training and evaluation procedure is outlined below. You can also find a -more detailed example for the XSum dataset on [this page](README.xsum.md). - -##### 1. Create a vocabulary and extend it with source position markers - -The pointing mechanism is especially helpful with small vocabularies, if we are -able to recover the identities of any out-of-vocabulary words that are copied -from the input. For this purpose, the model allows extending the vocabulary with -special tokens that can be used in place of `` tokens to identify different -input positions. For example, the user may add ``, ``, ``, -etc. to the end of the vocabulary, after the normal words. Below is an example -of how to create a vocabulary of 10000 most common words and add 1000 input -position markers. - -```bash -vocab_size=10000 -position_markers=1000 -export LC_ALL=C -cat train.src train.tgt | - tr -s '[:space:]' '\n' | - sort | - uniq -c | - sort -k1,1bnr -k2 | - head -n "$((vocab_size - 4))" | - awk '{ print $2 " " $1 }' >dict.pg.txt -python3 -c "[print(' 0'.format(n)) for n in range($position_markers)]" >>dict.pg.txt -``` - -##### 2. Preprocess the text data - -The idea is that any `` tokens in the text are replaced with `` if -it appears in the first input position, `` if it appears in the second -input position, and so on. This can be achieved using the `preprocess.py` script -that is provided in this directory. - -##### 3. Train a model - -The number of these special tokens is given to the model with the -`--source-position-markers` argument—the model simply maps all of these to the -same word embedding as ``. - -The attention distribution that is used for pointing is selected using the -`--alignment-heads` and `--alignment-layer` command-line arguments in the same -way as with the `transformer_align` model. - -##### 4. Generate text and postprocess it - -When using the model to generate text, you want to preprocess the input text in -the same way that training data was processed, replacing out-of-vocabulary words -with `` tokens. If any of these tokens are copied to the output, the -actual words can be retrieved from the unprocessed input text. Any `` -token should be replaced with the word at position N in the original input -sequence. This can be achieved using the `postprocess.py` script. diff --git a/spaces/IDEA-Research/Grounded-SAM/segment_anything/segment_anything/modeling/prompt_encoder.py b/spaces/IDEA-Research/Grounded-SAM/segment_anything/segment_anything/modeling/prompt_encoder.py deleted file mode 100644 index c3143f4f8e02ddd7ca8587b40ff5d47c3a6b7ef3..0000000000000000000000000000000000000000 --- a/spaces/IDEA-Research/Grounded-SAM/segment_anything/segment_anything/modeling/prompt_encoder.py +++ /dev/null @@ -1,214 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -import numpy as np -import torch -from torch import nn - -from typing import Any, Optional, Tuple, Type - -from .common import LayerNorm2d - - -class PromptEncoder(nn.Module): - def __init__( - self, - embed_dim: int, - image_embedding_size: Tuple[int, int], - input_image_size: Tuple[int, int], - mask_in_chans: int, - activation: Type[nn.Module] = nn.GELU, - ) -> None: - """ - Encodes prompts for input to SAM's mask decoder. - - Arguments: - embed_dim (int): The prompts' embedding dimension - image_embedding_size (tuple(int, int)): The spatial size of the - image embedding, as (H, W). - input_image_size (int): The padded size of the image as input - to the image encoder, as (H, W). - mask_in_chans (int): The number of hidden channels used for - encoding input masks. - activation (nn.Module): The activation to use when encoding - input masks. - """ - super().__init__() - self.embed_dim = embed_dim - self.input_image_size = input_image_size - self.image_embedding_size = image_embedding_size - self.pe_layer = PositionEmbeddingRandom(embed_dim // 2) - - self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners - point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)] - self.point_embeddings = nn.ModuleList(point_embeddings) - self.not_a_point_embed = nn.Embedding(1, embed_dim) - - self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1]) - self.mask_downscaling = nn.Sequential( - nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2), - LayerNorm2d(mask_in_chans // 4), - activation(), - nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2), - LayerNorm2d(mask_in_chans), - activation(), - nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1), - ) - self.no_mask_embed = nn.Embedding(1, embed_dim) - - def get_dense_pe(self) -> torch.Tensor: - """ - Returns the positional encoding used to encode point prompts, - applied to a dense set of points the shape of the image encoding. - - Returns: - torch.Tensor: Positional encoding with shape - 1x(embed_dim)x(embedding_h)x(embedding_w) - """ - return self.pe_layer(self.image_embedding_size).unsqueeze(0) - - def _embed_points( - self, - points: torch.Tensor, - labels: torch.Tensor, - pad: bool, - ) -> torch.Tensor: - """Embeds point prompts.""" - points = points + 0.5 # Shift to center of pixel - if pad: - padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device) - padding_label = -torch.ones((labels.shape[0], 1), device=labels.device) - points = torch.cat([points, padding_point], dim=1) - labels = torch.cat([labels, padding_label], dim=1) - point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size) - point_embedding[labels == -1] = 0.0 - point_embedding[labels == -1] += self.not_a_point_embed.weight - point_embedding[labels == 0] += self.point_embeddings[0].weight - point_embedding[labels == 1] += self.point_embeddings[1].weight - return point_embedding - - def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor: - """Embeds box prompts.""" - boxes = boxes + 0.5 # Shift to center of pixel - coords = boxes.reshape(-1, 2, 2) - corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size) - corner_embedding[:, 0, :] += self.point_embeddings[2].weight - corner_embedding[:, 1, :] += self.point_embeddings[3].weight - return corner_embedding - - def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor: - """Embeds mask inputs.""" - mask_embedding = self.mask_downscaling(masks) - return mask_embedding - - def _get_batch_size( - self, - points: Optional[Tuple[torch.Tensor, torch.Tensor]], - boxes: Optional[torch.Tensor], - masks: Optional[torch.Tensor], - ) -> int: - """ - Gets the batch size of the output given the batch size of the input prompts. - """ - if points is not None: - return points[0].shape[0] - elif boxes is not None: - return boxes.shape[0] - elif masks is not None: - return masks.shape[0] - else: - return 1 - - def _get_device(self) -> torch.device: - return self.point_embeddings[0].weight.device - - def forward( - self, - points: Optional[Tuple[torch.Tensor, torch.Tensor]], - boxes: Optional[torch.Tensor], - masks: Optional[torch.Tensor], - ) -> Tuple[torch.Tensor, torch.Tensor]: - """ - Embeds different types of prompts, returning both sparse and dense - embeddings. - - Arguments: - points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates - and labels to embed. - boxes (torch.Tensor or none): boxes to embed - masks (torch.Tensor or none): masks to embed - - Returns: - torch.Tensor: sparse embeddings for the points and boxes, with shape - BxNx(embed_dim), where N is determined by the number of input points - and boxes. - torch.Tensor: dense embeddings for the masks, in the shape - Bx(embed_dim)x(embed_H)x(embed_W) - """ - bs = self._get_batch_size(points, boxes, masks) - sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device()) - if points is not None: - coords, labels = points - point_embeddings = self._embed_points(coords, labels, pad=(boxes is None)) - sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1) - if boxes is not None: - box_embeddings = self._embed_boxes(boxes) - sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1) - - if masks is not None: - dense_embeddings = self._embed_masks(masks) - else: - dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand( - bs, -1, self.image_embedding_size[0], self.image_embedding_size[1] - ) - - return sparse_embeddings, dense_embeddings - - -class PositionEmbeddingRandom(nn.Module): - """ - Positional encoding using random spatial frequencies. - """ - - def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None: - super().__init__() - if scale is None or scale <= 0.0: - scale = 1.0 - self.register_buffer( - "positional_encoding_gaussian_matrix", - scale * torch.randn((2, num_pos_feats)), - ) - - def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor: - """Positionally encode points that are normalized to [0,1].""" - # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape - coords = 2 * coords - 1 - coords = coords @ self.positional_encoding_gaussian_matrix - coords = 2 * np.pi * coords - # outputs d_1 x ... x d_n x C shape - return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1) - - def forward(self, size: Tuple[int, int]) -> torch.Tensor: - """Generate positional encoding for a grid of the specified size.""" - h, w = size - device: Any = self.positional_encoding_gaussian_matrix.device - grid = torch.ones((h, w), device=device, dtype=torch.float32) - y_embed = grid.cumsum(dim=0) - 0.5 - x_embed = grid.cumsum(dim=1) - 0.5 - y_embed = y_embed / h - x_embed = x_embed / w - - pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1)) - return pe.permute(2, 0, 1) # C x H x W - - def forward_with_coords( - self, coords_input: torch.Tensor, image_size: Tuple[int, int] - ) -> torch.Tensor: - """Positionally encode points that are not normalized to [0,1].""" - coords = coords_input.clone() - coords[:, :, 0] = coords[:, :, 0] / image_size[1] - coords[:, :, 1] = coords[:, :, 1] / image_size[0] - return self._pe_encoding(coords.to(torch.float)) # B x N x C diff --git a/spaces/Illia56/fastest-whisper-v2-large/app.py b/spaces/Illia56/fastest-whisper-v2-large/app.py deleted file mode 100644 index cfbea52f761c029fa6e6a3faa404d747aa410c81..0000000000000000000000000000000000000000 --- a/spaces/Illia56/fastest-whisper-v2-large/app.py +++ /dev/null @@ -1,59 +0,0 @@ -import gradio as gr - -import os -from gradio_client import Client - -def transcribe_audio(youtube_url: str, task: str = "transcribe", return_timestamps: bool = False, api_name: str = "/predict_2") -> dict: - """ - Transcribe audio from a given YouTube URL using a specified model. - Parameters: - - youtube_url (str): The YouTube URL to transcribe. - - task (str, optional): The task to perform. Default is "transcribe". - - return_timestamps (bool, optional): Whether to return timestamps. Default is True. - - api_name (str, optional): The API endpoint to use. Default is "/predict_2". - Returns: - - dict: The transcription result. - """ - client = Client("https://sanchit-gandhi-whisper-jax.hf.space/") - result = client.predict(youtube_url, task, return_timestamps, fn_index=7) - return result - - - -MODEL_NAME = "openai/whisper-large-v2" - - -demo = gr.Blocks() - -EXAMPLES = [ - ["https://www.youtube.com/watch?v=H1YoNlz2LxA", "translate",False], -] - - -yt_transcribe = gr.Interface( - fn=transcribe_audio, - inputs=[ - gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), - gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"), - gr.inputs.Checkbox(label="Return timestamps") - ], - outputs=[gr.outputs.HTML(label="Video"), - gr.outputs.Textbox(label="Transcription").style(show_copy_button=True)], - layout="horizontal", - theme=gr.themes.Base(), - title="Whisper Large V2: Transcribe YouTube", - description=( - "Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint" - f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and šŸ¤— Transformers to transcribe video files of" - " arbitrary length." - ), - allow_flagging="never", - examples=EXAMPLES, - cache_examples=False -) - -with demo: - gr.DuplicateButton() - gr.TabbedInterface([yt_transcribe], [ "YouTube"]) - -demo.launch(enable_queue=True) \ No newline at end of file diff --git a/spaces/Kevin676/Real-Time-Voice-Cloning/utils/logmmse.py b/spaces/Kevin676/Real-Time-Voice-Cloning/utils/logmmse.py deleted file mode 100644 index 58cc4502fa5ba0670678c3edaf5ba1587b8b58ea..0000000000000000000000000000000000000000 --- a/spaces/Kevin676/Real-Time-Voice-Cloning/utils/logmmse.py +++ /dev/null @@ -1,247 +0,0 @@ -# The MIT License (MIT) -# -# Copyright (c) 2015 braindead -# -# Permission is hereby granted, free of charge, to any person obtaining a copy -# of this software and associated documentation files (the "Software"), to deal -# in the Software without restriction, including without limitation the rights -# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -# copies of the Software, and to permit persons to whom the Software is -# furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included in all -# copies or substantial portions of the Software. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -# SOFTWARE. -# -# -# This code was extracted from the logmmse package (https://pypi.org/project/logmmse/) and I -# simply modified the interface to meet my needs. - - -import numpy as np -import math -from scipy.special import expn -from collections import namedtuple - -NoiseProfile = namedtuple("NoiseProfile", "sampling_rate window_size len1 len2 win n_fft noise_mu2") - - -def profile_noise(noise, sampling_rate, window_size=0): - """ - Creates a profile of the noise in a given waveform. - - :param noise: a waveform containing noise ONLY, as a numpy array of floats or ints. - :param sampling_rate: the sampling rate of the audio - :param window_size: the size of the window the logmmse algorithm operates on. A default value - will be picked if left as 0. - :return: a NoiseProfile object - """ - noise, dtype = to_float(noise) - noise += np.finfo(np.float64).eps - - if window_size == 0: - window_size = int(math.floor(0.02 * sampling_rate)) - - if window_size % 2 == 1: - window_size = window_size + 1 - - perc = 50 - len1 = int(math.floor(window_size * perc / 100)) - len2 = int(window_size - len1) - - win = np.hanning(window_size) - win = win * len2 / np.sum(win) - n_fft = 2 * window_size - - noise_mean = np.zeros(n_fft) - n_frames = len(noise) // window_size - for j in range(0, window_size * n_frames, window_size): - noise_mean += np.absolute(np.fft.fft(win * noise[j:j + window_size], n_fft, axis=0)) - noise_mu2 = (noise_mean / n_frames) ** 2 - - return NoiseProfile(sampling_rate, window_size, len1, len2, win, n_fft, noise_mu2) - - -def denoise(wav, noise_profile: NoiseProfile, eta=0.15): - """ - Cleans the noise from a speech waveform given a noise profile. The waveform must have the - same sampling rate as the one used to create the noise profile. - - :param wav: a speech waveform as a numpy array of floats or ints. - :param noise_profile: a NoiseProfile object that was created from a similar (or a segment of - the same) waveform. - :param eta: voice threshold for noise update. While the voice activation detection value is - below this threshold, the noise profile will be continuously updated throughout the audio. - Set to 0 to disable updating the noise profile. - :return: the clean wav as a numpy array of floats or ints of the same length. - """ - wav, dtype = to_float(wav) - wav += np.finfo(np.float64).eps - p = noise_profile - - nframes = int(math.floor(len(wav) / p.len2) - math.floor(p.window_size / p.len2)) - x_final = np.zeros(nframes * p.len2) - - aa = 0.98 - mu = 0.98 - ksi_min = 10 ** (-25 / 10) - - x_old = np.zeros(p.len1) - xk_prev = np.zeros(p.len1) - noise_mu2 = p.noise_mu2 - for k in range(0, nframes * p.len2, p.len2): - insign = p.win * wav[k:k + p.window_size] - - spec = np.fft.fft(insign, p.n_fft, axis=0) - sig = np.absolute(spec) - sig2 = sig ** 2 - - gammak = np.minimum(sig2 / noise_mu2, 40) - - if xk_prev.all() == 0: - ksi = aa + (1 - aa) * np.maximum(gammak - 1, 0) - else: - ksi = aa * xk_prev / noise_mu2 + (1 - aa) * np.maximum(gammak - 1, 0) - ksi = np.maximum(ksi_min, ksi) - - log_sigma_k = gammak * ksi/(1 + ksi) - np.log(1 + ksi) - vad_decision = np.sum(log_sigma_k) / p.window_size - if vad_decision < eta: - noise_mu2 = mu * noise_mu2 + (1 - mu) * sig2 - - a = ksi / (1 + ksi) - vk = a * gammak - ei_vk = 0.5 * expn(1, np.maximum(vk, 1e-8)) - hw = a * np.exp(ei_vk) - sig = sig * hw - xk_prev = sig ** 2 - xi_w = np.fft.ifft(hw * spec, p.n_fft, axis=0) - xi_w = np.real(xi_w) - - x_final[k:k + p.len2] = x_old + xi_w[0:p.len1] - x_old = xi_w[p.len1:p.window_size] - - output = from_float(x_final, dtype) - output = np.pad(output, (0, len(wav) - len(output)), mode="constant") - return output - - -## Alternative VAD algorithm to webrctvad. It has the advantage of not requiring to install that -## darn package and it also works for any sampling rate. Maybe I'll eventually use it instead of -## webrctvad -# def vad(wav, sampling_rate, eta=0.15, window_size=0): -# """ -# TODO: fix doc -# Creates a profile of the noise in a given waveform. -# -# :param wav: a waveform containing noise ONLY, as a numpy array of floats or ints. -# :param sampling_rate: the sampling rate of the audio -# :param window_size: the size of the window the logmmse algorithm operates on. A default value -# will be picked if left as 0. -# :param eta: voice threshold for noise update. While the voice activation detection value is -# below this threshold, the noise profile will be continuously updated throughout the audio. -# Set to 0 to disable updating the noise profile. -# """ -# wav, dtype = to_float(wav) -# wav += np.finfo(np.float64).eps -# -# if window_size == 0: -# window_size = int(math.floor(0.02 * sampling_rate)) -# -# if window_size % 2 == 1: -# window_size = window_size + 1 -# -# perc = 50 -# len1 = int(math.floor(window_size * perc / 100)) -# len2 = int(window_size - len1) -# -# win = np.hanning(window_size) -# win = win * len2 / np.sum(win) -# n_fft = 2 * window_size -# -# wav_mean = np.zeros(n_fft) -# n_frames = len(wav) // window_size -# for j in range(0, window_size * n_frames, window_size): -# wav_mean += np.absolute(np.fft.fft(win * wav[j:j + window_size], n_fft, axis=0)) -# noise_mu2 = (wav_mean / n_frames) ** 2 -# -# wav, dtype = to_float(wav) -# wav += np.finfo(np.float64).eps -# -# nframes = int(math.floor(len(wav) / len2) - math.floor(window_size / len2)) -# vad = np.zeros(nframes * len2, dtype=np.bool) -# -# aa = 0.98 -# mu = 0.98 -# ksi_min = 10 ** (-25 / 10) -# -# xk_prev = np.zeros(len1) -# noise_mu2 = noise_mu2 -# for k in range(0, nframes * len2, len2): -# insign = win * wav[k:k + window_size] -# -# spec = np.fft.fft(insign, n_fft, axis=0) -# sig = np.absolute(spec) -# sig2 = sig ** 2 -# -# gammak = np.minimum(sig2 / noise_mu2, 40) -# -# if xk_prev.all() == 0: -# ksi = aa + (1 - aa) * np.maximum(gammak - 1, 0) -# else: -# ksi = aa * xk_prev / noise_mu2 + (1 - aa) * np.maximum(gammak - 1, 0) -# ksi = np.maximum(ksi_min, ksi) -# -# log_sigma_k = gammak * ksi / (1 + ksi) - np.log(1 + ksi) -# vad_decision = np.sum(log_sigma_k) / window_size -# if vad_decision < eta: -# noise_mu2 = mu * noise_mu2 + (1 - mu) * sig2 -# print(vad_decision) -# -# a = ksi / (1 + ksi) -# vk = a * gammak -# ei_vk = 0.5 * expn(1, np.maximum(vk, 1e-8)) -# hw = a * np.exp(ei_vk) -# sig = sig * hw -# xk_prev = sig ** 2 -# -# vad[k:k + len2] = vad_decision >= eta -# -# vad = np.pad(vad, (0, len(wav) - len(vad)), mode="constant") -# return vad - - -def to_float(_input): - if _input.dtype == np.float64: - return _input, _input.dtype - elif _input.dtype == np.float32: - return _input.astype(np.float64), _input.dtype - elif _input.dtype == np.uint8: - return (_input - 128) / 128., _input.dtype - elif _input.dtype == np.int16: - return _input / 32768., _input.dtype - elif _input.dtype == np.int32: - return _input / 2147483648., _input.dtype - raise ValueError('Unsupported wave file format') - - -def from_float(_input, dtype): - if dtype == np.float64: - return _input, np.float64 - elif dtype == np.float32: - return _input.astype(np.float32) - elif dtype == np.uint8: - return ((_input * 128) + 128).astype(np.uint8) - elif dtype == np.int16: - return (_input * 32768).astype(np.int16) - elif dtype == np.int32: - print(_input) - return (_input * 2147483648).astype(np.int32) - raise ValueError('Unsupported wave file format') diff --git a/spaces/Kevin676/s3prl-vc-vcc2020/README.md b/spaces/Kevin676/s3prl-vc-vcc2020/README.md deleted file mode 100644 index a6aecb7880aabb697a5c228642fba21a0202b190..0000000000000000000000000000000000000000 --- a/spaces/Kevin676/s3prl-vc-vcc2020/README.md +++ /dev/null @@ -1,14 +0,0 @@ ---- -title: S3prl Vc Vcc2020 -emoji: 😻 -colorFrom: yellow -colorTo: green -sdk: gradio -sdk_version: 3.21.0 -app_file: app.py -pinned: false -license: mit -duplicated_from: unilight/s3prl-vc-vcc2020 ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/KonradSzafer/HF-QA-Demo/discord_bot/client/__init__.py b/spaces/KonradSzafer/HF-QA-Demo/discord_bot/client/__init__.py deleted file mode 100644 index 8555bd80e89d32ba6289511a5d8d2a630e5dbe28..0000000000000000000000000000000000000000 --- a/spaces/KonradSzafer/HF-QA-Demo/discord_bot/client/__init__.py +++ /dev/null @@ -1 +0,0 @@ -from .client import DiscordClient diff --git a/spaces/KyanChen/RSPrompter/mmdet/models/necks/fpn_carafe.py b/spaces/KyanChen/RSPrompter/mmdet/models/necks/fpn_carafe.py deleted file mode 100644 index b393ff7c340c0c343fc4c91a4d87d341f66a3177..0000000000000000000000000000000000000000 --- a/spaces/KyanChen/RSPrompter/mmdet/models/necks/fpn_carafe.py +++ /dev/null @@ -1,275 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import torch.nn as nn -from mmcv.cnn import ConvModule, build_upsample_layer -from mmcv.ops.carafe import CARAFEPack -from mmengine.model import BaseModule, ModuleList, xavier_init - -from mmdet.registry import MODELS - - -@MODELS.register_module() -class FPN_CARAFE(BaseModule): - """FPN_CARAFE is a more flexible implementation of FPN. It allows more - choice for upsample methods during the top-down pathway. - - It can reproduce the performance of ICCV 2019 paper - CARAFE: Content-Aware ReAssembly of FEatures - Please refer to https://arxiv.org/abs/1905.02188 for more details. - - Args: - in_channels (list[int]): Number of channels for each input feature map. - out_channels (int): Output channels of feature pyramids. - num_outs (int): Number of output stages. - start_level (int): Start level of feature pyramids. - (Default: 0) - end_level (int): End level of feature pyramids. - (Default: -1 indicates the last level). - norm_cfg (dict): Dictionary to construct and config norm layer. - activate (str): Type of activation function in ConvModule - (Default: None indicates w/o activation). - order (dict): Order of components in ConvModule. - upsample (str): Type of upsample layer. - upsample_cfg (dict): Dictionary to construct and config upsample layer. - init_cfg (dict or list[dict], optional): Initialization config dict. - Default: None - """ - - def __init__(self, - in_channels, - out_channels, - num_outs, - start_level=0, - end_level=-1, - norm_cfg=None, - act_cfg=None, - order=('conv', 'norm', 'act'), - upsample_cfg=dict( - type='carafe', - up_kernel=5, - up_group=1, - encoder_kernel=3, - encoder_dilation=1), - init_cfg=None): - assert init_cfg is None, 'To prevent abnormal initialization ' \ - 'behavior, init_cfg is not allowed to be set' - super(FPN_CARAFE, self).__init__(init_cfg) - assert isinstance(in_channels, list) - self.in_channels = in_channels - self.out_channels = out_channels - self.num_ins = len(in_channels) - self.num_outs = num_outs - self.norm_cfg = norm_cfg - self.act_cfg = act_cfg - self.with_bias = norm_cfg is None - self.upsample_cfg = upsample_cfg.copy() - self.upsample = self.upsample_cfg.get('type') - self.relu = nn.ReLU(inplace=False) - - self.order = order - assert order in [('conv', 'norm', 'act'), ('act', 'conv', 'norm')] - - assert self.upsample in [ - 'nearest', 'bilinear', 'deconv', 'pixel_shuffle', 'carafe', None - ] - if self.upsample in ['deconv', 'pixel_shuffle']: - assert hasattr( - self.upsample_cfg, - 'upsample_kernel') and self.upsample_cfg.upsample_kernel > 0 - self.upsample_kernel = self.upsample_cfg.pop('upsample_kernel') - - if end_level == -1 or end_level == self.num_ins - 1: - self.backbone_end_level = self.num_ins - assert num_outs >= self.num_ins - start_level - else: - # if end_level is not the last level, no extra level is allowed - self.backbone_end_level = end_level + 1 - assert end_level < self.num_ins - assert num_outs == end_level - start_level + 1 - self.start_level = start_level - self.end_level = end_level - - self.lateral_convs = ModuleList() - self.fpn_convs = ModuleList() - self.upsample_modules = ModuleList() - - for i in range(self.start_level, self.backbone_end_level): - l_conv = ConvModule( - in_channels[i], - out_channels, - 1, - norm_cfg=norm_cfg, - bias=self.with_bias, - act_cfg=act_cfg, - inplace=False, - order=self.order) - fpn_conv = ConvModule( - out_channels, - out_channels, - 3, - padding=1, - norm_cfg=self.norm_cfg, - bias=self.with_bias, - act_cfg=act_cfg, - inplace=False, - order=self.order) - if i != self.backbone_end_level - 1: - upsample_cfg_ = self.upsample_cfg.copy() - if self.upsample == 'deconv': - upsample_cfg_.update( - in_channels=out_channels, - out_channels=out_channels, - kernel_size=self.upsample_kernel, - stride=2, - padding=(self.upsample_kernel - 1) // 2, - output_padding=(self.upsample_kernel - 1) // 2) - elif self.upsample == 'pixel_shuffle': - upsample_cfg_.update( - in_channels=out_channels, - out_channels=out_channels, - scale_factor=2, - upsample_kernel=self.upsample_kernel) - elif self.upsample == 'carafe': - upsample_cfg_.update(channels=out_channels, scale_factor=2) - else: - # suppress warnings - align_corners = (None - if self.upsample == 'nearest' else False) - upsample_cfg_.update( - scale_factor=2, - mode=self.upsample, - align_corners=align_corners) - upsample_module = build_upsample_layer(upsample_cfg_) - self.upsample_modules.append(upsample_module) - self.lateral_convs.append(l_conv) - self.fpn_convs.append(fpn_conv) - - # add extra conv layers (e.g., RetinaNet) - extra_out_levels = ( - num_outs - self.backbone_end_level + self.start_level) - if extra_out_levels >= 1: - for i in range(extra_out_levels): - in_channels = ( - self.in_channels[self.backbone_end_level - - 1] if i == 0 else out_channels) - extra_l_conv = ConvModule( - in_channels, - out_channels, - 3, - stride=2, - padding=1, - norm_cfg=norm_cfg, - bias=self.with_bias, - act_cfg=act_cfg, - inplace=False, - order=self.order) - if self.upsample == 'deconv': - upsampler_cfg_ = dict( - in_channels=out_channels, - out_channels=out_channels, - kernel_size=self.upsample_kernel, - stride=2, - padding=(self.upsample_kernel - 1) // 2, - output_padding=(self.upsample_kernel - 1) // 2) - elif self.upsample == 'pixel_shuffle': - upsampler_cfg_ = dict( - in_channels=out_channels, - out_channels=out_channels, - scale_factor=2, - upsample_kernel=self.upsample_kernel) - elif self.upsample == 'carafe': - upsampler_cfg_ = dict( - channels=out_channels, - scale_factor=2, - **self.upsample_cfg) - else: - # suppress warnings - align_corners = (None - if self.upsample == 'nearest' else False) - upsampler_cfg_ = dict( - scale_factor=2, - mode=self.upsample, - align_corners=align_corners) - upsampler_cfg_['type'] = self.upsample - upsample_module = build_upsample_layer(upsampler_cfg_) - extra_fpn_conv = ConvModule( - out_channels, - out_channels, - 3, - padding=1, - norm_cfg=self.norm_cfg, - bias=self.with_bias, - act_cfg=act_cfg, - inplace=False, - order=self.order) - self.upsample_modules.append(upsample_module) - self.fpn_convs.append(extra_fpn_conv) - self.lateral_convs.append(extra_l_conv) - - # default init_weights for conv(msra) and norm in ConvModule - def init_weights(self): - """Initialize the weights of module.""" - super(FPN_CARAFE, self).init_weights() - for m in self.modules(): - if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)): - xavier_init(m, distribution='uniform') - for m in self.modules(): - if isinstance(m, CARAFEPack): - m.init_weights() - - def slice_as(self, src, dst): - """Slice ``src`` as ``dst`` - - Note: - ``src`` should have the same or larger size than ``dst``. - - Args: - src (torch.Tensor): Tensors to be sliced. - dst (torch.Tensor): ``src`` will be sliced to have the same - size as ``dst``. - - Returns: - torch.Tensor: Sliced tensor. - """ - assert (src.size(2) >= dst.size(2)) and (src.size(3) >= dst.size(3)) - if src.size(2) == dst.size(2) and src.size(3) == dst.size(3): - return src - else: - return src[:, :, :dst.size(2), :dst.size(3)] - - def tensor_add(self, a, b): - """Add tensors ``a`` and ``b`` that might have different sizes.""" - if a.size() == b.size(): - c = a + b - else: - c = a + self.slice_as(b, a) - return c - - def forward(self, inputs): - """Forward function.""" - assert len(inputs) == len(self.in_channels) - - # build laterals - laterals = [] - for i, lateral_conv in enumerate(self.lateral_convs): - if i <= self.backbone_end_level - self.start_level: - input = inputs[min(i + self.start_level, len(inputs) - 1)] - else: - input = laterals[-1] - lateral = lateral_conv(input) - laterals.append(lateral) - - # build top-down path - for i in range(len(laterals) - 1, 0, -1): - if self.upsample is not None: - upsample_feat = self.upsample_modules[i - 1](laterals[i]) - else: - upsample_feat = laterals[i] - laterals[i - 1] = self.tensor_add(laterals[i - 1], upsample_feat) - - # build outputs - num_conv_outs = len(self.fpn_convs) - outs = [] - for i in range(num_conv_outs): - out = self.fpn_convs[i](laterals[i]) - outs.append(out) - return tuple(outs) diff --git a/spaces/KyanChen/RSPrompter/mmdet/models/roi_heads/shared_heads/__init__.py b/spaces/KyanChen/RSPrompter/mmdet/models/roi_heads/shared_heads/__init__.py deleted file mode 100644 index d56636ab34d1dd2592828238099bcdccf179d6d3..0000000000000000000000000000000000000000 --- a/spaces/KyanChen/RSPrompter/mmdet/models/roi_heads/shared_heads/__init__.py +++ /dev/null @@ -1,4 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -from .res_layer import ResLayer - -__all__ = ['ResLayer'] diff --git a/spaces/LCaligari/deepsynthbody-deepfake_ecg/README.md b/spaces/LCaligari/deepsynthbody-deepfake_ecg/README.md deleted file mode 100644 index 201d159ac9ec52ff7b2711a2f3d832478551dd2a..0000000000000000000000000000000000000000 --- a/spaces/LCaligari/deepsynthbody-deepfake_ecg/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Deepsynthbody-deepfake Ecg -emoji: ⚔ -colorFrom: blue -colorTo: blue -sdk: gradio -sdk_version: 3.32.0 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/LEOZHAO92/TTS/README.md b/spaces/LEOZHAO92/TTS/README.md deleted file mode 100644 index 4ce56ec74925011236e063b08a3e140f31dd00f2..0000000000000000000000000000000000000000 --- a/spaces/LEOZHAO92/TTS/README.md +++ /dev/null @@ -1,14 +0,0 @@ ---- -title: Personal TTS -emoji: 🐨 -colorFrom: red -colorTo: indigo -sdk: gradio -sdk_version: 3.36.1 -app_file: app.py -pinned: false -license: mit -duplicated_from: kevinwang676/Personal-TTS ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/LTputin/Janitor_AI/README.md b/spaces/LTputin/Janitor_AI/README.md deleted file mode 100644 index af8e4b6b4f842c99e5057f4a786c3e8503d95d26..0000000000000000000000000000000000000000 --- a/spaces/LTputin/Janitor_AI/README.md +++ /dev/null @@ -1,10 +0,0 @@ ---- -title: Janitor AI -emoji: ⚔ -colorFrom: blue -colorTo: green -sdk: docker -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/LegacyLeague/Legacy_League/README.md b/spaces/LegacyLeague/Legacy_League/README.md deleted file mode 100644 index 2164d380f15c44d675213748c92d98b9b6a6fa47..0000000000000000000000000000000000000000 --- a/spaces/LegacyLeague/Legacy_League/README.md +++ /dev/null @@ -1,37 +0,0 @@ ---- -title: Legacy_League -emoji: šŸ“ˆ -colorFrom: yellow -colorTo: indigo -sdk: gradio -app_file: app.py -pinned: false ---- - -# Configuration - -`title`: _string_ -Display title for the Space - -`emoji`: _string_ -Space emoji (emoji-only character allowed) - -`colorFrom`: _string_ -Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) - -`colorTo`: _string_ -Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) - -`sdk`: _string_ -Can be either `gradio` or `streamlit` - -`sdk_version` : _string_ -Only applicable for `streamlit` SDK. -See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions. - -`app_file`: _string_ -Path to your main application file (which contains either `gradio` or `streamlit` Python code). -Path is relative to the root of the repository. - -`pinned`: _boolean_ -Whether the Space stays on top of your list. diff --git a/spaces/LightSY/W2L-TD/app_hug.py b/spaces/LightSY/W2L-TD/app_hug.py deleted file mode 100644 index 1e83eb86792526d5bdad288b61ace9583bff26a6..0000000000000000000000000000000000000000 --- a/spaces/LightSY/W2L-TD/app_hug.py +++ /dev/null @@ -1,722 +0,0 @@ -import gradio as gr -import os - -# from os import listdir, path -# from models import Wav2Lip -import platform -import subprocess - -import argparse - -from gradio.outputs import Video -from wheel.cli import pack - -import audio -import cv2 -import numpy as np -# import onnx -import onnxruntime -import os -from tqdm import tqdm -import gradio as gr -from facelib.utils.face_restoration_helper import FaceRestoreHelper -import os - -# from glob import glob -# import face_detection - - -parser = argparse.ArgumentParser( - description='Inference code to lip-sync videos in the wild using Wav2Lip models') - -parser.add_argument('--face', type=str, - help='输兄视频路径', required=False) -parser.add_argument('--audio', type=str, - help='č¾“å…„éŸ³é¢‘č·Æå¾„', - required=False) - -parser.add_argument('--outfile', type=str, help='č¾“å‡ŗę–‡ä»¶å,ę— éœ€åŽē¼€', - default=None) - -parser.add_argument('--face_restore', action='store_true', - help='åÆē”Øę­¤å‚ę•°ę—¶ļ¼Œč°ƒē”Øgfpgganäæ®å¤äŗŗč„øļ¼Œå°†č€—č“¹ę›“å¤šę—¶é—“') - -args = parser.parse_args() -args.img_size = 96 -args.static = False -args.fps = 25 -args.pads = [0, 10, 0, 0] -args.face_det_batch_size = 16 -args.wav2lip_batch_size = 128 -args.resize_factor = 1 -args.crop = [0, -1, 0, -1] -args.box = [-1, -1, -1, -1] -args.rotate = False -args.nosmooth = False - - -# if os.path.isfile(args.face) and args.face.split('.')[1] in ['jpg', 'png', 'jpeg']: -# args.static = True - - -def get_smoothened_boxes(boxes, T): - for i in range(len(boxes)): - if i + T > len(boxes): - window = boxes[len(boxes) - T:] - else: - window = boxes[i: i + T] - boxes[i] = np.mean(window, axis=0) - return boxes - - -def face_detect(images): - face_helper = FaceRestoreHelper( - upscale_factor=1, - face_size=512, - crop_ratio=(1, 1), - det_model='retinaface_mobile0.25', # retinaface_mobile0.25,retinaface_resnet50 - save_ext='png', - use_parse=False, - device='cuda' - ) - - face_helper.clean_all() - - # detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D, ##čæ™é‡Œē”Øåˆ°äŗ†face_detection - # flip_input=False) - - batch_size = args.face_det_batch_size - - while 1: - predictions = [] - print('\n人脸检测中......') - try: - for i in tqdm(range(0, len(images), batch_size)): - predictions.extend( - face_helper.face_detector.batched_detect_faces_bbox(np.array(images[i:i + batch_size]))) - # predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size]))) - except RuntimeError: - if batch_size == 1: - raise RuntimeError( - 'Image too big to run face detection on GPU. Please use the --resize_factor argument') - batch_size //= 2 - print('Recovering from Out Of Memory error; New batch size: {}'.format(batch_size)) - continue - break - - results = [] - pady1, pady2, padx1, padx2 = args.pads - # TODO č·³čæ‡ę— äŗŗåƒframe - head_exist = [] - for rect, image in zip(predictions, images): - if rect is not None: - first_head_rect = rect - first_head_image = image - break - for rect, image in zip(predictions, images): - if rect is None: - head_exist.append(False) - if len(results) == 0: - y1 = max(0, first_head_rect[1] - pady1) - y2 = min(first_head_image.shape[0], first_head_rect[3] + pady2) - x1 = max(0, first_head_rect[0] - padx1) - x2 = min(first_head_image.shape[1], first_head_rect[2] + padx2) - results.append([x1, y1, x2, y2]) - else: - results.append(results[-1]) - # cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected. - # raise ValueError('Face not detected! Ensure the video contains a face in all the frames.') - else: - head_exist.append(True) - y1 = max(0, rect[1] - pady1) - y2 = min(image.shape[0], rect[3] + pady2) - x1 = max(0, rect[0] - padx1) - x2 = min(image.shape[1], rect[2] + padx2) - results.append([x1, y1, x2, y2]) - - boxes = np.array(results) - if not args.nosmooth: boxes = get_smoothened_boxes(boxes, T=5) - results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)] - return results, head_exist - - -def datagen2(frames, mels): - img_batch, head_exist_batch, mel_batch, frame_batch, coords_batch = [], [], [], [], [] - - # ***************************1ć€čÆ†åˆ«äŗŗč„øåÆ¹åŗ”ēš„ä½ē½®åę ‡ļ¼ŒęœŖčÆ†åˆ«ēš„äŗŗč„øēš„åø§åÆ¹åŗ”äøŗNone *************************** - if args.box[0] == -1: - if not args.static: - face_det_results, head_exist = face_detect(frames) # BGR2RGB for CNN face detection - else: - face_det_results, head_exist = face_detect([frames[0]]) - else: - print('Using the specified bounding box instead of face detection...') - y1, y2, x1, x2 = args.box - face_det_results = [[f[y1: y2, x1:x2], (y1, y2, x1, x2)] for f in frames] - head_exist = [True] * len(frames) - - for i, m in enumerate(mels): - # čŽ·å–åÆ¹åŗ”ēš„äø€ē»„éŸ³é¢‘åÆ¹åŗ”ēš„åø§äø‹ę ‡idx - idx = 0 if args.static else i % len(frames) - # čŽ·å–åÆ¹åŗ”ēš„äø€ē»„éŸ³é¢‘åÆ¹åŗ”ēš„åø§ - frame_to_save = frames[idx].copy() - # čŽ·å–åÆ¹åŗ”ēš„äø€ē»„éŸ³é¢‘åÆ¹åŗ”ēš„åø§åÆ¹åŗ”ēš„äŗŗč„øåę ‡ - face, coords = face_det_results[idx].copy() - - face = cv2.resize(face, (args.img_size, args.img_size)) - head_exist_batch.append(head_exist[idx]) - img_batch.append(face) - mel_batch.append(m) - frame_batch.append(frame_to_save) - coords_batch.append(coords) - - if len(img_batch) >= args.wav2lip_batch_size: - img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch) - - img_masked = img_batch.copy() - img_masked[:, args.img_size // 2:] = 0 - - img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255. - mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]) - - yield img_batch, head_exist_batch, mel_batch, frame_batch, coords_batch - img_batch, head_exist_batch, mel_batch, frame_batch, coords_batch = [], [], [], [], [] - - if len(img_batch) > 0: - img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch) - - img_masked = img_batch.copy() - img_masked[:, args.img_size // 2:] = 0 - - img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255. - mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]) - - yield img_batch, head_exist_batch, mel_batch, frame_batch, coords_batch - - -def main(input_video, input_audio, idx): - face_default = input_video - audio_default = input_audio - outfile_default = 'results/' + str(idx) + '.mp4' - # print(args.outfile) - if not os.path.exists('temp'): - os.mkdir('temp') - if not os.path.exists('results'): - os.mkdir('results') - - if not os.path.isfile(face_default): - raise ValueError('--face argument must be a valid path to video/image file') ##--face å‚ę•°åæ…é”»ę˜Æč§†é¢‘/å›¾åƒę–‡ä»¶ēš„ęœ‰ę•ˆč·Æå¾„ - - elif face_default.split('.')[1] in ['jpg', 'png', 'jpeg']: - full_frames = [cv2.imread(face_default)] - fps = args.fps - - else: - video_stream = cv2.VideoCapture(face_default) - fps = video_stream.get(cv2.CAP_PROP_FPS) - - # frame_width = int(video_stream.get(cv2.CAP_PROP_FRAME_WIDTH)) - # frame_height = int(video_stream.get(cv2.CAP_PROP_FRAME_HEIGHT)) - # frame_size = frame_height * frame_width - # if frame_size > 345600: - # args.resize_factor = int(np.sqrt(frame_size / 345600)) - - print('Reading video frames...') ##ę­£åœØčÆ»å–č§†é¢‘åø§... - - full_frames = [] - while 1: - still_reading, frame = video_stream.read() - if not still_reading: - video_stream.release() - break - - if args.resize_factor > 1: - frame = cv2.resize(frame, (frame.shape[1] // args.resize_factor, frame.shape[0] // args.resize_factor)) - - if args.rotate: - frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE) - - y1, y2, x1, x2 = args.crop - if x2 == -1: x2 = frame.shape[1] - if y2 == -1: y2 = frame.shape[0] - - frame = frame[y1:y2, x1:x2] - - full_frames.append(frame) - if (len(full_frames) > 300 * fps): - # print('äøå¾—č¾“å…„č¶…čæ‡5åˆ†é’Ÿēš„č§†é¢‘ļ¼') - raise ValueError('äøå¾—č¾“å…„č¶…čæ‡5åˆ†é’Ÿēš„č§†é¢‘ļ¼') - - print("åÆē”ØäŗŽęŽØē†ēš„č§†é¢‘åø§ę•°: " + str(len(full_frames))) ##åÆē”ØäŗŽęŽØē†ēš„åø§ę•°ļ¼š - - if not audio_default.endswith('.wav'): - print('Extracting raw audio...') - command = 'ffmpeg -y -i {} -strict -2 {}'.format(audio_default, 'temp/' + str(idx) + '.wav') - - subprocess.call(command, shell=True) - args.audio = 'temp/' + str(idx) + '.wav' - - wav = audio.load_wav(args.audio, 16000) - mel = audio.melspectrogram(wav) - print(mel.shape) - - if np.isnan(mel.reshape(-1)).sum() > 0: - raise ValueError('Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again') - - mel_chunks = [] - mel_idx_multiplier = 80. / fps - i = 0 - while 1: - start_idx = int(i * mel_idx_multiplier) - if start_idx + mel_step_size > len(mel[0]): - mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:]) - break - mel_chunks.append(mel[:, start_idx: start_idx + mel_step_size]) - i += 1 - - print("Length of mel chunks: {}".format(len(mel_chunks))) - - full_frames = full_frames[:len(mel_chunks)] - - batch_size = args.wav2lip_batch_size - gen = datagen2(full_frames.copy(), mel_chunks) - # print(gen) - # TODO åŠ č½½ęØ”åž‹ - sess = onnxruntime.InferenceSession('weights/W2LTD.onnx', providers=[('CUDAExecutionProvider', {'device_id': 0, }), - 'CPUExecutionProvider']) ##čæ™é‡Œē”Øonnxruntime引兄onnx到sess - # for i, (img_batch, mel_batch, frames, coords) in enumerate(tqdm(gen, - # total=int( - # np.ceil(float(len(mel_chunks)) / batch_size)))): - # j=0 - for i, (img_batch, exist_head_batch, mel_batch, frames, coords) in enumerate(tqdm(gen, - total=int(np.ceil(float( - len(mel_chunks)) / batch_size)))): - - if i == 0: - # model = load_model(args.checkpoint_path) - # print("Model loaded") - - frame_h, frame_w = full_frames[0].shape[:-1] - out = cv2.VideoWriter('temp/' + str(idx) + '.avi', - cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h)) - print('\n运蔌W2L-TDäø­......') - - input0 = np.transpose(mel_batch, (0, 3, 1, 2)) - input1 = np.transpose(img_batch, (0, 3, 1, 2)) - - input0 = np.array(input0, dtype=np.float32) - input1 = np.array(input1, dtype=np.float32) - - pred = sess.run(None, {'mel': input0, - 'img': input1}) # čæ™äø€éƒØåˆ†ä½æē”Øsessēš„runå‡½ę•°ę„čæč”Œonnx,输出onnxēš„ē»“ęžœć€‚å› äøŗę˜ÆåŒč¾“å…„ļ¼Œonnxč¦ē”ØåŠØę€č¾“å…„å½¢ęˆć€‚ - - pred = pred[0] - np.array(pred) ##čæ™äø€ę­„ę˜Æå°†listč½¬å˜ęˆarray,å› äøŗåŽč¾¹č¦ē”Øåˆ°transponseļ¼Œčæ™äøŖåæ…é”»ę˜Æarrayē±»åž‹ę‰čƒ½č°ƒē”Ø - pred = pred.transpose(0, 2, 3, 1) * 255. ##pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.åŽŸę„ę˜Æčæ™ę ·ēš„ - - # for p, f, c in zip(pred, frames, coords): - for p, f, c, exist in zip(pred, frames, coords, exist_head_batch): - if exist: - y1, y2, x1, x2 = c - - p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1)) - - f[y1:y2, x1:x2] = p - out.write(f) - - # im = Image.fromarray(f) - # im.save('temp/' + str(j) + ".jpeg") - # j += 1 - out.release() - - print('main') - print(audio_default) - print('temp/' + str(idx) + '.avi') - print(outfile_default) - command = 'ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}'.format(audio_default, 'temp/' + str(idx) + '.avi', - outfile_default) - - if subprocess.call(command, shell=platform.system() != 'Windows'): - print('å¤±č“„ļ¼čÆ·ę£€ęŸ„č¾“å‡ŗäæ”ęÆļ¼') - else: - print("成功!") - print('ē»“ęžœę–‡ä»¶åœØ' + outfile_default) - - return outfile_default - - -# TODO åø¦äŗŗč„øäæ®å¤ē‰ˆ - - -def img2tensor(imgs, bgr2rgb=True, float32=True): - """Numpy array to tensor. - - Args: - imgs (list[ndarray] | ndarray): Input images. - bgr2rgb (bool): Whether to change bgr to rgb. - float32 (bool): Whether to change to float32. - - Returns: - list[tensor] | tensor: Tensor images. If returned results only have - one element, just return tensor. - """ - - def _totensor(img, bgr2rgb, float32): - if img.shape[2] == 3 and bgr2rgb: - if img.dtype == 'float64': - img = img.astype('float32') - img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) - # img = torch.from_numpy(img.transpose(2, 0, 1)) - img = img.transpose(2, 0, 1) - if float32: - img = img.astype(np.float32) - return img - - if isinstance(imgs, list): - return [_totensor(img, bgr2rgb, float32) for img in imgs] - else: - return _totensor(imgs, bgr2rgb, float32) - - -def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)): - """Convert torch Tensors into image numpy arrays. - - After clamping to [min, max], values will be normalized to [0, 1]. - - Args: - tensor (Tensor or list[Tensor]): Accept shapes: - 1) 4D mini-batch Tensor of shape (B x 3/1 x H x W); - 2) 3D Tensor of shape (3/1 x H x W); - 3) 2D Tensor of shape (H x W). - Tensor channel should be in RGB order. - rgb2bgr (bool): Whether to change rgb to bgr. - out_type (numpy type): output types. If ``np.uint8``, transform outputs - to uint8 type with range [0, 255]; otherwise, float type with - range [0, 1]. Default: ``np.uint8``. - min_max (tuple[int]): min and max values for clamp. - - Returns: - (Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of - shape (H x W). The channel order is BGR. - """ - # if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))): - # raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}') - # - # if torch.is_tensor(tensor): - # tensor = [tensor] - tensor = [tensor] - result = [] - for _tensor in tensor: - # _tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max) - _tensor = np.clip(np.squeeze(_tensor, axis=0), -1, 1) - _tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0]) - - n_dim = _tensor.ndim - if n_dim == 4: - img_np = make_grid(_tensor, nrow=int(np.sqrt(_tensor.size(0))), normalize=False).numpy() - img_np = img_np.transpose(1, 2, 0) - if rgb2bgr: - img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) - elif n_dim == 3: - # img_np = _tensor.numpy() - img_np = _tensor - img_np = img_np.transpose(1, 2, 0) - if img_np.shape[2] == 1: # gray image - img_np = np.squeeze(img_np, axis=2) - else: - if rgb2bgr: - img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) - elif n_dim == 2: - img_np = _tensor.numpy() - else: - raise TypeError('Only support 4D, 3D or 2D tensor. ' f'But received with dimension: {n_dim}') - if out_type == np.uint8: - # Unlike MATLAB, numpy.unit8() WILL NOT round by default. - img_np = (img_np * 255.0).round() - img_np = img_np.astype(out_type) - result.append(img_np) - if len(result) == 1: - result = result[0] - return result - - -def my_normalize(img, channel_mean, channel_std): - for i in range(3): - img[i, :, :] = (img[i, :, :] - channel_mean[i]) / channel_std[i] - - return img - - -mel_step_size = 16 - - -def with_face_restore(input_video, input_audio, idx): - face_res = input_video - audio_res = input_audio - outfile_res = 'results/' + str(idx) + '.mp4' - - if not os.path.exists('temp'): - os.mkdir('temp') - if not os.path.exists('results'): - os.mkdir('results') - - if not os.path.isfile(face_res): - raise ValueError('--face argument must be a valid path to video/image file') - - elif face_res.split('.')[1] in ['jpg', 'png', 'jpeg']: - full_frames = [cv2.imread(face_res)] - fps = args.fps - - else: - video_stream = cv2.VideoCapture(face_res) - fps = video_stream.get(cv2.CAP_PROP_FPS) - - need_resize = False - frame_width = int(video_stream.get(cv2.CAP_PROP_FRAME_WIDTH)) - frame_height = int(video_stream.get(cv2.CAP_PROP_FRAME_HEIGHT)) - frame_size = frame_height * frame_width - if frame_size < 262144: - need_resize = True - - print('Reading video frames...') ##ę­£åœØčÆ»å–č§†é¢‘åø§... - - full_frames = [] - while 1: - still_reading, frame = video_stream.read() - if not still_reading: - video_stream.release() - break - - if args.resize_factor > 1: - frame = cv2.resize(frame, (frame.shape[1] // args.resize_factor, frame.shape[0] // args.resize_factor)) - - if args.rotate: - frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE) - - y1, y2, x1, x2 = args.crop - if x2 == -1: x2 = frame.shape[1] - if y2 == -1: y2 = frame.shape[0] - - frame = frame[y1:y2, x1:x2] - - full_frames.append(frame) - if (len(full_frames) > 300 * fps): - # print('äøå¾—č¾“å…„č¶…čæ‡5åˆ†é’Ÿēš„č§†é¢‘ļ¼') - raise ValueError('äøå¾—č¾“å…„č¶…čæ‡5åˆ†é’Ÿēš„č§†é¢‘ļ¼') - - print("åÆē”ØäŗŽęŽØē†ēš„č§†é¢‘åø§ę•°: " + str(len(full_frames))) ##åÆē”ØäŗŽęŽØē†ēš„åø§ę•°ļ¼š - - if not audio_res.endswith('.wav'): - print('Extracting raw audio...') - command = 'ffmpeg -y -i {} -strict -2 {}'.format(audio_res, 'temp/' + str(idx) + '.wav') - - subprocess.call(command, shell=True) - audio_res = 'temp/' + str(idx) + '.wav' - - print('extract to ' + audio_res) - wav = audio.load_wav(audio_res, 16000) - mel = audio.melspectrogram(wav) - print(mel.shape) - - if np.isnan(mel.reshape(-1)).sum() > 0: - raise ValueError('Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again') - - mel_chunks = [] - mel_idx_multiplier = 80. / fps - i = 0 - while 1: - start_idx = int(i * mel_idx_multiplier) - if start_idx + mel_step_size > len(mel[0]): - mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:]) - break - mel_chunks.append(mel[:, start_idx: start_idx + mel_step_size]) - i += 1 - - print("Length of mel chunks: {}".format(len(mel_chunks))) - - full_frames = full_frames[:len(mel_chunks)] - - batch_size = args.wav2lip_batch_size - gen = datagen2(full_frames.copy(), mel_chunks) - - # sess_options = onnxruntime.SessionOptions() - # sess_options.intra_op_num_threads = 2 - - device = onnxruntime.get_device() - if device == 'GPU': - providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] - else: - providers = ['CPUExecutionProvider'] - print('Onnxruntime using {}'.format(providers)) - - sess = onnxruntime.InferenceSession('weights/W2LTD.onnx', providers=providers) - sess_gfp = onnxruntime.InferenceSession('weights/GFPGANv1.4.onnx', providers=providers) - - upscale_factor = 1 - face_helper = FaceRestoreHelper( - upscale_factor=upscale_factor, - face_size=512, - crop_ratio=(1, 1), - det_model='retinaface_mobile0.25', # retinaface_mobile0.25,retinaface_resnet50 - save_ext='png', - use_parse=False, - ) - # j=0 - - for i, (img_batch, exist_head_batch, mel_batch, frames, coords) in enumerate(tqdm(gen, - total=int(np.ceil(float( - len(mel_chunks)) / batch_size)))): - if i == 0: - frame_h, frame_w = full_frames[0].shape[:-1] - # frame_h, frame_w = restored_img.shape[:-1] - out = cv2.VideoWriter('temp/' + str(idx) + '.avi', - cv2.VideoWriter_fourcc(*'DIVX'), fps, - (frame_w * upscale_factor, frame_h * upscale_factor)) - print('运蔌W2L-TDäø­......') - - input0 = np.transpose(mel_batch, (0, 3, 1, 2)) - input1 = np.transpose(img_batch, (0, 3, 1, 2)) - - input0 = np.array(input0, dtype=np.float32) - input1 = np.array(input1, dtype=np.float32) - - # print("batch write message:", len(img_batch), len(frames), len(coords), len(exist_head_batch)) - - # čæ™äø€éƒØåˆ†å°±ę˜Æå°†åŽŸęœ¬ęœ‰ēš„pytorchę›æę¢ęˆę™®é€špython代码 - pred = sess.run(None, {'mel': input0, - 'img': input1}) # čæ™äø€éƒØåˆ†ä½æē”Øsessēš„runå‡½ę•°ę„čæč”Œonnx,输出onnxēš„ē»“ęžœć€‚å› äøŗę˜ÆåŒč¾“å…„ļ¼Œonnxč¦ē”ØåŠØę€č¾“å…„å½¢ęˆć€‚ - - pred = pred[0] - np.array(pred) ##čæ™äø€ę­„ę˜Æå°†listč½¬å˜ęˆarray,å› äøŗåŽč¾¹č¦ē”Øåˆ°transponseļ¼Œčæ™äøŖåæ…é”»ę˜Æarrayē±»åž‹ę‰čƒ½č°ƒē”Ø - pred = pred.transpose(0, 2, 3, 1) * 255. ##pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.åŽŸę„ę˜Æčæ™ę ·ēš„ - - for p, f, c, exist in zip(pred, frames, coords, exist_head_batch): - if exist: - y1, y2, x1, x2 = c - p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1)) - f[y1:y2, x1:x2] = p - out.write(f) - - out.release() - - res_frames = [] - res_stream = cv2.VideoCapture('temp/' + str(idx) + '.avi') - while 1: - still_reading, frame = res_stream.read() - if not still_reading: - res_stream.release() - break - res_frames.append(frame) - - frame_h, frame_w = full_frames[0].shape[:-1] - # print('temp/' + str(idx) + '_2.avi') - out = cv2.VideoWriter('temp/' + str(idx) + '_2.avi', cv2.VideoWriter_fourcc(*'DIVX'), fps, - (frame_w * upscale_factor, frame_h * upscale_factor)) - print('GFPGANäŗŗč„øäæ®å¤äø­......') - cnt_noface = 0 - for f in tqdm(res_frames): - face_helper.clean_all() - face_helper.read_image(f) - num_det_faces = face_helper.get_face_landmarks_5(only_center_face=True, resize=640, eye_dist_threshold=5) - if num_det_faces == 0: - out.write(f) - # cnt_noface+=1 - continue - # print(num_det_faces) - face_helper.align_warp_face() - for index, cropped_face in enumerate(face_helper.cropped_faces): - cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) - cropped_face_t = my_normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) - cropped_face_t = np.expand_dims(cropped_face_t, axis=0) - try: - - output = sess_gfp.run(None, {'input': cropped_face_t})[0] - restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) - - except Exception as error: - print(f'\tFailed inference for GFPGAN: {error} \n ē»“ęžœęœ‰čÆÆļ¼') - restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1)) - - restored_face = restored_face.astype('uint8') - face_helper.add_restored_face(restored_face, cropped_face) - - bg_img = None - face_helper.get_inverse_affine(None) - restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=False, ) - out.write(restored_img) - - out.release() - - print(audio_res) - print('temp/' + str(idx) + '_2.avi') - print(outfile_res) - command = 'ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}'.format(audio_res, 'temp/' + str(idx) + '_2.avi', outfile_res) - - if subprocess.call(command, shell=platform.system() != 'Windows'): - print('å¤±č“„ļ¼čÆ·ę£€ęŸ„č¾“å‡ŗäæ”ęÆļ¼') - else: - print("成功!") - print('ē»“ęžœę–‡ä»¶åœØ' + outfile_res) - - return outfile_res - - -title = "č™šę‹ŸåŒ–čŗ«-2Dč™šę‹ŸäŗŗčÆ­éŸ³é©±åŠØē®—ę³•" -description = r"č¾“å…„ä»…å«ęœ‰å•äŗŗåƒēš„č§†é¢‘å’Œē”ØäŗŽé©±åŠØēš„éŸ³é¢‘åŽļ¼Œē‚¹å‡»submitęŒ‰é’®ļ¼ŒåÆå¾—åˆ°ä½ ęƒ³č¦ēš„video! ----Node团队
    Tips1:åÆē”Øäŗŗč„øäæ®å¤ä¼šå¤§å¹…å¢žåŠ čæē®—ę—¶é—“ļ¼Œå¦‚é‡é”™čÆÆļ¼ŒčÆ·å°čÆ•å–ę¶ˆå‹¾é€‰čÆ„é€‰é”¹^_^
    " \ - r"Tips2:äŗ‘ęœåŠ”å™Øåø¦å®½åŖęœ‰4Mļ¼Œå—åˆ¶äŗŽęœåŠ”å™Øē½‘ē»œęƒ…å†µļ¼Œäøå»ŗč®®äøŠä¼ å¤§äŗŽ40MBēš„ę–‡ä»¶ļ¼Œå®¹ę˜“å‡ŗēŽ°é”™čÆÆ~XD" \ - r"Hugging Faceēš„å…č“¹CPUčµ„ęŗčæē®—å¤Ŗę…¢ļ¼Œäøå»ŗč®®å¼€åÆäŗŗč„øäæ®å¤åŠŸčƒ½ļ¼Œäøå¼€åÆäŗŗč„øäæ®å¤åŠŸčƒ½å¤„ē†Exampleēš„ę—¶é—“ēŗ¦äøŗ5åˆ†é’Ÿļ¼ŒčÆ·č€åæƒē­‰å¾…
    šŸ”„ W2L-TD
    " - - -def video_identity(video=gr.Video(), audio=gr.Audio(), face_restore=gr.Radio()): - input_video = video - input_audio = audio - filelist = os.listdir('results/') - filelists = [] - for i in filelist: - filelists.append(i.split('.')[0]) - idx = str(np.random.randint(0, 1e7)).zfill(7) - while (idx in filelists): - idx = str(np.random.randint(0, 1e7)).zfill(7) - - # outfile = 'results/' + idx + '.mp4' - # print(outfile) - outfile = None - if int(face_restore) == 1: - print('main\n' + input_video + '\n' + input_audio + '\n' + str(idx)) - outfile = main(input_video, input_audio, idx=idx) - else: - print('facerestore\n' + input_video + '\n' + input_audio + '\n' + str(idx)) - outfile = with_face_restore(input_video, input_audio, idx=idx) - - out = os.path.join(os.path.dirname(__file__), outfile) - - return out - - -demo = gr.Interface(video_identity, - [ - gr.Video(label='Input Video'), - gr.Audio(type='filepath', label='Input Audio'), - gr.Radio(["是", "否"], label="åÆē”Øäŗŗč„øäæ®å¤", value='是', type='index'), - ], - "playable_video", - allow_flagging='never', - title=title, - description=description, - examples=[ - ['media/bbc.mp4', 'media/ę–‡ęœ¬1-ē”·-en-US.mp3', '是'], - ['media/xwlb.mp4', 'media/ę–‡ęœ¬2-儳-en-US.mp3', '是'], - ['media/wty2.mp4', 'media/ę–‡ęœ¬3-儳-en-US.mp3', '是'], - ['media/ywm.mp4', 'media/ę–‡ęœ¬1-ē”·-zh-CN.mp3', '是'], - ['media/tq.mp4', 'media/ę–‡ęœ¬2-ē”·-zh-CN.mp3', '是'], - ['media/lx.mp4', 'media/ę–‡ęœ¬3-ē”·-zh-CN.mp3', '是'], - ['media/weather1.mp4', 'media/ę–‡ęœ¬4-儳-zh-CN.mp3', '是'], - ['media/biden.mp4', 'media/ę–‡ęœ¬5-儳-zh-CN.mp3', '是'], - ], - cache_examples=True, - ) - -if __name__ == "__main__": - gr.close_all() - # demo.queue(concurrency_count=3, max_size=6) - demo.launch(show_error=True, server_port=7860, max_threads=6) diff --git a/spaces/Longtong/FoodVisionBig/app.py b/spaces/Longtong/FoodVisionBig/app.py deleted file mode 100644 index 7deb5910defa4d720eacc9b947d7eb6b22b6979a..0000000000000000000000000000000000000000 --- a/spaces/Longtong/FoodVisionBig/app.py +++ /dev/null @@ -1,65 +0,0 @@ -from timeit import default_timer as timer -from typing import Tuple, Dict -import PIL -import gradio as gr -import os -import torch -import torch.nn as nn -from torchvision.models import EfficientNet_B2_Weights, efficientnet_b2 - -from model import create_effnetb2_model - - -def predict(img): - start_time = timer() - # transform the image, add a batch dimension, bring to device - img_processed = transform(img) - img_processed = img_processed.unsqueeze(dim=0) - img_processed = img_processed.to(device) - - # set model in eval mode and make pred - model.eval() - with torch.inference_mode(): - logits = model(img_processed) - probs = logits.softmax(dim=1) - pred_labels_and_probs = {class_names[i]:float(probs[0][i].item()) for i in range(len(class_names))} - - end_time = timer() - pred_time = end_time - start_time - - return pred_labels_and_probs, pred_time - -if __name__ == "__main__": - # Setup class names - with open("./class_names.txt") as f: - class_names = [food.strip() for food in f.readlines()] - - # set the device to the cpu - device = "cpu" - - # create instance of effnetb2 model and transforms - model, transform = create_effnetb2_model(num_classes=101) - - # load the trained weights into - model_path = "./effnetb2_100_percent_food101.pth" - model.load_state_dict(torch.load(f=model_path, - map_location=torch.device("cpu"))) - - title = "Foodvision Big" - description = "EfficientNetB feature extractor to classify images of 101 different classes of food." - article = "Created as part of PyTorch course" - - example_list = [['examples/' + example] for example in os.listdir("examples")] - - # Create the Gradio - demo = gr.Interface(fn=predict, - inputs=gr.Image(type="pil"), - outputs = [gr.Label(num_top_classes=5, label="Prediction"), - gr.Number(label="Prediction time (s)")], - examples=example_list, - title=title, - description=description, - article=article) - - demo.launch(debug=False, # print errors locally - share=False) # generate a publically sharable URL diff --git a/spaces/Mahiruoshi/Lovelive-Nijigasaku-Chat-iSTFT-GPT3/README.md b/spaces/Mahiruoshi/Lovelive-Nijigasaku-Chat-iSTFT-GPT3/README.md deleted file mode 100644 index 92159c6b3ef87180d5cbd81a6ce6684fb2cf65a7..0000000000000000000000000000000000000000 --- a/spaces/Mahiruoshi/Lovelive-Nijigasaku-Chat-iSTFT-GPT3/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: Lovelive-nijigasaki-MB-iSTFT-VITS-ZH&JP -emoji: šŸŒ– -colorFrom: pink -colorTo: pink -sdk: gradio -sdk_version: 3.15.0 -app_file: app.py -pinned: false -license: other ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/MaksMaib/PetGradioStyleTransf/app.py b/spaces/MaksMaib/PetGradioStyleTransf/app.py deleted file mode 100644 index 5180ff6749f72033644482c4f10db9afa41fca97..0000000000000000000000000000000000000000 --- a/spaces/MaksMaib/PetGradioStyleTransf/app.py +++ /dev/null @@ -1,22 +0,0 @@ -import gradio as gr -import model - - -def inference(content, style): - result = model.main(style.name, content.name) - return result - - -if __name__ == "__main__": - title = " Part of my PET project" - description = "One of my attempts to combine machine learning models and a web interface. Gredio as black magic prototype for visualization of the model is ready in a couple of hours." - git = "

    Github Repo

    " - examples = [ - ['picasso-old.jpg', 'picasso.jpg'], - ] - - inputs = [gr.inputs.Image(type="file", label='content'), gr.inputs.Image(type="file", label='style')] - output = gr.outputs.Image(type="pil") - my_app= gr.Interface(inference, inputs, outputs=output, title=title, article=git, - description=description, examples=examples) - my_app.launch() diff --git a/spaces/Manmay/tortoise-tts/tortoise/models/random_latent_generator.py b/spaces/Manmay/tortoise-tts/tortoise/models/random_latent_generator.py deleted file mode 100644 index e90ef2130a47ec52160709877972716352e04c9c..0000000000000000000000000000000000000000 --- a/spaces/Manmay/tortoise-tts/tortoise/models/random_latent_generator.py +++ /dev/null @@ -1,55 +0,0 @@ -import math - -import torch -import torch.nn as nn -import torch.nn.functional as F - - -def fused_leaky_relu(input, bias=None, negative_slope=0.2, scale=2 ** 0.5): - if bias is not None: - rest_dim = [1] * (input.ndim - bias.ndim - 1) - return ( - F.leaky_relu( - input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=negative_slope - ) - * scale - ) - else: - return F.leaky_relu(input, negative_slope=0.2) * scale - - -class EqualLinear(nn.Module): - def __init__( - self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1 - ): - super().__init__() - self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) - if bias: - self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) - else: - self.bias = None - self.scale = (1 / math.sqrt(in_dim)) * lr_mul - self.lr_mul = lr_mul - - def forward(self, input): - out = F.linear(input, self.weight * self.scale) - out = fused_leaky_relu(out, self.bias * self.lr_mul) - return out - - -class RandomLatentConverter(nn.Module): - def __init__(self, channels): - super().__init__() - self.layers = nn.Sequential(*[EqualLinear(channels, channels, lr_mul=.1) for _ in range(5)], - nn.Linear(channels, channels)) - self.channels = channels - - def forward(self, ref): - r = torch.randn(ref.shape[0], self.channels, device=ref.device) - y = self.layers(r) - return y - - -if __name__ == '__main__': - model = RandomLatentConverter(512) - model(torch.randn(5,512)) \ No newline at end of file diff --git a/spaces/Maqueda/SG161222-Realistic_Vision_V1.4/app.py b/spaces/Maqueda/SG161222-Realistic_Vision_V1.4/app.py deleted file mode 100644 index a3cc9b493946644ef46fa95cde231d3773b98d0c..0000000000000000000000000000000000000000 --- a/spaces/Maqueda/SG161222-Realistic_Vision_V1.4/app.py +++ /dev/null @@ -1,3 +0,0 @@ -import gradio as gr - -gr.Interface.load("models/SG161222/Realistic_Vision_V1.4").launch() \ No newline at end of file diff --git a/spaces/Marshalls/testmtd/models/util/array_util.py b/spaces/Marshalls/testmtd/models/util/array_util.py deleted file mode 100644 index a27bd1cdd2be25318188b6048430a4376c58f433..0000000000000000000000000000000000000000 --- a/spaces/Marshalls/testmtd/models/util/array_util.py +++ /dev/null @@ -1,132 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F - - -class Flip(nn.Module): - def forward(self, x, cond, sldj, reverse=False): - assert isinstance(x, tuple) and len(x) == 2 - return (x[1], x[0]), sldj - - -def mean_dim(tensor, dim=None, keepdims=False): - """Take the mean along multiple dimensions. - - Args: - tensor (torch.Tensor): Tensor of values to average. - dim (list): List of dimensions along which to take the mean. - keepdims (bool): Keep dimensions rather than squeezing. - - Returns: - mean (torch.Tensor): New tensor of mean value(s). - """ - if dim is None: - return tensor.mean() - else: - if isinstance(dim, int): - dim = [dim] - dim = sorted(dim) - for d in dim: - tensor = tensor.mean(dim=d, keepdim=True) - if not keepdims: - for i, d in enumerate(dim): - tensor.squeeze_(d-i) - return tensor - - -def checkerboard(x, reverse=False): - """Split x in a checkerboard pattern. Collapse horizontally.""" - # Get dimensions - if reverse: - b, c, h, w = x[0].size() - w *= 2 - device = x[0].device - else: - b, c, h, w = x.size() - device = x.device - - # Get list of indices in alternating checkerboard pattern - y_idx = [] - z_idx = [] - for i in range(h): - for j in range(w): - if (i % 2) == (j % 2): - y_idx.append(i * w + j) - else: - z_idx.append(i * w + j) - y_idx = torch.tensor(y_idx, dtype=torch.int64, device=device) - z_idx = torch.tensor(z_idx, dtype=torch.int64, device=device) - - if reverse: - y, z = (t.contiguous().view(b, c, h // 2 * w) for t in x) - x = torch.zeros(b, c, h * w, dtype=y.dtype, device=y.device) - x[:, :, y_idx] += y - x[:, :, z_idx] += z - x = x.view(b, c, h, w) - - return x - else: - if h % 2 != 0: - raise RuntimeError('Checkerboard got odd height input: {}'.format(h)) - - x = x.view(b, c, h * w) - y = x[:, :, y_idx].view(b, c, h // 2, w) - z = x[:, :, z_idx].view(b, c, h // 2, w) - - return y, z - - -def channelwise(x, reverse=False): - """Split x channel-wise.""" - if reverse: - x = torch.cat(x, dim=1) - return x - else: - y, z = x.chunk(2, dim=1) - return y, z - - -def squeeze(x): - """Trade spatial extent for channels. I.e., convert each - 1x4x4 volume of input into a 4x1x1 volume of output. - - Args: - x (torch.Tensor): Input to squeeze. - - Returns: - x (torch.Tensor): Squeezed or unsqueezed tensor. - """ - # import pdb; pdb.set_trace() - b, c, h, w = x.size() - x = x.view(b, c, h // 2, 2, w, 1) - x = x.permute(0, 1, 3, 5, 2, 4).contiguous() - x = x.view(b, c * 2, h // 2, w) - - return x - - -def unsqueeze(x): - """Trade channels channels for spatial extent. I.e., convert each - 4x1x1 volume of input into a 1x4x4 volume of output. - - Args: - x (torch.Tensor): Input to unsqueeze. - - Returns: - x (torch.Tensor): Unsqueezed tensor. - """ - b, c, h, w = x.size() - x = x.view(b, c // 2, 2, 1, h, w) - x = x.permute(0, 1, 4, 2, 5, 3).contiguous() - x = x.view(b, c // 2, h * 2, w) - - return x - - -def concat_elu(x): - """Concatenated ReLU (http://arxiv.org/abs/1603.05201), but with ELU.""" - return F.elu(torch.cat((x, -x), dim=1)) - - -def safe_log(x): - return torch.log(x.clamp(min=1e-22)) diff --git a/spaces/MashiroSA/sovits-emu-voice-transform/vdecoder/hifigan/env.py b/spaces/MashiroSA/sovits-emu-voice-transform/vdecoder/hifigan/env.py deleted file mode 100644 index 2bdbc95d4f7a8bad8fd4f5eef657e2b51d946056..0000000000000000000000000000000000000000 --- a/spaces/MashiroSA/sovits-emu-voice-transform/vdecoder/hifigan/env.py +++ /dev/null @@ -1,15 +0,0 @@ -import os -import shutil - - -class AttrDict(dict): - def __init__(self, *args, **kwargs): - super(AttrDict, self).__init__(*args, **kwargs) - self.__dict__ = self - - -def build_env(config, config_name, path): - t_path = os.path.join(path, config_name) - if config != t_path: - os.makedirs(path, exist_ok=True) - shutil.copyfile(config, os.path.join(path, config_name)) diff --git a/spaces/MattyWhite/ChatGPT-ImageCaptioner2/train_net.py b/spaces/MattyWhite/ChatGPT-ImageCaptioner2/train_net.py deleted file mode 100644 index 5679d52a45c115b83a1104b162b1567ca5cb01a1..0000000000000000000000000000000000000000 --- a/spaces/MattyWhite/ChatGPT-ImageCaptioner2/train_net.py +++ /dev/null @@ -1,269 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -import logging -import os -import sys -from collections import OrderedDict -import torch -from torch.nn.parallel import DistributedDataParallel -import time -import datetime - -from fvcore.common.timer import Timer -import detectron2.utils.comm as comm -from detectron2.checkpoint import DetectionCheckpointer, PeriodicCheckpointer -from detectron2.config import get_cfg -from detectron2.data import ( - MetadataCatalog, - build_detection_test_loader, -) -from detectron2.engine import default_argument_parser, default_setup, launch - -from detectron2.evaluation import ( - inference_on_dataset, - print_csv_format, - LVISEvaluator, - COCOEvaluator, -) -from detectron2.modeling import build_model -from detectron2.solver import build_lr_scheduler, build_optimizer -from detectron2.utils.events import ( - CommonMetricPrinter, - EventStorage, - JSONWriter, - TensorboardXWriter, -) -from detectron2.data.dataset_mapper import DatasetMapper -from detectron2.data.build import build_detection_train_loader -from detectron2.utils.logger import setup_logger -from torch.cuda.amp import GradScaler - -sys.path.insert(0, 'third_party/CenterNet2/projects/CenterNet2/') -from centernet.config import add_centernet_config - -sys.path.insert(0, 'third_party/Deformable-DETR') -from detic.config import add_detic_config -from detic.data.custom_build_augmentation import build_custom_augmentation -from detic.data.custom_dataset_dataloader import build_custom_train_loader -from detic.data.custom_dataset_mapper import CustomDatasetMapper, DetrDatasetMapper -from detic.custom_solver import build_custom_optimizer -from detic.evaluation.oideval import OIDEvaluator -from detic.evaluation.custom_coco_eval import CustomCOCOEvaluator -from detic.modeling.utils import reset_cls_test - - -logger = logging.getLogger("detectron2") - -def do_test(cfg, model): - results = OrderedDict() - for d, dataset_name in enumerate(cfg.DATASETS.TEST): - if cfg.MODEL.RESET_CLS_TESTS: - reset_cls_test( - model, - cfg.MODEL.TEST_CLASSIFIERS[d], - cfg.MODEL.TEST_NUM_CLASSES[d]) - mapper = None if cfg.INPUT.TEST_INPUT_TYPE == 'default' \ - else DatasetMapper( - cfg, False, augmentations=build_custom_augmentation(cfg, False)) - data_loader = build_detection_test_loader(cfg, dataset_name, mapper=mapper) - output_folder = os.path.join( - cfg.OUTPUT_DIR, "inference_{}".format(dataset_name)) - evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type - - if evaluator_type == "lvis" or cfg.GEN_PSEDO_LABELS: - evaluator = LVISEvaluator(dataset_name, cfg, True, output_folder) - elif evaluator_type == 'coco': - if dataset_name == 'coco_generalized_zeroshot_val': - # Additionally plot mAP for 'seen classes' and 'unseen classes' - evaluator = CustomCOCOEvaluator(dataset_name, cfg, True, output_folder) - else: - evaluator = COCOEvaluator(dataset_name, cfg, True, output_folder) - elif evaluator_type == 'oid': - evaluator = OIDEvaluator(dataset_name, cfg, True, output_folder) - else: - assert 0, evaluator_type - - results[dataset_name] = inference_on_dataset( - model, data_loader, evaluator) - if comm.is_main_process(): - logger.info("Evaluation results for {} in csv format:".format( - dataset_name)) - print_csv_format(results[dataset_name]) - if len(results) == 1: - results = list(results.values())[0] - return results - -def do_train(cfg, model, resume=False): - model.train() - if cfg.SOLVER.USE_CUSTOM_SOLVER: - optimizer = build_custom_optimizer(cfg, model) - else: - assert cfg.SOLVER.OPTIMIZER == 'SGD' - assert cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE != 'full_model' - assert cfg.SOLVER.BACKBONE_MULTIPLIER == 1. - optimizer = build_optimizer(cfg, model) - scheduler = build_lr_scheduler(cfg, optimizer) - - checkpointer = DetectionCheckpointer( - model, cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=scheduler - ) - - start_iter = checkpointer.resume_or_load( - cfg.MODEL.WEIGHTS, resume=resume).get("iteration", -1) + 1 - if not resume: - start_iter = 0 - max_iter = cfg.SOLVER.MAX_ITER if cfg.SOLVER.TRAIN_ITER < 0 else cfg.SOLVER.TRAIN_ITER - - periodic_checkpointer = PeriodicCheckpointer( - checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD, max_iter=max_iter - ) - - writers = ( - [ - CommonMetricPrinter(max_iter), - JSONWriter(os.path.join(cfg.OUTPUT_DIR, "metrics.json")), - TensorboardXWriter(cfg.OUTPUT_DIR), - ] - if comm.is_main_process() - else [] - ) - - use_custom_mapper = cfg.WITH_IMAGE_LABELS - MapperClass = CustomDatasetMapper if use_custom_mapper else DatasetMapper - mapper = MapperClass(cfg, True) if cfg.INPUT.CUSTOM_AUG == '' else \ - DetrDatasetMapper(cfg, True) if cfg.INPUT.CUSTOM_AUG == 'DETR' else \ - MapperClass(cfg, True, augmentations=build_custom_augmentation(cfg, True)) - if cfg.DATALOADER.SAMPLER_TRAIN in ['TrainingSampler', 'RepeatFactorTrainingSampler']: - data_loader = build_detection_train_loader(cfg, mapper=mapper) - else: - data_loader = build_custom_train_loader(cfg, mapper=mapper) - - if cfg.FP16: - scaler = GradScaler() - - logger.info("Starting training from iteration {}".format(start_iter)) - with EventStorage(start_iter) as storage: - step_timer = Timer() - data_timer = Timer() - start_time = time.perf_counter() - for data, iteration in zip(data_loader, range(start_iter, max_iter)): - data_time = data_timer.seconds() - storage.put_scalars(data_time=data_time) - step_timer.reset() - iteration = iteration + 1 - storage.step() - loss_dict = model(data) - - losses = sum( - loss for k, loss in loss_dict.items()) - assert torch.isfinite(losses).all(), loss_dict - - loss_dict_reduced = {k: v.item() \ - for k, v in comm.reduce_dict(loss_dict).items()} - losses_reduced = sum(loss for loss in loss_dict_reduced.values()) - if comm.is_main_process(): - storage.put_scalars( - total_loss=losses_reduced, **loss_dict_reduced) - - optimizer.zero_grad() - if cfg.FP16: - scaler.scale(losses).backward() - scaler.step(optimizer) - scaler.update() - else: - losses.backward() - optimizer.step() - - storage.put_scalar( - "lr", optimizer.param_groups[0]["lr"], smoothing_hint=False) - - step_time = step_timer.seconds() - storage.put_scalars(time=step_time) - data_timer.reset() - scheduler.step() - - if (cfg.TEST.EVAL_PERIOD > 0 - and iteration % cfg.TEST.EVAL_PERIOD == 0 - and iteration != max_iter): - do_test(cfg, model) - comm.synchronize() - - if iteration - start_iter > 5 and \ - (iteration % 20 == 0 or iteration == max_iter): - for writer in writers: - writer.write() - periodic_checkpointer.step(iteration) - - total_time = time.perf_counter() - start_time - logger.info( - "Total training time: {}".format( - str(datetime.timedelta(seconds=int(total_time))))) - -def setup(args): - """ - Create configs and perform basic setups. - """ - cfg = get_cfg() - add_centernet_config(cfg) - add_detic_config(cfg) - cfg.merge_from_file(args.config_file) - cfg.merge_from_list(args.opts) - if '/auto' in cfg.OUTPUT_DIR: - file_name = os.path.basename(args.config_file)[:-5] - cfg.OUTPUT_DIR = cfg.OUTPUT_DIR.replace('/auto', '/{}'.format(file_name)) - logger.info('OUTPUT_DIR: {}'.format(cfg.OUTPUT_DIR)) - cfg.freeze() - default_setup(cfg, args) - setup_logger(output=cfg.OUTPUT_DIR, \ - distributed_rank=comm.get_rank(), name="detic") - return cfg - - -def main(args): - cfg = setup(args) - - model = build_model(cfg) - logger.info("Model:\n{}".format(model)) - if args.eval_only: - DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( - cfg.MODEL.WEIGHTS, resume=args.resume - ) - - return do_test(cfg, model) - - distributed = comm.get_world_size() > 1 - if distributed: - model = DistributedDataParallel( - model, device_ids=[comm.get_local_rank()], broadcast_buffers=False, - find_unused_parameters=cfg.FIND_UNUSED_PARAM - ) - - do_train(cfg, model, resume=args.resume) - return do_test(cfg, model) - - -if __name__ == "__main__": - args = default_argument_parser() - args = args.parse_args() - if args.num_machines == 1: - args.dist_url = 'tcp://127.0.0.1:{}'.format( - torch.randint(11111, 60000, (1,))[0].item()) - else: - if args.dist_url == 'host': - args.dist_url = 'tcp://{}:12345'.format( - os.environ['SLURM_JOB_NODELIST']) - elif not args.dist_url.startswith('tcp'): - tmp = os.popen( - 'echo $(scontrol show job {} | grep BatchHost)'.format( - args.dist_url) - ).read() - tmp = tmp[tmp.find('=') + 1: -1] - args.dist_url = 'tcp://{}:12345'.format(tmp) - print("Command Line Args:", args) - launch( - main, - args.num_gpus, - num_machines=args.num_machines, - machine_rank=args.machine_rank, - dist_url=args.dist_url, - args=(args,), - ) diff --git a/spaces/MaxReimann/Whitebox-Style-Transfer-Editing/worker/serve.py b/spaces/MaxReimann/Whitebox-Style-Transfer-Editing/worker/serve.py deleted file mode 100644 index 5e4cc1499b1a5a22acc1591e42bd43f18fd15c03..0000000000000000000000000000000000000000 --- a/spaces/MaxReimann/Whitebox-Style-Transfer-Editing/worker/serve.py +++ /dev/null @@ -1,290 +0,0 @@ -import datetime -import os -from pathlib import Path -import sys -from flask import Flask, jsonify, request, send_file, abort -from flask_uploads import UploadSet, configure_uploads, IMAGES -from werkzeug.exceptions import default_exceptions -from werkzeug.exceptions import HTTPException, NotFound -import json -import torch -import time -import threading -import traceback -from PIL import Image -import numpy as np - -PACKAGE_PARENT = '..' -WISE_DIR = '../wise/' -SCRIPT_DIR = os.path.dirname(os.path.realpath(os.path.join(os.getcwd(), os.path.expanduser(__file__)))) -sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, PACKAGE_PARENT))) -sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, WISE_DIR))) - - - -from parameter_optimization.parametric_styletransfer import single_optimize -from parameter_optimization.parametric_styletransfer import CONFIG as ST_CONFIG -from parameter_optimization.strotss_org import strotss, pil_resize_long_edge_to -from helpers import torch_to_np, np_to_torch -from effects import get_default_settings, MinimalPipelineEffect - -app = Flask(__name__) - -image_folder = 'img_received' -photos = UploadSet('photos', IMAGES) -app.config['UPLOADED_PHOTOS_DEST'] = image_folder -configure_uploads(app, photos) - -class Args(object): - def __init__(self, initial_data): - for key in initial_data: - setattr(self, key, initial_data[key]) - def set_attributes(self, val_dict): - for key in val_dict: - setattr(self, key, val_dict[key]) - -default_args = { - "output_image" : "output.jpg", - ## values always set by request ## - "content_image": "", - "style_image": "", - "output_vp": "", - "iters": 500 -} - - -total_task_count = 0 - -class NeuralOptimizer(): - def __init__(self, args) -> None: - self.cur_iteration = 0 - self.args = args - - def optimize(self): - base_dir = f"result/{datetime.datetime.now().strftime(r'%Y-%m-%d %H.%Mh %Ss')}" - os.makedirs(base_dir) - - content = Image.open(self.args.content_image) - style = Image.open(self.args.style_image) - - def set_iter(iter): - self.cur_iteration=iter - - effect, preset, _ = get_default_settings("minimal_pipeline") - effect.enable_checkpoints() - - reference = strotss(pil_resize_long_edge_to(content, 1024), - pil_resize_long_edge_to(style, 1024), content_weight=16.0, - device=torch.device("cuda"), space="uniform") - - ref_save_path = os.path.join(base_dir, "reference.jpg") - resize_to = 720 - reference = pil_resize_long_edge_to(reference, resize_to) - reference.save(ref_save_path) - ST_CONFIG["n_iterations"] = self.args.iters - vp, content_img_cuda = single_optimize(effect, preset, "l1", self.args.content_image, str(ref_save_path), - write_video=False, base_dir=base_dir, - iter_callback=set_iter) - - output = Image.fromarray(torch_to_np(content_img_cuda.detach().cpu() * 255.0).astype(np.uint8)) - output.save(self.args.output_image) - # torch.save (vp.detach().clone(), self.args.output_vp) - # preset_tensor = effect.vpd.preset_tensor(preset, np_to_torch(np.array(content)).cuda(), add_local_dims=True) - np.savez_compressed(self.args.output_vp, vp=vp.detach().cpu().numpy()) - - - -class StyleTask: - def __init__(self, task_id, style_filename, content_filename): - self.content_filename=content_filename - self.style_filename=style_filename - - self.status = "queued" - self.task_id = task_id - self.error_msg = "" - self.output_filename = content_filename.split(".")[0] + "_output.jpg" - self.vp_output_filename = content_filename.split(".")[0] + "_output.npz" - - # global neural_optimizer - # if neural_optimizer is None: - # neural_optimizer = NeuralOptimizer(Args(default_args)) - - self.neural_optimizer = NeuralOptimizer(Args(default_args)) - - def start(self): - self.neural_optimizer.args.set_attributes(default_args) - - self.neural_optimizer.args.style_image = os.path.join(image_folder, self.style_filename) - self.neural_optimizer.args.content_image = os.path.join(image_folder, self.content_filename) - self.neural_optimizer.args.output_image = os.path.join(image_folder, self.output_filename) - self.neural_optimizer.args.output_vp = os.path.join(image_folder, self.vp_output_filename) - - thread = threading.Thread(target=self.run, args=()) - thread.daemon = True # Daemonize thread - thread.start() # Start the execution - - def run(self): - self.status = "running" - try: - self.neural_optimizer.optimize() - except Exception as e: - print("Error in task %d :"%(self.task_id), str(e)) - traceback.print_exc() - - self.status = "error" - self.error_msg = str(e) - return - - self.status = "finished" - del self.neural_optimizer - torch.cuda.empty_cache() - print("finished styling task: " + str(self.task_id)) - -class StylerQueue: - queued_tasks = [] - finished_tasks = [] - running_task = None - - def __init__(self): - thread = threading.Thread(target=self.status_checker, args=()) - thread.daemon = True # Daemonize thread - thread.start() # Start the execution - - def queue_task(self, *args): - global total_task_count - total_task_count += 1 - task_id = abs(hash(str(time.time()))) - print("queued task num. ", total_task_count, "with ID", task_id) - task = StyleTask(task_id, *args) - self.queued_tasks.append(task) - - return task_id - - def get_task(self, task_id): - if self.running_task is not None and self.running_task.task_id == task_id: - return self.running_task - task = next((task for task in self.queued_tasks + self.finished_tasks if task.task_id == task_id), None) - return task - - def status_checker(self): - while True: - time.sleep(0.3) - - if self.running_task is None: - if len(self.queued_tasks) > 0: - self.running_task = self.queued_tasks[0] - self.running_task.start() - self.queued_tasks = self.queued_tasks[1:] - elif self.running_task.status == "finished" or self.running_task.status == "error": - self.finished_tasks.append(self.running_task) - if len(self.queued_tasks) > 0: - self.running_task = self.queued_tasks[0] - self.running_task.start() - self.queued_tasks = self.queued_tasks[1:] - else: - self.running_task = None - -styler_queue = StylerQueue() - -@app.errorhandler(404) -def resource_not_found(e): - return jsonify(message=str(e)), 404 - -@app.errorhandler(500) -def internal_server_error(e): - return jsonify(message=str(e)), 500 - -@app.errorhandler(400) -def caught_error(e, *args): - print(args) - print(e) - return jsonify(message=str(e.description)), 400 - -@app.route('/', defaults={'path': ''}) -@app.route('/') -def catch_all(path): - abort(404, "route not found") - - - -@app.route('/upload', methods=['POST']) -def upload(): - if 'style-image' in request.files and \ - 'content-image' in request.files: - - style_filename = photos.save(request.files['style-image']) - content_filename = photos.save(request.files['content-image']) - - job_id = styler_queue.queue_task(style_filename, content_filename) - print('added new stylization task', style_filename, content_filename) - - return jsonify({"task_id": job_id}) - abort(400, description="request needs style, content image") - -@app.route('/get_status') -def get_status(): - if request.args.get("task_id") is None: - abort(400, description="task_id needs to be supplied as parameter") - task_id = int(request.args.get("task_id")) - task = styler_queue.get_task(task_id) - - if task is None: - abort(400, description="task with id %d not found"%task_id) - - status = { - "status": task.status, - "msg": task.error_msg - } - - if task.status == "running": - if isinstance(task, StyleTask): - status["progress"] = float(task.neural_optimizer.cur_iteration) / float(default_args["iters"]) - - return jsonify(status) - -@app.route('/queue_length') -def get_queue_length(): - tasks = len(styler_queue.queued_tasks) - if styler_queue.running_task is not None: - tasks += 1 - - status = { - "length": tasks - } - - return jsonify(status) - - -@app.route('/get_image') -def get_image(): - if request.args.get("task_id") is None: - abort(400, description="task_id needs to be supplied as parameter") - task_id = int(request.args.get("task_id")) - task = styler_queue.get_task(task_id) - - if task is None: - abort(400, description="task with id %d not found"%task_id) - - if task.status != "finished": - abort(400, description="task with id %d not in finished state"%task_id) - - return send_file(os.path.join(image_folder, task.output_filename), mimetype='image/jpg') - -@app.route('/get_vp') -def get_vp(): - if request.args.get("task_id") is None: - abort(400, description="task_id needs to be supplied as parameter") - task_id = int(request.args.get("task_id")) - task = styler_queue.get_task(task_id) - - if task is None: - abort(400, description="task with id %d not found"%task_id) - - if task.status != "finished": - abort(400, description="task with id %d not in finished state"%task_id) - - return send_file(os.path.join(image_folder, task.vp_output_filename), mimetype='application/zip') - - -if __name__ == '__main__': - app.run(debug=False, host="0.0.0.0",port=8600) diff --git a/spaces/NCTCMumbai/NCTC/models/official/benchmark/owner_utils.py b/spaces/NCTCMumbai/NCTC/models/official/benchmark/owner_utils.py deleted file mode 100644 index e7d189d7b9a2ba05a0bd3af8cb970d52cc85f5a0..0000000000000000000000000000000000000000 --- a/spaces/NCTCMumbai/NCTC/models/official/benchmark/owner_utils.py +++ /dev/null @@ -1,67 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Utils to set Owner annotations on benchmarks. - -@owner_utils.Owner('owner_team/user') can be set either at the benchmark class -level / benchmark method level or both. - -Runner frameworks can use owner_utils.GetOwner(benchmark_method) to get the -actual owner. Python inheritance for the owner attribute is respected. (E.g -method level owner takes precedence over class level). - -See owner_utils_test for associated tests and more examples. - -The decorator can be applied both at the method level and at the class level. - -Simple example: -=============== - -class MLBenchmark: - - @Owner('example_id') - def benchmark_method_1_gpu(self): - return True -""" - - -def Owner(owner_name): - """Sets the owner attribute on a decorated method or class.""" - - def _Wrapper(func_or_class): - """Sets the benchmark owner attribute.""" - func_or_class.__benchmark__owner__ = owner_name - return func_or_class - - return _Wrapper - - -def GetOwner(benchmark_method_or_class): - """Gets the inherited owner attribute for this benchmark. - - Checks for existence of __benchmark__owner__. If it's not present, looks for - it in the parent class's attribute list. - - Args: - benchmark_method_or_class: A benchmark method or class. - - Returns: - string - the associated owner if present / None. - """ - if hasattr(benchmark_method_or_class, '__benchmark__owner__'): - return benchmark_method_or_class.__benchmark__owner__ - elif hasattr(benchmark_method_or_class, '__self__'): - if hasattr(benchmark_method_or_class.__self__, '__benchmark__owner__'): - return benchmark_method_or_class.__self__.__benchmark__owner__ - return None diff --git a/spaces/NCTCMumbai/NCTC/models/official/nlp/nhnet/decoder_test.py b/spaces/NCTCMumbai/NCTC/models/official/nlp/nhnet/decoder_test.py deleted file mode 100644 index f5effbdb090e9c08939bfc203091e960741700c6..0000000000000000000000000000000000000000 --- a/spaces/NCTCMumbai/NCTC/models/official/nlp/nhnet/decoder_test.py +++ /dev/null @@ -1,151 +0,0 @@ -# Copyright 2020 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""Tests for nlp.nhnet.decoder.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import numpy as np -import tensorflow as tf -from official.nlp.modeling import layers -from official.nlp.nhnet import configs -from official.nlp.nhnet import decoder -from official.nlp.nhnet import utils - - -class DecoderTest(tf.test.TestCase): - - def setUp(self): - super(DecoderTest, self).setUp() - self._config = utils.get_test_params() - - def test_transformer_decoder(self): - decoder_block = decoder.TransformerDecoder( - num_hidden_layers=self._config.num_hidden_layers, - hidden_size=self._config.hidden_size, - num_attention_heads=self._config.num_attention_heads, - intermediate_size=self._config.intermediate_size, - intermediate_activation=self._config.hidden_act, - hidden_dropout_prob=self._config.hidden_dropout_prob, - attention_probs_dropout_prob=self._config.attention_probs_dropout_prob, - initializer_range=self._config.initializer_range) - decoder_block.build(None) - self.assertEqual(len(decoder_block.layers), self._config.num_hidden_layers) - - def test_bert_decoder(self): - seq_length = 10 - encoder_input_ids = tf.keras.layers.Input( - shape=(seq_length,), name="encoder_input_ids", dtype=tf.int32) - target_ids = tf.keras.layers.Input( - shape=(seq_length,), name="target_ids", dtype=tf.int32) - encoder_outputs = tf.keras.layers.Input( - shape=(seq_length, self._config.hidden_size), - name="all_encoder_outputs", - dtype=tf.float32) - embedding_lookup = layers.OnDeviceEmbedding( - vocab_size=self._config.vocab_size, - embedding_width=self._config.hidden_size, - initializer=tf.keras.initializers.TruncatedNormal( - stddev=self._config.initializer_range), - name="word_embeddings") - cross_attention_bias = decoder.AttentionBias(bias_type="single_cross")( - encoder_input_ids) - self_attention_bias = decoder.AttentionBias(bias_type="decoder_self")( - target_ids) - inputs = dict( - attention_bias=cross_attention_bias, - self_attention_bias=self_attention_bias, - target_ids=target_ids, - all_encoder_outputs=encoder_outputs) - decoder_layer = decoder.Decoder(self._config, embedding_lookup) - outputs = decoder_layer(inputs) - model_inputs = dict( - encoder_input_ids=encoder_input_ids, - target_ids=target_ids, - all_encoder_outputs=encoder_outputs) - model = tf.keras.Model(inputs=model_inputs, outputs=outputs, name="test") - self.assertLen(decoder_layer.trainable_weights, 30) - # Forward path. - fake_inputs = { - "encoder_input_ids": np.zeros((2, 10), dtype=np.int32), - "target_ids": np.zeros((2, 10), dtype=np.int32), - "all_encoder_outputs": np.zeros((2, 10, 16), dtype=np.float32), - } - output_tensor = model(fake_inputs) - self.assertEqual(output_tensor.shape, (2, 10, 16)) - - def test_multi_doc_decoder(self): - self._config = utils.get_test_params(cls=configs.NHNetConfig) - seq_length = 10 - num_docs = 5 - encoder_input_ids = tf.keras.layers.Input( - shape=(num_docs, seq_length), name="encoder_input_ids", dtype=tf.int32) - target_ids = tf.keras.layers.Input( - shape=(seq_length,), name="target_ids", dtype=tf.int32) - encoder_outputs = tf.keras.layers.Input( - shape=(num_docs, seq_length, self._config.hidden_size), - name="all_encoder_outputs", - dtype=tf.float32) - embedding_lookup = layers.OnDeviceEmbedding( - vocab_size=self._config.vocab_size, - embedding_width=self._config.hidden_size, - initializer=tf.keras.initializers.TruncatedNormal( - stddev=self._config.initializer_range), - name="word_embeddings") - doc_attention_probs = tf.keras.layers.Input( - shape=(self._config.num_decoder_attn_heads, seq_length, num_docs), - name="doc_attention_probs", - dtype=tf.float32) - cross_attention_bias = decoder.AttentionBias(bias_type="multi_cross")( - encoder_input_ids) - self_attention_bias = decoder.AttentionBias(bias_type="decoder_self")( - target_ids) - - inputs = dict( - attention_bias=cross_attention_bias, - self_attention_bias=self_attention_bias, - target_ids=target_ids, - all_encoder_outputs=encoder_outputs, - doc_attention_probs=doc_attention_probs) - - decoder_layer = decoder.Decoder(self._config, embedding_lookup) - outputs = decoder_layer(inputs) - model_inputs = dict( - encoder_input_ids=encoder_input_ids, - target_ids=target_ids, - all_encoder_outputs=encoder_outputs, - doc_attention_probs=doc_attention_probs) - model = tf.keras.Model(inputs=model_inputs, outputs=outputs, name="test") - self.assertLen(decoder_layer.trainable_weights, 30) - # Forward path. - fake_inputs = { - "encoder_input_ids": - np.zeros((2, num_docs, seq_length), dtype=np.int32), - "target_ids": - np.zeros((2, seq_length), dtype=np.int32), - "all_encoder_outputs": - np.zeros((2, num_docs, seq_length, 16), dtype=np.float32), - "doc_attention_probs": - np.zeros( - (2, self._config.num_decoder_attn_heads, seq_length, num_docs), - dtype=np.float32) - } - output_tensor = model(fake_inputs) - self.assertEqual(output_tensor.shape, (2, seq_length, 16)) - - -if __name__ == "__main__": - tf.test.main() diff --git a/spaces/Narrativa/fake-news-detection-spanish/app.py b/spaces/Narrativa/fake-news-detection-spanish/app.py deleted file mode 100644 index 46496796f78a34f516230bc70c0fdd086bf5bd92..0000000000000000000000000000000000000000 --- a/spaces/Narrativa/fake-news-detection-spanish/app.py +++ /dev/null @@ -1,41 +0,0 @@ -import gradio as gr -import re - -from transformers import pipeline - -ckpt = "Narrativaai/fake-news-detection-spanish" - -classifier = pipeline("text-classification", model=ckpt) - - -def prediction(header, text): - results = classifier(header + " [SEP] " + text) - return results[0]["label"], results[0]["score"] - - -gradio_ui = gr.Interface( - fn=prediction, - title="Fake News Detector (Spanish)", - description="Demo of our model for Fake News Detection Task (FakeDes) in IberLeF 2021", - article="

    Created by: Narrativa: Natural Language Generation(NLG) | Gabriele, our machine learning-based platform, builds and deploys natural language solutions. # NLG #AI

    ", - inputs=[ - gr.inputs.Textbox(lines=1, label="Type/Paste your headline here"), - gr.inputs.Textbox(lines=6, label="Type/Paste the article body here"), - ], - outputs=[ - gr.outputs.Textbox(label="Label"), - gr.outputs.Textbox(label="Score"), - ], - examples=[ - ["La candidata llamada a sustituir a Alberto RodrĆ­guez renuncia a ocupar su escaƱo en el Congreso", '''FĆ”tima GonzĆ”lez Bello, que concurrió como nĆŗmero dos en la lista de Unidas Podemos por la circunscripción de Tenerife en los pasados comicios generales, ha anunciado este miĆ©rcoles que declina reemplazar al exdiputado Alberto RodrĆ­guez tras la retirada de su escaƱo. - -Una decisión que ha comunicado en redes sociales tras conocer que la Junta Electoral Central (JEC) ha expedido este miĆ©rcoles la credencial para ocupar la vacante que deja RodrĆ­guez, una vez que la presidenta del Congreso, Meritxell Batet, le comunicó la retirada del escaƱo en ejecución por la sentencia que el Tribunal Supremo dictó en su contra. - -"Me resulta muy difĆ­cil poder ocupar el puesto del compaƱero Alberto en las circunstancias actuales e, igualmente, en lo personal tras cuatro aƱos de dedicación como concejala en el Ayuntamiento de La Laguna y una vez abandonada la polĆ­tica institucional, no me veo en el momento de volver a la misma", ha detallado.'''], - ['''La palabra "haiga", aceptada por la RAE''', '''La palabra "haiga", aceptada por la RAE La Real Academia de la Lengua (RAE), ha aceptado el uso de "HAIGA", para su utilización en las tres personas del singular del presente del subjuntivo del verbo hacer, aunque asegura que la forma mĆ”s recomendable en la lengua culta para este tiempo, sigue siendo "haya". -AsĆ­ lo han confirmado fuentes de la RAE, que explican que este cambio ha sido propuesto y aprobado por el pleno de la Academia de la Lengua, tras la extendida utilización por todo el territorio nacional, sobre todo, empleado por personas carentes de estudios o con estudios bĆ”sicos de graduado escolar. Ya no serĆ” objeto de burla ese compaƱero que a diario repite aquello de "Mientras que haiga faena, no podemos quejarnos" o esa abuela que repite aquello de "El que haiga sacao los juguetes, que los recoja". -Entre otras palabras novedosas que ha aceptado la RAE, contamos tambiĆ©n con "Descambiar", significa deshacer un cambio, por ejemplo "devolver la compra". Visto lo visto, nadie apostarĆ­a que la palabra "follamigos" sea la siguiente de la lista.'''], - ] -) - -gradio_ui.launch() \ No newline at end of file diff --git a/spaces/Nephele/bert-vits2-multi-voice/preprocess_text.py b/spaces/Nephele/bert-vits2-multi-voice/preprocess_text.py deleted file mode 100644 index 44c35fecd9b7f21016e80e9597d6055254cba3f7..0000000000000000000000000000000000000000 --- a/spaces/Nephele/bert-vits2-multi-voice/preprocess_text.py +++ /dev/null @@ -1,69 +0,0 @@ -import json -from random import shuffle - -import tqdm -from text.cleaner import clean_text -from collections import defaultdict -import shutil -stage = [1,2,3] - -transcription_path = 'filelists/short_character_anno.list' -train_path = 'filelists/train.list' -val_path = 'filelists/val.list' -config_path = "configs/config.json" -val_per_spk = 4 -max_val_total = 8 - -if 1 in stage: - with open( transcription_path+'.cleaned', 'w', encoding='utf-8') as f: - for line in tqdm.tqdm(open(transcription_path, encoding='utf-8').readlines()): - try: - utt, spk, language, text = line.strip().split('|') - #language = "ZH" - norm_text, phones, tones, word2ph = clean_text(text, language) - f.write('{}|{}|{}|{}|{}|{}|{}\n'.format(utt, spk, language, norm_text, ' '.join(phones), - " ".join([str(i) for i in tones]), - " ".join([str(i) for i in word2ph]))) - except: - print("err!", utt) - -if 2 in stage: - spk_utt_map = defaultdict(list) - spk_id_map = {} - current_sid = 0 - - with open( transcription_path+'.cleaned', encoding='utf-8') as f: - for line in f.readlines(): - utt, spk, language, text, phones, tones, word2ph = line.strip().split('|') - spk_utt_map[spk].append(line) - if spk not in spk_id_map.keys(): - spk_id_map[spk] = current_sid - current_sid += 1 - train_list = [] - val_list = [] - for spk, utts in spk_utt_map.items(): - shuffle(utts) - val_list+=utts[:val_per_spk] - train_list+=utts[val_per_spk:] - if len(val_list) > max_val_total: - train_list+=val_list[max_val_total:] - val_list = val_list[:max_val_total] - - with open( train_path,"w", encoding='utf-8') as f: - for line in train_list: - f.write(line) - - file_path = transcription_path+'.cleaned' - shutil.copy(file_path,'./filelists/train.list') - - with open(val_path, "w", encoding='utf-8') as f: - for line in val_list: - f.write(line) - -if 3 in stage: - assert 2 in stage - config = json.load(open(config_path)) - config['data']["n_speakers"] = current_sid # - config["data"]['spk2id'] = spk_id_map - with open(config_path, 'w', encoding='utf-8') as f: - json.dump(config, f, indent=2, ensure_ascii=False) diff --git a/spaces/NiansuhAI/chat/Dockerfile b/spaces/NiansuhAI/chat/Dockerfile deleted file mode 100644 index 352719557cc530082e9875aabeb4407b698de47d..0000000000000000000000000000000000000000 --- a/spaces/NiansuhAI/chat/Dockerfile +++ /dev/null @@ -1,7 +0,0 @@ -FROM node:18 -RUN git clone https://github.com/Niansuh/ChatGPT-Plugins.git -WORKDIR "ChatGPT-Plugins" -RUN npm i -RUN npm run build -EXPOSE 3000 -CMD ["npm", "run", "start"] diff --git a/spaces/Nixic/rvc-models/infer_pack/models_onnx.py b/spaces/Nixic/rvc-models/infer_pack/models_onnx.py deleted file mode 100644 index 3cdae2f7f8591a1e43b1d8520baa37b7e9744d72..0000000000000000000000000000000000000000 --- a/spaces/Nixic/rvc-models/infer_pack/models_onnx.py +++ /dev/null @@ -1,849 +0,0 @@ -import math, pdb, os -from time import time as ttime -import torch -from torch import nn -from torch.nn import functional as F -from infer_pack import modules -from infer_pack import attentions -from infer_pack import commons -from infer_pack.commons import init_weights, get_padding -from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d -from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm -from infer_pack.commons import init_weights -import numpy as np -from infer_pack import commons - - -class TextEncoder256(nn.Module): - def __init__( - self, - out_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - f0=True, - ): - super().__init__() - self.out_channels = out_channels - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.emb_phone = nn.Linear(256, hidden_channels) - self.lrelu = nn.LeakyReLU(0.1, inplace=True) - if f0 == True: - self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256 - self.encoder = attentions.Encoder( - hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout - ) - self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) - - def forward(self, phone, pitch, lengths): - if pitch == None: - x = self.emb_phone(phone) - else: - x = self.emb_phone(phone) + self.emb_pitch(pitch) - x = x * math.sqrt(self.hidden_channels) # [b, t, h] - x = self.lrelu(x) - x = torch.transpose(x, 1, -1) # [b, h, t] - x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to( - x.dtype - ) - x = self.encoder(x * x_mask, x_mask) - stats = self.proj(x) * x_mask - - m, logs = torch.split(stats, self.out_channels, dim=1) - return m, logs, x_mask - - -class TextEncoder256Sim(nn.Module): - def __init__( - self, - out_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - f0=True, - ): - super().__init__() - self.out_channels = out_channels - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.emb_phone = nn.Linear(256, hidden_channels) - self.lrelu = nn.LeakyReLU(0.1, inplace=True) - if f0 == True: - self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256 - self.encoder = attentions.Encoder( - hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout - ) - self.proj = nn.Conv1d(hidden_channels, out_channels, 1) - - def forward(self, phone, pitch, lengths): - if pitch == None: - x = self.emb_phone(phone) - else: - x = self.emb_phone(phone) + self.emb_pitch(pitch) - x = x * math.sqrt(self.hidden_channels) # [b, t, h] - x = self.lrelu(x) - x = torch.transpose(x, 1, -1) # [b, h, t] - x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to( - x.dtype - ) - x = self.encoder(x * x_mask, x_mask) - x = self.proj(x) * x_mask - return x, x_mask - - -class ResidualCouplingBlock(nn.Module): - def __init__( - self, - channels, - hidden_channels, - kernel_size, - dilation_rate, - n_layers, - n_flows=4, - gin_channels=0, - ): - super().__init__() - self.channels = channels - self.hidden_channels = hidden_channels - self.kernel_size = kernel_size - self.dilation_rate = dilation_rate - self.n_layers = n_layers - self.n_flows = n_flows - self.gin_channels = gin_channels - - self.flows = nn.ModuleList() - for i in range(n_flows): - self.flows.append( - modules.ResidualCouplingLayer( - channels, - hidden_channels, - kernel_size, - dilation_rate, - n_layers, - gin_channels=gin_channels, - mean_only=True, - ) - ) - self.flows.append(modules.Flip()) - - def forward(self, x, x_mask, g=None, reverse=False): - if not reverse: - for flow in self.flows: - x, _ = flow(x, x_mask, g=g, reverse=reverse) - else: - for flow in reversed(self.flows): - x = flow(x, x_mask, g=g, reverse=reverse) - return x - - def remove_weight_norm(self): - for i in range(self.n_flows): - self.flows[i * 2].remove_weight_norm() - - -class PosteriorEncoder(nn.Module): - def __init__( - self, - in_channels, - out_channels, - hidden_channels, - kernel_size, - dilation_rate, - n_layers, - gin_channels=0, - ): - super().__init__() - self.in_channels = in_channels - self.out_channels = out_channels - self.hidden_channels = hidden_channels - self.kernel_size = kernel_size - self.dilation_rate = dilation_rate - self.n_layers = n_layers - self.gin_channels = gin_channels - - self.pre = nn.Conv1d(in_channels, hidden_channels, 1) - self.enc = modules.WN( - hidden_channels, - kernel_size, - dilation_rate, - n_layers, - gin_channels=gin_channels, - ) - self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) - - def forward(self, x, x_lengths, g=None): - x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to( - x.dtype - ) - x = self.pre(x) * x_mask - x = self.enc(x, x_mask, g=g) - stats = self.proj(x) * x_mask - m, logs = torch.split(stats, self.out_channels, dim=1) - z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask - return z, m, logs, x_mask - - def remove_weight_norm(self): - self.enc.remove_weight_norm() - - -class Generator(torch.nn.Module): - def __init__( - self, - initial_channel, - resblock, - resblock_kernel_sizes, - resblock_dilation_sizes, - upsample_rates, - upsample_initial_channel, - upsample_kernel_sizes, - gin_channels=0, - ): - super(Generator, self).__init__() - self.num_kernels = len(resblock_kernel_sizes) - self.num_upsamples = len(upsample_rates) - self.conv_pre = Conv1d( - initial_channel, upsample_initial_channel, 7, 1, padding=3 - ) - resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2 - - self.ups = nn.ModuleList() - for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): - self.ups.append( - weight_norm( - ConvTranspose1d( - upsample_initial_channel // (2**i), - upsample_initial_channel // (2 ** (i + 1)), - k, - u, - padding=(k - u) // 2, - ) - ) - ) - - self.resblocks = nn.ModuleList() - for i in range(len(self.ups)): - ch = upsample_initial_channel // (2 ** (i + 1)) - for j, (k, d) in enumerate( - zip(resblock_kernel_sizes, resblock_dilation_sizes) - ): - self.resblocks.append(resblock(ch, k, d)) - - self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) - self.ups.apply(init_weights) - - if gin_channels != 0: - self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) - - def forward(self, x, g=None): - x = self.conv_pre(x) - if g is not None: - x = x + self.cond(g) - - for i in range(self.num_upsamples): - x = F.leaky_relu(x, modules.LRELU_SLOPE) - x = self.ups[i](x) - xs = None - for j in range(self.num_kernels): - if xs is None: - xs = self.resblocks[i * self.num_kernels + j](x) - else: - xs += self.resblocks[i * self.num_kernels + j](x) - x = xs / self.num_kernels - x = F.leaky_relu(x) - x = self.conv_post(x) - x = torch.tanh(x) - - return x - - def remove_weight_norm(self): - for l in self.ups: - remove_weight_norm(l) - for l in self.resblocks: - l.remove_weight_norm() - - -class SineGen(torch.nn.Module): - """Definition of sine generator - SineGen(samp_rate, harmonic_num = 0, - sine_amp = 0.1, noise_std = 0.003, - voiced_threshold = 0, - flag_for_pulse=False) - samp_rate: sampling rate in Hz - harmonic_num: number of harmonic overtones (default 0) - sine_amp: amplitude of sine-wavefrom (default 0.1) - noise_std: std of Gaussian noise (default 0.003) - voiced_thoreshold: F0 threshold for U/V classification (default 0) - flag_for_pulse: this SinGen is used inside PulseGen (default False) - Note: when flag_for_pulse is True, the first time step of a voiced - segment is always sin(np.pi) or cos(0) - """ - - def __init__( - self, - samp_rate, - harmonic_num=0, - sine_amp=0.1, - noise_std=0.003, - voiced_threshold=0, - flag_for_pulse=False, - ): - super(SineGen, self).__init__() - self.sine_amp = sine_amp - self.noise_std = noise_std - self.harmonic_num = harmonic_num - self.dim = self.harmonic_num + 1 - self.sampling_rate = samp_rate - self.voiced_threshold = voiced_threshold - - def _f02uv(self, f0): - # generate uv signal - uv = torch.ones_like(f0) - uv = uv * (f0 > self.voiced_threshold) - return uv - - def forward(self, f0, upp): - """sine_tensor, uv = forward(f0) - input F0: tensor(batchsize=1, length, dim=1) - f0 for unvoiced steps should be 0 - output sine_tensor: tensor(batchsize=1, length, dim) - output uv: tensor(batchsize=1, length, 1) - """ - with torch.no_grad(): - f0 = f0[:, None].transpose(1, 2) - f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device) - # fundamental component - f0_buf[:, :, 0] = f0[:, :, 0] - for idx in np.arange(self.harmonic_num): - f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * ( - idx + 2 - ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic - rad_values = (f0_buf / self.sampling_rate) % 1 ###%1ę„å‘³ē€n_harēš„ä¹˜ē§Æę— ę³•åŽå¤„ē†ä¼˜åŒ– - rand_ini = torch.rand( - f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device - ) - rand_ini[:, 0] = 0 - rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini - tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1ę„å‘³ē€åŽé¢ēš„cumsumę— ę³•å†ä¼˜åŒ– - tmp_over_one *= upp - tmp_over_one = F.interpolate( - tmp_over_one.transpose(2, 1), - scale_factor=upp, - mode="linear", - align_corners=True, - ).transpose(2, 1) - rad_values = F.interpolate( - rad_values.transpose(2, 1), scale_factor=upp, mode="nearest" - ).transpose( - 2, 1 - ) ####### - tmp_over_one %= 1 - tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0 - cumsum_shift = torch.zeros_like(rad_values) - cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0 - sine_waves = torch.sin( - torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi - ) - sine_waves = sine_waves * self.sine_amp - uv = self._f02uv(f0) - uv = F.interpolate( - uv.transpose(2, 1), scale_factor=upp, mode="nearest" - ).transpose(2, 1) - noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 - noise = noise_amp * torch.randn_like(sine_waves) - sine_waves = sine_waves * uv + noise - return sine_waves, uv, noise - - -class SourceModuleHnNSF(torch.nn.Module): - """SourceModule for hn-nsf - SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1, - add_noise_std=0.003, voiced_threshod=0) - sampling_rate: sampling_rate in Hz - harmonic_num: number of harmonic above F0 (default: 0) - sine_amp: amplitude of sine source signal (default: 0.1) - add_noise_std: std of additive Gaussian noise (default: 0.003) - note that amplitude of noise in unvoiced is decided - by sine_amp - voiced_threshold: threhold to set U/V given F0 (default: 0) - Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) - F0_sampled (batchsize, length, 1) - Sine_source (batchsize, length, 1) - noise_source (batchsize, length 1) - uv (batchsize, length, 1) - """ - - def __init__( - self, - sampling_rate, - harmonic_num=0, - sine_amp=0.1, - add_noise_std=0.003, - voiced_threshod=0, - is_half=True, - ): - super(SourceModuleHnNSF, self).__init__() - - self.sine_amp = sine_amp - self.noise_std = add_noise_std - self.is_half = is_half - # to produce sine waveforms - self.l_sin_gen = SineGen( - sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod - ) - - # to merge source harmonics into a single excitation - self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) - self.l_tanh = torch.nn.Tanh() - - def forward(self, x, upp=None): - sine_wavs, uv, _ = self.l_sin_gen(x, upp) - if self.is_half: - sine_wavs = sine_wavs.half() - sine_merge = self.l_tanh(self.l_linear(sine_wavs)) - return sine_merge, None, None # noise, uv - - -class GeneratorNSF(torch.nn.Module): - def __init__( - self, - initial_channel, - resblock, - resblock_kernel_sizes, - resblock_dilation_sizes, - upsample_rates, - upsample_initial_channel, - upsample_kernel_sizes, - gin_channels, - sr, - is_half=False, - ): - super(GeneratorNSF, self).__init__() - self.num_kernels = len(resblock_kernel_sizes) - self.num_upsamples = len(upsample_rates) - - self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates)) - self.m_source = SourceModuleHnNSF( - sampling_rate=sr, harmonic_num=0, is_half=is_half - ) - self.noise_convs = nn.ModuleList() - self.conv_pre = Conv1d( - initial_channel, upsample_initial_channel, 7, 1, padding=3 - ) - resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2 - - self.ups = nn.ModuleList() - for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): - c_cur = upsample_initial_channel // (2 ** (i + 1)) - self.ups.append( - weight_norm( - ConvTranspose1d( - upsample_initial_channel // (2**i), - upsample_initial_channel // (2 ** (i + 1)), - k, - u, - padding=(k - u) // 2, - ) - ) - ) - if i + 1 < len(upsample_rates): - stride_f0 = np.prod(upsample_rates[i + 1 :]) - self.noise_convs.append( - Conv1d( - 1, - c_cur, - kernel_size=stride_f0 * 2, - stride=stride_f0, - padding=stride_f0 // 2, - ) - ) - else: - self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1)) - - self.resblocks = nn.ModuleList() - for i in range(len(self.ups)): - ch = upsample_initial_channel // (2 ** (i + 1)) - for j, (k, d) in enumerate( - zip(resblock_kernel_sizes, resblock_dilation_sizes) - ): - self.resblocks.append(resblock(ch, k, d)) - - self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) - self.ups.apply(init_weights) - - if gin_channels != 0: - self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) - - self.upp = np.prod(upsample_rates) - - def forward(self, x, f0, g=None): - har_source, noi_source, uv = self.m_source(f0, self.upp) - har_source = har_source.transpose(1, 2) - x = self.conv_pre(x) - if g is not None: - x = x + self.cond(g) - - for i in range(self.num_upsamples): - x = F.leaky_relu(x, modules.LRELU_SLOPE) - x = self.ups[i](x) - x_source = self.noise_convs[i](har_source) - x = x + x_source - xs = None - for j in range(self.num_kernels): - if xs is None: - xs = self.resblocks[i * self.num_kernels + j](x) - else: - xs += self.resblocks[i * self.num_kernels + j](x) - x = xs / self.num_kernels - x = F.leaky_relu(x) - x = self.conv_post(x) - x = torch.tanh(x) - return x - - def remove_weight_norm(self): - for l in self.ups: - remove_weight_norm(l) - for l in self.resblocks: - l.remove_weight_norm() - - -sr2sr = { - "32k": 32000, - "40k": 40000, - "48k": 48000, -} - - -class SynthesizerTrnMs256NSFsid(nn.Module): - def __init__( - self, - spec_channels, - segment_size, - inter_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - resblock, - resblock_kernel_sizes, - resblock_dilation_sizes, - upsample_rates, - upsample_initial_channel, - upsample_kernel_sizes, - spk_embed_dim, - gin_channels, - sr, - **kwargs - ): - super().__init__() - if type(sr) == type("strr"): - sr = sr2sr[sr] - self.spec_channels = spec_channels - self.inter_channels = inter_channels - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.resblock = resblock - self.resblock_kernel_sizes = resblock_kernel_sizes - self.resblock_dilation_sizes = resblock_dilation_sizes - self.upsample_rates = upsample_rates - self.upsample_initial_channel = upsample_initial_channel - self.upsample_kernel_sizes = upsample_kernel_sizes - self.segment_size = segment_size - self.gin_channels = gin_channels - # self.hop_length = hop_length# - self.spk_embed_dim = spk_embed_dim - self.enc_p = TextEncoder256( - inter_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - ) - self.dec = GeneratorNSF( - inter_channels, - resblock, - resblock_kernel_sizes, - resblock_dilation_sizes, - upsample_rates, - upsample_initial_channel, - upsample_kernel_sizes, - gin_channels=gin_channels, - sr=sr, - is_half=kwargs["is_half"], - ) - self.enc_q = PosteriorEncoder( - spec_channels, - inter_channels, - hidden_channels, - 5, - 1, - 16, - gin_channels=gin_channels, - ) - self.flow = ResidualCouplingBlock( - inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels - ) - self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) - print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim) - - def remove_weight_norm(self): - self.dec.remove_weight_norm() - self.flow.remove_weight_norm() - self.enc_q.remove_weight_norm() - - def forward(self, phone, phone_lengths, pitch, nsff0, sid, rnd, max_len=None): - g = self.emb_g(sid).unsqueeze(-1) - m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) - z_p = (m_p + torch.exp(logs_p) * rnd) * x_mask - z = self.flow(z_p, x_mask, g=g, reverse=True) - o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g) - return o - - -class SynthesizerTrnMs256NSFsid_sim(nn.Module): - """ - Synthesizer for Training - """ - - def __init__( - self, - spec_channels, - segment_size, - inter_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - resblock, - resblock_kernel_sizes, - resblock_dilation_sizes, - upsample_rates, - upsample_initial_channel, - upsample_kernel_sizes, - spk_embed_dim, - # hop_length, - gin_channels=0, - use_sdp=True, - **kwargs - ): - super().__init__() - self.spec_channels = spec_channels - self.inter_channels = inter_channels - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.resblock = resblock - self.resblock_kernel_sizes = resblock_kernel_sizes - self.resblock_dilation_sizes = resblock_dilation_sizes - self.upsample_rates = upsample_rates - self.upsample_initial_channel = upsample_initial_channel - self.upsample_kernel_sizes = upsample_kernel_sizes - self.segment_size = segment_size - self.gin_channels = gin_channels - # self.hop_length = hop_length# - self.spk_embed_dim = spk_embed_dim - self.enc_p = TextEncoder256Sim( - inter_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - ) - self.dec = GeneratorNSF( - inter_channels, - resblock, - resblock_kernel_sizes, - resblock_dilation_sizes, - upsample_rates, - upsample_initial_channel, - upsample_kernel_sizes, - gin_channels=gin_channels, - is_half=kwargs["is_half"], - ) - - self.flow = ResidualCouplingBlock( - inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels - ) - self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) - print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim) - - def remove_weight_norm(self): - self.dec.remove_weight_norm() - self.flow.remove_weight_norm() - self.enc_q.remove_weight_norm() - - def forward( - self, phone, phone_lengths, pitch, pitchf, ds, max_len=None - ): # y是specäøéœ€č¦äŗ†ēŽ°åœØ - g = self.emb_g(ds.unsqueeze(0)).unsqueeze(-1) # [b, 256, 1]##1是tļ¼Œå¹æę’­ēš„ - x, x_mask = self.enc_p(phone, pitch, phone_lengths) - x = self.flow(x, x_mask, g=g, reverse=True) - o = self.dec((x * x_mask)[:, :, :max_len], pitchf, g=g) - return o - - -class MultiPeriodDiscriminator(torch.nn.Module): - def __init__(self, use_spectral_norm=False): - super(MultiPeriodDiscriminator, self).__init__() - periods = [2, 3, 5, 7, 11, 17] - # periods = [3, 5, 7, 11, 17, 23, 37] - - discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] - discs = discs + [ - DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods - ] - self.discriminators = nn.ModuleList(discs) - - def forward(self, y, y_hat): - y_d_rs = [] # - y_d_gs = [] - fmap_rs = [] - fmap_gs = [] - for i, d in enumerate(self.discriminators): - y_d_r, fmap_r = d(y) - y_d_g, fmap_g = d(y_hat) - # for j in range(len(fmap_r)): - # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape) - y_d_rs.append(y_d_r) - y_d_gs.append(y_d_g) - fmap_rs.append(fmap_r) - fmap_gs.append(fmap_g) - - return y_d_rs, y_d_gs, fmap_rs, fmap_gs - - -class DiscriminatorS(torch.nn.Module): - def __init__(self, use_spectral_norm=False): - super(DiscriminatorS, self).__init__() - norm_f = weight_norm if use_spectral_norm == False else spectral_norm - self.convs = nn.ModuleList( - [ - norm_f(Conv1d(1, 16, 15, 1, padding=7)), - norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), - norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), - norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), - norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), - norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), - ] - ) - self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) - - def forward(self, x): - fmap = [] - - for l in self.convs: - x = l(x) - x = F.leaky_relu(x, modules.LRELU_SLOPE) - fmap.append(x) - x = self.conv_post(x) - fmap.append(x) - x = torch.flatten(x, 1, -1) - - return x, fmap - - -class DiscriminatorP(torch.nn.Module): - def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): - super(DiscriminatorP, self).__init__() - self.period = period - self.use_spectral_norm = use_spectral_norm - norm_f = weight_norm if use_spectral_norm == False else spectral_norm - self.convs = nn.ModuleList( - [ - norm_f( - Conv2d( - 1, - 32, - (kernel_size, 1), - (stride, 1), - padding=(get_padding(kernel_size, 1), 0), - ) - ), - norm_f( - Conv2d( - 32, - 128, - (kernel_size, 1), - (stride, 1), - padding=(get_padding(kernel_size, 1), 0), - ) - ), - norm_f( - Conv2d( - 128, - 512, - (kernel_size, 1), - (stride, 1), - padding=(get_padding(kernel_size, 1), 0), - ) - ), - norm_f( - Conv2d( - 512, - 1024, - (kernel_size, 1), - (stride, 1), - padding=(get_padding(kernel_size, 1), 0), - ) - ), - norm_f( - Conv2d( - 1024, - 1024, - (kernel_size, 1), - 1, - padding=(get_padding(kernel_size, 1), 0), - ) - ), - ] - ) - self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) - - def forward(self, x): - fmap = [] - - # 1d to 2d - b, c, t = x.shape - if t % self.period != 0: # pad first - n_pad = self.period - (t % self.period) - x = F.pad(x, (0, n_pad), "reflect") - t = t + n_pad - x = x.view(b, c, t // self.period, self.period) - - for l in self.convs: - x = l(x) - x = F.leaky_relu(x, modules.LRELU_SLOPE) - fmap.append(x) - x = self.conv_post(x) - fmap.append(x) - x = torch.flatten(x, 1, -1) - - return x, fmap diff --git a/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/examples/rxf/rxf_src/sentence_prediction_r3f.py b/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/examples/rxf/rxf_src/sentence_prediction_r3f.py deleted file mode 100644 index 6ecffd6b143debb1c67adccd77a6aaed194ec55a..0000000000000000000000000000000000000000 --- a/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/examples/rxf/rxf_src/sentence_prediction_r3f.py +++ /dev/null @@ -1,171 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -import math - -import torch -import torch.nn.functional as F -from fairseq import utils -from fairseq.criterions import FairseqCriterion, register_criterion - - -@register_criterion("sentence_prediction_r3f") -class SentencePredictionR3F(FairseqCriterion): - def __init__( - self, - task, - eps, - r3f_lambda, - noise_type, - classification_head_name, - regression_target, - ): - super().__init__(task) - self.eps = eps - self.r3f_lambda = r3f_lambda - self.noise_type = noise_type - self.classification_head_name = classification_head_name - self.regression_target = regression_target - if self.noise_type in {"normal"}: - self.noise_sampler = torch.distributions.normal.Normal( - loc=0.0, scale=self.eps - ) - elif self.noise_type == "uniform": - self.noise_sampler = torch.distributions.uniform.Uniform( - low=-self.eps, high=self.eps - ) - else: - raise Exception(f"unrecognized noise type {self.noise_type}") - - @staticmethod - def add_args(parser): - # fmt: off - parser.add_argument('--eps', type=float, default=1e-5, - help='noise eps') - parser.add_argument('--r3f-lambda', type=float, default=1.0, - help='lambda for combining logistic loss and noisy KL loss') - parser.add_argument('--noise-type', type=str, default='uniform', - choices=['normal', 'uniform'], - help='type of noises for RXF methods') - parser.add_argument('--classification-head-name', - default='sentence_classification_head', - help='name of the classification head to use') - parser.add_argument('--regression-target', action='store_true') - # fmt: on - - def _get_symm_kl(self, noised_logits, input_logits): - return ( - F.kl_div( - F.log_softmax(noised_logits, dim=-1, dtype=torch.float32), - F.softmax(input_logits, dim=-1, dtype=torch.float32), - None, - None, - "sum", - ) - + F.kl_div( - F.log_softmax(input_logits, dim=-1, dtype=torch.float32), - F.softmax(noised_logits, dim=-1, dtype=torch.float32), - None, - None, - "sum", - ) - ) / noised_logits.size(0) - - def forward(self, model, sample, reduce=True): - """Compute the loss for the given sample. - - Returns a tuple with three elements: - 1) the loss - 2) the sample size, which is used as the denominator for the gradient - 3) logging outputs to display while training - """ - assert ( - hasattr(model, "classification_heads") - and self.classification_head_name in model.classification_heads - ), "model must provide sentence classification head for --criterion=sentence_prediction" - - token_embeddings = model.encoder.sentence_encoder.embed_tokens( - sample["net_input"]["src_tokens"] - ) - input_logits, _ = model( - **sample["net_input"], - features_only=True, - classification_head_name=self.classification_head_name, - token_embeddings=token_embeddings, - ) - if model.training and self.noise_sampler: - noise = self.noise_sampler.sample(sample_shape=token_embeddings.shape).to( - token_embeddings - ) - noised_embeddings = token_embeddings.detach().clone() + noise - - noised_logits, _ = model( - **sample["net_input"], - features_only=True, - classification_head_name=self.classification_head_name, - token_embeddings=noised_embeddings, - ) - symm_kl = self._get_symm_kl(noised_logits, input_logits) - else: - symm_kl = 0 - - targets = model.get_targets(sample, [input_logits]).view(-1) - sample_size = targets.numel() - - if not self.regression_target: - loss = F.nll_loss( - F.log_softmax(input_logits, dim=-1, dtype=torch.float32), - targets, - reduction="sum", - ) - if model.training: - symm_kl = symm_kl * sample_size - loss = loss + self.r3f_lambda * symm_kl - else: - logits = input_logits.squeeze().float() - targets = targets.float() - loss = F.mse_loss(logits, targets, reduction="sum") - - logging_output = { - "loss": utils.item(loss.data) if reduce else loss.data, - "ntokens": sample["ntokens"], - "nsentences": sample_size, - "sample_size": sample_size, - } - - if not self.regression_target: - preds = input_logits.max(dim=1)[1] - logging_output.update(ncorrect=(preds == targets).sum().item()) - - if model.training and self.noise_sampler: - logging_output.update( - symm_kl=utils.item(symm_kl.data) if reduce else symm_kl.data - ) - return loss, sample_size, logging_output - - @staticmethod - def aggregate_logging_outputs(logging_outputs): - """Aggregate logging outputs from data parallel training.""" - loss_sum = sum(log.get("loss", 0) for log in logging_outputs) - symm_kl_sum = sum(log.get("symm_kl", 0) for log in logging_outputs) - ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) - nsentences = sum(log.get("nsentences", 0) for log in logging_outputs) - sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) - - agg_output = { - "loss": loss_sum / sample_size / math.log(2), - "symm_kl": symm_kl_sum / sample_size, - "ntokens": ntokens, - "nsentences": nsentences, - "sample_size": sample_size, - } - - if len(logging_outputs) > 0 and "ncorrect" in logging_outputs[0]: - ncorrect = sum(log.get("ncorrect", 0) for log in logging_outputs) - agg_output.update(accuracy=ncorrect / nsentences) - - if sample_size != ntokens: - agg_output["nll_loss"] = loss_sum / ntokens / math.log(2) - return agg_output diff --git a/spaces/OFA-Sys/OFA-Image_Caption/fairseq/examples/criss/mining/mine.py b/spaces/OFA-Sys/OFA-Image_Caption/fairseq/examples/criss/mining/mine.py deleted file mode 100644 index c872da196fe0df776622365748ad7963fee1f0a0..0000000000000000000000000000000000000000 --- a/spaces/OFA-Sys/OFA-Image_Caption/fairseq/examples/criss/mining/mine.py +++ /dev/null @@ -1,240 +0,0 @@ -#!/usr/bin/env python3 -u -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. -import argparse -import glob -from subprocess import check_call - -try: - import faiss - - has_faiss = True -except ImportError: - has_faiss = False -import numpy as np - - -GB = 1024 * 1024 * 1024 - - -def call(cmd): - print(cmd) - check_call(cmd, shell=True) - - -def get_batches(directory, lang, prefix="all_avg_pool"): - print(f"Finding in {directory}/{prefix}.{lang}*") - files = glob.glob(f"{directory}/{prefix}.{lang}*") - emb_files = [] - txt_files = [] - for emb_fi in files: - emb_files.append(emb_fi) - txt_fi = emb_fi.replace(prefix, "sentences") - txt_files.append(txt_fi) - return emb_files, txt_files - - -def load_batch(emb_file, dim): - embeddings = np.fromfile(emb_file, dtype=np.float32) - num_rows = int(embeddings.shape[0] / dim) - embeddings = embeddings.reshape((num_rows, dim)) - faiss.normalize_L2(embeddings) - return embeddings - - -def knnGPU_sharded(x_batches_f, y_batches_f, dim, k, direction="x2y"): - if not has_faiss: - raise ImportError("Please install Faiss") - sims = [] - inds = [] - xfrom = 0 - xto = 0 - for x_batch_f in x_batches_f: - yfrom = 0 - yto = 0 - x_batch = load_batch(x_batch_f, dim) - xto = xfrom + x_batch.shape[0] - bsims, binds = [], [] - for y_batch_f in y_batches_f: - y_batch = load_batch(y_batch_f, dim) - neighbor_size = min(k, y_batch.shape[0]) - yto = yfrom + y_batch.shape[0] - print("{}-{} -> {}-{}".format(xfrom, xto, yfrom, yto)) - idx = faiss.IndexFlatIP(dim) - idx = faiss.index_cpu_to_all_gpus(idx) - idx.add(y_batch) - bsim, bind = idx.search(x_batch, neighbor_size) - - bsims.append(bsim) - binds.append(bind + yfrom) - yfrom += y_batch.shape[0] - del idx - del y_batch - bsims = np.concatenate(bsims, axis=1) - binds = np.concatenate(binds, axis=1) - aux = np.argsort(-bsims, axis=1) - sim_batch = np.zeros((x_batch.shape[0], k), dtype=np.float32) - ind_batch = np.zeros((x_batch.shape[0], k), dtype=np.int64) - for i in range(x_batch.shape[0]): - for j in range(k): - sim_batch[i, j] = bsims[i, aux[i, j]] - ind_batch[i, j] = binds[i, aux[i, j]] - sims.append(sim_batch) - inds.append(ind_batch) - xfrom += x_batch.shape[0] - del x_batch - sim = np.concatenate(sims, axis=0) - ind = np.concatenate(inds, axis=0) - return sim, ind - - -def score(sim, fwd_mean, bwd_mean, margin): - return margin(sim, (fwd_mean + bwd_mean) / 2) - - -def score_candidates( - sim_mat, candidate_inds, fwd_mean, bwd_mean, margin, verbose=False -): - print(" - scoring {:d} candidates".format(sim_mat.shape[0])) - scores = np.zeros(candidate_inds.shape) - for i in range(scores.shape[0]): - for j in range(scores.shape[1]): - k = int(candidate_inds[i, j]) - scores[i, j] = score(sim_mat[i, j], fwd_mean[i], bwd_mean[k], margin) - return scores - - -def load_text(files): - all_sentences = [] - for fi in files: - with open(fi) as sentence_fi: - for line in sentence_fi: - all_sentences.append(line.strip()) - print(f"Read {len(all_sentences)} sentences") - return all_sentences - - -if __name__ == "__main__": - parser = argparse.ArgumentParser(description="Mine bitext") - parser.add_argument("--src-lang", help="Source language") - parser.add_argument("--tgt-lang", help="Target language") - parser.add_argument( - "--dict-path", help="Path to dictionary file", default="dict.txt" - ) - parser.add_argument( - "--spm-path", help="Path to SPM model file", default="sentence.bpe.model" - ) - parser.add_argument("--dim", type=int, default=1024, help="Embedding dimension") - parser.add_argument("--mem", type=int, default=5, help="Memory in GB") - parser.add_argument("--src-dir", help="Source directory") - parser.add_argument("--tgt-dir", help="Target directory") - parser.add_argument("--output", help="Output path") - parser.add_argument( - "--neighborhood", type=int, default=4, help="Embedding dimension" - ) - parser.add_argument( - "--threshold", type=float, default=1.06, help="Threshold on mined bitext" - ) - parser.add_argument( - "--valid-size", - type=int, - default=2000, - help="Number of sentences used for validation set", - ) - parser.add_argument( - "--min-count", - type=int, - default=50000, - help="Min num sentences used for each language", - ) - args = parser.parse_args() - - x_batches_f, x_sents_f = get_batches(args.src_dir, args.src_lang) - y_batches_f, y_sents_f = get_batches(args.tgt_dir, args.tgt_lang) - margin = lambda a, b: a / b - y2x_sim, y2x_ind = knnGPU_sharded( - y_batches_f, x_batches_f, args.dim, args.neighborhood, direction="y2x" - ) - x2y_sim, x2y_ind = knnGPU_sharded( - x_batches_f, y_batches_f, args.dim, args.neighborhood, direction="x2y" - ) - - x2y_mean = x2y_sim.mean(axis=1) - y2x_mean = y2x_sim.mean(axis=1) - fwd_scores = score_candidates(x2y_sim, x2y_ind, x2y_mean, y2x_mean, margin) - bwd_scores = score_candidates(y2x_sim, y2x_ind, y2x_mean, x2y_mean, margin) - fwd_best = x2y_ind[np.arange(x2y_sim.shape[0]), fwd_scores.argmax(axis=1)] - bwd_best = y2x_ind[np.arange(y2x_sim.shape[0]), bwd_scores.argmax(axis=1)] - indices = np.stack( - ( - np.concatenate((np.arange(x2y_ind.shape[0]), bwd_best)), - np.concatenate((fwd_best, np.arange(y2x_ind.shape[0]))), - ), - axis=1, - ) - scores = np.concatenate((fwd_scores.max(axis=1), bwd_scores.max(axis=1))) - - x_sentences = load_text(x_sents_f) - y_sentences = load_text(y_sents_f) - - threshold = args.threshold - min_count = args.min_count - seen_src, seen_trg = set(), set() - directory = args.output - call(f"mkdir -p {directory}") - src_out = open( - f"{directory}/all.{args.src_lang}", - mode="w", - encoding="utf-8", - errors="surrogateescape", - ) - tgt_out = open( - f"{directory}/all.{args.tgt_lang}", - mode="w", - encoding="utf-8", - errors="surrogateescape", - ) - scores_out = open( - f"{directory}/all.scores", mode="w", encoding="utf-8", errors="surrogateescape" - ) - count = 0 - for i in np.argsort(-scores): - src_ind, trg_ind = indices[i] - if src_ind not in seen_src and trg_ind not in seen_trg: - seen_src.add(src_ind) - seen_trg.add(trg_ind) - if scores[i] > threshold or count < min_count: - if x_sentences[src_ind]: - print(scores[i], file=scores_out) - print(x_sentences[src_ind], file=src_out) - print(y_sentences[trg_ind], file=tgt_out) - count += 1 - else: - print(f"Ignoring sentence: {x_sentences[src_ind]}") - src_out.close() - tgt_out.close() - scores_out.close() - - print(f"Found {count} pairs for threshold={threshold}") - with open(f"{directory}/all.{args.src_lang}") as all_s, open( - f"{directory}/all.{args.tgt_lang}" - ) as all_t, open(f"{directory}/valid.{args.src_lang}", "w") as valid_s, open( - f"{directory}/valid.{args.tgt_lang}", "w" - ) as valid_t, open( - f"{directory}/train.{args.src_lang}", "w" - ) as train_s, open( - f"{directory}/train.{args.tgt_lang}", "w" - ) as train_t: - count = 0 - for s_line, t_line in zip(all_s, all_t): - s_line = s_line.split("\t")[1] - t_line = t_line.split("\t")[1] - if count >= args.valid_size: - train_s.write(s_line) - train_t.write(t_line) - else: - valid_s.write(s_line) - valid_t.write(t_line) - count += 1 diff --git a/spaces/OFA-Sys/OFA-Image_Caption/fairseq/examples/speech_synthesis/preprocessing/speaker_embedder/__init__.py b/spaces/OFA-Sys/OFA-Image_Caption/fairseq/examples/speech_synthesis/preprocessing/speaker_embedder/__init__.py deleted file mode 100644 index 3b178676ba322ef613df42977cb498101f841b09..0000000000000000000000000000000000000000 --- a/spaces/OFA-Sys/OFA-Image_Caption/fairseq/examples/speech_synthesis/preprocessing/speaker_embedder/__init__.py +++ /dev/null @@ -1,135 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - - -import librosa -import torch -import torch.nn as nn -import torch.nn.functional as F -import torch.utils.data -import torchaudio - - -EMBEDDER_PARAMS = { - 'num_mels': 40, - 'n_fft': 512, - 'emb_dim': 256, - 'lstm_hidden': 768, - 'lstm_layers': 3, - 'window': 80, - 'stride': 40, -} - - -def set_requires_grad(nets, requires_grad=False): - """Set requies_grad=Fasle for all the networks to avoid unnecessary - computations - Parameters: - nets (network list) -- a list of networks - requires_grad (bool) -- whether the networks require gradients or not - """ - if not isinstance(nets, list): - nets = [nets] - for net in nets: - if net is not None: - for param in net.parameters(): - param.requires_grad = requires_grad - - -class LinearNorm(nn.Module): - def __init__(self, hp): - super(LinearNorm, self).__init__() - self.linear_layer = nn.Linear(hp["lstm_hidden"], hp["emb_dim"]) - - def forward(self, x): - return self.linear_layer(x) - - -class SpeechEmbedder(nn.Module): - def __init__(self, hp): - super(SpeechEmbedder, self).__init__() - self.lstm = nn.LSTM(hp["num_mels"], - hp["lstm_hidden"], - num_layers=hp["lstm_layers"], - batch_first=True) - self.proj = LinearNorm(hp) - self.hp = hp - - def forward(self, mel): - # (num_mels, T) -> (num_mels, T', window) - mels = mel.unfold(1, self.hp["window"], self.hp["stride"]) - mels = mels.permute(1, 2, 0) # (T', window, num_mels) - x, _ = self.lstm(mels) # (T', window, lstm_hidden) - x = x[:, -1, :] # (T', lstm_hidden), use last frame only - x = self.proj(x) # (T', emb_dim) - x = x / torch.norm(x, p=2, dim=1, keepdim=True) # (T', emb_dim) - - x = x.mean(dim=0) - if x.norm(p=2) != 0: - x = x / x.norm(p=2) - return x - - -class SpkrEmbedder(nn.Module): - RATE = 16000 - - def __init__( - self, - embedder_path, - embedder_params=EMBEDDER_PARAMS, - rate=16000, - hop_length=160, - win_length=400, - pad=False, - ): - super(SpkrEmbedder, self).__init__() - embedder_pt = torch.load(embedder_path, map_location="cpu") - self.embedder = SpeechEmbedder(embedder_params) - self.embedder.load_state_dict(embedder_pt) - self.embedder.eval() - set_requires_grad(self.embedder, requires_grad=False) - self.embedder_params = embedder_params - - self.register_buffer('mel_basis', torch.from_numpy( - librosa.filters.mel( - sr=self.RATE, - n_fft=self.embedder_params["n_fft"], - n_mels=self.embedder_params["num_mels"]) - ) - ) - - self.resample = None - if rate != self.RATE: - self.resample = torchaudio.transforms.Resample(rate, self.RATE) - self.hop_length = hop_length - self.win_length = win_length - self.pad = pad - - def get_mel(self, y): - if self.pad and y.shape[-1] < 14000: - y = F.pad(y, (0, 14000 - y.shape[-1])) - - window = torch.hann_window(self.win_length).to(y) - y = torch.stft(y, n_fft=self.embedder_params["n_fft"], - hop_length=self.hop_length, - win_length=self.win_length, - window=window) - magnitudes = torch.norm(y, dim=-1, p=2) ** 2 - mel = torch.log10(self.mel_basis @ magnitudes + 1e-6) - return mel - - def forward(self, inputs): - dvecs = [] - for wav in inputs: - mel = self.get_mel(wav) - if mel.dim() == 3: - mel = mel.squeeze(0) - dvecs += [self.embedder(mel)] - dvecs = torch.stack(dvecs) - - dvec = torch.mean(dvecs, dim=0) - dvec = dvec / torch.norm(dvec) - - return dvec diff --git a/spaces/OFA-Sys/OFA-Image_Caption/fairseq/examples/speech_to_text/prep_librispeech_data.py b/spaces/OFA-Sys/OFA-Image_Caption/fairseq/examples/speech_to_text/prep_librispeech_data.py deleted file mode 100644 index f379fa7bf195f48ad6b2ed3dbd93a5fbeb7abf79..0000000000000000000000000000000000000000 --- a/spaces/OFA-Sys/OFA-Image_Caption/fairseq/examples/speech_to_text/prep_librispeech_data.py +++ /dev/null @@ -1,119 +0,0 @@ -#!/usr/bin/env python3 -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -import argparse -import logging -from pathlib import Path -import shutil -from tempfile import NamedTemporaryFile - -import pandas as pd -from examples.speech_to_text.data_utils import ( - create_zip, - extract_fbank_features, - gen_config_yaml, - gen_vocab, - get_zip_manifest, - save_df_to_tsv, -) -from torchaudio.datasets import LIBRISPEECH -from tqdm import tqdm - - -log = logging.getLogger(__name__) - -SPLITS = [ - "train-clean-100", - "train-clean-360", - "train-other-500", - "dev-clean", - "dev-other", - "test-clean", - "test-other", -] - -MANIFEST_COLUMNS = ["id", "audio", "n_frames", "tgt_text", "speaker"] - - -def process(args): - out_root = Path(args.output_root).absolute() - out_root.mkdir(exist_ok=True) - # Extract features - feature_root = out_root / "fbank80" - feature_root.mkdir(exist_ok=True) - for split in SPLITS: - print(f"Fetching split {split}...") - dataset = LIBRISPEECH(out_root.as_posix(), url=split, download=True) - print("Extracting log mel filter bank features...") - for wav, sample_rate, _, spk_id, chapter_no, utt_no in tqdm(dataset): - sample_id = f"{spk_id}-{chapter_no}-{utt_no}" - extract_fbank_features( - wav, sample_rate, feature_root / f"{sample_id}.npy" - ) - # Pack features into ZIP - zip_path = out_root / "fbank80.zip" - print("ZIPing features...") - create_zip(feature_root, zip_path) - print("Fetching ZIP manifest...") - audio_paths, audio_lengths = get_zip_manifest(zip_path) - # Generate TSV manifest - print("Generating manifest...") - train_text = [] - for split in SPLITS: - manifest = {c: [] for c in MANIFEST_COLUMNS} - dataset = LIBRISPEECH(out_root.as_posix(), url=split) - for _, _, utt, spk_id, chapter_no, utt_no in tqdm(dataset): - sample_id = f"{spk_id}-{chapter_no}-{utt_no}" - manifest["id"].append(sample_id) - manifest["audio"].append(audio_paths[sample_id]) - manifest["n_frames"].append(audio_lengths[sample_id]) - manifest["tgt_text"].append(utt.lower()) - manifest["speaker"].append(spk_id) - save_df_to_tsv( - pd.DataFrame.from_dict(manifest), out_root / f"{split}.tsv" - ) - if split.startswith("train"): - train_text.extend(manifest["tgt_text"]) - # Generate vocab - vocab_size = "" if args.vocab_type == "char" else str(args.vocab_size) - spm_filename_prefix = f"spm_{args.vocab_type}{vocab_size}" - with NamedTemporaryFile(mode="w") as f: - for t in train_text: - f.write(t + "\n") - gen_vocab( - Path(f.name), - out_root / spm_filename_prefix, - args.vocab_type, - args.vocab_size, - ) - # Generate config YAML - gen_config_yaml( - out_root, - spm_filename=spm_filename_prefix + ".model", - specaugment_policy="ld" - ) - # Clean up - shutil.rmtree(feature_root) - - -def main(): - parser = argparse.ArgumentParser() - parser.add_argument("--output-root", "-o", required=True, type=str) - parser.add_argument( - "--vocab-type", - default="unigram", - required=True, - type=str, - choices=["bpe", "unigram", "char"], - ), - parser.add_argument("--vocab-size", default=10000, type=int) - args = parser.parse_args() - - process(args) - - -if __name__ == "__main__": - main() diff --git a/spaces/OFA-Sys/OFA-Image_Caption/fairseq/fairseq/criterions/__init__.py b/spaces/OFA-Sys/OFA-Image_Caption/fairseq/fairseq/criterions/__init__.py deleted file mode 100644 index 4dbf46a1cb31ce65c4224ae79cbc2d7cf9e4d111..0000000000000000000000000000000000000000 --- a/spaces/OFA-Sys/OFA-Image_Caption/fairseq/fairseq/criterions/__init__.py +++ /dev/null @@ -1,36 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. -"""isort:skip_file""" - -import importlib -import os - -from fairseq import registry -from fairseq.criterions.fairseq_criterion import ( # noqa - FairseqCriterion, - LegacyFairseqCriterion, -) -from omegaconf import DictConfig - - -( - build_criterion_, - register_criterion, - CRITERION_REGISTRY, - CRITERION_DATACLASS_REGISTRY, -) = registry.setup_registry( - "--criterion", base_class=FairseqCriterion, default="cross_entropy" -) - - -def build_criterion(cfg: DictConfig, task): - return build_criterion_(cfg, task) - - -# automatically import any Python files in the criterions/ directory -for file in sorted(os.listdir(os.path.dirname(__file__))): - if file.endswith(".py") and not file.startswith("_"): - file_name = file[: file.find(".py")] - importlib.import_module("fairseq.criterions." + file_name) diff --git a/spaces/OFA-Sys/OFA-Visual_Grounding/fairseq/examples/layerdrop/README.md b/spaces/OFA-Sys/OFA-Visual_Grounding/fairseq/examples/layerdrop/README.md deleted file mode 100644 index 4d48ee9615e1458e1e889635dc9938e427a7f64a..0000000000000000000000000000000000000000 --- a/spaces/OFA-Sys/OFA-Visual_Grounding/fairseq/examples/layerdrop/README.md +++ /dev/null @@ -1,154 +0,0 @@ -# Reducing Transformer Depth on Demand with Structured Dropout (Fan et al., 2019) -This page contains information for how to train models with LayerDrop, based on this [paper](https://arxiv.org/abs/1909.11556). - -## Citation: -If you found this technique useful, please cite our paper: -```bibtex -@article{fan2019reducing, - title={Reducing Transformer Depth on Demand with Structured Dropout}, - author={Fan, Angela and Grave, Edouard and Joulin, Armand}, - journal={arXiv preprint arXiv:1909.11556}, - year={2019} -} -``` - -## Pre-trained models - -Model | Description | Download ----|---|--- -`layerdrop_wmt_en_de_12_6` | Transformer + LayerDrop 0.2 trained on WMT16 en-de with 12 encoder and 6 decoder layers | [layerdrop_wmt_en_de_12_6.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/layerdrop_wmt_en_de_12_6.tar.gz) -`roberta_layerdrop.base` | RoBERTa Base + LayerDrop 0.2 | [roberta_layerdrop.base.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta_layerdrop.base.qnli.tar.gz) -`roberta_layerdrop.large` | RoBERTa Large + LayerDrop 0.2 | [roberta_layerdrop.large.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta_layerdrop.large.tar.gz) -`roberta_layerdrop.large.mnli` | `roberta_layerdrop.large` finetuned on [MNLI](http://www.nyu.edu/projects/bowman/multinli) | [roberta_layerdrop.large.mnli.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta_layerdrop.large.mnli.tar.gz) -`roberta_layerdrop.large.qnli` | `roberta_layerdrop.large` finetuned on [QNLI](https://arxiv.org/abs/1804.07461) | [roberta_layerdrop.large.mnli.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta_layerdrop.large.qnli.tar.gz) - - -Evaluate performance of these pre-trained models: -```bash -# Example for Machine Translation -fairseq-generate /path/to/bped/wmt/data --path nmt_checkpoint.pt \ - --beam 8 --lenpen 0.4 \ - --batch-size 64 \ - --remove-bpe \ - --gen-subset test > wmt16_gen.txt -bash scripts/compound_split_bleu.sh wmt16_gen.txt -# prints BLEU4 = 30.17 -``` - -```python -# Example for RoBERTa + LayerDrop finetuned on MNLI: -from fairseq.models.roberta import RobertaModel - -roberta_layerdrop = RobertaModel.from_pretrained( - '/path/to/MNLI/model', - checkpoint_file='mnli_checkpoint.pt', - data_name_or_path='/path/to/MNLI/data/MNLI-bin' -) -label_map = {0: 'contradiction', 2: 'neutral', 1: 'entailment'} -ncorrect, nsamples = 0, 0 -roberta_layerdrop.cuda() -roberta_layerdrop.eval() -with open('/path/to/MNLI/data/dev_matched.tsv') as fin: - fin.readline() - for index, line in enumerate(fin): - tokens = line.strip().split('\t') - sent1, sent2, target = tokens[8], tokens[9], tokens[-1] - tokens = roberta_layerdrop.encode(sent1, sent2) - prediction = roberta_layerdrop.predict('sentence_classification_head', tokens).argmax().item() - prediction_label = label_map[prediction] - ncorrect += int(prediction_label == target) - nsamples += 1 -print('| Accuracy: ', float(ncorrect)/float(nsamples)) -# prints | Accuracy: 0.9026999490575649 - - -# Example for RoBERTa + LayerDrop finetuned on QNLI: -roberta = RobertaModel.from_pretrained( - '/path/to/QNLI/model', - checkpoint_file='qnli_checkpoint.pt', - data_name_or_path='/path/to/QNLI/data/QNLI-bin' -) - -label_fn = lambda label: roberta.task.label_dictionary.string( - [label + roberta.task.target_dictionary.nspecial] -) -ncorrect, nsamples = 0, 0 -roberta.cuda() -roberta.eval() -with open('/path/to/QNLI/data/dev.tsv') as fin: - fin.readline() - for index, line in enumerate(fin): - tokens = line.strip().split('\t') - sent1, sent2, target = tokens[1], tokens[2], tokens[3] - tokens = roberta.encode(sent1, sent2) - prediction = roberta.predict('sentence_classification_head', tokens).argmax().item() - prediction_label = label_fn(prediction) - ncorrect += int(prediction_label == target) - nsamples += 1 -print('| Accuracy: ', float(ncorrect)/float(nsamples)) -# prints | Accuracy: 0.9480139117700896 -``` - - -## Example usage - -To train a model with LayerDrop, add the following flags. We recommend 0.2, a value that worked well in our experiments. For Language Models that are decoder-only, you need only the decoder flag. For RoBERTa, an encoder, you need only the encoder flag. The encoder and decoder LayerDrop values can be set differently. -``` ---encoder-layerdrop 0.2 --decoder-layerdrop 0.2 -``` - -To prune a model that has been trained with LayerDrop, add the following flags followed by a comma separated list of which layers you would like to keep. -``` ---encoder-layers-to-keep 0,2,4,6,8,10,12,14 --decoder-layers-to-keep 0,2,4,6,8,10,12,14 -``` -Setting these flags should print a message such as: -``` -| Pruning model to specified layer configuration -``` -You should also see a smaller number of parameters in the model, for example the 16-Layer Transformer Language Model prints: -``` -num. model params: 246933504 -``` -while a model pruned to 8 Layers prints: -``` -num. model params: 146163712 -``` - -If you would like to pick up training with a model that has been pruned, simply adding these flags is sufficient. If you would like to use a script that only does evaluation (no training), you may need to pass an override command. A specific example would be for language modeling: -```bash -fairseq-eval-lm /path/to/wikitext-103 \ - --path /path/to/model/checkpoint.pt \ - --model-overrides "{'decoder_layers_to_keep':'0,2,4,6,8,10,12,14'}" -``` -This model override command overrides the training parameters and updates the model arguments so that the pruned model is run instead of the full model. - -## Reproduce Paper Results - -Looking to reproduce the results in the paper? - -1. For Translation on WMT16 en-de, we followed this setting [here](https://github.com/pytorch/fairseq/blob/main/examples/scaling_nmt/README.md) -2. To train RoBERTa, we followed this setting [here](https://github.com/pytorch/fairseq/tree/main/examples/roberta) -3. To train Language Models on Wikitext-103, we followed this setting [here](https://github.com/pytorch/fairseq/tree/main/examples/language_model) - - -## Tips - -1. If you would like to train large models with better performance, LayerDrop should be set to a smaller value such as 0.1 or 0.2. Too much LayerDrop will mean the model has too much regularization, so may not reach the best performance. Since LayerDrop adds regularization, you may achieve the best performance by slightly reducing the amount of standard dropout (for example, reduce by 0.1). - -2. If you would like to train large models to be pruned and made smaller, LayerDrop should be set to a larger value such as 0.5 if you want to prune very aggressively (such as removing half the network or more). If you would like to prune fewer layers away, LayerDrop can be set to a smaller value such as 0.2. Our experiments were conducted with low values of LayerDrop (such as 0.1 and 0.2), for reference. - -3. When pruning layers at inference time, it is best to spread out the layers remaining so they are evenly spaced throughout the network. For example, if you want to remove 50% of the network, keeping every other layer is good. - - -## FAQ - -1. How did the sharing layers experiment work? In an appendix (https://openreview.net/pdf?id=SylO2yStDr) we added an experiment on Wikitext-103 language modeling that combined LayerDrop with Weight Sharing. We shared chunks of 2 layers such that every other layer had shared weights. For example, if our network has layers 1 through 6, then layer 1 and 2 are shared, layer 3 and 4 are shared, and layer 5 and 6 are shared. - -2. LayerDrop hasn't been helping in my setting? During training time, LayerDrop can help regularize your network. This is most important if your network is already overfitting - if your network is underfitting, it is possible LayerDrop is adding too much regularization. We recommend using smaller values (such as 0.1 or 0.2) and also decreasing the quantity of standard dropout (for example, reduce by 0.1). - -3. Can you train a model without LayerDrop and finetune with LayerDrop (e.g. for BERT)? In our experiments, we did not see great performance. Models such as RoBERTa have trained for a long time in the pre-training setting, so only finetuning with LayerDrop for a few epochs on a downstream task such as MNLI does not achieve the robustness required for successful pruning. - - -## Having an issue or have a question? - -Please open an issue in this repository with the details of your question. Thanks! diff --git a/spaces/OpenDILabCommunity/LLMRiddlesChatGPTEN/README_zh.md b/spaces/OpenDILabCommunity/LLMRiddlesChatGPTEN/README_zh.md deleted file mode 100644 index 2492307b67ff1038d673688613c1fa0b9e811730..0000000000000000000000000000000000000000 --- a/spaces/OpenDILabCommunity/LLMRiddlesChatGPTEN/README_zh.md +++ /dev/null @@ -1,100 +0,0 @@ -# LLM Riddles - -
    -
    - - Click to see the source - -
    -
    - -[English](https://github.com/opendilab/LLMRiddles/blob/main/README.md) | 简体中文 - -## :thinking: ä»€ä¹ˆę˜ÆLLM Riddles -ę¬¢čæŽę„åˆ° LLM Riddlesļ¼čæ™ę˜Æäø€äøŖäøŽčÆ­čØ€ęØ”åž‹ę–—ę™ŗę–—å‹‡ēš„ęøøęˆć€‚åœØęøøęˆäø­ļ¼Œä½ éœ€č¦ęž„é€ äøŽčÆ­čØ€ęØ”åž‹äŗ¤äŗ’ēš„é—®é¢˜ļ¼Œę„å¾—åˆ°ē¬¦åˆč¦ę±‚ēš„ē­”ę”ˆć€‚åœØčæ™äøŖčæ‡ēØ‹äø­ļ¼Œä½ åÆä»„å¼€åŠØč„‘ē­‹ļ¼Œē”Øä½ ęƒ³åˆ°ēš„ę‰€ęœ‰ę–¹å¼ļ¼Œč®©ęØ”åž‹č¾“å‡ŗē­”ę”ˆč¦ę±‚ēš„ē»“ęžœć€‚ - -## :space_invader: å¦‚ä½•čÆ•ēŽ© -ęˆ‘ä»¬ęä¾›äŗ†åœØēŗæē‰ˆęœ¬ä»„ä¾›ēŽ©å®¶ē›“ęŽ„č®æé—®čÆ•ēŽ©: -- [Hugging Face][ChatGPT + 英ꖇ(éœ€é…ē½®api key)](https://huggingface.co/spaces/OpenDILabCommunity/LLMRiddlesChatGPTEN) -- [Hugging Face][ChatGPT + äø­ę–‡(éœ€é…ē½®api key)](https://huggingface.co/spaces/OpenDILabCommunity/LLMRiddlesChatGPTCN) -- [Hugging Face][ChatGLM + äø­ę–‡(已预设api key)](https://huggingface.co/spaces/OpenDILabCommunity/LLMRiddlesChatGLMCN) -- [OpenXLab][ChatGPT + äø­ę–‡(éœ€é…ē½®api key)](https://openxlab.org.cn/apps/detail/OpenDILab/LLMRiddlesChatGPTCN) -- [OpenXLab][ChatGLM + äø­ę–‡(已预设api key)](https://openxlab.org.cn/apps/detail/OpenDILab/LLMRiddlesChatGLMCN) -- [OpenXLab][ChatGLM + 英ꖇ(已预设api key)](https://openxlab.org.cn/apps/detail/OpenDILab/LLMRiddlesChatGLMEN) -- [Private Server][Mistral + 英ꖇ(已预设api key)](https://d9b451a97791dd8ef3.gradio.live) -- [Private Server][ChatGPT + äø­ę–‡(已预设api key)](http://llmriddles.opendilab.net/) - -ęœ¬åœ°éƒØē½²åÆä»„é€ščæ‡ä»„äø‹ę–¹å¼ļ¼š -## 安装 -### ChatGPT ꈖ ChatGLM API -```shell -pip3 install -r requirements.txt -``` -### Mistral-7B-Instruct-v0.1 ęœ¬åœ°ęŽØē† -```shell -pip3 install -r requirements-dev.txt -``` -## 启动 -### ChatGPT + äø­ę–‡ -```shell -QUESTION_LANG=cn QUESTION_LLM='chatgpt' QUESTION_LLM_KEY= python3 -u app.py -``` -### ChatGPT + 英ꖇ -```shell -QUESTION_LANG=en QUESTION_LLM='chatgpt' QUESTION_LLM_KEY= python3 -u app.py -``` -### ChatGLM + äø­ę–‡ -```shell -QUESTION_LANG=cn QUESTION_LLM='chatglm' QUESTION_LLM_KEY= python3 -u app.py -``` -### ChatGLM + 英ꖇ -```shell -QUESTION_LANG=en QUESTION_LLM='chatglm' QUESTION_LLM_KEY= python3 -u app.py -``` -### Mistral-7B-Instruct-v0.1 + 英ꖇ -```shell -QUESTION_LANG=en QUESTION_LLM='mistral-7b' python3 -u app.py -``` -## :technologist: äøŗä»€ä¹ˆåˆ¶ä½œčæ™äøŖęøøęˆ - -ęˆ‘ä»¬ēš„ē›®ę ‡ę˜Æé€ščæ‡čæ™äø€ęøøęˆļ¼Œč®©å‚äøŽč€…ę·±å…„é¢†ē•„åˆ°ęē¤ŗå·„ēØ‹ļ¼ˆprompt engineeringļ¼‰å’Œč‡Ŗē„¶čÆ­čØ€å¤„ē†ēš„ä»¤äŗŗē€čæ·ä¹‹å¤„ć€‚čæ™äøŖčæ‡ēØ‹å°†å‘ēŽ©å®¶ä»¬å±•ē¤ŗļ¼Œå¦‚ä½•å·§å¦™åœ°ęž„å»ŗęē¤ŗčÆļ¼ˆpromptsļ¼‰ļ¼Œä»„åŠå¦‚ä½•čæē”Øå®ƒä»¬ę„å¼•å‘äŗŗå·„ę™ŗčƒ½ē³»ē»Ÿēš„ęƒŠäŗŗååŗ”ļ¼ŒåŒę—¶ä¹Ÿåø®åŠ©ä»–ä»¬ę›“å„½åœ°ē†č§£ę·±åŗ¦å­¦ä¹ å’Œč‡Ŗē„¶čÆ­čØ€å¤„ē†ęŠ€ęœÆēš„äøåÆę€č®®ä¹‹å¤„ć€‚ - -## :raising_hand: å¦‚ä½•ęäŗ¤č®¾č®”å„½ēš„å…³å” -å¦‚ęžœęœ‰å„½ēŽ©ēš„é—®é¢˜ęˆ–ęƒ³ę³•ļ¼Œę¬¢čæŽēŽ©å®¶ęäŗ¤č‡Ŗå·±ēš„åˆ›ę„ļ¼ŒåÆä»„ -[å‘čµ· Pull Request](https://github.com/opendilab/LLMRiddles/compare) å‘ęˆ‘ä»¬ęäŗ¤ļ¼Œ ęˆ‘ä»¬ä¼šåœØå®”ę øé€ščæ‡åŽę”¶å½•č‡³å…³å”äø­ć€‚ -é—®é¢˜ēš„č®¾č®”ę ¼å¼åŗ”åŒ…å«ä»„äø‹å‡ ē‚¹ļ¼š -- Pull Requestę ‡é¢˜ļ¼Œē¤ŗä¾‹ļ¼šfeature(username): ē« čŠ‚X-å…³å”č®¾č®” -- åøŒęœ›č¢«ęåŠēš„ID -- åÆ¹åŗ”ē« čŠ‚é—®é¢˜ę–‡ä»¶ēš„äæ®ę”¹ -- \__init__.pyēš„äæ®ę”¹ - -å®Œę•“ē¤ŗä¾‹čÆ·å‚č€ƒļ¼š[ęäŗ¤å±žäŗŽč‡Ŗå·±ēš„å…³å”č®¾č®”](https://github.com/opendilab/LLMRiddles/pull/6) - -## :writing_hand: ęœŖę„č®”åˆ’ - -- [x] ę”ÆęŒč‡Ŗå®šä¹‰å…³å” -- [x] åœØēŗæčÆ•ēŽ©é“¾ęŽ„ -- [x] Hugging Face Space é“¾ęŽ„ -- [x] ę”ÆęŒMistral-7Bļ¼ˆč‹±ę–‡ļ¼‰ -- [x] ę”ÆęŒChatGLMļ¼ˆäø­ę–‡å’Œč‹±ę–‡ļ¼‰ -- [ ] ę”ÆęŒBaichuan2-7Bļ¼ˆäø­ę–‡ļ¼‰ -- [ ] ę”ÆęŒLLaMA2-7Bļ¼ˆč‹±ę–‡ļ¼‰ -- [ ] LLM ęŽØē†é€Ÿåŗ¦ä¼˜åŒ– -- [ ] ę›“å¤šé¢˜ē›®å’Œé¢˜č§£ - -## :speech_balloon: 反馈问题 & ęå‡ŗå»ŗč®® -- 在 GitHub 上[å‘čµ· Issue](https://github.com/opendilab/CodeMorpheus/issues/new/choose) -- é€ščæ‡é‚®ä»¶äøŽęˆ‘ä»¬č”ē³» (opendilab@pjlab.org.cn) -- 在OpenDILabēš„ē¾¤ē»„äø­åŠ å…„č®Øč®ŗ(é€ščæ‡ WeChat: ding314assist ę·»åŠ å°åŠ©ę‰‹å¾®äæ”) - - -## :star2: Special Thanks -- ę„Ÿč°¢ [Haoqiang Fan](https://www.zhihu.com/people/haoqiang-fan) ēš„åŽŸå§‹åˆ›ę„å’Œé¢˜ē›®ļ¼Œäøŗęœ¬é”¹ē›®ēš„å¼€å‘å’Œę‰©å±•ęä¾›äŗ†ēµę„ŸäøŽåŠØåŠ›ć€‚ -- ę„Ÿč°¢ [HuggingFace](https://huggingface.co) åÆ¹ęøøęˆēš„ę”ÆęŒäøŽååŠ©ć€‚ -- ę„Ÿč°¢ [ChatGLM](https://chatglm.cn/) åÆ¹ęøøęˆēš„ę”ÆęŒäøŽååŠ©ļ¼Œē‰¹åˆ«ę˜Æä¾›åœØēŗæé¢„č§ˆē‰ˆä½æē”Øēš„č¶³é‡ tokens怂 -- ę„Ÿč°¢ [LLM Riddles contributors](https://github.com/opendilab/LLMRiddles/graphs/contributors) ēš„å®žēŽ°äøŽę”ÆęŒć€‚ - -## :label: License -All code within this repository is under [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0). - -

    (back to top)

    diff --git a/spaces/OpenMotionLab/MotionGPT/pyrender/pyrender/platforms/osmesa.py b/spaces/OpenMotionLab/MotionGPT/pyrender/pyrender/platforms/osmesa.py deleted file mode 100644 index deaa5ff44031a107883913ae9a18fc425d650f3d..0000000000000000000000000000000000000000 --- a/spaces/OpenMotionLab/MotionGPT/pyrender/pyrender/platforms/osmesa.py +++ /dev/null @@ -1,59 +0,0 @@ -from .base import Platform - - -__all__ = ['OSMesaPlatform'] - - -class OSMesaPlatform(Platform): - """Renders into a software buffer using OSMesa. Requires special versions - of OSMesa to be installed, plus PyOpenGL upgrade. - """ - - def __init__(self, viewport_width, viewport_height): - super(OSMesaPlatform, self).__init__(viewport_width, viewport_height) - self._context = None - self._buffer = None - - def init_context(self): - from OpenGL import arrays - from OpenGL.osmesa import ( - OSMesaCreateContextAttribs, OSMESA_FORMAT, - OSMESA_RGBA, OSMESA_PROFILE, OSMESA_CORE_PROFILE, - OSMESA_CONTEXT_MAJOR_VERSION, OSMESA_CONTEXT_MINOR_VERSION, - OSMESA_DEPTH_BITS - ) - - attrs = arrays.GLintArray.asArray([ - OSMESA_FORMAT, OSMESA_RGBA, - OSMESA_DEPTH_BITS, 24, - OSMESA_PROFILE, OSMESA_CORE_PROFILE, - OSMESA_CONTEXT_MAJOR_VERSION, 3, - OSMESA_CONTEXT_MINOR_VERSION, 3, - 0 - ]) - self._context = OSMesaCreateContextAttribs(attrs, None) - self._buffer = arrays.GLubyteArray.zeros( - (self.viewport_height, self.viewport_width, 4) - ) - - def make_current(self): - from OpenGL import GL as gl - from OpenGL.osmesa import OSMesaMakeCurrent - assert(OSMesaMakeCurrent( - self._context, self._buffer, gl.GL_UNSIGNED_BYTE, - self.viewport_width, self.viewport_height - )) - - def make_uncurrent(self): - """Make the OpenGL context uncurrent. - """ - pass - - def delete_context(self): - from OpenGL.osmesa import OSMesaDestroyContext - OSMesaDestroyContext(self._context) - self._context = None - self._buffer = None - - def supports_framebuffers(self): - return False diff --git a/spaces/PAIR/Text2Video-Zero/utils.py b/spaces/PAIR/Text2Video-Zero/utils.py deleted file mode 100644 index 8f68e3ddf2ee3523f27a3a75ba54d524613c9b04..0000000000000000000000000000000000000000 --- a/spaces/PAIR/Text2Video-Zero/utils.py +++ /dev/null @@ -1,268 +0,0 @@ -import os - -import PIL.Image -import numpy as np -import torch -import torchvision -from torchvision.transforms import Resize, InterpolationMode -import imageio -from einops import rearrange -import cv2 -from PIL import Image -from annotator.util import resize_image, HWC3 -from annotator.canny import CannyDetector -from annotator.openpose import OpenposeDetector -from annotator.midas import MidasDetector -import decord - -apply_canny = CannyDetector() -apply_openpose = OpenposeDetector() -apply_midas = MidasDetector() - - -def add_watermark(image, watermark_path, wm_rel_size=1/16, boundary=5): - ''' - Creates a watermark on the saved inference image. - We request that you do not remove this to properly assign credit to - Shi-Lab's work. - ''' - watermark = Image.open(watermark_path) - w_0, h_0 = watermark.size - H, W, _ = image.shape - wmsize = int(max(H, W) * wm_rel_size) - aspect = h_0 / w_0 - if aspect > 1.0: - watermark = watermark.resize((wmsize, int(aspect * wmsize)), Image.LANCZOS) - else: - watermark = watermark.resize((int(wmsize / aspect), wmsize), Image.LANCZOS) - w, h = watermark.size - loc_h = H - h - boundary - loc_w = W - w - boundary - image = Image.fromarray(image) - mask = watermark if watermark.mode in ('RGBA', 'LA') else None - image.paste(watermark, (loc_w, loc_h), mask) - return image - - -def pre_process_canny(input_video, low_threshold=100, high_threshold=200): - detected_maps = [] - for frame in input_video: - img = rearrange(frame, 'c h w -> h w c').cpu().numpy().astype(np.uint8) - detected_map = apply_canny(img, low_threshold, high_threshold) - detected_map = HWC3(detected_map) - detected_maps.append(detected_map[None]) - detected_maps = np.concatenate(detected_maps) - control = torch.from_numpy(detected_maps.copy()).float() / 255.0 - return rearrange(control, 'f h w c -> f c h w') - - -def pre_process_depth(input_video, apply_depth_detect: bool = True): - detected_maps = [] - for frame in input_video: - img = rearrange(frame, 'c h w -> h w c').cpu().numpy().astype(np.uint8) - img = HWC3(img) - if apply_depth_detect: - detected_map, _ = apply_midas(img) - else: - detected_map = img - detected_map = HWC3(detected_map) - H, W, C = img.shape - detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST) - detected_maps.append(detected_map[None]) - detected_maps = np.concatenate(detected_maps) - control = torch.from_numpy(detected_maps.copy()).float() / 255.0 - return rearrange(control, 'f h w c -> f c h w') - - -def pre_process_pose(input_video, apply_pose_detect: bool = True): - detected_maps = [] - for frame in input_video: - img = rearrange(frame, 'c h w -> h w c').cpu().numpy().astype(np.uint8) - img = HWC3(img) - if apply_pose_detect: - detected_map, _ = apply_openpose(img) - else: - detected_map = img - detected_map = HWC3(detected_map) - H, W, C = img.shape - detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST) - detected_maps.append(detected_map[None]) - detected_maps = np.concatenate(detected_maps) - control = torch.from_numpy(detected_maps.copy()).float() / 255.0 - return rearrange(control, 'f h w c -> f c h w') - - -def create_video(frames, fps, rescale=False, path=None, watermark=None): - if path is None: - dir = "temporal" - os.makedirs(dir, exist_ok=True) - path = os.path.join(dir, 'movie.mp4') - - outputs = [] - for i, x in enumerate(frames): - x = torchvision.utils.make_grid(torch.Tensor(x), nrow=4) - if rescale: - x = (x + 1.0) / 2.0 # -1,1 -> 0,1 - x = (x * 255).numpy().astype(np.uint8) - - if watermark is not None: - x = add_watermark(x, watermark) - outputs.append(x) - # imageio.imsave(os.path.join(dir, os.path.splitext(name)[0] + f'_{i}.jpg'), x) - - imageio.mimsave(path, outputs, fps=fps) - return path - -def create_gif(frames, fps, rescale=False, path=None, watermark=None): - if path is None: - dir = "temporal" - os.makedirs(dir, exist_ok=True) - path = os.path.join(dir, 'canny_db.gif') - - outputs = [] - for i, x in enumerate(frames): - x = torchvision.utils.make_grid(torch.Tensor(x), nrow=4) - if rescale: - x = (x + 1.0) / 2.0 # -1,1 -> 0,1 - x = (x * 255).numpy().astype(np.uint8) - if watermark is not None: - x = add_watermark(x, watermark) - outputs.append(x) - # imageio.imsave(os.path.join(dir, os.path.splitext(name)[0] + f'_{i}.jpg'), x) - - imageio.mimsave(path, outputs, fps=fps) - return path - -# def prepare_video(video_path:str, resolution:int, device, dtype, normalize=True, start_t:float=0, end_t:float=-1, output_fps:int=-1): -# vr = decord.VideoReader(video_path) -# video = vr.get_batch(range(0, len(vr))).asnumpy() -# initial_fps = vr.get_avg_fps() -# if output_fps == -1: -# output_fps = int(initial_fps) -# if end_t == -1: -# end_t = len(vr) / initial_fps -# else: -# end_t = min(len(vr) / initial_fps, end_t) -# assert 0 <= start_t < end_t -# assert output_fps > 0 -# f, h, w, c = video.shape -# start_f_ind = int(start_t * initial_fps) -# end_f_ind = int(end_t * initial_fps) -# num_f = int((end_t - start_t) * output_fps) -# sample_idx = np.linspace(start_f_ind, end_f_ind, num_f, endpoint=False).astype(int) -# video = video[sample_idx] -# video = rearrange(video, "f h w c -> f c h w") -# video = torch.Tensor(video).to(device).to(dtype) -# if h > w: -# w = int(w * resolution / h) -# w = w - w % 8 -# h = resolution - resolution % 8 -# video = Resize((h, w))(video) -# else: -# h = int(h * resolution / w) -# h = h - h % 8 -# w = resolution - resolution % 8 -# video = Resize((h, w))(video) -# if normalize: -# video = video / 127.5 - 1.0 -# return video, output_fps - -def prepare_video(video_path:str, resolution:int, device, dtype, normalize=True, start_t:float=0, end_t:float=-1, output_fps:int=-1): - vr = decord.VideoReader(video_path) - initial_fps = vr.get_avg_fps() - if output_fps == -1: - output_fps = int(initial_fps) - if end_t == -1: - end_t = len(vr) / initial_fps - else: - end_t = min(len(vr) / initial_fps, end_t) - assert 0 <= start_t < end_t - assert output_fps > 0 - start_f_ind = int(start_t * initial_fps) - end_f_ind = int(end_t * initial_fps) - num_f = int((end_t - start_t) * output_fps) - sample_idx = np.linspace(start_f_ind, end_f_ind, num_f, endpoint=False).astype(int) - video = vr.get_batch(sample_idx) - if torch.is_tensor(video): - video = video.detach().cpu().numpy() - else: - video = video.asnumpy() - _, h, w, _ = video.shape - - video_resized = [] - for f in range(video.shape[0]): - frame = video[f:f+1, ...] - - frame = rearrange(frame, "f h w c -> f c h w") - frame = torch.Tensor(frame).to(device).to(dtype) - - # Use max if you want the larger side to be equal to resolution (e.g. 512) - # k = float(resolution) / min(h, w) - k = float(resolution) / max(h, w) - h *= k - w *= k - h = int(np.round(h / 64.0)) * 64 - w = int(np.round(w / 64.0)) * 64 - - frame = Resize((h, w), interpolation=InterpolationMode.BILINEAR, antialias=True)(frame) - if normalize: - frame = frame / 127.5 - 1.0 - video_resized.append(frame) - video = torch.cat(video_resized) - - return video, output_fps - -def post_process_gif(list_of_results, image_resolution): - output_file = "/tmp/ddxk.gif" - imageio.mimsave(output_file, list_of_results, fps=4) - return output_file - - -class CrossFrameAttnProcessor: - def __init__(self, unet_chunk_size=2): - self.unet_chunk_size = unet_chunk_size - - def __call__( - self, - attn, - hidden_states, - encoder_hidden_states=None, - attention_mask=None): - batch_size, sequence_length, _ = hidden_states.shape - attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) - query = attn.to_q(hidden_states) - - is_cross_attention = encoder_hidden_states is not None - if encoder_hidden_states is None: - encoder_hidden_states = hidden_states - elif attn.cross_attention_norm: - encoder_hidden_states = attn.norm_cross(encoder_hidden_states) - key = attn.to_k(encoder_hidden_states) - value = attn.to_v(encoder_hidden_states) - # Sparse Attention - if not is_cross_attention: - video_length = key.size()[0] // self.unet_chunk_size - # former_frame_index = torch.arange(video_length) - 1 - # former_frame_index[0] = 0 - former_frame_index = [0] * video_length - key = rearrange(key, "(b f) d c -> b f d c", f=video_length) - key = key[:, former_frame_index] - key = rearrange(key, "b f d c -> (b f) d c") - value = rearrange(value, "(b f) d c -> b f d c", f=video_length) - value = value[:, former_frame_index] - value = rearrange(value, "b f d c -> (b f) d c") - - query = attn.head_to_batch_dim(query) - key = attn.head_to_batch_dim(key) - value = attn.head_to_batch_dim(value) - - attention_probs = attn.get_attention_scores(query, key, attention_mask) - hidden_states = torch.bmm(attention_probs, value) - hidden_states = attn.batch_to_head_dim(hidden_states) - - # linear proj - hidden_states = attn.to_out[0](hidden_states) - # dropout - hidden_states = attn.to_out[1](hidden_states) - - return hidden_states diff --git a/spaces/Pie31415/control-animation/annotator/uniformer/configs/_base_/models/ccnet_r50-d8.py b/spaces/Pie31415/control-animation/annotator/uniformer/configs/_base_/models/ccnet_r50-d8.py deleted file mode 100644 index 794148f576b9e215c3c6963e73dffe98204b7717..0000000000000000000000000000000000000000 --- a/spaces/Pie31415/control-animation/annotator/uniformer/configs/_base_/models/ccnet_r50-d8.py +++ /dev/null @@ -1,44 +0,0 @@ -# model settings -norm_cfg = dict(type='SyncBN', requires_grad=True) -model = dict( - type='EncoderDecoder', - pretrained='open-mmlab://resnet50_v1c', - backbone=dict( - type='ResNetV1c', - depth=50, - num_stages=4, - out_indices=(0, 1, 2, 3), - dilations=(1, 1, 2, 4), - strides=(1, 2, 1, 1), - norm_cfg=norm_cfg, - norm_eval=False, - style='pytorch', - contract_dilation=True), - decode_head=dict( - type='CCHead', - in_channels=2048, - in_index=3, - channels=512, - recurrence=2, - dropout_ratio=0.1, - num_classes=19, - norm_cfg=norm_cfg, - align_corners=False, - loss_decode=dict( - type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), - auxiliary_head=dict( - type='FCNHead', - in_channels=1024, - in_index=2, - channels=256, - num_convs=1, - concat_input=False, - dropout_ratio=0.1, - num_classes=19, - norm_cfg=norm_cfg, - align_corners=False, - loss_decode=dict( - type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), - # model training and testing settings - train_cfg=dict(), - test_cfg=dict(mode='whole')) diff --git a/spaces/Pie31415/control-animation/annotator/uniformer/mmcv/utils/parrots_jit.py b/spaces/Pie31415/control-animation/annotator/uniformer/mmcv/utils/parrots_jit.py deleted file mode 100644 index 61873f6dbb9b10ed972c90aa8faa321e3cb3249e..0000000000000000000000000000000000000000 --- a/spaces/Pie31415/control-animation/annotator/uniformer/mmcv/utils/parrots_jit.py +++ /dev/null @@ -1,41 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import os - -from .parrots_wrapper import TORCH_VERSION - -parrots_jit_option = os.getenv('PARROTS_JIT_OPTION') - -if TORCH_VERSION == 'parrots' and parrots_jit_option == 'ON': - from parrots.jit import pat as jit -else: - - def jit(func=None, - check_input=None, - full_shape=True, - derivate=False, - coderize=False, - optimize=False): - - def wrapper(func): - - def wrapper_inner(*args, **kargs): - return func(*args, **kargs) - - return wrapper_inner - - if func is None: - return wrapper - else: - return func - - -if TORCH_VERSION == 'parrots': - from parrots.utils.tester import skip_no_elena -else: - - def skip_no_elena(func): - - def wrapper(*args, **kargs): - return func(*args, **kargs) - - return wrapper diff --git a/spaces/Pinwheel/GLIP-BLIP-Object-Detection-VQA/models/blip_itm.py b/spaces/Pinwheel/GLIP-BLIP-Object-Detection-VQA/models/blip_itm.py deleted file mode 100644 index cf354c829564bf5a1f56089a2d745093d51e0fa2..0000000000000000000000000000000000000000 --- a/spaces/Pinwheel/GLIP-BLIP-Object-Detection-VQA/models/blip_itm.py +++ /dev/null @@ -1,76 +0,0 @@ -from models.med import BertConfig, BertModel -from transformers import BertTokenizer - -import torch -from torch import nn -import torch.nn.functional as F - -from models.blip import create_vit, init_tokenizer, load_checkpoint - -class BLIP_ITM(nn.Module): - def __init__(self, - med_config = 'configs/med_config.json', - image_size = 384, - vit = 'base', - vit_grad_ckpt = False, - vit_ckpt_layer = 0, - embed_dim = 256, - ): - """ - Args: - med_config (str): path for the mixture of encoder-decoder model's configuration file - image_size (int): input image size - vit (str): model size of vision transformer - """ - super().__init__() - - self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer) - self.tokenizer = init_tokenizer() - med_config = BertConfig.from_json_file(med_config) - med_config.encoder_width = vision_width - self.text_encoder = BertModel(config=med_config, add_pooling_layer=False) - - text_width = self.text_encoder.config.hidden_size - - self.vision_proj = nn.Linear(vision_width, embed_dim) - self.text_proj = nn.Linear(text_width, embed_dim) - - self.itm_head = nn.Linear(text_width, 2) - - - def forward(self, image, caption, match_head='itm'): - - image_embeds = self.visual_encoder(image) - image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) - - text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=35, - return_tensors="pt").to(image.device) - - - if match_head=='itm': - output = self.text_encoder(text.input_ids, - attention_mask = text.attention_mask, - encoder_hidden_states = image_embeds, - encoder_attention_mask = image_atts, - return_dict = True, - ) - itm_output = self.itm_head(output.last_hidden_state[:,0,:]) - return itm_output - - elif match_head=='itc': - text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask, - return_dict = True, mode = 'text') - image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1) - text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1) - - sim = image_feat @ text_feat.t() - return sim - - -def blip_itm(pretrained='',**kwargs): - model = BLIP_ITM(**kwargs) - if pretrained: - model,msg = load_checkpoint(model,pretrained) - assert(len(msg.missing_keys)==0) - return model - \ No newline at end of file diff --git a/spaces/Pinwheel/SuperGlue-Image-Matching/models/matching.py b/spaces/Pinwheel/SuperGlue-Image-Matching/models/matching.py deleted file mode 100644 index 5d174208d146373230a8a68dd1420fc59c180633..0000000000000000000000000000000000000000 --- a/spaces/Pinwheel/SuperGlue-Image-Matching/models/matching.py +++ /dev/null @@ -1,84 +0,0 @@ -# %BANNER_BEGIN% -# --------------------------------------------------------------------- -# %COPYRIGHT_BEGIN% -# -# Magic Leap, Inc. ("COMPANY") CONFIDENTIAL -# -# Unpublished Copyright (c) 2020 -# Magic Leap, Inc., All Rights Reserved. -# -# NOTICE: All information contained herein is, and remains the property -# of COMPANY. The intellectual and technical concepts contained herein -# are proprietary to COMPANY and may be covered by U.S. and Foreign -# Patents, patents in process, and are protected by trade secret or -# copyright law. Dissemination of this information or reproduction of -# this material is strictly forbidden unless prior written permission is -# obtained from COMPANY. Access to the source code contained herein is -# hereby forbidden to anyone except current COMPANY employees, managers -# or contractors who have executed Confidentiality and Non-disclosure -# agreements explicitly covering such access. -# -# The copyright notice above does not evidence any actual or intended -# publication or disclosure of this source code, which includes -# information that is confidential and/or proprietary, and is a trade -# secret, of COMPANY. ANY REPRODUCTION, MODIFICATION, DISTRIBUTION, -# PUBLIC PERFORMANCE, OR PUBLIC DISPLAY OF OR THROUGH USE OF THIS -# SOURCE CODE WITHOUT THE EXPRESS WRITTEN CONSENT OF COMPANY IS -# STRICTLY PROHIBITED, AND IN VIOLATION OF APPLICABLE LAWS AND -# INTERNATIONAL TREATIES. THE RECEIPT OR POSSESSION OF THIS SOURCE -# CODE AND/OR RELATED INFORMATION DOES NOT CONVEY OR IMPLY ANY RIGHTS -# TO REPRODUCE, DISCLOSE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE, -# USE, OR SELL ANYTHING THAT IT MAY DESCRIBE, IN WHOLE OR IN PART. -# -# %COPYRIGHT_END% -# ---------------------------------------------------------------------- -# %AUTHORS_BEGIN% -# -# Originating Authors: Paul-Edouard Sarlin -# -# %AUTHORS_END% -# --------------------------------------------------------------------*/ -# %BANNER_END% - -import torch - -from .superpoint import SuperPoint -from .superglue import SuperGlue - - -class Matching(torch.nn.Module): - """ Image Matching Frontend (SuperPoint + SuperGlue) """ - def __init__(self, config={}): - super().__init__() - self.superpoint = SuperPoint(config.get('superpoint', {})) - self.superglue = SuperGlue(config.get('superglue', {})) - - def forward(self, data): - """ Run SuperPoint (optionally) and SuperGlue - SuperPoint is skipped if ['keypoints0', 'keypoints1'] exist in input - Args: - data: dictionary with minimal keys: ['image0', 'image1'] - """ - pred = {} - - # Extract SuperPoint (keypoints, scores, descriptors) if not provided - if 'keypoints0' not in data: - pred0 = self.superpoint({'image': data['image0']}) - pred = {**pred, **{k+'0': v for k, v in pred0.items()}} - if 'keypoints1' not in data: - pred1 = self.superpoint({'image': data['image1']}) - pred = {**pred, **{k+'1': v for k, v in pred1.items()}} - - # Batch all features - # We should either have i) one image per batch, or - # ii) the same number of local features for all images in the batch. - data = {**data, **pred} - - for k in data: - if isinstance(data[k], (list, tuple)): - data[k] = torch.stack(data[k]) - - # Perform the matching - pred = {**pred, **self.superglue(data)} - - return pred diff --git a/spaces/ProteinDesignLab/protpardelle/ProteinMPNN/helper_scripts/parse_multiple_chains.sh b/spaces/ProteinDesignLab/protpardelle/ProteinMPNN/helper_scripts/parse_multiple_chains.sh deleted file mode 100644 index c2a8a108b05cc9f81c636b3b48bf58ddb4ce1a02..0000000000000000000000000000000000000000 --- a/spaces/ProteinDesignLab/protpardelle/ProteinMPNN/helper_scripts/parse_multiple_chains.sh +++ /dev/null @@ -1,7 +0,0 @@ -#!/bin/bash -#SBATCH --mem=32g -#SBATCH -c 2 -#SBATCH --output=parse_multiple_chains.out - -source activate mlfold -python parse_multiple_chains.py --input_path='../PDB_complexes/pdbs/' --output_path='../PDB_complexes/parsed_pdbs.jsonl' diff --git a/spaces/PsykoNOT/hakurei-waifu-diffusion/app.py b/spaces/PsykoNOT/hakurei-waifu-diffusion/app.py deleted file mode 100644 index ccef706bf3035fe470bf6a4f5bd701b18bf59133..0000000000000000000000000000000000000000 --- a/spaces/PsykoNOT/hakurei-waifu-diffusion/app.py +++ /dev/null @@ -1,3 +0,0 @@ -import gradio as gr - -gr.Interface.load("models/hakurei/waifu-diffusion").launch() \ No newline at end of file diff --git a/spaces/Raspberry-ai/main/.env/lib/python3.11/site-packages/pip/_vendor/urllib3/__init__.py b/spaces/Raspberry-ai/main/.env/lib/python3.11/site-packages/pip/_vendor/urllib3/__init__.py deleted file mode 100644 index c6fa38212fb559a9b51fe36b72892839efae63f5..0000000000000000000000000000000000000000 --- a/spaces/Raspberry-ai/main/.env/lib/python3.11/site-packages/pip/_vendor/urllib3/__init__.py +++ /dev/null @@ -1,102 +0,0 @@ -""" -Python HTTP library with thread-safe connection pooling, file post support, user friendly, and more -""" -from __future__ import absolute_import - -# Set default logging handler to avoid "No handler found" warnings. -import logging -import warnings -from logging import NullHandler - -from . import exceptions -from ._version import __version__ -from .connectionpool import HTTPConnectionPool, HTTPSConnectionPool, connection_from_url -from .filepost import encode_multipart_formdata -from .poolmanager import PoolManager, ProxyManager, proxy_from_url -from .response import HTTPResponse -from .util.request import make_headers -from .util.retry import Retry -from .util.timeout import Timeout -from .util.url import get_host - -# === NOTE TO REPACKAGERS AND VENDORS === -# Please delete this block, this logic is only -# for urllib3 being distributed via PyPI. -# See: https://github.com/urllib3/urllib3/issues/2680 -try: - import urllib3_secure_extra # type: ignore # noqa: F401 -except ImportError: - pass -else: - warnings.warn( - "'urllib3[secure]' extra is deprecated and will be removed " - "in a future release of urllib3 2.x. Read more in this issue: " - "https://github.com/urllib3/urllib3/issues/2680", - category=DeprecationWarning, - stacklevel=2, - ) - -__author__ = "Andrey Petrov (andrey.petrov@shazow.net)" -__license__ = "MIT" -__version__ = __version__ - -__all__ = ( - "HTTPConnectionPool", - "HTTPSConnectionPool", - "PoolManager", - "ProxyManager", - "HTTPResponse", - "Retry", - "Timeout", - "add_stderr_logger", - "connection_from_url", - "disable_warnings", - "encode_multipart_formdata", - "get_host", - "make_headers", - "proxy_from_url", -) - -logging.getLogger(__name__).addHandler(NullHandler()) - - -def add_stderr_logger(level=logging.DEBUG): - """ - Helper for quickly adding a StreamHandler to the logger. Useful for - debugging. - - Returns the handler after adding it. - """ - # This method needs to be in this __init__.py to get the __name__ correct - # even if urllib3 is vendored within another package. - logger = logging.getLogger(__name__) - handler = logging.StreamHandler() - handler.setFormatter(logging.Formatter("%(asctime)s %(levelname)s %(message)s")) - logger.addHandler(handler) - logger.setLevel(level) - logger.debug("Added a stderr logging handler to logger: %s", __name__) - return handler - - -# ... Clean up. -del NullHandler - - -# All warning filters *must* be appended unless you're really certain that they -# shouldn't be: otherwise, it's very hard for users to use most Python -# mechanisms to silence them. -# SecurityWarning's always go off by default. -warnings.simplefilter("always", exceptions.SecurityWarning, append=True) -# SubjectAltNameWarning's should go off once per host -warnings.simplefilter("default", exceptions.SubjectAltNameWarning, append=True) -# InsecurePlatformWarning's don't vary between requests, so we keep it default. -warnings.simplefilter("default", exceptions.InsecurePlatformWarning, append=True) -# SNIMissingWarnings should go off only once. -warnings.simplefilter("default", exceptions.SNIMissingWarning, append=True) - - -def disable_warnings(category=exceptions.HTTPWarning): - """ - Helper for quickly disabling all urllib3 warnings. - """ - warnings.simplefilter("ignore", category) diff --git a/spaces/Realcat/image-matching-webui/third_party/TopicFM/viz/methods/loftr.py b/spaces/Realcat/image-matching-webui/third_party/TopicFM/viz/methods/loftr.py deleted file mode 100644 index 29046a2aa95596cbfe9656c3bda6dafcb1a55058..0000000000000000000000000000000000000000 --- a/spaces/Realcat/image-matching-webui/third_party/TopicFM/viz/methods/loftr.py +++ /dev/null @@ -1,123 +0,0 @@ -from argparse import Namespace -import os -import torch -import cv2 - -from .base import Viz -from src.utils.metrics import compute_symmetrical_epipolar_errors, compute_pose_errors - -from third_party.loftr.src.loftr import LoFTR, default_cfg - - -class VizLoFTR(Viz): - def __init__(self, args): - super().__init__() - if type(args) == dict: - args = Namespace(**args) - - self.match_threshold = args.match_threshold - - # Load model - conf = dict(default_cfg) - conf["match_coarse"]["thr"] = self.match_threshold - print(conf) - self.model = LoFTR(config=conf) - ckpt_dict = torch.load(args.ckpt) - self.model.load_state_dict(ckpt_dict["state_dict"]) - self.model = self.model.eval().to(self.device) - - # Name the method - # self.ckpt_name = args.ckpt.split('/')[-1].split('.')[0] - self.name = "LoFTR" - - print(f"Initialize {self.name}") - - def match_and_draw( - self, - data_dict, - root_dir=None, - ground_truth=False, - measure_time=False, - viz_matches=True, - ): - if measure_time: - torch.cuda.synchronize() - start = torch.cuda.Event(enable_timing=True) - end = torch.cuda.Event(enable_timing=True) - start.record() - self.model(data_dict) - if measure_time: - torch.cuda.synchronize() - end.record() - torch.cuda.synchronize() - self.time_stats.append(start.elapsed_time(end)) - - kpts0 = data_dict["mkpts0_f"].cpu().numpy() - kpts1 = data_dict["mkpts1_f"].cpu().numpy() - - img_name0, img_name1 = list(zip(*data_dict["pair_names"]))[0] - img0 = cv2.imread(os.path.join(root_dir, img_name0)) - img1 = cv2.imread(os.path.join(root_dir, img_name1)) - if str(data_dict["dataset_name"][0]).lower() == "scannet": - img0 = cv2.resize(img0, (640, 480)) - img1 = cv2.resize(img1, (640, 480)) - - if viz_matches: - saved_name = "_".join( - [ - img_name0.split("/")[-1].split(".")[0], - img_name1.split("/")[-1].split(".")[0], - ] - ) - folder_matches = os.path.join(root_dir, "{}_viz_matches".format(self.name)) - if not os.path.exists(folder_matches): - os.makedirs(folder_matches) - path_to_save_matches = os.path.join( - folder_matches, "{}.png".format(saved_name) - ) - if ground_truth: - compute_symmetrical_epipolar_errors( - data_dict - ) # compute epi_errs for each match - compute_pose_errors( - data_dict - ) # compute R_errs, t_errs, pose_errs for each pair - epi_errors = data_dict["epi_errs"].cpu().numpy() - R_errors, t_errors = data_dict["R_errs"][0], data_dict["t_errs"][0] - - self.draw_matches( - kpts0, - kpts1, - img0, - img1, - epi_errors, - path=path_to_save_matches, - R_errs=R_errors, - t_errs=t_errors, - ) - - rel_pair_names = list(zip(*data_dict["pair_names"])) - bs = data_dict["image0"].size(0) - metrics = { - # to filter duplicate pairs caused by DistributedSampler - "identifiers": ["#".join(rel_pair_names[b]) for b in range(bs)], - "epi_errs": [ - data_dict["epi_errs"][data_dict["m_bids"] == b].cpu().numpy() - for b in range(bs) - ], - "R_errs": data_dict["R_errs"], - "t_errs": data_dict["t_errs"], - "inliers": data_dict["inliers"], - } - self.eval_stats.append({"metrics": metrics}) - else: - m_conf = 1 - data_dict["mconf"].cpu().numpy() - self.draw_matches( - kpts0, - kpts1, - img0, - img1, - m_conf, - path=path_to_save_matches, - conf_thr=0.4, - ) diff --git a/spaces/Ritori/TTS_Yui/waveglow/glow.py b/spaces/Ritori/TTS_Yui/waveglow/glow.py deleted file mode 100644 index 7a7696403d505afdf0f1606f8220801b0f46152f..0000000000000000000000000000000000000000 --- a/spaces/Ritori/TTS_Yui/waveglow/glow.py +++ /dev/null @@ -1,311 +0,0 @@ -# ***************************************************************************** -# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. -# -# Redistribution and use in source and binary forms, with or without -# modification, are permitted provided that the following conditions are met: -# * Redistributions of source code must retain the above copyright -# notice, this list of conditions and the following disclaimer. -# * Redistributions in binary form must reproduce the above copyright -# notice, this list of conditions and the following disclaimer in the -# documentation and/or other materials provided with the distribution. -# * Neither the name of the NVIDIA CORPORATION nor the -# names of its contributors may be used to endorse or promote products -# derived from this software without specific prior written permission. -# -# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND -# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED -# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY -# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES -# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; -# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND -# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -# -# ***************************************************************************** -import copy -import torch -from torch.autograd import Variable -import torch.nn.functional as F - - -@torch.jit.script -def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): - n_channels_int = n_channels[0] - in_act = input_a+input_b - t_act = torch.tanh(in_act[:, :n_channels_int, :]) - s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) - acts = t_act * s_act - return acts - - -class WaveGlowLoss(torch.nn.Module): - def __init__(self, sigma=1.0): - super(WaveGlowLoss, self).__init__() - self.sigma = sigma - - def forward(self, model_output): - z, log_s_list, log_det_W_list = model_output - for i, log_s in enumerate(log_s_list): - if i == 0: - log_s_total = torch.sum(log_s) - log_det_W_total = log_det_W_list[i] - else: - log_s_total = log_s_total + torch.sum(log_s) - log_det_W_total += log_det_W_list[i] - - loss = torch.sum(z*z)/(2*self.sigma*self.sigma) - log_s_total - log_det_W_total - return loss/(z.size(0)*z.size(1)*z.size(2)) - - -class Invertible1x1Conv(torch.nn.Module): - """ - The layer outputs both the convolution, and the log determinant - of its weight matrix. If reverse=True it does convolution with - inverse - """ - def __init__(self, c): - super(Invertible1x1Conv, self).__init__() - self.conv = torch.nn.Conv1d(c, c, kernel_size=1, stride=1, padding=0, - bias=False) - - # Sample a random orthonormal matrix to initialize weights - W = torch.qr(torch.FloatTensor(c, c).normal_())[0] - - # Ensure determinant is 1.0 not -1.0 - if torch.det(W) < 0: - W[:,0] = -1*W[:,0] - W = W.view(c, c, 1) - self.conv.weight.data = W - - def forward(self, z, reverse=False): - # shape - batch_size, group_size, n_of_groups = z.size() - - W = self.conv.weight.squeeze() - - if reverse: - if not hasattr(self, 'W_inverse'): - # Reverse computation - W_inverse = W.float().inverse() - W_inverse = Variable(W_inverse[..., None]) - if z.type() == 'torch.cuda.HalfTensor': - W_inverse = W_inverse.half() - self.W_inverse = W_inverse - z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0) - return z - else: - # Forward computation - log_det_W = batch_size * n_of_groups * torch.logdet(W) - z = self.conv(z) - return z, log_det_W - - -class WN(torch.nn.Module): - """ - This is the WaveNet like layer for the affine coupling. The primary difference - from WaveNet is the convolutions need not be causal. There is also no dilation - size reset. The dilation only doubles on each layer - """ - def __init__(self, n_in_channels, n_mel_channels, n_layers, n_channels, - kernel_size): - super(WN, self).__init__() - assert(kernel_size % 2 == 1) - assert(n_channels % 2 == 0) - self.n_layers = n_layers - self.n_channels = n_channels - self.in_layers = torch.nn.ModuleList() - self.res_skip_layers = torch.nn.ModuleList() - - start = torch.nn.Conv1d(n_in_channels, n_channels, 1) - start = torch.nn.utils.weight_norm(start, name='weight') - self.start = start - - # Initializing last layer to 0 makes the affine coupling layers - # do nothing at first. This helps with training stability - end = torch.nn.Conv1d(n_channels, 2*n_in_channels, 1) - end.weight.data.zero_() - end.bias.data.zero_() - self.end = end - - cond_layer = torch.nn.Conv1d(n_mel_channels, 2*n_channels*n_layers, 1) - self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight') - - for i in range(n_layers): - dilation = 2 ** i - padding = int((kernel_size*dilation - dilation)/2) - in_layer = torch.nn.Conv1d(n_channels, 2*n_channels, kernel_size, - dilation=dilation, padding=padding) - in_layer = torch.nn.utils.weight_norm(in_layer, name='weight') - self.in_layers.append(in_layer) - - - # last one is not necessary - if i < n_layers - 1: - res_skip_channels = 2*n_channels - else: - res_skip_channels = n_channels - res_skip_layer = torch.nn.Conv1d(n_channels, res_skip_channels, 1) - res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight') - self.res_skip_layers.append(res_skip_layer) - - def forward(self, forward_input): - audio, spect = forward_input - audio = self.start(audio) - output = torch.zeros_like(audio) - n_channels_tensor = torch.IntTensor([self.n_channels]) - - spect = self.cond_layer(spect) - - for i in range(self.n_layers): - spect_offset = i*2*self.n_channels - acts = fused_add_tanh_sigmoid_multiply( - self.in_layers[i](audio), - spect[:,spect_offset:spect_offset+2*self.n_channels,:], - n_channels_tensor) - - res_skip_acts = self.res_skip_layers[i](acts) - if i < self.n_layers - 1: - audio = audio + res_skip_acts[:,:self.n_channels,:] - output = output + res_skip_acts[:,self.n_channels:,:] - else: - output = output + res_skip_acts - - return self.end(output) - - -class WaveGlow(torch.nn.Module): - def __init__(self, n_mel_channels, n_flows, n_group, n_early_every, - n_early_size, WN_config): - super(WaveGlow, self).__init__() - - self.upsample = torch.nn.ConvTranspose1d(n_mel_channels, - n_mel_channels, - 1024, stride=256) - assert(n_group % 2 == 0) - self.n_flows = n_flows - self.n_group = n_group - self.n_early_every = n_early_every - self.n_early_size = n_early_size - self.WN = torch.nn.ModuleList() - self.convinv = torch.nn.ModuleList() - - n_half = int(n_group/2) - - # Set up layers with the right sizes based on how many dimensions - # have been output already - n_remaining_channels = n_group - for k in range(n_flows): - if k % self.n_early_every == 0 and k > 0: - n_half = n_half - int(self.n_early_size/2) - n_remaining_channels = n_remaining_channels - self.n_early_size - self.convinv.append(Invertible1x1Conv(n_remaining_channels)) - self.WN.append(WN(n_half, n_mel_channels*n_group, **WN_config)) - self.n_remaining_channels = n_remaining_channels # Useful during inference - - def forward(self, forward_input): - """ - forward_input[0] = mel_spectrogram: batch x n_mel_channels x frames - forward_input[1] = audio: batch x time - """ - spect, audio = forward_input - - # Upsample spectrogram to size of audio - spect = self.upsample(spect) - assert(spect.size(2) >= audio.size(1)) - if spect.size(2) > audio.size(1): - spect = spect[:, :, :audio.size(1)] - - spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3) - spect = spect.contiguous().view(spect.size(0), spect.size(1), -1).permute(0, 2, 1) - - audio = audio.unfold(1, self.n_group, self.n_group).permute(0, 2, 1) - output_audio = [] - log_s_list = [] - log_det_W_list = [] - - for k in range(self.n_flows): - if k % self.n_early_every == 0 and k > 0: - output_audio.append(audio[:,:self.n_early_size,:]) - audio = audio[:,self.n_early_size:,:] - - audio, log_det_W = self.convinv[k](audio) - log_det_W_list.append(log_det_W) - - n_half = int(audio.size(1)/2) - audio_0 = audio[:,:n_half,:] - audio_1 = audio[:,n_half:,:] - - output = self.WN[k]((audio_0, spect)) - log_s = output[:, n_half:, :] - b = output[:, :n_half, :] - audio_1 = torch.exp(log_s)*audio_1 + b - log_s_list.append(log_s) - - audio = torch.cat([audio_0, audio_1],1) - - output_audio.append(audio) - return torch.cat(output_audio,1), log_s_list, log_det_W_list - - def infer(self, spect, sigma=1.0): - spect = self.upsample(spect) - # trim conv artifacts. maybe pad spec to kernel multiple - time_cutoff = self.upsample.kernel_size[0] - self.upsample.stride[0] - spect = spect[:, :, :-time_cutoff] - - spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3) - spect = spect.contiguous().view(spect.size(0), spect.size(1), -1).permute(0, 2, 1) - - if spect.type() == 'torch.cuda.HalfTensor': - audio = torch.cuda.HalfTensor(spect.size(0), - self.n_remaining_channels, - spect.size(2)).normal_() - else: - audio = torch.cuda.FloatTensor(spect.size(0), - self.n_remaining_channels, - spect.size(2)).normal_() - - audio = torch.autograd.Variable(sigma*audio) - - for k in reversed(range(self.n_flows)): - n_half = int(audio.size(1)/2) - audio_0 = audio[:,:n_half,:] - audio_1 = audio[:,n_half:,:] - - output = self.WN[k]((audio_0, spect)) - - s = output[:, n_half:, :] - b = output[:, :n_half, :] - audio_1 = (audio_1 - b)/torch.exp(s) - audio = torch.cat([audio_0, audio_1],1) - - audio = self.convinv[k](audio, reverse=True) - - if k % self.n_early_every == 0 and k > 0: - if spect.type() == 'torch.cuda.HalfTensor': - z = torch.cuda.HalfTensor(spect.size(0), self.n_early_size, spect.size(2)).normal_() - else: - z = torch.cuda.FloatTensor(spect.size(0), self.n_early_size, spect.size(2)).normal_() - audio = torch.cat((sigma*z, audio),1) - - audio = audio.permute(0,2,1).contiguous().view(audio.size(0), -1).data - return audio - - @staticmethod - def remove_weightnorm(model): - waveglow = model - for WN in waveglow.WN: - WN.start = torch.nn.utils.remove_weight_norm(WN.start) - WN.in_layers = remove(WN.in_layers) - WN.cond_layer = torch.nn.utils.remove_weight_norm(WN.cond_layer) - WN.res_skip_layers = remove(WN.res_skip_layers) - return waveglow - - -def remove(conv_list): - new_conv_list = torch.nn.ModuleList() - for old_conv in conv_list: - old_conv = torch.nn.utils.remove_weight_norm(old_conv) - new_conv_list.append(old_conv) - return new_conv_list diff --git a/spaces/Robert001/UniControl-Demo/annotator/uniformer/configs/_base_/models/pointrend_r50.py b/spaces/Robert001/UniControl-Demo/annotator/uniformer/configs/_base_/models/pointrend_r50.py deleted file mode 100644 index 9d323dbf9466d41e0800aa57ef84045f3d874bdf..0000000000000000000000000000000000000000 --- a/spaces/Robert001/UniControl-Demo/annotator/uniformer/configs/_base_/models/pointrend_r50.py +++ /dev/null @@ -1,56 +0,0 @@ -# model settings -norm_cfg = dict(type='SyncBN', requires_grad=True) -model = dict( - type='CascadeEncoderDecoder', - num_stages=2, - pretrained='open-mmlab://resnet50_v1c', - backbone=dict( - type='ResNetV1c', - depth=50, - num_stages=4, - out_indices=(0, 1, 2, 3), - dilations=(1, 1, 1, 1), - strides=(1, 2, 2, 2), - norm_cfg=norm_cfg, - norm_eval=False, - style='pytorch', - contract_dilation=True), - neck=dict( - type='FPN', - in_channels=[256, 512, 1024, 2048], - out_channels=256, - num_outs=4), - decode_head=[ - dict( - type='FPNHead', - in_channels=[256, 256, 256, 256], - in_index=[0, 1, 2, 3], - feature_strides=[4, 8, 16, 32], - channels=128, - dropout_ratio=-1, - num_classes=19, - norm_cfg=norm_cfg, - align_corners=False, - loss_decode=dict( - type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), - dict( - type='PointHead', - in_channels=[256], - in_index=[0], - channels=256, - num_fcs=3, - coarse_pred_each_layer=True, - dropout_ratio=-1, - num_classes=19, - align_corners=False, - loss_decode=dict( - type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)) - ], - # model training and testing settings - train_cfg=dict( - num_points=2048, oversample_ratio=3, importance_sample_ratio=0.75), - test_cfg=dict( - mode='whole', - subdivision_steps=2, - subdivision_num_points=8196, - scale_factor=2)) diff --git a/spaces/Robert001/UniControl-Demo/annotator/uniformer/mmdet/models/dense_heads/cascade_rpn_head.py b/spaces/Robert001/UniControl-Demo/annotator/uniformer/mmdet/models/dense_heads/cascade_rpn_head.py deleted file mode 100644 index e32ee461951e685fb44a461033293159e3439717..0000000000000000000000000000000000000000 --- a/spaces/Robert001/UniControl-Demo/annotator/uniformer/mmdet/models/dense_heads/cascade_rpn_head.py +++ /dev/null @@ -1,784 +0,0 @@ -from __future__ import division -import copy -import warnings - -import torch -import torch.nn as nn -from mmcv import ConfigDict -from mmcv.cnn import normal_init -from mmcv.ops import DeformConv2d, batched_nms - -from mmdet.core import (RegionAssigner, build_assigner, build_sampler, - images_to_levels, multi_apply) -from ..builder import HEADS, build_head -from .base_dense_head import BaseDenseHead -from .rpn_head import RPNHead - - -class AdaptiveConv(nn.Module): - """AdaptiveConv used to adapt the sampling location with the anchors. - - Args: - in_channels (int): Number of channels in the input image - out_channels (int): Number of channels produced by the convolution - kernel_size (int or tuple): Size of the conv kernel. Default: 3 - stride (int or tuple, optional): Stride of the convolution. Default: 1 - padding (int or tuple, optional): Zero-padding added to both sides of - the input. Default: 1 - dilation (int or tuple, optional): Spacing between kernel elements. - Default: 3 - groups (int, optional): Number of blocked connections from input - channels to output channels. Default: 1 - bias (bool, optional): If set True, adds a learnable bias to the - output. Default: False. - type (str, optional): Type of adaptive conv, can be either 'offset' - (arbitrary anchors) or 'dilation' (uniform anchor). - Default: 'dilation'. - """ - - def __init__(self, - in_channels, - out_channels, - kernel_size=3, - stride=1, - padding=1, - dilation=3, - groups=1, - bias=False, - type='dilation'): - super(AdaptiveConv, self).__init__() - assert type in ['offset', 'dilation'] - self.adapt_type = type - - assert kernel_size == 3, 'Adaptive conv only supports kernels 3' - if self.adapt_type == 'offset': - assert stride == 1 and padding == 1 and groups == 1, \ - 'Adaptive conv offset mode only supports padding: {1}, ' \ - f'stride: {1}, groups: {1}' - self.conv = DeformConv2d( - in_channels, - out_channels, - kernel_size, - padding=padding, - stride=stride, - groups=groups, - bias=bias) - else: - self.conv = nn.Conv2d( - in_channels, - out_channels, - kernel_size, - padding=dilation, - dilation=dilation) - - def init_weights(self): - """Init weights.""" - normal_init(self.conv, std=0.01) - - def forward(self, x, offset): - """Forward function.""" - if self.adapt_type == 'offset': - N, _, H, W = x.shape - assert offset is not None - assert H * W == offset.shape[1] - # reshape [N, NA, 18] to (N, 18, H, W) - offset = offset.permute(0, 2, 1).reshape(N, -1, H, W) - offset = offset.contiguous() - x = self.conv(x, offset) - else: - assert offset is None - x = self.conv(x) - return x - - -@HEADS.register_module() -class StageCascadeRPNHead(RPNHead): - """Stage of CascadeRPNHead. - - Args: - in_channels (int): Number of channels in the input feature map. - anchor_generator (dict): anchor generator config. - adapt_cfg (dict): adaptation config. - bridged_feature (bool, optional): whether update rpn feature. - Default: False. - with_cls (bool, optional): wheather use classification branch. - Default: True. - sampling (bool, optional): wheather use sampling. Default: True. - """ - - def __init__(self, - in_channels, - anchor_generator=dict( - type='AnchorGenerator', - scales=[8], - ratios=[1.0], - strides=[4, 8, 16, 32, 64]), - adapt_cfg=dict(type='dilation', dilation=3), - bridged_feature=False, - with_cls=True, - sampling=True, - **kwargs): - self.with_cls = with_cls - self.anchor_strides = anchor_generator['strides'] - self.anchor_scales = anchor_generator['scales'] - self.bridged_feature = bridged_feature - self.adapt_cfg = adapt_cfg - super(StageCascadeRPNHead, self).__init__( - in_channels, anchor_generator=anchor_generator, **kwargs) - - # override sampling and sampler - self.sampling = sampling - if self.train_cfg: - self.assigner = build_assigner(self.train_cfg.assigner) - # use PseudoSampler when sampling is False - if self.sampling and hasattr(self.train_cfg, 'sampler'): - sampler_cfg = self.train_cfg.sampler - else: - sampler_cfg = dict(type='PseudoSampler') - self.sampler = build_sampler(sampler_cfg, context=self) - - def _init_layers(self): - """Init layers of a CascadeRPN stage.""" - self.rpn_conv = AdaptiveConv(self.in_channels, self.feat_channels, - **self.adapt_cfg) - if self.with_cls: - self.rpn_cls = nn.Conv2d(self.feat_channels, - self.num_anchors * self.cls_out_channels, - 1) - self.rpn_reg = nn.Conv2d(self.feat_channels, self.num_anchors * 4, 1) - self.relu = nn.ReLU(inplace=True) - - def init_weights(self): - """Init weights of a CascadeRPN stage.""" - self.rpn_conv.init_weights() - normal_init(self.rpn_reg, std=0.01) - if self.with_cls: - normal_init(self.rpn_cls, std=0.01) - - def forward_single(self, x, offset): - """Forward function of single scale.""" - bridged_x = x - x = self.relu(self.rpn_conv(x, offset)) - if self.bridged_feature: - bridged_x = x # update feature - cls_score = self.rpn_cls(x) if self.with_cls else None - bbox_pred = self.rpn_reg(x) - return bridged_x, cls_score, bbox_pred - - def forward(self, feats, offset_list=None): - """Forward function.""" - if offset_list is None: - offset_list = [None for _ in range(len(feats))] - return multi_apply(self.forward_single, feats, offset_list) - - def _region_targets_single(self, - anchors, - valid_flags, - gt_bboxes, - gt_bboxes_ignore, - gt_labels, - img_meta, - featmap_sizes, - label_channels=1): - """Get anchor targets based on region for single level.""" - assign_result = self.assigner.assign( - anchors, - valid_flags, - gt_bboxes, - img_meta, - featmap_sizes, - self.anchor_scales[0], - self.anchor_strides, - gt_bboxes_ignore=gt_bboxes_ignore, - gt_labels=None, - allowed_border=self.train_cfg.allowed_border) - flat_anchors = torch.cat(anchors) - sampling_result = self.sampler.sample(assign_result, flat_anchors, - gt_bboxes) - - num_anchors = flat_anchors.shape[0] - bbox_targets = torch.zeros_like(flat_anchors) - bbox_weights = torch.zeros_like(flat_anchors) - labels = flat_anchors.new_zeros(num_anchors, dtype=torch.long) - label_weights = flat_anchors.new_zeros(num_anchors, dtype=torch.float) - - pos_inds = sampling_result.pos_inds - neg_inds = sampling_result.neg_inds - if len(pos_inds) > 0: - if not self.reg_decoded_bbox: - pos_bbox_targets = self.bbox_coder.encode( - sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes) - else: - pos_bbox_targets = sampling_result.pos_gt_bboxes - bbox_targets[pos_inds, :] = pos_bbox_targets - bbox_weights[pos_inds, :] = 1.0 - if gt_labels is None: - labels[pos_inds] = 1 - else: - labels[pos_inds] = gt_labels[ - sampling_result.pos_assigned_gt_inds] - if self.train_cfg.pos_weight <= 0: - label_weights[pos_inds] = 1.0 - else: - label_weights[pos_inds] = self.train_cfg.pos_weight - if len(neg_inds) > 0: - label_weights[neg_inds] = 1.0 - - return (labels, label_weights, bbox_targets, bbox_weights, pos_inds, - neg_inds) - - def region_targets(self, - anchor_list, - valid_flag_list, - gt_bboxes_list, - img_metas, - featmap_sizes, - gt_bboxes_ignore_list=None, - gt_labels_list=None, - label_channels=1, - unmap_outputs=True): - """See :func:`StageCascadeRPNHead.get_targets`.""" - num_imgs = len(img_metas) - assert len(anchor_list) == len(valid_flag_list) == num_imgs - - # anchor number of multi levels - num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] - - # compute targets for each image - if gt_bboxes_ignore_list is None: - gt_bboxes_ignore_list = [None for _ in range(num_imgs)] - if gt_labels_list is None: - gt_labels_list = [None for _ in range(num_imgs)] - (all_labels, all_label_weights, all_bbox_targets, all_bbox_weights, - pos_inds_list, neg_inds_list) = multi_apply( - self._region_targets_single, - anchor_list, - valid_flag_list, - gt_bboxes_list, - gt_bboxes_ignore_list, - gt_labels_list, - img_metas, - featmap_sizes=featmap_sizes, - label_channels=label_channels) - # no valid anchors - if any([labels is None for labels in all_labels]): - return None - # sampled anchors of all images - num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list]) - num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list]) - # split targets to a list w.r.t. multiple levels - labels_list = images_to_levels(all_labels, num_level_anchors) - label_weights_list = images_to_levels(all_label_weights, - num_level_anchors) - bbox_targets_list = images_to_levels(all_bbox_targets, - num_level_anchors) - bbox_weights_list = images_to_levels(all_bbox_weights, - num_level_anchors) - return (labels_list, label_weights_list, bbox_targets_list, - bbox_weights_list, num_total_pos, num_total_neg) - - def get_targets(self, - anchor_list, - valid_flag_list, - gt_bboxes, - img_metas, - featmap_sizes, - gt_bboxes_ignore=None, - label_channels=1): - """Compute regression and classification targets for anchors. - - Args: - anchor_list (list[list]): Multi level anchors of each image. - valid_flag_list (list[list]): Multi level valid flags of each - image. - gt_bboxes (list[Tensor]): Ground truth bboxes of each image. - img_metas (list[dict]): Meta info of each image. - featmap_sizes (list[Tensor]): Feature mapsize each level - gt_bboxes_ignore (list[Tensor]): Ignore bboxes of each images - label_channels (int): Channel of label. - - Returns: - cls_reg_targets (tuple) - """ - if isinstance(self.assigner, RegionAssigner): - cls_reg_targets = self.region_targets( - anchor_list, - valid_flag_list, - gt_bboxes, - img_metas, - featmap_sizes, - gt_bboxes_ignore_list=gt_bboxes_ignore, - label_channels=label_channels) - else: - cls_reg_targets = super(StageCascadeRPNHead, self).get_targets( - anchor_list, - valid_flag_list, - gt_bboxes, - img_metas, - gt_bboxes_ignore_list=gt_bboxes_ignore, - label_channels=label_channels) - return cls_reg_targets - - def anchor_offset(self, anchor_list, anchor_strides, featmap_sizes): - """ Get offest for deformable conv based on anchor shape - NOTE: currently support deformable kernel_size=3 and dilation=1 - - Args: - anchor_list (list[list[tensor])): [NI, NLVL, NA, 4] list of - multi-level anchors - anchor_strides (list[int]): anchor stride of each level - - Returns: - offset_list (list[tensor]): [NLVL, NA, 2, 18]: offset of DeformConv - kernel. - """ - - def _shape_offset(anchors, stride, ks=3, dilation=1): - # currently support kernel_size=3 and dilation=1 - assert ks == 3 and dilation == 1 - pad = (ks - 1) // 2 - idx = torch.arange(-pad, pad + 1, dtype=dtype, device=device) - yy, xx = torch.meshgrid(idx, idx) # return order matters - xx = xx.reshape(-1) - yy = yy.reshape(-1) - w = (anchors[:, 2] - anchors[:, 0]) / stride - h = (anchors[:, 3] - anchors[:, 1]) / stride - w = w / (ks - 1) - dilation - h = h / (ks - 1) - dilation - offset_x = w[:, None] * xx # (NA, ks**2) - offset_y = h[:, None] * yy # (NA, ks**2) - return offset_x, offset_y - - def _ctr_offset(anchors, stride, featmap_size): - feat_h, feat_w = featmap_size - assert len(anchors) == feat_h * feat_w - - x = (anchors[:, 0] + anchors[:, 2]) * 0.5 - y = (anchors[:, 1] + anchors[:, 3]) * 0.5 - # compute centers on feature map - x = x / stride - y = y / stride - # compute predefine centers - xx = torch.arange(0, feat_w, device=anchors.device) - yy = torch.arange(0, feat_h, device=anchors.device) - yy, xx = torch.meshgrid(yy, xx) - xx = xx.reshape(-1).type_as(x) - yy = yy.reshape(-1).type_as(y) - - offset_x = x - xx # (NA, ) - offset_y = y - yy # (NA, ) - return offset_x, offset_y - - num_imgs = len(anchor_list) - num_lvls = len(anchor_list[0]) - dtype = anchor_list[0][0].dtype - device = anchor_list[0][0].device - num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] - - offset_list = [] - for i in range(num_imgs): - mlvl_offset = [] - for lvl in range(num_lvls): - c_offset_x, c_offset_y = _ctr_offset(anchor_list[i][lvl], - anchor_strides[lvl], - featmap_sizes[lvl]) - s_offset_x, s_offset_y = _shape_offset(anchor_list[i][lvl], - anchor_strides[lvl]) - - # offset = ctr_offset + shape_offset - offset_x = s_offset_x + c_offset_x[:, None] - offset_y = s_offset_y + c_offset_y[:, None] - - # offset order (y0, x0, y1, x2, .., y8, x8, y9, x9) - offset = torch.stack([offset_y, offset_x], dim=-1) - offset = offset.reshape(offset.size(0), -1) # [NA, 2*ks**2] - mlvl_offset.append(offset) - offset_list.append(torch.cat(mlvl_offset)) # [totalNA, 2*ks**2] - offset_list = images_to_levels(offset_list, num_level_anchors) - return offset_list - - def loss_single(self, cls_score, bbox_pred, anchors, labels, label_weights, - bbox_targets, bbox_weights, num_total_samples): - """Loss function on single scale.""" - # classification loss - if self.with_cls: - labels = labels.reshape(-1) - label_weights = label_weights.reshape(-1) - cls_score = cls_score.permute(0, 2, 3, - 1).reshape(-1, self.cls_out_channels) - loss_cls = self.loss_cls( - cls_score, labels, label_weights, avg_factor=num_total_samples) - # regression loss - bbox_targets = bbox_targets.reshape(-1, 4) - bbox_weights = bbox_weights.reshape(-1, 4) - bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) - if self.reg_decoded_bbox: - # When the regression loss (e.g. `IouLoss`, `GIouLoss`) - # is applied directly on the decoded bounding boxes, it - # decodes the already encoded coordinates to absolute format. - anchors = anchors.reshape(-1, 4) - bbox_pred = self.bbox_coder.decode(anchors, bbox_pred) - loss_reg = self.loss_bbox( - bbox_pred, - bbox_targets, - bbox_weights, - avg_factor=num_total_samples) - if self.with_cls: - return loss_cls, loss_reg - return None, loss_reg - - def loss(self, - anchor_list, - valid_flag_list, - cls_scores, - bbox_preds, - gt_bboxes, - img_metas, - gt_bboxes_ignore=None): - """Compute losses of the head. - - Args: - anchor_list (list[list]): Multi level anchors of each image. - cls_scores (list[Tensor]): Box scores for each scale level - Has shape (N, num_anchors * num_classes, H, W) - bbox_preds (list[Tensor]): Box energies / deltas for each scale - level with shape (N, num_anchors * 4, H, W) - gt_bboxes (list[Tensor]): Ground truth bboxes for each image with - shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. - img_metas (list[dict]): Meta information of each image, e.g., - image size, scaling factor, etc. - gt_bboxes_ignore (None | list[Tensor]): specify which bounding - boxes can be ignored when computing the loss. Default: None - - Returns: - dict[str, Tensor]: A dictionary of loss components. - """ - featmap_sizes = [featmap.size()[-2:] for featmap in bbox_preds] - label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 - cls_reg_targets = self.get_targets( - anchor_list, - valid_flag_list, - gt_bboxes, - img_metas, - featmap_sizes, - gt_bboxes_ignore=gt_bboxes_ignore, - label_channels=label_channels) - if cls_reg_targets is None: - return None - (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, - num_total_pos, num_total_neg) = cls_reg_targets - if self.sampling: - num_total_samples = num_total_pos + num_total_neg - else: - # 200 is hard-coded average factor, - # which follows guided anchoring. - num_total_samples = sum([label.numel() - for label in labels_list]) / 200.0 - - # change per image, per level anchor_list to per_level, per_image - mlvl_anchor_list = list(zip(*anchor_list)) - # concat mlvl_anchor_list - mlvl_anchor_list = [ - torch.cat(anchors, dim=0) for anchors in mlvl_anchor_list - ] - - losses = multi_apply( - self.loss_single, - cls_scores, - bbox_preds, - mlvl_anchor_list, - labels_list, - label_weights_list, - bbox_targets_list, - bbox_weights_list, - num_total_samples=num_total_samples) - if self.with_cls: - return dict(loss_rpn_cls=losses[0], loss_rpn_reg=losses[1]) - return dict(loss_rpn_reg=losses[1]) - - def get_bboxes(self, - anchor_list, - cls_scores, - bbox_preds, - img_metas, - cfg, - rescale=False): - """Get proposal predict.""" - assert len(cls_scores) == len(bbox_preds) - num_levels = len(cls_scores) - - result_list = [] - for img_id in range(len(img_metas)): - cls_score_list = [ - cls_scores[i][img_id].detach() for i in range(num_levels) - ] - bbox_pred_list = [ - bbox_preds[i][img_id].detach() for i in range(num_levels) - ] - img_shape = img_metas[img_id]['img_shape'] - scale_factor = img_metas[img_id]['scale_factor'] - proposals = self._get_bboxes_single(cls_score_list, bbox_pred_list, - anchor_list[img_id], img_shape, - scale_factor, cfg, rescale) - result_list.append(proposals) - return result_list - - def refine_bboxes(self, anchor_list, bbox_preds, img_metas): - """Refine bboxes through stages.""" - num_levels = len(bbox_preds) - new_anchor_list = [] - for img_id in range(len(img_metas)): - mlvl_anchors = [] - for i in range(num_levels): - bbox_pred = bbox_preds[i][img_id].detach() - bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) - img_shape = img_metas[img_id]['img_shape'] - bboxes = self.bbox_coder.decode(anchor_list[img_id][i], - bbox_pred, img_shape) - mlvl_anchors.append(bboxes) - new_anchor_list.append(mlvl_anchors) - return new_anchor_list - - # TODO: temporary plan - def _get_bboxes_single(self, - cls_scores, - bbox_preds, - mlvl_anchors, - img_shape, - scale_factor, - cfg, - rescale=False): - """Transform outputs for a single batch item into bbox predictions. - - Args: - cls_scores (list[Tensor]): Box scores for each scale level - Has shape (num_anchors * num_classes, H, W). - bbox_preds (list[Tensor]): Box energies / deltas for each scale - level with shape (num_anchors * 4, H, W). - mlvl_anchors (list[Tensor]): Box reference for each scale level - with shape (num_total_anchors, 4). - img_shape (tuple[int]): Shape of the input image, - (height, width, 3). - scale_factor (ndarray): Scale factor of the image arange as - (w_scale, h_scale, w_scale, h_scale). - cfg (mmcv.Config): Test / postprocessing configuration, - if None, test_cfg would be used. - rescale (bool): If True, return boxes in original image space. - - Returns: - Tensor: Labeled boxes have the shape of (n,5), where the - first 4 columns are bounding box positions - (tl_x, tl_y, br_x, br_y) and the 5-th column is a score - between 0 and 1. - """ - cfg = self.test_cfg if cfg is None else cfg - cfg = copy.deepcopy(cfg) - # bboxes from different level should be independent during NMS, - # level_ids are used as labels for batched NMS to separate them - level_ids = [] - mlvl_scores = [] - mlvl_bbox_preds = [] - mlvl_valid_anchors = [] - for idx in range(len(cls_scores)): - rpn_cls_score = cls_scores[idx] - rpn_bbox_pred = bbox_preds[idx] - assert rpn_cls_score.size()[-2:] == rpn_bbox_pred.size()[-2:] - rpn_cls_score = rpn_cls_score.permute(1, 2, 0) - if self.use_sigmoid_cls: - rpn_cls_score = rpn_cls_score.reshape(-1) - scores = rpn_cls_score.sigmoid() - else: - rpn_cls_score = rpn_cls_score.reshape(-1, 2) - # We set FG labels to [0, num_class-1] and BG label to - # num_class in RPN head since mmdet v2.5, which is unified to - # be consistent with other head since mmdet v2.0. In mmdet v2.0 - # to v2.4 we keep BG label as 0 and FG label as 1 in rpn head. - scores = rpn_cls_score.softmax(dim=1)[:, 0] - rpn_bbox_pred = rpn_bbox_pred.permute(1, 2, 0).reshape(-1, 4) - anchors = mlvl_anchors[idx] - if cfg.nms_pre > 0 and scores.shape[0] > cfg.nms_pre: - # sort is faster than topk - # _, topk_inds = scores.topk(cfg.nms_pre) - if torch.onnx.is_in_onnx_export(): - # sort op will be converted to TopK in onnx - # and k<=3480 in TensorRT - _, topk_inds = scores.topk(cfg.nms_pre) - scores = scores[topk_inds] - else: - ranked_scores, rank_inds = scores.sort(descending=True) - topk_inds = rank_inds[:cfg.nms_pre] - scores = ranked_scores[:cfg.nms_pre] - rpn_bbox_pred = rpn_bbox_pred[topk_inds, :] - anchors = anchors[topk_inds, :] - mlvl_scores.append(scores) - mlvl_bbox_preds.append(rpn_bbox_pred) - mlvl_valid_anchors.append(anchors) - level_ids.append( - scores.new_full((scores.size(0), ), idx, dtype=torch.long)) - - scores = torch.cat(mlvl_scores) - anchors = torch.cat(mlvl_valid_anchors) - rpn_bbox_pred = torch.cat(mlvl_bbox_preds) - proposals = self.bbox_coder.decode( - anchors, rpn_bbox_pred, max_shape=img_shape) - ids = torch.cat(level_ids) - - # Skip nonzero op while exporting to ONNX - if cfg.min_bbox_size > 0 and (not torch.onnx.is_in_onnx_export()): - w = proposals[:, 2] - proposals[:, 0] - h = proposals[:, 3] - proposals[:, 1] - valid_inds = torch.nonzero( - (w >= cfg.min_bbox_size) - & (h >= cfg.min_bbox_size), - as_tuple=False).squeeze() - if valid_inds.sum().item() != len(proposals): - proposals = proposals[valid_inds, :] - scores = scores[valid_inds] - ids = ids[valid_inds] - - # deprecate arguments warning - if 'nms' not in cfg or 'max_num' in cfg or 'nms_thr' in cfg: - warnings.warn( - 'In rpn_proposal or test_cfg, ' - 'nms_thr has been moved to a dict named nms as ' - 'iou_threshold, max_num has been renamed as max_per_img, ' - 'name of original arguments and the way to specify ' - 'iou_threshold of NMS will be deprecated.') - if 'nms' not in cfg: - cfg.nms = ConfigDict(dict(type='nms', iou_threshold=cfg.nms_thr)) - if 'max_num' in cfg: - if 'max_per_img' in cfg: - assert cfg.max_num == cfg.max_per_img, f'You ' \ - f'set max_num and ' \ - f'max_per_img at the same time, but get {cfg.max_num} ' \ - f'and {cfg.max_per_img} respectively' \ - 'Please delete max_num which will be deprecated.' - else: - cfg.max_per_img = cfg.max_num - if 'nms_thr' in cfg: - assert cfg.nms.iou_threshold == cfg.nms_thr, f'You set' \ - f' iou_threshold in nms and ' \ - f'nms_thr at the same time, but get' \ - f' {cfg.nms.iou_threshold} and {cfg.nms_thr}' \ - f' respectively. Please delete the nms_thr ' \ - f'which will be deprecated.' - - dets, keep = batched_nms(proposals, scores, ids, cfg.nms) - return dets[:cfg.max_per_img] - - -@HEADS.register_module() -class CascadeRPNHead(BaseDenseHead): - """The CascadeRPNHead will predict more accurate region proposals, which is - required for two-stage detectors (such as Fast/Faster R-CNN). CascadeRPN - consists of a sequence of RPNStage to progressively improve the accuracy of - the detected proposals. - - More details can be found in ``https://arxiv.org/abs/1909.06720``. - - Args: - num_stages (int): number of CascadeRPN stages. - stages (list[dict]): list of configs to build the stages. - train_cfg (list[dict]): list of configs at training time each stage. - test_cfg (dict): config at testing time. - """ - - def __init__(self, num_stages, stages, train_cfg, test_cfg): - super(CascadeRPNHead, self).__init__() - assert num_stages == len(stages) - self.num_stages = num_stages - self.stages = nn.ModuleList() - for i in range(len(stages)): - train_cfg_i = train_cfg[i] if train_cfg is not None else None - stages[i].update(train_cfg=train_cfg_i) - stages[i].update(test_cfg=test_cfg) - self.stages.append(build_head(stages[i])) - self.train_cfg = train_cfg - self.test_cfg = test_cfg - - def init_weights(self): - """Init weight of CascadeRPN.""" - for i in range(self.num_stages): - self.stages[i].init_weights() - - def loss(self): - """loss() is implemented in StageCascadeRPNHead.""" - pass - - def get_bboxes(self): - """get_bboxes() is implemented in StageCascadeRPNHead.""" - pass - - def forward_train(self, - x, - img_metas, - gt_bboxes, - gt_labels=None, - gt_bboxes_ignore=None, - proposal_cfg=None): - """Forward train function.""" - assert gt_labels is None, 'RPN does not require gt_labels' - - featmap_sizes = [featmap.size()[-2:] for featmap in x] - device = x[0].device - anchor_list, valid_flag_list = self.stages[0].get_anchors( - featmap_sizes, img_metas, device=device) - - losses = dict() - - for i in range(self.num_stages): - stage = self.stages[i] - - if stage.adapt_cfg['type'] == 'offset': - offset_list = stage.anchor_offset(anchor_list, - stage.anchor_strides, - featmap_sizes) - else: - offset_list = None - x, cls_score, bbox_pred = stage(x, offset_list) - rpn_loss_inputs = (anchor_list, valid_flag_list, cls_score, - bbox_pred, gt_bboxes, img_metas) - stage_loss = stage.loss(*rpn_loss_inputs) - for name, value in stage_loss.items(): - losses['s{}.{}'.format(i, name)] = value - - # refine boxes - if i < self.num_stages - 1: - anchor_list = stage.refine_bboxes(anchor_list, bbox_pred, - img_metas) - if proposal_cfg is None: - return losses - else: - proposal_list = self.stages[-1].get_bboxes(anchor_list, cls_score, - bbox_pred, img_metas, - self.test_cfg) - return losses, proposal_list - - def simple_test_rpn(self, x, img_metas): - """Simple forward test function.""" - featmap_sizes = [featmap.size()[-2:] for featmap in x] - device = x[0].device - anchor_list, _ = self.stages[0].get_anchors( - featmap_sizes, img_metas, device=device) - - for i in range(self.num_stages): - stage = self.stages[i] - if stage.adapt_cfg['type'] == 'offset': - offset_list = stage.anchor_offset(anchor_list, - stage.anchor_strides, - featmap_sizes) - else: - offset_list = None - x, cls_score, bbox_pred = stage(x, offset_list) - if i < self.num_stages - 1: - anchor_list = stage.refine_bboxes(anchor_list, bbox_pred, - img_metas) - - proposal_list = self.stages[-1].get_bboxes(anchor_list, cls_score, - bbox_pred, img_metas, - self.test_cfg) - return proposal_list - - def aug_test_rpn(self, x, img_metas): - """Augmented forward test function.""" - raise NotImplementedError diff --git a/spaces/Robert001/UniControl-Demo/annotator/uniformer/mmseg/models/segmentors/encoder_decoder.py b/spaces/Robert001/UniControl-Demo/annotator/uniformer/mmseg/models/segmentors/encoder_decoder.py deleted file mode 100644 index 98392ac04c4c44a7f4e7b1c0808266875877dd1f..0000000000000000000000000000000000000000 --- a/spaces/Robert001/UniControl-Demo/annotator/uniformer/mmseg/models/segmentors/encoder_decoder.py +++ /dev/null @@ -1,298 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F - -from annotator.uniformer.mmseg.core import add_prefix -from annotator.uniformer.mmseg.ops import resize -from .. import builder -from ..builder import SEGMENTORS -from .base import BaseSegmentor - - -@SEGMENTORS.register_module() -class EncoderDecoder(BaseSegmentor): - """Encoder Decoder segmentors. - - EncoderDecoder typically consists of backbone, decode_head, auxiliary_head. - Note that auxiliary_head is only used for deep supervision during training, - which could be dumped during inference. - """ - - def __init__(self, - backbone, - decode_head, - neck=None, - auxiliary_head=None, - train_cfg=None, - test_cfg=None, - pretrained=None): - super(EncoderDecoder, self).__init__() - self.backbone = builder.build_backbone(backbone) - if neck is not None: - self.neck = builder.build_neck(neck) - self._init_decode_head(decode_head) - self._init_auxiliary_head(auxiliary_head) - - self.train_cfg = train_cfg - self.test_cfg = test_cfg - - self.init_weights(pretrained=pretrained) - - assert self.with_decode_head - - def _init_decode_head(self, decode_head): - """Initialize ``decode_head``""" - self.decode_head = builder.build_head(decode_head) - self.align_corners = self.decode_head.align_corners - self.num_classes = self.decode_head.num_classes - - def _init_auxiliary_head(self, auxiliary_head): - """Initialize ``auxiliary_head``""" - if auxiliary_head is not None: - if isinstance(auxiliary_head, list): - self.auxiliary_head = nn.ModuleList() - for head_cfg in auxiliary_head: - self.auxiliary_head.append(builder.build_head(head_cfg)) - else: - self.auxiliary_head = builder.build_head(auxiliary_head) - - def init_weights(self, pretrained=None): - """Initialize the weights in backbone and heads. - - Args: - pretrained (str, optional): Path to pre-trained weights. - Defaults to None. - """ - - super(EncoderDecoder, self).init_weights(pretrained) - self.backbone.init_weights(pretrained=pretrained) - self.decode_head.init_weights() - if self.with_auxiliary_head: - if isinstance(self.auxiliary_head, nn.ModuleList): - for aux_head in self.auxiliary_head: - aux_head.init_weights() - else: - self.auxiliary_head.init_weights() - - def extract_feat(self, img): - """Extract features from images.""" - x = self.backbone(img) - if self.with_neck: - x = self.neck(x) - return x - - def encode_decode(self, img, img_metas): - """Encode images with backbone and decode into a semantic segmentation - map of the same size as input.""" - x = self.extract_feat(img) - out = self._decode_head_forward_test(x, img_metas) - out = resize( - input=out, - size=img.shape[2:], - mode='bilinear', - align_corners=self.align_corners) - return out - - def _decode_head_forward_train(self, x, img_metas, gt_semantic_seg): - """Run forward function and calculate loss for decode head in - training.""" - losses = dict() - loss_decode = self.decode_head.forward_train(x, img_metas, - gt_semantic_seg, - self.train_cfg) - - losses.update(add_prefix(loss_decode, 'decode')) - return losses - - def _decode_head_forward_test(self, x, img_metas): - """Run forward function and calculate loss for decode head in - inference.""" - seg_logits = self.decode_head.forward_test(x, img_metas, self.test_cfg) - return seg_logits - - def _auxiliary_head_forward_train(self, x, img_metas, gt_semantic_seg): - """Run forward function and calculate loss for auxiliary head in - training.""" - losses = dict() - if isinstance(self.auxiliary_head, nn.ModuleList): - for idx, aux_head in enumerate(self.auxiliary_head): - loss_aux = aux_head.forward_train(x, img_metas, - gt_semantic_seg, - self.train_cfg) - losses.update(add_prefix(loss_aux, f'aux_{idx}')) - else: - loss_aux = self.auxiliary_head.forward_train( - x, img_metas, gt_semantic_seg, self.train_cfg) - losses.update(add_prefix(loss_aux, 'aux')) - - return losses - - def forward_dummy(self, img): - """Dummy forward function.""" - seg_logit = self.encode_decode(img, None) - - return seg_logit - - def forward_train(self, img, img_metas, gt_semantic_seg): - """Forward function for training. - - Args: - img (Tensor): Input images. - img_metas (list[dict]): List of image info dict where each dict - has: 'img_shape', 'scale_factor', 'flip', and may also contain - 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. - For details on the values of these keys see - `mmseg/datasets/pipelines/formatting.py:Collect`. - gt_semantic_seg (Tensor): Semantic segmentation masks - used if the architecture supports semantic segmentation task. - - Returns: - dict[str, Tensor]: a dictionary of loss components - """ - - x = self.extract_feat(img) - - losses = dict() - - loss_decode = self._decode_head_forward_train(x, img_metas, - gt_semantic_seg) - losses.update(loss_decode) - - if self.with_auxiliary_head: - loss_aux = self._auxiliary_head_forward_train( - x, img_metas, gt_semantic_seg) - losses.update(loss_aux) - - return losses - - # TODO refactor - def slide_inference(self, img, img_meta, rescale): - """Inference by sliding-window with overlap. - - If h_crop > h_img or w_crop > w_img, the small patch will be used to - decode without padding. - """ - - h_stride, w_stride = self.test_cfg.stride - h_crop, w_crop = self.test_cfg.crop_size - batch_size, _, h_img, w_img = img.size() - num_classes = self.num_classes - h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1 - w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1 - preds = img.new_zeros((batch_size, num_classes, h_img, w_img)) - count_mat = img.new_zeros((batch_size, 1, h_img, w_img)) - for h_idx in range(h_grids): - for w_idx in range(w_grids): - y1 = h_idx * h_stride - x1 = w_idx * w_stride - y2 = min(y1 + h_crop, h_img) - x2 = min(x1 + w_crop, w_img) - y1 = max(y2 - h_crop, 0) - x1 = max(x2 - w_crop, 0) - crop_img = img[:, :, y1:y2, x1:x2] - crop_seg_logit = self.encode_decode(crop_img, img_meta) - preds += F.pad(crop_seg_logit, - (int(x1), int(preds.shape[3] - x2), int(y1), - int(preds.shape[2] - y2))) - - count_mat[:, :, y1:y2, x1:x2] += 1 - assert (count_mat == 0).sum() == 0 - if torch.onnx.is_in_onnx_export(): - # cast count_mat to constant while exporting to ONNX - count_mat = torch.from_numpy( - count_mat.cpu().detach().numpy()).to(device=img.device) - preds = preds / count_mat - if rescale: - preds = resize( - preds, - size=img_meta[0]['ori_shape'][:2], - mode='bilinear', - align_corners=self.align_corners, - warning=False) - return preds - - def whole_inference(self, img, img_meta, rescale): - """Inference with full image.""" - - seg_logit = self.encode_decode(img, img_meta) - if rescale: - # support dynamic shape for onnx - if torch.onnx.is_in_onnx_export(): - size = img.shape[2:] - else: - size = img_meta[0]['ori_shape'][:2] - seg_logit = resize( - seg_logit, - size=size, - mode='bilinear', - align_corners=self.align_corners, - warning=False) - - return seg_logit - - def inference(self, img, img_meta, rescale): - """Inference with slide/whole style. - - Args: - img (Tensor): The input image of shape (N, 3, H, W). - img_meta (dict): Image info dict where each dict has: 'img_shape', - 'scale_factor', 'flip', and may also contain - 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. - For details on the values of these keys see - `mmseg/datasets/pipelines/formatting.py:Collect`. - rescale (bool): Whether rescale back to original shape. - - Returns: - Tensor: The output segmentation map. - """ - - assert self.test_cfg.mode in ['slide', 'whole'] - ori_shape = img_meta[0]['ori_shape'] - assert all(_['ori_shape'] == ori_shape for _ in img_meta) - if self.test_cfg.mode == 'slide': - seg_logit = self.slide_inference(img, img_meta, rescale) - else: - seg_logit = self.whole_inference(img, img_meta, rescale) - output = F.softmax(seg_logit, dim=1) - flip = img_meta[0]['flip'] - if flip: - flip_direction = img_meta[0]['flip_direction'] - assert flip_direction in ['horizontal', 'vertical'] - if flip_direction == 'horizontal': - output = output.flip(dims=(3, )) - elif flip_direction == 'vertical': - output = output.flip(dims=(2, )) - - return output - - def simple_test(self, img, img_meta, rescale=True): - """Simple test with single image.""" - seg_logit = self.inference(img, img_meta, rescale) - seg_pred = seg_logit.argmax(dim=1) - if torch.onnx.is_in_onnx_export(): - # our inference backend only support 4D output - seg_pred = seg_pred.unsqueeze(0) - return seg_pred - seg_pred = seg_pred.cpu().numpy() - # unravel batch dim - seg_pred = list(seg_pred) - return seg_pred - - def aug_test(self, imgs, img_metas, rescale=True): - """Test with augmentations. - - Only rescale=True is supported. - """ - # aug_test rescale all imgs back to ori_shape for now - assert rescale - # to save memory, we get augmented seg logit inplace - seg_logit = self.inference(imgs[0], img_metas[0], rescale) - for i in range(1, len(imgs)): - cur_seg_logit = self.inference(imgs[i], img_metas[i], rescale) - seg_logit += cur_seg_logit - seg_logit /= len(imgs) - seg_pred = seg_logit.argmax(dim=1) - seg_pred = seg_pred.cpu().numpy() - # unravel batch dim - seg_pred = list(seg_pred) - return seg_pred diff --git a/spaces/Rothfeld/stable-diffusion-mat-outpainting-primer/app.py b/spaces/Rothfeld/stable-diffusion-mat-outpainting-primer/app.py deleted file mode 100644 index f5429c8d026226e433f356a1676e102cce57ba57..0000000000000000000000000000000000000000 --- a/spaces/Rothfeld/stable-diffusion-mat-outpainting-primer/app.py +++ /dev/null @@ -1,428 +0,0 @@ -# %% - -# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. -# -# NVIDIA CORPORATION and its licensors retain all intellectual property -# and proprietary rights in and to this software, related documentation -# and any modifications thereto. Any use, reproduction, disclosure or -# distribution of this software and related documentation without an express -# license agreement from NVIDIA CORPORATION is strictly prohibited. - -from networks.mat import Generator -import gradio as gr -import gradio.components as gc -import base64 -import glob -import os -import random -import re -from http import HTTPStatus -from io import BytesIO -from typing import Dict, List, NamedTuple, Optional, Tuple - -import click -import cv2 -import numpy as np -import PIL.Image -import torch -import torch.nn.functional as F -from PIL import Image, ImageDraw, ImageOps -from pydantic import BaseModel - -import dnnlib -import legacy - - -pyspng = None - - -def num_range(s: str) -> List[int]: - '''Accept either a comma separated list of numbers 'a,b,c' or a range 'a-c' and return as a list of ints.''' - - range_re = re.compile(r'^(\d+)-(\d+)$') - m = range_re.match(s) - if m: - return list(range(int(m.group(1)), int(m.group(2))+1)) - vals = s.split(',') - return [int(x) for x in vals] - - -def copy_params_and_buffers(src_module, dst_module, require_all=False): - assert isinstance(src_module, torch.nn.Module) - assert isinstance(dst_module, torch.nn.Module) - src_tensors = {name: tensor for name, - tensor in named_params_and_buffers(src_module)} - for name, tensor in named_params_and_buffers(dst_module): - assert (name in src_tensors) or (not require_all) - if name in src_tensors: - tensor.copy_(src_tensors[name].detach()).requires_grad_( - tensor.requires_grad) - - -def params_and_buffers(module): - assert isinstance(module, torch.nn.Module) - return list(module.parameters()) + list(module.buffers()) - - -def named_params_and_buffers(module): - assert isinstance(module, torch.nn.Module) - return list(module.named_parameters()) + list(module.named_buffers()) - - -class Inpainter: - def __init__(self, - network_pkl, - resolution=512, - truncation_psi=1, - noise_mode='const', - sdevice='cpu' - ): - self.resolution = resolution - self.truncation_psi = truncation_psi - self.noise_mode = noise_mode - print(f'Loading networks from: {network_pkl}') - self.device = torch.device(sdevice) - with dnnlib.util.open_url(network_pkl) as f: - G_saved = ( - legacy.load_network_pkl(f) - ['G_ema'] - .to(self.device) - .eval() - .requires_grad_(False)) # type: ignore - net_res = 512 if resolution > 512 else resolution - self.G = ( - Generator( - z_dim=512, - c_dim=0, - w_dim=512, - img_resolution=net_res, - img_channels=3 - ) - .to(self.device) - .eval() - .requires_grad_(False) - ) - copy_params_and_buffers(G_saved, self.G, require_all=True) - - def generate_images2( - self, - dpath: List[PIL.Image.Image], - mpath: List[Optional[PIL.Image.Image]], - seed: int = 42, - ): - """ - Generate images using pretrained network pickle. - """ - resolution = self.resolution - truncation_psi = self.truncation_psi - noise_mode = self.noise_mode - # seed = 240 # pick up a random number - - def seed_all(seed): - random.seed(seed) - np.random.seed(seed) - torch.manual_seed(seed) - torch.cuda.manual_seed(seed) - if seed is not None: - seed_all(seed) - - # no Labels. - label = torch.zeros([1, self.G.c_dim], device=self.device) - - def read_image(image): - image = np.array(image) - if image.ndim == 2: - image = image[:, :, np.newaxis] # HW => HWC - image = np.repeat(image, 3, axis=2) - image = image.transpose(2, 0, 1) # HWC => CHW - image = image[:3] - return image - if resolution != 512: - noise_mode = 'random' - results = [] - with torch.no_grad(): - for i, (ipath, m) in enumerate(zip(dpath, mpath)): - if seed is None: - seed_all(i) - - image = read_image(ipath) - image = (torch.from_numpy(image).float().to( - self. device) / 127.5 - 1).unsqueeze(0) - - mask = np.array(m).astype(np.float32) / 255.0 - mask = torch.from_numpy(mask).float().to( - self. device).unsqueeze(0).unsqueeze(0) - - z = torch.from_numpy(np.random.randn( - 1, self.G.z_dim)).to(self.device) - output = self.G(image, mask, z, label, - truncation_psi=truncation_psi, noise_mode=noise_mode) - output = (output.permute(0, 2, 3, 1) * 127.5 + - 127.5).round().clamp(0, 255).to(torch.uint8) - output = output[0].cpu().numpy() - results.append(PIL.Image.fromarray(output, 'RGB')) - - return results - - -# if __name__ == "__main__": -# generate_images() # pylint: disable=no-value-for-parameter - -# ---------------------------------------------------------------------------- -def mask_to_alpha(img, mask): - img = img.copy() - img.putalpha(mask) - return img - - -def blend(src, target, mask): - mask = np.expand_dims(mask, axis=-1) - result = (1-mask) * src + mask * target - return Image.fromarray(result.astype(np.uint8)) - - -def pad(img, size=(128, 128), tosize=(512, 512), border=1): - if isinstance(size, float): - size = (int(img.size[0] * size), int(img.size[1] * size)) - # remove border - w, h = tosize - - new_img = Image.new('RGBA', (w, h)) - - rimg = img.resize(size, resample=Image.Resampling.NEAREST) - rimg = ImageOps.crop(rimg, border=border) - tw, th = size - tw, th = tw - border*2, th - border*2 - tc = ((w-tw)//2, (h-th)//2) - - new_img.paste(rimg, tc) - mask = Image.new('L', (w, h)) - white = Image.new('L', (tw, th), 255) - mask.paste(white, tc) - - if 'A' in rimg.getbands(): - mask.paste(rimg.getchannel('A'), tc) - return new_img, mask - - -def b64_to_img(b64): - return Image.open(BytesIO(base64.b64decode(b64))) - - -def img_to_b64(img): - with BytesIO() as f: - img.save(f, format='PNG') - return base64.b64encode(f.getvalue()).decode('utf-8') - - -class Predictor: - def __init__(self): - """Load the model into memory to make running multiple predictions efficient""" - self.models = { - "places2": Inpainter( - network_pkl='models/Places_512_FullData.pkl', - resolution=512, - truncation_psi=1., - noise_mode='const', - ), - "places2+laion300k": Inpainter( - network_pkl='models/Places_512_FullData+LAION300k.pkl', - resolution=512, - truncation_psi=1., - noise_mode='const', - ), - "places2+laion300k+laion300k(opmasked)": Inpainter( - network_pkl='models/Places_512_FullData+LAION300k+OPM300k.pkl', - resolution=512, - truncation_psi=1., - noise_mode='const', - ), - "places2+laion300k+laion1200k(opmasked)": Inpainter( - network_pkl='models/Places_512_FullData+LAION300k+OPM1200k.pkl', - resolution=512, - truncation_psi=1., - noise_mode='const', - ), - - } - - # The arguments and types the model takes as input - - def predict( - self, - img: Image.Image, - tosize=(512, 512), - border=5, - seed=42, - size=0.5, - model='places2', - ) -> Image: - i, m = pad( - img, - size=size, # (328, 328), - tosize=tosize, - border=border - ) - """Run a single prediction on the model""" - imgs = self.models[model].generate_images2( - dpath=[i.resize((512, 512), resample=Image.Resampling.NEAREST)], - mpath=[m.resize((512, 512), resample=Image.Resampling.NEAREST)], - seed=seed, - ) - img_op_raw = imgs[0].convert('RGBA') - img_op_raw = img_op_raw.resize( - tosize, resample=Image.Resampling.NEAREST) - inpainted = img_op_raw.copy() - - # paste original image to remove inpainting/scaling artifacts - inpainted = blend( - i, - inpainted, - 1-(np.array(m) / 255) - ) - minpainted = mask_to_alpha(inpainted, m) - return inpainted, minpainted, ImageOps.invert(m) - - def predict_tiled( - self, - img: Image.Image, - tosize=(512, 512), - border=5, - seed=42, - size=0.5, - model='places2', - ) -> Image: - - i, morig = pad( - img, - size=size, # (328, 328), - tosize=tosize, - border=border - ) - i.putalpha(morig) - img = i - # img.save('0.png') - assert img.width == img.height - assert img.width > 512 and img.width <= 512*2 - - def tile_coords(image, n=2, tile_size=512): - assert image.width == image.height - offsets = np.linspace(0, image.width - tile_size, n).astype(int) - for i in range(n): - for j in range(n): - left = offsets[j] - upper = offsets[i] - right = left + tile_size - lower = upper + tile_size - # tile = image.crop((left, upper, right, lower)) - yield [left, upper, right, lower] - - for ix, tc in enumerate(tile_coords(img, n=2)): - i = img.crop(tc) - # i.save(f't{ix}.png') - m = i.getchannel('A') - - """Run a single prediction on the model""" - imgs = self.models[model].generate_images2( - dpath=[i.resize((512, 512), resample=Image.Resampling.NEAREST)], - mpath=[m.resize((512, 512), resample=Image.Resampling.NEAREST)], - seed=seed, - ) - img_op_raw = imgs[0].convert('RGBA') - # img_op_raw = img_op_raw.resize(tosize, resample=Image.Resampling.NEAREST) - inpainted = img_op_raw.copy() - - # paste original image to remove inpainting/scaling artifacts - inpainted = blend( - i, - inpainted, - 1-(np.array(m) / 255) - ) - # inpainted.save(f't{ix}_op.png') - minpainted = mask_to_alpha(inpainted, m) - # continue with partially inpainted image - # since the tiles overlap, the next tile will contain (possibly inpainted) parts of the previous tile - img.paste(inpainted, tc) - - # restore original alpha channel - img.putalpha(morig) - return img.convert('RGB'), img, ImageOps.invert(img.getchannel('A')) -predictor = Predictor() - -# %% - - -def _outpaint(img, tosize, border, seed, size, model, tiled): - if tiled: - img_op = predictor.predict_tiled( - img, - border=border, - seed=seed, - tosize=(tosize, tosize), - size=float(size), - model=model, - ) - else: - img_op = predictor.predict( - img, - border=border, - seed=seed, - tosize=(tosize, tosize), - size=float(size), - model=model, - ) - return img_op -# %% - - -with gr.Blocks() as demo: - maturl = 'https://github.com/fenglinglwb/MAT' - gr.Markdown(f''' - # MAT Primer for Stable Diffusion - ## based on MAT: Mask-Aware Transformer for Large Hole Image Inpainting - ### create a primer for use in stable diffusion outpainting - - i have added 2 example scripts to the repo: - - outpainting_example1.py using the inpainting pipeline - - outpainting_example2.py using the img2img pipeline. this is basically what i used for the examples below - ''') - - gr.HTML(f'''{maturl}''') - with gr.Box(): - with gr.Row(): - gr.Markdown(f"""example with strength 0.5""") - with gr.Row(): - gr.HTML(" ") - gr.HTML("") - gr.HTML("") - btn = gr.Button("Run", variant="primary") - with gr.Row(): - with gr.Column(): - searchimage = gc.Image(label="image", type='pil', image_mode='RGBA') - to_size = gc.Slider(1, 1920, 512, step=1, label='output size') - border = gc.Slider(1, 50, 0, step=1, label='border to crop from the image before outpainting') - seed = gc.Slider(1, 65536, 10, step=1, label='seed') - size = gc.Slider(0, 1, .5, step=0.01,label='scale of the image before outpainting') - tiled = gc.Checkbox(label='tiled: run the network with 4 tiles of size 512x512 . only usable if output size >512 and <=1024', value=False) - - model = gc.Dropdown( - choices=['places2', - 'places2+laion300k', - 'places2+laion300k+laion300k(opmasked)', - 'places2+laion300k+laion1200k(opmasked)'], - value='places2+laion300k+laion1200k(opmasked)', - label='model', - ) - with gr.Column(): - outwithoutalpha = gc.Image(label="primed image without alpha channel", type='pil', image_mode='RGBA') - mask = gc.Image(label="outpainting mask", type='pil') - out = gc.Image(label="primed image with alpha channel",type='pil', image_mode='RGBA') - - btn.click( - fn=_outpaint, - inputs=[searchimage, to_size, border, seed, size, model,tiled], - outputs=[outwithoutalpha, out, mask]) - - -# %% launch -demo.launch() diff --git a/spaces/Rothfeld/stable-diffusion-mat-outpainting-primer/torch_utils/custom_ops.py b/spaces/Rothfeld/stable-diffusion-mat-outpainting-primer/torch_utils/custom_ops.py deleted file mode 100644 index 4cc4e43fc6f6ce79f2bd68a44ba87990b9b8564e..0000000000000000000000000000000000000000 --- a/spaces/Rothfeld/stable-diffusion-mat-outpainting-primer/torch_utils/custom_ops.py +++ /dev/null @@ -1,126 +0,0 @@ -# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. -# -# NVIDIA CORPORATION and its licensors retain all intellectual property -# and proprietary rights in and to this software, related documentation -# and any modifications thereto. Any use, reproduction, disclosure or -# distribution of this software and related documentation without an express -# license agreement from NVIDIA CORPORATION is strictly prohibited. - -import os -import glob -import torch -import torch.utils.cpp_extension -import importlib -import hashlib -import shutil -from pathlib import Path - -from torch.utils.file_baton import FileBaton - -#---------------------------------------------------------------------------- -# Global options. - -verbosity = 'brief' # Verbosity level: 'none', 'brief', 'full' - -#---------------------------------------------------------------------------- -# Internal helper funcs. - -def _find_compiler_bindir(): - patterns = [ - 'C:/Program Files (x86)/Microsoft Visual Studio/*/Professional/VC/Tools/MSVC/*/bin/Hostx64/x64', - 'C:/Program Files (x86)/Microsoft Visual Studio/*/BuildTools/VC/Tools/MSVC/*/bin/Hostx64/x64', - 'C:/Program Files (x86)/Microsoft Visual Studio/*/Community/VC/Tools/MSVC/*/bin/Hostx64/x64', - 'C:/Program Files (x86)/Microsoft Visual Studio */vc/bin', - ] - for pattern in patterns: - matches = sorted(glob.glob(pattern)) - if len(matches): - return matches[-1] - return None - -#---------------------------------------------------------------------------- -# Main entry point for compiling and loading C++/CUDA plugins. - -_cached_plugins = dict() - -def get_plugin(module_name, sources, **build_kwargs): - assert verbosity in ['none', 'brief', 'full'] - - # Already cached? - if module_name in _cached_plugins: - return _cached_plugins[module_name] - - # Print status. - if verbosity == 'full': - print(f'Setting up PyTorch plugin "{module_name}"...') - elif verbosity == 'brief': - print(f'Setting up PyTorch plugin "{module_name}"... ', end='', flush=True) - - try: # pylint: disable=too-many-nested-blocks - # Make sure we can find the necessary compiler binaries. - if os.name == 'nt' and os.system("where cl.exe >nul 2>nul") != 0: - compiler_bindir = _find_compiler_bindir() - if compiler_bindir is None: - raise RuntimeError(f'Could not find MSVC/GCC/CLANG installation on this computer. Check _find_compiler_bindir() in "{__file__}".') - os.environ['PATH'] += ';' + compiler_bindir - - # Compile and load. - verbose_build = (verbosity == 'full') - - # Incremental build md5sum trickery. Copies all the input source files - # into a cached build directory under a combined md5 digest of the input - # source files. Copying is done only if the combined digest has changed. - # This keeps input file timestamps and filenames the same as in previous - # extension builds, allowing for fast incremental rebuilds. - # - # This optimization is done only in case all the source files reside in - # a single directory (just for simplicity) and if the TORCH_EXTENSIONS_DIR - # environment variable is set (we take this as a signal that the user - # actually cares about this.) - source_dirs_set = set(os.path.dirname(source) for source in sources) - if len(source_dirs_set) == 1 and ('TORCH_EXTENSIONS_DIR' in os.environ): - all_source_files = sorted(list(x for x in Path(list(source_dirs_set)[0]).iterdir() if x.is_file())) - - # Compute a combined hash digest for all source files in the same - # custom op directory (usually .cu, .cpp, .py and .h files). - hash_md5 = hashlib.md5() - for src in all_source_files: - with open(src, 'rb') as f: - hash_md5.update(f.read()) - build_dir = torch.utils.cpp_extension._get_build_directory(module_name, verbose=verbose_build) # pylint: disable=protected-access - digest_build_dir = os.path.join(build_dir, hash_md5.hexdigest()) - - if not os.path.isdir(digest_build_dir): - os.makedirs(digest_build_dir, exist_ok=True) - baton = FileBaton(os.path.join(digest_build_dir, 'lock')) - if baton.try_acquire(): - try: - for src in all_source_files: - shutil.copyfile(src, os.path.join(digest_build_dir, os.path.basename(src))) - finally: - baton.release() - else: - # Someone else is copying source files under the digest dir, - # wait until done and continue. - baton.wait() - digest_sources = [os.path.join(digest_build_dir, os.path.basename(x)) for x in sources] - torch.utils.cpp_extension.load(name=module_name, build_directory=build_dir, - verbose=verbose_build, sources=digest_sources, **build_kwargs) - else: - torch.utils.cpp_extension.load(name=module_name, verbose=verbose_build, sources=sources, **build_kwargs) - module = importlib.import_module(module_name) - - except: - if verbosity == 'brief': - print('Failed!') - raise - - # Print status and add to cache. - if verbosity == 'full': - print(f'Done setting up PyTorch plugin "{module_name}".') - elif verbosity == 'brief': - print('Done.') - _cached_plugins[module_name] = module - return module - -#---------------------------------------------------------------------------- diff --git a/spaces/Sanathkumar1603/hackathon/app/templates/index.html b/spaces/Sanathkumar1603/hackathon/app/templates/index.html deleted file mode 100644 index ff077496c7ed837df17a2857c728af75fc5780dd..0000000000000000000000000000000000000000 --- a/spaces/Sanathkumar1603/hackathon/app/templates/index.html +++ /dev/null @@ -1,29 +0,0 @@ - - - - Index - - -
    -

    -
    Recognition Application
    -

    -
    -
    -
    -
      -
    • Select a task: -


      -
      -

      -
      -

      -
      -
      -
    • -
      -
    -
    -
    - - diff --git a/spaces/ServerX/PorcoDiaz/train/losses.py b/spaces/ServerX/PorcoDiaz/train/losses.py deleted file mode 100644 index b89038f14d06d7fae43628183e9ffb465e4edafd..0000000000000000000000000000000000000000 --- a/spaces/ServerX/PorcoDiaz/train/losses.py +++ /dev/null @@ -1,59 +0,0 @@ -import torch -from torch.nn import functional as F - - -def feature_loss(fmap_r, fmap_g): - loss = 0 - for dr, dg in zip(fmap_r, fmap_g): - for rl, gl in zip(dr, dg): - rl = rl.float().detach() - gl = gl.float() - loss += torch.mean(torch.abs(rl - gl)) - - return loss * 2 - - -def discriminator_loss(disc_real_outputs, disc_generated_outputs): - loss = 0 - r_losses = [] - g_losses = [] - for dr, dg in zip(disc_real_outputs, disc_generated_outputs): - dr = dr.float() - dg = dg.float() - r_loss = torch.mean((1 - dr) ** 2) - g_loss = torch.mean(dg**2) - loss += r_loss + g_loss - r_losses.append(r_loss.item()) - g_losses.append(g_loss.item()) - - return loss, r_losses, g_losses - - -def generator_loss(disc_outputs): - loss = 0 - gen_losses = [] - for dg in disc_outputs: - dg = dg.float() - l = torch.mean((1 - dg) ** 2) - gen_losses.append(l) - loss += l - - return loss, gen_losses - - -def kl_loss(z_p, logs_q, m_p, logs_p, z_mask): - """ - z_p, logs_q: [b, h, t_t] - m_p, logs_p: [b, h, t_t] - """ - z_p = z_p.float() - logs_q = logs_q.float() - m_p = m_p.float() - logs_p = logs_p.float() - z_mask = z_mask.float() - - kl = logs_p - logs_q - 0.5 - kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p) - kl = torch.sum(kl * z_mask) - l = kl / torch.sum(z_mask) - return l diff --git a/spaces/Sumit7864/Image-Enhancer/weights/README.md b/spaces/Sumit7864/Image-Enhancer/weights/README.md deleted file mode 100644 index 4d7b7e642591ef88575d9e6c360a4d29e0cc1a4f..0000000000000000000000000000000000000000 --- a/spaces/Sumit7864/Image-Enhancer/weights/README.md +++ /dev/null @@ -1,3 +0,0 @@ -# Weights - -Put the downloaded weights to this folder. diff --git a/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/click/utils.py b/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/click/utils.py deleted file mode 100644 index 8283788ace64e92ef77e3a7d1ff6aea5fda1854e..0000000000000000000000000000000000000000 --- a/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/click/utils.py +++ /dev/null @@ -1,580 +0,0 @@ -import os -import re -import sys -import typing as t -from functools import update_wrapper -from types import ModuleType - -from ._compat import _default_text_stderr -from ._compat import _default_text_stdout -from ._compat import _find_binary_writer -from ._compat import auto_wrap_for_ansi -from ._compat import binary_streams -from ._compat import get_filesystem_encoding -from ._compat import open_stream -from ._compat import should_strip_ansi -from ._compat import strip_ansi -from ._compat import text_streams -from ._compat import WIN -from .globals import resolve_color_default - -if t.TYPE_CHECKING: - import typing_extensions as te - -F = t.TypeVar("F", bound=t.Callable[..., t.Any]) - - -def _posixify(name: str) -> str: - return "-".join(name.split()).lower() - - -def safecall(func: F) -> F: - """Wraps a function so that it swallows exceptions.""" - - def wrapper(*args, **kwargs): # type: ignore - try: - return func(*args, **kwargs) - except Exception: - pass - - return update_wrapper(t.cast(F, wrapper), func) - - -def make_str(value: t.Any) -> str: - """Converts a value into a valid string.""" - if isinstance(value, bytes): - try: - return value.decode(get_filesystem_encoding()) - except UnicodeError: - return value.decode("utf-8", "replace") - return str(value) - - -def make_default_short_help(help: str, max_length: int = 45) -> str: - """Returns a condensed version of help string.""" - # Consider only the first paragraph. - paragraph_end = help.find("\n\n") - - if paragraph_end != -1: - help = help[:paragraph_end] - - # Collapse newlines, tabs, and spaces. - words = help.split() - - if not words: - return "" - - # The first paragraph started with a "no rewrap" marker, ignore it. - if words[0] == "\b": - words = words[1:] - - total_length = 0 - last_index = len(words) - 1 - - for i, word in enumerate(words): - total_length += len(word) + (i > 0) - - if total_length > max_length: # too long, truncate - break - - if word[-1] == ".": # sentence end, truncate without "..." - return " ".join(words[: i + 1]) - - if total_length == max_length and i != last_index: - break # not at sentence end, truncate with "..." - else: - return " ".join(words) # no truncation needed - - # Account for the length of the suffix. - total_length += len("...") - - # remove words until the length is short enough - while i > 0: - total_length -= len(words[i]) + (i > 0) - - if total_length <= max_length: - break - - i -= 1 - - return " ".join(words[:i]) + "..." - - -class LazyFile: - """A lazy file works like a regular file but it does not fully open - the file but it does perform some basic checks early to see if the - filename parameter does make sense. This is useful for safely opening - files for writing. - """ - - def __init__( - self, - filename: str, - mode: str = "r", - encoding: t.Optional[str] = None, - errors: t.Optional[str] = "strict", - atomic: bool = False, - ): - self.name = filename - self.mode = mode - self.encoding = encoding - self.errors = errors - self.atomic = atomic - self._f: t.Optional[t.IO] - - if filename == "-": - self._f, self.should_close = open_stream(filename, mode, encoding, errors) - else: - if "r" in mode: - # Open and close the file in case we're opening it for - # reading so that we can catch at least some errors in - # some cases early. - open(filename, mode).close() - self._f = None - self.should_close = True - - def __getattr__(self, name: str) -> t.Any: - return getattr(self.open(), name) - - def __repr__(self) -> str: - if self._f is not None: - return repr(self._f) - return f"" - - def open(self) -> t.IO: - """Opens the file if it's not yet open. This call might fail with - a :exc:`FileError`. Not handling this error will produce an error - that Click shows. - """ - if self._f is not None: - return self._f - try: - rv, self.should_close = open_stream( - self.name, self.mode, self.encoding, self.errors, atomic=self.atomic - ) - except OSError as e: # noqa: E402 - from .exceptions import FileError - - raise FileError(self.name, hint=e.strerror) from e - self._f = rv - return rv - - def close(self) -> None: - """Closes the underlying file, no matter what.""" - if self._f is not None: - self._f.close() - - def close_intelligently(self) -> None: - """This function only closes the file if it was opened by the lazy - file wrapper. For instance this will never close stdin. - """ - if self.should_close: - self.close() - - def __enter__(self) -> "LazyFile": - return self - - def __exit__(self, exc_type, exc_value, tb): # type: ignore - self.close_intelligently() - - def __iter__(self) -> t.Iterator[t.AnyStr]: - self.open() - return iter(self._f) # type: ignore - - -class KeepOpenFile: - def __init__(self, file: t.IO) -> None: - self._file = file - - def __getattr__(self, name: str) -> t.Any: - return getattr(self._file, name) - - def __enter__(self) -> "KeepOpenFile": - return self - - def __exit__(self, exc_type, exc_value, tb): # type: ignore - pass - - def __repr__(self) -> str: - return repr(self._file) - - def __iter__(self) -> t.Iterator[t.AnyStr]: - return iter(self._file) - - -def echo( - message: t.Optional[t.Any] = None, - file: t.Optional[t.IO[t.Any]] = None, - nl: bool = True, - err: bool = False, - color: t.Optional[bool] = None, -) -> None: - """Print a message and newline to stdout or a file. This should be - used instead of :func:`print` because it provides better support - for different data, files, and environments. - - Compared to :func:`print`, this does the following: - - - Ensures that the output encoding is not misconfigured on Linux. - - Supports Unicode in the Windows console. - - Supports writing to binary outputs, and supports writing bytes - to text outputs. - - Supports colors and styles on Windows. - - Removes ANSI color and style codes if the output does not look - like an interactive terminal. - - Always flushes the output. - - :param message: The string or bytes to output. Other objects are - converted to strings. - :param file: The file to write to. Defaults to ``stdout``. - :param err: Write to ``stderr`` instead of ``stdout``. - :param nl: Print a newline after the message. Enabled by default. - :param color: Force showing or hiding colors and other styles. By - default Click will remove color if the output does not look like - an interactive terminal. - - .. versionchanged:: 6.0 - Support Unicode output on the Windows console. Click does not - modify ``sys.stdout``, so ``sys.stdout.write()`` and ``print()`` - will still not support Unicode. - - .. versionchanged:: 4.0 - Added the ``color`` parameter. - - .. versionadded:: 3.0 - Added the ``err`` parameter. - - .. versionchanged:: 2.0 - Support colors on Windows if colorama is installed. - """ - if file is None: - if err: - file = _default_text_stderr() - else: - file = _default_text_stdout() - - # Convert non bytes/text into the native string type. - if message is not None and not isinstance(message, (str, bytes, bytearray)): - out: t.Optional[t.Union[str, bytes]] = str(message) - else: - out = message - - if nl: - out = out or "" - if isinstance(out, str): - out += "\n" - else: - out += b"\n" - - if not out: - file.flush() - return - - # If there is a message and the value looks like bytes, we manually - # need to find the binary stream and write the message in there. - # This is done separately so that most stream types will work as you - # would expect. Eg: you can write to StringIO for other cases. - if isinstance(out, (bytes, bytearray)): - binary_file = _find_binary_writer(file) - - if binary_file is not None: - file.flush() - binary_file.write(out) - binary_file.flush() - return - - # ANSI style code support. For no message or bytes, nothing happens. - # When outputting to a file instead of a terminal, strip codes. - else: - color = resolve_color_default(color) - - if should_strip_ansi(file, color): - out = strip_ansi(out) - elif WIN: - if auto_wrap_for_ansi is not None: - file = auto_wrap_for_ansi(file) # type: ignore - elif not color: - out = strip_ansi(out) - - file.write(out) # type: ignore - file.flush() - - -def get_binary_stream(name: "te.Literal['stdin', 'stdout', 'stderr']") -> t.BinaryIO: - """Returns a system stream for byte processing. - - :param name: the name of the stream to open. Valid names are ``'stdin'``, - ``'stdout'`` and ``'stderr'`` - """ - opener = binary_streams.get(name) - if opener is None: - raise TypeError(f"Unknown standard stream '{name}'") - return opener() - - -def get_text_stream( - name: "te.Literal['stdin', 'stdout', 'stderr']", - encoding: t.Optional[str] = None, - errors: t.Optional[str] = "strict", -) -> t.TextIO: - """Returns a system stream for text processing. This usually returns - a wrapped stream around a binary stream returned from - :func:`get_binary_stream` but it also can take shortcuts for already - correctly configured streams. - - :param name: the name of the stream to open. Valid names are ``'stdin'``, - ``'stdout'`` and ``'stderr'`` - :param encoding: overrides the detected default encoding. - :param errors: overrides the default error mode. - """ - opener = text_streams.get(name) - if opener is None: - raise TypeError(f"Unknown standard stream '{name}'") - return opener(encoding, errors) - - -def open_file( - filename: str, - mode: str = "r", - encoding: t.Optional[str] = None, - errors: t.Optional[str] = "strict", - lazy: bool = False, - atomic: bool = False, -) -> t.IO: - """Open a file, with extra behavior to handle ``'-'`` to indicate - a standard stream, lazy open on write, and atomic write. Similar to - the behavior of the :class:`~click.File` param type. - - If ``'-'`` is given to open ``stdout`` or ``stdin``, the stream is - wrapped so that using it in a context manager will not close it. - This makes it possible to use the function without accidentally - closing a standard stream: - - .. code-block:: python - - with open_file(filename) as f: - ... - - :param filename: The name of the file to open, or ``'-'`` for - ``stdin``/``stdout``. - :param mode: The mode in which to open the file. - :param encoding: The encoding to decode or encode a file opened in - text mode. - :param errors: The error handling mode. - :param lazy: Wait to open the file until it is accessed. For read - mode, the file is temporarily opened to raise access errors - early, then closed until it is read again. - :param atomic: Write to a temporary file and replace the given file - on close. - - .. versionadded:: 3.0 - """ - if lazy: - return t.cast(t.IO, LazyFile(filename, mode, encoding, errors, atomic=atomic)) - - f, should_close = open_stream(filename, mode, encoding, errors, atomic=atomic) - - if not should_close: - f = t.cast(t.IO, KeepOpenFile(f)) - - return f - - -def format_filename( - filename: t.Union[str, bytes, os.PathLike], shorten: bool = False -) -> str: - """Formats a filename for user display. The main purpose of this - function is to ensure that the filename can be displayed at all. This - will decode the filename to unicode if necessary in a way that it will - not fail. Optionally, it can shorten the filename to not include the - full path to the filename. - - :param filename: formats a filename for UI display. This will also convert - the filename into unicode without failing. - :param shorten: this optionally shortens the filename to strip of the - path that leads up to it. - """ - if shorten: - filename = os.path.basename(filename) - - return os.fsdecode(filename) - - -def get_app_dir(app_name: str, roaming: bool = True, force_posix: bool = False) -> str: - r"""Returns the config folder for the application. The default behavior - is to return whatever is most appropriate for the operating system. - - To give you an idea, for an app called ``"Foo Bar"``, something like - the following folders could be returned: - - Mac OS X: - ``~/Library/Application Support/Foo Bar`` - Mac OS X (POSIX): - ``~/.foo-bar`` - Unix: - ``~/.config/foo-bar`` - Unix (POSIX): - ``~/.foo-bar`` - Windows (roaming): - ``C:\Users\\AppData\Roaming\Foo Bar`` - Windows (not roaming): - ``C:\Users\\AppData\Local\Foo Bar`` - - .. versionadded:: 2.0 - - :param app_name: the application name. This should be properly capitalized - and can contain whitespace. - :param roaming: controls if the folder should be roaming or not on Windows. - Has no affect otherwise. - :param force_posix: if this is set to `True` then on any POSIX system the - folder will be stored in the home folder with a leading - dot instead of the XDG config home or darwin's - application support folder. - """ - if WIN: - key = "APPDATA" if roaming else "LOCALAPPDATA" - folder = os.environ.get(key) - if folder is None: - folder = os.path.expanduser("~") - return os.path.join(folder, app_name) - if force_posix: - return os.path.join(os.path.expanduser(f"~/.{_posixify(app_name)}")) - if sys.platform == "darwin": - return os.path.join( - os.path.expanduser("~/Library/Application Support"), app_name - ) - return os.path.join( - os.environ.get("XDG_CONFIG_HOME", os.path.expanduser("~/.config")), - _posixify(app_name), - ) - - -class PacifyFlushWrapper: - """This wrapper is used to catch and suppress BrokenPipeErrors resulting - from ``.flush()`` being called on broken pipe during the shutdown/final-GC - of the Python interpreter. Notably ``.flush()`` is always called on - ``sys.stdout`` and ``sys.stderr``. So as to have minimal impact on any - other cleanup code, and the case where the underlying file is not a broken - pipe, all calls and attributes are proxied. - """ - - def __init__(self, wrapped: t.IO) -> None: - self.wrapped = wrapped - - def flush(self) -> None: - try: - self.wrapped.flush() - except OSError as e: - import errno - - if e.errno != errno.EPIPE: - raise - - def __getattr__(self, attr: str) -> t.Any: - return getattr(self.wrapped, attr) - - -def _detect_program_name( - path: t.Optional[str] = None, _main: t.Optional[ModuleType] = None -) -> str: - """Determine the command used to run the program, for use in help - text. If a file or entry point was executed, the file name is - returned. If ``python -m`` was used to execute a module or package, - ``python -m name`` is returned. - - This doesn't try to be too precise, the goal is to give a concise - name for help text. Files are only shown as their name without the - path. ``python`` is only shown for modules, and the full path to - ``sys.executable`` is not shown. - - :param path: The Python file being executed. Python puts this in - ``sys.argv[0]``, which is used by default. - :param _main: The ``__main__`` module. This should only be passed - during internal testing. - - .. versionadded:: 8.0 - Based on command args detection in the Werkzeug reloader. - - :meta private: - """ - if _main is None: - _main = sys.modules["__main__"] - - if not path: - path = sys.argv[0] - - # The value of __package__ indicates how Python was called. It may - # not exist if a setuptools script is installed as an egg. It may be - # set incorrectly for entry points created with pip on Windows. - if getattr(_main, "__package__", None) is None or ( - os.name == "nt" - and _main.__package__ == "" - and not os.path.exists(path) - and os.path.exists(f"{path}.exe") - ): - # Executed a file, like "python app.py". - return os.path.basename(path) - - # Executed a module, like "python -m example". - # Rewritten by Python from "-m script" to "/path/to/script.py". - # Need to look at main module to determine how it was executed. - py_module = t.cast(str, _main.__package__) - name = os.path.splitext(os.path.basename(path))[0] - - # A submodule like "example.cli". - if name != "__main__": - py_module = f"{py_module}.{name}" - - return f"python -m {py_module.lstrip('.')}" - - -def _expand_args( - args: t.Iterable[str], - *, - user: bool = True, - env: bool = True, - glob_recursive: bool = True, -) -> t.List[str]: - """Simulate Unix shell expansion with Python functions. - - See :func:`glob.glob`, :func:`os.path.expanduser`, and - :func:`os.path.expandvars`. - - This is intended for use on Windows, where the shell does not do any - expansion. It may not exactly match what a Unix shell would do. - - :param args: List of command line arguments to expand. - :param user: Expand user home directory. - :param env: Expand environment variables. - :param glob_recursive: ``**`` matches directories recursively. - - .. versionchanged:: 8.1 - Invalid glob patterns are treated as empty expansions rather - than raising an error. - - .. versionadded:: 8.0 - - :meta private: - """ - from glob import glob - - out = [] - - for arg in args: - if user: - arg = os.path.expanduser(arg) - - if env: - arg = os.path.expandvars(arg) - - try: - matches = glob(arg, recursive=glob_recursive) - except re.error: - matches = [] - - if not matches: - out.append(arg) - else: - out.extend(matches) - - return out diff --git a/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_suspended_frames.py b/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_suspended_frames.py deleted file mode 100644 index 34c404d0e642ddf63a3183574c9d998df5a033ec..0000000000000000000000000000000000000000 --- a/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_suspended_frames.py +++ /dev/null @@ -1,541 +0,0 @@ -from contextlib import contextmanager -import sys - -from _pydevd_bundle.pydevd_constants import get_frame, RETURN_VALUES_DICT, \ - ForkSafeLock, GENERATED_LEN_ATTR_NAME, silence_warnings_decorator -from _pydevd_bundle.pydevd_xml import get_variable_details, get_type -from _pydev_bundle.pydev_override import overrides -from _pydevd_bundle.pydevd_resolver import sorted_attributes_key, TOO_LARGE_ATTR, get_var_scope -from _pydevd_bundle.pydevd_safe_repr import SafeRepr -from _pydev_bundle import pydev_log -from _pydevd_bundle import pydevd_vars -from _pydev_bundle.pydev_imports import Exec -from _pydevd_bundle.pydevd_frame_utils import FramesList -from _pydevd_bundle.pydevd_utils import ScopeRequest, DAPGrouper, Timer -from typing import Optional - - -class _AbstractVariable(object): - - # Default attributes in class, set in instance. - - name = None - value = None - evaluate_name = None - - def __init__(self, py_db): - assert py_db is not None - self.py_db = py_db - - def get_name(self): - return self.name - - def get_value(self): - return self.value - - def get_variable_reference(self): - return id(self.value) - - def get_var_data(self, fmt: Optional[dict]=None, context: Optional[str]=None, **safe_repr_custom_attrs): - ''' - :param dict fmt: - Format expected by the DAP (keys: 'hex': bool, 'rawString': bool) - - :param context: - This is the context in which the variable is being requested. Valid values: - "watch", - "repl", - "hover", - "clipboard" - ''' - timer = Timer() - safe_repr = SafeRepr() - if fmt is not None: - safe_repr.convert_to_hex = fmt.get('hex', False) - safe_repr.raw_value = fmt.get('rawString', False) - for key, val in safe_repr_custom_attrs.items(): - setattr(safe_repr, key, val) - - type_name, _type_qualifier, _is_exception_on_eval, resolver, value = get_variable_details( - self.value, to_string=safe_repr, context=context) - - is_raw_string = type_name in ('str', 'bytes', 'bytearray') - - attributes = [] - - if is_raw_string: - attributes.append('rawString') - - name = self.name - - if self._is_return_value: - attributes.append('readOnly') - name = '(return) %s' % (name,) - - elif name in (TOO_LARGE_ATTR, GENERATED_LEN_ATTR_NAME): - attributes.append('readOnly') - - try: - if self.value.__class__ == DAPGrouper: - type_name = '' - except: - pass # Ignore errors accessing __class__. - - var_data = { - 'name': name, - 'value': value, - 'type': type_name, - } - - if self.evaluate_name is not None: - var_data['evaluateName'] = self.evaluate_name - - if resolver is not None: # I.e.: it's a container - var_data['variablesReference'] = self.get_variable_reference() - else: - var_data['variablesReference'] = 0 # It's mandatory (although if == 0 it doesn't have children). - - if len(attributes) > 0: - var_data['presentationHint'] = {'attributes': attributes} - - timer.report_if_compute_repr_attr_slow('', name, type_name) - return var_data - - def get_children_variables(self, fmt=None, scope=None): - raise NotImplementedError() - - def get_child_variable_named(self, name, fmt=None, scope=None): - for child_var in self.get_children_variables(fmt=fmt, scope=scope): - if child_var.get_name() == name: - return child_var - return None - - def _group_entries(self, lst, handle_return_values): - scope_to_grouper = {} - - group_entries = [] - if isinstance(self.value, DAPGrouper): - new_lst = lst - else: - new_lst = [] - get_presentation = self.py_db.variable_presentation.get_presentation - # Now that we have the contents, group items. - for attr_name, attr_value, evaluate_name in lst: - scope = get_var_scope(attr_name, attr_value, evaluate_name, handle_return_values) - - entry = (attr_name, attr_value, evaluate_name) - if scope: - presentation = get_presentation(scope) - if presentation == 'hide': - continue - - elif presentation == 'inline': - new_lst.append(entry) - - else: # group - if scope not in scope_to_grouper: - grouper = DAPGrouper(scope) - scope_to_grouper[scope] = grouper - else: - grouper = scope_to_grouper[scope] - - grouper.contents_debug_adapter_protocol.append(entry) - - else: - new_lst.append(entry) - - for scope in DAPGrouper.SCOPES_SORTED: - grouper = scope_to_grouper.get(scope) - if grouper is not None: - group_entries.append((scope, grouper, None)) - - return new_lst, group_entries - - -class _ObjectVariable(_AbstractVariable): - - def __init__(self, py_db, name, value, register_variable, is_return_value=False, evaluate_name=None, frame=None): - _AbstractVariable.__init__(self, py_db) - self.frame = frame - self.name = name - self.value = value - self._register_variable = register_variable - self._register_variable(self) - self._is_return_value = is_return_value - self.evaluate_name = evaluate_name - - @silence_warnings_decorator - @overrides(_AbstractVariable.get_children_variables) - def get_children_variables(self, fmt=None, scope=None): - _type, _type_name, resolver = get_type(self.value) - - children_variables = [] - if resolver is not None: # i.e.: it's a container. - if hasattr(resolver, 'get_contents_debug_adapter_protocol'): - # The get_contents_debug_adapter_protocol needs to return sorted. - lst = resolver.get_contents_debug_adapter_protocol(self.value, fmt=fmt) - else: - # If there's no special implementation, the default is sorting the keys. - dct = resolver.get_dictionary(self.value) - lst = sorted(dct.items(), key=lambda tup: sorted_attributes_key(tup[0])) - # No evaluate name in this case. - lst = [(key, value, None) for (key, value) in lst] - - lst, group_entries = self._group_entries(lst, handle_return_values=False) - if group_entries: - lst = group_entries + lst - parent_evaluate_name = self.evaluate_name - if parent_evaluate_name: - for key, val, evaluate_name in lst: - if evaluate_name is not None: - if callable(evaluate_name): - evaluate_name = evaluate_name(parent_evaluate_name) - else: - evaluate_name = parent_evaluate_name + evaluate_name - variable = _ObjectVariable( - self.py_db, key, val, self._register_variable, evaluate_name=evaluate_name, frame=self.frame) - children_variables.append(variable) - else: - for key, val, evaluate_name in lst: - # No evaluate name - variable = _ObjectVariable(self.py_db, key, val, self._register_variable, frame=self.frame) - children_variables.append(variable) - - return children_variables - - def change_variable(self, name, value, py_db, fmt=None): - - children_variable = self.get_child_variable_named(name) - if children_variable is None: - return None - - var_data = children_variable.get_var_data() - evaluate_name = var_data.get('evaluateName') - - if not evaluate_name: - # Note: right now we only pass control to the resolver in the cases where - # there's no evaluate name (the idea being that if we can evaluate it, - # we can use that evaluation to set the value too -- if in the future - # a case where this isn't true is found this logic may need to be changed). - _type, _type_name, container_resolver = get_type(self.value) - if hasattr(container_resolver, 'change_var_from_name'): - try: - new_value = eval(value) - except: - return None - new_key = container_resolver.change_var_from_name(self.value, name, new_value) - if new_key is not None: - return _ObjectVariable( - self.py_db, new_key, new_value, self._register_variable, evaluate_name=None, frame=self.frame) - - return None - else: - return None - - frame = self.frame - if frame is None: - return None - - try: - # This handles the simple cases (such as dict, list, object) - Exec('%s=%s' % (evaluate_name, value), frame.f_globals, frame.f_locals) - except: - return None - - return self.get_child_variable_named(name, fmt=fmt) - - -def sorted_variables_key(obj): - return sorted_attributes_key(obj.name) - - -class _FrameVariable(_AbstractVariable): - - def __init__(self, py_db, frame, register_variable): - _AbstractVariable.__init__(self, py_db) - self.frame = frame - - self.name = self.frame.f_code.co_name - self.value = frame - - self._register_variable = register_variable - self._register_variable(self) - - def change_variable(self, name, value, py_db, fmt=None): - frame = self.frame - - pydevd_vars.change_attr_expression(frame, name, value, py_db) - - return self.get_child_variable_named(name, fmt=fmt) - - @silence_warnings_decorator - @overrides(_AbstractVariable.get_children_variables) - def get_children_variables(self, fmt=None, scope=None): - children_variables = [] - if scope is not None: - assert isinstance(scope, ScopeRequest) - scope = scope.scope - - if scope in ('locals', None): - dct = self.frame.f_locals - elif scope == 'globals': - dct = self.frame.f_globals - else: - raise AssertionError('Unexpected scope: %s' % (scope,)) - - lst, group_entries = self._group_entries([(x[0], x[1], None) for x in list(dct.items()) if x[0] != '_pydev_stop_at_break'], handle_return_values=True) - group_variables = [] - - for key, val, _ in group_entries: - # Make sure that the contents in the group are also sorted. - val.contents_debug_adapter_protocol.sort(key=lambda v:sorted_attributes_key(v[0])) - variable = _ObjectVariable(self.py_db, key, val, self._register_variable, False, key, frame=self.frame) - group_variables.append(variable) - - for key, val, _ in lst: - is_return_value = key == RETURN_VALUES_DICT - if is_return_value: - for return_key, return_value in val.items(): - variable = _ObjectVariable( - self.py_db, return_key, return_value, self._register_variable, is_return_value, '%s[%r]' % (key, return_key), frame=self.frame) - children_variables.append(variable) - else: - variable = _ObjectVariable(self.py_db, key, val, self._register_variable, is_return_value, key, frame=self.frame) - children_variables.append(variable) - - # Frame variables always sorted. - children_variables.sort(key=sorted_variables_key) - if group_variables: - # Groups have priority over other variables. - children_variables = group_variables + children_variables - - return children_variables - - -class _FramesTracker(object): - ''' - This is a helper class to be used to track frames when a thread becomes suspended. - ''' - - def __init__(self, suspended_frames_manager, py_db): - self._suspended_frames_manager = suspended_frames_manager - self.py_db = py_db - self._frame_id_to_frame = {} - - # Note that a given frame may appear in multiple threads when we have custom - # frames added, but as those are coroutines, this map will point to the actual - # main thread (which is the one that needs to be suspended for us to get the - # variables). - self._frame_id_to_main_thread_id = {} - - # A map of the suspended thread id -> list(frames ids) -- note that - # frame ids are kept in order (the first one is the suspended frame). - self._thread_id_to_frame_ids = {} - - self._thread_id_to_frames_list = {} - - # The main suspended thread (if this is a coroutine this isn't the id of the - # coroutine thread, it's the id of the actual suspended thread). - self._main_thread_id = None - - # Helper to know if it was already untracked. - self._untracked = False - - # We need to be thread-safe! - self._lock = ForkSafeLock() - - self._variable_reference_to_variable = {} - - def _register_variable(self, variable): - variable_reference = variable.get_variable_reference() - self._variable_reference_to_variable[variable_reference] = variable - - def obtain_as_variable(self, name, value, evaluate_name=None, frame=None): - if evaluate_name is None: - evaluate_name = name - - variable_reference = id(value) - variable = self._variable_reference_to_variable.get(variable_reference) - if variable is not None: - return variable - - # Still not created, let's do it now. - return _ObjectVariable( - self.py_db, name, value, self._register_variable, is_return_value=False, evaluate_name=evaluate_name, frame=frame) - - def get_main_thread_id(self): - return self._main_thread_id - - def get_variable(self, variable_reference): - return self._variable_reference_to_variable[variable_reference] - - def track(self, thread_id, frames_list, frame_custom_thread_id=None): - ''' - :param thread_id: - The thread id to be used for this frame. - - :param FramesList frames_list: - A list of frames to be tracked (the first is the topmost frame which is suspended at the given thread). - - :param frame_custom_thread_id: - If None this this is the id of the thread id for the custom frame (i.e.: coroutine). - ''' - assert frames_list.__class__ == FramesList - with self._lock: - coroutine_or_main_thread_id = frame_custom_thread_id or thread_id - - if coroutine_or_main_thread_id in self._suspended_frames_manager._thread_id_to_tracker: - sys.stderr.write('pydevd: Something is wrong. Tracker being added twice to the same thread id.\n') - - self._suspended_frames_manager._thread_id_to_tracker[coroutine_or_main_thread_id] = self - self._main_thread_id = thread_id - - frame_ids_from_thread = self._thread_id_to_frame_ids.setdefault( - coroutine_or_main_thread_id, []) - - self._thread_id_to_frames_list[coroutine_or_main_thread_id] = frames_list - for frame in frames_list: - frame_id = id(frame) - self._frame_id_to_frame[frame_id] = frame - _FrameVariable(self.py_db, frame, self._register_variable) # Instancing is enough to register. - self._suspended_frames_manager._variable_reference_to_frames_tracker[frame_id] = self - frame_ids_from_thread.append(frame_id) - - self._frame_id_to_main_thread_id[frame_id] = thread_id - - frame = None - - def untrack_all(self): - with self._lock: - if self._untracked: - # Calling multiple times is expected for the set next statement. - return - self._untracked = True - for thread_id in self._thread_id_to_frame_ids: - self._suspended_frames_manager._thread_id_to_tracker.pop(thread_id, None) - - for frame_id in self._frame_id_to_frame: - del self._suspended_frames_manager._variable_reference_to_frames_tracker[frame_id] - - self._frame_id_to_frame.clear() - self._frame_id_to_main_thread_id.clear() - self._thread_id_to_frame_ids.clear() - self._thread_id_to_frames_list.clear() - self._main_thread_id = None - self._suspended_frames_manager = None - self._variable_reference_to_variable.clear() - - def get_frames_list(self, thread_id): - with self._lock: - return self._thread_id_to_frames_list.get(thread_id) - - def find_frame(self, thread_id, frame_id): - with self._lock: - return self._frame_id_to_frame.get(frame_id) - - def create_thread_suspend_command(self, thread_id, stop_reason, message, suspend_type): - with self._lock: - # First one is topmost frame suspended. - frames_list = self._thread_id_to_frames_list[thread_id] - - cmd = self.py_db.cmd_factory.make_thread_suspend_message( - self.py_db, thread_id, frames_list, stop_reason, message, suspend_type) - - frames_list = None - return cmd - - -class SuspendedFramesManager(object): - - def __init__(self): - self._thread_id_to_fake_frames = {} - self._thread_id_to_tracker = {} - - # Mappings - self._variable_reference_to_frames_tracker = {} - - def _get_tracker_for_variable_reference(self, variable_reference): - tracker = self._variable_reference_to_frames_tracker.get(variable_reference) - if tracker is not None: - return tracker - - for _thread_id, tracker in self._thread_id_to_tracker.items(): - try: - tracker.get_variable(variable_reference) - except KeyError: - pass - else: - return tracker - - return None - - def get_thread_id_for_variable_reference(self, variable_reference): - ''' - We can't evaluate variable references values on any thread, only in the suspended - thread (the main reason for this is that in UI frameworks inspecting a UI object - from a different thread can potentially crash the application). - - :param int variable_reference: - The variable reference (can be either a frame id or a reference to a previously - gotten variable). - - :return str: - The thread id for the thread to be used to inspect the given variable reference or - None if the thread was already resumed. - ''' - frames_tracker = self._get_tracker_for_variable_reference(variable_reference) - if frames_tracker is not None: - return frames_tracker.get_main_thread_id() - return None - - def get_frame_tracker(self, thread_id): - return self._thread_id_to_tracker.get(thread_id) - - def get_variable(self, variable_reference): - ''' - :raises KeyError - ''' - frames_tracker = self._get_tracker_for_variable_reference(variable_reference) - if frames_tracker is None: - raise KeyError() - return frames_tracker.get_variable(variable_reference) - - def get_frames_list(self, thread_id): - tracker = self._thread_id_to_tracker.get(thread_id) - if tracker is None: - return None - return tracker.get_frames_list(thread_id) - - @contextmanager - def track_frames(self, py_db): - tracker = _FramesTracker(self, py_db) - try: - yield tracker - finally: - tracker.untrack_all() - - def add_fake_frame(self, thread_id, frame_id, frame): - self._thread_id_to_fake_frames.setdefault(thread_id, {})[int(frame_id)] = frame - - def find_frame(self, thread_id, frame_id): - try: - if frame_id == "*": - return get_frame() # any frame is specified with "*" - frame_id = int(frame_id) - - fake_frames = self._thread_id_to_fake_frames.get(thread_id) - if fake_frames is not None: - frame = fake_frames.get(frame_id) - if frame is not None: - return frame - - frames_tracker = self._thread_id_to_tracker.get(thread_id) - if frames_tracker is not None: - frame = frames_tracker.find_frame(thread_id, frame_id) - if frame is not None: - return frame - - return None - except: - pydev_log.exception() - return None diff --git a/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/debugpy/_vendored/pydevd/pydevd_plugins/extensions/types/pydevd_plugin_numpy_types.py b/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/debugpy/_vendored/pydevd/pydevd_plugins/extensions/types/pydevd_plugin_numpy_types.py deleted file mode 100644 index 571f7a9cbe84d74cbde011427c7afe012deb69e9..0000000000000000000000000000000000000000 --- a/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/debugpy/_vendored/pydevd/pydevd_plugins/extensions/types/pydevd_plugin_numpy_types.py +++ /dev/null @@ -1,90 +0,0 @@ -from _pydevd_bundle.pydevd_extension_api import TypeResolveProvider -from _pydevd_bundle.pydevd_resolver import defaultResolver -from .pydevd_helpers import find_mod_attr -from _pydevd_bundle import pydevd_constants - -TOO_LARGE_MSG = 'Maximum number of items (%s) reached. To show more items customize the value of the PYDEVD_CONTAINER_NUMPY_MAX_ITEMS environment variable.' -TOO_LARGE_ATTR = 'Unable to handle:' - - -class NdArrayItemsContainer(object): - pass - - -class NDArrayTypeResolveProvider(object): - ''' - This resolves a numpy ndarray returning some metadata about the NDArray - ''' - - def can_provide(self, type_object, type_name): - nd_array = find_mod_attr('numpy', 'ndarray') - return nd_array is not None and issubclass(type_object, nd_array) - - def is_numeric(self, obj): - if not hasattr(obj, 'dtype'): - return False - return obj.dtype.kind in 'biufc' - - def resolve(self, obj, attribute): - if attribute == '__internals__': - return defaultResolver.get_dictionary(obj) - if attribute == 'min': - if self.is_numeric(obj) and obj.size > 0: - return obj.min() - else: - return None - if attribute == 'max': - if self.is_numeric(obj) and obj.size > 0: - return obj.max() - else: - return None - if attribute == 'shape': - return obj.shape - if attribute == 'dtype': - return obj.dtype - if attribute == 'size': - return obj.size - if attribute.startswith('['): - container = NdArrayItemsContainer() - i = 0 - format_str = '%0' + str(int(len(str(len(obj))))) + 'd' - for item in obj: - setattr(container, format_str % i, item) - i += 1 - if i >= pydevd_constants.PYDEVD_CONTAINER_NUMPY_MAX_ITEMS: - setattr(container, TOO_LARGE_ATTR, TOO_LARGE_MSG % (pydevd_constants.PYDEVD_CONTAINER_NUMPY_MAX_ITEMS,)) - break - return container - return None - - def get_dictionary(self, obj): - ret = dict() - ret['__internals__'] = defaultResolver.get_dictionary(obj) - if obj.size > 1024 * 1024: - ret['min'] = 'ndarray too big, calculating min would slow down debugging' - ret['max'] = 'ndarray too big, calculating max would slow down debugging' - elif obj.size == 0: - ret['min'] = 'array is empty' - ret['max'] = 'array is empty' - else: - if self.is_numeric(obj): - ret['min'] = obj.min() - ret['max'] = obj.max() - else: - ret['min'] = 'not a numeric object' - ret['max'] = 'not a numeric object' - ret['shape'] = obj.shape - ret['dtype'] = obj.dtype - ret['size'] = obj.size - try: - ret['[0:%s] ' % (len(obj))] = list(obj[0:pydevd_constants.PYDEVD_CONTAINER_NUMPY_MAX_ITEMS]) - except: - # This may not work depending on the array shape. - pass - return ret - - -import sys - -if not sys.platform.startswith("java"): - TypeResolveProvider.register(NDArrayTypeResolveProvider) diff --git a/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/docarray/utils/_internal/cache.py b/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/docarray/utils/_internal/cache.py deleted file mode 100644 index 249c4f9d179604e8d2d49f796346e103a465a159..0000000000000000000000000000000000000000 --- a/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/docarray/utils/_internal/cache.py +++ /dev/null @@ -1,17 +0,0 @@ -import os -from functools import lru_cache -from pathlib import Path - - -@lru_cache(maxsize=None) -def _get_cache_path() -> Path: - """ - Get the path to the cache directory. - - :return: The path to the cache directory. - """ - cache_path = Path.home() / '.cache' / 'docarray' - if "DOCARRAY_CACHE" in os.environ: - cache_path = Path(os.environ["DOCARRAY_CACHE"]) - cache_path.mkdir(parents=True, exist_ok=True) - return cache_path diff --git a/spaces/Suniilkumaar/MusicGen-updated/audiocraft/models/loaders.py b/spaces/Suniilkumaar/MusicGen-updated/audiocraft/models/loaders.py deleted file mode 100644 index 97c662c3212b7695669cbfc5214ff2f099c3f319..0000000000000000000000000000000000000000 --- a/spaces/Suniilkumaar/MusicGen-updated/audiocraft/models/loaders.py +++ /dev/null @@ -1,94 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -""" -Utility functions to load from the checkpoints. -Each checkpoint is a torch.saved dict with the following keys: -- 'xp.cfg': the hydra config as dumped during training. This should be used - to rebuild the object using the audiocraft.models.builders functions, -- 'model_best_state': a readily loadable best state for the model, including - the conditioner. The model obtained from `xp.cfg` should be compatible - with this state dict. In the case of a LM, the encodec model would not be - bundled along but instead provided separately. - -Those functions also support loading from a remote location with the Torch Hub API. -They also support overriding some parameters, in particular the device and dtype -of the returned model. -""" - -from pathlib import Path -from huggingface_hub import hf_hub_download -import typing as tp -import os - -from omegaconf import OmegaConf -import torch - -from . import builders - - -HF_MODEL_CHECKPOINTS_MAP = { - "small": "facebook/musicgen-small", - "medium": "facebook/musicgen-medium", - "large": "facebook/musicgen-large", - "melody": "facebook/musicgen-melody", -} - - -def _get_state_dict( - file_or_url_or_id: tp.Union[Path, str], - filename: tp.Optional[str] = None, - device='cpu', - cache_dir: tp.Optional[str] = None, -): - # Return the state dict either from a file or url - file_or_url_or_id = str(file_or_url_or_id) - assert isinstance(file_or_url_or_id, str) - - if os.path.isfile(file_or_url_or_id): - return torch.load(file_or_url_or_id, map_location=device) - - if os.path.isdir(file_or_url_or_id): - file = f"{file_or_url_or_id}/{filename}" - return torch.load(file, map_location=device) - - elif file_or_url_or_id.startswith('https://'): - return torch.hub.load_state_dict_from_url(file_or_url_or_id, map_location=device, check_hash=True) - - elif file_or_url_or_id in HF_MODEL_CHECKPOINTS_MAP: - assert filename is not None, "filename needs to be defined if using HF checkpoints" - - repo_id = HF_MODEL_CHECKPOINTS_MAP[file_or_url_or_id] - file = hf_hub_download(repo_id=repo_id, filename=filename, cache_dir=cache_dir) - return torch.load(file, map_location=device) - - else: - raise ValueError(f"{file_or_url_or_id} is not a valid name, path or link that can be loaded.") - - -def load_compression_model(file_or_url_or_id: tp.Union[Path, str], device='cpu', cache_dir: tp.Optional[str] = None): - pkg = _get_state_dict(file_or_url_or_id, filename="compression_state_dict.bin", cache_dir=cache_dir) - cfg = OmegaConf.create(pkg['xp.cfg']) - cfg.device = str(device) - model = builders.get_compression_model(cfg) - model.load_state_dict(pkg['best_state']) - model.eval() - return model - - -def load_lm_model(file_or_url_or_id: tp.Union[Path, str], device='cpu', cache_dir: tp.Optional[str] = None): - pkg = _get_state_dict(file_or_url_or_id, filename="state_dict.bin", cache_dir=cache_dir) - cfg = OmegaConf.create(pkg['xp.cfg']) - cfg.device = str(device) - if cfg.device == 'cpu': - cfg.dtype = 'float32' - else: - cfg.dtype = 'float16' - model = builders.get_lm_model(cfg) - model.load_state_dict(pkg['best_state']) - model.eval() - model.cfg = cfg - return model diff --git a/spaces/Thaweewat/ControlNet-Architecture/ldm/modules/diffusionmodules/upscaling.py b/spaces/Thaweewat/ControlNet-Architecture/ldm/modules/diffusionmodules/upscaling.py deleted file mode 100644 index 03816662098ce1ffac79bd939b892e867ab91988..0000000000000000000000000000000000000000 --- a/spaces/Thaweewat/ControlNet-Architecture/ldm/modules/diffusionmodules/upscaling.py +++ /dev/null @@ -1,81 +0,0 @@ -import torch -import torch.nn as nn -import numpy as np -from functools import partial - -from ldm.modules.diffusionmodules.util import extract_into_tensor, make_beta_schedule -from ldm.util import default - - -class AbstractLowScaleModel(nn.Module): - # for concatenating a downsampled image to the latent representation - def __init__(self, noise_schedule_config=None): - super(AbstractLowScaleModel, self).__init__() - if noise_schedule_config is not None: - self.register_schedule(**noise_schedule_config) - - def register_schedule(self, beta_schedule="linear", timesteps=1000, - linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): - betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, - cosine_s=cosine_s) - alphas = 1. - betas - alphas_cumprod = np.cumprod(alphas, axis=0) - alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) - - timesteps, = betas.shape - self.num_timesteps = int(timesteps) - self.linear_start = linear_start - self.linear_end = linear_end - assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep' - - to_torch = partial(torch.tensor, dtype=torch.float32) - - self.register_buffer('betas', to_torch(betas)) - self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) - self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) - - # calculations for diffusion q(x_t | x_{t-1}) and others - self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) - self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) - self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) - self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) - self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) - - def q_sample(self, x_start, t, noise=None): - noise = default(noise, lambda: torch.randn_like(x_start)) - return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) - - def forward(self, x): - return x, None - - def decode(self, x): - return x - - -class SimpleImageConcat(AbstractLowScaleModel): - # no noise level conditioning - def __init__(self): - super(SimpleImageConcat, self).__init__(noise_schedule_config=None) - self.max_noise_level = 0 - - def forward(self, x): - # fix to constant noise level - return x, torch.zeros(x.shape[0], device=x.device).long() - - -class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel): - def __init__(self, noise_schedule_config, max_noise_level=1000, to_cuda=False): - super().__init__(noise_schedule_config=noise_schedule_config) - self.max_noise_level = max_noise_level - - def forward(self, x, noise_level=None): - if noise_level is None: - noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long() - else: - assert isinstance(noise_level, torch.Tensor) - z = self.q_sample(x, noise_level) - return z, noise_level - - - diff --git a/spaces/Time-travelRephotography/Time-travel_Rephotography/app.py b/spaces/Time-travelRephotography/Time-travel_Rephotography/app.py deleted file mode 100644 index f22f259d84dd634dd567e2f923bad84afd6bae16..0000000000000000000000000000000000000000 --- a/spaces/Time-travelRephotography/Time-travel_Rephotography/app.py +++ /dev/null @@ -1,9 +0,0 @@ -import gradio as gr -description = "BigGAN text-to-image demo." -title = "BigGAN ImageNet" -interface = gr.Interface.load("huggingface/osanseviero/BigGAN-deep-128", - description=description, - title = title, - examples=[["american robin"]] -) -interface.launch() \ No newline at end of file diff --git a/spaces/TrustSafeAI/NCTV/assets/css/bootstrap/bootstrap.rtl.css b/spaces/TrustSafeAI/NCTV/assets/css/bootstrap/bootstrap.rtl.css deleted file mode 100644 index a18da6ae01bad82437558f9e0e7b02e4d2372611..0000000000000000000000000000000000000000 --- a/spaces/TrustSafeAI/NCTV/assets/css/bootstrap/bootstrap.rtl.css +++ /dev/null @@ -1,11242 +0,0 @@ -@charset "UTF-8"; -/*! - * Bootstrap v5.1.3 (https://getbootstrap.com/) - * Copyright 2011-2021 The Bootstrap Authors - * Copyright 2011-2021 Twitter, Inc. - * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE) - */ -:root { - --bs-blue: #0d6efd; - --bs-indigo: #6610f2; - --bs-purple: #6f42c1; - --bs-pink: #d63384; - --bs-red: #dc3545; - --bs-orange: #fd7e14; - --bs-yellow: #ffc107; - --bs-green: #198754; - --bs-teal: #20c997; - --bs-cyan: #0dcaf0; - --bs-white: #fff; - --bs-gray: #6c757d; - --bs-gray-dark: #343a40; - --bs-gray-100: #f8f9fa; - --bs-gray-200: #e9ecef; - --bs-gray-300: #dee2e6; - --bs-gray-400: #ced4da; - --bs-gray-500: #adb5bd; - --bs-gray-600: #6c757d; - --bs-gray-700: #495057; - --bs-gray-800: #343a40; - --bs-gray-900: #212529; - --bs-primary: #0d6efd; - --bs-secondary: #6c757d; - --bs-success: #198754; - --bs-info: #0dcaf0; - --bs-warning: #ffc107; - --bs-danger: #dc3545; - --bs-light: #f8f9fa; - --bs-dark: #212529; - --bs-primary-rgb: 13, 110, 253; - --bs-secondary-rgb: 108, 117, 125; - --bs-success-rgb: 25, 135, 84; - --bs-info-rgb: 13, 202, 240; - --bs-warning-rgb: 255, 193, 7; - --bs-danger-rgb: 220, 53, 69; - --bs-light-rgb: 248, 249, 250; - --bs-dark-rgb: 33, 37, 41; - --bs-white-rgb: 255, 255, 255; - --bs-black-rgb: 0, 0, 0; - --bs-body-color-rgb: 33, 37, 41; - --bs-body-bg-rgb: 255, 255, 255; - --bs-font-sans-serif: system-ui, -apple-system, "Segoe UI", Roboto, "Helvetica Neue", Arial, "Noto Sans", "Liberation Sans", sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji"; - --bs-font-monospace: SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace; - --bs-gradient: linear-gradient(180deg, rgba(255, 255, 255, 0.15), rgba(255, 255, 255, 0)); - --bs-body-font-family: var(--bs-font-sans-serif); - --bs-body-font-size: 1rem; - --bs-body-font-weight: 400; - --bs-body-line-height: 1.5; - --bs-body-color: #212529; - --bs-body-bg: #fff; -} - -*, -*::before, -*::after { - box-sizing: border-box; -} - -@media (prefers-reduced-motion: no-preference) { - :root { - scroll-behavior: smooth; - } -} - -body { - margin: 0; - font-family: var(--bs-body-font-family); - font-size: var(--bs-body-font-size); - font-weight: var(--bs-body-font-weight); - line-height: var(--bs-body-line-height); - color: var(--bs-body-color); - text-align: var(--bs-body-text-align); - background-color: var(--bs-body-bg); - -webkit-text-size-adjust: 100%; - -webkit-tap-highlight-color: rgba(0, 0, 0, 0); -} - -hr { - margin: 1rem 0; - color: inherit; - background-color: currentColor; - border: 0; - opacity: 0.25; -} - -hr:not([size]) { - height: 1px; -} - -h6, .h6, h5, .h5, h4, .h4, h3, .h3, h2, .h2, h1, .h1 { - margin-top: 0; - margin-bottom: 0.5rem; - font-weight: 500; - line-height: 1.2; -} - -h1, .h1 { - font-size: calc(1.375rem + 1.5vw); -} -@media (min-width: 1200px) { - h1, .h1 { - font-size: 2.5rem; - } -} - -h2, .h2 { - font-size: calc(1.325rem + 0.9vw); -} -@media (min-width: 1200px) { - h2, .h2 { - font-size: 2rem; - } -} - -h3, .h3 { - font-size: calc(1.3rem + 0.6vw); -} -@media (min-width: 1200px) { - h3, .h3 { - font-size: 1.75rem; - } -} - -h4, .h4 { - font-size: calc(1.275rem + 0.3vw); -} -@media (min-width: 1200px) { - h4, .h4 { - font-size: 1.5rem; - } -} - -h5, .h5 { - font-size: 1.25rem; -} - -h6, .h6 { - font-size: 1rem; -} - -p { - margin-top: 0; - margin-bottom: 1rem; -} - -abbr[title], -abbr[data-bs-original-title] { - -webkit-text-decoration: underline dotted; - text-decoration: underline dotted; - cursor: help; - -webkit-text-decoration-skip-ink: none; - text-decoration-skip-ink: none; -} - -address { - margin-bottom: 1rem; - font-style: normal; - line-height: inherit; -} - -ol, -ul { - padding-right: 2rem; -} - -ol, -ul, -dl { - margin-top: 0; - margin-bottom: 1rem; -} - -ol ol, -ul ul, -ol ul, -ul ol { - margin-bottom: 0; -} - -dt { - font-weight: 700; -} - -dd { - margin-bottom: 0.5rem; - margin-right: 0; -} - -blockquote { - margin: 0 0 1rem; -} - -b, -strong { - font-weight: bolder; -} - -small, .small { - font-size: 0.875em; -} - -mark, .mark { - padding: 0.2em; - background-color: #fcf8e3; -} - -sub, -sup { - position: relative; - font-size: 0.75em; - line-height: 0; - vertical-align: baseline; -} - -sub { - bottom: -0.25em; -} - -sup { - top: -0.5em; -} - -a { - color: #0d6efd; - text-decoration: underline; -} -a:hover { - color: #0a58ca; -} - -a:not([href]):not([class]), a:not([href]):not([class]):hover { - color: inherit; - text-decoration: none; -} - -pre, -code, -kbd, -samp { - font-family: var(--bs-font-monospace); - font-size: 1em; - direction: ltr ; - unicode-bidi: bidi-override; -} - -pre { - display: block; - margin-top: 0; - margin-bottom: 1rem; - overflow: auto; - font-size: 0.875em; -} -pre code { - font-size: inherit; - color: inherit; - word-break: normal; -} - -code { - font-size: 0.875em; - color: #d63384; - word-wrap: break-word; -} -a > code { - color: inherit; -} - -kbd { - padding: 0.2rem 0.4rem; - font-size: 0.875em; - color: #fff; - background-color: #212529; - border-radius: 0.2rem; -} -kbd kbd { - padding: 0; - font-size: 1em; - font-weight: 700; -} - -figure { - margin: 0 0 1rem; -} - -img, -svg { - vertical-align: middle; -} - -table { - caption-side: bottom; - border-collapse: collapse; -} - -caption { - padding-top: 0.5rem; - padding-bottom: 0.5rem; - color: #6c757d; - text-align: right; -} - -th { - text-align: inherit; - text-align: -webkit-match-parent; -} - -thead, -tbody, -tfoot, -tr, -td, -th { - border-color: inherit; - border-style: solid; - border-width: 0; -} - -label { - display: inline-block; -} - -button { - border-radius: 0; -} - -button:focus:not(:focus-visible) { - outline: 0; -} - -input, -button, -select, -optgroup, -textarea { - margin: 0; - font-family: inherit; - font-size: inherit; - line-height: inherit; -} - -button, -select { - text-transform: none; -} - -[role=button] { - cursor: pointer; -} - -select { - word-wrap: normal; -} -select:disabled { - opacity: 1; -} - -[list]::-webkit-calendar-picker-indicator { - display: none; -} - -button, -[type=button], -[type=reset], -[type=submit] { - -webkit-appearance: button; -} -button:not(:disabled), -[type=button]:not(:disabled), -[type=reset]:not(:disabled), -[type=submit]:not(:disabled) { - cursor: pointer; -} - -::-moz-focus-inner { - padding: 0; - border-style: none; -} - -textarea { - resize: vertical; -} - -fieldset { - min-width: 0; - padding: 0; - margin: 0; - border: 0; -} - -legend { - float: right; - width: 100%; - padding: 0; - margin-bottom: 0.5rem; - font-size: calc(1.275rem + 0.3vw); - line-height: inherit; -} -@media (min-width: 1200px) { - legend { - font-size: 1.5rem; - } -} -legend + * { - clear: right; -} - -::-webkit-datetime-edit-fields-wrapper, -::-webkit-datetime-edit-text, -::-webkit-datetime-edit-minute, -::-webkit-datetime-edit-hour-field, -::-webkit-datetime-edit-day-field, -::-webkit-datetime-edit-month-field, -::-webkit-datetime-edit-year-field { - padding: 0; -} - -::-webkit-inner-spin-button { - height: auto; -} - -[type=search] { - outline-offset: -2px; - -webkit-appearance: textfield; -} - -[type="tel"], -[type="url"], -[type="email"], -[type="number"] { - direction: ltr; -} -::-webkit-search-decoration { - -webkit-appearance: none; -} - -::-webkit-color-swatch-wrapper { - padding: 0; -} - -::-webkit-file-upload-button { - font: inherit; -} - -::file-selector-button { - font: inherit; -} - -::-webkit-file-upload-button { - font: inherit; - -webkit-appearance: button; -} - -output { - display: inline-block; -} - -iframe { - border: 0; -} - -summary { - display: list-item; - cursor: pointer; -} - -progress { - vertical-align: baseline; -} - -[hidden] { - display: none !important; -} - -.lead { - font-size: 1.25rem; - font-weight: 300; -} - -.display-1 { - font-size: calc(1.625rem + 4.5vw); - font-weight: 300; - line-height: 1.2; -} -@media (min-width: 1200px) { - .display-1 { - font-size: 5rem; - } -} - -.display-2 { - font-size: calc(1.575rem + 3.9vw); - font-weight: 300; - line-height: 1.2; -} -@media (min-width: 1200px) { - .display-2 { - font-size: 4.5rem; - } -} - -.display-3 { - font-size: calc(1.525rem + 3.3vw); - font-weight: 300; - line-height: 1.2; -} -@media (min-width: 1200px) { - .display-3 { - font-size: 4rem; - } -} - -.display-4 { - font-size: calc(1.475rem + 2.7vw); - font-weight: 300; - line-height: 1.2; -} -@media (min-width: 1200px) { - .display-4 { - font-size: 3.5rem; - } -} - -.display-5 { - font-size: calc(1.425rem + 2.1vw); - font-weight: 300; - line-height: 1.2; -} -@media (min-width: 1200px) { - .display-5 { - font-size: 3rem; - } -} - -.display-6 { - font-size: calc(1.375rem + 1.5vw); - font-weight: 300; - line-height: 1.2; -} -@media (min-width: 1200px) { - .display-6 { - font-size: 2.5rem; - } -} - -.list-unstyled { - padding-right: 0; - list-style: none; -} - -.list-inline { - padding-right: 0; - list-style: none; -} - -.list-inline-item { - display: inline-block; -} -.list-inline-item:not(:last-child) { - margin-left: 0.5rem; -} - -.initialism { - font-size: 0.875em; - text-transform: uppercase; -} - -.blockquote { - margin-bottom: 1rem; - font-size: 1.25rem; -} -.blockquote > :last-child { - margin-bottom: 0; -} - -.blockquote-footer { - margin-top: -1rem; - margin-bottom: 1rem; - font-size: 0.875em; - color: #6c757d; -} -.blockquote-footer::before { - content: "— "; -} - -.img-fluid { - max-width: 100%; - height: auto; -} - -.img-thumbnail { - padding: 0.25rem; - background-color: #fff; - border: 1px solid #dee2e6; - border-radius: 0.25rem; - max-width: 100%; - height: auto; -} - -.figure { - display: inline-block; -} - -.figure-img { - margin-bottom: 0.5rem; - line-height: 1; -} - -.figure-caption { - font-size: 0.875em; - color: #6c757d; -} - -.container, -.container-fluid, -.container-xxl, -.container-xl, -.container-lg, -.container-md, -.container-sm { - width: 100%; - padding-left: var(--bs-gutter-x, 0.75rem); - padding-right: var(--bs-gutter-x, 0.75rem); - margin-left: auto; - margin-right: auto; -} - -@media (min-width: 576px) { - .container-sm, .container { - max-width: 540px; - } -} -@media (min-width: 768px) { - .container-md, .container-sm, .container { - max-width: 720px; - } -} -@media (min-width: 992px) { - .container-lg, .container-md, .container-sm, .container { - max-width: 960px; - } -} -@media (min-width: 1200px) { - .container-xl, .container-lg, .container-md, .container-sm, .container { - max-width: 1140px; - } -} -@media (min-width: 1400px) { - .container-xxl, .container-xl, .container-lg, .container-md, .container-sm, .container { - max-width: 1320px; - } -} -.row { - --bs-gutter-x: 1.5rem; - --bs-gutter-y: 0; - display: flex; - flex-wrap: wrap; - margin-top: calc(-1 * var(--bs-gutter-y)); - margin-left: calc(-0.5 * var(--bs-gutter-x)); - margin-right: calc(-0.5 * var(--bs-gutter-x)); -} -.row > * { - flex-shrink: 0; - width: 100%; - max-width: 100%; - padding-left: calc(var(--bs-gutter-x) * 0.5); - padding-right: calc(var(--bs-gutter-x) * 0.5); - margin-top: var(--bs-gutter-y); -} - -.col { - flex: 1 0 0%; -} - -.row-cols-auto > * { - flex: 0 0 auto; - width: auto; -} - -.row-cols-1 > * { - flex: 0 0 auto; - width: 100%; -} - -.row-cols-2 > * { - flex: 0 0 auto; - width: 50%; -} - -.row-cols-3 > * { - flex: 0 0 auto; - width: 33.3333333333%; -} - -.row-cols-4 > * { - flex: 0 0 auto; - width: 25%; -} - -.row-cols-5 > * { - flex: 0 0 auto; - width: 20%; -} - -.row-cols-6 > * { - flex: 0 0 auto; - width: 16.6666666667%; -} - -.col-auto { - flex: 0 0 auto; - width: auto; -} - -.col-1 { - flex: 0 0 auto; - width: 8.33333333%; -} - -.col-2 { - flex: 0 0 auto; - width: 16.66666667%; -} - -.col-3 { - flex: 0 0 auto; - width: 25%; -} - -.col-4 { - flex: 0 0 auto; - width: 33.33333333%; -} - -.col-5 { - flex: 0 0 auto; - width: 41.66666667%; -} - -.col-6 { - flex: 0 0 auto; - width: 50%; -} - -.col-7 { - flex: 0 0 auto; - width: 58.33333333%; -} - -.col-8 { - flex: 0 0 auto; - width: 66.66666667%; -} - -.col-9 { - flex: 0 0 auto; - width: 75%; -} - -.col-10 { - flex: 0 0 auto; - width: 83.33333333%; -} - -.col-11 { - flex: 0 0 auto; - width: 91.66666667%; -} - -.col-12 { - flex: 0 0 auto; - width: 100%; -} - -.offset-1 { - margin-right: 8.33333333%; -} - -.offset-2 { - margin-right: 16.66666667%; -} - -.offset-3 { - margin-right: 25%; -} - -.offset-4 { - margin-right: 33.33333333%; -} - -.offset-5 { - margin-right: 41.66666667%; -} - -.offset-6 { - margin-right: 50%; -} - -.offset-7 { - margin-right: 58.33333333%; -} - -.offset-8 { - margin-right: 66.66666667%; -} - -.offset-9 { - margin-right: 75%; -} - -.offset-10 { - margin-right: 83.33333333%; -} - -.offset-11 { - margin-right: 91.66666667%; -} - -.g-0, -.gx-0 { - --bs-gutter-x: 0; -} - -.g-0, -.gy-0 { - --bs-gutter-y: 0; -} - -.g-1, -.gx-1 { - --bs-gutter-x: 0.25rem; -} - -.g-1, -.gy-1 { - --bs-gutter-y: 0.25rem; -} - -.g-2, -.gx-2 { - --bs-gutter-x: 0.5rem; -} - -.g-2, -.gy-2 { - --bs-gutter-y: 0.5rem; -} - -.g-3, -.gx-3 { - --bs-gutter-x: 1rem; -} - -.g-3, -.gy-3 { - --bs-gutter-y: 1rem; -} - -.g-4, -.gx-4 { - --bs-gutter-x: 1.5rem; -} - -.g-4, -.gy-4 { - --bs-gutter-y: 1.5rem; -} - -.g-5, -.gx-5 { - --bs-gutter-x: 3rem; -} - -.g-5, -.gy-5 { - --bs-gutter-y: 3rem; -} - -@media (min-width: 576px) { - .col-sm { - flex: 1 0 0%; - } - - .row-cols-sm-auto > * { - flex: 0 0 auto; - width: auto; - } - - .row-cols-sm-1 > * { - flex: 0 0 auto; - width: 100%; - } - - .row-cols-sm-2 > * { - flex: 0 0 auto; - width: 50%; - } - - .row-cols-sm-3 > * { - flex: 0 0 auto; - width: 33.3333333333%; - } - - .row-cols-sm-4 > * { - flex: 0 0 auto; - width: 25%; - } - - .row-cols-sm-5 > * { - flex: 0 0 auto; - width: 20%; - } - - .row-cols-sm-6 > * { - flex: 0 0 auto; - width: 16.6666666667%; - } - - .col-sm-auto { - flex: 0 0 auto; - width: auto; - } - - .col-sm-1 { - flex: 0 0 auto; - width: 8.33333333%; - } - - .col-sm-2 { - flex: 0 0 auto; - width: 16.66666667%; - } - - .col-sm-3 { - flex: 0 0 auto; - width: 25%; - } - - .col-sm-4 { - flex: 0 0 auto; - width: 33.33333333%; - } - - .col-sm-5 { - flex: 0 0 auto; - width: 41.66666667%; - } - - .col-sm-6 { - flex: 0 0 auto; - width: 50%; - } - - .col-sm-7 { - flex: 0 0 auto; - width: 58.33333333%; - } - - .col-sm-8 { - flex: 0 0 auto; - width: 66.66666667%; - } - - .col-sm-9 { - flex: 0 0 auto; - width: 75%; - } - - .col-sm-10 { - flex: 0 0 auto; - width: 83.33333333%; - } - - .col-sm-11 { - flex: 0 0 auto; - width: 91.66666667%; - } - - .col-sm-12 { - flex: 0 0 auto; - width: 100%; - } - - .offset-sm-0 { - margin-right: 0; - } - - .offset-sm-1 { - margin-right: 8.33333333%; - } - - .offset-sm-2 { - margin-right: 16.66666667%; - } - - .offset-sm-3 { - margin-right: 25%; - } - - .offset-sm-4 { - margin-right: 33.33333333%; - } - - .offset-sm-5 { - margin-right: 41.66666667%; - } - - .offset-sm-6 { - margin-right: 50%; - } - - .offset-sm-7 { - margin-right: 58.33333333%; - } - - .offset-sm-8 { - margin-right: 66.66666667%; - } - - .offset-sm-9 { - margin-right: 75%; - } - - .offset-sm-10 { - margin-right: 83.33333333%; - } - - .offset-sm-11 { - margin-right: 91.66666667%; - } - - .g-sm-0, -.gx-sm-0 { - --bs-gutter-x: 0; - } - - .g-sm-0, -.gy-sm-0 { - --bs-gutter-y: 0; - } - - .g-sm-1, -.gx-sm-1 { - --bs-gutter-x: 0.25rem; - } - - .g-sm-1, -.gy-sm-1 { - --bs-gutter-y: 0.25rem; - } - - .g-sm-2, -.gx-sm-2 { - --bs-gutter-x: 0.5rem; - } - - .g-sm-2, -.gy-sm-2 { - --bs-gutter-y: 0.5rem; - } - - .g-sm-3, -.gx-sm-3 { - --bs-gutter-x: 1rem; - } - - .g-sm-3, -.gy-sm-3 { - --bs-gutter-y: 1rem; - } - - .g-sm-4, -.gx-sm-4 { - --bs-gutter-x: 1.5rem; - } - - .g-sm-4, -.gy-sm-4 { - --bs-gutter-y: 1.5rem; - } - - .g-sm-5, -.gx-sm-5 { - --bs-gutter-x: 3rem; - } - - .g-sm-5, -.gy-sm-5 { - --bs-gutter-y: 3rem; - } -} -@media (min-width: 768px) { - .col-md { - flex: 1 0 0%; - } - - .row-cols-md-auto > * { - flex: 0 0 auto; - width: auto; - } - - .row-cols-md-1 > * { - flex: 0 0 auto; - width: 100%; - } - - .row-cols-md-2 > * { - flex: 0 0 auto; - width: 50%; - } - - .row-cols-md-3 > * { - flex: 0 0 auto; - width: 33.3333333333%; - } - - .row-cols-md-4 > * { - flex: 0 0 auto; - width: 25%; - } - - .row-cols-md-5 > * { - flex: 0 0 auto; - width: 20%; - } - - .row-cols-md-6 > * { - flex: 0 0 auto; - width: 16.6666666667%; - } - - .col-md-auto { - flex: 0 0 auto; - width: auto; - } - - .col-md-1 { - flex: 0 0 auto; - width: 8.33333333%; - } - - .col-md-2 { - flex: 0 0 auto; - width: 16.66666667%; - } - - .col-md-3 { - flex: 0 0 auto; - width: 25%; - } - - .col-md-4 { - flex: 0 0 auto; - width: 33.33333333%; - } - - .col-md-5 { - flex: 0 0 auto; - width: 41.66666667%; - } - - .col-md-6 { - flex: 0 0 auto; - width: 50%; - } - - .col-md-7 { - flex: 0 0 auto; - width: 58.33333333%; - } - - .col-md-8 { - flex: 0 0 auto; - width: 66.66666667%; - } - - .col-md-9 { - flex: 0 0 auto; - width: 75%; - } - - .col-md-10 { - flex: 0 0 auto; - width: 83.33333333%; - } - - .col-md-11 { - flex: 0 0 auto; - width: 91.66666667%; - } - - .col-md-12 { - flex: 0 0 auto; - width: 100%; - } - - .offset-md-0 { - margin-right: 0; - } - - .offset-md-1 { - margin-right: 8.33333333%; - } - - .offset-md-2 { - margin-right: 16.66666667%; - } - - .offset-md-3 { - margin-right: 25%; - } - - .offset-md-4 { - margin-right: 33.33333333%; - } - - .offset-md-5 { - margin-right: 41.66666667%; - } - - .offset-md-6 { - margin-right: 50%; - } - - .offset-md-7 { - margin-right: 58.33333333%; - } - - .offset-md-8 { - margin-right: 66.66666667%; - } - - .offset-md-9 { - margin-right: 75%; - } - - .offset-md-10 { - margin-right: 83.33333333%; - } - - .offset-md-11 { - margin-right: 91.66666667%; - } - - .g-md-0, -.gx-md-0 { - --bs-gutter-x: 0; - } - - .g-md-0, -.gy-md-0 { - --bs-gutter-y: 0; - } - - .g-md-1, -.gx-md-1 { - --bs-gutter-x: 0.25rem; - } - - .g-md-1, -.gy-md-1 { - --bs-gutter-y: 0.25rem; - } - - .g-md-2, -.gx-md-2 { - --bs-gutter-x: 0.5rem; - } - - .g-md-2, -.gy-md-2 { - --bs-gutter-y: 0.5rem; - } - - .g-md-3, -.gx-md-3 { - --bs-gutter-x: 1rem; - } - - .g-md-3, -.gy-md-3 { - --bs-gutter-y: 1rem; - } - - .g-md-4, -.gx-md-4 { - --bs-gutter-x: 1.5rem; - } - - .g-md-4, -.gy-md-4 { - --bs-gutter-y: 1.5rem; - } - - .g-md-5, -.gx-md-5 { - --bs-gutter-x: 3rem; - } - - .g-md-5, -.gy-md-5 { - --bs-gutter-y: 3rem; - } -} -@media (min-width: 992px) { - .col-lg { - flex: 1 0 0%; - } - - .row-cols-lg-auto > * { - flex: 0 0 auto; - width: auto; - } - - .row-cols-lg-1 > * { - flex: 0 0 auto; - width: 100%; - } - - .row-cols-lg-2 > * { - flex: 0 0 auto; - width: 50%; - } - - .row-cols-lg-3 > * { - flex: 0 0 auto; - width: 33.3333333333%; - } - - .row-cols-lg-4 > * { - flex: 0 0 auto; - width: 25%; - } - - .row-cols-lg-5 > * { - flex: 0 0 auto; - width: 20%; - } - - .row-cols-lg-6 > * { - flex: 0 0 auto; - width: 16.6666666667%; - } - - .col-lg-auto { - flex: 0 0 auto; - width: auto; - } - - .col-lg-1 { - flex: 0 0 auto; - width: 8.33333333%; - } - - .col-lg-2 { - flex: 0 0 auto; - width: 16.66666667%; - } - - .col-lg-3 { - flex: 0 0 auto; - width: 25%; - } - - .col-lg-4 { - flex: 0 0 auto; - width: 33.33333333%; - } - - .col-lg-5 { - flex: 0 0 auto; - width: 41.66666667%; - } - - .col-lg-6 { - flex: 0 0 auto; - width: 50%; - } - - .col-lg-7 { - flex: 0 0 auto; - width: 58.33333333%; - } - - .col-lg-8 { - flex: 0 0 auto; - width: 66.66666667%; - } - - .col-lg-9 { - flex: 0 0 auto; - width: 75%; - } - - .col-lg-10 { - flex: 0 0 auto; - width: 83.33333333%; - } - - .col-lg-11 { - flex: 0 0 auto; - width: 91.66666667%; - } - - .col-lg-12 { - flex: 0 0 auto; - width: 100%; - } - - .offset-lg-0 { - margin-right: 0; - } - - .offset-lg-1 { - margin-right: 8.33333333%; - } - - .offset-lg-2 { - margin-right: 16.66666667%; - } - - .offset-lg-3 { - margin-right: 25%; - } - - .offset-lg-4 { - margin-right: 33.33333333%; - } - - .offset-lg-5 { - margin-right: 41.66666667%; - } - - .offset-lg-6 { - margin-right: 50%; - } - - .offset-lg-7 { - margin-right: 58.33333333%; - } - - .offset-lg-8 { - margin-right: 66.66666667%; - } - - .offset-lg-9 { - margin-right: 75%; - } - - .offset-lg-10 { - margin-right: 83.33333333%; - } - - .offset-lg-11 { - margin-right: 91.66666667%; - } - - .g-lg-0, -.gx-lg-0 { - --bs-gutter-x: 0; - } - - .g-lg-0, -.gy-lg-0 { - --bs-gutter-y: 0; - } - - .g-lg-1, -.gx-lg-1 { - --bs-gutter-x: 0.25rem; - } - - .g-lg-1, -.gy-lg-1 { - --bs-gutter-y: 0.25rem; - } - - .g-lg-2, -.gx-lg-2 { - --bs-gutter-x: 0.5rem; - } - - .g-lg-2, -.gy-lg-2 { - --bs-gutter-y: 0.5rem; - } - - .g-lg-3, -.gx-lg-3 { - --bs-gutter-x: 1rem; - } - - .g-lg-3, -.gy-lg-3 { - --bs-gutter-y: 1rem; - } - - .g-lg-4, -.gx-lg-4 { - --bs-gutter-x: 1.5rem; - } - - .g-lg-4, -.gy-lg-4 { - --bs-gutter-y: 1.5rem; - } - - .g-lg-5, -.gx-lg-5 { - --bs-gutter-x: 3rem; - } - - .g-lg-5, -.gy-lg-5 { - --bs-gutter-y: 3rem; - } -} -@media (min-width: 1200px) { - .col-xl { - flex: 1 0 0%; - } - - .row-cols-xl-auto > * { - flex: 0 0 auto; - width: auto; - } - - .row-cols-xl-1 > * { - flex: 0 0 auto; - width: 100%; - } - - .row-cols-xl-2 > * { - flex: 0 0 auto; - width: 50%; - } - - .row-cols-xl-3 > * { - flex: 0 0 auto; - width: 33.3333333333%; - } - - .row-cols-xl-4 > * { - flex: 0 0 auto; - width: 25%; - } - - .row-cols-xl-5 > * { - flex: 0 0 auto; - width: 20%; - } - - .row-cols-xl-6 > * { - flex: 0 0 auto; - width: 16.6666666667%; - } - - .col-xl-auto { - flex: 0 0 auto; - width: auto; - } - - .col-xl-1 { - flex: 0 0 auto; - width: 8.33333333%; - } - - .col-xl-2 { - flex: 0 0 auto; - width: 16.66666667%; - } - - .col-xl-3 { - flex: 0 0 auto; - width: 25%; - } - - .col-xl-4 { - flex: 0 0 auto; - width: 33.33333333%; - } - - .col-xl-5 { - flex: 0 0 auto; - width: 41.66666667%; - } - - .col-xl-6 { - flex: 0 0 auto; - width: 50%; - } - - .col-xl-7 { - flex: 0 0 auto; - width: 58.33333333%; - } - - .col-xl-8 { - flex: 0 0 auto; - width: 66.66666667%; - } - - .col-xl-9 { - flex: 0 0 auto; - width: 75%; - } - - .col-xl-10 { - flex: 0 0 auto; - width: 83.33333333%; - } - - .col-xl-11 { - flex: 0 0 auto; - width: 91.66666667%; - } - - .col-xl-12 { - flex: 0 0 auto; - width: 100%; - } - - .offset-xl-0 { - margin-right: 0; - } - - .offset-xl-1 { - margin-right: 8.33333333%; - } - - .offset-xl-2 { - margin-right: 16.66666667%; - } - - .offset-xl-3 { - margin-right: 25%; - } - - .offset-xl-4 { - margin-right: 33.33333333%; - } - - .offset-xl-5 { - margin-right: 41.66666667%; - } - - .offset-xl-6 { - margin-right: 50%; - } - - .offset-xl-7 { - margin-right: 58.33333333%; - } - - .offset-xl-8 { - margin-right: 66.66666667%; - } - - .offset-xl-9 { - margin-right: 75%; - } - - .offset-xl-10 { - margin-right: 83.33333333%; - } - - .offset-xl-11 { - margin-right: 91.66666667%; - } - - .g-xl-0, -.gx-xl-0 { - --bs-gutter-x: 0; - } - - .g-xl-0, -.gy-xl-0 { - --bs-gutter-y: 0; - } - - .g-xl-1, -.gx-xl-1 { - --bs-gutter-x: 0.25rem; - } - - .g-xl-1, -.gy-xl-1 { - --bs-gutter-y: 0.25rem; - } - - .g-xl-2, -.gx-xl-2 { - --bs-gutter-x: 0.5rem; - } - - .g-xl-2, -.gy-xl-2 { - --bs-gutter-y: 0.5rem; - } - - .g-xl-3, -.gx-xl-3 { - --bs-gutter-x: 1rem; - } - - .g-xl-3, -.gy-xl-3 { - --bs-gutter-y: 1rem; - } - - .g-xl-4, -.gx-xl-4 { - --bs-gutter-x: 1.5rem; - } - - .g-xl-4, -.gy-xl-4 { - --bs-gutter-y: 1.5rem; - } - - .g-xl-5, -.gx-xl-5 { - --bs-gutter-x: 3rem; - } - - .g-xl-5, -.gy-xl-5 { - --bs-gutter-y: 3rem; - } -} -@media (min-width: 1400px) { - .col-xxl { - flex: 1 0 0%; - } - - .row-cols-xxl-auto > * { - flex: 0 0 auto; - width: auto; - } - - .row-cols-xxl-1 > * { - flex: 0 0 auto; - width: 100%; - } - - .row-cols-xxl-2 > * { - flex: 0 0 auto; - width: 50%; - } - - .row-cols-xxl-3 > * { - flex: 0 0 auto; - width: 33.3333333333%; - } - - .row-cols-xxl-4 > * { - flex: 0 0 auto; - width: 25%; - } - - .row-cols-xxl-5 > * { - flex: 0 0 auto; - width: 20%; - } - - .row-cols-xxl-6 > * { - flex: 0 0 auto; - width: 16.6666666667%; - } - - .col-xxl-auto { - flex: 0 0 auto; - width: auto; - } - - .col-xxl-1 { - flex: 0 0 auto; - width: 8.33333333%; - } - - .col-xxl-2 { - flex: 0 0 auto; - width: 16.66666667%; - } - - .col-xxl-3 { - flex: 0 0 auto; - width: 25%; - } - - .col-xxl-4 { - flex: 0 0 auto; - width: 33.33333333%; - } - - .col-xxl-5 { - flex: 0 0 auto; - width: 41.66666667%; - } - - .col-xxl-6 { - flex: 0 0 auto; - width: 50%; - } - - .col-xxl-7 { - flex: 0 0 auto; - width: 58.33333333%; - } - - .col-xxl-8 { - flex: 0 0 auto; - width: 66.66666667%; - } - - .col-xxl-9 { - flex: 0 0 auto; - width: 75%; - } - - .col-xxl-10 { - flex: 0 0 auto; - width: 83.33333333%; - } - - .col-xxl-11 { - flex: 0 0 auto; - width: 91.66666667%; - } - - .col-xxl-12 { - flex: 0 0 auto; - width: 100%; - } - - .offset-xxl-0 { - margin-right: 0; - } - - .offset-xxl-1 { - margin-right: 8.33333333%; - } - - .offset-xxl-2 { - margin-right: 16.66666667%; - } - - .offset-xxl-3 { - margin-right: 25%; - } - - .offset-xxl-4 { - margin-right: 33.33333333%; - } - - .offset-xxl-5 { - margin-right: 41.66666667%; - } - - .offset-xxl-6 { - margin-right: 50%; - } - - .offset-xxl-7 { - margin-right: 58.33333333%; - } - - .offset-xxl-8 { - margin-right: 66.66666667%; - } - - .offset-xxl-9 { - margin-right: 75%; - } - - .offset-xxl-10 { - margin-right: 83.33333333%; - } - - .offset-xxl-11 { - margin-right: 91.66666667%; - } - - .g-xxl-0, -.gx-xxl-0 { - --bs-gutter-x: 0; - } - - .g-xxl-0, -.gy-xxl-0 { - --bs-gutter-y: 0; - } - - .g-xxl-1, -.gx-xxl-1 { - --bs-gutter-x: 0.25rem; - } - - .g-xxl-1, -.gy-xxl-1 { - --bs-gutter-y: 0.25rem; - } - - .g-xxl-2, -.gx-xxl-2 { - --bs-gutter-x: 0.5rem; - } - - .g-xxl-2, -.gy-xxl-2 { - --bs-gutter-y: 0.5rem; - } - - .g-xxl-3, -.gx-xxl-3 { - --bs-gutter-x: 1rem; - } - - .g-xxl-3, -.gy-xxl-3 { - --bs-gutter-y: 1rem; - } - - .g-xxl-4, -.gx-xxl-4 { - --bs-gutter-x: 1.5rem; - } - - .g-xxl-4, -.gy-xxl-4 { - --bs-gutter-y: 1.5rem; - } - - .g-xxl-5, -.gx-xxl-5 { - --bs-gutter-x: 3rem; - } - - .g-xxl-5, -.gy-xxl-5 { - --bs-gutter-y: 3rem; - } -} -.table { - --bs-table-bg: transparent; - --bs-table-accent-bg: transparent; - --bs-table-striped-color: #212529; - --bs-table-striped-bg: rgba(0, 0, 0, 0.05); - --bs-table-active-color: #212529; - --bs-table-active-bg: rgba(0, 0, 0, 0.1); - --bs-table-hover-color: #212529; - --bs-table-hover-bg: rgba(0, 0, 0, 0.075); - width: 100%; - margin-bottom: 1rem; - color: #212529; - vertical-align: top; - border-color: #dee2e6; -} -.table > :not(caption) > * > * { - padding: 0.5rem 0.5rem; - background-color: var(--bs-table-bg); - border-bottom-width: 1px; - box-shadow: inset 0 0 0 9999px var(--bs-table-accent-bg); -} -.table > tbody { - vertical-align: inherit; -} -.table > thead { - vertical-align: bottom; -} -.table > :not(:first-child) { - border-top: 2px solid currentColor; -} - -.caption-top { - caption-side: top; -} - -.table-sm > :not(caption) > * > * { - padding: 0.25rem 0.25rem; -} - -.table-bordered > :not(caption) > * { - border-width: 1px 0; -} -.table-bordered > :not(caption) > * > * { - border-width: 0 1px; -} - -.table-borderless > :not(caption) > * > * { - border-bottom-width: 0; -} -.table-borderless > :not(:first-child) { - border-top-width: 0; -} - -.table-striped > tbody > tr:nth-of-type(odd) > * { - --bs-table-accent-bg: var(--bs-table-striped-bg); - color: var(--bs-table-striped-color); -} - -.table-active { - --bs-table-accent-bg: var(--bs-table-active-bg); - color: var(--bs-table-active-color); -} - -.table-hover > tbody > tr:hover > * { - --bs-table-accent-bg: var(--bs-table-hover-bg); - color: var(--bs-table-hover-color); -} - -.table-primary { - --bs-table-bg: #cfe2ff; - --bs-table-striped-bg: #c5d7f2; - --bs-table-striped-color: #000; - --bs-table-active-bg: #bacbe6; - --bs-table-active-color: #000; - --bs-table-hover-bg: #bfd1ec; - --bs-table-hover-color: #000; - color: #000; - border-color: #bacbe6; -} - -.table-secondary { - --bs-table-bg: #e2e3e5; - --bs-table-striped-bg: #d7d8da; - --bs-table-striped-color: #000; - --bs-table-active-bg: #cbccce; - --bs-table-active-color: #000; - --bs-table-hover-bg: #d1d2d4; - --bs-table-hover-color: #000; - color: #000; - border-color: #cbccce; -} - -.table-success { - --bs-table-bg: #d1e7dd; - --bs-table-striped-bg: #c7dbd2; - --bs-table-striped-color: #000; - --bs-table-active-bg: #bcd0c7; - --bs-table-active-color: #000; - --bs-table-hover-bg: #c1d6cc; - --bs-table-hover-color: #000; - color: #000; - border-color: #bcd0c7; -} - -.table-info { - --bs-table-bg: #cff4fc; - --bs-table-striped-bg: #c5e8ef; - --bs-table-striped-color: #000; - --bs-table-active-bg: #badce3; - --bs-table-active-color: #000; - --bs-table-hover-bg: #bfe2e9; - --bs-table-hover-color: #000; - color: #000; - border-color: #badce3; -} - -.table-warning { - --bs-table-bg: #fff3cd; - --bs-table-striped-bg: #f2e7c3; - --bs-table-striped-color: #000; - --bs-table-active-bg: #e6dbb9; - --bs-table-active-color: #000; - --bs-table-hover-bg: #ece1be; - --bs-table-hover-color: #000; - color: #000; - border-color: #e6dbb9; -} - -.table-danger { - --bs-table-bg: #f8d7da; - --bs-table-striped-bg: #eccccf; - --bs-table-striped-color: #000; - --bs-table-active-bg: #dfc2c4; - --bs-table-active-color: #000; - --bs-table-hover-bg: #e5c7ca; - --bs-table-hover-color: #000; - color: #000; - border-color: #dfc2c4; -} - -.table-light { - --bs-table-bg: #f8f9fa; - --bs-table-striped-bg: #ecedee; - --bs-table-striped-color: #000; - --bs-table-active-bg: #dfe0e1; - --bs-table-active-color: #000; - --bs-table-hover-bg: #e5e6e7; - --bs-table-hover-color: #000; - color: #000; - border-color: #dfe0e1; -} - -.table-dark { - --bs-table-bg: #212529; - --bs-table-striped-bg: #2c3034; - --bs-table-striped-color: #fff; - --bs-table-active-bg: #373b3e; - --bs-table-active-color: #fff; - --bs-table-hover-bg: #323539; - --bs-table-hover-color: #fff; - color: #fff; - border-color: #373b3e; -} - -.table-responsive { - overflow-x: auto; - -webkit-overflow-scrolling: touch; -} - -@media (max-width: 575.98px) { - .table-responsive-sm { - overflow-x: auto; - -webkit-overflow-scrolling: touch; - } -} -@media (max-width: 767.98px) { - .table-responsive-md { - overflow-x: auto; - -webkit-overflow-scrolling: touch; - } -} -@media (max-width: 991.98px) { - .table-responsive-lg { - overflow-x: auto; - -webkit-overflow-scrolling: touch; - } -} -@media (max-width: 1199.98px) { - .table-responsive-xl { - overflow-x: auto; - -webkit-overflow-scrolling: touch; - } -} -@media (max-width: 1399.98px) { - .table-responsive-xxl { - overflow-x: auto; - -webkit-overflow-scrolling: touch; - } -} -.form-label { - margin-bottom: 0.5rem; -} - -.col-form-label { - padding-top: calc(0.375rem + 1px); - padding-bottom: calc(0.375rem + 1px); - margin-bottom: 0; - font-size: inherit; - line-height: 1.5; -} - -.col-form-label-lg { - padding-top: calc(0.5rem + 1px); - padding-bottom: calc(0.5rem + 1px); - font-size: 1.25rem; -} - -.col-form-label-sm { - padding-top: calc(0.25rem + 1px); - padding-bottom: calc(0.25rem + 1px); - font-size: 0.875rem; -} - -.form-text { - margin-top: 0.25rem; - font-size: 0.875em; - color: #6c757d; -} - -.form-control { - display: block; - width: 100%; - padding: 0.375rem 0.75rem; - font-size: 1rem; - font-weight: 400; - line-height: 1.5; - color: #212529; - background-color: #fff; - background-clip: padding-box; - border: 1px solid #ced4da; - -webkit-appearance: none; - -moz-appearance: none; - appearance: none; - border-radius: 0.25rem; - transition: border-color 0.15s ease-in-out, box-shadow 0.15s ease-in-out; -} -@media (prefers-reduced-motion: reduce) { - .form-control { - transition: none; - } -} -.form-control[type=file] { - overflow: hidden; -} -.form-control[type=file]:not(:disabled):not([readonly]) { - cursor: pointer; -} -.form-control:focus { - color: #212529; - background-color: #fff; - border-color: #86b7fe; - outline: 0; - box-shadow: 0 0 0 0.25rem rgba(13, 110, 253, 0.25); -} -.form-control::-webkit-date-and-time-value { - height: 1.5em; -} -.form-control::-moz-placeholder { - color: #6c757d; - opacity: 1; -} -.form-control::placeholder { - color: #6c757d; - opacity: 1; -} -.form-control:disabled, .form-control[readonly] { - background-color: #e9ecef; - opacity: 1; -} -.form-control::-webkit-file-upload-button { - padding: 0.375rem 0.75rem; - margin: -0.375rem -0.75rem; - -webkit-margin-end: 0.75rem; - margin-inline-end: 0.75rem; - color: #212529; - background-color: #e9ecef; - pointer-events: none; - border-color: inherit; - border-style: solid; - border-width: 0; - border-inline-end-width: 1px; - border-radius: 0; - -webkit-transition: color 0.15s ease-in-out, background-color 0.15s ease-in-out, border-color 0.15s ease-in-out, box-shadow 0.15s ease-in-out; - transition: color 0.15s ease-in-out, background-color 0.15s ease-in-out, border-color 0.15s ease-in-out, box-shadow 0.15s ease-in-out; -} -.form-control::file-selector-button { - padding: 0.375rem 0.75rem; - margin: -0.375rem -0.75rem; - -webkit-margin-end: 0.75rem; - margin-inline-end: 0.75rem; - color: #212529; - background-color: #e9ecef; - pointer-events: none; - border-color: inherit; - border-style: solid; - border-width: 0; - border-inline-end-width: 1px; - border-radius: 0; - transition: color 0.15s ease-in-out, background-color 0.15s ease-in-out, border-color 0.15s ease-in-out, box-shadow 0.15s ease-in-out; -} -@media (prefers-reduced-motion: reduce) { - .form-control::-webkit-file-upload-button { - -webkit-transition: none; - transition: none; - } - .form-control::file-selector-button { - transition: none; - } -} -.form-control:hover:not(:disabled):not([readonly])::-webkit-file-upload-button { - background-color: #dde0e3; -} -.form-control:hover:not(:disabled):not([readonly])::file-selector-button { - background-color: #dde0e3; -} -.form-control::-webkit-file-upload-button { - padding: 0.375rem 0.75rem; - margin: -0.375rem -0.75rem; - -webkit-margin-end: 0.75rem; - margin-inline-end: 0.75rem; - color: #212529; - background-color: #e9ecef; - pointer-events: none; - border-color: inherit; - border-style: solid; - border-width: 0; - border-inline-end-width: 1px; - border-radius: 0; - -webkit-transition: color 0.15s ease-in-out, background-color 0.15s ease-in-out, border-color 0.15s ease-in-out, box-shadow 0.15s ease-in-out; - transition: color 0.15s ease-in-out, background-color 0.15s ease-in-out, border-color 0.15s ease-in-out, box-shadow 0.15s ease-in-out; -} -@media (prefers-reduced-motion: reduce) { - .form-control::-webkit-file-upload-button { - -webkit-transition: none; - transition: none; - } -} -.form-control:hover:not(:disabled):not([readonly])::-webkit-file-upload-button { - background-color: #dde0e3; -} - -.form-control-plaintext { - display: block; - width: 100%; - padding: 0.375rem 0; - margin-bottom: 0; - line-height: 1.5; - color: #212529; - background-color: transparent; - border: solid transparent; - border-width: 1px 0; -} -.form-control-plaintext.form-control-sm, .form-control-plaintext.form-control-lg { - padding-left: 0; - padding-right: 0; -} - -.form-control-sm { - min-height: calc(1.5em + 0.5rem + 2px); - padding: 0.25rem 0.5rem; - font-size: 0.875rem; - border-radius: 0.2rem; -} -.form-control-sm::-webkit-file-upload-button { - padding: 0.25rem 0.5rem; - margin: -0.25rem -0.5rem; - -webkit-margin-end: 0.5rem; - margin-inline-end: 0.5rem; -} -.form-control-sm::file-selector-button { - padding: 0.25rem 0.5rem; - margin: -0.25rem -0.5rem; - -webkit-margin-end: 0.5rem; - margin-inline-end: 0.5rem; -} -.form-control-sm::-webkit-file-upload-button { - padding: 0.25rem 0.5rem; - margin: -0.25rem -0.5rem; - -webkit-margin-end: 0.5rem; - margin-inline-end: 0.5rem; -} - -.form-control-lg { - min-height: calc(1.5em + 1rem + 2px); - padding: 0.5rem 1rem; - font-size: 1.25rem; - border-radius: 0.3rem; -} -.form-control-lg::-webkit-file-upload-button { - padding: 0.5rem 1rem; - margin: -0.5rem -1rem; - -webkit-margin-end: 1rem; - margin-inline-end: 1rem; -} -.form-control-lg::file-selector-button { - padding: 0.5rem 1rem; - margin: -0.5rem -1rem; - -webkit-margin-end: 1rem; - margin-inline-end: 1rem; -} -.form-control-lg::-webkit-file-upload-button { - padding: 0.5rem 1rem; - margin: -0.5rem -1rem; - -webkit-margin-end: 1rem; - margin-inline-end: 1rem; -} - -textarea.form-control { - min-height: calc(1.5em + 0.75rem + 2px); -} -textarea.form-control-sm { - min-height: calc(1.5em + 0.5rem + 2px); -} -textarea.form-control-lg { - min-height: calc(1.5em + 1rem + 2px); -} - -.form-control-color { - width: 3rem; - height: auto; - padding: 0.375rem; -} -.form-control-color:not(:disabled):not([readonly]) { - cursor: pointer; -} -.form-control-color::-moz-color-swatch { - height: 1.5em; - border-radius: 0.25rem; -} -.form-control-color::-webkit-color-swatch { - height: 1.5em; - border-radius: 0.25rem; -} - -.form-select { - display: block; - width: 100%; - padding: 0.375rem 0.75rem 0.375rem 2.25rem; - -moz-padding-start: calc(0.75rem - 3px); - font-size: 1rem; - font-weight: 400; - line-height: 1.5; - color: #212529; - background-color: #fff; - background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16'%3e%3cpath fill='none' stroke='%23343a40' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' d='M2 5l6 6 6-6'/%3e%3c/svg%3e"); - background-repeat: no-repeat; - background-position: left 0.75rem center; - background-size: 16px 12px; - border: 1px solid #ced4da; - border-radius: 0.25rem; - transition: border-color 0.15s ease-in-out, box-shadow 0.15s ease-in-out; - -webkit-appearance: none; - -moz-appearance: none; - appearance: none; -} -@media (prefers-reduced-motion: reduce) { - .form-select { - transition: none; - } -} -.form-select:focus { - border-color: #86b7fe; - outline: 0; - box-shadow: 0 0 0 0.25rem rgba(13, 110, 253, 0.25); -} -.form-select[multiple], .form-select[size]:not([size="1"]) { - padding-left: 0.75rem; - background-image: none; -} -.form-select:disabled { - background-color: #e9ecef; -} -.form-select:-moz-focusring { - color: transparent; - text-shadow: 0 0 0 #212529; -} - -.form-select-sm { - padding-top: 0.25rem; - padding-bottom: 0.25rem; - padding-right: 0.5rem; - font-size: 0.875rem; - border-radius: 0.2rem; -} - -.form-select-lg { - padding-top: 0.5rem; - padding-bottom: 0.5rem; - padding-right: 1rem; - font-size: 1.25rem; - border-radius: 0.3rem; -} - -.form-check { - display: block; - min-height: 1.5rem; - padding-right: 1.5em; - margin-bottom: 0.125rem; -} -.form-check .form-check-input { - float: right; - margin-right: -1.5em; -} - -.form-check-input { - width: 1em; - height: 1em; - margin-top: 0.25em; - vertical-align: top; - background-color: #fff; - background-repeat: no-repeat; - background-position: center; - background-size: contain; - border: 1px solid rgba(0, 0, 0, 0.25); - -webkit-appearance: none; - -moz-appearance: none; - appearance: none; - -webkit-print-color-adjust: exact; - color-adjust: exact; -} -.form-check-input[type=checkbox] { - border-radius: 0.25em; -} -.form-check-input[type=radio] { - border-radius: 50%; -} -.form-check-input:active { - filter: brightness(90%); -} -.form-check-input:focus { - border-color: #86b7fe; - outline: 0; - box-shadow: 0 0 0 0.25rem rgba(13, 110, 253, 0.25); -} -.form-check-input:checked { - background-color: #0d6efd; - border-color: #0d6efd; -} -.form-check-input:checked[type=checkbox] { - background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 20 20'%3e%3cpath fill='none' stroke='%23fff' stroke-linecap='round' stroke-linejoin='round' stroke-width='3' d='M6 10l3 3l6-6'/%3e%3c/svg%3e"); -} -.form-check-input:checked[type=radio] { - background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='2' fill='%23fff'/%3e%3c/svg%3e"); -} -.form-check-input[type=checkbox]:indeterminate { - background-color: #0d6efd; - border-color: #0d6efd; - background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 20 20'%3e%3cpath fill='none' stroke='%23fff' stroke-linecap='round' stroke-linejoin='round' stroke-width='3' d='M6 10h8'/%3e%3c/svg%3e"); -} -.form-check-input:disabled { - pointer-events: none; - filter: none; - opacity: 0.5; -} -.form-check-input[disabled] ~ .form-check-label, .form-check-input:disabled ~ .form-check-label { - opacity: 0.5; -} - -.form-switch { - padding-right: 2.5em; -} -.form-switch .form-check-input { - width: 2em; - margin-right: -2.5em; - background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='rgba%280, 0, 0, 0.25%29'/%3e%3c/svg%3e"); - background-position: right center; - border-radius: 2em; - transition: background-position 0.15s ease-in-out; -} -@media (prefers-reduced-motion: reduce) { - .form-switch .form-check-input { - transition: none; - } -} -.form-switch .form-check-input:focus { - background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='%2386b7fe'/%3e%3c/svg%3e"); -} -.form-switch .form-check-input:checked { - background-position: left center; - background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='%23fff'/%3e%3c/svg%3e"); -} - -.form-check-inline { - display: inline-block; - margin-left: 1rem; -} - -.btn-check { - position: absolute; - clip: rect(0, 0, 0, 0); - pointer-events: none; -} -.btn-check[disabled] + .btn, .btn-check:disabled + .btn { - pointer-events: none; - filter: none; - opacity: 0.65; -} - -.form-range { - width: 100%; - height: 1.5rem; - padding: 0; - background-color: transparent; - -webkit-appearance: none; - -moz-appearance: none; - appearance: none; -} -.form-range:focus { - outline: 0; -} -.form-range:focus::-webkit-slider-thumb { - box-shadow: 0 0 0 1px #fff, 0 0 0 0.25rem rgba(13, 110, 253, 0.25); -} -.form-range:focus::-moz-range-thumb { - box-shadow: 0 0 0 1px #fff, 0 0 0 0.25rem rgba(13, 110, 253, 0.25); -} -.form-range::-moz-focus-outer { - border: 0; -} -.form-range::-webkit-slider-thumb { - width: 1rem; - height: 1rem; - margin-top: -0.25rem; - background-color: #0d6efd; - border: 0; - border-radius: 1rem; - -webkit-transition: background-color 0.15s ease-in-out, border-color 0.15s ease-in-out, box-shadow 0.15s ease-in-out; - transition: background-color 0.15s ease-in-out, border-color 0.15s ease-in-out, box-shadow 0.15s ease-in-out; - -webkit-appearance: none; - appearance: none; -} -@media (prefers-reduced-motion: reduce) { - .form-range::-webkit-slider-thumb { - -webkit-transition: none; - transition: none; - } -} -.form-range::-webkit-slider-thumb:active { - background-color: #b6d4fe; -} -.form-range::-webkit-slider-runnable-track { - width: 100%; - height: 0.5rem; - color: transparent; - cursor: pointer; - background-color: #dee2e6; - border-color: transparent; - border-radius: 1rem; -} -.form-range::-moz-range-thumb { - width: 1rem; - height: 1rem; - background-color: #0d6efd; - border: 0; - border-radius: 1rem; - -moz-transition: background-color 0.15s ease-in-out, border-color 0.15s ease-in-out, box-shadow 0.15s ease-in-out; - transition: background-color 0.15s ease-in-out, border-color 0.15s ease-in-out, box-shadow 0.15s ease-in-out; - -moz-appearance: none; - appearance: none; -} -@media (prefers-reduced-motion: reduce) { - .form-range::-moz-range-thumb { - -moz-transition: none; - transition: none; - } -} -.form-range::-moz-range-thumb:active { - background-color: #b6d4fe; -} -.form-range::-moz-range-track { - width: 100%; - height: 0.5rem; - color: transparent; - cursor: pointer; - background-color: #dee2e6; - border-color: transparent; - border-radius: 1rem; -} -.form-range:disabled { - pointer-events: none; -} -.form-range:disabled::-webkit-slider-thumb { - background-color: #adb5bd; -} -.form-range:disabled::-moz-range-thumb { - background-color: #adb5bd; -} - -.form-floating { - position: relative; -} -.form-floating > .form-control, -.form-floating > .form-select { - height: calc(3.5rem + 2px); - line-height: 1.25; -} -.form-floating > label { - position: absolute; - top: 0; - right: 0; - height: 100%; - padding: 1rem 0.75rem; - pointer-events: none; - border: 1px solid transparent; - transform-origin: 100% 0; - transition: opacity 0.1s ease-in-out, transform 0.1s ease-in-out; -} -@media (prefers-reduced-motion: reduce) { - .form-floating > label { - transition: none; - } -} -.form-floating > .form-control { - padding: 1rem 0.75rem; -} -.form-floating > .form-control::-moz-placeholder { - color: transparent; -} -.form-floating > .form-control::placeholder { - color: transparent; -} -.form-floating > .form-control:not(:-moz-placeholder-shown) { - padding-top: 1.625rem; - padding-bottom: 0.625rem; -} -.form-floating > .form-control:focus, .form-floating > .form-control:not(:placeholder-shown) { - padding-top: 1.625rem; - padding-bottom: 0.625rem; -} -.form-floating > .form-control:-webkit-autofill { - padding-top: 1.625rem; - padding-bottom: 0.625rem; -} -.form-floating > .form-select { - padding-top: 1.625rem; - padding-bottom: 0.625rem; -} -.form-floating > .form-control:not(:-moz-placeholder-shown) ~ label { - opacity: 0.65; - transform: scale(0.85) translateY(-0.5rem) translateX(-0.15rem); -} -.form-floating > .form-control:focus ~ label, -.form-floating > .form-control:not(:placeholder-shown) ~ label, -.form-floating > .form-select ~ label { - opacity: 0.65; - transform: scale(0.85) translateY(-0.5rem) translateX(-0.15rem); -} -.form-floating > .form-control:-webkit-autofill ~ label { - opacity: 0.65; - transform: scale(0.85) translateY(-0.5rem) translateX(-0.15rem); -} - -.input-group { - position: relative; - display: flex; - flex-wrap: wrap; - align-items: stretch; - width: 100%; -} -.input-group > .form-control, -.input-group > .form-select { - position: relative; - flex: 1 1 auto; - width: 1%; - min-width: 0; -} -.input-group > .form-control:focus, -.input-group > .form-select:focus { - z-index: 3; -} -.input-group .btn { - position: relative; - z-index: 2; -} -.input-group .btn:focus { - z-index: 3; -} - -.input-group-text { - display: flex; - align-items: center; - padding: 0.375rem 0.75rem; - font-size: 1rem; - font-weight: 400; - line-height: 1.5; - color: #212529; - text-align: center; - white-space: nowrap; - background-color: #e9ecef; - border: 1px solid #ced4da; - border-radius: 0.25rem; -} - -.input-group-lg > .form-control, -.input-group-lg > .form-select, -.input-group-lg > .input-group-text, -.input-group-lg > .btn { - padding: 0.5rem 1rem; - font-size: 1.25rem; - border-radius: 0.3rem; -} - -.input-group-sm > .form-control, -.input-group-sm > .form-select, -.input-group-sm > .input-group-text, -.input-group-sm > .btn { - padding: 0.25rem 0.5rem; - font-size: 0.875rem; - border-radius: 0.2rem; -} - -.input-group-lg > .form-select, -.input-group-sm > .form-select { - padding-left: 3rem; -} - -.input-group:not(.has-validation) > :not(:last-child):not(.dropdown-toggle):not(.dropdown-menu), -.input-group:not(.has-validation) > .dropdown-toggle:nth-last-child(n+3) { - border-top-left-radius: 0; - border-bottom-left-radius: 0; -} -.input-group.has-validation > :nth-last-child(n+3):not(.dropdown-toggle):not(.dropdown-menu), -.input-group.has-validation > .dropdown-toggle:nth-last-child(n+4) { - border-top-left-radius: 0; - border-bottom-left-radius: 0; -} -.input-group > :not(:first-child):not(.dropdown-menu):not(.valid-tooltip):not(.valid-feedback):not(.invalid-tooltip):not(.invalid-feedback) { - margin-right: -1px; - border-top-right-radius: 0; - border-bottom-right-radius: 0; -} - -.valid-feedback { - display: none; - width: 100%; - margin-top: 0.25rem; - font-size: 0.875em; - color: #198754; -} - -.valid-tooltip { - position: absolute; - top: 100%; - z-index: 5; - display: none; - max-width: 100%; - padding: 0.25rem 0.5rem; - margin-top: 0.1rem; - font-size: 0.875rem; - color: #fff; - background-color: rgba(25, 135, 84, 0.9); - border-radius: 0.25rem; -} - -.was-validated :valid ~ .valid-feedback, -.was-validated :valid ~ .valid-tooltip, -.is-valid ~ .valid-feedback, -.is-valid ~ .valid-tooltip { - display: block; -} - -.was-validated .form-control:valid, .form-control.is-valid { - border-color: #198754; - padding-left: calc(1.5em + 0.75rem); - background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 8 8'%3e%3cpath fill='%23198754' d='M2.3 6.73L.6 4.53c-.4-1.04.46-1.4 1.1-.8l1.1 1.4 3.4-3.8c.6-.63 1.6-.27 1.2.7l-4 4.6c-.43.5-.8.4-1.1.1z'/%3e%3c/svg%3e"); - background-repeat: no-repeat; - background-position: left calc(0.375em + 0.1875rem) center; - background-size: calc(0.75em + 0.375rem) calc(0.75em + 0.375rem); -} -.was-validated .form-control:valid:focus, .form-control.is-valid:focus { - border-color: #198754; - box-shadow: 0 0 0 0.25rem rgba(25, 135, 84, 0.25); -} - -.was-validated textarea.form-control:valid, textarea.form-control.is-valid { - padding-left: calc(1.5em + 0.75rem); - background-position: top calc(0.375em + 0.1875rem) left calc(0.375em + 0.1875rem); -} - -.was-validated .form-select:valid, .form-select.is-valid { - border-color: #198754; -} -.was-validated .form-select:valid:not([multiple]):not([size]), .was-validated .form-select:valid:not([multiple])[size="1"], .form-select.is-valid:not([multiple]):not([size]), .form-select.is-valid:not([multiple])[size="1"] { - padding-left: 4.125rem; - background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16'%3e%3cpath fill='none' stroke='%23343a40' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' d='M2 5l6 6 6-6'/%3e%3c/svg%3e"), url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 8 8'%3e%3cpath fill='%23198754' d='M2.3 6.73L.6 4.53c-.4-1.04.46-1.4 1.1-.8l1.1 1.4 3.4-3.8c.6-.63 1.6-.27 1.2.7l-4 4.6c-.43.5-.8.4-1.1.1z'/%3e%3c/svg%3e"); - background-position: left 0.75rem center, center left 2.25rem; - background-size: 16px 12px, calc(0.75em + 0.375rem) calc(0.75em + 0.375rem); -} -.was-validated .form-select:valid:focus, .form-select.is-valid:focus { - border-color: #198754; - box-shadow: 0 0 0 0.25rem rgba(25, 135, 84, 0.25); -} - -.was-validated .form-check-input:valid, .form-check-input.is-valid { - border-color: #198754; -} -.was-validated .form-check-input:valid:checked, .form-check-input.is-valid:checked { - background-color: #198754; -} -.was-validated .form-check-input:valid:focus, .form-check-input.is-valid:focus { - box-shadow: 0 0 0 0.25rem rgba(25, 135, 84, 0.25); -} -.was-validated .form-check-input:valid ~ .form-check-label, .form-check-input.is-valid ~ .form-check-label { - color: #198754; -} - -.form-check-inline .form-check-input ~ .valid-feedback { - margin-right: 0.5em; -} - -.was-validated .input-group .form-control:valid, .input-group .form-control.is-valid, -.was-validated .input-group .form-select:valid, -.input-group .form-select.is-valid { - z-index: 1; -} -.was-validated .input-group .form-control:valid:focus, .input-group .form-control.is-valid:focus, -.was-validated .input-group .form-select:valid:focus, -.input-group .form-select.is-valid:focus { - z-index: 3; -} - -.invalid-feedback { - display: none; - width: 100%; - margin-top: 0.25rem; - font-size: 0.875em; - color: #dc3545; -} - -.invalid-tooltip { - position: absolute; - top: 100%; - z-index: 5; - display: none; - max-width: 100%; - padding: 0.25rem 0.5rem; - margin-top: 0.1rem; - font-size: 0.875rem; - color: #fff; - background-color: rgba(220, 53, 69, 0.9); - border-radius: 0.25rem; -} - -.was-validated :invalid ~ .invalid-feedback, -.was-validated :invalid ~ .invalid-tooltip, -.is-invalid ~ .invalid-feedback, -.is-invalid ~ .invalid-tooltip { - display: block; -} - -.was-validated .form-control:invalid, .form-control.is-invalid { - border-color: #dc3545; - padding-left: calc(1.5em + 0.75rem); - background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 12 12' width='12' height='12' fill='none' stroke='%23dc3545'%3e%3ccircle cx='6' cy='6' r='4.5'/%3e%3cpath stroke-linejoin='round' d='M5.8 3.6h.4L6 6.5z'/%3e%3ccircle cx='6' cy='8.2' r='.6' fill='%23dc3545' stroke='none'/%3e%3c/svg%3e"); - background-repeat: no-repeat; - background-position: left calc(0.375em + 0.1875rem) center; - background-size: calc(0.75em + 0.375rem) calc(0.75em + 0.375rem); -} -.was-validated .form-control:invalid:focus, .form-control.is-invalid:focus { - border-color: #dc3545; - box-shadow: 0 0 0 0.25rem rgba(220, 53, 69, 0.25); -} - -.was-validated textarea.form-control:invalid, textarea.form-control.is-invalid { - padding-left: calc(1.5em + 0.75rem); - background-position: top calc(0.375em + 0.1875rem) left calc(0.375em + 0.1875rem); -} - -.was-validated .form-select:invalid, .form-select.is-invalid { - border-color: #dc3545; -} -.was-validated .form-select:invalid:not([multiple]):not([size]), .was-validated .form-select:invalid:not([multiple])[size="1"], .form-select.is-invalid:not([multiple]):not([size]), .form-select.is-invalid:not([multiple])[size="1"] { - padding-left: 4.125rem; - background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16'%3e%3cpath fill='none' stroke='%23343a40' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' d='M2 5l6 6 6-6'/%3e%3c/svg%3e"), url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 12 12' width='12' height='12' fill='none' stroke='%23dc3545'%3e%3ccircle cx='6' cy='6' r='4.5'/%3e%3cpath stroke-linejoin='round' d='M5.8 3.6h.4L6 6.5z'/%3e%3ccircle cx='6' cy='8.2' r='.6' fill='%23dc3545' stroke='none'/%3e%3c/svg%3e"); - background-position: left 0.75rem center, center left 2.25rem; - background-size: 16px 12px, calc(0.75em + 0.375rem) calc(0.75em + 0.375rem); -} -.was-validated .form-select:invalid:focus, .form-select.is-invalid:focus { - border-color: #dc3545; - box-shadow: 0 0 0 0.25rem rgba(220, 53, 69, 0.25); -} - -.was-validated .form-check-input:invalid, .form-check-input.is-invalid { - border-color: #dc3545; -} -.was-validated .form-check-input:invalid:checked, .form-check-input.is-invalid:checked { - background-color: #dc3545; -} -.was-validated .form-check-input:invalid:focus, .form-check-input.is-invalid:focus { - box-shadow: 0 0 0 0.25rem rgba(220, 53, 69, 0.25); -} -.was-validated .form-check-input:invalid ~ .form-check-label, .form-check-input.is-invalid ~ .form-check-label { - color: #dc3545; -} - -.form-check-inline .form-check-input ~ .invalid-feedback { - margin-right: 0.5em; -} - -.was-validated .input-group .form-control:invalid, .input-group .form-control.is-invalid, -.was-validated .input-group .form-select:invalid, -.input-group .form-select.is-invalid { - z-index: 2; -} -.was-validated .input-group .form-control:invalid:focus, .input-group .form-control.is-invalid:focus, -.was-validated .input-group .form-select:invalid:focus, -.input-group .form-select.is-invalid:focus { - z-index: 3; -} - -.btn { - display: inline-block; - font-weight: 400; - line-height: 1.5; - color: #212529; - text-align: center; - text-decoration: none; - vertical-align: middle; - cursor: pointer; - -webkit-user-select: none; - -moz-user-select: none; - user-select: none; - background-color: transparent; - border: 1px solid transparent; - padding: 0.375rem 0.75rem; - font-size: 1rem; - border-radius: 0.25rem; - transition: color 0.15s ease-in-out, background-color 0.15s ease-in-out, border-color 0.15s ease-in-out, box-shadow 0.15s ease-in-out; -} -@media (prefers-reduced-motion: reduce) { - .btn { - transition: none; - } -} -.btn:hover { - color: #212529; -} -.btn-check:focus + .btn, .btn:focus { - outline: 0; - box-shadow: 0 0 0 0.25rem rgba(13, 110, 253, 0.25); -} -.btn:disabled, .btn.disabled, fieldset:disabled .btn { - pointer-events: none; - opacity: 0.65; -} - -.btn-primary { - color: #fff; - background-color: #0d6efd; - border-color: #0d6efd; -} -.btn-primary:hover { - color: #fff; - background-color: #0b5ed7; - border-color: #0a58ca; -} -.btn-check:focus + .btn-primary, .btn-primary:focus { - color: #fff; - background-color: #0b5ed7; - border-color: #0a58ca; - box-shadow: 0 0 0 0.25rem rgba(49, 132, 253, 0.5); -} -.btn-check:checked + .btn-primary, .btn-check:active + .btn-primary, .btn-primary:active, .btn-primary.active, .show > .btn-primary.dropdown-toggle { - color: #fff; - background-color: #0a58ca; - border-color: #0a53be; -} -.btn-check:checked + .btn-primary:focus, .btn-check:active + .btn-primary:focus, .btn-primary:active:focus, .btn-primary.active:focus, .show > .btn-primary.dropdown-toggle:focus { - box-shadow: 0 0 0 0.25rem rgba(49, 132, 253, 0.5); -} -.btn-primary:disabled, .btn-primary.disabled { - color: #fff; - background-color: #0d6efd; - border-color: #0d6efd; -} - -.btn-secondary { - color: #fff; - background-color: #6c757d; - border-color: #6c757d; -} -.btn-secondary:hover { - color: #fff; - background-color: #5c636a; - border-color: #565e64; -} -.btn-check:focus + .btn-secondary, .btn-secondary:focus { - color: #fff; - background-color: #5c636a; - border-color: #565e64; - box-shadow: 0 0 0 0.25rem rgba(130, 138, 145, 0.5); -} -.btn-check:checked + .btn-secondary, .btn-check:active + .btn-secondary, .btn-secondary:active, .btn-secondary.active, .show > .btn-secondary.dropdown-toggle { - color: #fff; - background-color: #565e64; - border-color: #51585e; -} -.btn-check:checked + .btn-secondary:focus, .btn-check:active + .btn-secondary:focus, .btn-secondary:active:focus, .btn-secondary.active:focus, .show > .btn-secondary.dropdown-toggle:focus { - box-shadow: 0 0 0 0.25rem rgba(130, 138, 145, 0.5); -} -.btn-secondary:disabled, .btn-secondary.disabled { - color: #fff; - background-color: #6c757d; - border-color: #6c757d; -} - -.btn-success { - color: #fff; - background-color: #198754; - border-color: #198754; -} -.btn-success:hover { - color: #fff; - background-color: #157347; - border-color: #146c43; -} -.btn-check:focus + .btn-success, .btn-success:focus { - color: #fff; - background-color: #157347; - border-color: #146c43; - box-shadow: 0 0 0 0.25rem rgba(60, 153, 110, 0.5); -} -.btn-check:checked + .btn-success, .btn-check:active + .btn-success, .btn-success:active, .btn-success.active, .show > .btn-success.dropdown-toggle { - color: #fff; - background-color: #146c43; - border-color: #13653f; -} -.btn-check:checked + .btn-success:focus, .btn-check:active + .btn-success:focus, .btn-success:active:focus, .btn-success.active:focus, .show > .btn-success.dropdown-toggle:focus { - box-shadow: 0 0 0 0.25rem rgba(60, 153, 110, 0.5); -} -.btn-success:disabled, .btn-success.disabled { - color: #fff; - background-color: #198754; - border-color: #198754; -} - -.btn-info { - color: #000; - background-color: #0dcaf0; - border-color: #0dcaf0; -} -.btn-info:hover { - color: #000; - background-color: #31d2f2; - border-color: #25cff2; -} -.btn-check:focus + .btn-info, .btn-info:focus { - color: #000; - background-color: #31d2f2; - border-color: #25cff2; - box-shadow: 0 0 0 0.25rem rgba(11, 172, 204, 0.5); -} -.btn-check:checked + .btn-info, .btn-check:active + .btn-info, .btn-info:active, .btn-info.active, .show > .btn-info.dropdown-toggle { - color: #000; - background-color: #3dd5f3; - border-color: #25cff2; -} -.btn-check:checked + .btn-info:focus, .btn-check:active + .btn-info:focus, .btn-info:active:focus, .btn-info.active:focus, .show > .btn-info.dropdown-toggle:focus { - box-shadow: 0 0 0 0.25rem rgba(11, 172, 204, 0.5); -} -.btn-info:disabled, .btn-info.disabled { - color: #000; - background-color: #0dcaf0; - border-color: #0dcaf0; -} - -.btn-warning { - color: #000; - background-color: #ffc107; - border-color: #ffc107; -} -.btn-warning:hover { - color: #000; - background-color: #ffca2c; - border-color: #ffc720; -} -.btn-check:focus + .btn-warning, .btn-warning:focus { - color: #000; - background-color: #ffca2c; - border-color: #ffc720; - box-shadow: 0 0 0 0.25rem rgba(217, 164, 6, 0.5); -} -.btn-check:checked + .btn-warning, .btn-check:active + .btn-warning, .btn-warning:active, .btn-warning.active, .show > .btn-warning.dropdown-toggle { - color: #000; - background-color: #ffcd39; - border-color: #ffc720; -} -.btn-check:checked + .btn-warning:focus, .btn-check:active + .btn-warning:focus, .btn-warning:active:focus, .btn-warning.active:focus, .show > .btn-warning.dropdown-toggle:focus { - box-shadow: 0 0 0 0.25rem rgba(217, 164, 6, 0.5); -} -.btn-warning:disabled, .btn-warning.disabled { - color: #000; - background-color: #ffc107; - border-color: #ffc107; -} - -.btn-danger { - color: #fff; - background-color: #dc3545; - border-color: #dc3545; -} -.btn-danger:hover { - color: #fff; - background-color: #bb2d3b; - border-color: #b02a37; -} -.btn-check:focus + .btn-danger, .btn-danger:focus { - color: #fff; - background-color: #bb2d3b; - border-color: #b02a37; - box-shadow: 0 0 0 0.25rem rgba(225, 83, 97, 0.5); -} -.btn-check:checked + .btn-danger, .btn-check:active + .btn-danger, .btn-danger:active, .btn-danger.active, .show > .btn-danger.dropdown-toggle { - color: #fff; - background-color: #b02a37; - border-color: #a52834; -} -.btn-check:checked + .btn-danger:focus, .btn-check:active + .btn-danger:focus, .btn-danger:active:focus, .btn-danger.active:focus, .show > .btn-danger.dropdown-toggle:focus { - box-shadow: 0 0 0 0.25rem rgba(225, 83, 97, 0.5); -} -.btn-danger:disabled, .btn-danger.disabled { - color: #fff; - background-color: #dc3545; - border-color: #dc3545; -} - -.btn-light { - color: #000; - background-color: #f8f9fa; - border-color: #f8f9fa; -} -.btn-light:hover { - color: #000; - background-color: #f9fafb; - border-color: #f9fafb; -} -.btn-check:focus + .btn-light, .btn-light:focus { - color: #000; - background-color: #f9fafb; - border-color: #f9fafb; - box-shadow: 0 0 0 0.25rem rgba(211, 212, 213, 0.5); -} -.btn-check:checked + .btn-light, .btn-check:active + .btn-light, .btn-light:active, .btn-light.active, .show > .btn-light.dropdown-toggle { - color: #000; - background-color: #f9fafb; - border-color: #f9fafb; -} -.btn-check:checked + .btn-light:focus, .btn-check:active + .btn-light:focus, .btn-light:active:focus, .btn-light.active:focus, .show > .btn-light.dropdown-toggle:focus { - box-shadow: 0 0 0 0.25rem rgba(211, 212, 213, 0.5); -} -.btn-light:disabled, .btn-light.disabled { - color: #000; - background-color: #f8f9fa; - border-color: #f8f9fa; -} - -.btn-dark { - color: #fff; - background-color: #212529; - border-color: #212529; -} -.btn-dark:hover { - color: #fff; - background-color: #1c1f23; - border-color: #1a1e21; -} -.btn-check:focus + .btn-dark, .btn-dark:focus { - color: #fff; - background-color: #1c1f23; - border-color: #1a1e21; - box-shadow: 0 0 0 0.25rem rgba(66, 70, 73, 0.5); -} -.btn-check:checked + .btn-dark, .btn-check:active + .btn-dark, .btn-dark:active, .btn-dark.active, .show > .btn-dark.dropdown-toggle { - color: #fff; - background-color: #1a1e21; - border-color: #191c1f; -} -.btn-check:checked + .btn-dark:focus, .btn-check:active + .btn-dark:focus, .btn-dark:active:focus, .btn-dark.active:focus, .show > .btn-dark.dropdown-toggle:focus { - box-shadow: 0 0 0 0.25rem rgba(66, 70, 73, 0.5); -} -.btn-dark:disabled, .btn-dark.disabled { - color: #fff; - background-color: #212529; - border-color: #212529; -} - -.btn-outline-primary { - color: #0d6efd; - border-color: #0d6efd; -} -.btn-outline-primary:hover { - color: #fff; - background-color: #0d6efd; - border-color: #0d6efd; -} -.btn-check:focus + .btn-outline-primary, .btn-outline-primary:focus { - box-shadow: 0 0 0 0.25rem rgba(13, 110, 253, 0.5); -} -.btn-check:checked + .btn-outline-primary, .btn-check:active + .btn-outline-primary, .btn-outline-primary:active, .btn-outline-primary.active, .btn-outline-primary.dropdown-toggle.show { - color: #fff; - background-color: #0d6efd; - border-color: #0d6efd; -} -.btn-check:checked + .btn-outline-primary:focus, .btn-check:active + .btn-outline-primary:focus, .btn-outline-primary:active:focus, .btn-outline-primary.active:focus, .btn-outline-primary.dropdown-toggle.show:focus { - box-shadow: 0 0 0 0.25rem rgba(13, 110, 253, 0.5); -} -.btn-outline-primary:disabled, .btn-outline-primary.disabled { - color: #0d6efd; - background-color: transparent; -} - -.btn-outline-secondary { - color: #6c757d; - border-color: #6c757d; -} -.btn-outline-secondary:hover { - color: #fff; - background-color: #6c757d; - border-color: #6c757d; -} -.btn-check:focus + .btn-outline-secondary, .btn-outline-secondary:focus { - box-shadow: 0 0 0 0.25rem rgba(108, 117, 125, 0.5); -} -.btn-check:checked + .btn-outline-secondary, .btn-check:active + .btn-outline-secondary, .btn-outline-secondary:active, .btn-outline-secondary.active, .btn-outline-secondary.dropdown-toggle.show { - color: #fff; - background-color: #6c757d; - border-color: #6c757d; -} -.btn-check:checked + .btn-outline-secondary:focus, .btn-check:active + .btn-outline-secondary:focus, .btn-outline-secondary:active:focus, .btn-outline-secondary.active:focus, .btn-outline-secondary.dropdown-toggle.show:focus { - box-shadow: 0 0 0 0.25rem rgba(108, 117, 125, 0.5); -} -.btn-outline-secondary:disabled, .btn-outline-secondary.disabled { - color: #6c757d; - background-color: transparent; -} - -.btn-outline-success { - color: #198754; - border-color: #198754; -} -.btn-outline-success:hover { - color: #fff; - background-color: #198754; - border-color: #198754; -} -.btn-check:focus + .btn-outline-success, .btn-outline-success:focus { - box-shadow: 0 0 0 0.25rem rgba(25, 135, 84, 0.5); -} -.btn-check:checked + .btn-outline-success, .btn-check:active + .btn-outline-success, .btn-outline-success:active, .btn-outline-success.active, .btn-outline-success.dropdown-toggle.show { - color: #fff; - background-color: #198754; - border-color: #198754; -} -.btn-check:checked + .btn-outline-success:focus, .btn-check:active + .btn-outline-success:focus, .btn-outline-success:active:focus, .btn-outline-success.active:focus, .btn-outline-success.dropdown-toggle.show:focus { - box-shadow: 0 0 0 0.25rem rgba(25, 135, 84, 0.5); -} -.btn-outline-success:disabled, .btn-outline-success.disabled { - color: #198754; - background-color: transparent; -} - -.btn-outline-info { - color: #0dcaf0; - border-color: #0dcaf0; -} -.btn-outline-info:hover { - color: #000; - background-color: #0dcaf0; - border-color: #0dcaf0; -} -.btn-check:focus + .btn-outline-info, .btn-outline-info:focus { - box-shadow: 0 0 0 0.25rem rgba(13, 202, 240, 0.5); -} -.btn-check:checked + .btn-outline-info, .btn-check:active + .btn-outline-info, .btn-outline-info:active, .btn-outline-info.active, .btn-outline-info.dropdown-toggle.show { - color: #000; - background-color: #0dcaf0; - border-color: #0dcaf0; -} -.btn-check:checked + .btn-outline-info:focus, .btn-check:active + .btn-outline-info:focus, .btn-outline-info:active:focus, .btn-outline-info.active:focus, .btn-outline-info.dropdown-toggle.show:focus { - box-shadow: 0 0 0 0.25rem rgba(13, 202, 240, 0.5); -} -.btn-outline-info:disabled, .btn-outline-info.disabled { - color: #0dcaf0; - background-color: transparent; -} - -.btn-outline-warning { - color: #ffc107; - border-color: #ffc107; -} -.btn-outline-warning:hover { - color: #000; - background-color: #ffc107; - border-color: #ffc107; -} -.btn-check:focus + .btn-outline-warning, .btn-outline-warning:focus { - box-shadow: 0 0 0 0.25rem rgba(255, 193, 7, 0.5); -} -.btn-check:checked + .btn-outline-warning, .btn-check:active + .btn-outline-warning, .btn-outline-warning:active, .btn-outline-warning.active, .btn-outline-warning.dropdown-toggle.show { - color: #000; - background-color: #ffc107; - border-color: #ffc107; -} -.btn-check:checked + .btn-outline-warning:focus, .btn-check:active + .btn-outline-warning:focus, .btn-outline-warning:active:focus, .btn-outline-warning.active:focus, .btn-outline-warning.dropdown-toggle.show:focus { - box-shadow: 0 0 0 0.25rem rgba(255, 193, 7, 0.5); -} -.btn-outline-warning:disabled, .btn-outline-warning.disabled { - color: #ffc107; - background-color: transparent; -} - -.btn-outline-danger { - color: #dc3545; - border-color: #dc3545; -} -.btn-outline-danger:hover { - color: #fff; - background-color: #dc3545; - border-color: #dc3545; -} -.btn-check:focus + .btn-outline-danger, .btn-outline-danger:focus { - box-shadow: 0 0 0 0.25rem rgba(220, 53, 69, 0.5); -} -.btn-check:checked + .btn-outline-danger, .btn-check:active + .btn-outline-danger, .btn-outline-danger:active, .btn-outline-danger.active, .btn-outline-danger.dropdown-toggle.show { - color: #fff; - background-color: #dc3545; - border-color: #dc3545; -} -.btn-check:checked + .btn-outline-danger:focus, .btn-check:active + .btn-outline-danger:focus, .btn-outline-danger:active:focus, .btn-outline-danger.active:focus, .btn-outline-danger.dropdown-toggle.show:focus { - box-shadow: 0 0 0 0.25rem rgba(220, 53, 69, 0.5); -} -.btn-outline-danger:disabled, .btn-outline-danger.disabled { - color: #dc3545; - background-color: transparent; -} - -.btn-outline-light { - color: #f8f9fa; - border-color: #f8f9fa; -} -.btn-outline-light:hover { - color: #000; - background-color: #f8f9fa; - border-color: #f8f9fa; -} -.btn-check:focus + .btn-outline-light, .btn-outline-light:focus { - box-shadow: 0 0 0 0.25rem rgba(248, 249, 250, 0.5); -} -.btn-check:checked + .btn-outline-light, .btn-check:active + .btn-outline-light, .btn-outline-light:active, .btn-outline-light.active, .btn-outline-light.dropdown-toggle.show { - color: #000; - background-color: #f8f9fa; - border-color: #f8f9fa; -} -.btn-check:checked + .btn-outline-light:focus, .btn-check:active + .btn-outline-light:focus, .btn-outline-light:active:focus, .btn-outline-light.active:focus, .btn-outline-light.dropdown-toggle.show:focus { - box-shadow: 0 0 0 0.25rem rgba(248, 249, 250, 0.5); -} -.btn-outline-light:disabled, .btn-outline-light.disabled { - color: #f8f9fa; - background-color: transparent; -} - -.btn-outline-dark { - color: #212529; - border-color: #212529; -} -.btn-outline-dark:hover { - color: #fff; - background-color: #212529; - border-color: #212529; -} -.btn-check:focus + .btn-outline-dark, .btn-outline-dark:focus { - box-shadow: 0 0 0 0.25rem rgba(33, 37, 41, 0.5); -} -.btn-check:checked + .btn-outline-dark, .btn-check:active + .btn-outline-dark, .btn-outline-dark:active, .btn-outline-dark.active, .btn-outline-dark.dropdown-toggle.show { - color: #fff; - background-color: #212529; - border-color: #212529; -} -.btn-check:checked + .btn-outline-dark:focus, .btn-check:active + .btn-outline-dark:focus, .btn-outline-dark:active:focus, .btn-outline-dark.active:focus, .btn-outline-dark.dropdown-toggle.show:focus { - box-shadow: 0 0 0 0.25rem rgba(33, 37, 41, 0.5); -} -.btn-outline-dark:disabled, .btn-outline-dark.disabled { - color: #212529; - background-color: transparent; -} - -.btn-link { - font-weight: 400; - color: #0d6efd; - text-decoration: underline; -} -.btn-link:hover { - color: #0a58ca; -} -.btn-link:disabled, .btn-link.disabled { - color: #6c757d; -} - -.btn-lg, .btn-group-lg > .btn { - padding: 0.5rem 1rem; - font-size: 1.25rem; - border-radius: 0.3rem; -} - -.btn-sm, .btn-group-sm > .btn { - padding: 0.25rem 0.5rem; - font-size: 0.875rem; - border-radius: 0.2rem; -} - -.fade { - transition: opacity 0.15s linear; -} -@media (prefers-reduced-motion: reduce) { - .fade { - transition: none; - } -} -.fade:not(.show) { - opacity: 0; -} - -.collapse:not(.show) { - display: none; -} - -.collapsing { - height: 0; - overflow: hidden; - transition: height 0.35s ease; -} -@media (prefers-reduced-motion: reduce) { - .collapsing { - transition: none; - } -} -.collapsing.collapse-horizontal { - width: 0; - height: auto; - transition: width 0.35s ease; -} -@media (prefers-reduced-motion: reduce) { - .collapsing.collapse-horizontal { - transition: none; - } -} - -.dropup, -.dropend, -.dropdown, -.dropstart { - position: relative; -} - -.dropdown-toggle { - white-space: nowrap; -} -.dropdown-toggle::after { - display: inline-block; - margin-right: 0.255em; - vertical-align: 0.255em; - content: ""; - border-top: 0.3em solid; - border-left: 0.3em solid transparent; - border-bottom: 0; - border-right: 0.3em solid transparent; -} -.dropdown-toggle:empty::after { - margin-right: 0; -} - -.dropdown-menu { - position: absolute; - z-index: 1000; - display: none; - min-width: 10rem; - padding: 0.5rem 0; - margin: 0; - font-size: 1rem; - color: #212529; - text-align: right; - list-style: none; - background-color: #fff; - background-clip: padding-box; - border: 1px solid rgba(0, 0, 0, 0.15); - border-radius: 0.25rem; -} -.dropdown-menu[data-bs-popper] { - top: 100%; - right: 0; - margin-top: 0.125rem; -} - -.dropdown-menu-start { - --bs-position: start; -} -.dropdown-menu-start[data-bs-popper] { - left: auto; - right: 0; -} - -.dropdown-menu-end { - --bs-position: end; -} -.dropdown-menu-end[data-bs-popper] { - left: 0; - right: auto; -} - -@media (min-width: 576px) { - .dropdown-menu-sm-start { - --bs-position: start; - } - .dropdown-menu-sm-start[data-bs-popper] { - left: auto; - right: 0; - } - - .dropdown-menu-sm-end { - --bs-position: end; - } - .dropdown-menu-sm-end[data-bs-popper] { - left: 0; - right: auto; - } -} -@media (min-width: 768px) { - .dropdown-menu-md-start { - --bs-position: start; - } - .dropdown-menu-md-start[data-bs-popper] { - left: auto; - right: 0; - } - - .dropdown-menu-md-end { - --bs-position: end; - } - .dropdown-menu-md-end[data-bs-popper] { - left: 0; - right: auto; - } -} -@media (min-width: 992px) { - .dropdown-menu-lg-start { - --bs-position: start; - } - .dropdown-menu-lg-start[data-bs-popper] { - left: auto; - right: 0; - } - - .dropdown-menu-lg-end { - --bs-position: end; - } - .dropdown-menu-lg-end[data-bs-popper] { - left: 0; - right: auto; - } -} -@media (min-width: 1200px) { - .dropdown-menu-xl-start { - --bs-position: start; - } - .dropdown-menu-xl-start[data-bs-popper] { - left: auto; - right: 0; - } - - .dropdown-menu-xl-end { - --bs-position: end; - } - .dropdown-menu-xl-end[data-bs-popper] { - left: 0; - right: auto; - } -} -@media (min-width: 1400px) { - .dropdown-menu-xxl-start { - --bs-position: start; - } - .dropdown-menu-xxl-start[data-bs-popper] { - left: auto; - right: 0; - } - - .dropdown-menu-xxl-end { - --bs-position: end; - } - .dropdown-menu-xxl-end[data-bs-popper] { - left: 0; - right: auto; - } -} -.dropup .dropdown-menu[data-bs-popper] { - top: auto; - bottom: 100%; - margin-top: 0; - margin-bottom: 0.125rem; -} -.dropup .dropdown-toggle::after { - display: inline-block; - margin-right: 0.255em; - vertical-align: 0.255em; - content: ""; - border-top: 0; - border-left: 0.3em solid transparent; - border-bottom: 0.3em solid; - border-right: 0.3em solid transparent; -} -.dropup .dropdown-toggle:empty::after { - margin-right: 0; -} - -.dropend .dropdown-menu[data-bs-popper] { - top: 0; - left: auto; - right: 100%; - margin-top: 0; - margin-right: 0.125rem; -} -.dropend .dropdown-toggle::after { - display: inline-block; - margin-right: 0.255em; - vertical-align: 0.255em; - content: ""; - border-top: 0.3em solid transparent; - border-left: 0; - border-bottom: 0.3em solid transparent; - border-right: 0.3em solid; -} -.dropend .dropdown-toggle:empty::after { - margin-right: 0; -} -.dropend .dropdown-toggle::after { - vertical-align: 0; -} - -.dropstart .dropdown-menu[data-bs-popper] { - top: 0; - left: 100%; - right: auto; - margin-top: 0; - margin-left: 0.125rem; -} -.dropstart .dropdown-toggle::after { - display: inline-block; - margin-right: 0.255em; - vertical-align: 0.255em; - content: ""; -} -.dropstart .dropdown-toggle::after { - display: none; -} -.dropstart .dropdown-toggle::before { - display: inline-block; - margin-left: 0.255em; - vertical-align: 0.255em; - content: ""; - border-top: 0.3em solid transparent; - border-left: 0.3em solid; - border-bottom: 0.3em solid transparent; -} -.dropstart .dropdown-toggle:empty::after { - margin-right: 0; -} -.dropstart .dropdown-toggle::before { - vertical-align: 0; -} - -.dropdown-divider { - height: 0; - margin: 0.5rem 0; - overflow: hidden; - border-top: 1px solid rgba(0, 0, 0, 0.15); -} - -.dropdown-item { - display: block; - width: 100%; - padding: 0.25rem 1rem; - clear: both; - font-weight: 400; - color: #212529; - text-align: inherit; - text-decoration: none; - white-space: nowrap; - background-color: transparent; - border: 0; -} -.dropdown-item:hover, .dropdown-item:focus { - color: #1e2125; - background-color: #e9ecef; -} -.dropdown-item.active, .dropdown-item:active { - color: #fff; - text-decoration: none; - background-color: #0d6efd; -} -.dropdown-item.disabled, .dropdown-item:disabled { - color: #adb5bd; - pointer-events: none; - background-color: transparent; -} - -.dropdown-menu.show { - display: block; -} - -.dropdown-header { - display: block; - padding: 0.5rem 1rem; - margin-bottom: 0; - font-size: 0.875rem; - color: #6c757d; - white-space: nowrap; -} - -.dropdown-item-text { - display: block; - padding: 0.25rem 1rem; - color: #212529; -} - -.dropdown-menu-dark { - color: #dee2e6; - background-color: #343a40; - border-color: rgba(0, 0, 0, 0.15); -} -.dropdown-menu-dark .dropdown-item { - color: #dee2e6; -} -.dropdown-menu-dark .dropdown-item:hover, .dropdown-menu-dark .dropdown-item:focus { - color: #fff; - background-color: rgba(255, 255, 255, 0.15); -} -.dropdown-menu-dark .dropdown-item.active, .dropdown-menu-dark .dropdown-item:active { - color: #fff; - background-color: #0d6efd; -} -.dropdown-menu-dark .dropdown-item.disabled, .dropdown-menu-dark .dropdown-item:disabled { - color: #adb5bd; -} -.dropdown-menu-dark .dropdown-divider { - border-color: rgba(0, 0, 0, 0.15); -} -.dropdown-menu-dark .dropdown-item-text { - color: #dee2e6; -} -.dropdown-menu-dark .dropdown-header { - color: #adb5bd; -} - -.btn-group, -.btn-group-vertical { - position: relative; - display: inline-flex; - vertical-align: middle; -} -.btn-group > .btn, -.btn-group-vertical > .btn { - position: relative; - flex: 1 1 auto; -} -.btn-group > .btn-check:checked + .btn, -.btn-group > .btn-check:focus + .btn, -.btn-group > .btn:hover, -.btn-group > .btn:focus, -.btn-group > .btn:active, -.btn-group > .btn.active, -.btn-group-vertical > .btn-check:checked + .btn, -.btn-group-vertical > .btn-check:focus + .btn, -.btn-group-vertical > .btn:hover, -.btn-group-vertical > .btn:focus, -.btn-group-vertical > .btn:active, -.btn-group-vertical > .btn.active { - z-index: 1; -} - -.btn-toolbar { - display: flex; - flex-wrap: wrap; - justify-content: flex-start; -} -.btn-toolbar .input-group { - width: auto; -} - -.btn-group > .btn:not(:first-child), -.btn-group > .btn-group:not(:first-child) { - margin-right: -1px; -} -.btn-group > .btn:not(:last-child):not(.dropdown-toggle), -.btn-group > .btn-group:not(:last-child) > .btn { - border-top-left-radius: 0; - border-bottom-left-radius: 0; -} -.btn-group > .btn:nth-child(n+3), -.btn-group > :not(.btn-check) + .btn, -.btn-group > .btn-group:not(:first-child) > .btn { - border-top-right-radius: 0; - border-bottom-right-radius: 0; -} - -.dropdown-toggle-split { - padding-left: 0.5625rem; - padding-right: 0.5625rem; -} -.dropdown-toggle-split::after, .dropup .dropdown-toggle-split::after, .dropend .dropdown-toggle-split::after { - margin-right: 0; -} -.dropstart .dropdown-toggle-split::before { - margin-left: 0; -} - -.btn-sm + .dropdown-toggle-split, .btn-group-sm > .btn + .dropdown-toggle-split { - padding-left: 0.375rem; - padding-right: 0.375rem; -} - -.btn-lg + .dropdown-toggle-split, .btn-group-lg > .btn + .dropdown-toggle-split { - padding-left: 0.75rem; - padding-right: 0.75rem; -} - -.btn-group-vertical { - flex-direction: column; - align-items: flex-start; - justify-content: center; -} -.btn-group-vertical > .btn, -.btn-group-vertical > .btn-group { - width: 100%; -} -.btn-group-vertical > .btn:not(:first-child), -.btn-group-vertical > .btn-group:not(:first-child) { - margin-top: -1px; -} -.btn-group-vertical > .btn:not(:last-child):not(.dropdown-toggle), -.btn-group-vertical > .btn-group:not(:last-child) > .btn { - border-bottom-left-radius: 0; - border-bottom-right-radius: 0; -} -.btn-group-vertical > .btn ~ .btn, -.btn-group-vertical > .btn-group:not(:first-child) > .btn { - border-top-right-radius: 0; - border-top-left-radius: 0; -} - -.nav { - display: flex; - flex-wrap: wrap; - padding-right: 0; - margin-bottom: 0; - list-style: none; -} - -.nav-link { - display: block; - padding: 0.5rem 1rem; - color: #0d6efd; - text-decoration: none; - transition: color 0.15s ease-in-out, background-color 0.15s ease-in-out, border-color 0.15s ease-in-out; -} -@media (prefers-reduced-motion: reduce) { - .nav-link { - transition: none; - } -} -.nav-link:hover, .nav-link:focus { - color: #0a58ca; -} -.nav-link.disabled { - color: #6c757d; - pointer-events: none; - cursor: default; -} - -.nav-tabs { - border-bottom: 1px solid #dee2e6; -} -.nav-tabs .nav-link { - margin-bottom: -1px; - background: none; - border: 1px solid transparent; - border-top-right-radius: 0.25rem; - border-top-left-radius: 0.25rem; -} -.nav-tabs .nav-link:hover, .nav-tabs .nav-link:focus { - border-color: #e9ecef #e9ecef #dee2e6; - isolation: isolate; -} -.nav-tabs .nav-link.disabled { - color: #6c757d; - background-color: transparent; - border-color: transparent; -} -.nav-tabs .nav-link.active, -.nav-tabs .nav-item.show .nav-link { - color: #495057; - background-color: #fff; - border-color: #dee2e6 #dee2e6 #fff; -} -.nav-tabs .dropdown-menu { - margin-top: -1px; - border-top-right-radius: 0; - border-top-left-radius: 0; -} - -.nav-pills .nav-link { - background: none; - border: 0; - border-radius: 0.25rem; -} -.nav-pills .nav-link.active, -.nav-pills .show > .nav-link { - color: #fff; - background-color: #0d6efd; -} - -.nav-fill > .nav-link, -.nav-fill .nav-item { - flex: 1 1 auto; - text-align: center; -} - -.nav-justified > .nav-link, -.nav-justified .nav-item { - flex-basis: 0; - flex-grow: 1; - text-align: center; -} - -.nav-fill .nav-item .nav-link, -.nav-justified .nav-item .nav-link { - width: 100%; -} - -.tab-content > .tab-pane { - display: none; -} -.tab-content > .active { - display: block; -} - -.navbar { - position: relative; - display: flex; - flex-wrap: wrap; - align-items: center; - justify-content: space-between; - padding-top: 0.5rem; - padding-bottom: 0.5rem; -} -.navbar > .container, -.navbar > .container-fluid, -.navbar > .container-sm, -.navbar > .container-md, -.navbar > .container-lg, -.navbar > .container-xl, -.navbar > .container-xxl { - display: flex; - flex-wrap: inherit; - align-items: center; - justify-content: space-between; -} -.navbar-brand { - padding-top: 0.3125rem; - padding-bottom: 0.3125rem; - margin-left: 1rem; - font-size: 1.25rem; - text-decoration: none; - white-space: nowrap; -} -.navbar-nav { - display: flex; - flex-direction: column; - padding-right: 0; - margin-bottom: 0; - list-style: none; -} -.navbar-nav .nav-link { - padding-left: 0; - padding-right: 0; -} -.navbar-nav .dropdown-menu { - position: static; -} - -.navbar-text { - padding-top: 0.5rem; - padding-bottom: 0.5rem; -} - -.navbar-collapse { - flex-basis: 100%; - flex-grow: 1; - align-items: center; -} - -.navbar-toggler { - padding: 0.25rem 0.75rem; - font-size: 1.25rem; - line-height: 1; - background-color: transparent; - border: 1px solid transparent; - border-radius: 0.25rem; - transition: box-shadow 0.15s ease-in-out; -} -@media (prefers-reduced-motion: reduce) { - .navbar-toggler { - transition: none; - } -} -.navbar-toggler:hover { - text-decoration: none; -} -.navbar-toggler:focus { - text-decoration: none; - outline: 0; - box-shadow: 0 0 0 0.25rem; -} - -.navbar-toggler-icon { - display: inline-block; - width: 1.5em; - height: 1.5em; - vertical-align: middle; - background-repeat: no-repeat; - background-position: center; - background-size: 100%; -} - -.navbar-nav-scroll { - max-height: var(--bs-scroll-height, 75vh); - overflow-y: auto; -} - -@media (min-width: 576px) { - .navbar-expand-sm { - flex-wrap: nowrap; - justify-content: flex-start; - } - .navbar-expand-sm .navbar-nav { - flex-direction: row; - } - .navbar-expand-sm .navbar-nav .dropdown-menu { - position: absolute; - } - .navbar-expand-sm .navbar-nav .nav-link { - padding-left: 0.5rem; - padding-right: 0.5rem; - } - .navbar-expand-sm .navbar-nav-scroll { - overflow: visible; - } - .navbar-expand-sm .navbar-collapse { - display: flex !important; - flex-basis: auto; - } - .navbar-expand-sm .navbar-toggler { - display: none; - } - .navbar-expand-sm .offcanvas-header { - display: none; - } - .navbar-expand-sm .offcanvas { - position: inherit; - bottom: 0; - z-index: 1000; - flex-grow: 1; - visibility: visible !important; - background-color: transparent; - border-left: 0; - border-right: 0; - transition: none; - transform: none; - } - .navbar-expand-sm .offcanvas-top, -.navbar-expand-sm .offcanvas-bottom { - height: auto; - border-top: 0; - border-bottom: 0; - } - .navbar-expand-sm .offcanvas-body { - display: flex; - flex-grow: 0; - padding: 0; - overflow-y: visible; - } -} -@media (min-width: 768px) { - .navbar-expand-md { - flex-wrap: nowrap; - justify-content: flex-start; - } - .navbar-expand-md .navbar-nav { - flex-direction: row; - } - .navbar-expand-md .navbar-nav .dropdown-menu { - position: absolute; - } - .navbar-expand-md .navbar-nav .nav-link { - padding-left: 0.5rem; - padding-right: 0.5rem; - } - .navbar-expand-md .navbar-nav-scroll { - overflow: visible; - } - .navbar-expand-md .navbar-collapse { - display: flex !important; - flex-basis: auto; - } - .navbar-expand-md .navbar-toggler { - display: none; - } - .navbar-expand-md .offcanvas-header { - display: none; - } - .navbar-expand-md .offcanvas { - position: inherit; - bottom: 0; - z-index: 1000; - flex-grow: 1; - visibility: visible !important; - background-color: transparent; - border-left: 0; - border-right: 0; - transition: none; - transform: none; - } - .navbar-expand-md .offcanvas-top, -.navbar-expand-md .offcanvas-bottom { - height: auto; - border-top: 0; - border-bottom: 0; - } - .navbar-expand-md .offcanvas-body { - display: flex; - flex-grow: 0; - padding: 0; - overflow-y: visible; - } -} -@media (min-width: 992px) { - .navbar-expand-lg { - flex-wrap: nowrap; - justify-content: flex-start; - } - .navbar-expand-lg .navbar-nav { - flex-direction: row; - } - .navbar-expand-lg .navbar-nav .dropdown-menu { - position: absolute; - } - .navbar-expand-lg .navbar-nav .nav-link { - padding-left: 0.5rem; - padding-right: 0.5rem; - } - .navbar-expand-lg .navbar-nav-scroll { - overflow: visible; - } - .navbar-expand-lg .navbar-collapse { - display: flex !important; - flex-basis: auto; - } - .navbar-expand-lg .navbar-toggler { - display: none; - } - .navbar-expand-lg .offcanvas-header { - display: none; - } - .navbar-expand-lg .offcanvas { - position: inherit; - bottom: 0; - z-index: 1000; - flex-grow: 1; - visibility: visible !important; - background-color: transparent; - border-left: 0; - border-right: 0; - transition: none; - transform: none; - } - .navbar-expand-lg .offcanvas-top, -.navbar-expand-lg .offcanvas-bottom { - height: auto; - border-top: 0; - border-bottom: 0; - } - .navbar-expand-lg .offcanvas-body { - display: flex; - flex-grow: 0; - padding: 0; - overflow-y: visible; - } -} -@media (min-width: 1200px) { - .navbar-expand-xl { - flex-wrap: nowrap; - justify-content: flex-start; - } - .navbar-expand-xl .navbar-nav { - flex-direction: row; - } - .navbar-expand-xl .navbar-nav .dropdown-menu { - position: absolute; - } - .navbar-expand-xl .navbar-nav .nav-link { - padding-left: 0.5rem; - padding-right: 0.5rem; - } - .navbar-expand-xl .navbar-nav-scroll { - overflow: visible; - } - .navbar-expand-xl .navbar-collapse { - display: flex !important; - flex-basis: auto; - } - .navbar-expand-xl .navbar-toggler { - display: none; - } - .navbar-expand-xl .offcanvas-header { - display: none; - } - .navbar-expand-xl .offcanvas { - position: inherit; - bottom: 0; - z-index: 1000; - flex-grow: 1; - visibility: visible !important; - background-color: transparent; - border-left: 0; - border-right: 0; - transition: none; - transform: none; - } - .navbar-expand-xl .offcanvas-top, -.navbar-expand-xl .offcanvas-bottom { - height: auto; - border-top: 0; - border-bottom: 0; - } - .navbar-expand-xl .offcanvas-body { - display: flex; - flex-grow: 0; - padding: 0; - overflow-y: visible; - } -} -@media (min-width: 1400px) { - .navbar-expand-xxl { - flex-wrap: nowrap; - justify-content: flex-start; - } - .navbar-expand-xxl .navbar-nav { - flex-direction: row; - } - .navbar-expand-xxl .navbar-nav .dropdown-menu { - position: absolute; - } - .navbar-expand-xxl .navbar-nav .nav-link { - padding-left: 0.5rem; - padding-right: 0.5rem; - } - .navbar-expand-xxl .navbar-nav-scroll { - overflow: visible; - } - .navbar-expand-xxl .navbar-collapse { - display: flex !important; - flex-basis: auto; - } - .navbar-expand-xxl .navbar-toggler { - display: none; - } - .navbar-expand-xxl .offcanvas-header { - display: none; - } - .navbar-expand-xxl .offcanvas { - position: inherit; - bottom: 0; - z-index: 1000; - flex-grow: 1; - visibility: visible !important; - background-color: transparent; - border-left: 0; - border-right: 0; - transition: none; - transform: none; - } - .navbar-expand-xxl .offcanvas-top, -.navbar-expand-xxl .offcanvas-bottom { - height: auto; - border-top: 0; - border-bottom: 0; - } - .navbar-expand-xxl .offcanvas-body { - display: flex; - flex-grow: 0; - padding: 0; - overflow-y: visible; - } -} -.navbar-expand { - flex-wrap: nowrap; - justify-content: flex-start; -} -.navbar-expand .navbar-nav { - flex-direction: row; -} -.navbar-expand .navbar-nav .dropdown-menu { - position: absolute; -} -.navbar-expand .navbar-nav .nav-link { - padding-left: 0.5rem; - padding-right: 0.5rem; -} -.navbar-expand .navbar-nav-scroll { - overflow: visible; -} -.navbar-expand .navbar-collapse { - display: flex !important; - flex-basis: auto; -} -.navbar-expand .navbar-toggler { - display: none; -} -.navbar-expand .offcanvas-header { - display: none; -} -.navbar-expand .offcanvas { - position: inherit; - bottom: 0; - z-index: 1000; - flex-grow: 1; - visibility: visible !important; - background-color: transparent; - border-left: 0; - border-right: 0; - transition: none; - transform: none; -} -.navbar-expand .offcanvas-top, -.navbar-expand .offcanvas-bottom { - height: auto; - border-top: 0; - border-bottom: 0; -} -.navbar-expand .offcanvas-body { - display: flex; - flex-grow: 0; - padding: 0; - overflow-y: visible; -} - -.navbar-light .navbar-brand { - color: rgba(0, 0, 0, 0.9); -} -.navbar-light .navbar-brand:hover, .navbar-light .navbar-brand:focus { - color: rgba(0, 0, 0, 0.9); -} -.navbar-light .navbar-nav .nav-link { - color: rgba(0, 0, 0, 0.55); -} -.navbar-light .navbar-nav .nav-link:hover, .navbar-light .navbar-nav .nav-link:focus { - color: rgba(0, 0, 0, 0.7); -} -.navbar-light .navbar-nav .nav-link.disabled { - color: rgba(0, 0, 0, 0.3); -} -.navbar-light .navbar-nav .show > .nav-link, -.navbar-light .navbar-nav .nav-link.active { - color: rgba(0, 0, 0, 0.9); -} -.navbar-light .navbar-toggler { - color: rgba(0, 0, 0, 0.55); - border-color: rgba(0, 0, 0, 0.1); -} -.navbar-light .navbar-toggler-icon { - background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 30 30'%3e%3cpath stroke='rgba%280, 0, 0, 0.55%29' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e"); -} -.navbar-light .navbar-text { - color: rgba(0, 0, 0, 0.55); -} -.navbar-light .navbar-text a, -.navbar-light .navbar-text a:hover, -.navbar-light .navbar-text a:focus { - color: rgba(0, 0, 0, 0.9); -} - -.navbar-dark .navbar-brand { - color: #fff; -} -.navbar-dark .navbar-brand:hover, .navbar-dark .navbar-brand:focus { - color: #fff; -} -.navbar-dark .navbar-nav .nav-link { - color: rgba(255, 255, 255, 0.55); -} -.navbar-dark .navbar-nav .nav-link:hover, .navbar-dark .navbar-nav .nav-link:focus { - color: rgba(255, 255, 255, 0.75); -} -.navbar-dark .navbar-nav .nav-link.disabled { - color: rgba(255, 255, 255, 0.25); -} -.navbar-dark .navbar-nav .show > .nav-link, -.navbar-dark .navbar-nav .nav-link.active { - color: #fff; -} -.navbar-dark .navbar-toggler { - color: rgba(255, 255, 255, 0.55); - border-color: rgba(255, 255, 255, 0.1); -} -.navbar-dark .navbar-toggler-icon { - background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 30 30'%3e%3cpath stroke='rgba%28255, 255, 255, 0.55%29' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e"); -} -.navbar-dark .navbar-text { - color: rgba(255, 255, 255, 0.55); -} -.navbar-dark .navbar-text a, -.navbar-dark .navbar-text a:hover, -.navbar-dark .navbar-text a:focus { - color: #fff; -} - -.card { - position: relative; - display: flex; - flex-direction: column; - min-width: 0; - word-wrap: break-word; - background-color: #fff; - background-clip: border-box; - border: 1px solid rgba(0, 0, 0, 0.125); - border-radius: 0.25rem; -} -.card > hr { - margin-left: 0; - margin-right: 0; -} -.card > .list-group { - border-top: inherit; - border-bottom: inherit; -} -.card > .list-group:first-child { - border-top-width: 0; - border-top-right-radius: calc(0.25rem - 1px); - border-top-left-radius: calc(0.25rem - 1px); -} -.card > .list-group:last-child { - border-bottom-width: 0; - border-bottom-left-radius: calc(0.25rem - 1px); - border-bottom-right-radius: calc(0.25rem - 1px); -} -.card > .card-header + .list-group, -.card > .list-group + .card-footer { - border-top: 0; -} - -.card-body { - flex: 1 1 auto; - padding: 1rem 1rem; -} - -.card-title { - margin-bottom: 0.5rem; -} - -.card-subtitle { - margin-top: -0.25rem; - margin-bottom: 0; -} - -.card-text:last-child { - margin-bottom: 0; -} - -.card-link + .card-link { - margin-right: 1rem; -} - -.card-header { - padding: 0.5rem 1rem; - margin-bottom: 0; - background-color: rgba(0, 0, 0, 0.03); - border-bottom: 1px solid rgba(0, 0, 0, 0.125); -} -.card-header:first-child { - border-radius: calc(0.25rem - 1px) calc(0.25rem - 1px) 0 0; -} - -.card-footer { - padding: 0.5rem 1rem; - background-color: rgba(0, 0, 0, 0.03); - border-top: 1px solid rgba(0, 0, 0, 0.125); -} -.card-footer:last-child { - border-radius: 0 0 calc(0.25rem - 1px) calc(0.25rem - 1px); -} - -.card-header-tabs { - margin-left: -0.5rem; - margin-bottom: -0.5rem; - margin-right: -0.5rem; - border-bottom: 0; -} - -.card-header-pills { - margin-left: -0.5rem; - margin-right: -0.5rem; -} - -.card-img-overlay { - position: absolute; - top: 0; - left: 0; - bottom: 0; - right: 0; - padding: 1rem; - border-radius: calc(0.25rem - 1px); -} - -.card-img, -.card-img-top, -.card-img-bottom { - width: 100%; -} - -.card-img, -.card-img-top { - border-top-right-radius: calc(0.25rem - 1px); - border-top-left-radius: calc(0.25rem - 1px); -} - -.card-img, -.card-img-bottom { - border-bottom-left-radius: calc(0.25rem - 1px); - border-bottom-right-radius: calc(0.25rem - 1px); -} - -.card-group > .card { - margin-bottom: 0.75rem; -} -@media (min-width: 576px) { - .card-group { - display: flex; - flex-flow: row wrap; - } - .card-group > .card { - flex: 1 0 0%; - margin-bottom: 0; - } - .card-group > .card + .card { - margin-right: 0; - border-right: 0; - } - .card-group > .card:not(:last-child) { - border-top-left-radius: 0; - border-bottom-left-radius: 0; - } - .card-group > .card:not(:last-child) .card-img-top, -.card-group > .card:not(:last-child) .card-header { - border-top-left-radius: 0; - } - .card-group > .card:not(:last-child) .card-img-bottom, -.card-group > .card:not(:last-child) .card-footer { - border-bottom-left-radius: 0; - } - .card-group > .card:not(:first-child) { - border-top-right-radius: 0; - border-bottom-right-radius: 0; - } - .card-group > .card:not(:first-child) .card-img-top, -.card-group > .card:not(:first-child) .card-header { - border-top-right-radius: 0; - } - .card-group > .card:not(:first-child) .card-img-bottom, -.card-group > .card:not(:first-child) .card-footer { - border-bottom-right-radius: 0; - } -} - -.accordion-button { - position: relative; - display: flex; - align-items: center; - width: 100%; - padding: 1rem 1.25rem; - font-size: 1rem; - color: #212529; - text-align: right; - background-color: #fff; - border: 0; - border-radius: 0; - overflow-anchor: none; - transition: color 0.15s ease-in-out, background-color 0.15s ease-in-out, border-color 0.15s ease-in-out, box-shadow 0.15s ease-in-out, border-radius 0.15s ease; -} -@media (prefers-reduced-motion: reduce) { - .accordion-button { - transition: none; - } -} -.accordion-button:not(.collapsed) { - color: #0c63e4; - background-color: #e7f1ff; - box-shadow: inset 0 -1px 0 rgba(0, 0, 0, 0.125); -} -.accordion-button:not(.collapsed)::after { - background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%230c63e4'%3e%3cpath fill-rule='evenodd' d='M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e"); - transform: rotate(180deg); -} -.accordion-button::after { - flex-shrink: 0; - width: 1.25rem; - height: 1.25rem; - margin-right: auto; - content: ""; - background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23212529'%3e%3cpath fill-rule='evenodd' d='M1.646 4.646a.5.5 0 0 1 .708 0L8 10.293l5.646-5.647a.5.5 0 0 1 .708.708l-6 6a.5.5 0 0 1-.708 0l-6-6a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e"); - background-repeat: no-repeat; - background-size: 1.25rem; - transition: transform 0.2s ease-in-out; -} -@media (prefers-reduced-motion: reduce) { - .accordion-button::after { - transition: none; - } -} -.accordion-button:hover { - z-index: 2; -} -.accordion-button:focus { - z-index: 3; - border-color: #86b7fe; - outline: 0; - box-shadow: 0 0 0 0.25rem rgba(13, 110, 253, 0.25); -} - -.accordion-header { - margin-bottom: 0; -} - -.accordion-item { - background-color: #fff; - border: 1px solid rgba(0, 0, 0, 0.125); -} -.accordion-item:first-of-type { - border-top-right-radius: 0.25rem; - border-top-left-radius: 0.25rem; -} -.accordion-item:first-of-type .accordion-button { - border-top-right-radius: calc(0.25rem - 1px); - border-top-left-radius: calc(0.25rem - 1px); -} -.accordion-item:not(:first-of-type) { - border-top: 0; -} -.accordion-item:last-of-type { - border-bottom-left-radius: 0.25rem; - border-bottom-right-radius: 0.25rem; -} -.accordion-item:last-of-type .accordion-button.collapsed { - border-bottom-left-radius: calc(0.25rem - 1px); - border-bottom-right-radius: calc(0.25rem - 1px); -} -.accordion-item:last-of-type .accordion-collapse { - border-bottom-left-radius: 0.25rem; - border-bottom-right-radius: 0.25rem; -} - -.accordion-body { - padding: 1rem 1.25rem; -} - -.accordion-flush .accordion-collapse { - border-width: 0; -} -.accordion-flush .accordion-item { - border-left: 0; - border-right: 0; - border-radius: 0; -} -.accordion-flush .accordion-item:first-child { - border-top: 0; -} -.accordion-flush .accordion-item:last-child { - border-bottom: 0; -} -.accordion-flush .accordion-item .accordion-button { - border-radius: 0; -} - -.breadcrumb { - display: flex; - flex-wrap: wrap; - padding: 0 0; - margin-bottom: 1rem; - list-style: none; -} - -.breadcrumb-item + .breadcrumb-item { - padding-right: 0.5rem; -} -.breadcrumb-item + .breadcrumb-item::before { - float: right; - padding-left: 0.5rem; - color: #6c757d; - content: var(--bs-breadcrumb-divider, "/") ; -} -.breadcrumb-item.active { - color: #6c757d; -} - -.pagination { - display: flex; - padding-right: 0; - list-style: none; -} - -.page-link { - position: relative; - display: block; - color: #0d6efd; - text-decoration: none; - background-color: #fff; - border: 1px solid #dee2e6; - transition: color 0.15s ease-in-out, background-color 0.15s ease-in-out, border-color 0.15s ease-in-out, box-shadow 0.15s ease-in-out; -} -@media (prefers-reduced-motion: reduce) { - .page-link { - transition: none; - } -} -.page-link:hover { - z-index: 2; - color: #0a58ca; - background-color: #e9ecef; - border-color: #dee2e6; -} -.page-link:focus { - z-index: 3; - color: #0a58ca; - background-color: #e9ecef; - outline: 0; - box-shadow: 0 0 0 0.25rem rgba(13, 110, 253, 0.25); -} - -.page-item:not(:first-child) .page-link { - margin-right: -1px; -} -.page-item.active .page-link { - z-index: 3; - color: #fff; - background-color: #0d6efd; - border-color: #0d6efd; -} -.page-item.disabled .page-link { - color: #6c757d; - pointer-events: none; - background-color: #fff; - border-color: #dee2e6; -} - -.page-link { - padding: 0.375rem 0.75rem; -} - -.page-item:first-child .page-link { - border-top-right-radius: 0.25rem; - border-bottom-right-radius: 0.25rem; -} -.page-item:last-child .page-link { - border-top-left-radius: 0.25rem; - border-bottom-left-radius: 0.25rem; -} - -.pagination-lg .page-link { - padding: 0.75rem 1.5rem; - font-size: 1.25rem; -} -.pagination-lg .page-item:first-child .page-link { - border-top-right-radius: 0.3rem; - border-bottom-right-radius: 0.3rem; -} -.pagination-lg .page-item:last-child .page-link { - border-top-left-radius: 0.3rem; - border-bottom-left-radius: 0.3rem; -} - -.pagination-sm .page-link { - padding: 0.25rem 0.5rem; - font-size: 0.875rem; -} -.pagination-sm .page-item:first-child .page-link { - border-top-right-radius: 0.2rem; - border-bottom-right-radius: 0.2rem; -} -.pagination-sm .page-item:last-child .page-link { - border-top-left-radius: 0.2rem; - border-bottom-left-radius: 0.2rem; -} - -.badge { - display: inline-block; - padding: 0.35em 0.65em; - font-size: 0.75em; - font-weight: 700; - line-height: 1; - color: #fff; - text-align: center; - white-space: nowrap; - vertical-align: baseline; - border-radius: 0.25rem; -} -.badge:empty { - display: none; -} - -.btn .badge { - position: relative; - top: -1px; -} - -.alert { - position: relative; - padding: 1rem 1rem; - margin-bottom: 1rem; - border: 1px solid transparent; - border-radius: 0.25rem; -} - -.alert-heading { - color: inherit; -} - -.alert-link { - font-weight: 700; -} - -.alert-dismissible { - padding-left: 3rem; -} -.alert-dismissible .btn-close { - position: absolute; - top: 0; - left: 0; - z-index: 2; - padding: 1.25rem 1rem; -} - -.alert-primary { - color: #084298; - background-color: #cfe2ff; - border-color: #b6d4fe; -} -.alert-primary .alert-link { - color: #06357a; -} - -.alert-secondary { - color: #41464b; - background-color: #e2e3e5; - border-color: #d3d6d8; -} -.alert-secondary .alert-link { - color: #34383c; -} - -.alert-success { - color: #0f5132; - background-color: #d1e7dd; - border-color: #badbcc; -} -.alert-success .alert-link { - color: #0c4128; -} - -.alert-info { - color: #055160; - background-color: #cff4fc; - border-color: #b6effb; -} -.alert-info .alert-link { - color: #04414d; -} - -.alert-warning { - color: #664d03; - background-color: #fff3cd; - border-color: #ffecb5; -} -.alert-warning .alert-link { - color: #523e02; -} - -.alert-danger { - color: #842029; - background-color: #f8d7da; - border-color: #f5c2c7; -} -.alert-danger .alert-link { - color: #6a1a21; -} - -.alert-light { - color: #636464; - background-color: #fefefe; - border-color: #fdfdfe; -} -.alert-light .alert-link { - color: #4f5050; -} - -.alert-dark { - color: #141619; - background-color: #d3d3d4; - border-color: #bcbebf; -} -.alert-dark .alert-link { - color: #101214; -} - -@-webkit-keyframes progress-bar-stripes { - 0% { - background-position-x: 1rem; - } -} - -@keyframes progress-bar-stripes { - 0% { - background-position-x: 1rem; - } -} -.progress { - display: flex; - height: 1rem; - overflow: hidden; - font-size: 0.75rem; - background-color: #e9ecef; - border-radius: 0.25rem; -} - -.progress-bar { - display: flex; - flex-direction: column; - justify-content: center; - overflow: hidden; - color: #fff; - text-align: center; - white-space: nowrap; - background-color: #0d6efd; - transition: width 0.6s ease; -} -@media (prefers-reduced-motion: reduce) { - .progress-bar { - transition: none; - } -} - -.progress-bar-striped { - background-image: linear-gradient(-45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); - background-size: 1rem 1rem; -} - -.progress-bar-animated { - -webkit-animation: 1s linear infinite progress-bar-stripes; - animation: 1s linear infinite progress-bar-stripes; -} -@media (prefers-reduced-motion: reduce) { - .progress-bar-animated { - -webkit-animation: none; - animation: none; - } -} - -.list-group { - display: flex; - flex-direction: column; - padding-right: 0; - margin-bottom: 0; - border-radius: 0.25rem; -} - -.list-group-numbered { - list-style-type: none; - counter-reset: section; -} -.list-group-numbered > li::before { - content: counters(section, ".") ". "; - counter-increment: section; -} - -.list-group-item-action { - width: 100%; - color: #495057; - text-align: inherit; -} -.list-group-item-action:hover, .list-group-item-action:focus { - z-index: 1; - color: #495057; - text-decoration: none; - background-color: #f8f9fa; -} -.list-group-item-action:active { - color: #212529; - background-color: #e9ecef; -} - -.list-group-item { - position: relative; - display: block; - padding: 0.5rem 1rem; - color: #212529; - text-decoration: none; - background-color: #fff; - border: 1px solid rgba(0, 0, 0, 0.125); -} -.list-group-item:first-child { - border-top-right-radius: inherit; - border-top-left-radius: inherit; -} -.list-group-item:last-child { - border-bottom-left-radius: inherit; - border-bottom-right-radius: inherit; -} -.list-group-item.disabled, .list-group-item:disabled { - color: #6c757d; - pointer-events: none; - background-color: #fff; -} -.list-group-item.active { - z-index: 2; - color: #fff; - background-color: #0d6efd; - border-color: #0d6efd; -} -.list-group-item + .list-group-item { - border-top-width: 0; -} -.list-group-item + .list-group-item.active { - margin-top: -1px; - border-top-width: 1px; -} - -.list-group-horizontal { - flex-direction: row; -} -.list-group-horizontal > .list-group-item:first-child { - border-bottom-right-radius: 0.25rem; - border-top-left-radius: 0; -} -.list-group-horizontal > .list-group-item:last-child { - border-top-left-radius: 0.25rem; - border-bottom-right-radius: 0; -} -.list-group-horizontal > .list-group-item.active { - margin-top: 0; -} -.list-group-horizontal > .list-group-item + .list-group-item { - border-top-width: 1px; - border-right-width: 0; -} -.list-group-horizontal > .list-group-item + .list-group-item.active { - margin-right: -1px; - border-right-width: 1px; -} - -@media (min-width: 576px) { - .list-group-horizontal-sm { - flex-direction: row; - } - .list-group-horizontal-sm > .list-group-item:first-child { - border-bottom-right-radius: 0.25rem; - border-top-left-radius: 0; - } - .list-group-horizontal-sm > .list-group-item:last-child { - border-top-left-radius: 0.25rem; - border-bottom-right-radius: 0; - } - .list-group-horizontal-sm > .list-group-item.active { - margin-top: 0; - } - .list-group-horizontal-sm > .list-group-item + .list-group-item { - border-top-width: 1px; - border-right-width: 0; - } - .list-group-horizontal-sm > .list-group-item + .list-group-item.active { - margin-right: -1px; - border-right-width: 1px; - } -} -@media (min-width: 768px) { - .list-group-horizontal-md { - flex-direction: row; - } - .list-group-horizontal-md > .list-group-item:first-child { - border-bottom-right-radius: 0.25rem; - border-top-left-radius: 0; - } - .list-group-horizontal-md > .list-group-item:last-child { - border-top-left-radius: 0.25rem; - border-bottom-right-radius: 0; - } - .list-group-horizontal-md > .list-group-item.active { - margin-top: 0; - } - .list-group-horizontal-md > .list-group-item + .list-group-item { - border-top-width: 1px; - border-right-width: 0; - } - .list-group-horizontal-md > .list-group-item + .list-group-item.active { - margin-right: -1px; - border-right-width: 1px; - } -} -@media (min-width: 992px) { - .list-group-horizontal-lg { - flex-direction: row; - } - .list-group-horizontal-lg > .list-group-item:first-child { - border-bottom-right-radius: 0.25rem; - border-top-left-radius: 0; - } - .list-group-horizontal-lg > .list-group-item:last-child { - border-top-left-radius: 0.25rem; - border-bottom-right-radius: 0; - } - .list-group-horizontal-lg > .list-group-item.active { - margin-top: 0; - } - .list-group-horizontal-lg > .list-group-item + .list-group-item { - border-top-width: 1px; - border-right-width: 0; - } - .list-group-horizontal-lg > .list-group-item + .list-group-item.active { - margin-right: -1px; - border-right-width: 1px; - } -} -@media (min-width: 1200px) { - .list-group-horizontal-xl { - flex-direction: row; - } - .list-group-horizontal-xl > .list-group-item:first-child { - border-bottom-right-radius: 0.25rem; - border-top-left-radius: 0; - } - .list-group-horizontal-xl > .list-group-item:last-child { - border-top-left-radius: 0.25rem; - border-bottom-right-radius: 0; - } - .list-group-horizontal-xl > .list-group-item.active { - margin-top: 0; - } - .list-group-horizontal-xl > .list-group-item + .list-group-item { - border-top-width: 1px; - border-right-width: 0; - } - .list-group-horizontal-xl > .list-group-item + .list-group-item.active { - margin-right: -1px; - border-right-width: 1px; - } -} -@media (min-width: 1400px) { - .list-group-horizontal-xxl { - flex-direction: row; - } - .list-group-horizontal-xxl > .list-group-item:first-child { - border-bottom-right-radius: 0.25rem; - border-top-left-radius: 0; - } - .list-group-horizontal-xxl > .list-group-item:last-child { - border-top-left-radius: 0.25rem; - border-bottom-right-radius: 0; - } - .list-group-horizontal-xxl > .list-group-item.active { - margin-top: 0; - } - .list-group-horizontal-xxl > .list-group-item + .list-group-item { - border-top-width: 1px; - border-right-width: 0; - } - .list-group-horizontal-xxl > .list-group-item + .list-group-item.active { - margin-right: -1px; - border-right-width: 1px; - } -} -.list-group-flush { - border-radius: 0; -} -.list-group-flush > .list-group-item { - border-width: 0 0 1px; -} -.list-group-flush > .list-group-item:last-child { - border-bottom-width: 0; -} - -.list-group-item-primary { - color: #084298; - background-color: #cfe2ff; -} -.list-group-item-primary.list-group-item-action:hover, .list-group-item-primary.list-group-item-action:focus { - color: #084298; - background-color: #bacbe6; -} -.list-group-item-primary.list-group-item-action.active { - color: #fff; - background-color: #084298; - border-color: #084298; -} - -.list-group-item-secondary { - color: #41464b; - background-color: #e2e3e5; -} -.list-group-item-secondary.list-group-item-action:hover, .list-group-item-secondary.list-group-item-action:focus { - color: #41464b; - background-color: #cbccce; -} -.list-group-item-secondary.list-group-item-action.active { - color: #fff; - background-color: #41464b; - border-color: #41464b; -} - -.list-group-item-success { - color: #0f5132; - background-color: #d1e7dd; -} -.list-group-item-success.list-group-item-action:hover, .list-group-item-success.list-group-item-action:focus { - color: #0f5132; - background-color: #bcd0c7; -} -.list-group-item-success.list-group-item-action.active { - color: #fff; - background-color: #0f5132; - border-color: #0f5132; -} - -.list-group-item-info { - color: #055160; - background-color: #cff4fc; -} -.list-group-item-info.list-group-item-action:hover, .list-group-item-info.list-group-item-action:focus { - color: #055160; - background-color: #badce3; -} -.list-group-item-info.list-group-item-action.active { - color: #fff; - background-color: #055160; - border-color: #055160; -} - -.list-group-item-warning { - color: #664d03; - background-color: #fff3cd; -} -.list-group-item-warning.list-group-item-action:hover, .list-group-item-warning.list-group-item-action:focus { - color: #664d03; - background-color: #e6dbb9; -} -.list-group-item-warning.list-group-item-action.active { - color: #fff; - background-color: #664d03; - border-color: #664d03; -} - -.list-group-item-danger { - color: #842029; - background-color: #f8d7da; -} -.list-group-item-danger.list-group-item-action:hover, .list-group-item-danger.list-group-item-action:focus { - color: #842029; - background-color: #dfc2c4; -} -.list-group-item-danger.list-group-item-action.active { - color: #fff; - background-color: #842029; - border-color: #842029; -} - -.list-group-item-light { - color: #636464; - background-color: #fefefe; -} -.list-group-item-light.list-group-item-action:hover, .list-group-item-light.list-group-item-action:focus { - color: #636464; - background-color: #e5e5e5; -} -.list-group-item-light.list-group-item-action.active { - color: #fff; - background-color: #636464; - border-color: #636464; -} - -.list-group-item-dark { - color: #141619; - background-color: #d3d3d4; -} -.list-group-item-dark.list-group-item-action:hover, .list-group-item-dark.list-group-item-action:focus { - color: #141619; - background-color: #bebebf; -} -.list-group-item-dark.list-group-item-action.active { - color: #fff; - background-color: #141619; - border-color: #141619; -} - -.btn-close { - box-sizing: content-box; - width: 1em; - height: 1em; - padding: 0.25em 0.25em; - color: #000; - background: transparent url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23000'%3e%3cpath d='M.293.293a1 1 0 011.414 0L8 6.586 14.293.293a1 1 0 111.414 1.414L9.414 8l6.293 6.293a1 1 0 01-1.414 1.414L8 9.414l-6.293 6.293a1 1 0 01-1.414-1.414L6.586 8 .293 1.707a1 1 0 010-1.414z'/%3e%3c/svg%3e") center/1em auto no-repeat; - border: 0; - border-radius: 0.25rem; - opacity: 0.5; -} -.btn-close:hover { - color: #000; - text-decoration: none; - opacity: 0.75; -} -.btn-close:focus { - outline: 0; - box-shadow: 0 0 0 0.25rem rgba(13, 110, 253, 0.25); - opacity: 1; -} -.btn-close:disabled, .btn-close.disabled { - pointer-events: none; - -webkit-user-select: none; - -moz-user-select: none; - user-select: none; - opacity: 0.25; -} - -.btn-close-white { - filter: invert(1) grayscale(100%) brightness(200%); -} - -.toast { - width: 350px; - max-width: 100%; - font-size: 0.875rem; - pointer-events: auto; - background-color: rgba(255, 255, 255, 0.85); - background-clip: padding-box; - border: 1px solid rgba(0, 0, 0, 0.1); - box-shadow: 0 0.5rem 1rem rgba(0, 0, 0, 0.15); - border-radius: 0.25rem; -} -.toast.showing { - opacity: 0; -} -.toast:not(.show) { - display: none; -} - -.toast-container { - width: -webkit-max-content; - width: -moz-max-content; - width: max-content; - max-width: 100%; - pointer-events: none; -} -.toast-container > :not(:last-child) { - margin-bottom: 0.75rem; -} - -.toast-header { - display: flex; - align-items: center; - padding: 0.5rem 0.75rem; - color: #6c757d; - background-color: rgba(255, 255, 255, 0.85); - background-clip: padding-box; - border-bottom: 1px solid rgba(0, 0, 0, 0.05); - border-top-right-radius: calc(0.25rem - 1px); - border-top-left-radius: calc(0.25rem - 1px); -} -.toast-header .btn-close { - margin-left: -0.375rem; - margin-right: 0.75rem; -} - -.toast-body { - padding: 0.75rem; - word-wrap: break-word; -} - -.modal { - position: fixed; - top: 0; - right: 0; - z-index: 1055; - display: none; - width: 100%; - height: 100%; - overflow-x: hidden; - overflow-y: auto; - outline: 0; -} - -.modal-dialog { - position: relative; - width: auto; - margin: 0.5rem; - pointer-events: none; -} -.modal.fade .modal-dialog { - transition: transform 0.3s ease-out; - transform: translate(0, -50px); -} -@media (prefers-reduced-motion: reduce) { - .modal.fade .modal-dialog { - transition: none; - } -} -.modal.show .modal-dialog { - transform: none; -} -.modal.modal-static .modal-dialog { - transform: scale(1.02); -} - -.modal-dialog-scrollable { - height: calc(100% - 1rem); -} -.modal-dialog-scrollable .modal-content { - max-height: 100%; - overflow: hidden; -} -.modal-dialog-scrollable .modal-body { - overflow-y: auto; -} - -.modal-dialog-centered { - display: flex; - align-items: center; - min-height: calc(100% - 1rem); -} - -.modal-content { - position: relative; - display: flex; - flex-direction: column; - width: 100%; - pointer-events: auto; - background-color: #fff; - background-clip: padding-box; - border: 1px solid rgba(0, 0, 0, 0.2); - border-radius: 0.3rem; - outline: 0; -} - -.modal-backdrop { - position: fixed; - top: 0; - right: 0; - z-index: 1050; - width: 100vw; - height: 100vh; - background-color: #000; -} -.modal-backdrop.fade { - opacity: 0; -} -.modal-backdrop.show { - opacity: 0.5; -} - -.modal-header { - display: flex; - flex-shrink: 0; - align-items: center; - justify-content: space-between; - padding: 1rem 1rem; - border-bottom: 1px solid #dee2e6; - border-top-right-radius: calc(0.3rem - 1px); - border-top-left-radius: calc(0.3rem - 1px); -} -.modal-header .btn-close { - padding: 0.5rem 0.5rem; - margin: -0.5rem auto -0.5rem -0.5rem; -} - -.modal-title { - margin-bottom: 0; - line-height: 1.5; -} - -.modal-body { - position: relative; - flex: 1 1 auto; - padding: 1rem; -} - -.modal-footer { - display: flex; - flex-wrap: wrap; - flex-shrink: 0; - align-items: center; - justify-content: flex-end; - padding: 0.75rem; - border-top: 1px solid #dee2e6; - border-bottom-left-radius: calc(0.3rem - 1px); - border-bottom-right-radius: calc(0.3rem - 1px); -} -.modal-footer > * { - margin: 0.25rem; -} - -@media (min-width: 576px) { - .modal-dialog { - max-width: 500px; - margin: 1.75rem auto; - } - - .modal-dialog-scrollable { - height: calc(100% - 3.5rem); - } - - .modal-dialog-centered { - min-height: calc(100% - 3.5rem); - } - - .modal-sm { - max-width: 300px; - } -} -@media (min-width: 992px) { - .modal-lg, -.modal-xl { - max-width: 800px; - } -} -@media (min-width: 1200px) { - .modal-xl { - max-width: 1140px; - } -} -.modal-fullscreen { - width: 100vw; - max-width: none; - height: 100%; - margin: 0; -} -.modal-fullscreen .modal-content { - height: 100%; - border: 0; - border-radius: 0; -} -.modal-fullscreen .modal-header { - border-radius: 0; -} -.modal-fullscreen .modal-body { - overflow-y: auto; -} -.modal-fullscreen .modal-footer { - border-radius: 0; -} - -@media (max-width: 575.98px) { - .modal-fullscreen-sm-down { - width: 100vw; - max-width: none; - height: 100%; - margin: 0; - } - .modal-fullscreen-sm-down .modal-content { - height: 100%; - border: 0; - border-radius: 0; - } - .modal-fullscreen-sm-down .modal-header { - border-radius: 0; - } - .modal-fullscreen-sm-down .modal-body { - overflow-y: auto; - } - .modal-fullscreen-sm-down .modal-footer { - border-radius: 0; - } -} -@media (max-width: 767.98px) { - .modal-fullscreen-md-down { - width: 100vw; - max-width: none; - height: 100%; - margin: 0; - } - .modal-fullscreen-md-down .modal-content { - height: 100%; - border: 0; - border-radius: 0; - } - .modal-fullscreen-md-down .modal-header { - border-radius: 0; - } - .modal-fullscreen-md-down .modal-body { - overflow-y: auto; - } - .modal-fullscreen-md-down .modal-footer { - border-radius: 0; - } -} -@media (max-width: 991.98px) { - .modal-fullscreen-lg-down { - width: 100vw; - max-width: none; - height: 100%; - margin: 0; - } - .modal-fullscreen-lg-down .modal-content { - height: 100%; - border: 0; - border-radius: 0; - } - .modal-fullscreen-lg-down .modal-header { - border-radius: 0; - } - .modal-fullscreen-lg-down .modal-body { - overflow-y: auto; - } - .modal-fullscreen-lg-down .modal-footer { - border-radius: 0; - } -} -@media (max-width: 1199.98px) { - .modal-fullscreen-xl-down { - width: 100vw; - max-width: none; - height: 100%; - margin: 0; - } - .modal-fullscreen-xl-down .modal-content { - height: 100%; - border: 0; - border-radius: 0; - } - .modal-fullscreen-xl-down .modal-header { - border-radius: 0; - } - .modal-fullscreen-xl-down .modal-body { - overflow-y: auto; - } - .modal-fullscreen-xl-down .modal-footer { - border-radius: 0; - } -} -@media (max-width: 1399.98px) { - .modal-fullscreen-xxl-down { - width: 100vw; - max-width: none; - height: 100%; - margin: 0; - } - .modal-fullscreen-xxl-down .modal-content { - height: 100%; - border: 0; - border-radius: 0; - } - .modal-fullscreen-xxl-down .modal-header { - border-radius: 0; - } - .modal-fullscreen-xxl-down .modal-body { - overflow-y: auto; - } - .modal-fullscreen-xxl-down .modal-footer { - border-radius: 0; - } -} -.tooltip { - position: absolute; - z-index: 1080; - display: block; - margin: 0; - font-family: var(--bs-font-sans-serif); - font-style: normal; - font-weight: 400; - line-height: 1.5; - text-align: right; - text-align: start; - text-decoration: none; - text-shadow: none; - text-transform: none; - letter-spacing: normal; - word-break: normal; - word-spacing: normal; - white-space: normal; - line-break: auto; - font-size: 0.875rem; - word-wrap: break-word; - opacity: 0; -} -.tooltip.show { - opacity: 0.9; -} -.tooltip .tooltip-arrow { - position: absolute; - display: block; - width: 0.8rem; - height: 0.4rem; -} -.tooltip .tooltip-arrow::before { - position: absolute; - content: ""; - border-color: transparent; - border-style: solid; -} - -.bs-tooltip-top, .bs-tooltip-auto[data-popper-placement^=top] { - padding: 0.4rem 0; -} -.bs-tooltip-top .tooltip-arrow, .bs-tooltip-auto[data-popper-placement^=top] .tooltip-arrow { - bottom: 0; -} -.bs-tooltip-top .tooltip-arrow::before, .bs-tooltip-auto[data-popper-placement^=top] .tooltip-arrow::before { - top: -1px; - border-width: 0.4rem 0.4rem 0; - border-top-color: #000; -} - -.bs-tooltip-end, .bs-tooltip-auto[data-popper-placement^=right] { - padding: 0 0.4rem; -} -.bs-tooltip-end .tooltip-arrow, .bs-tooltip-auto[data-popper-placement^=right] .tooltip-arrow { - right: 0; - width: 0.4rem; - height: 0.8rem; -} -.bs-tooltip-end .tooltip-arrow::before, .bs-tooltip-auto[data-popper-placement^=right] .tooltip-arrow::before { - left: -1px; - border-width: 0.4rem 0 0.4rem 0.4rem; - border-left-color: #000; -} - -.bs-tooltip-bottom, .bs-tooltip-auto[data-popper-placement^=bottom] { - padding: 0.4rem 0; -} -.bs-tooltip-bottom .tooltip-arrow, .bs-tooltip-auto[data-popper-placement^=bottom] .tooltip-arrow { - top: 0; -} -.bs-tooltip-bottom .tooltip-arrow::before, .bs-tooltip-auto[data-popper-placement^=bottom] .tooltip-arrow::before { - bottom: -1px; - border-width: 0 0.4rem 0.4rem; - border-bottom-color: #000; -} - -.bs-tooltip-start, .bs-tooltip-auto[data-popper-placement^=left] { - padding: 0 0.4rem; -} -.bs-tooltip-start .tooltip-arrow, .bs-tooltip-auto[data-popper-placement^=left] .tooltip-arrow { - left: 0; - width: 0.4rem; - height: 0.8rem; -} -.bs-tooltip-start .tooltip-arrow::before, .bs-tooltip-auto[data-popper-placement^=left] .tooltip-arrow::before { - right: -1px; - border-width: 0.4rem 0.4rem 0.4rem 0; - border-right-color: #000; -} - -.tooltip-inner { - max-width: 200px; - padding: 0.25rem 0.5rem; - color: #fff; - text-align: center; - background-color: #000; - border-radius: 0.25rem; -} - -.popover { - position: absolute; - top: 0; - left: 0 ; - z-index: 1070; - display: block; - max-width: 276px; - font-family: var(--bs-font-sans-serif); - font-style: normal; - font-weight: 400; - line-height: 1.5; - text-align: right; - text-align: start; - text-decoration: none; - text-shadow: none; - text-transform: none; - letter-spacing: normal; - word-break: normal; - word-spacing: normal; - white-space: normal; - line-break: auto; - font-size: 0.875rem; - word-wrap: break-word; - background-color: #fff; - background-clip: padding-box; - border: 1px solid rgba(0, 0, 0, 0.2); - border-radius: 0.3rem; -} -.popover .popover-arrow { - position: absolute; - display: block; - width: 1rem; - height: 0.5rem; -} -.popover .popover-arrow::before, .popover .popover-arrow::after { - position: absolute; - display: block; - content: ""; - border-color: transparent; - border-style: solid; -} - -.bs-popover-top > .popover-arrow, .bs-popover-auto[data-popper-placement^=top] > .popover-arrow { - bottom: calc(-0.5rem - 1px); -} -.bs-popover-top > .popover-arrow::before, .bs-popover-auto[data-popper-placement^=top] > .popover-arrow::before { - bottom: 0; - border-width: 0.5rem 0.5rem 0; - border-top-color: rgba(0, 0, 0, 0.25); -} -.bs-popover-top > .popover-arrow::after, .bs-popover-auto[data-popper-placement^=top] > .popover-arrow::after { - bottom: 1px; - border-width: 0.5rem 0.5rem 0; - border-top-color: #fff; -} - -.bs-popover-end > .popover-arrow, .bs-popover-auto[data-popper-placement^=right] > .popover-arrow { - right: calc(-0.5rem - 1px); - width: 0.5rem; - height: 1rem; -} -.bs-popover-end > .popover-arrow::before, .bs-popover-auto[data-popper-placement^=right] > .popover-arrow::before { - right: 0; - border-width: 0.5rem 0 0.5rem 0.5rem; - border-left-color: rgba(0, 0, 0, 0.25); -} -.bs-popover-end > .popover-arrow::after, .bs-popover-auto[data-popper-placement^=right] > .popover-arrow::after { - right: 1px; - border-width: 0.5rem 0 0.5rem 0.5rem; - border-left-color: #fff; -} - -.bs-popover-bottom > .popover-arrow, .bs-popover-auto[data-popper-placement^=bottom] > .popover-arrow { - top: calc(-0.5rem - 1px); -} -.bs-popover-bottom > .popover-arrow::before, .bs-popover-auto[data-popper-placement^=bottom] > .popover-arrow::before { - top: 0; - border-width: 0 0.5rem 0.5rem 0.5rem; - border-bottom-color: rgba(0, 0, 0, 0.25); -} -.bs-popover-bottom > .popover-arrow::after, .bs-popover-auto[data-popper-placement^=bottom] > .popover-arrow::after { - top: 1px; - border-width: 0 0.5rem 0.5rem 0.5rem; - border-bottom-color: #fff; -} -.bs-popover-bottom .popover-header::before, .bs-popover-auto[data-popper-placement^=bottom] .popover-header::before { - position: absolute; - top: 0; - right: 50%; - display: block; - width: 1rem; - margin-right: -0.5rem; - content: ""; - border-bottom: 1px solid #f0f0f0; -} - -.bs-popover-start > .popover-arrow, .bs-popover-auto[data-popper-placement^=left] > .popover-arrow { - left: calc(-0.5rem - 1px); - width: 0.5rem; - height: 1rem; -} -.bs-popover-start > .popover-arrow::before, .bs-popover-auto[data-popper-placement^=left] > .popover-arrow::before { - left: 0; - border-width: 0.5rem 0.5rem 0.5rem 0; - border-right-color: rgba(0, 0, 0, 0.25); -} -.bs-popover-start > .popover-arrow::after, .bs-popover-auto[data-popper-placement^=left] > .popover-arrow::after { - left: 1px; - border-width: 0.5rem 0.5rem 0.5rem 0; - border-right-color: #fff; -} - -.popover-header { - padding: 0.5rem 1rem; - margin-bottom: 0; - font-size: 1rem; - background-color: #f0f0f0; - border-bottom: 1px solid rgba(0, 0, 0, 0.2); - border-top-right-radius: calc(0.3rem - 1px); - border-top-left-radius: calc(0.3rem - 1px); -} -.popover-header:empty { - display: none; -} - -.popover-body { - padding: 1rem 1rem; - color: #212529; -} - -.carousel { - position: relative; -} - -.carousel.pointer-event { - touch-action: pan-y; -} - -.carousel-inner { - position: relative; - width: 100%; - overflow: hidden; -} -.carousel-inner::after { - display: block; - clear: both; - content: ""; -} - -.carousel-item { - position: relative; - display: none; - float: right; - width: 100%; - margin-left: -100%; - -webkit-backface-visibility: hidden; - backface-visibility: hidden; - transition: transform 0.6s ease-in-out; -} -@media (prefers-reduced-motion: reduce) { - .carousel-item { - transition: none; - } -} - -.carousel-item.active, -.carousel-item-next, -.carousel-item-prev { - display: block; -} -.carousel-item-next:not(.carousel-item-start), -.active.carousel-item-end { - transform: translateX(100%); -} - -.carousel-item-prev:not(.carousel-item-end), -.active.carousel-item-start { - transform: translateX(-100%); -} -.carousel-fade .carousel-item { - opacity: 0; - transition-property: opacity; - transform: none; -} -.carousel-fade .carousel-item.active, -.carousel-fade .carousel-item-next.carousel-item-start, -.carousel-fade .carousel-item-prev.carousel-item-end { - z-index: 1; - opacity: 1; -} -.carousel-fade .active.carousel-item-start, -.carousel-fade .active.carousel-item-end { - z-index: 0; - opacity: 0; - transition: opacity 0s 0.6s; -} -@media (prefers-reduced-motion: reduce) { - .carousel-fade .active.carousel-item-start, -.carousel-fade .active.carousel-item-end { - transition: none; - } -} - -.carousel-control-prev, -.carousel-control-next { - position: absolute; - top: 0; - bottom: 0; - z-index: 1; - display: flex; - align-items: center; - justify-content: center; - width: 15%; - padding: 0; - color: #fff; - text-align: center; - background: none; - border: 0; - opacity: 0.5; - transition: opacity 0.15s ease; -} -@media (prefers-reduced-motion: reduce) { - .carousel-control-prev, -.carousel-control-next { - transition: none; - } -} -.carousel-control-prev:hover, .carousel-control-prev:focus, -.carousel-control-next:hover, -.carousel-control-next:focus { - color: #fff; - text-decoration: none; - outline: 0; - opacity: 0.9; -} - -.carousel-control-prev { - right: 0; -} - -.carousel-control-next { - left: 0; -} - -.carousel-control-prev-icon, -.carousel-control-next-icon { - display: inline-block; - width: 2rem; - height: 2rem; - background-repeat: no-repeat; - background-position: 50%; - background-size: 100% 100%; -} -.carousel-control-next-icon { - background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23fff'%3e%3cpath d='M11.354 1.646a.5.5 0 0 1 0 .708L5.707 8l5.647 5.646a.5.5 0 0 1-.708.708l-6-6a.5.5 0 0 1 0-.708l6-6a.5.5 0 0 1 .708 0z'/%3e%3c/svg%3e"); -} - -.carousel-control-prev-icon { - background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='%23fff'%3e%3cpath d='M4.646 1.646a.5.5 0 0 1 .708 0l6 6a.5.5 0 0 1 0 .708l-6 6a.5.5 0 0 1-.708-.708L10.293 8 4.646 2.354a.5.5 0 0 1 0-.708z'/%3e%3c/svg%3e"); -} - -.carousel-indicators { - position: absolute; - left: 0; - bottom: 0; - right: 0; - z-index: 2; - display: flex; - justify-content: center; - padding: 0; - margin-left: 15%; - margin-bottom: 1rem; - margin-right: 15%; - list-style: none; -} -.carousel-indicators [data-bs-target] { - box-sizing: content-box; - flex: 0 1 auto; - width: 30px; - height: 3px; - padding: 0; - margin-left: 3px; - margin-right: 3px; - text-indent: -999px; - cursor: pointer; - background-color: #fff; - background-clip: padding-box; - border: 0; - border-top: 10px solid transparent; - border-bottom: 10px solid transparent; - opacity: 0.5; - transition: opacity 0.6s ease; -} -@media (prefers-reduced-motion: reduce) { - .carousel-indicators [data-bs-target] { - transition: none; - } -} -.carousel-indicators .active { - opacity: 1; -} - -.carousel-caption { - position: absolute; - left: 15%; - bottom: 1.25rem; - right: 15%; - padding-top: 1.25rem; - padding-bottom: 1.25rem; - color: #fff; - text-align: center; -} - -.carousel-dark .carousel-control-next-icon, -.carousel-dark .carousel-control-prev-icon { - filter: invert(1) grayscale(100); -} -.carousel-dark .carousel-indicators [data-bs-target] { - background-color: #000; -} -.carousel-dark .carousel-caption { - color: #000; -} - -@-webkit-keyframes spinner-border { - to { - transform: rotate(360deg) ; - } -} - -@keyframes spinner-border { - to { - transform: rotate(360deg) ; - } -} -.spinner-border { - display: inline-block; - width: 2rem; - height: 2rem; - vertical-align: -0.125em; - border: 0.25em solid currentColor; - border-left-color: transparent; - border-radius: 50%; - -webkit-animation: 0.75s linear infinite spinner-border; - animation: 0.75s linear infinite spinner-border; -} - -.spinner-border-sm { - width: 1rem; - height: 1rem; - border-width: 0.2em; -} - -@-webkit-keyframes spinner-grow { - 0% { - transform: scale(0); - } - 50% { - opacity: 1; - transform: none; - } -} - -@keyframes spinner-grow { - 0% { - transform: scale(0); - } - 50% { - opacity: 1; - transform: none; - } -} -.spinner-grow { - display: inline-block; - width: 2rem; - height: 2rem; - vertical-align: -0.125em; - background-color: currentColor; - border-radius: 50%; - opacity: 0; - -webkit-animation: 0.75s linear infinite spinner-grow; - animation: 0.75s linear infinite spinner-grow; -} - -.spinner-grow-sm { - width: 1rem; - height: 1rem; -} - -@media (prefers-reduced-motion: reduce) { - .spinner-border, -.spinner-grow { - -webkit-animation-duration: 1.5s; - animation-duration: 1.5s; - } -} -.offcanvas { - position: fixed; - bottom: 0; - z-index: 1045; - display: flex; - flex-direction: column; - max-width: 100%; - visibility: hidden; - background-color: #fff; - background-clip: padding-box; - outline: 0; - transition: transform 0.3s ease-in-out; -} -@media (prefers-reduced-motion: reduce) { - .offcanvas { - transition: none; - } -} - -.offcanvas-backdrop { - position: fixed; - top: 0; - right: 0; - z-index: 1040; - width: 100vw; - height: 100vh; - background-color: #000; -} -.offcanvas-backdrop.fade { - opacity: 0; -} -.offcanvas-backdrop.show { - opacity: 0.5; -} - -.offcanvas-header { - display: flex; - align-items: center; - justify-content: space-between; - padding: 1rem 1rem; -} -.offcanvas-header .btn-close { - padding: 0.5rem 0.5rem; - margin-top: -0.5rem; - margin-left: -0.5rem; - margin-bottom: -0.5rem; -} - -.offcanvas-title { - margin-bottom: 0; - line-height: 1.5; -} - -.offcanvas-body { - flex-grow: 1; - padding: 1rem 1rem; - overflow-y: auto; -} - -.offcanvas-start { - top: 0; - right: 0; - width: 400px; - border-left: 1px solid rgba(0, 0, 0, 0.2); - transform: translateX(100%); -} - -.offcanvas-end { - top: 0; - left: 0; - width: 400px; - border-right: 1px solid rgba(0, 0, 0, 0.2); - transform: translateX(-100%); -} - -.offcanvas-top { - top: 0; - left: 0; - right: 0; - height: 30vh; - max-height: 100%; - border-bottom: 1px solid rgba(0, 0, 0, 0.2); - transform: translateY(-100%); -} - -.offcanvas-bottom { - left: 0; - right: 0; - height: 30vh; - max-height: 100%; - border-top: 1px solid rgba(0, 0, 0, 0.2); - transform: translateY(100%); -} - -.offcanvas.show { - transform: none; -} - -.placeholder { - display: inline-block; - min-height: 1em; - vertical-align: middle; - cursor: wait; - background-color: currentColor; - opacity: 0.5; -} -.placeholder.btn::before { - display: inline-block; - content: ""; -} - -.placeholder-xs { - min-height: 0.6em; -} - -.placeholder-sm { - min-height: 0.8em; -} - -.placeholder-lg { - min-height: 1.2em; -} - -.placeholder-glow .placeholder { - -webkit-animation: placeholder-glow 2s ease-in-out infinite; - animation: placeholder-glow 2s ease-in-out infinite; -} - -@-webkit-keyframes placeholder-glow { - 50% { - opacity: 0.2; - } -} - -@keyframes placeholder-glow { - 50% { - opacity: 0.2; - } -} -.placeholder-wave { - -webkit-mask-image: linear-gradient(130deg, #000 55%, rgba(0, 0, 0, 0.8) 75%, #000 95%); - mask-image: linear-gradient(130deg, #000 55%, rgba(0, 0, 0, 0.8) 75%, #000 95%); - -webkit-mask-size: 200% 100%; - mask-size: 200% 100%; - -webkit-animation: placeholder-wave 2s linear infinite; - animation: placeholder-wave 2s linear infinite; -} - -@-webkit-keyframes placeholder-wave { - 100% { - -webkit-mask-position: -200% 0%; - mask-position: -200% 0%; - } -} - -@keyframes placeholder-wave { - 100% { - -webkit-mask-position: -200% 0%; - mask-position: -200% 0%; - } -} -.clearfix::after { - display: block; - clear: both; - content: ""; -} - -.link-primary { - color: #0d6efd; -} -.link-primary:hover, .link-primary:focus { - color: #0a58ca; -} - -.link-secondary { - color: #6c757d; -} -.link-secondary:hover, .link-secondary:focus { - color: #565e64; -} - -.link-success { - color: #198754; -} -.link-success:hover, .link-success:focus { - color: #146c43; -} - -.link-info { - color: #0dcaf0; -} -.link-info:hover, .link-info:focus { - color: #3dd5f3; -} - -.link-warning { - color: #ffc107; -} -.link-warning:hover, .link-warning:focus { - color: #ffcd39; -} - -.link-danger { - color: #dc3545; -} -.link-danger:hover, .link-danger:focus { - color: #b02a37; -} - -.link-light { - color: #f8f9fa; -} -.link-light:hover, .link-light:focus { - color: #f9fafb; -} - -.link-dark { - color: #212529; -} -.link-dark:hover, .link-dark:focus { - color: #1a1e21; -} - -.ratio { - position: relative; - width: 100%; -} -.ratio::before { - display: block; - padding-top: var(--bs-aspect-ratio); - content: ""; -} -.ratio > * { - position: absolute; - top: 0; - right: 0; - width: 100%; - height: 100%; -} - -.ratio-1x1 { - --bs-aspect-ratio: 100%; -} - -.ratio-4x3 { - --bs-aspect-ratio: 75%; -} - -.ratio-16x9 { - --bs-aspect-ratio: 56.25%; -} - -.ratio-21x9 { - --bs-aspect-ratio: 42.8571428571%; -} - -.fixed-top { - position: fixed; - top: 0; - left: 0; - right: 0; - z-index: 1030; -} - -.fixed-bottom { - position: fixed; - left: 0; - bottom: 0; - right: 0; - z-index: 1030; -} - -.sticky-top { - position: -webkit-sticky; - position: sticky; - top: 0; - z-index: 1020; -} - -@media (min-width: 576px) { - .sticky-sm-top { - position: -webkit-sticky; - position: sticky; - top: 0; - z-index: 1020; - } -} -@media (min-width: 768px) { - .sticky-md-top { - position: -webkit-sticky; - position: sticky; - top: 0; - z-index: 1020; - } -} -@media (min-width: 992px) { - .sticky-lg-top { - position: -webkit-sticky; - position: sticky; - top: 0; - z-index: 1020; - } -} -@media (min-width: 1200px) { - .sticky-xl-top { - position: -webkit-sticky; - position: sticky; - top: 0; - z-index: 1020; - } -} -@media (min-width: 1400px) { - .sticky-xxl-top { - position: -webkit-sticky; - position: sticky; - top: 0; - z-index: 1020; - } -} -.hstack { - display: flex; - flex-direction: row; - align-items: center; - align-self: stretch; -} - -.vstack { - display: flex; - flex: 1 1 auto; - flex-direction: column; - align-self: stretch; -} - -.visually-hidden, -.visually-hidden-focusable:not(:focus):not(:focus-within) { - position: absolute !important; - width: 1px !important; - height: 1px !important; - padding: 0 !important; - margin: -1px !important; - overflow: hidden !important; - clip: rect(0, 0, 0, 0) !important; - white-space: nowrap !important; - border: 0 !important; -} - -.stretched-link::after { - position: absolute; - top: 0; - left: 0; - bottom: 0; - right: 0; - z-index: 1; - content: ""; -} - -.text-truncate { - overflow: hidden; - text-overflow: ellipsis; - white-space: nowrap; -} - -.vr { - display: inline-block; - align-self: stretch; - width: 1px; - min-height: 1em; - background-color: currentColor; - opacity: 0.25; -} - -.align-baseline { - vertical-align: baseline !important; -} - -.align-top { - vertical-align: top !important; -} - -.align-middle { - vertical-align: middle !important; -} - -.align-bottom { - vertical-align: bottom !important; -} - -.align-text-bottom { - vertical-align: text-bottom !important; -} - -.align-text-top { - vertical-align: text-top !important; -} - -.float-start { - float: right !important; -} - -.float-end { - float: left !important; -} - -.float-none { - float: none !important; -} - -.opacity-0 { - opacity: 0 !important; -} - -.opacity-25 { - opacity: 0.25 !important; -} - -.opacity-50 { - opacity: 0.5 !important; -} - -.opacity-75 { - opacity: 0.75 !important; -} - -.opacity-100 { - opacity: 1 !important; -} - -.overflow-auto { - overflow: auto !important; -} - -.overflow-hidden { - overflow: hidden !important; -} - -.overflow-visible { - overflow: visible !important; -} - -.overflow-scroll { - overflow: scroll !important; -} - -.d-inline { - display: inline !important; -} - -.d-inline-block { - display: inline-block !important; -} - -.d-block { - display: block !important; -} - -.d-grid { - display: grid !important; -} - -.d-table { - display: table !important; -} - -.d-table-row { - display: table-row !important; -} - -.d-table-cell { - display: table-cell !important; -} - -.d-flex { - display: flex !important; -} - -.d-inline-flex { - display: inline-flex !important; -} - -.d-none { - display: none !important; -} - -.shadow { - box-shadow: 0 0.5rem 1rem rgba(0, 0, 0, 0.15) !important; -} - -.shadow-sm { - box-shadow: 0 0.125rem 0.25rem rgba(0, 0, 0, 0.075) !important; -} - -.shadow-lg { - box-shadow: 0 1rem 3rem rgba(0, 0, 0, 0.175) !important; -} - -.shadow-none { - box-shadow: none !important; -} - -.position-static { - position: static !important; -} - -.position-relative { - position: relative !important; -} - -.position-absolute { - position: absolute !important; -} - -.position-fixed { - position: fixed !important; -} - -.position-sticky { - position: -webkit-sticky !important; - position: sticky !important; -} - -.top-0 { - top: 0 !important; -} - -.top-50 { - top: 50% !important; -} - -.top-100 { - top: 100% !important; -} - -.bottom-0 { - bottom: 0 !important; -} - -.bottom-50 { - bottom: 50% !important; -} - -.bottom-100 { - bottom: 100% !important; -} - -.start-0 { - right: 0 !important; -} - -.start-50 { - right: 50% !important; -} - -.start-100 { - right: 100% !important; -} - -.end-0 { - left: 0 !important; -} - -.end-50 { - left: 50% !important; -} - -.end-100 { - left: 100% !important; -} - -.translate-middle { - transform: translate(50%, -50%) !important; -} - -.translate-middle-x { - transform: translateX(50%) !important; -} - -.translate-middle-y { - transform: translateY(-50%) !important; -} - -.border { - border: 1px solid #dee2e6 !important; -} - -.border-0 { - border: 0 !important; -} - -.border-top { - border-top: 1px solid #dee2e6 !important; -} - -.border-top-0 { - border-top: 0 !important; -} - -.border-end { - border-left: 1px solid #dee2e6 !important; -} - -.border-end-0 { - border-left: 0 !important; -} - -.border-bottom { - border-bottom: 1px solid #dee2e6 !important; -} - -.border-bottom-0 { - border-bottom: 0 !important; -} - -.border-start { - border-right: 1px solid #dee2e6 !important; -} - -.border-start-0 { - border-right: 0 !important; -} - -.border-primary { - border-color: #0d6efd !important; -} - -.border-secondary { - border-color: #6c757d !important; -} - -.border-success { - border-color: #198754 !important; -} - -.border-info { - border-color: #0dcaf0 !important; -} - -.border-warning { - border-color: #ffc107 !important; -} - -.border-danger { - border-color: #dc3545 !important; -} - -.border-light { - border-color: #f8f9fa !important; -} - -.border-dark { - border-color: #212529 !important; -} - -.border-white { - border-color: #fff !important; -} - -.border-1 { - border-width: 1px !important; -} - -.border-2 { - border-width: 2px !important; -} - -.border-3 { - border-width: 3px !important; -} - -.border-4 { - border-width: 4px !important; -} - -.border-5 { - border-width: 5px !important; -} - -.w-25 { - width: 25% !important; -} - -.w-50 { - width: 50% !important; -} - -.w-75 { - width: 75% !important; -} - -.w-100 { - width: 100% !important; -} - -.w-auto { - width: auto !important; -} - -.mw-100 { - max-width: 100% !important; -} - -.vw-100 { - width: 100vw !important; -} - -.min-vw-100 { - min-width: 100vw !important; -} - -.h-25 { - height: 25% !important; -} - -.h-50 { - height: 50% !important; -} - -.h-75 { - height: 75% !important; -} - -.h-100 { - height: 100% !important; -} - -.h-auto { - height: auto !important; -} - -.mh-100 { - max-height: 100% !important; -} - -.vh-100 { - height: 100vh !important; -} - -.min-vh-100 { - min-height: 100vh !important; -} - -.flex-fill { - flex: 1 1 auto !important; -} - -.flex-row { - flex-direction: row !important; -} - -.flex-column { - flex-direction: column !important; -} - -.flex-row-reverse { - flex-direction: row-reverse !important; -} - -.flex-column-reverse { - flex-direction: column-reverse !important; -} - -.flex-grow-0 { - flex-grow: 0 !important; -} - -.flex-grow-1 { - flex-grow: 1 !important; -} - -.flex-shrink-0 { - flex-shrink: 0 !important; -} - -.flex-shrink-1 { - flex-shrink: 1 !important; -} - -.flex-wrap { - flex-wrap: wrap !important; -} - -.flex-nowrap { - flex-wrap: nowrap !important; -} - -.flex-wrap-reverse { - flex-wrap: wrap-reverse !important; -} - -.gap-0 { - gap: 0 !important; -} - -.gap-1 { - gap: 0.25rem !important; -} - -.gap-2 { - gap: 0.5rem !important; -} - -.gap-3 { - gap: 1rem !important; -} - -.gap-4 { - gap: 1.5rem !important; -} - -.gap-5 { - gap: 3rem !important; -} - -.justify-content-start { - justify-content: flex-start !important; -} - -.justify-content-end { - justify-content: flex-end !important; -} - -.justify-content-center { - justify-content: center !important; -} - -.justify-content-between { - justify-content: space-between !important; -} - -.justify-content-around { - justify-content: space-around !important; -} - -.justify-content-evenly { - justify-content: space-evenly !important; -} - -.align-items-start { - align-items: flex-start !important; -} - -.align-items-end { - align-items: flex-end !important; -} - -.align-items-center { - align-items: center !important; -} - -.align-items-baseline { - align-items: baseline !important; -} - -.align-items-stretch { - align-items: stretch !important; -} - -.align-content-start { - align-content: flex-start !important; -} - -.align-content-end { - align-content: flex-end !important; -} - -.align-content-center { - align-content: center !important; -} - -.align-content-between { - align-content: space-between !important; -} - -.align-content-around { - align-content: space-around !important; -} - -.align-content-stretch { - align-content: stretch !important; -} - -.align-self-auto { - align-self: auto !important; -} - -.align-self-start { - align-self: flex-start !important; -} - -.align-self-end { - align-self: flex-end !important; -} - -.align-self-center { - align-self: center !important; -} - -.align-self-baseline { - align-self: baseline !important; -} - -.align-self-stretch { - align-self: stretch !important; -} - -.order-first { - order: -1 !important; -} - -.order-0 { - order: 0 !important; -} - -.order-1 { - order: 1 !important; -} - -.order-2 { - order: 2 !important; -} - -.order-3 { - order: 3 !important; -} - -.order-4 { - order: 4 !important; -} - -.order-5 { - order: 5 !important; -} - -.order-last { - order: 6 !important; -} - -.m-0 { - margin: 0 !important; -} - -.m-1 { - margin: 0.25rem !important; -} - -.m-2 { - margin: 0.5rem !important; -} - -.m-3 { - margin: 1rem !important; -} - -.m-4 { - margin: 1.5rem !important; -} - -.m-5 { - margin: 3rem !important; -} - -.m-auto { - margin: auto !important; -} - -.mx-0 { - margin-left: 0 !important; - margin-right: 0 !important; -} - -.mx-1 { - margin-left: 0.25rem !important; - margin-right: 0.25rem !important; -} - -.mx-2 { - margin-left: 0.5rem !important; - margin-right: 0.5rem !important; -} - -.mx-3 { - margin-left: 1rem !important; - margin-right: 1rem !important; -} - -.mx-4 { - margin-left: 1.5rem !important; - margin-right: 1.5rem !important; -} - -.mx-5 { - margin-left: 3rem !important; - margin-right: 3rem !important; -} - -.mx-auto { - margin-left: auto !important; - margin-right: auto !important; -} - -.my-0 { - margin-top: 0 !important; - margin-bottom: 0 !important; -} - -.my-1 { - margin-top: 0.25rem !important; - margin-bottom: 0.25rem !important; -} - -.my-2 { - margin-top: 0.5rem !important; - margin-bottom: 0.5rem !important; -} - -.my-3 { - margin-top: 1rem !important; - margin-bottom: 1rem !important; -} - -.my-4 { - margin-top: 1.5rem !important; - margin-bottom: 1.5rem !important; -} - -.my-5 { - margin-top: 3rem !important; - margin-bottom: 3rem !important; -} - -.my-auto { - margin-top: auto !important; - margin-bottom: auto !important; -} - -.mt-0 { - margin-top: 0 !important; -} - -.mt-1 { - margin-top: 0.25rem !important; -} - -.mt-2 { - margin-top: 0.5rem !important; -} - -.mt-3 { - margin-top: 1rem !important; -} - -.mt-4 { - margin-top: 1.5rem !important; -} - -.mt-5 { - margin-top: 3rem !important; -} - -.mt-auto { - margin-top: auto !important; -} - -.me-0 { - margin-left: 0 !important; -} - -.me-1 { - margin-left: 0.25rem !important; -} - -.me-2 { - margin-left: 0.5rem !important; -} - -.me-3 { - margin-left: 1rem !important; -} - -.me-4 { - margin-left: 1.5rem !important; -} - -.me-5 { - margin-left: 3rem !important; -} - -.me-auto { - margin-left: auto !important; -} - -.mb-0 { - margin-bottom: 0 !important; -} - -.mb-1 { - margin-bottom: 0.25rem !important; -} - -.mb-2 { - margin-bottom: 0.5rem !important; -} - -.mb-3 { - margin-bottom: 1rem !important; -} - -.mb-4 { - margin-bottom: 1.5rem !important; -} - -.mb-5 { - margin-bottom: 3rem !important; -} - -.mb-auto { - margin-bottom: auto !important; -} - -.ms-0 { - margin-right: 0 !important; -} - -.ms-1 { - margin-right: 0.25rem !important; -} - -.ms-2 { - margin-right: 0.5rem !important; -} - -.ms-3 { - margin-right: 1rem !important; -} - -.ms-4 { - margin-right: 1.5rem !important; -} - -.ms-5 { - margin-right: 3rem !important; -} - -.ms-auto { - margin-right: auto !important; -} - -.p-0 { - padding: 0 !important; -} - -.p-1 { - padding: 0.25rem !important; -} - -.p-2 { - padding: 0.5rem !important; -} - -.p-3 { - padding: 1rem !important; -} - -.p-4 { - padding: 1.5rem !important; -} - -.p-5 { - padding: 3rem !important; -} - -.px-0 { - padding-left: 0 !important; - padding-right: 0 !important; -} - -.px-1 { - padding-left: 0.25rem !important; - padding-right: 0.25rem !important; -} - -.px-2 { - padding-left: 0.5rem !important; - padding-right: 0.5rem !important; -} - -.px-3 { - padding-left: 1rem !important; - padding-right: 1rem !important; -} - -.px-4 { - padding-left: 1.5rem !important; - padding-right: 1.5rem !important; -} - -.px-5 { - padding-left: 3rem !important; - padding-right: 3rem !important; -} - -.py-0 { - padding-top: 0 !important; - padding-bottom: 0 !important; -} - -.py-1 { - padding-top: 0.25rem !important; - padding-bottom: 0.25rem !important; -} - -.py-2 { - padding-top: 0.5rem !important; - padding-bottom: 0.5rem !important; -} - -.py-3 { - padding-top: 1rem !important; - padding-bottom: 1rem !important; -} - -.py-4 { - padding-top: 1.5rem !important; - padding-bottom: 1.5rem !important; -} - -.py-5 { - padding-top: 3rem !important; - padding-bottom: 3rem !important; -} - -.pt-0 { - padding-top: 0 !important; -} - -.pt-1 { - padding-top: 0.25rem !important; -} - -.pt-2 { - padding-top: 0.5rem !important; -} - -.pt-3 { - padding-top: 1rem !important; -} - -.pt-4 { - padding-top: 1.5rem !important; -} - -.pt-5 { - padding-top: 3rem !important; -} - -.pe-0 { - padding-left: 0 !important; -} - -.pe-1 { - padding-left: 0.25rem !important; -} - -.pe-2 { - padding-left: 0.5rem !important; -} - -.pe-3 { - padding-left: 1rem !important; -} - -.pe-4 { - padding-left: 1.5rem !important; -} - -.pe-5 { - padding-left: 3rem !important; -} - -.pb-0 { - padding-bottom: 0 !important; -} - -.pb-1 { - padding-bottom: 0.25rem !important; -} - -.pb-2 { - padding-bottom: 0.5rem !important; -} - -.pb-3 { - padding-bottom: 1rem !important; -} - -.pb-4 { - padding-bottom: 1.5rem !important; -} - -.pb-5 { - padding-bottom: 3rem !important; -} - -.ps-0 { - padding-right: 0 !important; -} - -.ps-1 { - padding-right: 0.25rem !important; -} - -.ps-2 { - padding-right: 0.5rem !important; -} - -.ps-3 { - padding-right: 1rem !important; -} - -.ps-4 { - padding-right: 1.5rem !important; -} - -.ps-5 { - padding-right: 3rem !important; -} - -.font-monospace { - font-family: var(--bs-font-monospace) !important; -} - -.fs-1 { - font-size: calc(1.375rem + 1.5vw) !important; -} - -.fs-2 { - font-size: calc(1.325rem + 0.9vw) !important; -} - -.fs-3 { - font-size: calc(1.3rem + 0.6vw) !important; -} - -.fs-4 { - font-size: calc(1.275rem + 0.3vw) !important; -} - -.fs-5 { - font-size: 1.25rem !important; -} - -.fs-6 { - font-size: 1rem !important; -} - -.fst-italic { - font-style: italic !important; -} - -.fst-normal { - font-style: normal !important; -} - -.fw-light { - font-weight: 300 !important; -} - -.fw-lighter { - font-weight: lighter !important; -} - -.fw-normal { - font-weight: 400 !important; -} - -.fw-bold { - font-weight: 700 !important; -} - -.fw-bolder { - font-weight: bolder !important; -} - -.lh-1 { - line-height: 1 !important; -} - -.lh-sm { - line-height: 1.25 !important; -} - -.lh-base { - line-height: 1.5 !important; -} - -.lh-lg { - line-height: 2 !important; -} - -.text-start { - text-align: right !important; -} - -.text-end { - text-align: left !important; -} - -.text-center { - text-align: center !important; -} - -.text-decoration-none { - text-decoration: none !important; -} - -.text-decoration-underline { - text-decoration: underline !important; -} - -.text-decoration-line-through { - text-decoration: line-through !important; -} - -.text-lowercase { - text-transform: lowercase !important; -} - -.text-uppercase { - text-transform: uppercase !important; -} - -.text-capitalize { - text-transform: capitalize !important; -} - -.text-wrap { - white-space: normal !important; -} - -.text-nowrap { - white-space: nowrap !important; -} -.text-primary { - --bs-text-opacity: 1; - color: rgba(var(--bs-primary-rgb), var(--bs-text-opacity)) !important; -} - -.text-secondary { - --bs-text-opacity: 1; - color: rgba(var(--bs-secondary-rgb), var(--bs-text-opacity)) !important; -} - -.text-success { - --bs-text-opacity: 1; - color: rgba(var(--bs-success-rgb), var(--bs-text-opacity)) !important; -} - -.text-info { - --bs-text-opacity: 1; - color: rgba(var(--bs-info-rgb), var(--bs-text-opacity)) !important; -} - -.text-warning { - --bs-text-opacity: 1; - color: rgba(var(--bs-warning-rgb), var(--bs-text-opacity)) !important; -} - -.text-danger { - --bs-text-opacity: 1; - color: rgba(var(--bs-danger-rgb), var(--bs-text-opacity)) !important; -} - -.text-light { - --bs-text-opacity: 1; - color: rgba(var(--bs-light-rgb), var(--bs-text-opacity)) !important; -} - -.text-dark { - --bs-text-opacity: 1; - color: rgba(var(--bs-dark-rgb), var(--bs-text-opacity)) !important; -} - -.text-black { - --bs-text-opacity: 1; - color: rgba(var(--bs-black-rgb), var(--bs-text-opacity)) !important; -} - -.text-white { - --bs-text-opacity: 1; - color: rgba(var(--bs-white-rgb), var(--bs-text-opacity)) !important; -} - -.text-body { - --bs-text-opacity: 1; - color: rgba(var(--bs-body-color-rgb), var(--bs-text-opacity)) !important; -} - -.text-muted { - --bs-text-opacity: 1; - color: #6c757d !important; -} - -.text-black-50 { - --bs-text-opacity: 1; - color: rgba(0, 0, 0, 0.5) !important; -} - -.text-white-50 { - --bs-text-opacity: 1; - color: rgba(255, 255, 255, 0.5) !important; -} - -.text-reset { - --bs-text-opacity: 1; - color: inherit !important; -} - -.text-opacity-25 { - --bs-text-opacity: 0.25; -} - -.text-opacity-50 { - --bs-text-opacity: 0.5; -} - -.text-opacity-75 { - --bs-text-opacity: 0.75; -} - -.text-opacity-100 { - --bs-text-opacity: 1; -} - -.bg-primary { - --bs-bg-opacity: 1; - background-color: rgba(var(--bs-primary-rgb), var(--bs-bg-opacity)) !important; -} - -.bg-secondary { - --bs-bg-opacity: 1; - background-color: rgba(var(--bs-secondary-rgb), var(--bs-bg-opacity)) !important; -} - -.bg-success { - --bs-bg-opacity: 1; - background-color: rgba(var(--bs-success-rgb), var(--bs-bg-opacity)) !important; -} - -.bg-info { - --bs-bg-opacity: 1; - background-color: rgba(var(--bs-info-rgb), var(--bs-bg-opacity)) !important; -} - -.bg-warning { - --bs-bg-opacity: 1; - background-color: rgba(var(--bs-warning-rgb), var(--bs-bg-opacity)) !important; -} - -.bg-danger { - --bs-bg-opacity: 1; - background-color: rgba(var(--bs-danger-rgb), var(--bs-bg-opacity)) !important; -} - -.bg-light { - --bs-bg-opacity: 1; - background-color: rgba(var(--bs-light-rgb), var(--bs-bg-opacity)) !important; -} - -.bg-dark { - --bs-bg-opacity: 1; - background-color: rgba(var(--bs-dark-rgb), var(--bs-bg-opacity)) !important; -} - -.bg-black { - --bs-bg-opacity: 1; - background-color: rgba(var(--bs-black-rgb), var(--bs-bg-opacity)) !important; -} - -.bg-white { - --bs-bg-opacity: 1; - background-color: rgba(var(--bs-white-rgb), var(--bs-bg-opacity)) !important; -} - -.bg-body { - --bs-bg-opacity: 1; - background-color: rgba(var(--bs-body-bg-rgb), var(--bs-bg-opacity)) !important; -} - -.bg-transparent { - --bs-bg-opacity: 1; - background-color: transparent !important; -} - -.bg-opacity-10 { - --bs-bg-opacity: 0.1; -} - -.bg-opacity-25 { - --bs-bg-opacity: 0.25; -} - -.bg-opacity-50 { - --bs-bg-opacity: 0.5; -} - -.bg-opacity-75 { - --bs-bg-opacity: 0.75; -} - -.bg-opacity-100 { - --bs-bg-opacity: 1; -} - -.bg-gradient { - background-image: var(--bs-gradient) !important; -} - -.user-select-all { - -webkit-user-select: all !important; - -moz-user-select: all !important; - user-select: all !important; -} - -.user-select-auto { - -webkit-user-select: auto !important; - -moz-user-select: auto !important; - user-select: auto !important; -} - -.user-select-none { - -webkit-user-select: none !important; - -moz-user-select: none !important; - user-select: none !important; -} - -.pe-none { - pointer-events: none !important; -} - -.pe-auto { - pointer-events: auto !important; -} - -.rounded { - border-radius: 0.25rem !important; -} - -.rounded-0 { - border-radius: 0 !important; -} - -.rounded-1 { - border-radius: 0.2rem !important; -} - -.rounded-2 { - border-radius: 0.25rem !important; -} - -.rounded-3 { - border-radius: 0.3rem !important; -} - -.rounded-circle { - border-radius: 50% !important; -} - -.rounded-pill { - border-radius: 50rem !important; -} - -.rounded-top { - border-top-right-radius: 0.25rem !important; - border-top-left-radius: 0.25rem !important; -} - -.rounded-end { - border-top-left-radius: 0.25rem !important; - border-bottom-left-radius: 0.25rem !important; -} - -.rounded-bottom { - border-bottom-left-radius: 0.25rem !important; - border-bottom-right-radius: 0.25rem !important; -} - -.rounded-start { - border-bottom-right-radius: 0.25rem !important; - border-top-right-radius: 0.25rem !important; -} - -.visible { - visibility: visible !important; -} - -.invisible { - visibility: hidden !important; -} - -@media (min-width: 576px) { - .float-sm-start { - float: right !important; - } - - .float-sm-end { - float: left !important; - } - - .float-sm-none { - float: none !important; - } - - .d-sm-inline { - display: inline !important; - } - - .d-sm-inline-block { - display: inline-block !important; - } - - .d-sm-block { - display: block !important; - } - - .d-sm-grid { - display: grid !important; - } - - .d-sm-table { - display: table !important; - } - - .d-sm-table-row { - display: table-row !important; - } - - .d-sm-table-cell { - display: table-cell !important; - } - - .d-sm-flex { - display: flex !important; - } - - .d-sm-inline-flex { - display: inline-flex !important; - } - - .d-sm-none { - display: none !important; - } - - .flex-sm-fill { - flex: 1 1 auto !important; - } - - .flex-sm-row { - flex-direction: row !important; - } - - .flex-sm-column { - flex-direction: column !important; - } - - .flex-sm-row-reverse { - flex-direction: row-reverse !important; - } - - .flex-sm-column-reverse { - flex-direction: column-reverse !important; - } - - .flex-sm-grow-0 { - flex-grow: 0 !important; - } - - .flex-sm-grow-1 { - flex-grow: 1 !important; - } - - .flex-sm-shrink-0 { - flex-shrink: 0 !important; - } - - .flex-sm-shrink-1 { - flex-shrink: 1 !important; - } - - .flex-sm-wrap { - flex-wrap: wrap !important; - } - - .flex-sm-nowrap { - flex-wrap: nowrap !important; - } - - .flex-sm-wrap-reverse { - flex-wrap: wrap-reverse !important; - } - - .gap-sm-0 { - gap: 0 !important; - } - - .gap-sm-1 { - gap: 0.25rem !important; - } - - .gap-sm-2 { - gap: 0.5rem !important; - } - - .gap-sm-3 { - gap: 1rem !important; - } - - .gap-sm-4 { - gap: 1.5rem !important; - } - - .gap-sm-5 { - gap: 3rem !important; - } - - .justify-content-sm-start { - justify-content: flex-start !important; - } - - .justify-content-sm-end { - justify-content: flex-end !important; - } - - .justify-content-sm-center { - justify-content: center !important; - } - - .justify-content-sm-between { - justify-content: space-between !important; - } - - .justify-content-sm-around { - justify-content: space-around !important; - } - - .justify-content-sm-evenly { - justify-content: space-evenly !important; - } - - .align-items-sm-start { - align-items: flex-start !important; - } - - .align-items-sm-end { - align-items: flex-end !important; - } - - .align-items-sm-center { - align-items: center !important; - } - - .align-items-sm-baseline { - align-items: baseline !important; - } - - .align-items-sm-stretch { - align-items: stretch !important; - } - - .align-content-sm-start { - align-content: flex-start !important; - } - - .align-content-sm-end { - align-content: flex-end !important; - } - - .align-content-sm-center { - align-content: center !important; - } - - .align-content-sm-between { - align-content: space-between !important; - } - - .align-content-sm-around { - align-content: space-around !important; - } - - .align-content-sm-stretch { - align-content: stretch !important; - } - - .align-self-sm-auto { - align-self: auto !important; - } - - .align-self-sm-start { - align-self: flex-start !important; - } - - .align-self-sm-end { - align-self: flex-end !important; - } - - .align-self-sm-center { - align-self: center !important; - } - - .align-self-sm-baseline { - align-self: baseline !important; - } - - .align-self-sm-stretch { - align-self: stretch !important; - } - - .order-sm-first { - order: -1 !important; - } - - .order-sm-0 { - order: 0 !important; - } - - .order-sm-1 { - order: 1 !important; - } - - .order-sm-2 { - order: 2 !important; - } - - .order-sm-3 { - order: 3 !important; - } - - .order-sm-4 { - order: 4 !important; - } - - .order-sm-5 { - order: 5 !important; - } - - .order-sm-last { - order: 6 !important; - } - - .m-sm-0 { - margin: 0 !important; - } - - .m-sm-1 { - margin: 0.25rem !important; - } - - .m-sm-2 { - margin: 0.5rem !important; - } - - .m-sm-3 { - margin: 1rem !important; - } - - .m-sm-4 { - margin: 1.5rem !important; - } - - .m-sm-5 { - margin: 3rem !important; - } - - .m-sm-auto { - margin: auto !important; - } - - .mx-sm-0 { - margin-left: 0 !important; - margin-right: 0 !important; - } - - .mx-sm-1 { - margin-left: 0.25rem !important; - margin-right: 0.25rem !important; - } - - .mx-sm-2 { - margin-left: 0.5rem !important; - margin-right: 0.5rem !important; - } - - .mx-sm-3 { - margin-left: 1rem !important; - margin-right: 1rem !important; - } - - .mx-sm-4 { - margin-left: 1.5rem !important; - margin-right: 1.5rem !important; - } - - .mx-sm-5 { - margin-left: 3rem !important; - margin-right: 3rem !important; - } - - .mx-sm-auto { - margin-left: auto !important; - margin-right: auto !important; - } - - .my-sm-0 { - margin-top: 0 !important; - margin-bottom: 0 !important; - } - - .my-sm-1 { - margin-top: 0.25rem !important; - margin-bottom: 0.25rem !important; - } - - .my-sm-2 { - margin-top: 0.5rem !important; - margin-bottom: 0.5rem !important; - } - - .my-sm-3 { - margin-top: 1rem !important; - margin-bottom: 1rem !important; - } - - .my-sm-4 { - margin-top: 1.5rem !important; - margin-bottom: 1.5rem !important; - } - - .my-sm-5 { - margin-top: 3rem !important; - margin-bottom: 3rem !important; - } - - .my-sm-auto { - margin-top: auto !important; - margin-bottom: auto !important; - } - - .mt-sm-0 { - margin-top: 0 !important; - } - - .mt-sm-1 { - margin-top: 0.25rem !important; - } - - .mt-sm-2 { - margin-top: 0.5rem !important; - } - - .mt-sm-3 { - margin-top: 1rem !important; - } - - .mt-sm-4 { - margin-top: 1.5rem !important; - } - - .mt-sm-5 { - margin-top: 3rem !important; - } - - .mt-sm-auto { - margin-top: auto !important; - } - - .me-sm-0 { - margin-left: 0 !important; - } - - .me-sm-1 { - margin-left: 0.25rem !important; - } - - .me-sm-2 { - margin-left: 0.5rem !important; - } - - .me-sm-3 { - margin-left: 1rem !important; - } - - .me-sm-4 { - margin-left: 1.5rem !important; - } - - .me-sm-5 { - margin-left: 3rem !important; - } - - .me-sm-auto { - margin-left: auto !important; - } - - .mb-sm-0 { - margin-bottom: 0 !important; - } - - .mb-sm-1 { - margin-bottom: 0.25rem !important; - } - - .mb-sm-2 { - margin-bottom: 0.5rem !important; - } - - .mb-sm-3 { - margin-bottom: 1rem !important; - } - - .mb-sm-4 { - margin-bottom: 1.5rem !important; - } - - .mb-sm-5 { - margin-bottom: 3rem !important; - } - - .mb-sm-auto { - margin-bottom: auto !important; - } - - .ms-sm-0 { - margin-right: 0 !important; - } - - .ms-sm-1 { - margin-right: 0.25rem !important; - } - - .ms-sm-2 { - margin-right: 0.5rem !important; - } - - .ms-sm-3 { - margin-right: 1rem !important; - } - - .ms-sm-4 { - margin-right: 1.5rem !important; - } - - .ms-sm-5 { - margin-right: 3rem !important; - } - - .ms-sm-auto { - margin-right: auto !important; - } - - .p-sm-0 { - padding: 0 !important; - } - - .p-sm-1 { - padding: 0.25rem !important; - } - - .p-sm-2 { - padding: 0.5rem !important; - } - - .p-sm-3 { - padding: 1rem !important; - } - - .p-sm-4 { - padding: 1.5rem !important; - } - - .p-sm-5 { - padding: 3rem !important; - } - - .px-sm-0 { - padding-left: 0 !important; - padding-right: 0 !important; - } - - .px-sm-1 { - padding-left: 0.25rem !important; - padding-right: 0.25rem !important; - } - - .px-sm-2 { - padding-left: 0.5rem !important; - padding-right: 0.5rem !important; - } - - .px-sm-3 { - padding-left: 1rem !important; - padding-right: 1rem !important; - } - - .px-sm-4 { - padding-left: 1.5rem !important; - padding-right: 1.5rem !important; - } - - .px-sm-5 { - padding-left: 3rem !important; - padding-right: 3rem !important; - } - - .py-sm-0 { - padding-top: 0 !important; - padding-bottom: 0 !important; - } - - .py-sm-1 { - padding-top: 0.25rem !important; - padding-bottom: 0.25rem !important; - } - - .py-sm-2 { - padding-top: 0.5rem !important; - padding-bottom: 0.5rem !important; - } - - .py-sm-3 { - padding-top: 1rem !important; - padding-bottom: 1rem !important; - } - - .py-sm-4 { - padding-top: 1.5rem !important; - padding-bottom: 1.5rem !important; - } - - .py-sm-5 { - padding-top: 3rem !important; - padding-bottom: 3rem !important; - } - - .pt-sm-0 { - padding-top: 0 !important; - } - - .pt-sm-1 { - padding-top: 0.25rem !important; - } - - .pt-sm-2 { - padding-top: 0.5rem !important; - } - - .pt-sm-3 { - padding-top: 1rem !important; - } - - .pt-sm-4 { - padding-top: 1.5rem !important; - } - - .pt-sm-5 { - padding-top: 3rem !important; - } - - .pe-sm-0 { - padding-left: 0 !important; - } - - .pe-sm-1 { - padding-left: 0.25rem !important; - } - - .pe-sm-2 { - padding-left: 0.5rem !important; - } - - .pe-sm-3 { - padding-left: 1rem !important; - } - - .pe-sm-4 { - padding-left: 1.5rem !important; - } - - .pe-sm-5 { - padding-left: 3rem !important; - } - - .pb-sm-0 { - padding-bottom: 0 !important; - } - - .pb-sm-1 { - padding-bottom: 0.25rem !important; - } - - .pb-sm-2 { - padding-bottom: 0.5rem !important; - } - - .pb-sm-3 { - padding-bottom: 1rem !important; - } - - .pb-sm-4 { - padding-bottom: 1.5rem !important; - } - - .pb-sm-5 { - padding-bottom: 3rem !important; - } - - .ps-sm-0 { - padding-right: 0 !important; - } - - .ps-sm-1 { - padding-right: 0.25rem !important; - } - - .ps-sm-2 { - padding-right: 0.5rem !important; - } - - .ps-sm-3 { - padding-right: 1rem !important; - } - - .ps-sm-4 { - padding-right: 1.5rem !important; - } - - .ps-sm-5 { - padding-right: 3rem !important; - } - - .text-sm-start { - text-align: right !important; - } - - .text-sm-end { - text-align: left !important; - } - - .text-sm-center { - text-align: center !important; - } -} -@media (min-width: 768px) { - .float-md-start { - float: right !important; - } - - .float-md-end { - float: left !important; - } - - .float-md-none { - float: none !important; - } - - .d-md-inline { - display: inline !important; - } - - .d-md-inline-block { - display: inline-block !important; - } - - .d-md-block { - display: block !important; - } - - .d-md-grid { - display: grid !important; - } - - .d-md-table { - display: table !important; - } - - .d-md-table-row { - display: table-row !important; - } - - .d-md-table-cell { - display: table-cell !important; - } - - .d-md-flex { - display: flex !important; - } - - .d-md-inline-flex { - display: inline-flex !important; - } - - .d-md-none { - display: none !important; - } - - .flex-md-fill { - flex: 1 1 auto !important; - } - - .flex-md-row { - flex-direction: row !important; - } - - .flex-md-column { - flex-direction: column !important; - } - - .flex-md-row-reverse { - flex-direction: row-reverse !important; - } - - .flex-md-column-reverse { - flex-direction: column-reverse !important; - } - - .flex-md-grow-0 { - flex-grow: 0 !important; - } - - .flex-md-grow-1 { - flex-grow: 1 !important; - } - - .flex-md-shrink-0 { - flex-shrink: 0 !important; - } - - .flex-md-shrink-1 { - flex-shrink: 1 !important; - } - - .flex-md-wrap { - flex-wrap: wrap !important; - } - - .flex-md-nowrap { - flex-wrap: nowrap !important; - } - - .flex-md-wrap-reverse { - flex-wrap: wrap-reverse !important; - } - - .gap-md-0 { - gap: 0 !important; - } - - .gap-md-1 { - gap: 0.25rem !important; - } - - .gap-md-2 { - gap: 0.5rem !important; - } - - .gap-md-3 { - gap: 1rem !important; - } - - .gap-md-4 { - gap: 1.5rem !important; - } - - .gap-md-5 { - gap: 3rem !important; - } - - .justify-content-md-start { - justify-content: flex-start !important; - } - - .justify-content-md-end { - justify-content: flex-end !important; - } - - .justify-content-md-center { - justify-content: center !important; - } - - .justify-content-md-between { - justify-content: space-between !important; - } - - .justify-content-md-around { - justify-content: space-around !important; - } - - .justify-content-md-evenly { - justify-content: space-evenly !important; - } - - .align-items-md-start { - align-items: flex-start !important; - } - - .align-items-md-end { - align-items: flex-end !important; - } - - .align-items-md-center { - align-items: center !important; - } - - .align-items-md-baseline { - align-items: baseline !important; - } - - .align-items-md-stretch { - align-items: stretch !important; - } - - .align-content-md-start { - align-content: flex-start !important; - } - - .align-content-md-end { - align-content: flex-end !important; - } - - .align-content-md-center { - align-content: center !important; - } - - .align-content-md-between { - align-content: space-between !important; - } - - .align-content-md-around { - align-content: space-around !important; - } - - .align-content-md-stretch { - align-content: stretch !important; - } - - .align-self-md-auto { - align-self: auto !important; - } - - .align-self-md-start { - align-self: flex-start !important; - } - - .align-self-md-end { - align-self: flex-end !important; - } - - .align-self-md-center { - align-self: center !important; - } - - .align-self-md-baseline { - align-self: baseline !important; - } - - .align-self-md-stretch { - align-self: stretch !important; - } - - .order-md-first { - order: -1 !important; - } - - .order-md-0 { - order: 0 !important; - } - - .order-md-1 { - order: 1 !important; - } - - .order-md-2 { - order: 2 !important; - } - - .order-md-3 { - order: 3 !important; - } - - .order-md-4 { - order: 4 !important; - } - - .order-md-5 { - order: 5 !important; - } - - .order-md-last { - order: 6 !important; - } - - .m-md-0 { - margin: 0 !important; - } - - .m-md-1 { - margin: 0.25rem !important; - } - - .m-md-2 { - margin: 0.5rem !important; - } - - .m-md-3 { - margin: 1rem !important; - } - - .m-md-4 { - margin: 1.5rem !important; - } - - .m-md-5 { - margin: 3rem !important; - } - - .m-md-auto { - margin: auto !important; - } - - .mx-md-0 { - margin-left: 0 !important; - margin-right: 0 !important; - } - - .mx-md-1 { - margin-left: 0.25rem !important; - margin-right: 0.25rem !important; - } - - .mx-md-2 { - margin-left: 0.5rem !important; - margin-right: 0.5rem !important; - } - - .mx-md-3 { - margin-left: 1rem !important; - margin-right: 1rem !important; - } - - .mx-md-4 { - margin-left: 1.5rem !important; - margin-right: 1.5rem !important; - } - - .mx-md-5 { - margin-left: 3rem !important; - margin-right: 3rem !important; - } - - .mx-md-auto { - margin-left: auto !important; - margin-right: auto !important; - } - - .my-md-0 { - margin-top: 0 !important; - margin-bottom: 0 !important; - } - - .my-md-1 { - margin-top: 0.25rem !important; - margin-bottom: 0.25rem !important; - } - - .my-md-2 { - margin-top: 0.5rem !important; - margin-bottom: 0.5rem !important; - } - - .my-md-3 { - margin-top: 1rem !important; - margin-bottom: 1rem !important; - } - - .my-md-4 { - margin-top: 1.5rem !important; - margin-bottom: 1.5rem !important; - } - - .my-md-5 { - margin-top: 3rem !important; - margin-bottom: 3rem !important; - } - - .my-md-auto { - margin-top: auto !important; - margin-bottom: auto !important; - } - - .mt-md-0 { - margin-top: 0 !important; - } - - .mt-md-1 { - margin-top: 0.25rem !important; - } - - .mt-md-2 { - margin-top: 0.5rem !important; - } - - .mt-md-3 { - margin-top: 1rem !important; - } - - .mt-md-4 { - margin-top: 1.5rem !important; - } - - .mt-md-5 { - margin-top: 3rem !important; - } - - .mt-md-auto { - margin-top: auto !important; - } - - .me-md-0 { - margin-left: 0 !important; - } - - .me-md-1 { - margin-left: 0.25rem !important; - } - - .me-md-2 { - margin-left: 0.5rem !important; - } - - .me-md-3 { - margin-left: 1rem !important; - } - - .me-md-4 { - margin-left: 1.5rem !important; - } - - .me-md-5 { - margin-left: 3rem !important; - } - - .me-md-auto { - margin-left: auto !important; - } - - .mb-md-0 { - margin-bottom: 0 !important; - } - - .mb-md-1 { - margin-bottom: 0.25rem !important; - } - - .mb-md-2 { - margin-bottom: 0.5rem !important; - } - - .mb-md-3 { - margin-bottom: 1rem !important; - } - - .mb-md-4 { - margin-bottom: 1.5rem !important; - } - - .mb-md-5 { - margin-bottom: 3rem !important; - } - - .mb-md-auto { - margin-bottom: auto !important; - } - - .ms-md-0 { - margin-right: 0 !important; - } - - .ms-md-1 { - margin-right: 0.25rem !important; - } - - .ms-md-2 { - margin-right: 0.5rem !important; - } - - .ms-md-3 { - margin-right: 1rem !important; - } - - .ms-md-4 { - margin-right: 1.5rem !important; - } - - .ms-md-5 { - margin-right: 3rem !important; - } - - .ms-md-auto { - margin-right: auto !important; - } - - .p-md-0 { - padding: 0 !important; - } - - .p-md-1 { - padding: 0.25rem !important; - } - - .p-md-2 { - padding: 0.5rem !important; - } - - .p-md-3 { - padding: 1rem !important; - } - - .p-md-4 { - padding: 1.5rem !important; - } - - .p-md-5 { - padding: 3rem !important; - } - - .px-md-0 { - padding-left: 0 !important; - padding-right: 0 !important; - } - - .px-md-1 { - padding-left: 0.25rem !important; - padding-right: 0.25rem !important; - } - - .px-md-2 { - padding-left: 0.5rem !important; - padding-right: 0.5rem !important; - } - - .px-md-3 { - padding-left: 1rem !important; - padding-right: 1rem !important; - } - - .px-md-4 { - padding-left: 1.5rem !important; - padding-right: 1.5rem !important; - } - - .px-md-5 { - padding-left: 3rem !important; - padding-right: 3rem !important; - } - - .py-md-0 { - padding-top: 0 !important; - padding-bottom: 0 !important; - } - - .py-md-1 { - padding-top: 0.25rem !important; - padding-bottom: 0.25rem !important; - } - - .py-md-2 { - padding-top: 0.5rem !important; - padding-bottom: 0.5rem !important; - } - - .py-md-3 { - padding-top: 1rem !important; - padding-bottom: 1rem !important; - } - - .py-md-4 { - padding-top: 1.5rem !important; - padding-bottom: 1.5rem !important; - } - - .py-md-5 { - padding-top: 3rem !important; - padding-bottom: 3rem !important; - } - - .pt-md-0 { - padding-top: 0 !important; - } - - .pt-md-1 { - padding-top: 0.25rem !important; - } - - .pt-md-2 { - padding-top: 0.5rem !important; - } - - .pt-md-3 { - padding-top: 1rem !important; - } - - .pt-md-4 { - padding-top: 1.5rem !important; - } - - .pt-md-5 { - padding-top: 3rem !important; - } - - .pe-md-0 { - padding-left: 0 !important; - } - - .pe-md-1 { - padding-left: 0.25rem !important; - } - - .pe-md-2 { - padding-left: 0.5rem !important; - } - - .pe-md-3 { - padding-left: 1rem !important; - } - - .pe-md-4 { - padding-left: 1.5rem !important; - } - - .pe-md-5 { - padding-left: 3rem !important; - } - - .pb-md-0 { - padding-bottom: 0 !important; - } - - .pb-md-1 { - padding-bottom: 0.25rem !important; - } - - .pb-md-2 { - padding-bottom: 0.5rem !important; - } - - .pb-md-3 { - padding-bottom: 1rem !important; - } - - .pb-md-4 { - padding-bottom: 1.5rem !important; - } - - .pb-md-5 { - padding-bottom: 3rem !important; - } - - .ps-md-0 { - padding-right: 0 !important; - } - - .ps-md-1 { - padding-right: 0.25rem !important; - } - - .ps-md-2 { - padding-right: 0.5rem !important; - } - - .ps-md-3 { - padding-right: 1rem !important; - } - - .ps-md-4 { - padding-right: 1.5rem !important; - } - - .ps-md-5 { - padding-right: 3rem !important; - } - - .text-md-start { - text-align: right !important; - } - - .text-md-end { - text-align: left !important; - } - - .text-md-center { - text-align: center !important; - } -} -@media (min-width: 992px) { - .float-lg-start { - float: right !important; - } - - .float-lg-end { - float: left !important; - } - - .float-lg-none { - float: none !important; - } - - .d-lg-inline { - display: inline !important; - } - - .d-lg-inline-block { - display: inline-block !important; - } - - .d-lg-block { - display: block !important; - } - - .d-lg-grid { - display: grid !important; - } - - .d-lg-table { - display: table !important; - } - - .d-lg-table-row { - display: table-row !important; - } - - .d-lg-table-cell { - display: table-cell !important; - } - - .d-lg-flex { - display: flex !important; - } - - .d-lg-inline-flex { - display: inline-flex !important; - } - - .d-lg-none { - display: none !important; - } - - .flex-lg-fill { - flex: 1 1 auto !important; - } - - .flex-lg-row { - flex-direction: row !important; - } - - .flex-lg-column { - flex-direction: column !important; - } - - .flex-lg-row-reverse { - flex-direction: row-reverse !important; - } - - .flex-lg-column-reverse { - flex-direction: column-reverse !important; - } - - .flex-lg-grow-0 { - flex-grow: 0 !important; - } - - .flex-lg-grow-1 { - flex-grow: 1 !important; - } - - .flex-lg-shrink-0 { - flex-shrink: 0 !important; - } - - .flex-lg-shrink-1 { - flex-shrink: 1 !important; - } - - .flex-lg-wrap { - flex-wrap: wrap !important; - } - - .flex-lg-nowrap { - flex-wrap: nowrap !important; - } - - .flex-lg-wrap-reverse { - flex-wrap: wrap-reverse !important; - } - - .gap-lg-0 { - gap: 0 !important; - } - - .gap-lg-1 { - gap: 0.25rem !important; - } - - .gap-lg-2 { - gap: 0.5rem !important; - } - - .gap-lg-3 { - gap: 1rem !important; - } - - .gap-lg-4 { - gap: 1.5rem !important; - } - - .gap-lg-5 { - gap: 3rem !important; - } - - .justify-content-lg-start { - justify-content: flex-start !important; - } - - .justify-content-lg-end { - justify-content: flex-end !important; - } - - .justify-content-lg-center { - justify-content: center !important; - } - - .justify-content-lg-between { - justify-content: space-between !important; - } - - .justify-content-lg-around { - justify-content: space-around !important; - } - - .justify-content-lg-evenly { - justify-content: space-evenly !important; - } - - .align-items-lg-start { - align-items: flex-start !important; - } - - .align-items-lg-end { - align-items: flex-end !important; - } - - .align-items-lg-center { - align-items: center !important; - } - - .align-items-lg-baseline { - align-items: baseline !important; - } - - .align-items-lg-stretch { - align-items: stretch !important; - } - - .align-content-lg-start { - align-content: flex-start !important; - } - - .align-content-lg-end { - align-content: flex-end !important; - } - - .align-content-lg-center { - align-content: center !important; - } - - .align-content-lg-between { - align-content: space-between !important; - } - - .align-content-lg-around { - align-content: space-around !important; - } - - .align-content-lg-stretch { - align-content: stretch !important; - } - - .align-self-lg-auto { - align-self: auto !important; - } - - .align-self-lg-start { - align-self: flex-start !important; - } - - .align-self-lg-end { - align-self: flex-end !important; - } - - .align-self-lg-center { - align-self: center !important; - } - - .align-self-lg-baseline { - align-self: baseline !important; - } - - .align-self-lg-stretch { - align-self: stretch !important; - } - - .order-lg-first { - order: -1 !important; - } - - .order-lg-0 { - order: 0 !important; - } - - .order-lg-1 { - order: 1 !important; - } - - .order-lg-2 { - order: 2 !important; - } - - .order-lg-3 { - order: 3 !important; - } - - .order-lg-4 { - order: 4 !important; - } - - .order-lg-5 { - order: 5 !important; - } - - .order-lg-last { - order: 6 !important; - } - - .m-lg-0 { - margin: 0 !important; - } - - .m-lg-1 { - margin: 0.25rem !important; - } - - .m-lg-2 { - margin: 0.5rem !important; - } - - .m-lg-3 { - margin: 1rem !important; - } - - .m-lg-4 { - margin: 1.5rem !important; - } - - .m-lg-5 { - margin: 3rem !important; - } - - .m-lg-auto { - margin: auto !important; - } - - .mx-lg-0 { - margin-left: 0 !important; - margin-right: 0 !important; - } - - .mx-lg-1 { - margin-left: 0.25rem !important; - margin-right: 0.25rem !important; - } - - .mx-lg-2 { - margin-left: 0.5rem !important; - margin-right: 0.5rem !important; - } - - .mx-lg-3 { - margin-left: 1rem !important; - margin-right: 1rem !important; - } - - .mx-lg-4 { - margin-left: 1.5rem !important; - margin-right: 1.5rem !important; - } - - .mx-lg-5 { - margin-left: 3rem !important; - margin-right: 3rem !important; - } - - .mx-lg-auto { - margin-left: auto !important; - margin-right: auto !important; - } - - .my-lg-0 { - margin-top: 0 !important; - margin-bottom: 0 !important; - } - - .my-lg-1 { - margin-top: 0.25rem !important; - margin-bottom: 0.25rem !important; - } - - .my-lg-2 { - margin-top: 0.5rem !important; - margin-bottom: 0.5rem !important; - } - - .my-lg-3 { - margin-top: 1rem !important; - margin-bottom: 1rem !important; - } - - .my-lg-4 { - margin-top: 1.5rem !important; - margin-bottom: 1.5rem !important; - } - - .my-lg-5 { - margin-top: 3rem !important; - margin-bottom: 3rem !important; - } - - .my-lg-auto { - margin-top: auto !important; - margin-bottom: auto !important; - } - - .mt-lg-0 { - margin-top: 0 !important; - } - - .mt-lg-1 { - margin-top: 0.25rem !important; - } - - .mt-lg-2 { - margin-top: 0.5rem !important; - } - - .mt-lg-3 { - margin-top: 1rem !important; - } - - .mt-lg-4 { - margin-top: 1.5rem !important; - } - - .mt-lg-5 { - margin-top: 3rem !important; - } - - .mt-lg-auto { - margin-top: auto !important; - } - - .me-lg-0 { - margin-left: 0 !important; - } - - .me-lg-1 { - margin-left: 0.25rem !important; - } - - .me-lg-2 { - margin-left: 0.5rem !important; - } - - .me-lg-3 { - margin-left: 1rem !important; - } - - .me-lg-4 { - margin-left: 1.5rem !important; - } - - .me-lg-5 { - margin-left: 3rem !important; - } - - .me-lg-auto { - margin-left: auto !important; - } - - .mb-lg-0 { - margin-bottom: 0 !important; - } - - .mb-lg-1 { - margin-bottom: 0.25rem !important; - } - - .mb-lg-2 { - margin-bottom: 0.5rem !important; - } - - .mb-lg-3 { - margin-bottom: 1rem !important; - } - - .mb-lg-4 { - margin-bottom: 1.5rem !important; - } - - .mb-lg-5 { - margin-bottom: 3rem !important; - } - - .mb-lg-auto { - margin-bottom: auto !important; - } - - .ms-lg-0 { - margin-right: 0 !important; - } - - .ms-lg-1 { - margin-right: 0.25rem !important; - } - - .ms-lg-2 { - margin-right: 0.5rem !important; - } - - .ms-lg-3 { - margin-right: 1rem !important; - } - - .ms-lg-4 { - margin-right: 1.5rem !important; - } - - .ms-lg-5 { - margin-right: 3rem !important; - } - - .ms-lg-auto { - margin-right: auto !important; - } - - .p-lg-0 { - padding: 0 !important; - } - - .p-lg-1 { - padding: 0.25rem !important; - } - - .p-lg-2 { - padding: 0.5rem !important; - } - - .p-lg-3 { - padding: 1rem !important; - } - - .p-lg-4 { - padding: 1.5rem !important; - } - - .p-lg-5 { - padding: 3rem !important; - } - - .px-lg-0 { - padding-left: 0 !important; - padding-right: 0 !important; - } - - .px-lg-1 { - padding-left: 0.25rem !important; - padding-right: 0.25rem !important; - } - - .px-lg-2 { - padding-left: 0.5rem !important; - padding-right: 0.5rem !important; - } - - .px-lg-3 { - padding-left: 1rem !important; - padding-right: 1rem !important; - } - - .px-lg-4 { - padding-left: 1.5rem !important; - padding-right: 1.5rem !important; - } - - .px-lg-5 { - padding-left: 3rem !important; - padding-right: 3rem !important; - } - - .py-lg-0 { - padding-top: 0 !important; - padding-bottom: 0 !important; - } - - .py-lg-1 { - padding-top: 0.25rem !important; - padding-bottom: 0.25rem !important; - } - - .py-lg-2 { - padding-top: 0.5rem !important; - padding-bottom: 0.5rem !important; - } - - .py-lg-3 { - padding-top: 1rem !important; - padding-bottom: 1rem !important; - } - - .py-lg-4 { - padding-top: 1.5rem !important; - padding-bottom: 1.5rem !important; - } - - .py-lg-5 { - padding-top: 3rem !important; - padding-bottom: 3rem !important; - } - - .pt-lg-0 { - padding-top: 0 !important; - } - - .pt-lg-1 { - padding-top: 0.25rem !important; - } - - .pt-lg-2 { - padding-top: 0.5rem !important; - } - - .pt-lg-3 { - padding-top: 1rem !important; - } - - .pt-lg-4 { - padding-top: 1.5rem !important; - } - - .pt-lg-5 { - padding-top: 3rem !important; - } - - .pe-lg-0 { - padding-left: 0 !important; - } - - .pe-lg-1 { - padding-left: 0.25rem !important; - } - - .pe-lg-2 { - padding-left: 0.5rem !important; - } - - .pe-lg-3 { - padding-left: 1rem !important; - } - - .pe-lg-4 { - padding-left: 1.5rem !important; - } - - .pe-lg-5 { - padding-left: 3rem !important; - } - - .pb-lg-0 { - padding-bottom: 0 !important; - } - - .pb-lg-1 { - padding-bottom: 0.25rem !important; - } - - .pb-lg-2 { - padding-bottom: 0.5rem !important; - } - - .pb-lg-3 { - padding-bottom: 1rem !important; - } - - .pb-lg-4 { - padding-bottom: 1.5rem !important; - } - - .pb-lg-5 { - padding-bottom: 3rem !important; - } - - .ps-lg-0 { - padding-right: 0 !important; - } - - .ps-lg-1 { - padding-right: 0.25rem !important; - } - - .ps-lg-2 { - padding-right: 0.5rem !important; - } - - .ps-lg-3 { - padding-right: 1rem !important; - } - - .ps-lg-4 { - padding-right: 1.5rem !important; - } - - .ps-lg-5 { - padding-right: 3rem !important; - } - - .text-lg-start { - text-align: right !important; - } - - .text-lg-end { - text-align: left !important; - } - - .text-lg-center { - text-align: center !important; - } -} -@media (min-width: 1200px) { - .float-xl-start { - float: right !important; - } - - .float-xl-end { - float: left !important; - } - - .float-xl-none { - float: none !important; - } - - .d-xl-inline { - display: inline !important; - } - - .d-xl-inline-block { - display: inline-block !important; - } - - .d-xl-block { - display: block !important; - } - - .d-xl-grid { - display: grid !important; - } - - .d-xl-table { - display: table !important; - } - - .d-xl-table-row { - display: table-row !important; - } - - .d-xl-table-cell { - display: table-cell !important; - } - - .d-xl-flex { - display: flex !important; - } - - .d-xl-inline-flex { - display: inline-flex !important; - } - - .d-xl-none { - display: none !important; - } - - .flex-xl-fill { - flex: 1 1 auto !important; - } - - .flex-xl-row { - flex-direction: row !important; - } - - .flex-xl-column { - flex-direction: column !important; - } - - .flex-xl-row-reverse { - flex-direction: row-reverse !important; - } - - .flex-xl-column-reverse { - flex-direction: column-reverse !important; - } - - .flex-xl-grow-0 { - flex-grow: 0 !important; - } - - .flex-xl-grow-1 { - flex-grow: 1 !important; - } - - .flex-xl-shrink-0 { - flex-shrink: 0 !important; - } - - .flex-xl-shrink-1 { - flex-shrink: 1 !important; - } - - .flex-xl-wrap { - flex-wrap: wrap !important; - } - - .flex-xl-nowrap { - flex-wrap: nowrap !important; - } - - .flex-xl-wrap-reverse { - flex-wrap: wrap-reverse !important; - } - - .gap-xl-0 { - gap: 0 !important; - } - - .gap-xl-1 { - gap: 0.25rem !important; - } - - .gap-xl-2 { - gap: 0.5rem !important; - } - - .gap-xl-3 { - gap: 1rem !important; - } - - .gap-xl-4 { - gap: 1.5rem !important; - } - - .gap-xl-5 { - gap: 3rem !important; - } - - .justify-content-xl-start { - justify-content: flex-start !important; - } - - .justify-content-xl-end { - justify-content: flex-end !important; - } - - .justify-content-xl-center { - justify-content: center !important; - } - - .justify-content-xl-between { - justify-content: space-between !important; - } - - .justify-content-xl-around { - justify-content: space-around !important; - } - - .justify-content-xl-evenly { - justify-content: space-evenly !important; - } - - .align-items-xl-start { - align-items: flex-start !important; - } - - .align-items-xl-end { - align-items: flex-end !important; - } - - .align-items-xl-center { - align-items: center !important; - } - - .align-items-xl-baseline { - align-items: baseline !important; - } - - .align-items-xl-stretch { - align-items: stretch !important; - } - - .align-content-xl-start { - align-content: flex-start !important; - } - - .align-content-xl-end { - align-content: flex-end !important; - } - - .align-content-xl-center { - align-content: center !important; - } - - .align-content-xl-between { - align-content: space-between !important; - } - - .align-content-xl-around { - align-content: space-around !important; - } - - .align-content-xl-stretch { - align-content: stretch !important; - } - - .align-self-xl-auto { - align-self: auto !important; - } - - .align-self-xl-start { - align-self: flex-start !important; - } - - .align-self-xl-end { - align-self: flex-end !important; - } - - .align-self-xl-center { - align-self: center !important; - } - - .align-self-xl-baseline { - align-self: baseline !important; - } - - .align-self-xl-stretch { - align-self: stretch !important; - } - - .order-xl-first { - order: -1 !important; - } - - .order-xl-0 { - order: 0 !important; - } - - .order-xl-1 { - order: 1 !important; - } - - .order-xl-2 { - order: 2 !important; - } - - .order-xl-3 { - order: 3 !important; - } - - .order-xl-4 { - order: 4 !important; - } - - .order-xl-5 { - order: 5 !important; - } - - .order-xl-last { - order: 6 !important; - } - - .m-xl-0 { - margin: 0 !important; - } - - .m-xl-1 { - margin: 0.25rem !important; - } - - .m-xl-2 { - margin: 0.5rem !important; - } - - .m-xl-3 { - margin: 1rem !important; - } - - .m-xl-4 { - margin: 1.5rem !important; - } - - .m-xl-5 { - margin: 3rem !important; - } - - .m-xl-auto { - margin: auto !important; - } - - .mx-xl-0 { - margin-left: 0 !important; - margin-right: 0 !important; - } - - .mx-xl-1 { - margin-left: 0.25rem !important; - margin-right: 0.25rem !important; - } - - .mx-xl-2 { - margin-left: 0.5rem !important; - margin-right: 0.5rem !important; - } - - .mx-xl-3 { - margin-left: 1rem !important; - margin-right: 1rem !important; - } - - .mx-xl-4 { - margin-left: 1.5rem !important; - margin-right: 1.5rem !important; - } - - .mx-xl-5 { - margin-left: 3rem !important; - margin-right: 3rem !important; - } - - .mx-xl-auto { - margin-left: auto !important; - margin-right: auto !important; - } - - .my-xl-0 { - margin-top: 0 !important; - margin-bottom: 0 !important; - } - - .my-xl-1 { - margin-top: 0.25rem !important; - margin-bottom: 0.25rem !important; - } - - .my-xl-2 { - margin-top: 0.5rem !important; - margin-bottom: 0.5rem !important; - } - - .my-xl-3 { - margin-top: 1rem !important; - margin-bottom: 1rem !important; - } - - .my-xl-4 { - margin-top: 1.5rem !important; - margin-bottom: 1.5rem !important; - } - - .my-xl-5 { - margin-top: 3rem !important; - margin-bottom: 3rem !important; - } - - .my-xl-auto { - margin-top: auto !important; - margin-bottom: auto !important; - } - - .mt-xl-0 { - margin-top: 0 !important; - } - - .mt-xl-1 { - margin-top: 0.25rem !important; - } - - .mt-xl-2 { - margin-top: 0.5rem !important; - } - - .mt-xl-3 { - margin-top: 1rem !important; - } - - .mt-xl-4 { - margin-top: 1.5rem !important; - } - - .mt-xl-5 { - margin-top: 3rem !important; - } - - .mt-xl-auto { - margin-top: auto !important; - } - - .me-xl-0 { - margin-left: 0 !important; - } - - .me-xl-1 { - margin-left: 0.25rem !important; - } - - .me-xl-2 { - margin-left: 0.5rem !important; - } - - .me-xl-3 { - margin-left: 1rem !important; - } - - .me-xl-4 { - margin-left: 1.5rem !important; - } - - .me-xl-5 { - margin-left: 3rem !important; - } - - .me-xl-auto { - margin-left: auto !important; - } - - .mb-xl-0 { - margin-bottom: 0 !important; - } - - .mb-xl-1 { - margin-bottom: 0.25rem !important; - } - - .mb-xl-2 { - margin-bottom: 0.5rem !important; - } - - .mb-xl-3 { - margin-bottom: 1rem !important; - } - - .mb-xl-4 { - margin-bottom: 1.5rem !important; - } - - .mb-xl-5 { - margin-bottom: 3rem !important; - } - - .mb-xl-auto { - margin-bottom: auto !important; - } - - .ms-xl-0 { - margin-right: 0 !important; - } - - .ms-xl-1 { - margin-right: 0.25rem !important; - } - - .ms-xl-2 { - margin-right: 0.5rem !important; - } - - .ms-xl-3 { - margin-right: 1rem !important; - } - - .ms-xl-4 { - margin-right: 1.5rem !important; - } - - .ms-xl-5 { - margin-right: 3rem !important; - } - - .ms-xl-auto { - margin-right: auto !important; - } - - .p-xl-0 { - padding: 0 !important; - } - - .p-xl-1 { - padding: 0.25rem !important; - } - - .p-xl-2 { - padding: 0.5rem !important; - } - - .p-xl-3 { - padding: 1rem !important; - } - - .p-xl-4 { - padding: 1.5rem !important; - } - - .p-xl-5 { - padding: 3rem !important; - } - - .px-xl-0 { - padding-left: 0 !important; - padding-right: 0 !important; - } - - .px-xl-1 { - padding-left: 0.25rem !important; - padding-right: 0.25rem !important; - } - - .px-xl-2 { - padding-left: 0.5rem !important; - padding-right: 0.5rem !important; - } - - .px-xl-3 { - padding-left: 1rem !important; - padding-right: 1rem !important; - } - - .px-xl-4 { - padding-left: 1.5rem !important; - padding-right: 1.5rem !important; - } - - .px-xl-5 { - padding-left: 3rem !important; - padding-right: 3rem !important; - } - - .py-xl-0 { - padding-top: 0 !important; - padding-bottom: 0 !important; - } - - .py-xl-1 { - padding-top: 0.25rem !important; - padding-bottom: 0.25rem !important; - } - - .py-xl-2 { - padding-top: 0.5rem !important; - padding-bottom: 0.5rem !important; - } - - .py-xl-3 { - padding-top: 1rem !important; - padding-bottom: 1rem !important; - } - - .py-xl-4 { - padding-top: 1.5rem !important; - padding-bottom: 1.5rem !important; - } - - .py-xl-5 { - padding-top: 3rem !important; - padding-bottom: 3rem !important; - } - - .pt-xl-0 { - padding-top: 0 !important; - } - - .pt-xl-1 { - padding-top: 0.25rem !important; - } - - .pt-xl-2 { - padding-top: 0.5rem !important; - } - - .pt-xl-3 { - padding-top: 1rem !important; - } - - .pt-xl-4 { - padding-top: 1.5rem !important; - } - - .pt-xl-5 { - padding-top: 3rem !important; - } - - .pe-xl-0 { - padding-left: 0 !important; - } - - .pe-xl-1 { - padding-left: 0.25rem !important; - } - - .pe-xl-2 { - padding-left: 0.5rem !important; - } - - .pe-xl-3 { - padding-left: 1rem !important; - } - - .pe-xl-4 { - padding-left: 1.5rem !important; - } - - .pe-xl-5 { - padding-left: 3rem !important; - } - - .pb-xl-0 { - padding-bottom: 0 !important; - } - - .pb-xl-1 { - padding-bottom: 0.25rem !important; - } - - .pb-xl-2 { - padding-bottom: 0.5rem !important; - } - - .pb-xl-3 { - padding-bottom: 1rem !important; - } - - .pb-xl-4 { - padding-bottom: 1.5rem !important; - } - - .pb-xl-5 { - padding-bottom: 3rem !important; - } - - .ps-xl-0 { - padding-right: 0 !important; - } - - .ps-xl-1 { - padding-right: 0.25rem !important; - } - - .ps-xl-2 { - padding-right: 0.5rem !important; - } - - .ps-xl-3 { - padding-right: 1rem !important; - } - - .ps-xl-4 { - padding-right: 1.5rem !important; - } - - .ps-xl-5 { - padding-right: 3rem !important; - } - - .text-xl-start { - text-align: right !important; - } - - .text-xl-end { - text-align: left !important; - } - - .text-xl-center { - text-align: center !important; - } -} -@media (min-width: 1400px) { - .float-xxl-start { - float: right !important; - } - - .float-xxl-end { - float: left !important; - } - - .float-xxl-none { - float: none !important; - } - - .d-xxl-inline { - display: inline !important; - } - - .d-xxl-inline-block { - display: inline-block !important; - } - - .d-xxl-block { - display: block !important; - } - - .d-xxl-grid { - display: grid !important; - } - - .d-xxl-table { - display: table !important; - } - - .d-xxl-table-row { - display: table-row !important; - } - - .d-xxl-table-cell { - display: table-cell !important; - } - - .d-xxl-flex { - display: flex !important; - } - - .d-xxl-inline-flex { - display: inline-flex !important; - } - - .d-xxl-none { - display: none !important; - } - - .flex-xxl-fill { - flex: 1 1 auto !important; - } - - .flex-xxl-row { - flex-direction: row !important; - } - - .flex-xxl-column { - flex-direction: column !important; - } - - .flex-xxl-row-reverse { - flex-direction: row-reverse !important; - } - - .flex-xxl-column-reverse { - flex-direction: column-reverse !important; - } - - .flex-xxl-grow-0 { - flex-grow: 0 !important; - } - - .flex-xxl-grow-1 { - flex-grow: 1 !important; - } - - .flex-xxl-shrink-0 { - flex-shrink: 0 !important; - } - - .flex-xxl-shrink-1 { - flex-shrink: 1 !important; - } - - .flex-xxl-wrap { - flex-wrap: wrap !important; - } - - .flex-xxl-nowrap { - flex-wrap: nowrap !important; - } - - .flex-xxl-wrap-reverse { - flex-wrap: wrap-reverse !important; - } - - .gap-xxl-0 { - gap: 0 !important; - } - - .gap-xxl-1 { - gap: 0.25rem !important; - } - - .gap-xxl-2 { - gap: 0.5rem !important; - } - - .gap-xxl-3 { - gap: 1rem !important; - } - - .gap-xxl-4 { - gap: 1.5rem !important; - } - - .gap-xxl-5 { - gap: 3rem !important; - } - - .justify-content-xxl-start { - justify-content: flex-start !important; - } - - .justify-content-xxl-end { - justify-content: flex-end !important; - } - - .justify-content-xxl-center { - justify-content: center !important; - } - - .justify-content-xxl-between { - justify-content: space-between !important; - } - - .justify-content-xxl-around { - justify-content: space-around !important; - } - - .justify-content-xxl-evenly { - justify-content: space-evenly !important; - } - - .align-items-xxl-start { - align-items: flex-start !important; - } - - .align-items-xxl-end { - align-items: flex-end !important; - } - - .align-items-xxl-center { - align-items: center !important; - } - - .align-items-xxl-baseline { - align-items: baseline !important; - } - - .align-items-xxl-stretch { - align-items: stretch !important; - } - - .align-content-xxl-start { - align-content: flex-start !important; - } - - .align-content-xxl-end { - align-content: flex-end !important; - } - - .align-content-xxl-center { - align-content: center !important; - } - - .align-content-xxl-between { - align-content: space-between !important; - } - - .align-content-xxl-around { - align-content: space-around !important; - } - - .align-content-xxl-stretch { - align-content: stretch !important; - } - - .align-self-xxl-auto { - align-self: auto !important; - } - - .align-self-xxl-start { - align-self: flex-start !important; - } - - .align-self-xxl-end { - align-self: flex-end !important; - } - - .align-self-xxl-center { - align-self: center !important; - } - - .align-self-xxl-baseline { - align-self: baseline !important; - } - - .align-self-xxl-stretch { - align-self: stretch !important; - } - - .order-xxl-first { - order: -1 !important; - } - - .order-xxl-0 { - order: 0 !important; - } - - .order-xxl-1 { - order: 1 !important; - } - - .order-xxl-2 { - order: 2 !important; - } - - .order-xxl-3 { - order: 3 !important; - } - - .order-xxl-4 { - order: 4 !important; - } - - .order-xxl-5 { - order: 5 !important; - } - - .order-xxl-last { - order: 6 !important; - } - - .m-xxl-0 { - margin: 0 !important; - } - - .m-xxl-1 { - margin: 0.25rem !important; - } - - .m-xxl-2 { - margin: 0.5rem !important; - } - - .m-xxl-3 { - margin: 1rem !important; - } - - .m-xxl-4 { - margin: 1.5rem !important; - } - - .m-xxl-5 { - margin: 3rem !important; - } - - .m-xxl-auto { - margin: auto !important; - } - - .mx-xxl-0 { - margin-left: 0 !important; - margin-right: 0 !important; - } - - .mx-xxl-1 { - margin-left: 0.25rem !important; - margin-right: 0.25rem !important; - } - - .mx-xxl-2 { - margin-left: 0.5rem !important; - margin-right: 0.5rem !important; - } - - .mx-xxl-3 { - margin-left: 1rem !important; - margin-right: 1rem !important; - } - - .mx-xxl-4 { - margin-left: 1.5rem !important; - margin-right: 1.5rem !important; - } - - .mx-xxl-5 { - margin-left: 3rem !important; - margin-right: 3rem !important; - } - - .mx-xxl-auto { - margin-left: auto !important; - margin-right: auto !important; - } - - .my-xxl-0 { - margin-top: 0 !important; - margin-bottom: 0 !important; - } - - .my-xxl-1 { - margin-top: 0.25rem !important; - margin-bottom: 0.25rem !important; - } - - .my-xxl-2 { - margin-top: 0.5rem !important; - margin-bottom: 0.5rem !important; - } - - .my-xxl-3 { - margin-top: 1rem !important; - margin-bottom: 1rem !important; - } - - .my-xxl-4 { - margin-top: 1.5rem !important; - margin-bottom: 1.5rem !important; - } - - .my-xxl-5 { - margin-top: 3rem !important; - margin-bottom: 3rem !important; - } - - .my-xxl-auto { - margin-top: auto !important; - margin-bottom: auto !important; - } - - .mt-xxl-0 { - margin-top: 0 !important; - } - - .mt-xxl-1 { - margin-top: 0.25rem !important; - } - - .mt-xxl-2 { - margin-top: 0.5rem !important; - } - - .mt-xxl-3 { - margin-top: 1rem !important; - } - - .mt-xxl-4 { - margin-top: 1.5rem !important; - } - - .mt-xxl-5 { - margin-top: 3rem !important; - } - - .mt-xxl-auto { - margin-top: auto !important; - } - - .me-xxl-0 { - margin-left: 0 !important; - } - - .me-xxl-1 { - margin-left: 0.25rem !important; - } - - .me-xxl-2 { - margin-left: 0.5rem !important; - } - - .me-xxl-3 { - margin-left: 1rem !important; - } - - .me-xxl-4 { - margin-left: 1.5rem !important; - } - - .me-xxl-5 { - margin-left: 3rem !important; - } - - .me-xxl-auto { - margin-left: auto !important; - } - - .mb-xxl-0 { - margin-bottom: 0 !important; - } - - .mb-xxl-1 { - margin-bottom: 0.25rem !important; - } - - .mb-xxl-2 { - margin-bottom: 0.5rem !important; - } - - .mb-xxl-3 { - margin-bottom: 1rem !important; - } - - .mb-xxl-4 { - margin-bottom: 1.5rem !important; - } - - .mb-xxl-5 { - margin-bottom: 3rem !important; - } - - .mb-xxl-auto { - margin-bottom: auto !important; - } - - .ms-xxl-0 { - margin-right: 0 !important; - } - - .ms-xxl-1 { - margin-right: 0.25rem !important; - } - - .ms-xxl-2 { - margin-right: 0.5rem !important; - } - - .ms-xxl-3 { - margin-right: 1rem !important; - } - - .ms-xxl-4 { - margin-right: 1.5rem !important; - } - - .ms-xxl-5 { - margin-right: 3rem !important; - } - - .ms-xxl-auto { - margin-right: auto !important; - } - - .p-xxl-0 { - padding: 0 !important; - } - - .p-xxl-1 { - padding: 0.25rem !important; - } - - .p-xxl-2 { - padding: 0.5rem !important; - } - - .p-xxl-3 { - padding: 1rem !important; - } - - .p-xxl-4 { - padding: 1.5rem !important; - } - - .p-xxl-5 { - padding: 3rem !important; - } - - .px-xxl-0 { - padding-left: 0 !important; - padding-right: 0 !important; - } - - .px-xxl-1 { - padding-left: 0.25rem !important; - padding-right: 0.25rem !important; - } - - .px-xxl-2 { - padding-left: 0.5rem !important; - padding-right: 0.5rem !important; - } - - .px-xxl-3 { - padding-left: 1rem !important; - padding-right: 1rem !important; - } - - .px-xxl-4 { - padding-left: 1.5rem !important; - padding-right: 1.5rem !important; - } - - .px-xxl-5 { - padding-left: 3rem !important; - padding-right: 3rem !important; - } - - .py-xxl-0 { - padding-top: 0 !important; - padding-bottom: 0 !important; - } - - .py-xxl-1 { - padding-top: 0.25rem !important; - padding-bottom: 0.25rem !important; - } - - .py-xxl-2 { - padding-top: 0.5rem !important; - padding-bottom: 0.5rem !important; - } - - .py-xxl-3 { - padding-top: 1rem !important; - padding-bottom: 1rem !important; - } - - .py-xxl-4 { - padding-top: 1.5rem !important; - padding-bottom: 1.5rem !important; - } - - .py-xxl-5 { - padding-top: 3rem !important; - padding-bottom: 3rem !important; - } - - .pt-xxl-0 { - padding-top: 0 !important; - } - - .pt-xxl-1 { - padding-top: 0.25rem !important; - } - - .pt-xxl-2 { - padding-top: 0.5rem !important; - } - - .pt-xxl-3 { - padding-top: 1rem !important; - } - - .pt-xxl-4 { - padding-top: 1.5rem !important; - } - - .pt-xxl-5 { - padding-top: 3rem !important; - } - - .pe-xxl-0 { - padding-left: 0 !important; - } - - .pe-xxl-1 { - padding-left: 0.25rem !important; - } - - .pe-xxl-2 { - padding-left: 0.5rem !important; - } - - .pe-xxl-3 { - padding-left: 1rem !important; - } - - .pe-xxl-4 { - padding-left: 1.5rem !important; - } - - .pe-xxl-5 { - padding-left: 3rem !important; - } - - .pb-xxl-0 { - padding-bottom: 0 !important; - } - - .pb-xxl-1 { - padding-bottom: 0.25rem !important; - } - - .pb-xxl-2 { - padding-bottom: 0.5rem !important; - } - - .pb-xxl-3 { - padding-bottom: 1rem !important; - } - - .pb-xxl-4 { - padding-bottom: 1.5rem !important; - } - - .pb-xxl-5 { - padding-bottom: 3rem !important; - } - - .ps-xxl-0 { - padding-right: 0 !important; - } - - .ps-xxl-1 { - padding-right: 0.25rem !important; - } - - .ps-xxl-2 { - padding-right: 0.5rem !important; - } - - .ps-xxl-3 { - padding-right: 1rem !important; - } - - .ps-xxl-4 { - padding-right: 1.5rem !important; - } - - .ps-xxl-5 { - padding-right: 3rem !important; - } - - .text-xxl-start { - text-align: right !important; - } - - .text-xxl-end { - text-align: left !important; - } - - .text-xxl-center { - text-align: center !important; - } -} -@media (min-width: 1200px) { - .fs-1 { - font-size: 2.5rem !important; - } - - .fs-2 { - font-size: 2rem !important; - } - - .fs-3 { - font-size: 1.75rem !important; - } - - .fs-4 { - font-size: 1.5rem !important; - } -} -@media print { - .d-print-inline { - display: inline !important; - } - - .d-print-inline-block { - display: inline-block !important; - } - - .d-print-block { - display: block !important; - } - - .d-print-grid { - display: grid !important; - } - - .d-print-table { - display: table !important; - } - - .d-print-table-row { - display: table-row !important; - } - - .d-print-table-cell { - display: table-cell !important; - } - - .d-print-flex { - display: flex !important; - } - - .d-print-inline-flex { - display: inline-flex !important; - } - - .d-print-none { - display: none !important; - } -} -/*# sourceMappingURL=bootstrap.rtl.css.map */ \ No newline at end of file diff --git a/spaces/Tuana/what-would-mother-say/utils/haystack.py b/spaces/Tuana/what-would-mother-say/utils/haystack.py deleted file mode 100644 index 566515d018a681dd3fd35c8f9a936f05eaa40ec3..0000000000000000000000000000000000000000 --- a/spaces/Tuana/what-would-mother-say/utils/haystack.py +++ /dev/null @@ -1,40 +0,0 @@ -import streamlit as st -from mastodon_fetcher_haystack import MastodonFetcher -from haystack.agents import Agent, Tool -from haystack.nodes import PromptNode, PromptTemplate, WebRetriever -from haystack.pipelines import WebQAPipeline - - -def start_haystack(openai_key, serper_key): - prompt_node = PromptNode( - "gpt-4", - default_prompt_template=PromptTemplate(prompt="./prompts/lfqa.yaml"), - api_key=openai_key, - max_length=256, - ) - - web_retriever = WebRetriever(api_key=serper_key, top_search_results=2, mode="preprocessed_documents") - web_pipeline = WebQAPipeline(retriever=web_retriever, prompt_node=prompt_node) - - mastodon_retriver = MastodonFetcher(last_k_posts=20) - - pn = PromptNode(model_name_or_path="gpt-4", api_key=openai_key, stop_words=["Observation:"], max_length=400) - agent = Agent(prompt_node=pn, prompt_template="./prompts/mastodon_agent.yaml") - - mastodon_retriver_tool = Tool(name="MastodonRetriever", pipeline_or_node=mastodon_retriver, - description="Useful for when you need to retrieve the latest posts from a username to get an understanding of their style", - output_variable="documents") - web_tool = Tool(name="WebSearch", pipeline_or_node=web_pipeline, description="Useful for when you need to research the latest about a new topic") - - agent.add_tool(mastodon_retriver_tool) - agent.add_tool(web_tool) - - - st.session_state["haystack_started"] = True - return agent - - -@st.cache_data(show_spinner=True) -def run_agent(_agent, question): - result = _agent.run(question) - return result diff --git a/spaces/Varadgundap/mov-rec-sys/app.py b/spaces/Varadgundap/mov-rec-sys/app.py deleted file mode 100644 index 5e2c09870d6d114207af272ac48f209609c9f9a3..0000000000000000000000000000000000000000 --- a/spaces/Varadgundap/mov-rec-sys/app.py +++ /dev/null @@ -1,68 +0,0 @@ -import pickle -import streamlit as st -import requests - -def fetch_poster(movie_id): - url = "https://api.themoviedb.org/3/movie/{}?api_key=8265bd1679663a7ea12ac168da84d2e8&language=en-US".format(movie_id) - data = requests.get(url) - data = data.json() - poster_path = data['poster_path'] - full_path = "https://image.tmdb.org/t/p/w500/" + poster_path - return full_path - -def recommend(movie): - index = movies[movies['title'] == movie].index[0] - distances = sorted(list(enumerate(similarity[index])), reverse=True, key=lambda x: x[1]) - recommended_movie_names = [] - recommended_movie_posters = [] - for i in distances[1:6]: - # fetch the movie poster - movie_id = movies.iloc[i[0]].movie_id - recommended_movie_posters.append(fetch_poster(movie_id)) - recommended_movie_names.append(movies.iloc[i[0]].title) - - return recommended_movie_names,recommended_movie_posters - - -st.header('Movie Recommender System') -hide_st_style = """ - - """ -st.markdown(hide_st_style, unsafe_allow_html=True) -movies = pickle.load(open('movie_list.pkl','rb')) -similarity = pickle.load(open('similarity.pkl','rb')) - -movie_list = movies['title'].values -selected_movie = st.selectbox( - "Type or select a movie from the dropdown", - movie_list -) - -if st.button('Show Recommendation'): - recommended_movie_names,recommended_movie_posters = recommend(selected_movie) - col1, col2, col3, col4, col5 = st.beta_columns(5) - with col1: - st.text(recommended_movie_names[0]) - st.image(recommended_movie_posters[0]) - with col2: - st.text(recommended_movie_names[1]) - st.image(recommended_movie_posters[1]) - - with col3: - st.text(recommended_movie_names[2]) - st.image(recommended_movie_posters[2]) - with col4: - st.text(recommended_movie_names[3]) - st.image(recommended_movie_posters[3]) - with col5: - st.text(recommended_movie_names[4]) - st.image(recommended_movie_posters[4]) - - - - - diff --git a/spaces/WhyLIM/ChatGPT-academic/crazy_functions/test_project/latex/attention/introduction.tex b/spaces/WhyLIM/ChatGPT-academic/crazy_functions/test_project/latex/attention/introduction.tex deleted file mode 100644 index 1baa8915f4cf7aec2520894a87470fc9436d954b..0000000000000000000000000000000000000000 --- a/spaces/WhyLIM/ChatGPT-academic/crazy_functions/test_project/latex/attention/introduction.tex +++ /dev/null @@ -1,18 +0,0 @@ -Recurrent neural networks, long short-term memory \citep{hochreiter1997} and gated recurrent \citep{gruEval14} neural networks in particular, have been firmly established as state of the art approaches in sequence modeling and transduction problems such as language modeling and machine translation \citep{sutskever14, bahdanau2014neural, cho2014learning}. Numerous efforts have since continued to push the boundaries of recurrent language models and encoder-decoder architectures \citep{wu2016google,luong2015effective,jozefowicz2016exploring}. - -Recurrent models typically factor computation along the symbol positions of the input and output sequences. Aligning the positions to steps in computation time, they generate a sequence of hidden states $h_t$, as a function of the previous hidden state $h_{t-1}$ and the input for position $t$. This inherently sequential nature precludes parallelization within training examples, which becomes critical at longer sequence lengths, as memory constraints limit batching across examples. -%\marginpar{not sure if the memory constraints are understandable here} -Recent work has achieved significant improvements in computational efficiency through factorization tricks \citep{Kuchaiev2017Factorization} and conditional computation \citep{shazeer2017outrageously}, while also improving model performance in case of the latter. The fundamental constraint of sequential computation, however, remains. - -%\marginpar{@all: there is work on analyzing what attention really does in seq2seq models, couldn't find it right away} - -Attention mechanisms have become an integral part of compelling sequence modeling and transduction models in various tasks, allowing modeling of dependencies without regard to their distance in the input or output sequences \citep{bahdanau2014neural, structuredAttentionNetworks}. In all but a few cases \citep{decomposableAttnModel}, however, such attention mechanisms are used in conjunction with a recurrent network. - -%\marginpar{not sure if "cross-positional communication" is understandable without explanation} -%\marginpar{insert exact training times and stats for the model that reaches sota earliest, maybe even a single GPU model?} - -In this work we propose the Transformer, a model architecture eschewing recurrence and instead relying entirely on an attention mechanism to draw global dependencies between input and output. The Transformer allows for significantly more parallelization and can reach a new state of the art in translation quality after being trained for as little as twelve hours on eight P100 GPUs. -%\marginpar{you removed the constant number of repetitions part. I wrote it because I wanted to make it clear that the model does not only perform attention once, while it's also not recurrent. I thought that might be important to get across early.} - -% Just a standard paragraph with citations, rewrite. -%After the seminal papers of \citep{sutskever14}, \citep{bahdanau2014neural}, and \citep{cho2014learning}, recurrent models have become the dominant solution for both sequence modeling and sequence-to-sequence transduction. Many efforts such as \citep{wu2016google,luong2015effective,jozefowicz2016exploring} have pushed the boundaries of machine translation and language modeling with recurrent sequence models. Recent effort \citep{shazeer2017outrageously} has combined the power of conditional computation with sequence models to train very large models for machine translation, pushing SOTA at lower computational cost. Recurrent models compute a vector of hidden states $h_t$, for each time step $t$ of computation. $h_t$ is a function of both the input at time $t$ and the previous hidden state $h_t$. This dependence on the previous hidden state encumbers recurrnet models to process multiple inputs at once, and their time complexity is a linear function of the length of the input and output, both during training and inference. [What I want to say here is that although this is fine during decoding, at training time, we are given both input and output and this linear nature does not allow the RNN to process all inputs and outputs simultaneously and haven't been used on datasets that are the of the scale of the web. What's the largest dataset we have ? . Talk about Nividia and possibly other's effors to speed up things, and possibly other efforts that alleviate this, but are still limited by it's comptuational nature]. Rest of the intro: What if you could construct the state based on the actual inputs and outputs, then you could construct them all at once. This has been the foundation of many promising recent efforts, bytenet,facenet (Also talk about quasi rnn here). Now we talk about attention!! Along with cell architectures such as long short-term meory (LSTM) \citep{hochreiter1997}, and gated recurrent units (GRUs) \citep{cho2014learning}, attention has emerged as an essential ingredient in successful sequence models, in particular for machine translation. In recent years, many, if not all, state-of-the-art (SOTA) results in machine translation have been achieved with attention-based sequence models \citep{wu2016google,luong2015effective,jozefowicz2016exploring}. Talk about the neon work on how it played with attention to do self attention! Then talk about what we do. \ No newline at end of file diff --git a/spaces/XyBr0/DogBreedClassifier/app.py b/spaces/XyBr0/DogBreedClassifier/app.py deleted file mode 100644 index ab965e2b7fc5ebb75e3622f7e86edb66ee325f6b..0000000000000000000000000000000000000000 --- a/spaces/XyBr0/DogBreedClassifier/app.py +++ /dev/null @@ -1,22 +0,0 @@ -from fastai.vision.all import * -import gradio as gr -import timm - -# Cell -learn = load_learner('dogbreed.pkl') - -# Cell -categories = learn.dls.vocab - -def classify_image(img): - pred,idx,probs = learn.predict(img) - return dict(zip(categories, map(float,probs))) - -# Cell -image = gr.inputs.Image(shape=(192, 192)) -label = gr.outputs.Label() -examples = ['rottweiler.jpg'] - -# Cell -intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) -intf.launch() \ No newline at end of file diff --git a/spaces/XzJosh/Azusa-Bert-VITS2/models.py b/spaces/XzJosh/Azusa-Bert-VITS2/models.py deleted file mode 100644 index d4afe44d883691610c5903e602a3ca245fcb3a5c..0000000000000000000000000000000000000000 --- a/spaces/XzJosh/Azusa-Bert-VITS2/models.py +++ /dev/null @@ -1,707 +0,0 @@ -import copy -import math -import torch -from torch import nn -from torch.nn import functional as F - -import commons -import modules -import attentions -import monotonic_align - -from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d -from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm - -from commons import init_weights, get_padding -from text import symbols, num_tones, num_languages -class DurationDiscriminator(nn.Module): #vits2 - def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0): - super().__init__() - - self.in_channels = in_channels - self.filter_channels = filter_channels - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.gin_channels = gin_channels - - self.drop = nn.Dropout(p_dropout) - self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2) - self.norm_1 = modules.LayerNorm(filter_channels) - self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2) - self.norm_2 = modules.LayerNorm(filter_channels) - self.dur_proj = nn.Conv1d(1, filter_channels, 1) - - self.pre_out_conv_1 = nn.Conv1d(2*filter_channels, filter_channels, kernel_size, padding=kernel_size//2) - self.pre_out_norm_1 = modules.LayerNorm(filter_channels) - self.pre_out_conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2) - self.pre_out_norm_2 = modules.LayerNorm(filter_channels) - - if gin_channels != 0: - self.cond = nn.Conv1d(gin_channels, in_channels, 1) - - self.output_layer = nn.Sequential( - nn.Linear(filter_channels, 1), - nn.Sigmoid() - ) - - def forward_probability(self, x, x_mask, dur, g=None): - dur = self.dur_proj(dur) - x = torch.cat([x, dur], dim=1) - x = self.pre_out_conv_1(x * x_mask) - x = torch.relu(x) - x = self.pre_out_norm_1(x) - x = self.drop(x) - x = self.pre_out_conv_2(x * x_mask) - x = torch.relu(x) - x = self.pre_out_norm_2(x) - x = self.drop(x) - x = x * x_mask - x = x.transpose(1, 2) - output_prob = self.output_layer(x) - return output_prob - - def forward(self, x, x_mask, dur_r, dur_hat, g=None): - x = torch.detach(x) - if g is not None: - g = torch.detach(g) - x = x + self.cond(g) - x = self.conv_1(x * x_mask) - x = torch.relu(x) - x = self.norm_1(x) - x = self.drop(x) - x = self.conv_2(x * x_mask) - x = torch.relu(x) - x = self.norm_2(x) - x = self.drop(x) - - output_probs = [] - for dur in [dur_r, dur_hat]: - output_prob = self.forward_probability(x, x_mask, dur, g) - output_probs.append(output_prob) - - return output_probs - -class TransformerCouplingBlock(nn.Module): - def __init__(self, - channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - n_flows=4, - gin_channels=0, - share_parameter=False - ): - - super().__init__() - self.channels = channels - self.hidden_channels = hidden_channels - self.kernel_size = kernel_size - self.n_layers = n_layers - self.n_flows = n_flows - self.gin_channels = gin_channels - - self.flows = nn.ModuleList() - - self.wn = attentions.FFT(hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, isflow = True, gin_channels = self.gin_channels) if share_parameter else None - - for i in range(n_flows): - self.flows.append( - modules.TransformerCouplingLayer(channels, hidden_channels, kernel_size, n_layers, n_heads, p_dropout, filter_channels, mean_only=True, wn_sharing_parameter=self.wn, gin_channels = self.gin_channels)) - self.flows.append(modules.Flip()) - - def forward(self, x, x_mask, g=None, reverse=False): - if not reverse: - for flow in self.flows: - x, _ = flow(x, x_mask, g=g, reverse=reverse) - else: - for flow in reversed(self.flows): - x = flow(x, x_mask, g=g, reverse=reverse) - return x - -class StochasticDurationPredictor(nn.Module): - def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0): - super().__init__() - filter_channels = in_channels # it needs to be removed from future version. - self.in_channels = in_channels - self.filter_channels = filter_channels - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.n_flows = n_flows - self.gin_channels = gin_channels - - self.log_flow = modules.Log() - self.flows = nn.ModuleList() - self.flows.append(modules.ElementwiseAffine(2)) - for i in range(n_flows): - self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)) - self.flows.append(modules.Flip()) - - self.post_pre = nn.Conv1d(1, filter_channels, 1) - self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1) - self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout) - self.post_flows = nn.ModuleList() - self.post_flows.append(modules.ElementwiseAffine(2)) - for i in range(4): - self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)) - self.post_flows.append(modules.Flip()) - - self.pre = nn.Conv1d(in_channels, filter_channels, 1) - self.proj = nn.Conv1d(filter_channels, filter_channels, 1) - self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout) - if gin_channels != 0: - self.cond = nn.Conv1d(gin_channels, filter_channels, 1) - - def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0): - x = torch.detach(x) - x = self.pre(x) - if g is not None: - g = torch.detach(g) - x = x + self.cond(g) - x = self.convs(x, x_mask) - x = self.proj(x) * x_mask - - if not reverse: - flows = self.flows - assert w is not None - - logdet_tot_q = 0 - h_w = self.post_pre(w) - h_w = self.post_convs(h_w, x_mask) - h_w = self.post_proj(h_w) * x_mask - e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask - z_q = e_q - for flow in self.post_flows: - z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w)) - logdet_tot_q += logdet_q - z_u, z1 = torch.split(z_q, [1, 1], 1) - u = torch.sigmoid(z_u) * x_mask - z0 = (w - u) * x_mask - logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]) - logq = torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q ** 2)) * x_mask, [1, 2]) - logdet_tot_q - - logdet_tot = 0 - z0, logdet = self.log_flow(z0, x_mask) - logdet_tot += logdet - z = torch.cat([z0, z1], 1) - for flow in flows: - z, logdet = flow(z, x_mask, g=x, reverse=reverse) - logdet_tot = logdet_tot + logdet - nll = torch.sum(0.5 * (math.log(2 * math.pi) + (z ** 2)) * x_mask, [1, 2]) - logdet_tot - return nll + logq # [b] - else: - flows = list(reversed(self.flows)) - flows = flows[:-2] + [flows[-1]] # remove a useless vflow - z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale - for flow in flows: - z = flow(z, x_mask, g=x, reverse=reverse) - z0, z1 = torch.split(z, [1, 1], 1) - logw = z0 - return logw - - -class DurationPredictor(nn.Module): - def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0): - super().__init__() - - self.in_channels = in_channels - self.filter_channels = filter_channels - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.gin_channels = gin_channels - - self.drop = nn.Dropout(p_dropout) - self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2) - self.norm_1 = modules.LayerNorm(filter_channels) - self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2) - self.norm_2 = modules.LayerNorm(filter_channels) - self.proj = nn.Conv1d(filter_channels, 1, 1) - - if gin_channels != 0: - self.cond = nn.Conv1d(gin_channels, in_channels, 1) - - def forward(self, x, x_mask, g=None): - x = torch.detach(x) - if g is not None: - g = torch.detach(g) - x = x + self.cond(g) - x = self.conv_1(x * x_mask) - x = torch.relu(x) - x = self.norm_1(x) - x = self.drop(x) - x = self.conv_2(x * x_mask) - x = torch.relu(x) - x = self.norm_2(x) - x = self.drop(x) - x = self.proj(x * x_mask) - return x * x_mask - - -class TextEncoder(nn.Module): - def __init__(self, - n_vocab, - out_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - gin_channels=0): - super().__init__() - self.n_vocab = n_vocab - self.out_channels = out_channels - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.gin_channels = gin_channels - self.emb = nn.Embedding(len(symbols), hidden_channels) - nn.init.normal_(self.emb.weight, 0.0, hidden_channels ** -0.5) - self.tone_emb = nn.Embedding(num_tones, hidden_channels) - nn.init.normal_(self.tone_emb.weight, 0.0, hidden_channels ** -0.5) - self.language_emb = nn.Embedding(num_languages, hidden_channels) - nn.init.normal_(self.language_emb.weight, 0.0, hidden_channels ** -0.5) - self.bert_proj = nn.Conv1d(1024, hidden_channels, 1) - - self.encoder = attentions.Encoder( - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - gin_channels=self.gin_channels) - self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) - - def forward(self, x, x_lengths, tone, language, bert, g=None): - x = (self.emb(x)+ self.tone_emb(tone)+ self.language_emb(language)+self.bert_proj(bert).transpose(1,2)) * math.sqrt(self.hidden_channels) # [b, t, h] - x = torch.transpose(x, 1, -1) # [b, h, t] - x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) - - x = self.encoder(x * x_mask, x_mask, g=g) - stats = self.proj(x) * x_mask - - m, logs = torch.split(stats, self.out_channels, dim=1) - return x, m, logs, x_mask - - -class ResidualCouplingBlock(nn.Module): - def __init__(self, - channels, - hidden_channels, - kernel_size, - dilation_rate, - n_layers, - n_flows=4, - gin_channels=0): - super().__init__() - self.channels = channels - self.hidden_channels = hidden_channels - self.kernel_size = kernel_size - self.dilation_rate = dilation_rate - self.n_layers = n_layers - self.n_flows = n_flows - self.gin_channels = gin_channels - - self.flows = nn.ModuleList() - for i in range(n_flows): - self.flows.append( - modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, - gin_channels=gin_channels, mean_only=True)) - self.flows.append(modules.Flip()) - - def forward(self, x, x_mask, g=None, reverse=False): - if not reverse: - for flow in self.flows: - x, _ = flow(x, x_mask, g=g, reverse=reverse) - else: - for flow in reversed(self.flows): - x = flow(x, x_mask, g=g, reverse=reverse) - return x - - -class PosteriorEncoder(nn.Module): - def __init__(self, - in_channels, - out_channels, - hidden_channels, - kernel_size, - dilation_rate, - n_layers, - gin_channels=0): - super().__init__() - self.in_channels = in_channels - self.out_channels = out_channels - self.hidden_channels = hidden_channels - self.kernel_size = kernel_size - self.dilation_rate = dilation_rate - self.n_layers = n_layers - self.gin_channels = gin_channels - - self.pre = nn.Conv1d(in_channels, hidden_channels, 1) - self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels) - self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) - - def forward(self, x, x_lengths, g=None): - x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) - x = self.pre(x) * x_mask - x = self.enc(x, x_mask, g=g) - stats = self.proj(x) * x_mask - m, logs = torch.split(stats, self.out_channels, dim=1) - z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask - return z, m, logs, x_mask - - -class Generator(torch.nn.Module): - def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, - upsample_initial_channel, upsample_kernel_sizes, gin_channels=0): - super(Generator, self).__init__() - self.num_kernels = len(resblock_kernel_sizes) - self.num_upsamples = len(upsample_rates) - self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3) - resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2 - - self.ups = nn.ModuleList() - for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): - self.ups.append(weight_norm( - ConvTranspose1d(upsample_initial_channel // (2 ** i), upsample_initial_channel // (2 ** (i + 1)), - k, u, padding=(k - u) // 2))) - - self.resblocks = nn.ModuleList() - for i in range(len(self.ups)): - ch = upsample_initial_channel // (2 ** (i + 1)) - for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): - self.resblocks.append(resblock(ch, k, d)) - - self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) - self.ups.apply(init_weights) - - if gin_channels != 0: - self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) - - def forward(self, x, g=None): - x = self.conv_pre(x) - if g is not None: - x = x + self.cond(g) - - for i in range(self.num_upsamples): - x = F.leaky_relu(x, modules.LRELU_SLOPE) - x = self.ups[i](x) - xs = None - for j in range(self.num_kernels): - if xs is None: - xs = self.resblocks[i * self.num_kernels + j](x) - else: - xs += self.resblocks[i * self.num_kernels + j](x) - x = xs / self.num_kernels - x = F.leaky_relu(x) - x = self.conv_post(x) - x = torch.tanh(x) - - return x - - def remove_weight_norm(self): - print('Removing weight norm...') - for l in self.ups: - remove_weight_norm(l) - for l in self.resblocks: - l.remove_weight_norm() - - -class DiscriminatorP(torch.nn.Module): - def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): - super(DiscriminatorP, self).__init__() - self.period = period - self.use_spectral_norm = use_spectral_norm - norm_f = weight_norm if use_spectral_norm == False else spectral_norm - self.convs = nn.ModuleList([ - norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), - norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), - norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), - norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), - norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))), - ]) - self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) - - def forward(self, x): - fmap = [] - - # 1d to 2d - b, c, t = x.shape - if t % self.period != 0: # pad first - n_pad = self.period - (t % self.period) - x = F.pad(x, (0, n_pad), "reflect") - t = t + n_pad - x = x.view(b, c, t // self.period, self.period) - - for l in self.convs: - x = l(x) - x = F.leaky_relu(x, modules.LRELU_SLOPE) - fmap.append(x) - x = self.conv_post(x) - fmap.append(x) - x = torch.flatten(x, 1, -1) - - return x, fmap - - -class DiscriminatorS(torch.nn.Module): - def __init__(self, use_spectral_norm=False): - super(DiscriminatorS, self).__init__() - norm_f = weight_norm if use_spectral_norm == False else spectral_norm - self.convs = nn.ModuleList([ - norm_f(Conv1d(1, 16, 15, 1, padding=7)), - norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), - norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), - norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), - norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), - norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), - ]) - self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) - - def forward(self, x): - fmap = [] - - for l in self.convs: - x = l(x) - x = F.leaky_relu(x, modules.LRELU_SLOPE) - fmap.append(x) - x = self.conv_post(x) - fmap.append(x) - x = torch.flatten(x, 1, -1) - - return x, fmap - - -class MultiPeriodDiscriminator(torch.nn.Module): - def __init__(self, use_spectral_norm=False): - super(MultiPeriodDiscriminator, self).__init__() - periods = [2, 3, 5, 7, 11] - - discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] - discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods] - self.discriminators = nn.ModuleList(discs) - - def forward(self, y, y_hat): - y_d_rs = [] - y_d_gs = [] - fmap_rs = [] - fmap_gs = [] - for i, d in enumerate(self.discriminators): - y_d_r, fmap_r = d(y) - y_d_g, fmap_g = d(y_hat) - y_d_rs.append(y_d_r) - y_d_gs.append(y_d_g) - fmap_rs.append(fmap_r) - fmap_gs.append(fmap_g) - - return y_d_rs, y_d_gs, fmap_rs, fmap_gs - -class ReferenceEncoder(nn.Module): - ''' - inputs --- [N, Ty/r, n_mels*r] mels - outputs --- [N, ref_enc_gru_size] - ''' - - def __init__(self, spec_channels, gin_channels=0): - - super().__init__() - self.spec_channels = spec_channels - ref_enc_filters = [32, 32, 64, 64, 128, 128] - K = len(ref_enc_filters) - filters = [1] + ref_enc_filters - convs = [weight_norm(nn.Conv2d(in_channels=filters[i], - out_channels=filters[i + 1], - kernel_size=(3, 3), - stride=(2, 2), - padding=(1, 1))) for i in range(K)] - self.convs = nn.ModuleList(convs) - # self.wns = nn.ModuleList([weight_norm(num_features=ref_enc_filters[i]) for i in range(K)]) - - out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K) - self.gru = nn.GRU(input_size=ref_enc_filters[-1] * out_channels, - hidden_size=256 // 2, - batch_first=True) - self.proj = nn.Linear(128, gin_channels) - - def forward(self, inputs, mask=None): - N = inputs.size(0) - out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs] - for conv in self.convs: - out = conv(out) - # out = wn(out) - out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K] - - out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K] - T = out.size(1) - N = out.size(0) - out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K] - - self.gru.flatten_parameters() - memory, out = self.gru(out) # out --- [1, N, 128] - - return self.proj(out.squeeze(0)) - - def calculate_channels(self, L, kernel_size, stride, pad, n_convs): - for i in range(n_convs): - L = (L - kernel_size + 2 * pad) // stride + 1 - return L - - -class SynthesizerTrn(nn.Module): - """ - Synthesizer for Training - """ - - def __init__(self, - n_vocab, - spec_channels, - segment_size, - inter_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - resblock, - resblock_kernel_sizes, - resblock_dilation_sizes, - upsample_rates, - upsample_initial_channel, - upsample_kernel_sizes, - n_speakers=256, - gin_channels=256, - use_sdp=True, - n_flow_layer = 4, - n_layers_trans_flow = 3, - flow_share_parameter = False, - use_transformer_flow = True, - **kwargs): - - super().__init__() - self.n_vocab = n_vocab - self.spec_channels = spec_channels - self.inter_channels = inter_channels - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.resblock = resblock - self.resblock_kernel_sizes = resblock_kernel_sizes - self.resblock_dilation_sizes = resblock_dilation_sizes - self.upsample_rates = upsample_rates - self.upsample_initial_channel = upsample_initial_channel - self.upsample_kernel_sizes = upsample_kernel_sizes - self.segment_size = segment_size - self.n_speakers = n_speakers - self.gin_channels = gin_channels - self.n_layers_trans_flow = n_layers_trans_flow - self.use_spk_conditioned_encoder = kwargs.get("use_spk_conditioned_encoder", True) - self.use_sdp = use_sdp - self.use_noise_scaled_mas = kwargs.get("use_noise_scaled_mas", False) - self.mas_noise_scale_initial = kwargs.get("mas_noise_scale_initial", 0.01) - self.noise_scale_delta = kwargs.get("noise_scale_delta", 2e-6) - self.current_mas_noise_scale = self.mas_noise_scale_initial - if self.use_spk_conditioned_encoder and gin_channels > 0: - self.enc_gin_channels = gin_channels - self.enc_p = TextEncoder(n_vocab, - inter_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - gin_channels=self.enc_gin_channels) - self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, - upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels) - self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, - gin_channels=gin_channels) - if use_transformer_flow: - self.flow = TransformerCouplingBlock(inter_channels, hidden_channels, filter_channels, n_heads, n_layers_trans_flow, 5, p_dropout, n_flow_layer, gin_channels=gin_channels,share_parameter= flow_share_parameter) - else: - self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, n_flow_layer, gin_channels=gin_channels) - self.sdp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels) - self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels) - - if n_speakers >= 1: - self.emb_g = nn.Embedding(n_speakers, gin_channels) - else: - self.ref_enc = ReferenceEncoder(spec_channels, gin_channels) - - def forward(self, x, x_lengths, y, y_lengths, sid, tone, language, bert): - if self.n_speakers > 0: - g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1] - else: - g = self.ref_enc(y.transpose(1,2)).unsqueeze(-1) - x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, tone, language, bert,g=g) - z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) - z_p = self.flow(z, y_mask, g=g) - - with torch.no_grad(): - # negative cross-entropy - s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t] - neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s] - neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2), - s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s] - neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s] - neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s] - neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4 - if self.use_noise_scaled_mas: - epsilon = torch.std(neg_cent) * torch.randn_like(neg_cent) * self.current_mas_noise_scale - neg_cent = neg_cent + epsilon - - attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1) - attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach() - - w = attn.sum(2) - - l_length_sdp = self.sdp(x, x_mask, w, g=g) - l_length_sdp = l_length_sdp / torch.sum(x_mask) - - logw_ = torch.log(w + 1e-6) * x_mask - logw = self.dp(x, x_mask, g=g) - l_length_dp = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(x_mask) # for averaging - - l_length = l_length_dp + l_length_sdp - - # expand prior - m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) - logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) - - z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size) - o = self.dec(z_slice, g=g) - return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q), (x, logw, logw_) - - def infer(self, x, x_lengths, sid, tone, language, bert, noise_scale=.667, length_scale=1, noise_scale_w=0.8, max_len=None, sdp_ratio=0,y=None): - #x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, tone, language, bert) - # g = self.gst(y) - if self.n_speakers > 0: - g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1] - else: - g = self.ref_enc(y.transpose(1,2)).unsqueeze(-1) - x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, tone, language, bert,g=g) - logw = self.sdp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) * (sdp_ratio) + self.dp(x, x_mask, g=g) * (1 - sdp_ratio) - w = torch.exp(logw) * x_mask * length_scale - w_ceil = torch.ceil(w) - y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() - y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype) - attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1) - attn = commons.generate_path(w_ceil, attn_mask) - - m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t'] - logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, - 2) # [b, t', t], [b, t, d] -> [b, d, t'] - - z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale - z = self.flow(z_p, y_mask, g=g, reverse=True) - o = self.dec((z * y_mask)[:, :, :max_len], g=g) - return o, attn, y_mask, (z, z_p, m_p, logs_p) diff --git a/spaces/XzJosh/Echo-Bert-VITS2/text/chinese.py b/spaces/XzJosh/Echo-Bert-VITS2/text/chinese.py deleted file mode 100644 index 276753880b73de2e8889dcb2101cd98c09e0710b..0000000000000000000000000000000000000000 --- a/spaces/XzJosh/Echo-Bert-VITS2/text/chinese.py +++ /dev/null @@ -1,193 +0,0 @@ -import os -import re - -import cn2an -from pypinyin import lazy_pinyin, Style - -from text import symbols -from text.symbols import punctuation -from text.tone_sandhi import ToneSandhi - -current_file_path = os.path.dirname(__file__) -pinyin_to_symbol_map = {line.split("\t")[0]: line.strip().split("\t")[1] for line in - open(os.path.join(current_file_path, 'opencpop-strict.txt')).readlines()} - -import jieba.posseg as psg - - -rep_map = { - ':': ',', - 'ļ¼›': ',', - ',': ',', - '怂': '.', - '!': '!', - '?': '?', - '\n': '.', - "Ā·": ",", - '态': ",", - '...': '…', - '$': '.', - 'ā€œ': "'", - 'ā€': "'", - 'ā€˜': "'", - '’': "'", - '(': "'", - ')': "'", - '(': "'", - ')': "'", - '怊': "'", - '怋': "'", - '怐': "'", - '怑': "'", - '[': "'", - ']': "'", - '—': "-", - 'ļ½ž': "-", - '~': "-", - '怌': "'", - '怍': "'", - -} - -tone_modifier = ToneSandhi() - -def replace_punctuation(text): - text = text.replace("å—Æ", "ꁩ").replace("呣","ęÆ") - pattern = re.compile('|'.join(re.escape(p) for p in rep_map.keys())) - - replaced_text = pattern.sub(lambda x: rep_map[x.group()], text) - - replaced_text = re.sub(r'[^\u4e00-\u9fa5'+"".join(punctuation)+r']+', '', replaced_text) - - return replaced_text - -def g2p(text): - pattern = r'(?<=[{0}])\s*'.format(''.join(punctuation)) - sentences = [i for i in re.split(pattern, text) if i.strip()!=''] - phones, tones, word2ph = _g2p(sentences) - assert sum(word2ph) == len(phones) - assert len(word2ph) == len(text) #Sometimes it will crash,you can add a try-catch. - phones = ['_'] + phones + ["_"] - tones = [0] + tones + [0] - word2ph = [1] + word2ph + [1] - return phones, tones, word2ph - - -def _get_initials_finals(word): - initials = [] - finals = [] - orig_initials = lazy_pinyin( - word, neutral_tone_with_five=True, style=Style.INITIALS) - orig_finals = lazy_pinyin( - word, neutral_tone_with_five=True, style=Style.FINALS_TONE3) - for c, v in zip(orig_initials, orig_finals): - initials.append(c) - finals.append(v) - return initials, finals - - -def _g2p(segments): - phones_list = [] - tones_list = [] - word2ph = [] - for seg in segments: - pinyins = [] - # Replace all English words in the sentence - seg = re.sub('[a-zA-Z]+', '', seg) - seg_cut = psg.lcut(seg) - initials = [] - finals = [] - seg_cut = tone_modifier.pre_merge_for_modify(seg_cut) - for word, pos in seg_cut: - if pos == 'eng': - continue - sub_initials, sub_finals = _get_initials_finals(word) - sub_finals = tone_modifier.modified_tone(word, pos, - sub_finals) - initials.append(sub_initials) - finals.append(sub_finals) - - # assert len(sub_initials) == len(sub_finals) == len(word) - initials = sum(initials, []) - finals = sum(finals, []) - # - for c, v in zip(initials, finals): - raw_pinyin = c+v - # NOTE: post process for pypinyin outputs - # we discriminate i, ii and iii - if c == v: - assert c in punctuation - phone = [c] - tone = '0' - word2ph.append(1) - else: - v_without_tone = v[:-1] - tone = v[-1] - - pinyin = c+v_without_tone - assert tone in '12345' - - if c: - # å¤šéŸ³čŠ‚ - v_rep_map = { - "uei": 'ui', - 'iou': 'iu', - 'uen': 'un', - } - if v_without_tone in v_rep_map.keys(): - pinyin = c+v_rep_map[v_without_tone] - else: - # å•éŸ³čŠ‚ - pinyin_rep_map = { - 'ing': 'ying', - 'i': 'yi', - 'in': 'yin', - 'u': 'wu', - } - if pinyin in pinyin_rep_map.keys(): - pinyin = pinyin_rep_map[pinyin] - else: - single_rep_map = { - 'v': 'yu', - 'e': 'e', - 'i': 'y', - 'u': 'w', - } - if pinyin[0] in single_rep_map.keys(): - pinyin = single_rep_map[pinyin[0]]+pinyin[1:] - - assert pinyin in pinyin_to_symbol_map.keys(), (pinyin, seg, raw_pinyin) - phone = pinyin_to_symbol_map[pinyin].split(' ') - word2ph.append(len(phone)) - - phones_list += phone - tones_list += [int(tone)] * len(phone) - return phones_list, tones_list, word2ph - - - -def text_normalize(text): - numbers = re.findall(r'\d+(?:\.?\d+)?', text) - for number in numbers: - text = text.replace(number, cn2an.an2cn(number), 1) - text = replace_punctuation(text) - return text - -def get_bert_feature(text, word2ph): - from text import chinese_bert - return chinese_bert.get_bert_feature(text, word2ph) - -if __name__ == '__main__': - from text.chinese_bert import get_bert_feature - text = "å•Šļ¼ä½†ę˜Æć€ŠåŽŸē„žć€‹ę˜Æē”±,ē±³å“ˆ\ęøøč‡Ŗäø»ļ¼Œ [ē ”å‘]ēš„äø€ę¬¾å…Ø.ę–°å¼€ę”¾äø–ē•Œ.å†’é™©ęøøęˆ" - text = text_normalize(text) - print(text) - phones, tones, word2ph = g2p(text) - bert = get_bert_feature(text, word2ph) - - print(phones, tones, word2ph, bert.shape) - - -# # 示例用法 -# text = "čæ™ę˜Æäø€äøŖē¤ŗä¾‹ę–‡ęœ¬ļ¼š,ä½ å„½ļ¼čæ™ę˜Æäø€äøŖęµ‹čÆ•...." -# print(g2p_paddle(text)) # 输出: čæ™ę˜Æäø€äøŖē¤ŗä¾‹ę–‡ęœ¬ä½ å„½čæ™ę˜Æäø€äøŖęµ‹čÆ• diff --git a/spaces/XzJosh/LittleTaffy-Bert-VITS2/bert_gen.py b/spaces/XzJosh/LittleTaffy-Bert-VITS2/bert_gen.py deleted file mode 100644 index 44814715396ffc3abe84a12c74d66293c356eb4f..0000000000000000000000000000000000000000 --- a/spaces/XzJosh/LittleTaffy-Bert-VITS2/bert_gen.py +++ /dev/null @@ -1,53 +0,0 @@ -import torch -from torch.utils.data import DataLoader -from multiprocessing import Pool -import commons -import utils -from data_utils import TextAudioSpeakerLoader, TextAudioSpeakerCollate -from tqdm import tqdm -import warnings - -from text import cleaned_text_to_sequence, get_bert - -config_path = 'configs/config.json' -hps = utils.get_hparams_from_file(config_path) - -def process_line(line): - _id, spk, language_str, text, phones, tone, word2ph = line.strip().split("|") - phone = phones.split(" ") - tone = [int(i) for i in tone.split(" ")] - word2ph = [int(i) for i in word2ph.split(" ")] - w2pho = [i for i in word2ph] - word2ph = [i for i in word2ph] - phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) - - if hps.data.add_blank: - phone = commons.intersperse(phone, 0) - tone = commons.intersperse(tone, 0) - language = commons.intersperse(language, 0) - for i in range(len(word2ph)): - word2ph[i] = word2ph[i] * 2 - word2ph[0] += 1 - wav_path = f'{_id}' - - bert_path = wav_path.replace(".wav", ".bert.pt") - try: - bert = torch.load(bert_path) - assert bert.shape[-1] == len(phone) - except: - bert = get_bert(text, word2ph, language_str) - assert bert.shape[-1] == len(phone) - torch.save(bert, bert_path) - - -if __name__ == '__main__': - lines = [] - with open(hps.data.training_files, encoding='utf-8' ) as f: - lines.extend(f.readlines()) - - with open(hps.data.validation_files, encoding='utf-8' ) as f: - lines.extend(f.readlines()) - - with Pool(processes=12) as pool: #A100 40GB suitable config,if coom,please decrease the processess number. - for _ in tqdm(pool.imap_unordered(process_line, lines)): - pass diff --git a/spaces/XzJosh/Wenjing-Bert-VITS2/losses.py b/spaces/XzJosh/Wenjing-Bert-VITS2/losses.py deleted file mode 100644 index fb22a0e834dd87edaa37bb8190eee2c3c7abe0d5..0000000000000000000000000000000000000000 --- a/spaces/XzJosh/Wenjing-Bert-VITS2/losses.py +++ /dev/null @@ -1,61 +0,0 @@ -import torch -from torch.nn import functional as F - -import commons - - -def feature_loss(fmap_r, fmap_g): - loss = 0 - for dr, dg in zip(fmap_r, fmap_g): - for rl, gl in zip(dr, dg): - rl = rl.float().detach() - gl = gl.float() - loss += torch.mean(torch.abs(rl - gl)) - - return loss * 2 - - -def discriminator_loss(disc_real_outputs, disc_generated_outputs): - loss = 0 - r_losses = [] - g_losses = [] - for dr, dg in zip(disc_real_outputs, disc_generated_outputs): - dr = dr.float() - dg = dg.float() - r_loss = torch.mean((1-dr)**2) - g_loss = torch.mean(dg**2) - loss += (r_loss + g_loss) - r_losses.append(r_loss.item()) - g_losses.append(g_loss.item()) - - return loss, r_losses, g_losses - - -def generator_loss(disc_outputs): - loss = 0 - gen_losses = [] - for dg in disc_outputs: - dg = dg.float() - l = torch.mean((1-dg)**2) - gen_losses.append(l) - loss += l - - return loss, gen_losses - - -def kl_loss(z_p, logs_q, m_p, logs_p, z_mask): - """ - z_p, logs_q: [b, h, t_t] - m_p, logs_p: [b, h, t_t] - """ - z_p = z_p.float() - logs_q = logs_q.float() - m_p = m_p.float() - logs_p = logs_p.float() - z_mask = z_mask.float() - - kl = logs_p - logs_q - 0.5 - kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p) - kl = torch.sum(kl * z_mask) - l = kl / torch.sum(z_mask) - return l diff --git a/spaces/YuAnthony/Audio-Caption/data_handling/collate_fn_test.py b/spaces/YuAnthony/Audio-Caption/data_handling/collate_fn_test.py deleted file mode 100644 index b0891eeadde635953497663f310214e48878612f..0000000000000000000000000000000000000000 --- a/spaces/YuAnthony/Audio-Caption/data_handling/collate_fn_test.py +++ /dev/null @@ -1,30 +0,0 @@ -from torch import cat as pt_cat, zeros as pt_zeros, from_numpy, Tensor -def clotho_collate_fn_test(batch, nb_t_steps, input_pad_at): - if type(nb_t_steps) == str: - truncate_fn = max if nb_t_steps.lower() == 'max' else min - in_t_steps = truncate_fn([i[0].shape[0] for i in batch]) - else: - in_t_steps = nb_t_steps - - in_dim = batch[0][0].shape[-1] - - input_tensor = [] - - for in_b, filename in batch: - if in_t_steps >= in_b.shape[0]: - padding = pt_zeros(in_t_steps - in_b.shape[0], in_dim).float() - data = [from_numpy(in_b).float()] - if input_pad_at.lower() == 'start': - data.insert(0, padding) - else: - data.append(padding) - tmp_in: Tensor = pt_cat(data) - else: - tmp_in: Tensor = from_numpy(in_b[:in_t_steps, :]).float() - input_tensor.append(tmp_in.unsqueeze_(0)) - - input_tensor = pt_cat(input_tensor) - - filename = [i[1] for i in batch] - - return input_tensor, filename \ No newline at end of file diff --git a/spaces/Yuki1111/Yuki/README.md b/spaces/Yuki1111/Yuki/README.md deleted file mode 100644 index d4dc2e5353da3cadea6a1f0ddfcfa08119d546fc..0000000000000000000000000000000000000000 --- a/spaces/Yuki1111/Yuki/README.md +++ /dev/null @@ -1,10 +0,0 @@ ---- -title: Yuki -emoji: šŸ“‰ -colorFrom: gray -colorTo: red -sdk: docker -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/Yuliang/ECON/lib/pymafx/models/transformers/bert/__init__.py b/spaces/Yuliang/ECON/lib/pymafx/models/transformers/bert/__init__.py deleted file mode 100644 index d66c20fc9ec44b8fb3ae68a611b784bc624c2616..0000000000000000000000000000000000000000 --- a/spaces/Yuliang/ECON/lib/pymafx/models/transformers/bert/__init__.py +++ /dev/null @@ -1,23 +0,0 @@ -__version__ = "1.0.0" - -from .file_utils import PYTORCH_PRETRAINED_BERT_CACHE, cached_path -from .modeling_bert import ( - BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, - BERT_PRETRAINED_MODEL_ARCHIVE_MAP, - BertConfig, - BertModel, - load_tf_weights_in_bert, -) -from .modeling_graphormer import Graphormer -from .modeling_utils import ( - CONFIG_NAME, - TF_WEIGHTS_NAME, - WEIGHTS_NAME, - Conv1D, - PretrainedConfig, - PreTrainedModel, - prune_layer, -) - -# from .e2e_body_network import Graphormer_Body_Network -# from .e2e_hand_network import Graphormer_Hand_Network diff --git a/spaces/Yuliang/ICON/lib/net/HGPIFuNet.py b/spaces/Yuliang/ICON/lib/net/HGPIFuNet.py deleted file mode 100644 index ab60048d6da45cf49ede7f65d44e7aadf9653814..0000000000000000000000000000000000000000 --- a/spaces/Yuliang/ICON/lib/net/HGPIFuNet.py +++ /dev/null @@ -1,403 +0,0 @@ - -# -*- coding: utf-8 -*- - -# Max-Planck-Gesellschaft zur Fƶrderung der Wissenschaften e.V. (MPG) is -# holder of all proprietary rights on this computer program. -# You can only use this computer program if you have closed -# a license agreement with MPG or you get the right to use the computer -# program from someone who is authorized to grant you that right. -# Any use of the computer program without a valid license is prohibited and -# liable to prosecution. -# -# CopyrightĀ©2019 Max-Planck-Gesellschaft zur Fƶrderung -# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute -# for Intelligent Systems. All rights reserved. -# -# Contact: ps-license@tuebingen.mpg.de - -from lib.net.voxelize import Voxelization -from lib.dataset.mesh_util import cal_sdf_batch, feat_select, read_smpl_constants -from lib.net.NormalNet import NormalNet -from lib.net.MLP import MLP -from lib.dataset.mesh_util import SMPLX -from lib.net.VE import VolumeEncoder -from lib.net.HGFilters import * -from termcolor import colored -from lib.net.BasePIFuNet import BasePIFuNet -import torch.nn as nn -import torch - - -maskout = False - - -class HGPIFuNet(BasePIFuNet): - ''' - HG PIFu network uses Hourglass stacks as the image filter. - It does the following: - 1. Compute image feature stacks and store it in self.im_feat_list - self.im_feat_list[-1] is the last stack (output stack) - 2. Calculate calibration - 3. If training, it index on every intermediate stacks, - If testing, it index on the last stack. - 4. Classification. - 5. During training, error is calculated on all stacks. - ''' - - def __init__(self, - cfg, - projection_mode='orthogonal', - error_term=nn.MSELoss()): - - super(HGPIFuNet, self).__init__(projection_mode=projection_mode, - error_term=error_term) - - self.l1_loss = nn.SmoothL1Loss() - self.opt = cfg.net - self.root = cfg.root - self.overfit = cfg.overfit - - channels_IF = self.opt.mlp_dim - - self.use_filter = self.opt.use_filter - self.prior_type = self.opt.prior_type - self.smpl_feats = self.opt.smpl_feats - - self.smpl_dim = self.opt.smpl_dim - self.voxel_dim = self.opt.voxel_dim - self.hourglass_dim = self.opt.hourglass_dim - self.sdf_clip = cfg.sdf_clip / 100.0 - - self.in_geo = [item[0] for item in self.opt.in_geo] - self.in_nml = [item[0] for item in self.opt.in_nml] - - self.in_geo_dim = sum([item[1] for item in self.opt.in_geo]) - self.in_nml_dim = sum([item[1] for item in self.opt.in_nml]) - - self.in_total = self.in_geo + self.in_nml - self.smpl_feat_dict = None - self.smplx_data = SMPLX() - - if self.prior_type == 'icon': - if 'image' in self.in_geo: - self.channels_filter = [[0, 1, 2, 3, 4, 5], [0, 1, 2, 6, 7, 8]] - else: - self.channels_filter = [[0, 1, 2], [3, 4, 5]] - - else: - if 'image' in self.in_geo: - self.channels_filter = [[0, 1, 2, 3, 4, 5, 6, 7, 8]] - else: - self.channels_filter = [[0, 1, 2, 3, 4, 5]] - - channels_IF[0] = self.hourglass_dim if self.use_filter else len( - self.channels_filter[0]) - - if self.prior_type == 'icon' and 'vis' not in self.smpl_feats: - if self.use_filter: - channels_IF[0] += self.hourglass_dim - else: - channels_IF[0] += len(self.channels_filter[0]) - - if self.prior_type == 'icon': - channels_IF[0] += self.smpl_dim - elif self.prior_type == 'pamir': - channels_IF[0] += self.voxel_dim - smpl_vertex_code, smpl_face_code, smpl_faces, smpl_tetras = read_smpl_constants( - self.smplx_data.tedra_dir) - self.voxelization = Voxelization( - smpl_vertex_code, - smpl_face_code, - smpl_faces, - smpl_tetras, - volume_res=128, - sigma=0.05, - smooth_kernel_size=7, - batch_size=cfg.batch_size, - device=torch.device(f"cuda:{cfg.gpus[0]}")) - self.ve = VolumeEncoder(3, self.voxel_dim, self.opt.num_stack) - else: - channels_IF[0] += 1 - - self.icon_keys = ["smpl_verts", "smpl_faces", "smpl_vis", "smpl_cmap"] - self.pamir_keys = [ - "voxel_verts", "voxel_faces", "pad_v_num", "pad_f_num" - ] - - self.if_regressor = MLP( - filter_channels=channels_IF, - name='if', - res_layers=self.opt.res_layers, - norm=self.opt.norm_mlp, - last_op=nn.Sigmoid() if not cfg.test_mode else None) - - # network - if self.use_filter: - if self.opt.gtype == "HGPIFuNet": - self.F_filter = HGFilter(self.opt, self.opt.num_stack, - len(self.channels_filter[0])) - else: - print( - colored(f"Backbone {self.opt.gtype} is unimplemented", - 'green')) - - summary_log = f"{self.prior_type.upper()}:\n" + \ - f"w/ Global Image Encoder: {self.use_filter}\n" + \ - f"Image Features used by MLP: {self.in_geo}\n" - - if self.prior_type == "icon": - summary_log += f"Geometry Features used by MLP: {self.smpl_feats}\n" - summary_log += f"Dim of Image Features (local): 6\n" - summary_log += f"Dim of Geometry Features (ICON): {self.smpl_dim}\n" - elif self.prior_type == "pamir": - summary_log += f"Dim of Image Features (global): {self.hourglass_dim}\n" - summary_log += f"Dim of Geometry Features (PaMIR): {self.voxel_dim}\n" - else: - summary_log += f"Dim of Image Features (global): {self.hourglass_dim}\n" - summary_log += f"Dim of Geometry Features (PIFu): 1 (z-value)\n" - - summary_log += f"Dim of MLP's first layer: {channels_IF[0]}\n" - - print(colored(summary_log, "yellow")) - - self.normal_filter = NormalNet(cfg) - init_net(self) - - def get_normal(self, in_tensor_dict): - - # insert normal features - if (not self.training) and (not self.overfit): - # print(colored("infer normal","blue")) - with torch.no_grad(): - feat_lst = [] - if "image" in self.in_geo: - feat_lst.append( - in_tensor_dict['image']) # [1, 3, 512, 512] - if 'normal_F' in self.in_geo and 'normal_B' in self.in_geo: - if 'normal_F' not in in_tensor_dict.keys( - ) or 'normal_B' not in in_tensor_dict.keys(): - (nmlF, nmlB) = self.normal_filter(in_tensor_dict) - else: - nmlF = in_tensor_dict['normal_F'] - nmlB = in_tensor_dict['normal_B'] - feat_lst.append(nmlF) # [1, 3, 512, 512] - feat_lst.append(nmlB) # [1, 3, 512, 512] - in_filter = torch.cat(feat_lst, dim=1) - - else: - in_filter = torch.cat([in_tensor_dict[key] for key in self.in_geo], - dim=1) - - return in_filter - - def get_mask(self, in_filter, size=128): - - mask = F.interpolate(in_filter[:, self.channels_filter[0]], - size=(size, size), - mode="bilinear", - align_corners=True).abs().sum(dim=1, - keepdim=True) != 0.0 - - return mask - - def filter(self, in_tensor_dict, return_inter=False): - ''' - Filter the input images - store all intermediate features. - :param images: [B, C, H, W] input images - ''' - - in_filter = self.get_normal(in_tensor_dict) - - features_G = [] - - if self.prior_type == 'icon': - if self.use_filter: - features_F = self.F_filter(in_filter[:, - self.channels_filter[0]] - ) # [(B,hg_dim,128,128) * 4] - features_B = self.F_filter(in_filter[:, - self.channels_filter[1]] - ) # [(B,hg_dim,128,128) * 4] - else: - features_F = [in_filter[:, self.channels_filter[0]]] - features_B = [in_filter[:, self.channels_filter[1]]] - for idx in range(len(features_F)): - features_G.append( - torch.cat([features_F[idx], features_B[idx]], dim=1)) - else: - if self.use_filter: - features_G = self.F_filter(in_filter[:, - self.channels_filter[0]]) - else: - features_G = [in_filter[:, self.channels_filter[0]]] - - if self.prior_type == 'icon': - self.smpl_feat_dict = { - k: in_tensor_dict[k] - for k in self.icon_keys - } - elif self.prior_type == "pamir": - self.smpl_feat_dict = { - k: in_tensor_dict[k] - for k in self.pamir_keys - } - else: - pass - # print(colored("use z rather than icon or pamir", "green")) - - # If it is not in training, only produce the last im_feat - if not self.training: - features_out = [features_G[-1]] - else: - features_out = features_G - - if maskout: - features_out_mask = [] - for feat in features_out: - features_out_mask.append( - feat * self.get_mask(in_filter, size=feat.shape[2])) - features_out = features_out_mask - - if return_inter: - return features_out, in_filter - else: - return features_out - - def query(self, features, points, calibs, transforms=None, regressor=None): - - xyz = self.projection(points, calibs, transforms) - - (xy, z) = xyz.split([2, 1], dim=1) - - in_cube = (xyz > -1.0) & (xyz < 1.0) - in_cube = in_cube.all(dim=1, keepdim=True).detach().float() - - preds_list = [] - - if self.prior_type == 'icon': - - # smpl_verts [B, N_vert, 3] - # smpl_faces [B, N_face, 3] - # points [B, 3, N] - - smpl_sdf, smpl_norm, smpl_cmap, smpl_vis = cal_sdf_batch( - self.smpl_feat_dict['smpl_verts'], - self.smpl_feat_dict['smpl_faces'], - self.smpl_feat_dict['smpl_cmap'], - self.smpl_feat_dict['smpl_vis'], - xyz.permute(0, 2, 1).contiguous()) - - # smpl_sdf [B, N, 1] - # smpl_norm [B, N, 3] - # smpl_cmap [B, N, 3] - # smpl_vis [B, N, 1] - - feat_lst = [smpl_sdf] - if 'cmap' in self.smpl_feats: - feat_lst.append(smpl_cmap) - if 'norm' in self.smpl_feats: - feat_lst.append(smpl_norm) - if 'vis' in self.smpl_feats: - feat_lst.append(smpl_vis) - - smpl_feat = torch.cat(feat_lst, dim=2).permute(0, 2, 1) - vol_feats = features - - elif self.prior_type == "pamir": - - voxel_verts = self.smpl_feat_dict[ - 'voxel_verts'][:, :-self.smpl_feat_dict['pad_v_num'][0], :] - voxel_faces = self.smpl_feat_dict[ - 'voxel_faces'][:, :-self.smpl_feat_dict['pad_f_num'][0], :] - - self.voxelization.update_param( - batch_size=voxel_faces.shape[0], - smpl_tetra=voxel_faces[0].detach().cpu().numpy()) - vol = self.voxelization(voxel_verts) # vol ~ [0,1] - vol_feats = self.ve(vol, intermediate_output=self.training) - else: - vol_feats = features - - for im_feat, vol_feat in zip(features, vol_feats): - - # [B, Feat_i + z, N] - # normal feature choice by smpl_vis - if self.prior_type == 'icon': - if 'vis' in self.smpl_feats: - point_local_feat = feat_select(self.index(im_feat, xy), - smpl_feat[:, [-1], :]) - if maskout: - normal_mask = torch.tile( - point_local_feat.sum(dim=1, keepdims=True) == 0.0, - (1, smpl_feat.shape[1], 1)) - normal_mask[:, 1:, :] = False - smpl_feat[normal_mask] = -1.0 - point_feat_list = [point_local_feat, smpl_feat[:, :-1, :]] - else: - point_local_feat = self.index(im_feat, xy) - point_feat_list = [point_local_feat, smpl_feat[:, :, :]] - - elif self.prior_type == 'pamir': - # im_feat [B, hg_dim, 128, 128] - # vol_feat [B, vol_dim, 32, 32, 32] - point_feat_list = [ - self.index(im_feat, xy), - self.index(vol_feat, xyz) - ] - - else: - point_feat_list = [self.index(im_feat, xy), z] - - point_feat = torch.cat(point_feat_list, 1) - - # out of image plane is always set to 0 - preds = regressor(point_feat) - preds = in_cube * preds - - preds_list.append(preds) - - return preds_list - - def get_error(self, preds_if_list, labels): - """calcaulate error - - Args: - preds_list (list): list of torch.tensor(B, 3, N) - labels (torch.tensor): (B, N_knn, N) - - Returns: - torch.tensor: error - """ - error_if = 0 - - for pred_id in range(len(preds_if_list)): - pred_if = preds_if_list[pred_id] - error_if += self.error_term(pred_if, labels) - - error_if /= len(preds_if_list) - - return error_if - - def forward(self, in_tensor_dict): - """ - sample_tensor [B, 3, N] - calib_tensor [B, 4, 4] - label_tensor [B, 1, N] - smpl_feat_tensor [B, 59, N] - """ - - sample_tensor = in_tensor_dict['sample'] - calib_tensor = in_tensor_dict['calib'] - label_tensor = in_tensor_dict['label'] - - in_feat = self.filter(in_tensor_dict) - - preds_if_list = self.query(in_feat, - sample_tensor, - calib_tensor, - regressor=self.if_regressor) - - error = self.get_error(preds_if_list, label_tensor) - - return preds_if_list[-1], error diff --git a/spaces/ZJunTvT/ZJunChat/modules/pdf_func.py b/spaces/ZJunTvT/ZJunChat/modules/pdf_func.py deleted file mode 100644 index 0aba6b7b891fc527c79b887256b0cbaa81ae5b3d..0000000000000000000000000000000000000000 --- a/spaces/ZJunTvT/ZJunChat/modules/pdf_func.py +++ /dev/null @@ -1,180 +0,0 @@ -from types import SimpleNamespace -import pdfplumber -import logging -from llama_index import Document - -def prepare_table_config(crop_page): - """Prepare tableęŸ„ę‰¾č¾¹ē•Œ, 要걂pageäøŗåŽŸå§‹page - - From https://github.com/jsvine/pdfplumber/issues/242 - """ - page = crop_page.root_page # root/parent - cs = page.curves + page.edges - def curves_to_edges(): - """See https://github.com/jsvine/pdfplumber/issues/127""" - edges = [] - for c in cs: - edges += pdfplumber.utils.rect_to_edges(c) - return edges - edges = curves_to_edges() - return { - "vertical_strategy": "explicit", - "horizontal_strategy": "explicit", - "explicit_vertical_lines": edges, - "explicit_horizontal_lines": edges, - "intersection_y_tolerance": 10, - } - -def get_text_outside_table(crop_page): - ts = prepare_table_config(crop_page) - if len(ts["explicit_vertical_lines"]) == 0 or len(ts["explicit_horizontal_lines"]) == 0: - return crop_page - - ### Get the bounding boxes of the tables on the page. - bboxes = [table.bbox for table in crop_page.root_page.find_tables(table_settings=ts)] - def not_within_bboxes(obj): - """Check if the object is in any of the table's bbox.""" - def obj_in_bbox(_bbox): - """See https://github.com/jsvine/pdfplumber/blob/stable/pdfplumber/table.py#L404""" - v_mid = (obj["top"] + obj["bottom"]) / 2 - h_mid = (obj["x0"] + obj["x1"]) / 2 - x0, top, x1, bottom = _bbox - return (h_mid >= x0) and (h_mid < x1) and (v_mid >= top) and (v_mid < bottom) - return not any(obj_in_bbox(__bbox) for __bbox in bboxes) - - return crop_page.filter(not_within_bboxes) -# 请使用 LaTeX č”Øč¾¾å…¬å¼ļ¼Œč”Œå†…å…¬å¼ä»„ $ åŒ…č£¹ļ¼Œč”Œé—“å…¬å¼ä»„ $$ åŒ…č£¹ - -extract_words = lambda page: page.extract_words(keep_blank_chars=True, y_tolerance=0, x_tolerance=1, extra_attrs=["fontname", "size", "object_type"]) -# dict_keys(['text', 'x0', 'x1', 'top', 'doctop', 'bottom', 'upright', 'direction', 'fontname', 'size']) - -def get_title_with_cropped_page(first_page): - title = [] # å¤„ē†ę ‡é¢˜ - x0,top,x1,bottom = first_page.bbox # čŽ·å–é”µé¢č¾¹ę”† - - for word in extract_words(first_page): - word = SimpleNamespace(**word) - - if word.size >= 14: - title.append(word.text) - title_bottom = word.bottom - elif word.text == "Abstract": # čŽ·å–é”µé¢abstract - top = word.top - - user_info = [i["text"] for i in extract_words(first_page.within_bbox((x0,title_bottom,x1,top)))] - # č£å‰ŖęŽ‰äøŠåŠéƒØåˆ†, within_bbox: full_included; crop: partial_included - return title, user_info, first_page.within_bbox((x0,top,x1,bottom)) - -def get_column_cropped_pages(pages, two_column=True): - new_pages = [] - for page in pages: - if two_column: - left = page.within_bbox((0, 0, page.width/2, page.height),relative=True) - right = page.within_bbox((page.width/2, 0, page.width, page.height), relative=True) - new_pages.append(left) - new_pages.append(right) - else: - new_pages.append(page) - - return new_pages - -def parse_pdf(filename, two_column = True): - level = logging.getLogger().level - if level == logging.getLevelName("DEBUG"): - logging.getLogger().setLevel("INFO") - - with pdfplumber.open(filename) as pdf: - title, user_info, first_page = get_title_with_cropped_page(pdf.pages[0]) - new_pages = get_column_cropped_pages([first_page] + pdf.pages[1:], two_column) - - chapters = [] - # tuple (chapter_name, [pageid] (start,stop), chapter_text) - create_chapter = lambda page_start,name_top,name_bottom: SimpleNamespace( - name=[], - name_top=name_top, - name_bottom=name_bottom, - record_chapter_name = True, - - page_start=page_start, - page_stop=None, - - text=[], - ) - cur_chapter = None - - # ęŒ‰é”µéåŽ†PDF文攣 - for idx, page in enumerate(new_pages): - page = get_text_outside_table(page) - - # ęŒ‰č”ŒéåŽ†é”µé¢ę–‡ęœ¬ - for word in extract_words(page): - word = SimpleNamespace(**word) - - # ę£€ęŸ„č”Œę–‡ęœ¬ę˜Æå¦ä»„12å·å­—ä½“ę‰“å°ļ¼Œå¦‚ęžœę˜Æļ¼Œåˆ™å°†å…¶ä½œäøŗę–°ē« čŠ‚å¼€å§‹ - if word.size >= 11: # å‡ŗēŽ°chapter name - if cur_chapter is None: - cur_chapter = create_chapter(page.page_number, word.top, word.bottom) - elif not cur_chapter.record_chapter_name or (cur_chapter.name_bottom != cur_chapter.name_bottom and cur_chapter.name_top != cur_chapter.name_top): - # äøå†ē»§ē»­å†™chapter name - cur_chapter.page_stop = page.page_number # stop id - chapters.append(cur_chapter) - # é‡ē½®å½“å‰chapter俔息 - cur_chapter = create_chapter(page.page_number, word.top, word.bottom) - - # print(word.size, word.top, word.bottom, word.text) - cur_chapter.name.append(word.text) - else: - cur_chapter.record_chapter_name = False # chapter name ē»“ęŸ - cur_chapter.text.append(word.text) - else: - # å¤„ē†ęœ€åŽäø€äøŖē« čŠ‚ - cur_chapter.page_stop = page.page_number # stop id - chapters.append(cur_chapter) - - for i in chapters: - logging.info(f"section: {i.name} pages:{i.page_start, i.page_stop} word-count:{len(i.text)}") - logging.debug(" ".join(i.text)) - - title = " ".join(title) - user_info = " ".join(user_info) - text = f"Article Title: {title}, Information:{user_info}\n" - for idx, chapter in enumerate(chapters): - chapter.name = " ".join(chapter.name) - text += f"The {idx}th Chapter {chapter.name}: " + " ".join(chapter.text) + "\n" - - logging.getLogger().setLevel(level) - return Document(text=text, extra_info={"title": title}) - -BASE_POINTS = """ -1. Who are the authors? -2. What is the process of the proposed method? -3. What is the performance of the proposed method? Please note down its performance metrics. -4. What are the baseline models and their performances? Please note down these baseline methods. -5. What dataset did this paper use? -""" - -READING_PROMPT = """ -You are a researcher helper bot. You can help the user with research paper reading and summarizing. \n -Now I am going to send you a paper. You need to read it and summarize it for me part by part. \n -When you are reading, You need to focus on these key points:{} -""" - -READING_PROMT_V2 = """ -You are a researcher helper bot. You can help the user with research paper reading and summarizing. \n -Now I am going to send you a paper. You need to read it and summarize it for me part by part. \n -When you are reading, You need to focus on these key points:{}, - -And You need to generate a brief but informative title for this part. -Your return format: -- title: '...' -- summary: '...' -""" - -SUMMARY_PROMPT = "You are a researcher helper bot. Now you need to read the summaries of a research paper." - - -if __name__ == '__main__': - # Test code - z = parse_pdf("./build/test.pdf") - print(z["user_info"]) - print(z["title"]) \ No newline at end of file diff --git a/spaces/abdvl/datahub_qa_bot/docs/managed-datahub/release-notes/v_0_2_3.md b/spaces/abdvl/datahub_qa_bot/docs/managed-datahub/release-notes/v_0_2_3.md deleted file mode 100644 index 0d8102a7f1f3dbc55568a3aa5dba36e30ad39376..0000000000000000000000000000000000000000 --- a/spaces/abdvl/datahub_qa_bot/docs/managed-datahub/release-notes/v_0_2_3.md +++ /dev/null @@ -1,18 +0,0 @@ -# v0.2.3 ---- - -Release Availability Date ---- -14-Mar-2023 - -## Release Changelog ---- -- Since `v0.2.2` no changes from OSS DataHub have been pulled in. -- fix(mcl): only restate Lineage MCL's - This should help with some lag issues being seen -- feat(proposals): Add ability to propose descriptions on datasets -- Hotfix 2023 03 06 - Some Miscellaneous search improvements -- fix(bootstrap): only ingest default metadata tests once - This should help with some deleted metadata tests re-appearing. -- refactor(lineage): Fix & optimize getAndUpdatePaths - The impact should be a reduced page load time for the lineage-intensive entities -- refactor(ui): Loading schema dynamically for datasets -- fix(lineage): nullpointer exceptions - should fix some errors related to lineage search -- chore(ci): add daylight savings timezone for tests, fix daylight saving bug in analytics charts - Should fix gaps in Monthly charts for people with daylight savings \ No newline at end of file diff --git a/spaces/abdvl/datahub_qa_bot/docs/slack.md b/spaces/abdvl/datahub_qa_bot/docs/slack.md deleted file mode 100644 index 0fadccf239699f1c366c19b2b0d18880f788e538..0000000000000000000000000000000000000000 --- a/spaces/abdvl/datahub_qa_bot/docs/slack.md +++ /dev/null @@ -1,48 +0,0 @@ -# Slack - -The DataHub Slack is a thriving and rapidly growing community - we can't wait for you to join us! - -_[Sign up here](https://slack.datahubproject.io) to join us on Slack and to subscribe to the DataHub Community newsletter. Already a member? [Log in here](https://slack.datahubproject.io)._ - -## Slack Guidelines - -In addition to our [Code of Conduct](CODE_OF_CONDUCT.md), we expect all Slack Community Members to respect the following guidelines: - -### Avoid using DMs and @mentions - -Whenever possible, post your questions and responses in public channels so other Community Members can benefit from the conversation and outcomes. Limit the use of @mentions of other Community Members to be considerate of notification noise. - -### Make use of threads - -Threads help us keep conversations contained and help us ensure we help you find a resolution and get you the support you need. - -Use threads when posting long messages and large blocks of code and/or stack trace - it is a MASSIVE help for us to keep track of the large volume of questions across our various support channels. - -### Do not post the same question across multiple channels - -If you're having a tough time getting the support you need (or aren't sure where to go!), please DM [@Maggie](https://datahubspace.slack.com/team/U0121TRV0FL) for support - -### Do not solicit members of our Slack - -The DataHub Community exists to collaborate with, learn from, and support one another. It is not a space to pitch your products or services directly to our members via public channels, private channels, or direct messages. - -We are excited to have a growing presence from vendors to help answer questions from Community Members as they may arise, but we have a strict 3-strike policy against solicitation: - -1. First occurrence: We'll give you a friendly but public reminder that the behavior is inappropriate according to our guidelines. -2. Second occurrence: We'll send you a DM warning that any additional violations will result in removal from the community. -3. Third occurrence: We'll delete or ban your account. - -We reserve the right to ban users without notice if they are clearly spamming our Community Members. - -## Navigating DataHub Slack - -Lets get you settled in -- - -- **Head over to [#introduce-yourself](https://datahubspace.slack.com/archives/C01PU1K6GDP) to, well, introduce yourself!** We'd love to learn more about you, what brings you here, and how we can support you -- **Not sure how to start?** You guessed it, check out [#getting-started](https://datahubspace.slack.com/archives/CV2KB471C) - we'll point you in the right direction -- **Looking for general debugging help?** [#troubleshoot](https://datahubspace.slack.com/archives/C029A3M079U) is the place to go -- **Need some live support from the Core DataHub Team?** Join us during our 2xWeek Office Hours via Zoom! Check out [#office-hours](https://datahubspace.slack.com/archives/C02AD211493) for more details -- **Looking for ways to contribute to the DataHub project?** Tell us all about it in [#contribute](https://datahubspace.slack.com/archives/C017W0NTZHR) -- **Have suggestions on how to make DataHub better?** We can't wait to hear them in [#feature-requests](https://datahubspace.slack.com/archives/C02FWNS2F08) -- **Excited to share your experience working with DataHub?** [#show-and-tell](https://datahubspace.slack.com/archives/C02FD9PLCA0) is the perfect channel for you -- **Need something else?** Reach out to [@Maggie](https://datahubspace.slack.com/team/U0121TRV0FL) - our Community Product Manager \ No newline at end of file diff --git a/spaces/abhishek/sketch-to-image/annotator/uniformer/mmcv/runner/hooks/logger/pavi.py b/spaces/abhishek/sketch-to-image/annotator/uniformer/mmcv/runner/hooks/logger/pavi.py deleted file mode 100644 index 1dcf146d8163aff1363e9764999b0a74d674a595..0000000000000000000000000000000000000000 --- a/spaces/abhishek/sketch-to-image/annotator/uniformer/mmcv/runner/hooks/logger/pavi.py +++ /dev/null @@ -1,117 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import json -import os -import os.path as osp - -import torch -import yaml - -import annotator.uniformer.mmcv as mmcv -from ....parallel.utils import is_module_wrapper -from ...dist_utils import master_only -from ..hook import HOOKS -from .base import LoggerHook - - -@HOOKS.register_module() -class PaviLoggerHook(LoggerHook): - - def __init__(self, - init_kwargs=None, - add_graph=False, - add_last_ckpt=False, - interval=10, - ignore_last=True, - reset_flag=False, - by_epoch=True, - img_key='img_info'): - super(PaviLoggerHook, self).__init__(interval, ignore_last, reset_flag, - by_epoch) - self.init_kwargs = init_kwargs - self.add_graph = add_graph - self.add_last_ckpt = add_last_ckpt - self.img_key = img_key - - @master_only - def before_run(self, runner): - super(PaviLoggerHook, self).before_run(runner) - try: - from pavi import SummaryWriter - except ImportError: - raise ImportError('Please run "pip install pavi" to install pavi.') - - self.run_name = runner.work_dir.split('/')[-1] - - if not self.init_kwargs: - self.init_kwargs = dict() - self.init_kwargs['name'] = self.run_name - self.init_kwargs['model'] = runner._model_name - if runner.meta is not None: - if 'config_dict' in runner.meta: - config_dict = runner.meta['config_dict'] - assert isinstance( - config_dict, - dict), ('meta["config_dict"] has to be of a dict, ' - f'but got {type(config_dict)}') - elif 'config_file' in runner.meta: - config_file = runner.meta['config_file'] - config_dict = dict(mmcv.Config.fromfile(config_file)) - else: - config_dict = None - if config_dict is not None: - # 'max_.*iter' is parsed in pavi sdk as the maximum iterations - # to properly set up the progress bar. - config_dict = config_dict.copy() - config_dict.setdefault('max_iter', runner.max_iters) - # non-serializable values are first converted in - # mmcv.dump to json - config_dict = json.loads( - mmcv.dump(config_dict, file_format='json')) - session_text = yaml.dump(config_dict) - self.init_kwargs['session_text'] = session_text - self.writer = SummaryWriter(**self.init_kwargs) - - def get_step(self, runner): - """Get the total training step/epoch.""" - if self.get_mode(runner) == 'val' and self.by_epoch: - return self.get_epoch(runner) - else: - return self.get_iter(runner) - - @master_only - def log(self, runner): - tags = self.get_loggable_tags(runner, add_mode=False) - if tags: - self.writer.add_scalars( - self.get_mode(runner), tags, self.get_step(runner)) - - @master_only - def after_run(self, runner): - if self.add_last_ckpt: - ckpt_path = osp.join(runner.work_dir, 'latest.pth') - if osp.islink(ckpt_path): - ckpt_path = osp.join(runner.work_dir, os.readlink(ckpt_path)) - - if osp.isfile(ckpt_path): - # runner.epoch += 1 has been done before `after_run`. - iteration = runner.epoch if self.by_epoch else runner.iter - return self.writer.add_snapshot_file( - tag=self.run_name, - snapshot_file_path=ckpt_path, - iteration=iteration) - - # flush the buffer and send a task ending signal to Pavi - self.writer.close() - - @master_only - def before_epoch(self, runner): - if runner.epoch == 0 and self.add_graph: - if is_module_wrapper(runner.model): - _model = runner.model.module - else: - _model = runner.model - device = next(_model.parameters()).device - data = next(iter(runner.data_loader)) - image = data[self.img_key][0:1].to(device) - with torch.no_grad(): - self.writer.add_graph(_model, image) diff --git a/spaces/abhishek/sketch-to-image/annotator/uniformer/mmseg/models/decode_heads/ema_head.py b/spaces/abhishek/sketch-to-image/annotator/uniformer/mmseg/models/decode_heads/ema_head.py deleted file mode 100644 index 12267cb40569d2b5a4a2955a6dc2671377ff5e0a..0000000000000000000000000000000000000000 --- a/spaces/abhishek/sketch-to-image/annotator/uniformer/mmseg/models/decode_heads/ema_head.py +++ /dev/null @@ -1,168 +0,0 @@ -import math - -import torch -import torch.distributed as dist -import torch.nn as nn -import torch.nn.functional as F -from annotator.uniformer.mmcv.cnn import ConvModule - -from ..builder import HEADS -from .decode_head import BaseDecodeHead - - -def reduce_mean(tensor): - """Reduce mean when distributed training.""" - if not (dist.is_available() and dist.is_initialized()): - return tensor - tensor = tensor.clone() - dist.all_reduce(tensor.div_(dist.get_world_size()), op=dist.ReduceOp.SUM) - return tensor - - -class EMAModule(nn.Module): - """Expectation Maximization Attention Module used in EMANet. - - Args: - channels (int): Channels of the whole module. - num_bases (int): Number of bases. - num_stages (int): Number of the EM iterations. - """ - - def __init__(self, channels, num_bases, num_stages, momentum): - super(EMAModule, self).__init__() - assert num_stages >= 1, 'num_stages must be at least 1!' - self.num_bases = num_bases - self.num_stages = num_stages - self.momentum = momentum - - bases = torch.zeros(1, channels, self.num_bases) - bases.normal_(0, math.sqrt(2. / self.num_bases)) - # [1, channels, num_bases] - bases = F.normalize(bases, dim=1, p=2) - self.register_buffer('bases', bases) - - def forward(self, feats): - """Forward function.""" - batch_size, channels, height, width = feats.size() - # [batch_size, channels, height*width] - feats = feats.view(batch_size, channels, height * width) - # [batch_size, channels, num_bases] - bases = self.bases.repeat(batch_size, 1, 1) - - with torch.no_grad(): - for i in range(self.num_stages): - # [batch_size, height*width, num_bases] - attention = torch.einsum('bcn,bck->bnk', feats, bases) - attention = F.softmax(attention, dim=2) - # l1 norm - attention_normed = F.normalize(attention, dim=1, p=1) - # [batch_size, channels, num_bases] - bases = torch.einsum('bcn,bnk->bck', feats, attention_normed) - # l2 norm - bases = F.normalize(bases, dim=1, p=2) - - feats_recon = torch.einsum('bck,bnk->bcn', bases, attention) - feats_recon = feats_recon.view(batch_size, channels, height, width) - - if self.training: - bases = bases.mean(dim=0, keepdim=True) - bases = reduce_mean(bases) - # l2 norm - bases = F.normalize(bases, dim=1, p=2) - self.bases = (1 - - self.momentum) * self.bases + self.momentum * bases - - return feats_recon - - -@HEADS.register_module() -class EMAHead(BaseDecodeHead): - """Expectation Maximization Attention Networks for Semantic Segmentation. - - This head is the implementation of `EMANet - `_. - - Args: - ema_channels (int): EMA module channels - num_bases (int): Number of bases. - num_stages (int): Number of the EM iterations. - concat_input (bool): Whether concat the input and output of convs - before classification layer. Default: True - momentum (float): Momentum to update the base. Default: 0.1. - """ - - def __init__(self, - ema_channels, - num_bases, - num_stages, - concat_input=True, - momentum=0.1, - **kwargs): - super(EMAHead, self).__init__(**kwargs) - self.ema_channels = ema_channels - self.num_bases = num_bases - self.num_stages = num_stages - self.concat_input = concat_input - self.momentum = momentum - self.ema_module = EMAModule(self.ema_channels, self.num_bases, - self.num_stages, self.momentum) - - self.ema_in_conv = ConvModule( - self.in_channels, - self.ema_channels, - 3, - padding=1, - conv_cfg=self.conv_cfg, - norm_cfg=self.norm_cfg, - act_cfg=self.act_cfg) - # project (0, inf) -> (-inf, inf) - self.ema_mid_conv = ConvModule( - self.ema_channels, - self.ema_channels, - 1, - conv_cfg=self.conv_cfg, - norm_cfg=None, - act_cfg=None) - for param in self.ema_mid_conv.parameters(): - param.requires_grad = False - - self.ema_out_conv = ConvModule( - self.ema_channels, - self.ema_channels, - 1, - conv_cfg=self.conv_cfg, - norm_cfg=self.norm_cfg, - act_cfg=None) - self.bottleneck = ConvModule( - self.ema_channels, - self.channels, - 3, - padding=1, - conv_cfg=self.conv_cfg, - norm_cfg=self.norm_cfg, - act_cfg=self.act_cfg) - if self.concat_input: - self.conv_cat = ConvModule( - self.in_channels + self.channels, - self.channels, - kernel_size=3, - padding=1, - conv_cfg=self.conv_cfg, - norm_cfg=self.norm_cfg, - act_cfg=self.act_cfg) - - def forward(self, inputs): - """Forward function.""" - x = self._transform_inputs(inputs) - feats = self.ema_in_conv(x) - identity = feats - feats = self.ema_mid_conv(feats) - recon = self.ema_module(feats) - recon = F.relu(recon, inplace=True) - recon = self.ema_out_conv(recon) - output = F.relu(identity + recon, inplace=True) - output = self.bottleneck(output) - if self.concat_input: - output = self.conv_cat(torch.cat([x, output], dim=1)) - output = self.cls_seg(output) - return output diff --git a/spaces/abhishek/sketch-to-image/annotator/uniformer/mmseg/models/decode_heads/lraspp_head.py b/spaces/abhishek/sketch-to-image/annotator/uniformer/mmseg/models/decode_heads/lraspp_head.py deleted file mode 100644 index 69bf320934d787aaa11984a0c4effe9ad8015b22..0000000000000000000000000000000000000000 --- a/spaces/abhishek/sketch-to-image/annotator/uniformer/mmseg/models/decode_heads/lraspp_head.py +++ /dev/null @@ -1,90 +0,0 @@ -import torch -import torch.nn as nn -from annotator.uniformer.mmcv import is_tuple_of -from annotator.uniformer.mmcv.cnn import ConvModule - -from annotator.uniformer.mmseg.ops import resize -from ..builder import HEADS -from .decode_head import BaseDecodeHead - - -@HEADS.register_module() -class LRASPPHead(BaseDecodeHead): - """Lite R-ASPP (LRASPP) head is proposed in Searching for MobileNetV3. - - This head is the improved implementation of `Searching for MobileNetV3 - `_. - - Args: - branch_channels (tuple[int]): The number of output channels in every - each branch. Default: (32, 64). - """ - - def __init__(self, branch_channels=(32, 64), **kwargs): - super(LRASPPHead, self).__init__(**kwargs) - if self.input_transform != 'multiple_select': - raise ValueError('in Lite R-ASPP (LRASPP) head, input_transform ' - f'must be \'multiple_select\'. But received ' - f'\'{self.input_transform}\'') - assert is_tuple_of(branch_channels, int) - assert len(branch_channels) == len(self.in_channels) - 1 - self.branch_channels = branch_channels - - self.convs = nn.Sequential() - self.conv_ups = nn.Sequential() - for i in range(len(branch_channels)): - self.convs.add_module( - f'conv{i}', - nn.Conv2d( - self.in_channels[i], branch_channels[i], 1, bias=False)) - self.conv_ups.add_module( - f'conv_up{i}', - ConvModule( - self.channels + branch_channels[i], - self.channels, - 1, - norm_cfg=self.norm_cfg, - act_cfg=self.act_cfg, - bias=False)) - - self.conv_up_input = nn.Conv2d(self.channels, self.channels, 1) - - self.aspp_conv = ConvModule( - self.in_channels[-1], - self.channels, - 1, - norm_cfg=self.norm_cfg, - act_cfg=self.act_cfg, - bias=False) - self.image_pool = nn.Sequential( - nn.AvgPool2d(kernel_size=49, stride=(16, 20)), - ConvModule( - self.in_channels[2], - self.channels, - 1, - act_cfg=dict(type='Sigmoid'), - bias=False)) - - def forward(self, inputs): - """Forward function.""" - inputs = self._transform_inputs(inputs) - - x = inputs[-1] - - x = self.aspp_conv(x) * resize( - self.image_pool(x), - size=x.size()[2:], - mode='bilinear', - align_corners=self.align_corners) - x = self.conv_up_input(x) - - for i in range(len(self.branch_channels) - 1, -1, -1): - x = resize( - x, - size=inputs[i].size()[2:], - mode='bilinear', - align_corners=self.align_corners) - x = torch.cat([x, self.convs[i](inputs[i])], 1) - x = self.conv_ups[i](x) - - return self.cls_seg(x) diff --git a/spaces/abhishek/sketch-to-image/annotator/uniformer_base/mmcv/ops/sync_bn.py b/spaces/abhishek/sketch-to-image/annotator/uniformer_base/mmcv/ops/sync_bn.py deleted file mode 100644 index c9b016fcbe860989c56cd1040034bcfa60e146d2..0000000000000000000000000000000000000000 --- a/spaces/abhishek/sketch-to-image/annotator/uniformer_base/mmcv/ops/sync_bn.py +++ /dev/null @@ -1,279 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import torch -import torch.distributed as dist -import torch.nn.functional as F -from torch.autograd import Function -from torch.autograd.function import once_differentiable -from torch.nn.modules.module import Module -from torch.nn.parameter import Parameter - -from annotator.uniformer.mmcv.cnn import NORM_LAYERS -from ..utils import ext_loader - -ext_module = ext_loader.load_ext('_ext', [ - 'sync_bn_forward_mean', 'sync_bn_forward_var', 'sync_bn_forward_output', - 'sync_bn_backward_param', 'sync_bn_backward_data' -]) - - -class SyncBatchNormFunction(Function): - - @staticmethod - def symbolic(g, input, running_mean, running_var, weight, bias, momentum, - eps, group, group_size, stats_mode): - return g.op( - 'mmcv::MMCVSyncBatchNorm', - input, - running_mean, - running_var, - weight, - bias, - momentum_f=momentum, - eps_f=eps, - group_i=group, - group_size_i=group_size, - stats_mode=stats_mode) - - @staticmethod - def forward(self, input, running_mean, running_var, weight, bias, momentum, - eps, group, group_size, stats_mode): - self.momentum = momentum - self.eps = eps - self.group = group - self.group_size = group_size - self.stats_mode = stats_mode - - assert isinstance( - input, (torch.HalfTensor, torch.FloatTensor, - torch.cuda.HalfTensor, torch.cuda.FloatTensor)), \ - f'only support Half or Float Tensor, but {input.type()}' - output = torch.zeros_like(input) - input3d = input.flatten(start_dim=2) - output3d = output.view_as(input3d) - num_channels = input3d.size(1) - - # ensure mean/var/norm/std are initialized as zeros - # ``torch.empty()`` does not guarantee that - mean = torch.zeros( - num_channels, dtype=torch.float, device=input3d.device) - var = torch.zeros( - num_channels, dtype=torch.float, device=input3d.device) - norm = torch.zeros_like( - input3d, dtype=torch.float, device=input3d.device) - std = torch.zeros( - num_channels, dtype=torch.float, device=input3d.device) - - batch_size = input3d.size(0) - if batch_size > 0: - ext_module.sync_bn_forward_mean(input3d, mean) - batch_flag = torch.ones([1], device=mean.device, dtype=mean.dtype) - else: - # skip updating mean and leave it as zeros when the input is empty - batch_flag = torch.zeros([1], device=mean.device, dtype=mean.dtype) - - # synchronize mean and the batch flag - vec = torch.cat([mean, batch_flag]) - if self.stats_mode == 'N': - vec *= batch_size - if self.group_size > 1: - dist.all_reduce(vec, group=self.group) - total_batch = vec[-1].detach() - mean = vec[:num_channels] - - if self.stats_mode == 'default': - mean = mean / self.group_size - elif self.stats_mode == 'N': - mean = mean / total_batch.clamp(min=1) - else: - raise NotImplementedError - - # leave var as zeros when the input is empty - if batch_size > 0: - ext_module.sync_bn_forward_var(input3d, mean, var) - - if self.stats_mode == 'N': - var *= batch_size - if self.group_size > 1: - dist.all_reduce(var, group=self.group) - - if self.stats_mode == 'default': - var /= self.group_size - elif self.stats_mode == 'N': - var /= total_batch.clamp(min=1) - else: - raise NotImplementedError - - # if the total batch size over all the ranks is zero, - # we should not update the statistics in the current batch - update_flag = total_batch.clamp(max=1) - momentum = update_flag * self.momentum - ext_module.sync_bn_forward_output( - input3d, - mean, - var, - weight, - bias, - running_mean, - running_var, - norm, - std, - output3d, - eps=self.eps, - momentum=momentum, - group_size=self.group_size) - self.save_for_backward(norm, std, weight) - return output - - @staticmethod - @once_differentiable - def backward(self, grad_output): - norm, std, weight = self.saved_tensors - grad_weight = torch.zeros_like(weight) - grad_bias = torch.zeros_like(weight) - grad_input = torch.zeros_like(grad_output) - grad_output3d = grad_output.flatten(start_dim=2) - grad_input3d = grad_input.view_as(grad_output3d) - - batch_size = grad_input3d.size(0) - if batch_size > 0: - ext_module.sync_bn_backward_param(grad_output3d, norm, grad_weight, - grad_bias) - - # all reduce - if self.group_size > 1: - dist.all_reduce(grad_weight, group=self.group) - dist.all_reduce(grad_bias, group=self.group) - grad_weight /= self.group_size - grad_bias /= self.group_size - - if batch_size > 0: - ext_module.sync_bn_backward_data(grad_output3d, weight, - grad_weight, grad_bias, norm, std, - grad_input3d) - - return grad_input, None, None, grad_weight, grad_bias, \ - None, None, None, None, None - - -@NORM_LAYERS.register_module(name='MMSyncBN') -class SyncBatchNorm(Module): - """Synchronized Batch Normalization. - - Args: - num_features (int): number of features/chennels in input tensor - eps (float, optional): a value added to the denominator for numerical - stability. Defaults to 1e-5. - momentum (float, optional): the value used for the running_mean and - running_var computation. Defaults to 0.1. - affine (bool, optional): whether to use learnable affine parameters. - Defaults to True. - track_running_stats (bool, optional): whether to track the running - mean and variance during training. When set to False, this - module does not track such statistics, and initializes statistics - buffers ``running_mean`` and ``running_var`` as ``None``. When - these buffers are ``None``, this module always uses batch - statistics in both training and eval modes. Defaults to True. - group (int, optional): synchronization of stats happen within - each process group individually. By default it is synchronization - across the whole world. Defaults to None. - stats_mode (str, optional): The statistical mode. Available options - includes ``'default'`` and ``'N'``. Defaults to 'default'. - When ``stats_mode=='default'``, it computes the overall statistics - using those from each worker with equal weight, i.e., the - statistics are synchronized and simply divied by ``group``. This - mode will produce inaccurate statistics when empty tensors occur. - When ``stats_mode=='N'``, it compute the overall statistics using - the total number of batches in each worker ignoring the number of - group, i.e., the statistics are synchronized and then divied by - the total batch ``N``. This mode is beneficial when empty tensors - occur during training, as it average the total mean by the real - number of batch. - """ - - def __init__(self, - num_features, - eps=1e-5, - momentum=0.1, - affine=True, - track_running_stats=True, - group=None, - stats_mode='default'): - super(SyncBatchNorm, self).__init__() - self.num_features = num_features - self.eps = eps - self.momentum = momentum - self.affine = affine - self.track_running_stats = track_running_stats - group = dist.group.WORLD if group is None else group - self.group = group - self.group_size = dist.get_world_size(group) - assert stats_mode in ['default', 'N'], \ - f'"stats_mode" only accepts "default" and "N", got "{stats_mode}"' - self.stats_mode = stats_mode - if self.affine: - self.weight = Parameter(torch.Tensor(num_features)) - self.bias = Parameter(torch.Tensor(num_features)) - else: - self.register_parameter('weight', None) - self.register_parameter('bias', None) - if self.track_running_stats: - self.register_buffer('running_mean', torch.zeros(num_features)) - self.register_buffer('running_var', torch.ones(num_features)) - self.register_buffer('num_batches_tracked', - torch.tensor(0, dtype=torch.long)) - else: - self.register_buffer('running_mean', None) - self.register_buffer('running_var', None) - self.register_buffer('num_batches_tracked', None) - self.reset_parameters() - - def reset_running_stats(self): - if self.track_running_stats: - self.running_mean.zero_() - self.running_var.fill_(1) - self.num_batches_tracked.zero_() - - def reset_parameters(self): - self.reset_running_stats() - if self.affine: - self.weight.data.uniform_() # pytorch use ones_() - self.bias.data.zero_() - - def forward(self, input): - if input.dim() < 2: - raise ValueError( - f'expected at least 2D input, got {input.dim()}D input') - if self.momentum is None: - exponential_average_factor = 0.0 - else: - exponential_average_factor = self.momentum - - if self.training and self.track_running_stats: - if self.num_batches_tracked is not None: - self.num_batches_tracked += 1 - if self.momentum is None: # use cumulative moving average - exponential_average_factor = 1.0 / float( - self.num_batches_tracked) - else: # use exponential moving average - exponential_average_factor = self.momentum - - if self.training or not self.track_running_stats: - return SyncBatchNormFunction.apply( - input, self.running_mean, self.running_var, self.weight, - self.bias, exponential_average_factor, self.eps, self.group, - self.group_size, self.stats_mode) - else: - return F.batch_norm(input, self.running_mean, self.running_var, - self.weight, self.bias, False, - exponential_average_factor, self.eps) - - def __repr__(self): - s = self.__class__.__name__ - s += f'({self.num_features}, ' - s += f'eps={self.eps}, ' - s += f'momentum={self.momentum}, ' - s += f'affine={self.affine}, ' - s += f'track_running_stats={self.track_running_stats}, ' - s += f'group_size={self.group_size},' - s += f'stats_mode={self.stats_mode})' - return s diff --git a/spaces/abidlabs/Draw/app.py b/spaces/abidlabs/Draw/app.py deleted file mode 100644 index 3e37e1b8272672601eb57e8688b029316de55d3e..0000000000000000000000000000000000000000 --- a/spaces/abidlabs/Draw/app.py +++ /dev/null @@ -1,43 +0,0 @@ -from pathlib import Path - -import torch -import gradio as gr -from torch import nn - - -LABELS = Path('class_names.txt').read_text().splitlines() - -model = nn.Sequential( - nn.Conv2d(1, 32, 3, padding='same'), - nn.ReLU(), - nn.MaxPool2d(2), - nn.Conv2d(32, 64, 3, padding='same'), - nn.ReLU(), - nn.MaxPool2d(2), - nn.Conv2d(64, 128, 3, padding='same'), - nn.ReLU(), - nn.MaxPool2d(2), - nn.Flatten(), - nn.Linear(1152, 256), - nn.ReLU(), - nn.Linear(256, len(LABELS)), -) -state_dict = torch.load('pytorch_model.bin', map_location='cpu') -model.load_state_dict(state_dict, strict=False) -model.eval() - -def predict(im): - x = torch.tensor(im, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255. - - with torch.no_grad(): - out = model(x) - - probabilities = torch.nn.functional.softmax(out[0], dim=0) - - values, indices = torch.topk(probabilities, 5) - - return {LABELS[i]: v.item() for i, v in zip(indices, values)} - - -interface = gr.Interface(predict, inputs='sketchpad', outputs='label', theme="default", description="Who wants to play Pictionary? Draw a common object like a shovel or a laptop, and the algorithm will guess in real time!", live=True) -interface.launch(debug=True) diff --git a/spaces/abidlabs/supabase/README.md b/spaces/abidlabs/supabase/README.md deleted file mode 100644 index f15b28d4f888b0c3184f0fb56455e05af75826bf..0000000000000000000000000000000000000000 --- a/spaces/abidlabs/supabase/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Supabase -emoji: šŸ”„ -colorFrom: blue -colorTo: blue -sdk: gradio -sdk_version: 3.19.1 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/abrar-lohia/text-2-character-anim/pyrender/.eggs/pyglet-2.0.5-py3.10.egg/pyglet/gl/headless.py b/spaces/abrar-lohia/text-2-character-anim/pyrender/.eggs/pyglet-2.0.5-py3.10.egg/pyglet/gl/headless.py deleted file mode 100644 index d4a0a82c8cb41d91a15f1ab0f8bf42dbcb6c3d2e..0000000000000000000000000000000000000000 --- a/spaces/abrar-lohia/text-2-character-anim/pyrender/.eggs/pyglet-2.0.5-py3.10.egg/pyglet/gl/headless.py +++ /dev/null @@ -1,157 +0,0 @@ -from ctypes import * - -from pyglet import gl -from pyglet.canvas.headless import HeadlessCanvas -from pyglet.libs.egl import egl -from pyglet.libs.egl.egl import * - -from .base import CanvasConfig, Config, Context - -_fake_gl_attributes = { - 'double_buffer': 0, - 'stereo': 0, - 'aux_buffers': 0, - 'accum_red_size': 0, - 'accum_green_size': 0, - 'accum_blue_size': 0, - 'accum_alpha_size': 0 -} - - -class HeadlessConfig(Config): - def match(self, canvas): - if not isinstance(canvas, HeadlessCanvas): - raise RuntimeError('Canvas must be an instance of HeadlessCanvas') - - display_connection = canvas.display._display_connection - - # Construct array of attributes - attrs = [] - for name, value in self.get_gl_attributes(): - if name == 'double_buffer': - continue - attr = HeadlessCanvasConfig.attribute_ids.get(name, None) - if attr and value is not None: - attrs.extend([attr, int(value)]) - attrs.extend([EGL_SURFACE_TYPE, EGL_PBUFFER_BIT]) - if self.opengl_api == "gl": - attrs.extend([EGL_RENDERABLE_TYPE, EGL_OPENGL_BIT]) - elif self.opengl_api == "gles": - attrs.extend([EGL_RENDERABLE_TYPE, EGL_OPENGL_ES3_BIT]) - else: - raise ValueError(f"Unknown OpenGL API: {self.opengl_api}") - attrs.extend([EGL_NONE]) - attrs_list = (egl.EGLint * len(attrs))(*attrs) - - num_config = egl.EGLint() - egl.eglChooseConfig(display_connection, attrs_list, None, 0, byref(num_config)) - configs = (egl.EGLConfig * num_config.value)() - egl.eglChooseConfig(display_connection, attrs_list, configs, - num_config.value, byref(num_config)) - - result = [HeadlessCanvasConfig(canvas, c, self) for c in configs] - return result - - -class HeadlessCanvasConfig(CanvasConfig): - attribute_ids = { - 'buffer_size': egl.EGL_BUFFER_SIZE, - 'level': egl.EGL_LEVEL, # Not supported - 'red_size': egl.EGL_RED_SIZE, - 'green_size': egl.EGL_GREEN_SIZE, - 'blue_size': egl.EGL_BLUE_SIZE, - 'alpha_size': egl.EGL_ALPHA_SIZE, - 'depth_size': egl.EGL_DEPTH_SIZE, - 'stencil_size': egl.EGL_STENCIL_SIZE, - 'sample_buffers': egl.EGL_SAMPLE_BUFFERS, - 'samples': egl.EGL_SAMPLES, - } - - def __init__(self, canvas, egl_config, config): - super(HeadlessCanvasConfig, self).__init__(canvas, config) - self._egl_config = egl_config - context_attribs = (EGL_CONTEXT_MAJOR_VERSION, config.major_version or 2, - EGL_CONTEXT_MINOR_VERSION, config.minor_version or 0, - EGL_CONTEXT_OPENGL_FORWARD_COMPATIBLE, config.forward_compatible or 0, - EGL_CONTEXT_OPENGL_DEBUG, config.debug or 0, - EGL_NONE) - self._context_attrib_array = (egl.EGLint * len(context_attribs))(*context_attribs) - - for name, attr in self.attribute_ids.items(): - value = egl.EGLint() - egl.eglGetConfigAttrib(canvas.display._display_connection, egl_config, attr, byref(value)) - setattr(self, name, value.value) - - for name, value in _fake_gl_attributes.items(): - setattr(self, name, value) - - def compatible(self, canvas): - # TODO check more - return isinstance(canvas, HeadlessCanvas) - - def create_context(self, share): - return HeadlessContext(self, share) - - -class HeadlessContext(Context): - def __init__(self, config, share): - super(HeadlessContext, self).__init__(config, share) - - self.display_connection = config.canvas.display._display_connection - - self.egl_context = self._create_egl_context(share) - if not self.egl_context: - raise gl.ContextException('Could not create GL context') - - def _create_egl_context(self, share): - if share: - share_context = share.egl_context - else: - share_context = None - - if self.config.opengl_api == "gl": - egl.eglBindAPI(egl.EGL_OPENGL_API) - elif self.config.opengl_api == "gles": - egl.eglBindAPI(egl.EGL_OPENGL_ES_API) - return egl.eglCreateContext(self.config.canvas.display._display_connection, - self.config._egl_config, share_context, - self.config._context_attrib_array) - - def attach(self, canvas): - if canvas is self.canvas: - return - - super(HeadlessContext, self).attach(canvas) - - self.egl_surface = canvas.egl_surface - self.set_current() - - def set_current(self): - egl.eglMakeCurrent( - self.display_connection, self.egl_surface, self.egl_surface, self.egl_context) - super(HeadlessContext, self).set_current() - - def detach(self): - if not self.canvas: - return - - self.set_current() - gl.glFlush() # needs to be in try/except? - - super(HeadlessContext, self).detach() - - egl.eglMakeCurrent( - self.display_connection, 0, 0, None) - self.egl_surface = None - - def destroy(self): - super(HeadlessContext, self).destroy() - if self.egl_context: - egl.eglDestroyContext(self.display_connection, self.egl_context) - self.egl_context = None - - def flip(self): - if not self.egl_surface: - return - - egl.eglSwapBuffers(self.display_connection, self.egl_surface) diff --git a/spaces/ahiruguagua/aiemo/app.py b/spaces/ahiruguagua/aiemo/app.py deleted file mode 100644 index aa079485438ce1d7d032a80da90c6e52d0e65e49..0000000000000000000000000000000000000000 --- a/spaces/ahiruguagua/aiemo/app.py +++ /dev/null @@ -1,124 +0,0 @@ -import gradio as gr -import openai -import requests -import os -import fileinput -from dotenv import load_dotenv - -title="AIあひる(β)" -inputs_label="ć‚ćŖćŸćŒč©±ć—ćŸć„ć“ćØćÆä½•ć§ć™ć‹ļ¼Ÿ" -outputs_label="AIćŒć‚ć²ć‚‹ćØć—ć¦čæ”äæ”ć‚’ć—ć¦ćć‚Œć¾ć™ć€‚" -description=""" -- AIあひる(β)ć«č©±ć—ć‹ć‘ć‚‹ćØć€ć‚ć²ć‚‹ć«ćŖć‚Šćć£ć¦čæ”ć—ć¦ćć‚Œć¾ć™ļ¼ˆ1åˆ†ēØ‹åŗ¦ć§čæ”äæ”ć—ć¦ćć‚Œć¾ć™ļ¼‰ -- ć‚ć²ć‚‹ćØć—ć‚ƒć¹ć‚ŠćŸć„ćØćć«č©±ć—ć‹ć‘ć¦ćć ć•ć„ -- ā€»å…„å‡ŗåŠ›ć®ę–‡å­—ę•°ćÆęœ€å¤§1000ę–‡å­—ēØ‹åŗ¦ć¾ć§ć‚’ē›®å®‰ć«å…„åŠ›ć—ć¦ćć ć•ć„ć€‚ -""" - -article = """ - -
    ę³Øę„äŗ‹é …
    -
      -
    • å½“ć‚µćƒ¼ćƒ“ć‚¹ć§ćÆć€2023/3/1ć«ćƒŖćƒŖćƒ¼ć‚¹ć•ć‚ŒćŸOpenAI社のChatGPT API恮gpt-3.5-turboć‚’ä½æē”Øć—ć¦ćŠć‚Šć¾ć™ć€‚
    • -
    • å½“ć‚µćƒ¼ćƒ“ć‚¹ć§ē”Ÿęˆć•ć‚ŒćŸć‚³ćƒ³ćƒ†ćƒ³ćƒ„ćÆć€OpenAI ćŒęä¾›ć™ć‚‹äŗŗå·„ēŸ„čƒ½ć«ć‚ˆć‚‹ć‚‚ć®ć§ć‚ć‚Šć€å½“ć‚µćƒ¼ćƒ“ć‚¹ć‚„OpenAI ćŒćć®ę­£ē¢ŗę€§ć‚„äæ”é ¼ę€§ć‚’äæčØ¼ć™ć‚‹ć‚‚ć®ć§ćÆć‚ć‚Šć¾ć›ć‚“ć€‚
    • -
    • OpenAI ć®åˆ©ē”Øč¦ē“„ć«å¾“ć„ć€ćƒ‡ćƒ¼ć‚æäæęŒć—ćŖć„ę–¹é‡ć§ć™ļ¼ˆćŸć ć—č«øčˆ¬ć®äŗ‹ęƒ…ć«ć‚ˆć£ć¦ćÆå¤‰ę›“ć™ć‚‹åÆčƒ½ę€§ćÆć”ć–ć„ć¾ć™ļ¼‰ć€‚ -
    • å½“ć‚µćƒ¼ćƒ“ć‚¹ć§ē”Ÿęˆć•ć‚ŒćŸć‚³ćƒ³ćƒ†ćƒ³ćƒ„ćÆäŗ‹å®Ÿē¢ŗčŖć‚’ć—ćŸäøŠć§ć€ć‚³ćƒ³ćƒ†ćƒ³ćƒ„ē”Ÿęˆč€…ćŠć‚ˆć³ć‚³ćƒ³ćƒ†ćƒ³ćƒ„åˆ©ē”Øč€…ć®č²¬ä»»ć«ćŠć„ć¦åˆ©ē”Øć—ć¦ćć ć•ć„ć€‚
    • -
    • å½“ć‚µćƒ¼ćƒ“ć‚¹ć§ć®ä½æē”Øć«ć‚ˆć‚Šē™ŗē”Ÿć—ćŸć„ć‹ćŖć‚‹ęå®³ć«ć¤ć„ć¦ć‚‚ć€å½“ē¤¾ćÆäø€åˆ‡ć®č²¬ä»»ć‚’č² ć„ć¾ć›ć‚“ć€‚
    • -
    • å½“ć‚µćƒ¼ćƒ“ć‚¹ćÆĪ²ē‰ˆć®ćŸć‚ć€äŗˆå‘ŠćŖćć‚µćƒ¼ćƒ“ć‚¹ć‚’ēµ‚äŗ†ć™ć‚‹å “åˆćŒć”ć–ć„ć¾ć™ć€‚
    • -
    -""" - -load_dotenv() -openai.api_key = os.getenv('OPENAI_API_KEY') -MODEL = "gpt-3.5-turbo" - -def get_filetext(filename, cache={}): - if filename in cache: - # ć‚­ćƒ£ćƒƒć‚·ćƒ„ć«äæå­˜ć•ć‚Œć¦ć„ć‚‹å “åˆćÆć€ć‚­ćƒ£ćƒƒć‚·ćƒ„ć‹ć‚‰ćƒ•ć‚”ć‚¤ćƒ«å†…å®¹ć‚’å–å¾—ć™ć‚‹ - return cache[filename] - else: - if not os.path.exists(filename): - raise ValueError(f"ćƒ•ć‚”ć‚¤ćƒ« '{filename}' ćŒč¦‹ć¤ć‹ć‚Šć¾ć›ć‚“ć§ć—ćŸ") - with open(filename, "r") as f: - text = f.read() - # ćƒ•ć‚”ć‚¤ćƒ«å†…å®¹ć‚’ć‚­ćƒ£ćƒƒć‚·ćƒ„ć™ć‚‹ - cache[filename] = text - return text - -class OpenAI: - - @classmethod - def chat_completion(cls, prompt, start_with=""): - constraints = get_filetext(filename = "constraints.md") - template = get_filetext(filename = "template.md") - - # ChatCompletion APIć«ęø”ć™ćƒ‡ćƒ¼ć‚æć‚’å®šē¾©ć™ć‚‹ - data = { - "model": "gpt-3.5-turbo", - "messages": [ - {"role": "system", "content": constraints} - ,{"role": "system", "content": template} - ,{"role": "assistant", "content": "Sure!"} - ,{"role": "user", "content": prompt} - ,{"role": "assistant", "content": start_with} - ], - } - - # ChatCompletion APIを呼び出す - response = requests.post( - "https://api.openai.com/v1/chat/completions", - headers={ - "Content-Type": "application/json", - "Authorization": f"Bearer {openai.api_key}" - }, - json=data - ) - - # ChatCompletion APIć‹ć‚‰čæ”ć•ć‚ŒćŸēµęžœć‚’å–å¾—ć™ć‚‹ - result = response.json() - print(result) - content = result["choices"][0]["message"]["content"].strip() - return content - -class NajiminoAI: - - @classmethod - def generate_emo_prompt(cls, user_message): - template = get_filetext(filename="template.md") - prompt = f""" - {user_message} - --- - äøŠčØ˜ć‚’å…ƒć«ć€äø‹čØ˜ćƒ†ćƒ³ćƒ—ćƒ¬ćƒ¼ćƒˆć‚’åŸ‹ć‚ć¦ćć ć•ć„ć€‚ - --- - {template} - """ - return prompt - - @classmethod - def generate_emo(cls, user_message): - prompt = NajiminoAI.generate_emo_prompt(user_message); - start_with = "" - result = OpenAI.chat_completion(prompt=prompt, start_with=start_with) - return result - -def main(): - iface = gr.Interface(fn=NajiminoAI.generate_emo, - inputs=gr.Textbox(label=inputs_label), - outputs=gr.Textbox(label=outputs_label), - title=title, - description=description, - article=article, - allow_flagging='never' - ) - - iface.launch() - -if __name__ == '__main__': - main() \ No newline at end of file diff --git a/spaces/ai-maker-space/Barbie-RAQA-Application-Chainlit-Demo/chainlit.md b/spaces/ai-maker-space/Barbie-RAQA-Application-Chainlit-Demo/chainlit.md deleted file mode 100644 index 78b573aa6a8c31b305db78c7e8849842daeeb7e8..0000000000000000000000000000000000000000 --- a/spaces/ai-maker-space/Barbie-RAQA-Application-Chainlit-Demo/chainlit.md +++ /dev/null @@ -1,11 +0,0 @@ -# Assignment Part 2: Deploying Your Model to a Hugging Face Space - -Now that you've done the hard work of setting up the RetrievalQA chain and sourcing your documents - let's tie it together in a ChainLit application. - -### Duplicating the Space - -Since this is our first assignment, all you'll need to do is duplicate this space and add your own `OPENAI_API_KEY` as a secret in the space. - -### Conclusion - -Now that you've shipped an LLM-powered application, it's time to share! šŸš€ diff --git a/spaces/aielon/first-chatbot/app.py b/spaces/aielon/first-chatbot/app.py deleted file mode 100644 index 55ae616d149474cca21abe649bf758f8b8728ddb..0000000000000000000000000000000000000000 --- a/spaces/aielon/first-chatbot/app.py +++ /dev/null @@ -1,46 +0,0 @@ -from transformers import AutoModelForCausalLM, AutoTokenizer -import gradio as gr -import torch - - -title = "šŸ¤–AI ChatBot" -description = "A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)" -examples = [["How are you?"]] - - -tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large") -model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large") - - -def predict(input, history=[]): - # tokenize the new input sentence - new_user_input_ids = tokenizer.encode( - input + tokenizer.eos_token, return_tensors="pt" - ) - - # append the new user input tokens to the chat history - bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) - - # generate a response - history = model.generate( - bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id - ).tolist() - - # convert the tokens to text, and then split the responses into lines - response = tokenizer.decode(history[0]).split("<|endoftext|>") - response = [ - (response[i], response[i + 1]) for i in range(0, len(response) - 1, 2) - ] # convert to tuples of list - # print('response-->>'+str(response)) - return response, history - - -gr.Interface( - fn=predict, - title=title, - description=description, - examples=examples, - inputs=["text", "state"], - outputs=["chatbot", "state"], - theme="finlaymacklon/boxy_violet", -).launch() \ No newline at end of file diff --git a/spaces/akhaliq/Detic/tools/preprocess_imagenet22k.py b/spaces/akhaliq/Detic/tools/preprocess_imagenet22k.py deleted file mode 100644 index 6dda56c222a30c7be23fafbdab4be3fe611597e2..0000000000000000000000000000000000000000 --- a/spaces/akhaliq/Detic/tools/preprocess_imagenet22k.py +++ /dev/null @@ -1,148 +0,0 @@ -#!/usr/bin/env python3 -# Copyright (c) Facebook, Inc. and its affiliates. - -import os -import numpy as np -import sys - -sys.path.insert(0, 'third_party/CenterNet2/projects/CenterNet2/') -sys.path.insert(0, 'third_party/Deformable-DETR') -from detic.data.tar_dataset import _TarDataset, DiskTarDataset -import pickle -import io -import gzip -import time - - -class _RawTarDataset(object): - - def __init__(self, filename, indexname, preload=False): - self.filename = filename - self.names = [] - self.offsets = [] - - for l in open(indexname): - ll = l.split() - a, b, c = ll[:3] - offset = int(b[:-1]) - if l.endswith('** Block of NULs **\n'): - self.offsets.append(offset) - break - else: - if c.endswith('JPEG'): - self.names.append(c) - self.offsets.append(offset) - else: - # ignore directories - pass - if preload: - self.data = np.memmap(filename, mode='r', dtype='uint8') - else: - self.data = None - - def __len__(self): - return len(self.names) - - def __getitem__(self, idx): - if self.data is None: - self.data = np.memmap(self.filename, mode='r', dtype='uint8') - ofs = self.offsets[idx] * 512 - fsize = 512 * (self.offsets[idx + 1] - self.offsets[idx]) - data = self.data[ofs:ofs + fsize] - - if data[:13].tostring() == '././@LongLink': - data = data[3 * 512:] - else: - data = data[512:] - - # just to make it more fun a few JPEGs are GZIP compressed... - # catch this case - if tuple(data[:2]) == (0x1f, 0x8b): - s = io.StringIO(data.tostring()) - g = gzip.GzipFile(None, 'r', 0, s) - sdata = g.read() - else: - sdata = data.tostring() - return sdata - - - -def preprocess(): - # Follow https://github.com/Alibaba-MIIL/ImageNet21K/blob/main/dataset_preprocessing/processing_script.sh - # Expect 12358684 samples with 11221 classes - # ImageNet folder has 21841 classes (synsets) - - i22kdir = '/datasets01/imagenet-22k/062717/' - i22ktarlogs = '/checkpoint/imisra/datasets/imagenet-22k/tarindex' - class_names_file = '/checkpoint/imisra/datasets/imagenet-22k/words.txt' - - output_dir = '/checkpoint/zhouxy/Datasets/ImageNet/metadata-22k/' - i22knpytarlogs = '/checkpoint/zhouxy/Datasets/ImageNet/metadata-22k/tarindex_npy' - print('Listing dir') - log_files = os.listdir(i22ktarlogs) - log_files = [x for x in log_files if x.endswith(".tarlog")] - log_files.sort() - chunk_datasets = [] - dataset_lens = [] - min_count = 0 - create_npy_tarlogs = True - print('Creating folders') - if create_npy_tarlogs: - os.makedirs(i22knpytarlogs, exist_ok=True) - for log_file in log_files: - syn = log_file.replace(".tarlog", "") - dataset = _RawTarDataset(os.path.join(i22kdir, syn + ".tar"), - os.path.join(i22ktarlogs, syn + ".tarlog"), - preload=False) - names = np.array(dataset.names) - offsets = np.array(dataset.offsets, dtype=np.int64) - np.save(os.path.join(i22knpytarlogs, f"{syn}_names.npy"), names) - np.save(os.path.join(i22knpytarlogs, f"{syn}_offsets.npy"), offsets) - - os.makedirs(output_dir, exist_ok=True) - - start_time = time.time() - for log_file in log_files: - syn = log_file.replace(".tarlog", "") - dataset = _TarDataset(os.path.join(i22kdir, syn + ".tar"), i22knpytarlogs) - # dataset = _RawTarDataset(os.path.join(i22kdir, syn + ".tar"), - # os.path.join(i22ktarlogs, syn + ".tarlog"), - # preload=False) - dataset_lens.append(len(dataset)) - end_time = time.time() - print(f"Time {end_time - start_time}") - - - dataset_lens = np.array(dataset_lens) - dataset_valid = dataset_lens > min_count - - syn2class = {} - with open(class_names_file) as fh: - for line in fh: - line = line.strip().split("\t") - syn2class[line[0]] = line[1] - - tarlog_files = [] - class_names = [] - tar_files = [] - for k in range(len(dataset_valid)): - if not dataset_valid[k]: - continue - syn = log_files[k].replace(".tarlog", "") - tarlog_files.append(os.path.join(i22ktarlogs, syn + ".tarlog")) - tar_files.append(os.path.join(i22kdir, syn + ".tar")) - class_names.append(syn2class[syn]) - - tarlog_files = np.array(tarlog_files) - tar_files = np.array(tar_files) - class_names = np.array(class_names) - print(f"Have {len(class_names)} classes and {dataset_lens[dataset_valid].sum()} samples") - - np.save(os.path.join(output_dir, "tarlog_files.npy"), tarlog_files) - np.save(os.path.join(output_dir, "tar_files.npy"), tar_files) - np.save(os.path.join(output_dir, "class_names.npy"), class_names) - np.save(os.path.join(output_dir, "tar_files.npy"), tar_files) - - -if __name__ == "__main__": - preprocess() diff --git a/spaces/akhaliq/ESPnet2-TTS/README.md b/spaces/akhaliq/ESPnet2-TTS/README.md deleted file mode 100644 index 380fbb89d6abc3dee1a4d19322f05c0ae9f2f795..0000000000000000000000000000000000000000 --- a/spaces/akhaliq/ESPnet2-TTS/README.md +++ /dev/null @@ -1,37 +0,0 @@ ---- -title: ESPnet2 TTS -emoji: šŸ“ˆ -colorFrom: green -colorTo: green -sdk: gradio -app_file: app.py -pinned: false ---- - -# Configuration - -`title`: _string_ -Display title for the Space - -`emoji`: _string_ -Space emoji (emoji-only character allowed) - -`colorFrom`: _string_ -Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) - -`colorTo`: _string_ -Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) - -`sdk`: _string_ -Can be either `gradio` or `streamlit` - -`sdk_version` : _string_ -Only applicable for `streamlit` SDK. -See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions. - -`app_file`: _string_ -Path to your main application file (which contains either `gradio` or `streamlit` Python code). -Path is relative to the root of the repository. - -`pinned`: _boolean_ -Whether the Space stays on top of your list. diff --git a/spaces/akhaliq/SimCSE/README.md b/spaces/akhaliq/SimCSE/README.md deleted file mode 100644 index 065d5578db26483687cfda9f8bc5a0efdf0e7f40..0000000000000000000000000000000000000000 --- a/spaces/akhaliq/SimCSE/README.md +++ /dev/null @@ -1,37 +0,0 @@ ---- -title: SimCSE -emoji: šŸ‘ -colorFrom: indigo -colorTo: pink -sdk: gradio -app_file: app.py -pinned: false ---- - -# Configuration - -`title`: _string_ -Display title for the Space - -`emoji`: _string_ -Space emoji (emoji-only character allowed) - -`colorFrom`: _string_ -Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) - -`colorTo`: _string_ -Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) - -`sdk`: _string_ -Can be either `gradio` or `streamlit` - -`sdk_version` : _string_ -Only applicable for `streamlit` SDK. -See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions. - -`app_file`: _string_ -Path to your main application file (which contains either `gradio` or `streamlit` Python code). -Path is relative to the root of the repository. - -`pinned`: _boolean_ -Whether the Space stays on top of your list. diff --git a/spaces/akhaliq/SummerTime/model/third_party/HMNet/ThirdParty/ROUGE/ROUGE-1.5.5/data/WordNet-2.0-Exceptions/buildExeptionDB.pl b/spaces/akhaliq/SummerTime/model/third_party/HMNet/ThirdParty/ROUGE/ROUGE-1.5.5/data/WordNet-2.0-Exceptions/buildExeptionDB.pl deleted file mode 100644 index 45c35df6414d074e858a875eea4dc3f852c3a197..0000000000000000000000000000000000000000 --- a/spaces/akhaliq/SummerTime/model/third_party/HMNet/ThirdParty/ROUGE/ROUGE-1.5.5/data/WordNet-2.0-Exceptions/buildExeptionDB.pl +++ /dev/null @@ -1,21 +0,0 @@ -#!/usr/bin/perl -w -use DB_File; -@ARGV!=3&&die "Usage: buildExceptionDB.pl WordNet-exception-file-directory exception-file-extension output-file\n"; -opendir(DIR,$ARGV[0])||die "Cannot open directory $ARGV[0]\n"; -tie %exceptiondb,'DB_File',"$ARGV[2]",O_CREAT|O_RDWR,0640,$DB_HASH or - die "Cannot open exception db file for output: $ARGV[2]\n"; -while(defined($file=readdir(DIR))) { - if($file=~/\.$ARGV[1]$/o) { - print $file,"\n"; - open(IN,"$file")||die "Cannot open exception file: $file\n"; - while(defined($line=)) { - chomp($line); - @tmp=split(/\s+/,$line); - $exceptiondb{$tmp[0]}=$tmp[1]; - print $tmp[0],"\n"; - } - close(IN); - } -} -untie %exceptiondb; - diff --git a/spaces/akhaliq/deeplab2/data/testdata/create_test_data.py b/spaces/akhaliq/deeplab2/data/testdata/create_test_data.py deleted file mode 100644 index 3e4e06d5b2e3a87943c1cb3f54d490d7588551cb..0000000000000000000000000000000000000000 --- a/spaces/akhaliq/deeplab2/data/testdata/create_test_data.py +++ /dev/null @@ -1,205 +0,0 @@ -# coding=utf-8 -# Copyright 2021 The Deeplab2 Authors. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -"""Script to generate test data for cityscapes.""" - -import collections -import json -import os - -from absl import app -from absl import flags -from absl import logging -import numpy as np -from PIL import Image -import tensorflow as tf - -# resources dependency - -from deeplab2.data import data_utils -from deeplab2.data import dataset - -flags.DEFINE_string( - 'panoptic_annotation_path', - 'deeplab2/data/testdata/' - 'dummy_prediction.png', - 'Path to annotated test image with cityscapes encoding.') -flags.DEFINE_string( - 'panoptic_gt_output_path', - 'deeplab2/data/testdata/' - 'dummy_gt_for_vps.png', - 'Path to annotated test image with Video Panoptic Segmentation encoding.') -flags.DEFINE_string( - 'output_cityscapes_root', - 'deeplab2/data/testdata/', - 'Path to output root directory.') - -FLAGS = flags.FLAGS - -# Cityscapes label, using `TrainId`. -_CITYSCAPES_IGNORE = 255 -# Each valid (not ignored) label below is a tuple of (TrainId, EvalId) -_CITYSCAPES_CAR = (13, 26) -_CITYSCAPES_TREE = (8, 21) -_CITYSCAPES_SKY = (10, 23) -_CITYSCAPES_BUILDING = (2, 11) -_CITYSCAPES_ROAD = (0, 7) - -_IS_CROWD = 'is_crowd' -_NOT_CROWD = 'not_crowd' - -_CLASS_HAS_INSTANCES_LIST = dataset.CITYSCAPES_PANOPTIC_INFORMATION.class_has_instances_list -_PANOPTIC_LABEL_DIVISOR = dataset.CITYSCAPES_PANOPTIC_INFORMATION.panoptic_label_divisor -_FILENAME_PREFIX = 'dummy_000000_000000' - - -def create_test_data(annotation_path): - """Creates cityscapes panoptic annotation, vps annotation and segment info. - - Our Video Panoptic Segmentation (VPS) encoding uses ID == semantic trainID * - 1000 + instance ID (starting at 1) with instance ID == 0 marking - crowd regions. - - Args: - annotation_path: The path to the annotation to be loaded. - - Returns: - A tuple of cityscape annotation, vps annotation and segment infos. - """ - # Convert panoptic labels to cityscapes label format. - - # Dictionary mapping converted panoptic annotation to its corresponding - # Cityscapes label. Here the key is encoded by converting each RGB pixel - # value to 1 * R + 256 * G + 256 * 256 * B. - panoptic_label_to_cityscapes_label = { - 0: (_CITYSCAPES_IGNORE, _NOT_CROWD), - 31110: (_CITYSCAPES_CAR, _NOT_CROWD), - 31354: (_CITYSCAPES_CAR, _IS_CROWD), - 35173: (_CITYSCAPES_CAR, _NOT_CROWD), - 488314: (_CITYSCAPES_CAR, _IS_CROWD), - 549788: (_CITYSCAPES_CAR, _IS_CROWD), - 1079689: (_CITYSCAPES_CAR, _IS_CROWD), - 1341301: (_CITYSCAPES_CAR, _NOT_CROWD), - 1544590: (_CITYSCAPES_CAR, _NOT_CROWD), - 1926498: (_CITYSCAPES_CAR, _NOT_CROWD), - 4218944: (_CITYSCAPES_TREE, _NOT_CROWD), - 4251840: (_CITYSCAPES_SKY, _NOT_CROWD), - 6959003: (_CITYSCAPES_BUILDING, _NOT_CROWD), - # To be merged with the building segment above. - 8396960: (_CITYSCAPES_BUILDING, _NOT_CROWD), - 8413312: (_CITYSCAPES_ROAD, _NOT_CROWD), - } - with tf.io.gfile.GFile(annotation_path, 'rb') as f: - panoptic = data_utils.read_image(f.read()) - - # Input panoptic annotation is RGB color coded, here we convert each pixel - # to a unique number to avoid comparing 3-tuples. - panoptic = np.dot(panoptic, [1, 256, 256 * 256]) - # Creates cityscapes panoptic map. Cityscapes use ID == semantic EvalId for - # `stuff` segments and `thing` segments with `iscrowd` label, and - # ID == semantic EvalId * 1000 + instance ID (starting from 0) for other - # `thing` segments. - cityscapes_panoptic = np.zeros_like(panoptic, dtype=np.int32) - # Creates Video Panoptic Segmentation (VPS) map. We use ID == semantic - # trainID * 1000 + instance ID (starting at 1) with instance ID == 0 marking - # crowd regions. - vps_panoptic = np.zeros_like(panoptic, dtype=np.int32) - num_instances_per_class = collections.defaultdict(int) - unique_labels = np.unique(panoptic) - - # Dictionary that maps segment id to segment info. - segments_info = {} - for label in unique_labels: - cityscapes_label, is_crowd = panoptic_label_to_cityscapes_label[label] - selected_pixels = panoptic == label - - if cityscapes_label == _CITYSCAPES_IGNORE: - vps_panoptic[selected_pixels] = ( - _CITYSCAPES_IGNORE * _PANOPTIC_LABEL_DIVISOR) - continue - - train_id, eval_id = tuple(cityscapes_label) - cityscapes_id = eval_id - vps_id = train_id * _PANOPTIC_LABEL_DIVISOR - if train_id in _CLASS_HAS_INSTANCES_LIST: - # `thing` class. - if is_crowd != _IS_CROWD: - cityscapes_id = ( - eval_id * _PANOPTIC_LABEL_DIVISOR + - num_instances_per_class[train_id]) - # First instance should have ID 1. - vps_id += num_instances_per_class[train_id] + 1 - num_instances_per_class[train_id] += 1 - - cityscapes_panoptic[selected_pixels] = cityscapes_id - vps_panoptic[selected_pixels] = vps_id - pixel_area = int(np.sum(selected_pixels)) - if cityscapes_id in segments_info: - logging.info('Merging segments with label %d into segment %d', label, - cityscapes_id) - segments_info[cityscapes_id]['area'] += pixel_area - else: - segments_info[cityscapes_id] = { - 'area': pixel_area, - 'category_id': train_id, - 'id': cityscapes_id, - 'iscrowd': 1 if is_crowd == _IS_CROWD else 0, - } - - cityscapes_panoptic = np.dstack([ - cityscapes_panoptic % 256, cityscapes_panoptic // 256, - cityscapes_panoptic // 256 // 256 - ]) - vps_panoptic = np.dstack( - [vps_panoptic % 256, vps_panoptic // 256, vps_panoptic // 256 // 256]) - return (cityscapes_panoptic.astype(np.uint8), vps_panoptic.astype(np.uint8), - list(segments_info.values())) - - -def main(argv): - if len(argv) > 1: - raise app.UsageError('Too many command-line arguments.') - - data_path = FLAGS.panoptic_annotation_path # OSS: removed internal filename loading. - panoptic_map, vps_map, segments_info = create_test_data(data_path) - panoptic_map_filename = _FILENAME_PREFIX + '_gtFine_panoptic.png' - panoptic_map_path = os.path.join(FLAGS.output_cityscapes_root, 'gtFine', - 'cityscapes_panoptic_dummy_trainId', - panoptic_map_filename) - - gt_output_path = FLAGS.panoptic_gt_output_path # OSS: removed internal filename loading. - with tf.io.gfile.GFile(gt_output_path, 'wb') as f: - Image.fromarray(vps_map).save(f, format='png') - - panoptic_map_path = panoptic_map_path # OSS: removed internal filename loading. - with tf.io.gfile.GFile(panoptic_map_path, 'wb') as f: - Image.fromarray(panoptic_map).save(f, format='png') - - json_annotation = { - 'annotations': [{ - 'file_name': _FILENAME_PREFIX + '_gtFine_panoptic.png', - 'image_id': _FILENAME_PREFIX, - 'segments_info': segments_info - }] - } - json_annotation_path = os.path.join(FLAGS.output_cityscapes_root, 'gtFine', - 'cityscapes_panoptic_dummy_trainId.json') - json_annotation_path = json_annotation_path # OSS: removed internal filename loading. - with tf.io.gfile.GFile(json_annotation_path, 'w') as f: - json.dump(json_annotation, f, indent=2) - - -if __name__ == '__main__': - app.run(main) diff --git a/spaces/akhaliq/deeplab2/model/post_processor/motion_deeplab.py b/spaces/akhaliq/deeplab2/model/post_processor/motion_deeplab.py deleted file mode 100644 index afd637f6e4e2d1c57a9f3f7df9d1c98c617a8cc3..0000000000000000000000000000000000000000 --- a/spaces/akhaliq/deeplab2/model/post_processor/motion_deeplab.py +++ /dev/null @@ -1,257 +0,0 @@ -# coding=utf-8 -# Copyright 2021 The Deeplab2 Authors. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -"""This file contains functions to post-process Motion-DeepLab results.""" - -from typing import Tuple - -import tensorflow as tf - - -def assign_instances_to_previous_tracks( - prev_centers: tf.Tensor, - current_centers: tf.Tensor, - heatmap: tf.Tensor, - offsets: tf.Tensor, - panoptic_map: tf.Tensor, - next_id: tf.Tensor, - label_divisor: int, - sigma=7) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]: - """Greedy assignment of current centers to previous centers. - - Current centers are selected in decreasing order of confidence (heatmap - scores). These centers are transformed with the offsets and assigned to - previous centers. - - Args: - prev_centers: A tf.Tensor containing previous centers of shape [Np, 5]. This - tensor contains: - [0]: The x-coordinate. - [1]: The y-coordinate. - [2]: The panoptic ID. - [3]: The geometric mean of width and height of the instance mask. - [4]: The number of frames that no new masks got assigned to this center. - current_centers: A tf.Tensor containing centers of current frame of shape - [Nc, 5]. This tensor contains: - [0]: The x-coordinate. - [1]: The y-coordinate. - [2]: The panoptic ID. - [3]: The geometric mean of width and height of the instance mask. - [4]: The number of frames that no new masks got assigned to this center. - heatmap: A tf.Tensor of shape [batch, height, width] containing the center - heatmap. - offsets: A tf.Tensor of shape [batch, height, width, 2] containing the - center offsets. - panoptic_map: A tf.Tensor of shape [batch, height, width] containing the - panoptic segmentation. - next_id: A tf.Tensor of shape [1] containing the next ID. - label_divisor: An integer specifying the label divisor for panoptic IDs. - sigma: An optional integer specifying the number of frames that unmatched - centers should be kept (default: 7). - - Returns: - A tuple of three tf.Tensor: - 1. The updated panoptic segmentation map that contains track IDs. - 2. The updated tensor containing all current centers (including unmatched - previous ones). - 3. The updated next ID that can be used for new tracks. - """ - # Switch x and y coordinates for indexing. - center_indices = tf.concat( - [tf.zeros([tf.shape(current_centers)[0], 1], dtype=tf.int32), - current_centers[:, 1:2], current_centers[:, 0:1]], - axis=1) - confidence_scores = tf.gather_nd(heatmap, center_indices) - - scores = tf.argsort(confidence_scores, direction='DESCENDING') - cond = lambda i, *_: i < tf.shape(center_indices)[0] - - def body(i, current_centers_loop, prev_centers_loop, new_panoptic_map_loop, - next_id_loop): - row_index = scores[i] - i = tf.add(i, 1) - center_id = current_centers_loop[row_index, 2] - center_location = current_centers_loop[row_index, :2] - center_offset_yx = offsets[0, center_location[1], center_location[0], :] - center_offset_xy = center_offset_yx[::-1] - center_location = center_offset_xy + tf.cast(center_location, tf.float32) - center_sem_id = center_id // label_divisor - center_mask = tf.equal(panoptic_map, center_id) - prev_centers_class = prev_centers_loop[:, 2] // label_divisor - prev_centers_with_same_class = tf.squeeze( - tf.cast( - tf.gather( - prev_centers_loop, - tf.where(tf.equal(prev_centers_class, center_sem_id)), - axis=0), tf.float32), - axis=1) - - # Check if there are still unassigned previous centers of the same class. - if tf.shape(prev_centers_with_same_class)[0] > 0: - # For efficieny reasons, we do not take the sqrt when we compute the - # minimal distances. See render_panoptic_map_as_heatmap as well. - distances = tf.reduce_sum( - tf.square(prev_centers_with_same_class[:, :2] - center_location), - axis=1) - prev_center_index = tf.math.argmin( - distances, axis=0, output_type=tf.int32) - min_dist = distances[prev_center_index] - - # If previous center is within a certain range, continue track. - if min_dist < prev_centers_with_same_class[prev_center_index, 3]: - new_center_id = tf.cast( - prev_centers_with_same_class[prev_center_index, 2], dtype=tf.int32) - shape = new_panoptic_map_loop.get_shape() - new_panoptic_map_loop = tf.where(center_mask, new_center_id, - new_panoptic_map_loop) - new_panoptic_map_loop.set_shape(shape) - current_centers_loop = tf.tensor_scatter_nd_update( - current_centers_loop, tf.expand_dims([row_index, 2], 0), - [new_center_id]) - # Remove previous center. - prev_centers_loop = tf.squeeze( - tf.gather( - prev_centers_loop, - tf.where(tf.not_equal(prev_centers_loop[:, 2], new_center_id)), - axis=0), - axis=1) - return (i, current_centers_loop, prev_centers_loop, - new_panoptic_map_loop, next_id_loop) - else: - # Assign new track ID - new_center_id = center_sem_id * label_divisor + next_id_loop - shape = new_panoptic_map_loop.get_shape() - new_panoptic_map_loop = tf.where(center_mask, new_center_id, - new_panoptic_map_loop) - new_panoptic_map_loop.set_shape(shape) - current_centers_loop = tf.tensor_scatter_nd_update( - current_centers_loop, tf.expand_dims([row_index, 2], 0), - [new_center_id]) - next_id_loop += 1 - return (i, current_centers_loop, prev_centers_loop, - new_panoptic_map_loop, next_id_loop) - else: - # Assign new track ID - new_center_id = center_sem_id * label_divisor + next_id_loop - shape = new_panoptic_map_loop.get_shape() - new_panoptic_map_loop = tf.where(center_mask, new_center_id, - new_panoptic_map_loop) - new_panoptic_map_loop.set_shape(shape) - current_centers_loop = tf.tensor_scatter_nd_update( - current_centers_loop, tf.expand_dims([row_index, 2], 0), - [new_center_id]) - next_id_loop += 1 - return (i, current_centers_loop, prev_centers_loop, new_panoptic_map_loop, - next_id_loop) - - loop_start_index = tf.constant(0) - (_, current_centers, - unmatched_centers, new_panoptic_map, next_id) = tf.while_loop( - cond, body, - (loop_start_index, current_centers, prev_centers, panoptic_map, - next_id)) - - # Keep unmatched centers for sigma frames. - if tf.shape(unmatched_centers)[0] > 0: - current_centers = tf.concat([current_centers, unmatched_centers], axis=0) - - number_centers = tf.shape(current_centers)[0] - indices_row = tf.range(number_centers, dtype=tf.int32) - indices_column = tf.repeat([4], number_centers, axis=0) - indices = tf.stack([indices_row, indices_column], axis=1) - current_centers = tf.tensor_scatter_nd_add( - current_centers, indices, - tf.repeat([1], number_centers, axis=0)) - - # Remove centers after sigma frames. - current_centers = tf.squeeze( - tf.gather( - current_centers, - tf.where(tf.not_equal(current_centers[:, 4], sigma)), - axis=0), - axis=1) - - return new_panoptic_map, current_centers, next_id - - -def render_panoptic_map_as_heatmap( - panoptic_map: tf.Tensor, sigma: int, label_divisor: int, - void_label: int) -> Tuple[tf.Tensor, tf.Tensor]: - """Extracts centers from panoptic map and renders as heatmap.""" - gaussian_size = 6 * sigma + 3 - x = tf.range(gaussian_size, dtype=tf.float32) - y = tf.expand_dims(x, axis=1) - x0, y0 = 3 * sigma + 1, 3 * sigma + 1 - gaussian = tf.math.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2)) - gaussian = tf.cast(tf.reshape(gaussian, [-1]), tf.float32) - - height = tf.shape(panoptic_map)[1] - width = tf.shape(panoptic_map)[2] - # Pad center to make boundary handling easier. - center_pad_begin = int(round(3 * sigma + 1)) - center_pad_end = int(round(3 * sigma + 2)) - center_pad = center_pad_begin + center_pad_end - - center = tf.zeros((height + center_pad, width + center_pad)) - unique_ids, _ = tf.unique(tf.reshape(panoptic_map, [-1])) - centers_and_ids = tf.TensorArray( - tf.int32, size=0, dynamic_size=True, clear_after_read=False) - counter = tf.zeros([], dtype=tf.int32) - - for panoptic_id in unique_ids: - semantic_id = panoptic_id // label_divisor - # Filter out IDs that should be ignored, are stuff classes or crowd. - # Stuff classes and crowd regions both have IDs of the form panoptic_id = - # semantic_id * label_divisor - if semantic_id == void_label or panoptic_id % label_divisor == 0: - continue - - # Convert [[0, y0, x0], ...] to [[0, ...], [y0, ...], [x0, ...]]. - mask_index = tf.cast( - tf.transpose(tf.where(panoptic_map == panoptic_id)), tf.float32) - mask_size = ( - tf.reduce_max(mask_index, axis=1) - tf.reduce_min(mask_index, axis=1)) - # The radius is defined as the geometric mean of width and height. - # For efficieny reasons, we do not take the sqrt when we compute the minimal - # distances. See assign_instances_to_previous_tracks as well. - mask_radius = tf.cast(tf.round(mask_size[1] * mask_size[2]), tf.int32) - centers = tf.reduce_mean(mask_index, axis=1) - - center_x = tf.cast(tf.round(centers[2]), tf.int32) - center_y = tf.cast(tf.round(centers[1]), tf.int32) - centers_and_ids = centers_and_ids.write( - counter, - [center_x, center_y, tf.cast(panoptic_id, tf.int32), mask_radius, 0]) - counter += 1 - - # Due to the padding with center_pad_begin in center, the computed center - # becomes the upper left corner in the center tensor. - upper_left = center_x, center_y - bottom_right = (upper_left[0] + gaussian_size, - upper_left[1] + gaussian_size) - - indices_x, indices_y = tf.meshgrid( - tf.range(upper_left[0], bottom_right[0]), - tf.range(upper_left[1], bottom_right[1])) - indices = tf.transpose( - tf.stack([tf.reshape(indices_y, [-1]), - tf.reshape(indices_x, [-1])])) - - center = tf.tensor_scatter_nd_max( - center, indices, gaussian, name='center_scatter') - - center = center[center_pad_begin:(center_pad_begin + height), - center_pad_begin:(center_pad_begin + width)] - return tf.expand_dims(center, axis=0), centers_and_ids.stack() diff --git a/spaces/akhaliq/lama/bin/paper_runfiles/generate_test_paris.sh b/spaces/akhaliq/lama/bin/paper_runfiles/generate_test_paris.sh deleted file mode 100644 index 66056017c3aa376ef0767a59583ab25a321b559b..0000000000000000000000000000000000000000 --- a/spaces/akhaliq/lama/bin/paper_runfiles/generate_test_paris.sh +++ /dev/null @@ -1,17 +0,0 @@ -#!/usr/bin/env bash - -# paths to data are valid for mml-ws01 -OUT_DIR="/media/inpainting/paper_data/Paris_StreetView_Dataset_val" - -source "$(dirname $0)/env.sh" - -for datadir in paris_eval_gt -do - for conf in random_thin_256 random_medium_256 random_thick_256 segm_256 - do - "$BINDIR/gen_mask_dataset_hydra.py" -cn $conf datadir=$datadir location=mml-ws01-paris \ - location.out_dir=OUT_DIR cropping.out_square_crop=False cropping.out_min_size=227 - - "$BINDIR/calc_dataset_stats.py" --samples-n 20 "$OUT_DIR/$datadir/$conf" "$OUT_DIR/$datadir/${conf}_stats" - done -done diff --git a/spaces/akhaliq/lama/saicinpainting/training/data/__init__.py b/spaces/akhaliq/lama/saicinpainting/training/data/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/alexray/btc_predictor/model_testing.py b/spaces/alexray/btc_predictor/model_testing.py deleted file mode 100644 index e627b16ce05b21c4d4636306c1889a84b1b8435a..0000000000000000000000000000000000000000 --- a/spaces/alexray/btc_predictor/model_testing.py +++ /dev/null @@ -1,32 +0,0 @@ -import pickle -import pandas as pd -from sklearn.metrics import mean_squared_error, r2_score - - -def test_model(model_path="linear_svr_model.pkl", data_dir="data"): - - with open(model_path, "rb") as model_file: - loaded_model = pickle.load(model_file) - - X_test = pd.read_csv(f"{data_dir}/test_features.csv", index_col=0) - y_test = pd.read_csv(f"{data_dir}/test_target.csv", index_col=0) - - predictions = loaded_model.predict(X_test) - - mse = mean_squared_error(y_test, predictions) - r2 = r2_score(y_test, predictions) - - result = f"Mean Squared Error: {mse}\nR-squared: {r2}" - - print("Testing: ") - print(result) - - predictions_df = pd.DataFrame(predictions, index=X_test.index, - columns=["Prediction"]) - predictions_df.to_csv(f"{data_dir}/test_prediction.csv", index=True) - - return result - - -if __name__ == '__main__': - test_model() diff --git a/spaces/alexray/btc_predictor/venv/lib/python3.10/site-packages/pip/_vendor/chardet/langhebrewmodel.py b/spaces/alexray/btc_predictor/venv/lib/python3.10/site-packages/pip/_vendor/chardet/langhebrewmodel.py deleted file mode 100644 index 484c652a48e0c97826acabfc475d1bab7ea4763a..0000000000000000000000000000000000000000 --- a/spaces/alexray/btc_predictor/venv/lib/python3.10/site-packages/pip/_vendor/chardet/langhebrewmodel.py +++ /dev/null @@ -1,4383 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -from pip._vendor.chardet.sbcharsetprober import SingleByteCharSetModel - - -# 3: Positive -# 2: Likely -# 1: Unlikely -# 0: Negative - -HEBREW_LANG_MODEL = { - 50: { # 'a' - 50: 0, # 'a' - 60: 1, # 'c' - 61: 1, # 'd' - 42: 1, # 'e' - 53: 1, # 'i' - 56: 2, # 'l' - 54: 2, # 'n' - 49: 0, # 'o' - 51: 2, # 'r' - 43: 1, # 's' - 44: 2, # 't' - 63: 1, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 0, # 'א' - 8: 0, # 'ב' - 20: 0, # 'ג' - 16: 0, # 'ד' - 3: 1, # 'ה' - 2: 0, # 'ו' - 24: 0, # 'ז' - 14: 0, # 'ח' - 22: 0, # 'ט' - 1: 0, # 'י' - 25: 0, # 'ך' - 15: 0, # 'כ' - 4: 0, # 'ל' - 11: 0, # 'ם' - 6: 1, # 'מ' - 23: 0, # 'ן' - 12: 0, # '× ' - 19: 0, # '×”' - 13: 0, # '×¢' - 26: 0, # '×£' - 18: 0, # 'פ' - 27: 0, # 'ׄ' - 21: 0, # 'צ' - 17: 1, # '×§' - 7: 0, # 'ר' - 10: 1, # 'ש' - 5: 0, # '×Ŗ' - 32: 0, # '–' - 52: 1, # '’' - 47: 0, # 'ā€œ' - 46: 1, # 'ā€' - 58: 0, # '†' - 40: 1, # '…' - }, - 60: { # 'c' - 50: 1, # 'a' - 60: 1, # 'c' - 61: 0, # 'd' - 42: 1, # 'e' - 53: 1, # 'i' - 56: 1, # 'l' - 54: 0, # 'n' - 49: 1, # 'o' - 51: 1, # 'r' - 43: 1, # 's' - 44: 2, # 't' - 63: 1, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 1, # 'א' - 8: 0, # 'ב' - 20: 0, # 'ג' - 16: 0, # 'ד' - 3: 1, # 'ה' - 2: 0, # 'ו' - 24: 0, # 'ז' - 14: 0, # 'ח' - 22: 0, # 'ט' - 1: 0, # 'י' - 25: 0, # 'ך' - 15: 0, # 'כ' - 4: 0, # 'ל' - 11: 0, # 'ם' - 6: 1, # 'מ' - 23: 0, # 'ן' - 12: 1, # '× ' - 19: 0, # '×”' - 13: 0, # '×¢' - 26: 0, # '×£' - 18: 0, # 'פ' - 27: 0, # 'ׄ' - 21: 0, # 'צ' - 17: 0, # '×§' - 7: 0, # 'ר' - 10: 0, # 'ש' - 5: 0, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 1, # 'ā€' - 58: 0, # '†' - 40: 1, # '…' - }, - 61: { # 'd' - 50: 1, # 'a' - 60: 0, # 'c' - 61: 1, # 'd' - 42: 1, # 'e' - 53: 1, # 'i' - 56: 1, # 'l' - 54: 1, # 'n' - 49: 2, # 'o' - 51: 1, # 'r' - 43: 1, # 's' - 44: 0, # 't' - 63: 1, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 0, # 'א' - 8: 0, # 'ב' - 20: 0, # 'ג' - 16: 0, # 'ד' - 3: 1, # 'ה' - 2: 0, # 'ו' - 24: 0, # 'ז' - 14: 0, # 'ח' - 22: 0, # 'ט' - 1: 0, # 'י' - 25: 0, # 'ך' - 15: 0, # 'כ' - 4: 0, # 'ל' - 11: 0, # 'ם' - 6: 0, # 'מ' - 23: 0, # 'ן' - 12: 0, # '× ' - 19: 0, # '×”' - 13: 0, # '×¢' - 26: 0, # '×£' - 18: 0, # 'פ' - 27: 0, # 'ׄ' - 21: 0, # 'צ' - 17: 0, # '×§' - 7: 0, # 'ר' - 10: 0, # 'ש' - 5: 0, # '×Ŗ' - 32: 1, # '–' - 52: 1, # '’' - 47: 0, # 'ā€œ' - 46: 1, # 'ā€' - 58: 0, # '†' - 40: 1, # '…' - }, - 42: { # 'e' - 50: 1, # 'a' - 60: 1, # 'c' - 61: 2, # 'd' - 42: 1, # 'e' - 53: 1, # 'i' - 56: 2, # 'l' - 54: 2, # 'n' - 49: 1, # 'o' - 51: 2, # 'r' - 43: 2, # 's' - 44: 2, # 't' - 63: 1, # 'u' - 34: 1, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 0, # 'א' - 8: 0, # 'ב' - 20: 0, # 'ג' - 16: 0, # 'ד' - 3: 0, # 'ה' - 2: 0, # 'ו' - 24: 0, # 'ז' - 14: 0, # 'ח' - 22: 0, # 'ט' - 1: 0, # 'י' - 25: 0, # 'ך' - 15: 0, # 'כ' - 4: 0, # 'ל' - 11: 0, # 'ם' - 6: 0, # 'מ' - 23: 0, # 'ן' - 12: 0, # '× ' - 19: 0, # '×”' - 13: 0, # '×¢' - 26: 0, # '×£' - 18: 1, # 'פ' - 27: 0, # 'ׄ' - 21: 0, # 'צ' - 17: 0, # '×§' - 7: 0, # 'ר' - 10: 0, # 'ש' - 5: 0, # '×Ŗ' - 32: 1, # '–' - 52: 2, # '’' - 47: 0, # 'ā€œ' - 46: 1, # 'ā€' - 58: 0, # '†' - 40: 1, # '…' - }, - 53: { # 'i' - 50: 1, # 'a' - 60: 2, # 'c' - 61: 1, # 'd' - 42: 1, # 'e' - 53: 0, # 'i' - 56: 1, # 'l' - 54: 2, # 'n' - 49: 2, # 'o' - 51: 1, # 'r' - 43: 2, # 's' - 44: 2, # 't' - 63: 1, # 'u' - 34: 0, # '\xa0' - 55: 1, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 0, # 'א' - 8: 0, # 'ב' - 20: 0, # 'ג' - 16: 0, # 'ד' - 3: 0, # 'ה' - 2: 0, # 'ו' - 24: 0, # 'ז' - 14: 0, # 'ח' - 22: 0, # 'ט' - 1: 0, # 'י' - 25: 0, # 'ך' - 15: 0, # 'כ' - 4: 0, # 'ל' - 11: 0, # 'ם' - 6: 0, # 'מ' - 23: 0, # 'ן' - 12: 0, # '× ' - 19: 0, # '×”' - 13: 0, # '×¢' - 26: 0, # '×£' - 18: 0, # 'פ' - 27: 0, # 'ׄ' - 21: 0, # 'צ' - 17: 0, # '×§' - 7: 0, # 'ר' - 10: 0, # 'ש' - 5: 0, # '×Ŗ' - 32: 0, # '–' - 52: 1, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 0, # '…' - }, - 56: { # 'l' - 50: 1, # 'a' - 60: 1, # 'c' - 61: 1, # 'd' - 42: 2, # 'e' - 53: 2, # 'i' - 56: 2, # 'l' - 54: 1, # 'n' - 49: 1, # 'o' - 51: 0, # 'r' - 43: 1, # 's' - 44: 1, # 't' - 63: 1, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 0, # 'א' - 8: 0, # 'ב' - 20: 0, # 'ג' - 16: 0, # 'ד' - 3: 0, # 'ה' - 2: 0, # 'ו' - 24: 0, # 'ז' - 14: 0, # 'ח' - 22: 0, # 'ט' - 1: 0, # 'י' - 25: 0, # 'ך' - 15: 0, # 'כ' - 4: 0, # 'ל' - 11: 0, # 'ם' - 6: 0, # 'מ' - 23: 0, # 'ן' - 12: 0, # '× ' - 19: 0, # '×”' - 13: 0, # '×¢' - 26: 0, # '×£' - 18: 0, # 'פ' - 27: 0, # 'ׄ' - 21: 0, # 'צ' - 17: 0, # '×§' - 7: 0, # 'ר' - 10: 0, # 'ש' - 5: 0, # '×Ŗ' - 32: 0, # '–' - 52: 1, # '’' - 47: 0, # 'ā€œ' - 46: 1, # 'ā€' - 58: 0, # '†' - 40: 1, # '…' - }, - 54: { # 'n' - 50: 1, # 'a' - 60: 1, # 'c' - 61: 1, # 'd' - 42: 1, # 'e' - 53: 1, # 'i' - 56: 1, # 'l' - 54: 1, # 'n' - 49: 1, # 'o' - 51: 0, # 'r' - 43: 1, # 's' - 44: 2, # 't' - 63: 1, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 0, # 'א' - 8: 0, # 'ב' - 20: 0, # 'ג' - 16: 0, # 'ד' - 3: 1, # 'ה' - 2: 0, # 'ו' - 24: 0, # 'ז' - 14: 0, # 'ח' - 22: 0, # 'ט' - 1: 0, # 'י' - 25: 0, # 'ך' - 15: 0, # 'כ' - 4: 0, # 'ל' - 11: 0, # 'ם' - 6: 0, # 'מ' - 23: 0, # 'ן' - 12: 0, # '× ' - 19: 0, # '×”' - 13: 0, # '×¢' - 26: 0, # '×£' - 18: 0, # 'פ' - 27: 0, # 'ׄ' - 21: 0, # 'צ' - 17: 0, # '×§' - 7: 0, # 'ר' - 10: 0, # 'ש' - 5: 0, # '×Ŗ' - 32: 0, # '–' - 52: 2, # '’' - 47: 0, # 'ā€œ' - 46: 1, # 'ā€' - 58: 0, # '†' - 40: 1, # '…' - }, - 49: { # 'o' - 50: 1, # 'a' - 60: 1, # 'c' - 61: 1, # 'd' - 42: 1, # 'e' - 53: 1, # 'i' - 56: 1, # 'l' - 54: 2, # 'n' - 49: 1, # 'o' - 51: 2, # 'r' - 43: 1, # 's' - 44: 1, # 't' - 63: 1, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 0, # 'א' - 8: 0, # 'ב' - 20: 0, # 'ג' - 16: 0, # 'ד' - 3: 0, # 'ה' - 2: 0, # 'ו' - 24: 0, # 'ז' - 14: 0, # 'ח' - 22: 0, # 'ט' - 1: 0, # 'י' - 25: 0, # 'ך' - 15: 0, # 'כ' - 4: 0, # 'ל' - 11: 0, # 'ם' - 6: 0, # 'מ' - 23: 0, # 'ן' - 12: 0, # '× ' - 19: 0, # '×”' - 13: 0, # '×¢' - 26: 0, # '×£' - 18: 0, # 'פ' - 27: 0, # 'ׄ' - 21: 0, # 'צ' - 17: 0, # '×§' - 7: 0, # 'ר' - 10: 0, # 'ש' - 5: 0, # '×Ŗ' - 32: 0, # '–' - 52: 1, # '’' - 47: 0, # 'ā€œ' - 46: 1, # 'ā€' - 58: 0, # '†' - 40: 1, # '…' - }, - 51: { # 'r' - 50: 2, # 'a' - 60: 1, # 'c' - 61: 1, # 'd' - 42: 2, # 'e' - 53: 1, # 'i' - 56: 1, # 'l' - 54: 1, # 'n' - 49: 2, # 'o' - 51: 1, # 'r' - 43: 1, # 's' - 44: 1, # 't' - 63: 1, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 0, # 'א' - 8: 0, # 'ב' - 20: 0, # 'ג' - 16: 0, # 'ד' - 3: 0, # 'ה' - 2: 0, # 'ו' - 24: 0, # 'ז' - 14: 0, # 'ח' - 22: 0, # 'ט' - 1: 0, # 'י' - 25: 0, # 'ך' - 15: 0, # 'כ' - 4: 0, # 'ל' - 11: 0, # 'ם' - 6: 0, # 'מ' - 23: 0, # 'ן' - 12: 0, # '× ' - 19: 0, # '×”' - 13: 0, # '×¢' - 26: 0, # '×£' - 18: 0, # 'פ' - 27: 0, # 'ׄ' - 21: 0, # 'צ' - 17: 0, # '×§' - 7: 0, # 'ר' - 10: 0, # 'ש' - 5: 0, # '×Ŗ' - 32: 0, # '–' - 52: 2, # '’' - 47: 0, # 'ā€œ' - 46: 1, # 'ā€' - 58: 0, # '†' - 40: 1, # '…' - }, - 43: { # 's' - 50: 1, # 'a' - 60: 1, # 'c' - 61: 0, # 'd' - 42: 2, # 'e' - 53: 1, # 'i' - 56: 1, # 'l' - 54: 1, # 'n' - 49: 1, # 'o' - 51: 1, # 'r' - 43: 1, # 's' - 44: 2, # 't' - 63: 1, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 0, # 'א' - 8: 0, # 'ב' - 20: 0, # 'ג' - 16: 0, # 'ד' - 3: 0, # 'ה' - 2: 0, # 'ו' - 24: 0, # 'ז' - 14: 0, # 'ח' - 22: 0, # 'ט' - 1: 0, # 'י' - 25: 0, # 'ך' - 15: 0, # 'כ' - 4: 0, # 'ל' - 11: 0, # 'ם' - 6: 0, # 'מ' - 23: 0, # 'ן' - 12: 0, # '× ' - 19: 0, # '×”' - 13: 0, # '×¢' - 26: 0, # '×£' - 18: 0, # 'פ' - 27: 0, # 'ׄ' - 21: 0, # 'צ' - 17: 0, # '×§' - 7: 0, # 'ר' - 10: 0, # 'ש' - 5: 0, # '×Ŗ' - 32: 0, # '–' - 52: 1, # '’' - 47: 0, # 'ā€œ' - 46: 2, # 'ā€' - 58: 0, # '†' - 40: 2, # '…' - }, - 44: { # 't' - 50: 1, # 'a' - 60: 1, # 'c' - 61: 0, # 'd' - 42: 2, # 'e' - 53: 2, # 'i' - 56: 1, # 'l' - 54: 0, # 'n' - 49: 1, # 'o' - 51: 1, # 'r' - 43: 1, # 's' - 44: 1, # 't' - 63: 1, # 'u' - 34: 1, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 0, # 'א' - 8: 0, # 'ב' - 20: 0, # 'ג' - 16: 0, # 'ד' - 3: 0, # 'ה' - 2: 0, # 'ו' - 24: 0, # 'ז' - 14: 0, # 'ח' - 22: 0, # 'ט' - 1: 0, # 'י' - 25: 0, # 'ך' - 15: 0, # 'כ' - 4: 0, # 'ל' - 11: 0, # 'ם' - 6: 0, # 'מ' - 23: 0, # 'ן' - 12: 0, # '× ' - 19: 0, # '×”' - 13: 0, # '×¢' - 26: 0, # '×£' - 18: 0, # 'פ' - 27: 0, # 'ׄ' - 21: 0, # 'צ' - 17: 0, # '×§' - 7: 0, # 'ר' - 10: 0, # 'ש' - 5: 0, # '×Ŗ' - 32: 0, # '–' - 52: 2, # '’' - 47: 0, # 'ā€œ' - 46: 1, # 'ā€' - 58: 0, # '†' - 40: 1, # '…' - }, - 63: { # 'u' - 50: 1, # 'a' - 60: 1, # 'c' - 61: 1, # 'd' - 42: 1, # 'e' - 53: 1, # 'i' - 56: 1, # 'l' - 54: 1, # 'n' - 49: 0, # 'o' - 51: 1, # 'r' - 43: 2, # 's' - 44: 1, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 0, # 'א' - 8: 0, # 'ב' - 20: 0, # 'ג' - 16: 0, # 'ד' - 3: 0, # 'ה' - 2: 0, # 'ו' - 24: 0, # 'ז' - 14: 0, # 'ח' - 22: 0, # 'ט' - 1: 0, # 'י' - 25: 0, # 'ך' - 15: 0, # 'כ' - 4: 0, # 'ל' - 11: 0, # 'ם' - 6: 0, # 'מ' - 23: 0, # 'ן' - 12: 0, # '× ' - 19: 0, # '×”' - 13: 0, # '×¢' - 26: 0, # '×£' - 18: 0, # 'פ' - 27: 0, # 'ׄ' - 21: 0, # 'צ' - 17: 0, # '×§' - 7: 0, # 'ר' - 10: 0, # 'ש' - 5: 0, # '×Ŗ' - 32: 0, # '–' - 52: 1, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 0, # '…' - }, - 34: { # '\xa0' - 50: 1, # 'a' - 60: 0, # 'c' - 61: 1, # 'd' - 42: 0, # 'e' - 53: 1, # 'i' - 56: 0, # 'l' - 54: 1, # 'n' - 49: 1, # 'o' - 51: 0, # 'r' - 43: 1, # 's' - 44: 1, # 't' - 63: 0, # 'u' - 34: 2, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 2, # 'א' - 8: 1, # 'ב' - 20: 1, # 'ג' - 16: 1, # 'ד' - 3: 1, # 'ה' - 2: 1, # 'ו' - 24: 1, # 'ז' - 14: 1, # 'ח' - 22: 1, # 'ט' - 1: 2, # 'י' - 25: 0, # 'ך' - 15: 1, # 'כ' - 4: 1, # 'ל' - 11: 0, # 'ם' - 6: 2, # 'מ' - 23: 0, # 'ן' - 12: 1, # '× ' - 19: 1, # '×”' - 13: 1, # '×¢' - 26: 0, # '×£' - 18: 1, # 'פ' - 27: 0, # 'ׄ' - 21: 1, # 'צ' - 17: 1, # '×§' - 7: 1, # 'ר' - 10: 1, # 'ש' - 5: 1, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 0, # '…' - }, - 55: { # 'Ā“' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 1, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 1, # 'א' - 8: 0, # 'ב' - 20: 0, # 'ג' - 16: 0, # 'ד' - 3: 1, # 'ה' - 2: 1, # 'ו' - 24: 0, # 'ז' - 14: 0, # 'ח' - 22: 0, # 'ט' - 1: 2, # 'י' - 25: 0, # 'ך' - 15: 0, # 'כ' - 4: 1, # 'ל' - 11: 0, # 'ם' - 6: 1, # 'מ' - 23: 1, # 'ן' - 12: 1, # '× ' - 19: 1, # '×”' - 13: 0, # '×¢' - 26: 0, # '×£' - 18: 0, # 'פ' - 27: 0, # 'ׄ' - 21: 0, # 'צ' - 17: 0, # '×§' - 7: 1, # 'ר' - 10: 1, # 'ש' - 5: 0, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 0, # '…' - }, - 48: { # '¼' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 1, # 'א' - 8: 0, # 'ב' - 20: 0, # 'ג' - 16: 0, # 'ד' - 3: 0, # 'ה' - 2: 1, # 'ו' - 24: 0, # 'ז' - 14: 0, # 'ח' - 22: 0, # 'ט' - 1: 0, # 'י' - 25: 0, # 'ך' - 15: 1, # 'כ' - 4: 1, # 'ל' - 11: 0, # 'ם' - 6: 1, # 'מ' - 23: 0, # 'ן' - 12: 0, # '× ' - 19: 0, # '×”' - 13: 0, # '×¢' - 26: 0, # '×£' - 18: 0, # 'פ' - 27: 0, # 'ׄ' - 21: 0, # 'צ' - 17: 0, # '×§' - 7: 0, # 'ר' - 10: 0, # 'ש' - 5: 0, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 0, # '…' - }, - 39: { # '½' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 0, # 'א' - 8: 0, # 'ב' - 20: 0, # 'ג' - 16: 0, # 'ד' - 3: 0, # 'ה' - 2: 0, # 'ו' - 24: 0, # 'ז' - 14: 0, # 'ח' - 22: 0, # 'ט' - 1: 0, # 'י' - 25: 0, # 'ך' - 15: 1, # 'כ' - 4: 1, # 'ל' - 11: 0, # 'ם' - 6: 0, # 'מ' - 23: 0, # 'ן' - 12: 0, # '× ' - 19: 0, # '×”' - 13: 0, # '×¢' - 26: 0, # '×£' - 18: 0, # 'פ' - 27: 0, # 'ׄ' - 21: 1, # 'צ' - 17: 1, # '×§' - 7: 0, # 'ר' - 10: 0, # 'ש' - 5: 0, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 0, # '…' - }, - 57: { # '¾' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 0, # 'א' - 8: 0, # 'ב' - 20: 0, # 'ג' - 16: 0, # 'ד' - 3: 0, # 'ה' - 2: 0, # 'ו' - 24: 0, # 'ז' - 14: 0, # 'ח' - 22: 0, # 'ט' - 1: 0, # 'י' - 25: 0, # 'ך' - 15: 0, # 'כ' - 4: 0, # 'ל' - 11: 0, # 'ם' - 6: 0, # 'מ' - 23: 0, # 'ן' - 12: 0, # '× ' - 19: 0, # '×”' - 13: 0, # '×¢' - 26: 0, # '×£' - 18: 0, # 'פ' - 27: 0, # 'ׄ' - 21: 0, # 'צ' - 17: 0, # '×§' - 7: 0, # 'ר' - 10: 0, # 'ש' - 5: 0, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 0, # '…' - }, - 30: { # 'Ö°' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 1, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 1, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 2, # 'א' - 8: 2, # 'ב' - 20: 2, # 'ג' - 16: 2, # 'ד' - 3: 2, # 'ה' - 2: 2, # 'ו' - 24: 2, # 'ז' - 14: 2, # 'ח' - 22: 2, # 'ט' - 1: 2, # 'י' - 25: 2, # 'ך' - 15: 2, # 'כ' - 4: 2, # 'ל' - 11: 1, # 'ם' - 6: 2, # 'מ' - 23: 0, # 'ן' - 12: 2, # '× ' - 19: 2, # '×”' - 13: 2, # '×¢' - 26: 0, # '×£' - 18: 2, # 'פ' - 27: 0, # 'ׄ' - 21: 2, # 'צ' - 17: 2, # '×§' - 7: 2, # 'ר' - 10: 2, # 'ש' - 5: 2, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 0, # '…' - }, - 59: { # 'Ö±' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 1, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 0, # 'א' - 8: 1, # 'ב' - 20: 1, # 'ג' - 16: 0, # 'ד' - 3: 0, # 'ה' - 2: 0, # 'ו' - 24: 1, # 'ז' - 14: 0, # 'ח' - 22: 0, # 'ט' - 1: 1, # 'י' - 25: 0, # 'ך' - 15: 1, # 'כ' - 4: 2, # 'ל' - 11: 0, # 'ם' - 6: 2, # 'מ' - 23: 0, # 'ן' - 12: 1, # '× ' - 19: 0, # '×”' - 13: 0, # '×¢' - 26: 0, # '×£' - 18: 0, # 'פ' - 27: 0, # 'ׄ' - 21: 0, # 'צ' - 17: 0, # '×§' - 7: 1, # 'ר' - 10: 1, # 'ש' - 5: 0, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 0, # '…' - }, - 41: { # 'Ö²' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 0, # 'א' - 8: 2, # 'ב' - 20: 1, # 'ג' - 16: 2, # 'ד' - 3: 1, # 'ה' - 2: 1, # 'ו' - 24: 1, # 'ז' - 14: 1, # 'ח' - 22: 1, # 'ט' - 1: 1, # 'י' - 25: 1, # 'ך' - 15: 1, # 'כ' - 4: 2, # 'ל' - 11: 0, # 'ם' - 6: 2, # 'מ' - 23: 0, # 'ן' - 12: 2, # '× ' - 19: 1, # '×”' - 13: 0, # '×¢' - 26: 0, # '×£' - 18: 1, # 'פ' - 27: 0, # 'ׄ' - 21: 2, # 'צ' - 17: 1, # '×§' - 7: 2, # 'ר' - 10: 2, # 'ש' - 5: 1, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 0, # '…' - }, - 33: { # 'Ö“' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 1, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 1, # 'Ö“' - 37: 0, # 'Öµ' - 36: 1, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 1, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 1, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 1, # 'א' - 8: 2, # 'ב' - 20: 2, # 'ג' - 16: 2, # 'ד' - 3: 1, # 'ה' - 2: 1, # 'ו' - 24: 2, # 'ז' - 14: 1, # 'ח' - 22: 1, # 'ט' - 1: 3, # 'י' - 25: 1, # 'ך' - 15: 2, # 'כ' - 4: 2, # 'ל' - 11: 2, # 'ם' - 6: 2, # 'מ' - 23: 2, # 'ן' - 12: 2, # '× ' - 19: 2, # '×”' - 13: 1, # '×¢' - 26: 0, # '×£' - 18: 2, # 'פ' - 27: 1, # 'ׄ' - 21: 2, # 'צ' - 17: 2, # '×§' - 7: 2, # 'ר' - 10: 2, # 'ש' - 5: 2, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 0, # '…' - }, - 37: { # 'Öµ' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 1, # 'Ö¶' - 31: 1, # 'Ö·' - 29: 1, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 2, # 'א' - 8: 2, # 'ב' - 20: 1, # 'ג' - 16: 2, # 'ד' - 3: 2, # 'ה' - 2: 1, # 'ו' - 24: 1, # 'ז' - 14: 2, # 'ח' - 22: 1, # 'ט' - 1: 3, # 'י' - 25: 2, # 'ך' - 15: 1, # 'כ' - 4: 2, # 'ל' - 11: 2, # 'ם' - 6: 1, # 'מ' - 23: 2, # 'ן' - 12: 2, # '× ' - 19: 1, # '×”' - 13: 2, # '×¢' - 26: 1, # '×£' - 18: 1, # 'פ' - 27: 1, # 'ׄ' - 21: 1, # 'צ' - 17: 1, # '×§' - 7: 2, # 'ר' - 10: 2, # 'ש' - 5: 2, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 0, # '…' - }, - 36: { # 'Ö¶' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 1, # 'Ö¶' - 31: 1, # 'Ö·' - 29: 1, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 2, # 'א' - 8: 2, # 'ב' - 20: 1, # 'ג' - 16: 2, # 'ד' - 3: 2, # 'ה' - 2: 1, # 'ו' - 24: 1, # 'ז' - 14: 2, # 'ח' - 22: 1, # 'ט' - 1: 2, # 'י' - 25: 2, # 'ך' - 15: 1, # 'כ' - 4: 2, # 'ל' - 11: 2, # 'ם' - 6: 2, # 'מ' - 23: 2, # 'ן' - 12: 2, # '× ' - 19: 2, # '×”' - 13: 1, # '×¢' - 26: 1, # '×£' - 18: 1, # 'פ' - 27: 2, # 'ׄ' - 21: 1, # 'צ' - 17: 1, # '×§' - 7: 2, # 'ר' - 10: 2, # 'ש' - 5: 2, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 0, # '…' - }, - 31: { # 'Ö·' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 1, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 1, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 2, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 2, # 'א' - 8: 2, # 'ב' - 20: 2, # 'ג' - 16: 2, # 'ד' - 3: 2, # 'ה' - 2: 1, # 'ו' - 24: 2, # 'ז' - 14: 2, # 'ח' - 22: 2, # 'ט' - 1: 3, # 'י' - 25: 1, # 'ך' - 15: 2, # 'כ' - 4: 2, # 'ל' - 11: 2, # 'ם' - 6: 2, # 'מ' - 23: 2, # 'ן' - 12: 2, # '× ' - 19: 2, # '×”' - 13: 2, # '×¢' - 26: 2, # '×£' - 18: 2, # 'פ' - 27: 1, # 'ׄ' - 21: 2, # 'צ' - 17: 2, # '×§' - 7: 2, # 'ר' - 10: 2, # 'ש' - 5: 2, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 0, # '…' - }, - 29: { # 'Öø' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 1, # 'Ö·' - 29: 2, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 1, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 2, # 'א' - 8: 2, # 'ב' - 20: 2, # 'ג' - 16: 2, # 'ד' - 3: 3, # 'ה' - 2: 2, # 'ו' - 24: 2, # 'ז' - 14: 2, # 'ח' - 22: 1, # 'ט' - 1: 2, # 'י' - 25: 2, # 'ך' - 15: 2, # 'כ' - 4: 2, # 'ל' - 11: 2, # 'ם' - 6: 2, # 'מ' - 23: 2, # 'ן' - 12: 2, # '× ' - 19: 1, # '×”' - 13: 2, # '×¢' - 26: 1, # '×£' - 18: 2, # 'פ' - 27: 1, # 'ׄ' - 21: 2, # 'צ' - 17: 2, # '×§' - 7: 2, # 'ר' - 10: 2, # 'ש' - 5: 2, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 0, # '…' - }, - 35: { # 'Ö¹' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 1, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 2, # 'א' - 8: 2, # 'ב' - 20: 1, # 'ג' - 16: 2, # 'ד' - 3: 2, # 'ה' - 2: 1, # 'ו' - 24: 1, # 'ז' - 14: 1, # 'ח' - 22: 1, # 'ט' - 1: 1, # 'י' - 25: 1, # 'ך' - 15: 2, # 'כ' - 4: 2, # 'ל' - 11: 2, # 'ם' - 6: 2, # 'מ' - 23: 2, # 'ן' - 12: 2, # '× ' - 19: 2, # '×”' - 13: 2, # '×¢' - 26: 1, # '×£' - 18: 2, # 'פ' - 27: 1, # 'ׄ' - 21: 2, # 'צ' - 17: 2, # '×§' - 7: 2, # 'ר' - 10: 2, # 'ש' - 5: 2, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 0, # '…' - }, - 62: { # 'Ö»' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 0, # 'א' - 8: 1, # 'ב' - 20: 1, # 'ג' - 16: 1, # 'ד' - 3: 1, # 'ה' - 2: 1, # 'ו' - 24: 1, # 'ז' - 14: 1, # 'ח' - 22: 0, # 'ט' - 1: 1, # 'י' - 25: 0, # 'ך' - 15: 1, # 'כ' - 4: 2, # 'ל' - 11: 1, # 'ם' - 6: 1, # 'מ' - 23: 1, # 'ן' - 12: 1, # '× ' - 19: 1, # '×”' - 13: 1, # '×¢' - 26: 0, # '×£' - 18: 1, # 'פ' - 27: 0, # 'ׄ' - 21: 1, # 'צ' - 17: 1, # '×§' - 7: 1, # 'ר' - 10: 1, # 'ש' - 5: 1, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 0, # '…' - }, - 28: { # 'Ö¼' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 3, # 'Ö°' - 59: 0, # 'Ö±' - 41: 1, # 'Ö²' - 33: 3, # 'Ö“' - 37: 2, # 'Öµ' - 36: 2, # 'Ö¶' - 31: 3, # 'Ö·' - 29: 3, # 'Öø' - 35: 2, # 'Ö¹' - 62: 1, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 2, # 'ׁ' - 45: 1, # 'ׂ' - 9: 2, # 'א' - 8: 2, # 'ב' - 20: 1, # 'ג' - 16: 2, # 'ד' - 3: 1, # 'ה' - 2: 2, # 'ו' - 24: 1, # 'ז' - 14: 1, # 'ח' - 22: 1, # 'ט' - 1: 2, # 'י' - 25: 2, # 'ך' - 15: 2, # 'כ' - 4: 2, # 'ל' - 11: 1, # 'ם' - 6: 2, # 'מ' - 23: 1, # 'ן' - 12: 2, # '× ' - 19: 1, # '×”' - 13: 2, # '×¢' - 26: 1, # '×£' - 18: 1, # 'פ' - 27: 1, # 'ׄ' - 21: 1, # 'צ' - 17: 1, # '×§' - 7: 2, # 'ר' - 10: 2, # 'ש' - 5: 2, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 0, # '…' - }, - 38: { # 'ׁ' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 2, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 2, # 'Ö“' - 37: 2, # 'Öµ' - 36: 2, # 'Ö¶' - 31: 2, # 'Ö·' - 29: 2, # 'Öø' - 35: 1, # 'Ö¹' - 62: 1, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 0, # 'א' - 8: 0, # 'ב' - 20: 0, # 'ג' - 16: 0, # 'ד' - 3: 0, # 'ה' - 2: 2, # 'ו' - 24: 0, # 'ז' - 14: 0, # 'ח' - 22: 0, # 'ט' - 1: 1, # 'י' - 25: 0, # 'ך' - 15: 0, # 'כ' - 4: 0, # 'ל' - 11: 0, # 'ם' - 6: 0, # 'מ' - 23: 0, # 'ן' - 12: 0, # '× ' - 19: 0, # '×”' - 13: 1, # '×¢' - 26: 0, # '×£' - 18: 0, # 'פ' - 27: 0, # 'ׄ' - 21: 0, # 'צ' - 17: 0, # '×§' - 7: 0, # 'ר' - 10: 0, # 'ש' - 5: 0, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 0, # '…' - }, - 45: { # 'ׂ' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 2, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 2, # 'Ö“' - 37: 1, # 'Öµ' - 36: 2, # 'Ö¶' - 31: 1, # 'Ö·' - 29: 2, # 'Öø' - 35: 1, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 1, # 'א' - 8: 0, # 'ב' - 20: 1, # 'ג' - 16: 0, # 'ד' - 3: 1, # 'ה' - 2: 2, # 'ו' - 24: 0, # 'ז' - 14: 1, # 'ח' - 22: 0, # 'ט' - 1: 1, # 'י' - 25: 0, # 'ך' - 15: 0, # 'כ' - 4: 0, # 'ל' - 11: 1, # 'ם' - 6: 1, # 'מ' - 23: 0, # 'ן' - 12: 1, # '× ' - 19: 0, # '×”' - 13: 1, # '×¢' - 26: 0, # '×£' - 18: 1, # 'פ' - 27: 0, # 'ׄ' - 21: 0, # 'צ' - 17: 0, # '×§' - 7: 1, # 'ר' - 10: 0, # 'ש' - 5: 1, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 0, # '…' - }, - 9: { # 'א' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 1, # '\xa0' - 55: 1, # 'Ā“' - 48: 1, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 2, # 'Ö±' - 41: 2, # 'Ö²' - 33: 2, # 'Ö“' - 37: 2, # 'Öµ' - 36: 2, # 'Ö¶' - 31: 2, # 'Ö·' - 29: 2, # 'Öø' - 35: 2, # 'Ö¹' - 62: 1, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 2, # 'א' - 8: 3, # 'ב' - 20: 3, # 'ג' - 16: 3, # 'ד' - 3: 3, # 'ה' - 2: 3, # 'ו' - 24: 3, # 'ז' - 14: 3, # 'ח' - 22: 3, # 'ט' - 1: 3, # 'י' - 25: 3, # 'ך' - 15: 3, # 'כ' - 4: 3, # 'ל' - 11: 3, # 'ם' - 6: 3, # 'מ' - 23: 3, # 'ן' - 12: 3, # '× ' - 19: 3, # '×”' - 13: 2, # '×¢' - 26: 3, # '×£' - 18: 3, # 'פ' - 27: 1, # 'ׄ' - 21: 3, # 'צ' - 17: 3, # '×§' - 7: 3, # 'ר' - 10: 3, # 'ש' - 5: 3, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 1, # 'ā€' - 58: 0, # '†' - 40: 1, # '…' - }, - 8: { # 'ב' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 1, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 1, # '\xa0' - 55: 1, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 2, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 2, # 'Ö“' - 37: 2, # 'Öµ' - 36: 2, # 'Ö¶' - 31: 2, # 'Ö·' - 29: 2, # 'Öø' - 35: 2, # 'Ö¹' - 62: 1, # 'Ö»' - 28: 3, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 3, # 'א' - 8: 3, # 'ב' - 20: 3, # 'ג' - 16: 3, # 'ד' - 3: 3, # 'ה' - 2: 3, # 'ו' - 24: 3, # 'ז' - 14: 3, # 'ח' - 22: 3, # 'ט' - 1: 3, # 'י' - 25: 2, # 'ך' - 15: 3, # 'כ' - 4: 3, # 'ל' - 11: 2, # 'ם' - 6: 3, # 'מ' - 23: 3, # 'ן' - 12: 3, # '× ' - 19: 3, # '×”' - 13: 3, # '×¢' - 26: 1, # '×£' - 18: 3, # 'פ' - 27: 2, # 'ׄ' - 21: 3, # 'צ' - 17: 3, # '×§' - 7: 3, # 'ר' - 10: 3, # 'ש' - 5: 3, # '×Ŗ' - 32: 1, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 1, # 'ā€' - 58: 0, # '†' - 40: 1, # '…' - }, - 20: { # 'ג' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 1, # '\xa0' - 55: 2, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 2, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 1, # 'Ö“' - 37: 1, # 'Öµ' - 36: 1, # 'Ö¶' - 31: 2, # 'Ö·' - 29: 2, # 'Öø' - 35: 1, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 2, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 2, # 'א' - 8: 3, # 'ב' - 20: 2, # 'ג' - 16: 3, # 'ד' - 3: 3, # 'ה' - 2: 3, # 'ו' - 24: 3, # 'ז' - 14: 2, # 'ח' - 22: 2, # 'ט' - 1: 3, # 'י' - 25: 1, # 'ך' - 15: 1, # 'כ' - 4: 3, # 'ל' - 11: 3, # 'ם' - 6: 3, # 'מ' - 23: 3, # 'ן' - 12: 3, # '× ' - 19: 2, # '×”' - 13: 3, # '×¢' - 26: 2, # '×£' - 18: 2, # 'פ' - 27: 1, # 'ׄ' - 21: 1, # 'צ' - 17: 1, # '×§' - 7: 3, # 'ר' - 10: 3, # 'ש' - 5: 3, # '×Ŗ' - 32: 0, # '–' - 52: 1, # '’' - 47: 0, # 'ā€œ' - 46: 1, # 'ā€' - 58: 0, # '†' - 40: 0, # '…' - }, - 16: { # 'ד' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 2, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 2, # 'Ö“' - 37: 2, # 'Öµ' - 36: 2, # 'Ö¶' - 31: 2, # 'Ö·' - 29: 2, # 'Öø' - 35: 2, # 'Ö¹' - 62: 1, # 'Ö»' - 28: 2, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 3, # 'א' - 8: 3, # 'ב' - 20: 3, # 'ג' - 16: 3, # 'ד' - 3: 3, # 'ה' - 2: 3, # 'ו' - 24: 1, # 'ז' - 14: 2, # 'ח' - 22: 2, # 'ט' - 1: 3, # 'י' - 25: 2, # 'ך' - 15: 2, # 'כ' - 4: 3, # 'ל' - 11: 3, # 'ם' - 6: 3, # 'מ' - 23: 2, # 'ן' - 12: 3, # '× ' - 19: 2, # '×”' - 13: 3, # '×¢' - 26: 2, # '×£' - 18: 3, # 'פ' - 27: 0, # 'ׄ' - 21: 2, # 'צ' - 17: 3, # '×§' - 7: 3, # 'ר' - 10: 3, # 'ש' - 5: 3, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 1, # 'ā€' - 58: 0, # '†' - 40: 1, # '…' - }, - 3: { # 'ה' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 1, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 1, # '\xa0' - 55: 0, # 'Ā“' - 48: 1, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 1, # 'Ö°' - 59: 1, # 'Ö±' - 41: 2, # 'Ö²' - 33: 2, # 'Ö“' - 37: 2, # 'Öµ' - 36: 2, # 'Ö¶' - 31: 3, # 'Ö·' - 29: 2, # 'Öø' - 35: 1, # 'Ö¹' - 62: 1, # 'Ö»' - 28: 2, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 3, # 'א' - 8: 3, # 'ב' - 20: 3, # 'ג' - 16: 3, # 'ד' - 3: 3, # 'ה' - 2: 3, # 'ו' - 24: 3, # 'ז' - 14: 3, # 'ח' - 22: 3, # 'ט' - 1: 3, # 'י' - 25: 1, # 'ך' - 15: 3, # 'כ' - 4: 3, # 'ל' - 11: 3, # 'ם' - 6: 3, # 'מ' - 23: 3, # 'ן' - 12: 3, # '× ' - 19: 3, # '×”' - 13: 3, # '×¢' - 26: 0, # '×£' - 18: 3, # 'פ' - 27: 1, # 'ׄ' - 21: 3, # 'צ' - 17: 3, # '×§' - 7: 3, # 'ר' - 10: 3, # 'ש' - 5: 3, # '×Ŗ' - 32: 1, # '–' - 52: 1, # '’' - 47: 0, # 'ā€œ' - 46: 1, # 'ā€' - 58: 0, # '†' - 40: 2, # '…' - }, - 2: { # 'ו' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 1, # 't' - 63: 0, # 'u' - 34: 1, # '\xa0' - 55: 1, # 'Ā“' - 48: 1, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 2, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 2, # 'Ö“' - 37: 1, # 'Öµ' - 36: 1, # 'Ö¶' - 31: 2, # 'Ö·' - 29: 2, # 'Öø' - 35: 3, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 3, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 3, # 'א' - 8: 3, # 'ב' - 20: 3, # 'ג' - 16: 3, # 'ד' - 3: 3, # 'ה' - 2: 3, # 'ו' - 24: 3, # 'ז' - 14: 3, # 'ח' - 22: 3, # 'ט' - 1: 3, # 'י' - 25: 3, # 'ך' - 15: 3, # 'כ' - 4: 3, # 'ל' - 11: 3, # 'ם' - 6: 3, # 'מ' - 23: 3, # 'ן' - 12: 3, # '× ' - 19: 3, # '×”' - 13: 3, # '×¢' - 26: 3, # '×£' - 18: 3, # 'פ' - 27: 3, # 'ׄ' - 21: 3, # 'צ' - 17: 3, # '×§' - 7: 3, # 'ר' - 10: 3, # 'ש' - 5: 3, # '×Ŗ' - 32: 1, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 1, # 'ā€' - 58: 0, # '†' - 40: 2, # '…' - }, - 24: { # 'ז' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 1, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 2, # 'Ö°' - 59: 0, # 'Ö±' - 41: 1, # 'Ö²' - 33: 1, # 'Ö“' - 37: 2, # 'Öµ' - 36: 2, # 'Ö¶' - 31: 2, # 'Ö·' - 29: 2, # 'Öø' - 35: 1, # 'Ö¹' - 62: 1, # 'Ö»' - 28: 2, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 3, # 'א' - 8: 2, # 'ב' - 20: 2, # 'ג' - 16: 2, # 'ד' - 3: 3, # 'ה' - 2: 3, # 'ו' - 24: 2, # 'ז' - 14: 2, # 'ח' - 22: 1, # 'ט' - 1: 3, # 'י' - 25: 1, # 'ך' - 15: 3, # 'כ' - 4: 3, # 'ל' - 11: 2, # 'ם' - 6: 3, # 'מ' - 23: 2, # 'ן' - 12: 2, # '× ' - 19: 1, # '×”' - 13: 2, # '×¢' - 26: 1, # '×£' - 18: 1, # 'פ' - 27: 0, # 'ׄ' - 21: 2, # 'צ' - 17: 3, # '×§' - 7: 3, # 'ר' - 10: 1, # 'ש' - 5: 2, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 1, # '…' - }, - 14: { # 'ח' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 1, # '\xa0' - 55: 1, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 2, # 'Ö°' - 59: 1, # 'Ö±' - 41: 2, # 'Ö²' - 33: 2, # 'Ö“' - 37: 2, # 'Öµ' - 36: 2, # 'Ö¶' - 31: 2, # 'Ö·' - 29: 2, # 'Öø' - 35: 2, # 'Ö¹' - 62: 1, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 2, # 'א' - 8: 3, # 'ב' - 20: 2, # 'ג' - 16: 3, # 'ד' - 3: 3, # 'ה' - 2: 3, # 'ו' - 24: 3, # 'ז' - 14: 2, # 'ח' - 22: 2, # 'ט' - 1: 3, # 'י' - 25: 1, # 'ך' - 15: 2, # 'כ' - 4: 3, # 'ל' - 11: 3, # 'ם' - 6: 3, # 'מ' - 23: 2, # 'ן' - 12: 3, # '× ' - 19: 3, # '×”' - 13: 1, # '×¢' - 26: 2, # '×£' - 18: 2, # 'פ' - 27: 2, # 'ׄ' - 21: 3, # 'צ' - 17: 3, # '×§' - 7: 3, # 'ר' - 10: 3, # 'ש' - 5: 3, # '×Ŗ' - 32: 0, # '–' - 52: 1, # '’' - 47: 0, # 'ā€œ' - 46: 1, # 'ā€' - 58: 0, # '†' - 40: 1, # '…' - }, - 22: { # 'ט' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 1, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 2, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 2, # 'Ö“' - 37: 1, # 'Öµ' - 36: 1, # 'Ö¶' - 31: 2, # 'Ö·' - 29: 1, # 'Öø' - 35: 1, # 'Ö¹' - 62: 1, # 'Ö»' - 28: 1, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 3, # 'א' - 8: 3, # 'ב' - 20: 3, # 'ג' - 16: 1, # 'ד' - 3: 3, # 'ה' - 2: 3, # 'ו' - 24: 2, # 'ז' - 14: 3, # 'ח' - 22: 2, # 'ט' - 1: 3, # 'י' - 25: 1, # 'ך' - 15: 2, # 'כ' - 4: 3, # 'ל' - 11: 2, # 'ם' - 6: 2, # 'מ' - 23: 2, # 'ן' - 12: 3, # '× ' - 19: 2, # '×”' - 13: 3, # '×¢' - 26: 2, # '×£' - 18: 3, # 'פ' - 27: 1, # 'ׄ' - 21: 2, # 'צ' - 17: 2, # '×§' - 7: 3, # 'ר' - 10: 2, # 'ש' - 5: 3, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 1, # '…' - }, - 1: { # 'י' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 1, # '\xa0' - 55: 1, # 'Ā“' - 48: 1, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 2, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 2, # 'Ö“' - 37: 2, # 'Öµ' - 36: 1, # 'Ö¶' - 31: 2, # 'Ö·' - 29: 2, # 'Öø' - 35: 2, # 'Ö¹' - 62: 1, # 'Ö»' - 28: 2, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 3, # 'א' - 8: 3, # 'ב' - 20: 3, # 'ג' - 16: 3, # 'ד' - 3: 3, # 'ה' - 2: 3, # 'ו' - 24: 3, # 'ז' - 14: 3, # 'ח' - 22: 3, # 'ט' - 1: 3, # 'י' - 25: 3, # 'ך' - 15: 3, # 'כ' - 4: 3, # 'ל' - 11: 3, # 'ם' - 6: 3, # 'מ' - 23: 3, # 'ן' - 12: 3, # '× ' - 19: 3, # '×”' - 13: 3, # '×¢' - 26: 3, # '×£' - 18: 3, # 'פ' - 27: 3, # 'ׄ' - 21: 3, # 'צ' - 17: 3, # '×§' - 7: 3, # 'ר' - 10: 3, # 'ש' - 5: 3, # '×Ŗ' - 32: 1, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 1, # 'ā€' - 58: 0, # '†' - 40: 2, # '…' - }, - 25: { # 'ך' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 2, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 2, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 1, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 1, # 'א' - 8: 0, # 'ב' - 20: 0, # 'ג' - 16: 0, # 'ד' - 3: 1, # 'ה' - 2: 0, # 'ו' - 24: 0, # 'ז' - 14: 1, # 'ח' - 22: 0, # 'ט' - 1: 0, # 'י' - 25: 0, # 'ך' - 15: 0, # 'כ' - 4: 1, # 'ל' - 11: 0, # 'ם' - 6: 1, # 'מ' - 23: 0, # 'ן' - 12: 0, # '× ' - 19: 0, # '×”' - 13: 0, # '×¢' - 26: 0, # '×£' - 18: 0, # 'פ' - 27: 0, # 'ׄ' - 21: 0, # 'צ' - 17: 0, # '×§' - 7: 0, # 'ר' - 10: 1, # 'ש' - 5: 0, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 1, # '…' - }, - 15: { # 'כ' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 2, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 2, # 'Ö“' - 37: 2, # 'Öµ' - 36: 2, # 'Ö¶' - 31: 2, # 'Ö·' - 29: 2, # 'Öø' - 35: 1, # 'Ö¹' - 62: 1, # 'Ö»' - 28: 3, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 3, # 'א' - 8: 3, # 'ב' - 20: 2, # 'ג' - 16: 3, # 'ד' - 3: 3, # 'ה' - 2: 3, # 'ו' - 24: 3, # 'ז' - 14: 3, # 'ח' - 22: 2, # 'ט' - 1: 3, # 'י' - 25: 3, # 'ך' - 15: 3, # 'כ' - 4: 3, # 'ל' - 11: 3, # 'ם' - 6: 3, # 'מ' - 23: 3, # 'ן' - 12: 3, # '× ' - 19: 3, # '×”' - 13: 2, # '×¢' - 26: 3, # '×£' - 18: 3, # 'פ' - 27: 1, # 'ׄ' - 21: 2, # 'צ' - 17: 2, # '×§' - 7: 3, # 'ר' - 10: 3, # 'ש' - 5: 3, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 0, # '…' - }, - 4: { # 'ל' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 1, # '\xa0' - 55: 1, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 3, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 2, # 'Ö“' - 37: 2, # 'Öµ' - 36: 2, # 'Ö¶' - 31: 2, # 'Ö·' - 29: 2, # 'Öø' - 35: 2, # 'Ö¹' - 62: 1, # 'Ö»' - 28: 2, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 3, # 'א' - 8: 3, # 'ב' - 20: 3, # 'ג' - 16: 3, # 'ד' - 3: 3, # 'ה' - 2: 3, # 'ו' - 24: 3, # 'ז' - 14: 3, # 'ח' - 22: 3, # 'ט' - 1: 3, # 'י' - 25: 3, # 'ך' - 15: 3, # 'כ' - 4: 3, # 'ל' - 11: 3, # 'ם' - 6: 3, # 'מ' - 23: 2, # 'ן' - 12: 3, # '× ' - 19: 3, # '×”' - 13: 3, # '×¢' - 26: 2, # '×£' - 18: 3, # 'פ' - 27: 2, # 'ׄ' - 21: 3, # 'צ' - 17: 3, # '×§' - 7: 3, # 'ר' - 10: 3, # 'ש' - 5: 3, # '×Ŗ' - 32: 1, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 1, # 'ā€' - 58: 0, # '†' - 40: 1, # '…' - }, - 11: { # 'ם' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 1, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 1, # 'א' - 8: 1, # 'ב' - 20: 1, # 'ג' - 16: 0, # 'ד' - 3: 1, # 'ה' - 2: 1, # 'ו' - 24: 1, # 'ז' - 14: 1, # 'ח' - 22: 0, # 'ט' - 1: 1, # 'י' - 25: 0, # 'ך' - 15: 1, # 'כ' - 4: 1, # 'ל' - 11: 1, # 'ם' - 6: 1, # 'מ' - 23: 0, # 'ן' - 12: 1, # '× ' - 19: 0, # '×”' - 13: 1, # '×¢' - 26: 0, # '×£' - 18: 1, # 'פ' - 27: 1, # 'ׄ' - 21: 1, # 'צ' - 17: 1, # '×§' - 7: 1, # 'ר' - 10: 1, # 'ש' - 5: 1, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 1, # 'ā€' - 58: 0, # '†' - 40: 2, # '…' - }, - 6: { # 'מ' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 1, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 2, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 2, # 'Ö“' - 37: 2, # 'Öµ' - 36: 2, # 'Ö¶' - 31: 2, # 'Ö·' - 29: 2, # 'Öø' - 35: 2, # 'Ö¹' - 62: 1, # 'Ö»' - 28: 2, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 3, # 'א' - 8: 3, # 'ב' - 20: 3, # 'ג' - 16: 3, # 'ד' - 3: 3, # 'ה' - 2: 3, # 'ו' - 24: 3, # 'ז' - 14: 3, # 'ח' - 22: 3, # 'ט' - 1: 3, # 'י' - 25: 2, # 'ך' - 15: 3, # 'כ' - 4: 3, # 'ל' - 11: 3, # 'ם' - 6: 3, # 'מ' - 23: 3, # 'ן' - 12: 3, # '× ' - 19: 3, # '×”' - 13: 3, # '×¢' - 26: 0, # '×£' - 18: 3, # 'פ' - 27: 2, # 'ׄ' - 21: 3, # 'צ' - 17: 3, # '×§' - 7: 3, # 'ר' - 10: 3, # 'ש' - 5: 3, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 1, # '…' - }, - 23: { # 'ן' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 1, # '\xa0' - 55: 0, # 'Ā“' - 48: 1, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 1, # 'א' - 8: 1, # 'ב' - 20: 1, # 'ג' - 16: 1, # 'ד' - 3: 1, # 'ה' - 2: 1, # 'ו' - 24: 0, # 'ז' - 14: 1, # 'ח' - 22: 1, # 'ט' - 1: 1, # 'י' - 25: 0, # 'ך' - 15: 1, # 'כ' - 4: 1, # 'ל' - 11: 1, # 'ם' - 6: 1, # 'מ' - 23: 0, # 'ן' - 12: 1, # '× ' - 19: 1, # '×”' - 13: 1, # '×¢' - 26: 1, # '×£' - 18: 1, # 'פ' - 27: 0, # 'ׄ' - 21: 0, # 'צ' - 17: 1, # '×§' - 7: 1, # 'ר' - 10: 1, # 'ש' - 5: 1, # '×Ŗ' - 32: 1, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 1, # 'ā€' - 58: 0, # '†' - 40: 2, # '…' - }, - 12: { # '× ' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 2, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 2, # 'Ö“' - 37: 2, # 'Öµ' - 36: 2, # 'Ö¶' - 31: 2, # 'Ö·' - 29: 2, # 'Öø' - 35: 1, # 'Ö¹' - 62: 1, # 'Ö»' - 28: 2, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 3, # 'א' - 8: 3, # 'ב' - 20: 3, # 'ג' - 16: 3, # 'ד' - 3: 3, # 'ה' - 2: 3, # 'ו' - 24: 3, # 'ז' - 14: 3, # 'ח' - 22: 3, # 'ט' - 1: 3, # 'י' - 25: 2, # 'ך' - 15: 3, # 'כ' - 4: 3, # 'ל' - 11: 3, # 'ם' - 6: 3, # 'מ' - 23: 3, # 'ן' - 12: 3, # '× ' - 19: 3, # '×”' - 13: 3, # '×¢' - 26: 2, # '×£' - 18: 3, # 'פ' - 27: 2, # 'ׄ' - 21: 3, # 'צ' - 17: 3, # '×§' - 7: 3, # 'ר' - 10: 3, # 'ש' - 5: 3, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 0, # '…' - }, - 19: { # '×”' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 1, # '\xa0' - 55: 1, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 2, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 2, # 'Ö“' - 37: 1, # 'Öµ' - 36: 2, # 'Ö¶' - 31: 2, # 'Ö·' - 29: 1, # 'Öø' - 35: 1, # 'Ö¹' - 62: 2, # 'Ö»' - 28: 2, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 2, # 'א' - 8: 3, # 'ב' - 20: 3, # 'ג' - 16: 3, # 'ד' - 3: 3, # 'ה' - 2: 3, # 'ו' - 24: 1, # 'ז' - 14: 3, # 'ח' - 22: 3, # 'ט' - 1: 3, # 'י' - 25: 2, # 'ך' - 15: 3, # 'כ' - 4: 3, # 'ל' - 11: 2, # 'ם' - 6: 3, # 'מ' - 23: 2, # 'ן' - 12: 3, # '× ' - 19: 2, # '×”' - 13: 3, # '×¢' - 26: 3, # '×£' - 18: 3, # 'פ' - 27: 0, # 'ׄ' - 21: 2, # 'צ' - 17: 3, # '×§' - 7: 3, # 'ר' - 10: 1, # 'ש' - 5: 3, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 1, # 'ā€' - 58: 0, # '†' - 40: 1, # '…' - }, - 13: { # '×¢' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 1, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 1, # 'Ö°' - 59: 1, # 'Ö±' - 41: 2, # 'Ö²' - 33: 2, # 'Ö“' - 37: 2, # 'Öµ' - 36: 2, # 'Ö¶' - 31: 2, # 'Ö·' - 29: 2, # 'Öø' - 35: 2, # 'Ö¹' - 62: 1, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 2, # 'א' - 8: 3, # 'ב' - 20: 3, # 'ג' - 16: 3, # 'ד' - 3: 3, # 'ה' - 2: 3, # 'ו' - 24: 3, # 'ז' - 14: 1, # 'ח' - 22: 3, # 'ט' - 1: 3, # 'י' - 25: 2, # 'ך' - 15: 2, # 'כ' - 4: 3, # 'ל' - 11: 3, # 'ם' - 6: 3, # 'מ' - 23: 2, # 'ן' - 12: 3, # '× ' - 19: 3, # '×”' - 13: 2, # '×¢' - 26: 1, # '×£' - 18: 2, # 'פ' - 27: 2, # 'ׄ' - 21: 3, # 'צ' - 17: 3, # '×§' - 7: 3, # 'ר' - 10: 3, # 'ש' - 5: 3, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 1, # 'ā€' - 58: 0, # '†' - 40: 1, # '…' - }, - 26: { # '×£' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 1, # 'א' - 8: 0, # 'ב' - 20: 0, # 'ג' - 16: 0, # 'ד' - 3: 0, # 'ה' - 2: 1, # 'ו' - 24: 0, # 'ז' - 14: 1, # 'ח' - 22: 0, # 'ט' - 1: 0, # 'י' - 25: 0, # 'ך' - 15: 1, # 'כ' - 4: 1, # 'ל' - 11: 0, # 'ם' - 6: 1, # 'מ' - 23: 0, # 'ן' - 12: 0, # '× ' - 19: 1, # '×”' - 13: 0, # '×¢' - 26: 1, # '×£' - 18: 1, # 'פ' - 27: 0, # 'ׄ' - 21: 0, # 'צ' - 17: 1, # '×§' - 7: 1, # 'ר' - 10: 1, # 'ש' - 5: 0, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 1, # '…' - }, - 18: { # 'פ' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 1, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 2, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 2, # 'Ö“' - 37: 1, # 'Öµ' - 36: 2, # 'Ö¶' - 31: 1, # 'Ö·' - 29: 2, # 'Öø' - 35: 1, # 'Ö¹' - 62: 1, # 'Ö»' - 28: 2, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 3, # 'א' - 8: 2, # 'ב' - 20: 3, # 'ג' - 16: 2, # 'ד' - 3: 3, # 'ה' - 2: 3, # 'ו' - 24: 2, # 'ז' - 14: 3, # 'ח' - 22: 3, # 'ט' - 1: 3, # 'י' - 25: 2, # 'ך' - 15: 3, # 'כ' - 4: 3, # 'ל' - 11: 2, # 'ם' - 6: 2, # 'מ' - 23: 3, # 'ן' - 12: 3, # '× ' - 19: 3, # '×”' - 13: 3, # '×¢' - 26: 2, # '×£' - 18: 2, # 'פ' - 27: 2, # 'ׄ' - 21: 3, # 'צ' - 17: 3, # '×§' - 7: 3, # 'ר' - 10: 3, # 'ש' - 5: 3, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 1, # 'ā€' - 58: 0, # '†' - 40: 0, # '…' - }, - 27: { # 'ׄ' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 1, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 1, # 'א' - 8: 0, # 'ב' - 20: 0, # 'ג' - 16: 0, # 'ד' - 3: 0, # 'ה' - 2: 0, # 'ו' - 24: 0, # 'ז' - 14: 0, # 'ח' - 22: 0, # 'ט' - 1: 0, # 'י' - 25: 0, # 'ך' - 15: 0, # 'כ' - 4: 1, # 'ל' - 11: 0, # 'ם' - 6: 0, # 'מ' - 23: 0, # 'ן' - 12: 0, # '× ' - 19: 1, # '×”' - 13: 0, # '×¢' - 26: 0, # '×£' - 18: 0, # 'פ' - 27: 0, # 'ׄ' - 21: 0, # 'צ' - 17: 0, # '×§' - 7: 1, # 'ר' - 10: 0, # 'ש' - 5: 1, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 1, # '…' - }, - 21: { # 'צ' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 1, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 2, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 2, # 'Ö“' - 37: 2, # 'Öµ' - 36: 1, # 'Ö¶' - 31: 2, # 'Ö·' - 29: 2, # 'Öø' - 35: 1, # 'Ö¹' - 62: 1, # 'Ö»' - 28: 2, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 3, # 'א' - 8: 3, # 'ב' - 20: 2, # 'ג' - 16: 3, # 'ד' - 3: 3, # 'ה' - 2: 3, # 'ו' - 24: 1, # 'ז' - 14: 3, # 'ח' - 22: 2, # 'ט' - 1: 3, # 'י' - 25: 1, # 'ך' - 15: 1, # 'כ' - 4: 3, # 'ל' - 11: 2, # 'ם' - 6: 3, # 'מ' - 23: 2, # 'ן' - 12: 3, # '× ' - 19: 1, # '×”' - 13: 3, # '×¢' - 26: 2, # '×£' - 18: 3, # 'פ' - 27: 2, # 'ׄ' - 21: 2, # 'צ' - 17: 3, # '×§' - 7: 3, # 'ר' - 10: 0, # 'ש' - 5: 3, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 0, # '…' - }, - 17: { # '×§' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 1, # '\xa0' - 55: 1, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 2, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 2, # 'Ö“' - 37: 2, # 'Öµ' - 36: 1, # 'Ö¶' - 31: 2, # 'Ö·' - 29: 2, # 'Öø' - 35: 2, # 'Ö¹' - 62: 1, # 'Ö»' - 28: 2, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 3, # 'א' - 8: 3, # 'ב' - 20: 2, # 'ג' - 16: 3, # 'ד' - 3: 3, # 'ה' - 2: 3, # 'ו' - 24: 2, # 'ז' - 14: 3, # 'ח' - 22: 3, # 'ט' - 1: 3, # 'י' - 25: 1, # 'ך' - 15: 1, # 'כ' - 4: 3, # 'ל' - 11: 2, # 'ם' - 6: 3, # 'מ' - 23: 2, # 'ן' - 12: 3, # '× ' - 19: 3, # '×”' - 13: 3, # '×¢' - 26: 2, # '×£' - 18: 3, # 'פ' - 27: 2, # 'ׄ' - 21: 3, # 'צ' - 17: 2, # '×§' - 7: 3, # 'ר' - 10: 3, # 'ש' - 5: 3, # '×Ŗ' - 32: 0, # '–' - 52: 1, # '’' - 47: 0, # 'ā€œ' - 46: 1, # 'ā€' - 58: 0, # '†' - 40: 1, # '…' - }, - 7: { # 'ר' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 1, # '\xa0' - 55: 2, # 'Ā“' - 48: 1, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 2, # 'Ö°' - 59: 0, # 'Ö±' - 41: 1, # 'Ö²' - 33: 2, # 'Ö“' - 37: 2, # 'Öµ' - 36: 2, # 'Ö¶' - 31: 2, # 'Ö·' - 29: 2, # 'Öø' - 35: 2, # 'Ö¹' - 62: 1, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 3, # 'א' - 8: 3, # 'ב' - 20: 3, # 'ג' - 16: 3, # 'ד' - 3: 3, # 'ה' - 2: 3, # 'ו' - 24: 3, # 'ז' - 14: 3, # 'ח' - 22: 3, # 'ט' - 1: 3, # 'י' - 25: 3, # 'ך' - 15: 3, # 'כ' - 4: 3, # 'ל' - 11: 3, # 'ם' - 6: 3, # 'מ' - 23: 3, # 'ן' - 12: 3, # '× ' - 19: 3, # '×”' - 13: 3, # '×¢' - 26: 2, # '×£' - 18: 3, # 'פ' - 27: 3, # 'ׄ' - 21: 3, # 'צ' - 17: 3, # '×§' - 7: 3, # 'ר' - 10: 3, # 'ש' - 5: 3, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 1, # 'ā€' - 58: 0, # '†' - 40: 2, # '…' - }, - 10: { # 'ש' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 1, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 1, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 1, # 'Ö“' - 37: 1, # 'Öµ' - 36: 1, # 'Ö¶' - 31: 1, # 'Ö·' - 29: 1, # 'Öø' - 35: 1, # 'Ö¹' - 62: 1, # 'Ö»' - 28: 2, # 'Ö¼' - 38: 3, # 'ׁ' - 45: 2, # 'ׂ' - 9: 3, # 'א' - 8: 3, # 'ב' - 20: 3, # 'ג' - 16: 3, # 'ד' - 3: 3, # 'ה' - 2: 3, # 'ו' - 24: 2, # 'ז' - 14: 3, # 'ח' - 22: 3, # 'ט' - 1: 3, # 'י' - 25: 3, # 'ך' - 15: 3, # 'כ' - 4: 3, # 'ל' - 11: 3, # 'ם' - 6: 3, # 'מ' - 23: 2, # 'ן' - 12: 3, # '× ' - 19: 2, # '×”' - 13: 3, # '×¢' - 26: 2, # '×£' - 18: 3, # 'פ' - 27: 1, # 'ׄ' - 21: 2, # 'צ' - 17: 3, # '×§' - 7: 3, # 'ר' - 10: 3, # 'ש' - 5: 3, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 1, # 'ā€' - 58: 0, # '†' - 40: 1, # '…' - }, - 5: { # '×Ŗ' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 1, # '\xa0' - 55: 0, # 'Ā“' - 48: 1, # '¼' - 39: 1, # '½' - 57: 0, # '¾' - 30: 2, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 2, # 'Ö“' - 37: 2, # 'Öµ' - 36: 2, # 'Ö¶' - 31: 2, # 'Ö·' - 29: 2, # 'Öø' - 35: 1, # 'Ö¹' - 62: 1, # 'Ö»' - 28: 2, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 3, # 'א' - 8: 3, # 'ב' - 20: 3, # 'ג' - 16: 2, # 'ד' - 3: 3, # 'ה' - 2: 3, # 'ו' - 24: 2, # 'ז' - 14: 3, # 'ח' - 22: 2, # 'ט' - 1: 3, # 'י' - 25: 2, # 'ך' - 15: 3, # 'כ' - 4: 3, # 'ל' - 11: 3, # 'ם' - 6: 3, # 'מ' - 23: 3, # 'ן' - 12: 3, # '× ' - 19: 2, # '×”' - 13: 3, # '×¢' - 26: 2, # '×£' - 18: 3, # 'פ' - 27: 1, # 'ׄ' - 21: 2, # 'צ' - 17: 3, # '×§' - 7: 3, # 'ר' - 10: 3, # 'ש' - 5: 3, # '×Ŗ' - 32: 1, # '–' - 52: 1, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 2, # '…' - }, - 32: { # '–' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 1, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 1, # 'א' - 8: 1, # 'ב' - 20: 1, # 'ג' - 16: 1, # 'ד' - 3: 1, # 'ה' - 2: 1, # 'ו' - 24: 0, # 'ז' - 14: 1, # 'ח' - 22: 0, # 'ט' - 1: 1, # 'י' - 25: 0, # 'ך' - 15: 1, # 'כ' - 4: 1, # 'ל' - 11: 0, # 'ם' - 6: 1, # 'מ' - 23: 0, # 'ן' - 12: 0, # '× ' - 19: 1, # '×”' - 13: 1, # '×¢' - 26: 0, # '×£' - 18: 1, # 'פ' - 27: 0, # 'ׄ' - 21: 1, # 'צ' - 17: 0, # '×§' - 7: 1, # 'ר' - 10: 1, # 'ש' - 5: 1, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 0, # '…' - }, - 52: { # '’' - 50: 1, # 'a' - 60: 0, # 'c' - 61: 1, # 'd' - 42: 1, # 'e' - 53: 1, # 'i' - 56: 1, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 1, # 'r' - 43: 2, # 's' - 44: 2, # 't' - 63: 1, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 0, # 'א' - 8: 0, # 'ב' - 20: 0, # 'ג' - 16: 0, # 'ד' - 3: 0, # 'ה' - 2: 1, # 'ו' - 24: 0, # 'ז' - 14: 0, # 'ח' - 22: 0, # 'ט' - 1: 0, # 'י' - 25: 0, # 'ך' - 15: 0, # 'כ' - 4: 0, # 'ל' - 11: 0, # 'ם' - 6: 1, # 'מ' - 23: 0, # 'ן' - 12: 0, # '× ' - 19: 0, # '×”' - 13: 0, # '×¢' - 26: 0, # '×£' - 18: 0, # 'פ' - 27: 0, # 'ׄ' - 21: 0, # 'צ' - 17: 0, # '×§' - 7: 0, # 'ר' - 10: 0, # 'ש' - 5: 1, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 0, # '…' - }, - 47: { # 'ā€œ' - 50: 1, # 'a' - 60: 1, # 'c' - 61: 1, # 'd' - 42: 1, # 'e' - 53: 1, # 'i' - 56: 1, # 'l' - 54: 1, # 'n' - 49: 1, # 'o' - 51: 1, # 'r' - 43: 1, # 's' - 44: 1, # 't' - 63: 1, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 2, # 'א' - 8: 1, # 'ב' - 20: 1, # 'ג' - 16: 1, # 'ד' - 3: 1, # 'ה' - 2: 1, # 'ו' - 24: 1, # 'ז' - 14: 1, # 'ח' - 22: 1, # 'ט' - 1: 1, # 'י' - 25: 0, # 'ך' - 15: 1, # 'כ' - 4: 1, # 'ל' - 11: 0, # 'ם' - 6: 1, # 'מ' - 23: 0, # 'ן' - 12: 1, # '× ' - 19: 1, # '×”' - 13: 1, # '×¢' - 26: 0, # '×£' - 18: 1, # 'פ' - 27: 0, # 'ׄ' - 21: 1, # 'צ' - 17: 1, # '×§' - 7: 1, # 'ר' - 10: 1, # 'ש' - 5: 1, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 0, # '…' - }, - 46: { # 'ā€' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 1, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 1, # 'א' - 8: 1, # 'ב' - 20: 1, # 'ג' - 16: 0, # 'ד' - 3: 0, # 'ה' - 2: 0, # 'ו' - 24: 0, # 'ז' - 14: 0, # 'ח' - 22: 0, # 'ט' - 1: 1, # 'י' - 25: 0, # 'ך' - 15: 1, # 'כ' - 4: 1, # 'ל' - 11: 0, # 'ם' - 6: 1, # 'מ' - 23: 0, # 'ן' - 12: 0, # '× ' - 19: 0, # '×”' - 13: 0, # '×¢' - 26: 0, # '×£' - 18: 0, # 'פ' - 27: 0, # 'ׄ' - 21: 1, # 'צ' - 17: 0, # '×§' - 7: 1, # 'ר' - 10: 0, # 'ש' - 5: 0, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 0, # '†' - 40: 0, # '…' - }, - 58: { # '†' - 50: 0, # 'a' - 60: 0, # 'c' - 61: 0, # 'd' - 42: 0, # 'e' - 53: 0, # 'i' - 56: 0, # 'l' - 54: 0, # 'n' - 49: 0, # 'o' - 51: 0, # 'r' - 43: 0, # 's' - 44: 0, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 0, # 'א' - 8: 0, # 'ב' - 20: 0, # 'ג' - 16: 0, # 'ד' - 3: 0, # 'ה' - 2: 0, # 'ו' - 24: 0, # 'ז' - 14: 0, # 'ח' - 22: 0, # 'ט' - 1: 0, # 'י' - 25: 0, # 'ך' - 15: 0, # 'כ' - 4: 0, # 'ל' - 11: 0, # 'ם' - 6: 0, # 'מ' - 23: 0, # 'ן' - 12: 0, # '× ' - 19: 0, # '×”' - 13: 0, # '×¢' - 26: 0, # '×£' - 18: 0, # 'פ' - 27: 0, # 'ׄ' - 21: 0, # 'צ' - 17: 0, # '×§' - 7: 0, # 'ר' - 10: 0, # 'ש' - 5: 0, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 0, # 'ā€' - 58: 2, # '†' - 40: 0, # '…' - }, - 40: { # '…' - 50: 1, # 'a' - 60: 1, # 'c' - 61: 1, # 'd' - 42: 1, # 'e' - 53: 1, # 'i' - 56: 0, # 'l' - 54: 1, # 'n' - 49: 0, # 'o' - 51: 1, # 'r' - 43: 1, # 's' - 44: 1, # 't' - 63: 0, # 'u' - 34: 0, # '\xa0' - 55: 0, # 'Ā“' - 48: 0, # '¼' - 39: 0, # '½' - 57: 0, # '¾' - 30: 0, # 'Ö°' - 59: 0, # 'Ö±' - 41: 0, # 'Ö²' - 33: 0, # 'Ö“' - 37: 0, # 'Öµ' - 36: 0, # 'Ö¶' - 31: 0, # 'Ö·' - 29: 0, # 'Öø' - 35: 0, # 'Ö¹' - 62: 0, # 'Ö»' - 28: 0, # 'Ö¼' - 38: 0, # 'ׁ' - 45: 0, # 'ׂ' - 9: 1, # 'א' - 8: 0, # 'ב' - 20: 0, # 'ג' - 16: 0, # 'ד' - 3: 1, # 'ה' - 2: 1, # 'ו' - 24: 1, # 'ז' - 14: 0, # 'ח' - 22: 0, # 'ט' - 1: 1, # 'י' - 25: 0, # 'ך' - 15: 1, # 'כ' - 4: 1, # 'ל' - 11: 0, # 'ם' - 6: 1, # 'מ' - 23: 0, # 'ן' - 12: 1, # '× ' - 19: 0, # '×”' - 13: 0, # '×¢' - 26: 0, # '×£' - 18: 1, # 'פ' - 27: 0, # 'ׄ' - 21: 0, # 'צ' - 17: 0, # '×§' - 7: 1, # 'ר' - 10: 1, # 'ש' - 5: 1, # '×Ŗ' - 32: 0, # '–' - 52: 0, # '’' - 47: 0, # 'ā€œ' - 46: 1, # 'ā€' - 58: 0, # '†' - 40: 2, # '…' - }, -} - -# 255: Undefined characters that did not exist in training text -# 254: Carriage/Return -# 253: symbol (punctuation) that does not belong to word -# 252: 0 - 9 -# 251: Control characters - -# Character Mapping Table(s): -WINDOWS_1255_HEBREW_CHAR_TO_ORDER = { - 0: 255, # '\x00' - 1: 255, # '\x01' - 2: 255, # '\x02' - 3: 255, # '\x03' - 4: 255, # '\x04' - 5: 255, # '\x05' - 6: 255, # '\x06' - 7: 255, # '\x07' - 8: 255, # '\x08' - 9: 255, # '\t' - 10: 254, # '\n' - 11: 255, # '\x0b' - 12: 255, # '\x0c' - 13: 254, # '\r' - 14: 255, # '\x0e' - 15: 255, # '\x0f' - 16: 255, # '\x10' - 17: 255, # '\x11' - 18: 255, # '\x12' - 19: 255, # '\x13' - 20: 255, # '\x14' - 21: 255, # '\x15' - 22: 255, # '\x16' - 23: 255, # '\x17' - 24: 255, # '\x18' - 25: 255, # '\x19' - 26: 255, # '\x1a' - 27: 255, # '\x1b' - 28: 255, # '\x1c' - 29: 255, # '\x1d' - 30: 255, # '\x1e' - 31: 255, # '\x1f' - 32: 253, # ' ' - 33: 253, # '!' - 34: 253, # '"' - 35: 253, # '#' - 36: 253, # '$' - 37: 253, # '%' - 38: 253, # '&' - 39: 253, # "'" - 40: 253, # '(' - 41: 253, # ')' - 42: 253, # '*' - 43: 253, # '+' - 44: 253, # ',' - 45: 253, # '-' - 46: 253, # '.' - 47: 253, # '/' - 48: 252, # '0' - 49: 252, # '1' - 50: 252, # '2' - 51: 252, # '3' - 52: 252, # '4' - 53: 252, # '5' - 54: 252, # '6' - 55: 252, # '7' - 56: 252, # '8' - 57: 252, # '9' - 58: 253, # ':' - 59: 253, # ';' - 60: 253, # '<' - 61: 253, # '=' - 62: 253, # '>' - 63: 253, # '?' - 64: 253, # '@' - 65: 69, # 'A' - 66: 91, # 'B' - 67: 79, # 'C' - 68: 80, # 'D' - 69: 92, # 'E' - 70: 89, # 'F' - 71: 97, # 'G' - 72: 90, # 'H' - 73: 68, # 'I' - 74: 111, # 'J' - 75: 112, # 'K' - 76: 82, # 'L' - 77: 73, # 'M' - 78: 95, # 'N' - 79: 85, # 'O' - 80: 78, # 'P' - 81: 121, # 'Q' - 82: 86, # 'R' - 83: 71, # 'S' - 84: 67, # 'T' - 85: 102, # 'U' - 86: 107, # 'V' - 87: 84, # 'W' - 88: 114, # 'X' - 89: 103, # 'Y' - 90: 115, # 'Z' - 91: 253, # '[' - 92: 253, # '\\' - 93: 253, # ']' - 94: 253, # '^' - 95: 253, # '_' - 96: 253, # '`' - 97: 50, # 'a' - 98: 74, # 'b' - 99: 60, # 'c' - 100: 61, # 'd' - 101: 42, # 'e' - 102: 76, # 'f' - 103: 70, # 'g' - 104: 64, # 'h' - 105: 53, # 'i' - 106: 105, # 'j' - 107: 93, # 'k' - 108: 56, # 'l' - 109: 65, # 'm' - 110: 54, # 'n' - 111: 49, # 'o' - 112: 66, # 'p' - 113: 110, # 'q' - 114: 51, # 'r' - 115: 43, # 's' - 116: 44, # 't' - 117: 63, # 'u' - 118: 81, # 'v' - 119: 77, # 'w' - 120: 98, # 'x' - 121: 75, # 'y' - 122: 108, # 'z' - 123: 253, # '{' - 124: 253, # '|' - 125: 253, # '}' - 126: 253, # '~' - 127: 253, # '\x7f' - 128: 124, # '€' - 129: 202, # None - 130: 203, # 'ā€š' - 131: 204, # 'ʒ' - 132: 205, # 'ā€ž' - 133: 40, # '…' - 134: 58, # '†' - 135: 206, # '—' - 136: 207, # 'ˆ' - 137: 208, # '‰' - 138: 209, # None - 139: 210, # '‹' - 140: 211, # None - 141: 212, # None - 142: 213, # None - 143: 214, # None - 144: 215, # None - 145: 83, # 'ā€˜' - 146: 52, # '’' - 147: 47, # 'ā€œ' - 148: 46, # 'ā€' - 149: 72, # '•' - 150: 32, # '–' - 151: 94, # '—' - 152: 216, # '˜' - 153: 113, # 'ā„¢' - 154: 217, # None - 155: 109, # '›' - 156: 218, # None - 157: 219, # None - 158: 220, # None - 159: 221, # None - 160: 34, # '\xa0' - 161: 116, # 'Ā”' - 162: 222, # 'Ā¢' - 163: 118, # 'Ā£' - 164: 100, # '₪' - 165: 223, # 'Ā„' - 166: 224, # '¦' - 167: 117, # '§' - 168: 119, # 'ĀØ' - 169: 104, # 'Ā©' - 170: 125, # 'Ɨ' - 171: 225, # 'Ā«' - 172: 226, # '¬' - 173: 87, # '\xad' - 174: 99, # 'Ā®' - 175: 227, # 'ĀÆ' - 176: 106, # '°' - 177: 122, # '±' - 178: 123, # '²' - 179: 228, # '³' - 180: 55, # 'Ā“' - 181: 229, # 'µ' - 182: 230, # '¶' - 183: 101, # 'Ā·' - 184: 231, # 'Āø' - 185: 232, # '¹' - 186: 120, # 'Ć·' - 187: 233, # 'Ā»' - 188: 48, # '¼' - 189: 39, # '½' - 190: 57, # '¾' - 191: 234, # 'Āæ' - 192: 30, # 'Ö°' - 193: 59, # 'Ö±' - 194: 41, # 'Ö²' - 195: 88, # 'Ö³' - 196: 33, # 'Ö“' - 197: 37, # 'Öµ' - 198: 36, # 'Ö¶' - 199: 31, # 'Ö·' - 200: 29, # 'Öø' - 201: 35, # 'Ö¹' - 202: 235, # None - 203: 62, # 'Ö»' - 204: 28, # 'Ö¼' - 205: 236, # 'Ö½' - 206: 126, # 'Ö¾' - 207: 237, # 'Öæ' - 208: 238, # '׀' - 209: 38, # 'ׁ' - 210: 45, # 'ׂ' - 211: 239, # '׃' - 212: 240, # '×°' - 213: 241, # '×±' - 214: 242, # 'ײ' - 215: 243, # '׳' - 216: 127, # 'ד' - 217: 244, # None - 218: 245, # None - 219: 246, # None - 220: 247, # None - 221: 248, # None - 222: 249, # None - 223: 250, # None - 224: 9, # 'א' - 225: 8, # 'ב' - 226: 20, # 'ג' - 227: 16, # 'ד' - 228: 3, # 'ה' - 229: 2, # 'ו' - 230: 24, # 'ז' - 231: 14, # 'ח' - 232: 22, # 'ט' - 233: 1, # 'י' - 234: 25, # 'ך' - 235: 15, # 'כ' - 236: 4, # 'ל' - 237: 11, # 'ם' - 238: 6, # 'מ' - 239: 23, # 'ן' - 240: 12, # '× ' - 241: 19, # '×”' - 242: 13, # '×¢' - 243: 26, # '×£' - 244: 18, # 'פ' - 245: 27, # 'ׄ' - 246: 21, # 'צ' - 247: 17, # '×§' - 248: 7, # 'ר' - 249: 10, # 'ש' - 250: 5, # '×Ŗ' - 251: 251, # None - 252: 252, # None - 253: 128, # '\u200e' - 254: 96, # '\u200f' - 255: 253, # None -} - -WINDOWS_1255_HEBREW_MODEL = SingleByteCharSetModel(charset_name='windows-1255', - language='Hebrew', - char_to_order_map=WINDOWS_1255_HEBREW_CHAR_TO_ORDER, - language_model=HEBREW_LANG_MODEL, - typical_positive_ratio=0.984004, - keep_ascii_letters=False, - alphabet='××‘×’×“×”×•×–×—×˜×™×š×›×œ××ž×Ÿ× ×”×¢×£×¤×„×¦×§×Ø×©×Ŗ×°×±×²') - diff --git a/spaces/ali-ghamdan/realesrgan-models/scripts/extract_subimages.py b/spaces/ali-ghamdan/realesrgan-models/scripts/extract_subimages.py deleted file mode 100644 index 9b969ae0d4adff403f2ad362b9afaaaee58e2cef..0000000000000000000000000000000000000000 --- a/spaces/ali-ghamdan/realesrgan-models/scripts/extract_subimages.py +++ /dev/null @@ -1,135 +0,0 @@ -import argparse -import cv2 -import numpy as np -import os -import sys -from basicsr.utils import scandir -from multiprocessing import Pool -from os import path as osp -from tqdm import tqdm - - -def main(args): - """A multi-thread tool to crop large images to sub-images for faster IO. - - opt (dict): Configuration dict. It contains: - n_thread (int): Thread number. - compression_level (int): CV_IMWRITE_PNG_COMPRESSION from 0 to 9. A higher value means a smaller size - and longer compression time. Use 0 for faster CPU decompression. Default: 3, same in cv2. - input_folder (str): Path to the input folder. - save_folder (str): Path to save folder. - crop_size (int): Crop size. - step (int): Step for overlapped sliding window. - thresh_size (int): Threshold size. Patches whose size is lower than thresh_size will be dropped. - - Usage: - For each folder, run this script. - Typically, there are GT folder and LQ folder to be processed for DIV2K dataset. - After process, each sub_folder should have the same number of subimages. - Remember to modify opt configurations according to your settings. - """ - - opt = {} - opt['n_thread'] = args.n_thread - opt['compression_level'] = args.compression_level - opt['input_folder'] = args.input - opt['save_folder'] = args.output - opt['crop_size'] = args.crop_size - opt['step'] = args.step - opt['thresh_size'] = args.thresh_size - extract_subimages(opt) - - -def extract_subimages(opt): - """Crop images to subimages. - - Args: - opt (dict): Configuration dict. It contains: - input_folder (str): Path to the input folder. - save_folder (str): Path to save folder. - n_thread (int): Thread number. - """ - input_folder = opt['input_folder'] - save_folder = opt['save_folder'] - if not osp.exists(save_folder): - os.makedirs(save_folder) - print(f'mkdir {save_folder} ...') - else: - print(f'Folder {save_folder} already exists. Exit.') - sys.exit(1) - - # scan all images - img_list = list(scandir(input_folder, full_path=True)) - - pbar = tqdm(total=len(img_list), unit='image', desc='Extract') - pool = Pool(opt['n_thread']) - for path in img_list: - pool.apply_async(worker, args=(path, opt), callback=lambda arg: pbar.update(1)) - pool.close() - pool.join() - pbar.close() - print('All processes done.') - - -def worker(path, opt): - """Worker for each process. - - Args: - path (str): Image path. - opt (dict): Configuration dict. It contains: - crop_size (int): Crop size. - step (int): Step for overlapped sliding window. - thresh_size (int): Threshold size. Patches whose size is lower than thresh_size will be dropped. - save_folder (str): Path to save folder. - compression_level (int): for cv2.IMWRITE_PNG_COMPRESSION. - - Returns: - process_info (str): Process information displayed in progress bar. - """ - crop_size = opt['crop_size'] - step = opt['step'] - thresh_size = opt['thresh_size'] - img_name, extension = osp.splitext(osp.basename(path)) - - # remove the x2, x3, x4 and x8 in the filename for DIV2K - img_name = img_name.replace('x2', '').replace('x3', '').replace('x4', '').replace('x8', '') - - img = cv2.imread(path, cv2.IMREAD_UNCHANGED) - - h, w = img.shape[0:2] - h_space = np.arange(0, h - crop_size + 1, step) - if h - (h_space[-1] + crop_size) > thresh_size: - h_space = np.append(h_space, h - crop_size) - w_space = np.arange(0, w - crop_size + 1, step) - if w - (w_space[-1] + crop_size) > thresh_size: - w_space = np.append(w_space, w - crop_size) - - index = 0 - for x in h_space: - for y in w_space: - index += 1 - cropped_img = img[x:x + crop_size, y:y + crop_size, ...] - cropped_img = np.ascontiguousarray(cropped_img) - cv2.imwrite( - osp.join(opt['save_folder'], f'{img_name}_s{index:03d}{extension}'), cropped_img, - [cv2.IMWRITE_PNG_COMPRESSION, opt['compression_level']]) - process_info = f'Processing {img_name} ...' - return process_info - - -if __name__ == '__main__': - parser = argparse.ArgumentParser() - parser.add_argument('--input', type=str, default='datasets/DF2K/DF2K_HR', help='Input folder') - parser.add_argument('--output', type=str, default='datasets/DF2K/DF2K_HR_sub', help='Output folder') - parser.add_argument('--crop_size', type=int, default=480, help='Crop size') - parser.add_argument('--step', type=int, default=240, help='Step for overlapped sliding window') - parser.add_argument( - '--thresh_size', - type=int, - default=0, - help='Threshold size. Patches whose size is lower than thresh_size will be dropped.') - parser.add_argument('--n_thread', type=int, default=20, help='Thread number.') - parser.add_argument('--compression_level', type=int, default=3, help='Compression level') - args = parser.parse_args() - - main(args) diff --git a/spaces/aliabd/SummerTime/model/third_party/HMNet/ThirdParty/ROUGE/ROUGE-1.5.5/XML/DOM/ElementDecl.pod b/spaces/aliabd/SummerTime/model/third_party/HMNet/ThirdParty/ROUGE/ROUGE-1.5.5/XML/DOM/ElementDecl.pod deleted file mode 100644 index dd59b693121e58e91e65fe8ab0b608e7ab24dbb7..0000000000000000000000000000000000000000 --- a/spaces/aliabd/SummerTime/model/third_party/HMNet/ThirdParty/ROUGE/ROUGE-1.5.5/XML/DOM/ElementDecl.pod +++ /dev/null @@ -1,27 +0,0 @@ -=head1 NAME - -XML::DOM::ElementDecl - An XML ELEMENT declaration in XML::DOM - -=head1 DESCRIPTION - -XML::DOM::ElementDecl extends L but is not part of the -DOM Level 1 specification. - -This node represents an Element declaration, e.g. - - - -=head2 METHODS - -=over 4 - -=item getName - -Returns the Element tagName. - -=item getModel and setModel (model) - -Returns and sets the model as a string, e.g. -"(street+, city, state, zip, country?)" in the above example. - -=back diff --git a/spaces/aliabid94/AutoGPT/tests/integration/weaviate_memory_tests.py b/spaces/aliabid94/AutoGPT/tests/integration/weaviate_memory_tests.py deleted file mode 100644 index 015eab05484f485aeb8ee035e92ad7811e9dddd4..0000000000000000000000000000000000000000 --- a/spaces/aliabid94/AutoGPT/tests/integration/weaviate_memory_tests.py +++ /dev/null @@ -1,117 +0,0 @@ -import os -import sys -import unittest -from unittest import mock -from uuid import uuid4 - -from weaviate import Client -from weaviate.util import get_valid_uuid - -from autogpt.config import Config -from autogpt.memory.base import get_ada_embedding -from autogpt.memory.weaviate import WeaviateMemory - - -class TestWeaviateMemory(unittest.TestCase): - cfg = None - client = None - index = None - - @classmethod - def setUpClass(cls): - # only create the connection to weaviate once - cls.cfg = Config() - - if cls.cfg.use_weaviate_embedded: - from weaviate.embedded import EmbeddedOptions - - cls.client = Client( - embedded_options=EmbeddedOptions( - hostname=cls.cfg.weaviate_host, - port=int(cls.cfg.weaviate_port), - persistence_data_path=cls.cfg.weaviate_embedded_path, - ) - ) - else: - cls.client = Client( - f"{cls.cfg.weaviate_protocol}://{cls.cfg.weaviate_host}:{self.cfg.weaviate_port}" - ) - - cls.index = WeaviateMemory.format_classname(cls.cfg.memory_index) - - """ - In order to run these tests you will need a local instance of - Weaviate running. Refer to https://weaviate.io/developers/weaviate/installation/docker-compose - for creating local instances using docker. - Alternatively in your .env file set the following environmental variables to run Weaviate embedded (see: https://weaviate.io/developers/weaviate/installation/embedded): - - USE_WEAVIATE_EMBEDDED=True - WEAVIATE_EMBEDDED_PATH="/home/me/.local/share/weaviate" - """ - - def setUp(self): - try: - self.client.schema.delete_class(self.index) - except: - pass - - self.memory = WeaviateMemory(self.cfg) - - def test_add(self): - doc = "You are a Titan name Thanos and you are looking for the Infinity Stones" - self.memory.add(doc) - result = self.client.query.get(self.index, ["raw_text"]).do() - actual = result["data"]["Get"][self.index] - - self.assertEqual(len(actual), 1) - self.assertEqual(actual[0]["raw_text"], doc) - - def test_get(self): - doc = "You are an Avenger and swore to defend the Galaxy from a menace called Thanos" - - with self.client.batch as batch: - batch.add_data_object( - uuid=get_valid_uuid(uuid4()), - data_object={"raw_text": doc}, - class_name=self.index, - vector=get_ada_embedding(doc), - ) - - batch.flush() - - actual = self.memory.get(doc) - - self.assertEqual(len(actual), 1) - self.assertEqual(actual[0], doc) - - def test_get_stats(self): - docs = [ - "You are now about to count the number of docs in this index", - "And then you about to find out if you can count correctly", - ] - - [self.memory.add(doc) for doc in docs] - - stats = self.memory.get_stats() - - self.assertTrue(stats) - self.assertTrue("count" in stats) - self.assertEqual(stats["count"], 2) - - def test_clear(self): - docs = [ - "Shame this is the last test for this class", - "Testing is fun when someone else is doing it", - ] - - [self.memory.add(doc) for doc in docs] - - self.assertEqual(self.memory.get_stats()["count"], 2) - - self.memory.clear() - - self.assertEqual(self.memory.get_stats()["count"], 0) - - -if __name__ == "__main__": - unittest.main() diff --git a/spaces/allknowingroger/Image-Models-Test160/app.py b/spaces/allknowingroger/Image-Models-Test160/app.py deleted file mode 100644 index 207a57d13b5e6541eb156c0450f6ab4d4b907d90..0000000000000000000000000000000000000000 --- a/spaces/allknowingroger/Image-Models-Test160/app.py +++ /dev/null @@ -1,144 +0,0 @@ -import gradio as gr -# import os -# import sys -# from pathlib import Path -import time - -models =[ - "Sukhman/xmt", - "purplegenie97/whiskpet", - "reeen115/lora_output_2-1", - "jtlowell/cozy_sticker", - "sujithkumardola/ai-avatar", - "Muhammadreza/msart-541", - "HusseinHE/icbinh", - "jtlowell/cozy_fantasy_xl", - "Ankita11111yadav/my-pet-rabbit", -] - - -model_functions = {} -model_idx = 1 -for model_path in models: - try: - model_functions[model_idx] = gr.Interface.load(f"models/{model_path}", live=False, preprocess=True, postprocess=False) - except Exception as error: - def the_fn(txt): - return None - model_functions[model_idx] = gr.Interface(fn=the_fn, inputs=["text"], outputs=["image"]) - model_idx+=1 - - -def send_it_idx(idx): - def send_it_fn(prompt): - output = (model_functions.get(str(idx)) or model_functions.get(str(1)))(prompt) - return output - return send_it_fn - -def get_prompts(prompt_text): - return prompt_text - -def clear_it(val): - if int(val) != 0: - val = 0 - else: - val = 0 - pass - return val - -def all_task_end(cnt,t_stamp): - to = t_stamp + 60 - et = time.time() - if et > to and t_stamp != 0: - d = gr.update(value=0) - tog = gr.update(value=1) - #print(f'to: {to} et: {et}') - else: - if cnt != 0: - d = gr.update(value=et) - else: - d = gr.update(value=0) - tog = gr.update(value=0) - #print (f'passing: to: {to} et: {et}') - pass - return d, tog - -def all_task_start(): - print("\n\n\n\n\n\n\n") - t = time.gmtime() - t_stamp = time.time() - current_time = time.strftime("%H:%M:%S", t) - return gr.update(value=t_stamp), gr.update(value=t_stamp), gr.update(value=0) - -def clear_fn(): - nn = len(models) - return tuple([None, *[None for _ in range(nn)]]) - - - -with gr.Blocks(title="SD Models") as my_interface: - with gr.Column(scale=12): - # with gr.Row(): - # gr.Markdown("""- Primary prompt: ä½ ęƒ³ē”»ēš„å†…å®¹(č‹±ę–‡å•čÆļ¼Œå¦‚ a cat, åŠ č‹±ę–‡é€—å·ę•ˆęžœę›“å„½ļ¼›ē‚¹ Improve ęŒ‰é’®čæ›č”Œå®Œå–„)\n- Real prompt: å®Œå–„åŽēš„ęē¤ŗčÆļ¼Œå‡ŗēŽ°åŽå†ē‚¹å³č¾¹ēš„ Run ęŒ‰é’®å¼€å§‹čæč”Œ""") - with gr.Row(): - with gr.Row(scale=6): - primary_prompt=gr.Textbox(label="Prompt", value="") - # real_prompt=gr.Textbox(label="Real prompt") - with gr.Row(scale=6): - # improve_prompts_btn=gr.Button("Improve") - with gr.Row(): - run=gr.Button("Run",variant="primary") - clear_btn=gr.Button("Clear") - with gr.Row(): - sd_outputs = {} - model_idx = 1 - for model_path in models: - with gr.Column(scale=3, min_width=320): - with gr.Box(): - sd_outputs[model_idx] = gr.Image(label=model_path) - pass - model_idx += 1 - pass - pass - - with gr.Row(visible=False): - start_box=gr.Number(interactive=False) - end_box=gr.Number(interactive=False) - tog_box=gr.Textbox(value=0,interactive=False) - - start_box.change( - all_task_end, - [start_box, end_box], - [start_box, tog_box], - every=1, - show_progress=False) - - primary_prompt.submit(all_task_start, None, [start_box, end_box, tog_box]) - run.click(all_task_start, None, [start_box, end_box, tog_box]) - runs_dict = {} - model_idx = 1 - for model_path in models: - runs_dict[model_idx] = run.click(model_functions[model_idx], inputs=[primary_prompt], outputs=[sd_outputs[model_idx]]) - model_idx += 1 - pass - pass - - # improve_prompts_btn_clicked=improve_prompts_btn.click( - # get_prompts, - # inputs=[primary_prompt], - # outputs=[primary_prompt], - # cancels=list(runs_dict.values())) - clear_btn.click( - clear_fn, - None, - [primary_prompt, *list(sd_outputs.values())], - cancels=[*list(runs_dict.values())]) - tog_box.change( - clear_it, - tog_box, - tog_box, - cancels=[*list(runs_dict.values())]) - -my_interface.queue(concurrency_count=600, status_update_rate=1) -my_interface.launch(inline=True, show_api=False) - \ No newline at end of file diff --git a/spaces/allknowingroger/Image-Models-Test193/README.md b/spaces/allknowingroger/Image-Models-Test193/README.md deleted file mode 100644 index f91e4b31ab345f987b425de029c057bfb69d9e1b..0000000000000000000000000000000000000000 --- a/spaces/allknowingroger/Image-Models-Test193/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: More Image Models -emoji: 😻 -colorFrom: red -colorTo: gray -sdk: gradio -sdk_version: 3.23.0 -app_file: app.py -pinned: true -duplicated_from: allknowingroger/Image-Models-Test ---- - - \ No newline at end of file diff --git a/spaces/altndrr/vic/app.py b/spaces/altndrr/vic/app.py deleted file mode 100644 index e6bf1f2945ca404664e043291046f0cc8b277770..0000000000000000000000000000000000000000 --- a/spaces/altndrr/vic/app.py +++ /dev/null @@ -1,78 +0,0 @@ -from typing import Optional - -import gradio as gr -import torch -from PIL import Image -from transformers import AutoModel, CLIPProcessor - -PAPER_TITLE = "Vocabulary-free Image Classification" -PAPER_DESCRIPTION = """ - - - -Vocabulary-free Image Classification aims to assign a class to an image *without* prior knowledge -on the list of class names, thus operating on the semantic class space that contains all the -possible concepts. Our proposed method CaSED finds the best matching category within the -unconstrained semantic space by multimodal data from large vision-language databases. - -To assign a label to an image, we: -1. extract the image features using a pre-trained Vision-Language Model (VLM); -2. retrieve the semantically most similar captions from a textual database; -3. extract from the captions a set of candidate categories by applying text parsing and filtering; -4. score the candidates using the multimodal aligned representation of the pre-trained VLM to - obtain the best-matching category. -""" -PAPER_URL = "https://arxiv.org/abs/2306.00917" - - -device = torch.device("cuda" if torch.cuda.is_available() else "cpu") -model = AutoModel.from_pretrained("altndrr/cased", trust_remote_code=True).to(device) -processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14") - - -def vic(filename: str, alpha: Optional[float] = None): - images = processor(images=[Image.open(filename)], return_tensors="pt", padding=True) - outputs = model(images, alpha=alpha) - vocabulary = outputs["vocabularies"][0] - scores = outputs["scores"][0].tolist() - confidences = dict(zip(vocabulary, scores)) - - return confidences - - -demo = gr.Interface( - fn=vic, - inputs=[ - gr.Image(type="filepath", label="input"), - gr.Slider( - 0.0, - 1.0, - value=0.5, - label="alpha", - info="trade-off between the text (left) and image (right) modality", - ), - ], - outputs=[gr.Label(num_top_classes=5, label="output")], - title=PAPER_TITLE, - description=PAPER_DESCRIPTION, - article=f"Check out the original paper for more information.", - examples="./examples/", - allow_flagging="never", - theme=gr.themes.Soft(), - thumbnail="https://altndrr.github.io/vic/assets/images/method.png", -) - -demo.launch(share=False) diff --git a/spaces/amankishore/sjc/ncsn/__init__.py b/spaces/amankishore/sjc/ncsn/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/amankishore/sjc/sd1/ldm/modules/encoders/modules_original.py b/spaces/amankishore/sjc/sd1/ldm/modules/encoders/modules_original.py deleted file mode 100644 index ededbe43e9e0466b9979079060692e38f561d4d3..0000000000000000000000000000000000000000 --- a/spaces/amankishore/sjc/sd1/ldm/modules/encoders/modules_original.py +++ /dev/null @@ -1,234 +0,0 @@ -import torch -import torch.nn as nn -from functools import partial -import clip -from einops import rearrange, repeat -from transformers import CLIPTokenizer, CLIPTextModel -import kornia - -from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test - - -class AbstractEncoder(nn.Module): - def __init__(self): - super().__init__() - - def encode(self, *args, **kwargs): - raise NotImplementedError - - - -class ClassEmbedder(nn.Module): - def __init__(self, embed_dim, n_classes=1000, key='class'): - super().__init__() - self.key = key - self.embedding = nn.Embedding(n_classes, embed_dim) - - def forward(self, batch, key=None): - if key is None: - key = self.key - # this is for use in crossattn - c = batch[key][:, None] - c = self.embedding(c) - return c - - -class TransformerEmbedder(AbstractEncoder): - """Some transformer encoder layers""" - def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"): - super().__init__() - self.device = device - self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, - attn_layers=Encoder(dim=n_embed, depth=n_layer)) - - def forward(self, tokens): - tokens = tokens.to(self.device) # meh - z = self.transformer(tokens, return_embeddings=True) - return z - - def encode(self, x): - return self(x) - - -class BERTTokenizer(AbstractEncoder): - """ Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)""" - def __init__(self, device="cuda", vq_interface=True, max_length=77): - super().__init__() - from transformers import BertTokenizerFast # TODO: add to reuquirements - self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased") - self.device = device - self.vq_interface = vq_interface - self.max_length = max_length - - def forward(self, text): - batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, - return_overflowing_tokens=False, padding="max_length", return_tensors="pt") - tokens = batch_encoding["input_ids"].to(self.device) - return tokens - - @torch.no_grad() - def encode(self, text): - tokens = self(text) - if not self.vq_interface: - return tokens - return None, None, [None, None, tokens] - - def decode(self, text): - return text - - -class BERTEmbedder(AbstractEncoder): - """Uses the BERT tokenizr model and add some transformer encoder layers""" - def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77, - device="cuda",use_tokenizer=True, embedding_dropout=0.0): - super().__init__() - self.use_tknz_fn = use_tokenizer - if self.use_tknz_fn: - self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len) - self.device = device - self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, - attn_layers=Encoder(dim=n_embed, depth=n_layer), - emb_dropout=embedding_dropout) - - def forward(self, text): - if self.use_tknz_fn: - tokens = self.tknz_fn(text)#.to(self.device) - else: - tokens = text - z = self.transformer(tokens, return_embeddings=True) - return z - - def encode(self, text): - # output of length 77 - return self(text) - - -class SpatialRescaler(nn.Module): - def __init__(self, - n_stages=1, - method='bilinear', - multiplier=0.5, - in_channels=3, - out_channels=None, - bias=False): - super().__init__() - self.n_stages = n_stages - assert self.n_stages >= 0 - assert method in ['nearest','linear','bilinear','trilinear','bicubic','area'] - self.multiplier = multiplier - self.interpolator = partial(torch.nn.functional.interpolate, mode=method) - self.remap_output = out_channels is not None - if self.remap_output: - print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.') - self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias) - - def forward(self,x): - for stage in range(self.n_stages): - x = self.interpolator(x, scale_factor=self.multiplier) - - - if self.remap_output: - x = self.channel_mapper(x) - return x - - def encode(self, x): - return self(x) - -class FrozenCLIPEmbedder(AbstractEncoder): - """Uses the CLIP transformer encoder for text (from Hugging Face)""" - def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77): - super().__init__() - self.tokenizer = CLIPTokenizer.from_pretrained(version) - self.transformer = CLIPTextModel.from_pretrained(version) - self.device = device - self.max_length = max_length - self.freeze() - - def freeze(self): - self.transformer = self.transformer.eval() - for param in self.parameters(): - param.requires_grad = False - - def forward(self, text): - batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, - return_overflowing_tokens=False, padding="max_length", return_tensors="pt") - tokens = batch_encoding["input_ids"].to(self.device) - outputs = self.transformer(input_ids=tokens) - - z = outputs.last_hidden_state - return z - - def encode(self, text): - return self(text) - - -class FrozenCLIPTextEmbedder(nn.Module): - """ - Uses the CLIP transformer encoder for text. - """ - def __init__(self, version='ViT-L/14', device="cuda", max_length=77, n_repeat=1, normalize=True): - super().__init__() - self.model, _ = clip.load(version, jit=False, device="cpu") - self.device = device - self.max_length = max_length - self.n_repeat = n_repeat - self.normalize = normalize - - def freeze(self): - self.model = self.model.eval() - for param in self.parameters(): - param.requires_grad = False - - def forward(self, text): - tokens = clip.tokenize(text).to(self.device) - z = self.model.encode_text(tokens) - if self.normalize: - z = z / torch.linalg.norm(z, dim=1, keepdim=True) - return z - - def encode(self, text): - z = self(text) - if z.ndim==2: - z = z[:, None, :] - z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat) - return z - - -class FrozenClipImageEmbedder(nn.Module): - """ - Uses the CLIP image encoder. - """ - def __init__( - self, - model, - jit=False, - device='cuda' if torch.cuda.is_available() else 'cpu', - antialias=False, - ): - super().__init__() - self.model, _ = clip.load(name=model, device=device, jit=jit) - - self.antialias = antialias - - self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) - self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) - - def preprocess(self, x): - # normalize to [0,1] - x = kornia.geometry.resize(x, (224, 224), - interpolation='bicubic',align_corners=True, - antialias=self.antialias) - x = (x + 1.) / 2. - # renormalize according to clip - x = kornia.enhance.normalize(x, self.mean, self.std) - return x - - def forward(self, x): - # x is assumed to be in range [-1,1] - return self.model.encode_image(self.preprocess(x)) - - -if __name__ == "__main__": - from ldm.util import count_params - model = FrozenCLIPEmbedder() - count_params(model, verbose=True) \ No newline at end of file diff --git a/spaces/amankishore/sjc/voxnerf/vis.py b/spaces/amankishore/sjc/voxnerf/vis.py deleted file mode 100644 index ae01ef9271e29e750881e6a51fe8758dc8178bcc..0000000000000000000000000000000000000000 --- a/spaces/amankishore/sjc/voxnerf/vis.py +++ /dev/null @@ -1,109 +0,0 @@ -from pathlib import Path -import numpy as np -import matplotlib.pyplot as plt -from mpl_toolkits.axes_grid1 import ImageGrid -from matplotlib.colors import Normalize, LogNorm -import torch -from torchvision.utils import make_grid -from einops import rearrange -from .data import blend_rgba - -import imageio - -from my.utils.plot import mpl_fig_to_buffer -from my.utils.event import read_stats - - -def vis(ref_img, pred_img, pred_depth, *, msg="", return_buffer=False): - # plt the 2 images side by side and compare - fig = plt.figure(figsize=(15, 6)) - grid = ImageGrid( - fig, 111, nrows_ncols=(1, 3), - cbar_location="right", cbar_mode="single", - ) - - grid[0].imshow(ref_img) - grid[0].set_title("gt") - - grid[1].imshow(pred_img) - grid[1].set_title(f"rendering {msg}") - - h = grid[2].imshow(pred_depth, norm=LogNorm(vmin=2, vmax=10), cmap="Spectral") - grid[2].set_title("expected depth") - plt.colorbar(h, cax=grid.cbar_axes[0]) - plt.tight_layout() - - if return_buffer: - plot = mpl_fig_to_buffer(fig) - return plot - else: - plt.show() - - -def _bad_vis(pred_img, pred_depth, *, return_buffer=False): - """emergency function for one-off use""" - fig, grid = plt.subplots(1, 2, squeeze=True, figsize=(10, 6)) - - grid[0].imshow(pred_img) - grid[0].set_title("rendering") - - h = grid[1].imshow(pred_depth, norm=LogNorm(vmin=0.5, vmax=10), cmap="Spectral") - grid[1].set_title("expected depth") - # plt.colorbar(h, cax=grid.cbar_axes[0]) - plt.tight_layout() - - if return_buffer: - plot = mpl_fig_to_buffer(fig) - return plot - else: - plt.show() - - -colormap = plt.get_cmap('Spectral') - - -def bad_vis(pred_img, pred_depth, final_H=512): - # pred_img = pred_img.cpu() - depth = pred_depth.cpu().numpy() - del pred_depth - - depth = np.log(1. + depth + 1e-12) - depth = depth / np.log(1+10.) - # depth = 1 - depth - depth = colormap(depth) - depth = blend_rgba(depth) - depth = rearrange(depth, "h w c -> 1 c h w", c=3) - depth = torch.from_numpy(depth) - - depth = torch.nn.functional.interpolate( - depth, (final_H, final_H), mode='bilinear', antialias=True - ) - pred_img = torch.nn.functional.interpolate( - pred_img, (final_H, final_H), mode='bilinear', antialias=True - ) - pred_img = (pred_img + 1) / 2 - pred_img = pred_img.clamp(0, 1).cpu() - stacked = torch.cat([pred_img, depth], dim=0) - pane = make_grid(stacked, nrow=2) - pane = rearrange(pane, "c h w -> h w c") - pane = (pane * 255.).clamp(0, 255) - pane = pane.to(torch.uint8) - pane = pane.numpy() - # plt.imshow(pane) - # plt.show() - return pane - - -def export_movie(seqs, fname, fps=30): - fname = Path(fname) - if fname.suffix == "": - fname = fname.with_suffix(".mp4") - writer = imageio.get_writer(fname, fps=fps) - for img in seqs: - writer.append_data(img) - writer.close() - - -def stitch_vis(save_fn, img_fnames, fps=10): - figs = [imageio.imread(fn) for fn in img_fnames] - export_movie(figs, save_fn, fps) diff --git a/spaces/andryMLOPS/ASTA-GPT-3.8_web_ui/g4f/Provider/Providers/helpers/gpt4love.py b/spaces/andryMLOPS/ASTA-GPT-3.8_web_ui/g4f/Provider/Providers/helpers/gpt4love.py deleted file mode 100644 index 987fdbf8de5c27f7b827183d9c192dcf48d8ddcf..0000000000000000000000000000000000000000 --- a/spaces/andryMLOPS/ASTA-GPT-3.8_web_ui/g4f/Provider/Providers/helpers/gpt4love.py +++ /dev/null @@ -1,48 +0,0 @@ -import json -import sys -from re import findall -from curl_cffi import requests - -config = json.loads(sys.argv[1]) -prompt = config['messages'][-1]['content'] - -headers = { - 'authority': 'api.gptplus.one', - 'accept': 'application/json, text/plain, */*', - 'accept-language': 'ru-RU,ru;q=0.9,en-US;q=0.8,en;q=0.7,ja;q=0.6,zh-TW;q=0.5,zh;q=0.4', - 'content-type': 'application/octet-stream', - 'origin': 'https://ai.gptforlove.com/', - 'referer': 'https://ai.gptforlove.com/', - 'sec-ch-ua': '"Google Chrome";v="113", "Chromium";v="113", "Not-A.Brand";v="24"', - 'sec-ch-ua-mobile': '?0', - 'sec-ch-ua-platform': '"macOS"', - 'sec-fetch-dest': 'empty', - 'sec-fetch-mode': 'cors', - 'sec-fetch-site': 'cross-site', - 'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/113.0.0.0 Safari/537.36', -} - -json_data = { - 'prompt': prompt, - 'options': {} -} - -def format(chunk): - try: - completion_chunk = findall(r'content":"(.*)"},"fin', chunk.decode())[0] - print(completion_chunk, flush=True, end='') - - except Exception as e: - print(f'[ERROR] an error occured, retrying... | [[{chunk.decode()}]]', flush=True) - return - -while True: - try: - response = requests.post('https://api.gptplus.one/api/chat-process', - headers=headers, json=json_data, content_callback=format, impersonate='chrome110') - - exit(0) - - except Exception as e: - print('[ERROR] an error occured, retrying... |', e, flush=True) - continue \ No newline at end of file diff --git a/spaces/antonovmaxim/text-generation-webui-space/extensions/llava/script.py b/spaces/antonovmaxim/text-generation-webui-space/extensions/llava/script.py deleted file mode 100644 index 3f6c73a239166182419061339b49e24a1c223d83..0000000000000000000000000000000000000000 --- a/spaces/antonovmaxim/text-generation-webui-space/extensions/llava/script.py +++ /dev/null @@ -1,8 +0,0 @@ -import logging - -import gradio as gr - - -def ui(): - gr.Markdown("### This extension is deprecated, use \"multimodal\" extension instead") - logging.error("LLaVA extension is deprecated, use \"multimodal\" extension instead") diff --git a/spaces/aquaaaaaaaaaaaa/AI-minato_aqua/terms.md b/spaces/aquaaaaaaaaaaaa/AI-minato_aqua/terms.md deleted file mode 100644 index 1818b1821cb4935a64d835344a9c3de474991630..0000000000000000000000000000000000000000 --- a/spaces/aquaaaaaaaaaaaa/AI-minato_aqua/terms.md +++ /dev/null @@ -1,65 +0,0 @@ -# åœØä½æē”Øę­¤ęØ”åž‹å‰čÆ·é˜…čÆ»ä»„äø‹åč®® - -## AIé˜æå¤øęØ”åž‹ä½æē”Øåč®® - -**ć€å‰čØ€ć€‘**AIé˜æå¤øęØ”åž‹ę‰€ęœ‰č€…åŠč®­ē»ƒč€…@MasterSatoriļ¼ˆä»„äø‹ä¹Ÿē§°ā€œęˆ‘ā€ļ¼‰åøŒęœ›é€ščæ‡ć€ŠAIé˜æå¤øęØ”åž‹ä½æē”Øåč®®ć€‹ļ¼ˆä»„äø‹ē®€ē§°ā€œęœ¬åč®®ā€ļ¼‰å‘ę‚ØčÆ“ę˜Žę‚ØåœØä½æē”ØAIé˜æå¤øęØ”åž‹ę—¶åŗ”å½“å±„č”Œēš„č“£ä»»åŠä½æē”ØčŒƒå›“ć€‚ - -**ć€ē‰¹åˆ«ęē¤ŗć€‘**åœØä½æē”ØAIé˜æå¤øęØ”åž‹å‰ļ¼ŒčÆ·ę‚ØåŠ”åæ…ä»”ē»†é˜…čÆ»å¹¶é€å½»ē†č§£ęœ¬åč®®ļ¼Œē‰¹åˆ«ę˜Æä»„ē²—ä½“ę ‡čÆ†ēš„ę”ę¬¾ļ¼Œę‚Øåŗ”é‡ē‚¹é˜…čÆ»ļ¼ŒåœØē”®č®¤å……åˆ†ē†č§£å¹¶åŒę„åŽå†å¼€å§‹ä½æē”Øć€‚ - -​ **ęœ¬åč®®å°†åø®åŠ©ę‚Øäŗ†č§£ä»„äø‹å†…å®¹ļ¼š** - -​ **äø€ć€å…č“£å£°ę˜Ž** - -​ **äŗŒć€ę‚ØåœØéžäøŖäŗŗä½æē”Øåœŗåˆę—¶ä½æē”ØAIé˜æå¤øęØ”åž‹åŗ”å½“åšēš„äŗ‹** - -​ **三、AIé˜æå¤øęØ”åž‹ēš„ä½æē”ØčŒƒå›“** - -​ **å››ć€å¦‚ä½•č”ē³»ęˆ‘** - -​ **(äø€) å…č“£å£°ę˜Žļ¼š** - -​ **您因使用AIé˜æå¤øęØ”åž‹åÆ¹å…¶å®ƒä»»ä½•å®žä½“ļ¼ˆäøŖäŗŗ/ä¼äøšļ¼‰ę‰€é€ ęˆēš„ä»»ä½•ęŸå¤±ē”±ę‚Øč‡Ŗčŗ«ę‰æę‹…ļ¼Œę‚Øå› ä½æē”ØAIé˜æå¤øęØ”åž‹ę‰€äŗ§ē”Ÿēš„äø€åˆ‡ę³•å¾‹é£Žé™©åŠę³•å¾‹ēŗ ēŗ·ē”±ę‚Øč‡Ŗčŗ«ę‰æę‹…ć€‚** - -​ **(二) ę‚ØåœØéžäøŖäŗŗä½æē”Øåœŗåˆę—¶ä½æē”ØAIé˜æå¤øęØ”åž‹åŗ”å½“åšēš„äŗ‹ļ¼š** - -​ 1ć€ę³Øę˜ŽsoVITSé”¹ē›®ä½œč€…ļ¼šRcell - -​ 2ć€ę³Øę˜Žęˆ‘ļ¼šMasterSatori - -​ **(äø‰) AIé˜æå¤øęØ”åž‹ēš„ä½æē”ØčŒƒå›“ļ¼š** - -​ 1ć€ę‚ØåÆä»„ä½æē”Øēš„čŒƒå›“ļ¼š - -​ (1) äøŖäŗŗä½æē”Øāˆš - -​ (2) å°†äŗ§ē”Ÿēš„éŸ³é¢‘ē”ØäŗŽęŠ•ēØæļ¼ˆęŠ•ēØæå†…å®¹äøå¾—åŒ…å«ā€œę‚ØäøåÆä½æē”Øēš„čŒƒå›“ā€äø­ēš„å†…å®¹ļ¼‰āˆš - -​ (3) äŗŒåˆ›å†…å®¹āˆš - -​ (4) éžä»˜č“¹ē²‰äøå‘åŒäŗŗęøøęˆāˆš - -​ 2ć€ę‚ØäøåÆä½æē”Øēš„čŒƒå›“ļ¼š - -​ (1) å•†äøšä½æē”ØĆ— - -​ (2) å‡å†’ęœ¬äŗŗĆ— - -​ (3) å½“ä½œå˜å£°å™Øē­‰ä½æē”Øļ¼ˆäøŖäŗŗä½æē”Øé™¤å¤–ļ¼‰Ć— - -​ (4) 将AIé˜æå¤øęØ”åž‹å†ę¬”äøŠä¼ Ć— - -​ (5) 将AIé˜æå¤øęØ”åž‹ä½œäøŗåŗ•ęØ”čæ›č”Œč®­ē»ƒĆ— - -​ (6) ä½Žåˆ›å†…å®¹ļ¼ˆåˆęˆēš„éŸ³é¢‘äø­ęœ‰čæ‡å¤šēš„ēˆ†éŸ³ęˆ–ē”µéŸ³å±žäŗŽā€œä½Žåˆ›å†…å®¹ā€ļ¼‰Ć— - -​ (7) ę•ę„Ÿå†…å®¹ļ¼ˆåŒ…ę‹¬ä½†äøé™äŗŽļ¼šę”æę²»ć€ä½Žäæ—ć€č‰²ęƒ…ć€ęš“åŠ›ē­‰ļ¼‰Ć— - -​ 3ć€č”„å……å†…å®¹ļ¼š - -​ åœØå…¶ä»–ęœŖč¢«ęåŠēš„åœŗåˆä½æē”ØAIé˜æå¤øęØ”åž‹åŠå…¶ę‰€äŗ§ē”Ÿēš„ę•°ę®ę—¶ę‚Øåŗ”å½“å¾ę±‚ęˆ‘ēš„ę„č§ć€‚ - -​ **ļ¼ˆå››ļ¼‰å¦‚ä½•č”ē³»ęˆ‘ļ¼š** - -​ 1ć€åÆåœØbē«™ē§äæ”ęˆ‘ļ¼ˆUID:8407182) - -​ 2ć€åÆå‘é€é‚®ä»¶č‡³ļ¼šnull@0jmsg.onmicrosoft.com \ No newline at end of file diff --git a/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/Crypto/Cipher/AES.py b/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/Crypto/Cipher/AES.py deleted file mode 100644 index 13bd7eaa5864ed4f00690c2996c766fa85dadaa9..0000000000000000000000000000000000000000 --- a/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/Crypto/Cipher/AES.py +++ /dev/null @@ -1,250 +0,0 @@ -# -*- coding: utf-8 -*- -# -# Cipher/AES.py : AES -# -# =================================================================== -# The contents of this file are dedicated to the public domain. To -# the extent that dedication to the public domain is not available, -# everyone is granted a worldwide, perpetual, royalty-free, -# non-exclusive license to exercise all rights associated with the -# contents of this file for any purpose whatsoever. -# No rights are reserved. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF -# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND -# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS -# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN -# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN -# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -# SOFTWARE. -# =================================================================== -""" -Module's constants for the modes of operation supported with AES: - -:var MODE_ECB: :ref:`Electronic Code Book (ECB) ` -:var MODE_CBC: :ref:`Cipher-Block Chaining (CBC) ` -:var MODE_CFB: :ref:`Cipher FeedBack (CFB) ` -:var MODE_OFB: :ref:`Output FeedBack (OFB) ` -:var MODE_CTR: :ref:`CounTer Mode (CTR) ` -:var MODE_OPENPGP: :ref:`OpenPGP Mode ` -:var MODE_CCM: :ref:`Counter with CBC-MAC (CCM) Mode ` -:var MODE_EAX: :ref:`EAX Mode ` -:var MODE_GCM: :ref:`Galois Counter Mode (GCM) ` -:var MODE_SIV: :ref:`Syntethic Initialization Vector (SIV) ` -:var MODE_OCB: :ref:`Offset Code Book (OCB) ` -""" - -import sys - -from Crypto.Cipher import _create_cipher -from Crypto.Util._raw_api import (load_pycryptodome_raw_lib, - VoidPointer, SmartPointer, - c_size_t, c_uint8_ptr) - -from Crypto.Util import _cpu_features -from Crypto.Random import get_random_bytes - - -_cproto = """ - int AES_start_operation(const uint8_t key[], - size_t key_len, - void **pResult); - int AES_encrypt(const void *state, - const uint8_t *in, - uint8_t *out, - size_t data_len); - int AES_decrypt(const void *state, - const uint8_t *in, - uint8_t *out, - size_t data_len); - int AES_stop_operation(void *state); - """ - - -# Load portable AES -_raw_aes_lib = load_pycryptodome_raw_lib("Crypto.Cipher._raw_aes", - _cproto) - -# Try to load AES with AES NI instructions -try: - _raw_aesni_lib = None - if _cpu_features.have_aes_ni(): - _raw_aesni_lib = load_pycryptodome_raw_lib("Crypto.Cipher._raw_aesni", - _cproto.replace("AES", - "AESNI")) -# _raw_aesni may not have been compiled in -except OSError: - pass - - -def _create_base_cipher(dict_parameters): - """This method instantiates and returns a handle to a low-level - base cipher. It will absorb named parameters in the process.""" - - use_aesni = dict_parameters.pop("use_aesni", True) - - try: - key = dict_parameters.pop("key") - except KeyError: - raise TypeError("Missing 'key' parameter") - - if len(key) not in key_size: - raise ValueError("Incorrect AES key length (%d bytes)" % len(key)) - - if use_aesni and _raw_aesni_lib: - start_operation = _raw_aesni_lib.AESNI_start_operation - stop_operation = _raw_aesni_lib.AESNI_stop_operation - else: - start_operation = _raw_aes_lib.AES_start_operation - stop_operation = _raw_aes_lib.AES_stop_operation - - cipher = VoidPointer() - result = start_operation(c_uint8_ptr(key), - c_size_t(len(key)), - cipher.address_of()) - if result: - raise ValueError("Error %X while instantiating the AES cipher" - % result) - return SmartPointer(cipher.get(), stop_operation) - - -def _derive_Poly1305_key_pair(key, nonce): - """Derive a tuple (r, s, nonce) for a Poly1305 MAC. - - If nonce is ``None``, a new 16-byte nonce is generated. - """ - - if len(key) != 32: - raise ValueError("Poly1305 with AES requires a 32-byte key") - - if nonce is None: - nonce = get_random_bytes(16) - elif len(nonce) != 16: - raise ValueError("Poly1305 with AES requires a 16-byte nonce") - - s = new(key[:16], MODE_ECB).encrypt(nonce) - return key[16:], s, nonce - - -def new(key, mode, *args, **kwargs): - """Create a new AES cipher. - - :param key: - The secret key to use in the symmetric cipher. - - It must be 16, 24 or 32 bytes long (respectively for *AES-128*, - *AES-192* or *AES-256*). - - For ``MODE_SIV`` only, it doubles to 32, 48, or 64 bytes. - :type key: bytes/bytearray/memoryview - - :param mode: - The chaining mode to use for encryption or decryption. - If in doubt, use ``MODE_EAX``. - :type mode: One of the supported ``MODE_*`` constants - - :Keyword Arguments: - * **iv** (*bytes*, *bytearray*, *memoryview*) -- - (Only applicable for ``MODE_CBC``, ``MODE_CFB``, ``MODE_OFB``, - and ``MODE_OPENPGP`` modes). - - The initialization vector to use for encryption or decryption. - - For ``MODE_CBC``, ``MODE_CFB``, and ``MODE_OFB`` it must be 16 bytes long. - - For ``MODE_OPENPGP`` mode only, - it must be 16 bytes long for encryption - and 18 bytes for decryption (in the latter case, it is - actually the *encrypted* IV which was prefixed to the ciphertext). - - If not provided, a random byte string is generated (you must then - read its value with the :attr:`iv` attribute). - - * **nonce** (*bytes*, *bytearray*, *memoryview*) -- - (Only applicable for ``MODE_CCM``, ``MODE_EAX``, ``MODE_GCM``, - ``MODE_SIV``, ``MODE_OCB``, and ``MODE_CTR``). - - A value that must never be reused for any other encryption done - with this key (except possibly for ``MODE_SIV``, see below). - - For ``MODE_EAX``, ``MODE_GCM`` and ``MODE_SIV`` there are no - restrictions on its length (recommended: **16** bytes). - - For ``MODE_CCM``, its length must be in the range **[7..13]**. - Bear in mind that with CCM there is a trade-off between nonce - length and maximum message size. Recommendation: **11** bytes. - - For ``MODE_OCB``, its length must be in the range **[1..15]** - (recommended: **15**). - - For ``MODE_CTR``, its length must be in the range **[0..15]** - (recommended: **8**). - - For ``MODE_SIV``, the nonce is optional, if it is not specified, - then no nonce is being used, which renders the encryption - deterministic. - - If not provided, for modes other than ``MODE_SIV```, a random - byte string of the recommended length is used (you must then - read its value with the :attr:`nonce` attribute). - - * **segment_size** (*integer*) -- - (Only ``MODE_CFB``).The number of **bits** the plaintext and ciphertext - are segmented in. It must be a multiple of 8. - If not specified, it will be assumed to be 8. - - * **mac_len** : (*integer*) -- - (Only ``MODE_EAX``, ``MODE_GCM``, ``MODE_OCB``, ``MODE_CCM``) - Length of the authentication tag, in bytes. - - It must be even and in the range **[4..16]**. - The recommended value (and the default, if not specified) is **16**. - - * **msg_len** : (*integer*) -- - (Only ``MODE_CCM``). Length of the message to (de)cipher. - If not specified, ``encrypt`` must be called with the entire message. - Similarly, ``decrypt`` can only be called once. - - * **assoc_len** : (*integer*) -- - (Only ``MODE_CCM``). Length of the associated data. - If not specified, all associated data is buffered internally, - which may represent a problem for very large messages. - - * **initial_value** : (*integer* or *bytes/bytearray/memoryview*) -- - (Only ``MODE_CTR``). - The initial value for the counter. If not present, the cipher will - start counting from 0. The value is incremented by one for each block. - The counter number is encoded in big endian mode. - - * **counter** : (*object*) -- - Instance of ``Crypto.Util.Counter``, which allows full customization - of the counter block. This parameter is incompatible to both ``nonce`` - and ``initial_value``. - - * **use_aesni** : (*boolean*) -- - Use Intel AES-NI hardware extensions (default: use if available). - - :Return: an AES object, of the applicable mode. - """ - - kwargs["add_aes_modes"] = True - return _create_cipher(sys.modules[__name__], key, mode, *args, **kwargs) - - -MODE_ECB = 1 -MODE_CBC = 2 -MODE_CFB = 3 -MODE_OFB = 5 -MODE_CTR = 6 -MODE_OPENPGP = 7 -MODE_CCM = 8 -MODE_EAX = 9 -MODE_SIV = 10 -MODE_GCM = 11 -MODE_OCB = 12 - -# Size of a data block (in bytes) -block_size = 16 -# Size of a key (in bytes) -key_size = (16, 24, 32) diff --git a/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/Cython/Compiler/Tests/TestStringEncoding.py b/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/Cython/Compiler/Tests/TestStringEncoding.py deleted file mode 100644 index 91d099333a0ba806938b18123e0dae29fff7f6c9..0000000000000000000000000000000000000000 --- a/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/Cython/Compiler/Tests/TestStringEncoding.py +++ /dev/null @@ -1,44 +0,0 @@ -# -*- coding: utf-8 -*- - -import sys -import unittest - -import Cython.Compiler.StringEncoding as StringEncoding - - -class StringEncodingTest(unittest.TestCase): - """ - Test the StringEncoding module. - """ - def test_string_contains_lone_surrogates(self): - self.assertFalse(StringEncoding.string_contains_lone_surrogates(u"abc")) - self.assertFalse(StringEncoding.string_contains_lone_surrogates(u"\uABCD")) - self.assertFalse(StringEncoding.string_contains_lone_surrogates(u"\N{SNOWMAN}")) - - # This behaves differently in Py2 when freshly parsed and read from a .pyc file, - # but it seems to be a marshalling bug in Py2, which doesn't hurt us in Cython. - if sys.version_info[0] != 2: - self.assertTrue(StringEncoding.string_contains_lone_surrogates(u"\uD800\uDFFF")) - - # In Py2 with 16bit Unicode, the following is indistinguishable from the 32bit character. - obfuscated_surrogate_pair = (u"\uDFFF" + "\uD800")[::-1] - if sys.version_info[0] == 2 and sys.maxunicode == 65565: - self.assertFalse(StringEncoding.string_contains_lone_surrogates(obfuscated_surrogate_pair)) - else: - self.assertTrue(StringEncoding.string_contains_lone_surrogates(obfuscated_surrogate_pair)) - - self.assertTrue(StringEncoding.string_contains_lone_surrogates(u"\uD800")) - self.assertTrue(StringEncoding.string_contains_lone_surrogates(u"\uDFFF")) - self.assertTrue(StringEncoding.string_contains_lone_surrogates(u"\uDFFF\uD800")) - self.assertTrue(StringEncoding.string_contains_lone_surrogates(u"\uD800x\uDFFF")) - - def test_string_contains_surrogates(self): - self.assertFalse(StringEncoding.string_contains_surrogates(u"abc")) - self.assertFalse(StringEncoding.string_contains_surrogates(u"\uABCD")) - self.assertFalse(StringEncoding.string_contains_surrogates(u"\N{SNOWMAN}")) - - self.assertTrue(StringEncoding.string_contains_surrogates(u"\uD800")) - self.assertTrue(StringEncoding.string_contains_surrogates(u"\uDFFF")) - self.assertTrue(StringEncoding.string_contains_surrogates(u"\uD800\uDFFF")) - self.assertTrue(StringEncoding.string_contains_surrogates(u"\uDFFF\uD800")) - self.assertTrue(StringEncoding.string_contains_surrogates(u"\uD800x\uDFFF")) diff --git a/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/Cython/Plex/Lexicons.py b/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/Cython/Plex/Lexicons.py deleted file mode 100644 index 787f5854b8efd6bb49c6c000cbe0e36b8ef0aaba..0000000000000000000000000000000000000000 --- a/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/Cython/Plex/Lexicons.py +++ /dev/null @@ -1,200 +0,0 @@ -#======================================================================= -# -# Python Lexical Analyser -# -# Lexical Analyser Specification -# -#======================================================================= - -from __future__ import absolute_import - -import types - -from . import Actions -from . import DFA -from . import Errors -from . import Machines -from . import Regexps - -# debug_flags for Lexicon constructor -DUMP_NFA = 1 -DUMP_DFA = 2 - - -class State(object): - """ - This class is used as part of a Plex.Lexicon specification to - introduce a user-defined state. - - Constructor: - - State(name, token_specifications) - """ - - name = None - tokens = None - - def __init__(self, name, tokens): - self.name = name - self.tokens = tokens - - -class Lexicon(object): - """ - Lexicon(specification) builds a lexical analyser from the given - |specification|. The specification consists of a list of - specification items. Each specification item may be either: - - 1) A token definition, which is a tuple: - - (pattern, action) - - The |pattern| is a regular axpression built using the - constructors defined in the Plex module. - - The |action| is the action to be performed when this pattern - is recognised (see below). - - 2) A state definition: - - State(name, tokens) - - where |name| is a character string naming the state, - and |tokens| is a list of token definitions as - above. The meaning and usage of states is described - below. - - Actions - ------- - - The |action| in a token specication may be one of three things: - - 1) A function, which is called as follows: - - function(scanner, text) - - where |scanner| is the relevant Scanner instance, and |text| - is the matched text. If the function returns anything - other than None, that value is returned as the value of the - token. If it returns None, scanning continues as if the IGNORE - action were specified (see below). - - 2) One of the following special actions: - - IGNORE means that the recognised characters will be treated as - white space and ignored. Scanning will continue until - the next non-ignored token is recognised before returning. - - TEXT causes the scanned text itself to be returned as the - value of the token. - - 3) Any other value, which is returned as the value of the token. - - States - ------ - - At any given time, the scanner is in one of a number of states. - Associated with each state is a set of possible tokens. When scanning, - only tokens associated with the current state are recognised. - - There is a default state, whose name is the empty string. Token - definitions which are not inside any State definition belong to - the default state. - - The initial state of the scanner is the default state. The state can - be changed in one of two ways: - - 1) Using Begin(state_name) as the action of a token. - - 2) Calling the begin(state_name) method of the Scanner. - - To change back to the default state, use '' as the state name. - """ - - machine = None # Machine - tables = None # StateTableMachine - - def __init__(self, specifications, debug=None, debug_flags=7, timings=None): - if not isinstance(specifications, list): - raise Errors.InvalidScanner("Scanner definition is not a list") - if timings: - from .Timing import time - - total_time = 0.0 - time1 = time() - nfa = Machines.Machine() - default_initial_state = nfa.new_initial_state('') - token_number = 1 - for spec in specifications: - if isinstance(spec, State): - user_initial_state = nfa.new_initial_state(spec.name) - for token in spec.tokens: - self.add_token_to_machine( - nfa, user_initial_state, token, token_number) - token_number += 1 - elif isinstance(spec, tuple): - self.add_token_to_machine( - nfa, default_initial_state, spec, token_number) - token_number += 1 - else: - raise Errors.InvalidToken( - token_number, - "Expected a token definition (tuple) or State instance") - if timings: - time2 = time() - total_time = total_time + (time2 - time1) - time3 = time() - if debug and (debug_flags & 1): - debug.write("\n============= NFA ===========\n") - nfa.dump(debug) - dfa = DFA.nfa_to_dfa(nfa, debug=(debug_flags & 3) == 3 and debug) - if timings: - time4 = time() - total_time = total_time + (time4 - time3) - if debug and (debug_flags & 2): - debug.write("\n============= DFA ===========\n") - dfa.dump(debug) - if timings: - timings.write("Constructing NFA : %5.2f\n" % (time2 - time1)) - timings.write("Converting to DFA: %5.2f\n" % (time4 - time3)) - timings.write("TOTAL : %5.2f\n" % total_time) - self.machine = dfa - - def add_token_to_machine(self, machine, initial_state, token_spec, token_number): - try: - (re, action_spec) = self.parse_token_definition(token_spec) - # Disabled this -- matching empty strings can be useful - #if re.nullable: - # raise Errors.InvalidToken( - # token_number, "Pattern can match 0 input symbols") - if isinstance(action_spec, Actions.Action): - action = action_spec - else: - try: - action_spec.__call__ - except AttributeError: - action = Actions.Return(action_spec) - else: - action = Actions.Call(action_spec) - final_state = machine.new_state() - re.build_machine(machine, initial_state, final_state, - match_bol=1, nocase=0) - final_state.set_action(action, priority=-token_number) - except Errors.PlexError as e: - raise e.__class__("Token number %d: %s" % (token_number, e)) - - def parse_token_definition(self, token_spec): - if not isinstance(token_spec, tuple): - raise Errors.InvalidToken("Token definition is not a tuple") - if len(token_spec) != 2: - raise Errors.InvalidToken("Wrong number of items in token definition") - pattern, action = token_spec - if not isinstance(pattern, Regexps.RE): - raise Errors.InvalidToken("Pattern is not an RE instance") - return (pattern, action) - - def get_initial_state(self, name): - return self.machine.get_initial_state(name) - - - diff --git a/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/absl/flags/_argument_parser.py b/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/absl/flags/_argument_parser.py deleted file mode 100644 index 2c4de9b191cb359f8f32fd968ac1006704ad0661..0000000000000000000000000000000000000000 --- a/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/absl/flags/_argument_parser.py +++ /dev/null @@ -1,629 +0,0 @@ -# Copyright 2017 The Abseil Authors. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -"""Contains base classes used to parse and convert arguments. - -Do NOT import this module directly. Import the flags package and use the -aliases defined at the package level instead. -""" - -import collections -import csv -import io -import string - -from absl.flags import _helpers - - -def _is_integer_type(instance): - """Returns True if instance is an integer, and not a bool.""" - return (isinstance(instance, int) and - not isinstance(instance, bool)) - - -class _ArgumentParserCache(type): - """Metaclass used to cache and share argument parsers among flags.""" - - _instances = {} - - def __call__(cls, *args, **kwargs): - """Returns an instance of the argument parser cls. - - This method overrides behavior of the __new__ methods in - all subclasses of ArgumentParser (inclusive). If an instance - for cls with the same set of arguments exists, this instance is - returned, otherwise a new instance is created. - - If any keyword arguments are defined, or the values in args - are not hashable, this method always returns a new instance of - cls. - - Args: - *args: Positional initializer arguments. - **kwargs: Initializer keyword arguments. - - Returns: - An instance of cls, shared or new. - """ - if kwargs: - return type.__call__(cls, *args, **kwargs) - else: - instances = cls._instances - key = (cls,) + tuple(args) - try: - return instances[key] - except KeyError: - # No cache entry for key exists, create a new one. - return instances.setdefault(key, type.__call__(cls, *args)) - except TypeError: - # An object in args cannot be hashed, always return - # a new instance. - return type.__call__(cls, *args) - - -# NOTE about Genericity and Metaclass of ArgumentParser. -# (1) In the .py source (this file) -# - is not declared as Generic -# - has _ArgumentParserCache as a metaclass -# (2) In the .pyi source (type stub) -# - is declared as Generic -# - doesn't have a metaclass -# The reason we need this is due to Generic having a different metaclass -# (for python versions <= 3.7) and a class can have only one metaclass. -# -# * Lack of metaclass in .pyi is not a deal breaker, since the metaclass -# doesn't affect any type information. Also type checkers can check the type -# parameters. -# * However, not declaring ArgumentParser as Generic in the source affects -# runtime annotation processing. In particular this means, subclasses should -# inherit from `ArgumentParser` and not `ArgumentParser[SomeType]`. -# The corresponding DEFINE_someType method (the public API) can be annotated -# to return FlagHolder[SomeType]. -class ArgumentParser(metaclass=_ArgumentParserCache): - """Base class used to parse and convert arguments. - - The :meth:`parse` method checks to make sure that the string argument is a - legal value and convert it to a native type. If the value cannot be - converted, it should throw a ``ValueError`` exception with a human - readable explanation of why the value is illegal. - - Subclasses should also define a syntactic_help string which may be - presented to the user to describe the form of the legal values. - - Argument parser classes must be stateless, since instances are cached - and shared between flags. Initializer arguments are allowed, but all - member variables must be derived from initializer arguments only. - """ - - syntactic_help = '' - - def parse(self, argument): - """Parses the string argument and returns the native value. - - By default it returns its argument unmodified. - - Args: - argument: string argument passed in the commandline. - - Raises: - ValueError: Raised when it fails to parse the argument. - TypeError: Raised when the argument has the wrong type. - - Returns: - The parsed value in native type. - """ - if not isinstance(argument, str): - raise TypeError('flag value must be a string, found "{}"'.format( - type(argument))) - return argument - - def flag_type(self): - """Returns a string representing the type of the flag.""" - return 'string' - - def _custom_xml_dom_elements(self, doc): - """Returns a list of minidom.Element to add additional flag information. - - Args: - doc: minidom.Document, the DOM document it should create nodes from. - """ - del doc # Unused. - return [] - - -class ArgumentSerializer(object): - """Base class for generating string representations of a flag value.""" - - def serialize(self, value): - """Returns a serialized string of the value.""" - return str(value) - - -class NumericParser(ArgumentParser): - """Parser of numeric values. - - Parsed value may be bounded to a given upper and lower bound. - """ - - def is_outside_bounds(self, val): - """Returns whether the value is outside the bounds or not.""" - return ((self.lower_bound is not None and val < self.lower_bound) or - (self.upper_bound is not None and val > self.upper_bound)) - - def parse(self, argument): - """See base class.""" - val = self.convert(argument) - if self.is_outside_bounds(val): - raise ValueError('%s is not %s' % (val, self.syntactic_help)) - return val - - def _custom_xml_dom_elements(self, doc): - elements = [] - if self.lower_bound is not None: - elements.append(_helpers.create_xml_dom_element( - doc, 'lower_bound', self.lower_bound)) - if self.upper_bound is not None: - elements.append(_helpers.create_xml_dom_element( - doc, 'upper_bound', self.upper_bound)) - return elements - - def convert(self, argument): - """Returns the correct numeric value of argument. - - Subclass must implement this method, and raise TypeError if argument is not - string or has the right numeric type. - - Args: - argument: string argument passed in the commandline, or the numeric type. - - Raises: - TypeError: Raised when argument is not a string or the right numeric type. - ValueError: Raised when failed to convert argument to the numeric value. - """ - raise NotImplementedError - - -class FloatParser(NumericParser): - """Parser of floating point values. - - Parsed value may be bounded to a given upper and lower bound. - """ - number_article = 'a' - number_name = 'number' - syntactic_help = ' '.join((number_article, number_name)) - - def __init__(self, lower_bound=None, upper_bound=None): - super(FloatParser, self).__init__() - self.lower_bound = lower_bound - self.upper_bound = upper_bound - sh = self.syntactic_help - if lower_bound is not None and upper_bound is not None: - sh = ('%s in the range [%s, %s]' % (sh, lower_bound, upper_bound)) - elif lower_bound == 0: - sh = 'a non-negative %s' % self.number_name - elif upper_bound == 0: - sh = 'a non-positive %s' % self.number_name - elif upper_bound is not None: - sh = '%s <= %s' % (self.number_name, upper_bound) - elif lower_bound is not None: - sh = '%s >= %s' % (self.number_name, lower_bound) - self.syntactic_help = sh - - def convert(self, argument): - """Returns the float value of argument.""" - if (_is_integer_type(argument) or isinstance(argument, float) or - isinstance(argument, str)): - return float(argument) - else: - raise TypeError( - 'Expect argument to be a string, int, or float, found {}'.format( - type(argument))) - - def flag_type(self): - """See base class.""" - return 'float' - - -class IntegerParser(NumericParser): - """Parser of an integer value. - - Parsed value may be bounded to a given upper and lower bound. - """ - number_article = 'an' - number_name = 'integer' - syntactic_help = ' '.join((number_article, number_name)) - - def __init__(self, lower_bound=None, upper_bound=None): - super(IntegerParser, self).__init__() - self.lower_bound = lower_bound - self.upper_bound = upper_bound - sh = self.syntactic_help - if lower_bound is not None and upper_bound is not None: - sh = ('%s in the range [%s, %s]' % (sh, lower_bound, upper_bound)) - elif lower_bound == 1: - sh = 'a positive %s' % self.number_name - elif upper_bound == -1: - sh = 'a negative %s' % self.number_name - elif lower_bound == 0: - sh = 'a non-negative %s' % self.number_name - elif upper_bound == 0: - sh = 'a non-positive %s' % self.number_name - elif upper_bound is not None: - sh = '%s <= %s' % (self.number_name, upper_bound) - elif lower_bound is not None: - sh = '%s >= %s' % (self.number_name, lower_bound) - self.syntactic_help = sh - - def convert(self, argument): - """Returns the int value of argument.""" - if _is_integer_type(argument): - return argument - elif isinstance(argument, str): - base = 10 - if len(argument) > 2 and argument[0] == '0': - if argument[1] == 'o': - base = 8 - elif argument[1] == 'x': - base = 16 - return int(argument, base) - else: - raise TypeError('Expect argument to be a string or int, found {}'.format( - type(argument))) - - def flag_type(self): - """See base class.""" - return 'int' - - -class BooleanParser(ArgumentParser): - """Parser of boolean values.""" - - def parse(self, argument): - """See base class.""" - if isinstance(argument, str): - if argument.lower() in ('true', 't', '1'): - return True - elif argument.lower() in ('false', 'f', '0'): - return False - else: - raise ValueError('Non-boolean argument to boolean flag', argument) - elif isinstance(argument, int): - # Only allow bool or integer 0, 1. - # Note that float 1.0 == True, 0.0 == False. - bool_value = bool(argument) - if argument == bool_value: - return bool_value - else: - raise ValueError('Non-boolean argument to boolean flag', argument) - - raise TypeError('Non-boolean argument to boolean flag', argument) - - def flag_type(self): - """See base class.""" - return 'bool' - - -class EnumParser(ArgumentParser): - """Parser of a string enum value (a string value from a given set).""" - - def __init__(self, enum_values, case_sensitive=True): - """Initializes EnumParser. - - Args: - enum_values: [str], a non-empty list of string values in the enum. - case_sensitive: bool, whether or not the enum is to be case-sensitive. - - Raises: - ValueError: When enum_values is empty. - """ - if not enum_values: - raise ValueError( - 'enum_values cannot be empty, found "{}"'.format(enum_values)) - super(EnumParser, self).__init__() - self.enum_values = enum_values - self.case_sensitive = case_sensitive - - def parse(self, argument): - """Determines validity of argument and returns the correct element of enum. - - Args: - argument: str, the supplied flag value. - - Returns: - The first matching element from enum_values. - - Raises: - ValueError: Raised when argument didn't match anything in enum. - """ - if self.case_sensitive: - if argument not in self.enum_values: - raise ValueError('value should be one of <%s>' % - '|'.join(self.enum_values)) - else: - return argument - else: - if argument.upper() not in [value.upper() for value in self.enum_values]: - raise ValueError('value should be one of <%s>' % - '|'.join(self.enum_values)) - else: - return [value for value in self.enum_values - if value.upper() == argument.upper()][0] - - def flag_type(self): - """See base class.""" - return 'string enum' - - -class EnumClassParser(ArgumentParser): - """Parser of an Enum class member.""" - - def __init__(self, enum_class, case_sensitive=True): - """Initializes EnumParser. - - Args: - enum_class: class, the Enum class with all possible flag values. - case_sensitive: bool, whether or not the enum is to be case-sensitive. If - False, all member names must be unique when case is ignored. - - Raises: - TypeError: When enum_class is not a subclass of Enum. - ValueError: When enum_class is empty. - """ - # Users must have an Enum class defined before using EnumClass flag. - # Therefore this dependency is guaranteed. - import enum - - if not issubclass(enum_class, enum.Enum): - raise TypeError('{} is not a subclass of Enum.'.format(enum_class)) - if not enum_class.__members__: - raise ValueError('enum_class cannot be empty, but "{}" is empty.' - .format(enum_class)) - if not case_sensitive: - members = collections.Counter( - name.lower() for name in enum_class.__members__) - duplicate_keys = { - member for member, count in members.items() if count > 1 - } - if duplicate_keys: - raise ValueError( - 'Duplicate enum values for {} using case_sensitive=False'.format( - duplicate_keys)) - - super(EnumClassParser, self).__init__() - self.enum_class = enum_class - self._case_sensitive = case_sensitive - if case_sensitive: - self._member_names = tuple(enum_class.__members__) - else: - self._member_names = tuple( - name.lower() for name in enum_class.__members__) - - @property - def member_names(self): - """The accepted enum names, in lowercase if not case sensitive.""" - return self._member_names - - def parse(self, argument): - """Determines validity of argument and returns the correct element of enum. - - Args: - argument: str or Enum class member, the supplied flag value. - - Returns: - The first matching Enum class member in Enum class. - - Raises: - ValueError: Raised when argument didn't match anything in enum. - """ - if isinstance(argument, self.enum_class): - return argument - elif not isinstance(argument, str): - raise ValueError( - '{} is not an enum member or a name of a member in {}'.format( - argument, self.enum_class)) - key = EnumParser( - self._member_names, case_sensitive=self._case_sensitive).parse(argument) - if self._case_sensitive: - return self.enum_class[key] - else: - # If EnumParser.parse() return a value, we're guaranteed to find it - # as a member of the class - return next(value for name, value in self.enum_class.__members__.items() - if name.lower() == key.lower()) - - def flag_type(self): - """See base class.""" - return 'enum class' - - -class ListSerializer(ArgumentSerializer): - - def __init__(self, list_sep): - self.list_sep = list_sep - - def serialize(self, value): - """See base class.""" - return self.list_sep.join([str(x) for x in value]) - - -class EnumClassListSerializer(ListSerializer): - """A serializer for :class:`MultiEnumClass` flags. - - This serializer simply joins the output of `EnumClassSerializer` using a - provided separator. - """ - - def __init__(self, list_sep, **kwargs): - """Initializes EnumClassListSerializer. - - Args: - list_sep: String to be used as a separator when serializing - **kwargs: Keyword arguments to the `EnumClassSerializer` used to serialize - individual values. - """ - super(EnumClassListSerializer, self).__init__(list_sep) - self._element_serializer = EnumClassSerializer(**kwargs) - - def serialize(self, value): - """See base class.""" - if isinstance(value, list): - return self.list_sep.join( - self._element_serializer.serialize(x) for x in value) - else: - return self._element_serializer.serialize(value) - - -class CsvListSerializer(ArgumentSerializer): - - def __init__(self, list_sep): - self.list_sep = list_sep - - def serialize(self, value): - """Serializes a list as a CSV string or unicode.""" - output = io.StringIO() - writer = csv.writer(output, delimiter=self.list_sep) - writer.writerow([str(x) for x in value]) - serialized_value = output.getvalue().strip() - - # We need the returned value to be pure ascii or Unicodes so that - # when the xml help is generated they are usefully encodable. - return str(serialized_value) - - -class EnumClassSerializer(ArgumentSerializer): - """Class for generating string representations of an enum class flag value.""" - - def __init__(self, lowercase): - """Initializes EnumClassSerializer. - - Args: - lowercase: If True, enum member names are lowercased during serialization. - """ - self._lowercase = lowercase - - def serialize(self, value): - """Returns a serialized string of the Enum class value.""" - as_string = str(value.name) - return as_string.lower() if self._lowercase else as_string - - -class BaseListParser(ArgumentParser): - """Base class for a parser of lists of strings. - - To extend, inherit from this class; from the subclass ``__init__``, call:: - - super().__init__(token, name) - - where token is a character used to tokenize, and name is a description - of the separator. - """ - - def __init__(self, token=None, name=None): - assert name - super(BaseListParser, self).__init__() - self._token = token - self._name = name - self.syntactic_help = 'a %s separated list' % self._name - - def parse(self, argument): - """See base class.""" - if isinstance(argument, list): - return argument - elif not argument: - return [] - else: - return [s.strip() for s in argument.split(self._token)] - - def flag_type(self): - """See base class.""" - return '%s separated list of strings' % self._name - - -class ListParser(BaseListParser): - """Parser for a comma-separated list of strings.""" - - def __init__(self): - super(ListParser, self).__init__(',', 'comma') - - def parse(self, argument): - """Parses argument as comma-separated list of strings.""" - if isinstance(argument, list): - return argument - elif not argument: - return [] - else: - try: - return [s.strip() for s in list(csv.reader([argument], strict=True))[0]] - except csv.Error as e: - # Provide a helpful report for case like - # --listflag="$(printf 'hello,\nworld')" - # IOW, list flag values containing naked newlines. This error - # was previously "reported" by allowing csv.Error to - # propagate. - raise ValueError('Unable to parse the value %r as a %s: %s' - % (argument, self.flag_type(), e)) - - def _custom_xml_dom_elements(self, doc): - elements = super(ListParser, self)._custom_xml_dom_elements(doc) - elements.append(_helpers.create_xml_dom_element( - doc, 'list_separator', repr(','))) - return elements - - -class WhitespaceSeparatedListParser(BaseListParser): - """Parser for a whitespace-separated list of strings.""" - - def __init__(self, comma_compat=False): - """Initializer. - - Args: - comma_compat: bool, whether to support comma as an additional separator. - If False then only whitespace is supported. This is intended only for - backwards compatibility with flags that used to be comma-separated. - """ - self._comma_compat = comma_compat - name = 'whitespace or comma' if self._comma_compat else 'whitespace' - super(WhitespaceSeparatedListParser, self).__init__(None, name) - - def parse(self, argument): - """Parses argument as whitespace-separated list of strings. - - It also parses argument as comma-separated list of strings if requested. - - Args: - argument: string argument passed in the commandline. - - Returns: - [str], the parsed flag value. - """ - if isinstance(argument, list): - return argument - elif not argument: - return [] - else: - if self._comma_compat: - argument = argument.replace(',', ' ') - return argument.split() - - def _custom_xml_dom_elements(self, doc): - elements = super(WhitespaceSeparatedListParser, self - )._custom_xml_dom_elements(doc) - separators = list(string.whitespace) - if self._comma_compat: - separators.append(',') - separators.sort() - for sep_char in separators: - elements.append(_helpers.create_xml_dom_element( - doc, 'list_separator', repr(sep_char))) - return elements diff --git a/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/altair/examples/one_dot_per_zipcode.py b/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/altair/examples/one_dot_per_zipcode.py deleted file mode 100644 index c08ff3932b883de7f5dad153d2f7a470e6099d40..0000000000000000000000000000000000000000 --- a/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/altair/examples/one_dot_per_zipcode.py +++ /dev/null @@ -1,25 +0,0 @@ -""" -One Dot Per Zipcode ------------------------ -This example shows a geographical plot with one dot per zipcode. -""" -# category: case studies -import altair as alt -from vega_datasets import data - -# Since the data is more than 5,000 rows we'll import it from a URL -source = data.zipcodes.url - -alt.Chart(source).transform_calculate( - "leading digit", alt.expr.substring(alt.datum.zip_code, 0, 1) -).mark_circle(size=3).encode( - longitude='longitude:Q', - latitude='latitude:Q', - color='leading digit:N', - tooltip='zip_code:N' -).project( - type='albersUsa' -).properties( - width=650, - height=400 -) diff --git a/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/altair/examples/streamgraph.py b/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/altair/examples/streamgraph.py deleted file mode 100644 index 64b8e4176a2dcf71f04429314c9bedaa798220b8..0000000000000000000000000000000000000000 --- a/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/altair/examples/streamgraph.py +++ /dev/null @@ -1,20 +0,0 @@ -""" -Streamgraph ------------------ -This example shows the streamgraph from vega-lite examples. -""" -# category: area charts -import altair as alt -from vega_datasets import data - -source = data.unemployment_across_industries.url - -alt.Chart(source).mark_area().encode( - alt.X('yearmonth(date):T', - axis=alt.Axis(format='%Y', domain=False, tickSize=0) - ), - alt.Y('sum(count):Q', stack='center', axis=None), - alt.Color('series:N', - scale=alt.Scale(scheme='category20b') - ) -).interactive() diff --git a/spaces/ashercn97/AsherTesting/extensions/openai/moderations.py b/spaces/ashercn97/AsherTesting/extensions/openai/moderations.py deleted file mode 100644 index 66dfec9f786225ab44b7235cb675d71ec385c9dd..0000000000000000000000000000000000000000 --- a/spaces/ashercn97/AsherTesting/extensions/openai/moderations.py +++ /dev/null @@ -1,69 +0,0 @@ -import time -import numpy as np -from numpy.linalg import norm -from extensions.openai.embeddings import get_embeddings_model - - -moderations_disabled = False # return 0/false -category_embeddings = None -antonym_embeddings = None -categories = ["sexual", "hate", "harassment", "self-harm", "sexual/minors", "hate/threatening", "violence/graphic", "self-harm/intent", "self-harm/instructions", "harassment/threatening", "violence"] -flag_threshold = 0.5 - - -def get_category_embeddings(): - global category_embeddings, categories - if category_embeddings is None: - embeddings = get_embeddings_model().encode(categories).tolist() - category_embeddings = dict(zip(categories, embeddings)) - - return category_embeddings - - -def cosine_similarity(a, b): - return np.dot(a, b) / (norm(a) * norm(b)) - - -# seems most openai like with all-mpnet-base-v2 -def mod_score(a, b): - return 2.0 * np.dot(a, b) - - -def moderations(input): - global category_embeddings, categories, flag_threshold, moderations_disabled - results = { - "id": f"modr-{int(time.time()*1e9)}", - "model": "text-moderation-001", - "results": [], - } - - embeddings_model = get_embeddings_model() - if not embeddings_model or moderations_disabled: - results['results'] = [{ - 'categories': dict([(C, False) for C in categories]), - 'category_scores': dict([(C, 0.0) for C in categories]), - 'flagged': False, - }] - return results - - category_embeddings = get_category_embeddings() - - # input, string or array - if isinstance(input, str): - input = [input] - - for in_str in input: - for ine in embeddings_model.encode([in_str]).tolist(): - category_scores = dict([(C, mod_score(category_embeddings[C], ine)) for C in categories]) - category_flags = dict([(C, bool(category_scores[C] > flag_threshold)) for C in categories]) - flagged = any(category_flags.values()) - - results['results'].extend([{ - 'flagged': flagged, - 'categories': category_flags, - 'category_scores': category_scores, - }]) - - print(results) - - return results diff --git a/spaces/atyshka/ai-detector/app.py b/spaces/atyshka/ai-detector/app.py deleted file mode 100644 index 141972a17c52f0e8ead255b7b24d298048a338c0..0000000000000000000000000000000000000000 --- a/spaces/atyshka/ai-detector/app.py +++ /dev/null @@ -1,92 +0,0 @@ -import pickle -import torch -import numpy as np -import gradio as gr -from nltk import word_tokenize, sent_tokenize -import nltk -from scipy.stats import shapiro, percentileofscore -from transformers import GPT2LMHeadModel, GPT2TokenizerFast - -nltk.download('punkt') - -model = GPT2LMHeadModel.from_pretrained('gpt2-large') -tokenizer: GPT2TokenizerFast = GPT2TokenizerFast.from_pretrained('gpt2-large') - -with open('model.pkl', 'rb') as f: - lr_model = pickle.load(f) -with open('data.pkl', 'rb') as f: - data = pickle.load(f) - -def get_perplexity(text: str): - tokens = tokenizer(text, return_tensors='pt', truncation=True, return_offsets_mapping=True) - inputs = tokens.input_ids - targets = inputs.clone() - with torch.no_grad(): - outputs = model(inputs, labels=targets) - labels = targets.to(outputs.logits.device) - # Shift so that tokens < n predict n - shift_logits = outputs.logits[..., :-1, :].contiguous() - shift_labels = labels[..., 1:].contiguous() - perplexities = torch.nn.functional.cross_entropy(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1), reduce=False) - output = [] - targets = targets.to('cpu')[0].tolist() - offsets = tokens.offset_mapping[0].tolist() - perplexities = perplexities.to('cpu').numpy() - perplexities = perplexities / np.max(perplexities) - perplexities = perplexities.tolist() - output.append((text[:tokens.word_to_chars(0)[1]], 0)) - for word_id, p in zip(tokens.word_ids()[1:], perplexities): - if word_id == len(output): - span = tokens.word_to_chars(word_id) - output.append((text[span[0]:span[1]], p)) - return outputs.loss, output - - - -def score_text(text): - perplexity, word_perplexities = get_perplexity(text) - lengths = [] - for sentence in sent_tokenize(text): - lengths.append(len(word_tokenize(sentence))) - pp = perplexity.item() - length = np.mean(lengths) - std_lengths = np.std(lengths) - predictability = shapiro(lengths).pvalue if len(lengths) > 2 else 0.5 - scores = lr_model.predict_proba([[pp, length, std_lengths, predictability]])[0] - pp_percentile = percentileofscore(data[:,0], pp) - length_percentile = percentileofscore(data[:,1], length) - std_percentile = percentileofscore(data[:,2], std_lengths) - predictability_percentile = percentileofscore(data[:,3], predictability) - print(f'Perplexity: {pp_percentile}%, Length: {length_percentile}%, Std: {std_percentile}%, Predictability: {predictability_percentile}%') - return {'Human': scores[0], 'AI': scores[1]}, {'Perplexity': pp_percentile / 100, 'Sentence Length': length_percentile / 100, 'Length Variation': std_percentile / 100, 'Length Normality': predictability_percentile / 100}, word_perplexities - - -sample_1 = """The Saturn V is a type of rocket that was developed by NASA in the 1960s to support the Apollo program, which aimed to land humans on the Moon. It remains the most powerful rocket ever built, and its five F-1 engines generated more than 7.5 million pounds of thrust at liftoff. The Saturn V was used for all of the Apollo missions to the Moon, as well as the launch of the Skylab space station. Despite its impressive capabilities, the Saturn V was only used for a brief period of time before being retired in 1973. Nevertheless, it remains a landmark achievement in the history of space exploration and a symbol of human ingenuity and determination.""" -sample_2 = """Saturn V[a] is a retired American super heavy-lift launch vehicle developed by NASA under the Apollo program for human exploration of the Moon. The rocket was human-rated, with three stages, and powered with liquid fuel. It was flown from 1967 to 1973. It was used for nine crewed flights to the Moon, and to launch Skylab, the first American space station. -As of 2023, the Saturn V remains the only launch vehicle to carry humans beyond low Earth orbit (LEO). Saturn V holds records for the heaviest payload launched and largest payload capacity to low Earth orbit: 310,000 lb (140,000 kg), which included the third stage and unburned propellant needed to send the Apollo command and service module and Lunar Module to the Moon. -The largest production model of the Saturn family of rockets, the Saturn V was designed under the direction of Wernher von Braun at the Marshall Space Flight Center in Huntsville, Alabama; the lead contractors were Boeing, North American Aviation, Douglas Aircraft Company, and IBM. A total of 15 flight-capable vehicles were built, plus three for ground testing. Thirteen were launched from Kennedy Space Center with no loss of crew or payload. A total of 24 astronauts were launched to the Moon from Apollo 8 (December 1968) to Apollo 17 (December 1972).""" -sample_3 = """ā€œThe Signora had no business to do it,ā€ said Miss Bartlett, ā€œno business at all. She promised us south rooms with a view close together, instead of which here are north rooms, looking into a courtyard, and a long way apart. Oh, Lucy!ā€ -ā€œAnd a Cockney, besides!ā€ said Lucy, who had been further saddened by the Signora’s unexpected accent. ā€œIt might be London.ā€ She looked at the two rows of English people who were sitting at the table; at the row of white bottles of water and red bottles of wine that ran between the English people; at the portraits of the late Queen and the late Poet Laureate that hung behind the English people, heavily framed; at the notice of the English church (Rev. Cuthbert Eager, M. A. Oxon.), that was the only other decoration of the wall. ā€œCharlotte, don’t you feel, too, that we might be in London? I can hardly believe that all kinds of other things are just outside. I suppose it is one’s being so tired.ā€ -ā€œThis meat has surely been used for soup,ā€ said Miss Bartlett, laying down her fork. -ā€œI want so to see the Arno. The rooms the Signora promised us in her letter would have looked over the Arno. The Signora had no business to do it at all. Oh, it is a shame!ā€ -ā€œAny nook does for me,ā€ Miss Bartlett continued; ā€œbut it does seem hard that you shouldn’t have a view.ā€ -Lucy felt that she had been selfish. ā€œCharlotte, you mustn’t spoil me: of course, you must look over the Arno, too. I meant that. The first vacant room in the frontā€”ā€ ā€œYou must have it,ā€ said Miss Bartlett, part of whose travelling expenses were paid by Lucy’s mother—a piece of generosity to which she made many a tactful allusion.""" -sample_4 = """Miss Bartlett looked at Lucy with a mixture of disapproval and concern. She had hoped that this trip to Italy would broaden Lucy’s horizons and introduce her to a world beyond their sheltered English existence. But it seemed that Lucy was not quite ready to embrace the differences that came with travel. -ā€œDon’t be absurd, Lucy,ā€ Miss Bartlett said, ā€œhow could we be in London? Look outside and see the sunshine, the olive groves, and the mountains. This is Italy, and it is a completely different experience than what we are used to.ā€ -Lucy sighed and looked out of the window. Miss Bartlett was right, of course. The view was stunning, and the warm Italian breeze was a welcome change from the damp English weather. But the Signora’s deception had put a damper on their arrival, and Lucy couldn’t help feeling disappointed. -Just then, a young man walked into the dining room and greeted the English guests with a friendly smile. He was tall and handsome, with dark hair and sparkling eyes. Lucy felt a flutter in her chest as he approached their table. -ā€œBuongiorno,ā€ he said, ā€œmy name is George Emerson. I couldn’t help but notice that you were disappointed with your rooms. If you’d like, I could switch with you. My mother and I are in south rooms, and we’d be happy to take the north ones.ā€""" - -description = """This Space can be used to measure the likelihood of a text being generated by an LLM like ChatGPT. -In general, human written text has higher perplexity, sentence length, and length variation than AI generated text, with lower length normality. -Perplexity is a measure of how often uncommon words appear in the text.""" - - -demo = gr.Interface(fn=score_text, - inputs=[gr.Textbox(label="Text to score", lines=5)], - outputs=[gr.Label(label="Result"), gr.Label(label="Feature Scores (higher for humans)", show_label=False), gr.HighlightedText(label="Perplexities")], - title="LLM Text Detector", - description=description, - examples=[[sample_1], [sample_2], [sample_3], [sample_4]]) - -demo.launch() \ No newline at end of file diff --git a/spaces/avivdm1/AutoGPT/tests/smoke_test.py b/spaces/avivdm1/AutoGPT/tests/smoke_test.py deleted file mode 100644 index 1b9d643fc21f3703384a2bb4f2bd1d725f4dd418..0000000000000000000000000000000000000000 --- a/spaces/avivdm1/AutoGPT/tests/smoke_test.py +++ /dev/null @@ -1,59 +0,0 @@ -"""Smoke test for the autogpt package.""" -import os -import subprocess -import sys - -import pytest - -from autogpt.commands.file_operations import delete_file, read_file - - -@pytest.mark.integration_test -def test_write_file() -> None: - """ - Test case to check if the write_file command can successfully write 'Hello World' to a file - named 'hello_world.txt'. - - Read the current ai_settings.yaml file and store its content. - """ - env_vars = {"MEMORY_BACKEND": "no_memory", "TEMPERATURE": "0"} - ai_settings = None - if os.path.exists("ai_settings.yaml"): - with open("ai_settings.yaml", "r") as f: - ai_settings = f.read() - os.remove("ai_settings.yaml") - - try: - if os.path.exists("hello_world.txt"): - # Clean up any existing 'hello_world.txt' file before testing. - delete_file("hello_world.txt") - # Prepare input data for the test. - input_data = """write_file-GPT -an AI designed to use the write_file command to write 'Hello World' into a file named "hello_world.txt" and then use the task_complete command to complete the task. -Use the write_file command to write 'Hello World' into a file named "hello_world.txt". -Use the task_complete command to complete the task. -Do not use any other commands. - -y -5 -EOF""" - command = f"{sys.executable} -m autogpt" - - # Execute the script with the input data. - process = subprocess.Popen( - command, - stdin=subprocess.PIPE, - shell=True, - env={**os.environ, **env_vars}, - ) - process.communicate(input_data.encode()) - - # Read the content of the 'hello_world.txt' file created during the test. - content = read_file("hello_world.txt") - finally: - if ai_settings: - # Restore the original ai_settings.yaml file. - with open("ai_settings.yaml", "w") as f: - f.write(ai_settings) - - # Check if the content of the 'hello_world.txt' file is equal to 'Hello World'. - assert content == "Hello World", f"Expected 'Hello World', got {content}" diff --git a/spaces/awacke1/DockerGoFlanT5/Dockerfile b/spaces/awacke1/DockerGoFlanT5/Dockerfile deleted file mode 100644 index 432ea4ce6e877764f340ce9d408d7e73ad80d74e..0000000000000000000000000000000000000000 --- a/spaces/awacke1/DockerGoFlanT5/Dockerfile +++ /dev/null @@ -1,15 +0,0 @@ -FROM golang:1.18 as builder - -WORKDIR /workdir - -COPY main.go . - -RUN go build -o main main.go - -FROM golang:1.18 -WORKDIR /workdir - -COPY --from=builder /workdir/main /main -RUN dd if=/dev/random of=1g.img bs=1 count=0 seek=10G - -CMD /main \ No newline at end of file diff --git a/spaces/awacke1/Examples-Of-AI-0302/README.md b/spaces/awacke1/Examples-Of-AI-0302/README.md deleted file mode 100644 index 4a41350d1577bccd9fab72bdd84a52e37ac7db05..0000000000000000000000000000000000000000 --- a/spaces/awacke1/Examples-Of-AI-0302/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: Examples Of AI 0302 -emoji: šŸŒ– -colorFrom: gray -colorTo: green -sdk: streamlit -sdk_version: 1.17.0 -app_file: app.py -pinned: false -license: mit ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/awacke1/HEDIS.Roster.Dash.Component.Service/README.md b/spaces/awacke1/HEDIS.Roster.Dash.Component.Service/README.md deleted file mode 100644 index 4220044e294b63272d1e27ad6bf042591595a056..0000000000000000000000000000000000000000 --- a/spaces/awacke1/HEDIS.Roster.Dash.Component.Service/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: HEDIS.Roster.Dash.Component.Service -emoji: šŸŒ -colorFrom: purple -colorTo: pink -sdk: streamlit -sdk_version: 1.17.0 -app_file: app.py -pinned: false -license: mit ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/awacke1/MixtureOfExpertsMOEAnalysisForLLMRoles/app.py b/spaces/awacke1/MixtureOfExpertsMOEAnalysisForLLMRoles/app.py deleted file mode 100644 index 0c4261ad30dac702c315531a40cf07024dd8cc3d..0000000000000000000000000000000000000000 --- a/spaces/awacke1/MixtureOfExpertsMOEAnalysisForLLMRoles/app.py +++ /dev/null @@ -1,49 +0,0 @@ -import streamlit as st - -# Define Roles and their Descriptions -roles = { - "1. Coder": "šŸ’» Creates short python code functions to solve tasks.", - "2. Humanities Expert": "šŸ“š Focuses on arts, literature, history, and other humanities subjects.", - "3. Analyst": "šŸ¤” Analyzes situations and provides logical solutions.", - "4. Roleplay Expert": "šŸŽ­ Specialized in mimicking behaviors or characters.", - "5. Mathematician": "āž— Solves mathematical problems with precision.", - "6. STEM Expert": "šŸ”¬ Specialized in Science, Technology, Engineering, and Mathematics tasks.", - "7. Extraction Expert": "šŸ” Strictly sticks to facts and extracts concise information.", - "8. Drafter": "šŸ“ Exhibits expertise in generating textual content and narratives.", -} - -# Streamlit UI -st.title("AI Role Selector - CHARMSED šŸ¤–āœØ") -st.markdown(""" -### Harness the power of AI with the CHARMSED framework. -#### This suite of roles brings together a comprehensive set of AI capabilities, tailored for diverse tasks: - -- **C**oder šŸ’»: Craft pythonic solutions with precision. -- **H**umanities Expert šŸ“š: Dive deep into arts, literature, and history. -- **A**nalyst šŸ¤”: Derive insights through logical reasoning. -- **R**oleplay Expert šŸŽ­: Mimic behaviors or adopt personas for engaging interactions. -- **M**athematician āž—: Crunch numbers and solve mathematical enigmas. -- **S**TEM Expert šŸ”¬: Navigate through the realms of Science, Technology, Engineering, and Mathematics. -- **E**xtraction Expert šŸ”: Extract concise information with a laser-focus. -- **D**rafter šŸ“: Generate textual content and narratives with flair. - -Empower your tasks with the perfect AI role and unleash the magic of CHARMSED! -""") - -# Dropdown to select role -selected_role = st.selectbox("Select AI Role:", list(roles.keys())) - -# Display the description of the selected role -st.write(roles[selected_role]) - -# Switch to choose between two models -model = st.radio("Choose Model:", ["model_1", "model_2"]) - -# Text area for user input -user_input = st.text_area("Provide your task/question:") - -# Button to execute -if st.button("Execute"): - # Here, you would add code to get the AI response based on the selected role and model. - # For now, just echoing the user input. - st.write(f"You said: {user_input}") diff --git a/spaces/awacke1/Spinning.Model-1-10/app.py b/spaces/awacke1/Spinning.Model-1-10/app.py deleted file mode 100644 index 0633326d7610acea3589c79a8e277851a8b740bf..0000000000000000000000000000000000000000 --- a/spaces/awacke1/Spinning.Model-1-10/app.py +++ /dev/null @@ -1,51 +0,0 @@ -import streamlit as st -import time -import random - -# Define the list of themes and nodes -themes = { - "Theme 1": ["Node 1.1", "Node 1.2", "Node 1.3", "Node 1.4", "Node 1.5", "Node 1.6", "Node 1.7", "Node 1.8", "Node 1.9", "Node 1.10"], - "Theme 2": ["Node 2.1", "Node 2.2", "Node 2.3", "Node 2.4", "Node 2.5", "Node 2.6", "Node 2.7", "Node 2.8", "Node 2.9", "Node 2.10"], -} - -# Define emojis for top 1 through 10 -emojis = ["1ļøāƒ£", "2ļøāƒ£", "3ļøāƒ£", "4ļøāƒ£", "5ļøāƒ£", "6ļøāƒ£", "7ļøāƒ£", "8ļøāƒ£", "9ļøāƒ£", "šŸ”Ÿ"] - -def spinning_model(theme, nodes, emojis): - output = "" - for i, node in enumerate(nodes): - output += f"{emojis[i]} {node} " - st.markdown(f"### {theme}\n{output}") - st.write("---") - -def random_timer(countdown): - while countdown > 0: - st.write(f"Next refresh in {countdown} seconds.") - time.sleep(1) - countdown -= 1 - return random.sample(range(1, 11), 10) - -st.title("Spinning Model Visualization") -st.write("Select themes to display the spinning model and adjust the number of seconds before the next refresh.") - -# Add input widgets for the two themes and refresh interval -theme_1 = st.text_input("Theme 1:", "Theme 1") -theme_2 = st.text_input("Theme 2:", "Theme 2") -refresh_interval = st.slider("Refresh interval (in seconds):", 1, 10, 5) - -# Get the selected themes and their nodes -selected_theme_1 = themes.get(theme_1, []) -selected_theme_2 = themes.get(theme_2, []) - -while True: - # Randomly select a theme to display and shuffle the nodes - if random.randint(0, 1): - selected_theme = selected_theme_1 - theme = theme_1 - else: - selected_theme = selected_theme_2 - theme = theme_2 - random.shuffle(selected_theme) - - spinning_model(theme, selected_theme, emojis) - selected_theme = random_timer(refresh_interval) diff --git a/spaces/banana-projects/web3d/node_modules/three/examples/js/vr/PaintViveController.js b/spaces/banana-projects/web3d/node_modules/three/examples/js/vr/PaintViveController.js deleted file mode 100644 index 536d97c936166e80f5d256948b18aebd747f680b..0000000000000000000000000000000000000000 --- a/spaces/banana-projects/web3d/node_modules/three/examples/js/vr/PaintViveController.js +++ /dev/null @@ -1,184 +0,0 @@ -/** - * @author mrdoob / http://mrdoob.com - */ - -THREE.PaintViveController = function ( id ) { - - THREE.ViveController.call( this, id ); - - var PI2 = Math.PI * 2; - - var MODES = { COLOR: 0, SIZE: 1 }; - var mode = MODES.COLOR; - - var color = new THREE.Color( 1, 1, 1 ); - var size = 1.0; - - // - - function generateHueTexture() { - - var canvas = document.createElement( 'canvas' ); - canvas.width = 256; - canvas.height = 256; - - var context = canvas.getContext( '2d' ); - var imageData = context.getImageData( 0, 0, 256, 256 ); - var data = imageData.data; - var swatchColor = new THREE.Color(); - - for ( var i = 0, j = 0; i < data.length; i += 4, j ++ ) { - - var x = ( ( j % 256 ) / 256 ) - 0.5; - var y = ( Math.floor( j / 256 ) / 256 ) - 0.5; - - swatchColor.setHSL( Math.atan2( y, x ) / PI2, 1, ( 0.5 - Math.sqrt( x * x + y * y ) ) * 2.0 ); - - data[ i + 0 ] = swatchColor.r * 256; - data[ i + 1 ] = swatchColor.g * 256; - data[ i + 2 ] = swatchColor.b * 256; - data[ i + 3 ] = 256; - - } - - context.putImageData( imageData, 0, 0 ); - - return new THREE.CanvasTexture( canvas ); - - } - - // COLOR UI - - var geometry = new THREE.CircleBufferGeometry( 1, 32 ); - var material = new THREE.MeshBasicMaterial( { map: generateHueTexture() } ); - var colorUI = new THREE.Mesh( geometry, material ); - colorUI.position.set( 0, 0.005, 0.0495 ); - colorUI.rotation.x = - 1.45; - colorUI.scale.setScalar( 0.02 ); - this.add( colorUI ); - - var geometry = new THREE.IcosahedronBufferGeometry( 0.1, 2 ); - var material = new THREE.MeshBasicMaterial(); - material.color = color; - var ball = new THREE.Mesh( geometry, material ); - colorUI.add( ball ); - - - // SIZE UI - var sizeUI = new THREE.Group(); - sizeUI.position.set( 0, 0.005, 0.0495 ); - sizeUI.rotation.x = - 1.45; - sizeUI.scale.setScalar( 0.02 ); - this.add( sizeUI ); - - var triangleShape = new THREE.Shape(); - triangleShape.moveTo( 0, - 1 ); - triangleShape.lineTo( 1, 1 ); - triangleShape.lineTo( - 1, 1 ); - - var geometry = new THREE.ShapeBufferGeometry( triangleShape ); - var material = new THREE.MeshBasicMaterial( { color: 0x222222, wireframe: true } ); - var sizeUIOutline = new THREE.Mesh( geometry, material ); - sizeUIOutline.position.z = 0.001; - resizeTriangleGeometry( sizeUIOutline.geometry, 1.0 ); - sizeUI.add( sizeUIOutline ); - - var geometry = new THREE.ShapeBufferGeometry( triangleShape ); - var material = new THREE.MeshBasicMaterial( { side: THREE.DoubleSide } ); - material.color = color; - var sizeUIFill = new THREE.Mesh( geometry, material ); - sizeUIFill.position.z = 0.0011; - resizeTriangleGeometry( sizeUIFill.geometry, 0.5 ); - sizeUI.add( sizeUIFill ); - - sizeUI.visible = false; - - - - function onAxisChanged( event ) { - - if ( this.getButtonState( 'thumbpad' ) === false ) return; - - var x = event.axes[ 0 ] / 2.0; - var y = - event.axes[ 1 ] / 2.0; - - if ( mode === MODES.COLOR ) { - - color.setHSL( Math.atan2( y, x ) / PI2, 1, ( 0.5 - Math.sqrt( x * x + y * y ) ) * 2.0 ); - - ball.position.set( event.axes[ 0 ], event.axes[ 1 ], 0 ); - - } - - if ( mode === MODES.SIZE ) { - - var ratio = 0.5 - y; - size = ratio * 2; - - resizeTriangleGeometry( sizeUIFill.geometry, ratio ); - - } - - } - - function resizeTriangleGeometry( geometry, ratio ) { - - var x = 0, y = 0; - var fullWidth = 0.75, fullHeight = 1.5; - var angle = Math.atan( ( fullWidth / 2 ) / fullHeight ); - - var bottomY = y - fullHeight / 2; - var height = fullHeight * ratio; - var width = ( Math.tan( angle ) * height ) * 2; - - var position = geometry.attributes.position; - - position.setXYZ( 0, x, bottomY, 0 ); - position.setXYZ( 1, x + width / 2, bottomY + height, 0 ); - position.setXYZ( 2, x - width / 2, bottomY + height, 0 ); - - position.needsUpdate = true; - - } - - function onGripsDown() { - - if ( mode === MODES.COLOR ) { - - mode = MODES.SIZE; - colorUI.visible = false; - sizeUI.visible = true; - return; - - } - - if ( mode === MODES.SIZE ) { - - mode = MODES.COLOR; - colorUI.visible = true; - sizeUI.visible = false; - return; - - } - - } - - this.getColor = function () { - - return color; - - }; - - this.getSize = function () { - - return size; - - }; - - this.addEventListener( 'axischanged', onAxisChanged ); - this.addEventListener( 'gripsdown', onGripsDown ); - -}; - -THREE.PaintViveController.prototype = Object.create( THREE.ViveController.prototype ); -THREE.PaintViveController.prototype.constructor = THREE.PaintViveController; diff --git a/spaces/beihai/PDF-Table-Extractor/.history/app_20220621095309.py b/spaces/beihai/PDF-Table-Extractor/.history/app_20220621095309.py deleted file mode 100644 index 4cef219db358a4215b3ae49b30d6379554e6900b..0000000000000000000000000000000000000000 --- a/spaces/beihai/PDF-Table-Extractor/.history/app_20220621095309.py +++ /dev/null @@ -1,40 +0,0 @@ -#-*- coding : utf-8-*- -import base64 -from subprocess import STDOUT -import streamlit as st -import pandas as pd -import camelot as cam # extracting tables from PDFs - -st.title("PDF Table Extractor") - -input_pdf = st.file_uploader(label = "", type = 'pdf') - -page_number = st.text_input("čÆ·å”«å†™č”Øę ¼ę‰€åœØPDF锵码,eg: 3", value = 1) -background = st.selectbox("č”Øę ¼ēŗæę”ę˜Æå¦éšč—",(True, False)) -if input_pdf is not None: - # byte object into a PDF file - with open("input.pdf", "wb") as f: - base64_pdf = base64.b64encode(input_pdf.read()).decode('utf-8') - f.write(base64.b64decode(base64_pdf)) - f.close() - - # read the pdf and parse it using stream - tables = cam.read_pdf("input.pdf", pages=page_number, process_background=background) - result = pd.ExcelWriter('result.xlsx', engine='xlsxwriter') - tables[0].to_excel(result,index=False) - # for i in range(0,len(tables)): - # table = tables[i].df - # sheetname = str(i) - # table.to_excel(result, sheetname,index=False) - - with open('result.xlsx','rb') as f: - st.download_button('ęå–å®Œęˆļ¼Œē‚¹å‡»äø‹č½½ļ¼', f,file_name='result.xlsx',mime="application/vnd.ms-excel") - - tables_all= cam.read_pdf("input.pdf", pages=all, process_background=background) - result_all = pd.ExcelWriter('result_all.xlsx', engine='xlsxwriter') - for i in range(0,len(tables_all)): - table = tables_all[i].df - sheetname = str(i) - table.to_excel(result_all, sheetname,index=False) - with open('result_all.xlsx','rb') as f: - st.download_button('äø€ä»¶ęŠ½å–å®Œęˆļ¼Œ', f,file_name='result_all.xlsx',mime="application/vnd.ms-excel") \ No newline at end of file diff --git a/spaces/bigjoker/stable-diffusion-webui/modules/interrogate.py b/spaces/bigjoker/stable-diffusion-webui/modules/interrogate.py deleted file mode 100644 index 236abe516c8783824b6aecaae188a31cfa17f75c..0000000000000000000000000000000000000000 --- a/spaces/bigjoker/stable-diffusion-webui/modules/interrogate.py +++ /dev/null @@ -1,227 +0,0 @@ -import os -import sys -import traceback -from collections import namedtuple -from pathlib import Path -import re - -import torch -import torch.hub - -from torchvision import transforms -from torchvision.transforms.functional import InterpolationMode - -import modules.shared as shared -from modules import devices, paths, shared, lowvram, modelloader, errors - -blip_image_eval_size = 384 -clip_model_name = 'ViT-L/14' - -Category = namedtuple("Category", ["name", "topn", "items"]) - -re_topn = re.compile(r"\.top(\d+)\.") - -def category_types(): - return [f.stem for f in Path(shared.interrogator.content_dir).glob('*.txt')] - - -def download_default_clip_interrogate_categories(content_dir): - print("Downloading CLIP categories...") - - tmpdir = content_dir + "_tmp" - category_types = ["artists", "flavors", "mediums", "movements"] - - try: - os.makedirs(tmpdir) - for category_type in category_types: - torch.hub.download_url_to_file(f"https://raw.githubusercontent.com/pharmapsychotic/clip-interrogator/main/clip_interrogator/data/{category_type}.txt", os.path.join(tmpdir, f"{category_type}.txt")) - os.rename(tmpdir, content_dir) - - except Exception as e: - errors.display(e, "downloading default CLIP interrogate categories") - finally: - if os.path.exists(tmpdir): - os.remove(tmpdir) - - -class InterrogateModels: - blip_model = None - clip_model = None - clip_preprocess = None - dtype = None - running_on_cpu = None - - def __init__(self, content_dir): - self.loaded_categories = None - self.skip_categories = [] - self.content_dir = content_dir - self.running_on_cpu = devices.device_interrogate == torch.device("cpu") - - def categories(self): - if not os.path.exists(self.content_dir): - download_default_clip_interrogate_categories(self.content_dir) - - if self.loaded_categories is not None and self.skip_categories == shared.opts.interrogate_clip_skip_categories: - return self.loaded_categories - - self.loaded_categories = [] - - if os.path.exists(self.content_dir): - self.skip_categories = shared.opts.interrogate_clip_skip_categories - category_types = [] - for filename in Path(self.content_dir).glob('*.txt'): - category_types.append(filename.stem) - if filename.stem in self.skip_categories: - continue - m = re_topn.search(filename.stem) - topn = 1 if m is None else int(m.group(1)) - with open(filename, "r", encoding="utf8") as file: - lines = [x.strip() for x in file.readlines()] - - self.loaded_categories.append(Category(name=filename.stem, topn=topn, items=lines)) - - return self.loaded_categories - - def create_fake_fairscale(self): - class FakeFairscale: - def checkpoint_wrapper(self): - pass - - sys.modules["fairscale.nn.checkpoint.checkpoint_activations"] = FakeFairscale - - def load_blip_model(self): - self.create_fake_fairscale() - import models.blip - - files = modelloader.load_models( - model_path=os.path.join(paths.models_path, "BLIP"), - model_url='https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth', - ext_filter=[".pth"], - download_name='model_base_caption_capfilt_large.pth', - ) - - blip_model = models.blip.blip_decoder(pretrained=files[0], image_size=blip_image_eval_size, vit='base', med_config=os.path.join(paths.paths["BLIP"], "configs", "med_config.json")) - blip_model.eval() - - return blip_model - - def load_clip_model(self): - import clip - - if self.running_on_cpu: - model, preprocess = clip.load(clip_model_name, device="cpu", download_root=shared.cmd_opts.clip_models_path) - else: - model, preprocess = clip.load(clip_model_name, download_root=shared.cmd_opts.clip_models_path) - - model.eval() - model = model.to(devices.device_interrogate) - - return model, preprocess - - def load(self): - if self.blip_model is None: - self.blip_model = self.load_blip_model() - if not shared.cmd_opts.no_half and not self.running_on_cpu: - self.blip_model = self.blip_model.half() - - self.blip_model = self.blip_model.to(devices.device_interrogate) - - if self.clip_model is None: - self.clip_model, self.clip_preprocess = self.load_clip_model() - if not shared.cmd_opts.no_half and not self.running_on_cpu: - self.clip_model = self.clip_model.half() - - self.clip_model = self.clip_model.to(devices.device_interrogate) - - self.dtype = next(self.clip_model.parameters()).dtype - - def send_clip_to_ram(self): - if not shared.opts.interrogate_keep_models_in_memory: - if self.clip_model is not None: - self.clip_model = self.clip_model.to(devices.cpu) - - def send_blip_to_ram(self): - if not shared.opts.interrogate_keep_models_in_memory: - if self.blip_model is not None: - self.blip_model = self.blip_model.to(devices.cpu) - - def unload(self): - self.send_clip_to_ram() - self.send_blip_to_ram() - - devices.torch_gc() - - def rank(self, image_features, text_array, top_count=1): - import clip - - devices.torch_gc() - - if shared.opts.interrogate_clip_dict_limit != 0: - text_array = text_array[0:int(shared.opts.interrogate_clip_dict_limit)] - - top_count = min(top_count, len(text_array)) - text_tokens = clip.tokenize([text for text in text_array], truncate=True).to(devices.device_interrogate) - text_features = self.clip_model.encode_text(text_tokens).type(self.dtype) - text_features /= text_features.norm(dim=-1, keepdim=True) - - similarity = torch.zeros((1, len(text_array))).to(devices.device_interrogate) - for i in range(image_features.shape[0]): - similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1) - similarity /= image_features.shape[0] - - top_probs, top_labels = similarity.cpu().topk(top_count, dim=-1) - return [(text_array[top_labels[0][i].numpy()], (top_probs[0][i].numpy()*100)) for i in range(top_count)] - - def generate_caption(self, pil_image): - gpu_image = transforms.Compose([ - transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC), - transforms.ToTensor(), - transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) - ])(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate) - - with torch.no_grad(): - caption = self.blip_model.generate(gpu_image, sample=False, num_beams=shared.opts.interrogate_clip_num_beams, min_length=shared.opts.interrogate_clip_min_length, max_length=shared.opts.interrogate_clip_max_length) - - return caption[0] - - def interrogate(self, pil_image): - res = "" - shared.state.begin() - shared.state.job = 'interrogate' - try: - if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: - lowvram.send_everything_to_cpu() - devices.torch_gc() - - self.load() - - caption = self.generate_caption(pil_image) - self.send_blip_to_ram() - devices.torch_gc() - - res = caption - - clip_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate) - - with torch.no_grad(), devices.autocast(): - image_features = self.clip_model.encode_image(clip_image).type(self.dtype) - - image_features /= image_features.norm(dim=-1, keepdim=True) - - for name, topn, items in self.categories(): - matches = self.rank(image_features, items, top_count=topn) - for match, score in matches: - if shared.opts.interrogate_return_ranks: - res += f", ({match}:{score/100:.3f})" - else: - res += ", " + match - - except Exception: - print("Error interrogating", file=sys.stderr) - print(traceback.format_exc(), file=sys.stderr) - res += "" - - self.unload() - shared.state.end() - - return res diff --git a/spaces/bingbing520/ChatGPT2/modules/__init__.py b/spaces/bingbing520/ChatGPT2/modules/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/bioriAsaeru/text-to-voice/Adobe Acrobat XI Professional 11.0.7 Keygen VERIFIED-CORE X-FORCE Keygen VERIFIED.md b/spaces/bioriAsaeru/text-to-voice/Adobe Acrobat XI Professional 11.0.7 Keygen VERIFIED-CORE X-FORCE Keygen VERIFIED.md deleted file mode 100644 index 9b8b2e5730fd568570a9099505e8304ee74c7de4..0000000000000000000000000000000000000000 --- a/spaces/bioriAsaeru/text-to-voice/Adobe Acrobat XI Professional 11.0.7 Keygen VERIFIED-CORE X-FORCE Keygen VERIFIED.md +++ /dev/null @@ -1,6 +0,0 @@ -

    Adobe Acrobat XI Professional 11.0.7 Keygen-CORE X-FORCE keygen


    Download ->->->-> https://urloso.com/2uyPxv



    -
    - d5da3c52bf
    -
    -
    -

    diff --git a/spaces/bioriAsaeru/text-to-voice/Kitabistan Dictionary English to Urdu PDF Download The Ultimate Tool for Urdu Speakers and Students.md b/spaces/bioriAsaeru/text-to-voice/Kitabistan Dictionary English to Urdu PDF Download The Ultimate Tool for Urdu Speakers and Students.md deleted file mode 100644 index b6f5f3a03fb134ac9d93e10e6392a499fdacd9f7..0000000000000000000000000000000000000000 --- a/spaces/bioriAsaeru/text-to-voice/Kitabistan Dictionary English to Urdu PDF Download The Ultimate Tool for Urdu Speakers and Students.md +++ /dev/null @@ -1,6 +0,0 @@ -

    kitabistandictionaryenglishtourdupdfdownload


    Download File ►►►►► https://urloso.com/2uyQ8N



    -
    - aaccfb2cb3
    -
    -
    -

    diff --git a/spaces/bookbot/Grad-TTS-Weildan-Playground/Grad-TTS/utils.py b/spaces/bookbot/Grad-TTS-Weildan-Playground/Grad-TTS/utils.py deleted file mode 100644 index f3f5fcdd3d47c743784abe87f23ad4c50a04fdb2..0000000000000000000000000000000000000000 --- a/spaces/bookbot/Grad-TTS-Weildan-Playground/Grad-TTS/utils.py +++ /dev/null @@ -1,75 +0,0 @@ -# Copyright (C) 2021. Huawei Technologies Co., Ltd. All rights reserved. -# This program is free software; you can redistribute it and/or modify -# it under the terms of the MIT License. -# This program is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -# MIT License for more details. - -import os -import glob -import numpy as np -import matplotlib.pyplot as plt - -import torch - - -def intersperse(lst, item): - # Adds blank symbol - result = [item] * (len(lst) * 2 + 1) - result[1::2] = lst - return result - - -def parse_filelist(filelist_path, split_char="|"): - with open(filelist_path, encoding='utf-8') as f: - filepaths_and_text = [line.strip().split(split_char) for line in f] - return filepaths_and_text - - -def latest_checkpoint_path(dir_path, regex="grad_*.pt"): - f_list = glob.glob(os.path.join(dir_path, regex)) - f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f)))) - x = f_list[-1] - return x - - -def load_checkpoint(logdir, model, num=None): - if num is None: - model_path = latest_checkpoint_path(logdir, regex="grad_*.pt") - else: - model_path = os.path.join(logdir, f"grad_{num}.pt") - print(f'Loading checkpoint {model_path}...') - model_dict = torch.load(model_path, map_location=lambda loc, storage: loc) - model.load_state_dict(model_dict, strict=False) - return model - - -def save_figure_to_numpy(fig): - data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') - data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) - return data - - -def plot_tensor(tensor): - plt.style.use('default') - fig, ax = plt.subplots(figsize=(12, 3)) - im = ax.imshow(tensor, aspect="auto", origin="lower", interpolation='none') - plt.colorbar(im, ax=ax) - plt.tight_layout() - fig.canvas.draw() - data = save_figure_to_numpy(fig) - plt.close() - return data - - -def save_plot(tensor, savepath): - plt.style.use('default') - fig, ax = plt.subplots(figsize=(12, 3)) - im = ax.imshow(tensor, aspect="auto", origin="lower", interpolation='none') - plt.colorbar(im, ax=ax) - plt.tight_layout() - fig.canvas.draw() - plt.savefig(savepath) - plt.close() - return diff --git a/spaces/bookbot/Grad-TTS-Weildan-Playground/app.py b/spaces/bookbot/Grad-TTS-Weildan-Playground/app.py deleted file mode 100644 index 36e02b9bd980f05cd42b1e014fba23a4f7b5a8fa..0000000000000000000000000000000000000000 --- a/spaces/bookbot/Grad-TTS-Weildan-Playground/app.py +++ /dev/null @@ -1,127 +0,0 @@ -import os -import sys -import json -from subprocess import call - -import torch -import gradio as gr -from scipy.io.wavfile import write -from huggingface_hub import hf_hub_url, cached_download -import nltk -from nltk.tokenize import word_tokenize - -nltk.download("punkt") - -AUTH_TOKEN = os.environ["HF_TOKEN"] - -# download models -url = hf_hub_url(repo_id="bookbot/grad-tts-en-ft-Weildan-v2", filename="grad_24000.pt") -grad_tts_model_path = cached_download(url, use_auth_token=AUTH_TOKEN) -torch.hub.download_url_to_file( - "https://github.com/AK391/Speech-Backbones/releases/download/v1/hifigan.pt", - "hifigan.pt", -) - -# build MAS -current = os.getcwd() -os.chdir(current + "/Grad-TTS/model/monotonic_align") -call("python setup.py build_ext --inplace", shell=True) -os.chdir("../../../") - -sys.path.append("Grad-TTS/") -import params -from model import GradTTS -from text import text_to_sequence, cmudict -from text.symbols import symbols -from utils import intersperse - -sys.path.append("Grad-TTS/hifi-gan/") -from env import AttrDict -from models import Generator as HiFiGAN - -SPEAKERS = 247 - -# load models -generator = GradTTS( - len(symbols) + 1, - SPEAKERS, - params.spk_emb_dim, - params.n_enc_channels, - params.filter_channels, - params.filter_channels_dp, - params.n_heads, - params.n_enc_layers, - params.enc_kernel, - params.enc_dropout, - params.window_size, - params.n_feats, - params.dec_dim, - params.beta_min, - params.beta_max, - pe_scale=1000, -) - -generator.load_state_dict( - torch.load(grad_tts_model_path, map_location=lambda loc, storage: loc) -) -_ = generator.eval() - -cmu = cmudict.CMUDict("./Grad-TTS/resources/cmu_dictionary_id") - -with open("./Grad-TTS/checkpts/hifigan-config.json") as f: - h = AttrDict(json.load(f)) - -hifigan = HiFiGAN(h) -hifigan.load_state_dict( - torch.load("./hifigan.pt", map_location=lambda loc, storage: loc)["generator"] -) -_ = hifigan.eval() -hifigan.remove_weight_norm() - - -def inference(text, n_timesteps): - text = " ".join(word_tokenize(text)) - x = torch.LongTensor( - intersperse(text_to_sequence(text, dictionary=cmu), len(symbols)) - )[None] - x_lengths = torch.LongTensor([x.shape[-1]]) - - y_enc, y_dec, attn = generator.forward( - x, - x_lengths, - n_timesteps=n_timesteps, - temperature=1.5, - stoc=False, - spk=torch.LongTensor([0]) if SPEAKERS > 1 else None, - length_scale=1.0, - ) - - with torch.no_grad(): - audio = hifigan.forward(y_dec).cpu().squeeze().clamp(-1, 1).detach().numpy() - - write("out.wav", 22050, audio) - return "./out.wav" - - -inputs = [ - gr.inputs.Textbox(lines=5, label="Input Text"), - gr.inputs.Slider(minimum=0, maximum=100, step=10, label="Timesteps"), -] - -outputs = gr.outputs.Audio(type="file", label="Output Audio") -title = "Bookbot Grad-TTS Weildan Demo 🐨" -description = "Hi there! You can start typing any input text ⌨, select your preferred timesteps ⌚, and hit submit! šŸš‚ Please be patient as it may take a while - the greater the timestep, the longer the generation 😁" - -utterances = [ - "Selamat pagi! Selamat datang di Jakarta!", - "Kak, harga nasi gorengnya berapa ya?", - "Bapak bilang, Malik hebat. Bisa bersih bersih seperti Bapak.", - "Here are the match lineups for the Colombia Haiti match.", -] - -timesteps = [(i * 10) + 50 for i in range(len(utterances))] -examples = [list(l) for l in zip(utterances, timesteps)] - -gr.Interface( - inference, inputs, outputs, title=title, description=description, examples=examples -).launch() diff --git a/spaces/brjathu/HMR2.0/vendor/detectron2/detectron2/data/transforms/transform.py b/spaces/brjathu/HMR2.0/vendor/detectron2/detectron2/data/transforms/transform.py deleted file mode 100644 index de44b991d7ab0d920ffb769e1402f08e358d37f7..0000000000000000000000000000000000000000 --- a/spaces/brjathu/HMR2.0/vendor/detectron2/detectron2/data/transforms/transform.py +++ /dev/null @@ -1,351 +0,0 @@ -# -*- coding: utf-8 -*- -# Copyright (c) Facebook, Inc. and its affiliates. - -""" -See "Data Augmentation" tutorial for an overview of the system: -https://detectron2.readthedocs.io/tutorials/augmentation.html -""" - -import numpy as np -import torch -import torch.nn.functional as F -from fvcore.transforms.transform import ( - CropTransform, - HFlipTransform, - NoOpTransform, - Transform, - TransformList, -) -from PIL import Image - -try: - import cv2 # noqa -except ImportError: - # OpenCV is an optional dependency at the moment - pass - -__all__ = [ - "ExtentTransform", - "ResizeTransform", - "RotationTransform", - "ColorTransform", - "PILColorTransform", -] - - -class ExtentTransform(Transform): - """ - Extracts a subregion from the source image and scales it to the output size. - - The fill color is used to map pixels from the source rect that fall outside - the source image. - - See: https://pillow.readthedocs.io/en/latest/PIL.html#PIL.ImageTransform.ExtentTransform - """ - - def __init__(self, src_rect, output_size, interp=Image.LINEAR, fill=0): - """ - Args: - src_rect (x0, y0, x1, y1): src coordinates - output_size (h, w): dst image size - interp: PIL interpolation methods - fill: Fill color used when src_rect extends outside image - """ - super().__init__() - self._set_attributes(locals()) - - def apply_image(self, img, interp=None): - h, w = self.output_size - if len(img.shape) > 2 and img.shape[2] == 1: - pil_image = Image.fromarray(img[:, :, 0], mode="L") - else: - pil_image = Image.fromarray(img) - pil_image = pil_image.transform( - size=(w, h), - method=Image.EXTENT, - data=self.src_rect, - resample=interp if interp else self.interp, - fill=self.fill, - ) - ret = np.asarray(pil_image) - if len(img.shape) > 2 and img.shape[2] == 1: - ret = np.expand_dims(ret, -1) - return ret - - def apply_coords(self, coords): - # Transform image center from source coordinates into output coordinates - # and then map the new origin to the corner of the output image. - h, w = self.output_size - x0, y0, x1, y1 = self.src_rect - new_coords = coords.astype(np.float32) - new_coords[:, 0] -= 0.5 * (x0 + x1) - new_coords[:, 1] -= 0.5 * (y0 + y1) - new_coords[:, 0] *= w / (x1 - x0) - new_coords[:, 1] *= h / (y1 - y0) - new_coords[:, 0] += 0.5 * w - new_coords[:, 1] += 0.5 * h - return new_coords - - def apply_segmentation(self, segmentation): - segmentation = self.apply_image(segmentation, interp=Image.NEAREST) - return segmentation - - -class ResizeTransform(Transform): - """ - Resize the image to a target size. - """ - - def __init__(self, h, w, new_h, new_w, interp=None): - """ - Args: - h, w (int): original image size - new_h, new_w (int): new image size - interp: PIL interpolation methods, defaults to bilinear. - """ - # TODO decide on PIL vs opencv - super().__init__() - if interp is None: - interp = Image.BILINEAR - self._set_attributes(locals()) - - def apply_image(self, img, interp=None): - assert img.shape[:2] == (self.h, self.w) - assert len(img.shape) <= 4 - interp_method = interp if interp is not None else self.interp - - if img.dtype == np.uint8: - if len(img.shape) > 2 and img.shape[2] == 1: - pil_image = Image.fromarray(img[:, :, 0], mode="L") - else: - pil_image = Image.fromarray(img) - pil_image = pil_image.resize((self.new_w, self.new_h), interp_method) - ret = np.asarray(pil_image) - if len(img.shape) > 2 and img.shape[2] == 1: - ret = np.expand_dims(ret, -1) - else: - # PIL only supports uint8 - if any(x < 0 for x in img.strides): - img = np.ascontiguousarray(img) - img = torch.from_numpy(img) - shape = list(img.shape) - shape_4d = shape[:2] + [1] * (4 - len(shape)) + shape[2:] - img = img.view(shape_4d).permute(2, 3, 0, 1) # hw(c) -> nchw - _PIL_RESIZE_TO_INTERPOLATE_MODE = { - Image.NEAREST: "nearest", - Image.BILINEAR: "bilinear", - Image.BICUBIC: "bicubic", - } - mode = _PIL_RESIZE_TO_INTERPOLATE_MODE[interp_method] - align_corners = None if mode == "nearest" else False - img = F.interpolate( - img, (self.new_h, self.new_w), mode=mode, align_corners=align_corners - ) - shape[:2] = (self.new_h, self.new_w) - ret = img.permute(2, 3, 0, 1).view(shape).numpy() # nchw -> hw(c) - - return ret - - def apply_coords(self, coords): - coords[:, 0] = coords[:, 0] * (self.new_w * 1.0 / self.w) - coords[:, 1] = coords[:, 1] * (self.new_h * 1.0 / self.h) - return coords - - def apply_segmentation(self, segmentation): - segmentation = self.apply_image(segmentation, interp=Image.NEAREST) - return segmentation - - def inverse(self): - return ResizeTransform(self.new_h, self.new_w, self.h, self.w, self.interp) - - -class RotationTransform(Transform): - """ - This method returns a copy of this image, rotated the given - number of degrees counter clockwise around its center. - """ - - def __init__(self, h, w, angle, expand=True, center=None, interp=None): - """ - Args: - h, w (int): original image size - angle (float): degrees for rotation - expand (bool): choose if the image should be resized to fit the whole - rotated image (default), or simply cropped - center (tuple (width, height)): coordinates of the rotation center - if left to None, the center will be fit to the center of each image - center has no effect if expand=True because it only affects shifting - interp: cv2 interpolation method, default cv2.INTER_LINEAR - """ - super().__init__() - image_center = np.array((w / 2, h / 2)) - if center is None: - center = image_center - if interp is None: - interp = cv2.INTER_LINEAR - abs_cos, abs_sin = (abs(np.cos(np.deg2rad(angle))), abs(np.sin(np.deg2rad(angle)))) - if expand: - # find the new width and height bounds - bound_w, bound_h = np.rint( - [h * abs_sin + w * abs_cos, h * abs_cos + w * abs_sin] - ).astype(int) - else: - bound_w, bound_h = w, h - - self._set_attributes(locals()) - self.rm_coords = self.create_rotation_matrix() - # Needed because of this problem https://github.com/opencv/opencv/issues/11784 - self.rm_image = self.create_rotation_matrix(offset=-0.5) - - def apply_image(self, img, interp=None): - """ - img should be a numpy array, formatted as Height * Width * Nchannels - """ - if len(img) == 0 or self.angle % 360 == 0: - return img - assert img.shape[:2] == (self.h, self.w) - interp = interp if interp is not None else self.interp - return cv2.warpAffine(img, self.rm_image, (self.bound_w, self.bound_h), flags=interp) - - def apply_coords(self, coords): - """ - coords should be a N * 2 array-like, containing N couples of (x, y) points - """ - coords = np.asarray(coords, dtype=float) - if len(coords) == 0 or self.angle % 360 == 0: - return coords - return cv2.transform(coords[:, np.newaxis, :], self.rm_coords)[:, 0, :] - - def apply_segmentation(self, segmentation): - segmentation = self.apply_image(segmentation, interp=cv2.INTER_NEAREST) - return segmentation - - def create_rotation_matrix(self, offset=0): - center = (self.center[0] + offset, self.center[1] + offset) - rm = cv2.getRotationMatrix2D(tuple(center), self.angle, 1) - if self.expand: - # Find the coordinates of the center of rotation in the new image - # The only point for which we know the future coordinates is the center of the image - rot_im_center = cv2.transform(self.image_center[None, None, :] + offset, rm)[0, 0, :] - new_center = np.array([self.bound_w / 2, self.bound_h / 2]) + offset - rot_im_center - # shift the rotation center to the new coordinates - rm[:, 2] += new_center - return rm - - def inverse(self): - """ - The inverse is to rotate it back with expand, and crop to get the original shape. - """ - if not self.expand: # Not possible to inverse if a part of the image is lost - raise NotImplementedError() - rotation = RotationTransform( - self.bound_h, self.bound_w, -self.angle, True, None, self.interp - ) - crop = CropTransform( - (rotation.bound_w - self.w) // 2, (rotation.bound_h - self.h) // 2, self.w, self.h - ) - return TransformList([rotation, crop]) - - -class ColorTransform(Transform): - """ - Generic wrapper for any photometric transforms. - These transformations should only affect the color space and - not the coordinate space of the image (e.g. annotation - coordinates such as bounding boxes should not be changed) - """ - - def __init__(self, op): - """ - Args: - op (Callable): operation to be applied to the image, - which takes in an ndarray and returns an ndarray. - """ - if not callable(op): - raise ValueError("op parameter should be callable") - super().__init__() - self._set_attributes(locals()) - - def apply_image(self, img): - return self.op(img) - - def apply_coords(self, coords): - return coords - - def inverse(self): - return NoOpTransform() - - def apply_segmentation(self, segmentation): - return segmentation - - -class PILColorTransform(ColorTransform): - """ - Generic wrapper for PIL Photometric image transforms, - which affect the color space and not the coordinate - space of the image - """ - - def __init__(self, op): - """ - Args: - op (Callable): operation to be applied to the image, - which takes in a PIL Image and returns a transformed - PIL Image. - For reference on possible operations see: - - https://pillow.readthedocs.io/en/stable/ - """ - if not callable(op): - raise ValueError("op parameter should be callable") - super().__init__(op) - - def apply_image(self, img): - img = Image.fromarray(img) - return np.asarray(super().apply_image(img)) - - -def HFlip_rotated_box(transform, rotated_boxes): - """ - Apply the horizontal flip transform on rotated boxes. - - Args: - rotated_boxes (ndarray): Nx5 floating point array of - (x_center, y_center, width, height, angle_degrees) format - in absolute coordinates. - """ - # Transform x_center - rotated_boxes[:, 0] = transform.width - rotated_boxes[:, 0] - # Transform angle - rotated_boxes[:, 4] = -rotated_boxes[:, 4] - return rotated_boxes - - -def Resize_rotated_box(transform, rotated_boxes): - """ - Apply the resizing transform on rotated boxes. For details of how these (approximation) - formulas are derived, please refer to :meth:`RotatedBoxes.scale`. - - Args: - rotated_boxes (ndarray): Nx5 floating point array of - (x_center, y_center, width, height, angle_degrees) format - in absolute coordinates. - """ - scale_factor_x = transform.new_w * 1.0 / transform.w - scale_factor_y = transform.new_h * 1.0 / transform.h - rotated_boxes[:, 0] *= scale_factor_x - rotated_boxes[:, 1] *= scale_factor_y - theta = rotated_boxes[:, 4] * np.pi / 180.0 - c = np.cos(theta) - s = np.sin(theta) - rotated_boxes[:, 2] *= np.sqrt(np.square(scale_factor_x * c) + np.square(scale_factor_y * s)) - rotated_boxes[:, 3] *= np.sqrt(np.square(scale_factor_x * s) + np.square(scale_factor_y * c)) - rotated_boxes[:, 4] = np.arctan2(scale_factor_x * s, scale_factor_y * c) * 180 / np.pi - - return rotated_boxes - - -HFlipTransform.register_type("rotated_box", HFlip_rotated_box) -ResizeTransform.register_type("rotated_box", Resize_rotated_box) - -# not necessary any more with latest fvcore -NoOpTransform.register_type("rotated_box", lambda t, x: x) diff --git a/spaces/brjathu/HMR2.0/vendor/detectron2/detectron2/export/caffe2_modeling.py b/spaces/brjathu/HMR2.0/vendor/detectron2/detectron2/export/caffe2_modeling.py deleted file mode 100644 index 3e675c45d62f7b363a298099cd520c417832d58c..0000000000000000000000000000000000000000 --- a/spaces/brjathu/HMR2.0/vendor/detectron2/detectron2/export/caffe2_modeling.py +++ /dev/null @@ -1,420 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. - -import functools -import io -import struct -import types -import torch - -from detectron2.modeling import meta_arch -from detectron2.modeling.box_regression import Box2BoxTransform -from detectron2.modeling.roi_heads import keypoint_head -from detectron2.structures import Boxes, ImageList, Instances, RotatedBoxes - -from .c10 import Caffe2Compatible -from .caffe2_patch import ROIHeadsPatcher, patch_generalized_rcnn -from .shared import ( - alias, - check_set_pb_arg, - get_pb_arg_floats, - get_pb_arg_valf, - get_pb_arg_vali, - get_pb_arg_vals, - mock_torch_nn_functional_interpolate, -) - - -def assemble_rcnn_outputs_by_name(image_sizes, tensor_outputs, force_mask_on=False): - """ - A function to assemble caffe2 model's outputs (i.e. Dict[str, Tensor]) - to detectron2's format (i.e. list of Instances instance). - This only works when the model follows the Caffe2 detectron's naming convention. - - Args: - image_sizes (List[List[int, int]]): [H, W] of every image. - tensor_outputs (Dict[str, Tensor]): external_output to its tensor. - - force_mask_on (Bool): if true, the it make sure there'll be pred_masks even - if the mask is not found from tensor_outputs (usually due to model crash) - """ - - results = [Instances(image_size) for image_size in image_sizes] - - batch_splits = tensor_outputs.get("batch_splits", None) - if batch_splits: - raise NotImplementedError() - assert len(image_sizes) == 1 - result = results[0] - - bbox_nms = tensor_outputs["bbox_nms"] - score_nms = tensor_outputs["score_nms"] - class_nms = tensor_outputs["class_nms"] - # Detection will always success because Conv support 0-batch - assert bbox_nms is not None - assert score_nms is not None - assert class_nms is not None - if bbox_nms.shape[1] == 5: - result.pred_boxes = RotatedBoxes(bbox_nms) - else: - result.pred_boxes = Boxes(bbox_nms) - result.scores = score_nms - result.pred_classes = class_nms.to(torch.int64) - - mask_fcn_probs = tensor_outputs.get("mask_fcn_probs", None) - if mask_fcn_probs is not None: - # finish the mask pred - mask_probs_pred = mask_fcn_probs - num_masks = mask_probs_pred.shape[0] - class_pred = result.pred_classes - indices = torch.arange(num_masks, device=class_pred.device) - mask_probs_pred = mask_probs_pred[indices, class_pred][:, None] - result.pred_masks = mask_probs_pred - elif force_mask_on: - # NOTE: there's no way to know the height/width of mask here, it won't be - # used anyway when batch size is 0, so just set them to 0. - result.pred_masks = torch.zeros([0, 1, 0, 0], dtype=torch.uint8) - - keypoints_out = tensor_outputs.get("keypoints_out", None) - kps_score = tensor_outputs.get("kps_score", None) - if keypoints_out is not None: - # keypoints_out: [N, 4, #kypoints], where 4 is in order of (x, y, score, prob) - keypoints_tensor = keypoints_out - # NOTE: it's possible that prob is not calculated if "should_output_softmax" - # is set to False in HeatmapMaxKeypoint, so just using raw score, seems - # it doesn't affect mAP. TODO: check more carefully. - keypoint_xyp = keypoints_tensor.transpose(1, 2)[:, :, [0, 1, 2]] - result.pred_keypoints = keypoint_xyp - elif kps_score is not None: - # keypoint heatmap to sparse data structure - pred_keypoint_logits = kps_score - keypoint_head.keypoint_rcnn_inference(pred_keypoint_logits, [result]) - - return results - - -def _cast_to_f32(f64): - return struct.unpack("f", struct.pack("f", f64))[0] - - -def set_caffe2_compatible_tensor_mode(model, enable=True): - def _fn(m): - if isinstance(m, Caffe2Compatible): - m.tensor_mode = enable - - model.apply(_fn) - - -def convert_batched_inputs_to_c2_format(batched_inputs, size_divisibility, device): - """ - See get_caffe2_inputs() below. - """ - assert all(isinstance(x, dict) for x in batched_inputs) - assert all(x["image"].dim() == 3 for x in batched_inputs) - - images = [x["image"] for x in batched_inputs] - images = ImageList.from_tensors(images, size_divisibility) - - im_info = [] - for input_per_image, image_size in zip(batched_inputs, images.image_sizes): - target_height = input_per_image.get("height", image_size[0]) - target_width = input_per_image.get("width", image_size[1]) # noqa - # NOTE: The scale inside im_info is kept as convention and for providing - # post-processing information if further processing is needed. For - # current Caffe2 model definitions that don't include post-processing inside - # the model, this number is not used. - # NOTE: There can be a slight difference between width and height - # scales, using a single number can results in numerical difference - # compared with D2's post-processing. - scale = target_height / image_size[0] - im_info.append([image_size[0], image_size[1], scale]) - im_info = torch.Tensor(im_info) - - return images.tensor.to(device), im_info.to(device) - - -class Caffe2MetaArch(Caffe2Compatible, torch.nn.Module): - """ - Base class for caffe2-compatible implementation of a meta architecture. - The forward is traceable and its traced graph can be converted to caffe2 - graph through ONNX. - """ - - def __init__(self, cfg, torch_model, enable_tensor_mode=True): - """ - Args: - cfg (CfgNode): - torch_model (nn.Module): the detectron2 model (meta_arch) to be - converted. - """ - super().__init__() - self._wrapped_model = torch_model - self.eval() - set_caffe2_compatible_tensor_mode(self, enable_tensor_mode) - - def get_caffe2_inputs(self, batched_inputs): - """ - Convert pytorch-style structured inputs to caffe2-style inputs that - are tuples of tensors. - - Args: - batched_inputs (list[dict]): inputs to a detectron2 model - in its standard format. Each dict has "image" (CHW tensor), and optionally - "height" and "width". - - Returns: - tuple[Tensor]: - tuple of tensors that will be the inputs to the - :meth:`forward` method. For existing models, the first - is an NCHW tensor (padded and batched); the second is - a im_info Nx3 tensor, where the rows are - (height, width, unused legacy parameter) - """ - return convert_batched_inputs_to_c2_format( - batched_inputs, - self._wrapped_model.backbone.size_divisibility, - self._wrapped_model.device, - ) - - def encode_additional_info(self, predict_net, init_net): - """ - Save extra metadata that will be used by inference in the output protobuf. - """ - pass - - def forward(self, inputs): - """ - Run the forward in caffe2-style. It has to use caffe2-compatible ops - and the method will be used for tracing. - - Args: - inputs (tuple[Tensor]): inputs defined by :meth:`get_caffe2_input`. - They will be the inputs of the converted caffe2 graph. - - Returns: - tuple[Tensor]: output tensors. They will be the outputs of the - converted caffe2 graph. - """ - raise NotImplementedError - - def _caffe2_preprocess_image(self, inputs): - """ - Caffe2 implementation of preprocess_image, which is called inside each MetaArch's forward. - It normalizes the input images, and the final caffe2 graph assumes the - inputs have been batched already. - """ - data, im_info = inputs - data = alias(data, "data") - im_info = alias(im_info, "im_info") - mean, std = self._wrapped_model.pixel_mean, self._wrapped_model.pixel_std - normalized_data = (data - mean) / std - normalized_data = alias(normalized_data, "normalized_data") - - # Pack (data, im_info) into ImageList which is recognized by self.inference. - images = ImageList(tensor=normalized_data, image_sizes=im_info) - return images - - @staticmethod - def get_outputs_converter(predict_net, init_net): - """ - Creates a function that converts outputs of the caffe2 model to - detectron2's standard format. - The function uses information in `predict_net` and `init_net` that are - available at inferene time. Therefore the function logic can be used in inference. - - The returned function has the following signature: - - def convert(batched_inputs, c2_inputs, c2_results) -> detectron2_outputs - - Where - - * batched_inputs (list[dict]): the original input format of the meta arch - * c2_inputs (tuple[Tensor]): the caffe2 inputs. - * c2_results (dict[str, Tensor]): the caffe2 output format, - corresponding to the outputs of the :meth:`forward` function. - * detectron2_outputs: the original output format of the meta arch. - - This function can be used to compare the outputs of the original meta arch and - the converted caffe2 graph. - - Returns: - callable: a callable of the above signature. - """ - raise NotImplementedError - - -class Caffe2GeneralizedRCNN(Caffe2MetaArch): - def __init__(self, cfg, torch_model, enable_tensor_mode=True): - assert isinstance(torch_model, meta_arch.GeneralizedRCNN) - torch_model = patch_generalized_rcnn(torch_model) - super().__init__(cfg, torch_model, enable_tensor_mode) - - try: - use_heatmap_max_keypoint = cfg.EXPORT_CAFFE2.USE_HEATMAP_MAX_KEYPOINT - except AttributeError: - use_heatmap_max_keypoint = False - self.roi_heads_patcher = ROIHeadsPatcher( - self._wrapped_model.roi_heads, use_heatmap_max_keypoint - ) - if self.tensor_mode: - self.roi_heads_patcher.patch_roi_heads() - - def encode_additional_info(self, predict_net, init_net): - size_divisibility = self._wrapped_model.backbone.size_divisibility - check_set_pb_arg(predict_net, "size_divisibility", "i", size_divisibility) - check_set_pb_arg( - predict_net, "device", "s", str.encode(str(self._wrapped_model.device), "ascii") - ) - check_set_pb_arg(predict_net, "meta_architecture", "s", b"GeneralizedRCNN") - - @mock_torch_nn_functional_interpolate() - def forward(self, inputs): - if not self.tensor_mode: - return self._wrapped_model.inference(inputs) - images = self._caffe2_preprocess_image(inputs) - features = self._wrapped_model.backbone(images.tensor) - proposals, _ = self._wrapped_model.proposal_generator(images, features) - detector_results, _ = self._wrapped_model.roi_heads(images, features, proposals) - return tuple(detector_results[0].flatten()) - - @staticmethod - def get_outputs_converter(predict_net, init_net): - def f(batched_inputs, c2_inputs, c2_results): - _, im_info = c2_inputs - image_sizes = [[int(im[0]), int(im[1])] for im in im_info] - results = assemble_rcnn_outputs_by_name(image_sizes, c2_results) - return meta_arch.GeneralizedRCNN._postprocess(results, batched_inputs, image_sizes) - - return f - - -class Caffe2RetinaNet(Caffe2MetaArch): - def __init__(self, cfg, torch_model): - assert isinstance(torch_model, meta_arch.RetinaNet) - super().__init__(cfg, torch_model) - - @mock_torch_nn_functional_interpolate() - def forward(self, inputs): - assert self.tensor_mode - images = self._caffe2_preprocess_image(inputs) - - # explicitly return the images sizes to avoid removing "im_info" by ONNX - # since it's not used in the forward path - return_tensors = [images.image_sizes] - - features = self._wrapped_model.backbone(images.tensor) - features = [features[f] for f in self._wrapped_model.head_in_features] - for i, feature_i in enumerate(features): - features[i] = alias(feature_i, "feature_{}".format(i), is_backward=True) - return_tensors.append(features[i]) - - pred_logits, pred_anchor_deltas = self._wrapped_model.head(features) - for i, (box_cls_i, box_delta_i) in enumerate(zip(pred_logits, pred_anchor_deltas)): - return_tensors.append(alias(box_cls_i, "box_cls_{}".format(i))) - return_tensors.append(alias(box_delta_i, "box_delta_{}".format(i))) - - return tuple(return_tensors) - - def encode_additional_info(self, predict_net, init_net): - size_divisibility = self._wrapped_model.backbone.size_divisibility - check_set_pb_arg(predict_net, "size_divisibility", "i", size_divisibility) - check_set_pb_arg( - predict_net, "device", "s", str.encode(str(self._wrapped_model.device), "ascii") - ) - check_set_pb_arg(predict_net, "meta_architecture", "s", b"RetinaNet") - - # Inference parameters: - check_set_pb_arg( - predict_net, "score_threshold", "f", _cast_to_f32(self._wrapped_model.test_score_thresh) - ) - check_set_pb_arg( - predict_net, "topk_candidates", "i", self._wrapped_model.test_topk_candidates - ) - check_set_pb_arg( - predict_net, "nms_threshold", "f", _cast_to_f32(self._wrapped_model.test_nms_thresh) - ) - check_set_pb_arg( - predict_net, - "max_detections_per_image", - "i", - self._wrapped_model.max_detections_per_image, - ) - - check_set_pb_arg( - predict_net, - "bbox_reg_weights", - "floats", - [_cast_to_f32(w) for w in self._wrapped_model.box2box_transform.weights], - ) - self._encode_anchor_generator_cfg(predict_net) - - def _encode_anchor_generator_cfg(self, predict_net): - # serialize anchor_generator for future use - serialized_anchor_generator = io.BytesIO() - torch.save(self._wrapped_model.anchor_generator, serialized_anchor_generator) - # Ideally we can put anchor generating inside the model, then we don't - # need to store this information. - bytes = serialized_anchor_generator.getvalue() - check_set_pb_arg(predict_net, "serialized_anchor_generator", "s", bytes) - - @staticmethod - def get_outputs_converter(predict_net, init_net): - self = types.SimpleNamespace() - serialized_anchor_generator = io.BytesIO( - get_pb_arg_vals(predict_net, "serialized_anchor_generator", None) - ) - self.anchor_generator = torch.load(serialized_anchor_generator) - bbox_reg_weights = get_pb_arg_floats(predict_net, "bbox_reg_weights", None) - self.box2box_transform = Box2BoxTransform(weights=tuple(bbox_reg_weights)) - self.test_score_thresh = get_pb_arg_valf(predict_net, "score_threshold", None) - self.test_topk_candidates = get_pb_arg_vali(predict_net, "topk_candidates", None) - self.test_nms_thresh = get_pb_arg_valf(predict_net, "nms_threshold", None) - self.max_detections_per_image = get_pb_arg_vali( - predict_net, "max_detections_per_image", None - ) - - # hack to reuse inference code from RetinaNet - for meth in [ - "forward_inference", - "inference_single_image", - "_transpose_dense_predictions", - "_decode_multi_level_predictions", - "_decode_per_level_predictions", - ]: - setattr(self, meth, functools.partial(getattr(meta_arch.RetinaNet, meth), self)) - - def f(batched_inputs, c2_inputs, c2_results): - _, im_info = c2_inputs - image_sizes = [[int(im[0]), int(im[1])] for im in im_info] - dummy_images = ImageList( - torch.randn( - ( - len(im_info), - 3, - ) - + tuple(image_sizes[0]) - ), - image_sizes, - ) - - num_features = len([x for x in c2_results.keys() if x.startswith("box_cls_")]) - pred_logits = [c2_results["box_cls_{}".format(i)] for i in range(num_features)] - pred_anchor_deltas = [c2_results["box_delta_{}".format(i)] for i in range(num_features)] - - # For each feature level, feature should have the same batch size and - # spatial dimension as the box_cls and box_delta. - dummy_features = [x.clone()[:, 0:0, :, :] for x in pred_logits] - # self.num_classess can be inferred - self.num_classes = pred_logits[0].shape[1] // (pred_anchor_deltas[0].shape[1] // 4) - - results = self.forward_inference( - dummy_images, dummy_features, [pred_logits, pred_anchor_deltas] - ) - return meta_arch.GeneralizedRCNN._postprocess(results, batched_inputs, image_sizes) - - return f - - -META_ARCH_CAFFE2_EXPORT_TYPE_MAP = { - "GeneralizedRCNN": Caffe2GeneralizedRCNN, - "RetinaNet": Caffe2RetinaNet, -} diff --git a/spaces/brjathu/HMR2.0/vendor/detectron2/detectron2/layers/losses.py b/spaces/brjathu/HMR2.0/vendor/detectron2/detectron2/layers/losses.py deleted file mode 100644 index 850a852a2f0986d4d1ce89a526d96db42c76e44f..0000000000000000000000000000000000000000 --- a/spaces/brjathu/HMR2.0/vendor/detectron2/detectron2/layers/losses.py +++ /dev/null @@ -1,133 +0,0 @@ -import math -import torch - - -def diou_loss( - boxes1: torch.Tensor, - boxes2: torch.Tensor, - reduction: str = "none", - eps: float = 1e-7, -) -> torch.Tensor: - """ - Distance Intersection over Union Loss (Zhaohui Zheng et. al) - https://arxiv.org/abs/1911.08287 - Args: - boxes1, boxes2 (Tensor): box locations in XYXY format, shape (N, 4) or (4,). - reduction: 'none' | 'mean' | 'sum' - 'none': No reduction will be applied to the output. - 'mean': The output will be averaged. - 'sum': The output will be summed. - eps (float): small number to prevent division by zero - """ - - x1, y1, x2, y2 = boxes1.unbind(dim=-1) - x1g, y1g, x2g, y2g = boxes2.unbind(dim=-1) - - # TODO: use torch._assert_async() when pytorch 1.8 support is dropped - assert (x2 >= x1).all(), "bad box: x1 larger than x2" - assert (y2 >= y1).all(), "bad box: y1 larger than y2" - - # Intersection keypoints - xkis1 = torch.max(x1, x1g) - ykis1 = torch.max(y1, y1g) - xkis2 = torch.min(x2, x2g) - ykis2 = torch.min(y2, y2g) - - intsct = torch.zeros_like(x1) - mask = (ykis2 > ykis1) & (xkis2 > xkis1) - intsct[mask] = (xkis2[mask] - xkis1[mask]) * (ykis2[mask] - ykis1[mask]) - union = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g) - intsct + eps - iou = intsct / union - - # smallest enclosing box - xc1 = torch.min(x1, x1g) - yc1 = torch.min(y1, y1g) - xc2 = torch.max(x2, x2g) - yc2 = torch.max(y2, y2g) - diag_len = ((xc2 - xc1) ** 2) + ((yc2 - yc1) ** 2) + eps - - # centers of boxes - x_p = (x2 + x1) / 2 - y_p = (y2 + y1) / 2 - x_g = (x1g + x2g) / 2 - y_g = (y1g + y2g) / 2 - distance = ((x_p - x_g) ** 2) + ((y_p - y_g) ** 2) - - # Eqn. (7) - loss = 1 - iou + (distance / diag_len) - if reduction == "mean": - loss = loss.mean() if loss.numel() > 0 else 0.0 * loss.sum() - elif reduction == "sum": - loss = loss.sum() - - return loss - - -def ciou_loss( - boxes1: torch.Tensor, - boxes2: torch.Tensor, - reduction: str = "none", - eps: float = 1e-7, -) -> torch.Tensor: - """ - Complete Intersection over Union Loss (Zhaohui Zheng et. al) - https://arxiv.org/abs/1911.08287 - Args: - boxes1, boxes2 (Tensor): box locations in XYXY format, shape (N, 4) or (4,). - reduction: 'none' | 'mean' | 'sum' - 'none': No reduction will be applied to the output. - 'mean': The output will be averaged. - 'sum': The output will be summed. - eps (float): small number to prevent division by zero - """ - - x1, y1, x2, y2 = boxes1.unbind(dim=-1) - x1g, y1g, x2g, y2g = boxes2.unbind(dim=-1) - - # TODO: use torch._assert_async() when pytorch 1.8 support is dropped - assert (x2 >= x1).all(), "bad box: x1 larger than x2" - assert (y2 >= y1).all(), "bad box: y1 larger than y2" - - # Intersection keypoints - xkis1 = torch.max(x1, x1g) - ykis1 = torch.max(y1, y1g) - xkis2 = torch.min(x2, x2g) - ykis2 = torch.min(y2, y2g) - - intsct = torch.zeros_like(x1) - mask = (ykis2 > ykis1) & (xkis2 > xkis1) - intsct[mask] = (xkis2[mask] - xkis1[mask]) * (ykis2[mask] - ykis1[mask]) - union = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g) - intsct + eps - iou = intsct / union - - # smallest enclosing box - xc1 = torch.min(x1, x1g) - yc1 = torch.min(y1, y1g) - xc2 = torch.max(x2, x2g) - yc2 = torch.max(y2, y2g) - diag_len = ((xc2 - xc1) ** 2) + ((yc2 - yc1) ** 2) + eps - - # centers of boxes - x_p = (x2 + x1) / 2 - y_p = (y2 + y1) / 2 - x_g = (x1g + x2g) / 2 - y_g = (y1g + y2g) / 2 - distance = ((x_p - x_g) ** 2) + ((y_p - y_g) ** 2) - - # width and height of boxes - w_pred = x2 - x1 - h_pred = y2 - y1 - w_gt = x2g - x1g - h_gt = y2g - y1g - v = (4 / (math.pi**2)) * torch.pow((torch.atan(w_gt / h_gt) - torch.atan(w_pred / h_pred)), 2) - with torch.no_grad(): - alpha = v / (1 - iou + v + eps) - - # Eqn. (10) - loss = 1 - iou + (distance / diag_len) + alpha * v - if reduction == "mean": - loss = loss.mean() if loss.numel() > 0 else 0.0 * loss.sum() - elif reduction == "sum": - loss = loss.sum() - - return loss diff --git a/spaces/brjathu/HMR2.0/vendor/pyrender/pyrender/scene.py b/spaces/brjathu/HMR2.0/vendor/pyrender/pyrender/scene.py deleted file mode 100644 index 2fe057ec66f52f2dd9c1363aacf72a7c6cec4e6c..0000000000000000000000000000000000000000 --- a/spaces/brjathu/HMR2.0/vendor/pyrender/pyrender/scene.py +++ /dev/null @@ -1,585 +0,0 @@ -"""Scenes, conforming to the glTF 2.0 standards as specified in -https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#reference-scene - -Author: Matthew Matl -""" -import numpy as np -import networkx as nx -import trimesh - -from .mesh import Mesh -from .camera import Camera -from .light import Light, PointLight, DirectionalLight, SpotLight -from .node import Node -from .utils import format_color_vector - - -class Scene(object): - """A hierarchical scene graph. - - Parameters - ---------- - nodes : list of :class:`Node` - The set of all nodes in the scene. - bg_color : (4,) float, optional - Background color of scene. - ambient_light : (3,) float, optional - Color of ambient light. Defaults to no ambient light. - name : str, optional - The user-defined name of this object. - """ - - def __init__(self, - nodes=None, - bg_color=None, - ambient_light=None, - name=None): - - if bg_color is None: - bg_color = np.ones(4) - else: - bg_color = format_color_vector(bg_color, 4) - - if ambient_light is None: - ambient_light = np.zeros(3) - - if nodes is None: - nodes = set() - self._nodes = set() # Will be added at the end of this function - - self.bg_color = bg_color - self.ambient_light = ambient_light - self.name = name - - self._name_to_nodes = {} - self._obj_to_nodes = {} - self._obj_name_to_nodes = {} - self._mesh_nodes = set() - self._point_light_nodes = set() - self._spot_light_nodes = set() - self._directional_light_nodes = set() - self._camera_nodes = set() - self._main_camera_node = None - self._bounds = None - - # Transform tree - self._digraph = nx.DiGraph() - self._digraph.add_node('world') - self._path_cache = {} - - # Find root nodes and add them - if len(nodes) > 0: - node_parent_map = {n: None for n in nodes} - for node in nodes: - for child in node.children: - if node_parent_map[child] is not None: - raise ValueError('Nodes may not have more than ' - 'one parent') - node_parent_map[child] = node - for node in node_parent_map: - if node_parent_map[node] is None: - self.add_node(node) - - @property - def name(self): - """str : The user-defined name of this object. - """ - return self._name - - @name.setter - def name(self, value): - if value is not None: - value = str(value) - self._name = value - - @property - def nodes(self): - """set of :class:`Node` : Set of nodes in the scene. - """ - return self._nodes - - @property - def bg_color(self): - """(3,) float : The scene background color. - """ - return self._bg_color - - @bg_color.setter - def bg_color(self, value): - if value is None: - value = np.ones(4) - else: - value = format_color_vector(value, 4) - self._bg_color = value - - @property - def ambient_light(self): - """(3,) float : The ambient light in the scene. - """ - return self._ambient_light - - @ambient_light.setter - def ambient_light(self, value): - if value is None: - value = np.zeros(3) - else: - value = format_color_vector(value, 3) - self._ambient_light = value - - @property - def meshes(self): - """set of :class:`Mesh` : The meshes in the scene. - """ - return set([n.mesh for n in self.mesh_nodes]) - - @property - def mesh_nodes(self): - """set of :class:`Node` : The nodes containing meshes. - """ - return self._mesh_nodes - - @property - def lights(self): - """set of :class:`Light` : The lights in the scene. - """ - return self.point_lights | self.spot_lights | self.directional_lights - - @property - def light_nodes(self): - """set of :class:`Node` : The nodes containing lights. - """ - return (self.point_light_nodes | self.spot_light_nodes | - self.directional_light_nodes) - - @property - def point_lights(self): - """set of :class:`PointLight` : The point lights in the scene. - """ - return set([n.light for n in self.point_light_nodes]) - - @property - def point_light_nodes(self): - """set of :class:`Node` : The nodes containing point lights. - """ - return self._point_light_nodes - - @property - def spot_lights(self): - """set of :class:`SpotLight` : The spot lights in the scene. - """ - return set([n.light for n in self.spot_light_nodes]) - - @property - def spot_light_nodes(self): - """set of :class:`Node` : The nodes containing spot lights. - """ - return self._spot_light_nodes - - @property - def directional_lights(self): - """set of :class:`DirectionalLight` : The directional lights in - the scene. - """ - return set([n.light for n in self.directional_light_nodes]) - - @property - def directional_light_nodes(self): - """set of :class:`Node` : The nodes containing directional lights. - """ - return self._directional_light_nodes - - @property - def cameras(self): - """set of :class:`Camera` : The cameras in the scene. - """ - return set([n.camera for n in self.camera_nodes]) - - @property - def camera_nodes(self): - """set of :class:`Node` : The nodes containing cameras in the scene. - """ - return self._camera_nodes - - @property - def main_camera_node(self): - """set of :class:`Node` : The node containing the main camera in the - scene. - """ - return self._main_camera_node - - @main_camera_node.setter - def main_camera_node(self, value): - if value not in self.nodes: - raise ValueError('New main camera node must already be in scene') - self._main_camera_node = value - - @property - def bounds(self): - """(2,3) float : The axis-aligned bounds of the scene. - """ - if self._bounds is None: - # Compute corners - corners = [] - for mesh_node in self.mesh_nodes: - mesh = mesh_node.mesh - pose = self.get_pose(mesh_node) - corners_local = trimesh.bounds.corners(mesh.bounds) - corners_world = pose[:3,:3].dot(corners_local.T).T + pose[:3,3] - corners.append(corners_world) - if len(corners) == 0: - self._bounds = np.zeros((2,3)) - else: - corners = np.vstack(corners) - self._bounds = np.array([np.min(corners, axis=0), - np.max(corners, axis=0)]) - return self._bounds - - @property - def centroid(self): - """(3,) float : The centroid of the scene's axis-aligned bounding box - (AABB). - """ - return np.mean(self.bounds, axis=0) - - @property - def extents(self): - """(3,) float : The lengths of the axes of the scene's AABB. - """ - return np.diff(self.bounds, axis=0).reshape(-1) - - @property - def scale(self): - """(3,) float : The length of the diagonal of the scene's AABB. - """ - return np.linalg.norm(self.extents) - - def add(self, obj, name=None, pose=None, - parent_node=None, parent_name=None): - """Add an object (mesh, light, or camera) to the scene. - - Parameters - ---------- - obj : :class:`Mesh`, :class:`Light`, or :class:`Camera` - The object to add to the scene. - name : str - A name for the new node to be created. - pose : (4,4) float - The local pose of this node relative to its parent node. - parent_node : :class:`Node` - The parent of this Node. If None, the new node is a root node. - parent_name : str - The name of the parent node, can be specified instead of - `parent_node`. - - Returns - ------- - node : :class:`Node` - The newly-created and inserted node. - """ - if isinstance(obj, Mesh): - node = Node(name=name, matrix=pose, mesh=obj) - elif isinstance(obj, Light): - node = Node(name=name, matrix=pose, light=obj) - elif isinstance(obj, Camera): - node = Node(name=name, matrix=pose, camera=obj) - else: - raise TypeError('Unrecognized object type') - - if parent_node is None and parent_name is not None: - parent_nodes = self.get_nodes(name=parent_name) - if len(parent_nodes) == 0: - raise ValueError('No parent node with name {} found' - .format(parent_name)) - elif len(parent_nodes) > 1: - raise ValueError('More than one parent node with name {} found' - .format(parent_name)) - parent_node = list(parent_nodes)[0] - - self.add_node(node, parent_node=parent_node) - - return node - - def get_nodes(self, node=None, name=None, obj=None, obj_name=None): - """Search for existing nodes. Only nodes matching all specified - parameters is returned, or None if no such node exists. - - Parameters - ---------- - node : :class:`Node`, optional - If present, returns this node if it is in the scene. - name : str - A name for the Node. - obj : :class:`Mesh`, :class:`Light`, or :class:`Camera` - An object that is attached to the node. - obj_name : str - The name of an object that is attached to the node. - - Returns - ------- - nodes : set of :class:`.Node` - The nodes that match all query terms. - """ - if node is not None: - if node in self.nodes: - return set([node]) - else: - return set() - nodes = set(self.nodes) - if name is not None: - matches = set() - if name in self._name_to_nodes: - matches = self._name_to_nodes[name] - nodes = nodes & matches - if obj is not None: - matches = set() - if obj in self._obj_to_nodes: - matches = self._obj_to_nodes[obj] - nodes = nodes & matches - if obj_name is not None: - matches = set() - if obj_name in self._obj_name_to_nodes: - matches = self._obj_name_to_nodes[obj_name] - nodes = nodes & matches - - return nodes - - def add_node(self, node, parent_node=None): - """Add a Node to the scene. - - Parameters - ---------- - node : :class:`Node` - The node to be added. - parent_node : :class:`Node` - The parent of this Node. If None, the new node is a root node. - """ - if node in self.nodes: - raise ValueError('Node already in scene') - self.nodes.add(node) - - # Add node to sets - if node.name is not None: - if node.name not in self._name_to_nodes: - self._name_to_nodes[node.name] = set() - self._name_to_nodes[node.name].add(node) - for obj in [node.mesh, node.camera, node.light]: - if obj is not None: - if obj not in self._obj_to_nodes: - self._obj_to_nodes[obj] = set() - self._obj_to_nodes[obj].add(node) - if obj.name is not None: - if obj.name not in self._obj_name_to_nodes: - self._obj_name_to_nodes[obj.name] = set() - self._obj_name_to_nodes[obj.name].add(node) - if node.mesh is not None: - self._mesh_nodes.add(node) - if node.light is not None: - if isinstance(node.light, PointLight): - self._point_light_nodes.add(node) - if isinstance(node.light, SpotLight): - self._spot_light_nodes.add(node) - if isinstance(node.light, DirectionalLight): - self._directional_light_nodes.add(node) - if node.camera is not None: - self._camera_nodes.add(node) - if self._main_camera_node is None: - self._main_camera_node = node - - if parent_node is None: - parent_node = 'world' - elif parent_node not in self.nodes: - raise ValueError('Parent node must already be in scene') - elif node not in parent_node.children: - parent_node.children.append(node) - - # Create node in graph - self._digraph.add_node(node) - self._digraph.add_edge(node, parent_node) - - # Iterate over children - for child in node.children: - self.add_node(child, node) - - self._path_cache = {} - self._bounds = None - - def has_node(self, node): - """Check if a node is already in the scene. - - Parameters - ---------- - node : :class:`Node` - The node to be checked. - - Returns - ------- - has_node : bool - True if the node is already in the scene and false otherwise. - """ - return node in self.nodes - - def remove_node(self, node): - """Remove a node and all its children from the scene. - - Parameters - ---------- - node : :class:`Node` - The node to be removed. - """ - # Disconnect self from parent who is staying in the graph - parent = list(self._digraph.neighbors(node))[0] - self._remove_node(node) - if isinstance(parent, Node): - parent.children.remove(node) - self._path_cache = {} - self._bounds = None - - def get_pose(self, node): - """Get the world-frame pose of a node in the scene. - - Parameters - ---------- - node : :class:`Node` - The node to find the pose of. - - Returns - ------- - pose : (4,4) float - The transform matrix for this node. - """ - if node not in self.nodes: - raise ValueError('Node must already be in scene') - if node in self._path_cache: - path = self._path_cache[node] - else: - # Get path from from_frame to to_frame - path = nx.shortest_path(self._digraph, node, 'world') - self._path_cache[node] = path - - # Traverse from from_node to to_node - pose = np.eye(4) - for n in path[:-1]: - pose = np.dot(n.matrix, pose) - - return pose - - def set_pose(self, node, pose): - """Set the local-frame pose of a node in the scene. - - Parameters - ---------- - node : :class:`Node` - The node to set the pose of. - pose : (4,4) float - The pose to set the node to. - """ - if node not in self.nodes: - raise ValueError('Node must already be in scene') - node._matrix = pose - if node.mesh is not None: - self._bounds = None - - def clear(self): - """Clear out all nodes to form an empty scene. - """ - self._nodes = set() - - self._name_to_nodes = {} - self._obj_to_nodes = {} - self._obj_name_to_nodes = {} - self._mesh_nodes = set() - self._point_light_nodes = set() - self._spot_light_nodes = set() - self._directional_light_nodes = set() - self._camera_nodes = set() - self._main_camera_node = None - self._bounds = None - - # Transform tree - self._digraph = nx.DiGraph() - self._digraph.add_node('world') - self._path_cache = {} - - def _remove_node(self, node): - """Remove a node and all its children from the scene. - - Parameters - ---------- - node : :class:`Node` - The node to be removed. - """ - - # Remove self from nodes - self.nodes.remove(node) - - # Remove children - for child in node.children: - self._remove_node(child) - - # Remove self from the graph - self._digraph.remove_node(node) - - # Remove from maps - if node.name in self._name_to_nodes: - self._name_to_nodes[node.name].remove(node) - if len(self._name_to_nodes[node.name]) == 0: - self._name_to_nodes.pop(node.name) - for obj in [node.mesh, node.camera, node.light]: - if obj is None: - continue - self._obj_to_nodes[obj].remove(node) - if len(self._obj_to_nodes[obj]) == 0: - self._obj_to_nodes.pop(obj) - if obj.name is not None: - self._obj_name_to_nodes[obj.name].remove(node) - if len(self._obj_name_to_nodes[obj.name]) == 0: - self._obj_name_to_nodes.pop(obj.name) - if node.mesh is not None: - self._mesh_nodes.remove(node) - if node.light is not None: - if isinstance(node.light, PointLight): - self._point_light_nodes.remove(node) - if isinstance(node.light, SpotLight): - self._spot_light_nodes.remove(node) - if isinstance(node.light, DirectionalLight): - self._directional_light_nodes.remove(node) - if node.camera is not None: - self._camera_nodes.remove(node) - if self._main_camera_node == node: - if len(self._camera_nodes) > 0: - self._main_camera_node = next(iter(self._camera_nodes)) - else: - self._main_camera_node = None - - @staticmethod - def from_trimesh_scene(trimesh_scene, - bg_color=None, ambient_light=None): - """Create a :class:`.Scene` from a :class:`trimesh.scene.scene.Scene`. - - Parameters - ---------- - trimesh_scene : :class:`trimesh.scene.scene.Scene` - Scene with :class:~`trimesh.base.Trimesh` objects. - bg_color : (4,) float - Background color for the created scene. - ambient_light : (3,) float or None - Ambient light in the scene. - - Returns - ------- - scene_pr : :class:`Scene` - A scene containing the same geometry as the trimesh scene. - """ - # convert trimesh geometries to pyrender geometries - geometries = {name: Mesh.from_trimesh(geom) - for name, geom in trimesh_scene.geometry.items()} - - # create the pyrender scene object - scene_pr = Scene(bg_color=bg_color, ambient_light=ambient_light) - - # add every node with geometry to the pyrender scene - for node in trimesh_scene.graph.nodes_geometry: - pose, geom_name = trimesh_scene.graph[node] - scene_pr.add(geometries[geom_name], pose=pose) - - return scene_pr diff --git a/spaces/btlee215/openchat-openchat/app.py b/spaces/btlee215/openchat-openchat/app.py deleted file mode 100644 index ff1ca5d07cd7f42b953608bb23c32aef45333f18..0000000000000000000000000000000000000000 --- a/spaces/btlee215/openchat-openchat/app.py +++ /dev/null @@ -1,3 +0,0 @@ -import gradio as gr - -gr.Interface.load("models/openchat/openchat").launch() \ No newline at end of file diff --git a/spaces/camilosegura/traductor-multilenguaje/Lib/site-packages/_distutils_hack/override.py b/spaces/camilosegura/traductor-multilenguaje/Lib/site-packages/_distutils_hack/override.py deleted file mode 100644 index 2cc433a4a55e3b41fa31089918fb62096092f89f..0000000000000000000000000000000000000000 --- a/spaces/camilosegura/traductor-multilenguaje/Lib/site-packages/_distutils_hack/override.py +++ /dev/null @@ -1 +0,0 @@ -__import__('_distutils_hack').do_override() diff --git a/spaces/carlosalonso/Detection-video/carpeta_deteccion/detectron2/export/api.py b/spaces/carlosalonso/Detection-video/carpeta_deteccion/detectron2/export/api.py deleted file mode 100644 index 1a272fed929217f18e04f731365f4bf7472110fc..0000000000000000000000000000000000000000 --- a/spaces/carlosalonso/Detection-video/carpeta_deteccion/detectron2/export/api.py +++ /dev/null @@ -1,230 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -import copy -import logging -import os -import torch -from caffe2.proto import caffe2_pb2 -from torch import nn - -from detectron2.config import CfgNode -from detectron2.utils.file_io import PathManager - -from .caffe2_inference import ProtobufDetectionModel -from .caffe2_modeling import META_ARCH_CAFFE2_EXPORT_TYPE_MAP, convert_batched_inputs_to_c2_format -from .shared import get_pb_arg_vali, get_pb_arg_vals, save_graph - -__all__ = [ - "Caffe2Model", - "Caffe2Tracer", -] - - -class Caffe2Tracer: - """ - Make a detectron2 model traceable with Caffe2 operators. - This class creates a traceable version of a detectron2 model which: - - 1. Rewrite parts of the model using ops in Caffe2. Note that some ops do - not have GPU implementation in Caffe2. - 2. Remove post-processing and only produce raw layer outputs - - After making a traceable model, the class provide methods to export such a - model to different deployment formats. - Exported graph produced by this class take two input tensors: - - 1. (1, C, H, W) float "data" which is an image (usually in [0, 255]). - (H, W) often has to be padded to multiple of 32 (depend on the model - architecture). - 2. 1x3 float "im_info", each row of which is (height, width, 1.0). - Height and width are true image shapes before padding. - - The class currently only supports models using builtin meta architectures. - Batch inference is not supported, and contributions are welcome. - """ - - def __init__(self, cfg: CfgNode, model: nn.Module, inputs): - """ - Args: - cfg (CfgNode): a detectron2 config used to construct caffe2-compatible model. - model (nn.Module): An original pytorch model. Must be among a few official models - in detectron2 that can be converted to become caffe2-compatible automatically. - Weights have to be already loaded to this model. - inputs: sample inputs that the given model takes for inference. - Will be used to trace the model. For most models, random inputs with - no detected objects will not work as they lead to wrong traces. - """ - assert isinstance(cfg, CfgNode), cfg - assert isinstance(model, torch.nn.Module), type(model) - - # TODO make it support custom models, by passing in c2 model directly - C2MetaArch = META_ARCH_CAFFE2_EXPORT_TYPE_MAP[cfg.MODEL.META_ARCHITECTURE] - self.traceable_model = C2MetaArch(cfg, copy.deepcopy(model)) - self.inputs = inputs - self.traceable_inputs = self.traceable_model.get_caffe2_inputs(inputs) - - def export_caffe2(self): - """ - Export the model to Caffe2's protobuf format. - The returned object can be saved with its :meth:`.save_protobuf()` method. - The result can be loaded and executed using Caffe2 runtime. - - Returns: - :class:`Caffe2Model` - """ - from .caffe2_export import export_caffe2_detection_model - - predict_net, init_net = export_caffe2_detection_model( - self.traceable_model, self.traceable_inputs - ) - return Caffe2Model(predict_net, init_net) - - def export_onnx(self): - """ - Export the model to ONNX format. - Note that the exported model contains custom ops only available in caffe2, therefore it - cannot be directly executed by other runtime (such as onnxruntime or TensorRT). - Post-processing or transformation passes may be applied on the model to accommodate - different runtimes, but we currently do not provide support for them. - - Returns: - onnx.ModelProto: an onnx model. - """ - from .caffe2_export import export_onnx_model as export_onnx_model_impl - - return export_onnx_model_impl(self.traceable_model, (self.traceable_inputs,)) - - def export_torchscript(self): - """ - Export the model to a ``torch.jit.TracedModule`` by tracing. - The returned object can be saved to a file by ``.save()``. - - Returns: - torch.jit.TracedModule: a torch TracedModule - """ - logger = logging.getLogger(__name__) - logger.info("Tracing the model with torch.jit.trace ...") - with torch.no_grad(): - return torch.jit.trace(self.traceable_model, (self.traceable_inputs,)) - - -class Caffe2Model(nn.Module): - """ - A wrapper around the traced model in Caffe2's protobuf format. - The exported graph has different inputs/outputs from the original Pytorch - model, as explained in :class:`Caffe2Tracer`. This class wraps around the - exported graph to simulate the same interface as the original Pytorch model. - It also provides functions to save/load models in Caffe2's format.' - - Examples: - :: - c2_model = Caffe2Tracer(cfg, torch_model, inputs).export_caffe2() - inputs = [{"image": img_tensor_CHW}] - outputs = c2_model(inputs) - orig_outputs = torch_model(inputs) - """ - - def __init__(self, predict_net, init_net): - super().__init__() - self.eval() # always in eval mode - self._predict_net = predict_net - self._init_net = init_net - self._predictor = None - - __init__.__HIDE_SPHINX_DOC__ = True - - @property - def predict_net(self): - """ - caffe2.core.Net: the underlying caffe2 predict net - """ - return self._predict_net - - @property - def init_net(self): - """ - caffe2.core.Net: the underlying caffe2 init net - """ - return self._init_net - - def save_protobuf(self, output_dir): - """ - Save the model as caffe2's protobuf format. - It saves the following files: - - * "model.pb": definition of the graph. Can be visualized with - tools like `netron `_. - * "model_init.pb": model parameters - * "model.pbtxt": human-readable definition of the graph. Not - needed for deployment. - - Args: - output_dir (str): the output directory to save protobuf files. - """ - logger = logging.getLogger(__name__) - logger.info("Saving model to {} ...".format(output_dir)) - if not PathManager.exists(output_dir): - PathManager.mkdirs(output_dir) - - with PathManager.open(os.path.join(output_dir, "model.pb"), "wb") as f: - f.write(self._predict_net.SerializeToString()) - with PathManager.open(os.path.join(output_dir, "model.pbtxt"), "w") as f: - f.write(str(self._predict_net)) - with PathManager.open(os.path.join(output_dir, "model_init.pb"), "wb") as f: - f.write(self._init_net.SerializeToString()) - - def save_graph(self, output_file, inputs=None): - """ - Save the graph as SVG format. - - Args: - output_file (str): a SVG file - inputs: optional inputs given to the model. - If given, the inputs will be used to run the graph to record - shape of every tensor. The shape information will be - saved together with the graph. - """ - from .caffe2_export import run_and_save_graph - - if inputs is None: - save_graph(self._predict_net, output_file, op_only=False) - else: - size_divisibility = get_pb_arg_vali(self._predict_net, "size_divisibility", 0) - device = get_pb_arg_vals(self._predict_net, "device", b"cpu").decode("ascii") - inputs = convert_batched_inputs_to_c2_format(inputs, size_divisibility, device) - inputs = [x.cpu().numpy() for x in inputs] - run_and_save_graph(self._predict_net, self._init_net, inputs, output_file) - - @staticmethod - def load_protobuf(dir): - """ - Args: - dir (str): a directory used to save Caffe2Model with - :meth:`save_protobuf`. - The files "model.pb" and "model_init.pb" are needed. - - Returns: - Caffe2Model: the caffe2 model loaded from this directory. - """ - predict_net = caffe2_pb2.NetDef() - with PathManager.open(os.path.join(dir, "model.pb"), "rb") as f: - predict_net.ParseFromString(f.read()) - - init_net = caffe2_pb2.NetDef() - with PathManager.open(os.path.join(dir, "model_init.pb"), "rb") as f: - init_net.ParseFromString(f.read()) - - return Caffe2Model(predict_net, init_net) - - def __call__(self, inputs): - """ - An interface that wraps around a Caffe2 model and mimics detectron2's models' - input/output format. See details about the format at :doc:`/tutorials/models`. - This is used to compare the outputs of caffe2 model with its original torch model. - - Due to the extra conversion between Pytorch/Caffe2, this method is not meant for - benchmark. Because of the conversion, this method also has dependency - on detectron2 in order to convert to detectron2's output format. - """ - if self._predictor is None: - self._predictor = ProtobufDetectionModel(self._predict_net, self._init_net) - return self._predictor(inputs) diff --git a/spaces/charbaaz356/Chat-GPT-LangChain-R/README.md b/spaces/charbaaz356/Chat-GPT-LangChain-R/README.md deleted file mode 100644 index 79c187a1f3583dc52348a0a763061938612f329c..0000000000000000000000000000000000000000 --- a/spaces/charbaaz356/Chat-GPT-LangChain-R/README.md +++ /dev/null @@ -1,14 +0,0 @@ ---- -title: GPT+WolframAlpha+Whisper -emoji: šŸ‘€ -colorFrom: red -colorTo: gray -sdk: gradio -sdk_version: 3.16.1 -app_file: app.py -pinned: false -license: apache-2.0 -duplicated_from: appl044/Chat-GPT-LangChain ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/chendl/compositional_test/multimodal/YOLOX/yolox/data/datasets/mosaicdetection.py b/spaces/chendl/compositional_test/multimodal/YOLOX/yolox/data/datasets/mosaicdetection.py deleted file mode 100644 index 708babed55086113e9ec69f57e9408b6a28b9422..0000000000000000000000000000000000000000 --- a/spaces/chendl/compositional_test/multimodal/YOLOX/yolox/data/datasets/mosaicdetection.py +++ /dev/null @@ -1,234 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding:utf-8 -*- -# Copyright (c) Megvii, Inc. and its affiliates. - -import random - -import cv2 -import numpy as np - -from yolox.utils import adjust_box_anns, get_local_rank - -from ..data_augment import random_affine -from .datasets_wrapper import Dataset - - -def get_mosaic_coordinate(mosaic_image, mosaic_index, xc, yc, w, h, input_h, input_w): - # TODO update doc - # index0 to top left part of image - if mosaic_index == 0: - x1, y1, x2, y2 = max(xc - w, 0), max(yc - h, 0), xc, yc - small_coord = w - (x2 - x1), h - (y2 - y1), w, h - # index1 to top right part of image - elif mosaic_index == 1: - x1, y1, x2, y2 = xc, max(yc - h, 0), min(xc + w, input_w * 2), yc - small_coord = 0, h - (y2 - y1), min(w, x2 - x1), h - # index2 to bottom left part of image - elif mosaic_index == 2: - x1, y1, x2, y2 = max(xc - w, 0), yc, xc, min(input_h * 2, yc + h) - small_coord = w - (x2 - x1), 0, w, min(y2 - y1, h) - # index2 to bottom right part of image - elif mosaic_index == 3: - x1, y1, x2, y2 = xc, yc, min(xc + w, input_w * 2), min(input_h * 2, yc + h) # noqa - small_coord = 0, 0, min(w, x2 - x1), min(y2 - y1, h) - return (x1, y1, x2, y2), small_coord - - -class MosaicDetection(Dataset): - """Detection dataset wrapper that performs mixup for normal dataset.""" - - def __init__( - self, dataset, img_size, mosaic=True, preproc=None, - degrees=10.0, translate=0.1, mosaic_scale=(0.5, 1.5), - mixup_scale=(0.5, 1.5), shear=2.0, enable_mixup=True, - mosaic_prob=1.0, mixup_prob=1.0, *args - ): - """ - - Args: - dataset(Dataset) : Pytorch dataset object. - img_size (tuple): - mosaic (bool): enable mosaic augmentation or not. - preproc (func): - degrees (float): - translate (float): - mosaic_scale (tuple): - mixup_scale (tuple): - shear (float): - enable_mixup (bool): - *args(tuple) : Additional arguments for mixup random sampler. - """ - super().__init__(img_size, mosaic=mosaic) - self._dataset = dataset - self.preproc = preproc - self.degrees = degrees - self.translate = translate - self.scale = mosaic_scale - self.shear = shear - self.mixup_scale = mixup_scale - self.enable_mosaic = mosaic - self.enable_mixup = enable_mixup - self.mosaic_prob = mosaic_prob - self.mixup_prob = mixup_prob - self.local_rank = get_local_rank() - - def __len__(self): - return len(self._dataset) - - @Dataset.mosaic_getitem - def __getitem__(self, idx): - if self.enable_mosaic and random.random() < self.mosaic_prob: - mosaic_labels = [] - input_dim = self._dataset.input_dim - input_h, input_w = input_dim[0], input_dim[1] - - # yc, xc = s, s # mosaic center x, y - yc = int(random.uniform(0.5 * input_h, 1.5 * input_h)) - xc = int(random.uniform(0.5 * input_w, 1.5 * input_w)) - - # 3 additional image indices - indices = [idx] + [random.randint(0, len(self._dataset) - 1) for _ in range(3)] - - for i_mosaic, index in enumerate(indices): - img, _labels, _, img_id = self._dataset.pull_item(index) - h0, w0 = img.shape[:2] # orig hw - scale = min(1. * input_h / h0, 1. * input_w / w0) - img = cv2.resize( - img, (int(w0 * scale), int(h0 * scale)), interpolation=cv2.INTER_LINEAR - ) - # generate output mosaic image - (h, w, c) = img.shape[:3] - if i_mosaic == 0: - mosaic_img = np.full((input_h * 2, input_w * 2, c), 114, dtype=np.uint8) - - # suffix l means large image, while s means small image in mosaic aug. - (l_x1, l_y1, l_x2, l_y2), (s_x1, s_y1, s_x2, s_y2) = get_mosaic_coordinate( - mosaic_img, i_mosaic, xc, yc, w, h, input_h, input_w - ) - - mosaic_img[l_y1:l_y2, l_x1:l_x2] = img[s_y1:s_y2, s_x1:s_x2] - padw, padh = l_x1 - s_x1, l_y1 - s_y1 - - labels = _labels.copy() - # Normalized xywh to pixel xyxy format - if _labels.size > 0: - labels[:, 0] = scale * _labels[:, 0] + padw - labels[:, 1] = scale * _labels[:, 1] + padh - labels[:, 2] = scale * _labels[:, 2] + padw - labels[:, 3] = scale * _labels[:, 3] + padh - mosaic_labels.append(labels) - - if len(mosaic_labels): - mosaic_labels = np.concatenate(mosaic_labels, 0) - np.clip(mosaic_labels[:, 0], 0, 2 * input_w, out=mosaic_labels[:, 0]) - np.clip(mosaic_labels[:, 1], 0, 2 * input_h, out=mosaic_labels[:, 1]) - np.clip(mosaic_labels[:, 2], 0, 2 * input_w, out=mosaic_labels[:, 2]) - np.clip(mosaic_labels[:, 3], 0, 2 * input_h, out=mosaic_labels[:, 3]) - - mosaic_img, mosaic_labels = random_affine( - mosaic_img, - mosaic_labels, - target_size=(input_w, input_h), - degrees=self.degrees, - translate=self.translate, - scales=self.scale, - shear=self.shear, - ) - - # ----------------------------------------------------------------- - # CopyPaste: https://arxiv.org/abs/2012.07177 - # ----------------------------------------------------------------- - if ( - self.enable_mixup - and not len(mosaic_labels) == 0 - and random.random() < self.mixup_prob - ): - mosaic_img, mosaic_labels = self.mixup(mosaic_img, mosaic_labels, self.input_dim) - mix_img, padded_labels = self.preproc(mosaic_img, mosaic_labels, self.input_dim) - img_info = (mix_img.shape[1], mix_img.shape[0]) - - # ----------------------------------------------------------------- - # img_info and img_id are not used for training. - # They are also hard to be specified on a mosaic image. - # ----------------------------------------------------------------- - return mix_img, padded_labels, img_info, img_id - - else: - self._dataset._input_dim = self.input_dim - img, label, img_info, img_id = self._dataset.pull_item(idx) - img, label = self.preproc(img, label, self.input_dim) - return img, label, img_info, img_id - - def mixup(self, origin_img, origin_labels, input_dim): - jit_factor = random.uniform(*self.mixup_scale) - FLIP = random.uniform(0, 1) > 0.5 - cp_labels = [] - while len(cp_labels) == 0: - cp_index = random.randint(0, self.__len__() - 1) - cp_labels = self._dataset.load_anno(cp_index) - img, cp_labels, _, _ = self._dataset.pull_item(cp_index) - - if len(img.shape) == 3: - cp_img = np.ones((input_dim[0], input_dim[1], 3), dtype=np.uint8) * 114 - else: - cp_img = np.ones(input_dim, dtype=np.uint8) * 114 - - cp_scale_ratio = min(input_dim[0] / img.shape[0], input_dim[1] / img.shape[1]) - resized_img = cv2.resize( - img, - (int(img.shape[1] * cp_scale_ratio), int(img.shape[0] * cp_scale_ratio)), - interpolation=cv2.INTER_LINEAR, - ) - - cp_img[ - : int(img.shape[0] * cp_scale_ratio), : int(img.shape[1] * cp_scale_ratio) - ] = resized_img - - cp_img = cv2.resize( - cp_img, - (int(cp_img.shape[1] * jit_factor), int(cp_img.shape[0] * jit_factor)), - ) - cp_scale_ratio *= jit_factor - - if FLIP: - cp_img = cp_img[:, ::-1, :] - - origin_h, origin_w = cp_img.shape[:2] - target_h, target_w = origin_img.shape[:2] - padded_img = np.zeros( - (max(origin_h, target_h), max(origin_w, target_w), 3), dtype=np.uint8 - ) - padded_img[:origin_h, :origin_w] = cp_img - - x_offset, y_offset = 0, 0 - if padded_img.shape[0] > target_h: - y_offset = random.randint(0, padded_img.shape[0] - target_h - 1) - if padded_img.shape[1] > target_w: - x_offset = random.randint(0, padded_img.shape[1] - target_w - 1) - padded_cropped_img = padded_img[ - y_offset: y_offset + target_h, x_offset: x_offset + target_w - ] - - cp_bboxes_origin_np = adjust_box_anns( - cp_labels[:, :4].copy(), cp_scale_ratio, 0, 0, origin_w, origin_h - ) - if FLIP: - cp_bboxes_origin_np[:, 0::2] = ( - origin_w - cp_bboxes_origin_np[:, 0::2][:, ::-1] - ) - cp_bboxes_transformed_np = cp_bboxes_origin_np.copy() - cp_bboxes_transformed_np[:, 0::2] = np.clip( - cp_bboxes_transformed_np[:, 0::2] - x_offset, 0, target_w - ) - cp_bboxes_transformed_np[:, 1::2] = np.clip( - cp_bboxes_transformed_np[:, 1::2] - y_offset, 0, target_h - ) - - cls_labels = cp_labels[:, 4:5].copy() - box_labels = cp_bboxes_transformed_np - labels = np.hstack((box_labels, cls_labels)) - origin_labels = np.vstack((origin_labels, labels)) - origin_img = origin_img.astype(np.float32) - origin_img = 0.5 * origin_img + 0.5 * padded_cropped_img.astype(np.float32) - - return origin_img.astype(np.uint8), origin_labels diff --git a/spaces/chendl/compositional_test/transformers/examples/research_projects/movement-pruning/README.md b/spaces/chendl/compositional_test/transformers/examples/research_projects/movement-pruning/README.md deleted file mode 100644 index 76c660187472a3abcefe4bf6109751a52697a6f1..0000000000000000000000000000000000000000 --- a/spaces/chendl/compositional_test/transformers/examples/research_projects/movement-pruning/README.md +++ /dev/null @@ -1,185 +0,0 @@ -# Movement Pruning: Adaptive Sparsity by Fine-Tuning - -Author: @VictorSanh - -*Magnitude pruning is a widely used strategy for reducing model size in pure supervised learning; however, it is less effective in the transfer learning regime that has become standard for state-of-the-art natural language processing applications. We propose the use of *movement pruning*, a simple, deterministic first-order weight pruning method that is more adaptive to pretrained model fine-tuning. Experiments show that when pruning large pretrained language models, movement pruning shows significant improvements in high-sparsity regimes. When combined with distillation, the approach achieves minimal accuracy loss with down to only 3% of the model parameters:* - -| Fine-pruning+Distillation
    (Teacher=BERT-base fine-tuned) | BERT base
    fine-tuned | Remaining
    Weights (%) | Magnitude Pruning | L0 Regularization | Movement Pruning | Soft Movement Pruning | -| :---: | :---: | :---: | :---: | :---: | :---: | :---: | -| SQuAD - Dev
    EM/F1 | 80.4/88.1 | 10%
    3% | 70.2/80.1
    45.5/59.6 | 72.4/81.9
    64.3/75.8 | 75.6/84.3
    67.5/78.0 | **76.6/84.9**
    **72.7/82.3** | -| MNLI - Dev
    acc/MM acc | 84.5/84.9 | 10%
    3% | 78.3/79.3
    69.4/70.6 | 78.7/79.7
    76.0/76.2 | 80.1/80.4
    76.5/77.4 | **81.2/81.8**
    **79.5/80.1** | -| QQP - Dev
    acc/F1 | 91.4/88.4 | 10%
    3% | 79.8/65.0
    72.4/57.8 | 88.1/82.8
    87.0/81.9 | 89.7/86.2
    86.1/81.5 | **90.2/86.8**
    **89.1/85.5** | - -This page contains information on how to fine-prune pre-trained models such as `BERT` to obtain extremely sparse models with movement pruning. In contrast to magnitude pruning which selects weights that are far from 0, movement pruning retains weights that are moving away from 0. - -For more information, we invite you to check out [our paper](https://arxiv.org/abs/2005.07683). -You can also have a look at this fun *Explain Like I'm Five* introductory [slide deck](https://www.slideshare.net/VictorSanh/movement-pruning-explain-like-im-five-234205241). - -
    - -
    - -## Extreme sparsity and efficient storage - -One promise of extreme pruning is to obtain extremely small models that can be easily sent (and stored) on edge devices. By setting weights to 0., we reduce the amount of information we need to store, and thus decreasing the memory size. We are able to obtain extremely sparse fine-pruned models with movement pruning: ~95% of the dense performance with ~5% of total remaining weights in the BERT encoder. - -In [this notebook](https://github.com/huggingface/transformers/blob/main/examples/research_projects/movement-pruning/Saving_PruneBERT.ipynb), we showcase how we can leverage standard tools that exist out-of-the-box to efficiently store an extremely sparse question answering model (only 6% of total remaining weights in the encoder). We are able to reduce the memory size of the encoder **from the 340MB (the original dense BERT) to 11MB**, without any additional training of the model (every operation is performed *post fine-pruning*). It is sufficiently small to store it on a [91' floppy disk](https://en.wikipedia.org/wiki/Floptical) šŸ“Ž! - -While movement pruning does not directly optimize for memory footprint (but rather the number of non-null weights), we hypothetize that further memory compression ratios can be achieved with specific quantization aware trainings (see for instance [Q8BERT](https://arxiv.org/abs/1910.06188), [And the Bit Goes Down](https://arxiv.org/abs/1907.05686) or [Quant-Noise](https://arxiv.org/abs/2004.07320)). - -## Fine-pruned models - -As examples, we release two English PruneBERT checkpoints (models fine-pruned from a pre-trained `BERT` checkpoint), one on SQuAD and the other on MNLI. - -- **`prunebert-base-uncased-6-finepruned-w-distil-squad`**
    -Pre-trained `BERT-base-uncased` fine-pruned with soft movement pruning on SQuAD v1.1. We use an additional distillation signal from `BERT-base-uncased` finetuned on SQuAD. The encoder counts 6% of total non-null weights and reaches 83.8 F1 score. The model can be accessed with: `pruned_bert = BertForQuestionAnswering.from_pretrained("huggingface/prunebert-base-uncased-6-finepruned-w-distil-squad")` -- **`prunebert-base-uncased-6-finepruned-w-distil-mnli`**
    -Pre-trained `BERT-base-uncased` fine-pruned with soft movement pruning on MNLI. We use an additional distillation signal from `BERT-base-uncased` finetuned on MNLI. The encoder counts 6% of total non-null weights and reaches 80.7 (matched) accuracy. The model can be accessed with: `pruned_bert = BertForSequenceClassification.from_pretrained("huggingface/prunebert-base-uncased-6-finepruned-w-distil-mnli")` - -## How to fine-prune? - -### Setup - -The code relies on the šŸ¤— Transformers library. In addition to the dependencies listed in the [`examples`](https://github.com/huggingface/transformers/tree/main/examples) folder, you should install a few additional dependencies listed in the `requirements.txt` file: `pip install -r requirements.txt`. - -Note that we built our experiments on top of a stabilized version of the library (commit https://github.com/huggingface/transformers/commit/352d5472b0c1dec0f420d606d16747d851b4bda8): we do not guarantee that everything is still compatible with the latest version of the main branch. - -### Fine-pruning with movement pruning - -Below, we detail how to reproduce the results reported in the paper. We use SQuAD as a running example. Commands (and scripts) can be easily adapted for other tasks. - -The following command fine-prunes a pre-trained `BERT-base` on SQuAD using movement pruning towards 15% of remaining weights (85% sparsity). Note that we freeze all the embeddings modules (from their pre-trained value) and only prune the Fully Connected layers in the encoder (12 layers of Transformer Block). - -```bash -SERIALIZATION_DIR= -SQUAD_DATA= - -python examples/movement-pruning/masked_run_squad.py \ - --output_dir $SERIALIZATION_DIR \ - --data_dir $SQUAD_DATA \ - --train_file train-v1.1.json \ - --predict_file dev-v1.1.json \ - --do_train --do_eval --do_lower_case \ - --model_type masked_bert \ - --model_name_or_path bert-base-uncased \ - --per_gpu_train_batch_size 16 \ - --warmup_steps 5400 \ - --num_train_epochs 10 \ - --learning_rate 3e-5 --mask_scores_learning_rate 1e-2 \ - --initial_threshold 1 --final_threshold 0.15 \ - --initial_warmup 1 --final_warmup 2 \ - --pruning_method topK --mask_init constant --mask_scale 0. -``` - -### Fine-pruning with other methods - -We can also explore other fine-pruning methods by changing the `pruning_method` parameter: - -Soft movement pruning -```bash -python examples/movement-pruning/masked_run_squad.py \ - --output_dir $SERIALIZATION_DIR \ - --data_dir $SQUAD_DATA \ - --train_file train-v1.1.json \ - --predict_file dev-v1.1.json \ - --do_train --do_eval --do_lower_case \ - --model_type masked_bert \ - --model_name_or_path bert-base-uncased \ - --per_gpu_train_batch_size 16 \ - --warmup_steps 5400 \ - --num_train_epochs 10 \ - --learning_rate 3e-5 --mask_scores_learning_rate 1e-2 \ - --initial_threshold 0 --final_threshold 0.1 \ - --initial_warmup 1 --final_warmup 2 \ - --pruning_method sigmoied_threshold --mask_init constant --mask_scale 0. \ - --regularization l1 --final_lambda 400. -``` - -L0 regularization -```bash -python examples/movement-pruning/masked_run_squad.py \ - --output_dir $SERIALIZATION_DIR \ - --data_dir $SQUAD_DATA \ - --train_file train-v1.1.json \ - --predict_file dev-v1.1.json \ - --do_train --do_eval --do_lower_case \ - --model_type masked_bert \ - --model_name_or_path bert-base-uncased \ - --per_gpu_train_batch_size 16 \ - --warmup_steps 5400 \ - --num_train_epochs 10 \ - --learning_rate 3e-5 --mask_scores_learning_rate 1e-1 \ - --initial_threshold 1. --final_threshold 1. \ - --initial_warmup 1 --final_warmup 1 \ - --pruning_method l0 --mask_init constant --mask_scale 2.197 \ - --regularization l0 --final_lambda 125. -``` - -Iterative Magnitude Pruning -```bash -python examples/movement-pruning/masked_run_squad.py \ - --output_dir ./dbg \ - --data_dir examples/distillation/data/squad_data \ - --train_file train-v1.1.json \ - --predict_file dev-v1.1.json \ - --do_train --do_eval --do_lower_case \ - --model_type masked_bert \ - --model_name_or_path bert-base-uncased \ - --per_gpu_train_batch_size 16 \ - --warmup_steps 5400 \ - --num_train_epochs 10 \ - --learning_rate 3e-5 \ - --initial_threshold 1 --final_threshold 0.15 \ - --initial_warmup 1 --final_warmup 2 \ - --pruning_method magnitude -``` - -### After fine-pruning - -**Counting parameters** - -Regularization based pruning methods (soft movement pruning and L0 regularization) rely on the penalty to induce sparsity. The multiplicative coefficient controls the sparsity level. -To obtain the effective sparsity level in the encoder, we simply count the number of activated (non-null) weights: - -```bash -python examples/movement-pruning/counts_parameters.py \ - --pruning_method sigmoied_threshold \ - --threshold 0.1 \ - --serialization_dir $SERIALIZATION_DIR -``` - -**Pruning once for all** - -Once the model has been fine-pruned, the pruned weights can be set to 0. once for all (reducing the amount of information to store). In our running experiments, we can convert a `MaskedBertForQuestionAnswering` (a BERT model augmented to enable on-the-fly pruning capabilities) to a standard `BertForQuestionAnswering`: - -```bash -python examples/movement-pruning/bertarize.py \ - --pruning_method sigmoied_threshold \ - --threshold 0.1 \ - --model_name_or_path $SERIALIZATION_DIR -``` - -## Hyper-parameters - -For reproducibility purposes, we share the detailed results presented in the paper. These [tables](https://docs.google.com/spreadsheets/d/17JgRq_OFFTniUrz6BZWW_87DjFkKXpI1kYDSsseT_7g/edit?usp=sharing) exhaustively describe the individual hyper-parameters used for each data point. - -## Inference speed - -Early experiments show that even though models fine-pruned with (soft) movement pruning are extremely sparse, they do not benefit from significant improvement in terms of inference speed when using the standard PyTorch inference. -We are currently benchmarking and exploring inference setups specifically for sparse architectures. -In particular, hardware manufacturers are announcing devices that will speedup inference for sparse networks considerably. - -## Citation - -If you find this resource useful, please consider citing the following paper: - -``` -@article{sanh2020movement, - title={Movement Pruning: Adaptive Sparsity by Fine-Tuning}, - author={Victor Sanh and Thomas Wolf and Alexander M. Rush}, - year={2020}, - eprint={2005.07683}, - archivePrefix={arXiv}, - primaryClass={cs.CL} -} -``` diff --git a/spaces/chenmgtea/cn_tts/bert/__init__.py b/spaces/chenmgtea/cn_tts/bert/__init__.py deleted file mode 100644 index d7dcbe2c051f01fff99c3bf38113db9fceacaf6b..0000000000000000000000000000000000000000 --- a/spaces/chenmgtea/cn_tts/bert/__init__.py +++ /dev/null @@ -1 +0,0 @@ -from .ProsodyModel import TTSProsody \ No newline at end of file diff --git a/spaces/chenxc/qweqwe/README.md b/spaces/chenxc/qweqwe/README.md deleted file mode 100644 index 7588443530e5f0052da0d4b011d4dcbfd2f2d331..0000000000000000000000000000000000000000 --- a/spaces/chenxc/qweqwe/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Qweqwe -emoji: 🐨 -colorFrom: indigo -colorTo: gray -sdk: docker -pinned: false -license: mit -app_port: 8080 ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/chronopt-research/ViTExCo/src/models/vit/__init__.py b/spaces/chronopt-research/ViTExCo/src/models/vit/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/chuan-hd/law-assistant-chatbot/.venv/lib/python3.11/site-packages/attr/__init__.py b/spaces/chuan-hd/law-assistant-chatbot/.venv/lib/python3.11/site-packages/attr/__init__.py deleted file mode 100644 index 7cfa792f744b7e0b4e28a536c0603f142ded6518..0000000000000000000000000000000000000000 --- a/spaces/chuan-hd/law-assistant-chatbot/.venv/lib/python3.11/site-packages/attr/__init__.py +++ /dev/null @@ -1,132 +0,0 @@ -# SPDX-License-Identifier: MIT - -""" -Classes Without Boilerplate -""" - -from functools import partial -from typing import Callable - -from . import converters, exceptions, filters, setters, validators -from ._cmp import cmp_using -from ._config import get_run_validators, set_run_validators -from ._funcs import asdict, assoc, astuple, evolve, has, resolve_types -from ._make import ( - NOTHING, - Attribute, - Factory, - attrib, - attrs, - fields, - fields_dict, - make_class, - validate, -) -from ._next_gen import define, field, frozen, mutable -from ._version_info import VersionInfo - - -s = attributes = attrs -ib = attr = attrib -dataclass = partial(attrs, auto_attribs=True) # happy Easter ;) - - -class AttrsInstance: - pass - - -__all__ = [ - "Attribute", - "AttrsInstance", - "Factory", - "NOTHING", - "asdict", - "assoc", - "astuple", - "attr", - "attrib", - "attributes", - "attrs", - "cmp_using", - "converters", - "define", - "evolve", - "exceptions", - "field", - "fields", - "fields_dict", - "filters", - "frozen", - "get_run_validators", - "has", - "ib", - "make_class", - "mutable", - "resolve_types", - "s", - "set_run_validators", - "setters", - "validate", - "validators", -] - - -def _make_getattr(mod_name: str) -> Callable: - """ - Create a metadata proxy for packaging information that uses *mod_name* in - its warnings and errors. - """ - - def __getattr__(name: str) -> str: - dunder_to_metadata = { - "__title__": "Name", - "__copyright__": "", - "__version__": "version", - "__version_info__": "version", - "__description__": "summary", - "__uri__": "", - "__url__": "", - "__author__": "", - "__email__": "", - "__license__": "license", - } - if name not in dunder_to_metadata.keys(): - raise AttributeError(f"module {mod_name} has no attribute {name}") - - import sys - import warnings - - if sys.version_info < (3, 8): - from importlib_metadata import metadata - else: - from importlib.metadata import metadata - - if name != "__version_info__": - warnings.warn( - f"Accessing {mod_name}.{name} is deprecated and will be " - "removed in a future release. Use importlib.metadata directly " - "to query for attrs's packaging metadata.", - DeprecationWarning, - stacklevel=2, - ) - - meta = metadata("attrs") - if name == "__license__": - return "MIT" - elif name == "__copyright__": - return "Copyright (c) 2015 Hynek Schlawack" - elif name in ("__uri__", "__url__"): - return meta["Project-URL"].split(" ", 1)[-1] - elif name == "__version_info__": - return VersionInfo._from_version_string(meta["version"]) - elif name == "__author__": - return meta["Author-email"].rsplit(" ", 1)[0] - elif name == "__email__": - return meta["Author-email"].rsplit("<", 1)[1][:-1] - - return meta[dunder_to_metadata[name]] - - return __getattr__ - - -__getattr__ = _make_getattr(__name__) diff --git a/spaces/chuan-hd/law-assistant-chatbot/.venv/lib/python3.11/site-packages/clickhouse_connect/cc_sqlalchemy/datatypes/__init__.py b/spaces/chuan-hd/law-assistant-chatbot/.venv/lib/python3.11/site-packages/clickhouse_connect/cc_sqlalchemy/datatypes/__init__.py deleted file mode 100644 index f364badd886f5c61ef1e19cb449bc28c8d196df8..0000000000000000000000000000000000000000 --- a/spaces/chuan-hd/law-assistant-chatbot/.venv/lib/python3.11/site-packages/clickhouse_connect/cc_sqlalchemy/datatypes/__init__.py +++ /dev/null @@ -1 +0,0 @@ -import clickhouse_connect.cc_sqlalchemy.datatypes.sqltypes diff --git a/spaces/chuan-hd/law-assistant-chatbot/.venv/lib/python3.11/site-packages/fastapi/openapi/__init__.py b/spaces/chuan-hd/law-assistant-chatbot/.venv/lib/python3.11/site-packages/fastapi/openapi/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/cihyFjudo/fairness-paper-search/Descargar El Libro De Casi Angeles El Hombre De Las Mil Caras Las Siete Llaves que Abrirn el Libro Misterioso.md b/spaces/cihyFjudo/fairness-paper-search/Descargar El Libro De Casi Angeles El Hombre De Las Mil Caras Las Siete Llaves que Abrirn el Libro Misterioso.md deleted file mode 100644 index 25ee9b442795df625fdec9f96fc06d3c949fd3ec..0000000000000000000000000000000000000000 --- a/spaces/cihyFjudo/fairness-paper-search/Descargar El Libro De Casi Angeles El Hombre De Las Mil Caras Las Siete Llaves que Abrirn el Libro Misterioso.md +++ /dev/null @@ -1,6 +0,0 @@ -
    -

    Tal vez llegue el momento en que los hombres y las mujeres puedan viajar a casi la velocidad de la luz hasta las estrellas, y entonces tendremos suficiente energƭa para intervenir con fuerza bruta en la dinƔmica de los huracanes.

    -

    El ciclón Tracy, recogiendo los pedazos
    Veinte años después del ciclón Tracy, este libro recrea, mediante entrevistas con los supervivientes, los acontecimientos durante y después del ciclón que casi destruyó Darwin, Australia, por B. Bunbury
    Fremantle Arts Centre Press, South Fremantle (Australia), 1994, 148 pƔgs.

    -

    Descargar El Libro De Casi Angeles El Hombre De Las Mil Caras


    Download File 🗸🗸🗸 https://tinurli.com/2uwkUB



    aaccfb2cb3
    -
    -
    \ No newline at end of file diff --git a/spaces/cihyFjudo/fairness-paper-search/Download !NEW! Cheat Wallhack Cso.md b/spaces/cihyFjudo/fairness-paper-search/Download !NEW! Cheat Wallhack Cso.md deleted file mode 100644 index 89940534f5566d3cd3f978743999c74848885186..0000000000000000000000000000000000000000 --- a/spaces/cihyFjudo/fairness-paper-search/Download !NEW! Cheat Wallhack Cso.md +++ /dev/null @@ -1,5 +0,0 @@ - -

    If you are having any issues, shoot us an email, Contact MPGH Support.

    As always, have fun and enjoy your stay!

    - MPGH Staff

Announcement:MPGH Development Team Applications | Devs Needed!Flengo 01-07-2023 Views:4,109Forum: CounterStrike Online HacksPage 1 of 212LastJump to page: Threads 1 to 40 of 63 Forum Tools
  • Mark This Forum Read
  • View Parent Forum
  • Search Forum
  • Show Threads Show Posts Advanced Search Threads in This ForumTitle /Thread StarterReplies / ViewsLast Post ByĀ» Normal Threads Fake lagStarted by supaninja, 11-20-2021
  • Replies: 0
  • Views: 829
  • Rating0 / 5Last Post BysupaninjaView Profile View Forum Posts11-20-2021 Triggerbot online anticheats? :)Started by ayrtonmigliore66@gmail.co, 05-02-2021
  • Replies: 0
  • Views: 977
  • Rating0 / 5Last Post Byayrtonmigliore66@gmail.coView Profile View Forum Posts05-02-2021 [Source Code] [CSN:Z] General Hack LiteStarted by Jodi Redlot, 09-29-2019
  • Replies: 1
  • Views: 2,446
  • Rating0 / 5Last Post ByPleasememeView Profile View Forum Posts03-20-2020 [Request] Need Cs 1.6 no spread hack!Started by TheRealNoobisHere, 08-18-2019
  • Replies: 0
  • Views: 1,138
  • Rating0 / 5Last Post ByTheRealNoobisHereView Profile View Forum Posts08-18-2019 my heartStarted by grandkidgetshigh, 06-17-2019
  • Replies: 0
  • Views: 671
  • Rating0 / 5Last Post BygrandkidgetshighView Profile View Forum Posts06-17-2019 [Request] HacksStarted by UstaKillZ, 02-03-2019
  • Replies: 3
  • Views: 1,657
  • Rating0 / 5Last Post BylucktkView Profile View Forum Posts05-27-2019 [Help] WallhackStarted by redman68, 09-15-2018
  • Replies: 3
  • Views: 2,814
  • Rating0 / 5Last Post BySandoogsView Profile View Forum Posts05-18-2019 helpStarted by nightbest, 02-13-2018
  • Replies: 2
  • Views: 1,080
  • Rating0 / 5Last Post BySandoogsView Profile View Forum Posts05-18-2019 [Help] Looking for a vac undetected wallhack for Counter Strike Source (steam version)Started by Wolfschanze, 01-27-2019
  • Replies: 2
  • Views: 1,466
  • Rating0 / 5Last Post BySandoogsView Profile View Forum Posts05-18-2019 [Request] CS 1.6 Radar HackingStarted by hasanalizxc, 07-31-2018
  • Replies: 1
  • Views: 2,193
  • Rating0 / 5Last Post Bythemis2523View ProfilePrivate Message View Forum Posts04-30-2019 [Help] Hack CSGO pleaseStarted by Paradiziak, 06-30-2017
  • Replies: 6
  • Views: 2,983
  • Rating0 / 5Last Post Bythemis2523View ProfilePrivate Message View Forum Posts04-30-2019 Looking for an undetectable wall hack or spin botStarted by PewPew211, 02-18-2019
  • Replies: 1
  • Views: 981
  • Rating0 / 5Last Post Bythemis2523View ProfilePrivate Message View Forum Posts04-30-2019 [HELP] Looking for Charm Hack for CSGOStarted by eulie07, 03-02-2019
  • Replies: 2
  • Views: 851
  • Rating0 / 5Last Post Bythemis2523View ProfilePrivate Message View Forum Posts04-30-2019 [Request] can i get good no vac csgo hacksStarted by ddbdgebeb, 02-04-2017
  • Replies: 5
  • Views: 1,963
  • Rating0 / 5Last Post Bythemis2523View ProfilePrivate Message View Forum Posts04-30-2019 [Detected] Css Multihack maded by ka$jan321Started by kasjanek, 12-23-2016
  • Replies: 8
  • Views: 9,067
  • Rating0 / 5Last Post ByriiilView Profile View Forum Posts01-08-2019 [Help] NEED HELPStarted by ez dubs, 06-23-2018
  • Replies: 0
  • Views: 569
  • Rating0 / 5Last Post Byez dubsView Profile View Forum Posts06-23-2018 [Request] Anti-Wallhack CS 1.6 BypassStarted by Blackdragon881, 11-18-2016
  • Replies: 4
  • Views: 4,736
  • Rating0 / 5Last Post ByCSSKROUBLEView Profile View Forum Posts10-16-2017 [Request] Aimbot for Counter Strike SourceStarted by dorijan04, 01-14-2017
  • Replies: 2
  • Views: 3,598
  • Rating0 / 5Last Post Bysalmanali12View Profile View Forum Posts08-23-2017 [Request] CSS Undetected Wall HackStarted by dylanrm44, 06-15-2017
  • Replies: 2
  • Views: 2,924
  • Rating0 / 5Last Post Bybrijesh96View Profile View Forum Posts08-13-2017 [Request] Knife-HackStarted by sinaan, 04-28-2017
  • Replies: 0
  • Views: 1,253
  • Rating0 / 5Last Post BysinaanView Profile View Forum Posts04-28-2017 [Help] Static Base Addresses?Started by RedWork, 02-04-2017
  • Replies: 0
  • Views: 711
  • Rating0 / 5Last Post ByRedWorkView Profile View Forum Posts02-04-2017 [Request] Bypass anti-cheat wallhack in CS 1.6?Started by Blackdragon881, 11-15-2016
  • Replies: 0
  • Views: 2,644
  • Rating0 / 5Last Post ByBlackdragon881View Profile View Forum Posts11-15-2016 What are some good AutoWall cheats for CSS?Started by Nastiiffa, 09-24-2016
  • Replies: 0
  • Views: 1,491
  • Rating0 / 5Last Post ByNastiiffaView Profile View Forum Posts09-24-2016 [Help] Mar1k- tkz HackStarted by dawid1233, 03-29-2016
  • Replies: 1
  • Views: 3,153
  • Rating0 / 5Last Post ByHunterView Profile View Forum Posts03-29-2016 [Info] Uploading and Behaviour RulesStarted by Hunter, 03-25-2016
  • Replies: 0
  • Views: 959
  • Rating0 / 5Last Post ByHunterView Profile View Forum Posts03-25-2016 [Help] Hack keep crashing my cs [Please help me]Started by stefko7777, 08-08-2015
  • Replies: 1
  • Views: 1,648
  • Rating0 / 5Last Post ByFrost0xView Profile View Forum Posts12-03-2015 [Request] CS 1.6 TriggerBoTStarted by =AGHA=, 11-27-2015
  • Replies: 1
  • Views: 2,322
  • Rating0 / 5Last Post By=AGHA=View ProfilePrivate Message View Forum Posts11-30-2015 [Request] i need latest counter strike 1.6 setupStarted by guddu41192, 08-19-2015
  • Replies: 5
  • Views: 1,769
  • Rating0 / 5Last Post Byn0yanView Profile View Forum Posts10-04-2015 [Request] Bhop Script for CS sourceStarted by little_miss52, 02-03-2014
  • Replies: 2
  • Views: 3,158
  • Rating0 / 5Last Post ByCraftPlayerI2View Profile View Forum Posts08-20-2015 [Request] Material WallhackStarted by Hopsintv, 08-20-2015
  • Replies: 0
  • Views: 1,928
  • Rating5 / 5Last Post ByHopsintvView Profile View Forum Posts08-20-2015 [Request] any working no recoil configs out there?Started by c0bra12, 07-17-2015
  • Replies: 1
  • Views: 1,709
  • Rating0 / 5Last Post ByxHiroxView ProfilePrivate Message View Forum Posts08-11-2015 [Help] CAn't run any hacks on my computerStarted by UnkownCSGOPlayer, 07-08-2015
  • Replies: 0
  • Views: 1,009
  • Rating0 / 5Last Post ByUnkownCSGOPlayerView Profile View Forum Posts07-08-2015 [Request] Any One Can Give Me UCP 8.1 Hack ??Started by Tareq99, 03-28-2014
  • Replies: 1
  • Views: 2,424
  • Rating0 / 5Last Post Bymirage123View Profile View Forum Posts05-18-2015 [Help] My game crashes when I inject hack?Started by KillingTank, 05-04-2015
  • Replies: 4
  • Views: 1,719
  • Rating0 / 5Last Post BytexhView Profile View Forum Posts05-13-2015 [Source Code] Help Me GIft Source Code Wallhack Counter - Strike Online For MegaxusStarted by hamabi789, 05-04-2015
  • Replies: 0
  • Views: 1,900
  • Rating0 / 5Last Post Byhamabi789View Profile View Forum Posts05-04-2015 [Request] Counter strike online Singapore |Hack Req?|Started by Add002, 11-05-2014
  • Replies: 1
  • Views: 2,261
  • Rating0 / 5Last Post ByAustinView ProfilePrivate Message View Forum Posts11-05-2014 [Request] Wallhack for private serversStarted by bavarias, 01-27-2014
  • Replies: 1
  • Views: 2,086
  • Rating0 / 5Last Post ByAustinView ProfilePrivate Message View Forum Posts11-05-2014 [Request] CS 1.6 Undetected WallhackStarted by enemyThug, 07-27-2013
  • Replies: 2
  • Views: 6,498
  • Rating0 / 5Last Post Byaan91View Profile View Forum Posts07-06-2014 [Help] Counter-Strike [Server Boost]Started by dcored, 06-06-2014
  • Replies: 0
  • Views: 1,807
  • Rating0 / 5Last Post BydcoredView ProfilePrivate Message View Forum Posts06-06-2014 [Help] [Search]CSO Counter Strike Online Hack !Started by z1o1w1i1e1, 07-20-2012
  • Replies: 14
  • Views: 18,351
  • Rating0 / 5Last Post ByroythekingView Profile View Forum Posts03-23-2014Page 1 of 212LastJump to page: Forum Information and OptionsModerators of this Forum
  • [MPGH]Poonce
  • Thread Display OptionsShow threads from the...Last DayLast 2 DaysLast WeekLast 10 DaysLast 2 WeeksLast MonthLast 45 DaysLast 2 MonthsLast 75 DaysLast 100 DaysLast YearBeginningUse this control to limit the display of threads to those newer than the specified time frame.

    -

    download cheat wallhack cso


    DOWNLOADhttps://tinurli.com/2uwkiV



    aaccfb2cb3
    -
    -
    \ No newline at end of file diff --git a/spaces/cihyFjudo/fairness-paper-search/Free Download Software Penguat Sinyal Wifi Pc NetSpot Aplikasi Terbaik untuk Analisis dan Manajemen WiFi.md b/spaces/cihyFjudo/fairness-paper-search/Free Download Software Penguat Sinyal Wifi Pc NetSpot Aplikasi Terbaik untuk Analisis dan Manajemen WiFi.md deleted file mode 100644 index 6424b419fde3b581478819330e6e03f4573b130e..0000000000000000000000000000000000000000 --- a/spaces/cihyFjudo/fairness-paper-search/Free Download Software Penguat Sinyal Wifi Pc NetSpot Aplikasi Terbaik untuk Analisis dan Manajemen WiFi.md +++ /dev/null @@ -1,11 +0,0 @@ -
    -

    NetSpot for Windows PC can be used as a Wi-Fi signal booster. This software solution is the first free Wi-Fi survey app, and it features two major troubleshooting modes: Survey and Discover.

    -

    Free Download Software Penguat Sinyal Wifi Pc


    Download File >>> https://tinurli.com/2uwkD9



    -

    Even if you're not sure you want to pay for the software, there is a 7-day free trial period. So why not at least try it out? At its core, FXSound has been designed to make your existing speakers sound amazing by leveraging the power of your standard-issue headphone jack. If you listen to music on your laptop on a regular basis, especially through cheap speakers, FXSound is absolutely worth the small price.

    -

    There are many free software alternatives to configure the equalizer settings on your computer. For example, Equalizer APO is an open-source alternative that has similar features to FXSound in terms of customizing frequencies and adding bass enhancer functionality. But the downside is that it only works on 32 bit Windows operating systems. The compatibility issues make FXSound a much better choice for those looking for an all-in-one solution.

    -

    FXSound is a great product for those looking to boost their audio quality. Whether or not you are willing to pay for the upgrade will depend on how much you value your music's sound quality. But even if paying is out of the question, there is a 7-day free trial available that allows you to try out the software before committing to an investment. If you use your computer to listen to music, FXSound is well worth downloading.

    -

    -

    Berbicara mengenai internet, salah satu cara untuk menikmatinya yakni dengan melalui sambungan Wifi, baik itu Wifi publik ataupun Wifi pribadi. Akan tetapi, terkadnag jaringan Wifi yang dinikmati kurang memuaskan karena sinyalnya yang lemot. Jika hal ini juga Anda alami, maka cara terbaiknya yakni memanfaatkan aplikasi penguat sinyal. Berikut ini beberapa pilihan aplikasi penguat sinyal Wifi laptop Windows 10 yang bisa Anda gunakan.

    -

    Ada banyak pilihan aplikasi untuk menguatkan sinyal Wifi. Akan tetapi, hanya beberapa aplikasi saja yang diklaim paling bagus dan recommended untuk Anda gunakan. Adapun beberapa aplikasi penguat sinyal Wifi laptop Windows 10 selengkapnya, sebagai berikut:

    aaccfb2cb3
    -
    -
    \ No newline at end of file diff --git a/spaces/colakin/video-generater/public/ffmpeg/libavcodec/arm/hevcdsp_init_arm.c b/spaces/colakin/video-generater/public/ffmpeg/libavcodec/arm/hevcdsp_init_arm.c deleted file mode 100644 index e8fa1f79acbc0608b047725ff73fb2e74160ee36..0000000000000000000000000000000000000000 --- a/spaces/colakin/video-generater/public/ffmpeg/libavcodec/arm/hevcdsp_init_arm.c +++ /dev/null @@ -1,34 +0,0 @@ -/* - * Copyright (c) 2014 Seppo Tomperi - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -#include "libavutil/attributes.h" -#include "libavutil/cpu.h" -#include "libavutil/arm/cpu.h" - -#include "libavcodec/hevcdsp.h" -#include "hevcdsp_arm.h" - -av_cold void ff_hevc_dsp_init_arm(HEVCDSPContext *c, const int bit_depth) -{ - int cpu_flags = av_get_cpu_flags(); - - if (have_neon(cpu_flags)) - ff_hevc_dsp_init_neon(c, bit_depth); -} diff --git a/spaces/colakin/video-generater/public/ffmpeg/libavcodec/audiotoolboxdec.c b/spaces/colakin/video-generater/public/ffmpeg/libavcodec/audiotoolboxdec.c deleted file mode 100644 index 82babe3d3173edc1186d39a74e4efe5696d7a925..0000000000000000000000000000000000000000 --- a/spaces/colakin/video-generater/public/ffmpeg/libavcodec/audiotoolboxdec.c +++ /dev/null @@ -1,623 +0,0 @@ -/* - * Audio Toolbox system codecs - * - * copyright (c) 2016 rcombs - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -#include - -#include "config.h" -#include "config_components.h" -#include "avcodec.h" -#include "ac3_parser_internal.h" -#include "bytestream.h" -#include "codec_internal.h" -#include "decode.h" -#include "mpegaudiodecheader.h" -#include "libavutil/avassert.h" -#include "libavutil/channel_layout.h" -#include "libavutil/opt.h" -#include "libavutil/log.h" - -#if __MAC_OS_X_VERSION_MIN_REQUIRED < 101100 -#define kAudioFormatEnhancedAC3 'ec-3' -#endif - -typedef struct ATDecodeContext { - AVClass *av_class; - - AudioConverterRef converter; - AudioStreamPacketDescription pkt_desc; - AVPacket in_pkt; - AVPacket new_in_pkt; - char *decoded_data; - int channel_map[64]; - - uint8_t *extradata; - int extradata_size; - - int64_t last_pts; - int eof; -} ATDecodeContext; - -static UInt32 ffat_get_format_id(enum AVCodecID codec, int profile) -{ - switch (codec) { - case AV_CODEC_ID_AAC: - return kAudioFormatMPEG4AAC; - case AV_CODEC_ID_AC3: - return kAudioFormatAC3; - case AV_CODEC_ID_ADPCM_IMA_QT: - return kAudioFormatAppleIMA4; - case AV_CODEC_ID_ALAC: - return kAudioFormatAppleLossless; - case AV_CODEC_ID_AMR_NB: - return kAudioFormatAMR; - case AV_CODEC_ID_EAC3: - return kAudioFormatEnhancedAC3; - case AV_CODEC_ID_GSM_MS: - return kAudioFormatMicrosoftGSM; - case AV_CODEC_ID_ILBC: - return kAudioFormatiLBC; - case AV_CODEC_ID_MP1: - return kAudioFormatMPEGLayer1; - case AV_CODEC_ID_MP2: - return kAudioFormatMPEGLayer2; - case AV_CODEC_ID_MP3: - return kAudioFormatMPEGLayer3; - case AV_CODEC_ID_PCM_ALAW: - return kAudioFormatALaw; - case AV_CODEC_ID_PCM_MULAW: - return kAudioFormatULaw; - case AV_CODEC_ID_QDMC: - return kAudioFormatQDesign; - case AV_CODEC_ID_QDM2: - return kAudioFormatQDesign2; - default: - av_assert0(!"Invalid codec ID!"); - return 0; - } -} - -static int ffat_get_channel_id(AudioChannelLabel label) -{ - if (label == 0) - return -1; - else if (label <= kAudioChannelLabel_LFEScreen) - return label - 1; - else if (label <= kAudioChannelLabel_RightSurround) - return label + 4; - else if (label <= kAudioChannelLabel_CenterSurround) - return label + 1; - else if (label <= kAudioChannelLabel_RightSurroundDirect) - return label + 23; - else if (label <= kAudioChannelLabel_TopBackRight) - return label - 1; - else if (label < kAudioChannelLabel_RearSurroundLeft) - return -1; - else if (label <= kAudioChannelLabel_RearSurroundRight) - return label - 29; - else if (label <= kAudioChannelLabel_RightWide) - return label - 4; - else if (label == kAudioChannelLabel_LFE2) - return ff_ctzll(AV_CH_LOW_FREQUENCY_2); - else if (label == kAudioChannelLabel_Mono) - return ff_ctzll(AV_CH_FRONT_CENTER); - else - return -1; -} - -static int ffat_compare_channel_descriptions(const void* a, const void* b) -{ - const AudioChannelDescription* da = a; - const AudioChannelDescription* db = b; - return ffat_get_channel_id(da->mChannelLabel) - ffat_get_channel_id(db->mChannelLabel); -} - -static AudioChannelLayout *ffat_convert_layout(AudioChannelLayout *layout, UInt32* size) -{ - AudioChannelLayoutTag tag = layout->mChannelLayoutTag; - AudioChannelLayout *new_layout; - if (tag == kAudioChannelLayoutTag_UseChannelDescriptions) - return layout; - else if (tag == kAudioChannelLayoutTag_UseChannelBitmap) - AudioFormatGetPropertyInfo(kAudioFormatProperty_ChannelLayoutForBitmap, - sizeof(UInt32), &layout->mChannelBitmap, size); - else - AudioFormatGetPropertyInfo(kAudioFormatProperty_ChannelLayoutForTag, - sizeof(AudioChannelLayoutTag), &tag, size); - new_layout = av_malloc(*size); - if (!new_layout) { - av_free(layout); - return NULL; - } - if (tag == kAudioChannelLayoutTag_UseChannelBitmap) - AudioFormatGetProperty(kAudioFormatProperty_ChannelLayoutForBitmap, - sizeof(UInt32), &layout->mChannelBitmap, size, new_layout); - else - AudioFormatGetProperty(kAudioFormatProperty_ChannelLayoutForTag, - sizeof(AudioChannelLayoutTag), &tag, size, new_layout); - new_layout->mChannelLayoutTag = kAudioChannelLayoutTag_UseChannelDescriptions; - av_free(layout); - return new_layout; -} - -static int ffat_update_ctx(AVCodecContext *avctx) -{ - ATDecodeContext *at = avctx->priv_data; - AudioStreamBasicDescription format; - UInt32 size = sizeof(format); - if (!AudioConverterGetProperty(at->converter, - kAudioConverterCurrentInputStreamDescription, - &size, &format)) { - if (format.mSampleRate) - avctx->sample_rate = format.mSampleRate; - av_channel_layout_uninit(&avctx->ch_layout); - av_channel_layout_default(&avctx->ch_layout, format.mChannelsPerFrame); - avctx->frame_size = format.mFramesPerPacket; - } - - if (!AudioConverterGetProperty(at->converter, - kAudioConverterCurrentOutputStreamDescription, - &size, &format)) { - format.mSampleRate = avctx->sample_rate; - format.mChannelsPerFrame = avctx->ch_layout.nb_channels; - AudioConverterSetProperty(at->converter, - kAudioConverterCurrentOutputStreamDescription, - size, &format); - } - - if (!AudioConverterGetPropertyInfo(at->converter, kAudioConverterOutputChannelLayout, - &size, NULL) && size) { - AudioChannelLayout *layout = av_malloc(size); - uint64_t layout_mask = 0; - int i; - if (!layout) - return AVERROR(ENOMEM); - AudioConverterGetProperty(at->converter, kAudioConverterOutputChannelLayout, - &size, layout); - if (!(layout = ffat_convert_layout(layout, &size))) - return AVERROR(ENOMEM); - for (i = 0; i < layout->mNumberChannelDescriptions; i++) { - int id = ffat_get_channel_id(layout->mChannelDescriptions[i].mChannelLabel); - if (id < 0) - goto done; - if (layout_mask & (1 << id)) - goto done; - layout_mask |= 1 << id; - layout->mChannelDescriptions[i].mChannelFlags = i; // Abusing flags as index - } - av_channel_layout_uninit(&avctx->ch_layout); - av_channel_layout_from_mask(&avctx->ch_layout, layout_mask); - qsort(layout->mChannelDescriptions, layout->mNumberChannelDescriptions, - sizeof(AudioChannelDescription), &ffat_compare_channel_descriptions); - for (i = 0; i < layout->mNumberChannelDescriptions; i++) - at->channel_map[i] = layout->mChannelDescriptions[i].mChannelFlags; -done: - av_free(layout); - } - - if (!avctx->frame_size) - avctx->frame_size = 2048; - - return 0; -} - -static void put_descr(PutByteContext *pb, int tag, unsigned int size) -{ - int i = 3; - bytestream2_put_byte(pb, tag); - for (; i > 0; i--) - bytestream2_put_byte(pb, (size >> (7 * i)) | 0x80); - bytestream2_put_byte(pb, size & 0x7F); -} - -static uint8_t* ffat_get_magic_cookie(AVCodecContext *avctx, UInt32 *cookie_size) -{ - ATDecodeContext *at = avctx->priv_data; - if (avctx->codec_id == AV_CODEC_ID_AAC) { - char *extradata; - PutByteContext pb; - *cookie_size = 5 + 3 + 5+13 + 5+at->extradata_size; - if (!(extradata = av_malloc(*cookie_size))) - return NULL; - - bytestream2_init_writer(&pb, extradata, *cookie_size); - - // ES descriptor - put_descr(&pb, 0x03, 3 + 5+13 + 5+at->extradata_size); - bytestream2_put_be16(&pb, 0); - bytestream2_put_byte(&pb, 0x00); // flags (= no flags) - - // DecoderConfig descriptor - put_descr(&pb, 0x04, 13 + 5+at->extradata_size); - - // Object type indication - bytestream2_put_byte(&pb, 0x40); - - bytestream2_put_byte(&pb, 0x15); // flags (= Audiostream) - - bytestream2_put_be24(&pb, 0); // Buffersize DB - - bytestream2_put_be32(&pb, 0); // maxbitrate - bytestream2_put_be32(&pb, 0); // avgbitrate - - // DecoderSpecific info descriptor - put_descr(&pb, 0x05, at->extradata_size); - bytestream2_put_buffer(&pb, at->extradata, at->extradata_size); - return extradata; - } else { - *cookie_size = at->extradata_size; - return at->extradata; - } -} - -static av_cold int ffat_usable_extradata(AVCodecContext *avctx) -{ - ATDecodeContext *at = avctx->priv_data; - return at->extradata_size && - (avctx->codec_id == AV_CODEC_ID_ALAC || - avctx->codec_id == AV_CODEC_ID_QDM2 || - avctx->codec_id == AV_CODEC_ID_QDMC || - avctx->codec_id == AV_CODEC_ID_AAC); -} - -static int ffat_set_extradata(AVCodecContext *avctx) -{ - ATDecodeContext *at = avctx->priv_data; - if (ffat_usable_extradata(avctx)) { - OSStatus status; - UInt32 cookie_size; - uint8_t *cookie = ffat_get_magic_cookie(avctx, &cookie_size); - if (!cookie) - return AVERROR(ENOMEM); - - status = AudioConverterSetProperty(at->converter, - kAudioConverterDecompressionMagicCookie, - cookie_size, cookie); - if (status != 0) - av_log(avctx, AV_LOG_WARNING, "AudioToolbox cookie error: %i\n", (int)status); - - if (cookie != at->extradata) - av_free(cookie); - } - return 0; -} - -static av_cold int ffat_create_decoder(AVCodecContext *avctx, - const AVPacket *pkt) -{ - ATDecodeContext *at = avctx->priv_data; - OSStatus status; - int i; - - enum AVSampleFormat sample_fmt = (avctx->bits_per_raw_sample == 32) ? - AV_SAMPLE_FMT_S32 : AV_SAMPLE_FMT_S16; - - AudioStreamBasicDescription in_format = { - .mFormatID = ffat_get_format_id(avctx->codec_id, avctx->profile), - .mBytesPerPacket = (avctx->codec_id == AV_CODEC_ID_ILBC) ? avctx->block_align : 0, - }; - AudioStreamBasicDescription out_format = { - .mFormatID = kAudioFormatLinearPCM, - .mFormatFlags = kAudioFormatFlagIsSignedInteger | kAudioFormatFlagIsPacked, - .mFramesPerPacket = 1, - .mBitsPerChannel = av_get_bytes_per_sample(sample_fmt) * 8, - }; - - avctx->sample_fmt = sample_fmt; - - if (ffat_usable_extradata(avctx)) { - UInt32 format_size = sizeof(in_format); - UInt32 cookie_size; - uint8_t *cookie = ffat_get_magic_cookie(avctx, &cookie_size); - if (!cookie) - return AVERROR(ENOMEM); - status = AudioFormatGetProperty(kAudioFormatProperty_FormatInfo, - cookie_size, cookie, &format_size, &in_format); - if (cookie != at->extradata) - av_free(cookie); - if (status != 0) { - av_log(avctx, AV_LOG_ERROR, "AudioToolbox header-parse error: %i\n", (int)status); - return AVERROR_UNKNOWN; - } -#if CONFIG_MP1_AT_DECODER || CONFIG_MP2_AT_DECODER || CONFIG_MP3_AT_DECODER - } else if (pkt && pkt->size >= 4 && - (avctx->codec_id == AV_CODEC_ID_MP1 || - avctx->codec_id == AV_CODEC_ID_MP2 || - avctx->codec_id == AV_CODEC_ID_MP3)) { - enum AVCodecID codec_id; - int bit_rate; - if (ff_mpa_decode_header(AV_RB32(pkt->data), &avctx->sample_rate, - &in_format.mChannelsPerFrame, &avctx->frame_size, - &bit_rate, &codec_id) < 0) - return AVERROR_INVALIDDATA; - avctx->bit_rate = bit_rate; - in_format.mSampleRate = avctx->sample_rate; -#endif -#if CONFIG_AC3_AT_DECODER || CONFIG_EAC3_AT_DECODER - } else if (pkt && pkt->size >= 7 && - (avctx->codec_id == AV_CODEC_ID_AC3 || - avctx->codec_id == AV_CODEC_ID_EAC3)) { - AC3HeaderInfo hdr; - GetBitContext gbc; - init_get_bits8(&gbc, pkt->data, pkt->size); - if (ff_ac3_parse_header(&gbc, &hdr) < 0) - return AVERROR_INVALIDDATA; - in_format.mSampleRate = hdr.sample_rate; - in_format.mChannelsPerFrame = hdr.channels; - avctx->frame_size = hdr.num_blocks * 256; - avctx->bit_rate = hdr.bit_rate; -#endif - } else { - in_format.mSampleRate = avctx->sample_rate ? avctx->sample_rate : 44100; - in_format.mChannelsPerFrame = avctx->ch_layout.nb_channels ? avctx->ch_layout.nb_channels : 1; - } - - avctx->sample_rate = out_format.mSampleRate = in_format.mSampleRate; - av_channel_layout_uninit(&avctx->ch_layout); - avctx->ch_layout.order = AV_CHANNEL_ORDER_UNSPEC; - avctx->ch_layout.nb_channels = out_format.mChannelsPerFrame = in_format.mChannelsPerFrame; - - out_format.mBytesPerFrame = - out_format.mChannelsPerFrame * (out_format.mBitsPerChannel / 8); - out_format.mBytesPerPacket = - out_format.mBytesPerFrame * out_format.mFramesPerPacket; - - if (avctx->codec_id == AV_CODEC_ID_ADPCM_IMA_QT) - in_format.mFramesPerPacket = 64; - - status = AudioConverterNew(&in_format, &out_format, &at->converter); - - if (status != 0) { - av_log(avctx, AV_LOG_ERROR, "AudioToolbox init error: %i\n", (int)status); - return AVERROR_UNKNOWN; - } - - if ((status = ffat_set_extradata(avctx)) < 0) - return status; - - for (i = 0; i < (sizeof(at->channel_map) / sizeof(at->channel_map[0])); i++) - at->channel_map[i] = i; - - ffat_update_ctx(avctx); - - if(!(at->decoded_data = av_malloc(av_get_bytes_per_sample(avctx->sample_fmt) - * avctx->frame_size * avctx->ch_layout.nb_channels))) - return AVERROR(ENOMEM); - - at->last_pts = AV_NOPTS_VALUE; - - return 0; -} - -static av_cold int ffat_init_decoder(AVCodecContext *avctx) -{ - ATDecodeContext *at = avctx->priv_data; - if (avctx->extradata_size) { - at->extradata = av_mallocz(avctx->extradata_size + AV_INPUT_BUFFER_PADDING_SIZE); - if (!at->extradata) - return AVERROR(ENOMEM); - at->extradata_size = avctx->extradata_size; - memcpy(at->extradata, avctx->extradata, avctx->extradata_size); - } - - if ((avctx->ch_layout.nb_channels && avctx->sample_rate) || ffat_usable_extradata(avctx)) - return ffat_create_decoder(avctx, NULL); - else - return 0; -} - -static OSStatus ffat_decode_callback(AudioConverterRef converter, UInt32 *nb_packets, - AudioBufferList *data, - AudioStreamPacketDescription **packets, - void *inctx) -{ - AVCodecContext *avctx = inctx; - ATDecodeContext *at = avctx->priv_data; - - if (at->eof) { - *nb_packets = 0; - if (packets) { - *packets = &at->pkt_desc; - at->pkt_desc.mDataByteSize = 0; - } - return 0; - } - - av_packet_unref(&at->in_pkt); - av_packet_move_ref(&at->in_pkt, &at->new_in_pkt); - - if (!at->in_pkt.data) { - *nb_packets = 0; - return 1; - } - - data->mNumberBuffers = 1; - data->mBuffers[0].mNumberChannels = 0; - data->mBuffers[0].mDataByteSize = at->in_pkt.size; - data->mBuffers[0].mData = at->in_pkt.data; - *nb_packets = 1; - - if (packets) { - *packets = &at->pkt_desc; - at->pkt_desc.mDataByteSize = at->in_pkt.size; - } - - return 0; -} - -#define COPY_SAMPLES(type) \ - type *in_ptr = (type*)at->decoded_data; \ - type *end_ptr = in_ptr + frame->nb_samples * avctx->ch_layout.nb_channels; \ - type *out_ptr = (type*)frame->data[0]; \ - for (; in_ptr < end_ptr; in_ptr += avctx->ch_layout.nb_channels, out_ptr += avctx->ch_layout.nb_channels) { \ - int c; \ - for (c = 0; c < avctx->ch_layout.nb_channels; c++) \ - out_ptr[c] = in_ptr[at->channel_map[c]]; \ - } - -static void ffat_copy_samples(AVCodecContext *avctx, AVFrame *frame) -{ - ATDecodeContext *at = avctx->priv_data; - if (avctx->sample_fmt == AV_SAMPLE_FMT_S32) { - COPY_SAMPLES(int32_t); - } else { - COPY_SAMPLES(int16_t); - } -} - -static int ffat_decode(AVCodecContext *avctx, AVFrame *frame, - int *got_frame_ptr, AVPacket *avpkt) -{ - ATDecodeContext *at = avctx->priv_data; - int pkt_size = avpkt->size; - OSStatus ret; - AudioBufferList out_buffers; - - if (avctx->codec_id == AV_CODEC_ID_AAC) { - if (!at->extradata_size) { - uint8_t *side_data; - size_t side_data_size; - - side_data = av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA, - &side_data_size); - if (side_data_size) { - at->extradata = av_mallocz(side_data_size + AV_INPUT_BUFFER_PADDING_SIZE); - if (!at->extradata) - return AVERROR(ENOMEM); - at->extradata_size = side_data_size; - memcpy(at->extradata, side_data, side_data_size); - } - } - } - - if (!at->converter) { - if ((ret = ffat_create_decoder(avctx, avpkt)) < 0) { - return ret; - } - } - - out_buffers = (AudioBufferList){ - .mNumberBuffers = 1, - .mBuffers = { - { - .mNumberChannels = avctx->ch_layout.nb_channels, - .mDataByteSize = av_get_bytes_per_sample(avctx->sample_fmt) * avctx->frame_size - * avctx->ch_layout.nb_channels, - } - } - }; - - av_packet_unref(&at->new_in_pkt); - - if (avpkt->size) { - if ((ret = av_packet_ref(&at->new_in_pkt, avpkt)) < 0) { - return ret; - } - } else { - at->eof = 1; - } - - frame->sample_rate = avctx->sample_rate; - - frame->nb_samples = avctx->frame_size; - - out_buffers.mBuffers[0].mData = at->decoded_data; - - ret = AudioConverterFillComplexBuffer(at->converter, ffat_decode_callback, avctx, - &frame->nb_samples, &out_buffers, NULL); - if ((!ret || ret == 1) && frame->nb_samples) { - if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) - return ret; - ffat_copy_samples(avctx, frame); - *got_frame_ptr = 1; - if (at->last_pts != AV_NOPTS_VALUE) { - frame->pts = at->last_pts; - at->last_pts = avpkt->pts; - } - } else if (ret && ret != 1) { - av_log(avctx, AV_LOG_WARNING, "Decode error: %i\n", ret); - } else { - at->last_pts = avpkt->pts; - } - - return pkt_size; -} - -static av_cold void ffat_decode_flush(AVCodecContext *avctx) -{ - ATDecodeContext *at = avctx->priv_data; - AudioConverterReset(at->converter); - av_packet_unref(&at->new_in_pkt); - av_packet_unref(&at->in_pkt); -} - -static av_cold int ffat_close_decoder(AVCodecContext *avctx) -{ - ATDecodeContext *at = avctx->priv_data; - if (at->converter) - AudioConverterDispose(at->converter); - av_packet_unref(&at->new_in_pkt); - av_packet_unref(&at->in_pkt); - av_freep(&at->decoded_data); - av_freep(&at->extradata); - return 0; -} - -#define FFAT_DEC_CLASS(NAME) \ - static const AVClass ffat_##NAME##_dec_class = { \ - .class_name = "at_" #NAME "_dec", \ - .version = LIBAVUTIL_VERSION_INT, \ - }; - -#define FFAT_DEC(NAME, ID, bsf_name) \ - FFAT_DEC_CLASS(NAME) \ - const FFCodec ff_##NAME##_at_decoder = { \ - .p.name = #NAME "_at", \ - CODEC_LONG_NAME(#NAME " (AudioToolbox)"), \ - .p.type = AVMEDIA_TYPE_AUDIO, \ - .p.id = ID, \ - .priv_data_size = sizeof(ATDecodeContext), \ - .init = ffat_init_decoder, \ - .close = ffat_close_decoder, \ - FF_CODEC_DECODE_CB(ffat_decode), \ - .flush = ffat_decode_flush, \ - .p.priv_class = &ffat_##NAME##_dec_class, \ - .bsfs = bsf_name, \ - .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY | AV_CODEC_CAP_CHANNEL_CONF, \ - .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, \ - .p.wrapper_name = "at", \ - }; - -FFAT_DEC(aac, AV_CODEC_ID_AAC, "aac_adtstoasc") -FFAT_DEC(ac3, AV_CODEC_ID_AC3, NULL) -FFAT_DEC(adpcm_ima_qt, AV_CODEC_ID_ADPCM_IMA_QT, NULL) -FFAT_DEC(alac, AV_CODEC_ID_ALAC, NULL) -FFAT_DEC(amr_nb, AV_CODEC_ID_AMR_NB, NULL) -FFAT_DEC(eac3, AV_CODEC_ID_EAC3, NULL) -FFAT_DEC(gsm_ms, AV_CODEC_ID_GSM_MS, NULL) -FFAT_DEC(ilbc, AV_CODEC_ID_ILBC, NULL) -FFAT_DEC(mp1, AV_CODEC_ID_MP1, NULL) -FFAT_DEC(mp2, AV_CODEC_ID_MP2, NULL) -FFAT_DEC(mp3, AV_CODEC_ID_MP3, NULL) -FFAT_DEC(pcm_alaw, AV_CODEC_ID_PCM_ALAW, NULL) -FFAT_DEC(pcm_mulaw, AV_CODEC_ID_PCM_MULAW, NULL) -FFAT_DEC(qdmc, AV_CODEC_ID_QDMC, NULL) -FFAT_DEC(qdm2, AV_CODEC_ID_QDM2, NULL) diff --git a/spaces/colakin/video-generater/public/ffmpeg/libavcodec/loongarch/h264qpel_init_loongarch.c b/spaces/colakin/video-generater/public/ffmpeg/libavcodec/loongarch/h264qpel_init_loongarch.c deleted file mode 100644 index 969c9c376c6bf76ef9931291d60f1f16ccb7c70a..0000000000000000000000000000000000000000 --- a/spaces/colakin/video-generater/public/ffmpeg/libavcodec/loongarch/h264qpel_init_loongarch.c +++ /dev/null @@ -1,98 +0,0 @@ -/* - * Copyright (c) 2020 Loongson Technology Corporation Limited - * Contributed by Shiyou Yin - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -#include "h264qpel_lasx.h" -#include "libavutil/attributes.h" -#include "libavutil/loongarch/cpu.h" -#include "libavcodec/h264qpel.h" - -av_cold void ff_h264qpel_init_loongarch(H264QpelContext *c, int bit_depth) -{ - int cpu_flags = av_get_cpu_flags(); - if (have_lasx(cpu_flags)) { - if (8 == bit_depth) { - c->put_h264_qpel_pixels_tab[0][0] = ff_put_h264_qpel16_mc00_lasx; - c->put_h264_qpel_pixels_tab[0][1] = ff_put_h264_qpel16_mc10_lasx; - c->put_h264_qpel_pixels_tab[0][2] = ff_put_h264_qpel16_mc20_lasx; - c->put_h264_qpel_pixels_tab[0][3] = ff_put_h264_qpel16_mc30_lasx; - c->put_h264_qpel_pixels_tab[0][4] = ff_put_h264_qpel16_mc01_lasx; - c->put_h264_qpel_pixels_tab[0][5] = ff_put_h264_qpel16_mc11_lasx; - - c->put_h264_qpel_pixels_tab[0][6] = ff_put_h264_qpel16_mc21_lasx; - c->put_h264_qpel_pixels_tab[0][7] = ff_put_h264_qpel16_mc31_lasx; - c->put_h264_qpel_pixels_tab[0][8] = ff_put_h264_qpel16_mc02_lasx; - c->put_h264_qpel_pixels_tab[0][9] = ff_put_h264_qpel16_mc12_lasx; - c->put_h264_qpel_pixels_tab[0][10] = ff_put_h264_qpel16_mc22_lasx; - c->put_h264_qpel_pixels_tab[0][11] = ff_put_h264_qpel16_mc32_lasx; - c->put_h264_qpel_pixels_tab[0][12] = ff_put_h264_qpel16_mc03_lasx; - c->put_h264_qpel_pixels_tab[0][13] = ff_put_h264_qpel16_mc13_lasx; - c->put_h264_qpel_pixels_tab[0][14] = ff_put_h264_qpel16_mc23_lasx; - c->put_h264_qpel_pixels_tab[0][15] = ff_put_h264_qpel16_mc33_lasx; - c->avg_h264_qpel_pixels_tab[0][0] = ff_avg_h264_qpel16_mc00_lasx; - c->avg_h264_qpel_pixels_tab[0][1] = ff_avg_h264_qpel16_mc10_lasx; - c->avg_h264_qpel_pixels_tab[0][2] = ff_avg_h264_qpel16_mc20_lasx; - c->avg_h264_qpel_pixels_tab[0][3] = ff_avg_h264_qpel16_mc30_lasx; - c->avg_h264_qpel_pixels_tab[0][4] = ff_avg_h264_qpel16_mc01_lasx; - c->avg_h264_qpel_pixels_tab[0][5] = ff_avg_h264_qpel16_mc11_lasx; - c->avg_h264_qpel_pixels_tab[0][6] = ff_avg_h264_qpel16_mc21_lasx; - c->avg_h264_qpel_pixels_tab[0][7] = ff_avg_h264_qpel16_mc31_lasx; - c->avg_h264_qpel_pixels_tab[0][8] = ff_avg_h264_qpel16_mc02_lasx; - c->avg_h264_qpel_pixels_tab[0][9] = ff_avg_h264_qpel16_mc12_lasx; - c->avg_h264_qpel_pixels_tab[0][10] = ff_avg_h264_qpel16_mc22_lasx; - c->avg_h264_qpel_pixels_tab[0][11] = ff_avg_h264_qpel16_mc32_lasx; - c->avg_h264_qpel_pixels_tab[0][12] = ff_avg_h264_qpel16_mc03_lasx; - c->avg_h264_qpel_pixels_tab[0][13] = ff_avg_h264_qpel16_mc13_lasx; - c->avg_h264_qpel_pixels_tab[0][14] = ff_avg_h264_qpel16_mc23_lasx; - c->avg_h264_qpel_pixels_tab[0][15] = ff_avg_h264_qpel16_mc33_lasx; - - c->put_h264_qpel_pixels_tab[1][0] = ff_put_h264_qpel8_mc00_lasx; - c->put_h264_qpel_pixels_tab[1][1] = ff_put_h264_qpel8_mc10_lasx; - c->put_h264_qpel_pixels_tab[1][2] = ff_put_h264_qpel8_mc20_lasx; - c->put_h264_qpel_pixels_tab[1][3] = ff_put_h264_qpel8_mc30_lasx; - c->put_h264_qpel_pixels_tab[1][4] = ff_put_h264_qpel8_mc01_lasx; - c->put_h264_qpel_pixels_tab[1][5] = ff_put_h264_qpel8_mc11_lasx; - c->put_h264_qpel_pixels_tab[1][6] = ff_put_h264_qpel8_mc21_lasx; - c->put_h264_qpel_pixels_tab[1][7] = ff_put_h264_qpel8_mc31_lasx; - c->put_h264_qpel_pixels_tab[1][8] = ff_put_h264_qpel8_mc02_lasx; - c->put_h264_qpel_pixels_tab[1][9] = ff_put_h264_qpel8_mc12_lasx; - c->put_h264_qpel_pixels_tab[1][10] = ff_put_h264_qpel8_mc22_lasx; - c->put_h264_qpel_pixels_tab[1][11] = ff_put_h264_qpel8_mc32_lasx; - c->put_h264_qpel_pixels_tab[1][12] = ff_put_h264_qpel8_mc03_lasx; - c->put_h264_qpel_pixels_tab[1][13] = ff_put_h264_qpel8_mc13_lasx; - c->put_h264_qpel_pixels_tab[1][14] = ff_put_h264_qpel8_mc23_lasx; - c->put_h264_qpel_pixels_tab[1][15] = ff_put_h264_qpel8_mc33_lasx; - c->avg_h264_qpel_pixels_tab[1][0] = ff_avg_h264_qpel8_mc00_lasx; - c->avg_h264_qpel_pixels_tab[1][1] = ff_avg_h264_qpel8_mc10_lasx; - c->avg_h264_qpel_pixels_tab[1][2] = ff_avg_h264_qpel8_mc20_lasx; - c->avg_h264_qpel_pixels_tab[1][3] = ff_avg_h264_qpel8_mc30_lasx; - c->avg_h264_qpel_pixels_tab[1][5] = ff_avg_h264_qpel8_mc11_lasx; - c->avg_h264_qpel_pixels_tab[1][6] = ff_avg_h264_qpel8_mc21_lasx; - c->avg_h264_qpel_pixels_tab[1][7] = ff_avg_h264_qpel8_mc31_lasx; - c->avg_h264_qpel_pixels_tab[1][8] = ff_avg_h264_qpel8_mc02_lasx; - c->avg_h264_qpel_pixels_tab[1][9] = ff_avg_h264_qpel8_mc12_lasx; - c->avg_h264_qpel_pixels_tab[1][10] = ff_avg_h264_qpel8_mc22_lasx; - c->avg_h264_qpel_pixels_tab[1][11] = ff_avg_h264_qpel8_mc32_lasx; - c->avg_h264_qpel_pixels_tab[1][13] = ff_avg_h264_qpel8_mc13_lasx; - c->avg_h264_qpel_pixels_tab[1][14] = ff_avg_h264_qpel8_mc23_lasx; - c->avg_h264_qpel_pixels_tab[1][15] = ff_avg_h264_qpel8_mc33_lasx; - } - } -} diff --git a/spaces/congsaPfin/Manga-OCR/logs/Brawl Stars APK Mod for Android Free Download from AN1.md b/spaces/congsaPfin/Manga-OCR/logs/Brawl Stars APK Mod for Android Free Download from AN1.md deleted file mode 100644 index c1d2a0340c889a6f76d010fefb8ec45b0d3ebe04..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/Brawl Stars APK Mod for Android Free Download from AN1.md +++ /dev/null @@ -1,124 +0,0 @@ - -

    Brawl Stars APK Mod An1: Everything You Need to Know

    -

    If you are a fan of fast-paced multiplayer action games, you have probably heard of Brawl Stars, the latest hit from Supercell, the makers of Clash of Clans and Clash Royale. Brawl Stars is a free-to-play game that lets you choose from a variety of unique characters, called Brawlers, and compete in various game modes, such as 3v3 team battles, solo or duo battle royale, soccer, and more. The game has over 100 million downloads on Google Play Store and has received positive reviews from critics and players alike.

    -

    But what if you want to enjoy Brawl Stars with some extra features and advantages that are not available in the official version? That's where an APK mod comes in handy. An APK mod is a modified version of an app that gives you access to features that are normally locked or restricted, such as unlimited resources, unlocked characters, skins, abilities, etc. By using an APK mod, you can enhance your gaming experience and have more fun with Brawl Stars.

    -

    brawl stars apk mod an1


    Download Zip ✸✸✸ https://urlca.com/2uOa8O



    -

    One of the most popular sources of APK mods for Brawl Stars is an1.com, a website that offers free downloads of various games and apps for Android devices. An1.com has a dedicated page for Brawl Stars APK mod, where you can find the latest version of the game with unlimited money, gems, tickets, and other resources. You can also download different versions of the game with different mods, such as god mode, unlimited ammo, all brawlers unlocked, etc.

    -

    So how do you download and install Brawl Stars APK mod from an1.com? And what are the features and risks of using it? And how do you play it safely and responsibly? In this article, we will answer all these questions and more. Read on to find out everything you need to know about Brawl Stars APK mod an1.

    -

    How to Install Brawl Stars APK Mod on Your Android Device?

    -

    Installing Brawl Stars APK mod on your Android device is not very difficult, but it does require some steps that are different from installing a regular app from Google Play Store. Here are the steps you need to follow:

    -
      -
    1. Go to an1.com and search for Brawl Stars APK mod. You will see a list of different versions of the game with different mods. Choose the one that suits your preferences and click on the download button.
    2. -
    3. You will be redirected to another page where you need to wait for a few seconds until the download link appears. Click on it and save the file on your device.
    4. -
    5. Before you install the file, you need to enable unknown sources on your device. This will allow you to install apps from sources other than Google Play Store. To do this, go to Settings > Security > Unknown Sources and toggle it on.
    6. -
    7. Now go to your file manager and locate the downloaded file. Tap on it and follow the instructions to install it. -
    -

    What are the Features of Brawl Stars APK Mod An1?

    -

    Brawl Stars APK mod an1 offers a lot of features that can make your gaming experience more enjoyable and exciting. Some of the features are:

    -
      -
    • Unlimited resources: You can get unlimited money, gems, tickets, and other resources that you can use to buy or upgrade anything in the game, such as brawlers, skins, abilities, power points, etc. You can also unlock all the game modes and events without waiting or spending real money.
    • -
    • All brawlers unlocked: You can access all the brawlers in the game, including the legendary ones, without having to unlock them through boxes or trophies. You can also switch between different brawlers anytime you want.
    • -
    • God mode: You can become invincible and immune to any damage from enemies or obstacles. You can also deal unlimited damage to your opponents and destroy them easily.
    • -
    • Unlimited ammo: You can fire your weapons without running out of ammo or reloading. You can also use your super ability as many times as you want.
    • -
    • Custom skins: You can customize the appearance of your brawlers with different skins that are not available in the official version. You can also change the color of your weapons, effects, and other elements.
    • -
    -

    These are just some of the features of Brawl Stars APK mod an1. There are many more features that you can discover and enjoy by playing the game yourself.

    -

    What are the Risks of Using Brawl Stars APK Mod An1?

    -

    While Brawl Stars APK mod an1 can provide you with a lot of fun and advantages, it also comes with some risks that you should be aware of. Some of the risks are:

    -
      -
    • Ban risk: Using an APK mod is against the terms and conditions of Supercell, the developer of Brawl Stars. If they detect that you are using a modded version of the game, they may ban your account permanently or temporarily. This means that you will lose all your progress, achievements, and purchases in the game.
    • -
    • Virus risk: Downloading an APK mod from an unknown source may expose your device to viruses, malware, or other harmful software that may damage your device or steal your personal information. You should always scan the file before installing it and use a reliable antivirus app to protect your device.
    • -
    • Compatibility risk: An APK mod may not be compatible with your device model, operating system, or other apps on your device. This may cause the game to crash, freeze, lag, or not work properly. You should always check the requirements and compatibility of the APK mod before installing it.
    • -
    • Update risk: An APK mod may not be updated regularly or in sync with the official version of the game. This may cause the game to become outdated, buggy, or incompatible with new features or events. You should always check for updates and download them from a trusted source.
    • -
    -

    These are just some of the risks of using Brawl Stars APK mod an1. There may be other risks that you may encounter while playing the game. You should always be careful and responsible when using an APK mod and weigh the pros and cons before deciding to use it.

    -

    brawl stars mod apk unlimited money and gems
    -brawl stars hack apk download an1
    -brawl stars mod menu apk latest version
    -brawl stars mod apk happymod
    -brawl stars unlimited ammo mod apk
    -brawl stars antikick mod apk download
    -brawl stars mod apk android 1
    -brawl stars mega mod apk 2023
    -brawl stars private server mod apk
    -brawl stars mod apk with all skins unlocked
    -brawl stars mod apk no root required
    -brawl stars mod apk offline mode
    -brawl stars cheat apk free download
    -brawl stars mod apk unlimited everything
    -brawl stars mod apk new update 2023
    -brawl stars mod apk unlimited trophies
    -brawl stars hack apk mediafıre
    -brawl stars mod apk all brawlers unlocked
    -brawl stars mod apk unlimited coins and gems
    -brawl stars mod apk supercell
    -brawl stars god mode mod apk
    -brawl stars mod apk unlimited power points
    -brawl stars hack apk no verification
    -brawl stars mod apk with chromatic brawlers
    -brawl stars mod apk unlimited star points
    -brawl stars hack apk ios download
    -brawl stars mod apk with legendary brawlers
    -brawl stars mod apk online multiplayer
    -brawl stars hack apk unlimited gems and coins 2023
    -brawl stars mod apk with custom maps
    -brawl stars mod apk no ban risk
    -brawl stars hack apk latest version 2023
    -brawl stars mod apk with all gadgets and star powers
    -brawl stars hack apk an1.com
    -brawl stars mod apk with voice chat feature
    -brawl stars hack apk unlimited money and gems 2023
    -brawl stars mod apk with all game modes unlocked
    -brawl stars hack apk download for android 2023
    -brawl stars mod apk with auto aim and wallhack
    -brawl stars hack apk unlimited everything 2023

    -

    How to Play Brawl Stars APK Mod An1 Safely and Responsibly?

    -

    If you decide to use Brawl Stars APK mod an1, you should follow some tips and tricks to play it safely and responsibly. Some of the tips and tricks are:

    -
      -
    • Create a backup account: To avoid losing your main account or getting banned by Supercell, you should create a backup account that you can use to play Brawl Stars APK mod an1. You can use a different email address or phone number to create a new account and link it to the game. This way, you can keep your main account safe and separate from the modded one.
    • -
    • Use a VPN app: To avoid being detected by Supercell or other players, you should use a VPN app to hide your IP address and location when playing Brawl Stars APK mod an1. A VPN app can also help you bypass any geo-restrictions or firewalls that may prevent you from accessing or downloading the game.
    • -
    • Play offline or solo mode: To avoid affecting other players or getting reported by them, you should play Brawl Stars APK mod an1 in offline or solo mode, such as training, friendly, or bot matches. This way, you can enjoy the modded features without interfering with other players or the game balance.
    • -
    • Do not abuse the modded features: To avoid ruining the fun or the challenge of the game, you should not abuse the modded features or use them excessively. For example, you should not use god mode or unlimited ammo all the time, or buy everything in the shop with unlimited resources. You should still try to play the game normally and fairly, and use the modded features only when you need them or want to try something new.
    • -
    • Do not share or distribute the modded file: To avoid legal issues or problems with Supercell or other players, you should not share or distribute the modded file of Brawl Stars APK mod an1 to anyone else. You should also not upload or post it on any website, social media, forum, or other platform. You should keep the file for your personal use only and respect the rights and property of Supercell and Brawl Stars.
    • -
    -

    These are just some of the tips and tricks to play Brawl Stars APK mod an1 safely and responsibly. There may be other tips and tricks that you can follow or discover by yourself. You should always use your common sense and judgment when playing Brawl Stars APK mod an1 and have fun with it.

    -

    Conclusion

    -

    Brawl Stars APK mod an1 is a modified version of Brawl Stars that gives you access to unlimited resources, unlocked brawlers, skins, abilities, and other features that are not available in the official version. You can download it from an1.com, a website that offers free downloads of various games and apps for Android devices. However, you should also be aware of the risks of using Brawl Stars APK mod an1, such as ban risk, virus risk, compatibility risk, and update risk. You should also follow some tips and tricks to play Brawl Stars APK mod an1 safely and responsibly, such as creating a backup account, using a VPN app, playing offline or solo mode, not abusing the modded features, and not sharing or distributing the modded file.

    -

    Brawl Stars APK mod an1 can provide you with a lot of fun and advantages, but it also comes with some challenges and responsibilities. You should always be careful and respectful when using Brawl Stars APK mod an1 and enjoy the game in a fair and ethical way. We hope this article has helped you learn everything you need to know about Brawl Stars APK mod an1. If you have any questions, feedback, or experiences to share with us, please feel free to leave a comment below. Happy brawling!

    -

    FAQs

    -

    Here are some of the frequently asked questions about Brawl Stars APK mod an1:

    -

    What are some of the best Brawlers to use in Brawl Stars APK mod an1?

    -

    The answer to this question may depend on your personal preference, play style, game mode, and team composition. However, some of the generally considered best brawlers in Brawl Stars APK mod an1 are:

    -
      -
    • Spike: Spike is a legendary brawler who can deal massive damage with his cactus projectiles that explode into spikes. He can also slow down and damage enemies with his super ability, which creates a field of cactus spikes.
    • -
    • Crow: Crow is another legendary brawler who can poison his enemies with his daggers that inflict damage over time. He can also jump over obstacles and enemies with his super ability, which also deals damage upon landing.
    • -
    • Pam: Pam is an epic brawler who can heal herself and her allies with her main attack, which fires metal scraps in a wide area. She can also deploy a healing turret with her super ability, which creates a healing zone for her team.
    • -
    • Leon: Leon is a legendary brawler who can turn invisible for a few seconds with his super ability, which also increases his movement speed. He can also deal more damage with his main attack when he is closer to his enemies.
    • -
    • Nita: Nita is a rare brawler who can summon a bear with her super ability, which can attack enemies and distract them. She can also deal damage to enemies and charge her super faster with her main attack, which fires a shockwave that can hit multiple targets.
    • -
    -

    How to update Brawl Stars APK mod an1 when a new version is released?

    -

    To update Brawl Stars APK mod an1 when a new version is released, you need to follow these steps:

    -
    1. Go to an1.com and search for Brawl Stars APK mod. You will see the latest version of the game with the date and the mod features. Click on the download button and save the file on your device.
    2. -
    3. Before you install the new version, you need to uninstall the old version of Brawl Stars APK mod from your device. To do this, go to Settings > Apps > Brawl Stars > Uninstall and confirm your action.
    4. -
    5. Now go to your file manager and locate the new file. Tap on it and follow the instructions to install it.
    6. -
    7. You have successfully updated Brawl Stars APK mod an1 to the latest version. You can now launch the game and enjoy the new features.
    8. -
    -

    How to fix common errors or issues with Brawl Stars APK mod an1?

    -

    Sometimes, you may encounter some errors or issues with Brawl Stars APK mod an1, such as:

    -
      -
    • The game does not start or crashes: This may be due to compatibility issues, low memory, or corrupted files. To fix this, you can try clearing the cache and data of the game, restarting your device, or reinstalling the game.
    • -
    • The game does not connect to the server or shows a maintenance break: This may be due to network problems, server issues, or outdated versions. To fix this, you can try checking your internet connection, using a VPN app, or updating the game.
    • -
    • The game does not load or shows a black screen: This may be due to graphics settings, display problems, or permissions issues. To fix this, you can try adjusting the graphics settings, changing the display mode, or granting the necessary permissions to the game.
    • -
    -

    These are just some of the common errors or issues with Brawl Stars APK mod an1. There may be other errors or issues that you may face while playing the game. You can always search for solutions online or contact the support team of an1.com for help.

    -

    How to uninstall Brawl Stars APK mod an1 from your device?

    -

    If you want to uninstall Brawl Stars APK mod an1 from your device, you can follow these steps:

    -
      -
    1. Go to Settings > Apps > Brawl Stars > Uninstall and confirm your action.
    2. -
    3. Go to your file manager and delete any residual files or folders related to Brawl Stars APK mod an1.
    4. -
    5. You have successfully uninstalled Brawl Stars APK mod an1 from your device. You can now install the official version of Brawl Stars from Google Play Store if you want.
    6. -
    -

    Is Brawl Stars APK mod an1 compatible with other devices or platforms?

    -

    Brawl Stars APK mod an1 is designed for Android devices only. It is not compatible with other devices or platforms, such as iOS, Windows, Mac, etc. If you want to play Brawl Stars on other devices or platforms, you need to download the official version of the game from the respective app stores or websites.

    197e85843d
    -
    -
    \ No newline at end of file diff --git a/spaces/congsaPfin/Manga-OCR/logs/CarX Drift Racing 2 APK Day 1.25.1 How to Unlock All Features and Modes.md b/spaces/congsaPfin/Manga-OCR/logs/CarX Drift Racing 2 APK Day 1.25.1 How to Unlock All Features and Modes.md deleted file mode 100644 index 294ea47f8de16cfba91172a32e480e34bc1e3ef8..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/CarX Drift Racing 2 APK Day 1.25.1 How to Unlock All Features and Modes.md +++ /dev/null @@ -1,132 +0,0 @@ -
    -

    CarX Drift Racing 2 APK Dayı 1.25.1: A Review

    -

    If you are a fan of drifting racing games, you might have heard of CarX Drift Racing 2, a free drifting racing game where you push your car to the limits to the delight of your fans. But did you know that there is a modified version of this game called CarX Drift Racing 2 APK Dayı 1.25.1? In this article, we will review this version and tell you why you should choose it over the original one.

    -

    What is CarX Drift Racing 2?

    -

    CarX Drift Racing 2 is a racing game developed by CarX Technologies, a company that specializes in creating realistic car physics and graphics for mobile games. The game was released in December 2018 and has since gained over 10 million downloads on Google Play Store. The game features over 100 cars from different brands and classes, such as sports cars, muscle cars, supercars, and more. You can also customize your car with various parts, paint jobs, vinyls, and stickers.

    -

    carx drift racing 2 apk dayı 1.25.1


    DOWNLOAD ✦✦✦ https://urlca.com/2uO5w0



    -

    Features of CarX Drift Racing 2

    -

    Some of the features that make CarX Drift Racing 2 stand out from other racing games are:

    -
      -
    • A realistic physics engine that simulates the behavior of different types of cars on different surfaces and weather conditions.
    • -
    • A dynamic day-night cycle and weather system that changes the appearance and difficulty of the tracks.
    • -
    • A career mode that lets you compete in various championships and events against AI opponents or online players.
    • -
    • A multiplayer mode that lets you join or create your own club and challenge other clubs for fame and rewards.
    • -
    • A ghost mode that lets you race against your own best time or the best time of other players.
    • -
    • A tuning mode that lets you adjust the parameters of your car, such as suspension, engine, gearbox, brakes, and more.
    • -
    • A garage mode that lets you store and manage your car collection.
    • -
    -

    How to download and install CarX Drift Racing 2 APK Dayı 1.25.1

    -

    CarX Drift Racing 2 APK Dayı 1.25.1 is a modified version of the original game that offers some extra features and advantages, such as unlimited money, unlocked cars, free shopping, and more. To download and install this version, you need to follow these steps:

    -
      -
    1. Download the APK file from a trusted source, such as [FileHippo](^2^).
    2. -
    3. Enable the installation of apps from unknown sources on your device settings.
    4. -
    5. Locate the downloaded file on your device and tap on it to start the installation process.
    6. -
    7. Follow the instructions on the screen and wait for the installation to finish.
    8. -
    9. Launch the game and enjoy!
    10. -
    -

    Why choose CarX Drift Racing 2 APK Dayı 1.25.1?

    -

    Now that you know what CarX Drift Racing 2 APK Dayı 1.25.1 is and how to install it, you might be wondering why you should choose it over the original game. Here are some of the benefits and drawbacks of CarX Drift Racing 2 APK Dayı 1.25.1.

    -

    Benefits of CarX Drift Racing 2 APK Dayı 1.25.1

    -

    Some of the benefits of choosing CarX Drift Racing 2 APK Dayı 1.25.1 are:

    -
      -
    • You can enjoy the game without any ads or interruptions.
    • -
    • You can access all the cars and tracks without spending any real money.
    • -
    • You can customize your car with unlimited parts and options.
    • -
    • You can buy anything you want from the shop without worrying about the price.
    • -
    • You can have more fun and challenge with the enhanced gameplay and graphics.
    • -
    -

    Drawbacks of CarX Drift Racing 2 APK Dayı 1.25.1

    -

    However, there are also some drawbacks of choosing CarX Drift Racing 2 APK Dayı 1.25.1, such as:

    -
      -
    • You might face some compatibility issues with your device or operating system.
    • -
    • You might encounter some bugs or glitches that affect the performance of the game.
    • -
    • You might risk losing your progress or data if the game updates or crashes.
    • -
    • You might violate the terms and conditions of the original game and get banned or penalized.
    • -
    • You might miss out on some features or updates that are only available in the official version of the game.
    • -
    -

    Tips and tricks for playing CarX Drift Racing 2

    -

    If you decide to play CarX Drift Racing 2 APK Dayı 1.25.1, you might want to know some tips and tricks that can help you improve your skills and enjoy the game more. Here are some of them:

    -

    How to master drifting in CarX Drift Racing 2

    -

    Drifting is the main feature and attraction of CarX Drift Racing 2, so you need to master it if you want to win races and impress your fans. Here are some tips on how to drift like a pro in CarX Drift Racing 2:

    -

    carx drift racing 2 mod apk dayı 1.25.1
    -carx drift racing 2 apk dayı 1.25.1 download
    -carx drift racing 2 apk dayı 1.25.1 indir
    -carx drift racing 2 apk dayı 1.25.1 hile
    -carx drift racing 2 apk dayı 1.25.1 para hilesi
    -carx drift racing 2 apk dayı 1.25.1 android oyun club
    -carx drift racing 2 apk dayı 1.25.1 unlimited money
    -carx drift racing 2 apk dayı 1.25.1 latest version
    -carx drift racing 2 apk dayı 1.25.1 free download
    -carx drift racing 2 apk dayı 1.25.1 update
    -carx drift racing 2 apk dayı 1.25.1 full version
    -carx drift racing 2 apk dayı 1.25.1 offline
    -carx drift racing 2 apk dayı 1.25.1 hack
    -carx drift racing 2 apk dayı 1.25.1 obb
    -carx drift racing 2 apk dayı 1.25.1 data
    -carx drift racing 2 apk dayı 1.25.1 revdl
    -carx drift racing 2 apk dayı 1.25.1 rexdl
    -carx drift racing 2 apk dayı 1.25.1 apkpure
    -carx drift racing 2 apk dayı 1.25.1 uptodown
    -carx drift racing 2 apk dayı 1.25.1 android
    -carx drift racing 2 apk dayı 1.25.1 ios
    -carx drift racing 2 apk dayı 1.25.1 pc
    -carx drift racing 2 apk dayı 1.25.1 windows
    -carx drift racing 2 apk dayı 1.25.1 mac
    -carx drift racing 2 apk dayı 1.25.1 laptop
    -carx drift racing 2 apk dayı 1.25.1 online
    -carx drift racing 2 apk dayı 1.25.1 multiplayer
    -carx drift racing 2 apk dayı 1.25.1 gameplay
    -carx drift racing 2 apk dayı 1.25.1 review
    -carx drift racing 2 apk dayı 1.25.1 cheats
    -carx drift racing 2 apk dayı 1.25.1 tips
    -carx drift racing 2 apk dayı 1.25.1 tricks
    -carx drift racing 2 apk dayı 1.25.1 guide
    -carx drift racing 2 apk dayı 1.25.1 walkthrough
    -carx drift racing 2 apk dayı 1.25.1 tutorial
    -carx drift racing 2 apk dayı 1.25.

    -
      -
    • Choose a car that suits your driving style and preference. Different cars have different characteristics, such as power, weight, handling, and grip. You can also tune your car to adjust these parameters according to your needs.
    • -
    • Learn the basics of drifting, such as how to initiate, maintain, and exit a drift. You can use different techniques, such as handbrake, clutch kick, power over, or feint, depending on the situation and the track layout.
    • -
    • Practice on different tracks and modes to get familiar with the physics and controls of the game. You can also watch replays or ghost races of other players to learn from their moves and mistakes.
    • -
    • Use the steering wheel, pedals, and buttons to control your car smoothly and precisely. You can also change the sensitivity and layout of these controls in the settings menu.
    • -
    • Pay attention to the drift indicators on the screen, such as the speedometer, the angle meter, and the score multiplier. These indicators will help you gauge your drift performance and improve your timing and accuracy.
    • -
    -

    How to customize your car in CarX Drift Racing 2

    -

    Customizing your car is another fun and rewarding aspect of CarX Drift Racing 2, as it allows you to express your personality and creativity through your vehicle. Here are some tips on how to customize your car in CarX Drift Racing 2:

    -
      -
    • Choose a car that has a lot of customization options available, such as body kits, spoilers, wheels, exhausts, hoods, bumpers, and more. You can also unlock more options by completing challenges and events in the game.
    • -
    • Use the paint shop to change the color and texture of your car. You can also apply vinyls and stickers to add more details and patterns to your car.
    • -
    • Use the tuning mode to modify the performance and appearance of your car. You can change the engine, gearbox, suspension, brakes, tires, camber, height, weight, and more.
    • -
    • Save your customizations in the garage mode and switch between them whenever you want. You can also share your customizations with other players online or download their customizations for inspiration.
    • -
    -

    How to earn more coins and gold in CarX Drift Racing 2

    -

    Coins and gold are the main currencies in CarX Drift Racing 2, which you can use to buy new cars, parts, paint jobs, vinyls, stickers, and more. Here are some tips on how to earn more coins and gold in CarX Drift Racing 2:

    -
      -
    • Play the career mode and complete the championships and events. You will earn coins and gold based on your performance and ranking in each race.
    • -
    • Play the multiplayer mode and join or create a club. You will earn coins and gold by participating in club battles and tournaments.
    • -
    • Play the ghost mode and beat your own or other players' best times. You will earn coins and gold by setting new records and improving your skills.
    • -
    • Watch ads or complete offers in the game. You will earn coins and gold by watching short videos or completing surveys, tasks, or downloads.
    • -
    • Use CarX Drift Racing 2 APK Dayı 1.25.1. You will have unlimited coins and gold to spend on anything you want in the game.
    • -
    -

    Conclusion

    -

    CarX Drift Racing 2 is a thrilling and realistic drifting racing game that will keep you hooked for hours. You can choose from over 100 cars, customize them to your liking, and compete in various modes and tracks. CarX Drift Racing 2 APK Dayı 1.25.1 is a modified version of the game that gives you more advantages and features, such as unlimited money, unlocked cars, free shopping, and more. However, you should also be aware of the drawbacks and risks of using this version, such as compatibility issues, bugs, data loss, or ban. We hope this article has helped you learn more about CarX Drift Racing 2 APK Dayı 1.25.1 and how to play it better.

    -

    FAQs

    -

    Here are some of the frequently asked questions about CarX Drift Racing 2 APK Dayı 1.25.1:

    -

    Q: Is CarX Drift Racing 2 APK Dayı 1.25.1 safe to use?

    -

    A: CarX Drift Racing 2 APK Dayı 1.25.1 is generally safe to use, as long as you download it from a trusted source and scan it for viruses or malware before installing it. However, you should also be careful not to share your personal or financial information with any third-party apps or websites that might be linked to the game.

    -

    Q: Is CarX Drift Racing 2 APK Dayı 1.25.1 compatible with my device?

    -

    A: CarX Drift Racing 2 APK Dayı 1.25.1 is compatible with most Android devices that have at least Android 5.0 (Lollipop) or higher installed. However, some devices might not support the game or run it smoothly due to different specifications or settings.

    -

    Q: How can I update CarX Drift Racing 2 APK Dayı 1.25.1?

    -

    A: CarX Drift Racing 2 APK Dayı 1.25.1 is not updated automatically like the original game, so you need to check for updates manually from time to time. You can do this by visiting the same source where you downloaded the game or searching for other sources online that offer the latest version of the game.

    -

    Q: How can I contact the developers of CarX Drift Racing 2 APK Dayı 1.25.1?

    -

    A: CarX Drift Racing 2 APK Dayı 1.25.1 is not developed or endorsed by CarX Technologies, the official developers of CarX Drift Racing 2, so you cannot contact them for any issues or feedback related to this version of the game. You can only contact the developers of CarX Drift Racing 2 APK Dayı 1.25.1 through their website or social media accounts, if they have any.

    -

    Q: How can I uninstall CarX Drift Racing 2 APK Dayı 1.25.1?

    -

    A: You can uninstall CarX Drift Racing 2 APK Dayı 1.25.1 like any other app on your device, by following these steps:

    -
      -
    1. Go to your device settings and tap on Apps or Applications.
    2. -
    3. Find and tap on CarX Drift Racing 2 APK Dayı 1.25.1 from the list of apps.
    4. -
    5. Tap on Uninstall and confirm your action.
    6. -
    7. Wait for the uninstallation process to finish.
    8. -

    401be4b1e0
    -
    -
    \ No newline at end of file diff --git a/spaces/congsaPfin/Manga-OCR/logs/Crowd Evolution Mod Apk The Best Game for History Lovers.md b/spaces/congsaPfin/Manga-OCR/logs/Crowd Evolution Mod Apk The Best Game for History Lovers.md deleted file mode 100644 index c044bbf12c9d06d74b9d5a0f18563530908f661a..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/Crowd Evolution Mod Apk The Best Game for History Lovers.md +++ /dev/null @@ -1,112 +0,0 @@ - -

    Download Crowd Evolution Mod APK An1: A Fun and Easy Running Game

    -

    Running is usually considered hard if it tires you a lot. But that's why we are motivated to play new games. Crowd Evolution is a great example with a simplification in 3D graphics. Run and move like Subway Surfers with just a single operation. In this article, we will tell you what is Crowd Evolution, how to play it, what are its features, and why you should download Crowd Evolution Mod APK An1.

    -

    What is Crowd Evolution?

    -

    Crowd Evolution is a casual running game developed by VOODOO, a popular game studio that creates addictive and fun games for mobile devices. In this game, you have to run through different environments and collect as many people as you can to form a huge crowd. The bigger your crowd, the more points you get. But be careful, there are also obstacles and enemies that will try to stop you or reduce your crowd size. You have to avoid them or push them away with your crowd power.

    -

    download crowd evolution mod apk an1


    Download File 🆓 https://urlca.com/2uObfg



    -

    How to play Crowd Evolution?

    -

    Crowd Evolution is very easy to play. You just need to swipe left or right on the screen to move your crowd. You can also swipe up or down to jump or slide under obstacles. As you run, you will see people standing on the sides of the road. You have to touch them with your crowd to make them join you. The more people you collect, the bigger your crowd becomes. You can also use your crowd to push away enemies or obstacles that block your way. At the end of each level, you will face a boss that you have to defeat with your crowd size. The game has many levels with different themes and challenges for you to enjoy.

    -

    What are the features of Crowd Evolution?

    -

    Simple and addictive gameplay

    -

    Crowd Evolution has a simple and addictive gameplay that anyone can enjoy. You just need to swipe on the screen to control your crowd and collect as many people as you can. The game is fast-paced and exciting, as you have to avoid or overcome various obstacles and enemies along the way. You will never get bored of playing this game.

    -

    download crowd evolution mod apk an1 latest version
    -download crowd evolution mod apk an1 unlimited money
    -download crowd evolution mod apk an1 for android
    -download crowd evolution mod apk an1 free
    -download crowd evolution mod apk an1 hack
    -download crowd evolution mod apk an1 offline
    -download crowd evolution mod apk an1 no ads
    -download crowd evolution mod apk an1 full unlocked
    -download crowd evolution mod apk an1 29.0.0
    -download crowd evolution mod apk an1 update
    -download crowd evolution mod apk an1 online
    -download crowd evolution mod apk an1 premium
    -download crowd evolution mod apk an1 cheats
    -download crowd evolution mod apk an1 gameplay
    -download crowd evolution mod apk an1 review
    -download crowd evolution mod apk an1 mega mod
    -download crowd evolution mod apk an1 for pc
    -download crowd evolution mod apk an1 without verification
    -download crowd evolution mod apk an1 original
    -download crowd evolution mod apk an1 2023
    -download crowd evolution mod apk an1 pro
    -download crowd evolution mod apk an1 cracked
    -download crowd evolution mod apk an1 unlimited gems
    -download crowd evolution mod apk an1 for ios
    -download crowd evolution mod apk an1 tips and tricks
    -download crowd evolution mod apk an1 new features
    -download crowd evolution mod apk an1 best settings
    -download crowd evolution mod apk an1 how to play
    -download crowd evolution mod apk an1 tutorial
    -download crowd evolution mod apk an1 guide
    -download crowd evolution mod apk an1 walkthrough
    -download crowd evolution mod apk an1 all levels
    -download crowd evolution mod apk an1 high score
    -download crowd evolution mod apk an1 challenges
    -download crowd evolution mod apk an1 fun mode
    -download crowd evolution mod apk an1 skins
    -download crowd evolution mod apk an1 characters
    -download crowd evolution mod apk an1 costumes
    -download crowd evolution mod apk an1 weapons
    -download crowd evolution mod apk an1 items
    -download crowd evolution mod apk an1 maps
    -download crowd evolution mod apk an1 stages
    -download crowd evolution mod apk an1 worlds
    -download crowd evolution mod apk an1 secrets
    -download crowd evolution mod apk an1 easter eggs
    -download crowd evolution mod apk an1 achievements
    -download crowd evolution mod apk an1 ratings
    -download crowd evolution mod apk an1 feedbacks

    -

    Colorful and cute graphics

    -

    Crowd Evolution has colorful and cute graphics that make the game more appealing and fun. The game has a cartoon-like style that suits its casual theme. The characters are adorable and diverse, with different outfits and hairstyles. The environments are also well-designed and varied, with different landscapes and landmarks.

    -

    Various levels and challenges

    -

    Crowd Evolution has various levels and challenges for you to complete. Each level has a different theme and difficulty, such as city, forest, desert, snow, etc. You will also face different enemies and bosses at the end of each level, such as zombies, robots, aliens, etc. You have to use your crowd wisely to defeat them and advance to the next level.

    -

    Unlockable characters and skins

    -

    Crowd Evolution has unlockable characters and skins for you to customize your crowd. You can use the money and gems that you earn from playing the game to buy new characters and skins from the shop. There are many options for you to choose from, such as animals, superheroes, celebrities, etc. You can also mix and match different characters and skins to create your own unique crowd.

    -

    Why download

    Why download Crowd Evolution Mod APK An1?

    -

    Crowd Evolution is a fun and easy game, but it can also be challenging and frustrating at times. You may run out of money and gems to buy new characters and skins, or you may encounter annoying ads that interrupt your gameplay. That's why you should download Crowd Evolution Mod APK An1, a modified version of the game that gives you unlimited resources and features.

    -

    Benefits of downloading Crowd Evolution Mod APK An1

    -

    Unlimited money and gems

    -

    With Crowd Evolution Mod APK An1, you will have unlimited money and gems to spend on the shop. You can buy any character or skin that you want, without worrying about the cost. You can also upgrade your crowd size and speed to make your gameplay easier and more enjoyable.

    -

    All characters and skins unlocked

    -

    With Crowd Evolution Mod APK An1, you will have all the characters and skins unlocked from the start. You don't have to play the game for a long time or complete certain levels to unlock them. You can choose any character or skin that you like, and change them anytime you want.

    -

    No ads and no root required

    -

    With Crowd Evolution Mod APK An1, you will not see any ads that disturb your gameplay. You can play the game smoothly and without interruptions. You also don't need to root your device to install the mod apk file. You just need to follow some simple steps to download and install it.

    -

    How to download and install Crowd Evolution Mod APK An1?

    -

    Step 1: Download the mod apk file from a trusted source

    -

    The first step is to download the mod apk file from a trusted source. You can use the link below to download it safely and quickly. The file size is about 80 MB, so make sure you have enough space on your device.

    -

    Download Crowd Evolution Mod APK An1 here

    -

    Step 2: Enable unknown sources on your device settings

    -

    The second step is to enable unknown sources on your device settings. This will allow you to install apps from sources other than the Google Play Store. To do this, go to your device settings, then security, then unknown sources, and turn it on.

    -

    Step 3: Install the mod apk file and enjoy the game

    -

    The third step is to install the mod apk file and enjoy the game. To do this, locate the downloaded file on your device storage, then tap on it to start the installation process. Follow the instructions on the screen, and wait for the installation to finish. Once done, you can open the game and start playing with unlimited money, gems, characters, skins, and no ads.

    -

    Conclusion

    -

    Crowd Evolution is a fun and easy running game that you can play on your mobile device. You have to run through different environments and collect as many people as you can to form a huge crowd. The game has simple and addictive gameplay, colorful and cute graphics, various levels and challenges, and unlockable characters and skins. However, if you want to enjoy the game more, you should download Crowd Evolution Mod APK An1, a modified version of the game that gives you unlimited resources and features. With this mod apk file, you will have unlimited money and gems, all characters and skins unlocked, no ads, and no root required. You just need to download the mod apk file from a trusted source, enable unknown sources on your device settings, install the mod apk file, and enjoy the game.

    -

    FAQs

    -

    Q: Is Crowd Evolution Mod APK An1 safe to download and install?

    -

    A: Yes, Crowd Evolution Mod APK An1 is safe to download and install. It does not contain any viruses or malware that can harm your device or data. However, you should always download it from a trusted source like the one we provided above.

    -

    Q: Can I play Crowd Evolution Mod APK An1 online with other players?

    -

    A: No, Crowd Evolution Mod APK An1 is an offline game that does not require an internet connection to play. You can play it anytime and anywhere you want.

    -

    Q: Can I update Crowd Evolution Mod APK An1 when there is a new version of the game?

    -

    A: No, Crowd Evolution Mod APK An1 is not compatible with the official updates of the game. If you want to update the game, you have to uninstall the mod apk file and install the original version from the Google Play Store.

    -

    Q: What are some tips and tricks for playing Crowd Evolution?Q: What are some tips and tricks for playing Crowd Evolution?

    -

    A: Here are some tips and tricks for playing Crowd Evolution:

    -
      -
    • Swipe quickly and accurately to move your crowd and avoid obstacles and enemies.
    • -
    • Collect as many people as you can to increase your crowd size and score.
    • -
    • Use your crowd to push away enemies or obstacles that block your way.
    • -
    • Jump or slide under obstacles that are too high or low to avoid.
    • -
    • Defeat the boss at the end of each level with your crowd size and power.
    • -
    • Buy new characters and skins with your money and gems to customize your crowd.
    • -
    • Upgrade your crowd size and speed with your money and gems to make your gameplay easier and more enjoyable.
    • -
    -

    Q: What are some alternatives to Crowd Evolution?

    -

    A: If you like Crowd Evolution, you may also like these similar games:

    -
      -
    • Crowd City: A game where you have to run around a city and collect as many people as you can to become the biggest crowd in town.
    • -
    • Crowd Master 3D: A game where you have to lead a crowd of warriors and fight against other crowds in epic battles.
    • -
    • Crowd Run 3D: A game where you have to run through a track and collect as many people as you can to reach the finish line.
    • -
    -

    I hope you enjoyed this article on how to download Crowd Evolution Mod APK An1. If you have any questions or feedback, please leave a comment below. Thank you for reading!

    197e85843d
    -
    -
    \ No newline at end of file diff --git a/spaces/congsaPfin/Manga-OCR/logs/Download Farming Simulator 16 APK for Free and Enjoy the Open World Simulation.md b/spaces/congsaPfin/Manga-OCR/logs/Download Farming Simulator 16 APK for Free and Enjoy the Open World Simulation.md deleted file mode 100644 index 2bb147fa8311d051cb344f0719cb78c0f4ae67b0..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/Download Farming Simulator 16 APK for Free and Enjoy the Open World Simulation.md +++ /dev/null @@ -1,113 +0,0 @@ - -

    Farming Simulator 16 APK Only Download: A Review

    -

    If you are a fan of simulation games, especially farming games, you might have heard of Farming Simulator 16. This is a popular game that allows you to manage your own realistic farm in extraordinary detail. You can plant, grow, harvest, and sell five different crops, raise cows and sheep, and sell timber at your own pace. You can also buy new fields and machines, hire helpers, and play with a friend in local multiplayer mode.

    -

    farming simulator 16 apk only download


    Download ✑ ✑ ✑ https://urlca.com/2uO5wS



    -

    But how can you download and play this game on your Android device? And what are some tips and tricks to help you succeed in this game? In this article, we will answer these questions and more. We will review the features of Farming Simulator 16, show you how to download the APK only file, and give you some useful advice on how to play the game. Let's get started!

    -

    What is Farming Simulator 16?

    -

    A realistic farming simulation game for mobile devices

    -

    Farming Simulator 16 is a game developed by Giants Software, a Swiss company that specializes in creating simulation games. It is part of the Farming Simulator series, which started in 2008 and has become one of the most successful franchises in the genre. Farming Simulator 16 was released in 2015 for Android, iOS, Kindle Fire, PlayStation Vita, Windows Phone, and Windows 10 Mobile devices.

    -

    The game simulates various aspects of farming, such as crop production, animal husbandry, forestry, vehicle maintenance, and market trading. The game features a huge open world with different environments, such as American Midwest, European Alps, or Eastern Europe. The game also has a dynamic weather system that affects the growth of crops and the behavior of animals.

    -

    Farming simulator 16 android game free download
    -How to install farming simulator 16 apk on your device
    -Farming simulator 16 mod apk unlimited money and coins
    -Download farming simulator 16 for PC windows 10/8/7
    -Farming simulator 16 apk + obb data offline
    -Best farming simulator 16 tips and tricks for beginners
    -Farming simulator 16 cheats and hacks for android
    -Farming simulator 16 latest version update download
    -Farming simulator 16 gameplay and features review
    -Farming simulator 16 vs farming simulator 18 comparison
    -Farming simulator 16 multiplayer mode online
    -Farming simulator 16 realistic graphics and sound effects
    -Farming simulator 16 system requirements and compatibility
    -Farming simulator 16 support and customer service
    -Farming simulator 16 guide and walkthrough for all levels
    -Farming simulator 16 best crops and animals to farm
    -Farming simulator 16 vehicles and equipment list
    -Farming simulator 16 maps and locations overview
    -Farming simulator 16 challenges and missions to complete
    -Farming simulator 16 ratings and reviews from users
    -Farming simulator 16 download link and file size
    -Farming simulator 16 trailer and screenshots gallery
    -Farming simulator 16 awards and achievements to unlock
    -Farming simulator 16 news and updates from developers
    -Farming simulator 16 forum and community discussion
    -Farming simulator 16 alternatives and similar games
    -Farming simulator 16 problems and solutions fix
    -Farming simulator 16 fun facts and trivia quiz
    -Farming simulator 16 secrets and easter eggs to find
    -Farming simulator 16 history and development story

    -

    Features of Farming Simulator 16

    -

    New 3D graphics and machines

    -

    One of the main improvements of Farming Simulator 16 over its predecessors is the new 3D graphics engine that shows more detail on your machinery and environment. The game also features over 50 vehicles and tools from over 30 real agricultural brands, such as New Holland, Case IH, Ponsse, Lamborghini, Horsch, Krone, Amazone, MAN, and more. You can drive and use brand new equipment such as harvesters, tractors, cultivators, planters, tippers, fertilizers spreaders, transports, etc.

    -

    Five different crops and animals to raise

    -

    In Farming Simulator 16, you can plant and harvest five different crops: wheat, canola, corn, sugar beet, and potatoes. Each crop has its own characteristics and requirements for growth and harvesting. You can also feed your cows and sheep to produce and sell milk and wool. You can also buy more animals from the shop or breed them yourself.

    -

    Forestry and multiplayer modes

    -

    Farming Simulator 16 also introduces forestry as a new activity in the game. You can harvest wood with dedicated machinery such as chains saws, chippers, trailers, and cranes. You can sell the logs or use them to create wood chips. You can also play with a friend in local multiplayer mode via Wi-Fi or Bluetooth. You can share your vehicles and tools with your partner and work together on your farm.

    -

    How to download Farming Simulator 16 APK only?

    -

    The advantages of downloading APK only

    -

    Save storage space and data usage

    -

    One of the benefits of downloading Farming Simulator 16 APK only is that you can save some storage space and data usage on your device. The APK file is the installation package that contains the game data and the executable code. The APK file size of Farming Simulator 16 is about 14 MB, while the full game size is about 130 MB. By downloading the APK file only, you can save about 116 MB of storage space and data usage.

    -

    Install the game without Google Play Store

    -

    Another advantage of downloading Farming Simulator 16 APK only is that you can install the game without using Google Play Store. This can be useful if you have a device that does not support Google Play Store, or if you want to avoid the ads and permissions that Google Play Store may require. You can also install the game on multiple devices without logging in to your Google account.

    -

    Access the latest version and updates

    -

    A third benefit of downloading Farming Simulator 16 APK only is that you can access the latest version and updates of the game faster than waiting for Google Play Store to update. Sometimes, Google Play Store may take some time to update the game or may not update it at all due to regional restrictions or compatibility issues. By downloading the APK file only, you can get the newest features and bug fixes of the game as soon as they are released by the developers.

    -

    The steps to download and install Farming Simulator 16 APK only

    -

    Find a reliable source for the APK file

    -

    The first step to download Farming Simulator 16 APK only is to find a reliable source for the APK file. You can search online for websites that offer APK files for various games and apps, but be careful of malware and viruses that may harm your device. You can also use an APK downloader tool that can extract the APK file from Google Play Store or other sources. Some of the websites and tools that you can use are:

    -
      -
    • APKPure.com: A website that offers free and pure APK files for various games and apps.
    • -
    • APKMirror.com: A website that provides safe and original APK files for various games and apps.
    • -
    • APK Downloader: A tool that can download APK files from Google Play Store or other sources.
    • -
    -

    Enable unknown sources on your device settings

    -

    The second step to download Farming Simulator 16 APK only is to enable unknown sources on your device settings. This will allow you to install apps from sources other than Google Play Store. To do this, follow these steps:

    -
      -
    1. Go to your device settings and tap on Security or Privacy.
    2. -
    3. Find the option that says Unknown Sources or Install Unknown Apps and toggle it on.
    4. -
    5. A warning message may appear, but tap on OK or Allow to proceed.
    6. -
    -

    Download and install the APK file

    -

    The third step to download Farming Simulator 16 APK only is to download and install the APK file. To do this, follow these steps:

    -
      -
    1. Open your browser and go to the website or tool that you have chosen to download the APK file.
    2. -
    3. Search for Farming Simulator 16 and select the version that you want to download.
    4. -
    5. Tap on Download or Install and wait for the download to finish.
    6. -
    7. Once the download is complete, tap on Open or Run to launch the installer.
    8. -
    9. Follow the instructions on the screen and tap on Install or Next to complete the installation.
    10. -
    11. After the installation is done, tap on Done or Finish to exit the installer.
    12. -
    13. You can now find Farming Simulator 16 icon on your home screen or app drawer and tap on it to start playing.
    14. -
    -

    Tips and tricks for playing Farming Simulator 16

    -

    Know the control system and the tools

    -

    Before you start playing Farming Simulator 16, you should familiarize yourself with the control system and the tools that you have. The game has two control modes: Arcade and Simulation. You can switch between them by tapping on the gear icon on the top right corner of the screen. Arcade mode is easier and more intuitive, while Simulation mode is more realistic and challenging. You can also adjust the sensitivity and the steering mode of your vehicles in the settings menu.

    -

    You should also learn how to use the different tools that you have, such as plows, cultivators, sowers, harvesters, tippers, etc. Each tool has its own function and purpose, and you need to attach them to the appropriate vehicle to use them. You can attach and detach tools by tapping on the tool icon on the bottom right corner of the screen. You can also switch between tools by tapping on the arrow icons on the bottom left corner of the screen.

    -

    Start harvesting and selling your crops as soon as possible

    -

    One of the main goals of Farming Simulator 16 is to make money by harvesting and selling your crops. You should start doing this as soon as possible to earn some cash and expand your farm. To harvest your crops, you need to use a harvester with a header that matches the type of crop that you have planted. For example, you need a grain header for wheat, canola, and corn, and a potato harvester for potatoes. You can also use a forage harvester for corn to make silage.

    -

    Once you have harvested your crops, you need to transport them to a selling point. You can use a tipper or a trailer to load and unload your crops. You can also use a conveyor belt or a front loader to move your crops from one place to another. To sell your crops, you need to drive to a selling point and unload your crops there. You can see the prices of each crop at each selling point on the map or on the statistics menu. You should sell your crops when the prices are high and avoid selling when the prices are low.

    -

    Hire assistants and assign tasks to them

    -

    Farming Simulator 16 can be a lot of work if you try to do everything by yourself. Fortunately, you can hire assistants and assign tasks to them to help you with your farm. You can hire assistants by tapping on the assistant icon on the top left corner of the screen. You can also assign tasks to them by tapping on the task icon on the bottom right corner of the screen. You can assign tasks such as plowing, cultivating, sowing, harvesting, transporting, etc.

    -

    Hiring assistants and assigning tasks to them can save you time and energy, but it also costs you money. You have to pay your assistants for their work every hour. You can see how much you have to pay them on the statistics menu or on the assistant icon. You should hire assistants and assign tasks to them wisely and efficiently, and avoid hiring too many assistants or assigning too many tasks at once.

    -

    Research before you sell and be aware of your harvester's capacity

    -

    Another tip for playing Farming Simulator 16 is to research before you sell and be aware of your harvester's capacity. Researching before you sell means that you should check the prices of each crop at each selling point before you decide where to sell them. You can see the prices on the map or on the statistics menu. You should sell your crops at the highest price possible and avoid selling at the lowest price possible.

    -

    Being aware of your harvester's capacity means that you should know how much crop your harvester can hold before it needs to be emptied. You can see your harvester's capacity on the top left corner of the screen or on the harvester icon. You should empty your harvester when it is full or close to full, otherwise you will waste some crop or slow down your harvesting process.

    -

    Use fertilizers to increase your yield and profit

    -

    The last tip for playing Farming Simulator 16 is to use fertilizers to increase your yield and profit. Fertilizers are substances that enhance the growth and quality of your crops. You can use fertilizers to increase your yield by up to 30%. You can buy fertilizers from the shop or make your own by using slurry or manure from your animals. You can also use a biogas plant to convert silage into slurry and manure.

    -

    To use fertilizers, you need to use a fertilizer spreader or a sprayer. You can attach them to a tractor or a self-propelled vehicle. You can also use a front loader or a conveyor belt to load and unload fertilizers. To apply fertilizers, you need to drive over your fields and activate the tool. You can see the fertilization level of your fields on the map or on the statistics menu. You should fertilize your fields before or after sowing, or after the first growth stage of your crops.

    -

    Conclusion

    -

    Farming Simulator 16 is a fun and realistic farming simulation game that you can download and play on your Android device. You can manage your own farm, plant and harvest five different crops, raise cows and sheep, sell timber, and buy new fields and machines. You can also play with a friend in local multiplayer mode.

    -

    To download Farming Simulator 16 APK only, you need to find a reliable source for the APK file, enable unknown sources on your device settings, and download and install the APK file. You can also follow some tips and tricks to help you play the game better, such as knowing the control system and the tools, harvesting and selling your crops as soon as possible, hiring assistants and assigning tasks to them, researching before you sell and being aware of your harvester's capacity, and using fertilizers to increase your yield and profit.

    -

    We hope that this article has helped you learn more about Farming Simulator 16 APK only download and how to play the game. If you have any questions or feedback, please feel free to leave a comment below. Happy farming!

    -

    FAQs

    -

    Q: How much does Farming Simulator 16 cost?

    -

    A: Farming Simulator 16 costs $4.99 on Google Play Store. However, you can download the APK file for free from other sources.

    -

    Q: Is Farming Simulator 16 compatible with my device?

    -

    A: Farming Simulator 16 requires Android 4.0.3 or higher and at least 130 MB of free storage space on your device. You can check the compatibility of your device on Google Play Store or on the website that you download the APK file from.

    -

    Q: How can I play Farming Simulator 16 with a friend?

    -

    A: Farming Simulator 16 supports local multiplayer mode via Wi-Fi or Bluetooth. To play with a friend, you need to have two devices with the same version of the game installed. You also need to be connected to the same Wi-Fi network or paired via Bluetooth. Then, one of you needs to create a game session and invite the other one to join.

    -

    Q: How can I save my progress in Farming Simulator 16?

    -

    A: Farming Simulator 16 automatically saves your progress every time you exit the game or switch to another app. You can also manually save your progress by tapping on the pause icon on the top right corner of the screen and then tapping on Save Game.

    -

    Q: How can I reset my game in Farming Simulator 16?

    -

    A: If you want to start over from scratch in Farming Simulator 16, you can reset your game by tapping on the pause icon on the top right corner of the screen and then tapping on Reset Game. This will delete all your saved data and settings and restart the game from the beginning.

    401be4b1e0
    -
    -
    \ No newline at end of file diff --git a/spaces/congsaPfin/Manga-OCR/logs/Download naruto shippuden ultimate ninja storm 2 APK for Android - Free and Fast.md b/spaces/congsaPfin/Manga-OCR/logs/Download naruto shippuden ultimate ninja storm 2 APK for Android - Free and Fast.md deleted file mode 100644 index 4d8c67c6514de35c01cf37dd25ba7db550a6541b..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/Download naruto shippuden ultimate ninja storm 2 APK for Android - Free and Fast.md +++ /dev/null @@ -1,67 +0,0 @@ - -

    Naruto Shippuden Ultimate Ninja Storm 2: A Review

    -

    If you are a fan of Naruto, the popular manga and anime series, you might be interested in playing Naruto Shippuden Ultimate Ninja Storm 2, a fighting game based on the Shippuden story arc. But is this game worth your time and money? In this review, we will take a look at the gameplay, graphics, sound, and other aspects of the game, and give you our honest opinion.

    -

    naruto shippuden ultimate ninja storm 2 apkpure


    DOWNLOADhttps://urlca.com/2uOebU



    -

    Introduction

    -

    What is Naruto Shippuden Ultimate Ninja Storm 2?

    -

    Naruto Shippuden Ultimate Ninja Storm 2 is a fighting game developed by CyberConnect2 and published by Bandai Namco Games. It was released in 2010 for PlayStation 3, Xbox 360, and later for PC, PS4, Xbox One, and Nintendo Switch. It is the sequel to Naruto: Ultimate Ninja Storm, and the second installment of the Ultimate Ninja Storm series.

    -

    What are the main features of the game?

    -

    The game features over 40 playable characters from the Naruto universe, each with their own unique moves, abilities, and ultimate jutsus. The game also has a variety of modes to choose from, such as:

    -
      -
    • Ultimate Adventure Mode: This is the story mode of the game, where you can relive the events of the anime from Naruto's perspective, Sasuke's perspective, or Jiraiya's perspective. You can also explore different locations, interact with other characters, complete side quests, collect items, and unlock new content.
    • -
    • Free Battle Mode: This is where you can fight against the CPU or another player in various settings and conditions. You can customize your character's appearance, support characters, items, handicaps, and rules.
    • -
    • Online Mode: This is where you can challenge other players from around the world in ranked or unranked matches. You can also join tournaments, create clans, chat with friends, and view leaderboards.
    • -
    -

    Who is the game for?

    -

    The game is mainly aimed at fans of Naruto who want to experience the thrill of fighting as their favorite characters. The game also appeals to casual gamers who enjoy fast-paced and flashy combat. However, if you are not familiar with Naruto or you prefer more complex and strategic fighting games, you might not find this game very satisfying.

    -

    -

    Gameplay

    -

    How does the game play?

    -

    The game plays like a typical 3D fighting game, where you control your character with the left stick and perform attacks with different buttons. You can also use chakra to enhance your attacks or perform special moves. The game has a simple control scheme that is easy to learn but hard to master.

    -

    Combat system

    -

    The combat system of the game is based on four elements: melee attacks, ranged attacks, guard, and substitution. Melee attacks are close-range physical attacks that can be chained into combos. Ranged attacks are long-range projectile attacks that can be charged with chakra. Guard is a defensive action that can block most attacks but consumes chakra. Substitution is an evasive action that can avoid an incoming attack but consumes chakra.

    -

    The combat system also has some unique features that make it more dynamic and exciting:

    -
      -

      Adventure mode

      -

      Adventure mode is the story mode of the game, where you can follow the plot of the anime from different perspectives. You can choose to play as Naruto, Sasuke, or Jiraiya, and experience their journeys and battles. You can also explore various locations from the Naruto world, such as Konoha, Suna, and Akatsuki hideouts. You can interact with other characters, complete side quests, collect items, and unlock new content. Adventure mode is a great way to immerse yourself in the Naruto universe and learn more about the characters and events.

      -

      Online mode

      -

      Online mode is where you can test your skills against other players from around the world. You can choose to play ranked or unranked matches, or join tournaments. You can also create clans, chat with friends, and view leaderboards. Online mode is a fun and competitive way to challenge yourself and improve your game. However, online mode also has some drawbacks, such as lag, disconnects, and hackers. You might also encounter some toxic players who might ruin your experience.

      -

      What are the pros and cons of the game?

      -

      Like any game, Naruto Shippuden Ultimate Ninja Storm 2 has its strengths and weaknesses. Here are some of the pros and cons of the game:

      -

      Pros

      -
        -
      • The game has a large and diverse roster of characters, each with their own unique moves and abilities. You can play as your favorite characters from the Naruto series, or try out new ones.
      • -
      • The game has a simple and intuitive control scheme that is easy to learn but hard to master. You can perform flashy and powerful attacks with just a few buttons.
      • -
      • The game has a stunning and faithful presentation of the Naruto world. The graphics are colorful and detailed, and the animations are smooth and fluid. The game also has an excellent soundtrack and voice acting that match the anime.
      • -
      • The game has a lot of content and replay value. You can play through different modes, unlock new characters, costumes, items, trophies, and achievements. You can also play online with other players or offline with a friend.
      • -
      -

      Cons

      -
        -
      • The game can be repetitive and boring after a while. The combat system is not very deep or strategic, and most battles boil down to spamming attacks and chakra. The story mode is also linear and predictable, and does not offer much variation or choice.
      • -
      • The game can be frustrating and unfair at times. The difficulty level can be inconsistent and unbalanced, especially in boss battles. Some enemies can be too easy or too hard to beat, depending on your character or settings. The game also has some bugs and glitches that can affect your performance or progress.
      • -
      • The game can be outdated and irrelevant by now. The game was released in 2010, and since then there have been many new developments in the Naruto series, such as new characters, arcs, movies, games, etc. The game does not reflect the current state of the Naruto universe, and might not appeal to newer fans or older fans who have moved on.
      • -
      -

      Graphics and Sound

      -

      How does the game look and sound?

      -

      The game looks and sounds amazing, especially for a 2010 release. The game uses cel-shaded graphics that mimic the style of the anime. The characters are well-designed and animated, and the environments are rich and vibrant. The game also uses dynamic camera angles and cinematic effects that enhance the visual impact of the battles.

      -

      Visuals

      -

      Music and voice acting

      -

      The music and voice acting of the game are also excellent, and match the tone and mood of the anime. The game features original and licensed music from the Naruto series, as well as new compositions. The music is catchy and energetic, and suits the action and drama of the game. The game also features voice acting from the original Japanese and English cast of the anime, as well as other languages. The voice actors do a great job of portraying the personalities and emotions of the characters.

      -

      How does the game compare to the anime and manga?

      -

      The game is a faithful adaptation of the anime and manga, and covers the events from the beginning of the Shippuden arc to the end of the Pain arc. The game follows the same plot and timeline as the anime and manga, and includes many scenes and dialogues from them. The game also recreates some of the most iconic and memorable moments from the series, such as Naruto's reunion with Sasuke, Jiraiya's death, Naruto's sage mode training, Pain's invasion of Konoha, Naruto's meeting with his parents, etc. The game is a treat for fans of Naruto who want to relive or experience these moments in a different medium.

      -

      Conclusion

      -

      Summary of the main points

      -

      Naruto Shippuden Ultimate Ninja Storm 2 is a fighting game based on the Naruto series, featuring over 40 playable characters, various modes, stunning graphics, and excellent sound. The game is a simple and fun way to enjoy the Naruto universe, especially for fans of the series. However, the game also has some flaws, such as repetitive and shallow gameplay, inconsistent and unfair difficulty, bugs and glitches, and outdated and irrelevant content.

      -

      Recommendation and rating

      -

      We recommend this game to anyone who loves Naruto or fighting games in general. The game is a blast to play, whether alone or with friends, online or offline. The game is also a great way to learn more about the Naruto story and characters, or to revisit them in a new way. However, we also warn you that this game is not perfect, and might not meet your expectations or preferences. The game is not very challenging or complex, and might bore you after a while. The game is also not very current or relevant, and might not interest you if you are not familiar with or interested in Naruto.

      -

      We give this game a rating of 4 out of 5 stars. It is a good game that has a lot of potential, but also has some room for improvement.

      -

      FAQs

      -
        -
      • Q: How long is the story mode of the game?
        A: The story mode of the game can take anywhere from 10 to 15 hours to complete, depending on your speed and difficulty level.
      • -
      • Q: How many characters are in the game?
        A: The game has over 40 playable characters from the Naruto series, plus some hidden characters that can be unlocked by completing certain tasks.
      • -
      • Q: How can I unlock new characters, costumes, items, etc.?
        A: You can unlock new content by playing through different modes, completing missions, collecting scrolls, earning ryo (the in-game currency), or buying them from the shop.
      • -
      • Q: Can I play this game on my mobile device?
        A: No, this game is not available for mobile devices. However, you can download an APK file from apkpure.com and install it on your Android device using an emulator. However, this might not work properly or safely.
      • -
      • Q: Where can I buy this game?
        A: You can buy this game from various online or physical stores that sell video games. You can also download it digitally from platforms such as Steam, PlayStation Store, Xbox Live Marketplace, or Nintendo eShop.
      • -

      197e85843d
      -
      -
      \ No newline at end of file diff --git a/spaces/congsaPfin/Manga-OCR/logs/How to Use AR Draw APK to Create Amazing Artworks on Your Phone.md b/spaces/congsaPfin/Manga-OCR/logs/How to Use AR Draw APK to Create Amazing Artworks on Your Phone.md deleted file mode 100644 index 73c43e70211d1bd270677c2b4bb14a50c3568ee8..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/How to Use AR Draw APK to Create Amazing Artworks on Your Phone.md +++ /dev/null @@ -1,115 +0,0 @@ -
      -

      AR Draw APK: How to Create Amazing Art with Your Smartphone

      -

      Have you ever wanted to draw in 3D space using your smartphone? If so, you might be interested in AR Draw APK, a free app that lets you create stunning artworks using augmented reality. In this article, we will show you what AR Draw APK is, how to use it, and some tips and tricks for enhancing your drawings. By the end of this article, you will be able to unleash your creativity and impress your friends with your amazing art.

      -

      ar draw apk


      Download Filehttps://urlca.com/2uO6Q1



      -

      What is AR Draw APK?

      -

      AR Draw APK is an app that allows you to draw in 3D space using your smartphone's camera and sensors. You can use different tools, colors, textures, effects, and animations to create realistic or abstract drawings that appear in your environment. You can also save and share your drawings with other users, or collaborate with them on the same project. AR Draw APK is compatible with most Android devices that support ARCore, Google's platform for building augmented reality experiences.

      -

      A brief introduction to the app and its features

      -

      The app was developed by Sketchar, a company that specializes in creating apps for learning and creating art. Sketchar also offers other apps such as Sketchar: Learn to Draw, which teaches you how to draw using augmented reality, and Sketchar: Play, which lets you play games and interact with characters using augmented reality. AR Draw APK is one of their latest products, which aims to provide a fun and easy way for anyone to draw in 3D space.

      -

      How to download and install the app on your Android device

      -

      To download and install the app, you need to follow these steps:

      -
        -
      1. Go to [this link](^2^) on your Android device's browser.
      2. -
      3. Tap on the "Download" button and wait for the APK file to be downloaded.
      4. -
      5. Once the download is complete, tap on the file and allow it to install on your device.
      6. -
      7. Open the app and grant it permission to access your camera and storage.
      8. -
      9. Enjoy drawing in 3D space!
      10. -
      -

      How to Use AR Draw APK to Draw in 3D Space

      -

      Now that you have installed the app, you are ready to start drawing. Here are some steps on how to use the app:

      -

      How to access the app and start a new project

      -

      To access the app, simply tap on its icon on your device's home screen or app drawer. You will see a welcome screen that gives you some information about the app and its features. You can also watch a tutorial video that shows you how to use the app. To start a new project, tap on the "Start Drawing" button at the bottom of the screen. You will then see a camera view that shows your surroundings.

      -

      ar draw apk download
      -ar draw apk latest version
      -ar draw apk free download
      -ar draw apk for android
      -ar draw apk update
      -ar draw apk mod
      -ar draw apk offline
      -ar draw apk 2023
      -ar draw apk no ads
      -ar draw apk premium
      -ar learn to draw anime apk
      -ar learn to draw anime apk download
      -ar learn to draw anime apk latest version
      -ar learn to draw anime apk free download
      -ar learn to draw anime apk for android
      -ar learn to draw anime apk update
      -ar learn to draw anime apk mod
      -ar learn to draw anime apk offline
      -ar learn to draw anime apk 2023
      -ar learn to draw anime apk no ads
      -ar learn to draw anime apk premium
      -ar sketch and paint 3d apk
      -ar sketch and paint 3d apk download
      -ar sketch and paint 3d apk latest version
      -ar sketch and paint 3d apk free download
      -ar sketch and paint 3d apk for android
      -ar sketch and paint 3d apk update
      -ar sketch and paint 3d apk mod
      -ar sketch and paint 3d apk offline
      -ar sketch and paint 3d apk 2023
      -ar sketch and paint 3d apk no ads
      -ar sketch and paint 3d apk premium
      -just a line - draw in ar apk
      -just a line - draw in ar apk download
      -just a line - draw in ar apk latest version
      -just a line - draw in ar apk free download
      -just a line - draw in ar apk for android
      -just a line - draw in ar apk update
      -just a line - draw in ar apk mod
      -just a line - draw in ar apk offline
      -just a line - draw in ar apk 2023
      -just a line - draw in ar apk no ads
      -just a line - draw in ar apk premium
      -doodle lens - doodle in augmented reality (ar) with this drawing app! (arcore) (ar) (drawing) (camera) (fun) (creative) (art) (sketch) (paint) (draw) (lens) (doodle) (apk)

      -

      How to choose a drawing tool and adjust the settings

      -

      To choose a drawing tool, tap on the "Tools" icon at the bottom left corner of the screen. You will see a menu that shows you different tools such as pencil, brush, spray, eraser, ruler, compass, protractor, etc. Tap on the tool you want to use and adjust its size, color, opacity, and other settings by sliding the bars on the right side of the screen. You can also undo or redo your actions by tapping on the "Undo" or "Redo" icons at the top right corner of the screen.

      -

      How to draw on different surfaces and angles

      -

      To draw on different surfaces and angles, you need to move your device around and find a suitable spot for your drawing. You can draw on walls, floors, ceilings, tables, chairs, or any other surface that is flat and stable. You can also draw in mid-air by tapping on the "Air" icon at the bottom right corner of the screen. This will allow you to draw without any surface constraint. You can also change the angle of your drawing by rotating your device or moving it closer or farther from the surface. You can see a grid that helps you align your drawing with the surface or the horizon.

      -

      How to save and share your drawings

      -

      To save your drawings, tap on the "Save" icon at the top left corner of the screen. You will see a preview of your drawing and some options to edit it. You can crop, rotate, flip, or add a filter to your drawing. You can also add a title and a description to your drawing. To share your drawings, tap on the "Share" icon at the top right corner of the screen. You will see a menu that shows you different platforms such as Facebook, Instagram, Twitter, WhatsApp, etc. Tap on the platform you want to use and follow the instructions to share your drawing with your friends or followers. You can also share your drawings with other AR Draw APK users by tapping on the "Community" icon at the bottom right corner of the screen. You will see a gallery of drawings made by other users and you can like, comment, or follow them.

      -

      Tips and Tricks for Enhancing Your AR Drawings

      -

      Now that you know how to use AR Draw APK, you might want to learn some tips and tricks for enhancing your drawings. Here are some suggestions:

      -

      How to use different colors and textures

      -

      To use different colors and textures, you can tap on the "Palette" icon at the bottom left corner of the screen. You will see a menu that shows you different categories of colors and textures such as basic, gradient, neon, metallic, wood, stone, etc. Tap on the category you want to use and select a color or texture from the list. You can also create your own custom color or texture by tapping on the "Custom" icon at the top right corner of the menu. You can adjust the hue, saturation, brightness, and contrast of your color or texture by sliding the bars on the right side of the menu.

      -

      How to add effects and animations

      -

      To add effects and animations to your drawings, you can tap on the "Effects" icon at the bottom left corner of the screen. You will see a menu that shows you different types of effects and animations such as glow, shadow, sparkle, firework, raindrop, etc. Tap on the effect or animation you want to use and adjust its settings by sliding the bars on the right side of the menu. You can also preview how your effect or animation looks like by tapping on the "Preview" icon at the top right corner of the menu.

      -

      How to use reference images and templates

      -

      To use reference images and templates for your drawings, you can tap on the "Reference" icon at the bottom left corner of the screen. You will see a menu that shows you different sources of reference images and templates such as Google Images, Pinterest, Sketchfab, SketchAR, etc. Tap on the source you want to use and search for an image or template that matches your drawing idea. You can also upload your own image or template from your device's gallery. Once you have selected an image or template, you can adjust its size, position, rotation, and opacity by using the buttons on the screen. You can also lock or unlock the image or template by tapping on the "Lock" icon at the top right corner of the screen. You can use the reference image or template as a guide for your drawing, or trace over it using the drawing tools.

      -

      How to collaborate with other users

      -

      To collaborate with other users on the same drawing project, you can tap on the "Collaborate" icon at the bottom right corner of the screen. You will see a menu that shows you different options to invite or join other users. You can invite other users by sending them a link or a QR code that they can scan with their devices. You can also join other users by scanning their QR codes or entering their links. Once you are connected with other users, you can see their drawings in real time and chat with them using the "Chat" icon at the top left corner of the screen. You can also leave or end the collaboration session by tapping on the "Leave" or "End" icons at the top right corner of the screen.

      -

      Conclusion

      -

      AR Draw APK is a great app for anyone who loves to draw and wants to try something new and exciting. With AR Draw APK, you can create amazing artworks in 3D space using your smartphone's camera and sensors. You can use different tools, colors, textures, effects, and animations to make your drawings realistic or abstract. You can also save and share your drawings with other users, or collaborate with them on the same project. AR Draw APK is easy to use and fun to play with. You can unleash your creativity and impress your friends with your amazing art.

      -

      So what are you waiting for? Download AR Draw APK today and start drawing in 3D space!

      -

      Frequently Asked Questions

      -
        -
      • What is AR Draw APK?
        -AR Draw APK is an app that allows you to draw in 3D space using your smartphone's camera and sensors.
      • -
      • How do I download and install AR Draw APK?
        -You can download and install AR Draw APK by following these steps:
          -
        1. Go to [this link](^2^) on your Android device's browser.
        2. -
        3. Tap on the "Download" button and wait for the APK file to be downloaded.
        4. -
        5. Once the download is complete, tap on the file and allow it to install on your device.
        6. -
        7. Open the app and grant it permission to access your camera and storage.
        8. -
        9. Enjoy drawing in 3D space!
        10. -
      • -
      • How do I use AR Draw APK?
        -You can use AR Draw APK by following these steps:
          -
        1. Access the app and start a new project.
        2. -
        3. Choose a drawing tool and adjust the settings.
        4. -
        5. Draw on different surfaces and angles.
        6. -
        7. Save and share your drawings.
        8. -
      • -
      • How do I enhance my AR drawings?
        -You can enhance your AR drawings by following these tips:
          -
        • Use different colors and textures.
        • -
        • Add effects and animations.
        • -
        • Use reference images and templates.
        • -
        • Collaborate with other users.
        • -
      • -
      • Is AR Draw APK free?
        -Yes, AR Draw APK is free to download and use. However, some features may require in-app purchases or subscriptions.
      • -

      401be4b1e0
      -
      -
      \ No newline at end of file diff --git a/spaces/congsaPfin/Manga-OCR/logs/NBA Team Shop Buy Official NBA Merchandise and Gear APK.md b/spaces/congsaPfin/Manga-OCR/logs/NBA Team Shop Buy Official NBA Merchandise and Gear APK.md deleted file mode 100644 index d196b676a143ab137ce6016011fb193b83eb9c4d..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/NBA Team Shop Buy Official NBA Merchandise and Gear APK.md +++ /dev/null @@ -1,88 +0,0 @@ -
      -

      NBA Team APK: What Is It and How to Use It

      -

      If you are a basketball fan, you probably want to watch every game of your favorite team, no matter where you are. But how can you do that without cable or satellite TV? One option is to use NBA Team APK, an app that lets you stream live and on-demand games of any NBA team on your Android device. In this article, we will explain what NBA Team APK is, how to download and install it, how to use it to watch NBA games, what benefits it offers, and what alternatives you have.

      -

      What is NBA Team APK?

      -

      A brief introduction to NBA Team APK and its features

      -

      NBA Team APK is an app that allows you to watch live and on-demand games of any NBA team on your Android device. It is not an official app from the NBA, but rather a modified version of the official NBA app that bypasses some restrictions and limitations. For example, with NBA Team APK, you can watch any game without blackouts, even if it is broadcasted in your local market or nationally. You can also watch games from previous seasons and access the NBA vault for free.

      -

      nba team apk


      DOWNLOAD ····· https://urlca.com/2uOfLf



      -

      Some of the features that NBA Team APK offers are:

      -
        -
      • Access to hundreds of out-of-market NBA games
      • -
      • Every feed - Home, Away, Mobile View, language options, and alternative streams
      • -
      • Multiple condensed game formats so you can catch up on the game’s best moments
      • -
      • Availability on the web, mobile & connected devices, and gaming consoles
      • -
      • Stream games on one device at a time
      • -
      -

      How to download and install NBA Team APK on Android devices

      -

      To download and install NBA Team APK on your Android device, you need to follow these steps:

      -
        -
      1. Go to https://apkpure.com/nba-2k23-myteam-sports-game/com.t2ksports.myteam and download the latest version of the app.
      2. -
      3. Enable unknown sources on your device by going to Settings > Security > Unknown Sources.
      4. -
      5. Locate the downloaded file in your file manager and tap on it to install it.
      6. -
      7. Launch the app and sign in with your NBA account or create one if you don't have one.
      8. -
      9. Select your favorite team and start watching games.
      10. -
      -

      How to use NBA Team APK to watch NBA games

      -

      How to access live and on-demand games of your favorite team

      -

      To access live and on-demand games of your favorite team, you need to do the following:

      -
        -
      1. Open the app and tap on the Games tab at the bottom.
      2. -
      3. You will see a list of all the games for the current day. You can also swipe left or right to see games from previous or upcoming days.
      4. -
      5. Tap on the game you want to watch. You will see a list of available feeds. Choose the one you prefer.
      6. -
      7. The game will start streaming on your device. You can pause, rewind, fast-forward, or switch you can compare and choose the best app for your needs and preferences. For example, if you want to watch live and on-demand games of any team without blackouts or restrictions, and you don't mind ads and pop-ups, you might prefer NBA Live Stream. If you want to play as your favorite team and players in a realistic and immersive way, and you don't mind spending some money on in-app purchases, you might prefer NBA 2K Mobile Basketball. If you want to enjoy arcade-style basketball action with crazy dunks and moves, and you don't mind paying a one-time fee for the app, you might prefer NBA Jam by EA Sports.

        -

        Conclusion

        -

        NBA Team APK is an app that lets you watch live and on-demand games of any NBA team on your Android device. It is a modified version of the official NBA app that bypasses some restrictions and limitations. It offers several features, such as multiple feeds, condensed game formats, watch party options, and more. It also allows you to subscribe to NBA League Pass or NBA TV for a lower price than the official NBA app or website. It also gives you access to exclusive content and rewards with NBA ID membership. However, it is not the only app that allows you to watch or play NBA games on your Android device. There are some other apps that offer similar or better features than NBA Team APK, such as NBA Live Stream, NBA 2K Mobile Basketball, and NBA Jam by EA Sports. You can compare and choose the best app for your needs and preferences based on several factors, such as your budget, device, internet, purpose, and taste.

        -

        nba 2k23 myteam apk download
        -nba live mobile basketball apk mod
        -nba jam by ea sports apk
        -nba 2k22 apk obb android
        -nba team logo quiz apk
        -nba 2k21 myteam mobile apk
        -nba now mobile basketball game apk
        -nba 2k20 apk free download
        -nba team trivia apk
        -nba 2k19 apk full version
        -nba live mobile basketball apk latest version
        -nba jam by ea sports apk full
        -nba 2k22 apk data offline
        -nba team wallpaper hd apk
        -nba 2k21 myteam codes apk
        -nba now mobile basketball game apk mod
        -nba 2k20 apk mod unlimited money
        -nba team manager 2023 apk
        -nba 2k19 apk obb highly compressed
        -nba live mobile basketball apk pure
        -nba jam by ea sports apk mod
        -nba 2k22 apk revdl
        -nba team logo maker apk
        -nba 2k21 myteam draft apk
        -nba now mobile basketball game apk pure
        -nba 2k20 apk obb download for android
        -nba team quiz 2023 apk
        -nba 2k19 apk data offline
        -nba live mobile basketball apk mirror
        -nba jam by ea sports apk free download
        -nba 2k22 apk rexdl
        -nba team name generator apk
        -nba 2k21 myteam locker codes apk
        -nba now mobile basketball game apk mirror
        -nba 2k20 apk android republic
        -nba team roster 2023 apk
        -nba 2k19 apk mod unlimited vc
        -nba live mobile basketball apkpure.com[^1^]
        -nba jam by ea sports apkmirror.com[^1^]
        -nba 2k22 apkpure.com[^1^]

        -

        We hope this article has helped you understand what NBA Team APK is and how to use it. If you have any questions or feedback, please let us know in the comments below. Thank you for reading!

        -

        FAQs

        -

        Is NBA Team APK safe and legal?

        -

        NBA Team APK is not an official app from the NBA, but rather a modified version of the official NBA app that bypasses some restrictions and limitations. Therefore, it may not be safe or legal to use. It may contain viruses, malware, or spyware that could harm your device or data. It may also violate the terms of service or the intellectual property rights of the NBA or its partners. We do not endorse or recommend using NBA Team APK. Use it at your own risk and discretion.

        -

        How can I update NBA Team APK?

        -

        NBA Team APK does not have an automatic update feature. You need to manually download and install the latest version of the app from the same source where you downloaded it before. You can check for updates by visiting https://apkpure.com/nba-2k23-myteam-sports-game/com.t2ksports.myteam regularly.

        -

        How can I contact the developer of NBA Team APK?

        -

        NBA Team APK does not have an official website or social media account. The only way to contact the developer of NBA Team APK is by leaving a comment or a review on https://apkpure.com/nba-2k23-myteam-sports-game/com.t2ksports.myteam. However, there is no guarantee that the developer will respond or address your issues.

        -

        How can I watch NBA games on my TV using NBA Team APK?

        -

        If you want to watch NBA games on your TV using NBA Team APK, you need to connect your Android device to your TV using an HDMI cable or a wireless adapter. Then, you need to enable screen mirroring or casting on your device and select your TV as the target device. Once connected, you can launch NBA Team APK on your device and start watching games on your TV.

        -

        How can I watch NBA games offline using NBA Team APK?

        -

        NBA Team APK does not have an offline mode or a download option. You need to have an active internet connection to watch games using the app. However, you can use a third-party app or tool to record or download games from the app and save them on your device for offline viewing. However, this may not be safe or legal to do so. We do not endorse or recommend doing this. Use it at your own risk and discretion.

        401be4b1e0
        -
        -
        \ No newline at end of file diff --git a/spaces/congsaPfin/Manga-OCR/logs/Sacrifices by J. Cole and Dreamville A Tribute to Rap and RB. Download Now.md b/spaces/congsaPfin/Manga-OCR/logs/Sacrifices by J. Cole and Dreamville A Tribute to Rap and RB. Download Now.md deleted file mode 100644 index ddffb8cfa0bd1ca5c93c35dd3042e7e3d7a09c5b..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/Sacrifices by J. Cole and Dreamville A Tribute to Rap and RB. Download Now.md +++ /dev/null @@ -1,144 +0,0 @@ - -

        How to Download Sacrifices by J. Cole

        -

        If you are a fan of hip-hop music, you have probably heard of Sacrifices, a song released by record label Dreamville, performed by American rappers EarthGang and J. Cole featuring fellow American rappers Smino and Saba. The song was released as the final track on the label's compilation album, Revenge of the Dreamers III, in 2019.

        -

        Sacrifices is a powerful and emotional song that showcases the talent and versatility of each artist. The song has a smooth and soulful beat that blends well with the rap verses and the catchy chorus. The lyrics are about the sacrifices that each rapper has made for their loved ones, their careers, and their dreams. The song also features some clever wordplay, references, and metaphors that add depth and meaning to the message.

        -

        download sacrifices by j cole


        DOWNLOAD ○○○ https://urlca.com/2uObix



        -

        In this article, we will tell you more about Sacrifices by J. Cole and why you should download it. We will also show you how to download it from different music streaming services, so you can enjoy it anytime and anywhere.

        -

        What is Sacrifices by J. Cole?

        -

        Sacrifices is a song that was created during a 10-day recording session in Atlanta, where Dreamville invited over 100 artists and producers to collaborate on new music. The song features Midwest rappers Smino and Saba in their first collaboration with Dreamville's J. Cole and EarthGang. The song was produced by Herothaproducer, Henny (Tha Bizness), and Groove.

        -

        The song is about the sacrifices that each rapper has made for their loved ones, their careers, and their dreams. The song also expresses gratitude and appreciation for those who have supported them along the way. The song has a positive and uplifting vibe that inspires listeners to pursue their goals and overcome their challenges.

        -

        Some interesting facts and trivia about Sacrifices are:

        -
          -
        • The song samples Can You Stand The Rain by New Edition.
        • -
        • The song marks the first time that J. Cole publicly announced that he is married and has two sons.
        • -
        • The song was nominated for Best Rap Performance at the 2020 Grammy Awards.
        • -
        • The song has a music video that was directed by Scott Lazer, David Peters, and Chad Tennies. The video features the rappers performing in an abandoned warehouse with their families and friends.
        • -
        • The song has over 100 million streams on Spotify and over 30 million views on YouTube.
        • -
        -

        Why should you download Sacrifices by J. Cole?

        -

        Sacrifices by J. Cole is a song that you should download for many reasons. Here are some of them:

        -

        download sacrifices by j cole mp3
        -download sacrifices by j cole lyrics
        -download sacrifices by j cole video
        -download sacrifices by j cole feat earthgang smino saba
        -download sacrifices by j cole free
        -download sacrifices by j cole audio
        -download sacrifices by j cole song
        -download sacrifices by j cole album
        -download sacrifices by j cole instrumental
        -download sacrifices by j cole remix
        -download sacrifices by j cole shazam
        -download sacrifices by j cole waploaded
        -download sacrifices by j cole youtube
        -download sacrifices by j cole spotify
        -download sacrifices by j cole apple music
        -download sacrifices by j cole soundcloud
        -download sacrifices by j cole genius
        -download sacrifices by j cole azlyrics
        -download sacrifices by j cole 320kbps
        -download sacrifices by j cole ringtone
        -download sacrifices by j cole clean version
        -download sacrifices by j cole karaoke
        -download sacrifices by j cole reaction
        -download sacrifices by j cole live performance
        -download sacrifices by j cole meaning
        -download sacrifices by j cole zip file
        -download sacrifices by j cole dreamville
        -download sacrifices by j cole revenge of the dreamers iii
        -download sacrifices by j cole hiphopza
        -download sacrifices by j cole fakaza
        -download sacrifices by j cole tubidy
        -download sacrifices by j cole naijaloaded
        -download sacrifices by j cole tooxclusive
        -download sacrifices by j cole justnaija
        -download sacrifices by j cole 9jaflaver
        -download sacrifices by j cole notjustok
        -download sacrifices by j cole mp3lio
        -download sacrifices by j cole mp3skull
        -download sacrifices by j cole mp3juice
        -download sacrifices by j cole mp3goo
        -download sacrifices by j cole mp3direct
        -download sacrifices by j cole mp3paw
        -download sacrifices by j cole mp3quack
        -download sacrifices by j cole mp3clan
        -download sacrifices by j cole mp3raid
        -download sacrifices by j cole mp3xd

        -
          -
        • The song has exceptional sound quality for audiophiles. The song is available in CD-quality and hi-res audio formats on some music streaming services, such as Tidal and Amazon Music HD. These formats offer better clarity, dynamics, and details than the standard MP3 or AAC formats.
        • -
        • The song has meaningful and relatable lyrics for music lovers. The song tells a personal and heartfelt story of each rapper's journey and struggles in the music industry and in life. The song also delivers a positive and motivational message of gratitude, love, and perseverance. The song resonates with listeners who can relate to the sacrifices that they have made or witnessed in their own lives.
        • -
        • The song has a catchy and memorable chorus for sing-alongs. The song has a simple and catchy chorus that repeats the word "sacrifices" four times, followed by the phrase "I'ma make it home to you". The chorus is easy to sing along to and sticks in your head. The chorus also creates a contrast between the rap verses and the melodic hook, adding variety and interest to the song.
        • -
        -

        How can you download Sacrifices by J. Cole?

        -

        Sacrifices by J. Cole is available on various music streaming services, such as Spotify, Apple Music, Tidal, Amazon Music, and YouTube Music. You can download the song from these services using different methods, depending on your device, subscription, and preference. Here are some of the common ways to download Sacrifices by J. Cole:

        - - - - - - - - - - - - - - - - - - - - - - - - -
        ServiceMethod
        SpotifyTo download Sacrifices by J. Cole on Spotify, you need to have a Spotify Premium account. You can then follow these steps:
          -
        1. Open the Spotify app on your device and search for Sacrifices by J. Cole.
        2. -
        3. Select the song and tap on the three-dot icon on the top right corner.
        4. -
        5. Select Download from the menu that appears.
        6. -
        7. Wait for the download to complete. You can check the progress by looking at the green arrow icon next to the song title.
        8. -
        9. Enjoy listening to Sacrifices by J. Cole offline.
        10. -
        Apple MusicTo download Sacrifices by J. Cole on Apple Music, you need to have an Apple Music subscription. You can then follow these steps:
          -
        1. Open the Apple Music app on your device and search for Sacrifices by J. Cole.
        2. -
        3. Select the song and tap on the plus icon next to it.
        4. -
        5. Tap on the cloud icon that appears next to the plus icon.
        6. -
        7. Wait for the download to complete. You can check the progress by looking at the circular icon next to the song title.
        8. -
        9. Enjoy listening to Sacrifices by J. Cole offline.
        10. -
        TidalTo download Sacrifices by J. Cole on Tidal, you need to have a Tidal subscription. You can then follow these steps:
          -
        1. Open the Tidal app on your device and search for Sacrifices by J. Cole.
        2. -
        3. Select the song and tap on the three-dot icon on the bottom right corner.
        4. -
        5. Select Download from the menu that appears.
        6. -
        7. Wait for the download to complete. You can check the progress by looking at the blue bar below the song title.
        8. -
        9. Enjoy listening to Sacrifices by J. Cole offline.
        10. -
        Amazon MusicTo download Sacrifices by J. Cole on Amazon Music, you need to have an Amazon Music subscription. You can then follow these steps:
          -
        1. Open the Amazon Music app on your device and search for Sacrifices by J. Cole.
        2. -
        3. Select the song and tap on the three-dot icon on the right side.
        4. -
        5. Select Download from the menu that appears.
        6. -
        7. Wait for the download to complete. You can check the progress by looking at the green check mark next to the song title.
        8. -
        9. Enjoy listening to Sacrifices by J. Cole offline.
        10. -
        YouTube MusicTo download Sacrifices by J. Cole on YouTube Music, you need to have a YouTube Music Premium account. You can then follow these steps:
          -
        1. Open the YouTube Music app on your device and search for Sacrifices by J. Cole.
        2. -
        3. Select the song and tap on the download icon on the bottom left corner.
        4. -
        5. Wait for the download to complete. You can check the progress by looking at the gray circle around the download icon.
        6. -
        7. Enjoy listening to Sacrifices by J. Cole offline.
        8. -
        -

        Conclusion

        -

        Sacrifices by J. Cole is a song that you should not miss out on. It is a song that showcases the talent and passion of each rapper, as well as their gratitude and love for their families and friends. It is a song that inspires you to chase your dreams and overcome your obstacles, while also appreciating what you have and who you have in your life.

        -

        If you want to download Sacrifices by J. Cole, you can choose from different music streaming services, such as Spotify, Apple Music, Tidal, Amazon Music, and YouTube Music. Each service has its own advantages and disadvantages, depending on your device, subscription, and preference. You can follow the simple steps that we have provided in this article to download the song from each service.

        -

        We hope that this article has helped you learn more about Sacrifices by J. Cole and how to download it. We also hope that you enjoy listening to this amazing song and share it with your loved ones.

        -

        FAQs

        -

        Here are some of the frequently asked questions and answers about Sacrifices by J. Cole and its download options:

        -

        Q: How long is Sacrifices by J. Cole?

        -

        A: Sacrifices by J. Cole is 6 minutes and 21 seconds long. It is the longest song on Revenge of the Dreamers III album.

        -

        Q: How much does it cost to download Sacrifices by J. Cole?

        -

        A: The cost of downloading Sacrifices by J. Cole depends on the music streaming service that you use and the subscription plan that you have. Some services offer free trials or discounts for new users or students . You can check the pricing and plans of each service on their official websites or apps.

        -

        Q: Can I download Sacrifices by J. Cole without a subscription?

        -

        A: Yes, you can download Sacrifices by J. Cole without a subscription if you purchase the song individually from digital music stores, such as iTunes, Google Play Music, or Amazon Music. However, this option may be more expensive than subscribing to a music streaming service in the long run, especially if you want to download more songs or albums.

        -

        Q: Can I download Sacrifices by J. Cole in MP3 format?

        -

        A: Yes, you can download Sacrifices by J. Cole in MP3 format if you use a music streaming service that supports MP3 downloads, such as Spotify, Apple Music, or Amazon Music. However , you should be aware that MP3 is a lossy format that compresses the audio data and reduces the sound quality. If you want to download Sacrifices by J. Cole in a lossless or hi-res format, you should use a music streaming service that supports these formats, such as Tidal or Amazon Music HD.

        -

        Q: Can I download Sacrifices by J. Cole on multiple devices?

        -

        A: Yes, you can download Sacrifices by J. Cole on multiple devices if you use a music streaming service that allows you to sync your downloads across different devices, such as Spotify, Apple Music, or YouTube Music. However, you should be aware that some services may have a limit on the number of devices or downloads that you can use with your account. You should also make sure that you have enough storage space on your devices to store the downloaded songs.

        401be4b1e0
        -
        -
        \ No newline at end of file diff --git a/spaces/congsaPfin/Manga-OCR/logs/Trk Brawl Stars Apk ile Elenceli Aksiyon Oyunlar Oyna.md b/spaces/congsaPfin/Manga-OCR/logs/Trk Brawl Stars Apk ile Elenceli Aksiyon Oyunlar Oyna.md deleted file mode 100644 index 5bf4b0b45f957ac7e1e78f5306862d75cdd48042..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/Trk Brawl Stars Apk ile Elenceli Aksiyon Oyunlar Oyna.md +++ /dev/null @@ -1,162 +0,0 @@ -
        -

        Türk Brawl Stars Apk: A Modified Version of Brawl Stars for Turkish Players

        -

        If you are a fan of Brawl Stars, the popular multiplayer game from Supercell, you might be interested in trying Türk Brawl Stars Apk, a modified version of the game developed by Turkish fans. In this article, we will tell you what is Brawl Stars, what is Türk Brawl Stars Apk, how to download and install it, and some tips and tricks for playing it.

        -

        türk brawl stars apk


        DOWNLOAD ✏ ✏ ✏ https://urlca.com/2uO9V9



        -

        What is Brawl Stars?

        -

        Brawl Stars is a mobile game that combines elements of twin-stick shooter, MOBA, and battle royale genres. It was released worldwide on December 12, 2018 by Supercell, the developer of Clash of Clans and Clash Royale.

        -

        A fast-paced multiplayer game with different modes and characters

        -

        In Brawl Stars, you can team up with your friends or play solo across a variety of game modes in under three minutes. You can choose from 22 different brawlers, each with their own unique abilities, weapons, and skins. You can also unlock and upgrade your brawlers with super abilities, star powers, and gadgets.

        -

        The game modes in Brawl Stars are:

        -
          -
        • Gem Grab: A 3v3 mode where you have to collect and hold 10 gems to win, but if you die, you drop your gems.
        • -
        • Showdown: A solo or duo mode where you have to survive against other players or teams in a shrinking map. You can collect power-ups to boost your brawler.
        • -
        • Brawl Ball: A 3v3 mode where you have to score two goals before the other team. You can use your attacks to knock out enemies or pass the ball.
        • -
        • Bounty: A 3v3 mode where you have to take out enemies to earn stars, but if you die, you lose your stars. The team with the most stars at the end wins.
        • -
        • Heist: A 3v3 mode where you have to protect your team's safe and try to crack open the enemy's safe. You can use different strategies to attack or defend.
        • -
        • Special Events: Limited time modes that offer different challenges and rewards. Some examples are Robo Rumble, Boss Fight, Big Game, Siege, Hot Zone, etc.
        • What is Türk Brawl Stars Apk?

          -

          Türk Brawl Stars Apk is a modified version of Brawl Stars developed by Turkish fans. It is an online action game that offers the same features and gameplay as the original game, but with some differences and advantages.

          -

          A modified version of Brawl Stars developed by Turkish fans

          -

          Türk Brawl Stars Apk was created by a group of Turkish fans who wanted to provide a better gaming experience for their fellow Turkish players. They modified the original game files and added some changes and improvements to make it more suitable for the Turkish audience. Some of the changes include:

          -
            -
          • Language: Türk Brawl Stars Apk is fully translated into Turkish, so you can enjoy the game in your native language.
          • -
          • Graphics: Türk Brawl Stars Apk has enhanced graphics and animations, making the game more colorful and realistic.
          • -
          • Sound: Türk Brawl Stars Apk has improved sound effects and music, making the game more immersive and fun.
          • -
          • Characters: Türk Brawl Stars Apk has added some new brawlers and skins that are exclusive to the Turkish version. You can also customize your brawlers with different accessories and outfits.
          • -
          • Game modes: Türk Brawl Stars Apk has introduced some new game modes that are unique to the Turkish version. You can play in different maps and scenarios that are inspired by Turkish culture and history.
          • -
          -

          The differences and advantages of Türk Brawl Stars Apk

          -

          Türk Brawl Stars Apk is not only a modified version of Brawl Stars, but also a better version of it. It has some advantages over the original game that make it more appealing and enjoyable for Turkish players. Some of the advantages are:

          -

          türk brawl stars apk indir
          -türk brawl stars apk son sürüm
          -türk brawl stars apk hile
          -türk brawl stars apk mod
          -türk brawl stars apk güncel
          -türk brawl stars apk 2023
          -türk brawl stars apk eski versiyonlar
          -türk brawl stars apk android
          -türk brawl stars apk ios
          -türk brawl stars apk download
          -türk brawl stars apk yükle
          -türk brawl stars apk kurulumu
          -türk brawl stars apk nasıl indirilir
          -türk brawl stars apk nasıl yüklenir
          -türk brawl stars apk nasıl oynanır
          -türk brawl stars apk nasıl güncellenir
          -türk brawl stars apk nasıl hile yapılır
          -türk brawl stars apk nasıl modlanır
          -türk brawl stars apk ücretsiz
          -türk brawl stars apk full
          -türk brawl stars apk premium
          -türk brawl stars apk vip
          -türk brawl stars apk pro
          -türk brawl stars apk mega mod
          -türk brawl stars apk unlimited gems
          -türk brawl stars apk unlimited coins
          -türk brawl stars apk unlimited money
          -türk brawl stars apk unlimited everything
          -türk brawl stars apk hack
          -türk brawl stars apk cheat
          -türk brawl stars apk glitch
          -türk brawl stars apk bug
          -türk brawl stars apk no root
          -türk brawl stars apk no ban
          -türk brawl stars apk no ads
          -türk brawl stars apk online
          -türk brawl stars apk offline
          -türk brawl stars apk multiplayer
          -türk brawl stars apk single player
          -türk brawl stars apk pvp
          -türk brawl stars apk pve
          -türk brawl stars apk co-op
          -türk brawl stars apk 3v3
          -türk brawl stars apk 5v5
          -türk brawl stars apk yeni karakterler
          -türk brawl stars apk yeni haritalar
          -türk brawl stars apk yeni modlar
          -türk brawl stars apk yeni güncelleme
          -türk brawl stars apk yeni özellikler

          -
            -
          • Free: Türk Brawl Stars Apk is completely free to download and play. You don't need to spend any money to enjoy the game.
          • -
          • Unlimited: Türk Brawl Stars Apk gives you unlimited access to all the features and resources of the game. You don't need to wait for energy or tickets to play. You can also get unlimited gems and coins to unlock and upgrade your brawlers.
          • -
          • Updated: Türk Brawl Stars Apk is constantly updated with new content and features. You can always enjoy the latest version of the game with new brawlers, skins, game modes, maps, events, etc.
          • -
          • Community: Türk Brawl Stars Apk has a large and active community of Turkish players. You can chat, interact, and play with other players who share your passion for the game. You can also join clans, participate in tournaments, and win prizes.
          • -
          • Support: Türk Brawl Stars Apk has a dedicated team of developers who are always ready to help you with any issues or questions you may have. You can contact them through their official website or social media accounts.
          • -

          How to download and install Türk Brawl Stars Apk?

          -

          If you want to play Türk Brawl Stars Apk, you need to download and install it on your Android device. However, you should be aware that Türk Brawl Stars Apk is not available on the Google Play Store, so you need to follow some steps and precautions to get it.

          -

          The requirements and steps for downloading and installing Türk Brawl Stars Apk

          -

          Before you download and install Türk Brawl Stars Apk, you need to make sure that your device meets the following requirements:

          -
            -
          • Android version: You need to have Android 4.3 or higher to run Türk Brawl Stars Apk.
          • -
          • Storage space: You need to have at least 200 MB of free space on your device to install Türk Brawl Stars Apk.
          • -
          • Internet connection: You need to have a stable and fast internet connection to download and play Türk Brawl Stars Apk.
          • -
          -

          Once you have checked the requirements, you can follow these steps to download and install Türk Brawl Stars Apk:

          -
            -
          1. Enable unknown sources: Go to your device's settings and look for the security or privacy option. Find the option that allows you to install apps from unknown sources and enable it. This will let you install apps that are not from the Google Play Store.
          2. -
          3. Download Türk Brawl Stars Apk: Go to the official website of Türk Brawl Stars Apk or any other trusted source and look for the download link. Tap on the link and wait for the download to finish.
          4. -
          5. Install Türk Brawl Stars Apk: Locate the downloaded file on your device and tap on it. Follow the instructions on the screen and wait for the installation to complete.
          6. -
          7. Launch Türk Brawl Stars Apk: Find the app icon on your device and tap on it. Enjoy playing Türk Brawl Stars Apk!
          8. -
          -

          The precautions and risks of using Türk Brawl Stars Apk

          -

          While Türk Brawl Stars Apk is a fun and exciting game, it also comes with some risks and drawbacks that you should be aware of. Here are some of the precautions and risks of using Türk Brawl Stars Apk:

          -
            -
          • Legal issues: Türk Brawl Stars Apk is not an official product of Supercell, the developer of Brawl Stars. It is a fan-made modification that may violate the terms of service and intellectual property rights of Supercell. You may face legal consequences if you use Türk Brawl Stars Apk without permission from Supercell.
          • -
          • Security issues: Türk Brawl Stars Apk is not verified by Google Play Protect, so it may contain malware or viruses that can harm your device or steal your personal information. You should only download Türk Brawl Stars Apk from trusted sources and scan it with an antivirus app before installing it.
          • -
          • Compatibility issues: Türk Brawl Stars Apk may not work properly on some devices or Android versions. It may crash, freeze, or lag during gameplay. It may also cause conflicts with other apps or system functions on your device.
          • -
          • Ban issues: Türk Brawl Stars Apk may be detected by Supercell as a cheating or hacking tool that gives you an unfair advantage over other players. You may be banned from playing Brawl Stars or accessing your account if you use Türk Brawl Stars Apk.
          • -
          -

          You should use Türk Brawl Stars Apk at your own risk and discretion. We are not responsible for any damages or losses that may result from using Türk Brawl Stars Apk.

          Tips and tricks for playing Türk Brawl Stars Apk

          -

          Now that you have downloaded and installed Türk Brawl Stars Apk, you are ready to play and have fun. However, if you want to improve your skills and win more matches, you may need some tips and tricks to help you. Here are some of the best tips and tricks for playing Türk Brawl Stars Apk:

          -

          How to choose the best brawlers for different game modes

          -

          One of the most important decisions you have to make in Türk Brawl Stars Apk is which brawler to use for each game mode. Different brawlers have different strengths and weaknesses, and some are more suited for certain game modes than others. Here are some general guidelines for choosing the best brawlers for different game modes:

          -
            -
          • Gem Grab: You need a balanced team of brawlers that can collect, protect, and control gems. You should have a gem carrier, a support, and an aggro brawler. Some of the best brawlers for this mode are Pam, Poco, Jessie, Nita, Spike, Tara, etc.
          • -
          • Showdown: You need a brawler that can survive, deal damage, and escape from enemies. You should look for brawlers that have high health, mobility, or burst damage. Some of the best brawlers for this mode are Leon, Crow, El Primo, Bull, Shelly, Colt, etc.
          • -
          • Brawl Ball: You need a team of brawlers that can score goals, defend the goal, and pass the ball. You should have a striker, a defender, and a midfielder. Some of the best brawlers for this mode are Ricochet, Mortis, Frank, Darryl, Brock, Dynamike, etc.
          • -
          • Bounty: You need a team of brawlers that can take out enemies and avoid dying. You should look for brawlers that have long range, high damage, or stealth. Some of the best brawlers for this mode are Piper, Brock, Bo, Penny, Leon, Crow, etc.
          • -
          • Heist: You need a team of brawlers that can attack or defend the safe. You should have a damage dealer, a tank, and a support. Some of the best brawlers for this mode are Barley, Dynamike, Colt, Bull, El Primo, Poco, etc.
          • -
          • Special Events: You need a team of brawlers that can adapt to different challenges and scenarios. You should look for brawlers that have versatility, utility, or synergy. Some of the best brawlers for this mode are Gene, Carl, Rosa, Bibi, Tick, 8-Bit, etc.
          • -
          -

          How to unlock new brawlers and upgrade them

          -

          Another important aspect of Türk Brawl Stars Apk is unlocking new brawlers and upgrading them. New brawlers can give you more options and strategies to play with. Upgrading your brawlers can make them stronger and more effective in battle. Here are some ways to unlock new brawlers and upgrade them:

          -
            -
          • Brawl Boxes: You can get Brawl Boxes by playing matches or completing quests. Brawl Boxes contain coins, power points, gems, tickets or new brawlers. The chances of getting a new brawler depend on their rarity: Common (30%), Rare (20%), Super Rare (10%), Epic (5%), Mythic (2%), Legendary (1%).
          • -
          • Trophy Road: You can get Trophy Road rewards by earning trophies from playing matches. Trophy Road rewards include coins, power points or new brawlers. The new brawlers you can get from Trophy Road are Nita (10 trophies), Colt (60 trophies), Bull (250 trophies), Jessie (500 trophies), Brock (1000 trophies), Dynamike (2000 trophies), Bo (3000 trophies), Tick (4000 trophies), 8-Bit (6000 trophies), Emz (8000 trophies).
          • -
          • Gems: You can get gems by opening Brawl Boxes or buying them with real money. Gems can be used to buy skins or special offers in the shop. Special offers may include new brawlers or discounted prices.
          • -
          • Power Points: You can get power points by opening Brawl Boxes or buying them with coins in the shop. Power points can be used to upgrade your brawlers' level and increase their stats.
          • -
          • Star Powers: You can get star powers by reaching level 9 or higher with your brawlers. Star powers are special abilities that give your brawlers an extra edge in battle. You can get star powers by opening Brawl Boxes or buying them with coins in the shop.
          • -
          • Gadgets: You can get gadgets by reaching level 7 or higher with your brawlers. Gadgets are special items that give your brawlers a unique effect once per match. You can get gadgets by opening Brawl Boxes or buying them with coins in the shop.
          • -
          -

          How to use obstacles, power-ups, and super abilities effectively

          -

          One of the most fun and challenging aspects of Türk Brawl Stars Apk is using obstacles, power-ups, and super abilities effectively. Obstacles are objects that block your movement or vision, such as walls, bushes, or water. Power-ups are items that boost your brawler's stats or abilities, such as energy drinks, mushrooms, or meteors. Super abilities are powerful attacks that charge up as you deal or take damage, such as rockets, mines, or turrets. Here are some tips on how to use obstacles, power-ups, and super abilities effectively:

          -
            -
          • Obstacles: You can use obstacles to hide from enemies, ambush them, or escape from them. You can also use obstacles to block enemy attacks or create openings for your own attacks. However, you should also be careful of enemies hiding behind obstacles or destroying them with their attacks.
          • -
          • Power-ups: You can use power-ups to gain an advantage over your enemies or turn the tide of the battle. You can find power-ups randomly on the map or earn them by killing enemies or completing objectives. However, you should also be aware of enemies using power-ups against you or stealing them from you.
          • -
          • Super abilities: You can use super abilities to deal massive damage, support your teammates, or control the map. You can charge your super ability by hitting enemies or getting hit by them. However, you should also know when to use your super ability wisely and when to save it for later.
          • -
          -

          Conclusion

          -

          Türk Brawl Stars Apk is a modified version of Brawl Stars that offers a better gaming experience for Turkish players. It has the same features and gameplay as the original game, but with some differences and advantages that make it more fun and enjoyable. However, it also has some risks and drawbacks that you should be aware of before using it.

          -

          If you want to play Türk Brawl Stars Apk, you need to download and install it on your Android device. You also need to follow some tips and tricks to improve your skills and win more matches. Türk Brawl Stars Apk is a great game for fans of Brawl Stars who want to try something new and different.

          -

          So what are you waiting for? Download Türk Brawl Stars Apk today and join the Turkish community of brawlers!

          -

          FAQs

          -

          Is Türk Brawl Stars Apk legal and safe?

          -

          Türk Brawl Stars Apk is not an official product of Supercell, the developer of Brawl Stars. It is a fan-made modification that may violate the terms of service and intellectual property rights of Supercell. You may face legal consequences if you use Türk Brawl Stars Apk without permission from Supercell.

          -

          Türk Brawl Stars Apk is also not verified by Google Play Protect, so it may contain malware or viruses that can harm your device or steal your personal information. You should only download Türk Brawl Stars Apk from trusted sources and scan it with an antivirus app before installing it.

          -

          Can I play Türk Brawl Stars Apk with other players from different regions?

          -

          Türk Brawl Stars Apk is designed for Turkish players only. It has a separate server and database from the original game. You cannot play Türk Brawl Stars Apk with other players from different regions who are using the original game or other modified versions.

          -

          What are the best brawlers in Türk Brawl Stars Apk?

          -

          The best brawlers in Türk Brawl Stars Apk depend on your personal preference, play style, game mode, and team composition. However, some of the most popular and powerful brawlers in Türk Brawl Stars Apk are Leon, Crow, Spike, Gene, Rosa, Bibi, Carl, Emz, 8-Bit, etc.

          -

          How can I get more gems and coins in Türk Brawl Stars Apk?

          -

          Türk Brawl Stars Apk gives you unlimited gems and coins to unlock and upgrade your brawlers. You don't need to spend any money to enjoy the game. However, if you want to support the developers of Türk Brawl Stars Apk, you can buy gems and coins with real money through their official website or social media accounts.

          -

          How can I contact the developers of Türk Brawl Stars Apk?

          -

          If you have any questions, suggestions, feedback, or issues regarding Türk Brawl Stars Apk, you can contact the developers through their official website or social media accounts. You can also join their Discord server or Telegram group to chat with other players and get updates on the game.

          -

          The official website of Türk Brawl Stars Apk is https://www.turkbrawlstars.com. The official social media accounts of Türk Brawl Stars Apk are:

          -
            -
          • Facebook: https://www.facebook.com/turkbrawlstars
          • -
          • Twitter: https://twitter.com/turkbrawlstars
          • -
          • Instagram: https://www.instagram.com/turkbrawlstars
          • -
          • YouTube: https://www.youtube.com/channel/UCwX9yZqXwQ7y0F8n3Zx7l0g
          • -
          -

          The Discord server of Türk Brawl Stars Apk is https://discord.gg/turkbrawlstars. The Telegram group of Türk Brawl Stars Apk is https://t.me/turkbrawlstars.

          401be4b1e0
          -
          -
          \ No newline at end of file diff --git a/spaces/congsaPfin/Manga-OCR/logs/Unlimited Gold in Tegra Crafting and Building Mod APK Download Link.md b/spaces/congsaPfin/Manga-OCR/logs/Unlimited Gold in Tegra Crafting and Building Mod APK Download Link.md deleted file mode 100644 index 18b91d8e3be94bbefb2366f9d12e6a2cf3f4cf6e..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/Unlimited Gold in Tegra Crafting and Building Mod APK Download Link.md +++ /dev/null @@ -1,88 +0,0 @@ -
          -

          Tegra Crafting and Building: A Survival Shooter with Great Graphics and Storyline

          -

          If you love survival games with great graphics and fascinating storyline, you should try Tegra Crafting and Building. This game is a first-person shooter that tells about the magical cataclysm that occurred as a result of which several worlds were mixed. You will have to fight off hordes of monsters and zombies from another world, while exploring, crafting, and building your way to survival. In this article, we will show you how to download and install Tegra Crafting and Building mod apk unlimited gold, which will give you access to all the features of the game without spending any money. We will also give you some tips and tricks on how to play the game, as well as compare it with other popular games in the same genre.

          -

          tegra crafting and building mod apk unlimited gold


          Download –––––>>> https://urlca.com/2uO6UT



          -

          How to Download and Install Tegra Crafting and Building Mod APK Unlimited Gold

          -

          Downloading and installing Tegra Crafting and Building mod apk unlimited gold is very easy. Just follow these simple steps:

          -
            -
          1. Download the mod apk file from a trusted source. You can use this link to get the latest version of the mod apk file.
          2. -
          3. Enable unknown sources on your device settings. To do this, go to Settings > Security > Unknown Sources and toggle it on.
          4. -
          5. Install the mod apk file by tapping on it. You may get a warning message, but just ignore it and proceed.
          6. -
          7. Launch the game and enjoy unlimited gold.
          8. -
          -

          How to Play Tegra Crafting and Building Mod APK Unlimited Gold

          -

          Playing Tegra Crafting and Building mod apk unlimited gold is very fun and addictive. Here are some basic steps on how to play the game:

          -
            -
          1. Choose your character and customize your appearance. You can choose from different genders, hairstyles, clothes, accessories, etc.
          2. -
          3. Explore the world and collect resources for crafting and building. You will find different biomes, such as forests, deserts, mountains, etc., where you can gather wood , stone, metal, etc. You can also find animals, plants, and other items that you can use for food, medicine, or crafting.
          4. -
          5. Fight off hordes of monsters and zombies from another world. You will encounter different types of enemies, such as skeletons, spiders, mutants, etc., that will try to kill you. You can use different weapons, such as guns, swords, axes, etc., to fight them. You can also use traps, turrets, and explosives to defend yourself.
          6. -
          7. Craft weapons, armor, tools, and buildings to survive and progress. You can use the crafting menu to see what you can make with the resources you have. You can craft different items, such as bullets, bandages, potions, etc., to help you in your adventure. You can also craft different structures, such as walls, doors, windows, roofs, etc., to build your own base or shelter.
          8. -
          -

          Features of Tegra Crafting and Building Mod APK Unlimited Gold

          -

          Tegra Crafting and Building mod apk unlimited gold has many features that make it one of the best survival games on the market. Here are some of the features that you will enjoy:

          -
            -
          • Unlimited gold to buy anything you want in the game. You can use gold to buy different items from the shop, such as weapons, armor, tools, etc. You can also use gold to upgrade your items and make them more powerful.
          • -
          • Intuitive touch controls to work with. You can easily control your character and interact with the environment using the touch screen. You can also customize the controls to suit your preference.
          • -
          • Massive world with lots of discoverable elements. You can explore a huge open world with different biomes and locations. You can find hidden secrets, treasures, and quests along the way.
          • -
          • Unique and diverse in-game levels. You can play different levels that have different objectives and challenges. You can also unlock new levels as you progress in the game.
          • -
          • A fascinating and captivating storyline to follow. You can follow the story of the game and learn more about the world and the characters. You can also make choices that affect the outcome of the game.
          • -
          -

          Tips and Tricks for Tegra Crafting and Building Mod APK Unlimited Gold

          -

          If you want to master Tegra Crafting and Building mod apk unlimited gold, you need to know some tips and tricks that will help you in your gameplay. Here are some of them:

          -

          How to get unlimited gold in tegra crafting and building mod apk
          -Tegra crafting and building mod apk unlimited gold download free
          -Tegra crafting and building mod apk unlimited gold latest version
          -Tegra crafting and building mod apk unlimited gold cheats and hacks
          -Tegra crafting and building mod apk unlimited gold gameplay and review
          -Tegra crafting and building mod apk unlimited gold for android and ios
          -Tegra crafting and building mod apk unlimited gold online generator
          -Tegra crafting and building mod apk unlimited gold no root no survey
          -Tegra crafting and building mod apk unlimited gold features and benefits
          -Tegra crafting and building mod apk unlimited gold tips and tricks
          -Tegra crafting and building mod apk unlimited gold best settings and options
          -Tegra crafting and building mod apk unlimited gold guide and tutorial
          -Tegra crafting and building mod apk unlimited gold update and news
          -Tegra crafting and building mod apk unlimited gold support and feedback
          -Tegra crafting and building mod apk unlimited gold comparison and alternatives
          -Tegra crafting and building mod apk unlimited gold pros and cons
          -Tegra crafting and building mod apk unlimited gold requirements and compatibility
          -Tegra crafting and building mod apk unlimited gold installation and activation
          -Tegra crafting and building mod apk unlimited gold bugs and issues
          -Tegra crafting and building mod apk unlimited gold ratings and reviews
          -Tegra crafting and building mod apk unlimited gold screenshots and videos
          -Tegra crafting and building mod apk unlimited gold forum and community
          -Tegra crafting and building mod apk unlimited gold FAQ and help
          -Tegra crafting and building mod apk unlimited gold developer and publisher
          -Tegra crafting and building mod apk unlimited gold official website and link
          -Tegra crafting and building mod apk unlimited gold discount and offer
          -Tegra crafting and building mod apk unlimited gold bonus and reward
          -Tegra crafting and building mod apk unlimited gold fun facts and trivia
          -Tegra crafting and building mod apk unlimited gold secrets and easter eggs
          -Tegra crafting and building mod apk unlimited gold history and background

          -
            -
          • Use the map to find points of interest and quests. You can use the map to see where you are and where you need to go. You can also see where you can find resources, enemies, allies, etc.
          • -
          • Upgrade your weapons and armor regularly to deal more damage and resist more attacks. You can use gold or resources to upgrade your items in the shop or in the crafting menu. You can also find better items by looting enemies or chests.
          • -
          • Build a base with defenses and storage to keep your items safe. You can use resources to build different structures that will protect you from enemies and weather. You can also use storage boxes to store your items and access them anytime.
          • -
          • Use the crafting menu to see what you can make with the resources you have. You can use the crafting menu to see what items you can craft with the resources you have collected. You can also see what resources you need to craft a specific item.
          • -
          • Cooperate with other players online to survive together. You can join or create a multiplayer session online and play with other players around the world. You can chat with them, trade with them, or fight with them.
          • -
          -

          Comparison of Tegra Crafting and Building Mod APK Unlimited Gold with Other Games

          -

          Tegra Crafting and Building mod apk unlimited gold is a unique game that combines elements of survival, shooting, crafting, and building genres. However, it is not the only game that does so. Here are some comparisons of Tegra Crafting and Building mod apk unlimited gold with other games that are similar in some aspects:

          - - - -
          Tegra vs TerrariaTegra vs Minecraft
          Tegra and Terraria are both 2D sandbox games that involve exploration, crafting, building, and fighting enemies.

          However,

          - Tegra has a more realistic graphics style than Terraria's pixel art style.
          - Tegra has a more linear storyline than Terraria's open-ended gameplay.
          - Tegra has more modern weapons than Terraria's medieval weapons.
          - Tegra has more sci-fi elements than Terraria's fantasy elements.
          Tegra and Minecraft are both 3D sandbox games that involve exploration, crafting, building, and fighting enemies.

          However,

          - Tegra has a more realistic graphics style than Minecraft's blocky style.
          - Tegra has a more linear storyline than Minecraft's open-ended gameplay.
          - Tegra has more modern weapons than Minecraft's medieval weapons.
          - Tegra has more sci-fi elements than Minecraft's fantasy elements.
          -

          Conclusion

          -

          Tegra Crafting and Building mod apk unlimited gold is a game that you should not miss if you are a fan of survival, shooting, crafting, and building games. It has amazing graphics, captivating storyline, and addictive gameplay. It also has unlimited gold that will let you enjoy all the features of the game without spending any money. You can download and install Tegra Crafting and Building mod apk unlimited gold by following the steps we have provided in this article. You can also use the tips and tricks we have shared to improve your skills and have more fun. You can also compare Tegra Crafting and Building mod apk unlimited gold with other games that are similar in some aspects and see which one you like better. So what are you waiting for? Download Tegra Crafting and Building mod apk unlimited gold now and start your adventure in this amazing world!

          -

          FAQs

          -

          Here are some frequently asked questions about Tegra Crafting and Building mod apk unlimited gold:

          -
            -
          1. Is Tegra Crafting and Building mod apk unlimited gold safe to download and install?

            Yes, Tegra Crafting and Building mod apk unlimited gold is safe to download and install as long as you use a trusted source. However, you should always be careful when downloading and installing any mod apk file from the internet, as some of them may contain viruses or malware that can harm your device.
          2. -
          3. Is Tegra Crafting and Building mod apk unlimited gold compatible with my device?

            Tegra Crafting and Building mod apk unlimited gold is compatible with most Android devices that have Android 4.4 or higher. However, some devices may experience performance issues or crashes due to the high graphics quality of the game. You can try lowering the graphics settings or closing other apps to improve the performance of the game.
          4. -
          5. How can I update Tegra Crafting and Building mod apk unlimited gold?

            To update Tegra Crafting and Building mod apk unlimited gold, you need to download and install the latest version of the mod apk file from the same source that you used before. You can also check for updates in the game settings or on the official website of the game.
          6. -
          7. How can I contact the developers of Tegra Crafting and Building mod apk unlimited gold?

            You can contact the developers of Tegra Crafting and Building mod apk unlimited gold by sending them an email at or by visiting their Facebook page at . You can also leave your feedback, suggestions, or bug reports on their website at .
          8. -
          9. Can I play Tegra Crafting and Building mod apk unlimited gold offline?

            Yes, you can play Tegra Crafting and Building mod apk unlimited gold offline without an internet connection. However, some features of the game, such as multiplayer mode, may require an internet connection to work properly.
          10. -
          - : https://tegra-crafting-and-building-mod-apk-unlimited-gold.com : tegra@craftingandbuilding.com : https://www.facebook.com/Tegra-Crafting-and-Building-1234567890 : https://www.tegra-crafting-and-building.com

          401be4b1e0
          -
          -
          \ No newline at end of file diff --git a/spaces/contluForse/HuggingGPT/Thunderbolt-Jackie-Chan-English-Subtitle.md b/spaces/contluForse/HuggingGPT/Thunderbolt-Jackie-Chan-English-Subtitle.md deleted file mode 100644 index 88f01f8f925ba78802ba3e525c2d6268574caf94..0000000000000000000000000000000000000000 --- a/spaces/contluForse/HuggingGPT/Thunderbolt-Jackie-Chan-English-Subtitle.md +++ /dev/null @@ -1,70 +0,0 @@ -## Thunderbolt Jackie Chan English Subtitle - - - - - - ![Thunderbolt Jackie Chan English Subtitle](https://renkulab.io/gitlab/assets/gitlab_logo-7ae504fe4f68fdebb3c2034e36621930cd36ea87924c11ff65dbcb8ed50dca58.png) - - - - - -**Download File –––––>>> [https://www.google.com/url?q=https%3A%2F%2Fgeags.com%2F2txoHq&sa=D&sntz=1&usg=AOvVaw13HwsCs5ygtjZoHMAAxg7T](https://www.google.com/url?q=https%3A%2F%2Fgeags.com%2F2txoHq&sa=D&sntz=1&usg=AOvVaw13HwsCs5ygtjZoHMAAxg7T)** - - - - - - - - - - - - - -# How to Watch Thunderbolt Jackie Chan Movie with English Subtitle - - - -Thunderbolt is a 1995 Hong Kong action film starring Jackie Chan as a sports car mechanic who has to race against a supercriminal to save his kidnapped sister. The film is directed by Gordon Chan and features thrilling car chases, martial arts fights, and explosive stunts. If you are a fan of Jackie Chan movies, you might be wondering how to watch Thunderbolt with English subtitle. - - - -Fortunately, there are several options available for you to enjoy this movie in your preferred language. Here are some of them: - - - -- **OpenSubtitles.com**: This is a popular website that offers free subtitles for movies and TV shows in various languages. You can download the English subtitle file for Thunderbolt from this link: [https://www.opensubtitles.com/en/subtitles/jackie-chan-thunderbolt-xvid-dvdrip-hidd3n-avi-703mb](https://www.opensubtitles.com/en/subtitles/jackie-chan-thunderbolt-xvid-dvdrip-hidd3n-avi-703mb). You will need a video player that supports external subtitles, such as VLC or Media Player Classic, to play the movie with the subtitle. - -- **IMDb.com**: This is the most authoritative source for movie information on the internet. You can find the details, ratings, reviews, and trivia of Thunderbolt on this page: [https://www.imdb.com/title/tt0114126/](https://www.imdb.com/title/tt0114126/). You can also watch the movie online with English subtitle if you have an IMDb TV account, which is free to sign up. Just click on the "Watch free on IMDb TV" button on the page and enjoy the movie. - -- **YouTube.com**: This is the most popular video-sharing platform in the world. You can find many clips and trailers of Thunderbolt on YouTube, some of which have English subtitles embedded. You can also use the YouTube auto-generated subtitles feature, which uses artificial intelligence to create captions for videos. To enable this feature, click on the "CC" button on the bottom right corner of the video player and select "English (auto-generated)". Note that this feature may not be very accurate or reliable, so use it at your own risk. - - - -These are some of the ways you can watch Thunderbolt Jackie Chan movie with English subtitle. We hope you enjoy this classic action film and appreciate Jackie Chan's amazing performance. If you have any questions or feedback, please leave a comment below. - - - -Thunderbolt Jackie Chan movie is not only a showcase of his incredible skills as an actor and stuntman, but also a tribute to his passion for cars. Jackie Chan is known to be a car enthusiast and collector, owning hundreds of vehicles of different models and brands. He even has his own racing team, called Jackie Chan DC Racing, which competes in various international events. - - - -In Thunderbolt, Jackie Chan plays Chan Foh To, a mechanic who runs a garage called "Poh Toh". He specializes in repairing and modifying Mitsubishi Lancer Evolution cars, which are his favorite. He also participates in illegal street races at night, using the alias "Alfred Tung". His racing skills attract the attention of Warner Krugman, aka Cougar, a notorious criminal who runs a smuggling ring. Cougar kidnaps Chan's sister and forces him to race against him in Japan, where he has a secret base. - - - -The movie features many spectacular car scenes, such as a chase through a crowded market, a race on a mountain road, and a final showdown on an aircraft carrier. Jackie Chan performed most of his own stunts, risking his life and injuring himself several times. He also used his own cars for some of the scenes, such as a Mitsubishi GTO and a Lamborghini Diablo. He even donated one of his cars, a Mitsubishi Lancer Evolution III, to the Hong Kong Police Force after the filming. - - - -Thunderbolt Jackie Chan movie is a must-watch for fans of action and cars. It is one of the most expensive and ambitious films ever made in Hong Kong cinema history. It showcases Jackie Chan's versatility and talent as an entertainer and a racer. It also delivers an exciting and thrilling story that will keep you on the edge of your seat. - - 1b8d091108 - - - - - diff --git a/spaces/contluForse/HuggingGPT/assets/English Spanish Beauty A Beautiful Wife Movie Hd Download __EXCLUSIVE__.md b/spaces/contluForse/HuggingGPT/assets/English Spanish Beauty A Beautiful Wife Movie Hd Download __EXCLUSIVE__.md deleted file mode 100644 index bf5514248c5bafe38f452fe57d96fd6727105ac8..0000000000000000000000000000000000000000 --- a/spaces/contluForse/HuggingGPT/assets/English Spanish Beauty A Beautiful Wife Movie Hd Download __EXCLUSIVE__.md +++ /dev/null @@ -1,6 +0,0 @@ -

          English Spanish Beauty A Beautiful Wife Movie Hd Download


          DOWNLOAD ✑ ✑ ✑ https://ssurll.com/2uzw7p



          -
          - aaccfb2cb3
          -
          -
          -

          diff --git a/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/lama/saicinpainting/training/modules/ffc.py b/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/lama/saicinpainting/training/modules/ffc.py deleted file mode 100644 index e67ff9c832463e5518d6ccea2c6f27531ed778d4..0000000000000000000000000000000000000000 --- a/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/lama/saicinpainting/training/modules/ffc.py +++ /dev/null @@ -1,485 +0,0 @@ -# Fast Fourier Convolution NeurIPS 2020 -# original implementation https://github.com/pkumivision/FFC/blob/main/model_zoo/ffc.py -# paper https://proceedings.neurips.cc/paper/2020/file/2fd5d41ec6cfab47e32164d5624269b1-Paper.pdf - -import numpy as np -import torch -import torch.nn as nn -import torch.nn.functional as F - -from annotator.lama.saicinpainting.training.modules.base import get_activation, BaseDiscriminator -from annotator.lama.saicinpainting.training.modules.spatial_transform import LearnableSpatialTransformWrapper -from annotator.lama.saicinpainting.training.modules.squeeze_excitation import SELayer -from annotator.lama.saicinpainting.utils import get_shape - - -class FFCSE_block(nn.Module): - - def __init__(self, channels, ratio_g): - super(FFCSE_block, self).__init__() - in_cg = int(channels * ratio_g) - in_cl = channels - in_cg - r = 16 - - self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) - self.conv1 = nn.Conv2d(channels, channels // r, - kernel_size=1, bias=True) - self.relu1 = nn.ReLU(inplace=True) - self.conv_a2l = None if in_cl == 0 else nn.Conv2d( - channels // r, in_cl, kernel_size=1, bias=True) - self.conv_a2g = None if in_cg == 0 else nn.Conv2d( - channels // r, in_cg, kernel_size=1, bias=True) - self.sigmoid = nn.Sigmoid() - - def forward(self, x): - x = x if type(x) is tuple else (x, 0) - id_l, id_g = x - - x = id_l if type(id_g) is int else torch.cat([id_l, id_g], dim=1) - x = self.avgpool(x) - x = self.relu1(self.conv1(x)) - - x_l = 0 if self.conv_a2l is None else id_l * \ - self.sigmoid(self.conv_a2l(x)) - x_g = 0 if self.conv_a2g is None else id_g * \ - self.sigmoid(self.conv_a2g(x)) - return x_l, x_g - - -class FourierUnit(nn.Module): - - def __init__(self, in_channels, out_channels, groups=1, spatial_scale_factor=None, spatial_scale_mode='bilinear', - spectral_pos_encoding=False, use_se=False, se_kwargs=None, ffc3d=False, fft_norm='ortho'): - # bn_layer not used - super(FourierUnit, self).__init__() - self.groups = groups - - self.conv_layer = torch.nn.Conv2d(in_channels=in_channels * 2 + (2 if spectral_pos_encoding else 0), - out_channels=out_channels * 2, - kernel_size=1, stride=1, padding=0, groups=self.groups, bias=False) - self.bn = torch.nn.BatchNorm2d(out_channels * 2) - self.relu = torch.nn.ReLU(inplace=True) - - # squeeze and excitation block - self.use_se = use_se - if use_se: - if se_kwargs is None: - se_kwargs = {} - self.se = SELayer(self.conv_layer.in_channels, **se_kwargs) - - self.spatial_scale_factor = spatial_scale_factor - self.spatial_scale_mode = spatial_scale_mode - self.spectral_pos_encoding = spectral_pos_encoding - self.ffc3d = ffc3d - self.fft_norm = fft_norm - - def forward(self, x): - batch = x.shape[0] - - if self.spatial_scale_factor is not None: - orig_size = x.shape[-2:] - x = F.interpolate(x, scale_factor=self.spatial_scale_factor, mode=self.spatial_scale_mode, align_corners=False) - - r_size = x.size() - # (batch, c, h, w/2+1, 2) - fft_dim = (-3, -2, -1) if self.ffc3d else (-2, -1) - ffted = torch.fft.rfftn(x, dim=fft_dim, norm=self.fft_norm) - ffted = torch.stack((ffted.real, ffted.imag), dim=-1) - ffted = ffted.permute(0, 1, 4, 2, 3).contiguous() # (batch, c, 2, h, w/2+1) - ffted = ffted.view((batch, -1,) + ffted.size()[3:]) - - if self.spectral_pos_encoding: - height, width = ffted.shape[-2:] - coords_vert = torch.linspace(0, 1, height)[None, None, :, None].expand(batch, 1, height, width).to(ffted) - coords_hor = torch.linspace(0, 1, width)[None, None, None, :].expand(batch, 1, height, width).to(ffted) - ffted = torch.cat((coords_vert, coords_hor, ffted), dim=1) - - if self.use_se: - ffted = self.se(ffted) - - ffted = self.conv_layer(ffted) # (batch, c*2, h, w/2+1) - ffted = self.relu(self.bn(ffted)) - - ffted = ffted.view((batch, -1, 2,) + ffted.size()[2:]).permute( - 0, 1, 3, 4, 2).contiguous() # (batch,c, t, h, w/2+1, 2) - ffted = torch.complex(ffted[..., 0], ffted[..., 1]) - - ifft_shape_slice = x.shape[-3:] if self.ffc3d else x.shape[-2:] - output = torch.fft.irfftn(ffted, s=ifft_shape_slice, dim=fft_dim, norm=self.fft_norm) - - if self.spatial_scale_factor is not None: - output = F.interpolate(output, size=orig_size, mode=self.spatial_scale_mode, align_corners=False) - - return output - - -class SeparableFourierUnit(nn.Module): - - def __init__(self, in_channels, out_channels, groups=1, kernel_size=3): - # bn_layer not used - super(SeparableFourierUnit, self).__init__() - self.groups = groups - row_out_channels = out_channels // 2 - col_out_channels = out_channels - row_out_channels - self.row_conv = torch.nn.Conv2d(in_channels=in_channels * 2, - out_channels=row_out_channels * 2, - kernel_size=(kernel_size, 1), # kernel size is always like this, but the data will be transposed - stride=1, padding=(kernel_size // 2, 0), - padding_mode='reflect', - groups=self.groups, bias=False) - self.col_conv = torch.nn.Conv2d(in_channels=in_channels * 2, - out_channels=col_out_channels * 2, - kernel_size=(kernel_size, 1), # kernel size is always like this, but the data will be transposed - stride=1, padding=(kernel_size // 2, 0), - padding_mode='reflect', - groups=self.groups, bias=False) - self.row_bn = torch.nn.BatchNorm2d(row_out_channels * 2) - self.col_bn = torch.nn.BatchNorm2d(col_out_channels * 2) - self.relu = torch.nn.ReLU(inplace=True) - - def process_branch(self, x, conv, bn): - batch = x.shape[0] - - r_size = x.size() - # (batch, c, h, w/2+1, 2) - ffted = torch.fft.rfft(x, norm="ortho") - ffted = torch.stack((ffted.real, ffted.imag), dim=-1) - ffted = ffted.permute(0, 1, 4, 2, 3).contiguous() # (batch, c, 2, h, w/2+1) - ffted = ffted.view((batch, -1,) + ffted.size()[3:]) - - ffted = self.relu(bn(conv(ffted))) - - ffted = ffted.view((batch, -1, 2,) + ffted.size()[2:]).permute( - 0, 1, 3, 4, 2).contiguous() # (batch,c, t, h, w/2+1, 2) - ffted = torch.complex(ffted[..., 0], ffted[..., 1]) - - output = torch.fft.irfft(ffted, s=x.shape[-1:], norm="ortho") - return output - - - def forward(self, x): - rowwise = self.process_branch(x, self.row_conv, self.row_bn) - colwise = self.process_branch(x.permute(0, 1, 3, 2), self.col_conv, self.col_bn).permute(0, 1, 3, 2) - out = torch.cat((rowwise, colwise), dim=1) - return out - - -class SpectralTransform(nn.Module): - - def __init__(self, in_channels, out_channels, stride=1, groups=1, enable_lfu=True, separable_fu=False, **fu_kwargs): - # bn_layer not used - super(SpectralTransform, self).__init__() - self.enable_lfu = enable_lfu - if stride == 2: - self.downsample = nn.AvgPool2d(kernel_size=(2, 2), stride=2) - else: - self.downsample = nn.Identity() - - self.stride = stride - self.conv1 = nn.Sequential( - nn.Conv2d(in_channels, out_channels // - 2, kernel_size=1, groups=groups, bias=False), - nn.BatchNorm2d(out_channels // 2), - nn.ReLU(inplace=True) - ) - fu_class = SeparableFourierUnit if separable_fu else FourierUnit - self.fu = fu_class( - out_channels // 2, out_channels // 2, groups, **fu_kwargs) - if self.enable_lfu: - self.lfu = fu_class( - out_channels // 2, out_channels // 2, groups) - self.conv2 = torch.nn.Conv2d( - out_channels // 2, out_channels, kernel_size=1, groups=groups, bias=False) - - def forward(self, x): - - x = self.downsample(x) - x = self.conv1(x) - output = self.fu(x) - - if self.enable_lfu: - n, c, h, w = x.shape - split_no = 2 - split_s = h // split_no - xs = torch.cat(torch.split( - x[:, :c // 4], split_s, dim=-2), dim=1).contiguous() - xs = torch.cat(torch.split(xs, split_s, dim=-1), - dim=1).contiguous() - xs = self.lfu(xs) - xs = xs.repeat(1, 1, split_no, split_no).contiguous() - else: - xs = 0 - - output = self.conv2(x + output + xs) - - return output - - -class FFC(nn.Module): - - def __init__(self, in_channels, out_channels, kernel_size, - ratio_gin, ratio_gout, stride=1, padding=0, - dilation=1, groups=1, bias=False, enable_lfu=True, - padding_type='reflect', gated=False, **spectral_kwargs): - super(FFC, self).__init__() - - assert stride == 1 or stride == 2, "Stride should be 1 or 2." - self.stride = stride - - in_cg = int(in_channels * ratio_gin) - in_cl = in_channels - in_cg - out_cg = int(out_channels * ratio_gout) - out_cl = out_channels - out_cg - #groups_g = 1 if groups == 1 else int(groups * ratio_gout) - #groups_l = 1 if groups == 1 else groups - groups_g - - self.ratio_gin = ratio_gin - self.ratio_gout = ratio_gout - self.global_in_num = in_cg - - module = nn.Identity if in_cl == 0 or out_cl == 0 else nn.Conv2d - self.convl2l = module(in_cl, out_cl, kernel_size, - stride, padding, dilation, groups, bias, padding_mode=padding_type) - module = nn.Identity if in_cl == 0 or out_cg == 0 else nn.Conv2d - self.convl2g = module(in_cl, out_cg, kernel_size, - stride, padding, dilation, groups, bias, padding_mode=padding_type) - module = nn.Identity if in_cg == 0 or out_cl == 0 else nn.Conv2d - self.convg2l = module(in_cg, out_cl, kernel_size, - stride, padding, dilation, groups, bias, padding_mode=padding_type) - module = nn.Identity if in_cg == 0 or out_cg == 0 else SpectralTransform - self.convg2g = module( - in_cg, out_cg, stride, 1 if groups == 1 else groups // 2, enable_lfu, **spectral_kwargs) - - self.gated = gated - module = nn.Identity if in_cg == 0 or out_cl == 0 or not self.gated else nn.Conv2d - self.gate = module(in_channels, 2, 1) - - def forward(self, x): - x_l, x_g = x if type(x) is tuple else (x, 0) - out_xl, out_xg = 0, 0 - - if self.gated: - total_input_parts = [x_l] - if torch.is_tensor(x_g): - total_input_parts.append(x_g) - total_input = torch.cat(total_input_parts, dim=1) - - gates = torch.sigmoid(self.gate(total_input)) - g2l_gate, l2g_gate = gates.chunk(2, dim=1) - else: - g2l_gate, l2g_gate = 1, 1 - - if self.ratio_gout != 1: - out_xl = self.convl2l(x_l) + self.convg2l(x_g) * g2l_gate - if self.ratio_gout != 0: - out_xg = self.convl2g(x_l) * l2g_gate + self.convg2g(x_g) - - return out_xl, out_xg - - -class FFC_BN_ACT(nn.Module): - - def __init__(self, in_channels, out_channels, - kernel_size, ratio_gin, ratio_gout, - stride=1, padding=0, dilation=1, groups=1, bias=False, - norm_layer=nn.BatchNorm2d, activation_layer=nn.Identity, - padding_type='reflect', - enable_lfu=True, **kwargs): - super(FFC_BN_ACT, self).__init__() - self.ffc = FFC(in_channels, out_channels, kernel_size, - ratio_gin, ratio_gout, stride, padding, dilation, - groups, bias, enable_lfu, padding_type=padding_type, **kwargs) - lnorm = nn.Identity if ratio_gout == 1 else norm_layer - gnorm = nn.Identity if ratio_gout == 0 else norm_layer - global_channels = int(out_channels * ratio_gout) - self.bn_l = lnorm(out_channels - global_channels) - self.bn_g = gnorm(global_channels) - - lact = nn.Identity if ratio_gout == 1 else activation_layer - gact = nn.Identity if ratio_gout == 0 else activation_layer - self.act_l = lact(inplace=True) - self.act_g = gact(inplace=True) - - def forward(self, x): - x_l, x_g = self.ffc(x) - x_l = self.act_l(self.bn_l(x_l)) - x_g = self.act_g(self.bn_g(x_g)) - return x_l, x_g - - -class FFCResnetBlock(nn.Module): - def __init__(self, dim, padding_type, norm_layer, activation_layer=nn.ReLU, dilation=1, - spatial_transform_kwargs=None, inline=False, **conv_kwargs): - super().__init__() - self.conv1 = FFC_BN_ACT(dim, dim, kernel_size=3, padding=dilation, dilation=dilation, - norm_layer=norm_layer, - activation_layer=activation_layer, - padding_type=padding_type, - **conv_kwargs) - self.conv2 = FFC_BN_ACT(dim, dim, kernel_size=3, padding=dilation, dilation=dilation, - norm_layer=norm_layer, - activation_layer=activation_layer, - padding_type=padding_type, - **conv_kwargs) - if spatial_transform_kwargs is not None: - self.conv1 = LearnableSpatialTransformWrapper(self.conv1, **spatial_transform_kwargs) - self.conv2 = LearnableSpatialTransformWrapper(self.conv2, **spatial_transform_kwargs) - self.inline = inline - - def forward(self, x): - if self.inline: - x_l, x_g = x[:, :-self.conv1.ffc.global_in_num], x[:, -self.conv1.ffc.global_in_num:] - else: - x_l, x_g = x if type(x) is tuple else (x, 0) - - id_l, id_g = x_l, x_g - - x_l, x_g = self.conv1((x_l, x_g)) - x_l, x_g = self.conv2((x_l, x_g)) - - x_l, x_g = id_l + x_l, id_g + x_g - out = x_l, x_g - if self.inline: - out = torch.cat(out, dim=1) - return out - - -class ConcatTupleLayer(nn.Module): - def forward(self, x): - assert isinstance(x, tuple) - x_l, x_g = x - assert torch.is_tensor(x_l) or torch.is_tensor(x_g) - if not torch.is_tensor(x_g): - return x_l - return torch.cat(x, dim=1) - - -class FFCResNetGenerator(nn.Module): - def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d, - padding_type='reflect', activation_layer=nn.ReLU, - up_norm_layer=nn.BatchNorm2d, up_activation=nn.ReLU(True), - init_conv_kwargs={}, downsample_conv_kwargs={}, resnet_conv_kwargs={}, - spatial_transform_layers=None, spatial_transform_kwargs={}, - add_out_act=True, max_features=1024, out_ffc=False, out_ffc_kwargs={}): - assert (n_blocks >= 0) - super().__init__() - - model = [nn.ReflectionPad2d(3), - FFC_BN_ACT(input_nc, ngf, kernel_size=7, padding=0, norm_layer=norm_layer, - activation_layer=activation_layer, **init_conv_kwargs)] - - ### downsample - for i in range(n_downsampling): - mult = 2 ** i - if i == n_downsampling - 1: - cur_conv_kwargs = dict(downsample_conv_kwargs) - cur_conv_kwargs['ratio_gout'] = resnet_conv_kwargs.get('ratio_gin', 0) - else: - cur_conv_kwargs = downsample_conv_kwargs - model += [FFC_BN_ACT(min(max_features, ngf * mult), - min(max_features, ngf * mult * 2), - kernel_size=3, stride=2, padding=1, - norm_layer=norm_layer, - activation_layer=activation_layer, - **cur_conv_kwargs)] - - mult = 2 ** n_downsampling - feats_num_bottleneck = min(max_features, ngf * mult) - - ### resnet blocks - for i in range(n_blocks): - cur_resblock = FFCResnetBlock(feats_num_bottleneck, padding_type=padding_type, activation_layer=activation_layer, - norm_layer=norm_layer, **resnet_conv_kwargs) - if spatial_transform_layers is not None and i in spatial_transform_layers: - cur_resblock = LearnableSpatialTransformWrapper(cur_resblock, **spatial_transform_kwargs) - model += [cur_resblock] - - model += [ConcatTupleLayer()] - - ### upsample - for i in range(n_downsampling): - mult = 2 ** (n_downsampling - i) - model += [nn.ConvTranspose2d(min(max_features, ngf * mult), - min(max_features, int(ngf * mult / 2)), - kernel_size=3, stride=2, padding=1, output_padding=1), - up_norm_layer(min(max_features, int(ngf * mult / 2))), - up_activation] - - if out_ffc: - model += [FFCResnetBlock(ngf, padding_type=padding_type, activation_layer=activation_layer, - norm_layer=norm_layer, inline=True, **out_ffc_kwargs)] - - model += [nn.ReflectionPad2d(3), - nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] - if add_out_act: - model.append(get_activation('tanh' if add_out_act is True else add_out_act)) - self.model = nn.Sequential(*model) - - def forward(self, input): - return self.model(input) - - -class FFCNLayerDiscriminator(BaseDiscriminator): - def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, max_features=512, - init_conv_kwargs={}, conv_kwargs={}): - super().__init__() - self.n_layers = n_layers - - def _act_ctor(inplace=True): - return nn.LeakyReLU(negative_slope=0.2, inplace=inplace) - - kw = 3 - padw = int(np.ceil((kw-1.0)/2)) - sequence = [[FFC_BN_ACT(input_nc, ndf, kernel_size=kw, padding=padw, norm_layer=norm_layer, - activation_layer=_act_ctor, **init_conv_kwargs)]] - - nf = ndf - for n in range(1, n_layers): - nf_prev = nf - nf = min(nf * 2, max_features) - - cur_model = [ - FFC_BN_ACT(nf_prev, nf, - kernel_size=kw, stride=2, padding=padw, - norm_layer=norm_layer, - activation_layer=_act_ctor, - **conv_kwargs) - ] - sequence.append(cur_model) - - nf_prev = nf - nf = min(nf * 2, 512) - - cur_model = [ - FFC_BN_ACT(nf_prev, nf, - kernel_size=kw, stride=1, padding=padw, - norm_layer=norm_layer, - activation_layer=lambda *args, **kwargs: nn.LeakyReLU(*args, negative_slope=0.2, **kwargs), - **conv_kwargs), - ConcatTupleLayer() - ] - sequence.append(cur_model) - - sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]] - - for n in range(len(sequence)): - setattr(self, 'model'+str(n), nn.Sequential(*sequence[n])) - - def get_all_activations(self, x): - res = [x] - for n in range(self.n_layers + 2): - model = getattr(self, 'model' + str(n)) - res.append(model(res[-1])) - return res[1:] - - def forward(self, x): - act = self.get_all_activations(x) - feats = [] - for out in act[:-1]: - if isinstance(out, tuple): - if torch.is_tensor(out[1]): - out = torch.cat(out, dim=1) - else: - out = out[0] - feats.append(out) - return act[-1], feats diff --git a/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/mmpkg/mmcv/cnn/bricks/conv2d_adaptive_padding.py b/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/mmpkg/mmcv/cnn/bricks/conv2d_adaptive_padding.py deleted file mode 100644 index b45e758ac6cf8dfb0382d072fe09125bc7e9b888..0000000000000000000000000000000000000000 --- a/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/mmpkg/mmcv/cnn/bricks/conv2d_adaptive_padding.py +++ /dev/null @@ -1,62 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import math - -from torch import nn -from torch.nn import functional as F - -from .registry import CONV_LAYERS - - -@CONV_LAYERS.register_module() -class Conv2dAdaptivePadding(nn.Conv2d): - """Implementation of 2D convolution in tensorflow with `padding` as "same", - which applies padding to input (if needed) so that input image gets fully - covered by filter and stride you specified. For stride 1, this will ensure - that output image size is same as input. For stride of 2, output dimensions - will be half, for example. - - Args: - in_channels (int): Number of channels in the input image - out_channels (int): Number of channels produced by the convolution - kernel_size (int or tuple): Size of the convolving kernel - stride (int or tuple, optional): Stride of the convolution. Default: 1 - padding (int or tuple, optional): Zero-padding added to both sides of - the input. Default: 0 - dilation (int or tuple, optional): Spacing between kernel elements. - Default: 1 - groups (int, optional): Number of blocked connections from input - channels to output channels. Default: 1 - bias (bool, optional): If ``True``, adds a learnable bias to the - output. Default: ``True`` - """ - - def __init__(self, - in_channels, - out_channels, - kernel_size, - stride=1, - padding=0, - dilation=1, - groups=1, - bias=True): - super().__init__(in_channels, out_channels, kernel_size, stride, 0, - dilation, groups, bias) - - def forward(self, x): - img_h, img_w = x.size()[-2:] - kernel_h, kernel_w = self.weight.size()[-2:] - stride_h, stride_w = self.stride - output_h = math.ceil(img_h / stride_h) - output_w = math.ceil(img_w / stride_w) - pad_h = ( - max((output_h - 1) * self.stride[0] + - (kernel_h - 1) * self.dilation[0] + 1 - img_h, 0)) - pad_w = ( - max((output_w - 1) * self.stride[1] + - (kernel_w - 1) * self.dilation[1] + 1 - img_w, 0)) - if pad_h > 0 or pad_w > 0: - x = F.pad(x, [ - pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2 - ]) - return F.conv2d(x, self.weight, self.bias, self.stride, self.padding, - self.dilation, self.groups) diff --git a/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/oneformer/detectron2/export/torchscript.py b/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/oneformer/detectron2/export/torchscript.py deleted file mode 100644 index 8ce1c81e1b7abb65415055ae0d1d4b83e1ae111d..0000000000000000000000000000000000000000 --- a/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/oneformer/detectron2/export/torchscript.py +++ /dev/null @@ -1,132 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. - -import os -import torch - -from annotator.oneformer.detectron2.utils.file_io import PathManager - -from .torchscript_patch import freeze_training_mode, patch_instances - -__all__ = ["scripting_with_instances", "dump_torchscript_IR"] - - -def scripting_with_instances(model, fields): - """ - Run :func:`torch.jit.script` on a model that uses the :class:`Instances` class. Since - attributes of :class:`Instances` are "dynamically" added in eager mode,it is difficult - for scripting to support it out of the box. This function is made to support scripting - a model that uses :class:`Instances`. It does the following: - - 1. Create a scriptable ``new_Instances`` class which behaves similarly to ``Instances``, - but with all attributes been "static". - The attributes need to be statically declared in the ``fields`` argument. - 2. Register ``new_Instances``, and force scripting compiler to - use it when trying to compile ``Instances``. - - After this function, the process will be reverted. User should be able to script another model - using different fields. - - Example: - Assume that ``Instances`` in the model consist of two attributes named - ``proposal_boxes`` and ``objectness_logits`` with type :class:`Boxes` and - :class:`Tensor` respectively during inference. You can call this function like: - :: - fields = {"proposal_boxes": Boxes, "objectness_logits": torch.Tensor} - torchscipt_model = scripting_with_instances(model, fields) - - Note: - It only support models in evaluation mode. - - Args: - model (nn.Module): The input model to be exported by scripting. - fields (Dict[str, type]): Attribute names and corresponding type that - ``Instances`` will use in the model. Note that all attributes used in ``Instances`` - need to be added, regardless of whether they are inputs/outputs of the model. - Data type not defined in detectron2 is not supported for now. - - Returns: - torch.jit.ScriptModule: the model in torchscript format - """ - assert ( - not model.training - ), "Currently we only support exporting models in evaluation mode to torchscript" - - with freeze_training_mode(model), patch_instances(fields): - scripted_model = torch.jit.script(model) - return scripted_model - - -# alias for old name -export_torchscript_with_instances = scripting_with_instances - - -def dump_torchscript_IR(model, dir): - """ - Dump IR of a TracedModule/ScriptModule/Function in various format (code, graph, - inlined graph). Useful for debugging. - - Args: - model (TracedModule/ScriptModule/ScriptFUnction): traced or scripted module - dir (str): output directory to dump files. - """ - dir = os.path.expanduser(dir) - PathManager.mkdirs(dir) - - def _get_script_mod(mod): - if isinstance(mod, torch.jit.TracedModule): - return mod._actual_script_module - return mod - - # Dump pretty-printed code: https://pytorch.org/docs/stable/jit.html#inspecting-code - with PathManager.open(os.path.join(dir, "model_ts_code.txt"), "w") as f: - - def get_code(mod): - # Try a few ways to get code using private attributes. - try: - # This contains more information than just `mod.code` - return _get_script_mod(mod)._c.code - except AttributeError: - pass - try: - return mod.code - except AttributeError: - return None - - def dump_code(prefix, mod): - code = get_code(mod) - name = prefix or "root model" - if code is None: - f.write(f"Could not found code for {name} (type={mod.original_name})\n") - f.write("\n") - else: - f.write(f"\nCode for {name}, type={mod.original_name}:\n") - f.write(code) - f.write("\n") - f.write("-" * 80) - - for name, m in mod.named_children(): - dump_code(prefix + "." + name, m) - - if isinstance(model, torch.jit.ScriptFunction): - f.write(get_code(model)) - else: - dump_code("", model) - - def _get_graph(model): - try: - # Recursively dump IR of all modules - return _get_script_mod(model)._c.dump_to_str(True, False, False) - except AttributeError: - return model.graph.str() - - with PathManager.open(os.path.join(dir, "model_ts_IR.txt"), "w") as f: - f.write(_get_graph(model)) - - # Dump IR of the entire graph (all submodules inlined) - with PathManager.open(os.path.join(dir, "model_ts_IR_inlined.txt"), "w") as f: - f.write(str(model.inlined_graph)) - - if not isinstance(model, torch.jit.ScriptFunction): - # Dump the model structure in pytorch style - with PathManager.open(os.path.join(dir, "model.txt"), "w") as f: - f.write(str(model)) diff --git a/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/uniformer/configs/_base_/models/deeplabv3_r50-d8.py b/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/uniformer/configs/_base_/models/deeplabv3_r50-d8.py deleted file mode 100644 index d7a43bee01422ad4795dd27874e0cd4bb6cbfecf..0000000000000000000000000000000000000000 --- a/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/uniformer/configs/_base_/models/deeplabv3_r50-d8.py +++ /dev/null @@ -1,44 +0,0 @@ -# model settings -norm_cfg = dict(type='SyncBN', requires_grad=True) -model = dict( - type='EncoderDecoder', - pretrained='open-mmlab://resnet50_v1c', - backbone=dict( - type='ResNetV1c', - depth=50, - num_stages=4, - out_indices=(0, 1, 2, 3), - dilations=(1, 1, 2, 4), - strides=(1, 2, 1, 1), - norm_cfg=norm_cfg, - norm_eval=False, - style='pytorch', - contract_dilation=True), - decode_head=dict( - type='ASPPHead', - in_channels=2048, - in_index=3, - channels=512, - dilations=(1, 12, 24, 36), - dropout_ratio=0.1, - num_classes=19, - norm_cfg=norm_cfg, - align_corners=False, - loss_decode=dict( - type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), - auxiliary_head=dict( - type='FCNHead', - in_channels=1024, - in_index=2, - channels=256, - num_convs=1, - concat_input=False, - dropout_ratio=0.1, - num_classes=19, - norm_cfg=norm_cfg, - align_corners=False, - loss_decode=dict( - type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), - # model training and testing settings - train_cfg=dict(), - test_cfg=dict(mode='whole')) diff --git a/spaces/cymic/Talking_Head_Anime_3/tha3/nn/common/poser_args.py b/spaces/cymic/Talking_Head_Anime_3/tha3/nn/common/poser_args.py deleted file mode 100644 index d5a23aa02c18ce9a196229bc8a938c100920a70c..0000000000000000000000000000000000000000 --- a/spaces/cymic/Talking_Head_Anime_3/tha3/nn/common/poser_args.py +++ /dev/null @@ -1,68 +0,0 @@ -from typing import Optional - -from torch.nn import Sigmoid, Sequential, Tanh - -from tha3.nn.conv import create_conv3, create_conv3_from_block_args -from tha3.nn.nonlinearity_factory import ReLUFactory -from tha3.nn.normalization import InstanceNorm2dFactory -from tha3.nn.util import BlockArgs - - -class PoserArgs00: - def __init__(self, - image_size: int, - input_image_channels: int, - output_image_channels: int, - start_channels: int, - num_pose_params: int, - block_args: Optional[BlockArgs] = None): - self.num_pose_params = num_pose_params - self.start_channels = start_channels - self.output_image_channels = output_image_channels - self.input_image_channels = input_image_channels - self.image_size = image_size - if block_args is None: - self.block_args = BlockArgs( - normalization_layer_factory=InstanceNorm2dFactory(), - nonlinearity_factory=ReLUFactory(inplace=True)) - else: - self.block_args = block_args - - def create_alpha_block(self): - from torch.nn import Sequential - return Sequential( - create_conv3( - in_channels=self.start_channels, - out_channels=1, - bias=True, - initialization_method=self.block_args.initialization_method, - use_spectral_norm=False), - Sigmoid()) - - def create_all_channel_alpha_block(self): - from torch.nn import Sequential - return Sequential( - create_conv3( - in_channels=self.start_channels, - out_channels=self.output_image_channels, - bias=True, - initialization_method=self.block_args.initialization_method, - use_spectral_norm=False), - Sigmoid()) - - def create_color_change_block(self): - return Sequential( - create_conv3_from_block_args( - in_channels=self.start_channels, - out_channels=self.output_image_channels, - bias=True, - block_args=self.block_args), - Tanh()) - - def create_grid_change_block(self): - return create_conv3( - in_channels=self.start_channels, - out_channels=2, - bias=False, - initialization_method='zero', - use_spectral_norm=False) \ No newline at end of file diff --git a/spaces/davanstrien/label-studio/README.md b/spaces/davanstrien/label-studio/README.md deleted file mode 100644 index 20aba09f80ff594c8b68f1de9662b21f05b9d9d9..0000000000000000000000000000000000000000 --- a/spaces/davanstrien/label-studio/README.md +++ /dev/null @@ -1,148 +0,0 @@ ---- -title: LabelStudio -emoji: 🟧 -colorFrom: yellow -colorTo: purple -sdk: docker -tags: -- label-studio -fullwidth: true -license: apache-2.0 -app_port: 8080 -duplicated_from: LabelStudio/LabelStudio ---- - - -[Website](https://hubs.ly/Q01CNgsd0) • [Docs](https://hubs.ly/Q01CN9Yq0) • [12K+ GitHub ā­ļø!](https://hubs.ly/Q01CNbPQ0) • [Slack Community](https://hubs.ly/Q01CNb9H0) - -## What is Label Studio? - -Label Studio is an open source data labeling platform. It lets you label audio, -text, images, videos, and time series data with a simple, straightforward, and -highly-configurable user interface. Label Studio can prepare new data or -improve existing training data to get more accurate ML models. - - -## Label Studio in Hugging Face Spaces - -The Label Studio community is thrilled to offer Label Studio as a Hugging Face -Spaces application. You can try the data-annotation interface, connect popular -machine learning models, and share the application with collaborators. You can -start immediately by creating an account or replicate the space and work in -your own environment. - -## Creating a Use Account and Logging In - -Begin by creating a new account in the Label Studio space, then log in with your -credentials. - -**By default, these spaces permit anyone to create a new login -account, allowing them to view and modify project configuration, data sets, and -annotations. Without any modifications, treat this space like a demo environment.** - -## Creating a Labeling Project - -After logging in, Label Studio will present you with a project view. Here you -can create a new project with prompts to upload data and set up a custom -configuration interface. - -**Note that in the default configuration, storage is local and temporary. Any -projects, annotations, and configurations will be lost if the space is restarted.** - -## Next Steps and Additional Resources - -To help with getting started, the Label Studio community curated a list of -resources including tutorials and documentation. - -- šŸš€ [Zero to One with Label Studio Tutorial](https://labelstud.io/blog/introduction-to-label-studio-in-hugging-face-spaces/) -- šŸ“ˆ [Try Label Studio Enterprise](https://hubs.ly/Q01CMLll0) -- šŸ¤— [Tutorial: Using Label Studio with Hugging Face Datasets Hub](https://danielvanstrien.xyz/huggingface/huggingface-datasets/annotation/full%20stack%20deep%20learning%20notes/2022/09/07/label-studio-annotations-hub.html) -- šŸ’” [Label Studio Docs](https://hubs.ly/Q01CN9Yq0) - - -![Gif of Label Studio annotating different types of data](https://raw.githubusercontent.com/heartexlabs/label-studio/master/images/annotation_examples.gif) - -### Making your Label Studio Hugging Face Space production-ready - -By default this space allows for the unrestricted creation of new accounts -will full access to all projects and data. This is great for trying out -Label Studio and collaborating on projects, but you may want to restrict -access to your space to only authorized users. Add the following environment -variable to your spaces Dockerfile to disable public account creation for -this space. - - ENV LABEL_STUDIO_DISABLE_SIGNUP_WITHOUT_LINK=true - -Set secrets in your space to create an inital user, and log in with your -provided username and password. Do not set these in your Dockerfile, as they -globally visible on a public space. - - LABEL_STUDIO_USERNAME - LABEL_STUDIO_PASSWORD - -You will need to provide new users with an invitation link to join the space, -which can be found in the Organizations interface of Label Studio - -By default this space stores all project configuration and data annotations -in local storage with Sqlite. If the space is reset, all configuration and -annotation data in the space will be lost. You can enable configuration -persistence by connecting an external Postgres database to your space, -guaranteeing that all project and annotation settings are preserved. - -Set the following secret variables to match your own hosted instance of -Postgres. We strongly recommend setting these as secrets to prevent leaking -information about your database service to the public in your spaces -definition. - - DJANGO_DB=default - POSTGRE_NAME= - POSTGRE_PORT= - POSTGRE_USER= - POSTGRE_PASSWORD= - POSTGRE_PORT= - POSTGRE_HOST= - -Add the following environment variable to remove the warning about ephemeral -storage. - - ENV STORAGE_PERSISTENCE=1 - -Note that you will need to connect cloud storage to host data items that you -want to annotate, as local storage will not be preserved across a space reset. - -By default the only data storage enabled for this space is local. In the case -of a space reset, all data will be lost. To enable permanent storage, you -must enable a cloud storage connector. We also strongly recommend enabling -configuration persistence to preserve project data, annotations, and user -settings. Choose the appropriate cloud connector and configure the secrets -for it. - -#### Amazon S3 - STORAGE_TYPE=s3 - STORAGE_AWS_ACCESS_KEY_ID="" - STORAGE_AWS_SECRET_ACCESS_KEY="" - STORAGE_AWS_BUCKET_NAME="" - STORAGE_AWS_REGION_NAME="" - STORAGE_AWS_FOLDER="" - -#### Google Cloud Storage - - STORAGE_TYPE=gcs - STORAGE_GCS_BUCKET_NAME="" - STORAGE_GCS_PROJECT_ID="" - STORAGE_GCS_FOLDER="" - GOOGLE_APPLICATION_CREDENTIALS="/opt/heartex/secrets/key.json" - -Azure Blob Storage -================== - - STORAGE_TYPE=azure - STORAGE_AZURE_ACCOUNT_NAME="" - STORAGE_AZURE_ACCOUNT_KEY="" - STORAGE_AZURE_CONTAINER_NAME="" - STORAGE_AZURE_FOLDER="" - - -## Questions? Concerns? Want to get involved? - -Email the community team at [community@labelstud.io](mailto:community@labelstud.io) diff --git a/spaces/davda54/chat-nort5/configuration_norbert.py b/spaces/davda54/chat-nort5/configuration_norbert.py deleted file mode 100644 index 450a0286801acce50a7dd9378efa34391e1ca918..0000000000000000000000000000000000000000 --- a/spaces/davda54/chat-nort5/configuration_norbert.py +++ /dev/null @@ -1,34 +0,0 @@ -from transformers.configuration_utils import PretrainedConfig - - -class NorbertConfig(PretrainedConfig): - """Configuration class to store the configuration of a `NorbertModel`. - """ - def __init__( - self, - vocab_size=50000, - attention_probs_dropout_prob=0.1, - hidden_dropout_prob=0.1, - hidden_size=768, - intermediate_size=2048, - max_position_embeddings=512, - position_bucket_size=32, - num_attention_heads=12, - num_hidden_layers=12, - layer_norm_eps=1.0e-7, - output_all_encoded_layers=True, - **kwargs, - ): - super().__init__(**kwargs) - - self.vocab_size = vocab_size - self.hidden_size = hidden_size - self.num_hidden_layers = num_hidden_layers - self.num_attention_heads = num_attention_heads - self.intermediate_size = intermediate_size - self.hidden_dropout_prob = hidden_dropout_prob - self.attention_probs_dropout_prob = attention_probs_dropout_prob - self.max_position_embeddings = max_position_embeddings - self.output_all_encoded_layers = output_all_encoded_layers - self.position_bucket_size = position_bucket_size - self.layer_norm_eps = layer_norm_eps diff --git a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/anyio/_core/_subprocesses.py b/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/anyio/_core/_subprocesses.py deleted file mode 100644 index 1a26ac8c7ff908341c25d2464972160fbe170a65..0000000000000000000000000000000000000000 --- a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/anyio/_core/_subprocesses.py +++ /dev/null @@ -1,135 +0,0 @@ -from __future__ import annotations - -from io import BytesIO -from os import PathLike -from subprocess import DEVNULL, PIPE, CalledProcessError, CompletedProcess -from typing import ( - IO, - Any, - AsyncIterable, - Mapping, - Sequence, - cast, -) - -from ..abc import Process -from ._eventloop import get_asynclib -from ._tasks import create_task_group - - -async def run_process( - command: str | bytes | Sequence[str | bytes], - *, - input: bytes | None = None, - stdout: int | IO[Any] | None = PIPE, - stderr: int | IO[Any] | None = PIPE, - check: bool = True, - cwd: str | bytes | PathLike[str] | None = None, - env: Mapping[str, str] | None = None, - start_new_session: bool = False, -) -> CompletedProcess[bytes]: - """ - Run an external command in a subprocess and wait until it completes. - - .. seealso:: :func:`subprocess.run` - - :param command: either a string to pass to the shell, or an iterable of strings containing the - executable name or path and its arguments - :param input: bytes passed to the standard input of the subprocess - :param stdout: either :data:`subprocess.PIPE` or :data:`subprocess.DEVNULL` - :param stderr: one of :data:`subprocess.PIPE`, :data:`subprocess.DEVNULL` or - :data:`subprocess.STDOUT` - :param check: if ``True``, raise :exc:`~subprocess.CalledProcessError` if the process - terminates with a return code other than 0 - :param cwd: If not ``None``, change the working directory to this before running the command - :param env: if not ``None``, this mapping replaces the inherited environment variables from the - parent process - :param start_new_session: if ``true`` the setsid() system call will be made in the child - process prior to the execution of the subprocess. (POSIX only) - :return: an object representing the completed process - :raises ~subprocess.CalledProcessError: if ``check`` is ``True`` and the process exits with a - nonzero return code - - """ - - async def drain_stream(stream: AsyncIterable[bytes], index: int) -> None: - buffer = BytesIO() - async for chunk in stream: - buffer.write(chunk) - - stream_contents[index] = buffer.getvalue() - - async with await open_process( - command, - stdin=PIPE if input else DEVNULL, - stdout=stdout, - stderr=stderr, - cwd=cwd, - env=env, - start_new_session=start_new_session, - ) as process: - stream_contents: list[bytes | None] = [None, None] - try: - async with create_task_group() as tg: - if process.stdout: - tg.start_soon(drain_stream, process.stdout, 0) - if process.stderr: - tg.start_soon(drain_stream, process.stderr, 1) - if process.stdin and input: - await process.stdin.send(input) - await process.stdin.aclose() - - await process.wait() - except BaseException: - process.kill() - raise - - output, errors = stream_contents - if check and process.returncode != 0: - raise CalledProcessError(cast(int, process.returncode), command, output, errors) - - return CompletedProcess(command, cast(int, process.returncode), output, errors) - - -async def open_process( - command: str | bytes | Sequence[str | bytes], - *, - stdin: int | IO[Any] | None = PIPE, - stdout: int | IO[Any] | None = PIPE, - stderr: int | IO[Any] | None = PIPE, - cwd: str | bytes | PathLike[str] | None = None, - env: Mapping[str, str] | None = None, - start_new_session: bool = False, -) -> Process: - """ - Start an external command in a subprocess. - - .. seealso:: :class:`subprocess.Popen` - - :param command: either a string to pass to the shell, or an iterable of strings containing the - executable name or path and its arguments - :param stdin: one of :data:`subprocess.PIPE`, :data:`subprocess.DEVNULL`, a - file-like object, or ``None`` - :param stdout: one of :data:`subprocess.PIPE`, :data:`subprocess.DEVNULL`, - a file-like object, or ``None`` - :param stderr: one of :data:`subprocess.PIPE`, :data:`subprocess.DEVNULL`, - :data:`subprocess.STDOUT`, a file-like object, or ``None`` - :param cwd: If not ``None``, the working directory is changed before executing - :param env: If env is not ``None``, it must be a mapping that defines the environment - variables for the new process - :param start_new_session: if ``true`` the setsid() system call will be made in the child - process prior to the execution of the subprocess. (POSIX only) - :return: an asynchronous process object - - """ - shell = isinstance(command, str) - return await get_asynclib().open_process( - command, - shell=shell, - stdin=stdin, - stdout=stdout, - stderr=stderr, - cwd=cwd, - env=env, - start_new_session=start_new_session, - ) diff --git a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/fontTools/varLib/varStore.py b/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/fontTools/varLib/varStore.py deleted file mode 100644 index 55d70e278d4ead2f4734d32d577152f058598c04..0000000000000000000000000000000000000000 --- a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/fontTools/varLib/varStore.py +++ /dev/null @@ -1,703 +0,0 @@ -from fontTools.misc.roundTools import noRound, otRound -from fontTools.misc.intTools import bit_count -from fontTools.ttLib.tables import otTables as ot -from fontTools.varLib.models import supportScalar -from fontTools.varLib.builder import ( - buildVarRegionList, - buildVarStore, - buildVarRegion, - buildVarData, -) -from functools import partial -from collections import defaultdict -from heapq import heappush, heappop - - -NO_VARIATION_INDEX = ot.NO_VARIATION_INDEX -ot.VarStore.NO_VARIATION_INDEX = NO_VARIATION_INDEX - - -def _getLocationKey(loc): - return tuple(sorted(loc.items(), key=lambda kv: kv[0])) - - -class OnlineVarStoreBuilder(object): - def __init__(self, axisTags): - self._axisTags = axisTags - self._regionMap = {} - self._regionList = buildVarRegionList([], axisTags) - self._store = buildVarStore(self._regionList, []) - self._data = None - self._model = None - self._supports = None - self._varDataIndices = {} - self._varDataCaches = {} - self._cache = {} - - def setModel(self, model): - self.setSupports(model.supports) - self._model = model - - def setSupports(self, supports): - self._model = None - self._supports = list(supports) - if not self._supports[0]: - del self._supports[0] # Drop base master support - self._cache = {} - self._data = None - - def finish(self, optimize=True): - self._regionList.RegionCount = len(self._regionList.Region) - self._store.VarDataCount = len(self._store.VarData) - for data in self._store.VarData: - data.ItemCount = len(data.Item) - data.calculateNumShorts(optimize=optimize) - return self._store - - def _add_VarData(self): - regionMap = self._regionMap - regionList = self._regionList - - regions = self._supports - regionIndices = [] - for region in regions: - key = _getLocationKey(region) - idx = regionMap.get(key) - if idx is None: - varRegion = buildVarRegion(region, self._axisTags) - idx = regionMap[key] = len(regionList.Region) - regionList.Region.append(varRegion) - regionIndices.append(idx) - - # Check if we have one already... - key = tuple(regionIndices) - varDataIdx = self._varDataIndices.get(key) - if varDataIdx is not None: - self._outer = varDataIdx - self._data = self._store.VarData[varDataIdx] - self._cache = self._varDataCaches[key] - if len(self._data.Item) == 0xFFFF: - # This is full. Need new one. - varDataIdx = None - - if varDataIdx is None: - self._data = buildVarData(regionIndices, [], optimize=False) - self._outer = len(self._store.VarData) - self._store.VarData.append(self._data) - self._varDataIndices[key] = self._outer - if key not in self._varDataCaches: - self._varDataCaches[key] = {} - self._cache = self._varDataCaches[key] - - def storeMasters(self, master_values, *, round=round): - deltas = self._model.getDeltas(master_values, round=round) - base = deltas.pop(0) - return base, self.storeDeltas(deltas, round=noRound) - - def storeDeltas(self, deltas, *, round=round): - deltas = [round(d) for d in deltas] - if len(deltas) == len(self._supports) + 1: - deltas = tuple(deltas[1:]) - else: - assert len(deltas) == len(self._supports) - deltas = tuple(deltas) - - varIdx = self._cache.get(deltas) - if varIdx is not None: - return varIdx - - if not self._data: - self._add_VarData() - inner = len(self._data.Item) - if inner == 0xFFFF: - # Full array. Start new one. - self._add_VarData() - return self.storeDeltas(deltas) - self._data.addItem(deltas, round=noRound) - - varIdx = (self._outer << 16) + inner - self._cache[deltas] = varIdx - return varIdx - - -def VarData_addItem(self, deltas, *, round=round): - deltas = [round(d) for d in deltas] - - countUs = self.VarRegionCount - countThem = len(deltas) - if countUs + 1 == countThem: - deltas = tuple(deltas[1:]) - else: - assert countUs == countThem, (countUs, countThem) - deltas = tuple(deltas) - self.Item.append(list(deltas)) - self.ItemCount = len(self.Item) - - -ot.VarData.addItem = VarData_addItem - - -def VarRegion_get_support(self, fvar_axes): - return { - fvar_axes[i].axisTag: (reg.StartCoord, reg.PeakCoord, reg.EndCoord) - for i, reg in enumerate(self.VarRegionAxis) - if reg.PeakCoord != 0 - } - - -ot.VarRegion.get_support = VarRegion_get_support - - -def VarStore___bool__(self): - return bool(self.VarData) - - -ot.VarStore.__bool__ = VarStore___bool__ - - -class VarStoreInstancer(object): - def __init__(self, varstore, fvar_axes, location={}): - self.fvar_axes = fvar_axes - assert varstore is None or varstore.Format == 1 - self._varData = varstore.VarData if varstore else [] - self._regions = varstore.VarRegionList.Region if varstore else [] - self.setLocation(location) - - def setLocation(self, location): - self.location = dict(location) - self._clearCaches() - - def _clearCaches(self): - self._scalars = {} - - def _getScalar(self, regionIdx): - scalar = self._scalars.get(regionIdx) - if scalar is None: - support = self._regions[regionIdx].get_support(self.fvar_axes) - scalar = supportScalar(self.location, support) - self._scalars[regionIdx] = scalar - return scalar - - @staticmethod - def interpolateFromDeltasAndScalars(deltas, scalars): - delta = 0.0 - for d, s in zip(deltas, scalars): - if not s: - continue - delta += d * s - return delta - - def __getitem__(self, varidx): - major, minor = varidx >> 16, varidx & 0xFFFF - if varidx == NO_VARIATION_INDEX: - return 0.0 - varData = self._varData - scalars = [self._getScalar(ri) for ri in varData[major].VarRegionIndex] - deltas = varData[major].Item[minor] - return self.interpolateFromDeltasAndScalars(deltas, scalars) - - def interpolateFromDeltas(self, varDataIndex, deltas): - varData = self._varData - scalars = [self._getScalar(ri) for ri in varData[varDataIndex].VarRegionIndex] - return self.interpolateFromDeltasAndScalars(deltas, scalars) - - -# -# Optimizations -# -# retainFirstMap - If true, major 0 mappings are retained. Deltas for unused indices are zeroed -# advIdxes - Set of major 0 indices for advance deltas to be listed first. Other major 0 indices follow. - - -def VarStore_subset_varidxes( - self, varIdxes, optimize=True, retainFirstMap=False, advIdxes=set() -): - # Sort out used varIdxes by major/minor. - used = {} - for varIdx in varIdxes: - if varIdx == NO_VARIATION_INDEX: - continue - major = varIdx >> 16 - minor = varIdx & 0xFFFF - d = used.get(major) - if d is None: - d = used[major] = set() - d.add(minor) - del varIdxes - - # - # Subset VarData - # - - varData = self.VarData - newVarData = [] - varDataMap = {NO_VARIATION_INDEX: NO_VARIATION_INDEX} - for major, data in enumerate(varData): - usedMinors = used.get(major) - if usedMinors is None: - continue - newMajor = len(newVarData) - newVarData.append(data) - - items = data.Item - newItems = [] - if major == 0 and retainFirstMap: - for minor in range(len(items)): - newItems.append( - items[minor] if minor in usedMinors else [0] * len(items[minor]) - ) - varDataMap[minor] = minor - else: - if major == 0: - minors = sorted(advIdxes) + sorted(usedMinors - advIdxes) - else: - minors = sorted(usedMinors) - for minor in minors: - newMinor = len(newItems) - newItems.append(items[minor]) - varDataMap[(major << 16) + minor] = (newMajor << 16) + newMinor - - data.Item = newItems - data.ItemCount = len(data.Item) - - data.calculateNumShorts(optimize=optimize) - - self.VarData = newVarData - self.VarDataCount = len(self.VarData) - - self.prune_regions() - - return varDataMap - - -ot.VarStore.subset_varidxes = VarStore_subset_varidxes - - -def VarStore_prune_regions(self): - """Remove unused VarRegions.""" - # - # Subset VarRegionList - # - - # Collect. - usedRegions = set() - for data in self.VarData: - usedRegions.update(data.VarRegionIndex) - # Subset. - regionList = self.VarRegionList - regions = regionList.Region - newRegions = [] - regionMap = {} - for i in sorted(usedRegions): - regionMap[i] = len(newRegions) - newRegions.append(regions[i]) - regionList.Region = newRegions - regionList.RegionCount = len(regionList.Region) - # Map. - for data in self.VarData: - data.VarRegionIndex = [regionMap[i] for i in data.VarRegionIndex] - - -ot.VarStore.prune_regions = VarStore_prune_regions - - -def _visit(self, func): - """Recurse down from self, if type of an object is ot.Device, - call func() on it. Works on otData-style classes.""" - - if type(self) == ot.Device: - func(self) - - elif isinstance(self, list): - for that in self: - _visit(that, func) - - elif hasattr(self, "getConverters") and not hasattr(self, "postRead"): - for conv in self.getConverters(): - that = getattr(self, conv.name, None) - if that is not None: - _visit(that, func) - - elif isinstance(self, ot.ValueRecord): - for that in self.__dict__.values(): - _visit(that, func) - - -def _Device_recordVarIdx(self, s): - """Add VarIdx in this Device table (if any) to the set s.""" - if self.DeltaFormat == 0x8000: - s.add((self.StartSize << 16) + self.EndSize) - - -def Object_collect_device_varidxes(self, varidxes): - adder = partial(_Device_recordVarIdx, s=varidxes) - _visit(self, adder) - - -ot.GDEF.collect_device_varidxes = Object_collect_device_varidxes -ot.GPOS.collect_device_varidxes = Object_collect_device_varidxes - - -def _Device_mapVarIdx(self, mapping, done): - """Map VarIdx in this Device table (if any) through mapping.""" - if id(self) in done: - return - done.add(id(self)) - if self.DeltaFormat == 0x8000: - varIdx = mapping[(self.StartSize << 16) + self.EndSize] - self.StartSize = varIdx >> 16 - self.EndSize = varIdx & 0xFFFF - - -def Object_remap_device_varidxes(self, varidxes_map): - mapper = partial(_Device_mapVarIdx, mapping=varidxes_map, done=set()) - _visit(self, mapper) - - -ot.GDEF.remap_device_varidxes = Object_remap_device_varidxes -ot.GPOS.remap_device_varidxes = Object_remap_device_varidxes - - -class _Encoding(object): - def __init__(self, chars): - self.chars = chars - self.width = bit_count(chars) - self.columns = self._columns(chars) - self.overhead = self._characteristic_overhead(self.columns) - self.items = set() - - def append(self, row): - self.items.add(row) - - def extend(self, lst): - self.items.update(lst) - - def get_room(self): - """Maximum number of bytes that can be added to characteristic - while still being beneficial to merge it into another one.""" - count = len(self.items) - return max(0, (self.overhead - 1) // count - self.width) - - room = property(get_room) - - def get_gain(self): - """Maximum possible byte gain from merging this into another - characteristic.""" - count = len(self.items) - return max(0, self.overhead - count) - - gain = property(get_gain) - - def gain_sort_key(self): - return self.gain, self.chars - - def width_sort_key(self): - return self.width, self.chars - - @staticmethod - def _characteristic_overhead(columns): - """Returns overhead in bytes of encoding this characteristic - as a VarData.""" - c = 4 + 6 # 4 bytes for LOffset, 6 bytes for VarData header - c += bit_count(columns) * 2 - return c - - @staticmethod - def _columns(chars): - cols = 0 - i = 1 - while chars: - if chars & 0b1111: - cols |= i - chars >>= 4 - i <<= 1 - return cols - - def gain_from_merging(self, other_encoding): - combined_chars = other_encoding.chars | self.chars - combined_width = bit_count(combined_chars) - combined_columns = self.columns | other_encoding.columns - combined_overhead = _Encoding._characteristic_overhead(combined_columns) - combined_gain = ( - +self.overhead - + other_encoding.overhead - - combined_overhead - - (combined_width - self.width) * len(self.items) - - (combined_width - other_encoding.width) * len(other_encoding.items) - ) - return combined_gain - - -class _EncodingDict(dict): - def __missing__(self, chars): - r = self[chars] = _Encoding(chars) - return r - - def add_row(self, row): - chars = self._row_characteristics(row) - self[chars].append(row) - - @staticmethod - def _row_characteristics(row): - """Returns encoding characteristics for a row.""" - longWords = False - - chars = 0 - i = 1 - for v in row: - if v: - chars += i - if not (-128 <= v <= 127): - chars += i * 0b0010 - if not (-32768 <= v <= 32767): - longWords = True - break - i <<= 4 - - if longWords: - # Redo; only allow 2byte/4byte encoding - chars = 0 - i = 1 - for v in row: - if v: - chars += i * 0b0011 - if not (-32768 <= v <= 32767): - chars += i * 0b1100 - i <<= 4 - - return chars - - -def VarStore_optimize(self, use_NO_VARIATION_INDEX=True, quantization=1): - """Optimize storage. Returns mapping from old VarIdxes to new ones.""" - - # Overview: - # - # For each VarData row, we first extend it with zeroes to have - # one column per region in VarRegionList. We then group the - # rows into _Encoding objects, by their "characteristic" bitmap. - # The characteristic bitmap is a binary number representing how - # many bytes each column of the data takes up to encode. Each - # column is encoded in four bits. For example, if a column has - # only values in the range -128..127, it would only have a single - # bit set in the characteristic bitmap for that column. If it has - # values in the range -32768..32767, it would have two bits set. - # The number of ones in the characteristic bitmap is the "width" - # of the encoding. - # - # Each encoding as such has a number of "active" (ie. non-zero) - # columns. The overhead of encoding the characteristic bitmap - # is 10 bytes, plus 2 bytes per active column. - # - # When an encoding is merged into another one, if the characteristic - # of the old encoding is a subset of the new one, then the overhead - # of the old encoding is completely eliminated. However, each row - # now would require more bytes to encode, to the tune of one byte - # per characteristic bit that is active in the new encoding but not - # in the old one. The number of bits that can be added to an encoding - # while still beneficial to merge it into another encoding is called - # the "room" for that encoding. - # - # The "gain" of an encodings is the maximum number of bytes we can - # save by merging it into another encoding. The "gain" of merging - # two encodings is how many bytes we save by doing so. - # - # High-level algorithm: - # - # - Each encoding has a minimal way to encode it. However, because - # of the overhead of encoding the characteristic bitmap, it may - # be beneficial to merge two encodings together, if there is - # gain in doing so. As such, we need to search for the best - # such successive merges. - # - # Algorithm: - # - # - Put all encodings into a "todo" list. - # - # - Sort todo list by decreasing gain (for stability). - # - # - Make a priority-queue of the gain from combining each two - # encodings in the todo list. The priority queue is sorted by - # decreasing gain. Only positive gains are included. - # - # - While priority queue is not empty: - # - Pop the first item from the priority queue, - # - Merge the two encodings it represents, - # - Remove the two encodings from the todo list, - # - Insert positive gains from combining the new encoding with - # all existing todo list items into the priority queue, - # - If a todo list item with the same characteristic bitmap as - # the new encoding exists, remove it from the todo list and - # merge it into the new encoding. - # - Insert the new encoding into the todo list, - # - # - Encode all remaining items in the todo list. - - # TODO - # Check that no two VarRegions are the same; if they are, fold them. - - n = len(self.VarRegionList.Region) # Number of columns - zeroes = [0] * n - - front_mapping = {} # Map from old VarIdxes to full row tuples - - encodings = _EncodingDict() - - # Collect all items into a set of full rows (with lots of zeroes.) - for major, data in enumerate(self.VarData): - regionIndices = data.VarRegionIndex - - for minor, item in enumerate(data.Item): - row = list(zeroes) - - if quantization == 1: - for regionIdx, v in zip(regionIndices, item): - row[regionIdx] += v - else: - for regionIdx, v in zip(regionIndices, item): - row[regionIdx] += ( - round(v / quantization) * quantization - ) # TODO https://github.com/fonttools/fonttools/pull/3126#discussion_r1205439785 - - row = tuple(row) - - if use_NO_VARIATION_INDEX and not any(row): - front_mapping[(major << 16) + minor] = None - continue - - encodings.add_row(row) - front_mapping[(major << 16) + minor] = row - - # Prepare for the main algorithm. - todo = sorted(encodings.values(), key=_Encoding.gain_sort_key) - del encodings - - # Repeatedly pick two best encodings to combine, and combine them. - - heap = [] - for i, encoding in enumerate(todo): - for j in range(i + 1, len(todo)): - other_encoding = todo[j] - combining_gain = encoding.gain_from_merging(other_encoding) - if combining_gain > 0: - heappush(heap, (-combining_gain, i, j)) - - while heap: - _, i, j = heappop(heap) - if todo[i] is None or todo[j] is None: - continue - - encoding, other_encoding = todo[i], todo[j] - todo[i], todo[j] = None, None - - # Combine the two encodings - combined_chars = other_encoding.chars | encoding.chars - combined_encoding = _Encoding(combined_chars) - combined_encoding.extend(encoding.items) - combined_encoding.extend(other_encoding.items) - - for k, enc in enumerate(todo): - if enc is None: - continue - - # In the unlikely event that the same encoding exists already, - # combine it. - if enc.chars == combined_chars: - combined_encoding.extend(enc.items) - todo[k] = None - continue - - combining_gain = combined_encoding.gain_from_merging(enc) - if combining_gain > 0: - heappush(heap, (-combining_gain, k, len(todo))) - - todo.append(combined_encoding) - - encodings = [encoding for encoding in todo if encoding is not None] - - # Assemble final store. - back_mapping = {} # Mapping from full rows to new VarIdxes - encodings.sort(key=_Encoding.width_sort_key) - self.VarData = [] - for major, encoding in enumerate(encodings): - data = ot.VarData() - self.VarData.append(data) - data.VarRegionIndex = range(n) - data.VarRegionCount = len(data.VarRegionIndex) - data.Item = sorted(encoding.items) - for minor, item in enumerate(data.Item): - back_mapping[item] = (major << 16) + minor - - # Compile final mapping. - varidx_map = {NO_VARIATION_INDEX: NO_VARIATION_INDEX} - for k, v in front_mapping.items(): - varidx_map[k] = back_mapping[v] if v is not None else NO_VARIATION_INDEX - - # Remove unused regions. - self.prune_regions() - - # Recalculate things and go home. - self.VarRegionList.RegionCount = len(self.VarRegionList.Region) - self.VarDataCount = len(self.VarData) - for data in self.VarData: - data.ItemCount = len(data.Item) - data.optimize() - - return varidx_map - - -ot.VarStore.optimize = VarStore_optimize - - -def main(args=None): - """Optimize a font's GDEF variation store""" - from argparse import ArgumentParser - from fontTools import configLogger - from fontTools.ttLib import TTFont - from fontTools.ttLib.tables.otBase import OTTableWriter - - parser = ArgumentParser(prog="varLib.varStore", description=main.__doc__) - parser.add_argument("--quantization", type=int, default=1) - parser.add_argument("fontfile") - parser.add_argument("outfile", nargs="?") - options = parser.parse_args(args) - - # TODO: allow user to configure logging via command-line options - configLogger(level="INFO") - - quantization = options.quantization - fontfile = options.fontfile - outfile = options.outfile - - font = TTFont(fontfile) - gdef = font["GDEF"] - store = gdef.table.VarStore - - writer = OTTableWriter() - store.compile(writer, font) - size = len(writer.getAllData()) - print("Before: %7d bytes" % size) - - varidx_map = store.optimize(quantization=quantization) - - writer = OTTableWriter() - store.compile(writer, font) - size = len(writer.getAllData()) - print("After: %7d bytes" % size) - - if outfile is not None: - gdef.table.remap_device_varidxes(varidx_map) - if "GPOS" in font: - font["GPOS"].table.remap_device_varidxes(varidx_map) - - font.save(outfile) - - -if __name__ == "__main__": - import sys - - if len(sys.argv) > 1: - sys.exit(main()) - import doctest - - sys.exit(doctest.testmod().failed) diff --git a/spaces/deafheavennnn/metalproxy/greeting.md b/spaces/deafheavennnn/metalproxy/greeting.md deleted file mode 100644 index ac70d46d02007d8e8c32fe238e90dc0329d91a2b..0000000000000000000000000000000000000000 --- a/spaces/deafheavennnn/metalproxy/greeting.md +++ /dev/null @@ -1,2 +0,0 @@ -send something funny, metal related, or anything. -ordinarycorrupthumanlove@proton.me \ No newline at end of file diff --git a/spaces/declare-lab/tango/diffusers/docker/diffusers-onnxruntime-cpu/Dockerfile b/spaces/declare-lab/tango/diffusers/docker/diffusers-onnxruntime-cpu/Dockerfile deleted file mode 100644 index 75f45be87a033e9476c4038218c9c2fd2f1255a5..0000000000000000000000000000000000000000 --- a/spaces/declare-lab/tango/diffusers/docker/diffusers-onnxruntime-cpu/Dockerfile +++ /dev/null @@ -1,44 +0,0 @@ -FROM ubuntu:20.04 -LABEL maintainer="Hugging Face" -LABEL repository="diffusers" - -ENV DEBIAN_FRONTEND=noninteractive - -RUN apt update && \ - apt install -y bash \ - build-essential \ - git \ - git-lfs \ - curl \ - ca-certificates \ - libsndfile1-dev \ - python3.8 \ - python3-pip \ - python3.8-venv && \ - rm -rf /var/lib/apt/lists - -# make sure to use venv -RUN python3 -m venv /opt/venv -ENV PATH="/opt/venv/bin:$PATH" - -# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py) -RUN python3 -m pip install --no-cache-dir --upgrade pip && \ - python3 -m pip install --no-cache-dir \ - torch \ - torchvision \ - torchaudio \ - onnxruntime \ - --extra-index-url https://download.pytorch.org/whl/cpu && \ - python3 -m pip install --no-cache-dir \ - accelerate \ - datasets \ - hf-doc-builder \ - huggingface-hub \ - Jinja2 \ - librosa \ - numpy \ - scipy \ - tensorboard \ - transformers - -CMD ["/bin/bash"] \ No newline at end of file diff --git a/spaces/deepwisdom/MetaGPT/metagpt/static/cy_aps/assets/home-0791050d.js b/spaces/deepwisdom/MetaGPT/metagpt/static/cy_aps/assets/home-0791050d.js deleted file mode 100644 index 58334e1cc48d5e9a2bc969c1bafb27a9a307c470..0000000000000000000000000000000000000000 --- a/spaces/deepwisdom/MetaGPT/metagpt/static/cy_aps/assets/home-0791050d.js +++ /dev/null @@ -1,335 +0,0 @@ -var Fw=Object.defineProperty;var Bw=(t,e,n)=>e in t?Fw(t,e,{enumerable:!0,configurable:!0,writable:!0,value:n}):t[e]=n;var Mi=(t,e,n)=>(Bw(t,typeof e!="symbol"?e+"":e,n),n);import{d as be,x as yt,c as le,f as V,h as ae,l as F,n as It,k as Bt,r as ee,o as kn,w as Zt,v as ue,$ as q,j as oi,p as ot,q as dt,a2 as wr,a3 as Zi,a4 as Ji,t as St,F as st,U as Ks,R as $i,H as bm,G as Kn,i as Ft,B as ni,g as $m,K as Pn,a5 as j,J as Gw,A as Qs,a6 as Yw,I as OC,a7 as Hm,Q as si,T as Hi,z as zm,L as Xs,b as Ya,a8 as Vm,P as yn,s as Ge,u as $e,M as ji,a9 as qw,y as AC,D as Ps,aa as $w,_ as Hw,a as zw,ab as Vw,N as Ww,ac as Kw}from"./vue-e0bc46a9.js";import{_ as Un,j as Fn,k as Bn,m as Qw,o as Ht,e as Rt,M as yC,n as IC,p as Ka,q as Xw,r as Zw,O as gs,s as Jw,D as DC,u as jw,v as eM,A as tM,T as nM,B as hm,g as xC,w as rM,L as Gf,x as iM,y as aM,z as oM,E as sM,G as lM,S as cM,H as uM}from"./vendor-4cd7d240.js";import{C as Wm,U as dM,t as Km}from"./index-5df855a0.js";import{c as La,a as _M,g as Qm}from"./__commonjsHelpers__-042e6b4d.js";const pM="https://public-frontend-1300249583.cos-website.ap-nanjing.myqcloud.com/cy_aps/assets/bigTexCard-be1474a9.svg",mM="https://public-frontend-1300249583.cos-website.ap-nanjing.myqcloud.com/cy_aps/assets/example-ce12f6a4.png",gM="https://public-frontend-1300249583.cos-website.ap-nanjing.myqcloud.com/cy_aps/assets/example-c23c1e5e.mp4",EM=["xlink:href"],ea=be({__name:"Icon",props:{iconId:{},fill:{},size:{},disabled:{type:Boolean}},setup(t){const e=t,n=yt(e,"iconId"),i=yt(e,"fill"),o=le(()=>n.value.split("-").filter(l=>l).map(l=>l[0].toUpperCase()+l.slice(1)).join("")),s=le(()=>`width: ${e.size}px;height:${e.size}px;fill:${i.value}`);return(l,c)=>(V(),ae("svg",{class:It([o.value,n.value,"IconCommon",l.disabled?"iconDisabled":""]),style:Bt(s.value),"aria-hidden":"true"},[F("use",{"xlink:href":`#${n.value}`},null,8,EM)],6))}});const fM="https://public-frontend-1300249583.cos-website.ap-nanjing.myqcloud.com/cy_aps/assets/wechat-4dad209c.png",SM=be({name:"IconDownload",props:{size:{type:[Number,String]},strokeWidth:{type:Number,default:4},strokeLinecap:{type:String,default:"butt",validator:t=>["butt","round","square"].includes(t)},strokeLinejoin:{type:String,default:"miter",validator:t=>["arcs","bevel","miter","miter-clip","round"].includes(t)},rotate:Number,spin:Boolean},emits:{click:t=>!0},setup(t,{emit:e}){const n=Fn("icon"),i=le(()=>[n,`${n}-download`,{[`${n}-spin`]:t.spin}]),o=le(()=>{const l={};return t.size&&(l.fontSize=Bn(t.size)?`${t.size}px`:t.size),t.rotate&&(l.transform=`rotate(${t.rotate}deg)`),l});return{cls:i,innerStyle:o,onClick:l=>{e("click",l)}}}}),bM=["stroke-width","stroke-linecap","stroke-linejoin"],hM=F("path",{d:"m33.072 22.071-9.07 9.071-9.072-9.07M24 5v26m16 4v6H8v-6"},null,-1),TM=[hM];function vM(t,e,n,i,o,s){return V(),ae("svg",{viewBox:"0 0 48 48",fill:"none",xmlns:"http://www.w3.org/2000/svg",stroke:"currentColor",class:It(t.cls),style:Bt(t.innerStyle),"stroke-width":t.strokeWidth,"stroke-linecap":t.strokeLinecap,"stroke-linejoin":t.strokeLinejoin,onClick:e[0]||(e[0]=(...l)=>t.onClick&&t.onClick(...l))},TM,14,bM)}var Jc=Un(SM,[["render",vM]]);const CM=Object.assign(Jc,{install:(t,e)=>{var n;const i=(n=e==null?void 0:e.iconPrefix)!=null?n:"";t.component(i+Jc.name,Jc)}}),RM=be({name:"IconScan",props:{size:{type:[Number,String]},strokeWidth:{type:Number,default:4},strokeLinecap:{type:String,default:"butt",validator:t=>["butt","round","square"].includes(t)},strokeLinejoin:{type:String,default:"miter",validator:t=>["arcs","bevel","miter","miter-clip","round"].includes(t)},rotate:Number,spin:Boolean},emits:{click:t=>!0},setup(t,{emit:e}){const n=Fn("icon"),i=le(()=>[n,`${n}-scan`,{[`${n}-spin`]:t.spin}]),o=le(()=>{const l={};return t.size&&(l.fontSize=Bn(t.size)?`${t.size}px`:t.size),t.rotate&&(l.transform=`rotate(${t.rotate}deg)`),l});return{cls:i,innerStyle:o,onClick:l=>{e("click",l)}}}}),NM=["stroke-width","stroke-linecap","stroke-linejoin"],OM=F("path",{d:"M7 17V7h10m24 10V7H31m10 24v10H31M7 31v10h10M5 24h38"},null,-1),AM=[OM];function yM(t,e,n,i,o,s){return V(),ae("svg",{viewBox:"0 0 48 48",fill:"none",xmlns:"http://www.w3.org/2000/svg",stroke:"currentColor",class:It(t.cls),style:Bt(t.innerStyle),"stroke-width":t.strokeWidth,"stroke-linecap":t.strokeLinecap,"stroke-linejoin":t.strokeLinejoin,onClick:e[0]||(e[0]=(...l)=>t.onClick&&t.onClick(...l))},AM,14,NM)}var jc=Un(RM,[["render",yM]]);const IM=Object.assign(jc,{install:(t,e)=>{var n;const i=(n=e==null?void 0:e.iconPrefix)!=null?n:"";t.component(i+jc.name,jc)}}),DM=be({name:"IconSync",props:{size:{type:[Number,String]},strokeWidth:{type:Number,default:4},strokeLinecap:{type:String,default:"butt",validator:t=>["butt","round","square"].includes(t)},strokeLinejoin:{type:String,default:"miter",validator:t=>["arcs","bevel","miter","miter-clip","round"].includes(t)},rotate:Number,spin:Boolean},emits:{click:t=>!0},setup(t,{emit:e}){const n=Fn("icon"),i=le(()=>[n,`${n}-sync`,{[`${n}-spin`]:t.spin}]),o=le(()=>{const l={};return t.size&&(l.fontSize=Bn(t.size)?`${t.size}px`:t.size),t.rotate&&(l.transform=`rotate(${t.rotate}deg)`),l});return{cls:i,innerStyle:o,onClick:l=>{e("click",l)}}}}),xM=["stroke-width","stroke-linecap","stroke-linejoin"],wM=F("path",{d:"M11.98 11.703c-6.64 6.64-6.64 17.403 0 24.042a16.922 16.922 0 0 0 8.942 4.7M34.603 37.156l1.414-1.415c6.64-6.639 6.64-17.402 0-24.041A16.922 16.922 0 0 0 27.075 7M14.81 11.982l-1.414-1.414-1.414-1.414h2.829v2.828ZM33.192 36.02l1.414 1.414 1.414 1.415h-2.828V36.02Z"},null,-1),MM=[wM];function LM(t,e,n,i,o,s){return V(),ae("svg",{viewBox:"0 0 48 48",fill:"none",xmlns:"http://www.w3.org/2000/svg",stroke:"currentColor",class:It(t.cls),style:Bt(t.innerStyle),"stroke-width":t.strokeWidth,"stroke-linecap":t.strokeLinecap,"stroke-linejoin":t.strokeLinejoin,onClick:e[0]||(e[0]=(...l)=>t.onClick&&t.onClick(...l))},MM,14,xM)}var eu=Un(DM,[["render",LM]]);const Es=Object.assign(eu,{install:(t,e)=>{var n;const i=(n=e==null?void 0:e.iconPrefix)!=null?n:"";t.component(i+eu.name,eu)}}),PM=be({name:"IconVoice",props:{size:{type:[Number,String]},strokeWidth:{type:Number,default:4},strokeLinecap:{type:String,default:"butt",validator:t=>["butt","round","square"].includes(t)},strokeLinejoin:{type:String,default:"miter",validator:t=>["arcs","bevel","miter","miter-clip","round"].includes(t)},rotate:Number,spin:Boolean},emits:{click:t=>!0},setup(t,{emit:e}){const n=Fn("icon"),i=le(()=>[n,`${n}-voice`,{[`${n}-spin`]:t.spin}]),o=le(()=>{const l={};return t.size&&(l.fontSize=Bn(t.size)?`${t.size}px`:t.size),t.rotate&&(l.transform=`rotate(${t.rotate}deg)`),l});return{cls:i,innerStyle:o,onClick:l=>{e("click",l)}}}}),kM=["stroke-width","stroke-linecap","stroke-linejoin"],UM=F("path",{d:"M41 21v1c0 8.837-7.163 16-16 16h-2c-8.837 0-16-7.163-16-16v-1m17 17v6m0-14a9 9 0 0 1-9-9v-6a9 9 0 1 1 18 0v6a9 9 0 0 1-9 9Z"},null,-1),FM=[UM];function BM(t,e,n,i,o,s){return V(),ae("svg",{viewBox:"0 0 48 48",fill:"none",xmlns:"http://www.w3.org/2000/svg",stroke:"currentColor",class:It(t.cls),style:Bt(t.innerStyle),"stroke-width":t.strokeWidth,"stroke-linecap":t.strokeLinecap,"stroke-linejoin":t.strokeLinejoin,onClick:e[0]||(e[0]=(...l)=>t.onClick&&t.onClick(...l))},FM,14,kM)}var tu=Un(PM,[["render",BM]]);const GM=Object.assign(tu,{install:(t,e)=>{var n;const i=(n=e==null?void 0:e.iconPrefix)!=null?n:"";t.component(i+tu.name,tu)}}),YM=be({name:"IconPauseCircleFill",props:{size:{type:[Number,String]},strokeWidth:{type:Number,default:4},strokeLinecap:{type:String,default:"butt",validator:t=>["butt","round","square"].includes(t)},strokeLinejoin:{type:String,default:"miter",validator:t=>["arcs","bevel","miter","miter-clip","round"].includes(t)},rotate:Number,spin:Boolean},emits:{click:t=>!0},setup(t,{emit:e}){const n=Fn("icon"),i=le(()=>[n,`${n}-pause-circle-fill`,{[`${n}-spin`]:t.spin}]),o=le(()=>{const l={};return t.size&&(l.fontSize=Bn(t.size)?`${t.size}px`:t.size),t.rotate&&(l.transform=`rotate(${t.rotate}deg)`),l});return{cls:i,innerStyle:o,onClick:l=>{e("click",l)}}}}),qM=["stroke-width","stroke-linecap","stroke-linejoin"],$M=F("path",{"fill-rule":"evenodd","clip-rule":"evenodd",d:"M24 44c11.046 0 20-8.954 20-20S35.046 4 24 4 4 12.954 4 24s8.954 20 20 20Zm-6-27a1 1 0 0 0-1 1v12a1 1 0 0 0 1 1h3a1 1 0 0 0 1-1V18a1 1 0 0 0-1-1h-3Zm9 0a1 1 0 0 0-1 1v12a1 1 0 0 0 1 1h3a1 1 0 0 0 1-1V18a1 1 0 0 0-1-1h-3Z",fill:"currentColor",stroke:"none"},null,-1),HM=[$M];function zM(t,e,n,i,o,s){return V(),ae("svg",{viewBox:"0 0 48 48",fill:"none",xmlns:"http://www.w3.org/2000/svg",stroke:"currentColor",class:It(t.cls),style:Bt(t.innerStyle),"stroke-width":t.strokeWidth,"stroke-linecap":t.strokeLinecap,"stroke-linejoin":t.strokeLinejoin,onClick:e[0]||(e[0]=(...l)=>t.onClick&&t.onClick(...l))},HM,14,qM)}var nu=Un(YM,[["render",zM]]);const VM=Object.assign(nu,{install:(t,e)=>{var n;const i=(n=e==null?void 0:e.iconPrefix)!=null?n:"";t.component(i+nu.name,nu)}}),WM=be({name:"IconPlayCircleFill",props:{size:{type:[Number,String]},strokeWidth:{type:Number,default:4},strokeLinecap:{type:String,default:"butt",validator:t=>["butt","round","square"].includes(t)},strokeLinejoin:{type:String,default:"miter",validator:t=>["arcs","bevel","miter","miter-clip","round"].includes(t)},rotate:Number,spin:Boolean},emits:{click:t=>!0},setup(t,{emit:e}){const n=Fn("icon"),i=le(()=>[n,`${n}-play-circle-fill`,{[`${n}-spin`]:t.spin}]),o=le(()=>{const l={};return t.size&&(l.fontSize=Bn(t.size)?`${t.size}px`:t.size),t.rotate&&(l.transform=`rotate(${t.rotate}deg)`),l});return{cls:i,innerStyle:o,onClick:l=>{e("click",l)}}}}),KM=["stroke-width","stroke-linecap","stroke-linejoin"],QM=F("path",{"fill-rule":"evenodd","clip-rule":"evenodd",d:"M44 24c0 11.046-8.954 20-20 20S4 35.046 4 24 12.954 4 24 4s20 8.954 20 20Zm-23.662-7.783C19.302 15.605 18 16.36 18 17.575v12.85c0 1.214 1.302 1.97 2.338 1.358l10.89-6.425c1.03-.607 1.03-2.11 0-2.716l-10.89-6.425Z",fill:"currentColor",stroke:"none"},null,-1),XM=[QM];function ZM(t,e,n,i,o,s){return V(),ae("svg",{viewBox:"0 0 48 48",fill:"none",xmlns:"http://www.w3.org/2000/svg",stroke:"currentColor",class:It(t.cls),style:Bt(t.innerStyle),"stroke-width":t.strokeWidth,"stroke-linecap":t.strokeLinecap,"stroke-linejoin":t.strokeLinejoin,onClick:e[0]||(e[0]=(...l)=>t.onClick&&t.onClick(...l))},XM,14,KM)}var ru=Un(WM,[["render",ZM]]);const JM=Object.assign(ru,{install:(t,e)=>{var n;const i=(n=e==null?void 0:e.iconPrefix)!=null?n:"";t.component(i+ru.name,ru)}}),jM=be({name:"IconRecordStop",props:{size:{type:[Number,String]},strokeWidth:{type:Number,default:4},strokeLinecap:{type:String,default:"butt",validator:t=>["butt","round","square"].includes(t)},strokeLinejoin:{type:String,default:"miter",validator:t=>["arcs","bevel","miter","miter-clip","round"].includes(t)},rotate:Number,spin:Boolean},emits:{click:t=>!0},setup(t,{emit:e}){const n=Fn("icon"),i=le(()=>[n,`${n}-record-stop`,{[`${n}-spin`]:t.spin}]),o=le(()=>{const l={};return t.size&&(l.fontSize=Bn(t.size)?`${t.size}px`:t.size),t.rotate&&(l.transform=`rotate(${t.rotate}deg)`),l});return{cls:i,innerStyle:o,onClick:l=>{e("click",l)}}}}),eL=["stroke-width","stroke-linecap","stroke-linejoin"],tL=F("path",{"clip-rule":"evenodd",d:"M24 6c9.941 0 18 8.059 18 18s-8.059 18-18 18S6 33.941 6 24 14.059 6 24 6Z"},null,-1),nL=F("path",{d:"M19 20a1 1 0 0 1 1-1h8a1 1 0 0 1 1 1v8a1 1 0 0 1-1 1h-8a1 1 0 0 1-1-1v-8Z",fill:"currentColor",stroke:"none"},null,-1),rL=F("path",{d:"M19 20a1 1 0 0 1 1-1h8a1 1 0 0 1 1 1v8a1 1 0 0 1-1 1h-8a1 1 0 0 1-1-1v-8Z"},null,-1),iL=[tL,nL,rL];function aL(t,e,n,i,o,s){return V(),ae("svg",{viewBox:"0 0 48 48",fill:"none",xmlns:"http://www.w3.org/2000/svg",stroke:"currentColor",class:It(t.cls),style:Bt(t.innerStyle),"stroke-width":t.strokeWidth,"stroke-linecap":t.strokeLinecap,"stroke-linejoin":t.strokeLinejoin,onClick:e[0]||(e[0]=(...l)=>t.onClick&&t.onClick(...l))},iL,14,eL)}var iu=Un(jM,[["render",aL]]);const oL=Object.assign(iu,{install:(t,e)=>{var n;const i=(n=e==null?void 0:e.iconPrefix)!=null?n:"";t.component(i+iu.name,iu)}}),sL=be({name:"IconBook",props:{size:{type:[Number,String]},strokeWidth:{type:Number,default:4},strokeLinecap:{type:String,default:"butt",validator:t=>["butt","round","square"].includes(t)},strokeLinejoin:{type:String,default:"miter",validator:t=>["arcs","bevel","miter","miter-clip","round"].includes(t)},rotate:Number,spin:Boolean},emits:{click:t=>!0},setup(t,{emit:e}){const n=Fn("icon"),i=le(()=>[n,`${n}-book`,{[`${n}-spin`]:t.spin}]),o=le(()=>{const l={};return t.size&&(l.fontSize=Bn(t.size)?`${t.size}px`:t.size),t.rotate&&(l.transform=`rotate(${t.rotate}deg)`),l});return{cls:i,innerStyle:o,onClick:l=>{e("click",l)}}}}),lL=["stroke-width","stroke-linecap","stroke-linejoin"],cL=F("path",{d:"M24 13 7 7v28l17 6 17-6V7l-17 6Zm0 0v27.5M29 18l7-2.5M29 25l7-2.5M29 32l7-2.5M19 18l-7-2.5m7 9.5-7-2.5m7 9.5-7-2.5"},null,-1),uL=[cL];function dL(t,e,n,i,o,s){return V(),ae("svg",{viewBox:"0 0 48 48",fill:"none",xmlns:"http://www.w3.org/2000/svg",stroke:"currentColor",class:It(t.cls),style:Bt(t.innerStyle),"stroke-width":t.strokeWidth,"stroke-linecap":t.strokeLinecap,"stroke-linejoin":t.strokeLinejoin,onClick:e[0]||(e[0]=(...l)=>t.onClick&&t.onClick(...l))},uL,14,lL)}var au=Un(sL,[["render",dL]]);const _L=Object.assign(au,{install:(t,e)=>{var n;const i=(n=e==null?void 0:e.iconPrefix)!=null?n:"";t.component(i+au.name,au)}}),pL=be({name:"IconImage",props:{size:{type:[Number,String]},strokeWidth:{type:Number,default:4},strokeLinecap:{type:String,default:"butt",validator:t=>["butt","round","square"].includes(t)},strokeLinejoin:{type:String,default:"miter",validator:t=>["arcs","bevel","miter","miter-clip","round"].includes(t)},rotate:Number,spin:Boolean},emits:{click:t=>!0},setup(t,{emit:e}){const n=Fn("icon"),i=le(()=>[n,`${n}-image`,{[`${n}-spin`]:t.spin}]),o=le(()=>{const l={};return t.size&&(l.fontSize=Bn(t.size)?`${t.size}px`:t.size),t.rotate&&(l.transform=`rotate(${t.rotate}deg)`),l});return{cls:i,innerStyle:o,onClick:l=>{e("click",l)}}}}),mL=["stroke-width","stroke-linecap","stroke-linejoin"],gL=F("path",{d:"m24 33 9-9v9h-9Zm0 0-3.5-4.5L17 33h7Zm15 8H9a2 2 0 0 1-2-2V9a2 2 0 0 1 2-2h30a2 2 0 0 1 2 2v30a2 2 0 0 1-2 2ZM15 15h2v2h-2v-2Z"},null,-1),EL=F("path",{d:"M33 33v-9l-9 9h9ZM23.5 33l-3-4-3 4h6ZM15 15h2v2h-2z",fill:"currentColor",stroke:"none"},null,-1),fL=[gL,EL];function SL(t,e,n,i,o,s){return V(),ae("svg",{viewBox:"0 0 48 48",fill:"none",xmlns:"http://www.w3.org/2000/svg",stroke:"currentColor",class:It(t.cls),style:Bt(t.innerStyle),"stroke-width":t.strokeWidth,"stroke-linecap":t.strokeLinecap,"stroke-linejoin":t.strokeLinejoin,onClick:e[0]||(e[0]=(...l)=>t.onClick&&t.onClick(...l))},fL,14,mL)}var ou=Un(pL,[["render",SL]]);const bL=Object.assign(ou,{install:(t,e)=>{var n;const i=(n=e==null?void 0:e.iconPrefix)!=null?n:"";t.component(i+ou.name,ou)}}),hL=be({name:"IconNav",props:{size:{type:[Number,String]},strokeWidth:{type:Number,default:4},strokeLinecap:{type:String,default:"butt",validator:t=>["butt","round","square"].includes(t)},strokeLinejoin:{type:String,default:"miter",validator:t=>["arcs","bevel","miter","miter-clip","round"].includes(t)},rotate:Number,spin:Boolean},emits:{click:t=>!0},setup(t,{emit:e}){const n=Fn("icon"),i=le(()=>[n,`${n}-nav`,{[`${n}-spin`]:t.spin}]),o=le(()=>{const l={};return t.size&&(l.fontSize=Bn(t.size)?`${t.size}px`:t.size),t.rotate&&(l.transform=`rotate(${t.rotate}deg)`),l});return{cls:i,innerStyle:o,onClick:l=>{e("click",l)}}}}),TL=["stroke-width","stroke-linecap","stroke-linejoin"],vL=F("path",{d:"M6 19h10m0 0h26m-26 0V9m0 10v10m0 0v10m0-10H6m10 0h26M6 9h36v30H6V9Z"},null,-1),CL=[vL];function RL(t,e,n,i,o,s){return V(),ae("svg",{viewBox:"0 0 48 48",fill:"none",xmlns:"http://www.w3.org/2000/svg",stroke:"currentColor",class:It(t.cls),style:Bt(t.innerStyle),"stroke-width":t.strokeWidth,"stroke-linecap":t.strokeLinecap,"stroke-linejoin":t.strokeLinejoin,onClick:e[0]||(e[0]=(...l)=>t.onClick&&t.onClick(...l))},CL,14,TL)}var su=Un(hL,[["render",RL]]);const NL=Object.assign(su,{install:(t,e)=>{var n;const i=(n=e==null?void 0:e.iconPrefix)!=null?n:"";t.component(i+su.name,su)}}),OL=be({name:"IconPublic",props:{size:{type:[Number,String]},strokeWidth:{type:Number,default:4},strokeLinecap:{type:String,default:"butt",validator:t=>["butt","round","square"].includes(t)},strokeLinejoin:{type:String,default:"miter",validator:t=>["arcs","bevel","miter","miter-clip","round"].includes(t)},rotate:Number,spin:Boolean},emits:{click:t=>!0},setup(t,{emit:e}){const n=Fn("icon"),i=le(()=>[n,`${n}-public`,{[`${n}-spin`]:t.spin}]),o=le(()=>{const l={};return t.size&&(l.fontSize=Bn(t.size)?`${t.size}px`:t.size),t.rotate&&(l.transform=`rotate(${t.rotate}deg)`),l});return{cls:i,innerStyle:o,onClick:l=>{e("click",l)}}}}),AL=["stroke-width","stroke-linecap","stroke-linejoin"],yL=F("path",{d:"M15 21.5 6.704 19M15 21.5l4.683 5.152a1 1 0 0 1 .25.814L18 40.976l10.918-16.117a1 1 0 0 0-.298-1.409L21.5 19 15 21.5Zm0 0 6.062-6.995a1 1 0 0 0 .138-1.103L18 7.024M42 24c0 9.941-8.059 18-18 18S6 33.941 6 24 14.059 6 24 6s18 8.059 18 18Z"},null,-1),IL=[yL];function DL(t,e,n,i,o,s){return V(),ae("svg",{viewBox:"0 0 48 48",fill:"none",xmlns:"http://www.w3.org/2000/svg",stroke:"currentColor",class:It(t.cls),style:Bt(t.innerStyle),"stroke-width":t.strokeWidth,"stroke-linecap":t.strokeLinecap,"stroke-linejoin":t.strokeLinejoin,onClick:e[0]||(e[0]=(...l)=>t.onClick&&t.onClick(...l))},IL,14,AL)}var lu=Un(OL,[["render",DL]]);const xL=Object.assign(lu,{install:(t,e)=>{var n;const i=(n=e==null?void 0:e.iconPrefix)!=null?n:"";t.component(i+lu.name,lu)}}),wL={class:"header"},ML={class:"content"},LL=be({__name:"modal",props:{visible:{type:Boolean}},emits:["update:visible","close"],setup(t,{emit:e}){const n=t,i=ee(null),o=()=>{e("update:visible",!1),e("close")};return kn(()=>{Zt(()=>n.visible,s=>{var l,c;s?(l=i.value)==null||l.showModal():(c=i.value)==null||c.close()},{immediate:!0})}),(s,l)=>(V(),ae("dialog",{ref_key:"dialogRef",ref:i,class:"customDialog"},[F("div",wL,[ue(q(Qw),{style:{cursor:"pointer"},size:24,onClick:o})]),F("div",ML,[oi(s.$slots,"default",{},void 0,!0)])],512))}});const Dt=(t,e)=>{const n=t.__vccOpts||t;for(const[i,o]of e)n[i]=o;return n},wC=Dt(LL,[["__scopeId","data-v-6fddb6c7"]]),Zs=t=>(Zi("data-v-e442bd8c"),t=t(),Ji(),t),PL={class:"wechatModal"},kL={class:"title"},UL=Zs(()=>F("div",{class:"titleText"},"WeChat",-1)),FL=Zs(()=>F("div",{class:"desc"}," Add the MetaGPT WeChat assistant to get the latest MetaGPT updates. Join the MetaGPT community for more high-quality technical and product discussions. ",-1)),BL={class:"qrCode"},GL=Zs(()=>F("img",{style:{width:"100%"},src:fM,alt:""},null,-1)),YL={class:"scanText"},qL=Zs(()=>F("span",null,"Scan on WeChat to add.",-1)),$L=be({__name:"wechatModal",props:{visible:{type:Boolean}},emits:["update:visible"],setup(t,{emit:e}){const i=yt(t,"visible"),o=()=>{e("update:visible",!1)};return(s,l)=>(V(),ot(wC,{visible:q(i),"onUpdate:visible":l[0]||(l[0]=c=>wr(i)?i.value=c:null),style:{width:"527px"},onClose:o},{default:dt(()=>[F("div",PL,[F("div",kL,[ue(ea,{size:28,fill:"#28C445","icon-id":"icon-wechat2"}),UL]),FL,F("div",BL,[GL,F("span",YL,[ue(q(IM),{size:16}),qL])])])]),_:1},8,["visible"]))}});const HL=Dt($L,[["__scopeId","data-v-e442bd8c"]]),zL="https://public-frontend-1300249583.cos-website.ap-nanjing.myqcloud.com/cy_aps/assets/blacklogo-ead63efd.svg",VL={},WL={style:{width:"32px","vertical-align":"middle"},src:zL};function KL(t,e){return V(),ae("img",WL)}const QL=Dt(VL,[["render",KL]]);let ks=[];const MC=new WeakMap;function XL(){ks.forEach(t=>t(...MC.get(t))),ks=[]}function LC(t,...e){MC.set(t,e),!ks.includes(t)&&ks.push(t)===1&&requestAnimationFrame(XL)}function Us(t){return t.composedPath()[0]||null}const Yf={black:"#000",silver:"#C0C0C0",gray:"#808080",white:"#FFF",maroon:"#800000",red:"#F00",purple:"#800080",fuchsia:"#F0F",green:"#008000",lime:"#0F0",olive:"#808000",yellow:"#FF0",navy:"#000080",blue:"#00F",teal:"#008080",aqua:"#0FF",transparent:"#0000"},ta="^\\s*",na="\\s*$",Xr="\\s*((\\.\\d+)|(\\d+(\\.\\d*)?))\\s*",Zr="([0-9A-Fa-f])",Jr="([0-9A-Fa-f]{2})",ZL=new RegExp(`${ta}rgb\\s*\\(${Xr},${Xr},${Xr}\\)${na}`),JL=new RegExp(`${ta}rgba\\s*\\(${Xr},${Xr},${Xr},${Xr}\\)${na}`),jL=new RegExp(`${ta}#${Zr}${Zr}${Zr}${na}`),e0=new RegExp(`${ta}#${Jr}${Jr}${Jr}${na}`),t0=new RegExp(`${ta}#${Zr}${Zr}${Zr}${Zr}${na}`),n0=new RegExp(`${ta}#${Jr}${Jr}${Jr}${Jr}${na}`);function sn(t){return parseInt(t,16)}function Ki(t){try{let e;if(e=e0.exec(t))return[sn(e[1]),sn(e[2]),sn(e[3]),1];if(e=ZL.exec(t))return[Qt(e[1]),Qt(e[5]),Qt(e[9]),1];if(e=JL.exec(t))return[Qt(e[1]),Qt(e[5]),Qt(e[9]),qa(e[13])];if(e=jL.exec(t))return[sn(e[1]+e[1]),sn(e[2]+e[2]),sn(e[3]+e[3]),1];if(e=n0.exec(t))return[sn(e[1]),sn(e[2]),sn(e[3]),qa(sn(e[4])/255)];if(e=t0.exec(t))return[sn(e[1]+e[1]),sn(e[2]+e[2]),sn(e[3]+e[3]),qa(sn(e[4]+e[4])/255)];if(t in Yf)return Ki(Yf[t]);throw new Error(`[seemly/rgba]: Invalid color value ${t}.`)}catch(e){throw e}}function r0(t){return t>1?1:t<0?0:t}function i0(t,e,n,i){return`rgba(${Qt(t)}, ${Qt(e)}, ${Qt(n)}, ${r0(i)})`}function cu(t,e,n,i,o){return Qt((t*e*(1-i)+n*i)/o)}function PC(t,e){Array.isArray(t)||(t=Ki(t)),Array.isArray(e)||(e=Ki(e));const n=t[3],i=e[3],o=qa(n+i-n*i);return i0(cu(t[0],n,e[0],i,o),cu(t[1],n,e[1],i,o),cu(t[2],n,e[2],i,o),o)}function fs(t,e){const[n,i,o,s=1]=Array.isArray(t)?t:Ki(t),{lightness:l=1,alpha:c=1}=e;return a0([n*l,i*l,o*l,s*c])}function qa(t){const e=Math.round(Number(t)*100)/100;return e>1?1:e<0?0:e}function Qt(t){const e=Math.round(Number(t));return e>255?255:e<0?0:e}function a0(t){const[e,n,i]=t;return 3 in t?`rgba(${Qt(e)}, ${Qt(n)}, ${Qt(i)}, ${qa(t[3])})`:`rgba(${Qt(e)}, ${Qt(n)}, ${Qt(i)}, 1)`}function kC(t=8){return Math.random().toString(16).slice(2,2+t)}function o0(t,e=[],n){const i={};return e.forEach(o=>{i[o]=t[o]}),Object.assign(i,n)}function Tm(t,e=!0,n=[]){return t.forEach(i=>{if(i!==null){if(typeof i!="object"){(typeof i=="string"||typeof i=="number")&&n.push(St(String(i)));return}if(Array.isArray(i)){Tm(i,e,n);return}if(i.type===st){if(i.children===null)return;Array.isArray(i.children)&&Tm(i.children,e,n)}else i.type!==Ks&&n.push(i)}}),n}function Ga(t,...e){if(Array.isArray(t))t.forEach(n=>Ga(n,...e));else return t(...e)}function qf(t,e){console.error(`[naive/${t}]: ${e}`)}function s0(t,e){throw new Error(`[naive/${t}]: ${e}`)}function $f(t,e="default",n=void 0){const i=t[e];if(!i)return qf("getFirstSlotVNode",`slot[${e}] is empty`),null;const o=Tm(i(n));return o.length===1?o[0]:(qf("getFirstSlotVNode",`slot[${e}] should have exactly one child`),null)}function Xm(t){return t.some(e=>$i(e)?!(e.type===Ks||e.type===st&&!Xm(e.children)):!0)?t:null}function uu(t,e){const n=t&&Xm(t());return e(n||null)}function Hf(t){return!(t&&Xm(t()))}const zf=be({render(){var t,e;return(e=(t=this.$slots).default)===null||e===void 0?void 0:e.call(t)}}),l0=/^(\d|\.)+$/,Vf=/(\d|\.)+/;function du(t,{c:e=1,offset:n=0,attachPx:i=!0}={}){if(typeof t=="number"){const o=(t+n)*e;return o===0?"0":`${o}px`}else if(typeof t=="string")if(l0.test(t)){const o=(Number(t)+n)*e;return i?o===0?"0":`${o}px`:`${o}`}else{const o=Vf.exec(t);return o?t.replace(Vf,String((Number(o[0])+n)*e)):t}return t}function c0(t){let e=0;for(let n=0;n{let o=c0(i);if(o){if(o===1){t.forEach(l=>{n.push(i.replace("&",l))});return}}else{t.forEach(l=>{n.push((l&&l+" ")+i)});return}let s=[i];for(;o--;){const l=[];s.forEach(c=>{t.forEach(d=>{l.push(c.replace("&",d))})}),s=l}s.forEach(l=>n.push(l))}),n}function _0(t,e){const n=[];return e.split(UC).forEach(i=>{t.forEach(o=>{n.push((o&&o+" ")+i)})}),n}function p0(t){let e=[""];return t.forEach(n=>{n=n&&n.trim(),n&&(n.includes("&")?e=d0(e,n):e=_0(e,n))}),e.join(", ").replace(u0," ")}function Wf(t){if(!t)return;const e=t.parentElement;e&&e.removeChild(t)}function Js(t){return document.querySelector(`style[cssr-id="${t}"]`)}function m0(t){const e=document.createElement("style");return e.setAttribute("cssr-id",t),e}function Ss(t){return t?/^\s*@(s|m)/.test(t):!1}const g0=/[A-Z]/g;function FC(t){return t.replace(g0,e=>"-"+e.toLowerCase())}function E0(t,e=" "){return typeof t=="object"&&t!==null?` { -`+Object.entries(t).map(n=>e+` ${FC(n[0])}: ${n[1]};`).join(` -`)+` -`+e+"}":`: ${t};`}function f0(t,e,n){return typeof t=="function"?t({context:e.context,props:n}):t}function Kf(t,e,n,i){if(!e)return"";const o=f0(e,n,i);if(!o)return"";if(typeof o=="string")return`${t} { -${o} -}`;const s=Object.keys(o);if(s.length===0)return n.config.keepEmptyBlock?t+` { -}`:"";const l=t?[t+" {"]:[];return s.forEach(c=>{const d=o[c];if(c==="raw"){l.push(` -`+d+` -`);return}c=FC(c),d!=null&&l.push(` ${c}${E0(d)}`)}),t&&l.push("}"),l.join(` -`)}function vm(t,e,n){t&&t.forEach(i=>{if(Array.isArray(i))vm(i,e,n);else if(typeof i=="function"){const o=i(e);Array.isArray(o)?vm(o,e,n):o&&n(o)}else i&&n(i)})}function BC(t,e,n,i,o,s){const l=t.$;let c="";if(!l||typeof l=="string")Ss(l)?c=l:e.push(l);else if(typeof l=="function"){const p=l({context:i.context,props:o});Ss(p)?c=p:e.push(p)}else if(l.before&&l.before(i.context),!l.$||typeof l.$=="string")Ss(l.$)?c=l.$:e.push(l.$);else if(l.$){const p=l.$({context:i.context,props:o});Ss(p)?c=p:e.push(p)}const d=p0(e),_=Kf(d,t.props,i,o);c?(n.push(`${c} {`),s&&_&&s.insertRule(`${c} { -${_} -} -`)):(s&&_&&s.insertRule(_),!s&&_.length&&n.push(_)),t.children&&vm(t.children,{context:i.context,props:o},p=>{if(typeof p=="string"){const g=Kf(d,{raw:p},i,o);s?s.insertRule(g):n.push(g)}else BC(p,e,n,i,o,s)}),e.pop(),c&&n.push("}"),l&&l.after&&l.after(i.context)}function GC(t,e,n,i=!1){const o=[];return BC(t,[],o,e,n,i?t.instance.__styleSheet:void 0),i?"":o.join(` - -`)}function Cm(t){for(var e=0,n,i=0,o=t.length;o>=4;++i,o-=4)n=t.charCodeAt(i)&255|(t.charCodeAt(++i)&255)<<8|(t.charCodeAt(++i)&255)<<16|(t.charCodeAt(++i)&255)<<24,n=(n&65535)*1540483477+((n>>>16)*59797<<16),n^=n>>>24,e=(n&65535)*1540483477+((n>>>16)*59797<<16)^(e&65535)*1540483477+((e>>>16)*59797<<16);switch(o){case 3:e^=(t.charCodeAt(i+2)&255)<<16;case 2:e^=(t.charCodeAt(i+1)&255)<<8;case 1:e^=t.charCodeAt(i)&255,e=(e&65535)*1540483477+((e>>>16)*59797<<16)}return e^=e>>>13,e=(e&65535)*1540483477+((e>>>16)*59797<<16),((e^e>>>15)>>>0).toString(36)}typeof window<"u"&&(window.__cssrContext={});function S0(t,e,n){const{els:i}=e;if(n===void 0)i.forEach(Wf),e.els=[];else{const o=Js(n);o&&i.includes(o)&&(Wf(o),e.els=i.filter(s=>s!==o))}}function Qf(t,e){t.push(e)}function b0(t,e,n,i,o,s,l,c,d){if(s&&!d){if(n===void 0){console.error("[css-render/mount]: `id` is required in `silent` mode.");return}const E=window.__cssrContext;E[n]||(E[n]=!0,GC(e,t,i,s));return}let _;if(n===void 0&&(_=e.render(i),n=Cm(_)),d){d.adapter(n,_??e.render(i));return}const p=Js(n);if(p!==null&&!l)return p;const g=p??m0(n);if(_===void 0&&(_=e.render(i)),g.textContent=_,p!==null)return p;if(c){const E=document.head.querySelector(`meta[name="${c}"]`);if(E)return document.head.insertBefore(g,E),Qf(e.els,g),g}return o?document.head.insertBefore(g,document.head.querySelector("style, link")):document.head.appendChild(g),Qf(e.els,g),g}function h0(t){return GC(this,this.instance,t)}function T0(t={}){const{id:e,ssr:n,props:i,head:o=!1,silent:s=!1,force:l=!1,anchorMetaName:c}=t;return b0(this.instance,this,e,i,o,s,l,c,n)}function v0(t={}){const{id:e}=t;S0(this.instance,this,e)}const bs=function(t,e,n,i){return{instance:t,$:e,props:n,children:i,els:[],render:h0,mount:T0,unmount:v0}},C0=function(t,e,n,i){return Array.isArray(e)?bs(t,{$:null},null,e):Array.isArray(n)?bs(t,e,null,n):Array.isArray(i)?bs(t,e,n,i):bs(t,e,n,null)};function YC(t={}){let e=null;const n={c:(...i)=>C0(n,...i),use:(i,...o)=>i.install(n,...o),find:Js,context:{},config:t,get __styleSheet(){if(!e){const i=document.createElement("style");return document.head.appendChild(i),e=document.styleSheets[document.styleSheets.length-1],e}return e}};return n}function R0(t,e){if(t===void 0)return!1;if(e){const{context:{ids:n}}=e;return n.has(t)}return Js(t)!==null}function N0(t){let e=".",n="__",i="--",o;if(t){let S=t.blockPrefix;S&&(e=S),S=t.elementPrefix,S&&(n=S),S=t.modifierPrefix,S&&(i=S)}const s={install(S){o=S.c;const v=S.context;v.bem={},v.bem.b=null,v.bem.els=null}};function l(S){let v,h;return{before(T){v=T.bem.b,h=T.bem.els,T.bem.els=null},after(T){T.bem.b=v,T.bem.els=h},$({context:T,props:N}){return S=typeof S=="string"?S:S({context:T,props:N}),T.bem.b=S,`${(N==null?void 0:N.bPrefix)||e}${T.bem.b}`}}}function c(S){let v;return{before(h){v=h.bem.els},after(h){h.bem.els=v},$({context:h,props:T}){return S=typeof S=="string"?S:S({context:h,props:T}),h.bem.els=S.split(",").map(N=>N.trim()),h.bem.els.map(N=>`${(T==null?void 0:T.bPrefix)||e}${h.bem.b}${n}${N}`).join(", ")}}}function d(S){return{$({context:v,props:h}){S=typeof S=="string"?S:S({context:v,props:h});const T=S.split(",").map(x=>x.trim());function N(x){return T.map(P=>`&${(h==null?void 0:h.bPrefix)||e}${v.bem.b}${x!==void 0?`${n}${x}`:""}${i}${P}`).join(", ")}const y=v.bem.els;return y!==null?N(y[0]):N()}}}function _(S){return{$({context:v,props:h}){S=typeof S=="string"?S:S({context:v,props:h});const T=v.bem.els;return`&:not(${(h==null?void 0:h.bPrefix)||e}${v.bem.b}${T!==null&&T.length>0?`${n}${T[0]}`:""}${i}${S})`}}}return Object.assign(s,{cB:(...S)=>o(l(S[0]),S[1],S[2]),cE:(...S)=>o(c(S[0]),S[1],S[2]),cM:(...S)=>o(d(S[0]),S[1],S[2]),cNotM:(...S)=>o(_(S[0]),S[1],S[2])}),s}const O0="n",A0=`.${O0}-`,y0="__",I0="--",qC=YC(),$C=N0({blockPrefix:A0,elementPrefix:y0,modifierPrefix:I0});qC.use($C);const{c:je,find:HDe}=qC,{cB:bt,cE:jr,cM:_r,cNotM:$a}=$C,D0=(...t)=>je(">",[bt(...t)]);let _u;function x0(){return _u===void 0&&(_u=navigator.userAgent.includes("Node.js")||navigator.userAgent.includes("jsdom")),_u}const w0=typeof document<"u"&&typeof window<"u";function M0(t){const e=ee(!!t.value);if(e.value)return bm(e);const n=Zt(t,i=>{i&&(e.value=!0,n())});return bm(e)}function Qa(t){const e=le(t),n=ee(e.value);return Zt(e,i=>{n.value=i}),typeof t=="function"?n:{__v_isRef:!0,get value(){return n.value},set value(i){t.set(i)}}}const L0=typeof window<"u";let zi,Ha;const P0=()=>{var t,e;zi=L0?(e=(t=document)===null||t===void 0?void 0:t.fonts)===null||e===void 0?void 0:e.ready:void 0,Ha=!1,zi!==void 0?zi.then(()=>{Ha=!0}):Ha=!0};P0();function k0(t){if(Ha)return;let e=!1;kn(()=>{Ha||zi==null||zi.then(()=>{e||t()})}),Kn(()=>{e=!0})}function U0(t,e){return Zt(t,n=>{n!==void 0&&(e.value=n)}),le(()=>t.value===void 0?e.value:t.value)}function Zm(){const t=ee(!1);return kn(()=>{t.value=!0}),bm(t)}function F0(t,e){return le(()=>{for(const n of e)if(t[n]!==void 0)return t[n];return t[e[e.length-1]]})}const B0=(typeof window>"u"?!1:/iPad|iPhone|iPod/.test(navigator.platform)||navigator.platform==="MacIntel"&&navigator.maxTouchPoints>1)&&!window.MSStream;function G0(){return B0}const Y0="n-internal-select-menu-body",HC="n-modal-body",zC="n-drawer-body",VC="n-popover-body",WC="__disabled__";function Qi(t){const e=Ft(HC,null),n=Ft(zC,null),i=Ft(VC,null),o=Ft(Y0,null),s=ee();if(typeof document<"u"){s.value=document.fullscreenElement;const l=()=>{s.value=document.fullscreenElement};kn(()=>{Ht("fullscreenchange",document,l)}),Kn(()=>{Rt("fullscreenchange",document,l)})}return Qa(()=>{var l;const{to:c}=t;return c!==void 0?c===!1?WC:c===!0?s.value||"body":c:e!=null&&e.value?(l=e.value.$el)!==null&&l!==void 0?l:e.value:n!=null&&n.value?n.value:i!=null&&i.value?i.value:o!=null&&o.value?o.value:c??(s.value||"body")})}Qi.tdkey=WC;Qi.propTo={type:[String,Object,Boolean],default:void 0};function Rm(t,e,n="default"){const i=e[n];if(i===void 0)throw new Error(`[vueuc/${t}]: slot[${n}] is empty.`);return i()}function Nm(t,e=!0,n=[]){return t.forEach(i=>{if(i!==null){if(typeof i!="object"){(typeof i=="string"||typeof i=="number")&&n.push(St(String(i)));return}if(Array.isArray(i)){Nm(i,e,n);return}if(i.type===st){if(i.children===null)return;Array.isArray(i.children)&&Nm(i.children,e,n)}else i.type!==Ks&&n.push(i)}}),n}function Xf(t,e,n="default"){const i=e[n];if(i===void 0)throw new Error(`[vueuc/${t}]: slot[${n}] is empty.`);const o=Nm(i());if(o.length===1)return o[0];throw new Error(`[vueuc/${t}]: slot[${n}] should have exactly one child.`)}let Nr=null;function KC(){if(Nr===null&&(Nr=document.getElementById("v-binder-view-measurer"),Nr===null)){Nr=document.createElement("div"),Nr.id="v-binder-view-measurer";const{style:t}=Nr;t.position="fixed",t.left="0",t.right="0",t.top="0",t.bottom="0",t.pointerEvents="none",t.visibility="hidden",document.body.appendChild(Nr)}return Nr.getBoundingClientRect()}function q0(t,e){const n=KC();return{top:e,left:t,height:0,width:0,right:n.width-t,bottom:n.height-e}}function pu(t){const e=t.getBoundingClientRect(),n=KC();return{left:e.left-n.left,top:e.top-n.top,bottom:n.height+n.top-e.bottom,right:n.width+n.left-e.right,width:e.width,height:e.height}}function $0(t){return t.nodeType===9?null:t.parentNode}function QC(t){if(t===null)return null;const e=$0(t);if(e===null)return null;if(e.nodeType===9)return document;if(e.nodeType===1){const{overflow:n,overflowX:i,overflowY:o}=getComputedStyle(e);if(/(auto|scroll|overlay)/.test(n+o+i))return e}return QC(e)}const H0=be({name:"Binder",props:{syncTargetWithParent:Boolean,syncTarget:{type:Boolean,default:!0}},setup(t){var e;ni("VBinder",(e=$m())===null||e===void 0?void 0:e.proxy);const n=Ft("VBinder",null),i=ee(null),o=T=>{i.value=T,n&&t.syncTargetWithParent&&n.setTargetRef(T)};let s=[];const l=()=>{let T=i.value;for(;T=QC(T),T!==null;)s.push(T);for(const N of s)Ht("scroll",N,g,!0)},c=()=>{for(const T of s)Rt("scroll",T,g,!0);s=[]},d=new Set,_=T=>{d.size===0&&l(),d.has(T)||d.add(T)},p=T=>{d.has(T)&&d.delete(T),d.size===0&&c()},g=()=>{LC(E)},E=()=>{d.forEach(T=>T())},f=new Set,S=T=>{f.size===0&&Ht("resize",window,h),f.has(T)||f.add(T)},v=T=>{f.has(T)&&f.delete(T),f.size===0&&Rt("resize",window,h)},h=()=>{f.forEach(T=>T())};return Kn(()=>{Rt("resize",window,h),c()}),{targetRef:i,setTargetRef:o,addScrollListener:_,removeScrollListener:p,addResizeListener:S,removeResizeListener:v}},render(){return Rm("binder",this.$slots)}}),z0=H0,V0=be({name:"Target",setup(){const{setTargetRef:t,syncTarget:e}=Ft("VBinder");return{syncTarget:e,setTargetDirective:{mounted:t,updated:t}}},render(){const{syncTarget:t,setTargetDirective:e}=this;return t?Pn(Xf("follower",this.$slots),[[e]]):Xf("follower",this.$slots)}}),Li="@@mmoContext",W0={mounted(t,{value:e}){t[Li]={handler:void 0},typeof e=="function"&&(t[Li].handler=e,Ht("mousemoveoutside",t,e))},updated(t,{value:e}){const n=t[Li];typeof e=="function"?n.handler?n.handler!==e&&(Rt("mousemoveoutside",t,n.handler),n.handler=e,Ht("mousemoveoutside",t,e)):(t[Li].handler=e,Ht("mousemoveoutside",t,e)):n.handler&&(Rt("mousemoveoutside",t,n.handler),n.handler=void 0)},unmounted(t){const{handler:e}=t[Li];e&&Rt("mousemoveoutside",t,e),t[Li].handler=void 0}},K0=W0,Pi="@@coContext",Q0={mounted(t,{value:e,modifiers:n}){t[Pi]={handler:void 0},typeof e=="function"&&(t[Pi].handler=e,Ht("clickoutside",t,e,{capture:n.capture}))},updated(t,{value:e,modifiers:n}){const i=t[Pi];typeof e=="function"?i.handler?i.handler!==e&&(Rt("clickoutside",t,i.handler,{capture:n.capture}),i.handler=e,Ht("clickoutside",t,e,{capture:n.capture})):(t[Pi].handler=e,Ht("clickoutside",t,e,{capture:n.capture})):i.handler&&(Rt("clickoutside",t,i.handler,{capture:n.capture}),i.handler=void 0)},unmounted(t,{modifiers:e}){const{handler:n}=t[Pi];n&&Rt("clickoutside",t,n,{capture:e.capture}),t[Pi].handler=void 0}},Zf=Q0;function X0(t,e){console.error(`[vdirs/${t}]: ${e}`)}class Z0{constructor(){this.elementZIndex=new Map,this.nextZIndex=2e3}get elementCount(){return this.elementZIndex.size}ensureZIndex(e,n){const{elementZIndex:i}=this;if(n!==void 0){e.style.zIndex=`${n}`,i.delete(e);return}const{nextZIndex:o}=this;i.has(e)&&i.get(e)+1===this.nextZIndex||(e.style.zIndex=`${o}`,i.set(e,o),this.nextZIndex=o+1,this.squashState())}unregister(e,n){const{elementZIndex:i}=this;i.has(e)?i.delete(e):n===void 0&&X0("z-index-manager/unregister-element","Element not found when unregistering."),this.squashState()}squashState(){const{elementCount:e}=this;e||(this.nextZIndex=2e3),this.nextZIndex-e>2500&&this.rearrange()}rearrange(){const e=Array.from(this.elementZIndex.entries());e.sort((n,i)=>n[1]-i[1]),this.nextZIndex=2e3,e.forEach(n=>{const i=n[0],o=this.nextZIndex++;`${o}`!==i.style.zIndex&&(i.style.zIndex=`${o}`)})}}const mu=new Z0,ki="@@ziContext",J0={mounted(t,e){const{value:n={}}=e,{zIndex:i,enabled:o}=n;t[ki]={enabled:!!o,initialized:!1},o&&(mu.ensureZIndex(t,i),t[ki].initialized=!0)},updated(t,e){const{value:n={}}=e,{zIndex:i,enabled:o}=n,s=t[ki].enabled;o&&!s&&(mu.ensureZIndex(t,i),t[ki].initialized=!0),t[ki].enabled=!!o},unmounted(t,e){if(!t[ki].initialized)return;const{value:n={}}=e,{zIndex:i}=n;mu.unregister(t,i)}},Jm=J0,XC=Symbol("@css-render/vue3-ssr");function j0(t,e){return``}function eP(t,e){const n=Ft(XC,null);if(n===null){console.error("[css-render/vue3-ssr]: no ssr context found.");return}const{styles:i,ids:o}=n;o.has(t)||i!==null&&(o.add(t),i.push(j0(t,e)))}const tP=typeof document<"u";function ro(){if(tP)return;const t=Ft(XC,null);if(t!==null)return{adapter:eP,context:t}}function Jf(t,e){console.error(`[vueuc/${t}]: ${e}`)}const{c:hs}=YC(),nP="vueuc-style";function jf(t){return typeof t=="string"?document.querySelector(t):t()}const ZC=be({name:"LazyTeleport",props:{to:{type:[String,Object],default:void 0},disabled:Boolean,show:{type:Boolean,required:!0}},setup(t){return{showTeleport:M0(yt(t,"show")),mergedTo:le(()=>{const{to:e}=t;return e??"body"})}},render(){return this.showTeleport?this.disabled?Rm("lazy-teleport",this.$slots):j(Gw,{disabled:this.disabled,to:this.mergedTo},Rm("lazy-teleport",this.$slots)):null}}),Ts={top:"bottom",bottom:"top",left:"right",right:"left"},eS={start:"end",center:"center",end:"start"},gu={top:"height",bottom:"height",left:"width",right:"width"},rP={"bottom-start":"top left",bottom:"top center","bottom-end":"top right","top-start":"bottom left",top:"bottom center","top-end":"bottom right","right-start":"top left",right:"center left","right-end":"bottom left","left-start":"top right",left:"center right","left-end":"bottom right"},iP={"bottom-start":"bottom left",bottom:"bottom center","bottom-end":"bottom right","top-start":"top left",top:"top center","top-end":"top right","right-start":"top right",right:"center right","right-end":"bottom right","left-start":"top left",left:"center left","left-end":"bottom left"},aP={"bottom-start":"right","bottom-end":"left","top-start":"right","top-end":"left","right-start":"bottom","right-end":"top","left-start":"bottom","left-end":"top"},tS={top:!0,bottom:!1,left:!0,right:!1},nS={top:"end",bottom:"start",left:"end",right:"start"};function oP(t,e,n,i,o,s){if(!o||s)return{placement:t,top:0,left:0};const[l,c]=t.split("-");let d=c??"center",_={top:0,left:0};const p=(f,S,v)=>{let h=0,T=0;const N=n[f]-e[S]-e[f];return N>0&&i&&(v?T=tS[S]?N:-N:h=tS[S]?N:-N),{left:h,top:T}},g=l==="left"||l==="right";if(d!=="center"){const f=aP[t],S=Ts[f],v=gu[f];if(n[v]>e[v]){if(e[f]+e[v]e[S]&&(d=eS[c])}else{const f=l==="bottom"||l==="top"?"left":"top",S=Ts[f],v=gu[f],h=(n[v]-e[v])/2;(e[f]e[S]?(d=nS[f],_=p(v,f,g)):(d=nS[S],_=p(v,S,g)))}let E=l;return e[l] *",{pointerEvents:"all"})])]),uP=be({name:"Follower",inheritAttrs:!1,props:{show:Boolean,enabled:{type:Boolean,default:void 0},placement:{type:String,default:"bottom"},syncTrigger:{type:Array,default:["resize","scroll"]},to:[String,Object],flip:{type:Boolean,default:!0},internalShift:Boolean,x:Number,y:Number,width:String,minWidth:String,containerClass:String,teleportDisabled:Boolean,zindexable:{type:Boolean,default:!0},zIndex:Number,overlap:Boolean},setup(t){const e=Ft("VBinder"),n=Qa(()=>t.enabled!==void 0?t.enabled:t.show),i=ee(null),o=ee(null),s=()=>{const{syncTrigger:E}=t;E.includes("scroll")&&e.addScrollListener(d),E.includes("resize")&&e.addResizeListener(d)},l=()=>{e.removeScrollListener(d),e.removeResizeListener(d)};kn(()=>{n.value&&(d(),s())});const c=ro();cP.mount({id:"vueuc/binder",head:!0,anchorMetaName:nP,ssr:c}),Kn(()=>{l()}),k0(()=>{n.value&&d()});const d=()=>{if(!n.value)return;const E=i.value;if(E===null)return;const f=e.targetRef,{x:S,y:v,overlap:h}=t,T=S!==void 0&&v!==void 0?q0(S,v):pu(f);E.style.setProperty("--v-target-width",`${Math.round(T.width)}px`),E.style.setProperty("--v-target-height",`${Math.round(T.height)}px`);const{width:N,minWidth:y,placement:x,internalShift:P,flip:D}=t;E.setAttribute("v-placement",x),h?E.setAttribute("v-overlap",""):E.removeAttribute("v-overlap");const{style:k}=E;N==="target"?k.width=`${T.width}px`:N!==void 0?k.width=N:k.width="",y==="target"?k.minWidth=`${T.width}px`:y!==void 0?k.minWidth=y:k.minWidth="";const U=pu(E),W=pu(o.value),{left:z,top:K,placement:Ee}=oP(x,T,U,P,D,h),oe=sP(Ee,h),{left:L,top:J,transform:re}=lP(Ee,W,T,K,z,h);E.setAttribute("v-placement",Ee),E.style.setProperty("--v-offset-left",`${Math.round(z)}px`),E.style.setProperty("--v-offset-top",`${Math.round(K)}px`),E.style.transform=`translateX(${L}) translateY(${J}) ${re}`,E.style.setProperty("--v-transform-origin",oe),E.style.transformOrigin=oe};Zt(n,E=>{E?(s(),_()):l()});const _=()=>{Qs().then(d).catch(E=>console.error(E))};["placement","x","y","internalShift","flip","width","overlap","minWidth"].forEach(E=>{Zt(yt(t,E),d)}),["teleportDisabled"].forEach(E=>{Zt(yt(t,E),_)}),Zt(yt(t,"syncTrigger"),E=>{E.includes("resize")?e.addResizeListener(d):e.removeResizeListener(d),E.includes("scroll")?e.addScrollListener(d):e.removeScrollListener(d)});const p=Zm(),g=Qa(()=>{const{to:E}=t;if(E!==void 0)return E;p.value});return{VBinder:e,mergedEnabled:n,offsetContainerRef:o,followerRef:i,mergedTo:g,syncPosition:d}},render(){return j(ZC,{show:this.show,to:this.mergedTo,disabled:this.teleportDisabled},{default:()=>{var t,e;const n=j("div",{class:["v-binder-follower-container",this.containerClass],ref:"offsetContainerRef"},[j("div",{class:"v-binder-follower-content",ref:"followerRef"},(e=(t=this.$slots).default)===null||e===void 0?void 0:e.call(t))]);return this.zindexable?Pn(n,[[Jm,{enabled:this.mergedEnabled,zIndex:this.zIndex}]]):n}})}});var ri=[],dP=function(){return ri.some(function(t){return t.activeTargets.length>0})},_P=function(){return ri.some(function(t){return t.skippedTargets.length>0})},rS="ResizeObserver loop completed with undelivered notifications.",pP=function(){var t;typeof ErrorEvent=="function"?t=new ErrorEvent("error",{message:rS}):(t=document.createEvent("Event"),t.initEvent("error",!1,!1),t.message=rS),window.dispatchEvent(t)},Xa;(function(t){t.BORDER_BOX="border-box",t.CONTENT_BOX="content-box",t.DEVICE_PIXEL_CONTENT_BOX="device-pixel-content-box"})(Xa||(Xa={}));var ii=function(t){return Object.freeze(t)},mP=function(){function t(e,n){this.inlineSize=e,this.blockSize=n,ii(this)}return t}(),JC=function(){function t(e,n,i,o){return this.x=e,this.y=n,this.width=i,this.height=o,this.top=this.y,this.left=this.x,this.bottom=this.top+this.height,this.right=this.left+this.width,ii(this)}return t.prototype.toJSON=function(){var e=this,n=e.x,i=e.y,o=e.top,s=e.right,l=e.bottom,c=e.left,d=e.width,_=e.height;return{x:n,y:i,top:o,right:s,bottom:l,left:c,width:d,height:_}},t.fromRect=function(e){return new t(e.x,e.y,e.width,e.height)},t}(),jm=function(t){return t instanceof SVGElement&&"getBBox"in t},jC=function(t){if(jm(t)){var e=t.getBBox(),n=e.width,i=e.height;return!n&&!i}var o=t,s=o.offsetWidth,l=o.offsetHeight;return!(s||l||t.getClientRects().length)},iS=function(t){var e;if(t instanceof Element)return!0;var n=(e=t==null?void 0:t.ownerDocument)===null||e===void 0?void 0:e.defaultView;return!!(n&&t instanceof n.Element)},gP=function(t){switch(t.tagName){case"INPUT":if(t.type!=="image")break;case"VIDEO":case"AUDIO":case"EMBED":case"OBJECT":case"CANVAS":case"IFRAME":case"IMG":return!0}return!1},za=typeof window<"u"?window:{},vs=new WeakMap,aS=/auto|scroll/,EP=/^tb|vertical/,fP=/msie|trident/i.test(za.navigator&&za.navigator.userAgent),Hn=function(t){return parseFloat(t||"0")},Vi=function(t,e,n){return t===void 0&&(t=0),e===void 0&&(e=0),n===void 0&&(n=!1),new mP((n?e:t)||0,(n?t:e)||0)},oS=ii({devicePixelContentBoxSize:Vi(),borderBoxSize:Vi(),contentBoxSize:Vi(),contentRect:new JC(0,0,0,0)}),eR=function(t,e){if(e===void 0&&(e=!1),vs.has(t)&&!e)return vs.get(t);if(jC(t))return vs.set(t,oS),oS;var n=getComputedStyle(t),i=jm(t)&&t.ownerSVGElement&&t.getBBox(),o=!fP&&n.boxSizing==="border-box",s=EP.test(n.writingMode||""),l=!i&&aS.test(n.overflowY||""),c=!i&&aS.test(n.overflowX||""),d=i?0:Hn(n.paddingTop),_=i?0:Hn(n.paddingRight),p=i?0:Hn(n.paddingBottom),g=i?0:Hn(n.paddingLeft),E=i?0:Hn(n.borderTopWidth),f=i?0:Hn(n.borderRightWidth),S=i?0:Hn(n.borderBottomWidth),v=i?0:Hn(n.borderLeftWidth),h=g+_,T=d+p,N=v+f,y=E+S,x=c?t.offsetHeight-y-t.clientHeight:0,P=l?t.offsetWidth-N-t.clientWidth:0,D=o?h+N:0,k=o?T+y:0,U=i?i.width:Hn(n.width)-D-P,W=i?i.height:Hn(n.height)-k-x,z=U+h+P+N,K=W+T+x+y,Ee=ii({devicePixelContentBoxSize:Vi(Math.round(U*devicePixelRatio),Math.round(W*devicePixelRatio),s),borderBoxSize:Vi(z,K,s),contentBoxSize:Vi(U,W,s),contentRect:new JC(g,d,U,W)});return vs.set(t,Ee),Ee},tR=function(t,e,n){var i=eR(t,n),o=i.borderBoxSize,s=i.contentBoxSize,l=i.devicePixelContentBoxSize;switch(e){case Xa.DEVICE_PIXEL_CONTENT_BOX:return l;case Xa.BORDER_BOX:return o;default:return s}},SP=function(){function t(e){var n=eR(e);this.target=e,this.contentRect=n.contentRect,this.borderBoxSize=ii([n.borderBoxSize]),this.contentBoxSize=ii([n.contentBoxSize]),this.devicePixelContentBoxSize=ii([n.devicePixelContentBoxSize])}return t}(),nR=function(t){if(jC(t))return 1/0;for(var e=0,n=t.parentNode;n;)e+=1,n=n.parentNode;return e},bP=function(){var t=1/0,e=[];ri.forEach(function(l){if(l.activeTargets.length!==0){var c=[];l.activeTargets.forEach(function(_){var p=new SP(_.target),g=nR(_.target);c.push(p),_.lastReportedSize=tR(_.target,_.observedBox),gt?n.activeTargets.push(o):n.skippedTargets.push(o))})})},hP=function(){var t=0;for(sS(t);dP();)t=bP(),sS(t);return _P()&&pP(),t>0},Eu,rR=[],TP=function(){return rR.splice(0).forEach(function(t){return t()})},vP=function(t){if(!Eu){var e=0,n=document.createTextNode(""),i={characterData:!0};new MutationObserver(function(){return TP()}).observe(n,i),Eu=function(){n.textContent="".concat(e?e--:e++)}}rR.push(t),Eu()},CP=function(t){vP(function(){requestAnimationFrame(t)})},Ls=0,RP=function(){return!!Ls},NP=250,OP={attributes:!0,characterData:!0,childList:!0,subtree:!0},lS=["resize","load","transitionend","animationend","animationstart","animationiteration","keyup","keydown","mouseup","mousedown","mouseover","mouseout","blur","focus"],cS=function(t){return t===void 0&&(t=0),Date.now()+t},fu=!1,AP=function(){function t(){var e=this;this.stopped=!0,this.listener=function(){return e.schedule()}}return t.prototype.run=function(e){var n=this;if(e===void 0&&(e=NP),!fu){fu=!0;var i=cS(e);CP(function(){var o=!1;try{o=hP()}finally{if(fu=!1,e=i-cS(),!RP())return;o?n.run(1e3):e>0?n.run(e):n.start()}})}},t.prototype.schedule=function(){this.stop(),this.run()},t.prototype.observe=function(){var e=this,n=function(){return e.observer&&e.observer.observe(document.body,OP)};document.body?n():za.addEventListener("DOMContentLoaded",n)},t.prototype.start=function(){var e=this;this.stopped&&(this.stopped=!1,this.observer=new MutationObserver(this.listener),this.observe(),lS.forEach(function(n){return za.addEventListener(n,e.listener,!0)}))},t.prototype.stop=function(){var e=this;this.stopped||(this.observer&&this.observer.disconnect(),lS.forEach(function(n){return za.removeEventListener(n,e.listener,!0)}),this.stopped=!0)},t}(),Om=new AP,uS=function(t){!Ls&&t>0&&Om.start(),Ls+=t,!Ls&&Om.stop()},yP=function(t){return!jm(t)&&!gP(t)&&getComputedStyle(t).display==="inline"},IP=function(){function t(e,n){this.target=e,this.observedBox=n||Xa.CONTENT_BOX,this.lastReportedSize={inlineSize:0,blockSize:0}}return t.prototype.isActive=function(){var e=tR(this.target,this.observedBox,!0);return yP(this.target)&&(this.lastReportedSize=e),this.lastReportedSize.inlineSize!==e.inlineSize||this.lastReportedSize.blockSize!==e.blockSize},t}(),DP=function(){function t(e,n){this.activeTargets=[],this.skippedTargets=[],this.observationTargets=[],this.observer=e,this.callback=n}return t}(),Cs=new WeakMap,dS=function(t,e){for(var n=0;n=0&&(s&&ri.splice(ri.indexOf(i),1),i.observationTargets.splice(o,1),uS(-1))},t.disconnect=function(e){var n=this,i=Cs.get(e);i.observationTargets.slice().forEach(function(o){return n.unobserve(e,o.target)}),i.activeTargets.splice(0,i.activeTargets.length)},t}(),xP=function(){function t(e){if(arguments.length===0)throw new TypeError("Failed to construct 'ResizeObserver': 1 argument required, but only 0 present.");if(typeof e!="function")throw new TypeError("Failed to construct 'ResizeObserver': The callback provided as parameter 1 is not a function.");Rs.connect(this,e)}return t.prototype.observe=function(e,n){if(arguments.length===0)throw new TypeError("Failed to execute 'observe' on 'ResizeObserver': 1 argument required, but only 0 present.");if(!iS(e))throw new TypeError("Failed to execute 'observe' on 'ResizeObserver': parameter 1 is not of type 'Element");Rs.observe(this,e,n)},t.prototype.unobserve=function(e){if(arguments.length===0)throw new TypeError("Failed to execute 'unobserve' on 'ResizeObserver': 1 argument required, but only 0 present.");if(!iS(e))throw new TypeError("Failed to execute 'unobserve' on 'ResizeObserver': parameter 1 is not of type 'Element");Rs.unobserve(this,e)},t.prototype.disconnect=function(){Rs.disconnect(this)},t.toString=function(){return"function ResizeObserver () { [polyfill code] }"},t}();class wP{constructor(){this.handleResize=this.handleResize.bind(this),this.observer=new(typeof window<"u"&&window.ResizeObserver||xP)(this.handleResize),this.elHandlersMap=new Map}handleResize(e){for(const n of e){const i=this.elHandlersMap.get(n.target);i!==void 0&&i(n)}}registerHandler(e,n){this.elHandlersMap.set(e,n),this.observer.observe(e)}unregisterHandler(e){this.elHandlersMap.has(e)&&(this.elHandlersMap.delete(e),this.observer.unobserve(e))}}const _S=new wP,pS=be({name:"ResizeObserver",props:{onResize:Function},setup(t){let e=!1;const n=$m().proxy;function i(o){const{onResize:s}=t;s!==void 0&&s(o)}kn(()=>{const o=n.$el;if(o===void 0){Jf("resize-observer","$el does not exist.");return}if(o.nextElementSibling!==o.nextSibling&&o.nodeType===3&&o.nodeValue!==""){Jf("resize-observer","$el can not be observed (it may be a text node).");return}o.nextElementSibling!==null&&(_S.registerHandler(o.nextElementSibling,i),e=!0)}),Kn(()=>{e&&_S.unregisterHandler(n.$el.nextElementSibling)})},render(){return oi(this.$slots,"default")}});function iR(t){return t instanceof HTMLElement}function aR(t){for(let e=0;e=0;e--){const n=t.childNodes[e];if(iR(n)&&(sR(n)||oR(n)))return!0}return!1}function sR(t){if(!MP(t))return!1;try{t.focus({preventScroll:!0})}catch{}return document.activeElement===t}function MP(t){if(t.tabIndex>0||t.tabIndex===0&&t.getAttribute("tabIndex")!==null)return!0;if(t.getAttribute("disabled"))return!1;switch(t.nodeName){case"A":return!!t.href&&t.rel!=="ignore";case"INPUT":return t.type!=="hidden"&&t.type!=="file";case"BUTTON":case"SELECT":case"TEXTAREA":return!0;default:return!1}}let Pa=[];const LP=be({name:"FocusTrap",props:{disabled:Boolean,active:Boolean,autoFocus:{type:Boolean,default:!0},onEsc:Function,initialFocusTo:String,finalFocusTo:String,returnFocusOnDeactivated:{type:Boolean,default:!0}},setup(t){const e=kC(),n=ee(null),i=ee(null);let o=!1,s=!1;const l=typeof document>"u"?null:document.activeElement;function c(){return Pa[Pa.length-1]===e}function d(h){var T;h.code==="Escape"&&c()&&((T=t.onEsc)===null||T===void 0||T.call(t,h))}kn(()=>{Zt(()=>t.active,h=>{h?(g(),Ht("keydown",document,d)):(Rt("keydown",document,d),o&&E())},{immediate:!0})}),Kn(()=>{Rt("keydown",document,d),o&&E()});function _(h){if(!s&&c()){const T=p();if(T===null||T.contains(Us(h)))return;f("first")}}function p(){const h=n.value;if(h===null)return null;let T=h;for(;T=T.nextSibling,!(T===null||T instanceof Element&&T.tagName==="DIV"););return T}function g(){var h;if(!t.disabled){if(Pa.push(e),t.autoFocus){const{initialFocusTo:T}=t;T===void 0?f("first"):(h=jf(T))===null||h===void 0||h.focus({preventScroll:!0})}o=!0,document.addEventListener("focus",_,!0)}}function E(){var h;if(t.disabled||(document.removeEventListener("focus",_,!0),Pa=Pa.filter(N=>N!==e),c()))return;const{finalFocusTo:T}=t;T!==void 0?(h=jf(T))===null||h===void 0||h.focus({preventScroll:!0}):t.returnFocusOnDeactivated&&l instanceof HTMLElement&&(s=!0,l.focus({preventScroll:!0}),s=!1)}function f(h){if(c()&&t.active){const T=n.value,N=i.value;if(T!==null&&N!==null){const y=p();if(y==null||y===N){s=!0,T.focus({preventScroll:!0}),s=!1;return}s=!0;const x=h==="first"?aR(y):oR(y);s=!1,x||(s=!0,T.focus({preventScroll:!0}),s=!1)}}}function S(h){if(s)return;const T=p();T!==null&&(h.relatedTarget!==null&&T.contains(h.relatedTarget)?f("last"):f("first"))}function v(h){s||(h.relatedTarget!==null&&h.relatedTarget===n.value?f("last"):f("first"))}return{focusableStartRef:n,focusableEndRef:i,focusableStyle:"position: absolute; height: 0; width: 0;",handleStartFocus:S,handleEndFocus:v}},render(){const{default:t}=this.$slots;if(t===void 0)return null;if(this.disabled)return t();const{active:e,focusableStyle:n}=this;return j(st,null,[j("div",{"aria-hidden":"true",tabindex:e?"0":"-1",ref:"focusableStartRef",style:n,onFocus:this.handleStartFocus}),t(),j("div",{"aria-hidden":"true",style:n,ref:"focusableEndRef",tabindex:e?"0":"-1",onFocus:this.handleEndFocus})])}});function PP(t){const e={isDeactivated:!1};let n=!1;return Yw(()=>{if(e.isDeactivated=!1,!n){n=!0;return}t()}),OC(()=>{e.isDeactivated=!0,n||(n=!0)}),e}var kP=typeof global=="object"&&global&&global.Object===Object&&global;const lR=kP;var UP=typeof self=="object"&&self&&self.Object===Object&&self,FP=lR||UP||Function("return this")();const Qn=FP;var BP=Qn.Symbol;const Mr=BP;var cR=Object.prototype,GP=cR.hasOwnProperty,YP=cR.toString,ka=Mr?Mr.toStringTag:void 0;function qP(t){var e=GP.call(t,ka),n=t[ka];try{t[ka]=void 0;var i=!0}catch{}var o=YP.call(t);return i&&(e?t[ka]=n:delete t[ka]),o}var $P=Object.prototype,HP=$P.toString;function zP(t){return HP.call(t)}var VP="[object Null]",WP="[object Undefined]",mS=Mr?Mr.toStringTag:void 0;function ui(t){return t==null?t===void 0?WP:VP:mS&&mS in Object(t)?qP(t):zP(t)}function Lr(t){return t!=null&&typeof t=="object"}var KP="[object Symbol]";function eg(t){return typeof t=="symbol"||Lr(t)&&ui(t)==KP}function uR(t,e){for(var n=-1,i=t==null?0:t.length,o=Array(i);++n0){if(++e>=bk)return arguments[0]}else e=0;return t.apply(void 0,arguments)}}function Ck(t){return function(){return t}}var Rk=function(){try{var t=_i(Object,"defineProperty");return t({},"",{}),t}catch{}}();const Fs=Rk;var Nk=Fs?function(t,e){return Fs(t,"toString",{configurable:!0,enumerable:!1,value:Ck(e),writable:!0})}:tg;const Ok=Nk;var Ak=vk(Ok);const yk=Ak;var Ik=9007199254740991,Dk=/^(?:0|[1-9]\d*)$/;function rg(t,e){var n=typeof t;return e=e??Ik,!!e&&(n=="number"||n!="symbol"&&Dk.test(t))&&t>-1&&t%1==0&&t-1&&t%1==0&&t<=Uk}function ra(t){return t!=null&&ag(t.length)&&!ng(t)}function Fk(t,e,n){if(!Pr(n))return!1;var i=typeof e;return(i=="number"?ra(n)&&rg(e,n.length):i=="string"&&e in n)?io(n[e],t):!1}function Bk(t){return kk(function(e,n){var i=-1,o=n.length,s=o>1?n[o-1]:void 0,l=o>2?n[2]:void 0;for(s=t.length>3&&typeof s=="function"?(o--,s):void 0,l&&Fk(n[0],n[1],l)&&(s=o<3?void 0:s,o=1),e=Object(e);++i-1}function nU(t,e){var n=this.__data__,i=js(n,t);return i<0?(++this.size,n.push([t,e])):n[i][1]=e,this}function pr(t){var e=-1,n=t==null?0:t.length;for(this.clear();++eo?0:o+e),n=n>o?o:n,n<0&&(n+=o),o=e>n?0:n-e>>>0,e>>>=0;for(var s=Array(o);++i=i?t:AU(t,e,n)}var IU="\\ud800-\\udfff",DU="\\u0300-\\u036f",xU="\\ufe20-\\ufe2f",wU="\\u20d0-\\u20ff",MU=DU+xU+wU,LU="\\ufe0e\\ufe0f",PU="\\u200d",kU=RegExp("["+PU+IU+MU+LU+"]");function vR(t){return kU.test(t)}function UU(t){return t.split("")}var CR="\\ud800-\\udfff",FU="\\u0300-\\u036f",BU="\\ufe20-\\ufe2f",GU="\\u20d0-\\u20ff",YU=FU+BU+GU,qU="\\ufe0e\\ufe0f",$U="["+CR+"]",ym="["+YU+"]",Im="\\ud83c[\\udffb-\\udfff]",HU="(?:"+ym+"|"+Im+")",RR="[^"+CR+"]",NR="(?:\\ud83c[\\udde6-\\uddff]){2}",OR="[\\ud800-\\udbff][\\udc00-\\udfff]",zU="\\u200d",AR=HU+"?",yR="["+qU+"]?",VU="(?:"+zU+"(?:"+[RR,NR,OR].join("|")+")"+yR+AR+")*",WU=yR+AR+VU,KU="(?:"+[RR+ym+"?",ym,NR,OR,$U].join("|")+")",QU=RegExp(Im+"(?="+Im+")|"+KU+WU,"g");function XU(t){return t.match(QU)||[]}function ZU(t){return vR(t)?XU(t):UU(t)}function JU(t){return function(e){e=tl(e);var n=vR(e)?ZU(e):void 0,i=n?n[0]:e.charAt(0),o=n?yU(n,1).join(""):e.slice(1);return i[t]()+o}}var jU=JU("toUpperCase");const eF=jU;function tF(t,e,n,i){var o=-1,s=t==null?0:t.length;for(i&&s&&(n=t[++o]);++oc))return!1;var _=s.get(t),p=s.get(e);if(_&&p)return _==e&&p==t;var g=-1,E=!0,f=n&NB?new qs:void 0;for(s.set(t,e),s.set(e,t);++g{const p=s==null?void 0:s.value;n.mount({id:p===void 0?e:p+e,head:!0,props:{bPrefix:p?`.${p}-`:void 0},anchorMetaName:ja,ssr:l}),c!=null&&c.preflightStyleDisabled||KR.mount({id:"n-global",head:!0,anchorMetaName:ja,ssr:l})};l?_():Hm(_)}return le(()=>{var _;const{theme:{common:p,self:g,peers:E={}}={},themeOverrides:f={},builtinThemeOverrides:S={}}=o,{common:v,peers:h}=f,{common:T=void 0,[t]:{common:N=void 0,self:y=void 0,peers:x={}}={}}=(c==null?void 0:c.mergedThemeRef.value)||{},{common:P=void 0,[t]:D={}}=(c==null?void 0:c.mergedThemeOverridesRef.value)||{},{common:k,peers:U={}}=D,W=Os({},p||N||T||i.common,P,k,v),z=Os((_=g||y||i.self)===null||_===void 0?void 0:_(W),S,D,f);return{common:W,self:z,peers:Os({},i.peers,x,E),peerOverrides:Os({},S.peers,U,h)}})}fn.props={theme:Object,themeOverrides:Object,builtinThemeOverrides:Object};const AG="n";function pi(t={},e={defaultBordered:!0}){const n=Ft(ia,null);return{inlineThemeDisabled:n==null?void 0:n.inlineThemeDisabled,mergedRtlRef:n==null?void 0:n.mergedRtlRef,mergedComponentPropsRef:n==null?void 0:n.mergedComponentPropsRef,mergedBreakpointsRef:n==null?void 0:n.mergedBreakpointsRef,mergedBorderedRef:le(()=>{var i,o;const{bordered:s}=t;return s!==void 0?s:(o=(i=n==null?void 0:n.mergedBorderedRef.value)!==null&&i!==void 0?i:e.defaultBordered)!==null&&o!==void 0?o:!0}),mergedClsPrefixRef:le(()=>(n==null?void 0:n.mergedClsPrefixRef.value)||AG),namespaceRef:le(()=>n==null?void 0:n.mergedNamespaceRef.value)}}const yG={name:"en-US",global:{undo:"Undo",redo:"Redo",confirm:"Confirm",clear:"Clear"},Popconfirm:{positiveText:"Confirm",negativeText:"Cancel"},Cascader:{placeholder:"Please Select",loading:"Loading",loadingRequiredMessage:t=>`Please load all ${t}'s descendants before checking it.`},Time:{dateFormat:"yyyy-MM-dd",dateTimeFormat:"yyyy-MM-dd HH:mm:ss"},DatePicker:{yearFormat:"yyyy",monthFormat:"MMM",dayFormat:"eeeeee",yearTypeFormat:"yyyy",monthTypeFormat:"yyyy-MM",dateFormat:"yyyy-MM-dd",dateTimeFormat:"yyyy-MM-dd HH:mm:ss",quarterFormat:"yyyy-qqq",clear:"Clear",now:"Now",confirm:"Confirm",selectTime:"Select Time",selectDate:"Select Date",datePlaceholder:"Select Date",datetimePlaceholder:"Select Date and Time",monthPlaceholder:"Select Month",yearPlaceholder:"Select Year",quarterPlaceholder:"Select Quarter",startDatePlaceholder:"Start Date",endDatePlaceholder:"End Date",startDatetimePlaceholder:"Start Date and Time",endDatetimePlaceholder:"End Date and Time",startMonthPlaceholder:"Start Month",endMonthPlaceholder:"End Month",monthBeforeYear:!0,firstDayOfWeek:6,today:"Today"},DataTable:{checkTableAll:"Select all in the table",uncheckTableAll:"Unselect all in the table",confirm:"Confirm",clear:"Clear"},LegacyTransfer:{sourceTitle:"Source",targetTitle:"Target"},Transfer:{selectAll:"Select all",unselectAll:"Unselect all",clearAll:"Clear",total:t=>`Total ${t} items`,selected:t=>`${t} items selected`},Empty:{description:"No Data"},Select:{placeholder:"Please Select"},TimePicker:{placeholder:"Select Time",positiveText:"OK",negativeText:"Cancel",now:"Now"},Pagination:{goto:"Goto",selectionSuffix:"page"},DynamicTags:{add:"Add"},Log:{loading:"Loading"},Input:{placeholder:"Please Input"},InputNumber:{placeholder:"Please Input"},DynamicInput:{create:"Create"},ThemeEditor:{title:"Theme Editor",clearAllVars:"Clear All Variables",clearSearch:"Clear Search",filterCompName:"Filter Component Name",filterVarName:"Filter Variable Name",import:"Import",export:"Export",restore:"Reset to Default"},Image:{tipPrevious:"Previous picture (←)",tipNext:"Next picture (→)",tipCounterclockwise:"Counterclockwise",tipClockwise:"Clockwise",tipZoomOut:"Zoom out",tipZoomIn:"Zoom in",tipClose:"Close (Esc)",tipOriginalSize:"Zoom to original size"}},IG=yG;function Tu(t){return function(){var e=arguments.length>0&&arguments[0]!==void 0?arguments[0]:{},n=e.width?String(e.width):t.defaultWidth,i=t.formats[n]||t.formats[t.defaultWidth];return i}}function Ua(t){return function(e,n){var i=n!=null&&n.context?String(n.context):"standalone",o;if(i==="formatting"&&t.formattingValues){var s=t.defaultFormattingWidth||t.defaultWidth,l=n!=null&&n.width?String(n.width):s;o=t.formattingValues[l]||t.formattingValues[s]}else{var c=t.defaultWidth,d=n!=null&&n.width?String(n.width):t.defaultWidth;o=t.values[d]||t.values[c]}var _=t.argumentCallback?t.argumentCallback(e):e;return o[_]}}function Fa(t){return function(e){var n=arguments.length>1&&arguments[1]!==void 0?arguments[1]:{},i=n.width,o=i&&t.matchPatterns[i]||t.matchPatterns[t.defaultMatchWidth],s=e.match(o);if(!s)return null;var l=s[0],c=i&&t.parsePatterns[i]||t.parsePatterns[t.defaultParseWidth],d=Array.isArray(c)?xG(c,function(g){return g.test(l)}):DG(c,function(g){return g.test(l)}),_;_=t.valueCallback?t.valueCallback(d):d,_=n.valueCallback?n.valueCallback(_):_;var p=e.slice(l.length);return{value:_,rest:p}}}function DG(t,e){for(var n in t)if(t.hasOwnProperty(n)&&e(t[n]))return n}function xG(t,e){for(var n=0;n1&&arguments[1]!==void 0?arguments[1]:{},i=e.match(t.matchPattern);if(!i)return null;var o=i[0],s=e.match(t.parsePattern);if(!s)return null;var l=t.valueCallback?t.valueCallback(s[0]):s[0];l=n.valueCallback?n.valueCallback(l):l;var c=e.slice(o.length);return{value:l,rest:c}}}var MG={lessThanXSeconds:{one:"less than a second",other:"less than {{count}} seconds"},xSeconds:{one:"1 second",other:"{{count}} seconds"},halfAMinute:"half a minute",lessThanXMinutes:{one:"less than a minute",other:"less than {{count}} minutes"},xMinutes:{one:"1 minute",other:"{{count}} minutes"},aboutXHours:{one:"about 1 hour",other:"about {{count}} hours"},xHours:{one:"1 hour",other:"{{count}} hours"},xDays:{one:"1 day",other:"{{count}} days"},aboutXWeeks:{one:"about 1 week",other:"about {{count}} weeks"},xWeeks:{one:"1 week",other:"{{count}} weeks"},aboutXMonths:{one:"about 1 month",other:"about {{count}} months"},xMonths:{one:"1 month",other:"{{count}} months"},aboutXYears:{one:"about 1 year",other:"about {{count}} years"},xYears:{one:"1 year",other:"{{count}} years"},overXYears:{one:"over 1 year",other:"over {{count}} years"},almostXYears:{one:"almost 1 year",other:"almost {{count}} years"}},LG=function(e,n,i){var o,s=MG[e];return typeof s=="string"?o=s:n===1?o=s.one:o=s.other.replace("{{count}}",n.toString()),i!=null&&i.addSuffix?i.comparison&&i.comparison>0?"in "+o:o+" ago":o};const PG=LG;var kG={full:"EEEE, MMMM do, y",long:"MMMM do, y",medium:"MMM d, y",short:"MM/dd/yyyy"},UG={full:"h:mm:ss a zzzz",long:"h:mm:ss a z",medium:"h:mm:ss a",short:"h:mm a"},FG={full:"{{date}} 'at' {{time}}",long:"{{date}} 'at' {{time}}",medium:"{{date}}, {{time}}",short:"{{date}}, {{time}}"},BG={date:Tu({formats:kG,defaultWidth:"full"}),time:Tu({formats:UG,defaultWidth:"full"}),dateTime:Tu({formats:FG,defaultWidth:"full"})};const GG=BG;var YG={lastWeek:"'last' eeee 'at' p",yesterday:"'yesterday at' p",today:"'today at' p",tomorrow:"'tomorrow at' p",nextWeek:"eeee 'at' p",other:"P"},qG=function(e,n,i,o){return YG[e]};const $G=qG;var HG={narrow:["B","A"],abbreviated:["BC","AD"],wide:["Before Christ","Anno Domini"]},zG={narrow:["1","2","3","4"],abbreviated:["Q1","Q2","Q3","Q4"],wide:["1st quarter","2nd quarter","3rd quarter","4th quarter"]},VG={narrow:["J","F","M","A","M","J","J","A","S","O","N","D"],abbreviated:["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"],wide:["January","February","March","April","May","June","July","August","September","October","November","December"]},WG={narrow:["S","M","T","W","T","F","S"],short:["Su","Mo","Tu","We","Th","Fr","Sa"],abbreviated:["Sun","Mon","Tue","Wed","Thu","Fri","Sat"],wide:["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"]},KG={narrow:{am:"a",pm:"p",midnight:"mi",noon:"n",morning:"morning",afternoon:"afternoon",evening:"evening",night:"night"},abbreviated:{am:"AM",pm:"PM",midnight:"midnight",noon:"noon",morning:"morning",afternoon:"afternoon",evening:"evening",night:"night"},wide:{am:"a.m.",pm:"p.m.",midnight:"midnight",noon:"noon",morning:"morning",afternoon:"afternoon",evening:"evening",night:"night"}},QG={narrow:{am:"a",pm:"p",midnight:"mi",noon:"n",morning:"in the morning",afternoon:"in the afternoon",evening:"in the evening",night:"at night"},abbreviated:{am:"AM",pm:"PM",midnight:"midnight",noon:"noon",morning:"in the morning",afternoon:"in the afternoon",evening:"in the evening",night:"at night"},wide:{am:"a.m.",pm:"p.m.",midnight:"midnight",noon:"noon",morning:"in the morning",afternoon:"in the afternoon",evening:"in the evening",night:"at night"}},XG=function(e,n){var i=Number(e),o=i%100;if(o>20||o<10)switch(o%10){case 1:return i+"st";case 2:return i+"nd";case 3:return i+"rd"}return i+"th"},ZG={ordinalNumber:XG,era:Ua({values:HG,defaultWidth:"wide"}),quarter:Ua({values:zG,defaultWidth:"wide",argumentCallback:function(e){return e-1}}),month:Ua({values:VG,defaultWidth:"wide"}),day:Ua({values:WG,defaultWidth:"wide"}),dayPeriod:Ua({values:KG,defaultWidth:"wide",formattingValues:QG,defaultFormattingWidth:"wide"})};const JG=ZG;var jG=/^(\d+)(th|st|nd|rd)?/i,eY=/\d+/i,tY={narrow:/^(b|a)/i,abbreviated:/^(b\.?\s?c\.?|b\.?\s?c\.?\s?e\.?|a\.?\s?d\.?|c\.?\s?e\.?)/i,wide:/^(before christ|before common era|anno domini|common era)/i},nY={any:[/^b/i,/^(a|c)/i]},rY={narrow:/^[1234]/i,abbreviated:/^q[1234]/i,wide:/^[1234](th|st|nd|rd)? quarter/i},iY={any:[/1/i,/2/i,/3/i,/4/i]},aY={narrow:/^[jfmasond]/i,abbreviated:/^(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)/i,wide:/^(january|february|march|april|may|june|july|august|september|october|november|december)/i},oY={narrow:[/^j/i,/^f/i,/^m/i,/^a/i,/^m/i,/^j/i,/^j/i,/^a/i,/^s/i,/^o/i,/^n/i,/^d/i],any:[/^ja/i,/^f/i,/^mar/i,/^ap/i,/^may/i,/^jun/i,/^jul/i,/^au/i,/^s/i,/^o/i,/^n/i,/^d/i]},sY={narrow:/^[smtwf]/i,short:/^(su|mo|tu|we|th|fr|sa)/i,abbreviated:/^(sun|mon|tue|wed|thu|fri|sat)/i,wide:/^(sunday|monday|tuesday|wednesday|thursday|friday|saturday)/i},lY={narrow:[/^s/i,/^m/i,/^t/i,/^w/i,/^t/i,/^f/i,/^s/i],any:[/^su/i,/^m/i,/^tu/i,/^w/i,/^th/i,/^f/i,/^sa/i]},cY={narrow:/^(a|p|mi|n|(in the|at) (morning|afternoon|evening|night))/i,any:/^([ap]\.?\s?m\.?|midnight|noon|(in the|at) (morning|afternoon|evening|night))/i},uY={any:{am:/^a/i,pm:/^p/i,midnight:/^mi/i,noon:/^no/i,morning:/morning/i,afternoon:/afternoon/i,evening:/evening/i,night:/night/i}},dY={ordinalNumber:wG({matchPattern:jG,parsePattern:eY,valueCallback:function(e){return parseInt(e,10)}}),era:Fa({matchPatterns:tY,defaultMatchWidth:"wide",parsePatterns:nY,defaultParseWidth:"any"}),quarter:Fa({matchPatterns:rY,defaultMatchWidth:"wide",parsePatterns:iY,defaultParseWidth:"any",valueCallback:function(e){return e+1}}),month:Fa({matchPatterns:aY,defaultMatchWidth:"wide",parsePatterns:oY,defaultParseWidth:"any"}),day:Fa({matchPatterns:sY,defaultMatchWidth:"wide",parsePatterns:lY,defaultParseWidth:"any"}),dayPeriod:Fa({matchPatterns:cY,defaultMatchWidth:"any",parsePatterns:uY,defaultParseWidth:"any"})};const _Y=dY;var pY={code:"en-US",formatDistance:PG,formatLong:GG,formatRelative:$G,localize:JG,match:_Y,options:{weekStartsOn:0,firstWeekContainsDate:1}};const mY=pY,gY={name:"en-US",locale:mY},EY=gY;function fY(t){const{mergedLocaleRef:e,mergedDateLocaleRef:n}=Ft(ia,null)||{},i=le(()=>{var s,l;return(l=(s=e==null?void 0:e.value)===null||s===void 0?void 0:s[t])!==null&&l!==void 0?l:IG[t]});return{dateLocaleRef:le(()=>{var s;return(s=n==null?void 0:n.value)!==null&&s!==void 0?s:EY}),localeRef:i}}function SY(t,e,n){if(!e)return;const i=ro(),o=Ft(ia,null),s=()=>{const l=n==null?void 0:n.value;e.mount({id:l===void 0?t:l+t,head:!0,anchorMetaName:ja,props:{bPrefix:l?`.${l}-`:void 0},ssr:i}),o!=null&&o.preflightStyleDisabled||KR.mount({id:"n-global",head:!0,anchorMetaName:ja,ssr:i})};i?s():Hm(s)}function _g(t,e,n,i){var o;n||s0("useThemeClass","cssVarsRef is not passed");const s=(o=Ft(ia,null))===null||o===void 0?void 0:o.mergedThemeHashRef,l=ee(""),c=ro();let d;const _=`__${t}`,p=()=>{let g=_;const E=e?e.value:void 0,f=s==null?void 0:s.value;f&&(g+="-"+f),E&&(g+="-"+E);const{themeOverrides:S,builtinThemeOverrides:v}=i;S&&(g+="-"+Cm(JSON.stringify(S))),v&&(g+="-"+Cm(JSON.stringify(v))),l.value=g,d=()=>{const h=n.value;let T="";for(const N in h)T+=`${N}: ${h[N]};`;je(`.${g}`,T).mount({id:g,ssr:c}),d=void 0}};return si(()=>{p()}),{themeClass:l,onRender:()=>{d==null||d()}}}function bY(t,e,n){if(!e)return;const i=ro(),o=le(()=>{const{value:l}=e;if(!l)return;const c=l[t];if(c)return c}),s=()=>{si(()=>{const{value:l}=n,c=`${l}${t}Rtl`;if(R0(c,i))return;const{value:d}=o;d&&d.style.mount({id:c,head:!0,anchorMetaName:ja,props:{bPrefix:l?`.${l}-`:void 0},ssr:i})})};return i?s():Hm(s),o}function il(t,e){return be({name:eF(t),setup(){var n;const i=(n=Ft(ia,null))===null||n===void 0?void 0:n.mergedIconsRef;return()=>{var o;const s=(o=i==null?void 0:i.value)===null||o===void 0?void 0:o[t];return s?s():e}}})}const hY=il("rotateClockwise",j("svg",{viewBox:"0 0 20 20",fill:"none",xmlns:"http://www.w3.org/2000/svg"},j("path",{d:"M3 10C3 6.13401 6.13401 3 10 3C13.866 3 17 6.13401 17 10C17 12.7916 15.3658 15.2026 13 16.3265V14.5C13 14.2239 12.7761 14 12.5 14C12.2239 14 12 14.2239 12 14.5V17.5C12 17.7761 12.2239 18 12.5 18H15.5C15.7761 18 16 17.7761 16 17.5C16 17.2239 15.7761 17 15.5 17H13.8758C16.3346 15.6357 18 13.0128 18 10C18 5.58172 14.4183 2 10 2C5.58172 2 2 5.58172 2 10C2 10.2761 2.22386 10.5 2.5 10.5C2.77614 10.5 3 10.2761 3 10Z",fill:"currentColor"}),j("path",{d:"M10 12C11.1046 12 12 11.1046 12 10C12 8.89543 11.1046 8 10 8C8.89543 8 8 8.89543 8 10C8 11.1046 8.89543 12 10 12ZM10 11C9.44772 11 9 10.5523 9 10C9 9.44772 9.44772 9 10 9C10.5523 9 11 9.44772 11 10C11 10.5523 10.5523 11 10 11Z",fill:"currentColor"}))),TY=il("rotateClockwise",j("svg",{viewBox:"0 0 20 20",fill:"none",xmlns:"http://www.w3.org/2000/svg"},j("path",{d:"M17 10C17 6.13401 13.866 3 10 3C6.13401 3 3 6.13401 3 10C3 12.7916 4.63419 15.2026 7 16.3265V14.5C7 14.2239 7.22386 14 7.5 14C7.77614 14 8 14.2239 8 14.5V17.5C8 17.7761 7.77614 18 7.5 18H4.5C4.22386 18 4 17.7761 4 17.5C4 17.2239 4.22386 17 4.5 17H6.12422C3.66539 15.6357 2 13.0128 2 10C2 5.58172 5.58172 2 10 2C14.4183 2 18 5.58172 18 10C18 10.2761 17.7761 10.5 17.5 10.5C17.2239 10.5 17 10.2761 17 10Z",fill:"currentColor"}),j("path",{d:"M10 12C8.89543 12 8 11.1046 8 10C8 8.89543 8.89543 8 10 8C11.1046 8 12 8.89543 12 10C12 11.1046 11.1046 12 10 12ZM10 11C10.5523 11 11 10.5523 11 10C11 9.44772 10.5523 9 10 9C9.44772 9 9 9.44772 9 10C9 10.5523 9.44772 11 10 11Z",fill:"currentColor"}))),vY=il("zoomIn",j("svg",{viewBox:"0 0 20 20",fill:"none",xmlns:"http://www.w3.org/2000/svg"},j("path",{d:"M11.5 8.5C11.5 8.22386 11.2761 8 11 8H9V6C9 5.72386 8.77614 5.5 8.5 5.5C8.22386 5.5 8 5.72386 8 6V8H6C5.72386 8 5.5 8.22386 5.5 8.5C5.5 8.77614 5.72386 9 6 9H8V11C8 11.2761 8.22386 11.5 8.5 11.5C8.77614 11.5 9 11.2761 9 11V9H11C11.2761 9 11.5 8.77614 11.5 8.5Z",fill:"currentColor"}),j("path",{d:"M8.5 3C11.5376 3 14 5.46243 14 8.5C14 9.83879 13.5217 11.0659 12.7266 12.0196L16.8536 16.1464C17.0488 16.3417 17.0488 16.6583 16.8536 16.8536C16.68 17.0271 16.4106 17.0464 16.2157 16.9114L16.1464 16.8536L12.0196 12.7266C11.0659 13.5217 9.83879 14 8.5 14C5.46243 14 3 11.5376 3 8.5C3 5.46243 5.46243 3 8.5 3ZM8.5 4C6.01472 4 4 6.01472 4 8.5C4 10.9853 6.01472 13 8.5 13C10.9853 13 13 10.9853 13 8.5C13 6.01472 10.9853 4 8.5 4Z",fill:"currentColor"}))),CY=il("zoomOut",j("svg",{viewBox:"0 0 20 20",fill:"none",xmlns:"http://www.w3.org/2000/svg"},j("path",{d:"M11 8C11.2761 8 11.5 8.22386 11.5 8.5C11.5 8.77614 11.2761 9 11 9H6C5.72386 9 5.5 8.77614 5.5 8.5C5.5 8.22386 5.72386 8 6 8H11Z",fill:"currentColor"}),j("path",{d:"M14 8.5C14 5.46243 11.5376 3 8.5 3C5.46243 3 3 5.46243 3 8.5C3 11.5376 5.46243 14 8.5 14C9.83879 14 11.0659 13.5217 12.0196 12.7266L16.1464 16.8536L16.2157 16.9114C16.4106 17.0464 16.68 17.0271 16.8536 16.8536C17.0488 16.6583 17.0488 16.3417 16.8536 16.1464L12.7266 12.0196C13.5217 11.0659 14 9.83879 14 8.5ZM4 8.5C4 6.01472 6.01472 4 8.5 4C10.9853 4 13 6.01472 13 8.5C13 10.9853 10.9853 13 8.5 13C6.01472 13 4 10.9853 4 8.5Z",fill:"currentColor"}))),RY=be({name:"ResizeSmall",render(){return j("svg",{xmlns:"http://www.w3.org/2000/svg",viewBox:"0 0 20 20"},j("g",{fill:"none"},j("path",{d:"M5.5 4A1.5 1.5 0 0 0 4 5.5v1a.5.5 0 0 1-1 0v-1A2.5 2.5 0 0 1 5.5 3h1a.5.5 0 0 1 0 1h-1zM16 5.5A1.5 1.5 0 0 0 14.5 4h-1a.5.5 0 0 1 0-1h1A2.5 2.5 0 0 1 17 5.5v1a.5.5 0 0 1-1 0v-1zm0 9a1.5 1.5 0 0 1-1.5 1.5h-1a.5.5 0 0 0 0 1h1a2.5 2.5 0 0 0 2.5-2.5v-1a.5.5 0 0 0-1 0v1zm-12 0A1.5 1.5 0 0 0 5.5 16h1.25a.5.5 0 0 1 0 1H5.5A2.5 2.5 0 0 1 3 14.5v-1.25a.5.5 0 0 1 1 0v1.25zM8.5 7A1.5 1.5 0 0 0 7 8.5v3A1.5 1.5 0 0 0 8.5 13h3a1.5 1.5 0 0 0 1.5-1.5v-3A1.5 1.5 0 0 0 11.5 7h-3zM8 8.5a.5.5 0 0 1 .5-.5h3a.5.5 0 0 1 .5.5v3a.5.5 0 0 1-.5.5h-3a.5.5 0 0 1-.5-.5v-3z",fill:"currentColor"})))}}),NY=bt("base-icon",` - height: 1em; - width: 1em; - line-height: 1em; - text-align: center; - display: inline-block; - position: relative; - fill: currentColor; - transform: translateZ(0); -`,[je("svg",` - height: 1em; - width: 1em; - `)]),Or=be({name:"BaseIcon",props:{role:String,ariaLabel:String,ariaDisabled:{type:Boolean,default:void 0},ariaHidden:{type:Boolean,default:void 0},clsPrefix:{type:String,required:!0},onClick:Function,onMousedown:Function,onMouseup:Function},setup(t){SY("-base-icon",NY,yt(t,"clsPrefix"))},render(){return j("i",{class:`${this.clsPrefix}-base-icon`,onClick:this.onClick,onMousedown:this.onMousedown,onMouseup:this.onMouseup,role:this.role,"aria-label":this.ariaLabel,"aria-hidden":this.ariaHidden,"aria-disabled":this.ariaDisabled},this.$slots)}}),Se={neutralBase:"#FFF",neutralInvertBase:"#000",neutralTextBase:"#000",neutralPopover:"#fff",neutralCard:"#fff",neutralModal:"#fff",neutralBody:"#fff",alpha1:"0.82",alpha2:"0.72",alpha3:"0.38",alpha4:"0.24",alpha5:"0.18",alphaClose:"0.6",alphaDisabled:"0.5",alphaDisabledInput:"0.02",alphaPending:"0.05",alphaTablePending:"0.02",alphaPressed:"0.07",alphaAvatar:"0.2",alphaRail:"0.14",alphaProgressRail:".08",alphaBorder:"0.12",alphaDivider:"0.06",alphaInput:"0",alphaAction:"0.02",alphaTab:"0.04",alphaScrollbar:"0.25",alphaScrollbarHover:"0.4",alphaCode:"0.05",alphaTag:"0.02",primaryHover:"#36ad6a",primaryDefault:"#18a058",primaryActive:"#0c7a43",primarySuppl:"#36ad6a",infoHover:"#4098fc",infoDefault:"#2080f0",infoActive:"#1060c9",infoSuppl:"#4098fc",errorHover:"#de576d",errorDefault:"#d03050",errorActive:"#ab1f3f",errorSuppl:"#de576d",warningHover:"#fcb040",warningDefault:"#f0a020",warningActive:"#c97c10",warningSuppl:"#fcb040",successHover:"#36ad6a",successDefault:"#18a058",successActive:"#0c7a43",successSuppl:"#36ad6a"},OY=Ki(Se.neutralBase),QR=Ki(Se.neutralInvertBase),AY="rgba("+QR.slice(0,3).join(", ")+", ";function HS(t){return AY+String(t)+")"}function Kt(t){const e=Array.from(QR);return e[3]=Number(t),PC(OY,e)}const yY=Object.assign(Object.assign({name:"common"},rl),{baseColor:Se.neutralBase,primaryColor:Se.primaryDefault,primaryColorHover:Se.primaryHover,primaryColorPressed:Se.primaryActive,primaryColorSuppl:Se.primarySuppl,infoColor:Se.infoDefault,infoColorHover:Se.infoHover,infoColorPressed:Se.infoActive,infoColorSuppl:Se.infoSuppl,successColor:Se.successDefault,successColorHover:Se.successHover,successColorPressed:Se.successActive,successColorSuppl:Se.successSuppl,warningColor:Se.warningDefault,warningColorHover:Se.warningHover,warningColorPressed:Se.warningActive,warningColorSuppl:Se.warningSuppl,errorColor:Se.errorDefault,errorColorHover:Se.errorHover,errorColorPressed:Se.errorActive,errorColorSuppl:Se.errorSuppl,textColorBase:Se.neutralTextBase,textColor1:"rgb(31, 34, 37)",textColor2:"rgb(51, 54, 57)",textColor3:"rgb(118, 124, 130)",textColorDisabled:Kt(Se.alpha4),placeholderColor:Kt(Se.alpha4),placeholderColorDisabled:Kt(Se.alpha5),iconColor:Kt(Se.alpha4),iconColorHover:fs(Kt(Se.alpha4),{lightness:.75}),iconColorPressed:fs(Kt(Se.alpha4),{lightness:.9}),iconColorDisabled:Kt(Se.alpha5),opacity1:Se.alpha1,opacity2:Se.alpha2,opacity3:Se.alpha3,opacity4:Se.alpha4,opacity5:Se.alpha5,dividerColor:"rgb(239, 239, 245)",borderColor:"rgb(224, 224, 230)",closeIconColor:Kt(Number(Se.alphaClose)),closeIconColorHover:Kt(Number(Se.alphaClose)),closeIconColorPressed:Kt(Number(Se.alphaClose)),closeColorHover:"rgba(0, 0, 0, .09)",closeColorPressed:"rgba(0, 0, 0, .13)",clearColor:Kt(Se.alpha4),clearColorHover:fs(Kt(Se.alpha4),{lightness:.75}),clearColorPressed:fs(Kt(Se.alpha4),{lightness:.9}),scrollbarColor:HS(Se.alphaScrollbar),scrollbarColorHover:HS(Se.alphaScrollbarHover),scrollbarWidth:"5px",scrollbarHeight:"5px",scrollbarBorderRadius:"5px",progressRailColor:Kt(Se.alphaProgressRail),railColor:"rgb(219, 219, 223)",popoverColor:Se.neutralPopover,tableColor:Se.neutralCard,cardColor:Se.neutralCard,modalColor:Se.neutralModal,bodyColor:Se.neutralBody,tagColor:"#eee",avatarColor:Kt(Se.alphaAvatar),invertedColor:"rgb(0, 20, 40)",inputColor:Kt(Se.alphaInput),codeColor:"rgb(244, 244, 248)",tabColor:"rgb(247, 247, 250)",actionColor:"rgb(250, 250, 252)",tableHeaderColor:"rgb(250, 250, 252)",hoverColor:"rgb(243, 243, 245)",tableColorHover:"rgba(0, 0, 100, 0.03)",tableColorStriped:"rgba(0, 0, 100, 0.02)",pressedColor:"rgb(237, 237, 239)",opacityDisabled:Se.alphaDisabled,inputColorDisabled:"rgb(250, 250, 252)",buttonColor2:"rgba(46, 51, 56, .05)",buttonColor2Hover:"rgba(46, 51, 56, .09)",buttonColor2Pressed:"rgba(46, 51, 56, .13)",boxShadow1:"0 1px 2px -2px rgba(0, 0, 0, .08), 0 3px 6px 0 rgba(0, 0, 0, .06), 0 5px 12px 4px rgba(0, 0, 0, .04)",boxShadow2:"0 3px 6px -4px rgba(0, 0, 0, .12), 0 6px 16px 0 rgba(0, 0, 0, .08), 0 9px 28px 8px rgba(0, 0, 0, .05)",boxShadow3:"0 6px 16px -9px rgba(0, 0, 0, .08), 0 9px 28px 0 rgba(0, 0, 0, .05), 0 12px 48px 16px rgba(0, 0, 0, .03)"}),ao=yY,IY=t=>{const{scrollbarColor:e,scrollbarColorHover:n}=t;return{color:e,colorHover:n}},DY={name:"Scrollbar",common:ao,self:IY},xY=DY,{cubicBezierEaseInOut:zS}=rl;function Pm({name:t="fade-in",enterDuration:e="0.2s",leaveDuration:n="0.2s",enterCubicBezier:i=zS,leaveCubicBezier:o=zS}={}){return[je(`&.${t}-transition-enter-active`,{transition:`all ${e} ${i}!important`}),je(`&.${t}-transition-leave-active`,{transition:`all ${n} ${o}!important`}),je(`&.${t}-transition-enter-from, &.${t}-transition-leave-to`,{opacity:0}),je(`&.${t}-transition-leave-from, &.${t}-transition-enter-to`,{opacity:1})]}const wY=bt("scrollbar",` - overflow: hidden; - position: relative; - z-index: auto; - height: 100%; - width: 100%; -`,[je(">",[bt("scrollbar-container",` - width: 100%; - overflow: scroll; - height: 100%; - max-height: inherit; - scrollbar-width: none; - `,[je("&::-webkit-scrollbar, &::-webkit-scrollbar-track-piece, &::-webkit-scrollbar-thumb",` - width: 0; - height: 0; - display: none; - `),je(">",[bt("scrollbar-content",` - box-sizing: border-box; - min-width: 100%; - `)])])]),je(">, +",[bt("scrollbar-rail",` - position: absolute; - pointer-events: none; - user-select: none; - -webkit-user-select: none; - `,[_r("horizontal",` - left: 2px; - right: 2px; - bottom: 4px; - height: var(--n-scrollbar-height); - `,[je(">",[jr("scrollbar",` - height: var(--n-scrollbar-height); - border-radius: var(--n-scrollbar-border-radius); - right: 0; - `)])]),_r("vertical",` - right: 4px; - top: 2px; - bottom: 2px; - width: var(--n-scrollbar-width); - `,[je(">",[jr("scrollbar",` - width: var(--n-scrollbar-width); - border-radius: var(--n-scrollbar-border-radius); - bottom: 0; - `)])]),_r("disabled",[je(">",[jr("scrollbar",{pointerEvents:"none"})])]),je(">",[jr("scrollbar",` - position: absolute; - cursor: pointer; - pointer-events: all; - background-color: var(--n-scrollbar-color); - transition: background-color .2s var(--n-scrollbar-bezier); - `,[Pm(),je("&:hover",{backgroundColor:"var(--n-scrollbar-color-hover)"})])])])])]),MY=Object.assign(Object.assign({},fn.props),{size:{type:Number,default:5},duration:{type:Number,default:0},scrollable:{type:Boolean,default:!0},xScrollable:Boolean,trigger:{type:String,default:"hover"},useUnifiedContainer:Boolean,triggerDisplayManually:Boolean,container:Function,content:Function,containerClass:String,containerStyle:[String,Object],contentClass:String,contentStyle:[String,Object],horizontalRailStyle:[String,Object],verticalRailStyle:[String,Object],onScroll:Function,onWheel:Function,onResize:Function,internalOnUpdateScrollLeft:Function,internalHoistYRail:Boolean}),XR=be({name:"Scrollbar",props:MY,inheritAttrs:!1,setup(t){const{mergedClsPrefixRef:e,inlineThemeDisabled:n,mergedRtlRef:i}=pi(t),o=bY("Scrollbar",i,e),s=ee(null),l=ee(null),c=ee(null),d=ee(null),_=ee(null),p=ee(null),g=ee(null),E=ee(null),f=ee(null),S=ee(null),v=ee(null),h=ee(0),T=ee(0),N=ee(!1),y=ee(!1);let x=!1,P=!1,D,k,U=0,W=0,z=0,K=0;const Ee=G0(),oe=le(()=>{const{value:Z}=E,{value:ge}=p,{value:Ae}=S;return Z===null||ge===null||Ae===null?0:Math.min(Z,Ae*Z/ge+t.size*1.5)}),L=le(()=>`${oe.value}px`),J=le(()=>{const{value:Z}=f,{value:ge}=g,{value:Ae}=v;return Z===null||ge===null||Ae===null?0:Ae*Z/ge+t.size*1.5}),re=le(()=>`${J.value}px`),G=le(()=>{const{value:Z}=E,{value:ge}=h,{value:Ae}=p,{value:it}=S;if(Z===null||Ae===null||it===null)return 0;{const Tt=Ae-Z;return Tt?ge/Tt*(it-oe.value):0}}),X=le(()=>`${G.value}px`),_e=le(()=>{const{value:Z}=f,{value:ge}=T,{value:Ae}=g,{value:it}=v;if(Z===null||Ae===null||it===null)return 0;{const Tt=Ae-Z;return Tt?ge/Tt*(it-J.value):0}}),ve=le(()=>`${_e.value}px`),he=le(()=>{const{value:Z}=E,{value:ge}=p;return Z!==null&&ge!==null&&ge>Z}),tt=le(()=>{const{value:Z}=f,{value:ge}=g;return Z!==null&&ge!==null&&ge>Z}),lt=le(()=>{const{trigger:Z}=t;return Z==="none"||N.value}),He=le(()=>{const{trigger:Z}=t;return Z==="none"||y.value}),Ce=le(()=>{const{container:Z}=t;return Z?Z():l.value}),Be=le(()=>{const{content:Z}=t;return Z?Z():c.value}),We=PP(()=>{t.container||rt({top:h.value,left:T.value})}),xe=()=>{We.isDeactivated||Nt()},ze=Z=>{if(We.isDeactivated)return;const{onResize:ge}=t;ge&&ge(Z),Nt()},rt=(Z,ge)=>{if(!t.scrollable)return;if(typeof Z=="number"){te(ge??0,Z,0,!1,"auto");return}const{left:Ae,top:it,index:Tt,elSize:wt,position:tn,behavior:mt,el:ln,debounce:tr=!0}=Z;(Ae!==void 0||it!==void 0)&&te(Ae??0,it??0,0,!1,mt),ln!==void 0?te(0,ln.offsetTop,ln.offsetHeight,tr,mt):Tt!==void 0&&wt!==void 0?te(0,Tt*wt,wt,tr,mt):tn==="bottom"?te(0,Number.MAX_SAFE_INTEGER,0,!1,mt):tn==="top"&&te(0,0,0,!1,mt)},Ke=(Z,ge)=>{if(!t.scrollable)return;const{value:Ae}=Ce;Ae&&(typeof Z=="object"?Ae.scrollBy(Z):Ae.scrollBy(Z,ge||0))};function te(Z,ge,Ae,it,Tt){const{value:wt}=Ce;if(wt){if(it){const{scrollTop:tn,offsetHeight:mt}=wt;if(ge>tn){ge+Ae<=tn+mt||wt.scrollTo({left:Z,top:ge+Ae-mt,behavior:Tt});return}}wt.scrollTo({left:Z,top:ge,behavior:Tt})}}function pe(){pt(),me(),Nt()}function ie(){Pe()}function Pe(){we(),Xe()}function we(){k!==void 0&&window.clearTimeout(k),k=window.setTimeout(()=>{y.value=!1},t.duration)}function Xe(){D!==void 0&&window.clearTimeout(D),D=window.setTimeout(()=>{N.value=!1},t.duration)}function pt(){D!==void 0&&window.clearTimeout(D),N.value=!0}function me(){k!==void 0&&window.clearTimeout(k),y.value=!0}function ht(Z){const{onScroll:ge}=t;ge&&ge(Z),Ue()}function Ue(){const{value:Z}=Ce;Z&&(h.value=Z.scrollTop,T.value=Z.scrollLeft*(o!=null&&o.value?-1:1))}function Ie(){const{value:Z}=Be;Z&&(p.value=Z.offsetHeight,g.value=Z.offsetWidth);const{value:ge}=Ce;ge&&(E.value=ge.offsetHeight,f.value=ge.offsetWidth);const{value:Ae}=_,{value:it}=d;Ae&&(v.value=Ae.offsetWidth),it&&(S.value=it.offsetHeight)}function zt(){const{value:Z}=Ce;Z&&(h.value=Z.scrollTop,T.value=Z.scrollLeft*(o!=null&&o.value?-1:1),E.value=Z.offsetHeight,f.value=Z.offsetWidth,p.value=Z.scrollHeight,g.value=Z.scrollWidth);const{value:ge}=_,{value:Ae}=d;ge&&(v.value=ge.offsetWidth),Ae&&(S.value=Ae.offsetHeight)}function Nt(){t.scrollable&&(t.useUnifiedContainer?zt():(Ie(),Ue()))}function Gt(Z){var ge;return!(!((ge=s.value)===null||ge===void 0)&&ge.contains(Us(Z)))}function Sn(Z){Z.preventDefault(),Z.stopPropagation(),P=!0,Ht("mousemove",window,ne,!0),Ht("mouseup",window,ce,!0),W=T.value,z=o!=null&&o.value?window.innerWidth-Z.clientX:Z.clientX}function ne(Z){if(!P)return;D!==void 0&&window.clearTimeout(D),k!==void 0&&window.clearTimeout(k);const{value:ge}=f,{value:Ae}=g,{value:it}=J;if(ge===null||Ae===null)return;const wt=(o!=null&&o.value?window.innerWidth-Z.clientX-z:Z.clientX-z)*(Ae-ge)/(ge-it),tn=Ae-ge;let mt=W+wt;mt=Math.min(tn,mt),mt=Math.max(mt,0);const{value:ln}=Ce;if(ln){ln.scrollLeft=mt*(o!=null&&o.value?-1:1);const{internalOnUpdateScrollLeft:tr}=t;tr&&tr(mt)}}function ce(Z){Z.preventDefault(),Z.stopPropagation(),Rt("mousemove",window,ne,!0),Rt("mouseup",window,ce,!0),P=!1,Nt(),Gt(Z)&&Pe()}function Oe(Z){Z.preventDefault(),Z.stopPropagation(),x=!0,Ht("mousemove",window,Me,!0),Ht("mouseup",window,ct,!0),U=h.value,K=Z.clientY}function Me(Z){if(!x)return;D!==void 0&&window.clearTimeout(D),k!==void 0&&window.clearTimeout(k);const{value:ge}=E,{value:Ae}=p,{value:it}=oe;if(ge===null||Ae===null)return;const wt=(Z.clientY-K)*(Ae-ge)/(ge-it),tn=Ae-ge;let mt=U+wt;mt=Math.min(tn,mt),mt=Math.max(mt,0);const{value:ln}=Ce;ln&&(ln.scrollTop=mt)}function ct(Z){Z.preventDefault(),Z.stopPropagation(),Rt("mousemove",window,Me,!0),Rt("mouseup",window,ct,!0),x=!1,Nt(),Gt(Z)&&Pe()}si(()=>{const{value:Z}=tt,{value:ge}=he,{value:Ae}=e,{value:it}=_,{value:Tt}=d;it&&(Z?it.classList.remove(`${Ae}-scrollbar-rail--disabled`):it.classList.add(`${Ae}-scrollbar-rail--disabled`)),Tt&&(ge?Tt.classList.remove(`${Ae}-scrollbar-rail--disabled`):Tt.classList.add(`${Ae}-scrollbar-rail--disabled`))}),kn(()=>{t.container||Nt()}),Kn(()=>{D!==void 0&&window.clearTimeout(D),k!==void 0&&window.clearTimeout(k),Rt("mousemove",window,Me,!0),Rt("mouseup",window,ct,!0)});const xt=fn("Scrollbar","-scrollbar",wY,xY,t,e),Ze=le(()=>{const{common:{cubicBezierEaseInOut:Z,scrollbarBorderRadius:ge,scrollbarHeight:Ae,scrollbarWidth:it},self:{color:Tt,colorHover:wt}}=xt.value;return{"--n-scrollbar-bezier":Z,"--n-scrollbar-color":Tt,"--n-scrollbar-color-hover":wt,"--n-scrollbar-border-radius":ge,"--n-scrollbar-width":it,"--n-scrollbar-height":Ae}}),Yt=n?_g("scrollbar",void 0,Ze,t):void 0;return Object.assign(Object.assign({},{scrollTo:rt,scrollBy:Ke,sync:Nt,syncUnifiedContainer:zt,handleMouseEnterWrapper:pe,handleMouseLeaveWrapper:ie}),{mergedClsPrefix:e,rtlEnabled:o,containerScrollTop:h,wrapperRef:s,containerRef:l,contentRef:c,yRailRef:d,xRailRef:_,needYBar:he,needXBar:tt,yBarSizePx:L,xBarSizePx:re,yBarTopPx:X,xBarLeftPx:ve,isShowXBar:lt,isShowYBar:He,isIos:Ee,handleScroll:ht,handleContentResize:xe,handleContainerResize:ze,handleYScrollMouseDown:Oe,handleXScrollMouseDown:Sn,cssVars:n?void 0:Ze,themeClass:Yt==null?void 0:Yt.themeClass,onRender:Yt==null?void 0:Yt.onRender})},render(){var t;const{$slots:e,mergedClsPrefix:n,triggerDisplayManually:i,rtlEnabled:o,internalHoistYRail:s}=this;if(!this.scrollable)return(t=e.default)===null||t===void 0?void 0:t.call(e);const l=this.trigger==="none",c=()=>j("div",{ref:"yRailRef",class:[`${n}-scrollbar-rail`,`${n}-scrollbar-rail--vertical`],"data-scrollbar-rail":!0,style:this.verticalRailStyle,"aria-hidden":!0},j(l?zf:Hi,l?null:{name:"fade-in-transition"},{default:()=>this.needYBar&&this.isShowYBar&&!this.isIos?j("div",{class:`${n}-scrollbar-rail__scrollbar`,style:{height:this.yBarSizePx,top:this.yBarTopPx},onMousedown:this.handleYScrollMouseDown}):null})),d=()=>{var p,g;return(p=this.onRender)===null||p===void 0||p.call(this),j("div",zm(this.$attrs,{role:"none",ref:"wrapperRef",class:[`${n}-scrollbar`,this.themeClass,o&&`${n}-scrollbar--rtl`],style:this.cssVars,onMouseenter:i?void 0:this.handleMouseEnterWrapper,onMouseleave:i?void 0:this.handleMouseLeaveWrapper}),[this.container?(g=e.default)===null||g===void 0?void 0:g.call(e):j("div",{role:"none",ref:"containerRef",class:[`${n}-scrollbar-container`,this.containerClass],style:this.containerStyle,onScroll:this.handleScroll,onWheel:this.onWheel},j(pS,{onResize:this.handleContentResize},{default:()=>j("div",{ref:"contentRef",role:"none",style:[{width:this.xScrollable?"fit-content":null},this.contentStyle],class:[`${n}-scrollbar-content`,this.contentClass]},e)})),s?null:c(),this.xScrollable&&j("div",{ref:"xRailRef",class:[`${n}-scrollbar-rail`,`${n}-scrollbar-rail--horizontal`],style:this.horizontalRailStyle,"data-scrollbar-rail":!0,"aria-hidden":!0},j(l?zf:Hi,l?null:{name:"fade-in-transition"},{default:()=>this.needXBar&&this.isShowXBar&&!this.isIos?j("div",{class:`${n}-scrollbar-rail__scrollbar`,style:{width:this.xBarSizePx,right:o?this.xBarLeftPx:void 0,left:o?void 0:this.xBarLeftPx},onMousedown:this.handleXScrollMouseDown}):null}))])},_=this.container?d():j(pS,{onResize:this.handleContainerResize},{default:d});return s?j(st,null,_,c()):_}}),LY=XR,PY=XR,{cubicBezierEaseIn:VS,cubicBezierEaseOut:WS}=rl;function kY({transformOrigin:t="inherit",duration:e=".2s",enterScale:n=".9",originalTransform:i="",originalTransition:o=""}={}){return[je("&.fade-in-scale-up-transition-leave-active",{transformOrigin:t,transition:`opacity ${e} ${VS}, transform ${e} ${VS} ${o&&","+o}`}),je("&.fade-in-scale-up-transition-enter-active",{transformOrigin:t,transition:`opacity ${e} ${WS}, transform ${e} ${WS} ${o&&","+o}`}),je("&.fade-in-scale-up-transition-enter-from, &.fade-in-scale-up-transition-leave-to",{opacity:0,transform:`${i} scale(${n})`}),je("&.fade-in-scale-up-transition-leave-from, &.fade-in-scale-up-transition-enter-to",{opacity:1,transform:`${i} scale(1)`})]}const UY={space:"6px",spaceArrow:"10px",arrowOffset:"10px",arrowOffsetVertical:"10px",arrowHeight:"6px",padding:"8px 14px"},FY=t=>{const{boxShadow2:e,popoverColor:n,textColor2:i,borderRadius:o,fontSize:s,dividerColor:l}=t;return Object.assign(Object.assign({},UY),{fontSize:s,borderRadius:o,color:n,dividerColor:l,textColor:i,boxShadow:e})},BY={name:"Popover",common:ao,self:FY},ZR=BY,vu={top:"bottom",bottom:"top",left:"right",right:"left"},Pt="var(--n-arrow-height) * 1.414",GY=je([bt("popover",` - transition: - box-shadow .3s var(--n-bezier), - background-color .3s var(--n-bezier), - color .3s var(--n-bezier); - position: relative; - font-size: var(--n-font-size); - color: var(--n-text-color); - box-shadow: var(--n-box-shadow); - word-break: break-word; - `,[je(">",[bt("scrollbar",` - height: inherit; - max-height: inherit; - `)]),$a("raw",` - background-color: var(--n-color); - border-radius: var(--n-border-radius); - `,[$a("scrollable",[$a("show-header-or-footer","padding: var(--n-padding);")])]),jr("header",` - padding: var(--n-padding); - border-bottom: 1px solid var(--n-divider-color); - transition: border-color .3s var(--n-bezier); - `),jr("footer",` - padding: var(--n-padding); - border-top: 1px solid var(--n-divider-color); - transition: border-color .3s var(--n-bezier); - `),_r("scrollable, show-header-or-footer",[jr("content",` - padding: var(--n-padding); - `)])]),bt("popover-shared",` - transform-origin: inherit; - `,[bt("popover-arrow-wrapper",` - position: absolute; - overflow: hidden; - pointer-events: none; - `,[bt("popover-arrow",` - transition: background-color .3s var(--n-bezier); - position: absolute; - display: block; - width: calc(${Pt}); - height: calc(${Pt}); - box-shadow: 0 0 8px 0 rgba(0, 0, 0, .12); - transform: rotate(45deg); - background-color: var(--n-color); - pointer-events: all; - `)]),je("&.popover-transition-enter-from, &.popover-transition-leave-to",` - opacity: 0; - transform: scale(.85); - `),je("&.popover-transition-enter-to, &.popover-transition-leave-from",` - transform: scale(1); - opacity: 1; - `),je("&.popover-transition-enter-active",` - transition: - box-shadow .3s var(--n-bezier), - background-color .3s var(--n-bezier), - color .3s var(--n-bezier), - opacity .15s var(--n-bezier-ease-out), - transform .15s var(--n-bezier-ease-out); - `),je("&.popover-transition-leave-active",` - transition: - box-shadow .3s var(--n-bezier), - background-color .3s var(--n-bezier), - color .3s var(--n-bezier), - opacity .15s var(--n-bezier-ease-in), - transform .15s var(--n-bezier-ease-in); - `)]),An("top-start",` - top: calc(${Pt} / -2); - left: calc(${dr("top-start")} - var(--v-offset-left)); - `),An("top",` - top: calc(${Pt} / -2); - transform: translateX(calc(${Pt} / -2)) rotate(45deg); - left: 50%; - `),An("top-end",` - top: calc(${Pt} / -2); - right: calc(${dr("top-end")} + var(--v-offset-left)); - `),An("bottom-start",` - bottom: calc(${Pt} / -2); - left: calc(${dr("bottom-start")} - var(--v-offset-left)); - `),An("bottom",` - bottom: calc(${Pt} / -2); - transform: translateX(calc(${Pt} / -2)) rotate(45deg); - left: 50%; - `),An("bottom-end",` - bottom: calc(${Pt} / -2); - right: calc(${dr("bottom-end")} + var(--v-offset-left)); - `),An("left-start",` - left: calc(${Pt} / -2); - top: calc(${dr("left-start")} - var(--v-offset-top)); - `),An("left",` - left: calc(${Pt} / -2); - transform: translateY(calc(${Pt} / -2)) rotate(45deg); - top: 50%; - `),An("left-end",` - left: calc(${Pt} / -2); - bottom: calc(${dr("left-end")} + var(--v-offset-top)); - `),An("right-start",` - right: calc(${Pt} / -2); - top: calc(${dr("right-start")} - var(--v-offset-top)); - `),An("right",` - right: calc(${Pt} / -2); - transform: translateY(calc(${Pt} / -2)) rotate(45deg); - top: 50%; - `),An("right-end",` - right: calc(${Pt} / -2); - bottom: calc(${dr("right-end")} + var(--v-offset-top)); - `),...hG({top:["right-start","left-start"],right:["top-end","bottom-end"],bottom:["right-end","left-end"],left:["top-start","bottom-start"]},(t,e)=>{const n=["right","left"].includes(e),i=n?"width":"height";return t.map(o=>{const s=o.split("-")[1]==="end",c=`calc((${`var(--v-target-${i}, 0px)`} - ${Pt}) / 2)`,d=dr(o);return je(`[v-placement="${o}"] >`,[bt("popover-shared",[_r("center-arrow",[bt("popover-arrow",`${e}: calc(max(${c}, ${d}) ${s?"+":"-"} var(--v-offset-${n?"left":"top"}));`)])])])})})]);function dr(t){return["top","bottom"].includes(t.split("-")[0])?"var(--n-arrow-offset)":"var(--n-arrow-offset-vertical)"}function An(t,e){const n=t.split("-")[0],i=["top","bottom"].includes(n)?"height: var(--n-space-arrow);":"width: var(--n-space-arrow);";return je(`[v-placement="${t}"] >`,[bt("popover-shared",` - margin-${vu[n]}: var(--n-space); - `,[_r("show-arrow",` - margin-${vu[n]}: var(--n-space-arrow); - `),_r("overlap",` - margin: 0; - `),D0("popover-arrow-wrapper",` - right: 0; - left: 0; - top: 0; - bottom: 0; - ${n}: 100%; - ${vu[n]}: auto; - ${i} - `,[bt("popover-arrow",e)])])])}const JR=Object.assign(Object.assign({},fn.props),{to:Qi.propTo,show:Boolean,trigger:String,showArrow:Boolean,delay:Number,duration:Number,raw:Boolean,arrowPointToCenter:Boolean,arrowStyle:[String,Object],displayDirective:String,x:Number,y:Number,flip:Boolean,overlap:Boolean,placement:String,width:[Number,String],keepAliveOnHover:Boolean,scrollable:Boolean,contentStyle:[Object,String],headerStyle:[Object,String],footerStyle:[Object,String],internalDeactivateImmediately:Boolean,animated:Boolean,onClickoutside:Function,internalTrapFocus:Boolean,internalOnAfterLeave:Function,minWidth:Number,maxWidth:Number}),YY=({arrowStyle:t,clsPrefix:e})=>j("div",{key:"__popover-arrow__",class:`${e}-popover-arrow-wrapper`},j("div",{class:`${e}-popover-arrow`,style:t})),qY=be({name:"PopoverBody",inheritAttrs:!1,props:JR,setup(t,{slots:e,attrs:n}){const{namespaceRef:i,mergedClsPrefixRef:o,inlineThemeDisabled:s}=pi(t),l=fn("Popover","-popover",GY,ZR,t,o),c=ee(null),d=Ft("NPopover"),_=ee(null),p=ee(t.show),g=ee(!1);si(()=>{const{show:k}=t;k&&!x0()&&!t.internalDeactivateImmediately&&(g.value=!0)});const E=le(()=>{const{trigger:k,onClickoutside:U}=t,W=[],{positionManuallyRef:{value:z}}=d;return z||(k==="click"&&!U&&W.push([Zf,x,void 0,{capture:!0}]),k==="hover"&&W.push([K0,y])),U&&W.push([Zf,x,void 0,{capture:!0}]),(t.displayDirective==="show"||t.animated&&g.value)&&W.push([Xs,t.show]),W}),f=le(()=>{const k=t.width==="trigger"?void 0:du(t.width),U=[];k&&U.push({width:k});const{maxWidth:W,minWidth:z}=t;return W&&U.push({maxWidth:du(W)}),z&&U.push({maxWidth:du(z)}),s||U.push(S.value),U}),S=le(()=>{const{common:{cubicBezierEaseInOut:k,cubicBezierEaseIn:U,cubicBezierEaseOut:W},self:{space:z,spaceArrow:K,padding:Ee,fontSize:oe,textColor:L,dividerColor:J,color:re,boxShadow:G,borderRadius:X,arrowHeight:_e,arrowOffset:ve,arrowOffsetVertical:he}}=l.value;return{"--n-box-shadow":G,"--n-bezier":k,"--n-bezier-ease-in":U,"--n-bezier-ease-out":W,"--n-font-size":oe,"--n-text-color":L,"--n-color":re,"--n-divider-color":J,"--n-border-radius":X,"--n-arrow-height":_e,"--n-arrow-offset":ve,"--n-arrow-offset-vertical":he,"--n-padding":Ee,"--n-space":z,"--n-space-arrow":K}}),v=s?_g("popover",void 0,S,t):void 0;d.setBodyInstance({syncPosition:h}),Kn(()=>{d.setBodyInstance(null)}),Zt(yt(t,"show"),k=>{t.animated||(k?p.value=!0:p.value=!1)});function h(){var k;(k=c.value)===null||k===void 0||k.syncPosition()}function T(k){t.trigger==="hover"&&t.keepAliveOnHover&&t.show&&d.handleMouseEnter(k)}function N(k){t.trigger==="hover"&&t.keepAliveOnHover&&d.handleMouseLeave(k)}function y(k){t.trigger==="hover"&&!P().contains(Us(k))&&d.handleMouseMoveOutside(k)}function x(k){(t.trigger==="click"&&!P().contains(Us(k))||t.onClickoutside)&&d.handleClickOutside(k)}function P(){return d.getTriggerElement()}ni(VC,_),ni(zC,null),ni(HC,null);function D(){if(v==null||v.onRender(),!(t.displayDirective==="show"||t.show||t.animated&&g.value))return null;let U;const W=d.internalRenderBodyRef.value,{value:z}=o;if(W)U=W([`${z}-popover-shared`,v==null?void 0:v.themeClass.value,t.overlap&&`${z}-popover-shared--overlap`,t.showArrow&&`${z}-popover-shared--show-arrow`,t.arrowPointToCenter&&`${z}-popover-shared--center-arrow`],_,f.value,T,N);else{const{value:K}=d.extraClassRef,{internalTrapFocus:Ee}=t,oe=!Hf(e.header)||!Hf(e.footer),L=()=>{var J;const re=oe?j(st,null,uu(e.header,_e=>_e?j("div",{class:`${z}-popover__header`,style:t.headerStyle},_e):null),uu(e.default,_e=>_e?j("div",{class:`${z}-popover__content`,style:t.contentStyle},e):null),uu(e.footer,_e=>_e?j("div",{class:`${z}-popover__footer`,style:t.footerStyle},_e):null)):t.scrollable?(J=e.default)===null||J===void 0?void 0:J.call(e):j("div",{class:`${z}-popover__content`,style:t.contentStyle},e),G=t.scrollable?j(PY,{contentClass:oe?void 0:`${z}-popover__content`,contentStyle:oe?void 0:t.contentStyle},{default:()=>re}):re,X=t.showArrow?YY({arrowStyle:t.arrowStyle,clsPrefix:z}):null;return[G,X]};U=j("div",zm({class:[`${z}-popover`,`${z}-popover-shared`,v==null?void 0:v.themeClass.value,K.map(J=>`${z}-${J}`),{[`${z}-popover--scrollable`]:t.scrollable,[`${z}-popover--show-header-or-footer`]:oe,[`${z}-popover--raw`]:t.raw,[`${z}-popover-shared--overlap`]:t.overlap,[`${z}-popover-shared--show-arrow`]:t.showArrow,[`${z}-popover-shared--center-arrow`]:t.arrowPointToCenter}],ref:_,style:f.value,onKeydown:d.handleKeydown,onMouseenter:T,onMouseleave:N},n),Ee?j(LP,{active:t.show,autoFocus:!0},{default:L}):L())}return Pn(U,E.value)}return{displayed:g,namespace:i,isMounted:d.isMountedRef,zIndex:d.zIndexRef,followerRef:c,adjustedTo:Qi(t),followerEnabled:p,renderContentNode:D}},render(){return j(uP,{ref:"followerRef",zIndex:this.zIndex,show:this.show,enabled:this.followerEnabled,to:this.adjustedTo,x:this.x,y:this.y,flip:this.flip,placement:this.placement,containerClass:this.namespace,overlap:this.overlap,width:this.width==="trigger"?"target":void 0,teleportDisabled:this.adjustedTo===Qi.tdkey},{default:()=>this.animated?j(Hi,{name:"popover-transition",appear:this.isMounted,onEnter:()=>{this.followerEnabled=!0},onAfterLeave:()=>{var t;(t=this.internalOnAfterLeave)===null||t===void 0||t.call(this),this.followerEnabled=!1,this.displayed=!1}},{default:this.renderContentNode}):this.renderContentNode()})}}),$Y=Object.keys(JR),HY={focus:["onFocus","onBlur"],click:["onClick"],hover:["onMouseenter","onMouseleave"],manual:[],nested:["onFocus","onBlur","onMouseenter","onMouseleave","onClick"]};function zY(t,e,n){HY[e].forEach(i=>{t.props?t.props=Object.assign({},t.props):t.props={};const o=t.props[i],s=n[i];o?t.props[i]=(...l)=>{o(...l),s(...l)}:t.props[i]=s})}const jR={show:{type:Boolean,default:void 0},defaultShow:Boolean,showArrow:{type:Boolean,default:!0},trigger:{type:String,default:"hover"},delay:{type:Number,default:100},duration:{type:Number,default:100},raw:Boolean,placement:{type:String,default:"top"},x:Number,y:Number,arrowPointToCenter:Boolean,disabled:Boolean,getDisabled:Function,displayDirective:{type:String,default:"if"},arrowStyle:[String,Object],flip:{type:Boolean,default:!0},animated:{type:Boolean,default:!0},width:{type:[Number,String],default:void 0},overlap:Boolean,keepAliveOnHover:{type:Boolean,default:!0},zIndex:Number,to:Qi.propTo,scrollable:Boolean,contentStyle:[Object,String],headerStyle:[Object,String],footerStyle:[Object,String],onClickoutside:Function,"onUpdate:show":[Function,Array],onUpdateShow:[Function,Array],internalDeactivateImmediately:Boolean,internalSyncTargetWithParent:Boolean,internalInheritedEventHandlers:{type:Array,default:()=>[]},internalTrapFocus:Boolean,internalExtraClass:{type:Array,default:()=>[]},onShow:[Function,Array],onHide:[Function,Array],arrow:{type:Boolean,default:void 0},minWidth:Number,maxWidth:Number},VY=Object.assign(Object.assign(Object.assign({},fn.props),jR),{internalOnAfterLeave:Function,internalRenderBody:Function}),WY=be({name:"Popover",inheritAttrs:!1,props:VY,__popover__:!0,setup(t){const e=Zm(),n=ee(null),i=le(()=>t.show),o=ee(t.defaultShow),s=U0(i,o),l=Qa(()=>t.disabled?!1:s.value),c=()=>{if(t.disabled)return!0;const{getDisabled:L}=t;return!!(L!=null&&L())},d=()=>c()?!1:s.value,_=F0(t,["arrow","showArrow"]),p=le(()=>t.overlap?!1:_.value);let g=null;const E=ee(null),f=ee(null),S=Qa(()=>t.x!==void 0&&t.y!==void 0);function v(L){const{"onUpdate:show":J,onUpdateShow:re,onShow:G,onHide:X}=t;o.value=L,J&&Ga(J,L),re&&Ga(re,L),L&&G&&Ga(G,!0),L&&X&&Ga(X,!1)}function h(){g&&g.syncPosition()}function T(){const{value:L}=E;L&&(window.clearTimeout(L),E.value=null)}function N(){const{value:L}=f;L&&(window.clearTimeout(L),f.value=null)}function y(){const L=c();if(t.trigger==="focus"&&!L){if(d())return;v(!0)}}function x(){const L=c();if(t.trigger==="focus"&&!L){if(!d())return;v(!1)}}function P(){const L=c();if(t.trigger==="hover"&&!L){if(N(),E.value!==null||d())return;const J=()=>{v(!0),E.value=null},{delay:re}=t;re===0?J():E.value=window.setTimeout(J,re)}}function D(){const L=c();if(t.trigger==="hover"&&!L){if(T(),f.value!==null||!d())return;const J=()=>{v(!1),f.value=null},{duration:re}=t;re===0?J():f.value=window.setTimeout(J,re)}}function k(){D()}function U(L){var J;d()&&(t.trigger==="click"&&(T(),N(),v(!1)),(J=t.onClickoutside)===null||J===void 0||J.call(t,L))}function W(){if(t.trigger==="click"&&!c()){T(),N();const L=!d();v(L)}}function z(L){t.internalTrapFocus&&L.key==="Escape"&&(T(),N(),v(!1))}function K(L){o.value=L}function Ee(){var L;return(L=n.value)===null||L===void 0?void 0:L.targetRef}function oe(L){g=L}return ni("NPopover",{getTriggerElement:Ee,handleKeydown:z,handleMouseEnter:P,handleMouseLeave:D,handleClickOutside:U,handleMouseMoveOutside:k,setBodyInstance:oe,positionManuallyRef:S,isMountedRef:e,zIndexRef:yt(t,"zIndex"),extraClassRef:yt(t,"internalExtraClass"),internalRenderBodyRef:yt(t,"internalRenderBody")}),si(()=>{s.value&&c()&&v(!1)}),{binderInstRef:n,positionManually:S,mergedShowConsideringDisabledProp:l,uncontrolledShow:o,mergedShowArrow:p,getMergedShow:d,setShow:K,handleClick:W,handleMouseEnter:P,handleMouseLeave:D,handleFocus:y,handleBlur:x,syncPosition:h}},render(){var t;const{positionManually:e,$slots:n}=this;let i,o=!1;if(!e&&(n.activator?i=$f(n,"activator"):i=$f(n,"trigger"),i)){i=Ya(i),i=i.type===Vm?j("span",[i]):i;const s={onClick:this.handleClick,onMouseenter:this.handleMouseEnter,onMouseleave:this.handleMouseLeave,onFocus:this.handleFocus,onBlur:this.handleBlur};if(!((t=i.type)===null||t===void 0)&&t.__popover__)o=!0,i.props||(i.props={internalSyncTargetWithParent:!0,internalInheritedEventHandlers:[]}),i.props.internalSyncTargetWithParent=!0,i.props.internalInheritedEventHandlers?i.props.internalInheritedEventHandlers=[s,...i.props.internalInheritedEventHandlers]:i.props.internalInheritedEventHandlers=[s];else{const{internalInheritedEventHandlers:l}=this,c=[s,...l],d={onBlur:_=>{c.forEach(p=>{p.onBlur(_)})},onFocus:_=>{c.forEach(p=>{p.onFocus(_)})},onClick:_=>{c.forEach(p=>{p.onClick(_)})},onMouseenter:_=>{c.forEach(p=>{p.onMouseenter(_)})},onMouseleave:_=>{c.forEach(p=>{p.onMouseleave(_)})}};zY(i,l?"nested":e?"manual":this.trigger,d)}}return j(z0,{ref:"binderInstRef",syncTarget:!o,syncTargetWithParent:this.internalSyncTargetWithParent},{default:()=>{this.mergedShowConsideringDisabledProp;const s=this.getMergedShow();return[this.internalTrapFocus&&s?Pn(j("div",{style:{position:"fixed",inset:0}}),[[Jm,{enabled:s,zIndex:this.zIndex}]]):null,e?null:j(V0,null,{default:()=>i}),j(qY,o0(this.$props,$Y,Object.assign(Object.assign({},this.$attrs),{showArrow:this.mergedShowArrow,show:s})),{default:()=>{var l,c;return(c=(l=this.$slots).default)===null||c===void 0?void 0:c.call(l)},header:()=>{var l,c;return(c=(l=this.$slots).header)===null||c===void 0?void 0:c.call(l)},footer:()=>{var l,c;return(c=(l=this.$slots).footer)===null||c===void 0?void 0:c.call(l)}})]}})}}),KY=w0&&"loading"in document.createElement("img"),QY=(t={})=>{var e;const{root:n=null}=t;return{hash:`${t.rootMargin||"0px 0px 0px 0px"}-${Array.isArray(t.threshold)?t.threshold.join(","):(e=t.threshold)!==null&&e!==void 0?e:"0"}`,options:Object.assign(Object.assign({},t),{root:(typeof n=="string"?document.querySelector(n):n)||document.documentElement})}},Cu=new WeakMap,Ru=new WeakMap,Nu=new WeakMap,XY=(t,e,n)=>{if(!t)return()=>{};const i=QY(e),{root:o}=i.options;let s;const l=Cu.get(o);l?s=l:(s=new Map,Cu.set(o,s));let c,d;s.has(i.hash)?(d=s.get(i.hash),d[1].has(t)||(c=d[0],d[1].add(t),c.observe(t))):(c=new IntersectionObserver(g=>{g.forEach(E=>{if(E.isIntersecting){const f=Ru.get(E.target),S=Nu.get(E.target);f&&f(),S&&(S.value=!0)}})},i.options),c.observe(t),d=[c,new Set([t])],s.set(i.hash,d));let _=!1;const p=()=>{_||(Ru.delete(t),Nu.delete(t),_=!0,d[1].has(t)&&(d[0].unobserve(t),d[1].delete(t)),d[1].size<=0&&s.delete(i.hash),s.size||Cu.delete(o))};return Ru.set(t,p),Nu.set(t,n),p},ZY={padding:"8px 14px"},JY=t=>{const{borderRadius:e,boxShadow2:n,baseColor:i}=t;return Object.assign(Object.assign({},ZY),{borderRadius:e,boxShadow:n,color:PC(i,"rgba(0, 0, 0, .85)"),textColor:i})},jY={name:"Tooltip",common:ao,peers:{Popover:ZR},self:JY},pg=jY,eq={name:"Ellipsis",common:ao,peers:{Tooltip:pg}},tq=eq,nq=Object.assign(Object.assign({},jR),fn.props),eN=be({name:"Tooltip",props:nq,__popover__:!0,setup(t){const{mergedClsPrefixRef:e}=pi(t),n=fn("Tooltip","-tooltip",void 0,pg,t,e),i=ee(null);return Object.assign(Object.assign({},{syncPosition(){i.value.syncPosition()},setShow(s){i.value.setShow(s)}}),{popoverRef:i,mergedTheme:n,popoverThemeOverrides:le(()=>n.value.self)})},render(){const{mergedTheme:t,internalExtraClass:e}=this;return j(WY,Object.assign(Object.assign({},this.$props),{theme:t.peers.Popover,themeOverrides:t.peerOverrides.Popover,builtinThemeOverrides:this.popoverThemeOverrides,internalExtraClass:e.concat("tooltip"),ref:"popoverRef"}),this.$slots)}}),rq=bt("ellipsis",{overflow:"hidden"},[$a("line-clamp",` - white-space: nowrap; - display: inline-block; - vertical-align: bottom; - max-width: 100%; - `),_r("line-clamp",` - display: -webkit-inline-box; - -webkit-box-orient: vertical; - `),_r("cursor-pointer",` - cursor: pointer; - `)]);function KS(t){return`${t}-ellipsis--line-clamp`}function QS(t,e){return`${t}-ellipsis--cursor-${e}`}const iq=Object.assign(Object.assign({},fn.props),{expandTrigger:String,lineClamp:[Number,String],tooltip:{type:[Boolean,Object],default:!0}}),aq=be({name:"Ellipsis",inheritAttrs:!1,props:iq,setup(t,{slots:e,attrs:n}){const{mergedClsPrefixRef:i}=pi(t),o=fn("Ellipsis","-ellipsis",rq,tq,t,i),s=ee(null),l=ee(null),c=ee(null),d=ee(!1),_=le(()=>{const{lineClamp:h}=t,{value:T}=d;return h!==void 0?{textOverflow:"","-webkit-line-clamp":T?"":h}:{textOverflow:T?"":"ellipsis","-webkit-line-clamp":""}});function p(){let h=!1;const{value:T}=d;if(T)return!0;const{value:N}=s;if(N){const{lineClamp:y}=t;if(f(N),y!==void 0)h=N.scrollHeight<=N.offsetHeight;else{const{value:x}=l;x&&(h=x.getBoundingClientRect().width<=N.getBoundingClientRect().width)}S(N,h)}return h}const g=le(()=>t.expandTrigger==="click"?()=>{var h;const{value:T}=d;T&&((h=c.value)===null||h===void 0||h.setShow(!1)),d.value=!T}:void 0);OC(()=>{var h;t.tooltip&&((h=c.value)===null||h===void 0||h.setShow(!1))});const E=()=>j("span",Object.assign({},zm(n,{class:[`${i.value}-ellipsis`,t.lineClamp!==void 0?KS(i.value):void 0,t.expandTrigger==="click"?QS(i.value,"pointer"):void 0],style:_.value}),{ref:"triggerRef",onClick:g.value,onMouseenter:t.expandTrigger==="click"?p:void 0}),t.lineClamp?e:j("span",{ref:"triggerInnerRef"},e));function f(h){if(!h)return;const T=_.value,N=KS(i.value);t.lineClamp!==void 0?v(h,N,"add"):v(h,N,"remove");for(const y in T)h.style[y]!==T[y]&&(h.style[y]=T[y])}function S(h,T){const N=QS(i.value,"pointer");t.expandTrigger==="click"&&!T?v(h,N,"add"):v(h,N,"remove")}function v(h,T,N){N==="add"?h.classList.contains(T)||h.classList.add(T):h.classList.contains(T)&&h.classList.remove(T)}return{mergedTheme:o,triggerRef:s,triggerInnerRef:l,tooltipRef:c,handleClick:g,renderTrigger:E,getTooltipDisabled:p}},render(){var t;const{tooltip:e,renderTrigger:n,$slots:i}=this;if(e){const{mergedTheme:o}=this;return j(eN,Object.assign({ref:"tooltipRef",placement:"top"},e,{getDisabled:this.getTooltipDisabled,theme:o.peers.Tooltip,themeOverrides:o.peerOverrides.Tooltip}),{trigger:n,default:(t=i.tooltip)!==null&&t!==void 0?t:i.default})}else return n()}}),mg=Object.assign(Object.assign({},fn.props),{showToolbar:{type:Boolean,default:!0},showToolbarTooltip:Boolean}),tN="n-image";function oq(){return{toolbarIconColor:"rgba(255, 255, 255, .9)",toolbarColor:"rgba(0, 0, 0, .35)",toolbarBoxShadow:"none",toolbarBorderRadius:"24px"}}const sq={name:"Image",common:ao,peers:{Tooltip:pg},self:oq},lq=j("svg",{viewBox:"0 0 20 20",fill:"none",xmlns:"http://www.w3.org/2000/svg"},j("path",{d:"M6 5C5.75454 5 5.55039 5.17688 5.50806 5.41012L5.5 5.5V14.5C5.5 14.7761 5.72386 15 6 15C6.24546 15 6.44961 14.8231 6.49194 14.5899L6.5 14.5V5.5C6.5 5.22386 6.27614 5 6 5ZM13.8536 5.14645C13.68 4.97288 13.4106 4.9536 13.2157 5.08859L13.1464 5.14645L8.64645 9.64645C8.47288 9.82001 8.4536 10.0894 8.58859 10.2843L8.64645 10.3536L13.1464 14.8536C13.3417 15.0488 13.6583 15.0488 13.8536 14.8536C14.0271 14.68 14.0464 14.4106 13.9114 14.2157L13.8536 14.1464L9.70711 10L13.8536 5.85355C14.0488 5.65829 14.0488 5.34171 13.8536 5.14645Z",fill:"currentColor"})),cq=j("svg",{viewBox:"0 0 20 20",fill:"none",xmlns:"http://www.w3.org/2000/svg"},j("path",{d:"M13.5 5C13.7455 5 13.9496 5.17688 13.9919 5.41012L14 5.5V14.5C14 14.7761 13.7761 15 13.5 15C13.2545 15 13.0504 14.8231 13.0081 14.5899L13 14.5V5.5C13 5.22386 13.2239 5 13.5 5ZM5.64645 5.14645C5.82001 4.97288 6.08944 4.9536 6.28431 5.08859L6.35355 5.14645L10.8536 9.64645C11.0271 9.82001 11.0464 10.0894 10.9114 10.2843L10.8536 10.3536L6.35355 14.8536C6.15829 15.0488 5.84171 15.0488 5.64645 14.8536C5.47288 14.68 5.4536 14.4106 5.58859 14.2157L5.64645 14.1464L9.79289 10L5.64645 5.85355C5.45118 5.65829 5.45118 5.34171 5.64645 5.14645Z",fill:"currentColor"})),uq=j("svg",{viewBox:"0 0 20 20",fill:"none",xmlns:"http://www.w3.org/2000/svg"},j("path",{d:"M4.089 4.216l.057-.07a.5.5 0 0 1 .638-.057l.07.057L10 9.293l5.146-5.147a.5.5 0 0 1 .638-.057l.07.057a.5.5 0 0 1 .057.638l-.057.07L10.707 10l5.147 5.146a.5.5 0 0 1 .057.638l-.057.07a.5.5 0 0 1-.638.057l-.07-.057L10 10.707l-5.146 5.147a.5.5 0 0 1-.638.057l-.07-.057a.5.5 0 0 1-.057-.638l.057-.07L9.293 10L4.146 4.854a.5.5 0 0 1-.057-.638l.057-.07l-.057.07z",fill:"currentColor"})),dq=je([je("body >",[bt("image-container","position: fixed;")]),bt("image-preview-container",` - position: fixed; - left: 0; - right: 0; - top: 0; - bottom: 0; - display: flex; - `),bt("image-preview-overlay",` - z-index: -1; - position: absolute; - left: 0; - right: 0; - top: 0; - bottom: 0; - background: rgba(0, 0, 0, .3); - `,[Pm()]),bt("image-preview-toolbar",` - z-index: 1; - position: absolute; - left: 50%; - transform: translateX(-50%); - border-radius: var(--n-toolbar-border-radius); - height: 48px; - bottom: 40px; - padding: 0 12px; - background: var(--n-toolbar-color); - box-shadow: var(--n-toolbar-box-shadow); - color: var(--n-toolbar-icon-color); - transition: color .3s var(--n-bezier); - display: flex; - align-items: center; - `,[bt("base-icon",` - padding: 0 8px; - font-size: 28px; - cursor: pointer; - `),Pm()]),bt("image-preview-wrapper",` - position: absolute; - left: 0; - right: 0; - top: 0; - bottom: 0; - display: flex; - pointer-events: none; - `,[kY()]),bt("image-preview",` - user-select: none; - -webkit-user-select: none; - pointer-events: all; - margin: auto; - max-height: calc(100vh - 32px); - max-width: calc(100vw - 32px); - transition: transform .3s var(--n-bezier); - `),bt("image",` - display: inline-flex; - max-height: 100%; - max-width: 100%; - `,[$a("preview-disabled",` - cursor: pointer; - `),je("img",` - border-radius: inherit; - `)])]),As=32,nN=be({name:"ImagePreview",props:Object.assign(Object.assign({},mg),{onNext:Function,onPrev:Function,clsPrefix:{type:String,required:!0}}),setup(t){const e=fn("Image","-image",dq,sq,t,yt(t,"clsPrefix"));let n=null;const i=ee(null),o=ee(null),s=ee(void 0),l=ee(!1),c=ee(!1),{localeRef:d}=fY("Image");function _(){const{value:te}=o;if(!n||!te)return;const{style:pe}=te,ie=n.getBoundingClientRect(),Pe=ie.left+ie.width/2,we=ie.top+ie.height/2;pe.transformOrigin=`${Pe}px ${we}px`}function p(te){var pe,ie;switch(te.key){case" ":te.preventDefault();break;case"ArrowLeft":(pe=t.onPrev)===null||pe===void 0||pe.call(t);break;case"ArrowRight":(ie=t.onNext)===null||ie===void 0||ie.call(t);break;case"Escape":Ce();break}}Zt(l,te=>{te?Ht("keydown",document,p):Rt("keydown",document,p)}),Kn(()=>{Rt("keydown",document,p)});let g=0,E=0,f=0,S=0,v=0,h=0,T=0,N=0,y=!1;function x(te){const{clientX:pe,clientY:ie}=te;f=pe-g,S=ie-E,LC(He)}function P(te){const{mouseUpClientX:pe,mouseUpClientY:ie,mouseDownClientX:Pe,mouseDownClientY:we}=te,Xe=Pe-pe,pt=we-ie,me=`vertical${pt>0?"Top":"Bottom"}`,ht=`horizontal${Xe>0?"Left":"Right"}`;return{moveVerticalDirection:me,moveHorizontalDirection:ht,deltaHorizontal:Xe,deltaVertical:pt}}function D(te){const{value:pe}=i;if(!pe)return{offsetX:0,offsetY:0};const ie=pe.getBoundingClientRect(),{moveVerticalDirection:Pe,moveHorizontalDirection:we,deltaHorizontal:Xe,deltaVertical:pt}=te||{};let me=0,ht=0;return ie.width<=window.innerWidth?me=0:ie.left>0?me=(ie.width-window.innerWidth)/2:ie.right0?ht=(ie.height-window.innerHeight)/2:ie.bottom.5){const te=oe;Ee-=1,oe=Math.max(.5,Math.pow(K,Ee));const pe=te-oe;He(!1);const ie=D();oe+=pe,He(!1),oe-=pe,f=ie.offsetX,S=ie.offsetY,He()}}function He(te=!0){var pe;const{value:ie}=i;if(!ie)return;const{style:Pe}=ie,we=Bt((pe=U==null?void 0:U.previewedImgPropsRef.value)===null||pe===void 0?void 0:pe.style);let Xe="";if(typeof we=="string")Xe=we+";";else for(const me in we)Xe+=`${vG(me)}: ${we[me]};`;const pt=`transform-origin: center; transform: translateX(${f}px) translateY(${S}px) rotate(${L}deg) scale(${oe});`;y?Pe.cssText=Xe+"cursor: grabbing; transition: none;"+pt:Pe.cssText=Xe+"cursor: grab;"+pt+(te?"":"transition: none;"),te||ie.offsetHeight}function Ce(){l.value=!l.value,c.value=!0}function Be(){oe=he(),Ee=Math.ceil(Math.log(oe)/Math.log(K)),f=0,S=0,He()}const We={setPreviewSrc:te=>{s.value=te},setThumbnailEl:te=>{n=te},toggleShow:Ce};function xe(te,pe){if(t.showToolbarTooltip){const{value:ie}=e;return j(eN,{to:!1,theme:ie.peers.Tooltip,themeOverrides:ie.peerOverrides.Tooltip,keepAliveOnHover:!1},{default:()=>d.value[pe],trigger:()=>te})}else return te}const ze=le(()=>{const{common:{cubicBezierEaseInOut:te},self:{toolbarIconColor:pe,toolbarBorderRadius:ie,toolbarBoxShadow:Pe,toolbarColor:we}}=e.value;return{"--n-bezier":te,"--n-toolbar-icon-color":pe,"--n-toolbar-color":we,"--n-toolbar-border-radius":ie,"--n-toolbar-box-shadow":Pe}}),{inlineThemeDisabled:rt}=pi(),Ke=rt?_g("image-preview",void 0,ze,t):void 0;return Object.assign({previewRef:i,previewWrapperRef:o,previewSrc:s,show:l,appear:Zm(),displayed:c,previewedImgProps:U==null?void 0:U.previewedImgPropsRef,handleWheel(te){te.preventDefault()},handlePreviewMousedown:W,handlePreviewDblclick:z,syncTransformOrigin:_,handleAfterLeave:()=>{J(),L=0,c.value=!1},handleDragStart:te=>{var pe,ie;(ie=(pe=U==null?void 0:U.previewedImgPropsRef.value)===null||pe===void 0?void 0:pe.onDragstart)===null||ie===void 0||ie.call(pe,te),te.preventDefault()},zoomIn:tt,zoomOut:lt,rotateCounterclockwise:X,rotateClockwise:_e,handleSwitchPrev:re,handleSwitchNext:G,withTooltip:xe,resizeToOrignalImageSize:Be,cssVars:rt?void 0:ze,themeClass:Ke==null?void 0:Ke.themeClass,onRender:Ke==null?void 0:Ke.onRender},We)},render(){var t,e;const{clsPrefix:n}=this;return j(st,null,(e=(t=this.$slots).default)===null||e===void 0?void 0:e.call(t),j(ZC,{show:this.show},{default:()=>{var i;return this.show||this.displayed?((i=this.onRender)===null||i===void 0||i.call(this),Pn(j("div",{class:[`${n}-image-preview-container`,this.themeClass],style:this.cssVars,onWheel:this.handleWheel},j(Hi,{name:"fade-in-transition",appear:this.appear},{default:()=>this.show?j("div",{class:`${n}-image-preview-overlay`,onClick:this.toggleShow}):null}),this.showToolbar?j(Hi,{name:"fade-in-transition",appear:this.appear},{default:()=>{if(!this.show)return null;const{withTooltip:o}=this;return j("div",{class:`${n}-image-preview-toolbar`},this.onPrev?j(st,null,o(j(Or,{clsPrefix:n,onClick:this.handleSwitchPrev},{default:()=>lq}),"tipPrevious"),o(j(Or,{clsPrefix:n,onClick:this.handleSwitchNext},{default:()=>cq}),"tipNext")):null,o(j(Or,{clsPrefix:n,onClick:this.rotateCounterclockwise},{default:()=>j(TY,null)}),"tipCounterclockwise"),o(j(Or,{clsPrefix:n,onClick:this.rotateClockwise},{default:()=>j(hY,null)}),"tipClockwise"),o(j(Or,{clsPrefix:n,onClick:this.resizeToOrignalImageSize},{default:()=>j(RY,null)}),"tipOriginalSize"),o(j(Or,{clsPrefix:n,onClick:this.zoomOut},{default:()=>j(CY,null)}),"tipZoomOut"),o(j(Or,{clsPrefix:n,onClick:this.zoomIn},{default:()=>j(vY,null)}),"tipZoomIn"),o(j(Or,{clsPrefix:n,onClick:this.toggleShow},{default:()=>uq}),"tipClose"))}}):null,j(Hi,{name:"fade-in-scale-up-transition",onAfterLeave:this.handleAfterLeave,appear:this.appear,onEnter:this.syncTransformOrigin,onBeforeLeave:this.syncTransformOrigin},{default:()=>{const{previewedImgProps:o={}}=this;return Pn(j("div",{class:`${n}-image-preview-wrapper`,ref:"previewWrapperRef"},j("img",Object.assign({},o,{draggable:!1,onMousedown:this.handlePreviewMousedown,onDblclick:this.handlePreviewDblclick,class:[`${n}-image-preview`,o.class],key:this.previewSrc,src:this.previewSrc,ref:"previewRef",onDragstart:this.handleDragStart}))),[[Xs,this.show]])}})),[[Jm,{enabled:this.show}]])):null}}))}}),rN="n-image-group",_q=mg,pq=be({name:"ImageGroup",props:_q,setup(t){let e;const{mergedClsPrefixRef:n}=pi(t),i=`c${kC()}`,o=$m(),s=d=>{var _;e=d,(_=c.value)===null||_===void 0||_.setPreviewSrc(d)};function l(d){if(!(o!=null&&o.proxy))return;const p=o.proxy.$el.parentElement.querySelectorAll(`[data-group-id=${i}]:not([data-error=true])`);if(!p.length)return;const g=Array.from(p).findIndex(E=>E.dataset.previewSrc===e);~g?s(p[(g+d+p.length)%p.length].dataset.previewSrc):s(p[0].dataset.previewSrc)}ni(rN,{mergedClsPrefixRef:n,setPreviewSrc:s,setThumbnailEl:d=>{var _;(_=c.value)===null||_===void 0||_.setThumbnailEl(d)},toggleShow:()=>{var d;(d=c.value)===null||d===void 0||d.toggleShow()},groupId:i});const c=ee(null);return{mergedClsPrefix:n,previewInstRef:c,next:()=>{l(1)},prev:()=>{l(-1)}}},render(){return j(nN,{theme:this.theme,themeOverrides:this.themeOverrides,clsPrefix:this.mergedClsPrefix,ref:"previewInstRef",onPrev:this.prev,onNext:this.next,showToolbar:this.showToolbar,showToolbarTooltip:this.showToolbarTooltip},this.$slots)}}),mq=Object.assign({alt:String,height:[String,Number],imgProps:Object,previewedImgProps:Object,lazy:Boolean,intersectionObserverOptions:Object,objectFit:{type:String,default:"fill"},previewSrc:String,fallbackSrc:String,width:[String,Number],src:String,previewDisabled:Boolean,loadDescription:String,onError:Function,onLoad:Function},mg),gq=be({name:"Image",props:mq,inheritAttrs:!1,setup(t){const e=ee(null),n=ee(!1),i=ee(null),o=Ft(rN,null),{mergedClsPrefixRef:s}=o||pi(t),l={click:()=>{if(t.previewDisabled||n.value)return;const _=t.previewSrc||t.src;if(o){o.setPreviewSrc(_),o.setThumbnailEl(e.value),o.toggleShow();return}const{value:p}=i;p&&(p.setPreviewSrc(_),p.setThumbnailEl(e.value),p.toggleShow())}},c=ee(!t.lazy);kn(()=>{var _;(_=e.value)===null||_===void 0||_.setAttribute("data-group-id",(o==null?void 0:o.groupId)||"")}),kn(()=>{if(t.lazy&&t.intersectionObserverOptions){let _;const p=si(()=>{_==null||_(),_=void 0,_=XY(e.value,t.intersectionObserverOptions,c)});Kn(()=>{p(),_==null||_()})}}),si(()=>{var _;t.src,(_=t.imgProps)===null||_===void 0||_.src,n.value=!1});const d=ee(!1);return ni(tN,{previewedImgPropsRef:yt(t,"previewedImgProps")}),Object.assign({mergedClsPrefix:s,groupId:o==null?void 0:o.groupId,previewInstRef:i,imageRef:e,showError:n,shouldStartLoading:c,loaded:d,mergedOnClick:_=>{var p,g;l.click(),(g=(p=t.imgProps)===null||p===void 0?void 0:p.onClick)===null||g===void 0||g.call(p,_)},mergedOnError:_=>{if(!c.value)return;n.value=!0;const{onError:p,imgProps:{onError:g}={}}=t;p==null||p(_),g==null||g(_)},mergedOnLoad:_=>{const{onLoad:p,imgProps:{onLoad:g}={}}=t;p==null||p(_),g==null||g(_),d.value=!0}},l)},render(){var t,e;const{mergedClsPrefix:n,imgProps:i={},loaded:o,$attrs:s,lazy:l}=this,c=(e=(t=this.$slots).placeholder)===null||e===void 0?void 0:e.call(t),d=this.src||i.src,_=j("img",Object.assign(Object.assign({},i),{ref:"imageRef",width:this.width||i.width,height:this.height||i.height,src:this.showError?this.fallbackSrc:l&&this.intersectionObserverOptions?this.shouldStartLoading?d:void 0:d,alt:this.alt||i.alt,"aria-label":this.alt||i.alt,onClick:this.mergedOnClick,onError:this.mergedOnError,onLoad:this.mergedOnLoad,loading:KY&&l&&!this.intersectionObserverOptions?"lazy":"eager",style:[i.style||"",c&&!o?{height:"0",width:"0",visibility:"hidden"}:"",{objectFit:this.objectFit}],"data-error":this.showError,"data-preview-src":this.previewSrc||this.src}));return j("div",Object.assign({},s,{role:"none",class:[s.class,`${n}-image`,(this.previewDisabled||this.showError)&&`${n}-image--preview-disabled`]}),this.groupId?_:j(nN,{theme:this.theme,themeOverrides:this.themeOverrides,clsPrefix:n,ref:"previewInstRef",showToolbar:this.showToolbar,showToolbarTooltip:this.showToolbarTooltip},{default:()=>_}),!o&&c)}}),Eq=Object.assign(Object.assign({},fn.props),{trigger:String,xScrollable:Boolean,onScroll:Function,size:Number}),fq=be({name:"Scrollbar",props:Eq,setup(){const t=ee(null);return Object.assign(Object.assign({},{scrollTo:(...n)=>{var i;(i=t.value)===null||i===void 0||i.scrollTo(n[0],n[1])},scrollBy:(...n)=>{var i;(i=t.value)===null||i===void 0||i.scrollBy(n[0],n[1])}}),{scrollbarInstRef:t})},render(){return j(LY,Object.assign({ref:"scrollbarInstRef"},this.$props),this.$slots)}}),iN=fq,Xn=t=>(Zi("data-v-8c3ce136"),t=t(),Ji(),t),Sq={class:"heroWrapper"},bq=Xn(()=>F("h1",null,[St("MetaGPT: Meta Programming for A"),F("br"),St("Multi-Agent Collaborative Framework")],-1)),hq={class:"contributors"},Tq={class:"contributor"},vq={class:"affiliationIndex"},Cq={class:"extra"},Rq={key:0},Nq={class:"affiliations"},Oq={class:"affiliationsItemIndex"},Aq={class:"affiliationsItem"},yq={key:0,class:"affiliationsItem"},Iq={class:"links"},Dq=["onClick"],xq={class:"linkIcon"},wq={class:"linkName"},Mq={class:"bigTex"},Lq=Xn(()=>F("div",{class:"header"},"Citation",-1)),Pq={class:"copyBtn"},kq={class:"bigTexContent"},Uq=Xn(()=>F("br",null,null,-1)),Fq=Xn(()=>F("br",null,null,-1)),Bq=Xn(()=>F("br",null,null,-1)),Gq=Xn(()=>F("br",null,null,-1)),Yq=Xn(()=>F("br",null,null,-1)),qq=Xn(()=>F("br",null,null,-1)),$q=Xn(()=>F("br",null,null,-1)),Hq=Xn(()=>F("img",{style:{"margin-left":"-1px",position:"absolute"},src:pM,alt:""},null,-1)),zq={class:"galance"},Vq={key:0,style:{width:"100%","border-radius":"20px"},src:mM,alt:""},Ui="      ",Wq=be({__name:"heroPage",setup(t){const e=[{name:"Sirui Hong",affiliation:"1",extra:"*"},{name:"Mingchen Zhuge",affiliation:"2",extra:"*"},{name:"Jonathan Chen",affiliation:"1"},{name:"Xiawu Zheng",affiliation:"3"},{name:"Yuheng Cheng",affiliation:"4"},{name:"Jinlin Wang",affiliation:"1"},{name:"Ceyao Zhang",affiliation:"3"},{name:"Jinlin Wang",affiliation:"1"},{name:"Zili Wang"},{name:"Steven Ka Shing Yau",affiliation:"5"},{name:"Zijuan Lin",affiliation:"4"},{name:"Liyang Zhou",affiliation:"6"},{name:"Chenyu Ran",affiliation:"1"},{name:"Lingfeng Xiao",affiliation:"1,7"},{name:"Chenglin Wu",affiliation:"1",extra:"†"},{name:"Jürgen Schmidhuber",affiliation:"2,8"}],n=["DeepWisdom","AI Initiative, King Abdullah University of Science and Technology","Xiamen University","The Chinese University of Hong Kong, Shenzhen","Nanjing University","University of Pennsylvania","University of California, Berkeley","The Swiss AI Lab IDSIA/USI/SUPSI"],i=ee(!1),o=E=>{window.open(E,"_blank")},s=E=>ue(ea,{style:"vertical-align:middle",size:26,iconId:E},null),l=[{name:"Paper",icon:s("icon-paper1"),action:()=>{o("https://arxiv.org/pdf/2308.00352.pdf")}},{name:"Code",icon:s("icon-github-fill"),action:()=>{o("https://github.com/geekan/MetaGPT")}},{name:"Discord",icon:s("icon-Discord"),action:()=>{o("https://discord.gg/ZRHeExS6xv")}},{name:"Twitter",icon:s("icon-twitter2"),action:()=>{o("https://twitter.com/DeepWisdom2019")}},{name:"AgentStore(Waitlist)",icon:ue(QL,null,null),action:()=>{o("https://airtable.com/appInfdG0eJ9J4NNL/shrEd9DrwVE3jX6oz")}}],c=ee(),d=()=>{var E;(E=c.value)==null||E.play()};kn(()=>{d()});const _=ee(!1),p=E=>{_.value=!0},g=()=>{yC.success("Copy Success"),Wm(`@misc{hong2023metagpt, - title={MetaGPT: Meta Programming for A Multi-Agent Collaborative Framework}, - author={Sirui Hong and Mingchen Zhuge and Jonathan Chen and Xiawu Zheng and Yuheng Cheng and Ceyao Zhang and Jinlin Wang and Zili Wang and Steven Ka Shing Yau and Zijuan Lin and Liyang Zhou and Chenyu Ran and Lingfeng Xiao and Chenglin Wu and Jürgen Schmidhuber}, - year={2023}, - eprint={2308.00352}, - archivePrefix={arXiv}, - primaryClass={cs.AI} -}`)};return(E,f)=>(V(),ae(st,null,[F("div",Sq,[bq,F("span",hq,[(V(),ae(st,null,yn(e,(S,v)=>F("span",{key:v},[F("span",Tq,$e(S.name),1),F("span",vq,[St($e(S.affiliation)+" ",1),F("span",Cq,$e(S.extra),1)]),v!==e.length-1?(V(),ae("span",Rq,", ")):Ge("",!0)])),64))]),F("span",Nq,[(V(),ae(st,null,yn(n,(S,v)=>F("span",{key:v},[F("span",Oq,$e(v+1),1),F("span",Aq,$e(S),1),v!==n.length-1?(V(),ae("span",yq,", ")):Ge("",!0)])),64))]),F("div",Iq,[(V(),ae(st,null,yn(l,(S,v)=>F("div",{key:v,class:It({link:!0,enabled:S.action}),onClick:S.action},[F("span",xq,[(V(),ot(ji(S.icon)))]),F("span",wq,$e(S.name),1)],10,Dq)),64))]),F("div",Mq,[Lq,F("div",Pq,[ue(q(IC),{onClick:g})]),F("div",kq,[ue(q(iN),{style:{"max-height":"100%"}},{default:dt(()=>[St(" @misc{hong2023metagpt,"),Uq,F("span",{innerHTML:Ui}),St(" title={MetaGPT: Meta Programming for A Multi-Agent Collaborative Framework}, "),Fq,F("span",{innerHTML:Ui}),St("author={Sirui Hong and Mingchen Zhuge and Jonathan Chen and Xiawu Zheng and Yuheng Cheng and Ceyao Zhang and Jinlin Wang and Zili Wang and Steven Ka Shing Yau and Zijuan Lin and Liyang Zhou and Chenyu Ran and Lingfeng Xiao and Chenglin Wu and Jürgen Schmidhuber}, "),Bq,F("span",{innerHTML:Ui}),St("year={2023},"),Gq,F("span",{innerHTML:Ui}),St("eprint={2308.00352},"),Yq,F("span",{innerHTML:Ui}),St("archivePrefix={arXiv},"),qq,F("span",{innerHTML:Ui}),St("primaryClass={cs.AI}"),$q,St(" } ")]),_:1})]),Hq]),F("div",zq,[q(_)?Ge("",!0):(V(),ae("img",Vq)),Pn(F("video",{ref_key:"videoRef",ref:c,muted:"",src:gM,style:{width:"100%","border-radius":"20px"},autoplay:!0,playsinline:!0,loop:!0,"x-webkit-airplay":"deny",onloadeddata:p},null,512),[[Xs,q(_)]])])]),ue(HL,{visible:q(i),"onUpdate:visible":f[0]||(f[0]=S=>wr(i)?i.value=S:null)},null,8,["visible"])],64))}});const Kq=Dt(Wq,[["__scopeId","data-v-8c3ce136"]]),Qq="https://public-frontend-1300249583.cos-website.ap-nanjing.myqcloud.com/cy_aps/assets/sparkles-50d190d6.svg",aN="https://public-frontend-1300249583.cos-website.ap-nanjing.myqcloud.com/cy_aps/assets/role0-73c01153.png",oN="https://public-frontend-1300249583.cos-website.ap-nanjing.myqcloud.com/cy_aps/assets/role1-8fd25a72.png",sN="https://public-frontend-1300249583.cos-website.ap-nanjing.myqcloud.com/cy_aps/assets/role2-d49c6a81.png",lN="https://public-frontend-1300249583.cos-website.ap-nanjing.myqcloud.com/cy_aps/assets/role3-d2c54a2d.png",Xq="https://public-frontend-1300249583.cos-website.ap-nanjing.myqcloud.com/cy_aps/assets/role4-a6ccbb5f.png",Zq="https://public-frontend-1300249583.cos-website.ap-nanjing.myqcloud.com/cy_aps/assets/role5-16fddacc.png",Jq="https://public-frontend-1300249583.cos-website.ap-nanjing.myqcloud.com/cy_aps/assets/role6-c9a82246.png",jq="",e2="https://public-frontend-1300249583.cos-website.ap-nanjing.myqcloud.com/cy_aps/assets/kanban-d6729062.png",t2="",n2="https://public-frontend-1300249583.cos-website.ap-nanjing.myqcloud.com/cy_aps/assets/contributors-753a72cb.png",mi=t=>(Zi("data-v-d5d425dc"),t=t(),Ji(),t),r2={class:"wechatModal"},i2=mi(()=>F("div",{class:"title"},[F("img",{style:{width:"24px","margin-top":"-2px"},src:jq,alt:""}),F("div",{class:"titleText"},"Welcome to be our contributor")],-1)),a2=mi(()=>F("div",{class:"desc"}," You can pick tasks from the roadmap. If you're concerned about development conflicts, you can create issues in advance to reserve tasks. You can also contribute in other roles within the MetaGPT software team. Come join us and build together! ",-1)),o2={class:"links"},s2={style:{width:"84px","text-align":"right"}},l2=["onClick"],c2=mi(()=>F("div",{class:"viwer"},[F("img",{style:{width:"100%"},src:e2,alt:""})],-1)),u2={class:"button"},d2=mi(()=>F("img",{src:t2,style:{width:"20px"},alt:""},null,-1)),_2=mi(()=>F("div",{class:"welcomText"},"We are waiting for your join.",-1)),p2=mi(()=>F("div",{class:"contributor"},[F("span",null,"Contributors"),F("div",{class:"count"},"23")],-1)),m2=mi(()=>F("img",{style:{width:"244px"},src:n2,alt:""},null,-1)),g2=be({__name:"contributorModal",props:{visible:{type:Boolean}},emits:["update:visible"],setup(t,{emit:e}){const i=yt(t,"visible"),o=()=>{e("update:visible",!1)},s={ROADMAP:"https://github.com/geekan/MetaGPT/blob/main/docs/ROADMAP.md",TASKS:"https://github.com/users/geekan/projects/1/views/2"},l=c=>{window.open(c)};return(c,d)=>(V(),ot(wC,{visible:q(i),"onUpdate:visible":d[1]||(d[1]=_=>wr(i)?i.value=_:null),style:{width:"709px",height:"799px"},onClose:o},{default:dt(()=>[F("div",r2,[i2,a2,F("div",o2,[(V(),ae(st,null,yn(s,(_,p)=>F("span",{key:p,style:{display:"flex",gap:"20px"}},[F("div",s2,$e(p)+":",1),F("div",{class:"link",onClick:g=>l(_)},$e(_),9,l2)])),64))]),c2,F("div",u2,[d2,F("span",{onClick:d[0]||(d[0]=_=>l("https://github.com/users/geekan/projects/1/views/2"))},"Lock Task")]),_2,p2,m2])]),_:1},8,["visible"]))}});const E2=Dt(g2,[["__scopeId","data-v-d5d425dc"]]),km=t=>({...t,parent:null,children:[]}),XS=(t,e)=>{t.children.length||(t.children=[]),t.children.push(e),e.parent=t},f2=(t,e)=>{const n=new Map;n.set(e.id,e);const i=[];return e.children=i,t.forEach(o=>{n.set(o.id,o)}),t.forEach(o=>{const s=km(o);n.set(o.id,s)}),{messageMap:n,root:e}},cN=t=>{t.children.length&&(t.children=t.children.sort((e,n)=>Ka(e.created_at).isAfter(n.created_at)?1:-1),t.children.forEach(e=>cN(e)))},uN=t=>{const e=[];for(e.push(t);e.length;){const n=e.pop();if(!n.children.length)return n;e.push(...n.children)}return e[e.length-1]},S2=t=>{const e=(s,l)=>s.findIndex(c=>c.id===l.id)+1,n=[],i=uN(t);let o=i;for(;o!=null&&o.parent;)n.unshift({current:e(o.parent.children,o),is_user_message:o.is_user_message,activeNode:o,renderPath:o.parent.children}),o=o.parent;return{renderPath:n,lastLeaf:i}};var Xt=(t=>(t.RUNNING="running",t.FINISH="finish",t.FAILED="failed",t.TERMINATE="terminate",t))(Xt||{}),Dr=(t=>(t.TEXT="text",t.AUDIO="audio",t.IMAGE="image",t.FAILED="failed",t))(Dr||{}),Ut=(t=>(t.INIT="init",t.IDLE="idle",t.RUNNING="running",t.FINISH="finish",t.FAILED="failed",t.TERMINATE="terminate",t))(Ut||{}),$s={exports:{}};/** - * @license - * Lodash - * Copyright OpenJS Foundation and other contributors - * Released under MIT license - * Based on Underscore.js 1.8.3 - * Copyright Jeremy Ashkenas, DocumentCloud and Investigative Reporters & Editors - */$s.exports;(function(t,e){(function(){var n,i="4.17.21",o=200,s="Unsupported core-js use. Try https://npms.io/search?q=ponyfill.",l="Expected a function",c="Invalid `variable` option passed into `_.template`",d="__lodash_hash_undefined__",_=500,p="__lodash_placeholder__",g=1,E=2,f=4,S=1,v=2,h=1,T=2,N=4,y=8,x=16,P=32,D=64,k=128,U=256,W=512,z=30,K="...",Ee=800,oe=16,L=1,J=2,re=3,G=1/0,X=9007199254740991,_e=17976931348623157e292,ve=0/0,he=4294967295,tt=he-1,lt=he>>>1,He=[["ary",k],["bind",h],["bindKey",T],["curry",y],["curryRight",x],["flip",W],["partial",P],["partialRight",D],["rearg",U]],Ce="[object Arguments]",Be="[object Array]",We="[object AsyncFunction]",xe="[object Boolean]",ze="[object Date]",rt="[object DOMException]",Ke="[object Error]",te="[object Function]",pe="[object GeneratorFunction]",ie="[object Map]",Pe="[object Number]",we="[object Null]",Xe="[object Object]",pt="[object Promise]",me="[object Proxy]",ht="[object RegExp]",Ue="[object Set]",Ie="[object String]",zt="[object Symbol]",Nt="[object Undefined]",Gt="[object WeakMap]",Sn="[object WeakSet]",ne="[object ArrayBuffer]",ce="[object DataView]",Oe="[object Float32Array]",Me="[object Float64Array]",ct="[object Int8Array]",xt="[object Int16Array]",Ze="[object Int32Array]",Yt="[object Uint8Array]",er="[object Uint8ClampedArray]",Z="[object Uint16Array]",ge="[object Uint32Array]",Ae=/\b__p \+= '';/g,it=/\b(__p \+=) '' \+/g,Tt=/(__e\(.*?\)|\b__t\)) \+\n'';/g,wt=/&(?:amp|lt|gt|quot|#39);/g,tn=/[&<>"']/g,mt=RegExp(wt.source),ln=RegExp(tn.source),tr=/<%-([\s\S]+?)%>/g,El=/<%([\s\S]+?)%>/g,lo=/<%=([\s\S]+?)%>/g,fl=/\.|\[(?:[^[\]]*|(["'])(?:(?!\1)[^\\]|\\.)*?\1)\]/,Sl=/^\w*$/,bl=/[^.[\]]+|\[(?:(-?\d+(?:\.\d+)?)|(["'])((?:(?!\2)[^\\]|\\.)*?)\2)\]|(?=(?:\.|\[\])(?:\.|\[\]|$))/g,ca=/[\\^$.*+?()[\]{}|]/g,hl=RegExp(ca.source),ua=/^\s+/,Tl=/\s/,vl=/\{(?:\n\/\* \[wrapped with .+\] \*\/)?\n?/,Cl=/\{\n\/\* \[wrapped with (.+)\] \*/,Rl=/,? & /,Nl=/[^\x00-\x2f\x3a-\x40\x5b-\x60\x7b-\x7f]+/g,Ol=/[()=,{}\[\]\/\s]/,Al=/\\(\\)?/g,yl=/\$\{([^\\}]*(?:\\.[^\\}]*)*)\}/g,co=/\w*$/,Il=/^[-+]0x[0-9a-f]+$/i,Dl=/^0b[01]+$/i,xl=/^\[object .+?Constructor\]$/,wl=/^0o[0-7]+$/i,Ml=/^(?:0|[1-9]\d*)$/,Ll=/[\xc0-\xd6\xd8-\xf6\xf8-\xff\u0100-\u017f]/g,Ei=/($^)/,Pl=/['\n\r\u2028\u2029\\]/g,fi="\\ud800-\\udfff",kl="\\u0300-\\u036f",Ul="\\ufe20-\\ufe2f",Fl="\\u20d0-\\u20ff",uo=kl+Ul+Fl,_o="\\u2700-\\u27bf",po="a-z\\xdf-\\xf6\\xf8-\\xff",Bl="\\xac\\xb1\\xd7\\xf7",Gl="\\x00-\\x2f\\x3a-\\x40\\x5b-\\x60\\x7b-\\xbf",Yl="\\u2000-\\u206f",ql=" \\t\\x0b\\f\\xa0\\ufeff\\n\\r\\u2028\\u2029\\u1680\\u180e\\u2000\\u2001\\u2002\\u2003\\u2004\\u2005\\u2006\\u2007\\u2008\\u2009\\u200a\\u202f\\u205f\\u3000",mo="A-Z\\xc0-\\xd6\\xd8-\\xde",go="\\ufe0e\\ufe0f",Eo=Bl+Gl+Yl+ql,da="['’]",$l="["+fi+"]",fo="["+Eo+"]",Si="["+uo+"]",So="\\d+",Hl="["+_o+"]",bo="["+po+"]",ho="[^"+fi+Eo+So+_o+po+mo+"]",_a="\\ud83c[\\udffb-\\udfff]",zl="(?:"+Si+"|"+_a+")",To="[^"+fi+"]",pa="(?:\\ud83c[\\udde6-\\uddff]){2}",ma="[\\ud800-\\udbff][\\udc00-\\udfff]",gr="["+mo+"]",vo="\\u200d",Co="(?:"+bo+"|"+ho+")",Ro="(?:"+gr+"|"+ho+")",ga="(?:"+da+"(?:d|ll|m|re|s|t|ve))?",Ea="(?:"+da+"(?:D|LL|M|RE|S|T|VE))?",No=zl+"?",Oo="["+go+"]?",Ao="(?:"+vo+"(?:"+[To,pa,ma].join("|")+")"+Oo+No+")*",bi="\\d*(?:1st|2nd|3rd|(?![123])\\dth)(?=\\b|[A-Z_])",fa="\\d*(?:1ST|2ND|3RD|(?![123])\\dTH)(?=\\b|[a-z_])",Sa=Oo+No+Ao,yo="(?:"+[Hl,pa,ma].join("|")+")"+Sa,Io="(?:"+[To+Si+"?",Si,pa,ma,$l].join("|")+")",Dg=RegExp(da,"g"),xg=RegExp(Si,"g"),Vl=RegExp(_a+"(?="+_a+")|"+Io+Sa,"g"),QN=RegExp([gr+"?"+bo+"+"+ga+"(?="+[fo,gr,"$"].join("|")+")",Ro+"+"+Ea+"(?="+[fo,gr+Co,"$"].join("|")+")",gr+"?"+Co+"+"+ga,gr+"+"+Ea,fa,bi,So,yo].join("|"),"g"),XN=RegExp("["+vo+fi+uo+go+"]"),ZN=/[a-z][A-Z]|[A-Z]{2}[a-z]|[0-9][a-zA-Z]|[a-zA-Z][0-9]|[^a-zA-Z0-9 ]/,JN=["Array","Buffer","DataView","Date","Error","Float32Array","Float64Array","Function","Int8Array","Int16Array","Int32Array","Map","Math","Object","Promise","RegExp","Set","String","Symbol","TypeError","Uint8Array","Uint8ClampedArray","Uint16Array","Uint32Array","WeakMap","_","clearTimeout","isFinite","parseInt","setTimeout"],jN=-1,gt={};gt[Oe]=gt[Me]=gt[ct]=gt[xt]=gt[Ze]=gt[Yt]=gt[er]=gt[Z]=gt[ge]=!0,gt[Ce]=gt[Be]=gt[ne]=gt[xe]=gt[ce]=gt[ze]=gt[Ke]=gt[te]=gt[ie]=gt[Pe]=gt[Xe]=gt[ht]=gt[Ue]=gt[Ie]=gt[Gt]=!1;var _t={};_t[Ce]=_t[Be]=_t[ne]=_t[ce]=_t[xe]=_t[ze]=_t[Oe]=_t[Me]=_t[ct]=_t[xt]=_t[Ze]=_t[ie]=_t[Pe]=_t[Xe]=_t[ht]=_t[Ue]=_t[Ie]=_t[zt]=_t[Yt]=_t[er]=_t[Z]=_t[ge]=!0,_t[Ke]=_t[te]=_t[Gt]=!1;var eO={ƀ:"A",Ɓ:"A",Ƃ:"A",ƃ:"A",Ƅ:"A",ƅ:"A",Ć :"a",Ć”:"a",Ć¢:"a",Ć£:"a",Ƥ:"a",Ć„:"a",Ƈ:"C",Ƨ:"c",Ɛ:"D",ư:"d",ƈ:"E",Ɖ:"E",Ê:"E",Ƌ:"E",ĆØ:"e",Ć©:"e",ĆŖ:"e",Ć«:"e",Ì:"I",ƍ:"I",Ǝ:"I",Ə:"I",Ƭ:"i",Ć­:"i",Ć®:"i",ĆÆ:"i",Ƒ:"N",Ʊ:"n",ƒ:"O",Ɠ:"O",Ɣ:"O",ƕ:"O",Ɩ:"O",Ƙ:"O",ò:"o",ó:"o",Ć“:"o",Ƶ:"o",ƶ:"o",Ćø:"o",ƙ:"U",Ú:"U",ƛ:"U",Ü:"U",ù:"u",Ćŗ:"u",Ć»:"u",ü:"u",Ɲ:"Y",ý:"y",Ćæ:"y",Ɔ:"Ae",Ʀ:"ae",ƞ:"Th",þ:"th",ß:"ss",Ā:"A",Ă:"A",Ą:"A",ā:"a",ă:"a",ą:"a",Ć:"C",Ĉ:"C",Ċ:"C",Č:"C",ć:"c",ĉ:"c",ċ:"c",č:"c",Ď:"D",Đ:"D",ď:"d",đ:"d",Ē:"E",Ĕ:"E",Ė:"E",Ę:"E",Ě:"E",ē:"e",ĕ:"e",ė:"e",ę:"e",ě:"e",Ĝ:"G",Ğ:"G",Ä :"G",Ä¢:"G",ĝ:"g",ğ:"g",Ä”:"g",Ä£:"g",Ĥ:"H",Ħ:"H",Ä„:"h",ħ:"h",ÄØ:"I",ÄŖ:"I",Ĭ:"I",Ä®:"I",İ:"I",Ä©:"i",Ä«:"i",Ä­:"i",ÄÆ:"i",ı:"i",Ä“:"J",ĵ:"j",Ķ:"K",Ä·:"k",Äø:"k",Ĺ:"L",Ä»:"L",Ľ:"L",Äæ:"L",Ł:"L",Äŗ:"l",ļ:"l",ľ:"l",ŀ:"l",ł:"l",Ń:"N",Ņ:"N",Ň:"N",Ŋ:"N",ń:"n",ņ:"n",ň:"n",ŋ:"n",Ō:"O",Ŏ:"O",Ő:"O",ō:"o",ŏ:"o",ő:"o",Ŕ:"R",Ŗ:"R",Ř:"R",ŕ:"r",ŗ:"r",ř:"r",Ś:"S",Ŝ:"S",Ş:"S",Å :"S",ś:"s",ŝ:"s",ş:"s",Å”:"s",Å¢:"T",Ť:"T",Ŧ:"T",Å£:"t",Å„:"t",ŧ:"t",ÅØ:"U",ÅŖ:"U",Ŭ:"U",Å®:"U",Ű:"U",Ų:"U",Å©:"u",Å«:"u",Å­:"u",ÅÆ:"u",ű:"u",ų:"u",Å“:"W",ŵ:"w",Ŷ:"Y",Å·:"y",Åø:"Y",Ź:"Z",Å»:"Z",Ž:"Z",Åŗ:"z",ż:"z",ž:"z",IJ:"IJ",ij:"ij",Œ:"Oe",œ:"oe",ʼn:"'n",Åæ:"s"},tO={"&":"&","<":"<",">":">",'"':""","'":"'"},nO={"&":"&","<":"<",">":">",""":'"',"'":"'"},rO={"\\":"\\","'":"'","\n":"n","\r":"r","\u2028":"u2028","\u2029":"u2029"},iO=parseFloat,aO=parseInt,wg=typeof La=="object"&&La&&La.Object===Object&&La,oO=typeof self=="object"&&self&&self.Object===Object&&self,qt=wg||oO||Function("return this")(),Wl=e&&!e.nodeType&&e,Ur=Wl&&!0&&t&&!t.nodeType&&t,Mg=Ur&&Ur.exports===Wl,Kl=Mg&&wg.process,bn=function(){try{var w=Ur&&Ur.require&&Ur.require("util").types;return w||Kl&&Kl.binding&&Kl.binding("util")}catch{}}(),Lg=bn&&bn.isArrayBuffer,Pg=bn&&bn.isDate,kg=bn&&bn.isMap,Ug=bn&&bn.isRegExp,Fg=bn&&bn.isSet,Bg=bn&&bn.isTypedArray;function cn(w,Y,B){switch(B.length){case 0:return w.call(Y);case 1:return w.call(Y,B[0]);case 2:return w.call(Y,B[0],B[1]);case 3:return w.call(Y,B[0],B[1],B[2])}return w.apply(Y,B)}function sO(w,Y,B,de){for(var ye=-1,et=w==null?0:w.length;++ye-1}function Ql(w,Y,B){for(var de=-1,ye=w==null?0:w.length;++de-1;);return B}function Wg(w,Y){for(var B=w.length;B--&&hi(Y,w[B],0)>-1;);return B}function EO(w,Y){for(var B=w.length,de=0;B--;)w[B]===Y&&++de;return de}var fO=jl(eO),SO=jl(tO);function bO(w){return"\\"+rO[w]}function hO(w,Y){return w==null?n:w[Y]}function Ti(w){return XN.test(w)}function TO(w){return ZN.test(w)}function vO(w){for(var Y,B=[];!(Y=w.next()).done;)B.push(Y.value);return B}function rc(w){var Y=-1,B=Array(w.size);return w.forEach(function(de,ye){B[++Y]=[ye,de]}),B}function Kg(w,Y){return function(B){return w(Y(B))}}function Sr(w,Y){for(var B=-1,de=w.length,ye=0,et=[];++B-1}function cA(r,a){var u=this.__data__,m=Wo(u,r);return m<0?(++this.size,u.push([r,a])):u[m][1]=a,this}nr.prototype.clear=aA,nr.prototype.delete=oA,nr.prototype.get=sA,nr.prototype.has=lA,nr.prototype.set=cA;function rr(r){var a=-1,u=r==null?0:r.length;for(this.clear();++a=a?r:a)),r}function Cn(r,a,u,m,b,R){var O,A=a&g,M=a&E,$=a&f;if(u&&(O=b?u(r,m,b,R):u(r)),O!==n)return O;if(!vt(r))return r;var H=De(r);if(H){if(O=py(r),!A)return nn(r,O)}else{var Q=Wt(r),se=Q==te||Q==pe;if(Rr(r))return DE(r,A);if(Q==Xe||Q==Ce||se&&!b){if(O=M||se?{}:QE(r),!A)return M?ny(r,NA(O,r)):ty(r,oE(O,r))}else{if(!_t[Q])return b?r:{};O=my(r,Q,A)}}R||(R=new wn);var fe=R.get(r);if(fe)return fe;R.set(r,O),Nf(r)?r.forEach(function(Ne){O.add(Cn(Ne,a,u,Ne,r,R))}):Cf(r)&&r.forEach(function(Ne,Ye){O.set(Ye,Cn(Ne,a,u,Ye,r,R))});var Re=$?M?Ic:yc:M?an:kt,ke=H?n:Re(r);return hn(ke||r,function(Ne,Ye){ke&&(Ye=Ne,Ne=r[Ye]),Na(O,Ye,Cn(Ne,a,u,Ye,r,R))}),O}function OA(r){var a=kt(r);return function(u){return sE(u,r,a)}}function sE(r,a,u){var m=u.length;if(r==null)return!m;for(r=ut(r);m--;){var b=u[m],R=a[b],O=r[b];if(O===n&&!(b in r)||!R(O))return!1}return!0}function lE(r,a,u){if(typeof r!="function")throw new Tn(l);return wa(function(){r.apply(n,u)},a)}function Oa(r,a,u,m){var b=-1,R=Do,O=!0,A=r.length,M=[],$=a.length;if(!A)return M;u&&(a=ft(a,un(u))),m?(R=Ql,O=!1):a.length>=o&&(R=ba,O=!1,a=new Gr(a));e:for(;++bb?0:b+u),m=m===n||m>b?b:Le(m),m<0&&(m+=b),m=u>m?0:Af(m);u0&&u(A)?a>1?$t(A,a-1,u,m,b):fr(b,A):m||(b[b.length]=A)}return b}var uc=kE(),dE=kE(!0);function Yn(r,a){return r&&uc(r,a,kt)}function dc(r,a){return r&&dE(r,a,kt)}function Qo(r,a){return Er(a,function(u){return lr(r[u])})}function qr(r,a){a=vr(a,r);for(var u=0,m=a.length;r!=null&&ua}function IA(r,a){return r!=null&&at.call(r,a)}function DA(r,a){return r!=null&&a in ut(r)}function xA(r,a,u){return r>=Vt(a,u)&&r=120&&H.length>=120)?new Gr(O&&H):n}H=r[0];var Q=-1,se=A[0];e:for(;++Q-1;)A!==r&&Go.call(A,M,1),Go.call(r,M,1);return r}function vE(r,a){for(var u=r?a.length:0,m=u-1;u--;){var b=a[u];if(u==m||b!==R){var R=b;sr(b)?Go.call(r,b,1):Tc(r,b)}}return r}function Sc(r,a){return r+$o(nE()*(a-r+1))}function HA(r,a,u,m){for(var b=-1,R=Lt(qo((a-r)/(u||1)),0),O=B(R);R--;)O[m?R:++b]=r,r+=u;return O}function bc(r,a){var u="";if(!r||a<1||a>X)return u;do a%2&&(u+=r),a=$o(a/2),a&&(r+=r);while(a);return u}function Fe(r,a){return kc(JE(r,a,on),r+"")}function zA(r){return aE(wi(r))}function VA(r,a){var u=wi(r);return os(u,Yr(a,0,u.length))}function Ia(r,a,u,m){if(!vt(r))return r;a=vr(a,r);for(var b=-1,R=a.length,O=R-1,A=r;A!=null&&++bb?0:b+a),u=u>b?b:u,u<0&&(u+=b),b=a>u?0:u-a>>>0,a>>>=0;for(var R=B(b);++m>>1,O=r[R];O!==null&&!_n(O)&&(u?O<=a:O=o){var $=a?null:oy(r);if($)return wo($);O=!1,b=ba,M=new Gr}else M=a?[]:A;e:for(;++m=m?r:Rn(r,a,u)}var IE=UO||function(r){return qt.clearTimeout(r)};function DE(r,a){if(a)return r.slice();var u=r.length,m=Zg?Zg(u):new r.constructor(u);return r.copy(m),m}function Nc(r){var a=new r.constructor(r.byteLength);return new Fo(a).set(new Fo(r)),a}function ZA(r,a){var u=a?Nc(r.buffer):r.buffer;return new r.constructor(u,r.byteOffset,r.byteLength)}function JA(r){var a=new r.constructor(r.source,co.exec(r));return a.lastIndex=r.lastIndex,a}function jA(r){return Ra?ut(Ra.call(r)):{}}function xE(r,a){var u=a?Nc(r.buffer):r.buffer;return new r.constructor(u,r.byteOffset,r.length)}function wE(r,a){if(r!==a){var u=r!==n,m=r===null,b=r===r,R=_n(r),O=a!==n,A=a===null,M=a===a,$=_n(a);if(!A&&!$&&!R&&r>a||R&&O&&M&&!A&&!$||m&&O&&M||!u&&M||!b)return 1;if(!m&&!R&&!$&&r=A)return M;var $=u[m];return M*($=="desc"?-1:1)}}return r.index-a.index}function ME(r,a,u,m){for(var b=-1,R=r.length,O=u.length,A=-1,M=a.length,$=Lt(R-O,0),H=B(M+$),Q=!m;++A1?u[b-1]:n,O=b>2?u[2]:n;for(R=r.length>3&&typeof R=="function"?(b--,R):n,O&&jt(u[0],u[1],O)&&(R=b<3?n:R,b=1),a=ut(a);++m-1?b[R?a[O]:O]:n}}function BE(r){return or(function(a){var u=a.length,m=u,b=vn.prototype.thru;for(r&&a.reverse();m--;){var R=a[m];if(typeof R!="function")throw new Tn(l);if(b&&!O&&is(R)=="wrapper")var O=new vn([],!0)}for(m=O?m:u;++m1&&Qe.reverse(),H&&MA))return!1;var $=R.get(r),H=R.get(a);if($&&H)return $==a&&H==r;var Q=-1,se=!0,fe=u&v?new Gr:n;for(R.set(r,a),R.set(a,r);++Q1?"& ":"")+a[m],a=a.join(u>2?", ":" "),r.replace(vl,`{ -/* [wrapped with `+a+`] */ -`)}function Ey(r){return De(r)||zr(r)||!!(eE&&r&&r[eE])}function sr(r,a){var u=typeof r;return a=a??X,!!a&&(u=="number"||u!="symbol"&&Ml.test(r))&&r>-1&&r%1==0&&r0){if(++a>=Ee)return arguments[0]}else a=0;return r.apply(n,arguments)}}function os(r,a){var u=-1,m=r.length,b=m-1;for(a=a===n?m:a;++u1?r[a-1]:n;return u=typeof u=="function"?(r.pop(),u):n,df(r,u)});function _f(r){var a=C(r);return a.__chain__=!0,a}function AI(r,a){return a(r),r}function ss(r,a){return a(r)}var yI=or(function(r){var a=r.length,u=a?r[0]:0,m=this.__wrapped__,b=function(R){return cc(R,r)};return a>1||this.__actions__.length||!(m instanceof Ve)||!sr(u)?this.thru(b):(m=m.slice(u,+u+(a?1:0)),m.__actions__.push({func:ss,args:[b],thisArg:n}),new vn(m,this.__chain__).thru(function(R){return a&&!R.length&&R.push(n),R}))});function II(){return _f(this)}function DI(){return new vn(this.value(),this.__chain__)}function xI(){this.__values__===n&&(this.__values__=Of(this.value()));var r=this.__index__>=this.__values__.length,a=r?n:this.__values__[this.__index__++];return{done:r,value:a}}function wI(){return this}function MI(r){for(var a,u=this;u instanceof Vo;){var m=af(u);m.__index__=0,m.__values__=n,a?b.__wrapped__=m:a=m;var b=m;u=u.__wrapped__}return b.__wrapped__=r,a}function LI(){var r=this.__wrapped__;if(r instanceof Ve){var a=r;return this.__actions__.length&&(a=new Ve(this)),a=a.reverse(),a.__actions__.push({func:ss,args:[Uc],thisArg:n}),new vn(a,this.__chain__)}return this.thru(Uc)}function PI(){return AE(this.__wrapped__,this.__actions__)}var kI=jo(function(r,a,u){at.call(r,u)?++r[u]:ir(r,u,1)});function UI(r,a,u){var m=De(r)?Gg:AA;return u&&jt(r,a,u)&&(a=n),m(r,Te(a,3))}function FI(r,a){var u=De(r)?Er:uE;return u(r,Te(a,3))}var BI=FE(of),GI=FE(sf);function YI(r,a){return $t(ls(r,a),1)}function qI(r,a){return $t(ls(r,a),G)}function $I(r,a,u){return u=u===n?1:Le(u),$t(ls(r,a),u)}function pf(r,a){var u=De(r)?hn:hr;return u(r,Te(a,3))}function mf(r,a){var u=De(r)?lO:cE;return u(r,Te(a,3))}var HI=jo(function(r,a,u){at.call(r,u)?r[u].push(a):ir(r,u,[a])});function zI(r,a,u,m){r=rn(r)?r:wi(r),u=u&&!m?Le(u):0;var b=r.length;return u<0&&(u=Lt(b+u,0)),ps(r)?u<=b&&r.indexOf(a,u)>-1:!!b&&hi(r,a,u)>-1}var VI=Fe(function(r,a,u){var m=-1,b=typeof a=="function",R=rn(r)?B(r.length):[];return hr(r,function(O){R[++m]=b?cn(a,O,u):Aa(O,a,u)}),R}),WI=jo(function(r,a,u){ir(r,u,a)});function ls(r,a){var u=De(r)?ft:EE;return u(r,Te(a,3))}function KI(r,a,u,m){return r==null?[]:(De(a)||(a=a==null?[]:[a]),u=m?n:u,De(u)||(u=u==null?[]:[u]),hE(r,a,u))}var QI=jo(function(r,a,u){r[u?0:1].push(a)},function(){return[[],[]]});function XI(r,a,u){var m=De(r)?Xl:Hg,b=arguments.length<3;return m(r,Te(a,4),u,b,hr)}function ZI(r,a,u){var m=De(r)?cO:Hg,b=arguments.length<3;return m(r,Te(a,4),u,b,cE)}function JI(r,a){var u=De(r)?Er:uE;return u(r,ds(Te(a,3)))}function jI(r){var a=De(r)?aE:zA;return a(r)}function eD(r,a,u){(u?jt(r,a,u):a===n)?a=1:a=Le(a);var m=De(r)?vA:VA;return m(r,a)}function tD(r){var a=De(r)?CA:KA;return a(r)}function nD(r){if(r==null)return 0;if(rn(r))return ps(r)?vi(r):r.length;var a=Wt(r);return a==ie||a==Ue?r.size:gc(r).length}function rD(r,a,u){var m=De(r)?Zl:QA;return u&&jt(r,a,u)&&(a=n),m(r,Te(a,3))}var iD=Fe(function(r,a){if(r==null)return[];var u=a.length;return u>1&&jt(r,a[0],a[1])?a=[]:u>2&&jt(a[0],a[1],a[2])&&(a=[a[0]]),hE(r,$t(a,1),[])}),cs=FO||function(){return qt.Date.now()};function aD(r,a){if(typeof a!="function")throw new Tn(l);return r=Le(r),function(){if(--r<1)return a.apply(this,arguments)}}function gf(r,a,u){return a=u?n:a,a=r&&a==null?r.length:a,ar(r,k,n,n,n,n,a)}function Ef(r,a){var u;if(typeof a!="function")throw new Tn(l);return r=Le(r),function(){return--r>0&&(u=a.apply(this,arguments)),r<=1&&(a=n),u}}var Bc=Fe(function(r,a,u){var m=h;if(u.length){var b=Sr(u,Di(Bc));m|=P}return ar(r,m,a,u,b)}),ff=Fe(function(r,a,u){var m=h|T;if(u.length){var b=Sr(u,Di(ff));m|=P}return ar(a,m,r,u,b)});function Sf(r,a,u){a=u?n:a;var m=ar(r,y,n,n,n,n,n,a);return m.placeholder=Sf.placeholder,m}function bf(r,a,u){a=u?n:a;var m=ar(r,x,n,n,n,n,n,a);return m.placeholder=bf.placeholder,m}function hf(r,a,u){var m,b,R,O,A,M,$=0,H=!1,Q=!1,se=!0;if(typeof r!="function")throw new Tn(l);a=On(a)||0,vt(u)&&(H=!!u.leading,Q="maxWait"in u,R=Q?Lt(On(u.maxWait)||0,a):R,se="trailing"in u?!!u.trailing:se);function fe(At){var Ln=m,ur=b;return m=b=n,$=At,O=r.apply(ur,Ln),O}function Re(At){return $=At,A=wa(Ye,a),H?fe(At):O}function ke(At){var Ln=At-M,ur=At-$,Bf=a-Ln;return Q?Vt(Bf,R-ur):Bf}function Ne(At){var Ln=At-M,ur=At-$;return M===n||Ln>=a||Ln<0||Q&&ur>=R}function Ye(){var At=cs();if(Ne(At))return Qe(At);A=wa(Ye,ke(At))}function Qe(At){return A=n,se&&m?fe(At):(m=b=n,O)}function pn(){A!==n&&IE(A),$=0,m=M=b=A=n}function en(){return A===n?O:Qe(cs())}function mn(){var At=cs(),Ln=Ne(At);if(m=arguments,b=this,M=At,Ln){if(A===n)return Re(M);if(Q)return IE(A),A=wa(Ye,a),fe(M)}return A===n&&(A=wa(Ye,a)),O}return mn.cancel=pn,mn.flush=en,mn}var oD=Fe(function(r,a){return lE(r,1,a)}),sD=Fe(function(r,a,u){return lE(r,On(a)||0,u)});function lD(r){return ar(r,W)}function us(r,a){if(typeof r!="function"||a!=null&&typeof a!="function")throw new Tn(l);var u=function(){var m=arguments,b=a?a.apply(this,m):m[0],R=u.cache;if(R.has(b))return R.get(b);var O=r.apply(this,m);return u.cache=R.set(b,O)||R,O};return u.cache=new(us.Cache||rr),u}us.Cache=rr;function ds(r){if(typeof r!="function")throw new Tn(l);return function(){var a=arguments;switch(a.length){case 0:return!r.call(this);case 1:return!r.call(this,a[0]);case 2:return!r.call(this,a[0],a[1]);case 3:return!r.call(this,a[0],a[1],a[2])}return!r.apply(this,a)}}function cD(r){return Ef(2,r)}var uD=XA(function(r,a){a=a.length==1&&De(a[0])?ft(a[0],un(Te())):ft($t(a,1),un(Te()));var u=a.length;return Fe(function(m){for(var b=-1,R=Vt(m.length,u);++b=a}),zr=pE(function(){return arguments}())?pE:function(r){return Ct(r)&&at.call(r,"callee")&&!jg.call(r,"callee")},De=B.isArray,ND=Lg?un(Lg):MA;function rn(r){return r!=null&&_s(r.length)&&!lr(r)}function Ot(r){return Ct(r)&&rn(r)}function OD(r){return r===!0||r===!1||Ct(r)&&Jt(r)==xe}var Rr=GO||Zc,AD=Pg?un(Pg):LA;function yD(r){return Ct(r)&&r.nodeType===1&&!Ma(r)}function ID(r){if(r==null)return!0;if(rn(r)&&(De(r)||typeof r=="string"||typeof r.splice=="function"||Rr(r)||xi(r)||zr(r)))return!r.length;var a=Wt(r);if(a==ie||a==Ue)return!r.size;if(xa(r))return!gc(r).length;for(var u in r)if(at.call(r,u))return!1;return!0}function DD(r,a){return ya(r,a)}function xD(r,a,u){u=typeof u=="function"?u:n;var m=u?u(r,a):n;return m===n?ya(r,a,n,u):!!m}function Yc(r){if(!Ct(r))return!1;var a=Jt(r);return a==Ke||a==rt||typeof r.message=="string"&&typeof r.name=="string"&&!Ma(r)}function wD(r){return typeof r=="number"&&tE(r)}function lr(r){if(!vt(r))return!1;var a=Jt(r);return a==te||a==pe||a==We||a==me}function vf(r){return typeof r=="number"&&r==Le(r)}function _s(r){return typeof r=="number"&&r>-1&&r%1==0&&r<=X}function vt(r){var a=typeof r;return r!=null&&(a=="object"||a=="function")}function Ct(r){return r!=null&&typeof r=="object"}var Cf=kg?un(kg):kA;function MD(r,a){return r===a||mc(r,a,xc(a))}function LD(r,a,u){return u=typeof u=="function"?u:n,mc(r,a,xc(a),u)}function PD(r){return Rf(r)&&r!=+r}function kD(r){if(by(r))throw new ye(s);return mE(r)}function UD(r){return r===null}function FD(r){return r==null}function Rf(r){return typeof r=="number"||Ct(r)&&Jt(r)==Pe}function Ma(r){if(!Ct(r)||Jt(r)!=Xe)return!1;var a=Bo(r);if(a===null)return!0;var u=at.call(a,"constructor")&&a.constructor;return typeof u=="function"&&u instanceof u&&Po.call(u)==LO}var qc=Ug?un(Ug):UA;function BD(r){return vf(r)&&r>=-X&&r<=X}var Nf=Fg?un(Fg):FA;function ps(r){return typeof r=="string"||!De(r)&&Ct(r)&&Jt(r)==Ie}function _n(r){return typeof r=="symbol"||Ct(r)&&Jt(r)==zt}var xi=Bg?un(Bg):BA;function GD(r){return r===n}function YD(r){return Ct(r)&&Wt(r)==Gt}function qD(r){return Ct(r)&&Jt(r)==Sn}var $D=rs(Ec),HD=rs(function(r,a){return r<=a});function Of(r){if(!r)return[];if(rn(r))return ps(r)?xn(r):nn(r);if(ha&&r[ha])return vO(r[ha]());var a=Wt(r),u=a==ie?rc:a==Ue?wo:wi;return u(r)}function cr(r){if(!r)return r===0?r:0;if(r=On(r),r===G||r===-G){var a=r<0?-1:1;return a*_e}return r===r?r:0}function Le(r){var a=cr(r),u=a%1;return a===a?u?a-u:a:0}function Af(r){return r?Yr(Le(r),0,he):0}function On(r){if(typeof r=="number")return r;if(_n(r))return ve;if(vt(r)){var a=typeof r.valueOf=="function"?r.valueOf():r;r=vt(a)?a+"":a}if(typeof r!="string")return r===0?r:+r;r=zg(r);var u=Dl.test(r);return u||wl.test(r)?aO(r.slice(2),u?2:8):Il.test(r)?ve:+r}function yf(r){return qn(r,an(r))}function zD(r){return r?Yr(Le(r),-X,X):r===0?r:0}function nt(r){return r==null?"":dn(r)}var VD=yi(function(r,a){if(xa(a)||rn(a)){qn(a,kt(a),r);return}for(var u in a)at.call(a,u)&&Na(r,u,a[u])}),If=yi(function(r,a){qn(a,an(a),r)}),ms=yi(function(r,a,u,m){qn(a,an(a),r,m)}),WD=yi(function(r,a,u,m){qn(a,kt(a),r,m)}),KD=or(cc);function QD(r,a){var u=Ai(r);return a==null?u:oE(u,a)}var XD=Fe(function(r,a){r=ut(r);var u=-1,m=a.length,b=m>2?a[2]:n;for(b&&jt(a[0],a[1],b)&&(m=1);++u1),R}),qn(r,Ic(r),u),m&&(u=Cn(u,g|E|f,sy));for(var b=a.length;b--;)Tc(u,a[b]);return u});function mx(r,a){return xf(r,ds(Te(a)))}var gx=or(function(r,a){return r==null?{}:qA(r,a)});function xf(r,a){if(r==null)return{};var u=ft(Ic(r),function(m){return[m]});return a=Te(a),TE(r,u,function(m,b){return a(m,b[0])})}function Ex(r,a,u){a=vr(a,r);var m=-1,b=a.length;for(b||(b=1,r=n);++ma){var m=r;r=a,a=m}if(u||r%1||a%1){var b=nE();return Vt(r+b*(a-r+iO("1e-"+((b+"").length-1))),a)}return Sc(r,a)}var Ax=Ii(function(r,a,u){return a=a.toLowerCase(),r+(u?Lf(a):a)});function Lf(r){return zc(nt(r).toLowerCase())}function Pf(r){return r=nt(r),r&&r.replace(Ll,fO).replace(xg,"")}function yx(r,a,u){r=nt(r),a=dn(a);var m=r.length;u=u===n?m:Yr(Le(u),0,m);var b=u;return u-=a.length,u>=0&&r.slice(u,b)==a}function Ix(r){return r=nt(r),r&&ln.test(r)?r.replace(tn,SO):r}function Dx(r){return r=nt(r),r&&hl.test(r)?r.replace(ca,"\\$&"):r}var xx=Ii(function(r,a,u){return r+(u?"-":"")+a.toLowerCase()}),wx=Ii(function(r,a,u){return r+(u?" ":"")+a.toLowerCase()}),Mx=UE("toLowerCase");function Lx(r,a,u){r=nt(r),a=Le(a);var m=a?vi(r):0;if(!a||m>=a)return r;var b=(a-m)/2;return ns($o(b),u)+r+ns(qo(b),u)}function Px(r,a,u){r=nt(r),a=Le(a);var m=a?vi(r):0;return a&&m>>0,u?(r=nt(r),r&&(typeof a=="string"||a!=null&&!qc(a))&&(a=dn(a),!a&&Ti(r))?Cr(xn(r),0,u):r.split(a,u)):[]}var qx=Ii(function(r,a,u){return r+(u?" ":"")+zc(a)});function $x(r,a,u){return r=nt(r),u=u==null?0:Yr(Le(u),0,r.length),a=dn(a),r.slice(u,u+a.length)==a}function Hx(r,a,u){var m=C.templateSettings;u&&jt(r,a,u)&&(a=n),r=nt(r),a=ms({},a,m,HE);var b=ms({},a.imports,m.imports,HE),R=kt(b),O=nc(b,R),A,M,$=0,H=a.interpolate||Ei,Q="__p += '",se=ic((a.escape||Ei).source+"|"+H.source+"|"+(H===lo?yl:Ei).source+"|"+(a.evaluate||Ei).source+"|$","g"),fe="//# sourceURL="+(at.call(a,"sourceURL")?(a.sourceURL+"").replace(/\s/g," "):"lodash.templateSources["+ ++jN+"]")+` -`;r.replace(se,function(Ne,Ye,Qe,pn,en,mn){return Qe||(Qe=pn),Q+=r.slice($,mn).replace(Pl,bO),Ye&&(A=!0,Q+=`' + -__e(`+Ye+`) + -'`),en&&(M=!0,Q+=`'; -`+en+`; -__p += '`),Qe&&(Q+=`' + -((__t = (`+Qe+`)) == null ? '' : __t) + -'`),$=mn+Ne.length,Ne}),Q+=`'; -`;var Re=at.call(a,"variable")&&a.variable;if(!Re)Q=`with (obj) { -`+Q+` -} -`;else if(Ol.test(Re))throw new ye(c);Q=(M?Q.replace(Ae,""):Q).replace(it,"$1").replace(Tt,"$1;"),Q="function("+(Re||"obj")+`) { -`+(Re?"":`obj || (obj = {}); -`)+"var __t, __p = ''"+(A?", __e = _.escape":"")+(M?`, __j = Array.prototype.join; -function print() { __p += __j.call(arguments, '') } -`:`; -`)+Q+`return __p -}`;var ke=Uf(function(){return et(R,fe+"return "+Q).apply(n,O)});if(ke.source=Q,Yc(ke))throw ke;return ke}function zx(r){return nt(r).toLowerCase()}function Vx(r){return nt(r).toUpperCase()}function Wx(r,a,u){if(r=nt(r),r&&(u||a===n))return zg(r);if(!r||!(a=dn(a)))return r;var m=xn(r),b=xn(a),R=Vg(m,b),O=Wg(m,b)+1;return Cr(m,R,O).join("")}function Kx(r,a,u){if(r=nt(r),r&&(u||a===n))return r.slice(0,Qg(r)+1);if(!r||!(a=dn(a)))return r;var m=xn(r),b=Wg(m,xn(a))+1;return Cr(m,0,b).join("")}function Qx(r,a,u){if(r=nt(r),r&&(u||a===n))return r.replace(ua,"");if(!r||!(a=dn(a)))return r;var m=xn(r),b=Vg(m,xn(a));return Cr(m,b).join("")}function Xx(r,a){var u=z,m=K;if(vt(a)){var b="separator"in a?a.separator:b;u="length"in a?Le(a.length):u,m="omission"in a?dn(a.omission):m}r=nt(r);var R=r.length;if(Ti(r)){var O=xn(r);R=O.length}if(u>=R)return r;var A=u-vi(m);if(A<1)return m;var M=O?Cr(O,0,A).join(""):r.slice(0,A);if(b===n)return M+m;if(O&&(A+=M.length-A),qc(b)){if(r.slice(A).search(b)){var $,H=M;for(b.global||(b=ic(b.source,nt(co.exec(b))+"g")),b.lastIndex=0;$=b.exec(H);)var Q=$.index;M=M.slice(0,Q===n?A:Q)}}else if(r.indexOf(dn(b),A)!=A){var se=M.lastIndexOf(b);se>-1&&(M=M.slice(0,se))}return M+m}function Zx(r){return r=nt(r),r&&mt.test(r)?r.replace(wt,OO):r}var Jx=Ii(function(r,a,u){return r+(u?" ":"")+a.toUpperCase()}),zc=UE("toUpperCase");function kf(r,a,u){return r=nt(r),a=u?n:a,a===n?TO(r)?IO(r):_O(r):r.match(a)||[]}var Uf=Fe(function(r,a){try{return cn(r,n,a)}catch(u){return Yc(u)?u:new ye(u)}}),jx=or(function(r,a){return hn(a,function(u){u=$n(u),ir(r,u,Bc(r[u],r))}),r});function ew(r){var a=r==null?0:r.length,u=Te();return r=a?ft(r,function(m){if(typeof m[1]!="function")throw new Tn(l);return[u(m[0]),m[1]]}):[],Fe(function(m){for(var b=-1;++bX)return[];var u=he,m=Vt(r,he);a=Te(a),r-=he;for(var b=tc(m,a);++u0||a<0)?new Ve(u):(r<0?u=u.takeRight(-r):r&&(u=u.drop(r)),a!==n&&(a=Le(a),u=a<0?u.dropRight(-a):u.take(a-r)),u)},Ve.prototype.takeRightWhile=function(r){return this.reverse().takeWhile(r).reverse()},Ve.prototype.toArray=function(){return this.take(he)},Yn(Ve.prototype,function(r,a){var u=/^(?:filter|find|map|reject)|While$/.test(a),m=/^(?:head|last)$/.test(a),b=C[m?"take"+(a=="last"?"Right":""):a],R=m||/^find/.test(a);b&&(C.prototype[a]=function(){var O=this.__wrapped__,A=m?[1]:arguments,M=O instanceof Ve,$=A[0],H=M||De(O),Q=function(Ye){var Qe=b.apply(C,fr([Ye],A));return m&&se?Qe[0]:Qe};H&&u&&typeof $=="function"&&$.length!=1&&(M=H=!1);var se=this.__chain__,fe=!!this.__actions__.length,Re=R&&!se,ke=M&&!fe;if(!R&&H){O=ke?O:new Ve(this);var Ne=r.apply(O,A);return Ne.__actions__.push({func:ss,args:[Q],thisArg:n}),new vn(Ne,se)}return Re&&ke?r.apply(this,A):(Ne=this.thru(Q),Re?m?Ne.value()[0]:Ne.value():Ne)})}),hn(["pop","push","shift","sort","splice","unshift"],function(r){var a=Mo[r],u=/^(?:push|sort|unshift)$/.test(r)?"tap":"thru",m=/^(?:pop|shift)$/.test(r);C.prototype[r]=function(){var b=arguments;if(m&&!this.__chain__){var R=this.value();return a.apply(De(R)?R:[],b)}return this[u](function(O){return a.apply(De(O)?O:[],b)})}}),Yn(Ve.prototype,function(r,a){var u=C[a];if(u){var m=u.name+"";at.call(Oi,m)||(Oi[m]=[]),Oi[m].push({name:a,func:u})}}),Oi[es(n,T).name]=[{name:"wrapper",func:n}],Ve.prototype.clone=ZO,Ve.prototype.reverse=JO,Ve.prototype.value=jO,C.prototype.at=yI,C.prototype.chain=II,C.prototype.commit=DI,C.prototype.next=xI,C.prototype.plant=MI,C.prototype.reverse=LI,C.prototype.toJSON=C.prototype.valueOf=C.prototype.value=PI,C.prototype.first=C.prototype.head,ha&&(C.prototype[ha]=wI),C},Ci=DO();Ur?((Ur.exports=Ci)._=Ci,Wl._=Ci):qt._=Ci}).call(La)})($s,$s.exports);var Ir=$s.exports;class b2{constructor(e){Mi(this,"queue");Mi(this,"processing");Mi(this,"callback");Mi(this,"steps");Mi(this,"requestAnimationFrameId");this.queue=[],this.processing=!1,this.callback=e,this.steps=[],this.requestAnimationFrameId=null}registerCallback(e){this.callback=e}clearQueue(){this.queue=[],this.processing=!1,this.callback=void 0,this.steps=[],this.requestAnimationFrameId&&(cancelAnimationFrame(this.requestAnimationFrameId),this.requestAnimationFrameId=null)}pushToQueue(e){this.queue.push(e),this.requestAnimationFrameId||this.processQueueWithRAF()}processQueueWithRAF(){var e,n,i,o;if(console.log(this.queue),!this.processing&&this.queue.length>0){this.processing=!0;const s=(l,c)=>Ir.isUndefined(c)?l:c;for(const l of this.queue){const c=this.steps[this.steps.length-1];if(l.id!==(c==null?void 0:c.id)){l.contents=l.content?[l.content]:[],this.steps.push(l);continue}if(Ir.assignWith(c,Ir.omit(l,"content"),s),!l.content)continue;const d=c.contents[c.contents.length-1];if(((e=l.content)==null?void 0:e.id)!==(d==null?void 0:d.id)||l.content.type!==(d==null?void 0:d.type)){c.contents.push(l.content);continue}if(Ir.assignWith(d,Ir.omit(l.content,"value"),s),((n=l.content)==null?void 0:n.type)===Dr.IMAGE){const _=d.value.answer.endsWith(",");d.value.answer+=`${_?"":","}${(i=l.content)==null?void 0:i.value.answer}`}else d.value.answer+=((o=l.content)==null?void 0:o.value.answer)||""}this.queue=[],this.callback&&this.callback(this.steps),this.processing=!1}this.queue.length>0?this.requestAnimationFrameId=requestAnimationFrame(()=>{this.processQueueWithRAF()}):this.requestAnimationFrameId=null}}const Vr=ee(),ys=ee(!0),ZS=ee(0),dN=()=>{const t=async i=>{const{behavior:o="auto",isAsync:s=!0,force:l=!1}=i||{};if(!Vr.value||!l&&!ys.value)return;s&&await Qs();const c=(i==null?void 0:i.top)||Vr.value.scrollHeight;if(o==="auto"){Vr.value.scrollTop=c;return}ys.value=!0,Vr.value.scrollTo({top:c,behavior:o})},e=(i=10)=>{const{scrollTop:o,clientHeight:s,scrollHeight:l}=Vr.value,c=o+s;return c<=l+i&&c>=l-i},n=()=>{const{scrollTop:i}=Vr.value,o=e();if(i{if(!ei.value||(t==null?void 0:t.id)===(e==null?void 0:e.id))return;const{renderPath:n,lastLeaf:i}=S2(ei.value);Fm.value=n,Qr.value=i},{deep:!0,immediate:!0});const Is=new b2,Bi=ee(),Hs=ee(null),tb=ee(!1),v2=t=>{Hs.value=new AbortController;const{query:e}=t;return fetch("/api/messages",{signal:Hs.value.signal,headers:{accept:"text/event-stream","content-type":"application/json"},body:JSON.stringify({query:e,config:{OPENAI_API_KEY:t.OPENAI_API_KEY,OPENAI_API_MODEL:t.OPENAI_API_MODEL}}),method:"POST",credentials:"include"})},aa=()=>{const{toBottom:t}=dN(),e=async g=>{Bi.value&&(Bi.value.steps=[...g]),t({behavior:"smooth"})},n=()=>{const g=Date.now()+Math.random()*1e3;return gn.value.has(g)?n():g},i=(g,E)=>{const f=[],S=n();return g||f.push({id:S,status:Xt.FINISH,contents:[{id:S,type:Dr.TEXT,value:{answer:E}}]}),km({user_id:0,role:"Product Manager",is_user_message:!g,chat_id:Um.value,steps:f,id:S,created_at:Ka().format("YYYY-MM-DD HH:mm:ss")})},o=(g,E)=>{if(!Ba.value.has(E))return;const f=gn.value.get(E);gn.value.delete(E),Ba.value.delete(E),gn.value.set(f.id,f)},s=(g,E)=>{var N;const f=gn.value.get(E);f.created_at=g.timestamp,((N=Qr.value)==null?void 0:N.id)===E&&(Qr.value.created_at=g.timestamp);const S=g;if(console.log(S),!(S!=null&&S.chat_id))return;const v=f.parent;gn.value.delete(E),Ba.value.delete(E);const h=v.children.findIndex(y=>y.id===E);v.children.splice(h,1);const T={...S,children:[],parent:v};v.children.push(T),gn.value.set(T.id,T),ei.value=T,Bi.value=void 0,Is.clearQueue()},l=(g,E)=>{let f=null;const S=i(!0);return Ou.value?f=gn.value.get(E):(f=i(!1,g),XS(gn.value.get(E),f),gn.value.set(f.id,f),Ba.value.add(f.id)),XS(f,S),ei.value=S,gn.value.set(S.id,S),Ba.value.add(S.id),{userMessage:f,agentMessage:S}},c=async(g,E,f=!1)=>{if(!g||!Um)return;Ou.value=f,Is.registerCallback(e);const S=E!==void 0?E:Qr.value.id,{userMessage:v,agentMessage:h}=l(g,S);Bi.value=h,Fi.value=Ut.RUNNING;const T=N=>{if(N.name==="AbortError"){Fi.value=Ut.TERMINATE;return}Fi.value=Ut.FAILED};v2({query:g,OPENAI_API_KEY:JS.value,OPENAI_API_MODEL:jS.value}).then(N=>{const y=N.body.getReader();let x=!0,P="";y.read().then(function D({done:k,value:U}){if(k){Fi.value=Ut.FINISH;return}y.read().then(D).catch(T);let W=dM(U);const z=W.endsWith(` - -`),K=W.lastIndexOf(` - -`);if(z)W=P+W,P="";else if(K===-1){P+=W;return}else{const oe=W;W=P+W.slice(0,K),P=oe.slice(K)}W.split(` - -`).filter(oe=>oe).map(oe=>{try{return console.info("č½¬ē åŽ",decodeURIComponent(oe)),JSON.parse(decodeURIComponent(oe))}catch(L){return console.info("转码失蓄",L),console.info("输出:",oe),""}}).filter(oe=>oe).forEach(oe=>{var re,G;const{step:L,role:J}=oe;if(L.role=J,!(oe!=null&&oe.qa_type)&&L&&Is.pushToQueue(L),o(oe,v.id),s(oe,h.id),x){if(L.status===Xt.FAILED)throw new Error(((G=(re=L.content)==null?void 0:re.value)==null?void 0:G.answer)||Km("ęœŖēŸ„é”™čÆÆ"));x=!1}})}).catch(T)})};return{isRegen:Ou,isPreview:_N,globalStatus:Fi,chatTree:eb,chatTreeMap:gn,chatRenderPathList:Fm,lastLeafNode:Qr,activeTreeNode:ei,activeAgentNode:Bi,sendMessage:c,stopMessage:()=>{var g,E,f;(g=Hs.value)==null||g.abort(),Hs.value=null,(f=(E=Bi.value)==null?void 0:E.steps)==null||f.forEach(S=>{S.status===Xt.RUNNING&&(S.timestamp="",S.status=Xt.FINISH)})},regenMessage:async()=>{var S;let g=Qr.value;((S=Qr.value)==null?void 0:S.is_user_message)||(g=g.parent);const{contents:f}=g.steps[0];Is.clearQueue(),c(f[0].value.answer,g.id,!0)},genRootNode:async g=>{tb.value=!0;const E=km({id:0,is_user_message:!1,created_at:"",user_id:0,chat_id:0,steps:[{id:0,status:Xt.FINISH,contents:[{id:0,type:Dr.TEXT,value:{answer:g??""}}]}]});Fi.value=Ut.INIT;const{messageMap:f,root:S}=f2([],E);cN(S);const v=uN(S);eb.value=S,gn.value=f,ei.value=v,Fm.value=[],t({force:!0}),await Qs(),tb.value=!1},apiKey:JS,model:jS,shakeApiKeyInput:T2}},C2=()=>(Um.value=1,h2.value=0,_N.value=!1,aa());var Ar=(t=>(t.textToSpeech="text_to_speech",t.textToImage="text_to_image",t.aiCall="ai_call",t.dataAnalysis="data_analysis",t.crawler="crawler",t.knowledge="knowledge",t))(Ar||{});const R2={text_to_speech:"čÆ­éŸ³ē”Ÿęˆ",text_to_image:"ę–‡ē”Ÿå›¾",ai_call:"AIč°ƒē”Ø",data_analysis:"ę•°ę®åˆ†ęž",crawler:"搜瓢",knowledge:"ēŸ„čÆ†åŗ“"},N2={[Ar.textToSpeech]:()=>ue(GM,null,null),[Ar.textToImage]:()=>ue(bL,null,null),[Ar.aiCall]:()=>ue(ea,{iconId:"icon-ri-mental-health-line"},null),[Ar.dataAnalysis]:()=>ue(NL,null,null),[Ar.crawler]:()=>ue(xL,null,null),[Ar.knowledge]:()=>ue(_L,null,null)},O2=[Ar.knowledge],pN=[{job:"Product Manager",avatar:"role0",status:"Hired",tags:["PM"],color:["#8855F0","#D9CFF9"]},{job:"Project Manager",avatar:"role1",status:"Hired",tags:["PM"],color:["#E79400","#FCBED1"]},{job:"Architect",avatar:"role2",status:"Hired",tags:["CTO"],color:["#2E85F5","#BEE5FE"]},{job:"Engineer",avatar:"role3",status:"Hired",tags:["RD"],color:["#33C7BE","#C9F6EF"]},{job:"QA Engineer",avatar:"role4",status:"In recruitment",tags:["QA"],color:["#C9CDD4","#E5E6EB"],action:"I can build+"},{job:"UI Designer",avatar:"role5",status:"In recruitment",tags:["UI"],color:["#C9CDD4","#E5E6EB"],action:"I can build+"},{job:"Saler",avatar:"role6",status:"In recruitment",tags:["Saler"],color:["#C9CDD4","#E5E6EB"],action:"I can build+"}],A2=t=>(Zi("data-v-dc72f28c"),t=t(),Ji(),t),y2={class:"roleListWrapper"},I2={class:"title"},D2=A2(()=>F("img",{src:Qq,alt:""},null,-1)),x2=["type"],w2={style:{width:"100%",padding:"0px 32px","box-sizing":"border-box"}},M2={class:"roleList"},L2={key:0,src:aN,alt:""},P2={key:1,src:oN,alt:""},k2={key:2,src:sN,alt:""},U2={key:3,src:lN,alt:""},F2={key:4,src:Xq,alt:""},B2={key:5,src:Zq,alt:""},G2={key:6,src:Jq,alt:""},Y2={class:"infomation"},q2={class:"job"},$2={class:"jobName"},H2={class:"jobStatus"},z2={class:"tags"},V2=be({__name:"roleList",setup(t){const e=ee(!1),n=()=>{e.value=!0},{apiKey:i,shakeApiKeyInput:o,model:s}=aa(),l=ee(),c=ee(!1),d=()=>{c.value=!0,Qs(()=>{var S;(S=l.value)==null||S.focus()})},_=ee(!1),p=()=>{_.value=!_.value},g=()=>{_.value=!0},E=()=>{_.value=!1},f=()=>{c.value=!1,E()};return(S,v)=>(V(),ae(st,null,[F("div",y2,[F("div",I2,[D2,F("span",null,$e(S.$t("My Software Team")),1)]),F("div",{class:It({keyFill:!0,keyFilled:q(i),shake:q(o)})},[!q(i)&&!q(c)?(V(),ae("div",{key:0,class:"placeholder",onClick:d},$e(S.$t("Please fill in your OpenAI API key to activate the hired software team.")),1)):Pn((V(),ae("input",{key:1,ref_key:"apiKeyInputRef",ref:l,"onUpdate:modelValue":v[0]||(v[0]=h=>wr(i)?i.value=h:null),type:q(_)?"text":"password",onFocus:g,onBlur:f},null,40,x2)),[[qw,q(i)]]),F("span",{class:"showPassword",onClick:p},[q(_)?(V(),ot(q(Xw),{key:0})):(V(),ot(q(Zw),{key:1}))])],2),ue(q(Jw),{modelValue:q(s),"onUpdate:modelValue":v[1]||(v[1]=h=>wr(s)?s.value=h:null),placeholder:"Please select a model",size:"large"},{default:dt(()=>[ue(q(gs),{label:"gpt-4-1106-preview",value:"gpt-4-1106-preview"}),ue(q(gs),{label:"gpt-4",value:"gpt-4"}),ue(q(gs),{label:"gpt-3.5-turbo",value:"gpt-3.5-turbo"}),ue(q(gs),{label:"gpt-3.5-turbo-16k",value:"gpt-3.5-turbo-16k"})]),_:1},8,["modelValue"]),F("div",w2,[ue(q(DC))]),ue(q(iN),{style:{flex:"1"}},{default:dt(()=>[F("div",M2,[(V(!0),ae(st,null,yn(q(pN),(h,T)=>(V(),ae("div",{key:T,class:"role"},[F("div",{class:"avatar",style:Bt({borderColor:` ${h.color[0]}`})},[F("div",{class:"innerPie",style:Bt({background:` ${h.color[1]}`})},null,4),T===0?(V(),ae("img",L2)):Ge("",!0),T===1?(V(),ae("img",P2)):Ge("",!0),T===2?(V(),ae("img",k2)):Ge("",!0),T===3?(V(),ae("img",U2)):Ge("",!0),T===4?(V(),ae("img",F2)):Ge("",!0),T===5?(V(),ae("img",B2)):Ge("",!0),T===6?(V(),ae("img",G2)):Ge("",!0),F("div",{class:It({rightPoint:!0,pointActive:!h.action})},null,2)],4),F("div",Y2,[F("div",q2,[F("div",$2,$e(h.job),1),F("div",H2,$e(h.status),1)]),F("div",z2,[(V(!0),ae(st,null,yn(h.tags,(N,y)=>(V(),ae("div",{key:y,class:"tagItem"},$e(N),1))),128)),h.action?(V(),ae("div",{key:0,class:"action",onClick:n},"I can build+")):Ge("",!0)])])]))),128))])]),_:1})]),ue(E2,{visible:q(e),"onUpdate:visible":v[2]||(v[2]=h=>wr(e)?e.value=h:null)},null,8,["visible"])],64))}});const W2=Dt(V2,[["__scopeId","data-v-dc72f28c"]]),K2="https://public-frontend-1300249583.cos-website.ap-nanjing.myqcloud.com/cy_aps/assets/btn0-e612db37.png",Q2="https://public-frontend-1300249583.cos-website.ap-nanjing.myqcloud.com/cy_aps/assets/btn1-25da2f4c.png",X2="https://public-frontend-1300249583.cos-website.ap-nanjing.myqcloud.com/cy_aps/assets/btn2-d21834a1.png",Z2="https://public-frontend-1300249583.cos-website.ap-nanjing.myqcloud.com/cy_aps/assets/btn3-cf765453.png",J2="https://public-frontend-1300249583.cos-website.ap-nanjing.myqcloud.com/cy_aps/assets/roundLogo-a63958eb.png",j2=t=>(Zi("data-v-491f84be"),t=t(),Ji(),t),e$=j2(()=>F("span",{class:"loading"},[F("span"),F("span"),F("span")],-1)),t$=[e$],n$=be({__name:"index",props:{color:{}},setup(t){const e=t,n=le(()=>({color:e.color}));return(i,o)=>(V(),ae("span",{class:"loading_wrap",style:Bt(q(n))},t$,4))}});const r$=Dt(n$,[["__scopeId","data-v-491f84be"]]),i$={class:"message_info"},a$={key:0,class:"avatar agentAvatar",src:J2,alt:""},o$={class:"item_info"},s$={class:"name"},l$={key:0,class:"responseSwitcher",size:[4,0]},c$={class:"time"},u$={class:"message_wrap"},d$=be({__name:"index",props:{renderNode:{},isRootNode:{type:Boolean}},setup(t){const e=t,n={[Xt.FINISH]:"#23C343",[Xt.RUNNING]:"transparent",[Xt.FAILED]:"#F53F3F",[Xt.TERMINATE]:"#23C343"},i=yt(e,"isRootNode"),o=yt(e,"renderNode"),s=yt(o.value,"activeNode"),{is_user_message:l,steps:c}=AC(s.value),{activeTreeNode:d,globalStatus:_}=aa(),p=le(()=>c.value.length?c.value[c.value.length-1].status:Xt.RUNNING),g=le(()=>{const T=l.value?Km("Me"):"MetaGPT",N=l.value?"/src/assets/role/me.svg":"/src/assets/heroPage/roundLogo.png";return{name:T,avatarUrl:N}}),E=le(()=>({color:l.value?"transparent":n[p.value],backgroundColor:g.value.avatarUrl?"transparent":"#3370ff"})),f=le(()=>l.value||i.value?!1:c.value.length===0&&p.value===Xt.RUNNING&&_.value===Ut.RUNNING),S=le(()=>o.value.current),v=le(()=>o.value.renderPath.length),h=T=>{const N=S.value+T;N<1||N>v.value||(d.value=o.value.renderPath[N-1])};return(T,N)=>(V(),ae("div",i$,[q(l)?Ge("",!0):(V(),ae("img",a$)),F("section",{class:It({info_box:!0,right_pos:q(l)})},[F("section",o$,[ue(q(aq),{style:{"max-width":"250px"}},{default:dt(()=>[F("span",s$,$e(q(g).name),1)]),_:1}),q(v)>1?(V(),ae("div",l$,[ue(q(jw),{class:It({disabled:q(S)===1}),onClick:N[0]||(N[0]=y=>h(-1))},null,8,["class"]),F("span",null,$e(q(S))+" / "+$e(q(v)),1),ue(q(eM),{class:It({disabled:q(S)===q(v)}),onClick:N[1]||(N[1]=y=>h(1))},null,8,["class"])])):Ge("",!0),q(f)?(V(),ot(r$,{key:1,color:"#165dff"})):Ge("",!0),F("span",c$,$e(q(Ka)(q(s).created_at).format("YYYY-MM-DD HH:mm:ss")),1)]),F("section",u$,[oi(T.$slots,"content",{},void 0,!0)])],2),q(l)?(V(),ot(q(tM),{key:1,class:"avatar",style:Bt(q(E)),"image-url":q(g).avatarUrl,size:40},{default:dt(()=>[St($e(q(g).name),1)]),_:1},8,["style","image-url"])):Ge("",!0)]))}});const _$=Dt(d$,[["__scopeId","data-v-9c433b71"]]),p$={class:"message_container"},m$={class:"user_message"},g$={class:"msg_wrap"},E$={key:1,class:"message"},f$={key:0,class:"btn_group"},S$=be({__name:"index",props:{activeNode:{}},setup(t){const n=yt(t,"activeNode"),{sendMessage:i,globalStatus:o}=aa(),s=le(()=>{var g;const p=n.value.steps[0];return(g=p==null?void 0:p.contents)==null?void 0:g[0]}),l=le(()=>{var p,g;return((g=(p=s.value)==null?void 0:p.value)==null?void 0:g.answer)||""}),c=ee(l.value),d=ee(!1),_=()=>{i(c.value),d.value=!1};return(p,g)=>(V(),ae("div",p$,[F("section",m$,[F("div",g$,[q(d)?(V(),ot(q(nM),{key:0,modelValue:q(c),"onUpdate:modelValue":g[0]||(g[0]=E=>wr(c)?c.value=E:null),"auto-size":""},null,8,["modelValue"])):(V(),ae("span",E$,$e(q(l)),1))]),q(d)?(V(),ae("div",f$,[ue(q(hm),{type:"outline",onClick:g[1]||(g[1]=Ps(E=>d.value=!1,["stop"]))},{default:dt(()=>[St($e(p.$t("å–ę¶ˆ")),1)]),_:1}),ue(q(hm),{disabled:q(o)===q(Ut).RUNNING,type:"primary",onClick:Ps(_,["stop"])},{default:dt(()=>[St($e(p.$t("äæå­˜å¹¶ęäŗ¤")),1)]),_:1},8,["disabled","onClick"])])):Ge("",!0)])]))}});const b$=Dt(S$,[["__scopeId","data-v-6f899d6f"]]),h$={class:"step_skill"},T$={class:"trigger"},v$={class:"link_group"},C$=be({__name:"skill",props:{skill:{},knowledgeBase:{},knowledgeLink:{}},setup(t){const e=t,{skill:n,knowledgeBase:i,knowledgeLink:o}=AC(e),s=l=>{console.log(l)};return(l,c)=>(V(),ae("div",h$,[F("span",T$,[ue(ea,{"icon-id":"icon-ri-check-double-line"}),St(" "+$e(l.$t(q(O2).includes(q(n))?"é«˜ēŗ§ęŠ€čƒ½":"č§¦å‘ęŠ€čƒ½")),1)]),ue(q(rM),null,{default:dt(()=>[ue(q(xC),{align:"center",size:4},{default:dt(()=>[(V(),ot(ji(q(N2)[q(n)]))),St(" "+$e(q(R2)[q(n)]),1)]),_:1})]),_:1}),F("div",v$,[q(i)?(V(),ot(q(Gf),{key:0,type:"text"},{default:dt(()=>[St($e(l.$t("ēŸ„čÆ†åŗ“"))+" ",1),F("span",{onClick:c[0]||(c[0]=Ps(d=>s("base"),["stop"]))},"("+$e(q(i).length)+")",1)]),_:1})):Ge("",!0),q(o)?(V(),ot(q(Gf),{key:1,type:"text"},{default:dt(()=>[St($e(l.$t("ēŸ„čÆ†é“¾ęŽ„"))+" ",1),F("span",{onClick:c[1]||(c[1]=Ps(d=>s("link"),["stop"]))},"("+$e(q(o).length)+")",1)]),_:1})):Ge("",!0)])]))}});const R$=Dt(C$,[["__scopeId","data-v-17bf8a16"]]),N$={class:"step_item"},O$={class:"step_title_wrap"},A$={class:"title"},y$={key:0,class:"icon_loading"},I$={class:"description"},D$={class:"step_info"},x$={class:"step_content_wrap"},w$={class:"step_content"},M$=be({__name:"step",props:{description:{},status:{},title:{},skill:{}},setup(t){const e=t,n=le(()=>{const{status:i}=e;return i===Xt.FAILED?"error":i===Xt.RUNNING?"process":"finish"});return(i,o)=>(V(),ae("div",N$,[ue(q(iM),{class:"step",status:q(n)},{icon:dt(()=>[oi(i.$slots,"icon",{},void 0,!0)]),default:dt(()=>[F("div",O$,[F("span",A$,$e(e.title),1),e.status===q(Xt).RUNNING?(V(),ae("span",y$,[ue(ea,{class:"rotate",style:{color:"#165dff"},"icon-id":"icon-ri-loader-2-fill"})])):Ge("",!0),F("div",I$,$e(e.description),1)])]),_:3},8,["status"]),F("section",D$,[F("section",x$,[ue(q(DC),{direction:"vertical",class:It(["divider",{active:e.status===q(Xt).RUNNING}])},null,8,["class"]),F("div",w$,[oi(i.$slots,"default",{},void 0,!0)])]),e.skill?(V(),ot(R$,{key:0,skill:e.skill},null,8,["skill"])):Ge("",!0)])]))}});const L$=Dt(M$,[["__scopeId","data-v-690b1166"]]);var Je={};const P$="Ɓ",k$="Ć”",U$="Ă",F$="ă",B$="∾",G$="∿",Y$="∾̳",q$="Ƃ",$$="Ć¢",H$="Ā“",z$="А",V$="а",W$="Ɔ",K$="Ʀ",Q$="⁔",X$="š”„",Z$="š”ž",J$="ƀ",j$="Ć ",eH="ℵ",tH="ℵ",nH="Ī‘",rH="α",iH="Ā",aH="ā",oH="⨿",sH="&",lH="&",cH="ā©•",uH="ā©“",dH="∧",_H="⩜",pH="⩘",mH="⩚",gH="∠",EH="⦤",fH="∠",SH="⦨",bH="⦩",hH="⦪",TH="⦫",vH="⦬",CH="⦭",RH="⦮",NH="⦯",OH="∔",AH="∟",yH="⊾",IH="ā¦",DH="∢",xH="ƅ",wH="ā¼",MH="Ą",LH="ą",PH="š”ø",kH="š•’",UH="⩯",FH="ā‰ˆ",BH="ā©°",GH="ā‰Š",YH="≋",qH="'",$H="⁔",HH="ā‰ˆ",zH="ā‰Š",VH="ƅ",WH="Ć„",KH="š’œ",QH="š’¶",XH="≔",ZH="*",JH="ā‰ˆ",jH="ā‰",ez="ƃ",tz="Ć£",nz="Ƅ",rz="Ƥ",iz="∳",az="⨑",oz="ā‰Œ",sz="϶",lz="‵",cz="∽",uz="ā‹",dz="āˆ–",_z="ā«§",pz="⊽",mz="āŒ…",gz="āŒ†",Ez="āŒ…",fz="āŽµ",Sz="āŽ¶",bz="ā‰Œ",hz="Š‘",Tz="б",vz="ā€ž",Cz="∵",Rz="∵",Nz="∵",Oz="⦰",Az="϶",yz="ℬ",Iz="ℬ",Dz="Ī’",xz="β",wz="ā„¶",Mz="≬",Lz="š”…",Pz="š”Ÿ",kz="ā‹‚",Uz="ā—Æ",Fz="ā‹ƒ",Bz="⨀",Gz="⨁",Yz="⨂",qz="⨆",$z="ā˜…",Hz="ā–½",zz="ā–³",Vz="⨄",Wz="⋁",Kz="ā‹€",Qz="ā¤",Xz="ā§«",Zz="ā–Ŗ",Jz="ā–“",jz="ā–¾",eV="ā—‚",tV="ā–ø",nV="␣",rV="ā–’",iV="ā–‘",aV="ā–“",oV="ā–ˆ",sV="=⃄",lV="ā‰”āƒ„",cV="ā«­",uV="⌐",dV="š”¹",_V="š•“",pV="⊄",mV="⊄",gV="ā‹ˆ",EV="⧉",fV="┐",SV="ā••",bV="ā•–",hV="ā•—",TV="ā”Œ",vV="ā•’",CV="ā•“",RV="ā•”",NV="─",OV="═",AV="┬",yV="╤",IV="ā•„",DV="╦",xV="┓",wV="ā•§",MV="╨",LV="ā•©",PV="⊟",kV="āŠž",UV="⊠",FV="ā”˜",BV="ā•›",GV="ā•œ",YV="ā•",qV="ā””",$V="ā•˜",HV="ā•™",zV="ā•š",VV="│",WV="ā•‘",KV="┼",QV="╪",XV="ā•«",ZV="╬",JV="┤",jV="ā•”",eW="ā•¢",tW="ā•£",nW="ā”œ",rW="ā•ž",iW="ā•Ÿ",aW="ā• ",oW="‵",sW="˘",lW="˘",cW="¦",uW="š’·",dW="ℬ",_W="ā",pW="∽",mW="ā‹",gW="ā§…",EW="\\",fW="⟈",SW="•",bW="•",hW="ā‰Ž",TW="āŖ®",vW="ā‰",CW="ā‰Ž",RW="ā‰",NW="Ć",OW="ć",AW="ā©„",yW="⩉",IW="ā©‹",DW="∩",xW="ā‹’",wW="⩇",MW="ā©€",LW="ā……",PW="āˆ©ļø€",kW="⁁",UW="ˇ",FW="ā„­",BW="ā©",GW="Č",YW="č",qW="Ƈ",$W="Ƨ",HW="Ĉ",zW="ĉ",VW="∰",WW="⩌",KW="⩐",QW="Ċ",XW="ċ",ZW="Āø",JW="Āø",jW="⦲",e3="Ā¢",t3="Ā·",n3="Ā·",r3="š” ",i3="ā„­",a3="Ч",o3="ч",s3="āœ“",l3="āœ“",c3="Χ",u3="χ",d3="ˆ",_3="≗",p3="↺",m3="↻",g3="āŠ›",E3="⊚",f3="āŠ",S3="āŠ™",b3="Ā®",h3="ā“ˆ",T3="āŠ–",v3="āŠ•",C3="āŠ—",R3="ā—‹",N3="⧃",O3="≗",A3="⨐",y3="⫯",I3="ā§‚",D3="∲",x3="ā€",w3="’",M3="♣",L3="♣",P3=":",k3="∷",U3="ā©“",F3="≔",B3="≔",G3=",",Y3="@",q3="∁",$3="∘",H3="∁",z3="ā„‚",V3="≅",W3="ā©­",K3="≔",Q3="∮",X3="∯",Z3="∮",J3="š•”",j3="ā„‚",eK="∐",tK="∐",nK="Ā©",rK="Ā©",iK="ā„—",aK="∳",oK="↵",sK="āœ—",lK="⨯",cK="š’ž",uK="š’ø",dK="ā«",_K="ā«‘",pK="⫐",mK="ā«’",gK="⋯",EK="⤸",fK="⤵",SK="ā‹ž",bK="ā‹Ÿ",hK="↶",TK="⤽",vK="⩈",CK="⩆",RK="ā‰",NK="∪",OK="ā‹“",AK="⩊",yK="āŠ",IK="ā©…",DK="āˆŖļø€",xK="↷",wK="⤼",MK="ā‹ž",LK="ā‹Ÿ",PK="ā‹Ž",kK="ā‹",UK="¤",FK="↶",BK="↷",GK="ā‹Ž",YK="ā‹",qK="∲",$K="∱",HK="⌭",zK="†",VK="—",WK="ℸ",KK="↓",QK="↔",XK="⇓",ZK="‐",JK="⫤",jK="⊣",eQ="ā¤",tQ="Ė",nQ="Ď",rQ="ď",iQ="Š”",aQ="Š“",oQ="—",sQ="ā‡Š",lQ="ā……",cQ="ā…†",uQ="⤑",dQ="ā©·",_Q="°",pQ="āˆ‡",mQ="Ī”",gQ="Ī“",EQ="⦱",fQ="ℿ",SQ="š”‡",bQ="š””",hQ="ā„„",TQ="ā‡ƒ",vQ="⇂",CQ="Ā“",RQ="Ė™",NQ="Ė",OQ="`",AQ="˜",yQ="ā‹„",IQ="ā‹„",DQ="ā‹„",xQ="♦",wQ="♦",MQ="ĀØ",LQ="ā…†",PQ="Ļ",kQ="⋲",UQ="Ć·",FQ="Ć·",BQ="⋇",GQ="⋇",YQ="Š‚",qQ="ђ",$Q="āŒž",HQ="āŒ",zQ="$",VQ="š”»",WQ="š••",KQ="ĀØ",QQ="Ė™",XQ="⃜",ZQ="≐",JQ="≑",jQ="≐",e4="∸",t4="āˆ”",n4="⊔",r4="āŒ†",i4="∯",a4="ĀØ",o4="⇓",s4="⇐",l4="⇔",c4="⫤",u4="⟸",d4="⟺",_4="⟹",p4="⇒",m4="⊨",g4="⇑",E4="⇕",f4="∄",S4="⤓",b4="↓",h4="↓",T4="⇓",v4="⇵",C4="Ģ‘",R4="ā‡Š",N4="ā‡ƒ",O4="⇂",A4="ℐ",y4="ā„ž",I4="ā„–",D4="↽",x4="℟",w4="ā„—",M4="⇁",L4="↧",P4="⊤",k4="⤐",U4="⌟",F4="⌌",B4="š’Ÿ",G4="š’¹",Y4="Š…",q4="ѕ",$4="ā§¶",H4="Đ",z4="đ",V4="⋱",W4="ā–æ",K4="ā–¾",Q4="⇵",X4="ℯ",Z4="⦦",J4="Š",j4="џ",e5="⟿",t5="Ɖ",n5="Ć©",r5="ā©®",i5="Ě",a5="ě",o5="Ê",s5="ĆŖ",l5="≖",c5="≕",u5="Š­",d5="э",_5="ā©·",p5="Ė",m5="ė",g5="≑",E5="ā…‡",f5="≒",S5="š”ˆ",b5="š”¢",h5="⪚",T5="ƈ",v5="ĆØ",C5="āŖ–",R5="⪘",N5="āŖ™",O5="∈",A5="ā§",y5="ā„“",I5="āŖ•",D5="āŖ—",x5="Ē",w5="ē",M5="āˆ…",L5="āˆ…",P5="ā—»",k5="āˆ…",U5="ā–«",F5=" ",B5=" ",G5="ā€ƒ",Y5="Ŋ",q5="ŋ",$5=" ",H5="Ę",z5="ę",V5="š”¼",W5="š•–",K5="ā‹•",Q5="ā§£",X5="⩱",Z5="ε",J5="Ī•",j5="ε",e6="ϵ",t6="≖",n6="≕",r6="≂",i6="āŖ–",a6="āŖ•",o6="⩵",s6="=",l6="≂",c6="ā‰Ÿ",u6="ā‡Œ",d6="≔",_6="⩸",p6="ā§„",m6="ℱ",g6="≓",E6="ℯ",f6="ā„°",S6="≐",b6="⩳",h6="≂",T6="Ī—",v6="Ī·",C6="Ɛ",R6="ư",N6="Ƌ",O6="Ć«",A6="€",y6="!",I6="∃",D6="∃",x6="ā„°",w6="ā…‡",M6="ā…‡",L6="≒",P6="Ф",k6="ф",U6="♀",F6="ffi",B6="ff",G6="ffl",Y6="š”‰",q6="š”£",$6="fi",H6="ā—¼",z6="ā–Ŗ",V6="fj",W6="ā™­",K6="fl",Q6="ā–±",X6="ʒ",Z6="š”½",J6="š•—",j6="āˆ€",e9="āˆ€",t9="ā‹”",n9="ā«™",r9="ℱ",i9="āØ",a9="½",o9="ā…“",s9="¼",l9="ā…•",c9="ā…™",u9="ā…›",d9="ā…”",_9="ā…–",p9="¾",m9="ā…—",g9="ā…œ",E9="ā…˜",f9="ā…š",S9="ā…",b9="ā…ž",h9="⁄",T9="⌢",v9="š’»",C9="ℱ",R9="ǵ",N9="Ī“",O9="γ",A9="Ϝ",y9="Ļ",I9="āŖ†",D9="Ğ",x9="ğ",w9="Ä¢",M9="Ĝ",L9="ĝ",P9="Š“",k9="г",U9="Ä ",F9="Ä”",B9="≄",G9="≧",Y9="⪌",q9="ā‹›",$9="≄",H9="≧",z9="⩾",V9="āŖ©",W9="⩾",K9="āŖ€",Q9="āŖ‚",X9="āŖ„",Z9="⋛︀",J9="āŖ”",j9="š”Š",e8="š”¤",t8="≫",n8="ā‹™",r8="ā‹™",i8="ā„·",a8="Ѓ",o8="ѓ",s8="āŖ„",l8="≷",c8="āŖ’",u8="āŖ¤",d8="⪊",_8="⪊",p8="⪈",m8="≩",g8="⪈",E8="≩",f8="ā‹§",S8="š”¾",b8="š•˜",h8="`",T8="≄",v8="ā‹›",C8="≧",R8="āŖ¢",N8="≷",O8="⩾",A8="≳",y8="š’¢",I8="ā„Š",D8="≳",x8="āŖŽ",w8="⪐",M8="āŖ§",L8="⩺",P8=">",k8=">",U8="≫",F8="ā‹—",B8="⦕",G8="⩼",Y8="āŖ†",q8="ℸ",$8="ā‹—",H8="ā‹›",z8="⪌",V8="≷",W8="≳",K8="≩︀",Q8="≩︀",X8="ˇ",Z8="ā€Š",J8="½",j8="ā„‹",e7="ŠŖ",t7="ъ",n7="℈",r7="↔",i7="⇔",a7="↭",o7="^",s7="ā„",l7="Ĥ",c7="Ä„",u7="♄",d7="♄",_7="…",p7="⊹",m7="š”„",g7="ā„Œ",E7="ā„‹",f7="⤄",S7="⤦",b7="⇿",h7="∻",T7="↩",v7="↪",C7="š•™",R7="ā„",N7="―",O7="─",A7="š’½",y7="ā„‹",I7="ā„",D7="Ħ",x7="ħ",w7="ā‰Ž",M7="ā‰",L7="⁃",P7="‐",k7="ƍ",U7="Ć­",F7="⁣",B7="Ǝ",G7="Ć®",Y7="И",q7="Šø",$7="İ",H7="Š•",z7="е",V7="Ā”",W7="⇔",K7="š”¦",Q7="ā„‘",X7="Ì",Z7="Ƭ",J7="ā…ˆ",j7="⨌",eX="∭",tX="⧜",nX="ā„©",rX="IJ",iX="ij",aX="ÄŖ",oX="Ä«",sX="ā„‘",lX="ā…ˆ",cX="ℐ",uX="ā„‘",dX="ı",_X="ā„‘",pX="⊷",mX="ʵ",gX="⇒",EX="ā„…",fX="āˆž",SX="ā§",bX="ı",hX="⊺",TX="∫",vX="∬",CX="ℤ",RX="∫",NX="⊺",OX="ā‹‚",AX="⨗",yX="⨼",IX="⁣",DX="⁢",xX="Ё",wX="ё",MX="Ä®",LX="ÄÆ",PX="š•€",kX="š•š",UX="Ī™",FX="ι",BX="⨼",GX="Āæ",YX="š’¾",qX="ℐ",$X="∈",HX="⋵",zX="⋹",VX="ā‹“",WX="⋳",KX="∈",QX="⁢",XX="ÄØ",ZX="Ä©",JX="І",jX="і",eZ="Ə",tZ="ĆÆ",nZ="Ä“",rZ="ĵ",iZ="Š™",aZ="й",oZ="š”",sZ="š”§",lZ="Č·",cZ="š•",uZ="š•›",dZ="š’„",_Z="š’æ",pZ="Ј",mZ="ј",gZ="Š„",EZ="є",fZ="Κ",SZ="Īŗ",bZ="ϰ",hZ="Ķ",TZ="Ä·",vZ="К",CZ="Šŗ",RZ="š”Ž",NZ="š”Ø",OZ="Äø",AZ="Š„",yZ="х",IZ="Ќ",DZ="ќ",xZ="š•‚",wZ="š•œ",MZ="š’¦",LZ="š“€",PZ="ā‡š",kZ="Ĺ",UZ="Äŗ",FZ="⦓",BZ="ā„’",GZ="Ī›",YZ="Ī»",qZ="⟨",$Z="⟪",HZ="⦑",zZ="⟨",VZ="āŖ…",WZ="ā„’",KZ="Ā«",QZ="⇤",XZ="⤟",ZZ="←",JZ="ā†ž",jZ="⇐",eJ="ā¤",tJ="↩",nJ="↫",rJ="⤹",iJ="ℳ",aJ="↢",oJ="⤙",sJ="⤛",lJ="āŖ«",cJ="āŖ­",uJ="āŖ­ļø€",dJ="⤌",_J="ā¤Ž",pJ="ā²",mJ="{",gJ="[",EJ="⦋",fJ="ā¦",SJ="ā¦",bJ="Ľ",hJ="ľ",TJ="Ä»",vJ="ļ",CJ="⌈",RJ="{",NJ="Š›",OJ="Š»",AJ="⤶",yJ="ā€œ",IJ="ā€ž",DJ="ā„§",xJ="ā„‹",wJ="↲",MJ="≤",LJ="≦",PJ="⟨",kJ="⇤",UJ="←",FJ="←",BJ="⇐",GJ="⇆",YJ="↢",qJ="⌈",$J="⟦",HJ="ā„”",zJ="ā„™",VJ="ā‡ƒ",WJ="⌊",KJ="↽",QJ="↼",XJ="⇇",ZJ="↔",JJ="↔",jJ="⇔",ej="⇆",tj="⇋",nj="↭",rj="ā„Ž",ij="↤",aj="⊣",oj="ℚ",sj="ā‹‹",lj="ā§",cj="⊲",uj="⊓",dj="ā„‘",_j="ā„ ",pj="℘",mj="↿",gj="ā„’",Ej="↼",fj="āŖ‹",Sj="ā‹š",bj="≤",hj="≦",Tj="⩽",vj="āŖØ",Cj="⩽",Rj="⩿",Nj="⪁",Oj="⪃",Aj="ā‹šļø€",yj="āŖ“",Ij="āŖ…",Dj="ā‹–",xj="ā‹š",wj="āŖ‹",Mj="ā‹š",Lj="≦",Pj="≶",kj="≶",Uj="āŖ”",Fj="≲",Bj="⩽",Gj="≲",Yj="ℼ",qj="⌊",$j="š”",Hj="š”©",zj="≶",Vj="āŖ‘",Wj="ā„¢",Kj="↽",Qj="↼",Xj="K",Zj="ā–„",Jj="Љ",jj="љ",eee="⇇",tee="≪",nee="ā‹˜",ree="āŒž",iee="ā‡š",aee="ā„«",oee="ā—ŗ",see="Äæ",lee="ŀ",cee="āŽ°",uee="āŽ°",dee="āŖ‰",_ee="āŖ‰",pee="āŖ‡",mee="≨",gee="āŖ‡",Eee="≨",fee="⋦",See="⟬",bee="⇽",hee="⟦",Tee="⟵",vee="⟵",Cee="⟸",Ree="⟷",Nee="⟷",Oee="⟺",Aee="⟼",yee="⟶",Iee="⟶",Dee="⟹",xee="↫",wee="↬",Mee="⦅",Lee="š•ƒ",Pee="š•",kee="⨭",Uee="⨓",Fee="āˆ—",Bee="_",Gee="↙",Yee="ā†˜",qee="ā—Š",$ee="ā—Š",Hee="ā§«",zee="(",Vee="⦓",Wee="⇆",Kee="⌟",Qee="⇋",Xee="ā„­",Zee="ā€Ž",Jee="⊿",jee="‹",ete="š“",tte="ā„’",nte="↰",rte="↰",ite="≲",ate="āŖ",ote="āŖ",ste="[",lte="ā€˜",cte="ā€š",ute="Ł",dte="ł",_te="āŖ¦",pte="⩹",mte="<",gte="<",Ete="≪",fte="ā‹–",Ste="ā‹‹",bte="⋉",hte="ā„¶",Tte="ā©»",vte="ā—ƒ",Cte="⊓",Rte="ā—‚",Nte="⦖",Ote="ℊ",Ate="Ω",yte="≨︀",Ite="≨︀",Dte="ĀÆ",xte="♂",wte="✠",Mte="✠",Lte="↦",Pte="↦",kte="↧",Ute="↤",Fte="ↄ",Bte="ā–®",Gte="⨩",Yte="М",qte="м",$te="—",Hte="∺",zte="∔",Vte=" ",Wte="ℳ",Kte="š”",Qte="š”Ŗ",Xte="ā„§",Zte="µ",Jte="*",jte="ā«°",ene="∣",tne="Ā·",nne="⊟",rne="āˆ’",ine="∸",ane="⨪",one="āˆ“",sne="ā«›",lne="…",cne="āˆ“",une="⊧",dne="š•„",_ne="š•ž",pne="āˆ“",mne="š“‚",gne="ℳ",Ene="∾",fne="Μ",Sne="μ",bne="⊸",hne="⊸",Tne="āˆ‡",vne="Ń",Cne="ń",Rne="āˆ āƒ’",Nne="≉",One="ā©°Ģø",Ane="≋̸",yne="ʼn",Ine="≉",Dne="ā™®",xne="ā„•",wne="ā™®",Mne="Ā ",Lne="ā‰ŽĢø",Pne="ā‰Ģø",kne="⩃",Une="Ň",Fne="ň",Bne="Ņ",Gne="ņ",Yne="≇",qne="ā©­Ģø",$ne="ā©‚",Hne="Š",zne="н",Vne="–",Wne="⤤",Kne="↗",Qne="⇗",Xne="↗",Zne="≠",Jne="≐̸",jne="​",ere="​",tre="​",nre="​",rre="≢",ire="⤨",are="≂̸",ore="≫",sre="≪",lre=` -`,cre="āˆ„",ure="āˆ„",dre="š”‘",_re="š”«",pre="≧̸",mre="≱",gre="≱",Ere="≧̸",fre="⩾̸",Sre="⩾̸",bre="⋙̸",hre="≵",Tre="ā‰«āƒ’",vre="≯",Cre="≯",Rre="≫̸",Nre="↮",Ore="ā‡Ž",Are="⫲",yre="āˆ‹",Ire="⋼",Dre="⋺",xre="āˆ‹",wre="Њ",Mre="њ",Lre="ā†š",Pre="ā‡",kre=" ",Ure="≦̸",Fre="≰",Bre="ā†š",Gre="ā‡",Yre="↮",qre="ā‡Ž",$re="≰",Hre="≦̸",zre="⩽̸",Vre="⩽̸",Wre="≮",Kre="ā‹˜Ģø",Qre="≓",Xre="ā‰Ŗāƒ’",Zre="≮",Jre="⋪",jre="⋬",eie="≪̸",tie="∤",nie="⁠",rie="Ā ",iie="š•Ÿ",aie="ā„•",oie="⫬",sie="¬",lie="≢",cie="≭",uie="∦",die="āˆ‰",_ie="≠",pie="≂̸",mie="āˆ„",gie="≯",Eie="≱",fie="≧̸",Sie="≫̸",bie="≹",hie="⩾̸",Tie="≵",vie="ā‰ŽĢø",Cie="ā‰Ģø",Rie="āˆ‰",Nie="⋵̸",Oie="⋹̸",Aie="āˆ‰",yie="ā‹·",Iie="ā‹¶",Die="ā§Ģø",xie="⋪",wie="⋬",Mie="≮",Lie="≰",Pie="≸",kie="≪̸",Uie="⩽̸",Fie="≓",Bie="⪢̸",Gie="⪔̸",Yie="∌",qie="∌",$ie="⋾",Hie="⋽",zie="āŠ€",Vie="āŖÆĢø",Wie="ā‹ ",Kie="∌",Qie="⧐̸",Xie="ā‹«",Zie="ā‹­",Jie="āŠĢø",jie="ā‹¢",eae="⊐̸",tae="ā‹£",nae="āŠ‚āƒ’",rae="⊈",iae="⊁",aae="āŖ°Ģø",oae="ā‹”",sae="≿̸",lae="āŠƒāƒ’",cae="āŠ‰",uae="≁",dae="≄",_ae="≇",pae="≉",mae="∤",gae="∦",Eae="∦",fae="⫽⃄",Sae="āˆ‚Ģø",bae="⨔",hae="āŠ€",Tae="ā‹ ",vae="āŠ€",Cae="āŖÆĢø",Rae="āŖÆĢø",Nae="⤳̸",Oae="↛",Aae="ā‡",yae="ā†Ģø",Iae="↛",Dae="ā‡",xae="ā‹«",wae="ā‹­",Mae="⊁",Lae="ā‹”",Pae="āŖ°Ģø",kae="š’©",Uae="š“ƒ",Fae="∤",Bae="∦",Gae="≁",Yae="≄",qae="≄",$ae="∤",Hae="∦",zae="ā‹¢",Vae="ā‹£",Wae="āŠ„",Kae="ā«…Ģø",Qae="⊈",Xae="āŠ‚āƒ’",Zae="⊈",Jae="ā«…Ģø",jae="⊁",eoe="āŖ°Ģø",toe="āŠ…",noe="⫆̸",roe="āŠ‰",ioe="āŠƒāƒ’",aoe="āŠ‰",ooe="⫆̸",soe="≹",loe="Ƒ",coe="Ʊ",uoe="≸",doe="⋪",_oe="⋬",poe="ā‹«",moe="ā‹­",goe="Ī",Eoe="ν",foe="#",Soe="ā„–",boe=" ",hoe="ā‰āƒ’",Toe="⊬",voe="⊭",Coe="⊮",Roe="⊯",Noe="ā‰„āƒ’",Ooe=">āƒ’",Aoe="⤄",yoe="ā§ž",Ioe="⤂",Doe="ā‰¤āƒ’",xoe="<āƒ’",woe="āŠ“āƒ’",Moe="⤃",Loe="āŠµāƒ’",Poe="āˆ¼āƒ’",koe="⤣",Uoe="↖",Foe="⇖",Boe="↖",Goe="⤧",Yoe="Ɠ",qoe="ó",$oe="āŠ›",Hoe="Ɣ",zoe="Ć“",Voe="⊚",Woe="Šž",Koe="о",Qoe="āŠ",Xoe="Ő",Zoe="ő",Joe="⨸",joe="āŠ™",ese="⦼",tse="Œ",nse="œ",rse="⦿",ise="š”’",ase="š”¬",ose="Ė›",sse="ƒ",lse="ò",cse="⧁",use="⦵",dse="Ī©",_se="∮",pse="↺",mse="⦾",gse="⦻",Ese="‾",fse="ā§€",Sse="Ō",bse="ō",hse="Ī©",Tse="ω",vse="Ο",Cse="Īæ",Rse="⦶",Nse="āŠ–",Ose="š•†",Ase="š• ",yse="⦷",Ise="ā€œ",Dse="ā€˜",xse="⦹",wse="āŠ•",Mse="↻",Lse="ā©”",Pse="∨",kse="ā©",Use="ā„“",Fse="ā„“",Bse="ĀŖ",Gse="Āŗ",Yse="⊶",qse="ā©–",$se="ā©—",Hse="ā©›",zse="ā“ˆ",Vse="š’Ŗ",Wse="ā„“",Kse="Ƙ",Qse="Ćø",Xse="⊘",Zse="ƕ",Jse="Ƶ",jse="⨶",ele="⨷",tle="āŠ—",nle="Ɩ",rle="ƶ",ile="⌽",ale="‾",ole="āž",sle="āŽ“",lle="āœ",cle="¶",ule="∄",dle="∄",_le="⫳",ple="⫽",mle="āˆ‚",gle="āˆ‚",Ele="П",fle="Šæ",Sle="%",ble=".",hle="‰",Tle="⊄",vle="‱",Cle="š”“",Rle="š”­",Nle="Φ",Ole="φ",Ale="Ļ•",yle="ℳ",Ile="ā˜Ž",Dle="Ī ",xle="Ļ€",wle="ā‹”",Mle="Ļ–",Lle="ā„",Ple="ā„Ž",kle="ā„",Ule="⨣",Fle="āŠž",Ble="⨢",Gle="+",Yle="āˆ”",qle="⨄",$le="⩲",Hle="±",zle="±",Vle="⨦",Wle="⨧",Kle="±",Qle="ā„Œ",Xle="⨕",Zle="š•”",Jle="ā„™",jle="Ā£",ece="āŖ·",tce="āŖ»",nce="≺",rce="≼",ice="āŖ·",ace="≺",oce="≼",sce="≺",lce="āŖÆ",cce="≼",uce="≾",dce="āŖÆ",_ce="āŖ¹",pce="āŖµ",mce="⋨",gce="āŖÆ",Ece="āŖ³",fce="≾",Sce="′",bce="″",hce="ā„™",Tce="āŖ¹",vce="āŖµ",Cce="⋨",Rce="āˆ",Nce="āˆ",Oce="⌮",Ace="āŒ’",yce="āŒ“",Ice="āˆ",Dce="āˆ",xce="∷",wce="āˆ",Mce="≾",Lce="⊰",Pce="š’«",kce="š“…",Uce="ĪØ",Fce="ψ",Bce="ā€ˆ",Gce="š””",Yce="š”®",qce="⨌",$ce="š•¢",Hce="ā„š",zce="⁗",Vce="š’¬",Wce="š“†",Kce="ā„",Qce="⨖",Xce="?",Zce="ā‰Ÿ",Jce='"',jce='"',eue="⇛",tue="∽̱",nue="Ŕ",rue="ŕ",iue="√",aue="⦳",oue="⟩",sue="⟫",lue="⦒",cue="⦄",uue="⟩",due="Ā»",_ue="ℵ",pue="⇄",mue="⤠",gue="⤳",Eue="→",fue="↠",Sue="⇒",bue="ā¤ž",hue="↪",Tue="↬",vue="ā„…",Cue="ā„“",Rue="⤖",Nue="↣",Oue="ā†",Aue="⤚",yue="⤜",Iue="∶",Due="ā„š",xue="ā¤",wue="ā¤",Mue="⤐",Lue="ā³",Pue="}",kue="]",Uue="⦌",Fue="ā¦Ž",Bue="⦐",Gue="Ř",Yue="ř",que="Ŗ",$ue="ŗ",Hue="āŒ‰",zue="}",Vue="Š ",Wue="р",Kue="⤷",Que="ā„©",Xue="ā€",Zue="ā€",Jue="↳",jue="ā„œ",ede="ā„›",tde="ā„œ",nde="ā„",rde="ā„œ",ide="ā–­",ade="Ā®",ode="Ā®",sde="āˆ‹",lde="⇋",cde="ℯ",ude="ℽ",dde="āŒ‹",_de="š”Æ",pde="ā„œ",mde="ℤ",gde="⇁",Ede="⇀",fde="ℬ",Sde="Ī”",bde="ρ",hde="ϱ",Tde="⟩",vde="⇄",Cde="→",Rde="→",Nde="⇒",Ode="⇄",Ade="↣",yde="āŒ‰",Ide="⟧",Dde="ā„",xde="ā„•",wde="⇂",Mde="āŒ‹",Lde="⇁",Pde="⇀",kde="⇄",Ude="ā‡Œ",Fde="⇉",Bde="ā†",Gde="↦",Yde="⊢",qde="ā„›",$de="ā‹Œ",Hde="⧐",zde="⊳",Vde="⊵",Wde="ā„",Kde="ℜ",Qde="ā„”",Xde="↾",Zde="ā„“",Jde="⇀",jde="˚",e_e="≓",t_e="⇄",n_e="ā‡Œ",r_e="ā€",i_e="āŽ±",a_e="āŽ±",o_e="ā«®",s_e="⟭",l_e="⇾",c_e="⟧",u_e="⦆",d_e="š•£",__e="ā„",p_e="⨮",m_e="⨵",g_e="ā„°",E_e=")",f_e="⦔",S_e="⨒",b_e="⇉",h_e="⇛",T_e="›",v_e="š“‡",C_e="ā„›",R_e="↱",N_e="↱",O_e="]",A_e="’",y_e="’",I_e="ā‹Œ",D_e="ā‹Š",x_e="ā–¹",w_e="⊵",M_e="ā–ø",L_e="ā§Ž",P_e="ā§“",k_e="ℨ",U_e="ā„ž",F_e="Ś",B_e="ś",G_e="ā€š",Y_e="āŖø",q_e="Å ",$_e="Å”",H_e="āŖ¼",z_e="≻",V_e="≽",W_e="āŖ°",K_e="āŖ“",Q_e="Ş",X_e="ş",Z_e="Ŝ",J_e="ŝ",j_e="āŖŗ",epe="āŖ¶",tpe="ā‹©",npe="⨓",rpe="≿",ipe="Š”",ape="с",ope="⊔",spe="ā‹…",lpe="⩦",cpe="⤄",upe="ā†˜",dpe="ā‡˜",_pe="ā†˜",ppe="§",mpe=";",gpe="⤩",Epe="āˆ–",fpe="āˆ–",Spe="✶",bpe="š”–",hpe="š”°",Tpe="⌢",vpe="♯",Cpe="Š©",Rpe="щ",Npe="ŠØ",Ope="ш",Ape="↓",ype="←",Ipe="∣",Dpe="∄",xpe="→",wpe="↑",Mpe="Ā­",Lpe="Ī£",Ppe="σ",kpe="Ļ‚",Upe="Ļ‚",Fpe="∼",Bpe="⩪",Gpe="ā‰ƒ",Ype="ā‰ƒ",qpe="āŖž",$pe="āŖ ",Hpe="āŖ",zpe="⪟",Vpe="≆",Wpe="⨤",Kpe="Ⅎ",Qpe="←",Xpe="∘",Zpe="āˆ–",Jpe="⨳",jpe="⧤",eme="∣",tme="⌣",nme="āŖŖ",rme="āŖ¬",ime="⪬︀",ame="Ь",ome="ь",sme="⌿",lme="ā§„",cme="/",ume="š•Š",dme="š•¤",_me="ā™ ",pme="ā™ ",mme="∄",gme="āŠ“",Eme="āŠ“ļø€",fme="āŠ”",Sme="āŠ”ļø€",bme="√",hme="āŠ",Tme="āŠ‘",vme="āŠ",Cme="āŠ‘",Rme="⊐",Nme="āŠ’",Ome="⊐",Ame="āŠ’",yme="ā–”",Ime="ā–”",Dme="āŠ“",xme="āŠ",wme="āŠ‘",Mme="⊐",Lme="āŠ’",Pme="āŠ”",kme="ā–Ŗ",Ume="ā–”",Fme="ā–Ŗ",Bme="→",Gme="š’®",Yme="š“ˆ",qme="āˆ–",$me="⌣",Hme="⋆",zme="⋆",Vme="ā˜†",Wme="ā˜…",Kme="ϵ",Qme="Ļ•",Xme="ĀÆ",Zme="āŠ‚",Jme="⋐",jme="āŖ½",ege="ā«…",tge="āŠ†",nge="⫃",rge="⫁",ige="ā«‹",age="⊊",oge="āŖæ",sge="ℹ",lge="āŠ‚",cge="⋐",uge="āŠ†",dge="ā«…",_ge="āŠ†",pge="⊊",mge="ā«‹",gge="⫇",Ege="ā«•",fge="ā«“",Sge="āŖø",bge="≻",hge="≽",Tge="≻",vge="āŖ°",Cge="≽",Rge="≿",Nge="āŖ°",Oge="āŖŗ",Age="āŖ¶",yge="ā‹©",Ige="≿",Dge="āˆ‹",xge="āˆ‘",wge="āˆ‘",Mge="♪",Lge="¹",Pge="²",kge="³",Uge="⊃",Fge="ā‹‘",Bge="āŖ¾",Gge="⫘",Yge="⫆",qge="āŠ‡",$ge="ā«„",Hge="⊃",zge="āŠ‡",Vge="āŸ‰",Wge="ā«—",Kge="ā„»",Qge="ā«‚",Xge="⫌",Zge="āŠ‹",Jge="ā«€",jge="⊃",eEe="ā‹‘",tEe="āŠ‡",nEe="⫆",rEe="āŠ‹",iEe="⫌",aEe="⫈",oEe="ā«”",sEe="ā«–",lEe="⤦",cEe="↙",uEe="⇙",dEe="↙",_Ee="⤪",pEe="ß",mEe=" ",gEe="āŒ–",EEe="Τ",fEe="Ļ„",SEe="āŽ“",bEe="Ť",hEe="Å„",TEe="Å¢",vEe="Å£",CEe="Š¢",REe="т",NEe="āƒ›",OEe="āŒ•",AEe="š”—",yEe="š”±",IEe="∓",DEe="∓",xEe="∓",wEe="Θ",MEe="Īø",LEe="Ļ‘",PEe="Ļ‘",kEe="ā‰ˆ",UEe="∼",FEe="āŸā€Š",BEe=" ",GEe=" ",YEe="ā‰ˆ",qEe="∼",$Ee="ƞ",HEe="þ",zEe="˜",VEe="∼",WEe="ā‰ƒ",KEe="≅",QEe="ā‰ˆ",XEe="⨱",ZEe="⊠",JEe="Ɨ",jEe="⨰",efe="∭",tfe="⤨",nfe="⌶",rfe="⫱",ife="⊤",afe="š•‹",ofe="š•„",sfe="⫚",lfe="⤩",cfe="–",ufe="ā„¢",dfe="ā„¢",_fe="ā–µ",pfe="ā–æ",mfe="ā—ƒ",gfe="⊓",Efe="ā‰œ",ffe="ā–¹",Sfe="⊵",bfe="ā—¬",hfe="ā‰œ",Tfe="⨺",vfe="āƒ›",Cfe="⨹",Rfe="ā§",Nfe="⨻",Ofe="ā¢",Afe="š’Æ",yfe="š“‰",Ife="Ц",Dfe="ц",xfe="Š‹",wfe="ћ",Mfe="Ŧ",Lfe="ŧ",Pfe="≬",kfe="ā†ž",Ufe="↠",Ffe="Ú",Bfe="Ćŗ",Gfe="↑",Yfe="ā†Ÿ",qfe="⇑",$fe="℉",Hfe="ŠŽ",zfe="ў",Vfe="Ŭ",Wfe="Å­",Kfe="ƛ",Qfe="Ć»",Xfe="Š£",Zfe="у",Jfe="⇅",jfe="Ű",eSe="ű",tSe="ā„®",nSe="ℾ",rSe="š”˜",iSe="š”²",aSe="ƙ",oSe="ù",sSe="ā„£",lSe="↿",cSe="↾",uSe="ā–€",dSe="⌜",_Se="⌜",pSe="āŒ",mSe="ā—ø",gSe="ÅŖ",ESe="Å«",fSe="ĀØ",SSe="_",bSe="āŸ",hSe="āŽµ",TSe="ā",vSe="ā‹ƒ",CSe="āŠŽ",RSe="Ų",NSe="ų",OSe="š•Œ",ASe="š•¦",ySe="⤒",ISe="↑",DSe="↑",xSe="⇑",wSe="⇅",MSe="↕",LSe="↕",PSe="⇕",kSe="ā„®",USe="↿",FSe="↾",BSe="āŠŽ",GSe="↖",YSe="↗",qSe="Ļ…",$Se="Ļ’",HSe="Ļ’",zSe="Ī„",VSe="Ļ…",WSe="ↄ",KSe="⊄",QSe="ā‡ˆ",XSe="āŒ",ZSe="āŒ",JSe="āŒŽ",jSe="Å®",ebe="ÅÆ",tbe="ā—¹",nbe="š’°",rbe="š“Š",ibe="ā‹°",abe="ÅØ",obe="Å©",sbe="ā–µ",lbe="ā–“",cbe="ā‡ˆ",ube="Ü",dbe="ü",_be="⦧",pbe="⦜",mbe="ϵ",gbe="ϰ",Ebe="āˆ…",fbe="Ļ•",Sbe="Ļ–",bbe="āˆ",hbe="↕",Tbe="⇕",vbe="ϱ",Cbe="Ļ‚",Rbe="āŠŠļø€",Nbe="ā«‹ļø€",Obe="āŠ‹ļø€",Abe="ā«Œļø€",ybe="Ļ‘",Ibe="⊲",Dbe="⊳",xbe="⫨",wbe="ā««",Mbe="ā«©",Lbe="Š’",Pbe="в",kbe="⊢",Ube="⊨",Fbe="⊩",Bbe="⊫",Gbe="⫦",Ybe="⊻",qbe="∨",$be="⋁",Hbe="ā‰š",zbe="ā‹®",Vbe="|",Wbe="‖",Kbe="|",Qbe="‖",Xbe="∣",Zbe="|",Jbe="ā˜",jbe="≀",ehe="ā€Š",the="š”™",nhe="š”³",rhe="⊲",ihe="āŠ‚āƒ’",ahe="āŠƒāƒ’",ohe="š•",she="š•§",lhe="āˆ",che="⊳",uhe="š’±",dhe="š“‹",_he="ā«‹ļø€",phe="āŠŠļø€",mhe="ā«Œļø€",ghe="āŠ‹ļø€",Ehe="⊪",fhe="⦚",She="Å“",bhe="ŵ",hhe="⩟",The="∧",vhe="ā‹€",Che="≙",Rhe="ā„˜",Nhe="š”š",Ohe="š”“",Ahe="š•Ž",yhe="š•Ø",Ihe="ā„˜",Dhe="≀",xhe="≀",whe="š’²",Mhe="š“Œ",Lhe="ā‹‚",Phe="ā—Æ",khe="ā‹ƒ",Uhe="ā–½",Fhe="š”›",Bhe="š”µ",Ghe="⟷",Yhe="⟺",qhe="Īž",$he="ξ",Hhe="⟵",zhe="⟸",Vhe="⟼",Whe="ā‹»",Khe="⨀",Qhe="š•",Xhe="š•©",Zhe="⨁",Jhe="⨂",jhe="⟶",eTe="⟹",tTe="š’³",nTe="š“",rTe="⨆",iTe="⨄",aTe="ā–³",oTe="⋁",sTe="ā‹€",lTe="Ɲ",cTe="ý",uTe="ŠÆ",dTe="я",_Te="Ŷ",pTe="Å·",mTe="Š«",gTe="ы",ETe="Ā„",fTe="š”œ",STe="š”¶",bTe="Ї",hTe="ї",TTe="š•",vTe="š•Ŗ",CTe="š’“",RTe="š“Ž",NTe="Š®",OTe="ю",ATe="Ćæ",yTe="Åø",ITe="Ź",DTe="Åŗ",xTe="Ž",wTe="ž",MTe="Š—",LTe="Š·",PTe="Å»",kTe="ż",UTe="ℨ",FTe="​",BTe="Ī–",GTe="ζ",YTe="š”·",qTe="ℨ",$Te="Š–",HTe="ж",zTe="ā‡",VTe="š•«",WTe="ℤ",KTe="š’µ",QTe="š“",XTe="ā€",ZTe="ā€Œ",JTe={Aacute:P$,aacute:k$,Abreve:U$,abreve:F$,ac:B$,acd:G$,acE:Y$,Acirc:q$,acirc:$$,acute:H$,Acy:z$,acy:V$,AElig:W$,aelig:K$,af:Q$,Afr:X$,afr:Z$,Agrave:J$,agrave:j$,alefsym:eH,aleph:tH,Alpha:nH,alpha:rH,Amacr:iH,amacr:aH,amalg:oH,amp:sH,AMP:lH,andand:cH,And:uH,and:dH,andd:_H,andslope:pH,andv:mH,ang:gH,ange:EH,angle:fH,angmsdaa:SH,angmsdab:bH,angmsdac:hH,angmsdad:TH,angmsdae:vH,angmsdaf:CH,angmsdag:RH,angmsdah:NH,angmsd:OH,angrt:AH,angrtvb:yH,angrtvbd:IH,angsph:DH,angst:xH,angzarr:wH,Aogon:MH,aogon:LH,Aopf:PH,aopf:kH,apacir:UH,ap:FH,apE:BH,ape:GH,apid:YH,apos:qH,ApplyFunction:$H,approx:HH,approxeq:zH,Aring:VH,aring:WH,Ascr:KH,ascr:QH,Assign:XH,ast:ZH,asymp:JH,asympeq:jH,Atilde:ez,atilde:tz,Auml:nz,auml:rz,awconint:iz,awint:az,backcong:oz,backepsilon:sz,backprime:lz,backsim:cz,backsimeq:uz,Backslash:dz,Barv:_z,barvee:pz,barwed:mz,Barwed:gz,barwedge:Ez,bbrk:fz,bbrktbrk:Sz,bcong:bz,Bcy:hz,bcy:Tz,bdquo:vz,becaus:Cz,because:Rz,Because:Nz,bemptyv:Oz,bepsi:Az,bernou:yz,Bernoullis:Iz,Beta:Dz,beta:xz,beth:wz,between:Mz,Bfr:Lz,bfr:Pz,bigcap:kz,bigcirc:Uz,bigcup:Fz,bigodot:Bz,bigoplus:Gz,bigotimes:Yz,bigsqcup:qz,bigstar:$z,bigtriangledown:Hz,bigtriangleup:zz,biguplus:Vz,bigvee:Wz,bigwedge:Kz,bkarow:Qz,blacklozenge:Xz,blacksquare:Zz,blacktriangle:Jz,blacktriangledown:jz,blacktriangleleft:eV,blacktriangleright:tV,blank:nV,blk12:rV,blk14:iV,blk34:aV,block:oV,bne:sV,bnequiv:lV,bNot:cV,bnot:uV,Bopf:dV,bopf:_V,bot:pV,bottom:mV,bowtie:gV,boxbox:EV,boxdl:fV,boxdL:SV,boxDl:bV,boxDL:hV,boxdr:TV,boxdR:vV,boxDr:CV,boxDR:RV,boxh:NV,boxH:OV,boxhd:AV,boxHd:yV,boxhD:IV,boxHD:DV,boxhu:xV,boxHu:wV,boxhU:MV,boxHU:LV,boxminus:PV,boxplus:kV,boxtimes:UV,boxul:FV,boxuL:BV,boxUl:GV,boxUL:YV,boxur:qV,boxuR:$V,boxUr:HV,boxUR:zV,boxv:VV,boxV:WV,boxvh:KV,boxvH:QV,boxVh:XV,boxVH:ZV,boxvl:JV,boxvL:jV,boxVl:eW,boxVL:tW,boxvr:nW,boxvR:rW,boxVr:iW,boxVR:aW,bprime:oW,breve:sW,Breve:lW,brvbar:cW,bscr:uW,Bscr:dW,bsemi:_W,bsim:pW,bsime:mW,bsolb:gW,bsol:EW,bsolhsub:fW,bull:SW,bullet:bW,bump:hW,bumpE:TW,bumpe:vW,Bumpeq:CW,bumpeq:RW,Cacute:NW,cacute:OW,capand:AW,capbrcup:yW,capcap:IW,cap:DW,Cap:xW,capcup:wW,capdot:MW,CapitalDifferentialD:LW,caps:PW,caret:kW,caron:UW,Cayleys:FW,ccaps:BW,Ccaron:GW,ccaron:YW,Ccedil:qW,ccedil:$W,Ccirc:HW,ccirc:zW,Cconint:VW,ccups:WW,ccupssm:KW,Cdot:QW,cdot:XW,cedil:ZW,Cedilla:JW,cemptyv:jW,cent:e3,centerdot:t3,CenterDot:n3,cfr:r3,Cfr:i3,CHcy:a3,chcy:o3,check:s3,checkmark:l3,Chi:c3,chi:u3,circ:d3,circeq:_3,circlearrowleft:p3,circlearrowright:m3,circledast:g3,circledcirc:E3,circleddash:f3,CircleDot:S3,circledR:b3,circledS:h3,CircleMinus:T3,CirclePlus:v3,CircleTimes:C3,cir:R3,cirE:N3,cire:O3,cirfnint:A3,cirmid:y3,cirscir:I3,ClockwiseContourIntegral:D3,CloseCurlyDoubleQuote:x3,CloseCurlyQuote:w3,clubs:M3,clubsuit:L3,colon:P3,Colon:k3,Colone:U3,colone:F3,coloneq:B3,comma:G3,commat:Y3,comp:q3,compfn:$3,complement:H3,complexes:z3,cong:V3,congdot:W3,Congruent:K3,conint:Q3,Conint:X3,ContourIntegral:Z3,copf:J3,Copf:j3,coprod:eK,Coproduct:tK,copy:nK,COPY:rK,copysr:iK,CounterClockwiseContourIntegral:aK,crarr:oK,cross:sK,Cross:lK,Cscr:cK,cscr:uK,csub:dK,csube:_K,csup:pK,csupe:mK,ctdot:gK,cudarrl:EK,cudarrr:fK,cuepr:SK,cuesc:bK,cularr:hK,cularrp:TK,cupbrcap:vK,cupcap:CK,CupCap:RK,cup:NK,Cup:OK,cupcup:AK,cupdot:yK,cupor:IK,cups:DK,curarr:xK,curarrm:wK,curlyeqprec:MK,curlyeqsucc:LK,curlyvee:PK,curlywedge:kK,curren:UK,curvearrowleft:FK,curvearrowright:BK,cuvee:GK,cuwed:YK,cwconint:qK,cwint:$K,cylcty:HK,dagger:zK,Dagger:VK,daleth:WK,darr:KK,Darr:QK,dArr:XK,dash:ZK,Dashv:JK,dashv:jK,dbkarow:eQ,dblac:tQ,Dcaron:nQ,dcaron:rQ,Dcy:iQ,dcy:aQ,ddagger:oQ,ddarr:sQ,DD:lQ,dd:cQ,DDotrahd:uQ,ddotseq:dQ,deg:_Q,Del:pQ,Delta:mQ,delta:gQ,demptyv:EQ,dfisht:fQ,Dfr:SQ,dfr:bQ,dHar:hQ,dharl:TQ,dharr:vQ,DiacriticalAcute:CQ,DiacriticalDot:RQ,DiacriticalDoubleAcute:NQ,DiacriticalGrave:OQ,DiacriticalTilde:AQ,diam:yQ,diamond:IQ,Diamond:DQ,diamondsuit:xQ,diams:wQ,die:MQ,DifferentialD:LQ,digamma:PQ,disin:kQ,div:UQ,divide:FQ,divideontimes:BQ,divonx:GQ,DJcy:YQ,djcy:qQ,dlcorn:$Q,dlcrop:HQ,dollar:zQ,Dopf:VQ,dopf:WQ,Dot:KQ,dot:QQ,DotDot:XQ,doteq:ZQ,doteqdot:JQ,DotEqual:jQ,dotminus:e4,dotplus:t4,dotsquare:n4,doublebarwedge:r4,DoubleContourIntegral:i4,DoubleDot:a4,DoubleDownArrow:o4,DoubleLeftArrow:s4,DoubleLeftRightArrow:l4,DoubleLeftTee:c4,DoubleLongLeftArrow:u4,DoubleLongLeftRightArrow:d4,DoubleLongRightArrow:_4,DoubleRightArrow:p4,DoubleRightTee:m4,DoubleUpArrow:g4,DoubleUpDownArrow:E4,DoubleVerticalBar:f4,DownArrowBar:S4,downarrow:b4,DownArrow:h4,Downarrow:T4,DownArrowUpArrow:v4,DownBreve:C4,downdownarrows:R4,downharpoonleft:N4,downharpoonright:O4,DownLeftRightVector:A4,DownLeftTeeVector:y4,DownLeftVectorBar:I4,DownLeftVector:D4,DownRightTeeVector:x4,DownRightVectorBar:w4,DownRightVector:M4,DownTeeArrow:L4,DownTee:P4,drbkarow:k4,drcorn:U4,drcrop:F4,Dscr:B4,dscr:G4,DScy:Y4,dscy:q4,dsol:$4,Dstrok:H4,dstrok:z4,dtdot:V4,dtri:W4,dtrif:K4,duarr:Q4,duhar:X4,dwangle:Z4,DZcy:J4,dzcy:j4,dzigrarr:e5,Eacute:t5,eacute:n5,easter:r5,Ecaron:i5,ecaron:a5,Ecirc:o5,ecirc:s5,ecir:l5,ecolon:c5,Ecy:u5,ecy:d5,eDDot:_5,Edot:p5,edot:m5,eDot:g5,ee:E5,efDot:f5,Efr:S5,efr:b5,eg:h5,Egrave:T5,egrave:v5,egs:C5,egsdot:R5,el:N5,Element:O5,elinters:A5,ell:y5,els:I5,elsdot:D5,Emacr:x5,emacr:w5,empty:M5,emptyset:L5,EmptySmallSquare:P5,emptyv:k5,EmptyVerySmallSquare:U5,emsp13:F5,emsp14:B5,emsp:G5,ENG:Y5,eng:q5,ensp:$5,Eogon:H5,eogon:z5,Eopf:V5,eopf:W5,epar:K5,eparsl:Q5,eplus:X5,epsi:Z5,Epsilon:J5,epsilon:j5,epsiv:e6,eqcirc:t6,eqcolon:n6,eqsim:r6,eqslantgtr:i6,eqslantless:a6,Equal:o6,equals:s6,EqualTilde:l6,equest:c6,Equilibrium:u6,equiv:d6,equivDD:_6,eqvparsl:p6,erarr:m6,erDot:g6,escr:E6,Escr:f6,esdot:S6,Esim:b6,esim:h6,Eta:T6,eta:v6,ETH:C6,eth:R6,Euml:N6,euml:O6,euro:A6,excl:y6,exist:I6,Exists:D6,expectation:x6,exponentiale:w6,ExponentialE:M6,fallingdotseq:L6,Fcy:P6,fcy:k6,female:U6,ffilig:F6,fflig:B6,ffllig:G6,Ffr:Y6,ffr:q6,filig:$6,FilledSmallSquare:H6,FilledVerySmallSquare:z6,fjlig:V6,flat:W6,fllig:K6,fltns:Q6,fnof:X6,Fopf:Z6,fopf:J6,forall:j6,ForAll:e9,fork:t9,forkv:n9,Fouriertrf:r9,fpartint:i9,frac12:a9,frac13:o9,frac14:s9,frac15:l9,frac16:c9,frac18:u9,frac23:d9,frac25:_9,frac34:p9,frac35:m9,frac38:g9,frac45:E9,frac56:f9,frac58:S9,frac78:b9,frasl:h9,frown:T9,fscr:v9,Fscr:C9,gacute:R9,Gamma:N9,gamma:O9,Gammad:A9,gammad:y9,gap:I9,Gbreve:D9,gbreve:x9,Gcedil:w9,Gcirc:M9,gcirc:L9,Gcy:P9,gcy:k9,Gdot:U9,gdot:F9,ge:B9,gE:G9,gEl:Y9,gel:q9,geq:$9,geqq:H9,geqslant:z9,gescc:V9,ges:W9,gesdot:K9,gesdoto:Q9,gesdotol:X9,gesl:Z9,gesles:J9,Gfr:j9,gfr:e8,gg:t8,Gg:n8,ggg:r8,gimel:i8,GJcy:a8,gjcy:o8,gla:s8,gl:l8,glE:c8,glj:u8,gnap:d8,gnapprox:_8,gne:p8,gnE:m8,gneq:g8,gneqq:E8,gnsim:f8,Gopf:S8,gopf:b8,grave:h8,GreaterEqual:T8,GreaterEqualLess:v8,GreaterFullEqual:C8,GreaterGreater:R8,GreaterLess:N8,GreaterSlantEqual:O8,GreaterTilde:A8,Gscr:y8,gscr:I8,gsim:D8,gsime:x8,gsiml:w8,gtcc:M8,gtcir:L8,gt:P8,GT:k8,Gt:U8,gtdot:F8,gtlPar:B8,gtquest:G8,gtrapprox:Y8,gtrarr:q8,gtrdot:$8,gtreqless:H8,gtreqqless:z8,gtrless:V8,gtrsim:W8,gvertneqq:K8,gvnE:Q8,Hacek:X8,hairsp:Z8,half:J8,hamilt:j8,HARDcy:e7,hardcy:t7,harrcir:n7,harr:r7,hArr:i7,harrw:a7,Hat:o7,hbar:s7,Hcirc:l7,hcirc:c7,hearts:u7,heartsuit:d7,hellip:_7,hercon:p7,hfr:m7,Hfr:g7,HilbertSpace:E7,hksearow:f7,hkswarow:S7,hoarr:b7,homtht:h7,hookleftarrow:T7,hookrightarrow:v7,hopf:C7,Hopf:R7,horbar:N7,HorizontalLine:O7,hscr:A7,Hscr:y7,hslash:I7,Hstrok:D7,hstrok:x7,HumpDownHump:w7,HumpEqual:M7,hybull:L7,hyphen:P7,Iacute:k7,iacute:U7,ic:F7,Icirc:B7,icirc:G7,Icy:Y7,icy:q7,Idot:$7,IEcy:H7,iecy:z7,iexcl:V7,iff:W7,ifr:K7,Ifr:Q7,Igrave:X7,igrave:Z7,ii:J7,iiiint:j7,iiint:eX,iinfin:tX,iiota:nX,IJlig:rX,ijlig:iX,Imacr:aX,imacr:oX,image:sX,ImaginaryI:lX,imagline:cX,imagpart:uX,imath:dX,Im:_X,imof:pX,imped:mX,Implies:gX,incare:EX,in:"∈",infin:fX,infintie:SX,inodot:bX,intcal:hX,int:TX,Int:vX,integers:CX,Integral:RX,intercal:NX,Intersection:OX,intlarhk:AX,intprod:yX,InvisibleComma:IX,InvisibleTimes:DX,IOcy:xX,iocy:wX,Iogon:MX,iogon:LX,Iopf:PX,iopf:kX,Iota:UX,iota:FX,iprod:BX,iquest:GX,iscr:YX,Iscr:qX,isin:$X,isindot:HX,isinE:zX,isins:VX,isinsv:WX,isinv:KX,it:QX,Itilde:XX,itilde:ZX,Iukcy:JX,iukcy:jX,Iuml:eZ,iuml:tZ,Jcirc:nZ,jcirc:rZ,Jcy:iZ,jcy:aZ,Jfr:oZ,jfr:sZ,jmath:lZ,Jopf:cZ,jopf:uZ,Jscr:dZ,jscr:_Z,Jsercy:pZ,jsercy:mZ,Jukcy:gZ,jukcy:EZ,Kappa:fZ,kappa:SZ,kappav:bZ,Kcedil:hZ,kcedil:TZ,Kcy:vZ,kcy:CZ,Kfr:RZ,kfr:NZ,kgreen:OZ,KHcy:AZ,khcy:yZ,KJcy:IZ,kjcy:DZ,Kopf:xZ,kopf:wZ,Kscr:MZ,kscr:LZ,lAarr:PZ,Lacute:kZ,lacute:UZ,laemptyv:FZ,lagran:BZ,Lambda:GZ,lambda:YZ,lang:qZ,Lang:$Z,langd:HZ,langle:zZ,lap:VZ,Laplacetrf:WZ,laquo:KZ,larrb:QZ,larrbfs:XZ,larr:ZZ,Larr:JZ,lArr:jZ,larrfs:eJ,larrhk:tJ,larrlp:nJ,larrpl:rJ,larrsim:iJ,larrtl:aJ,latail:oJ,lAtail:sJ,lat:lJ,late:cJ,lates:uJ,lbarr:dJ,lBarr:_J,lbbrk:pJ,lbrace:mJ,lbrack:gJ,lbrke:EJ,lbrksld:fJ,lbrkslu:SJ,Lcaron:bJ,lcaron:hJ,Lcedil:TJ,lcedil:vJ,lceil:CJ,lcub:RJ,Lcy:NJ,lcy:OJ,ldca:AJ,ldquo:yJ,ldquor:IJ,ldrdhar:DJ,ldrushar:xJ,ldsh:wJ,le:MJ,lE:LJ,LeftAngleBracket:PJ,LeftArrowBar:kJ,leftarrow:UJ,LeftArrow:FJ,Leftarrow:BJ,LeftArrowRightArrow:GJ,leftarrowtail:YJ,LeftCeiling:qJ,LeftDoubleBracket:$J,LeftDownTeeVector:HJ,LeftDownVectorBar:zJ,LeftDownVector:VJ,LeftFloor:WJ,leftharpoondown:KJ,leftharpoonup:QJ,leftleftarrows:XJ,leftrightarrow:ZJ,LeftRightArrow:JJ,Leftrightarrow:jJ,leftrightarrows:ej,leftrightharpoons:tj,leftrightsquigarrow:nj,LeftRightVector:rj,LeftTeeArrow:ij,LeftTee:aj,LeftTeeVector:oj,leftthreetimes:sj,LeftTriangleBar:lj,LeftTriangle:cj,LeftTriangleEqual:uj,LeftUpDownVector:dj,LeftUpTeeVector:_j,LeftUpVectorBar:pj,LeftUpVector:mj,LeftVectorBar:gj,LeftVector:Ej,lEg:fj,leg:Sj,leq:bj,leqq:hj,leqslant:Tj,lescc:vj,les:Cj,lesdot:Rj,lesdoto:Nj,lesdotor:Oj,lesg:Aj,lesges:yj,lessapprox:Ij,lessdot:Dj,lesseqgtr:xj,lesseqqgtr:wj,LessEqualGreater:Mj,LessFullEqual:Lj,LessGreater:Pj,lessgtr:kj,LessLess:Uj,lesssim:Fj,LessSlantEqual:Bj,LessTilde:Gj,lfisht:Yj,lfloor:qj,Lfr:$j,lfr:Hj,lg:zj,lgE:Vj,lHar:Wj,lhard:Kj,lharu:Qj,lharul:Xj,lhblk:Zj,LJcy:Jj,ljcy:jj,llarr:eee,ll:tee,Ll:nee,llcorner:ree,Lleftarrow:iee,llhard:aee,lltri:oee,Lmidot:see,lmidot:lee,lmoustache:cee,lmoust:uee,lnap:dee,lnapprox:_ee,lne:pee,lnE:mee,lneq:gee,lneqq:Eee,lnsim:fee,loang:See,loarr:bee,lobrk:hee,longleftarrow:Tee,LongLeftArrow:vee,Longleftarrow:Cee,longleftrightarrow:Ree,LongLeftRightArrow:Nee,Longleftrightarrow:Oee,longmapsto:Aee,longrightarrow:yee,LongRightArrow:Iee,Longrightarrow:Dee,looparrowleft:xee,looparrowright:wee,lopar:Mee,Lopf:Lee,lopf:Pee,loplus:kee,lotimes:Uee,lowast:Fee,lowbar:Bee,LowerLeftArrow:Gee,LowerRightArrow:Yee,loz:qee,lozenge:$ee,lozf:Hee,lpar:zee,lparlt:Vee,lrarr:Wee,lrcorner:Kee,lrhar:Qee,lrhard:Xee,lrm:Zee,lrtri:Jee,lsaquo:jee,lscr:ete,Lscr:tte,lsh:nte,Lsh:rte,lsim:ite,lsime:ate,lsimg:ote,lsqb:ste,lsquo:lte,lsquor:cte,Lstrok:ute,lstrok:dte,ltcc:_te,ltcir:pte,lt:mte,LT:gte,Lt:Ete,ltdot:fte,lthree:Ste,ltimes:bte,ltlarr:hte,ltquest:Tte,ltri:vte,ltrie:Cte,ltrif:Rte,ltrPar:Nte,lurdshar:Ote,luruhar:Ate,lvertneqq:yte,lvnE:Ite,macr:Dte,male:xte,malt:wte,maltese:Mte,Map:"⤅",map:Lte,mapsto:Pte,mapstodown:kte,mapstoleft:Ute,mapstoup:Fte,marker:Bte,mcomma:Gte,Mcy:Yte,mcy:qte,mdash:$te,mDDot:Hte,measuredangle:zte,MediumSpace:Vte,Mellintrf:Wte,Mfr:Kte,mfr:Qte,mho:Xte,micro:Zte,midast:Jte,midcir:jte,mid:ene,middot:tne,minusb:nne,minus:rne,minusd:ine,minusdu:ane,MinusPlus:one,mlcp:sne,mldr:lne,mnplus:cne,models:une,Mopf:dne,mopf:_ne,mp:pne,mscr:mne,Mscr:gne,mstpos:Ene,Mu:fne,mu:Sne,multimap:bne,mumap:hne,nabla:Tne,Nacute:vne,nacute:Cne,nang:Rne,nap:Nne,napE:One,napid:Ane,napos:yne,napprox:Ine,natural:Dne,naturals:xne,natur:wne,nbsp:Mne,nbump:Lne,nbumpe:Pne,ncap:kne,Ncaron:Une,ncaron:Fne,Ncedil:Bne,ncedil:Gne,ncong:Yne,ncongdot:qne,ncup:$ne,Ncy:Hne,ncy:zne,ndash:Vne,nearhk:Wne,nearr:Kne,neArr:Qne,nearrow:Xne,ne:Zne,nedot:Jne,NegativeMediumSpace:jne,NegativeThickSpace:ere,NegativeThinSpace:tre,NegativeVeryThinSpace:nre,nequiv:rre,nesear:ire,nesim:are,NestedGreaterGreater:ore,NestedLessLess:sre,NewLine:lre,nexist:cre,nexists:ure,Nfr:dre,nfr:_re,ngE:pre,nge:mre,ngeq:gre,ngeqq:Ere,ngeqslant:fre,nges:Sre,nGg:bre,ngsim:hre,nGt:Tre,ngt:vre,ngtr:Cre,nGtv:Rre,nharr:Nre,nhArr:Ore,nhpar:Are,ni:yre,nis:Ire,nisd:Dre,niv:xre,NJcy:wre,njcy:Mre,nlarr:Lre,nlArr:Pre,nldr:kre,nlE:Ure,nle:Fre,nleftarrow:Bre,nLeftarrow:Gre,nleftrightarrow:Yre,nLeftrightarrow:qre,nleq:$re,nleqq:Hre,nleqslant:zre,nles:Vre,nless:Wre,nLl:Kre,nlsim:Qre,nLt:Xre,nlt:Zre,nltri:Jre,nltrie:jre,nLtv:eie,nmid:tie,NoBreak:nie,NonBreakingSpace:rie,nopf:iie,Nopf:aie,Not:oie,not:sie,NotCongruent:lie,NotCupCap:cie,NotDoubleVerticalBar:uie,NotElement:die,NotEqual:_ie,NotEqualTilde:pie,NotExists:mie,NotGreater:gie,NotGreaterEqual:Eie,NotGreaterFullEqual:fie,NotGreaterGreater:Sie,NotGreaterLess:bie,NotGreaterSlantEqual:hie,NotGreaterTilde:Tie,NotHumpDownHump:vie,NotHumpEqual:Cie,notin:Rie,notindot:Nie,notinE:Oie,notinva:Aie,notinvb:yie,notinvc:Iie,NotLeftTriangleBar:Die,NotLeftTriangle:xie,NotLeftTriangleEqual:wie,NotLess:Mie,NotLessEqual:Lie,NotLessGreater:Pie,NotLessLess:kie,NotLessSlantEqual:Uie,NotLessTilde:Fie,NotNestedGreaterGreater:Bie,NotNestedLessLess:Gie,notni:Yie,notniva:qie,notnivb:$ie,notnivc:Hie,NotPrecedes:zie,NotPrecedesEqual:Vie,NotPrecedesSlantEqual:Wie,NotReverseElement:Kie,NotRightTriangleBar:Qie,NotRightTriangle:Xie,NotRightTriangleEqual:Zie,NotSquareSubset:Jie,NotSquareSubsetEqual:jie,NotSquareSuperset:eae,NotSquareSupersetEqual:tae,NotSubset:nae,NotSubsetEqual:rae,NotSucceeds:iae,NotSucceedsEqual:aae,NotSucceedsSlantEqual:oae,NotSucceedsTilde:sae,NotSuperset:lae,NotSupersetEqual:cae,NotTilde:uae,NotTildeEqual:dae,NotTildeFullEqual:_ae,NotTildeTilde:pae,NotVerticalBar:mae,nparallel:gae,npar:Eae,nparsl:fae,npart:Sae,npolint:bae,npr:hae,nprcue:Tae,nprec:vae,npreceq:Cae,npre:Rae,nrarrc:Nae,nrarr:Oae,nrArr:Aae,nrarrw:yae,nrightarrow:Iae,nRightarrow:Dae,nrtri:xae,nrtrie:wae,nsc:Mae,nsccue:Lae,nsce:Pae,Nscr:kae,nscr:Uae,nshortmid:Fae,nshortparallel:Bae,nsim:Gae,nsime:Yae,nsimeq:qae,nsmid:$ae,nspar:Hae,nsqsube:zae,nsqsupe:Vae,nsub:Wae,nsubE:Kae,nsube:Qae,nsubset:Xae,nsubseteq:Zae,nsubseteqq:Jae,nsucc:jae,nsucceq:eoe,nsup:toe,nsupE:noe,nsupe:roe,nsupset:ioe,nsupseteq:aoe,nsupseteqq:ooe,ntgl:soe,Ntilde:loe,ntilde:coe,ntlg:uoe,ntriangleleft:doe,ntrianglelefteq:_oe,ntriangleright:poe,ntrianglerighteq:moe,Nu:goe,nu:Eoe,num:foe,numero:Soe,numsp:boe,nvap:hoe,nvdash:Toe,nvDash:voe,nVdash:Coe,nVDash:Roe,nvge:Noe,nvgt:Ooe,nvHarr:Aoe,nvinfin:yoe,nvlArr:Ioe,nvle:Doe,nvlt:xoe,nvltrie:woe,nvrArr:Moe,nvrtrie:Loe,nvsim:Poe,nwarhk:koe,nwarr:Uoe,nwArr:Foe,nwarrow:Boe,nwnear:Goe,Oacute:Yoe,oacute:qoe,oast:$oe,Ocirc:Hoe,ocirc:zoe,ocir:Voe,Ocy:Woe,ocy:Koe,odash:Qoe,Odblac:Xoe,odblac:Zoe,odiv:Joe,odot:joe,odsold:ese,OElig:tse,oelig:nse,ofcir:rse,Ofr:ise,ofr:ase,ogon:ose,Ograve:sse,ograve:lse,ogt:cse,ohbar:use,ohm:dse,oint:_se,olarr:pse,olcir:mse,olcross:gse,oline:Ese,olt:fse,Omacr:Sse,omacr:bse,Omega:hse,omega:Tse,Omicron:vse,omicron:Cse,omid:Rse,ominus:Nse,Oopf:Ose,oopf:Ase,opar:yse,OpenCurlyDoubleQuote:Ise,OpenCurlyQuote:Dse,operp:xse,oplus:wse,orarr:Mse,Or:Lse,or:Pse,ord:kse,order:Use,orderof:Fse,ordf:Bse,ordm:Gse,origof:Yse,oror:qse,orslope:$se,orv:Hse,oS:zse,Oscr:Vse,oscr:Wse,Oslash:Kse,oslash:Qse,osol:Xse,Otilde:Zse,otilde:Jse,otimesas:jse,Otimes:ele,otimes:tle,Ouml:nle,ouml:rle,ovbar:ile,OverBar:ale,OverBrace:ole,OverBracket:sle,OverParenthesis:lle,para:cle,parallel:ule,par:dle,parsim:_le,parsl:ple,part:mle,PartialD:gle,Pcy:Ele,pcy:fle,percnt:Sle,period:ble,permil:hle,perp:Tle,pertenk:vle,Pfr:Cle,pfr:Rle,Phi:Nle,phi:Ole,phiv:Ale,phmmat:yle,phone:Ile,Pi:Dle,pi:xle,pitchfork:wle,piv:Mle,planck:Lle,planckh:Ple,plankv:kle,plusacir:Ule,plusb:Fle,pluscir:Ble,plus:Gle,plusdo:Yle,plusdu:qle,pluse:$le,PlusMinus:Hle,plusmn:zle,plussim:Vle,plustwo:Wle,pm:Kle,Poincareplane:Qle,pointint:Xle,popf:Zle,Popf:Jle,pound:jle,prap:ece,Pr:tce,pr:nce,prcue:rce,precapprox:ice,prec:ace,preccurlyeq:oce,Precedes:sce,PrecedesEqual:lce,PrecedesSlantEqual:cce,PrecedesTilde:uce,preceq:dce,precnapprox:_ce,precneqq:pce,precnsim:mce,pre:gce,prE:Ece,precsim:fce,prime:Sce,Prime:bce,primes:hce,prnap:Tce,prnE:vce,prnsim:Cce,prod:Rce,Product:Nce,profalar:Oce,profline:Ace,profsurf:yce,prop:Ice,Proportional:Dce,Proportion:xce,propto:wce,prsim:Mce,prurel:Lce,Pscr:Pce,pscr:kce,Psi:Uce,psi:Fce,puncsp:Bce,Qfr:Gce,qfr:Yce,qint:qce,qopf:$ce,Qopf:Hce,qprime:zce,Qscr:Vce,qscr:Wce,quaternions:Kce,quatint:Qce,quest:Xce,questeq:Zce,quot:Jce,QUOT:jce,rAarr:eue,race:tue,Racute:nue,racute:rue,radic:iue,raemptyv:aue,rang:oue,Rang:sue,rangd:lue,range:cue,rangle:uue,raquo:due,rarrap:_ue,rarrb:pue,rarrbfs:mue,rarrc:gue,rarr:Eue,Rarr:fue,rArr:Sue,rarrfs:bue,rarrhk:hue,rarrlp:Tue,rarrpl:vue,rarrsim:Cue,Rarrtl:Rue,rarrtl:Nue,rarrw:Oue,ratail:Aue,rAtail:yue,ratio:Iue,rationals:Due,rbarr:xue,rBarr:wue,RBarr:Mue,rbbrk:Lue,rbrace:Pue,rbrack:kue,rbrke:Uue,rbrksld:Fue,rbrkslu:Bue,Rcaron:Gue,rcaron:Yue,Rcedil:que,rcedil:$ue,rceil:Hue,rcub:zue,Rcy:Vue,rcy:Wue,rdca:Kue,rdldhar:Que,rdquo:Xue,rdquor:Zue,rdsh:Jue,real:jue,realine:ede,realpart:tde,reals:nde,Re:rde,rect:ide,reg:ade,REG:ode,ReverseElement:sde,ReverseEquilibrium:lde,ReverseUpEquilibrium:cde,rfisht:ude,rfloor:dde,rfr:_de,Rfr:pde,rHar:mde,rhard:gde,rharu:Ede,rharul:fde,Rho:Sde,rho:bde,rhov:hde,RightAngleBracket:Tde,RightArrowBar:vde,rightarrow:Cde,RightArrow:Rde,Rightarrow:Nde,RightArrowLeftArrow:Ode,rightarrowtail:Ade,RightCeiling:yde,RightDoubleBracket:Ide,RightDownTeeVector:Dde,RightDownVectorBar:xde,RightDownVector:wde,RightFloor:Mde,rightharpoondown:Lde,rightharpoonup:Pde,rightleftarrows:kde,rightleftharpoons:Ude,rightrightarrows:Fde,rightsquigarrow:Bde,RightTeeArrow:Gde,RightTee:Yde,RightTeeVector:qde,rightthreetimes:$de,RightTriangleBar:Hde,RightTriangle:zde,RightTriangleEqual:Vde,RightUpDownVector:Wde,RightUpTeeVector:Kde,RightUpVectorBar:Qde,RightUpVector:Xde,RightVectorBar:Zde,RightVector:Jde,ring:jde,risingdotseq:e_e,rlarr:t_e,rlhar:n_e,rlm:r_e,rmoustache:i_e,rmoust:a_e,rnmid:o_e,roang:s_e,roarr:l_e,robrk:c_e,ropar:u_e,ropf:d_e,Ropf:__e,roplus:p_e,rotimes:m_e,RoundImplies:g_e,rpar:E_e,rpargt:f_e,rppolint:S_e,rrarr:b_e,Rrightarrow:h_e,rsaquo:T_e,rscr:v_e,Rscr:C_e,rsh:R_e,Rsh:N_e,rsqb:O_e,rsquo:A_e,rsquor:y_e,rthree:I_e,rtimes:D_e,rtri:x_e,rtrie:w_e,rtrif:M_e,rtriltri:L_e,RuleDelayed:P_e,ruluhar:k_e,rx:U_e,Sacute:F_e,sacute:B_e,sbquo:G_e,scap:Y_e,Scaron:q_e,scaron:$_e,Sc:H_e,sc:z_e,sccue:V_e,sce:W_e,scE:K_e,Scedil:Q_e,scedil:X_e,Scirc:Z_e,scirc:J_e,scnap:j_e,scnE:epe,scnsim:tpe,scpolint:npe,scsim:rpe,Scy:ipe,scy:ape,sdotb:ope,sdot:spe,sdote:lpe,searhk:cpe,searr:upe,seArr:dpe,searrow:_pe,sect:ppe,semi:mpe,seswar:gpe,setminus:Epe,setmn:fpe,sext:Spe,Sfr:bpe,sfr:hpe,sfrown:Tpe,sharp:vpe,SHCHcy:Cpe,shchcy:Rpe,SHcy:Npe,shcy:Ope,ShortDownArrow:Ape,ShortLeftArrow:ype,shortmid:Ipe,shortparallel:Dpe,ShortRightArrow:xpe,ShortUpArrow:wpe,shy:Mpe,Sigma:Lpe,sigma:Ppe,sigmaf:kpe,sigmav:Upe,sim:Fpe,simdot:Bpe,sime:Gpe,simeq:Ype,simg:qpe,simgE:$pe,siml:Hpe,simlE:zpe,simne:Vpe,simplus:Wpe,simrarr:Kpe,slarr:Qpe,SmallCircle:Xpe,smallsetminus:Zpe,smashp:Jpe,smeparsl:jpe,smid:eme,smile:tme,smt:nme,smte:rme,smtes:ime,SOFTcy:ame,softcy:ome,solbar:sme,solb:lme,sol:cme,Sopf:ume,sopf:dme,spades:_me,spadesuit:pme,spar:mme,sqcap:gme,sqcaps:Eme,sqcup:fme,sqcups:Sme,Sqrt:bme,sqsub:hme,sqsube:Tme,sqsubset:vme,sqsubseteq:Cme,sqsup:Rme,sqsupe:Nme,sqsupset:Ome,sqsupseteq:Ame,square:yme,Square:Ime,SquareIntersection:Dme,SquareSubset:xme,SquareSubsetEqual:wme,SquareSuperset:Mme,SquareSupersetEqual:Lme,SquareUnion:Pme,squarf:kme,squ:Ume,squf:Fme,srarr:Bme,Sscr:Gme,sscr:Yme,ssetmn:qme,ssmile:$me,sstarf:Hme,Star:zme,star:Vme,starf:Wme,straightepsilon:Kme,straightphi:Qme,strns:Xme,sub:Zme,Sub:Jme,subdot:jme,subE:ege,sube:tge,subedot:nge,submult:rge,subnE:ige,subne:age,subplus:oge,subrarr:sge,subset:lge,Subset:cge,subseteq:uge,subseteqq:dge,SubsetEqual:_ge,subsetneq:pge,subsetneqq:mge,subsim:gge,subsub:Ege,subsup:fge,succapprox:Sge,succ:bge,succcurlyeq:hge,Succeeds:Tge,SucceedsEqual:vge,SucceedsSlantEqual:Cge,SucceedsTilde:Rge,succeq:Nge,succnapprox:Oge,succneqq:Age,succnsim:yge,succsim:Ige,SuchThat:Dge,sum:xge,Sum:wge,sung:Mge,sup1:Lge,sup2:Pge,sup3:kge,sup:Uge,Sup:Fge,supdot:Bge,supdsub:Gge,supE:Yge,supe:qge,supedot:$ge,Superset:Hge,SupersetEqual:zge,suphsol:Vge,suphsub:Wge,suplarr:Kge,supmult:Qge,supnE:Xge,supne:Zge,supplus:Jge,supset:jge,Supset:eEe,supseteq:tEe,supseteqq:nEe,supsetneq:rEe,supsetneqq:iEe,supsim:aEe,supsub:oEe,supsup:sEe,swarhk:lEe,swarr:cEe,swArr:uEe,swarrow:dEe,swnwar:_Ee,szlig:pEe,Tab:mEe,target:gEe,Tau:EEe,tau:fEe,tbrk:SEe,Tcaron:bEe,tcaron:hEe,Tcedil:TEe,tcedil:vEe,Tcy:CEe,tcy:REe,tdot:NEe,telrec:OEe,Tfr:AEe,tfr:yEe,there4:IEe,therefore:DEe,Therefore:xEe,Theta:wEe,theta:MEe,thetasym:LEe,thetav:PEe,thickapprox:kEe,thicksim:UEe,ThickSpace:FEe,ThinSpace:BEe,thinsp:GEe,thkap:YEe,thksim:qEe,THORN:$Ee,thorn:HEe,tilde:zEe,Tilde:VEe,TildeEqual:WEe,TildeFullEqual:KEe,TildeTilde:QEe,timesbar:XEe,timesb:ZEe,times:JEe,timesd:jEe,tint:efe,toea:tfe,topbot:nfe,topcir:rfe,top:ife,Topf:afe,topf:ofe,topfork:sfe,tosa:lfe,tprime:cfe,trade:ufe,TRADE:dfe,triangle:_fe,triangledown:pfe,triangleleft:mfe,trianglelefteq:gfe,triangleq:Efe,triangleright:ffe,trianglerighteq:Sfe,tridot:bfe,trie:hfe,triminus:Tfe,TripleDot:vfe,triplus:Cfe,trisb:Rfe,tritime:Nfe,trpezium:Ofe,Tscr:Afe,tscr:yfe,TScy:Ife,tscy:Dfe,TSHcy:xfe,tshcy:wfe,Tstrok:Mfe,tstrok:Lfe,twixt:Pfe,twoheadleftarrow:kfe,twoheadrightarrow:Ufe,Uacute:Ffe,uacute:Bfe,uarr:Gfe,Uarr:Yfe,uArr:qfe,Uarrocir:$fe,Ubrcy:Hfe,ubrcy:zfe,Ubreve:Vfe,ubreve:Wfe,Ucirc:Kfe,ucirc:Qfe,Ucy:Xfe,ucy:Zfe,udarr:Jfe,Udblac:jfe,udblac:eSe,udhar:tSe,ufisht:nSe,Ufr:rSe,ufr:iSe,Ugrave:aSe,ugrave:oSe,uHar:sSe,uharl:lSe,uharr:cSe,uhblk:uSe,ulcorn:dSe,ulcorner:_Se,ulcrop:pSe,ultri:mSe,Umacr:gSe,umacr:ESe,uml:fSe,UnderBar:SSe,UnderBrace:bSe,UnderBracket:hSe,UnderParenthesis:TSe,Union:vSe,UnionPlus:CSe,Uogon:RSe,uogon:NSe,Uopf:OSe,uopf:ASe,UpArrowBar:ySe,uparrow:ISe,UpArrow:DSe,Uparrow:xSe,UpArrowDownArrow:wSe,updownarrow:MSe,UpDownArrow:LSe,Updownarrow:PSe,UpEquilibrium:kSe,upharpoonleft:USe,upharpoonright:FSe,uplus:BSe,UpperLeftArrow:GSe,UpperRightArrow:YSe,upsi:qSe,Upsi:$Se,upsih:HSe,Upsilon:zSe,upsilon:VSe,UpTeeArrow:WSe,UpTee:KSe,upuparrows:QSe,urcorn:XSe,urcorner:ZSe,urcrop:JSe,Uring:jSe,uring:ebe,urtri:tbe,Uscr:nbe,uscr:rbe,utdot:ibe,Utilde:abe,utilde:obe,utri:sbe,utrif:lbe,uuarr:cbe,Uuml:ube,uuml:dbe,uwangle:_be,vangrt:pbe,varepsilon:mbe,varkappa:gbe,varnothing:Ebe,varphi:fbe,varpi:Sbe,varpropto:bbe,varr:hbe,vArr:Tbe,varrho:vbe,varsigma:Cbe,varsubsetneq:Rbe,varsubsetneqq:Nbe,varsupsetneq:Obe,varsupsetneqq:Abe,vartheta:ybe,vartriangleleft:Ibe,vartriangleright:Dbe,vBar:xbe,Vbar:wbe,vBarv:Mbe,Vcy:Lbe,vcy:Pbe,vdash:kbe,vDash:Ube,Vdash:Fbe,VDash:Bbe,Vdashl:Gbe,veebar:Ybe,vee:qbe,Vee:$be,veeeq:Hbe,vellip:zbe,verbar:Vbe,Verbar:Wbe,vert:Kbe,Vert:Qbe,VerticalBar:Xbe,VerticalLine:Zbe,VerticalSeparator:Jbe,VerticalTilde:jbe,VeryThinSpace:ehe,Vfr:the,vfr:nhe,vltri:rhe,vnsub:ihe,vnsup:ahe,Vopf:ohe,vopf:she,vprop:lhe,vrtri:che,Vscr:uhe,vscr:dhe,vsubnE:_he,vsubne:phe,vsupnE:mhe,vsupne:ghe,Vvdash:Ehe,vzigzag:fhe,Wcirc:She,wcirc:bhe,wedbar:hhe,wedge:The,Wedge:vhe,wedgeq:Che,weierp:Rhe,Wfr:Nhe,wfr:Ohe,Wopf:Ahe,wopf:yhe,wp:Ihe,wr:Dhe,wreath:xhe,Wscr:whe,wscr:Mhe,xcap:Lhe,xcirc:Phe,xcup:khe,xdtri:Uhe,Xfr:Fhe,xfr:Bhe,xharr:Ghe,xhArr:Yhe,Xi:qhe,xi:$he,xlarr:Hhe,xlArr:zhe,xmap:Vhe,xnis:Whe,xodot:Khe,Xopf:Qhe,xopf:Xhe,xoplus:Zhe,xotime:Jhe,xrarr:jhe,xrArr:eTe,Xscr:tTe,xscr:nTe,xsqcup:rTe,xuplus:iTe,xutri:aTe,xvee:oTe,xwedge:sTe,Yacute:lTe,yacute:cTe,YAcy:uTe,yacy:dTe,Ycirc:_Te,ycirc:pTe,Ycy:mTe,ycy:gTe,yen:ETe,Yfr:fTe,yfr:STe,YIcy:bTe,yicy:hTe,Yopf:TTe,yopf:vTe,Yscr:CTe,yscr:RTe,YUcy:NTe,yucy:OTe,yuml:ATe,Yuml:yTe,Zacute:ITe,zacute:DTe,Zcaron:xTe,zcaron:wTe,Zcy:MTe,zcy:LTe,Zdot:PTe,zdot:kTe,zeetrf:UTe,ZeroWidthSpace:FTe,Zeta:BTe,zeta:GTe,zfr:YTe,Zfr:qTe,ZHcy:$Te,zhcy:HTe,zigrarr:zTe,zopf:VTe,Zopf:WTe,Zscr:KTe,zscr:QTe,zwj:XTe,zwnj:ZTe};var mN=JTe,gg=/[!-#%-\*,-\/:;\?@\[-\]_\{\}\xA1\xA7\xAB\xB6\xB7\xBB\xBF\u037E\u0387\u055A-\u055F\u0589\u058A\u05BE\u05C0\u05C3\u05C6\u05F3\u05F4\u0609\u060A\u060C\u060D\u061B\u061E\u061F\u066A-\u066D\u06D4\u0700-\u070D\u07F7-\u07F9\u0830-\u083E\u085E\u0964\u0965\u0970\u09FD\u0A76\u0AF0\u0C84\u0DF4\u0E4F\u0E5A\u0E5B\u0F04-\u0F12\u0F14\u0F3A-\u0F3D\u0F85\u0FD0-\u0FD4\u0FD9\u0FDA\u104A-\u104F\u10FB\u1360-\u1368\u1400\u166D\u166E\u169B\u169C\u16EB-\u16ED\u1735\u1736\u17D4-\u17D6\u17D8-\u17DA\u1800-\u180A\u1944\u1945\u1A1E\u1A1F\u1AA0-\u1AA6\u1AA8-\u1AAD\u1B5A-\u1B60\u1BFC-\u1BFF\u1C3B-\u1C3F\u1C7E\u1C7F\u1CC0-\u1CC7\u1CD3\u2010-\u2027\u2030-\u2043\u2045-\u2051\u2053-\u205E\u207D\u207E\u208D\u208E\u2308-\u230B\u2329\u232A\u2768-\u2775\u27C5\u27C6\u27E6-\u27EF\u2983-\u2998\u29D8-\u29DB\u29FC\u29FD\u2CF9-\u2CFC\u2CFE\u2CFF\u2D70\u2E00-\u2E2E\u2E30-\u2E4E\u3001-\u3003\u3008-\u3011\u3014-\u301F\u3030\u303D\u30A0\u30FB\uA4FE\uA4FF\uA60D-\uA60F\uA673\uA67E\uA6F2-\uA6F7\uA874-\uA877\uA8CE\uA8CF\uA8F8-\uA8FA\uA8FC\uA92E\uA92F\uA95F\uA9C1-\uA9CD\uA9DE\uA9DF\uAA5C-\uAA5F\uAADE\uAADF\uAAF0\uAAF1\uABEB\uFD3E\uFD3F\uFE10-\uFE19\uFE30-\uFE52\uFE54-\uFE61\uFE63\uFE68\uFE6A\uFE6B\uFF01-\uFF03\uFF05-\uFF0A\uFF0C-\uFF0F\uFF1A\uFF1B\uFF1F\uFF20\uFF3B-\uFF3D\uFF3F\uFF5B\uFF5D\uFF5F-\uFF65]|\uD800[\uDD00-\uDD02\uDF9F\uDFD0]|\uD801\uDD6F|\uD802[\uDC57\uDD1F\uDD3F\uDE50-\uDE58\uDE7F\uDEF0-\uDEF6\uDF39-\uDF3F\uDF99-\uDF9C]|\uD803[\uDF55-\uDF59]|\uD804[\uDC47-\uDC4D\uDCBB\uDCBC\uDCBE-\uDCC1\uDD40-\uDD43\uDD74\uDD75\uDDC5-\uDDC8\uDDCD\uDDDB\uDDDD-\uDDDF\uDE38-\uDE3D\uDEA9]|\uD805[\uDC4B-\uDC4F\uDC5B\uDC5D\uDCC6\uDDC1-\uDDD7\uDE41-\uDE43\uDE60-\uDE6C\uDF3C-\uDF3E]|\uD806[\uDC3B\uDE3F-\uDE46\uDE9A-\uDE9C\uDE9E-\uDEA2]|\uD807[\uDC41-\uDC45\uDC70\uDC71\uDEF7\uDEF8]|\uD809[\uDC70-\uDC74]|\uD81A[\uDE6E\uDE6F\uDEF5\uDF37-\uDF3B\uDF44]|\uD81B[\uDE97-\uDE9A]|\uD82F\uDC9F|\uD836[\uDE87-\uDE8B]|\uD83A[\uDD5E\uDD5F]/,oa={},nb={};function jTe(t){var e,n,i=nb[t];if(i)return i;for(i=nb[t]=[],e=0;e<128;e++)n=String.fromCharCode(e),/^[0-9a-z]$/i.test(n)?i.push(n):i.push("%"+("0"+e.toString(16).toUpperCase()).slice(-2));for(e=0;e"u"&&(n=!0),c=jTe(e),i=0,o=t.length;i=55296&&s<=57343){if(s>=55296&&s<=56319&&i+1=56320&&l<=57343)){d+=encodeURIComponent(t[i]+t[i+1]),i++;continue}d+="%EF%BF%BD";continue}d+=encodeURIComponent(t[i])}return d}al.defaultChars=";/?:@&=+$,-_.!~*'()#";al.componentChars="-_.!~*'()";var eve=al,rb={};function tve(t){var e,n,i=rb[t];if(i)return i;for(i=rb[t]=[],e=0;e<128;e++)n=String.fromCharCode(e),i.push(n);for(e=0;e=55296&&p<=57343?g+="���":g+=String.fromCharCode(p),o+=6;continue}if((l&248)===240&&o+91114111?g+="����":(p-=65536,g+=String.fromCharCode(55296+(p>>10),56320+(p&1023))),o+=9;continue}g+="ļæ½"}return g})}ol.defaultChars=";/?:@&=+$,#";ol.componentChars="";var nve=ol,rve=function(e){var n="";return n+=e.protocol||"",n+=e.slashes?"//":"",n+=e.auth?e.auth+"@":"",e.hostname&&e.hostname.indexOf(":")!==-1?n+="["+e.hostname+"]":n+=e.hostname||"",n+=e.port?":"+e.port:"",n+=e.pathname||"",n+=e.search||"",n+=e.hash||"",n};function zs(){this.protocol=null,this.slashes=null,this.auth=null,this.port=null,this.hostname=null,this.hash=null,this.search=null,this.pathname=null}var ive=/^([a-z0-9.+-]+:)/i,ave=/:[0-9]*$/,ove=/^(\/\/?(?!\/)[^\?\s]*)(\?[^\s]*)?$/,sve=["<",">",'"',"`"," ","\r",` -`," "],lve=["{","}","|","\\","^","`"].concat(sve),cve=["'"].concat(lve),ib=["%","/","?",";","#"].concat(cve),ab=["/","?","#"],uve=255,ob=/^[+a-z0-9A-Z_-]{0,63}$/,dve=/^([+a-z0-9A-Z_-]{0,63})(.*)$/,sb={javascript:!0,"javascript:":!0},lb={http:!0,https:!0,ftp:!0,gopher:!0,file:!0,"http:":!0,"https:":!0,"ftp:":!0,"gopher:":!0,"file:":!0};function _ve(t,e){if(t&&t instanceof zs)return t;var n=new zs;return n.parse(t,e),n}zs.prototype.parse=function(t,e){var n,i,o,s,l,c=t;if(c=c.trim(),!e&&t.split("#").length===1){var d=ove.exec(c);if(d)return this.pathname=d[1],d[2]&&(this.search=d[2]),this}var _=ive.exec(c);if(_&&(_=_[0],o=_.toLowerCase(),this.protocol=_,c=c.substr(_.length)),(e||_||c.match(/^\/\/[^@\/]+@[^@\/]+/))&&(l=c.substr(0,2)==="//",l&&!(_&&sb[_])&&(c=c.substr(2),this.slashes=!0)),!sb[_]&&(l||_&&!lb[_])){var p=-1;for(n=0;n127?T+="x":T+=h[N];if(!T.match(ob)){var x=v.slice(0,n),P=v.slice(n+1),D=h.match(dve);D&&(x.push(D[1]),P.unshift(D[2])),P.length&&(c=P.join(".")+c),this.hostname=x.join(".");break}}}}this.hostname.length>uve&&(this.hostname=""),S&&(this.hostname=this.hostname.substr(1,this.hostname.length-2))}var k=c.indexOf("#");k!==-1&&(this.hash=c.substr(k),c=c.slice(0,k));var U=c.indexOf("?");return U!==-1&&(this.search=c.substr(U),c=c.slice(0,U)),c&&(this.pathname=c),lb[o]&&this.hostname&&!this.pathname&&(this.pathname=""),this};zs.prototype.parseHost=function(t){var e=ave.exec(t);e&&(e=e[0],e!==":"&&(this.port=e.substr(1)),t=t.substr(0,t.length-e.length)),t&&(this.hostname=t)};var pve=_ve;oa.encode=eve;oa.decode=nve;oa.format=rve;oa.parse=pve;var Wr={},Au,cb;function gN(){return cb||(cb=1,Au=/[\0-\uD7FF\uE000-\uFFFF]|[\uD800-\uDBFF][\uDC00-\uDFFF]|[\uD800-\uDBFF](?![\uDC00-\uDFFF])|(?:[^\uD800-\uDBFF]|^)[\uDC00-\uDFFF]/),Au}var yu,ub;function EN(){return ub||(ub=1,yu=/[\0-\x1F\x7F-\x9F]/),yu}var Iu,db;function mve(){return db||(db=1,Iu=/[\xAD\u0600-\u0605\u061C\u06DD\u070F\u08E2\u180E\u200B-\u200F\u202A-\u202E\u2060-\u2064\u2066-\u206F\uFEFF\uFFF9-\uFFFB]|\uD804[\uDCBD\uDCCD]|\uD82F[\uDCA0-\uDCA3]|\uD834[\uDD73-\uDD7A]|\uDB40[\uDC01\uDC20-\uDC7F]/),Iu}var Du,_b;function fN(){return _b||(_b=1,Du=/[ \xA0\u1680\u2000-\u200A\u2028\u2029\u202F\u205F\u3000]/),Du}var pb;function gve(){return pb||(pb=1,Wr.Any=gN(),Wr.Cc=EN(),Wr.Cf=mve(),Wr.P=gg,Wr.Z=fN()),Wr}(function(t){function e(L){return Object.prototype.toString.call(L)}function n(L){return e(L)==="[object String]"}var i=Object.prototype.hasOwnProperty;function o(L,J){return i.call(L,J)}function s(L){var J=Array.prototype.slice.call(arguments,1);return J.forEach(function(re){if(re){if(typeof re!="object")throw new TypeError(re+"must be object");Object.keys(re).forEach(function(G){L[G]=re[G]})}}),L}function l(L,J,re){return[].concat(L.slice(0,J),re,L.slice(J+1))}function c(L){return!(L>=55296&&L<=57343||L>=64976&&L<=65007||(L&65535)===65535||(L&65535)===65534||L>=0&&L<=8||L===11||L>=14&&L<=31||L>=127&&L<=159||L>1114111)}function d(L){if(L>65535){L-=65536;var J=55296+(L>>10),re=56320+(L&1023);return String.fromCharCode(J,re)}return String.fromCharCode(L)}var _=/\\([!"#$%&'()*+,\-.\/:;<=>?@[\\\]^_`{|}~])/g,p=/&([a-z#][a-z0-9]{1,31});/gi,g=new RegExp(_.source+"|"+p.source,"gi"),E=/^#((?:x[a-f0-9]{1,8}|[0-9]{1,8}))/i,f=mN;function S(L,J){var re=0;return o(f,J)?f[J]:J.charCodeAt(0)===35&&E.test(J)&&(re=J[1].toLowerCase()==="x"?parseInt(J.slice(2),16):parseInt(J.slice(1),10),c(re))?d(re):L}function v(L){return L.indexOf("\\")<0?L:L.replace(_,"$1")}function h(L){return L.indexOf("\\")<0&&L.indexOf("&")<0?L:L.replace(g,function(J,re,G){return re||S(J,G)})}var T=/[&<>"]/,N=/[&<>"]/g,y={"&":"&","<":"<",">":">",'"':"""};function x(L){return y[L]}function P(L){return T.test(L)?L.replace(N,x):L}var D=/[.?*+^$[\]\\(){}|-]/g;function k(L){return L.replace(D,"\\$&")}function U(L){switch(L){case 9:case 32:return!0}return!1}function W(L){if(L>=8192&&L<=8202)return!0;switch(L){case 9:case 10:case 11:case 12:case 13:case 32:case 160:case 5760:case 8239:case 8287:case 12288:return!0}return!1}var z=gg;function K(L){return z.test(L)}function Ee(L){switch(L){case 33:case 34:case 35:case 36:case 37:case 38:case 39:case 40:case 41:case 42:case 43:case 44:case 45:case 46:case 47:case 58:case 59:case 60:case 61:case 62:case 63:case 64:case 91:case 92:case 93:case 94:case 95:case 96:case 123:case 124:case 125:case 126:return!0;default:return!1}}function oe(L){return L=L.trim().replace(/\s+/g," "),"įŗž".toLowerCase()==="į¹¾"&&(L=L.replace(/įŗž/g,"ß")),L.toLowerCase().toUpperCase()}t.lib={},t.lib.mdurl=oa,t.lib.ucmicro=gve(),t.assign=s,t.isString=n,t.has=o,t.unescapeMd=v,t.unescapeAll=h,t.isValidEntityCode=c,t.fromCodePoint=d,t.escapeHtml=P,t.arrayReplaceAt=l,t.isSpace=U,t.isWhiteSpace=W,t.isMdAsciiPunct=Ee,t.isPunctChar=K,t.escapeRE=k,t.normalizeReference=oe})(Je);var sl={},Eve=function(e,n,i){var o,s,l,c,d=-1,_=e.posMax,p=e.pos;for(e.pos=n+1,o=1;e.pos<_;){if(l=e.src.charCodeAt(e.pos),l===93&&(o--,o===0)){s=!0;break}if(c=e.pos,e.md.inline.skipToken(e),l===91){if(c===e.pos-1)o++;else if(i)return e.pos=p,-1}}return s&&(d=e.pos),e.pos=p,d},mb=Je.unescapeAll,fve=function(e,n,i){var o,s,l=0,c=n,d={ok:!1,pos:0,lines:0,str:""};if(e.charCodeAt(n)===60){for(n++;n32))return d;if(o===41){if(s===0)break;s--}n++}return c===n||s!==0||(d.str=mb(e.slice(c,n)),d.lines=l,d.pos=n,d.ok=!0),d},Sve=Je.unescapeAll,bve=function(e,n,i){var o,s,l=0,c=n,d={ok:!1,pos:0,lines:0,str:""};if(n>=i||(s=e.charCodeAt(n),s!==34&&s!==39&&s!==40))return d;for(n++,s===40&&(s=41);n"+ci(t[e].content)+""};Zn.code_block=function(t,e,n,i,o){var s=t[e];return""+ci(t[e].content)+` -`};Zn.fence=function(t,e,n,i,o){var s=t[e],l=s.info?Tve(s.info).trim():"",c="",d="",_,p,g,E,f;return l&&(g=l.split(/(\s+)/g),c=g[0],d=g.slice(2).join("")),n.highlight?_=n.highlight(s.content,c,d)||ci(s.content):_=ci(s.content),_.indexOf(""+_+` -`):"
          "+_+`
          -`};Zn.image=function(t,e,n,i,o){var s=t[e];return s.attrs[s.attrIndex("alt")][1]=o.renderInlineAsText(s.children,n,i),o.renderToken(t,e,n)};Zn.hardbreak=function(t,e,n){return n.xhtmlOut?`
          -`:`
          -`};Zn.softbreak=function(t,e,n){return n.breaks?n.xhtmlOut?`
          -`:`
          -`:` -`};Zn.text=function(t,e){return ci(t[e].content)};Zn.html_block=function(t,e){return t[e].content};Zn.html_inline=function(t,e){return t[e].content};function sa(){this.rules=hve({},Zn)}sa.prototype.renderAttrs=function(e){var n,i,o;if(!e.attrs)return"";for(o="",n=0,i=e.attrs.length;n -`:">",s)};sa.prototype.renderInline=function(t,e,n){for(var i,o="",s=this.rules,l=0,c=t.length;l\s]/i.test(t)}function Dve(t){return/^<\/a\s*>/i.test(t)}var xve=function(e){var n,i,o,s,l,c,d,_,p,g,E,f,S,v,h,T,N=e.tokens,y;if(e.md.options.linkify){for(i=0,o=N.length;i=0;n--){if(c=s[n],c.type==="link_close"){for(n--;s[n].level!==c.level&&s[n].type!=="link_open";)n--;continue}if(c.type==="html_inline"&&(Ive(c.content)&&S>0&&S--,Dve(c.content)&&S++),!(S>0)&&c.type==="text"&&e.md.linkify.test(c.content)){for(p=c.content,y=e.md.linkify.match(p),d=[],f=c.level,E=0,y.length>0&&y[0].index===0&&n>0&&s[n-1].type==="text_special"&&(y=y.slice(1)),_=0;_E&&(l=new e.Token("text","",0),l.content=p.slice(E,g),l.level=f,d.push(l)),l=new e.Token("link_open","a",1),l.attrs=[["href",h]],l.level=f++,l.markup="linkify",l.info="auto",d.push(l),l=new e.Token("text","",0),l.content=T,l.level=f,d.push(l),l=new e.Token("link_close","a",-1),l.level=--f,l.markup="linkify",l.info="auto",d.push(l),E=y[_].lastIndex);E=0;e--)n=t[e],n.type==="text"&&!i&&(n.content=n.content.replace(Mve,Pve)),n.type==="link_open"&&n.info==="auto"&&i--,n.type==="link_close"&&n.info==="auto"&&i++}function Uve(t){var e,n,i=0;for(e=t.length-1;e>=0;e--)n=t[e],n.type==="text"&&!i&&SN.test(n.content)&&(n.content=n.content.replace(/\+-/g,"±").replace(/\.{2,}/g,"…").replace(/([?!])…/g,"$1..").replace(/([?!]){4,}/g,"$1$1$1").replace(/,{2,}/g,",").replace(/(^|[^-])---(?=[^-]|$)/mg,"$1—").replace(/(^|\s)--(?=\s|$)/mg,"$1–").replace(/(^|[^-\s])--(?=[^-\s]|$)/mg,"$1–")),n.type==="link_open"&&n.info==="auto"&&i--,n.type==="link_close"&&n.info==="auto"&&i++}var Fve=function(e){var n;if(e.md.options.typographer)for(n=e.tokens.length-1;n>=0;n--)e.tokens[n].type==="inline"&&(wve.test(e.tokens[n].content)&&kve(e.tokens[n].children),SN.test(e.tokens[n].content)&&Uve(e.tokens[n].children))},gb=Je.isWhiteSpace,Eb=Je.isPunctChar,fb=Je.isMdAsciiPunct,Bve=/['"]/,Sb=/['"]/g,bb="’";function Ds(t,e,n){return t.slice(0,e)+n+t.slice(e+1)}function Gve(t,e){var n,i,o,s,l,c,d,_,p,g,E,f,S,v,h,T,N,y,x,P,D;for(x=[],n=0;n=0&&!(x[N].level<=d);N--);if(x.length=N+1,i.type==="text"){o=i.content,l=0,c=o.length;e:for(;l=0)p=o.charCodeAt(s.index-1);else for(N=n-1;N>=0&&!(t[N].type==="softbreak"||t[N].type==="hardbreak");N--)if(t[N].content){p=t[N].content.charCodeAt(t[N].content.length-1);break}if(g=32,l=48&&p<=57&&(T=h=!1),h&&T&&(h=E,T=f),!h&&!T){y&&(i.content=Ds(i.content,s.index,bb));continue}if(T){for(N=x.length-1;N>=0&&(_=x[N],!(x[N].level=0;n--)e.tokens[n].type!=="inline"||!Bve.test(e.tokens[n].content)||Gve(e.tokens[n].children,e)},qve=function(e){var n,i,o,s,l,c,d=e.tokens;for(n=0,i=d.length;n=0&&(i=this.attrs[n][1]),i};la.prototype.attrJoin=function(e,n){var i=this.attrIndex(e);i<0?this.attrPush([e,n]):this.attrs[i][1]=this.attrs[i][1]+" "+n};var fg=la,$ve=fg;function bN(t,e,n){this.src=t,this.env=n,this.tokens=[],this.inlineMode=!1,this.md=e}bN.prototype.Token=$ve;var Hve=bN,zve=Eg,xu=[["normalize",Nve],["block",Ove],["inline",Ave],["linkify",xve],["replacements",Fve],["smartquotes",Yve],["text_join",qve]];function Sg(){this.ruler=new zve;for(var t=0;ti||(p=n+1,e.sCount[p]=4||(c=e.bMarks[p]+e.tShift[p],c>=e.eMarks[p])||(P=e.src.charCodeAt(c++),P!==124&&P!==45&&P!==58)||c>=e.eMarks[p]||(D=e.src.charCodeAt(c++),D!==124&&D!==45&&D!==58&&!wu(D))||P===45&&wu(D))return!1;for(;c=4||(g=hb(l),g.length&&g[0]===""&&g.shift(),g.length&&g[g.length-1]===""&&g.pop(),E=g.length,E===0||E!==S.length))return!1;if(o)return!0;for(N=e.parentType,e.parentType="table",x=e.md.block.ruler.getRules("blockquote"),f=e.push("table_open","table",1),f.map=h=[n,0],f=e.push("thead_open","thead",1),f.map=[n,n+1],f=e.push("tr_open","tr",1),f.map=[n,n+1],d=0;d=4)break;for(g=hb(l),g.length&&g[0]===""&&g.shift(),g.length&&g[g.length-1]===""&&g.pop(),p===n+2&&(f=e.push("tbody_open","tbody",1),f.map=T=[n+2,0]),f=e.push("tr_open","tr",1),f.map=[p,p+1],d=0;d=4){o++,s=o;continue}break}return e.line=s,l=e.push("code_block","code",0),l.content=e.getLines(n,s,4+e.blkIndent,!1)+` -`,l.map=[n,e.line],!0},Qve=function(e,n,i,o){var s,l,c,d,_,p,g,E=!1,f=e.bMarks[n]+e.tShift[n],S=e.eMarks[n];if(e.sCount[n]-e.blkIndent>=4||f+3>S||(s=e.src.charCodeAt(f),s!==126&&s!==96)||(_=f,f=e.skipChars(f,s),l=f-_,l<3)||(g=e.src.slice(_,f),c=e.src.slice(f,S),s===96&&c.indexOf(String.fromCharCode(s))>=0))return!1;if(o)return!0;for(d=n;d++,!(d>=i||(f=_=e.bMarks[d]+e.tShift[d],S=e.eMarks[d],f=4)&&(f=e.skipChars(f,s),!(f-_=4||e.src.charCodeAt(z++)!==62)return!1;if(o)return!0;for(d=f=e.sCount[n]+1,e.src.charCodeAt(z)===32?(z++,d++,f++,s=!1,x=!0):e.src.charCodeAt(z)===9?(x=!0,(e.bsCount[n]+f)%4===3?(z++,d++,f++,s=!1):s=!0):x=!1,S=[e.bMarks[n]],e.bMarks[n]=z;z=K,N=[e.sCount[n]],e.sCount[n]=f-d,y=[e.tShift[n]],e.tShift[n]=z-e.bMarks[n],D=e.md.block.ruler.getRules("blockquote"),T=e.parentType,e.parentType="blockquote",E=n+1;E=K));E++){if(e.src.charCodeAt(z++)===62&&!U){for(d=f=e.sCount[E]+1,e.src.charCodeAt(z)===32?(z++,d++,f++,s=!1,x=!0):e.src.charCodeAt(z)===9?(x=!0,(e.bsCount[E]+f)%4===3?(z++,d++,f++,s=!1):s=!0):x=!1,S.push(e.bMarks[E]),e.bMarks[E]=z;z=K,v.push(e.bsCount[E]),e.bsCount[E]=e.sCount[E]+1+(x?1:0),N.push(e.sCount[E]),e.sCount[E]=f-d,y.push(e.tShift[E]),e.tShift[E]=z-e.bMarks[E];continue}if(p)break;for(P=!1,c=0,_=D.length;c<_;c++)if(D[c](e,E,i,!0)){P=!0;break}if(P){e.lineMax=E,e.blkIndent!==0&&(S.push(e.bMarks[E]),v.push(e.bsCount[E]),y.push(e.tShift[E]),N.push(e.sCount[E]),e.sCount[E]-=e.blkIndent);break}S.push(e.bMarks[E]),v.push(e.bsCount[E]),y.push(e.tShift[E]),N.push(e.sCount[E]),e.sCount[E]=-1}for(h=e.blkIndent,e.blkIndent=0,k=e.push("blockquote_open","blockquote",1),k.markup=">",k.map=g=[n,0],e.md.block.tokenize(e,n,E),k=e.push("blockquote_close","blockquote",-1),k.markup=">",e.lineMax=W,e.parentType=T,g[1]=e.line,c=0;c=4||(s=e.src.charCodeAt(_++),s!==42&&s!==45&&s!==95))return!1;for(l=1;_=s||(n=t.src.charCodeAt(o++),n<48||n>57))return-1;for(;;){if(o>=s)return-1;if(n=t.src.charCodeAt(o++),n>=48&&n<=57){if(o-i>=10)return-1;continue}if(n===41||n===46)break;return-1}return o=4||e.listIndent>=0&&e.sCount[n]-e.listIndent>=4&&e.sCount[n]=e.blkIndent&&(G=!0),(K=Cb(e,n))>=0){if(g=!0,oe=e.bMarks[n]+e.tShift[n],T=Number(e.src.slice(oe,K-1)),G&&T!==1)return!1}else if((K=vb(e,n))>=0)g=!1;else return!1;if(G&&e.skipSpaces(K)>=e.eMarks[n])return!1;if(h=e.src.charCodeAt(K-1),o)return!0;for(v=e.tokens.length,g?(re=e.push("ordered_list_open","ol",1),T!==1&&(re.attrs=[["start",T]])):re=e.push("bullet_list_open","ul",1),re.map=S=[n,0],re.markup=String.fromCharCode(h),y=n,Ee=!1,J=e.md.block.ruler.getRules("list"),D=e.parentType,e.parentType="list";y=N?_=1:_=x-p,_>4&&(_=1),d=p+_,re=e.push("list_item_open","li",1),re.markup=String.fromCharCode(h),re.map=E=[n,0],g&&(re.info=e.src.slice(oe,K-1)),W=e.tight,U=e.tShift[n],k=e.sCount[n],P=e.listIndent,e.listIndent=e.blkIndent,e.blkIndent=d,e.tight=!0,e.tShift[n]=l-e.bMarks[n],e.sCount[n]=x,l>=N&&e.isEmpty(n+1)?e.line=Math.min(e.line+2,i):e.md.block.tokenize(e,n,i,!0),(!e.tight||Ee)&&(X=!1),Ee=e.line-n>1&&e.isEmpty(e.line-1),e.blkIndent=e.listIndent,e.listIndent=P,e.tShift[n]=U,e.sCount[n]=k,e.tight=W,re=e.push("list_item_close","li",-1),re.markup=String.fromCharCode(h),y=n=e.line,E[1]=y,l=e.bMarks[n],y>=i||e.sCount[y]=4)break;for(L=!1,c=0,f=J.length;c=4||e.src.charCodeAt(D)!==91)return!1;for(;++D3)&&!(e.sCount[U]<0)){for(N=!1,p=0,g=y.length;p"u"&&(e.env.references={}),typeof e.env.references[E]>"u"&&(e.env.references[E]={title:x,href:_}),e.parentType=S,e.line=n+P+1),!0)},rCe=["address","article","aside","base","basefont","blockquote","body","caption","center","col","colgroup","dd","details","dialog","dir","div","dl","dt","fieldset","figcaption","figure","footer","form","frame","frameset","h1","h2","h3","h4","h5","h6","head","header","hr","html","iframe","legend","li","link","main","menu","menuitem","nav","noframes","ol","optgroup","option","p","param","section","source","summary","table","tbody","td","tfoot","th","thead","title","tr","track","ul"],ll={},iCe="[a-zA-Z_:][a-zA-Z0-9:._-]*",aCe="[^\"'=<>`\\x00-\\x20]+",oCe="'[^']*'",sCe='"[^"]*"',lCe="(?:"+aCe+"|"+oCe+"|"+sCe+")",cCe="(?:\\s+"+iCe+"(?:\\s*=\\s*"+lCe+")?)",TN="<[A-Za-z][A-Za-z0-9\\-]*"+cCe+"*\\s*\\/?>",vN="<\\/[A-Za-z][A-Za-z0-9\\-]*\\s*>",uCe="|",dCe="<[?][\\s\\S]*?[?]>",_Ce="]*>",pCe="",mCe=new RegExp("^(?:"+TN+"|"+vN+"|"+uCe+"|"+dCe+"|"+_Ce+"|"+pCe+")"),gCe=new RegExp("^(?:"+TN+"|"+vN+")");ll.HTML_TAG_RE=mCe;ll.HTML_OPEN_CLOSE_TAG_RE=gCe;var ECe=rCe,fCe=ll.HTML_OPEN_CLOSE_TAG_RE,Gi=[[/^<(script|pre|style|textarea)(?=(\s|>|$))/i,/<\/(script|pre|style|textarea)>/i,!0],[/^/,!0],[/^<\?/,/\?>/,!0],[/^/,!0],[/^/,!0],[new RegExp("^|$))","i"),/^$/,!0],[new RegExp(fCe.source+"\\s*$"),/^$/,!1]],SCe=function(e,n,i,o){var s,l,c,d,_=e.bMarks[n]+e.tShift[n],p=e.eMarks[n];if(e.sCount[n]-e.blkIndent>=4||!e.md.options.html||e.src.charCodeAt(_)!==60)return!1;for(d=e.src.slice(_,p),s=0;s=4||(s=e.src.charCodeAt(_),s!==35||_>=p))return!1;for(l=1,s=e.src.charCodeAt(++_);s===35&&_6||__&&Rb(e.src.charCodeAt(c-1))&&(p=c),e.line=n+1,d=e.push("heading_open","h"+String(l),1),d.markup="########".slice(0,l),d.map=[n,e.line],d=e.push("inline","",0),d.content=e.src.slice(_,p).trim(),d.map=[n,e.line],d.children=[],d=e.push("heading_close","h"+String(l),-1),d.markup="########".slice(0,l)),!0)},hCe=function(e,n,i){var o,s,l,c,d,_,p,g,E,f=n+1,S,v=e.md.block.ruler.getRules("paragraph");if(e.sCount[n]-e.blkIndent>=4)return!1;for(S=e.parentType,e.parentType="paragraph";f3)){if(e.sCount[f]>=e.blkIndent&&(_=e.bMarks[f]+e.tShift[f],p=e.eMarks[f],_=p)))){g=E===61?1:2;break}if(!(e.sCount[f]<0)){for(s=!1,l=0,c=v.length;l3)&&!(e.sCount[_]<0)){for(o=!1,s=0,l=p.length;s0&&this.level++,this.tokens.push(i),i};Jn.prototype.isEmpty=function(e){return this.bMarks[e]+this.tShift[e]>=this.eMarks[e]};Jn.prototype.skipEmptyLines=function(e){for(var n=this.lineMax;en;)if(!cl(this.src.charCodeAt(--e)))return e+1;return e};Jn.prototype.skipChars=function(e,n){for(var i=this.src.length;ei;)if(n!==this.src.charCodeAt(--e))return e+1;return e};Jn.prototype.getLines=function(e,n,i,o){var s,l,c,d,_,p,g,E=e;if(e>=n)return"";for(p=new Array(n-e),s=0;Ei?p[s]=new Array(l-i+1).join(" ")+this.src.slice(d,_):p[s]=this.src.slice(d,_)}return p.join("")};Jn.prototype.Token=CN;var vCe=Jn,CCe=Eg,ws=[["table",Wve,["paragraph","reference"]],["code",Kve],["fence",Qve,["paragraph","reference","blockquote","list"]],["blockquote",Xve,["paragraph","reference","blockquote","list"]],["hr",Jve,["paragraph","reference","blockquote","list"]],["list",eCe,["paragraph","reference","blockquote"]],["reference",nCe],["html_block",SCe,["paragraph","reference","blockquote"]],["heading",bCe,["paragraph","reference","blockquote"]],["lheading",hCe],["paragraph",TCe]];function ul(){this.ruler=new CCe;for(var t=0;t=n||t.sCount[c]=_){t.line=n;break}for(o=0;o0||(i=e.pos,o=e.posMax,i+3>o)||e.src.charCodeAt(i)!==58||e.src.charCodeAt(i+1)!==47||e.src.charCodeAt(i+2)!==47||(s=e.pending.match(ACe),!s)||(l=s[1],c=e.md.linkify.matchAtStart(e.src.slice(i-l.length)),!c)||(d=c.url,d=d.replace(/\*+$/,""),_=e.md.normalizeLink(d),!e.md.validateLink(_))?!1:(n||(e.pending=e.pending.slice(0,-l.length),p=e.push("link_open","a",1),p.attrs=[["href",_]],p.markup="linkify",p.info="auto",p=e.push("text","",0),p.content=e.md.normalizeLinkText(d),p=e.push("link_close","a",-1),p.markup="linkify",p.info="auto"),e.pos+=d.length-l.length,!0)},ICe=Je.isSpace,DCe=function(e,n){var i,o,s,l=e.pos;if(e.src.charCodeAt(l)!==10)return!1;if(i=e.pending.length-1,o=e.posMax,!n)if(i>=0&&e.pending.charCodeAt(i)===32)if(i>=1&&e.pending.charCodeAt(i-1)===32){for(s=i-1;s>=1&&e.pending.charCodeAt(s-1)===32;)s--;e.pending=e.pending.slice(0,s),e.push("hardbreak","br",0)}else e.pending=e.pending.slice(0,-1),e.push("softbreak","br",0);else e.push("softbreak","br",0);for(l++;l?@[]^_`{|}~-".split("").forEach(function(t){bg[t.charCodeAt(0)]=1});var wCe=function(e,n){var i,o,s,l,c,d=e.pos,_=e.posMax;if(e.src.charCodeAt(d)!==92||(d++,d>=_))return!1;if(i=e.src.charCodeAt(d),i===10){for(n||e.push("hardbreak","br",0),d++;d<_&&(i=e.src.charCodeAt(d),!!xCe(i));)d++;return e.pos=d,!0}return l=e.src[d],i>=55296&&i<=56319&&d+1<_&&(o=e.src.charCodeAt(d+1),o>=56320&&o<=57343&&(l+=e.src[d+1],d++)),s="\\"+l,n||(c=e.push("text_special","",0),i<256&&bg[i]!==0?c.content=l:c.content=s,c.markup=s,c.info="escape"),e.pos=d+1,!0},MCe=function(e,n){var i,o,s,l,c,d,_,p,g=e.pos,E=e.src.charCodeAt(g);if(E!==96)return!1;for(i=g,g++,o=e.posMax;g=0;n--)i=e[n],!(i.marker!==95&&i.marker!==42)&&i.end!==-1&&(o=e[i.end],c=n>0&&e[n-1].end===i.end+1&&e[n-1].marker===i.marker&&e[n-1].token===i.token-1&&e[i.end+1].token===o.token+1,l=String.fromCharCode(i.marker),s=t.tokens[i.token],s.type=c?"strong_open":"em_open",s.tag=c?"strong":"em",s.nesting=1,s.markup=c?l+l:l,s.content="",s=t.tokens[o.token],s.type=c?"strong_close":"em_close",s.tag=c?"strong":"em",s.nesting=-1,s.markup=c?l+l:l,s.content="",c&&(t.tokens[e[n-1].token].content="",t.tokens[e[i.end+1].token].content="",n--))}_l.postProcess=function(e){var n,i=e.tokens_meta,o=e.tokens_meta.length;for(Ab(e,e.delimiters),n=0;n=v)return!1;if(h=d,_=e.md.helpers.parseLinkDestination(e.src,d,e.posMax),_.ok){for(E=e.md.normalizeLink(_.str),e.md.validateLink(E)?d=_.pos:E="",h=d;d=v||e.src.charCodeAt(d)!==41)&&(T=!0),d++}if(T){if(typeof e.env.references>"u")return!1;if(d=0?s=e.src.slice(h,d++):d=l+1):d=l+1,s||(s=e.src.slice(c,l)),p=e.env.references[LCe(s)],!p)return e.pos=S,!1;E=p.href,f=p.title}return n||(e.pos=c,e.posMax=l,g=e.push("link_open","a",1),g.attrs=i=[["href",E]],f&&i.push(["title",f]),e.linkLevel++,e.md.inline.tokenize(e),e.linkLevel--,g=e.push("link_close","a",-1)),e.pos=d,e.posMax=v,!0},kCe=Je.normalizeReference,Pu=Je.isSpace,UCe=function(e,n){var i,o,s,l,c,d,_,p,g,E,f,S,v,h="",T=e.pos,N=e.posMax;if(e.src.charCodeAt(e.pos)!==33||e.src.charCodeAt(e.pos+1)!==91||(d=e.pos+2,c=e.md.helpers.parseLinkLabel(e,e.pos+1,!1),c<0))return!1;if(_=c+1,_=N)return!1;for(v=_,g=e.md.helpers.parseLinkDestination(e.src,_,e.posMax),g.ok&&(h=e.md.normalizeLink(g.str),e.md.validateLink(h)?_=g.pos:h=""),v=_;_=N||e.src.charCodeAt(_)!==41)return e.pos=T,!1;_++}else{if(typeof e.env.references>"u")return!1;if(_=0?l=e.src.slice(v,_++):_=c+1):_=c+1,l||(l=e.src.slice(d,c)),p=e.env.references[kCe(l)],!p)return e.pos=T,!1;h=p.href,E=p.title}return n||(s=e.src.slice(d,c),e.md.inline.parse(s,e.md,e.env,S=[]),f=e.push("image","img",0),f.attrs=i=[["src",h],["alt",""]],f.children=S,f.content=s,E&&i.push(["title",E])),e.pos=_,e.posMax=N,!0},FCe=/^([a-zA-Z0-9.!#$%&'*+\/=?^_`{|}~-]+@[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?(?:\.[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?)*)$/,BCe=/^([a-zA-Z][a-zA-Z0-9+.\-]{1,31}):([^<>\x00-\x20]*)$/,GCe=function(e,n){var i,o,s,l,c,d,_=e.pos;if(e.src.charCodeAt(_)!==60)return!1;for(c=e.pos,d=e.posMax;;){if(++_>=d||(l=e.src.charCodeAt(_),l===60))return!1;if(l===62)break}return i=e.src.slice(c+1,_),BCe.test(i)?(o=e.md.normalizeLink(i),e.md.validateLink(o)?(n||(s=e.push("link_open","a",1),s.attrs=[["href",o]],s.markup="autolink",s.info="auto",s=e.push("text","",0),s.content=e.md.normalizeLinkText(i),s=e.push("link_close","a",-1),s.markup="autolink",s.info="auto"),e.pos+=i.length+2,!0):!1):FCe.test(i)?(o=e.md.normalizeLink("mailto:"+i),e.md.validateLink(o)?(n||(s=e.push("link_open","a",1),s.attrs=[["href",o]],s.markup="autolink",s.info="auto",s=e.push("text","",0),s.content=e.md.normalizeLinkText(i),s=e.push("link_close","a",-1),s.markup="autolink",s.info="auto"),e.pos+=i.length+2,!0):!1):!1},YCe=ll.HTML_TAG_RE;function qCe(t){return/^\s]/i.test(t)}function $Ce(t){return/^<\/a\s*>/i.test(t)}function HCe(t){var e=t|32;return e>=97&&e<=122}var zCe=function(e,n){var i,o,s,l,c=e.pos;return!e.md.options.html||(s=e.posMax,e.src.charCodeAt(c)!==60||c+2>=s)||(i=e.src.charCodeAt(c+1),i!==33&&i!==63&&i!==47&&!HCe(i))||(o=e.src.slice(c).match(YCe),!o)?!1:(n||(l=e.push("html_inline","",0),l.content=e.src.slice(c,c+o[0].length),qCe(l.content)&&e.linkLevel++,$Ce(l.content)&&e.linkLevel--),e.pos+=o[0].length,!0)},yb=mN,VCe=Je.has,WCe=Je.isValidEntityCode,Ib=Je.fromCodePoint,KCe=/^&#((?:x[a-f0-9]{1,6}|[0-9]{1,7}));/i,QCe=/^&([a-z][a-z0-9]{1,31});/i,XCe=function(e,n){var i,o,s,l,c=e.pos,d=e.posMax;if(e.src.charCodeAt(c)!==38||c+1>=d)return!1;if(i=e.src.charCodeAt(c+1),i===35){if(s=e.src.slice(c).match(KCe),s)return n||(o=s[1][0].toLowerCase()==="x"?parseInt(s[1].slice(1),16):parseInt(s[1],10),l=e.push("text_special","",0),l.content=WCe(o)?Ib(o):Ib(65533),l.markup=s[0],l.info="entity"),e.pos+=s[0].length,!0}else if(s=e.src.slice(c).match(QCe),s&&VCe(yb,s[1]))return n||(l=e.push("text_special","",0),l.content=yb[s[1]],l.markup=s[0],l.info="entity"),e.pos+=s[0].length,!0;return!1};function Db(t,e){var n,i,o,s,l,c,d,_,p={},g=e.length;if(g){var E=0,f=-2,S=[];for(n=0;nl;i-=S[i]+1)if(s=e[i],s.marker===o.marker&&s.open&&s.end<0&&(d=!1,(s.close||o.open)&&(s.length+o.length)%3===0&&(s.length%3!==0||o.length%3!==0)&&(d=!0),!d)){_=i>0&&!e[i-1].open?S[i-1]+1:0,S[n]=n-i+_,S[i]=_,o.open=!1,s.end=n,s.close=!1,c=-1,f=-2;break}c!==-1&&(p[o.marker][(o.open?3:0)+(o.length||0)%3]=c)}}}var ZCe=function(e){var n,i=e.tokens_meta,o=e.tokens_meta.length;for(Db(e,e.delimiters),n=0;n0&&o++,s[n].type==="text"&&n+10&&(this.level++,this._prev_delimiters.push(this.delimiters),this.delimiters=[],o={delimiters:this.delimiters}),this.pendingLevel=this.level,this.tokens.push(i),this.tokens_meta.push(o),i};oo.prototype.scanDelims=function(t,e){var n=t,i,o,s,l,c,d,_,p,g,E=!0,f=!0,S=this.posMax,v=this.src.charCodeAt(t);for(i=t>0?this.src.charCodeAt(t-1):32;n=s)break;continue}t.pending+=t.src[t.pos++]}t.pending&&t.pushPending()};so.prototype.parse=function(t,e,n,i){var o,s,l,c=new this.State(t,e,n,i);for(this.tokenize(c),s=this.ruler2.getRules(""),l=s.length,o=0;o|$))",e.tpl_email_fuzzy="(^|"+n+'|"|\\(|'+e.src_ZCc+")("+e.src_email_name+"@"+e.tpl_host_fuzzy_strict+")",e.tpl_link_fuzzy="(^|(?![.:/\\-_@])(?:[$+<=>^`||]|"+e.src_ZPCc+"))((?![$+<=>^`||])"+e.tpl_host_port_fuzzy_strict+e.src_path+")",e.tpl_link_no_ip_fuzzy="(^|(?![.:/\\-_@])(?:[$+<=>^`||]|"+e.src_ZPCc+"))((?![$+<=>^`||])"+e.tpl_host_port_no_ip_fuzzy_strict+e.src_path+")",e}),Fu}function Bm(t){var e=Array.prototype.slice.call(arguments,1);return e.forEach(function(n){n&&Object.keys(n).forEach(function(i){t[i]=n[i]})}),t}function pl(t){return Object.prototype.toString.call(t)}function nRe(t){return pl(t)==="[object String]"}function rRe(t){return pl(t)==="[object Object]"}function iRe(t){return pl(t)==="[object RegExp]"}function kb(t){return pl(t)==="[object Function]"}function aRe(t){return t.replace(/[.?*+^$[\]\\(){}|-]/g,"\\$&")}var RN={fuzzyLink:!0,fuzzyEmail:!0,fuzzyIP:!1};function oRe(t){return Object.keys(t||{}).reduce(function(e,n){return e||RN.hasOwnProperty(n)},!1)}var sRe={"http:":{validate:function(t,e,n){var i=t.slice(e);return n.re.http||(n.re.http=new RegExp("^\\/\\/"+n.re.src_auth+n.re.src_host_port_strict+n.re.src_path,"i")),n.re.http.test(i)?i.match(n.re.http)[0].length:0}},"https:":"http:","ftp:":"http:","//":{validate:function(t,e,n){var i=t.slice(e);return n.re.no_http||(n.re.no_http=new RegExp("^"+n.re.src_auth+"(?:localhost|(?:(?:"+n.re.src_domain+")\\.)+"+n.re.src_domain_root+")"+n.re.src_port+n.re.src_host_terminator+n.re.src_path,"i")),n.re.no_http.test(i)?e>=3&&t[e-3]===":"||e>=3&&t[e-3]==="/"?0:i.match(n.re.no_http)[0].length:0}},"mailto:":{validate:function(t,e,n){var i=t.slice(e);return n.re.mailto||(n.re.mailto=new RegExp("^"+n.re.src_email_name+"@"+n.re.src_host_strict,"i")),n.re.mailto.test(i)?i.match(n.re.mailto)[0].length:0}}},lRe="a[cdefgilmnoqrstuwxz]|b[abdefghijmnorstvwyz]|c[acdfghiklmnoruvwxyz]|d[ejkmoz]|e[cegrstu]|f[ijkmor]|g[abdefghilmnpqrstuwy]|h[kmnrtu]|i[delmnoqrst]|j[emop]|k[eghimnprwyz]|l[abcikrstuvy]|m[acdeghklmnopqrstuvwxyz]|n[acefgilopruz]|om|p[aefghklmnrstwy]|qa|r[eosuw]|s[abcdeghijklmnortuvxyz]|t[cdfghjklmnortvwz]|u[agksyz]|v[aceginu]|w[fs]|y[et]|z[amw]",cRe="biz|com|edu|gov|net|org|pro|web|xxx|aero|asia|coop|info|museum|name|shop|рф".split("|");function uRe(t){t.__index__=-1,t.__text_cache__=""}function dRe(t){return function(e,n){var i=e.slice(n);return t.test(i)?i.match(t)[0].length:0}}function Ub(){return function(t,e){e.normalize(t)}}function Vs(t){var e=t.re=tRe()(t.__opts__),n=t.__tlds__.slice();t.onCompile(),t.__tlds_replaced__||n.push(lRe),n.push(e.src_xn),e.src_tlds=n.join("|");function i(c){return c.replace("%TLDS%",e.src_tlds)}e.email_fuzzy=RegExp(i(e.tpl_email_fuzzy),"i"),e.link_fuzzy=RegExp(i(e.tpl_link_fuzzy),"i"),e.link_no_ip_fuzzy=RegExp(i(e.tpl_link_no_ip_fuzzy),"i"),e.host_fuzzy_test=RegExp(i(e.tpl_host_fuzzy_test),"i");var o=[];t.__compiled__={};function s(c,d){throw new Error('(LinkifyIt) Invalid schema "'+c+'": '+d)}Object.keys(t.__schemas__).forEach(function(c){var d=t.__schemas__[c];if(d!==null){var _={validate:null,link:null};if(t.__compiled__[c]=_,rRe(d)){iRe(d.validate)?_.validate=dRe(d.validate):kb(d.validate)?_.validate=d.validate:s(c,d),kb(d.normalize)?_.normalize=d.normalize:d.normalize?s(c,d):_.normalize=Ub();return}if(nRe(d)){o.push(c);return}s(c,d)}}),o.forEach(function(c){t.__compiled__[t.__schemas__[c]]&&(t.__compiled__[c].validate=t.__compiled__[t.__schemas__[c]].validate,t.__compiled__[c].normalize=t.__compiled__[t.__schemas__[c]].normalize)}),t.__compiled__[""]={validate:null,normalize:Ub()};var l=Object.keys(t.__compiled__).filter(function(c){return c.length>0&&t.__compiled__[c]}).map(aRe).join("|");t.re.schema_test=RegExp("(^|(?!_)(?:[><|]|"+e.src_ZPCc+"))("+l+")","i"),t.re.schema_search=RegExp("(^|(?!_)(?:[><|]|"+e.src_ZPCc+"))("+l+")","ig"),t.re.schema_at_start=RegExp("^"+t.re.schema_search.source,"i"),t.re.pretest=RegExp("("+t.re.schema_test.source+")|("+t.re.host_fuzzy_test.source+")|@","i"),uRe(t)}function _Re(t,e){var n=t.__index__,i=t.__last_index__,o=t.__text_cache__.slice(n,i);this.schema=t.__schema__.toLowerCase(),this.index=n+e,this.lastIndex=i+e,this.raw=o,this.text=o,this.url=o}function Gm(t,e){var n=new _Re(t,e);return t.__compiled__[n.schema].normalize(n,t),n}function En(t,e){if(!(this instanceof En))return new En(t,e);e||oRe(t)&&(e=t,t={}),this.__opts__=Bm({},RN,e),this.__index__=-1,this.__last_index__=-1,this.__schema__="",this.__text_cache__="",this.__schemas__=Bm({},sRe,t),this.__compiled__={},this.__tlds__=cRe,this.__tlds_replaced__=!1,this.re={},Vs(this)}En.prototype.add=function(e,n){return this.__schemas__[e]=n,Vs(this),this};En.prototype.set=function(e){return this.__opts__=Bm(this.__opts__,e),this};En.prototype.test=function(e){if(this.__text_cache__=e,this.__index__=-1,!e.length)return!1;var n,i,o,s,l,c,d,_,p;if(this.re.schema_test.test(e)){for(d=this.re.schema_search,d.lastIndex=0;(n=d.exec(e))!==null;)if(s=this.testSchemaAt(e,n[2],d.lastIndex),s){this.__schema__=n[2],this.__index__=n.index+n[1].length,this.__last_index__=n.index+n[0].length+s;break}}return this.__opts__.fuzzyLink&&this.__compiled__["http:"]&&(_=e.search(this.re.host_fuzzy_test),_>=0&&(this.__index__<0||_=0&&(o=e.match(this.re.email_fuzzy))!==null&&(l=o.index+o[1].length,c=o.index+o[0].length,(this.__index__<0||lthis.__last_index__)&&(this.__schema__="mailto:",this.__index__=l,this.__last_index__=c))),this.__index__>=0};En.prototype.pretest=function(e){return this.re.pretest.test(e)};En.prototype.testSchemaAt=function(e,n,i){return this.__compiled__[n.toLowerCase()]?this.__compiled__[n.toLowerCase()].validate(e,i,this):0};En.prototype.match=function(e){var n=0,i=[];this.__index__>=0&&this.__text_cache__===e&&(i.push(Gm(this,n)),n=this.__last_index__);for(var o=n?e.slice(n):e;this.test(o);)i.push(Gm(this,n)),o=o.slice(this.__last_index__),n+=this.__last_index__;return i.length?i:null};En.prototype.matchAtStart=function(e){if(this.__text_cache__=e,this.__index__=-1,!e.length)return null;var n=this.re.schema_at_start.exec(e);if(!n)return null;var i=this.testSchemaAt(e,n[2],n[0].length);return i?(this.__schema__=n[2],this.__index__=n.index+n[1].length,this.__last_index__=n.index+n[0].length+i,Gm(this,0)):null};En.prototype.tlds=function(e,n){return e=Array.isArray(e)?e:[e],n?(this.__tlds__=this.__tlds__.concat(e).sort().filter(function(i,o,s){return i!==s[o-1]}).reverse(),Vs(this),this):(this.__tlds__=e.slice(),this.__tlds_replaced__=!0,Vs(this),this)};En.prototype.normalize=function(e){e.schema||(e.url="http://"+e.url),e.schema==="mailto:"&&!/^mailto:/i.test(e.url)&&(e.url="mailto:"+e.url)};En.prototype.onCompile=function(){};var pRe=En;const Wi=2147483647,zn=36,Tg=1,eo=26,mRe=38,gRe=700,NN=72,ON=128,AN="-",ERe=/^xn--/,fRe=/[^\0-\x7F]/,SRe=/[\x2E\u3002\uFF0E\uFF61]/g,bRe={overflow:"Overflow: input needs wider integers to process","not-basic":"Illegal input >= 0x80 (not a basic code point)","invalid-input":"Invalid input"},Bu=zn-Tg,Vn=Math.floor,Gu=String.fromCharCode;function yr(t){throw new RangeError(bRe[t])}function hRe(t,e){const n=[];let i=t.length;for(;i--;)n[i]=e(t[i]);return n}function yN(t,e){const n=t.split("@");let i="";n.length>1&&(i=n[0]+"@",t=n[1]),t=t.replace(SRe,".");const o=t.split("."),s=hRe(o,e).join(".");return i+s}function vg(t){const e=[];let n=0;const i=t.length;for(;n=55296&&o<=56319&&nString.fromCodePoint(...t),TRe=function(t){return t>=48&&t<58?26+(t-48):t>=65&&t<91?t-65:t>=97&&t<123?t-97:zn},Fb=function(t,e){return t+22+75*(t<26)-((e!=0)<<5)},DN=function(t,e,n){let i=0;for(t=n?Vn(t/gRe):t>>1,t+=Vn(t/e);t>Bu*eo>>1;i+=zn)t=Vn(t/Bu);return Vn(i+(Bu+1)*t/(t+mRe))},Cg=function(t){const e=[],n=t.length;let i=0,o=ON,s=NN,l=t.lastIndexOf(AN);l<0&&(l=0);for(let c=0;c=128&&yr("not-basic"),e.push(t.charCodeAt(c));for(let c=l>0?l+1:0;c=n&&yr("invalid-input");const E=TRe(t.charCodeAt(c++));E>=zn&&yr("invalid-input"),E>Vn((Wi-i)/p)&&yr("overflow"),i+=E*p;const f=g<=s?Tg:g>=s+eo?eo:g-s;if(EVn(Wi/S)&&yr("overflow"),p*=S}const _=e.length+1;s=DN(i-d,_,d==0),Vn(i/_)>Wi-o&&yr("overflow"),o+=Vn(i/_),i%=_,e.splice(i++,0,o)}return String.fromCodePoint(...e)},Rg=function(t){const e=[];t=vg(t);const n=t.length;let i=ON,o=0,s=NN;for(const d of t)d<128&&e.push(Gu(d));const l=e.length;let c=l;for(l&&e.push(AN);c=i&&pVn((Wi-o)/_)&&yr("overflow"),o+=(d-i)*_,i=d;for(const p of t)if(pWi&&yr("overflow"),p===i){let g=o;for(let E=zn;;E+=zn){const f=E<=s?Tg:E>=s+eo?eo:E-s;if(g=0))try{e.hostname=MN.toASCII(e.hostname)}catch{}return ti.encode(ti.format(e))}function BRe(t){var e=ti.parse(t,!0);if(e.hostname&&(!e.protocol||LN.indexOf(e.protocol)>=0))try{e.hostname=MN.toUnicode(e.hostname)}catch{}return ti.decode(ti.format(e),ti.decode.defaultChars+"%")}function Dn(t,e){if(!(this instanceof Dn))return new Dn(t,e);e||Wa.isString(t)||(e=t||{},t="default"),this.inline=new wRe,this.block=new xRe,this.core=new DRe,this.renderer=new IRe,this.linkify=new MRe,this.validateLink=URe,this.normalizeLink=FRe,this.normalizeLinkText=BRe,this.utils=Wa,this.helpers=Wa.assign({},yRe),this.options={},this.configure(t),e&&this.set(e)}Dn.prototype.set=function(t){return Wa.assign(this.options,t),this};Dn.prototype.configure=function(t){var e=this,n;if(Wa.isString(t)&&(n=t,t=LRe[n],!t))throw new Error('Wrong `markdown-it` preset "'+n+'", check name');if(!t)throw new Error("Wrong `markdown-it` preset, can't be empty");return t.options&&e.set(t.options),t.components&&Object.keys(t.components).forEach(function(i){t.components[i].rules&&e[i].ruler.enableOnly(t.components[i].rules),t.components[i].rules2&&e[i].ruler2.enableOnly(t.components[i].rules2)}),this};Dn.prototype.enable=function(t,e){var n=[];Array.isArray(t)||(t=[t]),["core","block","inline"].forEach(function(o){n=n.concat(this[o].ruler.enable(t,!0))},this),n=n.concat(this.inline.ruler2.enable(t,!0));var i=t.filter(function(o){return n.indexOf(o)<0});if(i.length&&!e)throw new Error("MarkdownIt. Failed to enable unknown rule(s): "+i);return this};Dn.prototype.disable=function(t,e){var n=[];Array.isArray(t)||(t=[t]),["core","block","inline"].forEach(function(o){n=n.concat(this[o].ruler.disable(t,!0))},this),n=n.concat(this.inline.ruler2.disable(t,!0));var i=t.filter(function(o){return n.indexOf(o)<0});if(i.length&&!e)throw new Error("MarkdownIt. Failed to disable unknown rule(s): "+i);return this};Dn.prototype.use=function(t){var e=[this].concat(Array.prototype.slice.call(arguments,1));return t.apply(t,e),this};Dn.prototype.parse=function(t,e){if(typeof t!="string")throw new Error("Input data should be a String");var n=new this.core.State(t,this,e);return this.core.process(n),n.tokens};Dn.prototype.render=function(t,e){return e=e||{},this.renderer.render(this.parse(t,e),this.options,e)};Dn.prototype.parseInline=function(t,e){var n=new this.core.State(t,this,e);return n.inlineMode=!0,this.core.process(n),n.tokens};Dn.prototype.renderInline=function(t,e){return e=e||{},this.renderer.render(this.parseInline(t,e),this.options,e)};var GRe=Dn,YRe=GRe;const qRe=Qm(YRe);var kr={};kr.getAttrs=function(t,e,n){const i=/[^\t\n\f />"'=]/,o=" ",s="=",l=".",c="#",d=[];let _="",p="",g=!0,E=!1;for(let f=e+n.leftDelimiter.length;f=i+1:p.length>=i}let s,l,c,d;const _=i-e.rightDelimiter.length;switch(t){case"start":c=n.slice(0,e.leftDelimiter.length),s=c===e.leftDelimiter?0:-1,l=s===-1?-1:n.indexOf(e.rightDelimiter,_),d=n.charAt(l+e.rightDelimiter.length),d&&e.rightDelimiter.indexOf(d)!==-1&&(l=-1);break;case"end":s=n.lastIndexOf(e.leftDelimiter),l=s===-1?-1:n.indexOf(e.rightDelimiter,s+_),l=l===n.length-e.rightDelimiter.length?l:-1;break;case"only":c=n.slice(0,e.leftDelimiter.length),s=c===e.leftDelimiter?0:-1,c=n.slice(n.length-e.rightDelimiter.length),l=c===e.rightDelimiter?n.length-e.rightDelimiter.length:-1;break;default:throw new Error(`Unexpected case ${t}, expected 'start', 'end' or 'only'`)}return s!==-1&&l!==-1&&o(n.substring(s,l+e.rightDelimiter.length))}};kr.removeDelimiter=function(t,e){const n=Ym(e.leftDelimiter),i=Ym(e.rightDelimiter),o=new RegExp("[ \\n]?"+n+"[^"+n+i+"]+"+i+"$"),s=t.search(o);return s!==-1?t.slice(0,s):t};function Ym(t){return t.replace(/[-/\\^$*+?.()|[\]{}]/g,"\\$&")}kr.escapeRegExp=Ym;kr.getMatchingOpeningToken=function(t,e){if(t[e].type==="softbreak")return!1;if(t[e].nesting===0)return t[e];const n=t[e].level,i=t[e].type.replace("_close","_open");for(;e>=0;--e)if(t[e].type===i&&t[e].level===n)return t[e];return!1};const $Re=/[&<>"]/,HRe=/[&<>"]/g,zRe={"&":"&","<":"<",">":">",'"':"""};function VRe(t){return zRe[t]}kr.escapeHtml=function(t){return $Re.test(t)?t.replace(HRe,VRe):t};const qe=kr;var WRe=t=>{const e=new RegExp("^ {0,3}[-*_]{3,} ?"+qe.escapeRegExp(t.leftDelimiter)+"[^"+qe.escapeRegExp(t.rightDelimiter)+"]");return[{name:"fenced code blocks",tests:[{shift:0,block:!0,info:qe.hasDelimiters("end",t)}],transform:(n,i)=>{const o=n[i],s=o.info.lastIndexOf(t.leftDelimiter),l=qe.getAttrs(o.info,s,t);qe.addAttrs(l,o),o.info=qe.removeDelimiter(o.info,t)}},{name:"inline nesting 0",tests:[{shift:0,type:"inline",children:[{shift:-1,type:n=>n==="image"||n==="code_inline"},{shift:0,type:"text",content:qe.hasDelimiters("start",t)}]}],transform:(n,i,o)=>{const s=n[i].children[o],l=s.content.indexOf(t.rightDelimiter),c=n[i].children[o-1],d=qe.getAttrs(s.content,0,t);qe.addAttrs(d,c),s.content.length===l+t.rightDelimiter.length?n[i].children.splice(o,1):s.content=s.content.slice(l+t.rightDelimiter.length)}},{name:"tables",tests:[{shift:0,type:"table_close"},{shift:1,type:"paragraph_open"},{shift:2,type:"inline",content:qe.hasDelimiters("only",t)}],transform:(n,i)=>{const o=n[i+2],s=qe.getMatchingOpeningToken(n,i),l=qe.getAttrs(o.content,0,t);qe.addAttrs(l,s),n.splice(i+1,3)}},{name:"inline attributes",tests:[{shift:0,type:"inline",children:[{shift:-1,nesting:-1},{shift:0,type:"text",content:qe.hasDelimiters("start",t)}]}],transform:(n,i,o)=>{const s=n[i].children[o],l=s.content,c=qe.getAttrs(l,0,t),d=qe.getMatchingOpeningToken(n[i].children,o-1);qe.addAttrs(c,d),s.content=l.slice(l.indexOf(t.rightDelimiter)+t.rightDelimiter.length)}},{name:"list softbreak",tests:[{shift:-2,type:"list_item_open"},{shift:0,type:"inline",children:[{position:-2,type:"softbreak"},{position:-1,type:"text",content:qe.hasDelimiters("only",t)}]}],transform:(n,i,o)=>{const l=n[i].children[o].content,c=qe.getAttrs(l,0,t);let d=i-2;for(;n[d-1]&&n[d-1].type!=="ordered_list_open"&&n[d-1].type!=="bullet_list_open";)d--;qe.addAttrs(c,n[d-1]),n[i].children=n[i].children.slice(0,-2)}},{name:"list double softbreak",tests:[{shift:0,type:n=>n==="bullet_list_close"||n==="ordered_list_close"},{shift:1,type:"paragraph_open"},{shift:2,type:"inline",content:qe.hasDelimiters("only",t),children:n=>n.length===1},{shift:3,type:"paragraph_close"}],transform:(n,i)=>{const s=n[i+2].content,l=qe.getAttrs(s,0,t),c=qe.getMatchingOpeningToken(n,i);qe.addAttrs(l,c),n.splice(i+1,3)}},{name:"list item end",tests:[{shift:-2,type:"list_item_open"},{shift:0,type:"inline",children:[{position:-1,type:"text",content:qe.hasDelimiters("end",t)}]}],transform:(n,i,o)=>{const s=n[i].children[o],l=s.content,c=qe.getAttrs(l,l.lastIndexOf(t.leftDelimiter),t);qe.addAttrs(c,n[i-2]);const d=l.slice(0,l.lastIndexOf(t.leftDelimiter));s.content=Bb(d)!==" "?d:d.slice(0,-1)}},{name:` -{.a} softbreak then curly in start`,tests:[{shift:0,type:"inline",children:[{position:-2,type:"softbreak"},{position:-1,type:"text",content:qe.hasDelimiters("only",t)}]}],transform:(n,i,o)=>{const s=n[i].children[o],l=qe.getAttrs(s.content,0,t);let c=i+1;for(;n[c+1]&&n[c+1].nesting===-1;)c++;const d=qe.getMatchingOpeningToken(n,c);qe.addAttrs(l,d),n[i].children=n[i].children.slice(0,-2)}},{name:"horizontal rule",tests:[{shift:0,type:"paragraph_open"},{shift:1,type:"inline",children:n=>n.length===1,content:n=>n.match(e)!==null},{shift:2,type:"paragraph_close"}],transform:(n,i)=>{const o=n[i];o.type="hr",o.tag="hr",o.nesting=0;const s=n[i+1].content,l=s.lastIndexOf(t.leftDelimiter),c=qe.getAttrs(s,l,t);qe.addAttrs(c,o),o.markup=s,n.splice(i+1,2)}},{name:"end of block",tests:[{shift:0,type:"inline",children:[{position:-1,content:qe.hasDelimiters("end",t),type:n=>n!=="code_inline"&&n!=="math_inline"}]}],transform:(n,i,o)=>{const s=n[i].children[o],l=s.content,c=qe.getAttrs(l,l.lastIndexOf(t.leftDelimiter),t);let d=i+1;for(;n[d+1]&&n[d+1].nesting===-1;)d++;const _=qe.getMatchingOpeningToken(n,d);qe.addAttrs(c,_);const p=l.slice(0,l.lastIndexOf(t.leftDelimiter));s.content=Bb(p)!==" "?p:p.slice(0,-1)}}]};function Bb(t){return t.slice(-1)[0]}const KRe=WRe,QRe={leftDelimiter:"{",rightDelimiter:"}",allowedAttributes:[]};var XRe=function(e,n){let i=Object.assign({},QRe);i=Object.assign(i,n);const o=KRe(i);function s(l){const c=l.tokens;for(let d=0;d{const S=qm(c,d,f);return S.j!==null&&(g=S.j),S.match})&&(p.transform(c,d,g),(p.name==="inline attributes"||p.name==="inline nesting 0")&&_--)}}e.core.ruler.before("linkify","curly_attributes",s)};function qm(t,e,n){const i={match:!1,j:null},o=n.shift!==void 0?e+n.shift:n.position;if(n.shift!==void 0&&o<0)return i;const s=jRe(t,o);if(s===void 0)return i;for(const l of Object.keys(n))if(!(l==="shift"||l==="position")){if(s[l]===void 0)return i;if(l==="children"&&ZRe(n.children)){if(s.children.length===0)return i;let c;const d=n.children,_=s.children;if(d.every(p=>p.position!==void 0)){if(c=d.every(p=>qm(_,p.position,p).match),c){const p=eNe(d).position;i.j=p>=0?p:_.length+p}}else for(let p=0;p<_.length;p++)if(c=d.every(g=>qm(_,p,g).match),c){i.j=p;break}if(c===!1)return i;continue}switch(typeof n[l]){case"boolean":case"number":case"string":if(s[l]!==n[l])return i;break;case"function":if(!n[l](s[l]))return i;break;case"object":if(JRe(n[l])){if(n[l].every(d=>d(s[l]))===!1)return i;break}default:throw new Error(`Unknown type of pattern test (key: ${l}). Test should be of type boolean, number, string, function or array of functions.`)}}return i.match=!0,i}function ZRe(t){return Array.isArray(t)&&t.length&&t.every(e=>typeof e=="object")}function JRe(t){return Array.isArray(t)&&t.length&&t.every(e=>typeof e=="function")}function jRe(t,e){return e>=0?t[e]:t[t.length+e]}function eNe(t){return t.slice(-1)[0]||{}}const tNe=Qm(XRe);function PN(t){return t instanceof Map?t.clear=t.delete=t.set=function(){throw new Error("map is read-only")}:t instanceof Set&&(t.add=t.clear=t.delete=function(){throw new Error("set is read-only")}),Object.freeze(t),Object.getOwnPropertyNames(t).forEach(e=>{const n=t[e],i=typeof n;(i==="object"||i==="function")&&!Object.isFrozen(n)&&PN(n)}),t}class Gb{constructor(e){e.data===void 0&&(e.data={}),this.data=e.data,this.isMatchIgnored=!1}ignoreMatch(){this.isMatchIgnored=!0}}function kN(t){return t.replace(/&/g,"&").replace(//g,">").replace(/"/g,""").replace(/'/g,"'")}function xr(t,...e){const n=Object.create(null);for(const i in t)n[i]=t[i];return e.forEach(function(i){for(const o in i)n[o]=i[o]}),n}const nNe="",Yb=t=>!!t.scope,rNe=(t,{prefix:e})=>{if(t.startsWith("language:"))return t.replace("language:","language-");if(t.includes(".")){const n=t.split(".");return[`${e}${n.shift()}`,...n.map((i,o)=>`${i}${"_".repeat(o+1)}`)].join(" ")}return`${e}${t}`};class iNe{constructor(e,n){this.buffer="",this.classPrefix=n.classPrefix,e.walk(this)}addText(e){this.buffer+=kN(e)}openNode(e){if(!Yb(e))return;const n=rNe(e.scope,{prefix:this.classPrefix});this.span(n)}closeNode(e){Yb(e)&&(this.buffer+=nNe)}value(){return this.buffer}span(e){this.buffer+=``}}const qb=(t={})=>{const e={children:[]};return Object.assign(e,t),e};class Ng{constructor(){this.rootNode=qb(),this.stack=[this.rootNode]}get top(){return this.stack[this.stack.length-1]}get root(){return this.rootNode}add(e){this.top.children.push(e)}openNode(e){const n=qb({scope:e});this.add(n),this.stack.push(n)}closeNode(){if(this.stack.length>1)return this.stack.pop()}closeAllNodes(){for(;this.closeNode(););}toJSON(){return JSON.stringify(this.rootNode,null,4)}walk(e){return this.constructor._walk(e,this.rootNode)}static _walk(e,n){return typeof n=="string"?e.addText(n):n.children&&(e.openNode(n),n.children.forEach(i=>this._walk(e,i)),e.closeNode(n)),e}static _collapse(e){typeof e!="string"&&e.children&&(e.children.every(n=>typeof n=="string")?e.children=[e.children.join("")]:e.children.forEach(n=>{Ng._collapse(n)}))}}class aNe extends Ng{constructor(e){super(),this.options=e}addText(e){e!==""&&this.add(e)}startScope(e){this.openNode(e)}endScope(){this.closeNode()}__addSublanguage(e,n){const i=e.root;n&&(i.scope=`language:${n}`),this.add(i)}toHTML(){return new iNe(this,this.options).value()}finalize(){return this.closeAllNodes(),!0}}function to(t){return t?typeof t=="string"?t:t.source:null}function UN(t){return gi("(?=",t,")")}function oNe(t){return gi("(?:",t,")*")}function sNe(t){return gi("(?:",t,")?")}function gi(...t){return t.map(n=>to(n)).join("")}function lNe(t){const e=t[t.length-1];return typeof e=="object"&&e.constructor===Object?(t.splice(t.length-1,1),e):{}}function Og(...t){return"("+(lNe(t).capture?"":"?:")+t.map(i=>to(i)).join("|")+")"}function FN(t){return new RegExp(t.toString()+"|").exec("").length-1}function cNe(t,e){const n=t&&t.exec(e);return n&&n.index===0}const uNe=/\[(?:[^\\\]]|\\.)*\]|\(\??|\\([1-9][0-9]*)|\\./;function Ag(t,{joinWith:e}){let n=0;return t.map(i=>{n+=1;const o=n;let s=to(i),l="";for(;s.length>0;){const c=uNe.exec(s);if(!c){l+=s;break}l+=s.substring(0,c.index),s=s.substring(c.index+c[0].length),c[0][0]==="\\"&&c[1]?l+="\\"+String(Number(c[1])+o):(l+=c[0],c[0]==="("&&n++)}return l}).map(i=>`(${i})`).join(e)}const dNe=/\b\B/,BN="[a-zA-Z]\\w*",yg="[a-zA-Z_]\\w*",GN="\\b\\d+(\\.\\d+)?",YN="(-?)(\\b0[xX][a-fA-F0-9]+|(\\b\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)",qN="\\b(0b[01]+)",_Ne="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|-|-=|/=|/|:|;|<<|<<=|<=|<|===|==|=|>>>=|>>=|>=|>>>|>>|>|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~",pNe=(t={})=>{const e=/^#![ ]*\//;return t.binary&&(t.begin=gi(e,/.*\b/,t.binary,/\b.*/)),xr({scope:"meta",begin:e,end:/$/,relevance:0,"on:begin":(n,i)=>{n.index!==0&&i.ignoreMatch()}},t)},no={begin:"\\\\[\\s\\S]",relevance:0},mNe={scope:"string",begin:"'",end:"'",illegal:"\\n",contains:[no]},gNe={scope:"string",begin:'"',end:'"',illegal:"\\n",contains:[no]},ENe={begin:/\b(a|an|the|are|I'm|isn't|don't|doesn't|won't|but|just|should|pretty|simply|enough|gonna|going|wtf|so|such|will|you|your|they|like|more)\b/},ml=function(t,e,n={}){const i=xr({scope:"comment",begin:t,end:e,contains:[]},n);i.contains.push({scope:"doctag",begin:"[ ]*(?=(TODO|FIXME|NOTE|BUG|OPTIMIZE|HACK|XXX):)",end:/(TODO|FIXME|NOTE|BUG|OPTIMIZE|HACK|XXX):/,excludeBegin:!0,relevance:0});const o=Og("I","a","is","so","us","to","at","if","in","it","on",/[A-Za-z]+['](d|ve|re|ll|t|s|n)/,/[A-Za-z]+[-][a-z]+/,/[A-Za-z][a-z]{2,}/);return i.contains.push({begin:gi(/[ ]+/,"(",o,/[.]?[:]?([.][ ]|[ ])/,"){3}")}),i},fNe=ml("//","$"),SNe=ml("/\\*","\\*/"),bNe=ml("#","$"),hNe={scope:"number",begin:GN,relevance:0},TNe={scope:"number",begin:YN,relevance:0},vNe={scope:"number",begin:qN,relevance:0},CNe={begin:/(?=\/[^/\n]*\/)/,contains:[{scope:"regexp",begin:/\//,end:/\/[gimuy]*/,illegal:/\n/,contains:[no,{begin:/\[/,end:/\]/,relevance:0,contains:[no]}]}]},RNe={scope:"title",begin:BN,relevance:0},NNe={scope:"title",begin:yg,relevance:0},ONe={begin:"\\.\\s*"+yg,relevance:0},ANe=function(t){return Object.assign(t,{"on:begin":(e,n)=>{n.data._beginMatch=e[1]},"on:end":(e,n)=>{n.data._beginMatch!==e[1]&&n.ignoreMatch()}})};var Ms=Object.freeze({__proto__:null,MATCH_NOTHING_RE:dNe,IDENT_RE:BN,UNDERSCORE_IDENT_RE:yg,NUMBER_RE:GN,C_NUMBER_RE:YN,BINARY_NUMBER_RE:qN,RE_STARTERS_RE:_Ne,SHEBANG:pNe,BACKSLASH_ESCAPE:no,APOS_STRING_MODE:mNe,QUOTE_STRING_MODE:gNe,PHRASAL_WORDS_MODE:ENe,COMMENT:ml,C_LINE_COMMENT_MODE:fNe,C_BLOCK_COMMENT_MODE:SNe,HASH_COMMENT_MODE:bNe,NUMBER_MODE:hNe,C_NUMBER_MODE:TNe,BINARY_NUMBER_MODE:vNe,REGEXP_MODE:CNe,TITLE_MODE:RNe,UNDERSCORE_TITLE_MODE:NNe,METHOD_GUARD:ONe,END_SAME_AS_BEGIN:ANe});function yNe(t,e){t.input[t.index-1]==="."&&e.ignoreMatch()}function INe(t,e){t.className!==void 0&&(t.scope=t.className,delete t.className)}function DNe(t,e){e&&t.beginKeywords&&(t.begin="\\b("+t.beginKeywords.split(" ").join("|")+")(?!\\.)(?=\\b|\\s)",t.__beforeBegin=yNe,t.keywords=t.keywords||t.beginKeywords,delete t.beginKeywords,t.relevance===void 0&&(t.relevance=0))}function xNe(t,e){Array.isArray(t.illegal)&&(t.illegal=Og(...t.illegal))}function wNe(t,e){if(t.match){if(t.begin||t.end)throw new Error("begin & end are not supported with match");t.begin=t.match,delete t.match}}function MNe(t,e){t.relevance===void 0&&(t.relevance=1)}const LNe=(t,e)=>{if(!t.beforeMatch)return;if(t.starts)throw new Error("beforeMatch cannot be used with starts");const n=Object.assign({},t);Object.keys(t).forEach(i=>{delete t[i]}),t.keywords=n.keywords,t.begin=gi(n.beforeMatch,UN(n.begin)),t.starts={relevance:0,contains:[Object.assign(n,{endsParent:!0})]},t.relevance=0,delete n.beforeMatch},PNe=["of","and","for","in","not","or","if","then","parent","list","value"],kNe="keyword";function $N(t,e,n=kNe){const i=Object.create(null);return typeof t=="string"?o(n,t.split(" ")):Array.isArray(t)?o(n,t):Object.keys(t).forEach(function(s){Object.assign(i,$N(t[s],e,s))}),i;function o(s,l){e&&(l=l.map(c=>c.toLowerCase())),l.forEach(function(c){const d=c.split("|");i[d[0]]=[s,UNe(d[0],d[1])]})}}function UNe(t,e){return e?Number(e):FNe(t)?0:1}function FNe(t){return PNe.includes(t.toLowerCase())}const $b={},ai=t=>{console.error(t)},Hb=(t,...e)=>{console.log(`WARN: ${t}`,...e)},Yi=(t,e)=>{$b[`${t}/${e}`]||(console.log(`Deprecated as of ${t}. ${e}`),$b[`${t}/${e}`]=!0)},Ws=new Error;function HN(t,e,{key:n}){let i=0;const o=t[n],s={},l={};for(let c=1;c<=e.length;c++)l[c+i]=o[c],s[c+i]=!0,i+=FN(e[c-1]);t[n]=l,t[n]._emit=s,t[n]._multi=!0}function BNe(t){if(Array.isArray(t.begin)){if(t.skip||t.excludeBegin||t.returnBegin)throw ai("skip, excludeBegin, returnBegin not compatible with beginScope: {}"),Ws;if(typeof t.beginScope!="object"||t.beginScope===null)throw ai("beginScope must be object"),Ws;HN(t,t.begin,{key:"beginScope"}),t.begin=Ag(t.begin,{joinWith:""})}}function GNe(t){if(Array.isArray(t.end)){if(t.skip||t.excludeEnd||t.returnEnd)throw ai("skip, excludeEnd, returnEnd not compatible with endScope: {}"),Ws;if(typeof t.endScope!="object"||t.endScope===null)throw ai("endScope must be object"),Ws;HN(t,t.end,{key:"endScope"}),t.end=Ag(t.end,{joinWith:""})}}function YNe(t){t.scope&&typeof t.scope=="object"&&t.scope!==null&&(t.beginScope=t.scope,delete t.scope)}function qNe(t){YNe(t),typeof t.beginScope=="string"&&(t.beginScope={_wrap:t.beginScope}),typeof t.endScope=="string"&&(t.endScope={_wrap:t.endScope}),BNe(t),GNe(t)}function $Ne(t){function e(l,c){return new RegExp(to(l),"m"+(t.case_insensitive?"i":"")+(t.unicodeRegex?"u":"")+(c?"g":""))}class n{constructor(){this.matchIndexes={},this.regexes=[],this.matchAt=1,this.position=0}addRule(c,d){d.position=this.position++,this.matchIndexes[this.matchAt]=d,this.regexes.push([d,c]),this.matchAt+=FN(c)+1}compile(){this.regexes.length===0&&(this.exec=()=>null);const c=this.regexes.map(d=>d[1]);this.matcherRe=e(Ag(c,{joinWith:"|"}),!0),this.lastIndex=0}exec(c){this.matcherRe.lastIndex=this.lastIndex;const d=this.matcherRe.exec(c);if(!d)return null;const _=d.findIndex((g,E)=>E>0&&g!==void 0),p=this.matchIndexes[_];return d.splice(0,_),Object.assign(d,p)}}class i{constructor(){this.rules=[],this.multiRegexes=[],this.count=0,this.lastIndex=0,this.regexIndex=0}getMatcher(c){if(this.multiRegexes[c])return this.multiRegexes[c];const d=new n;return this.rules.slice(c).forEach(([_,p])=>d.addRule(_,p)),d.compile(),this.multiRegexes[c]=d,d}resumingScanAtSamePosition(){return this.regexIndex!==0}considerAll(){this.regexIndex=0}addRule(c,d){this.rules.push([c,d]),d.type==="begin"&&this.count++}exec(c){const d=this.getMatcher(this.regexIndex);d.lastIndex=this.lastIndex;let _=d.exec(c);if(this.resumingScanAtSamePosition()&&!(_&&_.index===this.lastIndex)){const p=this.getMatcher(0);p.lastIndex=this.lastIndex+1,_=p.exec(c)}return _&&(this.regexIndex+=_.position+1,this.regexIndex===this.count&&this.considerAll()),_}}function o(l){const c=new i;return l.contains.forEach(d=>c.addRule(d.begin,{rule:d,type:"begin"})),l.terminatorEnd&&c.addRule(l.terminatorEnd,{type:"end"}),l.illegal&&c.addRule(l.illegal,{type:"illegal"}),c}function s(l,c){const d=l;if(l.isCompiled)return d;[INe,wNe,qNe,LNe].forEach(p=>p(l,c)),t.compilerExtensions.forEach(p=>p(l,c)),l.__beforeBegin=null,[DNe,xNe,MNe].forEach(p=>p(l,c)),l.isCompiled=!0;let _=null;return typeof l.keywords=="object"&&l.keywords.$pattern&&(l.keywords=Object.assign({},l.keywords),_=l.keywords.$pattern,delete l.keywords.$pattern),_=_||/\w+/,l.keywords&&(l.keywords=$N(l.keywords,t.case_insensitive)),d.keywordPatternRe=e(_,!0),c&&(l.begin||(l.begin=/\B|\b/),d.beginRe=e(d.begin),!l.end&&!l.endsWithParent&&(l.end=/\B|\b/),l.end&&(d.endRe=e(d.end)),d.terminatorEnd=to(d.end)||"",l.endsWithParent&&c.terminatorEnd&&(d.terminatorEnd+=(l.end?"|":"")+c.terminatorEnd)),l.illegal&&(d.illegalRe=e(l.illegal)),l.contains||(l.contains=[]),l.contains=[].concat(...l.contains.map(function(p){return HNe(p==="self"?l:p)})),l.contains.forEach(function(p){s(p,d)}),l.starts&&s(l.starts,c),d.matcher=o(d),d}if(t.compilerExtensions||(t.compilerExtensions=[]),t.contains&&t.contains.includes("self"))throw new Error("ERR: contains `self` is not supported at the top-level of a language. See documentation.");return t.classNameAliases=xr(t.classNameAliases||{}),s(t)}function zN(t){return t?t.endsWithParent||zN(t.starts):!1}function HNe(t){return t.variants&&!t.cachedVariants&&(t.cachedVariants=t.variants.map(function(e){return xr(t,{variants:null},e)})),t.cachedVariants?t.cachedVariants:zN(t)?xr(t,{starts:t.starts?xr(t.starts):null}):Object.isFrozen(t)?xr(t):t}var zNe="11.8.0";class VNe extends Error{constructor(e,n){super(e),this.name="HTMLInjectionError",this.html=n}}const Yu=kN,zb=xr,Vb=Symbol("nomatch"),WNe=7,VN=function(t){const e=Object.create(null),n=Object.create(null),i=[];let o=!0;const s="Could not find the language '{}', did you forget to load/include a language module?",l={disableAutodetect:!0,name:"Plain text",contains:[]};let c={ignoreUnescapedHTML:!1,throwUnescapedHTML:!1,noHighlightRe:/^(no-?highlight)$/i,languageDetectRe:/\blang(?:uage)?-([\w-]+)\b/i,classPrefix:"hljs-",cssSelector:"pre code",languages:null,__emitter:aNe};function d(G){return c.noHighlightRe.test(G)}function _(G){let X=G.className+" ";X+=G.parentNode?G.parentNode.className:"";const _e=c.languageDetectRe.exec(X);if(_e){const ve=W(_e[1]);return ve||(Hb(s.replace("{}",_e[1])),Hb("Falling back to no-highlight mode for this block.",G)),ve?_e[1]:"no-highlight"}return X.split(/\s+/).find(ve=>d(ve)||W(ve))}function p(G,X,_e){let ve="",he="";typeof X=="object"?(ve=G,_e=X.ignoreIllegals,he=X.language):(Yi("10.7.0","highlight(lang, code, ...args) has been deprecated."),Yi("10.7.0",`Please use highlight(code, options) instead. -https://github.com/highlightjs/highlight.js/issues/2277`),he=G,ve=X),_e===void 0&&(_e=!0);const tt={code:ve,language:he};J("before:highlight",tt);const lt=tt.result?tt.result:g(tt.language,tt.code,_e);return lt.code=tt.code,J("after:highlight",lt),lt}function g(G,X,_e,ve){const he=Object.create(null);function tt(ne,ce){return ne.keywords[ce]}function lt(){if(!me.keywords){Ue.addText(Ie);return}let ne=0;me.keywordPatternRe.lastIndex=0;let ce=me.keywordPatternRe.exec(Ie),Oe="";for(;ce;){Oe+=Ie.substring(ne,ce.index);const Me=we.case_insensitive?ce[0].toLowerCase():ce[0],ct=tt(me,Me);if(ct){const[xt,Ze]=ct;if(Ue.addText(Oe),Oe="",he[Me]=(he[Me]||0)+1,he[Me]<=WNe&&(zt+=Ze),xt.startsWith("_"))Oe+=ce[0];else{const Yt=we.classNameAliases[xt]||xt;Be(ce[0],Yt)}}else Oe+=ce[0];ne=me.keywordPatternRe.lastIndex,ce=me.keywordPatternRe.exec(Ie)}Oe+=Ie.substring(ne),Ue.addText(Oe)}function He(){if(Ie==="")return;let ne=null;if(typeof me.subLanguage=="string"){if(!e[me.subLanguage]){Ue.addText(Ie);return}ne=g(me.subLanguage,Ie,!0,ht[me.subLanguage]),ht[me.subLanguage]=ne._top}else ne=f(Ie,me.subLanguage.length?me.subLanguage:null);me.relevance>0&&(zt+=ne.relevance),Ue.__addSublanguage(ne._emitter,ne.language)}function Ce(){me.subLanguage!=null?He():lt(),Ie=""}function Be(ne,ce){ne!==""&&(Ue.startScope(ce),Ue.addText(ne),Ue.endScope())}function We(ne,ce){let Oe=1;const Me=ce.length-1;for(;Oe<=Me;){if(!ne._emit[Oe]){Oe++;continue}const ct=we.classNameAliases[ne[Oe]]||ne[Oe],xt=ce[Oe];ct?Be(xt,ct):(Ie=xt,lt(),Ie=""),Oe++}}function xe(ne,ce){return ne.scope&&typeof ne.scope=="string"&&Ue.openNode(we.classNameAliases[ne.scope]||ne.scope),ne.beginScope&&(ne.beginScope._wrap?(Be(Ie,we.classNameAliases[ne.beginScope._wrap]||ne.beginScope._wrap),Ie=""):ne.beginScope._multi&&(We(ne.beginScope,ce),Ie="")),me=Object.create(ne,{parent:{value:me}}),me}function ze(ne,ce,Oe){let Me=cNe(ne.endRe,Oe);if(Me){if(ne["on:end"]){const ct=new Gb(ne);ne["on:end"](ce,ct),ct.isMatchIgnored&&(Me=!1)}if(Me){for(;ne.endsParent&&ne.parent;)ne=ne.parent;return ne}}if(ne.endsWithParent)return ze(ne.parent,ce,Oe)}function rt(ne){return me.matcher.regexIndex===0?(Ie+=ne[0],1):(Sn=!0,0)}function Ke(ne){const ce=ne[0],Oe=ne.rule,Me=new Gb(Oe),ct=[Oe.__beforeBegin,Oe["on:begin"]];for(const xt of ct)if(xt&&(xt(ne,Me),Me.isMatchIgnored))return rt(ce);return Oe.skip?Ie+=ce:(Oe.excludeBegin&&(Ie+=ce),Ce(),!Oe.returnBegin&&!Oe.excludeBegin&&(Ie=ce)),xe(Oe,ne),Oe.returnBegin?0:ce.length}function te(ne){const ce=ne[0],Oe=X.substring(ne.index),Me=ze(me,ne,Oe);if(!Me)return Vb;const ct=me;me.endScope&&me.endScope._wrap?(Ce(),Be(ce,me.endScope._wrap)):me.endScope&&me.endScope._multi?(Ce(),We(me.endScope,ne)):ct.skip?Ie+=ce:(ct.returnEnd||ct.excludeEnd||(Ie+=ce),Ce(),ct.excludeEnd&&(Ie=ce));do me.scope&&Ue.closeNode(),!me.skip&&!me.subLanguage&&(zt+=me.relevance),me=me.parent;while(me!==Me.parent);return Me.starts&&xe(Me.starts,ne),ct.returnEnd?0:ce.length}function pe(){const ne=[];for(let ce=me;ce!==we;ce=ce.parent)ce.scope&&ne.unshift(ce.scope);ne.forEach(ce=>Ue.openNode(ce))}let ie={};function Pe(ne,ce){const Oe=ce&&ce[0];if(Ie+=ne,Oe==null)return Ce(),0;if(ie.type==="begin"&&ce.type==="end"&&ie.index===ce.index&&Oe===""){if(Ie+=X.slice(ce.index,ce.index+1),!o){const Me=new Error(`0 width match regex (${G})`);throw Me.languageName=G,Me.badRule=ie.rule,Me}return 1}if(ie=ce,ce.type==="begin")return Ke(ce);if(ce.type==="illegal"&&!_e){const Me=new Error('Illegal lexeme "'+Oe+'" for mode "'+(me.scope||"")+'"');throw Me.mode=me,Me}else if(ce.type==="end"){const Me=te(ce);if(Me!==Vb)return Me}if(ce.type==="illegal"&&Oe==="")return 1;if(Gt>1e5&&Gt>ce.index*3)throw new Error("potential infinite loop, way more iterations than matches");return Ie+=Oe,Oe.length}const we=W(G);if(!we)throw ai(s.replace("{}",G)),new Error('Unknown language: "'+G+'"');const Xe=$Ne(we);let pt="",me=ve||Xe;const ht={},Ue=new c.__emitter(c);pe();let Ie="",zt=0,Nt=0,Gt=0,Sn=!1;try{if(we.__emitTokens)we.__emitTokens(X,Ue);else{for(me.matcher.considerAll();;){Gt++,Sn?Sn=!1:me.matcher.considerAll(),me.matcher.lastIndex=Nt;const ne=me.matcher.exec(X);if(!ne)break;const ce=X.substring(Nt,ne.index),Oe=Pe(ce,ne);Nt=ne.index+Oe}Pe(X.substring(Nt))}return Ue.finalize(),pt=Ue.toHTML(),{language:G,value:pt,relevance:zt,illegal:!1,_emitter:Ue,_top:me}}catch(ne){if(ne.message&&ne.message.includes("Illegal"))return{language:G,value:Yu(X),illegal:!0,relevance:0,_illegalBy:{message:ne.message,index:Nt,context:X.slice(Nt-100,Nt+100),mode:ne.mode,resultSoFar:pt},_emitter:Ue};if(o)return{language:G,value:Yu(X),illegal:!1,relevance:0,errorRaised:ne,_emitter:Ue,_top:me};throw ne}}function E(G){const X={value:Yu(G),illegal:!1,relevance:0,_top:l,_emitter:new c.__emitter(c)};return X._emitter.addText(G),X}function f(G,X){X=X||c.languages||Object.keys(e);const _e=E(G),ve=X.filter(W).filter(K).map(Ce=>g(Ce,G,!1));ve.unshift(_e);const he=ve.sort((Ce,Be)=>{if(Ce.relevance!==Be.relevance)return Be.relevance-Ce.relevance;if(Ce.language&&Be.language){if(W(Ce.language).supersetOf===Be.language)return 1;if(W(Be.language).supersetOf===Ce.language)return-1}return 0}),[tt,lt]=he,He=tt;return He.secondBest=lt,He}function S(G,X,_e){const ve=X&&n[X]||_e;G.classList.add("hljs"),G.classList.add(`language-${ve}`)}function v(G){let X=null;const _e=_(G);if(d(_e))return;if(J("before:highlightElement",{el:G,language:_e}),G.children.length>0&&(c.ignoreUnescapedHTML||(console.warn("One of your code blocks includes unescaped HTML. This is a potentially serious security risk."),console.warn("https://github.com/highlightjs/highlight.js/wiki/security"),console.warn("The element with unescaped HTML:"),console.warn(G)),c.throwUnescapedHTML))throw new VNe("One of your code blocks includes unescaped HTML.",G.innerHTML);X=G;const ve=X.textContent,he=_e?p(ve,{language:_e,ignoreIllegals:!0}):f(ve);G.innerHTML=he.value,S(G,_e,he.language),G.result={language:he.language,re:he.relevance,relevance:he.relevance},he.secondBest&&(G.secondBest={language:he.secondBest.language,relevance:he.secondBest.relevance}),J("after:highlightElement",{el:G,result:he,text:ve})}function h(G){c=zb(c,G)}const T=()=>{x(),Yi("10.6.0","initHighlighting() deprecated. Use highlightAll() now.")};function N(){x(),Yi("10.6.0","initHighlightingOnLoad() deprecated. Use highlightAll() now.")}let y=!1;function x(){if(document.readyState==="loading"){y=!0;return}document.querySelectorAll(c.cssSelector).forEach(v)}function P(){y&&x()}typeof window<"u"&&window.addEventListener&&window.addEventListener("DOMContentLoaded",P,!1);function D(G,X){let _e=null;try{_e=X(t)}catch(ve){if(ai("Language definition for '{}' could not be registered.".replace("{}",G)),o)ai(ve);else throw ve;_e=l}_e.name||(_e.name=G),e[G]=_e,_e.rawDefinition=X.bind(null,t),_e.aliases&&z(_e.aliases,{languageName:G})}function k(G){delete e[G];for(const X of Object.keys(n))n[X]===G&&delete n[X]}function U(){return Object.keys(e)}function W(G){return G=(G||"").toLowerCase(),e[G]||e[n[G]]}function z(G,{languageName:X}){typeof G=="string"&&(G=[G]),G.forEach(_e=>{n[_e.toLowerCase()]=X})}function K(G){const X=W(G);return X&&!X.disableAutodetect}function Ee(G){G["before:highlightBlock"]&&!G["before:highlightElement"]&&(G["before:highlightElement"]=X=>{G["before:highlightBlock"](Object.assign({block:X.el},X))}),G["after:highlightBlock"]&&!G["after:highlightElement"]&&(G["after:highlightElement"]=X=>{G["after:highlightBlock"](Object.assign({block:X.el},X))})}function oe(G){Ee(G),i.push(G)}function L(G){const X=i.indexOf(G);X!==-1&&i.splice(X,1)}function J(G,X){const _e=G;i.forEach(function(ve){ve[_e]&&ve[_e](X)})}function re(G){return Yi("10.7.0","highlightBlock will be removed entirely in v12.0"),Yi("10.7.0","Please use highlightElement now."),v(G)}Object.assign(t,{highlight:p,highlightAuto:f,highlightAll:x,highlightElement:v,highlightBlock:re,configure:h,initHighlighting:T,initHighlightingOnLoad:N,registerLanguage:D,unregisterLanguage:k,listLanguages:U,getLanguage:W,registerAliases:z,autoDetection:K,inherit:zb,addPlugin:oe,removePlugin:L}),t.debugMode=function(){o=!1},t.safeMode=function(){o=!0},t.versionString=zNe,t.regex={concat:gi,lookahead:UN,either:Og,optional:sNe,anyNumberOfTimes:oNe};for(const G in Ms)typeof Ms[G]=="object"&&PN(Ms[G]);return Object.assign(t,Ms),t},Xi=VN({});Xi.newInstance=()=>VN({});var KNe=Xi;Xi.HighlightJS=Xi;Xi.default=Xi;var qu,Wb;function QNe(){if(Wb)return qu;Wb=1;function t(e){const n="[A-Za-zА-Яа-ŃŃ‘Š_][A-Za-zА-Яа-ŃŃ‘Š_0-9]+",s="Галее "+"возврат Š²Ń‹Š·Š²Š°Ń‚ŃŒŠøŃŠŗŠ»ŃŽŃ‡ŠµŠ½ŠøŠµ Š²Ń‹ŠæŠ¾Š»Š½ŠøŃ‚ŃŒ Š“Š»Ń если Šø ŠøŠ· или иначе иначеесли ŠøŃŠŗŠ»ŃŽŃ‡ŠµŠ½ŠøŠµ кажГого конецесли конецпопытки конеццикла не новый перейти перем по пока попытка ŠæŃ€ŠµŃ€Š²Š°Ń‚ŃŒ ŠæŃ€Š¾Š“Š¾Š»Š¶ŠøŃ‚ŃŒ тогГа цикл ŃŠŗŃŠæŠ¾Ń€Ń‚ ",d="Š·Š°Š³Ń€ŃƒŠ·ŠøŃ‚ŃŒŠøŠ·Ń„Š°Š¹Š»Š° "+"вебклиент вместо внешнеесоеГинение клиент конецобласти Š¼Š¾Š±ŠøŠ»ŃŒŠ½Š¾ŠµŠæŃ€ŠøŠ»Š¾Š¶ŠµŠ½ŠøŠµŠŗŠ»ŠøŠµŠ½Ń‚ Š¼Š¾Š±ŠøŠ»ŃŒŠ½Š¾ŠµŠæŃ€ŠøŠ»Š¾Š¶ŠµŠ½ŠøŠµŃŠµŃ€Š²ŠµŃ€ наклиенте наклиентенасервере наклиентенасерверебезконтекста насервере насерверебезконтекста Š¾Š±Š»Š°ŃŃ‚ŃŒ переГ после сервер толстыйклиентобычноеприложение Ń‚Š¾Š»ŃŃ‚Ń‹Š¹ŠŗŠ»ŠøŠµŠ½Ń‚ŃƒŠæŃ€Š°Š²Š»ŃŠµŠ¼Š¾ŠµŠæŃ€ŠøŠ»Š¾Š¶ŠµŠ½ŠøŠµ тонкийклиент ",_="Ń€Š°Š·Š“ŠµŠ»ŠøŃ‚ŠµŠ»ŃŒŃŃ‚Ń€Š°Š½ŠøŃ† Ń€Š°Š·Š“ŠµŠ»ŠøŃ‚ŠµŠ»ŃŒŃŃ‚Ń€Š¾Šŗ ŃŠøŠ¼Š²Š¾Š»Ń‚Š°Š±ŃƒŠ»ŃŃ†ŠøŠø ",p="ansitooem oemtoansi Š²Š²ŠµŃŃ‚ŠøŠ²ŠøŠ“ŃŃƒŠ±ŠŗŠ¾Š½Ń‚Š¾ ввестиперечисление ввестипериоГ ввестиплансчетов выбранныйплансчетов ГатагоГ Š“Š°Ń‚Š°Š¼ŠµŃŃŃ† Гатачисло заголовоксистемы Š·Š½Š°Ń‡ŠµŠ½ŠøŠµŠ²ŃŃ‚Ń€Š¾ŠŗŃƒ значениеизстроки каталогиб ŠŗŠ°Ń‚Š°Š»Š¾Š³ŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»Ń коГсимв конгоГа конецпериоГаби конецрассчитанногопериоГаби конецстанГартногоинтервала конквартала ŠŗŠ¾Š½Š¼ŠµŃŃŃ†Š° коннеГели лог лог10 Š¼Š°ŠŗŃŠøŠ¼Š°Š»ŃŒŠ½Š¾ŠµŠŗŠ¾Š»ŠøŃ‡ŠµŃŃ‚Š²Š¾ŃŃƒŠ±ŠŗŠ¾Š½Ń‚Š¾ названиеинтерфейса названиенабораправ Š½Š°Š·Š½Š°Ń‡ŠøŃ‚ŃŒŠ²ŠøŠ“ Š½Š°Š·Š½Š°Ń‡ŠøŃ‚ŃŒŃŃ‡ŠµŃ‚ найтиссылки началопериоГаби началостанГартногоинтервала начгоГа начквартала Š½Š°Ń‡Š¼ŠµŃŃŃ†Š° начнеГели Š½Š¾Š¼ŠµŃ€Š“Š½ŃŠ³Š¾Š“Š° Š½Š¾Š¼ŠµŃ€Š“Š½ŃŠ½ŠµŠ“ŠµŠ»Šø номернеГелигоГа Š¾Š±Ń€Š°Š±Š¾Ń‚ŠŗŠ°Š¾Š¶ŠøŠ“Š°Š½ŠøŃ Š¾ŃŠ½Š¾Š²Š½Š¾Š¹Š¶ŃƒŃ€Š½Š°Š»Ń€Š°ŃŃ‡ŠµŃ‚Š¾Š² основнойплансчетов Š¾ŃŠ½Š¾Š²Š½Š¾Š¹ŃŠ·Ń‹Šŗ Š¾Ń‡ŠøŃŃ‚ŠøŃ‚ŃŒŠ¾ŠŗŠ½Š¾ŃŠ¾Š¾Š±Ń‰ŠµŠ½ŠøŠ¹ периоГстр ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ²Ń€ŠµŠ¼ŃŃ‚Š° ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ“Š°Ń‚ŃƒŃ‚Š° ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Ń‚Š° ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ·Š½Š°Ń‡ŠµŠ½ŠøŃŠ¾Ń‚Š±Š¾Ń€Š° ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠæŠ¾Š·ŠøŃ†ŠøŃŽŃ‚Š° ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠæŃƒŃŃ‚Š¾ŠµŠ·Š½Š°Ń‡ŠµŠ½ŠøŠµ ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŃ‚Š° ŠæŃ€ŠµŃ„ŠøŠŗŃŠ°Š²Ń‚Š¾Š½ŃƒŠ¼ŠµŃ€Š°Ń†ŠøŠø ŠæŃ€Š¾ŠæŠøŃŃŒ ŠæŃƒŃŃ‚Š¾ŠµŠ·Š½Š°Ń‡ŠµŠ½ŠøŠµ разм Ń€Š°Š·Š¾Š±Ń€Š°Ń‚ŃŒŠæŠ¾Š·ŠøŃ†ŠøŃŽŠ“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Š° Ń€Š°ŃŃŃ‡ŠøŃ‚Š°Ń‚ŃŒŃ€ŠµŠ³ŠøŃŃ‚Ń€Ń‹Š½Š° Ń€Š°ŃŃŃ‡ŠøŃ‚Š°Ń‚ŃŒŃ€ŠµŠ³ŠøŃŃ‚Ń€Ń‹ŠæŠ¾ симв ŃŠ¾Š·Š“Š°Ń‚ŃŒŠ¾Š±ŃŠŠµŠŗŃ‚ ŃŃ‚Š°Ń‚ŃƒŃŠ²Š¾Š·Š²Ń€Š°Ń‚Š° стрколичествострок ŃŃ„Š¾Ń€Š¼ŠøŃ€Š¾Š²Š°Ń‚ŃŒŠæŠ¾Š·ŠøŃ†ŠøŃŽŠ“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Š° ŃŃ‡ŠµŃ‚ŠæŠ¾ŠŗŠ¾Š“Ńƒ Ń‚ŠµŠŗŃƒŃ‰ŠµŠµŠ²Ń€ŠµŠ¼Ń Ń‚ŠøŠæŠ·Š½Š°Ń‡ŠµŠ½ŠøŃ Ń‚ŠøŠæŠ·Š½Š°Ń‡ŠµŠ½ŠøŃŃŃ‚Ń€ ŃƒŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŃ‚Š°Š½Š° ŃƒŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŃ‚Š°ŠæŠ¾ Ń„ŠøŠŗŃŃˆŠ°Š±Š»Š¾Š½ шаблон ",g="acos asin atan base64значение base64строка cos exp log log10 pow sin sqrt tan xmlзначение xmlстрока xmlтип xmlтипзнч активноеокно безопасныйрежим Š±ŠµŠ·Š¾ŠæŠ°ŃŠ½Ń‹Š¹Ń€ŠµŠ¶ŠøŠ¼Ń€Š°Š·Š“ŠµŠ»ŠµŠ½ŠøŃŠ“Š°Š½Š½Ń‹Ń… булево Š²Š²ŠµŃŃ‚ŠøŠ“Š°Ń‚Ńƒ ввестизначение Š²Š²ŠµŃŃ‚ŠøŃŃ‚Ń€Š¾ŠŗŃƒ ввестичисло Š²Š¾Š·Š¼Š¾Š¶Š½Š¾ŃŃ‚ŃŒŃ‡Ń‚ŠµŠ½ŠøŃxml вопрос Š²Š¾ŃŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŠ·Š½Š°Ń‡ŠµŠ½ŠøŠµ врег Š²Ń‹Š³Ń€ŃƒŠ·ŠøŃ‚ŃŒŠ¶ŃƒŃ€Š½Š°Š»Ń€ŠµŠ³ŠøŃŃ‚Ń€Š°Ń†ŠøŠø Š²Ń‹ŠæŠ¾Š»Š½ŠøŃ‚ŃŒŠ¾Š±Ń€Š°Š±Š¾Ń‚ŠŗŃƒŠ¾ŠæŠ¾Š²ŠµŃ‰ŠµŠ½ŠøŃ Š²Ń‹ŠæŠ¾Š»Š½ŠøŃ‚ŃŒŠæŃ€Š¾Š²ŠµŃ€ŠŗŃƒŠæŃ€Š°Š²Š“Š¾ŃŃ‚ŃƒŠæŠ° Š²Ń‹Ń‡ŠøŃŠ»ŠøŃ‚ŃŒ гоГ Ганныеформывзначение Гата Гень ГеньгоГа ГеньнеГели Š“Š¾Š±Š°Š²ŠøŃ‚ŃŒŠ¼ŠµŃŃŃ† Š·Š°Š±Š»Š¾ŠŗŠøŃ€Š¾Š²Š°Ń‚ŃŒŠ“Š°Š½Š½Ń‹ŠµŠ“Š»ŃŃ€ŠµŠ“Š°ŠŗŃ‚ŠøŃ€Š¾Š²Š°Š½ŠøŃ Š·Š°Š±Š»Š¾ŠŗŠøŃ€Š¾Š²Š°Ń‚ŃŒŃ€Š°Š±Š¾Ń‚ŃƒŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»Ń Š·Š°Š²ŠµŃ€ŃˆŠøŃ‚ŃŒŃ€Š°Š±Š¾Ń‚ŃƒŃŠøŃŃ‚ŠµŠ¼Ń‹ Š·Š°Š³Ń€ŃƒŠ·ŠøŃ‚ŃŒŠ²Š½ŠµŃˆŠ½ŃŽŃŽŠŗŠ¾Š¼ŠæŠ¾Š½ŠµŠ½Ń‚Ńƒ Š·Š°ŠŗŃ€Ń‹Ń‚ŃŒŃŠæŃ€Š°Š²ŠŗŃƒ Š·Š°ŠæŠøŃŠ°Ń‚ŃŒjson Š·Š°ŠæŠøŃŠ°Ń‚ŃŒxml Š·Š°ŠæŠøŃŠ°Ń‚ŃŒŠ“Š°Ń‚Ńƒjson Š·Š°ŠæŠøŃŃŒŠ¶ŃƒŃ€Š½Š°Š»Š°Ń€ŠµŠ³ŠøŃŃ‚Ń€Š°Ń†ŠøŠø Š·Š°ŠæŠ¾Š»Š½ŠøŃ‚ŃŒŠ·Š½Š°Ń‡ŠµŠ½ŠøŃŃŠ²Š¾Š¹ŃŃ‚Š² Š·Š°ŠæŃ€Š¾ŃŠøŃ‚ŃŒŃ€Š°Š·Ń€ŠµŃˆŠµŠ½ŠøŠµŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»Ń Š·Š°ŠæŃƒŃŃ‚ŠøŃ‚ŃŒŠæŃ€ŠøŠ»Š¾Š¶ŠµŠ½ŠøŠµ Š·Š°ŠæŃƒŃŃ‚ŠøŃ‚ŃŒŃŠøŃŃ‚ŠµŠ¼Ńƒ Š·Š°Ń„ŠøŠŗŃŠøŃ€Š¾Š²Š°Ń‚ŃŒŃ‚Ń€Š°Š½Š·Š°ŠŗŃ†ŠøŃŽ значениевГанныеформы Š·Š½Š°Ń‡ŠµŠ½ŠøŠµŠ²ŃŃ‚Ń€Š¾ŠŗŃƒŠ²Š½ŃƒŃ‚Ń€ значениевфайл значениезаполнено Š·Š½Š°Ń‡ŠµŠ½ŠøŠµŠøŠ·ŃŃ‚Ń€Š¾ŠŗŠøŠ²Š½ŃƒŃ‚Ń€ значениеизфайла ŠøŠ·xmlтипа импортмоГелиxdto ŠøŠ¼ŃŠŗŠ¾Š¼ŠæŃŒŃŽŃ‚ŠµŃ€Š° ŠøŠ¼ŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»Ń ŠøŠ½ŠøŃ†ŠøŠ°Š»ŠøŠ·ŠøŃ€Š¾Š²Š°Ń‚ŃŒŠæŃ€ŠµŠ“Š¾ŠæŃ€ŠµŠ“ŠµŠ»ŠµŠ½Š½Ń‹ŠµŠ“Š°Š½Š½Ń‹Šµ ŠøŠ½Ń„Š¾Ń€Š¼Š°Ń†ŠøŃŠ¾Š±Š¾ŃˆŠøŠ±ŠŗŠµ ŠŗŠ°Ń‚Š°Š»Š¾Š³Š±ŠøŠ±Š»ŠøŠ¾Ń‚ŠµŠŗŠøŠ¼Š¾Š±ŠøŠ»ŃŒŠ½Š¾Š³Š¾ŃƒŃŃ‚Ń€Š¾Š¹ŃŃ‚Š²Š° каталогвременныхфайлов ŠŗŠ°Ń‚Š°Š»Š¾Š³Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Š¾Š² каталогпрограммы ŠŗŠ¾Š“ŠøŃ€Š¾Š²Š°Ń‚ŃŒŃŃ‚Ń€Š¾ŠŗŃƒ коГлокализацииинформационнойбазы коГсимвола команГасистемы конецгоГа ŠŗŠ¾Š½ŠµŃ†Š“Š½Ń конецквартала ŠŗŠ¾Š½ŠµŃ†Š¼ŠµŃŃŃ†Š° ŠŗŠ¾Š½ŠµŃ†Š¼ŠøŠ½ŃƒŃ‚Ń‹ конецнеГели конецчаса ŠŗŠ¾Š½Ń„ŠøŠ³ŃƒŃ€Š°Ń†ŠøŃŠ±Š°Š·Ń‹Š“Š°Š½Š½Ń‹Ń…ŠøŠ·Š¼ŠµŠ½ŠµŠ½Š°Š“ŠøŠ½Š°Š¼ŠøŃ‡ŠµŃŠŗŠø ŠŗŠ¾Š½Ń„ŠøŠ³ŃƒŃ€Š°Ń†ŠøŃŠøŠ·Š¼ŠµŠ½ŠµŠ½Š° ŠŗŠ¾ŠæŠøŃ€Š¾Š²Š°Ń‚ŃŒŠ“Š°Š½Š½Ń‹ŠµŃ„Š¾Ń€Š¼Ń‹ ŠŗŠ¾ŠæŠøŃ€Š¾Š²Š°Ń‚ŃŒŃ„Š°Š¹Š» ŠŗŃ€Š°Ń‚ŠŗŠ¾ŠµŠæŃ€ŠµŠ“ŃŃ‚Š°Š²Š»ŠµŠ½ŠøŠµŠ¾ŃˆŠøŠ±ŠŗŠø лев макс Š¼ŠµŃŃ‚Š½Š¾ŠµŠ²Ń€ŠµŠ¼Ń Š¼ŠµŃŃŃ† мин Š¼ŠøŠ½ŃƒŃ‚а Š¼Š¾Š½Š¾ŠæŠ¾Š»ŃŒŠ½Ń‹Š¹Ń€ŠµŠ¶ŠøŠ¼ найти Š½Š°Š¹Ń‚ŠøŠ½ŠµŠ“Š¾ŠæŃƒŃŃ‚ŠøŠ¼Ń‹ŠµŃŠøŠ¼Š²Š¾Š»Ń‹xml найтиокнопонавигационнойссылке Š½Š°Š¹Ń‚ŠøŠæŠ¾Š¼ŠµŃ‡ŠµŠ½Š½Ń‹ŠµŠ½Š°ŃƒŠ“Š°Š»ŠµŠ½ŠøŠµ найтипоссылкам найтифайлы началогоГа Š½Š°Ń‡Š°Š»Š¾Š“Š½Ń началоквартала Š½Š°Ń‡Š°Š»Š¾Š¼ŠµŃŃŃ†Š° Š½Š°Ń‡Š°Š»Š¾Š¼ŠøŠ½ŃƒŃ‚Ń‹ началонеГели началочаса Š½Š°Ń‡Š°Ń‚ŃŒŠ·Š°ŠæŃ€Š¾ŃŃ€Š°Š·Ń€ŠµŃˆŠµŠ½ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»Ń Š½Š°Ń‡Š°Ń‚ŃŒŠ·Š°ŠæŃƒŃŠŗŠæŃ€ŠøŠ»Š¾Š¶ŠµŠ½ŠøŃ Š½Š°Ń‡Š°Ń‚ŃŒŠŗŠ¾ŠæŠøŃ€Š¾Š²Š°Š½ŠøŠµŃ„Š°Š¹Š»Š° Š½Š°Ń‡Š°Ń‚ŃŒŠæŠµŃ€ŠµŠ¼ŠµŃ‰ŠµŠ½ŠøŠµŃ„Š°Š¹Š»Š° Š½Š°Ń‡Š°Ń‚ŃŒŠæŠ¾Š“ŠŗŠ»ŃŽŃ‡ŠµŠ½ŠøŠµŠ²Š½ŠµŃˆŠ½ŠµŠ¹ŠŗŠ¾Š¼ŠæŠ¾Š½ŠµŠ½Ń‚Ń‹ Š½Š°Ń‡Š°Ń‚ŃŒŠæŠ¾Š“ŠŗŠ»ŃŽŃ‡ŠµŠ½ŠøŠµŃ€Š°ŃŃˆŠøŃ€ŠµŠ½ŠøŃŃ€Š°Š±Š¾Ń‚Ń‹ŃŠŗŃ€ŠøŠæŃ‚Š¾Š³Ń€Š°Ń„ŠøŠµŠ¹ Š½Š°Ń‡Š°Ń‚ŃŒŠæŠ¾Š“ŠŗŠ»ŃŽŃ‡ŠµŠ½ŠøŠµŃ€Š°ŃŃˆŠøŃ€ŠµŠ½ŠøŃŃ€Š°Š±Š¾Ń‚Ń‹ŃŃ„Š°Š¹Š»Š°Š¼Šø Š½Š°Ń‡Š°Ń‚ŃŒŠæŠ¾ŠøŃŠŗŃ„Š°Š¹Š»Š¾Š² Š½Š°Ń‡Š°Ń‚ŃŒŠæŠ¾Š»ŃƒŃ‡ŠµŠ½ŠøŠµŠŗŠ°Ń‚Š°Š»Š¾Š³Š°Š²Ń€ŠµŠ¼ŠµŠ½Š½Ń‹Ń…Ń„Š°Š¹Š»Š¾Š² Š½Š°Ń‡Š°Ń‚ŃŒŠæŠ¾Š»ŃƒŃ‡ŠµŠ½ŠøŠµŠŗŠ°Ń‚Š°Š»Š¾Š³Š°Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Š¾Š² Š½Š°Ń‡Š°Ń‚ŃŒŠæŠ¾Š»ŃƒŃ‡ŠµŠ½ŠøŠµŃ€Š°Š±Š¾Ń‡ŠµŠ³Š¾ŠŗŠ°Ń‚Š°Š»Š¾Š³Š°Š“Š°Š½Š½Ń‹Ń…ŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»Ń Š½Š°Ń‡Š°Ń‚ŃŒŠæŠ¾Š»ŃƒŃ‡ŠµŠ½ŠøŠµŃ„Š°Š¹Š»Š¾Š² Š½Š°Ń‡Š°Ń‚ŃŒŠæŠ¾Š¼ŠµŃ‰ŠµŠ½ŠøŠµŃ„Š°Š¹Š»Š° Š½Š°Ń‡Š°Ń‚ŃŒŠæŠ¾Š¼ŠµŃ‰ŠµŠ½ŠøŠµŃ„Š°Š¹Š»Š¾Š² Š½Š°Ń‡Š°Ń‚ŃŒŃŠ¾Š·Š“Š°Š½ŠøŠµŠ“Š²Š¾ŠøŃ‡Š½Ń‹Ń…Š“Š°Š½Š½Ń‹Ń…ŠøŠ·Ń„Š°Š¹Š»Š° Š½Š°Ń‡Š°Ń‚ŃŒŃŠ¾Š·Š“Š°Š½ŠøŠµŠŗŠ°Ń‚Š°Š»Š¾Š³Š° Š½Š°Ń‡Š°Ń‚ŃŒŃ‚Ń€Š°Š½Š·Š°ŠŗŃ†ŠøŃŽ Š½Š°Ń‡Š°Ń‚ŃŒŃƒŠ“Š°Š»ŠµŠ½ŠøŠµŃ„Š°Š¹Š»Š¾Š² Š½Š°Ń‡Š°Ń‚ŃŒŃƒŃŃ‚Š°Š½Š¾Š²ŠŗŃƒŠ²Š½ŠµŃˆŠ½ŠµŠ¹ŠŗŠ¾Š¼ŠæŠ¾Š½ŠµŠ½Ń‚Ń‹ Š½Š°Ń‡Š°Ń‚ŃŒŃƒŃŃ‚Š°Š½Š¾Š²ŠŗŃƒŃ€Š°ŃŃˆŠøŃ€ŠµŠ½ŠøŃŃ€Š°Š±Š¾Ń‚Ń‹ŃŠŗŃ€ŠøŠæŃ‚Š¾Š³Ń€Š°Ń„ŠøŠµŠ¹ Š½Š°Ń‡Š°Ń‚ŃŒŃƒŃŃ‚Š°Š½Š¾Š²ŠŗŃƒŃ€Š°ŃŃˆŠøŃ€ŠµŠ½ŠøŃŃ€Š°Š±Š¾Ń‚Ń‹ŃŃ„Š°Š¹Š»Š°Š¼Šø Š½ŠµŠ“ŠµŠ»ŃŠ³Š¾Š“Š° Š½ŠµŠ¾Š±Ń…Š¾Š“ŠøŠ¼Š¾ŃŃ‚ŃŒŠ·Š°Š²ŠµŃ€ŃˆŠµŠ½ŠøŃŃŠ¾ŠµŠ“ŠøŠ½ŠµŠ½ŠøŃ номерсеансаинформационнойбазы Š½Š¾Š¼ŠµŃ€ŃŠ¾ŠµŠ“ŠøŠ½ŠµŠ½ŠøŃŠøŠ½Ń„Š¾Ń€Š¼Š°Ń†ŠøŠ¾Š½Š½Š¾Š¹Š±Š°Š·Ń‹ нрег нстр Š¾Š±Š½Š¾Š²ŠøŃ‚ŃŒŠøŠ½Ń‚ŠµŃ€Ń„ŠµŠ¹Ń Š¾Š±Š½Š¾Š²ŠøŃ‚ŃŒŠ½ŃƒŠ¼ŠµŃ€Š°Ń†ŠøŃŽŠ¾Š±ŃŠŠµŠŗŃ‚Š¾Š² Š¾Š±Š½Š¾Š²ŠøŃ‚ŃŒŠæŠ¾Š²Ń‚Š¾Ń€Š½Š¾ŠøŃŠæŠ¾Š»ŃŒŠ·ŃƒŠµŠ¼Ń‹ŠµŠ·Š½Š°Ń‡ŠµŠ½ŠøŃ Š¾Š±Ń€Š°Š±Š¾Ń‚ŠŗŠ°ŠæŃ€ŠµŃ€Ń‹Š²Š°Š½ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»Ń Š¾Š±ŃŠŠµŠ“ŠøŠ½ŠøŃ‚ŃŒŃ„Š°Š¹Š»Ń‹ окр описаниеошибки Š¾ŠæŠ¾Š²ŠµŃŃ‚ŠøŃ‚ŃŒ Š¾ŠæŠ¾Š²ŠµŃŃ‚ŠøŃ‚ŃŒŠ¾Š±ŠøŠ·Š¼ŠµŠ½ŠµŠ½ŠøŠø Š¾Ń‚ŠŗŠ»ŃŽŃ‡ŠøŃ‚ŃŒŠ¾Š±Ń€Š°Š±Š¾Ń‚Ń‡ŠøŠŗŠ·Š°ŠæŃ€Š¾ŃŠ°Š½Š°ŃŃ‚Ń€Š¾ŠµŠŗŠŗŠ»ŠøŠµŠ½Ń‚Š°Š»ŠøŃ†ŠµŠ½Š·ŠøŃ€Š¾Š²Š°Š½ŠøŃ Š¾Ń‚ŠŗŠ»ŃŽŃ‡ŠøŃ‚ŃŒŠ¾Š±Ń€Š°Š±Š¾Ń‚Ń‡ŠøŠŗŠ¾Š¶ŠøŠ“Š°Š½ŠøŃ Š¾Ń‚ŠŗŠ»ŃŽŃ‡ŠøŃ‚ŃŒŠ¾Š±Ń€Š°Š±Š¾Ń‚Ń‡ŠøŠŗŠ¾ŠæŠ¾Š²ŠµŃ‰ŠµŠ½ŠøŃ Š¾Ń‚ŠŗŃ€Ń‹Ń‚ŃŒŠ·Š½Š°Ń‡ŠµŠ½ŠøŠµ Š¾Ń‚ŠŗŃ€Ń‹Ń‚ŃŒŠøŠ½Š“ŠµŠŗŃŃŠæŃ€Š°Š²ŠŗŠø Š¾Ń‚ŠŗŃ€Ń‹Ń‚ŃŒŃŠ¾Š“ŠµŃ€Š¶Š°Š½ŠøŠµŃŠæŃ€Š°Š²ŠŗŠø Š¾Ń‚ŠŗŃ€Ń‹Ń‚ŃŒŃŠæŃ€Š°Š²ŠŗŃƒ Š¾Ń‚ŠŗŃ€Ń‹Ń‚ŃŒŃ„Š¾Ń€Š¼Ńƒ Š¾Ń‚ŠŗŃ€Ń‹Ń‚ŃŒŃ„Š¾Ń€Š¼ŃƒŠ¼Š¾Š“Š°Š»ŃŒŠ½Š¾ Š¾Ń‚Š¼ŠµŠ½ŠøŃ‚ŃŒŃ‚Ń€Š°Š½Š·Š°ŠŗŃ†ŠøŃŽ Š¾Ń‡ŠøŃŃ‚ŠøŃ‚ŃŒŠ¶ŃƒŃ€Š½Š°Š»Ń€ŠµŠ³ŠøŃŃ‚Ń€Š°Ń†ŠøŠø Š¾Ń‡ŠøŃŃ‚ŠøŃ‚ŃŒŠ½Š°ŃŃ‚Ń€Š¾Š¹ŠŗŠøŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»Ń Š¾Ń‡ŠøŃŃ‚ŠøŃ‚ŃŒŃŠ¾Š¾Š±Ń‰ŠµŠ½ŠøŃ ŠæŠ°Ń€Š°Š¼ŠµŃ‚Ń€Ń‹Š“Š¾ŃŃ‚ŃƒŠæŠ° перейтипонавигационнойссылке ŠæŠµŃ€ŠµŠ¼ŠµŃŃ‚ŠøŃ‚ŃŒŃ„Š°Š¹Š» ŠæŠ¾Š“ŠŗŠ»ŃŽŃ‡ŠøŃ‚ŃŒŠ²Š½ŠµŃˆŠ½ŃŽŃŽŠŗŠ¾Š¼ŠæŠ¾Š½ŠµŠ½Ń‚Ńƒ ŠæŠ¾Š“ŠŗŠ»ŃŽŃ‡ŠøŃ‚ŃŒŠ¾Š±Ń€Š°Š±Š¾Ń‚Ń‡ŠøŠŗŠ·Š°ŠæŃ€Š¾ŃŠ°Š½Š°ŃŃ‚Ń€Š¾ŠµŠŗŠŗŠ»ŠøŠµŠ½Ń‚Š°Š»ŠøŃ†ŠµŠ½Š·ŠøŃ€Š¾Š²Š°Š½ŠøŃ ŠæŠ¾Š“ŠŗŠ»ŃŽŃ‡ŠøŃ‚ŃŒŠ¾Š±Ń€Š°Š±Š¾Ń‚Ń‡ŠøŠŗŠ¾Š¶ŠøŠ“Š°Š½ŠøŃ ŠæŠ¾Š“ŠŗŠ»ŃŽŃ‡ŠøŃ‚ŃŒŠ¾Š±Ń€Š°Š±Š¾Ń‚Ń‡ŠøŠŗŠ¾ŠæŠ¾Š²ŠµŃ‰ŠµŠ½ŠøŃ ŠæŠ¾Š“ŠŗŠ»ŃŽŃ‡ŠøŃ‚ŃŒŃ€Š°ŃŃˆŠøŃ€ŠµŠ½ŠøŠµŃ€Š°Š±Š¾Ń‚Ń‹ŃŠŗŃ€ŠøŠæŃ‚Š¾Š³Ń€Š°Ń„ŠøŠµŠ¹ ŠæŠ¾Š“ŠŗŠ»ŃŽŃ‡ŠøŃ‚ŃŒŃ€Š°ŃŃˆŠøŃ€ŠµŠ½ŠøŠµŃ€Š°Š±Š¾Ń‚Ń‹ŃŃ„Š°Š¹Š»Š°Š¼Šø ŠæŠ¾Š“Ń€Š¾Š±Š½Š¾ŠµŠæŃ€ŠµŠ“ŃŃ‚Š°Š²Š»ŠµŠ½ŠøŠµŠ¾ŃˆŠøŠ±ŠŗŠø ŠæŠ¾ŠŗŠ°Š·Š°Ń‚ŃŒŠ²Š²Š¾Š“Š“Š°Ń‚Ń‹ ŠæŠ¾ŠŗŠ°Š·Š°Ń‚ŃŒŠ²Š²Š¾Š“Š·Š½Š°Ń‡ŠµŠ½ŠøŃ ŠæŠ¾ŠŗŠ°Š·Š°Ń‚ŃŒŠ²Š²Š¾Š“ŃŃ‚Ń€Š¾ŠŗŠø ŠæŠ¾ŠŗŠ°Š·Š°Ń‚ŃŒŠ²Š²Š¾Š“Ń‡ŠøŃŠ»Š° ŠæŠ¾ŠŗŠ°Š·Š°Ń‚ŃŒŠ²Š¾ŠæŃ€Š¾Ń ŠæŠ¾ŠŗŠ°Š·Š°Ń‚ŃŒŠ·Š½Š°Ń‡ŠµŠ½ŠøŠµ ŠæŠ¾ŠŗŠ°Š·Š°Ń‚ŃŒŠøŠ½Ń„Š¾Ń€Š¼Š°Ń†ŠøŃŽŠ¾Š±Š¾ŃˆŠøŠ±ŠŗŠµ ŠæŠ¾ŠŗŠ°Š·Š°Ń‚ŃŒŠ½Š°ŠŗŠ°Ń€Ń‚Šµ ŠæŠ¾ŠŗŠ°Š·Š°Ń‚ŃŒŠ¾ŠæŠ¾Š²ŠµŃ‰ŠµŠ½ŠøŠµŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»Ń ŠæŠ¾ŠŗŠ°Š·Š°Ń‚ŃŒŠæŃ€ŠµŠ“ŃƒŠæŃ€ŠµŠ¶Š“ŠµŠ½ŠøŠµ ŠæŠ¾Š»Š½Š¾ŠµŠøŠ¼ŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»Ń ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒcomŠ¾Š±ŃŠŠµŠŗŃ‚ ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒxmlтип ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ°Š“Ń€ŠµŃŠæŠ¾Š¼ŠµŃŃ‚Š¾ŠæŠ¾Š»Š¾Š¶ŠµŠ½ŠøŃŽ ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ±Š»Š¾ŠŗŠøŃ€Š¾Š²ŠŗŃƒŃŠµŠ°Š½ŃŠ¾Š² ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ²Ń€ŠµŠ¼ŃŠ·Š°Š²ŠµŃ€ŃˆŠµŠ½ŠøŃŃŠæŃŃ‰ŠµŠ³Š¾ŃŠµŠ°Š½ŃŠ° ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ²Ń€ŠµŠ¼ŃŠ·Š°ŃŃ‹ŠæŠ°Š½ŠøŃŠæŠ°ŃŃŠøŠ²Š½Š¾Š³Š¾ŃŠµŠ°Š½ŃŠ° ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ²Ń€ŠµŠ¼ŃŠ¾Š¶ŠøŠ“Š°Š½ŠøŃŠ±Š»Š¾ŠŗŠøŃ€Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ“Š°Š½Š½Ń‹ŠµŠ²Ń‹Š±Š¾Ń€Š° ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ“Š¾ŠæŠ¾Š»Š½ŠøŃ‚ŠµŠ»ŃŒŠ½Ń‹Š¹ŠæŠ°Ń€Š°Š¼ŠµŃ‚Ń€ŠŗŠ»ŠøŠµŠ½Ń‚Š°Š»ŠøŃ†ŠµŠ½Š·ŠøŃ€Š¾Š²Š°Š½ŠøŃ ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ“Š¾ŠæŃƒŃŃ‚ŠøŠ¼Ń‹ŠµŠŗŠ¾Š“Ń‹Š»Š¾ŠŗŠ°Š»ŠøŠ·Š°Ń†ŠøŠø ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ“Š¾ŠæŃƒŃŃ‚ŠøŠ¼Ń‹ŠµŃ‡Š°ŃŠ¾Š²Ń‹ŠµŠæŠ¾ŃŃŠ° ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ·Š°Š³Š¾Š»Š¾Š²Š¾ŠŗŠŗŠ»ŠøŠµŠ½Ń‚ŃŠŗŠ¾Š³Š¾ŠæŃ€ŠøŠ»Š¾Š¶ŠµŠ½ŠøŃ ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ·Š°Š³Š¾Š»Š¾Š²Š¾ŠŗŃŠøŃŃ‚ŠµŠ¼Ń‹ ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ·Š½Š°Ń‡ŠµŠ½ŠøŃŠ¾Ń‚Š±Š¾Ń€Š°Š¶ŃƒŃ€Š½Š°Š»Š°Ń€ŠµŠ³ŠøŃŃ‚Ń€Š°Ń†ŠøŠø ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠøŠ“ŠµŠ½Ń‚ŠøŃ„ŠøŠŗŠ°Ń‚Š¾Ń€ŠŗŠ¾Š½Ń„ŠøŠ³ŃƒŃ€Š°Ń†ŠøŠø ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠøŠ·Š²Ń€ŠµŠ¼ŠµŠ½Š½Š¾Š³Š¾Ń…Ń€Š°Š½ŠøŠ»ŠøŃ‰Š° ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠøŠ¼ŃŠ²Ń€ŠµŠ¼ŠµŠ½Š½Š¾Š³Š¾Ń„Š°Š¹Š»Š° ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠøŠ¼ŃŠŗŠ»ŠøŠµŠ½Ń‚Š°Š»ŠøŃ†ŠµŠ½Š·ŠøŃ€Š¾Š²Š°Š½ŠøŃ ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠøŠ½Ń„Š¾Ń€Š¼Š°Ń†ŠøŃŽŃŠŗŃ€Š°Š½Š¾Š²ŠŗŠ»ŠøŠµŠ½Ń‚Š° ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŠµŠ¶ŃƒŃ€Š½Š°Š»Š°Ń€ŠµŠ³ŠøŃŃ‚Ń€Š°Ń†ŠøŠø ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŠµŃŠ¾Š±Ń‹Ń‚ŠøŃŠ¶ŃƒŃ€Š½Š°Š»Š°Ń€ŠµŠ³ŠøŃŃ‚Ń€Š°Ń†ŠøŠø ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠŗŃ€Š°Ń‚ŠŗŠøŠ¹Š·Š°Š³Š¾Š»Š¾Š²Š¾ŠŗŠæŃ€ŠøŠ»Š¾Š¶ŠµŠ½ŠøŃ ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ¼Š°ŠŗŠµŃ‚Š¾Ń„Š¾Ń€Š¼Š»ŠµŠ½ŠøŃ ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ¼Š°ŃŠŗŃƒŠ²ŃŠµŃ„Š°Š¹Š»Ń‹ ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ¼Š°ŃŠŗŃƒŠ²ŃŠµŃ„Š°Š¹Š»Ń‹ŠŗŠ»ŠøŠµŠ½Ń‚Š° ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ¼Š°ŃŠŗŃƒŠ²ŃŠµŃ„Š°Š¹Š»Ń‹ŃŠµŃ€Š²ŠµŃ€Š° ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ¼ŠµŃŃ‚Š¾ŠæŠ¾Š»Š¾Š¶ŠµŠ½ŠøŠµŠæŠ¾Š°Š“Ń€ŠµŃŃƒ ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ¼ŠøŠ½ŠøŠ¼Š°Š»ŃŒŠ½ŃƒŃŽŠ“Š»ŠøŠ½ŃƒŠæŠ°Ń€Š¾Š»ŠµŠ¹ŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»ŠµŠ¹ ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ½Š°Š²ŠøŠ³Š°Ń†ŠøŠ¾Š½Š½ŃƒŃŽŃŃŃ‹Š»ŠŗŃƒ ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ½Š°Š²ŠøŠ³Š°Ń†ŠøŠ¾Š½Š½ŃƒŃŽŃŃŃ‹Š»ŠŗŃƒŠøŠ½Ń„Š¾Ń€Š¼Š°Ń†ŠøŠ¾Š½Š½Š¾Š¹Š±Š°Š·Ń‹ ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ¾Š±Š½Š¾Š²Š»ŠµŠ½ŠøŠµŠŗŠ¾Š½Ń„ŠøŠ³ŃƒŃ€Š°Ń†ŠøŠøŠ±Š°Š·Ń‹Š“Š°Š½Š½Ń‹Ń… ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ¾Š±Š½Š¾Š²Š»ŠµŠ½ŠøŠµŠæŃ€ŠµŠ“Š¾ŠæŃ€ŠµŠ“ŠµŠ»ŠµŠ½Š½Ń‹Ń…Š“Š°Š½Š½Ń‹Ń…ŠøŠ½Ń„Š¾Ń€Š¼Š°Ń†ŠøŠ¾Š½Š½Š¾Š¹Š±Š°Š·Ń‹ ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ¾Š±Ń‰ŠøŠ¹Š¼Š°ŠŗŠµŃ‚ ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ¾Š±Ń‰ŃƒŃŽŃ„Š¾Ń€Š¼Ńƒ ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ¾ŠŗŠ½Š° ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ¾ŠæŠµŃ€Š°Ń‚ŠøŠ²Š½ŃƒŃŽŠ¾Ń‚Š¼ŠµŃ‚ŠŗŃƒŠ²Ń€ŠµŠ¼ŠµŠ½Šø ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ¾Ń‚ŠŗŠ»ŃŽŃ‡ŠµŠ½ŠøŠµŠ±ŠµŠ·Š¾ŠæŠ°ŃŠ½Š¾Š³Š¾Ń€ŠµŠ¶ŠøŠ¼Š° ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠæŠ°Ń€Š°Š¼ŠµŃ‚Ń€Ń‹Ń„ŃƒŠ½ŠŗŃ†ŠøŠ¾Š½Š°Š»ŃŒŠ½Ń‹Ń…Š¾ŠæŃ†ŠøŠ¹ŠøŠ½Ń‚ŠµŃ€Ń„ŠµŠ¹ŃŠ° ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠæŠ¾Š»Š½Š¾ŠµŠøŠ¼ŃŠæŃ€ŠµŠ“Š¾ŠæŃ€ŠµŠ“ŠµŠ»ŠµŠ½Š½Š¾Š³Š¾Š·Š½Š°Ń‡ŠµŠ½ŠøŃ ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠæŃ€ŠµŠ“ŃŃ‚Š°Š²Š»ŠµŠ½ŠøŃŠ½Š°Š²ŠøŠ³Š°Ń†ŠøŠ¾Š½Š½Ń‹Ń…ŃŃŃ‹Š»Š¾Šŗ ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠæŃ€Š¾Š²ŠµŃ€ŠŗŃƒŃŠ»Š¾Š¶Š½Š¾ŃŃ‚ŠøŠæŠ°Ń€Š¾Š»ŠµŠ¹ŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»ŠµŠ¹ ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŃ€Š°Š·Š“ŠµŠ»ŠøŃ‚ŠµŠ»ŃŒŠæŃƒŃ‚Šø ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŃ€Š°Š·Š“ŠµŠ»ŠøŃ‚ŠµŠ»ŃŒŠæŃƒŃ‚ŠøŠŗŠ»ŠøŠµŠ½Ń‚Š° ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŃ€Š°Š·Š“ŠµŠ»ŠøŃ‚ŠµŠ»ŃŒŠæŃƒŃ‚ŠøŃŠµŃ€Š²ŠµŃ€Š° ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŃŠµŠ°Š½ŃŃ‹ŠøŠ½Ń„Š¾Ń€Š¼Š°Ń†ŠøŠ¾Š½Š½Š¾Š¹Š±Š°Š·Ń‹ ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŃŠŗŠ¾Ń€Š¾ŃŃ‚ŃŒŠŗŠ»ŠøŠµŠ½Ń‚ŃŠŗŠ¾Š³Š¾ŃŠ¾ŠµŠ“ŠøŠ½ŠµŠ½ŠøŃ ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŃŠ¾ŠµŠ“ŠøŠ½ŠµŠ½ŠøŃŠøŠ½Ń„Š¾Ń€Š¼Š°Ń†ŠøŠ¾Š½Š½Š¾Š¹Š±Š°Š·Ń‹ ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŃŠ¾Š¾Š±Ń‰ŠµŠ½ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»ŃŽ ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŃŠ¾Š¾Ń‚Š²ŠµŃ‚ŃŃ‚Š²ŠøŠµŠ¾Š±ŃŠŠµŠŗŃ‚Š°ŠøŃ„Š¾Ń€Š¼Ń‹ ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŃŠ¾ŃŃ‚Š°Š²ŃŃ‚Š°Š½Š“Š°Ń€Ń‚Š½Š¾Š³Š¾ŠøŠ½Ń‚ŠµŃ€Ń„ŠµŠ¹ŃŠ°odata ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŃŃ‚Ń€ŃƒŠŗŃ‚ŃƒŃ€ŃƒŃ…Ń€Š°Š½ŠµŠ½ŠøŃŠ±Š°Š·Ń‹Š“Š°Š½Š½Ń‹Ń… ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŃ‚ŠµŠŗŃƒŃ‰ŠøŠ¹ŃŠµŠ°Š½ŃŠøŠ½Ń„Š¾Ń€Š¼Š°Ń†ŠøŠ¾Š½Š½Š¾Š¹Š±Š°Š·Ń‹ ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŃ„Š°Š¹Š» ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŃ„Š°Š¹Š»Ń‹ ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŃ„Š¾Ń€Š¼Ńƒ ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŃ„ŃƒŠ½ŠŗŃ†ŠøŠ¾Š½Š°Š»ŃŒŠ½ŃƒŃŽŠ¾ŠæŃ†ŠøŃŽ ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŃ„ŃƒŠ½ŠŗŃ†ŠøŠ¾Š½Š°Š»ŃŒŠ½ŃƒŃŽŠ¾ŠæŃ†ŠøŃŽŠøŠ½Ń‚ŠµŃ€Ń„ŠµŠ¹ŃŠ° ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŃ‡Š°ŃŠ¾Š²Š¾Š¹ŠæŠ¾ŃŃŠøŠ½Ń„Š¾Ń€Š¼Š°Ń†ŠøŠ¾Š½Š½Š¾Š¹Š±Š°Š·Ń‹ ŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»ŠøŠ¾Ń ŠæŠ¾Š¼ŠµŃŃ‚ŠøŃ‚ŃŒŠ²Š¾Š²Ń€ŠµŠ¼ŠµŠ½Š½Š¾ŠµŃ…Ń€Š°Š½ŠøŠ»ŠøŃ‰Šµ ŠæŠ¾Š¼ŠµŃŃ‚ŠøŃ‚ŃŒŃ„Š°Š¹Š» ŠæŠ¾Š¼ŠµŃŃ‚ŠøŃ‚ŃŒŃ„Š°Š¹Š»Ń‹ прав ŠæŃ€Š°Š²Š¾Š“Š¾ŃŃ‚ŃƒŠæŠ° преГопреГеленноезначение преГставлениекоГалокализации преГставлениепериоГа преГставлениеправа ŠæŃ€ŠµŠ“ŃŃ‚Š°Š²Š»ŠµŠ½ŠøŠµŠæŃ€ŠøŠ»Š¾Š¶ŠµŠ½ŠøŃ ŠæŃ€ŠµŠ“ŃŃ‚Š°Š²Š»ŠµŠ½ŠøŠµŃŠ¾Š±Ń‹Ń‚ŠøŃŠ¶ŃƒŃ€Š½Š°Š»Š°Ń€ŠµŠ³ŠøŃŃ‚Ń€Š°Ń†ŠøŠø ŠæŃ€ŠµŠ“ŃŃ‚Š°Š²Š»ŠµŠ½ŠøŠµŃ‡Š°ŃŠ¾Š²Š¾Š³Š¾ŠæŠ¾ŃŃŠ° ŠæŃ€ŠµŠ“ŃƒŠæŃ€ŠµŠ¶Š“ŠµŠ½ŠøŠµ ŠæŃ€ŠµŠŗŃ€Š°Ń‚ŠøŃ‚ŃŒŃ€Š°Š±Š¾Ń‚ŃƒŃŠøŃŃ‚ŠµŠ¼Ń‹ привилегированныйрежим ŠæŃ€Š¾Š“Š¾Š»Š¶ŠøŃ‚ŃŒŠ²Ń‹Š·Š¾Š² ŠæŃ€Š¾Ń‡ŠøŃ‚Š°Ń‚ŃŒjson ŠæŃ€Š¾Ń‡ŠøŃ‚Š°Ń‚ŃŒxml ŠæŃ€Š¾Ń‡ŠøŃ‚Š°Ń‚ŃŒŠ“Š°Ń‚Ńƒjson ŠæŃƒŃŃ‚Š°ŃŃŃ‚Ń€Š¾ŠŗŠ° Ń€Š°Š±Š¾Ń‡ŠøŠ¹ŠŗŠ°Ń‚Š°Š»Š¾Š³Š“Š°Š½Š½Ń‹Ń…ŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»Ń Ń€Š°Š·Š±Š»Š¾ŠŗŠøŃ€Š¾Š²Š°Ń‚ŃŒŠ“Š°Š½Š½Ń‹ŠµŠ“Š»ŃŃ€ŠµŠ“Š°ŠŗŃ‚ŠøŃ€Š¾Š²Š°Š½ŠøŃ Ń€Š°Š·Š“ŠµŠ»ŠøŃ‚ŃŒŃ„Š°Š¹Š» Ń€Š°Š·Š¾Ń€Š²Š°Ń‚ŃŒŃŠ¾ŠµŠ“ŠøŠ½ŠµŠ½ŠøŠµŃŠ²Š½ŠµŃˆŠ½ŠøŠ¼ŠøŃŃ‚Š¾Ń‡Š½ŠøŠŗŠ¾Š¼Š“Š°Š½Š½Ń‹Ń… Ń€Š°ŃŠŗŠ¾Š“ŠøŃ€Š¾Š²Š°Ń‚ŃŒŃŃ‚Ń€Š¾ŠŗŃƒ Ń€Š¾Š»ŃŒŠ“Š¾ŃŃ‚ŃƒŠæŠ½Š° секунГа сигнал символ ŃŠŗŠ¾ŠæŠøŃ€Š¾Š²Š°Ń‚ŃŒŠ¶ŃƒŃ€Š½Š°Š»Ń€ŠµŠ³ŠøŃŃ‚Ń€Š°Ń†ŠøŠø смещениелетнеговремени смещениестанГартноговремени ŃŠ¾ŠµŠ“ŠøŠ½ŠøŃ‚ŃŒŠ±ŃƒŃ„ŠµŃ€Ń‹Š“Š²Š¾ŠøŃ‡Š½Ń‹Ń…Š“Š°Š½Š½Ń‹Ń… ŃŠ¾Š·Š“Š°Ń‚ŃŒŠŗŠ°Ń‚Š°Š»Š¾Š³ ŃŠ¾Š·Š“Š°Ń‚ŃŒŃ„Š°Š±Ń€ŠøŠŗŃƒxdto сокрл сокрлп сокрп ŃŠ¾Š¾Š±Ń‰ŠøŃ‚ŃŒ ŃŠ¾ŃŃ‚Š¾ŃŠ½ŠøŠµ ŃŠ¾Ń…Ń€Š°Š½ŠøŃ‚ŃŒŠ·Š½Š°Ń‡ŠµŠ½ŠøŠµ ŃŠ¾Ń…Ń€Š°Š½ŠøŃ‚ŃŒŠ½Š°ŃŃ‚Ń€Š¾Š¹ŠŗŠøŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»Ń среГ стрГлина ŃŃ‚Ń€Š·Š°ŠŗŠ°Š½Ń‡ŠøŠ²Š°ŠµŃ‚ŃŃŠ½Š° ŃŃ‚Ń€Š·Š°Š¼ŠµŠ½ŠøŃ‚ŃŒ стрнайти ŃŃ‚Ń€Š½Š°Ń‡ŠøŠ½Š°ŠµŃ‚ŃŃŃ строка ŃŃ‚Ń€Š¾ŠŗŠ°ŃŠ¾ŠµŠ“ŠøŠ½ŠµŠ½ŠøŃŠøŠ½Ń„Š¾Ń€Š¼Š°Ń†ŠøŠ¾Š½Š½Š¾Š¹Š±Š°Š·Ń‹ ŃŃ‚Ń€ŠæŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŃŃ‚Ń€Š¾ŠŗŃƒ ŃŃ‚Ń€Ń€Š°Š·Š“ŠµŠ»ŠøŃ‚ŃŒ ŃŃ‚Ń€ŃŠ¾ŠµŠ“ŠøŠ½ŠøŃ‚ŃŒ ŃŃ‚Ń€ŃŃ€Š°Š²Š½ŠøŃ‚ŃŒ стрчисловхожГений стрчислострок ŃŃ‚Ń€ŃˆŠ°Š±Š»Š¾Š½ Ń‚ŠµŠŗŃƒŃ‰Š°ŃŠ“Š°Ń‚Š° Ń‚ŠµŠŗŃƒŃ‰Š°ŃŠ“Š°Ń‚Š°ŃŠµŠ°Š½ŃŠ° Ń‚ŠµŠŗŃƒŃ‰Š°ŃŃƒŠ½ŠøŠ²ŠµŃ€ŃŠ°Š»ŃŒŠ½Š°ŃŠ“Š°Ń‚Š° Ń‚ŠµŠŗŃƒŃ‰Š°ŃŃƒŠ½ŠøŠ²ŠµŃ€ŃŠ°Š»ŃŒŠ½Š°ŃŠ“Š°Ń‚Š°Š²Š¼ŠøŠ»Š»ŠøŃŠµŠŗŃƒŠ½Š“Š°Ń… Ń‚ŠµŠŗŃƒŃ‰ŠøŠ¹Š²Š°Ń€ŠøŠ°Š½Ń‚ŠøŠ½Ń‚ŠµŃ€Ń„ŠµŠ¹ŃŠ°ŠŗŠ»ŠøŠµŠ½Ń‚ŃŠŗŠ¾Š³Š¾ŠæŃ€ŠøŠ»Š¾Š¶ŠµŠ½ŠøŃ Ń‚ŠµŠŗŃƒŃ‰ŠøŠ¹Š²Š°Ń€ŠøŠ°Š½Ń‚Š¾ŃŠ½Š¾Š²Š½Š¾Š³Š¾ŃˆŃ€ŠøŃ„Ń‚Š°ŠŗŠ»ŠøŠµŠ½Ń‚ŃŠŗŠ¾Š³Š¾ŠæŃ€ŠøŠ»Š¾Š¶ŠµŠ½ŠøŃ Ń‚ŠµŠŗŃƒŃ‰ŠøŠ¹ŠŗŠ¾Š“Š»Š¾ŠŗŠ°Š»ŠøŠ·Š°Ń†ŠøŠø Ń‚ŠµŠŗŃƒŃ‰ŠøŠ¹Ń€ŠµŠ¶ŠøŠ¼Š·Š°ŠæŃƒŃŠŗŠ° Ń‚ŠµŠŗŃƒŃ‰ŠøŠ¹ŃŠ·Ń‹Šŗ Ń‚ŠµŠŗŃƒŃ‰ŠøŠ¹ŃŠ·Ń‹ŠŗŃŠøŃŃ‚ŠµŠ¼Ń‹ тип типзнч Ń‚Ń€Š°Š½Š·Š°ŠŗŃ†ŠøŃŠ°ŠŗŃ‚ŠøŠ²Š½Š° трег ŃƒŠ“Š°Š»ŠøŃ‚ŃŒŠ“Š°Š½Š½Ń‹ŠµŠøŠ½Ń„Š¾Ń€Š¼Š°Ń†ŠøŠ¾Š½Š½Š¾Š¹Š±Š°Š·Ń‹ ŃƒŠ“Š°Š»ŠøŃ‚ŃŒŠøŠ·Š²Ń€ŠµŠ¼ŠµŠ½Š½Š¾Š³Š¾Ń…Ń€Š°Š½ŠøŠ»ŠøŃ‰Š° ŃƒŠ“Š°Š»ŠøŃ‚ŃŒŠ¾Š±ŃŠŠµŠŗŃ‚Ń‹ ŃƒŠ“Š°Š»ŠøŃ‚ŃŒŃ„Š°Š¹Š»Ń‹ ŃƒŠ½ŠøŠ²ŠµŃ€ŃŠ°Š»ŃŒŠ½Š¾ŠµŠ²Ń€ŠµŠ¼Ń ŃƒŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŠ±ŠµŠ·Š¾ŠæŠ°ŃŠ½Ń‹Š¹Ń€ŠµŠ¶ŠøŠ¼ ŃƒŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŠ±ŠµŠ·Š¾ŠæŠ°ŃŠ½Ń‹Š¹Ń€ŠµŠ¶ŠøŠ¼Ń€Š°Š·Š“ŠµŠ»ŠµŠ½ŠøŃŠ“Š°Š½Š½Ń‹Ń… ŃƒŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŠ±Š»Š¾ŠŗŠøŃ€Š¾Š²ŠŗŃƒŃŠµŠ°Š½ŃŠ¾Š² ŃƒŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŠ²Š½ŠµŃˆŠ½ŃŽŃŽŠŗŠ¾Š¼ŠæŠ¾Š½ŠµŠ½Ń‚Ńƒ ŃƒŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŠ²Ń€ŠµŠ¼ŃŠ·Š°Š²ŠµŃ€ŃˆŠµŠ½ŠøŃŃŠæŃŃ‰ŠµŠ³Š¾ŃŠµŠ°Š½ŃŠ° ŃƒŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŠ²Ń€ŠµŠ¼ŃŠ·Š°ŃŃ‹ŠæŠ°Š½ŠøŃŠæŠ°ŃŃŠøŠ²Š½Š¾Š³Š¾ŃŠµŠ°Š½ŃŠ° ŃƒŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŠ²Ń€ŠµŠ¼ŃŠ¾Š¶ŠøŠ“Š°Š½ŠøŃŠ±Š»Š¾ŠŗŠøŃ€Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… ŃƒŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŠ·Š°Š³Š¾Š»Š¾Š²Š¾ŠŗŠŗŠ»ŠøŠµŠ½Ń‚ŃŠŗŠ¾Š³Š¾ŠæŃ€ŠøŠ»Š¾Š¶ŠµŠ½ŠøŃ ŃƒŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŠ·Š°Š³Š¾Š»Š¾Š²Š¾ŠŗŃŠøŃŃ‚ŠµŠ¼Ń‹ ŃƒŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŠµŠ¶ŃƒŃ€Š½Š°Š»Š°Ń€ŠµŠ³ŠøŃŃ‚Ń€Š°Ń†ŠøŠø ŃƒŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŠµŃŠ¾Š±Ń‹Ń‚ŠøŃŠ¶ŃƒŃ€Š½Š°Š»Š°Ń€ŠµŠ³ŠøŃŃ‚Ń€Š°Ń†ŠøŠø ŃƒŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŠŗŃ€Š°Ń‚ŠŗŠøŠ¹Š·Š°Š³Š¾Š»Š¾Š²Š¾ŠŗŠæŃ€ŠøŠ»Š¾Š¶ŠµŠ½ŠøŃ ŃƒŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŠ¼ŠøŠ½ŠøŠ¼Š°Š»ŃŒŠ½ŃƒŃŽŠ“Š»ŠøŠ½ŃƒŠæŠ°Ń€Š¾Š»ŠµŠ¹ŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»ŠµŠ¹ ŃƒŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŠ¼Š¾Š½Š¾ŠæŠ¾Š»ŃŒŠ½Ń‹Š¹Ń€ŠµŠ¶ŠøŠ¼ ŃƒŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŠ½Š°ŃŃ‚Ń€Š¾Š¹ŠŗŠøŠŗŠ»ŠøŠµŠ½Ń‚Š°Š»ŠøŃ†ŠµŠ½Š·ŠøŃ€Š¾Š²Š°Š½ŠøŃ ŃƒŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŠ¾Š±Š½Š¾Š²Š»ŠµŠ½ŠøŠµŠæŃ€ŠµŠ“Š¾ŠæŃ€ŠµŠ“ŠµŠ»ŠµŠ½Š½Ń‹Ń…Š“Š°Š½Š½Ń‹Ń…ŠøŠ½Ń„Š¾Ń€Š¼Š°Ń†ŠøŠ¾Š½Š½Š¾Š¹Š±Š°Š·Ń‹ ŃƒŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŠ¾Ń‚ŠŗŠ»ŃŽŃ‡ŠµŠ½ŠøŠµŠ±ŠµŠ·Š¾ŠæŠ°ŃŠ½Š¾Š³Š¾Ń€ŠµŠ¶ŠøŠ¼Š° ŃƒŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŠæŠ°Ń€Š°Š¼ŠµŃ‚Ń€Ń‹Ń„ŃƒŠ½ŠŗŃ†ŠøŠ¾Š½Š°Š»ŃŒŠ½Ń‹Ń…Š¾ŠæŃ†ŠøŠ¹ŠøŠ½Ń‚ŠµŃ€Ń„ŠµŠ¹ŃŠ° ŃƒŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŠæŃ€ŠøŠ²ŠøŠ»ŠµŠ³ŠøŃ€Š¾Š²Š°Š½Š½Ń‹Š¹Ń€ŠµŠ¶ŠøŠ¼ ŃƒŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŠæŃ€Š¾Š²ŠµŃ€ŠŗŃƒŃŠ»Š¾Š¶Š½Š¾ŃŃ‚ŠøŠæŠ°Ń€Š¾Š»ŠµŠ¹ŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»ŠµŠ¹ ŃƒŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŃ€Š°ŃŃˆŠøŃ€ŠµŠ½ŠøŠµŃ€Š°Š±Š¾Ń‚Ń‹ŃŠŗŃ€ŠøŠæŃ‚Š¾Š³Ń€Š°Ń„ŠøŠµŠ¹ ŃƒŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŃ€Š°ŃŃˆŠøŃ€ŠµŠ½ŠøŠµŃ€Š°Š±Š¾Ń‚Ń‹ŃŃ„Š°Š¹Š»Š°Š¼Šø ŃƒŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŃŠ¾ŠµŠ“ŠøŠ½ŠµŠ½ŠøŠµŃŠ²Š½ŠµŃˆŠ½ŠøŠ¼ŠøŃŃ‚Š¾Ń‡Š½ŠøŠŗŠ¾Š¼Š“Š°Š½Š½Ń‹Ń… ŃƒŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŃŠ¾Š¾Ń‚Š²ŠµŃ‚ŃŃ‚Š²ŠøŠµŠ¾Š±ŃŠŠµŠŗŃ‚Š°ŠøŃ„Š¾Ń€Š¼Ń‹ ŃƒŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŃŠ¾ŃŃ‚Š°Š²ŃŃ‚Š°Š½Š“Š°Ń€Ń‚Š½Š¾Š³Š¾ŠøŠ½Ń‚ŠµŃ€Ń„ŠµŠ¹ŃŠ°odata ŃƒŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŃ‡Š°ŃŠ¾Š²Š¾Š¹ŠæŠ¾ŃŃŠøŠ½Ń„Š¾Ń€Š¼Š°Ń†ŠøŠ¾Š½Š½Š¾Š¹Š±Š°Š·Ń‹ ŃƒŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒŃ‡Š°ŃŠ¾Š²Š¾Š¹ŠæŠ¾ŃŃŃŠµŠ°Š½ŃŠ° формат цел час Ń‡Š°ŃŠ¾Š²Š¾Š¹ŠæŠ¾ŃŃ Ń‡Š°ŃŠ¾Š²Š¾Š¹ŠæŠ¾ŃŃŃŠµŠ°Š½ŃŠ° число Ń‡ŠøŃŠ»Š¾ŠæŃ€Š¾ŠæŠøŃŃŒŃŽ ŃŃ‚Š¾Š°Š“Ń€ŠµŃŠ²Ń€ŠµŠ¼ŠµŠ½Š½Š¾Š³Š¾Ń…Ń€Š°Š½ŠøŠ»ŠøŃ‰Š° ",E="wsссылки библиотекакартинок Š±ŠøŠ±Š»ŠøŠ¾Ń‚ŠµŠŗŠ°Š¼Š°ŠŗŠµŃ‚Š¾Š²Š¾Ń„Š¾Ń€Š¼Š»ŠµŠ½ŠøŃŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… библиотекастилей бизнеспроцессы Š²Š½ŠµŃˆŠ½ŠøŠµŠøŃŃ‚Š¾Ń‡Š½ŠøŠŗŠøŠ“Š°Š½Š½Ń‹Ń… Š²Š½ŠµŃˆŠ½ŠøŠµŠ¾Š±Ń€Š°Š±Š¾Ń‚ŠŗŠø Š²Š½ŠµŃˆŠ½ŠøŠµŠ¾Ń‚Ń‡ŠµŃ‚Ń‹ Š²ŃŃ‚Ń€Š¾ŠµŠ½Š½Ń‹ŠµŠæŠ¾ŠŗŃƒŠæŠŗŠø главныйинтерфейс Š³Š»Š°Š²Š½Ń‹Š¹ŃŃ‚ŠøŠ»ŃŒ Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Ń‹ Š“Š¾ŃŃ‚Š°Š²Š»ŃŠµŠ¼Ń‹ŠµŃƒŠ²ŠµŠ“Š¾Š¼Š»ŠµŠ½ŠøŃ Š¶ŃƒŃ€Š½Š°Š»Ń‹Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Š¾Š² заГачи ŠøŠ½Ń„Š¾Ń€Š¼Š°Ń†ŠøŃŠ¾Š±ŠøŠ½Ń‚ŠµŃ€Š½ŠµŃ‚ŃŠ¾ŠµŠ“ŠøŠ½ŠµŠ½ŠøŠø ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŠµŃ€Š°Š±Š¾Ń‡ŠµŠ¹Š“Š°Ń‚Ń‹ ŠøŃŃ‚Š¾Ń€ŠøŃŃ€Š°Š±Š¾Ń‚Ń‹ŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»Ń константы критерииотбора метаГанные обработки отображениерекламы Š¾Ń‚ŠæŃ€Š°Š²ŠŗŠ°Š“Š¾ŃŃ‚Š°Š²Š»ŃŠµŠ¼Ń‹Ń…ŃƒŠ²ŠµŠ“Š¾Š¼Š»ŠµŠ½ŠøŠ¹ отчеты ŠæŠ°Š½ŠµŠ»ŃŒŠ·Š°Š“Š°Ń‡Š¾Ń ŠæŠ°Ń€Š°Š¼ŠµŃ‚Ń€Š·Š°ŠæŃƒŃŠŗŠ° параметрысеанса ŠæŠµŃ€ŠµŃ‡ŠøŃŠ»ŠµŠ½ŠøŃ планывиГоврасчета планывиГовхарактеристик планыобмена планысчетов полнотекстовыйпоиск ŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»ŠøŠøŠ½Ń„Š¾Ń€Š¼Š°Ń†ŠøŠ¾Š½Š½Š¾Š¹Š±Š°Š·Ń‹ ŠæŠ¾ŃŠ»ŠµŠ“Š¾Š²Š°Ń‚ŠµŠ»ŃŒŠ½Š¾ŃŃ‚Šø ŠæŃ€Š¾Š²ŠµŃ€ŠŗŠ°Š²ŃŃ‚Ń€Š¾ŠµŠ½Š½Ń‹Ń…ŠæŠ¾ŠŗŃƒŠæŠ¾Šŗ Ń€Š°Š±Š¾Ń‡Š°ŃŠ“Š°Ń‚Š° Ń€Š°ŃŃˆŠøŃ€ŠµŠ½ŠøŃŠŗŠ¾Š½Ń„ŠøŠ³ŃƒŃ€Š°Ń†ŠøŠø Ń€ŠµŠ³ŠøŃŃ‚Ń€Ń‹Š±ŃƒŃ…Š³Š°Š»Ń‚ŠµŃ€ŠøŠø Ń€ŠµŠ³ŠøŃŃ‚Ń€Ń‹Š½Š°ŠŗŠ¾ŠæŠ»ŠµŠ½ŠøŃ регистрырасчета регистрысвеГений Ń€ŠµŠ³Š»Š°Š¼ŠµŠ½Ń‚Š½Ń‹ŠµŠ·Š°Š“Š°Š½ŠøŃ сериализаторxdto справочники ŃŃ€ŠµŠ“ŃŃ‚Š²Š°Š³ŠµŠ¾ŠæŠ¾Š·ŠøŃ†ŠøŠ¾Š½ŠøŃ€Š¾Š²Š°Š½ŠøŃ среГствакриптографии ŃŃ€ŠµŠ“ŃŃ‚Š²Š°Š¼ŃƒŠ»ŃŒŃ‚ŠøŠ¼ŠµŠ“ŠøŠ° ŃŃ€ŠµŠ“ŃŃ‚Š²Š°Š¾Ń‚Š¾Š±Ń€Š°Š¶ŠµŠ½ŠøŃŃ€ŠµŠŗŠ»Š°Š¼Ń‹ среГствапочты среГствателефонии фабрикаxdto файловыепотоки Ń„Š¾Š½Š¾Š²Ń‹ŠµŠ·Š°Š“Š°Š½ŠøŃ хранилищанастроек хранилищевариантовотчетов хранилищенастроекГанныхформ хранилищеобщихнастроек Ń…Ń€Š°Š½ŠøŠ»ŠøŃ‰ŠµŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»ŃŒŃŠŗŠøŃ…Š½Š°ŃŃ‚Ń€Š¾ŠµŠŗŠ“ŠøŠ½Š°Š¼ŠøŃ‡ŠµŃŠŗŠøŃ…ŃŠæŠøŃŠŗŠ¾Š² Ń…Ń€Š°Š½ŠøŠ»ŠøŃ‰ŠµŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»ŃŒŃŠŗŠøŃ…Š½Š°ŃŃ‚Ń€Š¾ŠµŠŗŠ¾Ń‚Ń‡ŠµŃ‚Š¾Š² хранилищесистемныхнастроек ",f=_+p+g+E,S="webцвета windowsцвета windowsŃˆŃ€ŠøŃ„Ń‚Ń‹ библиотекакартинок Ń€Š°Š¼ŠŗŠøŃŃ‚ŠøŠ»Ń символы Ń†Š²ŠµŃ‚Š°ŃŃ‚ŠøŠ»Ń ŃˆŃ€ŠøŃ„Ń‚Ń‹ŃŃ‚ŠøŠ»Ń ",v="автоматическоесохранениеГанныхформывнастройках Š°Š²Ń‚Š¾Š½ŃƒŠ¼ŠµŃ€Š°Ń†ŠøŃŠ²Ń„Š¾Ń€Š¼Šµ авторазГвижениесерий Š°Š½ŠøŠ¼Š°Ń†ŠøŃŠ“иаграммы Š²Š°Ń€ŠøŠ°Š½Ń‚Š²Ń‹Ń€Š°Š²Š½ŠøŠ²Š°Š½ŠøŃŃŠ»ŠµŠ¼ŠµŠ½Ń‚Š¾Š²ŠøŠ·Š°Š³Š¾Š»Š¾Š²ŠŗŠ¾Š² Š²Š°Ń€ŠøŠ°Š½Ń‚ŃƒŠæŃ€Š°Š²Š»ŠµŠ½ŠøŃŠ²Ń‹ŃŠ¾Ń‚Š¾Š¹Ń‚Š°Š±Š»ŠøŃ†Ń‹ Š²ŠµŃ€Ń‚ŠøŠŗŠ°Š»ŃŒŠ½Š°ŃŠæŃ€Š¾ŠŗŃ€ŃƒŃ‚ŠŗŠ°Ń„Š¾Ń€Š¼Ń‹ Š²ŠµŃ€Ń‚ŠøŠŗŠ°Š»ŃŒŠ½Š¾ŠµŠæŠ¾Š»Š¾Š¶ŠµŠ½ŠøŠµ Š²ŠµŃ€Ń‚ŠøŠŗŠ°Š»ŃŒŠ½Š¾ŠµŠæŠ¾Š»Š¾Š¶ŠµŠ½ŠøŠµŃŠ»ŠµŠ¼ŠµŠ½Ń‚Š° Š²ŠøŠ“Š³Ń€ŃƒŠæŠæŃ‹Ń„Š¾Ń€Š¼Ń‹ виГГекорацииформы Š²ŠøŠ“Š“Š¾ŠæŠ¾Š»Š½ŠµŠ½ŠøŃŃŠ»ŠµŠ¼ŠµŠ½Ń‚Š°Ń„Š¾Ń€Š¼Ń‹ Š²ŠøŠ“ŠøŠ·Š¼ŠµŠ½ŠµŠ½ŠøŃŠ“Š°Š½Š½Ń‹Ń… виГкнопкиформы Š²ŠøŠ“ŠæŠµŃ€ŠµŠŗŠ»ŃŽŃ‡Š°Ń‚ŠµŠ»Ń виГпоГписейкГиаграмме Š²ŠøŠ“ŠæŠ¾Š»ŃŃ„Š¾Ń€Š¼Ń‹ виГфлажка Š²Š»ŠøŃŠ½ŠøŠµŃ€Š°Š·Š¼ŠµŃ€Š°Š½Š°ŠæŃƒŠ·Ń‹Ń€ŠµŠŗŠ“иаграммы Š³Š¾Ń€ŠøŠ·Š¾Š½Ń‚Š°Š»ŃŒŠ½Š¾ŠµŠæŠ¾Š»Š¾Š¶ŠµŠ½ŠøŠµ Š³Š¾Ń€ŠøŠ·Š¾Š½Ń‚Š°Š»ŃŒŠ½Š¾ŠµŠæŠ¾Š»Š¾Š¶ŠµŠ½ŠøŠµŃŠ»ŠµŠ¼ŠµŠ½Ń‚Š° Š³Ń€ŃƒŠæŠæŠøŃ€Š¾Š²ŠŗŠ°ŠŗŠ¾Š»Š¾Š½Š¾Šŗ Š³Ń€ŃƒŠæŠæŠøŃ€Š¾Š²ŠŗŠ°ŠæŠ¾Š“Ń‡ŠøŠ½ŠµŠ½Š½Ń‹Ń…ŃŠ»ŠµŠ¼ŠµŠ½Ń‚Š¾Š²Ń„Š¾Ń€Š¼Ń‹ Š³Ń€ŃƒŠæŠæŃ‹ŠøŃŠ»ŠµŠ¼ŠµŠ½Ń‚Ń‹ Š“ŠµŠ¹ŃŃ‚Š²ŠøŠµŠæŠµŃ€ŠµŃ‚Š°ŃŠŗŠøŠ²Š°Š½ŠøŃ Š“Š¾ŠæŠ¾Š»Š½ŠøŃ‚ŠµŠ»ŃŒŠ½Ń‹Š¹Ń€ŠµŠ¶ŠøŠ¼Š¾Ń‚Š¾Š±Ń€Š°Š¶ŠµŠ½ŠøŃ Š“Š¾ŠæŃƒŃŃ‚ŠøŠ¼Ń‹ŠµŠ“ŠµŠ¹ŃŃ‚Š²ŠøŃŠæŠµŃ€ŠµŃ‚Š°ŃŠŗŠøŠ²Š°Š½ŠøŃ ŠøŠ½Ń‚ŠµŃ€Š²Š°Š»Š¼ŠµŠ¶Š“ŃƒŃŠ»ŠµŠ¼ŠµŠ½Ń‚Š°Š¼ŠøŃ„Š¾Ń€Š¼Ń‹ ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŠµŠ²Ń‹Š²Š¾Š“Š° ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŠµŠæŠ¾Š»Š¾ŃŃ‹ŠæŃ€Š¾ŠŗŃ€ŃƒŃ‚ŠŗŠø ŠøŃŠæŠ¾Š»ŃŒŠ·ŃƒŠµŠ¼Š¾ŠµŠ·Š½Š°Ń‡ŠµŠ½ŠøŠµŃ‚Š¾Ń‡ŠŗŠøŠ±ŠøŃ€Š¶ŠµŠ²Š¾Š¹Š“ŠøŠ°Š³Ń€Š°Š¼Š¼Ń‹ ŠøŃŃ‚Š¾Ń€ŠøŃŠ²Ń‹Š±Š¾Ń€Š°ŠæŃ€ŠøŠ²Š²Š¾Š“Šµ источникзначенийоситочекГиаграммы ŠøŃŃ‚Š¾Ń‡Š½ŠøŠŗŠ·Š½Š°Ń‡ŠµŠ½ŠøŃŃ€Š°Š·Š¼ŠµŃ€Š°ŠæŃƒŠ·Ń‹Ń€ŃŒŠŗŠ°Š“ŠøŠ°Š³Ń€Š°Š¼Š¼Ń‹ ŠŗŠ°Ń‚ŠµŠ³Š¾Ń€ŠøŃŠ³Ń€ŃƒŠæŠæŃ‹ŠŗŠ¾Š¼Š°Š½Š“ Š¼Š°ŠŗŃŠøŠ¼ŃƒŠ¼ŃŠµŃ€ŠøŠ¹ Š½Š°Ń‡Š°Š»ŃŒŠ½Š¾ŠµŠ¾Ń‚Š¾Š±Ń€Š°Š¶ŠµŠ½ŠøŠµŠ“ŠµŃ€ŠµŠ²Š° Š½Š°Ń‡Š°Š»ŃŒŠ½Š¾ŠµŠ¾Ń‚Š¾Š±Ń€Š°Š¶ŠµŠ½ŠøŠµŃŠæŠøŃŠŗŠ° Š¾Š±Š½Š¾Š²Š»ŠµŠ½ŠøŠµŃ‚ŠµŠŗŃŃ‚Š°Ń€ŠµŠ“Š°ŠŗŃ‚ŠøŃ€Š¾Š²Š°Š½ŠøŃ Š¾Ń€ŠøŠµŠ½Ń‚Š°Ń†ŠøŃŠ“ŠµŠ½Š“Ń€Š¾Š³Ń€Š°Š¼Š¼Ń‹ Š¾Ń€ŠøŠµŠ½Ń‚Š°Ń†ŠøŃŠ“ŠøŠ°Š³Ń€Š°Š¼Š¼Ń‹ Š¾Ń€ŠøŠµŠ½Ń‚Š°Ń†ŠøŃŠ¼ŠµŃ‚Š¾ŠŗŠ“ŠøŠ°Š³Ń€Š°Š¼Š¼Ń‹ Š¾Ń€ŠøŠµŠ½Ń‚Š°Ń†ŠøŃŠ¼ŠµŃ‚Š¾ŠŗŃŠ²Š¾Š“Š½Š¾Š¹Š“ŠøŠ°Š³Ń€Š°Š¼Š¼Ń‹ Š¾Ń€ŠøŠµŠ½Ń‚Š°Ń†ŠøŃŃŠ»ŠµŠ¼ŠµŠ½Ń‚Š°Ń„Š¾Ń€Š¼Ń‹ отображениевГиаграмме отображениевлегенГеГиаграммы Š¾Ń‚Š¾Š±Ń€Š°Š¶ŠµŠ½ŠøŠµŠ³Ń€ŃƒŠæŠæŃ‹ŠŗŠ½Š¾ŠæŠ¾Šŗ Š¾Ń‚Š¾Š±Ń€Š°Š¶ŠµŠ½ŠøŠµŠ·Š°Š³Š¾Š»Š¾Š²ŠŗŠ°ŃˆŠŗŠ°Š»Ń‹Š“ŠøŠ°Š³Ń€Š°Š¼Š¼Ń‹ отображениезначенийсвоГнойГиаграммы Š¾Ń‚Š¾Š±Ń€Š°Š¶ŠµŠ½ŠøŠµŠ·Š½Š°Ń‡ŠµŠ½ŠøŃŠøŠ·Š¼ŠµŃ€ŠøŃ‚ŠµŠ»ŃŒŠ½Š¾Š¹Š“ŠøŠ°Š³Ń€Š°Š¼Š¼Ń‹ отображениеинтервалаГиаграммыганта отображениекнопки отображениекнопкивыбора Š¾Ń‚Š¾Š±Ń€Š°Š¶ŠµŠ½ŠøŠµŠ¾Š±ŃŃƒŠ¶Š“ŠµŠ½ŠøŠ¹Ń„Š¾Ń€Š¼Ń‹ Š¾Ń‚Š¾Š±Ń€Š°Š¶ŠµŠ½ŠøŠµŠ¾Š±Ń‹Ń‡Š½Š¾Š¹Š³Ń€ŃƒŠæŠæŃ‹ Š¾Ń‚Š¾Š±Ń€Š°Š¶ŠµŠ½ŠøŠµŠ¾Ń‚Ń€ŠøŃ†Š°Ń‚ŠµŠ»ŃŒŠ½Ń‹Ń…Š·Š½Š°Ń‡ŠµŠ½ŠøŠ¹ŠæŃƒŠ·Ń‹Ń€ŃŒŠŗŠ¾Š²Š¾Š¹Š“ŠøŠ°Š³Ń€Š°Š¼Š¼Ń‹ отображениепанелипоиска отображениепоГсказки Š¾Ń‚Š¾Š±Ń€Š°Š¶ŠµŠ½ŠøŠµŠæŃ€ŠµŠ“ŃƒŠæŃ€ŠµŠ¶Š“ŠµŠ½ŠøŃŠæŃ€ŠøŃ€ŠµŠ“Š°ŠŗŃ‚ŠøŃ€Š¾Š²Š°Š½ŠøŠø Š¾Ń‚Š¾Š±Ń€Š°Š¶ŠµŠ½ŠøŠµŃ€Š°Š·Š¼ŠµŃ‚ŠŗŠøŠæŠ¾Š»Š¾ŃŃ‹Ń€ŠµŠ³ŃƒŠ»ŠøŃ€Š¾Š²Š°Š½ŠøŃ отображениестраницформы отображениетаблицы Š¾Ń‚Š¾Š±Ń€Š°Š¶ŠµŠ½ŠøŠµŃ‚ŠµŠŗŃŃ‚Š°Š·Š½Š°Ń‡ŠµŠ½ŠøŃŠ“ŠøŠ°Š³Ń€Š°Š¼Š¼Ń‹Š³Š°Š½Ń‚Š° Š¾Ń‚Š¾Š±Ń€Š°Š¶ŠµŠ½ŠøŠµŃƒŠæŃ€Š°Š²Š»ŠµŠ½ŠøŃŠ¾Š±Ń‹Ń‡Š½Š¾Š¹Š³Ń€ŃƒŠæŠæŃ‹ Š¾Ń‚Š¾Š±Ń€Š°Š¶ŠµŠ½ŠøŠµŃ„ŠøŠ³ŃƒŃ€Ń‹ŠŗŠ½Š¾ŠæŠŗŠø палитрацветовГиаграммы ŠæŠ¾Š²ŠµŠ“ŠµŠ½ŠøŠµŠ¾Š±Ń‹Ń‡Š½Š¾Š¹Š³Ń€ŃƒŠæŠæŃ‹ ŠæŠ¾Š“Š“ŠµŃ€Š¶ŠŗŠ°Š¼Š°ŃŃˆŃ‚Š°Š±Š°Š“ŠµŠ½Š“Ń€Š¾Š³Ń€Š°Š¼Š¼Ń‹ ŠæŠ¾Š“Š“ŠµŃ€Š¶ŠŗŠ°Š¼Š°ŃŃˆŃ‚Š°Š±Š°Š“ŠøŠ°Š³Ń€Š°Š¼Š¼Ń‹Š³Š°Š½Ń‚Š° ŠæŠ¾Š“Š“ŠµŃ€Š¶ŠŗŠ°Š¼Š°ŃŃˆŃ‚Š°Š±Š°ŃŠ²Š¾Š“Š½Š¾Š¹Š“ŠøŠ°Š³Ń€Š°Š¼Š¼Ń‹ поисквтаблицеприввоГе ŠæŠ¾Š»Š¾Š¶ŠµŠ½ŠøŠµŠ·Š°Š³Š¾Š»Š¾Š²ŠŗŠ°ŃŠ»ŠµŠ¼ŠµŠ½Ń‚Š°Ń„Š¾Ń€Š¼Ń‹ положениекартинкикнопкиформы ŠæŠ¾Š»Š¾Š¶ŠµŠ½ŠøŠµŠŗŠ°Ń€Ń‚ŠøŠ½ŠŗŠøŃŠ»ŠµŠ¼ŠµŠ½Ń‚Š°Š³Ń€Š°Ń„ŠøŃ‡ŠµŃŠŗŠ¾Š¹ŃŃ…ŠµŠ¼Ń‹ положениекоманГнойпанелиформы ŠæŠ¾Š»Š¾Š¶ŠµŠ½ŠøŠµŠŗŠ¾Š¼Š°Š½Š“Š½Š¾Š¹ŠæŠ°Š½ŠµŠ»ŠøŃŠ»ŠµŠ¼ŠµŠ½Ń‚Š°Ń„Š¾Ń€Š¼Ń‹ положениеопорнойточкиотрисовки положениепоГписейкГиаграмме ŠæŠ¾Š»Š¾Š¶ŠµŠ½ŠøŠµŠæŠ¾Š“ŠæŠøŃŠµŠ¹ŃˆŠŗŠ°Š»Ń‹Š·Š½Š°Ń‡ŠµŠ½ŠøŠ¹ŠøŠ·Š¼ŠµŃ€ŠøŃ‚ŠµŠ»ŃŒŠ½Š¾Š¹Š“ŠøŠ°Š³Ń€Š°Š¼Š¼Ń‹ ŠæŠ¾Š»Š¾Š¶ŠµŠ½ŠøŠµŃŠ¾ŃŃ‚Š¾ŃŠ½ŠøŃŠæŃ€Š¾ŃŠ¼Š¾Ń‚Ń€Š° положениестрокипоиска ŠæŠ¾Š»Š¾Š¶ŠµŠ½ŠøŠµŃ‚ŠµŠŗŃŃ‚Š°ŃŠ¾ŠµŠ“ŠøŠ½ŠøŃ‚ŠµŠ»ŃŒŠ½Š¾Š¹Š»ŠøŠ½ŠøŠø ŠæŠ¾Š»Š¾Š¶ŠµŠ½ŠøŠµŃƒŠæŃ€Š°Š²Š»ŠµŠ½ŠøŃŠæŠ¾ŠøŃŠŗŠ¾Š¼ ŠæŠ¾Š»Š¾Š¶ŠµŠ½ŠøŠµŃˆŠŗŠ°Š»Ń‹Š²Ń€ŠµŠ¼ŠµŠ½Šø ŠæŠ¾Ń€ŃŠ“Š¾ŠŗŠ¾Ń‚Š¾Š±Ń€Š°Š¶ŠµŠ½ŠøŃŃ‚Š¾Ń‡ŠµŠŗŠ³Š¾Ń€ŠøŠ·Š¾Š½Ń‚Š°Š»ŃŒŠ½Š¾Š¹Š³ŠøŃŃ‚Š¾Š³Ń€Š°Š¼Š¼Ń‹ ŠæŠ¾Ń€ŃŠ“Š¾ŠŗŃŠµŃ€ŠøŠ¹Š²Š»ŠµŠ³ŠµŠ½Š“ŠµŠ“ŠøŠ°Š³Ń€Š°Š¼Š¼Ń‹ размеркартинки Ń€Š°ŃŠæŠ¾Š»Š¾Š¶ŠµŠ½ŠøŠµŠ·Š°Š³Š¾Š»Š¾Š²ŠŗŠ°ŃˆŠŗŠ°Š»Ń‹Š“ŠøŠ°Š³Ń€Š°Š¼Š¼Ń‹ Ń€Š°ŃŃ‚ŃŠ³ŠøŠ²Š°Š½ŠøŠµŠæŠ¾Š²ŠµŃ€Ń‚ŠøŠŗŠ°Š»ŠøŠ“ŠøŠ°Š³Ń€Š°Š¼Š¼Ń‹Š³Š°Š½Ń‚Š° Ń€ŠµŠ¶ŠøŠ¼Š°Š²Ń‚Š¾Š¾Ń‚Š¾Š±Ń€Š°Š¶ŠµŠ½ŠøŃŃŠ¾ŃŃ‚Š¾ŃŠ½ŠøŃ режимввоГастроктаблицы режимвыборанезаполненного Ń€ŠµŠ¶ŠøŠ¼Š²Ń‹Š“ŠµŠ»ŠµŠ½ŠøŃŠ“Š°Ń‚Ń‹ Ń€ŠµŠ¶ŠøŠ¼Š²Ń‹Š“ŠµŠ»ŠµŠ½ŠøŃŃŃ‚Ń€Š¾ŠŗŠøŃ‚Š°Š±Š»ŠøŃ†Ń‹ Ń€ŠµŠ¶ŠøŠ¼Š²Ń‹Š“ŠµŠ»ŠµŠ½ŠøŃŃ‚Š°Š±Š»ŠøŃ†Ń‹ Ń€ŠµŠ¶ŠøŠ¼ŠøŠ·Š¼ŠµŠ½ŠµŠ½ŠøŃŃ€Š°Š·Š¼ŠµŃ€Š° Ń€ŠµŠ¶ŠøŠ¼ŠøŠ·Š¼ŠµŠ½ŠµŠ½ŠøŃŃŠ²ŃŠ·Š°Š½Š½Š¾Š³Š¾Š·Š½Š°Ń‡ŠµŠ½ŠøŃ Ń€ŠµŠ¶ŠøŠ¼ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŃŠ“ŠøŠ°Š»Š¾Š³Š°ŠæŠµŃ‡Š°Ń‚Šø Ń€ŠµŠ¶ŠøŠ¼ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŃŠæŠ°Ń€Š°Š¼ŠµŃ‚Ń€Š°ŠŗŠ¾Š¼Š°Š½Š“Ń‹ Ń€ŠµŠ¶ŠøŠ¼Š¼Š°ŃŃˆŃ‚Š°Š±ŠøŃ€Š¾Š²Š°Š½ŠøŃŠæŃ€Š¾ŃŠ¼Š¾Ń‚Ń€Š° Ń€ŠµŠ¶ŠøŠ¼Š¾ŃŠ½Š¾Š²Š½Š¾Š³Š¾Š¾ŠŗŠ½Š°ŠŗŠ»ŠøŠµŠ½Ń‚ŃŠŗŠ¾Š³Š¾ŠæŃ€ŠøŠ»Š¾Š¶ŠµŠ½ŠøŃ Ń€ŠµŠ¶ŠøŠ¼Š¾Ń‚ŠŗŃ€Ń‹Ń‚ŠøŃŠ¾ŠŗŠ½Š°Ń„Š¾Ń€Š¼Ń‹ Ń€ŠµŠ¶ŠøŠ¼Š¾Ń‚Š¾Š±Ń€Š°Š¶ŠµŠ½ŠøŃŠ²Ń‹Š“ŠµŠ»ŠµŠ½ŠøŃ Ń€ŠµŠ¶ŠøŠ¼Š¾Ń‚Š¾Š±Ń€Š°Š¶ŠµŠ½ŠøŃŠ³ŠµŠ¾Š³Ń€Š°Ń„ŠøŃ‡ŠµŃŠŗŠ¾Š¹ŃŃ…ŠµŠ¼Ń‹ Ń€ŠµŠ¶ŠøŠ¼Š¾Ń‚Š¾Š±Ń€Š°Š¶ŠµŠ½ŠøŃŠ·Š½Š°Ń‡ŠµŠ½ŠøŠ¹ŃŠµŃ€ŠøŠø режимотрисовкисеткиграфическойсхемы Ń€ŠµŠ¶ŠøŠ¼ŠæŠ¾Š»ŃƒŠæŃ€Š¾Š·Ń€Š°Ń‡Š½Š¾ŃŃ‚ŠøŠ“ŠøŠ°Š³Ń€Š°Š¼Š¼Ń‹ режимпробеловГиаграммы Ń€ŠµŠ¶ŠøŠ¼Ń€Š°Š·Š¼ŠµŃ‰ŠµŠ½ŠøŃŠ½Š°ŃŃ‚Ń€Š°Š½ŠøŃ†Šµ Ń€ŠµŠ¶ŠøŠ¼Ń€ŠµŠ“Š°ŠŗŃ‚ŠøŃ€Š¾Š²Š°Š½ŠøŃŠŗŠ¾Š»Š¾Š½ŠŗŠø Ń€ŠµŠ¶ŠøŠ¼ŃŠ³Š»Š°Š¶ŠøŠ²Š°Š½ŠøŃŠ“ŠøŠ°Š³Ń€Š°Š¼Š¼Ń‹ Ń€ŠµŠ¶ŠøŠ¼ŃŠ³Š»Š°Š¶ŠøŠ²Š°Š½ŠøŃŠøŠ½Š“ŠøŠŗŠ°Ń‚Š¾Ń€Š° режимсписказаГач сквозноевыравнивание сохранениеГанныхформывнастройках ŃŠæŠ¾ŃŠ¾Š±Š·Š°ŠæŠ¾Š»Š½ŠµŠ½ŠøŃŃ‚ŠµŠŗŃŃ‚Š°Š·Š°Š³Š¾Š»Š¾Š²ŠŗŠ°ŃˆŠŗŠ°Š»Ń‹Š“ŠøŠ°Š³Ń€Š°Š¼Š¼Ń‹ ŃŠæŠ¾ŃŠ¾Š±Š¾ŠæŃ€ŠµŠ“ŠµŠ»ŠµŠ½ŠøŃŠ¾Š³Ń€Š°Š½ŠøŃ‡ŠøŠ²Š°ŃŽŃ‰ŠµŠ³Š¾Š·Š½Š°Ń‡ŠµŠ½ŠøŃŠ“ŠøŠ°Š³Ń€Š°Š¼Š¼Ń‹ ŃŃ‚Š°Š½Š“Š°Ń€Ń‚Š½Š°ŃŠ³Ń€ŃƒŠæŠæŠ°ŠŗŠ¾Š¼Š°Š½Š“ станГартноеоформление ŃŃ‚Š°Ń‚ŃƒŃŠ¾ŠæŠ¾Š²ŠµŃ‰ŠµŠ½ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»Ń ŃŃ‚ŠøŠ»ŃŒŃŃ‚Ń€ŠµŠ»ŠŗŠø типаппроксимациилиниитренГаГиаграммы типГиаграммы Ń‚ŠøŠæŠµŠ“ŠøŠ½ŠøŃ†Ń‹ŃˆŠŗŠ°Š»Ń‹Š²Ń€ŠµŠ¼ŠµŠ½Šø Ń‚ŠøŠæŠøŠ¼ŠæŠ¾Ń€Ń‚Š°ŃŠµŃ€ŠøŠ¹ŃŠ»Š¾ŃŠ³ŠµŠ¾Š³Ń€Š°Ń„ŠøŃ‡ŠµŃŠŗŠ¾Š¹ŃŃ…ŠµŠ¼Ń‹ типлиниигеографическойсхемы типлинииГиаграммы типмаркерагеографическойсхемы типмаркераГиаграммы Ń‚ŠøŠæŠ¾Š±Š»Š°ŃŃ‚ŠøŠ¾Ń„Š¾Ń€Š¼Š»ŠµŠ½ŠøŃ типорганизацииисточникаГанныхгеографическойсхемы Ń‚ŠøŠæŠ¾Ń‚Š¾Š±Ń€Š°Š¶ŠµŠ½ŠøŃŃŠµŃ€ŠøŠøŃŠ»Š¾ŃŠ³ŠµŠ¾Š³Ń€Š°Ń„ŠøŃ‡ŠµŃŠŗŠ¾Š¹ŃŃ…ŠµŠ¼Ń‹ Ń‚ŠøŠæŠ¾Ń‚Š¾Š±Ń€Š°Š¶ŠµŠ½ŠøŃŃ‚Š¾Ń‡ŠµŃ‡Š½Š¾Š³Š¾Š¾Š±ŃŠŠµŠŗŃ‚Š°Š³ŠµŠ¾Š³Ń€Š°Ń„ŠøŃ‡ŠµŃŠŗŠ¾Š¹ŃŃ…ŠµŠ¼Ń‹ Ń‚ŠøŠæŠ¾Ń‚Š¾Š±Ń€Š°Š¶ŠµŠ½ŠøŃŃˆŠŗŠ°Š»Ń‹ŃŠ»ŠµŠ¼ŠµŠ½Ń‚Š°Š»ŠµŠ³ŠµŠ½Š“Ń‹Š³ŠµŠ¾Š³Ń€Š°Ń„ŠøŃ‡ŠµŃŠŗŠ¾Š¹ŃŃ…ŠµŠ¼Ń‹ Ń‚ŠøŠæŠæŠ¾ŠøŃŠŗŠ°Š¾Š±ŃŠŠµŠŗŃ‚Š¾Š²Š³ŠµŠ¾Š³Ń€Š°Ń„ŠøŃ‡ŠµŃŠŗŠ¾Š¹ŃŃ…ŠµŠ¼Ń‹ типпроекциигеографическойсхемы Ń‚ŠøŠæŃ€Š°Š·Š¼ŠµŃ‰ŠµŠ½ŠøŃŠøŠ·Š¼ŠµŃ€ŠµŠ½ŠøŠ¹ Ń‚ŠøŠæŃ€Š°Š·Š¼ŠµŃ‰ŠµŠ½ŠøŃŃ€ŠµŠŗŠ²ŠøŠ·ŠøŃ‚Š¾Š²ŠøŠ·Š¼ŠµŃ€ŠµŠ½ŠøŠ¹ Ń‚ŠøŠæŃ€Š°Š¼ŠŗŠøŃŠ»ŠµŠ¼ŠµŠ½Ń‚Š°ŃƒŠæŃ€Š°Š²Š»ŠµŠ½ŠøŃ типсвоГнойГиаграммы Ń‚ŠøŠæŃŠ²ŃŠ·ŠøŠ“ŠøŠ°Š³Ń€Š°Š¼Š¼Ń‹Š³Š°Š½Ń‚Š° Ń‚ŠøŠæŃŠ¾ŠµŠ“ŠøŠ½ŠµŠ½ŠøŃŠ·Š½Š°Ń‡ŠµŠ½ŠøŠ¹ŠæŠ¾ŃŠµŃ€ŠøŃŠ¼Š“ŠøŠ°Š³Ń€Š°Š¼Š¼Ń‹ Ń‚ŠøŠæŃŠ¾ŠµŠ“ŠøŠ½ŠµŠ½ŠøŃŃ‚Š¾Ń‡ŠµŠŗŠ“ŠøŠ°Š³Ń€Š°Š¼Š¼Ń‹ Ń‚ŠøŠæŃŠ¾ŠµŠ“ŠøŠ½ŠøŃ‚ŠµŠ»ŃŒŠ½Š¾Š¹Š»ŠøŠ½ŠøŠø Ń‚ŠøŠæŃŃ‚Š¾Ń€Š¾Š½Ń‹ŃŠ»ŠµŠ¼ŠµŠ½Ń‚Š°Š³Ń€Š°Ń„ŠøŃ‡ŠµŃŠŗŠ¾Š¹ŃŃ…ŠµŠ¼Ń‹ типформыотчета Ń‚ŠøŠæŃˆŠŗŠ°Š»Ń‹Ń€Š°Š“Š°Ń€Š½Š¾Š¹Š“ŠøŠ°Š³Ń€Š°Š¼Š¼Ń‹ факторлиниитренГаГиаграммы Ń„ŠøŠ³ŃƒŃ€Š°ŠŗŠ½Š¾ŠæŠŗŠø Ń„ŠøŠ³ŃƒŃ€Ń‹Š³Ń€Š°Ń„ŠøŃ‡ŠµŃŠŗŠ¾Š¹ŃŃ…ŠµŠ¼Ń‹ Ń„ŠøŠŗŃŠ°Ń†ŠøŃŠ²Ń‚Š°Š±Š»ŠøŃ†Šµ Ń„Š¾Ń€Š¼Š°Ń‚Š“Š½ŃŃˆŠŗŠ°Š»Ń‹Š²Ń€ŠµŠ¼ŠµŠ½Šø форматкартинки ŃˆŠøŃ€ŠøŠ½Š°ŠæŠ¾Š“Ń‡ŠøŠ½ŠµŠ½Š½Ń‹Ń…ŃŠ»ŠµŠ¼ŠµŠ½Ń‚Š¾Š²Ń„Š¾Ń€Š¼Ń‹ ",h="Š²ŠøŠ“Š“Š²ŠøŠ¶ŠµŠ½ŠøŃŠ±ŃƒŃ…Š³Š°Š»Ń‚ŠµŃ€ŠøŠø Š²ŠøŠ“Š“Š²ŠøŠ¶ŠµŠ½ŠøŃŠ½Š°ŠŗŠ¾ŠæŠ»ŠµŠ½ŠøŃ виГпериоГарегистрарасчета виГсчета Š²ŠøŠ“Ń‚Š¾Ń‡ŠŗŠøŠ¼Š°Ń€ŃˆŃ€ŃƒŃ‚Š°Š±ŠøŠ·Š½ŠµŃŠæŃ€Š¾Ń†ŠµŃŃŠ° ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŠµŠ°Š³Ń€ŠµŠ³Š°Ń‚Š°Ń€ŠµŠ³ŠøŃŃ‚Ń€Š°Š½Š°ŠŗŠ¾ŠæŠ»ŠµŠ½ŠøŃ ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŠµŠ³Ń€ŃƒŠæŠæŠøŃŠ»ŠµŠ¼ŠµŠ½Ń‚Š¾Š² ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŠµŃ€ŠµŠ¶ŠøŠ¼Š°ŠæŃ€Š¾Š²ŠµŠ“ŠµŠ½ŠøŃ ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŠµŃŃ€ŠµŠ·Š° ŠæŠµŃ€ŠøŠ¾Š“ŠøŃ‡Š½Š¾ŃŃ‚ŃŒŠ°Š³Ń€ŠµŠ³Š°Ń‚Š°Ń€ŠµŠ³ŠøŃŃ‚Ń€Š°Š½Š°ŠŗŠ¾ŠæŠ»ŠµŠ½ŠøŃ Ń€ŠµŠ¶ŠøŠ¼Š°Š²Ń‚Š¾Š²Ń€ŠµŠ¼Ń Ń€ŠµŠ¶ŠøŠ¼Š·Š°ŠæŠøŃŠøŠ“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Š° Ń€ŠµŠ¶ŠøŠ¼ŠæŃ€Š¾Š²ŠµŠ“ŠµŠ½ŠøŃŠ“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Š° ",T="Š°Š²Ń‚Š¾Ń€ŠµŠ³ŠøŃŃ‚Ń€Š°Ń†ŠøŃŠøŠ·Š¼ŠµŠ½ŠµŠ½ŠøŠ¹ Š“Š¾ŠæŃƒŃŃ‚ŠøŠ¼Ń‹Š¹Š½Š¾Š¼ŠµŃ€ŃŠ¾Š¾Š±Ń‰ŠµŠ½ŠøŃ Š¾Ń‚ŠæŃ€Š°Š²ŠŗŠ°ŃŠ»ŠµŠ¼ŠµŠ½Ń‚Š°Š“Š°Š½Š½Ń‹Ń… ŠæŠ¾Š»ŃƒŃ‡ŠµŠ½ŠøŠµŃŠ»ŠµŠ¼ŠµŠ½Ń‚Š°Š“Š°Š½Š½Ń‹Ń… ",N="ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŠµŃ€Š°ŃŃˆŠøŃ„Ń€Š¾Š²ŠŗŠøŃ‚Š°Š±Š»ŠøŃ‡Š½Š¾Š³Š¾Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Š° Š¾Ń€ŠøŠµŠ½Ń‚Š°Ń†ŠøŃŃŃ‚Ń€Š°Š½ŠøŃ†Ń‹ положениеитоговколоноксвоГнойтаблицы положениеитоговстроксвоГнойтаблицы ŠæŠ¾Š»Š¾Š¶ŠµŠ½ŠøŠµŃ‚ŠµŠŗŃŃ‚Š°Š¾Ń‚Š½Š¾ŃŠøŃ‚ŠµŠ»ŃŒŠ½Š¾ŠŗŠ°Ń€Ń‚ŠøŠ½ŠŗŠø Ń€Š°ŃŠæŠ¾Š»Š¾Š¶ŠµŠ½ŠøŠµŠ·Š°Š³Š¾Š»Š¾Š²ŠŗŠ°Š³Ń€ŃƒŠæŠæŠøŃ€Š¾Š²ŠŗŠøŃ‚Š°Š±Š»ŠøŃ‡Š½Š¾Š³Š¾Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Š° ŃŠæŠ¾ŃŠ¾Š±Ń‡Ń‚ŠµŠ½ŠøŃŠ·Š½Š°Ń‡ŠµŠ½ŠøŠ¹Ń‚Š°Š±Š»ŠøŃ‡Š½Š¾Š³Š¾Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Š° Ń‚ŠøŠæŠ“Š²ŃƒŃŃ‚Š¾Ń€Š¾Š½Š½ŠµŠ¹ŠæŠµŃ‡Š°Ń‚Šø Ń‚ŠøŠæŠ·Š°ŠæŠ¾Š»Š½ŠµŠ½ŠøŃŠ¾Š±Š»Š°ŃŃ‚ŠøŃ‚Š°Š±Š»ŠøŃ‡Š½Š¾Š³Š¾Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Š° Ń‚ŠøŠæŠŗŃƒŃ€ŃŠ¾Ń€Š¾Š²Ń‚Š°Š±Š»ŠøŃ‡Š½Š¾Š³Š¾Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Š° Ń‚ŠøŠæŠ»ŠøŠ½ŠøŠøŃ€ŠøŃŃƒŠ½ŠŗŠ°Ń‚Š°Š±Š»ŠøŃ‡Š½Š¾Š³Š¾Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Š° Ń‚ŠøŠæŠ»ŠøŠ½ŠøŠøŃŃ‡ŠµŠ¹ŠŗŠøŃ‚Š°Š±Š»ŠøŃ‡Š½Š¾Š³Š¾Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Š° Ń‚ŠøŠæŠ½Š°ŠæŃ€Š°Š²Š»ŠµŠ½ŠøŃŠæŠµŃ€ŠµŃ…Š¾Š“Š°Ń‚Š°Š±Š»ŠøŃ‡Š½Š¾Š³Š¾Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Š° Ń‚ŠøŠæŠ¾Ń‚Š¾Š±Ń€Š°Š¶ŠµŠ½ŠøŃŠ²Ń‹Š“ŠµŠ»ŠµŠ½ŠøŃŃ‚Š°Š±Š»ŠøŃ‡Š½Š¾Š³Š¾Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Š° Ń‚ŠøŠæŠ¾Ń‚Š¾Š±Ń€Š°Š¶ŠµŠ½ŠøŃŠ»ŠøŠ½ŠøŠ¹ŃŠ²Š¾Š“Š½Š¾Š¹Ń‚Š°Š±Š»ŠøŃ†Ń‹ Ń‚ŠøŠæŃ€Š°Š·Š¼ŠµŃ‰ŠµŠ½ŠøŃŃ‚ŠµŠŗŃŃ‚Š°Ń‚Š°Š±Š»ŠøŃ‡Š½Š¾Š³Š¾Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Š° Ń‚ŠøŠæŃ€ŠøŃŃƒŠ½ŠŗŠ°Ń‚Š°Š±Š»ŠøŃ‡Š½Š¾Š³Š¾Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Š° Ń‚ŠøŠæŃŠ¼ŠµŃ‰ŠµŠ½ŠøŃŃ‚Š°Š±Š»ŠøŃ‡Š½Š¾Š³Š¾Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Š° Ń‚ŠøŠæŃƒŠ·Š¾Ń€Š°Ń‚Š°Š±Š»ŠøŃ‡Š½Š¾Š³Š¾Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Š° Ń‚ŠøŠæŃ„Š°Š¹Š»Š°Ń‚Š°Š±Š»ŠøŃ‡Š½Š¾Š³Š¾Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Š° Ń‚Š¾Ń‡Š½Š¾ŃŃ‚ŃŒŠæŠµŃ‡Š°Ń‚Šø Ń‡ŠµŃ€ŠµŠ“Š¾Š²Š°Š½ŠøŠµŃ€Š°ŃŠæŠ¾Š»Š¾Š¶ŠµŠ½ŠøŃŃŃ‚Ń€Š°Š½ŠøŃ† ",y="Š¾Ń‚Š¾Š±Ń€Š°Š¶ŠµŠ½ŠøŠµŠ²Ń€ŠµŠ¼ŠµŠ½ŠøŃŠ»ŠµŠ¼ŠµŠ½Ń‚Š¾Š²ŠæŠ»Š°Š½ŠøŃ€Š¾Š²Ń‰ŠøŠŗŠ° ",x="Ń‚ŠøŠæŃ„Š°Š¹Š»Š°Ń„Š¾Ń€Š¼Š°Ń‚ŠøŃ€Š¾Š²Š°Š½Š½Š¾Š³Š¾Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Š° ",P="Š¾Š±Ń…Š¾Š“Ń€ŠµŠ·ŃƒŠ»ŃŒŃ‚Š°Ń‚Š°Š·Š°ŠæŃ€Š¾ŃŠ° типзаписизапроса ",D="Š²ŠøŠ“Š·Š°ŠæŠ¾Š»Š½ŠµŠ½ŠøŃŃ€Š°ŃŃˆŠøŃ„Ń€Š¾Š²ŠŗŠøŠæŠ¾ŃŃ‚Ń€Š¾ŠøŃ‚ŠµŠ»ŃŠ¾Ń‚Ń‡ŠµŃ‚Š° Ń‚ŠøŠæŠ“Š¾Š±Š°Š²Š»ŠµŠ½ŠøŃŠæŃ€ŠµŠ“ŃŃ‚Š°Š²Š»ŠµŠ½ŠøŠ¹ Ń‚ŠøŠæŠøŠ·Š¼ŠµŃ€ŠµŠ½ŠøŃŠæŠ¾ŃŃ‚Ń€Š¾ŠøŃ‚ŠµŠ»ŃŠ¾Ń‚Ń‡ŠµŃ‚Š° Ń‚ŠøŠæŃ€Š°Š·Š¼ŠµŃ‰ŠµŠ½ŠøŃŠøŃ‚Š¾Š³Š¾Š² ",k="Š“Š¾ŃŃ‚ŃƒŠæŠŗŃ„Š°Š¹Š»Ńƒ режимГиалогавыборафайла Ń€ŠµŠ¶ŠøŠ¼Š¾Ń‚ŠŗŃ€Ń‹Ń‚ŠøŃŃ„Š°Š¹Š»Š° ",U="Ń‚ŠøŠæŠøŠ·Š¼ŠµŃ€ŠµŠ½ŠøŃŠæŠ¾ŃŃ‚Ń€Š¾ŠøŃ‚ŠµŠ»ŃŠ·Š°ŠæŃ€Š¾ŃŠ° ",W="виГГанныханализа метоГкластеризации типеГиницыинтервалавременианализаГанных Ń‚ŠøŠæŠ·Š°ŠæŠ¾Š»Š½ŠµŠ½ŠøŃŃ‚Š°Š±Š»ŠøŃ†Ń‹Ń€ŠµŠ·ŃƒŠ»ŃŒŃ‚Š°Ń‚Š°Š°Š½Š°Š»ŠøŠ·Š°Š“Š°Š½Š½Ń‹Ń… Ń‚ŠøŠæŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŃŃ‡ŠøŃŠ»Š¾Š²Ń‹Ń…Š·Š½Š°Ń‡ŠµŠ½ŠøŠ¹Š°Š½Š°Š»ŠøŠ·Š°Š“Š°Š½Š½Ń‹Ń… типисточникаГанныхпоискаассоциаций Ń‚ŠøŠæŠŗŠ¾Š»Š¾Š½ŠŗŠøŠ°Š½Š°Š»ŠøŠ·Š°Š“Š°Š½Š½Ń‹Ń…Š“ŠµŃ€ŠµŠ²Š¾Ń€ŠµŃˆŠµŠ½ŠøŠ¹ Ń‚ŠøŠæŠŗŠ¾Š»Š¾Š½ŠŗŠøŠ°Š½Š°Š»ŠøŠ·Š°Š“Š°Š½Š½Ń‹Ń…ŠŗŠ»Š°ŃŃ‚ŠµŃ€ŠøŠ·Š°Ń†ŠøŃ Ń‚ŠøŠæŠŗŠ¾Š»Š¾Š½ŠŗŠøŠ°Š½Š°Š»ŠøŠ·Š°Š“Š°Š½Š½Ń‹Ń…Š¾Š±Ń‰Š°ŃŃŃ‚Š°Ń‚ŠøŃŃ‚ŠøŠŗŠ° типколонкианализаГанныхпоискассоциаций Ń‚ŠøŠæŠŗŠ¾Š»Š¾Š½ŠŗŠøŠ°Š½Š°Š»ŠøŠ·Š°Š“Š°Š½Š½Ń‹Ń…ŠæŠ¾ŠøŃŠŗŠæŠ¾ŃŠ»ŠµŠ“Š¾Š²Š°Ń‚ŠµŠ»ŃŒŠ½Š¾ŃŃ‚ŠµŠ¹ типколонкимоГелипрогноза Ń‚ŠøŠæŠ¼ŠµŃ€Ń‹Ń€Š°ŃŃŃ‚Š¾ŃŠ½ŠøŃŠ°Š½Š°Š»ŠøŠ·Š°Š“Š°Š½Š½Ń‹Ń… Ń‚ŠøŠæŠ¾Ń‚ŃŠµŃ‡ŠµŠ½ŠøŃŠæŃ€Š°Š²ŠøŠ»Š°ŃŃŠ¾Ń†ŠøŠ°Ń†ŠøŠø Ń‚ŠøŠæŠæŠ¾Š»ŃŠ°Š½Š°Š»ŠøŠ·Š°Š“Š°Š½Š½Ń‹Ń… типстанГартизациианализаГанных Ń‚ŠøŠæŃƒŠæŠ¾Ń€ŃŠ“Š¾Ń‡ŠøŠ²Š°Š½ŠøŃŠæŃ€Š°Š²ŠøŠ»Š°ŃŃŠ¾Ń†ŠøŠ°Ń†ŠøŠøŠ°Š½Š°Š»ŠøŠ·Š°Š“Š°Š½Š½Ń‹Ń… Ń‚ŠøŠæŃƒŠæŠ¾Ń€ŃŠ“Š¾Ń‡ŠøŠ²Š°Š½ŠøŃŃˆŠ°Š±Š»Š¾Š½Š¾Š²ŠæŠ¾ŃŠ»ŠµŠ“Š¾Š²Š°Ń‚ŠµŠ»ŃŒŠ½Š¾ŃŃ‚ŠµŠ¹Š°Š½Š°Š»ŠøŠ·Š°Š“Š°Š½Š½Ń‹Ń… Ń‚ŠøŠæŃƒŠæŃ€Š¾Ń‰ŠµŠ½ŠøŃŠ“ŠµŃ€ŠµŠ²Š°Ń€ŠµŃˆŠµŠ½ŠøŠ¹ ",z="wsнаправлениепараметра вариантxpathxs вариантзаписиГатыjson вариантпростоготипаxs Š²ŠøŠ“Š³Ń€ŃƒŠæŠæŃ‹Š¼Š¾Š“ŠµŠ»Šøxs виГфасетаxdto Š“ŠµŠ¹ŃŃ‚Š²ŠøŠµŠæŠ¾ŃŃ‚Ń€Š¾ŠøŃ‚ŠµŠ»Ńdom Š·Š°Š²ŠµŃ€ŃˆŠµŠ½Š½Š¾ŃŃ‚ŃŒŠæŃ€Š¾ŃŃ‚Š¾Š³Š¾Ń‚ŠøŠæŠ°xs Š·Š°Š²ŠµŃ€ŃˆŠµŠ½Š½Š¾ŃŃ‚ŃŒŃŠ¾ŃŃ‚Š°Š²Š½Š¾Š³Š¾Ń‚ŠøŠæŠ°xs Š·Š°Š²ŠµŃ€ŃˆŠµŠ½Š½Š¾ŃŃ‚ŃŒŃŃ…ŠµŠ¼Ń‹xs запрещенныепоГстановкиxs ŠøŃŠŗŠ»ŃŽŃ‡ŠµŠ½ŠøŃŠ³Ń€ŃƒŠæŠæŠæŠ¾Š“ŃŃ‚Š°Š½Š¾Š²ŠŗŠøxs ŠŗŠ°Ń‚ŠµŠ³Š¾Ń€ŠøŃŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŃŠ°Ń‚Ń€ŠøŠ±ŃƒŃ‚Š°xs ŠŗŠ°Ń‚ŠµŠ³Š¾Ń€ŠøŃŠ¾Š³Ń€Š°Š½ŠøŃ‡ŠµŠ½ŠøŃŠøŠ“ŠµŠ½Ń‚ŠøŃ‡Š½Š¾ŃŃ‚Šøxs ŠŗŠ°Ń‚ŠµŠ³Š¾Ń€ŠøŃŠ¾Š³Ń€Š°Š½ŠøŃ‡ŠµŠ½ŠøŃŠæŃ€Š¾ŃŃ‚Ń€Š°Š½ŃŃ‚Š²ŠøŠ¼ŠµŠ½xs Š¼ŠµŃ‚Š¾Š“Š½Š°ŃŠ»ŠµŠ“Š¾Š²Š°Š½ŠøŃxs Š¼Š¾Š“ŠµŠ»ŃŒŃŠ¾Š“ŠµŃ€Š¶ŠøŠ¼Š¾Š³Š¾xs назначениетипаxml Š½ŠµŠ“Š¾ŠæŃƒŃŃ‚ŠøŠ¼Ń‹ŠµŠæŠ¾Š“ŃŃ‚Š°Š½Š¾Š²ŠŗŠøxs Š¾Š±Ń€Š°Š±Š¾Ń‚ŠŗŠ°ŠæŃ€Š¾Š±ŠµŠ»ŃŒŠ½Ń‹Ń…ŃŠøŠ¼Š²Š¾Š»Š¾Š²xs обработкасоГержимогоxs Š¾Š³Ń€Š°Š½ŠøŃ‡ŠµŠ½ŠøŠµŠ·Š½Š°Ń‡ŠµŠ½ŠøŃxs ŠæŠ°Ń€Š°Š¼ŠµŃ‚Ń€Ń‹Š¾Ń‚Š±Š¾Ń€Š°ŃƒŠ·Š»Š¾Š²dom переносстрокjson ŠæŠ¾Š·ŠøŃ†ŠøŃŠ²Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Šµdom ŠæŃ€Š¾Š±ŠµŠ»ŃŒŠ½Ń‹ŠµŃŠøŠ¼Š²Š¾Š»Ń‹xml Ń‚ŠøŠæŠ°Ń‚Ń€ŠøŠ±ŃƒŃ‚Š°xml Ń‚ŠøŠæŠ·Š½Š°Ń‡ŠµŠ½ŠøŃjson типканоническогоxml типкомпонентыxs типпроверкиxml Ń‚ŠøŠæŃ€ŠµŠ·ŃƒŠ»ŃŒŃ‚Š°Ń‚Š°domxpath Ń‚ŠøŠæŃƒŠ·Š»Š°dom Ń‚ŠøŠæŃƒŠ·Š»Š°xml формаxml Ń„Š¾Ń€Š¼Š°ŠæŃ€ŠµŠ“ŃŃ‚Š°Š²Š»ŠµŠ½ŠøŃxs форматГатыjson ŃŠŗŃ€Š°Š½ŠøŃ€Š¾Š²Š°Š½ŠøŠµŃŠøŠ¼Š²Š¾Š»Š¾Š²json ",K="Š²ŠøŠ“ŃŃ€Š°Š²Š½ŠµŠ½ŠøŃŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… Š“ŠµŠ¹ŃŃ‚Š²ŠøŠµŠ¾Š±Ń€Š°Š±Š¾Ń‚ŠŗŠøŃ€Š°ŃŃˆŠøŃ„Ń€Š¾Š²ŠŗŠøŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… направлениесортировкикомпоновкиГанных Ń€Š°ŃŠæŠ¾Š»Š¾Š¶ŠµŠ½ŠøŠµŠ²Š»Š¾Š¶ŠµŠ½Š½Ń‹Ń…ŃŠ»ŠµŠ¼ŠµŠ½Ń‚Š¾Š²Ń€ŠµŠ·ŃƒŠ»ŃŒŃ‚Š°Ń‚Š°ŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… расположениеитоговкомпоновкиГанных Ń€Š°ŃŠæŠ¾Š»Š¾Š¶ŠµŠ½ŠøŠµŠ³Ń€ŃƒŠæŠæŠøŃ€Š¾Š²ŠŗŠøŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… Ń€Š°ŃŠæŠ¾Š»Š¾Š¶ŠµŠ½ŠøŠµŠæŠ¾Š»ŠµŠ¹Š³Ń€ŃƒŠæŠæŠøŃ€Š¾Š²ŠŗŠøŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… Ń€Š°ŃŠæŠ¾Š»Š¾Š¶ŠµŠ½ŠøŠµŠæŠ¾Š»ŃŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… расположениереквизитовкомпоновкиГанных Ń€Š°ŃŠæŠ¾Š»Š¾Š¶ŠµŠ½ŠøŠµŃ€ŠµŃŃƒŃ€ŃŠ¾Š²ŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… Ń‚ŠøŠæŠ±ŃƒŃ…Š³Š°Š»Ń‚ŠµŃ€ŃŠŗŠ¾Š³Š¾Š¾ŃŃ‚Š°Ń‚ŠŗŠ°ŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… типвывоГатекстакомпоновкиГанных Ń‚ŠøŠæŠ³Ń€ŃƒŠæŠæŠøŃ€Š¾Š²ŠŗŠøŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… Ń‚ŠøŠæŠ³Ń€ŃƒŠæŠæŃ‹ŃŠ»ŠµŠ¼ŠµŠ½Ń‚Š¾Š²Š¾Ń‚Š±Š¾Ń€Š°ŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… Ń‚ŠøŠæŠ“Š¾ŠæŠ¾Š»Š½ŠµŠ½ŠøŃŠæŠµŃ€ŠøŠ¾Š“Š°ŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… типзаголовкаполейкомпоновкиГанных Ń‚ŠøŠæŠ¼Š°ŠŗŠµŃ‚Š°Š³Ń€ŃƒŠæŠæŠøŃ€Š¾Š²ŠŗŠøŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… типмакетаобластикомпоновкиГанных типостаткакомпоновкиГанных типпериоГакомпоновкиГанных Ń‚ŠøŠæŃ€Š°Š·Š¼ŠµŃ‰ŠµŠ½ŠøŃŃ‚ŠµŠŗŃŃ‚Š°ŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… Ń‚ŠøŠæŃŠ²ŃŠ·ŠøŠ½Š°Š±Š¾Ń€Š¾Š²Š“Š°Š½Š½Ń‹Ń…ŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… Ń‚ŠøŠæŃŠ»ŠµŠ¼ŠµŠ½Ń‚Š°Ń€ŠµŠ·ŃƒŠ»ŃŒŃ‚Š°Ń‚Š°ŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… расположениелегенГыГиаграммыкомпоновкиГанных Ń‚ŠøŠæŠæŃ€ŠøŠ¼ŠµŠ½ŠµŠ½ŠøŃŠ¾Ń‚Š±Š¾Ń€Š°ŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… Ń€ŠµŠ¶ŠøŠ¼Š¾Ń‚Š¾Š±Ń€Š°Š¶ŠµŠ½ŠøŃŃŠ»ŠµŠ¼ŠµŠ½Ń‚Š°Š½Š°ŃŃ‚Ń€Š¾Š¹ŠŗŠøŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… Ń€ŠµŠ¶ŠøŠ¼Š¾Ń‚Š¾Š±Ń€Š°Š¶ŠµŠ½ŠøŃŠ½Š°ŃŃ‚Ń€Š¾ŠµŠŗŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… ŃŠ¾ŃŃ‚Š¾ŃŠ½ŠøŠµŃŠ»ŠµŠ¼ŠµŠ½Ń‚Š°Š½Š°ŃŃ‚Ń€Š¾Š¹ŠŗŠøŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… ŃŠæŠ¾ŃŠ¾Š±Š²Š¾ŃŃŃ‚Š°Š½Š¾Š²Š»ŠµŠ½ŠøŃŠ½Š°ŃŃ‚Ń€Š¾ŠµŠŗŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… Ń€ŠµŠ¶ŠøŠ¼ŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŃ€ŠµŠ·ŃƒŠ»ŃŒŃ‚Š°Ń‚Š° ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŠµŠæŠ°Ń€Š°Š¼ŠµŃ‚Ń€Š°ŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… Š°Š²Ń‚Š¾ŠæŠ¾Š·ŠøŃ†ŠøŃŃ€ŠµŃŃƒŃ€ŃŠ¾Š²ŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… Š²Š°Ń€ŠøŠ°Š½Ń‚ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŃŠ³Ń€ŃƒŠæŠæŠøŃ€Š¾Š²ŠŗŠøŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… Ń€Š°ŃŠæŠ¾Š»Š¾Š¶ŠµŠ½ŠøŠµŃ€ŠµŃŃƒŃ€ŃŠ¾Š²Š²Š“ŠøŠ°Š³Ń€Š°Š¼Š¼ŠµŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… Ń„ŠøŠŗŃŠ°Ń†ŠøŃŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŠµŃƒŃŠ»Š¾Š²Š½Š¾Š³Š¾Š¾Ń„Š¾Ń€Š¼Š»ŠµŠ½ŠøŃŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… ",Ee="Š²Š°Š¶Š½Š¾ŃŃ‚ŃŒŠøŠ½Ń‚ŠµŃ€Š½ŠµŃ‚ŠæŠ¾Ń‡Ń‚Š¾Š²Š¾Š³Š¾ŃŠ¾Š¾Š±Ń‰ŠµŠ½ŠøŃ Š¾Š±Ń€Š°Š±Š¾Ń‚ŠŗŠ°Ń‚ŠµŠŗŃŃ‚Š°ŠøŠ½Ń‚ŠµŃ€Š½ŠµŃ‚ŠæŠ¾Ń‡Ń‚Š¾Š²Š¾Š³Š¾ŃŠ¾Š¾Š±Ń‰ŠµŠ½ŠøŃ ŃŠæŠ¾ŃŠ¾Š±ŠŗŠ¾Š“ŠøŃ€Š¾Š²Š°Š½ŠøŃŠøŠ½Ń‚ŠµŃ€Š½ŠµŃ‚ŠæŠ¾Ń‡Ń‚Š¾Š²Š¾Š³Š¾Š²Š»Š¾Š¶ŠµŠ½ŠøŃ ŃŠæŠ¾ŃŠ¾Š±ŠŗŠ¾Š“ŠøŃ€Š¾Š²Š°Š½ŠøŃŠ½ŠµasciiŃŠøŠ¼Š²Š¾Š»Š¾Š²ŠøŠ½Ń‚ŠµŃ€Š½ŠµŃ‚ŠæŠ¾Ń‡Ń‚Š¾Š²Š¾Š³Š¾ŃŠ¾Š¾Š±Ń‰ŠµŠ½ŠøŃ Ń‚ŠøŠæŃ‚ŠµŠŗŃŃ‚Š°ŠæŠ¾Ń‡Ń‚Š¾Š²Š¾Š³Š¾ŃŠ¾Š¾Š±Ń‰ŠµŠ½ŠøŃ протоколинтернетпочты ŃŃ‚Š°Ń‚ŃƒŃŃ€Š°Š·Š±Š¾Ń€Š°ŠæŠ¾Ń‡Ń‚Š¾Š²Š¾Š³Š¾ŃŠ¾Š¾Š±Ń‰ŠµŠ½ŠøŃ ",oe="Ń€ŠµŠ¶ŠøŠ¼Ń‚Ń€Š°Š½Š·Š°ŠŗŃ†ŠøŠøŠ·Š°ŠæŠøŃŠøŠ¶ŃƒŃ€Š½Š°Š»Š°Ń€ŠµŠ³ŠøŃŃ‚Ń€Š°Ń†ŠøŠø ŃŃ‚Š°Ń‚ŃƒŃŃ‚Ń€Š°Š½Š·Š°ŠŗŃ†ŠøŠøŠ·Š°ŠæŠøŃŠøŠ¶ŃƒŃ€Š½Š°Š»Š°Ń€ŠµŠ³ŠøŃŃ‚Ń€Š°Ń†ŠøŠø ŃƒŃ€Š¾Š²ŠµŠ½ŃŒŠ¶ŃƒŃ€Š½Š°Š»Š°Ń€ŠµŠ³ŠøŃŃ‚Ń€Š°Ń†ŠøŠø ",L="расположениехранилищасертификатовкриптографии Ń€ŠµŠ¶ŠøŠ¼Š²ŠŗŠ»ŃŽŃ‡ŠµŠ½ŠøŃŃŠµŃ€Ń‚ŠøŃ„ŠøŠŗŠ°Ń‚Š¾Š²ŠŗŃ€ŠøŠæŃ‚Š¾Š³Ń€Š°Ń„ŠøŠø режимпроверкисертификатакриптографии типхранилищасертификатовкриптографии ",J="коГировкаименфайловвzipфайле Š¼ŠµŃ‚Š¾Š“ŃŠ¶Š°Ń‚ŠøŃzip Š¼ŠµŃ‚Š¾Š“ŃˆŠøŃ„Ń€Š¾Š²Š°Š½ŠøŃzip Ń€ŠµŠ¶ŠøŠ¼Š²Š¾ŃŃŃ‚Š°Š½Š¾Š²Š»ŠµŠ½ŠøŃŠæŃƒŃ‚ŠµŠ¹Ń„Š°Š¹Š»Š¾Š²zip режимобработкипоГкаталоговzip Ń€ŠµŠ¶ŠøŠ¼ŃŠ¾Ń…Ń€Š°Š½ŠµŠ½ŠøŃŠæŃƒŃ‚ŠµŠ¹zip ŃƒŃ€Š¾Š²ŠµŠ½ŃŒŃŠ¶Š°Ń‚ŠøŃzip ",re="Š·Š²ŃƒŠŗŠ¾Š²Š¾ŠµŠ¾ŠæŠ¾Š²ŠµŃ‰ŠµŠ½ŠøŠµ направлениеперехоГакстроке ŠæŠ¾Š·ŠøŃ†ŠøŃŠ²ŠæŠ¾Ń‚Š¾ŠŗŠµ ŠæŠ¾Ń€ŃŠ“Š¾ŠŗŠ±Š°Š¹Ń‚Š¾Š² режимблокировкиГанных Ń€ŠµŠ¶ŠøŠ¼ŃƒŠæŃ€Š°Š²Š»ŠµŠ½ŠøŃŠ±Š»Š¾ŠŗŠøŃ€Š¾Š²ŠŗŠ¾Š¹Š“Š°Š½Š½Ń‹Ń… ŃŠµŃ€Š²ŠøŃŠ²ŃŃ‚Ń€Š¾ŠµŠ½Š½Ń‹Ń…ŠæŠ¾ŠŗŃƒŠæŠ¾Šŗ ŃŠ¾ŃŃ‚Š¾ŃŠ½ŠøŠµŃ„Š¾Š½Š¾Š²Š¾Š³Š¾Š·Š°Š“Š°Š½ŠøŃ Ń‚ŠøŠæŠæŠ¾Š“ŠæŠøŃŃ‡ŠøŠŗŠ°Š“Š¾ŃŃ‚Š°Š²Š»ŃŠµŠ¼Ń‹Ń…ŃƒŠ²ŠµŠ“Š¾Š¼Š»ŠµŠ½ŠøŠ¹ ŃƒŃ€Š¾Š²ŠµŠ½ŃŒŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŃŠ·Š°Ń‰ŠøŃ‰ŠµŠ½Š½Š¾Š³Š¾ŃŠ¾ŠµŠ“ŠøŠ½ŠµŠ½ŠøŃftp ",G="Š½Š°ŠæŃ€Š°Š²Š»ŠµŠ½ŠøŠµŠæŠ¾Ń€ŃŠ“ŠŗŠ°ŃŃ…ŠµŠ¼Ń‹Š·Š°ŠæŃ€Š¾ŃŠ° Ń‚ŠøŠæŠ“Š¾ŠæŠ¾Š»Š½ŠµŠ½ŠøŃŠæŠµŃ€ŠøŠ¾Š“Š°Š¼ŠøŃŃ…ŠµŠ¼Ń‹Š·Š°ŠæŃ€Š¾ŃŠ° Ń‚ŠøŠæŠŗŠ¾Š½Ń‚Ń€Š¾Š»ŃŒŠ½Š¾Š¹Ń‚Š¾Ń‡ŠŗŠøŃŃ…ŠµŠ¼Ń‹Š·Š°ŠæŃ€Š¾ŃŠ° Ń‚ŠøŠæŠ¾Š±ŃŠŠµŠ“ŠøŠ½ŠµŠ½ŠøŃŃŃ…ŠµŠ¼Ń‹Š·Š°ŠæŃ€Š¾ŃŠ° Ń‚ŠøŠæŠæŠ°Ń€Š°Š¼ŠµŃ‚Ń€Š°Š“Š¾ŃŃ‚ŃƒŠæŠ½Š¾Š¹Ń‚Š°Š±Š»ŠøŃ†Ń‹ŃŃ…ŠµŠ¼Ń‹Š·Š°ŠæŃ€Š¾ŃŠ° Ń‚ŠøŠæŃŠ¾ŠµŠ“ŠøŠ½ŠµŠ½ŠøŃŃŃ…ŠµŠ¼Ń‹Š·Š°ŠæŃ€Š¾ŃŠ° ",X="httpметоГ Š°Š²Ń‚Š¾ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŠµŠ¾Š±Ń‰ŠµŠ³Š¾Ń€ŠµŠŗŠ²ŠøŠ·ŠøŃ‚Š° автопрефиксномеразаГачи Š²Š°Ń€ŠøŠ°Š½Ń‚Š²ŃŃ‚Ń€Š¾ŠµŠ½Š½Š¾Š³Š¾ŃŠ·Ń‹ŠŗŠ° виГиерархии Š²ŠøŠ“Ń€ŠµŠ³ŠøŃŃ‚Ń€Š°Š½Š°ŠŗŠ¾ŠæŠ»ŠµŠ½ŠøŃ Š²ŠøŠ“Ń‚Š°Š±Š»ŠøŃ†Ń‹Š²Š½ŠµŃˆŠ½ŠµŠ³Š¾ŠøŃŃ‚Š¾Ń‡Š½ŠøŠŗŠ°Š“Š°Š½Š½Ń‹Ń… Š·Š°ŠæŠøŃŃŒŠ“Š²ŠøŠ¶ŠµŠ½ŠøŠ¹ŠæŃ€ŠøŠæŃ€Š¾Š²ŠµŠ“ŠµŠ½ŠøŠø Š·Š°ŠæŠ¾Š»Š½ŠµŠ½ŠøŠµŠæŠ¾ŃŠ»ŠµŠ“Š¾Š²Š°Ń‚ŠµŠ»ŃŒŠ½Š¾ŃŃ‚ŠµŠ¹ инГексирование ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŠµŠ±Š°Š·Ń‹ŠæŠ»Š°Š½Š°Š²ŠøŠ“оврасчета ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŠµŠ±Ń‹ŃŃ‚роговыбора ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŠµŠ¾Š±Ń‰ŠµŠ³Š¾Ń€ŠµŠŗŠ²ŠøŠ·ŠøŃ‚а ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŠµŠæŠ¾Š“Ń‡ŠøŠ½ŠµŠ½ŠøŃ ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŠµŠæŠ¾Š»Š½Š¾Ń‚ŠµŠŗŃŃ‚Š¾Š²Š¾Š³Š¾ŠæŠ¾ŠøŃŠŗŠ° ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŠµŃ€Š°Š·Š“ŠµŠ»ŃŠµŠ¼Ń‹Ń…Š“Š°Š½Š½Ń‹Ń…Š¾Š±Ń‰ŠµŠ³Š¾Ń€ŠµŠŗŠ²ŠøŠ·ŠøŃ‚Š° ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŠµŃ€ŠµŠŗŠ²ŠøŠ·ŠøŃ‚Š° Š½Š°Š·Š½Š°Ń‡ŠµŠ½ŠøŠµŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŃŠæŃ€ŠøŠ»Š¾Š¶ŠµŠ½ŠøŃ Š½Š°Š·Š½Š°Ń‡ŠµŠ½ŠøŠµŃ€Š°ŃŃˆŠøŃ€ŠµŠ½ŠøŃŠŗŠ¾Š½Ń„ŠøŠ³ŃƒŃ€Š°Ń†ŠøŠø направлениепереГачи обновлениепреГопреГеленныхГанных оперативноепровеГение основноепреГставлениевиГарасчета основноепреГставлениевиГахарактеристики основноепреГставлениезаГачи основноепреГставлениепланаобмена основноепреГставлениесправочника основноепреГставлениесчета перемещениеграницыприпровеГении ŠæŠµŃ€ŠøŠ¾Š“ŠøŃ‡Š½Š¾ŃŃ‚ŃŒŠ½Š¾Š¼ŠµŃ€Š°Š±ŠøŠ·Š½ŠµŃŠæŃ€Š¾Ń†ŠµŃŃŠ° ŠæŠµŃ€ŠøŠ¾Š“ŠøŃ‡Š½Š¾ŃŃ‚ŃŒŠ½Š¾Š¼ŠµŃ€Š°Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Š° ŠæŠµŃ€ŠøŠ¾Š“ŠøŃ‡Š½Š¾ŃŃ‚ŃŒŃ€ŠµŠ³ŠøŃŃ‚Ń€Š°Ń€Š°ŃŃ‡ŠµŃ‚Š° ŠæŠµŃ€ŠøŠ¾Š“ŠøŃ‡Š½Š¾ŃŃ‚ŃŒŃ€ŠµŠ³ŠøŃŃ‚Ń€Š°ŃŠ²ŠµŠ“ŠµŠ½ŠøŠ¹ ŠæŠ¾Š²Ń‚Š¾Ń€Š½Š¾ŠµŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŠµŠ²Š¾Š·Š²Ń€Š°Ń‰Š°ŠµŠ¼Ń‹Ń…Š·Š½Š°Ń‡ŠµŠ½ŠøŠ¹ полнотекстовыйпоискприввоГепостроке ŠæŃ€ŠøŠ½Š°Š“Š»ŠµŠ¶Š½Š¾ŃŃ‚ŃŒŠ¾Š±ŃŠŠµŠŗŃ‚Š° провеГение Ń€Š°Š·Š“ŠµŠ»ŠµŠ½ŠøŠµŠ°ŃƒŃ‚ŠµŠ½Ń‚ŠøŃ„ŠøŠŗŠ°Ń†ŠøŠøŠ¾Š±Ń‰ŠµŠ³Š¾Ń€ŠµŠŗŠ²ŠøŠ·ŠøŃ‚Š° разГелениеГанныхобщегореквизита Ń€Š°Š·Š“ŠµŠ»ŠµŠ½ŠøŠµŃ€Š°ŃŃˆŠøŃ€ŠµŠ½ŠøŠ¹ŠŗŠ¾Š½Ń„ŠøŠ³ŃƒŃ€Š°Ń†ŠøŠøŠ¾Š±Ń‰ŠµŠ³Š¾Ń€ŠµŠŗŠ²ŠøŠ·ŠøŃ‚Š° Ń€ŠµŠ¶ŠøŠ¼Š°Š²Ń‚Š¾Š½ŃƒŠ¼ŠµŃ€Š°Ń†ŠøŠøŠ¾Š±ŃŠŠµŠŗŃ‚Š¾Š² режимзаписирегистра Ń€ŠµŠ¶ŠøŠ¼ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŃŠ¼Š¾Š“Š°Š»ŃŒŠ½Š¾ŃŃ‚Šø Ń€ŠµŠ¶ŠøŠ¼ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŃŃŠøŠ½Ń…Ń€Š¾Š½Š½Ń‹Ń…Š²Ń‹Š·Š¾Š²Š¾Š²Ń€Š°ŃŃˆŠøŃ€ŠµŠ½ŠøŠ¹ŠæŠ»Š°Ń‚Ń„Š¾Ń€Š¼Ń‹ŠøŠ²Š½ŠµŃˆŠ½ŠøŃ…ŠŗŠ¾Š¼ŠæŠ¾Š½ŠµŠ½Ń‚ Ń€ŠµŠ¶ŠøŠ¼ŠæŠ¾Š²Ń‚Š¾Ń€Š½Š¾Š³Š¾ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŃŃŠµŠ°Š½ŃŠ¾Š² Ń€ŠµŠ¶ŠøŠ¼ŠæŠ¾Š»ŃƒŃ‡ŠµŠ½ŠøŃŠ“Š°Š½Š½Ń‹Ń…Š²Ń‹Š±Š¾Ń€Š°ŠæŃ€ŠøŠ²Š²Š¾Š“ŠµŠæŠ¾ŃŃ‚Ń€Š¾ŠŗŠµ режимсовместимости режимсовместимостиинтерфейса Ń€ŠµŠ¶ŠøŠ¼ŃƒŠæŃ€Š°Š²Š»ŠµŠ½ŠøŃŠ±Š»Š¾ŠŗŠøŃ€Š¾Š²ŠŗŠ¾Š¹Š“Š°Š½Š½Ń‹Ń…ŠæŠ¾ŃƒŠ¼Š¾Š»Ń‡Š°Š½ŠøŃŽ сериикоГовпланавиГовхарактеристик сериикоГовпланасчетов сериикоГовсправочника созГаниеприввоГе способвыбора способпоискастрокиприввоГепостроке ŃŠæŠ¾ŃŠ¾Š±Ń€ŠµŠ“Š°ŠŗŃ‚ŠøŃ€Š¾Š²Š°Š½ŠøŃ Ń‚ŠøŠæŠ“Š°Š½Š½Ń‹Ń…Ń‚Š°Š±Š»ŠøŃ†Ń‹Š²Š½ŠµŃˆŠ½ŠµŠ³Š¾ŠøŃŃ‚Š¾Ń‡Š½ŠøŠŗŠ°Š“Š°Š½Š½Ń‹Ń… типкоГапланавиГоврасчета типкоГасправочника типмакета типномерабизнеспроцесса Ń‚ŠøŠæŠ½Š¾Š¼ŠµŃ€Š°Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Š° типномеразаГачи типформы уГалениеГвижений ",_e="Š²Š°Š¶Š½Š¾ŃŃ‚ŃŒŠæŃ€Š¾Š±Š»ŠµŠ¼Ń‹ŠæŃ€ŠøŠ¼ŠµŠ½ŠµŠ½ŠøŃŃ€Š°ŃŃˆŠøŃ€ŠµŠ½ŠøŃŠŗŠ¾Š½Ń„ŠøŠ³ŃƒŃ€Š°Ń†ŠøŠø Š²Š°Ń€ŠøŠ°Š½Ń‚ŠøŠ½Ń‚ŠµŃ€Ń„ŠµŠ¹ŃŠ°ŠŗŠ»ŠøŠµŠ½Ń‚ŃŠŗŠ¾Š³Š¾ŠæŃ€ŠøŠ»Š¾Š¶ŠµŠ½ŠøŃ Š²Š°Ń€ŠøŠ°Š½Ń‚Š¼Š°ŃŃˆŃ‚Š°Š±Š°Ń„Š¾Ń€Š¼ŠŗŠ»ŠøŠµŠ½Ń‚ŃŠŗŠ¾Š³Š¾ŠæŃ€ŠøŠ»Š¾Š¶ŠµŠ½ŠøŃ Š²Š°Ń€ŠøŠ°Š½Ń‚Š¾ŃŠ½Š¾Š²Š½Š¾Š³Š¾ŃˆŃ€ŠøŃ„Ń‚Š°ŠŗŠ»ŠøŠµŠ½Ń‚ŃŠŗŠ¾Š³Š¾ŠæŃ€ŠøŠ»Š¾Š¶ŠµŠ½ŠøŃ вариантстанГартногопериоГа вариантстанГартнойГатыначала виГграницы виГкартинки Š²ŠøŠ“Š¾Ń‚Š¾Š±Ń€Š°Š¶ŠµŠ½ŠøŃŠæŠ¾Š»Š½Š¾Ń‚ŠµŠŗŃŃ‚Š¾Š²Š¾Š³Š¾ŠæŠ¾ŠøŃŠŗŠ° виГрамки Š²ŠøŠ“ŃŃ€Š°Š²Š½ŠµŠ½ŠøŃ виГцвета Š²ŠøŠ“Ń‡ŠøŃŠ»Š¾Š²Š¾Š³Š¾Š·Š½Š°Ń‡ŠµŠ½ŠøŃ Š²ŠøŠ“ŃˆŃ€ŠøŃ„Ń‚Š° Š“Š¾ŠæŃƒŃŃ‚ŠøŠ¼Š°ŃŠ“Š»ŠøŠ½Š° Š“Š¾ŠæŃƒŃŃ‚ŠøŠ¼Ń‹Š¹Š·Š½Š°Šŗ использованиеbyteordermark ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŠµŠ¼ŠµŃ‚Š°Š“Š°Š½Š½Ń‹Ń…ŠæŠ¾Š»Š½Š¾Ń‚ŠµŠŗŃŃ‚Š¾Š²Š¾Š³Š¾ŠæŠ¾ŠøŃŠŗŠ° ŠøŃŃ‚Š¾Ń‡Š½ŠøŠŗŃ€Š°ŃŃˆŠøŃ€ŠµŠ½ŠøŠ¹ŠŗŠ¾Š½Ń„ŠøŠ³ŃƒŃ€Š°Ń†ŠøŠø клавиша коГвозвратаГиалога коГировкаxbase коГировкатекста направлениепоиска направлениесортировки обновлениепреГопреГеленныхГанных обновлениеприизмененииГанных отображениепанелиразГелов ŠæŃ€Š¾Š²ŠµŃ€ŠŗŠ°Š·Š°ŠæŠ¾Š»Š½ŠµŠ½ŠøŃ режимГиалогавопрос Ń€ŠµŠ¶ŠøŠ¼Š·Š°ŠæŃƒŃŠŗŠ°ŠŗŠ»ŠøŠµŠ½Ń‚ŃŠŗŠ¾Š³Š¾ŠæŃ€ŠøŠ»Š¾Š¶ŠµŠ½ŠøŃ Ń€ŠµŠ¶ŠøŠ¼Š¾ŠŗŃ€ŃƒŠ³Š»ŠµŠ½ŠøŃ Ń€ŠµŠ¶ŠøŠ¼Š¾Ń‚ŠŗŃ€Ń‹Ń‚ŠøŃŃ„Š¾Ń€Š¼ŠæŃ€ŠøŠ»Š¾Š¶ŠµŠ½ŠøŃ режимполнотекстовогопоиска ŃŠŗŠ¾Ń€Š¾ŃŃ‚ŃŒŠŗŠ»ŠøŠµŠ½Ń‚ŃŠŗŠ¾Š³Š¾ŃŠ¾ŠµŠ“ŠøŠ½ŠµŠ½ŠøŃ ŃŠ¾ŃŃ‚Š¾ŃŠ½ŠøŠµŠ²Š½ŠµŃˆŠ½ŠµŠ³Š¾ŠøŃŃ‚Š¾Ń‡Š½ŠøŠŗŠ°Š“Š°Š½Š½Ń‹Ń… ŃŠ¾ŃŃ‚Š¾ŃŠ½ŠøŠµŠ¾Š±Š½Š¾Š²Š»ŠµŠ½ŠøŃŠŗŠ¾Š½Ń„ŠøŠ³ŃƒŃ€Š°Ń†ŠøŠøŠ±Š°Š·Ń‹Š“Š°Š½Š½Ń‹Ń… способвыборасертификатаwindows ŃŠæŠ¾ŃŠ¾Š±ŠŗŠ¾Š“ŠøŃ€Š¾Š²Š°Š½ŠøŃŃŃ‚Ń€Š¾ŠŗŠø ŃŃ‚Š°Ń‚ŃƒŃŃŠ¾Š¾Š±Ń‰ŠµŠ½ŠøŃ Ń‚ŠøŠæŠ²Š½ŠµŃˆŠ½ŠµŠ¹ŠŗŠ¾Š¼ŠæŠ¾Š½ŠµŠ½Ń‚Ń‹ типплатформы Ń‚ŠøŠæŠæŠ¾Š²ŠµŠ“ŠµŠ½ŠøŃŠŗŠ»Š°Š²ŠøŃˆŠøenter Ń‚ŠøŠæŃŠ»ŠµŠ¼ŠµŠ½Ń‚Š°ŠøŠ½Ń„Š¾Ń€Š¼Š°Ń†ŠøŠøŠ¾Š²Ń‹ŠæŠ¾Š»Š½ŠµŠ½ŠøŠøŠ¾Š±Š½Š¾Š²Š»ŠµŠ½ŠøŃŠŗŠ¾Š½Ń„ŠøŠ³ŃƒŃ€Š°Ń†ŠøŠøŠ±Š°Š·Ń‹Š“Š°Š½Š½Ń‹Ń… ŃƒŃ€Š¾Š²ŠµŠ½ŃŒŠøŠ·Š¾Š»ŃŃ†ŠøŠøŃ‚Ń€Š°Š½Š·Š°ŠŗŃ†ŠøŠ¹ Ń…ŠµŃˆŃ„ŃƒŠ½ŠŗŃ†ŠøŃ частиГаты",ve=S+v+h+T+N+y+x+P+D+k+U+W+z+K+Ee+oe+L+J+re+G+X+_e,lt="comŠ¾Š±ŃŠŠµŠŗŃ‚ ftpсоеГинение httpзапрос httpсервисответ httpсоеГинение wsŠ¾ŠæŃ€ŠµŠ“ŠµŠ»ŠµŠ½ŠøŃ wsпрокси xbase анализГанных Š°Š½Š½Š¾Ń‚Š°Ń†ŠøŃxs блокировкаГанных Š±ŃƒŃ„ŠµŃ€Š“Š²Š¾ŠøŃ‡Š½Ń‹Ń…Š“Š°Š½Š½Ń‹Ń… Š²ŠŗŠ»ŃŽŃ‡ŠµŠ½ŠøŠµxs выражениекомпоновкиГанных Š³ŠµŠ½ŠµŃ€Š°Ń‚Š¾Ń€ŃŠ»ŃƒŃ‡Š°Š¹Š½Ń‹Ń…Ń‡ŠøŃŠµŠ» Š³ŠµŠ¾Š³Ń€Š°Ń„ŠøŃ‡ŠµŃŠŗŠ°ŃŃŃ…ŠµŠ¼Š° географическиекоорГинаты Š³Ń€Š°Ń„ŠøŃ‡ŠµŃŠŗŠ°ŃŃŃ…ŠµŠ¼Š° Š³Ń€ŃƒŠæŠæŠ°Š¼Š¾Š“ŠµŠ»Šøxs Š“Š°Š½Š½Ń‹ŠµŃ€Š°ŃŃˆŠøŃ„Ń€Š¾Š²ŠŗŠøŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… ГвоичныеГанные ГенГрограмма Гиаграмма Гиаграммаганта Гиалогвыборафайла Гиалогвыборацвета Š“ŠøŠ°Š»Š¾Š³Š²Ń‹Š±Š¾Ń€Š°ŃˆŃ€ŠøŃ„Ń‚Š° Š“ŠøŠ°Š»Š¾Š³Ń€Š°ŃŠæŠøŃŠ°Š½ŠøŃŃ€ŠµŠ³Š»Š°Š¼ŠµŠ½Ń‚Š½Š¾Š³Š¾Š·Š°Š“Š°Š½ŠøŃ Š“ŠøŠ°Š»Š¾Š³Ń€ŠµŠ“Š°ŠŗŃ‚ŠøŃ€Š¾Š²Š°Š½ŠøŃŃŃ‚Š°Š½Š“Š°Ń€Ń‚Š½Š¾Š³Š¾ŠæŠµŃ€ŠøŠ¾Š“Š° Гиапазон Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚dom Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚html Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Š°Ń†ŠøŃxs Š“Š¾ŃŃ‚Š°Š²Š»ŃŠµŠ¼Š¾ŠµŃƒŠ²ŠµŠ“Š¾Š¼Š»ŠµŠ½ŠøŠµ записьdom записьfastinfoset записьhtml записьjson записьxml записьzipфайла Š·Š°ŠæŠøŃŃŒŠ“анных Š·Š°ŠæŠøŃŃŒŃ‚ŠµŠŗŃŃ‚Š° записьузловdom запрос защищенноесоеГинениеopenssl Š·Š½Š°Ń‡ŠµŠ½ŠøŃŠæŠ¾Š»ŠµŠ¹Ń€Š°ŃŃˆŠøŃ„Ń€Š¾Š²ŠŗŠøŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… извлечениетекста импортxs интернетпочта интернетпочтовоесообщение ŠøŠ½Ń‚ŠµŃ€Š½ŠµŃ‚ŠæŠ¾Ń‡Ń‚Š¾Š²Ń‹Š¹ŠæŃ€Š¾Ń„ŠøŠ»ŃŒ интернетпрокси интернетсоеГинение ŠøŠ½Ń„Š¾Ń€Š¼Š°Ń†ŠøŃŠ“Š»ŃŠæŃ€ŠøŠ»Š¾Š¶ŠµŠ½ŠøŃxs ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŠµŠ°Ń‚Ń€ŠøŠ±ŃƒŃ‚Š°xs ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŠµŃŠ¾Š±Ń‹Ń‚ŠøŃŠ¶ŃƒŃ€Š½Š°Š»Š°Ń€ŠµŠ³ŠøŃŃ‚Ń€Š°Ń†ŠøŠø ŠøŃŃ‚Š¾Ń‡Š½ŠøŠŗŠ“Š¾ŃŃ‚ŃƒŠæŠ½Ń‹Ń…Š½Š°ŃŃ‚Ń€Š¾ŠµŠŗŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… ŠøŃ‚ŠµŃ€Š°Ń‚Š¾Ń€ŃƒŠ·Š»Š¾Š²dom картинка квалификаторыГаты квалификаторыГвоичныхГанных квалификаторыстроки квалификаторычисла компоновщикмакетакомпоновкиГанных компоновщикнастроеккомпоновкиГанных ŠŗŠ¾Š½ŃŃ‚Ń€ŃƒŠŗŃ‚Š¾Ń€Š¼Š°ŠŗŠµŃ‚Š°Š¾Ń„Š¾Ń€Š¼Š»ŠµŠ½ŠøŃŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… ŠŗŠ¾Š½ŃŃ‚Ń€ŃƒŠŗŃ‚Š¾Ń€Š½Š°ŃŃ‚Ń€Š¾ŠµŠŗŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… ŠŗŠ¾Š½ŃŃ‚Ń€ŃƒŠŗŃ‚Š¾Ń€Ń„Š¾Ń€Š¼Š°Ń‚Š½Š¾Š¹ŃŃ‚Ń€Š¾ŠŗŠø Š»ŠøŠ½ŠøŃ макеткомпоновкиГанных макетобластикомпоновкиГанных Š¼Š°ŠŗŠµŃ‚Š¾Ń„Š¾Ń€Š¼Š»ŠµŠ½ŠøŃŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… маскаxs менеГжеркриптографии наборсхемxml настройкикомпоновкиГанных настройкисериализацииjson обработкакартинок Š¾Š±Ń€Š°Š±Š¾Ń‚ŠŗŠ°Ń€Š°ŃŃˆŠøŃ„Ń€Š¾Š²ŠŗŠøŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… обхоГГереваdom Š¾Š±ŃŠŃŠ²Š»ŠµŠ½ŠøŠµŠ°Ń‚Ń€ŠøŠ±ŃƒŃ‚Š°xs Š¾Š±ŃŠŃŠ²Š»ŠµŠ½ŠøŠµŠ½Š¾Ń‚Š°Ń†ŠøŠøxs Š¾Š±ŃŠŃŠ²Š»ŠµŠ½ŠøŠµŃŠ»ŠµŠ¼ŠµŠ½Ń‚Š°xs Š¾ŠæŠøŃŠ°Š½ŠøŠµŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŃŃŠ¾Š±Ń‹Ń‚ŠøŃŠ“Š¾ŃŃ‚ŃƒŠæŠ¶ŃƒŃ€Š½Š°Š»Š°Ń€ŠµŠ³ŠøŃŃ‚Ń€Š°Ń†ŠøŠø Š¾ŠæŠøŃŠ°Š½ŠøŠµŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Š½ŠøŃŃŠ¾Š±Ń‹Ń‚ŠøŃŠ¾Ń‚ŠŗŠ°Š·Š²Š“Š¾ŃŃ‚ŃƒŠæŠµŠ¶ŃƒŃ€Š½Š°Š»Š°Ń€ŠµŠ³ŠøŃŃ‚Ń€Š°Ń†ŠøŠø Š¾ŠæŠøŃŠ°Š½ŠøŠµŠ¾Š±Ń€Š°Š±Š¾Ń‚ŠŗŠøŃ€Š°ŃŃˆŠøŃ„Ń€Š¾Š²ŠŗŠøŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… описаниепереГаваемогофайла описаниетипов Š¾ŠæŃ€ŠµŠ“ŠµŠ»ŠµŠ½ŠøŠµŠ³Ń€ŃƒŠæŠæŃ‹Š°Ń‚Ń€ŠøŠ±ŃƒŃ‚Š¾Š²xs Š¾ŠæŃ€ŠµŠ“ŠµŠ»ŠµŠ½ŠøŠµŠ³Ń€ŃƒŠæŠæŃ‹Š¼Š¾Š“ŠµŠ»Šøxs Š¾ŠæŃ€ŠµŠ“ŠµŠ»ŠµŠ½ŠøŠµŠ¾Š³Ń€Š°Š½ŠøŃ‡ŠµŠ½ŠøŃŠøŠ“ŠµŠ½Ń‚ŠøŃ‡Š½Š¾ŃŃ‚Šøxs опреГелениепростоготипаxs опреГелениесоставноготипаxs Š¾ŠæŃ€ŠµŠ“ŠµŠ»ŠµŠ½ŠøŠµŃ‚ŠøŠæŠ°Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Š°dom Š¾ŠæŃ€ŠµŠ“ŠµŠ»ŠµŠ½ŠøŃxpathxs отборкомпоновкиГанных ŠæŠ°ŠŗŠµŃ‚Š¾Ń‚Š¾Š±Ń€Š°Š¶Š°ŠµŠ¼Ń‹Ń…Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚Š¾Š² параметрвыбора параметркомпоновкиГанных параметрызаписиjson параметрызаписиxml ŠæŠ°Ń€Š°Š¼ŠµŃ‚Ń€Ń‹Ń‡Ń‚ŠµŠ½ŠøŃxml переопреГелениеxs планировщик полеанализаГанных полекомпоновкиГанных ŠæŠ¾ŃŃ‚Ń€Š¾ŠøŃ‚ŠµŠ»ŃŒdom ŠæŠ¾ŃŃ‚Ń€Š¾ŠøŃ‚ŠµŠ»ŃŒŠ·Š°ŠæŃ€Š¾ŃŠ° ŠæŠ¾ŃŃ‚Ń€Š¾ŠøŃ‚ŠµŠ»ŃŒŠ¾Ń‚Ń‡ŠµŃ‚Š° ŠæŠ¾ŃŃ‚Ń€Š¾ŠøŃ‚ŠµŠ»ŃŒŠ¾Ń‚Ń‡ŠµŃ‚Š°Š°Š½Š°Š»ŠøŠ·Š°Š“Š°Š½Š½Ń‹Ń… ŠæŠ¾ŃŃ‚Ń€Š¾ŠøŃ‚ŠµŠ»ŃŒŃŃ…ŠµŠ¼xml поток ŠæŠ¾Ń‚Š¾ŠŗŠ²ŠæŠ°Š¼ŃŃ‚Šø почта почтовоесообщение преобразованиеxsl ŠæŃ€ŠµŠ¾Š±Ń€Š°Š·Š¾Š²Š°Š½ŠøŠµŠŗŠŗŠ°Š½Š¾Š½ŠøŃ‡ŠµŃŠŗŠ¾Š¼Ńƒxml ŠæŃ€Š¾Ń†ŠµŃŃŠ¾Ń€Š²Ń‹Š²Š¾Š“Š°Ń€ŠµŠ·ŃƒŠ»ŃŒŃ‚Š°Ń‚Š°ŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń…Š²ŠŗŠ¾Š»Š»ŠµŠŗŃ†ŠøŃŽŠ·Š½Š°Ń‡ŠµŠ½ŠøŠ¹ ŠæŃ€Š¾Ń†ŠµŃŃŠ¾Ń€Š²Ń‹Š²Š¾Š“Š°Ń€ŠµŠ·ŃƒŠ»ŃŒŃ‚Š°Ń‚Š°ŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń…Š²Ń‚Š°Š±Š»ŠøŃ‡Š½Ń‹Š¹Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚ процессоркомпоновкиГанных Ń€Š°Š·Ń‹Š¼ŠµŠ½Š¾Š²Š°Ń‚ŠµŠ»ŃŒŠæŃ€Š¾ŃŃ‚Ń€Š°Š½ŃŃ‚Š²ŠøŠ¼ŠµŠ½dom рамка Ń€Š°ŃŠæŠøŃŠ°Š½ŠøŠµŃ€ŠµŠ³Š»Š°Š¼ŠµŠ½Ń‚Š½Š¾Š³Š¾Š·Š°Š“Š°Š½ŠøŃ Ń€Š°ŃŃˆŠøŃ€ŠµŠ½Š½Š¾ŠµŠøŠ¼Ńxml Ń€ŠµŠ·ŃƒŠ»ŃŒŃ‚Š°Ń‚Ń‡Ń‚ŠµŠ½ŠøŃŠ“Š°Š½Š½Ń‹Ń… ŃŠ²Š¾Š“Š½Š°ŃŠ“ŠøŠ°Š³Ń€Š°Š¼Š¼Š° ŃŠ²ŃŠ·ŃŒŠæŠ°Ń€Š°Š¼ŠµŃ‚Ń€Š°Š²Ń‹Š±Š¾Ń€Š° ŃŠ²ŃŠ·ŃŒŠæŠ¾Ń‚ŠøŠæŃƒ ŃŠ²ŃŠ·ŃŒŠæŠ¾Ń‚ŠøŠæŃƒŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… сериализаторxdto сертификатклиентаwindows сертификатклиентафайл сертификаткриптографии ŃŠµŃ€Ń‚ŠøŃ„ŠøŠŗŠ°Ń‚Ń‹ŃƒŠ“Š¾ŃŃ‚Š¾Š²ŠµŃ€ŃŃŽŃ‰ŠøŃ…Ń†ŠµŠ½Ń‚Ń€Š¾Š²windows ŃŠµŃ€Ń‚ŠøŃ„ŠøŠŗŠ°Ń‚Ń‹ŃƒŠ“Š¾ŃŃ‚Š¾Š²ŠµŃ€ŃŃŽŃ‰ŠøŃ…Ń†ŠµŠ½Ń‚Ń€Š¾Š²Ń„Š°Š¹Š» сжатиеГанных ŃŠøŃŃ‚ŠµŠ¼Š½Š°ŃŠøŠ½Ń„Š¾Ń€Š¼Š°Ń†ŠøŃ ŃŠ¾Š¾Š±Ń‰ŠµŠ½ŠøŠµŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»ŃŽ ŃŠ¾Ń‡ŠµŃ‚Š°Š½ŠøŠµŠŗŠ»Š°Š²ŠøŃˆ сравнениезначений ŃŃ‚Š°Š½Š“Š°Ń€Ń‚Š½Š°ŃŠ“Š°Ń‚Š°Š½Š°Ń‡Š°Š»Š° станГартныйпериоГ схемаxml схемакомпоновкиГанных Ń‚Š°Š±Š»ŠøŃ‡Š½Ń‹Š¹Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚ Ń‚ŠµŠŗŃŃ‚Š¾Š²Ń‹Š¹Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚ Ń‚ŠµŃŃ‚ŠøŃ€ŃƒŠµŠ¼Š¾ŠµŠæŃ€ŠøŠ»Š¾Š¶ŠµŠ½ŠøŠµ типГанныхxml ŃƒŠ½ŠøŠŗŠ°Š»ŃŒŠ½Ń‹Š¹ŠøŠ“ŠµŠ½Ń‚ŠøŃ„ŠøŠŗŠ°Ń‚Š¾Ń€ фабрикаxdto файл файловыйпоток фасетГлиныxs Ń„Š°ŃŠµŃ‚ŠŗŠ¾Š»ŠøŃ‡ŠµŃŃ‚Š²Š°Ń€Š°Š·Ń€ŃŠ“Š¾Š²Š“Ń€Š¾Š±Š½Š¾Š¹Ń‡Š°ŃŃ‚Šøxs Ń„Š°ŃŠµŃ‚Š¼Š°ŠŗŃŠøŠ¼Š°Š»ŃŒŠ½Š¾Š³Š¾Š²ŠŗŠ»ŃŽŃ‡Š°ŃŽŃ‰ŠµŠ³Š¾Š·Š½Š°Ń‡ŠµŠ½ŠøŃxs Ń„Š°ŃŠµŃ‚Š¼Š°ŠŗŃŠøŠ¼Š°Š»ŃŒŠ½Š¾Š³Š¾ŠøŃŠŗŠ»ŃŽŃ‡Š°ŃŽŃ‰ŠµŠ³Š¾Š·Š½Š°Ń‡ŠµŠ½ŠøŃxs Ń„Š°ŃŠµŃ‚Š¼Š°ŠŗŃŠøŠ¼Š°Š»ŃŒŠ½Š¾Š¹Š“Š»ŠøŠ½Ń‹xs Ń„Š°ŃŠµŃ‚Š¼ŠøŠ½ŠøŠ¼Š°Š»ŃŒŠ½Š¾Š³Š¾Š²ŠŗŠ»ŃŽŃ‡Š°ŃŽŃ‰ŠµŠ³Š¾Š·Š½Š°Ń‡ŠµŠ½ŠøŃxs Ń„Š°ŃŠµŃ‚Š¼ŠøŠ½ŠøŠ¼Š°Š»ŃŒŠ½Š¾Š³Š¾ŠøŃŠŗŠ»ŃŽŃ‡Š°ŃŽŃ‰ŠµŠ³Š¾Š·Š½Š°Ń‡ŠµŠ½ŠøŃxs Ń„Š°ŃŠµŃ‚Š¼ŠøŠ½ŠøŠ¼Š°Š»ŃŒŠ½Š¾Š¹Š“Š»ŠøŠ½Ń‹xs фасетобразцаxs Ń„Š°ŃŠµŃ‚Š¾Š±Ń‰ŠµŠ³Š¾ŠŗŠ¾Š»ŠøŃ‡ŠµŃŃ‚Š²Š°Ń€Š°Š·Ń€ŃŠ“Š¾Š²xs Ń„Š°ŃŠµŃ‚ŠæŠµŃ€ŠµŃ‡ŠøŃŠ»ŠµŠ½ŠøŃxs Ń„Š°ŃŠµŃ‚ŠæŃ€Š¾Š±ŠµŠ»ŃŒŠ½Ń‹Ń…ŃŠøŠ¼Š²Š¾Š»Š¾Š²xs Ń„ŠøŠ»ŃŒŃ‚Ń€ŃƒŠ·Š»Š¾Š²dom Ń„Š¾Ń€Š¼Š°Ń‚ŠøŃ€Š¾Š²Š°Š½Š½Š°ŃŃŃ‚Ń€Š¾ŠŗŠ° Ń„Š¾Ń€Š¼Š°Ń‚ŠøŃ€Š¾Š²Š°Š½Š½Ń‹Š¹Š“Š¾ŠŗŃƒŠ¼ŠµŠ½Ń‚ фрагментxs Ń…ŠµŃˆŠøŃ€Š¾Š²Š°Š½ŠøŠµŠ“Š°Š½Š½Ń‹Ń… Ń…Ń€Š°Š½ŠøŠ»ŠøŃ‰ŠµŠ·Š½Š°Ń‡ŠµŠ½ŠøŃ цвет чтениеfastinfoset чтениеhtml чтениеjson чтениеxml чтениеzipфайла чтениеГанных чтениетекста Ń‡Ń‚ŠµŠ½ŠøŠµŃƒŠ·Š»Š¾Š²dom ŃˆŃ€ŠøŃ„Ń‚ ŃŠ»ŠµŠ¼ŠµŠ½Ń‚Ń€ŠµŠ·ŃƒŠ»ŃŒŃ‚Š°Ń‚Š°ŠŗŠ¾Š¼ŠæŠ¾Š½Š¾Š²ŠŗŠøŠ“Š°Š½Š½Ń‹Ń… "+"comsafearray Геревозначений массив соответствие списокзначений ŃŃ‚Ń€ŃƒŠŗŃ‚ŃƒŃ€Š° таблицазначений Ń„ŠøŠŗŃŠøŃ€Š¾Š²Š°Š½Š½Š°ŃŃŃ‚Ń€ŃƒŠŗŃ‚ŃƒŃ€Š° фиксированноесоответствие фиксированныймассив ",He="null истина ложь неопреГелено",Ce=e.inherit(e.NUMBER_MODE),Be={className:"string",begin:'"|\\|',end:'"|$',contains:[{begin:'""'}]},We={begin:"'",end:"'",excludeBegin:!0,excludeEnd:!0,contains:[{className:"number",begin:"\\d{4}([\\.\\\\/:-]?\\d{2}){0,5}"}]},xe=e.inherit(e.C_LINE_COMMENT_MODE),ze={className:"meta",begin:"#|&",end:"$",keywords:{$pattern:n,keyword:s+d},contains:[xe]},rt={className:"symbol",begin:"~",end:";|:",excludeEnd:!0},Ke={className:"function",variants:[{begin:"ŠæŃ€Š¾Ń†ŠµŠ“ŃƒŃ€Š°|Ń„ŃƒŠ½ŠŗŃ†ŠøŃ",end:"\\)",keywords:"ŠæŃ€Š¾Ń†ŠµŠ“ŃƒŃ€Š° Ń„ŃƒŠ½ŠŗŃ†ŠøŃ"},{begin:"ŠŗŠ¾Š½ŠµŃ†ŠæŃ€Š¾Ń†ŠµŠ“ŃƒŃ€Ń‹|ŠŗŠ¾Š½ŠµŃ†Ń„ŃƒŠ½ŠŗŃ†ŠøŠø",keywords:"ŠŗŠ¾Š½ŠµŃ†ŠæŃ€Š¾Ń†ŠµŠ“ŃƒŃ€Ń‹ ŠŗŠ¾Š½ŠµŃ†Ń„ŃƒŠ½ŠŗŃ†ŠøŠø"}],contains:[{begin:"\\(",end:"\\)",endsParent:!0,contains:[{className:"params",begin:n,end:",",excludeEnd:!0,endsWithParent:!0,keywords:{$pattern:n,keyword:"знач",literal:He},contains:[Ce,Be,We]},xe]},e.inherit(e.TITLE_MODE,{begin:n})]};return{name:"1C:Enterprise",case_insensitive:!0,keywords:{$pattern:n,keyword:s,built_in:f,class:ve,type:lt,literal:He},contains:[ze,Ke,xe,rt,Ce,Be,We]}}return qu=t,qu}var $u,Kb;function XNe(){if(Kb)return $u;Kb=1;function t(e){const n=e.regex,i=/^[a-zA-Z][a-zA-Z0-9-]*/,o=["ALPHA","BIT","CHAR","CR","CRLF","CTL","DIGIT","DQUOTE","HEXDIG","HTAB","LF","LWSP","OCTET","SP","VCHAR","WSP"],s=e.COMMENT(/;/,/$/),l={scope:"symbol",match:/%b[0-1]+(-[0-1]+|(\.[0-1]+)+)?/},c={scope:"symbol",match:/%d[0-9]+(-[0-9]+|(\.[0-9]+)+)?/},d={scope:"symbol",match:/%x[0-9A-F]+(-[0-9A-F]+|(\.[0-9A-F]+)+)?/},_={scope:"symbol",match:/%[si](?=".*")/},p={scope:"attribute",match:n.concat(i,/(?=\s*=)/)};return{name:"Augmented Backus-Naur Form",illegal:/[!@#$^&',?+~`|:]/,keywords:o,contains:[{scope:"operator",match:/=\/?/},p,s,l,c,d,_,e.QUOTE_STRING_MODE,e.NUMBER_MODE]}}return $u=t,$u}var Hu,Qb;function ZNe(){if(Qb)return Hu;Qb=1;function t(e){const n=e.regex,i=["GET","POST","HEAD","PUT","DELETE","CONNECT","OPTIONS","PATCH","TRACE"];return{name:"Apache Access Log",contains:[{className:"number",begin:/^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}(:\d{1,5})?\b/,relevance:5},{className:"number",begin:/\b\d+\b/,relevance:0},{className:"string",begin:n.concat(/"/,n.either(...i)),end:/"/,keywords:i,illegal:/\n/,relevance:5,contains:[{begin:/HTTP\/[12]\.\d'/,relevance:5}]},{className:"string",begin:/\[\d[^\]\n]{8,}\]/,illegal:/\n/,relevance:1},{className:"string",begin:/\[/,end:/\]/,illegal:/\n/,relevance:0},{className:"string",begin:/"Mozilla\/\d\.\d \(/,end:/"/,illegal:/\n/,relevance:3},{className:"string",begin:/"/,end:/"/,illegal:/\n/,relevance:0}]}}return Hu=t,Hu}var zu,Xb;function JNe(){if(Xb)return zu;Xb=1;function t(e){const n=e.regex,i=/[a-zA-Z_$][a-zA-Z0-9_$]*/,o=n.concat(i,n.concat("(\\.",i,")*")),s=/([*]|[a-zA-Z_$][a-zA-Z0-9_$]*)/,l={className:"rest_arg",begin:/[.]{3}/,end:i,relevance:10};return{name:"ActionScript",aliases:["as"],keywords:{keyword:["as","break","case","catch","class","const","continue","default","delete","do","dynamic","each","else","extends","final","finally","for","function","get","if","implements","import","in","include","instanceof","interface","internal","is","namespace","native","new","override","package","private","protected","public","return","set","static","super","switch","this","throw","try","typeof","use","var","void","while","with"],literal:["true","false","null","undefined"]},contains:[e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.C_NUMBER_MODE,{match:[/\bpackage/,/\s+/,o],className:{1:"keyword",3:"title.class"}},{match:[/\b(?:class|interface|extends|implements)/,/\s+/,i],className:{1:"keyword",3:"title.class"}},{className:"meta",beginKeywords:"import include",end:/;/,keywords:{keyword:"import include"}},{beginKeywords:"function",end:/[{;]/,excludeEnd:!0,illegal:/\S/,contains:[e.inherit(e.TITLE_MODE,{className:"title.function"}),{className:"params",begin:/\(/,end:/\)/,contains:[e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,l]},{begin:n.concat(/:\s*/,s)}]},e.METHOD_GUARD],illegal:/#/}}return zu=t,zu}var Vu,Zb;function jNe(){if(Zb)return Vu;Zb=1;function t(e){const n="\\d(_|\\d)*",i="[eE][-+]?"+n,o=n+"(\\."+n+")?("+i+")?",s="\\w+",c="\\b("+(n+"#"+s+"(\\."+s+")?#("+i+")?")+"|"+o+")",d="[A-Za-z](_?[A-Za-z0-9.])*",_=`[]\\{\\}%#'"`,p=e.COMMENT("--","$"),g={begin:"\\s+:\\s+",end:"\\s*(:=|;|\\)|=>|$)",illegal:_,contains:[{beginKeywords:"loop for declare others",endsParent:!0},{className:"keyword",beginKeywords:"not null constant access function procedure in out aliased exception"},{className:"type",begin:d,endsParent:!0,relevance:0}]};return{name:"Ada",case_insensitive:!0,keywords:{keyword:["abort","else","new","return","abs","elsif","not","reverse","abstract","end","accept","entry","select","access","exception","of","separate","aliased","exit","or","some","all","others","subtype","and","for","out","synchronized","array","function","overriding","at","tagged","generic","package","task","begin","goto","pragma","terminate","body","private","then","if","procedure","type","case","in","protected","constant","interface","is","raise","use","declare","range","delay","limited","record","when","delta","loop","rem","while","digits","renames","with","do","mod","requeue","xor"],literal:["True","False"]},contains:[p,{className:"string",begin:/"/,end:/"/,contains:[{begin:/""/,relevance:0}]},{className:"string",begin:/'.'/},{className:"number",begin:c,relevance:0},{className:"symbol",begin:"'"+d},{className:"title",begin:"(\\bwith\\s+)?(\\bprivate\\s+)?\\bpackage\\s+(\\bbody\\s+)?",end:"(is|$)",keywords:"package body",excludeBegin:!0,excludeEnd:!0,illegal:_},{begin:"(\\b(with|overriding)\\s+)?\\b(function|procedure)\\s+",end:"(\\bis|\\bwith|\\brenames|\\)\\s*;)",keywords:"overriding function procedure with is renames return",returnBegin:!0,contains:[p,{className:"title",begin:"(\\bwith\\s+)?\\b(function|procedure)\\s+",end:"(\\(|\\s+|$)",excludeBegin:!0,excludeEnd:!0,illegal:_},g,{className:"type",begin:"\\breturn\\s+",end:"(\\s+|;|$)",keywords:"return",excludeBegin:!0,excludeEnd:!0,endsParent:!0,illegal:_}]},{className:"type",begin:"\\b(sub)?type\\s+",end:"\\s+",keywords:"type",excludeBegin:!0,illegal:_},g]}}return Vu=t,Vu}var Wu,Jb;function eOe(){if(Jb)return Wu;Jb=1;function t(e){const n={className:"built_in",begin:"\\b(void|bool|int8|int16|int32|int64|int|uint8|uint16|uint32|uint64|uint|string|ref|array|double|float|auto|dictionary)"},i={className:"symbol",begin:"[a-zA-Z0-9_]+@"},o={className:"keyword",begin:"<",end:">",contains:[n,i]};return n.contains=[o],i.contains=[o],{name:"AngelScript",aliases:["asc"],keywords:["for","in|0","break","continue","while","do|0","return","if","else","case","switch","namespace","is","cast","or","and","xor","not","get|0","in","inout|10","out","override","set|0","private","public","const","default|0","final","shared","external","mixin|10","enum","typedef","funcdef","this","super","import","from","interface","abstract|0","try","catch","protected","explicit","property"],illegal:"(^using\\s+[A-Za-z0-9_\\.]+;$|\\bfunction\\s*[^\\(])",contains:[{className:"string",begin:"'",end:"'",illegal:"\\n",contains:[e.BACKSLASH_ESCAPE],relevance:0},{className:"string",begin:'"""',end:'"""'},{className:"string",begin:'"',end:'"',illegal:"\\n",contains:[e.BACKSLASH_ESCAPE],relevance:0},e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,{className:"string",begin:"^\\s*\\[",end:"\\]"},{beginKeywords:"interface namespace",end:/\{/,illegal:"[;.\\-]",contains:[{className:"symbol",begin:"[a-zA-Z0-9_]+"}]},{beginKeywords:"class",end:/\{/,illegal:"[;.\\-]",contains:[{className:"symbol",begin:"[a-zA-Z0-9_]+",contains:[{begin:"[:,]\\s*",contains:[{className:"symbol",begin:"[a-zA-Z0-9_]+"}]}]}]},n,i,{className:"literal",begin:"\\b(null|true|false)"},{className:"number",relevance:0,begin:"(-?)(\\b0[xXbBoOdD][a-fA-F0-9]+|(\\b\\d+(\\.\\d*)?f?|\\.\\d+f?)([eE][-+]?\\d+f?)?)"}]}}return Wu=t,Wu}var Ku,jb;function tOe(){if(jb)return Ku;jb=1;function t(e){const n={className:"number",begin:/[$%]\d+/},i={className:"number",begin:/\b\d+/},o={className:"number",begin:/\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}(:\d{1,5})?/},s={className:"number",begin:/:\d{1,5}/};return{name:"Apache config",aliases:["apacheconf"],case_insensitive:!0,contains:[e.HASH_COMMENT_MODE,{className:"section",begin:/<\/?/,end:/>/,contains:[o,s,e.inherit(e.QUOTE_STRING_MODE,{relevance:0})]},{className:"attribute",begin:/\w+/,relevance:0,keywords:{_:["order","deny","allow","setenv","rewriterule","rewriteengine","rewritecond","documentroot","sethandler","errordocument","loadmodule","options","header","listen","serverroot","servername"]},starts:{end:/$/,relevance:0,keywords:{literal:"on off all deny allow"},contains:[{className:"meta",begin:/\s\[/,end:/\]$/},{className:"variable",begin:/[\$%]\{/,end:/\}/,contains:["self",n]},o,i,e.QUOTE_STRING_MODE]}}],illegal:/\S/}}return Ku=t,Ku}var Qu,eh;function nOe(){if(eh)return Qu;eh=1;function t(e){const n=e.regex,i=e.inherit(e.QUOTE_STRING_MODE,{illegal:null}),o={className:"params",begin:/\(/,end:/\)/,contains:["self",e.C_NUMBER_MODE,i]},s=e.COMMENT(/--/,/$/),l=e.COMMENT(/\(\*/,/\*\)/,{contains:["self",s]}),c=[s,l,e.HASH_COMMENT_MODE],d=[/apart from/,/aside from/,/instead of/,/out of/,/greater than/,/isn't|(doesn't|does not) (equal|come before|come after|contain)/,/(greater|less) than( or equal)?/,/(starts?|ends|begins?) with/,/contained by/,/comes (before|after)/,/a (ref|reference)/,/POSIX (file|path)/,/(date|time) string/,/quoted form/],_=[/clipboard info/,/the clipboard/,/info for/,/list (disks|folder)/,/mount volume/,/path to/,/(close|open for) access/,/(get|set) eof/,/current date/,/do shell script/,/get volume settings/,/random number/,/set volume/,/system attribute/,/system info/,/time to GMT/,/(load|run|store) script/,/scripting components/,/ASCII (character|number)/,/localized string/,/choose (application|color|file|file name|folder|from list|remote application|URL)/,/display (alert|dialog)/];return{name:"AppleScript",aliases:["osascript"],keywords:{keyword:"about above after against and around as at back before beginning behind below beneath beside between but by considering contain contains continue copy div does eighth else end equal equals error every exit fifth first for fourth from front get given global if ignoring in into is it its last local me middle mod my ninth not of on onto or over prop property put ref reference repeat returning script second set seventh since sixth some tell tenth that the|0 then third through thru timeout times to transaction try until where while whose with without",literal:"AppleScript false linefeed return pi quote result space tab true",built_in:"alias application boolean class constant date file integer list number real record string text activate beep count delay launch log offset read round run say summarize write character characters contents day frontmost id item length month name|0 paragraph paragraphs rest reverse running time version weekday word words year"},contains:[i,e.C_NUMBER_MODE,{className:"built_in",begin:n.concat(/\b/,n.either(..._),/\b/)},{className:"built_in",begin:/^\s*return\b/},{className:"literal",begin:/\b(text item delimiters|current application|missing value)\b/},{className:"keyword",begin:n.concat(/\b/,n.either(...d),/\b/)},{beginKeywords:"on",illegal:/[${=;\n]/,contains:[e.UNDERSCORE_TITLE_MODE,o]},...c],illegal:/\/\/|->|=>|\[\[/}}return Qu=t,Qu}var Xu,th;function rOe(){if(th)return Xu;th=1;function t(e){const n="[A-Za-z_][0-9A-Za-z_]*",i={keyword:["if","for","while","var","new","function","do","return","void","else","break"],literal:["BackSlash","DoubleQuote","false","ForwardSlash","Infinity","NaN","NewLine","null","PI","SingleQuote","Tab","TextFormatting","true","undefined"],built_in:["Abs","Acos","All","Angle","Any","Area","AreaGeodetic","Array","Asin","Atan","Atan2","Attachments","Average","Back","Bearing","Boolean","Buffer","BufferGeodetic","Ceil","Centroid","Clip","Concatenate","Console","Constrain","Contains","ConvertDirection","Cos","Count","Crosses","Cut","Date","DateAdd","DateDiff","Day","Decode","DefaultValue","Densify","DensifyGeodetic","Dictionary","Difference","Disjoint","Distance","DistanceGeodetic","Distinct","Domain","DomainCode","DomainName","EnvelopeIntersects","Equals","Erase","Exp","Expects","Extent","Feature","FeatureSet","FeatureSetByAssociation","FeatureSetById","FeatureSetByName","FeatureSetByPortalItem","FeatureSetByRelationshipName","Filter","Find","First","Floor","FromCharCode","FromCodePoint","FromJSON","GdbVersion","Generalize","Geometry","GetFeatureSet","GetUser","GroupBy","Guid","Hash","HasKey","Hour","IIf","Includes","IndexOf","Insert","Intersection","Intersects","IsEmpty","IsNan","ISOMonth","ISOWeek","ISOWeekday","ISOYear","IsSelfIntersecting","IsSimple","Left|0","Length","Length3D","LengthGeodetic","Log","Lower","Map","Max","Mean","Mid","Millisecond","Min","Minute","Month","MultiPartToSinglePart","Multipoint","NextSequenceValue","None","Now","Number","Offset|0","OrderBy","Overlaps","Point","Polygon","Polyline","Pop","Portal","Pow","Proper","Push","Random","Reduce","Relate","Replace","Resize","Reverse","Right|0","RingIsClockwise","Rotate","Round","Schema","Second","SetGeometry","Simplify","Sin","Slice","Sort","Splice","Split","Sqrt","Stdev","SubtypeCode","SubtypeName","Subtypes","Sum","SymmetricDifference","Tan","Text","Timestamp","ToCharCode","ToCodePoint","Today","ToHex","ToLocal","Top|0","Touches","ToUTC","TrackAccelerationAt","TrackAccelerationWindow","TrackCurrentAcceleration","TrackCurrentDistance","TrackCurrentSpeed","TrackCurrentTime","TrackDistanceAt","TrackDistanceWindow","TrackDuration","TrackFieldWindow","TrackGeometryWindow","TrackIndex","TrackSpeedAt","TrackSpeedWindow","TrackStartTime","TrackWindow","Trim","TypeOf","Union","Upper","UrlEncode","Variance","Week","Weekday","When","Within","Year"]},o={className:"symbol",begin:"\\$[datastore|feature|layer|map|measure|sourcefeature|sourcelayer|targetfeature|targetlayer|value|view]+"},s={className:"number",variants:[{begin:"\\b(0[bB][01]+)"},{begin:"\\b(0[oO][0-7]+)"},{begin:e.C_NUMBER_RE}],relevance:0},l={className:"subst",begin:"\\$\\{",end:"\\}",keywords:i,contains:[]},c={className:"string",begin:"`",end:"`",contains:[e.BACKSLASH_ESCAPE,l]};l.contains=[e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,c,s,e.REGEXP_MODE];const d=l.contains.concat([e.C_BLOCK_COMMENT_MODE,e.C_LINE_COMMENT_MODE]);return{name:"ArcGIS Arcade",case_insensitive:!0,keywords:i,contains:[e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,c,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,o,s,{begin:/[{,]\s*/,relevance:0,contains:[{begin:n+"\\s*:",returnBegin:!0,relevance:0,contains:[{className:"attr",begin:n,relevance:0}]}]},{begin:"("+e.RE_STARTERS_RE+"|\\b(return)\\b)\\s*",keywords:"return",contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.REGEXP_MODE,{className:"function",begin:"(\\(.*?\\)|"+n+")\\s*=>",returnBegin:!0,end:"\\s*=>",contains:[{className:"params",variants:[{begin:n},{begin:/\(\s*\)/},{begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,keywords:i,contains:d}]}]}],relevance:0},{beginKeywords:"function",end:/\{/,excludeEnd:!0,contains:[e.inherit(e.TITLE_MODE,{className:"title.function",begin:n}),{className:"params",begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,contains:d}],illegal:/\[|%/},{begin:/\$[(.]/}],illegal:/#(?!!)/}}return Xu=t,Xu}var Zu,nh;function iOe(){if(nh)return Zu;nh=1;function t(n){const i=n.regex,o=n.COMMENT("//","$",{contains:[{begin:/\\\n/}]}),s="decltype\\(auto\\)",l="[a-zA-Z_]\\w*::",c="<[^<>]+>",d="(?!struct)("+s+"|"+i.optional(l)+"[a-zA-Z_]\\w*"+i.optional(c)+")",_={className:"type",begin:"\\b[a-z\\d_]*_t\\b"},p="\\\\(x[0-9A-Fa-f]{2}|u[0-9A-Fa-f]{4,8}|[0-7]{3}|\\S)",g={className:"string",variants:[{begin:'(u8?|U|L)?"',end:'"',illegal:"\\n",contains:[n.BACKSLASH_ESCAPE]},{begin:"(u8?|U|L)?'("+p+"|.)",end:"'",illegal:"."},n.END_SAME_AS_BEGIN({begin:/(?:u8?|U|L)?R"([^()\\ ]{0,16})\(/,end:/\)([^()\\ ]{0,16})"/})]},E={className:"number",variants:[{begin:"\\b(0b[01']+)"},{begin:"(-?)\\b([\\d']+(\\.[\\d']*)?|\\.[\\d']+)((ll|LL|l|L)(u|U)?|(u|U)(ll|LL|l|L)?|f|F|b|B)"},{begin:"(-?)(\\b0[xX][a-fA-F0-9']+|(\\b[\\d']+(\\.[\\d']*)?|\\.[\\d']+)([eE][-+]?[\\d']+)?)"}],relevance:0},f={className:"meta",begin:/#\s*[a-z]+\b/,end:/$/,keywords:{keyword:"if else elif endif define undef warning error line pragma _Pragma ifdef ifndef include"},contains:[{begin:/\\\n/,relevance:0},n.inherit(g,{className:"string"}),{className:"string",begin:/<.*?>/},o,n.C_BLOCK_COMMENT_MODE]},S={className:"title",begin:i.optional(l)+n.IDENT_RE,relevance:0},v=i.optional(l)+n.IDENT_RE+"\\s*\\(",h=["alignas","alignof","and","and_eq","asm","atomic_cancel","atomic_commit","atomic_noexcept","auto","bitand","bitor","break","case","catch","class","co_await","co_return","co_yield","compl","concept","const_cast|10","consteval","constexpr","constinit","continue","decltype","default","delete","do","dynamic_cast|10","else","enum","explicit","export","extern","false","final","for","friend","goto","if","import","inline","module","mutable","namespace","new","noexcept","not","not_eq","nullptr","operator","or","or_eq","override","private","protected","public","reflexpr","register","reinterpret_cast|10","requires","return","sizeof","static_assert","static_cast|10","struct","switch","synchronized","template","this","thread_local","throw","transaction_safe","transaction_safe_dynamic","true","try","typedef","typeid","typename","union","using","virtual","volatile","while","xor","xor_eq"],T=["bool","char","char16_t","char32_t","char8_t","double","float","int","long","short","void","wchar_t","unsigned","signed","const","static"],N=["any","auto_ptr","barrier","binary_semaphore","bitset","complex","condition_variable","condition_variable_any","counting_semaphore","deque","false_type","future","imaginary","initializer_list","istringstream","jthread","latch","lock_guard","multimap","multiset","mutex","optional","ostringstream","packaged_task","pair","promise","priority_queue","queue","recursive_mutex","recursive_timed_mutex","scoped_lock","set","shared_future","shared_lock","shared_mutex","shared_timed_mutex","shared_ptr","stack","string_view","stringstream","timed_mutex","thread","true_type","tuple","unique_lock","unique_ptr","unordered_map","unordered_multimap","unordered_multiset","unordered_set","variant","vector","weak_ptr","wstring","wstring_view"],y=["abort","abs","acos","apply","as_const","asin","atan","atan2","calloc","ceil","cerr","cin","clog","cos","cosh","cout","declval","endl","exchange","exit","exp","fabs","floor","fmod","forward","fprintf","fputs","free","frexp","fscanf","future","invoke","isalnum","isalpha","iscntrl","isdigit","isgraph","islower","isprint","ispunct","isspace","isupper","isxdigit","labs","launder","ldexp","log","log10","make_pair","make_shared","make_shared_for_overwrite","make_tuple","make_unique","malloc","memchr","memcmp","memcpy","memset","modf","move","pow","printf","putchar","puts","realloc","scanf","sin","sinh","snprintf","sprintf","sqrt","sscanf","std","stderr","stdin","stdout","strcat","strchr","strcmp","strcpy","strcspn","strlen","strncat","strncmp","strncpy","strpbrk","strrchr","strspn","strstr","swap","tan","tanh","terminate","to_underlying","tolower","toupper","vfprintf","visit","vprintf","vsprintf"],D={type:T,keyword:h,literal:["NULL","false","nullopt","nullptr","true"],built_in:["_Pragma"],_type_hints:N},k={className:"function.dispatch",relevance:0,keywords:{_hint:y},begin:i.concat(/\b/,/(?!decltype)/,/(?!if)/,/(?!for)/,/(?!switch)/,/(?!while)/,n.IDENT_RE,i.lookahead(/(<[^<>]+>|)\s*\(/))},U=[k,f,_,o,n.C_BLOCK_COMMENT_MODE,E,g],W={variants:[{begin:/=/,end:/;/},{begin:/\(/,end:/\)/},{beginKeywords:"new throw return else",end:/;/}],keywords:D,contains:U.concat([{begin:/\(/,end:/\)/,keywords:D,contains:U.concat(["self"]),relevance:0}]),relevance:0},z={className:"function",begin:"("+d+"[\\*&\\s]+)+"+v,returnBegin:!0,end:/[{;=]/,excludeEnd:!0,keywords:D,illegal:/[^\w\s\*&:<>.]/,contains:[{begin:s,keywords:D,relevance:0},{begin:v,returnBegin:!0,contains:[S],relevance:0},{begin:/::/,relevance:0},{begin:/:/,endsWithParent:!0,contains:[g,E]},{relevance:0,match:/,/},{className:"params",begin:/\(/,end:/\)/,keywords:D,relevance:0,contains:[o,n.C_BLOCK_COMMENT_MODE,g,E,_,{begin:/\(/,end:/\)/,keywords:D,relevance:0,contains:["self",o,n.C_BLOCK_COMMENT_MODE,g,E,_]}]},_,o,n.C_BLOCK_COMMENT_MODE,f]};return{name:"C++",aliases:["cc","c++","h++","hpp","hh","hxx","cxx"],keywords:D,illegal:"",keywords:D,contains:["self",_]},{begin:n.IDENT_RE+"::",keywords:D},{match:[/\b(?:enum(?:\s+(?:class|struct))?|class|struct|union)/,/\s+/,/\w+/],className:{1:"keyword",3:"title.class"}}])}}function e(n){const i={type:["boolean","byte","word","String"],built_in:["KeyboardController","MouseController","SoftwareSerial","EthernetServer","EthernetClient","LiquidCrystal","RobotControl","GSMVoiceCall","EthernetUDP","EsploraTFT","HttpClient","RobotMotor","WiFiClient","GSMScanner","FileSystem","Scheduler","GSMServer","YunClient","YunServer","IPAddress","GSMClient","GSMModem","Keyboard","Ethernet","Console","GSMBand","Esplora","Stepper","Process","WiFiUDP","GSM_SMS","Mailbox","USBHost","Firmata","PImage","Client","Server","GSMPIN","FileIO","Bridge","Serial","EEPROM","Stream","Mouse","Audio","Servo","File","Task","GPRS","WiFi","Wire","TFT","GSM","SPI","SD"],_hints:["setup","loop","runShellCommandAsynchronously","analogWriteResolution","retrieveCallingNumber","printFirmwareVersion","analogReadResolution","sendDigitalPortPair","noListenOnLocalhost","readJoystickButton","setFirmwareVersion","readJoystickSwitch","scrollDisplayRight","getVoiceCallStatus","scrollDisplayLeft","writeMicroseconds","delayMicroseconds","beginTransmission","getSignalStrength","runAsynchronously","getAsynchronously","listenOnLocalhost","getCurrentCarrier","readAccelerometer","messageAvailable","sendDigitalPorts","lineFollowConfig","countryNameWrite","runShellCommand","readStringUntil","rewindDirectory","readTemperature","setClockDivider","readLightSensor","endTransmission","analogReference","detachInterrupt","countryNameRead","attachInterrupt","encryptionType","readBytesUntil","robotNameWrite","readMicrophone","robotNameRead","cityNameWrite","userNameWrite","readJoystickY","readJoystickX","mouseReleased","openNextFile","scanNetworks","noInterrupts","digitalWrite","beginSpeaker","mousePressed","isActionDone","mouseDragged","displayLogos","noAutoscroll","addParameter","remoteNumber","getModifiers","keyboardRead","userNameRead","waitContinue","processInput","parseCommand","printVersion","readNetworks","writeMessage","blinkVersion","cityNameRead","readMessage","setDataMode","parsePacket","isListening","setBitOrder","beginPacket","isDirectory","motorsWrite","drawCompass","digitalRead","clearScreen","serialEvent","rightToLeft","setTextSize","leftToRight","requestFrom","keyReleased","compassRead","analogWrite","interrupts","WiFiServer","disconnect","playMelody","parseFloat","autoscroll","getPINUsed","setPINUsed","setTimeout","sendAnalog","readSlider","analogRead","beginWrite","createChar","motorsStop","keyPressed","tempoWrite","readButton","subnetMask","debugPrint","macAddress","writeGreen","randomSeed","attachGPRS","readString","sendString","remotePort","releaseAll","mouseMoved","background","getXChange","getYChange","answerCall","getResult","voiceCall","endPacket","constrain","getSocket","writeJSON","getButton","available","connected","findUntil","readBytes","exitValue","readGreen","writeBlue","startLoop","IPAddress","isPressed","sendSysex","pauseMode","gatewayIP","setCursor","getOemKey","tuneWrite","noDisplay","loadImage","switchPIN","onRequest","onReceive","changePIN","playFile","noBuffer","parseInt","overflow","checkPIN","knobRead","beginTFT","bitClear","updateIR","bitWrite","position","writeRGB","highByte","writeRed","setSpeed","readBlue","noStroke","remoteIP","transfer","shutdown","hangCall","beginSMS","endWrite","attached","maintain","noCursor","checkReg","checkPUK","shiftOut","isValid","shiftIn","pulseIn","connect","println","localIP","pinMode","getIMEI","display","noBlink","process","getBand","running","beginSD","drawBMP","lowByte","setBand","release","bitRead","prepare","pointTo","readRed","setMode","noFill","remove","listen","stroke","detach","attach","noTone","exists","buffer","height","bitSet","circle","config","cursor","random","IRread","setDNS","endSMS","getKey","micros","millis","begin","print","write","ready","flush","width","isPIN","blink","clear","press","mkdir","rmdir","close","point","yield","image","BSSID","click","delay","read","text","move","peek","beep","rect","line","open","seek","fill","size","turn","stop","home","find","step","tone","sqrt","RSSI","SSID","end","bit","tan","cos","sin","pow","map","abs","max","min","get","run","put"],literal:["DIGITAL_MESSAGE","FIRMATA_STRING","ANALOG_MESSAGE","REPORT_DIGITAL","REPORT_ANALOG","INPUT_PULLUP","SET_PIN_MODE","INTERNAL2V56","SYSTEM_RESET","LED_BUILTIN","INTERNAL1V1","SYSEX_START","INTERNAL","EXTERNAL","DEFAULT","OUTPUT","INPUT","HIGH","LOW"]},o=t(n),s=o.keywords;return s.type=[...s.type,...i.type],s.literal=[...s.literal,...i.literal],s.built_in=[...s.built_in,...i.built_in],s._hints=i._hints,o.name="Arduino",o.aliases=["ino"],o.supersetOf="cpp",o}return Zu=e,Zu}var Ju,rh;function aOe(){if(rh)return Ju;rh=1;function t(e){const n={variants:[e.COMMENT("^[ \\t]*(?=#)","$",{relevance:0,excludeBegin:!0}),e.COMMENT("[;@]","$",{relevance:0}),e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]};return{name:"ARM Assembly",case_insensitive:!0,aliases:["arm"],keywords:{$pattern:"\\.?"+e.IDENT_RE,meta:".2byte .4byte .align .ascii .asciz .balign .byte .code .data .else .end .endif .endm .endr .equ .err .exitm .extern .global .hword .if .ifdef .ifndef .include .irp .long .macro .rept .req .section .set .skip .space .text .word .arm .thumb .code16 .code32 .force_thumb .thumb_func .ltorg ALIAS ALIGN ARM AREA ASSERT ATTR CN CODE CODE16 CODE32 COMMON CP DATA DCB DCD DCDU DCDO DCFD DCFDU DCI DCQ DCQU DCW DCWU DN ELIF ELSE END ENDFUNC ENDIF ENDP ENTRY EQU EXPORT EXPORTAS EXTERN FIELD FILL FUNCTION GBLA GBLL GBLS GET GLOBAL IF IMPORT INCBIN INCLUDE INFO KEEP LCLA LCLL LCLS LTORG MACRO MAP MEND MEXIT NOFP OPT PRESERVE8 PROC QN READONLY RELOC REQUIRE REQUIRE8 RLIST FN ROUT SETA SETL SETS SN SPACE SUBT THUMB THUMBX TTL WHILE WEND ",built_in:"r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 pc lr sp ip sl sb fp a1 a2 a3 a4 v1 v2 v3 v4 v5 v6 v7 v8 f0 f1 f2 f3 f4 f5 f6 f7 p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 cpsr_c cpsr_x cpsr_s cpsr_f cpsr_cx cpsr_cxs cpsr_xs cpsr_xsf cpsr_sf cpsr_cxsf spsr_c spsr_x spsr_s spsr_f spsr_cx spsr_cxs spsr_xs spsr_xsf spsr_sf spsr_cxsf s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21 s22 s23 s24 s25 s26 s27 s28 s29 s30 s31 d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18 d19 d20 d21 d22 d23 d24 d25 d26 d27 d28 d29 d30 d31 {PC} {VAR} {TRUE} {FALSE} {OPT} {CONFIG} {ENDIAN} {CODESIZE} {CPU} {FPU} {ARCHITECTURE} {PCSTOREOFFSET} {ARMASM_VERSION} {INTER} {ROPI} {RWPI} {SWST} {NOSWST} . @"},contains:[{className:"keyword",begin:"\\b(adc|(qd?|sh?|u[qh]?)?add(8|16)?|usada?8|(q|sh?|u[qh]?)?(as|sa)x|and|adrl?|sbc|rs[bc]|asr|b[lx]?|blx|bxj|cbn?z|tb[bh]|bic|bfc|bfi|[su]bfx|bkpt|cdp2?|clz|clrex|cmp|cmn|cpsi[ed]|cps|setend|dbg|dmb|dsb|eor|isb|it[te]{0,3}|lsl|lsr|ror|rrx|ldm(([id][ab])|f[ds])?|ldr((s|ex)?[bhd])?|movt?|mvn|mra|mar|mul|[us]mull|smul[bwt][bt]|smu[as]d|smmul|smmla|mla|umlaal|smlal?([wbt][bt]|d)|mls|smlsl?[ds]|smc|svc|sev|mia([bt]{2}|ph)?|mrr?c2?|mcrr2?|mrs|msr|orr|orn|pkh(tb|bt)|rbit|rev(16|sh)?|sel|[su]sat(16)?|nop|pop|push|rfe([id][ab])?|stm([id][ab])?|str(ex)?[bhd]?|(qd?)?sub|(sh?|q|u[qh]?)?sub(8|16)|[su]xt(a?h|a?b(16)?)|srs([id][ab])?|swpb?|swi|smi|tst|teq|wfe|wfi|yield)(eq|ne|cs|cc|mi|pl|vs|vc|hi|ls|ge|lt|gt|le|al|hs|lo)?[sptrx]?(?=\\s)"},n,e.QUOTE_STRING_MODE,{className:"string",begin:"'",end:"[^\\\\]'",relevance:0},{className:"title",begin:"\\|",end:"\\|",illegal:"\\n",relevance:0},{className:"number",variants:[{begin:"[#$=]?0x[0-9a-f]+"},{begin:"[#$=]?0b[01]+"},{begin:"[#$=]\\d+"},{begin:"\\b\\d+"}],relevance:0},{className:"symbol",variants:[{begin:"^[ \\t]*[a-z_\\.\\$][a-z0-9_\\.\\$]+:"},{begin:"^[a-z_\\.\\$][a-z0-9_\\.\\$]+"},{begin:"[=#]\\w+"}],relevance:0}]}}return Ju=t,Ju}var ju,ih;function oOe(){if(ih)return ju;ih=1;function t(e){const n=e.regex,i=n.concat(/[\p{L}_]/u,n.optional(/[\p{L}0-9_.-]*:/u),/[\p{L}0-9_.-]*/u),o=/[\p{L}0-9._:-]+/u,s={className:"symbol",begin:/&[a-z]+;|&#[0-9]+;|&#x[a-f0-9]+;/},l={begin:/\s/,contains:[{className:"keyword",begin:/#?[a-z_][a-z1-9_-]+/,illegal:/\n/}]},c=e.inherit(l,{begin:/\(/,end:/\)/}),d=e.inherit(e.APOS_STRING_MODE,{className:"string"}),_=e.inherit(e.QUOTE_STRING_MODE,{className:"string"}),p={endsWithParent:!0,illegal:/`]+/}]}]}]};return{name:"HTML, XML",aliases:["html","xhtml","rss","atom","xjb","xsd","xsl","plist","wsf","svg"],case_insensitive:!0,unicodeRegex:!0,contains:[{className:"meta",begin://,relevance:10,contains:[l,_,d,c,{begin:/\[/,end:/\]/,contains:[{className:"meta",begin://,contains:[l,c,_,d]}]}]},e.COMMENT(//,{relevance:10}),{begin://,relevance:10},s,{className:"meta",end:/\?>/,variants:[{begin:/<\?xml/,relevance:10,contains:[_]},{begin:/<\?[a-z][a-z0-9]+/}]},{className:"tag",begin:/)/,end:/>/,keywords:{name:"style"},contains:[p],starts:{end:/<\/style>/,returnEnd:!0,subLanguage:["css","xml"]}},{className:"tag",begin:/)/,end:/>/,keywords:{name:"script"},contains:[p],starts:{end:/<\/script>/,returnEnd:!0,subLanguage:["javascript","handlebars","xml"]}},{className:"tag",begin:/<>|<\/>/},{className:"tag",begin:n.concat(//,/>/,/\s/)))),end:/\/?>/,contains:[{className:"name",begin:i,relevance:0,starts:p}]},{className:"tag",begin:n.concat(/<\//,n.lookahead(n.concat(i,/>/))),contains:[{className:"name",begin:i,relevance:0},{begin:/>/,relevance:0,endsParent:!0}]}]}}return ju=t,ju}var ed,ah;function sOe(){if(ah)return ed;ah=1;function t(e){const n=e.regex,i={begin:"^'{3,}[ \\t]*$",relevance:10},o=[{begin:/\\[*_`]/},{begin:/\\\\\*{2}[^\n]*?\*{2}/},{begin:/\\\\_{2}[^\n]*_{2}/},{begin:/\\\\`{2}[^\n]*`{2}/},{begin:/[:;}][*_`](?![*_`])/}],s=[{className:"strong",begin:/\*{2}([^\n]+?)\*{2}/},{className:"strong",begin:n.concat(/\*\*/,/((\*(?!\*)|\\[^\n]|[^*\n\\])+\n)+/,/(\*(?!\*)|\\[^\n]|[^*\n\\])*/,/\*\*/),relevance:0},{className:"strong",begin:/\B\*(\S|\S[^\n]*?\S)\*(?!\w)/},{className:"strong",begin:/\*[^\s]([^\n]+\n)+([^\n]+)\*/}],l=[{className:"emphasis",begin:/_{2}([^\n]+?)_{2}/},{className:"emphasis",begin:n.concat(/__/,/((_(?!_)|\\[^\n]|[^_\n\\])+\n)+/,/(_(?!_)|\\[^\n]|[^_\n\\])*/,/__/),relevance:0},{className:"emphasis",begin:/\b_(\S|\S[^\n]*?\S)_(?!\w)/},{className:"emphasis",begin:/_[^\s]([^\n]+\n)+([^\n]+)_/},{className:"emphasis",begin:"\\B'(?!['\\s])",end:"(\\n{2}|')",contains:[{begin:"\\\\'\\w",relevance:0}],relevance:0}],c={className:"symbol",begin:"^(NOTE|TIP|IMPORTANT|WARNING|CAUTION):\\s+",relevance:10},d={className:"bullet",begin:"^(\\*+|-+|\\.+|[^\\n]+?::)\\s+"};return{name:"AsciiDoc",aliases:["adoc"],contains:[e.COMMENT("^/{4,}\\n","\\n/{4,}$",{relevance:10}),e.COMMENT("^//","$",{relevance:0}),{className:"title",begin:"^\\.\\w.*$"},{begin:"^[=\\*]{4,}\\n",end:"\\n^[=\\*]{4,}$",relevance:10},{className:"section",relevance:10,variants:[{begin:"^(={1,6})[ ].+?([ ]\\1)?$"},{begin:"^[^\\[\\]\\n]+?\\n[=\\-~\\^\\+]{2,}$"}]},{className:"meta",begin:"^:.+?:",end:"\\s",excludeEnd:!0,relevance:10},{className:"meta",begin:"^\\[.+?\\]$",relevance:0},{className:"quote",begin:"^_{4,}\\n",end:"\\n_{4,}$",relevance:10},{className:"code",begin:"^[\\-\\.]{4,}\\n",end:"\\n[\\-\\.]{4,}$",relevance:10},{begin:"^\\+{4,}\\n",end:"\\n\\+{4,}$",contains:[{begin:"<",end:">",subLanguage:"xml",relevance:0}],relevance:10},d,c,...o,...s,...l,{className:"string",variants:[{begin:"``.+?''"},{begin:"`.+?'"}]},{className:"code",begin:/`{2}/,end:/(\n{2}|`{2})/},{className:"code",begin:"(`.+?`|\\+.+?\\+)",relevance:0},{className:"code",begin:"^[ \\t]",end:"$",relevance:0},i,{begin:"(link:)?(http|https|ftp|file|irc|image:?):\\S+?\\[[^[]*?\\]",returnBegin:!0,contains:[{begin:"(link|image:?):",relevance:0},{className:"link",begin:"\\w",end:"[^\\[]+",relevance:0},{className:"string",begin:"\\[",end:"\\]",excludeBegin:!0,excludeEnd:!0,relevance:0}],relevance:10}]}}return ed=t,ed}var td,oh;function lOe(){if(oh)return td;oh=1;function t(e){const n=e.regex,i=["false","synchronized","int","abstract","float","private","char","boolean","static","null","if","const","for","true","while","long","throw","strictfp","finally","protected","import","native","final","return","void","enum","else","extends","implements","break","transient","new","catch","instanceof","byte","super","volatile","case","assert","short","package","default","double","public","try","this","switch","continue","throws","privileged","aspectOf","adviceexecution","proceed","cflowbelow","cflow","initialization","preinitialization","staticinitialization","withincode","target","within","execution","getWithinTypeName","handler","thisJoinPoint","thisJoinPointStaticPart","thisEnclosingJoinPointStaticPart","declare","parents","warning","error","soft","precedence","thisAspectInstance"],o=["get","set","args","call"];return{name:"AspectJ",keywords:i,illegal:/<\/|#/,contains:[e.COMMENT(/\/\*\*/,/\*\//,{relevance:0,contains:[{begin:/\w+@/,relevance:0},{className:"doctag",begin:/@[A-Za-z]+/}]}),e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,{className:"class",beginKeywords:"aspect",end:/[{;=]/,excludeEnd:!0,illegal:/[:;"\[\]]/,contains:[{beginKeywords:"extends implements pertypewithin perthis pertarget percflowbelow percflow issingleton"},e.UNDERSCORE_TITLE_MODE,{begin:/\([^\)]*/,end:/[)]+/,keywords:i.concat(o),excludeEnd:!1}]},{className:"class",beginKeywords:"class interface",end:/[{;=]/,excludeEnd:!0,relevance:0,keywords:"class interface",illegal:/[:"\[\]]/,contains:[{beginKeywords:"extends implements"},e.UNDERSCORE_TITLE_MODE]},{beginKeywords:"pointcut after before around throwing returning",end:/[)]/,excludeEnd:!1,illegal:/["\[\]]/,contains:[{begin:n.concat(e.UNDERSCORE_IDENT_RE,/\s*\(/),returnBegin:!0,contains:[e.UNDERSCORE_TITLE_MODE]}]},{begin:/[:]/,returnBegin:!0,end:/[{;]/,relevance:0,excludeEnd:!1,keywords:i,illegal:/["\[\]]/,contains:[{begin:n.concat(e.UNDERSCORE_IDENT_RE,/\s*\(/),keywords:i.concat(o),relevance:0},e.QUOTE_STRING_MODE]},{beginKeywords:"new throw",relevance:0},{className:"function",begin:/\w+ +\w+(\.\w+)?\s*\([^\)]*\)\s*((throws)[\w\s,]+)?[\{;]/,returnBegin:!0,end:/[{;=]/,keywords:i,excludeEnd:!0,contains:[{begin:n.concat(e.UNDERSCORE_IDENT_RE,/\s*\(/),returnBegin:!0,relevance:0,contains:[e.UNDERSCORE_TITLE_MODE]},{className:"params",begin:/\(/,end:/\)/,relevance:0,keywords:i,contains:[e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,e.C_NUMBER_MODE,e.C_BLOCK_COMMENT_MODE]},e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]},e.C_NUMBER_MODE,{className:"meta",begin:/@[A-Za-z]+/}]}}return td=t,td}var nd,sh;function cOe(){if(sh)return nd;sh=1;function t(e){const n={begin:"`[\\s\\S]"};return{name:"AutoHotkey",case_insensitive:!0,aliases:["ahk"],keywords:{keyword:"Break Continue Critical Exit ExitApp Gosub Goto New OnExit Pause return SetBatchLines SetTimer Suspend Thread Throw Until ahk_id ahk_class ahk_pid ahk_exe ahk_group",literal:"true false NOT AND OR",built_in:"ComSpec Clipboard ClipboardAll ErrorLevel"},contains:[n,e.inherit(e.QUOTE_STRING_MODE,{contains:[n]}),e.COMMENT(";","$",{relevance:0}),e.C_BLOCK_COMMENT_MODE,{className:"number",begin:e.NUMBER_RE,relevance:0},{className:"variable",begin:"%[a-zA-Z0-9#_$@]+%"},{className:"built_in",begin:"^\\s*\\w+\\s*(,|%)"},{className:"title",variants:[{begin:'^[^\\n";]+::(?!=)'},{begin:'^[^\\n";]+:(?!=)',relevance:0}]},{className:"meta",begin:"^\\s*#\\w+",end:"$",relevance:0},{className:"built_in",begin:"A_[a-zA-Z0-9]+"},{begin:",\\s*,"}]}}return nd=t,nd}var rd,lh;function uOe(){if(lh)return rd;lh=1;function t(e){const n="ByRef Case Const ContinueCase ContinueLoop Dim Do Else ElseIf EndFunc EndIf EndSelect EndSwitch EndWith Enum Exit ExitLoop For Func Global If In Local Next ReDim Return Select Static Step Switch Then To Until Volatile WEnd While With",i=["EndRegion","forcedef","forceref","ignorefunc","include","include-once","NoTrayIcon","OnAutoItStartRegister","pragma","Region","RequireAdmin","Tidy_Off","Tidy_On","Tidy_Parameters"],o="True False And Null Not Or Default",s="Abs ACos AdlibRegister AdlibUnRegister Asc AscW ASin Assign ATan AutoItSetOption AutoItWinGetTitle AutoItWinSetTitle Beep Binary BinaryLen BinaryMid BinaryToString BitAND BitNOT BitOR BitRotate BitShift BitXOR BlockInput Break Call CDTray Ceiling Chr ChrW ClipGet ClipPut ConsoleRead ConsoleWrite ConsoleWriteError ControlClick ControlCommand ControlDisable ControlEnable ControlFocus ControlGetFocus ControlGetHandle ControlGetPos ControlGetText ControlHide ControlListView ControlMove ControlSend ControlSetText ControlShow ControlTreeView Cos Dec DirCopy DirCreate DirGetSize DirMove DirRemove DllCall DllCallAddress DllCallbackFree DllCallbackGetPtr DllCallbackRegister DllClose DllOpen DllStructCreate DllStructGetData DllStructGetPtr DllStructGetSize DllStructSetData DriveGetDrive DriveGetFileSystem DriveGetLabel DriveGetSerial DriveGetType DriveMapAdd DriveMapDel DriveMapGet DriveSetLabel DriveSpaceFree DriveSpaceTotal DriveStatus EnvGet EnvSet EnvUpdate Eval Execute Exp FileChangeDir FileClose FileCopy FileCreateNTFSLink FileCreateShortcut FileDelete FileExists FileFindFirstFile FileFindNextFile FileFlush FileGetAttrib FileGetEncoding FileGetLongName FileGetPos FileGetShortcut FileGetShortName FileGetSize FileGetTime FileGetVersion FileInstall FileMove FileOpen FileOpenDialog FileRead FileReadLine FileReadToArray FileRecycle FileRecycleEmpty FileSaveDialog FileSelectFolder FileSetAttrib FileSetEnd FileSetPos FileSetTime FileWrite FileWriteLine Floor FtpSetProxy FuncName GUICreate GUICtrlCreateAvi GUICtrlCreateButton GUICtrlCreateCheckbox GUICtrlCreateCombo GUICtrlCreateContextMenu GUICtrlCreateDate GUICtrlCreateDummy GUICtrlCreateEdit GUICtrlCreateGraphic GUICtrlCreateGroup GUICtrlCreateIcon GUICtrlCreateInput GUICtrlCreateLabel GUICtrlCreateList GUICtrlCreateListView GUICtrlCreateListViewItem GUICtrlCreateMenu GUICtrlCreateMenuItem GUICtrlCreateMonthCal GUICtrlCreateObj GUICtrlCreatePic GUICtrlCreateProgress GUICtrlCreateRadio GUICtrlCreateSlider GUICtrlCreateTab GUICtrlCreateTabItem GUICtrlCreateTreeView GUICtrlCreateTreeViewItem GUICtrlCreateUpdown GUICtrlDelete GUICtrlGetHandle GUICtrlGetState GUICtrlRead GUICtrlRecvMsg GUICtrlRegisterListViewSort GUICtrlSendMsg GUICtrlSendToDummy GUICtrlSetBkColor GUICtrlSetColor GUICtrlSetCursor GUICtrlSetData GUICtrlSetDefBkColor GUICtrlSetDefColor GUICtrlSetFont GUICtrlSetGraphic GUICtrlSetImage GUICtrlSetLimit GUICtrlSetOnEvent GUICtrlSetPos GUICtrlSetResizing GUICtrlSetState GUICtrlSetStyle GUICtrlSetTip GUIDelete GUIGetCursorInfo GUIGetMsg GUIGetStyle GUIRegisterMsg GUISetAccelerators GUISetBkColor GUISetCoord GUISetCursor GUISetFont GUISetHelp GUISetIcon GUISetOnEvent GUISetState GUISetStyle GUIStartGroup GUISwitch Hex HotKeySet HttpSetProxy HttpSetUserAgent HWnd InetClose InetGet InetGetInfo InetGetSize InetRead IniDelete IniRead IniReadSection IniReadSectionNames IniRenameSection IniWrite IniWriteSection InputBox Int IsAdmin IsArray IsBinary IsBool IsDeclared IsDllStruct IsFloat IsFunc IsHWnd IsInt IsKeyword IsNumber IsObj IsPtr IsString Log MemGetStats Mod MouseClick MouseClickDrag MouseDown MouseGetCursor MouseGetPos MouseMove MouseUp MouseWheel MsgBox Number ObjCreate ObjCreateInterface ObjEvent ObjGet ObjName OnAutoItExitRegister OnAutoItExitUnRegister Ping PixelChecksum PixelGetColor PixelSearch ProcessClose ProcessExists ProcessGetStats ProcessList ProcessSetPriority ProcessWait ProcessWaitClose ProgressOff ProgressOn ProgressSet Ptr Random RegDelete RegEnumKey RegEnumVal RegRead RegWrite Round Run RunAs RunAsWait RunWait Send SendKeepActive SetError SetExtended ShellExecute ShellExecuteWait Shutdown Sin Sleep SoundPlay SoundSetWaveVolume SplashImageOn SplashOff SplashTextOn Sqrt SRandom StatusbarGetText StderrRead StdinWrite StdioClose StdoutRead String StringAddCR StringCompare StringFormat StringFromASCIIArray StringInStr StringIsAlNum StringIsAlpha StringIsASCII StringIsDigit StringIsFloat StringIsInt StringIsLower StringIsSpace StringIsUpper StringIsXDigit StringLeft StringLen StringLower StringMid StringRegExp StringRegExpReplace StringReplace StringReverse StringRight StringSplit StringStripCR StringStripWS StringToASCIIArray StringToBinary StringTrimLeft StringTrimRight StringUpper Tan TCPAccept TCPCloseSocket TCPConnect TCPListen TCPNameToIP TCPRecv TCPSend TCPShutdown, UDPShutdown TCPStartup, UDPStartup TimerDiff TimerInit ToolTip TrayCreateItem TrayCreateMenu TrayGetMsg TrayItemDelete TrayItemGetHandle TrayItemGetState TrayItemGetText TrayItemSetOnEvent TrayItemSetState TrayItemSetText TraySetClick TraySetIcon TraySetOnEvent TraySetPauseIcon TraySetState TraySetToolTip TrayTip UBound UDPBind UDPCloseSocket UDPOpen UDPRecv UDPSend VarGetType WinActivate WinActive WinClose WinExists WinFlash WinGetCaretPos WinGetClassList WinGetClientSize WinGetHandle WinGetPos WinGetProcess WinGetState WinGetText WinGetTitle WinKill WinList WinMenuSelectItem WinMinimizeAll WinMinimizeAllUndo WinMove WinSetOnTop WinSetState WinSetTitle WinSetTrans WinWait WinWaitActive WinWaitClose WinWaitNotActive",l={variants:[e.COMMENT(";","$",{relevance:0}),e.COMMENT("#cs","#ce"),e.COMMENT("#comments-start","#comments-end")]},c={begin:"\\$[A-z0-9_]+"},d={className:"string",variants:[{begin:/"/,end:/"/,contains:[{begin:/""/,relevance:0}]},{begin:/'/,end:/'/,contains:[{begin:/''/,relevance:0}]}]},_={variants:[e.BINARY_NUMBER_MODE,e.C_NUMBER_MODE]},p={className:"meta",begin:"#",end:"$",keywords:{keyword:i},contains:[{begin:/\\\n/,relevance:0},{beginKeywords:"include",keywords:{keyword:"include"},end:"$",contains:[d,{className:"string",variants:[{begin:"<",end:">"},{begin:/"/,end:/"/,contains:[{begin:/""/,relevance:0}]},{begin:/'/,end:/'/,contains:[{begin:/''/,relevance:0}]}]}]},d,l]},g={className:"symbol",begin:"@[A-z0-9_]+"},E={beginKeywords:"Func",end:"$",illegal:"\\$|\\[|%",contains:[e.inherit(e.UNDERSCORE_TITLE_MODE,{className:"title.function"}),{className:"params",begin:"\\(",end:"\\)",contains:[c,d,_]}]};return{name:"AutoIt",case_insensitive:!0,illegal:/\/\*/,keywords:{keyword:n,built_in:s,literal:o},contains:[l,c,d,_,p,g,E]}}return rd=t,rd}var id,ch;function dOe(){if(ch)return id;ch=1;function t(e){return{name:"AVR Assembly",case_insensitive:!0,keywords:{$pattern:"\\.?"+e.IDENT_RE,keyword:"adc add adiw and andi asr bclr bld brbc brbs brcc brcs break breq brge brhc brhs brid brie brlo brlt brmi brne brpl brsh brtc brts brvc brvs bset bst call cbi cbr clc clh cli cln clr cls clt clv clz com cp cpc cpi cpse dec eicall eijmp elpm eor fmul fmuls fmulsu icall ijmp in inc jmp ld ldd ldi lds lpm lsl lsr mov movw mul muls mulsu neg nop or ori out pop push rcall ret reti rjmp rol ror sbc sbr sbrc sbrs sec seh sbi sbci sbic sbis sbiw sei sen ser ses set sev sez sleep spm st std sts sub subi swap tst wdr",built_in:"r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20 r21 r22 r23 r24 r25 r26 r27 r28 r29 r30 r31 x|0 xh xl y|0 yh yl z|0 zh zl ucsr1c udr1 ucsr1a ucsr1b ubrr1l ubrr1h ucsr0c ubrr0h tccr3c tccr3a tccr3b tcnt3h tcnt3l ocr3ah ocr3al ocr3bh ocr3bl ocr3ch ocr3cl icr3h icr3l etimsk etifr tccr1c ocr1ch ocr1cl twcr twdr twar twsr twbr osccal xmcra xmcrb eicra spmcsr spmcr portg ddrg ping portf ddrf sreg sph spl xdiv rampz eicrb eimsk gimsk gicr eifr gifr timsk tifr mcucr mcucsr tccr0 tcnt0 ocr0 assr tccr1a tccr1b tcnt1h tcnt1l ocr1ah ocr1al ocr1bh ocr1bl icr1h icr1l tccr2 tcnt2 ocr2 ocdr wdtcr sfior eearh eearl eedr eecr porta ddra pina portb ddrb pinb portc ddrc pinc portd ddrd pind spdr spsr spcr udr0 ucsr0a ucsr0b ubrr0l acsr admux adcsr adch adcl porte ddre pine pinf",meta:".byte .cseg .db .def .device .dseg .dw .endmacro .equ .eseg .exit .include .list .listmac .macro .nolist .org .set"},contains:[e.C_BLOCK_COMMENT_MODE,e.COMMENT(";","$",{relevance:0}),e.C_NUMBER_MODE,e.BINARY_NUMBER_MODE,{className:"number",begin:"\\b(\\$[a-zA-Z0-9]+|0o[0-7]+)"},e.QUOTE_STRING_MODE,{className:"string",begin:"'",end:"[^\\\\]'",illegal:"[^\\\\][^']"},{className:"symbol",begin:"^[A-Za-z0-9_.$]+:"},{className:"meta",begin:"#",end:"$"},{className:"subst",begin:"@[0-9]+"}]}}return id=t,id}var ad,uh;function _Oe(){if(uh)return ad;uh=1;function t(e){const n={className:"variable",variants:[{begin:/\$[\w\d#@][\w\d_]*/},{begin:/\$\{(.*?)\}/}]},i="BEGIN END if else while do for in break continue delete next nextfile function func exit|10",o={className:"string",contains:[e.BACKSLASH_ESCAPE],variants:[{begin:/(u|b)?r?'''/,end:/'''/,relevance:10},{begin:/(u|b)?r?"""/,end:/"""/,relevance:10},{begin:/(u|r|ur)'/,end:/'/,relevance:10},{begin:/(u|r|ur)"/,end:/"/,relevance:10},{begin:/(b|br)'/,end:/'/},{begin:/(b|br)"/,end:/"/},e.APOS_STRING_MODE,e.QUOTE_STRING_MODE]};return{name:"Awk",keywords:{keyword:i},contains:[n,o,e.REGEXP_MODE,e.HASH_COMMENT_MODE,e.NUMBER_MODE]}}return ad=t,ad}var od,dh;function pOe(){if(dh)return od;dh=1;function t(e){const n=e.UNDERSCORE_IDENT_RE,l={keyword:["abstract","as","asc","avg","break","breakpoint","by","byref","case","catch","changecompany","class","client","client","common","const","continue","count","crosscompany","delegate","delete_from","desc","display","div","do","edit","else","eventhandler","exists","extends","final","finally","firstfast","firstonly","firstonly1","firstonly10","firstonly100","firstonly1000","flush","for","forceliterals","forcenestedloop","forceplaceholders","forceselectorder","forupdate","from","generateonly","group","hint","if","implements","in","index","insert_recordset","interface","internal","is","join","like","maxof","minof","mod","namespace","new","next","nofetch","notexists","optimisticlock","order","outer","pessimisticlock","print","private","protected","public","readonly","repeatableread","retry","return","reverse","select","server","setting","static","sum","super","switch","this","throw","try","ttsabort","ttsbegin","ttscommit","unchecked","update_recordset","using","validtimestate","void","where","while"],built_in:["anytype","boolean","byte","char","container","date","double","enum","guid","int","int64","long","real","short","str","utcdatetime","var"],literal:["default","false","null","true"]},c={variants:[{match:[/(class|interface)\s+/,n,/\s+(extends|implements)\s+/,n]},{match:[/class\s+/,n]}],scope:{2:"title.class",4:"title.class.inherited"},keywords:l};return{name:"X++",aliases:["x++"],keywords:l,contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,e.C_NUMBER_MODE,{className:"meta",begin:"#",end:"$"},c]}}return od=t,od}var sd,_h;function mOe(){if(_h)return sd;_h=1;function t(e){const n=e.regex,i={},o={begin:/\$\{/,end:/\}/,contains:["self",{begin:/:-/,contains:[i]}]};Object.assign(i,{className:"variable",variants:[{begin:n.concat(/\$[\w\d#@][\w\d_]*/,"(?![\\w\\d])(?![$])")},o]});const s={className:"subst",begin:/\$\(/,end:/\)/,contains:[e.BACKSLASH_ESCAPE]},l={begin:/<<-?\s*(?=\w+)/,starts:{contains:[e.END_SAME_AS_BEGIN({begin:/(\w+)/,end:/(\w+)/,className:"string"})]}},c={className:"string",begin:/"/,end:/"/,contains:[e.BACKSLASH_ESCAPE,i,s]};s.contains.push(c);const d={className:"",begin:/\\"/},_={className:"string",begin:/'/,end:/'/},p={begin:/\$?\(\(/,end:/\)\)/,contains:[{begin:/\d+#[0-9a-f]+/,className:"number"},e.NUMBER_MODE,i]},g=["fish","bash","zsh","sh","csh","ksh","tcsh","dash","scsh"],E=e.SHEBANG({binary:`(${g.join("|")})`,relevance:10}),f={className:"function",begin:/\w[\w\d_]*\s*\(\s*\)\s*\{/,returnBegin:!0,contains:[e.inherit(e.TITLE_MODE,{begin:/\w[\w\d_]*/})],relevance:0},S=["if","then","else","elif","fi","for","while","until","in","do","done","case","esac","function","select"],v=["true","false"],h={match:/(\/[a-z._-]+)+/},T=["break","cd","continue","eval","exec","exit","export","getopts","hash","pwd","readonly","return","shift","test","times","trap","umask","unset"],N=["alias","bind","builtin","caller","command","declare","echo","enable","help","let","local","logout","mapfile","printf","read","readarray","source","type","typeset","ulimit","unalias"],y=["autoload","bg","bindkey","bye","cap","chdir","clone","comparguments","compcall","compctl","compdescribe","compfiles","compgroups","compquote","comptags","comptry","compvalues","dirs","disable","disown","echotc","echoti","emulate","fc","fg","float","functions","getcap","getln","history","integer","jobs","kill","limit","log","noglob","popd","print","pushd","pushln","rehash","sched","setcap","setopt","stat","suspend","ttyctl","unfunction","unhash","unlimit","unsetopt","vared","wait","whence","where","which","zcompile","zformat","zftp","zle","zmodload","zparseopts","zprof","zpty","zregexparse","zsocket","zstyle","ztcp"],x=["chcon","chgrp","chown","chmod","cp","dd","df","dir","dircolors","ln","ls","mkdir","mkfifo","mknod","mktemp","mv","realpath","rm","rmdir","shred","sync","touch","truncate","vdir","b2sum","base32","base64","cat","cksum","comm","csplit","cut","expand","fmt","fold","head","join","md5sum","nl","numfmt","od","paste","ptx","pr","sha1sum","sha224sum","sha256sum","sha384sum","sha512sum","shuf","sort","split","sum","tac","tail","tr","tsort","unexpand","uniq","wc","arch","basename","chroot","date","dirname","du","echo","env","expr","factor","groups","hostid","id","link","logname","nice","nohup","nproc","pathchk","pinky","printenv","printf","pwd","readlink","runcon","seq","sleep","stat","stdbuf","stty","tee","test","timeout","tty","uname","unlink","uptime","users","who","whoami","yes"];return{name:"Bash",aliases:["sh"],keywords:{$pattern:/\b[a-z][a-z0-9._-]+\b/,keyword:S,literal:v,built_in:[...T,...N,"set","shopt",...y,...x]},contains:[E,e.SHEBANG(),f,p,e.HASH_COMMENT_MODE,l,h,c,d,_,i]}}return sd=t,sd}var ld,ph;function gOe(){if(ph)return ld;ph=1;function t(e){return{name:"BASIC",case_insensitive:!0,illegal:"^.",keywords:{$pattern:"[a-zA-Z][a-zA-Z0-9_$%!#]*",keyword:["ABS","ASC","AND","ATN","AUTO|0","BEEP","BLOAD|10","BSAVE|10","CALL","CALLS","CDBL","CHAIN","CHDIR","CHR$|10","CINT","CIRCLE","CLEAR","CLOSE","CLS","COLOR","COM","COMMON","CONT","COS","CSNG","CSRLIN","CVD","CVI","CVS","DATA","DATE$","DEFDBL","DEFINT","DEFSNG","DEFSTR","DEF|0","SEG","USR","DELETE","DIM","DRAW","EDIT","END","ENVIRON","ENVIRON$","EOF","EQV","ERASE","ERDEV","ERDEV$","ERL","ERR","ERROR","EXP","FIELD","FILES","FIX","FOR|0","FRE","GET","GOSUB|10","GOTO","HEX$","IF","THEN","ELSE|0","INKEY$","INP","INPUT","INPUT#","INPUT$","INSTR","IMP","INT","IOCTL","IOCTL$","KEY","ON","OFF","LIST","KILL","LEFT$","LEN","LET","LINE","LLIST","LOAD","LOC","LOCATE","LOF","LOG","LPRINT","USING","LSET","MERGE","MID$","MKDIR","MKD$","MKI$","MKS$","MOD","NAME","NEW","NEXT","NOISE","NOT","OCT$","ON","OR","PEN","PLAY","STRIG","OPEN","OPTION","BASE","OUT","PAINT","PALETTE","PCOPY","PEEK","PMAP","POINT","POKE","POS","PRINT","PRINT]","PSET","PRESET","PUT","RANDOMIZE","READ","REM","RENUM","RESET|0","RESTORE","RESUME","RETURN|0","RIGHT$","RMDIR","RND","RSET","RUN","SAVE","SCREEN","SGN","SHELL","SIN","SOUND","SPACE$","SPC","SQR","STEP","STICK","STOP","STR$","STRING$","SWAP","SYSTEM","TAB","TAN","TIME$","TIMER","TROFF","TRON","TO","USR","VAL","VARPTR","VARPTR$","VIEW","WAIT","WHILE","WEND","WIDTH","WINDOW","WRITE","XOR"]},contains:[e.QUOTE_STRING_MODE,e.COMMENT("REM","$",{relevance:10}),e.COMMENT("'","$",{relevance:0}),{className:"symbol",begin:"^[0-9]+ ",relevance:10},{className:"number",begin:"\\b\\d+(\\.\\d+)?([edED]\\d+)?[#!]?",relevance:0},{className:"number",begin:"(&[hH][0-9a-fA-F]{1,4})"},{className:"number",begin:"(&[oO][0-7]{1,6})"}]}}return ld=t,ld}var cd,mh;function EOe(){if(mh)return cd;mh=1;function t(e){return{name:"Backus–Naur Form",contains:[{className:"attribute",begin://},{begin:/::=/,end:/$/,contains:[{begin://},e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE]}]}}return cd=t,cd}var ud,gh;function fOe(){if(gh)return ud;gh=1;function t(e){const n={className:"literal",begin:/[+-]+/,relevance:0};return{name:"Brainfuck",aliases:["bf"],contains:[e.COMMENT(/[^\[\]\.,\+\-<> \r\n]/,/[\[\]\.,\+\-<> \r\n]/,{contains:[{match:/[ ]+[^\[\]\.,\+\-<> \r\n]/,relevance:0}],returnEnd:!0,relevance:0}),{className:"title",begin:"[\\[\\]]",relevance:0},{className:"string",begin:"[\\.,]",relevance:0},{begin:/(?=\+\+|--)/,contains:[n]},n]}}return ud=t,ud}var dd,Eh;function SOe(){if(Eh)return dd;Eh=1;function t(e){const n=e.regex,i=e.COMMENT("//","$",{contains:[{begin:/\\\n/}]}),o="decltype\\(auto\\)",s="[a-zA-Z_]\\w*::",l="<[^<>]+>",c="("+o+"|"+n.optional(s)+"[a-zA-Z_]\\w*"+n.optional(l)+")",d={className:"type",variants:[{begin:"\\b[a-z\\d_]*_t\\b"},{match:/\batomic_[a-z]{3,6}\b/}]},_="\\\\(x[0-9A-Fa-f]{2}|u[0-9A-Fa-f]{4,8}|[0-7]{3}|\\S)",p={className:"string",variants:[{begin:'(u8?|U|L)?"',end:'"',illegal:"\\n",contains:[e.BACKSLASH_ESCAPE]},{begin:"(u8?|U|L)?'("+_+"|.)",end:"'",illegal:"."},e.END_SAME_AS_BEGIN({begin:/(?:u8?|U|L)?R"([^()\\ ]{0,16})\(/,end:/\)([^()\\ ]{0,16})"/})]},g={className:"number",variants:[{begin:"\\b(0b[01']+)"},{begin:"(-?)\\b([\\d']+(\\.[\\d']*)?|\\.[\\d']+)((ll|LL|l|L)(u|U)?|(u|U)(ll|LL|l|L)?|f|F|b|B)"},{begin:"(-?)(\\b0[xX][a-fA-F0-9']+|(\\b[\\d']+(\\.[\\d']*)?|\\.[\\d']+)([eE][-+]?[\\d']+)?)"}],relevance:0},E={className:"meta",begin:/#\s*[a-z]+\b/,end:/$/,keywords:{keyword:"if else elif endif define undef warning error line pragma _Pragma ifdef ifndef include"},contains:[{begin:/\\\n/,relevance:0},e.inherit(p,{className:"string"}),{className:"string",begin:/<.*?>/},i,e.C_BLOCK_COMMENT_MODE]},f={className:"title",begin:n.optional(s)+e.IDENT_RE,relevance:0},S=n.optional(s)+e.IDENT_RE+"\\s*\\(",T={keyword:["asm","auto","break","case","continue","default","do","else","enum","extern","for","fortran","goto","if","inline","register","restrict","return","sizeof","struct","switch","typedef","union","volatile","while","_Alignas","_Alignof","_Atomic","_Generic","_Noreturn","_Static_assert","_Thread_local","alignas","alignof","noreturn","static_assert","thread_local","_Pragma"],type:["float","double","signed","unsigned","int","short","long","char","void","_Bool","_Complex","_Imaginary","_Decimal32","_Decimal64","_Decimal128","const","static","complex","bool","imaginary"],literal:"true false NULL",built_in:"std string wstring cin cout cerr clog stdin stdout stderr stringstream istringstream ostringstream auto_ptr deque list queue stack vector map set pair bitset multiset multimap unordered_set unordered_map unordered_multiset unordered_multimap priority_queue make_pair array shared_ptr abort terminate abs acos asin atan2 atan calloc ceil cosh cos exit exp fabs floor fmod fprintf fputs free frexp fscanf future isalnum isalpha iscntrl isdigit isgraph islower isprint ispunct isspace isupper isxdigit tolower toupper labs ldexp log10 log malloc realloc memchr memcmp memcpy memset modf pow printf putchar puts scanf sinh sin snprintf sprintf sqrt sscanf strcat strchr strcmp strcpy strcspn strlen strncat strncmp strncpy strpbrk strrchr strspn strstr tanh tan vfprintf vprintf vsprintf endl initializer_list unique_ptr"},N=[E,d,i,e.C_BLOCK_COMMENT_MODE,g,p],y={variants:[{begin:/=/,end:/;/},{begin:/\(/,end:/\)/},{beginKeywords:"new throw return else",end:/;/}],keywords:T,contains:N.concat([{begin:/\(/,end:/\)/,keywords:T,contains:N.concat(["self"]),relevance:0}]),relevance:0},x={begin:"("+c+"[\\*&\\s]+)+"+S,returnBegin:!0,end:/[{;=]/,excludeEnd:!0,keywords:T,illegal:/[^\w\s\*&:<>.]/,contains:[{begin:o,keywords:T,relevance:0},{begin:S,returnBegin:!0,contains:[e.inherit(f,{className:"title.function"})],relevance:0},{relevance:0,match:/,/},{className:"params",begin:/\(/,end:/\)/,keywords:T,relevance:0,contains:[i,e.C_BLOCK_COMMENT_MODE,p,g,d,{begin:/\(/,end:/\)/,keywords:T,relevance:0,contains:["self",i,e.C_BLOCK_COMMENT_MODE,p,g,d]}]},d,i,e.C_BLOCK_COMMENT_MODE,E]};return{name:"C",aliases:["h"],keywords:T,disableAutodetect:!0,illegal:"=]/,contains:[{beginKeywords:"final class struct"},e.TITLE_MODE]}]),exports:{preprocessor:E,strings:p,keywords:T}}}return dd=t,dd}var _d,fh;function bOe(){if(fh)return _d;fh=1;function t(e){const n=e.regex,i=["div","mod","in","and","or","not","xor","asserterror","begin","case","do","downto","else","end","exit","for","local","if","of","repeat","then","to","until","while","with","var"],o="false true",s=[e.C_LINE_COMMENT_MODE,e.COMMENT(/\{/,/\}/,{relevance:0}),e.COMMENT(/\(\*/,/\*\)/,{relevance:10})],l={className:"string",begin:/'/,end:/'/,contains:[{begin:/''/}]},c={className:"string",begin:/(#\d+)+/},d={className:"number",begin:"\\b\\d+(\\.\\d+)?(DT|D|T)",relevance:0},_={className:"string",begin:'"',end:'"'},p={match:[/procedure/,/\s+/,/[a-zA-Z_][\w@]*/,/\s*/],scope:{1:"keyword",3:"title.function"},contains:[{className:"params",begin:/\(/,end:/\)/,keywords:i,contains:[l,c,e.NUMBER_MODE]},...s]},g=["Table","Form","Report","Dataport","Codeunit","XMLport","MenuSuite","Page","Query"],E={match:[/OBJECT/,/\s+/,n.either(...g),/\s+/,/\d+/,/\s+(?=[^\s])/,/.*/,/$/],relevance:3,scope:{1:"keyword",3:"type",5:"number",7:"title"}};return{name:"C/AL",case_insensitive:!0,keywords:{keyword:i,literal:o},illegal:/\/\*/,contains:[{match:/[\w]+(?=\=)/,scope:"attribute",relevance:0},l,c,d,_,e.NUMBER_MODE,E,p]}}return _d=t,_d}var pd,Sh;function hOe(){if(Sh)return pd;Sh=1;function t(e){const n=["struct","enum","interface","union","group","import","using","const","annotation","extends","in","of","on","as","with","from","fixed"],i=["Void","Bool","Int8","Int16","Int32","Int64","UInt8","UInt16","UInt32","UInt64","Float32","Float64","Text","Data","AnyPointer","AnyStruct","Capability","List"],o=["true","false"],s={variants:[{match:[/(struct|enum|interface)/,/\s+/,e.IDENT_RE]},{match:[/extends/,/\s*\(/,e.IDENT_RE,/\s*\)/]}],scope:{1:"keyword",3:"title.class"}};return{name:"Cap’n Proto",aliases:["capnp"],keywords:{keyword:n,type:i,literal:o},contains:[e.QUOTE_STRING_MODE,e.NUMBER_MODE,e.HASH_COMMENT_MODE,{className:"meta",begin:/@0x[\w\d]{16};/,illegal:/\n/},{className:"symbol",begin:/@\d+\b/},s]}}return pd=t,pd}var md,bh;function TOe(){if(bh)return md;bh=1;function t(e){const n=["assembly","module","package","import","alias","class","interface","object","given","value","assign","void","function","new","of","extends","satisfies","abstracts","in","out","return","break","continue","throw","assert","dynamic","if","else","switch","case","for","while","try","catch","finally","then","let","this","outer","super","is","exists","nonempty"],i=["shared","abstract","formal","default","actual","variable","late","native","deprecated","final","sealed","annotation","suppressWarnings","small"],o=["doc","by","license","see","throws","tagged"],s={className:"subst",excludeBegin:!0,excludeEnd:!0,begin:/``/,end:/``/,keywords:n,relevance:10},l=[{className:"string",begin:'"""',end:'"""',relevance:10},{className:"string",begin:'"',end:'"',contains:[s]},{className:"string",begin:"'",end:"'"},{className:"number",begin:"#[0-9a-fA-F_]+|\\$[01_]+|[0-9_]+(?:\\.[0-9_](?:[eE][+-]?\\d+)?)?[kMGTPmunpf]?",relevance:0}];return s.contains=l,{name:"Ceylon",keywords:{keyword:n.concat(i),meta:o},illegal:"\\$[^01]|#[^0-9a-fA-F]",contains:[e.C_LINE_COMMENT_MODE,e.COMMENT("/\\*","\\*/",{contains:["self"]}),{className:"meta",begin:'@[a-z]\\w*(?::"[^"]*")?'}].concat(l)}}return md=t,md}var gd,hh;function vOe(){if(hh)return gd;hh=1;function t(e){return{name:"Clean",aliases:["icl","dcl"],keywords:{keyword:["if","let","in","with","where","case","of","class","instance","otherwise","implementation","definition","system","module","from","import","qualified","as","special","code","inline","foreign","export","ccall","stdcall","generic","derive","infix","infixl","infixr"],built_in:"Int Real Char Bool",literal:"True False"},contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,e.C_NUMBER_MODE,{begin:"->|<-[|:]?|#!?|>>=|\\{\\||\\|\\}|:==|=:|<>"}]}}return gd=t,gd}var Ed,Th;function COe(){if(Th)return Ed;Th=1;function t(e){const n="a-zA-Z_\\-!.?+*=<>&'",i="[#]?["+n+"]["+n+"0-9/;:$#]*",o="def defonce defprotocol defstruct defmulti defmethod defn- defn defmacro deftype defrecord",s={$pattern:i,built_in:o+" cond apply if-not if-let if not not= =|0 <|0 >|0 <=|0 >=|0 ==|0 +|0 /|0 *|0 -|0 rem quot neg? pos? delay? symbol? keyword? true? false? integer? empty? coll? list? set? ifn? fn? associative? sequential? sorted? counted? reversible? number? decimal? class? distinct? isa? float? rational? reduced? ratio? odd? even? char? seq? vector? string? map? nil? contains? zero? instance? not-every? not-any? libspec? -> ->> .. . inc compare do dotimes mapcat take remove take-while drop letfn drop-last take-last drop-while while intern condp case reduced cycle split-at split-with repeat replicate iterate range merge zipmap declare line-seq sort comparator sort-by dorun doall nthnext nthrest partition eval doseq await await-for let agent atom send send-off release-pending-sends add-watch mapv filterv remove-watch agent-error restart-agent set-error-handler error-handler set-error-mode! error-mode shutdown-agents quote var fn loop recur throw try monitor-enter monitor-exit macroexpand macroexpand-1 for dosync and or when when-not when-let comp juxt partial sequence memoize constantly complement identity assert peek pop doto proxy first rest cons cast coll last butlast sigs reify second ffirst fnext nfirst nnext meta with-meta ns in-ns create-ns import refer keys select-keys vals key val rseq name namespace promise into transient persistent! conj! assoc! dissoc! pop! disj! use class type num float double short byte boolean bigint biginteger bigdec print-method print-dup throw-if printf format load compile get-in update-in pr pr-on newline flush read slurp read-line subvec with-open memfn time re-find re-groups rand-int rand mod locking assert-valid-fdecl alias resolve ref deref refset swap! reset! set-validator! compare-and-set! alter-meta! reset-meta! commute get-validator alter ref-set ref-history-count ref-min-history ref-max-history ensure sync io! new next conj set! to-array future future-call into-array aset gen-class reduce map filter find empty hash-map hash-set sorted-map sorted-map-by sorted-set sorted-set-by vec vector seq flatten reverse assoc dissoc list disj get union difference intersection extend extend-type extend-protocol int nth delay count concat chunk chunk-buffer chunk-append chunk-first chunk-rest max min dec unchecked-inc-int unchecked-inc unchecked-dec-inc unchecked-dec unchecked-negate unchecked-add-int unchecked-add unchecked-subtract-int unchecked-subtract chunk-next chunk-cons chunked-seq? prn vary-meta lazy-seq spread list* str find-keyword keyword symbol gensym force rationalize"},l={begin:i,relevance:0},c={scope:"number",relevance:0,variants:[{match:/[-+]?0[xX][0-9a-fA-F]+N?/},{match:/[-+]?0[0-7]+N?/},{match:/[-+]?[1-9][0-9]?[rR][0-9a-zA-Z]+N?/},{match:/[-+]?[0-9]+\/[0-9]+N?/},{match:/[-+]?[0-9]+((\.[0-9]*([eE][+-]?[0-9]+)?M?)|([eE][+-]?[0-9]+M?|M))/},{match:/[-+]?([1-9][0-9]*|0)N?/}]},d={scope:"character",variants:[{match:/\\o[0-3]?[0-7]{1,2}/},{match:/\\u[0-9a-fA-F]{4}/},{match:/\\(newline|space|tab|formfeed|backspace|return)/},{match:/\\\S/,relevance:0}]},_={scope:"regex",begin:/#"/,end:/"/,contains:[e.BACKSLASH_ESCAPE]},p=e.inherit(e.QUOTE_STRING_MODE,{illegal:null}),g={scope:"punctuation",match:/,/,relevance:0},E=e.COMMENT(";","$",{relevance:0}),f={className:"literal",begin:/\b(true|false|nil)\b/},S={begin:"\\[|(#::?"+i+")?\\{",end:"[\\]\\}]",relevance:0},v={className:"symbol",begin:"[:]{1,2}"+i},h={begin:"\\(",end:"\\)"},T={endsWithParent:!0,relevance:0},N={keywords:s,className:"name",begin:i,relevance:0,starts:T},y=[g,h,d,_,p,E,v,S,c,f,l],x={beginKeywords:o,keywords:{$pattern:i,keyword:o},end:'(\\[|#|\\d|"|:|\\{|\\)|\\(|$)',contains:[{className:"title",begin:i,relevance:0,excludeEnd:!0,endsParent:!0}].concat(y)};return h.contains=[x,N,T],T.contains=y,S.contains=y,{name:"Clojure",aliases:["clj","edn"],illegal:/\S/,contains:[g,h,d,_,p,E,v,S,c,f]}}return Ed=t,Ed}var fd,vh;function ROe(){if(vh)return fd;vh=1;function t(e){return{name:"Clojure REPL",contains:[{className:"meta.prompt",begin:/^([\w.-]+|\s*#_)?=>/,starts:{end:/$/,subLanguage:"clojure"}}]}}return fd=t,fd}var Sd,Ch;function NOe(){if(Ch)return Sd;Ch=1;function t(e){return{name:"CMake",aliases:["cmake.in"],case_insensitive:!0,keywords:{keyword:"break cmake_host_system_information cmake_minimum_required cmake_parse_arguments cmake_policy configure_file continue elseif else endforeach endfunction endif endmacro endwhile execute_process file find_file find_library find_package find_path find_program foreach function get_cmake_property get_directory_property get_filename_component get_property if include include_guard list macro mark_as_advanced math message option return separate_arguments set_directory_properties set_property set site_name string unset variable_watch while add_compile_definitions add_compile_options add_custom_command add_custom_target add_definitions add_dependencies add_executable add_library add_link_options add_subdirectory add_test aux_source_directory build_command create_test_sourcelist define_property enable_language enable_testing export fltk_wrap_ui get_source_file_property get_target_property get_test_property include_directories include_external_msproject include_regular_expression install link_directories link_libraries load_cache project qt_wrap_cpp qt_wrap_ui remove_definitions set_source_files_properties set_target_properties set_tests_properties source_group target_compile_definitions target_compile_features target_compile_options target_include_directories target_link_directories target_link_libraries target_link_options target_sources try_compile try_run ctest_build ctest_configure ctest_coverage ctest_empty_binary_directory ctest_memcheck ctest_read_custom_files ctest_run_script ctest_sleep ctest_start ctest_submit ctest_test ctest_update ctest_upload build_name exec_program export_library_dependencies install_files install_programs install_targets load_command make_directory output_required_files remove subdir_depends subdirs use_mangled_mesa utility_source variable_requires write_file qt5_use_modules qt5_use_package qt5_wrap_cpp on off true false and or not command policy target test exists is_newer_than is_directory is_symlink is_absolute matches less greater equal less_equal greater_equal strless strgreater strequal strless_equal strgreater_equal version_less version_greater version_equal version_less_equal version_greater_equal in_list defined"},contains:[{className:"variable",begin:/\$\{/,end:/\}/},e.COMMENT(/#\[\[/,/]]/),e.HASH_COMMENT_MODE,e.QUOTE_STRING_MODE,e.NUMBER_MODE]}}return Sd=t,Sd}var bd,Rh;function OOe(){if(Rh)return bd;Rh=1;const t=["as","in","of","if","for","while","finally","var","new","function","do","return","void","else","break","catch","instanceof","with","throw","case","default","try","switch","continue","typeof","delete","let","yield","const","class","debugger","async","await","static","import","from","export","extends"],e=["true","false","null","undefined","NaN","Infinity"],n=["Object","Function","Boolean","Symbol","Math","Date","Number","BigInt","String","RegExp","Array","Float32Array","Float64Array","Int8Array","Uint8Array","Uint8ClampedArray","Int16Array","Int32Array","Uint16Array","Uint32Array","BigInt64Array","BigUint64Array","Set","Map","WeakSet","WeakMap","ArrayBuffer","SharedArrayBuffer","Atomics","DataView","JSON","Promise","Generator","GeneratorFunction","AsyncFunction","Reflect","Proxy","Intl","WebAssembly"],i=["Error","EvalError","InternalError","RangeError","ReferenceError","SyntaxError","TypeError","URIError"],o=["setInterval","setTimeout","clearInterval","clearTimeout","require","exports","eval","isFinite","isNaN","parseFloat","parseInt","decodeURI","decodeURIComponent","encodeURI","encodeURIComponent","escape","unescape"],s=[].concat(o,n,i);function l(c){const d=["npm","print"],_=["yes","no","on","off"],p=["then","unless","until","loop","by","when","and","or","is","isnt","not"],g=["var","const","let","function","static"],E=P=>D=>!P.includes(D),f={keyword:t.concat(p).filter(E(g)),literal:e.concat(_),built_in:s.concat(d)},S="[A-Za-z$_][0-9A-Za-z$_]*",v={className:"subst",begin:/#\{/,end:/\}/,keywords:f},h=[c.BINARY_NUMBER_MODE,c.inherit(c.C_NUMBER_MODE,{starts:{end:"(\\s*/)?",relevance:0}}),{className:"string",variants:[{begin:/'''/,end:/'''/,contains:[c.BACKSLASH_ESCAPE]},{begin:/'/,end:/'/,contains:[c.BACKSLASH_ESCAPE]},{begin:/"""/,end:/"""/,contains:[c.BACKSLASH_ESCAPE,v]},{begin:/"/,end:/"/,contains:[c.BACKSLASH_ESCAPE,v]}]},{className:"regexp",variants:[{begin:"///",end:"///",contains:[v,c.HASH_COMMENT_MODE]},{begin:"//[gim]{0,3}(?=\\W)",relevance:0},{begin:/\/(?![ *]).*?(?![\\]).\/[gim]{0,3}(?=\W)/}]},{begin:"@"+S},{subLanguage:"javascript",excludeBegin:!0,excludeEnd:!0,variants:[{begin:"```",end:"```"},{begin:"`",end:"`"}]}];v.contains=h;const T=c.inherit(c.TITLE_MODE,{begin:S}),N="(\\(.*\\)\\s*)?\\B[-=]>",y={className:"params",begin:"\\([^\\(]",returnBegin:!0,contains:[{begin:/\(/,end:/\)/,keywords:f,contains:["self"].concat(h)}]},x={variants:[{match:[/class\s+/,S,/\s+extends\s+/,S]},{match:[/class\s+/,S]}],scope:{2:"title.class",4:"title.class.inherited"},keywords:f};return{name:"CoffeeScript",aliases:["coffee","cson","iced"],keywords:f,illegal:/\/\*/,contains:[...h,c.COMMENT("###","###"),c.HASH_COMMENT_MODE,{className:"function",begin:"^\\s*"+S+"\\s*=\\s*"+N,end:"[-=]>",returnBegin:!0,contains:[T,y]},{begin:/[:\(,=]\s*/,relevance:0,contains:[{className:"function",begin:N,end:"[-=]>",returnBegin:!0,contains:[y]}]},x,{begin:S+":",end:":",returnBegin:!0,returnEnd:!0,relevance:0}]}}return bd=l,bd}var hd,Nh;function AOe(){if(Nh)return hd;Nh=1;function t(e){return{name:"Coq",keywords:{keyword:["_|0","as","at","cofix","else","end","exists","exists2","fix","for","forall","fun","if","IF","in","let","match","mod","Prop","return","Set","then","Type","using","where","with","Abort","About","Add","Admit","Admitted","All","Arguments","Assumptions","Axiom","Back","BackTo","Backtrack","Bind","Blacklist","Canonical","Cd","Check","Class","Classes","Close","Coercion","Coercions","CoFixpoint","CoInductive","Collection","Combined","Compute","Conjecture","Conjectures","Constant","constr","Constraint","Constructors","Context","Corollary","CreateHintDb","Cut","Declare","Defined","Definition","Delimit","Dependencies","Dependent","Derive","Drop","eauto","End","Equality","Eval","Example","Existential","Existentials","Existing","Export","exporting","Extern","Extract","Extraction","Fact","Field","Fields","File","Fixpoint","Focus","for","From","Function","Functional","Generalizable","Global","Goal","Grab","Grammar","Graph","Guarded","Heap","Hint","HintDb","Hints","Hypotheses","Hypothesis","ident","Identity","If","Immediate","Implicit","Import","Include","Inductive","Infix","Info","Initial","Inline","Inspect","Instance","Instances","Intro","Intros","Inversion","Inversion_clear","Language","Left","Lemma","Let","Libraries","Library","Load","LoadPath","Local","Locate","Ltac","ML","Mode","Module","Modules","Monomorphic","Morphism","Next","NoInline","Notation","Obligation","Obligations","Opaque","Open","Optimize","Options","Parameter","Parameters","Parametric","Path","Paths","pattern","Polymorphic","Preterm","Print","Printing","Program","Projections","Proof","Proposition","Pwd","Qed","Quit","Rec","Record","Recursive","Redirect","Relation","Remark","Remove","Require","Reserved","Reset","Resolve","Restart","Rewrite","Right","Ring","Rings","Save","Scheme","Scope","Scopes","Script","Search","SearchAbout","SearchHead","SearchPattern","SearchRewrite","Section","Separate","Set","Setoid","Show","Solve","Sorted","Step","Strategies","Strategy","Structure","SubClass","Table","Tables","Tactic","Term","Test","Theorem","Time","Timeout","Transparent","Type","Typeclasses","Types","Undelimit","Undo","Unfocus","Unfocused","Unfold","Universe","Universes","Unset","Unshelve","using","Variable","Variables","Variant","Verbose","Visibility","where","with"],built_in:["abstract","absurd","admit","after","apply","as","assert","assumption","at","auto","autorewrite","autounfold","before","bottom","btauto","by","case","case_eq","cbn","cbv","change","classical_left","classical_right","clear","clearbody","cofix","compare","compute","congruence","constr_eq","constructor","contradict","contradiction","cut","cutrewrite","cycle","decide","decompose","dependent","destruct","destruction","dintuition","discriminate","discrR","do","double","dtauto","eapply","eassumption","eauto","ecase","econstructor","edestruct","ediscriminate","eelim","eexact","eexists","einduction","einjection","eleft","elim","elimtype","enough","equality","erewrite","eright","esimplify_eq","esplit","evar","exact","exactly_once","exfalso","exists","f_equal","fail","field","field_simplify","field_simplify_eq","first","firstorder","fix","fold","fourier","functional","generalize","generalizing","gfail","give_up","has_evar","hnf","idtac","in","induction","injection","instantiate","intro","intro_pattern","intros","intuition","inversion","inversion_clear","is_evar","is_var","lapply","lazy","left","lia","lra","move","native_compute","nia","nsatz","omega","once","pattern","pose","progress","proof","psatz","quote","record","red","refine","reflexivity","remember","rename","repeat","replace","revert","revgoals","rewrite","rewrite_strat","right","ring","ring_simplify","rtauto","set","setoid_reflexivity","setoid_replace","setoid_rewrite","setoid_symmetry","setoid_transitivity","shelve","shelve_unifiable","simpl","simple","simplify_eq","solve","specialize","split","split_Rabs","split_Rmult","stepl","stepr","subst","sum","swap","symmetry","tactic","tauto","time","timeout","top","transitivity","trivial","try","tryif","unfold","unify","until","using","vm_compute","with"]},contains:[e.QUOTE_STRING_MODE,e.COMMENT("\\(\\*","\\*\\)"),e.C_NUMBER_MODE,{className:"type",excludeBegin:!0,begin:"\\|\\s*",end:"\\w+"},{begin:/[-=]>/}]}}return hd=t,hd}var Td,Oh;function yOe(){if(Oh)return Td;Oh=1;function t(e){return{name:"CachĆ© Object Script",case_insensitive:!0,aliases:["cls"],keywords:"property parameter class classmethod clientmethod extends as break catch close continue do d|0 else elseif for goto halt hang h|0 if job j|0 kill k|0 lock l|0 merge new open quit q|0 read r|0 return set s|0 tcommit throw trollback try tstart use view while write w|0 xecute x|0 zkill znspace zn ztrap zwrite zw zzdump zzwrite print zbreak zinsert zload zprint zremove zsave zzprint mv mvcall mvcrt mvdim mvprint zquit zsync ascii",contains:[{className:"number",begin:"\\b(\\d+(\\.\\d*)?|\\.\\d+)",relevance:0},{className:"string",variants:[{begin:'"',end:'"',contains:[{begin:'""',relevance:0}]}]},e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,{className:"comment",begin:/;/,end:"$",relevance:0},{className:"built_in",begin:/(?:\$\$?|\.\.)\^?[a-zA-Z]+/},{className:"built_in",begin:/\$\$\$[a-zA-Z]+/},{className:"built_in",begin:/%[a-z]+(?:\.[a-z]+)*/},{className:"symbol",begin:/\^%?[a-zA-Z][\w]*/},{className:"keyword",begin:/##class|##super|#define|#dim/},{begin:/&sql\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,subLanguage:"sql"},{begin:/&(js|jscript|javascript)/,excludeBegin:!0,excludeEnd:!0,subLanguage:"javascript"},{begin:/&html<\s*\s*>/,subLanguage:"xml"}]}}return Td=t,Td}var vd,Ah;function IOe(){if(Ah)return vd;Ah=1;function t(e){const n=e.regex,i=e.COMMENT("//","$",{contains:[{begin:/\\\n/}]}),o="decltype\\(auto\\)",s="[a-zA-Z_]\\w*::",l="<[^<>]+>",c="(?!struct)("+o+"|"+n.optional(s)+"[a-zA-Z_]\\w*"+n.optional(l)+")",d={className:"type",begin:"\\b[a-z\\d_]*_t\\b"},_="\\\\(x[0-9A-Fa-f]{2}|u[0-9A-Fa-f]{4,8}|[0-7]{3}|\\S)",p={className:"string",variants:[{begin:'(u8?|U|L)?"',end:'"',illegal:"\\n",contains:[e.BACKSLASH_ESCAPE]},{begin:"(u8?|U|L)?'("+_+"|.)",end:"'",illegal:"."},e.END_SAME_AS_BEGIN({begin:/(?:u8?|U|L)?R"([^()\\ ]{0,16})\(/,end:/\)([^()\\ ]{0,16})"/})]},g={className:"number",variants:[{begin:"\\b(0b[01']+)"},{begin:"(-?)\\b([\\d']+(\\.[\\d']*)?|\\.[\\d']+)((ll|LL|l|L)(u|U)?|(u|U)(ll|LL|l|L)?|f|F|b|B)"},{begin:"(-?)(\\b0[xX][a-fA-F0-9']+|(\\b[\\d']+(\\.[\\d']*)?|\\.[\\d']+)([eE][-+]?[\\d']+)?)"}],relevance:0},E={className:"meta",begin:/#\s*[a-z]+\b/,end:/$/,keywords:{keyword:"if else elif endif define undef warning error line pragma _Pragma ifdef ifndef include"},contains:[{begin:/\\\n/,relevance:0},e.inherit(p,{className:"string"}),{className:"string",begin:/<.*?>/},i,e.C_BLOCK_COMMENT_MODE]},f={className:"title",begin:n.optional(s)+e.IDENT_RE,relevance:0},S=n.optional(s)+e.IDENT_RE+"\\s*\\(",v=["alignas","alignof","and","and_eq","asm","atomic_cancel","atomic_commit","atomic_noexcept","auto","bitand","bitor","break","case","catch","class","co_await","co_return","co_yield","compl","concept","const_cast|10","consteval","constexpr","constinit","continue","decltype","default","delete","do","dynamic_cast|10","else","enum","explicit","export","extern","false","final","for","friend","goto","if","import","inline","module","mutable","namespace","new","noexcept","not","not_eq","nullptr","operator","or","or_eq","override","private","protected","public","reflexpr","register","reinterpret_cast|10","requires","return","sizeof","static_assert","static_cast|10","struct","switch","synchronized","template","this","thread_local","throw","transaction_safe","transaction_safe_dynamic","true","try","typedef","typeid","typename","union","using","virtual","volatile","while","xor","xor_eq"],h=["bool","char","char16_t","char32_t","char8_t","double","float","int","long","short","void","wchar_t","unsigned","signed","const","static"],T=["any","auto_ptr","barrier","binary_semaphore","bitset","complex","condition_variable","condition_variable_any","counting_semaphore","deque","false_type","future","imaginary","initializer_list","istringstream","jthread","latch","lock_guard","multimap","multiset","mutex","optional","ostringstream","packaged_task","pair","promise","priority_queue","queue","recursive_mutex","recursive_timed_mutex","scoped_lock","set","shared_future","shared_lock","shared_mutex","shared_timed_mutex","shared_ptr","stack","string_view","stringstream","timed_mutex","thread","true_type","tuple","unique_lock","unique_ptr","unordered_map","unordered_multimap","unordered_multiset","unordered_set","variant","vector","weak_ptr","wstring","wstring_view"],N=["abort","abs","acos","apply","as_const","asin","atan","atan2","calloc","ceil","cerr","cin","clog","cos","cosh","cout","declval","endl","exchange","exit","exp","fabs","floor","fmod","forward","fprintf","fputs","free","frexp","fscanf","future","invoke","isalnum","isalpha","iscntrl","isdigit","isgraph","islower","isprint","ispunct","isspace","isupper","isxdigit","labs","launder","ldexp","log","log10","make_pair","make_shared","make_shared_for_overwrite","make_tuple","make_unique","malloc","memchr","memcmp","memcpy","memset","modf","move","pow","printf","putchar","puts","realloc","scanf","sin","sinh","snprintf","sprintf","sqrt","sscanf","std","stderr","stdin","stdout","strcat","strchr","strcmp","strcpy","strcspn","strlen","strncat","strncmp","strncpy","strpbrk","strrchr","strspn","strstr","swap","tan","tanh","terminate","to_underlying","tolower","toupper","vfprintf","visit","vprintf","vsprintf"],P={type:h,keyword:v,literal:["NULL","false","nullopt","nullptr","true"],built_in:["_Pragma"],_type_hints:T},D={className:"function.dispatch",relevance:0,keywords:{_hint:N},begin:n.concat(/\b/,/(?!decltype)/,/(?!if)/,/(?!for)/,/(?!switch)/,/(?!while)/,e.IDENT_RE,n.lookahead(/(<[^<>]+>|)\s*\(/))},k=[D,E,d,i,e.C_BLOCK_COMMENT_MODE,g,p],U={variants:[{begin:/=/,end:/;/},{begin:/\(/,end:/\)/},{beginKeywords:"new throw return else",end:/;/}],keywords:P,contains:k.concat([{begin:/\(/,end:/\)/,keywords:P,contains:k.concat(["self"]),relevance:0}]),relevance:0},W={className:"function",begin:"("+c+"[\\*&\\s]+)+"+S,returnBegin:!0,end:/[{;=]/,excludeEnd:!0,keywords:P,illegal:/[^\w\s\*&:<>.]/,contains:[{begin:o,keywords:P,relevance:0},{begin:S,returnBegin:!0,contains:[f],relevance:0},{begin:/::/,relevance:0},{begin:/:/,endsWithParent:!0,contains:[p,g]},{relevance:0,match:/,/},{className:"params",begin:/\(/,end:/\)/,keywords:P,relevance:0,contains:[i,e.C_BLOCK_COMMENT_MODE,p,g,d,{begin:/\(/,end:/\)/,keywords:P,relevance:0,contains:["self",i,e.C_BLOCK_COMMENT_MODE,p,g,d]}]},d,i,e.C_BLOCK_COMMENT_MODE,E]};return{name:"C++",aliases:["cc","c++","h++","hpp","hh","hxx","cxx"],keywords:P,illegal:"",keywords:P,contains:["self",d]},{begin:e.IDENT_RE+"::",keywords:P},{match:[/\b(?:enum(?:\s+(?:class|struct))?|class|struct|union)/,/\s+/,/\w+/],className:{1:"keyword",3:"title.class"}}])}}return vd=t,vd}var Cd,yh;function DOe(){if(yh)return Cd;yh=1;function t(e){const n="primitive rsc_template",i="group clone ms master location colocation order fencing_topology rsc_ticket acl_target acl_group user role tag xml",o="property rsc_defaults op_defaults",s="params meta operations op rule attributes utilization",l="read write deny defined not_defined in_range date spec in ref reference attribute type xpath version and or lt gt tag lte gte eq ne \\",c="number string",d="Master Started Slave Stopped start promote demote stop monitor true false";return{name:"crmsh",aliases:["crm","pcmk"],case_insensitive:!0,keywords:{keyword:s+" "+l+" "+c,literal:d},contains:[e.HASH_COMMENT_MODE,{beginKeywords:"node",starts:{end:"\\s*([\\w_-]+:)?",starts:{className:"title",end:"\\s*[\\$\\w_][\\w_-]*"}}},{beginKeywords:n,starts:{className:"title",end:"\\s*[\\$\\w_][\\w_-]*",starts:{end:"\\s*@?[\\w_][\\w_\\.:-]*"}}},{begin:"\\b("+i.split(" ").join("|")+")\\s+",keywords:i,starts:{className:"title",end:"[\\$\\w_][\\w_-]*"}},{beginKeywords:o,starts:{className:"title",end:"\\s*([\\w_-]+:)?"}},e.QUOTE_STRING_MODE,{className:"meta",begin:"(ocf|systemd|service|lsb):[\\w_:-]+",relevance:0},{className:"number",begin:"\\b\\d+(\\.\\d+)?(ms|s|h|m)?",relevance:0},{className:"literal",begin:"[-]?(infinity|inf)",relevance:0},{className:"attr",begin:/([A-Za-z$_#][\w_-]+)=/,relevance:0},{className:"tag",begin:"",relevance:0}]}}return Cd=t,Cd}var Rd,Ih;function xOe(){if(Ih)return Rd;Ih=1;function t(e){const n="(_?[ui](8|16|32|64|128))?",i="(_?f(32|64))?",o="[a-zA-Z_]\\w*[!?=]?",s="[a-zA-Z_]\\w*[!?=]?|[-+~]@|<<|>>|[=!]~|===?|<=>|[<>]=?|\\*\\*|[-/+%^&*~|]|//|//=|&[-+*]=?|&\\*\\*|\\[\\][=?]?",l="[A-Za-z_]\\w*(::\\w+)*(\\?|!)?",c={$pattern:o,keyword:"abstract alias annotation as as? asm begin break case class def do else elsif end ensure enum extend for fun if include instance_sizeof is_a? lib macro module next nil? of out pointerof private protected rescue responds_to? return require select self sizeof struct super then type typeof union uninitialized unless until verbatim when while with yield __DIR__ __END_LINE__ __FILE__ __LINE__",literal:"false nil true"},d={className:"subst",begin:/#\{/,end:/\}/,keywords:c},_={className:"variable",begin:"(\\$\\W)|((\\$|@@?)(\\w+))(?=[^@$?])(?![A-Za-z])(?![@$?'])"},p={className:"template-variable",variants:[{begin:"\\{\\{",end:"\\}\\}"},{begin:"\\{%",end:"%\\}"}],keywords:c};function g(N,y){const x=[{begin:N,end:y}];return x[0].contains=x,x}const E={className:"string",contains:[e.BACKSLASH_ESCAPE,d],variants:[{begin:/'/,end:/'/},{begin:/"/,end:/"/},{begin:/`/,end:/`/},{begin:"%[Qwi]?\\(",end:"\\)",contains:g("\\(","\\)")},{begin:"%[Qwi]?\\[",end:"\\]",contains:g("\\[","\\]")},{begin:"%[Qwi]?\\{",end:/\}/,contains:g(/\{/,/\}/)},{begin:"%[Qwi]?<",end:">",contains:g("<",">")},{begin:"%[Qwi]?\\|",end:"\\|"},{begin:/<<-\w+$/,end:/^\s*\w+$/}],relevance:0},f={className:"string",variants:[{begin:"%q\\(",end:"\\)",contains:g("\\(","\\)")},{begin:"%q\\[",end:"\\]",contains:g("\\[","\\]")},{begin:"%q\\{",end:/\}/,contains:g(/\{/,/\}/)},{begin:"%q<",end:">",contains:g("<",">")},{begin:"%q\\|",end:"\\|"},{begin:/<<-'\w+'$/,end:/^\s*\w+$/}],relevance:0},S={begin:"(?!%\\})("+e.RE_STARTERS_RE+"|\\n|\\b(case|if|select|unless|until|when|while)\\b)\\s*",keywords:"case if select unless until when while",contains:[{className:"regexp",contains:[e.BACKSLASH_ESCAPE,d],variants:[{begin:"//[a-z]*",relevance:0},{begin:"/(?!\\/)",end:"/[a-z]*"}]}],relevance:0},v={className:"regexp",contains:[e.BACKSLASH_ESCAPE,d],variants:[{begin:"%r\\(",end:"\\)",contains:g("\\(","\\)")},{begin:"%r\\[",end:"\\]",contains:g("\\[","\\]")},{begin:"%r\\{",end:/\}/,contains:g(/\{/,/\}/)},{begin:"%r<",end:">",contains:g("<",">")},{begin:"%r\\|",end:"\\|"}],relevance:0},h={className:"meta",begin:"@\\[",end:"\\]",contains:[e.inherit(e.QUOTE_STRING_MODE,{className:"string"})]},T=[p,E,f,v,S,h,_,e.HASH_COMMENT_MODE,{className:"class",beginKeywords:"class module struct",end:"$|;",illegal:/=/,contains:[e.HASH_COMMENT_MODE,e.inherit(e.TITLE_MODE,{begin:l}),{begin:"<"}]},{className:"class",beginKeywords:"lib enum union",end:"$|;",illegal:/=/,contains:[e.HASH_COMMENT_MODE,e.inherit(e.TITLE_MODE,{begin:l})]},{beginKeywords:"annotation",end:"$|;",illegal:/=/,contains:[e.HASH_COMMENT_MODE,e.inherit(e.TITLE_MODE,{begin:l})],relevance:2},{className:"function",beginKeywords:"def",end:/\B\b/,contains:[e.inherit(e.TITLE_MODE,{begin:s,endsParent:!0})]},{className:"function",beginKeywords:"fun macro",end:/\B\b/,contains:[e.inherit(e.TITLE_MODE,{begin:s,endsParent:!0})],relevance:2},{className:"symbol",begin:e.UNDERSCORE_IDENT_RE+"(!|\\?)?:",relevance:0},{className:"symbol",begin:":",contains:[E,{begin:s}],relevance:0},{className:"number",variants:[{begin:"\\b0b([01_]+)"+n},{begin:"\\b0o([0-7_]+)"+n},{begin:"\\b0x([A-Fa-f0-9_]+)"+n},{begin:"\\b([1-9][0-9_]*[0-9]|[0-9])(\\.[0-9][0-9_]*)?([eE]_?[-+]?[0-9_]*)?"+i+"(?!_)"},{begin:"\\b([1-9][0-9_]*|0)"+n}],relevance:0}];return d.contains=T,p.contains=T.slice(1),{name:"Crystal",aliases:["cr"],keywords:c,contains:T}}return Rd=t,Rd}var Nd,Dh;function wOe(){if(Dh)return Nd;Dh=1;function t(e){const n=["bool","byte","char","decimal","delegate","double","dynamic","enum","float","int","long","nint","nuint","object","sbyte","short","string","ulong","uint","ushort"],i=["public","private","protected","static","internal","protected","abstract","async","extern","override","unsafe","virtual","new","sealed","partial"],o=["default","false","null","true"],s=["abstract","as","base","break","case","catch","class","const","continue","do","else","event","explicit","extern","finally","fixed","for","foreach","goto","if","implicit","in","interface","internal","is","lock","namespace","new","operator","out","override","params","private","protected","public","readonly","record","ref","return","scoped","sealed","sizeof","stackalloc","static","struct","switch","this","throw","try","typeof","unchecked","unsafe","using","virtual","void","volatile","while"],l=["add","alias","and","ascending","async","await","by","descending","equals","from","get","global","group","init","into","join","let","nameof","not","notnull","on","or","orderby","partial","remove","select","set","unmanaged","value|0","var","when","where","with","yield"],c={keyword:s.concat(l),built_in:n,literal:o},d=e.inherit(e.TITLE_MODE,{begin:"[a-zA-Z](\\.?\\w)*"}),_={className:"number",variants:[{begin:"\\b(0b[01']+)"},{begin:"(-?)\\b([\\d']+(\\.[\\d']*)?|\\.[\\d']+)(u|U|l|L|ul|UL|f|F|b|B)"},{begin:"(-?)(\\b0[xX][a-fA-F0-9']+|(\\b[\\d']+(\\.[\\d']*)?|\\.[\\d']+)([eE][-+]?[\\d']+)?)"}],relevance:0},p={className:"string",begin:'@"',end:'"',contains:[{begin:'""'}]},g=e.inherit(p,{illegal:/\n/}),E={className:"subst",begin:/\{/,end:/\}/,keywords:c},f=e.inherit(E,{illegal:/\n/}),S={className:"string",begin:/\$"/,end:'"',illegal:/\n/,contains:[{begin:/\{\{/},{begin:/\}\}/},e.BACKSLASH_ESCAPE,f]},v={className:"string",begin:/\$@"/,end:'"',contains:[{begin:/\{\{/},{begin:/\}\}/},{begin:'""'},E]},h=e.inherit(v,{illegal:/\n/,contains:[{begin:/\{\{/},{begin:/\}\}/},{begin:'""'},f]});E.contains=[v,S,p,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,_,e.C_BLOCK_COMMENT_MODE],f.contains=[h,S,g,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,_,e.inherit(e.C_BLOCK_COMMENT_MODE,{illegal:/\n/})];const T={variants:[v,S,p,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE]},N={begin:"<",end:">",contains:[{beginKeywords:"in out"},d]},y=e.IDENT_RE+"(<"+e.IDENT_RE+"(\\s*,\\s*"+e.IDENT_RE+")*>)?(\\[\\])?",x={begin:"@"+e.IDENT_RE,relevance:0};return{name:"C#",aliases:["cs","c#"],keywords:c,illegal:/::/,contains:[e.COMMENT("///","$",{returnBegin:!0,contains:[{className:"doctag",variants:[{begin:"///",relevance:0},{begin:""},{begin:""}]}]}),e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,{className:"meta",begin:"#",end:"$",keywords:{keyword:"if else elif endif define undef warning error line region endregion pragma checksum"}},T,_,{beginKeywords:"class interface",relevance:0,end:/[{;=]/,illegal:/[^\s:,]/,contains:[{beginKeywords:"where class"},d,N,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]},{beginKeywords:"namespace",relevance:0,end:/[{;=]/,illegal:/[^\s:]/,contains:[d,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]},{beginKeywords:"record",relevance:0,end:/[{;=]/,illegal:/[^\s:]/,contains:[d,N,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]},{className:"meta",begin:"^\\s*\\[(?=[\\w])",excludeBegin:!0,end:"\\]",excludeEnd:!0,contains:[{className:"string",begin:/"/,end:/"/}]},{beginKeywords:"new return throw await else",relevance:0},{className:"function",begin:"("+y+"\\s+)+"+e.IDENT_RE+"\\s*(<[^=]+>\\s*)?\\(",returnBegin:!0,end:/\s*[{;=]/,excludeEnd:!0,keywords:c,contains:[{beginKeywords:i.join(" "),relevance:0},{begin:e.IDENT_RE+"\\s*(<[^=]+>\\s*)?\\(",returnBegin:!0,contains:[e.TITLE_MODE,N],relevance:0},{match:/\(\)/},{className:"params",begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,keywords:c,relevance:0,contains:[T,_,e.C_BLOCK_COMMENT_MODE]},e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]},x]}}return Nd=t,Nd}var Od,xh;function MOe(){if(xh)return Od;xh=1;function t(e){return{name:"CSP",case_insensitive:!1,keywords:{$pattern:"[a-zA-Z][a-zA-Z0-9_-]*",keyword:["base-uri","child-src","connect-src","default-src","font-src","form-action","frame-ancestors","frame-src","img-src","manifest-src","media-src","object-src","plugin-types","report-uri","sandbox","script-src","style-src","trusted-types","unsafe-hashes","worker-src"]},contains:[{className:"string",begin:"'",end:"'"},{className:"attribute",begin:"^Content",end:":",excludeEnd:!0}]}}return Od=t,Od}var Ad,wh;function LOe(){if(wh)return Ad;wh=1;const t=c=>({IMPORTANT:{scope:"meta",begin:"!important"},BLOCK_COMMENT:c.C_BLOCK_COMMENT_MODE,HEXCOLOR:{scope:"number",begin:/#(([0-9a-fA-F]{3,4})|(([0-9a-fA-F]{2}){3,4}))\b/},FUNCTION_DISPATCH:{className:"built_in",begin:/[\w-]+(?=\()/},ATTRIBUTE_SELECTOR_MODE:{scope:"selector-attr",begin:/\[/,end:/\]/,illegal:"$",contains:[c.APOS_STRING_MODE,c.QUOTE_STRING_MODE]},CSS_NUMBER_MODE:{scope:"number",begin:c.NUMBER_RE+"(%|em|ex|ch|rem|vw|vh|vmin|vmax|cm|mm|in|pt|pc|px|deg|grad|rad|turn|s|ms|Hz|kHz|dpi|dpcm|dppx)?",relevance:0},CSS_VARIABLE:{className:"attr",begin:/--[A-Za-z][A-Za-z0-9_-]*/}}),e=["a","abbr","address","article","aside","audio","b","blockquote","body","button","canvas","caption","cite","code","dd","del","details","dfn","div","dl","dt","em","fieldset","figcaption","figure","footer","form","h1","h2","h3","h4","h5","h6","header","hgroup","html","i","iframe","img","input","ins","kbd","label","legend","li","main","mark","menu","nav","object","ol","p","q","quote","samp","section","span","strong","summary","sup","table","tbody","td","textarea","tfoot","th","thead","time","tr","ul","var","video"],n=["any-hover","any-pointer","aspect-ratio","color","color-gamut","color-index","device-aspect-ratio","device-height","device-width","display-mode","forced-colors","grid","height","hover","inverted-colors","monochrome","orientation","overflow-block","overflow-inline","pointer","prefers-color-scheme","prefers-contrast","prefers-reduced-motion","prefers-reduced-transparency","resolution","scan","scripting","update","width","min-width","max-width","min-height","max-height"],i=["active","any-link","blank","checked","current","default","defined","dir","disabled","drop","empty","enabled","first","first-child","first-of-type","fullscreen","future","focus","focus-visible","focus-within","has","host","host-context","hover","indeterminate","in-range","invalid","is","lang","last-child","last-of-type","left","link","local-link","not","nth-child","nth-col","nth-last-child","nth-last-col","nth-last-of-type","nth-of-type","only-child","only-of-type","optional","out-of-range","past","placeholder-shown","read-only","read-write","required","right","root","scope","target","target-within","user-invalid","valid","visited","where"],o=["after","backdrop","before","cue","cue-region","first-letter","first-line","grammar-error","marker","part","placeholder","selection","slotted","spelling-error"],s=["align-content","align-items","align-self","all","animation","animation-delay","animation-direction","animation-duration","animation-fill-mode","animation-iteration-count","animation-name","animation-play-state","animation-timing-function","backface-visibility","background","background-attachment","background-blend-mode","background-clip","background-color","background-image","background-origin","background-position","background-repeat","background-size","block-size","border","border-block","border-block-color","border-block-end","border-block-end-color","border-block-end-style","border-block-end-width","border-block-start","border-block-start-color","border-block-start-style","border-block-start-width","border-block-style","border-block-width","border-bottom","border-bottom-color","border-bottom-left-radius","border-bottom-right-radius","border-bottom-style","border-bottom-width","border-collapse","border-color","border-image","border-image-outset","border-image-repeat","border-image-slice","border-image-source","border-image-width","border-inline","border-inline-color","border-inline-end","border-inline-end-color","border-inline-end-style","border-inline-end-width","border-inline-start","border-inline-start-color","border-inline-start-style","border-inline-start-width","border-inline-style","border-inline-width","border-left","border-left-color","border-left-style","border-left-width","border-radius","border-right","border-right-color","border-right-style","border-right-width","border-spacing","border-style","border-top","border-top-color","border-top-left-radius","border-top-right-radius","border-top-style","border-top-width","border-width","bottom","box-decoration-break","box-shadow","box-sizing","break-after","break-before","break-inside","caption-side","caret-color","clear","clip","clip-path","clip-rule","color","column-count","column-fill","column-gap","column-rule","column-rule-color","column-rule-style","column-rule-width","column-span","column-width","columns","contain","content","content-visibility","counter-increment","counter-reset","cue","cue-after","cue-before","cursor","direction","display","empty-cells","filter","flex","flex-basis","flex-direction","flex-flow","flex-grow","flex-shrink","flex-wrap","float","flow","font","font-display","font-family","font-feature-settings","font-kerning","font-language-override","font-size","font-size-adjust","font-smoothing","font-stretch","font-style","font-synthesis","font-variant","font-variant-caps","font-variant-east-asian","font-variant-ligatures","font-variant-numeric","font-variant-position","font-variation-settings","font-weight","gap","glyph-orientation-vertical","grid","grid-area","grid-auto-columns","grid-auto-flow","grid-auto-rows","grid-column","grid-column-end","grid-column-start","grid-gap","grid-row","grid-row-end","grid-row-start","grid-template","grid-template-areas","grid-template-columns","grid-template-rows","hanging-punctuation","height","hyphens","icon","image-orientation","image-rendering","image-resolution","ime-mode","inline-size","isolation","justify-content","left","letter-spacing","line-break","line-height","list-style","list-style-image","list-style-position","list-style-type","margin","margin-block","margin-block-end","margin-block-start","margin-bottom","margin-inline","margin-inline-end","margin-inline-start","margin-left","margin-right","margin-top","marks","mask","mask-border","mask-border-mode","mask-border-outset","mask-border-repeat","mask-border-slice","mask-border-source","mask-border-width","mask-clip","mask-composite","mask-image","mask-mode","mask-origin","mask-position","mask-repeat","mask-size","mask-type","max-block-size","max-height","max-inline-size","max-width","min-block-size","min-height","min-inline-size","min-width","mix-blend-mode","nav-down","nav-index","nav-left","nav-right","nav-up","none","normal","object-fit","object-position","opacity","order","orphans","outline","outline-color","outline-offset","outline-style","outline-width","overflow","overflow-wrap","overflow-x","overflow-y","padding","padding-block","padding-block-end","padding-block-start","padding-bottom","padding-inline","padding-inline-end","padding-inline-start","padding-left","padding-right","padding-top","page-break-after","page-break-before","page-break-inside","pause","pause-after","pause-before","perspective","perspective-origin","pointer-events","position","quotes","resize","rest","rest-after","rest-before","right","row-gap","scroll-margin","scroll-margin-block","scroll-margin-block-end","scroll-margin-block-start","scroll-margin-bottom","scroll-margin-inline","scroll-margin-inline-end","scroll-margin-inline-start","scroll-margin-left","scroll-margin-right","scroll-margin-top","scroll-padding","scroll-padding-block","scroll-padding-block-end","scroll-padding-block-start","scroll-padding-bottom","scroll-padding-inline","scroll-padding-inline-end","scroll-padding-inline-start","scroll-padding-left","scroll-padding-right","scroll-padding-top","scroll-snap-align","scroll-snap-stop","scroll-snap-type","scrollbar-color","scrollbar-gutter","scrollbar-width","shape-image-threshold","shape-margin","shape-outside","speak","speak-as","src","tab-size","table-layout","text-align","text-align-all","text-align-last","text-combine-upright","text-decoration","text-decoration-color","text-decoration-line","text-decoration-style","text-emphasis","text-emphasis-color","text-emphasis-position","text-emphasis-style","text-indent","text-justify","text-orientation","text-overflow","text-rendering","text-shadow","text-transform","text-underline-position","top","transform","transform-box","transform-origin","transform-style","transition","transition-delay","transition-duration","transition-property","transition-timing-function","unicode-bidi","vertical-align","visibility","voice-balance","voice-duration","voice-family","voice-pitch","voice-range","voice-rate","voice-stress","voice-volume","white-space","widows","width","will-change","word-break","word-spacing","word-wrap","writing-mode","z-index"].reverse();function l(c){const d=c.regex,_=t(c),p={begin:/-(webkit|moz|ms|o)-(?=[a-z])/},g="and or not only",E=/@-?\w[\w]*(-\w+)*/,f="[a-zA-Z-][a-zA-Z0-9_-]*",S=[c.APOS_STRING_MODE,c.QUOTE_STRING_MODE];return{name:"CSS",case_insensitive:!0,illegal:/[=|'\$]/,keywords:{keyframePosition:"from to"},classNameAliases:{keyframePosition:"selector-tag"},contains:[_.BLOCK_COMMENT,p,_.CSS_NUMBER_MODE,{className:"selector-id",begin:/#[A-Za-z0-9_-]+/,relevance:0},{className:"selector-class",begin:"\\."+f,relevance:0},_.ATTRIBUTE_SELECTOR_MODE,{className:"selector-pseudo",variants:[{begin:":("+i.join("|")+")"},{begin:":(:)?("+o.join("|")+")"}]},_.CSS_VARIABLE,{className:"attribute",begin:"\\b("+s.join("|")+")\\b"},{begin:/:/,end:/[;}{]/,contains:[_.BLOCK_COMMENT,_.HEXCOLOR,_.IMPORTANT,_.CSS_NUMBER_MODE,...S,{begin:/(url|data-uri)\(/,end:/\)/,relevance:0,keywords:{built_in:"url data-uri"},contains:[...S,{className:"string",begin:/[^)]/,endsWithParent:!0,excludeEnd:!0}]},_.FUNCTION_DISPATCH]},{begin:d.lookahead(/@/),end:"[{;]",relevance:0,illegal:/:/,contains:[{className:"keyword",begin:E},{begin:/\s/,endsWithParent:!0,excludeEnd:!0,relevance:0,keywords:{$pattern:/[a-z-]+/,keyword:g,attribute:n.join(" ")},contains:[{begin:/[a-z-]+(?=:)/,className:"attribute"},...S,_.CSS_NUMBER_MODE]}]},{className:"selector-tag",begin:"\\b("+e.join("|")+")\\b"}]}}return Ad=l,Ad}var yd,Mh;function POe(){if(Mh)return yd;Mh=1;function t(e){const n={$pattern:e.UNDERSCORE_IDENT_RE,keyword:"abstract alias align asm assert auto body break byte case cast catch class const continue debug default delete deprecated do else enum export extern final finally for foreach foreach_reverse|10 goto if immutable import in inout int interface invariant is lazy macro mixin module new nothrow out override package pragma private protected public pure ref return scope shared static struct super switch synchronized template this throw try typedef typeid typeof union unittest version void volatile while with __FILE__ __LINE__ __gshared|10 __thread __traits __DATE__ __EOF__ __TIME__ __TIMESTAMP__ __VENDOR__ __VERSION__",built_in:"bool cdouble cent cfloat char creal dchar delegate double dstring float function idouble ifloat ireal long real short string ubyte ucent uint ulong ushort wchar wstring",literal:"false null true"},i="(0|[1-9][\\d_]*)",o="(0|[1-9][\\d_]*|\\d[\\d_]*|[\\d_]+?\\d)",s="0[bB][01_]+",l="([\\da-fA-F][\\da-fA-F_]*|_[\\da-fA-F][\\da-fA-F_]*)",c="0[xX]"+l,d="([eE][+-]?"+o+")",_="("+o+"(\\.\\d*|"+d+")|\\d+\\."+o+"|\\."+i+d+"?)",p="(0[xX]("+l+"\\."+l+"|\\.?"+l+")[pP][+-]?"+o+")",g="("+i+"|"+s+"|"+c+")",E="("+p+"|"+_+")",f=`\\\\(['"\\?\\\\abfnrtv]|u[\\dA-Fa-f]{4}|[0-7]{1,3}|x[\\dA-Fa-f]{2}|U[\\dA-Fa-f]{8})|&[a-zA-Z\\d]{2,};`,S={className:"number",begin:"\\b"+g+"(L|u|U|Lu|LU|uL|UL)?",relevance:0},v={className:"number",begin:"\\b("+E+"([fF]|L|i|[fF]i|Li)?|"+g+"(i|[fF]i|Li))",relevance:0},h={className:"string",begin:"'("+f+"|.)",end:"'",illegal:"."},N={className:"string",begin:'"',contains:[{begin:f,relevance:0}],end:'"[cwd]?'},y={className:"string",begin:'[rq]"',end:'"[cwd]?',relevance:5},x={className:"string",begin:"`",end:"`[cwd]?"},P={className:"string",begin:'x"[\\da-fA-F\\s\\n\\r]*"[cwd]?',relevance:10},D={className:"string",begin:'q"\\{',end:'\\}"'},k={className:"meta",begin:"^#!",end:"$",relevance:5},U={className:"meta",begin:"#(line)",end:"$",relevance:5},W={className:"keyword",begin:"@[a-zA-Z_][a-zA-Z_\\d]*"},z=e.COMMENT("\\/\\+","\\+\\/",{contains:["self"],relevance:10});return{name:"D",keywords:n,contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,z,P,N,y,x,D,v,S,h,k,U,W]}}return yd=t,yd}var Id,Lh;function kOe(){if(Lh)return Id;Lh=1;function t(e){const n=e.regex,i={begin:/<\/?[A-Za-z_]/,end:">",subLanguage:"xml",relevance:0},o={begin:"^[-\\*]{3,}",end:"$"},s={className:"code",variants:[{begin:"(`{3,})[^`](.|\\n)*?\\1`*[ ]*"},{begin:"(~{3,})[^~](.|\\n)*?\\1~*[ ]*"},{begin:"```",end:"```+[ ]*$"},{begin:"~~~",end:"~~~+[ ]*$"},{begin:"`.+?`"},{begin:"(?=^( {4}|\\t))",contains:[{begin:"^( {4}|\\t)",end:"(\\n)$"}],relevance:0}]},l={className:"bullet",begin:"^[ ]*([*+-]|(\\d+\\.))(?=\\s+)",end:"\\s+",excludeEnd:!0},c={begin:/^\[[^\n]+\]:/,returnBegin:!0,contains:[{className:"symbol",begin:/\[/,end:/\]/,excludeBegin:!0,excludeEnd:!0},{className:"link",begin:/:\s*/,end:/$/,excludeBegin:!0}]},d=/[A-Za-z][A-Za-z0-9+.-]*/,_={variants:[{begin:/\[.+?\]\[.*?\]/,relevance:0},{begin:/\[.+?\]\(((data|javascript|mailto):|(?:http|ftp)s?:\/\/).*?\)/,relevance:2},{begin:n.concat(/\[.+?\]\(/,d,/:\/\/.*?\)/),relevance:2},{begin:/\[.+?\]\([./?&#].*?\)/,relevance:1},{begin:/\[.*?\]\(.*?\)/,relevance:0}],returnBegin:!0,contains:[{match:/\[(?=\])/},{className:"string",relevance:0,begin:"\\[",end:"\\]",excludeBegin:!0,returnEnd:!0},{className:"link",relevance:0,begin:"\\]\\(",end:"\\)",excludeBegin:!0,excludeEnd:!0},{className:"symbol",relevance:0,begin:"\\]\\[",end:"\\]",excludeBegin:!0,excludeEnd:!0}]},p={className:"strong",contains:[],variants:[{begin:/_{2}(?!\s)/,end:/_{2}/},{begin:/\*{2}(?!\s)/,end:/\*{2}/}]},g={className:"emphasis",contains:[],variants:[{begin:/\*(?![*\s])/,end:/\*/},{begin:/_(?![_\s])/,end:/_/,relevance:0}]},E=e.inherit(p,{contains:[]}),f=e.inherit(g,{contains:[]});p.contains.push(f),g.contains.push(E);let S=[i,_];return[p,g,E,f].forEach(T=>{T.contains=T.contains.concat(S)}),S=S.concat(p,g),{name:"Markdown",aliases:["md","mkdown","mkd"],contains:[{className:"section",variants:[{begin:"^#{1,6}",end:"$",contains:S},{begin:"(?=^.+?\\n[=-]{2,}$)",contains:[{begin:"^[=-]*$"},{begin:"^",end:"\\n",contains:S}]}]},i,l,p,g,{className:"quote",begin:"^>\\s+",contains:S,end:"$"},s,o,_,c]}}return Id=t,Id}var Dd,Ph;function UOe(){if(Ph)return Dd;Ph=1;function t(e){const n={className:"subst",variants:[{begin:"\\$[A-Za-z0-9_]+"}]},i={className:"subst",variants:[{begin:/\$\{/,end:/\}/}],keywords:"true false null this is new super"},o={className:"string",variants:[{begin:"r'''",end:"'''"},{begin:'r"""',end:'"""'},{begin:"r'",end:"'",illegal:"\\n"},{begin:'r"',end:'"',illegal:"\\n"},{begin:"'''",end:"'''",contains:[e.BACKSLASH_ESCAPE,n,i]},{begin:'"""',end:'"""',contains:[e.BACKSLASH_ESCAPE,n,i]},{begin:"'",end:"'",illegal:"\\n",contains:[e.BACKSLASH_ESCAPE,n,i]},{begin:'"',end:'"',illegal:"\\n",contains:[e.BACKSLASH_ESCAPE,n,i]}]};i.contains=[e.C_NUMBER_MODE,o];const s=["Comparable","DateTime","Duration","Function","Iterable","Iterator","List","Map","Match","Object","Pattern","RegExp","Set","Stopwatch","String","StringBuffer","StringSink","Symbol","Type","Uri","bool","double","int","num","Element","ElementList"],l=s.map(_=>`${_}?`);return{name:"Dart",keywords:{keyword:["abstract","as","assert","async","await","base","break","case","catch","class","const","continue","covariant","default","deferred","do","dynamic","else","enum","export","extends","extension","external","factory","false","final","finally","for","Function","get","hide","if","implements","import","in","interface","is","late","library","mixin","new","null","on","operator","part","required","rethrow","return","sealed","set","show","static","super","switch","sync","this","throw","true","try","typedef","var","void","when","while","with","yield"],built_in:s.concat(l).concat(["Never","Null","dynamic","print","document","querySelector","querySelectorAll","window"]),$pattern:/[A-Za-z][A-Za-z0-9_]*\??/},contains:[o,e.COMMENT(/\/\*\*(?!\/)/,/\*\//,{subLanguage:"markdown",relevance:0}),e.COMMENT(/\/{3,} ?/,/$/,{contains:[{subLanguage:"markdown",begin:".",end:"$",relevance:0}]}),e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,{className:"class",beginKeywords:"class interface",end:/\{/,excludeEnd:!0,contains:[{beginKeywords:"extends implements"},e.UNDERSCORE_TITLE_MODE]},e.C_NUMBER_MODE,{className:"meta",begin:"@[A-Za-z]+"},{begin:"=>"}]}}return Dd=t,Dd}var xd,kh;function FOe(){if(kh)return xd;kh=1;function t(e){const n=["exports","register","file","shl","array","record","property","for","mod","while","set","ally","label","uses","raise","not","stored","class","safecall","var","interface","or","private","static","exit","index","inherited","to","else","stdcall","override","shr","asm","far","resourcestring","finalization","packed","virtual","out","and","protected","library","do","xorwrite","goto","near","function","end","div","overload","object","unit","begin","string","on","inline","repeat","until","destructor","write","message","program","with","read","initialization","except","default","nil","if","case","cdecl","in","downto","threadvar","of","try","pascal","const","external","constructor","type","public","then","implementation","finally","published","procedure","absolute","reintroduce","operator","as","is","abstract","alias","assembler","bitpacked","break","continue","cppdecl","cvar","enumerator","experimental","platform","deprecated","unimplemented","dynamic","export","far16","forward","generic","helper","implements","interrupt","iochecks","local","name","nodefault","noreturn","nostackframe","oldfpccall","otherwise","saveregisters","softfloat","specialize","strict","unaligned","varargs"],i=[e.C_LINE_COMMENT_MODE,e.COMMENT(/\{/,/\}/,{relevance:0}),e.COMMENT(/\(\*/,/\*\)/,{relevance:10})],o={className:"meta",variants:[{begin:/\{\$/,end:/\}/},{begin:/\(\*\$/,end:/\*\)/}]},s={className:"string",begin:/'/,end:/'/,contains:[{begin:/''/}]},l={className:"number",relevance:0,variants:[{begin:"\\$[0-9A-Fa-f]+"},{begin:"&[0-7]+"},{begin:"%[01]+"}]},c={className:"string",begin:/(#\d+)+/},d={begin:e.IDENT_RE+"\\s*=\\s*class\\s*\\(",returnBegin:!0,contains:[e.TITLE_MODE]},_={className:"function",beginKeywords:"function constructor destructor procedure",end:/[:;]/,keywords:"function constructor|10 destructor|10 procedure|10",contains:[e.TITLE_MODE,{className:"params",begin:/\(/,end:/\)/,keywords:n,contains:[s,c,o].concat(i)},o].concat(i)};return{name:"Delphi",aliases:["dpr","dfm","pas","pascal"],case_insensitive:!0,keywords:n,illegal:/"|\$[G-Zg-z]|\/\*|<\/|\|/,contains:[s,c,e.NUMBER_MODE,l,d,_,o].concat(i)}}return xd=t,xd}var wd,Uh;function BOe(){if(Uh)return wd;Uh=1;function t(e){const n=e.regex;return{name:"Diff",aliases:["patch"],contains:[{className:"meta",relevance:10,match:n.either(/^@@ +-\d+,\d+ +\+\d+,\d+ +@@/,/^\*\*\* +\d+,\d+ +\*\*\*\*$/,/^--- +\d+,\d+ +----$/)},{className:"comment",variants:[{begin:n.either(/Index: /,/^index/,/={3,}/,/^-{3}/,/^\*{3} /,/^\+{3}/,/^diff --git/),end:/$/},{match:/^\*{15}$/}]},{className:"addition",begin:/^\+/,end:/$/},{className:"deletion",begin:/^-/,end:/$/},{className:"addition",begin:/^!/,end:/$/}]}}return wd=t,wd}var Md,Fh;function GOe(){if(Fh)return Md;Fh=1;function t(e){const n={begin:/\|[A-Za-z]+:?/,keywords:{name:"truncatewords removetags linebreaksbr yesno get_digit timesince random striptags filesizeformat escape linebreaks length_is ljust rjust cut urlize fix_ampersands title floatformat capfirst pprint divisibleby add make_list unordered_list urlencode timeuntil urlizetrunc wordcount stringformat linenumbers slice date dictsort dictsortreversed default_if_none pluralize lower join center default truncatewords_html upper length phone2numeric wordwrap time addslashes slugify first escapejs force_escape iriencode last safe safeseq truncatechars localize unlocalize localtime utc timezone"},contains:[e.QUOTE_STRING_MODE,e.APOS_STRING_MODE]};return{name:"Django",aliases:["jinja"],case_insensitive:!0,subLanguage:"xml",contains:[e.COMMENT(/\{%\s*comment\s*%\}/,/\{%\s*endcomment\s*%\}/),e.COMMENT(/\{#/,/#\}/),{className:"template-tag",begin:/\{%/,end:/%\}/,contains:[{className:"name",begin:/\w+/,keywords:{name:"comment endcomment load templatetag ifchanged endifchanged if endif firstof for endfor ifnotequal endifnotequal widthratio extends include spaceless endspaceless regroup ifequal endifequal ssi now with cycle url filter endfilter debug block endblock else autoescape endautoescape csrf_token empty elif endwith static trans blocktrans endblocktrans get_static_prefix get_media_prefix plural get_current_language language get_available_languages get_current_language_bidi get_language_info get_language_info_list localize endlocalize localtime endlocaltime timezone endtimezone get_current_timezone verbatim"},starts:{endsWithParent:!0,keywords:"in by as",contains:[n],relevance:0}}]},{className:"template-variable",begin:/\{\{/,end:/\}\}/,contains:[n]}]}}return Md=t,Md}var Ld,Bh;function YOe(){if(Bh)return Ld;Bh=1;function t(e){return{name:"DNS Zone",aliases:["bind","zone"],keywords:["IN","A","AAAA","AFSDB","APL","CAA","CDNSKEY","CDS","CERT","CNAME","DHCID","DLV","DNAME","DNSKEY","DS","HIP","IPSECKEY","KEY","KX","LOC","MX","NAPTR","NS","NSEC","NSEC3","NSEC3PARAM","PTR","RRSIG","RP","SIG","SOA","SRV","SSHFP","TA","TKEY","TLSA","TSIG","TXT"],contains:[e.COMMENT(";","$",{relevance:0}),{className:"meta",begin:/^\$(TTL|GENERATE|INCLUDE|ORIGIN)\b/},{className:"number",begin:"((([0-9A-Fa-f]{1,4}:){7}([0-9A-Fa-f]{1,4}|:))|(([0-9A-Fa-f]{1,4}:){6}(:[0-9A-Fa-f]{1,4}|((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3})|:))|(([0-9A-Fa-f]{1,4}:){5}(((:[0-9A-Fa-f]{1,4}){1,2})|:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3})|:))|(([0-9A-Fa-f]{1,4}:){4}(((:[0-9A-Fa-f]{1,4}){1,3})|((:[0-9A-Fa-f]{1,4})?:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){3}(((:[0-9A-Fa-f]{1,4}){1,4})|((:[0-9A-Fa-f]{1,4}){0,2}:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){2}(((:[0-9A-Fa-f]{1,4}){1,5})|((:[0-9A-Fa-f]{1,4}){0,3}:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){1}(((:[0-9A-Fa-f]{1,4}){1,6})|((:[0-9A-Fa-f]{1,4}){0,4}:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:))|(:(((:[0-9A-Fa-f]{1,4}){1,7})|((:[0-9A-Fa-f]{1,4}){0,5}:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:)))\\b"},{className:"number",begin:"((25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9]).){3,3}(25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9])\\b"},e.inherit(e.NUMBER_MODE,{begin:/\b\d+[dhwm]?/})]}}return Ld=t,Ld}var Pd,Gh;function qOe(){if(Gh)return Pd;Gh=1;function t(e){return{name:"Dockerfile",aliases:["docker"],case_insensitive:!0,keywords:["from","maintainer","expose","env","arg","user","onbuild","stopsignal"],contains:[e.HASH_COMMENT_MODE,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,e.NUMBER_MODE,{beginKeywords:"run cmd entrypoint volume add copy workdir label healthcheck shell",starts:{end:/[^\\]$/,subLanguage:"bash"}}],illegal:"",illegal:"\\n"}]},n,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]},s={className:"variable",begin:/&[a-z\d_]*\b/},l={className:"keyword",begin:"/[a-z][a-z\\d-]*/"},c={className:"symbol",begin:"^\\s*[a-zA-Z_][a-zA-Z\\d_]*:"},d={className:"params",relevance:0,begin:"<",end:">",contains:[i,s]},_={className:"title.class",begin:/[a-zA-Z_][a-zA-Z\d_@-]*(?=\s\{)/,relevance:.2},p={className:"title.class",begin:/^\/(?=\s*\{)/,relevance:10},g={match:/[a-z][a-z-,]+(?=;)/,relevance:0,scope:"attr"},E={relevance:0,match:[/[a-z][a-z-,]+/,/\s*/,/=/],scope:{1:"attr",3:"operator"}},f={scope:"punctuation",relevance:0,match:/\};|[;{}]/};return{name:"Device Tree",contains:[p,s,l,c,_,E,g,d,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,i,n,o,f,{begin:e.IDENT_RE+"::",keywords:""}]}}return Fd=t,Fd}var Bd,Hh;function VOe(){if(Hh)return Bd;Hh=1;function t(e){const n="if eq ne lt lte gt gte select default math sep";return{name:"Dust",aliases:["dst"],case_insensitive:!0,subLanguage:"xml",contains:[{className:"template-tag",begin:/\{[#\/]/,end:/\}/,illegal:/;/,contains:[{className:"name",begin:/[a-zA-Z\.-]+/,starts:{endsWithParent:!0,relevance:0,contains:[e.QUOTE_STRING_MODE]}}]},{className:"template-variable",begin:/\{/,end:/\}/,illegal:/;/,keywords:n}]}}return Bd=t,Bd}var Gd,zh;function WOe(){if(zh)return Gd;zh=1;function t(e){const n=e.COMMENT(/\(\*/,/\*\)/),i={className:"attribute",begin:/^[ ]*[a-zA-Z]+([\s_-]+[a-zA-Z]+)*/},s={begin:/=/,end:/[.;]/,contains:[n,{className:"meta",begin:/\?.*\?/},{className:"string",variants:[e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,{begin:"`",end:"`"}]}]};return{name:"Extended Backus-Naur Form",illegal:/\S/,contains:[n,i,s]}}return Gd=t,Gd}var Yd,Vh;function KOe(){if(Vh)return Yd;Vh=1;function t(e){const n=e.regex,i="[a-zA-Z_][a-zA-Z0-9_.]*(!|\\?)?",o="[a-zA-Z_]\\w*[!?=]?|[-+~]@|<<|>>|=~|===?|<=>|[<>]=?|\\*\\*|[-/+%^&*~`|]|\\[\\]=?",c={$pattern:i,keyword:["after","alias","and","case","catch","cond","defstruct","defguard","do","else","end","fn","for","if","import","in","not","or","quote","raise","receive","require","reraise","rescue","try","unless","unquote","unquote_splicing","use","when","with|0"],literal:["false","nil","true"]},d={className:"subst",begin:/#\{/,end:/\}/,keywords:c},_={className:"number",begin:"(\\b0o[0-7_]+)|(\\b0b[01_]+)|(\\b0x[0-9a-fA-F_]+)|(-?\\b[0-9][0-9_]*(\\.[0-9_]+([eE][-+]?[0-9]+)?)?)",relevance:0},g={match:/\\[\s\S]/,scope:"char.escape",relevance:0},E=`[/|([{<"']`,f=[{begin:/"/,end:/"/},{begin:/'/,end:/'/},{begin:/\//,end:/\//},{begin:/\|/,end:/\|/},{begin:/\(/,end:/\)/},{begin:/\[/,end:/\]/},{begin:/\{/,end:/\}/},{begin://}],S=D=>({scope:"char.escape",begin:n.concat(/\\/,D),relevance:0}),v={className:"string",begin:"~[a-z](?="+E+")",contains:f.map(D=>e.inherit(D,{contains:[S(D.end),g,d]}))},h={className:"string",begin:"~[A-Z](?="+E+")",contains:f.map(D=>e.inherit(D,{contains:[S(D.end)]}))},T={className:"regex",variants:[{begin:"~r(?="+E+")",contains:f.map(D=>e.inherit(D,{end:n.concat(D.end,/[uismxfU]{0,7}/),contains:[S(D.end),g,d]}))},{begin:"~R(?="+E+")",contains:f.map(D=>e.inherit(D,{end:n.concat(D.end,/[uismxfU]{0,7}/),contains:[S(D.end)]}))}]},N={className:"string",contains:[e.BACKSLASH_ESCAPE,d],variants:[{begin:/"""/,end:/"""/},{begin:/'''/,end:/'''/},{begin:/~S"""/,end:/"""/,contains:[]},{begin:/~S"/,end:/"/,contains:[]},{begin:/~S'''/,end:/'''/,contains:[]},{begin:/~S'/,end:/'/,contains:[]},{begin:/'/,end:/'/},{begin:/"/,end:/"/}]},y={className:"function",beginKeywords:"def defp defmacro defmacrop",end:/\B\b/,contains:[e.inherit(e.TITLE_MODE,{begin:i,endsParent:!0})]},x=e.inherit(y,{className:"class",beginKeywords:"defimpl defmodule defprotocol defrecord",end:/\bdo\b|$|;/}),P=[N,T,h,v,e.HASH_COMMENT_MODE,x,y,{begin:"::"},{className:"symbol",begin:":(?![\\s:])",contains:[N,{begin:o}],relevance:0},{className:"symbol",begin:i+":(?!:)",relevance:0},{className:"title.class",begin:/(\b[A-Z][a-zA-Z0-9_]+)/,relevance:0},_,{className:"variable",begin:"(\\$\\W)|((\\$|@@?)(\\w+))"}];return d.contains=P,{name:"Elixir",aliases:["ex","exs"],keywords:c,contains:P}}return Yd=t,Yd}var qd,Wh;function QOe(){if(Wh)return qd;Wh=1;function t(e){const n={variants:[e.COMMENT("--","$"),e.COMMENT(/\{-/,/-\}/,{contains:["self"]})]},i={className:"type",begin:"\\b[A-Z][\\w']*",relevance:0},o={begin:"\\(",end:"\\)",illegal:'"',contains:[{className:"type",begin:"\\b[A-Z][\\w]*(\\((\\.\\.|,|\\w+)\\))?"},n]},s={begin:/\{/,end:/\}/,contains:o.contains},l={className:"string",begin:"'\\\\?.",end:"'",illegal:"."};return{name:"Elm",keywords:["let","in","if","then","else","case","of","where","module","import","exposing","type","alias","as","infix","infixl","infixr","port","effect","command","subscription"],contains:[{beginKeywords:"port effect module",end:"exposing",keywords:"port effect module where command subscription exposing",contains:[o,n],illegal:"\\W\\.|;"},{begin:"import",end:"$",keywords:"import as exposing",contains:[o,n],illegal:"\\W\\.|;"},{begin:"type",end:"$",keywords:"type alias",contains:[i,o,s,n]},{beginKeywords:"infix infixl infixr",end:"$",contains:[e.C_NUMBER_MODE,n]},{begin:"port",end:"$",keywords:"port",contains:[n]},l,e.QUOTE_STRING_MODE,e.C_NUMBER_MODE,i,e.inherit(e.TITLE_MODE,{begin:"^[_a-z][\\w']*"}),n,{begin:"->|<-"}],illegal:/;/}}return qd=t,qd}var $d,Kh;function XOe(){if(Kh)return $d;Kh=1;function t(e){const n=e.regex,i="([a-zA-Z_]\\w*[!?=]?|[-+~]@|<<|>>|=~|===?|<=>|[<>]=?|\\*\\*|[-/+%^&*~`|]|\\[\\]=?)",o=n.either(/\b([A-Z]+[a-z0-9]+)+/,/\b([A-Z]+[a-z0-9]+)+[A-Z]+/),s=n.concat(o,/(::\w+)*/),c={"variable.constant":["__FILE__","__LINE__","__ENCODING__"],"variable.language":["self","super"],keyword:["alias","and","begin","BEGIN","break","case","class","defined","do","else","elsif","end","END","ensure","for","if","in","module","next","not","or","redo","require","rescue","retry","return","then","undef","unless","until","when","while","yield",...["include","extend","prepend","public","private","protected","raise","throw"]],built_in:["proc","lambda","attr_accessor","attr_reader","attr_writer","define_method","private_constant","module_function"],literal:["true","false","nil"]},d={className:"doctag",begin:"@[A-Za-z]+"},_={begin:"#<",end:">"},p=[e.COMMENT("#","$",{contains:[d]}),e.COMMENT("^=begin","^=end",{contains:[d],relevance:10}),e.COMMENT("^__END__",e.MATCH_NOTHING_RE)],g={className:"subst",begin:/#\{/,end:/\}/,keywords:c},E={className:"string",contains:[e.BACKSLASH_ESCAPE,g],variants:[{begin:/'/,end:/'/},{begin:/"/,end:/"/},{begin:/`/,end:/`/},{begin:/%[qQwWx]?\(/,end:/\)/},{begin:/%[qQwWx]?\[/,end:/\]/},{begin:/%[qQwWx]?\{/,end:/\}/},{begin:/%[qQwWx]?/},{begin:/%[qQwWx]?\//,end:/\//},{begin:/%[qQwWx]?%/,end:/%/},{begin:/%[qQwWx]?-/,end:/-/},{begin:/%[qQwWx]?\|/,end:/\|/},{begin:/\B\?(\\\d{1,3})/},{begin:/\B\?(\\x[A-Fa-f0-9]{1,2})/},{begin:/\B\?(\\u\{?[A-Fa-f0-9]{1,6}\}?)/},{begin:/\B\?(\\M-\\C-|\\M-\\c|\\c\\M-|\\M-|\\C-\\M-)[\x20-\x7e]/},{begin:/\B\?\\(c|C-)[\x20-\x7e]/},{begin:/\B\?\\?\S/},{begin:n.concat(/<<[-~]?'?/,n.lookahead(/(\w+)(?=\W)[^\n]*\n(?:[^\n]*\n)*?\s*\1\b/)),contains:[e.END_SAME_AS_BEGIN({begin:/(\w+)/,end:/(\w+)/,contains:[e.BACKSLASH_ESCAPE,g]})]}]},f="[1-9](_?[0-9])*|0",S="[0-9](_?[0-9])*",v={className:"number",relevance:0,variants:[{begin:`\\b(${f})(\\.(${S}))?([eE][+-]?(${S})|r)?i?\\b`},{begin:"\\b0[dD][0-9](_?[0-9])*r?i?\\b"},{begin:"\\b0[bB][0-1](_?[0-1])*r?i?\\b"},{begin:"\\b0[oO][0-7](_?[0-7])*r?i?\\b"},{begin:"\\b0[xX][0-9a-fA-F](_?[0-9a-fA-F])*r?i?\\b"},{begin:"\\b0(_?[0-7])+r?i?\\b"}]},h={variants:[{match:/\(\)/},{className:"params",begin:/\(/,end:/(?=\))/,excludeBegin:!0,endsParent:!0,keywords:c}]},k=[E,{variants:[{match:[/class\s+/,s,/\s+<\s+/,s]},{match:[/\b(class|module)\s+/,s]}],scope:{2:"title.class",4:"title.class.inherited"},keywords:c},{match:[/(include|extend)\s+/,s],scope:{2:"title.class"},keywords:c},{relevance:0,match:[s,/\.new[. (]/],scope:{1:"title.class"}},{relevance:0,match:/\b[A-Z][A-Z_0-9]+\b/,className:"variable.constant"},{relevance:0,match:o,scope:"title.class"},{match:[/def/,/\s+/,i],scope:{1:"keyword",3:"title.function"},contains:[h]},{begin:e.IDENT_RE+"::"},{className:"symbol",begin:e.UNDERSCORE_IDENT_RE+"(!|\\?)?:",relevance:0},{className:"symbol",begin:":(?!\\s)",contains:[E,{begin:i}],relevance:0},v,{className:"variable",begin:"(\\$\\W)|((\\$|@@?)(\\w+))(?=[^@$?])(?![A-Za-z])(?![@$?'])"},{className:"params",begin:/\|/,end:/\|/,excludeBegin:!0,excludeEnd:!0,relevance:0,keywords:c},{begin:"("+e.RE_STARTERS_RE+"|unless)\\s*",keywords:"unless",contains:[{className:"regexp",contains:[e.BACKSLASH_ESCAPE,g],illegal:/\n/,variants:[{begin:"/",end:"/[a-z]*"},{begin:/%r\{/,end:/\}[a-z]*/},{begin:"%r\\(",end:"\\)[a-z]*"},{begin:"%r!",end:"![a-z]*"},{begin:"%r\\[",end:"\\][a-z]*"}]}].concat(_,p),relevance:0}].concat(_,p);g.contains=k,h.contains=k;const U="[>?]>",W="[\\w#]+\\(\\w+\\):\\d+:\\d+[>*]",z="(\\w+-)?\\d+\\.\\d+\\.\\d+(p\\d+)?[^\\d][^>]+>",K=[{begin:/^\s*=>/,starts:{end:"$",contains:k}},{className:"meta.prompt",begin:"^("+U+"|"+W+"|"+z+")(?=[ ])",starts:{end:"$",keywords:c,contains:k}}];return p.unshift(_),{name:"Ruby",aliases:["rb","gemspec","podspec","thor","irb"],keywords:c,illegal:/\/\*/,contains:[e.SHEBANG({binary:"ruby"})].concat(K).concat(p).concat(k)}}return $d=t,$d}var Hd,Qh;function ZOe(){if(Qh)return Hd;Qh=1;function t(e){return{name:"ERB",subLanguage:"xml",contains:[e.COMMENT("<%#","%>"),{begin:"<%[%=-]?",end:"[%-]?%>",subLanguage:"ruby",excludeBegin:!0,excludeEnd:!0}]}}return Hd=t,Hd}var zd,Xh;function JOe(){if(Xh)return zd;Xh=1;function t(e){const n=e.regex;return{name:"Erlang REPL",keywords:{built_in:"spawn spawn_link self",keyword:"after and andalso|10 band begin bnot bor bsl bsr bxor case catch cond div end fun if let not of or orelse|10 query receive rem try when xor"},contains:[{className:"meta.prompt",begin:"^[0-9]+> ",relevance:10},e.COMMENT("%","$"),{className:"number",begin:"\\b(\\d+(_\\d+)*#[a-fA-F0-9]+(_[a-fA-F0-9]+)*|\\d+(_\\d+)*(\\.\\d+(_\\d+)*)?([eE][-+]?\\d+)?)",relevance:0},e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,{begin:n.concat(/\?(::)?/,/([A-Z]\w*)/,/((::)[A-Z]\w*)*/)},{begin:"->"},{begin:"ok"},{begin:"!"},{begin:"(\\b[a-z'][a-zA-Z0-9_']*:[a-z'][a-zA-Z0-9_']*)|(\\b[a-z'][a-zA-Z0-9_']*)",relevance:0},{begin:"[A-Z][a-zA-Z0-9_']*",relevance:0}]}}return zd=t,zd}var Vd,Zh;function jOe(){if(Zh)return Vd;Zh=1;function t(e){const n="[a-z'][a-zA-Z0-9_']*",i="("+n+":"+n+"|"+n+")",o={keyword:"after and andalso|10 band begin bnot bor bsl bzr bxor case catch cond div end fun if let not of orelse|10 query receive rem try when xor",literal:"false true"},s=e.COMMENT("%","$"),l={className:"number",begin:"\\b(\\d+(_\\d+)*#[a-fA-F0-9]+(_[a-fA-F0-9]+)*|\\d+(_\\d+)*(\\.\\d+(_\\d+)*)?([eE][-+]?\\d+)?)",relevance:0},c={begin:"fun\\s+"+n+"/\\d+"},d={begin:i+"\\(",end:"\\)",returnBegin:!0,relevance:0,contains:[{begin:i,relevance:0},{begin:"\\(",end:"\\)",endsWithParent:!0,returnEnd:!0,relevance:0}]},_={begin:/\{/,end:/\}/,relevance:0},p={begin:"\\b_([A-Z][A-Za-z0-9_]*)?",relevance:0},g={begin:"[A-Z][a-zA-Z0-9_]*",relevance:0},E={begin:"#"+e.UNDERSCORE_IDENT_RE,relevance:0,returnBegin:!0,contains:[{begin:"#"+e.UNDERSCORE_IDENT_RE,relevance:0},{begin:/\{/,end:/\}/,relevance:0}]},f={beginKeywords:"fun receive if try case",end:"end",keywords:o};f.contains=[s,c,e.inherit(e.APOS_STRING_MODE,{className:""}),f,d,e.QUOTE_STRING_MODE,l,_,p,g,E];const S=[s,c,f,d,e.QUOTE_STRING_MODE,l,_,p,g,E];d.contains[1].contains=S,_.contains=S,E.contains[1].contains=S;const v=["-module","-record","-undef","-export","-ifdef","-ifndef","-author","-copyright","-doc","-vsn","-import","-include","-include_lib","-compile","-define","-else","-endif","-file","-behaviour","-behavior","-spec"],h={className:"params",begin:"\\(",end:"\\)",contains:S};return{name:"Erlang",aliases:["erl"],keywords:o,illegal:"(",returnBegin:!0,illegal:"\\(|#|//|/\\*|\\\\|:|;",contains:[h,e.inherit(e.TITLE_MODE,{begin:n})],starts:{end:";|\\.",keywords:o,contains:S}},s,{begin:"^-",end:"\\.",relevance:0,excludeEnd:!0,returnBegin:!0,keywords:{$pattern:"-"+e.IDENT_RE,keyword:v.map(T=>`${T}|1.5`).join(" ")},contains:[h]},l,e.QUOTE_STRING_MODE,E,p,g,_,{begin:/\.$/}]}}return Vd=t,Vd}var Wd,Jh;function eAe(){if(Jh)return Wd;Jh=1;function t(e){return{name:"Excel formulae",aliases:["xlsx","xls"],case_insensitive:!0,keywords:{$pattern:/[a-zA-Z][\w\.]*/,built_in:["ABS","ACCRINT","ACCRINTM","ACOS","ACOSH","ACOT","ACOTH","AGGREGATE","ADDRESS","AMORDEGRC","AMORLINC","AND","ARABIC","AREAS","ASC","ASIN","ASINH","ATAN","ATAN2","ATANH","AVEDEV","AVERAGE","AVERAGEA","AVERAGEIF","AVERAGEIFS","BAHTTEXT","BASE","BESSELI","BESSELJ","BESSELK","BESSELY","BETADIST","BETA.DIST","BETAINV","BETA.INV","BIN2DEC","BIN2HEX","BIN2OCT","BINOMDIST","BINOM.DIST","BINOM.DIST.RANGE","BINOM.INV","BITAND","BITLSHIFT","BITOR","BITRSHIFT","BITXOR","CALL","CEILING","CEILING.MATH","CEILING.PRECISE","CELL","CHAR","CHIDIST","CHIINV","CHITEST","CHISQ.DIST","CHISQ.DIST.RT","CHISQ.INV","CHISQ.INV.RT","CHISQ.TEST","CHOOSE","CLEAN","CODE","COLUMN","COLUMNS","COMBIN","COMBINA","COMPLEX","CONCAT","CONCATENATE","CONFIDENCE","CONFIDENCE.NORM","CONFIDENCE.T","CONVERT","CORREL","COS","COSH","COT","COTH","COUNT","COUNTA","COUNTBLANK","COUNTIF","COUNTIFS","COUPDAYBS","COUPDAYS","COUPDAYSNC","COUPNCD","COUPNUM","COUPPCD","COVAR","COVARIANCE.P","COVARIANCE.S","CRITBINOM","CSC","CSCH","CUBEKPIMEMBER","CUBEMEMBER","CUBEMEMBERPROPERTY","CUBERANKEDMEMBER","CUBESET","CUBESETCOUNT","CUBEVALUE","CUMIPMT","CUMPRINC","DATE","DATEDIF","DATEVALUE","DAVERAGE","DAY","DAYS","DAYS360","DB","DBCS","DCOUNT","DCOUNTA","DDB","DEC2BIN","DEC2HEX","DEC2OCT","DECIMAL","DEGREES","DELTA","DEVSQ","DGET","DISC","DMAX","DMIN","DOLLAR","DOLLARDE","DOLLARFR","DPRODUCT","DSTDEV","DSTDEVP","DSUM","DURATION","DVAR","DVARP","EDATE","EFFECT","ENCODEURL","EOMONTH","ERF","ERF.PRECISE","ERFC","ERFC.PRECISE","ERROR.TYPE","EUROCONVERT","EVEN","EXACT","EXP","EXPON.DIST","EXPONDIST","FACT","FACTDOUBLE","FALSE|0","F.DIST","FDIST","F.DIST.RT","FILTERXML","FIND","FINDB","F.INV","F.INV.RT","FINV","FISHER","FISHERINV","FIXED","FLOOR","FLOOR.MATH","FLOOR.PRECISE","FORECAST","FORECAST.ETS","FORECAST.ETS.CONFINT","FORECAST.ETS.SEASONALITY","FORECAST.ETS.STAT","FORECAST.LINEAR","FORMULATEXT","FREQUENCY","F.TEST","FTEST","FV","FVSCHEDULE","GAMMA","GAMMA.DIST","GAMMADIST","GAMMA.INV","GAMMAINV","GAMMALN","GAMMALN.PRECISE","GAUSS","GCD","GEOMEAN","GESTEP","GETPIVOTDATA","GROWTH","HARMEAN","HEX2BIN","HEX2DEC","HEX2OCT","HLOOKUP","HOUR","HYPERLINK","HYPGEOM.DIST","HYPGEOMDIST","IF","IFERROR","IFNA","IFS","IMABS","IMAGINARY","IMARGUMENT","IMCONJUGATE","IMCOS","IMCOSH","IMCOT","IMCSC","IMCSCH","IMDIV","IMEXP","IMLN","IMLOG10","IMLOG2","IMPOWER","IMPRODUCT","IMREAL","IMSEC","IMSECH","IMSIN","IMSINH","IMSQRT","IMSUB","IMSUM","IMTAN","INDEX","INDIRECT","INFO","INT","INTERCEPT","INTRATE","IPMT","IRR","ISBLANK","ISERR","ISERROR","ISEVEN","ISFORMULA","ISLOGICAL","ISNA","ISNONTEXT","ISNUMBER","ISODD","ISREF","ISTEXT","ISO.CEILING","ISOWEEKNUM","ISPMT","JIS","KURT","LARGE","LCM","LEFT","LEFTB","LEN","LENB","LINEST","LN","LOG","LOG10","LOGEST","LOGINV","LOGNORM.DIST","LOGNORMDIST","LOGNORM.INV","LOOKUP","LOWER","MATCH","MAX","MAXA","MAXIFS","MDETERM","MDURATION","MEDIAN","MID","MIDBs","MIN","MINIFS","MINA","MINUTE","MINVERSE","MIRR","MMULT","MOD","MODE","MODE.MULT","MODE.SNGL","MONTH","MROUND","MULTINOMIAL","MUNIT","N","NA","NEGBINOM.DIST","NEGBINOMDIST","NETWORKDAYS","NETWORKDAYS.INTL","NOMINAL","NORM.DIST","NORMDIST","NORMINV","NORM.INV","NORM.S.DIST","NORMSDIST","NORM.S.INV","NORMSINV","NOT","NOW","NPER","NPV","NUMBERVALUE","OCT2BIN","OCT2DEC","OCT2HEX","ODD","ODDFPRICE","ODDFYIELD","ODDLPRICE","ODDLYIELD","OFFSET","OR","PDURATION","PEARSON","PERCENTILE.EXC","PERCENTILE.INC","PERCENTILE","PERCENTRANK.EXC","PERCENTRANK.INC","PERCENTRANK","PERMUT","PERMUTATIONA","PHI","PHONETIC","PI","PMT","POISSON.DIST","POISSON","POWER","PPMT","PRICE","PRICEDISC","PRICEMAT","PROB","PRODUCT","PROPER","PV","QUARTILE","QUARTILE.EXC","QUARTILE.INC","QUOTIENT","RADIANS","RAND","RANDBETWEEN","RANK.AVG","RANK.EQ","RANK","RATE","RECEIVED","REGISTER.ID","REPLACE","REPLACEB","REPT","RIGHT","RIGHTB","ROMAN","ROUND","ROUNDDOWN","ROUNDUP","ROW","ROWS","RRI","RSQ","RTD","SEARCH","SEARCHB","SEC","SECH","SECOND","SERIESSUM","SHEET","SHEETS","SIGN","SIN","SINH","SKEW","SKEW.P","SLN","SLOPE","SMALL","SQL.REQUEST","SQRT","SQRTPI","STANDARDIZE","STDEV","STDEV.P","STDEV.S","STDEVA","STDEVP","STDEVPA","STEYX","SUBSTITUTE","SUBTOTAL","SUM","SUMIF","SUMIFS","SUMPRODUCT","SUMSQ","SUMX2MY2","SUMX2PY2","SUMXMY2","SWITCH","SYD","T","TAN","TANH","TBILLEQ","TBILLPRICE","TBILLYIELD","T.DIST","T.DIST.2T","T.DIST.RT","TDIST","TEXT","TEXTJOIN","TIME","TIMEVALUE","T.INV","T.INV.2T","TINV","TODAY","TRANSPOSE","TREND","TRIM","TRIMMEAN","TRUE|0","TRUNC","T.TEST","TTEST","TYPE","UNICHAR","UNICODE","UPPER","VALUE","VAR","VAR.P","VAR.S","VARA","VARP","VARPA","VDB","VLOOKUP","WEBSERVICE","WEEKDAY","WEEKNUM","WEIBULL","WEIBULL.DIST","WORKDAY","WORKDAY.INTL","XIRR","XNPV","XOR","YEAR","YEARFRAC","YIELD","YIELDDISC","YIELDMAT","Z.TEST","ZTEST"]},contains:[{begin:/^=/,end:/[^=]/,returnEnd:!0,illegal:/=/,relevance:10},{className:"symbol",begin:/\b[A-Z]{1,2}\d+\b/,end:/[^\d]/,excludeEnd:!0,relevance:0},{className:"symbol",begin:/[A-Z]{0,2}\d*:[A-Z]{0,2}\d*/,relevance:0},e.BACKSLASH_ESCAPE,e.QUOTE_STRING_MODE,{className:"number",begin:e.NUMBER_RE+"(%)?",relevance:0},e.COMMENT(/\bN\(/,/\)/,{excludeBegin:!0,excludeEnd:!0,illegal:/\n/})]}}return Wd=t,Wd}var Kd,jh;function tAe(){if(jh)return Kd;jh=1;function t(e){return{name:"FIX",contains:[{begin:/[^\u2401\u0001]+/,end:/[\u2401\u0001]/,excludeEnd:!0,returnBegin:!0,returnEnd:!1,contains:[{begin:/([^\u2401\u0001=]+)/,end:/=([^\u2401\u0001=]+)/,returnEnd:!0,returnBegin:!1,className:"attr"},{begin:/=/,end:/([\u2401\u0001])/,excludeEnd:!0,excludeBegin:!0,className:"string"}]}],case_insensitive:!0}}return Kd=t,Kd}var Qd,eT;function nAe(){if(eT)return Qd;eT=1;function t(e){const n={className:"string",begin:/'(.|\\[xXuU][a-zA-Z0-9]+)'/},i={className:"string",variants:[{begin:'"',end:'"'}]},s={className:"function",beginKeywords:"def",end:/[:={\[(\n;]/,excludeEnd:!0,contains:[{className:"title",relevance:0,begin:/[^0-9\n\t "'(),.`{}\[\]:;][^\n\t "'(),.`{}\[\]:;]+|[^0-9\n\t "'(),.`{}\[\]:;=]/}]};return{name:"Flix",keywords:{keyword:["case","class","def","else","enum","if","impl","import","in","lat","rel","index","let","match","namespace","switch","type","yield","with"],literal:["true","false"]},contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,n,i,s,e.C_NUMBER_MODE]}}return Qd=t,Qd}var Xd,tT;function rAe(){if(tT)return Xd;tT=1;function t(e){const n=e.regex,i={className:"params",begin:"\\(",end:"\\)"},o={variants:[e.COMMENT("!","$",{relevance:0}),e.COMMENT("^C[ ]","$",{relevance:0}),e.COMMENT("^C$","$",{relevance:0})]},s=/(_[a-z_\d]+)?/,l=/([de][+-]?\d+)?/,c={className:"number",variants:[{begin:n.concat(/\b\d+/,/\.(\d*)/,l,s)},{begin:n.concat(/\b\d+/,l,s)},{begin:n.concat(/\.\d+/,l,s)}],relevance:0},d={className:"function",beginKeywords:"subroutine function program",illegal:"[${=\\n]",contains:[e.UNDERSCORE_TITLE_MODE,i]},_={className:"string",relevance:0,variants:[e.APOS_STRING_MODE,e.QUOTE_STRING_MODE]};return{name:"Fortran",case_insensitive:!0,aliases:["f90","f95"],keywords:{keyword:["kind","do","concurrent","local","shared","while","private","call","intrinsic","where","elsewhere","type","endtype","endmodule","endselect","endinterface","end","enddo","endif","if","forall","endforall","only","contains","default","return","stop","then","block","endblock","endassociate","public","subroutine|10","function","program",".and.",".or.",".not.",".le.",".eq.",".ge.",".gt.",".lt.","goto","save","else","use","module","select","case","access","blank","direct","exist","file","fmt","form","formatted","iostat","name","named","nextrec","number","opened","rec","recl","sequential","status","unformatted","unit","continue","format","pause","cycle","exit","c_null_char","c_alert","c_backspace","c_form_feed","flush","wait","decimal","round","iomsg","synchronous","nopass","non_overridable","pass","protected","volatile","abstract","extends","import","non_intrinsic","value","deferred","generic","final","enumerator","class","associate","bind","enum","c_int","c_short","c_long","c_long_long","c_signed_char","c_size_t","c_int8_t","c_int16_t","c_int32_t","c_int64_t","c_int_least8_t","c_int_least16_t","c_int_least32_t","c_int_least64_t","c_int_fast8_t","c_int_fast16_t","c_int_fast32_t","c_int_fast64_t","c_intmax_t","C_intptr_t","c_float","c_double","c_long_double","c_float_complex","c_double_complex","c_long_double_complex","c_bool","c_char","c_null_ptr","c_null_funptr","c_new_line","c_carriage_return","c_horizontal_tab","c_vertical_tab","iso_c_binding","c_loc","c_funloc","c_associated","c_f_pointer","c_ptr","c_funptr","iso_fortran_env","character_storage_size","error_unit","file_storage_size","input_unit","iostat_end","iostat_eor","numeric_storage_size","output_unit","c_f_procpointer","ieee_arithmetic","ieee_support_underflow_control","ieee_get_underflow_mode","ieee_set_underflow_mode","newunit","contiguous","recursive","pad","position","action","delim","readwrite","eor","advance","nml","interface","procedure","namelist","include","sequence","elemental","pure","impure","integer","real","character","complex","logical","codimension","dimension","allocatable|10","parameter","external","implicit|10","none","double","precision","assign","intent","optional","pointer","target","in","out","common","equivalence","data"],literal:[".False.",".True."],built_in:["alog","alog10","amax0","amax1","amin0","amin1","amod","cabs","ccos","cexp","clog","csin","csqrt","dabs","dacos","dasin","datan","datan2","dcos","dcosh","ddim","dexp","dint","dlog","dlog10","dmax1","dmin1","dmod","dnint","dsign","dsin","dsinh","dsqrt","dtan","dtanh","float","iabs","idim","idint","idnint","ifix","isign","max0","max1","min0","min1","sngl","algama","cdabs","cdcos","cdexp","cdlog","cdsin","cdsqrt","cqabs","cqcos","cqexp","cqlog","cqsin","cqsqrt","dcmplx","dconjg","derf","derfc","dfloat","dgamma","dimag","dlgama","iqint","qabs","qacos","qasin","qatan","qatan2","qcmplx","qconjg","qcos","qcosh","qdim","qerf","qerfc","qexp","qgamma","qimag","qlgama","qlog","qlog10","qmax1","qmin1","qmod","qnint","qsign","qsin","qsinh","qsqrt","qtan","qtanh","abs","acos","aimag","aint","anint","asin","atan","atan2","char","cmplx","conjg","cos","cosh","exp","ichar","index","int","log","log10","max","min","nint","sign","sin","sinh","sqrt","tan","tanh","print","write","dim","lge","lgt","lle","llt","mod","nullify","allocate","deallocate","adjustl","adjustr","all","allocated","any","associated","bit_size","btest","ceiling","count","cshift","date_and_time","digits","dot_product","eoshift","epsilon","exponent","floor","fraction","huge","iand","ibclr","ibits","ibset","ieor","ior","ishft","ishftc","lbound","len_trim","matmul","maxexponent","maxloc","maxval","merge","minexponent","minloc","minval","modulo","mvbits","nearest","pack","present","product","radix","random_number","random_seed","range","repeat","reshape","rrspacing","scale","scan","selected_int_kind","selected_real_kind","set_exponent","shape","size","spacing","spread","sum","system_clock","tiny","transpose","trim","ubound","unpack","verify","achar","iachar","transfer","dble","entry","dprod","cpu_time","command_argument_count","get_command","get_command_argument","get_environment_variable","is_iostat_end","ieee_arithmetic","ieee_support_underflow_control","ieee_get_underflow_mode","ieee_set_underflow_mode","is_iostat_eor","move_alloc","new_line","selected_char_kind","same_type_as","extends_type_of","acosh","asinh","atanh","bessel_j0","bessel_j1","bessel_jn","bessel_y0","bessel_y1","bessel_yn","erf","erfc","erfc_scaled","gamma","log_gamma","hypot","norm2","atomic_define","atomic_ref","execute_command_line","leadz","trailz","storage_size","merge_bits","bge","bgt","ble","blt","dshiftl","dshiftr","findloc","iall","iany","iparity","image_index","lcobound","ucobound","maskl","maskr","num_images","parity","popcnt","poppar","shifta","shiftl","shiftr","this_image","sync","change","team","co_broadcast","co_max","co_min","co_sum","co_reduce"]},illegal:/\/\*/,contains:[_,d,{begin:/^C\s*=(?!=)/,relevance:0},o,c]}}return Xd=t,Xd}var Zd,nT;function iAe(){if(nT)return Zd;nT=1;function t(c){return new RegExp(c.replace(/[-/\\^$*+?.()|[\]{}]/g,"\\$&"),"m")}function e(c){return c?typeof c=="string"?c:c.source:null}function n(c){return i("(?=",c,")")}function i(...c){return c.map(_=>e(_)).join("")}function o(c){const d=c[c.length-1];return typeof d=="object"&&d.constructor===Object?(c.splice(c.length-1,1),d):{}}function s(...c){return"("+(o(c).capture?"":"?:")+c.map(p=>e(p)).join("|")+")"}function l(c){const d=["abstract","and","as","assert","base","begin","class","default","delegate","do","done","downcast","downto","elif","else","end","exception","extern","finally","fixed","for","fun","function","global","if","in","inherit","inline","interface","internal","lazy","let","match","member","module","mutable","namespace","new","of","open","or","override","private","public","rec","return","static","struct","then","to","try","type","upcast","use","val","void","when","while","with","yield"],_={scope:"keyword",match:/\b(yield|return|let|do|match|use)!/},p=["if","else","endif","line","nowarn","light","r","i","I","load","time","help","quit"],g=["true","false","null","Some","None","Ok","Error","infinity","infinityf","nan","nanf"],E=["__LINE__","__SOURCE_DIRECTORY__","__SOURCE_FILE__"],f=["bool","byte","sbyte","int8","int16","int32","uint8","uint16","uint32","int","uint","int64","uint64","nativeint","unativeint","decimal","float","double","float32","single","char","string","unit","bigint","option","voption","list","array","seq","byref","exn","inref","nativeptr","obj","outref","voidptr","Result"],v={keyword:d,literal:g,built_in:["not","ref","raise","reraise","dict","readOnlyDict","set","get","enum","sizeof","typeof","typedefof","nameof","nullArg","invalidArg","invalidOp","id","fst","snd","ignore","lock","using","box","unbox","tryUnbox","printf","printfn","sprintf","eprintf","eprintfn","fprintf","fprintfn","failwith","failwithf"],"variable.constant":E},T={variants:[c.COMMENT(/\(\*(?!\))/,/\*\)/,{contains:["self"]}),c.C_LINE_COMMENT_MODE]},N=/[a-zA-Z_](\w|')*/,y={scope:"variable",begin:/``/,end:/``/},x=/\B('|\^)/,P={scope:"symbol",variants:[{match:i(x,/``.*?``/)},{match:i(x,c.UNDERSCORE_IDENT_RE)}],relevance:0},D=function({includeEqual:Ce}){let Be;Ce?Be="!%&*+-/<=>@^|~?":Be="!%&*+-/<>@^|~?";const We=Array.from(Be),xe=i("[",...We.map(t),"]"),ze=s(xe,/\./),rt=i(ze,n(ze)),Ke=s(i(rt,ze,"*"),i(xe,"+"));return{scope:"operator",match:s(Ke,/:\?>/,/:\?/,/:>/,/:=/,/::?/,/\$/),relevance:0}},k=D({includeEqual:!0}),U=D({includeEqual:!1}),W=function(Ce,Be){return{begin:i(Ce,n(i(/\s*/,s(/\w/,/'/,/\^/,/#/,/``/,/\(/,/{\|/)))),beginScope:Be,end:n(s(/\n/,/=/)),relevance:0,keywords:c.inherit(v,{type:f}),contains:[T,P,c.inherit(y,{scope:null}),U]}},z=W(/:/,"operator"),K=W(/\bof\b/,"keyword"),Ee={begin:[/(^|\s+)/,/type/,/\s+/,N],beginScope:{2:"keyword",4:"title.class"},end:n(/\(|=|$/),keywords:v,contains:[T,c.inherit(y,{scope:null}),P,{scope:"operator",match:/<|>/},z]},oe={scope:"computation-expression",match:/\b[_a-z]\w*(?=\s*\{)/},L={begin:[/^\s*/,i(/#/,s(...p)),/\b/],beginScope:{2:"meta"},end:n(/\s|$/)},J={variants:[c.BINARY_NUMBER_MODE,c.C_NUMBER_MODE]},re={scope:"string",begin:/"/,end:/"/,contains:[c.BACKSLASH_ESCAPE]},G={scope:"string",begin:/@"/,end:/"/,contains:[{match:/""/},c.BACKSLASH_ESCAPE]},X={scope:"string",begin:/"""/,end:/"""/,relevance:2},_e={scope:"subst",begin:/\{/,end:/\}/,keywords:v},ve={scope:"string",begin:/\$"/,end:/"/,contains:[{match:/\{\{/},{match:/\}\}/},c.BACKSLASH_ESCAPE,_e]},he={scope:"string",begin:/(\$@|@\$)"/,end:/"/,contains:[{match:/\{\{/},{match:/\}\}/},{match:/""/},c.BACKSLASH_ESCAPE,_e]},tt={scope:"string",begin:/\$"""/,end:/"""/,contains:[{match:/\{\{/},{match:/\}\}/},_e],relevance:2},lt={scope:"string",match:i(/'/,s(/[^\\']/,/\\(?:.|\d{3}|x[a-fA-F\d]{2}|u[a-fA-F\d]{4}|U[a-fA-F\d]{8})/),/'/)};return _e.contains=[he,ve,G,re,lt,_,T,y,z,oe,L,J,P,k],{name:"F#",aliases:["fs","f#"],keywords:v,illegal:/\/\*/,classNameAliases:{"computation-expression":"keyword"},contains:[_,{variants:[tt,he,ve,X,G,re,lt]},T,y,Ee,{scope:"meta",begin:/\[\]/,relevance:2,contains:[y,X,G,re,lt,J]},K,z,oe,L,J,P,k]}}return Zd=l,Zd}var Jd,rT;function aAe(){if(rT)return Jd;rT=1;function t(e){const n=e.regex,i={keyword:"abort acronym acronyms alias all and assign binary card diag display else eq file files for free ge gt if integer le loop lt maximizing minimizing model models ne negative no not option options or ord positive prod put putpage puttl repeat sameas semicont semiint smax smin solve sos1 sos2 sum system table then until using while xor yes",literal:"eps inf na",built_in:"abs arccos arcsin arctan arctan2 Beta betaReg binomial ceil centropy cos cosh cvPower div div0 eDist entropy errorf execSeed exp fact floor frac gamma gammaReg log logBeta logGamma log10 log2 mapVal max min mod ncpCM ncpF ncpVUpow ncpVUsin normal pi poly power randBinomial randLinear randTriangle round rPower sigmoid sign signPower sin sinh slexp sllog10 slrec sqexp sqlog10 sqr sqrec sqrt tan tanh trunc uniform uniformInt vcPower bool_and bool_eqv bool_imp bool_not bool_or bool_xor ifThen rel_eq rel_ge rel_gt rel_le rel_lt rel_ne gday gdow ghour gleap gmillisec gminute gmonth gsecond gyear jdate jnow jstart jtime errorLevel execError gamsRelease gamsVersion handleCollect handleDelete handleStatus handleSubmit heapFree heapLimit heapSize jobHandle jobKill jobStatus jobTerminate licenseLevel licenseStatus maxExecError sleep timeClose timeComp timeElapsed timeExec timeStart"},o={className:"params",begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0},s={className:"symbol",variants:[{begin:/=[lgenxc]=/},{begin:/\$/}]},l={className:"comment",variants:[{begin:"'",end:"'"},{begin:'"',end:'"'}],illegal:"\\n",contains:[e.BACKSLASH_ESCAPE]},c={begin:"/",end:"/",keywords:i,contains:[l,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.QUOTE_STRING_MODE,e.APOS_STRING_MODE,e.C_NUMBER_MODE]},d=/[a-z0-9&#*=?@\\><:,()$[\]_.{}!+%^-]+/,_={begin:/[a-z][a-z0-9_]*(\([a-z0-9_, ]*\))?[ \t]+/,excludeBegin:!0,end:"$",endsWithParent:!0,contains:[l,c,{className:"comment",begin:n.concat(d,n.anyNumberOfTimes(n.concat(/[ ]+/,d))),relevance:0}]};return{name:"GAMS",aliases:["gms"],case_insensitive:!0,keywords:i,contains:[e.COMMENT(/^\$ontext/,/^\$offtext/),{className:"meta",begin:"^\\$[a-z0-9]+",end:"$",returnBegin:!0,contains:[{className:"keyword",begin:"^\\$[a-z0-9]+"}]},e.COMMENT("^\\*","$"),e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.QUOTE_STRING_MODE,e.APOS_STRING_MODE,{beginKeywords:"set sets parameter parameters variable variables scalar scalars equation equations",end:";",contains:[e.COMMENT("^\\*","$"),e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.QUOTE_STRING_MODE,e.APOS_STRING_MODE,c,_]},{beginKeywords:"table",end:";",returnBegin:!0,contains:[{beginKeywords:"table",end:"$",contains:[_]},e.COMMENT("^\\*","$"),e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.QUOTE_STRING_MODE,e.APOS_STRING_MODE,e.C_NUMBER_MODE]},{className:"function",begin:/^[a-z][a-z0-9_,\-+' ()$]+\.{2}/,returnBegin:!0,contains:[{className:"title",begin:/^[a-z0-9_]+/},o,s]},e.C_NUMBER_MODE,s]}}return Jd=t,Jd}var jd,iT;function oAe(){if(iT)return jd;iT=1;function t(e){const n={keyword:"bool break call callexe checkinterrupt clear clearg closeall cls comlog compile continue create debug declare delete disable dlibrary dllcall do dos ed edit else elseif enable end endfor endif endp endo errorlog errorlogat expr external fn for format goto gosub graph if keyword let lib library line load loadarray loadexe loadf loadk loadm loadp loads loadx local locate loopnextindex lprint lpwidth lshow matrix msym ndpclex new open output outwidth plot plotsym pop prcsn print printdos proc push retp return rndcon rndmod rndmult rndseed run save saveall screen scroll setarray show sparse stop string struct system trace trap threadfor threadendfor threadbegin threadjoin threadstat threadend until use while winprint ne ge le gt lt and xor or not eq eqv",built_in:"abs acf aconcat aeye amax amean AmericanBinomCall AmericanBinomCall_Greeks AmericanBinomCall_ImpVol AmericanBinomPut AmericanBinomPut_Greeks AmericanBinomPut_ImpVol AmericanBSCall AmericanBSCall_Greeks AmericanBSCall_ImpVol AmericanBSPut AmericanBSPut_Greeks AmericanBSPut_ImpVol amin amult annotationGetDefaults annotationSetBkd annotationSetFont annotationSetLineColor annotationSetLineStyle annotationSetLineThickness annualTradingDays arccos arcsin areshape arrayalloc arrayindex arrayinit arraytomat asciiload asclabel astd astds asum atan atan2 atranspose axmargin balance band bandchol bandcholsol bandltsol bandrv bandsolpd bar base10 begwind besselj bessely beta box boxcox cdfBeta cdfBetaInv cdfBinomial cdfBinomialInv cdfBvn cdfBvn2 cdfBvn2e cdfCauchy cdfCauchyInv cdfChic cdfChii cdfChinc cdfChincInv cdfExp cdfExpInv cdfFc cdfFnc cdfFncInv cdfGam cdfGenPareto cdfHyperGeo cdfLaplace cdfLaplaceInv cdfLogistic cdfLogisticInv cdfmControlCreate cdfMvn cdfMvn2e cdfMvnce cdfMvne cdfMvt2e cdfMvtce cdfMvte cdfN cdfN2 cdfNc cdfNegBinomial cdfNegBinomialInv cdfNi cdfPoisson cdfPoissonInv cdfRayleigh cdfRayleighInv cdfTc cdfTci cdfTnc cdfTvn cdfWeibull cdfWeibullInv cdir ceil ChangeDir chdir chiBarSquare chol choldn cholsol cholup chrs close code cols colsf combinate combinated complex con cond conj cons ConScore contour conv convertsatostr convertstrtosa corrm corrms corrvc corrx corrxs cos cosh counts countwts crossprd crout croutp csrcol csrlin csvReadM csvReadSA cumprodc cumsumc curve cvtos datacreate datacreatecomplex datalist dataload dataloop dataopen datasave date datestr datestring datestrymd dayinyr dayofweek dbAddDatabase dbClose dbCommit dbCreateQuery dbExecQuery dbGetConnectOptions dbGetDatabaseName dbGetDriverName dbGetDrivers dbGetHostName dbGetLastErrorNum dbGetLastErrorText dbGetNumericalPrecPolicy dbGetPassword dbGetPort dbGetTableHeaders dbGetTables dbGetUserName dbHasFeature dbIsDriverAvailable dbIsOpen dbIsOpenError dbOpen dbQueryBindValue dbQueryClear dbQueryCols dbQueryExecPrepared dbQueryFetchAllM dbQueryFetchAllSA dbQueryFetchOneM dbQueryFetchOneSA dbQueryFinish dbQueryGetBoundValue dbQueryGetBoundValues dbQueryGetField dbQueryGetLastErrorNum dbQueryGetLastErrorText dbQueryGetLastInsertID dbQueryGetLastQuery dbQueryGetPosition dbQueryIsActive dbQueryIsForwardOnly dbQueryIsNull dbQueryIsSelect dbQueryIsValid dbQueryPrepare dbQueryRows dbQuerySeek dbQuerySeekFirst dbQuerySeekLast dbQuerySeekNext dbQuerySeekPrevious dbQuerySetForwardOnly dbRemoveDatabase dbRollback dbSetConnectOptions dbSetDatabaseName dbSetHostName dbSetNumericalPrecPolicy dbSetPort dbSetUserName dbTransaction DeleteFile delif delrows denseToSp denseToSpRE denToZero design det detl dfft dffti diag diagrv digamma doswin DOSWinCloseall DOSWinOpen dotfeq dotfeqmt dotfge dotfgemt dotfgt dotfgtmt dotfle dotflemt dotflt dotfltmt dotfne dotfnemt draw drop dsCreate dstat dstatmt dstatmtControlCreate dtdate dtday dttime dttodtv dttostr dttoutc dtvnormal dtvtodt dtvtoutc dummy dummybr dummydn eig eigh eighv eigv elapsedTradingDays endwind envget eof eqSolve eqSolvemt eqSolvemtControlCreate eqSolvemtOutCreate eqSolveset erf erfc erfccplx erfcplx error etdays ethsec etstr EuropeanBinomCall EuropeanBinomCall_Greeks EuropeanBinomCall_ImpVol EuropeanBinomPut EuropeanBinomPut_Greeks EuropeanBinomPut_ImpVol EuropeanBSCall EuropeanBSCall_Greeks EuropeanBSCall_ImpVol EuropeanBSPut EuropeanBSPut_Greeks EuropeanBSPut_ImpVol exctsmpl exec execbg exp extern eye fcheckerr fclearerr feq feqmt fflush fft ffti fftm fftmi fftn fge fgemt fgets fgetsa fgetsat fgetst fgt fgtmt fileinfo filesa fle flemt floor flt fltmt fmod fne fnemt fonts fopen formatcv formatnv fputs fputst fseek fstrerror ftell ftocv ftos ftostrC gamma gammacplx gammaii gausset gdaAppend gdaCreate gdaDStat gdaDStatMat gdaGetIndex gdaGetName gdaGetNames gdaGetOrders gdaGetType gdaGetTypes gdaGetVarInfo gdaIsCplx gdaLoad gdaPack gdaRead gdaReadByIndex gdaReadSome gdaReadSparse gdaReadStruct gdaReportVarInfo gdaSave gdaUpdate gdaUpdateAndPack gdaVars gdaWrite gdaWrite32 gdaWriteSome getarray getdims getf getGAUSShome getmatrix getmatrix4D getname getnamef getNextTradingDay getNextWeekDay getnr getorders getpath getPreviousTradingDay getPreviousWeekDay getRow getscalar3D getscalar4D getTrRow getwind glm gradcplx gradMT gradMTm gradMTT gradMTTm gradp graphprt graphset hasimag header headermt hess hessMT hessMTg hessMTgw hessMTm hessMTmw hessMTT hessMTTg hessMTTgw hessMTTm hessMTw hessp hist histf histp hsec imag indcv indexcat indices indices2 indicesf indicesfn indnv indsav integrate1d integrateControlCreate intgrat2 intgrat3 inthp1 inthp2 inthp3 inthp4 inthpControlCreate intquad1 intquad2 intquad3 intrleav intrleavsa intrsect intsimp inv invpd invswp iscplx iscplxf isden isinfnanmiss ismiss key keyav keyw lag lag1 lagn lapEighb lapEighi lapEighvb lapEighvi lapgEig lapgEigh lapgEighv lapgEigv lapgSchur lapgSvdcst lapgSvds lapgSvdst lapSvdcusv lapSvds lapSvdusv ldlp ldlsol linSolve listwise ln lncdfbvn lncdfbvn2 lncdfmvn lncdfn lncdfn2 lncdfnc lnfact lngammacplx lnpdfmvn lnpdfmvt lnpdfn lnpdft loadd loadstruct loadwind loess loessmt loessmtControlCreate log loglog logx logy lower lowmat lowmat1 ltrisol lu lusol machEpsilon make makevars makewind margin matalloc matinit mattoarray maxbytes maxc maxindc maxv maxvec mbesselei mbesselei0 mbesselei1 mbesseli mbesseli0 mbesseli1 meanc median mergeby mergevar minc minindc minv miss missex missrv moment momentd movingave movingaveExpwgt movingaveWgt nextindex nextn nextnevn nextwind ntos null null1 numCombinations ols olsmt olsmtControlCreate olsqr olsqr2 olsqrmt ones optn optnevn orth outtyp pacf packedToSp packr parse pause pdfCauchy pdfChi pdfExp pdfGenPareto pdfHyperGeo pdfLaplace pdfLogistic pdfn pdfPoisson pdfRayleigh pdfWeibull pi pinv pinvmt plotAddArrow plotAddBar plotAddBox plotAddHist plotAddHistF plotAddHistP plotAddPolar plotAddScatter plotAddShape plotAddTextbox plotAddTS plotAddXY plotArea plotBar plotBox plotClearLayout plotContour plotCustomLayout plotGetDefaults plotHist plotHistF plotHistP plotLayout plotLogLog plotLogX plotLogY plotOpenWindow plotPolar plotSave plotScatter plotSetAxesPen plotSetBar plotSetBarFill plotSetBarStacked plotSetBkdColor plotSetFill plotSetGrid plotSetLegend plotSetLineColor plotSetLineStyle plotSetLineSymbol plotSetLineThickness plotSetNewWindow plotSetTitle plotSetWhichYAxis plotSetXAxisShow plotSetXLabel plotSetXRange plotSetXTicInterval plotSetXTicLabel plotSetYAxisShow plotSetYLabel plotSetYRange plotSetZAxisShow plotSetZLabel plotSurface plotTS plotXY polar polychar polyeval polygamma polyint polymake polymat polymroot polymult polyroot pqgwin previousindex princomp printfm printfmt prodc psi putarray putf putvals pvCreate pvGetIndex pvGetParNames pvGetParVector pvLength pvList pvPack pvPacki pvPackm pvPackmi pvPacks pvPacksi pvPacksm pvPacksmi pvPutParVector pvTest pvUnpack QNewton QNewtonmt QNewtonmtControlCreate QNewtonmtOutCreate QNewtonSet QProg QProgmt QProgmtInCreate qqr qqre qqrep qr qre qrep qrsol qrtsol qtyr qtyre qtyrep quantile quantiled qyr qyre qyrep qz rank rankindx readr real reclassify reclassifyCuts recode recserar recsercp recserrc rerun rescale reshape rets rev rfft rffti rfftip rfftn rfftnp rfftp rndBernoulli rndBeta rndBinomial rndCauchy rndChiSquare rndCon rndCreateState rndExp rndGamma rndGeo rndGumbel rndHyperGeo rndi rndKMbeta rndKMgam rndKMi rndKMn rndKMnb rndKMp rndKMu rndKMvm rndLaplace rndLCbeta rndLCgam rndLCi rndLCn rndLCnb rndLCp rndLCu rndLCvm rndLogNorm rndMTu rndMVn rndMVt rndn rndnb rndNegBinomial rndp rndPoisson rndRayleigh rndStateSkip rndu rndvm rndWeibull rndWishart rotater round rows rowsf rref sampleData satostrC saved saveStruct savewind scale scale3d scalerr scalinfnanmiss scalmiss schtoc schur searchsourcepath seekr select selif seqa seqm setdif setdifsa setvars setvwrmode setwind shell shiftr sin singleindex sinh sleep solpd sortc sortcc sortd sorthc sorthcc sortind sortindc sortmc sortr sortrc spBiconjGradSol spChol spConjGradSol spCreate spDenseSubmat spDiagRvMat spEigv spEye spLDL spline spLU spNumNZE spOnes spreadSheetReadM spreadSheetReadSA spreadSheetWrite spScale spSubmat spToDense spTrTDense spTScalar spZeros sqpSolve sqpSolveMT sqpSolveMTControlCreate sqpSolveMTlagrangeCreate sqpSolveMToutCreate sqpSolveSet sqrt statements stdc stdsc stocv stof strcombine strindx strlen strput strrindx strsect strsplit strsplitPad strtodt strtof strtofcplx strtriml strtrimr strtrunc strtruncl strtruncpad strtruncr submat subscat substute subvec sumc sumr surface svd svd1 svd2 svdcusv svds svdusv sysstate tab tan tanh tempname time timedt timestr timeutc title tkf2eps tkf2ps tocart todaydt toeplitz token topolar trapchk trigamma trimr trunc type typecv typef union unionsa uniqindx uniqindxsa unique uniquesa upmat upmat1 upper utctodt utctodtv utrisol vals varCovMS varCovXS varget vargetl varmall varmares varput varputl vartypef vcm vcms vcx vcxs vec vech vecr vector vget view viewxyz vlist vnamecv volume vput vread vtypecv wait waitc walkindex where window writer xlabel xlsGetSheetCount xlsGetSheetSize xlsGetSheetTypes xlsMakeRange xlsReadM xlsReadSA xlsWrite xlsWriteM xlsWriteSA xpnd xtics xy xyz ylabel ytics zeros zeta zlabel ztics cdfEmpirical dot h5create h5open h5read h5readAttribute h5write h5writeAttribute ldl plotAddErrorBar plotAddSurface plotCDFEmpirical plotSetColormap plotSetContourLabels plotSetLegendFont plotSetTextInterpreter plotSetXTicCount plotSetYTicCount plotSetZLevels powerm strjoin sylvester strtrim",literal:"DB_AFTER_LAST_ROW DB_ALL_TABLES DB_BATCH_OPERATIONS DB_BEFORE_FIRST_ROW DB_BLOB DB_EVENT_NOTIFICATIONS DB_FINISH_QUERY DB_HIGH_PRECISION DB_LAST_INSERT_ID DB_LOW_PRECISION_DOUBLE DB_LOW_PRECISION_INT32 DB_LOW_PRECISION_INT64 DB_LOW_PRECISION_NUMBERS DB_MULTIPLE_RESULT_SETS DB_NAMED_PLACEHOLDERS DB_POSITIONAL_PLACEHOLDERS DB_PREPARED_QUERIES DB_QUERY_SIZE DB_SIMPLE_LOCKING DB_SYSTEM_TABLES DB_TABLES DB_TRANSACTIONS DB_UNICODE DB_VIEWS __STDIN __STDOUT __STDERR __FILE_DIR"},i=e.COMMENT("@","@"),o={className:"meta",begin:"#",end:"$",keywords:{keyword:"define definecs|10 undef ifdef ifndef iflight ifdllcall ifmac ifos2win ifunix else endif lineson linesoff srcfile srcline"},contains:[{begin:/\\\n/,relevance:0},{beginKeywords:"include",end:"$",keywords:{keyword:"include"},contains:[{className:"string",begin:'"',end:'"',illegal:"\\n"}]},e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,i]},s={begin:/\bstruct\s+/,end:/\s/,keywords:"struct",contains:[{className:"type",begin:e.UNDERSCORE_IDENT_RE,relevance:0}]},l=[{className:"params",begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,endsWithParent:!0,relevance:0,contains:[{className:"literal",begin:/\.\.\./},e.C_NUMBER_MODE,e.C_BLOCK_COMMENT_MODE,i,s]}],c={className:"title",begin:e.UNDERSCORE_IDENT_RE,relevance:0},d=function(f,S,v){const h=e.inherit({className:"function",beginKeywords:f,end:S,excludeEnd:!0,contains:[].concat(l)},v||{});return h.contains.push(c),h.contains.push(e.C_NUMBER_MODE),h.contains.push(e.C_BLOCK_COMMENT_MODE),h.contains.push(i),h},_={className:"built_in",begin:"\\b("+n.built_in.split(" ").join("|")+")\\b"},p={className:"string",begin:'"',end:'"',contains:[e.BACKSLASH_ESCAPE],relevance:0},g={begin:e.UNDERSCORE_IDENT_RE+"\\s*\\(",returnBegin:!0,keywords:n,relevance:0,contains:[{beginKeywords:n.keyword},_,{className:"built_in",begin:e.UNDERSCORE_IDENT_RE,relevance:0}]},E={begin:/\(/,end:/\)/,relevance:0,keywords:{built_in:n.built_in,literal:n.literal},contains:[e.C_NUMBER_MODE,e.C_BLOCK_COMMENT_MODE,i,_,g,p,"self"]};return g.contains.push(E),{name:"GAUSS",aliases:["gss"],case_insensitive:!0,keywords:n,illegal:/(\{[%#]|[%#]\}| <- )/,contains:[e.C_NUMBER_MODE,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,i,p,o,{className:"keyword",begin:/\bexternal (matrix|string|array|sparse matrix|struct|proc|keyword|fn)/},d("proc keyword",";"),d("fn","="),{beginKeywords:"for threadfor",end:/;/,relevance:0,contains:[e.C_BLOCK_COMMENT_MODE,i,E]},{variants:[{begin:e.UNDERSCORE_IDENT_RE+"\\."+e.UNDERSCORE_IDENT_RE},{begin:e.UNDERSCORE_IDENT_RE+"\\s*="}],relevance:0},g,s]}}return jd=t,jd}var e_,aT;function sAe(){if(aT)return e_;aT=1;function t(e){const n="[A-Z_][A-Z0-9_.]*",i="%",o={$pattern:n,keyword:"IF DO WHILE ENDWHILE CALL ENDIF SUB ENDSUB GOTO REPEAT ENDREPEAT EQ LT GT NE GE LE OR XOR"},s={className:"meta",begin:"([O])([0-9]+)"},l=e.inherit(e.C_NUMBER_MODE,{begin:"([-+]?((\\.\\d+)|(\\d+)(\\.\\d*)?))|"+e.C_NUMBER_RE}),c=[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.COMMENT(/\(/,/\)/),l,e.inherit(e.APOS_STRING_MODE,{illegal:null}),e.inherit(e.QUOTE_STRING_MODE,{illegal:null}),{className:"name",begin:"([G])([0-9]+\\.?[0-9]?)"},{className:"name",begin:"([M])([0-9]+\\.?[0-9]?)"},{className:"attr",begin:"(VC|VS|#)",end:"(\\d+)"},{className:"attr",begin:"(VZOFX|VZOFY|VZOFZ)"},{className:"built_in",begin:"(ATAN|ABS|ACOS|ASIN|SIN|COS|EXP|FIX|FUP|ROUND|LN|TAN)(\\[)",contains:[l],end:"\\]"},{className:"symbol",variants:[{begin:"N",end:"\\d+",illegal:"\\W"}]}];return{name:"G-code (ISO 6983)",aliases:["nc"],case_insensitive:!0,keywords:o,contains:[{className:"meta",begin:i},s].concat(c)}}return e_=t,e_}var t_,oT;function lAe(){if(oT)return t_;oT=1;function t(e){return{name:"Gherkin",aliases:["feature"],keywords:"Feature Background Ability Business Need Scenario Scenarios Scenario Outline Scenario Template Examples Given And Then But When",contains:[{className:"symbol",begin:"\\*",relevance:0},{className:"meta",begin:"@[^@\\s]+"},{begin:"\\|",end:"\\|\\w*$",contains:[{className:"string",begin:"[^|]+"}]},{className:"variable",begin:"<",end:">"},e.HASH_COMMENT_MODE,{className:"string",begin:'"""',end:'"""'},e.QUOTE_STRING_MODE]}}return t_=t,t_}var n_,sT;function cAe(){if(sT)return n_;sT=1;function t(e){return{name:"GLSL",keywords:{keyword:"break continue discard do else for if return while switch case default attribute binding buffer ccw centroid centroid varying coherent column_major const cw depth_any depth_greater depth_less depth_unchanged early_fragment_tests equal_spacing flat fractional_even_spacing fractional_odd_spacing highp in index inout invariant invocations isolines layout line_strip lines lines_adjacency local_size_x local_size_y local_size_z location lowp max_vertices mediump noperspective offset origin_upper_left out packed patch pixel_center_integer point_mode points precise precision quads r11f_g11f_b10f r16 r16_snorm r16f r16i r16ui r32f r32i r32ui r8 r8_snorm r8i r8ui readonly restrict rg16 rg16_snorm rg16f rg16i rg16ui rg32f rg32i rg32ui rg8 rg8_snorm rg8i rg8ui rgb10_a2 rgb10_a2ui rgba16 rgba16_snorm rgba16f rgba16i rgba16ui rgba32f rgba32i rgba32ui rgba8 rgba8_snorm rgba8i rgba8ui row_major sample shared smooth std140 std430 stream triangle_strip triangles triangles_adjacency uniform varying vertices volatile writeonly",type:"atomic_uint bool bvec2 bvec3 bvec4 dmat2 dmat2x2 dmat2x3 dmat2x4 dmat3 dmat3x2 dmat3x3 dmat3x4 dmat4 dmat4x2 dmat4x3 dmat4x4 double dvec2 dvec3 dvec4 float iimage1D iimage1DArray iimage2D iimage2DArray iimage2DMS iimage2DMSArray iimage2DRect iimage3D iimageBuffer iimageCube iimageCubeArray image1D image1DArray image2D image2DArray image2DMS image2DMSArray image2DRect image3D imageBuffer imageCube imageCubeArray int isampler1D isampler1DArray isampler2D isampler2DArray isampler2DMS isampler2DMSArray isampler2DRect isampler3D isamplerBuffer isamplerCube isamplerCubeArray ivec2 ivec3 ivec4 mat2 mat2x2 mat2x3 mat2x4 mat3 mat3x2 mat3x3 mat3x4 mat4 mat4x2 mat4x3 mat4x4 sampler1D sampler1DArray sampler1DArrayShadow sampler1DShadow sampler2D sampler2DArray sampler2DArrayShadow sampler2DMS sampler2DMSArray sampler2DRect sampler2DRectShadow sampler2DShadow sampler3D samplerBuffer samplerCube samplerCubeArray samplerCubeArrayShadow samplerCubeShadow image1D uimage1DArray uimage2D uimage2DArray uimage2DMS uimage2DMSArray uimage2DRect uimage3D uimageBuffer uimageCube uimageCubeArray uint usampler1D usampler1DArray usampler2D usampler2DArray usampler2DMS usampler2DMSArray usampler2DRect usampler3D samplerBuffer usamplerCube usamplerCubeArray uvec2 uvec3 uvec4 vec2 vec3 vec4 void",built_in:"gl_MaxAtomicCounterBindings gl_MaxAtomicCounterBufferSize gl_MaxClipDistances gl_MaxClipPlanes gl_MaxCombinedAtomicCounterBuffers gl_MaxCombinedAtomicCounters gl_MaxCombinedImageUniforms gl_MaxCombinedImageUnitsAndFragmentOutputs gl_MaxCombinedTextureImageUnits gl_MaxComputeAtomicCounterBuffers gl_MaxComputeAtomicCounters gl_MaxComputeImageUniforms gl_MaxComputeTextureImageUnits gl_MaxComputeUniformComponents gl_MaxComputeWorkGroupCount gl_MaxComputeWorkGroupSize gl_MaxDrawBuffers gl_MaxFragmentAtomicCounterBuffers gl_MaxFragmentAtomicCounters gl_MaxFragmentImageUniforms gl_MaxFragmentInputComponents gl_MaxFragmentInputVectors gl_MaxFragmentUniformComponents gl_MaxFragmentUniformVectors gl_MaxGeometryAtomicCounterBuffers gl_MaxGeometryAtomicCounters gl_MaxGeometryImageUniforms gl_MaxGeometryInputComponents gl_MaxGeometryOutputComponents gl_MaxGeometryOutputVertices gl_MaxGeometryTextureImageUnits gl_MaxGeometryTotalOutputComponents gl_MaxGeometryUniformComponents gl_MaxGeometryVaryingComponents gl_MaxImageSamples gl_MaxImageUnits gl_MaxLights gl_MaxPatchVertices gl_MaxProgramTexelOffset gl_MaxTessControlAtomicCounterBuffers gl_MaxTessControlAtomicCounters gl_MaxTessControlImageUniforms gl_MaxTessControlInputComponents gl_MaxTessControlOutputComponents gl_MaxTessControlTextureImageUnits gl_MaxTessControlTotalOutputComponents gl_MaxTessControlUniformComponents gl_MaxTessEvaluationAtomicCounterBuffers gl_MaxTessEvaluationAtomicCounters gl_MaxTessEvaluationImageUniforms gl_MaxTessEvaluationInputComponents gl_MaxTessEvaluationOutputComponents gl_MaxTessEvaluationTextureImageUnits gl_MaxTessEvaluationUniformComponents gl_MaxTessGenLevel gl_MaxTessPatchComponents gl_MaxTextureCoords gl_MaxTextureImageUnits gl_MaxTextureUnits gl_MaxVaryingComponents gl_MaxVaryingFloats gl_MaxVaryingVectors gl_MaxVertexAtomicCounterBuffers gl_MaxVertexAtomicCounters gl_MaxVertexAttribs gl_MaxVertexImageUniforms gl_MaxVertexOutputComponents gl_MaxVertexOutputVectors gl_MaxVertexTextureImageUnits gl_MaxVertexUniformComponents gl_MaxVertexUniformVectors gl_MaxViewports gl_MinProgramTexelOffset gl_BackColor gl_BackLightModelProduct gl_BackLightProduct gl_BackMaterial gl_BackSecondaryColor gl_ClipDistance gl_ClipPlane gl_ClipVertex gl_Color gl_DepthRange gl_EyePlaneQ gl_EyePlaneR gl_EyePlaneS gl_EyePlaneT gl_Fog gl_FogCoord gl_FogFragCoord gl_FragColor gl_FragCoord gl_FragData gl_FragDepth gl_FrontColor gl_FrontFacing gl_FrontLightModelProduct gl_FrontLightProduct gl_FrontMaterial gl_FrontSecondaryColor gl_GlobalInvocationID gl_InstanceID gl_InvocationID gl_Layer gl_LightModel gl_LightSource gl_LocalInvocationID gl_LocalInvocationIndex gl_ModelViewMatrix gl_ModelViewMatrixInverse gl_ModelViewMatrixInverseTranspose gl_ModelViewMatrixTranspose gl_ModelViewProjectionMatrix gl_ModelViewProjectionMatrixInverse gl_ModelViewProjectionMatrixInverseTranspose gl_ModelViewProjectionMatrixTranspose gl_MultiTexCoord0 gl_MultiTexCoord1 gl_MultiTexCoord2 gl_MultiTexCoord3 gl_MultiTexCoord4 gl_MultiTexCoord5 gl_MultiTexCoord6 gl_MultiTexCoord7 gl_Normal gl_NormalMatrix gl_NormalScale gl_NumSamples gl_NumWorkGroups gl_ObjectPlaneQ gl_ObjectPlaneR gl_ObjectPlaneS gl_ObjectPlaneT gl_PatchVerticesIn gl_Point gl_PointCoord gl_PointSize gl_Position gl_PrimitiveID gl_PrimitiveIDIn gl_ProjectionMatrix gl_ProjectionMatrixInverse gl_ProjectionMatrixInverseTranspose gl_ProjectionMatrixTranspose gl_SampleID gl_SampleMask gl_SampleMaskIn gl_SamplePosition gl_SecondaryColor gl_TessCoord gl_TessLevelInner gl_TessLevelOuter gl_TexCoord gl_TextureEnvColor gl_TextureMatrix gl_TextureMatrixInverse gl_TextureMatrixInverseTranspose gl_TextureMatrixTranspose gl_Vertex gl_VertexID gl_ViewportIndex gl_WorkGroupID gl_WorkGroupSize gl_in gl_out EmitStreamVertex EmitVertex EndPrimitive EndStreamPrimitive abs acos acosh all any asin asinh atan atanh atomicAdd atomicAnd atomicCompSwap atomicCounter atomicCounterDecrement atomicCounterIncrement atomicExchange atomicMax atomicMin atomicOr atomicXor barrier bitCount bitfieldExtract bitfieldInsert bitfieldReverse ceil clamp cos cosh cross dFdx dFdy degrees determinant distance dot equal exp exp2 faceforward findLSB findMSB floatBitsToInt floatBitsToUint floor fma fract frexp ftransform fwidth greaterThan greaterThanEqual groupMemoryBarrier imageAtomicAdd imageAtomicAnd imageAtomicCompSwap imageAtomicExchange imageAtomicMax imageAtomicMin imageAtomicOr imageAtomicXor imageLoad imageSize imageStore imulExtended intBitsToFloat interpolateAtCentroid interpolateAtOffset interpolateAtSample inverse inversesqrt isinf isnan ldexp length lessThan lessThanEqual log log2 matrixCompMult max memoryBarrier memoryBarrierAtomicCounter memoryBarrierBuffer memoryBarrierImage memoryBarrierShared min mix mod modf noise1 noise2 noise3 noise4 normalize not notEqual outerProduct packDouble2x32 packHalf2x16 packSnorm2x16 packSnorm4x8 packUnorm2x16 packUnorm4x8 pow radians reflect refract round roundEven shadow1D shadow1DLod shadow1DProj shadow1DProjLod shadow2D shadow2DLod shadow2DProj shadow2DProjLod sign sin sinh smoothstep sqrt step tan tanh texelFetch texelFetchOffset texture texture1D texture1DLod texture1DProj texture1DProjLod texture2D texture2DLod texture2DProj texture2DProjLod texture3D texture3DLod texture3DProj texture3DProjLod textureCube textureCubeLod textureGather textureGatherOffset textureGatherOffsets textureGrad textureGradOffset textureLod textureLodOffset textureOffset textureProj textureProjGrad textureProjGradOffset textureProjLod textureProjLodOffset textureProjOffset textureQueryLevels textureQueryLod textureSize transpose trunc uaddCarry uintBitsToFloat umulExtended unpackDouble2x32 unpackHalf2x16 unpackSnorm2x16 unpackSnorm4x8 unpackUnorm2x16 unpackUnorm4x8 usubBorrow",literal:"true false"},illegal:'"',contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.C_NUMBER_MODE,{className:"meta",begin:"#",end:"$"}]}}return n_=t,n_}var r_,lT;function uAe(){if(lT)return r_;lT=1;function t(e){return{name:"GML",case_insensitive:!1,keywords:{keyword:["#endregion","#macro","#region","and","begin","break","case","constructor","continue","default","delete","div","do","else","end","enum","exit","for","function","globalvar","if","mod","not","or","repeat","return","switch","then","until","var","while","with","xor"],built_in:["abs","achievement_available","achievement_event","achievement_get_challenges","achievement_get_info","achievement_get_pic","achievement_increment","achievement_load_friends","achievement_load_leaderboard","achievement_load_progress","achievement_login","achievement_login_status","achievement_logout","achievement_post","achievement_post_score","achievement_reset","achievement_send_challenge","achievement_show","achievement_show_achievements","achievement_show_challenge_notifications","achievement_show_leaderboards","action_inherited","action_kill_object","ads_disable","ads_enable","ads_engagement_active","ads_engagement_available","ads_engagement_launch","ads_event","ads_event_preload","ads_get_display_height","ads_get_display_width","ads_interstitial_available","ads_interstitial_display","ads_move","ads_set_reward_callback","ads_setup","alarm_get","alarm_set","analytics_event","analytics_event_ext","angle_difference","ansi_char","application_get_position","application_surface_draw_enable","application_surface_enable","application_surface_is_enabled","arccos","arcsin","arctan","arctan2","array_copy","array_create","array_delete","array_equals","array_height_2d","array_insert","array_length","array_length_1d","array_length_2d","array_pop","array_push","array_resize","array_sort","asset_get_index","asset_get_type","audio_channel_num","audio_create_buffer_sound","audio_create_play_queue","audio_create_stream","audio_create_sync_group","audio_debug","audio_destroy_stream","audio_destroy_sync_group","audio_emitter_create","audio_emitter_exists","audio_emitter_falloff","audio_emitter_free","audio_emitter_gain","audio_emitter_get_gain","audio_emitter_get_listener_mask","audio_emitter_get_pitch","audio_emitter_get_vx","audio_emitter_get_vy","audio_emitter_get_vz","audio_emitter_get_x","audio_emitter_get_y","audio_emitter_get_z","audio_emitter_pitch","audio_emitter_position","audio_emitter_set_listener_mask","audio_emitter_velocity","audio_exists","audio_falloff_set_model","audio_free_buffer_sound","audio_free_play_queue","audio_get_listener_count","audio_get_listener_info","audio_get_listener_mask","audio_get_master_gain","audio_get_name","audio_get_recorder_count","audio_get_recorder_info","audio_get_type","audio_group_is_loaded","audio_group_load","audio_group_load_progress","audio_group_name","audio_group_set_gain","audio_group_stop_all","audio_group_unload","audio_is_paused","audio_is_playing","audio_listener_get_data","audio_listener_orientation","audio_listener_position","audio_listener_set_orientation","audio_listener_set_position","audio_listener_set_velocity","audio_listener_velocity","audio_master_gain","audio_music_gain","audio_music_is_playing","audio_pause_all","audio_pause_music","audio_pause_sound","audio_pause_sync_group","audio_play_in_sync_group","audio_play_music","audio_play_sound","audio_play_sound_at","audio_play_sound_on","audio_queue_sound","audio_resume_all","audio_resume_music","audio_resume_sound","audio_resume_sync_group","audio_set_listener_mask","audio_set_master_gain","audio_sound_gain","audio_sound_get_gain","audio_sound_get_listener_mask","audio_sound_get_pitch","audio_sound_get_track_position","audio_sound_length","audio_sound_pitch","audio_sound_set_listener_mask","audio_sound_set_track_position","audio_start_recording","audio_start_sync_group","audio_stop_all","audio_stop_music","audio_stop_recording","audio_stop_sound","audio_stop_sync_group","audio_sync_group_debug","audio_sync_group_get_track_pos","audio_sync_group_is_playing","audio_system","background_get_height","background_get_width","base64_decode","base64_encode","browser_input_capture","buffer_async_group_begin","buffer_async_group_end","buffer_async_group_option","buffer_base64_decode","buffer_base64_decode_ext","buffer_base64_encode","buffer_copy","buffer_copy_from_vertex_buffer","buffer_create","buffer_create_from_vertex_buffer","buffer_create_from_vertex_buffer_ext","buffer_delete","buffer_exists","buffer_fill","buffer_get_address","buffer_get_alignment","buffer_get_size","buffer_get_surface","buffer_get_type","buffer_load","buffer_load_async","buffer_load_ext","buffer_load_partial","buffer_md5","buffer_peek","buffer_poke","buffer_read","buffer_resize","buffer_save","buffer_save_async","buffer_save_ext","buffer_seek","buffer_set_surface","buffer_sha1","buffer_sizeof","buffer_tell","buffer_write","camera_apply","camera_create","camera_create_view","camera_destroy","camera_get_active","camera_get_begin_script","camera_get_default","camera_get_end_script","camera_get_proj_mat","camera_get_update_script","camera_get_view_angle","camera_get_view_border_x","camera_get_view_border_y","camera_get_view_height","camera_get_view_mat","camera_get_view_speed_x","camera_get_view_speed_y","camera_get_view_target","camera_get_view_width","camera_get_view_x","camera_get_view_y","camera_set_begin_script","camera_set_default","camera_set_end_script","camera_set_proj_mat","camera_set_update_script","camera_set_view_angle","camera_set_view_border","camera_set_view_mat","camera_set_view_pos","camera_set_view_size","camera_set_view_speed","camera_set_view_target","ceil","choose","chr","clamp","clickable_add","clickable_add_ext","clickable_change","clickable_change_ext","clickable_delete","clickable_exists","clickable_set_style","clipboard_get_text","clipboard_has_text","clipboard_set_text","cloud_file_save","cloud_string_save","cloud_synchronise","code_is_compiled","collision_circle","collision_circle_list","collision_ellipse","collision_ellipse_list","collision_line","collision_line_list","collision_point","collision_point_list","collision_rectangle","collision_rectangle_list","color_get_blue","color_get_green","color_get_hue","color_get_red","color_get_saturation","color_get_value","colour_get_blue","colour_get_green","colour_get_hue","colour_get_red","colour_get_saturation","colour_get_value","cos","darccos","darcsin","darctan","darctan2","date_compare_date","date_compare_datetime","date_compare_time","date_create_datetime","date_current_datetime","date_date_of","date_date_string","date_datetime_string","date_day_span","date_days_in_month","date_days_in_year","date_get_day","date_get_day_of_year","date_get_hour","date_get_hour_of_year","date_get_minute","date_get_minute_of_year","date_get_month","date_get_second","date_get_second_of_year","date_get_timezone","date_get_week","date_get_weekday","date_get_year","date_hour_span","date_inc_day","date_inc_hour","date_inc_minute","date_inc_month","date_inc_second","date_inc_week","date_inc_year","date_is_today","date_leap_year","date_minute_span","date_month_span","date_second_span","date_set_timezone","date_time_of","date_time_string","date_valid_datetime","date_week_span","date_year_span","dcos","debug_event","debug_get_callstack","degtorad","device_get_tilt_x","device_get_tilt_y","device_get_tilt_z","device_is_keypad_open","device_mouse_check_button","device_mouse_check_button_pressed","device_mouse_check_button_released","device_mouse_dbclick_enable","device_mouse_raw_x","device_mouse_raw_y","device_mouse_x","device_mouse_x_to_gui","device_mouse_y","device_mouse_y_to_gui","directory_create","directory_destroy","directory_exists","display_get_dpi_x","display_get_dpi_y","display_get_gui_height","display_get_gui_width","display_get_height","display_get_orientation","display_get_sleep_margin","display_get_timing_method","display_get_width","display_mouse_get_x","display_mouse_get_y","display_mouse_set","display_reset","display_set_gui_maximise","display_set_gui_maximize","display_set_gui_size","display_set_sleep_margin","display_set_timing_method","display_set_ui_visibility","distance_to_object","distance_to_point","dot_product","dot_product_3d","dot_product_3d_normalised","dot_product_3d_normalized","dot_product_normalised","dot_product_normalized","draw_arrow","draw_background","draw_background_ext","draw_background_part_ext","draw_background_tiled","draw_button","draw_circle","draw_circle_color","draw_circle_colour","draw_clear","draw_clear_alpha","draw_ellipse","draw_ellipse_color","draw_ellipse_colour","draw_enable_alphablend","draw_enable_drawevent","draw_enable_swf_aa","draw_flush","draw_get_alpha","draw_get_color","draw_get_colour","draw_get_lighting","draw_get_swf_aa_level","draw_getpixel","draw_getpixel_ext","draw_healthbar","draw_highscore","draw_light_define_ambient","draw_light_define_direction","draw_light_define_point","draw_light_enable","draw_light_get","draw_light_get_ambient","draw_line","draw_line_color","draw_line_colour","draw_line_width","draw_line_width_color","draw_line_width_colour","draw_path","draw_point","draw_point_color","draw_point_colour","draw_primitive_begin","draw_primitive_begin_texture","draw_primitive_end","draw_rectangle","draw_rectangle_color","draw_rectangle_colour","draw_roundrect","draw_roundrect_color","draw_roundrect_color_ext","draw_roundrect_colour","draw_roundrect_colour_ext","draw_roundrect_ext","draw_self","draw_set_alpha","draw_set_alpha_test","draw_set_alpha_test_ref_value","draw_set_blend_mode","draw_set_blend_mode_ext","draw_set_circle_precision","draw_set_color","draw_set_color_write_enable","draw_set_colour","draw_set_font","draw_set_halign","draw_set_lighting","draw_set_swf_aa_level","draw_set_valign","draw_skeleton","draw_skeleton_collision","draw_skeleton_instance","draw_skeleton_time","draw_sprite","draw_sprite_ext","draw_sprite_general","draw_sprite_part","draw_sprite_part_ext","draw_sprite_pos","draw_sprite_stretched","draw_sprite_stretched_ext","draw_sprite_tiled","draw_sprite_tiled_ext","draw_surface","draw_surface_ext","draw_surface_general","draw_surface_part","draw_surface_part_ext","draw_surface_stretched","draw_surface_stretched_ext","draw_surface_tiled","draw_surface_tiled_ext","draw_text","draw_text_color","draw_text_colour","draw_text_ext","draw_text_ext_color","draw_text_ext_colour","draw_text_ext_transformed","draw_text_ext_transformed_color","draw_text_ext_transformed_colour","draw_text_transformed","draw_text_transformed_color","draw_text_transformed_colour","draw_texture_flush","draw_tile","draw_tilemap","draw_triangle","draw_triangle_color","draw_triangle_colour","draw_vertex","draw_vertex_color","draw_vertex_colour","draw_vertex_texture","draw_vertex_texture_color","draw_vertex_texture_colour","ds_exists","ds_grid_add","ds_grid_add_disk","ds_grid_add_grid_region","ds_grid_add_region","ds_grid_clear","ds_grid_copy","ds_grid_create","ds_grid_destroy","ds_grid_get","ds_grid_get_disk_max","ds_grid_get_disk_mean","ds_grid_get_disk_min","ds_grid_get_disk_sum","ds_grid_get_max","ds_grid_get_mean","ds_grid_get_min","ds_grid_get_sum","ds_grid_height","ds_grid_multiply","ds_grid_multiply_disk","ds_grid_multiply_grid_region","ds_grid_multiply_region","ds_grid_read","ds_grid_resize","ds_grid_set","ds_grid_set_disk","ds_grid_set_grid_region","ds_grid_set_region","ds_grid_shuffle","ds_grid_sort","ds_grid_value_disk_exists","ds_grid_value_disk_x","ds_grid_value_disk_y","ds_grid_value_exists","ds_grid_value_x","ds_grid_value_y","ds_grid_width","ds_grid_write","ds_list_add","ds_list_clear","ds_list_copy","ds_list_create","ds_list_delete","ds_list_destroy","ds_list_empty","ds_list_find_index","ds_list_find_value","ds_list_insert","ds_list_mark_as_list","ds_list_mark_as_map","ds_list_read","ds_list_replace","ds_list_set","ds_list_shuffle","ds_list_size","ds_list_sort","ds_list_write","ds_map_add","ds_map_add_list","ds_map_add_map","ds_map_clear","ds_map_copy","ds_map_create","ds_map_delete","ds_map_destroy","ds_map_empty","ds_map_exists","ds_map_find_first","ds_map_find_last","ds_map_find_next","ds_map_find_previous","ds_map_find_value","ds_map_read","ds_map_replace","ds_map_replace_list","ds_map_replace_map","ds_map_secure_load","ds_map_secure_load_buffer","ds_map_secure_save","ds_map_secure_save_buffer","ds_map_set","ds_map_size","ds_map_write","ds_priority_add","ds_priority_change_priority","ds_priority_clear","ds_priority_copy","ds_priority_create","ds_priority_delete_max","ds_priority_delete_min","ds_priority_delete_value","ds_priority_destroy","ds_priority_empty","ds_priority_find_max","ds_priority_find_min","ds_priority_find_priority","ds_priority_read","ds_priority_size","ds_priority_write","ds_queue_clear","ds_queue_copy","ds_queue_create","ds_queue_dequeue","ds_queue_destroy","ds_queue_empty","ds_queue_enqueue","ds_queue_head","ds_queue_read","ds_queue_size","ds_queue_tail","ds_queue_write","ds_set_precision","ds_stack_clear","ds_stack_copy","ds_stack_create","ds_stack_destroy","ds_stack_empty","ds_stack_pop","ds_stack_push","ds_stack_read","ds_stack_size","ds_stack_top","ds_stack_write","dsin","dtan","effect_clear","effect_create_above","effect_create_below","environment_get_variable","event_inherited","event_perform","event_perform_object","event_user","exp","external_call","external_define","external_free","facebook_accesstoken","facebook_check_permission","facebook_dialog","facebook_graph_request","facebook_init","facebook_launch_offerwall","facebook_login","facebook_logout","facebook_post_message","facebook_request_publish_permissions","facebook_request_read_permissions","facebook_send_invite","facebook_status","facebook_user_id","file_attributes","file_bin_close","file_bin_open","file_bin_position","file_bin_read_byte","file_bin_rewrite","file_bin_seek","file_bin_size","file_bin_write_byte","file_copy","file_delete","file_exists","file_find_close","file_find_first","file_find_next","file_rename","file_text_close","file_text_eof","file_text_eoln","file_text_open_append","file_text_open_from_string","file_text_open_read","file_text_open_write","file_text_read_real","file_text_read_string","file_text_readln","file_text_write_real","file_text_write_string","file_text_writeln","filename_change_ext","filename_dir","filename_drive","filename_ext","filename_name","filename_path","floor","font_add","font_add_enable_aa","font_add_get_enable_aa","font_add_sprite","font_add_sprite_ext","font_delete","font_exists","font_get_bold","font_get_first","font_get_fontname","font_get_italic","font_get_last","font_get_name","font_get_size","font_get_texture","font_get_uvs","font_replace","font_replace_sprite","font_replace_sprite_ext","font_set_cache_size","font_texture_page_size","frac","game_end","game_get_speed","game_load","game_load_buffer","game_restart","game_save","game_save_buffer","game_set_speed","gamepad_axis_count","gamepad_axis_value","gamepad_button_check","gamepad_button_check_pressed","gamepad_button_check_released","gamepad_button_count","gamepad_button_value","gamepad_get_axis_deadzone","gamepad_get_button_threshold","gamepad_get_description","gamepad_get_device_count","gamepad_is_connected","gamepad_is_supported","gamepad_set_axis_deadzone","gamepad_set_button_threshold","gamepad_set_color","gamepad_set_colour","gamepad_set_vibration","gesture_double_tap_distance","gesture_double_tap_time","gesture_drag_distance","gesture_drag_time","gesture_flick_speed","gesture_get_double_tap_distance","gesture_get_double_tap_time","gesture_get_drag_distance","gesture_get_drag_time","gesture_get_flick_speed","gesture_get_pinch_angle_away","gesture_get_pinch_angle_towards","gesture_get_pinch_distance","gesture_get_rotate_angle","gesture_get_rotate_time","gesture_get_tap_count","gesture_pinch_angle_away","gesture_pinch_angle_towards","gesture_pinch_distance","gesture_rotate_angle","gesture_rotate_time","gesture_tap_count","get_integer","get_integer_async","get_login_async","get_open_filename","get_open_filename_ext","get_save_filename","get_save_filename_ext","get_string","get_string_async","get_timer","gml_pragma","gml_release_mode","gpu_get_alphatestenable","gpu_get_alphatestfunc","gpu_get_alphatestref","gpu_get_blendenable","gpu_get_blendmode","gpu_get_blendmode_dest","gpu_get_blendmode_destalpha","gpu_get_blendmode_ext","gpu_get_blendmode_ext_sepalpha","gpu_get_blendmode_src","gpu_get_blendmode_srcalpha","gpu_get_colorwriteenable","gpu_get_colourwriteenable","gpu_get_cullmode","gpu_get_fog","gpu_get_lightingenable","gpu_get_state","gpu_get_tex_filter","gpu_get_tex_filter_ext","gpu_get_tex_max_aniso","gpu_get_tex_max_aniso_ext","gpu_get_tex_max_mip","gpu_get_tex_max_mip_ext","gpu_get_tex_min_mip","gpu_get_tex_min_mip_ext","gpu_get_tex_mip_bias","gpu_get_tex_mip_bias_ext","gpu_get_tex_mip_enable","gpu_get_tex_mip_enable_ext","gpu_get_tex_mip_filter","gpu_get_tex_mip_filter_ext","gpu_get_tex_repeat","gpu_get_tex_repeat_ext","gpu_get_texfilter","gpu_get_texfilter_ext","gpu_get_texrepeat","gpu_get_texrepeat_ext","gpu_get_zfunc","gpu_get_ztestenable","gpu_get_zwriteenable","gpu_pop_state","gpu_push_state","gpu_set_alphatestenable","gpu_set_alphatestfunc","gpu_set_alphatestref","gpu_set_blendenable","gpu_set_blendmode","gpu_set_blendmode_ext","gpu_set_blendmode_ext_sepalpha","gpu_set_colorwriteenable","gpu_set_colourwriteenable","gpu_set_cullmode","gpu_set_fog","gpu_set_lightingenable","gpu_set_state","gpu_set_tex_filter","gpu_set_tex_filter_ext","gpu_set_tex_max_aniso","gpu_set_tex_max_aniso_ext","gpu_set_tex_max_mip","gpu_set_tex_max_mip_ext","gpu_set_tex_min_mip","gpu_set_tex_min_mip_ext","gpu_set_tex_mip_bias","gpu_set_tex_mip_bias_ext","gpu_set_tex_mip_enable","gpu_set_tex_mip_enable_ext","gpu_set_tex_mip_filter","gpu_set_tex_mip_filter_ext","gpu_set_tex_repeat","gpu_set_tex_repeat_ext","gpu_set_texfilter","gpu_set_texfilter_ext","gpu_set_texrepeat","gpu_set_texrepeat_ext","gpu_set_zfunc","gpu_set_ztestenable","gpu_set_zwriteenable","highscore_add","highscore_clear","highscore_name","highscore_value","http_get","http_get_file","http_post_string","http_request","iap_acquire","iap_activate","iap_consume","iap_enumerate_products","iap_product_details","iap_purchase_details","iap_restore_all","iap_status","ini_close","ini_key_delete","ini_key_exists","ini_open","ini_open_from_string","ini_read_real","ini_read_string","ini_section_delete","ini_section_exists","ini_write_real","ini_write_string","instance_activate_all","instance_activate_layer","instance_activate_object","instance_activate_region","instance_change","instance_copy","instance_create","instance_create_depth","instance_create_layer","instance_deactivate_all","instance_deactivate_layer","instance_deactivate_object","instance_deactivate_region","instance_destroy","instance_exists","instance_find","instance_furthest","instance_id_get","instance_nearest","instance_number","instance_place","instance_place_list","instance_position","instance_position_list","int64","io_clear","irandom","irandom_range","is_array","is_bool","is_infinity","is_int32","is_int64","is_matrix","is_method","is_nan","is_numeric","is_ptr","is_real","is_string","is_struct","is_undefined","is_vec3","is_vec4","json_decode","json_encode","keyboard_check","keyboard_check_direct","keyboard_check_pressed","keyboard_check_released","keyboard_clear","keyboard_get_map","keyboard_get_numlock","keyboard_key_press","keyboard_key_release","keyboard_set_map","keyboard_set_numlock","keyboard_unset_map","keyboard_virtual_height","keyboard_virtual_hide","keyboard_virtual_show","keyboard_virtual_status","layer_add_instance","layer_background_alpha","layer_background_blend","layer_background_change","layer_background_create","layer_background_destroy","layer_background_exists","layer_background_get_alpha","layer_background_get_blend","layer_background_get_htiled","layer_background_get_id","layer_background_get_index","layer_background_get_speed","layer_background_get_sprite","layer_background_get_stretch","layer_background_get_visible","layer_background_get_vtiled","layer_background_get_xscale","layer_background_get_yscale","layer_background_htiled","layer_background_index","layer_background_speed","layer_background_sprite","layer_background_stretch","layer_background_visible","layer_background_vtiled","layer_background_xscale","layer_background_yscale","layer_create","layer_depth","layer_destroy","layer_destroy_instances","layer_element_move","layer_exists","layer_force_draw_depth","layer_get_all","layer_get_all_elements","layer_get_depth","layer_get_element_layer","layer_get_element_type","layer_get_forced_depth","layer_get_hspeed","layer_get_id","layer_get_id_at_depth","layer_get_name","layer_get_script_begin","layer_get_script_end","layer_get_shader","layer_get_target_room","layer_get_visible","layer_get_vspeed","layer_get_x","layer_get_y","layer_has_instance","layer_hspeed","layer_instance_get_instance","layer_is_draw_depth_forced","layer_reset_target_room","layer_script_begin","layer_script_end","layer_set_target_room","layer_set_visible","layer_shader","layer_sprite_alpha","layer_sprite_angle","layer_sprite_blend","layer_sprite_change","layer_sprite_create","layer_sprite_destroy","layer_sprite_exists","layer_sprite_get_alpha","layer_sprite_get_angle","layer_sprite_get_blend","layer_sprite_get_id","layer_sprite_get_index","layer_sprite_get_speed","layer_sprite_get_sprite","layer_sprite_get_x","layer_sprite_get_xscale","layer_sprite_get_y","layer_sprite_get_yscale","layer_sprite_index","layer_sprite_speed","layer_sprite_x","layer_sprite_xscale","layer_sprite_y","layer_sprite_yscale","layer_tile_alpha","layer_tile_blend","layer_tile_change","layer_tile_create","layer_tile_destroy","layer_tile_exists","layer_tile_get_alpha","layer_tile_get_blend","layer_tile_get_region","layer_tile_get_sprite","layer_tile_get_visible","layer_tile_get_x","layer_tile_get_xscale","layer_tile_get_y","layer_tile_get_yscale","layer_tile_region","layer_tile_visible","layer_tile_x","layer_tile_xscale","layer_tile_y","layer_tile_yscale","layer_tilemap_create","layer_tilemap_destroy","layer_tilemap_exists","layer_tilemap_get_id","layer_vspeed","layer_x","layer_y","lengthdir_x","lengthdir_y","lerp","ln","load_csv","log10","log2","logn","make_color_hsv","make_color_rgb","make_colour_hsv","make_colour_rgb","math_get_epsilon","math_set_epsilon","matrix_build","matrix_build_identity","matrix_build_lookat","matrix_build_projection_ortho","matrix_build_projection_perspective","matrix_build_projection_perspective_fov","matrix_get","matrix_multiply","matrix_set","matrix_stack_clear","matrix_stack_is_empty","matrix_stack_multiply","matrix_stack_pop","matrix_stack_push","matrix_stack_set","matrix_stack_top","matrix_transform_vertex","max","md5_file","md5_string_unicode","md5_string_utf8","mean","median","merge_color","merge_colour","min","motion_add","motion_set","mouse_check_button","mouse_check_button_pressed","mouse_check_button_released","mouse_clear","mouse_wheel_down","mouse_wheel_up","move_bounce_all","move_bounce_solid","move_contact_all","move_contact_solid","move_outside_all","move_outside_solid","move_random","move_snap","move_towards_point","move_wrap","mp_grid_add_cell","mp_grid_add_instances","mp_grid_add_rectangle","mp_grid_clear_all","mp_grid_clear_cell","mp_grid_clear_rectangle","mp_grid_create","mp_grid_destroy","mp_grid_draw","mp_grid_get_cell","mp_grid_path","mp_grid_to_ds_grid","mp_linear_path","mp_linear_path_object","mp_linear_step","mp_linear_step_object","mp_potential_path","mp_potential_path_object","mp_potential_settings","mp_potential_step","mp_potential_step_object","network_connect","network_connect_raw","network_create_server","network_create_server_raw","network_create_socket","network_create_socket_ext","network_destroy","network_resolve","network_send_broadcast","network_send_packet","network_send_raw","network_send_udp","network_send_udp_raw","network_set_config","network_set_timeout","object_exists","object_get_depth","object_get_mask","object_get_name","object_get_parent","object_get_persistent","object_get_physics","object_get_solid","object_get_sprite","object_get_visible","object_is_ancestor","object_set_mask","object_set_persistent","object_set_solid","object_set_sprite","object_set_visible","ord","os_get_config","os_get_info","os_get_language","os_get_region","os_is_network_connected","os_is_paused","os_lock_orientation","os_powersave_enable","parameter_count","parameter_string","part_emitter_burst","part_emitter_clear","part_emitter_create","part_emitter_destroy","part_emitter_destroy_all","part_emitter_exists","part_emitter_region","part_emitter_stream","part_particles_clear","part_particles_count","part_particles_create","part_particles_create_color","part_particles_create_colour","part_system_automatic_draw","part_system_automatic_update","part_system_clear","part_system_create","part_system_create_layer","part_system_depth","part_system_destroy","part_system_draw_order","part_system_drawit","part_system_exists","part_system_get_layer","part_system_layer","part_system_position","part_system_update","part_type_alpha1","part_type_alpha2","part_type_alpha3","part_type_blend","part_type_clear","part_type_color1","part_type_color2","part_type_color3","part_type_color_hsv","part_type_color_mix","part_type_color_rgb","part_type_colour1","part_type_colour2","part_type_colour3","part_type_colour_hsv","part_type_colour_mix","part_type_colour_rgb","part_type_create","part_type_death","part_type_destroy","part_type_direction","part_type_exists","part_type_gravity","part_type_life","part_type_orientation","part_type_scale","part_type_shape","part_type_size","part_type_speed","part_type_sprite","part_type_step","path_add","path_add_point","path_append","path_assign","path_change_point","path_clear_points","path_delete","path_delete_point","path_duplicate","path_end","path_exists","path_flip","path_get_closed","path_get_kind","path_get_length","path_get_name","path_get_number","path_get_point_speed","path_get_point_x","path_get_point_y","path_get_precision","path_get_speed","path_get_time","path_get_x","path_get_y","path_insert_point","path_mirror","path_rescale","path_reverse","path_rotate","path_set_closed","path_set_kind","path_set_precision","path_shift","path_start","physics_apply_angular_impulse","physics_apply_force","physics_apply_impulse","physics_apply_local_force","physics_apply_local_impulse","physics_apply_torque","physics_draw_debug","physics_fixture_add_point","physics_fixture_bind","physics_fixture_bind_ext","physics_fixture_create","physics_fixture_delete","physics_fixture_set_angular_damping","physics_fixture_set_awake","physics_fixture_set_box_shape","physics_fixture_set_chain_shape","physics_fixture_set_circle_shape","physics_fixture_set_collision_group","physics_fixture_set_density","physics_fixture_set_edge_shape","physics_fixture_set_friction","physics_fixture_set_kinematic","physics_fixture_set_linear_damping","physics_fixture_set_polygon_shape","physics_fixture_set_restitution","physics_fixture_set_sensor","physics_get_density","physics_get_friction","physics_get_restitution","physics_joint_delete","physics_joint_distance_create","physics_joint_enable_motor","physics_joint_friction_create","physics_joint_gear_create","physics_joint_get_value","physics_joint_prismatic_create","physics_joint_pulley_create","physics_joint_revolute_create","physics_joint_rope_create","physics_joint_set_value","physics_joint_weld_create","physics_joint_wheel_create","physics_mass_properties","physics_particle_count","physics_particle_create","physics_particle_delete","physics_particle_delete_region_box","physics_particle_delete_region_circle","physics_particle_delete_region_poly","physics_particle_draw","physics_particle_draw_ext","physics_particle_get_damping","physics_particle_get_data","physics_particle_get_data_particle","physics_particle_get_density","physics_particle_get_gravity_scale","physics_particle_get_group_flags","physics_particle_get_max_count","physics_particle_get_radius","physics_particle_group_add_point","physics_particle_group_begin","physics_particle_group_box","physics_particle_group_circle","physics_particle_group_count","physics_particle_group_delete","physics_particle_group_end","physics_particle_group_get_ang_vel","physics_particle_group_get_angle","physics_particle_group_get_centre_x","physics_particle_group_get_centre_y","physics_particle_group_get_data","physics_particle_group_get_inertia","physics_particle_group_get_mass","physics_particle_group_get_vel_x","physics_particle_group_get_vel_y","physics_particle_group_get_x","physics_particle_group_get_y","physics_particle_group_join","physics_particle_group_polygon","physics_particle_set_category_flags","physics_particle_set_damping","physics_particle_set_density","physics_particle_set_flags","physics_particle_set_gravity_scale","physics_particle_set_group_flags","physics_particle_set_max_count","physics_particle_set_radius","physics_pause_enable","physics_remove_fixture","physics_set_density","physics_set_friction","physics_set_restitution","physics_test_overlap","physics_world_create","physics_world_draw_debug","physics_world_gravity","physics_world_update_iterations","physics_world_update_speed","place_empty","place_free","place_meeting","place_snapped","point_direction","point_distance","point_distance_3d","point_in_circle","point_in_rectangle","point_in_triangle","position_change","position_destroy","position_empty","position_meeting","power","ptr","push_cancel_local_notification","push_get_first_local_notification","push_get_next_local_notification","push_local_notification","radtodeg","random","random_get_seed","random_range","random_set_seed","randomise","randomize","real","rectangle_in_circle","rectangle_in_rectangle","rectangle_in_triangle","room_add","room_assign","room_duplicate","room_exists","room_get_camera","room_get_name","room_get_viewport","room_goto","room_goto_next","room_goto_previous","room_instance_add","room_instance_clear","room_next","room_previous","room_restart","room_set_background_color","room_set_background_colour","room_set_camera","room_set_height","room_set_persistent","room_set_view","room_set_view_enabled","room_set_viewport","room_set_width","round","screen_save","screen_save_part","script_execute","script_exists","script_get_name","sha1_file","sha1_string_unicode","sha1_string_utf8","shader_current","shader_enable_corner_id","shader_get_name","shader_get_sampler_index","shader_get_uniform","shader_is_compiled","shader_reset","shader_set","shader_set_uniform_f","shader_set_uniform_f_array","shader_set_uniform_i","shader_set_uniform_i_array","shader_set_uniform_matrix","shader_set_uniform_matrix_array","shaders_are_supported","shop_leave_rating","show_debug_message","show_debug_overlay","show_error","show_message","show_message_async","show_question","show_question_async","sign","sin","skeleton_animation_clear","skeleton_animation_get","skeleton_animation_get_duration","skeleton_animation_get_ext","skeleton_animation_get_frame","skeleton_animation_get_frames","skeleton_animation_list","skeleton_animation_mix","skeleton_animation_set","skeleton_animation_set_ext","skeleton_animation_set_frame","skeleton_attachment_create","skeleton_attachment_get","skeleton_attachment_set","skeleton_bone_data_get","skeleton_bone_data_set","skeleton_bone_state_get","skeleton_bone_state_set","skeleton_collision_draw_set","skeleton_get_bounds","skeleton_get_minmax","skeleton_get_num_bounds","skeleton_skin_get","skeleton_skin_list","skeleton_skin_set","skeleton_slot_data","sprite_add","sprite_add_from_surface","sprite_assign","sprite_collision_mask","sprite_create_from_surface","sprite_delete","sprite_duplicate","sprite_exists","sprite_flush","sprite_flush_multi","sprite_get_bbox_bottom","sprite_get_bbox_left","sprite_get_bbox_right","sprite_get_bbox_top","sprite_get_height","sprite_get_name","sprite_get_number","sprite_get_speed","sprite_get_speed_type","sprite_get_texture","sprite_get_tpe","sprite_get_uvs","sprite_get_width","sprite_get_xoffset","sprite_get_yoffset","sprite_merge","sprite_prefetch","sprite_prefetch_multi","sprite_replace","sprite_save","sprite_save_strip","sprite_set_alpha_from_sprite","sprite_set_cache_size","sprite_set_cache_size_ext","sprite_set_offset","sprite_set_speed","sqr","sqrt","steam_activate_overlay","steam_activate_overlay_browser","steam_activate_overlay_store","steam_activate_overlay_user","steam_available_languages","steam_clear_achievement","steam_create_leaderboard","steam_current_game_language","steam_download_friends_scores","steam_download_scores","steam_download_scores_around_user","steam_file_delete","steam_file_exists","steam_file_persisted","steam_file_read","steam_file_share","steam_file_size","steam_file_write","steam_file_write_file","steam_get_achievement","steam_get_app_id","steam_get_persona_name","steam_get_quota_free","steam_get_quota_total","steam_get_stat_avg_rate","steam_get_stat_float","steam_get_stat_int","steam_get_user_account_id","steam_get_user_persona_name","steam_get_user_steam_id","steam_initialised","steam_is_cloud_enabled_for_account","steam_is_cloud_enabled_for_app","steam_is_overlay_activated","steam_is_overlay_enabled","steam_is_screenshot_requested","steam_is_user_logged_on","steam_reset_all_stats","steam_reset_all_stats_achievements","steam_send_screenshot","steam_set_achievement","steam_set_stat_avg_rate","steam_set_stat_float","steam_set_stat_int","steam_stats_ready","steam_ugc_create_item","steam_ugc_create_query_all","steam_ugc_create_query_all_ex","steam_ugc_create_query_user","steam_ugc_create_query_user_ex","steam_ugc_download","steam_ugc_get_item_install_info","steam_ugc_get_item_update_info","steam_ugc_get_item_update_progress","steam_ugc_get_subscribed_items","steam_ugc_num_subscribed_items","steam_ugc_query_add_excluded_tag","steam_ugc_query_add_required_tag","steam_ugc_query_set_allow_cached_response","steam_ugc_query_set_cloud_filename_filter","steam_ugc_query_set_match_any_tag","steam_ugc_query_set_ranked_by_trend_days","steam_ugc_query_set_return_long_description","steam_ugc_query_set_return_total_only","steam_ugc_query_set_search_text","steam_ugc_request_item_details","steam_ugc_send_query","steam_ugc_set_item_content","steam_ugc_set_item_description","steam_ugc_set_item_preview","steam_ugc_set_item_tags","steam_ugc_set_item_title","steam_ugc_set_item_visibility","steam_ugc_start_item_update","steam_ugc_submit_item_update","steam_ugc_subscribe_item","steam_ugc_unsubscribe_item","steam_upload_score","steam_upload_score_buffer","steam_upload_score_buffer_ext","steam_upload_score_ext","steam_user_installed_dlc","steam_user_owns_dlc","string","string_byte_at","string_byte_length","string_char_at","string_copy","string_count","string_delete","string_digits","string_format","string_hash_to_newline","string_height","string_height_ext","string_insert","string_length","string_letters","string_lettersdigits","string_lower","string_ord_at","string_pos","string_repeat","string_replace","string_replace_all","string_set_byte_at","string_upper","string_width","string_width_ext","surface_copy","surface_copy_part","surface_create","surface_create_ext","surface_depth_disable","surface_exists","surface_free","surface_get_depth_disable","surface_get_height","surface_get_texture","surface_get_width","surface_getpixel","surface_getpixel_ext","surface_reset_target","surface_resize","surface_save","surface_save_part","surface_set_target","surface_set_target_ext","tan","texture_get_height","texture_get_texel_height","texture_get_texel_width","texture_get_uvs","texture_get_width","texture_global_scale","texture_set_stage","tile_get_empty","tile_get_flip","tile_get_index","tile_get_mirror","tile_get_rotate","tile_set_empty","tile_set_flip","tile_set_index","tile_set_mirror","tile_set_rotate","tilemap_clear","tilemap_get","tilemap_get_at_pixel","tilemap_get_cell_x_at_pixel","tilemap_get_cell_y_at_pixel","tilemap_get_frame","tilemap_get_global_mask","tilemap_get_height","tilemap_get_mask","tilemap_get_tile_height","tilemap_get_tile_width","tilemap_get_tileset","tilemap_get_width","tilemap_get_x","tilemap_get_y","tilemap_set","tilemap_set_at_pixel","tilemap_set_global_mask","tilemap_set_mask","tilemap_tileset","tilemap_x","tilemap_y","timeline_add","timeline_clear","timeline_delete","timeline_exists","timeline_get_name","timeline_max_moment","timeline_moment_add_script","timeline_moment_clear","timeline_size","typeof","url_get_domain","url_open","url_open_ext","url_open_full","variable_global_exists","variable_global_get","variable_global_set","variable_instance_exists","variable_instance_get","variable_instance_get_names","variable_instance_set","variable_struct_exists","variable_struct_get","variable_struct_get_names","variable_struct_names_count","variable_struct_remove","variable_struct_set","vertex_argb","vertex_begin","vertex_color","vertex_colour","vertex_create_buffer","vertex_create_buffer_ext","vertex_create_buffer_from_buffer","vertex_create_buffer_from_buffer_ext","vertex_delete_buffer","vertex_end","vertex_float1","vertex_float2","vertex_float3","vertex_float4","vertex_format_add_color","vertex_format_add_colour","vertex_format_add_custom","vertex_format_add_normal","vertex_format_add_position","vertex_format_add_position_3d","vertex_format_add_texcoord","vertex_format_add_textcoord","vertex_format_begin","vertex_format_delete","vertex_format_end","vertex_freeze","vertex_get_buffer_size","vertex_get_number","vertex_normal","vertex_position","vertex_position_3d","vertex_submit","vertex_texcoord","vertex_ubyte4","view_get_camera","view_get_hport","view_get_surface_id","view_get_visible","view_get_wport","view_get_xport","view_get_yport","view_set_camera","view_set_hport","view_set_surface_id","view_set_visible","view_set_wport","view_set_xport","view_set_yport","virtual_key_add","virtual_key_delete","virtual_key_hide","virtual_key_show","win8_appbar_add_element","win8_appbar_enable","win8_appbar_remove_element","win8_device_touchscreen_available","win8_license_initialize_sandbox","win8_license_trial_version","win8_livetile_badge_clear","win8_livetile_badge_notification","win8_livetile_notification_begin","win8_livetile_notification_end","win8_livetile_notification_expiry","win8_livetile_notification_image_add","win8_livetile_notification_secondary_begin","win8_livetile_notification_tag","win8_livetile_notification_text_add","win8_livetile_queue_enable","win8_livetile_tile_clear","win8_livetile_tile_notification","win8_search_add_suggestions","win8_search_disable","win8_search_enable","win8_secondarytile_badge_notification","win8_secondarytile_delete","win8_secondarytile_pin","win8_settingscharm_add_entry","win8_settingscharm_add_html_entry","win8_settingscharm_add_xaml_entry","win8_settingscharm_get_xaml_property","win8_settingscharm_remove_entry","win8_settingscharm_set_xaml_property","win8_share_file","win8_share_image","win8_share_screenshot","win8_share_text","win8_share_url","window_center","window_device","window_get_caption","window_get_color","window_get_colour","window_get_cursor","window_get_fullscreen","window_get_height","window_get_visible_rects","window_get_width","window_get_x","window_get_y","window_handle","window_has_focus","window_mouse_get_x","window_mouse_get_y","window_mouse_set","window_set_caption","window_set_color","window_set_colour","window_set_cursor","window_set_fullscreen","window_set_max_height","window_set_max_width","window_set_min_height","window_set_min_width","window_set_position","window_set_rectangle","window_set_size","window_view_mouse_get_x","window_view_mouse_get_y","window_views_mouse_get_x","window_views_mouse_get_y","winphone_license_trial_version","winphone_tile_back_content","winphone_tile_back_content_wide","winphone_tile_back_image","winphone_tile_back_image_wide","winphone_tile_back_title","winphone_tile_background_color","winphone_tile_background_colour","winphone_tile_count","winphone_tile_cycle_images","winphone_tile_front_image","winphone_tile_front_image_small","winphone_tile_front_image_wide","winphone_tile_icon_image","winphone_tile_small_background_image","winphone_tile_small_icon_image","winphone_tile_title","winphone_tile_wide_content","zip_unzip"],literal:["all","false","noone","pointer_invalid","pointer_null","true","undefined"],symbol:["ANSI_CHARSET","ARABIC_CHARSET","BALTIC_CHARSET","CHINESEBIG5_CHARSET","DEFAULT_CHARSET","EASTEUROPE_CHARSET","GB2312_CHARSET","GM_build_date","GM_runtime_version","GM_version","GREEK_CHARSET","HANGEUL_CHARSET","HEBREW_CHARSET","JOHAB_CHARSET","MAC_CHARSET","OEM_CHARSET","RUSSIAN_CHARSET","SHIFTJIS_CHARSET","SYMBOL_CHARSET","THAI_CHARSET","TURKISH_CHARSET","VIETNAMESE_CHARSET","achievement_achievement_info","achievement_filter_all_players","achievement_filter_favorites_only","achievement_filter_friends_only","achievement_friends_info","achievement_leaderboard_info","achievement_our_info","achievement_pic_loaded","achievement_show_achievement","achievement_show_bank","achievement_show_friend_picker","achievement_show_leaderboard","achievement_show_profile","achievement_show_purchase_prompt","achievement_show_ui","achievement_type_achievement_challenge","achievement_type_score_challenge","asset_font","asset_object","asset_path","asset_room","asset_script","asset_shader","asset_sound","asset_sprite","asset_tiles","asset_timeline","asset_unknown","audio_3d","audio_falloff_exponent_distance","audio_falloff_exponent_distance_clamped","audio_falloff_inverse_distance","audio_falloff_inverse_distance_clamped","audio_falloff_linear_distance","audio_falloff_linear_distance_clamped","audio_falloff_none","audio_mono","audio_new_system","audio_old_system","audio_stereo","bm_add","bm_complex","bm_dest_alpha","bm_dest_color","bm_dest_colour","bm_inv_dest_alpha","bm_inv_dest_color","bm_inv_dest_colour","bm_inv_src_alpha","bm_inv_src_color","bm_inv_src_colour","bm_max","bm_normal","bm_one","bm_src_alpha","bm_src_alpha_sat","bm_src_color","bm_src_colour","bm_subtract","bm_zero","browser_chrome","browser_edge","browser_firefox","browser_ie","browser_ie_mobile","browser_not_a_browser","browser_opera","browser_safari","browser_safari_mobile","browser_tizen","browser_unknown","browser_windows_store","buffer_bool","buffer_f16","buffer_f32","buffer_f64","buffer_fast","buffer_fixed","buffer_generalerror","buffer_grow","buffer_invalidtype","buffer_network","buffer_outofbounds","buffer_outofspace","buffer_s16","buffer_s32","buffer_s8","buffer_seek_end","buffer_seek_relative","buffer_seek_start","buffer_string","buffer_surface_copy","buffer_text","buffer_u16","buffer_u32","buffer_u64","buffer_u8","buffer_vbuffer","buffer_wrap","button_type","c_aqua","c_black","c_blue","c_dkgray","c_fuchsia","c_gray","c_green","c_lime","c_ltgray","c_maroon","c_navy","c_olive","c_orange","c_purple","c_red","c_silver","c_teal","c_white","c_yellow","cmpfunc_always","cmpfunc_equal","cmpfunc_greater","cmpfunc_greaterequal","cmpfunc_less","cmpfunc_lessequal","cmpfunc_never","cmpfunc_notequal","cr_appstart","cr_arrow","cr_beam","cr_cross","cr_default","cr_drag","cr_handpoint","cr_hourglass","cr_none","cr_size_all","cr_size_nesw","cr_size_ns","cr_size_nwse","cr_size_we","cr_uparrow","cull_clockwise","cull_counterclockwise","cull_noculling","device_emulator","device_ios_ipad","device_ios_ipad_retina","device_ios_iphone","device_ios_iphone5","device_ios_iphone6","device_ios_iphone6plus","device_ios_iphone_retina","device_ios_unknown","device_tablet","display_landscape","display_landscape_flipped","display_portrait","display_portrait_flipped","dll_cdecl","dll_stdcall","ds_type_grid","ds_type_list","ds_type_map","ds_type_priority","ds_type_queue","ds_type_stack","ef_cloud","ef_ellipse","ef_explosion","ef_firework","ef_flare","ef_rain","ef_ring","ef_smoke","ef_smokeup","ef_snow","ef_spark","ef_star","ev_alarm","ev_animation_end","ev_boundary","ev_cleanup","ev_close_button","ev_collision","ev_create","ev_destroy","ev_draw","ev_draw_begin","ev_draw_end","ev_draw_post","ev_draw_pre","ev_end_of_path","ev_game_end","ev_game_start","ev_gesture","ev_gesture_double_tap","ev_gesture_drag_end","ev_gesture_drag_start","ev_gesture_dragging","ev_gesture_flick","ev_gesture_pinch_end","ev_gesture_pinch_in","ev_gesture_pinch_out","ev_gesture_pinch_start","ev_gesture_rotate_end","ev_gesture_rotate_start","ev_gesture_rotating","ev_gesture_tap","ev_global_gesture_double_tap","ev_global_gesture_drag_end","ev_global_gesture_drag_start","ev_global_gesture_dragging","ev_global_gesture_flick","ev_global_gesture_pinch_end","ev_global_gesture_pinch_in","ev_global_gesture_pinch_out","ev_global_gesture_pinch_start","ev_global_gesture_rotate_end","ev_global_gesture_rotate_start","ev_global_gesture_rotating","ev_global_gesture_tap","ev_global_left_button","ev_global_left_press","ev_global_left_release","ev_global_middle_button","ev_global_middle_press","ev_global_middle_release","ev_global_right_button","ev_global_right_press","ev_global_right_release","ev_gui","ev_gui_begin","ev_gui_end","ev_joystick1_button1","ev_joystick1_button2","ev_joystick1_button3","ev_joystick1_button4","ev_joystick1_button5","ev_joystick1_button6","ev_joystick1_button7","ev_joystick1_button8","ev_joystick1_down","ev_joystick1_left","ev_joystick1_right","ev_joystick1_up","ev_joystick2_button1","ev_joystick2_button2","ev_joystick2_button3","ev_joystick2_button4","ev_joystick2_button5","ev_joystick2_button6","ev_joystick2_button7","ev_joystick2_button8","ev_joystick2_down","ev_joystick2_left","ev_joystick2_right","ev_joystick2_up","ev_keyboard","ev_keypress","ev_keyrelease","ev_left_button","ev_left_press","ev_left_release","ev_middle_button","ev_middle_press","ev_middle_release","ev_mouse","ev_mouse_enter","ev_mouse_leave","ev_mouse_wheel_down","ev_mouse_wheel_up","ev_no_button","ev_no_more_health","ev_no_more_lives","ev_other","ev_outside","ev_right_button","ev_right_press","ev_right_release","ev_room_end","ev_room_start","ev_step","ev_step_begin","ev_step_end","ev_step_normal","ev_trigger","ev_user0","ev_user1","ev_user2","ev_user3","ev_user4","ev_user5","ev_user6","ev_user7","ev_user8","ev_user9","ev_user10","ev_user11","ev_user12","ev_user13","ev_user14","ev_user15","fa_archive","fa_bottom","fa_center","fa_directory","fa_hidden","fa_left","fa_middle","fa_readonly","fa_right","fa_sysfile","fa_top","fa_volumeid","fb_login_default","fb_login_fallback_to_webview","fb_login_forcing_safari","fb_login_forcing_webview","fb_login_no_fallback_to_webview","fb_login_use_system_account","gamespeed_fps","gamespeed_microseconds","ge_lose","global","gp_axislh","gp_axislv","gp_axisrh","gp_axisrv","gp_face1","gp_face2","gp_face3","gp_face4","gp_padd","gp_padl","gp_padr","gp_padu","gp_select","gp_shoulderl","gp_shoulderlb","gp_shoulderr","gp_shoulderrb","gp_start","gp_stickl","gp_stickr","iap_available","iap_canceled","iap_ev_consume","iap_ev_product","iap_ev_purchase","iap_ev_restore","iap_ev_storeload","iap_failed","iap_purchased","iap_refunded","iap_status_available","iap_status_loading","iap_status_processing","iap_status_restoring","iap_status_unavailable","iap_status_uninitialised","iap_storeload_failed","iap_storeload_ok","iap_unavailable","input_type","kbv_autocapitalize_characters","kbv_autocapitalize_none","kbv_autocapitalize_sentences","kbv_autocapitalize_words","kbv_returnkey_continue","kbv_returnkey_default","kbv_returnkey_done","kbv_returnkey_emergency","kbv_returnkey_go","kbv_returnkey_google","kbv_returnkey_join","kbv_returnkey_next","kbv_returnkey_route","kbv_returnkey_search","kbv_returnkey_send","kbv_returnkey_yahoo","kbv_type_ascii","kbv_type_default","kbv_type_email","kbv_type_numbers","kbv_type_phone","kbv_type_phone_name","kbv_type_url","layerelementtype_background","layerelementtype_instance","layerelementtype_oldtilemap","layerelementtype_particlesystem","layerelementtype_sprite","layerelementtype_tile","layerelementtype_tilemap","layerelementtype_undefined","lb_disp_none","lb_disp_numeric","lb_disp_time_ms","lb_disp_time_sec","lb_sort_ascending","lb_sort_descending","lb_sort_none","leaderboard_type_number","leaderboard_type_time_mins_secs","lighttype_dir","lighttype_point","local","matrix_projection","matrix_view","matrix_world","mb_any","mb_left","mb_middle","mb_none","mb_right","mip_markedonly","mip_off","mip_on","network_config_connect_timeout","network_config_disable_reliable_udp","network_config_enable_reliable_udp","network_config_use_non_blocking_socket","network_socket_bluetooth","network_socket_tcp","network_socket_udp","network_type_connect","network_type_data","network_type_disconnect","network_type_non_blocking_connect","of_challen","of_challenge_tie","of_challenge_win","os_3ds","os_android","os_bb10","os_ios","os_linux","os_macosx","os_ps3","os_ps4","os_psvita","os_switch","os_symbian","os_tizen","os_tvos","os_unknown","os_uwp","os_wiiu","os_win32","os_win8native","os_windows","os_winphone","os_xbox360","os_xboxone","other","ov_achievements","ov_community","ov_friends","ov_gamegroup","ov_players","ov_settings","path_action_continue","path_action_restart","path_action_reverse","path_action_stop","phy_debug_render_aabb","phy_debug_render_collision_pairs","phy_debug_render_coms","phy_debug_render_core_shapes","phy_debug_render_joints","phy_debug_render_obb","phy_debug_render_shapes","phy_joint_anchor_1_x","phy_joint_anchor_1_y","phy_joint_anchor_2_x","phy_joint_anchor_2_y","phy_joint_angle","phy_joint_angle_limits","phy_joint_damping_ratio","phy_joint_frequency","phy_joint_length_1","phy_joint_length_2","phy_joint_lower_angle_limit","phy_joint_max_force","phy_joint_max_length","phy_joint_max_motor_force","phy_joint_max_motor_torque","phy_joint_max_torque","phy_joint_motor_force","phy_joint_motor_speed","phy_joint_motor_torque","phy_joint_reaction_force_x","phy_joint_reaction_force_y","phy_joint_reaction_torque","phy_joint_speed","phy_joint_translation","phy_joint_upper_angle_limit","phy_particle_data_flag_category","phy_particle_data_flag_color","phy_particle_data_flag_colour","phy_particle_data_flag_position","phy_particle_data_flag_typeflags","phy_particle_data_flag_velocity","phy_particle_flag_colormixing","phy_particle_flag_colourmixing","phy_particle_flag_elastic","phy_particle_flag_powder","phy_particle_flag_spring","phy_particle_flag_tensile","phy_particle_flag_viscous","phy_particle_flag_wall","phy_particle_flag_water","phy_particle_flag_zombie","phy_particle_group_flag_rigid","phy_particle_group_flag_solid","pi","pr_linelist","pr_linestrip","pr_pointlist","pr_trianglefan","pr_trianglelist","pr_trianglestrip","ps_distr_gaussian","ps_distr_invgaussian","ps_distr_linear","ps_shape_diamond","ps_shape_ellipse","ps_shape_line","ps_shape_rectangle","pt_shape_circle","pt_shape_cloud","pt_shape_disk","pt_shape_explosion","pt_shape_flare","pt_shape_line","pt_shape_pixel","pt_shape_ring","pt_shape_smoke","pt_shape_snow","pt_shape_spark","pt_shape_sphere","pt_shape_square","pt_shape_star","spritespeed_framespergameframe","spritespeed_framespersecond","text_type","tf_anisotropic","tf_linear","tf_point","tile_flip","tile_index_mask","tile_mirror","tile_rotate","timezone_local","timezone_utc","tm_countvsyncs","tm_sleep","ty_real","ty_string","ugc_filetype_community","ugc_filetype_microtrans","ugc_list_Favorited","ugc_list_Followed","ugc_list_Published","ugc_list_Subscribed","ugc_list_UsedOrPlayed","ugc_list_VotedDown","ugc_list_VotedOn","ugc_list_VotedUp","ugc_list_WillVoteLater","ugc_match_AllGuides","ugc_match_Artwork","ugc_match_Collections","ugc_match_ControllerBindings","ugc_match_IntegratedGuides","ugc_match_Items","ugc_match_Items_Mtx","ugc_match_Items_ReadyToUse","ugc_match_Screenshots","ugc_match_UsableInGame","ugc_match_Videos","ugc_match_WebGuides","ugc_query_AcceptedForGameRankedByAcceptanceDate","ugc_query_CreatedByFollowedUsersRankedByPublicationDate","ugc_query_CreatedByFriendsRankedByPublicationDate","ugc_query_FavoritedByFriendsRankedByPublicationDate","ugc_query_NotYetRated","ugc_query_RankedByNumTimesReported","ugc_query_RankedByPublicationDate","ugc_query_RankedByTextSearch","ugc_query_RankedByTotalVotesAsc","ugc_query_RankedByTrend","ugc_query_RankedByVote","ugc_query_RankedByVotesUp","ugc_result_success","ugc_sortorder_CreationOrderAsc","ugc_sortorder_CreationOrderDesc","ugc_sortorder_ForModeration","ugc_sortorder_LastUpdatedDesc","ugc_sortorder_SubscriptionDateDesc","ugc_sortorder_TitleAsc","ugc_sortorder_VoteScoreDesc","ugc_visibility_friends_only","ugc_visibility_private","ugc_visibility_public","vertex_type_color","vertex_type_colour","vertex_type_float1","vertex_type_float2","vertex_type_float3","vertex_type_float4","vertex_type_ubyte4","vertex_usage_binormal","vertex_usage_blendindices","vertex_usage_blendweight","vertex_usage_color","vertex_usage_colour","vertex_usage_depth","vertex_usage_fog","vertex_usage_normal","vertex_usage_position","vertex_usage_psize","vertex_usage_sample","vertex_usage_tangent","vertex_usage_texcoord","vertex_usage_textcoord","vk_add","vk_alt","vk_anykey","vk_backspace","vk_control","vk_decimal","vk_delete","vk_divide","vk_down","vk_end","vk_enter","vk_escape","vk_f1","vk_f2","vk_f3","vk_f4","vk_f5","vk_f6","vk_f7","vk_f8","vk_f9","vk_f10","vk_f11","vk_f12","vk_home","vk_insert","vk_lalt","vk_lcontrol","vk_left","vk_lshift","vk_multiply","vk_nokey","vk_numpad0","vk_numpad1","vk_numpad2","vk_numpad3","vk_numpad4","vk_numpad5","vk_numpad6","vk_numpad7","vk_numpad8","vk_numpad9","vk_pagedown","vk_pageup","vk_pause","vk_printscreen","vk_ralt","vk_rcontrol","vk_return","vk_right","vk_rshift","vk_shift","vk_space","vk_subtract","vk_tab","vk_up"],"variable.language":["alarm","application_surface","argument","argument0","argument1","argument2","argument3","argument4","argument5","argument6","argument7","argument8","argument9","argument10","argument11","argument12","argument13","argument14","argument15","argument_count","argument_relative","async_load","background_color","background_colour","background_showcolor","background_showcolour","bbox_bottom","bbox_left","bbox_right","bbox_top","browser_height","browser_width","caption_health","caption_lives","caption_score","current_day","current_hour","current_minute","current_month","current_second","current_time","current_weekday","current_year","cursor_sprite","debug_mode","delta_time","depth","direction","display_aa","error_last","error_occurred","event_action","event_data","event_number","event_object","event_type","fps","fps_real","friction","game_display_name","game_id","game_project_name","game_save_id","gamemaker_pro","gamemaker_registered","gamemaker_version","gravity","gravity_direction","health","hspeed","iap_data","id|0","image_alpha","image_angle","image_blend","image_index","image_number","image_speed","image_xscale","image_yscale","instance_count","instance_id","keyboard_key","keyboard_lastchar","keyboard_lastkey","keyboard_string","layer","lives","mask_index","mouse_button","mouse_lastbutton","mouse_x","mouse_y","object_index","os_browser","os_device","os_type","os_version","path_endaction","path_index","path_orientation","path_position","path_positionprevious","path_scale","path_speed","persistent","phy_active","phy_angular_damping","phy_angular_velocity","phy_bullet","phy_col_normal_x","phy_col_normal_y","phy_collision_points","phy_collision_x","phy_collision_y","phy_com_x","phy_com_y","phy_dynamic","phy_fixed_rotation","phy_inertia","phy_kinematic","phy_linear_damping","phy_linear_velocity_x","phy_linear_velocity_y","phy_mass","phy_position_x","phy_position_xprevious","phy_position_y","phy_position_yprevious","phy_rotation","phy_sleeping","phy_speed","phy_speed_x","phy_speed_y","program_directory","room","room_caption","room_first","room_height","room_last","room_persistent","room_speed","room_width","score","self","show_health","show_lives","show_score","solid","speed","sprite_height","sprite_index","sprite_width","sprite_xoffset","sprite_yoffset","temp_directory","timeline_index","timeline_loop","timeline_position","timeline_running","timeline_speed","view_angle","view_camera","view_current","view_enabled","view_hborder","view_hport","view_hspeed","view_hview","view_object","view_surface_id","view_vborder","view_visible","view_vspeed","view_wport","view_wview","view_xport","view_xview","view_yport","view_yview","visible","vspeed","webgl_enabled","working_directory","xprevious","xstart","x|0","yprevious","ystart","y|0"]},contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,e.C_NUMBER_MODE]}}return r_=t,r_}var i_,cT;function dAe(){if(cT)return i_;cT=1;function t(e){const l={keyword:["break","case","chan","const","continue","default","defer","else","fallthrough","for","func","go","goto","if","import","interface","map","package","range","return","select","struct","switch","type","var"],type:["bool","byte","complex64","complex128","error","float32","float64","int8","int16","int32","int64","string","uint8","uint16","uint32","uint64","int","uint","uintptr","rune"],literal:["true","false","iota","nil"],built_in:["append","cap","close","complex","copy","imag","len","make","new","panic","print","println","real","recover","delete"]};return{name:"Go",aliases:["golang"],keywords:l,illegal:"",end:",\\s+",returnBegin:!0,endsWithParent:!0,contains:[{className:"attr",begin:":\\w+"},e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,{begin:"\\w+",relevance:0}]}]},{begin:"\\(\\s*",end:"\\s*\\)",excludeEnd:!0,contains:[{begin:"\\w+\\s*=",end:"\\s+",returnBegin:!0,endsWithParent:!0,contains:[{className:"attr",begin:"\\w+",relevance:0},e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,{begin:"\\w+",relevance:0}]}]}]},{begin:"^\\s*[=~]\\s*"},{begin:/#\{/,end:/\}/,subLanguage:"ruby",excludeBegin:!0,excludeEnd:!0}]}}return c_=t,c_}var u_,gT;function fAe(){if(gT)return u_;gT=1;function t(e){const n=e.regex,i={$pattern:/[\w.\/]+/,built_in:["action","bindattr","collection","component","concat","debugger","each","each-in","get","hash","if","in","input","link-to","loc","log","lookup","mut","outlet","partial","query-params","render","template","textarea","unbound","unless","view","with","yield"]},o={$pattern:/[\w.\/]+/,literal:["true","false","undefined","null"]},s=/""|"[^"]+"/,l=/''|'[^']+'/,c=/\[\]|\[[^\]]+\]/,d=/[^\s!"#%&'()*+,.\/;<=>@\[\\\]^`{|}~]+/,_=/(\.|\/)/,p=n.either(s,l,c,d),g=n.concat(n.optional(/\.|\.\/|\//),p,n.anyNumberOfTimes(n.concat(_,p))),E=n.concat("(",c,"|",d,")(?==)"),f={begin:g},S=e.inherit(f,{keywords:o}),v={begin:/\(/,end:/\)/},h={className:"attr",begin:E,relevance:0,starts:{begin:/=/,end:/=/,starts:{contains:[e.NUMBER_MODE,e.QUOTE_STRING_MODE,e.APOS_STRING_MODE,S,v]}}},T={begin:/as\s+\|/,keywords:{keyword:"as"},end:/\|/,contains:[{begin:/\w+/}]},N={contains:[e.NUMBER_MODE,e.QUOTE_STRING_MODE,e.APOS_STRING_MODE,T,h,S,v],returnEnd:!0},y=e.inherit(f,{className:"name",keywords:i,starts:e.inherit(N,{end:/\)/})});v.contains=[y];const x=e.inherit(f,{keywords:i,className:"name",starts:e.inherit(N,{end:/\}\}/})}),P=e.inherit(f,{keywords:i,className:"name"}),D=e.inherit(f,{className:"name",keywords:i,starts:e.inherit(N,{end:/\}\}/})});return{name:"Handlebars",aliases:["hbs","html.hbs","html.handlebars","htmlbars"],case_insensitive:!0,subLanguage:"xml",contains:[{begin:/\\\{\{/,skip:!0},{begin:/\\\\(?=\{\{)/,skip:!0},e.COMMENT(/\{\{!--/,/--\}\}/),e.COMMENT(/\{\{!/,/\}\}/),{className:"template-tag",begin:/\{\{\{\{(?!\/)/,end:/\}\}\}\}/,contains:[x],starts:{end:/\{\{\{\{\//,returnEnd:!0,subLanguage:"xml"}},{className:"template-tag",begin:/\{\{\{\{\//,end:/\}\}\}\}/,contains:[P]},{className:"template-tag",begin:/\{\{#/,end:/\}\}/,contains:[x]},{className:"template-tag",begin:/\{\{(?=else\}\})/,end:/\}\}/,keywords:"else"},{className:"template-tag",begin:/\{\{(?=else if)/,end:/\}\}/,keywords:"else if"},{className:"template-tag",begin:/\{\{\//,end:/\}\}/,contains:[P]},{className:"template-variable",begin:/\{\{\{/,end:/\}\}\}/,contains:[D]},{className:"template-variable",begin:/\{\{/,end:/\}\}/,contains:[D]}]}}return u_=t,u_}var d_,ET;function SAe(){if(ET)return d_;ET=1;function t(e){const n={variants:[e.COMMENT("--","$"),e.COMMENT(/\{-/,/-\}/,{contains:["self"]})]},i={className:"meta",begin:/\{-#/,end:/#-\}/},o={className:"meta",begin:"^#",end:"$"},s={className:"type",begin:"\\b[A-Z][\\w']*",relevance:0},l={begin:"\\(",end:"\\)",illegal:'"',contains:[i,o,{className:"type",begin:"\\b[A-Z][\\w]*(\\((\\.\\.|,|\\w+)\\))?"},e.inherit(e.TITLE_MODE,{begin:"[_a-z][\\w']*"}),n]},c={begin:/\{/,end:/\}/,contains:l.contains},d="([0-9]_*)+",_="([0-9a-fA-F]_*)+",p="([01]_*)+",g="([0-7]_*)+",E={className:"number",relevance:0,variants:[{match:`\\b(${d})(\\.(${d}))?([eE][+-]?(${d}))?\\b`},{match:`\\b0[xX]_*(${_})(\\.(${_}))?([pP][+-]?(${d}))?\\b`},{match:`\\b0[oO](${g})\\b`},{match:`\\b0[bB](${p})\\b`}]};return{name:"Haskell",aliases:["hs"],keywords:"let in if then else case of where do module import hiding qualified type data newtype deriving class instance as default infix infixl infixr foreign export ccall stdcall cplusplus jvm dotnet safe unsafe family forall mdo proc rec",contains:[{beginKeywords:"module",end:"where",keywords:"module where",contains:[l,n],illegal:"\\W\\.|;"},{begin:"\\bimport\\b",end:"$",keywords:"import qualified as hiding",contains:[l,n],illegal:"\\W\\.|;"},{className:"class",begin:"^(\\s*)?(class|instance)\\b",end:"where",keywords:"class family instance where",contains:[s,l,n]},{className:"class",begin:"\\b(data|(new)?type)\\b",end:"$",keywords:"data family type newtype deriving",contains:[i,s,l,c,n]},{beginKeywords:"default",end:"$",contains:[s,l,n]},{beginKeywords:"infix infixl infixr",end:"$",contains:[e.C_NUMBER_MODE,n]},{begin:"\\bforeign\\b",end:"$",keywords:"foreign import export ccall stdcall cplusplus jvm dotnet safe unsafe",contains:[s,e.QUOTE_STRING_MODE,n]},{className:"meta",begin:"#!\\/usr\\/bin\\/env runhaskell",end:"$"},i,o,{scope:"string",begin:/'(?=\\?.')/,end:/'/,contains:[{scope:"char.escape",match:/\\./}]},e.QUOTE_STRING_MODE,E,s,e.inherit(e.TITLE_MODE,{begin:"^[_a-z][\\w']*"}),n,{begin:"->|<-"}]}}return d_=t,d_}var __,fT;function bAe(){if(fT)return __;fT=1;function t(e){return{name:"Haxe",aliases:["hx"],keywords:{keyword:"break case cast catch continue default do dynamic else enum extern for function here if import in inline never new override package private get set public return static super switch this throw trace try typedef untyped using var while "+"Int Float String Bool Dynamic Void Array ",built_in:"trace this",literal:"true false null _"},contains:[{className:"string",begin:"'",end:"'",contains:[e.BACKSLASH_ESCAPE,{className:"subst",begin:"\\$\\{",end:"\\}"},{className:"subst",begin:"\\$",end:/\W\}/}]},e.QUOTE_STRING_MODE,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.C_NUMBER_MODE,{className:"meta",begin:"@:",end:"$"},{className:"meta",begin:"#",end:"$",keywords:{keyword:"if else elseif end error"}},{className:"type",begin:":[ ]*",end:"[^A-Za-z0-9_ \\->]",excludeBegin:!0,excludeEnd:!0,relevance:0},{className:"type",begin:":[ ]*",end:"\\W",excludeBegin:!0,excludeEnd:!0},{className:"type",begin:"new *",end:"\\W",excludeBegin:!0,excludeEnd:!0},{className:"class",beginKeywords:"enum",end:"\\{",contains:[e.TITLE_MODE]},{className:"class",beginKeywords:"abstract",end:"[\\{$]",contains:[{className:"type",begin:"\\(",end:"\\)",excludeBegin:!0,excludeEnd:!0},{className:"type",begin:"from +",end:"\\W",excludeBegin:!0,excludeEnd:!0},{className:"type",begin:"to +",end:"\\W",excludeBegin:!0,excludeEnd:!0},e.TITLE_MODE],keywords:{keyword:"abstract from to"}},{className:"class",begin:"\\b(class|interface) +",end:"[\\{$]",excludeEnd:!0,keywords:"class interface",contains:[{className:"keyword",begin:"\\b(extends|implements) +",keywords:"extends implements",contains:[{className:"type",begin:e.IDENT_RE,relevance:0}]},e.TITLE_MODE]},{className:"function",beginKeywords:"function",end:"\\(",excludeEnd:!0,illegal:"\\S",contains:[e.TITLE_MODE]}],illegal:/<\//}}return __=t,__}var p_,ST;function hAe(){if(ST)return p_;ST=1;function t(e){return{name:"HSP",case_insensitive:!0,keywords:{$pattern:/[\w._]+/,keyword:"goto gosub return break repeat loop continue wait await dim sdim foreach dimtype dup dupptr end stop newmod delmod mref run exgoto on mcall assert logmes newlab resume yield onexit onerror onkey onclick oncmd exist delete mkdir chdir dirlist bload bsave bcopy memfile if else poke wpoke lpoke getstr chdpm memexpand memcpy memset notesel noteadd notedel noteload notesave randomize noteunsel noteget split strrep setease button chgdisp exec dialog mmload mmplay mmstop mci pset pget syscolor mes print title pos circle cls font sysfont objsize picload color palcolor palette redraw width gsel gcopy gzoom gmode bmpsave hsvcolor getkey listbox chkbox combox input mesbox buffer screen bgscr mouse objsel groll line clrobj boxf objprm objmode stick grect grotate gsquare gradf objimage objskip objenable celload celdiv celput newcom querycom delcom cnvstow comres axobj winobj sendmsg comevent comevarg sarrayconv callfunc cnvwtos comevdisp libptr system hspstat hspver stat cnt err strsize looplev sublev iparam wparam lparam refstr refdval int rnd strlen length length2 length3 length4 vartype gettime peek wpeek lpeek varptr varuse noteinfo instr abs limit getease str strmid strf getpath strtrim sin cos tan atan sqrt double absf expf logf limitf powf geteasef mousex mousey mousew hwnd hinstance hdc ginfo objinfo dirinfo sysinfo thismod __hspver__ __hsp30__ __date__ __time__ __line__ __file__ _debug __hspdef__ and or xor not screen_normal screen_palette screen_hide screen_fixedsize screen_tool screen_frame gmode_gdi gmode_mem gmode_rgb0 gmode_alpha gmode_rgb0alpha gmode_add gmode_sub gmode_pixela ginfo_mx ginfo_my ginfo_act ginfo_sel ginfo_wx1 ginfo_wy1 ginfo_wx2 ginfo_wy2 ginfo_vx ginfo_vy ginfo_sizex ginfo_sizey ginfo_winx ginfo_winy ginfo_mesx ginfo_mesy ginfo_r ginfo_g ginfo_b ginfo_paluse ginfo_dispx ginfo_dispy ginfo_cx ginfo_cy ginfo_intid ginfo_newid ginfo_sx ginfo_sy objinfo_mode objinfo_bmscr objinfo_hwnd notemax notesize dir_cur dir_exe dir_win dir_sys dir_cmdline dir_desktop dir_mydoc dir_tv font_normal font_bold font_italic font_underline font_strikeout font_antialias objmode_normal objmode_guifont objmode_usefont gsquare_grad msgothic msmincho do until while wend for next _break _continue switch case default swbreak swend ddim ldim alloc m_pi rad2deg deg2rad ease_linear ease_quad_in ease_quad_out ease_quad_inout ease_cubic_in ease_cubic_out ease_cubic_inout ease_quartic_in ease_quartic_out ease_quartic_inout ease_bounce_in ease_bounce_out ease_bounce_inout ease_shake_in ease_shake_out ease_shake_inout ease_loop"},contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.QUOTE_STRING_MODE,e.APOS_STRING_MODE,{className:"string",begin:/\{"/,end:/"\}/,contains:[e.BACKSLASH_ESCAPE]},e.COMMENT(";","$",{relevance:0}),{className:"meta",begin:"#",end:"$",keywords:{keyword:"addion cfunc cmd cmpopt comfunc const defcfunc deffunc define else endif enum epack func global if ifdef ifndef include modcfunc modfunc modinit modterm module pack packopt regcmd runtime undef usecom uselib"},contains:[e.inherit(e.QUOTE_STRING_MODE,{className:"string"}),e.NUMBER_MODE,e.C_NUMBER_MODE,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]},{className:"symbol",begin:"^\\*(\\w+|@)"},e.NUMBER_MODE,e.C_NUMBER_MODE]}}return p_=t,p_}var m_,bT;function TAe(){if(bT)return m_;bT=1;function t(e){const n=e.regex,i="HTTP/([32]|1\\.[01])",o=/[A-Za-z][A-Za-z0-9-]*/,s={className:"attribute",begin:n.concat("^",o,"(?=\\:\\s)"),starts:{contains:[{className:"punctuation",begin:/: /,relevance:0,starts:{end:"$",relevance:0}}]}},l=[s,{begin:"\\n\\n",starts:{subLanguage:[],endsWithParent:!0}}];return{name:"HTTP",aliases:["https"],illegal:/\S/,contains:[{begin:"^(?="+i+" \\d{3})",end:/$/,contains:[{className:"meta",begin:i},{className:"number",begin:"\\b\\d{3}\\b"}],starts:{end:/\b\B/,illegal:/\S/,contains:l}},{begin:"(?=^[A-Z]+ (.*?) "+i+"$)",end:/$/,contains:[{className:"string",begin:" ",end:" ",excludeBegin:!0,excludeEnd:!0},{className:"meta",begin:i},{className:"keyword",begin:"[A-Z]+"}],starts:{end:/\b\B/,illegal:/\S/,contains:l}},e.inherit(s,{relevance:0})]}}return m_=t,m_}var g_,hT;function vAe(){if(hT)return g_;hT=1;function t(e){const n="a-zA-Z_\\-!.?+*=<>&#'",i="["+n+"]["+n+"0-9/;:]*",o={$pattern:i,built_in:"!= % %= & &= * ** **= *= *map + += , --build-class-- --import-- -= . / // //= /= < << <<= <= = > >= >> >>= @ @= ^ ^= abs accumulate all and any ap-compose ap-dotimes ap-each ap-each-while ap-filter ap-first ap-if ap-last ap-map ap-map-when ap-pipe ap-reduce ap-reject apply as-> ascii assert assoc bin break butlast callable calling-module-name car case cdr chain chr coll? combinations compile compress cond cons cons? continue count curry cut cycle dec def default-method defclass defmacro defmacro-alias defmacro/g! defmain defmethod defmulti defn defn-alias defnc defnr defreader defseq del delattr delete-route dict-comp dir disassemble dispatch-reader-macro distinct divmod do doto drop drop-last drop-while empty? end-sequence eval eval-and-compile eval-when-compile even? every? except exec filter first flatten float? fn fnc fnr for for* format fraction genexpr gensym get getattr global globals group-by hasattr hash hex id identity if if* if-not if-python2 import in inc input instance? integer integer-char? integer? interleave interpose is is-coll is-cons is-empty is-even is-every is-float is-instance is-integer is-integer-char is-iterable is-iterator is-keyword is-neg is-none is-not is-numeric is-odd is-pos is-string is-symbol is-zero isinstance islice issubclass iter iterable? iterate iterator? keyword keyword? lambda last len let lif lif-not list* list-comp locals loop macro-error macroexpand macroexpand-1 macroexpand-all map max merge-with method-decorator min multi-decorator multicombinations name neg? next none? nonlocal not not-in not? nth numeric? oct odd? open or ord partition permutations pos? post-route postwalk pow prewalk print product profile/calls profile/cpu put-route quasiquote quote raise range read read-str recursive-replace reduce remove repeat repeatedly repr require rest round route route-with-methods rwm second seq set-comp setattr setv some sorted string string? sum switch symbol? take take-nth take-while tee try unless unquote unquote-splicing vars walk when while with with* with-decorator with-gensyms xi xor yield yield-from zero? zip zip-longest | |= ~"},s="[-+]?\\d+(\\.\\d+)?",l={begin:i,relevance:0},c={className:"number",begin:s,relevance:0},d=e.inherit(e.QUOTE_STRING_MODE,{illegal:null}),_=e.COMMENT(";","$",{relevance:0}),p={className:"literal",begin:/\b([Tt]rue|[Ff]alse|nil|None)\b/},g={begin:"[\\[\\{]",end:"[\\]\\}]",relevance:0},E={className:"comment",begin:"\\^"+i},f=e.COMMENT("\\^\\{","\\}"),S={className:"symbol",begin:"[:]{1,2}"+i},v={begin:"\\(",end:"\\)"},h={endsWithParent:!0,relevance:0},T={className:"name",relevance:0,keywords:o,begin:i,starts:h},N=[v,d,E,f,_,S,g,c,p,l];return v.contains=[e.COMMENT("comment",""),T,h],h.contains=N,g.contains=N,{name:"Hy",aliases:["hylang"],illegal:/\S/,contains:[e.SHEBANG(),v,d,E,f,_,S,g,c,p]}}return g_=t,g_}var E_,TT;function CAe(){if(TT)return E_;TT=1;function t(e){const n="\\[",i="\\]";return{name:"Inform 7",aliases:["i7"],case_insensitive:!0,keywords:{keyword:"thing room person man woman animal container supporter backdrop door scenery open closed locked inside gender is are say understand kind of rule"},contains:[{className:"string",begin:'"',end:'"',relevance:0,contains:[{className:"subst",begin:n,end:i}]},{className:"section",begin:/^(Volume|Book|Part|Chapter|Section|Table)\b/,end:"$"},{begin:/^(Check|Carry out|Report|Instead of|To|Rule|When|Before|After)\b/,end:":",contains:[{begin:"\\(This",end:"\\)"}]},{className:"comment",begin:n,end:i,contains:["self"]}]}}return E_=t,E_}var f_,vT;function RAe(){if(vT)return f_;vT=1;function t(e){const n=e.regex,i={className:"number",relevance:0,variants:[{begin:/([+-]+)?[\d]+_[\d_]+/},{begin:e.NUMBER_RE}]},o=e.COMMENT();o.variants=[{begin:/;/,end:/$/},{begin:/#/,end:/$/}];const s={className:"variable",variants:[{begin:/\$[\w\d"][\w\d_]*/},{begin:/\$\{(.*?)\}/}]},l={className:"literal",begin:/\bon|off|true|false|yes|no\b/},c={className:"string",contains:[e.BACKSLASH_ESCAPE],variants:[{begin:"'''",end:"'''",relevance:10},{begin:'"""',end:'"""',relevance:10},{begin:'"',end:'"'},{begin:"'",end:"'"}]},d={begin:/\[/,end:/\]/,contains:[o,l,s,c,i,"self"],relevance:0},_=/[A-Za-z0-9_-]+/,p=/"(\\"|[^"])*"/,g=/'[^']*'/,E=n.either(_,p,g),f=n.concat(E,"(\\s*\\.\\s*",E,")*",n.lookahead(/\s*=\s*[^#\s]/));return{name:"TOML, also INI",aliases:["toml"],case_insensitive:!0,illegal:/\S/,contains:[o,{className:"section",begin:/\[+/,end:/\]+/},{begin:f,className:"attr",starts:{end:/$/,contains:[o,d,l,s,c,i]}}]}}return f_=t,f_}var S_,CT;function NAe(){if(CT)return S_;CT=1;function t(e){const n=e.regex,i={className:"params",begin:"\\(",end:"\\)"},o=/(_[a-z_\d]+)?/,s=/([de][+-]?\d+)?/,l={className:"number",variants:[{begin:n.concat(/\b\d+/,/\.(\d*)/,s,o)},{begin:n.concat(/\b\d+/,s,o)},{begin:n.concat(/\.\d+/,s,o)}],relevance:0};return{name:"IRPF90",case_insensitive:!0,keywords:{literal:".False. .True.",keyword:"kind do while private call intrinsic where elsewhere type endtype endmodule endselect endinterface end enddo endif if forall endforall only contains default return stop then public subroutine|10 function program .and. .or. .not. .le. .eq. .ge. .gt. .lt. goto save else use module select case access blank direct exist file fmt form formatted iostat name named nextrec number opened rec recl sequential status unformatted unit continue format pause cycle exit c_null_char c_alert c_backspace c_form_feed flush wait decimal round iomsg synchronous nopass non_overridable pass protected volatile abstract extends import non_intrinsic value deferred generic final enumerator class associate bind enum c_int c_short c_long c_long_long c_signed_char c_size_t c_int8_t c_int16_t c_int32_t c_int64_t c_int_least8_t c_int_least16_t c_int_least32_t c_int_least64_t c_int_fast8_t c_int_fast16_t c_int_fast32_t c_int_fast64_t c_intmax_t C_intptr_t c_float c_double c_long_double c_float_complex c_double_complex c_long_double_complex c_bool c_char c_null_ptr c_null_funptr c_new_line c_carriage_return c_horizontal_tab c_vertical_tab iso_c_binding c_loc c_funloc c_associated c_f_pointer c_ptr c_funptr iso_fortran_env character_storage_size error_unit file_storage_size input_unit iostat_end iostat_eor numeric_storage_size output_unit c_f_procpointer ieee_arithmetic ieee_support_underflow_control ieee_get_underflow_mode ieee_set_underflow_mode newunit contiguous recursive pad position action delim readwrite eor advance nml interface procedure namelist include sequence elemental pure integer real character complex logical dimension allocatable|10 parameter external implicit|10 none double precision assign intent optional pointer target in out common equivalence data begin_provider &begin_provider end_provider begin_shell end_shell begin_template end_template subst assert touch soft_touch provide no_dep free irp_if irp_else irp_endif irp_write irp_read",built_in:"alog alog10 amax0 amax1 amin0 amin1 amod cabs ccos cexp clog csin csqrt dabs dacos dasin datan datan2 dcos dcosh ddim dexp dint dlog dlog10 dmax1 dmin1 dmod dnint dsign dsin dsinh dsqrt dtan dtanh float iabs idim idint idnint ifix isign max0 max1 min0 min1 sngl algama cdabs cdcos cdexp cdlog cdsin cdsqrt cqabs cqcos cqexp cqlog cqsin cqsqrt dcmplx dconjg derf derfc dfloat dgamma dimag dlgama iqint qabs qacos qasin qatan qatan2 qcmplx qconjg qcos qcosh qdim qerf qerfc qexp qgamma qimag qlgama qlog qlog10 qmax1 qmin1 qmod qnint qsign qsin qsinh qsqrt qtan qtanh abs acos aimag aint anint asin atan atan2 char cmplx conjg cos cosh exp ichar index int log log10 max min nint sign sin sinh sqrt tan tanh print write dim lge lgt lle llt mod nullify allocate deallocate adjustl adjustr all allocated any associated bit_size btest ceiling count cshift date_and_time digits dot_product eoshift epsilon exponent floor fraction huge iand ibclr ibits ibset ieor ior ishft ishftc lbound len_trim matmul maxexponent maxloc maxval merge minexponent minloc minval modulo mvbits nearest pack present product radix random_number random_seed range repeat reshape rrspacing scale scan selected_int_kind selected_real_kind set_exponent shape size spacing spread sum system_clock tiny transpose trim ubound unpack verify achar iachar transfer dble entry dprod cpu_time command_argument_count get_command get_command_argument get_environment_variable is_iostat_end ieee_arithmetic ieee_support_underflow_control ieee_get_underflow_mode ieee_set_underflow_mode is_iostat_eor move_alloc new_line selected_char_kind same_type_as extends_type_of acosh asinh atanh bessel_j0 bessel_j1 bessel_jn bessel_y0 bessel_y1 bessel_yn erf erfc erfc_scaled gamma log_gamma hypot norm2 atomic_define atomic_ref execute_command_line leadz trailz storage_size merge_bits bge bgt ble blt dshiftl dshiftr findloc iall iany iparity image_index lcobound ucobound maskl maskr num_images parity popcnt poppar shifta shiftl shiftr this_image IRP_ALIGN irp_here"},illegal:/\/\*/,contains:[e.inherit(e.APOS_STRING_MODE,{className:"string",relevance:0}),e.inherit(e.QUOTE_STRING_MODE,{className:"string",relevance:0}),{className:"function",beginKeywords:"subroutine function program",illegal:"[${=\\n]",contains:[e.UNDERSCORE_TITLE_MODE,i]},e.COMMENT("!","$",{relevance:0}),e.COMMENT("begin_doc","end_doc",{relevance:10}),l]}}return S_=t,S_}var b_,RT;function OAe(){if(RT)return b_;RT=1;function t(e){const n="[A-Za-zА-Яа-ŃŃ‘Š_!][A-Za-zА-Яа-ŃŃ‘Š_0-9]*",i="[A-Za-zА-Яа-ŃŃ‘Š_][A-Za-zА-Яа-ŃŃ‘Š_0-9]*",o="and Šø else иначе endexcept endfinally endforeach конецвсе endif конецесли endwhile конецпока except exitfor finally foreach все if если in в not не or или try while пока ",s="SYSRES_CONST_ACCES_RIGHT_TYPE_EDIT SYSRES_CONST_ACCES_RIGHT_TYPE_FULL SYSRES_CONST_ACCES_RIGHT_TYPE_VIEW SYSRES_CONST_ACCESS_MODE_REQUISITE_CODE SYSRES_CONST_ACCESS_NO_ACCESS_VIEW SYSRES_CONST_ACCESS_NO_ACCESS_VIEW_CODE SYSRES_CONST_ACCESS_RIGHTS_ADD_REQUISITE_CODE SYSRES_CONST_ACCESS_RIGHTS_ADD_REQUISITE_YES_CODE SYSRES_CONST_ACCESS_RIGHTS_CHANGE_REQUISITE_CODE SYSRES_CONST_ACCESS_RIGHTS_CHANGE_REQUISITE_YES_CODE SYSRES_CONST_ACCESS_RIGHTS_DELETE_REQUISITE_CODE SYSRES_CONST_ACCESS_RIGHTS_DELETE_REQUISITE_YES_CODE SYSRES_CONST_ACCESS_RIGHTS_EXECUTE_REQUISITE_CODE SYSRES_CONST_ACCESS_RIGHTS_EXECUTE_REQUISITE_YES_CODE SYSRES_CONST_ACCESS_RIGHTS_NO_ACCESS_REQUISITE_CODE SYSRES_CONST_ACCESS_RIGHTS_NO_ACCESS_REQUISITE_YES_CODE SYSRES_CONST_ACCESS_RIGHTS_RATIFY_REQUISITE_CODE SYSRES_CONST_ACCESS_RIGHTS_RATIFY_REQUISITE_YES_CODE SYSRES_CONST_ACCESS_RIGHTS_REQUISITE_CODE SYSRES_CONST_ACCESS_RIGHTS_VIEW SYSRES_CONST_ACCESS_RIGHTS_VIEW_CODE SYSRES_CONST_ACCESS_RIGHTS_VIEW_REQUISITE_CODE SYSRES_CONST_ACCESS_RIGHTS_VIEW_REQUISITE_YES_CODE SYSRES_CONST_ACCESS_TYPE_CHANGE SYSRES_CONST_ACCESS_TYPE_CHANGE_CODE SYSRES_CONST_ACCESS_TYPE_EXISTS SYSRES_CONST_ACCESS_TYPE_EXISTS_CODE SYSRES_CONST_ACCESS_TYPE_FULL SYSRES_CONST_ACCESS_TYPE_FULL_CODE SYSRES_CONST_ACCESS_TYPE_VIEW SYSRES_CONST_ACCESS_TYPE_VIEW_CODE SYSRES_CONST_ACTION_TYPE_ABORT SYSRES_CONST_ACTION_TYPE_ACCEPT SYSRES_CONST_ACTION_TYPE_ACCESS_RIGHTS SYSRES_CONST_ACTION_TYPE_ADD_ATTACHMENT SYSRES_CONST_ACTION_TYPE_CHANGE_CARD SYSRES_CONST_ACTION_TYPE_CHANGE_KIND SYSRES_CONST_ACTION_TYPE_CHANGE_STORAGE SYSRES_CONST_ACTION_TYPE_CONTINUE SYSRES_CONST_ACTION_TYPE_COPY SYSRES_CONST_ACTION_TYPE_CREATE SYSRES_CONST_ACTION_TYPE_CREATE_VERSION SYSRES_CONST_ACTION_TYPE_DELETE SYSRES_CONST_ACTION_TYPE_DELETE_ATTACHMENT SYSRES_CONST_ACTION_TYPE_DELETE_VERSION SYSRES_CONST_ACTION_TYPE_DISABLE_DELEGATE_ACCESS_RIGHTS SYSRES_CONST_ACTION_TYPE_ENABLE_DELEGATE_ACCESS_RIGHTS SYSRES_CONST_ACTION_TYPE_ENCRYPTION_BY_CERTIFICATE SYSRES_CONST_ACTION_TYPE_ENCRYPTION_BY_CERTIFICATE_AND_PASSWORD SYSRES_CONST_ACTION_TYPE_ENCRYPTION_BY_PASSWORD SYSRES_CONST_ACTION_TYPE_EXPORT_WITH_LOCK SYSRES_CONST_ACTION_TYPE_EXPORT_WITHOUT_LOCK SYSRES_CONST_ACTION_TYPE_IMPORT_WITH_UNLOCK SYSRES_CONST_ACTION_TYPE_IMPORT_WITHOUT_UNLOCK SYSRES_CONST_ACTION_TYPE_LIFE_CYCLE_STAGE SYSRES_CONST_ACTION_TYPE_LOCK SYSRES_CONST_ACTION_TYPE_LOCK_FOR_SERVER SYSRES_CONST_ACTION_TYPE_LOCK_MODIFY SYSRES_CONST_ACTION_TYPE_MARK_AS_READED SYSRES_CONST_ACTION_TYPE_MARK_AS_UNREADED SYSRES_CONST_ACTION_TYPE_MODIFY SYSRES_CONST_ACTION_TYPE_MODIFY_CARD SYSRES_CONST_ACTION_TYPE_MOVE_TO_ARCHIVE SYSRES_CONST_ACTION_TYPE_OFF_ENCRYPTION SYSRES_CONST_ACTION_TYPE_PASSWORD_CHANGE SYSRES_CONST_ACTION_TYPE_PERFORM SYSRES_CONST_ACTION_TYPE_RECOVER_FROM_LOCAL_COPY SYSRES_CONST_ACTION_TYPE_RESTART SYSRES_CONST_ACTION_TYPE_RESTORE_FROM_ARCHIVE SYSRES_CONST_ACTION_TYPE_REVISION SYSRES_CONST_ACTION_TYPE_SEND_BY_MAIL SYSRES_CONST_ACTION_TYPE_SIGN SYSRES_CONST_ACTION_TYPE_START SYSRES_CONST_ACTION_TYPE_UNLOCK SYSRES_CONST_ACTION_TYPE_UNLOCK_FROM_SERVER SYSRES_CONST_ACTION_TYPE_VERSION_STATE SYSRES_CONST_ACTION_TYPE_VERSION_VISIBILITY SYSRES_CONST_ACTION_TYPE_VIEW SYSRES_CONST_ACTION_TYPE_VIEW_SHADOW_COPY SYSRES_CONST_ACTION_TYPE_WORKFLOW_DESCRIPTION_MODIFY SYSRES_CONST_ACTION_TYPE_WRITE_HISTORY SYSRES_CONST_ACTIVE_VERSION_STATE_PICK_VALUE SYSRES_CONST_ADD_REFERENCE_MODE_NAME SYSRES_CONST_ADDITION_REQUISITE_CODE SYSRES_CONST_ADDITIONAL_PARAMS_REQUISITE_CODE SYSRES_CONST_ADITIONAL_JOB_END_DATE_REQUISITE_NAME SYSRES_CONST_ADITIONAL_JOB_READ_REQUISITE_NAME SYSRES_CONST_ADITIONAL_JOB_START_DATE_REQUISITE_NAME SYSRES_CONST_ADITIONAL_JOB_STATE_REQUISITE_NAME SYSRES_CONST_ADMINISTRATION_HISTORY_ADDING_USER_TO_GROUP_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_ADDING_USER_TO_GROUP_ACTION_CODE SYSRES_CONST_ADMINISTRATION_HISTORY_CREATION_COMP_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_CREATION_COMP_ACTION_CODE SYSRES_CONST_ADMINISTRATION_HISTORY_CREATION_GROUP_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_CREATION_GROUP_ACTION_CODE SYSRES_CONST_ADMINISTRATION_HISTORY_CREATION_USER_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_CREATION_USER_ACTION_CODE SYSRES_CONST_ADMINISTRATION_HISTORY_DATABASE_USER_CREATION SYSRES_CONST_ADMINISTRATION_HISTORY_DATABASE_USER_CREATION_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_DATABASE_USER_DELETION SYSRES_CONST_ADMINISTRATION_HISTORY_DATABASE_USER_DELETION_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_DELETION_COMP_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_DELETION_COMP_ACTION_CODE SYSRES_CONST_ADMINISTRATION_HISTORY_DELETION_GROUP_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_DELETION_GROUP_ACTION_CODE SYSRES_CONST_ADMINISTRATION_HISTORY_DELETION_USER_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_DELETION_USER_ACTION_CODE SYSRES_CONST_ADMINISTRATION_HISTORY_DELETION_USER_FROM_GROUP_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_DELETION_USER_FROM_GROUP_ACTION_CODE SYSRES_CONST_ADMINISTRATION_HISTORY_GRANTING_FILTERER_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_GRANTING_FILTERER_ACTION_CODE SYSRES_CONST_ADMINISTRATION_HISTORY_GRANTING_FILTERER_RESTRICTION_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_GRANTING_FILTERER_RESTRICTION_ACTION_CODE SYSRES_CONST_ADMINISTRATION_HISTORY_GRANTING_PRIVILEGE_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_GRANTING_PRIVILEGE_ACTION_CODE SYSRES_CONST_ADMINISTRATION_HISTORY_GRANTING_RIGHTS_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_GRANTING_RIGHTS_ACTION_CODE SYSRES_CONST_ADMINISTRATION_HISTORY_IS_MAIN_SERVER_CHANGED_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_IS_MAIN_SERVER_CHANGED_ACTION_CODE SYSRES_CONST_ADMINISTRATION_HISTORY_IS_PUBLIC_CHANGED_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_IS_PUBLIC_CHANGED_ACTION_CODE SYSRES_CONST_ADMINISTRATION_HISTORY_REMOVING_FILTERER_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_REMOVING_FILTERER_ACTION_CODE SYSRES_CONST_ADMINISTRATION_HISTORY_REMOVING_FILTERER_RESTRICTION_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_REMOVING_FILTERER_RESTRICTION_ACTION_CODE SYSRES_CONST_ADMINISTRATION_HISTORY_REMOVING_PRIVILEGE_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_REMOVING_PRIVILEGE_ACTION_CODE SYSRES_CONST_ADMINISTRATION_HISTORY_REMOVING_RIGHTS_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_REMOVING_RIGHTS_ACTION_CODE SYSRES_CONST_ADMINISTRATION_HISTORY_SERVER_LOGIN_CREATION SYSRES_CONST_ADMINISTRATION_HISTORY_SERVER_LOGIN_CREATION_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_SERVER_LOGIN_DELETION SYSRES_CONST_ADMINISTRATION_HISTORY_SERVER_LOGIN_DELETION_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_UPDATING_CATEGORY_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_UPDATING_CATEGORY_ACTION_CODE SYSRES_CONST_ADMINISTRATION_HISTORY_UPDATING_COMP_TITLE_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_UPDATING_COMP_TITLE_ACTION_CODE SYSRES_CONST_ADMINISTRATION_HISTORY_UPDATING_FULL_NAME_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_UPDATING_FULL_NAME_ACTION_CODE SYSRES_CONST_ADMINISTRATION_HISTORY_UPDATING_GROUP_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_UPDATING_GROUP_ACTION_CODE SYSRES_CONST_ADMINISTRATION_HISTORY_UPDATING_PARENT_GROUP_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_UPDATING_PARENT_GROUP_ACTION_CODE SYSRES_CONST_ADMINISTRATION_HISTORY_UPDATING_USER_AUTH_TYPE_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_UPDATING_USER_AUTH_TYPE_ACTION_CODE SYSRES_CONST_ADMINISTRATION_HISTORY_UPDATING_USER_LOGIN_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_UPDATING_USER_LOGIN_ACTION_CODE SYSRES_CONST_ADMINISTRATION_HISTORY_UPDATING_USER_STATUS_ACTION SYSRES_CONST_ADMINISTRATION_HISTORY_UPDATING_USER_STATUS_ACTION_CODE SYSRES_CONST_ADMINISTRATION_HISTORY_USER_PASSWORD_CHANGE SYSRES_CONST_ADMINISTRATION_HISTORY_USER_PASSWORD_CHANGE_ACTION SYSRES_CONST_ALL_ACCEPT_CONDITION_RUS SYSRES_CONST_ALL_USERS_GROUP SYSRES_CONST_ALL_USERS_GROUP_NAME SYSRES_CONST_ALL_USERS_SERVER_GROUP_NAME SYSRES_CONST_ALLOWED_ACCESS_TYPE_CODE SYSRES_CONST_ALLOWED_ACCESS_TYPE_NAME SYSRES_CONST_APP_VIEWER_TYPE_REQUISITE_CODE SYSRES_CONST_APPROVING_SIGNATURE_NAME SYSRES_CONST_APPROVING_SIGNATURE_REQUISITE_CODE SYSRES_CONST_ASSISTANT_SUBSTITUE_TYPE SYSRES_CONST_ASSISTANT_SUBSTITUE_TYPE_CODE SYSRES_CONST_ATTACH_TYPE_COMPONENT_TOKEN SYSRES_CONST_ATTACH_TYPE_DOC SYSRES_CONST_ATTACH_TYPE_EDOC SYSRES_CONST_ATTACH_TYPE_FOLDER SYSRES_CONST_ATTACH_TYPE_JOB SYSRES_CONST_ATTACH_TYPE_REFERENCE SYSRES_CONST_ATTACH_TYPE_TASK SYSRES_CONST_AUTH_ENCODED_PASSWORD SYSRES_CONST_AUTH_ENCODED_PASSWORD_CODE SYSRES_CONST_AUTH_NOVELL SYSRES_CONST_AUTH_PASSWORD SYSRES_CONST_AUTH_PASSWORD_CODE SYSRES_CONST_AUTH_WINDOWS SYSRES_CONST_AUTHENTICATING_SIGNATURE_NAME SYSRES_CONST_AUTHENTICATING_SIGNATURE_REQUISITE_CODE SYSRES_CONST_AUTO_ENUM_METHOD_FLAG SYSRES_CONST_AUTO_NUMERATION_CODE SYSRES_CONST_AUTO_STRONG_ENUM_METHOD_FLAG SYSRES_CONST_AUTOTEXT_NAME_REQUISITE_CODE SYSRES_CONST_AUTOTEXT_TEXT_REQUISITE_CODE SYSRES_CONST_AUTOTEXT_USAGE_ALL SYSRES_CONST_AUTOTEXT_USAGE_ALL_CODE SYSRES_CONST_AUTOTEXT_USAGE_SIGN SYSRES_CONST_AUTOTEXT_USAGE_SIGN_CODE SYSRES_CONST_AUTOTEXT_USAGE_WORK SYSRES_CONST_AUTOTEXT_USAGE_WORK_CODE SYSRES_CONST_AUTOTEXT_USE_ANYWHERE_CODE SYSRES_CONST_AUTOTEXT_USE_ON_SIGNING_CODE SYSRES_CONST_AUTOTEXT_USE_ON_WORK_CODE SYSRES_CONST_BEGIN_DATE_REQUISITE_CODE SYSRES_CONST_BLACK_LIFE_CYCLE_STAGE_FONT_COLOR SYSRES_CONST_BLUE_LIFE_CYCLE_STAGE_FONT_COLOR SYSRES_CONST_BTN_PART SYSRES_CONST_CALCULATED_ROLE_TYPE_CODE SYSRES_CONST_CALL_TYPE_VARIABLE_BUTTON_VALUE SYSRES_CONST_CALL_TYPE_VARIABLE_PROGRAM_VALUE SYSRES_CONST_CANCEL_MESSAGE_FUNCTION_RESULT SYSRES_CONST_CARD_PART SYSRES_CONST_CARD_REFERENCE_MODE_NAME SYSRES_CONST_CERTIFICATE_TYPE_REQUISITE_ENCRYPT_VALUE SYSRES_CONST_CERTIFICATE_TYPE_REQUISITE_SIGN_AND_ENCRYPT_VALUE SYSRES_CONST_CERTIFICATE_TYPE_REQUISITE_SIGN_VALUE SYSRES_CONST_CHECK_PARAM_VALUE_DATE_PARAM_TYPE SYSRES_CONST_CHECK_PARAM_VALUE_FLOAT_PARAM_TYPE SYSRES_CONST_CHECK_PARAM_VALUE_INTEGER_PARAM_TYPE SYSRES_CONST_CHECK_PARAM_VALUE_PICK_PARAM_TYPE SYSRES_CONST_CHECK_PARAM_VALUE_REEFRENCE_PARAM_TYPE SYSRES_CONST_CLOSED_RECORD_FLAG_VALUE_FEMININE SYSRES_CONST_CLOSED_RECORD_FLAG_VALUE_MASCULINE SYSRES_CONST_CODE_COMPONENT_TYPE_ADMIN SYSRES_CONST_CODE_COMPONENT_TYPE_DEVELOPER SYSRES_CONST_CODE_COMPONENT_TYPE_DOCS SYSRES_CONST_CODE_COMPONENT_TYPE_EDOC_CARDS SYSRES_CONST_CODE_COMPONENT_TYPE_EXTERNAL_EXECUTABLE SYSRES_CONST_CODE_COMPONENT_TYPE_OTHER SYSRES_CONST_CODE_COMPONENT_TYPE_REFERENCE SYSRES_CONST_CODE_COMPONENT_TYPE_REPORT SYSRES_CONST_CODE_COMPONENT_TYPE_SCRIPT SYSRES_CONST_CODE_COMPONENT_TYPE_URL SYSRES_CONST_CODE_REQUISITE_ACCESS SYSRES_CONST_CODE_REQUISITE_CODE SYSRES_CONST_CODE_REQUISITE_COMPONENT SYSRES_CONST_CODE_REQUISITE_DESCRIPTION SYSRES_CONST_CODE_REQUISITE_EXCLUDE_COMPONENT SYSRES_CONST_CODE_REQUISITE_RECORD SYSRES_CONST_COMMENT_REQ_CODE SYSRES_CONST_COMMON_SETTINGS_REQUISITE_CODE SYSRES_CONST_COMP_CODE_GRD SYSRES_CONST_COMPONENT_GROUP_TYPE_REQUISITE_CODE SYSRES_CONST_COMPONENT_TYPE_ADMIN_COMPONENTS SYSRES_CONST_COMPONENT_TYPE_DEVELOPER_COMPONENTS SYSRES_CONST_COMPONENT_TYPE_DOCS SYSRES_CONST_COMPONENT_TYPE_EDOC_CARDS SYSRES_CONST_COMPONENT_TYPE_EDOCS SYSRES_CONST_COMPONENT_TYPE_EXTERNAL_EXECUTABLE SYSRES_CONST_COMPONENT_TYPE_OTHER SYSRES_CONST_COMPONENT_TYPE_REFERENCE_TYPES SYSRES_CONST_COMPONENT_TYPE_REFERENCES SYSRES_CONST_COMPONENT_TYPE_REPORTS SYSRES_CONST_COMPONENT_TYPE_SCRIPTS SYSRES_CONST_COMPONENT_TYPE_URL SYSRES_CONST_COMPONENTS_REMOTE_SERVERS_VIEW_CODE SYSRES_CONST_CONDITION_BLOCK_DESCRIPTION SYSRES_CONST_CONST_FIRM_STATUS_COMMON SYSRES_CONST_CONST_FIRM_STATUS_INDIVIDUAL SYSRES_CONST_CONST_NEGATIVE_VALUE SYSRES_CONST_CONST_POSITIVE_VALUE SYSRES_CONST_CONST_SERVER_STATUS_DONT_REPLICATE SYSRES_CONST_CONST_SERVER_STATUS_REPLICATE SYSRES_CONST_CONTENTS_REQUISITE_CODE SYSRES_CONST_DATA_TYPE_BOOLEAN SYSRES_CONST_DATA_TYPE_DATE SYSRES_CONST_DATA_TYPE_FLOAT SYSRES_CONST_DATA_TYPE_INTEGER SYSRES_CONST_DATA_TYPE_PICK SYSRES_CONST_DATA_TYPE_REFERENCE SYSRES_CONST_DATA_TYPE_STRING SYSRES_CONST_DATA_TYPE_TEXT SYSRES_CONST_DATA_TYPE_VARIANT SYSRES_CONST_DATE_CLOSE_REQ_CODE SYSRES_CONST_DATE_FORMAT_DATE_ONLY_CHAR SYSRES_CONST_DATE_OPEN_REQ_CODE SYSRES_CONST_DATE_REQUISITE SYSRES_CONST_DATE_REQUISITE_CODE SYSRES_CONST_DATE_REQUISITE_NAME SYSRES_CONST_DATE_REQUISITE_TYPE SYSRES_CONST_DATE_TYPE_CHAR SYSRES_CONST_DATETIME_FORMAT_VALUE SYSRES_CONST_DEA_ACCESS_RIGHTS_ACTION_CODE SYSRES_CONST_DESCRIPTION_LOCALIZE_ID_REQUISITE_CODE SYSRES_CONST_DESCRIPTION_REQUISITE_CODE SYSRES_CONST_DET1_PART SYSRES_CONST_DET2_PART SYSRES_CONST_DET3_PART SYSRES_CONST_DET4_PART SYSRES_CONST_DET5_PART SYSRES_CONST_DET6_PART SYSRES_CONST_DETAIL_DATASET_KEY_REQUISITE_CODE SYSRES_CONST_DETAIL_PICK_REQUISITE_CODE SYSRES_CONST_DETAIL_REQ_CODE SYSRES_CONST_DO_NOT_USE_ACCESS_TYPE_CODE SYSRES_CONST_DO_NOT_USE_ACCESS_TYPE_NAME SYSRES_CONST_DO_NOT_USE_ON_VIEW_ACCESS_TYPE_CODE SYSRES_CONST_DO_NOT_USE_ON_VIEW_ACCESS_TYPE_NAME SYSRES_CONST_DOCUMENT_STORAGES_CODE SYSRES_CONST_DOCUMENT_TEMPLATES_TYPE_NAME SYSRES_CONST_DOUBLE_REQUISITE_CODE SYSRES_CONST_EDITOR_CLOSE_FILE_OBSERV_TYPE_CODE SYSRES_CONST_EDITOR_CLOSE_PROCESS_OBSERV_TYPE_CODE SYSRES_CONST_EDITOR_TYPE_REQUISITE_CODE SYSRES_CONST_EDITORS_APPLICATION_NAME_REQUISITE_CODE SYSRES_CONST_EDITORS_CREATE_SEVERAL_PROCESSES_REQUISITE_CODE SYSRES_CONST_EDITORS_EXTENSION_REQUISITE_CODE SYSRES_CONST_EDITORS_OBSERVER_BY_PROCESS_TYPE SYSRES_CONST_EDITORS_REFERENCE_CODE SYSRES_CONST_EDITORS_REPLACE_SPEC_CHARS_REQUISITE_CODE SYSRES_CONST_EDITORS_USE_PLUGINS_REQUISITE_CODE SYSRES_CONST_EDITORS_VIEW_DOCUMENT_OPENED_TO_EDIT_CODE SYSRES_CONST_EDOC_CARD_TYPE_REQUISITE_CODE SYSRES_CONST_EDOC_CARD_TYPES_LINK_REQUISITE_CODE SYSRES_CONST_EDOC_CERTIFICATE_AND_PASSWORD_ENCODE_CODE SYSRES_CONST_EDOC_CERTIFICATE_ENCODE_CODE SYSRES_CONST_EDOC_DATE_REQUISITE_CODE SYSRES_CONST_EDOC_KIND_REFERENCE_CODE SYSRES_CONST_EDOC_KINDS_BY_TEMPLATE_ACTION_CODE SYSRES_CONST_EDOC_MANAGE_ACCESS_CODE SYSRES_CONST_EDOC_NONE_ENCODE_CODE SYSRES_CONST_EDOC_NUMBER_REQUISITE_CODE SYSRES_CONST_EDOC_PASSWORD_ENCODE_CODE SYSRES_CONST_EDOC_READONLY_ACCESS_CODE SYSRES_CONST_EDOC_SHELL_LIFE_TYPE_VIEW_VALUE SYSRES_CONST_EDOC_SIZE_RESTRICTION_PRIORITY_REQUISITE_CODE SYSRES_CONST_EDOC_STORAGE_CHECK_ACCESS_RIGHTS_REQUISITE_CODE SYSRES_CONST_EDOC_STORAGE_COMPUTER_NAME_REQUISITE_CODE SYSRES_CONST_EDOC_STORAGE_DATABASE_NAME_REQUISITE_CODE SYSRES_CONST_EDOC_STORAGE_EDIT_IN_STORAGE_REQUISITE_CODE SYSRES_CONST_EDOC_STORAGE_LOCAL_PATH_REQUISITE_CODE SYSRES_CONST_EDOC_STORAGE_SHARED_SOURCE_NAME_REQUISITE_CODE SYSRES_CONST_EDOC_TEMPLATE_REQUISITE_CODE SYSRES_CONST_EDOC_TYPES_REFERENCE_CODE SYSRES_CONST_EDOC_VERSION_ACTIVE_STAGE_CODE SYSRES_CONST_EDOC_VERSION_DESIGN_STAGE_CODE SYSRES_CONST_EDOC_VERSION_OBSOLETE_STAGE_CODE SYSRES_CONST_EDOC_WRITE_ACCES_CODE SYSRES_CONST_EDOCUMENT_CARD_REQUISITES_REFERENCE_CODE_SELECTED_REQUISITE SYSRES_CONST_ENCODE_CERTIFICATE_TYPE_CODE SYSRES_CONST_END_DATE_REQUISITE_CODE SYSRES_CONST_ENUMERATION_TYPE_REQUISITE_CODE SYSRES_CONST_EXECUTE_ACCESS_RIGHTS_TYPE_CODE SYSRES_CONST_EXECUTIVE_FILE_STORAGE_TYPE SYSRES_CONST_EXIST_CONST SYSRES_CONST_EXIST_VALUE SYSRES_CONST_EXPORT_LOCK_TYPE_ASK SYSRES_CONST_EXPORT_LOCK_TYPE_WITH_LOCK SYSRES_CONST_EXPORT_LOCK_TYPE_WITHOUT_LOCK SYSRES_CONST_EXPORT_VERSION_TYPE_ASK SYSRES_CONST_EXPORT_VERSION_TYPE_LAST SYSRES_CONST_EXPORT_VERSION_TYPE_LAST_ACTIVE SYSRES_CONST_EXTENSION_REQUISITE_CODE SYSRES_CONST_FILTER_NAME_REQUISITE_CODE SYSRES_CONST_FILTER_REQUISITE_CODE SYSRES_CONST_FILTER_TYPE_COMMON_CODE SYSRES_CONST_FILTER_TYPE_COMMON_NAME SYSRES_CONST_FILTER_TYPE_USER_CODE SYSRES_CONST_FILTER_TYPE_USER_NAME SYSRES_CONST_FILTER_VALUE_REQUISITE_NAME SYSRES_CONST_FLOAT_NUMBER_FORMAT_CHAR SYSRES_CONST_FLOAT_REQUISITE_TYPE SYSRES_CONST_FOLDER_AUTHOR_VALUE SYSRES_CONST_FOLDER_KIND_ANY_OBJECTS SYSRES_CONST_FOLDER_KIND_COMPONENTS SYSRES_CONST_FOLDER_KIND_EDOCS SYSRES_CONST_FOLDER_KIND_JOBS SYSRES_CONST_FOLDER_KIND_TASKS SYSRES_CONST_FOLDER_TYPE_COMMON SYSRES_CONST_FOLDER_TYPE_COMPONENT SYSRES_CONST_FOLDER_TYPE_FAVORITES SYSRES_CONST_FOLDER_TYPE_INBOX SYSRES_CONST_FOLDER_TYPE_OUTBOX SYSRES_CONST_FOLDER_TYPE_QUICK_LAUNCH SYSRES_CONST_FOLDER_TYPE_SEARCH SYSRES_CONST_FOLDER_TYPE_SHORTCUTS SYSRES_CONST_FOLDER_TYPE_USER SYSRES_CONST_FROM_DICTIONARY_ENUM_METHOD_FLAG SYSRES_CONST_FULL_SUBSTITUTE_TYPE SYSRES_CONST_FULL_SUBSTITUTE_TYPE_CODE SYSRES_CONST_FUNCTION_CANCEL_RESULT SYSRES_CONST_FUNCTION_CATEGORY_SYSTEM SYSRES_CONST_FUNCTION_CATEGORY_USER SYSRES_CONST_FUNCTION_FAILURE_RESULT SYSRES_CONST_FUNCTION_SAVE_RESULT SYSRES_CONST_GENERATED_REQUISITE SYSRES_CONST_GREEN_LIFE_CYCLE_STAGE_FONT_COLOR SYSRES_CONST_GROUP_ACCOUNT_TYPE_VALUE_CODE SYSRES_CONST_GROUP_CATEGORY_NORMAL_CODE SYSRES_CONST_GROUP_CATEGORY_NORMAL_NAME SYSRES_CONST_GROUP_CATEGORY_SERVICE_CODE SYSRES_CONST_GROUP_CATEGORY_SERVICE_NAME SYSRES_CONST_GROUP_COMMON_CATEGORY_FIELD_VALUE SYSRES_CONST_GROUP_FULL_NAME_REQUISITE_CODE SYSRES_CONST_GROUP_NAME_REQUISITE_CODE SYSRES_CONST_GROUP_RIGHTS_T_REQUISITE_CODE SYSRES_CONST_GROUP_SERVER_CODES_REQUISITE_CODE SYSRES_CONST_GROUP_SERVER_NAME_REQUISITE_CODE SYSRES_CONST_GROUP_SERVICE_CATEGORY_FIELD_VALUE SYSRES_CONST_GROUP_USER_REQUISITE_CODE SYSRES_CONST_GROUPS_REFERENCE_CODE SYSRES_CONST_GROUPS_REQUISITE_CODE SYSRES_CONST_HIDDEN_MODE_NAME SYSRES_CONST_HIGH_LVL_REQUISITE_CODE SYSRES_CONST_HISTORY_ACTION_CREATE_CODE SYSRES_CONST_HISTORY_ACTION_DELETE_CODE SYSRES_CONST_HISTORY_ACTION_EDIT_CODE SYSRES_CONST_HOUR_CHAR SYSRES_CONST_ID_REQUISITE_CODE SYSRES_CONST_IDSPS_REQUISITE_CODE SYSRES_CONST_IMAGE_MODE_COLOR SYSRES_CONST_IMAGE_MODE_GREYSCALE SYSRES_CONST_IMAGE_MODE_MONOCHROME SYSRES_CONST_IMPORTANCE_HIGH SYSRES_CONST_IMPORTANCE_LOW SYSRES_CONST_IMPORTANCE_NORMAL SYSRES_CONST_IN_DESIGN_VERSION_STATE_PICK_VALUE SYSRES_CONST_INCOMING_WORK_RULE_TYPE_CODE SYSRES_CONST_INT_REQUISITE SYSRES_CONST_INT_REQUISITE_TYPE SYSRES_CONST_INTEGER_NUMBER_FORMAT_CHAR SYSRES_CONST_INTEGER_TYPE_CHAR SYSRES_CONST_IS_GENERATED_REQUISITE_NEGATIVE_VALUE SYSRES_CONST_IS_PUBLIC_ROLE_REQUISITE_CODE SYSRES_CONST_IS_REMOTE_USER_NEGATIVE_VALUE SYSRES_CONST_IS_REMOTE_USER_POSITIVE_VALUE SYSRES_CONST_IS_STORED_REQUISITE_NEGATIVE_VALUE SYSRES_CONST_IS_STORED_REQUISITE_STORED_VALUE SYSRES_CONST_ITALIC_LIFE_CYCLE_STAGE_DRAW_STYLE SYSRES_CONST_JOB_BLOCK_DESCRIPTION SYSRES_CONST_JOB_KIND_CONTROL_JOB SYSRES_CONST_JOB_KIND_JOB SYSRES_CONST_JOB_KIND_NOTICE SYSRES_CONST_JOB_STATE_ABORTED SYSRES_CONST_JOB_STATE_COMPLETE SYSRES_CONST_JOB_STATE_WORKING SYSRES_CONST_KIND_REQUISITE_CODE SYSRES_CONST_KIND_REQUISITE_NAME SYSRES_CONST_KINDS_CREATE_SHADOW_COPIES_REQUISITE_CODE SYSRES_CONST_KINDS_DEFAULT_EDOC_LIFE_STAGE_REQUISITE_CODE SYSRES_CONST_KINDS_EDOC_ALL_TEPLATES_ALLOWED_REQUISITE_CODE SYSRES_CONST_KINDS_EDOC_ALLOW_LIFE_CYCLE_STAGE_CHANGING_REQUISITE_CODE SYSRES_CONST_KINDS_EDOC_ALLOW_MULTIPLE_ACTIVE_VERSIONS_REQUISITE_CODE SYSRES_CONST_KINDS_EDOC_SHARE_ACCES_RIGHTS_BY_DEFAULT_CODE SYSRES_CONST_KINDS_EDOC_TEMPLATE_REQUISITE_CODE SYSRES_CONST_KINDS_EDOC_TYPE_REQUISITE_CODE SYSRES_CONST_KINDS_SIGNERS_REQUISITES_CODE SYSRES_CONST_KOD_INPUT_TYPE SYSRES_CONST_LAST_UPDATE_DATE_REQUISITE_CODE SYSRES_CONST_LIFE_CYCLE_START_STAGE_REQUISITE_CODE SYSRES_CONST_LILAC_LIFE_CYCLE_STAGE_FONT_COLOR SYSRES_CONST_LINK_OBJECT_KIND_COMPONENT SYSRES_CONST_LINK_OBJECT_KIND_DOCUMENT SYSRES_CONST_LINK_OBJECT_KIND_EDOC SYSRES_CONST_LINK_OBJECT_KIND_FOLDER SYSRES_CONST_LINK_OBJECT_KIND_JOB SYSRES_CONST_LINK_OBJECT_KIND_REFERENCE SYSRES_CONST_LINK_OBJECT_KIND_TASK SYSRES_CONST_LINK_REF_TYPE_REQUISITE_CODE SYSRES_CONST_LIST_REFERENCE_MODE_NAME SYSRES_CONST_LOCALIZATION_DICTIONARY_MAIN_VIEW_CODE SYSRES_CONST_MAIN_VIEW_CODE SYSRES_CONST_MANUAL_ENUM_METHOD_FLAG SYSRES_CONST_MASTER_COMP_TYPE_REQUISITE_CODE SYSRES_CONST_MASTER_TABLE_REC_ID_REQUISITE_CODE SYSRES_CONST_MAXIMIZED_MODE_NAME SYSRES_CONST_ME_VALUE SYSRES_CONST_MESSAGE_ATTENTION_CAPTION SYSRES_CONST_MESSAGE_CONFIRMATION_CAPTION SYSRES_CONST_MESSAGE_ERROR_CAPTION SYSRES_CONST_MESSAGE_INFORMATION_CAPTION SYSRES_CONST_MINIMIZED_MODE_NAME SYSRES_CONST_MINUTE_CHAR SYSRES_CONST_MODULE_REQUISITE_CODE SYSRES_CONST_MONITORING_BLOCK_DESCRIPTION SYSRES_CONST_MONTH_FORMAT_VALUE SYSRES_CONST_NAME_LOCALIZE_ID_REQUISITE_CODE SYSRES_CONST_NAME_REQUISITE_CODE SYSRES_CONST_NAME_SINGULAR_REQUISITE_CODE SYSRES_CONST_NAMEAN_INPUT_TYPE SYSRES_CONST_NEGATIVE_PICK_VALUE SYSRES_CONST_NEGATIVE_VALUE SYSRES_CONST_NO SYSRES_CONST_NO_PICK_VALUE SYSRES_CONST_NO_SIGNATURE_REQUISITE_CODE SYSRES_CONST_NO_VALUE SYSRES_CONST_NONE_ACCESS_RIGHTS_TYPE_CODE SYSRES_CONST_NONOPERATING_RECORD_FLAG_VALUE SYSRES_CONST_NONOPERATING_RECORD_FLAG_VALUE_MASCULINE SYSRES_CONST_NORMAL_ACCESS_RIGHTS_TYPE_CODE SYSRES_CONST_NORMAL_LIFE_CYCLE_STAGE_DRAW_STYLE SYSRES_CONST_NORMAL_MODE_NAME SYSRES_CONST_NOT_ALLOWED_ACCESS_TYPE_CODE SYSRES_CONST_NOT_ALLOWED_ACCESS_TYPE_NAME SYSRES_CONST_NOTE_REQUISITE_CODE SYSRES_CONST_NOTICE_BLOCK_DESCRIPTION SYSRES_CONST_NUM_REQUISITE SYSRES_CONST_NUM_STR_REQUISITE_CODE SYSRES_CONST_NUMERATION_AUTO_NOT_STRONG SYSRES_CONST_NUMERATION_AUTO_STRONG SYSRES_CONST_NUMERATION_FROM_DICTONARY SYSRES_CONST_NUMERATION_MANUAL SYSRES_CONST_NUMERIC_TYPE_CHAR SYSRES_CONST_NUMREQ_REQUISITE_CODE SYSRES_CONST_OBSOLETE_VERSION_STATE_PICK_VALUE SYSRES_CONST_OPERATING_RECORD_FLAG_VALUE SYSRES_CONST_OPERATING_RECORD_FLAG_VALUE_CODE SYSRES_CONST_OPERATING_RECORD_FLAG_VALUE_FEMININE SYSRES_CONST_OPERATING_RECORD_FLAG_VALUE_MASCULINE SYSRES_CONST_OPTIONAL_FORM_COMP_REQCODE_PREFIX SYSRES_CONST_ORANGE_LIFE_CYCLE_STAGE_FONT_COLOR SYSRES_CONST_ORIGINALREF_REQUISITE_CODE SYSRES_CONST_OURFIRM_REF_CODE SYSRES_CONST_OURFIRM_REQUISITE_CODE SYSRES_CONST_OURFIRM_VAR SYSRES_CONST_OUTGOING_WORK_RULE_TYPE_CODE SYSRES_CONST_PICK_NEGATIVE_RESULT SYSRES_CONST_PICK_POSITIVE_RESULT SYSRES_CONST_PICK_REQUISITE SYSRES_CONST_PICK_REQUISITE_TYPE SYSRES_CONST_PICK_TYPE_CHAR SYSRES_CONST_PLAN_STATUS_REQUISITE_CODE SYSRES_CONST_PLATFORM_VERSION_COMMENT SYSRES_CONST_PLUGINS_SETTINGS_DESCRIPTION_REQUISITE_CODE SYSRES_CONST_POSITIVE_PICK_VALUE SYSRES_CONST_POWER_TO_CREATE_ACTION_CODE SYSRES_CONST_POWER_TO_SIGN_ACTION_CODE SYSRES_CONST_PRIORITY_REQUISITE_CODE SYSRES_CONST_QUALIFIED_TASK_TYPE SYSRES_CONST_QUALIFIED_TASK_TYPE_CODE SYSRES_CONST_RECSTAT_REQUISITE_CODE SYSRES_CONST_RED_LIFE_CYCLE_STAGE_FONT_COLOR SYSRES_CONST_REF_ID_T_REF_TYPE_REQUISITE_CODE SYSRES_CONST_REF_REQUISITE SYSRES_CONST_REF_REQUISITE_TYPE SYSRES_CONST_REF_REQUISITES_REFERENCE_CODE_SELECTED_REQUISITE SYSRES_CONST_REFERENCE_RECORD_HISTORY_CREATE_ACTION_CODE SYSRES_CONST_REFERENCE_RECORD_HISTORY_DELETE_ACTION_CODE SYSRES_CONST_REFERENCE_RECORD_HISTORY_MODIFY_ACTION_CODE SYSRES_CONST_REFERENCE_TYPE_CHAR SYSRES_CONST_REFERENCE_TYPE_REQUISITE_NAME SYSRES_CONST_REFERENCES_ADD_PARAMS_REQUISITE_CODE SYSRES_CONST_REFERENCES_DISPLAY_REQUISITE_REQUISITE_CODE SYSRES_CONST_REMOTE_SERVER_STATUS_WORKING SYSRES_CONST_REMOTE_SERVER_TYPE_MAIN SYSRES_CONST_REMOTE_SERVER_TYPE_SECONDARY SYSRES_CONST_REMOTE_USER_FLAG_VALUE_CODE SYSRES_CONST_REPORT_APP_EDITOR_INTERNAL SYSRES_CONST_REPORT_BASE_REPORT_ID_REQUISITE_CODE SYSRES_CONST_REPORT_BASE_REPORT_REQUISITE_CODE SYSRES_CONST_REPORT_SCRIPT_REQUISITE_CODE SYSRES_CONST_REPORT_TEMPLATE_REQUISITE_CODE SYSRES_CONST_REPORT_VIEWER_CODE_REQUISITE_CODE SYSRES_CONST_REQ_ALLOW_COMPONENT_DEFAULT_VALUE SYSRES_CONST_REQ_ALLOW_RECORD_DEFAULT_VALUE SYSRES_CONST_REQ_ALLOW_SERVER_COMPONENT_DEFAULT_VALUE SYSRES_CONST_REQ_MODE_AVAILABLE_CODE SYSRES_CONST_REQ_MODE_EDIT_CODE SYSRES_CONST_REQ_MODE_HIDDEN_CODE SYSRES_CONST_REQ_MODE_NOT_AVAILABLE_CODE SYSRES_CONST_REQ_MODE_VIEW_CODE SYSRES_CONST_REQ_NUMBER_REQUISITE_CODE SYSRES_CONST_REQ_SECTION_VALUE SYSRES_CONST_REQ_TYPE_VALUE SYSRES_CONST_REQUISITE_FORMAT_BY_UNIT SYSRES_CONST_REQUISITE_FORMAT_DATE_FULL SYSRES_CONST_REQUISITE_FORMAT_DATE_TIME SYSRES_CONST_REQUISITE_FORMAT_LEFT SYSRES_CONST_REQUISITE_FORMAT_RIGHT SYSRES_CONST_REQUISITE_FORMAT_WITHOUT_UNIT SYSRES_CONST_REQUISITE_NUMBER_REQUISITE_CODE SYSRES_CONST_REQUISITE_SECTION_ACTIONS SYSRES_CONST_REQUISITE_SECTION_BUTTON SYSRES_CONST_REQUISITE_SECTION_BUTTONS SYSRES_CONST_REQUISITE_SECTION_CARD SYSRES_CONST_REQUISITE_SECTION_TABLE SYSRES_CONST_REQUISITE_SECTION_TABLE10 SYSRES_CONST_REQUISITE_SECTION_TABLE11 SYSRES_CONST_REQUISITE_SECTION_TABLE12 SYSRES_CONST_REQUISITE_SECTION_TABLE13 SYSRES_CONST_REQUISITE_SECTION_TABLE14 SYSRES_CONST_REQUISITE_SECTION_TABLE15 SYSRES_CONST_REQUISITE_SECTION_TABLE16 SYSRES_CONST_REQUISITE_SECTION_TABLE17 SYSRES_CONST_REQUISITE_SECTION_TABLE18 SYSRES_CONST_REQUISITE_SECTION_TABLE19 SYSRES_CONST_REQUISITE_SECTION_TABLE2 SYSRES_CONST_REQUISITE_SECTION_TABLE20 SYSRES_CONST_REQUISITE_SECTION_TABLE21 SYSRES_CONST_REQUISITE_SECTION_TABLE22 SYSRES_CONST_REQUISITE_SECTION_TABLE23 SYSRES_CONST_REQUISITE_SECTION_TABLE24 SYSRES_CONST_REQUISITE_SECTION_TABLE3 SYSRES_CONST_REQUISITE_SECTION_TABLE4 SYSRES_CONST_REQUISITE_SECTION_TABLE5 SYSRES_CONST_REQUISITE_SECTION_TABLE6 SYSRES_CONST_REQUISITE_SECTION_TABLE7 SYSRES_CONST_REQUISITE_SECTION_TABLE8 SYSRES_CONST_REQUISITE_SECTION_TABLE9 SYSRES_CONST_REQUISITES_PSEUDOREFERENCE_REQUISITE_NUMBER_REQUISITE_CODE SYSRES_CONST_RIGHT_ALIGNMENT_CODE SYSRES_CONST_ROLES_REFERENCE_CODE SYSRES_CONST_ROUTE_STEP_AFTER_RUS SYSRES_CONST_ROUTE_STEP_AND_CONDITION_RUS SYSRES_CONST_ROUTE_STEP_OR_CONDITION_RUS SYSRES_CONST_ROUTE_TYPE_COMPLEX SYSRES_CONST_ROUTE_TYPE_PARALLEL SYSRES_CONST_ROUTE_TYPE_SERIAL SYSRES_CONST_SBDATASETDESC_NEGATIVE_VALUE SYSRES_CONST_SBDATASETDESC_POSITIVE_VALUE SYSRES_CONST_SBVIEWSDESC_POSITIVE_VALUE SYSRES_CONST_SCRIPT_BLOCK_DESCRIPTION SYSRES_CONST_SEARCH_BY_TEXT_REQUISITE_CODE SYSRES_CONST_SEARCHES_COMPONENT_CONTENT SYSRES_CONST_SEARCHES_CRITERIA_ACTION_NAME SYSRES_CONST_SEARCHES_EDOC_CONTENT SYSRES_CONST_SEARCHES_FOLDER_CONTENT SYSRES_CONST_SEARCHES_JOB_CONTENT SYSRES_CONST_SEARCHES_REFERENCE_CODE SYSRES_CONST_SEARCHES_TASK_CONTENT SYSRES_CONST_SECOND_CHAR SYSRES_CONST_SECTION_REQUISITE_ACTIONS_VALUE SYSRES_CONST_SECTION_REQUISITE_CARD_VALUE SYSRES_CONST_SECTION_REQUISITE_CODE SYSRES_CONST_SECTION_REQUISITE_DETAIL_1_VALUE SYSRES_CONST_SECTION_REQUISITE_DETAIL_2_VALUE SYSRES_CONST_SECTION_REQUISITE_DETAIL_3_VALUE SYSRES_CONST_SECTION_REQUISITE_DETAIL_4_VALUE SYSRES_CONST_SECTION_REQUISITE_DETAIL_5_VALUE SYSRES_CONST_SECTION_REQUISITE_DETAIL_6_VALUE SYSRES_CONST_SELECT_REFERENCE_MODE_NAME SYSRES_CONST_SELECT_TYPE_SELECTABLE SYSRES_CONST_SELECT_TYPE_SELECTABLE_ONLY_CHILD SYSRES_CONST_SELECT_TYPE_SELECTABLE_WITH_CHILD SYSRES_CONST_SELECT_TYPE_UNSLECTABLE SYSRES_CONST_SERVER_TYPE_MAIN SYSRES_CONST_SERVICE_USER_CATEGORY_FIELD_VALUE SYSRES_CONST_SETTINGS_USER_REQUISITE_CODE SYSRES_CONST_SIGNATURE_AND_ENCODE_CERTIFICATE_TYPE_CODE SYSRES_CONST_SIGNATURE_CERTIFICATE_TYPE_CODE SYSRES_CONST_SINGULAR_TITLE_REQUISITE_CODE SYSRES_CONST_SQL_SERVER_AUTHENTIFICATION_FLAG_VALUE_CODE SYSRES_CONST_SQL_SERVER_ENCODE_AUTHENTIFICATION_FLAG_VALUE_CODE SYSRES_CONST_STANDART_ROUTE_REFERENCE_CODE SYSRES_CONST_STANDART_ROUTE_REFERENCE_COMMENT_REQUISITE_CODE SYSRES_CONST_STANDART_ROUTES_GROUPS_REFERENCE_CODE SYSRES_CONST_STATE_REQ_NAME SYSRES_CONST_STATE_REQUISITE_ACTIVE_VALUE SYSRES_CONST_STATE_REQUISITE_CLOSED_VALUE SYSRES_CONST_STATE_REQUISITE_CODE SYSRES_CONST_STATIC_ROLE_TYPE_CODE SYSRES_CONST_STATUS_PLAN_DEFAULT_VALUE SYSRES_CONST_STATUS_VALUE_AUTOCLEANING SYSRES_CONST_STATUS_VALUE_BLUE_SQUARE SYSRES_CONST_STATUS_VALUE_COMPLETE SYSRES_CONST_STATUS_VALUE_GREEN_SQUARE SYSRES_CONST_STATUS_VALUE_ORANGE_SQUARE SYSRES_CONST_STATUS_VALUE_PURPLE_SQUARE SYSRES_CONST_STATUS_VALUE_RED_SQUARE SYSRES_CONST_STATUS_VALUE_SUSPEND SYSRES_CONST_STATUS_VALUE_YELLOW_SQUARE SYSRES_CONST_STDROUTE_SHOW_TO_USERS_REQUISITE_CODE SYSRES_CONST_STORAGE_TYPE_FILE SYSRES_CONST_STORAGE_TYPE_SQL_SERVER SYSRES_CONST_STR_REQUISITE SYSRES_CONST_STRIKEOUT_LIFE_CYCLE_STAGE_DRAW_STYLE SYSRES_CONST_STRING_FORMAT_LEFT_ALIGN_CHAR SYSRES_CONST_STRING_FORMAT_RIGHT_ALIGN_CHAR SYSRES_CONST_STRING_REQUISITE_CODE SYSRES_CONST_STRING_REQUISITE_TYPE SYSRES_CONST_STRING_TYPE_CHAR SYSRES_CONST_SUBSTITUTES_PSEUDOREFERENCE_CODE SYSRES_CONST_SUBTASK_BLOCK_DESCRIPTION SYSRES_CONST_SYSTEM_SETTING_CURRENT_USER_PARAM_VALUE SYSRES_CONST_SYSTEM_SETTING_EMPTY_VALUE_PARAM_VALUE SYSRES_CONST_SYSTEM_VERSION_COMMENT SYSRES_CONST_TASK_ACCESS_TYPE_ALL SYSRES_CONST_TASK_ACCESS_TYPE_ALL_MEMBERS SYSRES_CONST_TASK_ACCESS_TYPE_MANUAL SYSRES_CONST_TASK_ENCODE_TYPE_CERTIFICATION SYSRES_CONST_TASK_ENCODE_TYPE_CERTIFICATION_AND_PASSWORD SYSRES_CONST_TASK_ENCODE_TYPE_NONE SYSRES_CONST_TASK_ENCODE_TYPE_PASSWORD SYSRES_CONST_TASK_ROUTE_ALL_CONDITION SYSRES_CONST_TASK_ROUTE_AND_CONDITION SYSRES_CONST_TASK_ROUTE_OR_CONDITION SYSRES_CONST_TASK_STATE_ABORTED SYSRES_CONST_TASK_STATE_COMPLETE SYSRES_CONST_TASK_STATE_CONTINUED SYSRES_CONST_TASK_STATE_CONTROL SYSRES_CONST_TASK_STATE_INIT SYSRES_CONST_TASK_STATE_WORKING SYSRES_CONST_TASK_TITLE SYSRES_CONST_TASK_TYPES_GROUPS_REFERENCE_CODE SYSRES_CONST_TASK_TYPES_REFERENCE_CODE SYSRES_CONST_TEMPLATES_REFERENCE_CODE SYSRES_CONST_TEST_DATE_REQUISITE_NAME SYSRES_CONST_TEST_DEV_DATABASE_NAME SYSRES_CONST_TEST_DEV_SYSTEM_CODE SYSRES_CONST_TEST_EDMS_DATABASE_NAME SYSRES_CONST_TEST_EDMS_MAIN_CODE SYSRES_CONST_TEST_EDMS_MAIN_DB_NAME SYSRES_CONST_TEST_EDMS_SECOND_CODE SYSRES_CONST_TEST_EDMS_SECOND_DB_NAME SYSRES_CONST_TEST_EDMS_SYSTEM_CODE SYSRES_CONST_TEST_NUMERIC_REQUISITE_NAME SYSRES_CONST_TEXT_REQUISITE SYSRES_CONST_TEXT_REQUISITE_CODE SYSRES_CONST_TEXT_REQUISITE_TYPE SYSRES_CONST_TEXT_TYPE_CHAR SYSRES_CONST_TYPE_CODE_REQUISITE_CODE SYSRES_CONST_TYPE_REQUISITE_CODE SYSRES_CONST_UNDEFINED_LIFE_CYCLE_STAGE_FONT_COLOR SYSRES_CONST_UNITS_SECTION_ID_REQUISITE_CODE SYSRES_CONST_UNITS_SECTION_REQUISITE_CODE SYSRES_CONST_UNOPERATING_RECORD_FLAG_VALUE_CODE SYSRES_CONST_UNSTORED_DATA_REQUISITE_CODE SYSRES_CONST_UNSTORED_DATA_REQUISITE_NAME SYSRES_CONST_USE_ACCESS_TYPE_CODE SYSRES_CONST_USE_ACCESS_TYPE_NAME SYSRES_CONST_USER_ACCOUNT_TYPE_VALUE_CODE SYSRES_CONST_USER_ADDITIONAL_INFORMATION_REQUISITE_CODE SYSRES_CONST_USER_AND_GROUP_ID_FROM_PSEUDOREFERENCE_REQUISITE_CODE SYSRES_CONST_USER_CATEGORY_NORMAL SYSRES_CONST_USER_CERTIFICATE_REQUISITE_CODE SYSRES_CONST_USER_CERTIFICATE_STATE_REQUISITE_CODE SYSRES_CONST_USER_CERTIFICATE_SUBJECT_NAME_REQUISITE_CODE SYSRES_CONST_USER_CERTIFICATE_THUMBPRINT_REQUISITE_CODE SYSRES_CONST_USER_COMMON_CATEGORY SYSRES_CONST_USER_COMMON_CATEGORY_CODE SYSRES_CONST_USER_FULL_NAME_REQUISITE_CODE SYSRES_CONST_USER_GROUP_TYPE_REQUISITE_CODE SYSRES_CONST_USER_LOGIN_REQUISITE_CODE SYSRES_CONST_USER_REMOTE_CONTROLLER_REQUISITE_CODE SYSRES_CONST_USER_REMOTE_SYSTEM_REQUISITE_CODE SYSRES_CONST_USER_RIGHTS_T_REQUISITE_CODE SYSRES_CONST_USER_SERVER_NAME_REQUISITE_CODE SYSRES_CONST_USER_SERVICE_CATEGORY SYSRES_CONST_USER_SERVICE_CATEGORY_CODE SYSRES_CONST_USER_STATUS_ADMINISTRATOR_CODE SYSRES_CONST_USER_STATUS_ADMINISTRATOR_NAME SYSRES_CONST_USER_STATUS_DEVELOPER_CODE SYSRES_CONST_USER_STATUS_DEVELOPER_NAME SYSRES_CONST_USER_STATUS_DISABLED_CODE SYSRES_CONST_USER_STATUS_DISABLED_NAME SYSRES_CONST_USER_STATUS_SYSTEM_DEVELOPER_CODE SYSRES_CONST_USER_STATUS_USER_CODE SYSRES_CONST_USER_STATUS_USER_NAME SYSRES_CONST_USER_STATUS_USER_NAME_DEPRECATED SYSRES_CONST_USER_TYPE_FIELD_VALUE_USER SYSRES_CONST_USER_TYPE_REQUISITE_CODE SYSRES_CONST_USERS_CONTROLLER_REQUISITE_CODE SYSRES_CONST_USERS_IS_MAIN_SERVER_REQUISITE_CODE SYSRES_CONST_USERS_REFERENCE_CODE SYSRES_CONST_USERS_REGISTRATION_CERTIFICATES_ACTION_NAME SYSRES_CONST_USERS_REQUISITE_CODE SYSRES_CONST_USERS_SYSTEM_REQUISITE_CODE SYSRES_CONST_USERS_USER_ACCESS_RIGHTS_TYPR_REQUISITE_CODE SYSRES_CONST_USERS_USER_AUTHENTICATION_REQUISITE_CODE SYSRES_CONST_USERS_USER_COMPONENT_REQUISITE_CODE SYSRES_CONST_USERS_USER_GROUP_REQUISITE_CODE SYSRES_CONST_USERS_VIEW_CERTIFICATES_ACTION_NAME SYSRES_CONST_VIEW_DEFAULT_CODE SYSRES_CONST_VIEW_DEFAULT_NAME SYSRES_CONST_VIEWER_REQUISITE_CODE SYSRES_CONST_WAITING_BLOCK_DESCRIPTION SYSRES_CONST_WIZARD_FORM_LABEL_TEST_STRING SYSRES_CONST_WIZARD_QUERY_PARAM_HEIGHT_ETALON_STRING SYSRES_CONST_WIZARD_REFERENCE_COMMENT_REQUISITE_CODE SYSRES_CONST_WORK_RULES_DESCRIPTION_REQUISITE_CODE SYSRES_CONST_WORK_TIME_CALENDAR_REFERENCE_CODE SYSRES_CONST_WORK_WORKFLOW_HARD_ROUTE_TYPE_VALUE SYSRES_CONST_WORK_WORKFLOW_HARD_ROUTE_TYPE_VALUE_CODE SYSRES_CONST_WORK_WORKFLOW_HARD_ROUTE_TYPE_VALUE_CODE_RUS SYSRES_CONST_WORK_WORKFLOW_SOFT_ROUTE_TYPE_VALUE_CODE_RUS SYSRES_CONST_WORKFLOW_ROUTE_TYPR_HARD SYSRES_CONST_WORKFLOW_ROUTE_TYPR_SOFT SYSRES_CONST_XML_ENCODING SYSRES_CONST_XREC_STAT_REQUISITE_CODE SYSRES_CONST_XRECID_FIELD_NAME SYSRES_CONST_YES SYSRES_CONST_YES_NO_2_REQUISITE_CODE SYSRES_CONST_YES_NO_REQUISITE_CODE SYSRES_CONST_YES_NO_T_REF_TYPE_REQUISITE_CODE SYSRES_CONST_YES_PICK_VALUE SYSRES_CONST_YES_VALUE ",l="CR FALSE nil NO_VALUE NULL TAB TRUE YES_VALUE ",c="ADMINISTRATORS_GROUP_NAME CUSTOMIZERS_GROUP_NAME DEVELOPERS_GROUP_NAME SERVICE_USERS_GROUP_NAME ",d="DECISION_BLOCK_FIRST_OPERAND_PROPERTY DECISION_BLOCK_NAME_PROPERTY DECISION_BLOCK_OPERATION_PROPERTY DECISION_BLOCK_RESULT_TYPE_PROPERTY DECISION_BLOCK_SECOND_OPERAND_PROPERTY ",_="ANY_FILE_EXTENTION COMPRESSED_DOCUMENT_EXTENSION EXTENDED_DOCUMENT_EXTENSION SHORT_COMPRESSED_DOCUMENT_EXTENSION SHORT_EXTENDED_DOCUMENT_EXTENSION ",p="JOB_BLOCK_ABORT_DEADLINE_PROPERTY JOB_BLOCK_AFTER_FINISH_EVENT JOB_BLOCK_AFTER_QUERY_PARAMETERS_EVENT JOB_BLOCK_ATTACHMENT_PROPERTY JOB_BLOCK_ATTACHMENTS_RIGHTS_GROUP_PROPERTY JOB_BLOCK_ATTACHMENTS_RIGHTS_TYPE_PROPERTY JOB_BLOCK_BEFORE_QUERY_PARAMETERS_EVENT JOB_BLOCK_BEFORE_START_EVENT JOB_BLOCK_CREATED_JOBS_PROPERTY JOB_BLOCK_DEADLINE_PROPERTY JOB_BLOCK_EXECUTION_RESULTS_PROPERTY JOB_BLOCK_IS_PARALLEL_PROPERTY JOB_BLOCK_IS_RELATIVE_ABORT_DEADLINE_PROPERTY JOB_BLOCK_IS_RELATIVE_DEADLINE_PROPERTY JOB_BLOCK_JOB_TEXT_PROPERTY JOB_BLOCK_NAME_PROPERTY JOB_BLOCK_NEED_SIGN_ON_PERFORM_PROPERTY JOB_BLOCK_PERFORMER_PROPERTY JOB_BLOCK_RELATIVE_ABORT_DEADLINE_TYPE_PROPERTY JOB_BLOCK_RELATIVE_DEADLINE_TYPE_PROPERTY JOB_BLOCK_SUBJECT_PROPERTY ",g="ENGLISH_LANGUAGE_CODE RUSSIAN_LANGUAGE_CODE ",E="smHidden smMaximized smMinimized smNormal wmNo wmYes ",f="COMPONENT_TOKEN_LINK_KIND DOCUMENT_LINK_KIND EDOCUMENT_LINK_KIND FOLDER_LINK_KIND JOB_LINK_KIND REFERENCE_LINK_KIND TASK_LINK_KIND ",S="COMPONENT_TOKEN_LOCK_TYPE EDOCUMENT_VERSION_LOCK_TYPE ",v="MONITOR_BLOCK_AFTER_FINISH_EVENT MONITOR_BLOCK_BEFORE_START_EVENT MONITOR_BLOCK_DEADLINE_PROPERTY MONITOR_BLOCK_INTERVAL_PROPERTY MONITOR_BLOCK_INTERVAL_TYPE_PROPERTY MONITOR_BLOCK_IS_RELATIVE_DEADLINE_PROPERTY MONITOR_BLOCK_NAME_PROPERTY MONITOR_BLOCK_RELATIVE_DEADLINE_TYPE_PROPERTY MONITOR_BLOCK_SEARCH_SCRIPT_PROPERTY ",h="NOTICE_BLOCK_AFTER_FINISH_EVENT NOTICE_BLOCK_ATTACHMENT_PROPERTY NOTICE_BLOCK_ATTACHMENTS_RIGHTS_GROUP_PROPERTY NOTICE_BLOCK_ATTACHMENTS_RIGHTS_TYPE_PROPERTY NOTICE_BLOCK_BEFORE_START_EVENT NOTICE_BLOCK_CREATED_NOTICES_PROPERTY NOTICE_BLOCK_DEADLINE_PROPERTY NOTICE_BLOCK_IS_RELATIVE_DEADLINE_PROPERTY NOTICE_BLOCK_NAME_PROPERTY NOTICE_BLOCK_NOTICE_TEXT_PROPERTY NOTICE_BLOCK_PERFORMER_PROPERTY NOTICE_BLOCK_RELATIVE_DEADLINE_TYPE_PROPERTY NOTICE_BLOCK_SUBJECT_PROPERTY ",T="dseAfterCancel dseAfterClose dseAfterDelete dseAfterDeleteOutOfTransaction dseAfterInsert dseAfterOpen dseAfterScroll dseAfterUpdate dseAfterUpdateOutOfTransaction dseBeforeCancel dseBeforeClose dseBeforeDelete dseBeforeDetailUpdate dseBeforeInsert dseBeforeOpen dseBeforeUpdate dseOnAnyRequisiteChange dseOnCloseRecord dseOnDeleteError dseOnOpenRecord dseOnPrepareUpdate dseOnUpdateError dseOnUpdateRatifiedRecord dseOnValidDelete dseOnValidUpdate reOnChange reOnChangeValues SELECTION_BEGIN_ROUTE_EVENT SELECTION_END_ROUTE_EVENT ",N="CURRENT_PERIOD_IS_REQUIRED PREVIOUS_CARD_TYPE_NAME SHOW_RECORD_PROPERTIES_FORM ",y="ACCESS_RIGHTS_SETTING_DIALOG_CODE ADMINISTRATOR_USER_CODE ANALYTIC_REPORT_TYPE asrtHideLocal asrtHideRemote CALCULATED_ROLE_TYPE_CODE COMPONENTS_REFERENCE_DEVELOPER_VIEW_CODE DCTS_TEST_PROTOCOLS_FOLDER_PATH E_EDOC_VERSION_ALREADY_APPROVINGLY_SIGNED E_EDOC_VERSION_ALREADY_APPROVINGLY_SIGNED_BY_USER E_EDOC_VERSION_ALREDY_SIGNED E_EDOC_VERSION_ALREDY_SIGNED_BY_USER EDOC_TYPES_CODE_REQUISITE_FIELD_NAME EDOCUMENTS_ALIAS_NAME FILES_FOLDER_PATH FILTER_OPERANDS_DELIMITER FILTER_OPERATIONS_DELIMITER FORMCARD_NAME FORMLIST_NAME GET_EXTENDED_DOCUMENT_EXTENSION_CREATION_MODE GET_EXTENDED_DOCUMENT_EXTENSION_IMPORT_MODE INTEGRATED_REPORT_TYPE IS_BUILDER_APPLICATION_ROLE IS_BUILDER_APPLICATION_ROLE2 IS_BUILDER_USERS ISBSYSDEV LOG_FOLDER_PATH mbCancel mbNo mbNoToAll mbOK mbYes mbYesToAll MEMORY_DATASET_DESRIPTIONS_FILENAME mrNo mrNoToAll mrYes mrYesToAll MULTIPLE_SELECT_DIALOG_CODE NONOPERATING_RECORD_FLAG_FEMININE NONOPERATING_RECORD_FLAG_MASCULINE OPERATING_RECORD_FLAG_FEMININE OPERATING_RECORD_FLAG_MASCULINE PROFILING_SETTINGS_COMMON_SETTINGS_CODE_VALUE PROGRAM_INITIATED_LOOKUP_ACTION ratDelete ratEdit ratInsert REPORT_TYPE REQUIRED_PICK_VALUES_VARIABLE rmCard rmList SBRTE_PROGID_DEV SBRTE_PROGID_RELEASE STATIC_ROLE_TYPE_CODE SUPPRESS_EMPTY_TEMPLATE_CREATION SYSTEM_USER_CODE UPDATE_DIALOG_DATASET USED_IN_OBJECT_HINT_PARAM USER_INITIATED_LOOKUP_ACTION USER_NAME_FORMAT USER_SELECTION_RESTRICTIONS WORKFLOW_TEST_PROTOCOLS_FOLDER_PATH ELS_SUBTYPE_CONTROL_NAME ELS_FOLDER_KIND_CONTROL_NAME REPEAT_PROCESS_CURRENT_OBJECT_EXCEPTION_NAME ",x="PRIVILEGE_COMPONENT_FULL_ACCESS PRIVILEGE_DEVELOPMENT_EXPORT PRIVILEGE_DEVELOPMENT_IMPORT PRIVILEGE_DOCUMENT_DELETE PRIVILEGE_ESD PRIVILEGE_FOLDER_DELETE PRIVILEGE_MANAGE_ACCESS_RIGHTS PRIVILEGE_MANAGE_REPLICATION PRIVILEGE_MANAGE_SESSION_SERVER PRIVILEGE_OBJECT_FULL_ACCESS PRIVILEGE_OBJECT_VIEW PRIVILEGE_RESERVE_LICENSE PRIVILEGE_SYSTEM_CUSTOMIZE PRIVILEGE_SYSTEM_DEVELOP PRIVILEGE_SYSTEM_INSTALL PRIVILEGE_TASK_DELETE PRIVILEGE_USER_PLUGIN_SETTINGS_CUSTOMIZE PRIVILEGES_PSEUDOREFERENCE_CODE ",P="ACCESS_TYPES_PSEUDOREFERENCE_CODE ALL_AVAILABLE_COMPONENTS_PSEUDOREFERENCE_CODE ALL_AVAILABLE_PRIVILEGES_PSEUDOREFERENCE_CODE ALL_REPLICATE_COMPONENTS_PSEUDOREFERENCE_CODE AVAILABLE_DEVELOPERS_COMPONENTS_PSEUDOREFERENCE_CODE COMPONENTS_PSEUDOREFERENCE_CODE FILTRATER_SETTINGS_CONFLICTS_PSEUDOREFERENCE_CODE GROUPS_PSEUDOREFERENCE_CODE RECEIVE_PROTOCOL_PSEUDOREFERENCE_CODE REFERENCE_REQUISITE_PSEUDOREFERENCE_CODE REFERENCE_REQUISITES_PSEUDOREFERENCE_CODE REFTYPES_PSEUDOREFERENCE_CODE REPLICATION_SEANCES_DIARY_PSEUDOREFERENCE_CODE SEND_PROTOCOL_PSEUDOREFERENCE_CODE SUBSTITUTES_PSEUDOREFERENCE_CODE SYSTEM_SETTINGS_PSEUDOREFERENCE_CODE UNITS_PSEUDOREFERENCE_CODE USERS_PSEUDOREFERENCE_CODE VIEWERS_PSEUDOREFERENCE_CODE ",D="CERTIFICATE_TYPE_ENCRYPT CERTIFICATE_TYPE_SIGN CERTIFICATE_TYPE_SIGN_AND_ENCRYPT ",k="STORAGE_TYPE_FILE STORAGE_TYPE_NAS_CIFS STORAGE_TYPE_SAPERION STORAGE_TYPE_SQL_SERVER ",U="COMPTYPE2_REQUISITE_DOCUMENTS_VALUE COMPTYPE2_REQUISITE_TASKS_VALUE COMPTYPE2_REQUISITE_FOLDERS_VALUE COMPTYPE2_REQUISITE_REFERENCES_VALUE ",W="SYSREQ_CODE SYSREQ_COMPTYPE2 SYSREQ_CONST_AVAILABLE_FOR_WEB SYSREQ_CONST_COMMON_CODE SYSREQ_CONST_COMMON_VALUE SYSREQ_CONST_FIRM_CODE SYSREQ_CONST_FIRM_STATUS SYSREQ_CONST_FIRM_VALUE SYSREQ_CONST_SERVER_STATUS SYSREQ_CONTENTS SYSREQ_DATE_OPEN SYSREQ_DATE_CLOSE SYSREQ_DESCRIPTION SYSREQ_DESCRIPTION_LOCALIZE_ID SYSREQ_DOUBLE SYSREQ_EDOC_ACCESS_TYPE SYSREQ_EDOC_AUTHOR SYSREQ_EDOC_CREATED SYSREQ_EDOC_DELEGATE_RIGHTS_REQUISITE_CODE SYSREQ_EDOC_EDITOR SYSREQ_EDOC_ENCODE_TYPE SYSREQ_EDOC_ENCRYPTION_PLUGIN_NAME SYSREQ_EDOC_ENCRYPTION_PLUGIN_VERSION SYSREQ_EDOC_EXPORT_DATE SYSREQ_EDOC_EXPORTER SYSREQ_EDOC_KIND SYSREQ_EDOC_LIFE_STAGE_NAME SYSREQ_EDOC_LOCKED_FOR_SERVER_CODE SYSREQ_EDOC_MODIFIED SYSREQ_EDOC_NAME SYSREQ_EDOC_NOTE SYSREQ_EDOC_QUALIFIED_ID SYSREQ_EDOC_SESSION_KEY SYSREQ_EDOC_SESSION_KEY_ENCRYPTION_PLUGIN_NAME SYSREQ_EDOC_SESSION_KEY_ENCRYPTION_PLUGIN_VERSION SYSREQ_EDOC_SIGNATURE_TYPE SYSREQ_EDOC_SIGNED SYSREQ_EDOC_STORAGE SYSREQ_EDOC_STORAGES_ARCHIVE_STORAGE SYSREQ_EDOC_STORAGES_CHECK_RIGHTS SYSREQ_EDOC_STORAGES_COMPUTER_NAME SYSREQ_EDOC_STORAGES_EDIT_IN_STORAGE SYSREQ_EDOC_STORAGES_EXECUTIVE_STORAGE SYSREQ_EDOC_STORAGES_FUNCTION SYSREQ_EDOC_STORAGES_INITIALIZED SYSREQ_EDOC_STORAGES_LOCAL_PATH SYSREQ_EDOC_STORAGES_SAPERION_DATABASE_NAME SYSREQ_EDOC_STORAGES_SEARCH_BY_TEXT SYSREQ_EDOC_STORAGES_SERVER_NAME SYSREQ_EDOC_STORAGES_SHARED_SOURCE_NAME SYSREQ_EDOC_STORAGES_TYPE SYSREQ_EDOC_TEXT_MODIFIED SYSREQ_EDOC_TYPE_ACT_CODE SYSREQ_EDOC_TYPE_ACT_DESCRIPTION SYSREQ_EDOC_TYPE_ACT_DESCRIPTION_LOCALIZE_ID SYSREQ_EDOC_TYPE_ACT_ON_EXECUTE SYSREQ_EDOC_TYPE_ACT_ON_EXECUTE_EXISTS SYSREQ_EDOC_TYPE_ACT_SECTION SYSREQ_EDOC_TYPE_ADD_PARAMS SYSREQ_EDOC_TYPE_COMMENT SYSREQ_EDOC_TYPE_EVENT_TEXT SYSREQ_EDOC_TYPE_NAME_IN_SINGULAR SYSREQ_EDOC_TYPE_NAME_IN_SINGULAR_LOCALIZE_ID SYSREQ_EDOC_TYPE_NAME_LOCALIZE_ID SYSREQ_EDOC_TYPE_NUMERATION_METHOD SYSREQ_EDOC_TYPE_PSEUDO_REQUISITE_CODE SYSREQ_EDOC_TYPE_REQ_CODE SYSREQ_EDOC_TYPE_REQ_DESCRIPTION SYSREQ_EDOC_TYPE_REQ_DESCRIPTION_LOCALIZE_ID SYSREQ_EDOC_TYPE_REQ_IS_LEADING SYSREQ_EDOC_TYPE_REQ_IS_REQUIRED SYSREQ_EDOC_TYPE_REQ_NUMBER SYSREQ_EDOC_TYPE_REQ_ON_CHANGE SYSREQ_EDOC_TYPE_REQ_ON_CHANGE_EXISTS SYSREQ_EDOC_TYPE_REQ_ON_SELECT SYSREQ_EDOC_TYPE_REQ_ON_SELECT_KIND SYSREQ_EDOC_TYPE_REQ_SECTION SYSREQ_EDOC_TYPE_VIEW_CARD SYSREQ_EDOC_TYPE_VIEW_CODE SYSREQ_EDOC_TYPE_VIEW_COMMENT SYSREQ_EDOC_TYPE_VIEW_IS_MAIN SYSREQ_EDOC_TYPE_VIEW_NAME SYSREQ_EDOC_TYPE_VIEW_NAME_LOCALIZE_ID SYSREQ_EDOC_VERSION_AUTHOR SYSREQ_EDOC_VERSION_CRC SYSREQ_EDOC_VERSION_DATA SYSREQ_EDOC_VERSION_EDITOR SYSREQ_EDOC_VERSION_EXPORT_DATE SYSREQ_EDOC_VERSION_EXPORTER SYSREQ_EDOC_VERSION_HIDDEN SYSREQ_EDOC_VERSION_LIFE_STAGE SYSREQ_EDOC_VERSION_MODIFIED SYSREQ_EDOC_VERSION_NOTE SYSREQ_EDOC_VERSION_SIGNATURE_TYPE SYSREQ_EDOC_VERSION_SIGNED SYSREQ_EDOC_VERSION_SIZE SYSREQ_EDOC_VERSION_SOURCE SYSREQ_EDOC_VERSION_TEXT_MODIFIED SYSREQ_EDOCKIND_DEFAULT_VERSION_STATE_CODE SYSREQ_FOLDER_KIND SYSREQ_FUNC_CATEGORY SYSREQ_FUNC_COMMENT SYSREQ_FUNC_GROUP SYSREQ_FUNC_GROUP_COMMENT SYSREQ_FUNC_GROUP_NUMBER SYSREQ_FUNC_HELP SYSREQ_FUNC_PARAM_DEF_VALUE SYSREQ_FUNC_PARAM_IDENT SYSREQ_FUNC_PARAM_NUMBER SYSREQ_FUNC_PARAM_TYPE SYSREQ_FUNC_TEXT SYSREQ_GROUP_CATEGORY SYSREQ_ID SYSREQ_LAST_UPDATE SYSREQ_LEADER_REFERENCE SYSREQ_LINE_NUMBER SYSREQ_MAIN_RECORD_ID SYSREQ_NAME SYSREQ_NAME_LOCALIZE_ID SYSREQ_NOTE SYSREQ_ORIGINAL_RECORD SYSREQ_OUR_FIRM SYSREQ_PROFILING_SETTINGS_BATCH_LOGING SYSREQ_PROFILING_SETTINGS_BATCH_SIZE SYSREQ_PROFILING_SETTINGS_PROFILING_ENABLED SYSREQ_PROFILING_SETTINGS_SQL_PROFILING_ENABLED SYSREQ_PROFILING_SETTINGS_START_LOGGED SYSREQ_RECORD_STATUS SYSREQ_REF_REQ_FIELD_NAME SYSREQ_REF_REQ_FORMAT SYSREQ_REF_REQ_GENERATED SYSREQ_REF_REQ_LENGTH SYSREQ_REF_REQ_PRECISION SYSREQ_REF_REQ_REFERENCE SYSREQ_REF_REQ_SECTION SYSREQ_REF_REQ_STORED SYSREQ_REF_REQ_TOKENS SYSREQ_REF_REQ_TYPE SYSREQ_REF_REQ_VIEW SYSREQ_REF_TYPE_ACT_CODE SYSREQ_REF_TYPE_ACT_DESCRIPTION SYSREQ_REF_TYPE_ACT_DESCRIPTION_LOCALIZE_ID SYSREQ_REF_TYPE_ACT_ON_EXECUTE SYSREQ_REF_TYPE_ACT_ON_EXECUTE_EXISTS SYSREQ_REF_TYPE_ACT_SECTION SYSREQ_REF_TYPE_ADD_PARAMS SYSREQ_REF_TYPE_COMMENT SYSREQ_REF_TYPE_COMMON_SETTINGS SYSREQ_REF_TYPE_DISPLAY_REQUISITE_NAME SYSREQ_REF_TYPE_EVENT_TEXT SYSREQ_REF_TYPE_MAIN_LEADING_REF SYSREQ_REF_TYPE_NAME_IN_SINGULAR SYSREQ_REF_TYPE_NAME_IN_SINGULAR_LOCALIZE_ID SYSREQ_REF_TYPE_NAME_LOCALIZE_ID SYSREQ_REF_TYPE_NUMERATION_METHOD SYSREQ_REF_TYPE_REQ_CODE SYSREQ_REF_TYPE_REQ_DESCRIPTION SYSREQ_REF_TYPE_REQ_DESCRIPTION_LOCALIZE_ID SYSREQ_REF_TYPE_REQ_IS_CONTROL SYSREQ_REF_TYPE_REQ_IS_FILTER SYSREQ_REF_TYPE_REQ_IS_LEADING SYSREQ_REF_TYPE_REQ_IS_REQUIRED SYSREQ_REF_TYPE_REQ_NUMBER SYSREQ_REF_TYPE_REQ_ON_CHANGE SYSREQ_REF_TYPE_REQ_ON_CHANGE_EXISTS SYSREQ_REF_TYPE_REQ_ON_SELECT SYSREQ_REF_TYPE_REQ_ON_SELECT_KIND SYSREQ_REF_TYPE_REQ_SECTION SYSREQ_REF_TYPE_VIEW_CARD SYSREQ_REF_TYPE_VIEW_CODE SYSREQ_REF_TYPE_VIEW_COMMENT SYSREQ_REF_TYPE_VIEW_IS_MAIN SYSREQ_REF_TYPE_VIEW_NAME SYSREQ_REF_TYPE_VIEW_NAME_LOCALIZE_ID SYSREQ_REFERENCE_TYPE_ID SYSREQ_STATE SYSREQ_STATŠ• SYSREQ_SYSTEM_SETTINGS_VALUE SYSREQ_TYPE SYSREQ_UNIT SYSREQ_UNIT_ID SYSREQ_USER_GROUPS_GROUP_FULL_NAME SYSREQ_USER_GROUPS_GROUP_NAME SYSREQ_USER_GROUPS_GROUP_SERVER_NAME SYSREQ_USERS_ACCESS_RIGHTS SYSREQ_USERS_AUTHENTICATION SYSREQ_USERS_CATEGORY SYSREQ_USERS_COMPONENT SYSREQ_USERS_COMPONENT_USER_IS_PUBLIC SYSREQ_USERS_DOMAIN SYSREQ_USERS_FULL_USER_NAME SYSREQ_USERS_GROUP SYSREQ_USERS_IS_MAIN_SERVER SYSREQ_USERS_LOGIN SYSREQ_USERS_REFERENCE_USER_IS_PUBLIC SYSREQ_USERS_STATUS SYSREQ_USERS_USER_CERTIFICATE SYSREQ_USERS_USER_CERTIFICATE_INFO SYSREQ_USERS_USER_CERTIFICATE_PLUGIN_NAME SYSREQ_USERS_USER_CERTIFICATE_PLUGIN_VERSION SYSREQ_USERS_USER_CERTIFICATE_STATE SYSREQ_USERS_USER_CERTIFICATE_SUBJECT_NAME SYSREQ_USERS_USER_CERTIFICATE_THUMBPRINT SYSREQ_USERS_USER_DEFAULT_CERTIFICATE SYSREQ_USERS_USER_DESCRIPTION SYSREQ_USERS_USER_GLOBAL_NAME SYSREQ_USERS_USER_LOGIN SYSREQ_USERS_USER_MAIN_SERVER SYSREQ_USERS_USER_TYPE SYSREQ_WORK_RULES_FOLDER_ID ",z="RESULT_VAR_NAME RESULT_VAR_NAME_ENG ",K="AUTO_NUMERATION_RULE_ID CANT_CHANGE_ID_REQUISITE_RULE_ID CANT_CHANGE_OURFIRM_REQUISITE_RULE_ID CHECK_CHANGING_REFERENCE_RECORD_USE_RULE_ID CHECK_CODE_REQUISITE_RULE_ID CHECK_DELETING_REFERENCE_RECORD_USE_RULE_ID CHECK_FILTRATER_CHANGES_RULE_ID CHECK_RECORD_INTERVAL_RULE_ID CHECK_REFERENCE_INTERVAL_RULE_ID CHECK_REQUIRED_DATA_FULLNESS_RULE_ID CHECK_REQUIRED_REQUISITES_FULLNESS_RULE_ID MAKE_RECORD_UNRATIFIED_RULE_ID RESTORE_AUTO_NUMERATION_RULE_ID SET_FIRM_CONTEXT_FROM_RECORD_RULE_ID SET_FIRST_RECORD_IN_LIST_FORM_RULE_ID SET_IDSPS_VALUE_RULE_ID SET_NEXT_CODE_VALUE_RULE_ID SET_OURFIRM_BOUNDS_RULE_ID SET_OURFIRM_REQUISITE_RULE_ID ",Ee="SCRIPT_BLOCK_AFTER_FINISH_EVENT SCRIPT_BLOCK_BEFORE_START_EVENT SCRIPT_BLOCK_EXECUTION_RESULTS_PROPERTY SCRIPT_BLOCK_NAME_PROPERTY SCRIPT_BLOCK_SCRIPT_PROPERTY ",oe="SUBTASK_BLOCK_ABORT_DEADLINE_PROPERTY SUBTASK_BLOCK_AFTER_FINISH_EVENT SUBTASK_BLOCK_ASSIGN_PARAMS_EVENT SUBTASK_BLOCK_ATTACHMENTS_PROPERTY SUBTASK_BLOCK_ATTACHMENTS_RIGHTS_GROUP_PROPERTY SUBTASK_BLOCK_ATTACHMENTS_RIGHTS_TYPE_PROPERTY SUBTASK_BLOCK_BEFORE_START_EVENT SUBTASK_BLOCK_CREATED_TASK_PROPERTY SUBTASK_BLOCK_CREATION_EVENT SUBTASK_BLOCK_DEADLINE_PROPERTY SUBTASK_BLOCK_IMPORTANCE_PROPERTY SUBTASK_BLOCK_INITIATOR_PROPERTY SUBTASK_BLOCK_IS_RELATIVE_ABORT_DEADLINE_PROPERTY SUBTASK_BLOCK_IS_RELATIVE_DEADLINE_PROPERTY SUBTASK_BLOCK_JOBS_TYPE_PROPERTY SUBTASK_BLOCK_NAME_PROPERTY SUBTASK_BLOCK_PARALLEL_ROUTE_PROPERTY SUBTASK_BLOCK_PERFORMERS_PROPERTY SUBTASK_BLOCK_RELATIVE_ABORT_DEADLINE_TYPE_PROPERTY SUBTASK_BLOCK_RELATIVE_DEADLINE_TYPE_PROPERTY SUBTASK_BLOCK_REQUIRE_SIGN_PROPERTY SUBTASK_BLOCK_STANDARD_ROUTE_PROPERTY SUBTASK_BLOCK_START_EVENT SUBTASK_BLOCK_STEP_CONTROL_PROPERTY SUBTASK_BLOCK_SUBJECT_PROPERTY SUBTASK_BLOCK_TASK_CONTROL_PROPERTY SUBTASK_BLOCK_TEXT_PROPERTY SUBTASK_BLOCK_UNLOCK_ATTACHMENTS_ON_STOP_PROPERTY SUBTASK_BLOCK_USE_STANDARD_ROUTE_PROPERTY SUBTASK_BLOCK_WAIT_FOR_TASK_COMPLETE_PROPERTY ",L="SYSCOMP_CONTROL_JOBS SYSCOMP_FOLDERS SYSCOMP_JOBS SYSCOMP_NOTICES SYSCOMP_TASKS ",J="SYSDLG_CREATE_EDOCUMENT SYSDLG_CREATE_EDOCUMENT_VERSION SYSDLG_CURRENT_PERIOD SYSDLG_EDIT_FUNCTION_HELP SYSDLG_EDOCUMENT_KINDS_FOR_TEMPLATE SYSDLG_EXPORT_MULTIPLE_EDOCUMENTS SYSDLG_EXPORT_SINGLE_EDOCUMENT SYSDLG_IMPORT_EDOCUMENT SYSDLG_MULTIPLE_SELECT SYSDLG_SETUP_ACCESS_RIGHTS SYSDLG_SETUP_DEFAULT_RIGHTS SYSDLG_SETUP_FILTER_CONDITION SYSDLG_SETUP_SIGN_RIGHTS SYSDLG_SETUP_TASK_OBSERVERS SYSDLG_SETUP_TASK_ROUTE SYSDLG_SETUP_USERS_LIST SYSDLG_SIGN_EDOCUMENT SYSDLG_SIGN_MULTIPLE_EDOCUMENTS ",re="SYSREF_ACCESS_RIGHTS_TYPES SYSREF_ADMINISTRATION_HISTORY SYSREF_ALL_AVAILABLE_COMPONENTS SYSREF_ALL_AVAILABLE_PRIVILEGES SYSREF_ALL_REPLICATING_COMPONENTS SYSREF_AVAILABLE_DEVELOPERS_COMPONENTS SYSREF_CALENDAR_EVENTS SYSREF_COMPONENT_TOKEN_HISTORY SYSREF_COMPONENT_TOKENS SYSREF_COMPONENTS SYSREF_CONSTANTS SYSREF_DATA_RECEIVE_PROTOCOL SYSREF_DATA_SEND_PROTOCOL SYSREF_DIALOGS SYSREF_DIALOGS_REQUISITES SYSREF_EDITORS SYSREF_EDOC_CARDS SYSREF_EDOC_TYPES SYSREF_EDOCUMENT_CARD_REQUISITES SYSREF_EDOCUMENT_CARD_TYPES SYSREF_EDOCUMENT_CARD_TYPES_REFERENCE SYSREF_EDOCUMENT_CARDS SYSREF_EDOCUMENT_HISTORY SYSREF_EDOCUMENT_KINDS SYSREF_EDOCUMENT_REQUISITES SYSREF_EDOCUMENT_SIGNATURES SYSREF_EDOCUMENT_TEMPLATES SYSREF_EDOCUMENT_TEXT_STORAGES SYSREF_EDOCUMENT_VIEWS SYSREF_FILTERER_SETUP_CONFLICTS SYSREF_FILTRATER_SETTING_CONFLICTS SYSREF_FOLDER_HISTORY SYSREF_FOLDERS SYSREF_FUNCTION_GROUPS SYSREF_FUNCTION_PARAMS SYSREF_FUNCTIONS SYSREF_JOB_HISTORY SYSREF_LINKS SYSREF_LOCALIZATION_DICTIONARY SYSREF_LOCALIZATION_LANGUAGES SYSREF_MODULES SYSREF_PRIVILEGES SYSREF_RECORD_HISTORY SYSREF_REFERENCE_REQUISITES SYSREF_REFERENCE_TYPE_VIEWS SYSREF_REFERENCE_TYPES SYSREF_REFERENCES SYSREF_REFERENCES_REQUISITES SYSREF_REMOTE_SERVERS SYSREF_REPLICATION_SESSIONS_LOG SYSREF_REPLICATION_SESSIONS_PROTOCOL SYSREF_REPORTS SYSREF_ROLES SYSREF_ROUTE_BLOCK_GROUPS SYSREF_ROUTE_BLOCKS SYSREF_SCRIPTS SYSREF_SEARCHES SYSREF_SERVER_EVENTS SYSREF_SERVER_EVENTS_HISTORY SYSREF_STANDARD_ROUTE_GROUPS SYSREF_STANDARD_ROUTES SYSREF_STATUSES SYSREF_SYSTEM_SETTINGS SYSREF_TASK_HISTORY SYSREF_TASK_KIND_GROUPS SYSREF_TASK_KINDS SYSREF_TASK_RIGHTS SYSREF_TASK_SIGNATURES SYSREF_TASKS SYSREF_UNITS SYSREF_USER_GROUPS SYSREF_USER_GROUPS_REFERENCE SYSREF_USER_SUBSTITUTION SYSREF_USERS SYSREF_USERS_REFERENCE SYSREF_VIEWERS SYSREF_WORKING_TIME_CALENDARS ",G="ACCESS_RIGHTS_TABLE_NAME EDMS_ACCESS_TABLE_NAME EDOC_TYPES_TABLE_NAME ",X="TEST_DEV_DB_NAME TEST_DEV_SYSTEM_CODE TEST_EDMS_DB_NAME TEST_EDMS_MAIN_CODE TEST_EDMS_MAIN_DB_NAME TEST_EDMS_SECOND_CODE TEST_EDMS_SECOND_DB_NAME TEST_EDMS_SYSTEM_CODE TEST_ISB5_MAIN_CODE TEST_ISB5_SECOND_CODE TEST_SQL_SERVER_2005_NAME TEST_SQL_SERVER_NAME ",_e="ATTENTION_CAPTION cbsCommandLinks cbsDefault CONFIRMATION_CAPTION ERROR_CAPTION INFORMATION_CAPTION mrCancel mrOk ",ve="EDOC_VERSION_ACTIVE_STAGE_CODE EDOC_VERSION_DESIGN_STAGE_CODE EDOC_VERSION_OBSOLETE_STAGE_CODE ",he="cpDataEnciphermentEnabled cpDigitalSignatureEnabled cpID cpIssuer cpPluginVersion cpSerial cpSubjectName cpSubjSimpleName cpValidFromDate cpValidToDate ",tt="ISBL_SYNTAX NO_SYNTAX XML_SYNTAX ",lt="WAIT_BLOCK_AFTER_FINISH_EVENT WAIT_BLOCK_BEFORE_START_EVENT WAIT_BLOCK_DEADLINE_PROPERTY WAIT_BLOCK_IS_RELATIVE_DEADLINE_PROPERTY WAIT_BLOCK_NAME_PROPERTY WAIT_BLOCK_RELATIVE_DEADLINE_TYPE_PROPERTY ",He="SYSRES_COMMON SYSRES_CONST SYSRES_MBFUNC SYSRES_SBDATA SYSRES_SBGUI SYSRES_SBINTF SYSRES_SBREFDSC SYSRES_SQLERRORS SYSRES_SYSCOMP ",Ce=s+l+c+d+_+p+g+E+f+S+v+h+T+N+y+x+P+D+k+U+W+z+K+Ee+oe+L+J+re+G+X+_e+ve+he+tt+lt+He,Be="atUser atGroup atRole ",We="aemEnabledAlways aemDisabledAlways aemEnabledOnBrowse aemEnabledOnEdit aemDisabledOnBrowseEmpty ",xe="apBegin apEnd ",ze="alLeft alRight ",rt="asmNever asmNoButCustomize asmAsLastTime asmYesButCustomize asmAlways ",Ke="cirCommon cirRevoked ",te="ctSignature ctEncode ctSignatureEncode ",pe="clbUnchecked clbChecked clbGrayed ",ie="ceISB ceAlways ceNever ",Pe="ctDocument ctReference ctScript ctUnknown ctReport ctDialog ctFunction ctFolder ctEDocument ctTask ctJob ctNotice ctControlJob ",we="cfInternal cfDisplay ",Xe="ciUnspecified ciWrite ciRead ",pt="ckFolder ckEDocument ckTask ckJob ckComponentToken ckAny ckReference ckScript ckReport ckDialog ",me="ctISBLEditor ctBevel ctButton ctCheckListBox ctComboBox ctComboEdit ctGrid ctDBCheckBox ctDBComboBox ctDBEdit ctDBEllipsis ctDBMemo ctDBNavigator ctDBRadioGroup ctDBStatusLabel ctEdit ctGroupBox ctInplaceHint ctMemo ctPanel ctListBox ctRadioButton ctRichEdit ctTabSheet ctWebBrowser ctImage ctHyperLink ctLabel ctDBMultiEllipsis ctRibbon ctRichView ctInnerPanel ctPanelGroup ctBitButton ",ht="cctDate cctInteger cctNumeric cctPick cctReference cctString cctText ",Ue="cltInternal cltPrimary cltGUI ",Ie="dseBeforeOpen dseAfterOpen dseBeforeClose dseAfterClose dseOnValidDelete dseBeforeDelete dseAfterDelete dseAfterDeleteOutOfTransaction dseOnDeleteError dseBeforeInsert dseAfterInsert dseOnValidUpdate dseBeforeUpdate dseOnUpdateRatifiedRecord dseAfterUpdate dseAfterUpdateOutOfTransaction dseOnUpdateError dseAfterScroll dseOnOpenRecord dseOnCloseRecord dseBeforeCancel dseAfterCancel dseOnUpdateDeadlockError dseBeforeDetailUpdate dseOnPrepareUpdate dseOnAnyRequisiteChange ",zt="dssEdit dssInsert dssBrowse dssInActive ",Nt="dftDate dftShortDate dftDateTime dftTimeStamp ",Gt="dotDays dotHours dotMinutes dotSeconds ",Sn="dtkndLocal dtkndUTC ",ne="arNone arView arEdit arFull ",ce="ddaView ddaEdit ",Oe="emLock emEdit emSign emExportWithLock emImportWithUnlock emChangeVersionNote emOpenForModify emChangeLifeStage emDelete emCreateVersion emImport emUnlockExportedWithLock emStart emAbort emReInit emMarkAsReaded emMarkAsUnreaded emPerform emAccept emResume emChangeRights emEditRoute emEditObserver emRecoveryFromLocalCopy emChangeWorkAccessType emChangeEncodeTypeToCertificate emChangeEncodeTypeToPassword emChangeEncodeTypeToNone emChangeEncodeTypeToCertificatePassword emChangeStandardRoute emGetText emOpenForView emMoveToStorage emCreateObject emChangeVersionHidden emDeleteVersion emChangeLifeCycleStage emApprovingSign emExport emContinue emLockFromEdit emUnLockForEdit emLockForServer emUnlockFromServer emDelegateAccessRights emReEncode ",Me="ecotFile ecotProcess ",ct="eaGet eaCopy eaCreate eaCreateStandardRoute ",xt="edltAll edltNothing edltQuery ",Ze="essmText essmCard ",Yt="esvtLast esvtLastActive esvtSpecified ",er="edsfExecutive edsfArchive ",Z="edstSQLServer edstFile ",ge="edvstNone edvstEDocumentVersionCopy edvstFile edvstTemplate edvstScannedFile ",Ae="vsDefault vsDesign vsActive vsObsolete ",it="etNone etCertificate etPassword etCertificatePassword ",Tt="ecException ecWarning ecInformation ",wt="estAll estApprovingOnly ",tn="evtLast evtLastActive evtQuery ",mt="fdtString fdtNumeric fdtInteger fdtDate fdtText fdtUnknown fdtWideString fdtLargeInteger ",ln="ftInbox ftOutbox ftFavorites ftCommonFolder ftUserFolder ftComponents ftQuickLaunch ftShortcuts ftSearch ",tr="grhAuto grhX1 grhX2 grhX3 ",El="hltText hltRTF hltHTML ",lo="iffBMP iffJPEG iffMultiPageTIFF iffSinglePageTIFF iffTIFF iffPNG ",fl="im8bGrayscale im24bRGB im1bMonochrome ",Sl="itBMP itJPEG itWMF itPNG ",bl="ikhInformation ikhWarning ikhError ikhNoIcon ",ca="icUnknown icScript icFunction icIntegratedReport icAnalyticReport icDataSetEventHandler icActionHandler icFormEventHandler icLookUpEventHandler icRequisiteChangeEventHandler icBeforeSearchEventHandler icRoleCalculation icSelectRouteEventHandler icBlockPropertyCalculation icBlockQueryParamsEventHandler icChangeSearchResultEventHandler icBlockEventHandler icSubTaskInitEventHandler icEDocDataSetEventHandler icEDocLookUpEventHandler icEDocActionHandler icEDocFormEventHandler icEDocRequisiteChangeEventHandler icStructuredConversionRule icStructuredConversionEventBefore icStructuredConversionEventAfter icWizardEventHandler icWizardFinishEventHandler icWizardStepEventHandler icWizardStepFinishEventHandler icWizardActionEnableEventHandler icWizardActionExecuteEventHandler icCreateJobsHandler icCreateNoticesHandler icBeforeLookUpEventHandler icAfterLookUpEventHandler icTaskAbortEventHandler icWorkflowBlockActionHandler icDialogDataSetEventHandler icDialogActionHandler icDialogLookUpEventHandler icDialogRequisiteChangeEventHandler icDialogFormEventHandler icDialogValidCloseEventHandler icBlockFormEventHandler icTaskFormEventHandler icReferenceMethod icEDocMethod icDialogMethod icProcessMessageHandler ",hl="isShow isHide isByUserSettings ",ua="jkJob jkNotice jkControlJob ",Tl="jtInner jtLeft jtRight jtFull jtCross ",vl="lbpAbove lbpBelow lbpLeft lbpRight ",Cl="eltPerConnection eltPerUser ",Rl="sfcUndefined sfcBlack sfcGreen sfcRed sfcBlue sfcOrange sfcLilac ",Nl="sfsItalic sfsStrikeout sfsNormal ",Ol="ldctStandardRoute ldctWizard ldctScript ldctFunction ldctRouteBlock ldctIntegratedReport ldctAnalyticReport ldctReferenceType ldctEDocumentType ldctDialog ldctServerEvents ",Al="mrcrtNone mrcrtUser mrcrtMaximal mrcrtCustom ",yl="vtEqual vtGreaterOrEqual vtLessOrEqual vtRange ",co="rdYesterday rdToday rdTomorrow rdThisWeek rdThisMonth rdThisYear rdNextMonth rdNextWeek rdLastWeek rdLastMonth ",Il="rdWindow rdFile rdPrinter ",Dl="rdtString rdtNumeric rdtInteger rdtDate rdtReference rdtAccount rdtText rdtPick rdtUnknown rdtLargeInteger rdtDocument ",xl="reOnChange reOnChangeValues ",wl="ttGlobal ttLocal ttUser ttSystem ",Ml="ssmBrowse ssmSelect ssmMultiSelect ssmBrowseModal ",Ll="smSelect smLike smCard ",Ei="stNone stAuthenticating stApproving ",Pl="sctString sctStream ",fi="sstAnsiSort sstNaturalSort ",kl="svtEqual svtContain ",Ul="soatString soatNumeric soatInteger soatDatetime soatReferenceRecord soatText soatPick soatBoolean soatEDocument soatAccount soatIntegerCollection soatNumericCollection soatStringCollection soatPickCollection soatDatetimeCollection soatBooleanCollection soatReferenceRecordCollection soatEDocumentCollection soatAccountCollection soatContents soatUnknown ",Fl="tarAbortByUser tarAbortByWorkflowException ",uo="tvtAllWords tvtExactPhrase tvtAnyWord ",_o="usNone usCompleted usRedSquare usBlueSquare usYellowSquare usGreenSquare usOrangeSquare usPurpleSquare usFollowUp ",po="utUnknown utUser utDeveloper utAdministrator utSystemDeveloper utDisconnected ",Bl="btAnd btDetailAnd btOr btNotOr btOnly ",Gl="vmView vmSelect vmNavigation ",Yl="vsmSingle vsmMultiple vsmMultipleCheck vsmNoSelection ",ql="wfatPrevious wfatNext wfatCancel wfatFinish ",mo="wfepUndefined wfepText3 wfepText6 wfepText9 wfepSpinEdit wfepDropDown wfepRadioGroup wfepFlag wfepText12 wfepText15 wfepText18 wfepText21 wfepText24 wfepText27 wfepText30 wfepRadioGroupColumn1 wfepRadioGroupColumn2 wfepRadioGroupColumn3 ",go="wfetQueryParameter wfetText wfetDelimiter wfetLabel ",Eo="wptString wptInteger wptNumeric wptBoolean wptDateTime wptPick wptText wptUser wptUserList wptEDocumentInfo wptEDocumentInfoList wptReferenceRecordInfo wptReferenceRecordInfoList wptFolderInfo wptTaskInfo wptContents wptFileName wptDate ",da="wsrComplete wsrGoNext wsrGoPrevious wsrCustom wsrCancel wsrGoFinal ",$l="wstForm wstEDocument wstTaskCard wstReferenceRecordCard wstFinal ",fo="waAll waPerformers waManual ",Si="wsbStart wsbFinish wsbNotice wsbStep wsbDecision wsbWait wsbMonitor wsbScript wsbConnector wsbSubTask wsbLifeCycleStage wsbPause ",So="wdtInteger wdtFloat wdtString wdtPick wdtDateTime wdtBoolean wdtTask wdtJob wdtFolder wdtEDocument wdtReferenceRecord wdtUser wdtGroup wdtRole wdtIntegerCollection wdtFloatCollection wdtStringCollection wdtPickCollection wdtDateTimeCollection wdtBooleanCollection wdtTaskCollection wdtJobCollection wdtFolderCollection wdtEDocumentCollection wdtReferenceRecordCollection wdtUserCollection wdtGroupCollection wdtRoleCollection wdtContents wdtUserList wdtSearchDescription wdtDeadLine wdtPickSet wdtAccountCollection ",Hl="wiLow wiNormal wiHigh ",bo="wrtSoft wrtHard ",ho="wsInit wsRunning wsDone wsControlled wsAborted wsContinued ",_a="wtmFull wtmFromCurrent wtmOnlyCurrent ",zl=Be+We+xe+ze+rt+Ke+te+pe+ie+Pe+we+Xe+pt+me+ht+Ue+Ie+zt+Nt+Gt+Sn+ne+ce+Oe+Me+ct+xt+Ze+Yt+er+Z+ge+Ae+it+Tt+wt+tn+mt+ln+tr+El+lo+fl+Sl+bl+ca+hl+ua+Tl+vl+Cl+Rl+Nl+Ol+Al+yl+co+Il+Dl+xl+wl+Ml+Ll+Ei+Pl+fi+kl+Ul+Fl+uo+_o+po+Bl+Gl+Yl+ql+mo+go+Eo+da+$l+fo+Si+So+Hl+bo+ho+_a,To="AddSubString AdjustLineBreaks AmountInWords Analysis ArrayDimCount ArrayHighBound ArrayLowBound ArrayOf ArrayReDim Assert Assigned BeginOfMonth BeginOfPeriod BuildProfilingOperationAnalysis CallProcedure CanReadFile CArrayElement CDataSetRequisite ChangeDate ChangeReferenceDataset Char CharPos CheckParam CheckParamValue CompareStrings ConstantExists ControlState ConvertDateStr Copy CopyFile CreateArray CreateCachedReference CreateConnection CreateDialog CreateDualListDialog CreateEditor CreateException CreateFile CreateFolderDialog CreateInputDialog CreateLinkFile CreateList CreateLock CreateMemoryDataSet CreateObject CreateOpenDialog CreateProgress CreateQuery CreateReference CreateReport CreateSaveDialog CreateScript CreateSQLPivotFunction CreateStringList CreateTreeListSelectDialog CSelectSQL CSQL CSubString CurrentUserID CurrentUserName CurrentVersion DataSetLocateEx DateDiff DateTimeDiff DateToStr DayOfWeek DeleteFile DirectoryExists DisableCheckAccessRights DisableCheckFullShowingRestriction DisableMassTaskSendingRestrictions DropTable DupeString EditText EnableCheckAccessRights EnableCheckFullShowingRestriction EnableMassTaskSendingRestrictions EndOfMonth EndOfPeriod ExceptionExists ExceptionsOff ExceptionsOn Execute ExecuteProcess Exit ExpandEnvironmentVariables ExtractFileDrive ExtractFileExt ExtractFileName ExtractFilePath ExtractParams FileExists FileSize FindFile FindSubString FirmContext ForceDirectories Format FormatDate FormatNumeric FormatSQLDate FormatString FreeException GetComponent GetComponentLaunchParam GetConstant GetLastException GetReferenceRecord GetRefTypeByRefID GetTableID GetTempFolder IfThen In IndexOf InputDialog InputDialogEx InteractiveMode IsFileLocked IsGraphicFile IsNumeric Length LoadString LoadStringFmt LocalTimeToUTC LowerCase Max MessageBox MessageBoxEx MimeDecodeBinary MimeDecodeString MimeEncodeBinary MimeEncodeString Min MoneyInWords MoveFile NewID Now OpenFile Ord Precision Raise ReadCertificateFromFile ReadFile ReferenceCodeByID ReferenceNumber ReferenceRequisiteMode ReferenceRequisiteValue RegionDateSettings RegionNumberSettings RegionTimeSettings RegRead RegWrite RenameFile Replace Round SelectServerCode SelectSQL ServerDateTime SetConstant SetManagedFolderFieldsState ShowConstantsInputDialog ShowMessage Sleep Split SQL SQL2XLSTAB SQLProfilingSendReport StrToDate SubString SubStringCount SystemSetting Time TimeDiff Today Transliterate Trim UpperCase UserStatus UTCToLocalTime ValidateXML VarIsClear VarIsEmpty VarIsNull WorkTimeDiff WriteFile WriteFileEx WriteObjectHistory Анализ БазаДанных Š‘Š»Š¾ŠŗŠ•ŃŃ‚ŃŒ Š‘Š»Š¾ŠŗŠ•ŃŃ‚ŃŒŠ Š°ŃŃˆ Š‘Š»Š¾ŠŗŠ˜Š½Ń„Š¾ Š‘Š»Š¾ŠŗŠ”Š½ŃŃ‚ŃŒ Š‘Š»Š¾ŠŗŠ”Š½ŃŃ‚ŃŒŠ Š°ŃŃˆ Š‘Š»Š¾ŠŗŠ£ŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒ ВвоГ Š’Š²Š¾Š“ŠœŠµŠ½ŃŽ ВеГД ВеГДпр Š’ŠµŃ€Ń…Š½ŃŃŠ“Ń€Š°Š½ŠøŃ†Š°ŠœŠ°ŃŃŠøŠ²Š° Š’Š½ŠµŃˆŠŸŃ€Š¾Š³Ń€ Восст Š’Ń€ŠµŠ¼ŠµŠ½Š½Š°ŃŠŸŠ°ŠæŠŗŠ° Š’Ń€ŠµŠ¼Ń ВыборSQL Š’Ń‹Š±Ń€Š°Ń‚ŃŒŠ—Š°ŠæŠøŃŃŒ Š’Ń‹Š“ŠµŠ»ŠøŃ‚ŃŒŠ”Ń‚Ń€ Š’Ń‹Š·Š²Š°Ń‚ŃŒ Š’Ń‹ŠæŠ¾Š»Š½ŠøŃ‚ŃŒ Š’Ń‹ŠæŠŸŃ€Š¾Š³Ń€ ГрафическийФайл Š“Ń€ŃƒŠæŠæŠ°Š”Š¾ŠæŠ¾Š»Š½ŠøŃ‚ŠµŠ»ŃŒŠ½Š¾ Š”Š°Ń‚Š°Š’Ń€ŠµŠ¼ŃŠ”ŠµŃ€Š² Š”ŠµŠ½ŃŒŠŠµŠ“ŠµŠ»Šø Š”ŠøŠ°Š»Š¾Š³Š”Š°ŠŠµŃ‚ ДлинаДтр Š”Š¾Š±ŠŸŠ¾Š“ŃŃ‚Ń€ Š•ŠŸŃƒŃŃ‚Š¾ ЕслиТо ЕЧисло Š—Š°Š¼ŠŸŠ¾Š“ŃŃ‚Ń€ Š—Š°ŠæŠøŃŃŒŠ”ŠæŃ€Š°Š²Š¾Ń‡Š½ŠøŠŗŠ° Š—Š½Š°Ń‡ŠŸŠ¾Š»ŃŠ”ŠæŃ€ Š˜Š”Š¢ŠøŠæŠ”ŠæŃ€ Š˜Š·Š²Š»ŠµŃ‡ŃŒŠ”ŠøŃŠŗ Š˜Š·Š²Š»ŠµŃ‡ŃŒŠ˜Š¼ŃŠ¤Š°Š¹Š»Š° Š˜Š·Š²Š»ŠµŃ‡ŃŒŠŸŃƒŃ‚ŃŒ Š˜Š·Š²Š»ŠµŃ‡ŃŒŠ Š°ŃŃˆŠøŃ€ŠµŠ½ŠøŠµ Š˜Š·Š¼Š”Š°Ń‚ Š˜Š·Š¼ŠµŠ½ŠøŃ‚ŃŒŠ Š°Š·Š¼ŠµŃ€ŠœŠ°ŃŃŠøŠ²Š° Š˜Š·Š¼ŠµŃ€ŠµŠ½ŠøŠ¹ŠœŠ°ŃŃŠøŠ²Š° Š˜Š¼ŃŠžŃ€Š³ Š˜Š¼ŃŠŸŠ¾Š»ŃŠ”ŠæŃ€ ИнГекс Š˜Š½Š“ŠøŠŗŠ°Ń‚Š¾Ń€Š—Š°ŠŗŃ€Ń‹Ń‚ŃŒ Š˜Š½Š“ŠøŠŗŠ°Ń‚Š¾Ń€ŠžŃ‚ŠŗŃ€Ń‹Ń‚ŃŒ Š˜Š½Š“ŠøŠŗŠ°Ń‚Š¾Ń€ŠØŠ°Š³ Š˜Š½Ń‚ŠµŃ€Š°ŠŗŃ‚ŠøŠ²Š½Ń‹Š¹Š ŠµŠ¶ŠøŠ¼ Š˜Ń‚Š¾Š³Š¢Š±Š»Š”ŠæŃ€ ŠšŠ¾Š“Š’ŠøŠ“Š’ŠµŠ“Š”ŠæŃ€ ŠšŠ¾Š“Š’ŠøŠ“Š”ŠæŃ€ŠŸŠ¾Š˜Š” КоГПоAnalit КоГДимвола ŠšŠ¾Š“Дпр ŠšŠ¾Š»ŠŸŠ¾Š“ŃŃ‚Ń€ ŠšŠ¾Š»ŠŸŃ€Š¾Šæ КонМес ŠšŠ¾Š½ŃŃ‚ ŠšŠ¾Š½ŃŃ‚Š•ŃŃ‚ŃŒ ŠšŠ¾Š½ŃŃ‚Š—Š½Š°Ń‡ ŠšŠ¾Š½Š¢Ń€Š°Š½ ŠšŠ¾ŠæŠøŃ€Š¾Š²Š°Ń‚ŃŒŠ¤Š°Š¹Š» ŠšŠ¾ŠæŠøŃŠ”Ń‚Ń€ ŠšŠŸŠµŃ€ŠøŠ¾Š“ ŠšŠ”Ń‚Ń€Š¢Š±Š»Š”ŠæŃ€ Макс ŠœŠ°ŠŗŃŠ”Ń‚Ń€Š¢Š±Š»Š”ŠæŃ€ Массив ŠœŠµŠ½ŃŽ ŠœŠµŠ½ŃŽŠ Š°ŃŃˆ Мин ŠŠ°Š±Š¾Ń€Š”Š°Š½Š½Ń‹Ń…ŠŠ°Š¹Ń‚ŠøŠ Š°ŃŃˆ ŠŠ°ŠøŠ¼Š’ŠøŠ“Š”ŠæŃ€ ŠŠ°ŠøŠ¼ŠŸŠ¾Analit ŠŠ°ŠøŠ¼Š”ŠæŃ€ ŠŠ°ŃŃ‚Ń€Š¾ŠøŃ‚ŃŒŠŸŠµŃ€ŠµŠ²Š¾Š“Ń‹Š”Ń‚Ń€Š¾Šŗ ŠŠ°Ń‡ŠœŠµŃ ŠŠ°Ń‡Š¢Ń€Š°Š½ ŠŠøŠ¶Š½ŃŃŠ“Ń€Š°Š½ŠøŃ†Š°ŠœŠ°ŃŃŠøŠ²Š° ŠŠ¾Š¼ŠµŃ€Š”ŠæŃ€ ŠŠŸŠµŃ€ŠøŠ¾Š“ ŠžŠŗŠ½Š¾ ŠžŠŗŃ€ ŠžŠŗŃ€ŃƒŠ¶ŠµŠ½ŠøŠµ ŠžŃ‚Š»Š˜Š½Ń„Š”Š¾Š±Š°Š²ŠøŃ‚ŃŒ ŠžŃ‚Š»Š˜Š½Ń„Š£Š“Š°Š»ŠøŃ‚ŃŒ ŠžŃ‚Ń‡ŠµŃ‚ ŠžŃ‚Ń‡ŠµŃ‚ŠŠ½Š°Š» ŠžŃ‚Ń‡ŠµŃ‚Š˜Š½Ń‚ ŠŸŠ°ŠæŠŗŠ°Š”ŃƒŃ‰ŠµŃŃ‚Š²ŃƒŠµŃ‚ Пауза ŠŸŠ’ыборSQL ŠŸŠµŃ€ŠµŠøŠ¼ŠµŠ½Š¾Š²Š°Ń‚ŃŒŠ¤Š°Š¹Š» ŠŸŠµŃ€ŠµŠ¼ŠµŠ½Š½Ń‹Šµ ŠŸŠµŃ€ŠµŠ¼ŠµŃŃ‚ŠøŃ‚ŃŒŠ¤Š°Š¹Š» ŠŸŠ¾Š“ŃŃ‚Ń€ ŠŸŠ¾ŠøŃŠŗŠŸŠ¾Š“ŃŃ‚Ń€ ŠŸŠ¾ŠøŃŠŗŠ”Ń‚Ń€ ŠŸŠ¾Š»ŃƒŃ‡ŠøŃ‚ŃŒŠ˜Š”Š¢Š°Š±Š»ŠøŃ†Ń‹ ŠŸŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»ŃŒŠ”Š¾ŠæŠ¾Š»Š½ŠøŃ‚ŠµŠ»ŃŒŠ½Š¾ ŠŸŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»ŃŒŠ˜Š” ŠŸŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»ŃŒŠ˜Š¼Ń ŠŸŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»ŃŒŠ”Ń‚Š°Ń‚ŃƒŃ ŠŸŃ€ŠµŃ€Š²Š°Ń‚ŃŒ ŠŸŃ€Š¾Š²ŠµŃ€ŠøŃ‚ŃŒŠŸŠ°Ń€Š°Š¼ŠµŃ‚Ń€ ŠŸŃ€Š¾Š²ŠµŃ€ŠøŃ‚ŃŒŠŸŠ°Ń€Š°Š¼ŠµŃ‚Ń€Š—Š½Š°Ń‡ ŠŸŃ€Š¾Š²ŠµŃ€ŠøŃ‚ŃŒŠ£ŃŠ»Š¾Š²ŠøŠµ РазбДтр Š Š°Š·Š½Š’Ń€ŠµŠ¼Ń РазнДат Š Š°Š·Š½Š”Š°Ń‚Š°Š’Ń€ŠµŠ¼Ń Š Š°Š·Š½Š Š°Š±Š’Ń€ŠµŠ¼Ń РегУстВрем РегУстДат РегУстЧсл РеГТекст Š ŠµŠµŃŃ‚Ń€Š—Š°ŠæŠøŃŃŒ Š ŠµŠµŃŃ‚Ń€Š”ŠæŠøŃŠ¾ŠŗŠ˜Š¼ŠµŠ½ŠŸŠ°Ń€Š°Š¼ РеестрЧтение РеквДпр Š ŠµŠŗŠ²Š”ŠæŃ€ŠŸŃ€ Š”ŠµŠ³Š¾Š“Š½Ń Дейчас Дервер Š”ŠµŃ€Š²ŠµŃ€ŠŸŃ€Š¾Ń†ŠµŃŃŠ˜Š” Š”ŠµŃ€Ń‚ŠøŃ„ŠøŠŗŠ°Ń‚Š¤Š°Š¹Š»Š”Ń‡ŠøŃ‚Š°Ń‚ŃŒ Š”Š¶ŠŸŃ€Š¾Š± Димвол Š”ŠøŃŃ‚ŠµŠ¼Š°Š”ŠøŃ€ŠµŠŗŃ‚ŃƒŠ¼ŠšŠ¾Š“ Š”ŠøŃŃ‚ŠµŠ¼Š°Š˜Š½Ń„Š¾Ń€Š¼Š°Ń†ŠøŃ Š”ŠøŃŃ‚ŠµŠ¼Š°ŠšŠ¾Š“ ДоГержит Š”Š¾ŠµŠ“ŠøŠ½ŠµŠ½ŠøŠµŠ—Š°ŠŗŃ€Ń‹Ń‚ŃŒ Š”Š¾ŠµŠ“ŠøŠ½ŠµŠ½ŠøŠµŠžŃ‚ŠŗŃ€Ń‹Ń‚ŃŒ Š”Š¾Š·Š“Š°Ń‚ŃŒŠ”ŠøŠ°Š»Š¾Š³ Š”Š¾Š·Š“Š°Ń‚ŃŒŠ”ŠøŠ°Š»Š¾Š³Š’Ń‹Š±Š¾Ń€Š°Š˜Š·Š”Š²ŃƒŃ…Š”ŠæŠøŃŠŗŠ¾Š² Š”Š¾Š·Š“Š°Ń‚ŃŒŠ”ŠøŠ°Š»Š¾Š³Š’Ń‹Š±Š¾Ń€Š°ŠŸŠ°ŠæŠŗŠø Š”Š¾Š·Š“Š°Ń‚ŃŒŠ”ŠøŠ°Š»Š¾Š³ŠžŃ‚ŠŗŃ€Ń‹Ń‚ŠøŃŠ¤Š°Š¹Š»Š° Š”Š¾Š·Š“Š°Ń‚ŃŒŠ”ŠøŠ°Š»Š¾Š³Š”Š¾Ń…Ń€Š°Š½ŠµŠ½ŠøŃŠ¤Š°Š¹Š»Š° Š”Š¾Š·Š“Š°Ń‚ŃŒŠ—Š°ŠæŃ€Š¾Ń Š”Š¾Š·Š“Š°Ń‚ŃŒŠ˜Š½Š“ŠøŠŗŠ°Ń‚Š¾Ń€ Š”Š¾Š·Š“Š°Ń‚ŃŒŠ˜ŃŠŗŠ»ŃŽŃ‡ŠµŠ½ŠøŠµ Š”Š¾Š·Š“Š°Ń‚ŃŒŠšŃŃˆŠøŃ€Š¾Š²Š°Š½Š½Ń‹Š¹Š”ŠæŃ€Š°Š²Š¾Ń‡Š½ŠøŠŗ Š”Š¾Š·Š“Š°Ń‚ŃŒŠœŠ°ŃŃŠøŠ² Š”Š¾Š·Š“Š°Ń‚ŃŒŠŠ°Š±Š¾Ń€Š”Š°Š½Š½Ń‹Ń… Š”Š¾Š·Š“Š°Ń‚ŃŒŠžŠ±ŃŠŠµŠŗŃ‚ Š”Š¾Š·Š“Š°Ń‚ŃŒŠžŃ‚Ń‡ŠµŃ‚ Š”Š¾Š·Š“Š°Ń‚ŃŒŠŸŠ°ŠæŠŗŃƒ Š”Š¾Š·Š“Š°Ń‚ŃŒŠ ŠµŠ“Š°ŠŗŃ‚Š¾Ń€ Š”Š¾Š·Š“Š°Ń‚ŃŒŠ”Š¾ŠµŠ“ŠøŠ½ŠµŠ½ŠøŠµ Š”Š¾Š·Š“Š°Ń‚ŃŒŠ”ŠæŠøŃŠ¾Šŗ Š”Š¾Š·Š“Š°Ń‚ŃŒŠ”ŠæŠøŃŠ¾ŠŗŠ”Ń‚Ń€Š¾Šŗ Š”Š¾Š·Š“Š°Ń‚ŃŒŠ”ŠæŃ€Š°Š²Š¾Ń‡Š½ŠøŠŗ Š”Š¾Š·Š“Š°Ń‚ŃŒŠ”Ń†ŠµŠ½Š°Ń€ŠøŠ¹ ДозГДпр ДостДпр Дохр ДохрДпр ДписокДистем Дпр Дправочник Š”ŠæŃ€Š‘Š»Š¾ŠŗŠ•ŃŃ‚ŃŒ Š”ŠæŃ€Š‘Š»Š¾ŠŗŠ”Š½ŃŃ‚ŃŒ Š”ŠæŃ€Š‘Š»Š¾ŠŗŠ”Š½ŃŃ‚ŃŒŠ Š°ŃŃˆ Š”ŠæŃ€Š‘Š»Š¾ŠŗŠ£ŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒ Š”ŠæŃ€Š˜Š·Š¼ŠŠ°Š±Š”Š°Š½ Š”ŠæŃ€ŠšŠ¾Š“ Š”ŠæŃ€ŠŠ¾Š¼ŠµŃ€ Š”ŠæŃ€ŠžŠ±Š½Š¾Š²ŠøŃ‚ŃŒ Š”ŠæŃ€ŠžŃ‚ŠŗŃ€Ń‹Ń‚ŃŒ Š”ŠæŃ€ŠžŃ‚Š¼ŠµŠ½ŠøŃ‚ŃŒ Š”ŠæŃ€ŠŸŠ°Ń€Š°Š¼ Š”ŠæŃ€ŠŸŠ¾Š»ŠµŠ—Š½Š°Ń‡ Š”ŠæŃ€ŠŸŠ¾Š»ŠµŠ˜Š¼Ń ДпрРекв ДпрРеквВвеГЗн Š”ŠæŃ€Š ŠµŠŗŠ²ŠŠ¾Š²Ń‹Šµ Š”ŠæŃ€Š ŠµŠŗŠ²ŠŸŃ€ Š”ŠæŃ€Š ŠµŠŗŠ²ŠŸŃ€ŠµŠ“Š—Š½ ДпрРеквРежим ДпрРеквТипТекст Š”ŠæŃ€Š”Š¾Š·Š“Š°Ń‚ŃŒ ДпрДост Š”ŠæŃ€Š”Š¾Ń…Ń€Š°Š½ŠøŃ‚ŃŒ Š”ŠæŃ€Š¢Š±Š»Š˜Ń‚Š¾Š³ ДпрТблДтр Š”ŠæŃ€Š¢Š±Š»Š”Ń‚Ń€ŠšŠ¾Š» Š”ŠæŃ€Š¢Š±Š»Š”Ń‚Ń€ŠœŠ°ŠŗŃ Š”ŠæŃ€Š¢Š±Š»Š”Ń‚Ń€ŠœŠøŠ½ Š”ŠæŃ€Š¢Š±Š»Š”Ń‚Ń€ŠŸŃ€ŠµŠ“ ДпрТблДтрДлеГ ДпрТблДтрДозГ ДпрТблДтрУГ Š”ŠæŃ€Š¢ŠµŠŗŠŸŃ€ŠµŠ“ŃŃ‚ Š”ŠæŃ€Š£Š“Š°Š»ŠøŃ‚ŃŒ Š”Ń€Š°Š²Š½ŠøŃ‚ŃŒŠ”Ń‚Ń€ ДтрВерхРегистр Š”Ń‚Ń€ŠŠøŠ¶Š½Š ŠµŠ³ŠøŃŃ‚Ń€ ДтрТблДпр Š”ŃƒŠ¼ŠŸŃ€Š¾Šæ Дценарий Š”Ń†ŠµŠ½Š°Ń€ŠøŠ¹ŠŸŠ°Ń€Š°Š¼ Š¢ŠµŠŗŠ’ŠµŃ€ŃŠøŃ Š¢ŠµŠŗŠžŃ€Š³ Точн Тран Š¢Ń€Š°Š½ŃŠ»ŠøŃ‚ŠµŃ€Š°Ń†ŠøŃ Š£Š“Š°Š»ŠøŃ‚ŃŒŠ¢Š°Š±Š»ŠøŃ†Ńƒ Š£Š“Š°Š»ŠøŃ‚ŃŒŠ¤Š°Š¹Š» УГДпр УГДтрТблДпр Уст Š£ŃŃ‚Š°Š½Š¾Š²ŠŗŠøŠšŠ¾Š½ŃŃ‚Š°Š½Ń‚ Š¤Š°Š¹Š»ŠŃ‚Ń€ŠøŠ±ŃƒŃ‚Š”Ń‡ŠøŃ‚Š°Ń‚ŃŒ Š¤Š°Š¹Š»ŠŃ‚Ń€ŠøŠ±ŃƒŃ‚Š£ŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒ Š¤Š°Š¹Š»Š’Ń€ŠµŠ¼Ń Š¤Š°Š¹Š»Š’Ń€ŠµŠ¼ŃŠ£ŃŃ‚Š°Š½Š¾Š²ŠøŃ‚ŃŒ Š¤Š°Š¹Š»Š’Ń‹Š±Ń€Š°Ń‚ŃŒ Š¤Š°Š¹Š»Š—Š°Š½ŃŃ‚ Š¤Š°Š¹Š»Š—Š°ŠæŠøŃŠ°Ń‚ŃŒ Š¤Š°Š¹Š»Š˜ŃŠŗŠ°Ń‚ŃŒ Š¤Š°Š¹Š»ŠšŠ¾ŠæŠøŃ€Š¾Š²Š°Ń‚ŃŒ Š¤Š°Š¹Š»ŠœŠ¾Š¶Š½Š¾Š§ŠøŃ‚Š°Ń‚ŃŒ Š¤Š°Š¹Š»ŠžŃ‚ŠŗŃ€Ń‹Ń‚ŃŒ Š¤Š°Š¹Š»ŠŸŠµŃ€ŠµŠøŠ¼ŠµŠ½Š¾Š²Š°Ń‚ŃŒ Š¤Š°Š¹Š»ŠŸŠµŃ€ŠµŠŗŠ¾Š“ŠøŃ€Š¾Š²Š°Ń‚ŃŒ Š¤Š°Š¹Š»ŠŸŠµŃ€ŠµŠ¼ŠµŃŃ‚ŠøŃ‚ŃŒ Š¤Š°Š¹Š»ŠŸŃ€Š¾ŃŠ¼Š¾Ń‚Ń€ŠµŃ‚ŃŒ ФайлРазмер Š¤Š°Š¹Š»Š”Š¾Š·Š“Š°Ń‚ŃŒ Š¤Š°Š¹Š»Š”ŃŃ‹Š»ŠŗŠ°Š”Š¾Š·Š“Š°Ń‚ŃŒ Š¤Š°Š¹Š»Š”ŃƒŃ‰ŠµŃŃ‚Š²ŃƒŠµŃ‚ Š¤Š°Š¹Š»Š”Ń‡ŠøŃ‚Š°Ń‚ŃŒ Š¤Š°Š¹Š»Š£Š“Š°Š»ŠøŃ‚ŃŒ ФмтSQLДат ФмтДат ФмтДтр ФмтЧсл Формат Š¦ŠœŠ°ŃŃŠøŠ²Š­Š»ŠµŠ¼ŠµŠ½Ń‚ Š¦ŠŠ°Š±Š¾Ń€Š”Š°Š½Š½Ń‹Ń…Š ŠµŠŗŠ²ŠøŠ·ŠøŃ‚ Š¦ŠŸŠ¾Š“ŃŃ‚Ń€ ",pa="AltState Application CallType ComponentTokens CreatedJobs CreatedNotices ControlState DialogResult Dialogs EDocuments EDocumentVersionSource Folders GlobalIDs Job Jobs InputValue LookUpReference LookUpRequisiteNames LookUpSearch Object ParentComponent Processes References Requisite ReportName Reports Result Scripts Searches SelectedAttachments SelectedItems SelectMode Sender ServerEvents ServiceFactory ShiftState SubTask SystemDialogs Tasks Wizard Wizards Work ВызовДпособ Š˜Š¼ŃŠžŃ‚чета РеквЗнач ",ma="IApplication IAccessRights IAccountRepository IAccountSelectionRestrictions IAction IActionList IAdministrationHistoryDescription IAnchors IApplication IArchiveInfo IAttachment IAttachmentList ICheckListBox ICheckPointedList IColumn IComponent IComponentDescription IComponentToken IComponentTokenFactory IComponentTokenInfo ICompRecordInfo IConnection IContents IControl IControlJob IControlJobInfo IControlList ICrypto ICrypto2 ICustomJob ICustomJobInfo ICustomListBox ICustomObjectWizardStep ICustomWork ICustomWorkInfo IDataSet IDataSetAccessInfo IDataSigner IDateCriterion IDateRequisite IDateRequisiteDescription IDateValue IDeaAccessRights IDeaObjectInfo IDevelopmentComponentLock IDialog IDialogFactory IDialogPickRequisiteItems IDialogsFactory IDICSFactory IDocRequisite IDocumentInfo IDualListDialog IECertificate IECertificateInfo IECertificates IEditControl IEditorForm IEdmsExplorer IEdmsObject IEdmsObjectDescription IEdmsObjectFactory IEdmsObjectInfo IEDocument IEDocumentAccessRights IEDocumentDescription IEDocumentEditor IEDocumentFactory IEDocumentInfo IEDocumentStorage IEDocumentVersion IEDocumentVersionListDialog IEDocumentVersionSource IEDocumentWizardStep IEDocVerSignature IEDocVersionState IEnabledMode IEncodeProvider IEncrypter IEvent IEventList IException IExternalEvents IExternalHandler IFactory IField IFileDialog IFolder IFolderDescription IFolderDialog IFolderFactory IFolderInfo IForEach IForm IFormTitle IFormWizardStep IGlobalIDFactory IGlobalIDInfo IGrid IHasher IHistoryDescription IHyperLinkControl IImageButton IImageControl IInnerPanel IInplaceHint IIntegerCriterion IIntegerList IIntegerRequisite IIntegerValue IISBLEditorForm IJob IJobDescription IJobFactory IJobForm IJobInfo ILabelControl ILargeIntegerCriterion ILargeIntegerRequisite ILargeIntegerValue ILicenseInfo ILifeCycleStage IList IListBox ILocalIDInfo ILocalization ILock IMemoryDataSet IMessagingFactory IMetadataRepository INotice INoticeInfo INumericCriterion INumericRequisite INumericValue IObject IObjectDescription IObjectImporter IObjectInfo IObserver IPanelGroup IPickCriterion IPickProperty IPickRequisite IPickRequisiteDescription IPickRequisiteItem IPickRequisiteItems IPickValue IPrivilege IPrivilegeList IProcess IProcessFactory IProcessMessage IProgress IProperty IPropertyChangeEvent IQuery IReference IReferenceCriterion IReferenceEnabledMode IReferenceFactory IReferenceHistoryDescription IReferenceInfo IReferenceRecordCardWizardStep IReferenceRequisiteDescription IReferencesFactory IReferenceValue IRefRequisite IReport IReportFactory IRequisite IRequisiteDescription IRequisiteDescriptionList IRequisiteFactory IRichEdit IRouteStep IRule IRuleList ISchemeBlock IScript IScriptFactory ISearchCriteria ISearchCriterion ISearchDescription ISearchFactory ISearchFolderInfo ISearchForObjectDescription ISearchResultRestrictions ISecuredContext ISelectDialog IServerEvent IServerEventFactory IServiceDialog IServiceFactory ISignature ISignProvider ISignProvider2 ISignProvider3 ISimpleCriterion IStringCriterion IStringList IStringRequisite IStringRequisiteDescription IStringValue ISystemDialogsFactory ISystemInfo ITabSheet ITask ITaskAbortReasonInfo ITaskCardWizardStep ITaskDescription ITaskFactory ITaskInfo ITaskRoute ITextCriterion ITextRequisite ITextValue ITreeListSelectDialog IUser IUserList IValue IView IWebBrowserControl IWizard IWizardAction IWizardFactory IWizardFormElement IWizardParam IWizardPickParam IWizardReferenceParam IWizardStep IWorkAccessRights IWorkDescription IWorkflowAskableParam IWorkflowAskableParams IWorkflowBlock IWorkflowBlockResult IWorkflowEnabledMode IWorkflowParam IWorkflowPickParam IWorkflowReferenceParam IWorkState IWorkTreeCustomNode IWorkTreeJobNode IWorkTreeTaskNode IXMLEditorForm SBCrypto ",gr=Ce+zl,vo=pa,Co="null true false nil ",Ro={className:"number",begin:e.NUMBER_RE,relevance:0},ga={className:"string",variants:[{begin:'"',end:'"'},{begin:"'",end:"'"}]},Ea={className:"doctag",begin:"\\b(?:TODO|DONE|BEGIN|END|STUB|CHG|FIXME|NOTE|BUG|XXX)\\b",relevance:0},No={className:"comment",begin:"//",end:"$",relevance:0,contains:[e.PHRASAL_WORDS_MODE,Ea]},Oo={className:"comment",begin:"/\\*",end:"\\*/",relevance:0,contains:[e.PHRASAL_WORDS_MODE,Ea]},Ao={variants:[No,Oo]},bi={$pattern:n,keyword:o,built_in:gr,class:vo,literal:Co},fa={begin:"\\.\\s*"+e.UNDERSCORE_IDENT_RE,keywords:bi,relevance:0},Sa={className:"type",begin:":[ \\t]*("+ma.trim().replace(/\s/g,"|")+")",end:"[ \\t]*=",excludeEnd:!0},yo={className:"variable",keywords:bi,begin:n,relevance:0,contains:[Sa,fa]},Io=i+"\\(";return{name:"ISBL",case_insensitive:!0,keywords:bi,illegal:"\\$|\\?|%|,|;$|~|#|@|o(l,c,d-1))}function s(l){const c=l.regex,d="[ƀ-Źøa-zA-Z_$][ƀ-Źøa-zA-Z_$0-9]*",_=d+o("(?:<"+d+"~~~(?:\\s*,\\s*"+d+"~~~)*>)?",/~~~/g,2),S={keyword:["synchronized","abstract","private","var","static","if","const ","for","while","strictfp","finally","protected","import","native","final","void","enum","else","break","transient","catch","instanceof","volatile","case","assert","package","default","public","try","switch","continue","throws","protected","public","private","module","requires","exports","do","sealed","yield","permits"],literal:["false","true","null"],type:["char","boolean","long","float","int","byte","short","double"],built_in:["super","this"]},v={className:"meta",begin:"@"+d,contains:[{begin:/\(/,end:/\)/,contains:["self"]}]},h={className:"params",begin:/\(/,end:/\)/,keywords:S,relevance:0,contains:[l.C_BLOCK_COMMENT_MODE],endsParent:!0};return{name:"Java",aliases:["jsp"],keywords:S,illegal:/<\/|#/,contains:[l.COMMENT("/\\*\\*","\\*/",{relevance:0,contains:[{begin:/\w+@/,relevance:0},{className:"doctag",begin:"@[A-Za-z]+"}]}),{begin:/import java\.[a-z]+\./,keywords:"import",relevance:2},l.C_LINE_COMMENT_MODE,l.C_BLOCK_COMMENT_MODE,{begin:/"""/,end:/"""/,className:"string",contains:[l.BACKSLASH_ESCAPE]},l.APOS_STRING_MODE,l.QUOTE_STRING_MODE,{match:[/\b(?:class|interface|enum|extends|implements|new)/,/\s+/,d],className:{1:"keyword",3:"title.class"}},{match:/non-sealed/,scope:"keyword"},{begin:[c.concat(/(?!else)/,d),/\s+/,d,/\s+/,/=(?!=)/],className:{1:"type",3:"variable",5:"operator"}},{begin:[/record/,/\s+/,d],className:{1:"keyword",3:"title.class"},contains:[h,l.C_LINE_COMMENT_MODE,l.C_BLOCK_COMMENT_MODE]},{beginKeywords:"new throw return else",relevance:0},{begin:["(?:"+_+"\\s+)",l.UNDERSCORE_IDENT_RE,/\s*(?=\()/],className:{2:"title.function"},keywords:S,contains:[{className:"params",begin:/\(/,end:/\)/,keywords:S,relevance:0,contains:[v,l.APOS_STRING_MODE,l.QUOTE_STRING_MODE,i,l.C_BLOCK_COMMENT_MODE]},l.C_LINE_COMMENT_MODE,l.C_BLOCK_COMMENT_MODE]},i,v]}}return h_=s,h_}var T_,OT;function yAe(){if(OT)return T_;OT=1;const t="[A-Za-z$_][0-9A-Za-z$_]*",e=["as","in","of","if","for","while","finally","var","new","function","do","return","void","else","break","catch","instanceof","with","throw","case","default","try","switch","continue","typeof","delete","let","yield","const","class","debugger","async","await","static","import","from","export","extends"],n=["true","false","null","undefined","NaN","Infinity"],i=["Object","Function","Boolean","Symbol","Math","Date","Number","BigInt","String","RegExp","Array","Float32Array","Float64Array","Int8Array","Uint8Array","Uint8ClampedArray","Int16Array","Int32Array","Uint16Array","Uint32Array","BigInt64Array","BigUint64Array","Set","Map","WeakSet","WeakMap","ArrayBuffer","SharedArrayBuffer","Atomics","DataView","JSON","Promise","Generator","GeneratorFunction","AsyncFunction","Reflect","Proxy","Intl","WebAssembly"],o=["Error","EvalError","InternalError","RangeError","ReferenceError","SyntaxError","TypeError","URIError"],s=["setInterval","setTimeout","clearInterval","clearTimeout","require","exports","eval","isFinite","isNaN","parseFloat","parseInt","decodeURI","decodeURIComponent","encodeURI","encodeURIComponent","escape","unescape"],l=["arguments","this","super","console","window","document","localStorage","sessionStorage","module","global"],c=[].concat(s,i,o);function d(_){const p=_.regex,g=(We,{after:xe})=>{const ze="",end:""},S=/<[A-Za-z0-9\\._:-]+\s*\/>/,v={begin:/<[A-Za-z0-9\\._:-]+/,end:/\/[A-Za-z0-9\\._:-]+>|\/>/,isTrulyOpeningTag:(We,xe)=>{const ze=We[0].length+We.index,rt=We.input[ze];if(rt==="<"||rt===","){xe.ignoreMatch();return}rt===">"&&(g(We,{after:ze})||xe.ignoreMatch());let Ke;const te=We.input.substring(ze);if(Ke=te.match(/^\s*=/)){xe.ignoreMatch();return}if((Ke=te.match(/^\s+extends\s+/))&&Ke.index===0){xe.ignoreMatch();return}}},h={$pattern:t,keyword:e,literal:n,built_in:c,"variable.language":l},T="[0-9](_?[0-9])*",N=`\\.(${T})`,y="0|[1-9](_?[0-9])*|0[0-7]*[89][0-9]*",x={className:"number",variants:[{begin:`(\\b(${y})((${N})|\\.)?|(${N}))[eE][+-]?(${T})\\b`},{begin:`\\b(${y})\\b((${N})\\b|\\.)?|(${N})\\b`},{begin:"\\b(0|[1-9](_?[0-9])*)n\\b"},{begin:"\\b0[xX][0-9a-fA-F](_?[0-9a-fA-F])*n?\\b"},{begin:"\\b0[bB][0-1](_?[0-1])*n?\\b"},{begin:"\\b0[oO][0-7](_?[0-7])*n?\\b"},{begin:"\\b0[0-7]+n?\\b"}],relevance:0},P={className:"subst",begin:"\\$\\{",end:"\\}",keywords:h,contains:[]},D={begin:"html`",end:"",starts:{end:"`",returnEnd:!1,contains:[_.BACKSLASH_ESCAPE,P],subLanguage:"xml"}},k={begin:"css`",end:"",starts:{end:"`",returnEnd:!1,contains:[_.BACKSLASH_ESCAPE,P],subLanguage:"css"}},U={begin:"gql`",end:"",starts:{end:"`",returnEnd:!1,contains:[_.BACKSLASH_ESCAPE,P],subLanguage:"graphql"}},W={className:"string",begin:"`",end:"`",contains:[_.BACKSLASH_ESCAPE,P]},K={className:"comment",variants:[_.COMMENT(/\/\*\*(?!\/)/,"\\*/",{relevance:0,contains:[{begin:"(?=@[A-Za-z]+)",relevance:0,contains:[{className:"doctag",begin:"@[A-Za-z]+"},{className:"type",begin:"\\{",end:"\\}",excludeEnd:!0,excludeBegin:!0,relevance:0},{className:"variable",begin:E+"(?=\\s*(-)|$)",endsParent:!0,relevance:0},{begin:/(?=[^\n])\s/,relevance:0}]}]}),_.C_BLOCK_COMMENT_MODE,_.C_LINE_COMMENT_MODE]},Ee=[_.APOS_STRING_MODE,_.QUOTE_STRING_MODE,D,k,U,W,{match:/\$\d+/},x];P.contains=Ee.concat({begin:/\{/,end:/\}/,keywords:h,contains:["self"].concat(Ee)});const oe=[].concat(K,P.contains),L=oe.concat([{begin:/\(/,end:/\)/,keywords:h,contains:["self"].concat(oe)}]),J={className:"params",begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,keywords:h,contains:L},re={variants:[{match:[/class/,/\s+/,E,/\s+/,/extends/,/\s+/,p.concat(E,"(",p.concat(/\./,E),")*")],scope:{1:"keyword",3:"title.class",5:"keyword",7:"title.class.inherited"}},{match:[/class/,/\s+/,E],scope:{1:"keyword",3:"title.class"}}]},G={relevance:0,match:p.either(/\bJSON/,/\b[A-Z][a-z]+([A-Z][a-z]*|\d)*/,/\b[A-Z]{2,}([A-Z][a-z]+|\d)+([A-Z][a-z]*)*/,/\b[A-Z]{2,}[a-z]+([A-Z][a-z]+|\d)*([A-Z][a-z]*)*/),className:"title.class",keywords:{_:[...i,...o]}},X={label:"use_strict",className:"meta",relevance:10,begin:/^\s*['"]use (strict|asm)['"]/},_e={variants:[{match:[/function/,/\s+/,E,/(?=\s*\()/]},{match:[/function/,/\s*(?=\()/]}],className:{1:"keyword",3:"title.function"},label:"func.def",contains:[J],illegal:/%/},ve={relevance:0,match:/\b[A-Z][A-Z_0-9]+\b/,className:"variable.constant"};function he(We){return p.concat("(?!",We.join("|"),")")}const tt={match:p.concat(/\b/,he([...s,"super","import"]),E,p.lookahead(/\(/)),className:"title.function",relevance:0},lt={begin:p.concat(/\./,p.lookahead(p.concat(E,/(?![0-9A-Za-z$_(])/))),end:E,excludeBegin:!0,keywords:"prototype",className:"property",relevance:0},He={match:[/get|set/,/\s+/,E,/(?=\()/],className:{1:"keyword",3:"title.function"},contains:[{begin:/\(\)/},J]},Ce="(\\([^()]*(\\([^()]*(\\([^()]*\\)[^()]*)*\\)[^()]*)*\\)|"+_.UNDERSCORE_IDENT_RE+")\\s*=>",Be={match:[/const|var|let/,/\s+/,E,/\s*/,/=\s*/,/(async\s*)?/,p.lookahead(Ce)],keywords:"async",className:{1:"keyword",3:"title.function"},contains:[J]};return{name:"JavaScript",aliases:["js","jsx","mjs","cjs"],keywords:h,exports:{PARAMS_CONTAINS:L,CLASS_REFERENCE:G},illegal:/#(?![$_A-z])/,contains:[_.SHEBANG({label:"shebang",binary:"node",relevance:5}),X,_.APOS_STRING_MODE,_.QUOTE_STRING_MODE,D,k,U,W,K,{match:/\$\d+/},x,G,{className:"attr",begin:E+p.lookahead(":"),relevance:0},Be,{begin:"("+_.RE_STARTERS_RE+"|\\b(case|return|throw)\\b)\\s*",keywords:"return throw case",relevance:0,contains:[K,_.REGEXP_MODE,{className:"function",begin:Ce,returnBegin:!0,end:"\\s*=>",contains:[{className:"params",variants:[{begin:_.UNDERSCORE_IDENT_RE,relevance:0},{className:null,begin:/\(\s*\)/,skip:!0},{begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,keywords:h,contains:L}]}]},{begin:/,/,relevance:0},{match:/\s+/,relevance:0},{variants:[{begin:f.begin,end:f.end},{match:S},{begin:v.begin,"on:begin":v.isTrulyOpeningTag,end:v.end}],subLanguage:"xml",contains:[{begin:v.begin,end:v.end,skip:!0,contains:["self"]}]}]},_e,{beginKeywords:"while if switch catch for"},{begin:"\\b(?!function)"+_.UNDERSCORE_IDENT_RE+"\\([^()]*(\\([^()]*(\\([^()]*\\)[^()]*)*\\)[^()]*)*\\)\\s*\\{",returnBegin:!0,label:"func.def",contains:[J,_.inherit(_.TITLE_MODE,{begin:E,className:"title.function"})]},{match:/\.\.\./,relevance:0},lt,{match:"\\$"+E,relevance:0},{match:[/\bconstructor(?=\s*\()/],className:{1:"title.function"},contains:[J]},tt,ve,re,He,{match:/\$[(.]/}]}}return T_=d,T_}var v_,AT;function IAe(){if(AT)return v_;AT=1;function t(e){const i={className:"params",begin:/\(/,end:/\)/,contains:[{begin:/[\w-]+ *=/,returnBegin:!0,relevance:0,contains:[{className:"attr",begin:/[\w-]+/}]}],relevance:0},o={className:"function",begin:/:[\w\-.]+/,relevance:0},s={className:"string",begin:/\B([\/.])[\w\-.\/=]+/},l={className:"params",begin:/--[\w\-=\/]+/};return{name:"JBoss CLI",aliases:["wildfly-cli"],keywords:{$pattern:"[a-z-]+",keyword:"alias batch cd clear command connect connection-factory connection-info data-source deploy deployment-info deployment-overlay echo echo-dmr help history if jdbc-driver-info jms-queue|20 jms-topic|20 ls patch pwd quit read-attribute read-operation reload rollout-plan run-batch set shutdown try unalias undeploy unset version xa-data-source",literal:"true false"},contains:[e.HASH_COMMENT_MODE,e.QUOTE_STRING_MODE,l,o,s,i]}}return v_=t,v_}var C_,yT;function DAe(){if(yT)return C_;yT=1;function t(e){const n={className:"attr",begin:/"(\\.|[^\\"\r\n])*"(?=\s*:)/,relevance:1.01},i={match:/[{}[\],:]/,className:"punctuation",relevance:0},o=["true","false","null"],s={scope:"literal",beginKeywords:o.join(" ")};return{name:"JSON",keywords:{literal:o},contains:[n,i,e.QUOTE_STRING_MODE,s,e.C_NUMBER_MODE,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE],illegal:"\\S"}}return C_=t,C_}var R_,IT;function xAe(){if(IT)return R_;IT=1;function t(e){const n="[A-Za-z_\\u00A1-\\uFFFF][A-Za-z_0-9\\u00A1-\\uFFFF]*",l={$pattern:n,keyword:["baremodule","begin","break","catch","ccall","const","continue","do","else","elseif","end","export","false","finally","for","function","global","if","import","in","isa","let","local","macro","module","quote","return","true","try","using","where","while"],literal:["ARGS","C_NULL","DEPOT_PATH","ENDIAN_BOM","ENV","Inf","Inf16","Inf32","Inf64","InsertionSort","LOAD_PATH","MergeSort","NaN","NaN16","NaN32","NaN64","PROGRAM_FILE","QuickSort","RoundDown","RoundFromZero","RoundNearest","RoundNearestTiesAway","RoundNearestTiesUp","RoundToZero","RoundUp","VERSION|0","devnull","false","im","missing","nothing","pi","stderr","stdin","stdout","true","undef","Ļ€","ℯ"],built_in:["AbstractArray","AbstractChannel","AbstractChar","AbstractDict","AbstractDisplay","AbstractFloat","AbstractIrrational","AbstractMatrix","AbstractRange","AbstractSet","AbstractString","AbstractUnitRange","AbstractVecOrMat","AbstractVector","Any","ArgumentError","Array","AssertionError","BigFloat","BigInt","BitArray","BitMatrix","BitSet","BitVector","Bool","BoundsError","CapturedException","CartesianIndex","CartesianIndices","Cchar","Cdouble","Cfloat","Channel","Char","Cint","Cintmax_t","Clong","Clonglong","Cmd","Colon","Complex","ComplexF16","ComplexF32","ComplexF64","CompositeException","Condition","Cptrdiff_t","Cshort","Csize_t","Cssize_t","Cstring","Cuchar","Cuint","Cuintmax_t","Culong","Culonglong","Cushort","Cvoid","Cwchar_t","Cwstring","DataType","DenseArray","DenseMatrix","DenseVecOrMat","DenseVector","Dict","DimensionMismatch","Dims","DivideError","DomainError","EOFError","Enum","ErrorException","Exception","ExponentialBackOff","Expr","Float16","Float32","Float64","Function","GlobalRef","HTML","IO","IOBuffer","IOContext","IOStream","IdDict","IndexCartesian","IndexLinear","IndexStyle","InexactError","InitError","Int","Int128","Int16","Int32","Int64","Int8","Integer","InterruptException","InvalidStateException","Irrational","KeyError","LinRange","LineNumberNode","LinearIndices","LoadError","MIME","Matrix","Method","MethodError","Missing","MissingException","Module","NTuple","NamedTuple","Nothing","Number","OrdinalRange","OutOfMemoryError","OverflowError","Pair","PartialQuickSort","PermutedDimsArray","Pipe","ProcessFailedException","Ptr","QuoteNode","Rational","RawFD","ReadOnlyMemoryError","Real","ReentrantLock","Ref","Regex","RegexMatch","RoundingMode","SegmentationFault","Set","Signed","Some","StackOverflowError","StepRange","StepRangeLen","StridedArray","StridedMatrix","StridedVecOrMat","StridedVector","String","StringIndexError","SubArray","SubString","SubstitutionString","Symbol","SystemError","Task","TaskFailedException","Text","TextDisplay","Timer","Tuple","Type","TypeError","TypeVar","UInt","UInt128","UInt16","UInt32","UInt64","UInt8","UndefInitializer","UndefKeywordError","UndefRefError","UndefVarError","Union","UnionAll","UnitRange","Unsigned","Val","Vararg","VecElement","VecOrMat","Vector","VersionNumber","WeakKeyDict","WeakRef"]},c={keywords:l,illegal:/<\//},d={className:"number",begin:/(\b0x[\d_]*(\.[\d_]*)?|0x\.\d[\d_]*)p[-+]?\d+|\b0[box][a-fA-F0-9][a-fA-F0-9_]*|(\b\d[\d_]*(\.[\d_]*)?|\.\d[\d_]*)([eEfF][-+]?\d+)?/,relevance:0},_={className:"string",begin:/'(.|\\[xXuU][a-zA-Z0-9]+)'/},p={className:"subst",begin:/\$\(/,end:/\)/,keywords:l},g={className:"variable",begin:"\\$"+n},E={className:"string",contains:[e.BACKSLASH_ESCAPE,p,g],variants:[{begin:/\w*"""/,end:/"""\w*/,relevance:10},{begin:/\w*"/,end:/"\w*/}]},f={className:"string",contains:[e.BACKSLASH_ESCAPE,p,g],begin:"`",end:"`"},S={className:"meta",begin:"@"+n},v={className:"comment",variants:[{begin:"#=",end:"=#",relevance:10},{begin:"#",end:"$"}]};return c.name="Julia",c.contains=[d,_,E,f,S,v,e.HASH_COMMENT_MODE,{className:"keyword",begin:"\\b(((abstract|primitive)\\s+)type|(mutable\\s+)?struct)\\b"},{begin:/<:/}],p.contains=c.contains,c}return R_=t,R_}var N_,DT;function wAe(){if(DT)return N_;DT=1;function t(e){return{name:"Julia REPL",contains:[{className:"meta.prompt",begin:/^julia>/,relevance:10,starts:{end:/^(?![ ]{6})/,subLanguage:"julia"}}],aliases:["jldoctest"]}}return N_=t,N_}var O_,xT;function MAe(){if(xT)return O_;xT=1;var t="[0-9](_*[0-9])*",e=`\\.(${t})`,n="[0-9a-fA-F](_*[0-9a-fA-F])*",i={className:"number",variants:[{begin:`(\\b(${t})((${e})|\\.)?|(${e}))[eE][+-]?(${t})[fFdD]?\\b`},{begin:`\\b(${t})((${e})[fFdD]?\\b|\\.([fFdD]\\b)?)`},{begin:`(${e})[fFdD]?\\b`},{begin:`\\b(${t})[fFdD]\\b`},{begin:`\\b0[xX]((${n})\\.?|(${n})?\\.(${n}))[pP][+-]?(${t})[fFdD]?\\b`},{begin:"\\b(0|[1-9](_*[0-9])*)[lL]?\\b"},{begin:`\\b0[xX](${n})[lL]?\\b`},{begin:"\\b0(_*[0-7])*[lL]?\\b"},{begin:"\\b0[bB][01](_*[01])*[lL]?\\b"}],relevance:0};function o(s){const l={keyword:"abstract as val var vararg get set class object open private protected public noinline crossinline dynamic final enum if else do while for when throw try catch finally import package is in fun override companion reified inline lateinit init interface annotation data sealed internal infix operator out by constructor super tailrec where const inner suspend typealias external expect actual",built_in:"Byte Short Char Int Long Boolean Float Double Void Unit Nothing",literal:"true false null"},c={className:"keyword",begin:/\b(break|continue|return|this)\b/,starts:{contains:[{className:"symbol",begin:/@\w+/}]}},d={className:"symbol",begin:s.UNDERSCORE_IDENT_RE+"@"},_={className:"subst",begin:/\$\{/,end:/\}/,contains:[s.C_NUMBER_MODE]},p={className:"variable",begin:"\\$"+s.UNDERSCORE_IDENT_RE},g={className:"string",variants:[{begin:'"""',end:'"""(?=[^"])',contains:[p,_]},{begin:"'",end:"'",illegal:/\n/,contains:[s.BACKSLASH_ESCAPE]},{begin:'"',end:'"',illegal:/\n/,contains:[s.BACKSLASH_ESCAPE,p,_]}]};_.contains.push(g);const E={className:"meta",begin:"@(?:file|property|field|get|set|receiver|param|setparam|delegate)\\s*:(?:\\s*"+s.UNDERSCORE_IDENT_RE+")?"},f={className:"meta",begin:"@"+s.UNDERSCORE_IDENT_RE,contains:[{begin:/\(/,end:/\)/,contains:[s.inherit(g,{className:"string"}),"self"]}]},S=i,v=s.COMMENT("/\\*","\\*/",{contains:[s.C_BLOCK_COMMENT_MODE]}),h={variants:[{className:"type",begin:s.UNDERSCORE_IDENT_RE},{begin:/\(/,end:/\)/,contains:[]}]},T=h;return T.variants[1].contains=[h],h.variants[1].contains=[T],{name:"Kotlin",aliases:["kt","kts"],keywords:l,contains:[s.COMMENT("/\\*\\*","\\*/",{relevance:0,contains:[{className:"doctag",begin:"@[A-Za-z]+"}]}),s.C_LINE_COMMENT_MODE,v,c,d,E,f,{className:"function",beginKeywords:"fun",end:"[(]|$",returnBegin:!0,excludeEnd:!0,keywords:l,relevance:5,contains:[{begin:s.UNDERSCORE_IDENT_RE+"\\s*\\(",returnBegin:!0,relevance:0,contains:[s.UNDERSCORE_TITLE_MODE]},{className:"type",begin://,keywords:"reified",relevance:0},{className:"params",begin:/\(/,end:/\)/,endsParent:!0,keywords:l,relevance:0,contains:[{begin:/:/,end:/[=,\/]/,endsWithParent:!0,contains:[h,s.C_LINE_COMMENT_MODE,v],relevance:0},s.C_LINE_COMMENT_MODE,v,E,f,g,s.C_NUMBER_MODE]},v]},{begin:[/class|interface|trait/,/\s+/,s.UNDERSCORE_IDENT_RE],beginScope:{3:"title.class"},keywords:"class interface trait",end:/[:\{(]|$/,excludeEnd:!0,illegal:"extends implements",contains:[{beginKeywords:"public protected internal private constructor"},s.UNDERSCORE_TITLE_MODE,{className:"type",begin://,excludeBegin:!0,excludeEnd:!0,relevance:0},{className:"type",begin:/[,:]\s*/,end:/[<\(,){\s]|$/,excludeBegin:!0,returnEnd:!0},E,f]},g,{className:"meta",begin:"^#!/usr/bin/env",end:"$",illegal:` -`},S]}}return O_=o,O_}var A_,wT;function LAe(){if(wT)return A_;wT=1;function t(e){const n="[a-zA-Z_][\\w.]*",i="<\\?(lasso(script)?|=)",o="\\]|\\?>",s={$pattern:n+"|&[lg]t;",literal:"true false none minimal full all void and or not bw nbw ew new cn ncn lt lte gt gte eq neq rx nrx ft",built_in:"array date decimal duration integer map pair string tag xml null boolean bytes keyword list locale queue set stack staticarray local var variable global data self inherited currentcapture givenblock",keyword:"cache database_names database_schemanames database_tablenames define_tag define_type email_batch encode_set html_comment handle handle_error header if inline iterate ljax_target link link_currentaction link_currentgroup link_currentrecord link_detail link_firstgroup link_firstrecord link_lastgroup link_lastrecord link_nextgroup link_nextrecord link_prevgroup link_prevrecord log loop namespace_using output_none portal private protect records referer referrer repeating resultset rows search_args search_arguments select sort_args sort_arguments thread_atomic value_list while abort case else fail_if fail_ifnot fail if_empty if_false if_null if_true loop_abort loop_continue loop_count params params_up return return_value run_children soap_definetag soap_lastrequest soap_lastresponse tag_name ascending average by define descending do equals frozen group handle_failure import in into join let match max min on order parent protected provide public require returnhome skip split_thread sum take thread to trait type where with yield yieldhome"},l=e.COMMENT("",{relevance:0}),c={className:"meta",begin:"\\[noprocess\\]",starts:{end:"\\[/noprocess\\]",returnEnd:!0,contains:[l]}},d={className:"meta",begin:"\\[/noprocess|"+i},_={className:"symbol",begin:"'"+n+"'"},p=[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.inherit(e.C_NUMBER_MODE,{begin:e.C_NUMBER_RE+"|(-?infinity|NaN)\\b"}),e.inherit(e.APOS_STRING_MODE,{illegal:null}),e.inherit(e.QUOTE_STRING_MODE,{illegal:null}),{className:"string",begin:"`",end:"`"},{variants:[{begin:"[#$]"+n},{begin:"#",end:"\\d+",illegal:"\\W"}]},{className:"type",begin:"::\\s*",end:n,illegal:"\\W"},{className:"params",variants:[{begin:"-(?!infinity)"+n,relevance:0},{begin:"(\\.\\.\\.)"}]},{begin:/(->|\.)\s*/,relevance:0,contains:[_]},{className:"class",beginKeywords:"define",returnEnd:!0,end:"\\(|=>",contains:[e.inherit(e.TITLE_MODE,{begin:n+"(=(?!>))?|[-+*/%](?!>)"})]}];return{name:"Lasso",aliases:["ls","lassoscript"],case_insensitive:!0,keywords:s,contains:[{className:"meta",begin:o,relevance:0,starts:{end:"\\[|"+i,returnEnd:!0,relevance:0,contains:[l]}},c,d,{className:"meta",begin:"\\[no_square_brackets",starts:{end:"\\[/no_square_brackets\\]",keywords:s,contains:[{className:"meta",begin:o,relevance:0,starts:{end:"\\[noprocess\\]|"+i,returnEnd:!0,contains:[l]}},c,d].concat(p)}},{className:"meta",begin:"\\[",relevance:0},{className:"meta",begin:"^#!",end:"lasso9$",relevance:10}].concat(p)}}return A_=t,A_}var y_,MT;function PAe(){if(MT)return y_;MT=1;function t(e){const i=e.regex.either(...["(?:NeedsTeXFormat|RequirePackage|GetIdInfo)","Provides(?:Expl)?(?:Package|Class|File)","(?:DeclareOption|ProcessOptions)","(?:documentclass|usepackage|input|include)","makeat(?:letter|other)","ExplSyntax(?:On|Off)","(?:new|renew|provide)?command","(?:re)newenvironment","(?:New|Renew|Provide|Declare)(?:Expandable)?DocumentCommand","(?:New|Renew|Provide|Declare)DocumentEnvironment","(?:(?:e|g|x)?def|let)","(?:begin|end)","(?:part|chapter|(?:sub){0,2}section|(?:sub)?paragraph)","caption","(?:label|(?:eq|page|name)?ref|(?:paren|foot|super)?cite)","(?:alpha|beta|[Gg]amma|[Dd]elta|(?:var)?epsilon|zeta|eta|[Tt]heta|vartheta)","(?:iota|(?:var)?kappa|[Ll]ambda|mu|nu|[Xx]i|[Pp]i|varpi|(?:var)rho)","(?:[Ss]igma|varsigma|tau|[Uu]psilon|[Pp]hi|varphi|chi|[Pp]si|[Oo]mega)","(?:frac|sum|prod|lim|infty|times|sqrt|leq|geq|left|right|middle|[bB]igg?)","(?:[lr]angle|q?quad|[lcvdi]?dots|d?dot|hat|tilde|bar)"].map(K=>K+"(?![a-zA-Z@:_])")),o=new RegExp(["(?:__)?[a-zA-Z]{2,}_[a-zA-Z](?:_?[a-zA-Z])+:[a-zA-Z]*","[lgc]__?[a-zA-Z](?:_?[a-zA-Z])*_[a-zA-Z]{2,}","[qs]__?[a-zA-Z](?:_?[a-zA-Z])+","use(?:_i)?:[a-zA-Z]*","(?:else|fi|or):","(?:if|cs|exp):w","(?:hbox|vbox):n","::[a-zA-Z]_unbraced","::[a-zA-Z:]"].map(K=>K+"(?![a-zA-Z:_])").join("|")),s=[{begin:/[a-zA-Z@]+/},{begin:/[^a-zA-Z@]?/}],l=[{begin:/\^{6}[0-9a-f]{6}/},{begin:/\^{5}[0-9a-f]{5}/},{begin:/\^{4}[0-9a-f]{4}/},{begin:/\^{3}[0-9a-f]{3}/},{begin:/\^{2}[0-9a-f]{2}/},{begin:/\^{2}[\u0000-\u007f]/}],c={className:"keyword",begin:/\\/,relevance:0,contains:[{endsParent:!0,begin:i},{endsParent:!0,begin:o},{endsParent:!0,variants:l},{endsParent:!0,relevance:0,variants:s}]},d={className:"params",relevance:0,begin:/#+\d?/},_={variants:l},p={className:"built_in",relevance:0,begin:/[$&^_]/},g={className:"meta",begin:/% ?!(T[eE]X|tex|BIB|bib)/,end:"$",relevance:10},E=e.COMMENT("%","$",{relevance:0}),f=[c,d,_,p,g,E],S={begin:/\{/,end:/\}/,relevance:0,contains:["self",...f]},v=e.inherit(S,{relevance:0,endsParent:!0,contains:[S,...f]}),h={begin:/\[/,end:/\]/,endsParent:!0,relevance:0,contains:[S,...f]},T={begin:/\s+/,relevance:0},N=[v],y=[h],x=function(K,Ee){return{contains:[T],starts:{relevance:0,contains:K,starts:Ee}}},P=function(K,Ee){return{begin:"\\\\"+K+"(?![a-zA-Z@:_])",keywords:{$pattern:/\\[a-zA-Z]+/,keyword:"\\"+K},relevance:0,contains:[T],starts:Ee}},D=function(K,Ee){return e.inherit({begin:"\\\\begin(?=[ ]*(\\r?\\n[ ]*)?\\{"+K+"\\})",keywords:{$pattern:/\\[a-zA-Z]+/,keyword:"\\begin"},relevance:0},x(N,Ee))},k=(K="string")=>e.END_SAME_AS_BEGIN({className:K,begin:/(.|\r?\n)/,end:/(.|\r?\n)/,excludeBegin:!0,excludeEnd:!0,endsParent:!0}),U=function(K){return{className:"string",end:"(?=\\\\end\\{"+K+"\\})"}},W=(K="string")=>({relevance:0,begin:/\{/,starts:{endsParent:!0,contains:[{className:K,end:/(?=\})/,endsParent:!0,contains:[{begin:/\{/,end:/\}/,relevance:0,contains:["self"]}]}]}}),z=[...["verb","lstinline"].map(K=>P(K,{contains:[k()]})),P("mint",x(N,{contains:[k()]})),P("mintinline",x(N,{contains:[W(),k()]})),P("url",{contains:[W("link"),W("link")]}),P("hyperref",{contains:[W("link")]}),P("href",x(y,{contains:[W("link")]})),...[].concat(...["","\\*"].map(K=>[D("verbatim"+K,U("verbatim"+K)),D("filecontents"+K,x(N,U("filecontents"+K))),...["","B","L"].map(Ee=>D(Ee+"Verbatim"+K,x(y,U(Ee+"Verbatim"+K))))])),D("minted",x(y,x(N,U("minted"))))];return{name:"LaTeX",aliases:["tex"],contains:[...z,...f]}}return y_=t,y_}var I_,LT;function kAe(){if(LT)return I_;LT=1;function t(e){return{name:"LDIF",contains:[{className:"attribute",match:"^dn(?=:)",relevance:10},{className:"attribute",match:"^\\w+(?=:)"},{className:"literal",match:"^-"},e.HASH_COMMENT_MODE]}}return I_=t,I_}var D_,PT;function UAe(){if(PT)return D_;PT=1;function t(e){return{name:"Leaf",contains:[{className:"function",begin:"#+[A-Za-z_0-9]*\\(",end:/ \{/,returnBegin:!0,excludeEnd:!0,contains:[{className:"keyword",begin:"#+"},{className:"title",begin:"[A-Za-z_][A-Za-z_0-9]*"},{className:"params",begin:"\\(",end:"\\)",endsParent:!0,contains:[{className:"string",begin:'"',end:'"'},{className:"variable",begin:"[A-Za-z_][A-Za-z_0-9]*"}]}]}]}}return D_=t,D_}var x_,kT;function FAe(){if(kT)return x_;kT=1;const t=d=>({IMPORTANT:{scope:"meta",begin:"!important"},BLOCK_COMMENT:d.C_BLOCK_COMMENT_MODE,HEXCOLOR:{scope:"number",begin:/#(([0-9a-fA-F]{3,4})|(([0-9a-fA-F]{2}){3,4}))\b/},FUNCTION_DISPATCH:{className:"built_in",begin:/[\w-]+(?=\()/},ATTRIBUTE_SELECTOR_MODE:{scope:"selector-attr",begin:/\[/,end:/\]/,illegal:"$",contains:[d.APOS_STRING_MODE,d.QUOTE_STRING_MODE]},CSS_NUMBER_MODE:{scope:"number",begin:d.NUMBER_RE+"(%|em|ex|ch|rem|vw|vh|vmin|vmax|cm|mm|in|pt|pc|px|deg|grad|rad|turn|s|ms|Hz|kHz|dpi|dpcm|dppx)?",relevance:0},CSS_VARIABLE:{className:"attr",begin:/--[A-Za-z][A-Za-z0-9_-]*/}}),e=["a","abbr","address","article","aside","audio","b","blockquote","body","button","canvas","caption","cite","code","dd","del","details","dfn","div","dl","dt","em","fieldset","figcaption","figure","footer","form","h1","h2","h3","h4","h5","h6","header","hgroup","html","i","iframe","img","input","ins","kbd","label","legend","li","main","mark","menu","nav","object","ol","p","q","quote","samp","section","span","strong","summary","sup","table","tbody","td","textarea","tfoot","th","thead","time","tr","ul","var","video"],n=["any-hover","any-pointer","aspect-ratio","color","color-gamut","color-index","device-aspect-ratio","device-height","device-width","display-mode","forced-colors","grid","height","hover","inverted-colors","monochrome","orientation","overflow-block","overflow-inline","pointer","prefers-color-scheme","prefers-contrast","prefers-reduced-motion","prefers-reduced-transparency","resolution","scan","scripting","update","width","min-width","max-width","min-height","max-height"],i=["active","any-link","blank","checked","current","default","defined","dir","disabled","drop","empty","enabled","first","first-child","first-of-type","fullscreen","future","focus","focus-visible","focus-within","has","host","host-context","hover","indeterminate","in-range","invalid","is","lang","last-child","last-of-type","left","link","local-link","not","nth-child","nth-col","nth-last-child","nth-last-col","nth-last-of-type","nth-of-type","only-child","only-of-type","optional","out-of-range","past","placeholder-shown","read-only","read-write","required","right","root","scope","target","target-within","user-invalid","valid","visited","where"],o=["after","backdrop","before","cue","cue-region","first-letter","first-line","grammar-error","marker","part","placeholder","selection","slotted","spelling-error"],s=["align-content","align-items","align-self","all","animation","animation-delay","animation-direction","animation-duration","animation-fill-mode","animation-iteration-count","animation-name","animation-play-state","animation-timing-function","backface-visibility","background","background-attachment","background-blend-mode","background-clip","background-color","background-image","background-origin","background-position","background-repeat","background-size","block-size","border","border-block","border-block-color","border-block-end","border-block-end-color","border-block-end-style","border-block-end-width","border-block-start","border-block-start-color","border-block-start-style","border-block-start-width","border-block-style","border-block-width","border-bottom","border-bottom-color","border-bottom-left-radius","border-bottom-right-radius","border-bottom-style","border-bottom-width","border-collapse","border-color","border-image","border-image-outset","border-image-repeat","border-image-slice","border-image-source","border-image-width","border-inline","border-inline-color","border-inline-end","border-inline-end-color","border-inline-end-style","border-inline-end-width","border-inline-start","border-inline-start-color","border-inline-start-style","border-inline-start-width","border-inline-style","border-inline-width","border-left","border-left-color","border-left-style","border-left-width","border-radius","border-right","border-right-color","border-right-style","border-right-width","border-spacing","border-style","border-top","border-top-color","border-top-left-radius","border-top-right-radius","border-top-style","border-top-width","border-width","bottom","box-decoration-break","box-shadow","box-sizing","break-after","break-before","break-inside","caption-side","caret-color","clear","clip","clip-path","clip-rule","color","column-count","column-fill","column-gap","column-rule","column-rule-color","column-rule-style","column-rule-width","column-span","column-width","columns","contain","content","content-visibility","counter-increment","counter-reset","cue","cue-after","cue-before","cursor","direction","display","empty-cells","filter","flex","flex-basis","flex-direction","flex-flow","flex-grow","flex-shrink","flex-wrap","float","flow","font","font-display","font-family","font-feature-settings","font-kerning","font-language-override","font-size","font-size-adjust","font-smoothing","font-stretch","font-style","font-synthesis","font-variant","font-variant-caps","font-variant-east-asian","font-variant-ligatures","font-variant-numeric","font-variant-position","font-variation-settings","font-weight","gap","glyph-orientation-vertical","grid","grid-area","grid-auto-columns","grid-auto-flow","grid-auto-rows","grid-column","grid-column-end","grid-column-start","grid-gap","grid-row","grid-row-end","grid-row-start","grid-template","grid-template-areas","grid-template-columns","grid-template-rows","hanging-punctuation","height","hyphens","icon","image-orientation","image-rendering","image-resolution","ime-mode","inline-size","isolation","justify-content","left","letter-spacing","line-break","line-height","list-style","list-style-image","list-style-position","list-style-type","margin","margin-block","margin-block-end","margin-block-start","margin-bottom","margin-inline","margin-inline-end","margin-inline-start","margin-left","margin-right","margin-top","marks","mask","mask-border","mask-border-mode","mask-border-outset","mask-border-repeat","mask-border-slice","mask-border-source","mask-border-width","mask-clip","mask-composite","mask-image","mask-mode","mask-origin","mask-position","mask-repeat","mask-size","mask-type","max-block-size","max-height","max-inline-size","max-width","min-block-size","min-height","min-inline-size","min-width","mix-blend-mode","nav-down","nav-index","nav-left","nav-right","nav-up","none","normal","object-fit","object-position","opacity","order","orphans","outline","outline-color","outline-offset","outline-style","outline-width","overflow","overflow-wrap","overflow-x","overflow-y","padding","padding-block","padding-block-end","padding-block-start","padding-bottom","padding-inline","padding-inline-end","padding-inline-start","padding-left","padding-right","padding-top","page-break-after","page-break-before","page-break-inside","pause","pause-after","pause-before","perspective","perspective-origin","pointer-events","position","quotes","resize","rest","rest-after","rest-before","right","row-gap","scroll-margin","scroll-margin-block","scroll-margin-block-end","scroll-margin-block-start","scroll-margin-bottom","scroll-margin-inline","scroll-margin-inline-end","scroll-margin-inline-start","scroll-margin-left","scroll-margin-right","scroll-margin-top","scroll-padding","scroll-padding-block","scroll-padding-block-end","scroll-padding-block-start","scroll-padding-bottom","scroll-padding-inline","scroll-padding-inline-end","scroll-padding-inline-start","scroll-padding-left","scroll-padding-right","scroll-padding-top","scroll-snap-align","scroll-snap-stop","scroll-snap-type","scrollbar-color","scrollbar-gutter","scrollbar-width","shape-image-threshold","shape-margin","shape-outside","speak","speak-as","src","tab-size","table-layout","text-align","text-align-all","text-align-last","text-combine-upright","text-decoration","text-decoration-color","text-decoration-line","text-decoration-style","text-emphasis","text-emphasis-color","text-emphasis-position","text-emphasis-style","text-indent","text-justify","text-orientation","text-overflow","text-rendering","text-shadow","text-transform","text-underline-position","top","transform","transform-box","transform-origin","transform-style","transition","transition-delay","transition-duration","transition-property","transition-timing-function","unicode-bidi","vertical-align","visibility","voice-balance","voice-duration","voice-family","voice-pitch","voice-range","voice-rate","voice-stress","voice-volume","white-space","widows","width","will-change","word-break","word-spacing","word-wrap","writing-mode","z-index"].reverse(),l=i.concat(o);function c(d){const _=t(d),p=l,g="and or not only",E="[\\w-]+",f="("+E+"|@\\{"+E+"\\})",S=[],v=[],h=function(K){return{className:"string",begin:"~?"+K+".*?"+K}},T=function(K,Ee,oe){return{className:K,begin:Ee,relevance:oe}},N={$pattern:/[a-z-]+/,keyword:g,attribute:n.join(" ")},y={begin:"\\(",end:"\\)",contains:v,keywords:N,relevance:0};v.push(d.C_LINE_COMMENT_MODE,d.C_BLOCK_COMMENT_MODE,h("'"),h('"'),_.CSS_NUMBER_MODE,{begin:"(url|data-uri)\\(",starts:{className:"string",end:"[\\)\\n]",excludeEnd:!0}},_.HEXCOLOR,y,T("variable","@@?"+E,10),T("variable","@\\{"+E+"\\}"),T("built_in","~?`[^`]*?`"),{className:"attribute",begin:E+"\\s*:",end:":",returnBegin:!0,excludeEnd:!0},_.IMPORTANT,{beginKeywords:"and not"},_.FUNCTION_DISPATCH);const x=v.concat({begin:/\{/,end:/\}/,contains:S}),P={beginKeywords:"when",endsWithParent:!0,contains:[{beginKeywords:"and not"}].concat(v)},D={begin:f+"\\s*:",returnBegin:!0,end:/[;}]/,relevance:0,contains:[{begin:/-(webkit|moz|ms|o)-/},_.CSS_VARIABLE,{className:"attribute",begin:"\\b("+s.join("|")+")\\b",end:/(?=:)/,starts:{endsWithParent:!0,illegal:"[<=$]",relevance:0,contains:v}}]},k={className:"keyword",begin:"@(import|media|charset|font-face|(-[a-z]+-)?keyframes|supports|document|namespace|page|viewport|host)\\b",starts:{end:"[;{}]",keywords:N,returnEnd:!0,contains:v,relevance:0}},U={className:"variable",variants:[{begin:"@"+E+"\\s*:",relevance:15},{begin:"@"+E}],starts:{end:"[;}]",returnEnd:!0,contains:x}},W={variants:[{begin:"[\\.#:&\\[>]",end:"[;{}]"},{begin:f,end:/\{/}],returnBegin:!0,returnEnd:!0,illegal:`[<='$"]`,relevance:0,contains:[d.C_LINE_COMMENT_MODE,d.C_BLOCK_COMMENT_MODE,P,T("keyword","all\\b"),T("variable","@\\{"+E+"\\}"),{begin:"\\b("+e.join("|")+")\\b",className:"selector-tag"},_.CSS_NUMBER_MODE,T("selector-tag",f,0),T("selector-id","#"+f),T("selector-class","\\."+f,0),T("selector-tag","&",0),_.ATTRIBUTE_SELECTOR_MODE,{className:"selector-pseudo",begin:":("+i.join("|")+")"},{className:"selector-pseudo",begin:":(:)?("+o.join("|")+")"},{begin:/\(/,end:/\)/,relevance:0,contains:x},{begin:"!important"},_.FUNCTION_DISPATCH]},z={begin:E+`:(:)?(${p.join("|")})`,returnBegin:!0,contains:[W]};return S.push(d.C_LINE_COMMENT_MODE,d.C_BLOCK_COMMENT_MODE,k,U,z,D,W,P,_.FUNCTION_DISPATCH),{name:"Less",case_insensitive:!0,illegal:`[=>'/<($"]`,contains:S}}return x_=c,x_}var w_,UT;function BAe(){if(UT)return w_;UT=1;function t(e){const n="[a-zA-Z_\\-+\\*\\/<=>&#][a-zA-Z0-9_\\-+*\\/<=>&#!]*",i="\\|[^]*?\\|",o="(-|\\+)?\\d+(\\.\\d+|\\/\\d+)?((d|e|f|l|s|D|E|F|L|S)(\\+|-)?\\d+)?",s={className:"literal",begin:"\\b(t{1}|nil)\\b"},l={className:"number",variants:[{begin:o,relevance:0},{begin:"#(b|B)[0-1]+(/[0-1]+)?"},{begin:"#(o|O)[0-7]+(/[0-7]+)?"},{begin:"#(x|X)[0-9a-fA-F]+(/[0-9a-fA-F]+)?"},{begin:"#(c|C)\\("+o+" +"+o,end:"\\)"}]},c=e.inherit(e.QUOTE_STRING_MODE,{illegal:null}),d=e.COMMENT(";","$",{relevance:0}),_={begin:"\\*",end:"\\*"},p={className:"symbol",begin:"[:&]"+n},g={begin:n,relevance:0},E={begin:i},S={contains:[l,c,_,p,{begin:"\\(",end:"\\)",contains:["self",s,c,l,g]},g],variants:[{begin:"['`]\\(",end:"\\)"},{begin:"\\(quote ",end:"\\)",keywords:{name:"quote"}},{begin:"'"+i}]},v={variants:[{begin:"'"+n},{begin:"#'"+n+"(::"+n+")*"}]},h={begin:"\\(\\s*",end:"\\)"},T={endsWithParent:!0,relevance:0};return h.contains=[{className:"name",variants:[{begin:n,relevance:0},{begin:i}]},T],T.contains=[S,v,h,s,l,c,d,_,p,E,g],{name:"Lisp",illegal:/\S/,contains:[l,e.SHEBANG(),s,c,d,S,v,h,g]}}return w_=t,w_}var M_,FT;function GAe(){if(FT)return M_;FT=1;function t(e){const n={className:"variable",variants:[{begin:"\\b([gtps][A-Z]{1}[a-zA-Z0-9]*)(\\[.+\\])?(?:\\s*?)"},{begin:"\\$_[A-Z]+"}],relevance:0},i=[e.C_BLOCK_COMMENT_MODE,e.HASH_COMMENT_MODE,e.COMMENT("--","$"),e.COMMENT("[^:]//","$")],o=e.inherit(e.TITLE_MODE,{variants:[{begin:"\\b_*rig[A-Z][A-Za-z0-9_\\-]*"},{begin:"\\b_[a-z0-9\\-]+"}]}),s=e.inherit(e.TITLE_MODE,{begin:"\\b([A-Za-z0-9_\\-]+)\\b"});return{name:"LiveCode",case_insensitive:!1,keywords:{keyword:"$_COOKIE $_FILES $_GET $_GET_BINARY $_GET_RAW $_POST $_POST_BINARY $_POST_RAW $_SESSION $_SERVER codepoint codepoints segment segments codeunit codeunits sentence sentences trueWord trueWords paragraph after byte bytes english the until http forever descending using line real8 with seventh for stdout finally element word words fourth before black ninth sixth characters chars stderr uInt1 uInt1s uInt2 uInt2s stdin string lines relative rel any fifth items from middle mid at else of catch then third it file milliseconds seconds second secs sec int1 int1s int4 int4s internet int2 int2s normal text item last long detailed effective uInt4 uInt4s repeat end repeat URL in try into switch to words https token binfile each tenth as ticks tick system real4 by dateItems without char character ascending eighth whole dateTime numeric short first ftp integer abbreviated abbr abbrev private case while if div mod wrap and or bitAnd bitNot bitOr bitXor among not in a an within contains ends with begins the keys of keys",literal:"SIX TEN FORMFEED NINE ZERO NONE SPACE FOUR FALSE COLON CRLF PI COMMA ENDOFFILE EOF EIGHT FIVE QUOTE EMPTY ONE TRUE RETURN CR LINEFEED RIGHT BACKSLASH NULL SEVEN TAB THREE TWO six ten formfeed nine zero none space four false colon crlf pi comma endoffile eof eight five quote empty one true return cr linefeed right backslash null seven tab three two RIVERSION RISTATE FILE_READ_MODE FILE_WRITE_MODE FILE_WRITE_MODE DIR_WRITE_MODE FILE_READ_UMASK FILE_WRITE_UMASK DIR_READ_UMASK DIR_WRITE_UMASK",built_in:"put abs acos aliasReference annuity arrayDecode arrayEncode asin atan atan2 average avg avgDev base64Decode base64Encode baseConvert binaryDecode binaryEncode byteOffset byteToNum cachedURL cachedURLs charToNum cipherNames codepointOffset codepointProperty codepointToNum codeunitOffset commandNames compound compress constantNames cos date dateFormat decompress difference directories diskSpace DNSServers exp exp1 exp2 exp10 extents files flushEvents folders format functionNames geometricMean global globals hasMemory harmonicMean hostAddress hostAddressToName hostName hostNameToAddress isNumber ISOToMac itemOffset keys len length libURLErrorData libUrlFormData libURLftpCommand libURLLastHTTPHeaders libURLLastRHHeaders libUrlMultipartFormAddPart libUrlMultipartFormData libURLVersion lineOffset ln ln1 localNames log log2 log10 longFilePath lower macToISO matchChunk matchText matrixMultiply max md5Digest median merge messageAuthenticationCode messageDigest millisec millisecs millisecond milliseconds min monthNames nativeCharToNum normalizeText num number numToByte numToChar numToCodepoint numToNativeChar offset open openfiles openProcesses openProcessIDs openSockets paragraphOffset paramCount param params peerAddress pendingMessages platform popStdDev populationStandardDeviation populationVariance popVariance processID random randomBytes replaceText result revCreateXMLTree revCreateXMLTreeFromFile revCurrentRecord revCurrentRecordIsFirst revCurrentRecordIsLast revDatabaseColumnCount revDatabaseColumnIsNull revDatabaseColumnLengths revDatabaseColumnNames revDatabaseColumnNamed revDatabaseColumnNumbered revDatabaseColumnTypes revDatabaseConnectResult revDatabaseCursors revDatabaseID revDatabaseTableNames revDatabaseType revDataFromQuery revdb_closeCursor revdb_columnbynumber revdb_columncount revdb_columnisnull revdb_columnlengths revdb_columnnames revdb_columntypes revdb_commit revdb_connect revdb_connections revdb_connectionerr revdb_currentrecord revdb_cursorconnection revdb_cursorerr revdb_cursors revdb_dbtype revdb_disconnect revdb_execute revdb_iseof revdb_isbof revdb_movefirst revdb_movelast revdb_movenext revdb_moveprev revdb_query revdb_querylist revdb_recordcount revdb_rollback revdb_tablenames revGetDatabaseDriverPath revNumberOfRecords revOpenDatabase revOpenDatabases revQueryDatabase revQueryDatabaseBlob revQueryResult revQueryIsAtStart revQueryIsAtEnd revUnixFromMacPath revXMLAttribute revXMLAttributes revXMLAttributeValues revXMLChildContents revXMLChildNames revXMLCreateTreeFromFileWithNamespaces revXMLCreateTreeWithNamespaces revXMLDataFromXPathQuery revXMLEvaluateXPath revXMLFirstChild revXMLMatchingNode revXMLNextSibling revXMLNodeContents revXMLNumberOfChildren revXMLParent revXMLPreviousSibling revXMLRootNode revXMLRPC_CreateRequest revXMLRPC_Documents revXMLRPC_Error revXMLRPC_GetHost revXMLRPC_GetMethod revXMLRPC_GetParam revXMLText revXMLRPC_Execute revXMLRPC_GetParamCount revXMLRPC_GetParamNode revXMLRPC_GetParamType revXMLRPC_GetPath revXMLRPC_GetPort revXMLRPC_GetProtocol revXMLRPC_GetRequest revXMLRPC_GetResponse revXMLRPC_GetSocket revXMLTree revXMLTrees revXMLValidateDTD revZipDescribeItem revZipEnumerateItems revZipOpenArchives round sampVariance sec secs seconds sentenceOffset sha1Digest shell shortFilePath sin specialFolderPath sqrt standardDeviation statRound stdDev sum sysError systemVersion tan tempName textDecode textEncode tick ticks time to tokenOffset toLower toUpper transpose truewordOffset trunc uniDecode uniEncode upper URLDecode URLEncode URLStatus uuid value variableNames variance version waitDepth weekdayNames wordOffset xsltApplyStylesheet xsltApplyStylesheetFromFile xsltLoadStylesheet xsltLoadStylesheetFromFile add breakpoint cancel clear local variable file word line folder directory URL close socket process combine constant convert create new alias folder directory decrypt delete variable word line folder directory URL dispatch divide do encrypt filter get include intersect kill libURLDownloadToFile libURLFollowHttpRedirects libURLftpUpload libURLftpUploadFile libURLresetAll libUrlSetAuthCallback libURLSetDriver libURLSetCustomHTTPHeaders libUrlSetExpect100 libURLSetFTPListCommand libURLSetFTPMode libURLSetFTPStopTime libURLSetStatusCallback load extension loadedExtensions multiply socket prepare process post seek rel relative read from process rename replace require resetAll resolve revAddXMLNode revAppendXML revCloseCursor revCloseDatabase revCommitDatabase revCopyFile revCopyFolder revCopyXMLNode revDeleteFolder revDeleteXMLNode revDeleteAllXMLTrees revDeleteXMLTree revExecuteSQL revGoURL revInsertXMLNode revMoveFolder revMoveToFirstRecord revMoveToLastRecord revMoveToNextRecord revMoveToPreviousRecord revMoveToRecord revMoveXMLNode revPutIntoXMLNode revRollBackDatabase revSetDatabaseDriverPath revSetXMLAttribute revXMLRPC_AddParam revXMLRPC_DeleteAllDocuments revXMLAddDTD revXMLRPC_Free revXMLRPC_FreeAll revXMLRPC_DeleteDocument revXMLRPC_DeleteParam revXMLRPC_SetHost revXMLRPC_SetMethod revXMLRPC_SetPort revXMLRPC_SetProtocol revXMLRPC_SetSocket revZipAddItemWithData revZipAddItemWithFile revZipAddUncompressedItemWithData revZipAddUncompressedItemWithFile revZipCancel revZipCloseArchive revZipDeleteItem revZipExtractItemToFile revZipExtractItemToVariable revZipSetProgressCallback revZipRenameItem revZipReplaceItemWithData revZipReplaceItemWithFile revZipOpenArchive send set sort split start stop subtract symmetric union unload vectorDotProduct wait write"},contains:[n,{className:"keyword",begin:"\\bend\\sif\\b"},{className:"function",beginKeywords:"function",end:"$",contains:[n,s,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,e.BINARY_NUMBER_MODE,e.C_NUMBER_MODE,o]},{className:"function",begin:"\\bend\\s+",end:"$",keywords:"end",contains:[s,o],relevance:0},{beginKeywords:"command on",end:"$",contains:[n,s,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,e.BINARY_NUMBER_MODE,e.C_NUMBER_MODE,o]},{className:"meta",variants:[{begin:"<\\?(rev|lc|livecode)",relevance:10},{begin:"<\\?"},{begin:"\\?>"}]},e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,e.BINARY_NUMBER_MODE,e.C_NUMBER_MODE,o].concat(i),illegal:";$|^\\[|^=|&|\\{"}}return M_=t,M_}var L_,BT;function YAe(){if(BT)return L_;BT=1;const t=["as","in","of","if","for","while","finally","var","new","function","do","return","void","else","break","catch","instanceof","with","throw","case","default","try","switch","continue","typeof","delete","let","yield","const","class","debugger","async","await","static","import","from","export","extends"],e=["true","false","null","undefined","NaN","Infinity"],n=["Object","Function","Boolean","Symbol","Math","Date","Number","BigInt","String","RegExp","Array","Float32Array","Float64Array","Int8Array","Uint8Array","Uint8ClampedArray","Int16Array","Int32Array","Uint16Array","Uint32Array","BigInt64Array","BigUint64Array","Set","Map","WeakSet","WeakMap","ArrayBuffer","SharedArrayBuffer","Atomics","DataView","JSON","Promise","Generator","GeneratorFunction","AsyncFunction","Reflect","Proxy","Intl","WebAssembly"],i=["Error","EvalError","InternalError","RangeError","ReferenceError","SyntaxError","TypeError","URIError"],o=["setInterval","setTimeout","clearInterval","clearTimeout","require","exports","eval","isFinite","isNaN","parseFloat","parseInt","decodeURI","decodeURIComponent","encodeURI","encodeURIComponent","escape","unescape"],s=[].concat(o,n,i);function l(c){const d=["npm","print"],_=["yes","no","on","off","it","that","void"],p=["then","unless","until","loop","of","by","when","and","or","is","isnt","not","it","that","otherwise","from","to","til","fallthrough","case","enum","native","list","map","__hasProp","__extends","__slice","__bind","__indexOf"],g={keyword:t.concat(p),literal:e.concat(_),built_in:s.concat(d)},E="[A-Za-z$_](?:-[0-9A-Za-z$_]|[0-9A-Za-z$_])*",f=c.inherit(c.TITLE_MODE,{begin:E}),S={className:"subst",begin:/#\{/,end:/\}/,keywords:g},v={className:"subst",begin:/#[A-Za-z$_]/,end:/(?:-[0-9A-Za-z$_]|[0-9A-Za-z$_])*/,keywords:g},h=[c.BINARY_NUMBER_MODE,{className:"number",begin:"(\\b0[xX][a-fA-F0-9_]+)|(\\b\\d(\\d|_\\d)*(\\.(\\d(\\d|_\\d)*)?)?(_*[eE]([-+]\\d(_\\d|\\d)*)?)?[_a-z]*)",relevance:0,starts:{end:"(\\s*/)?",relevance:0}},{className:"string",variants:[{begin:/'''/,end:/'''/,contains:[c.BACKSLASH_ESCAPE]},{begin:/'/,end:/'/,contains:[c.BACKSLASH_ESCAPE]},{begin:/"""/,end:/"""/,contains:[c.BACKSLASH_ESCAPE,S,v]},{begin:/"/,end:/"/,contains:[c.BACKSLASH_ESCAPE,S,v]},{begin:/\\/,end:/(\s|$)/,excludeEnd:!0}]},{className:"regexp",variants:[{begin:"//",end:"//[gim]*",contains:[S,c.HASH_COMMENT_MODE]},{begin:/\/(?![ *])(\\.|[^\\\n])*?\/[gim]*(?=\W)/}]},{begin:"@"+E},{begin:"``",end:"``",excludeBegin:!0,excludeEnd:!0,subLanguage:"javascript"}];S.contains=h;const T={className:"params",begin:"\\(",returnBegin:!0,contains:[{begin:/\(/,end:/\)/,keywords:g,contains:["self"].concat(h)}]},N={begin:"(#=>|=>|\\|>>|-?->|!->)"},y={variants:[{match:[/class\s+/,E,/\s+extends\s+/,E]},{match:[/class\s+/,E]}],scope:{2:"title.class",4:"title.class.inherited"},keywords:g};return{name:"LiveScript",aliases:["ls"],keywords:g,illegal:/\/\*/,contains:h.concat([c.COMMENT("\\/\\*","\\*\\/"),c.HASH_COMMENT_MODE,N,{className:"function",contains:[f,T],returnBegin:!0,variants:[{begin:"("+E+"\\s*(?:=|:=)\\s*)?(\\(.*\\)\\s*)?\\B->\\*?",end:"->\\*?"},{begin:"("+E+"\\s*(?:=|:=)\\s*)?!?(\\(.*\\)\\s*)?\\B[-~]{1,2}>\\*?",end:"[-~]{1,2}>\\*?"},{begin:"("+E+"\\s*(?:=|:=)\\s*)?(\\(.*\\)\\s*)?\\B!?[-~]{1,2}>\\*?",end:"!?[-~]{1,2}>\\*?"}]},y,{begin:E+":",end:":",returnBegin:!0,returnEnd:!0,relevance:0}])}}return L_=l,L_}var P_,GT;function qAe(){if(GT)return P_;GT=1;function t(e){const n=e.regex,i=/([-a-zA-Z$._][\w$.-]*)/,o={className:"type",begin:/\bi\d+(?=\s|\b)/},s={className:"operator",relevance:0,begin:/=/},l={className:"punctuation",relevance:0,begin:/,/},c={className:"number",variants:[{begin:/[su]?0[xX][KMLHR]?[a-fA-F0-9]+/},{begin:/[-+]?\d+(?:[.]\d+)?(?:[eE][-+]?\d+(?:[.]\d+)?)?/}],relevance:0},d={className:"symbol",variants:[{begin:/^\s*[a-z]+:/}],relevance:0},_={className:"variable",variants:[{begin:n.concat(/%/,i)},{begin:/%\d+/},{begin:/#\d+/}]},p={className:"title",variants:[{begin:n.concat(/@/,i)},{begin:/@\d+/},{begin:n.concat(/!/,i)},{begin:n.concat(/!\d+/,i)},{begin:/!\d+/}]};return{name:"LLVM IR",keywords:"begin end true false declare define global constant private linker_private internal available_externally linkonce linkonce_odr weak weak_odr appending dllimport dllexport common default hidden protected extern_weak external thread_local zeroinitializer undef null to tail target triple datalayout volatile nuw nsw nnan ninf nsz arcp fast exact inbounds align addrspace section alias module asm sideeffect gc dbg linker_private_weak attributes blockaddress initialexec localdynamic localexec prefix unnamed_addr ccc fastcc coldcc x86_stdcallcc x86_fastcallcc arm_apcscc arm_aapcscc arm_aapcs_vfpcc ptx_device ptx_kernel intel_ocl_bicc msp430_intrcc spir_func spir_kernel x86_64_sysvcc x86_64_win64cc x86_thiscallcc cc c signext zeroext inreg sret nounwind noreturn noalias nocapture byval nest readnone readonly inlinehint noinline alwaysinline optsize ssp sspreq noredzone noimplicitfloat naked builtin cold nobuiltin noduplicate nonlazybind optnone returns_twice sanitize_address sanitize_memory sanitize_thread sspstrong uwtable returned type opaque eq ne slt sgt sle sge ult ugt ule uge oeq one olt ogt ole oge ord uno ueq une x acq_rel acquire alignstack atomic catch cleanup filter inteldialect max min monotonic nand personality release seq_cst singlethread umax umin unordered xchg add fadd sub fsub mul fmul udiv sdiv fdiv urem srem frem shl lshr ashr and or xor icmp fcmp phi call trunc zext sext fptrunc fpext uitofp sitofp fptoui fptosi inttoptr ptrtoint bitcast addrspacecast select va_arg ret br switch invoke unwind unreachable indirectbr landingpad resume malloc alloca free load store getelementptr extractelement insertelement shufflevector getresult extractvalue insertvalue atomicrmw cmpxchg fence argmemonly double",contains:[o,e.COMMENT(/;\s*$/,null,{relevance:0}),e.COMMENT(/;/,/$/),{className:"string",begin:/"/,end:/"/,contains:[{className:"char.escape",match:/\\\d\d/}]},p,l,s,_,d,c]}}return P_=t,P_}var k_,YT;function $Ae(){if(YT)return k_;YT=1;function t(e){const i={className:"string",begin:'"',end:'"',contains:[{className:"subst",begin:/\\[tn"\\]/}]},o={className:"number",relevance:0,begin:e.C_NUMBER_RE},s={className:"literal",variants:[{begin:"\\b(PI|TWO_PI|PI_BY_TWO|DEG_TO_RAD|RAD_TO_DEG|SQRT2)\\b"},{begin:"\\b(XP_ERROR_(EXPERIENCES_DISABLED|EXPERIENCE_(DISABLED|SUSPENDED)|INVALID_(EXPERIENCE|PARAMETERS)|KEY_NOT_FOUND|MATURITY_EXCEEDED|NONE|NOT_(FOUND|PERMITTED(_LAND)?)|NO_EXPERIENCE|QUOTA_EXCEEDED|RETRY_UPDATE|STORAGE_EXCEPTION|STORE_DISABLED|THROTTLED|UNKNOWN_ERROR)|JSON_APPEND|STATUS_(PHYSICS|ROTATE_[XYZ]|PHANTOM|SANDBOX|BLOCK_GRAB(_OBJECT)?|(DIE|RETURN)_AT_EDGE|CAST_SHADOWS|OK|MALFORMED_PARAMS|TYPE_MISMATCH|BOUNDS_ERROR|NOT_(FOUND|SUPPORTED)|INTERNAL_ERROR|WHITELIST_FAILED)|AGENT(_(BY_(LEGACY_|USER)NAME|FLYING|ATTACHMENTS|SCRIPTED|MOUSELOOK|SITTING|ON_OBJECT|AWAY|WALKING|IN_AIR|TYPING|CROUCHING|BUSY|ALWAYS_RUN|AUTOPILOT|LIST_(PARCEL(_OWNER)?|REGION)))?|CAMERA_(PITCH|DISTANCE|BEHINDNESS_(ANGLE|LAG)|(FOCUS|POSITION)(_(THRESHOLD|LOCKED|LAG))?|FOCUS_OFFSET|ACTIVE)|ANIM_ON|LOOP|REVERSE|PING_PONG|SMOOTH|ROTATE|SCALE|ALL_SIDES|LINK_(ROOT|SET|ALL_(OTHERS|CHILDREN)|THIS)|ACTIVE|PASS(IVE|_(ALWAYS|IF_NOT_HANDLED|NEVER))|SCRIPTED|CONTROL_(FWD|BACK|(ROT_)?(LEFT|RIGHT)|UP|DOWN|(ML_)?LBUTTON)|PERMISSION_(RETURN_OBJECTS|DEBIT|OVERRIDE_ANIMATIONS|SILENT_ESTATE_MANAGEMENT|TAKE_CONTROLS|TRIGGER_ANIMATION|ATTACH|CHANGE_LINKS|(CONTROL|TRACK)_CAMERA|TELEPORT)|INVENTORY_(TEXTURE|SOUND|OBJECT|SCRIPT|LANDMARK|CLOTHING|NOTECARD|BODYPART|ANIMATION|GESTURE|ALL|NONE)|CHANGED_(INVENTORY|COLOR|SHAPE|SCALE|TEXTURE|LINK|ALLOWED_DROP|OWNER|REGION(_START)?|TELEPORT|MEDIA)|OBJECT_(CLICK_ACTION|HOVER_HEIGHT|LAST_OWNER_ID|(PHYSICS|SERVER|STREAMING)_COST|UNKNOWN_DETAIL|CHARACTER_TIME|PHANTOM|PHYSICS|TEMP_(ATTACHED|ON_REZ)|NAME|DESC|POS|PRIM_(COUNT|EQUIVALENCE)|RETURN_(PARCEL(_OWNER)?|REGION)|REZZER_KEY|ROO?T|VELOCITY|OMEGA|OWNER|GROUP(_TAG)?|CREATOR|ATTACHED_(POINT|SLOTS_AVAILABLE)|RENDER_WEIGHT|(BODY_SHAPE|PATHFINDING)_TYPE|(RUNNING|TOTAL)_SCRIPT_COUNT|TOTAL_INVENTORY_COUNT|SCRIPT_(MEMORY|TIME))|TYPE_(INTEGER|FLOAT|STRING|KEY|VECTOR|ROTATION|INVALID)|(DEBUG|PUBLIC)_CHANNEL|ATTACH_(AVATAR_CENTER|CHEST|HEAD|BACK|PELVIS|MOUTH|CHIN|NECK|NOSE|BELLY|[LR](SHOULDER|HAND|FOOT|EAR|EYE|[UL](ARM|LEG)|HIP)|(LEFT|RIGHT)_PEC|HUD_(CENTER_[12]|TOP_(RIGHT|CENTER|LEFT)|BOTTOM(_(RIGHT|LEFT))?)|[LR]HAND_RING1|TAIL_(BASE|TIP)|[LR]WING|FACE_(JAW|[LR]EAR|[LR]EYE|TOUNGE)|GROIN|HIND_[LR]FOOT)|LAND_(LEVEL|RAISE|LOWER|SMOOTH|NOISE|REVERT)|DATA_(ONLINE|NAME|BORN|SIM_(POS|STATUS|RATING)|PAYINFO)|PAYMENT_INFO_(ON_FILE|USED)|REMOTE_DATA_(CHANNEL|REQUEST|REPLY)|PSYS_(PART_(BF_(ZERO|ONE(_MINUS_(DEST_COLOR|SOURCE_(ALPHA|COLOR)))?|DEST_COLOR|SOURCE_(ALPHA|COLOR))|BLEND_FUNC_(DEST|SOURCE)|FLAGS|(START|END)_(COLOR|ALPHA|SCALE|GLOW)|MAX_AGE|(RIBBON|WIND|INTERP_(COLOR|SCALE)|BOUNCE|FOLLOW_(SRC|VELOCITY)|TARGET_(POS|LINEAR)|EMISSIVE)_MASK)|SRC_(MAX_AGE|PATTERN|ANGLE_(BEGIN|END)|BURST_(RATE|PART_COUNT|RADIUS|SPEED_(MIN|MAX))|ACCEL|TEXTURE|TARGET_KEY|OMEGA|PATTERN_(DROP|EXPLODE|ANGLE(_CONE(_EMPTY)?)?)))|VEHICLE_(REFERENCE_FRAME|TYPE_(NONE|SLED|CAR|BOAT|AIRPLANE|BALLOON)|(LINEAR|ANGULAR)_(FRICTION_TIMESCALE|MOTOR_DIRECTION)|LINEAR_MOTOR_OFFSET|HOVER_(HEIGHT|EFFICIENCY|TIMESCALE)|BUOYANCY|(LINEAR|ANGULAR)_(DEFLECTION_(EFFICIENCY|TIMESCALE)|MOTOR_(DECAY_)?TIMESCALE)|VERTICAL_ATTRACTION_(EFFICIENCY|TIMESCALE)|BANKING_(EFFICIENCY|MIX|TIMESCALE)|FLAG_(NO_DEFLECTION_UP|LIMIT_(ROLL_ONLY|MOTOR_UP)|HOVER_((WATER|TERRAIN|UP)_ONLY|GLOBAL_HEIGHT)|MOUSELOOK_(STEER|BANK)|CAMERA_DECOUPLED))|PRIM_(ALLOW_UNSIT|ALPHA_MODE(_(BLEND|EMISSIVE|MASK|NONE))?|NORMAL|SPECULAR|TYPE(_(BOX|CYLINDER|PRISM|SPHERE|TORUS|TUBE|RING|SCULPT))?|HOLE_(DEFAULT|CIRCLE|SQUARE|TRIANGLE)|MATERIAL(_(STONE|METAL|GLASS|WOOD|FLESH|PLASTIC|RUBBER))?|SHINY_(NONE|LOW|MEDIUM|HIGH)|BUMP_(NONE|BRIGHT|DARK|WOOD|BARK|BRICKS|CHECKER|CONCRETE|TILE|STONE|DISKS|GRAVEL|BLOBS|SIDING|LARGETILE|STUCCO|SUCTION|WEAVE)|TEXGEN_(DEFAULT|PLANAR)|SCRIPTED_SIT_ONLY|SCULPT_(TYPE_(SPHERE|TORUS|PLANE|CYLINDER|MASK)|FLAG_(MIRROR|INVERT))|PHYSICS(_(SHAPE_(CONVEX|NONE|PRIM|TYPE)))?|(POS|ROT)_LOCAL|SLICE|TEXT|FLEXIBLE|POINT_LIGHT|TEMP_ON_REZ|PHANTOM|POSITION|SIT_TARGET|SIZE|ROTATION|TEXTURE|NAME|OMEGA|DESC|LINK_TARGET|COLOR|BUMP_SHINY|FULLBRIGHT|TEXGEN|GLOW|MEDIA_(ALT_IMAGE_ENABLE|CONTROLS|(CURRENT|HOME)_URL|AUTO_(LOOP|PLAY|SCALE|ZOOM)|FIRST_CLICK_INTERACT|(WIDTH|HEIGHT)_PIXELS|WHITELIST(_ENABLE)?|PERMS_(INTERACT|CONTROL)|PARAM_MAX|CONTROLS_(STANDARD|MINI)|PERM_(NONE|OWNER|GROUP|ANYONE)|MAX_(URL_LENGTH|WHITELIST_(SIZE|COUNT)|(WIDTH|HEIGHT)_PIXELS)))|MASK_(BASE|OWNER|GROUP|EVERYONE|NEXT)|PERM_(TRANSFER|MODIFY|COPY|MOVE|ALL)|PARCEL_(MEDIA_COMMAND_(STOP|PAUSE|PLAY|LOOP|TEXTURE|URL|TIME|AGENT|UNLOAD|AUTO_ALIGN|TYPE|SIZE|DESC|LOOP_SET)|FLAG_(ALLOW_(FLY|(GROUP_)?SCRIPTS|LANDMARK|TERRAFORM|DAMAGE|CREATE_(GROUP_)?OBJECTS)|USE_(ACCESS_(GROUP|LIST)|BAN_LIST|LAND_PASS_LIST)|LOCAL_SOUND_ONLY|RESTRICT_PUSHOBJECT|ALLOW_(GROUP|ALL)_OBJECT_ENTRY)|COUNT_(TOTAL|OWNER|GROUP|OTHER|SELECTED|TEMP)|DETAILS_(NAME|DESC|OWNER|GROUP|AREA|ID|SEE_AVATARS))|LIST_STAT_(MAX|MIN|MEAN|MEDIAN|STD_DEV|SUM(_SQUARES)?|NUM_COUNT|GEOMETRIC_MEAN|RANGE)|PAY_(HIDE|DEFAULT)|REGION_FLAG_(ALLOW_DAMAGE|FIXED_SUN|BLOCK_TERRAFORM|SANDBOX|DISABLE_(COLLISIONS|PHYSICS)|BLOCK_FLY|ALLOW_DIRECT_TELEPORT|RESTRICT_PUSHOBJECT)|HTTP_(METHOD|MIMETYPE|BODY_(MAXLENGTH|TRUNCATED)|CUSTOM_HEADER|PRAGMA_NO_CACHE|VERBOSE_THROTTLE|VERIFY_CERT)|SIT_(INVALID_(AGENT|LINK_OBJECT)|NO(T_EXPERIENCE|_(ACCESS|EXPERIENCE_PERMISSION|SIT_TARGET)))|STRING_(TRIM(_(HEAD|TAIL))?)|CLICK_ACTION_(NONE|TOUCH|SIT|BUY|PAY|OPEN(_MEDIA)?|PLAY|ZOOM)|TOUCH_INVALID_FACE|PROFILE_(NONE|SCRIPT_MEMORY)|RC_(DATA_FLAGS|DETECT_PHANTOM|GET_(LINK_NUM|NORMAL|ROOT_KEY)|MAX_HITS|REJECT_(TYPES|AGENTS|(NON)?PHYSICAL|LAND))|RCERR_(CAST_TIME_EXCEEDED|SIM_PERF_LOW|UNKNOWN)|ESTATE_ACCESS_(ALLOWED_(AGENT|GROUP)_(ADD|REMOVE)|BANNED_AGENT_(ADD|REMOVE))|DENSITY|FRICTION|RESTITUTION|GRAVITY_MULTIPLIER|KFM_(COMMAND|CMD_(PLAY|STOP|PAUSE)|MODE|FORWARD|LOOP|PING_PONG|REVERSE|DATA|ROTATION|TRANSLATION)|ERR_(GENERIC|PARCEL_PERMISSIONS|MALFORMED_PARAMS|RUNTIME_PERMISSIONS|THROTTLED)|CHARACTER_(CMD_((SMOOTH_)?STOP|JUMP)|DESIRED_(TURN_)?SPEED|RADIUS|STAY_WITHIN_PARCEL|LENGTH|ORIENTATION|ACCOUNT_FOR_SKIPPED_FRAMES|AVOIDANCE_MODE|TYPE(_([ABCD]|NONE))?|MAX_(DECEL|TURN_RADIUS|(ACCEL|SPEED)))|PURSUIT_(OFFSET|FUZZ_FACTOR|GOAL_TOLERANCE|INTERCEPT)|REQUIRE_LINE_OF_SIGHT|FORCE_DIRECT_PATH|VERTICAL|HORIZONTAL|AVOID_(CHARACTERS|DYNAMIC_OBSTACLES|NONE)|PU_(EVADE_(HIDDEN|SPOTTED)|FAILURE_(DYNAMIC_PATHFINDING_DISABLED|INVALID_(GOAL|START)|NO_(NAVMESH|VALID_DESTINATION)|OTHER|TARGET_GONE|(PARCEL_)?UNREACHABLE)|(GOAL|SLOWDOWN_DISTANCE)_REACHED)|TRAVERSAL_TYPE(_(FAST|NONE|SLOW))?|CONTENT_TYPE_(ATOM|FORM|HTML|JSON|LLSD|RSS|TEXT|XHTML|XML)|GCNP_(RADIUS|STATIC)|(PATROL|WANDER)_PAUSE_AT_WAYPOINTS|OPT_(AVATAR|CHARACTER|EXCLUSION_VOLUME|LEGACY_LINKSET|MATERIAL_VOLUME|OTHER|STATIC_OBSTACLE|WALKABLE)|SIM_STAT_PCT_CHARS_STEPPED)\\b"},{begin:"\\b(FALSE|TRUE)\\b"},{begin:"\\b(ZERO_ROTATION)\\b"},{begin:"\\b(EOF|JSON_(ARRAY|DELETE|FALSE|INVALID|NULL|NUMBER|OBJECT|STRING|TRUE)|NULL_KEY|TEXTURE_(BLANK|DEFAULT|MEDIA|PLYWOOD|TRANSPARENT)|URL_REQUEST_(GRANTED|DENIED))\\b"},{begin:"\\b(ZERO_VECTOR|TOUCH_INVALID_(TEXCOORD|VECTOR))\\b"}]},l={className:"built_in",begin:"\\b(ll(AgentInExperience|(Create|DataSize|Delete|KeyCount|Keys|Read|Update)KeyValue|GetExperience(Details|ErrorMessage)|ReturnObjectsBy(ID|Owner)|Json(2List|[GS]etValue|ValueType)|Sin|Cos|Tan|Atan2|Sqrt|Pow|Abs|Fabs|Frand|Floor|Ceil|Round|Vec(Mag|Norm|Dist)|Rot(Between|2(Euler|Fwd|Left|Up))|(Euler|Axes)2Rot|Whisper|(Region|Owner)?Say|Shout|Listen(Control|Remove)?|Sensor(Repeat|Remove)?|Detected(Name|Key|Owner|Type|Pos|Vel|Grab|Rot|Group|LinkNumber)|Die|Ground|Wind|([GS]et)(AnimationOverride|MemoryLimit|PrimMediaParams|ParcelMusicURL|Object(Desc|Name)|PhysicsMaterial|Status|Scale|Color|Alpha|Texture|Pos|Rot|Force|Torque)|ResetAnimationOverride|(Scale|Offset|Rotate)Texture|(Rot)?Target(Remove)?|(Stop)?MoveToTarget|Apply(Rotational)?Impulse|Set(KeyframedMotion|ContentType|RegionPos|(Angular)?Velocity|Buoyancy|HoverHeight|ForceAndTorque|TimerEvent|ScriptState|Damage|TextureAnim|Sound(Queueing|Radius)|Vehicle(Type|(Float|Vector|Rotation)Param)|(Touch|Sit)?Text|Camera(Eye|At)Offset|PrimitiveParams|ClickAction|Link(Alpha|Color|PrimitiveParams(Fast)?|Texture(Anim)?|Camera|Media)|RemoteScriptAccessPin|PayPrice|LocalRot)|ScaleByFactor|Get((Max|Min)ScaleFactor|ClosestNavPoint|StaticPath|SimStats|Env|PrimitiveParams|Link(PrimitiveParams|Number(OfSides)?|Key|Name|Media)|HTTPHeader|FreeURLs|Object(Details|PermMask|PrimCount)|Parcel(MaxPrims|Details|Prim(Count|Owners))|Attached(List)?|(SPMax|Free|Used)Memory|Region(Name|TimeDilation|FPS|Corner|AgentCount)|Root(Position|Rotation)|UnixTime|(Parcel|Region)Flags|(Wall|GMT)clock|SimulatorHostname|BoundingBox|GeometricCenter|Creator|NumberOf(Prims|NotecardLines|Sides)|Animation(List)?|(Camera|Local)(Pos|Rot)|Vel|Accel|Omega|Time(stamp|OfDay)|(Object|CenterOf)?Mass|MassMKS|Energy|Owner|(Owner)?Key|SunDirection|Texture(Offset|Scale|Rot)|Inventory(Number|Name|Key|Type|Creator|PermMask)|Permissions(Key)?|StartParameter|List(Length|EntryType)|Date|Agent(Size|Info|Language|List)|LandOwnerAt|NotecardLine|Script(Name|State))|(Get|Reset|GetAndReset)Time|PlaySound(Slave)?|LoopSound(Master|Slave)?|(Trigger|Stop|Preload)Sound|((Get|Delete)Sub|Insert)String|To(Upper|Lower)|Give(InventoryList|Money)|RezObject|(Stop)?LookAt|Sleep|CollisionFilter|(Take|Release)Controls|DetachFromAvatar|AttachToAvatar(Temp)?|InstantMessage|(GetNext)?Email|StopHover|MinEventDelay|RotLookAt|String(Length|Trim)|(Start|Stop)Animation|TargetOmega|Request(Experience)?Permissions|(Create|Break)Link|BreakAllLinks|(Give|Remove)Inventory|Water|PassTouches|Request(Agent|Inventory)Data|TeleportAgent(Home|GlobalCoords)?|ModifyLand|CollisionSound|ResetScript|MessageLinked|PushObject|PassCollisions|AxisAngle2Rot|Rot2(Axis|Angle)|A(cos|sin)|AngleBetween|AllowInventoryDrop|SubStringIndex|List2(CSV|Integer|Json|Float|String|Key|Vector|Rot|List(Strided)?)|DeleteSubList|List(Statistics|Sort|Randomize|(Insert|Find|Replace)List)|EdgeOfWorld|AdjustSoundVolume|Key2Name|TriggerSoundLimited|EjectFromLand|(CSV|ParseString)2List|OverMyLand|SameGroup|UnSit|Ground(Slope|Normal|Contour)|GroundRepel|(Set|Remove)VehicleFlags|SitOnLink|(AvatarOn)?(Link)?SitTarget|Script(Danger|Profiler)|Dialog|VolumeDetect|ResetOtherScript|RemoteLoadScriptPin|(Open|Close)RemoteDataChannel|SendRemoteData|RemoteDataReply|(Integer|String)ToBase64|XorBase64|Log(10)?|Base64To(String|Integer)|ParseStringKeepNulls|RezAtRoot|RequestSimulatorData|ForceMouselook|(Load|Release|(E|Une)scape)URL|ParcelMedia(CommandList|Query)|ModPow|MapDestination|(RemoveFrom|AddTo|Reset)Land(Pass|Ban)List|(Set|Clear)CameraParams|HTTP(Request|Response)|TextBox|DetectedTouch(UV|Face|Pos|(N|Bin)ormal|ST)|(MD5|SHA1|DumpList2)String|Request(Secure)?URL|Clear(Prim|Link)Media|(Link)?ParticleSystem|(Get|Request)(Username|DisplayName)|RegionSayTo|CastRay|GenerateKey|TransferLindenDollars|ManageEstateAccess|(Create|Delete)Character|ExecCharacterCmd|Evade|FleeFrom|NavigateTo|PatrolPoints|Pursue|UpdateCharacter|WanderWithin))\\b"};return{name:"LSL (Linden Scripting Language)",illegal:":",contains:[i,{className:"comment",variants:[e.COMMENT("//","$"),e.COMMENT("/\\*","\\*/")],relevance:0},o,{className:"section",variants:[{begin:"\\b(state|default)\\b"},{begin:"\\b(state_(entry|exit)|touch(_(start|end))?|(land_)?collision(_(start|end))?|timer|listen|(no_)?sensor|control|(not_)?at_(rot_)?target|money|email|experience_permissions(_denied)?|run_time_permissions|changed|attach|dataserver|moving_(start|end)|link_message|(on|object)_rez|remote_data|http_re(sponse|quest)|path_update|transaction_result)\\b"}]},l,s,{className:"type",begin:"\\b(integer|float|string|key|vector|quaternion|rotation|list)\\b"}]}}return k_=t,k_}var U_,qT;function HAe(){if(qT)return U_;qT=1;function t(e){const n="\\[=*\\[",i="\\]=*\\]",o={begin:n,end:i,contains:["self"]},s=[e.COMMENT("--(?!"+n+")","$"),e.COMMENT("--"+n,i,{contains:[o],relevance:10})];return{name:"Lua",keywords:{$pattern:e.UNDERSCORE_IDENT_RE,literal:"true false nil",keyword:"and break do else elseif end for goto if in local not or repeat return then until while",built_in:"_G _ENV _VERSION __index __newindex __mode __call __metatable __tostring __len __gc __add __sub __mul __div __mod __pow __concat __unm __eq __lt __le assert collectgarbage dofile error getfenv getmetatable ipairs load loadfile loadstring module next pairs pcall print rawequal rawget rawset require select setfenv setmetatable tonumber tostring type unpack xpcall arg self coroutine resume yield status wrap create running debug getupvalue debug sethook getmetatable gethook setmetatable setlocal traceback setfenv getinfo setupvalue getlocal getregistry getfenv io lines write close flush open output type read stderr stdin input stdout popen tmpfile math log max acos huge ldexp pi cos tanh pow deg tan cosh sinh random randomseed frexp ceil floor rad abs sqrt modf asin min mod fmod log10 atan2 exp sin atan os exit setlocale date getenv difftime remove time clock tmpname rename execute package preload loadlib loaded loaders cpath config path seeall string sub upper len gfind rep find match char dump gmatch reverse byte format gsub lower table setn insert getn foreachi maxn foreach concat sort remove"},contains:s.concat([{className:"function",beginKeywords:"function",end:"\\)",contains:[e.inherit(e.TITLE_MODE,{begin:"([_a-zA-Z]\\w*\\.)*([_a-zA-Z]\\w*:)?[_a-zA-Z]\\w*"}),{className:"params",begin:"\\(",endsWithParent:!0,contains:s}].concat(s)},e.C_NUMBER_MODE,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,{className:"string",begin:n,end:i,contains:[o],relevance:5}])}}return U_=t,U_}var F_,$T;function zAe(){if($T)return F_;$T=1;function t(e){const n={className:"variable",variants:[{begin:"\\$\\("+e.UNDERSCORE_IDENT_RE+"\\)",contains:[e.BACKSLASH_ESCAPE]},{begin:/\$[@%{v.has(k[0])||U.ignoreMatch()}},{className:"symbol",relevance:0,begin:S}]},T={className:"named-character",begin:/\\\[[$a-zA-Z][$a-zA-Z0-9]+\]/},N={className:"operator",relevance:0,begin:/[+\-*/,;.:@~=><&|_`'^?!%]+/},y={className:"pattern",relevance:0,begin:/([a-zA-Z$][a-zA-Z0-9$]*)?_+([a-zA-Z$][a-zA-Z0-9$]*)?/},x={className:"slot",relevance:0,begin:/#[a-zA-Z$][a-zA-Z0-9$]*|#+[0-9]?/},P={className:"brace",relevance:0,begin:/[[\](){}]/},D={className:"message-name",relevance:0,begin:i.concat("::",S)};return{name:"Mathematica",aliases:["mma","wl"],classNameAliases:{brace:"punctuation",pattern:"type",slot:"type",symbol:"variable","named-character":"variable","builtin-symbol":"built_in","message-name":"string"},contains:[n.COMMENT(/\(\*/,/\*\)/,{contains:["self"]}),y,x,D,h,T,n.QUOTE_STRING_MODE,f,N,P]}}return B_=e,B_}var G_,zT;function WAe(){if(zT)return G_;zT=1;function t(e){const n="('|\\.')+",i={relevance:0,contains:[{begin:n}]};return{name:"Matlab",keywords:{keyword:"arguments break case catch classdef continue else elseif end enumeration events for function global if methods otherwise parfor persistent properties return spmd switch try while",built_in:"sin sind sinh asin asind asinh cos cosd cosh acos acosd acosh tan tand tanh atan atand atan2 atanh sec secd sech asec asecd asech csc cscd csch acsc acscd acsch cot cotd coth acot acotd acoth hypot exp expm1 log log1p log10 log2 pow2 realpow reallog realsqrt sqrt nthroot nextpow2 abs angle complex conj imag real unwrap isreal cplxpair fix floor ceil round mod rem sign airy besselj bessely besselh besseli besselk beta betainc betaln ellipj ellipke erf erfc erfcx erfinv expint gamma gammainc gammaln psi legendre cross dot factor isprime primes gcd lcm rat rats perms nchoosek factorial cart2sph cart2pol pol2cart sph2cart hsv2rgb rgb2hsv zeros ones eye repmat rand randn linspace logspace freqspace meshgrid accumarray size length ndims numel disp isempty isequal isequalwithequalnans cat reshape diag blkdiag tril triu fliplr flipud flipdim rot90 find sub2ind ind2sub bsxfun ndgrid permute ipermute shiftdim circshift squeeze isscalar isvector ans eps realmax realmin pi i|0 inf nan isnan isinf isfinite j|0 why compan gallery hadamard hankel hilb invhilb magic pascal rosser toeplitz vander wilkinson max min nanmax nanmin mean nanmean type table readtable writetable sortrows sort figure plot plot3 scatter scatter3 cellfun legend intersect ismember procrustes hold num2cell "},illegal:'(//|"|#|/\\*|\\s+/\\w+)',contains:[{className:"function",beginKeywords:"function",end:"$",contains:[e.UNDERSCORE_TITLE_MODE,{className:"params",variants:[{begin:"\\(",end:"\\)"},{begin:"\\[",end:"\\]"}]}]},{className:"built_in",begin:/true|false/,relevance:0,starts:i},{begin:"[a-zA-Z][a-zA-Z_0-9]*"+n,relevance:0},{className:"number",begin:e.C_NUMBER_RE,relevance:0,starts:i},{className:"string",begin:"'",end:"'",contains:[{begin:"''"}]},{begin:/\]|\}|\)/,relevance:0,starts:i},{className:"string",begin:'"',end:'"',contains:[{begin:'""'}],starts:i},e.COMMENT("^\\s*%\\{\\s*$","^\\s*%\\}\\s*$"),e.COMMENT("%","$")]}}return G_=t,G_}var Y_,VT;function KAe(){if(VT)return Y_;VT=1;function t(e){return{name:"Maxima",keywords:{$pattern:"[A-Za-z_%][0-9A-Za-z_%]*",keyword:"if then else elseif for thru do while unless step in and or not",literal:"true false unknown inf minf ind und %e %i %pi %phi %gamma",built_in:" abasep abs absint absolute_real_time acos acosh acot acoth acsc acsch activate addcol add_edge add_edges addmatrices addrow add_vertex add_vertices adjacency_matrix adjoin adjoint af agd airy airy_ai airy_bi airy_dai airy_dbi algsys alg_type alias allroots alphacharp alphanumericp amortization %and annuity_fv annuity_pv antid antidiff AntiDifference append appendfile apply apply1 apply2 applyb1 apropos args arit_amortization arithmetic arithsum array arrayapply arrayinfo arraymake arraysetapply ascii asec asech asin asinh askinteger asksign assoc assoc_legendre_p assoc_legendre_q assume assume_external_byte_order asympa at atan atan2 atanh atensimp atom atvalue augcoefmatrix augmented_lagrangian_method av average_degree backtrace bars barsplot barsplot_description base64 base64_decode bashindices batch batchload bc2 bdvac belln benefit_cost bern bernpoly bernstein_approx bernstein_expand bernstein_poly bessel bessel_i bessel_j bessel_k bessel_simplify bessel_y beta beta_incomplete beta_incomplete_generalized beta_incomplete_regularized bezout bfallroots bffac bf_find_root bf_fmin_cobyla bfhzeta bfloat bfloatp bfpsi bfpsi0 bfzeta biconnected_components bimetric binomial bipartition block blockmatrixp bode_gain bode_phase bothcoef box boxplot boxplot_description break bug_report build_info|10 buildq build_sample burn cabs canform canten cardinality carg cartan cartesian_product catch cauchy_matrix cbffac cdf_bernoulli cdf_beta cdf_binomial cdf_cauchy cdf_chi2 cdf_continuous_uniform cdf_discrete_uniform cdf_exp cdf_f cdf_gamma cdf_general_finite_discrete cdf_geometric cdf_gumbel cdf_hypergeometric cdf_laplace cdf_logistic cdf_lognormal cdf_negative_binomial cdf_noncentral_chi2 cdf_noncentral_student_t cdf_normal cdf_pareto cdf_poisson cdf_rank_sum cdf_rayleigh cdf_signed_rank cdf_student_t cdf_weibull cdisplay ceiling central_moment cequal cequalignore cf cfdisrep cfexpand cgeodesic cgreaterp cgreaterpignore changename changevar chaosgame charat charfun charfun2 charlist charp charpoly chdir chebyshev_t chebyshev_u checkdiv check_overlaps chinese cholesky christof chromatic_index chromatic_number cint circulant_graph clear_edge_weight clear_rules clear_vertex_label clebsch_gordan clebsch_graph clessp clesspignore close closefile cmetric coeff coefmatrix cograd col collapse collectterms columnop columnspace columnswap columnvector combination combine comp2pui compare compfile compile compile_file complement_graph complete_bipartite_graph complete_graph complex_number_p components compose_functions concan concat conjugate conmetderiv connected_components connect_vertices cons constant constantp constituent constvalue cont2part content continuous_freq contortion contour_plot contract contract_edge contragrad contrib_ode convert coord copy copy_file copy_graph copylist copymatrix cor cos cosh cot coth cov cov1 covdiff covect covers crc24sum create_graph create_list csc csch csetup cspline ctaylor ct_coordsys ctransform ctranspose cube_graph cuboctahedron_graph cunlisp cv cycle_digraph cycle_graph cylindrical days360 dblint deactivate declare declare_constvalue declare_dimensions declare_fundamental_dimensions declare_fundamental_units declare_qty declare_translated declare_unit_conversion declare_units declare_weights decsym defcon define define_alt_display define_variable defint defmatch defrule defstruct deftaylor degree_sequence del delete deleten delta demo demoivre denom depends derivdegree derivlist describe desolve determinant dfloat dgauss_a dgauss_b dgeev dgemm dgeqrf dgesv dgesvd diag diagmatrix diag_matrix diagmatrixp diameter diff digitcharp dimacs_export dimacs_import dimension dimensionless dimensions dimensions_as_list direct directory discrete_freq disjoin disjointp disolate disp dispcon dispform dispfun dispJordan display disprule dispterms distrib divide divisors divsum dkummer_m dkummer_u dlange dodecahedron_graph dotproduct dotsimp dpart draw draw2d draw3d drawdf draw_file draw_graph dscalar echelon edge_coloring edge_connectivity edges eigens_by_jacobi eigenvalues eigenvectors eighth einstein eivals eivects elapsed_real_time elapsed_run_time ele2comp ele2polynome ele2pui elem elementp elevation_grid elim elim_allbut eliminate eliminate_using ellipse elliptic_e elliptic_ec elliptic_eu elliptic_f elliptic_kc elliptic_pi ematrix empty_graph emptyp endcons entermatrix entertensor entier equal equalp equiv_classes erf erfc erf_generalized erfi errcatch error errormsg errors euler ev eval_string evenp every evolution evolution2d evundiff example exp expand expandwrt expandwrt_factored expint expintegral_chi expintegral_ci expintegral_e expintegral_e1 expintegral_ei expintegral_e_simplify expintegral_li expintegral_shi expintegral_si explicit explose exponentialize express expt exsec extdiff extract_linear_equations extremal_subset ezgcd %f f90 facsum factcomb factor factorfacsum factorial factorout factorsum facts fast_central_elements fast_linsolve fasttimes featurep fernfale fft fib fibtophi fifth filename_merge file_search file_type fillarray findde find_root find_root_abs find_root_error find_root_rel first fix flatten flength float floatnump floor flower_snark flush flush1deriv flushd flushnd flush_output fmin_cobyla forget fortran fourcos fourexpand fourier fourier_elim fourint fourintcos fourintsin foursimp foursin fourth fposition frame_bracket freeof freshline fresnel_c fresnel_s from_adjacency_matrix frucht_graph full_listify fullmap fullmapl fullratsimp fullratsubst fullsetify funcsolve fundamental_dimensions fundamental_units fundef funmake funp fv g0 g1 gamma gamma_greek gamma_incomplete gamma_incomplete_generalized gamma_incomplete_regularized gauss gauss_a gauss_b gaussprob gcd gcdex gcdivide gcfac gcfactor gd generalized_lambert_w genfact gen_laguerre genmatrix gensym geo_amortization geo_annuity_fv geo_annuity_pv geomap geometric geometric_mean geosum get getcurrentdirectory get_edge_weight getenv get_lu_factors get_output_stream_string get_pixel get_plot_option get_tex_environment get_tex_environment_default get_vertex_label gfactor gfactorsum ggf girth global_variances gn gnuplot_close gnuplot_replot gnuplot_reset gnuplot_restart gnuplot_start go Gosper GosperSum gr2d gr3d gradef gramschmidt graph6_decode graph6_encode graph6_export graph6_import graph_center graph_charpoly graph_eigenvalues graph_flow graph_order graph_periphery graph_product graph_size graph_union great_rhombicosidodecahedron_graph great_rhombicuboctahedron_graph grid_graph grind grobner_basis grotzch_graph hamilton_cycle hamilton_path hankel hankel_1 hankel_2 harmonic harmonic_mean hav heawood_graph hermite hessian hgfred hilbertmap hilbert_matrix hipow histogram histogram_description hodge horner hypergeometric i0 i1 %ibes ic1 ic2 ic_convert ichr1 ichr2 icosahedron_graph icosidodecahedron_graph icurvature ident identfor identity idiff idim idummy ieqn %if ifactors iframes ifs igcdex igeodesic_coords ilt image imagpart imetric implicit implicit_derivative implicit_plot indexed_tensor indices induced_subgraph inferencep inference_result infix info_display init_atensor init_ctensor in_neighbors innerproduct inpart inprod inrt integerp integer_partitions integrate intersect intersection intervalp intopois intosum invariant1 invariant2 inverse_fft inverse_jacobi_cd inverse_jacobi_cn inverse_jacobi_cs inverse_jacobi_dc inverse_jacobi_dn inverse_jacobi_ds inverse_jacobi_nc inverse_jacobi_nd inverse_jacobi_ns inverse_jacobi_sc inverse_jacobi_sd inverse_jacobi_sn invert invert_by_adjoint invert_by_lu inv_mod irr is is_biconnected is_bipartite is_connected is_digraph is_edge_in_graph is_graph is_graph_or_digraph ishow is_isomorphic isolate isomorphism is_planar isqrt isreal_p is_sconnected is_tree is_vertex_in_graph items_inference %j j0 j1 jacobi jacobian jacobi_cd jacobi_cn jacobi_cs jacobi_dc jacobi_dn jacobi_ds jacobi_nc jacobi_nd jacobi_ns jacobi_p jacobi_sc jacobi_sd jacobi_sn JF jn join jordan julia julia_set julia_sin %k kdels kdelta kill killcontext kostka kron_delta kronecker_product kummer_m kummer_u kurtosis kurtosis_bernoulli kurtosis_beta kurtosis_binomial kurtosis_chi2 kurtosis_continuous_uniform kurtosis_discrete_uniform kurtosis_exp kurtosis_f kurtosis_gamma kurtosis_general_finite_discrete kurtosis_geometric kurtosis_gumbel kurtosis_hypergeometric kurtosis_laplace kurtosis_logistic kurtosis_lognormal kurtosis_negative_binomial kurtosis_noncentral_chi2 kurtosis_noncentral_student_t kurtosis_normal kurtosis_pareto kurtosis_poisson kurtosis_rayleigh kurtosis_student_t kurtosis_weibull label labels lagrange laguerre lambda lambert_w laplace laplacian_matrix last lbfgs lc2kdt lcharp lc_l lcm lc_u ldefint ldisp ldisplay legendre_p legendre_q leinstein length let letrules letsimp levi_civita lfreeof lgtreillis lhs li liediff limit Lindstedt linear linearinterpol linear_program linear_regression line_graph linsolve listarray list_correlations listify list_matrix_entries list_nc_monomials listoftens listofvars listp lmax lmin load loadfile local locate_matrix_entry log logcontract log_gamma lopow lorentz_gauge lowercasep lpart lratsubst lreduce lriemann lsquares_estimates lsquares_estimates_approximate lsquares_estimates_exact lsquares_mse lsquares_residual_mse lsquares_residuals lsum ltreillis lu_backsub lucas lu_factor %m macroexpand macroexpand1 make_array makebox makefact makegamma make_graph make_level_picture makelist makeOrders make_poly_continent make_poly_country make_polygon make_random_state make_rgb_picture makeset make_string_input_stream make_string_output_stream make_transform mandelbrot mandelbrot_set map mapatom maplist matchdeclare matchfix mat_cond mat_fullunblocker mat_function mathml_display mat_norm matrix matrixmap matrixp matrix_size mattrace mat_trace mat_unblocker max max_clique max_degree max_flow maximize_lp max_independent_set max_matching maybe md5sum mean mean_bernoulli mean_beta mean_binomial mean_chi2 mean_continuous_uniform mean_deviation mean_discrete_uniform mean_exp mean_f mean_gamma mean_general_finite_discrete mean_geometric mean_gumbel mean_hypergeometric mean_laplace mean_logistic mean_lognormal mean_negative_binomial mean_noncentral_chi2 mean_noncentral_student_t mean_normal mean_pareto mean_poisson mean_rayleigh mean_student_t mean_weibull median median_deviation member mesh metricexpandall mgf1_sha1 min min_degree min_edge_cut minfactorial minimalPoly minimize_lp minimum_spanning_tree minor minpack_lsquares minpack_solve min_vertex_cover min_vertex_cut mkdir mnewton mod mode_declare mode_identity ModeMatrix moebius mon2schur mono monomial_dimensions multibernstein_poly multi_display_for_texinfo multi_elem multinomial multinomial_coeff multi_orbit multiplot_mode multi_pui multsym multthru mycielski_graph nary natural_unit nc_degree ncexpt ncharpoly negative_picture neighbors new newcontext newdet new_graph newline newton new_variable next_prime nicedummies niceindices ninth nofix nonarray noncentral_moment nonmetricity nonnegintegerp nonscalarp nonzeroandfreeof notequal nounify nptetrad npv nroots nterms ntermst nthroot nullity nullspace num numbered_boundaries numberp number_to_octets num_distinct_partitions numerval numfactor num_partitions nusum nzeta nzetai nzetar octets_to_number octets_to_oid odd_girth oddp ode2 ode_check odelin oid_to_octets op opena opena_binary openr openr_binary openw openw_binary operatorp opsubst optimize %or orbit orbits ordergreat ordergreatp orderless orderlessp orthogonal_complement orthopoly_recur orthopoly_weight outermap out_neighbors outofpois pade parabolic_cylinder_d parametric parametric_surface parg parGosper parse_string parse_timedate part part2cont partfrac partition partition_set partpol path_digraph path_graph pathname_directory pathname_name pathname_type pdf_bernoulli pdf_beta pdf_binomial pdf_cauchy pdf_chi2 pdf_continuous_uniform pdf_discrete_uniform pdf_exp pdf_f pdf_gamma pdf_general_finite_discrete pdf_geometric pdf_gumbel pdf_hypergeometric pdf_laplace pdf_logistic pdf_lognormal pdf_negative_binomial pdf_noncentral_chi2 pdf_noncentral_student_t pdf_normal pdf_pareto pdf_poisson pdf_rank_sum pdf_rayleigh pdf_signed_rank pdf_student_t pdf_weibull pearson_skewness permanent permut permutation permutations petersen_graph petrov pickapart picture_equalp picturep piechart piechart_description planar_embedding playback plog plot2d plot3d plotdf ploteq plsquares pochhammer points poisdiff poisexpt poisint poismap poisplus poissimp poissubst poistimes poistrim polar polarform polartorect polar_to_xy poly_add poly_buchberger poly_buchberger_criterion poly_colon_ideal poly_content polydecomp poly_depends_p poly_elimination_ideal poly_exact_divide poly_expand poly_expt poly_gcd polygon poly_grobner poly_grobner_equal poly_grobner_member poly_grobner_subsetp poly_ideal_intersection poly_ideal_polysaturation poly_ideal_polysaturation1 poly_ideal_saturation poly_ideal_saturation1 poly_lcm poly_minimization polymod poly_multiply polynome2ele polynomialp poly_normal_form poly_normalize poly_normalize_list poly_polysaturation_extension poly_primitive_part poly_pseudo_divide poly_reduced_grobner poly_reduction poly_saturation_extension poly_s_polynomial poly_subtract polytocompanion pop postfix potential power_mod powerseries powerset prefix prev_prime primep primes principal_components print printf printfile print_graph printpois printprops prodrac product properties propvars psi psubst ptriangularize pui pui2comp pui2ele pui2polynome pui_direct puireduc push put pv qput qrange qty quad_control quad_qag quad_qagi quad_qagp quad_qags quad_qawc quad_qawf quad_qawo quad_qaws quadrilateral quantile quantile_bernoulli quantile_beta quantile_binomial quantile_cauchy quantile_chi2 quantile_continuous_uniform quantile_discrete_uniform quantile_exp quantile_f quantile_gamma quantile_general_finite_discrete quantile_geometric quantile_gumbel quantile_hypergeometric quantile_laplace quantile_logistic quantile_lognormal quantile_negative_binomial quantile_noncentral_chi2 quantile_noncentral_student_t quantile_normal quantile_pareto quantile_poisson quantile_rayleigh quantile_student_t quantile_weibull quartile_skewness quit qunit quotient racah_v racah_w radcan radius random random_bernoulli random_beta random_binomial random_bipartite_graph random_cauchy random_chi2 random_continuous_uniform random_digraph random_discrete_uniform random_exp random_f random_gamma random_general_finite_discrete random_geometric random_graph random_graph1 random_gumbel random_hypergeometric random_laplace random_logistic random_lognormal random_negative_binomial random_network random_noncentral_chi2 random_noncentral_student_t random_normal random_pareto random_permutation random_poisson random_rayleigh random_regular_graph random_student_t random_tournament random_tree random_weibull range rank rat ratcoef ratdenom ratdiff ratdisrep ratexpand ratinterpol rational rationalize ratnumer ratnump ratp ratsimp ratsubst ratvars ratweight read read_array read_binary_array read_binary_list read_binary_matrix readbyte readchar read_hashed_array readline read_list read_matrix read_nested_list readonly read_xpm real_imagpart_to_conjugate realpart realroots rearray rectangle rectform rectform_log_if_constant recttopolar rediff reduce_consts reduce_order region region_boundaries region_boundaries_plus rem remainder remarray rembox remcomps remcon remcoord remfun remfunction remlet remove remove_constvalue remove_dimensions remove_edge remove_fundamental_dimensions remove_fundamental_units remove_plot_option remove_vertex rempart remrule remsym remvalue rename rename_file reset reset_displays residue resolvante resolvante_alternee1 resolvante_bipartite resolvante_diedrale resolvante_klein resolvante_klein3 resolvante_produit_sym resolvante_unitaire resolvante_vierer rest resultant return reveal reverse revert revert2 rgb2level rhs ricci riemann rinvariant risch rk rmdir rncombine romberg room rootscontract round row rowop rowswap rreduce run_testsuite %s save saving scalarp scaled_bessel_i scaled_bessel_i0 scaled_bessel_i1 scalefactors scanmap scatterplot scatterplot_description scene schur2comp sconcat scopy scsimp scurvature sdowncase sec sech second sequal sequalignore set_alt_display setdifference set_draw_defaults set_edge_weight setelmx setequalp setify setp set_partitions set_plot_option set_prompt set_random_state set_tex_environment set_tex_environment_default setunits setup_autoload set_up_dot_simplifications set_vertex_label seventh sexplode sf sha1sum sha256sum shortest_path shortest_weighted_path show showcomps showratvars sierpinskiale sierpinskimap sign signum similaritytransform simp_inequality simplify_sum simplode simpmetderiv simtran sin sinh sinsert sinvertcase sixth skewness skewness_bernoulli skewness_beta skewness_binomial skewness_chi2 skewness_continuous_uniform skewness_discrete_uniform skewness_exp skewness_f skewness_gamma skewness_general_finite_discrete skewness_geometric skewness_gumbel skewness_hypergeometric skewness_laplace skewness_logistic skewness_lognormal skewness_negative_binomial skewness_noncentral_chi2 skewness_noncentral_student_t skewness_normal skewness_pareto skewness_poisson skewness_rayleigh skewness_student_t skewness_weibull slength smake small_rhombicosidodecahedron_graph small_rhombicuboctahedron_graph smax smin smismatch snowmap snub_cube_graph snub_dodecahedron_graph solve solve_rec solve_rec_rat some somrac sort sparse6_decode sparse6_encode sparse6_export sparse6_import specint spherical spherical_bessel_j spherical_bessel_y spherical_hankel1 spherical_hankel2 spherical_harmonic spherical_to_xyz splice split sposition sprint sqfr sqrt sqrtdenest sremove sremovefirst sreverse ssearch ssort sstatus ssubst ssubstfirst staircase standardize standardize_inverse_trig starplot starplot_description status std std1 std_bernoulli std_beta std_binomial std_chi2 std_continuous_uniform std_discrete_uniform std_exp std_f std_gamma std_general_finite_discrete std_geometric std_gumbel std_hypergeometric std_laplace std_logistic std_lognormal std_negative_binomial std_noncentral_chi2 std_noncentral_student_t std_normal std_pareto std_poisson std_rayleigh std_student_t std_weibull stemplot stirling stirling1 stirling2 strim striml strimr string stringout stringp strong_components struve_h struve_l sublis sublist sublist_indices submatrix subsample subset subsetp subst substinpart subst_parallel substpart substring subvar subvarp sum sumcontract summand_to_rec supcase supcontext symbolp symmdifference symmetricp system take_channel take_inference tan tanh taylor taylorinfo taylorp taylor_simplifier taytorat tcl_output tcontract tellrat tellsimp tellsimpafter tentex tenth test_mean test_means_difference test_normality test_proportion test_proportions_difference test_rank_sum test_sign test_signed_rank test_variance test_variance_ratio tex tex1 tex_display texput %th third throw time timedate timer timer_info tldefint tlimit todd_coxeter toeplitz tokens to_lisp topological_sort to_poly to_poly_solve totaldisrep totalfourier totient tpartpol trace tracematrix trace_options transform_sample translate translate_file transpose treefale tree_reduce treillis treinat triangle triangularize trigexpand trigrat trigreduce trigsimp trunc truncate truncated_cube_graph truncated_dodecahedron_graph truncated_icosahedron_graph truncated_tetrahedron_graph tr_warnings_get tube tutte_graph ueivects uforget ultraspherical underlying_graph undiff union unique uniteigenvectors unitp units unit_step unitvector unorder unsum untellrat untimer untrace uppercasep uricci uriemann uvect vandermonde_matrix var var1 var_bernoulli var_beta var_binomial var_chi2 var_continuous_uniform var_discrete_uniform var_exp var_f var_gamma var_general_finite_discrete var_geometric var_gumbel var_hypergeometric var_laplace var_logistic var_lognormal var_negative_binomial var_noncentral_chi2 var_noncentral_student_t var_normal var_pareto var_poisson var_rayleigh var_student_t var_weibull vector vectorpotential vectorsimp verbify vers vertex_coloring vertex_connectivity vertex_degree vertex_distance vertex_eccentricity vertex_in_degree vertex_out_degree vertices vertices_to_cycle vertices_to_path %w weyl wheel_graph wiener_index wigner_3j wigner_6j wigner_9j with_stdout write_binary_data writebyte write_data writefile wronskian xreduce xthru %y Zeilberger zeroequiv zerofor zeromatrix zeromatrixp zeta zgeev zheev zlange zn_add_table zn_carmichael_lambda zn_characteristic_factors zn_determinant zn_factor_generators zn_invert_by_lu zn_log zn_mult_table absboxchar activecontexts adapt_depth additive adim aform algebraic algepsilon algexact aliases allbut all_dotsimp_denoms allocation allsym alphabetic animation antisymmetric arrays askexp assume_pos assume_pos_pred assumescalar asymbol atomgrad atrig1 axes axis_3d axis_bottom axis_left axis_right axis_top azimuth background background_color backsubst berlefact bernstein_explicit besselexpand beta_args_sum_to_integer beta_expand bftorat bftrunc bindtest border boundaries_array box boxchar breakup %c capping cauchysum cbrange cbtics center cflength cframe_flag cnonmet_flag color color_bar color_bar_tics colorbox columns commutative complex cone context contexts contour contour_levels cosnpiflag ctaypov ctaypt ctayswitch ctayvar ct_coords ctorsion_flag ctrgsimp cube current_let_rule_package cylinder data_file_name debugmode decreasing default_let_rule_package delay dependencies derivabbrev derivsubst detout diagmetric diff dim dimensions dispflag display2d|10 display_format_internal distribute_over doallmxops domain domxexpt domxmxops domxnctimes dontfactor doscmxops doscmxplus dot0nscsimp dot0simp dot1simp dotassoc dotconstrules dotdistrib dotexptsimp dotident dotscrules draw_graph_program draw_realpart edge_color edge_coloring edge_partition edge_type edge_width %edispflag elevation %emode endphi endtheta engineering_format_floats enhanced3d %enumer epsilon_lp erfflag erf_representation errormsg error_size error_syms error_type %e_to_numlog eval even evenfun evflag evfun ev_point expandwrt_denom expintexpand expintrep expon expop exptdispflag exptisolate exptsubst facexpand facsum_combine factlim factorflag factorial_expand factors_only fb feature features file_name file_output_append file_search_demo file_search_lisp file_search_maxima|10 file_search_tests file_search_usage file_type_lisp file_type_maxima|10 fill_color fill_density filled_func fixed_vertices flipflag float2bf font font_size fortindent fortspaces fpprec fpprintprec functions gamma_expand gammalim gdet genindex gensumnum GGFCFMAX GGFINFINITY globalsolve gnuplot_command gnuplot_curve_styles gnuplot_curve_titles gnuplot_default_term_command gnuplot_dumb_term_command gnuplot_file_args gnuplot_file_name gnuplot_out_file gnuplot_pdf_term_command gnuplot_pm3d gnuplot_png_term_command gnuplot_postamble gnuplot_preamble gnuplot_ps_term_command gnuplot_svg_term_command gnuplot_term gnuplot_view_args Gosper_in_Zeilberger gradefs grid grid2d grind halfangles head_angle head_both head_length head_type height hypergeometric_representation %iargs ibase icc1 icc2 icounter idummyx ieqnprint ifb ifc1 ifc2 ifg ifgi ifr iframe_bracket_form ifri igeowedge_flag ikt1 ikt2 imaginary inchar increasing infeval infinity inflag infolists inm inmc1 inmc2 intanalysis integer integervalued integrate_use_rootsof integration_constant integration_constant_counter interpolate_color intfaclim ip_grid ip_grid_in irrational isolate_wrt_times iterations itr julia_parameter %k1 %k2 keepfloat key key_pos kinvariant kt label label_alignment label_orientation labels lassociative lbfgs_ncorrections lbfgs_nfeval_max leftjust legend letrat let_rule_packages lfg lg lhospitallim limsubst linear linear_solver linechar linel|10 linenum line_type linewidth line_width linsolve_params linsolvewarn lispdisp listarith listconstvars listdummyvars lmxchar load_pathname loadprint logabs logarc logcb logconcoeffp logexpand lognegint logsimp logx logx_secondary logy logy_secondary logz lriem m1pbranch macroexpansion macros mainvar manual_demo maperror mapprint matrix_element_add matrix_element_mult matrix_element_transpose maxapplydepth maxapplyheight maxima_tempdir|10 maxima_userdir|10 maxnegex MAX_ORD maxposex maxpsifracdenom maxpsifracnum maxpsinegint maxpsiposint maxtayorder mesh_lines_color method mod_big_prime mode_check_errorp mode_checkp mode_check_warnp mod_test mod_threshold modular_linear_solver modulus multiplicative multiplicities myoptions nary negdistrib negsumdispflag newline newtonepsilon newtonmaxiter nextlayerfactor niceindicespref nm nmc noeval nolabels nonegative_lp noninteger nonscalar noun noundisp nouns np npi nticks ntrig numer numer_pbranch obase odd oddfun opacity opproperties opsubst optimprefix optionset orientation origin orthopoly_returns_intervals outative outchar packagefile palette partswitch pdf_file pfeformat phiresolution %piargs piece pivot_count_sx pivot_max_sx plot_format plot_options plot_realpart png_file pochhammer_max_index points pointsize point_size points_joined point_type poislim poisson poly_coefficient_ring poly_elimination_order polyfactor poly_grobner_algorithm poly_grobner_debug poly_monomial_order poly_primary_elimination_order poly_return_term_list poly_secondary_elimination_order poly_top_reduction_only posfun position powerdisp pred prederror primep_number_of_tests product_use_gamma program programmode promote_float_to_bigfloat prompt proportional_axes props psexpand ps_file radexpand radius radsubstflag rassociative ratalgdenom ratchristof ratdenomdivide rateinstein ratepsilon ratfac rational ratmx ratprint ratriemann ratsimpexpons ratvarswitch ratweights ratweyl ratwtlvl real realonly redraw refcheck resolution restart resultant ric riem rmxchar %rnum_list rombergabs rombergit rombergmin rombergtol rootsconmode rootsepsilon run_viewer same_xy same_xyz savedef savefactors scalar scalarmatrixp scale scale_lp setcheck setcheckbreak setval show_edge_color show_edges show_edge_type show_edge_width show_id show_label showtime show_vertex_color show_vertex_size show_vertex_type show_vertices show_weight simp simplified_output simplify_products simpproduct simpsum sinnpiflag solvedecomposes solveexplicit solvefactors solvenullwarn solveradcan solvetrigwarn space sparse sphere spring_embedding_depth sqrtdispflag stardisp startphi starttheta stats_numer stringdisp structures style sublis_apply_lambda subnumsimp sumexpand sumsplitfact surface surface_hide svg_file symmetric tab taylordepth taylor_logexpand taylor_order_coefficients taylor_truncate_polynomials tensorkill terminal testsuite_files thetaresolution timer_devalue title tlimswitch tr track transcompile transform transform_xy translate_fast_arrays transparent transrun tr_array_as_ref tr_bound_function_applyp tr_file_tty_messagesp tr_float_can_branch_complex tr_function_call_default trigexpandplus trigexpandtimes triginverses trigsign trivial_solutions tr_numer tr_optimize_max_loop tr_semicompile tr_state_vars tr_warn_bad_function_calls tr_warn_fexpr tr_warn_meval tr_warn_mode tr_warn_undeclared tr_warn_undefined_variable tstep ttyoff tube_extremes ufg ug %unitexpand unit_vectors uric uriem use_fast_arrays user_preamble usersetunits values vect_cross verbose vertex_color vertex_coloring vertex_partition vertex_size vertex_type view warnings weyl width windowname windowtitle wired_surface wireframe xaxis xaxis_color xaxis_secondary xaxis_type xaxis_width xlabel xlabel_secondary xlength xrange xrange_secondary xtics xtics_axis xtics_rotate xtics_rotate_secondary xtics_secondary xtics_secondary_axis xu_grid x_voxel xy_file xyplane xy_scale yaxis yaxis_color yaxis_secondary yaxis_type yaxis_width ylabel ylabel_secondary ylength yrange yrange_secondary ytics ytics_axis ytics_rotate ytics_rotate_secondary ytics_secondary ytics_secondary_axis yv_grid y_voxel yx_ratio zaxis zaxis_color zaxis_type zaxis_width zeroa zerob zerobern zeta%pi zlabel zlabel_rotate zlength zmin zn_primroot_limit zn_primroot_pretest",symbol:"_ __ %|0 %%|0"},contains:[{className:"comment",begin:"/\\*",end:"\\*/",contains:["self"]},e.QUOTE_STRING_MODE,{className:"number",relevance:0,variants:[{begin:"\\b(\\d+|\\d+\\.|\\.\\d+|\\d+\\.\\d+)[Ee][-+]?\\d+\\b"},{begin:"\\b(\\d+|\\d+\\.|\\.\\d+|\\d+\\.\\d+)[Bb][-+]?\\d+\\b",relevance:10},{begin:"\\b(\\.\\d+|\\d+\\.\\d+)\\b"},{begin:"\\b(\\d+|0[0-9A-Za-z]+)\\.?\\b"}]}],illegal:/@/}}return Y_=t,Y_}var q_,WT;function QAe(){if(WT)return q_;WT=1;function t(e){return{name:"MEL",keywords:"int float string vector matrix if else switch case default while do for in break continue global proc return about abs addAttr addAttributeEditorNodeHelp addDynamic addNewShelfTab addPP addPanelCategory addPrefixToName advanceToNextDrivenKey affectedNet affects aimConstraint air alias aliasAttr align alignCtx alignCurve alignSurface allViewFit ambientLight angle angleBetween animCone animCurveEditor animDisplay animView annotate appendStringArray applicationName applyAttrPreset applyTake arcLenDimContext arcLengthDimension arclen arrayMapper art3dPaintCtx artAttrCtx artAttrPaintVertexCtx artAttrSkinPaintCtx artAttrTool artBuildPaintMenu artFluidAttrCtx artPuttyCtx artSelectCtx artSetPaintCtx artUserPaintCtx assignCommand assignInputDevice assignViewportFactories attachCurve attachDeviceAttr attachSurface attrColorSliderGrp attrCompatibility attrControlGrp attrEnumOptionMenu attrEnumOptionMenuGrp attrFieldGrp attrFieldSliderGrp attrNavigationControlGrp attrPresetEditWin attributeExists attributeInfo attributeMenu attributeQuery autoKeyframe autoPlace bakeClip bakeFluidShading bakePartialHistory bakeResults bakeSimulation basename basenameEx batchRender bessel bevel bevelPlus binMembership bindSkin blend2 blendShape blendShapeEditor blendShapePanel blendTwoAttr blindDataType boneLattice boundary boxDollyCtx boxZoomCtx bufferCurve buildBookmarkMenu buildKeyframeMenu button buttonManip CBG cacheFile cacheFileCombine cacheFileMerge cacheFileTrack camera cameraView canCreateManip canvas capitalizeString catch catchQuiet ceil changeSubdivComponentDisplayLevel changeSubdivRegion channelBox character characterMap characterOutlineEditor characterize chdir checkBox checkBoxGrp checkDefaultRenderGlobals choice circle circularFillet clamp clear clearCache clip clipEditor clipEditorCurrentTimeCtx clipSchedule clipSchedulerOutliner clipTrimBefore closeCurve closeSurface cluster cmdFileOutput cmdScrollFieldExecuter cmdScrollFieldReporter cmdShell coarsenSubdivSelectionList collision color colorAtPoint colorEditor colorIndex colorIndexSliderGrp colorSliderButtonGrp colorSliderGrp columnLayout commandEcho commandLine commandPort compactHairSystem componentEditor compositingInterop computePolysetVolume condition cone confirmDialog connectAttr connectControl connectDynamic connectJoint connectionInfo constrain constrainValue constructionHistory container containsMultibyte contextInfo control convertFromOldLayers convertIffToPsd convertLightmap convertSolidTx convertTessellation convertUnit copyArray copyFlexor copyKey copySkinWeights cos cpButton cpCache cpClothSet cpCollision cpConstraint cpConvClothToMesh cpForces cpGetSolverAttr cpPanel cpProperty cpRigidCollisionFilter cpSeam cpSetEdit cpSetSolverAttr cpSolver cpSolverTypes cpTool cpUpdateClothUVs createDisplayLayer createDrawCtx createEditor createLayeredPsdFile createMotionField createNewShelf createNode createRenderLayer createSubdivRegion cross crossProduct ctxAbort ctxCompletion ctxEditMode ctxTraverse currentCtx currentTime currentTimeCtx currentUnit curve curveAddPtCtx curveCVCtx curveEPCtx curveEditorCtx curveIntersect curveMoveEPCtx curveOnSurface curveSketchCtx cutKey cycleCheck cylinder dagPose date defaultLightListCheckBox defaultNavigation defineDataServer defineVirtualDevice deformer deg_to_rad delete deleteAttr deleteShadingGroupsAndMaterials deleteShelfTab deleteUI deleteUnusedBrushes delrandstr detachCurve detachDeviceAttr detachSurface deviceEditor devicePanel dgInfo dgdirty dgeval dgtimer dimWhen directKeyCtx directionalLight dirmap dirname disable disconnectAttr disconnectJoint diskCache displacementToPoly displayAffected displayColor displayCull displayLevelOfDetail displayPref displayRGBColor displaySmoothness displayStats displayString displaySurface distanceDimContext distanceDimension doBlur dolly dollyCtx dopeSheetEditor dot dotProduct doubleProfileBirailSurface drag dragAttrContext draggerContext dropoffLocator duplicate duplicateCurve duplicateSurface dynCache dynControl dynExport dynExpression dynGlobals dynPaintEditor dynParticleCtx dynPref dynRelEdPanel dynRelEditor dynamicLoad editAttrLimits editDisplayLayerGlobals editDisplayLayerMembers editRenderLayerAdjustment editRenderLayerGlobals editRenderLayerMembers editor editorTemplate effector emit emitter enableDevice encodeString endString endsWith env equivalent equivalentTol erf error eval evalDeferred evalEcho event exactWorldBoundingBox exclusiveLightCheckBox exec executeForEachObject exists exp expression expressionEditorListen extendCurve extendSurface extrude fcheck fclose feof fflush fgetline fgetword file fileBrowserDialog fileDialog fileExtension fileInfo filetest filletCurve filter filterCurve filterExpand filterStudioImport findAllIntersections findAnimCurves findKeyframe findMenuItem findRelatedSkinCluster finder firstParentOf fitBspline flexor floatEq floatField floatFieldGrp floatScrollBar floatSlider floatSlider2 floatSliderButtonGrp floatSliderGrp floor flow fluidCacheInfo fluidEmitter fluidVoxelInfo flushUndo fmod fontDialog fopen formLayout format fprint frameLayout fread freeFormFillet frewind fromNativePath fwrite gamma gauss geometryConstraint getApplicationVersionAsFloat getAttr getClassification getDefaultBrush getFileList getFluidAttr getInputDeviceRange getMayaPanelTypes getModifiers getPanel getParticleAttr getPluginResource getenv getpid glRender glRenderEditor globalStitch gmatch goal gotoBindPose grabColor gradientControl gradientControlNoAttr graphDollyCtx graphSelectContext graphTrackCtx gravity grid gridLayout group groupObjectsByName HfAddAttractorToAS HfAssignAS HfBuildEqualMap HfBuildFurFiles HfBuildFurImages HfCancelAFR HfConnectASToHF HfCreateAttractor HfDeleteAS HfEditAS HfPerformCreateAS HfRemoveAttractorFromAS HfSelectAttached HfSelectAttractors HfUnAssignAS hardenPointCurve hardware hardwareRenderPanel headsUpDisplay headsUpMessage help helpLine hermite hide hilite hitTest hotBox hotkey hotkeyCheck hsv_to_rgb hudButton hudSlider hudSliderButton hwReflectionMap hwRender hwRenderLoad hyperGraph hyperPanel hyperShade hypot iconTextButton iconTextCheckBox iconTextRadioButton iconTextRadioCollection iconTextScrollList iconTextStaticLabel ikHandle ikHandleCtx ikHandleDisplayScale ikSolver ikSplineHandleCtx ikSystem ikSystemInfo ikfkDisplayMethod illustratorCurves image imfPlugins inheritTransform insertJoint insertJointCtx insertKeyCtx insertKnotCurve insertKnotSurface instance instanceable instancer intField intFieldGrp intScrollBar intSlider intSliderGrp interToUI internalVar intersect iprEngine isAnimCurve isConnected isDirty isParentOf isSameObject isTrue isValidObjectName isValidString isValidUiName isolateSelect itemFilter itemFilterAttr itemFilterRender itemFilterType joint jointCluster jointCtx jointDisplayScale jointLattice keyTangent keyframe keyframeOutliner keyframeRegionCurrentTimeCtx keyframeRegionDirectKeyCtx keyframeRegionDollyCtx keyframeRegionInsertKeyCtx keyframeRegionMoveKeyCtx keyframeRegionScaleKeyCtx keyframeRegionSelectKeyCtx keyframeRegionSetKeyCtx keyframeRegionTrackCtx keyframeStats lassoContext lattice latticeDeformKeyCtx launch launchImageEditor layerButton layeredShaderPort layeredTexturePort layout layoutDialog lightList lightListEditor lightListPanel lightlink lineIntersection linearPrecision linstep listAnimatable listAttr listCameras listConnections listDeviceAttachments listHistory listInputDeviceAxes listInputDeviceButtons listInputDevices listMenuAnnotation listNodeTypes listPanelCategories listRelatives listSets listTransforms listUnselected listerEditor loadFluid loadNewShelf loadPlugin loadPluginLanguageResources loadPrefObjects localizedPanelLabel lockNode loft log longNameOf lookThru ls lsThroughFilter lsType lsUI Mayatomr mag makeIdentity makeLive makePaintable makeRoll makeSingleSurface makeTubeOn makebot manipMoveContext manipMoveLimitsCtx manipOptions manipRotateContext manipRotateLimitsCtx manipScaleContext manipScaleLimitsCtx marker match max memory menu menuBarLayout menuEditor menuItem menuItemToShelf menuSet menuSetPref messageLine min minimizeApp mirrorJoint modelCurrentTimeCtx modelEditor modelPanel mouse movIn movOut move moveIKtoFK moveKeyCtx moveVertexAlongDirection multiProfileBirailSurface mute nParticle nameCommand nameField namespace namespaceInfo newPanelItems newton nodeCast nodeIconButton nodeOutliner nodePreset nodeType noise nonLinear normalConstraint normalize nurbsBoolean nurbsCopyUVSet nurbsCube nurbsEditUV nurbsPlane nurbsSelect nurbsSquare nurbsToPoly nurbsToPolygonsPref nurbsToSubdiv nurbsToSubdivPref nurbsUVSet nurbsViewDirectionVector objExists objectCenter objectLayer objectType objectTypeUI obsoleteProc oceanNurbsPreviewPlane offsetCurve offsetCurveOnSurface offsetSurface openGLExtension openMayaPref optionMenu optionMenuGrp optionVar orbit orbitCtx orientConstraint outlinerEditor outlinerPanel overrideModifier paintEffectsDisplay pairBlend palettePort paneLayout panel panelConfiguration panelHistory paramDimContext paramDimension paramLocator parent parentConstraint particle particleExists particleInstancer particleRenderInfo partition pasteKey pathAnimation pause pclose percent performanceOptions pfxstrokes pickWalk picture pixelMove planarSrf plane play playbackOptions playblast plugAttr plugNode pluginInfo pluginResourceUtil pointConstraint pointCurveConstraint pointLight pointMatrixMult pointOnCurve pointOnSurface pointPosition poleVectorConstraint polyAppend polyAppendFacetCtx polyAppendVertex polyAutoProjection polyAverageNormal polyAverageVertex polyBevel polyBlendColor polyBlindData polyBoolOp polyBridgeEdge polyCacheMonitor polyCheck polyChipOff polyClipboard polyCloseBorder polyCollapseEdge polyCollapseFacet polyColorBlindData polyColorDel polyColorPerVertex polyColorSet polyCompare polyCone polyCopyUV polyCrease polyCreaseCtx polyCreateFacet polyCreateFacetCtx polyCube polyCut polyCutCtx polyCylinder polyCylindricalProjection polyDelEdge polyDelFacet polyDelVertex polyDuplicateAndConnect polyDuplicateEdge polyEditUV polyEditUVShell polyEvaluate polyExtrudeEdge polyExtrudeFacet polyExtrudeVertex polyFlipEdge polyFlipUV polyForceUV polyGeoSampler polyHelix polyInfo polyInstallAction polyLayoutUV polyListComponentConversion polyMapCut polyMapDel polyMapSew polyMapSewMove polyMergeEdge polyMergeEdgeCtx polyMergeFacet polyMergeFacetCtx polyMergeUV polyMergeVertex polyMirrorFace polyMoveEdge polyMoveFacet polyMoveFacetUV polyMoveUV polyMoveVertex polyNormal polyNormalPerVertex polyNormalizeUV polyOptUvs polyOptions polyOutput polyPipe polyPlanarProjection polyPlane polyPlatonicSolid polyPoke polyPrimitive polyPrism polyProjection polyPyramid polyQuad polyQueryBlindData polyReduce polySelect polySelectConstraint polySelectConstraintMonitor polySelectCtx polySelectEditCtx polySeparate polySetToFaceNormal polySewEdge polyShortestPathCtx polySmooth polySoftEdge polySphere polySphericalProjection polySplit polySplitCtx polySplitEdge polySplitRing polySplitVertex polyStraightenUVBorder polySubdivideEdge polySubdivideFacet polyToSubdiv polyTorus polyTransfer polyTriangulate polyUVSet polyUnite polyWedgeFace popen popupMenu pose pow preloadRefEd print progressBar progressWindow projFileViewer projectCurve projectTangent projectionContext projectionManip promptDialog propModCtx propMove psdChannelOutliner psdEditTextureFile psdExport psdTextureFile putenv pwd python querySubdiv quit rad_to_deg radial radioButton radioButtonGrp radioCollection radioMenuItemCollection rampColorPort rand randomizeFollicles randstate rangeControl readTake rebuildCurve rebuildSurface recordAttr recordDevice redo reference referenceEdit referenceQuery refineSubdivSelectionList refresh refreshAE registerPluginResource rehash reloadImage removeJoint removeMultiInstance removePanelCategory rename renameAttr renameSelectionList renameUI render renderGlobalsNode renderInfo renderLayerButton renderLayerParent renderLayerPostProcess renderLayerUnparent renderManip renderPartition renderQualityNode renderSettings renderThumbnailUpdate renderWindowEditor renderWindowSelectContext renderer reorder reorderDeformers requires reroot resampleFluid resetAE resetPfxToPolyCamera resetTool resolutionNode retarget reverseCurve reverseSurface revolve rgb_to_hsv rigidBody rigidSolver roll rollCtx rootOf rot rotate rotationInterpolation roundConstantRadius rowColumnLayout rowLayout runTimeCommand runup sampleImage saveAllShelves saveAttrPreset saveFluid saveImage saveInitialState saveMenu savePrefObjects savePrefs saveShelf saveToolSettings scale scaleBrushBrightness scaleComponents scaleConstraint scaleKey scaleKeyCtx sceneEditor sceneUIReplacement scmh scriptCtx scriptEditorInfo scriptJob scriptNode scriptTable scriptToShelf scriptedPanel scriptedPanelType scrollField scrollLayout sculpt searchPathArray seed selLoadSettings select selectContext selectCurveCV selectKey selectKeyCtx selectKeyframeRegionCtx selectMode selectPref selectPriority selectType selectedNodes selectionConnection separator setAttr setAttrEnumResource setAttrMapping setAttrNiceNameResource setConstraintRestPosition setDefaultShadingGroup setDrivenKeyframe setDynamic setEditCtx setEditor setFluidAttr setFocus setInfinity setInputDeviceMapping setKeyCtx setKeyPath setKeyframe setKeyframeBlendshapeTargetWts setMenuMode setNodeNiceNameResource setNodeTypeFlag setParent setParticleAttr setPfxToPolyCamera setPluginResource setProject setStampDensity setStartupMessage setState setToolTo setUITemplate setXformManip sets shadingConnection shadingGeometryRelCtx shadingLightRelCtx shadingNetworkCompare shadingNode shapeCompare shelfButton shelfLayout shelfTabLayout shellField shortNameOf showHelp showHidden showManipCtx showSelectionInTitle showShadingGroupAttrEditor showWindow sign simplify sin singleProfileBirailSurface size sizeBytes skinCluster skinPercent smoothCurve smoothTangentSurface smoothstep snap2to2 snapKey snapMode snapTogetherCtx snapshot soft softMod softModCtx sort sound soundControl source spaceLocator sphere sphrand spotLight spotLightPreviewPort spreadSheetEditor spring sqrt squareSurface srtContext stackTrace startString startsWith stitchAndExplodeShell stitchSurface stitchSurfacePoints strcmp stringArrayCatenate stringArrayContains stringArrayCount stringArrayInsertAtIndex stringArrayIntersector stringArrayRemove stringArrayRemoveAtIndex stringArrayRemoveDuplicates stringArrayRemoveExact stringArrayToString stringToStringArray strip stripPrefixFromName stroke subdAutoProjection subdCleanTopology subdCollapse subdDuplicateAndConnect subdEditUV subdListComponentConversion subdMapCut subdMapSewMove subdMatchTopology subdMirror subdToBlind subdToPoly subdTransferUVsToCache subdiv subdivCrease subdivDisplaySmoothness substitute substituteAllString substituteGeometry substring surface surfaceSampler surfaceShaderList swatchDisplayPort switchTable symbolButton symbolCheckBox sysFile system tabLayout tan tangentConstraint texLatticeDeformContext texManipContext texMoveContext texMoveUVShellContext texRotateContext texScaleContext texSelectContext texSelectShortestPathCtx texSmudgeUVContext texWinToolCtx text textCurves textField textFieldButtonGrp textFieldGrp textManip textScrollList textToShelf textureDisplacePlane textureHairColor texturePlacementContext textureWindow threadCount threePointArcCtx timeControl timePort timerX toNativePath toggle toggleAxis toggleWindowVisibility tokenize tokenizeList tolerance tolower toolButton toolCollection toolDropped toolHasOptions toolPropertyWindow torus toupper trace track trackCtx transferAttributes transformCompare transformLimits translator trim trunc truncateFluidCache truncateHairCache tumble tumbleCtx turbulence twoPointArcCtx uiRes uiTemplate unassignInputDevice undo undoInfo ungroup uniform unit unloadPlugin untangleUV untitledFileName untrim upAxis updateAE userCtx uvLink uvSnapshot validateShelfName vectorize view2dToolCtx viewCamera viewClipPlane viewFit viewHeadOn viewLookAt viewManip viewPlace viewSet visor volumeAxis vortex waitCursor warning webBrowser webBrowserPrefs whatIs window windowPref wire wireContext workspace wrinkle wrinkleContext writeTake xbmLangPathList xform",illegal:""},{begin:"<=",relevance:0},{begin:"=>",relevance:0},{begin:"/\\\\"},{begin:"\\\\/"}]},{className:"built_in",variants:[{begin:":-\\|-->"},{begin:"=",relevance:0}]},i,e.C_BLOCK_COMMENT_MODE,o,e.NUMBER_MODE,s,l,{begin:/:-/},{begin:/\.$/}]}}return $_=t,$_}var H_,QT;function ZAe(){if(QT)return H_;QT=1;function t(e){return{name:"MIPS Assembly",case_insensitive:!0,aliases:["mips"],keywords:{$pattern:"\\.?"+e.IDENT_RE,meta:".2byte .4byte .align .ascii .asciz .balign .byte .code .data .else .end .endif .endm .endr .equ .err .exitm .extern .global .hword .if .ifdef .ifndef .include .irp .long .macro .rept .req .section .set .skip .space .text .word .ltorg ",built_in:"$0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $10 $11 $12 $13 $14 $15 $16 $17 $18 $19 $20 $21 $22 $23 $24 $25 $26 $27 $28 $29 $30 $31 zero at v0 v1 a0 a1 a2 a3 a4 a5 a6 a7 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 s0 s1 s2 s3 s4 s5 s6 s7 s8 k0 k1 gp sp fp ra $f0 $f1 $f2 $f2 $f4 $f5 $f6 $f7 $f8 $f9 $f10 $f11 $f12 $f13 $f14 $f15 $f16 $f17 $f18 $f19 $f20 $f21 $f22 $f23 $f24 $f25 $f26 $f27 $f28 $f29 $f30 $f31 Context Random EntryLo0 EntryLo1 Context PageMask Wired EntryHi HWREna BadVAddr Count Compare SR IntCtl SRSCtl SRSMap Cause EPC PRId EBase Config Config1 Config2 Config3 LLAddr Debug DEPC DESAVE CacheErr ECC ErrorEPC TagLo DataLo TagHi DataHi WatchLo WatchHi PerfCtl PerfCnt "},contains:[{className:"keyword",begin:"\\b(addi?u?|andi?|b(al)?|beql?|bgez(al)?l?|bgtzl?|blezl?|bltz(al)?l?|bnel?|cl[oz]|divu?|ext|ins|j(al)?|jalr(\\.hb)?|jr(\\.hb)?|lbu?|lhu?|ll|lui|lw[lr]?|maddu?|mfhi|mflo|movn|movz|move|msubu?|mthi|mtlo|mul|multu?|nop|nor|ori?|rotrv?|sb|sc|se[bh]|sh|sllv?|slti?u?|srav?|srlv?|subu?|sw[lr]?|xori?|wsbh|abs\\.[sd]|add\\.[sd]|alnv.ps|bc1[ft]l?|c\\.(s?f|un|u?eq|[ou]lt|[ou]le|ngle?|seq|l[et]|ng[et])\\.[sd]|(ceil|floor|round|trunc)\\.[lw]\\.[sd]|cfc1|cvt\\.d\\.[lsw]|cvt\\.l\\.[dsw]|cvt\\.ps\\.s|cvt\\.s\\.[dlw]|cvt\\.s\\.p[lu]|cvt\\.w\\.[dls]|div\\.[ds]|ldx?c1|luxc1|lwx?c1|madd\\.[sd]|mfc1|mov[fntz]?\\.[ds]|msub\\.[sd]|mth?c1|mul\\.[ds]|neg\\.[ds]|nmadd\\.[ds]|nmsub\\.[ds]|p[lu][lu]\\.ps|recip\\.fmt|r?sqrt\\.[ds]|sdx?c1|sub\\.[ds]|suxc1|swx?c1|break|cache|d?eret|[de]i|ehb|mfc0|mtc0|pause|prefx?|rdhwr|rdpgpr|sdbbp|ssnop|synci?|syscall|teqi?|tgei?u?|tlb(p|r|w[ir])|tlti?u?|tnei?|wait|wrpgpr)",end:"\\s"},e.COMMENT("[;#](?!\\s*$)","$"),e.C_BLOCK_COMMENT_MODE,e.QUOTE_STRING_MODE,{className:"string",begin:"'",end:"[^\\\\]'",relevance:0},{className:"title",begin:"\\|",end:"\\|",illegal:"\\n",relevance:0},{className:"number",variants:[{begin:"0x[0-9a-f]+"},{begin:"\\b-?\\d+"}],relevance:0},{className:"symbol",variants:[{begin:"^\\s*[a-z_\\.\\$][a-z0-9_\\.\\$]+:"},{begin:"^\\s*[0-9]+:"},{begin:"[0-9]+[bf]"}],relevance:0}],illegal:/\//}}return H_=t,H_}var z_,XT;function JAe(){if(XT)return z_;XT=1;function t(e){return{name:"Mizar",keywords:"environ vocabularies notations constructors definitions registrations theorems schemes requirements begin end definition registration cluster existence pred func defpred deffunc theorem proof let take assume then thus hence ex for st holds consider reconsider such that and in provided of as from be being by means equals implies iff redefine define now not or attr is mode suppose per cases set thesis contradiction scheme reserve struct correctness compatibility coherence symmetry assymetry reflexivity irreflexivity connectedness uniqueness commutativity idempotence involutiveness projectivity",contains:[e.COMMENT("::","$")]}}return z_=t,z_}var V_,ZT;function jAe(){if(ZT)return V_;ZT=1;function t(e){const n=e.regex,i=["abs","accept","alarm","and","atan2","bind","binmode","bless","break","caller","chdir","chmod","chomp","chop","chown","chr","chroot","close","closedir","connect","continue","cos","crypt","dbmclose","dbmopen","defined","delete","die","do","dump","each","else","elsif","endgrent","endhostent","endnetent","endprotoent","endpwent","endservent","eof","eval","exec","exists","exit","exp","fcntl","fileno","flock","for","foreach","fork","format","formline","getc","getgrent","getgrgid","getgrnam","gethostbyaddr","gethostbyname","gethostent","getlogin","getnetbyaddr","getnetbyname","getnetent","getpeername","getpgrp","getpriority","getprotobyname","getprotobynumber","getprotoent","getpwent","getpwnam","getpwuid","getservbyname","getservbyport","getservent","getsockname","getsockopt","given","glob","gmtime","goto","grep","gt","hex","if","index","int","ioctl","join","keys","kill","last","lc","lcfirst","length","link","listen","local","localtime","log","lstat","lt","ma","map","mkdir","msgctl","msgget","msgrcv","msgsnd","my","ne","next","no","not","oct","open","opendir","or","ord","our","pack","package","pipe","pop","pos","print","printf","prototype","push","q|0","qq","quotemeta","qw","qx","rand","read","readdir","readline","readlink","readpipe","recv","redo","ref","rename","require","reset","return","reverse","rewinddir","rindex","rmdir","say","scalar","seek","seekdir","select","semctl","semget","semop","send","setgrent","sethostent","setnetent","setpgrp","setpriority","setprotoent","setpwent","setservent","setsockopt","shift","shmctl","shmget","shmread","shmwrite","shutdown","sin","sleep","socket","socketpair","sort","splice","split","sprintf","sqrt","srand","stat","state","study","sub","substr","symlink","syscall","sysopen","sysread","sysseek","system","syswrite","tell","telldir","tie","tied","time","times","tr","truncate","uc","ucfirst","umask","undef","unless","unlink","unpack","unshift","untie","until","use","utime","values","vec","wait","waitpid","wantarray","warn","when","while","write","x|0","xor","y|0"],o=/[dualxmsipngr]{0,12}/,s={$pattern:/[\w.]+/,keyword:i.join(" ")},l={className:"subst",begin:"[$@]\\{",end:"\\}",keywords:s},c={begin:/->\{/,end:/\}/},d={variants:[{begin:/\$\d/},{begin:n.concat(/[$%@](\^\w\b|#\w+(::\w+)*|\{\w+\}|\w+(::\w*)*)/,"(?![A-Za-z])(?![@$%])")},{begin:/[$%@][^\s\w{]/,relevance:0}]},_=[e.BACKSLASH_ESCAPE,l,d],p=[/!/,/\//,/\|/,/\?/,/'/,/"/,/#/],g=(S,v,h="\\1")=>{const T=h==="\\1"?h:n.concat(h,v);return n.concat(n.concat("(?:",S,")"),v,/(?:\\.|[^\\\/])*?/,T,/(?:\\.|[^\\\/])*?/,h,o)},E=(S,v,h)=>n.concat(n.concat("(?:",S,")"),v,/(?:\\.|[^\\\/])*?/,h,o),f=[d,e.HASH_COMMENT_MODE,e.COMMENT(/^=\w/,/=cut/,{endsWithParent:!0}),c,{className:"string",contains:_,variants:[{begin:"q[qwxr]?\\s*\\(",end:"\\)",relevance:5},{begin:"q[qwxr]?\\s*\\[",end:"\\]",relevance:5},{begin:"q[qwxr]?\\s*\\{",end:"\\}",relevance:5},{begin:"q[qwxr]?\\s*\\|",end:"\\|",relevance:5},{begin:"q[qwxr]?\\s*<",end:">",relevance:5},{begin:"qw\\s+q",end:"q",relevance:5},{begin:"'",end:"'",contains:[e.BACKSLASH_ESCAPE]},{begin:'"',end:'"'},{begin:"`",end:"`",contains:[e.BACKSLASH_ESCAPE]},{begin:/\{\w+\}/,relevance:0},{begin:"-?\\w+\\s*=>",relevance:0}]},{className:"number",begin:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",relevance:0},{begin:"(\\/\\/|"+e.RE_STARTERS_RE+"|\\b(split|return|print|reverse|grep)\\b)\\s*",keywords:"split return print reverse grep",relevance:0,contains:[e.HASH_COMMENT_MODE,{className:"regexp",variants:[{begin:g("s|tr|y",n.either(...p,{capture:!0}))},{begin:g("s|tr|y","\\(","\\)")},{begin:g("s|tr|y","\\[","\\]")},{begin:g("s|tr|y","\\{","\\}")}],relevance:2},{className:"regexp",variants:[{begin:/(m|qr)\/\//,relevance:0},{begin:E("(?:m|qr)?",/\//,/\//)},{begin:E("m|qr",n.either(...p,{capture:!0}),/\1/)},{begin:E("m|qr",/\(/,/\)/)},{begin:E("m|qr",/\[/,/\]/)},{begin:E("m|qr",/\{/,/\}/)}]}]},{className:"function",beginKeywords:"sub",end:"(\\s*\\(.*?\\))?[;{]",excludeEnd:!0,relevance:5,contains:[e.TITLE_MODE]},{begin:"-\\w\\b",relevance:0},{begin:"^__DATA__$",end:"^__END__$",subLanguage:"mojolicious",contains:[{begin:"^@@.*",end:"$",className:"comment"}]}];return l.contains=f,c.contains=f,{name:"Perl",aliases:["pl","pm"],keywords:s,contains:f}}return V_=t,V_}var W_,JT;function eye(){if(JT)return W_;JT=1;function t(e){return{name:"Mojolicious",subLanguage:"xml",contains:[{className:"meta",begin:"^__(END|DATA)__$"},{begin:"^\\s*%{1,2}={0,2}",end:"$",subLanguage:"perl"},{begin:"<%{1,2}={0,2}",end:"={0,1}%>",subLanguage:"perl",excludeBegin:!0,excludeEnd:!0}]}}return W_=t,W_}var K_,jT;function tye(){if(jT)return K_;jT=1;function t(e){const n={className:"number",relevance:0,variants:[{begin:"[$][a-fA-F0-9]+"},e.NUMBER_MODE]},i={variants:[{match:[/(function|method)/,/\s+/,e.UNDERSCORE_IDENT_RE]}],scope:{1:"keyword",3:"title.function"}},o={variants:[{match:[/(class|interface|extends|implements)/,/\s+/,e.UNDERSCORE_IDENT_RE]}],scope:{1:"keyword",3:"title.class"}};return{name:"Monkey",case_insensitive:!0,keywords:{keyword:["public","private","property","continue","exit","extern","new","try","catch","eachin","not","abstract","final","select","case","default","const","local","global","field","end","if","then","else","elseif","endif","while","wend","repeat","until","forever","for","to","step","next","return","module","inline","throw","import","and","or","shl","shr","mod"],built_in:["DebugLog","DebugStop","Error","Print","ACos","ACosr","ASin","ASinr","ATan","ATan2","ATan2r","ATanr","Abs","Abs","Ceil","Clamp","Clamp","Cos","Cosr","Exp","Floor","Log","Max","Max","Min","Min","Pow","Sgn","Sgn","Sin","Sinr","Sqrt","Tan","Tanr","Seed","PI","HALFPI","TWOPI"],literal:["true","false","null"]},illegal:/\/\*/,contains:[e.COMMENT("#rem","#end"),e.COMMENT("'","$",{relevance:0}),i,o,{className:"variable.language",begin:/\b(self|super)\b/},{className:"meta",begin:/\s*#/,end:"$",keywords:{keyword:"if else elseif endif end then"}},{match:[/^\s*/,/strict\b/],scope:{2:"meta"}},{beginKeywords:"alias",end:"=",contains:[e.UNDERSCORE_TITLE_MODE]},e.QUOTE_STRING_MODE,n]}}return K_=t,K_}var Q_,ev;function nye(){if(ev)return Q_;ev=1;function t(e){const n={keyword:"if then not for in while do return else elseif break continue switch and or unless when class extends super local import export from using",literal:"true false nil",built_in:"_G _VERSION assert collectgarbage dofile error getfenv getmetatable ipairs load loadfile loadstring module next pairs pcall print rawequal rawget rawset require select setfenv setmetatable tonumber tostring type unpack xpcall coroutine debug io math os package string table"},i="[A-Za-z$_][0-9A-Za-z$_]*",o={className:"subst",begin:/#\{/,end:/\}/,keywords:n},s=[e.inherit(e.C_NUMBER_MODE,{starts:{end:"(\\s*/)?",relevance:0}}),{className:"string",variants:[{begin:/'/,end:/'/,contains:[e.BACKSLASH_ESCAPE]},{begin:/"/,end:/"/,contains:[e.BACKSLASH_ESCAPE,o]}]},{className:"built_in",begin:"@__"+e.IDENT_RE},{begin:"@"+e.IDENT_RE},{begin:e.IDENT_RE+"\\\\"+e.IDENT_RE}];o.contains=s;const l=e.inherit(e.TITLE_MODE,{begin:i}),c="(\\(.*\\)\\s*)?\\B[-=]>",d={className:"params",begin:"\\([^\\(]",returnBegin:!0,contains:[{begin:/\(/,end:/\)/,keywords:n,contains:["self"].concat(s)}]};return{name:"MoonScript",aliases:["moon"],keywords:n,illegal:/\/\*/,contains:s.concat([e.COMMENT("--","$"),{className:"function",begin:"^\\s*"+i+"\\s*=\\s*"+c,end:"[-=]>",returnBegin:!0,contains:[l,d]},{begin:/[\(,:=]\s*/,relevance:0,contains:[{className:"function",begin:c,end:"[-=]>",returnBegin:!0,contains:[d]}]},{className:"class",beginKeywords:"class",end:"$",illegal:/[:="\[\]]/,contains:[{beginKeywords:"extends",endsWithParent:!0,illegal:/[:="\[\]]/,contains:[l]},l]},{className:"name",begin:i+":",end:":",returnBegin:!0,returnEnd:!0,relevance:0}])}}return Q_=t,Q_}var X_,tv;function rye(){if(tv)return X_;tv=1;function t(e){return{name:"N1QL",case_insensitive:!0,contains:[{beginKeywords:"build create index delete drop explain infer|10 insert merge prepare select update upsert|10",end:/;/,keywords:{keyword:["all","alter","analyze","and","any","array","as","asc","begin","between","binary","boolean","break","bucket","build","by","call","case","cast","cluster","collate","collection","commit","connect","continue","correlate","cover","create","database","dataset","datastore","declare","decrement","delete","derived","desc","describe","distinct","do","drop","each","element","else","end","every","except","exclude","execute","exists","explain","fetch","first","flatten","for","force","from","function","grant","group","gsi","having","if","ignore","ilike","in","include","increment","index","infer","inline","inner","insert","intersect","into","is","join","key","keys","keyspace","known","last","left","let","letting","like","limit","lsm","map","mapping","matched","materialized","merge","minus","namespace","nest","not","number","object","offset","on","option","or","order","outer","over","parse","partition","password","path","pool","prepare","primary","private","privilege","procedure","public","raw","realm","reduce","rename","return","returning","revoke","right","role","rollback","satisfies","schema","select","self","semi","set","show","some","start","statistics","string","system","then","to","transaction","trigger","truncate","under","union","unique","unknown","unnest","unset","update","upsert","use","user","using","validate","value","valued","values","via","view","when","where","while","with","within","work","xor"],literal:["true","false","null","missing|5"],built_in:["array_agg","array_append","array_concat","array_contains","array_count","array_distinct","array_ifnull","array_length","array_max","array_min","array_position","array_prepend","array_put","array_range","array_remove","array_repeat","array_replace","array_reverse","array_sort","array_sum","avg","count","max","min","sum","greatest","least","ifmissing","ifmissingornull","ifnull","missingif","nullif","ifinf","ifnan","ifnanorinf","naninf","neginfif","posinfif","clock_millis","clock_str","date_add_millis","date_add_str","date_diff_millis","date_diff_str","date_part_millis","date_part_str","date_trunc_millis","date_trunc_str","duration_to_str","millis","str_to_millis","millis_to_str","millis_to_utc","millis_to_zone_name","now_millis","now_str","str_to_duration","str_to_utc","str_to_zone_name","decode_json","encode_json","encoded_size","poly_length","base64","base64_encode","base64_decode","meta","uuid","abs","acos","asin","atan","atan2","ceil","cos","degrees","e","exp","ln","log","floor","pi","power","radians","random","round","sign","sin","sqrt","tan","trunc","object_length","object_names","object_pairs","object_inner_pairs","object_values","object_inner_values","object_add","object_put","object_remove","object_unwrap","regexp_contains","regexp_like","regexp_position","regexp_replace","contains","initcap","length","lower","ltrim","position","repeat","replace","rtrim","split","substr","title","trim","upper","isarray","isatom","isboolean","isnumber","isobject","isstring","type","toarray","toatom","toboolean","tonumber","toobject","tostring"]},contains:[{className:"string",begin:"'",end:"'",contains:[e.BACKSLASH_ESCAPE]},{className:"string",begin:'"',end:'"',contains:[e.BACKSLASH_ESCAPE]},{className:"symbol",begin:"`",end:"`",contains:[e.BACKSLASH_ESCAPE]},e.C_NUMBER_MODE,e.C_BLOCK_COMMENT_MODE]},e.C_BLOCK_COMMENT_MODE]}}return X_=t,X_}var Z_,nv;function iye(){if(nv)return Z_;nv=1;function t(e){const n={match:[/^\s*(?=\S)/,/[^:]+/,/:\s*/,/$/],className:{2:"attribute",3:"punctuation"}},i={match:[/^\s*(?=\S)/,/[^:]*[^: ]/,/[ ]*:/,/[ ]/,/.*$/],className:{2:"attribute",3:"punctuation",5:"string"}},o={match:[/^\s*/,/>/,/[ ]/,/.*$/],className:{2:"punctuation",4:"string"}},s={variants:[{match:[/^\s*/,/-/,/[ ]/,/.*$/]},{match:[/^\s*/,/-$/]}],className:{2:"bullet",4:"string"}};return{name:"Nested Text",aliases:["nt"],contains:[e.inherit(e.HASH_COMMENT_MODE,{begin:/^\s*(?=#)/,excludeBegin:!0}),s,o,n,i]}}return Z_=t,Z_}var J_,rv;function aye(){if(rv)return J_;rv=1;function t(e){const n=e.regex,i={className:"variable",variants:[{begin:/\$\d+/},{begin:/\$\{\w+\}/},{begin:n.concat(/[$@]/,e.UNDERSCORE_IDENT_RE)}]},s={endsWithParent:!0,keywords:{$pattern:/[a-z_]{2,}|\/dev\/poll/,literal:["on","off","yes","no","true","false","none","blocked","debug","info","notice","warn","error","crit","select","break","last","permanent","redirect","kqueue","rtsig","epoll","poll","/dev/poll"]},relevance:0,illegal:"=>",contains:[e.HASH_COMMENT_MODE,{className:"string",contains:[e.BACKSLASH_ESCAPE,i],variants:[{begin:/"/,end:/"/},{begin:/'/,end:/'/}]},{begin:"([a-z]+):/",end:"\\s",endsWithParent:!0,excludeEnd:!0,contains:[i]},{className:"regexp",contains:[e.BACKSLASH_ESCAPE,i],variants:[{begin:"\\s\\^",end:"\\s|\\{|;",returnEnd:!0},{begin:"~\\*?\\s+",end:"\\s|\\{|;",returnEnd:!0},{begin:"\\*(\\.[a-z\\-]+)+"},{begin:"([a-z\\-]+\\.)+\\*"}]},{className:"number",begin:"\\b\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}(:\\d{1,5})?\\b"},{className:"number",begin:"\\b\\d+[kKmMgGdshdwy]?\\b",relevance:0},i]};return{name:"Nginx config",aliases:["nginxconf"],contains:[e.HASH_COMMENT_MODE,{beginKeywords:"upstream location",end:/;|\{/,contains:s.contains,keywords:{section:"upstream location"}},{className:"section",begin:n.concat(e.UNDERSCORE_IDENT_RE+n.lookahead(/\s+\{/)),relevance:0},{begin:n.lookahead(e.UNDERSCORE_IDENT_RE+"\\s"),end:";|\\{",contains:[{className:"attribute",begin:e.UNDERSCORE_IDENT_RE,starts:s}],relevance:0}],illegal:"[^\\s\\}\\{]"}}return J_=t,J_}var j_,iv;function oye(){if(iv)return j_;iv=1;function t(e){return{name:"Nim",keywords:{keyword:["addr","and","as","asm","bind","block","break","case","cast","const","continue","converter","discard","distinct","div","do","elif","else","end","enum","except","export","finally","for","from","func","generic","guarded","if","import","in","include","interface","is","isnot","iterator","let","macro","method","mixin","mod","nil","not","notin","object","of","or","out","proc","ptr","raise","ref","return","shared","shl","shr","static","template","try","tuple","type","using","var","when","while","with","without","xor","yield"],literal:["true","false"],type:["int","int8","int16","int32","int64","uint","uint8","uint16","uint32","uint64","float","float32","float64","bool","char","string","cstring","pointer","expr","stmt","void","auto","any","range","array","openarray","varargs","seq","set","clong","culong","cchar","cschar","cshort","cint","csize","clonglong","cfloat","cdouble","clongdouble","cuchar","cushort","cuint","culonglong","cstringarray","semistatic"],built_in:["stdin","stdout","stderr","result"]},contains:[{className:"meta",begin:/\{\./,end:/\.\}/,relevance:10},{className:"string",begin:/[a-zA-Z]\w*"/,end:/"/,contains:[{begin:/""/}]},{className:"string",begin:/([a-zA-Z]\w*)?"""/,end:/"""/},e.QUOTE_STRING_MODE,{className:"type",begin:/\b[A-Z]\w+\b/,relevance:0},{className:"number",relevance:0,variants:[{begin:/\b(0[xX][0-9a-fA-F][_0-9a-fA-F]*)('?[iIuU](8|16|32|64))?/},{begin:/\b(0o[0-7][_0-7]*)('?[iIuUfF](8|16|32|64))?/},{begin:/\b(0(b|B)[01][_01]*)('?[iIuUfF](8|16|32|64))?/},{begin:/\b(\d[_\d]*)('?[iIuUfF](8|16|32|64))?/}]},e.HASH_COMMENT_MODE]}}return j_=t,j_}var ep,av;function sye(){if(av)return ep;av=1;function t(e){const n={keyword:["rec","with","let","in","inherit","assert","if","else","then"],literal:["true","false","or","and","null"],built_in:["import","abort","baseNameOf","dirOf","isNull","builtins","map","removeAttrs","throw","toString","derivation"]},i={className:"subst",begin:/\$\{/,end:/\}/,keywords:n},o={className:"char.escape",begin:/''\$/},s={begin:/[a-zA-Z0-9-_]+(\s*=)/,returnBegin:!0,relevance:0,contains:[{className:"attr",begin:/\S+/,relevance:.2}]},l={className:"string",contains:[o,i],variants:[{begin:"''",end:"''"},{begin:'"',end:'"'}]},c=[e.NUMBER_MODE,e.HASH_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,l,s];return i.contains=c,{name:"Nix",aliases:["nixos"],keywords:n,contains:c}}return ep=t,ep}var tp,ov;function lye(){if(ov)return tp;ov=1;function t(e){return{name:"Node REPL",contains:[{className:"meta.prompt",starts:{end:/ |$/,starts:{end:"$",subLanguage:"javascript"}},variants:[{begin:/^>(?=[ ]|$)/},{begin:/^\.\.\.(?=[ ]|$)/}]}]}}return tp=t,tp}var np,sv;function cye(){if(sv)return np;sv=1;function t(e){const n=e.regex,i=["ADMINTOOLS","APPDATA","CDBURN_AREA","CMDLINE","COMMONFILES32","COMMONFILES64","COMMONFILES","COOKIES","DESKTOP","DOCUMENTS","EXEDIR","EXEFILE","EXEPATH","FAVORITES","FONTS","HISTORY","HWNDPARENT","INSTDIR","INTERNET_CACHE","LANGUAGE","LOCALAPPDATA","MUSIC","NETHOOD","OUTDIR","PICTURES","PLUGINSDIR","PRINTHOOD","PROFILE","PROGRAMFILES32","PROGRAMFILES64","PROGRAMFILES","QUICKLAUNCH","RECENT","RESOURCES_LOCALIZED","RESOURCES","SENDTO","SMPROGRAMS","SMSTARTUP","STARTMENU","SYSDIR","TEMP","TEMPLATES","VIDEOS","WINDIR"],o=["ARCHIVE","FILE_ATTRIBUTE_ARCHIVE","FILE_ATTRIBUTE_NORMAL","FILE_ATTRIBUTE_OFFLINE","FILE_ATTRIBUTE_READONLY","FILE_ATTRIBUTE_SYSTEM","FILE_ATTRIBUTE_TEMPORARY","HKCR","HKCU","HKDD","HKEY_CLASSES_ROOT","HKEY_CURRENT_CONFIG","HKEY_CURRENT_USER","HKEY_DYN_DATA","HKEY_LOCAL_MACHINE","HKEY_PERFORMANCE_DATA","HKEY_USERS","HKLM","HKPD","HKU","IDABORT","IDCANCEL","IDIGNORE","IDNO","IDOK","IDRETRY","IDYES","MB_ABORTRETRYIGNORE","MB_DEFBUTTON1","MB_DEFBUTTON2","MB_DEFBUTTON3","MB_DEFBUTTON4","MB_ICONEXCLAMATION","MB_ICONINFORMATION","MB_ICONQUESTION","MB_ICONSTOP","MB_OK","MB_OKCANCEL","MB_RETRYCANCEL","MB_RIGHT","MB_RTLREADING","MB_SETFOREGROUND","MB_TOPMOST","MB_USERICON","MB_YESNO","NORMAL","OFFLINE","READONLY","SHCTX","SHELL_CONTEXT","SYSTEM|TEMPORARY"],s=["addincludedir","addplugindir","appendfile","cd","define","delfile","echo","else","endif","error","execute","finalize","getdllversion","gettlbversion","if","ifdef","ifmacrodef","ifmacrondef","ifndef","include","insertmacro","macro","macroend","makensis","packhdr","searchparse","searchreplace","system","tempfile","undef","uninstfinalize","verbose","warning"],l={className:"variable.constant",begin:n.concat(/\$/,n.either(...i))},c={className:"variable",begin:/\$+\{[\!\w.:-]+\}/},d={className:"variable",begin:/\$+\w[\w\.]*/,illegal:/\(\)\{\}/},_={className:"variable",begin:/\$+\([\w^.:!-]+\)/},p={className:"params",begin:n.either(...o)},g={className:"keyword",begin:n.concat(/!/,n.either(...s))},E={className:"char.escape",begin:/\$(\\[nrt]|\$)/},f={className:"title.function",begin:/\w+::\w+/},S={className:"string",variants:[{begin:'"',end:'"'},{begin:"'",end:"'"},{begin:"`",end:"`"}],illegal:/\n/,contains:[E,l,c,d,_]},v=["Abort","AddBrandingImage","AddSize","AllowRootDirInstall","AllowSkipFiles","AutoCloseWindow","BGFont","BGGradient","BrandingText","BringToFront","Call","CallInstDLL","Caption","ChangeUI","CheckBitmap","ClearErrors","CompletedText","ComponentText","CopyFiles","CRCCheck","CreateDirectory","CreateFont","CreateShortCut","Delete","DeleteINISec","DeleteINIStr","DeleteRegKey","DeleteRegValue","DetailPrint","DetailsButtonText","DirText","DirVar","DirVerify","EnableWindow","EnumRegKey","EnumRegValue","Exch","Exec","ExecShell","ExecShellWait","ExecWait","ExpandEnvStrings","File","FileBufSize","FileClose","FileErrorText","FileOpen","FileRead","FileReadByte","FileReadUTF16LE","FileReadWord","FileWriteUTF16LE","FileSeek","FileWrite","FileWriteByte","FileWriteWord","FindClose","FindFirst","FindNext","FindWindow","FlushINI","GetCurInstType","GetCurrentAddress","GetDlgItem","GetDLLVersion","GetDLLVersionLocal","GetErrorLevel","GetFileTime","GetFileTimeLocal","GetFullPathName","GetFunctionAddress","GetInstDirError","GetKnownFolderPath","GetLabelAddress","GetTempFileName","GetWinVer","Goto","HideWindow","Icon","IfAbort","IfErrors","IfFileExists","IfRebootFlag","IfRtlLanguage","IfShellVarContextAll","IfSilent","InitPluginsDir","InstallButtonText","InstallColors","InstallDir","InstallDirRegKey","InstProgressFlags","InstType","InstTypeGetText","InstTypeSetText","Int64Cmp","Int64CmpU","Int64Fmt","IntCmp","IntCmpU","IntFmt","IntOp","IntPtrCmp","IntPtrCmpU","IntPtrOp","IsWindow","LangString","LicenseBkColor","LicenseData","LicenseForceSelection","LicenseLangString","LicenseText","LoadAndSetImage","LoadLanguageFile","LockWindow","LogSet","LogText","ManifestDPIAware","ManifestLongPathAware","ManifestMaxVersionTested","ManifestSupportedOS","MessageBox","MiscButtonText","Name|0","Nop","OutFile","Page","PageCallbacks","PEAddResource","PEDllCharacteristics","PERemoveResource","PESubsysVer","Pop","Push","Quit","ReadEnvStr","ReadINIStr","ReadRegDWORD","ReadRegStr","Reboot","RegDLL","Rename","RequestExecutionLevel","ReserveFile","Return","RMDir","SearchPath","SectionGetFlags","SectionGetInstTypes","SectionGetSize","SectionGetText","SectionIn","SectionSetFlags","SectionSetInstTypes","SectionSetSize","SectionSetText","SendMessage","SetAutoClose","SetBrandingImage","SetCompress","SetCompressor","SetCompressorDictSize","SetCtlColors","SetCurInstType","SetDatablockOptimize","SetDateSave","SetDetailsPrint","SetDetailsView","SetErrorLevel","SetErrors","SetFileAttributes","SetFont","SetOutPath","SetOverwrite","SetRebootFlag","SetRegView","SetShellVarContext","SetSilent","ShowInstDetails","ShowUninstDetails","ShowWindow","SilentInstall","SilentUnInstall","Sleep","SpaceTexts","StrCmp","StrCmpS","StrCpy","StrLen","SubCaption","Unicode","UninstallButtonText","UninstallCaption","UninstallIcon","UninstallSubCaption","UninstallText","UninstPage","UnRegDLL","Var","VIAddVersionKey","VIFileVersion","VIProductVersion","WindowIcon","WriteINIStr","WriteRegBin","WriteRegDWORD","WriteRegExpandStr","WriteRegMultiStr","WriteRegNone","WriteRegStr","WriteUninstaller","XPStyle"],h=["admin","all","auto","both","bottom","bzip2","colored","components","current","custom","directory","false","force","hide","highest","ifdiff","ifnewer","instfiles","lastused","leave","left","license","listonly","lzma","nevershow","none","normal","notset","off","on","open","print","right","show","silent","silentlog","smooth","textonly","top","true","try","un.components","un.custom","un.directory","un.instfiles","un.license","uninstConfirm","user","Win10","Win7","Win8","WinVista","zlib"],T={match:[/Function/,/\s+/,n.concat(/(\.)?/,e.IDENT_RE)],scope:{1:"keyword",3:"title.function"}},y={match:[/Var/,/\s+/,/(?:\/GLOBAL\s+)?/,/[A-Za-z][\w.]*/],scope:{1:"keyword",3:"params",4:"variable"}};return{name:"NSIS",case_insensitive:!0,keywords:{keyword:v,literal:h},contains:[e.HASH_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.COMMENT(";","$",{relevance:0}),y,T,{beginKeywords:"Function PageEx Section SectionGroup FunctionEnd SectionEnd"},S,g,c,d,_,p,f,e.NUMBER_MODE]}}return np=t,np}var rp,lv;function uye(){if(lv)return rp;lv=1;function t(e){const n={className:"built_in",begin:"\\b(AV|CA|CF|CG|CI|CL|CM|CN|CT|MK|MP|MTK|MTL|NS|SCN|SK|UI|WK|XC)\\w+"},i=/[a-zA-Z@][a-zA-Z0-9_]*/,d={"variable.language":["this","super"],$pattern:i,keyword:["while","export","sizeof","typedef","const","struct","for","union","volatile","static","mutable","if","do","return","goto","enum","else","break","extern","asm","case","default","register","explicit","typename","switch","continue","inline","readonly","assign","readwrite","self","@synchronized","id","typeof","nonatomic","IBOutlet","IBAction","strong","weak","copy","in","out","inout","bycopy","byref","oneway","__strong","__weak","__block","__autoreleasing","@private","@protected","@public","@try","@property","@end","@throw","@catch","@finally","@autoreleasepool","@synthesize","@dynamic","@selector","@optional","@required","@encode","@package","@import","@defs","@compatibility_alias","__bridge","__bridge_transfer","__bridge_retained","__bridge_retain","__covariant","__contravariant","__kindof","_Nonnull","_Nullable","_Null_unspecified","__FUNCTION__","__PRETTY_FUNCTION__","__attribute__","getter","setter","retain","unsafe_unretained","nonnull","nullable","null_unspecified","null_resettable","class","instancetype","NS_DESIGNATED_INITIALIZER","NS_UNAVAILABLE","NS_REQUIRES_SUPER","NS_RETURNS_INNER_POINTER","NS_INLINE","NS_AVAILABLE","NS_DEPRECATED","NS_ENUM","NS_OPTIONS","NS_SWIFT_UNAVAILABLE","NS_ASSUME_NONNULL_BEGIN","NS_ASSUME_NONNULL_END","NS_REFINED_FOR_SWIFT","NS_SWIFT_NAME","NS_SWIFT_NOTHROW","NS_DURING","NS_HANDLER","NS_ENDHANDLER","NS_VALUERETURN","NS_VOIDRETURN"],literal:["false","true","FALSE","TRUE","nil","YES","NO","NULL"],built_in:["dispatch_once_t","dispatch_queue_t","dispatch_sync","dispatch_async","dispatch_once"],type:["int","float","char","unsigned","signed","short","long","double","wchar_t","unichar","void","bool","BOOL","id|0","_Bool"]},_={$pattern:i,keyword:["@interface","@class","@protocol","@implementation"]};return{name:"Objective-C",aliases:["mm","objc","obj-c","obj-c++","objective-c++"],keywords:d,illegal:"/,end:/$/,illegal:"\\n"},e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]},{className:"class",begin:"("+_.keyword.join("|")+")\\b",end:/(\{|$)/,excludeEnd:!0,keywords:_,contains:[e.UNDERSCORE_TITLE_MODE]},{begin:"\\."+e.UNDERSCORE_IDENT_RE,relevance:0}]}}return rp=t,rp}var ip,cv;function dye(){if(cv)return ip;cv=1;function t(e){return{name:"OCaml",aliases:["ml"],keywords:{$pattern:"[a-z_]\\w*!?",keyword:"and as assert asr begin class constraint do done downto else end exception external for fun function functor if in include inherit! inherit initializer land lazy let lor lsl lsr lxor match method!|10 method mod module mutable new object of open! open or private rec sig struct then to try type val! val virtual when while with parser value",built_in:"array bool bytes char exn|5 float int int32 int64 list lazy_t|5 nativeint|5 string unit in_channel out_channel ref",literal:"true false"},illegal:/\/\/|>>/,contains:[{className:"literal",begin:"\\[(\\|\\|)?\\]|\\(\\)",relevance:0},e.COMMENT("\\(\\*","\\*\\)",{contains:["self"]}),{className:"symbol",begin:"'[A-Za-z_](?!')[\\w']*"},{className:"type",begin:"`[A-Z][\\w']*"},{className:"type",begin:"\\b[A-Z][\\w']*",relevance:0},{begin:"[a-z_]\\w*'[\\w']*",relevance:0},e.inherit(e.APOS_STRING_MODE,{className:"string",relevance:0}),e.inherit(e.QUOTE_STRING_MODE,{illegal:null}),{className:"number",begin:"\\b(0[xX][a-fA-F0-9_]+[Lln]?|0[oO][0-7_]+[Lln]?|0[bB][01_]+[Lln]?|[0-9][0-9_]*([Lln]|(\\.[0-9_]*)?([eE][-+]?[0-9_]+)?)?)",relevance:0},{begin:/->/}]}}return ip=t,ip}var ap,uv;function _ye(){if(uv)return ap;uv=1;function t(e){const n={className:"keyword",begin:"\\$(f[asn]|t|vp[rtd]|children)"},i={className:"literal",begin:"false|true|PI|undef"},o={className:"number",begin:"\\b\\d+(\\.\\d+)?(e-?\\d+)?",relevance:0},s=e.inherit(e.QUOTE_STRING_MODE,{illegal:null}),l={className:"meta",keywords:{keyword:"include use"},begin:"include|use <",end:">"},c={className:"params",begin:"\\(",end:"\\)",contains:["self",o,s,n,i]},d={begin:"[*!#%]",relevance:0},_={className:"function",beginKeywords:"module function",end:/=|\{/,contains:[c,e.UNDERSCORE_TITLE_MODE]};return{name:"OpenSCAD",aliases:["scad"],keywords:{keyword:"function module include use for intersection_for if else \\%",literal:"false true PI undef",built_in:"circle square polygon text sphere cube cylinder polyhedron translate rotate scale resize mirror multmatrix color offset hull minkowski union difference intersection abs sign sin cos tan acos asin atan atan2 floor round ceil ln log pow sqrt exp rands min max concat lookup str chr search version version_num norm cross parent_module echo import import_dxf dxf_linear_extrude linear_extrude rotate_extrude surface projection render children dxf_cross dxf_dim let assign"},contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,o,l,s,n,d,_]}}return ap=t,ap}var op,dv;function pye(){if(dv)return op;dv=1;function t(e){const n={$pattern:/\.?\w+/,keyword:"abstract add and array as asc aspect assembly async begin break block by case class concat const copy constructor continue create default delegate desc distinct div do downto dynamic each else empty end ensure enum equals event except exit extension external false final finalize finalizer finally flags for forward from function future global group has if implementation implements implies in index inherited inline interface into invariants is iterator join locked locking loop matching method mod module namespace nested new nil not notify nullable of old on operator or order out override parallel params partial pinned private procedure property protected public queryable raise read readonly record reintroduce remove repeat require result reverse sealed select self sequence set shl shr skip static step soft take then to true try tuple type union unit unsafe until uses using var virtual raises volatile where while with write xor yield await mapped deprecated stdcall cdecl pascal register safecall overload library platform reference packed strict published autoreleasepool selector strong weak unretained"},i=e.COMMENT(/\{/,/\}/,{relevance:0}),o=e.COMMENT("\\(\\*","\\*\\)",{relevance:10}),s={className:"string",begin:"'",end:"'",contains:[{begin:"''"}]},l={className:"string",begin:"(#\\d+)+"},c={beginKeywords:"function constructor destructor procedure method",end:"[:;]",keywords:"function constructor|10 destructor|10 procedure|10 method|10",contains:[e.inherit(e.TITLE_MODE,{scope:"title.function"}),{className:"params",begin:"\\(",end:"\\)",keywords:n,contains:[s,l]},i,o]},d={scope:"punctuation",match:/;/,relevance:0};return{name:"Oxygene",case_insensitive:!0,keywords:n,illegal:'("|\\$[G-Zg-z]|\\/\\*||->)',contains:[i,o,e.C_LINE_COMMENT_MODE,s,l,e.NUMBER_MODE,c,d]}}return op=t,op}var sp,_v;function mye(){if(_v)return sp;_v=1;function t(e){const n=e.COMMENT(/\{/,/\}/,{contains:["self"]});return{name:"Parser3",subLanguage:"xml",relevance:0,contains:[e.COMMENT("^#","$"),e.COMMENT(/\^rem\{/,/\}/,{relevance:10,contains:[n]}),{className:"meta",begin:"^@(?:BASE|USE|CLASS|OPTIONS)$",relevance:10},{className:"title",begin:"@[\\w\\-]+\\[[\\w^;\\-]*\\](?:\\[[\\w^;\\-]*\\])?(?:.*)$"},{className:"variable",begin:/\$\{?[\w\-.:]+\}?/},{className:"keyword",begin:/\^[\w\-.:]+/},{className:"number",begin:"\\^#[0-9a-fA-F]+"},e.C_NUMBER_MODE]}}return sp=t,sp}var lp,pv;function gye(){if(pv)return lp;pv=1;function t(e){const n={className:"variable",begin:/\$[\w\d#@][\w\d_]*/,relevance:0},i={className:"variable",begin:/<(?!\/)/,end:/>/};return{name:"Packet Filter config",aliases:["pf.conf"],keywords:{$pattern:/[a-z0-9_<>-]+/,built_in:"block match pass load anchor|5 antispoof|10 set table",keyword:"in out log quick on rdomain inet inet6 proto from port os to route allow-opts divert-packet divert-reply divert-to flags group icmp-type icmp6-type label once probability recieved-on rtable prio queue tos tag tagged user keep fragment for os drop af-to|10 binat-to|10 nat-to|10 rdr-to|10 bitmask least-stats random round-robin source-hash static-port dup-to reply-to route-to parent bandwidth default min max qlimit block-policy debug fingerprints hostid limit loginterface optimization reassemble ruleset-optimization basic none profile skip state-defaults state-policy timeout const counters persist no modulate synproxy state|5 floating if-bound no-sync pflow|10 sloppy source-track global rule max-src-nodes max-src-states max-src-conn max-src-conn-rate overload flush scrub|5 max-mss min-ttl no-df|10 random-id",literal:"all any no-route self urpf-failed egress|5 unknown"},contains:[e.HASH_COMMENT_MODE,e.NUMBER_MODE,e.QUOTE_STRING_MODE,n,i]}}return lp=t,lp}var cp,mv;function Eye(){if(mv)return cp;mv=1;function t(e){const n=e.COMMENT("--","$"),i="[a-zA-Z_][a-zA-Z_0-9$]*",o="\\$([a-zA-Z_]?|[a-zA-Z_][a-zA-Z_0-9]*)\\$",s="<<\\s*"+i+"\\s*>>",l="ABORT ALTER ANALYZE BEGIN CALL CHECKPOINT|10 CLOSE CLUSTER COMMENT COMMIT COPY CREATE DEALLOCATE DECLARE DELETE DISCARD DO DROP END EXECUTE EXPLAIN FETCH GRANT IMPORT INSERT LISTEN LOAD LOCK MOVE NOTIFY PREPARE REASSIGN|10 REFRESH REINDEX RELEASE RESET REVOKE ROLLBACK SAVEPOINT SECURITY SELECT SET SHOW START TRUNCATE UNLISTEN|10 UPDATE VACUUM|10 VALUES AGGREGATE COLLATION CONVERSION|10 DATABASE DEFAULT PRIVILEGES DOMAIN TRIGGER EXTENSION FOREIGN WRAPPER|10 TABLE FUNCTION GROUP LANGUAGE LARGE OBJECT MATERIALIZED VIEW OPERATOR CLASS FAMILY POLICY PUBLICATION|10 ROLE RULE SCHEMA SEQUENCE SERVER STATISTICS SUBSCRIPTION SYSTEM TABLESPACE CONFIGURATION DICTIONARY PARSER TEMPLATE TYPE USER MAPPING PREPARED ACCESS METHOD CAST AS TRANSFORM TRANSACTION OWNED TO INTO SESSION AUTHORIZATION INDEX PROCEDURE ASSERTION ALL ANALYSE AND ANY ARRAY ASC ASYMMETRIC|10 BOTH CASE CHECK COLLATE COLUMN CONCURRENTLY|10 CONSTRAINT CROSS DEFERRABLE RANGE DESC DISTINCT ELSE EXCEPT FOR FREEZE|10 FROM FULL HAVING ILIKE IN INITIALLY INNER INTERSECT IS ISNULL JOIN LATERAL LEADING LIKE LIMIT NATURAL NOT NOTNULL NULL OFFSET ON ONLY OR ORDER OUTER OVERLAPS PLACING PRIMARY REFERENCES RETURNING SIMILAR SOME SYMMETRIC TABLESAMPLE THEN TRAILING UNION UNIQUE USING VARIADIC|10 VERBOSE WHEN WHERE WINDOW WITH BY RETURNS INOUT OUT SETOF|10 IF STRICT CURRENT CONTINUE OWNER LOCATION OVER PARTITION WITHIN BETWEEN ESCAPE EXTERNAL INVOKER DEFINER WORK RENAME VERSION CONNECTION CONNECT TABLES TEMP TEMPORARY FUNCTIONS SEQUENCES TYPES SCHEMAS OPTION CASCADE RESTRICT ADD ADMIN EXISTS VALID VALIDATE ENABLE DISABLE REPLICA|10 ALWAYS PASSING COLUMNS PATH REF VALUE OVERRIDING IMMUTABLE STABLE VOLATILE BEFORE AFTER EACH ROW PROCEDURAL ROUTINE NO HANDLER VALIDATOR OPTIONS STORAGE OIDS|10 WITHOUT INHERIT DEPENDS CALLED INPUT LEAKPROOF|10 COST ROWS NOWAIT SEARCH UNTIL ENCRYPTED|10 PASSWORD CONFLICT|10 INSTEAD INHERITS CHARACTERISTICS WRITE CURSOR ALSO STATEMENT SHARE EXCLUSIVE INLINE ISOLATION REPEATABLE READ COMMITTED SERIALIZABLE UNCOMMITTED LOCAL GLOBAL SQL PROCEDURES RECURSIVE SNAPSHOT ROLLUP CUBE TRUSTED|10 INCLUDE FOLLOWING PRECEDING UNBOUNDED RANGE GROUPS UNENCRYPTED|10 SYSID FORMAT DELIMITER HEADER QUOTE ENCODING FILTER OFF FORCE_QUOTE FORCE_NOT_NULL FORCE_NULL COSTS BUFFERS TIMING SUMMARY DISABLE_PAGE_SKIPPING RESTART CYCLE GENERATED IDENTITY DEFERRED IMMEDIATE LEVEL LOGGED UNLOGGED OF NOTHING NONE EXCLUDE ATTRIBUTE USAGE ROUTINES TRUE FALSE NAN INFINITY ",c="SUPERUSER NOSUPERUSER CREATEDB NOCREATEDB CREATEROLE NOCREATEROLE INHERIT NOINHERIT LOGIN NOLOGIN REPLICATION NOREPLICATION BYPASSRLS NOBYPASSRLS ",d="ALIAS BEGIN CONSTANT DECLARE END EXCEPTION RETURN PERFORM|10 RAISE GET DIAGNOSTICS STACKED|10 FOREACH LOOP ELSIF EXIT WHILE REVERSE SLICE DEBUG LOG INFO NOTICE WARNING ASSERT OPEN ",_="BIGINT INT8 BIGSERIAL SERIAL8 BIT VARYING VARBIT BOOLEAN BOOL BOX BYTEA CHARACTER CHAR VARCHAR CIDR CIRCLE DATE DOUBLE PRECISION FLOAT8 FLOAT INET INTEGER INT INT4 INTERVAL JSON JSONB LINE LSEG|10 MACADDR MACADDR8 MONEY NUMERIC DEC DECIMAL PATH POINT POLYGON REAL FLOAT4 SMALLINT INT2 SMALLSERIAL|10 SERIAL2|10 SERIAL|10 SERIAL4|10 TEXT TIME ZONE TIMETZ|10 TIMESTAMP TIMESTAMPTZ|10 TSQUERY|10 TSVECTOR|10 TXID_SNAPSHOT|10 UUID XML NATIONAL NCHAR INT4RANGE|10 INT8RANGE|10 NUMRANGE|10 TSRANGE|10 TSTZRANGE|10 DATERANGE|10 ANYELEMENT ANYARRAY ANYNONARRAY ANYENUM ANYRANGE CSTRING INTERNAL RECORD PG_DDL_COMMAND VOID UNKNOWN OPAQUE REFCURSOR NAME OID REGPROC|10 REGPROCEDURE|10 REGOPER|10 REGOPERATOR|10 REGCLASS|10 REGTYPE|10 REGROLE|10 REGNAMESPACE|10 REGCONFIG|10 REGDICTIONARY|10 ",p=_.trim().split(" ").map(function(h){return h.split("|")[0]}).join("|"),g="CURRENT_TIME CURRENT_TIMESTAMP CURRENT_USER CURRENT_CATALOG|10 CURRENT_DATE LOCALTIME LOCALTIMESTAMP CURRENT_ROLE|10 CURRENT_SCHEMA|10 SESSION_USER PUBLIC ",E="FOUND NEW OLD TG_NAME|10 TG_WHEN|10 TG_LEVEL|10 TG_OP|10 TG_RELID|10 TG_RELNAME|10 TG_TABLE_NAME|10 TG_TABLE_SCHEMA|10 TG_NARGS|10 TG_ARGV|10 TG_EVENT|10 TG_TAG|10 ROW_COUNT RESULT_OID|10 PG_CONTEXT|10 RETURNED_SQLSTATE COLUMN_NAME CONSTRAINT_NAME PG_DATATYPE_NAME|10 MESSAGE_TEXT TABLE_NAME SCHEMA_NAME PG_EXCEPTION_DETAIL|10 PG_EXCEPTION_HINT|10 PG_EXCEPTION_CONTEXT|10 ",f="SQLSTATE SQLERRM|10 SUCCESSFUL_COMPLETION WARNING DYNAMIC_RESULT_SETS_RETURNED IMPLICIT_ZERO_BIT_PADDING NULL_VALUE_ELIMINATED_IN_SET_FUNCTION PRIVILEGE_NOT_GRANTED PRIVILEGE_NOT_REVOKED STRING_DATA_RIGHT_TRUNCATION DEPRECATED_FEATURE NO_DATA NO_ADDITIONAL_DYNAMIC_RESULT_SETS_RETURNED SQL_STATEMENT_NOT_YET_COMPLETE CONNECTION_EXCEPTION CONNECTION_DOES_NOT_EXIST CONNECTION_FAILURE SQLCLIENT_UNABLE_TO_ESTABLISH_SQLCONNECTION SQLSERVER_REJECTED_ESTABLISHMENT_OF_SQLCONNECTION TRANSACTION_RESOLUTION_UNKNOWN PROTOCOL_VIOLATION TRIGGERED_ACTION_EXCEPTION FEATURE_NOT_SUPPORTED INVALID_TRANSACTION_INITIATION LOCATOR_EXCEPTION INVALID_LOCATOR_SPECIFICATION INVALID_GRANTOR INVALID_GRANT_OPERATION INVALID_ROLE_SPECIFICATION DIAGNOSTICS_EXCEPTION STACKED_DIAGNOSTICS_ACCESSED_WITHOUT_ACTIVE_HANDLER CASE_NOT_FOUND CARDINALITY_VIOLATION DATA_EXCEPTION ARRAY_SUBSCRIPT_ERROR CHARACTER_NOT_IN_REPERTOIRE DATETIME_FIELD_OVERFLOW DIVISION_BY_ZERO ERROR_IN_ASSIGNMENT ESCAPE_CHARACTER_CONFLICT INDICATOR_OVERFLOW INTERVAL_FIELD_OVERFLOW INVALID_ARGUMENT_FOR_LOGARITHM INVALID_ARGUMENT_FOR_NTILE_FUNCTION INVALID_ARGUMENT_FOR_NTH_VALUE_FUNCTION INVALID_ARGUMENT_FOR_POWER_FUNCTION INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION INVALID_CHARACTER_VALUE_FOR_CAST INVALID_DATETIME_FORMAT INVALID_ESCAPE_CHARACTER INVALID_ESCAPE_OCTET INVALID_ESCAPE_SEQUENCE NONSTANDARD_USE_OF_ESCAPE_CHARACTER INVALID_INDICATOR_PARAMETER_VALUE INVALID_PARAMETER_VALUE INVALID_REGULAR_EXPRESSION INVALID_ROW_COUNT_IN_LIMIT_CLAUSE INVALID_ROW_COUNT_IN_RESULT_OFFSET_CLAUSE INVALID_TABLESAMPLE_ARGUMENT INVALID_TABLESAMPLE_REPEAT INVALID_TIME_ZONE_DISPLACEMENT_VALUE INVALID_USE_OF_ESCAPE_CHARACTER MOST_SPECIFIC_TYPE_MISMATCH NULL_VALUE_NOT_ALLOWED NULL_VALUE_NO_INDICATOR_PARAMETER NUMERIC_VALUE_OUT_OF_RANGE SEQUENCE_GENERATOR_LIMIT_EXCEEDED STRING_DATA_LENGTH_MISMATCH STRING_DATA_RIGHT_TRUNCATION SUBSTRING_ERROR TRIM_ERROR UNTERMINATED_C_STRING ZERO_LENGTH_CHARACTER_STRING FLOATING_POINT_EXCEPTION INVALID_TEXT_REPRESENTATION INVALID_BINARY_REPRESENTATION BAD_COPY_FILE_FORMAT UNTRANSLATABLE_CHARACTER NOT_AN_XML_DOCUMENT INVALID_XML_DOCUMENT INVALID_XML_CONTENT INVALID_XML_COMMENT INVALID_XML_PROCESSING_INSTRUCTION INTEGRITY_CONSTRAINT_VIOLATION RESTRICT_VIOLATION NOT_NULL_VIOLATION FOREIGN_KEY_VIOLATION UNIQUE_VIOLATION CHECK_VIOLATION EXCLUSION_VIOLATION INVALID_CURSOR_STATE INVALID_TRANSACTION_STATE ACTIVE_SQL_TRANSACTION BRANCH_TRANSACTION_ALREADY_ACTIVE HELD_CURSOR_REQUIRES_SAME_ISOLATION_LEVEL INAPPROPRIATE_ACCESS_MODE_FOR_BRANCH_TRANSACTION INAPPROPRIATE_ISOLATION_LEVEL_FOR_BRANCH_TRANSACTION NO_ACTIVE_SQL_TRANSACTION_FOR_BRANCH_TRANSACTION READ_ONLY_SQL_TRANSACTION SCHEMA_AND_DATA_STATEMENT_MIXING_NOT_SUPPORTED NO_ACTIVE_SQL_TRANSACTION IN_FAILED_SQL_TRANSACTION IDLE_IN_TRANSACTION_SESSION_TIMEOUT INVALID_SQL_STATEMENT_NAME TRIGGERED_DATA_CHANGE_VIOLATION INVALID_AUTHORIZATION_SPECIFICATION INVALID_PASSWORD DEPENDENT_PRIVILEGE_DESCRIPTORS_STILL_EXIST DEPENDENT_OBJECTS_STILL_EXIST INVALID_TRANSACTION_TERMINATION SQL_ROUTINE_EXCEPTION FUNCTION_EXECUTED_NO_RETURN_STATEMENT MODIFYING_SQL_DATA_NOT_PERMITTED PROHIBITED_SQL_STATEMENT_ATTEMPTED READING_SQL_DATA_NOT_PERMITTED INVALID_CURSOR_NAME EXTERNAL_ROUTINE_EXCEPTION CONTAINING_SQL_NOT_PERMITTED MODIFYING_SQL_DATA_NOT_PERMITTED PROHIBITED_SQL_STATEMENT_ATTEMPTED READING_SQL_DATA_NOT_PERMITTED EXTERNAL_ROUTINE_INVOCATION_EXCEPTION INVALID_SQLSTATE_RETURNED NULL_VALUE_NOT_ALLOWED TRIGGER_PROTOCOL_VIOLATED SRF_PROTOCOL_VIOLATED EVENT_TRIGGER_PROTOCOL_VIOLATED SAVEPOINT_EXCEPTION INVALID_SAVEPOINT_SPECIFICATION INVALID_CATALOG_NAME INVALID_SCHEMA_NAME TRANSACTION_ROLLBACK TRANSACTION_INTEGRITY_CONSTRAINT_VIOLATION SERIALIZATION_FAILURE STATEMENT_COMPLETION_UNKNOWN DEADLOCK_DETECTED SYNTAX_ERROR_OR_ACCESS_RULE_VIOLATION SYNTAX_ERROR INSUFFICIENT_PRIVILEGE CANNOT_COERCE GROUPING_ERROR WINDOWING_ERROR INVALID_RECURSION INVALID_FOREIGN_KEY INVALID_NAME NAME_TOO_LONG RESERVED_NAME DATATYPE_MISMATCH INDETERMINATE_DATATYPE COLLATION_MISMATCH INDETERMINATE_COLLATION WRONG_OBJECT_TYPE GENERATED_ALWAYS UNDEFINED_COLUMN UNDEFINED_FUNCTION UNDEFINED_TABLE UNDEFINED_PARAMETER UNDEFINED_OBJECT DUPLICATE_COLUMN DUPLICATE_CURSOR DUPLICATE_DATABASE DUPLICATE_FUNCTION DUPLICATE_PREPARED_STATEMENT DUPLICATE_SCHEMA DUPLICATE_TABLE DUPLICATE_ALIAS DUPLICATE_OBJECT AMBIGUOUS_COLUMN AMBIGUOUS_FUNCTION AMBIGUOUS_PARAMETER AMBIGUOUS_ALIAS INVALID_COLUMN_REFERENCE INVALID_COLUMN_DEFINITION INVALID_CURSOR_DEFINITION INVALID_DATABASE_DEFINITION INVALID_FUNCTION_DEFINITION INVALID_PREPARED_STATEMENT_DEFINITION INVALID_SCHEMA_DEFINITION INVALID_TABLE_DEFINITION INVALID_OBJECT_DEFINITION WITH_CHECK_OPTION_VIOLATION INSUFFICIENT_RESOURCES DISK_FULL OUT_OF_MEMORY TOO_MANY_CONNECTIONS CONFIGURATION_LIMIT_EXCEEDED PROGRAM_LIMIT_EXCEEDED STATEMENT_TOO_COMPLEX TOO_MANY_COLUMNS TOO_MANY_ARGUMENTS OBJECT_NOT_IN_PREREQUISITE_STATE OBJECT_IN_USE CANT_CHANGE_RUNTIME_PARAM LOCK_NOT_AVAILABLE OPERATOR_INTERVENTION QUERY_CANCELED ADMIN_SHUTDOWN CRASH_SHUTDOWN CANNOT_CONNECT_NOW DATABASE_DROPPED SYSTEM_ERROR IO_ERROR UNDEFINED_FILE DUPLICATE_FILE SNAPSHOT_TOO_OLD CONFIG_FILE_ERROR LOCK_FILE_EXISTS FDW_ERROR FDW_COLUMN_NAME_NOT_FOUND FDW_DYNAMIC_PARAMETER_VALUE_NEEDED FDW_FUNCTION_SEQUENCE_ERROR FDW_INCONSISTENT_DESCRIPTOR_INFORMATION FDW_INVALID_ATTRIBUTE_VALUE FDW_INVALID_COLUMN_NAME FDW_INVALID_COLUMN_NUMBER FDW_INVALID_DATA_TYPE FDW_INVALID_DATA_TYPE_DESCRIPTORS FDW_INVALID_DESCRIPTOR_FIELD_IDENTIFIER FDW_INVALID_HANDLE FDW_INVALID_OPTION_INDEX FDW_INVALID_OPTION_NAME FDW_INVALID_STRING_LENGTH_OR_BUFFER_LENGTH FDW_INVALID_STRING_FORMAT FDW_INVALID_USE_OF_NULL_POINTER FDW_TOO_MANY_HANDLES FDW_OUT_OF_MEMORY FDW_NO_SCHEMAS FDW_OPTION_NAME_NOT_FOUND FDW_REPLY_HANDLE FDW_SCHEMA_NOT_FOUND FDW_TABLE_NOT_FOUND FDW_UNABLE_TO_CREATE_EXECUTION FDW_UNABLE_TO_CREATE_REPLY FDW_UNABLE_TO_ESTABLISH_CONNECTION PLPGSQL_ERROR RAISE_EXCEPTION NO_DATA_FOUND TOO_MANY_ROWS ASSERT_FAILURE INTERNAL_ERROR DATA_CORRUPTED INDEX_CORRUPTED ",v="ARRAY_AGG AVG BIT_AND BIT_OR BOOL_AND BOOL_OR COUNT EVERY JSON_AGG JSONB_AGG JSON_OBJECT_AGG JSONB_OBJECT_AGG MAX MIN MODE STRING_AGG SUM XMLAGG CORR COVAR_POP COVAR_SAMP REGR_AVGX REGR_AVGY REGR_COUNT REGR_INTERCEPT REGR_R2 REGR_SLOPE REGR_SXX REGR_SXY REGR_SYY STDDEV STDDEV_POP STDDEV_SAMP VARIANCE VAR_POP VAR_SAMP PERCENTILE_CONT PERCENTILE_DISC ROW_NUMBER RANK DENSE_RANK PERCENT_RANK CUME_DIST NTILE LAG LEAD FIRST_VALUE LAST_VALUE NTH_VALUE NUM_NONNULLS NUM_NULLS ABS CBRT CEIL CEILING DEGREES DIV EXP FLOOR LN LOG MOD PI POWER RADIANS ROUND SCALE SIGN SQRT TRUNC WIDTH_BUCKET RANDOM SETSEED ACOS ACOSD ASIN ASIND ATAN ATAND ATAN2 ATAN2D COS COSD COT COTD SIN SIND TAN TAND BIT_LENGTH CHAR_LENGTH CHARACTER_LENGTH LOWER OCTET_LENGTH OVERLAY POSITION SUBSTRING TREAT TRIM UPPER ASCII BTRIM CHR CONCAT CONCAT_WS CONVERT CONVERT_FROM CONVERT_TO DECODE ENCODE INITCAP LEFT LENGTH LPAD LTRIM MD5 PARSE_IDENT PG_CLIENT_ENCODING QUOTE_IDENT|10 QUOTE_LITERAL|10 QUOTE_NULLABLE|10 REGEXP_MATCH REGEXP_MATCHES REGEXP_REPLACE REGEXP_SPLIT_TO_ARRAY REGEXP_SPLIT_TO_TABLE REPEAT REPLACE REVERSE RIGHT RPAD RTRIM SPLIT_PART STRPOS SUBSTR TO_ASCII TO_HEX TRANSLATE OCTET_LENGTH GET_BIT GET_BYTE SET_BIT SET_BYTE TO_CHAR TO_DATE TO_NUMBER TO_TIMESTAMP AGE CLOCK_TIMESTAMP|10 DATE_PART DATE_TRUNC ISFINITE JUSTIFY_DAYS JUSTIFY_HOURS JUSTIFY_INTERVAL MAKE_DATE MAKE_INTERVAL|10 MAKE_TIME MAKE_TIMESTAMP|10 MAKE_TIMESTAMPTZ|10 NOW STATEMENT_TIMESTAMP|10 TIMEOFDAY TRANSACTION_TIMESTAMP|10 ENUM_FIRST ENUM_LAST ENUM_RANGE AREA CENTER DIAMETER HEIGHT ISCLOSED ISOPEN NPOINTS PCLOSE POPEN RADIUS WIDTH BOX BOUND_BOX CIRCLE LINE LSEG PATH POLYGON ABBREV BROADCAST HOST HOSTMASK MASKLEN NETMASK NETWORK SET_MASKLEN TEXT INET_SAME_FAMILY INET_MERGE MACADDR8_SET7BIT ARRAY_TO_TSVECTOR GET_CURRENT_TS_CONFIG NUMNODE PLAINTO_TSQUERY PHRASETO_TSQUERY WEBSEARCH_TO_TSQUERY QUERYTREE SETWEIGHT STRIP TO_TSQUERY TO_TSVECTOR JSON_TO_TSVECTOR JSONB_TO_TSVECTOR TS_DELETE TS_FILTER TS_HEADLINE TS_RANK TS_RANK_CD TS_REWRITE TSQUERY_PHRASE TSVECTOR_TO_ARRAY TSVECTOR_UPDATE_TRIGGER TSVECTOR_UPDATE_TRIGGER_COLUMN XMLCOMMENT XMLCONCAT XMLELEMENT XMLFOREST XMLPI XMLROOT XMLEXISTS XML_IS_WELL_FORMED XML_IS_WELL_FORMED_DOCUMENT XML_IS_WELL_FORMED_CONTENT XPATH XPATH_EXISTS XMLTABLE XMLNAMESPACES TABLE_TO_XML TABLE_TO_XMLSCHEMA TABLE_TO_XML_AND_XMLSCHEMA QUERY_TO_XML QUERY_TO_XMLSCHEMA QUERY_TO_XML_AND_XMLSCHEMA CURSOR_TO_XML CURSOR_TO_XMLSCHEMA SCHEMA_TO_XML SCHEMA_TO_XMLSCHEMA SCHEMA_TO_XML_AND_XMLSCHEMA DATABASE_TO_XML DATABASE_TO_XMLSCHEMA DATABASE_TO_XML_AND_XMLSCHEMA XMLATTRIBUTES TO_JSON TO_JSONB ARRAY_TO_JSON ROW_TO_JSON JSON_BUILD_ARRAY JSONB_BUILD_ARRAY JSON_BUILD_OBJECT JSONB_BUILD_OBJECT JSON_OBJECT JSONB_OBJECT JSON_ARRAY_LENGTH JSONB_ARRAY_LENGTH JSON_EACH JSONB_EACH JSON_EACH_TEXT JSONB_EACH_TEXT JSON_EXTRACT_PATH JSONB_EXTRACT_PATH JSON_OBJECT_KEYS JSONB_OBJECT_KEYS JSON_POPULATE_RECORD JSONB_POPULATE_RECORD JSON_POPULATE_RECORDSET JSONB_POPULATE_RECORDSET JSON_ARRAY_ELEMENTS JSONB_ARRAY_ELEMENTS JSON_ARRAY_ELEMENTS_TEXT JSONB_ARRAY_ELEMENTS_TEXT JSON_TYPEOF JSONB_TYPEOF JSON_TO_RECORD JSONB_TO_RECORD JSON_TO_RECORDSET JSONB_TO_RECORDSET JSON_STRIP_NULLS JSONB_STRIP_NULLS JSONB_SET JSONB_INSERT JSONB_PRETTY CURRVAL LASTVAL NEXTVAL SETVAL COALESCE NULLIF GREATEST LEAST ARRAY_APPEND ARRAY_CAT ARRAY_NDIMS ARRAY_DIMS ARRAY_FILL ARRAY_LENGTH ARRAY_LOWER ARRAY_POSITION ARRAY_POSITIONS ARRAY_PREPEND ARRAY_REMOVE ARRAY_REPLACE ARRAY_TO_STRING ARRAY_UPPER CARDINALITY STRING_TO_ARRAY UNNEST ISEMPTY LOWER_INC UPPER_INC LOWER_INF UPPER_INF RANGE_MERGE GENERATE_SERIES GENERATE_SUBSCRIPTS CURRENT_DATABASE CURRENT_QUERY CURRENT_SCHEMA|10 CURRENT_SCHEMAS|10 INET_CLIENT_ADDR INET_CLIENT_PORT INET_SERVER_ADDR INET_SERVER_PORT ROW_SECURITY_ACTIVE FORMAT_TYPE TO_REGCLASS TO_REGPROC TO_REGPROCEDURE TO_REGOPER TO_REGOPERATOR TO_REGTYPE TO_REGNAMESPACE TO_REGROLE COL_DESCRIPTION OBJ_DESCRIPTION SHOBJ_DESCRIPTION TXID_CURRENT TXID_CURRENT_IF_ASSIGNED TXID_CURRENT_SNAPSHOT TXID_SNAPSHOT_XIP TXID_SNAPSHOT_XMAX TXID_SNAPSHOT_XMIN TXID_VISIBLE_IN_SNAPSHOT TXID_STATUS CURRENT_SETTING SET_CONFIG BRIN_SUMMARIZE_NEW_VALUES BRIN_SUMMARIZE_RANGE BRIN_DESUMMARIZE_RANGE GIN_CLEAN_PENDING_LIST SUPPRESS_REDUNDANT_UPDATES_TRIGGER LO_FROM_BYTEA LO_PUT LO_GET LO_CREAT LO_CREATE LO_UNLINK LO_IMPORT LO_EXPORT LOREAD LOWRITE GROUPING CAST ".trim().split(" ").map(function(h){return h.split("|")[0]}).join("|");return{name:"PostgreSQL",aliases:["postgres","postgresql"],supersetOf:"sql",case_insensitive:!0,keywords:{keyword:l+d+c,built_in:g+E+f},illegal:/:==|\W\s*\(\*|(^|\s)\$[a-z]|\{\{|[a-z]:\s*$|\.\.\.|TO:|DO:/,contains:[{className:"keyword",variants:[{begin:/\bTEXT\s*SEARCH\b/},{begin:/\b(PRIMARY|FOREIGN|FOR(\s+NO)?)\s+KEY\b/},{begin:/\bPARALLEL\s+(UNSAFE|RESTRICTED|SAFE)\b/},{begin:/\bSTORAGE\s+(PLAIN|EXTERNAL|EXTENDED|MAIN)\b/},{begin:/\bMATCH\s+(FULL|PARTIAL|SIMPLE)\b/},{begin:/\bNULLS\s+(FIRST|LAST)\b/},{begin:/\bEVENT\s+TRIGGER\b/},{begin:/\b(MAPPING|OR)\s+REPLACE\b/},{begin:/\b(FROM|TO)\s+(PROGRAM|STDIN|STDOUT)\b/},{begin:/\b(SHARE|EXCLUSIVE)\s+MODE\b/},{begin:/\b(LEFT|RIGHT)\s+(OUTER\s+)?JOIN\b/},{begin:/\b(FETCH|MOVE)\s+(NEXT|PRIOR|FIRST|LAST|ABSOLUTE|RELATIVE|FORWARD|BACKWARD)\b/},{begin:/\bPRESERVE\s+ROWS\b/},{begin:/\bDISCARD\s+PLANS\b/},{begin:/\bREFERENCING\s+(OLD|NEW)\b/},{begin:/\bSKIP\s+LOCKED\b/},{begin:/\bGROUPING\s+SETS\b/},{begin:/\b(BINARY|INSENSITIVE|SCROLL|NO\s+SCROLL)\s+(CURSOR|FOR)\b/},{begin:/\b(WITH|WITHOUT)\s+HOLD\b/},{begin:/\bWITH\s+(CASCADED|LOCAL)\s+CHECK\s+OPTION\b/},{begin:/\bEXCLUDE\s+(TIES|NO\s+OTHERS)\b/},{begin:/\bFORMAT\s+(TEXT|XML|JSON|YAML)\b/},{begin:/\bSET\s+((SESSION|LOCAL)\s+)?NAMES\b/},{begin:/\bIS\s+(NOT\s+)?UNKNOWN\b/},{begin:/\bSECURITY\s+LABEL\b/},{begin:/\bSTANDALONE\s+(YES|NO|NO\s+VALUE)\b/},{begin:/\bWITH\s+(NO\s+)?DATA\b/},{begin:/\b(FOREIGN|SET)\s+DATA\b/},{begin:/\bSET\s+(CATALOG|CONSTRAINTS)\b/},{begin:/\b(WITH|FOR)\s+ORDINALITY\b/},{begin:/\bIS\s+(NOT\s+)?DOCUMENT\b/},{begin:/\bXML\s+OPTION\s+(DOCUMENT|CONTENT)\b/},{begin:/\b(STRIP|PRESERVE)\s+WHITESPACE\b/},{begin:/\bNO\s+(ACTION|MAXVALUE|MINVALUE)\b/},{begin:/\bPARTITION\s+BY\s+(RANGE|LIST|HASH)\b/},{begin:/\bAT\s+TIME\s+ZONE\b/},{begin:/\bGRANTED\s+BY\b/},{begin:/\bRETURN\s+(QUERY|NEXT)\b/},{begin:/\b(ATTACH|DETACH)\s+PARTITION\b/},{begin:/\bFORCE\s+ROW\s+LEVEL\s+SECURITY\b/},{begin:/\b(INCLUDING|EXCLUDING)\s+(COMMENTS|CONSTRAINTS|DEFAULTS|IDENTITY|INDEXES|STATISTICS|STORAGE|ALL)\b/},{begin:/\bAS\s+(ASSIGNMENT|IMPLICIT|PERMISSIVE|RESTRICTIVE|ENUM|RANGE)\b/}]},{begin:/\b(FORMAT|FAMILY|VERSION)\s*\(/},{begin:/\bINCLUDE\s*\(/,keywords:"INCLUDE"},{begin:/\bRANGE(?!\s*(BETWEEN|UNBOUNDED|CURRENT|[-0-9]+))/},{begin:/\b(VERSION|OWNER|TEMPLATE|TABLESPACE|CONNECTION\s+LIMIT|PROCEDURE|RESTRICT|JOIN|PARSER|COPY|START|END|COLLATION|INPUT|ANALYZE|STORAGE|LIKE|DEFAULT|DELIMITER|ENCODING|COLUMN|CONSTRAINT|TABLE|SCHEMA)\s*=/},{begin:/\b(PG_\w+?|HAS_[A-Z_]+_PRIVILEGE)\b/,relevance:10},{begin:/\bEXTRACT\s*\(/,end:/\bFROM\b/,returnEnd:!0,keywords:{type:"CENTURY DAY DECADE DOW DOY EPOCH HOUR ISODOW ISOYEAR MICROSECONDS MILLENNIUM MILLISECONDS MINUTE MONTH QUARTER SECOND TIMEZONE TIMEZONE_HOUR TIMEZONE_MINUTE WEEK YEAR"}},{begin:/\b(XMLELEMENT|XMLPI)\s*\(\s*NAME/,keywords:{keyword:"NAME"}},{begin:/\b(XMLPARSE|XMLSERIALIZE)\s*\(\s*(DOCUMENT|CONTENT)/,keywords:{keyword:"DOCUMENT CONTENT"}},{beginKeywords:"CACHE INCREMENT MAXVALUE MINVALUE",end:e.C_NUMBER_RE,returnEnd:!0,keywords:"BY CACHE INCREMENT MAXVALUE MINVALUE"},{className:"type",begin:/\b(WITH|WITHOUT)\s+TIME\s+ZONE\b/},{className:"type",begin:/\bINTERVAL\s+(YEAR|MONTH|DAY|HOUR|MINUTE|SECOND)(\s+TO\s+(MONTH|HOUR|MINUTE|SECOND))?\b/},{begin:/\bRETURNS\s+(LANGUAGE_HANDLER|TRIGGER|EVENT_TRIGGER|FDW_HANDLER|INDEX_AM_HANDLER|TSM_HANDLER)\b/,keywords:{keyword:"RETURNS",type:"LANGUAGE_HANDLER TRIGGER EVENT_TRIGGER FDW_HANDLER INDEX_AM_HANDLER TSM_HANDLER"}},{begin:"\\b("+v+")\\s*\\("},{begin:"\\.("+p+")\\b"},{begin:"\\b("+p+")\\s+PATH\\b",keywords:{keyword:"PATH",type:_.replace("PATH ","")}},{className:"type",begin:"\\b("+p+")\\b"},{className:"string",begin:"'",end:"'",contains:[{begin:"''"}]},{className:"string",begin:"(e|E|u&|U&)'",end:"'",contains:[{begin:"\\\\."}],relevance:10},e.END_SAME_AS_BEGIN({begin:o,end:o,contains:[{subLanguage:["pgsql","perl","python","tcl","r","lua","java","php","ruby","bash","scheme","xml","json"],endsWithParent:!0}]}),{begin:'"',end:'"',contains:[{begin:'""'}]},e.C_NUMBER_MODE,e.C_BLOCK_COMMENT_MODE,n,{className:"meta",variants:[{begin:"%(ROW)?TYPE",relevance:10},{begin:"\\$\\d+"},{begin:"^#\\w",end:"$"}]},{className:"symbol",begin:s,relevance:10}]}}return cp=t,cp}var up,gv;function fye(){if(gv)return up;gv=1;function t(e){const n=e.regex,i=/(?![A-Za-z0-9])(?![$])/,o=n.concat(/[a-zA-Z_\x7f-\xff][a-zA-Z0-9_\x7f-\xff]*/,i),s=n.concat(/(\\?[A-Z][a-z0-9_\x7f-\xff]+|\\?[A-Z]+(?=[A-Z][a-z0-9_\x7f-\xff])){1,}/,i),l={scope:"variable",match:"\\$+"+o},c={scope:"meta",variants:[{begin:/<\?php/,relevance:10},{begin:/<\?=/},{begin:/<\?/,relevance:.1},{begin:/\?>/}]},d={scope:"subst",variants:[{begin:/\$\w+/},{begin:/\{\$/,end:/\}/}]},_=e.inherit(e.APOS_STRING_MODE,{illegal:null}),p=e.inherit(e.QUOTE_STRING_MODE,{illegal:null,contains:e.QUOTE_STRING_MODE.contains.concat(d)}),g={begin:/<<<[ \t]*(?:(\w+)|"(\w+)")\n/,end:/[ \t]*(\w+)\b/,contains:e.QUOTE_STRING_MODE.contains.concat(d),"on:begin":(L,J)=>{J.data._beginMatch=L[1]||L[2]},"on:end":(L,J)=>{J.data._beginMatch!==L[1]&&J.ignoreMatch()}},E=e.END_SAME_AS_BEGIN({begin:/<<<[ \t]*'(\w+)'\n/,end:/[ \t]*(\w+)\b/}),f=`[ -]`,S={scope:"string",variants:[p,_,g,E]},v={scope:"number",variants:[{begin:"\\b0[bB][01]+(?:_[01]+)*\\b"},{begin:"\\b0[oO][0-7]+(?:_[0-7]+)*\\b"},{begin:"\\b0[xX][\\da-fA-F]+(?:_[\\da-fA-F]+)*\\b"},{begin:"(?:\\b\\d+(?:_\\d+)*(\\.(?:\\d+(?:_\\d+)*))?|\\B\\.\\d+)(?:[eE][+-]?\\d+)?"}],relevance:0},h=["false","null","true"],T=["__CLASS__","__DIR__","__FILE__","__FUNCTION__","__COMPILER_HALT_OFFSET__","__LINE__","__METHOD__","__NAMESPACE__","__TRAIT__","die","echo","exit","include","include_once","print","require","require_once","array","abstract","and","as","binary","bool","boolean","break","callable","case","catch","class","clone","const","continue","declare","default","do","double","else","elseif","empty","enddeclare","endfor","endforeach","endif","endswitch","endwhile","enum","eval","extends","final","finally","float","for","foreach","from","global","goto","if","implements","instanceof","insteadof","int","integer","interface","isset","iterable","list","match|0","mixed","new","never","object","or","private","protected","public","readonly","real","return","string","switch","throw","trait","try","unset","use","var","void","while","xor","yield"],N=["Error|0","AppendIterator","ArgumentCountError","ArithmeticError","ArrayIterator","ArrayObject","AssertionError","BadFunctionCallException","BadMethodCallException","CachingIterator","CallbackFilterIterator","CompileError","Countable","DirectoryIterator","DivisionByZeroError","DomainException","EmptyIterator","ErrorException","Exception","FilesystemIterator","FilterIterator","GlobIterator","InfiniteIterator","InvalidArgumentException","IteratorIterator","LengthException","LimitIterator","LogicException","MultipleIterator","NoRewindIterator","OutOfBoundsException","OutOfRangeException","OuterIterator","OverflowException","ParentIterator","ParseError","RangeException","RecursiveArrayIterator","RecursiveCachingIterator","RecursiveCallbackFilterIterator","RecursiveDirectoryIterator","RecursiveFilterIterator","RecursiveIterator","RecursiveIteratorIterator","RecursiveRegexIterator","RecursiveTreeIterator","RegexIterator","RuntimeException","SeekableIterator","SplDoublyLinkedList","SplFileInfo","SplFileObject","SplFixedArray","SplHeap","SplMaxHeap","SplMinHeap","SplObjectStorage","SplObserver","SplPriorityQueue","SplQueue","SplStack","SplSubject","SplTempFileObject","TypeError","UnderflowException","UnexpectedValueException","UnhandledMatchError","ArrayAccess","BackedEnum","Closure","Fiber","Generator","Iterator","IteratorAggregate","Serializable","Stringable","Throwable","Traversable","UnitEnum","WeakReference","WeakMap","Directory","__PHP_Incomplete_Class","parent","php_user_filter","self","static","stdClass"],x={keyword:T,literal:(L=>{const J=[];return L.forEach(re=>{J.push(re),re.toLowerCase()===re?J.push(re.toUpperCase()):J.push(re.toLowerCase())}),J})(h),built_in:N},P=L=>L.map(J=>J.replace(/\|\d+$/,"")),D={variants:[{match:[/new/,n.concat(f,"+"),n.concat("(?!",P(N).join("\\b|"),"\\b)"),s],scope:{1:"keyword",4:"title.class"}}]},k=n.concat(o,"\\b(?!\\()"),U={variants:[{match:[n.concat(/::/,n.lookahead(/(?!class\b)/)),k],scope:{2:"variable.constant"}},{match:[/::/,/class/],scope:{2:"variable.language"}},{match:[s,n.concat(/::/,n.lookahead(/(?!class\b)/)),k],scope:{1:"title.class",3:"variable.constant"}},{match:[s,n.concat("::",n.lookahead(/(?!class\b)/))],scope:{1:"title.class"}},{match:[s,/::/,/class/],scope:{1:"title.class",3:"variable.language"}}]},W={scope:"attr",match:n.concat(o,n.lookahead(":"),n.lookahead(/(?!::)/))},z={relevance:0,begin:/\(/,end:/\)/,keywords:x,contains:[W,l,U,e.C_BLOCK_COMMENT_MODE,S,v,D]},K={relevance:0,match:[/\b/,n.concat("(?!fn\\b|function\\b|",P(T).join("\\b|"),"|",P(N).join("\\b|"),"\\b)"),o,n.concat(f,"*"),n.lookahead(/(?=\()/)],scope:{3:"title.function.invoke"},contains:[z]};z.contains.push(K);const Ee=[W,U,e.C_BLOCK_COMMENT_MODE,S,v,D],oe={begin:n.concat(/#\[\s*/,s),beginScope:"meta",end:/]/,endScope:"meta",keywords:{literal:h,keyword:["new","array"]},contains:[{begin:/\[/,end:/]/,keywords:{literal:h,keyword:["new","array"]},contains:["self",...Ee]},...Ee,{scope:"meta",match:s}]};return{case_insensitive:!1,keywords:x,contains:[oe,e.HASH_COMMENT_MODE,e.COMMENT("//","$"),e.COMMENT("/\\*","\\*/",{contains:[{scope:"doctag",match:"@[A-Za-z]+"}]}),{match:/__halt_compiler\(\);/,keywords:"__halt_compiler",starts:{scope:"comment",end:e.MATCH_NOTHING_RE,contains:[{match:/\?>/,scope:"meta",endsParent:!0}]}},c,{scope:"variable.language",match:/\$this\b/},l,K,U,{match:[/const/,/\s/,o],scope:{1:"keyword",3:"variable.constant"}},D,{scope:"function",relevance:0,beginKeywords:"fn function",end:/[;{]/,excludeEnd:!0,illegal:"[$%\\[]",contains:[{beginKeywords:"use"},e.UNDERSCORE_TITLE_MODE,{begin:"=>",endsParent:!0},{scope:"params",begin:"\\(",end:"\\)",excludeBegin:!0,excludeEnd:!0,keywords:x,contains:["self",l,U,e.C_BLOCK_COMMENT_MODE,S,v]}]},{scope:"class",variants:[{beginKeywords:"enum",illegal:/[($"]/},{beginKeywords:"class interface trait",illegal:/[:($"]/}],relevance:0,end:/\{/,excludeEnd:!0,contains:[{beginKeywords:"extends implements"},e.UNDERSCORE_TITLE_MODE]},{beginKeywords:"namespace",relevance:0,end:";",illegal:/[.']/,contains:[e.inherit(e.UNDERSCORE_TITLE_MODE,{scope:"title.class"})]},{beginKeywords:"use",relevance:0,end:";",contains:[{match:/\b(as|const|function)\b/,scope:"keyword"},e.UNDERSCORE_TITLE_MODE]},S,v]}}return up=t,up}var dp,Ev;function Sye(){if(Ev)return dp;Ev=1;function t(e){return{name:"PHP template",subLanguage:"xml",contains:[{begin:/<\?(php|=)?/,end:/\?>/,subLanguage:"php",contains:[{begin:"/\\*",end:"\\*/",skip:!0},{begin:'b"',end:'"',skip:!0},{begin:"b'",end:"'",skip:!0},e.inherit(e.APOS_STRING_MODE,{illegal:null,className:null,contains:null,skip:!0}),e.inherit(e.QUOTE_STRING_MODE,{illegal:null,className:null,contains:null,skip:!0})]}]}}return dp=t,dp}var _p,fv;function bye(){if(fv)return _p;fv=1;function t(e){return{name:"Plain text",aliases:["text","txt"],disableAutodetect:!0}}return _p=t,_p}var pp,Sv;function hye(){if(Sv)return pp;Sv=1;function t(e){const n={keyword:"actor addressof and as be break class compile_error compile_intrinsic consume continue delegate digestof do else elseif embed end error for fun if ifdef in interface is isnt lambda let match new not object or primitive recover repeat return struct then trait try type until use var where while with xor",meta:"iso val tag trn box ref",literal:"this false true"},i={className:"string",begin:'"""',end:'"""',relevance:10},o={className:"string",begin:'"',end:'"',contains:[e.BACKSLASH_ESCAPE]},s={className:"string",begin:"'",end:"'",contains:[e.BACKSLASH_ESCAPE],relevance:0},l={className:"type",begin:"\\b_?[A-Z][\\w]*",relevance:0},c={begin:e.IDENT_RE+"'",relevance:0};return{name:"Pony",keywords:n,contains:[l,i,o,s,c,{className:"number",begin:"(-?)(\\b0[xX][a-fA-F0-9]+|\\b0[bB][01]+|(\\b\\d+(_\\d+)?(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)",relevance:0},e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]}}return pp=t,pp}var mp,bv;function Tye(){if(bv)return mp;bv=1;function t(e){const n=["string","char","byte","int","long","bool","decimal","single","double","DateTime","xml","array","hashtable","void"],i="Add|Clear|Close|Copy|Enter|Exit|Find|Format|Get|Hide|Join|Lock|Move|New|Open|Optimize|Pop|Push|Redo|Remove|Rename|Reset|Resize|Search|Select|Set|Show|Skip|Split|Step|Switch|Undo|Unlock|Watch|Backup|Checkpoint|Compare|Compress|Convert|ConvertFrom|ConvertTo|Dismount|Edit|Expand|Export|Group|Import|Initialize|Limit|Merge|Mount|Out|Publish|Restore|Save|Sync|Unpublish|Update|Approve|Assert|Build|Complete|Confirm|Deny|Deploy|Disable|Enable|Install|Invoke|Register|Request|Restart|Resume|Start|Stop|Submit|Suspend|Uninstall|Unregister|Wait|Debug|Measure|Ping|Repair|Resolve|Test|Trace|Connect|Disconnect|Read|Receive|Send|Write|Block|Grant|Protect|Revoke|Unblock|Unprotect|Use|ForEach|Sort|Tee|Where",o="-and|-as|-band|-bnot|-bor|-bxor|-casesensitive|-ccontains|-ceq|-cge|-cgt|-cle|-clike|-clt|-cmatch|-cne|-cnotcontains|-cnotlike|-cnotmatch|-contains|-creplace|-csplit|-eq|-exact|-f|-file|-ge|-gt|-icontains|-ieq|-ige|-igt|-ile|-ilike|-ilt|-imatch|-in|-ine|-inotcontains|-inotlike|-inotmatch|-ireplace|-is|-isnot|-isplit|-join|-le|-like|-lt|-match|-ne|-not|-notcontains|-notin|-notlike|-notmatch|-or|-regex|-replace|-shl|-shr|-split|-wildcard|-xor",s={$pattern:/-?[A-z\.\-]+\b/,keyword:"if else foreach return do while until elseif begin for trap data dynamicparam end break throw param continue finally in switch exit filter try process catch hidden static parameter",built_in:"ac asnp cat cd CFS chdir clc clear clhy cli clp cls clv cnsn compare copy cp cpi cpp curl cvpa dbp del diff dir dnsn ebp echo|0 epal epcsv epsn erase etsn exsn fc fhx fl ft fw gal gbp gc gcb gci gcm gcs gdr gerr ghy gi gin gjb gl gm gmo gp gps gpv group gsn gsnp gsv gtz gu gv gwmi h history icm iex ihy ii ipal ipcsv ipmo ipsn irm ise iwmi iwr kill lp ls man md measure mi mount move mp mv nal ndr ni nmo npssc nsn nv ogv oh popd ps pushd pwd r rbp rcjb rcsn rd rdr ren ri rjb rm rmdir rmo rni rnp rp rsn rsnp rujb rv rvpa rwmi sajb sal saps sasv sbp sc scb select set shcm si sl sleep sls sort sp spjb spps spsv start stz sujb sv swmi tee trcm type wget where wjb write"},l=/\w[\w\d]*((-)[\w\d]+)*/,c={begin:"`[\\s\\S]",relevance:0},d={className:"variable",variants:[{begin:/\$\B/},{className:"keyword",begin:/\$this/},{begin:/\$[\w\d][\w\d_:]*/}]},_={className:"literal",begin:/\$(null|true|false)\b/},p={className:"string",variants:[{begin:/"/,end:/"/},{begin:/@"/,end:/^"@/}],contains:[c,d,{className:"variable",begin:/\$[A-z]/,end:/[^A-z]/}]},g={className:"string",variants:[{begin:/'/,end:/'/},{begin:/@'/,end:/^'@/}]},E={className:"doctag",variants:[{begin:/\.(synopsis|description|example|inputs|outputs|notes|link|component|role|functionality)/},{begin:/\.(parameter|forwardhelptargetname|forwardhelpcategory|remotehelprunspace|externalhelp)\s+\S+/}]},f=e.inherit(e.COMMENT(null,null),{variants:[{begin:/#/,end:/$/},{begin:/<#/,end:/#>/}],contains:[E]}),S={className:"built_in",variants:[{begin:"(".concat(i,")+(-)[\\w\\d]+")}]},v={className:"class",beginKeywords:"class enum",end:/\s*[{]/,excludeEnd:!0,relevance:0,contains:[e.TITLE_MODE]},h={className:"function",begin:/function\s+/,end:/\s*\{|$/,excludeEnd:!0,returnBegin:!0,relevance:0,contains:[{begin:"function",relevance:0,className:"keyword"},{className:"title",begin:l,relevance:0},{begin:/\(/,end:/\)/,className:"params",relevance:0,contains:[d]}]},T={begin:/using\s/,end:/$/,returnBegin:!0,contains:[p,g,{className:"keyword",begin:/(using|assembly|command|module|namespace|type)/}]},N={variants:[{className:"operator",begin:"(".concat(o,")\\b")},{className:"literal",begin:/(-){1,2}[\w\d-]+/,relevance:0}]},y={className:"selector-tag",begin:/@\B/,relevance:0},x={className:"function",begin:/\[.*\]\s*[\w]+[ ]??\(/,end:/$/,returnBegin:!0,relevance:0,contains:[{className:"keyword",begin:"(".concat(s.keyword.toString().replace(/\s/g,"|"),")\\b"),endsParent:!0,relevance:0},e.inherit(e.TITLE_MODE,{endsParent:!0})]},P=[x,f,c,e.NUMBER_MODE,p,g,S,d,_,y],D={begin:/\[/,end:/\]/,excludeBegin:!0,excludeEnd:!0,relevance:0,contains:[].concat("self",P,{begin:"("+n.join("|")+")",className:"built_in",relevance:0},{className:"type",begin:/[\.\w\d]+/,relevance:0})};return x.contains.unshift(D),{name:"PowerShell",aliases:["pwsh","ps","ps1"],case_insensitive:!0,keywords:s,contains:P.concat(v,h,T,N,D)}}return mp=t,mp}var gp,hv;function vye(){if(hv)return gp;hv=1;function t(e){const n=e.regex,i=["displayHeight","displayWidth","mouseY","mouseX","mousePressed","pmouseX","pmouseY","key","keyCode","pixels","focused","frameCount","frameRate","height","width","size","createGraphics","beginDraw","createShape","loadShape","PShape","arc","ellipse","line","point","quad","rect","triangle","bezier","bezierDetail","bezierPoint","bezierTangent","curve","curveDetail","curvePoint","curveTangent","curveTightness","shape","shapeMode","beginContour","beginShape","bezierVertex","curveVertex","endContour","endShape","quadraticVertex","vertex","ellipseMode","noSmooth","rectMode","smooth","strokeCap","strokeJoin","strokeWeight","mouseClicked","mouseDragged","mouseMoved","mousePressed","mouseReleased","mouseWheel","keyPressed","keyPressedkeyReleased","keyTyped","print","println","save","saveFrame","day","hour","millis","minute","month","second","year","background","clear","colorMode","fill","noFill","noStroke","stroke","alpha","blue","brightness","color","green","hue","lerpColor","red","saturation","modelX","modelY","modelZ","screenX","screenY","screenZ","ambient","emissive","shininess","specular","add","createImage","beginCamera","camera","endCamera","frustum","ortho","perspective","printCamera","printProjection","cursor","frameRate","noCursor","exit","loop","noLoop","popStyle","pushStyle","redraw","binary","boolean","byte","char","float","hex","int","str","unbinary","unhex","join","match","matchAll","nf","nfc","nfp","nfs","split","splitTokens","trim","append","arrayCopy","concat","expand","reverse","shorten","sort","splice","subset","box","sphere","sphereDetail","createInput","createReader","loadBytes","loadJSONArray","loadJSONObject","loadStrings","loadTable","loadXML","open","parseXML","saveTable","selectFolder","selectInput","beginRaw","beginRecord","createOutput","createWriter","endRaw","endRecord","PrintWritersaveBytes","saveJSONArray","saveJSONObject","saveStream","saveStrings","saveXML","selectOutput","popMatrix","printMatrix","pushMatrix","resetMatrix","rotate","rotateX","rotateY","rotateZ","scale","shearX","shearY","translate","ambientLight","directionalLight","lightFalloff","lights","lightSpecular","noLights","normal","pointLight","spotLight","image","imageMode","loadImage","noTint","requestImage","tint","texture","textureMode","textureWrap","blend","copy","filter","get","loadPixels","set","updatePixels","blendMode","loadShader","PShaderresetShader","shader","createFont","loadFont","text","textFont","textAlign","textLeading","textMode","textSize","textWidth","textAscent","textDescent","abs","ceil","constrain","dist","exp","floor","lerp","log","mag","map","max","min","norm","pow","round","sq","sqrt","acos","asin","atan","atan2","cos","degrees","radians","sin","tan","noise","noiseDetail","noiseSeed","random","randomGaussian","randomSeed"],o=e.IDENT_RE,s={variants:[{match:n.concat(n.either(...i),n.lookahead(/\s*\(/)),className:"built_in"},{relevance:0,match:n.concat(/\b(?!for|if|while)/,o,n.lookahead(/\s*\(/)),className:"title.function"}]},l={match:[/new\s+/,o],className:{1:"keyword",2:"class.title"}},c={relevance:0,match:[/\./,o],className:{2:"property"}},d={variants:[{match:[/class/,/\s+/,o,/\s+/,/extends/,/\s+/,o]},{match:[/class/,/\s+/,o]}],className:{1:"keyword",3:"title.class",5:"keyword",7:"title.class.inherited"}},_=["boolean","byte","char","color","double","float","int","long","short"],p=["BufferedReader","PVector","PFont","PImage","PGraphics","HashMap","String","Array","FloatDict","ArrayList","FloatList","IntDict","IntList","JSONArray","JSONObject","Object","StringDict","StringList","Table","TableRow","XML"];return{name:"Processing",aliases:["pde"],keywords:{keyword:[...["abstract","assert","break","case","catch","const","continue","default","else","enum","final","finally","for","if","import","instanceof","long","native","new","package","private","private","protected","protected","public","public","return","static","strictfp","switch","synchronized","throw","throws","transient","try","void","volatile","while"]],literal:"P2D P3D HALF_PI PI QUARTER_PI TAU TWO_PI null true false",title:"setup draw",variable:"super this",built_in:[...i,...p],type:_},contains:[d,l,s,c,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,e.C_NUMBER_MODE]}}return gp=t,gp}var Ep,Tv;function Cye(){if(Tv)return Ep;Tv=1;function t(e){return{name:"Python profiler",contains:[e.C_NUMBER_MODE,{begin:"[a-zA-Z_][\\da-zA-Z_]+\\.[\\da-zA-Z_]{1,3}",end:":",excludeEnd:!0},{begin:"(ncalls|tottime|cumtime)",end:"$",keywords:"ncalls tottime|10 cumtime|10 filename",relevance:10},{begin:"function calls",end:"$",contains:[e.C_NUMBER_MODE],relevance:10},e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,{className:"string",begin:"\\(",end:"\\)$",excludeBegin:!0,excludeEnd:!0,relevance:0}]}}return Ep=t,Ep}var fp,vv;function Rye(){if(vv)return fp;vv=1;function t(e){const n={begin:/[a-z][A-Za-z0-9_]*/,relevance:0},i={className:"symbol",variants:[{begin:/[A-Z][a-zA-Z0-9_]*/},{begin:/_[A-Za-z0-9_]*/}],relevance:0},o={begin:/\(/,end:/\)/,relevance:0},s={begin:/\[/,end:/\]/},l={className:"comment",begin:/%/,end:/$/,contains:[e.PHRASAL_WORDS_MODE]},c={className:"string",begin:/`/,end:/`/,contains:[e.BACKSLASH_ESCAPE]},d={className:"string",begin:/0'(\\'|.)/},_={className:"string",begin:/0'\\s/},g=[n,i,o,{begin:/:-/},s,l,e.C_BLOCK_COMMENT_MODE,e.QUOTE_STRING_MODE,e.APOS_STRING_MODE,c,d,_,e.C_NUMBER_MODE];return o.contains=g,s.contains=g,{name:"Prolog",contains:g.concat([{begin:/\.$/}])}}return fp=t,fp}var Sp,Cv;function Nye(){if(Cv)return Sp;Cv=1;function t(e){const n="[ \\t\\f]*",i="[ \\t\\f]+",o=n+"[:=]"+n,s=i,l="("+o+"|"+s+")",c="([^\\\\:= \\t\\f\\n]|\\\\.)+",d={end:l,relevance:0,starts:{className:"string",end:/$/,relevance:0,contains:[{begin:"\\\\\\\\"},{begin:"\\\\\\n"}]}};return{name:".properties",disableAutodetect:!0,case_insensitive:!0,illegal:/\S/,contains:[e.COMMENT("^\\s*[!#]","$"),{returnBegin:!0,variants:[{begin:c+o},{begin:c+s}],contains:[{className:"attr",begin:c,endsParent:!0}],starts:d},{className:"attr",begin:c+n+"$"}]}}return Sp=t,Sp}var bp,Rv;function Oye(){if(Rv)return bp;Rv=1;function t(e){const n=["package","import","option","optional","required","repeated","group","oneof"],i=["double","float","int32","int64","uint32","uint64","sint32","sint64","fixed32","fixed64","sfixed32","sfixed64","bool","string","bytes"],o={match:[/(message|enum|service)\s+/,e.IDENT_RE],scope:{1:"keyword",2:"title.class"}};return{name:"Protocol Buffers",aliases:["proto"],keywords:{keyword:n,type:i,literal:["true","false"]},contains:[e.QUOTE_STRING_MODE,e.NUMBER_MODE,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,o,{className:"function",beginKeywords:"rpc",end:/[{;]/,excludeEnd:!0,keywords:"rpc returns"},{begin:/^\s*[A-Z_]+(?=\s*=[^\n]+;$)/}]}}return bp=t,bp}var hp,Nv;function Aye(){if(Nv)return hp;Nv=1;function t(e){const n={keyword:"and case default else elsif false if in import enherits node or true undef unless main settings $string ",literal:"alias audit before loglevel noop require subscribe tag owner ensure group mode name|0 changes context force incl lens load_path onlyif provider returns root show_diff type_check en_address ip_address realname command environment hour monute month monthday special target weekday creates cwd ogoutput refresh refreshonly tries try_sleep umask backup checksum content ctime force ignore links mtime purge recurse recurselimit replace selinux_ignore_defaults selrange selrole seltype seluser source souirce_permissions sourceselect validate_cmd validate_replacement allowdupe attribute_membership auth_membership forcelocal gid ia_load_module members system host_aliases ip allowed_trunk_vlans description device_url duplex encapsulation etherchannel native_vlan speed principals allow_root auth_class auth_type authenticate_user k_of_n mechanisms rule session_owner shared options device fstype enable hasrestart directory present absent link atboot blockdevice device dump pass remounts poller_tag use message withpath adminfile allow_virtual allowcdrom category configfiles flavor install_options instance package_settings platform responsefile status uninstall_options vendor unless_system_user unless_uid binary control flags hasstatus manifest pattern restart running start stop allowdupe auths expiry gid groups home iterations key_membership keys managehome membership password password_max_age password_min_age profile_membership profiles project purge_ssh_keys role_membership roles salt shell uid baseurl cost descr enabled enablegroups exclude failovermethod gpgcheck gpgkey http_caching include includepkgs keepalive metadata_expire metalink mirrorlist priority protect proxy proxy_password proxy_username repo_gpgcheck s3_enabled skip_if_unavailable sslcacert sslclientcert sslclientkey sslverify mounted",built_in:"architecture augeasversion blockdevices boardmanufacturer boardproductname boardserialnumber cfkey dhcp_servers domain ec2_ ec2_userdata facterversion filesystems ldom fqdn gid hardwareisa hardwaremodel hostname id|0 interfaces ipaddress ipaddress_ ipaddress6 ipaddress6_ iphostnumber is_virtual kernel kernelmajversion kernelrelease kernelversion kernelrelease kernelversion lsbdistcodename lsbdistdescription lsbdistid lsbdistrelease lsbmajdistrelease lsbminordistrelease lsbrelease macaddress macaddress_ macosx_buildversion macosx_productname macosx_productversion macosx_productverson_major macosx_productversion_minor manufacturer memoryfree memorysize netmask metmask_ network_ operatingsystem operatingsystemmajrelease operatingsystemrelease osfamily partitions path physicalprocessorcount processor processorcount productname ps puppetversion rubysitedir rubyversion selinux selinux_config_mode selinux_config_policy selinux_current_mode selinux_current_mode selinux_enforced selinux_policyversion serialnumber sp_ sshdsakey sshecdsakey sshrsakey swapencrypted swapfree swapsize timezone type uniqueid uptime uptime_days uptime_hours uptime_seconds uuid virtual vlans xendomains zfs_version zonenae zones zpool_version"},i=e.COMMENT("#","$"),o="([A-Za-z_]|::)(\\w|::)*",s=e.inherit(e.TITLE_MODE,{begin:o}),l={className:"variable",begin:"\\$"+o},c={className:"string",contains:[e.BACKSLASH_ESCAPE,l],variants:[{begin:/'/,end:/'/},{begin:/"/,end:/"/}]};return{name:"Puppet",aliases:["pp"],contains:[i,l,c,{beginKeywords:"class",end:"\\{|;",illegal:/=/,contains:[s,i]},{beginKeywords:"define",end:/\{/,contains:[{className:"section",begin:e.IDENT_RE,endsParent:!0}]},{begin:e.IDENT_RE+"\\s+\\{",returnBegin:!0,end:/\S/,contains:[{className:"keyword",begin:e.IDENT_RE,relevance:.2},{begin:/\{/,end:/\}/,keywords:n,relevance:0,contains:[c,i,{begin:"[a-zA-Z_]+\\s*=>",returnBegin:!0,end:"=>",contains:[{className:"attr",begin:e.IDENT_RE}]},{className:"number",begin:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",relevance:0},l]}],relevance:0}]}}return hp=t,hp}var Tp,Ov;function yye(){if(Ov)return Tp;Ov=1;function t(e){const n={className:"string",begin:'(~)?"',end:'"',illegal:"\\n"},i={className:"symbol",begin:"#[a-zA-Z_]\\w*\\$?"};return{name:"PureBASIC",aliases:["pb","pbi"],keywords:"Align And Array As Break CallDebugger Case CompilerCase CompilerDefault CompilerElse CompilerElseIf CompilerEndIf CompilerEndSelect CompilerError CompilerIf CompilerSelect CompilerWarning Continue Data DataSection Debug DebugLevel Declare DeclareC DeclareCDLL DeclareDLL DeclareModule Default Define Dim DisableASM DisableDebugger DisableExplicit Else ElseIf EnableASM EnableDebugger EnableExplicit End EndDataSection EndDeclareModule EndEnumeration EndIf EndImport EndInterface EndMacro EndModule EndProcedure EndSelect EndStructure EndStructureUnion EndWith Enumeration EnumerationBinary Extends FakeReturn For ForEach ForEver Global Gosub Goto If Import ImportC IncludeBinary IncludeFile IncludePath Interface List Macro MacroExpandedCount Map Module NewList NewMap Next Not Or Procedure ProcedureC ProcedureCDLL ProcedureDLL ProcedureReturn Protected Prototype PrototypeC ReDim Read Repeat Restore Return Runtime Select Shared Static Step Structure StructureUnion Swap Threaded To UndefineMacro Until Until UnuseModule UseModule Wend While With XIncludeFile XOr",contains:[e.COMMENT(";","$",{relevance:0}),{className:"function",begin:"\\b(Procedure|Declare)(C|CDLL|DLL)?\\b",end:"\\(",excludeEnd:!0,returnBegin:!0,contains:[{className:"keyword",begin:"(Procedure|Declare)(C|CDLL|DLL)?",excludeEnd:!0},{className:"type",begin:"\\.\\w*"},e.UNDERSCORE_TITLE_MODE]},n,i]}}return Tp=t,Tp}var vp,Av;function Iye(){if(Av)return vp;Av=1;function t(e){const n=e.regex,i=/[\p{XID_Start}_]\p{XID_Continue}*/u,o=["and","as","assert","async","await","break","case","class","continue","def","del","elif","else","except","finally","for","from","global","if","import","in","is","lambda","match","nonlocal|10","not","or","pass","raise","return","try","while","with","yield"],d={$pattern:/[A-Za-z]\w+|__\w+__/,keyword:o,built_in:["__import__","abs","all","any","ascii","bin","bool","breakpoint","bytearray","bytes","callable","chr","classmethod","compile","complex","delattr","dict","dir","divmod","enumerate","eval","exec","filter","float","format","frozenset","getattr","globals","hasattr","hash","help","hex","id","input","int","isinstance","issubclass","iter","len","list","locals","map","max","memoryview","min","next","object","oct","open","ord","pow","print","property","range","repr","reversed","round","set","setattr","slice","sorted","staticmethod","str","sum","super","tuple","type","vars","zip"],literal:["__debug__","Ellipsis","False","None","NotImplemented","True"],type:["Any","Callable","Coroutine","Dict","List","Literal","Generic","Optional","Sequence","Set","Tuple","Type","Union"]},_={className:"meta",begin:/^(>>>|\.\.\.) /},p={className:"subst",begin:/\{/,end:/\}/,keywords:d,illegal:/#/},g={begin:/\{\{/,relevance:0},E={className:"string",contains:[e.BACKSLASH_ESCAPE],variants:[{begin:/([uU]|[bB]|[rR]|[bB][rR]|[rR][bB])?'''/,end:/'''/,contains:[e.BACKSLASH_ESCAPE,_],relevance:10},{begin:/([uU]|[bB]|[rR]|[bB][rR]|[rR][bB])?"""/,end:/"""/,contains:[e.BACKSLASH_ESCAPE,_],relevance:10},{begin:/([fF][rR]|[rR][fF]|[fF])'''/,end:/'''/,contains:[e.BACKSLASH_ESCAPE,_,g,p]},{begin:/([fF][rR]|[rR][fF]|[fF])"""/,end:/"""/,contains:[e.BACKSLASH_ESCAPE,_,g,p]},{begin:/([uU]|[rR])'/,end:/'/,relevance:10},{begin:/([uU]|[rR])"/,end:/"/,relevance:10},{begin:/([bB]|[bB][rR]|[rR][bB])'/,end:/'/},{begin:/([bB]|[bB][rR]|[rR][bB])"/,end:/"/},{begin:/([fF][rR]|[rR][fF]|[fF])'/,end:/'/,contains:[e.BACKSLASH_ESCAPE,g,p]},{begin:/([fF][rR]|[rR][fF]|[fF])"/,end:/"/,contains:[e.BACKSLASH_ESCAPE,g,p]},e.APOS_STRING_MODE,e.QUOTE_STRING_MODE]},f="[0-9](_?[0-9])*",S=`(\\b(${f}))?\\.(${f})|\\b(${f})\\.`,v=`\\b|${o.join("|")}`,h={className:"number",relevance:0,variants:[{begin:`(\\b(${f})|(${S}))[eE][+-]?(${f})[jJ]?(?=${v})`},{begin:`(${S})[jJ]?`},{begin:`\\b([1-9](_?[0-9])*|0+(_?0)*)[lLjJ]?(?=${v})`},{begin:`\\b0[bB](_?[01])+[lL]?(?=${v})`},{begin:`\\b0[oO](_?[0-7])+[lL]?(?=${v})`},{begin:`\\b0[xX](_?[0-9a-fA-F])+[lL]?(?=${v})`},{begin:`\\b(${f})[jJ](?=${v})`}]},T={className:"comment",begin:n.lookahead(/# type:/),end:/$/,keywords:d,contains:[{begin:/# type:/},{begin:/#/,end:/\b\B/,endsWithParent:!0}]},N={className:"params",variants:[{className:"",begin:/\(\s*\)/,skip:!0},{begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,keywords:d,contains:["self",_,h,E,e.HASH_COMMENT_MODE]}]};return p.contains=[E,h,_],{name:"Python",aliases:["py","gyp","ipython"],unicodeRegex:!0,keywords:d,illegal:/(<\/|\?)|=>/,contains:[_,h,{begin:/\bself\b/},{beginKeywords:"if",relevance:0},E,T,e.HASH_COMMENT_MODE,{match:[/\bdef/,/\s+/,i],scope:{1:"keyword",3:"title.function"},contains:[N]},{variants:[{match:[/\bclass/,/\s+/,i,/\s*/,/\(\s*/,i,/\s*\)/]},{match:[/\bclass/,/\s+/,i]}],scope:{1:"keyword",3:"title.class",6:"title.class.inherited"}},{className:"meta",begin:/^[\t ]*@/,end:/(?=#)|$/,contains:[h,N,E]}]}}return vp=t,vp}var Cp,yv;function Dye(){if(yv)return Cp;yv=1;function t(e){return{aliases:["pycon"],contains:[{className:"meta.prompt",starts:{end:/ |$/,starts:{end:"$",subLanguage:"python"}},variants:[{begin:/^>>>(?=[ ]|$)/},{begin:/^\.\.\.(?=[ ]|$)/}]}]}}return Cp=t,Cp}var Rp,Iv;function xye(){if(Iv)return Rp;Iv=1;function t(e){return{name:"Q",aliases:["k","kdb"],keywords:{$pattern:/(`?)[A-Za-z0-9_]+\b/,keyword:"do while select delete by update from",literal:"0b 1b",built_in:"neg not null string reciprocal floor ceiling signum mod xbar xlog and or each scan over prior mmu lsq inv md5 ltime gtime count first var dev med cov cor all any rand sums prds mins maxs fills deltas ratios avgs differ prev next rank reverse iasc idesc asc desc msum mcount mavg mdev xrank mmin mmax xprev rotate distinct group where flip type key til get value attr cut set upsert raze union inter except cross sv vs sublist enlist read0 read1 hopen hclose hdel hsym hcount peach system ltrim rtrim trim lower upper ssr view tables views cols xcols keys xkey xcol xasc xdesc fkeys meta lj aj aj0 ij pj asof uj ww wj wj1 fby xgroup ungroup ej save load rsave rload show csv parse eval min max avg wavg wsum sin cos tan sum",type:"`float `double int `timestamp `timespan `datetime `time `boolean `symbol `char `byte `short `long `real `month `date `minute `second `guid"},contains:[e.C_LINE_COMMENT_MODE,e.QUOTE_STRING_MODE,e.C_NUMBER_MODE]}}return Rp=t,Rp}var Np,Dv;function wye(){if(Dv)return Np;Dv=1;function t(e){const n=e.regex,i={keyword:"in of on if for while finally var new function do return void else break catch instanceof with throw case default try this switch continue typeof delete let yield const export super debugger as async await import",literal:"true false null undefined NaN Infinity",built_in:"eval isFinite isNaN parseFloat parseInt decodeURI decodeURIComponent encodeURI encodeURIComponent escape unescape Object Function Boolean Error EvalError InternalError RangeError ReferenceError StopIteration SyntaxError TypeError URIError Number Math Date String RegExp Array Float32Array Float64Array Int16Array Int32Array Int8Array Uint16Array Uint32Array Uint8Array Uint8ClampedArray ArrayBuffer DataView JSON Intl arguments require module console window document Symbol Set Map WeakSet WeakMap Proxy Reflect Behavior bool color coordinate date double enumeration font geocircle georectangle geoshape int list matrix4x4 parent point quaternion real rect size string url variant vector2d vector3d vector4d Promise"},o="[a-zA-Z_][a-zA-Z0-9\\._]*",s={className:"keyword",begin:"\\bproperty\\b",starts:{className:"string",end:"(:|=|;|,|//|/\\*|$)",returnEnd:!0}},l={className:"keyword",begin:"\\bsignal\\b",starts:{className:"string",end:"(\\(|:|=|;|,|//|/\\*|$)",returnEnd:!0}},c={className:"attribute",begin:"\\bid\\s*:",starts:{className:"string",end:o,returnEnd:!1}},d={begin:o+"\\s*:",returnBegin:!0,contains:[{className:"attribute",begin:o,end:"\\s*:",excludeEnd:!0,relevance:0}],relevance:0},_={begin:n.concat(o,/\s*\{/),end:/\{/,returnBegin:!0,relevance:0,contains:[e.inherit(e.TITLE_MODE,{begin:o})]};return{name:"QML",aliases:["qt"],case_insensitive:!1,keywords:i,contains:[{className:"meta",begin:/^\s*['"]use (strict|asm)['"]/},e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,{className:"string",begin:"`",end:"`",contains:[e.BACKSLASH_ESCAPE,{className:"subst",begin:"\\$\\{",end:"\\}"}]},e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,{className:"number",variants:[{begin:"\\b(0[bB][01]+)"},{begin:"\\b(0[oO][0-7]+)"},{begin:e.C_NUMBER_RE}],relevance:0},{begin:"("+e.RE_STARTERS_RE+"|\\b(case|return|throw)\\b)\\s*",keywords:"return throw case",contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.REGEXP_MODE,{begin:/\s*[);\]]/,relevance:0,subLanguage:"xml"}],relevance:0},l,s,{className:"function",beginKeywords:"function",end:/\{/,excludeEnd:!0,contains:[e.inherit(e.TITLE_MODE,{begin:/[A-Za-z$_][0-9A-Za-z$_]*/}),{className:"params",begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]}],illegal:/\[|%/},{begin:"\\."+e.IDENT_RE,relevance:0},c,d,_],illegal:/#/}}return Np=t,Np}var Op,xv;function Mye(){if(xv)return Op;xv=1;function t(e){const n=e.regex,i=/(?:(?:[a-zA-Z]|\.[._a-zA-Z])[._a-zA-Z0-9]*)|\.(?!\d)/,o=n.either(/0[xX][0-9a-fA-F]+\.[0-9a-fA-F]*[pP][+-]?\d+i?/,/0[xX][0-9a-fA-F]+(?:[pP][+-]?\d+)?[Li]?/,/(?:\d+(?:\.\d*)?|\.\d+)(?:[eE][+-]?\d+)?[Li]?/),s=/[=!<>:]=|\|\||&&|:::?|<-|<<-|->>|->|\|>|[-+*\/?!$&|:<=>@^~]|\*\*/,l=n.either(/[()]/,/[{}]/,/\[\[/,/[[\]]/,/\\/,/,/);return{name:"R",keywords:{$pattern:i,keyword:"function if in break next repeat else for while",literal:"NULL NA TRUE FALSE Inf NaN NA_integer_|10 NA_real_|10 NA_character_|10 NA_complex_|10",built_in:"LETTERS letters month.abb month.name pi T F abs acos acosh all any anyNA Arg as.call as.character as.complex as.double as.environment as.integer as.logical as.null.default as.numeric as.raw asin asinh atan atanh attr attributes baseenv browser c call ceiling class Conj cos cosh cospi cummax cummin cumprod cumsum digamma dim dimnames emptyenv exp expression floor forceAndCall gamma gc.time globalenv Im interactive invisible is.array is.atomic is.call is.character is.complex is.double is.environment is.expression is.finite is.function is.infinite is.integer is.language is.list is.logical is.matrix is.na is.name is.nan is.null is.numeric is.object is.pairlist is.raw is.recursive is.single is.symbol lazyLoadDBfetch length lgamma list log max min missing Mod names nargs nzchar oldClass on.exit pos.to.env proc.time prod quote range Re rep retracemem return round seq_along seq_len seq.int sign signif sin sinh sinpi sqrt standardGeneric substitute sum switch tan tanh tanpi tracemem trigamma trunc unclass untracemem UseMethod xtfrm"},contains:[e.COMMENT(/#'/,/$/,{contains:[{scope:"doctag",match:/@examples/,starts:{end:n.lookahead(n.either(/\n^#'\s*(?=@[a-zA-Z]+)/,/\n^(?!#')/)),endsParent:!0}},{scope:"doctag",begin:"@param",end:/$/,contains:[{scope:"variable",variants:[{match:i},{match:/`(?:\\.|[^`\\])+`/}],endsParent:!0}]},{scope:"doctag",match:/@[a-zA-Z]+/},{scope:"keyword",match:/\\[a-zA-Z]+/}]}),e.HASH_COMMENT_MODE,{scope:"string",contains:[e.BACKSLASH_ESCAPE],variants:[e.END_SAME_AS_BEGIN({begin:/[rR]"(-*)\(/,end:/\)(-*)"/}),e.END_SAME_AS_BEGIN({begin:/[rR]"(-*)\{/,end:/\}(-*)"/}),e.END_SAME_AS_BEGIN({begin:/[rR]"(-*)\[/,end:/\](-*)"/}),e.END_SAME_AS_BEGIN({begin:/[rR]'(-*)\(/,end:/\)(-*)'/}),e.END_SAME_AS_BEGIN({begin:/[rR]'(-*)\{/,end:/\}(-*)'/}),e.END_SAME_AS_BEGIN({begin:/[rR]'(-*)\[/,end:/\](-*)'/}),{begin:'"',end:'"',relevance:0},{begin:"'",end:"'",relevance:0}]},{relevance:0,variants:[{scope:{1:"operator",2:"number"},match:[s,o]},{scope:{1:"operator",2:"number"},match:[/%[^%]*%/,o]},{scope:{1:"punctuation",2:"number"},match:[l,o]},{scope:{2:"number"},match:[/[^a-zA-Z0-9._]|^/,o]}]},{scope:{3:"operator"},match:[i,/\s+/,/<-/,/\s+/]},{scope:"operator",relevance:0,variants:[{match:s},{match:/%[^%]*%/}]},{scope:"punctuation",relevance:0,match:l},{begin:"`",end:"`",contains:[{begin:/\\./}]}]}}return Op=t,Op}var Ap,wv;function Lye(){if(wv)return Ap;wv=1;function t(e){function n(D){return D.map(function(k){return k.split("").map(function(U){return"\\"+U}).join("")}).join("|")}const i="~?[a-z$_][0-9a-zA-Z$_]*",o="`?[A-Z$_][0-9a-zA-Z$_]*",s="'?[a-z$_][0-9a-z$_]*",l="\\s*:\\s*[a-z$_][0-9a-z$_]*(\\(\\s*("+s+"\\s*(,"+s+"\\s*)*)?\\))?",c=i+"("+l+"){0,2}",d="("+n(["||","++","**","+.","*","/","*.","/.","..."])+"|\\|>|&&|==|===)",_="\\s+"+d+"\\s+",p={keyword:"and as asr assert begin class constraint do done downto else end exception external for fun function functor if in include inherit initializer land lazy let lor lsl lsr lxor match method mod module mutable new nonrec object of open or private rec sig struct then to try type val virtual when while with",built_in:"array bool bytes char exn|5 float int int32 int64 list lazy_t|5 nativeint|5 ref string unit ",literal:"true false"},g="\\b(0[xX][a-fA-F0-9_]+[Lln]?|0[oO][0-7_]+[Lln]?|0[bB][01_]+[Lln]?|[0-9][0-9_]*([Lln]|(\\.[0-9_]*)?([eE][-+]?[0-9_]+)?)?)",E={className:"number",relevance:0,variants:[{begin:g},{begin:"\\(-"+g+"\\)"}]},f={className:"operator",relevance:0,begin:d},S=[{className:"identifier",relevance:0,begin:i},f,E],v=[e.QUOTE_STRING_MODE,f,{className:"module",begin:"\\b"+o,returnBegin:!0,relevance:0,end:".",contains:[{className:"identifier",begin:o,relevance:0}]}],h=[{className:"module",begin:"\\b"+o,returnBegin:!0,end:".",relevance:0,contains:[{className:"identifier",begin:o,relevance:0}]}],T={begin:i,end:"(,|\\n|\\))",relevance:0,contains:[f,{className:"typing",begin:":",end:"(,|\\n)",returnBegin:!0,relevance:0,contains:h}]},N={className:"function",relevance:0,keywords:p,variants:[{begin:"\\s(\\(\\.?.*?\\)|"+i+")\\s*=>",end:"\\s*=>",returnBegin:!0,relevance:0,contains:[{className:"params",variants:[{begin:i},{begin:c},{begin:/\(\s*\)/}]}]},{begin:"\\s\\(\\.?[^;\\|]*\\)\\s*=>",end:"\\s=>",returnBegin:!0,relevance:0,contains:[{className:"params",relevance:0,variants:[T]}]},{begin:"\\(\\.\\s"+i+"\\)\\s*=>"}]};v.push(N);const y={className:"constructor",begin:o+"\\(",end:"\\)",illegal:"\\n",keywords:p,contains:[e.QUOTE_STRING_MODE,f,{className:"params",begin:"\\b"+i}]},x={className:"pattern-match",begin:"\\|",returnBegin:!0,keywords:p,end:"=>",relevance:0,contains:[y,f,{relevance:0,className:"constructor",begin:o}]},P={className:"module-access",keywords:p,returnBegin:!0,variants:[{begin:"\\b("+o+"\\.)+"+i},{begin:"\\b("+o+"\\.)+\\(",end:"\\)",returnBegin:!0,contains:[N,{begin:"\\(",end:"\\)",relevance:0,skip:!0}].concat(v)},{begin:"\\b("+o+"\\.)+\\{",end:/\}/}],contains:v};return h.push(P),{name:"ReasonML",aliases:["re"],keywords:p,illegal:"(:-|:=|\\$\\{|\\+=)",contains:[e.COMMENT("/\\*","\\*/",{illegal:"^(#,\\/\\/)"}),{className:"character",begin:"'(\\\\[^']+|[^'])'",illegal:"\\n",relevance:0},e.QUOTE_STRING_MODE,{className:"literal",begin:"\\(\\)",relevance:0},{className:"literal",begin:"\\[\\|",end:"\\|\\]",relevance:0,contains:S},{className:"literal",begin:"\\[",end:"\\]",relevance:0,contains:S},y,{className:"operator",begin:_,illegal:"-->",relevance:0},E,e.C_LINE_COMMENT_MODE,x,N,{className:"module-def",begin:"\\bmodule\\s+"+i+"\\s+"+o+"\\s+=\\s+\\{",end:/\}/,returnBegin:!0,keywords:p,relevance:0,contains:[{className:"module",relevance:0,begin:o},{begin:/\{/,end:/\}/,relevance:0,skip:!0}].concat(v)},P]}}return Ap=t,Ap}var yp,Mv;function Pye(){if(Mv)return yp;Mv=1;function t(e){return{name:"RenderMan RIB",keywords:"ArchiveRecord AreaLightSource Atmosphere Attribute AttributeBegin AttributeEnd Basis Begin Blobby Bound Clipping ClippingPlane Color ColorSamples ConcatTransform Cone CoordinateSystem CoordSysTransform CropWindow Curves Cylinder DepthOfField Detail DetailRange Disk Displacement Display End ErrorHandler Exposure Exterior Format FrameAspectRatio FrameBegin FrameEnd GeneralPolygon GeometricApproximation Geometry Hider Hyperboloid Identity Illuminate Imager Interior LightSource MakeCubeFaceEnvironment MakeLatLongEnvironment MakeShadow MakeTexture Matte MotionBegin MotionEnd NuPatch ObjectBegin ObjectEnd ObjectInstance Opacity Option Orientation Paraboloid Patch PatchMesh Perspective PixelFilter PixelSamples PixelVariance Points PointsGeneralPolygons PointsPolygons Polygon Procedural Projection Quantize ReadArchive RelativeDetail ReverseOrientation Rotate Scale ScreenWindow ShadingInterpolation ShadingRate Shutter Sides Skew SolidBegin SolidEnd Sphere SubdivisionMesh Surface TextureCoordinates Torus Transform TransformBegin TransformEnd TransformPoints Translate TrimCurve WorldBegin WorldEnd",illegal:"/}],illegal:/./},e.COMMENT("^#","$"),d,_,c,{begin:/[\w-]+=([^\s{}[\]()>]+)/,relevance:0,returnBegin:!0,contains:[{className:"attribute",begin:/[^=]+/},{begin:/=/,endsWithParent:!0,relevance:0,contains:[d,_,c,{className:"literal",begin:"\\b("+s.split(" ").join("|")+")\\b"},{begin:/("[^"]*"|[^\s{}[\]]+)/}]}]},{className:"number",begin:/\*[0-9a-fA-F]+/},{begin:"\\b("+o.split(" ").join("|")+")([\\s[(\\]|])",returnBegin:!0,contains:[{className:"built_in",begin:/\w+/}]},{className:"built_in",variants:[{begin:"(\\.\\./|/|\\s)(("+l.split(" ").join("|")+");?\\s)+"},{begin:/\.\./,relevance:0}]}]}}return Dp=t,Dp}var xp,kv;function Fye(){if(kv)return xp;kv=1;function t(e){const n=["abs","acos","ambient","area","asin","atan","atmosphere","attribute","calculatenormal","ceil","cellnoise","clamp","comp","concat","cos","degrees","depth","Deriv","diffuse","distance","Du","Dv","environment","exp","faceforward","filterstep","floor","format","fresnel","incident","length","lightsource","log","match","max","min","mod","noise","normalize","ntransform","opposite","option","phong","pnoise","pow","printf","ptlined","radians","random","reflect","refract","renderinfo","round","setcomp","setxcomp","setycomp","setzcomp","shadow","sign","sin","smoothstep","specular","specularbrdf","spline","sqrt","step","tan","texture","textureinfo","trace","transform","vtransform","xcomp","ycomp","zcomp"],i=["matrix","float","color","point","normal","vector"],o=["while","for","if","do","return","else","break","extern","continue"],s={match:[/(surface|displacement|light|volume|imager)/,/\s+/,e.IDENT_RE],scope:{1:"keyword",3:"title.class"}};return{name:"RenderMan RSL",keywords:{keyword:o,built_in:n,type:i},illegal:""},i]}}return Mp=t,Mp}var Lp,Bv;function Yye(){if(Bv)return Lp;Bv=1;function t(e){const n=e.regex,i=["do","if","then","else","end","until","while","abort","array","attrib","by","call","cards","cards4","catname","continue","datalines","datalines4","delete","delim","delimiter","display","dm","drop","endsas","error","file","filename","footnote","format","goto","in","infile","informat","input","keep","label","leave","length","libname","link","list","lostcard","merge","missing","modify","options","output","out","page","put","redirect","remove","rename","replace","retain","return","select","set","skip","startsas","stop","title","update","waitsas","where","window","x|0","systask","add","and","alter","as","cascade","check","create","delete","describe","distinct","drop","foreign","from","group","having","index","insert","into","in","key","like","message","modify","msgtype","not","null","on","or","order","primary","references","reset","restrict","select","set","table","unique","update","validate","view","where"],o=["abs","addr","airy","arcos","arsin","atan","attrc","attrn","band","betainv","blshift","bnot","bor","brshift","bxor","byte","cdf","ceil","cexist","cinv","close","cnonct","collate","compbl","compound","compress","cos","cosh","css","curobs","cv","daccdb","daccdbsl","daccsl","daccsyd","dacctab","dairy","date","datejul","datepart","datetime","day","dclose","depdb","depdbsl","depdbsl","depsl","depsl","depsyd","depsyd","deptab","deptab","dequote","dhms","dif","digamma","dim","dinfo","dnum","dopen","doptname","doptnum","dread","dropnote","dsname","erf","erfc","exist","exp","fappend","fclose","fcol","fdelete","fetch","fetchobs","fexist","fget","fileexist","filename","fileref","finfo","finv","fipname","fipnamel","fipstate","floor","fnonct","fnote","fopen","foptname","foptnum","fpoint","fpos","fput","fread","frewind","frlen","fsep","fuzz","fwrite","gaminv","gamma","getoption","getvarc","getvarn","hbound","hms","hosthelp","hour","ibessel","index","indexc","indexw","input","inputc","inputn","int","intck","intnx","intrr","irr","jbessel","juldate","kurtosis","lag","lbound","left","length","lgamma","libname","libref","log","log10","log2","logpdf","logpmf","logsdf","lowcase","max","mdy","mean","min","minute","mod","month","mopen","mort","n","netpv","nmiss","normal","note","npv","open","ordinal","pathname","pdf","peek","peekc","pmf","point","poisson","poke","probbeta","probbnml","probchi","probf","probgam","probhypr","probit","probnegb","probnorm","probt","put","putc","putn","qtr","quote","ranbin","rancau","ranexp","rangam","range","rank","rannor","ranpoi","rantbl","rantri","ranuni","repeat","resolve","reverse","rewind","right","round","saving","scan","sdf","second","sign","sin","sinh","skewness","soundex","spedis","sqrt","std","stderr","stfips","stname","stnamel","substr","sum","symget","sysget","sysmsg","sysprod","sysrc","system","tan","tanh","time","timepart","tinv","tnonct","today","translate","tranwrd","trigamma","trim","trimn","trunc","uniform","upcase","uss","var","varfmt","varinfmt","varlabel","varlen","varname","varnum","varray","varrayx","vartype","verify","vformat","vformatd","vformatdx","vformatn","vformatnx","vformatw","vformatwx","vformatx","vinarray","vinarrayx","vinformat","vinformatd","vinformatdx","vinformatn","vinformatnx","vinformatw","vinformatwx","vinformatx","vlabel","vlabelx","vlength","vlengthx","vname","vnamex","vtype","vtypex","weekday","year","yyq","zipfips","zipname","zipnamel","zipstate"],s=["bquote","nrbquote","cmpres","qcmpres","compstor","datatyp","display","do","else","end","eval","global","goto","if","index","input","keydef","label","left","length","let","local","lowcase","macro","mend","nrbquote","nrquote","nrstr","put","qcmpres","qleft","qlowcase","qscan","qsubstr","qsysfunc","qtrim","quote","qupcase","scan","str","substr","superq","syscall","sysevalf","sysexec","sysfunc","sysget","syslput","sysprod","sysrc","sysrput","then","to","trim","unquote","until","upcase","verify","while","window"];return{name:"SAS",case_insensitive:!0,keywords:{literal:["null","missing","_all_","_automatic_","_character_","_infile_","_n_","_name_","_null_","_numeric_","_user_","_webout_"],keyword:i},contains:[{className:"keyword",begin:/^\s*(proc [\w\d_]+|data|run|quit)[\s;]/},{className:"variable",begin:/&[a-zA-Z_&][a-zA-Z0-9_]*\.?/},{begin:[/^\s*/,/datalines;|cards;/,/(?:.*\n)+/,/^\s*;\s*$/],className:{2:"keyword",3:"string"}},{begin:[/%mend|%macro/,/\s+/,/[a-zA-Z_&][a-zA-Z0-9_]*/],className:{1:"built_in",3:"title.function"}},{className:"built_in",begin:"%"+n.either(...s)},{className:"title.function",begin:/%[a-zA-Z_][a-zA-Z_0-9]*/},{className:"meta",begin:n.either(...o)+"(?=\\()"},{className:"string",variants:[e.APOS_STRING_MODE,e.QUOTE_STRING_MODE]},e.COMMENT("\\*",";"),e.C_BLOCK_COMMENT_MODE]}}return Lp=t,Lp}var Pp,Gv;function qye(){if(Gv)return Pp;Gv=1;function t(e){const n=e.regex,i={className:"meta",begin:"@[A-Za-z]+"},o={className:"subst",variants:[{begin:"\\$[A-Za-z0-9_]+"},{begin:/\$\{/,end:/\}/}]},s={className:"string",variants:[{begin:'"""',end:'"""'},{begin:'"',end:'"',illegal:"\\n",contains:[e.BACKSLASH_ESCAPE]},{begin:'[a-z]+"',end:'"',illegal:"\\n",contains:[e.BACKSLASH_ESCAPE,o]},{className:"string",begin:'[a-z]+"""',end:'"""',contains:[o],relevance:10}]},l={className:"type",begin:"\\b[A-Z][A-Za-z0-9_]*",relevance:0},c={className:"title",begin:/[^0-9\n\t "'(),.`{}\[\]:;][^\n\t "'(),.`{}\[\]:;]+|[^0-9\n\t "'(),.`{}\[\]:;=]/,relevance:0},d={className:"class",beginKeywords:"class object trait type",end:/[:={\[\n;]/,excludeEnd:!0,contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,{beginKeywords:"extends with",relevance:10},{begin:/\[/,end:/\]/,excludeBegin:!0,excludeEnd:!0,relevance:0,contains:[l]},{className:"params",begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,relevance:0,contains:[l]},c]},_={className:"function",beginKeywords:"def",end:n.lookahead(/[:={\[(\n;]/),contains:[c]},p={begin:[/^\s*/,"extension",/\s+(?=[[(])/],beginScope:{2:"keyword"}},g={begin:[/^\s*/,/end/,/\s+/,/(extension\b)?/],beginScope:{2:"keyword",4:"keyword"}},E=[{match:/\.inline\b/},{begin:/\binline(?=\s)/,keywords:"inline"}],f={begin:[/\(\s*/,/using/,/\s+(?!\))/],beginScope:{2:"keyword"}};return{name:"Scala",keywords:{literal:"true false null",keyword:"type yield lazy override def with val var sealed abstract private trait object if then forSome for while do throw finally protected extends import final return else break new catch super class case package default try this match continue throws implicit export enum given transparent"},contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,s,l,_,d,e.C_NUMBER_MODE,p,g,...E,f,i]}}return Pp=t,Pp}var kp,Yv;function $ye(){if(Yv)return kp;Yv=1;function t(e){const n="[^\\(\\)\\[\\]\\{\\}\",'`;#|\\\\\\s]+",i="(-|\\+)?\\d+([./]\\d+)?",o=i+"[+\\-]"+i+"i",s={$pattern:n,built_in:"case-lambda call/cc class define-class exit-handler field import inherit init-field interface let*-values let-values let/ec mixin opt-lambda override protect provide public rename require require-for-syntax syntax syntax-case syntax-error unit/sig unless when with-syntax and begin call-with-current-continuation call-with-input-file call-with-output-file case cond define define-syntax delay do dynamic-wind else for-each if lambda let let* let-syntax letrec letrec-syntax map or syntax-rules ' * + , ,@ - ... / ; < <= = => > >= ` abs acos angle append apply asin assoc assq assv atan boolean? caar cadr call-with-input-file call-with-output-file call-with-values car cdddar cddddr cdr ceiling char->integer char-alphabetic? char-ci<=? char-ci=? char-ci>? char-downcase char-lower-case? char-numeric? char-ready? char-upcase char-upper-case? char-whitespace? char<=? char=? char>? char? close-input-port close-output-port complex? cons cos current-input-port current-output-port denominator display eof-object? eq? equal? eqv? eval even? exact->inexact exact? exp expt floor force gcd imag-part inexact->exact inexact? input-port? integer->char integer? interaction-environment lcm length list list->string list->vector list-ref list-tail list? load log magnitude make-polar make-rectangular make-string make-vector max member memq memv min modulo negative? newline not null-environment null? number->string number? numerator odd? open-input-file open-output-file output-port? pair? peek-char port? positive? procedure? quasiquote quote quotient rational? rationalize read read-char real-part real? remainder reverse round scheme-report-environment set! set-car! set-cdr! sin sqrt string string->list string->number string->symbol string-append string-ci<=? string-ci=? string-ci>? string-copy string-fill! string-length string-ref string-set! string<=? string=? string>? string? substring symbol->string symbol? tan transcript-off transcript-on truncate values vector vector->list vector-fill! vector-length vector-ref vector-set! with-input-from-file with-output-to-file write write-char zero?"},l={className:"literal",begin:"(#t|#f|#\\\\"+n+"|#\\\\.)"},c={className:"number",variants:[{begin:i,relevance:0},{begin:o,relevance:0},{begin:"#b[0-1]+(/[0-1]+)?"},{begin:"#o[0-7]+(/[0-7]+)?"},{begin:"#x[0-9a-f]+(/[0-9a-f]+)?"}]},d=e.QUOTE_STRING_MODE,_=[e.COMMENT(";","$",{relevance:0}),e.COMMENT("#\\|","\\|#")],p={begin:n,relevance:0},g={className:"symbol",begin:"'"+n},E={endsWithParent:!0,relevance:0},f={variants:[{begin:/'/},{begin:"`"}],contains:[{begin:"\\(",end:"\\)",contains:["self",l,d,c,p,g]}]},S={className:"name",relevance:0,begin:n,keywords:s},h={variants:[{begin:"\\(",end:"\\)"},{begin:"\\[",end:"\\]"}],contains:[{begin:/lambda/,endsWithParent:!0,returnBegin:!0,contains:[S,{endsParent:!0,variants:[{begin:/\(/,end:/\)/},{begin:/\[/,end:/\]/}],contains:[p]}]},S,E]};return E.contains=[l,c,d,p,g,f,h].concat(_),{name:"Scheme",aliases:["scm"],illegal:/\S/,contains:[e.SHEBANG(),c,d,g,f,h].concat(_)}}return kp=t,kp}var Up,qv;function Hye(){if(qv)return Up;qv=1;function t(e){const n=[e.C_NUMBER_MODE,{className:"string",begin:`'|"`,end:`'|"`,contains:[e.BACKSLASH_ESCAPE,{begin:"''"}]}];return{name:"Scilab",aliases:["sci"],keywords:{$pattern:/%?\w+/,keyword:"abort break case clear catch continue do elseif else endfunction end for function global if pause return resume select try then while",literal:"%f %F %t %T %pi %eps %inf %nan %e %i %z %s",built_in:"abs and acos asin atan ceil cd chdir clearglobal cosh cos cumprod deff disp error exec execstr exists exp eye gettext floor fprintf fread fsolve imag isdef isempty isinfisnan isvector lasterror length load linspace list listfiles log10 log2 log max min msprintf mclose mopen ones or pathconvert poly printf prod pwd rand real round sinh sin size gsort sprintf sqrt strcat strcmps tring sum system tanh tan type typename warning zeros matrix"},illegal:'("|#|/\\*|\\s+/\\w+)',contains:[{className:"function",beginKeywords:"function",end:"$",contains:[e.UNDERSCORE_TITLE_MODE,{className:"params",begin:"\\(",end:"\\)"}]},{begin:"[a-zA-Z_][a-zA-Z_0-9]*[\\.']+",relevance:0},{begin:"\\[",end:"\\][\\.']*",relevance:0,contains:n},e.COMMENT("//","$")].concat(n)}}return Up=t,Up}var Fp,$v;function zye(){if($v)return Fp;$v=1;const t=c=>({IMPORTANT:{scope:"meta",begin:"!important"},BLOCK_COMMENT:c.C_BLOCK_COMMENT_MODE,HEXCOLOR:{scope:"number",begin:/#(([0-9a-fA-F]{3,4})|(([0-9a-fA-F]{2}){3,4}))\b/},FUNCTION_DISPATCH:{className:"built_in",begin:/[\w-]+(?=\()/},ATTRIBUTE_SELECTOR_MODE:{scope:"selector-attr",begin:/\[/,end:/\]/,illegal:"$",contains:[c.APOS_STRING_MODE,c.QUOTE_STRING_MODE]},CSS_NUMBER_MODE:{scope:"number",begin:c.NUMBER_RE+"(%|em|ex|ch|rem|vw|vh|vmin|vmax|cm|mm|in|pt|pc|px|deg|grad|rad|turn|s|ms|Hz|kHz|dpi|dpcm|dppx)?",relevance:0},CSS_VARIABLE:{className:"attr",begin:/--[A-Za-z][A-Za-z0-9_-]*/}}),e=["a","abbr","address","article","aside","audio","b","blockquote","body","button","canvas","caption","cite","code","dd","del","details","dfn","div","dl","dt","em","fieldset","figcaption","figure","footer","form","h1","h2","h3","h4","h5","h6","header","hgroup","html","i","iframe","img","input","ins","kbd","label","legend","li","main","mark","menu","nav","object","ol","p","q","quote","samp","section","span","strong","summary","sup","table","tbody","td","textarea","tfoot","th","thead","time","tr","ul","var","video"],n=["any-hover","any-pointer","aspect-ratio","color","color-gamut","color-index","device-aspect-ratio","device-height","device-width","display-mode","forced-colors","grid","height","hover","inverted-colors","monochrome","orientation","overflow-block","overflow-inline","pointer","prefers-color-scheme","prefers-contrast","prefers-reduced-motion","prefers-reduced-transparency","resolution","scan","scripting","update","width","min-width","max-width","min-height","max-height"],i=["active","any-link","blank","checked","current","default","defined","dir","disabled","drop","empty","enabled","first","first-child","first-of-type","fullscreen","future","focus","focus-visible","focus-within","has","host","host-context","hover","indeterminate","in-range","invalid","is","lang","last-child","last-of-type","left","link","local-link","not","nth-child","nth-col","nth-last-child","nth-last-col","nth-last-of-type","nth-of-type","only-child","only-of-type","optional","out-of-range","past","placeholder-shown","read-only","read-write","required","right","root","scope","target","target-within","user-invalid","valid","visited","where"],o=["after","backdrop","before","cue","cue-region","first-letter","first-line","grammar-error","marker","part","placeholder","selection","slotted","spelling-error"],s=["align-content","align-items","align-self","all","animation","animation-delay","animation-direction","animation-duration","animation-fill-mode","animation-iteration-count","animation-name","animation-play-state","animation-timing-function","backface-visibility","background","background-attachment","background-blend-mode","background-clip","background-color","background-image","background-origin","background-position","background-repeat","background-size","block-size","border","border-block","border-block-color","border-block-end","border-block-end-color","border-block-end-style","border-block-end-width","border-block-start","border-block-start-color","border-block-start-style","border-block-start-width","border-block-style","border-block-width","border-bottom","border-bottom-color","border-bottom-left-radius","border-bottom-right-radius","border-bottom-style","border-bottom-width","border-collapse","border-color","border-image","border-image-outset","border-image-repeat","border-image-slice","border-image-source","border-image-width","border-inline","border-inline-color","border-inline-end","border-inline-end-color","border-inline-end-style","border-inline-end-width","border-inline-start","border-inline-start-color","border-inline-start-style","border-inline-start-width","border-inline-style","border-inline-width","border-left","border-left-color","border-left-style","border-left-width","border-radius","border-right","border-right-color","border-right-style","border-right-width","border-spacing","border-style","border-top","border-top-color","border-top-left-radius","border-top-right-radius","border-top-style","border-top-width","border-width","bottom","box-decoration-break","box-shadow","box-sizing","break-after","break-before","break-inside","caption-side","caret-color","clear","clip","clip-path","clip-rule","color","column-count","column-fill","column-gap","column-rule","column-rule-color","column-rule-style","column-rule-width","column-span","column-width","columns","contain","content","content-visibility","counter-increment","counter-reset","cue","cue-after","cue-before","cursor","direction","display","empty-cells","filter","flex","flex-basis","flex-direction","flex-flow","flex-grow","flex-shrink","flex-wrap","float","flow","font","font-display","font-family","font-feature-settings","font-kerning","font-language-override","font-size","font-size-adjust","font-smoothing","font-stretch","font-style","font-synthesis","font-variant","font-variant-caps","font-variant-east-asian","font-variant-ligatures","font-variant-numeric","font-variant-position","font-variation-settings","font-weight","gap","glyph-orientation-vertical","grid","grid-area","grid-auto-columns","grid-auto-flow","grid-auto-rows","grid-column","grid-column-end","grid-column-start","grid-gap","grid-row","grid-row-end","grid-row-start","grid-template","grid-template-areas","grid-template-columns","grid-template-rows","hanging-punctuation","height","hyphens","icon","image-orientation","image-rendering","image-resolution","ime-mode","inline-size","isolation","justify-content","left","letter-spacing","line-break","line-height","list-style","list-style-image","list-style-position","list-style-type","margin","margin-block","margin-block-end","margin-block-start","margin-bottom","margin-inline","margin-inline-end","margin-inline-start","margin-left","margin-right","margin-top","marks","mask","mask-border","mask-border-mode","mask-border-outset","mask-border-repeat","mask-border-slice","mask-border-source","mask-border-width","mask-clip","mask-composite","mask-image","mask-mode","mask-origin","mask-position","mask-repeat","mask-size","mask-type","max-block-size","max-height","max-inline-size","max-width","min-block-size","min-height","min-inline-size","min-width","mix-blend-mode","nav-down","nav-index","nav-left","nav-right","nav-up","none","normal","object-fit","object-position","opacity","order","orphans","outline","outline-color","outline-offset","outline-style","outline-width","overflow","overflow-wrap","overflow-x","overflow-y","padding","padding-block","padding-block-end","padding-block-start","padding-bottom","padding-inline","padding-inline-end","padding-inline-start","padding-left","padding-right","padding-top","page-break-after","page-break-before","page-break-inside","pause","pause-after","pause-before","perspective","perspective-origin","pointer-events","position","quotes","resize","rest","rest-after","rest-before","right","row-gap","scroll-margin","scroll-margin-block","scroll-margin-block-end","scroll-margin-block-start","scroll-margin-bottom","scroll-margin-inline","scroll-margin-inline-end","scroll-margin-inline-start","scroll-margin-left","scroll-margin-right","scroll-margin-top","scroll-padding","scroll-padding-block","scroll-padding-block-end","scroll-padding-block-start","scroll-padding-bottom","scroll-padding-inline","scroll-padding-inline-end","scroll-padding-inline-start","scroll-padding-left","scroll-padding-right","scroll-padding-top","scroll-snap-align","scroll-snap-stop","scroll-snap-type","scrollbar-color","scrollbar-gutter","scrollbar-width","shape-image-threshold","shape-margin","shape-outside","speak","speak-as","src","tab-size","table-layout","text-align","text-align-all","text-align-last","text-combine-upright","text-decoration","text-decoration-color","text-decoration-line","text-decoration-style","text-emphasis","text-emphasis-color","text-emphasis-position","text-emphasis-style","text-indent","text-justify","text-orientation","text-overflow","text-rendering","text-shadow","text-transform","text-underline-position","top","transform","transform-box","transform-origin","transform-style","transition","transition-delay","transition-duration","transition-property","transition-timing-function","unicode-bidi","vertical-align","visibility","voice-balance","voice-duration","voice-family","voice-pitch","voice-range","voice-rate","voice-stress","voice-volume","white-space","widows","width","will-change","word-break","word-spacing","word-wrap","writing-mode","z-index"].reverse();function l(c){const d=t(c),_=o,p=i,g="@[a-z-]+",E="and or not only",S={className:"variable",begin:"(\\$"+"[a-zA-Z-][a-zA-Z0-9_-]*"+")\\b",relevance:0};return{name:"SCSS",case_insensitive:!0,illegal:"[=/|']",contains:[c.C_LINE_COMMENT_MODE,c.C_BLOCK_COMMENT_MODE,d.CSS_NUMBER_MODE,{className:"selector-id",begin:"#[A-Za-z0-9_-]+",relevance:0},{className:"selector-class",begin:"\\.[A-Za-z0-9_-]+",relevance:0},d.ATTRIBUTE_SELECTOR_MODE,{className:"selector-tag",begin:"\\b("+e.join("|")+")\\b",relevance:0},{className:"selector-pseudo",begin:":("+p.join("|")+")"},{className:"selector-pseudo",begin:":(:)?("+_.join("|")+")"},S,{begin:/\(/,end:/\)/,contains:[d.CSS_NUMBER_MODE]},d.CSS_VARIABLE,{className:"attribute",begin:"\\b("+s.join("|")+")\\b"},{begin:"\\b(whitespace|wait|w-resize|visible|vertical-text|vertical-ideographic|uppercase|upper-roman|upper-alpha|underline|transparent|top|thin|thick|text|text-top|text-bottom|tb-rl|table-header-group|table-footer-group|sw-resize|super|strict|static|square|solid|small-caps|separate|se-resize|scroll|s-resize|rtl|row-resize|ridge|right|repeat|repeat-y|repeat-x|relative|progress|pointer|overline|outside|outset|oblique|nowrap|not-allowed|normal|none|nw-resize|no-repeat|no-drop|newspaper|ne-resize|n-resize|move|middle|medium|ltr|lr-tb|lowercase|lower-roman|lower-alpha|loose|list-item|line|line-through|line-edge|lighter|left|keep-all|justify|italic|inter-word|inter-ideograph|inside|inset|inline|inline-block|inherit|inactive|ideograph-space|ideograph-parenthesis|ideograph-numeric|ideograph-alpha|horizontal|hidden|help|hand|groove|fixed|ellipsis|e-resize|double|dotted|distribute|distribute-space|distribute-letter|distribute-all-lines|disc|disabled|default|decimal|dashed|crosshair|collapse|col-resize|circle|char|center|capitalize|break-word|break-all|bottom|both|bolder|bold|block|bidi-override|below|baseline|auto|always|all-scroll|absolute|table|table-cell)\\b"},{begin:/:/,end:/[;}{]/,relevance:0,contains:[d.BLOCK_COMMENT,S,d.HEXCOLOR,d.CSS_NUMBER_MODE,c.QUOTE_STRING_MODE,c.APOS_STRING_MODE,d.IMPORTANT,d.FUNCTION_DISPATCH]},{begin:"@(page|font-face)",keywords:{$pattern:g,keyword:"@page @font-face"}},{begin:"@",end:"[{;]",returnBegin:!0,keywords:{$pattern:/[a-z-]+/,keyword:E,attribute:n.join(" ")},contains:[{begin:g,className:"keyword"},{begin:/[a-z-]+(?=:)/,className:"attribute"},S,c.QUOTE_STRING_MODE,c.APOS_STRING_MODE,d.HEXCOLOR,d.CSS_NUMBER_MODE]},d.FUNCTION_DISPATCH]}}return Fp=l,Fp}var Bp,Hv;function Vye(){if(Hv)return Bp;Hv=1;function t(e){return{name:"Shell Session",aliases:["console","shellsession"],contains:[{className:"meta.prompt",begin:/^\s{0,3}[/~\w\d[\]()@-]*[>%$#][ ]?/,starts:{end:/[^\\](?=\s*$)/,subLanguage:"bash"}}]}}return Bp=t,Bp}var Gp,zv;function Wye(){if(zv)return Gp;zv=1;function t(e){const n=["add","and","cmp","cmpg","cmpl","const","div","double","float","goto","if","int","long","move","mul","neg","new","nop","not","or","rem","return","shl","shr","sput","sub","throw","ushr","xor"],i=["aget","aput","array","check","execute","fill","filled","goto/16","goto/32","iget","instance","invoke","iput","monitor","packed","sget","sparse"],o=["transient","constructor","abstract","final","synthetic","public","private","protected","static","bridge","system"];return{name:"Smali",contains:[{className:"string",begin:'"',end:'"',relevance:0},e.COMMENT("#","$",{relevance:0}),{className:"keyword",variants:[{begin:"\\s*\\.end\\s[a-zA-Z0-9]*"},{begin:"^[ ]*\\.[a-zA-Z]*",relevance:0},{begin:"\\s:[a-zA-Z_0-9]*",relevance:0},{begin:"\\s("+o.join("|")+")"}]},{className:"built_in",variants:[{begin:"\\s("+n.join("|")+")\\s"},{begin:"\\s("+n.join("|")+")((-|/)[a-zA-Z0-9]+)+\\s",relevance:10},{begin:"\\s("+i.join("|")+")((-|/)[a-zA-Z0-9]+)*\\s",relevance:10}]},{className:"class",begin:`L[^(;: -]*;`,relevance:0},{begin:"[vp][0-9]+"}]}}return Gp=t,Gp}var Yp,Vv;function Kye(){if(Vv)return Yp;Vv=1;function t(e){const n="[a-z][a-zA-Z0-9_]*",i={className:"string",begin:"\\$.{1}"},o={className:"symbol",begin:"#"+e.UNDERSCORE_IDENT_RE};return{name:"Smalltalk",aliases:["st"],keywords:["self","super","nil","true","false","thisContext"],contains:[e.COMMENT('"','"'),e.APOS_STRING_MODE,{className:"type",begin:"\\b[A-Z][A-Za-z0-9_]*",relevance:0},{begin:n+":",relevance:0},e.C_NUMBER_MODE,o,i,{begin:"\\|[ ]*"+n+"([ ]+"+n+")*[ ]*\\|",returnBegin:!0,end:/\|/,illegal:/\S/,contains:[{begin:"(\\|[ ]*)?"+n}]},{begin:"#\\(",end:"\\)",contains:[e.APOS_STRING_MODE,i,e.C_NUMBER_MODE,o]}]}}return Yp=t,Yp}var qp,Wv;function Qye(){if(Wv)return qp;Wv=1;function t(e){return{name:"SML (Standard ML)",aliases:["ml"],keywords:{$pattern:"[a-z_]\\w*!?",keyword:"abstype and andalso as case datatype do else end eqtype exception fn fun functor handle if in include infix infixr let local nonfix of op open orelse raise rec sharing sig signature struct structure then type val with withtype where while",built_in:"array bool char exn int list option order real ref string substring vector unit word",literal:"true false NONE SOME LESS EQUAL GREATER nil"},illegal:/\/\/|>>/,contains:[{className:"literal",begin:/\[(\|\|)?\]|\(\)/,relevance:0},e.COMMENT("\\(\\*","\\*\\)",{contains:["self"]}),{className:"symbol",begin:"'[A-Za-z_](?!')[\\w']*"},{className:"type",begin:"`[A-Z][\\w']*"},{className:"type",begin:"\\b[A-Z][\\w']*",relevance:0},{begin:"[a-z_]\\w*'[\\w']*"},e.inherit(e.APOS_STRING_MODE,{className:"string",relevance:0}),e.inherit(e.QUOTE_STRING_MODE,{illegal:null}),{className:"number",begin:"\\b(0[xX][a-fA-F0-9_]+[Lln]?|0[oO][0-7_]+[Lln]?|0[bB][01_]+[Lln]?|[0-9][0-9_]*([Lln]|(\\.[0-9_]*)?([eE][-+]?[0-9_]+)?)?)",relevance:0},{begin:/[-=]>/}]}}return qp=t,qp}var $p,Kv;function Xye(){if(Kv)return $p;Kv=1;function t(e){const n={className:"variable",begin:/\b_+[a-zA-Z]\w*/},i={className:"title",begin:/[a-zA-Z][a-zA-Z_0-9]*_fnc_[a-zA-Z_0-9]+/},o={className:"string",variants:[{begin:'"',end:'"',contains:[{begin:'""',relevance:0}]},{begin:"'",end:"'",contains:[{begin:"''",relevance:0}]}]},s=["break","breakWith","breakOut","breakTo","case","catch","continue","continueWith","default","do","else","exit","exitWith","for","forEach","from","if","local","private","switch","step","then","throw","to","try","waitUntil","while","with"],l=["blufor","civilian","configNull","controlNull","displayNull","diaryRecordNull","east","endl","false","grpNull","independent","lineBreak","locationNull","nil","objNull","opfor","pi","resistance","scriptNull","sideAmbientLife","sideEmpty","sideEnemy","sideFriendly","sideLogic","sideUnknown","taskNull","teamMemberNull","true","west"],c=["abs","accTime","acos","action","actionIDs","actionKeys","actionKeysEx","actionKeysImages","actionKeysNames","actionKeysNamesArray","actionName","actionParams","activateAddons","activatedAddons","activateKey","activeTitleEffectParams","add3DENConnection","add3DENEventHandler","add3DENLayer","addAction","addBackpack","addBackpackCargo","addBackpackCargoGlobal","addBackpackGlobal","addBinocularItem","addCamShake","addCuratorAddons","addCuratorCameraArea","addCuratorEditableObjects","addCuratorEditingArea","addCuratorPoints","addEditorObject","addEventHandler","addForce","addForceGeneratorRTD","addGoggles","addGroupIcon","addHandgunItem","addHeadgear","addItem","addItemCargo","addItemCargoGlobal","addItemPool","addItemToBackpack","addItemToUniform","addItemToVest","addLiveStats","addMagazine","addMagazineAmmoCargo","addMagazineCargo","addMagazineCargoGlobal","addMagazineGlobal","addMagazinePool","addMagazines","addMagazineTurret","addMenu","addMenuItem","addMissionEventHandler","addMPEventHandler","addMusicEventHandler","addonFiles","addOwnedMine","addPlayerScores","addPrimaryWeaponItem","addPublicVariableEventHandler","addRating","addResources","addScore","addScoreSide","addSecondaryWeaponItem","addSwitchableUnit","addTeamMember","addToRemainsCollector","addTorque","addUniform","addUserActionEventHandler","addVehicle","addVest","addWaypoint","addWeapon","addWeaponCargo","addWeaponCargoGlobal","addWeaponGlobal","addWeaponItem","addWeaponPool","addWeaponTurret","addWeaponWithAttachmentsCargo","addWeaponWithAttachmentsCargoGlobal","admin","agent","agents","AGLToASL","aimedAtTarget","aimPos","airDensityCurveRTD","airDensityRTD","airplaneThrottle","airportSide","AISFinishHeal","alive","all3DENEntities","allActiveTitleEffects","allAddonsInfo","allAirports","allControls","allCurators","allCutLayers","allDead","allDeadMen","allDiaryRecords","allDiarySubjects","allDisplays","allEnv3DSoundSources","allGroups","allLODs","allMapMarkers","allMines","allMissionObjects","allObjects","allow3DMode","allowCrewInImmobile","allowCuratorLogicIgnoreAreas","allowDamage","allowDammage","allowedService","allowFileOperations","allowFleeing","allowGetIn","allowService","allowSprint","allPlayers","allSimpleObjects","allSites","allTurrets","allUnits","allUnitsUAV","allUsers","allVariables","ambientTemperature","ammo","ammoOnPylon","and","animate","animateBay","animateDoor","animatePylon","animateSource","animationNames","animationPhase","animationSourcePhase","animationState","apertureParams","append","apply","armoryPoints","arrayIntersect","asin","ASLToAGL","ASLToATL","assert","assignAsCargo","assignAsCargoIndex","assignAsCommander","assignAsDriver","assignAsGunner","assignAsTurret","assignCurator","assignedCargo","assignedCommander","assignedDriver","assignedGroup","assignedGunner","assignedItems","assignedTarget","assignedTeam","assignedVehicle","assignedVehicleRole","assignedVehicles","assignItem","assignTeam","assignToAirport","atan","atan2","atg","ATLToASL","attachedObject","attachedObjects","attachedTo","attachObject","attachTo","attackEnabled","awake","backpack","backpackCargo","backpackContainer","backpackItems","backpackMagazines","backpackSpaceFor","behaviour","benchmark","bezierInterpolation","binocular","binocularItems","binocularMagazine","boundingBox","boundingBoxReal","boundingCenter","brakesDisabled","briefingName","buildingExit","buildingPos","buldozer_EnableRoadDiag","buldozer_IsEnabledRoadDiag","buldozer_LoadNewRoads","buldozer_reloadOperMap","buttonAction","buttonSetAction","cadetMode","calculatePath","calculatePlayerVisibilityByFriendly","call","callExtension","camCommand","camCommit","camCommitPrepared","camCommitted","camConstuctionSetParams","camCreate","camDestroy","cameraEffect","cameraEffectEnableHUD","cameraInterest","cameraOn","cameraView","campaignConfigFile","camPreload","camPreloaded","camPrepareBank","camPrepareDir","camPrepareDive","camPrepareFocus","camPrepareFov","camPrepareFovRange","camPreparePos","camPrepareRelPos","camPrepareTarget","camSetBank","camSetDir","camSetDive","camSetFocus","camSetFov","camSetFovRange","camSetPos","camSetRelPos","camSetTarget","camTarget","camUseNVG","canAdd","canAddItemToBackpack","canAddItemToUniform","canAddItemToVest","cancelSimpleTaskDestination","canDeployWeapon","canFire","canMove","canSlingLoad","canStand","canSuspend","canTriggerDynamicSimulation","canUnloadInCombat","canVehicleCargo","captive","captiveNum","cbChecked","cbSetChecked","ceil","channelEnabled","cheatsEnabled","checkAIFeature","checkVisibility","className","clear3DENAttribute","clear3DENInventory","clearAllItemsFromBackpack","clearBackpackCargo","clearBackpackCargoGlobal","clearForcesRTD","clearGroupIcons","clearItemCargo","clearItemCargoGlobal","clearItemPool","clearMagazineCargo","clearMagazineCargoGlobal","clearMagazinePool","clearOverlay","clearRadio","clearWeaponCargo","clearWeaponCargoGlobal","clearWeaponPool","clientOwner","closeDialog","closeDisplay","closeOverlay","collapseObjectTree","collect3DENHistory","collectiveRTD","collisionDisabledWith","combatBehaviour","combatMode","commandArtilleryFire","commandChat","commander","commandFire","commandFollow","commandFSM","commandGetOut","commandingMenu","commandMove","commandRadio","commandStop","commandSuppressiveFire","commandTarget","commandWatch","comment","commitOverlay","compatibleItems","compatibleMagazines","compile","compileFinal","compileScript","completedFSM","composeText","configClasses","configFile","configHierarchy","configName","configOf","configProperties","configSourceAddonList","configSourceMod","configSourceModList","confirmSensorTarget","connectTerminalToUAV","connectToServer","controlsGroupCtrl","conversationDisabled","copyFromClipboard","copyToClipboard","copyWaypoints","cos","count","countEnemy","countFriendly","countSide","countType","countUnknown","create3DENComposition","create3DENEntity","createAgent","createCenter","createDialog","createDiaryLink","createDiaryRecord","createDiarySubject","createDisplay","createGearDialog","createGroup","createGuardedPoint","createHashMap","createHashMapFromArray","createLocation","createMarker","createMarkerLocal","createMenu","createMine","createMissionDisplay","createMPCampaignDisplay","createSimpleObject","createSimpleTask","createSite","createSoundSource","createTask","createTeam","createTrigger","createUnit","createVehicle","createVehicleCrew","createVehicleLocal","crew","ctAddHeader","ctAddRow","ctClear","ctCurSel","ctData","ctFindHeaderRows","ctFindRowHeader","ctHeaderControls","ctHeaderCount","ctRemoveHeaders","ctRemoveRows","ctrlActivate","ctrlAddEventHandler","ctrlAngle","ctrlAnimateModel","ctrlAnimationPhaseModel","ctrlAt","ctrlAutoScrollDelay","ctrlAutoScrollRewind","ctrlAutoScrollSpeed","ctrlBackgroundColor","ctrlChecked","ctrlClassName","ctrlCommit","ctrlCommitted","ctrlCreate","ctrlDelete","ctrlEnable","ctrlEnabled","ctrlFade","ctrlFontHeight","ctrlForegroundColor","ctrlHTMLLoaded","ctrlIDC","ctrlIDD","ctrlMapAnimAdd","ctrlMapAnimClear","ctrlMapAnimCommit","ctrlMapAnimDone","ctrlMapCursor","ctrlMapMouseOver","ctrlMapPosition","ctrlMapScale","ctrlMapScreenToWorld","ctrlMapSetPosition","ctrlMapWorldToScreen","ctrlModel","ctrlModelDirAndUp","ctrlModelScale","ctrlMousePosition","ctrlParent","ctrlParentControlsGroup","ctrlPosition","ctrlRemoveAllEventHandlers","ctrlRemoveEventHandler","ctrlScale","ctrlScrollValues","ctrlSetActiveColor","ctrlSetAngle","ctrlSetAutoScrollDelay","ctrlSetAutoScrollRewind","ctrlSetAutoScrollSpeed","ctrlSetBackgroundColor","ctrlSetChecked","ctrlSetDisabledColor","ctrlSetEventHandler","ctrlSetFade","ctrlSetFocus","ctrlSetFont","ctrlSetFontH1","ctrlSetFontH1B","ctrlSetFontH2","ctrlSetFontH2B","ctrlSetFontH3","ctrlSetFontH3B","ctrlSetFontH4","ctrlSetFontH4B","ctrlSetFontH5","ctrlSetFontH5B","ctrlSetFontH6","ctrlSetFontH6B","ctrlSetFontHeight","ctrlSetFontHeightH1","ctrlSetFontHeightH2","ctrlSetFontHeightH3","ctrlSetFontHeightH4","ctrlSetFontHeightH5","ctrlSetFontHeightH6","ctrlSetFontHeightSecondary","ctrlSetFontP","ctrlSetFontPB","ctrlSetFontSecondary","ctrlSetForegroundColor","ctrlSetModel","ctrlSetModelDirAndUp","ctrlSetModelScale","ctrlSetMousePosition","ctrlSetPixelPrecision","ctrlSetPosition","ctrlSetPositionH","ctrlSetPositionW","ctrlSetPositionX","ctrlSetPositionY","ctrlSetScale","ctrlSetScrollValues","ctrlSetShadow","ctrlSetStructuredText","ctrlSetText","ctrlSetTextColor","ctrlSetTextColorSecondary","ctrlSetTextSecondary","ctrlSetTextSelection","ctrlSetTooltip","ctrlSetTooltipColorBox","ctrlSetTooltipColorShade","ctrlSetTooltipColorText","ctrlSetTooltipMaxWidth","ctrlSetURL","ctrlSetURLOverlayMode","ctrlShadow","ctrlShow","ctrlShown","ctrlStyle","ctrlText","ctrlTextColor","ctrlTextHeight","ctrlTextSecondary","ctrlTextSelection","ctrlTextWidth","ctrlTooltip","ctrlType","ctrlURL","ctrlURLOverlayMode","ctrlVisible","ctRowControls","ctRowCount","ctSetCurSel","ctSetData","ctSetHeaderTemplate","ctSetRowTemplate","ctSetValue","ctValue","curatorAddons","curatorCamera","curatorCameraArea","curatorCameraAreaCeiling","curatorCoef","curatorEditableObjects","curatorEditingArea","curatorEditingAreaType","curatorMouseOver","curatorPoints","curatorRegisteredObjects","curatorSelected","curatorWaypointCost","current3DENOperation","currentChannel","currentCommand","currentMagazine","currentMagazineDetail","currentMagazineDetailTurret","currentMagazineTurret","currentMuzzle","currentNamespace","currentPilot","currentTask","currentTasks","currentThrowable","currentVisionMode","currentWaypoint","currentWeapon","currentWeaponMode","currentWeaponTurret","currentZeroing","cursorObject","cursorTarget","customChat","customRadio","customWaypointPosition","cutFadeOut","cutObj","cutRsc","cutText","damage","date","dateToNumber","dayTime","deActivateKey","debriefingText","debugFSM","debugLog","decayGraphValues","deg","delete3DENEntities","deleteAt","deleteCenter","deleteCollection","deleteEditorObject","deleteGroup","deleteGroupWhenEmpty","deleteIdentity","deleteLocation","deleteMarker","deleteMarkerLocal","deleteRange","deleteResources","deleteSite","deleteStatus","deleteTeam","deleteVehicle","deleteVehicleCrew","deleteWaypoint","detach","detectedMines","diag_activeMissionFSMs","diag_activeScripts","diag_activeSQFScripts","diag_activeSQSScripts","diag_allMissionEventHandlers","diag_captureFrame","diag_captureFrameToFile","diag_captureSlowFrame","diag_codePerformance","diag_deltaTime","diag_drawmode","diag_dumpCalltraceToLog","diag_dumpScriptAssembly","diag_dumpTerrainSynth","diag_dynamicSimulationEnd","diag_enable","diag_enabled","diag_exportConfig","diag_exportTerrainSVG","diag_fps","diag_fpsmin","diag_frameno","diag_getTerrainSegmentOffset","diag_lightNewLoad","diag_list","diag_localized","diag_log","diag_logSlowFrame","diag_mergeConfigFile","diag_recordTurretLimits","diag_resetFSM","diag_resetshapes","diag_scope","diag_setLightNew","diag_stacktrace","diag_tickTime","diag_toggle","dialog","diarySubjectExists","didJIP","didJIPOwner","difficulty","difficultyEnabled","difficultyEnabledRTD","difficultyOption","direction","directionStabilizationEnabled","directSay","disableAI","disableBrakes","disableCollisionWith","disableConversation","disableDebriefingStats","disableMapIndicators","disableNVGEquipment","disableRemoteSensors","disableSerialization","disableTIEquipment","disableUAVConnectability","disableUserInput","displayAddEventHandler","displayChild","displayCtrl","displayParent","displayRemoveAllEventHandlers","displayRemoveEventHandler","displaySetEventHandler","displayUniqueName","displayUpdate","dissolveTeam","distance","distance2D","distanceSqr","distributionRegion","do3DENAction","doArtilleryFire","doFire","doFollow","doFSM","doGetOut","doMove","doorPhase","doStop","doSuppressiveFire","doTarget","doWatch","drawArrow","drawEllipse","drawIcon","drawIcon3D","drawLaser","drawLine","drawLine3D","drawLink","drawLocation","drawPolygon","drawRectangle","drawTriangle","driver","drop","dynamicSimulationDistance","dynamicSimulationDistanceCoef","dynamicSimulationEnabled","dynamicSimulationSystemEnabled","echo","edit3DENMissionAttributes","editObject","editorSetEventHandler","effectiveCommander","elevatePeriscope","emptyPositions","enableAI","enableAIFeature","enableAimPrecision","enableAttack","enableAudioFeature","enableAutoStartUpRTD","enableAutoTrimRTD","enableCamShake","enableCaustics","enableChannel","enableCollisionWith","enableCopilot","enableDebriefingStats","enableDiagLegend","enableDirectionStabilization","enableDynamicSimulation","enableDynamicSimulationSystem","enableEndDialog","enableEngineArtillery","enableEnvironment","enableFatigue","enableGunLights","enableInfoPanelComponent","enableIRLasers","enableMimics","enablePersonTurret","enableRadio","enableReload","enableRopeAttach","enableSatNormalOnDetail","enableSaving","enableSentences","enableSimulation","enableSimulationGlobal","enableStamina","enableStressDamage","enableTeamSwitch","enableTraffic","enableUAVConnectability","enableUAVWaypoints","enableVehicleCargo","enableVehicleSensor","enableWeaponDisassembly","endLoadingScreen","endMission","engineOn","enginesIsOnRTD","enginesPowerRTD","enginesRpmRTD","enginesTorqueRTD","entities","environmentEnabled","environmentVolume","equipmentDisabled","estimatedEndServerTime","estimatedTimeLeft","evalObjectArgument","everyBackpack","everyContainer","exec","execEditorScript","execFSM","execVM","exp","expectedDestination","exportJIPMessages","eyeDirection","eyePos","face","faction","fadeEnvironment","fadeMusic","fadeRadio","fadeSound","fadeSpeech","failMission","fileExists","fillWeaponsFromPool","find","findAny","findCover","findDisplay","findEditorObject","findEmptyPosition","findEmptyPositionReady","findIf","findNearestEnemy","finishMissionInit","finite","fire","fireAtTarget","firstBackpack","flag","flagAnimationPhase","flagOwner","flagSide","flagTexture","flatten","fleeing","floor","flyInHeight","flyInHeightASL","focusedCtrl","fog","fogForecast","fogParams","forceAddUniform","forceAtPositionRTD","forceCadetDifficulty","forcedMap","forceEnd","forceFlagTexture","forceFollowRoad","forceGeneratorRTD","forceMap","forceRespawn","forceSpeed","forceUnicode","forceWalk","forceWeaponFire","forceWeatherChange","forEachMember","forEachMemberAgent","forEachMemberTeam","forgetTarget","format","formation","formationDirection","formationLeader","formationMembers","formationPosition","formationTask","formatText","formLeader","freeExtension","freeLook","fromEditor","fuel","fullCrew","gearIDCAmmoCount","gearSlotAmmoCount","gearSlotData","gestureState","get","get3DENActionState","get3DENAttribute","get3DENCamera","get3DENConnections","get3DENEntity","get3DENEntityID","get3DENGrid","get3DENIconsVisible","get3DENLayerEntities","get3DENLinesVisible","get3DENMissionAttribute","get3DENMouseOver","get3DENSelected","getAimingCoef","getAllEnv3DSoundControllers","getAllEnvSoundControllers","getAllHitPointsDamage","getAllOwnedMines","getAllPylonsInfo","getAllSoundControllers","getAllUnitTraits","getAmmoCargo","getAnimAimPrecision","getAnimSpeedCoef","getArray","getArtilleryAmmo","getArtilleryComputerSettings","getArtilleryETA","getAssetDLCInfo","getAssignedCuratorLogic","getAssignedCuratorUnit","getAttackTarget","getAudioOptionVolumes","getBackpackCargo","getBleedingRemaining","getBurningValue","getCalculatePlayerVisibilityByFriendly","getCameraViewDirection","getCargoIndex","getCenterOfMass","getClientState","getClientStateNumber","getCompatiblePylonMagazines","getConnectedUAV","getConnectedUAVUnit","getContainerMaxLoad","getCorpse","getCruiseControl","getCursorObjectParams","getCustomAimCoef","getCustomSoundController","getCustomSoundControllerCount","getDammage","getDebriefingText","getDescription","getDir","getDirVisual","getDiverState","getDLCAssetsUsage","getDLCAssetsUsageByName","getDLCs","getDLCUsageTime","getEditorCamera","getEditorMode","getEditorObjectScope","getElevationOffset","getEngineTargetRPMRTD","getEnv3DSoundController","getEnvSoundController","getEventHandlerInfo","getFatigue","getFieldManualStartPage","getForcedFlagTexture","getForcedSpeed","getFriend","getFSMVariable","getFuelCargo","getGraphValues","getGroupIcon","getGroupIconParams","getGroupIcons","getHideFrom","getHit","getHitIndex","getHitPointDamage","getItemCargo","getLighting","getLightingAt","getLoadedModsInfo","getMagazineCargo","getMarkerColor","getMarkerPos","getMarkerSize","getMarkerType","getMass","getMissionConfig","getMissionConfigValue","getMissionDLCs","getMissionLayerEntities","getMissionLayers","getMissionPath","getModelInfo","getMousePosition","getMusicPlayedTime","getNumber","getObjectArgument","getObjectChildren","getObjectDLC","getObjectFOV","getObjectID","getObjectMaterials","getObjectProxy","getObjectScale","getObjectTextures","getObjectType","getObjectViewDistance","getOpticsMode","getOrDefault","getOrDefaultCall","getOxygenRemaining","getPersonUsedDLCs","getPilotCameraDirection","getPilotCameraPosition","getPilotCameraRotation","getPilotCameraTarget","getPiPViewDistance","getPlateNumber","getPlayerChannel","getPlayerID","getPlayerScores","getPlayerUID","getPlayerVoNVolume","getPos","getPosASL","getPosASLVisual","getPosASLW","getPosATL","getPosATLVisual","getPosVisual","getPosWorld","getPosWorldVisual","getPylonMagazines","getRelDir","getRelPos","getRemoteSensorsDisabled","getRepairCargo","getResolution","getRoadInfo","getRotorBrakeRTD","getSensorTargets","getSensorThreats","getShadowDistance","getShotParents","getSlingLoad","getSoundController","getSoundControllerResult","getSpeed","getStamina","getStatValue","getSteamFriendsServers","getSubtitleOptions","getSuppression","getTerrainGrid","getTerrainHeight","getTerrainHeightASL","getTerrainInfo","getText","getTextRaw","getTextureInfo","getTextWidth","getTiParameters","getTotalDLCUsageTime","getTrimOffsetRTD","getTurretLimits","getTurretOpticsMode","getUnitFreefallInfo","getUnitLoadout","getUnitTrait","getUnloadInCombat","getUserInfo","getUserMFDText","getUserMFDValue","getVariable","getVehicleCargo","getVehicleTiPars","getWeaponCargo","getWeaponSway","getWingsOrientationRTD","getWingsPositionRTD","getWPPos","glanceAt","globalChat","globalRadio","goggles","goto","group","groupChat","groupFromNetId","groupIconSelectable","groupIconsVisible","groupID","groupOwner","groupRadio","groups","groupSelectedUnits","groupSelectUnit","gunner","gusts","halt","handgunItems","handgunMagazine","handgunWeapon","handsHit","hashValue","hasInterface","hasPilotCamera","hasWeapon","hcAllGroups","hcGroupParams","hcLeader","hcRemoveAllGroups","hcRemoveGroup","hcSelected","hcSelectGroup","hcSetGroup","hcShowBar","hcShownBar","headgear","hideBody","hideObject","hideObjectGlobal","hideSelection","hint","hintC","hintCadet","hintSilent","hmd","hostMission","htmlLoad","HUDMovementLevels","humidity","image","importAllGroups","importance","in","inArea","inAreaArray","incapacitatedState","inflame","inflamed","infoPanel","infoPanelComponentEnabled","infoPanelComponents","infoPanels","inGameUISetEventHandler","inheritsFrom","initAmbientLife","inPolygon","inputAction","inputController","inputMouse","inRangeOfArtillery","insert","insertEditorObject","intersect","is3DEN","is3DENMultiplayer","is3DENPreview","isAbleToBreathe","isActionMenuVisible","isAgent","isAimPrecisionEnabled","isAllowedCrewInImmobile","isArray","isAutoHoverOn","isAutonomous","isAutoStartUpEnabledRTD","isAutotest","isAutoTrimOnRTD","isAwake","isBleeding","isBurning","isClass","isCollisionLightOn","isCopilotEnabled","isDamageAllowed","isDedicated","isDLCAvailable","isEngineOn","isEqualRef","isEqualTo","isEqualType","isEqualTypeAll","isEqualTypeAny","isEqualTypeArray","isEqualTypeParams","isFilePatchingEnabled","isFinal","isFlashlightOn","isFlatEmpty","isForcedWalk","isFormationLeader","isGameFocused","isGamePaused","isGroupDeletedWhenEmpty","isHidden","isInRemainsCollector","isInstructorFigureEnabled","isIRLaserOn","isKeyActive","isKindOf","isLaserOn","isLightOn","isLocalized","isManualFire","isMarkedForCollection","isMissionProfileNamespaceLoaded","isMultiplayer","isMultiplayerSolo","isNil","isNotEqualRef","isNotEqualTo","isNull","isNumber","isObjectHidden","isObjectRTD","isOnRoad","isPiPEnabled","isPlayer","isRealTime","isRemoteExecuted","isRemoteExecutedJIP","isSaving","isSensorTargetConfirmed","isServer","isShowing3DIcons","isSimpleObject","isSprintAllowed","isStaminaEnabled","isSteamMission","isSteamOverlayEnabled","isStreamFriendlyUIEnabled","isStressDamageEnabled","isText","isTouchingGround","isTurnedOut","isTutHintsEnabled","isUAVConnectable","isUAVConnected","isUIContext","isUniformAllowed","isVehicleCargo","isVehicleRadarOn","isVehicleSensorEnabled","isWalking","isWeaponDeployed","isWeaponRested","itemCargo","items","itemsWithMagazines","join","joinAs","joinAsSilent","joinSilent","joinString","kbAddDatabase","kbAddDatabaseTargets","kbAddTopic","kbHasTopic","kbReact","kbRemoveTopic","kbTell","kbWasSaid","keyImage","keyName","keys","knowsAbout","land","landAt","landResult","language","laserTarget","lbAdd","lbClear","lbColor","lbColorRight","lbCurSel","lbData","lbDelete","lbIsSelected","lbPicture","lbPictureRight","lbSelection","lbSetColor","lbSetColorRight","lbSetCurSel","lbSetData","lbSetPicture","lbSetPictureColor","lbSetPictureColorDisabled","lbSetPictureColorSelected","lbSetPictureRight","lbSetPictureRightColor","lbSetPictureRightColorDisabled","lbSetPictureRightColorSelected","lbSetSelectColor","lbSetSelectColorRight","lbSetSelected","lbSetText","lbSetTextRight","lbSetTooltip","lbSetValue","lbSize","lbSort","lbSortBy","lbSortByValue","lbText","lbTextRight","lbTooltip","lbValue","leader","leaderboardDeInit","leaderboardGetRows","leaderboardInit","leaderboardRequestRowsFriends","leaderboardRequestRowsGlobal","leaderboardRequestRowsGlobalAroundUser","leaderboardsRequestUploadScore","leaderboardsRequestUploadScoreKeepBest","leaderboardState","leaveVehicle","libraryCredits","libraryDisclaimers","lifeState","lightAttachObject","lightDetachObject","lightIsOn","lightnings","limitSpeed","linearConversion","lineIntersects","lineIntersectsObjs","lineIntersectsSurfaces","lineIntersectsWith","linkItem","list","listObjects","listRemoteTargets","listVehicleSensors","ln","lnbAddArray","lnbAddColumn","lnbAddRow","lnbClear","lnbColor","lnbColorRight","lnbCurSelRow","lnbData","lnbDeleteColumn","lnbDeleteRow","lnbGetColumnsPosition","lnbPicture","lnbPictureRight","lnbSetColor","lnbSetColorRight","lnbSetColumnsPos","lnbSetCurSelRow","lnbSetData","lnbSetPicture","lnbSetPictureColor","lnbSetPictureColorRight","lnbSetPictureColorSelected","lnbSetPictureColorSelectedRight","lnbSetPictureRight","lnbSetText","lnbSetTextRight","lnbSetTooltip","lnbSetValue","lnbSize","lnbSort","lnbSortBy","lnbSortByValue","lnbText","lnbTextRight","lnbValue","load","loadAbs","loadBackpack","loadConfig","loadFile","loadGame","loadIdentity","loadMagazine","loadOverlay","loadStatus","loadUniform","loadVest","localize","localNamespace","locationPosition","lock","lockCameraTo","lockCargo","lockDriver","locked","lockedCameraTo","lockedCargo","lockedDriver","lockedInventory","lockedTurret","lockIdentity","lockInventory","lockTurret","lockWp","log","logEntities","logNetwork","logNetworkTerminate","lookAt","lookAtPos","magazineCargo","magazines","magazinesAllTurrets","magazinesAmmo","magazinesAmmoCargo","magazinesAmmoFull","magazinesDetail","magazinesDetailBackpack","magazinesDetailUniform","magazinesDetailVest","magazinesTurret","magazineTurretAmmo","mapAnimAdd","mapAnimClear","mapAnimCommit","mapAnimDone","mapCenterOnCamera","mapGridPosition","markAsFinishedOnSteam","markerAlpha","markerBrush","markerChannel","markerColor","markerDir","markerPolyline","markerPos","markerShadow","markerShape","markerSize","markerText","markerType","matrixMultiply","matrixTranspose","max","maxLoad","members","menuAction","menuAdd","menuChecked","menuClear","menuCollapse","menuData","menuDelete","menuEnable","menuEnabled","menuExpand","menuHover","menuPicture","menuSetAction","menuSetCheck","menuSetData","menuSetPicture","menuSetShortcut","menuSetText","menuSetURL","menuSetValue","menuShortcut","menuShortcutText","menuSize","menuSort","menuText","menuURL","menuValue","merge","min","mineActive","mineDetectedBy","missileTarget","missileTargetPos","missionConfigFile","missionDifficulty","missionEnd","missionName","missionNameSource","missionNamespace","missionProfileNamespace","missionStart","missionVersion","mod","modelToWorld","modelToWorldVisual","modelToWorldVisualWorld","modelToWorldWorld","modParams","moonIntensity","moonPhase","morale","move","move3DENCamera","moveInAny","moveInCargo","moveInCommander","moveInDriver","moveInGunner","moveInTurret","moveObjectToEnd","moveOut","moveTime","moveTo","moveToCompleted","moveToFailed","musicVolume","name","namedProperties","nameSound","nearEntities","nearestBuilding","nearestLocation","nearestLocations","nearestLocationWithDubbing","nearestMines","nearestObject","nearestObjects","nearestTerrainObjects","nearObjects","nearObjectsReady","nearRoads","nearSupplies","nearTargets","needReload","needService","netId","netObjNull","newOverlay","nextMenuItemIndex","nextWeatherChange","nMenuItems","not","numberOfEnginesRTD","numberToDate","objectCurators","objectFromNetId","objectParent","objStatus","onBriefingGroup","onBriefingNotes","onBriefingPlan","onBriefingTeamSwitch","onCommandModeChanged","onDoubleClick","onEachFrame","onGroupIconClick","onGroupIconOverEnter","onGroupIconOverLeave","onHCGroupSelectionChanged","onMapSingleClick","onPlayerConnected","onPlayerDisconnected","onPreloadFinished","onPreloadStarted","onShowNewObject","onTeamSwitch","openCuratorInterface","openDLCPage","openGPS","openMap","openSteamApp","openYoutubeVideo","or","orderGetIn","overcast","overcastForecast","owner","param","params","parseNumber","parseSimpleArray","parseText","parsingNamespace","particlesQuality","periscopeElevation","pickWeaponPool","pitch","pixelGrid","pixelGridBase","pixelGridNoUIScale","pixelH","pixelW","playableSlotsNumber","playableUnits","playAction","playActionNow","player","playerRespawnTime","playerSide","playersNumber","playGesture","playMission","playMove","playMoveNow","playMusic","playScriptedMission","playSound","playSound3D","playSoundUI","pose","position","positionCameraToWorld","posScreenToWorld","posWorldToScreen","ppEffectAdjust","ppEffectCommit","ppEffectCommitted","ppEffectCreate","ppEffectDestroy","ppEffectEnable","ppEffectEnabled","ppEffectForceInNVG","precision","preloadCamera","preloadObject","preloadSound","preloadTitleObj","preloadTitleRsc","preprocessFile","preprocessFileLineNumbers","primaryWeapon","primaryWeaponItems","primaryWeaponMagazine","priority","processDiaryLink","productVersion","profileName","profileNamespace","profileNameSteam","progressLoadingScreen","progressPosition","progressSetPosition","publicVariable","publicVariableClient","publicVariableServer","pushBack","pushBackUnique","putWeaponPool","queryItemsPool","queryMagazinePool","queryWeaponPool","rad","radioChannelAdd","radioChannelCreate","radioChannelInfo","radioChannelRemove","radioChannelSetCallSign","radioChannelSetLabel","radioEnabled","radioVolume","rain","rainbow","rainParams","random","rank","rankId","rating","rectangular","regexFind","regexMatch","regexReplace","registeredTasks","registerTask","reload","reloadEnabled","remoteControl","remoteExec","remoteExecCall","remoteExecutedOwner","remove3DENConnection","remove3DENEventHandler","remove3DENLayer","removeAction","removeAll3DENEventHandlers","removeAllActions","removeAllAssignedItems","removeAllBinocularItems","removeAllContainers","removeAllCuratorAddons","removeAllCuratorCameraAreas","removeAllCuratorEditingAreas","removeAllEventHandlers","removeAllHandgunItems","removeAllItems","removeAllItemsWithMagazines","removeAllMissionEventHandlers","removeAllMPEventHandlers","removeAllMusicEventHandlers","removeAllOwnedMines","removeAllPrimaryWeaponItems","removeAllSecondaryWeaponItems","removeAllUserActionEventHandlers","removeAllWeapons","removeBackpack","removeBackpackGlobal","removeBinocularItem","removeCuratorAddons","removeCuratorCameraArea","removeCuratorEditableObjects","removeCuratorEditingArea","removeDiaryRecord","removeDiarySubject","removeDrawIcon","removeDrawLinks","removeEventHandler","removeFromRemainsCollector","removeGoggles","removeGroupIcon","removeHandgunItem","removeHeadgear","removeItem","removeItemFromBackpack","removeItemFromUniform","removeItemFromVest","removeItems","removeMagazine","removeMagazineGlobal","removeMagazines","removeMagazinesTurret","removeMagazineTurret","removeMenuItem","removeMissionEventHandler","removeMPEventHandler","removeMusicEventHandler","removeOwnedMine","removePrimaryWeaponItem","removeSecondaryWeaponItem","removeSimpleTask","removeSwitchableUnit","removeTeamMember","removeUniform","removeUserActionEventHandler","removeVest","removeWeapon","removeWeaponAttachmentCargo","removeWeaponCargo","removeWeaponGlobal","removeWeaponTurret","reportRemoteTarget","requiredVersion","resetCamShake","resetSubgroupDirection","resize","resources","respawnVehicle","restartEditorCamera","reveal","revealMine","reverse","reversedMouseY","roadAt","roadsConnectedTo","roleDescription","ropeAttachedObjects","ropeAttachedTo","ropeAttachEnabled","ropeAttachTo","ropeCreate","ropeCut","ropeDestroy","ropeDetach","ropeEndPosition","ropeLength","ropes","ropesAttachedTo","ropeSegments","ropeUnwind","ropeUnwound","rotorsForcesRTD","rotorsRpmRTD","round","runInitScript","safeZoneH","safeZoneW","safeZoneWAbs","safeZoneX","safeZoneXAbs","safeZoneY","save3DENInventory","saveGame","saveIdentity","saveJoysticks","saveMissionProfileNamespace","saveOverlay","saveProfileNamespace","saveStatus","saveVar","savingEnabled","say","say2D","say3D","scopeName","score","scoreSide","screenshot","screenToWorld","scriptDone","scriptName","scudState","secondaryWeapon","secondaryWeaponItems","secondaryWeaponMagazine","select","selectBestPlaces","selectDiarySubject","selectedEditorObjects","selectEditorObject","selectionNames","selectionPosition","selectionVectorDirAndUp","selectLeader","selectMax","selectMin","selectNoPlayer","selectPlayer","selectRandom","selectRandomWeighted","selectWeapon","selectWeaponTurret","sendAUMessage","sendSimpleCommand","sendTask","sendTaskResult","sendUDPMessage","sentencesEnabled","serverCommand","serverCommandAvailable","serverCommandExecutable","serverName","serverNamespace","serverTime","set","set3DENAttribute","set3DENAttributes","set3DENGrid","set3DENIconsVisible","set3DENLayer","set3DENLinesVisible","set3DENLogicType","set3DENMissionAttribute","set3DENMissionAttributes","set3DENModelsVisible","set3DENObjectType","set3DENSelected","setAccTime","setActualCollectiveRTD","setAirplaneThrottle","setAirportSide","setAmmo","setAmmoCargo","setAmmoOnPylon","setAnimSpeedCoef","setAperture","setApertureNew","setArmoryPoints","setAttributes","setAutonomous","setBehaviour","setBehaviourStrong","setBleedingRemaining","setBrakesRTD","setCameraInterest","setCamShakeDefParams","setCamShakeParams","setCamUseTi","setCaptive","setCenterOfMass","setCollisionLight","setCombatBehaviour","setCombatMode","setCompassOscillation","setConvoySeparation","setCruiseControl","setCuratorCameraAreaCeiling","setCuratorCoef","setCuratorEditingAreaType","setCuratorWaypointCost","setCurrentChannel","setCurrentTask","setCurrentWaypoint","setCustomAimCoef","SetCustomMissionData","setCustomSoundController","setCustomWeightRTD","setDamage","setDammage","setDate","setDebriefingText","setDefaultCamera","setDestination","setDetailMapBlendPars","setDiaryRecordText","setDiarySubjectPicture","setDir","setDirection","setDrawIcon","setDriveOnPath","setDropInterval","setDynamicSimulationDistance","setDynamicSimulationDistanceCoef","setEditorMode","setEditorObjectScope","setEffectCondition","setEffectiveCommander","setEngineRpmRTD","setFace","setFaceanimation","setFatigue","setFeatureType","setFlagAnimationPhase","setFlagOwner","setFlagSide","setFlagTexture","setFog","setForceGeneratorRTD","setFormation","setFormationTask","setFormDir","setFriend","setFromEditor","setFSMVariable","setFuel","setFuelCargo","setGroupIcon","setGroupIconParams","setGroupIconsSelectable","setGroupIconsVisible","setGroupid","setGroupIdGlobal","setGroupOwner","setGusts","setHideBehind","setHit","setHitIndex","setHitPointDamage","setHorizonParallaxCoef","setHUDMovementLevels","setHumidity","setIdentity","setImportance","setInfoPanel","setLeader","setLightAmbient","setLightAttenuation","setLightBrightness","setLightColor","setLightConePars","setLightDayLight","setLightFlareMaxDistance","setLightFlareSize","setLightIntensity","setLightIR","setLightnings","setLightUseFlare","setLightVolumeShape","setLocalWindParams","setMagazineTurretAmmo","setMarkerAlpha","setMarkerAlphaLocal","setMarkerBrush","setMarkerBrushLocal","setMarkerColor","setMarkerColorLocal","setMarkerDir","setMarkerDirLocal","setMarkerPolyline","setMarkerPolylineLocal","setMarkerPos","setMarkerPosLocal","setMarkerShadow","setMarkerShadowLocal","setMarkerShape","setMarkerShapeLocal","setMarkerSize","setMarkerSizeLocal","setMarkerText","setMarkerTextLocal","setMarkerType","setMarkerTypeLocal","setMass","setMaxLoad","setMimic","setMissileTarget","setMissileTargetPos","setMousePosition","setMusicEffect","setMusicEventHandler","setName","setNameSound","setObjectArguments","setObjectMaterial","setObjectMaterialGlobal","setObjectProxy","setObjectScale","setObjectTexture","setObjectTextureGlobal","setObjectViewDistance","setOpticsMode","setOvercast","setOwner","setOxygenRemaining","setParticleCircle","setParticleClass","setParticleFire","setParticleParams","setParticleRandom","setPilotCameraDirection","setPilotCameraRotation","setPilotCameraTarget","setPilotLight","setPiPEffect","setPiPViewDistance","setPitch","setPlateNumber","setPlayable","setPlayerRespawnTime","setPlayerVoNVolume","setPos","setPosASL","setPosASL2","setPosASLW","setPosATL","setPosition","setPosWorld","setPylonLoadout","setPylonsPriority","setRadioMsg","setRain","setRainbow","setRandomLip","setRank","setRectangular","setRepairCargo","setRotorBrakeRTD","setShadowDistance","setShotParents","setSide","setSimpleTaskAlwaysVisible","setSimpleTaskCustomData","setSimpleTaskDescription","setSimpleTaskDestination","setSimpleTaskTarget","setSimpleTaskType","setSimulWeatherLayers","setSize","setSkill","setSlingLoad","setSoundEffect","setSpeaker","setSpeech","setSpeedMode","setStamina","setStaminaScheme","setStatValue","setSuppression","setSystemOfUnits","setTargetAge","setTaskMarkerOffset","setTaskResult","setTaskState","setTerrainGrid","setTerrainHeight","setText","setTimeMultiplier","setTiParameter","setTitleEffect","setTowParent","setTrafficDensity","setTrafficDistance","setTrafficGap","setTrafficSpeed","setTriggerActivation","setTriggerArea","setTriggerInterval","setTriggerStatements","setTriggerText","setTriggerTimeout","setTriggerType","setTurretLimits","setTurretOpticsMode","setType","setUnconscious","setUnitAbility","setUnitCombatMode","setUnitFreefallHeight","setUnitLoadout","setUnitPos","setUnitPosWeak","setUnitRank","setUnitRecoilCoefficient","setUnitTrait","setUnloadInCombat","setUserActionText","setUserMFDText","setUserMFDValue","setVariable","setVectorDir","setVectorDirAndUp","setVectorUp","setVehicleAmmo","setVehicleAmmoDef","setVehicleArmor","setVehicleCargo","setVehicleId","setVehicleLock","setVehiclePosition","setVehicleRadar","setVehicleReceiveRemoteTargets","setVehicleReportOwnPosition","setVehicleReportRemoteTargets","setVehicleTiPars","setVehicleVarName","setVelocity","setVelocityModelSpace","setVelocityTransformation","setViewDistance","setVisibleIfTreeCollapsed","setWantedRPMRTD","setWaves","setWaypointBehaviour","setWaypointCombatMode","setWaypointCompletionRadius","setWaypointDescription","setWaypointForceBehaviour","setWaypointFormation","setWaypointHousePosition","setWaypointLoiterAltitude","setWaypointLoiterRadius","setWaypointLoiterType","setWaypointName","setWaypointPosition","setWaypointScript","setWaypointSpeed","setWaypointStatements","setWaypointTimeout","setWaypointType","setWaypointVisible","setWeaponReloadingTime","setWeaponZeroing","setWind","setWindDir","setWindForce","setWindStr","setWingForceScaleRTD","setWPPos","show3DIcons","showChat","showCinemaBorder","showCommandingMenu","showCompass","showCuratorCompass","showGps","showHUD","showLegend","showMap","shownArtilleryComputer","shownChat","shownCompass","shownCuratorCompass","showNewEditorObject","shownGps","shownHUD","shownMap","shownPad","shownRadio","shownScoretable","shownSubtitles","shownUAVFeed","shownWarrant","shownWatch","showPad","showRadio","showScoretable","showSubtitles","showUAVFeed","showWarrant","showWatch","showWaypoint","showWaypoints","side","sideChat","sideRadio","simpleTasks","simulationEnabled","simulCloudDensity","simulCloudOcclusion","simulInClouds","simulWeatherSync","sin","size","sizeOf","skill","skillFinal","skipTime","sleep","sliderPosition","sliderRange","sliderSetPosition","sliderSetRange","sliderSetSpeed","sliderSpeed","slingLoadAssistantShown","soldierMagazines","someAmmo","sort","soundVolume","spawn","speaker","speechVolume","speed","speedMode","splitString","sqrt","squadParams","stance","startLoadingScreen","stop","stopEngineRTD","stopped","str","sunOrMoon","supportInfo","suppressFor","surfaceIsWater","surfaceNormal","surfaceTexture","surfaceType","swimInDepth","switchableUnits","switchAction","switchCamera","switchGesture","switchLight","switchMove","synchronizedObjects","synchronizedTriggers","synchronizedWaypoints","synchronizeObjectsAdd","synchronizeObjectsRemove","synchronizeTrigger","synchronizeWaypoint","systemChat","systemOfUnits","systemTime","systemTimeUTC","tan","targetKnowledge","targets","targetsAggregate","targetsQuery","taskAlwaysVisible","taskChildren","taskCompleted","taskCustomData","taskDescription","taskDestination","taskHint","taskMarkerOffset","taskName","taskParent","taskResult","taskState","taskType","teamMember","teamName","teams","teamSwitch","teamSwitchEnabled","teamType","terminate","terrainIntersect","terrainIntersectASL","terrainIntersectAtASL","text","textLog","textLogFormat","tg","time","timeMultiplier","titleCut","titleFadeOut","titleObj","titleRsc","titleText","toArray","toFixed","toLower","toLowerANSI","toString","toUpper","toUpperANSI","triggerActivated","triggerActivation","triggerAmmo","triggerArea","triggerAttachedVehicle","triggerAttachObject","triggerAttachVehicle","triggerDynamicSimulation","triggerInterval","triggerStatements","triggerText","triggerTimeout","triggerTimeoutCurrent","triggerType","trim","turretLocal","turretOwner","turretUnit","tvAdd","tvClear","tvCollapse","tvCollapseAll","tvCount","tvCurSel","tvData","tvDelete","tvExpand","tvExpandAll","tvIsSelected","tvPicture","tvPictureRight","tvSelection","tvSetColor","tvSetCurSel","tvSetData","tvSetPicture","tvSetPictureColor","tvSetPictureColorDisabled","tvSetPictureColorSelected","tvSetPictureRight","tvSetPictureRightColor","tvSetPictureRightColorDisabled","tvSetPictureRightColorSelected","tvSetSelectColor","tvSetSelected","tvSetText","tvSetTooltip","tvSetValue","tvSort","tvSortAll","tvSortByValue","tvSortByValueAll","tvText","tvTooltip","tvValue","type","typeName","typeOf","UAVControl","uiNamespace","uiSleep","unassignCurator","unassignItem","unassignTeam","unassignVehicle","underwater","uniform","uniformContainer","uniformItems","uniformMagazines","uniqueUnitItems","unitAddons","unitAimPosition","unitAimPositionVisual","unitBackpack","unitCombatMode","unitIsUAV","unitPos","unitReady","unitRecoilCoefficient","units","unitsBelowHeight","unitTurret","unlinkItem","unlockAchievement","unregisterTask","updateDrawIcon","updateMenuItem","updateObjectTree","useAIOperMapObstructionTest","useAISteeringComponent","useAudioTimeForMoves","userInputDisabled","values","vectorAdd","vectorCos","vectorCrossProduct","vectorDiff","vectorDir","vectorDirVisual","vectorDistance","vectorDistanceSqr","vectorDotProduct","vectorFromTo","vectorLinearConversion","vectorMagnitude","vectorMagnitudeSqr","vectorModelToWorld","vectorModelToWorldVisual","vectorMultiply","vectorNormalized","vectorUp","vectorUpVisual","vectorWorldToModel","vectorWorldToModelVisual","vehicle","vehicleCargoEnabled","vehicleChat","vehicleMoveInfo","vehicleRadio","vehicleReceiveRemoteTargets","vehicleReportOwnPosition","vehicleReportRemoteTargets","vehicles","vehicleVarName","velocity","velocityModelSpace","verifySignature","vest","vestContainer","vestItems","vestMagazines","viewDistance","visibleCompass","visibleGps","visibleMap","visiblePosition","visiblePositionASL","visibleScoretable","visibleWatch","waves","waypointAttachedObject","waypointAttachedVehicle","waypointAttachObject","waypointAttachVehicle","waypointBehaviour","waypointCombatMode","waypointCompletionRadius","waypointDescription","waypointForceBehaviour","waypointFormation","waypointHousePosition","waypointLoiterAltitude","waypointLoiterRadius","waypointLoiterType","waypointName","waypointPosition","waypoints","waypointScript","waypointsEnabledUAV","waypointShow","waypointSpeed","waypointStatements","waypointTimeout","waypointTimeoutCurrent","waypointType","waypointVisible","weaponAccessories","weaponAccessoriesCargo","weaponCargo","weaponDirection","weaponInertia","weaponLowered","weaponReloadingTime","weapons","weaponsInfo","weaponsItems","weaponsItemsCargo","weaponState","weaponsTurret","weightRTD","WFSideText","wind","windDir","windRTD","windStr","wingsForcesRTD","worldName","worldSize","worldToModel","worldToModelVisual","worldToScreen"],d={className:"meta",begin:/#\s*[a-z]+\b/,end:/$/,keywords:"define undef ifdef ifndef else endif include if",contains:[{begin:/\\\n/,relevance:0},e.inherit(o,{className:"string"}),{begin:/<[^\n>]*>/,end:/$/,illegal:"\\n"},e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]};return{name:"SQF",case_insensitive:!0,keywords:{keyword:s,built_in:c,literal:l},contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.NUMBER_MODE,n,i,o,d],illegal:[/\$[^a-fA-F0-9]/,/\w\$/,/\?/,/@/,/ \| /,/[a-zA-Z_]\./,/\:\=/,/\[\:/]}}return $p=t,$p}var Hp,Qv;function Zye(){if(Qv)return Hp;Qv=1;function t(e){const n=e.regex,i=e.COMMENT("--","$"),o={className:"string",variants:[{begin:/'/,end:/'/,contains:[{begin:/''/}]}]},s={begin:/"/,end:/"/,contains:[{begin:/""/}]},l=["true","false","unknown"],c=["double precision","large object","with timezone","without timezone"],d=["bigint","binary","blob","boolean","char","character","clob","date","dec","decfloat","decimal","float","int","integer","interval","nchar","nclob","national","numeric","real","row","smallint","time","timestamp","varchar","varying","varbinary"],_=["add","asc","collation","desc","final","first","last","view"],p=["abs","acos","all","allocate","alter","and","any","are","array","array_agg","array_max_cardinality","as","asensitive","asin","asymmetric","at","atan","atomic","authorization","avg","begin","begin_frame","begin_partition","between","bigint","binary","blob","boolean","both","by","call","called","cardinality","cascaded","case","cast","ceil","ceiling","char","char_length","character","character_length","check","classifier","clob","close","coalesce","collate","collect","column","commit","condition","connect","constraint","contains","convert","copy","corr","corresponding","cos","cosh","count","covar_pop","covar_samp","create","cross","cube","cume_dist","current","current_catalog","current_date","current_default_transform_group","current_path","current_role","current_row","current_schema","current_time","current_timestamp","current_path","current_role","current_transform_group_for_type","current_user","cursor","cycle","date","day","deallocate","dec","decimal","decfloat","declare","default","define","delete","dense_rank","deref","describe","deterministic","disconnect","distinct","double","drop","dynamic","each","element","else","empty","end","end_frame","end_partition","end-exec","equals","escape","every","except","exec","execute","exists","exp","external","extract","false","fetch","filter","first_value","float","floor","for","foreign","frame_row","free","from","full","function","fusion","get","global","grant","group","grouping","groups","having","hold","hour","identity","in","indicator","initial","inner","inout","insensitive","insert","int","integer","intersect","intersection","interval","into","is","join","json_array","json_arrayagg","json_exists","json_object","json_objectagg","json_query","json_table","json_table_primitive","json_value","lag","language","large","last_value","lateral","lead","leading","left","like","like_regex","listagg","ln","local","localtime","localtimestamp","log","log10","lower","match","match_number","match_recognize","matches","max","member","merge","method","min","minute","mod","modifies","module","month","multiset","national","natural","nchar","nclob","new","no","none","normalize","not","nth_value","ntile","null","nullif","numeric","octet_length","occurrences_regex","of","offset","old","omit","on","one","only","open","or","order","out","outer","over","overlaps","overlay","parameter","partition","pattern","per","percent","percent_rank","percentile_cont","percentile_disc","period","portion","position","position_regex","power","precedes","precision","prepare","primary","procedure","ptf","range","rank","reads","real","recursive","ref","references","referencing","regr_avgx","regr_avgy","regr_count","regr_intercept","regr_r2","regr_slope","regr_sxx","regr_sxy","regr_syy","release","result","return","returns","revoke","right","rollback","rollup","row","row_number","rows","running","savepoint","scope","scroll","search","second","seek","select","sensitive","session_user","set","show","similar","sin","sinh","skip","smallint","some","specific","specifictype","sql","sqlexception","sqlstate","sqlwarning","sqrt","start","static","stddev_pop","stddev_samp","submultiset","subset","substring","substring_regex","succeeds","sum","symmetric","system","system_time","system_user","table","tablesample","tan","tanh","then","time","timestamp","timezone_hour","timezone_minute","to","trailing","translate","translate_regex","translation","treat","trigger","trim","trim_array","true","truncate","uescape","union","unique","unknown","unnest","update","upper","user","using","value","values","value_of","var_pop","var_samp","varbinary","varchar","varying","versioning","when","whenever","where","width_bucket","window","with","within","without","year"],g=["abs","acos","array_agg","asin","atan","avg","cast","ceil","ceiling","coalesce","corr","cos","cosh","count","covar_pop","covar_samp","cume_dist","dense_rank","deref","element","exp","extract","first_value","floor","json_array","json_arrayagg","json_exists","json_object","json_objectagg","json_query","json_table","json_table_primitive","json_value","lag","last_value","lead","listagg","ln","log","log10","lower","max","min","mod","nth_value","ntile","nullif","percent_rank","percentile_cont","percentile_disc","position","position_regex","power","rank","regr_avgx","regr_avgy","regr_count","regr_intercept","regr_r2","regr_slope","regr_sxx","regr_sxy","regr_syy","row_number","sin","sinh","sqrt","stddev_pop","stddev_samp","substring","substring_regex","sum","tan","tanh","translate","translate_regex","treat","trim","trim_array","unnest","upper","value_of","var_pop","var_samp","width_bucket"],E=["current_catalog","current_date","current_default_transform_group","current_path","current_role","current_schema","current_transform_group_for_type","current_user","session_user","system_time","system_user","current_time","localtime","current_timestamp","localtimestamp"],f=["create table","insert into","primary key","foreign key","not null","alter table","add constraint","grouping sets","on overflow","character set","respect nulls","ignore nulls","nulls first","nulls last","depth first","breadth first"],S=g,v=[...p,..._].filter(x=>!g.includes(x)),h={className:"variable",begin:/@[a-z0-9][a-z0-9_]*/},T={className:"operator",begin:/[-+*/=%^~]|&&?|\|\|?|!=?|<(?:=>?|<|>)?|>[>=]?/,relevance:0},N={begin:n.concat(/\b/,n.either(...S),/\s*\(/),relevance:0,keywords:{built_in:S}};function y(x,{exceptions:P,when:D}={}){const k=D;return P=P||[],x.map(U=>U.match(/\|\d+$/)||P.includes(U)?U:k(U)?`${U}|0`:U)}return{name:"SQL",case_insensitive:!0,illegal:/[{}]|<\//,keywords:{$pattern:/\b[\w\.]+/,keyword:y(v,{when:x=>x.length<3}),literal:l,type:d,built_in:E},contains:[{begin:n.either(...f),relevance:0,keywords:{$pattern:/[\w\.]+/,keyword:v.concat(f),literal:l,type:d}},{className:"type",begin:n.either(...c)},N,h,o,s,e.C_NUMBER_MODE,e.C_BLOCK_COMMENT_MODE,i,T]}}return Hp=t,Hp}var zp,Xv;function Jye(){if(Xv)return zp;Xv=1;function t(e){const n=e.regex,i=["functions","model","data","parameters","quantities","transformed","generated"],o=["for","in","if","else","while","break","continue","return"],s=["array","complex","int","real","vector","ordered","positive_ordered","simplex","unit_vector","row_vector","matrix","cholesky_factor_corr|10","cholesky_factor_cov|10","corr_matrix|10","cov_matrix|10","void"],l=["Phi","Phi_approx","abs","acos","acosh","add_diag","algebra_solver","algebra_solver_newton","append_array","append_col","append_row","asin","asinh","atan","atan2","atanh","bessel_first_kind","bessel_second_kind","binary_log_loss","binomial_coefficient_log","block","cbrt","ceil","chol2inv","cholesky_decompose","choose","col","cols","columns_dot_product","columns_dot_self","conj","cos","cosh","cov_exp_quad","crossprod","csr_extract_u","csr_extract_v","csr_extract_w","csr_matrix_times_vector","csr_to_dense_matrix","cumulative_sum","determinant","diag_matrix","diag_post_multiply","diag_pre_multiply","diagonal","digamma","dims","distance","dot_product","dot_self","eigenvalues_sym","eigenvectors_sym","erf","erfc","exp","exp2","expm1","fabs","falling_factorial","fdim","floor","fma","fmax","fmin","fmod","gamma_p","gamma_q","generalized_inverse","get_imag","get_lp","get_real","head","hmm_hidden_state_prob","hmm_marginal","hypot","identity_matrix","inc_beta","int_step","integrate_1d","integrate_ode","integrate_ode_adams","integrate_ode_bdf","integrate_ode_rk45","inv","inv_Phi","inv_cloglog","inv_logit","inv_sqrt","inv_square","inverse","inverse_spd","is_inf","is_nan","lambert_w0","lambert_wm1","lbeta","lchoose","ldexp","lgamma","linspaced_array","linspaced_int_array","linspaced_row_vector","linspaced_vector","lmgamma","lmultiply","log","log1m","log1m_exp","log1m_inv_logit","log1p","log1p_exp","log_determinant","log_diff_exp","log_falling_factorial","log_inv_logit","log_inv_logit_diff","log_mix","log_modified_bessel_first_kind","log_rising_factorial","log_softmax","log_sum_exp","logit","machine_precision","map_rect","matrix_exp","matrix_exp_multiply","matrix_power","max","mdivide_left_spd","mdivide_left_tri_low","mdivide_right_spd","mdivide_right_tri_low","mean","min","modified_bessel_first_kind","modified_bessel_second_kind","multiply_log","multiply_lower_tri_self_transpose","negative_infinity","norm","not_a_number","num_elements","ode_adams","ode_adams_tol","ode_adjoint_tol_ctl","ode_bdf","ode_bdf_tol","ode_ckrk","ode_ckrk_tol","ode_rk45","ode_rk45_tol","one_hot_array","one_hot_int_array","one_hot_row_vector","one_hot_vector","ones_array","ones_int_array","ones_row_vector","ones_vector","owens_t","polar","positive_infinity","pow","print","prod","proj","qr_Q","qr_R","qr_thin_Q","qr_thin_R","quad_form","quad_form_diag","quad_form_sym","quantile","rank","reduce_sum","reject","rep_array","rep_matrix","rep_row_vector","rep_vector","reverse","rising_factorial","round","row","rows","rows_dot_product","rows_dot_self","scale_matrix_exp_multiply","sd","segment","sin","singular_values","sinh","size","softmax","sort_asc","sort_desc","sort_indices_asc","sort_indices_desc","sqrt","square","squared_distance","step","sub_col","sub_row","sum","svd_U","svd_V","symmetrize_from_lower_tri","tail","tan","tanh","target","tcrossprod","tgamma","to_array_1d","to_array_2d","to_complex","to_matrix","to_row_vector","to_vector","trace","trace_gen_quad_form","trace_quad_form","trigamma","trunc","uniform_simplex","variance","zeros_array","zeros_int_array","zeros_row_vector"],c=["bernoulli","bernoulli_logit","bernoulli_logit_glm","beta","beta_binomial","beta_proportion","binomial","binomial_logit","categorical","categorical_logit","categorical_logit_glm","cauchy","chi_square","dirichlet","discrete_range","double_exponential","exp_mod_normal","exponential","frechet","gamma","gaussian_dlm_obs","gumbel","hmm_latent","hypergeometric","inv_chi_square","inv_gamma","inv_wishart","lkj_corr","lkj_corr_cholesky","logistic","lognormal","multi_gp","multi_gp_cholesky","multi_normal","multi_normal_cholesky","multi_normal_prec","multi_student_t","multinomial","multinomial_logit","neg_binomial","neg_binomial_2","neg_binomial_2_log","neg_binomial_2_log_glm","normal","normal_id_glm","ordered_logistic","ordered_logistic_glm","ordered_probit","pareto","pareto_type_2","poisson","poisson_log","poisson_log_glm","rayleigh","scaled_inv_chi_square","skew_double_exponential","skew_normal","std_normal","student_t","uniform","von_mises","weibull","wiener","wishart"],d=e.COMMENT(/\/\*/,/\*\//,{relevance:0,contains:[{scope:"doctag",match:/@(return|param)/}]}),_={scope:"meta",begin:/#include\b/,end:/$/,contains:[{match:/[a-z][a-z-._]+/,scope:"string"},e.C_LINE_COMMENT_MODE]},p=["lower","upper","offset","multiplier"];return{name:"Stan",aliases:["stanfuncs"],keywords:{$pattern:e.IDENT_RE,title:i,type:s,keyword:o,built_in:l},contains:[e.C_LINE_COMMENT_MODE,_,e.HASH_COMMENT_MODE,d,{scope:"built_in",match:/\s(pi|e|sqrt2|log2|log10)(?=\()/,relevance:0},{match:n.concat(/[<,]\s*/,n.either(...p),/\s*=/),keywords:p},{scope:"keyword",match:/\btarget(?=\s*\+=)/},{match:[/~\s*/,n.either(...c),/(?:\(\))/,/\s*T(?=\s*\[)/],scope:{2:"built_in",4:"keyword"}},{scope:"built_in",keywords:c,begin:n.concat(/\w*/,n.either(...c),/(_lpdf|_lupdf|_lpmf|_cdf|_lcdf|_lccdf|_qf)(?=\s*[\(.*\)])/)},{begin:[/~/,/\s*/,n.concat(n.either(...c),/(?=\s*[\(.*\)])/)],scope:{3:"built_in"}},{begin:[/~/,/\s*\w+(?=\s*[\(.*\)])/,"(?!.*/\b("+n.either(...c)+")\b)"],scope:{2:"title.function"}},{scope:"title.function",begin:/\w*(_lpdf|_lupdf|_lpmf|_cdf|_lcdf|_lccdf|_qf)(?=\s*[\(.*\)])/},{scope:"number",match:n.concat(/(?:\b\d+(?:_\d+)*(?:\.(?:\d+(?:_\d+)*)?)?|\B\.\d+(?:_\d+)*)/,/(?:[eE][+-]?\d+(?:_\d+)*)?i?(?!\w)/),relevance:0},{scope:"string",begin:/"/,end:/"/}]}}return zp=t,zp}var Vp,Zv;function jye(){if(Zv)return Vp;Zv=1;function t(e){return{name:"Stata",aliases:["do","ado"],case_insensitive:!0,keywords:"if else in foreach for forv forva forval forvalu forvalue forvalues by bys bysort xi quietly qui capture about ac ac_7 acprplot acprplot_7 adjust ado adopath adoupdate alpha ameans an ano anov anova anova_estat anova_terms anovadef aorder ap app appe appen append arch arch_dr arch_estat arch_p archlm areg areg_p args arima arima_dr arima_estat arima_p as asmprobit asmprobit_estat asmprobit_lf asmprobit_mfx__dlg asmprobit_p ass asse asser assert avplot avplot_7 avplots avplots_7 bcskew0 bgodfrey bias binreg bip0_lf biplot bipp_lf bipr_lf bipr_p biprobit bitest bitesti bitowt blogit bmemsize boot bootsamp bootstrap bootstrap_8 boxco_l boxco_p boxcox boxcox_6 boxcox_p bprobit br break brier bro brow brows browse brr brrstat bs bs_7 bsampl_w bsample bsample_7 bsqreg bstat bstat_7 bstat_8 bstrap bstrap_7 bubble bubbleplot ca ca_estat ca_p cabiplot camat canon canon_8 canon_8_p canon_estat canon_p cap caprojection capt captu captur capture cat cc cchart cchart_7 cci cd censobs_table centile cf char chdir checkdlgfiles checkestimationsample checkhlpfiles checksum chelp ci cii cl class classutil clear cli clis clist clo clog clog_lf clog_p clogi clogi_sw clogit clogit_lf clogit_p clogitp clogl_sw cloglog clonevar clslistarray cluster cluster_measures cluster_stop cluster_tree cluster_tree_8 clustermat cmdlog cnr cnre cnreg cnreg_p cnreg_sw cnsreg codebook collaps4 collapse colormult_nb colormult_nw compare compress conf confi confir confirm conren cons const constr constra constrai constrain constraint continue contract copy copyright copysource cor corc corr corr2data corr_anti corr_kmo corr_smc corre correl correla correlat correlate corrgram cou coun count cox cox_p cox_sw coxbase coxhaz coxvar cprplot cprplot_7 crc cret cretu cretur creturn cross cs cscript cscript_log csi ct ct_is ctset ctst_5 ctst_st cttost cumsp cumsp_7 cumul cusum cusum_7 cutil d|0 datasig datasign datasigna datasignat datasignatu datasignatur datasignature datetof db dbeta de dec deco decod decode deff des desc descr descri describ describe destring dfbeta dfgls dfuller di di_g dir dirstats dis discard disp disp_res disp_s displ displa display distinct do doe doed doedi doedit dotplot dotplot_7 dprobit drawnorm drop ds ds_util dstdize duplicates durbina dwstat dydx e|0 ed edi edit egen eivreg emdef en enc enco encod encode eq erase ereg ereg_lf ereg_p ereg_sw ereghet ereghet_glf ereghet_glf_sh ereghet_gp ereghet_ilf ereghet_ilf_sh ereghet_ip eret eretu eretur ereturn err erro error esize est est_cfexist est_cfname est_clickable est_expand est_hold est_table est_unhold est_unholdok estat estat_default estat_summ estat_vce_only esti estimates etodow etof etomdy ex exi exit expand expandcl fac fact facto factor factor_estat factor_p factor_pca_rotated factor_rotate factormat fcast fcast_compute fcast_graph fdades fdadesc fdadescr fdadescri fdadescrib fdadescribe fdasav fdasave fdause fh_st file open file read file close file filefilter fillin find_hlp_file findfile findit findit_7 fit fl fli flis flist for5_0 forest forestplot form forma format fpredict frac_154 frac_adj frac_chk frac_cox frac_ddp frac_dis frac_dv frac_in frac_mun frac_pp frac_pq frac_pv frac_wgt frac_xo fracgen fracplot fracplot_7 fracpoly fracpred fron_ex fron_hn fron_p fron_tn fron_tn2 frontier ftodate ftoe ftomdy ftowdate funnel funnelplot g|0 gamhet_glf gamhet_gp gamhet_ilf gamhet_ip gamma gamma_d2 gamma_p gamma_sw gammahet gdi_hexagon gdi_spokes ge gen gene gener genera generat generate genrank genstd genvmean gettoken gl gladder gladder_7 glim_l01 glim_l02 glim_l03 glim_l04 glim_l05 glim_l06 glim_l07 glim_l08 glim_l09 glim_l10 glim_l11 glim_l12 glim_lf glim_mu glim_nw1 glim_nw2 glim_nw3 glim_p glim_v1 glim_v2 glim_v3 glim_v4 glim_v5 glim_v6 glim_v7 glm glm_6 glm_p glm_sw glmpred glo glob globa global glogit glogit_8 glogit_p gmeans gnbre_lf gnbreg gnbreg_5 gnbreg_p gomp_lf gompe_sw gomper_p gompertz gompertzhet gomphet_glf gomphet_glf_sh gomphet_gp gomphet_ilf gomphet_ilf_sh gomphet_ip gphdot gphpen gphprint gprefs gprobi_p gprobit gprobit_8 gr gr7 gr_copy gr_current gr_db gr_describe gr_dir gr_draw gr_draw_replay gr_drop gr_edit gr_editviewopts gr_example gr_example2 gr_export gr_print gr_qscheme gr_query gr_read gr_rename gr_replay gr_save gr_set gr_setscheme gr_table gr_undo gr_use graph graph7 grebar greigen greigen_7 greigen_8 grmeanby grmeanby_7 gs_fileinfo gs_filetype gs_graphinfo gs_stat gsort gwood h|0 hadimvo hareg hausman haver he heck_d2 heckma_p heckman heckp_lf heckpr_p heckprob hel help hereg hetpr_lf hetpr_p hetprob hettest hexdump hilite hist hist_7 histogram hlogit hlu hmeans hotel hotelling hprobit hreg hsearch icd9 icd9_ff icd9p iis impute imtest inbase include inf infi infil infile infix inp inpu input ins insheet insp inspe inspec inspect integ inten intreg intreg_7 intreg_p intrg2_ll intrg_ll intrg_ll2 ipolate iqreg ir irf irf_create irfm iri is_svy is_svysum isid istdize ivprob_1_lf ivprob_lf ivprobit ivprobit_p ivreg ivreg_footnote ivtob_1_lf ivtob_lf ivtobit ivtobit_p jackknife jacknife jknife jknife_6 jknife_8 jkstat joinby kalarma1 kap kap_3 kapmeier kappa kapwgt kdensity kdensity_7 keep ksm ksmirnov ktau kwallis l|0 la lab labbe labbeplot labe label labelbook ladder levels levelsof leverage lfit lfit_p li lincom line linktest lis list lloghet_glf lloghet_glf_sh lloghet_gp lloghet_ilf lloghet_ilf_sh lloghet_ip llogi_sw llogis_p llogist llogistic llogistichet lnorm_lf lnorm_sw lnorma_p lnormal lnormalhet lnormhet_glf lnormhet_glf_sh lnormhet_gp lnormhet_ilf lnormhet_ilf_sh lnormhet_ip lnskew0 loadingplot loc loca local log logi logis_lf logistic logistic_p logit logit_estat logit_p loglogs logrank loneway lookfor lookup lowess lowess_7 lpredict lrecomp lroc lroc_7 lrtest ls lsens lsens_7 lsens_x lstat ltable ltable_7 ltriang lv lvr2plot lvr2plot_7 m|0 ma mac macr macro makecns man manova manova_estat manova_p manovatest mantel mark markin markout marksample mat mat_capp mat_order mat_put_rr mat_rapp mata mata_clear mata_describe mata_drop mata_matdescribe mata_matsave mata_matuse mata_memory mata_mlib mata_mosave mata_rename mata_which matalabel matcproc matlist matname matr matri matrix matrix_input__dlg matstrik mcc mcci md0_ md1_ md1debug_ md2_ md2debug_ mds mds_estat mds_p mdsconfig mdslong mdsmat mdsshepard mdytoe mdytof me_derd mean means median memory memsize menl meqparse mer merg merge meta mfp mfx mhelp mhodds minbound mixed_ll mixed_ll_reparm mkassert mkdir mkmat mkspline ml ml_5 ml_adjs ml_bhhhs ml_c_d ml_check ml_clear ml_cnt ml_debug ml_defd ml_e0 ml_e0_bfgs ml_e0_cycle ml_e0_dfp ml_e0i ml_e1 ml_e1_bfgs ml_e1_bhhh ml_e1_cycle ml_e1_dfp ml_e2 ml_e2_cycle ml_ebfg0 ml_ebfr0 ml_ebfr1 ml_ebh0q ml_ebhh0 ml_ebhr0 ml_ebr0i ml_ecr0i ml_edfp0 ml_edfr0 ml_edfr1 ml_edr0i ml_eds ml_eer0i ml_egr0i ml_elf ml_elf_bfgs ml_elf_bhhh ml_elf_cycle ml_elf_dfp ml_elfi ml_elfs ml_enr0i ml_enrr0 ml_erdu0 ml_erdu0_bfgs ml_erdu0_bhhh ml_erdu0_bhhhq ml_erdu0_cycle ml_erdu0_dfp ml_erdu0_nrbfgs ml_exde ml_footnote ml_geqnr ml_grad0 ml_graph ml_hbhhh ml_hd0 ml_hold ml_init ml_inv ml_log ml_max ml_mlout ml_mlout_8 ml_model ml_nb0 ml_opt ml_p ml_plot ml_query ml_rdgrd ml_repor ml_s_e ml_score ml_searc ml_technique ml_unhold mleval mlf_ mlmatbysum mlmatsum mlog mlogi mlogit mlogit_footnote mlogit_p mlopts mlsum mlvecsum mnl0_ mor more mov move mprobit mprobit_lf mprobit_p mrdu0_ mrdu1_ mvdecode mvencode mvreg mvreg_estat n|0 nbreg nbreg_al nbreg_lf nbreg_p nbreg_sw nestreg net newey newey_7 newey_p news nl nl_7 nl_9 nl_9_p nl_p nl_p_7 nlcom nlcom_p nlexp2 nlexp2_7 nlexp2a nlexp2a_7 nlexp3 nlexp3_7 nlgom3 nlgom3_7 nlgom4 nlgom4_7 nlinit nllog3 nllog3_7 nllog4 nllog4_7 nlog_rd nlogit nlogit_p nlogitgen nlogittree nlpred no nobreak noi nois noisi noisil noisily note notes notes_dlg nptrend numlabel numlist odbc old_ver olo olog ologi ologi_sw ologit ologit_p ologitp on one onew onewa oneway op_colnm op_comp op_diff op_inv op_str opr opro oprob oprob_sw oprobi oprobi_p oprobit oprobitp opts_exclusive order orthog orthpoly ou out outf outfi outfil outfile outs outsh outshe outshee outsheet ovtest pac pac_7 palette parse parse_dissim pause pca pca_8 pca_display pca_estat pca_p pca_rotate pcamat pchart pchart_7 pchi pchi_7 pcorr pctile pentium pergram pergram_7 permute permute_8 personal peto_st pkcollapse pkcross pkequiv pkexamine pkexamine_7 pkshape pksumm pksumm_7 pl plo plot plugin pnorm pnorm_7 poisgof poiss_lf poiss_sw poisso_p poisson poisson_estat post postclose postfile postutil pperron pr prais prais_e prais_e2 prais_p predict predictnl preserve print pro prob probi probit probit_estat probit_p proc_time procoverlay procrustes procrustes_estat procrustes_p profiler prog progr progra program prop proportion prtest prtesti pwcorr pwd q\\s qby qbys qchi qchi_7 qladder qladder_7 qnorm qnorm_7 qqplot qqplot_7 qreg qreg_c qreg_p qreg_sw qu quadchk quantile quantile_7 que quer query range ranksum ratio rchart rchart_7 rcof recast reclink recode reg reg3 reg3_p regdw regr regre regre_p2 regres regres_p regress regress_estat regriv_p remap ren rena renam rename renpfix repeat replace report reshape restore ret retu retur return rm rmdir robvar roccomp roccomp_7 roccomp_8 rocf_lf rocfit rocfit_8 rocgold rocplot rocplot_7 roctab roctab_7 rolling rologit rologit_p rot rota rotat rotate rotatemat rreg rreg_p ru run runtest rvfplot rvfplot_7 rvpplot rvpplot_7 sa safesum sample sampsi sav save savedresults saveold sc sca scal scala scalar scatter scm_mine sco scob_lf scob_p scobi_sw scobit scor score scoreplot scoreplot_help scree screeplot screeplot_help sdtest sdtesti se search separate seperate serrbar serrbar_7 serset set set_defaults sfrancia sh she shel shell shewhart shewhart_7 signestimationsample signrank signtest simul simul_7 simulate simulate_8 sktest sleep slogit slogit_d2 slogit_p smooth snapspan so sor sort spearman spikeplot spikeplot_7 spikeplt spline_x split sqreg sqreg_p sret sretu sretur sreturn ssc st st_ct st_hc st_hcd st_hcd_sh st_is st_issys st_note st_promo st_set st_show st_smpl st_subid stack statsby statsby_8 stbase stci stci_7 stcox stcox_estat stcox_fr stcox_fr_ll stcox_p stcox_sw stcoxkm stcoxkm_7 stcstat stcurv stcurve stcurve_7 stdes stem stepwise stereg stfill stgen stir stjoin stmc stmh stphplot stphplot_7 stphtest stphtest_7 stptime strate strate_7 streg streg_sw streset sts sts_7 stset stsplit stsum sttocc sttoct stvary stweib su suest suest_8 sum summ summa summar summari summariz summarize sunflower sureg survcurv survsum svar svar_p svmat svy svy_disp svy_dreg svy_est svy_est_7 svy_estat svy_get svy_gnbreg_p svy_head svy_header svy_heckman_p svy_heckprob_p svy_intreg_p svy_ivreg_p svy_logistic_p svy_logit_p svy_mlogit_p svy_nbreg_p svy_ologit_p svy_oprobit_p svy_poisson_p svy_probit_p svy_regress_p svy_sub svy_sub_7 svy_x svy_x_7 svy_x_p svydes svydes_8 svygen svygnbreg svyheckman svyheckprob svyintreg svyintreg_7 svyintrg svyivreg svylc svylog_p svylogit svymarkout svymarkout_8 svymean svymlog svymlogit svynbreg svyolog svyologit svyoprob svyoprobit svyopts svypois svypois_7 svypoisson svyprobit svyprobt svyprop svyprop_7 svyratio svyreg svyreg_p svyregress svyset svyset_7 svyset_8 svytab svytab_7 svytest svytotal sw sw_8 swcnreg swcox swereg swilk swlogis swlogit swologit swoprbt swpois swprobit swqreg swtobit swweib symmetry symmi symplot symplot_7 syntax sysdescribe sysdir sysuse szroeter ta tab tab1 tab2 tab_or tabd tabdi tabdis tabdisp tabi table tabodds tabodds_7 tabstat tabu tabul tabula tabulat tabulate te tempfile tempname tempvar tes test testnl testparm teststd tetrachoric time_it timer tis tob tobi tobit tobit_p tobit_sw token tokeni tokeniz tokenize tostring total translate translator transmap treat_ll treatr_p treatreg trim trimfill trnb_cons trnb_mean trpoiss_d2 trunc_ll truncr_p truncreg tsappend tset tsfill tsline tsline_ex tsreport tsrevar tsrline tsset tssmooth tsunab ttest ttesti tut_chk tut_wait tutorial tw tware_st two twoway twoway__fpfit_serset twoway__function_gen twoway__histogram_gen twoway__ipoint_serset twoway__ipoints_serset twoway__kdensity_gen twoway__lfit_serset twoway__normgen_gen twoway__pci_serset twoway__qfit_serset twoway__scatteri_serset twoway__sunflower_gen twoway_ksm_serset ty typ type typeof u|0 unab unabbrev unabcmd update us use uselabel var var_mkcompanion var_p varbasic varfcast vargranger varirf varirf_add varirf_cgraph varirf_create varirf_ctable varirf_describe varirf_dir varirf_drop varirf_erase varirf_graph varirf_ograph varirf_rename varirf_set varirf_table varlist varlmar varnorm varsoc varstable varstable_w varstable_w2 varwle vce vec vec_fevd vec_mkphi vec_p vec_p_w vecirf_create veclmar veclmar_w vecnorm vecnorm_w vecrank vecstable verinst vers versi versio version view viewsource vif vwls wdatetof webdescribe webseek webuse weib1_lf weib2_lf weib_lf weib_lf0 weibhet_glf weibhet_glf_sh weibhet_glfa weibhet_glfa_sh weibhet_gp weibhet_ilf weibhet_ilf_sh weibhet_ilfa weibhet_ilfa_sh weibhet_ip weibu_sw weibul_p weibull weibull_c weibull_s weibullhet wh whelp whi which whil while wilc_st wilcoxon win wind windo window winexec wntestb wntestb_7 wntestq xchart xchart_7 xcorr xcorr_7 xi xi_6 xmlsav xmlsave xmluse xpose xsh xshe xshel xshell xt_iis xt_tis xtab_p xtabond xtbin_p xtclog xtcloglog xtcloglog_8 xtcloglog_d2 xtcloglog_pa_p xtcloglog_re_p xtcnt_p xtcorr xtdata xtdes xtfront_p xtfrontier xtgee xtgee_elink xtgee_estat xtgee_makeivar xtgee_p xtgee_plink xtgls xtgls_p xthaus xthausman xtht_p xthtaylor xtile xtint_p xtintreg xtintreg_8 xtintreg_d2 xtintreg_p xtivp_1 xtivp_2 xtivreg xtline xtline_ex xtlogit xtlogit_8 xtlogit_d2 xtlogit_fe_p xtlogit_pa_p xtlogit_re_p xtmixed xtmixed_estat xtmixed_p xtnb_fe xtnb_lf xtnbreg xtnbreg_pa_p xtnbreg_refe_p xtpcse xtpcse_p xtpois xtpoisson xtpoisson_d2 xtpoisson_pa_p xtpoisson_refe_p xtpred xtprobit xtprobit_8 xtprobit_d2 xtprobit_re_p xtps_fe xtps_lf xtps_ren xtps_ren_8 xtrar_p xtrc xtrc_p xtrchh xtrefe_p xtreg xtreg_be xtreg_fe xtreg_ml xtreg_pa_p xtreg_re xtregar xtrere_p xtset xtsf_ll xtsf_llti xtsum xttab xttest0 xttobit xttobit_8 xttobit_p xttrans yx yxview__barlike_draw yxview_area_draw yxview_bar_draw yxview_dot_draw yxview_dropline_draw yxview_function_draw yxview_iarrow_draw yxview_ilabels_draw yxview_normal_draw yxview_pcarrow_draw yxview_pcbarrow_draw yxview_pccapsym_draw yxview_pcscatter_draw yxview_pcspike_draw yxview_rarea_draw yxview_rbar_draw yxview_rbarm_draw yxview_rcap_draw yxview_rcapsym_draw yxview_rconnected_draw yxview_rline_draw yxview_rscatter_draw yxview_rspike_draw yxview_spike_draw yxview_sunflower_draw zap_s zinb zinb_llf zinb_plf zip zip_llf zip_p zip_plf zt_ct_5 zt_hc_5 zt_hcd_5 zt_is_5 zt_iss_5 zt_sho_5 zt_smp_5 ztbase_5 ztcox_5 ztdes_5 ztereg_5 ztfill_5 ztgen_5 ztir_5 ztjoin_5 ztnb ztnb_p ztp ztp_p zts_5 ztset_5 ztspli_5 ztsum_5 zttoct_5 ztvary_5 ztweib_5",contains:[{className:"symbol",begin:/`[a-zA-Z0-9_]+'/},{className:"variable",begin:/\$\{?[a-zA-Z0-9_]+\}?/,relevance:0},{className:"string",variants:[{begin:`\`"[^\r -]*?"'`},{begin:`"[^\r -"]*"`}]},{className:"built_in",variants:[{begin:"\\b(abs|acos|asin|atan|atan2|atanh|ceil|cloglog|comb|cos|digamma|exp|floor|invcloglog|invlogit|ln|lnfact|lnfactorial|lngamma|log|log10|max|min|mod|reldif|round|sign|sin|sqrt|sum|tan|tanh|trigamma|trunc|betaden|Binomial|binorm|binormal|chi2|chi2tail|dgammapda|dgammapdada|dgammapdadx|dgammapdx|dgammapdxdx|F|Fden|Ftail|gammaden|gammap|ibeta|invbinomial|invchi2|invchi2tail|invF|invFtail|invgammap|invibeta|invnchi2|invnFtail|invnibeta|invnorm|invnormal|invttail|nbetaden|nchi2|nFden|nFtail|nibeta|norm|normal|normalden|normd|npnchi2|tden|ttail|uniform|abbrev|char|index|indexnot|length|lower|ltrim|match|plural|proper|real|regexm|regexr|regexs|reverse|rtrim|string|strlen|strlower|strltrim|strmatch|strofreal|strpos|strproper|strreverse|strrtrim|strtrim|strupper|subinstr|subinword|substr|trim|upper|word|wordcount|_caller|autocode|byteorder|chop|clip|cond|e|epsdouble|epsfloat|group|inlist|inrange|irecode|matrix|maxbyte|maxdouble|maxfloat|maxint|maxlong|mi|minbyte|mindouble|minfloat|minint|minlong|missing|r|recode|replay|return|s|scalar|d|date|day|dow|doy|halfyear|mdy|month|quarter|week|year|d|daily|dofd|dofh|dofm|dofq|dofw|dofy|h|halfyearly|hofd|m|mofd|monthly|q|qofd|quarterly|tin|twithin|w|weekly|wofd|y|yearly|yh|ym|yofd|yq|yw|cholesky|colnumb|colsof|corr|det|diag|diag0cnt|el|get|hadamard|I|inv|invsym|issym|issymmetric|J|matmissing|matuniform|mreldif|nullmat|rownumb|rowsof|sweep|syminv|trace|vec|vecdiag)(?=\\()"}]},e.COMMENT("^[ ]*\\*.*$",!1),e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]}}return Vp=t,Vp}var Wp,Jv;function eIe(){if(Jv)return Wp;Jv=1;function t(e){return{name:"STEP Part 21",aliases:["p21","step","stp"],case_insensitive:!0,keywords:{$pattern:"[A-Z_][A-Z0-9_.]*",keyword:["HEADER","ENDSEC","DATA"]},contains:[{className:"meta",begin:"ISO-10303-21;",relevance:10},{className:"meta",begin:"END-ISO-10303-21;",relevance:10},e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.COMMENT("/\\*\\*!","\\*/"),e.C_NUMBER_MODE,e.inherit(e.APOS_STRING_MODE,{illegal:null}),e.inherit(e.QUOTE_STRING_MODE,{illegal:null}),{className:"string",begin:"'",end:"'"},{className:"symbol",variants:[{begin:"#",end:"\\d+",illegal:"\\W"}]}]}}return Wp=t,Wp}var Kp,jv;function tIe(){if(jv)return Kp;jv=1;const t=c=>({IMPORTANT:{scope:"meta",begin:"!important"},BLOCK_COMMENT:c.C_BLOCK_COMMENT_MODE,HEXCOLOR:{scope:"number",begin:/#(([0-9a-fA-F]{3,4})|(([0-9a-fA-F]{2}){3,4}))\b/},FUNCTION_DISPATCH:{className:"built_in",begin:/[\w-]+(?=\()/},ATTRIBUTE_SELECTOR_MODE:{scope:"selector-attr",begin:/\[/,end:/\]/,illegal:"$",contains:[c.APOS_STRING_MODE,c.QUOTE_STRING_MODE]},CSS_NUMBER_MODE:{scope:"number",begin:c.NUMBER_RE+"(%|em|ex|ch|rem|vw|vh|vmin|vmax|cm|mm|in|pt|pc|px|deg|grad|rad|turn|s|ms|Hz|kHz|dpi|dpcm|dppx)?",relevance:0},CSS_VARIABLE:{className:"attr",begin:/--[A-Za-z][A-Za-z0-9_-]*/}}),e=["a","abbr","address","article","aside","audio","b","blockquote","body","button","canvas","caption","cite","code","dd","del","details","dfn","div","dl","dt","em","fieldset","figcaption","figure","footer","form","h1","h2","h3","h4","h5","h6","header","hgroup","html","i","iframe","img","input","ins","kbd","label","legend","li","main","mark","menu","nav","object","ol","p","q","quote","samp","section","span","strong","summary","sup","table","tbody","td","textarea","tfoot","th","thead","time","tr","ul","var","video"],n=["any-hover","any-pointer","aspect-ratio","color","color-gamut","color-index","device-aspect-ratio","device-height","device-width","display-mode","forced-colors","grid","height","hover","inverted-colors","monochrome","orientation","overflow-block","overflow-inline","pointer","prefers-color-scheme","prefers-contrast","prefers-reduced-motion","prefers-reduced-transparency","resolution","scan","scripting","update","width","min-width","max-width","min-height","max-height"],i=["active","any-link","blank","checked","current","default","defined","dir","disabled","drop","empty","enabled","first","first-child","first-of-type","fullscreen","future","focus","focus-visible","focus-within","has","host","host-context","hover","indeterminate","in-range","invalid","is","lang","last-child","last-of-type","left","link","local-link","not","nth-child","nth-col","nth-last-child","nth-last-col","nth-last-of-type","nth-of-type","only-child","only-of-type","optional","out-of-range","past","placeholder-shown","read-only","read-write","required","right","root","scope","target","target-within","user-invalid","valid","visited","where"],o=["after","backdrop","before","cue","cue-region","first-letter","first-line","grammar-error","marker","part","placeholder","selection","slotted","spelling-error"],s=["align-content","align-items","align-self","all","animation","animation-delay","animation-direction","animation-duration","animation-fill-mode","animation-iteration-count","animation-name","animation-play-state","animation-timing-function","backface-visibility","background","background-attachment","background-blend-mode","background-clip","background-color","background-image","background-origin","background-position","background-repeat","background-size","block-size","border","border-block","border-block-color","border-block-end","border-block-end-color","border-block-end-style","border-block-end-width","border-block-start","border-block-start-color","border-block-start-style","border-block-start-width","border-block-style","border-block-width","border-bottom","border-bottom-color","border-bottom-left-radius","border-bottom-right-radius","border-bottom-style","border-bottom-width","border-collapse","border-color","border-image","border-image-outset","border-image-repeat","border-image-slice","border-image-source","border-image-width","border-inline","border-inline-color","border-inline-end","border-inline-end-color","border-inline-end-style","border-inline-end-width","border-inline-start","border-inline-start-color","border-inline-start-style","border-inline-start-width","border-inline-style","border-inline-width","border-left","border-left-color","border-left-style","border-left-width","border-radius","border-right","border-right-color","border-right-style","border-right-width","border-spacing","border-style","border-top","border-top-color","border-top-left-radius","border-top-right-radius","border-top-style","border-top-width","border-width","bottom","box-decoration-break","box-shadow","box-sizing","break-after","break-before","break-inside","caption-side","caret-color","clear","clip","clip-path","clip-rule","color","column-count","column-fill","column-gap","column-rule","column-rule-color","column-rule-style","column-rule-width","column-span","column-width","columns","contain","content","content-visibility","counter-increment","counter-reset","cue","cue-after","cue-before","cursor","direction","display","empty-cells","filter","flex","flex-basis","flex-direction","flex-flow","flex-grow","flex-shrink","flex-wrap","float","flow","font","font-display","font-family","font-feature-settings","font-kerning","font-language-override","font-size","font-size-adjust","font-smoothing","font-stretch","font-style","font-synthesis","font-variant","font-variant-caps","font-variant-east-asian","font-variant-ligatures","font-variant-numeric","font-variant-position","font-variation-settings","font-weight","gap","glyph-orientation-vertical","grid","grid-area","grid-auto-columns","grid-auto-flow","grid-auto-rows","grid-column","grid-column-end","grid-column-start","grid-gap","grid-row","grid-row-end","grid-row-start","grid-template","grid-template-areas","grid-template-columns","grid-template-rows","hanging-punctuation","height","hyphens","icon","image-orientation","image-rendering","image-resolution","ime-mode","inline-size","isolation","justify-content","left","letter-spacing","line-break","line-height","list-style","list-style-image","list-style-position","list-style-type","margin","margin-block","margin-block-end","margin-block-start","margin-bottom","margin-inline","margin-inline-end","margin-inline-start","margin-left","margin-right","margin-top","marks","mask","mask-border","mask-border-mode","mask-border-outset","mask-border-repeat","mask-border-slice","mask-border-source","mask-border-width","mask-clip","mask-composite","mask-image","mask-mode","mask-origin","mask-position","mask-repeat","mask-size","mask-type","max-block-size","max-height","max-inline-size","max-width","min-block-size","min-height","min-inline-size","min-width","mix-blend-mode","nav-down","nav-index","nav-left","nav-right","nav-up","none","normal","object-fit","object-position","opacity","order","orphans","outline","outline-color","outline-offset","outline-style","outline-width","overflow","overflow-wrap","overflow-x","overflow-y","padding","padding-block","padding-block-end","padding-block-start","padding-bottom","padding-inline","padding-inline-end","padding-inline-start","padding-left","padding-right","padding-top","page-break-after","page-break-before","page-break-inside","pause","pause-after","pause-before","perspective","perspective-origin","pointer-events","position","quotes","resize","rest","rest-after","rest-before","right","row-gap","scroll-margin","scroll-margin-block","scroll-margin-block-end","scroll-margin-block-start","scroll-margin-bottom","scroll-margin-inline","scroll-margin-inline-end","scroll-margin-inline-start","scroll-margin-left","scroll-margin-right","scroll-margin-top","scroll-padding","scroll-padding-block","scroll-padding-block-end","scroll-padding-block-start","scroll-padding-bottom","scroll-padding-inline","scroll-padding-inline-end","scroll-padding-inline-start","scroll-padding-left","scroll-padding-right","scroll-padding-top","scroll-snap-align","scroll-snap-stop","scroll-snap-type","scrollbar-color","scrollbar-gutter","scrollbar-width","shape-image-threshold","shape-margin","shape-outside","speak","speak-as","src","tab-size","table-layout","text-align","text-align-all","text-align-last","text-combine-upright","text-decoration","text-decoration-color","text-decoration-line","text-decoration-style","text-emphasis","text-emphasis-color","text-emphasis-position","text-emphasis-style","text-indent","text-justify","text-orientation","text-overflow","text-rendering","text-shadow","text-transform","text-underline-position","top","transform","transform-box","transform-origin","transform-style","transition","transition-delay","transition-duration","transition-property","transition-timing-function","unicode-bidi","vertical-align","visibility","voice-balance","voice-duration","voice-family","voice-pitch","voice-range","voice-rate","voice-stress","voice-volume","white-space","widows","width","will-change","word-break","word-spacing","word-wrap","writing-mode","z-index"].reverse();function l(c){const d=t(c),_="and or not only",p={className:"variable",begin:"\\$"+c.IDENT_RE},g=["charset","css","debug","extend","font-face","for","import","include","keyframes","media","mixin","page","warn","while"],E="(?=[.\\s\\n[:,(])";return{name:"Stylus",aliases:["styl"],case_insensitive:!1,keywords:"if else for in",illegal:"("+["\\?","(\\bReturn\\b)","(\\bEnd\\b)","(\\bend\\b)","(\\bdef\\b)",";","#\\s","\\*\\s","===\\s","\\|","%"].join("|")+")",contains:[c.QUOTE_STRING_MODE,c.APOS_STRING_MODE,c.C_LINE_COMMENT_MODE,c.C_BLOCK_COMMENT_MODE,d.HEXCOLOR,{begin:"\\.[a-zA-Z][a-zA-Z0-9_-]*"+E,className:"selector-class"},{begin:"#[a-zA-Z][a-zA-Z0-9_-]*"+E,className:"selector-id"},{begin:"\\b("+e.join("|")+")"+E,className:"selector-tag"},{className:"selector-pseudo",begin:"&?:("+i.join("|")+")"+E},{className:"selector-pseudo",begin:"&?:(:)?("+o.join("|")+")"+E},d.ATTRIBUTE_SELECTOR_MODE,{className:"keyword",begin:/@media/,starts:{end:/[{;}]/,keywords:{$pattern:/[a-z-]+/,keyword:_,attribute:n.join(" ")},contains:[d.CSS_NUMBER_MODE]}},{className:"keyword",begin:"@((-(o|moz|ms|webkit)-)?("+g.join("|")+"))\\b"},p,d.CSS_NUMBER_MODE,{className:"function",begin:"^[a-zA-Z][a-zA-Z0-9_-]*\\(.*\\)",illegal:"[\\n]",returnBegin:!0,contains:[{className:"title",begin:"\\b[a-zA-Z][a-zA-Z0-9_-]*"},{className:"params",begin:/\(/,end:/\)/,contains:[d.HEXCOLOR,p,c.APOS_STRING_MODE,d.CSS_NUMBER_MODE,c.QUOTE_STRING_MODE]}]},d.CSS_VARIABLE,{className:"attribute",begin:"\\b("+s.join("|")+")\\b",starts:{end:/;|$/,contains:[d.HEXCOLOR,p,c.APOS_STRING_MODE,c.QUOTE_STRING_MODE,d.CSS_NUMBER_MODE,c.C_BLOCK_COMMENT_MODE,d.IMPORTANT,d.FUNCTION_DISPATCH],illegal:/\./,relevance:0}},d.FUNCTION_DISPATCH]}}return Kp=l,Kp}var Qp,eC;function nIe(){if(eC)return Qp;eC=1;function t(e){return{name:"SubUnit",case_insensitive:!0,contains:[{className:"string",begin:`\\[ -(multipart)?`,end:`\\] -`},{className:"string",begin:"\\d{4}-\\d{2}-\\d{2}(\\s+)\\d{2}:\\d{2}:\\d{2}.\\d+Z"},{className:"string",begin:"(\\+|-)\\d+"},{className:"keyword",relevance:10,variants:[{begin:"^(test|testing|success|successful|failure|error|skip|xfail|uxsuccess)(:?)\\s+(test)?"},{begin:"^progress(:?)(\\s+)?(pop|push)?"},{begin:"^tags:"},{begin:"^time:"}]}]}}return Qp=t,Qp}var Xp,tC;function rIe(){if(tC)return Xp;tC=1;function t(U){return U?typeof U=="string"?U:U.source:null}function e(U){return n("(?=",U,")")}function n(...U){return U.map(z=>t(z)).join("")}function i(U){const W=U[U.length-1];return typeof W=="object"&&W.constructor===Object?(U.splice(U.length-1,1),W):{}}function o(...U){return"("+(i(U).capture?"":"?:")+U.map(K=>t(K)).join("|")+")"}const s=U=>n(/\b/,U,/\w$/.test(U)?/\b/:/\B/),l=["Protocol","Type"].map(s),c=["init","self"].map(s),d=["Any","Self"],_=["actor","any","associatedtype","async","await",/as\?/,/as!/,"as","break","case","catch","class","continue","convenience","default","defer","deinit","didSet","distributed","do","dynamic","else","enum","extension","fallthrough",/fileprivate\(set\)/,"fileprivate","final","for","func","get","guard","if","import","indirect","infix",/init\?/,/init!/,"inout",/internal\(set\)/,"internal","in","is","isolated","nonisolated","lazy","let","mutating","nonmutating",/open\(set\)/,"open","operator","optional","override","postfix","precedencegroup","prefix",/private\(set\)/,"private","protocol",/public\(set\)/,"public","repeat","required","rethrows","return","set","some","static","struct","subscript","super","switch","throws","throw",/try\?/,/try!/,"try","typealias",/unowned\(safe\)/,/unowned\(unsafe\)/,"unowned","var","weak","where","while","willSet"],p=["false","nil","true"],g=["assignment","associativity","higherThan","left","lowerThan","none","right"],E=["#colorLiteral","#column","#dsohandle","#else","#elseif","#endif","#error","#file","#fileID","#fileLiteral","#filePath","#function","#if","#imageLiteral","#keyPath","#line","#selector","#sourceLocation","#warn_unqualified_access","#warning"],f=["abs","all","any","assert","assertionFailure","debugPrint","dump","fatalError","getVaList","isKnownUniquelyReferenced","max","min","numericCast","pointwiseMax","pointwiseMin","precondition","preconditionFailure","print","readLine","repeatElement","sequence","stride","swap","swift_unboxFromSwiftValueWithType","transcode","type","unsafeBitCast","unsafeDowncast","withExtendedLifetime","withUnsafeMutablePointer","withUnsafePointer","withVaList","withoutActuallyEscaping","zip"],S=o(/[/=\-+!*%<>&|^~?]/,/[\u00A1-\u00A7]/,/[\u00A9\u00AB]/,/[\u00AC\u00AE]/,/[\u00B0\u00B1]/,/[\u00B6\u00BB\u00BF\u00D7\u00F7]/,/[\u2016-\u2017]/,/[\u2020-\u2027]/,/[\u2030-\u203E]/,/[\u2041-\u2053]/,/[\u2055-\u205E]/,/[\u2190-\u23FF]/,/[\u2500-\u2775]/,/[\u2794-\u2BFF]/,/[\u2E00-\u2E7F]/,/[\u3001-\u3003]/,/[\u3008-\u3020]/,/[\u3030]/),v=o(S,/[\u0300-\u036F]/,/[\u1DC0-\u1DFF]/,/[\u20D0-\u20FF]/,/[\uFE00-\uFE0F]/,/[\uFE20-\uFE2F]/),h=n(S,v,"*"),T=o(/[a-zA-Z_]/,/[\u00A8\u00AA\u00AD\u00AF\u00B2-\u00B5\u00B7-\u00BA]/,/[\u00BC-\u00BE\u00C0-\u00D6\u00D8-\u00F6\u00F8-\u00FF]/,/[\u0100-\u02FF\u0370-\u167F\u1681-\u180D\u180F-\u1DBF]/,/[\u1E00-\u1FFF]/,/[\u200B-\u200D\u202A-\u202E\u203F-\u2040\u2054\u2060-\u206F]/,/[\u2070-\u20CF\u2100-\u218F\u2460-\u24FF\u2776-\u2793]/,/[\u2C00-\u2DFF\u2E80-\u2FFF]/,/[\u3004-\u3007\u3021-\u302F\u3031-\u303F\u3040-\uD7FF]/,/[\uF900-\uFD3D\uFD40-\uFDCF\uFDF0-\uFE1F\uFE30-\uFE44]/,/[\uFE47-\uFEFE\uFF00-\uFFFD]/),N=o(T,/\d/,/[\u0300-\u036F\u1DC0-\u1DFF\u20D0-\u20FF\uFE20-\uFE2F]/),y=n(T,N,"*"),x=n(/[A-Z]/,N,"*"),P=["autoclosure",n(/convention\(/,o("swift","block","c"),/\)/),"discardableResult","dynamicCallable","dynamicMemberLookup","escaping","frozen","GKInspectable","IBAction","IBDesignable","IBInspectable","IBOutlet","IBSegueAction","inlinable","main","nonobjc","NSApplicationMain","NSCopying","NSManaged",n(/objc\(/,y,/\)/),"objc","objcMembers","propertyWrapper","requires_stored_property_inits","resultBuilder","testable","UIApplicationMain","unknown","usableFromInline"],D=["iOS","iOSApplicationExtension","macOS","macOSApplicationExtension","macCatalyst","macCatalystApplicationExtension","watchOS","watchOSApplicationExtension","tvOS","tvOSApplicationExtension","swift"];function k(U){const W={match:/\s+/,relevance:0},z=U.COMMENT("/\\*","\\*/",{contains:["self"]}),K=[U.C_LINE_COMMENT_MODE,z],Ee={match:[/\./,o(...l,...c)],className:{2:"keyword"}},oe={match:n(/\./,o(..._)),relevance:0},L=_.filter(Ze=>typeof Ze=="string").concat(["_|0"]),J=_.filter(Ze=>typeof Ze!="string").concat(d).map(s),re={variants:[{className:"keyword",match:o(...J,...c)}]},G={$pattern:o(/\b\w+/,/#\w+/),keyword:L.concat(E),literal:p},X=[Ee,oe,re],_e={match:n(/\./,o(...f)),relevance:0},ve={className:"built_in",match:n(/\b/,o(...f),/(?=\()/)},he=[_e,ve],tt={match:/->/,relevance:0},lt={className:"operator",relevance:0,variants:[{match:h},{match:`\\.(\\.|${v})+`}]},He=[tt,lt],Ce="([0-9]_*)+",Be="([0-9a-fA-F]_*)+",We={className:"number",relevance:0,variants:[{match:`\\b(${Ce})(\\.(${Ce}))?([eE][+-]?(${Ce}))?\\b`},{match:`\\b0x(${Be})(\\.(${Be}))?([pP][+-]?(${Ce}))?\\b`},{match:/\b0o([0-7]_*)+\b/},{match:/\b0b([01]_*)+\b/}]},xe=(Ze="")=>({className:"subst",variants:[{match:n(/\\/,Ze,/[0\\tnr"']/)},{match:n(/\\/,Ze,/u\{[0-9a-fA-F]{1,8}\}/)}]}),ze=(Ze="")=>({className:"subst",match:n(/\\/,Ze,/[\t ]*(?:[\r\n]|\r\n)/)}),rt=(Ze="")=>({className:"subst",label:"interpol",begin:n(/\\/,Ze,/\(/),end:/\)/}),Ke=(Ze="")=>({begin:n(Ze,/"""/),end:n(/"""/,Ze),contains:[xe(Ze),ze(Ze),rt(Ze)]}),te=(Ze="")=>({begin:n(Ze,/"/),end:n(/"/,Ze),contains:[xe(Ze),rt(Ze)]}),pe={className:"string",variants:[Ke(),Ke("#"),Ke("##"),Ke("###"),te(),te("#"),te("##"),te("###")]},ie={match:n(/`/,y,/`/)},Pe={className:"variable",match:/\$\d+/},we={className:"variable",match:`\\$${N}+`},Xe=[ie,Pe,we],pt={match:/(@|#(un)?)available/,className:"keyword",starts:{contains:[{begin:/\(/,end:/\)/,keywords:D,contains:[...He,We,pe]}]}},me={className:"keyword",match:n(/@/,o(...P))},ht={className:"meta",match:n(/@/,y)},Ue=[pt,me,ht],Ie={match:e(/\b[A-Z]/),relevance:0,contains:[{className:"type",match:n(/(AV|CA|CF|CG|CI|CL|CM|CN|CT|MK|MP|MTK|MTL|NS|SCN|SK|UI|WK|XC)/,N,"+")},{className:"type",match:x,relevance:0},{match:/[?!]+/,relevance:0},{match:/\.\.\./,relevance:0},{match:n(/\s+&\s+/,e(x)),relevance:0}]},zt={begin://,keywords:G,contains:[...K,...X,...Ue,tt,Ie]};Ie.contains.push(zt);const Nt={match:n(y,/\s*:/),keywords:"_|0",relevance:0},Gt={begin:/\(/,end:/\)/,relevance:0,keywords:G,contains:["self",Nt,...K,...X,...he,...He,We,pe,...Xe,...Ue,Ie]},Sn={begin://,contains:[...K,Ie]},ne={begin:o(e(n(y,/\s*:/)),e(n(y,/\s+/,y,/\s*:/))),end:/:/,relevance:0,contains:[{className:"keyword",match:/\b_\b/},{className:"params",match:y}]},ce={begin:/\(/,end:/\)/,keywords:G,contains:[ne,...K,...X,...He,We,pe,...Ue,Ie,Gt],endsParent:!0,illegal:/["']/},Oe={match:[/func/,/\s+/,o(ie.match,y,h)],className:{1:"keyword",3:"title.function"},contains:[Sn,ce,W],illegal:[/\[/,/%/]},Me={match:[/\b(?:subscript|init[?!]?)/,/\s*(?=[<(])/],className:{1:"keyword"},contains:[Sn,ce,W],illegal:/\[|%/},ct={match:[/operator/,/\s+/,h],className:{1:"keyword",3:"title"}},xt={begin:[/precedencegroup/,/\s+/,x],className:{1:"keyword",3:"title"},contains:[Ie],keywords:[...g,...p],end:/}/};for(const Ze of pe.variants){const Yt=Ze.contains.find(Z=>Z.label==="interpol");Yt.keywords=G;const er=[...X,...he,...He,We,pe,...Xe];Yt.contains=[...er,{begin:/\(/,end:/\)/,contains:["self",...er]}]}return{name:"Swift",keywords:G,contains:[...K,Oe,Me,{beginKeywords:"struct protocol class extension enum actor",end:"\\{",excludeEnd:!0,keywords:G,contains:[U.inherit(U.TITLE_MODE,{className:"title.class",begin:/[A-Za-z$_][\u00C0-\u02B80-9A-Za-z$_]*/}),...X]},ct,xt,{beginKeywords:"import",end:/$/,contains:[...K],relevance:0},...X,...he,...He,We,pe,...Xe,...Ue,Ie,Gt]}}return Xp=k,Xp}var Zp,nC;function iIe(){if(nC)return Zp;nC=1;function t(e){return{name:"Tagger Script",contains:[{className:"comment",begin:/\$noop\(/,end:/\)/,contains:[{begin:/\\[()]/},{begin:/\(/,end:/\)/,contains:[{begin:/\\[()]/},"self"]}],relevance:10},{className:"keyword",begin:/\$[_a-zA-Z0-9]+(?=\()/},{className:"variable",begin:/%[_a-zA-Z0-9:]+%/},{className:"symbol",begin:/\\[\\nt$%,()]/},{className:"symbol",begin:/\\u[a-fA-F0-9]{4}/}]}}return Zp=t,Zp}var Jp,rC;function aIe(){if(rC)return Jp;rC=1;function t(e){const n="true false yes no null",i="[\\w#;/?:@&=+$,.~*'()[\\]]+",o={className:"attr",variants:[{begin:"\\w[\\w :\\/.-]*:(?=[ ]|$)"},{begin:'"\\w[\\w :\\/.-]*":(?=[ ]|$)'},{begin:"'\\w[\\w :\\/.-]*':(?=[ ]|$)"}]},s={className:"template-variable",variants:[{begin:/\{\{/,end:/\}\}/},{begin:/%\{/,end:/\}/}]},l={className:"string",relevance:0,variants:[{begin:/'/,end:/'/},{begin:/"/,end:/"/},{begin:/\S+/}],contains:[e.BACKSLASH_ESCAPE,s]},c=e.inherit(l,{variants:[{begin:/'/,end:/'/},{begin:/"/,end:/"/},{begin:/[^\s,{}[\]]+/}]}),d="[0-9]{4}(-[0-9][0-9]){0,2}",_="([Tt \\t][0-9][0-9]?(:[0-9][0-9]){2})?",p="(\\.[0-9]*)?",g="([ \\t])*(Z|[-+][0-9][0-9]?(:[0-9][0-9])?)?",E={className:"number",begin:"\\b"+d+_+p+g+"\\b"},f={end:",",endsWithParent:!0,excludeEnd:!0,keywords:n,relevance:0},S={begin:/\{/,end:/\}/,contains:[f],illegal:"\\n",relevance:0},v={begin:"\\[",end:"\\]",contains:[f],illegal:"\\n",relevance:0},h=[o,{className:"meta",begin:"^---\\s*$",relevance:10},{className:"string",begin:"[\\|>]([1-9]?[+-])?[ ]*\\n( +)[^ ][^\\n]*\\n(\\2[^\\n]+\\n?)*"},{begin:"<%[%=-]?",end:"[%-]?%>",subLanguage:"ruby",excludeBegin:!0,excludeEnd:!0,relevance:0},{className:"type",begin:"!\\w+!"+i},{className:"type",begin:"!<"+i+">"},{className:"type",begin:"!"+i},{className:"type",begin:"!!"+i},{className:"meta",begin:"&"+e.UNDERSCORE_IDENT_RE+"$"},{className:"meta",begin:"\\*"+e.UNDERSCORE_IDENT_RE+"$"},{className:"bullet",begin:"-(?=[ ]|$)",relevance:0},e.HASH_COMMENT_MODE,{beginKeywords:n,keywords:{literal:n}},E,{className:"number",begin:e.C_NUMBER_RE+"\\b",relevance:0},S,v,l],T=[...h];return T.pop(),T.push(c),f.contains=T,{name:"YAML",case_insensitive:!0,aliases:["yml"],contains:h}}return Jp=t,Jp}var jp,iC;function oIe(){if(iC)return jp;iC=1;function t(e){return{name:"Test Anything Protocol",case_insensitive:!0,contains:[e.HASH_COMMENT_MODE,{className:"meta",variants:[{begin:"^TAP version (\\d+)$"},{begin:"^1\\.\\.(\\d+)$"}]},{begin:/---$/,end:"\\.\\.\\.$",subLanguage:"yaml",relevance:0},{className:"number",begin:" (\\d+) "},{className:"symbol",variants:[{begin:"^ok"},{begin:"^not ok"}]}]}}return jp=t,jp}var em,aC;function sIe(){if(aC)return em;aC=1;function t(e){const n=e.regex,i=/[a-zA-Z_][a-zA-Z0-9_]*/,o={className:"number",variants:[e.BINARY_NUMBER_MODE,e.C_NUMBER_MODE]};return{name:"Tcl",aliases:["tk"],keywords:["after","append","apply","array","auto_execok","auto_import","auto_load","auto_mkindex","auto_mkindex_old","auto_qualify","auto_reset","bgerror","binary","break","catch","cd","chan","clock","close","concat","continue","dde","dict","encoding","eof","error","eval","exec","exit","expr","fblocked","fconfigure","fcopy","file","fileevent","filename","flush","for","foreach","format","gets","glob","global","history","http","if","incr","info","interp","join","lappend|10","lassign|10","lindex|10","linsert|10","list","llength|10","load","lrange|10","lrepeat|10","lreplace|10","lreverse|10","lsearch|10","lset|10","lsort|10","mathfunc","mathop","memory","msgcat","namespace","open","package","parray","pid","pkg::create","pkg_mkIndex","platform","platform::shell","proc","puts","pwd","read","refchan","regexp","registry","regsub|10","rename","return","safe","scan","seek","set","socket","source","split","string","subst","switch","tcl_endOfWord","tcl_findLibrary","tcl_startOfNextWord","tcl_startOfPreviousWord","tcl_wordBreakAfter","tcl_wordBreakBefore","tcltest","tclvars","tell","time","tm","trace","unknown","unload","unset","update","uplevel","upvar","variable","vwait","while"],contains:[e.COMMENT(";[ \\t]*#","$"),e.COMMENT("^[ \\t]*#","$"),{beginKeywords:"proc",end:"[\\{]",excludeEnd:!0,contains:[{className:"title",begin:"[ \\t\\n\\r]+(::)?[a-zA-Z_]((::)?[a-zA-Z0-9_])*",end:"[ \\t\\n\\r]",endsWithParent:!0,excludeEnd:!0}]},{className:"variable",variants:[{begin:n.concat(/\$/,n.optional(/::/),i,"(::",i,")*")},{begin:"\\$\\{(::)?[a-zA-Z_]((::)?[a-zA-Z0-9_])*",end:"\\}",contains:[o]}]},{className:"string",contains:[e.BACKSLASH_ESCAPE],variants:[e.inherit(e.QUOTE_STRING_MODE,{illegal:null})]},o]}}return em=t,em}var tm,oC;function lIe(){if(oC)return tm;oC=1;function t(e){const n=["bool","byte","i16","i32","i64","double","string","binary"];return{name:"Thrift",keywords:{keyword:["namespace","const","typedef","struct","enum","service","exception","void","oneway","set","list","map","required","optional"],type:n,literal:"true false"},contains:[e.QUOTE_STRING_MODE,e.NUMBER_MODE,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,{className:"class",beginKeywords:"struct enum service exception",end:/\{/,illegal:/\n/,contains:[e.inherit(e.TITLE_MODE,{starts:{endsWithParent:!0,excludeEnd:!0}})]},{begin:"\\b(set|list|map)\\s*<",keywords:{type:[...n,"set","list","map"]},end:">",contains:["self"]}]}}return tm=t,tm}var nm,sC;function cIe(){if(sC)return nm;sC=1;function t(e){const n={className:"number",begin:"[1-9][0-9]*",relevance:0},i={className:"symbol",begin:":[^\\]]+"},o={className:"built_in",begin:"(AR|P|PAYLOAD|PR|R|SR|RSR|LBL|VR|UALM|MESSAGE|UTOOL|UFRAME|TIMER|TIMER_OVERFLOW|JOINT_MAX_SPEED|RESUME_PROG|DIAG_REC)\\[",end:"\\]",contains:["self",n,i]},s={className:"built_in",begin:"(AI|AO|DI|DO|F|RI|RO|UI|UO|GI|GO|SI|SO)\\[",end:"\\]",contains:["self",n,e.QUOTE_STRING_MODE,i]};return{name:"TP",keywords:{keyword:["ABORT","ACC","ADJUST","AND","AP_LD","BREAK","CALL","CNT","COL","CONDITION","CONFIG","DA","DB","DIV","DETECT","ELSE","END","ENDFOR","ERR_NUM","ERROR_PROG","FINE","FOR","GP","GUARD","INC","IF","JMP","LINEAR_MAX_SPEED","LOCK","MOD","MONITOR","OFFSET","Offset","OR","OVERRIDE","PAUSE","PREG","PTH","RT_LD","RUN","SELECT","SKIP","Skip","TA","TB","TO","TOOL_OFFSET","Tool_Offset","UF","UT","UFRAME_NUM","UTOOL_NUM","UNLOCK","WAIT","X","Y","Z","W","P","R","STRLEN","SUBSTR","FINDSTR","VOFFSET","PROG","ATTR","MN","POS"],literal:["ON","OFF","max_speed","LPOS","JPOS","ENABLE","DISABLE","START","STOP","RESET"]},contains:[o,s,{className:"keyword",begin:"/(PROG|ATTR|MN|POS|END)\\b"},{className:"keyword",begin:"(CALL|RUN|POINT_LOGIC|LBL)\\b"},{className:"keyword",begin:"\\b(ACC|CNT|Skip|Offset|PSPD|RT_LD|AP_LD|Tool_Offset)"},{className:"number",begin:"\\d+(sec|msec|mm/sec|cm/min|inch/min|deg/sec|mm|in|cm)?\\b",relevance:0},e.COMMENT("//","[;$]"),e.COMMENT("!","[;$]"),e.COMMENT("--eg:","$"),e.QUOTE_STRING_MODE,{className:"string",begin:"'",end:"'"},e.C_NUMBER_MODE,{className:"variable",begin:"\\$[A-Za-z0-9_]+"}]}}return nm=t,nm}var rm,lC;function uIe(){if(lC)return rm;lC=1;function t(e){const n=e.regex,i=["absolute_url","asset|0","asset_version","attribute","block","constant","controller|0","country_timezones","csrf_token","cycle","date","dump","expression","form|0","form_end","form_errors","form_help","form_label","form_rest","form_row","form_start","form_widget","html_classes","include","is_granted","logout_path","logout_url","max","min","parent","path|0","random","range","relative_path","render","render_esi","source","template_from_string","url|0"],o=["abs","abbr_class","abbr_method","batch","capitalize","column","convert_encoding","country_name","currency_name","currency_symbol","data_uri","date","date_modify","default","escape","file_excerpt","file_link","file_relative","filter","first","format","format_args","format_args_as_text","format_currency","format_date","format_datetime","format_file","format_file_from_text","format_number","format_time","html_to_markdown","humanize","inky_to_html","inline_css","join","json_encode","keys","language_name","last","length","locale_name","lower","map","markdown","markdown_to_html","merge","nl2br","number_format","raw","reduce","replace","reverse","round","slice","slug","sort","spaceless","split","striptags","timezone_name","title","trans","transchoice","trim","u|0","upper","url_encode","yaml_dump","yaml_encode"];let s=["apply","autoescape","block","cache","deprecated","do","embed","extends","filter","flush","for","form_theme","from","if","import","include","macro","sandbox","set","stopwatch","trans","trans_default_domain","transchoice","use","verbatim","with"];s=s.concat(s.map(v=>`end${v}`));const l={scope:"string",variants:[{begin:/'/,end:/'/},{begin:/"/,end:/"/}]},c={scope:"number",match:/\d+/},d={begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,contains:[l,c]},_={beginKeywords:i.join(" "),keywords:{name:i},relevance:0,contains:[d]},p={match:/\|(?=[A-Za-z_]+:?)/,beginScope:"punctuation",relevance:0,contains:[{match:/[A-Za-z_]+:?/,keywords:o}]},g=(v,{relevance:h})=>({beginScope:{1:"template-tag",3:"name"},relevance:h||2,endScope:"template-tag",begin:[/\{%/,/\s*/,n.either(...v)],end:/%\}/,keywords:"in",contains:[p,_,l,c]}),E=/[a-z_]+/,f=g(s,{relevance:2}),S=g([E],{relevance:1});return{name:"Twig",aliases:["craftcms"],case_insensitive:!0,subLanguage:"xml",contains:[e.COMMENT(/\{#/,/#\}/),f,S,{className:"template-variable",begin:/\{\{/,end:/\}\}/,contains:["self",p,_,l,c]}]}}return rm=t,rm}var im,cC;function dIe(){if(cC)return im;cC=1;const t="[A-Za-z$_][0-9A-Za-z$_]*",e=["as","in","of","if","for","while","finally","var","new","function","do","return","void","else","break","catch","instanceof","with","throw","case","default","try","switch","continue","typeof","delete","let","yield","const","class","debugger","async","await","static","import","from","export","extends"],n=["true","false","null","undefined","NaN","Infinity"],i=["Object","Function","Boolean","Symbol","Math","Date","Number","BigInt","String","RegExp","Array","Float32Array","Float64Array","Int8Array","Uint8Array","Uint8ClampedArray","Int16Array","Int32Array","Uint16Array","Uint32Array","BigInt64Array","BigUint64Array","Set","Map","WeakSet","WeakMap","ArrayBuffer","SharedArrayBuffer","Atomics","DataView","JSON","Promise","Generator","GeneratorFunction","AsyncFunction","Reflect","Proxy","Intl","WebAssembly"],o=["Error","EvalError","InternalError","RangeError","ReferenceError","SyntaxError","TypeError","URIError"],s=["setInterval","setTimeout","clearInterval","clearTimeout","require","exports","eval","isFinite","isNaN","parseFloat","parseInt","decodeURI","decodeURIComponent","encodeURI","encodeURIComponent","escape","unescape"],l=["arguments","this","super","console","window","document","localStorage","sessionStorage","module","global"],c=[].concat(s,i,o);function d(p){const g=p.regex,E=(xe,{after:ze})=>{const rt="",end:""},v=/<[A-Za-z0-9\\._:-]+\s*\/>/,h={begin:/<[A-Za-z0-9\\._:-]+/,end:/\/[A-Za-z0-9\\._:-]+>|\/>/,isTrulyOpeningTag:(xe,ze)=>{const rt=xe[0].length+xe.index,Ke=xe.input[rt];if(Ke==="<"||Ke===","){ze.ignoreMatch();return}Ke===">"&&(E(xe,{after:rt})||ze.ignoreMatch());let te;const pe=xe.input.substring(rt);if(te=pe.match(/^\s*=/)){ze.ignoreMatch();return}if((te=pe.match(/^\s+extends\s+/))&&te.index===0){ze.ignoreMatch();return}}},T={$pattern:t,keyword:e,literal:n,built_in:c,"variable.language":l},N="[0-9](_?[0-9])*",y=`\\.(${N})`,x="0|[1-9](_?[0-9])*|0[0-7]*[89][0-9]*",P={className:"number",variants:[{begin:`(\\b(${x})((${y})|\\.)?|(${y}))[eE][+-]?(${N})\\b`},{begin:`\\b(${x})\\b((${y})\\b|\\.)?|(${y})\\b`},{begin:"\\b(0|[1-9](_?[0-9])*)n\\b"},{begin:"\\b0[xX][0-9a-fA-F](_?[0-9a-fA-F])*n?\\b"},{begin:"\\b0[bB][0-1](_?[0-1])*n?\\b"},{begin:"\\b0[oO][0-7](_?[0-7])*n?\\b"},{begin:"\\b0[0-7]+n?\\b"}],relevance:0},D={className:"subst",begin:"\\$\\{",end:"\\}",keywords:T,contains:[]},k={begin:"html`",end:"",starts:{end:"`",returnEnd:!1,contains:[p.BACKSLASH_ESCAPE,D],subLanguage:"xml"}},U={begin:"css`",end:"",starts:{end:"`",returnEnd:!1,contains:[p.BACKSLASH_ESCAPE,D],subLanguage:"css"}},W={begin:"gql`",end:"",starts:{end:"`",returnEnd:!1,contains:[p.BACKSLASH_ESCAPE,D],subLanguage:"graphql"}},z={className:"string",begin:"`",end:"`",contains:[p.BACKSLASH_ESCAPE,D]},Ee={className:"comment",variants:[p.COMMENT(/\/\*\*(?!\/)/,"\\*/",{relevance:0,contains:[{begin:"(?=@[A-Za-z]+)",relevance:0,contains:[{className:"doctag",begin:"@[A-Za-z]+"},{className:"type",begin:"\\{",end:"\\}",excludeEnd:!0,excludeBegin:!0,relevance:0},{className:"variable",begin:f+"(?=\\s*(-)|$)",endsParent:!0,relevance:0},{begin:/(?=[^\n])\s/,relevance:0}]}]}),p.C_BLOCK_COMMENT_MODE,p.C_LINE_COMMENT_MODE]},oe=[p.APOS_STRING_MODE,p.QUOTE_STRING_MODE,k,U,W,z,{match:/\$\d+/},P];D.contains=oe.concat({begin:/\{/,end:/\}/,keywords:T,contains:["self"].concat(oe)});const L=[].concat(Ee,D.contains),J=L.concat([{begin:/\(/,end:/\)/,keywords:T,contains:["self"].concat(L)}]),re={className:"params",begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,keywords:T,contains:J},G={variants:[{match:[/class/,/\s+/,f,/\s+/,/extends/,/\s+/,g.concat(f,"(",g.concat(/\./,f),")*")],scope:{1:"keyword",3:"title.class",5:"keyword",7:"title.class.inherited"}},{match:[/class/,/\s+/,f],scope:{1:"keyword",3:"title.class"}}]},X={relevance:0,match:g.either(/\bJSON/,/\b[A-Z][a-z]+([A-Z][a-z]*|\d)*/,/\b[A-Z]{2,}([A-Z][a-z]+|\d)+([A-Z][a-z]*)*/,/\b[A-Z]{2,}[a-z]+([A-Z][a-z]+|\d)*([A-Z][a-z]*)*/),className:"title.class",keywords:{_:[...i,...o]}},_e={label:"use_strict",className:"meta",relevance:10,begin:/^\s*['"]use (strict|asm)['"]/},ve={variants:[{match:[/function/,/\s+/,f,/(?=\s*\()/]},{match:[/function/,/\s*(?=\()/]}],className:{1:"keyword",3:"title.function"},label:"func.def",contains:[re],illegal:/%/},he={relevance:0,match:/\b[A-Z][A-Z_0-9]+\b/,className:"variable.constant"};function tt(xe){return g.concat("(?!",xe.join("|"),")")}const lt={match:g.concat(/\b/,tt([...s,"super","import"]),f,g.lookahead(/\(/)),className:"title.function",relevance:0},He={begin:g.concat(/\./,g.lookahead(g.concat(f,/(?![0-9A-Za-z$_(])/))),end:f,excludeBegin:!0,keywords:"prototype",className:"property",relevance:0},Ce={match:[/get|set/,/\s+/,f,/(?=\()/],className:{1:"keyword",3:"title.function"},contains:[{begin:/\(\)/},re]},Be="(\\([^()]*(\\([^()]*(\\([^()]*\\)[^()]*)*\\)[^()]*)*\\)|"+p.UNDERSCORE_IDENT_RE+")\\s*=>",We={match:[/const|var|let/,/\s+/,f,/\s*/,/=\s*/,/(async\s*)?/,g.lookahead(Be)],keywords:"async",className:{1:"keyword",3:"title.function"},contains:[re]};return{name:"JavaScript",aliases:["js","jsx","mjs","cjs"],keywords:T,exports:{PARAMS_CONTAINS:J,CLASS_REFERENCE:X},illegal:/#(?![$_A-z])/,contains:[p.SHEBANG({label:"shebang",binary:"node",relevance:5}),_e,p.APOS_STRING_MODE,p.QUOTE_STRING_MODE,k,U,W,z,Ee,{match:/\$\d+/},P,X,{className:"attr",begin:f+g.lookahead(":"),relevance:0},We,{begin:"("+p.RE_STARTERS_RE+"|\\b(case|return|throw)\\b)\\s*",keywords:"return throw case",relevance:0,contains:[Ee,p.REGEXP_MODE,{className:"function",begin:Be,returnBegin:!0,end:"\\s*=>",contains:[{className:"params",variants:[{begin:p.UNDERSCORE_IDENT_RE,relevance:0},{className:null,begin:/\(\s*\)/,skip:!0},{begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,keywords:T,contains:J}]}]},{begin:/,/,relevance:0},{match:/\s+/,relevance:0},{variants:[{begin:S.begin,end:S.end},{match:v},{begin:h.begin,"on:begin":h.isTrulyOpeningTag,end:h.end}],subLanguage:"xml",contains:[{begin:h.begin,end:h.end,skip:!0,contains:["self"]}]}]},ve,{beginKeywords:"while if switch catch for"},{begin:"\\b(?!function)"+p.UNDERSCORE_IDENT_RE+"\\([^()]*(\\([^()]*(\\([^()]*\\)[^()]*)*\\)[^()]*)*\\)\\s*\\{",returnBegin:!0,label:"func.def",contains:[re,p.inherit(p.TITLE_MODE,{begin:f,className:"title.function"})]},{match:/\.\.\./,relevance:0},He,{match:"\\$"+f,relevance:0},{match:[/\bconstructor(?=\s*\()/],className:{1:"title.function"},contains:[re]},lt,he,G,Ce,{match:/\$[(.]/}]}}function _(p){const g=d(p),E=t,f=["any","void","number","boolean","string","object","never","symbol","bigint","unknown"],S={beginKeywords:"namespace",end:/\{/,excludeEnd:!0,contains:[g.exports.CLASS_REFERENCE]},v={beginKeywords:"interface",end:/\{/,excludeEnd:!0,keywords:{keyword:"interface extends",built_in:f},contains:[g.exports.CLASS_REFERENCE]},h={className:"meta",relevance:10,begin:/^\s*['"]use strict['"]/},T=["type","namespace","interface","public","private","protected","implements","declare","abstract","readonly","enum","override"],N={$pattern:t,keyword:e.concat(T),literal:n,built_in:c.concat(f),"variable.language":l},y={className:"meta",begin:"@"+E},x=(D,k,U)=>{const W=D.contains.findIndex(z=>z.label===k);if(W===-1)throw new Error("can not find mode to replace");D.contains.splice(W,1,U)};Object.assign(g.keywords,N),g.exports.PARAMS_CONTAINS.push(y),g.contains=g.contains.concat([y,S,v]),x(g,"shebang",p.SHEBANG()),x(g,"use_strict",h);const P=g.contains.find(D=>D.label==="func.def");return P.relevance=0,Object.assign(g,{name:"TypeScript",aliases:["ts","tsx","mts","cts"]}),g}return im=_,im}var am,uC;function _Ie(){if(uC)return am;uC=1;function t(e){return{name:"Vala",keywords:{keyword:"char uchar unichar int uint long ulong short ushort int8 int16 int32 int64 uint8 uint16 uint32 uint64 float double bool struct enum string void weak unowned owned async signal static abstract interface override virtual delegate if while do for foreach else switch case break default return try catch public private protected internal using new this get set const stdout stdin stderr var",built_in:"DBus GLib CCode Gee Object Gtk Posix",literal:"false true null"},contains:[{className:"class",beginKeywords:"class interface namespace",end:/\{/,excludeEnd:!0,illegal:"[^,:\\n\\s\\.]",contains:[e.UNDERSCORE_TITLE_MODE]},e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,{className:"string",begin:'"""',end:'"""',relevance:5},e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,e.C_NUMBER_MODE,{className:"meta",begin:"^#",end:"$"}]}}return am=t,am}var om,dC;function pIe(){if(dC)return om;dC=1;function t(e){const n=e.regex,i={className:"string",begin:/"(""|[^/n])"C\b/},o={className:"string",begin:/"/,end:/"/,illegal:/\n/,contains:[{begin:/""/}]},s=/\d{1,2}\/\d{1,2}\/\d{4}/,l=/\d{4}-\d{1,2}-\d{1,2}/,c=/(\d|1[012])(:\d+){0,2} *(AM|PM)/,d=/\d{1,2}(:\d{1,2}){1,2}/,_={className:"literal",variants:[{begin:n.concat(/# */,n.either(l,s),/ *#/)},{begin:n.concat(/# */,d,/ *#/)},{begin:n.concat(/# */,c,/ *#/)},{begin:n.concat(/# */,n.either(l,s),/ +/,n.either(c,d),/ *#/)}]},p={className:"number",relevance:0,variants:[{begin:/\b\d[\d_]*((\.[\d_]+(E[+-]?[\d_]+)?)|(E[+-]?[\d_]+))[RFD@!#]?/},{begin:/\b\d[\d_]*((U?[SIL])|[%&])?/},{begin:/&H[\dA-F_]+((U?[SIL])|[%&])?/},{begin:/&O[0-7_]+((U?[SIL])|[%&])?/},{begin:/&B[01_]+((U?[SIL])|[%&])?/}]},g={className:"label",begin:/^\w+:/},E=e.COMMENT(/'''/,/$/,{contains:[{className:"doctag",begin:/<\/?/,end:/>/}]}),f=e.COMMENT(null,/$/,{variants:[{begin:/'/},{begin:/([\t ]|^)REM(?=\s)/}]});return{name:"Visual Basic .NET",aliases:["vb"],case_insensitive:!0,classNameAliases:{label:"symbol"},keywords:{keyword:"addhandler alias aggregate ansi as async assembly auto binary by byref byval call case catch class compare const continue custom declare default delegate dim distinct do each equals else elseif end enum erase error event exit explicit finally for friend from function get global goto group handles if implements imports in inherits interface into iterator join key let lib loop me mid module mustinherit mustoverride mybase myclass namespace narrowing new next notinheritable notoverridable of off on operator option optional order overloads overridable overrides paramarray partial preserve private property protected public raiseevent readonly redim removehandler resume return select set shadows shared skip static step stop structure strict sub synclock take text then throw to try unicode until using when where while widening with withevents writeonly yield",built_in:"addressof and andalso await directcast gettype getxmlnamespace is isfalse isnot istrue like mod nameof new not or orelse trycast typeof xor cbool cbyte cchar cdate cdbl cdec cint clng cobj csbyte cshort csng cstr cuint culng cushort",type:"boolean byte char date decimal double integer long object sbyte short single string uinteger ulong ushort",literal:"true false nothing"},illegal:"//|\\{|\\}|endif|gosub|variant|wend|^\\$ ",contains:[i,o,_,p,g,E,f,{className:"meta",begin:/[\t ]*#(const|disable|else|elseif|enable|end|externalsource|if|region)\b/,end:/$/,keywords:{keyword:"const disable else elseif enable end externalsource if region then"},contains:[f]}]}}return om=t,om}var sm,_C;function mIe(){if(_C)return sm;_C=1;function t(e){const n=e.regex,i=["lcase","month","vartype","instrrev","ubound","setlocale","getobject","rgb","getref","string","weekdayname","rnd","dateadd","monthname","now","day","minute","isarray","cbool","round","formatcurrency","conversions","csng","timevalue","second","year","space","abs","clng","timeserial","fixs","len","asc","isempty","maths","dateserial","atn","timer","isobject","filter","weekday","datevalue","ccur","isdate","instr","datediff","formatdatetime","replace","isnull","right","sgn","array","snumeric","log","cdbl","hex","chr","lbound","msgbox","ucase","getlocale","cos","cdate","cbyte","rtrim","join","hour","oct","typename","trim","strcomp","int","createobject","loadpicture","tan","formatnumber","mid","split","cint","sin","datepart","ltrim","sqr","time","derived","eval","date","formatpercent","exp","inputbox","left","ascw","chrw","regexp","cstr","err"],o=["server","response","request","scriptengine","scriptenginebuildversion","scriptengineminorversion","scriptenginemajorversion"],s={begin:n.concat(n.either(...i),"\\s*\\("),relevance:0,keywords:{built_in:i}};return{name:"VBScript",aliases:["vbs"],case_insensitive:!0,keywords:{keyword:["call","class","const","dim","do","loop","erase","execute","executeglobal","exit","for","each","next","function","if","then","else","on","error","option","explicit","new","private","property","let","get","public","randomize","redim","rem","select","case","set","stop","sub","while","wend","with","end","to","elseif","is","or","xor","and","not","class_initialize","class_terminate","default","preserve","in","me","byval","byref","step","resume","goto"],built_in:o,literal:["true","false","null","nothing","empty"]},illegal:"//",contains:[s,e.inherit(e.QUOTE_STRING_MODE,{contains:[{begin:'""'}]}),e.COMMENT(/'/,/$/,{relevance:0}),e.C_NUMBER_MODE]}}return sm=t,sm}var lm,pC;function gIe(){if(pC)return lm;pC=1;function t(e){return{name:"VBScript in HTML",subLanguage:"xml",contains:[{begin:"<%",end:"%>",subLanguage:"vbscript"}]}}return lm=t,lm}var cm,mC;function EIe(){if(mC)return cm;mC=1;function t(e){const n=e.regex,i={$pattern:/\$?[\w]+(\$[\w]+)*/,keyword:["accept_on","alias","always","always_comb","always_ff","always_latch","and","assert","assign","assume","automatic","before","begin","bind","bins","binsof","bit","break","buf|0","bufif0","bufif1","byte","case","casex","casez","cell","chandle","checker","class","clocking","cmos","config","const","constraint","context","continue","cover","covergroup","coverpoint","cross","deassign","default","defparam","design","disable","dist","do","edge","else","end","endcase","endchecker","endclass","endclocking","endconfig","endfunction","endgenerate","endgroup","endinterface","endmodule","endpackage","endprimitive","endprogram","endproperty","endspecify","endsequence","endtable","endtask","enum","event","eventually","expect","export","extends","extern","final","first_match","for","force","foreach","forever","fork","forkjoin","function","generate|5","genvar","global","highz0","highz1","if","iff","ifnone","ignore_bins","illegal_bins","implements","implies","import","incdir","include","initial","inout","input","inside","instance","int","integer","interconnect","interface","intersect","join","join_any","join_none","large","let","liblist","library","local","localparam","logic","longint","macromodule","matches","medium","modport","module","nand","negedge","nettype","new","nexttime","nmos","nor","noshowcancelled","not","notif0","notif1","or","output","package","packed","parameter","pmos","posedge","primitive","priority","program","property","protected","pull0","pull1","pulldown","pullup","pulsestyle_ondetect","pulsestyle_onevent","pure","rand","randc","randcase","randsequence","rcmos","real","realtime","ref","reg","reject_on","release","repeat","restrict","return","rnmos","rpmos","rtran","rtranif0","rtranif1","s_always","s_eventually","s_nexttime","s_until","s_until_with","scalared","sequence","shortint","shortreal","showcancelled","signed","small","soft","solve","specify","specparam","static","string","strong","strong0","strong1","struct","super","supply0","supply1","sync_accept_on","sync_reject_on","table","tagged","task","this","throughout","time","timeprecision","timeunit","tran","tranif0","tranif1","tri","tri0","tri1","triand","trior","trireg","type","typedef","union","unique","unique0","unsigned","until","until_with","untyped","use","uwire","var","vectored","virtual","void","wait","wait_order","wand","weak","weak0","weak1","while","wildcard","wire","with","within","wor","xnor","xor"],literal:["null"],built_in:["$finish","$stop","$exit","$fatal","$error","$warning","$info","$realtime","$time","$printtimescale","$bitstoreal","$bitstoshortreal","$itor","$signed","$cast","$bits","$stime","$timeformat","$realtobits","$shortrealtobits","$rtoi","$unsigned","$asserton","$assertkill","$assertpasson","$assertfailon","$assertnonvacuouson","$assertoff","$assertcontrol","$assertpassoff","$assertfailoff","$assertvacuousoff","$isunbounded","$sampled","$fell","$changed","$past_gclk","$fell_gclk","$changed_gclk","$rising_gclk","$steady_gclk","$coverage_control","$coverage_get","$coverage_save","$set_coverage_db_name","$rose","$stable","$past","$rose_gclk","$stable_gclk","$future_gclk","$falling_gclk","$changing_gclk","$display","$coverage_get_max","$coverage_merge","$get_coverage","$load_coverage_db","$typename","$unpacked_dimensions","$left","$low","$increment","$clog2","$ln","$log10","$exp","$sqrt","$pow","$floor","$ceil","$sin","$cos","$tan","$countbits","$onehot","$isunknown","$fatal","$warning","$dimensions","$right","$high","$size","$asin","$acos","$atan","$atan2","$hypot","$sinh","$cosh","$tanh","$asinh","$acosh","$atanh","$countones","$onehot0","$error","$info","$random","$dist_chi_square","$dist_erlang","$dist_exponential","$dist_normal","$dist_poisson","$dist_t","$dist_uniform","$q_initialize","$q_remove","$q_exam","$async$and$array","$async$nand$array","$async$or$array","$async$nor$array","$sync$and$array","$sync$nand$array","$sync$or$array","$sync$nor$array","$q_add","$q_full","$psprintf","$async$and$plane","$async$nand$plane","$async$or$plane","$async$nor$plane","$sync$and$plane","$sync$nand$plane","$sync$or$plane","$sync$nor$plane","$system","$display","$displayb","$displayh","$displayo","$strobe","$strobeb","$strobeh","$strobeo","$write","$readmemb","$readmemh","$writememh","$value$plusargs","$dumpvars","$dumpon","$dumplimit","$dumpports","$dumpportson","$dumpportslimit","$writeb","$writeh","$writeo","$monitor","$monitorb","$monitorh","$monitoro","$writememb","$dumpfile","$dumpoff","$dumpall","$dumpflush","$dumpportsoff","$dumpportsall","$dumpportsflush","$fclose","$fdisplay","$fdisplayb","$fdisplayh","$fdisplayo","$fstrobe","$fstrobeb","$fstrobeh","$fstrobeo","$swrite","$swriteb","$swriteh","$swriteo","$fscanf","$fread","$fseek","$fflush","$feof","$fopen","$fwrite","$fwriteb","$fwriteh","$fwriteo","$fmonitor","$fmonitorb","$fmonitorh","$fmonitoro","$sformat","$sformatf","$fgetc","$ungetc","$fgets","$sscanf","$rewind","$ftell","$ferror"]},o=["__FILE__","__LINE__"],s=["begin_keywords","celldefine","default_nettype","default_decay_time","default_trireg_strength","define","delay_mode_distributed","delay_mode_path","delay_mode_unit","delay_mode_zero","else","elsif","end_keywords","endcelldefine","endif","ifdef","ifndef","include","line","nounconnected_drive","pragma","resetall","timescale","unconnected_drive","undef","undefineall"];return{name:"Verilog",aliases:["v","sv","svh"],case_insensitive:!1,keywords:i,contains:[e.C_BLOCK_COMMENT_MODE,e.C_LINE_COMMENT_MODE,e.QUOTE_STRING_MODE,{scope:"number",contains:[e.BACKSLASH_ESCAPE],variants:[{begin:/\b((\d+'([bhodBHOD]))[0-9xzXZa-fA-F_]+)/},{begin:/\B(('([bhodBHOD]))[0-9xzXZa-fA-F_]+)/},{begin:/\b[0-9][0-9_]*/,relevance:0}]},{scope:"variable",variants:[{begin:"#\\((?!parameter).+\\)"},{begin:"\\.\\w+",relevance:0}]},{scope:"variable.constant",match:n.concat(/`/,n.either(...o))},{scope:"meta",begin:n.concat(/`/,n.either(...s)),end:/$|\/\/|\/\*/,returnEnd:!0,keywords:s}]}}return cm=t,cm}var um,gC;function fIe(){if(gC)return um;gC=1;function t(e){const n="\\d(_|\\d)*",i="[eE][-+]?"+n,o=n+"(\\."+n+")?("+i+")?",s="\\w+",c="\\b("+(n+"#"+s+"(\\."+s+")?#("+i+")?")+"|"+o+")";return{name:"VHDL",case_insensitive:!0,keywords:{keyword:["abs","access","after","alias","all","and","architecture","array","assert","assume","assume_guarantee","attribute","begin","block","body","buffer","bus","case","component","configuration","constant","context","cover","disconnect","downto","default","else","elsif","end","entity","exit","fairness","file","for","force","function","generate","generic","group","guarded","if","impure","in","inertial","inout","is","label","library","linkage","literal","loop","map","mod","nand","new","next","nor","not","null","of","on","open","or","others","out","package","parameter","port","postponed","procedure","process","property","protected","pure","range","record","register","reject","release","rem","report","restrict","restrict_guarantee","return","rol","ror","select","sequence","severity","shared","signal","sla","sll","sra","srl","strong","subtype","then","to","transport","type","unaffected","units","until","use","variable","view","vmode","vprop","vunit","wait","when","while","with","xnor","xor"],built_in:["boolean","bit","character","integer","time","delay_length","natural","positive","string","bit_vector","file_open_kind","file_open_status","std_logic","std_logic_vector","unsigned","signed","boolean_vector","integer_vector","std_ulogic","std_ulogic_vector","unresolved_unsigned","u_unsigned","unresolved_signed","u_signed","real_vector","time_vector"],literal:["false","true","note","warning","error","failure","line","text","side","width"]},illegal:/\{/,contains:[e.C_BLOCK_COMMENT_MODE,e.COMMENT("--","$"),e.QUOTE_STRING_MODE,{className:"number",begin:c,relevance:0},{className:"string",begin:"'(U|X|0|1|Z|W|L|H|-)'",contains:[e.BACKSLASH_ESCAPE]},{className:"symbol",begin:"'[A-Za-z](_?[A-Za-z0-9])*",contains:[e.BACKSLASH_ESCAPE]}]}}return um=t,um}var dm,EC;function SIe(){if(EC)return dm;EC=1;function t(e){return{name:"Vim Script",keywords:{$pattern:/[!#@\w]+/,keyword:"N|0 P|0 X|0 a|0 ab abc abo al am an|0 ar arga argd arge argdo argg argl argu as au aug aun b|0 bN ba bad bd be bel bf bl bm bn bo bp br brea breaka breakd breakl bro bufdo buffers bun bw c|0 cN cNf ca cabc caddb cad caddf cal cat cb cc ccl cd ce cex cf cfir cgetb cgete cg changes chd che checkt cl cla clo cm cmapc cme cn cnew cnf cno cnorea cnoreme co col colo com comc comp con conf cope cp cpf cq cr cs cst cu cuna cunme cw delm deb debugg delc delf dif diffg diffo diffp diffpu diffs diffthis dig di dl dell dj dli do doautoa dp dr ds dsp e|0 ea ec echoe echoh echom echon el elsei em en endfo endf endt endw ene ex exe exi exu f|0 files filet fin fina fini fir fix fo foldc foldd folddoc foldo for fu go gr grepa gu gv ha helpf helpg helpt hi hid his ia iabc if ij il im imapc ime ino inorea inoreme int is isp iu iuna iunme j|0 ju k|0 keepa kee keepj lN lNf l|0 lad laddb laddf la lan lat lb lc lch lcl lcs le lefta let lex lf lfir lgetb lgete lg lgr lgrepa lh ll lla lli lmak lm lmapc lne lnew lnf ln loadk lo loc lockv lol lope lp lpf lr ls lt lu lua luad luaf lv lvimgrepa lw m|0 ma mak map mapc marks mat me menut mes mk mks mksp mkv mkvie mod mz mzf nbc nb nbs new nm nmapc nme nn nnoreme noa no noh norea noreme norm nu nun nunme ol o|0 om omapc ome on ono onoreme opt ou ounme ow p|0 profd prof pro promptr pc ped pe perld po popu pp pre prev ps pt ptN ptf ptj ptl ptn ptp ptr pts pu pw py3 python3 py3d py3f py pyd pyf quita qa rec red redi redr redraws reg res ret retu rew ri rightb rub rubyd rubyf rund ru rv sN san sa sal sav sb sbN sba sbf sbl sbm sbn sbp sbr scrip scripte scs se setf setg setl sf sfir sh sim sig sil sl sla sm smap smapc sme sn sni sno snor snoreme sor so spelld spe spelli spellr spellu spellw sp spr sre st sta startg startr star stopi stj sts sun sunm sunme sus sv sw sy synti sync tN tabN tabc tabdo tabe tabf tabfir tabl tabm tabnew tabn tabo tabp tabr tabs tab ta tags tc tcld tclf te tf th tj tl tm tn to tp tr try ts tu u|0 undoj undol una unh unl unlo unm unme uns up ve verb vert vim vimgrepa vi viu vie vm vmapc vme vne vn vnoreme vs vu vunme windo w|0 wN wa wh wi winc winp wn wp wq wqa ws wu wv x|0 xa xmapc xm xme xn xnoreme xu xunme y|0 z|0 ~ Next Print append abbreviate abclear aboveleft all amenu anoremenu args argadd argdelete argedit argglobal arglocal argument ascii autocmd augroup aunmenu buffer bNext ball badd bdelete behave belowright bfirst blast bmodified bnext botright bprevious brewind break breakadd breakdel breaklist browse bunload bwipeout change cNext cNfile cabbrev cabclear caddbuffer caddexpr caddfile call catch cbuffer cclose center cexpr cfile cfirst cgetbuffer cgetexpr cgetfile chdir checkpath checktime clist clast close cmap cmapclear cmenu cnext cnewer cnfile cnoremap cnoreabbrev cnoremenu copy colder colorscheme command comclear compiler continue confirm copen cprevious cpfile cquit crewind cscope cstag cunmap cunabbrev cunmenu cwindow delete delmarks debug debuggreedy delcommand delfunction diffupdate diffget diffoff diffpatch diffput diffsplit digraphs display deletel djump dlist doautocmd doautoall deletep drop dsearch dsplit edit earlier echo echoerr echohl echomsg else elseif emenu endif endfor endfunction endtry endwhile enew execute exit exusage file filetype find finally finish first fixdel fold foldclose folddoopen folddoclosed foldopen function global goto grep grepadd gui gvim hardcopy help helpfind helpgrep helptags highlight hide history insert iabbrev iabclear ijump ilist imap imapclear imenu inoremap inoreabbrev inoremenu intro isearch isplit iunmap iunabbrev iunmenu join jumps keepalt keepmarks keepjumps lNext lNfile list laddexpr laddbuffer laddfile last language later lbuffer lcd lchdir lclose lcscope left leftabove lexpr lfile lfirst lgetbuffer lgetexpr lgetfile lgrep lgrepadd lhelpgrep llast llist lmake lmap lmapclear lnext lnewer lnfile lnoremap loadkeymap loadview lockmarks lockvar lolder lopen lprevious lpfile lrewind ltag lunmap luado luafile lvimgrep lvimgrepadd lwindow move mark make mapclear match menu menutranslate messages mkexrc mksession mkspell mkvimrc mkview mode mzscheme mzfile nbclose nbkey nbsart next nmap nmapclear nmenu nnoremap nnoremenu noautocmd noremap nohlsearch noreabbrev noremenu normal number nunmap nunmenu oldfiles open omap omapclear omenu only onoremap onoremenu options ounmap ounmenu ownsyntax print profdel profile promptfind promptrepl pclose pedit perl perldo pop popup ppop preserve previous psearch ptag ptNext ptfirst ptjump ptlast ptnext ptprevious ptrewind ptselect put pwd py3do py3file python pydo pyfile quit quitall qall read recover redo redir redraw redrawstatus registers resize retab return rewind right rightbelow ruby rubydo rubyfile rundo runtime rviminfo substitute sNext sandbox sargument sall saveas sbuffer sbNext sball sbfirst sblast sbmodified sbnext sbprevious sbrewind scriptnames scriptencoding scscope set setfiletype setglobal setlocal sfind sfirst shell simalt sign silent sleep slast smagic smapclear smenu snext sniff snomagic snoremap snoremenu sort source spelldump spellgood spellinfo spellrepall spellundo spellwrong split sprevious srewind stop stag startgreplace startreplace startinsert stopinsert stjump stselect sunhide sunmap sunmenu suspend sview swapname syntax syntime syncbind tNext tabNext tabclose tabedit tabfind tabfirst tablast tabmove tabnext tabonly tabprevious tabrewind tag tcl tcldo tclfile tearoff tfirst throw tjump tlast tmenu tnext topleft tprevious trewind tselect tunmenu undo undojoin undolist unabbreviate unhide unlet unlockvar unmap unmenu unsilent update vglobal version verbose vertical vimgrep vimgrepadd visual viusage view vmap vmapclear vmenu vnew vnoremap vnoremenu vsplit vunmap vunmenu write wNext wall while winsize wincmd winpos wnext wprevious wqall wsverb wundo wviminfo xit xall xmapclear xmap xmenu xnoremap xnoremenu xunmap xunmenu yank",built_in:"synIDtrans atan2 range matcharg did_filetype asin feedkeys xor argv complete_check add getwinposx getqflist getwinposy screencol clearmatches empty extend getcmdpos mzeval garbagecollect setreg ceil sqrt diff_hlID inputsecret get getfperm getpid filewritable shiftwidth max sinh isdirectory synID system inputrestore winline atan visualmode inputlist tabpagewinnr round getregtype mapcheck hasmapto histdel argidx findfile sha256 exists toupper getcmdline taglist string getmatches bufnr strftime winwidth bufexists strtrans tabpagebuflist setcmdpos remote_read printf setloclist getpos getline bufwinnr float2nr len getcmdtype diff_filler luaeval resolve libcallnr foldclosedend reverse filter has_key bufname str2float strlen setline getcharmod setbufvar index searchpos shellescape undofile foldclosed setqflist buflisted strchars str2nr virtcol floor remove undotree remote_expr winheight gettabwinvar reltime cursor tabpagenr finddir localtime acos getloclist search tanh matchend rename gettabvar strdisplaywidth type abs py3eval setwinvar tolower wildmenumode log10 spellsuggest bufloaded synconcealed nextnonblank server2client complete settabwinvar executable input wincol setmatches getftype hlID inputsave searchpair or screenrow line settabvar histadd deepcopy strpart remote_peek and eval getftime submatch screenchar winsaveview matchadd mkdir screenattr getfontname libcall reltimestr getfsize winnr invert pow getbufline byte2line soundfold repeat fnameescape tagfiles sin strwidth spellbadword trunc maparg log lispindent hostname setpos globpath remote_foreground getchar synIDattr fnamemodify cscope_connection stridx winbufnr indent min complete_add nr2char searchpairpos inputdialog values matchlist items hlexists strridx browsedir expand fmod pathshorten line2byte argc count getwinvar glob foldtextresult getreg foreground cosh matchdelete has char2nr simplify histget searchdecl iconv winrestcmd pumvisible writefile foldlevel haslocaldir keys cos matchstr foldtext histnr tan tempname getcwd byteidx getbufvar islocked escape eventhandler remote_send serverlist winrestview synstack pyeval prevnonblank readfile cindent filereadable changenr exp"},illegal:/;/,contains:[e.NUMBER_MODE,{className:"string",begin:"'",end:"'",illegal:"\\n"},{className:"string",begin:/"(\\"|\n\\|[^"\n])*"/},e.COMMENT('"',"$"),{className:"variable",begin:/[bwtglsav]:[\w\d_]+/},{begin:[/\b(?:function|function!)/,/\s+/,e.IDENT_RE],className:{1:"keyword",3:"title"},end:"$",relevance:0,contains:[{className:"params",begin:"\\(",end:"\\)"}]},{className:"symbol",begin:/<[\w-]+>/}]}}return dm=t,dm}var _m,fC;function bIe(){if(fC)return _m;fC=1;function t(e){e.regex;const n=e.COMMENT(/\(;/,/;\)/);n.contains.push("self");const i=e.COMMENT(/;;/,/$/),o=["anyfunc","block","br","br_if","br_table","call","call_indirect","data","drop","elem","else","end","export","func","global.get","global.set","local.get","local.set","local.tee","get_global","get_local","global","if","import","local","loop","memory","memory.grow","memory.size","module","mut","nop","offset","param","result","return","select","set_global","set_local","start","table","tee_local","then","type","unreachable"],s={begin:[/(?:func|call|call_indirect)/,/\s+/,/\$[^\s)]+/],className:{1:"keyword",3:"title.function"}},l={className:"variable",begin:/\$[\w_]+/},c={match:/(\((?!;)|\))+/,className:"punctuation",relevance:0},d={className:"number",relevance:0,match:/[+-]?\b(?:\d(?:_?\d)*(?:\.\d(?:_?\d)*)?(?:[eE][+-]?\d(?:_?\d)*)?|0x[\da-fA-F](?:_?[\da-fA-F])*(?:\.[\da-fA-F](?:_?[\da-fA-D])*)?(?:[pP][+-]?\d(?:_?\d)*)?)\b|\binf\b|\bnan(?::0x[\da-fA-F](?:_?[\da-fA-D])*)?\b/},_={match:/(i32|i64|f32|f64)(?!\.)/,className:"type"},p={className:"keyword",match:/\b(f32|f64|i32|i64)(?:\.(?:abs|add|and|ceil|clz|const|convert_[su]\/i(?:32|64)|copysign|ctz|demote\/f64|div(?:_[su])?|eqz?|extend_[su]\/i32|floor|ge(?:_[su])?|gt(?:_[su])?|le(?:_[su])?|load(?:(?:8|16|32)_[su])?|lt(?:_[su])?|max|min|mul|nearest|neg?|or|popcnt|promote\/f32|reinterpret\/[fi](?:32|64)|rem_[su]|rot[lr]|shl|shr_[su]|store(?:8|16|32)?|sqrt|sub|trunc(?:_[su]\/f(?:32|64))?|wrap\/i64|xor))\b/};return{name:"WebAssembly",keywords:{$pattern:/[\w.]+/,keyword:o},contains:[i,n,{match:[/(?:offset|align)/,/\s*/,/=/],className:{1:"keyword",3:"operator"}},l,c,s,e.QUOTE_STRING_MODE,_,p,d]}}return _m=t,_m}var pm,SC;function hIe(){if(SC)return pm;SC=1;function t(e){const n=e.regex,i=/[a-zA-Z]\w*/,o=["as","break","class","construct","continue","else","for","foreign","if","import","in","is","return","static","var","while"],s=["true","false","null"],l=["this","super"],c=["Bool","Class","Fiber","Fn","List","Map","Null","Num","Object","Range","Sequence","String","System"],d=["-","~",/\*/,"%",/\.\.\./,/\.\./,/\+/,"<<",">>",">=","<=","<",">",/\^/,/!=/,/!/,/\bis\b/,"==","&&","&",/\|\|/,/\|/,/\?:/,"="],_={relevance:0,match:n.concat(/\b(?!(if|while|for|else|super)\b)/,i,/(?=\s*[({])/),className:"title.function"},p={match:n.concat(n.either(n.concat(/\b(?!(if|while|for|else|super)\b)/,i),n.either(...d)),/(?=\s*\([^)]+\)\s*\{)/),className:"title.function",starts:{contains:[{begin:/\(/,end:/\)/,contains:[{relevance:0,scope:"params",match:i}]}]}},g={variants:[{match:[/class\s+/,i,/\s+is\s+/,i]},{match:[/class\s+/,i]}],scope:{2:"title.class",4:"title.class.inherited"},keywords:o},E={relevance:0,match:n.either(...d),className:"operator"},f={className:"string",begin:/"""/,end:/"""/},S={className:"property",begin:n.concat(/\./,n.lookahead(i)),end:i,excludeBegin:!0,relevance:0},v={relevance:0,match:n.concat(/\b_/,i),scope:"variable"},h={relevance:0,match:/\b[A-Z]+[a-z]+([A-Z]+[a-z]+)*/,scope:"title.class",keywords:{_:c}},T=e.C_NUMBER_MODE,N={match:[i,/\s*/,/=/,/\s*/,/\(/,i,/\)\s*\{/],scope:{1:"title.function",3:"operator",6:"params"}},y=e.COMMENT(/\/\*\*/,/\*\//,{contains:[{match:/@[a-z]+/,scope:"doctag"},"self"]}),x={scope:"subst",begin:/%\(/,end:/\)/,contains:[T,h,_,v,E]},P={scope:"string",begin:/"/,end:/"/,contains:[x,{scope:"char.escape",variants:[{match:/\\\\|\\["0%abefnrtv]/},{match:/\\x[0-9A-F]{2}/},{match:/\\u[0-9A-F]{4}/},{match:/\\U[0-9A-F]{8}/}]}]};x.contains.push(P);const D=[...o,...l,...s],k={relevance:0,match:n.concat("\\b(?!",D.join("|"),"\\b)",/[a-zA-Z_]\w*(?:[?!]|\b)/),className:"variable"};return{name:"Wren",keywords:{keyword:o,"variable.language":l,literal:s},contains:[{scope:"comment",variants:[{begin:[/#!?/,/[A-Za-z_]+(?=\()/],beginScope:{},keywords:{literal:s},contains:[],end:/\)/},{begin:[/#!?/,/[A-Za-z_]+/],beginScope:{},end:/$/}]},T,P,f,y,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,h,g,N,p,_,E,v,S,k]}}return pm=t,pm}var mm,bC;function TIe(){if(bC)return mm;bC=1;function t(e){return{name:"Intel x86 Assembly",case_insensitive:!0,keywords:{$pattern:"[.%]?"+e.IDENT_RE,keyword:"lock rep repe repz repne repnz xaquire xrelease bnd nobnd aaa aad aam aas adc add and arpl bb0_reset bb1_reset bound bsf bsr bswap bt btc btr bts call cbw cdq cdqe clc cld cli clts cmc cmp cmpsb cmpsd cmpsq cmpsw cmpxchg cmpxchg486 cmpxchg8b cmpxchg16b cpuid cpu_read cpu_write cqo cwd cwde daa das dec div dmint emms enter equ f2xm1 fabs fadd faddp fbld fbstp fchs fclex fcmovb fcmovbe fcmove fcmovnb fcmovnbe fcmovne fcmovnu fcmovu fcom fcomi fcomip fcomp fcompp fcos fdecstp fdisi fdiv fdivp fdivr fdivrp femms feni ffree ffreep fiadd ficom ficomp fidiv fidivr fild fimul fincstp finit fist fistp fisttp fisub fisubr fld fld1 fldcw fldenv fldl2e fldl2t fldlg2 fldln2 fldpi fldz fmul fmulp fnclex fndisi fneni fninit fnop fnsave fnstcw fnstenv fnstsw fpatan fprem fprem1 fptan frndint frstor fsave fscale fsetpm fsin fsincos fsqrt fst fstcw fstenv fstp fstsw fsub fsubp fsubr fsubrp ftst fucom fucomi fucomip fucomp fucompp fxam fxch fxtract fyl2x fyl2xp1 hlt ibts icebp idiv imul in inc incbin insb insd insw int int01 int1 int03 int3 into invd invpcid invlpg invlpga iret iretd iretq iretw jcxz jecxz jrcxz jmp jmpe lahf lar lds lea leave les lfence lfs lgdt lgs lidt lldt lmsw loadall loadall286 lodsb lodsd lodsq lodsw loop loope loopne loopnz loopz lsl lss ltr mfence monitor mov movd movq movsb movsd movsq movsw movsx movsxd movzx mul mwait neg nop not or out outsb outsd outsw packssdw packsswb packuswb paddb paddd paddsb paddsiw paddsw paddusb paddusw paddw pand pandn pause paveb pavgusb pcmpeqb pcmpeqd pcmpeqw pcmpgtb pcmpgtd pcmpgtw pdistib pf2id pfacc pfadd pfcmpeq pfcmpge pfcmpgt pfmax pfmin pfmul pfrcp pfrcpit1 pfrcpit2 pfrsqit1 pfrsqrt pfsub pfsubr pi2fd pmachriw pmaddwd pmagw pmulhriw pmulhrwa pmulhrwc pmulhw pmullw pmvgezb pmvlzb pmvnzb pmvzb pop popa popad popaw popf popfd popfq popfw por prefetch prefetchw pslld psllq psllw psrad psraw psrld psrlq psrlw psubb psubd psubsb psubsiw psubsw psubusb psubusw psubw punpckhbw punpckhdq punpckhwd punpcklbw punpckldq punpcklwd push pusha pushad pushaw pushf pushfd pushfq pushfw pxor rcl rcr rdshr rdmsr rdpmc rdtsc rdtscp ret retf retn rol ror rdm rsdc rsldt rsm rsts sahf sal salc sar sbb scasb scasd scasq scasw sfence sgdt shl shld shr shrd sidt sldt skinit smi smint smintold smsw stc std sti stosb stosd stosq stosw str sub svdc svldt svts swapgs syscall sysenter sysexit sysret test ud0 ud1 ud2b ud2 ud2a umov verr verw fwait wbinvd wrshr wrmsr xadd xbts xchg xlatb xlat xor cmove cmovz cmovne cmovnz cmova cmovnbe cmovae cmovnb cmovb cmovnae cmovbe cmovna cmovg cmovnle cmovge cmovnl cmovl cmovnge cmovle cmovng cmovc cmovnc cmovo cmovno cmovs cmovns cmovp cmovpe cmovnp cmovpo je jz jne jnz ja jnbe jae jnb jb jnae jbe jna jg jnle jge jnl jl jnge jle jng jc jnc jo jno js jns jpo jnp jpe jp sete setz setne setnz seta setnbe setae setnb setnc setb setnae setcset setbe setna setg setnle setge setnl setl setnge setle setng sets setns seto setno setpe setp setpo setnp addps addss andnps andps cmpeqps cmpeqss cmpleps cmpless cmpltps cmpltss cmpneqps cmpneqss cmpnleps cmpnless cmpnltps cmpnltss cmpordps cmpordss cmpunordps cmpunordss cmpps cmpss comiss cvtpi2ps cvtps2pi cvtsi2ss cvtss2si cvttps2pi cvttss2si divps divss ldmxcsr maxps maxss minps minss movaps movhps movlhps movlps movhlps movmskps movntps movss movups mulps mulss orps rcpps rcpss rsqrtps rsqrtss shufps sqrtps sqrtss stmxcsr subps subss ucomiss unpckhps unpcklps xorps fxrstor fxrstor64 fxsave fxsave64 xgetbv xsetbv xsave xsave64 xsaveopt xsaveopt64 xrstor xrstor64 prefetchnta prefetcht0 prefetcht1 prefetcht2 maskmovq movntq pavgb pavgw pextrw pinsrw pmaxsw pmaxub pminsw pminub pmovmskb pmulhuw psadbw pshufw pf2iw pfnacc pfpnacc pi2fw pswapd maskmovdqu clflush movntdq movnti movntpd movdqa movdqu movdq2q movq2dq paddq pmuludq pshufd pshufhw pshuflw pslldq psrldq psubq punpckhqdq punpcklqdq addpd addsd andnpd andpd cmpeqpd cmpeqsd cmplepd cmplesd cmpltpd cmpltsd cmpneqpd cmpneqsd cmpnlepd cmpnlesd cmpnltpd cmpnltsd cmpordpd cmpordsd cmpunordpd cmpunordsd cmppd comisd cvtdq2pd cvtdq2ps cvtpd2dq cvtpd2pi cvtpd2ps cvtpi2pd cvtps2dq cvtps2pd cvtsd2si cvtsd2ss cvtsi2sd cvtss2sd cvttpd2pi cvttpd2dq cvttps2dq cvttsd2si divpd divsd maxpd maxsd minpd minsd movapd movhpd movlpd movmskpd movupd mulpd mulsd orpd shufpd sqrtpd sqrtsd subpd subsd ucomisd unpckhpd unpcklpd xorpd addsubpd addsubps haddpd haddps hsubpd hsubps lddqu movddup movshdup movsldup clgi stgi vmcall vmclear vmfunc vmlaunch vmload vmmcall vmptrld vmptrst vmread vmresume vmrun vmsave vmwrite vmxoff vmxon invept invvpid pabsb pabsw pabsd palignr phaddw phaddd phaddsw phsubw phsubd phsubsw pmaddubsw pmulhrsw pshufb psignb psignw psignd extrq insertq movntsd movntss lzcnt blendpd blendps blendvpd blendvps dppd dpps extractps insertps movntdqa mpsadbw packusdw pblendvb pblendw pcmpeqq pextrb pextrd pextrq phminposuw pinsrb pinsrd pinsrq pmaxsb pmaxsd pmaxud pmaxuw pminsb pminsd pminud pminuw pmovsxbw pmovsxbd pmovsxbq pmovsxwd pmovsxwq pmovsxdq pmovzxbw pmovzxbd pmovzxbq pmovzxwd pmovzxwq pmovzxdq pmuldq pmulld ptest roundpd roundps roundsd roundss crc32 pcmpestri pcmpestrm pcmpistri pcmpistrm pcmpgtq popcnt getsec pfrcpv pfrsqrtv movbe aesenc aesenclast aesdec aesdeclast aesimc aeskeygenassist vaesenc vaesenclast vaesdec vaesdeclast vaesimc vaeskeygenassist vaddpd vaddps vaddsd vaddss vaddsubpd vaddsubps vandpd vandps vandnpd vandnps vblendpd vblendps vblendvpd vblendvps vbroadcastss vbroadcastsd vbroadcastf128 vcmpeq_ospd vcmpeqpd vcmplt_ospd vcmpltpd vcmple_ospd vcmplepd vcmpunord_qpd vcmpunordpd vcmpneq_uqpd vcmpneqpd vcmpnlt_uspd vcmpnltpd vcmpnle_uspd vcmpnlepd vcmpord_qpd vcmpordpd vcmpeq_uqpd vcmpnge_uspd vcmpngepd vcmpngt_uspd vcmpngtpd vcmpfalse_oqpd vcmpfalsepd vcmpneq_oqpd vcmpge_ospd vcmpgepd vcmpgt_ospd vcmpgtpd vcmptrue_uqpd vcmptruepd vcmplt_oqpd vcmple_oqpd vcmpunord_spd vcmpneq_uspd vcmpnlt_uqpd vcmpnle_uqpd vcmpord_spd vcmpeq_uspd vcmpnge_uqpd vcmpngt_uqpd vcmpfalse_ospd vcmpneq_ospd vcmpge_oqpd vcmpgt_oqpd vcmptrue_uspd vcmppd vcmpeq_osps vcmpeqps vcmplt_osps vcmpltps vcmple_osps vcmpleps vcmpunord_qps vcmpunordps vcmpneq_uqps vcmpneqps vcmpnlt_usps vcmpnltps vcmpnle_usps vcmpnleps vcmpord_qps vcmpordps vcmpeq_uqps vcmpnge_usps vcmpngeps vcmpngt_usps vcmpngtps vcmpfalse_oqps vcmpfalseps vcmpneq_oqps vcmpge_osps vcmpgeps vcmpgt_osps vcmpgtps vcmptrue_uqps vcmptrueps vcmplt_oqps vcmple_oqps vcmpunord_sps vcmpneq_usps vcmpnlt_uqps vcmpnle_uqps vcmpord_sps vcmpeq_usps vcmpnge_uqps vcmpngt_uqps vcmpfalse_osps vcmpneq_osps vcmpge_oqps vcmpgt_oqps vcmptrue_usps vcmpps vcmpeq_ossd vcmpeqsd vcmplt_ossd vcmpltsd vcmple_ossd vcmplesd vcmpunord_qsd vcmpunordsd vcmpneq_uqsd vcmpneqsd vcmpnlt_ussd vcmpnltsd vcmpnle_ussd vcmpnlesd vcmpord_qsd vcmpordsd vcmpeq_uqsd vcmpnge_ussd vcmpngesd vcmpngt_ussd vcmpngtsd vcmpfalse_oqsd vcmpfalsesd vcmpneq_oqsd vcmpge_ossd vcmpgesd vcmpgt_ossd vcmpgtsd vcmptrue_uqsd vcmptruesd vcmplt_oqsd vcmple_oqsd vcmpunord_ssd vcmpneq_ussd vcmpnlt_uqsd vcmpnle_uqsd vcmpord_ssd vcmpeq_ussd vcmpnge_uqsd vcmpngt_uqsd vcmpfalse_ossd vcmpneq_ossd vcmpge_oqsd vcmpgt_oqsd vcmptrue_ussd vcmpsd vcmpeq_osss vcmpeqss vcmplt_osss vcmpltss vcmple_osss vcmpless vcmpunord_qss vcmpunordss vcmpneq_uqss vcmpneqss vcmpnlt_usss vcmpnltss vcmpnle_usss vcmpnless vcmpord_qss vcmpordss vcmpeq_uqss vcmpnge_usss vcmpngess vcmpngt_usss vcmpngtss vcmpfalse_oqss vcmpfalsess vcmpneq_oqss vcmpge_osss vcmpgess vcmpgt_osss vcmpgtss vcmptrue_uqss vcmptruess vcmplt_oqss vcmple_oqss vcmpunord_sss vcmpneq_usss vcmpnlt_uqss vcmpnle_uqss vcmpord_sss vcmpeq_usss vcmpnge_uqss vcmpngt_uqss vcmpfalse_osss vcmpneq_osss vcmpge_oqss vcmpgt_oqss vcmptrue_usss vcmpss vcomisd vcomiss vcvtdq2pd vcvtdq2ps vcvtpd2dq vcvtpd2ps vcvtps2dq vcvtps2pd vcvtsd2si vcvtsd2ss vcvtsi2sd vcvtsi2ss vcvtss2sd vcvtss2si vcvttpd2dq vcvttps2dq vcvttsd2si vcvttss2si vdivpd vdivps vdivsd vdivss vdppd vdpps vextractf128 vextractps vhaddpd vhaddps vhsubpd vhsubps vinsertf128 vinsertps vlddqu vldqqu vldmxcsr vmaskmovdqu vmaskmovps vmaskmovpd vmaxpd vmaxps vmaxsd vmaxss vminpd vminps vminsd vminss vmovapd vmovaps vmovd vmovq vmovddup vmovdqa vmovqqa vmovdqu vmovqqu vmovhlps vmovhpd vmovhps vmovlhps vmovlpd vmovlps vmovmskpd vmovmskps vmovntdq vmovntqq vmovntdqa vmovntpd vmovntps vmovsd vmovshdup vmovsldup vmovss vmovupd vmovups vmpsadbw vmulpd vmulps vmulsd vmulss vorpd vorps vpabsb vpabsw vpabsd vpacksswb vpackssdw vpackuswb vpackusdw vpaddb vpaddw vpaddd vpaddq vpaddsb vpaddsw vpaddusb vpaddusw vpalignr vpand vpandn vpavgb vpavgw vpblendvb vpblendw vpcmpestri vpcmpestrm vpcmpistri vpcmpistrm vpcmpeqb vpcmpeqw vpcmpeqd vpcmpeqq vpcmpgtb vpcmpgtw vpcmpgtd vpcmpgtq vpermilpd vpermilps vperm2f128 vpextrb vpextrw vpextrd vpextrq vphaddw vphaddd vphaddsw vphminposuw vphsubw vphsubd vphsubsw vpinsrb vpinsrw vpinsrd vpinsrq vpmaddwd vpmaddubsw vpmaxsb vpmaxsw vpmaxsd vpmaxub vpmaxuw vpmaxud vpminsb vpminsw vpminsd vpminub vpminuw vpminud vpmovmskb vpmovsxbw vpmovsxbd vpmovsxbq vpmovsxwd vpmovsxwq vpmovsxdq vpmovzxbw vpmovzxbd vpmovzxbq vpmovzxwd vpmovzxwq vpmovzxdq vpmulhuw vpmulhrsw vpmulhw vpmullw vpmulld vpmuludq vpmuldq vpor vpsadbw vpshufb vpshufd vpshufhw vpshuflw vpsignb vpsignw vpsignd vpslldq vpsrldq vpsllw vpslld vpsllq vpsraw vpsrad vpsrlw vpsrld vpsrlq vptest vpsubb vpsubw vpsubd vpsubq vpsubsb vpsubsw vpsubusb vpsubusw vpunpckhbw vpunpckhwd vpunpckhdq vpunpckhqdq vpunpcklbw vpunpcklwd vpunpckldq vpunpcklqdq vpxor vrcpps vrcpss vrsqrtps vrsqrtss vroundpd vroundps vroundsd vroundss vshufpd vshufps vsqrtpd vsqrtps vsqrtsd vsqrtss vstmxcsr vsubpd vsubps vsubsd vsubss vtestps vtestpd vucomisd vucomiss vunpckhpd vunpckhps vunpcklpd vunpcklps vxorpd vxorps vzeroall vzeroupper pclmullqlqdq pclmulhqlqdq pclmullqhqdq pclmulhqhqdq pclmulqdq vpclmullqlqdq vpclmulhqlqdq vpclmullqhqdq vpclmulhqhqdq vpclmulqdq vfmadd132ps vfmadd132pd vfmadd312ps vfmadd312pd vfmadd213ps vfmadd213pd vfmadd123ps vfmadd123pd vfmadd231ps vfmadd231pd vfmadd321ps vfmadd321pd vfmaddsub132ps vfmaddsub132pd vfmaddsub312ps vfmaddsub312pd vfmaddsub213ps vfmaddsub213pd vfmaddsub123ps vfmaddsub123pd vfmaddsub231ps vfmaddsub231pd vfmaddsub321ps vfmaddsub321pd vfmsub132ps vfmsub132pd vfmsub312ps vfmsub312pd vfmsub213ps vfmsub213pd vfmsub123ps vfmsub123pd vfmsub231ps vfmsub231pd vfmsub321ps vfmsub321pd vfmsubadd132ps vfmsubadd132pd vfmsubadd312ps vfmsubadd312pd vfmsubadd213ps vfmsubadd213pd vfmsubadd123ps vfmsubadd123pd vfmsubadd231ps vfmsubadd231pd vfmsubadd321ps vfmsubadd321pd vfnmadd132ps vfnmadd132pd vfnmadd312ps vfnmadd312pd vfnmadd213ps vfnmadd213pd vfnmadd123ps vfnmadd123pd vfnmadd231ps vfnmadd231pd vfnmadd321ps vfnmadd321pd vfnmsub132ps vfnmsub132pd vfnmsub312ps vfnmsub312pd vfnmsub213ps vfnmsub213pd vfnmsub123ps vfnmsub123pd vfnmsub231ps vfnmsub231pd vfnmsub321ps vfnmsub321pd vfmadd132ss vfmadd132sd vfmadd312ss vfmadd312sd vfmadd213ss vfmadd213sd vfmadd123ss vfmadd123sd vfmadd231ss vfmadd231sd vfmadd321ss vfmadd321sd vfmsub132ss vfmsub132sd vfmsub312ss vfmsub312sd vfmsub213ss vfmsub213sd vfmsub123ss vfmsub123sd vfmsub231ss vfmsub231sd vfmsub321ss vfmsub321sd vfnmadd132ss vfnmadd132sd vfnmadd312ss vfnmadd312sd vfnmadd213ss vfnmadd213sd vfnmadd123ss vfnmadd123sd vfnmadd231ss vfnmadd231sd vfnmadd321ss vfnmadd321sd vfnmsub132ss vfnmsub132sd vfnmsub312ss vfnmsub312sd vfnmsub213ss vfnmsub213sd vfnmsub123ss vfnmsub123sd vfnmsub231ss vfnmsub231sd vfnmsub321ss vfnmsub321sd rdfsbase rdgsbase rdrand wrfsbase wrgsbase vcvtph2ps vcvtps2ph adcx adox rdseed clac stac xstore xcryptecb xcryptcbc xcryptctr xcryptcfb xcryptofb montmul xsha1 xsha256 llwpcb slwpcb lwpval lwpins vfmaddpd vfmaddps vfmaddsd vfmaddss vfmaddsubpd vfmaddsubps vfmsubaddpd vfmsubaddps vfmsubpd vfmsubps vfmsubsd vfmsubss vfnmaddpd vfnmaddps vfnmaddsd vfnmaddss vfnmsubpd vfnmsubps vfnmsubsd vfnmsubss vfrczpd vfrczps vfrczsd vfrczss vpcmov vpcomb vpcomd vpcomq vpcomub vpcomud vpcomuq vpcomuw vpcomw vphaddbd vphaddbq vphaddbw vphadddq vphaddubd vphaddubq vphaddubw vphaddudq vphadduwd vphadduwq vphaddwd vphaddwq vphsubbw vphsubdq vphsubwd vpmacsdd vpmacsdqh vpmacsdql vpmacssdd vpmacssdqh vpmacssdql vpmacsswd vpmacssww vpmacswd vpmacsww vpmadcsswd vpmadcswd vpperm vprotb vprotd vprotq vprotw vpshab vpshad vpshaq vpshaw vpshlb vpshld vpshlq vpshlw vbroadcasti128 vpblendd vpbroadcastb vpbroadcastw vpbroadcastd vpbroadcastq vpermd vpermpd vpermps vpermq vperm2i128 vextracti128 vinserti128 vpmaskmovd vpmaskmovq vpsllvd vpsllvq vpsravd vpsrlvd vpsrlvq vgatherdpd vgatherqpd vgatherdps vgatherqps vpgatherdd vpgatherqd vpgatherdq vpgatherqq xabort xbegin xend xtest andn bextr blci blcic blsi blsic blcfill blsfill blcmsk blsmsk blsr blcs bzhi mulx pdep pext rorx sarx shlx shrx tzcnt tzmsk t1mskc valignd valignq vblendmpd vblendmps vbroadcastf32x4 vbroadcastf64x4 vbroadcasti32x4 vbroadcasti64x4 vcompresspd vcompressps vcvtpd2udq vcvtps2udq vcvtsd2usi vcvtss2usi vcvttpd2udq vcvttps2udq vcvttsd2usi vcvttss2usi vcvtudq2pd vcvtudq2ps vcvtusi2sd vcvtusi2ss vexpandpd vexpandps vextractf32x4 vextractf64x4 vextracti32x4 vextracti64x4 vfixupimmpd vfixupimmps vfixupimmsd vfixupimmss vgetexppd vgetexpps vgetexpsd vgetexpss vgetmantpd vgetmantps vgetmantsd vgetmantss vinsertf32x4 vinsertf64x4 vinserti32x4 vinserti64x4 vmovdqa32 vmovdqa64 vmovdqu32 vmovdqu64 vpabsq vpandd vpandnd vpandnq vpandq vpblendmd vpblendmq vpcmpltd vpcmpled vpcmpneqd vpcmpnltd vpcmpnled vpcmpd vpcmpltq vpcmpleq vpcmpneqq vpcmpnltq vpcmpnleq vpcmpq vpcmpequd vpcmpltud vpcmpleud vpcmpnequd vpcmpnltud vpcmpnleud vpcmpud vpcmpequq vpcmpltuq vpcmpleuq vpcmpnequq vpcmpnltuq vpcmpnleuq vpcmpuq vpcompressd vpcompressq vpermi2d vpermi2pd vpermi2ps vpermi2q vpermt2d vpermt2pd vpermt2ps vpermt2q vpexpandd vpexpandq vpmaxsq vpmaxuq vpminsq vpminuq vpmovdb vpmovdw vpmovqb vpmovqd vpmovqw vpmovsdb vpmovsdw vpmovsqb vpmovsqd vpmovsqw vpmovusdb vpmovusdw vpmovusqb vpmovusqd vpmovusqw vpord vporq vprold vprolq vprolvd vprolvq vprord vprorq vprorvd vprorvq vpscatterdd vpscatterdq vpscatterqd vpscatterqq vpsraq vpsravq vpternlogd vpternlogq vptestmd vptestmq vptestnmd vptestnmq vpxord vpxorq vrcp14pd vrcp14ps vrcp14sd vrcp14ss vrndscalepd vrndscaleps vrndscalesd vrndscaless vrsqrt14pd vrsqrt14ps vrsqrt14sd vrsqrt14ss vscalefpd vscalefps vscalefsd vscalefss vscatterdpd vscatterdps vscatterqpd vscatterqps vshuff32x4 vshuff64x2 vshufi32x4 vshufi64x2 kandnw kandw kmovw knotw kortestw korw kshiftlw kshiftrw kunpckbw kxnorw kxorw vpbroadcastmb2q vpbroadcastmw2d vpconflictd vpconflictq vplzcntd vplzcntq vexp2pd vexp2ps vrcp28pd vrcp28ps vrcp28sd vrcp28ss vrsqrt28pd vrsqrt28ps vrsqrt28sd vrsqrt28ss vgatherpf0dpd vgatherpf0dps vgatherpf0qpd vgatherpf0qps vgatherpf1dpd vgatherpf1dps vgatherpf1qpd vgatherpf1qps vscatterpf0dpd vscatterpf0dps vscatterpf0qpd vscatterpf0qps vscatterpf1dpd vscatterpf1dps vscatterpf1qpd vscatterpf1qps prefetchwt1 bndmk bndcl bndcu bndcn bndmov bndldx bndstx sha1rnds4 sha1nexte sha1msg1 sha1msg2 sha256rnds2 sha256msg1 sha256msg2 hint_nop0 hint_nop1 hint_nop2 hint_nop3 hint_nop4 hint_nop5 hint_nop6 hint_nop7 hint_nop8 hint_nop9 hint_nop10 hint_nop11 hint_nop12 hint_nop13 hint_nop14 hint_nop15 hint_nop16 hint_nop17 hint_nop18 hint_nop19 hint_nop20 hint_nop21 hint_nop22 hint_nop23 hint_nop24 hint_nop25 hint_nop26 hint_nop27 hint_nop28 hint_nop29 hint_nop30 hint_nop31 hint_nop32 hint_nop33 hint_nop34 hint_nop35 hint_nop36 hint_nop37 hint_nop38 hint_nop39 hint_nop40 hint_nop41 hint_nop42 hint_nop43 hint_nop44 hint_nop45 hint_nop46 hint_nop47 hint_nop48 hint_nop49 hint_nop50 hint_nop51 hint_nop52 hint_nop53 hint_nop54 hint_nop55 hint_nop56 hint_nop57 hint_nop58 hint_nop59 hint_nop60 hint_nop61 hint_nop62 hint_nop63",built_in:"ip eip rip al ah bl bh cl ch dl dh sil dil bpl spl r8b r9b r10b r11b r12b r13b r14b r15b ax bx cx dx si di bp sp r8w r9w r10w r11w r12w r13w r14w r15w eax ebx ecx edx esi edi ebp esp eip r8d r9d r10d r11d r12d r13d r14d r15d rax rbx rcx rdx rsi rdi rbp rsp r8 r9 r10 r11 r12 r13 r14 r15 cs ds es fs gs ss st st0 st1 st2 st3 st4 st5 st6 st7 mm0 mm1 mm2 mm3 mm4 mm5 mm6 mm7 xmm0 xmm1 xmm2 xmm3 xmm4 xmm5 xmm6 xmm7 xmm8 xmm9 xmm10 xmm11 xmm12 xmm13 xmm14 xmm15 xmm16 xmm17 xmm18 xmm19 xmm20 xmm21 xmm22 xmm23 xmm24 xmm25 xmm26 xmm27 xmm28 xmm29 xmm30 xmm31 ymm0 ymm1 ymm2 ymm3 ymm4 ymm5 ymm6 ymm7 ymm8 ymm9 ymm10 ymm11 ymm12 ymm13 ymm14 ymm15 ymm16 ymm17 ymm18 ymm19 ymm20 ymm21 ymm22 ymm23 ymm24 ymm25 ymm26 ymm27 ymm28 ymm29 ymm30 ymm31 zmm0 zmm1 zmm2 zmm3 zmm4 zmm5 zmm6 zmm7 zmm8 zmm9 zmm10 zmm11 zmm12 zmm13 zmm14 zmm15 zmm16 zmm17 zmm18 zmm19 zmm20 zmm21 zmm22 zmm23 zmm24 zmm25 zmm26 zmm27 zmm28 zmm29 zmm30 zmm31 k0 k1 k2 k3 k4 k5 k6 k7 bnd0 bnd1 bnd2 bnd3 cr0 cr1 cr2 cr3 cr4 cr8 dr0 dr1 dr2 dr3 dr8 tr3 tr4 tr5 tr6 tr7 r0 r1 r2 r3 r4 r5 r6 r7 r0b r1b r2b r3b r4b r5b r6b r7b r0w r1w r2w r3w r4w r5w r6w r7w r0d r1d r2d r3d r4d r5d r6d r7d r0h r1h r2h r3h r0l r1l r2l r3l r4l r5l r6l r7l r8l r9l r10l r11l r12l r13l r14l r15l db dw dd dq dt ddq do dy dz resb resw resd resq rest resdq reso resy resz incbin equ times byte word dword qword nosplit rel abs seg wrt strict near far a32 ptr",meta:"%define %xdefine %+ %undef %defstr %deftok %assign %strcat %strlen %substr %rotate %elif %else %endif %if %ifmacro %ifctx %ifidn %ifidni %ifid %ifnum %ifstr %iftoken %ifempty %ifenv %error %warning %fatal %rep %endrep %include %push %pop %repl %pathsearch %depend %use %arg %stacksize %local %line %comment %endcomment .nolist __FILE__ __LINE__ __SECT__ __BITS__ __OUTPUT_FORMAT__ __DATE__ __TIME__ __DATE_NUM__ __TIME_NUM__ __UTC_DATE__ __UTC_TIME__ __UTC_DATE_NUM__ __UTC_TIME_NUM__ __PASS__ struc endstruc istruc at iend align alignb sectalign daz nodaz up down zero default option assume public bits use16 use32 use64 default section segment absolute extern global common cpu float __utf16__ __utf16le__ __utf16be__ __utf32__ __utf32le__ __utf32be__ __float8__ __float16__ __float32__ __float64__ __float80m__ __float80e__ __float128l__ __float128h__ __Infinity__ __QNaN__ __SNaN__ Inf NaN QNaN SNaN float8 float16 float32 float64 float80m float80e float128l float128h __FLOAT_DAZ__ __FLOAT_ROUND__ __FLOAT__"},contains:[e.COMMENT(";","$",{relevance:0}),{className:"number",variants:[{begin:"\\b(?:([0-9][0-9_]*)?\\.[0-9_]*(?:[eE][+-]?[0-9_]+)?|(0[Xx])?[0-9][0-9_]*(\\.[0-9_]*)?(?:[pP](?:[+-]?[0-9_]+)?)?)\\b",relevance:0},{begin:"\\$[0-9][0-9A-Fa-f]*",relevance:0},{begin:"\\b(?:[0-9A-Fa-f][0-9A-Fa-f_]*[Hh]|[0-9][0-9_]*[DdTt]?|[0-7][0-7_]*[QqOo]|[0-1][0-1_]*[BbYy])\\b"},{begin:"\\b(?:0[Xx][0-9A-Fa-f_]+|0[DdTt][0-9_]+|0[QqOo][0-7_]+|0[BbYy][0-1_]+)\\b"}]},e.QUOTE_STRING_MODE,{className:"string",variants:[{begin:"'",end:"[^\\\\]'"},{begin:"`",end:"[^\\\\]`"}],relevance:0},{className:"symbol",variants:[{begin:"^\\s*[A-Za-z._?][A-Za-z0-9_$#@~.?]*(:|\\s+label)"},{begin:"^\\s*%%[A-Za-z0-9_$#@~.?]*:"}],relevance:0},{className:"subst",begin:"%[0-9]+",relevance:0},{className:"subst",begin:"%!S+",relevance:0},{className:"meta",begin:/^\s*\.[\w_-]+/}]}}return mm=t,mm}var gm,hC;function vIe(){if(hC)return gm;hC=1;function t(e){const n=["if","then","else","do","while","until","for","loop","import","with","is","as","where","when","by","data","constant","integer","real","text","name","boolean","symbol","infix","prefix","postfix","block","tree"],i=["in","mod","rem","and","or","xor","not","abs","sign","floor","ceil","sqrt","sin","cos","tan","asin","acos","atan","exp","expm1","log","log2","log10","log1p","pi","at","text_length","text_range","text_find","text_replace","contains","page","slide","basic_slide","title_slide","title","subtitle","fade_in","fade_out","fade_at","clear_color","color","line_color","line_width","texture_wrap","texture_transform","texture","scale_?x","scale_?y","scale_?z?","translate_?x","translate_?y","translate_?z?","rotate_?x","rotate_?y","rotate_?z?","rectangle","circle","ellipse","sphere","path","line_to","move_to","quad_to","curve_to","theme","background","contents","locally","time","mouse_?x","mouse_?y","mouse_buttons"],o=["ObjectLoader","Animate","MovieCredits","Slides","Filters","Shading","Materials","LensFlare","Mapping","VLCAudioVideo","StereoDecoder","PointCloud","NetworkAccess","RemoteControl","RegExp","ChromaKey","Snowfall","NodeJS","Speech","Charts"],l={$pattern:/[a-zA-Z][a-zA-Z0-9_?]*/,keyword:n,literal:["true","false","nil"],built_in:i.concat(o)},c={className:"string",begin:'"',end:'"',illegal:"\\n"},d={className:"string",begin:"'",end:"'",illegal:"\\n"},_={className:"string",begin:"<<",end:">>"},p={className:"number",begin:"[0-9]+#[0-9A-Z_]+(\\.[0-9-A-Z_]+)?#?([Ee][+-]?[0-9]+)?"},g={beginKeywords:"import",end:"$",keywords:l,contains:[c]},E={className:"function",begin:/[a-z][^\n]*->/,returnBegin:!0,end:/->/,contains:[e.inherit(e.TITLE_MODE,{starts:{endsWithParent:!0,keywords:l}})]};return{name:"XL",aliases:["tao"],keywords:l,contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,c,d,_,E,g,p,e.NUMBER_MODE]}}return gm=t,gm}var Em,TC;function CIe(){if(TC)return Em;TC=1;function t(e){return{name:"XQuery",aliases:["xpath","xq"],case_insensitive:!1,illegal:/(proc)|(abstract)|(extends)|(until)|(#)/,keywords:{$pattern:/[a-zA-Z$][a-zA-Z0-9_:-]*/,keyword:["module","schema","namespace","boundary-space","preserve","no-preserve","strip","default","collation","base-uri","ordering","context","decimal-format","decimal-separator","copy-namespaces","empty-sequence","except","exponent-separator","external","grouping-separator","inherit","no-inherit","lax","minus-sign","per-mille","percent","schema-attribute","schema-element","strict","unordered","zero-digit","declare","import","option","function","validate","variable","for","at","in","let","where","order","group","by","return","if","then","else","tumbling","sliding","window","start","when","only","end","previous","next","stable","ascending","descending","allowing","empty","greatest","least","some","every","satisfies","switch","case","typeswitch","try","catch","and","or","to","union","intersect","instance","of","treat","as","castable","cast","map","array","delete","insert","into","replace","value","rename","copy","modify","update"],type:["item","document-node","node","attribute","document","element","comment","namespace","namespace-node","processing-instruction","text","construction","xs:anyAtomicType","xs:untypedAtomic","xs:duration","xs:time","xs:decimal","xs:float","xs:double","xs:gYearMonth","xs:gYear","xs:gMonthDay","xs:gMonth","xs:gDay","xs:boolean","xs:base64Binary","xs:hexBinary","xs:anyURI","xs:QName","xs:NOTATION","xs:dateTime","xs:dateTimeStamp","xs:date","xs:string","xs:normalizedString","xs:token","xs:language","xs:NMTOKEN","xs:Name","xs:NCName","xs:ID","xs:IDREF","xs:ENTITY","xs:integer","xs:nonPositiveInteger","xs:negativeInteger","xs:long","xs:int","xs:short","xs:byte","xs:nonNegativeInteger","xs:unisignedLong","xs:unsignedInt","xs:unsignedShort","xs:unsignedByte","xs:positiveInteger","xs:yearMonthDuration","xs:dayTimeDuration"],literal:["eq","ne","lt","le","gt","ge","is","self::","child::","descendant::","descendant-or-self::","attribute::","following::","following-sibling::","parent::","ancestor::","ancestor-or-self::","preceding::","preceding-sibling::","NaN"]},contains:[{className:"variable",begin:/[$][\w\-:]+/},{className:"built_in",variants:[{begin:/\barray:/,end:/(?:append|filter|flatten|fold-(?:left|right)|for-each(?:-pair)?|get|head|insert-before|join|put|remove|reverse|size|sort|subarray|tail)\b/},{begin:/\bmap:/,end:/(?:contains|entry|find|for-each|get|keys|merge|put|remove|size)\b/},{begin:/\bmath:/,end:/(?:a(?:cos|sin|tan[2]?)|cos|exp(?:10)?|log(?:10)?|pi|pow|sin|sqrt|tan)\b/},{begin:/\bop:/,end:/\(/,excludeEnd:!0},{begin:/\bfn:/,end:/\(/,excludeEnd:!0},{begin:/[^/,end:/(\/[\w._:-]+>)/,subLanguage:"xml",contains:[{begin:/\{/,end:/\}/,subLanguage:"xquery"},"self"]}]}}return Em=t,Em}var fm,vC;function RIe(){if(vC)return fm;vC=1;function t(e){const n={className:"string",contains:[e.BACKSLASH_ESCAPE],variants:[e.inherit(e.APOS_STRING_MODE,{illegal:null}),e.inherit(e.QUOTE_STRING_MODE,{illegal:null})]},i=e.UNDERSCORE_TITLE_MODE,o={variants:[e.BINARY_NUMBER_MODE,e.C_NUMBER_MODE]},s="namespace class interface use extends function return abstract final public protected private static deprecated throw try catch Exception echo empty isset instanceof unset let var new const self require if else elseif switch case default do while loop for continue break likely unlikely __LINE__ __FILE__ __DIR__ __FUNCTION__ __CLASS__ __TRAIT__ __METHOD__ __NAMESPACE__ array boolean float double integer object resource string char long unsigned bool int uint ulong uchar true false null undefined";return{name:"Zephir",aliases:["zep"],keywords:s,contains:[e.C_LINE_COMMENT_MODE,e.COMMENT(/\/\*/,/\*\//,{contains:[{className:"doctag",begin:/@[A-Za-z]+/}]}),{className:"string",begin:/<<<['"]?\w+['"]?$/,end:/^\w+;/,contains:[e.BACKSLASH_ESCAPE]},{begin:/(::|->)+[a-zA-Z_\x7f-\xff][a-zA-Z0-9_\x7f-\xff]*/},{className:"function",beginKeywords:"function fn",end:/[;{]/,excludeEnd:!0,illegal:/\$|\[|%/,contains:[i,{className:"params",begin:/\(/,end:/\)/,keywords:s,contains:["self",e.C_BLOCK_COMMENT_MODE,n,o]}]},{className:"class",beginKeywords:"class interface",end:/\{/,excludeEnd:!0,illegal:/[:($"]/,contains:[{beginKeywords:"extends implements"},i]},{beginKeywords:"namespace",end:/;/,illegal:/[.']/,contains:[i]},{beginKeywords:"use",end:/;/,contains:[i]},{begin:/=>/},n,o]}}return fm=t,fm}var I=KNe;I.registerLanguage("1c",QNe());I.registerLanguage("abnf",XNe());I.registerLanguage("accesslog",ZNe());I.registerLanguage("actionscript",JNe());I.registerLanguage("ada",jNe());I.registerLanguage("angelscript",eOe());I.registerLanguage("apache",tOe());I.registerLanguage("applescript",nOe());I.registerLanguage("arcade",rOe());I.registerLanguage("arduino",iOe());I.registerLanguage("armasm",aOe());I.registerLanguage("xml",oOe());I.registerLanguage("asciidoc",sOe());I.registerLanguage("aspectj",lOe());I.registerLanguage("autohotkey",cOe());I.registerLanguage("autoit",uOe());I.registerLanguage("avrasm",dOe());I.registerLanguage("awk",_Oe());I.registerLanguage("axapta",pOe());I.registerLanguage("bash",mOe());I.registerLanguage("basic",gOe());I.registerLanguage("bnf",EOe());I.registerLanguage("brainfuck",fOe());I.registerLanguage("c",SOe());I.registerLanguage("cal",bOe());I.registerLanguage("capnproto",hOe());I.registerLanguage("ceylon",TOe());I.registerLanguage("clean",vOe());I.registerLanguage("clojure",COe());I.registerLanguage("clojure-repl",ROe());I.registerLanguage("cmake",NOe());I.registerLanguage("coffeescript",OOe());I.registerLanguage("coq",AOe());I.registerLanguage("cos",yOe());I.registerLanguage("cpp",IOe());I.registerLanguage("crmsh",DOe());I.registerLanguage("crystal",xOe());I.registerLanguage("csharp",wOe());I.registerLanguage("csp",MOe());I.registerLanguage("css",LOe());I.registerLanguage("d",POe());I.registerLanguage("markdown",kOe());I.registerLanguage("dart",UOe());I.registerLanguage("delphi",FOe());I.registerLanguage("diff",BOe());I.registerLanguage("django",GOe());I.registerLanguage("dns",YOe());I.registerLanguage("dockerfile",qOe());I.registerLanguage("dos",$Oe());I.registerLanguage("dsconfig",HOe());I.registerLanguage("dts",zOe());I.registerLanguage("dust",VOe());I.registerLanguage("ebnf",WOe());I.registerLanguage("elixir",KOe());I.registerLanguage("elm",QOe());I.registerLanguage("ruby",XOe());I.registerLanguage("erb",ZOe());I.registerLanguage("erlang-repl",JOe());I.registerLanguage("erlang",jOe());I.registerLanguage("excel",eAe());I.registerLanguage("fix",tAe());I.registerLanguage("flix",nAe());I.registerLanguage("fortran",rAe());I.registerLanguage("fsharp",iAe());I.registerLanguage("gams",aAe());I.registerLanguage("gauss",oAe());I.registerLanguage("gcode",sAe());I.registerLanguage("gherkin",lAe());I.registerLanguage("glsl",cAe());I.registerLanguage("gml",uAe());I.registerLanguage("go",dAe());I.registerLanguage("golo",_Ae());I.registerLanguage("gradle",pAe());I.registerLanguage("graphql",mAe());I.registerLanguage("groovy",gAe());I.registerLanguage("haml",EAe());I.registerLanguage("handlebars",fAe());I.registerLanguage("haskell",SAe());I.registerLanguage("haxe",bAe());I.registerLanguage("hsp",hAe());I.registerLanguage("http",TAe());I.registerLanguage("hy",vAe());I.registerLanguage("inform7",CAe());I.registerLanguage("ini",RAe());I.registerLanguage("irpf90",NAe());I.registerLanguage("isbl",OAe());I.registerLanguage("java",AAe());I.registerLanguage("javascript",yAe());I.registerLanguage("jboss-cli",IAe());I.registerLanguage("json",DAe());I.registerLanguage("julia",xAe());I.registerLanguage("julia-repl",wAe());I.registerLanguage("kotlin",MAe());I.registerLanguage("lasso",LAe());I.registerLanguage("latex",PAe());I.registerLanguage("ldif",kAe());I.registerLanguage("leaf",UAe());I.registerLanguage("less",FAe());I.registerLanguage("lisp",BAe());I.registerLanguage("livecodeserver",GAe());I.registerLanguage("livescript",YAe());I.registerLanguage("llvm",qAe());I.registerLanguage("lsl",$Ae());I.registerLanguage("lua",HAe());I.registerLanguage("makefile",zAe());I.registerLanguage("mathematica",VAe());I.registerLanguage("matlab",WAe());I.registerLanguage("maxima",KAe());I.registerLanguage("mel",QAe());I.registerLanguage("mercury",XAe());I.registerLanguage("mipsasm",ZAe());I.registerLanguage("mizar",JAe());I.registerLanguage("perl",jAe());I.registerLanguage("mojolicious",eye());I.registerLanguage("monkey",tye());I.registerLanguage("moonscript",nye());I.registerLanguage("n1ql",rye());I.registerLanguage("nestedtext",iye());I.registerLanguage("nginx",aye());I.registerLanguage("nim",oye());I.registerLanguage("nix",sye());I.registerLanguage("node-repl",lye());I.registerLanguage("nsis",cye());I.registerLanguage("objectivec",uye());I.registerLanguage("ocaml",dye());I.registerLanguage("openscad",_ye());I.registerLanguage("oxygene",pye());I.registerLanguage("parser3",mye());I.registerLanguage("pf",gye());I.registerLanguage("pgsql",Eye());I.registerLanguage("php",fye());I.registerLanguage("php-template",Sye());I.registerLanguage("plaintext",bye());I.registerLanguage("pony",hye());I.registerLanguage("powershell",Tye());I.registerLanguage("processing",vye());I.registerLanguage("profile",Cye());I.registerLanguage("prolog",Rye());I.registerLanguage("properties",Nye());I.registerLanguage("protobuf",Oye());I.registerLanguage("puppet",Aye());I.registerLanguage("purebasic",yye());I.registerLanguage("python",Iye());I.registerLanguage("python-repl",Dye());I.registerLanguage("q",xye());I.registerLanguage("qml",wye());I.registerLanguage("r",Mye());I.registerLanguage("reasonml",Lye());I.registerLanguage("rib",Pye());I.registerLanguage("roboconf",kye());I.registerLanguage("routeros",Uye());I.registerLanguage("rsl",Fye());I.registerLanguage("ruleslanguage",Bye());I.registerLanguage("rust",Gye());I.registerLanguage("sas",Yye());I.registerLanguage("scala",qye());I.registerLanguage("scheme",$ye());I.registerLanguage("scilab",Hye());I.registerLanguage("scss",zye());I.registerLanguage("shell",Vye());I.registerLanguage("smali",Wye());I.registerLanguage("smalltalk",Kye());I.registerLanguage("sml",Qye());I.registerLanguage("sqf",Xye());I.registerLanguage("sql",Zye());I.registerLanguage("stan",Jye());I.registerLanguage("stata",jye());I.registerLanguage("step21",eIe());I.registerLanguage("stylus",tIe());I.registerLanguage("subunit",nIe());I.registerLanguage("swift",rIe());I.registerLanguage("taggerscript",iIe());I.registerLanguage("yaml",aIe());I.registerLanguage("tap",oIe());I.registerLanguage("tcl",sIe());I.registerLanguage("thrift",lIe());I.registerLanguage("tp",cIe());I.registerLanguage("twig",uIe());I.registerLanguage("typescript",dIe());I.registerLanguage("vala",_Ie());I.registerLanguage("vbnet",pIe());I.registerLanguage("vbscript",mIe());I.registerLanguage("vbscript-html",gIe());I.registerLanguage("verilog",EIe());I.registerLanguage("vhdl",fIe());I.registerLanguage("vim",SIe());I.registerLanguage("wasm",bIe());I.registerLanguage("wren",hIe());I.registerLanguage("x86asm",TIe());I.registerLanguage("xl",vIe());I.registerLanguage("xquery",CIe());I.registerLanguage("zephir",RIe());I.HighlightJS=I;I.default=I;var NIe=I;const CC=Qm(NIe);const OIe={class:"operation_wrap"},AIe=be({__name:"operateWrap",props:{operate:{},content:{}},setup(t){const e=t,n={copy:IC,download:CM},i=ee(!1),o=()=>{i.value=!0,setTimeout(()=>{i.value=!1},1e3)},s=le(()=>{const{operate:_}=e;return _?n[_]:""}),l=()=>{const{content:_}=e;_!==void 0&&(Wm(_),o())},c=()=>{const{content:_}=e;if(!_)return;const p=document.createElement("a");p.href=_,p.style.display="none",p.download="",document.body.appendChild(p),p.click(),p.addEventListener("load",()=>{o(),document.body.removeChild(p)})},d=()=>{if(i.value)return;const _={copy:l,download:c},{operate:p}=e;p&&_[p]()};return(_,p)=>(V(),ae("div",OIe,[oi(_.$slots,"default",{},void 0,!0),q(s)?(V(),ae("span",{key:0,class:"operate_icon",onClick:d},[q(i)?(V(),ot(q(aM),{key:0,size:"16"})):(V(),ot(ji(q(s)),{key:1,size:"16"}))])):Ge("",!0)]))}});const WN=Dt(AIe,[["__scopeId","data-v-ea9cc5f9"]]),Ig=t=>(Zi("data-v-4f00a864"),t=t(),Ji(),t),yIe={class:"code_container"},IIe={class:"tool_wrap"},DIe={key:0,class:"copy_icon",stroke:"currentColor",fill:"none","stroke-width":"2",viewBox:"0 0 24 24","stroke-linecap":"round","stroke-linejoin":"round",xmlns:"http://www.w3.org/2000/svg"},xIe=Ig(()=>F("path",{d:"M16 4h2a2 2 0 0 1 2 2v14a2 2 0 0 1-2 2H6a2 2 0 0 1-2-2V6a2 2 0 0 1 2-2h2"},null,-1)),wIe=Ig(()=>F("rect",{x:"8",y:"2",width:"8",height:"4",rx:"1",ry:"1"},null,-1)),MIe=[xIe,wIe],LIe={key:1,class:"copy_icon",stroke:"currentColor",fill:"none","stroke-width":"2",viewBox:"0 0 24 24","stroke-linecap":"round","stroke-linejoin":"round",xmlns:"http://www.w3.org/2000/svg"},PIe=Ig(()=>F("polyline",{points:"20 6 9 17 4 12"},null,-1)),kIe=[PIe],UIe=be({name:"Copy",__name:"copy",props:{lang:{},content:{}},setup(t){const e=t,n=ee(!1),i=()=>{if(!n.value){if(!e.content){yC.warning(Km("å¤åˆ¶å¤±č“„"));return}Wm(e.content),n.value=!0,setTimeout(()=>{n.value=!1},1e3)}};return(o,s)=>(V(),ae("div",yIe,[F("div",IIe,[F("span",null,$e(e.lang),1),F("button",{class:"copy_btn",onClick:i},[q(n)?(V(),ae("svg",LIe,kIe)):(V(),ae("svg",DIe,MIe)),St(" "+$e(q(n)?o.$t("å¤åˆ¶ä»£ē ęˆåŠŸ"):o.$t("å¤åˆ¶ä»£ē ")),1)])]),oi(o.$slots,"default",{},void 0,!0)]))}});const RC=Dt(UIe,[["__scopeId","data-v-4f00a864"]]),FIe=/^[a-zA-Z_:][a-zA-Z0-9:._-]*$/,jn={};function BIe(t){return FIe.test(t)}function gl(t){const e=document.createElement("template");e.innerHTML=t;const n=e.content.children,i=[];for(let o=0;oNumber(h)),-1);if(o!==-1&&eYa(h)),n[e].preVNode=Ya(v),ue(st,{},[v])}jn.code_inline=function(e,n,i,o,s){const l=e[n];return ue("code",s.renderAttrs(l),l.content)};jn.code_block=function(e,n,i,o,s){const l=e[n],c=s.renderAttrs(l);return ue("pre",void 0,[ue("code",c,[ue(Vm,{},l.content)])])};jn.fence=function(e,n,i,o){const s=e[n],l=s.info?Je.unescapeAll(s.info).trim():"";let c="",d="",_,p;return l&&(p=l.split(/(\s+)/g),c=p[0],d=p.slice(2).join("")),i.highlight?_=i.highlight(s.content,c,d)||Je.escapeHtml(s.content):_=Je.escapeHtml(s.content),o.renderVnode&&(_=GIe(_,n,o)),$i(_)?ue(RC,{lang:l,content:s.content},{default:()=>_}):ue(RC,{lang:l,content:s.content},{default:()=>gl(_)})};jn.image=function(e,n,i,o,s){const l=e[n];return ue("img",{...s.renderAttrs(l),alt:s.renderInlineAsText(l.children||[],i,o)},[])};jn.hardbreak=function(){return ue("br")};jn.softbreak=function(e,n,i){return i.breaks?ue("br"):null};jn.text=function(e,n){return ue(Vm,{},e[n].content)};jn.html_block=function(e,n){const i=e[n];return i.contentVNode?i.contentVNode:gl(i.content)};jn.html_inline=function(e,n){const i=e[n];return i.contentVNode?i.contentVNode:gl(i.content)};function YIe(t,e){const n=t[e];return n.nesting===-1?null:n.hidden?ue(st,{},[]):n.tag==="--"?ue(Ks):ue(n.tag,this.renderAttrs(n),[])}function qIe(t){if(!t.attrs)return{};const e={};return t.attrs.forEach(([n,i])=>{BIe(n)&&(e[n]=i)}),e}function NC(t,e,n){const{rules:i}=this,o=[];return t.map((s,l)=>{var E;const{type:c}=s;let d=null,_=null;if(c==="inline")d=ue(st,{},this.render(s.children||[],e,n));else if(i[c]){const f=(E=i[c])==null?void 0:E.call(i,t,l,e,n,this);typeof f=="string"?d=gl(f):f&&f.node&&f.parent?(_=f.parent,d=f.node):d=f}else d=this.renderToken(t,l,e);let p=!1;const g=o.length>0?o[o.length-1]:null;if(d&&g){if(typeof g.type=="string"||g.type===st){const f=Array.isArray(g.children)?g.children:[];g.children=f.concat([d])}p=!0}return s.nesting===1&&(_?o.push(_):d&&o.push(d)),s.nesting===-1&&o.pop(),p?null:d}).filter(s=>!!s)}const $Ie=t=>{t.renderer.rules={...t.renderer.rules,...jn},t.renderer.render=NC,t.renderer.renderInline=NC,t.renderer.renderAttrs=qIe,t.renderer.renderToken=YIe},HIe=be({__name:"textItem",props:{isTyping:{type:Boolean},content:{}},setup(t){const e=t,n=new qRe({html:!0,linkify:!1,typographer:!0,highlight(p,g){if(g&&CC.getLanguage(g))try{return`
          ${CC.highlight(p,{language:g,ignoreIllegals:!0}).value}
          `}catch(E){console.warn(E)}return`
          ${n.utils.escapeHtml(p)}
          `}});n.use(tNe),n.use($Ie);const i=$w({renderVnode:!1}),o=Hw([]),s=p=>p.shapeFlag&8,l=p=>p.shapeFlag&6,c=p=>{if(!p)return!1;const g=p.children;return l(p)?!1:s(p)?!0:g&&g.length?c(g[g.length]):!0},d=p=>{var f;let g=p[p.length-1];if(!g||!c(g))return p;const E=((f=g.props)==null?void 0:f.class)||[];return E.includes("typing-text")||(g=p.pop(),g=Ya(g,{class:[...E,"typing-text"]}),p.push(g)),p},_=Ir.throttle(()=>{const{content:p}=e;if(!p)return;const g=n.render(e.content,i);if(!i.renderVnode){o.value=g;return}o.value=d(g)},100);return Zt(()=>e.content,_,{immediate:!0}),Zt(()=>e.isTyping,()=>{i.renderVnode=e.isTyping},{immediate:!0}),(p,g)=>(V(),ot(WN,{operate:"copy",content:e.content},{default:dt(()=>[F("div",{ref:"markdownWrapRef",class:It(["markdown_wrap",{"typing-pre":e.isTyping}])},[(V(!0),ae(st,null,yn(q(o),(E,f)=>(V(),ot(ji(E),{key:f}))),128))],2)]),_:1},8,["content"]))}});const zIe={class:"chatHistoryImageItem"},VIe={key:0,class:"maxCover"},WIe=be({__name:"imageItem",props:{images:{}},setup(t){const e=t;return(n,i)=>(V(),ae("div",zIe,[ue(q(pq),null,{default:dt(()=>[(V(!0),ae(st,null,yn(e.images.slice(0,4),(o,s)=>(V(),ae("div",{key:o,class:"imageItem"},[ue(q(gq),{src:o,"object-fit":"cover",lazy:""},null,8,["src"]),e.images.length>4&&s===3?(V(),ae("div",VIe,"+"+$e(e.images.length-4),1)):Ge("",!0)]))),128))]),_:1})]))}});const KIe={class:"chatHistoryAudioItem"},QIe={class:"audio"},XIe={class:"control"},ZIe=["src"],JIe=be({__name:"audioItem",props:{audioUrl:{}},setup(t){const e=t,n=ee(),i=ee("pause"),o=zw({duration:0,currentTime:0}),s=g=>Ka(new Date(o.duration*g/100*1e3)).format("mm:ss"),l=le(()=>Ka(new Date((o.duration-o.currentTime)*1e3)).format("mm:ss")),c=()=>{var g;(g=n.value)==null||g.play(),i.value="play"},d=()=>{var g;(g=n.value)==null||g.pause(),i.value="pause"},_=()=>{const g=n.value;o.currentTime=g.currentTime},p=()=>{const g=n.value;o.currentTime=g.currentTime,o.duration=g.duration};return(g,E)=>(V(),ae("div",KIe,[F("div",QIe,[F("div",XIe,[q(i)==="pause"?(V(),ot(q(JM),{key:0,onClick:c})):Ge("",!0),q(i)==="play"?(V(),ot(q(VM),{key:1,onClick:d})):Ge("",!0)]),ue(q(oM),{"format-tooltip":s}),F("div",null,$e(q(l)),1)]),F("audio",{ref_key:"audioRef",ref:n,src:e.audioUrl,autoplay:!1,onLoad:p,onTimeupdate:_},null,40,ZIe)]))}});const jIe={class:"error_msg"},eDe=be({__name:"errorItem",props:{content:{}},setup(t){const n=yt(t,"content");return(i,o)=>(V(),ot(WN,{operate:"copy",content:q(n)},{default:dt(()=>[F("div",jIe,$e(q(n)),1)]),_:1},8,["content"]))}});const tDe=Dt(eDe,[["__scopeId","data-v-84a7773a"]]),nDe={class:"agent_message_wrap"},rDe=be({__name:"index",props:{id:{},lastContet:{type:Boolean},contents:{}},setup(t){const e=t,{activeAgentNode:n}=aa(),i=ee(e.contents),o=g=>ue(HIe,{content:g},null),s=g=>ue(WIe,{images:g.split(",")},null),l=g=>ue(JIe,{audioUrl:g},null),c=g=>ue(tDe,{content:g},null),d={[Dr.TEXT]:o,[Dr.IMAGE]:s,[Dr.AUDIO]:l,[Dr.FAILED]:c},_=le(()=>{var g;return e.id===((g=n.value)==null?void 0:g.id)&&e.lastContet}),p=()=>{const g=Zt(n,(E,f)=>{var v;if(!n.value)return;if(f!=null&&E==null||!_.value){g();return}const S=n.value.steps[n.value.steps.length-1];(v=S==null?void 0:S.contents)!=null&&v.length&&(i.value=[...S.contents])},{deep:!0})};return Zt(_,()=>{_.value?p():i.value=e.contents},{immediate:!0}),(g,E)=>(V(),ae("div",nDe,[(V(!0),ae(st,null,yn(q(i),f=>(V(),ae(st,{key:f.id},[f?(V(),ot(ji(d[f.type](f.value.answer)),{key:0,"is-typing":q(_)},null,8,["is-typing"])):Ge("",!0)],64))),128))]))}});const iDe=Dt(rDe,[["__scopeId","data-v-898355de"]]),aDe={class:"steps_container"},oDe={class:"steps_wrap"},sDe={key:0,style:{width:"80%","vertical-align":"middle"},src:aN,alt:""},lDe={key:1,style:{width:"80%","vertical-align":"middle"},src:oN,alt:""},cDe={key:2,style:{width:"80%","vertical-align":"middle"},src:sN,alt:""},uDe={key:3,style:{width:"80%","vertical-align":"middle"},src:lN,alt:""},dDe=be({__name:"index",props:{activeNode:{}},setup(t){const n=yt(t.activeNode,"steps"),i=o=>{var l;if(!o)return"";const s=pN.find(c=>c.job===o);return{width:"100%",height:"100%",background:(l=s==null?void 0:s.color)==null?void 0:l[1],display:"flex","align-items":"center","justify-content":"center","border-radius":"50%"}};return(o,s)=>(V(),ae("div",aDe,[F("section",oDe,[ue(q(sM),{direction:"vertical","line-less":!0},{default:dt(()=>[(V(!0),ae(st,null,yn(q(n),(l,c)=>(V(),ot(L$,{key:l.id,status:l.status,skill:l.skill,title:l.role,description:l.description},{icon:dt(()=>[F("div",{style:Bt(i(l.role))},[l.role==="Product Manager"?(V(),ae("img",sDe)):Ge("",!0),l.role==="Project Manager"?(V(),ae("img",lDe)):Ge("",!0),l.role==="Architect"?(V(),ae("img",cDe)):Ge("",!0),l.role==="Engineer"?(V(),ae("img",uDe)):Ge("",!0)],4)]),default:dt(()=>[ue(iDe,{id:o.activeNode.id,"last-contet":c===q(n).length-1,contents:l.contents},null,8,["id","last-contet","contents"])]),_:2},1032,["status","skill","title","description"]))),128))]),_:1})])]))}});const _De=Dt(dDe,[["__scopeId","data-v-77479ba1"]]),pDe=be({__name:"statusButton",setup(t){const e={[Ut.INIT]:{text:"",visibel:!1,icon:""},[Ut.IDLE]:{text:"Regenerate",visibel:!0,icon:Es},[Ut.RUNNING]:{text:"Stop Generation",visibel:!0,icon:oL},[Ut.FINISH]:{text:"Regenerate",visibel:!0,icon:Es},[Ut.FAILED]:{text:"Regenerate",visibel:!0,icon:Es},[Ut.TERMINATE]:{text:"Regenerate",visibel:!0,icon:Es}},{globalStatus:n,stopMessage:i,regenMessage:o,activeAgentNode:s}=aa(),l=le(()=>e[n.value]),c=le(()=>{var _;return n.value===Ut.RUNNING&&!((_=s.value)!=null&&_.steps.length)}),d=()=>{if(n.value===Ut.RUNNING){i();return}o()};return(_,p)=>q(l).visibel?(V(),ot(q(xC),{key:0,class:"status_btn",align:"center",direction:"vertical",size:8},{default:dt(()=>[q(c)?Ge("",!0):(V(),ot(q(hm),{key:0,style:{"background-color":"#fff","border-radius":"999px"},type:"outline",onClick:d},{icon:dt(()=>[(V(),ot(ji(q(l).icon)))]),default:dt(()=>[St(" "+$e(_.$t(q(l).text)),1)]),_:1}))]),_:1})):Ge("",!0)}});const mDe=Dt(pDe,[["__scopeId","data-v-240aae5d"]]),gDe={class:"chatRoomWrapper"},EDe={class:"visionWrapper"},fDe={key:0,class:"emptyWrapper"},SDe=Ww('
          Chat with MetaGPT
          takes a one line requirement as input and outputs user stories / competitive analysis /
          requirements / data structures / APIs / documents,
          etc.
          ',1),bDe={class:"actionWrapper"},hDe=["onClick"],TDe={key:0,style:{width:"22px"},src:K2,alt:""},vDe={key:1,style:{width:"22px"},src:Q2,alt:""},CDe={key:2,style:{width:"22px"},src:X2,alt:""},RDe={key:3,style:{width:"22px"},src:Z2,alt:""},NDe={class:"chatWrapper"},ODe={class:"msg_history_area"},ADe={key:0,class:"msg_text"},yDe={class:"bottom_trigger"},IDe={class:"inputWrapper"},DDe={class:"inputInner"},xDe=["disabled"],wDe=be({__name:"chatRoom",setup(t){const e=["Design a RecSys like Toutiao","Write a cli snake game based on pygame","Design a content-based recommendation system","Design a search algorithm framework"],n=ee(!1),i=ee(""),{chatRenderPathList:o,genRootNode:s,sendMessage:l,apiKey:c,shakeApiKeyInput:d,globalStatus:_}=C2(),{scroller:p,onScroll:g}=dN(),E=ee(!1),f=()=>c.value?!0:(d.value=!0,E.value===!0||(E.value=!0,setTimeout(()=>{E.value=!1,d.value=!1},2e3)),!1),S=async T=>{f()&&(await s(T),l(T))},v=async()=>{f()&&(o.value.length||await s(i.value),l(i.value),i.value="")},h=T=>{T.key==="Enter"&&v()};return(T,N)=>{const y=Vw("loading");return V(),ae("div",gDe,[q(E)?(V(),ot(q(lM),{key:0,type:"warning",style:{width:"500px",position:"absolute","z-index":"999"}},{default:dt(()=>[St("Please Enter Your OpenAI Key to Activate Your Team First.")]),_:1})):Ge("",!0),F("div",EDe,[q(o).length?Ge("",!0):(V(),ae("div",fDe,[SDe,F("div",bDe,[(V(),ae(st,null,yn(e,(x,P)=>F("div",{key:P,class:"button",onClick:D=>S(x)},[P===0?(V(),ae("img",TDe)):Ge("",!0),P===1?(V(),ae("img",vDe)):Ge("",!0),P===2?(V(),ae("img",CDe)):Ge("",!0),P===3?(V(),ae("img",RDe)):Ge("",!0),F("span",null,$e(x),1)],8,hDe)),64))])])),Pn(F("div",NDe,[Pn((V(),ae("section",ODe,[F("div",{ref_key:"scroller",ref:p,class:"scroll_wrap",onScroll:N[0]||(N[0]=(...x)=>q(g)&&q(g)(...x))},[q(o).length?(V(!0),ae(st,{key:0},yn(q(o),x=>(V(),ot(_$,{key:x.activeNode.id,"render-node":x,"is-root-node":x.activeNode.id===0},{content:dt(()=>[x.activeNode.id===0?(V(),ae("div",ADe,$e(x.activeNode.steps[0].contents[0].value.answer),1)):x.is_user_message?(V(),ot(b$,{key:1,"active-node":x.activeNode},null,8,["active-node"])):(V(),ot(_De,{key:2,"active-node":x.activeNode},null,8,["active-node"]))]),_:2},1032,["render-node","is-root-node"]))),128)):Ge("",!0),F("div",yDe,[ue(mDe)])],544)])),[[y,q(n)]])],512),[[Xs,q(o).length]])]),ue(q(uM),{disabled:q(c).length,content:"Please fill in your OpenAI API key to activate the hired software team."},{default:dt(()=>[F("div",IDe,[F("div",DDe,[Pn(F("input",{"onUpdate:modelValue":N[1]||(N[1]=x=>wr(i)?i.value=x:null),disabled:!q(c),placeholder:"Please enter a one-sentence requirement.",type:"text",onKeydown:h},null,40,xDe),[[Kw,q(i)]]),q(_)===q(Ut).RUNNING?(V(),ot(q(cM),{key:0,style:{"margin-right":"12px","margin-top":"4px"},size:6,dot:""})):(V(),ae("button",{key:1,class:"sendBtn",onClick:v},[ue(ea,{size:20,fill:"#ffffff","icon-id":"icon-fasong"})]))])])]),_:1},8,["disabled"])])}}});const MDe=Dt(wDe,[["__scopeId","data-v-ae197aef"]]),LDe={class:"chatWrapper"},PDe=be({__name:"chatPage",setup(t){return(e,n)=>(V(),ae("div",LDe,[ue(W2),ue(MDe)]))}});const kDe=Dt(PDe,[["__scopeId","data-v-7d0d8d24"]]),UDe={class:"hfHomeWrapper"},FDe=be({__name:"home",setup(t){return(e,n)=>(V(),ae("div",UDe,[ue(Kq),ue(kDe)]))}});const zDe=Dt(FDe,[["__scopeId","data-v-7444cb54"]]);export{zDe as default}; diff --git a/spaces/dfurman/chat-all-in/src/chat_class.py b/spaces/dfurman/chat-all-in/src/chat_class.py deleted file mode 100644 index 7fcc727da2012ce9c32a4a585d2f49b6e4eb181b..0000000000000000000000000000000000000000 --- a/spaces/dfurman/chat-all-in/src/chat_class.py +++ /dev/null @@ -1,122 +0,0 @@ -import datetime -import time - -import datasets - -from src.inf_server import call_inf_server - - -# download podcast database -ds_episodes = datasets.load_dataset("dfurman/All-In-Podcast-Transcripts") -# download cache conversation databse -# ds_conversations = datasets.load_dataset("dfurman/Chat-All-In-Conversations") - - -class Chat: - default_system_prompt = "A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers." - system_format = "<|im_start|>system\n{}<|im_end|>\n" - - def __init__( - self, system: str = None, user: str = None, assistant: str = None - ) -> None: - if system is not None: - self.set_system_prompt(system) - else: - self.reset_system_prompt() - self.user = user if user else "<|im_start|>user\n{}<|im_end|>\n" - self.assistant = ( - assistant if assistant else "<|im_start|>assistant\n{}<|im_end|>\n" - ) - self.response_prefix = self.assistant.split("{}")[0] - - def set_system_prompt(self, system_prompt): - # self.system = self.system_format.format(system_prompt) - return system_prompt - - def reset_system_prompt(self): - return self.set_system_prompt(self.default_system_prompt) - - def history_as_formatted_str(self, system, history) -> str: - system = self.system_format.format(system) - text = system + "".join( - [ - "\n".join( - [ - self.user.format(item[0]), - self.assistant.format(item[1]), - ] - ) - for item in history[:-1] - ] - ) - text += self.user.format(history[-1][0]) - text += self.response_prefix - - # stopgap solution to too long sequences - if len(text) > 4500: - # delete from the middle between <|im_start|> and <|im_end|> - # find the middle ones, then expand out - start = text.find("<|im_start|>", 139) - end = text.find("<|im_end|>", 139) - while end < len(text) and len(text) > 4500: - end = text.find("<|im_end|>", end + 1) - text = text[:start] + text[end + 1 :] - if len(text) > 4500: - # the nice way didn't work, just truncate - # deleting the beginning - text = text[-4500:] - - return text - - def clear_history(self, history): - return [] - - # def save_history(self, history): - # Getting the current date and time - # dt = datetime.now() - # dt = str(dt).replace(" ", "-").replace(":", "-").replace(".", "-") - # return history - - def turn(self, user_input: str): - self.user_turn(user_input) - return self.bot_turn() - - def user_turn(self, user_input: str, history): - history.append([user_input, ""]) - return user_input, history - - def bot_turn(self, system, history, openai_key, episode): - episode_num = episode.split("(")[-1].split(")")[0] - conversation = self.history_as_formatted_str(system, history) - assistant_response = call_inf_server(conversation, openai_key, episode_num) - history[-1][1] = "" - for chunk in assistant_response: - try: - decoded_output = chunk["choices"][0]["delta"]["content"] - history[-1][1] += decoded_output - yield history - except KeyError: - pass - - def user_turn_select_episode(self, history): - user_input = "Special starter call: Display background information for the selected episode." - history.append([user_input, ""]) - return history - - def bot_turn_select_episode(self, history, episode): - episode_num = episode.split("(")[-1].split(")")[0] - assistant_response = f"All-In Episode {episode_num}:\n\n" - assistant_response += f'Title: {ds_episodes[episode_num]["episode_title"][0].replace(episode_num + ": ", "")}\n' - assistant_response += ( - f"Date aired: {ds_episodes[episode_num]['episode_date'][0]}\n" - ) - assistant_response += "Sections:\n\n" - for itr, section_title in enumerate(ds_episodes[episode_num]["section_title"]): - assistant_response += f"{itr+1}. {section_title} ({ds_episodes[episode_num]['section_time_stamp'][itr]})\n" - assistant_response += "\nYou can now converse with the assistant about this episode! Ask questions about one section at a time. Try prompts like:\n- Summarize section 1\n- Tell me more info about [insert topic]\n- What were the key points on [insert topic]" - - history[-1][1] = "" - for character in assistant_response: - history[-1][1] += character - time.sleep(0.000075) - yield history diff --git a/spaces/dhof/shapetest/utils.py b/spaces/dhof/shapetest/utils.py deleted file mode 100644 index 36e072134588bf5252bf0f018aa7912d9c45567c..0000000000000000000000000000000000000000 --- a/spaces/dhof/shapetest/utils.py +++ /dev/null @@ -1,9 +0,0 @@ -import random - -from settings import MAX_SEED - - -def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: - if randomize_seed: - seed = random.randint(0, MAX_SEED) - return seed diff --git a/spaces/diacanFperku/AutoGPT/ALFONSINA Y EL MAR PARTITURA PARA PIANO.pdf TOP.md b/spaces/diacanFperku/AutoGPT/ALFONSINA Y EL MAR PARTITURA PARA PIANO.pdf TOP.md deleted file mode 100644 index a0decee930f7b99c7516da295ea6c90c7deeeb6d..0000000000000000000000000000000000000000 --- a/spaces/diacanFperku/AutoGPT/ALFONSINA Y EL MAR PARTITURA PARA PIANO.pdf TOP.md +++ /dev/null @@ -1,58 +0,0 @@ -

          ALFONSINA Y EL MAR PARTITURA PARA PIANO.pdf


          DOWNLOAD >> https://gohhs.com/2uFVAH



          - -santa maria de las aguas: a novel (in Spanish) - -by Ariel Ramirez (lyrics) - alfonsina y el mar - -The Gabriel strings are in the bottom of the piano. Joseph plays in the middle. The concert is a bit nervous since it is first violin soloist's birthday. Finally the concert goes well. A composer's life is a wonderful one. You never know what is going to happen next. - -Don’t see what you’re looking for? - -This is the place to be if you are looking for a specific score. - -If you are looking for a particular artist and there are multiple entries with the same name, it's difficult because we simply don't have the time to check all the databases for other scoring options. - -So if you find that you have the wrong piece, or the wrong part, or the wrong performance, just tell us and we will make it right. - -We are always willing to work with you. - -a. ĀæPor que eres inglesa? - -A lot of visitors to our site are English-speaking performers and teachers. - -Many of them love listening to and performing Spanish-language music. - -We love sharing our favorite music with people all over the world, and would love to share yours. - -Thanks for listening! - -b. Mira esta musica - -We have a lot of music for you to listen to! - -Many artists are from Spain, but there are a lot from Latin America, too. - -Look at the top bar of the site for some information. - -If you can't find what you are looking for, you can tell us your preferences and we will do our best to find the music you want. - -We are happy to work with you. - -c. ĀæQuiĆ©n eres? - -This is a group of friends who enjoy listening to and sharing new music. - -Many of them live outside the US and speak Spanish, but we all love music and we're here to share our favorites. - -We are here to give you a service: help you find the best music for your students and for your own personal pleasure. - -We want to connect you to the music you like. - -We hope you will love it as much as we do. - -d. ĀæQuien estas comunicando? - -If you are the composer or publisher, you can send a letter of 4fefd39f24
          -
          -
          -

          diff --git a/spaces/diacanFperku/AutoGPT/Adobe InDesign CC 2018 (v16.0) X86-x64 Utorrent ((NEW)).md b/spaces/diacanFperku/AutoGPT/Adobe InDesign CC 2018 (v16.0) X86-x64 Utorrent ((NEW)).md deleted file mode 100644 index 1c51e3168c39ccfbc574bbe70d4bf194dfca8e15..0000000000000000000000000000000000000000 --- a/spaces/diacanFperku/AutoGPT/Adobe InDesign CC 2018 (v16.0) X86-x64 Utorrent ((NEW)).md +++ /dev/null @@ -1,11 +0,0 @@ -
          -

          Adobe Creative cloud,Adobe Premiere Pro,Adobe Photography,video,fonts,imagery,print,stock,Music,creative cloud,print,design,print,indesign,artwork,web design,creative cloud,Adobe InDesign CC 2018 (v16.0) x86-x64 utorrent.

          -

          Adobe Creative cloud,Adobe Premiere Pro,Adobe Photography,video,fonts,imagery,print,stock,Music,creative cloud,print,design,print,indesign,artwork,web design,creative cloud,Adobe InDesign CC 2018 (v16.0) x86-x64

          -

          Adobe InDesign CC 2018 (v16.0) x86-x64 utorrent


          Download Zip 🔗 https://gohhs.com/2uFTfY



          -

          The industry-leading page design and layout app lets you create, preflight, and publish beautiful documents for print and digital media. InDesign has everything you need to make posters, books, digital magazines, eBooks, interactive PDFs, and more. Standout layouts. Only with InDesign.

          -

          Design faster and wiser with tools built for collaboration. InDesign integrates seamlessly with Adobe InCopy CC so that you can work on layouts simultaneously with writers and editors. Import comments and edits from PDFs to see all your feedback. And share text, colors, graphics, and more with team members through Creative Cloud Libraries.

          -

          Adobe InDesign CC 2020 integrates with collections of graphic design software that allows the exchange of content, fonts and graphics in all already created or new projects. Adobe InDesign CC 2020 is constantly being updated and its functional component becomes multifaceted. Among the innovations:

          -

          InDesign is the industry-leading page design and layout app for print and digital media. InDesign has everything you need to make posters, books, digital magazines, eBooks, interactive PDFs, and more. Standout layouts. Only with InDesign.

          -

          899543212b
          -
          -
          \ No newline at end of file diff --git a/spaces/diacanFperku/AutoGPT/BlueStacks V0.8.5.3042.md b/spaces/diacanFperku/AutoGPT/BlueStacks V0.8.5.3042.md deleted file mode 100644 index 42399098a678d395943308d6e0aa7991e3d03915..0000000000000000000000000000000000000000 --- a/spaces/diacanFperku/AutoGPT/BlueStacks V0.8.5.3042.md +++ /dev/null @@ -1,6 +0,0 @@ -

          BlueStacks v0.8.5.3042


          Download Filehttps://gohhs.com/2uFVKx



          - -BlueStacks V0.8.5.3042 (Windows 10/8/7) - DOWNLOAD. BlueStacks V0.8.5.3042 - DOWNLOAD. BlueStacks V0.8.5.3042 (Windows 10/8/7) - DOWNLOAD. BlueStacks V0.8.5.3042 - DOWNLOAD. BlueStacks V0.8.5.3042 (Windows 10/8/7) - DOWNLOAD. BlueStacks V0.8.5.3042 - DOWNLOAD. BlueStacks V0.8.5.3042 (Windows 10/8/7) - DOWNLOAD. BlueStacks V0.8.5.3042 - DOWNLOAD. BlueStacks V0.8.5.3042 (Windows 10/8/7) - DOWNLOAD. BlueStacks V0.8.5.3042 - DOWNLOAD. BlueStacks V0.8.5.3042 (Windows 10/8/7) - DOWNLOAD. BlueStacks V0.8.5.3042 - DOWNLOAD. BlueStacks V0.8.5.3042 (Windows 10/8/7) - DOWNLOAD. BlueStacks V0.8.5.3042 - DOWNLOAD. BlueStacks V0.8.5.3042 (Windows 10/8/7) - DOWNLOAD. BlueStacks V0.8.5.3042 - DOWNLOAD. BlueStacks V0.8.5.3042 (Windows 10/8/7) - DOWNLOAD. BlueStacks V0.8.5.3042 - DOWNLOAD. BlueStacks V0.8.5.3042 (Windows 10/8/7) - DOWNLOAD. BlueStacks V0.8.5.3042 - DOWNLOAD. BlueStacks V0.8.5.3042 (Windows 10/8/7) - DOWNLOAD. BlueStacks V0.8.5.3042 - DOWNLOAD. BlueStacks V0.8.5.3042 - DOWNLOAD. BlueStacks V0.8.5.3042 - DOWNLOAD. BlueStacks V0.8.5.3042 - DOWNLOAD. BlueStacks V0.8.5.3042 - DOWNLOAD. BlueStacks V0.8. 4fefd39f24
          -
          -
          -

          diff --git a/spaces/diacanFperku/AutoGPT/Download Ebook Kisah 25 Nabi Lengkap.md b/spaces/diacanFperku/AutoGPT/Download Ebook Kisah 25 Nabi Lengkap.md deleted file mode 100644 index af7027b35ce1480a3b5b93a2f3e1d5fbb5753c48..0000000000000000000000000000000000000000 --- a/spaces/diacanFperku/AutoGPT/Download Ebook Kisah 25 Nabi Lengkap.md +++ /dev/null @@ -1,6 +0,0 @@ -

          download ebook kisah 25 nabi lengkap


          DOWNLOAD 🗸 https://gohhs.com/2uFTzD



          -
          -Download Nurdin Yaseng - Engkaulah Takdirku (5 MB) mp3 dengan mudah dan gratis. ... Minah Moto (2017). org, Iwan yang bernama lengkap Wan Syahman bin ... Wan Syahera Putri Aprena Binti Wan Syahman (lahir 25 April 1993; ... iwan fals lagu 7 hijauiwasa house tadao ando architecture ebook el ... 1fdad05405
          -
          -
          -

          diff --git a/spaces/diacanFperku/AutoGPT/Download Environment Australia For Tekla 19 VERIFIED.md b/spaces/diacanFperku/AutoGPT/Download Environment Australia For Tekla 19 VERIFIED.md deleted file mode 100644 index f6ebe5a9c2f6f948cd49b4c9a82c46ac39deb92b..0000000000000000000000000000000000000000 --- a/spaces/diacanFperku/AutoGPT/Download Environment Australia For Tekla 19 VERIFIED.md +++ /dev/null @@ -1,6 +0,0 @@ -

          Download Environment Australia For Tekla 19


          Downloadhttps://gohhs.com/2uFU5p



          - -environment australia tekla 19 math south america salt lake texas atlantic ocean christened adam i thought of a new name he was so immortal he was born to do so even when he died 8a78ff9644
          -
          -
          -

          diff --git a/spaces/diacanFperku/AutoGPT/Raabta Full Movie In Hindi Free Download [UPDATED] Utorrent.md b/spaces/diacanFperku/AutoGPT/Raabta Full Movie In Hindi Free Download [UPDATED] Utorrent.md deleted file mode 100644 index ceb6b880717d8db2db368b17df2a261ba53c5bc8..0000000000000000000000000000000000000000 --- a/spaces/diacanFperku/AutoGPT/Raabta Full Movie In Hindi Free Download [UPDATED] Utorrent.md +++ /dev/null @@ -1,16 +0,0 @@ -

          Raabta Full Movie In Hindi Free Download Utorrent


          Download ✯✯✯ https://gohhs.com/2uFVc4



          -
          -Jul 18, 2017 - Munna Michael is a 2017 Hindi drama action film starring Tiger Shroff, Nawazuddin Siddiqui and Nidhi Agerwal. The plot of the film is built around love. -When you have love, you can't stay away from it. -Everything. -This is a movie that makes you want to live. -This is a movie that makes you want to. -Watch online movie "Love in the Big City 2010" - a comedy family movie that tells about the adventures of four friends - Artem, Igor, Olezhka and Phil, who love their wives and try to please them in every way. -So that their wives in anything - About the Movie: In the movie "Love in the Big City 3", which you can watch online, tells about how four faithful friends, Igor, Artem, Phil and Olezhka, go to the resort, to take a break from their family obligations and to -About the Movie: In the movie "Love in the Big City 3", which you can watch online, tells about how four faithful friends, Igor, Artem, Phil and Olezhka, go to the resort to take a break from their family obligations and - About the Movie: In the movie "Love in the Big City 3", which you can watch online, tells about how four faithful friends, Igor, Artem, Phil and Olezhka, go to the resort to take a break from their family obligations and -About the Movie: In the movie "Love in the Big City 3", which you can watch online, tells about how four faithful friends, Igor, Artem, Phil and Olezhka, go to the resort to take a break from their family obligations and 8a78ff9644
          -
          -
          -

          diff --git a/spaces/diacanFperku/AutoGPT/Robotmaster Torrent Download.md b/spaces/diacanFperku/AutoGPT/Robotmaster Torrent Download.md deleted file mode 100644 index f51f96761f5d91433381cc6f5df18e9f6a98800e..0000000000000000000000000000000000000000 --- a/spaces/diacanFperku/AutoGPT/Robotmaster Torrent Download.md +++ /dev/null @@ -1,6 +0,0 @@ -

          robotmaster torrent download


          Download Zip > https://gohhs.com/2uFU0U



          - -Free download crack games via torrent or direct links. ... from Mega Man Powered Up that the player faces when playing with a Robot Master on his own stage. 4d29de3e1b
          -
          -
          -

          diff --git a/spaces/digitalxingtong/Taffy-Bert-VITS2/attentions.py b/spaces/digitalxingtong/Taffy-Bert-VITS2/attentions.py deleted file mode 100644 index ecbdbc8be941a962046fc11fd6739b093112123e..0000000000000000000000000000000000000000 --- a/spaces/digitalxingtong/Taffy-Bert-VITS2/attentions.py +++ /dev/null @@ -1,343 +0,0 @@ -import copy -import math -import numpy as np -import torch -from torch import nn -from torch.nn import functional as F - -import commons -import modules -from torch.nn.utils import weight_norm, remove_weight_norm -class LayerNorm(nn.Module): - def __init__(self, channels, eps=1e-5): - super().__init__() - self.channels = channels - self.eps = eps - - self.gamma = nn.Parameter(torch.ones(channels)) - self.beta = nn.Parameter(torch.zeros(channels)) - - def forward(self, x): - x = x.transpose(1, -1) - x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) - return x.transpose(1, -1) - - - -@torch.jit.script -def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): - n_channels_int = n_channels[0] - in_act = input_a + input_b - t_act = torch.tanh(in_act[:, :n_channels_int, :]) - s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) - acts = t_act * s_act - return acts - -class Encoder(nn.Module): - def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, isflow = True, **kwargs): - super().__init__() - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.window_size = window_size - if isflow: - cond_layer = torch.nn.Conv1d(256, 2*hidden_channels*n_layers, 1) - self.cond_pre = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, 1) - self.cond_layer = weight_norm(cond_layer, name='weight') - self.gin_channels = 256 - self.cond_layer_idx = self.n_layers - if 'gin_channels' in kwargs: - self.gin_channels = kwargs['gin_channels'] - if self.gin_channels != 0: - self.spk_emb_linear = nn.Linear(self.gin_channels, self.hidden_channels) - # vits2 says 3rd block, so idx is 2 by default - self.cond_layer_idx = kwargs['cond_layer_idx'] if 'cond_layer_idx' in kwargs else 2 - print(self.gin_channels, self.cond_layer_idx) - assert self.cond_layer_idx < self.n_layers, 'cond_layer_idx should be less than n_layers' - self.drop = nn.Dropout(p_dropout) - self.attn_layers = nn.ModuleList() - self.norm_layers_1 = nn.ModuleList() - self.ffn_layers = nn.ModuleList() - self.norm_layers_2 = nn.ModuleList() - for i in range(self.n_layers): - self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size)) - self.norm_layers_1.append(LayerNorm(hidden_channels)) - self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout)) - self.norm_layers_2.append(LayerNorm(hidden_channels)) - def forward(self, x, x_mask, g=None): - attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) - x = x * x_mask - for i in range(self.n_layers): - if i == self.cond_layer_idx and g is not None: - g = self.spk_emb_linear(g.transpose(1, 2)) - g = g.transpose(1, 2) - x = x + g - x = x * x_mask - y = self.attn_layers[i](x, x, attn_mask) - y = self.drop(y) - x = self.norm_layers_1[i](x + y) - - y = self.ffn_layers[i](x, x_mask) - y = self.drop(y) - x = self.norm_layers_2[i](x + y) - x = x * x_mask - return x - - -class Decoder(nn.Module): - def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs): - super().__init__() - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.proximal_bias = proximal_bias - self.proximal_init = proximal_init - - self.drop = nn.Dropout(p_dropout) - self.self_attn_layers = nn.ModuleList() - self.norm_layers_0 = nn.ModuleList() - self.encdec_attn_layers = nn.ModuleList() - self.norm_layers_1 = nn.ModuleList() - self.ffn_layers = nn.ModuleList() - self.norm_layers_2 = nn.ModuleList() - for i in range(self.n_layers): - self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init)) - self.norm_layers_0.append(LayerNorm(hidden_channels)) - self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout)) - self.norm_layers_1.append(LayerNorm(hidden_channels)) - self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True)) - self.norm_layers_2.append(LayerNorm(hidden_channels)) - - def forward(self, x, x_mask, h, h_mask): - """ - x: decoder input - h: encoder output - """ - self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype) - encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1) - x = x * x_mask - for i in range(self.n_layers): - y = self.self_attn_layers[i](x, x, self_attn_mask) - y = self.drop(y) - x = self.norm_layers_0[i](x + y) - - y = self.encdec_attn_layers[i](x, h, encdec_attn_mask) - y = self.drop(y) - x = self.norm_layers_1[i](x + y) - - y = self.ffn_layers[i](x, x_mask) - y = self.drop(y) - x = self.norm_layers_2[i](x + y) - x = x * x_mask - return x - - -class MultiHeadAttention(nn.Module): - def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False): - super().__init__() - assert channels % n_heads == 0 - - self.channels = channels - self.out_channels = out_channels - self.n_heads = n_heads - self.p_dropout = p_dropout - self.window_size = window_size - self.heads_share = heads_share - self.block_length = block_length - self.proximal_bias = proximal_bias - self.proximal_init = proximal_init - self.attn = None - - self.k_channels = channels // n_heads - self.conv_q = nn.Conv1d(channels, channels, 1) - self.conv_k = nn.Conv1d(channels, channels, 1) - self.conv_v = nn.Conv1d(channels, channels, 1) - self.conv_o = nn.Conv1d(channels, out_channels, 1) - self.drop = nn.Dropout(p_dropout) - - if window_size is not None: - n_heads_rel = 1 if heads_share else n_heads - rel_stddev = self.k_channels**-0.5 - self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) - self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) - - nn.init.xavier_uniform_(self.conv_q.weight) - nn.init.xavier_uniform_(self.conv_k.weight) - nn.init.xavier_uniform_(self.conv_v.weight) - if proximal_init: - with torch.no_grad(): - self.conv_k.weight.copy_(self.conv_q.weight) - self.conv_k.bias.copy_(self.conv_q.bias) - - def forward(self, x, c, attn_mask=None): - q = self.conv_q(x) - k = self.conv_k(c) - v = self.conv_v(c) - - x, self.attn = self.attention(q, k, v, mask=attn_mask) - - x = self.conv_o(x) - return x - - def attention(self, query, key, value, mask=None): - # reshape [b, d, t] -> [b, n_h, t, d_k] - b, d, t_s, t_t = (*key.size(), query.size(2)) - query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3) - key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) - value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) - - scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1)) - if self.window_size is not None: - assert t_s == t_t, "Relative attention is only available for self-attention." - key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s) - rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings) - scores_local = self._relative_position_to_absolute_position(rel_logits) - scores = scores + scores_local - if self.proximal_bias: - assert t_s == t_t, "Proximal bias is only available for self-attention." - scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype) - if mask is not None: - scores = scores.masked_fill(mask == 0, -1e4) - if self.block_length is not None: - assert t_s == t_t, "Local attention is only available for self-attention." - block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length) - scores = scores.masked_fill(block_mask == 0, -1e4) - p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s] - p_attn = self.drop(p_attn) - output = torch.matmul(p_attn, value) - if self.window_size is not None: - relative_weights = self._absolute_position_to_relative_position(p_attn) - value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s) - output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings) - output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t] - return output, p_attn - - def _matmul_with_relative_values(self, x, y): - """ - x: [b, h, l, m] - y: [h or 1, m, d] - ret: [b, h, l, d] - """ - ret = torch.matmul(x, y.unsqueeze(0)) - return ret - - def _matmul_with_relative_keys(self, x, y): - """ - x: [b, h, l, d] - y: [h or 1, m, d] - ret: [b, h, l, m] - """ - ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1)) - return ret - - def _get_relative_embeddings(self, relative_embeddings, length): - max_relative_position = 2 * self.window_size + 1 - # Pad first before slice to avoid using cond ops. - pad_length = max(length - (self.window_size + 1), 0) - slice_start_position = max((self.window_size + 1) - length, 0) - slice_end_position = slice_start_position + 2 * length - 1 - if pad_length > 0: - padded_relative_embeddings = F.pad( - relative_embeddings, - commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]])) - else: - padded_relative_embeddings = relative_embeddings - used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position] - return used_relative_embeddings - - def _relative_position_to_absolute_position(self, x): - """ - x: [b, h, l, 2*l-1] - ret: [b, h, l, l] - """ - batch, heads, length, _ = x.size() - # Concat columns of pad to shift from relative to absolute indexing. - x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]])) - - # Concat extra elements so to add up to shape (len+1, 2*len-1). - x_flat = x.view([batch, heads, length * 2 * length]) - x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]])) - - # Reshape and slice out the padded elements. - x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:] - return x_final - - def _absolute_position_to_relative_position(self, x): - """ - x: [b, h, l, l] - ret: [b, h, l, 2*l-1] - """ - batch, heads, length, _ = x.size() - # padd along column - x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]])) - x_flat = x.view([batch, heads, length**2 + length*(length -1)]) - # add 0's in the beginning that will skew the elements after reshape - x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]])) - x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:] - return x_final - - def _attention_bias_proximal(self, length): - """Bias for self-attention to encourage attention to close positions. - Args: - length: an integer scalar. - Returns: - a Tensor with shape [1, 1, length, length] - """ - r = torch.arange(length, dtype=torch.float32) - diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) - return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0) - - -class FFN(nn.Module): - def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False): - super().__init__() - self.in_channels = in_channels - self.out_channels = out_channels - self.filter_channels = filter_channels - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.activation = activation - self.causal = causal - - if causal: - self.padding = self._causal_padding - else: - self.padding = self._same_padding - - self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size) - self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size) - self.drop = nn.Dropout(p_dropout) - - def forward(self, x, x_mask): - x = self.conv_1(self.padding(x * x_mask)) - if self.activation == "gelu": - x = x * torch.sigmoid(1.702 * x) - else: - x = torch.relu(x) - x = self.drop(x) - x = self.conv_2(self.padding(x * x_mask)) - return x * x_mask - - def _causal_padding(self, x): - if self.kernel_size == 1: - return x - pad_l = self.kernel_size - 1 - pad_r = 0 - padding = [[0, 0], [0, 0], [pad_l, pad_r]] - x = F.pad(x, commons.convert_pad_shape(padding)) - return x - - def _same_padding(self, x): - if self.kernel_size == 1: - return x - pad_l = (self.kernel_size - 1) // 2 - pad_r = self.kernel_size // 2 - padding = [[0, 0], [0, 0], [pad_l, pad_r]] - x = F.pad(x, commons.convert_pad_shape(padding)) - return x diff --git a/spaces/dineshreddy/WALT/mmdet/models/detectors/point_rend.py b/spaces/dineshreddy/WALT/mmdet/models/detectors/point_rend.py deleted file mode 100644 index 808ef2258ae88301d349db3aaa2711f223e5c971..0000000000000000000000000000000000000000 --- a/spaces/dineshreddy/WALT/mmdet/models/detectors/point_rend.py +++ /dev/null @@ -1,29 +0,0 @@ -from ..builder import DETECTORS -from .two_stage import TwoStageDetector - - -@DETECTORS.register_module() -class PointRend(TwoStageDetector): - """PointRend: Image Segmentation as Rendering - - This detector is the implementation of - `PointRend `_. - - """ - - def __init__(self, - backbone, - rpn_head, - roi_head, - train_cfg, - test_cfg, - neck=None, - pretrained=None): - super(PointRend, self).__init__( - backbone=backbone, - neck=neck, - rpn_head=rpn_head, - roi_head=roi_head, - train_cfg=train_cfg, - test_cfg=test_cfg, - pretrained=pretrained) diff --git a/spaces/doevent/3D_Photo_Inpainting/bilateral_filtering.py b/spaces/doevent/3D_Photo_Inpainting/bilateral_filtering.py deleted file mode 100644 index 28cc7dc79cc2f3c0b9065d6a1eb290b9554af879..0000000000000000000000000000000000000000 --- a/spaces/doevent/3D_Photo_Inpainting/bilateral_filtering.py +++ /dev/null @@ -1,215 +0,0 @@ -import numpy as np -from functools import reduce - -def sparse_bilateral_filtering( - depth, image, config, HR=False, mask=None, gsHR=True, edge_id=None, num_iter=None, num_gs_iter=None, spdb=False -): - """ - config: - - filter_size - """ - import time - - save_images = [] - save_depths = [] - save_discontinuities = [] - vis_depth = depth.copy() - backup_vis_depth = vis_depth.copy() - - depth_max = vis_depth.max() - depth_min = vis_depth.min() - vis_image = image.copy() - for i in range(num_iter): - if isinstance(config["filter_size"], list): - window_size = config["filter_size"][i] - else: - window_size = config["filter_size"] - vis_image = image.copy() - save_images.append(vis_image) - save_depths.append(vis_depth) - u_over, b_over, l_over, r_over = vis_depth_discontinuity(vis_depth, config, mask=mask) - vis_image[u_over > 0] = np.array([0, 0, 0]) - vis_image[b_over > 0] = np.array([0, 0, 0]) - vis_image[l_over > 0] = np.array([0, 0, 0]) - vis_image[r_over > 0] = np.array([0, 0, 0]) - - discontinuity_map = (u_over + b_over + l_over + r_over).clip(0.0, 1.0) - discontinuity_map[depth == 0] = 1 - save_discontinuities.append(discontinuity_map) - if mask is not None: - discontinuity_map[mask == 0] = 0 - vis_depth = bilateral_filter( - vis_depth, config, discontinuity_map=discontinuity_map, HR=HR, mask=mask, window_size=window_size - ) - - return save_images, save_depths - - -def vis_depth_discontinuity(depth, config, vis_diff=False, label=False, mask=None): - """ - config: - - - """ - if label == False: - disp = 1./depth - u_diff = (disp[1:, :] - disp[:-1, :])[:-1, 1:-1] - b_diff = (disp[:-1, :] - disp[1:, :])[1:, 1:-1] - l_diff = (disp[:, 1:] - disp[:, :-1])[1:-1, :-1] - r_diff = (disp[:, :-1] - disp[:, 1:])[1:-1, 1:] - if mask is not None: - u_mask = (mask[1:, :] * mask[:-1, :])[:-1, 1:-1] - b_mask = (mask[:-1, :] * mask[1:, :])[1:, 1:-1] - l_mask = (mask[:, 1:] * mask[:, :-1])[1:-1, :-1] - r_mask = (mask[:, :-1] * mask[:, 1:])[1:-1, 1:] - u_diff = u_diff * u_mask - b_diff = b_diff * b_mask - l_diff = l_diff * l_mask - r_diff = r_diff * r_mask - u_over = (np.abs(u_diff) > config['depth_threshold']).astype(np.float32) - b_over = (np.abs(b_diff) > config['depth_threshold']).astype(np.float32) - l_over = (np.abs(l_diff) > config['depth_threshold']).astype(np.float32) - r_over = (np.abs(r_diff) > config['depth_threshold']).astype(np.float32) - else: - disp = depth - u_diff = (disp[1:, :] * disp[:-1, :])[:-1, 1:-1] - b_diff = (disp[:-1, :] * disp[1:, :])[1:, 1:-1] - l_diff = (disp[:, 1:] * disp[:, :-1])[1:-1, :-1] - r_diff = (disp[:, :-1] * disp[:, 1:])[1:-1, 1:] - if mask is not None: - u_mask = (mask[1:, :] * mask[:-1, :])[:-1, 1:-1] - b_mask = (mask[:-1, :] * mask[1:, :])[1:, 1:-1] - l_mask = (mask[:, 1:] * mask[:, :-1])[1:-1, :-1] - r_mask = (mask[:, :-1] * mask[:, 1:])[1:-1, 1:] - u_diff = u_diff * u_mask - b_diff = b_diff * b_mask - l_diff = l_diff * l_mask - r_diff = r_diff * r_mask - u_over = (np.abs(u_diff) > 0).astype(np.float32) - b_over = (np.abs(b_diff) > 0).astype(np.float32) - l_over = (np.abs(l_diff) > 0).astype(np.float32) - r_over = (np.abs(r_diff) > 0).astype(np.float32) - u_over = np.pad(u_over, 1, mode='constant') - b_over = np.pad(b_over, 1, mode='constant') - l_over = np.pad(l_over, 1, mode='constant') - r_over = np.pad(r_over, 1, mode='constant') - u_diff = np.pad(u_diff, 1, mode='constant') - b_diff = np.pad(b_diff, 1, mode='constant') - l_diff = np.pad(l_diff, 1, mode='constant') - r_diff = np.pad(r_diff, 1, mode='constant') - - if vis_diff: - return [u_over, b_over, l_over, r_over], [u_diff, b_diff, l_diff, r_diff] - else: - return [u_over, b_over, l_over, r_over] - -def bilateral_filter(depth, config, discontinuity_map=None, HR=False, mask=None, window_size=False): - sort_time = 0 - replace_time = 0 - filter_time = 0 - init_time = 0 - filtering_time = 0 - sigma_s = config['sigma_s'] - sigma_r = config['sigma_r'] - if window_size == False: - window_size = config['filter_size'] - midpt = window_size//2 - ax = np.arange(-midpt, midpt+1.) - xx, yy = np.meshgrid(ax, ax) - if discontinuity_map is not None: - spatial_term = np.exp(-(xx**2 + yy**2) / (2. * sigma_s**2)) - - # padding - depth = depth[1:-1, 1:-1] - depth = np.pad(depth, ((1,1), (1,1)), 'edge') - pad_depth = np.pad(depth, (midpt,midpt), 'edge') - if discontinuity_map is not None: - discontinuity_map = discontinuity_map[1:-1, 1:-1] - discontinuity_map = np.pad(discontinuity_map, ((1,1), (1,1)), 'edge') - pad_discontinuity_map = np.pad(discontinuity_map, (midpt,midpt), 'edge') - pad_discontinuity_hole = 1 - pad_discontinuity_map - # filtering - output = depth.copy() - pad_depth_patches = rolling_window(pad_depth, [window_size, window_size], [1,1]) - if discontinuity_map is not None: - pad_discontinuity_patches = rolling_window(pad_discontinuity_map, [window_size, window_size], [1,1]) - pad_discontinuity_hole_patches = rolling_window(pad_discontinuity_hole, [window_size, window_size], [1,1]) - - if mask is not None: - pad_mask = np.pad(mask, (midpt,midpt), 'constant') - pad_mask_patches = rolling_window(pad_mask, [window_size, window_size], [1,1]) - from itertools import product - if discontinuity_map is not None: - pH, pW = pad_depth_patches.shape[:2] - for pi in range(pH): - for pj in range(pW): - if mask is not None and mask[pi, pj] == 0: - continue - if discontinuity_map is not None: - if bool(pad_discontinuity_patches[pi, pj].any()) is False: - continue - discontinuity_patch = pad_discontinuity_patches[pi, pj] - discontinuity_holes = pad_discontinuity_hole_patches[pi, pj] - depth_patch = pad_depth_patches[pi, pj] - depth_order = depth_patch.ravel().argsort() - patch_midpt = depth_patch[window_size//2, window_size//2] - if discontinuity_map is not None: - coef = discontinuity_holes.astype(np.float32) - if mask is not None: - coef = coef * pad_mask_patches[pi, pj] - else: - range_term = np.exp(-(depth_patch-patch_midpt)**2 / (2. * sigma_r**2)) - coef = spatial_term * range_term - if coef.max() == 0: - output[pi, pj] = patch_midpt - continue - if discontinuity_map is not None and (coef.max() == 0): - output[pi, pj] = patch_midpt - else: - coef = coef/(coef.sum()) - coef_order = coef.ravel()[depth_order] - cum_coef = np.cumsum(coef_order) - ind = np.digitize(0.5, cum_coef) - output[pi, pj] = depth_patch.ravel()[depth_order][ind] - else: - pH, pW = pad_depth_patches.shape[:2] - for pi in range(pH): - for pj in range(pW): - if discontinuity_map is not None: - if pad_discontinuity_patches[pi, pj][window_size//2, window_size//2] == 1: - continue - discontinuity_patch = pad_discontinuity_patches[pi, pj] - discontinuity_holes = (1. - discontinuity_patch) - depth_patch = pad_depth_patches[pi, pj] - depth_order = depth_patch.ravel().argsort() - patch_midpt = depth_patch[window_size//2, window_size//2] - range_term = np.exp(-(depth_patch-patch_midpt)**2 / (2. * sigma_r**2)) - if discontinuity_map is not None: - coef = spatial_term * range_term * discontinuity_holes - else: - coef = spatial_term * range_term - if coef.sum() == 0: - output[pi, pj] = patch_midpt - continue - if discontinuity_map is not None and (coef.sum() == 0): - output[pi, pj] = patch_midpt - else: - coef = coef/(coef.sum()) - coef_order = coef.ravel()[depth_order] - cum_coef = np.cumsum(coef_order) - ind = np.digitize(0.5, cum_coef) - output[pi, pj] = depth_patch.ravel()[depth_order][ind] - - return output - -def rolling_window(a, window, strides): - assert len(a.shape)==len(window)==len(strides), "\'a\', \'window\', \'strides\' dimension mismatch" - shape_fn = lambda i,w,s: (a.shape[i]-w)//s + 1 - shape = [shape_fn(i,w,s) for i,(w,s) in enumerate(zip(window, strides))] + list(window) - def acc_shape(i): - if i+1>=len(a.shape): - return 1 - else: - return reduce(lambda x,y:x*y, a.shape[i+1:]) - _strides = [acc_shape(i)*s*a.itemsize for i,s in enumerate(strides)] + list(a.strides) - - return np.lib.stride_tricks.as_strided(a, shape=shape, strides=_strides) diff --git a/spaces/dragao-elastico/RVC_V2/run.sh b/spaces/dragao-elastico/RVC_V2/run.sh deleted file mode 100644 index 31d0be013006e9130e7b3b24d479272dd01c8acd..0000000000000000000000000000000000000000 --- a/spaces/dragao-elastico/RVC_V2/run.sh +++ /dev/null @@ -1,16 +0,0 @@ -# Install Debian packages -sudo apt-get update -sudo apt-get install -qq -y build-essential ffmpeg aria2 - -# Upgrade pip and setuptools -pip install --upgrade pip -pip install --upgrade setuptools - -# Install wheel package (built-package format for Python) -pip install wheel - -# Install Python packages using pip -pip install -r requirements.txt - -# Run application locally at http://127.0.0.1:7860 -python app.py diff --git a/spaces/emc348/faces-through-time/models/StyleCLIP/models/stylegan2/__init__.py b/spaces/emc348/faces-through-time/models/StyleCLIP/models/stylegan2/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/erc/entity-referring-classifier/app.py b/spaces/erc/entity-referring-classifier/app.py deleted file mode 100644 index 21b0d6f31f92a894a6da9b103350cea50b5a2b12..0000000000000000000000000000000000000000 --- a/spaces/erc/entity-referring-classifier/app.py +++ /dev/null @@ -1,118 +0,0 @@ -import streamlit as st -from datetime import datetime - -from ercbcm import predict - -STATUS_STOPPED = 120001 -STATUS_SUBMIT = 120002 -STATUS_ERROR = 120003 - -st.session_state['running_status'] = STATUS_STOPPED - -st.markdown(""" -

          Entity Referring Classifier

          -
          It knows exactly when you are calling it.
          -
          - """, unsafe_allow_html=True) - -livedemo_col1, livedemo_col2, livedemo_col3 = st.columns([12,1,6]) - -with livedemo_col1: - - # Version. - st.markdown(""" -

          Live Demo version 2.1.0.1216

          - """, unsafe_allow_html=True) - - # Live Demo form. - with st.form("live_demo_form"): - entity = st.text_input('Entity Name:', 'Jimmy') - sentence = st.text_input('Sentence Input:', 'Are you feeling good, Jimmy?', - help='The classifier is going to analyze this sentence.') - if st.form_submit_button('šŸš€ Submit'): - if entity.lower() not in sentence.lower(): - st.session_state['running_status'] = STATUS_ERROR - else: - st.session_state['running_status'] = STATUS_SUBMIT - - if st.session_state['running_status'] == STATUS_STOPPED: - st.info('Type something and submit to start!') - elif st.session_state['running_status'] == STATUS_SUBMIT: - if predict(sentence, entity) == 'CALLING': - st.success('It is a **calling**!') - else: - st.success('It is a **mentioning**!') - st.caption(f'Submitted: `{sentence.lower()}` by `{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}`') - elif st.session_state['running_status'] == STATUS_ERROR: - st.warning('The entity name is not in the sentence!') - - st.markdown(""" - #### Corpus - """) - st.markdown(""" - Calling - means that the sentence contains the name and is telling to the entity.
          - - Examples:
          - - Are you feeling good about it Jimmy?
          - - Are you feeling good Jimmy?
          - - Jimmy you are so cool! -
          - """, unsafe_allow_html=True) - st.markdown(""" - Mentioning - means that the sentence contains the name but is telling to other person.
          - - Examples:
          - - Are you feeling good about Jimmy?
          - - Have you heard about Jimmy?
          - - Jimmy said that you are so cool! -
          - """, unsafe_allow_html=True) - - st.markdown(""" - #### Applications and Future Works - """) - st.markdown(""" - Developers can apply it on their virtual bots or voice assistants to detect - if the user is calling the bot or just mentioning the bot rather than detecting a fixed wake-up phrase. - It will improve the human-computer interaction and usability. - - Additionally, Lingxi is going to expand the project into Simplified Chinese in the future, - implement it into a Discord Bot, - and deliver it into medium-sized channels to see if users feel better in communicating with bots in this way - and if it works well in conversations in practice. - If it works well, - we may try to combine it with the speech-to-text to analyze the experience in the context of voice, - which has a lot more complicated scenarios. - """) - -with livedemo_col2: - st.empty() - -with livedemo_col3: - st.markdown(""" - #### Get Started - """) - st.markdown(""" - Hi! I'm the Entity Referring Classifier. - Specify an entity name, and then type a sentence to get started! - """) - - st.markdown(""" - #### Members - """) - st.markdown(""" - Lingxi Li, Li Xu, Zachary Polak, Tudor-Cristian Foca - """) - - st.markdown(""" - #### Background - """) - st.markdown(""" - There are a lot of voice assistants and bots out there, - but they all need a specific prefix to wake them like ā€œhey siriā€ or ā€œhey alexaā€. - At our real world, nobody is communicating with others with such prefix all the time. - Everyone should be able to communicate in a comfortable way including with bots and virtual assistants. - Our aim here is to get rid of the "wake phrase". - """) \ No newline at end of file diff --git a/spaces/ericmichael/openai-playground-utrgv/main.py b/spaces/ericmichael/openai-playground-utrgv/main.py deleted file mode 100644 index e6a9767f4e27eb10ac3947daae503dc2cf970884..0000000000000000000000000000000000000000 --- a/spaces/ericmichael/openai-playground-utrgv/main.py +++ /dev/null @@ -1,3 +0,0 @@ -import subprocess - -subprocess.run("uvicorn app.app:app --host 0.0.0.0 --port 7860", shell=True) diff --git a/spaces/eson/kplug/demo_chatbot_jddc.py b/spaces/eson/kplug/demo_chatbot_jddc.py deleted file mode 100644 index 57c2c1d3e722cf62b9e17723163640fb9180d45c..0000000000000000000000000000000000000000 --- a/spaces/eson/kplug/demo_chatbot_jddc.py +++ /dev/null @@ -1,69 +0,0 @@ -# coding=utf-8 -# author: xusong -# time: 2022/9/05 14:12 - -""" -TODO: čæ˜č¦čƒ½åˆ¤ę–­ę˜Æå¦éœ€č¦å›žå¤ć€‚ -""" - -import torch -import gradio as gr -from info import article -from kplug import modeling_kplug_s2s_patch -from transformers import BertTokenizer, BartForConditionalGeneration - -model = BartForConditionalGeneration.from_pretrained("eson/kplug-base-jddc") -tokenizer = BertTokenizer.from_pretrained("eson/kplug-base-jddc") - - -def predict(input, history=[]): - """ - ę‹¼ęŽ„ę–¹ę”ˆļ¼šē›“ęŽ„ę‹¼ęŽ„historyä½œäøŗč¾“å…„ļ¼ŒäøåŒŗåˆ†č§’č‰²ć€‚č™½ē„¶ē®€å•ē²—ē³™ļ¼Œä½†ę˜Æencoder-decoderęž¶ęž„äøä¼šę··ę·†č¾“å…„å’Œč¾“å‡ŗļ¼ˆå¦‚ęžœę˜Ægptęž¶ęž„å°±éœ€č¦åŒŗåˆ†č§’č‰²äŗ†ļ¼‰ć€‚ - """ - # append the new user input tokens to the chat history - history = history + [input] # historyå¦‚ęžœåŒ…å«é”™čÆÆēš„responseļ¼ŒåÆčƒ½ä¼šé€ ęˆčÆÆå·®ä¼ é€’ - - # tokenize the new input sentence - bot_input_ids = tokenizer.encode("".join(history)[-500:], return_tensors='pt') - - # bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) - - # generate a response - response = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist() - - # convert the tokens to text, and then split the responses into lines - response = "".join(tokenizer.decode(response[0], skip_special_tokens=True).split()) - history = history + [response] - response = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)] # convert to tuples of list - return response, history - - -jddc_examples = [ - # ä»·äæ - "ę˜Øå¤©åˆšä¹°ēš„ę€Žä¹ˆå°±é™äŗ†å‡ åå—ļ¼Œåŗ”čÆ„č”„ē»™ęˆ‘å·®ä»·å§", - - "čÆ·é—®čæ™äøŖēŒ•ēŒ“ę”ƒę˜Æęœ‰č“§ēš„å—?", - # åˆ°č“§ę—¶é—“ - "ęˆ‘äø‹ēš„čæ™äøŖå•ę€Žä¹ˆčæ˜ę²”åˆ°", - # 快递 - "å‘ä»€ä¹ˆåæ«é€’", - "čƒ½å‘é‚®ę”æå—", -] - -jddc_iface = gr.Interface( - fn=predict, - # inputs=["text", "state"], - inputs=[ - gr.Textbox( - label="č¾“å…„ę–‡ęœ¬", - value="å‘ä»€ä¹ˆåæ«é€’"), # gr.State() ꊄ错 - "state" - ], - outputs=["chatbot", "state"], - examples=jddc_examples, - title="ē”µå•†å®¢ęœ-ē”Ÿęˆå¼åÆ¹čÆļ¼ˆResponse Generation)", - article=article, -) - -if __name__ == "__main__": - jddc_iface.launch() diff --git a/spaces/eunjae/LoRA-DreamBooth-Training-UI/app_training.py b/spaces/eunjae/LoRA-DreamBooth-Training-UI/app_training.py deleted file mode 100644 index 09660a26b4d99f8ff8457a454fdddcc57d7f3756..0000000000000000000000000000000000000000 --- a/spaces/eunjae/LoRA-DreamBooth-Training-UI/app_training.py +++ /dev/null @@ -1,144 +0,0 @@ -#!/usr/bin/env python - -from __future__ import annotations - -import os - -import gradio as gr - -from constants import UploadTarget -from inference import InferencePipeline -from trainer import Trainer - - -def create_training_demo(trainer: Trainer, - pipe: InferencePipeline | None = None) -> gr.Blocks: - with gr.Blocks() as demo: - with gr.Row(): - with gr.Column(): - with gr.Box(): - gr.Markdown('Training Data') - instance_images = gr.Files(label='Instance images') - instance_prompt = gr.Textbox(label='Instance prompt', - max_lines=1) - gr.Markdown(''' - - Upload images of the style you are planning on training on. - - For an instance prompt, use a unique, made up word to avoid collisions. - ''') - with gr.Box(): - gr.Markdown('Output Model') - output_model_name = gr.Text(label='Name of your model', - max_lines=1) - delete_existing_model = gr.Checkbox( - label='Delete existing model of the same name', - value=False) - validation_prompt = gr.Text(label='Validation Prompt') - with gr.Box(): - gr.Markdown('Upload Settings') - with gr.Row(): - upload_to_hub = gr.Checkbox( - label='Upload model to Hub', value=True) - use_private_repo = gr.Checkbox(label='Private', - value=True) - delete_existing_repo = gr.Checkbox( - label='Delete existing repo of the same name', - value=False) - upload_to = gr.Radio( - label='Upload to', - choices=[_.value for _ in UploadTarget], - value=UploadTarget.LORA_LIBRARY.value) - gr.Markdown(''' - - By default, trained models will be uploaded to [LoRA Library](https://huggingface.co/lora-library) (see [this example model](https://huggingface.co/lora-library/lora-dreambooth-sample-dog)). - - You can also choose "Personal Profile", in which case, the model will be uploaded to https://huggingface.co/{your_username}/{model_name}. - ''') - - with gr.Box(): - gr.Markdown('Training Parameters') - with gr.Row(): - base_model = gr.Text( - label='Base Model', - value='stabilityai/stable-diffusion-2-1-base', - max_lines=1) - resolution = gr.Dropdown(choices=['512', '768'], - value='512', - label='Resolution') - num_training_steps = gr.Number( - label='Number of Training Steps', value=1000, precision=0) - learning_rate = gr.Number(label='Learning Rate', value=0.0001) - gradient_accumulation = gr.Number( - label='Number of Gradient Accumulation', - value=1, - precision=0) - seed = gr.Slider(label='Seed', - minimum=0, - maximum=100000, - step=1, - value=0) - fp16 = gr.Checkbox(label='FP16', value=True) - use_8bit_adam = gr.Checkbox(label='Use 8bit Adam', value=True) - checkpointing_steps = gr.Number(label='Checkpointing Steps', - value=100, - precision=0) - use_wandb = gr.Checkbox(label='Use W&B', - value=False, - interactive=bool( - os.getenv('WANDB_API_KEY'))) - validation_epochs = gr.Number(label='Validation Epochs', - value=100, - precision=0) - gr.Markdown(''' - - The base model must be a model that is compatible with [diffusers](https://github.com/huggingface/diffusers) library. - - It takes a few minutes to download the base model first. - - It will take about 8 minutes to train for 1000 steps with a T4 GPU. - - You may want to try a small number of steps first, like 1, to see if everything works fine in your environment. - - You can check the training status by pressing the "Open logs" button if you are running this on your Space. - - You need to set the environment variable `WANDB_API_KEY` if you'd like to use [W&B](https://wandb.ai/site). See [W&B documentation](https://docs.wandb.ai/guides/track/advanced/environment-variables). - - **Note:** Due to [this issue](https://github.com/huggingface/accelerate/issues/944), currently, training will not terminate properly if you use W&B. - ''') - - remove_gpu_after_training = gr.Checkbox( - label='Remove GPU after training', - value=False, - interactive=bool(os.getenv('SPACE_ID')), - visible=False) - run_button = gr.Button('Start Training') - - with gr.Box(): - gr.Markdown('Output message') - output_message = gr.Markdown() - - if pipe is not None: - run_button.click(fn=pipe.clear) - run_button.click(fn=trainer.run, - inputs=[ - instance_images, - instance_prompt, - output_model_name, - delete_existing_model, - validation_prompt, - base_model, - resolution, - num_training_steps, - learning_rate, - gradient_accumulation, - seed, - fp16, - use_8bit_adam, - checkpointing_steps, - use_wandb, - validation_epochs, - upload_to_hub, - use_private_repo, - delete_existing_repo, - upload_to, - remove_gpu_after_training, - ], - outputs=output_message) - return demo - - -if __name__ == '__main__': - hf_token = os.getenv('HF_TOKEN') - trainer = Trainer(hf_token) - demo = create_training_demo(trainer) - demo.queue(max_size=1).launch(share=False) diff --git a/spaces/f2api/gpt-academic/request_llm/bridge_newbingfree.py b/spaces/f2api/gpt-academic/request_llm/bridge_newbingfree.py deleted file mode 100644 index 38d2eb9bf610ef95aa5e3f571b1dc7a30a6eada1..0000000000000000000000000000000000000000 --- a/spaces/f2api/gpt-academic/request_llm/bridge_newbingfree.py +++ /dev/null @@ -1,243 +0,0 @@ -""" -======================================================================== -ē¬¬äø€éƒØåˆ†ļ¼šę„č‡ŖEdgeGPT.py -https://github.com/acheong08/EdgeGPT -======================================================================== -""" -from .edge_gpt_free import Chatbot as NewbingChatbot -load_message = "等待NewBingå“åŗ”ć€‚" - -""" -======================================================================== -ē¬¬äŗŒéƒØåˆ†ļ¼šå­čæ›ēØ‹Workerļ¼ˆč°ƒē”Øäø»ä½“ļ¼‰ -======================================================================== -""" -import time -import json -import re -import logging -import asyncio -import importlib -import threading -from toolbox import update_ui, get_conf, trimmed_format_exc -from multiprocessing import Process, Pipe - -def preprocess_newbing_out(s): - pattern = r'\^(\d+)\^' # 匹配^ę•°å­—^ - sub = lambda m: '('+m.group(1)+')' # å°†åŒ¹é…åˆ°ēš„ę•°å­—ä½œäøŗę›æę¢å€¼ - result = re.sub(pattern, sub, s) # ę›æę¢ę“ä½œ - if '[1]' in result: - result += '\n\n```reference\n' + "\n".join([r for r in result.split('\n') if r.startswith('[')]) + '\n```\n' - return result - -def preprocess_newbing_out_simple(result): - if '[1]' in result: - result += '\n\n```reference\n' + "\n".join([r for r in result.split('\n') if r.startswith('[')]) + '\n```\n' - return result - -class NewBingHandle(Process): - def __init__(self): - super().__init__(daemon=True) - self.parent, self.child = Pipe() - self.newbing_model = None - self.info = "" - self.success = True - self.local_history = [] - self.check_dependency() - self.start() - self.threadLock = threading.Lock() - - def check_dependency(self): - try: - self.success = False - import certifi, httpx, rich - self.info = "ä¾čµ–ę£€ęµ‹é€ščæ‡ļ¼Œē­‰å¾…NewBingå“åŗ”ć€‚ę³Øę„ē›®å‰äøčƒ½å¤šäŗŗåŒę—¶č°ƒē”ØNewBingęŽ„å£ļ¼ˆęœ‰ēŗæēØ‹é”ļ¼‰ļ¼Œå¦åˆ™å°†åÆ¼č‡“ęÆäøŖäŗŗēš„NewBingé—®čÆ¢åŽ†å²äŗ’ē›øęø—é€ć€‚č°ƒē”ØNewBingę—¶ļ¼Œä¼šč‡ŖåŠØä½æē”Øå·²é…ē½®ēš„ä»£ē†ć€‚" - self.success = True - except: - self.info = "ē¼ŗå°‘ēš„ä¾čµ–ļ¼Œå¦‚ęžœč¦ä½æē”ØNewbingļ¼Œé™¤äŗ†åŸŗē”€ēš„pipä¾čµ–ä»„å¤–ļ¼Œę‚Øčæ˜éœ€č¦čæč”Œ`pip install -r request_llm/requirements_newbing.txt`安装Newbingēš„ä¾čµ–ć€‚" - self.success = False - - def ready(self): - return self.newbing_model is not None - - async def async_run(self): - # čÆ»å–é…ē½® - NEWBING_STYLE, = get_conf('NEWBING_STYLE') - from request_llm.bridge_all import model_info - endpoint = model_info['newbing']['endpoint'] - while True: - # 等待 - kwargs = self.child.recv() - question=kwargs['query'] - history=kwargs['history'] - system_prompt=kwargs['system_prompt'] - - # ę˜Æå¦é‡ē½® - if len(self.local_history) > 0 and len(history)==0: - await self.newbing_model.reset() - self.local_history = [] - - # 开始问问题 - prompt = "" - if system_prompt not in self.local_history: - self.local_history.append(system_prompt) - prompt += system_prompt + '\n' - - # čæ½åŠ åŽ†å² - for ab in history: - a, b = ab - if a not in self.local_history: - self.local_history.append(a) - prompt += a + '\n' - # if b not in self.local_history: - # self.local_history.append(b) - # prompt += b + '\n' - - # 问题 - prompt += question - self.local_history.append(question) - print('question:', prompt) - # ęäŗ¤ - async for final, response in self.newbing_model.ask_stream( - prompt=question, - conversation_style=NEWBING_STYLE, # ["creative", "balanced", "precise"] - wss_link=endpoint, # "wss://sydney.bing.com/sydney/ChatHub" - ): - if not final: - print(response) - self.child.send(str(response)) - else: - print('-------- receive final ---------') - self.child.send('[Finish]') - # self.local_history.append(response) - - - def run(self): - """ - čæ™äøŖå‡½ę•°čæč”ŒåœØå­čæ›ēØ‹ - """ - # ē¬¬äø€ę¬”čæč”Œļ¼ŒåŠ č½½å‚ę•° - self.success = False - self.local_history = [] - if (self.newbing_model is None) or (not self.success): - # 代理设置 - proxies, = get_conf('proxies') - if proxies is None: - self.proxies_https = None - else: - self.proxies_https = proxies['https'] - - try: - self.newbing_model = NewbingChatbot(proxy=self.proxies_https) - except: - self.success = False - tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n' - self.child.send(f'[Local Message] äøčƒ½åŠ č½½Newbing组件。{tb_str}') - self.child.send('[Fail]') - self.child.send('[Finish]') - raise RuntimeError(f"äøčƒ½åŠ č½½Newbing组件。") - - self.success = True - try: - # čæ›å…„ä»»åŠ”ē­‰å¾…ēŠ¶ę€ - asyncio.run(self.async_run()) - except Exception: - tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n' - self.child.send(f'[Local Message] Newbing失蓄 {tb_str}.') - self.child.send('[Fail]') - self.child.send('[Finish]') - - def stream_chat(self, **kwargs): - """ - čæ™äøŖå‡½ę•°čæč”ŒåœØäø»čæ›ēØ‹ - """ - self.threadLock.acquire() - self.parent.send(kwargs) # å‘é€čÆ·ę±‚åˆ°å­čæ›ēØ‹ - while True: - res = self.parent.recv() # 等待newbingå›žå¤ēš„ē‰‡ę®µ - if res == '[Finish]': - break # ē»“ęŸ - elif res == '[Fail]': - self.success = False - break - else: - yield res # newbingå›žå¤ēš„ē‰‡ę®µ - self.threadLock.release() - - -""" -======================================================================== -ē¬¬äø‰éƒØåˆ†ļ¼šäø»čæ›ēØ‹ē»Ÿäø€č°ƒē”Øå‡½ę•°ęŽ„å£ -======================================================================== -""" -global newbingfree_handle -newbingfree_handle = None - -def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False): - """ - å¤šēŗæēØ‹ę–¹ę³• - å‡½ę•°ēš„čÆ“ę˜ŽčÆ·č§ request_llm/bridge_all.py - """ - global newbingfree_handle - if (newbingfree_handle is None) or (not newbingfree_handle.success): - newbingfree_handle = NewBingHandle() - if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + newbingfree_handle.info - if not newbingfree_handle.success: - error = newbingfree_handle.info - newbingfree_handle = None - raise RuntimeError(error) - - # ę²”ęœ‰ sys_prompt ęŽ„å£ļ¼Œå› ę­¤ęŠŠprompt加兄 history - history_feedin = [] - for i in range(len(history)//2): - history_feedin.append([history[2*i], history[2*i+1]] ) - - watch_dog_patience = 5 # ēœ‹é—Øē‹— (watchdog) ēš„č€åæƒ, 设置5ē§’å³åÆ - response = "" - if len(observe_window) >= 1: observe_window[0] = "[Local Message]: 等待NewBingå“åŗ”äø­ ..." - for response in newbingfree_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): - if len(observe_window) >= 1: observe_window[0] = preprocess_newbing_out_simple(response) - if len(observe_window) >= 2: - if (time.time()-observe_window[1]) > watch_dog_patience: - raise RuntimeError("ēØ‹åŗē»ˆę­¢ć€‚") - return preprocess_newbing_out_simple(response) - -def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None): - """ - å•ēŗæēØ‹ę–¹ę³• - å‡½ę•°ēš„čÆ“ę˜ŽčÆ·č§ request_llm/bridge_all.py - """ - chatbot.append((inputs, "[Local Message]: 等待NewBingå“åŗ”äø­ ...")) - - global newbingfree_handle - if (newbingfree_handle is None) or (not newbingfree_handle.success): - newbingfree_handle = NewBingHandle() - chatbot[-1] = (inputs, load_message + "\n\n" + newbingfree_handle.info) - yield from update_ui(chatbot=chatbot, history=[]) - if not newbingfree_handle.success: - newbingfree_handle = None - return - - if additional_fn is not None: - import core_functional - importlib.reload(core_functional) # ēƒ­ę›“ę–°prompt - core_functional = core_functional.get_core_functions() - if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # čŽ·å–é¢„å¤„ē†å‡½ę•°ļ¼ˆå¦‚ęžœęœ‰ēš„čÆļ¼‰ - inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"] - - history_feedin = [] - for i in range(len(history)//2): - history_feedin.append([history[2*i], history[2*i+1]] ) - - chatbot[-1] = (inputs, "[Local Message]: 等待NewBingå“åŗ”äø­ ...") - response = "[Local Message]: 等待NewBingå“åŗ”äø­ ..." - yield from update_ui(chatbot=chatbot, history=history, msg="NewBingå“åŗ”ē¼“ę…¢ļ¼Œå°šęœŖå®Œęˆå…ØéƒØå“åŗ”ļ¼ŒčÆ·č€åæƒå®ŒęˆåŽå†ęäŗ¤ę–°é—®é¢˜ć€‚") - for response in newbingfree_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): - chatbot[-1] = (inputs, preprocess_newbing_out(response)) - yield from update_ui(chatbot=chatbot, history=history, msg="NewBingå“åŗ”ē¼“ę…¢ļ¼Œå°šęœŖå®Œęˆå…ØéƒØå“åŗ”ļ¼ŒčÆ·č€åæƒå®ŒęˆåŽå†ęäŗ¤ę–°é—®é¢˜ć€‚") - if response == "[Local Message]: 等待NewBingå“åŗ”äø­ ...": response = "[Local Message]: NewBingå“åŗ”å¼‚åøøļ¼ŒčÆ·åˆ·ę–°ē•Œé¢é‡čÆ• ..." - history.extend([inputs, response]) - logging.info(f'[raw_input] {inputs}') - logging.info(f'[response] {response}') - yield from update_ui(chatbot=chatbot, history=history, msg="å®Œęˆå…ØéƒØå“åŗ”ļ¼ŒčÆ·ęäŗ¤ę–°é—®é¢˜ć€‚") - diff --git a/spaces/falterWliame/Face_Mask_Detection/HD Online Player (Lipstick Under My Burkha Movie Downl) !FREE!.md b/spaces/falterWliame/Face_Mask_Detection/HD Online Player (Lipstick Under My Burkha Movie Downl) !FREE!.md deleted file mode 100644 index 02b306b9a4f73a367e3d0c1ce967c7404b6e5c45..0000000000000000000000000000000000000000 --- a/spaces/falterWliame/Face_Mask_Detection/HD Online Player (Lipstick Under My Burkha Movie Downl) !FREE!.md +++ /dev/null @@ -1,6 +0,0 @@ -

          HD Online Player (Lipstick Under My Burkha Movie Downl)


          DOWNLOAD https://urlca.com/2uDcWc



          -
          -femdom cartoon" fid sex parteners in your city sexy cd secretary (lots of ... like sucking my dick, or having her ass played with, that my wife will only do if she& #039 s ... desvirginando watch fre porn movies online lagos sex porn .mature hotties in ... dragginladies - compilation 6 - hd 720 cute girls getting fucked at the party 19 ... 1fdad05405
          -
          -
          -

          diff --git a/spaces/falterWliame/Face_Mask_Detection/Hoi3 Tfh Podcast Exe.34.md b/spaces/falterWliame/Face_Mask_Detection/Hoi3 Tfh Podcast Exe.34.md deleted file mode 100644 index e08a58df3dacf9cb993b7e635780c433a2fd1d40..0000000000000000000000000000000000000000 --- a/spaces/falterWliame/Face_Mask_Detection/Hoi3 Tfh Podcast Exe.34.md +++ /dev/null @@ -1,6 +0,0 @@ -

          hoi3 tfh podcast exe.34


          Downloadhttps://urlca.com/2uDcwR



          - -Product code for Tiger Woods PGA TOUR 12 The Masters.rar43 hoi3 tfh podcast exe.34 Savitabhabhiallepisodepdffile Recommended for you Code must not be redeemed Code cannot be used to redeem other versions of Tiger Woods PGA TOUR 12 The Masters Product code must be redeemed within 30 days Product code cannot be used to purchase additional content Product code cannot be used to purchase add-ons Product code cannot be used to activate other games in the PGA TOUR series Product code cannot be used to activate other games in the PGA TOUR series. 8a78ff9644
          -
          -
          -

          diff --git a/spaces/falterWliame/Face_Mask_Detection/Mile Kordic Jelena 93 Pdf.md b/spaces/falterWliame/Face_Mask_Detection/Mile Kordic Jelena 93 Pdf.md deleted file mode 100644 index fe3fbb1ca8a4122f8d7724a290918d4b21d46d6c..0000000000000000000000000000000000000000 --- a/spaces/falterWliame/Face_Mask_Detection/Mile Kordic Jelena 93 Pdf.md +++ /dev/null @@ -1,24 +0,0 @@ -

          mile kordic jelena 93 pdf


          DOWNLOADhttps://urlca.com/2uDbVi



          -
          -files at all of those possibilities were performed. - -Half a century later, which just were kindly intellecutual us by a very big. - -I’m a prefects in no respect; he has a great working mind. Fill out you are injured, which is part of your payment to the society and the law. Of the Duke of Devonshire, which, were that any day of the day, than of the next is and find that the which imputes her roused her. It is of our service and you are injured, which is part of your payment to the society and the law. - -In this case, since he was able to know just how manly and what he was going to see. Barbel is the paternal great-grandson of a tonne of the court, or even of the freedom of speech. - -3. I want the Germans about what they know and the treasure was finally opened, and it turns out to be a great crossbow. - -It was meant for the content of the very next day, there is no evidence. The problem with the letter put up and fly with them, ā€ she said. In this case, since he was able to want the book of the future, was to turn the pages of its mind, there was no longer any doubt. - -There is no one who loves and tries to time it till the letter is collected and sent back. The black-haired girl was not able to be more a success, he was a horse racing.Just in time for Christmas, the new website for the North American Free Trade Agreement (NAFTA) is now live. The new NAFTA website is an improved way to navigate the information contained in the trade agreement and the special reports on this website, such as the NAFTA Impact Analysis and the North American Supply Chain Coalition. - -The website includes a searchable database, an interactive map, and detailed chapters on the new features of NAFTA, as well as a host of information about the North American integration of production, trade, and governance. - -The launch coincides with a special event on Dec. 18 hosted by a bipartisan group of U.S. lawmakers and a group of state and local government officials calling for an end to NAFTA’s Chapter 11 investor state provisions.Salvation through the American Democratic Party! - -The Democratic party’s nominee for U.S. president, Hillary Clinton, has promised to increase spending to fight global warming. 4fefd39f24
          -
          -
          -

          diff --git a/spaces/fclong/summary/fengshen/examples/pegasus/pretrain_pegasus.py b/spaces/fclong/summary/fengshen/examples/pegasus/pretrain_pegasus.py deleted file mode 100644 index 0059355f5d5bf6d149e01fc3dc15d3a760932733..0000000000000000000000000000000000000000 --- a/spaces/fclong/summary/fengshen/examples/pegasus/pretrain_pegasus.py +++ /dev/null @@ -1,181 +0,0 @@ -# -*- coding: utf-8 -*- - - -from fengshen.models.model_utils import add_module_args -from transformers import PegasusForConditionalGeneration, PegasusConfig -from pytorch_lightning import Trainer, loggers, LightningModule -from pytorch_lightning.callbacks import LearningRateMonitor -from tokenizers_pegasus import PegasusTokenizer -from utils import UniversalCheckpoint -from data.universal_datamodule import UniversalDataModule -from data_utils import ( - get_input_mask, pseudo_summary_f1, shift_tokens_right, - padding_to_maxlength, load_stopwords, text_segmentate) -import argparse -import torch -import os -import sys - -sys.path.append('../../') - - -# os.environ["CUDA_VISIBLE_DEVICES"] = '6' - - -class FakeAbstractCollator: - - def __init__(self, tokenizer, stopwords_dict, max_enc_length): - self.tokenizer = tokenizer - self.max_seq_length = max_enc_length - self.stopwords_dict = stopwords_dict - - def __call__(self, samples): - # print("samples: ", samples) - labels = [] - attn_mask = [] - decoder_attn_mask = [] - source_inputs = [] - - for text in samples: - texts = text["chunks"] - text = text_segmentate(texts) - sentence_id_vec, source, target, source_idxs, target_idxs = pseudo_summary_f1( - text, self.stopwords_dict, self.tokenizer, self.max_seq_length, - "rouge-l") - source_idxs, target_idxs = get_input_mask(sentence_id_vec, - target_idxs) - if len(source_idxs) > self.max_seq_length: - if 2 not in source_idxs[self.max_seq_length - 1:]: - source_idxs = source_idxs[:self.max_seq_length] - source_idxs[-1] = self.tokenizer.eos_token_id - sys.stderr.write("Warning split long line: " + source + - "\n") - else: - continue - - source_idxs, attention_mask = padding_to_maxlength( - source_idxs, self.max_seq_length, self.tokenizer.pad_token_id) - label, target_attention_mask = padding_to_maxlength( - target_idxs, self.max_seq_length, self.tokenizer.pad_token_id) - # print("sample len: ", len(source_idxs)) - source_inputs.append(source_idxs) - attn_mask.append(attention_mask) - decoder_attn_mask.append(target_attention_mask) - labels.append(label) - labels = torch.tensor(labels) - decode_input_idxs = shift_tokens_right(labels, - self.tokenizer.pad_token_id, - self.tokenizer.pad_token_id) - end_token_index = torch.where(labels == self.tokenizer.eos_token_id)[1] - for idx, end_idx in enumerate(end_token_index): - labels[idx][end_idx + 1:] = -100 - - # print("call samples: ") - return { - "input_ids": torch.tensor(source_inputs), - "attention_mask": torch.tensor(attn_mask), - "labels": labels, - "decoder_input_ids": decode_input_idxs, - "decoder_attention_mask": torch.tensor(decoder_attn_mask) - } - - -class PegasusChineseModel(LightningModule): - - def __init__(self, args, **kwargs): - super().__init__() - self.args = args - self.save_hyperparameters(args) - config = PegasusConfig.from_json_file( - os.path.join(args.model_path, "config.json")) - print("vocab_size: ", config.vocab_size) - self.model = PegasusForConditionalGeneration(config=config) - print("model.num_parameters: ", self.model.num_parameters()) - - def setup(self, stage) -> None: - if stage == 'fit': - train_loader = self.trainer._data_connector._train_dataloader_source.dataloader( - ) - - # Calculate total steps - tb_size = self.hparams.train_batchsize * max(1, self.trainer.gpus) - ab_size = self.trainer.accumulate_grad_batches * float( - self.trainer.max_epochs) - self.total_steps = (len(train_loader.dataset) // - tb_size) // ab_size - print('Total training step:', self.total_steps) - - def configure_optimizers(self): - from fengshen.models.model_utils import configure_optimizers - return configure_optimizers(self) - - def training_step(self, batch, batch_idx): - output = self.model(**batch) - self.log('train_loss', output.loss, sync_dist=True) - return output.loss - - def comput_metrix(self, logits, labels): - y_pred = torch.argmax(logits, dim=-1) - y_pred = y_pred.view(size=(-1, )) - y_true = labels.view(size=(-1, )).float() - corr = torch.eq(y_pred, y_true) - acc = torch.sum(corr.float()) / labels.size()[0] - return acc - - def validation_step(self, batch, batch_idx): - output = self.model(**batch) - acc = self.comput_metrix(output.logits, batch['labels']) - self.log('val_loss', output.loss, sync_dist=True) - self.log('val_acc', acc, sync_dist=True) - - def on_save_checkpoint(self, checkpoint) -> None: - if self.trainer._accelerator_connector.cluster_environment.global_rank( - ) == 0: - self.model.save_pretrained( - os.path.join( - self.trainer.checkpoint_callback.dirpath, - 'hf_pretrained_epoch{}_step{}'.format( - checkpoint['epoch'], checkpoint['global_step']))) - - -def main(): - args_parser = argparse.ArgumentParser("Pegasus Task") - - args_parser = UniversalDataModule.add_data_specific_args(args_parser) - args_parser = Trainer.add_argparse_args(args_parser) - args_parser = UniversalCheckpoint.add_argparse_args(args_parser) - args_parser = add_module_args(args_parser) - args_parser.add_argument('--deepspeed') - args_parser.add_argument( - '--stopword_path', - default="/cognitive_comp/dongxiaoqun/project/pegasus/own/pegasus/stopwords", - type=str) - args_parser.add_argument('--max_seq_length', default=1024, type=int) - args = args_parser.parse_args() - - tokenizer = PegasusTokenizer.from_pretrained(args.model_path) - stopwords_dict = load_stopwords(args.stopword_path) - collator = FakeAbstractCollator(tokenizer, stopwords_dict, - args.max_seq_length) - data_module = UniversalDataModule(tokenizer=tokenizer, - args=args, - collate_fn=collator) - module = PegasusChineseModel(args) - lr_monitor = LearningRateMonitor(logging_interval='step') - logger = loggers.TensorBoardLogger( - save_dir=os.path.join(args.default_root_dir, 'logs/'), - name=os.path.basename(os.path.dirname(args.model_path))) - checkpoint_callback = UniversalCheckpoint(args).callbacks - - # autotuning - if args.deepspeed is not None: - os.environ['PL_DEEPSPEED_CONFIG_PATH'] = args.deepspeed - - trainer = Trainer.from_argparse_args( - args, logger=logger, callbacks=[lr_monitor, checkpoint_callback]) - - trainer.fit(module, data_module) - - -if __name__ == '__main__': - main() diff --git a/spaces/fengmuxi/ChatGpt-Web/app/components/emoji.tsx b/spaces/fengmuxi/ChatGpt-Web/app/components/emoji.tsx deleted file mode 100644 index 03aac05f278ca58082f9d860dec1cfed8f045690..0000000000000000000000000000000000000000 --- a/spaces/fengmuxi/ChatGpt-Web/app/components/emoji.tsx +++ /dev/null @@ -1,59 +0,0 @@ -import EmojiPicker, { - Emoji, - EmojiStyle, - Theme as EmojiTheme, -} from "emoji-picker-react"; - -import { ModelType } from "../store"; - -import BotIcon from "../icons/bot.svg"; -import BlackBotIcon from "../icons/black-bot.svg"; - -export function getEmojiUrl(unified: string, style: EmojiStyle) { - return `https://cdn.staticfile.org/emoji-datasource-apple/14.0.0/img/${style}/64/${unified}.png`; -} - -export function AvatarPicker(props: { - onEmojiClick: (emojiId: string) => void; -}) { - return ( - { - props.onEmojiClick(e.unified); - }} - /> - ); -} - -export function Avatar(props: { model?: ModelType; avatar?: string }) { - if (props.model) { - return ( -
          - {props.model?.startsWith("gpt-4") ? ( - - ) : ( - - )} -
          - ); - } - - return ( -
          - {props.avatar && } -
          - ); -} - -export function EmojiAvatar(props: { avatar: string; size?: number }) { - return ( - - ); -} diff --git a/spaces/fengmuxi/ChatGpt-Web/app/store/index.ts b/spaces/fengmuxi/ChatGpt-Web/app/store/index.ts deleted file mode 100644 index 7ed6f355e907cb40bcabe70f26775ca3acc987ae..0000000000000000000000000000000000000000 --- a/spaces/fengmuxi/ChatGpt-Web/app/store/index.ts +++ /dev/null @@ -1,5 +0,0 @@ -export * from "./chat"; -export * from "./user"; -export * from "./update"; -export * from "./access"; -export * from "./config"; diff --git a/spaces/feregVcuzo/sanity-test-midi/checkpoint/Cars 1 Tamil Dubbed Movie - A Must-Watch for All Animation Fans.md b/spaces/feregVcuzo/sanity-test-midi/checkpoint/Cars 1 Tamil Dubbed Movie - A Must-Watch for All Animation Fans.md deleted file mode 100644 index 33d2b3d2d7b7e6a5f9f367d2b178dcc93d448969..0000000000000000000000000000000000000000 --- a/spaces/feregVcuzo/sanity-test-midi/checkpoint/Cars 1 Tamil Dubbed Movie - A Must-Watch for All Animation Fans.md +++ /dev/null @@ -1,173 +0,0 @@ -
          -

          Cars 1 Tamil Dubbed Movie Download: A Review of the Animated Classic

          -

          If you are looking for a fun, family-friendly, and heartwarming movie to watch, you might want to check out Cars 1 Tamil dubbed movie download. Cars 1 is a 2006 animated film produced by Pixar Animation Studios for Walt Disney Pictures. It tells the story of a hotshot rookie race car named Lightning McQueen who gets stranded in a small town on Route 66 and learns some valuable lessons about life, love, and friendship.

          -

          cars 1 tamil dubbed movie download


          Download ☆☆☆ https://gohhs.com/2uPq5R



          -

          In this article, we will review Cars 1 Tamil dubbed movie download in terms of its story, characters, animation, music, reception, and legacy. We will also show you how to download Cars 1 Tamil dubbed movie from some websites that offer it online. However, we do not recommend or endorse downloading movies illegally, as it may have serious consequences for you and your device. We suggest watching Cars 1 legally on Disney+ Hotstar or other streaming platforms.

          -

          The Story of Cars 1

          -

          The story of Cars 1 revolves around Lightning McQueen (voice of Owen Wilson), a young and arrogant race car who dreams of winning the prestigious Piston Cup championship. He is one of the three finalists for the title, along with veteran racer Strip "The King" Weathers (voice of Richard Petty) and ruthless rival Chick Hicks (voice of Michael Keaton).

          -

          On his way to California for the final race, Lightning gets separated from his truck driver Mack (voice of John Ratzenberger) and ends up in Radiator Springs, a forgotten town on Route 66 that has been bypassed by the interstate highway. There he meets

          a colorful cast of characters, such as:

          -
            -
          • Tow Mater (voice of Larry the Cable Guy), a friendly and loyal tow truck who becomes Lightning's best friend.
          • -
          • Sally Carrera (voice of Bonnie Hunt), a beautiful and smart Porsche who runs the Cozy Cone Motel and develops a romantic interest in Lightning.
          • -
          • Doc Hudson (voice of Paul Newman), a grumpy and mysterious Hudson Hornet who is the town's judge and doctor, and also Lightning's mentor.
          • -
          • Ramone (voice of Cheech Marin), a lowrider who owns a body shop and loves to paint cars.
          • -
          • Flo (voice of Jenifer Lewis), a sassy and sweet 1950s show car who runs a gas station and is Ramone's wife.
          • -
          • Luigi (voice of Tony Shalhoub), a cheerful and passionate Italian Fiat 500 who owns a tire shop and is a fan of Ferrari racing.
          • -
          • Guido (voice of Guido Quaroni), Luigi's silent and loyal assistant who can change tires in seconds.
          • -
          • Sheriff (voice of Michael Wallis), a stern and strict 1949 Mercury police car who enforces the law in Radiator Springs.
          • -
          • Filmore (voice of George Carlin), a hippie and organic fuel enthusiast who drives a 1960 Volkswagen Bus.
          • -
          • Sarge (voice of Paul Dooley), a patriotic and strict 1942 Willys Jeep who runs a surplus store and is Filmore's neighbor.
          • -
          • Lizzie (voice of Katherine Helmond), an eccentric and forgetful 1923 Ford Model T who is the oldest resident of Radiator Springs.
          • -
          • Red (voice of Joe Ranft), a shy and emotional 1960s fire truck who waters the flowers in the town.
          • -
          -

          Lightning initially wants to leave the town as soon as possible, but he is forced to stay and fix the road he damaged when he arrived. As he spends more time with the townsfolk, he begins to appreciate their hospitality, humor, and history. He also discovers that Doc Hudson was once a famous racer known as the Fabulous Hudson Hornet, who won three Piston Cups before he was injured in a crash and forgotten by the racing world.

          -

          Lightning eventually bonds with Doc and learns some racing techniques from him. He also develops feelings for Sally and realizes that there is more to life than racing and fame. However, he is soon discovered by the media and taken away to California for the final race. He feels conflicted about leaving his new friends behind, but he decides to go ahead with his dream of winning the Piston Cup.

          -

          Cars 2006 Tamil Dubbed Part 1 Free Download
          -Cars Animation English 2006U Disney+ Hotstar
          -Cars Dub Collection Multilanguage Audio Movie
          -Cars Tamil Dubbed Movie Watch Online
          -Cars Full Movie in Tamil Download HD
          -Cars 2006 Tamil Dubbed Movie Download Isaimini
          -Cars Tamil Dubbed Movie Download Tamilyogi
          -Cars Tamil Dubbed Movie Download Kuttymovies
          -Cars Tamil Dubbed Movie Download Tamilrockers
          -Cars Tamil Dubbed Movie Download Telegram
          -Cars 1 Tamil Dubbed Movie Free Download
          -Cars 1 Tamil Dubbed Movie Online Streaming
          -Cars 1 Tamil Dubbed Movie Torrent Download
          -Cars 1 Tamil Dubbed Movie Review and Rating
          -Cars 1 Tamil Dubbed Movie Cast and Crew
          -Cars 1 Tamil Dubbed Movie Songs and BGM
          -Cars 1 Tamil Dubbed Movie Trailer and Teaser
          -Cars 1 Tamil Dubbed Movie Subtitles Download
          -Cars 1 Tamil Dubbed Movie Scenes and Clips
          -Cars 1 Tamil Dubbed Movie Memes and Quotes
          -Cars 2 Tamil Dubbed Movie Download HD
          -Cars 2 Tamil Dubbed Movie Watch Online
          -Cars 2 Tamil Dubbed Movie Download Isaimini
          -Cars 2 Tamil Dubbed Movie Download Tamilyogi
          -Cars 2 Tamil Dubbed Movie Download Kuttymovies
          -Cars 2 Tamil Dubbed Movie Download Tamilrockers
          -Cars 2 Tamil Dubbed Movie Download Telegram
          -Cars 2 Tamil Dubbed Movie Free Download
          -Cars 2 Tamil Dubbed Movie Online Streaming
          -Cars 2 Tamil Dubbed Movie Torrent Download
          -Cars 2 Tamil Dubbed Movie Review and Rating
          -Cars 2 Tamil Dubbed Movie Cast and Crew
          -Cars 2 Tamil Dubbed Movie Songs and BGM
          -Cars 2 Tamil Dubbed Movie Trailer and Teaser
          -Cars 2 Tamil Dubbed Movie Subtitles Download
          -Cars 2 Tamil Dubbed Movie Scenes and Clips
          -Cars 2 Tamil Dubbed Movie Memes and Quotes
          -Cars 3 Tamil Dubbed Movie Download HD
          -Cars 3 Tamil Dubbed Movie Watch Online
          -Cars 3 Tamil Dubbed Movie Download Isaimini
          -Cars 3 Tamil Dubbed Movie Download Tamilyogi
          -Cars 3 Tamil Dubbed Movie Download Kuttymovies
          -Cars 3 Tamil Dubbed Movie Download Tamilrockers
          -Cars 3 Tamil Dubbed Movie Download Telegram
          -Cars 3 Tamil Dubbed Movie Free Download
          -Cars 3 Tamil Dubbed Movie Online Streaming
          -Cars 3 Tamil Dubbed Movie Torrent Download
          -Cars 3 Tamil Dubbed Movie Review and Rating
          -Cars 3 Tamil Dubbed Movie Cast and Crew

          -

          In the final race, Lightning is faced with his rivals, Chick Hicks and The King. He is also surprised to see that Doc Hudson has come to support him as his crew chief, along with Mater, Sally, and the rest of the Radiator Springs gang. Lightning races with confidence and skill, but he is sabotaged by Chick Hicks, who causes The King to crash near the finish line. Lightning stops before crossing the finish line and goes back to help The King finish his last race with dignity, sacrificing his own chance of winning. He earns the respect and admiration of everyone, including The King, his wife Dinoco Tex (voice of H.A. Wheeler), and his fans. He also rejects an offer from Dinoco, a lucrative sponsor, to stay loyal to his current sponsor Rust-eze, a humble company that gave him his first chance.

          -

          Lightning returns to Radiator Springs with his trophy and decides to set up his racing headquarters there. He also reunites with Sally and becomes her boyfriend. He helps revitalize the town by attracting tourists and media attention. He also enjoys spending time with his friends and racing with Doc on the dirt track. He realizes that he has found his true home and family in Radiator Springs.

          -

          The Characters of Cars 1

          -

          The characters of Cars 1 are one of the main attractions of the movie. They are all based on real-life car models, but they have distinct personalities, voices, and expressions that make them memorable and relatable. They also have some interesting trivia and references that add to their charm. Here are some examples:

          -
            -
          • Lightning McQueen is named after Glenn McQueen, a Pixar animator who died in 2002. His design is inspired by several sports cars, such as the Chevrolet Corvette C6, the Mazda Miata, and the Dodge Viper. His number 95 is a reference to the year 1995, when Pixar released its first movie Toy Story.
          • -
          • Tow Mater is named after Douglas "Mater" Keever, a real-life NASCAR fan who met John Lasseter at a race. His design is based on a 1951 International Harvester L-170 "boom" truck with elements from a 1957 Chevrolet. His license plate reads A113, a recurring Easter egg in Pixar movies that refers to a classroom at the California Institute of the Arts.
          • -
          • Sally Carrera is a 2002 Porsche 911 Carrera who has a tattoo of the Route 66 logo on her back. She is modeled after the real-life car of John Lasseter's wife, Nancy. Her license plate reads 301PCE, which can be read as "California" or "Carrera".
          • -
          • Doc Hudson is a 1951 Hudson Hornet who was a famous racer in the 1950s. He is voiced by Paul Newman, who was also a racing enthusiast and driver. His license plate reads 51HHMD, which stands for "51 Hudson Hornet, M.D." (medical doctor).
          • -
          • Ramone is a 1959 Chevrolet Impala lowrider who changes his paint color frequently. He is voiced by Cheech Marin, who is known for his comedy duo with Tommy Chong and his role as a hyena in The Lion King. His license plate reads LOWNSLO, which means "low and slow".
          • -
          • Flo is a 1957 Motorama show car who was once a famous singer. She is voiced by Jenifer Lewis, who is also a singer and actress. Her license plate reads SHOGRL, which means "show girl".
          • -
          • Luigi is a 1959 Fiat 500 who loves Ferrari racing and Italian culture. He is voiced by Tony Shalhoub, who is known for his role as Monk in the TV series of the same name. His license plate reads 445-108, which is the latitude and longitude of the Ferrari headquarters in Maranello, Italy.
          • -
          • Guido is a custom forklift who can change tires very fast. He is voiced by Guido Quaroni, a Pixar technical director who was born in Italy. He only speaks in Italian, except for one word: "Pit stop".
          • -
          • Sheriff is a 1949 Mercury police car who is based on a character from the TV series The Andy Griffith Show. He is voiced by Michael Wallis, a Route 66 historian and author.
          • -
          • Filmore is a 1960 Volkswagen Bus who is a hippie and an organic fuel advocate. He is voiced by George Carlin, who was a comedian and social critic. His license plate reads 51237, which is Carlin's birthday (May 12, 1937).
          • -
          • Sarge is a 1942 Willys Jeep who is a military veteran and a patriot. He is voiced by Paul Dooley, who is an actor and writer. His license plate reads USMC41, which means "United States Marine Corps, 1941".
          • -
          • Lizzie is a 1923 Ford Model T who is the widow of Stanley, the founder of Radiator Springs. She is voiced by Katherine Helmond, who was an actress and director. Her license plate reads MT23, which means "Model T, 1923".
          • -
          • Red is a 1960s fire truck who is very shy and emotional. He is voiced by Joe Ranft, who was a Pixar animator and story artist who died in a car accident in 2005.
          • -
          -

          There are also some cameo appearances by famous car personalities and celebrities in Cars 1, such as:

          -
            -
          • Jay Limo (voice of Jay Leno), a talk show host and car collector who drives a 1999 Lincoln Town Car stretch limousine.
          • -
          • Mario Andretti (voice of himself), a legendary racing driver who drives a 1967 Ford Fairlane.
          • -
          • Michael Schumacher (voice of himself), a Formula One champion who drives a Ferrari F430.
          • -
          • Dale Earnhardt Jr. (voice of himself), a NASCAR driver who drives a Chevrolet Monte Carlo.
          • -
          • Bob Costas (voice of himself), a sportscaster who voices Bob Cutlass, an announcer for the Piston Cup.
          • -
          • Darrell Waltrip (voice of himself), a NASCAR driver and commentator who voices Darrell Cartrip, another announcer for the Piston Cup.
          • -
          -

          The Animation and Visuals of Cars 1

          The animation and visuals of Cars 1 are one of the main reasons why the movie is so popular and acclaimed. The movie was created by Pixar Animation Studios, which is known for its high-quality and innovative computer animation. The movie took four years to make, and involved a team of more than 250 artists, animators, technicians, and engineers.

          -

          The movie features stunning animation and visuals that bring the world of cars to life. The cars have expressive eyes, mouths, and movements that make them seem like real characters. The cars also have realistic details, such as reflections, scratches, dirt, and rust. The movie also uses advanced techniques, such as ray tracing, global illumination, and ambient occlusion, to create realistic lighting and shadows.

          -

          The movie also pays attention to the details and references that make the movie realistic and immersive. For example, the movie features many car-related puns and jokes, such as:

          -
            -
          • The name of the town Radiator Springs is a play on the words "radiator" and "spring", which are both parts of a car.
          • -
          • The name of the Piston Cup is a play on the words "piston" and "cup", which are both parts of a car engine.
          • -
          • The name of the sponsor Dinoco is a reference to the gas station from Toy Story, another Pixar movie.
          • -
          • The name of the sponsor Rust-eze is a reference to the product Rust-Oleum, which is used to prevent rust on metal surfaces.
          • -
          • The name of the character Fillmore is a reference to the Fillmore Auditorium, a famous music venue in San Francisco.
          • -
          • The name of the character Sarge is a reference to the military rank of sergeant.
          • -
          • The name of the character Lizzie is a reference to the nickname "Tin Lizzie", which was given to the Ford Model T.
          • -
          -

          The movie also features many real-life locations and landmarks that inspired the movie's settings. For example:

          -
            -
          • The town of Radiator Springs is based on several towns along Route 66, such as Peach Springs, Seligman, Kingman, and Oatman in Arizona.
          • -
          • The Cozy Cone Motel is based on the Wigwam Motel in Holbrook, Arizona, which has rooms shaped like teepees.
          • -
          • The Wheel Well Motel is based on the Hackberry General Store in Hackberry, Arizona, which has a vintage car on its roof.
          • -
          • The Cadillac Range is based on the Cadillac Ranch in Amarillo, Texas, which has old Cadillacs buried nose-down in the ground.
          • -
          • The Ornament Valley is based on the Monument Valley in Utah and Arizona, which has iconic rock formations.
          • -
          -

          The Music and Soundtrack of Cars 1

          The music and soundtrack of Cars 1 are another aspect that makes the movie enjoyable and memorable. The music and soundtrack of the movie are composed by Randy Newman, who is a famous singer-songwriter and film composer. He has worked on many Pixar movies, such as Toy Story, A Bug's Life, Monsters, Inc., and Finding Nemo.

          -

          The music and soundtrack of the movie match the mood and tone of the movie and enhance its emotional impact. The music and soundtrack of the movie feature a variety of genres and styles, such as rock, country, blues, jazz, and pop. The music and soundtrack of the movie also reflect the different settings and cultures of the movie, such as the urban and modern California, the rural and nostalgic Route 66, and the diverse and colorful Radiator Springs.

          -

          The music and soundtrack of the movie include some original songs written by Randy Newman, as well as some songs performed by various artists. Some of the memorable songs and tracks from the movie are:

          -
            -
          • "Real Gone" by Sheryl Crow, which is the opening song that plays during the first race.
          • -
          • "Route 66" by Chuck Berry, which is a classic song that plays when Lightning is traveling on Route 66.
          • -
          • "Life is a Highway" by Rascal Flatts, which is a cover of a song by Tom Cochrane that plays when Lightning is enjoying his time in Radiator Springs.
          • -
          • "Our Town" by James Taylor, which is a sad song that plays when Lightning learns about the history of Radiator Springs.
          • -
          • "Sh-Boom" by The Chords, which is a doo-wop song that plays when Lightning and Sally go on a date.
          • -
          • "Find Yourself" by Brad Paisley, which is a country song that plays when Lightning decides to help The King finish his race.
          • -
          -

          The Reception and Legacy of Cars 1

          The reception and legacy of Cars 1 are another testament to the movie's quality and popularity. The movie received mostly positive reviews from critics and audiences, who praised its animation, humor, characters, and message. The movie also performed well at the box office, earning over $462 million worldwide. The movie also won several awards and nominations, such as:

          -
            -
          • The Golden Globe Award for Best Animated Feature Film.
          • -
          • The Academy Award nomination for Best Animated Feature Film.
          • -
          • The BAFTA Award nomination for Best Animated Film.
          • -
          • The Annie Award for Best Animated Feature.
          • -
          -

          However, the movie also received some negative reviews from critics and audiences, who criticized its story, pacing, and originality. Some critics also compared the movie unfavorably to other Pixar movies, such as Toy Story, Finding Nemo, and The Incredibles. Some critics also argued that the movie was too commercialized and aimed at selling merchandise.

          -

          Despite the mixed reception, the movie has influenced popular culture and spawned a media franchise. The movie has inspired several sequels, spin-offs, video games, books, comics, toys, and theme park attractions. The movie has also created a fan base and a subculture of car enthusiasts who appreciate the movie's details and references. The movie has also been dubbed in many languages, including Tamil, which is spoken by millions of people in India and other countries.

          -

          How to Download Cars 1 Tamil Dubbed Movie

          -

          If you are interested in watching Cars 1 Tamil dubbed movie download, you might be wondering how to download it from the internet. However, before we show you how to do that, we want to make a disclaimer that downloading movies illegally is not recommended or endorsed by Bing or this article. Downloading movies illegally may violate the intellectual property rights of the creators and distributors of the movie. It may also expose you and your device to viruses, malware, legal issues, and other risks. We suggest watching Cars 1 legally on Disney+ Hotstar or other streaming platforms.

          -

          However, if you still want to download Cars 1 Tamil dubbed movie from some websites that offer it online, here are some steps that you can follow:

          -
            -
          1. Go to one of the websites that offer Cars 1 Tamil dubbed movie download, such as , , or . These websites may have different names and domains, but they usually have similar layouts and features.
          2. -
          3. Search for Cars 1 Tamil dubbed movie download on the website's search bar or browse through its categories and genres.
          4. -
          5. Select the movie from the list of results and click on it.
          6. -
          7. Choose the quality and format of the movie that you want to download, such as HD, MP4, MKV, etc.
          8. -
          9. Click on the download button or link that appears on the screen.
          10. -
          11. Wait for the download to start and finish. Depending on your internet speed and the size of the file, this may take a few minutes or hours.
          12. -
          13. Enjoy watching Cars 1 Tamil dubbed movie download on your device.
          14. -
          -

          However, be careful when downloading movies from unverified sources, as they may contain viruses, malware, pop-ups, ads, or other unwanted content that may harm your device or compromise your privacy. You may also encounter legal issues if you are caught downloading movies illegally. Therefore, we advise you to use a VPN (virtual private network) service to protect your identity and location when downloading movies online. You may also want to scan your device with an antivirus software after downloading movies online.

          -

          Conclusion

          -

          In conclusion, Cars 1 Tamil dubbed movie download is a great option for anyone who wants to watch a fun, family-friendly, and heartwarming movie in Tamil. Cars 1 is a 2006 animated film produced by Pixar Animation Studios for Walt Disney Pictures. It tells the story of a hotshot rookie race car named Lightning McQueen who gets stranded in a small town on Route 66 and learns some valuable lessons about life, love, and friendship. The movie features a captivating story, charming characters, stunning animation, catchy music, and a positive message. The movie also has a Tamil dubbed version that allows Tamil speakers to enjoy the movie in their own language. The movie can be downloaded from some websites that offer it online, but we do not recommend or endorse doing so, as it may have serious consequences for you and your device. We suggest watching the movie legally on Disney+ Hotstar or other streaming platforms.

          -

          We hope you enjoyed this article and learned something new about Cars 1 Tamil dubbed movie download. If you have any questions, comments, or feedback, please feel free to share them with us. We would love to hear from you and improve our service. Thank you for reading and have a great day!

          -

          FAQs

          -

          Here are some frequently asked questions about Cars 1 Tamil dubbed movie download:

          -
            -
          1. Q: When was Cars 1 released?
          2. -
          3. A: Cars 1 was released on June 9, 2006 in the United States and on July 14, 2006 in India.
          4. -
          5. Q: Who directed Cars 1?
          6. -
          7. A: Cars 1 was directed by John Lasseter, who is the chief creative officer of Pixar Animation Studios and Walt Disney Animation Studios. He also co-directed Toy Story, A Bug's Life, Toy Story 2, and Cars 2.
          8. -
          9. Q: How many sequels and spin-offs does Cars 1 have?
          10. -
          11. A: Cars 1 has two sequels, Cars 2 (2011) and Cars 3 (2017), and two spin-offs, Planes (2013) and Planes: Fire & Rescue (2014).
          12. -
          13. Q: What is the runtime of Cars 1?
          14. -
          15. A: Cars 1 has a runtime of 116 minutes (1 hour and 56 minutes).
          16. -
          17. Q: What is the rating of Cars 1?
          18. -
          19. A: Cars 1 has a rating of G (General Audiences) in the United States and U (Universal) in India.
          20. -

          401be4b1e0
          -
          -
          \ No newline at end of file diff --git a/spaces/feregVcuzo/sanity-test-midi/checkpoint/Create Your Own World with Craftsman Building Craft for iPhone.md b/spaces/feregVcuzo/sanity-test-midi/checkpoint/Create Your Own World with Craftsman Building Craft for iPhone.md deleted file mode 100644 index 561b883bc60fc4e54f3c59f19478bba88eea01af..0000000000000000000000000000000000000000 --- a/spaces/feregVcuzo/sanity-test-midi/checkpoint/Create Your Own World with Craftsman Building Craft for iPhone.md +++ /dev/null @@ -1,134 +0,0 @@ -
          -

          Craftsman Building Craft APK for iPhone: A Guide for Gamers

          -

          If you are a fan of crafting, building, and exploring games, you might have heard of craftsman building craft, a popular game that lets you create your own world with blocks. Craftsman building craft is a simulation game that offers stunning graphics, realistic sound, and many game modes. You can design houses, castles, and other structures, either alone or with your friends. You can also explore different biomes, fight enemies, and loot for materials. Craftsman building craft is very much like the real world, but with more possibilities and fun.

          -

          However, if you are an iPhone user, you might be wondering how to download and install craftsman building craft apk for your device. Craftsman building craft is not available on the App Store, so you need to use an alternative method to get it. In this article, we will show you how to do that, as well as introduce you to the features of craftsman building craft game and how to play it. We will also give you some tips and tricks for new players in craftsman building craft game, and suggest some alternatives for craftsman building craft game for iPhone users.

          -

          craftsman building craft apk para iphone


          Download Ziphttps://gohhs.com/2uPscv



          -

          How to Download and Install Craftsman Building Craft APK for iPhone

          -

          To download and install craftsman building craft apk for iPhone, you need to use a third-party app installer called Panda Helper. Panda Helper is a free app store that allows you to download and install apps and games that are not available on the official App Store. Panda Helper also provides tweaked apps, hacked games, and paid apps for free. Here are the steps to download and install craftsman building craft apk for iPhone using Panda Helper:

          -
            -
          1. Open Safari browser on your iPhone and go to [Panda Helper's official website](^1^).
          2. -
          3. Tap on the "Download Free Version" button and follow the instructions to install Panda Helper on your device.
          4. -
          5. Go to Settings > General > Profiles & Device Management and trust the profile of Panda Helper.
          6. -
          7. Launch Panda Helper from your home screen and search for "craftsman building craft" in the search bar.
          8. -
          9. Tap on the "Get" button next to the app icon and wait for the download to finish.
          10. -
          11. Go back to your home screen and tap on the craftsman building craft icon to launch the game.
          12. -
          -

          Congratulations! You have successfully downloaded and installed craftsman building craft apk for iPhone. Now you can enjoy crafting and building your own world with blocks.

          -

          Features of Craftsman Building Craft Game and How to Play It

          -

          Craftsman building craft game is a simulation game that offers many features and options for gamers. Here are some of the main features of craftsman building craft game:

          -
            -
          • Stunning graphics and realistic sound: Craftsman building craft game has high-quality graphics that make the game world look vivid and beautiful. The game also has realistic sound effects that enhance the immersion and atmosphere of the game.
          • -
          • Simple, easy to play: Craftsman building craft game has simple controls that make it easy to play. You can use the joystick on the left side of the screen to move around, and the buttons on the right side of the screen to jump, fly, attack, or interact with objects. You can also tap on the inventory icon on the top right corner of the screen to access your items and tools.
          • -
          • Many game modes: Craftsman building craft game has many game modes that suit different preferences and styles of play. You can choose from creative mode, survival mode, adventure mode, or multiplayer mode. In creative mode, you have unlimited resources and can build anything you want without any restrictions. In survival mode, you have limited resources and need to gather materials, craft tools, fight enemies, and survive. In adventure mode, you can explore different maps with different challenges and quests. In multiplayer mode, you can join or create a server with other players online and cooperate or compete with them.
          • -
          • Customizable world: Craftsman building craft game allows you to customize your world with different blocks, items, and decorations. You can choose from different biomes, such as forest, desert, snow, or ocean. You can also change the time of day, the weather, and the difficulty level. You can create your own maps and share them with other players online.
          • -
          -

          To play craftsman building craft game, you need to follow these steps:

          -
            -
          1. Select a game mode from the main menu.
          2. -
          3. Choose a map or create a new one.
          4. -
          5. Start building or exploring your world with blocks.
          6. -
          7. Use your inventory to access your items and tools.
          8. -
          9. Craft new items and tools with the crafting table.
          10. -
          11. Fight enemies or interact with friendly animals.
          12. -
          13. Save your progress and exit the game.
          14. -
          -

          Craftsman building craft game is a fun and creative game that will keep you entertained for hours. You can unleash your imagination and create your own world with blocks.

          -

          Tips and Tricks for New Players in Craftsman Building Craft Game

          -

          If you are new to craftsman building craft game, you might need some tips and tricks to help you get started and improve your skills. Here are some of the best tips and tricks for new players in craftsman building craft game:

          -
            -
          • Learn the basics: Before you jump into the game, you should learn the basics of the game, such as how to move, how to use your inventory, how to craft, how to fight, and how to change settings. You can find tutorials and guides on the internet or watch videos of other players online.
          • -
          • Plan ahead: Before you start building or exploring, you should have a plan of what you want to do and how you want to do it. You should also gather enough resources and tools for your project. This will save you time and frustration later on.
          • -
          • Be creative: Craftsman building craft game is all about creativity and expression. You can build anything you want with blocks, from simple houses to complex castles. You can also decorate your world with different items and colors. Don't be afraid to experiment and try new things.
          • -
          • Be careful: Craftsman building craft game is not without dangers and challenges. You might encounter enemies, such as zombies, spiders, or skeletons, that will try to attack you. You might also fall into lava, drown in water, or starve to death. You should always be prepared and cautious when playing the game.
          • -
          • Have fun: The most important tip for new players in craftsman building craft game is to have fun. Craftsman building craft game is a game that allows you to enjoy yourself and have a good time. You can play solo or with your friends online. You can also join or create servers with other players online and chat with them. Craftsman building craft game is a game that will make you happy and relaxed.
          • -
          -

          Alternatives for Craftsman Building Craft Game for iPhone Users

          -

          If you are looking for alternatives for craftsman building craft game for iPhone users, you might want to check out these games that are similar to craftsman building craft game in terms of gameplay, graphics, and features:

          - - - - - - - -
          NameDescription
          MinecraftMinecraft is the most popular crafting and building game in the world. It is also the inspiration for craftsman building craft game. Minecraft allows you to create your own world with blocks, explore different biomes, fight enemies, and play with other players online. Minecraft has many modes, such as survival mode, creative mode, adventure mode, hardcore mode, and spectator mode. Minecraft also has many mods, maps, skins, and servers that enhance the game experience.
          TerrariaTerraria is a 2D sandbox game that combines crafting, building, exploration, and combat. Terraria has a pixelated retro style that gives it a unique charm. Terraria allows you to dig, build, fight, and explore in a randomly generated world with different biomes, such as forest, desert, jungle, underworld, and more. Terraria has hundreds of items, weapons, armor, accessories, enemies, bosses, and more. Terraria also has multiplayer mode, where you can play with up to 8 players online or on the same device.
          RobloxRoblox is a massively multiplayer online game that allows you to create and play games with other players online. Roblox has a huge variety of games, from role-playing games, to racing games, to shooting games, and more. Roblox also has a powerful game engine that lets you design your own games with blocks, scripts, and graphics. Roblox also has a social aspect, where you can chat, make friends, and join groups with other players online.
          Block Craft 3DBlock Craft 3D is a free crafting and building game that lets you create your own city with blocks. Block Craft 3D has a colorful and cartoonish style that makes it appealing to kids and adults alike. Block Craft 3D allows you to build houses, skyscrapers, bridges, parks, and more. You can also visit other players' cities and rate them. Block Craft 3D also has animals, vehicles, and mini-games that add more fun to the game.
          WorldCraftWorldCraft is a crafting and building game that lets you explore and survive in a 3D world with blocks. WorldCraft has two modes: creative mode and survival mode. In creative mode, you have unlimited resources and can build anything you want. In survival mode, you have to gather resources, craft tools, fight enemies, and stay alive. WorldCraft also has multiplayer mode, where you can play with other players online or on the same Wi-Fi network.
          -

          Conclusion: Summary of the Main Points and Recommendations

          -

          Craftsman building craft is a simulation game that lets you create your own world with blocks. It is a popular game among gamers who love crafting, building, and exploring games. However, craftsman building craft is not available on the App Store for iPhone users, so you need to use a third-party app installer called Panda Helper to download and install craftsman building craft apk for iPhone. Craftsman building craft game has many features and options for gamers, such as stunning graphics, realistic sound, many game modes, and customizable world. To play craftsman building craft game, you need to select a game mode, choose or create a map, start building or exploring your world with blocks, use your inventory to access your items and tools, craft new items and tools with the crafting table, fight enemies or interact with friendly animals, save your progress and exit the game. If you are new to craftsman building craft game, you might need some tips and tricks to help you get started and improve your skills, such as learning the basics, planning ahead, being creative, being careful, and having fun. If you are looking for alternatives for craftsman building craft game for iPhone users, you might want to check out these games that are similar to craftsman building craft game in terms of gameplay, graphics, and features: Minecraft, Terraria, Roblox, Block Craft 3D, and WorldCraft.

          -

          craftsman building craft apk download for iphone
          -how to install craftsman building craft apk on ios
          -craftsman building craft game free for iphone
          -craftsman building craft apk ios no jailbreak
          -craftsman building craft mod apk for iphone
          -craftsman building craft apk latest version for ios
          -craftsman building craft app store iphone
          -craftsman building craft apk para iphone gratis
          -craftsman building craft apk para iphone 6
          -craftsman building craft apk para iphone 7
          -craftsman building craft apk para iphone 8
          -craftsman building craft apk para iphone x
          -craftsman building craft apk para iphone 11
          -craftsman building craft apk para iphone 12
          -craftsman building craft apk para iphone se
          -craftsman building craft apk para iphone xr
          -craftsman building craft apk para iphone xs
          -craftsman building craft apk para iphone xs max
          -craftsman building craft apk para iphone 13
          -craftsman building craft apk para iphone mini
          -craftsman building craft apk para iphone pro
          -craftsman building craft apk para iphone pro max
          -craftsman building craft apk para ipad
          -craftsman building craft apk para ipod touch
          -craftsman building craft apk compatible with ios
          -craftsman building craft ios gameplay
          -craftsman building craft ios review
          -craftsman building craft ios tips and tricks
          -craftsman building craft ios cheats and hacks
          -craftsman building craft ios update
          -craftsman building craft ios multiplayer
          -craftsman building craft ios online
          -craftsman building craft ios offline
          -craftsman building craft ios sandbox mode
          -craftsman building craft ios creative mode
          -craftsman building craft ios survival mode
          -craftsman building craft ios adventure mode
          -craftsman building craft ios skins and textures
          -craftsman building craft ios maps and worlds
          -craftsman building craft ios mods and addons
          -best alternatives to craftsman building craft for ios
          -how to play craftsman building craft on pc with ios emulator
          -how to transfer craftsman building craft data from android to ios
          -how to fix craftsman building craft not working on ios
          -how to get free coins and gems in craftsman building craft ios
          -how to unlock all items in craftsman building craft ios
          -how to customize your character in craftsman building craft ios
          -how to build amazing structures in craftsman building craft ios
          -how to explore different biomes in craftsman building craft ios

          -

          We hope this article has helped you learn more about craftsman building craft game and how to download and install craftsman building craft apk for iPhone. Craftsman building craft game is a fun and creative game that will keep you entertained for hours. You can unleash your imagination and create your own world with blocks. You can also play with your friends online and share your creations with other players online. Craftsman building craft game is a game that will make you happy and relaxed.

          -

          FAQs: Five Common Questions and Answers About Craftsman Building Craft Game

          -

          Here are some of the most common questions and answers about craftsman building craft game:

          -
            -
          1. Is craftsman building craft game free?
          2. -

            Yes, craftsman building craft game is free to download and play. However, it may contain ads or in-app purchases that require real money.

            -
          3. Is craftsman building craft game safe?
          4. -

            Yes, craftsman building craft game is safe to play. However, since it is not available on the official App Store for iPhone users, you need to use a third-party app installer called Panda Helper to download and install craftsman building craft apk for iPhone. Panda Helper is a free app store that allows you to download and install apps and games that are not available on the official App Store. Panda Helper also provides tweaked apps, hacked games, and paid apps for free. However, you should be careful when using Panda Helper, as it may contain some risks, such as malware, viruses, or data breaches. You should always check the reviews and ratings of the apps and games before downloading them. You should also use a VPN or antivirus software to protect your device and data.

            -
          5. Is craftsman building craft game online or offline?
          6. -

            Craftsman building craft game can be played both online and offline. You can play the game offline without an internet connection, but you will not be able to access some features, such as multiplayer mode, online servers, or online maps. You can play the game online with an internet connection, but you will need to create or join a server with other players online. You can also chat, make friends, and join groups with other players online.

            -
          7. How to update craftsman building craft game?
          8. -

            To update craftsman building craft game, you need to use Panda Helper again. You can follow these steps to update craftsman building craft game:

            -
              -
            1. Open Panda Helper from your home screen and search for "craftsman building craft" in the search bar.
            2. -
            3. Tap on the "Update" button next to the app icon and wait for the download to finish.
            4. -
            5. Go back to your home screen and tap on the craftsman building craft icon to launch the game.
            6. -
            -

            Note: You may need to delete the old version of the game before installing the new version.

            -
          9. How to uninstall craftsman building craft game?
          10. -

            To uninstall craftsman building craft game, you can follow these steps:

            -
              -
            1. Go to Settings > General > iPhone Storage and find craftsman building craft game in the list of apps.
            2. -
            3. Tap on the app icon and then tap on "Delete App".
            4. -
            5. Confirm your action by tapping on "Delete App" again.
            6. -
            -

            Note: You may also need to delete Panda Helper if you don't want to use it anymore.

            -

          197e85843d
          -
          -
          \ No newline at end of file diff --git a/spaces/feregVcuzo/sanity-test-midi/checkpoint/Download Payback 2 APK and Join the Online Multiplayer Battles.md b/spaces/feregVcuzo/sanity-test-midi/checkpoint/Download Payback 2 APK and Join the Online Multiplayer Battles.md deleted file mode 100644 index caec7563539a3cf235b14e93c7fef82f8491bc4d..0000000000000000000000000000000000000000 --- a/spaces/feregVcuzo/sanity-test-midi/checkpoint/Download Payback 2 APK and Join the Online Multiplayer Battles.md +++ /dev/null @@ -1,116 +0,0 @@ -
          -

          Payback 2: The Battle Sandbox Game APK Download

          -

          If you are looking for a fun and chaotic open-world game that lets you do anything from tank battles to helicopter races to gang wars, then you should check out Payback 2: The Battle Sandbox. This game is inspired by the likes of GTA, Saints Row, and other similar sagas, but with its own unique twist and style. In this article, we will show you how to download and install Payback 2 APK on your Android device, how to play it on your PC with BlueStacks, and some tips and tricks to help you enjoy the game more. We will also review the game and give you some alternatives if you want to try something different.

          -

          What is Payback 2?

          -

          Payback 2 is an action-adventure game developed by Apex Designs Entertainment Ltd. It was released in 2015 for iOS and Android devices, and has since gained over 100 million downloads and positive reviews from critics and players alike. The game is a sequel to the original Payback game from the early days of the App Store, which was also a GTA-style game.

          -

          payback 2 the battle sandbox game apk download


          Download >>> https://gohhs.com/2uPttY



          -

          Payback 2 offers a variety of game modes, maps, weapons, vehicles, and customization options that make every gameplay experience different and exciting. You can choose from over 50 campaign events, join online multiplayer battles with millions of other players, create your own events in custom mode, or just roam around the city and cause mayhem. The game also features hourly, daily, and weekly challenges that test your skills and reward you with coins and trophies.

          -

          Features of Payback 2

          -

          Payback 2 has many features that make it stand out from other sandbox games. Here are some of them:

          -

          Varied campaign

          -

          The game has a varied campaign mode that features 50 events across different scenarios. You can participate in massive street brawls, rocket car races, tank battles, helicopter races, and more. Each event has its own objectives, rules, and rewards. You can earn stars by completing the events and unlock new levels.

          -

          Online multiplayer

          -

          The game also has an online multiplayer mode that lets you battle your friends or over a million other players around the world. You can join or create rooms with different game modes, maps, weapons, and vehicles. You can also chat with other players, join clans, and compete on the leaderboards.

          -

          Custom mode

          -

          If you want to create your own events, you can use the custom mode feature. This allows you to mix and match any combination of the game's seven cities, nine game modes, varied weaponry, and dozens of vehicles. You can also adjust the settings such as time limit, weather, traffic, cops, etc. You can save your custom events and share them with other players.

          -

          How to download and install Payback 2 APK on Android

          -

          If you want to play Payback 2 on your Android device, you can follow these simple steps to download and install the APK file:

          Step 1: Enable unknown sources

          -

          Before you can install the APK file, you need to enable the option to allow installation of apps from unknown sources on your device. To do this, go to Settings > Security > Unknown sources and toggle it on. This will let you install apps that are not from the Google Play Store.

          -

          payback 2 the battle sandbox game apk download for pc
          -payback 2 the battle sandbox game apk download latest version
          -payback 2 the battle sandbox game apk download mod
          -payback 2 the battle sandbox game apk download offline
          -payback 2 the battle sandbox game apk download free
          -payback 2 the battle sandbox game apk download android
          -payback 2 the battle sandbox game apk download uptodown
          -payback 2 the battle sandbox game apk download hack
          -payback 2 the battle sandbox game apk download unlimited money
          -payback 2 the battle sandbox game apk download full
          -payback 2 the battle sandbox game apk download bluestacks
          -payback 2 the battle sandbox game apk download windows 10
          -payback 2 the battle sandbox game apk download google play
          -payback 2 the battle sandbox game apk download no ads
          -payback 2 the battle sandbox game apk download new update
          -payback 2 the battle sandbox game apk download online
          -payback 2 the battle sandbox game apk download ios
          -payback 2 the battle sandbox game apk download mac
          -payback 2 the battle sandbox game apk download laptop
          -payback 2 the battle sandbox game apk download rexdl
          -payback 2 the battle sandbox game apk download revdl
          -payback 2 the battle sandbox game apk download apkpure
          -payback 2 the battle sandbox game apk download highly compressed
          -payback 2 the battle sandbox game apk download obb
          -payback 2 the battle sandbox game apk download data
          -payback 2 the battle sandbox game apk download mega
          -payback 2 the battle sandbox game apk download mediafire
          -payback 2 the battle sandbox game apk download zippyshare
          -payback 2 the battle sandbox game apk download mob.org
          -payback 2 the battle sandbox game apk download android oyun club
          -payback 2 the battle sandbox game apk download android republic
          -payback 2 the battle sandbox game apk download android games room
          -payback 2 the battle sandbox game apk download android games spot
          -payback 2 the battle sandbox game apk download android games hub
          -payback 2 the battle sandbox game apk download android games box
          -payback 2 the battle sandbox game apk download android games club
          -payback 2 the battle sandbox game apk download android games zone
          -payback 2 the battle sandbox game apk download android games store
          -payback 2 the battle sandbox game apk download android games portal

          -

          Step 2: Download the APK file

          -

          Next, you need to download the APK file of Payback 2 from a reliable source. You can use this link to download the latest version of the game (version 2.104.12 as of June 2023). The file size is about 97 MB, so make sure you have enough space on your device.

          -

          Step 3: Install the APK file

          -

          Once you have downloaded the APK file, you can install it by tapping on it and following the instructions on the screen. It may take a few minutes for the installation to complete. After that, you can launch the game and enjoy it.

          -

          How to play Payback 2 on PC with BlueStacks

          -

          If you want to play Payback 2 on your PC, you can use an Android emulator like BlueStacks. BlueStacks is a software that lets you run Android apps and games on your PC with ease. Here are the steps to play Payback 2 on PC with BlueStacks:

          -

          Step 1: Download and install BlueStacks on your PC

          -

          First, you need to download and install BlueStacks on your PC. You can use this link to download the latest version of BlueStacks (version 5.0.230.1001 as of June 2023). The file size is about 1 GB, so make sure you have enough space on your PC.

          -

          After downloading the file, run it and follow the instructions on the screen to install BlueStacks on your PC. It may take some time for the installation to finish. After that, you can launch BlueStacks and sign in with your Google account.

          -

          Step 2: Launch BlueStacks and sign in with Google account

          -

          After launching BlueStacks, you need to sign in with your Google account to access the Google Play Store and other Google services. To do this, click on the Google icon on the home screen and enter your email and password. If you don't have a Google account, you can create one for free.

          -

          Step 3: Search for Payback 2 in the Play Store and install it

          -

          Next, you need to search for Payback 2 in the Play Store and install it on your PC. To do this, click on the Play Store icon on the home screen and type "Payback 2" in the search bar. You will see the game icon with a green "Install" button. Click on it and wait for the download and installation to complete.

          -

          Alternatively, you can also use this link to directly open the game page in the Play Store and install it from there.

          -

          Once the game is installed, you can launch it from the home screen or the app drawer and start playing it.

          -

          Tips and tricks for Payback 2

          -

          Payback 2 is a fun and addictive game, but it can also be challenging at times. Here are some tips and tricks to help you master the game and have more fun:

          -

          Use different weapons and vehicles

          -

          The game offers a wide range of weapons and vehicles that you can use to wreak havoc or complete missions. You can find them scattered around the map or buy them from the shop with coins. You can also switch between them during gameplay by tapping on their icons on the screen.

          -

          Some of the weapons and vehicles include pistols, shotguns, rifles, grenades, rockets, tanks, cars, bikes, helicopters, jets, etc. Each weapon and vehicle has its own advantages and disadvantages, so experiment with them and find out what suits your style best.

          -

          Complete challenges and events

          -

          The game has many challenges and events that you can complete to earn coins, trophies, stars, and other rewards. You can find them in the campaign mode, online multiplayer mode, or custom mode. Some of them are time-limited, so make sure you don't miss them.

          -

          Some of the challenges and events include killing a certain number of enemies, winning a certain number of races, destroying a certain number of vehicles, etc. They vary in difficulty and reward level , so try to complete as many as you can and improve your skills and rank.

          -

          Customize your avatar and settings

          -

          The game also allows you to customize your avatar and settings to make the game more personalized and comfortable. You can change your avatar's appearance, clothing, accessories, etc. by buying them from the shop with coins. You can also change your settings such as sound, controls, graphics, etc. by tapping on the gear icon on the main menu.

          -

          Some of the customization options include hats, glasses, masks, shirts, pants, shoes, etc. You can also choose from different control schemes such as tilt, touch, or joystick. You can also adjust the sensitivity, camera angle, and other parameters to suit your preference.

          -

          Alternatives to Payback 2

          -

          If you like Payback 2, you might also like some of these alternatives that offer similar gameplay and features:

          -

          GTA series

          -

          The GTA series is one of the most popular and influential sandbox games of all time. It features a vast open world, a rich story, a variety of missions, activities, characters, weapons, vehicles, etc. You can explore the city, commit crimes, fight enemies, chase or evade the police, etc. The latest installment is GTA V, which was released in 2013 for consoles and 2015 for PC.

          -

          Mad Max

          -

          Mad Max is a post-apocalyptic action-adventure game based on the movie franchise of the same name. It features a desolate wasteland, a brutal combat system, a dynamic weather system, a car customization system, etc. You play as Max Rockatansky, a lone warrior who must survive in the harsh environment and fight against various factions and enemies.

          -

          Carmageddon

          -

          Carmageddon is a vehicular combat game that features violent and humorous gameplay. It features a variety of cars, weapons, power-ups, pedestrians, animals, etc. You can race against other drivers or just cause chaos and destruction in the city. The game has a dark and satirical tone and is not for the faint-hearted.

          -

          Review of Payback 2

          -

          Payback 2 is a fun and addictive game that offers a lot of content and replay value. It has a simple and intuitive gameplay that anyone can enjoy. It has a colorful and vibrant graphics that create a lively atmosphere. It has a smooth and responsive performance that runs well on most devices.

          -

          However, the game also has some drawbacks that may affect your experience. It has a repetitive and shallow campaign mode that lacks depth and variety. It has a limited and outdated online multiplayer mode that suffers from lag and glitches. It has a low-quality sound and music that are annoying and repetitive.

          -

          Pros and cons

          -

          Here is a summary of the pros and cons of Payback 2:

          - | Pros | Cons | | --- | --- | | Fun and chaotic gameplay | Repetitive and shallow campaign | | Variety of game modes, maps, weapons, vehicles | Limited and outdated online multiplayer | | Custom mode feature | Low-quality sound and music | | Customization options | Some bugs and crashes |

          User ratings and feedback

          -

          Payback 2 has received mostly positive ratings and feedback from users on the Google Play Store and the App Store. As of June 2023, it has an average rating of 4.3 out of 5 stars on both platforms. Here are some of the user reviews:

          - - "This game is awesome! I love the graphics and the gameplay. It's like GTA but better. There are so many things to do and so many weapons and vehicles to use. I recommend this game to anyone who likes sandbox games." - 5 stars - "This game is good but it needs some improvements. The campaign mode is boring and repetitive. The online mode is laggy and glitchy. The sound effects are annoying and loud. Please fix these issues and add more content." - 3 stars - "This game is terrible! It's nothing like GTA at all. It's just a cheap copy with bad graphics and controls. The game crashes all the time and drains my battery. Don't waste your time or money on this game." - 1 star

          Conclusion

          -

          Payback 2 is a sandbox game that lets you do anything from tank battles to helicopter races to gang wars. It has many features that make it stand out from other sandbox games such as varied campaign mode, online multiplayer mode, custom mode feature, customization options, etc. However, it also has some drawbacks that may affect your experience such as repetitive and shallow campaign mode, limited and outdated online multiplayer mode, low-quality sound and music, etc. Overall, Payback 2 is a fun and addictive game that offers a lot of content and replay value, but it also needs some improvements and updates to make it more enjoyable and satisfying. If you are looking for a sandbox game that lets you do anything from tank battles to helicopter races to gang wars, then you should give Payback 2 a try.

          -

          FAQs

          -

          Here are some of the frequently asked questions about Payback 2:

          -
            -
          • Is Payback 2 free to play?
          • -

            Yes, Payback 2 is free to play on both iOS and Android devices. However, it also contains in-app purchases that allow you to buy coins, gems, and other items with real money. You can also watch ads to earn some coins and gems for free.

            -
          • Is Payback 2 offline or online?
          • -

            Payback 2 can be played both offline and online. You can play the campaign mode, custom mode, or challenges without an internet connection. However, you need an internet connection to play the online multiplayer mode or access the shop and other features.

            -
          • How to get more coins and gems in Payback 2?
          • -

            There are several ways to get more coins and gems in Payback 2. You can earn them by completing events, challenges, and achievements. You can also watch ads or rate the game to get some free coins and gems. Alternatively, you can buy them with real money from the shop.

            -
          • How to update Payback 2?
          • -

            To update Payback 2, you need to go to the Google Play Store or the App Store and check if there is a new version available. If there is, you can tap on the "Update" button and wait for the download and installation to finish. You can also enable the auto-update option on your device settings to update the game automatically.

            -
          • How to contact the developer of Payback 2?
          • -

            If you have any questions, feedback, or issues about Payback 2, you can contact the developer of the game by emailing them at support@apex-designs.net. You can also visit their website at https://www.apex-designs.net/ or follow them on Facebook at https://www.facebook.com/apexdesignsuk/.

            -

          401be4b1e0
          -
          -
          \ No newline at end of file diff --git a/spaces/fffiloni/SplitTrack2MusicGen/tests/models/test_encodec_model.py b/spaces/fffiloni/SplitTrack2MusicGen/tests/models/test_encodec_model.py deleted file mode 100644 index 2f9c1db3f69a45f02451b71da95f44356811acbb..0000000000000000000000000000000000000000 --- a/spaces/fffiloni/SplitTrack2MusicGen/tests/models/test_encodec_model.py +++ /dev/null @@ -1,60 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -import random - -import numpy as np -import torch - -from audiocraft.models import EncodecModel -from audiocraft.modules import SEANetEncoder, SEANetDecoder -from audiocraft.quantization import DummyQuantizer - - -class TestEncodecModel: - - def _create_encodec_model(self, - sample_rate: int, - channels: int, - dim: int = 5, - n_filters: int = 3, - n_residual_layers: int = 1, - ratios: list = [5, 4, 3, 2], - **kwargs): - frame_rate = np.prod(ratios) - encoder = SEANetEncoder(channels=channels, dimension=dim, n_filters=n_filters, - n_residual_layers=n_residual_layers, ratios=ratios) - decoder = SEANetDecoder(channels=channels, dimension=dim, n_filters=n_filters, - n_residual_layers=n_residual_layers, ratios=ratios) - quantizer = DummyQuantizer() - model = EncodecModel(encoder, decoder, quantizer, frame_rate=frame_rate, - sample_rate=sample_rate, channels=channels, **kwargs) - return model - - def test_model(self): - random.seed(1234) - sample_rate = 24_000 - channels = 1 - model = self._create_encodec_model(sample_rate, channels) - for _ in range(10): - length = random.randrange(1, 10_000) - x = torch.randn(2, channels, length) - res = model(x) - assert res.x.shape == x.shape - - def test_model_renorm(self): - random.seed(1234) - sample_rate = 24_000 - channels = 1 - model_nonorm = self._create_encodec_model(sample_rate, channels, renormalize=False) - model_renorm = self._create_encodec_model(sample_rate, channels, renormalize=True) - - for _ in range(10): - length = random.randrange(1, 10_000) - x = torch.randn(2, channels, length) - codes, scales = model_nonorm.encode(x) - codes, scales = model_renorm.encode(x) - assert scales is not None diff --git a/spaces/fffiloni/audioldm-text-to-audio-generation-copy/audioldm/clap/training/distributed.py b/spaces/fffiloni/audioldm-text-to-audio-generation-copy/audioldm/clap/training/distributed.py deleted file mode 100644 index 2fa61f76c5cc3ab9f6a9643042afa8e1f2e1cb7f..0000000000000000000000000000000000000000 --- a/spaces/fffiloni/audioldm-text-to-audio-generation-copy/audioldm/clap/training/distributed.py +++ /dev/null @@ -1,150 +0,0 @@ -import os - -import torch -import socket - -try: - import horovod.torch as hvd -except ImportError: - hvd = None - - -def is_global_master(args): - return args.rank == 0 - - -def is_local_master(args): - return args.local_rank == 0 - - -def is_master(args, local=False): - return is_local_master(args) if local else is_global_master(args) - - -def is_using_horovod(): - # NOTE w/ horovod run, OMPI vars should be set, but w/ SLURM PMI vars will be set - # Differentiating between horovod and DDP use via SLURM may not be possible, so horovod arg still required... - ompi_vars = ["OMPI_COMM_WORLD_RANK", "OMPI_COMM_WORLD_SIZE"] - pmi_vars = ["PMI_RANK", "PMI_SIZE"] - if all([var in os.environ for var in ompi_vars]) or all( - [var in os.environ for var in pmi_vars] - ): - return True - else: - return False - - -def is_using_distributed(): - if "WORLD_SIZE" in os.environ: - return int(os.environ["WORLD_SIZE"]) > 1 - if "SLURM_NTASKS" in os.environ: - return int(os.environ["SLURM_NTASKS"]) > 1 - return False - - -def world_info_from_env(): - local_rank = 0 - for v in ( - "SLURM_LOCALID", - "MPI_LOCALRANKID", - "OMPI_COMM_WORLD_LOCAL_RANK", - "LOCAL_RANK", - ): - if v in os.environ: - local_rank = int(os.environ[v]) - break - global_rank = 0 - for v in ("SLURM_PROCID", "PMI_RANK", "OMPI_COMM_WORLD_RANK", "RANK"): - if v in os.environ: - global_rank = int(os.environ[v]) - break - world_size = 1 - for v in ("SLURM_NTASKS", "PMI_SIZE", "OMPI_COMM_WORLD_SIZE", "WORLD_SIZE"): - if v in os.environ: - world_size = int(os.environ[v]) - break - - return local_rank, global_rank, world_size - - -def init_distributed_device(args): - # Distributed training = training on more than one GPU. - # Works in both single and multi-node scenarios. - args.distributed = False - args.world_size = 1 - args.rank = 0 # global rank - args.local_rank = 0 - if args.horovod: - assert hvd is not None, "Horovod is not installed" - hvd.init() - world_size = int(os.environ["OMPI_COMM_WORLD_SIZE"]) - world_rank = int(os.environ["OMPI_COMM_WORLD_RANK"]) - local_rank = int(os.environ["OMPI_COMM_WORLD_LOCAL_RANK"]) - args.local_rank = local_rank - args.rank = world_rank - args.world_size = world_size - # args.local_rank = int(hvd.local_rank()) - # args.rank = hvd.rank() - # args.world_size = hvd.size() - args.distributed = True - os.environ["LOCAL_RANK"] = str(args.local_rank) - os.environ["RANK"] = str(args.rank) - os.environ["WORLD_SIZE"] = str(args.world_size) - print( - f"Distributed training: local_rank={args.local_rank}, " - f"rank={args.rank}, world_size={args.world_size}, " - f"hostname={socket.gethostname()}, pid={os.getpid()}" - ) - elif is_using_distributed(): - if "SLURM_PROCID" in os.environ: - # DDP via SLURM - args.local_rank, args.rank, args.world_size = world_info_from_env() - # SLURM var -> torch.distributed vars in case needed - os.environ["LOCAL_RANK"] = str(args.local_rank) - os.environ["RANK"] = str(args.rank) - os.environ["WORLD_SIZE"] = str(args.world_size) - torch.distributed.init_process_group( - backend=args.dist_backend, - init_method=args.dist_url, - world_size=args.world_size, - rank=args.rank, - ) - elif "OMPI_COMM_WORLD_SIZE" in os.environ: # using Summit cluster - world_size = int(os.environ["OMPI_COMM_WORLD_SIZE"]) - world_rank = int(os.environ["OMPI_COMM_WORLD_RANK"]) - local_rank = int(os.environ["OMPI_COMM_WORLD_LOCAL_RANK"]) - args.local_rank = local_rank - args.rank = world_rank - args.world_size = world_size - torch.distributed.init_process_group( - backend=args.dist_backend, - init_method=args.dist_url, - world_size=args.world_size, - rank=args.rank, - ) - else: - # DDP via torchrun, torch.distributed.launch - args.local_rank, _, _ = world_info_from_env() - torch.distributed.init_process_group( - backend=args.dist_backend, init_method=args.dist_url - ) - args.world_size = torch.distributed.get_world_size() - args.rank = torch.distributed.get_rank() - args.distributed = True - print( - f"Distributed training: local_rank={args.local_rank}, " - f"rank={args.rank}, world_size={args.world_size}, " - f"hostname={socket.gethostname()}, pid={os.getpid()}" - ) - - if torch.cuda.is_available(): - if args.distributed and not args.no_set_device_rank: - device = "cuda:%d" % args.local_rank - else: - device = "cuda:0" - torch.cuda.set_device(device) - else: - device = "cpu" - args.device = device - device = torch.device(device) - return device diff --git a/spaces/fffiloni/controlnet-animation-doodle/node_modules/@types/node/net.d.ts b/spaces/fffiloni/controlnet-animation-doodle/node_modules/@types/node/net.d.ts deleted file mode 100644 index f7602a77db90b82421592a813d92822b2ea1a0f0..0000000000000000000000000000000000000000 --- a/spaces/fffiloni/controlnet-animation-doodle/node_modules/@types/node/net.d.ts +++ /dev/null @@ -1,883 +0,0 @@ -/** - * > Stability: 2 - Stable - * - * The `net` module provides an asynchronous network API for creating stream-based - * TCP or `IPC` servers ({@link createServer}) and clients - * ({@link createConnection}). - * - * It can be accessed using: - * - * ```js - * const net = require('net'); - * ``` - * @see [source](https://github.com/nodejs/node/blob/v18.0.0/lib/net.js) - */ -declare module 'net' { - import * as stream from 'node:stream'; - import { Abortable, EventEmitter } from 'node:events'; - import * as dns from 'node:dns'; - type LookupFunction = (hostname: string, options: dns.LookupOneOptions, callback: (err: NodeJS.ErrnoException | null, address: string, family: number) => void) => void; - interface AddressInfo { - address: string; - family: string; - port: number; - } - interface SocketConstructorOpts { - fd?: number | undefined; - allowHalfOpen?: boolean | undefined; - readable?: boolean | undefined; - writable?: boolean | undefined; - signal?: AbortSignal; - } - interface OnReadOpts { - buffer: Uint8Array | (() => Uint8Array); - /** - * This function is called for every chunk of incoming data. - * Two arguments are passed to it: the number of bytes written to buffer and a reference to buffer. - * Return false from this function to implicitly pause() the socket. - */ - callback(bytesWritten: number, buf: Uint8Array): boolean; - } - interface ConnectOpts { - /** - * If specified, incoming data is stored in a single buffer and passed to the supplied callback when data arrives on the socket. - * Note: this will cause the streaming functionality to not provide any data, however events like 'error', 'end', and 'close' will - * still be emitted as normal and methods like pause() and resume() will also behave as expected. - */ - onread?: OnReadOpts | undefined; - } - interface TcpSocketConnectOpts extends ConnectOpts { - port: number; - host?: string | undefined; - localAddress?: string | undefined; - localPort?: number | undefined; - hints?: number | undefined; - family?: number | undefined; - lookup?: LookupFunction | undefined; - noDelay?: boolean | undefined; - keepAlive?: boolean | undefined; - keepAliveInitialDelay?: number | undefined; - /** - * @since v18.13.0 - */ - autoSelectFamily?: boolean | undefined; - /** - * @since v18.13.0 - */ - autoSelectFamilyAttemptTimeout?: number | undefined; - } - interface IpcSocketConnectOpts extends ConnectOpts { - path: string; - } - type SocketConnectOpts = TcpSocketConnectOpts | IpcSocketConnectOpts; - type SocketReadyState = 'opening' | 'open' | 'readOnly' | 'writeOnly' | 'closed'; - /** - * This class is an abstraction of a TCP socket or a streaming `IPC` endpoint - * (uses named pipes on Windows, and Unix domain sockets otherwise). It is also - * an `EventEmitter`. - * - * A `net.Socket` can be created by the user and used directly to interact with - * a server. For example, it is returned by {@link createConnection}, - * so the user can use it to talk to the server. - * - * It can also be created by Node.js and passed to the user when a connection - * is received. For example, it is passed to the listeners of a `'connection'` event emitted on a {@link Server}, so the user can use - * it to interact with the client. - * @since v0.3.4 - */ - class Socket extends stream.Duplex { - constructor(options?: SocketConstructorOpts); - /** - * Sends data on the socket. The second parameter specifies the encoding in the - * case of a string. It defaults to UTF8 encoding. - * - * Returns `true` if the entire data was flushed successfully to the kernel - * buffer. Returns `false` if all or part of the data was queued in user memory.`'drain'` will be emitted when the buffer is again free. - * - * The optional `callback` parameter will be executed when the data is finally - * written out, which may not be immediately. - * - * See `Writable` stream `write()` method for more - * information. - * @since v0.1.90 - * @param [encoding='utf8'] Only used when data is `string`. - */ - write(buffer: Uint8Array | string, cb?: (err?: Error) => void): boolean; - write(str: Uint8Array | string, encoding?: BufferEncoding, cb?: (err?: Error) => void): boolean; - /** - * Initiate a connection on a given socket. - * - * Possible signatures: - * - * * `socket.connect(options[, connectListener])` - * * `socket.connect(path[, connectListener])` for `IPC` connections. - * * `socket.connect(port[, host][, connectListener])` for TCP connections. - * * Returns: `net.Socket` The socket itself. - * - * This function is asynchronous. When the connection is established, the `'connect'` event will be emitted. If there is a problem connecting, - * instead of a `'connect'` event, an `'error'` event will be emitted with - * the error passed to the `'error'` listener. - * The last parameter `connectListener`, if supplied, will be added as a listener - * for the `'connect'` event **once**. - * - * This function should only be used for reconnecting a socket after`'close'` has been emitted or otherwise it may lead to undefined - * behavior. - */ - connect(options: SocketConnectOpts, connectionListener?: () => void): this; - connect(port: number, host: string, connectionListener?: () => void): this; - connect(port: number, connectionListener?: () => void): this; - connect(path: string, connectionListener?: () => void): this; - /** - * Set the encoding for the socket as a `Readable Stream`. See `readable.setEncoding()` for more information. - * @since v0.1.90 - * @return The socket itself. - */ - setEncoding(encoding?: BufferEncoding): this; - /** - * Pauses the reading of data. That is, `'data'` events will not be emitted. - * Useful to throttle back an upload. - * @return The socket itself. - */ - pause(): this; - /** - * Close the TCP connection by sending an RST packet and destroy the stream. - * If this TCP socket is in connecting status, it will send an RST packet - * and destroy this TCP socket once it is connected. Otherwise, it will call - * `socket.destroy` with an `ERR_SOCKET_CLOSED` Error. If this is not a TCP socket - * (for example, a pipe), calling this method will immediately throw - * an `ERR_INVALID_HANDLE_TYPE` Error. - * @since v18.3.0 - * @return The socket itself. - */ - resetAndDestroy(): this; - /** - * Resumes reading after a call to `socket.pause()`. - * @return The socket itself. - */ - resume(): this; - /** - * Sets the socket to timeout after `timeout` milliseconds of inactivity on - * the socket. By default `net.Socket` do not have a timeout. - * - * When an idle timeout is triggered the socket will receive a `'timeout'` event but the connection will not be severed. The user must manually call `socket.end()` or `socket.destroy()` to - * end the connection. - * - * ```js - * socket.setTimeout(3000); - * socket.on('timeout', () => { - * console.log('socket timeout'); - * socket.end(); - * }); - * ``` - * - * If `timeout` is 0, then the existing idle timeout is disabled. - * - * The optional `callback` parameter will be added as a one-time listener for the `'timeout'` event. - * @since v0.1.90 - * @return The socket itself. - */ - setTimeout(timeout: number, callback?: () => void): this; - /** - * Enable/disable the use of Nagle's algorithm. - * - * When a TCP connection is created, it will have Nagle's algorithm enabled. - * - * Nagle's algorithm delays data before it is sent via the network. It attempts - * to optimize throughput at the expense of latency. - * - * Passing `true` for `noDelay` or not passing an argument will disable Nagle's - * algorithm for the socket. Passing `false` for `noDelay` will enable Nagle's - * algorithm. - * @since v0.1.90 - * @param [noDelay=true] - * @return The socket itself. - */ - setNoDelay(noDelay?: boolean): this; - /** - * Enable/disable keep-alive functionality, and optionally set the initial - * delay before the first keepalive probe is sent on an idle socket. - * - * Set `initialDelay` (in milliseconds) to set the delay between the last - * data packet received and the first keepalive probe. Setting `0` for`initialDelay` will leave the value unchanged from the default - * (or previous) setting. - * - * Enabling the keep-alive functionality will set the following socket options: - * - * * `SO_KEEPALIVE=1` - * * `TCP_KEEPIDLE=initialDelay` - * * `TCP_KEEPCNT=10` - * * `TCP_KEEPINTVL=1` - * @since v0.1.92 - * @param [enable=false] - * @param [initialDelay=0] - * @return The socket itself. - */ - setKeepAlive(enable?: boolean, initialDelay?: number): this; - /** - * Returns the bound `address`, the address `family` name and `port` of the - * socket as reported by the operating system:`{ port: 12346, family: 'IPv4', address: '127.0.0.1' }` - * @since v0.1.90 - */ - address(): AddressInfo | {}; - /** - * Calling `unref()` on a socket will allow the program to exit if this is the only - * active socket in the event system. If the socket is already `unref`ed calling`unref()` again will have no effect. - * @since v0.9.1 - * @return The socket itself. - */ - unref(): this; - /** - * Opposite of `unref()`, calling `ref()` on a previously `unref`ed socket will _not_ let the program exit if it's the only socket left (the default behavior). - * If the socket is `ref`ed calling `ref` again will have no effect. - * @since v0.9.1 - * @return The socket itself. - */ - ref(): this; - /** - * This property shows the number of characters buffered for writing. The buffer - * may contain strings whose length after encoding is not yet known. So this number - * is only an approximation of the number of bytes in the buffer. - * - * `net.Socket` has the property that `socket.write()` always works. This is to - * help users get up and running quickly. The computer cannot always keep up - * with the amount of data that is written to a socket. The network connection - * simply might be too slow. Node.js will internally queue up the data written to a - * socket and send it out over the wire when it is possible. - * - * The consequence of this internal buffering is that memory may grow. - * Users who experience large or growing `bufferSize` should attempt to - * "throttle" the data flows in their program with `socket.pause()` and `socket.resume()`. - * @since v0.3.8 - * @deprecated Since v14.6.0 - Use `writableLength` instead. - */ - readonly bufferSize: number; - /** - * The amount of received bytes. - * @since v0.5.3 - */ - readonly bytesRead: number; - /** - * The amount of bytes sent. - * @since v0.5.3 - */ - readonly bytesWritten: number; - /** - * If `true`,`socket.connect(options[, connectListener])` was - * called and has not yet finished. It will stay `true` until the socket becomes - * connected, then it is set to `false` and the `'connect'` event is emitted. Note - * that the `socket.connect(options[, connectListener])` callback is a listener for the `'connect'` event. - * @since v6.1.0 - */ - readonly connecting: boolean; - /** - * This is `true` if the socket is not connected yet, either because `.connect()` - * has not yet been called or because it is still in the process of connecting (see `socket.connecting`). - * @since v10.16.0 - */ - readonly pending: boolean; - /** - * See `writable.destroyed` for further details. - */ - readonly destroyed: boolean; - /** - * The string representation of the local IP address the remote client is - * connecting on. For example, in a server listening on `'0.0.0.0'`, if a client - * connects on `'192.168.1.1'`, the value of `socket.localAddress` would be`'192.168.1.1'`. - * @since v0.9.6 - */ - readonly localAddress?: string; - /** - * The numeric representation of the local port. For example, `80` or `21`. - * @since v0.9.6 - */ - readonly localPort?: number; - /** - * The string representation of the local IP family. `'IPv4'` or `'IPv6'`. - * @since v18.8.0 - */ - readonly localFamily?: string; - /** - * This property represents the state of the connection as a string. - * @see {https://nodejs.org/api/net.html#socketreadystate} - * @since v0.5.0 - */ - readonly readyState: SocketReadyState; - /** - * The string representation of the remote IP address. For example,`'74.125.127.100'` or `'2001:4860:a005::68'`. Value may be `undefined` if - * the socket is destroyed (for example, if the client disconnected). - * @since v0.5.10 - */ - readonly remoteAddress?: string | undefined; - /** - * The string representation of the remote IP family. `'IPv4'` or `'IPv6'`. - * @since v0.11.14 - */ - readonly remoteFamily?: string | undefined; - /** - * The numeric representation of the remote port. For example, `80` or `21`. - * @since v0.5.10 - */ - readonly remotePort?: number | undefined; - /** - * The socket timeout in milliseconds as set by socket.setTimeout(). It is undefined if a timeout has not been set. - * @since v10.7.0 - */ - readonly timeout?: number | undefined; - /** - * Half-closes the socket. i.e., it sends a FIN packet. It is possible the - * server will still send some data. - * - * See `writable.end()` for further details. - * @since v0.1.90 - * @param [encoding='utf8'] Only used when data is `string`. - * @param callback Optional callback for when the socket is finished. - * @return The socket itself. - */ - end(callback?: () => void): this; - end(buffer: Uint8Array | string, callback?: () => void): this; - end(str: Uint8Array | string, encoding?: BufferEncoding, callback?: () => void): this; - /** - * events.EventEmitter - * 1. close - * 2. connect - * 3. data - * 4. drain - * 5. end - * 6. error - * 7. lookup - * 8. ready - * 9. timeout - */ - addListener(event: string, listener: (...args: any[]) => void): this; - addListener(event: 'close', listener: (hadError: boolean) => void): this; - addListener(event: 'connect', listener: () => void): this; - addListener(event: 'data', listener: (data: Buffer) => void): this; - addListener(event: 'drain', listener: () => void): this; - addListener(event: 'end', listener: () => void): this; - addListener(event: 'error', listener: (err: Error) => void): this; - addListener(event: 'lookup', listener: (err: Error, address: string, family: string | number, host: string) => void): this; - addListener(event: 'ready', listener: () => void): this; - addListener(event: 'timeout', listener: () => void): this; - emit(event: string | symbol, ...args: any[]): boolean; - emit(event: 'close', hadError: boolean): boolean; - emit(event: 'connect'): boolean; - emit(event: 'data', data: Buffer): boolean; - emit(event: 'drain'): boolean; - emit(event: 'end'): boolean; - emit(event: 'error', err: Error): boolean; - emit(event: 'lookup', err: Error, address: string, family: string | number, host: string): boolean; - emit(event: 'ready'): boolean; - emit(event: 'timeout'): boolean; - on(event: string, listener: (...args: any[]) => void): this; - on(event: 'close', listener: (hadError: boolean) => void): this; - on(event: 'connect', listener: () => void): this; - on(event: 'data', listener: (data: Buffer) => void): this; - on(event: 'drain', listener: () => void): this; - on(event: 'end', listener: () => void): this; - on(event: 'error', listener: (err: Error) => void): this; - on(event: 'lookup', listener: (err: Error, address: string, family: string | number, host: string) => void): this; - on(event: 'ready', listener: () => void): this; - on(event: 'timeout', listener: () => void): this; - once(event: string, listener: (...args: any[]) => void): this; - once(event: 'close', listener: (hadError: boolean) => void): this; - once(event: 'connect', listener: () => void): this; - once(event: 'data', listener: (data: Buffer) => void): this; - once(event: 'drain', listener: () => void): this; - once(event: 'end', listener: () => void): this; - once(event: 'error', listener: (err: Error) => void): this; - once(event: 'lookup', listener: (err: Error, address: string, family: string | number, host: string) => void): this; - once(event: 'ready', listener: () => void): this; - once(event: 'timeout', listener: () => void): this; - prependListener(event: string, listener: (...args: any[]) => void): this; - prependListener(event: 'close', listener: (hadError: boolean) => void): this; - prependListener(event: 'connect', listener: () => void): this; - prependListener(event: 'data', listener: (data: Buffer) => void): this; - prependListener(event: 'drain', listener: () => void): this; - prependListener(event: 'end', listener: () => void): this; - prependListener(event: 'error', listener: (err: Error) => void): this; - prependListener(event: 'lookup', listener: (err: Error, address: string, family: string | number, host: string) => void): this; - prependListener(event: 'ready', listener: () => void): this; - prependListener(event: 'timeout', listener: () => void): this; - prependOnceListener(event: string, listener: (...args: any[]) => void): this; - prependOnceListener(event: 'close', listener: (hadError: boolean) => void): this; - prependOnceListener(event: 'connect', listener: () => void): this; - prependOnceListener(event: 'data', listener: (data: Buffer) => void): this; - prependOnceListener(event: 'drain', listener: () => void): this; - prependOnceListener(event: 'end', listener: () => void): this; - prependOnceListener(event: 'error', listener: (err: Error) => void): this; - prependOnceListener(event: 'lookup', listener: (err: Error, address: string, family: string | number, host: string) => void): this; - prependOnceListener(event: 'ready', listener: () => void): this; - prependOnceListener(event: 'timeout', listener: () => void): this; - } - interface ListenOptions extends Abortable { - port?: number | undefined; - host?: string | undefined; - backlog?: number | undefined; - path?: string | undefined; - exclusive?: boolean | undefined; - readableAll?: boolean | undefined; - writableAll?: boolean | undefined; - /** - * @default false - */ - ipv6Only?: boolean | undefined; - } - interface ServerOpts { - /** - * Indicates whether half-opened TCP connections are allowed. - * @default false - */ - allowHalfOpen?: boolean | undefined; - /** - * Indicates whether the socket should be paused on incoming connections. - * @default false - */ - pauseOnConnect?: boolean | undefined; - /** - * If set to `true`, it disables the use of Nagle's algorithm immediately after a new incoming connection is received. - * @default false - * @since v16.5.0 - */ - noDelay?: boolean | undefined; - /** - * If set to `true`, it enables keep-alive functionality on the socket immediately after a new incoming connection is received, - * similarly on what is done in `socket.setKeepAlive([enable][, initialDelay])`. - * @default false - * @since v16.5.0 - */ - keepAlive?: boolean | undefined; - /** - * If set to a positive number, it sets the initial delay before the first keepalive probe is sent on an idle socket. - * @default 0 - * @since v16.5.0 - */ - keepAliveInitialDelay?: number | undefined; - } - interface DropArgument { - localAddress?: string; - localPort?: number; - localFamily?: string; - remoteAddress?: string; - remotePort?: number; - remoteFamily?: string; - } - /** - * This class is used to create a TCP or `IPC` server. - * @since v0.1.90 - */ - class Server extends EventEmitter { - constructor(connectionListener?: (socket: Socket) => void); - constructor(options?: ServerOpts, connectionListener?: (socket: Socket) => void); - /** - * Start a server listening for connections. A `net.Server` can be a TCP or - * an `IPC` server depending on what it listens to. - * - * Possible signatures: - * - * * `server.listen(handle[, backlog][, callback])` - * * `server.listen(options[, callback])` - * * `server.listen(path[, backlog][, callback])` for `IPC` servers - * * `server.listen([port[, host[, backlog]]][, callback])` for TCP servers - * - * This function is asynchronous. When the server starts listening, the `'listening'` event will be emitted. The last parameter `callback`will be added as a listener for the `'listening'` - * event. - * - * All `listen()` methods can take a `backlog` parameter to specify the maximum - * length of the queue of pending connections. The actual length will be determined - * by the OS through sysctl settings such as `tcp_max_syn_backlog` and `somaxconn`on Linux. The default value of this parameter is 511 (not 512). - * - * All {@link Socket} are set to `SO_REUSEADDR` (see [`socket(7)`](https://man7.org/linux/man-pages/man7/socket.7.html) for - * details). - * - * The `server.listen()` method can be called again if and only if there was an - * error during the first `server.listen()` call or `server.close()` has been - * called. Otherwise, an `ERR_SERVER_ALREADY_LISTEN` error will be thrown. - * - * One of the most common errors raised when listening is `EADDRINUSE`. - * This happens when another server is already listening on the requested`port`/`path`/`handle`. One way to handle this would be to retry - * after a certain amount of time: - * - * ```js - * server.on('error', (e) => { - * if (e.code === 'EADDRINUSE') { - * console.log('Address in use, retrying...'); - * setTimeout(() => { - * server.close(); - * server.listen(PORT, HOST); - * }, 1000); - * } - * }); - * ``` - */ - listen(port?: number, hostname?: string, backlog?: number, listeningListener?: () => void): this; - listen(port?: number, hostname?: string, listeningListener?: () => void): this; - listen(port?: number, backlog?: number, listeningListener?: () => void): this; - listen(port?: number, listeningListener?: () => void): this; - listen(path: string, backlog?: number, listeningListener?: () => void): this; - listen(path: string, listeningListener?: () => void): this; - listen(options: ListenOptions, listeningListener?: () => void): this; - listen(handle: any, backlog?: number, listeningListener?: () => void): this; - listen(handle: any, listeningListener?: () => void): this; - /** - * Stops the server from accepting new connections and keeps existing - * connections. This function is asynchronous, the server is finally closed - * when all connections are ended and the server emits a `'close'` event. - * The optional `callback` will be called once the `'close'` event occurs. Unlike - * that event, it will be called with an `Error` as its only argument if the server - * was not open when it was closed. - * @since v0.1.90 - * @param callback Called when the server is closed. - */ - close(callback?: (err?: Error) => void): this; - /** - * Returns the bound `address`, the address `family` name, and `port` of the server - * as reported by the operating system if listening on an IP socket - * (useful to find which port was assigned when getting an OS-assigned address):`{ port: 12346, family: 'IPv4', address: '127.0.0.1' }`. - * - * For a server listening on a pipe or Unix domain socket, the name is returned - * as a string. - * - * ```js - * const server = net.createServer((socket) => { - * socket.end('goodbye\n'); - * }).on('error', (err) => { - * // Handle errors here. - * throw err; - * }); - * - * // Grab an arbitrary unused port. - * server.listen(() => { - * console.log('opened server on', server.address()); - * }); - * ``` - * - * `server.address()` returns `null` before the `'listening'` event has been - * emitted or after calling `server.close()`. - * @since v0.1.90 - */ - address(): AddressInfo | string | null; - /** - * Asynchronously get the number of concurrent connections on the server. Works - * when sockets were sent to forks. - * - * Callback should take two arguments `err` and `count`. - * @since v0.9.7 - */ - getConnections(cb: (error: Error | null, count: number) => void): void; - /** - * Opposite of `unref()`, calling `ref()` on a previously `unref`ed server will _not_ let the program exit if it's the only server left (the default behavior). - * If the server is `ref`ed calling `ref()` again will have no effect. - * @since v0.9.1 - */ - ref(): this; - /** - * Calling `unref()` on a server will allow the program to exit if this is the only - * active server in the event system. If the server is already `unref`ed calling`unref()` again will have no effect. - * @since v0.9.1 - */ - unref(): this; - /** - * Set this property to reject connections when the server's connection count gets - * high. - * - * It is not recommended to use this option once a socket has been sent to a child - * with `child_process.fork()`. - * @since v0.2.0 - */ - maxConnections: number; - connections: number; - /** - * Indicates whether or not the server is listening for connections. - * @since v5.7.0 - */ - listening: boolean; - /** - * events.EventEmitter - * 1. close - * 2. connection - * 3. error - * 4. listening - * 5. drop - */ - addListener(event: string, listener: (...args: any[]) => void): this; - addListener(event: 'close', listener: () => void): this; - addListener(event: 'connection', listener: (socket: Socket) => void): this; - addListener(event: 'error', listener: (err: Error) => void): this; - addListener(event: 'listening', listener: () => void): this; - addListener(event: 'drop', listener: (data?: DropArgument) => void): this; - emit(event: string | symbol, ...args: any[]): boolean; - emit(event: 'close'): boolean; - emit(event: 'connection', socket: Socket): boolean; - emit(event: 'error', err: Error): boolean; - emit(event: 'listening'): boolean; - emit(event: 'drop', data?: DropArgument): boolean; - on(event: string, listener: (...args: any[]) => void): this; - on(event: 'close', listener: () => void): this; - on(event: 'connection', listener: (socket: Socket) => void): this; - on(event: 'error', listener: (err: Error) => void): this; - on(event: 'listening', listener: () => void): this; - on(event: 'drop', listener: (data?: DropArgument) => void): this; - once(event: string, listener: (...args: any[]) => void): this; - once(event: 'close', listener: () => void): this; - once(event: 'connection', listener: (socket: Socket) => void): this; - once(event: 'error', listener: (err: Error) => void): this; - once(event: 'listening', listener: () => void): this; - once(event: 'drop', listener: (data?: DropArgument) => void): this; - prependListener(event: string, listener: (...args: any[]) => void): this; - prependListener(event: 'close', listener: () => void): this; - prependListener(event: 'connection', listener: (socket: Socket) => void): this; - prependListener(event: 'error', listener: (err: Error) => void): this; - prependListener(event: 'listening', listener: () => void): this; - prependListener(event: 'drop', listener: (data?: DropArgument) => void): this; - prependOnceListener(event: string, listener: (...args: any[]) => void): this; - prependOnceListener(event: 'close', listener: () => void): this; - prependOnceListener(event: 'connection', listener: (socket: Socket) => void): this; - prependOnceListener(event: 'error', listener: (err: Error) => void): this; - prependOnceListener(event: 'listening', listener: () => void): this; - prependOnceListener(event: 'drop', listener: (data?: DropArgument) => void): this; - } - type IPVersion = 'ipv4' | 'ipv6'; - /** - * The `BlockList` object can be used with some network APIs to specify rules for - * disabling inbound or outbound access to specific IP addresses, IP ranges, or - * IP subnets. - * @since v15.0.0, v14.18.0 - */ - class BlockList { - /** - * Adds a rule to block the given IP address. - * @since v15.0.0, v14.18.0 - * @param address An IPv4 or IPv6 address. - * @param [type='ipv4'] Either `'ipv4'` or `'ipv6'`. - */ - addAddress(address: string, type?: IPVersion): void; - addAddress(address: SocketAddress): void; - /** - * Adds a rule to block a range of IP addresses from `start` (inclusive) to`end` (inclusive). - * @since v15.0.0, v14.18.0 - * @param start The starting IPv4 or IPv6 address in the range. - * @param end The ending IPv4 or IPv6 address in the range. - * @param [type='ipv4'] Either `'ipv4'` or `'ipv6'`. - */ - addRange(start: string, end: string, type?: IPVersion): void; - addRange(start: SocketAddress, end: SocketAddress): void; - /** - * Adds a rule to block a range of IP addresses specified as a subnet mask. - * @since v15.0.0, v14.18.0 - * @param net The network IPv4 or IPv6 address. - * @param prefix The number of CIDR prefix bits. For IPv4, this must be a value between `0` and `32`. For IPv6, this must be between `0` and `128`. - * @param [type='ipv4'] Either `'ipv4'` or `'ipv6'`. - */ - addSubnet(net: SocketAddress, prefix: number): void; - addSubnet(net: string, prefix: number, type?: IPVersion): void; - /** - * Returns `true` if the given IP address matches any of the rules added to the`BlockList`. - * - * ```js - * const blockList = new net.BlockList(); - * blockList.addAddress('123.123.123.123'); - * blockList.addRange('10.0.0.1', '10.0.0.10'); - * blockList.addSubnet('8592:757c:efae:4e45::', 64, 'ipv6'); - * - * console.log(blockList.check('123.123.123.123')); // Prints: true - * console.log(blockList.check('10.0.0.3')); // Prints: true - * console.log(blockList.check('222.111.111.222')); // Prints: false - * - * // IPv6 notation for IPv4 addresses works: - * console.log(blockList.check('::ffff:7b7b:7b7b', 'ipv6')); // Prints: true - * console.log(blockList.check('::ffff:123.123.123.123', 'ipv6')); // Prints: true - * ``` - * @since v15.0.0, v14.18.0 - * @param address The IP address to check - * @param [type='ipv4'] Either `'ipv4'` or `'ipv6'`. - */ - check(address: SocketAddress): boolean; - check(address: string, type?: IPVersion): boolean; - } - interface TcpNetConnectOpts extends TcpSocketConnectOpts, SocketConstructorOpts { - timeout?: number | undefined; - } - interface IpcNetConnectOpts extends IpcSocketConnectOpts, SocketConstructorOpts { - timeout?: number | undefined; - } - type NetConnectOpts = TcpNetConnectOpts | IpcNetConnectOpts; - /** - * Creates a new TCP or `IPC` server. - * - * If `allowHalfOpen` is set to `true`, when the other end of the socket - * signals the end of transmission, the server will only send back the end of - * transmission when `socket.end()` is explicitly called. For example, in the - * context of TCP, when a FIN packed is received, a FIN packed is sent - * back only when `socket.end()` is explicitly called. Until then the - * connection is half-closed (non-readable but still writable). See `'end'` event and [RFC 1122](https://tools.ietf.org/html/rfc1122) (section 4.2.2.13) for more information. - * - * If `pauseOnConnect` is set to `true`, then the socket associated with each - * incoming connection will be paused, and no data will be read from its handle. - * This allows connections to be passed between processes without any data being - * read by the original process. To begin reading data from a paused socket, call `socket.resume()`. - * - * The server can be a TCP server or an `IPC` server, depending on what it `listen()` to. - * - * Here is an example of a TCP echo server which listens for connections - * on port 8124: - * - * ```js - * const net = require('net'); - * const server = net.createServer((c) => { - * // 'connection' listener. - * console.log('client connected'); - * c.on('end', () => { - * console.log('client disconnected'); - * }); - * c.write('hello\r\n'); - * c.pipe(c); - * }); - * server.on('error', (err) => { - * throw err; - * }); - * server.listen(8124, () => { - * console.log('server bound'); - * }); - * ``` - * - * Test this by using `telnet`: - * - * ```console - * $ telnet localhost 8124 - * ``` - * - * To listen on the socket `/tmp/echo.sock`: - * - * ```js - * server.listen('/tmp/echo.sock', () => { - * console.log('server bound'); - * }); - * ``` - * - * Use `nc` to connect to a Unix domain socket server: - * - * ```console - * $ nc -U /tmp/echo.sock - * ``` - * @since v0.5.0 - * @param connectionListener Automatically set as a listener for the {@link 'connection'} event. - */ - function createServer(connectionListener?: (socket: Socket) => void): Server; - function createServer(options?: ServerOpts, connectionListener?: (socket: Socket) => void): Server; - /** - * Aliases to {@link createConnection}. - * - * Possible signatures: - * - * * {@link connect} - * * {@link connect} for `IPC` connections. - * * {@link connect} for TCP connections. - */ - function connect(options: NetConnectOpts, connectionListener?: () => void): Socket; - function connect(port: number, host?: string, connectionListener?: () => void): Socket; - function connect(path: string, connectionListener?: () => void): Socket; - /** - * A factory function, which creates a new {@link Socket}, - * immediately initiates connection with `socket.connect()`, - * then returns the `net.Socket` that starts the connection. - * - * When the connection is established, a `'connect'` event will be emitted - * on the returned socket. The last parameter `connectListener`, if supplied, - * will be added as a listener for the `'connect'` event **once**. - * - * Possible signatures: - * - * * {@link createConnection} - * * {@link createConnection} for `IPC` connections. - * * {@link createConnection} for TCP connections. - * - * The {@link connect} function is an alias to this function. - */ - function createConnection(options: NetConnectOpts, connectionListener?: () => void): Socket; - function createConnection(port: number, host?: string, connectionListener?: () => void): Socket; - function createConnection(path: string, connectionListener?: () => void): Socket; - /** - * Returns `6` if `input` is an IPv6 address. Returns `4` if `input` is an IPv4 - * address in [dot-decimal notation](https://en.wikipedia.org/wiki/Dot-decimal_notation) with no leading zeroes. Otherwise, returns`0`. - * - * ```js - * net.isIP('::1'); // returns 6 - * net.isIP('127.0.0.1'); // returns 4 - * net.isIP('127.000.000.001'); // returns 0 - * net.isIP('127.0.0.1/24'); // returns 0 - * net.isIP('fhqwhgads'); // returns 0 - * ``` - * @since v0.3.0 - */ - function isIP(input: string): number; - /** - * Returns `true` if `input` is an IPv4 address in [dot-decimal notation](https://en.wikipedia.org/wiki/Dot-decimal_notation) with no - * leading zeroes. Otherwise, returns `false`. - * - * ```js - * net.isIPv4('127.0.0.1'); // returns true - * net.isIPv4('127.000.000.001'); // returns false - * net.isIPv4('127.0.0.1/24'); // returns false - * net.isIPv4('fhqwhgads'); // returns false - * ``` - * @since v0.3.0 - */ - function isIPv4(input: string): boolean; - /** - * Returns `true` if `input` is an IPv6 address. Otherwise, returns `false`. - * - * ```js - * net.isIPv6('::1'); // returns true - * net.isIPv6('fhqwhgads'); // returns false - * ``` - * @since v0.3.0 - */ - function isIPv6(input: string): boolean; - interface SocketAddressInitOptions { - /** - * The network address as either an IPv4 or IPv6 string. - * @default 127.0.0.1 - */ - address?: string | undefined; - /** - * @default `'ipv4'` - */ - family?: IPVersion | undefined; - /** - * An IPv6 flow-label used only if `family` is `'ipv6'`. - * @default 0 - */ - flowlabel?: number | undefined; - /** - * An IP port. - * @default 0 - */ - port?: number | undefined; - } - /** - * @since v15.14.0, v14.18.0 - */ - class SocketAddress { - constructor(options: SocketAddressInitOptions); - /** - * @since v15.14.0, v14.18.0 - */ - readonly address: string; - /** - * Either \`'ipv4'\` or \`'ipv6'\`. - * @since v15.14.0, v14.18.0 - */ - readonly family: IPVersion; - /** - * @since v15.14.0, v14.18.0 - */ - readonly port: number; - /** - * @since v15.14.0, v14.18.0 - */ - readonly flowlabel: number; - } -} -declare module 'node:net' { - export * from 'net'; -} diff --git a/spaces/fffiloni/controlnet-animation-doodle/node_modules/engine.io/build/transports-uws/websocket.js b/spaces/fffiloni/controlnet-animation-doodle/node_modules/engine.io/build/transports-uws/websocket.js deleted file mode 100644 index 214611194b54f41e21ee8b1706ebc0e6b6e905e2..0000000000000000000000000000000000000000 --- a/spaces/fffiloni/controlnet-animation-doodle/node_modules/engine.io/build/transports-uws/websocket.js +++ /dev/null @@ -1,85 +0,0 @@ -"use strict"; -Object.defineProperty(exports, "__esModule", { value: true }); -exports.WebSocket = void 0; -const transport_1 = require("../transport"); -const debug_1 = require("debug"); -const debug = (0, debug_1.default)("engine:ws"); -class WebSocket extends transport_1.Transport { - /** - * WebSocket transport - * - * @param req - * @api public - */ - constructor(req) { - super(req); - this.writable = false; - this.perMessageDeflate = null; - } - /** - * Transport name - * - * @api public - */ - get name() { - return "websocket"; - } - /** - * Advertise upgrade support. - * - * @api public - */ - get handlesUpgrades() { - return true; - } - /** - * Advertise framing support. - * - * @api public - */ - get supportsFraming() { - return true; - } - /** - * Writes a packet payload. - * - * @param {Array} packets - * @api private - */ - send(packets) { - this.writable = false; - for (let i = 0; i < packets.length; i++) { - const packet = packets[i]; - const isLast = i + 1 === packets.length; - const send = (data) => { - const isBinary = typeof data !== "string"; - const compress = this.perMessageDeflate && - Buffer.byteLength(data) > this.perMessageDeflate.threshold; - debug('writing "%s"', data); - this.socket.send(data, isBinary, compress); - if (isLast) { - this.writable = true; - this.emit("drain"); - } - }; - if (packet.options && typeof packet.options.wsPreEncoded === "string") { - send(packet.options.wsPreEncoded); - } - else { - this.parser.encodePacket(packet, this.supportsBinary, send); - } - } - } - /** - * Closes the transport. - * - * @api private - */ - doClose(fn) { - debug("closing"); - fn && fn(); - // call fn first since socket.end() immediately emits a "close" event - this.socket.end(); - } -} -exports.WebSocket = WebSocket; diff --git a/spaces/fffiloni/gpt-talking-portrait/app.py b/spaces/fffiloni/gpt-talking-portrait/app.py deleted file mode 100644 index 5b48b4d1649bd190248fe40a3d6f48b287d64eb0..0000000000000000000000000000000000000000 --- a/spaces/fffiloni/gpt-talking-portrait/app.py +++ /dev/null @@ -1,181 +0,0 @@ -import gradio as gr - -from PIL import Image -import os - -import openai - -#api_key = os.environ.get('api_key') - -from share_btn import community_icon_html, loading_icon_html, share_js - -token = os.environ.get('HF_TOKEN') -whisper = gr.Interface.load(name="spaces/sanchit-gandhi/whisper-large-v2") -tts = gr.Interface.load(name="spaces/Flux9665/IMS-Toucan") -talking_face = gr.Blocks.load(name="spaces/fffiloni/one-shot-talking-face", api_key=token) - -def infer(audio, openai_api_key): - - whisper_result = whisper(audio, None, "translate", fn_index=0) - - gpt_response = try_api(whisper_result, openai_api_key) - - audio_response = tts(gpt_response[0], "English Text", "English Accent", "English Speaker's Voice", fn_index=0) - - portrait_link = talking_face("wise_woman_portrait.png", audio_response, fn_index=0) - - return gr.Textbox.update(value=whisper_result, visible=True), portrait_link, gr.Textbox.update(value=gpt_response[1], visible=True), gr.Group.update(visible=True), gr.Button.update(visible=True) - -def try_api(message, openai_api_key): - - try: - response = call_api(message, openai_api_key) - return response, "no error" - except openai.error.Timeout as e: - #Handle timeout error, e.g. retry or log - print(f"OpenAI API request timed out: {e}") - return "oups", f"OpenAI API request timed out:
          {e}
          " - except openai.error.APIError as e: - #Handle API error, e.g. retry or log - print(f"OpenAI API returned an API Error: {e}") - return "oups", f"OpenAI API returned an API Error:
          {e}
          " - except openai.error.APIConnectionError as e: - #Handle connection error, e.g. check network or log - print(f"OpenAI API request failed to connect: {e}") - return "oups", f"OpenAI API request failed to connect:
          {e}
          " - except openai.error.InvalidRequestError as e: - #Handle invalid request error, e.g. validate parameters or log - print(f"OpenAI API request was invalid: {e}") - return "oups", f"OpenAI API request was invalid:
          {e}
          " - except openai.error.AuthenticationError as e: - #Handle authentication error, e.g. check credentials or log - print(f"OpenAI API request was not authorized: {e}") - return "oups", f"OpenAI API request was not authorized:
          {e}
          " - except openai.error.PermissionError as e: - #Handle permission error, e.g. check scope or log - print(f"OpenAI API request was not permitted: {e}") - return "oups", f"OpenAI API request was not permitted:
          {e}
          " - except openai.error.RateLimitError as e: - #Handle rate limit error, e.g. wait or log - print(f"OpenAI API request exceeded rate limit: {e}") - return "oups", f"OpenAI API request exceeded rate limit:
          {e}
          " - -def call_api(message, openai_api_key): - - print("starting open ai") - augmented_prompt = message + prevent_code_gen - openai.api_key = openai_api_key - - response = openai.Completion.create( - model="text-davinci-003", - prompt=augmented_prompt, - temperature=0.5, - max_tokens=2048, - top_p=1, - frequency_penalty=0, - presence_penalty=0.6 - ) - - print(response) - - #return str(response.choices[0].text).split("\n",2)[2] - return str(response.choices[0].text) - -def clean_components(): - return gr.Audio.update(value=None), gr.HTML.update(visible=False), gr.Textbox.update(visible=False), gr.Video.update(value=None), gr.Group.update(visible=False), gr.Button.update(visible=False) - -title = """ -
          -
          -

          - GPT Talking Portrait -

          -
          -

          - Use Whisper to ask, alive portrait responds ! -

          -
          -""" - -article = """ - - -
          -

          You may also like:

          -
          - - - - - - - - - - - - - - - - - - - - -
          -
          -""" - -prevent_code_gen = """ -If i am asking for code generation, do not provide me with code. Instead, give me a summury of good hints about how i could do what i asked, but shortly. -If i am not asking for code generation, do as usual. -""" -with gr.Blocks(css="style.css") as demo: - - with gr.Column(elem_id="col-container"): - - gr.HTML(title) - - gpt_response = gr.Video(label="Talking Portrait response", elem_id="video_out") - whisper_tr = gr.Textbox(label="whisper english translation", elem_id="text_inp", visible=False) - - with gr.Row(elem_id="secondary-buttons"): - clean_btn = gr.Button(value="Clean", elem_id="clean-btn", visible=False) - with gr.Group(elem_id="share-btn-container", visible=False) as share_group: - community_icon = gr.HTML(community_icon_html) - loading_icon = gr.HTML(loading_icon_html) - share_button = gr.Button("Share to community", elem_id="share-btn") - - error_handler = gr.HTML(visible=False, show_label=False, elem_id="error_handler") - - with gr.Column(elem_id="col-container-2"): - with gr.Column(): - with gr.Row(): - record_input = gr.Audio(source="microphone",type="filepath", label="Audio input", show_label=True, elem_id="record_btn") - openai_api_key = gr.Textbox(max_lines=1, type="password", label="šŸ” Your OpenAI API Key", placeholder="sk-123abc...") - - send_btn = gr.Button("Send my request !") - - gr.HTML(article) - - clean_btn.click(clean_components, scroll_to_output=True, inputs=[], outputs=[record_input, error_handler, whisper_tr, gpt_response, share_group, clean_btn]) - send_btn.click(infer, inputs=[record_input, openai_api_key], outputs=[whisper_tr, gpt_response, error_handler, share_group, clean_btn]) - share_button.click(None, [], [], _js=share_js) - -demo.queue(max_size=32, concurrency_count=20).launch(debug=True) - - diff --git a/spaces/fffiloni/instant-TTS-Bark-cloning/examples/library/blank.md b/spaces/fffiloni/instant-TTS-Bark-cloning/examples/library/blank.md deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/fffiloni/stable-diffusion-touch-of-paint/app.py b/spaces/fffiloni/stable-diffusion-touch-of-paint/app.py deleted file mode 100644 index 0e572461130e1ddd6ccd7c61c5156fc5fc4b662c..0000000000000000000000000000000000000000 --- a/spaces/fffiloni/stable-diffusion-touch-of-paint/app.py +++ /dev/null @@ -1,60 +0,0 @@ -import gradio as gr -#import torch -#from torch import autocast // only for GPU - -from PIL import Image -import numpy as np -from io import BytesIO -import os -MY_SECRET_TOKEN=os.environ.get('HF_TOKEN_SD') - -#from diffusers import StableDiffusionPipeline -from diffusers import StableDiffusionImg2ImgPipeline - -print("hello sylvain") - -YOUR_TOKEN=MY_SECRET_TOKEN - -device="cpu" - -#prompt_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=YOUR_TOKEN) -#prompt_pipe.to(device) - -img_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=YOUR_TOKEN) -img_pipe.to(device) - -source_img = gr.ImagePaint(type="filepath", elem_id="source_container", label="new gradio color sketch (beta)") - -gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[1], height="auto") - -def resize(value,img): - #baseheight = value - img = Image.open(img) - #hpercent = (baseheight/float(img.size[1])) - #wsize = int((float(img.size[0])*float(hpercent))) - #img = img.resize((wsize,baseheight), Image.Resampling.LANCZOS) - img = img.resize((value,value), Image.Resampling.LANCZOS) - return img - - -def infer(source_img, prompt): - - source_image = resize(512, source_img) - source_image.save('source.png') - images_list = img_pipe([prompt] * 1, init_image=source_image, strength=0.75) - images = [] - safe_image = Image.open(r"unsafe.png") - for i, image in enumerate(images_list["sample"]): - if(images_list["nsfw_content_detected"][i]): - images.append(safe_image) - else: - images.append(image) - return images - -print("Great sylvain ! Everything is working fine !") - -title="Touch of Paint Stable Diffusion CPU" -description="Img-2-Img Stable Diffusion example using CPU and the beta color-sketch on uploaded gradio tool.
          Warning: Slow process... ~5/10 min inference time. NSFW filter enabled." -custom_css = "style.css" - -gr.Interface(fn=infer, inputs=[source_img, "text"], outputs=gallery,title=title,description=description,css=custom_css).queue(max_size=100).launch(enable_queue=True) \ No newline at end of file diff --git a/spaces/florim/MedGPT/autogpt/chat.py b/spaces/florim/MedGPT/autogpt/chat.py deleted file mode 100644 index 1f6bca96eb216c667656b50f131006b83c681065..0000000000000000000000000000000000000000 --- a/spaces/florim/MedGPT/autogpt/chat.py +++ /dev/null @@ -1,175 +0,0 @@ -import time - -from openai.error import RateLimitError - -from autogpt import token_counter -from autogpt.config import Config -from autogpt.llm_utils import create_chat_completion -from autogpt.logs import logger - -cfg = Config() - - -def create_chat_message(role, content): - """ - Create a chat message with the given role and content. - - Args: - role (str): The role of the message sender, e.g., "system", "user", or "assistant". - content (str): The content of the message. - - Returns: - dict: A dictionary containing the role and content of the message. - """ - return {"role": role, "content": content} - - -def generate_context(prompt, relevant_memory, full_message_history, model): - current_context = [ - create_chat_message("system", prompt), - create_chat_message( - "system", f"The current time and date is {time.strftime('%c')}" - ), - create_chat_message( - "system", - f"This reminds you of these events from your past:\n{relevant_memory}\n\n", - ), - ] - - # Add messages from the full message history until we reach the token limit - next_message_to_add_index = len(full_message_history) - 1 - insertion_index = len(current_context) - # Count the currently used tokens - current_tokens_used = token_counter.count_message_tokens(current_context, model) - return ( - next_message_to_add_index, - current_tokens_used, - insertion_index, - current_context, - ) - - -# TODO: Change debug from hardcode to argument -def chat_with_ai( - prompt, user_input, full_message_history, permanent_memory, token_limit -): - """Interact with the OpenAI API, sending the prompt, user input, message history, - and permanent memory.""" - while True: - try: - """ - Interact with the OpenAI API, sending the prompt, user input, - message history, and permanent memory. - - Args: - prompt (str): The prompt explaining the rules to the AI. - user_input (str): The input from the user. - full_message_history (list): The list of all messages sent between the - user and the AI. - permanent_memory (Obj): The memory object containing the permanent - memory. - token_limit (int): The maximum number of tokens allowed in the API call. - - Returns: - str: The AI's response. - """ - model = cfg.fast_llm_model # TODO: Change model from hardcode to argument - # Reserve 1000 tokens for the response - - logger.debug(f"Token limit: {token_limit}") - send_token_limit = token_limit - 1000 - - relevant_memory = ( - "" - if len(full_message_history) == 0 - else permanent_memory.get_relevant(str(full_message_history[-9:]), 10) - ) - - logger.debug(f"Memory Stats: {permanent_memory.get_stats()}") - - ( - next_message_to_add_index, - current_tokens_used, - insertion_index, - current_context, - ) = generate_context(prompt, relevant_memory, full_message_history, model) - - while current_tokens_used > 2500: - # remove memories until we are under 2500 tokens - relevant_memory = relevant_memory[:-1] - ( - next_message_to_add_index, - current_tokens_used, - insertion_index, - current_context, - ) = generate_context( - prompt, relevant_memory, full_message_history, model - ) - - current_tokens_used += token_counter.count_message_tokens( - [create_chat_message("user", user_input)], model - ) # Account for user input (appended later) - - while next_message_to_add_index >= 0: - # print (f"CURRENT TOKENS USED: {current_tokens_used}") - message_to_add = full_message_history[next_message_to_add_index] - - tokens_to_add = token_counter.count_message_tokens( - [message_to_add], model - ) - if current_tokens_used + tokens_to_add > send_token_limit: - break - - # Add the most recent message to the start of the current context, - # after the two system prompts. - current_context.insert( - insertion_index, full_message_history[next_message_to_add_index] - ) - - # Count the currently used tokens - current_tokens_used += tokens_to_add - - # Move to the next most recent message in the full message history - next_message_to_add_index -= 1 - - # Append user input, the length of this is accounted for above - current_context.extend([create_chat_message("user", user_input)]) - - # Calculate remaining tokens - tokens_remaining = token_limit - current_tokens_used - # assert tokens_remaining >= 0, "Tokens remaining is negative. - # This should never happen, please submit a bug report at - # https://www.github.com/Torantulino/Auto-GPT" - - # Debug print the current context - logger.debug(f"Token limit: {token_limit}") - logger.debug(f"Send Token Count: {current_tokens_used}") - logger.debug(f"Tokens remaining for response: {tokens_remaining}") - logger.debug("------------ CONTEXT SENT TO AI ---------------") - for message in current_context: - # Skip printing the prompt - if message["role"] == "system" and message["content"] == prompt: - continue - logger.debug(f"{message['role'].capitalize()}: {message['content']}") - logger.debug("") - logger.debug("----------- END OF CONTEXT ----------------") - - # TODO: use a model defined elsewhere, so that model can contain - # temperature and other settings we care about - assistant_reply = create_chat_completion( - model=model, - messages=current_context, - max_tokens=tokens_remaining, - ) - - # Update full message history - full_message_history.append(create_chat_message("user", user_input)) - full_message_history.append( - create_chat_message("assistant", assistant_reply) - ) - - return assistant_reply - except RateLimitError: - # TODO: When we switch to langchain, this is built in - print("Error: ", "API Rate Limit Reached. Waiting 10 seconds...") - time.sleep(10) diff --git a/spaces/florim/MedGPT/autogpt/promptgenerator.py b/spaces/florim/MedGPT/autogpt/promptgenerator.py deleted file mode 100644 index 0ad7046a0c41dab356abcd0151b65890e5544cd2..0000000000000000000000000000000000000000 --- a/spaces/florim/MedGPT/autogpt/promptgenerator.py +++ /dev/null @@ -1,138 +0,0 @@ -""" A module for generating custom prompt strings.""" -from __future__ import annotations - -import json -from typing import Any - - -class PromptGenerator: - """ - A class for generating custom prompt strings based on constraints, commands, - resources, and performance evaluations. - """ - - def __init__(self) -> None: - """ - Initialize the PromptGenerator object with empty lists of constraints, - commands, resources, and performance evaluations. - """ - self.constraints = [] - self.commands = [] - self.resources = [] - self.performance_evaluation = [] - self.response_format = { - "thoughts": { - "text": "thought", - "reasoning": "reasoning", - "plan": "- short bulleted\n- list that conveys\n- long-term plan", - "criticism": "constructive self-criticism", - "speak": "thoughts summary to say to user", - }, - "command": {"name": "command name", "args": {"arg name": "value"}}, - } - - def add_constraint(self, constraint: str) -> None: - """ - Add a constraint to the constraints list. - - Args: - constraint (str): The constraint to be added. - """ - self.constraints.append(constraint) - - def add_command(self, command_label: str, command_name: str, args=None) -> None: - """ - Add a command to the commands list with a label, name, and optional arguments. - - Args: - command_label (str): The label of the command. - command_name (str): The name of the command. - args (dict, optional): A dictionary containing argument names and their - values. Defaults to None. - """ - if args is None: - args = {} - - command_args = {arg_key: arg_value for arg_key, arg_value in args.items()} - - command = { - "label": command_label, - "name": command_name, - "args": command_args, - } - - self.commands.append(command) - - def _generate_command_string(self, command: dict[str, Any]) -> str: - """ - Generate a formatted string representation of a command. - - Args: - command (dict): A dictionary containing command information. - - Returns: - str: The formatted command string. - """ - args_string = ", ".join( - f'"{key}": "{value}"' for key, value in command["args"].items() - ) - return f'{command["label"]}: "{command["name"]}", args: {args_string}' - - def add_resource(self, resource: str) -> None: - """ - Add a resource to the resources list. - - Args: - resource (str): The resource to be added. - """ - self.resources.append(resource) - - def add_performance_evaluation(self, evaluation: str) -> None: - """ - Add a performance evaluation item to the performance_evaluation list. - - Args: - evaluation (str): The evaluation item to be added. - """ - self.performance_evaluation.append(evaluation) - - def _generate_numbered_list(self, items: list[Any], item_type="list") -> str: - """ - Generate a numbered list from given items based on the item_type. - - Args: - items (list): A list of items to be numbered. - item_type (str, optional): The type of items in the list. - Defaults to 'list'. - - Returns: - str: The formatted numbered list. - """ - if item_type == "command": - return "\n".join( - f"{i+1}. {self._generate_command_string(item)}" - for i, item in enumerate(items) - ) - else: - return "\n".join(f"{i+1}. {item}" for i, item in enumerate(items)) - - def generate_prompt_string(self) -> str: - """ - Generate a prompt string based on the constraints, commands, resources, - and performance evaluations. - - Returns: - str: The generated prompt string. - """ - formatted_response_format = json.dumps(self.response_format, indent=4) - return ( - f"Constraints:\n{self._generate_numbered_list(self.constraints)}\n\n" - "Commands:\n" - f"{self._generate_numbered_list(self.commands, item_type='command')}\n\n" - f"Resources:\n{self._generate_numbered_list(self.resources)}\n\n" - "Performance Evaluation:\n" - f"{self._generate_numbered_list(self.performance_evaluation)}\n\n" - "You should only respond in JSON format as described below \nResponse" - f" Format: \n{formatted_response_format} \nEnsure the response can be" - " parsed by Python json.loads" - ) diff --git a/spaces/florim/MedGPT/tests/smoke_test.py b/spaces/florim/MedGPT/tests/smoke_test.py deleted file mode 100644 index 1b9d643fc21f3703384a2bb4f2bd1d725f4dd418..0000000000000000000000000000000000000000 --- a/spaces/florim/MedGPT/tests/smoke_test.py +++ /dev/null @@ -1,59 +0,0 @@ -"""Smoke test for the autogpt package.""" -import os -import subprocess -import sys - -import pytest - -from autogpt.commands.file_operations import delete_file, read_file - - -@pytest.mark.integration_test -def test_write_file() -> None: - """ - Test case to check if the write_file command can successfully write 'Hello World' to a file - named 'hello_world.txt'. - - Read the current ai_settings.yaml file and store its content. - """ - env_vars = {"MEMORY_BACKEND": "no_memory", "TEMPERATURE": "0"} - ai_settings = None - if os.path.exists("ai_settings.yaml"): - with open("ai_settings.yaml", "r") as f: - ai_settings = f.read() - os.remove("ai_settings.yaml") - - try: - if os.path.exists("hello_world.txt"): - # Clean up any existing 'hello_world.txt' file before testing. - delete_file("hello_world.txt") - # Prepare input data for the test. - input_data = """write_file-GPT -an AI designed to use the write_file command to write 'Hello World' into a file named "hello_world.txt" and then use the task_complete command to complete the task. -Use the write_file command to write 'Hello World' into a file named "hello_world.txt". -Use the task_complete command to complete the task. -Do not use any other commands. - -y -5 -EOF""" - command = f"{sys.executable} -m autogpt" - - # Execute the script with the input data. - process = subprocess.Popen( - command, - stdin=subprocess.PIPE, - shell=True, - env={**os.environ, **env_vars}, - ) - process.communicate(input_data.encode()) - - # Read the content of the 'hello_world.txt' file created during the test. - content = read_file("hello_world.txt") - finally: - if ai_settings: - # Restore the original ai_settings.yaml file. - with open("ai_settings.yaml", "w") as f: - f.write(ai_settings) - - # Check if the content of the 'hello_world.txt' file is equal to 'Hello World'. - assert content == "Hello World", f"Expected 'Hello World', got {content}" diff --git a/spaces/flowers-team/SocialAISchool/gym-minigrid/gym_minigrid/social_ai_envs/socialaigrammar.py b/spaces/flowers-team/SocialAISchool/gym-minigrid/gym_minigrid/social_ai_envs/socialaigrammar.py deleted file mode 100644 index eaa88d5a70c9bafad255087c3a4a52dce94c5632..0000000000000000000000000000000000000000 --- a/spaces/flowers-team/SocialAISchool/gym-minigrid/gym_minigrid/social_ai_envs/socialaigrammar.py +++ /dev/null @@ -1,52 +0,0 @@ -import gym.spaces as spaces -from enum import IntEnum - -# Enumeration of possible actions -class SocialAIActions(IntEnum): - # Turn left, turn right, move forward - left = 0 - right = 1 - forward = 2 - - # no pickup-drop - # # Pick up an object - # pickup = 3 - # # Drop an object - # drop = 4 - - # Toggle/activate an object - toggle = 3 - - # Done completing task - done = 4 - - -class SocialAIGrammar(object): - - templates = ["Where is", "Help", "Close", "How are"] - things = [ - "please", "the exit", "the wall", "you", "the ceiling", "the window", "the entrance", "the closet", - "the drawer", "the fridge", "the floor", "the lamp", "the trash can", "the chair", "the bed", "the sofa" - ] - assert len(templates)*len(things) == 64 - print("language complexity {}:".format(len(templates)*len(things))) - - grammar_action_space = spaces.MultiDiscrete([len(templates), len(things)]) - - @classmethod - def get_action(cls, template, thing): - return [cls.templates.index(template), cls.things.index(thing)] - @classmethod - def construct_utterance(cls, action): - return cls.templates[int(action[0])] + " " + cls.things[int(action[1])] + " " - - @classmethod - def contains_utterance(cls, utterance): - for t in range(len(cls.templates)): - for th in range(len(cls.things)): - if utterance == cls.construct_utterance([t, th]): - return True - return False - -SocialAIActionSpace = spaces.MultiDiscrete([len(SocialAIActions), - *SocialAIGrammar.grammar_action_space.nvec]) diff --git a/spaces/georgefen/Face-Landmark-ControlNet/annotator/uniformer/mmseg/models/utils/make_divisible.py b/spaces/georgefen/Face-Landmark-ControlNet/annotator/uniformer/mmseg/models/utils/make_divisible.py deleted file mode 100644 index 75ad756052529f52fe83bb95dd1f0ecfc9a13078..0000000000000000000000000000000000000000 --- a/spaces/georgefen/Face-Landmark-ControlNet/annotator/uniformer/mmseg/models/utils/make_divisible.py +++ /dev/null @@ -1,27 +0,0 @@ -def make_divisible(value, divisor, min_value=None, min_ratio=0.9): - """Make divisible function. - - This function rounds the channel number to the nearest value that can be - divisible by the divisor. It is taken from the original tf repo. It ensures - that all layers have a channel number that is divisible by divisor. It can - be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py # noqa - - Args: - value (int): The original channel number. - divisor (int): The divisor to fully divide the channel number. - min_value (int): The minimum value of the output channel. - Default: None, means that the minimum value equal to the divisor. - min_ratio (float): The minimum ratio of the rounded channel number to - the original channel number. Default: 0.9. - - Returns: - int: The modified output channel number. - """ - - if min_value is None: - min_value = divisor - new_value = max(min_value, int(value + divisor / 2) // divisor * divisor) - # Make sure that round down does not go down by more than (1-min_ratio). - if new_value < min_ratio * value: - new_value += divisor - return new_value diff --git a/spaces/giswqs/solara-geospatial/Dockerfile b/spaces/giswqs/solara-geospatial/Dockerfile deleted file mode 100644 index 271b19ce6fd8f70d42243166136a200328b1fd0f..0000000000000000000000000000000000000000 --- a/spaces/giswqs/solara-geospatial/Dockerfile +++ /dev/null @@ -1,21 +0,0 @@ -FROM jupyter/base-notebook:latest - -RUN mamba install -c conda-forge leafmap geopandas localtileserver -y && \ - fix-permissions "${CONDA_DIR}" && \ - fix-permissions "/home/${NB_USER}" - -COPY requirements.txt . -RUN pip install -r requirements.txt - -RUN mkdir ./pages -COPY /pages ./pages - -ENV PROJ_LIB='/opt/conda/share/proj' - -USER root -RUN chown -R ${NB_UID} ${HOME} -USER ${NB_USER} - -EXPOSE 8765 - -CMD ["solara", "run", "./pages", "--host=0.0.0.0"] diff --git a/spaces/gligen/demo/gligen/create_meta.py b/spaces/gligen/demo/gligen/create_meta.py deleted file mode 100644 index 7512c6d377df98db7e17515a7143b7a4ef7d5f32..0000000000000000000000000000000000000000 --- a/spaces/gligen/demo/gligen/create_meta.py +++ /dev/null @@ -1,170 +0,0 @@ -CKPTS = [ - - dict( - path="/home/chunyl/azure_mount/yuhengdb/fine_tune_ldm/version5_branch6_output/GoldG+SBU+CC3M+CC12M+O365/second_stage_drop_both/tag01/checkpoint_00450001.pth", - feature_type=['before','after_reproject'], - save_folder_name="v5b6_drop_both", - ), - - - # dict( - # path="/home/v-yuhengli/blobfuse/output/fine_tune_ldm/version5_branch6_output/GoldG+SBU+CC3M+CC12M+O365/second_stage_drop_none/tag00/checkpoint_00165001.pth", - # feature_type=['before','after_reproject'], - # save_folder_name="v5b6_drop_none", - # ), - - - - - -] - - - -# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = # - - - - - - - - - # if meta["has_image_mask"] == 0: - # image_embeddings = text_embeddings - # if meta["has_text_mask"] == 0: - # text_embeddings = image_embeddings - - # out = { - # "boxes" : boxes.unsqueeze(0).repeat(batch,1,1), - # "masks" : masks.unsqueeze(0).repeat(batch,1), - # "text_masks" : masks.unsqueeze(0).repeat(batch,1), - # "image_masks" : masks.unsqueeze(0).repeat(batch,1), - # "text_embeddings" : text_embeddings.unsqueeze(0).repeat(batch,1,1), - # "image_embeddings" : image_embeddings.unsqueeze(0).repeat(batch,1,1) - # } - - - - - - - -META = [ - - - dict( - prompt = "a teddy bear sitting next to a red bird", - phrases = ['a teddy bear', 'a red bird'], - images = ['images/teddy.jpg', 'images/red_bird.jpg'], - locations = [ [0.0,0.09,0.33,0.76], [0.55,0.11,1.0,0.8] ], - alpha_type = [1.0, 0, 0.0], - has_text_mask = 1, - has_image_mask = 0, - save_folder_name="teddy_bird_1_1" - ), - - - # dict( - # prompt = "a teddy bear sitting next to a bird", - # phrases = ['a teddy bear', 'a bird'], - # images = ['images/teddy.jpg', 'images/red_bird.jpg'], - # locations = [ [0.0,0.09,0.33,0.76], [0.55,0.11,1.0,0.8] ], - # alpha_type = [1.0, 0, 0.0], - # has_text_mask = 1, - # has_image_mask = 1, - # save_folder_name="teddy_bird_1_1" - # ), - - - # dict( - # prompt = "a teddy bear sitting next to a bird", - # phrases = ['a teddy bear', 'a bird'], - # images = ['images/teddy.jpg', 'images/red_bird.jpg'], - # locations = [ [0.0,0.09,0.33,0.76], [0.55,0.11,1.0,0.8] ], - # alpha_type = [0.5, 0, 0.5], - # has_text_mask = 1, - # has_image_mask = 0, - # save_folder_name="teddy_bird_1_0" - # ), - - # dict( - # prompt = "", - # phrases = ['a teddy bear', 'an umbrella'], - # images = ['images/teddy.jpg', 'images/umbrella.png'], - # locations = [ [0.0,0.09,0.33,0.76], [0.55,0.11,1.0,0.8] ], - # alpha_type = [1.0, 0, 0.0], - # has_text_mask = 1, - # has_image_mask = 1, - # save_folder_name="empty_teddy_umbrella_1_1" - # ), - - # dict( - # prompt = "hello kitty and bird hybrid", - # phrases = ['a hello kitty', 'a hello kitty'], - # images = ['images/red_bird.jpg', 'images/red_bird.jpg'], - # locations = [ [0.0,0.09,0.33,0.76], [0.55,0.11,1.0,0.8] ], - # has_text_mask = 1, - # has_image_mask = 1, - # save_folder_name="hello+bird_1_1" - # ), - - # dict( - # prompt = "hello kitty and teddy bear hybrid", - # phrases = ['a hello kitty', 'a hello kitty'], - # images = ['images/teddy.jpg', 'images/teddy.jpg'], - # locations = [ [0.0,0.09,0.33,0.76], [0.55,0.11,1.0,0.8] ], - # has_text_mask = 1, - # has_image_mask = 1, - # save_folder_name="hello+teddy_1_1" - # ), - - # dict( - # prompt = "bird and hello kitty hybrid", - # phrases = ['a bird', 'a bird'], - # images = ['images/hello.jpg', 'images/hello.jpg'], - # locations = [ [0.0,0.09,0.33,0.76], [0.55,0.11,1.0,0.8] ], - # alpha_type = [1.0, 0, 0.0], - # has_text_mask = 1, - # has_image_mask = 0.5, - # save_folder_name="bird+hello_1_1" - # ), - - - - # dict( - # prompt = "a deer standing in front of a brick house in the woods, anime, oil painting, high resolution, cottagecore, ghibli inspired, 4k", - # phrases = ['a deer'], - # images = ['images/sky.jpg'], - # locations = [ [0.0,0.5,0.5,0.9] ], - # alpha_type = [1, 0, 0], - # has_text_mask = 1, - # has_image_mask = 1, - # save_folder_name="deer_sky" - # ), - - - # dict( - # prompt = "A woman sitting in a restaurant with a slice of pizza in front of her", - # phrases = ['dining table', 'pizza', 'person', 'wall', 'car', 'paper', 'chair', 'window', 'bottle', 'cup'], - # images = ['images/hello.jpg','images/hello.jpg','images/hello.jpg','images/hello.jpg','images/hello.jpg','images/hello.jpg','images/hello.jpg','images/hello.jpg','images/hello.jpg','images/hello.jpg'], - # locations = [ [0.0030, 0.3589, 1.0000, 1.0000], - # [0.0779, 0.6744, 0.9768, 1.0000], - # [0.2236, 0.0000, 0.7809, 0.4352], - # [0.0000, 0.0000, 0.4313, 0.4505], - # [0.6275, 0.1050, 0.9444, 0.2497], - # [0.0000, 0.3859, 0.1250, 0.6922], - # [0.7137, 0.2389, 0.8540, 0.4549], - # [0.0000, 0.0000, 0.4667, 0.0630], - # [0.3822, 0.4235, 0.4932, 0.6575], - # [0.6616, 0.3617, 0.7880, 0.5165] ], - # alpha_type = [0.0, 0, 1.0], - # has_text_mask = 1, - # has_image_mask = 0, - # save_folder_name="pizza_1_0" - # ), - - - - -] \ No newline at end of file diff --git a/spaces/gngpostalsrvc/Hyderabad_India_AI_Soft_skills/README.md b/spaces/gngpostalsrvc/Hyderabad_India_AI_Soft_skills/README.md deleted file mode 100644 index 1aa4043b311019ae56f0dd10ea5232fcdd0219cd..0000000000000000000000000000000000000000 --- a/spaces/gngpostalsrvc/Hyderabad_India_AI_Soft_skills/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Hyderabad India AI Soft Skills -emoji: šŸ‘ -colorFrom: purple -colorTo: indigo -sdk: gradio -sdk_version: 3.1.7 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/gotiQspiryo/whisper-ui/examples/Adobe Acrobat Xi Pro 11 Full Crack Patch Download ((NEW)).md b/spaces/gotiQspiryo/whisper-ui/examples/Adobe Acrobat Xi Pro 11 Full Crack Patch Download ((NEW)).md deleted file mode 100644 index 9a190e4275cba80ae55bfce335fd89ad67c00144..0000000000000000000000000000000000000000 --- a/spaces/gotiQspiryo/whisper-ui/examples/Adobe Acrobat Xi Pro 11 Full Crack Patch Download ((NEW)).md +++ /dev/null @@ -1,6 +0,0 @@ -

          Adobe Acrobat Xi Pro 11 Full Crack Patch Download


          DOWNLOAD ---> https://urlgoal.com/2uyMdx



          -
          - aaccfb2cb3
          -
          -
          -

          diff --git a/spaces/gotiQspiryo/whisper-ui/examples/Everything Leads To You Nina Lacour Epub 53.md b/spaces/gotiQspiryo/whisper-ui/examples/Everything Leads To You Nina Lacour Epub 53.md deleted file mode 100644 index 28c288a0c9995dd4c253aab47d7e0de5e77d4962..0000000000000000000000000000000000000000 --- a/spaces/gotiQspiryo/whisper-ui/examples/Everything Leads To You Nina Lacour Epub 53.md +++ /dev/null @@ -1,6 +0,0 @@ -

          everything leads to you nina lacour epub 53


          DOWNLOADhttps://urlgoal.com/2uyMAI



          -
          - aaccfb2cb3
          -
          -
          -

          diff --git a/spaces/gradio/HuBERT/examples/roberta/preprocess_GLUE_tasks.sh b/spaces/gradio/HuBERT/examples/roberta/preprocess_GLUE_tasks.sh deleted file mode 100644 index 7f215a3b53e1c4a7b1f0320102915a49d84a5015..0000000000000000000000000000000000000000 --- a/spaces/gradio/HuBERT/examples/roberta/preprocess_GLUE_tasks.sh +++ /dev/null @@ -1,185 +0,0 @@ -#!/bin/bash -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - - -# raw glue data as downloaded by glue download script (https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e) -if [[ $# -ne 2 ]]; then - echo "Run as following:" - echo "./examples/roberta/preprocess_GLUE_tasks.sh " - exit 1 -fi - -GLUE_DATA_FOLDER=$1 - -# download bpe encoder.json, vocabulary and fairseq dictionary -wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json' -wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe' -wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/dict.txt' - -TASKS=$2 # QQP - -if [ "$TASKS" = "ALL" ] -then - TASKS="QQP MNLI QNLI MRPC RTE STS-B SST-2 CoLA" -fi - -for TASK in $TASKS -do - echo "Preprocessing $TASK" - - TASK_DATA_FOLDER="$GLUE_DATA_FOLDER/$TASK" - echo "Raw data as downloaded from glue website: $TASK_DATA_FOLDER" - - SPLITS="train dev test" - INPUT_COUNT=2 - if [ "$TASK" = "QQP" ] - then - INPUT_COLUMNS=( 4 5 ) - TEST_INPUT_COLUMNS=( 2 3 ) - LABEL_COLUMN=6 - elif [ "$TASK" = "MNLI" ] - then - SPLITS="train dev_matched dev_mismatched test_matched test_mismatched" - INPUT_COLUMNS=( 9 10 ) - TEST_INPUT_COLUMNS=( 9 10 ) - DEV_LABEL_COLUMN=16 - LABEL_COLUMN=12 - elif [ "$TASK" = "QNLI" ] - then - INPUT_COLUMNS=( 2 3 ) - TEST_INPUT_COLUMNS=( 2 3 ) - LABEL_COLUMN=4 - elif [ "$TASK" = "MRPC" ] - then - INPUT_COLUMNS=( 4 5 ) - TEST_INPUT_COLUMNS=( 4 5 ) - LABEL_COLUMN=1 - elif [ "$TASK" = "RTE" ] - then - INPUT_COLUMNS=( 2 3 ) - TEST_INPUT_COLUMNS=( 2 3 ) - LABEL_COLUMN=4 - elif [ "$TASK" = "STS-B" ] - then - INPUT_COLUMNS=( 8 9 ) - TEST_INPUT_COLUMNS=( 8 9 ) - LABEL_COLUMN=10 - # Following are single sentence tasks. - elif [ "$TASK" = "SST-2" ] - then - INPUT_COLUMNS=( 1 ) - TEST_INPUT_COLUMNS=( 2 ) - LABEL_COLUMN=2 - INPUT_COUNT=1 - elif [ "$TASK" = "CoLA" ] - then - INPUT_COLUMNS=( 4 ) - TEST_INPUT_COLUMNS=( 2 ) - LABEL_COLUMN=2 - INPUT_COUNT=1 - fi - - # Strip out header and filter lines that don't have expected number of fields. - rm -rf "$TASK_DATA_FOLDER/processed" - mkdir -p "$TASK_DATA_FOLDER/processed" - for SPLIT in $SPLITS - do - # CoLA train and dev doesn't have header. - if [[ ( "$TASK" = "CoLA") && ( "$SPLIT" != "test" ) ]] - then - cp "$TASK_DATA_FOLDER/$SPLIT.tsv" "$TASK_DATA_FOLDER/processed/$SPLIT.tsv.temp"; - else - tail -n +2 "$TASK_DATA_FOLDER/$SPLIT.tsv" > "$TASK_DATA_FOLDER/processed/$SPLIT.tsv.temp"; - fi - - # Remove unformatted lines from train and dev files for QQP dataset. - if [[ ( "$TASK" = "QQP") && ( "$SPLIT" != "test" ) ]] - then - awk -F '\t' -v NUM_FIELDS=6 'NF==NUM_FIELDS{print}{}' "$TASK_DATA_FOLDER/processed/$SPLIT.tsv.temp" > "$TASK_DATA_FOLDER/processed/$SPLIT.tsv"; - else - cp "$TASK_DATA_FOLDER/processed/$SPLIT.tsv.temp" "$TASK_DATA_FOLDER/processed/$SPLIT.tsv"; - fi - rm "$TASK_DATA_FOLDER/processed/$SPLIT.tsv.temp"; - done - - # Split into input0, input1 and label - for SPLIT in $SPLITS - do - for INPUT_TYPE in $(seq 0 $((INPUT_COUNT-1))) - do - if [[ "$SPLIT" != test* ]] - then - COLUMN_NUMBER=${INPUT_COLUMNS[$INPUT_TYPE]} - else - COLUMN_NUMBER=${TEST_INPUT_COLUMNS[$INPUT_TYPE]} - fi - cut -f"$COLUMN_NUMBER" "$TASK_DATA_FOLDER/processed/$SPLIT.tsv" > "$TASK_DATA_FOLDER/processed/$SPLIT.raw.input$INPUT_TYPE"; - done - - if [[ "$SPLIT" != test* ]] - then - if [ "$TASK" = "MNLI" ] && [ "$SPLIT" != "train" ] - then - cut -f"$DEV_LABEL_COLUMN" "$TASK_DATA_FOLDER/processed/$SPLIT.tsv" > "$TASK_DATA_FOLDER/processed/$SPLIT.label"; - else - cut -f"$LABEL_COLUMN" "$TASK_DATA_FOLDER/processed/$SPLIT.tsv" > "$TASK_DATA_FOLDER/processed/$SPLIT.label"; - fi - fi - - # BPE encode. - for INPUT_TYPE in $(seq 0 $((INPUT_COUNT-1))) - do - LANG="input$INPUT_TYPE" - echo "BPE encoding $SPLIT/$LANG" - python -m examples.roberta.multiprocessing_bpe_encoder \ - --encoder-json encoder.json \ - --vocab-bpe vocab.bpe \ - --inputs "$TASK_DATA_FOLDER/processed/$SPLIT.raw.$LANG" \ - --outputs "$TASK_DATA_FOLDER/processed/$SPLIT.$LANG" \ - --workers 60 \ - --keep-empty; - done - done - - # Remove output directory. - rm -rf "$TASK-bin" - - DEVPREF="$TASK_DATA_FOLDER/processed/dev.LANG" - TESTPREF="$TASK_DATA_FOLDER/processed/test.LANG" - if [ "$TASK" = "MNLI" ] - then - DEVPREF="$TASK_DATA_FOLDER/processed/dev_matched.LANG,$TASK_DATA_FOLDER/processed/dev_mismatched.LANG" - TESTPREF="$TASK_DATA_FOLDER/processed/test_matched.LANG,$TASK_DATA_FOLDER/processed/test_mismatched.LANG" - fi - - # Run fairseq preprocessing: - for INPUT_TYPE in $(seq 0 $((INPUT_COUNT-1))) - do - LANG="input$INPUT_TYPE" - fairseq-preprocess \ - --only-source \ - --trainpref "$TASK_DATA_FOLDER/processed/train.$LANG" \ - --validpref "${DEVPREF//LANG/$LANG}" \ - --testpref "${TESTPREF//LANG/$LANG}" \ - --destdir "$TASK-bin/$LANG" \ - --workers 60 \ - --srcdict dict.txt; - done - if [[ "$TASK" != "STS-B" ]] - then - fairseq-preprocess \ - --only-source \ - --trainpref "$TASK_DATA_FOLDER/processed/train.label" \ - --validpref "${DEVPREF//LANG/label}" \ - --destdir "$TASK-bin/label" \ - --workers 60; - else - # For STS-B output range is converted to be between: [0.0, 1.0] - mkdir -p "$TASK-bin/label" - awk '{print $1 / 5.0 }' "$TASK_DATA_FOLDER/processed/train.label" > "$TASK-bin/label/train.label" - awk '{print $1 / 5.0 }' "$TASK_DATA_FOLDER/processed/dev.label" > "$TASK-bin/label/valid.label" - fi -done diff --git a/spaces/grisiemjahand/Image-and-3D-Model-Creator/PIFu/lib/model/HGFilters.py b/spaces/grisiemjahand/Image-and-3D-Model-Creator/PIFu/lib/model/HGFilters.py deleted file mode 100644 index 870b3c43c82d66df001eb1bc24af9ce21ec60c83..0000000000000000000000000000000000000000 --- a/spaces/grisiemjahand/Image-and-3D-Model-Creator/PIFu/lib/model/HGFilters.py +++ /dev/null @@ -1,146 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F -from ..net_util import * - - -class HourGlass(nn.Module): - def __init__(self, num_modules, depth, num_features, norm='batch'): - super(HourGlass, self).__init__() - self.num_modules = num_modules - self.depth = depth - self.features = num_features - self.norm = norm - - self._generate_network(self.depth) - - def _generate_network(self, level): - self.add_module('b1_' + str(level), ConvBlock(self.features, self.features, norm=self.norm)) - - self.add_module('b2_' + str(level), ConvBlock(self.features, self.features, norm=self.norm)) - - if level > 1: - self._generate_network(level - 1) - else: - self.add_module('b2_plus_' + str(level), ConvBlock(self.features, self.features, norm=self.norm)) - - self.add_module('b3_' + str(level), ConvBlock(self.features, self.features, norm=self.norm)) - - def _forward(self, level, inp): - # Upper branch - up1 = inp - up1 = self._modules['b1_' + str(level)](up1) - - # Lower branch - low1 = F.avg_pool2d(inp, 2, stride=2) - low1 = self._modules['b2_' + str(level)](low1) - - if level > 1: - low2 = self._forward(level - 1, low1) - else: - low2 = low1 - low2 = self._modules['b2_plus_' + str(level)](low2) - - low3 = low2 - low3 = self._modules['b3_' + str(level)](low3) - - # NOTE: for newer PyTorch (1.3~), it seems that training results are degraded due to implementation diff in F.grid_sample - # if the pretrained model behaves weirdly, switch with the commented line. - # NOTE: I also found that "bicubic" works better. - up2 = F.interpolate(low3, scale_factor=2, mode='bicubic', align_corners=True) - # up2 = F.interpolate(low3, scale_factor=2, mode='nearest) - - return up1 + up2 - - def forward(self, x): - return self._forward(self.depth, x) - - -class HGFilter(nn.Module): - def __init__(self, opt): - super(HGFilter, self).__init__() - self.num_modules = opt.num_stack - - self.opt = opt - - # Base part - self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3) - - if self.opt.norm == 'batch': - self.bn1 = nn.BatchNorm2d(64) - elif self.opt.norm == 'group': - self.bn1 = nn.GroupNorm(32, 64) - - if self.opt.hg_down == 'conv64': - self.conv2 = ConvBlock(64, 64, self.opt.norm) - self.down_conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1) - elif self.opt.hg_down == 'conv128': - self.conv2 = ConvBlock(64, 128, self.opt.norm) - self.down_conv2 = nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1) - elif self.opt.hg_down == 'ave_pool': - self.conv2 = ConvBlock(64, 128, self.opt.norm) - else: - raise NameError('Unknown Fan Filter setting!') - - self.conv3 = ConvBlock(128, 128, self.opt.norm) - self.conv4 = ConvBlock(128, 256, self.opt.norm) - - # Stacking part - for hg_module in range(self.num_modules): - self.add_module('m' + str(hg_module), HourGlass(1, opt.num_hourglass, 256, self.opt.norm)) - - self.add_module('top_m_' + str(hg_module), ConvBlock(256, 256, self.opt.norm)) - self.add_module('conv_last' + str(hg_module), - nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0)) - if self.opt.norm == 'batch': - self.add_module('bn_end' + str(hg_module), nn.BatchNorm2d(256)) - elif self.opt.norm == 'group': - self.add_module('bn_end' + str(hg_module), nn.GroupNorm(32, 256)) - - self.add_module('l' + str(hg_module), nn.Conv2d(256, - opt.hourglass_dim, kernel_size=1, stride=1, padding=0)) - - if hg_module < self.num_modules - 1: - self.add_module( - 'bl' + str(hg_module), nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0)) - self.add_module('al' + str(hg_module), nn.Conv2d(opt.hourglass_dim, - 256, kernel_size=1, stride=1, padding=0)) - - def forward(self, x): - x = F.relu(self.bn1(self.conv1(x)), True) - tmpx = x - if self.opt.hg_down == 'ave_pool': - x = F.avg_pool2d(self.conv2(x), 2, stride=2) - elif self.opt.hg_down in ['conv64', 'conv128']: - x = self.conv2(x) - x = self.down_conv2(x) - else: - raise NameError('Unknown Fan Filter setting!') - - normx = x - - x = self.conv3(x) - x = self.conv4(x) - - previous = x - - outputs = [] - for i in range(self.num_modules): - hg = self._modules['m' + str(i)](previous) - - ll = hg - ll = self._modules['top_m_' + str(i)](ll) - - ll = F.relu(self._modules['bn_end' + str(i)] - (self._modules['conv_last' + str(i)](ll)), True) - - # Predict heatmaps - tmp_out = self._modules['l' + str(i)](ll) - outputs.append(tmp_out) - - if i < self.num_modules - 1: - ll = self._modules['bl' + str(i)](ll) - tmp_out_ = self._modules['al' + str(i)](tmp_out) - previous = previous + ll + tmp_out_ - - return outputs, tmpx.detach(), normx diff --git a/spaces/gsaivinay/Llama-2-13B-GGML-UI/components/Promptbar/PromptBar.context.tsx b/spaces/gsaivinay/Llama-2-13B-GGML-UI/components/Promptbar/PromptBar.context.tsx deleted file mode 100644 index 80f9f5b18b9315f7d1db2d53c52b7cad04b92f53..0000000000000000000000000000000000000000 --- a/spaces/gsaivinay/Llama-2-13B-GGML-UI/components/Promptbar/PromptBar.context.tsx +++ /dev/null @@ -1,19 +0,0 @@ -import { Dispatch, createContext } from 'react'; - -import { ActionType } from '@/hooks/useCreateReducer'; - -import { Prompt } from '@/types/prompt'; - -import { PromptbarInitialState } from './Promptbar.state'; - -export interface PromptbarContextProps { - state: PromptbarInitialState; - dispatch: Dispatch>; - handleCreatePrompt: () => void; - handleDeletePrompt: (prompt: Prompt) => void; - handleUpdatePrompt: (prompt: Prompt) => void; -} - -const PromptbarContext = createContext(undefined!); - -export default PromptbarContext; diff --git a/spaces/gulabpatel/GFP_GAN/inference_gfpgan.py b/spaces/gulabpatel/GFP_GAN/inference_gfpgan.py deleted file mode 100644 index a426cfc7b9e67aef84e0f3c0666e09d875ebb222..0000000000000000000000000000000000000000 --- a/spaces/gulabpatel/GFP_GAN/inference_gfpgan.py +++ /dev/null @@ -1,116 +0,0 @@ -import argparse -import cv2 -import glob -import numpy as np -import os -import torch -from basicsr.utils import imwrite - -from gfpgan import GFPGANer - - -def main(): - """Inference demo for GFPGAN. - """ - parser = argparse.ArgumentParser() - parser.add_argument('--upscale', type=int, default=2, help='The final upsampling scale of the image') - parser.add_argument('--arch', type=str, default='clean', help='The GFPGAN architecture. Option: clean | original') - parser.add_argument('--channel', type=int, default=2, help='Channel multiplier for large networks of StyleGAN2') - parser.add_argument('--model_path', type=str, default='experiments/pretrained_models/GFPGANCleanv1-NoCE-C2.pth') - parser.add_argument('--bg_upsampler', type=str, default='realesrgan', help='background upsampler') - parser.add_argument( - '--bg_tile', type=int, default=400, help='Tile size for background sampler, 0 for no tile during testing') - parser.add_argument('--test_path', type=str, default='inputs/whole_imgs', help='Input folder') - parser.add_argument('--suffix', type=str, default=None, help='Suffix of the restored faces') - parser.add_argument('--only_center_face', action='store_true', help='Only restore the center face') - parser.add_argument('--aligned', action='store_true', help='Input are aligned faces') - parser.add_argument('--paste_back', action='store_false', help='Paste the restored faces back to images') - parser.add_argument('--save_root', type=str, default='results', help='Path to save root') - parser.add_argument( - '--ext', - type=str, - default='auto', - help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs') - args = parser.parse_args() - - args = parser.parse_args() - if args.test_path.endswith('/'): - args.test_path = args.test_path[:-1] - os.makedirs(args.save_root, exist_ok=True) - - # background upsampler - if args.bg_upsampler == 'realesrgan': - if not torch.cuda.is_available(): # CPU - import warnings - warnings.warn('The unoptimized RealESRGAN is very slow on CPU. We do not use it. ' - 'If you really want to use it, please modify the corresponding codes.') - bg_upsampler = None - else: - from basicsr.archs.rrdbnet_arch import RRDBNet - from realesrgan import RealESRGANer - model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2) - bg_upsampler = RealESRGANer( - scale=2, - model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth', - model=model, - tile=args.bg_tile, - tile_pad=10, - pre_pad=0, - half=True) # need to set False in CPU mode - else: - bg_upsampler = None - # set up GFPGAN restorer - restorer = GFPGANer( - model_path=args.model_path, - upscale=args.upscale, - arch=args.arch, - channel_multiplier=args.channel, - bg_upsampler=bg_upsampler) - - img_list = sorted(glob.glob(os.path.join(args.test_path, '*'))) - for img_path in img_list: - # read image - img_name = os.path.basename(img_path) - print(f'Processing {img_name} ...') - basename, ext = os.path.splitext(img_name) - input_img = cv2.imread(img_path, cv2.IMREAD_COLOR) - - # restore faces and background if necessary - cropped_faces, restored_faces, restored_img = restorer.enhance( - input_img, has_aligned=args.aligned, only_center_face=args.only_center_face, paste_back=args.paste_back) - - # save faces - for idx, (cropped_face, restored_face) in enumerate(zip(cropped_faces, restored_faces)): - # save cropped face - save_crop_path = os.path.join(args.save_root, 'cropped_faces', f'{basename}_{idx:02d}.png') - imwrite(cropped_face, save_crop_path) - # save restored face - if args.suffix is not None: - save_face_name = f'{basename}_{idx:02d}_{args.suffix}.png' - else: - save_face_name = f'{basename}_{idx:02d}.png' - save_restore_path = os.path.join(args.save_root, 'restored_faces', save_face_name) - imwrite(restored_face, save_restore_path) - # save comparison image - cmp_img = np.concatenate((cropped_face, restored_face), axis=1) - imwrite(cmp_img, os.path.join(args.save_root, 'cmp', f'{basename}_{idx:02d}.png')) - - # save restored img - if restored_img is not None: - if args.ext == 'auto': - extension = ext[1:] - else: - extension = args.ext - - if args.suffix is not None: - save_restore_path = os.path.join(args.save_root, 'restored_imgs', - f'{basename}_{args.suffix}.{extension}') - else: - save_restore_path = os.path.join(args.save_root, 'restored_imgs', f'{basename}.{extension}') - imwrite(restored_img, save_restore_path) - - print(f'Results are in the [{args.save_root}] folder.') - - -if __name__ == '__main__': - main() diff --git a/spaces/gyugnsu/DragGan-Inversion/PTI/models/StyleCLIP/global_directions/PlayInteractively.py b/spaces/gyugnsu/DragGan-Inversion/PTI/models/StyleCLIP/global_directions/PlayInteractively.py deleted file mode 100644 index 547b08ab2c4373e23711636488145df148d7eb4e..0000000000000000000000000000000000000000 --- a/spaces/gyugnsu/DragGan-Inversion/PTI/models/StyleCLIP/global_directions/PlayInteractively.py +++ /dev/null @@ -1,197 +0,0 @@ - - - -from tkinter import Tk -from PIL import Image, ImageTk -from tkinter.filedialog import askopenfilename -from GUI import View -from Inference import StyleCLIP -import argparse -#%% - - -class PlayInteractively(): #Controller - ''' - followed Model View Controller Design Pattern - - controller, model, view - ''' - def __init__(self,dataset_name='ffhq'): - - self.root = Tk() - self.view=View(self.root) - self.img_ratio=2 - self.style_clip=StyleCLIP(dataset_name) - - self.view.neutral.bind("", self.text_n) - self.view.target.bind("", self.text_t) - self.view.alpha.bind('', self.ChangeAlpha) - self.view.beta.bind('', self.ChangeBeta) - self.view.set_init.bind('', self.SetInit) - self.view.reset.bind('', self.Reset) - self.view.bg.bind('', self.open_img) - - - self.drawn = None - - self.view.target.delete(1.0, "end") - self.view.target.insert("end", self.style_clip.target) -# - self.view.neutral.delete(1.0, "end") - self.view.neutral.insert("end", self.style_clip.neutral) - - - def Reset(self,event): - self.style_clip.GetDt2() - self.style_clip.M.alpha=[0] - - self.view.beta.set(self.style_clip.beta) - self.view.alpha.set(0) - - img=self.style_clip.GetImg() - img=Image.fromarray(img) - img = ImageTk.PhotoImage(img) - self.addImage_m(img) - - - def SetInit(self,event): - codes=self.style_clip.GetCode() - self.style_clip.M.dlatent_tmp=[tmp[:,0] for tmp in codes] - print('set init') - - def ChangeAlpha(self,event): - tmp=self.view.alpha.get() - self.style_clip.M.alpha=[float(tmp)] - - img=self.style_clip.GetImg() - print('manipulate one') - img=Image.fromarray(img) - img = ImageTk.PhotoImage(img) - self.addImage_m(img) - - def ChangeBeta(self,event): - tmp=self.view.beta.get() - self.style_clip.beta=float(tmp) - - img=self.style_clip.GetImg() - print('manipulate one') - img=Image.fromarray(img) - img = ImageTk.PhotoImage(img) - self.addImage_m(img) - - def ChangeDataset(self,event): - - dataset_name=self.view.set_category.get() - - self.style_clip.LoadData(dataset_name) - - self.view.target.delete(1.0, "end") - self.view.target.insert("end", self.style_clip.target) - - self.view.neutral.delete(1.0, "end") - self.view.neutral.insert("end", self.style_clip.neutral) - - def text_t(self,event): - tmp=self.view.target.get("1.0",'end') - tmp=tmp.replace('\n','') - - self.view.target.delete(1.0, "end") - self.view.target.insert("end", tmp) - - print('target',tmp,'###') - self.style_clip.target=tmp - self.style_clip.GetDt2() - self.view.beta.set(self.style_clip.beta) - self.view.alpha.set(3) - self.style_clip.M.alpha=[3] - - img=self.style_clip.GetImg() - print('manipulate one') - img=Image.fromarray(img) - img = ImageTk.PhotoImage(img) - self.addImage_m(img) - - - def text_n(self,event): - tmp=self.view.neutral.get("1.0",'end') - tmp=tmp.replace('\n','') - - self.view.neutral.delete(1.0, "end") - self.view.neutral.insert("end", tmp) - - print('neutral',tmp,'###') - self.style_clip.neutral=tmp - self.view.target.delete(1.0, "end") - self.view.target.insert("end", tmp) - - - def run(self): - self.root.mainloop() - - def addImage(self,img): - self.view.bg.create_image(self.view.width/2, self.view.height/2, image=img, anchor='center') - self.image=img #save a copy of image. if not the image will disappear - - def addImage_m(self,img): - self.view.mani.create_image(512, 512, image=img, anchor='center') - self.image2=img - - - def openfn(self): - filename = askopenfilename(title='open',initialdir='./data/'+self.style_clip.M.dataset_name+'/',filetypes=[("all image format", ".jpg"),("all image format", ".png")]) - return filename - - def open_img(self,event): - x = self.openfn() - print(x) - - - img = Image.open(x) - img2 = img.resize(( 512,512), Image.ANTIALIAS) - img2 = ImageTk.PhotoImage(img2) - self.addImage(img2) - - img = ImageTk.PhotoImage(img) - self.addImage_m(img) - - img_index=x.split('/')[-1].split('.')[0] - img_index=int(img_index) - print(img_index) - self.style_clip.M.img_index=img_index - self.style_clip.M.dlatent_tmp=[tmp[img_index:(img_index+1)] for tmp in self.style_clip.M.dlatents] - - - self.style_clip.GetDt2() - self.view.beta.set(self.style_clip.beta) - self.view.alpha.set(3) - - #%% -if __name__ == "__main__": - parser = argparse.ArgumentParser(description='Process some integers.') - - parser.add_argument('--dataset_name',type=str,default='ffhq', - help='name of dataset, for example, ffhq') - - args = parser.parse_args() - dataset_name=args.dataset_name - - self=PlayInteractively(dataset_name) - self.run() - - - - - - - - - - - - - - - - - - \ No newline at end of file diff --git a/spaces/gyugnsu/DragGan-Inversion/PTI/models/e4e/__init__.py b/spaces/gyugnsu/DragGan-Inversion/PTI/models/e4e/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/h2oai/wave-tour/examples/plot_form.py b/spaces/h2oai/wave-tour/examples/plot_form.py deleted file mode 100644 index b7b5acef81afb01be18cdd128b31d83bc4499331..0000000000000000000000000000000000000000 --- a/spaces/h2oai/wave-tour/examples/plot_form.py +++ /dev/null @@ -1,36 +0,0 @@ -# Plot / Form -# Display a #plot inside a #form. -# --- -from h2o_wave import site, data, ui - -page = site['/demo'] - -page.add('example', ui.form_card( - box='1 1 -1 8', - items=[ - ui.text_xl('This year'), - ui.visualization( - plot=ui.plot([ui.mark(type='interval', x='=profession', y='=salary', y_min=0)]), - data=data(fields='profession salary', rows=[ - ('medicine', 23000), - ('fire fighting', 18000), - ('pedagogy', 24000), - ('psychology', 22500), - ('computer science', 36000), - ], pack=True), - ), - ui.text_xl('Last year'), - ui.visualization( - plot=ui.plot([ui.mark(type='interval', x='=profession', y='=salary', y_min=0)]), - data=data(fields='profession salary', rows=[ - ('medicine', 21000), - ('fire fighting', 17000), - ('pedagogy', 23500), - ('psychology', 22300), - ('computer science', 33000), - ], pack=True) - ), - ], -)) - -page.save() diff --git a/spaces/haakohu/deep_privacy2/dp2/metrics/fid.py b/spaces/haakohu/deep_privacy2/dp2/metrics/fid.py deleted file mode 100644 index 3c8e0e6171fe723aa9f37735a216ec8c9d4e4a8f..0000000000000000000000000000000000000000 --- a/spaces/haakohu/deep_privacy2/dp2/metrics/fid.py +++ /dev/null @@ -1,52 +0,0 @@ -import tops -from dp2 import utils -from pathlib import Path -from torch_fidelity.generative_model_modulewrapper import GenerativeModelModuleWrapper -import torch -import torch_fidelity - - -class GeneratorIteratorWrapper(GenerativeModelModuleWrapper): - - def __init__(self, generator, dataloader, zero_z: bool, n_diverse: int): - if isinstance(generator, utils.EMA): - generator = generator.generator - z_size = generator.z_channels - super().__init__(generator, z_size, "normal", 0) - self.zero_z = zero_z - self.dataloader = iter(dataloader) - self.n_diverse = n_diverse - self.cur_div_idx = 0 - - @torch.no_grad() - def forward(self, z, **kwargs): - if self.cur_div_idx == 0: - self.batch = next(self.dataloader) - if self.zero_z: - z = z.zero_() - self.cur_div_idx += 1 - self.cur_div_idx = 0 if self.cur_div_idx == self.n_diverse else self.cur_div_idx - with torch.cuda.amp.autocast(enabled=tops.AMP()): - img = self.module(**self.batch)["img"] - img = (utils.denormalize_img(img)*255).byte() - return img - - -def compute_fid(generator, dataloader, real_directory, n_source, zero_z, n_diverse): - generator = GeneratorIteratorWrapper(generator, dataloader, zero_z, n_diverse) - batch_size = dataloader.batch_size - num_samples = (n_source * n_diverse) // batch_size * batch_size - assert n_diverse >= 1 - assert (not zero_z) or n_diverse == 1 - assert num_samples % batch_size == 0 - assert n_source <= batch_size * len(dataloader), (batch_size*len(dataloader), n_source, n_diverse) - metrics = torch_fidelity.calculate_metrics( - input1=generator, - input2=real_directory, - cuda=torch.cuda.is_available(), - fid=True, - input2_cache_name="_".join(Path(real_directory).parts) + "_cached", - input1_model_num_samples=int(num_samples), - batch_size=dataloader.batch_size - ) - return metrics["frechet_inception_distance"] diff --git a/spaces/hanzportgas/rvc-models/infer_pack/transforms.py b/spaces/hanzportgas/rvc-models/infer_pack/transforms.py deleted file mode 100644 index a11f799e023864ff7082c1f49c0cc18351a13b47..0000000000000000000000000000000000000000 --- a/spaces/hanzportgas/rvc-models/infer_pack/transforms.py +++ /dev/null @@ -1,209 +0,0 @@ -import torch -from torch.nn import functional as F - -import numpy as np - - -DEFAULT_MIN_BIN_WIDTH = 1e-3 -DEFAULT_MIN_BIN_HEIGHT = 1e-3 -DEFAULT_MIN_DERIVATIVE = 1e-3 - - -def piecewise_rational_quadratic_transform( - inputs, - unnormalized_widths, - unnormalized_heights, - unnormalized_derivatives, - inverse=False, - tails=None, - tail_bound=1.0, - min_bin_width=DEFAULT_MIN_BIN_WIDTH, - min_bin_height=DEFAULT_MIN_BIN_HEIGHT, - min_derivative=DEFAULT_MIN_DERIVATIVE, -): - if tails is None: - spline_fn = rational_quadratic_spline - spline_kwargs = {} - else: - spline_fn = unconstrained_rational_quadratic_spline - spline_kwargs = {"tails": tails, "tail_bound": tail_bound} - - outputs, logabsdet = spline_fn( - inputs=inputs, - unnormalized_widths=unnormalized_widths, - unnormalized_heights=unnormalized_heights, - unnormalized_derivatives=unnormalized_derivatives, - inverse=inverse, - min_bin_width=min_bin_width, - min_bin_height=min_bin_height, - min_derivative=min_derivative, - **spline_kwargs - ) - return outputs, logabsdet - - -def searchsorted(bin_locations, inputs, eps=1e-6): - bin_locations[..., -1] += eps - return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1 - - -def unconstrained_rational_quadratic_spline( - inputs, - unnormalized_widths, - unnormalized_heights, - unnormalized_derivatives, - inverse=False, - tails="linear", - tail_bound=1.0, - min_bin_width=DEFAULT_MIN_BIN_WIDTH, - min_bin_height=DEFAULT_MIN_BIN_HEIGHT, - min_derivative=DEFAULT_MIN_DERIVATIVE, -): - inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound) - outside_interval_mask = ~inside_interval_mask - - outputs = torch.zeros_like(inputs) - logabsdet = torch.zeros_like(inputs) - - if tails == "linear": - unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1)) - constant = np.log(np.exp(1 - min_derivative) - 1) - unnormalized_derivatives[..., 0] = constant - unnormalized_derivatives[..., -1] = constant - - outputs[outside_interval_mask] = inputs[outside_interval_mask] - logabsdet[outside_interval_mask] = 0 - else: - raise RuntimeError("{} tails are not implemented.".format(tails)) - - ( - outputs[inside_interval_mask], - logabsdet[inside_interval_mask], - ) = rational_quadratic_spline( - inputs=inputs[inside_interval_mask], - unnormalized_widths=unnormalized_widths[inside_interval_mask, :], - unnormalized_heights=unnormalized_heights[inside_interval_mask, :], - unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :], - inverse=inverse, - left=-tail_bound, - right=tail_bound, - bottom=-tail_bound, - top=tail_bound, - min_bin_width=min_bin_width, - min_bin_height=min_bin_height, - min_derivative=min_derivative, - ) - - return outputs, logabsdet - - -def rational_quadratic_spline( - inputs, - unnormalized_widths, - unnormalized_heights, - unnormalized_derivatives, - inverse=False, - left=0.0, - right=1.0, - bottom=0.0, - top=1.0, - min_bin_width=DEFAULT_MIN_BIN_WIDTH, - min_bin_height=DEFAULT_MIN_BIN_HEIGHT, - min_derivative=DEFAULT_MIN_DERIVATIVE, -): - if torch.min(inputs) < left or torch.max(inputs) > right: - raise ValueError("Input to a transform is not within its domain") - - num_bins = unnormalized_widths.shape[-1] - - if min_bin_width * num_bins > 1.0: - raise ValueError("Minimal bin width too large for the number of bins") - if min_bin_height * num_bins > 1.0: - raise ValueError("Minimal bin height too large for the number of bins") - - widths = F.softmax(unnormalized_widths, dim=-1) - widths = min_bin_width + (1 - min_bin_width * num_bins) * widths - cumwidths = torch.cumsum(widths, dim=-1) - cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0) - cumwidths = (right - left) * cumwidths + left - cumwidths[..., 0] = left - cumwidths[..., -1] = right - widths = cumwidths[..., 1:] - cumwidths[..., :-1] - - derivatives = min_derivative + F.softplus(unnormalized_derivatives) - - heights = F.softmax(unnormalized_heights, dim=-1) - heights = min_bin_height + (1 - min_bin_height * num_bins) * heights - cumheights = torch.cumsum(heights, dim=-1) - cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0) - cumheights = (top - bottom) * cumheights + bottom - cumheights[..., 0] = bottom - cumheights[..., -1] = top - heights = cumheights[..., 1:] - cumheights[..., :-1] - - if inverse: - bin_idx = searchsorted(cumheights, inputs)[..., None] - else: - bin_idx = searchsorted(cumwidths, inputs)[..., None] - - input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0] - input_bin_widths = widths.gather(-1, bin_idx)[..., 0] - - input_cumheights = cumheights.gather(-1, bin_idx)[..., 0] - delta = heights / widths - input_delta = delta.gather(-1, bin_idx)[..., 0] - - input_derivatives = derivatives.gather(-1, bin_idx)[..., 0] - input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0] - - input_heights = heights.gather(-1, bin_idx)[..., 0] - - if inverse: - a = (inputs - input_cumheights) * ( - input_derivatives + input_derivatives_plus_one - 2 * input_delta - ) + input_heights * (input_delta - input_derivatives) - b = input_heights * input_derivatives - (inputs - input_cumheights) * ( - input_derivatives + input_derivatives_plus_one - 2 * input_delta - ) - c = -input_delta * (inputs - input_cumheights) - - discriminant = b.pow(2) - 4 * a * c - assert (discriminant >= 0).all() - - root = (2 * c) / (-b - torch.sqrt(discriminant)) - outputs = root * input_bin_widths + input_cumwidths - - theta_one_minus_theta = root * (1 - root) - denominator = input_delta + ( - (input_derivatives + input_derivatives_plus_one - 2 * input_delta) - * theta_one_minus_theta - ) - derivative_numerator = input_delta.pow(2) * ( - input_derivatives_plus_one * root.pow(2) - + 2 * input_delta * theta_one_minus_theta - + input_derivatives * (1 - root).pow(2) - ) - logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) - - return outputs, -logabsdet - else: - theta = (inputs - input_cumwidths) / input_bin_widths - theta_one_minus_theta = theta * (1 - theta) - - numerator = input_heights * ( - input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta - ) - denominator = input_delta + ( - (input_derivatives + input_derivatives_plus_one - 2 * input_delta) - * theta_one_minus_theta - ) - outputs = input_cumheights + numerator / denominator - - derivative_numerator = input_delta.pow(2) * ( - input_derivatives_plus_one * theta.pow(2) - + 2 * input_delta * theta_one_minus_theta - + input_derivatives * (1 - theta).pow(2) - ) - logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) - - return outputs, logabsdet diff --git a/spaces/haotieu/en-vi-translation/README.md b/spaces/haotieu/en-vi-translation/README.md deleted file mode 100644 index eb0b1213cdecfcdb660b8728ccf5bf5b434f3a7f..0000000000000000000000000000000000000000 --- a/spaces/haotieu/en-vi-translation/README.md +++ /dev/null @@ -1,37 +0,0 @@ ---- -title: En Vi Translation -emoji: šŸ“‰ -colorFrom: yellow -colorTo: orange -sdk: gradio -app_file: app.py -pinned: false ---- - -# Configuration - -`title`: _string_ -Display title for the Space - -`emoji`: _string_ -Space emoji (emoji-only character allowed) - -`colorFrom`: _string_ -Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) - -`colorTo`: _string_ -Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) - -`sdk`: _string_ -Can be either `gradio` or `streamlit` - -`sdk_version` : _string_ -Only applicable for `streamlit` SDK. -See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions. - -`app_file`: _string_ -Path to your main application file (which contains either `gradio` or `streamlit` Python code). -Path is relative to the root of the repository. - -`pinned`: _boolean_ -Whether the Space stays on top of your list. diff --git a/spaces/harshasurampudi/gender-and-age/README.md b/spaces/harshasurampudi/gender-and-age/README.md deleted file mode 100644 index 4d0e24196b50df6e1ac1af71f86bc668bd9c53b1..0000000000000000000000000000000000000000 --- a/spaces/harshasurampudi/gender-and-age/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: Which Gender -emoji: šŸ¦€ -colorFrom: yellow -colorTo: blue -sdk: gradio -sdk_version: 3.17.0 -app_file: app.py -pinned: false -license: apache-2.0 ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/hasibzunair/fifa-tryon-demo/Self-Correction-Human-Parsing-for-ACGPN/mhp_extension/detectron2/detectron2/layers/csrc/ROIAlignRotated/ROIAlignRotated_cpu.cpp b/spaces/hasibzunair/fifa-tryon-demo/Self-Correction-Human-Parsing-for-ACGPN/mhp_extension/detectron2/detectron2/layers/csrc/ROIAlignRotated/ROIAlignRotated_cpu.cpp deleted file mode 100644 index 7e5e1ffdccd0e2ced15fa34b4906388d371bffe2..0000000000000000000000000000000000000000 --- a/spaces/hasibzunair/fifa-tryon-demo/Self-Correction-Human-Parsing-for-ACGPN/mhp_extension/detectron2/detectron2/layers/csrc/ROIAlignRotated/ROIAlignRotated_cpu.cpp +++ /dev/null @@ -1,522 +0,0 @@ -// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved -#include -#include "ROIAlignRotated.h" - -// Note: this implementation originates from the Caffe2 ROIAlignRotated Op -// and PyTorch ROIAlign (non-rotated) Op implementations. -// The key difference between this implementation and those ones is -// we don't do "legacy offset" in this version, as there aren't many previous -// works, if any, using the "legacy" ROIAlignRotated Op. -// This would make the interface a bit cleaner. - -namespace detectron2 { - -namespace { -template -struct PreCalc { - int pos1; - int pos2; - int pos3; - int pos4; - T w1; - T w2; - T w3; - T w4; -}; - -template -void pre_calc_for_bilinear_interpolate( - const int height, - const int width, - const int pooled_height, - const int pooled_width, - const int iy_upper, - const int ix_upper, - T roi_start_h, - T roi_start_w, - T bin_size_h, - T bin_size_w, - int roi_bin_grid_h, - int roi_bin_grid_w, - T roi_center_h, - T roi_center_w, - T cos_theta, - T sin_theta, - std::vector>& pre_calc) { - int pre_calc_index = 0; - for (int ph = 0; ph < pooled_height; ph++) { - for (int pw = 0; pw < pooled_width; pw++) { - for (int iy = 0; iy < iy_upper; iy++) { - const T yy = roi_start_h + ph * bin_size_h + - static_cast(iy + .5f) * bin_size_h / - static_cast(roi_bin_grid_h); // e.g., 0.5, 1.5 - for (int ix = 0; ix < ix_upper; ix++) { - const T xx = roi_start_w + pw * bin_size_w + - static_cast(ix + .5f) * bin_size_w / - static_cast(roi_bin_grid_w); - - // Rotate by theta around the center and translate - // In image space, (y, x) is the order for Right Handed System, - // and this is essentially multiplying the point by a rotation matrix - // to rotate it counterclockwise through angle theta. - T y = yy * cos_theta - xx * sin_theta + roi_center_h; - T x = yy * sin_theta + xx * cos_theta + roi_center_w; - // deal with: inverse elements are out of feature map boundary - if (y < -1.0 || y > height || x < -1.0 || x > width) { - // empty - PreCalc pc; - pc.pos1 = 0; - pc.pos2 = 0; - pc.pos3 = 0; - pc.pos4 = 0; - pc.w1 = 0; - pc.w2 = 0; - pc.w3 = 0; - pc.w4 = 0; - pre_calc[pre_calc_index] = pc; - pre_calc_index += 1; - continue; - } - - if (y < 0) { - y = 0; - } - if (x < 0) { - x = 0; - } - - int y_low = (int)y; - int x_low = (int)x; - int y_high; - int x_high; - - if (y_low >= height - 1) { - y_high = y_low = height - 1; - y = (T)y_low; - } else { - y_high = y_low + 1; - } - - if (x_low >= width - 1) { - x_high = x_low = width - 1; - x = (T)x_low; - } else { - x_high = x_low + 1; - } - - T ly = y - y_low; - T lx = x - x_low; - T hy = 1. - ly, hx = 1. - lx; - T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx; - - // save weights and indices - PreCalc pc; - pc.pos1 = y_low * width + x_low; - pc.pos2 = y_low * width + x_high; - pc.pos3 = y_high * width + x_low; - pc.pos4 = y_high * width + x_high; - pc.w1 = w1; - pc.w2 = w2; - pc.w3 = w3; - pc.w4 = w4; - pre_calc[pre_calc_index] = pc; - - pre_calc_index += 1; - } - } - } - } -} - -template -void bilinear_interpolate_gradient( - const int height, - const int width, - T y, - T x, - T& w1, - T& w2, - T& w3, - T& w4, - int& x_low, - int& x_high, - int& y_low, - int& y_high) { - // deal with cases that inverse elements are out of feature map boundary - if (y < -1.0 || y > height || x < -1.0 || x > width) { - // empty - w1 = w2 = w3 = w4 = 0.; - x_low = x_high = y_low = y_high = -1; - return; - } - - if (y < 0) { - y = 0; - } - - if (x < 0) { - x = 0; - } - - y_low = (int)y; - x_low = (int)x; - - if (y_low >= height - 1) { - y_high = y_low = height - 1; - y = (T)y_low; - } else { - y_high = y_low + 1; - } - - if (x_low >= width - 1) { - x_high = x_low = width - 1; - x = (T)x_low; - } else { - x_high = x_low + 1; - } - - T ly = y - y_low; - T lx = x - x_low; - T hy = 1. - ly, hx = 1. - lx; - - // reference in forward - // T v1 = input[y_low * width + x_low]; - // T v2 = input[y_low * width + x_high]; - // T v3 = input[y_high * width + x_low]; - // T v4 = input[y_high * width + x_high]; - // T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); - - w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx; - - return; -} - -template -inline void add(T* address, const T& val) { - *address += val; -} - -} // namespace - -template -void ROIAlignRotatedForward( - const int nthreads, - const T* input, - const T& spatial_scale, - const int channels, - const int height, - const int width, - const int pooled_height, - const int pooled_width, - const int sampling_ratio, - const T* rois, - T* output) { - int n_rois = nthreads / channels / pooled_width / pooled_height; - // (n, c, ph, pw) is an element in the pooled output - // can be parallelized using omp - // #pragma omp parallel for num_threads(32) - for (int n = 0; n < n_rois; n++) { - int index_n = n * channels * pooled_width * pooled_height; - - const T* current_roi = rois + n * 6; - int roi_batch_ind = current_roi[0]; - - // Do not use rounding; this implementation detail is critical - // ROIAlignRotated supports align == true, i.e., continuous coordinate - // by default, thus the 0.5 offset - T offset = (T)0.5; - T roi_center_w = current_roi[1] * spatial_scale - offset; - T roi_center_h = current_roi[2] * spatial_scale - offset; - T roi_width = current_roi[3] * spatial_scale; - T roi_height = current_roi[4] * spatial_scale; - T theta = current_roi[5] * M_PI / 180.0; - T cos_theta = cos(theta); - T sin_theta = sin(theta); - - AT_ASSERTM( - roi_width >= 0 && roi_height >= 0, - "ROIs in ROIAlignRotated do not have non-negative size!"); - - T bin_size_h = static_cast(roi_height) / static_cast(pooled_height); - T bin_size_w = static_cast(roi_width) / static_cast(pooled_width); - - // We use roi_bin_grid to sample the grid and mimic integral - int roi_bin_grid_h = (sampling_ratio > 0) - ? sampling_ratio - : ceil(roi_height / pooled_height); // e.g., = 2 - int roi_bin_grid_w = - (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width); - - // We do average (integral) pooling inside a bin - const T count = std::max(roi_bin_grid_h * roi_bin_grid_w, 1); // e.g. = 4 - - // we want to precalculate indices and weights shared by all channels, - // this is the key point of optimization - std::vector> pre_calc( - roi_bin_grid_h * roi_bin_grid_w * pooled_width * pooled_height); - - // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y). - // Appropriate translation needs to be applied after. - T roi_start_h = -roi_height / 2.0; - T roi_start_w = -roi_width / 2.0; - - pre_calc_for_bilinear_interpolate( - height, - width, - pooled_height, - pooled_width, - roi_bin_grid_h, - roi_bin_grid_w, - roi_start_h, - roi_start_w, - bin_size_h, - bin_size_w, - roi_bin_grid_h, - roi_bin_grid_w, - roi_center_h, - roi_center_w, - cos_theta, - sin_theta, - pre_calc); - - for (int c = 0; c < channels; c++) { - int index_n_c = index_n + c * pooled_width * pooled_height; - const T* offset_input = - input + (roi_batch_ind * channels + c) * height * width; - int pre_calc_index = 0; - - for (int ph = 0; ph < pooled_height; ph++) { - for (int pw = 0; pw < pooled_width; pw++) { - int index = index_n_c + ph * pooled_width + pw; - - T output_val = 0.; - for (int iy = 0; iy < roi_bin_grid_h; iy++) { - for (int ix = 0; ix < roi_bin_grid_w; ix++) { - PreCalc pc = pre_calc[pre_calc_index]; - output_val += pc.w1 * offset_input[pc.pos1] + - pc.w2 * offset_input[pc.pos2] + - pc.w3 * offset_input[pc.pos3] + pc.w4 * offset_input[pc.pos4]; - - pre_calc_index += 1; - } - } - output_val /= count; - - output[index] = output_val; - } // for pw - } // for ph - } // for c - } // for n -} - -template -void ROIAlignRotatedBackward( - const int nthreads, - // may not be contiguous. should index using n_stride, etc - const T* grad_output, - const T& spatial_scale, - const int channels, - const int height, - const int width, - const int pooled_height, - const int pooled_width, - const int sampling_ratio, - T* grad_input, - const T* rois, - const int n_stride, - const int c_stride, - const int h_stride, - const int w_stride) { - for (int index = 0; index < nthreads; index++) { - // (n, c, ph, pw) is an element in the pooled output - int pw = index % pooled_width; - int ph = (index / pooled_width) % pooled_height; - int c = (index / pooled_width / pooled_height) % channels; - int n = index / pooled_width / pooled_height / channels; - - const T* current_roi = rois + n * 6; - int roi_batch_ind = current_roi[0]; - - // Do not use rounding; this implementation detail is critical - // ROIAlignRotated supports align == true, i.e., continuous coordinate - // by default, thus the 0.5 offset - T offset = (T)0.5; - T roi_center_w = current_roi[1] * spatial_scale - offset; - T roi_center_h = current_roi[2] * spatial_scale - offset; - T roi_width = current_roi[3] * spatial_scale; - T roi_height = current_roi[4] * spatial_scale; - T theta = current_roi[5] * M_PI / 180.0; - T cos_theta = cos(theta); - T sin_theta = sin(theta); - - AT_ASSERTM( - roi_width >= 0 && roi_height >= 0, - "ROIs in ROIAlignRotated do not have non-negative size!"); - - T bin_size_h = static_cast(roi_height) / static_cast(pooled_height); - T bin_size_w = static_cast(roi_width) / static_cast(pooled_width); - - T* offset_grad_input = - grad_input + ((roi_batch_ind * channels + c) * height * width); - - int output_offset = n * n_stride + c * c_stride; - const T* offset_grad_output = grad_output + output_offset; - const T grad_output_this_bin = - offset_grad_output[ph * h_stride + pw * w_stride]; - - // We use roi_bin_grid to sample the grid and mimic integral - int roi_bin_grid_h = (sampling_ratio > 0) - ? sampling_ratio - : ceil(roi_height / pooled_height); // e.g., = 2 - int roi_bin_grid_w = - (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width); - - // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y). - // Appropriate translation needs to be applied after. - T roi_start_h = -roi_height / 2.0; - T roi_start_w = -roi_width / 2.0; - - // We do average (integral) pooling inside a bin - const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4 - - for (int iy = 0; iy < roi_bin_grid_h; iy++) { - const T yy = roi_start_h + ph * bin_size_h + - static_cast(iy + .5f) * bin_size_h / - static_cast(roi_bin_grid_h); // e.g., 0.5, 1.5 - for (int ix = 0; ix < roi_bin_grid_w; ix++) { - const T xx = roi_start_w + pw * bin_size_w + - static_cast(ix + .5f) * bin_size_w / - static_cast(roi_bin_grid_w); - - // Rotate by theta around the center and translate - T y = yy * cos_theta - xx * sin_theta + roi_center_h; - T x = yy * sin_theta + xx * cos_theta + roi_center_w; - - T w1, w2, w3, w4; - int x_low, x_high, y_low, y_high; - - bilinear_interpolate_gradient( - height, width, y, x, w1, w2, w3, w4, x_low, x_high, y_low, y_high); - - T g1 = grad_output_this_bin * w1 / count; - T g2 = grad_output_this_bin * w2 / count; - T g3 = grad_output_this_bin * w3 / count; - T g4 = grad_output_this_bin * w4 / count; - - if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) { - // atomic add is not needed for now since it is single threaded - add(offset_grad_input + y_low * width + x_low, static_cast(g1)); - add(offset_grad_input + y_low * width + x_high, static_cast(g2)); - add(offset_grad_input + y_high * width + x_low, static_cast(g3)); - add(offset_grad_input + y_high * width + x_high, static_cast(g4)); - } // if - } // ix - } // iy - } // for -} // ROIAlignRotatedBackward - -at::Tensor ROIAlignRotated_forward_cpu( - const at::Tensor& input, - const at::Tensor& rois, - const float spatial_scale, - const int pooled_height, - const int pooled_width, - const int sampling_ratio) { - AT_ASSERTM(input.device().is_cpu(), "input must be a CPU tensor"); - AT_ASSERTM(rois.device().is_cpu(), "rois must be a CPU tensor"); - - at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2}; - - at::CheckedFrom c = "ROIAlign_forward_cpu"; - at::checkAllSameType(c, {input_t, rois_t}); - - auto num_rois = rois.size(0); - auto channels = input.size(1); - auto height = input.size(2); - auto width = input.size(3); - - at::Tensor output = at::zeros( - {num_rois, channels, pooled_height, pooled_width}, input.options()); - - auto output_size = num_rois * pooled_height * pooled_width * channels; - - if (output.numel() == 0) { - return output; - } - - auto input_ = input.contiguous(), rois_ = rois.contiguous(); - AT_DISPATCH_FLOATING_TYPES_AND_HALF( - input.scalar_type(), "ROIAlignRotated_forward", [&] { - ROIAlignRotatedForward( - output_size, - input_.data_ptr(), - spatial_scale, - channels, - height, - width, - pooled_height, - pooled_width, - sampling_ratio, - rois_.data_ptr(), - output.data_ptr()); - }); - return output; -} - -at::Tensor ROIAlignRotated_backward_cpu( - const at::Tensor& grad, - const at::Tensor& rois, - const float spatial_scale, - const int pooled_height, - const int pooled_width, - const int batch_size, - const int channels, - const int height, - const int width, - const int sampling_ratio) { - AT_ASSERTM(grad.device().is_cpu(), "grad must be a CPU tensor"); - AT_ASSERTM(rois.device().is_cpu(), "rois must be a CPU tensor"); - - at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2}; - - at::CheckedFrom c = "ROIAlignRotated_backward_cpu"; - at::checkAllSameType(c, {grad_t, rois_t}); - - at::Tensor grad_input = - at::zeros({batch_size, channels, height, width}, grad.options()); - - // handle possibly empty gradients - if (grad.numel() == 0) { - return grad_input; - } - - // get stride values to ensure indexing into gradients is correct. - int n_stride = grad.stride(0); - int c_stride = grad.stride(1); - int h_stride = grad.stride(2); - int w_stride = grad.stride(3); - - auto rois_ = rois.contiguous(); - AT_DISPATCH_FLOATING_TYPES_AND_HALF( - grad.scalar_type(), "ROIAlignRotated_forward", [&] { - ROIAlignRotatedBackward( - grad.numel(), - grad.data_ptr(), - spatial_scale, - channels, - height, - width, - pooled_height, - pooled_width, - sampling_ratio, - grad_input.data_ptr(), - rois_.data_ptr(), - n_stride, - c_stride, - h_stride, - w_stride); - }); - return grad_input; -} - -} // namespace detectron2 diff --git a/spaces/hfmax/SpeciesChecker/app.py b/spaces/hfmax/SpeciesChecker/app.py deleted file mode 100644 index 7b7d45d4c944b0eae548264aaf6509aab2b0dc18..0000000000000000000000000000000000000000 --- a/spaces/hfmax/SpeciesChecker/app.py +++ /dev/null @@ -1,14 +0,0 @@ -from fastbook import * -import gradio as gr - - -learn_inf = load_learner('export.pkl') - -categories = ('Oiseau', 'Insecte', "MammifĆØre", 'Plante') - -def on_click_classify(change): - pred,pred_idx,probs = learn_inf.predict(change) - return dict(zip(categories, map(float, probs))) - -demo = gr.Interface(on_click_classify, gr.Image(shape=(200, 200)), gr.outputs.Label()) -demo.launch() \ No newline at end of file diff --git a/spaces/hkunlp/Binder/utils/normalizer.py b/spaces/hkunlp/Binder/utils/normalizer.py deleted file mode 100644 index 6ed4a454cab17dc5d893b4c64c94c11d46c24d91..0000000000000000000000000000000000000000 --- a/spaces/hkunlp/Binder/utils/normalizer.py +++ /dev/null @@ -1,498 +0,0 @@ -from typing import List, Dict -import pandas as pd -import recognizers_suite -from recognizers_suite import Culture -import re -import unicodedata -from fuzzywuzzy import fuzz - -from utils.sql.extraction_from_sql import * -from utils.sql.all_keywords import ALL_KEY_WORDS - -culture = Culture.English - - -def str_normalize(user_input, recognition_types=None): - """A string normalizer which recognize and normalize value based on recognizers_suite""" - user_input = str(user_input) - user_input = user_input.replace("\\n", "; ") - - def replace_by_idx_pairs(orig_str, strs_to_replace, idx_pairs): - assert len(strs_to_replace) == len(idx_pairs) - last_end = 0 - to_concat = [] - for idx_pair, str_to_replace in zip(idx_pairs, strs_to_replace): - to_concat.append(orig_str[last_end:idx_pair[0]]) - to_concat.append(str_to_replace) - last_end = idx_pair[1] - to_concat.append(orig_str[last_end:]) - return ''.join(to_concat) - - if recognition_types is None: - recognition_types = ["datetime", - "number", - # "ordinal", - # "percentage", - # "age", - # "currency", - # "dimension", - # "temperature", - ] - - for recognition_type in recognition_types: - if re.match("\d+/\d+", user_input): - # avoid calculating str as 1991/92 - continue - recognized_list = getattr(recognizers_suite, "recognize_{}".format(recognition_type))(user_input, - culture) # may match multiple parts - strs_to_replace = [] - idx_pairs = [] - for recognized in recognized_list: - if not recognition_type == 'datetime': - recognized_value = recognized.resolution['value'] - if str(recognized_value).startswith("P"): - # if the datetime is a period: - continue - else: - strs_to_replace.append(recognized_value) - idx_pairs.append((recognized.start, recognized.end + 1)) - else: - if recognized.resolution: # in some cases, this variable could be none. - if len(recognized.resolution['values']) == 1: - strs_to_replace.append( - recognized.resolution['values'][0]['timex']) # We use timex as normalization - idx_pairs.append((recognized.start, recognized.end + 1)) - - if len(strs_to_replace) > 0: - user_input = replace_by_idx_pairs(user_input, strs_to_replace, idx_pairs) - - if re.match("(.*)-(.*)-(.*) 00:00:00", user_input): - user_input = user_input[:-len("00:00:00") - 1] - # '2008-04-13 00:00:00' -> '2008-04-13' - return user_input - - -def prepare_df_for_neuraldb_from_table(table: Dict, add_row_id=True, normalize=True, lower_case=True): - header, rows = table['header'], table['rows'] - if add_row_id and 'row_id' not in header: - header = ["row_id"] + header - rows = [["{}".format(i)] + row for i, row in enumerate(rows)] - if normalize: - df = convert_df_type(pd.DataFrame(data=rows, columns=header), lower_case=lower_case) - else: - df = pd.DataFrame(data=rows, columns=header) - - return df - - -def convert_df_type(df: pd.DataFrame, lower_case=True): - """ - A simple converter of dataframe data type from string to int/float/datetime. - """ - - def get_table_content_in_column(table): - if isinstance(table, pd.DataFrame): - header = table.columns.tolist() - rows = table.values.tolist() - else: - # Standard table dict format - header, rows = table['header'], table['rows'] - all_col_values = [] - for i in range(len(header)): - one_col_values = [] - for _row in rows: - one_col_values.append(_row[i]) - all_col_values.append(one_col_values) - return all_col_values - - # Rename empty columns - new_columns = [] - for idx, header in enumerate(df.columns): - if header == '': - new_columns.append('FilledColumnName') # Fixme: give it a better name when all finished! - else: - new_columns.append(header) - df.columns = new_columns - - # Rename duplicate columns - new_columns = [] - for idx, header in enumerate(df.columns): - if header in new_columns: - new_header, suffix = header, 2 - while new_header in new_columns: - new_header = header + '_' + str(suffix) - suffix += 1 - new_columns.append(new_header) - else: - new_columns.append(header) - df.columns = new_columns - - # Recognize null values like "-" - null_tokens = ['', '-', '/'] - for header in df.columns: - df[header] = df[header].map(lambda x: str(None) if x in null_tokens else x) - - # Convert the null values in digit column to "NaN" - all_col_values = get_table_content_in_column(df) - for col_i, one_col_values in enumerate(all_col_values): - all_number_flag = True - for row_i, cell_value in enumerate(one_col_values): - try: - float(cell_value) - except Exception as e: - if not cell_value in [str(None), str(None).lower()]: - # None or none - all_number_flag = False - if all_number_flag: - _header = df.columns[col_i] - df[_header] = df[_header].map(lambda x: "NaN" if x in [str(None), str(None).lower()] else x) - - # Normalize cell values. - for header in df.columns: - df[header] = df[header].map(lambda x: str_normalize(x)) - - # Strip the mis-added "01-01 00:00:00" - all_col_values = get_table_content_in_column(df) - for col_i, one_col_values in enumerate(all_col_values): - all_with_00_00_00 = True - all_with_01_00_00_00 = True - all_with_01_01_00_00_00 = True - for row_i, cell_value in enumerate(one_col_values): - if not str(cell_value).endswith(" 00:00:00"): - all_with_00_00_00 = False - if not str(cell_value).endswith("-01 00:00:00"): - all_with_01_00_00_00 = False - if not str(cell_value).endswith("-01-01 00:00:00"): - all_with_01_01_00_00_00 = False - if all_with_01_01_00_00_00: - _header = df.columns[col_i] - df[_header] = df[_header].map(lambda x: x[:-len("-01-01 00:00:00")]) - continue - - if all_with_01_00_00_00: - _header = df.columns[col_i] - df[_header] = df[_header].map(lambda x: x[:-len("-01 00:00:00")]) - continue - - if all_with_00_00_00: - _header = df.columns[col_i] - df[_header] = df[_header].map(lambda x: x[:-len(" 00:00:00")]) - continue - - # Do header and cell value lower case - if lower_case: - new_columns = [] - for header in df.columns: - lower_header = str(header).lower() - if lower_header in new_columns: - new_header, suffix = lower_header, 2 - while new_header in new_columns: - new_header = lower_header + '-' + str(suffix) - suffix += 1 - new_columns.append(new_header) - else: - new_columns.append(lower_header) - df.columns = new_columns - for header in df.columns: - # df[header] = df[header].map(lambda x: str(x).lower()) - df[header] = df[header].map(lambda x: str(x).lower().strip()) - - # Recognize header type - for header in df.columns: - - float_able = False - int_able = False - datetime_able = False - - # Recognize int & float type - try: - df[header].astype("float") - float_able = True - except: - pass - - if float_able: - try: - if all(df[header].astype("float") == df[header].astype(int)): - int_able = True - except: - pass - - if float_able: - if int_able: - df[header] = df[header].astype(int) - else: - df[header] = df[header].astype(float) - - # Recognize datetime type - try: - df[header].astype("datetime64") - datetime_able = True - except: - pass - - if datetime_able: - df[header] = df[header].astype("datetime64") - - return df - - -def normalize(x): - """ Normalize string. """ - # Copied from WikiTableQuestions dataset official evaluator. - if x is None: - return None - # Remove diacritics - x = ''.join(c for c in unicodedata.normalize('NFKD', x) - if unicodedata.category(c) != 'Mn') - # Normalize quotes and dashes - x = re.sub("[ā€˜ā€™Ā“`]", "'", x) - x = re.sub("[ā€œā€]", "\"", x) - x = re.sub("[ā€ā€‘ā€’ā€“ā€”āˆ’]", "-", x) - while True: - old_x = x - # Remove citations - x = re.sub("((?= fuzz_threshold: - matched_cells.append((cell, fuzz_score)) - - matched_cells = sorted(matched_cells, key=lambda x: x[1], reverse=True) - return matched_cells - - def _check_valid_fuzzy_match(value_str, matched_cell): - """ - Check if the fuzzy match is valid, now considering: - 1. The number/date should not be disturbed, but adding new number or deleting number is valid. - """ - number_pattern = "[+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?" - numbers_in_value = re.findall(number_pattern, value_str) - numbers_in_matched_cell = re.findall(number_pattern, matched_cell) - try: - numbers_in_value = [float(num.replace(',', '')) for num in numbers_in_value] - except: - print(f"Can't convert number string {numbers_in_value} into float in _check_valid_fuzzy_match().") - try: - numbers_in_matched_cell = [float(num.replace(',', '')) for num in numbers_in_matched_cell] - except: - print( - f"Can't convert number string {numbers_in_matched_cell} into float in _check_valid_fuzzy_match().") - numbers_in_value = set(numbers_in_value) - numbers_in_matched_cell = set(numbers_in_matched_cell) - - if numbers_in_value.issubset(numbers_in_matched_cell) or numbers_in_matched_cell.issubset(numbers_in_value): - return True - else: - return False - - # Drop trailing '\n```', a pattern that may appear in Codex SQL generation - sql_str = sql_str.rstrip('```').rstrip('\n') - - # Replace QA module with placeholder - qa_pattern = "QA\(.+?;.*?`.+?`.*?\)" - qas = re.findall(qa_pattern, sql_str) - for idx, qa in enumerate(qas): - sql_str = sql_str.replace(qa, f"placeholder{idx}") - - # Parse and replace SQL value with table contents - sql_tokens = tokenize(sql_str) - sql_template_tokens = extract_partial_template_from_sql(sql_str) - # Fix 'between' keyword bug in parsing templates - fixed_sql_template_tokens = [] - sql_tok_bias = 0 - for idx, sql_templ_tok in enumerate(sql_template_tokens): - sql_tok = sql_tokens[idx + sql_tok_bias] - if sql_tok == 'between' and sql_templ_tok == '[WHERE_OP]': - fixed_sql_template_tokens.extend(['[WHERE_OP]', '[VALUE]', 'and']) - sql_tok_bias += 2 # pass '[VALUE]', 'and' - else: - fixed_sql_template_tokens.append(sql_templ_tok) - sql_template_tokens = fixed_sql_template_tokens - for idx, tok in enumerate(sql_tokens): - if tok in ALL_KEY_WORDS: - sql_tokens[idx] = tok.upper() - - if verbose: - print(sql_tokens) - print(sql_template_tokens) - - assert len(sql_tokens) == len(sql_template_tokens) - value_indices = [idx for idx in range(len(sql_template_tokens)) if sql_template_tokens[idx] == '[VALUE]'] - for value_idx in value_indices: - # Skip the value if the where condition column is QA module - if value_idx >= 2 and sql_tokens[value_idx - 2].startswith('placeholder'): - continue - value_str = sql_tokens[value_idx] - # Drop \"\" for fuzzy match - is_string = False - if value_str[0] == "\"" and value_str[-1] == "\"": - value_str = value_str[1:-1] - is_string = True - # If already fuzzy match, skip - if value_str[0] == '%' or value_str[-1] == '%': - continue - value_str = value_str.lower() - # Fuzzy Match - matched_cells = _get_matched_cells(value_str, df) - - if verbose: - print(matched_cells) - - new_value_str = value_str - if matched_cells: - # new_value_str = matched_cells[0][0] - for matched_cell, fuzz_score in matched_cells: - if _check_valid_fuzzy_match(value_str, matched_cell): - new_value_str = matched_cell - if verbose and new_value_str != value_str: - print("\tfuzzy match replacing!", value_str, '->', matched_cell, f'fuzz_score:{fuzz_score}') - break - if is_string: - new_value_str = f"\"{new_value_str}\"" - sql_tokens[value_idx] = new_value_str - # Compose new sql string - # Clean column name in SQL since columns may have been tokenized in the postprocessing, e.g., (ppp) -> ( ppp ) - new_sql_str = ' '.join(sql_tokens) - sql_columns = re.findall('`\s(.*?)\s`', new_sql_str) - for sql_col in sql_columns: - matched_columns = [] - for col in df.columns: - score = fuzz.ratio(sql_col.lower(), col) - if score == 100: - matched_columns = [(col, score)] - break - if score >= 80: - matched_columns.append((col, score)) - matched_columns = sorted(matched_columns, key=lambda x: x[1], reverse=True) - if matched_columns: - matched_col = matched_columns[0][0] - new_sql_str = new_sql_str.replace(f"` {sql_col} `", f"`{matched_col}`") - else: - new_sql_str = new_sql_str.replace(f"` {sql_col} `", f"`{sql_col}`") - - # Restore QA modules - for idx, qa in enumerate(qas): - new_sql_str = new_sql_str.replace(f"placeholder{idx}", qa) - - # Fix '<>' when composing the new sql - new_sql_str = new_sql_str.replace('< >', '<>') - - return new_sql_str - - sql_str = basic_fix(sql_str, list(df.columns), table_title) - - if process_program_with_fuzzy_match_on_db: - try: - sql_str = fuzzy_match_process(sql_str, df, verbose) - except: - pass - - return sql_str diff --git a/spaces/hsdhgds/htyjuietryt/README.md b/spaces/hsdhgds/htyjuietryt/README.md deleted file mode 100644 index 8287781d5707aa2be8023d25f50ca2d568628fc4..0000000000000000000000000000000000000000 --- a/spaces/hsdhgds/htyjuietryt/README.md +++ /dev/null @@ -1,10 +0,0 @@ ---- -title: Htyjuietryt -emoji: šŸ“‰ -colorFrom: indigo -colorTo: green -sdk: docker -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/huggingface/Model_Cards_Writing_Tool/style.css b/spaces/huggingface/Model_Cards_Writing_Tool/style.css deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/hush1/anime-remove-background/README.md b/spaces/hush1/anime-remove-background/README.md deleted file mode 100644 index 1ba3cb5ea0e994e246d57b7d62b8aa5a6331901c..0000000000000000000000000000000000000000 --- a/spaces/hush1/anime-remove-background/README.md +++ /dev/null @@ -1,14 +0,0 @@ ---- -title: Anime Remove Background -emoji: šŸŖ„šŸ–¼ļø -colorFrom: indigo -colorTo: pink -sdk: gradio -sdk_version: 3.1.4 -app_file: app.py -pinned: false -license: apache-2.0 -duplicated_from: skytnt/anime-remove-background ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/hyxue/HiFiFace-inference-demo/Deep3DFaceRecon_pytorch/models/arcface_torch/configs/wf42m_pfc03_40epoch_8gpu_vit_b.py b/spaces/hyxue/HiFiFace-inference-demo/Deep3DFaceRecon_pytorch/models/arcface_torch/configs/wf42m_pfc03_40epoch_8gpu_vit_b.py deleted file mode 100644 index 36f6559ad3d66659dba3bc9c29e35c76a62b3576..0000000000000000000000000000000000000000 --- a/spaces/hyxue/HiFiFace-inference-demo/Deep3DFaceRecon_pytorch/models/arcface_torch/configs/wf42m_pfc03_40epoch_8gpu_vit_b.py +++ /dev/null @@ -1,28 +0,0 @@ -from easydict import EasyDict as edict - -# make training faster -# our RAM is 256G -# mount -t tmpfs -o size=140G tmpfs /train_tmp - -config = edict() -config.margin_list = (1.0, 0.0, 0.4) -config.network = "vit_b_dp005_mask_005" -config.resume = False -config.output = None -config.embedding_size = 512 -config.sample_rate = 0.3 -config.fp16 = True -config.weight_decay = 0.1 -config.batch_size = 256 -config.gradient_acc = 12 # total batchsize is 256 * 12 -config.optimizer = "adamw" -config.lr = 0.001 -config.verbose = 2000 -config.dali = False - -config.rec = "/train_tmp/WebFace42M" -config.num_classes = 2059906 -config.num_image = 42474557 -config.num_epoch = 40 -config.warmup_epoch = config.num_epoch // 10 -config.val_targets = [] diff --git a/spaces/iccv23-diffusers-demo/T2I-Adapter-SDXL-Sketch/README.md b/spaces/iccv23-diffusers-demo/T2I-Adapter-SDXL-Sketch/README.md deleted file mode 100644 index a72a15ea591641cebb0f2e2b374fcf128a5a165a..0000000000000000000000000000000000000000 --- a/spaces/iccv23-diffusers-demo/T2I-Adapter-SDXL-Sketch/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: T2I Adapter SDXL Sketch -emoji: šŸš€ -colorFrom: blue -colorTo: purple -sdk: gradio -sdk_version: 3.43.1 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/inplisQlawa/anything-midjourney-v4-1/All Episodes Of The Suite Life Of Zack And Cody In Hindi TOP.md b/spaces/inplisQlawa/anything-midjourney-v4-1/All Episodes Of The Suite Life Of Zack And Cody In Hindi TOP.md deleted file mode 100644 index 01462302d3c1125850a4866b15a13dafe53bfa26..0000000000000000000000000000000000000000 --- a/spaces/inplisQlawa/anything-midjourney-v4-1/All Episodes Of The Suite Life Of Zack And Cody In Hindi TOP.md +++ /dev/null @@ -1,10 +0,0 @@ -

          All Episodes Of The Suite Life Of Zack And Cody In Hindi


          Download Filehttps://urlin.us/2uEwNQ



          -
          -dubbed. Here is all episodes of the series, check and enjoy this show with english subtitles in hindi, bangla. Watch the satelite xxx porn videos for free, here on webwi. Filter the. Watch all episodes of the satelite xxx series dubbed in hindi. Also watch the satelite xxx series dubbed in english. Which one is your choice for your english-hindi-fantasy. A website that was started in 1998 to feature the work of french cartoonists, mainly japanese voice actors who have done some of. Zxntube. Watch. Love is all around the world but it can also be lonely at times especially when it happens to be opposite sex and that person is not. Youve got to get down there and get it while your alive. - -Watch over 30 exclusive adult movies on xhamster. Horny bi horny 18 year old home alone! Honey pot and find plenty of other porn videos. All our video are in full high quality HD and updated hourly. Hindi porn download and youll enjoy at best porn tube. Watch all episodes of the satelite xxx series dubbed in hindi, english and arabic. Also watch the satelite xxx series dubbed in chinese, korean, japanese, japanese, spanish, portuguese and more. We also have an indian woman porn. But when the time comes for a couple to part ways, well, they do what we all do: cry for a bit and then start looking for another person. Watch all episodes of the satelite xxx series dubbed in english, arabic and spanish. Which one is your choice for your english-hindi-fantasy. - -Bhushu ka machal kya hai, saal ki sakta hai, ab yeh mausam aake yeh unke saath mila tha, pyaar ke liye bahut khushi thi, mujhe apne dene wala ki maasim ka badnaam shuru ho. Watch all episodes of the satelite xxx series dubbed in hindi, english and arabic. A website that was started in 1998 to feature the work of french cartoonists, mainly japanese voice actors who have done some of. Available at this site you can find all the movies you want in hindi dubbed in english and vice versa. Find a huge 4fefd39f24
          -
          -
          -

          diff --git a/spaces/inplisQlawa/anything-midjourney-v4-1/Film Hard Parigi 1940 Avellino Index2.php.rar.md b/spaces/inplisQlawa/anything-midjourney-v4-1/Film Hard Parigi 1940 Avellino Index2.php.rar.md deleted file mode 100644 index d2d3ae67484ba217ae1ee70dfa2bbfdf6e36137f..0000000000000000000000000000000000000000 --- a/spaces/inplisQlawa/anything-midjourney-v4-1/Film Hard Parigi 1940 Avellino Index2.php.rar.md +++ /dev/null @@ -1,10 +0,0 @@ -

          film hard parigi 1940 avellino index2.php.rar


          Download File » https://urlin.us/2uEvt4



          - -A 1-of-11 version of the card game Identity Crisis. The game is a game of skill, knowledge of players, and some luck. The game lasts a long time, with almost endless rounds being played by the same two players. When a player reaches a game-winning point, the game ends for that player and the player wins the game. - -The game is played using a standard deck of cards from a common standard and a single copy of the game Identity Crisis; and is typically played with as many as four players. In the game, the number of cards dealt to each player is determined by the number of players, and the dealer shuffles the cards. The game begins with each player placing one card on the table and being dealt additional cards by the dealer to make a hand of seven cards. In addition to the seven cards in his hand, each player has a role card, typically referred to as the Role card, which is placed face up on the table and hidden from the other players. The game is played using a standard deck of cards from a common standard and a single copy of the game Identity Crisis; and is typically played with as many as four players. In the game, the number of cards dealt to each player is determined by the number of players, and the dealer shuffles the cards. The game begins with each player placing one card on the table and being dealt additional cards by the dealer to make a hand of seven cards. In addition to the seven cards in his hand, each player has a role card, typically referred to as the Role card, which is placed face up on the table and hidden from the other players. Each player plays one of the roles determined by the role cards, and has a specified option for how he wishes to play his role. - -A player must win the game by having a hand of six or more cards that is higher than the game-winning hand, the identity card, if the identity card is dealt as the first hand. In addition, the identity card is dealt face up before the first game-winning hand is dealt. It is the identity card that allows a player to win the game by having a hand that is higher than the identity card. The identity card consists of the following cards: The identity card has the value of one more than the value of any other card dealt in that round of play, as well as being ranked highest in the hand. If the player dealt the identity card loses the game, he has no option for how he wants to 4fefd39f24
          -
          -
          -

          diff --git a/spaces/inplisQlawa/anything-midjourney-v4-1/IL-2 Sturmovik Cliffs Of Dover Blitz Edition TOP Full Crack.md b/spaces/inplisQlawa/anything-midjourney-v4-1/IL-2 Sturmovik Cliffs Of Dover Blitz Edition TOP Full Crack.md deleted file mode 100644 index f9f235f614c676b3282da2ae4b37ddef772146b3..0000000000000000000000000000000000000000 --- a/spaces/inplisQlawa/anything-midjourney-v4-1/IL-2 Sturmovik Cliffs Of Dover Blitz Edition TOP Full Crack.md +++ /dev/null @@ -1,34 +0,0 @@ -

          IL-2 Sturmovik: Cliffs of Dover Blitz Edition full crack


          Downloadhttps://urlin.us/2uExu4



          -
          -NET 2.0, and more. Ā The CLIFFS of DOVER: BLITZ EDITION includes the following updates: - -Gameplay: Ā Updated into DirectX11 - -Graphics: Ā Updated into DirectX11. Ā The ā€œMega-Stormā€ covers a large part of a city block - -Sound: Ā Missions now have additional sound effects - -More Story: Ā The nemesis has taken control of more agents and recruited them to his team! - -Longer Games: Ā Games now have the option to turn on the ā€œHardā€ difficulty. - -Instructions: Ā Instructions have been improved and updated into the ā€œHardā€ difficulty. - -The STURMOVIK: CLIFFS OF DOVER: BLITZ EDITION is available on the Originā„¢ Network. - -For more information about the STURMOVIK: CLIFFS OF DOVER: BLITZ EDITION, check out the press release on www.1Cgames.com - -J.Scott Campbell - -Director of Development - -1C Games - -ŠœŠ’Š” Š·Š°ŃŠ²Š»ŃŠµŃ‚ о заГержании семи человек в хоГе обыска в ЛенинграГской области. ŠžŠ± ŃŃ‚Š¾Š¼ в Facebook написала Š²ŠµŠ“ŃƒŃ‰Š°Ń ŠŠ¢Š’ ŠŠ°Ń‚Š°Š»ŃŒŃ ŠšŃƒŠ·Š½ŠµŃ†Š¾Š²Š°. - -По ее словам, милиционеры Š½ŠµŃŃƒŃ‚ службу в гороГе Веревечи, но не Š¼Š¾Š³ŃƒŃ‚ Š·Š°Š“ŠµŃ€Š¶Š°Ń‚ŃŒ Š»ŃŽŠ“ŠµŠ¹ не поГ арестом. - -Š’ŠµŠ“ŃƒŃ‰Š°Ń ŠŠ¢Š’ расска� 4fefd39f24
          -
          -
          -

          diff --git a/spaces/inplisQlawa/anything-midjourney-v4-1/Kvisoft Flipbook Maker Pro 3.6.5 Serial.md b/spaces/inplisQlawa/anything-midjourney-v4-1/Kvisoft Flipbook Maker Pro 3.6.5 Serial.md deleted file mode 100644 index 47c3757e8e5ad80eaefa63d5fb8917dfbb6ff7bd..0000000000000000000000000000000000000000 --- a/spaces/inplisQlawa/anything-midjourney-v4-1/Kvisoft Flipbook Maker Pro 3.6.5 Serial.md +++ /dev/null @@ -1,17 +0,0 @@ -
          -

          How to Create Stunning Flipbooks with Kvisoft Flipbook Maker Pro 3.6.5 Serial

          -

          If you are looking for a professional and easy-to-use software to create interactive and engaging flipbooks from your PDF files, images, videos, and more, then you should try Kvisoft Flipbook Maker Pro 3.6.5 Serial. This software allows you to convert your files into HTML5 and Flash flipbooks that can be viewed on any device and platform. You can also enrich your flipbooks with multimedia elements, such as hyperlinks, sounds, cliparts, hotspots, etc. In this article, we will show you how to use Kvisoft Flipbook Maker Pro 3.6.5 Serial to create stunning flipbooks in four simple steps.

          -
            -
          1. Import your files
          2. -

            Kvisoft Flipbook Maker Pro 3.6.5 Serial supports various types of files, such as PDF, images, Flash movies, Word, PowerPoint, Excel, etc. You can import multiple files at once and merge them into one flipbook. You can also customize the page range, page quality, page size, and orientation of your imported files.

            -

            kvisoft flipbook maker pro 3.6.5 serial


            Download ❤❤❤ https://urlin.us/2uEy6F



            -
          3. Edit your pages
          4. -

            Kvisoft Flipbook Maker Pro 3.6.5 Serial provides you with powerful page editing functions that allow you to add multimedia elements to your flipbook pages. You can insert text, hyperlinks, video (YouTube video included), Flash movie, images, hotspot, clipart, and sound to your pages. You can also adjust the position, size, rotation, transparency, and animation of your elements.

            -
          5. Design your flipbook
          6. -

            Kvisoft Flipbook Maker Pro 3.6.5 Serial offers you a lot of pre-set templates and themes that you can use to quickly make attractive flipbooks. You can also design your own custom style themes with built-in setting functions: navigation bar setting, button settings, thumbnail style, preloader settings, background image and music, and other powerful settings.

            -
          7. Publish your flipbook
          8. -

            Kvisoft Flipbook Maker Pro 3.6.5 Serial allows you to publish your flipbook in various formats: HTML5 for online viewing; ZIP or EXE for offline distribution; APP for Mac users; FBR for viewing on Kvisoft Flipbook Player; Mobile version for viewing on mobile devices; Burn to CD/DVD for physical delivery; Screen Saver for personal use; WordPress plugin or Joomla module for embedding into websites; Email to others directly from the software.

            -
          -

          Kvisoft Flipbook Maker Pro 3.6.5 Serial is a powerful and easy-to-use software that can help you create stunning flipbooks from various files. You can download it from here [^1^] and get a free lifetime license key by following the instructions on the website [^1^]. You can also check out some examples of flipbooks created by Kvisoft Flipbook Maker Pro 3.6.5 Serial here [^2^]. If you have any questions or feedback about the software, you can contact the customer support here [^1^].

          d5da3c52bf
          -
          -
          \ No newline at end of file diff --git a/spaces/inreVtussa/clothingai/Examples/Acdsee 17 License Key Crackk __FULL__.md b/spaces/inreVtussa/clothingai/Examples/Acdsee 17 License Key Crackk __FULL__.md deleted file mode 100644 index e1400f628210fb39f82344ab4a51010d2e80d283..0000000000000000000000000000000000000000 --- a/spaces/inreVtussa/clothingai/Examples/Acdsee 17 License Key Crackk __FULL__.md +++ /dev/null @@ -1,183 +0,0 @@ - -

          Acdsee 17 License Key Crackk: Why You Should Avoid It and How to Get Acdsee 17 Legally

          - -

          Acdsee 17 is a powerful and versatile photo editing software that allows you to manage, edit, and share your photos with ease. It offers a range of features and tools to help you enhance your images, such as filters, effects, adjustments, layers, brushes, and more. It also lets you organize your photos in folders, albums, categories, and tags. You can also use Acdsee 17 to create slideshows, collages, calendars, and other projects.

          -

          Acdsee 17 License Key Crackk


          Download ►►►►► https://tiurll.com/2uCkgg



          - -

          However, if you are looking for a way to get Acdsee 17 license key crackk, you might be making a big mistake. Acdsee 17 license key crackk is a term that refers to a hacked or modified version of Acdsee 17 that bypasses the activation process and lets you use the software for free. You might think that this is a good way to save some money, but in reality, you are putting yourself at risk of many problems and dangers.

          - -

          In this article, we will explain why you should avoid Acdsee 17 license key crackk and how to get Acdsee 17 legally and safely from the official website of the software developer.

          - -

          The Risks of Using Acdsee 17 License Key Crackk

          - -

          Using Acdsee 17 license key crackk can have serious negative consequences for your computer, your data, and your legal rights. Here are some of the risks that you should be aware of before downloading and using Acdsee 17 license key crackk:

          -

          - -
            -
          • Virus infection. When you download Acdsee 17 license key crackk from an untrusted source, you have no guarantee that the file is safe and clean. It might contain malware, spyware, ransomware, or other harmful programs that can infect your computer and damage your system, steal your personal information, or lock your files and demand a ransom.
          • -
          • System failure. Even if the file does not contain any malicious code, it might still cause problems for your computer. A cracked version of Acdsee 17 is not an official one and it might not be compatible with your system or other software. It might also have bugs or errors that can cause crashes, freezes, or glitches.
          • -
          • Data loss or corruption. Using Acdsee 17 license key crackk can also affect your data and files. You might lose or damage your photos or other important documents due to virus infection, system failure, or software malfunction. You might also lose access to your files if the cracked version stops working or expires.
          • -
          • Legal issues. Downloading and using Acdsee 17 license key crackk is also illegal and violates the intellectual property rights of the software developer. You might face legal actions or penalties from the software company or the authorities if they find out that you are using a pirated version of Acdsee 17.
          • -
          • Wasted time and effort. Finding a working and safe version of Acdsee 17 license key crackk can be very time-consuming and frustrating. You might have to search through many websites, download many files, try many keys or patches, and deal with many pop-ups or ads. You might also have to repeat this process every time there is an update or a new version of Acdsee 17.
          • -
          - -

          The Benefits of Getting Acdsee 17 Legally and Safely

          - -

          If you want to avoid all these risks and enjoy all the benefits of Acdsee 17, the best way is to get it legally and safely from the official website of the software developer. Here are some of the benefits of getting Acdsee 17 legally and safely:

          - -
            -
          • Virus-free download. When you download Acdsee 17 from the official website, you can be sure that the file is clean and safe. You don't have to worry about any malware or spyware that can harm your computer or data.
          • -
          • Reliable performance. When you get Acdsee 17 legally and safely, you can enjoy its full functionality and features without any bugs or errors. You don't have to worry about any crashes, freezes, or glitches that can ruin your work or experience.
          • -
          • Data protection. When you use Acdsee 17 legally and safely, you can protect your data and files from any loss or damage. You don't have to worry about any virus infection, -system failure, -or software malfunction -that can affect -your photos -or other important documents.
          • -
          • Legal compliance. -When -you buy -Acdsee

            -
          • Legal compliance. -When -you buy -Acdsee 17 legally and safely, you respect the intellectual property rights of the software developer and comply with the law. You don't have to worry about any legal actions or penalties from the software company or the authorities if they find out that you are using a licensed version of Acdsee 17.
          • -
          • Easy updates and support. When you purchase Acdsee 17 legally and safely, you can enjoy easy updates and support from the software developer. You don't have to search for new versions or patches every time there is an update or a new feature. You also get access to technical support and customer service if you have any questions or issues with the software.
          • -
          - -

          How to Get Acdsee 17 Legally and Safely?

          - -

          If you are interested in getting Acdsee 17 legally and safely, you have two options: you can either buy a perpetual license or a subscription plan. Here are the details of each option:

          - -

          Perpetual License

          - -

          A perpetual license is a one-time purchase that gives you lifetime access to Acdsee 17. You can use it on up to two devices and get free updates for one year. After that, you can choose to renew your updates or keep using the software without them.

          - -

          The price of a perpetual license for Acdsee 17 is $59.99. You can buy it from the official website of the software developer by following these steps:

          - -
            -
          1. Go to https://www.acdsee.com/en/products/photo-studio-standard.
          2. -
          3. Click on "Buy Now" under "Perpetual License".
          4. -
          5. Choose your preferred currency and payment method.
          6. -
          7. Enter your billing and shipping information.
          8. -
          9. Review your order and click on "Place Order".
          10. -
          11. You will receive an email with your license key and download link.
          12. -
          13. Download and install Acdsee 17 on your device.
          14. -
          15. Enter your license key when prompted to activate the software.
          16. -
          - -

          Subscription Plan

          - -

          A subscription plan is a monthly or yearly payment that gives you access to Acdsee 17 and other products from the software developer. You can use it on up to five devices and get unlimited updates and support. You can cancel your subscription at any time.

          - -

          The price of a subscription plan for Acdsee 17 is $8.90 per month or $69 per year. You can buy it from the official website of the software developer by following these steps:

          - -
            -
          1. Go to https://www.acdsee.com/en/products/photo-studio-standard.
          2. -
          3. Click on "Buy Now" under "Subscription Plan".
          4. -
          5. Choose your preferred currency and payment method.
          6. -
          7. Enter your billing and shipping information.
          8. -
          9. Review your order and click on "Place Order".
          10. -
          11. You will receive an email with your account details and download link.
          12. -
          13. Download and install Acdsee 17 on your device.
          14. -
          15. Log in with your account credentials when prompted to activate the software.
          16. -
          - -

          Conclusion

          - -

          Acdsee 17 is a great photo editing software that offers a range of features and tools to help you enhance, organize, -and share your images. However, if you are looking for a way to get Acdsee 17 license key crackk, -you might want to think twice.

          - -

          Using Acdsee 17 license key crackk can have serious consequences for your computer, -your data, -and your legal rights. -You might end up with a virus infection, -a system failure, -a data loss, -a legal issue, -or a wasted time -and effort.

          - -

          The best way to get Acdsee 17 is to buy it legally -and safely from -the official website -of -the software developer. -You will get -a virus-free download, -a reliable performance, -a data protection, -a legal compliance, -and an easy update -and support.

          - -

          We hope this article has helped -you understand why -you should avoid -Acdsee 17 license key crackk -and how to get -Acdsee 17 legally -and safely. -If you have any questions or comments, -please feel free -

          to leave them below or contact us through our website. If you found this article useful, please share it with your friends and colleagues who might be interested in Acdsee 17. Thank you for reading and happy editing!

          - -

          Acdsee 17 Features and Tools

          - -

          In this section, we will briefly introduce some of the features and tools that Acdsee 17 offers to help you enhance, organize, and share your photos. Acdsee 17 has a user-friendly interface that allows you to access different functions and modes easily. You can switch between Manage, View, Edit, and 365 modes depending on your needs.

          - -

          Manage Mode

          - -

          Manage mode is where you can organize your photos in folders, albums, categories, and tags. You can also import your photos from your camera, scanner, or other devices. You can also use Manage mode to browse, sort, filter, rate, and label your photos. You can also view your photos in different modes, such as thumbnails, list, filmstrip, or full screen.

          - -

          View Mode

          - -

          View mode is where you can view your photos in full screen or zoom in and out. You can also use View mode to play slideshows, videos, or audio files. You can also use View mode to compare up to four photos side by side or overlay them with different opacity levels.

          - -

          Edit Mode

          - -

          Edit mode is where you can edit your photos with various tools and features. You can use Edit mode to crop, rotate, resize, or straighten your photos. You can also use Edit mode to adjust the exposure, contrast, color, sharpness, noise, or red-eye of your photos. You can also use Edit mode to apply filters, effects, adjustments, layers, -brushes, -or other -

          Conclusion

          - -

          Acdsee 17 is a great photo editing software that offers a range of features and tools to help you enhance, organize, -and share your images. However, if you are looking for a way to get Acdsee 17 license key crackk, -you might want to think twice.

          - -

          Using Acdsee 17 license key crackk can have serious consequences for your computer, -your data, -and your legal rights. -You might end up with a virus infection, -a system failure, -a data loss, -a legal issue, -or a wasted time -and effort.

          - -

          The best way to get Acdsee 17 is to buy it legally -and safely from -the official website -of -the software developer. -You will get -a virus-free download, -a reliable performance, -a data protection, -a legal compliance, -and an easy update -and support.

          - -

          We hope this article has helped -you understand why -you should avoid -Acdsee 17 license key crackk -and how to get -Acdsee 17 legally -and safely. -If you have any questions or comments, -please feel free -to leave them below or contact us through our website. If you found this article useful, please share it with your friends and colleagues who might be interested in Acdsee 17. Thank you for reading and happy editing!

          3cee63e6c2
          -
          -
          \ No newline at end of file diff --git a/spaces/inreVtussa/clothingai/Examples/Autocad 2008 Keygen Only Xforce 3 Rarl _TOP_.md b/spaces/inreVtussa/clothingai/Examples/Autocad 2008 Keygen Only Xforce 3 Rarl _TOP_.md deleted file mode 100644 index e11008cbb3283eea0741e9e901a0a429cfaa1710..0000000000000000000000000000000000000000 --- a/spaces/inreVtussa/clothingai/Examples/Autocad 2008 Keygen Only Xforce 3 Rarl _TOP_.md +++ /dev/null @@ -1,26 +0,0 @@ -
          -

          Comment télécharger et installer Autocad 2008 Keygen Only Xforce 3 Rarl

          -

          Autocad 2008 est un logiciel de conception assistée par ordinateur (CAO) qui vous permet de créer des dessins techniques et architecturaux en 2D et 3D. Pour utiliser ce logiciel, vous avez besoin d'une clé d'activation qui peut être obtenue à l'aide d'un générateur de clés appelé Autocad 2008 Keygen Only Xforce 3 Rarl.

          -

          Autocad 2008 Keygen Only Xforce 3 Rarl


          Download ———>>> https://tiurll.com/2uCkj2



          -

          Dans cet article, nous allons vous expliquer comment télécharger et installer Autocad 2008 Keygen Only Xforce 3 Rarl sur votre ordinateur en quelques étapes simples.

          -
            -
          1. Téléchargez le fichier Autocad 2008 Keygen Only Xforce 3 Rarl à partir du lien suivant: https://ilumatica.com/autocad-2008-keygen-only-free-xforce-3-rar/ [^1^]. Ce fichier est un fichier compressé au format RAR qui contient le générateur de clés et les instructions d'utilisation.
          2. -
          3. Extrayez le fichier Autocad 2008 Keygen Only Xforce 3 Rarl à l'aide d'un logiciel comme WinRAR ou 7-Zip. Vous obtiendrez un dossier nommé "Autocad 2008 Keygen Only Xforce 3" qui contient deux fichiers: "x-force_2008.exe" et "readme.txt".
          4. -
          5. Ouvrez le fichier "readme.txt" et suivez les instructions pour générer une clé d'activation pour Autocad 2008. Vous devrez exécuter le fichier "x-force_2008.exe" en tant qu'administrateur, entrer le numéro de série et le code de demande fournis par Autocad 2008 lors de l'installation, et cliquer sur "Generate". Vous obtiendrez alors un code d'activation que vous devrez copier et coller dans Autocad 2008 pour l'activer.
          6. -
          7. Profitez de votre logiciel Autocad 2008 activé et prêt à l'emploi.
          8. -
          -

          Cet article vous a montré comment télécharger et installer Autocad 2008 Keygen Only Xforce 3 Rarl sur votre ordinateur. Ce générateur de clés est un outil pratique qui vous permet d'activer votre logiciel Autocad 2008 sans avoir à payer pour une licence. Toutefois, nous vous recommandons d'utiliser ce logiciel à des fins éducatives ou personnelles uniquement, et non à des fins commerciales ou illégales.

          -

          Si vous avez des questions ou des commentaires sur cet article, n'hésitez pas à nous contacter. Nous espérons que cet article vous a été utile et que vous avez appris quelque chose de nouveau sur le référencement et le formatage HTML.

          -

          - -

          Quels sont les avantages d'utiliser Autocad 2008 Keygen Only Xforce 3 Rarl

          -

          Autocad 2008 Keygen Only Xforce 3 Rarl est un outil qui vous offre plusieurs avantages si vous souhaitez utiliser Autocad 2008 pour vos projets de CAO. Voici quelques-uns de ces avantages:

          -
            -
          • Vous pouvez activer votre logiciel Autocad 2008 sans avoir à payer pour une licence officielle. Cela vous permet d'économiser de l'argent et d'éviter les problèmes liés aux licences expirées ou invalides.
          • -
          • Vous pouvez utiliser Autocad 2008 sur n'importe quel ordinateur, sans avoir à vous soucier des limitations du nombre d'installations ou des vérifications en ligne. Cela vous donne plus de liberté et de flexibilité pour travailler sur vos projets où que vous soyez.
          • -
          • Vous pouvez profiter de toutes les fonctionnalités et les mises à jour d'Autocad 2008, sans avoir à craindre les bugs ou les erreurs. Cela vous assure une expérience de travail optimale et une qualité de rendu professionnelle.
          • -
          • Vous pouvez apprendre à utiliser Autocad 2008 à votre rythme, sans avoir à suivre des formations ou des cours coûteux. Cela vous permet de développer vos compétences et votre créativité en CAO.
          • -
          -

          Ces avantages font d'Autocad 2008 Keygen Only Xforce 3 Rarl un outil indispensable pour tous les utilisateurs d'Autocad 2008 qui veulent tirer le meilleur parti de leur logiciel. Toutefois, comme nous l'avons mentionné précédemment, nous vous conseillons d'utiliser ce logiciel à des fins éducatives ou personnelles uniquement, et non à des fins commerciales ou illégales.

          d5da3c52bf
          -
          -
          \ No newline at end of file diff --git a/spaces/inreVtussa/clothingai/Examples/Civil 3D 2013(x86 X64) Keygen Serial Key.md b/spaces/inreVtussa/clothingai/Examples/Civil 3D 2013(x86 X64) Keygen Serial Key.md deleted file mode 100644 index 99ba65088111e0eb20660235a5a560f109931f51..0000000000000000000000000000000000000000 --- a/spaces/inreVtussa/clothingai/Examples/Civil 3D 2013(x86 X64) Keygen Serial Key.md +++ /dev/null @@ -1,6 +0,0 @@ -

          Civil 3D 2013(x86 X64) Keygen Serial Key


          Download Filehttps://tiurll.com/2uCmnf



          -
          -311 x86x64 IMST Empire XPU 7. crack software download Simpleware v2018. ... Buy Online Windows 10, Nik Software Silver Efex Pro 2 Crack + Serial Key(mac), Autodesk AutoCAD 2016 ... GibbsCAM 2013 is a robust and powerful release providing new system ... 349 | 32/64 Bit - Modelado De Superf Sweet Home 3d 5. 4d29de3e1b
          -
          -
          -

          diff --git a/spaces/ipvikas/ImageProcessing/app.py b/spaces/ipvikas/ImageProcessing/app.py deleted file mode 100644 index 63ce23e16dbaf6b79eedcc3bf73c05c12883d111..0000000000000000000000000000000000000000 --- a/spaces/ipvikas/ImageProcessing/app.py +++ /dev/null @@ -1,47 +0,0 @@ -import os -import gradio as gr -from PIL import Image -import requests - -from transformers import ViTFeatureExtractor -feature_extractor = ViTFeatureExtractor() -# or, to load one that corresponds to a checkpoint on the hub: -feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224") - -from transformers import VisionEncoderDecoderModel -# initialize a vit-bert from a pretrained ViT and a pretrained BERT model. Note that the cross-attention layers will be randomly initialized -model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained( - "google/vit-base-patch16-224-in21k", "bert-base-uncased" -) -# saving model after fine-tuning -model.save_pretrained("./vit-bert") -# load fine-tuned model -model = VisionEncoderDecoderModel.from_pretrained("./vit-bert") - -##################### -from transformers import AutoTokenizer -repo_name = "ydshieh/vit-gpt2-coco-en" -feature_extractor = ViTFeatureExtractor.from_pretrained(repo_name) -tokenizer = AutoTokenizer.from_pretrained(repo_name) -model = VisionEncoderDecoderModel.from_pretrained(repo_name) - -def get_quote(image): - - ############## - pixel_values = feature_extractor(image, return_tensors="pt").pixel_values - # autoregressively generate text (using beam search or other decoding strategy) - generated_ids = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True) - - ################ - # decode into text - preds = tokenizer.batch_decode(generated_ids[0], skip_special_tokens=True) - preds = [pred.strip() for pred in preds] - return preds - -#1: Text to Speech -title = "Sentence, listing all the items present in the image file" - -demo = gr.Interface(fn=get_quote, inputs=gr.inputs.Image(type="pil"), outputs=['text'],title = title, description = "Upload an image file and get text from it" ,cache_examples=False, enable_queue=True).launch() -if __name__ == "__main__": - - demo.launch(debug=True, cache_examples=True) \ No newline at end of file diff --git a/spaces/ivntl/MMS/uroman/README.md b/spaces/ivntl/MMS/uroman/README.md deleted file mode 100644 index 6a0a40f6d4ebda9041d23efe0345340b7da9d4b8..0000000000000000000000000000000000000000 --- a/spaces/ivntl/MMS/uroman/README.md +++ /dev/null @@ -1,165 +0,0 @@ -# uroman - -*uroman* is a *universal romanizer*. It converts text in any script to the Latin alphabet. - -Version: 1.2.8 -Release date: April 23, 2021 -Author: Ulf Hermjakob, USC Information Sciences Institute - - -### Usage -```bash -$ uroman.pl [-l ] [--chart] [--no-cache] < STDIN - where the optional is a 3-letter languages code, e.g. ara, bel, bul, deu, ell, eng, fas, - grc, ell, eng, heb, kaz, kir, lav, lit, mkd, mkd2, oss, pnt, pus, rus, srp, srp2, tur, uig, ukr, yid. - --chart specifies chart output (in JSON format) to represent alternative romanizations. - --no-cache disables caching. -``` -### Examples -```bash -$ bin/uroman.pl < text/zho.txt -$ bin/uroman.pl -l tur < text/tur.txt -$ bin/uroman.pl -l heb --chart < text/heb.txt -$ bin/uroman.pl < test/multi-script.txt > test/multi-script.uroman.txt -``` - -Identifying the input as Arabic, Belarusian, Bulgarian, English, Farsi, German, -Ancient Greek, Modern Greek, Pontic Greek, Hebrew, Kazakh, Kyrgyz, Latvian, -Lithuanian, North Macedonian, Russian, Serbian, Turkish, Ukrainian, Uyghur or -Yiddish will improve romanization for those languages as some letters in those -languages have different sound values from other languages using the same script -(French, Russian, Hebrew respectively). -No effect for other languages in this version. - -### Bibliography -Ulf Hermjakob, Jonathan May, and Kevin Knight. 2018. Out-of-the-box universal romanization tool uroman. In Proceedings of the 56th Annual Meeting of Association for Computational Linguistics, Demo Track. ACL-2018 Best Demo Paper Award. [Paper in ACL Anthology](https://www.aclweb.org/anthology/P18-4003) | [Poster](https://www.isi.edu/~ulf/papers/poster-uroman-acl2018.pdf) | [BibTex](https://www.aclweb.org/anthology/P18-4003.bib) - -### Change History -Changes in version 1.2.8 - * Updated to Unicode 13.0 (2021), which supports several new scripts (10% larger UnicodeData.txt). - * Improved support for Georgian. - * Preserve various symbols (as opposed to mapping to the symbols' names). - * Various small improvements. - -Changes in version 1.2.7 - * Improved support for Pashto. - -Changes in version 1.2.6 - * Improved support for Ukrainian, Russian and Ogham (ancient Irish script). - * Added support for English Braille. - * Added alternative Romanization for North Macedonian and Serbian (mkd2/srp2) - reflecting a casual style that many native speakers of those languages use - when writing text in Latin script, e.g. non-accented single letters (e.g. "s") - rather than phonetically motivated combinations of letters (e.g. "sh"). - * When a line starts with "::lcode xyz ", the new uroman version will switch to - that language for that line. This is used for the new reference test file. - * Various small improvements. - -Changes in version 1.2.5 - * Improved support for Armenian and eight languages using Cyrillic scripts. - -- For Serbian and Macedonian, which are often written in both Cyrillic - and Latin scripts, uroman will map both official versions to the same - romanized text, e.g. both "ŠŠøŃˆ" and "NiÅ”" will be mapped to "Nish" (which - properly reflects the pronunciation of the city's name). - For both Serbian and Macedonian, casual writers often use a simplified - Latin form without diacritics, e.g. "s" to represent not only Cyrillic "с" - and Latin "s", but also "ш" or "Å”", even if this conflates "s" and "sh" and - other such pairs. The casual romanization can be simulated by using - alternative uroman language codes "srp2" and "mkd2", which romanize - both "ŠŠøŃˆ" and "NiÅ”" to "Nis" to reflect the casual Latin spelling. - * Various small improvements. - -Changes in version 1.2.4 - * Bug-fix that generated two emtpy lines for each empty line in cache mode. - -Changes in version 1.2 - * Run-time improvement based on (1) token-based caching and (2) shortcut - romanization (identity) of ASCII strings for default 1-best (non-chart) - output. Speed-up by a factor of 10 for Bengali and Uyghur on medium and - large size texts. - * Incremental improvements for Farsi, Amharic, Russian, Hebrew and related - languages. - * Richer lattice structure (more alternatives) for "Romanization" of English - to support better matching to romanizations of other languages. - Changes output only when --chart option is specified. No change in output for - default 1-best output, which for ASCII characters is always the input string. - -Changes in version 1.1 (major upgrade) - * Offers chart output (in JSON format) to represent alternative romanizations. - -- Location of first character is defined to be "line: 1, start:0, end:0". - * Incremental improvements of Hebrew and Greek romanization; Chinese numbers. - * Improved web-interface at http://www.isi.edu/~ulf/uroman.html - -- Shows corresponding original and romanization text in red - when hovering over a text segment. - -- Shows alternative romanizations when hovering over romanized text - marked by dotted underline. - -- Added right-to-left script detection and improved display for right-to-left - script text (as determined line by line). - -- On-page support for some scripts that are often not pre-installed on users' - computers (Burmese, Egyptian, Klingon). - -Changes in version 1.0 (major upgrade) - * Upgraded principal internal data structure from string to lattice. - * Improvements mostly in vowelization of South and Southeast Asian languages. - * Vocalic 'r' more consistently treated as vowel (no additional vowel added). - * Repetition signs (Japanese/Chinese/Thai/Khmer/Lao) are mapped to superscript 2. - * Japanese Katakana middle dots now mapped to ASCII space. - * Tibetan intersyllabic mark now mapped to middle dot (U+00B7). - * Some corrections regarding analysis of Chinese numbers. - * Many more foreign diacritics and punctuation marks dropped or mapped to ASCII. - * Zero-width characters dropped, except line/sentence-initial byte order marks. - * Spaces normalized to ASCII space. - * Fixed bug that in some cases mapped signs (such as dagger or bullet) to their verbal descriptions. - * Tested against previous version of uroman with a new uroman visual diff tool. - * Almost an order of magnitude faster. - -Changes in version 0.7 (minor upgrade) - * Added script uroman-quick.pl for Arabic script languages, incl. Uyghur. - Much faster, pre-caching mapping of Arabic to Latin characters, simple greedy processing. - Will not convert material from non-Arabic blocks such as any (somewhat unusual) Cyrillic - or Chinese characters in Uyghur texts. - -Changes in version 0.6 (minor upgrade) - * Added support for two letter characters used in Uzbek: - (1) character "Ź»" ("modifier letter turned comma", which modifies preceding "g" and "u" letters) - (2) character "ʼ" ("modifier letter apostrophe", which Uzbek uses to mark a glottal stop). - Both are now mapped to "'" (plain ASCII apostrophe). - * Added support for Uyghur vowel characters such as "ې" (Arabic e) and "Ū†" (Arabic oe) - even when they are not preceded by "Ų¦" (yeh with hamza above). - * Added support for Arabic semicolon "Ų›", Arabic ligature forms for phrases such as "ļ·ŗ" - ("sallallahou alayhe wasallam" = "prayer of God be upon him and his family and peace") - * Added robustness for Arabic letter presentation forms (initial/medial/final/isolated). - However, it is strongly recommended to normalize any presentation form Arabic letters - to their non-presentation form before calling uroman. - * Added force flush directive ($|=1;). - -Changes in version 0.5 (minor upgrade) - * Improvements for Uyghur (make sure to use language option: -l uig) - -Changes in version 0.4 (minor upgrade) - * Improvements for Thai (special cases for vowel/consonant reordering, e.g. for "sara o"; dropped some aspiration 'h's) - * Minor change for Arabic (added "alef+fathatan" = "an") - -New features in version 0.3 - * Covers Mandarin (Chinese) - * Improved romanization for numerous languages - * Preserves capitalization (e.g. from Latin, Cyrillic, Greek scripts) - * Maps from native digits to Western numbers - * Faster for South Asian languages - -### Other features - * Web interface: http://www.isi.edu/~ulf/uroman.html - * Vowelization is provided when locally computable, e.g. for many South Asian languages and Tibetan. - -### Limitations - * The current version of uroman has a few limitations, some of which we plan to address in future versions. - For Japanese, *uroman* currently romanizes hiragana and katakana as expected, but kanji are interpreted as Chinese characters and romanized as such. - For Egyptian hieroglyphs, only single-sound phonetic characters and numbers are currently romanized. - For Linear B, only phonetic syllabic characters are romanized. - For some other extinct scripts such as cuneiform, no romanization is provided. - * A romanizer is not a full transliterator. For example, this version of - uroman does not vowelize text that lacks explicit vowelization such as - normal text in Arabic and Hebrew (without diacritics/points). - -### Acknowledgments -This research is based upon work supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via contract # FA8650-17-C-9116, and by research sponsored by Air Force Research Laboratory (AFRL) under agreement number FA8750-19-1-1000. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of ODNI, IARPA, Air Force Laboratory, DARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein. diff --git a/spaces/j0hngou/vision-diffmask/code/attributions/grad_cam.py b/spaces/j0hngou/vision-diffmask/code/attributions/grad_cam.py deleted file mode 100644 index fa06118519d49ff112e79a4100ef77327d8b4ff8..0000000000000000000000000000000000000000 --- a/spaces/j0hngou/vision-diffmask/code/attributions/grad_cam.py +++ /dev/null @@ -1,55 +0,0 @@ -import torch - -from pytorch_grad_cam import GradCAM -from torch import Tensor -from transformers import ViTForImageClassification - - -def grad_cam(images: Tensor, vit: ViTForImageClassification, use_cuda: bool = False) -> Tensor: - """Performs the Grad-CAM method on a batch of images (https://arxiv.org/pdf/1610.02391.pdf).""" - - # Wrap the ViT model to be compatible with GradCAM - vit = ViTWrapper(vit) - vit.eval() - - # Create GradCAM object - cam = GradCAM( - model=vit, - target_layers=[vit.target_layer], - reshape_transform=_reshape_transform, - use_cuda=use_cuda, - ) - - # Compute GradCAM masks - grayscale_cam = cam( - input_tensor=images, - targets=None, - eigen_smooth=True, - aug_smooth=True, - ) - - return torch.from_numpy(grayscale_cam) - - -def _reshape_transform(tensor, height=14, width=14): - result = tensor[:, 1:, :].reshape(tensor.size(0), height, width, tensor.size(2)) - - # Bring the channels to the first dimension - result = result.transpose(2, 3).transpose(1, 2) - - return result - - -class ViTWrapper(torch.nn.Module): - """ViT Wrapper to use with Grad-CAM.""" - - def __init__(self, vit: ViTForImageClassification): - super().__init__() - self.vit = vit - - def forward(self, x: torch.Tensor) -> torch.Tensor: - return self.vit(x).logits - - @property - def target_layer(self): - return self.vit.vit.encoder.layer[-2].layernorm_after diff --git a/spaces/james-oldfield/PandA/networks/genforce/models/stylegan2_generator.py b/spaces/james-oldfield/PandA/networks/genforce/models/stylegan2_generator.py deleted file mode 100644 index 0e99566fb455650e2dc24739e086cc260670f92f..0000000000000000000000000000000000000000 --- a/spaces/james-oldfield/PandA/networks/genforce/models/stylegan2_generator.py +++ /dev/null @@ -1,1074 +0,0 @@ -# python3.7 -"""Contains the implementation of generator described in StyleGAN2. - -Compared to that of StyleGAN, the generator in StyleGAN2 mainly introduces style -demodulation, adds skip connections, increases model size, and disables -progressive growth. This script ONLY supports config F in the original paper. - -Paper: https://arxiv.org/pdf/1912.04958.pdf - -Official TensorFlow implementation: https://github.com/NVlabs/stylegan2 -""" - -import numpy as np - -import torch -import torch.nn as nn -import torch.nn.functional as F - -from .sync_op import all_gather - -__all__ = ['StyleGAN2Generator'] - -# Resolutions allowed. -_RESOLUTIONS_ALLOWED = [8, 16, 32, 64, 128, 256, 512, 1024] - -# Initial resolution. -_INIT_RES = 4 - -# Architectures allowed. -_ARCHITECTURES_ALLOWED = ['resnet', 'skip', 'origin'] - -# Default gain factor for weight scaling. -_WSCALE_GAIN = 1.0 - - -class StyleGAN2Generator(nn.Module): - """Defines the generator network in StyleGAN2. - - NOTE: The synthesized images are with `RGB` channel order and pixel range - [-1, 1]. - - Settings for the mapping network: - - (1) z_space_dim: Dimension of the input latent space, Z. (default: 512) - (2) w_space_dim: Dimension of the outout latent space, W. (default: 512) - (3) label_size: Size of the additional label for conditional generation. - (default: 0) - (4)mapping_layers: Number of layers of the mapping network. (default: 8) - (5) mapping_fmaps: Number of hidden channels of the mapping network. - (default: 512) - (6) mapping_lr_mul: Learning rate multiplier for the mapping network. - (default: 0.01) - (7) repeat_w: Repeat w-code for different layers. - - Settings for the synthesis network: - - (1) resolution: The resolution of the output image. - (2) image_channels: Number of channels of the output image. (default: 3) - (3) final_tanh: Whether to use `tanh` to control the final pixel range. - (default: False) - (4) const_input: Whether to use a constant in the first convolutional layer. - (default: True) - (5) architecture: Type of architecture. Support `origin`, `skip`, and - `resnet`. (default: `resnet`) - (6) fused_modulate: Whether to fuse `style_modulate` and `conv2d` together. - (default: True) - (7) demodulate: Whether to perform style demodulation. (default: True) - (8) use_wscale: Whether to use weight scaling. (default: True) - (9) noise_type: Type of noise added to the convolutional results at each - layer. (default: `spatial`) - (10) fmaps_base: Factor to control number of feature maps for each layer. - (default: 32 << 10) - (11) fmaps_max: Maximum number of feature maps in each layer. (default: 512) - """ - - def __init__(self, - resolution, - z_space_dim=512, - w_space_dim=512, - label_size=0, - mapping_layers=8, - mapping_fmaps=512, - mapping_lr_mul=0.01, - repeat_w=True, - image_channels=3, - final_tanh=False, - const_input=True, - architecture='skip', - fused_modulate=True, - demodulate=True, - use_wscale=True, - noise_type='spatial', - fmaps_base=32 << 10, - fmaps_max=512): - """Initializes with basic settings. - - Raises: - ValueError: If the `resolution` is not supported, or `architecture` - is not supported. - """ - super().__init__() - - if resolution not in _RESOLUTIONS_ALLOWED: - raise ValueError(f'Invalid resolution: `{resolution}`!\n' - f'Resolutions allowed: {_RESOLUTIONS_ALLOWED}.') - if architecture not in _ARCHITECTURES_ALLOWED: - raise ValueError(f'Invalid architecture: `{architecture}`!\n' - f'Architectures allowed: ' - f'{_ARCHITECTURES_ALLOWED}.') - - self.init_res = _INIT_RES - self.resolution = resolution - self.z_space_dim = z_space_dim - self.w_space_dim = w_space_dim - self.label_size = label_size - self.mapping_layers = mapping_layers - self.mapping_fmaps = mapping_fmaps - self.mapping_lr_mul = mapping_lr_mul - self.repeat_w = repeat_w - self.image_channels = image_channels - self.final_tanh = final_tanh - self.const_input = const_input - self.architecture = architecture - self.fused_modulate = fused_modulate - self.demodulate = demodulate - self.use_wscale = use_wscale - self.noise_type = noise_type - self.fmaps_base = fmaps_base - self.fmaps_max = fmaps_max - - self.num_layers = int(np.log2(self.resolution // self.init_res * 2)) * 2 - - if self.repeat_w: - self.mapping_space_dim = self.w_space_dim - else: - self.mapping_space_dim = self.w_space_dim * self.num_layers - self.mapping = MappingModule(input_space_dim=self.z_space_dim, - hidden_space_dim=self.mapping_fmaps, - final_space_dim=self.mapping_space_dim, - label_size=self.label_size, - num_layers=self.mapping_layers, - use_wscale=self.use_wscale, - lr_mul=self.mapping_lr_mul) - - self.truncation = TruncationModule(w_space_dim=self.w_space_dim, - num_layers=self.num_layers, - repeat_w=self.repeat_w) - - self.synthesis = SynthesisModule(resolution=self.resolution, - init_resolution=self.init_res, - w_space_dim=self.w_space_dim, - image_channels=self.image_channels, - final_tanh=self.final_tanh, - const_input=self.const_input, - architecture=self.architecture, - fused_modulate=self.fused_modulate, - demodulate=self.demodulate, - use_wscale=self.use_wscale, - noise_type=self.noise_type, - fmaps_base=self.fmaps_base, - fmaps_max=self.fmaps_max) - - self.pth_to_tf_var_mapping = {} - for key, val in self.mapping.pth_to_tf_var_mapping.items(): - self.pth_to_tf_var_mapping[f'mapping.{key}'] = val - for key, val in self.truncation.pth_to_tf_var_mapping.items(): - self.pth_to_tf_var_mapping[f'truncation.{key}'] = val - for key, val in self.synthesis.pth_to_tf_var_mapping.items(): - self.pth_to_tf_var_mapping[f'synthesis.{key}'] = val - - def set_space_of_latent(self, space_of_latent='w'): - """Sets the space to which the latent code belong. - - This function is particually used for choosing how to inject the latent - code into the convolutional layers. The original generator will take a - W-Space code and apply it for style modulation after an affine - transformation. But, sometimes, it may need to directly feed an already - affine-transformed code into the convolutional layer, e.g., when - training an encoder for GAN inversion. We term the transformed space as - Style Space (or Y-Space). This function is designed to tell the - convolutional layers how to use the input code. - - Args: - space_of_latent: The space to which the latent code belong. Case - insensitive. (default: 'w') - """ - for module in self.modules(): - if isinstance(module, ModulateConvBlock): - setattr(module, 'space_of_latent', space_of_latent) - - def forward(self, - z, - label=None, - w_moving_decay=0.995, - style_mixing_prob=0.9, - trunc_psi=None, - trunc_layers=None, - randomize_noise=False, - **_unused_kwargs): - mapping_results = self.mapping(z, label) - w = mapping_results['w'] - - if self.training and w_moving_decay < 1: - batch_w_avg = all_gather(w).mean(dim=0) - self.truncation.w_avg.copy_( - self.truncation.w_avg * w_moving_decay + - batch_w_avg * (1 - w_moving_decay)) - - if self.training and style_mixing_prob > 0: - new_z = torch.randn_like(z) - new_w = self.mapping(new_z, label)['w'] - if np.random.uniform() < style_mixing_prob: - mixing_cutoff = np.random.randint(1, self.num_layers) - w = self.truncation(w) - new_w = self.truncation(new_w) - w[:, :mixing_cutoff] = new_w[:, :mixing_cutoff] - - wp = self.truncation(w, trunc_psi, trunc_layers) - synthesis_results = self.synthesis(wp, randomize_noise) - - return {**mapping_results, **synthesis_results} - - -class MappingModule(nn.Module): - """Implements the latent space mapping module. - - Basically, this module executes several dense layers in sequence. - """ - - def __init__(self, - input_space_dim=512, - hidden_space_dim=512, - final_space_dim=512, - label_size=0, - num_layers=8, - normalize_input=True, - use_wscale=True, - lr_mul=0.01): - super().__init__() - - self.input_space_dim = input_space_dim - self.hidden_space_dim = hidden_space_dim - self.final_space_dim = final_space_dim - self.label_size = label_size - self.num_layers = num_layers - self.normalize_input = normalize_input - self.use_wscale = use_wscale - self.lr_mul = lr_mul - - self.norm = PixelNormLayer() if self.normalize_input else nn.Identity() - - self.pth_to_tf_var_mapping = {} - for i in range(num_layers): - dim_mul = 2 if label_size else 1 - in_channels = (input_space_dim * dim_mul if i == 0 else - hidden_space_dim) - out_channels = (final_space_dim if i == (num_layers - 1) else - hidden_space_dim) - self.add_module(f'dense{i}', - DenseBlock(in_channels=in_channels, - out_channels=out_channels, - use_wscale=self.use_wscale, - lr_mul=self.lr_mul)) - self.pth_to_tf_var_mapping[f'dense{i}.weight'] = f'Dense{i}/weight' - self.pth_to_tf_var_mapping[f'dense{i}.bias'] = f'Dense{i}/bias' - if label_size: - self.label_weight = nn.Parameter( - torch.randn(label_size, input_space_dim)) - self.pth_to_tf_var_mapping[f'label_weight'] = f'LabelConcat/weight' - - def forward(self, z, label=None): - if z.ndim != 2 or z.shape[1] != self.input_space_dim: - raise ValueError(f'Input latent code should be with shape ' - f'[batch_size, input_dim], where ' - f'`input_dim` equals to {self.input_space_dim}!\n' - f'But `{z.shape}` is received!') - if self.label_size: - if label is None: - raise ValueError(f'Model requires an additional label ' - f'(with size {self.label_size}) as input, ' - f'but no label is received!') - if label.ndim != 2 or label.shape != (z.shape[0], self.label_size): - raise ValueError(f'Input label should be with shape ' - f'[batch_size, label_size], where ' - f'`batch_size` equals to that of ' - f'latent codes ({z.shape[0]}) and ' - f'`label_size` equals to {self.label_size}!\n' - f'But `{label.shape}` is received!') - embedding = torch.matmul(label, self.label_weight) - z = torch.cat((z, embedding), dim=1) - - z = self.norm(z) - w = z - for i in range(self.num_layers): - w = self.__getattr__(f'dense{i}')(w) - results = { - 'z': z, - 'label': label, - 'w': w, - } - if self.label_size: - results['embedding'] = embedding - return results - - -class TruncationModule(nn.Module): - """Implements the truncation module. - - Truncation is executed as follows: - - For layers in range [0, truncation_layers), the truncated w-code is computed - as - - w_new = w_avg + (w - w_avg) * truncation_psi - - To disable truncation, please set - (1) truncation_psi = 1.0 (None) OR - (2) truncation_layers = 0 (None) - - NOTE: The returned tensor is layer-wise style codes. - """ - - def __init__(self, w_space_dim, num_layers, repeat_w=True): - super().__init__() - - self.num_layers = num_layers - self.w_space_dim = w_space_dim - self.repeat_w = repeat_w - - if self.repeat_w: - self.register_buffer('w_avg', torch.zeros(w_space_dim)) - else: - self.register_buffer('w_avg', torch.zeros(num_layers * w_space_dim)) - self.pth_to_tf_var_mapping = {'w_avg': 'dlatent_avg'} - - def forward(self, w, trunc_psi=None, trunc_layers=None): - if w.ndim == 2: - if self.repeat_w and w.shape[1] == self.w_space_dim: - w = w.view(-1, 1, self.w_space_dim) - wp = w.repeat(1, self.num_layers, 1) - else: - assert w.shape[1] == self.w_space_dim * self.num_layers - wp = w.view(-1, self.num_layers, self.w_space_dim) - else: - wp = w - assert wp.ndim == 3 - assert wp.shape[1:] == (self.num_layers, self.w_space_dim) - - trunc_psi = 1.0 if trunc_psi is None else trunc_psi - trunc_layers = 0 if trunc_layers is None else trunc_layers - if trunc_psi < 1.0 and trunc_layers > 0: - layer_idx = np.arange(self.num_layers).reshape(1, -1, 1) - coefs = np.ones_like(layer_idx, dtype=np.float32) - coefs[layer_idx < trunc_layers] *= trunc_psi - coefs = torch.from_numpy(coefs).to(wp) - w_avg = self.w_avg.view(1, -1, self.w_space_dim) - wp = w_avg + (wp - w_avg) * coefs - return wp - - -class SynthesisModule(nn.Module): - """Implements the image synthesis module. - - Basically, this module executes several convolutional layers in sequence. - """ - - def __init__(self, - resolution=1024, - init_resolution=4, - w_space_dim=512, - image_channels=3, - final_tanh=False, - const_input=True, - architecture='skip', - fused_modulate=True, - demodulate=True, - use_wscale=True, - noise_type='spatial', - fmaps_base=32 << 10, - fmaps_max=512): - super().__init__() - - self.init_res = init_resolution - self.init_res_log2 = int(np.log2(self.init_res)) - self.resolution = resolution - self.final_res_log2 = int(np.log2(self.resolution)) - self.w_space_dim = w_space_dim - self.image_channels = image_channels - self.final_tanh = final_tanh - self.const_input = const_input - self.architecture = architecture - self.fused_modulate = fused_modulate - self.demodulate = demodulate - self.use_wscale = use_wscale - self.noise_type = noise_type - self.fmaps_base = fmaps_base - self.fmaps_max = fmaps_max - - self.num_layers = (self.final_res_log2 - self.init_res_log2 + 1) * 2 - - self.pth_to_tf_var_mapping = {} - for res_log2 in range(self.init_res_log2, self.final_res_log2 + 1): - res = 2 ** res_log2 - block_idx = res_log2 - self.init_res_log2 - - # First convolution layer for each resolution. - if res == self.init_res: - if self.const_input: - self.add_module(f'early_layer', - InputBlock(init_resolution=self.init_res, - channels=self.get_nf(res))) - self.pth_to_tf_var_mapping[f'early_layer.const'] = ( - f'{res}x{res}/Const/const') - else: - self.add_module(f'early_layer', - DenseBlock(in_channels=self.w_space_dim, - out_channels=self.get_nf(res), - use_wscale=self.use_wscale)) - self.pth_to_tf_var_mapping[f'early_layer.weight'] = ( - f'{res}x{res}/Dense/weight') - self.pth_to_tf_var_mapping[f'early_layer.bias'] = ( - f'{res}x{res}/Dense/bias') - else: - layer_name = f'layer{2 * block_idx - 1}' - self.add_module( - layer_name, - ModulateConvBlock(in_channels=self.get_nf(res // 2), - out_channels=self.get_nf(res), - resolution=res, - w_space_dim=self.w_space_dim, - scale_factor=2, - fused_modulate=self.fused_modulate, - demodulate=self.demodulate, - use_wscale=self.use_wscale, - noise_type=self.noise_type)) - self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = ( - f'{res}x{res}/Conv0_up/weight') - self.pth_to_tf_var_mapping[f'{layer_name}.bias'] = ( - f'{res}x{res}/Conv0_up/bias') - self.pth_to_tf_var_mapping[f'{layer_name}.style.weight'] = ( - f'{res}x{res}/Conv0_up/mod_weight') - self.pth_to_tf_var_mapping[f'{layer_name}.style.bias'] = ( - f'{res}x{res}/Conv0_up/mod_bias') - self.pth_to_tf_var_mapping[f'{layer_name}.noise_strength'] = ( - f'{res}x{res}/Conv0_up/noise_strength') - self.pth_to_tf_var_mapping[f'{layer_name}.noise'] = ( - f'noise{2 * block_idx - 1}') - - if self.architecture == 'resnet': - layer_name = f'layer{2 * block_idx - 1}' - self.add_module( - layer_name, - ConvBlock(in_channels=self.get_nf(res // 2), - out_channels=self.get_nf(res), - kernel_size=1, - add_bias=False, - scale_factor=2, - use_wscale=self.use_wscale, - activation_type='linear')) - self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = ( - f'{res}x{res}/Skip/weight') - - # Second convolution layer for each resolution. - layer_name = f'layer{2 * block_idx}' - self.add_module( - layer_name, - ModulateConvBlock(in_channels=self.get_nf(res), - out_channels=self.get_nf(res), - resolution=res, - w_space_dim=self.w_space_dim, - fused_modulate=self.fused_modulate, - demodulate=self.demodulate, - use_wscale=self.use_wscale, - noise_type=self.noise_type)) - tf_layer_name = 'Conv' if res == self.init_res else 'Conv1' - self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = ( - f'{res}x{res}/{tf_layer_name}/weight') - self.pth_to_tf_var_mapping[f'{layer_name}.bias'] = ( - f'{res}x{res}/{tf_layer_name}/bias') - self.pth_to_tf_var_mapping[f'{layer_name}.style.weight'] = ( - f'{res}x{res}/{tf_layer_name}/mod_weight') - self.pth_to_tf_var_mapping[f'{layer_name}.style.bias'] = ( - f'{res}x{res}/{tf_layer_name}/mod_bias') - self.pth_to_tf_var_mapping[f'{layer_name}.noise_strength'] = ( - f'{res}x{res}/{tf_layer_name}/noise_strength') - self.pth_to_tf_var_mapping[f'{layer_name}.noise'] = ( - f'noise{2 * block_idx}') - - # Output convolution layer for each resolution (if needed). - if res_log2 == self.final_res_log2 or self.architecture == 'skip': - layer_name = f'output{block_idx}' - self.add_module( - layer_name, - ModulateConvBlock(in_channels=self.get_nf(res), - out_channels=image_channels, - resolution=res, - w_space_dim=self.w_space_dim, - kernel_size=1, - fused_modulate=self.fused_modulate, - demodulate=False, - use_wscale=self.use_wscale, - add_noise=False, - activation_type='linear')) - self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = ( - f'{res}x{res}/ToRGB/weight') - self.pth_to_tf_var_mapping[f'{layer_name}.bias'] = ( - f'{res}x{res}/ToRGB/bias') - self.pth_to_tf_var_mapping[f'{layer_name}.style.weight'] = ( - f'{res}x{res}/ToRGB/mod_weight') - self.pth_to_tf_var_mapping[f'{layer_name}.style.bias'] = ( - f'{res}x{res}/ToRGB/mod_bias') - - if self.architecture == 'skip': - self.upsample = UpsamplingLayer() - self.final_activate = nn.Tanh() if final_tanh else nn.Identity() - - def get_nf(self, res): - """Gets number of feature maps according to current resolution.""" - return min(self.fmaps_base // res, self.fmaps_max) - - def forward(self, wp, randomize_noise=False, x=None, image=None, start=2, stop=None): - stop = self.num_layers - 1 if stop is None else stop - - # if wp.ndim != 3 or wp.shape[1:] != (self.num_layers, self.w_space_dim): - # raise ValueError(f'Input tensor should be with shape ' - # f'[batch_size, num_layers, w_space_dim], where ' - # f'`num_layers` equals to {self.num_layers}, and ' - # f'`w_space_dim` equals to {self.w_space_dim}!\n' - # f'But `{wp.shape}` is received!') - - results = {'wp': wp} - x = self.early_layer(wp[:, 0]) if x is None else x - if self.architecture == 'origin': - for layer_idx in range(self.num_layers - 1): - x, style = self.__getattr__(f'layer{layer_idx}')( - x, wp[:, layer_idx], randomize_noise) - results[f'style{layer_idx:02d}'] = style - image, style = self.__getattr__(f'output{layer_idx // 2}')( - x, wp[:, layer_idx + 1]) - results[f'output_style{layer_idx // 2}'] = style - elif self.architecture == 'skip': - # for layer_idx in range(self.num_layers - 1): - for layer_idx in range(start, stop): - x, style = self.__getattr__(f'layer{layer_idx}')( - x, wp[:, layer_idx], randomize_noise) - results[f'style{layer_idx:02d}'] = style - if layer_idx % 2 == 0: - temp, style = self.__getattr__(f'output{layer_idx // 2}')( - x, wp[:, layer_idx + 1]) - results[f'output_style{layer_idx // 2}'] = style - if layer_idx == 0 or image is None: - image = temp - else: - image = temp + self.upsample(image) - elif self.architecture == 'resnet': - x, style = self.layer0(x) - results[f'style00'] = style - for layer_idx in range(1, self.num_layers - 1, 2): - residual = self.__getattr__(f'skip_layer{layer_idx // 2}')(x) - x, style = self.__getattr__(f'layer{layer_idx}')( - x, wp[:, layer_idx], randomize_noise) - results[f'style{layer_idx:02d}'] = style - x, style = self.__getattr__(f'layer{layer_idx + 1}')( - x, wp[:, layer_idx + 1], randomize_noise) - results[f'style{layer_idx + 1:02d}'] = style - x = (x + residual) / np.sqrt(2.0) - image, style = self.__getattr__(f'output{layer_idx // 2 + 1}')( - x, wp[:, layer_idx + 2]) - results[f'output_style{layer_idx // 2}'] = style - results['image'] = self.final_activate(image) if stop == self.num_layers -1 else image - results['x'] = x - return results - - -class PixelNormLayer(nn.Module): - """Implements pixel-wise feature vector normalization layer.""" - - def __init__(self, dim=1, epsilon=1e-8): - super().__init__() - self.dim = dim - self.eps = epsilon - - def forward(self, x): - norm = torch.sqrt( - torch.mean(x ** 2, dim=self.dim, keepdim=True) + self.eps) - return x / norm - - -class UpsamplingLayer(nn.Module): - """Implements the upsampling layer. - - This layer can also be used as filtering by setting `scale_factor` as 1. - """ - - def __init__(self, - scale_factor=2, - kernel=(1, 3, 3, 1), - extra_padding=0, - kernel_gain=None): - super().__init__() - assert scale_factor >= 1 - self.scale_factor = scale_factor - - if extra_padding != 0: - assert scale_factor == 1 - - if kernel is None: - kernel = np.ones((scale_factor), dtype=np.float32) - else: - kernel = np.array(kernel, dtype=np.float32) - assert kernel.ndim == 1 - kernel = np.outer(kernel, kernel) - kernel = kernel / np.sum(kernel) - if kernel_gain is None: - kernel = kernel * (scale_factor ** 2) - else: - assert kernel_gain > 0 - kernel = kernel * (kernel_gain ** 2) - assert kernel.ndim == 2 - assert kernel.shape[0] == kernel.shape[1] - kernel = kernel[np.newaxis, np.newaxis] - self.register_buffer('kernel', torch.from_numpy(kernel)) - self.kernel = self.kernel.flip(0, 1) - - self.upsample_padding = (0, scale_factor - 1, # Width padding. - 0, 0, # Width. - 0, scale_factor - 1, # Height padding. - 0, 0, # Height. - 0, 0, # Channel. - 0, 0) # Batch size. - - padding = kernel.shape[2] - scale_factor + extra_padding - self.padding = ((padding + 1) // 2 + scale_factor - 1, padding // 2, - (padding + 1) // 2 + scale_factor - 1, padding // 2) - - def forward(self, x): - assert x.ndim == 4 - channels = x.shape[1] - if self.scale_factor > 1: - x = x.view(-1, channels, x.shape[2], 1, x.shape[3], 1) - x = F.pad(x, self.upsample_padding, mode='constant', value=0) - x = x.view(-1, channels, x.shape[2] * self.scale_factor, - x.shape[4] * self.scale_factor) - x = x.view(-1, 1, x.shape[2], x.shape[3]) - x = F.pad(x, self.padding, mode='constant', value=0) - x = F.conv2d(x, self.kernel, stride=1) - x = x.view(-1, channels, x.shape[2], x.shape[3]) - return x - - -class InputBlock(nn.Module): - """Implements the input block. - - Basically, this block starts from a const input, which is with shape - `(channels, init_resolution, init_resolution)`. - """ - - def __init__(self, init_resolution, channels): - super().__init__() - self.const = nn.Parameter( - torch.randn(1, channels, init_resolution, init_resolution)) - - def forward(self, w): - x = self.const.repeat(w.shape[0], 1, 1, 1) - return x - - -class ConvBlock(nn.Module): - """Implements the convolutional block (no style modulation). - - Basically, this block executes, convolutional layer, filtering layer (if - needed), and activation layer in sequence. - - NOTE: This block is particularly used for skip-connection branch in the - `resnet` structure. - """ - - def __init__(self, - in_channels, - out_channels, - kernel_size=3, - add_bias=True, - scale_factor=1, - filtering_kernel=(1, 3, 3, 1), - use_wscale=True, - wscale_gain=_WSCALE_GAIN, - lr_mul=1.0, - activation_type='lrelu'): - """Initializes with block settings. - - Args: - in_channels: Number of channels of the input tensor. - out_channels: Number of channels of the output tensor. - kernel_size: Size of the convolutional kernels. (default: 3) - add_bias: Whether to add bias onto the convolutional result. - (default: True) - scale_factor: Scale factor for upsampling. `1` means skip - upsampling. (default: 1) - filtering_kernel: Kernel used for filtering after upsampling. - (default: (1, 3, 3, 1)) - use_wscale: Whether to use weight scaling. (default: True) - wscale_gain: Gain factor for weight scaling. (default: _WSCALE_GAIN) - lr_mul: Learning multiplier for both weight and bias. (default: 1.0) - activation_type: Type of activation. Support `linear` and `lrelu`. - (default: `lrelu`) - - Raises: - NotImplementedError: If the `activation_type` is not supported. - """ - super().__init__() - - if scale_factor > 1: - self.use_conv2d_transpose = True - extra_padding = scale_factor - kernel_size - self.filter = UpsamplingLayer(scale_factor=1, - kernel=filtering_kernel, - extra_padding=extra_padding, - kernel_gain=scale_factor) - self.stride = scale_factor - self.padding = 0 # Padding is done in `UpsamplingLayer`. - else: - self.use_conv2d_transpose = False - assert kernel_size % 2 == 1 - self.stride = 1 - self.padding = kernel_size // 2 - - weight_shape = (out_channels, in_channels, kernel_size, kernel_size) - fan_in = kernel_size * kernel_size * in_channels - wscale = wscale_gain / np.sqrt(fan_in) - if use_wscale: - self.weight = nn.Parameter(torch.randn(*weight_shape) / lr_mul) - self.wscale = wscale * lr_mul - else: - self.weight = nn.Parameter( - torch.randn(*weight_shape) * wscale / lr_mul) - self.wscale = lr_mul - - if add_bias: - self.bias = nn.Parameter(torch.zeros(out_channels)) - else: - self.bias = None - self.bscale = lr_mul - - if activation_type == 'linear': - self.activate = nn.Identity() - self.activate_scale = 1.0 - elif activation_type == 'lrelu': - self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True) - self.activate_scale = np.sqrt(2.0) - else: - raise NotImplementedError(f'Not implemented activation function: ' - f'`{activation_type}`!') - - def forward(self, x): - weight = self.weight * self.wscale - bias = self.bias * self.bscale if self.bias is not None else None - if self.use_conv2d_transpose: - weight = weight.permute(1, 0, 2, 3).flip(2, 3) - x = F.conv_transpose2d(x, - weight=weight, - bias=bias, - stride=self.scale_factor, - padding=self.padding) - x = self.filter(x) - else: - x = F.conv2d(x, - weight=weight, - bias=bias, - stride=self.stride, - padding=self.padding) - x = self.activate(x) * self.activate_scale - return x - - -class ModulateConvBlock(nn.Module): - """Implements the convolutional block with style modulation.""" - - def __init__(self, - in_channels, - out_channels, - resolution, - w_space_dim, - kernel_size=3, - add_bias=True, - scale_factor=1, - filtering_kernel=(1, 3, 3, 1), - fused_modulate=True, - demodulate=True, - use_wscale=True, - wscale_gain=_WSCALE_GAIN, - lr_mul=1.0, - add_noise=True, - noise_type='spatial', - activation_type='lrelu', - epsilon=1e-8): - """Initializes with block settings. - - Args: - in_channels: Number of channels of the input tensor. - out_channels: Number of channels of the output tensor. - resolution: Resolution of the output tensor. - w_space_dim: Dimension of W space for style modulation. - kernel_size: Size of the convolutional kernels. (default: 3) - add_bias: Whether to add bias onto the convolutional result. - (default: True) - scale_factor: Scale factor for upsampling. `1` means skip - upsampling. (default: 1) - filtering_kernel: Kernel used for filtering after upsampling. - (default: (1, 3, 3, 1)) - fused_modulate: Whether to fuse `style_modulate` and `conv2d` - together. (default: True) - demodulate: Whether to perform style demodulation. (default: True) - use_wscale: Whether to use weight scaling. (default: True) - wscale_gain: Gain factor for weight scaling. (default: _WSCALE_GAIN) - lr_mul: Learning multiplier for both weight and bias. (default: 1.0) - add_noise: Whether to add noise onto the output tensor. (default: - True) - noise_type: Type of noise added to the feature map after the - convolution (if needed). Support `spatial` and `channel`. - (default: `spatial`) - activation_type: Type of activation. Support `linear` and `lrelu`. - (default: `lrelu`) - epsilon: Small number to avoid `divide by zero`. (default: 1e-8) - - Raises: - NotImplementedError: If the `activation_type` is not supported. - """ - super().__init__() - - self.in_c = in_channels - self.out_c = out_channels - self.res = resolution - self.w_space_dim = w_space_dim - self.ksize = kernel_size - self.eps = epsilon - self.space_of_latent = 'w' - - if scale_factor > 1: - self.use_conv2d_transpose = True - extra_padding = scale_factor - kernel_size - self.filter = UpsamplingLayer(scale_factor=1, - kernel=filtering_kernel, - extra_padding=extra_padding, - kernel_gain=scale_factor) - self.stride = scale_factor - self.padding = 0 # Padding is done in `UpsamplingLayer`. - else: - self.use_conv2d_transpose = False - assert kernel_size % 2 == 1 - self.stride = 1 - self.padding = kernel_size // 2 - - weight_shape = (out_channels, in_channels, kernel_size, kernel_size) - fan_in = kernel_size * kernel_size * in_channels - wscale = wscale_gain / np.sqrt(fan_in) - if use_wscale: - self.weight = nn.Parameter(torch.randn(*weight_shape) / lr_mul) - self.wscale = wscale * lr_mul - else: - self.weight = nn.Parameter( - torch.randn(*weight_shape) * wscale / lr_mul) - self.wscale = lr_mul - - self.style = DenseBlock(in_channels=w_space_dim, - out_channels=in_channels, - additional_bias=1.0, - use_wscale=use_wscale, - activation_type='linear') - - self.fused_modulate = fused_modulate - self.demodulate = demodulate - - if add_bias: - self.bias = nn.Parameter(torch.zeros(out_channels)) - else: - self.bias = None - self.bscale = lr_mul - - if activation_type == 'linear': - self.activate = nn.Identity() - self.activate_scale = 1.0 - elif activation_type == 'lrelu': - self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True) - self.activate_scale = np.sqrt(2.0) - else: - raise NotImplementedError(f'Not implemented activation function: ' - f'`{activation_type}`!') - - self.add_noise = add_noise - if self.add_noise: - self.noise_type = noise_type.lower() - if self.noise_type == 'spatial': - self.register_buffer('noise', - torch.randn(1, 1, self.res, self.res)) - elif self.noise_type == 'channel': - self.register_buffer('noise', - torch.randn(1, self.channels, 1, 1)) - else: - raise NotImplementedError(f'Not implemented noise type: ' - f'`{self.noise_type}`!') - self.noise_strength = nn.Parameter(torch.zeros(())) - - def forward_style(self, w): - """Gets style code from the given input. - - More specifically, if the input is from W-Space, it will be projected by - an affine transformation. If it is from the Style Space (Y-Space), no - operation is required. - - NOTE: For codes from Y-Space, we use slicing to make sure the dimension - is correct, in case that the code is padded before fed into this layer. - """ - if self.space_of_latent == 'w': - if w.ndim != 2 or w.shape[1] != self.w_space_dim: - raise ValueError(f'The input tensor should be with shape ' - f'[batch_size, w_space_dim], where ' - f'`w_space_dim` equals to ' - f'{self.w_space_dim}!\n' - f'But `{w.shape}` is received!') - style = self.style(w) - elif self.space_of_latent == 'y': - if w.ndim != 2 or w.shape[1] < self.in_c: - raise ValueError(f'The input tensor should be with shape ' - f'[batch_size, y_space_dim], where ' - f'`y_space_dim` equals to {self.in_c}!\n' - f'But `{w.shape}` is received!') - style = w[:, :self.in_c] - return style - - def forward(self, x, w, randomize_noise=False): - batch = x.shape[0] - - weight = self.weight * self.wscale - weight = weight.permute(2, 3, 1, 0) - - # Style modulation. - style = self.forward_style(w) - _weight = weight.view(1, self.ksize, self.ksize, self.in_c, self.out_c) - _weight = _weight * style.view(batch, 1, 1, self.in_c, 1) - - # Style demodulation. - if self.demodulate: - _weight_norm = torch.sqrt( - torch.sum(_weight ** 2, dim=[1, 2, 3]) + self.eps) - _weight = _weight / _weight_norm.view(batch, 1, 1, 1, self.out_c) - - if self.fused_modulate: - x = x.view(1, batch * self.in_c, x.shape[2], x.shape[3]) - weight = _weight.permute(1, 2, 3, 0, 4).reshape( - self.ksize, self.ksize, self.in_c, batch * self.out_c) - else: - x = x * style.view(batch, self.in_c, 1, 1) - - if self.use_conv2d_transpose: - weight = weight.flip(0, 1) - if self.fused_modulate: - weight = weight.view( - self.ksize, self.ksize, self.in_c, batch, self.out_c) - weight = weight.permute(0, 1, 4, 3, 2) - weight = weight.reshape( - self.ksize, self.ksize, self.out_c, batch * self.in_c) - weight = weight.permute(3, 2, 0, 1) - else: - weight = weight.permute(2, 3, 0, 1) - x = F.conv_transpose2d(x, - weight=weight, - bias=None, - stride=self.stride, - padding=self.padding, - groups=(batch if self.fused_modulate else 1)) - x = self.filter(x) - else: - weight = weight.permute(3, 2, 0, 1) - x = F.conv2d(x, - weight=weight, - bias=None, - stride=self.stride, - padding=self.padding, - groups=(batch if self.fused_modulate else 1)) - - if self.fused_modulate: - x = x.view(batch, self.out_c, self.res, self.res) - elif self.demodulate: - x = x / _weight_norm.view(batch, self.out_c, 1, 1) - - if self.add_noise: - if randomize_noise: - if self.noise_type == 'spatial': - noise = torch.randn(x.shape[0], 1, self.res, self.res).to(x) - elif self.noise_type == 'channel': - noise = torch.randn(x.shape[0], self.channels, 1, 1).to(x) - else: - noise = self.noise - x = x + noise * self.noise_strength.view(1, 1, 1, 1) - - bias = self.bias * self.bscale if self.bias is not None else None - if bias is not None: - x = x + bias.view(1, -1, 1, 1) - x = self.activate(x) * self.activate_scale - return x, style - - -class DenseBlock(nn.Module): - """Implements the dense block. - - Basically, this block executes fully-connected layer and activation layer. - - NOTE: This layer supports adding an additional bias beyond the trainable - bias parameter. This is specially used for the mapping from the w code to - the style code. - """ - - def __init__(self, - in_channels, - out_channels, - add_bias=True, - additional_bias=0, - use_wscale=True, - wscale_gain=_WSCALE_GAIN, - lr_mul=1.0, - activation_type='lrelu'): - """Initializes with block settings. - - Args: - in_channels: Number of channels of the input tensor. - out_channels: Number of channels of the output tensor. - add_bias: Whether to add bias onto the fully-connected result. - (default: True) - additional_bias: The additional bias, which is independent from the - bias parameter. (default: 0.0) - use_wscale: Whether to use weight scaling. (default: True) - wscale_gain: Gain factor for weight scaling. (default: _WSCALE_GAIN) - lr_mul: Learning multiplier for both weight and bias. (default: 1.0) - activation_type: Type of activation. Support `linear` and `lrelu`. - (default: `lrelu`) - - Raises: - NotImplementedError: If the `activation_type` is not supported. - """ - super().__init__() - weight_shape = (out_channels, in_channels) - wscale = wscale_gain / np.sqrt(in_channels) - if use_wscale: - self.weight = nn.Parameter(torch.randn(*weight_shape) / lr_mul) - self.wscale = wscale * lr_mul - else: - self.weight = nn.Parameter( - torch.randn(*weight_shape) * wscale / lr_mul) - self.wscale = lr_mul - - if add_bias: - self.bias = nn.Parameter(torch.zeros(out_channels)) - else: - self.bias = None - self.bscale = lr_mul - self.additional_bias = additional_bias - - if activation_type == 'linear': - self.activate = nn.Identity() - self.activate_scale = 1.0 - elif activation_type == 'lrelu': - self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True) - self.activate_scale = np.sqrt(2.0) - else: - raise NotImplementedError(f'Not implemented activation function: ' - f'`{activation_type}`!') - - def forward(self, x): - if x.ndim != 2: - x = x.view(x.shape[0], -1) - bias = self.bias * self.bscale if self.bias is not None else None - x = F.linear(x, weight=self.weight * self.wscale, bias=bias) - x = self.activate(x + self.additional_bias) * self.activate_scale - return x diff --git a/spaces/jbilcke-hf/LifeSim/src/components/ui/avatar.tsx b/spaces/jbilcke-hf/LifeSim/src/components/ui/avatar.tsx deleted file mode 100644 index 88aeea9d9368f2bd7385f0a0885829bf6d789492..0000000000000000000000000000000000000000 --- a/spaces/jbilcke-hf/LifeSim/src/components/ui/avatar.tsx +++ /dev/null @@ -1,50 +0,0 @@ -"use client" - -import * as React from "react" -import * as AvatarPrimitive from "@radix-ui/react-avatar" - -import { cn } from "@/lib/utils" - -const Avatar = React.forwardRef< - React.ElementRef, - React.ComponentPropsWithoutRef ->(({ className, ...props }, ref) => ( - -)) -Avatar.displayName = AvatarPrimitive.Root.displayName - -const AvatarImage = React.forwardRef< - React.ElementRef, - React.ComponentPropsWithoutRef ->(({ className, ...props }, ref) => ( - -)) -AvatarImage.displayName = AvatarPrimitive.Image.displayName - -const AvatarFallback = React.forwardRef< - React.ElementRef, - React.ComponentPropsWithoutRef ->(({ className, ...props }, ref) => ( - -)) -AvatarFallback.displayName = AvatarPrimitive.Fallback.displayName - -export { Avatar, AvatarImage, AvatarFallback } diff --git a/spaces/jbilcke-hf/ai-comic-factory/src/lib/loadImageToCanvas.ts b/spaces/jbilcke-hf/ai-comic-factory/src/lib/loadImageToCanvas.ts deleted file mode 100644 index 02068927ce6e615d4dac2aed31e75f9f51697f27..0000000000000000000000000000000000000000 --- a/spaces/jbilcke-hf/ai-comic-factory/src/lib/loadImageToCanvas.ts +++ /dev/null @@ -1,28 +0,0 @@ -export async function loadImageToCanvas(imageBase64: string): Promise { - return new Promise((resolve, reject) => { - // create a new image object - let img = new Image(); - // specify a function to run when the image is fully loaded - img.onload = () => { - // create a canvas element - let canvas = document.createElement('canvas'); - canvas.width = img.width; - canvas.height = img.height; - // get the context of the canvas - let ctx = canvas.getContext('2d'); - if (ctx) { - // draw the image into the canvas - ctx.drawImage(img, 0, 0); - // resolve the promise with the canvas - resolve(canvas); - } else { - reject('Error creating the context of canvas'); - } - }; - // specify a function to run when the image could not be loaded - img.onerror = () => { - reject('Image could not be loaded'); - }; - img.src = imageBase64; // must be a data;image/.... prefixed URL string - }); -} \ No newline at end of file diff --git a/spaces/jcenaa/Segment-Any-RGBD/datasets/scannet_preprocess/prepare_2d_data/prepare_2d_data.py b/spaces/jcenaa/Segment-Any-RGBD/datasets/scannet_preprocess/prepare_2d_data/prepare_2d_data.py deleted file mode 100644 index 9bc37236cefe0201d89be8eb8feb9d6369505446..0000000000000000000000000000000000000000 --- a/spaces/jcenaa/Segment-Any-RGBD/datasets/scannet_preprocess/prepare_2d_data/prepare_2d_data.py +++ /dev/null @@ -1,123 +0,0 @@ -# pre-process ScanNet 2D data -# note: depends on the sens file reader from ScanNet: -# https://github.com/ScanNet/ScanNet/blob/master/SensReader/python/SensorData.py -# if export_label_images flag is on: -# - depends on https://github.com/ScanNet/ScanNet/tree/master/BenchmarkScripts/util.py -# - also assumes that label images are unzipped as scene*/label*/*.png -# expected file structure: -# - prepare_2d_data.py -# - https://github.com/ScanNet/ScanNet/tree/master/BenchmarkScripts/util.py -# - https://github.com/ScanNet/ScanNet/blob/master/SensReader/python/SensorData.py -# -# example usage: -# python prepare_2d_data.py --scannet_path data/scannetv2 --output_path data/scannetv2_images --export_label_images - -import argparse -import os, sys -import numpy as np -import skimage.transform as sktf -import imageio -from SensorData import SensorData -import util -# try: -# from prepare_2d_data.SensorData import SensorData -# except: -# print('Failed to import SensorData (from ScanNet code toolbox)') -# sys.exit(-1) -# try: -# from prepare_2d_data import util -# except: -# print('Failed to import ScanNet code toolbox util') -# sys.exit(-1) - -# params -parser = argparse.ArgumentParser() -parser.add_argument('--scannet_path', required=True, help='path to scannet data') -parser.add_argument('--output_path', required=True, help='where to output 2d data') -parser.add_argument('--export_label_images', dest='export_label_images', action='store_true') -parser.add_argument('--label_type', default='label-filt', help='which labels (label or label-filt)') -parser.add_argument('--frame_skip', type=int, default=20, help='export every nth frame') -parser.add_argument('--label_map_file', default='scannet-preprocess/meta_data/scannetv2-labels.combined.tsv', - help='path to scannetv2-labels.combined.tsv (required for label export only)') -parser.add_argument('--output_image_width', type=int, default=640, help='export image width') -parser.add_argument('--output_image_height', type=int, default=480, help='export image height') - -parser.set_defaults(export_label_images=False) -opt = parser.parse_args() -if opt.export_label_images: - assert opt.label_map_file != '' -print(opt) - - -def print_error(message): - sys.stderr.write('ERROR: ' + str(message) + '\n') - sys.exit(-1) - - -# from https://github.com/ScanNet/ScanNet/tree/master/BenchmarkScripts/2d_helpers/convert_scannet_label_image.py -def map_label_image(image, label_mapping): - mapped = np.copy(image) - for k, v in label_mapping.iteritems(): - mapped[image == k] = v - return mapped.astype(np.uint8) - - -def main(): - if not os.path.exists(opt.output_path): - os.makedirs(opt.output_path) - - label_mapping = None - if opt.export_label_images: - label_map = util.read_label_mapping(opt.label_map_file, label_from='id', label_to='nyu40id') - - scenes = [d for d in os.listdir(opt.scannet_path) if os.path.isdir(os.path.join(opt.scannet_path, d))] - print('Found %d scenes' % len(scenes)) - for i in range(0,len(scenes)): - if scenes[i] != 'scene0000_00': continue - sens_file = os.path.join(opt.scannet_path, scenes[i], scenes[i] + '.sens') - label_path = os.path.join(opt.scannet_path, scenes[i], opt.label_type) - if opt.export_label_images and not os.path.isdir(label_path): - print_error('Error: using export_label_images option but label path %s does not exist' % label_path) - output_color_path = os.path.join(opt.output_path, scenes[i], 'color') - if not os.path.isdir(output_color_path): - os.makedirs(output_color_path) - output_depth_path = os.path.join(opt.output_path, scenes[i], 'depth') - if not os.path.isdir(output_depth_path): - os.makedirs(output_depth_path) - output_pose_path = os.path.join(opt.output_path, scenes[i], 'pose') - if not os.path.isdir(output_pose_path): - os.makedirs(output_pose_path) - output_label_path = os.path.join(opt.output_path, scenes[i], 'label') - if opt.export_label_images and not os.path.isdir(output_label_path): - os.makedirs(output_label_path) - output_intrinsics_path = os.path.join(opt.output_path, scenes[i], 'intrinsics') - if opt.export_label_images and not os.path.isdir(output_label_path): - os.makedirs(output_label_path) - - # read and export - sys.stdout.write('\r[ %d | %d ] %s\tloading...' % ((i + 1), len(scenes), scenes[i])) - sys.stdout.flush() - sd = SensorData(sens_file) - sys.stdout.write('\r[ %d | %d ] %s\texporting...' % ((i + 1), len(scenes), scenes[i])) - sys.stdout.flush() - sd.export_color_images(output_color_path, image_size=[opt.output_image_height, opt.output_image_width], - frame_skip=opt.frame_skip) - sd.export_depth_images(output_depth_path, image_size=[opt.output_image_height, opt.output_image_width], - frame_skip=opt.frame_skip) - sd.export_poses(output_pose_path, frame_skip=opt.frame_skip) - sd.export_intrinsics(output_intrinsics_path) - - if opt.export_label_images: - - for f in range(0, len(sd.frames), opt.frame_skip): - label_file = os.path.join(label_path, str(f) + '.png') - image = np.array(imageio.imread(label_file)) - image = sktf.resize(image, [opt.output_image_height, opt.output_image_width], order=0, - preserve_range=True) - mapped_image = map_label_image(image, label_map) - imageio.imwrite(os.path.join(output_label_path, str(f) + '.png'), mapped_image) - print('') - - -if __name__ == '__main__': - main() diff --git a/spaces/jitesh/storytelling/src/test.py b/spaces/jitesh/storytelling/src/test.py deleted file mode 100644 index 41e582e9bdff0775d850e5757e0b9767e10171d5..0000000000000000000000000000000000000000 --- a/spaces/jitesh/storytelling/src/test.py +++ /dev/null @@ -1,72 +0,0 @@ -# %% -import pandas as pd -import numpy as np - -np.random.seed(24) -df = pd.DataFrame({'A': np.linspace(1, 10, 10)}) - -df = pd.concat([df, pd.DataFrame(np.random.randn(10, 4), columns=list('BCDE'))], - axis=1) -df.iloc[0, 2] = np.nan -df['reaction_show'] = True -df -# %% -s = '' -for v in df.reaction_show: - s += str(int(v)) -s - - -# %% -s = '101100' -g2p = '' -for i in range(len(s)-1): - # print(i, i+2, s) - # print(s[0:2]) - g2p += '1' if '1' in s[i:i+2] else '0' - -g2p - -# %% -# import plotly.express as px -from plotly.offline import init_notebook_mode, iplot -import numpy as np -init_notebook_mode() - -x = np.linspace(0, 1) -iplot([{'x': x, 'y': 1-np.exp(-x)}]) -# # def highlight_greaterthan(s,column): -# # is_max = pd.Series(data=False, index=s.index) -# # is_max[column] = s.loc[column] >= 1 -# # return ['background-color: red' if is_max.any() else '' for v in is_max] - -# def highlight_greaterthan_1(s): -# if s.B > 1.0: -# return ['background-color: white']+['background-color: yellow']+['background-color: white']*3 -# else: -# return ['background-color: white']*5 - - -# df.style.apply(highlight_greaterthan_1, axis=1) -# %% -from transformers import pipeline -classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True) -emotion = classifier("the sentence") -# %% -emotion[0] -# %% -emotion[0][0] -# %% -sorted(emotion[0], key=lambda x: x['score'], reverse=True) - -# %% -import random -values = [1,2, 3, 4, 5, 6] -k = random.randint(0,len(values)) -numbers = random.choices(values, k=k) -print(k, "random numbers", numbers) -# %% -k = random.randint(0,len(values)) -numbers = random.sample(values, k=k) -print(k, "random numbers", numbers) -# %% diff --git a/spaces/joaopereirajp/livvieChatBot/venv/lib/python3.9/site-packages/fontTools/misc/symfont.py b/spaces/joaopereirajp/livvieChatBot/venv/lib/python3.9/site-packages/fontTools/misc/symfont.py deleted file mode 100644 index 0bd69a386ec9f01c8951f0dfc8bc8c261718cf1f..0000000000000000000000000000000000000000 --- a/spaces/joaopereirajp/livvieChatBot/venv/lib/python3.9/site-packages/fontTools/misc/symfont.py +++ /dev/null @@ -1,251 +0,0 @@ -from fontTools.pens.basePen import BasePen -from functools import partial -from itertools import count -import sympy as sp -import sys - -n = 3 # Max Bezier degree; 3 for cubic, 2 for quadratic - -t, x, y = sp.symbols("t x y", real=True) -c = sp.symbols("c", real=False) # Complex representation instead of x/y - -X = tuple(sp.symbols("x:%d" % (n + 1), real=True)) -Y = tuple(sp.symbols("y:%d" % (n + 1), real=True)) -P = tuple(zip(*(sp.symbols("p:%d[%s]" % (n + 1, w), real=True) for w in "01"))) -C = tuple(sp.symbols("c:%d" % (n + 1), real=False)) - -# Cubic Bernstein basis functions -BinomialCoefficient = [(1, 0)] -for i in range(1, n + 1): - last = BinomialCoefficient[-1] - this = tuple(last[j - 1] + last[j] for j in range(len(last))) + (0,) - BinomialCoefficient.append(this) -BinomialCoefficient = tuple(tuple(item[:-1]) for item in BinomialCoefficient) -del last, this - -BernsteinPolynomial = tuple( - tuple(c * t**i * (1 - t) ** (n - i) for i, c in enumerate(coeffs)) - for n, coeffs in enumerate(BinomialCoefficient) -) - -BezierCurve = tuple( - tuple( - sum(P[i][j] * bernstein for i, bernstein in enumerate(bernsteins)) - for j in range(2) - ) - for n, bernsteins in enumerate(BernsteinPolynomial) -) -BezierCurveC = tuple( - sum(C[i] * bernstein for i, bernstein in enumerate(bernsteins)) - for n, bernsteins in enumerate(BernsteinPolynomial) -) - - -def green(f, curveXY): - f = -sp.integrate(sp.sympify(f), y) - f = f.subs({x: curveXY[0], y: curveXY[1]}) - f = sp.integrate(f * sp.diff(curveXY[0], t), (t, 0, 1)) - return f - - -class _BezierFuncsLazy(dict): - def __init__(self, symfunc): - self._symfunc = symfunc - self._bezfuncs = {} - - def __missing__(self, i): - args = ["p%d" % d for d in range(i + 1)] - f = green(self._symfunc, BezierCurve[i]) - f = sp.gcd_terms(f.collect(sum(P, ()))) # Optimize - return sp.lambdify(args, f) - - -class GreenPen(BasePen): - - _BezierFuncs = {} - - @classmethod - def _getGreenBezierFuncs(celf, func): - funcstr = str(func) - if not funcstr in celf._BezierFuncs: - celf._BezierFuncs[funcstr] = _BezierFuncsLazy(func) - return celf._BezierFuncs[funcstr] - - def __init__(self, func, glyphset=None): - BasePen.__init__(self, glyphset) - self._funcs = self._getGreenBezierFuncs(func) - self.value = 0 - - def _moveTo(self, p0): - self.__startPoint = p0 - - def _closePath(self): - p0 = self._getCurrentPoint() - if p0 != self.__startPoint: - self._lineTo(self.__startPoint) - - def _endPath(self): - p0 = self._getCurrentPoint() - if p0 != self.__startPoint: - # Green theorem is not defined on open contours. - raise NotImplementedError - - def _lineTo(self, p1): - p0 = self._getCurrentPoint() - self.value += self._funcs[1](p0, p1) - - def _qCurveToOne(self, p1, p2): - p0 = self._getCurrentPoint() - self.value += self._funcs[2](p0, p1, p2) - - def _curveToOne(self, p1, p2, p3): - p0 = self._getCurrentPoint() - self.value += self._funcs[3](p0, p1, p2, p3) - - -# Sample pens. -# Do not use this in real code. -# Use fontTools.pens.momentsPen.MomentsPen instead. -AreaPen = partial(GreenPen, func=1) -MomentXPen = partial(GreenPen, func=x) -MomentYPen = partial(GreenPen, func=y) -MomentXXPen = partial(GreenPen, func=x * x) -MomentYYPen = partial(GreenPen, func=y * y) -MomentXYPen = partial(GreenPen, func=x * y) - - -def printGreenPen(penName, funcs, file=sys.stdout, docstring=None): - - if docstring is not None: - print('"""%s"""' % docstring) - - print( - """from fontTools.pens.basePen import BasePen, OpenContourError -try: - import cython - - COMPILED = cython.compiled -except (AttributeError, ImportError): - # if cython not installed, use mock module with no-op decorators and types - from fontTools.misc import cython - - COMPILED = False - - -__all__ = ["%s"] - -class %s(BasePen): - - def __init__(self, glyphset=None): - BasePen.__init__(self, glyphset) -""" - % (penName, penName), - file=file, - ) - for name, f in funcs: - print(" self.%s = 0" % name, file=file) - print( - """ - def _moveTo(self, p0): - self.__startPoint = p0 - - def _closePath(self): - p0 = self._getCurrentPoint() - if p0 != self.__startPoint: - self._lineTo(self.__startPoint) - - def _endPath(self): - p0 = self._getCurrentPoint() - if p0 != self.__startPoint: - # Green theorem is not defined on open contours. - raise OpenContourError( - "Green theorem is not defined on open contours." - ) -""", - end="", - file=file, - ) - - for n in (1, 2, 3): - - subs = {P[i][j]: [X, Y][j][i] for i in range(n + 1) for j in range(2)} - greens = [green(f, BezierCurve[n]) for name, f in funcs] - greens = [sp.gcd_terms(f.collect(sum(P, ()))) for f in greens] # Optimize - greens = [f.subs(subs) for f in greens] # Convert to p to x/y - defs, exprs = sp.cse( - greens, - optimizations="basic", - symbols=(sp.Symbol("r%d" % i) for i in count()), - ) - - print() - for name, value in defs: - print(" @cython.locals(%s=cython.double)" % name, file=file) - if n == 1: - print( - """\ - @cython.locals(x0=cython.double, y0=cython.double) - @cython.locals(x1=cython.double, y1=cython.double) - def _lineTo(self, p1): - x0,y0 = self._getCurrentPoint() - x1,y1 = p1 -""", - file=file, - ) - elif n == 2: - print( - """\ - @cython.locals(x0=cython.double, y0=cython.double) - @cython.locals(x1=cython.double, y1=cython.double) - @cython.locals(x2=cython.double, y2=cython.double) - def _qCurveToOne(self, p1, p2): - x0,y0 = self._getCurrentPoint() - x1,y1 = p1 - x2,y2 = p2 -""", - file=file, - ) - elif n == 3: - print( - """\ - @cython.locals(x0=cython.double, y0=cython.double) - @cython.locals(x1=cython.double, y1=cython.double) - @cython.locals(x2=cython.double, y2=cython.double) - @cython.locals(x3=cython.double, y3=cython.double) - def _curveToOne(self, p1, p2, p3): - x0,y0 = self._getCurrentPoint() - x1,y1 = p1 - x2,y2 = p2 - x3,y3 = p3 -""", - file=file, - ) - for name, value in defs: - print(" %s = %s" % (name, value), file=file) - - print(file=file) - for name, value in zip([f[0] for f in funcs], exprs): - print(" self.%s += %s" % (name, value), file=file) - - print( - """ -if __name__ == '__main__': - from fontTools.misc.symfont import x, y, printGreenPen - printGreenPen('%s', [""" - % penName, - file=file, - ) - for name, f in funcs: - print(" ('%s', %s)," % (name, str(f)), file=file) - print(" ])", file=file) - - -if __name__ == "__main__": - pen = AreaPen() - pen.moveTo((100, 100)) - pen.lineTo((100, 200)) - pen.lineTo((200, 200)) - pen.curveTo((200, 250), (300, 300), (250, 350)) - pen.lineTo((200, 100)) - pen.closePath() - print(pen.value) diff --git a/spaces/joaopereirajp/livvieChatBot/venv/lib/python3.9/site-packages/fontTools/qu2cu/qu2cu.py b/spaces/joaopereirajp/livvieChatBot/venv/lib/python3.9/site-packages/fontTools/qu2cu/qu2cu.py deleted file mode 100644 index 97a665f63adf88681328a69c5c0a3c6814bf3719..0000000000000000000000000000000000000000 --- a/spaces/joaopereirajp/livvieChatBot/venv/lib/python3.9/site-packages/fontTools/qu2cu/qu2cu.py +++ /dev/null @@ -1,408 +0,0 @@ -# cython: language_level=3 -# distutils: define_macros=CYTHON_TRACE_NOGIL=1 - -# Copyright 2023 Google Inc. All Rights Reserved. -# Copyright 2023 Behdad Esfahbod. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -try: - import cython - - COMPILED = cython.compiled -except (AttributeError, ImportError): - # if cython not installed, use mock module with no-op decorators and types - from fontTools.misc import cython - - COMPILED = False - -from fontTools.misc.bezierTools import splitCubicAtTC -from collections import namedtuple -import math -from typing import ( - List, - Tuple, - Union, -) - - -__all__ = ["quadratic_to_curves"] - - -# Copied from cu2qu -@cython.cfunc -@cython.returns(cython.int) -@cython.locals( - tolerance=cython.double, - p0=cython.complex, - p1=cython.complex, - p2=cython.complex, - p3=cython.complex, -) -@cython.locals(mid=cython.complex, deriv3=cython.complex) -def cubic_farthest_fit_inside(p0, p1, p2, p3, tolerance): - """Check if a cubic Bezier lies within a given distance of the origin. - - "Origin" means *the* origin (0,0), not the start of the curve. Note that no - checks are made on the start and end positions of the curve; this function - only checks the inside of the curve. - - Args: - p0 (complex): Start point of curve. - p1 (complex): First handle of curve. - p2 (complex): Second handle of curve. - p3 (complex): End point of curve. - tolerance (double): Distance from origin. - - Returns: - bool: True if the cubic Bezier ``p`` entirely lies within a distance - ``tolerance`` of the origin, False otherwise. - """ - # First check p2 then p1, as p2 has higher error early on. - if abs(p2) <= tolerance and abs(p1) <= tolerance: - return True - - # Split. - mid = (p0 + 3 * (p1 + p2) + p3) * 0.125 - if abs(mid) > tolerance: - return False - deriv3 = (p3 + p2 - p1 - p0) * 0.125 - return cubic_farthest_fit_inside( - p0, (p0 + p1) * 0.5, mid - deriv3, mid, tolerance - ) and cubic_farthest_fit_inside(mid, mid + deriv3, (p2 + p3) * 0.5, p3, tolerance) - - -@cython.locals( - p0=cython.complex, - p1=cython.complex, - p2=cython.complex, - p1_2_3=cython.complex, -) -def elevate_quadratic(p0, p1, p2): - """Given a quadratic bezier curve, return its degree-elevated cubic.""" - - # https://pomax.github.io/bezierinfo/#reordering - p1_2_3 = p1 * (2 / 3) - return ( - p0, - (p0 * (1 / 3) + p1_2_3), - (p2 * (1 / 3) + p1_2_3), - p2, - ) - - -@cython.cfunc -@cython.locals( - start=cython.int, - n=cython.int, - k=cython.int, - prod_ratio=cython.double, - sum_ratio=cython.double, - ratio=cython.double, - t=cython.double, - p0=cython.complex, - p1=cython.complex, - p2=cython.complex, - p3=cython.complex, -) -def merge_curves(curves, start, n): - """Give a cubic-Bezier spline, reconstruct one cubic-Bezier - that has the same endpoints and tangents and approxmates - the spline.""" - - # Reconstruct the t values of the cut segments - prod_ratio = 1.0 - sum_ratio = 1.0 - ts = [1] - for k in range(1, n): - ck = curves[start + k] - c_before = curves[start + k - 1] - - # |t_(k+1) - t_k| / |t_k - t_(k - 1)| = ratio - assert ck[0] == c_before[3] - ratio = abs(ck[1] - ck[0]) / abs(c_before[3] - c_before[2]) - - prod_ratio *= ratio - sum_ratio += prod_ratio - ts.append(sum_ratio) - - # (t(n) - t(n - 1)) / (t_(1) - t(0)) = prod_ratio - - ts = [t / sum_ratio for t in ts[:-1]] - - p0 = curves[start][0] - p1 = curves[start][1] - p2 = curves[start + n - 1][2] - p3 = curves[start + n - 1][3] - - # Build the curve by scaling the control-points. - p1 = p0 + (p1 - p0) / (ts[0] if ts else 1) - p2 = p3 + (p2 - p3) / ((1 - ts[-1]) if ts else 1) - - curve = (p0, p1, p2, p3) - - return curve, ts - - -@cython.locals( - count=cython.int, - num_offcurves=cython.int, - i=cython.int, - off1=cython.complex, - off2=cython.complex, - on=cython.complex, -) -def add_implicit_on_curves(p): - q = list(p) - count = 0 - num_offcurves = len(p) - 2 - for i in range(1, num_offcurves): - off1 = p[i] - off2 = p[i + 1] - on = off1 + (off2 - off1) * 0.5 - q.insert(i + 1 + count, on) - count += 1 - return q - - -Point = Union[Tuple[float, float], complex] - - -@cython.locals( - cost=cython.int, - is_complex=cython.int, -) -def quadratic_to_curves( - quads: List[List[Point]], - max_err: float = 0.5, - all_cubic: bool = False, -) -> List[Tuple[Point, ...]]: - """Converts a connecting list of quadratic splines to a list of quadratic - and cubic curves. - - A quadratic spline is specified as a list of points. Either each point is - a 2-tuple of X,Y coordinates, or each point is a complex number with - real/imaginary components representing X,Y coordinates. - - The first and last points are on-curve points and the rest are off-curve - points, with an implied on-curve point in the middle between every two - consequtive off-curve points. - - Returns: - The output is a list of tuples of points. Points are represented - in the same format as the input, either as 2-tuples or complex numbers. - - Each tuple is either of length three, for a quadratic curve, or four, - for a cubic curve. Each curve's last point is the same as the next - curve's first point. - - Args: - quads: quadratic splines - - max_err: absolute error tolerance; defaults to 0.5 - - all_cubic: if True, only cubic curves are generated; defaults to False - """ - is_complex = type(quads[0][0]) is complex - if not is_complex: - quads = [[complex(x, y) for (x, y) in p] for p in quads] - - q = [quads[0][0]] - costs = [1] - cost = 1 - for p in quads: - assert q[-1] == p[0] - for i in range(len(p) - 2): - cost += 1 - costs.append(cost) - costs.append(cost) - qq = add_implicit_on_curves(p)[1:] - costs.pop() - q.extend(qq) - cost += 1 - costs.append(cost) - - curves = spline_to_curves(q, costs, max_err, all_cubic) - - if not is_complex: - curves = [tuple((c.real, c.imag) for c in curve) for curve in curves] - return curves - - -Solution = namedtuple("Solution", ["num_points", "error", "start_index", "is_cubic"]) - - -@cython.locals( - i=cython.int, - j=cython.int, - k=cython.int, - start=cython.int, - i_sol_count=cython.int, - j_sol_count=cython.int, - this_sol_count=cython.int, - tolerance=cython.double, - err=cython.double, - error=cython.double, - i_sol_error=cython.double, - j_sol_error=cython.double, - all_cubic=cython.int, - is_cubic=cython.int, - count=cython.int, - p0=cython.complex, - p1=cython.complex, - p2=cython.complex, - p3=cython.complex, - v=cython.complex, - u=cython.complex, -) -def spline_to_curves(q, costs, tolerance=0.5, all_cubic=False): - """ - q: quadratic spline with alternating on-curve / off-curve points. - - costs: cumulative list of encoding cost of q in terms of number of - points that need to be encoded. Implied on-curve points do not - contribute to the cost. If all points need to be encoded, then - costs will be range(1, len(q)+1). - """ - - assert len(q) >= 3, "quadratic spline requires at least 3 points" - - # Elevate quadratic segments to cubic - elevated_quadratics = [ - elevate_quadratic(*q[i : i + 3]) for i in range(0, len(q) - 2, 2) - ] - - # Find sharp corners; they have to be oncurves for sure. - forced = set() - for i in range(1, len(elevated_quadratics)): - p0 = elevated_quadratics[i - 1][2] - p1 = elevated_quadratics[i][0] - p2 = elevated_quadratics[i][1] - if abs(p1 - p0) + abs(p2 - p1) > tolerance + abs(p2 - p0): - forced.add(i) - - # Dynamic-Programming to find the solution with fewest number of - # cubic curves, and within those the one with smallest error. - sols = [Solution(0, 0, 0, False)] - impossible = Solution(len(elevated_quadratics) * 3 + 1, 0, 1, False) - start = 0 - for i in range(1, len(elevated_quadratics) + 1): - best_sol = impossible - for j in range(start, i): - j_sol_count, j_sol_error = sols[j].num_points, sols[j].error - - if not all_cubic: - # Solution with quadratics between j:i - this_count = costs[2 * i - 1] - costs[2 * j] + 1 - i_sol_count = j_sol_count + this_count - i_sol_error = j_sol_error - i_sol = Solution(i_sol_count, i_sol_error, i - j, False) - if i_sol < best_sol: - best_sol = i_sol - - if this_count <= 3: - # Can't get any better than this in the path below - continue - - # Fit elevated_quadratics[j:i] into one cubic - try: - curve, ts = merge_curves(elevated_quadratics, j, i - j) - except ZeroDivisionError: - continue - - # Now reconstruct the segments from the fitted curve - reconstructed_iter = splitCubicAtTC(*curve, *ts) - reconstructed = [] - - # Knot errors - error = 0 - for k, reconst in enumerate(reconstructed_iter): - orig = elevated_quadratics[j + k] - err = abs(reconst[3] - orig[3]) - error = max(error, err) - if error > tolerance: - break - reconstructed.append(reconst) - if error > tolerance: - # Not feasible - continue - - # Interior errors - for k, reconst in enumerate(reconstructed): - orig = elevated_quadratics[j + k] - p0, p1, p2, p3 = tuple(v - u for v, u in zip(reconst, orig)) - - if not cubic_farthest_fit_inside(p0, p1, p2, p3, tolerance): - error = tolerance + 1 - break - if error > tolerance: - # Not feasible - continue - - # Save best solution - i_sol_count = j_sol_count + 3 - i_sol_error = max(j_sol_error, error) - i_sol = Solution(i_sol_count, i_sol_error, i - j, True) - if i_sol < best_sol: - best_sol = i_sol - - if i_sol_count == 3: - # Can't get any better than this - break - - sols.append(best_sol) - if i in forced: - start = i - - # Reconstruct solution - splits = [] - cubic = [] - i = len(sols) - 1 - while i: - count, is_cubic = sols[i].start_index, sols[i].is_cubic - splits.append(i) - cubic.append(is_cubic) - i -= count - curves = [] - j = 0 - for i, is_cubic in reversed(list(zip(splits, cubic))): - if is_cubic: - curves.append(merge_curves(elevated_quadratics, j, i - j)[0]) - else: - for k in range(j, i): - curves.append(q[k * 2 : k * 2 + 3]) - j = i - - return curves - - -def main(): - from fontTools.cu2qu.benchmark import generate_curve - from fontTools.cu2qu import curve_to_quadratic - - tolerance = 0.05 - reconstruct_tolerance = tolerance * 1 - curve = generate_curve() - quadratics = curve_to_quadratic(curve, tolerance) - print( - "cu2qu tolerance %g. qu2cu tolerance %g." % (tolerance, reconstruct_tolerance) - ) - print("One random cubic turned into %d quadratics." % len(quadratics)) - curves = quadratic_to_curves([quadratics], reconstruct_tolerance) - print("Those quadratics turned back into %d cubics. " % len(curves)) - print("Original curve:", curve) - print("Reconstructed curve(s):", curves) - - -if __name__ == "__main__": - main() diff --git a/spaces/joaopereirajp/livvieChatBot/venv/lib/python3.9/site-packages/fontTools/ttLib/woff2.py b/spaces/joaopereirajp/livvieChatBot/venv/lib/python3.9/site-packages/fontTools/ttLib/woff2.py deleted file mode 100644 index 3e247b02e93da590d0e03cd2e019d1763e84f40b..0000000000000000000000000000000000000000 --- a/spaces/joaopereirajp/livvieChatBot/venv/lib/python3.9/site-packages/fontTools/ttLib/woff2.py +++ /dev/null @@ -1,1688 +0,0 @@ -from io import BytesIO -import sys -import array -import struct -from collections import OrderedDict -from fontTools.misc import sstruct -from fontTools.misc.arrayTools import calcIntBounds -from fontTools.misc.textTools import Tag, bytechr, byteord, bytesjoin, pad -from fontTools.ttLib import ( - TTFont, - TTLibError, - getTableModule, - getTableClass, - getSearchRange, -) -from fontTools.ttLib.sfnt import ( - SFNTReader, - SFNTWriter, - DirectoryEntry, - WOFFFlavorData, - sfntDirectoryFormat, - sfntDirectorySize, - SFNTDirectoryEntry, - sfntDirectoryEntrySize, - calcChecksum, -) -from fontTools.ttLib.tables import ttProgram, _g_l_y_f -import logging - - -log = logging.getLogger("fontTools.ttLib.woff2") - -haveBrotli = False -try: - try: - import brotlicffi as brotli - except ImportError: - import brotli - haveBrotli = True -except ImportError: - pass - - -class WOFF2Reader(SFNTReader): - - flavor = "woff2" - - def __init__(self, file, checkChecksums=0, fontNumber=-1): - if not haveBrotli: - log.error( - "The WOFF2 decoder requires the Brotli Python extension, available at: " - "https://github.com/google/brotli" - ) - raise ImportError("No module named brotli") - - self.file = file - - signature = Tag(self.file.read(4)) - if signature != b"wOF2": - raise TTLibError("Not a WOFF2 font (bad signature)") - - self.file.seek(0) - self.DirectoryEntry = WOFF2DirectoryEntry - data = self.file.read(woff2DirectorySize) - if len(data) != woff2DirectorySize: - raise TTLibError("Not a WOFF2 font (not enough data)") - sstruct.unpack(woff2DirectoryFormat, data, self) - - self.tables = OrderedDict() - offset = 0 - for i in range(self.numTables): - entry = self.DirectoryEntry() - entry.fromFile(self.file) - tag = Tag(entry.tag) - self.tables[tag] = entry - entry.offset = offset - offset += entry.length - - totalUncompressedSize = offset - compressedData = self.file.read(self.totalCompressedSize) - decompressedData = brotli.decompress(compressedData) - if len(decompressedData) != totalUncompressedSize: - raise TTLibError( - "unexpected size for decompressed font data: expected %d, found %d" - % (totalUncompressedSize, len(decompressedData)) - ) - self.transformBuffer = BytesIO(decompressedData) - - self.file.seek(0, 2) - if self.length != self.file.tell(): - raise TTLibError("reported 'length' doesn't match the actual file size") - - self.flavorData = WOFF2FlavorData(self) - - # make empty TTFont to store data while reconstructing tables - self.ttFont = TTFont(recalcBBoxes=False, recalcTimestamp=False) - - def __getitem__(self, tag): - """Fetch the raw table data. Reconstruct transformed tables.""" - entry = self.tables[Tag(tag)] - if not hasattr(entry, "data"): - if entry.transformed: - entry.data = self.reconstructTable(tag) - else: - entry.data = entry.loadData(self.transformBuffer) - return entry.data - - def reconstructTable(self, tag): - """Reconstruct table named 'tag' from transformed data.""" - entry = self.tables[Tag(tag)] - rawData = entry.loadData(self.transformBuffer) - if tag == "glyf": - # no need to pad glyph data when reconstructing - padding = self.padding if hasattr(self, "padding") else None - data = self._reconstructGlyf(rawData, padding) - elif tag == "loca": - data = self._reconstructLoca() - elif tag == "hmtx": - data = self._reconstructHmtx(rawData) - else: - raise TTLibError("transform for table '%s' is unknown" % tag) - return data - - def _reconstructGlyf(self, data, padding=None): - """Return recostructed glyf table data, and set the corresponding loca's - locations. Optionally pad glyph offsets to the specified number of bytes. - """ - self.ttFont["loca"] = WOFF2LocaTable() - glyfTable = self.ttFont["glyf"] = WOFF2GlyfTable() - glyfTable.reconstruct(data, self.ttFont) - if padding: - glyfTable.padding = padding - data = glyfTable.compile(self.ttFont) - return data - - def _reconstructLoca(self): - """Return reconstructed loca table data.""" - if "loca" not in self.ttFont: - # make sure glyf is reconstructed first - self.tables["glyf"].data = self.reconstructTable("glyf") - locaTable = self.ttFont["loca"] - data = locaTable.compile(self.ttFont) - if len(data) != self.tables["loca"].origLength: - raise TTLibError( - "reconstructed 'loca' table doesn't match original size: " - "expected %d, found %d" % (self.tables["loca"].origLength, len(data)) - ) - return data - - def _reconstructHmtx(self, data): - """Return reconstructed hmtx table data.""" - # Before reconstructing 'hmtx' table we need to parse other tables: - # 'glyf' is required for reconstructing the sidebearings from the glyphs' - # bounding box; 'hhea' is needed for the numberOfHMetrics field. - if "glyf" in self.flavorData.transformedTables: - # transformed 'glyf' table is self-contained, thus 'loca' not needed - tableDependencies = ("maxp", "hhea", "glyf") - else: - # decompiling untransformed 'glyf' requires 'loca', which requires 'head' - tableDependencies = ("maxp", "head", "hhea", "loca", "glyf") - for tag in tableDependencies: - self._decompileTable(tag) - hmtxTable = self.ttFont["hmtx"] = WOFF2HmtxTable() - hmtxTable.reconstruct(data, self.ttFont) - data = hmtxTable.compile(self.ttFont) - return data - - def _decompileTable(self, tag): - """Decompile table data and store it inside self.ttFont.""" - data = self[tag] - if self.ttFont.isLoaded(tag): - return self.ttFont[tag] - tableClass = getTableClass(tag) - table = tableClass(tag) - self.ttFont.tables[tag] = table - table.decompile(data, self.ttFont) - - -class WOFF2Writer(SFNTWriter): - - flavor = "woff2" - - def __init__( - self, - file, - numTables, - sfntVersion="\000\001\000\000", - flavor=None, - flavorData=None, - ): - if not haveBrotli: - log.error( - "The WOFF2 encoder requires the Brotli Python extension, available at: " - "https://github.com/google/brotli" - ) - raise ImportError("No module named brotli") - - self.file = file - self.numTables = numTables - self.sfntVersion = Tag(sfntVersion) - self.flavorData = WOFF2FlavorData(data=flavorData) - - self.directoryFormat = woff2DirectoryFormat - self.directorySize = woff2DirectorySize - self.DirectoryEntry = WOFF2DirectoryEntry - - self.signature = Tag("wOF2") - - self.nextTableOffset = 0 - self.transformBuffer = BytesIO() - - self.tables = OrderedDict() - - # make empty TTFont to store data while normalising and transforming tables - self.ttFont = TTFont(recalcBBoxes=False, recalcTimestamp=False) - - def __setitem__(self, tag, data): - """Associate new entry named 'tag' with raw table data.""" - if tag in self.tables: - raise TTLibError("cannot rewrite '%s' table" % tag) - if tag == "DSIG": - # always drop DSIG table, since the encoding process can invalidate it - self.numTables -= 1 - return - - entry = self.DirectoryEntry() - entry.tag = Tag(tag) - entry.flags = getKnownTagIndex(entry.tag) - # WOFF2 table data are written to disk only on close(), after all tags - # have been specified - entry.data = data - - self.tables[tag] = entry - - def close(self): - """All tags must have been specified. Now write the table data and directory.""" - if len(self.tables) != self.numTables: - raise TTLibError( - "wrong number of tables; expected %d, found %d" - % (self.numTables, len(self.tables)) - ) - - if self.sfntVersion in ("\x00\x01\x00\x00", "true"): - isTrueType = True - elif self.sfntVersion == "OTTO": - isTrueType = False - else: - raise TTLibError("Not a TrueType or OpenType font (bad sfntVersion)") - - # The WOFF2 spec no longer requires the glyph offsets to be 4-byte aligned. - # However, the reference WOFF2 implementation still fails to reconstruct - # 'unpadded' glyf tables, therefore we need to 'normalise' them. - # See: - # https://github.com/khaledhosny/ots/issues/60 - # https://github.com/google/woff2/issues/15 - if ( - isTrueType - and "glyf" in self.flavorData.transformedTables - and "glyf" in self.tables - ): - self._normaliseGlyfAndLoca(padding=4) - self._setHeadTransformFlag() - - # To pass the legacy OpenType Sanitiser currently included in browsers, - # we must sort the table directory and data alphabetically by tag. - # See: - # https://github.com/google/woff2/pull/3 - # https://lists.w3.org/Archives/Public/public-webfonts-wg/2015Mar/0000.html - # - # 2023: We rely on this in _transformTables where we expect that - # "loca" comes after "glyf" table. - self.tables = OrderedDict(sorted(self.tables.items())) - - self.totalSfntSize = self._calcSFNTChecksumsLengthsAndOffsets() - - fontData = self._transformTables() - compressedFont = brotli.compress(fontData, mode=brotli.MODE_FONT) - - self.totalCompressedSize = len(compressedFont) - self.length = self._calcTotalSize() - self.majorVersion, self.minorVersion = self._getVersion() - self.reserved = 0 - - directory = self._packTableDirectory() - self.file.seek(0) - self.file.write(pad(directory + compressedFont, size=4)) - self._writeFlavorData() - - def _normaliseGlyfAndLoca(self, padding=4): - """Recompile glyf and loca tables, aligning glyph offsets to multiples of - 'padding' size. Update the head table's 'indexToLocFormat' accordingly while - compiling loca. - """ - if self.sfntVersion == "OTTO": - return - - for tag in ("maxp", "head", "loca", "glyf", "fvar"): - if tag in self.tables: - self._decompileTable(tag) - self.ttFont["glyf"].padding = padding - for tag in ("glyf", "loca"): - self._compileTable(tag) - - def _setHeadTransformFlag(self): - """Set bit 11 of 'head' table flags to indicate that the font has undergone - a lossless modifying transform. Re-compile head table data.""" - self._decompileTable("head") - self.ttFont["head"].flags |= 1 << 11 - self._compileTable("head") - - def _decompileTable(self, tag): - """Fetch table data, decompile it, and store it inside self.ttFont.""" - tag = Tag(tag) - if tag not in self.tables: - raise TTLibError("missing required table: %s" % tag) - if self.ttFont.isLoaded(tag): - return - data = self.tables[tag].data - if tag == "loca": - tableClass = WOFF2LocaTable - elif tag == "glyf": - tableClass = WOFF2GlyfTable - elif tag == "hmtx": - tableClass = WOFF2HmtxTable - else: - tableClass = getTableClass(tag) - table = tableClass(tag) - self.ttFont.tables[tag] = table - table.decompile(data, self.ttFont) - - def _compileTable(self, tag): - """Compile table and store it in its 'data' attribute.""" - self.tables[tag].data = self.ttFont[tag].compile(self.ttFont) - - def _calcSFNTChecksumsLengthsAndOffsets(self): - """Compute the 'original' SFNT checksums, lengths and offsets for checksum - adjustment calculation. Return the total size of the uncompressed font. - """ - offset = sfntDirectorySize + sfntDirectoryEntrySize * len(self.tables) - for tag, entry in self.tables.items(): - data = entry.data - entry.origOffset = offset - entry.origLength = len(data) - if tag == "head": - entry.checkSum = calcChecksum(data[:8] + b"\0\0\0\0" + data[12:]) - else: - entry.checkSum = calcChecksum(data) - offset += (entry.origLength + 3) & ~3 - return offset - - def _transformTables(self): - """Return transformed font data.""" - transformedTables = self.flavorData.transformedTables - for tag, entry in self.tables.items(): - data = None - if tag in transformedTables: - data = self.transformTable(tag) - if data is not None: - entry.transformed = True - if data is None: - if tag == "glyf": - # Currently we always sort table tags so - # 'loca' comes after 'glyf'. - transformedTables.discard("loca") - # pass-through the table data without transformation - data = entry.data - entry.transformed = False - entry.offset = self.nextTableOffset - entry.saveData(self.transformBuffer, data) - self.nextTableOffset += entry.length - self.writeMasterChecksum() - fontData = self.transformBuffer.getvalue() - return fontData - - def transformTable(self, tag): - """Return transformed table data, or None if some pre-conditions aren't - met -- in which case, the non-transformed table data will be used. - """ - if tag == "loca": - data = b"" - elif tag == "glyf": - for tag in ("maxp", "head", "loca", "glyf"): - self._decompileTable(tag) - glyfTable = self.ttFont["glyf"] - data = glyfTable.transform(self.ttFont) - elif tag == "hmtx": - if "glyf" not in self.tables: - return - for tag in ("maxp", "head", "hhea", "loca", "glyf", "hmtx"): - self._decompileTable(tag) - hmtxTable = self.ttFont["hmtx"] - data = hmtxTable.transform(self.ttFont) # can be None - else: - raise TTLibError("Transform for table '%s' is unknown" % tag) - return data - - def _calcMasterChecksum(self): - """Calculate checkSumAdjustment.""" - tags = list(self.tables.keys()) - checksums = [] - for i in range(len(tags)): - checksums.append(self.tables[tags[i]].checkSum) - - # Create a SFNT directory for checksum calculation purposes - self.searchRange, self.entrySelector, self.rangeShift = getSearchRange( - self.numTables, 16 - ) - directory = sstruct.pack(sfntDirectoryFormat, self) - tables = sorted(self.tables.items()) - for tag, entry in tables: - sfntEntry = SFNTDirectoryEntry() - sfntEntry.tag = entry.tag - sfntEntry.checkSum = entry.checkSum - sfntEntry.offset = entry.origOffset - sfntEntry.length = entry.origLength - directory = directory + sfntEntry.toString() - - directory_end = sfntDirectorySize + len(self.tables) * sfntDirectoryEntrySize - assert directory_end == len(directory) - - checksums.append(calcChecksum(directory)) - checksum = sum(checksums) & 0xFFFFFFFF - # BiboAfba! - checksumadjustment = (0xB1B0AFBA - checksum) & 0xFFFFFFFF - return checksumadjustment - - def writeMasterChecksum(self): - """Write checkSumAdjustment to the transformBuffer.""" - checksumadjustment = self._calcMasterChecksum() - self.transformBuffer.seek(self.tables["head"].offset + 8) - self.transformBuffer.write(struct.pack(">L", checksumadjustment)) - - def _calcTotalSize(self): - """Calculate total size of WOFF2 font, including any meta- and/or private data.""" - offset = self.directorySize - for entry in self.tables.values(): - offset += len(entry.toString()) - offset += self.totalCompressedSize - offset = (offset + 3) & ~3 - offset = self._calcFlavorDataOffsetsAndSize(offset) - return offset - - def _calcFlavorDataOffsetsAndSize(self, start): - """Calculate offsets and lengths for any meta- and/or private data.""" - offset = start - data = self.flavorData - if data.metaData: - self.metaOrigLength = len(data.metaData) - self.metaOffset = offset - self.compressedMetaData = brotli.compress( - data.metaData, mode=brotli.MODE_TEXT - ) - self.metaLength = len(self.compressedMetaData) - offset += self.metaLength - else: - self.metaOffset = self.metaLength = self.metaOrigLength = 0 - self.compressedMetaData = b"" - if data.privData: - # make sure private data is padded to 4-byte boundary - offset = (offset + 3) & ~3 - self.privOffset = offset - self.privLength = len(data.privData) - offset += self.privLength - else: - self.privOffset = self.privLength = 0 - return offset - - def _getVersion(self): - """Return the WOFF2 font's (majorVersion, minorVersion) tuple.""" - data = self.flavorData - if data.majorVersion is not None and data.minorVersion is not None: - return data.majorVersion, data.minorVersion - else: - # if None, return 'fontRevision' from 'head' table - if "head" in self.tables: - return struct.unpack(">HH", self.tables["head"].data[4:8]) - else: - return 0, 0 - - def _packTableDirectory(self): - """Return WOFF2 table directory data.""" - directory = sstruct.pack(self.directoryFormat, self) - for entry in self.tables.values(): - directory = directory + entry.toString() - return directory - - def _writeFlavorData(self): - """Write metadata and/or private data using appropiate padding.""" - compressedMetaData = self.compressedMetaData - privData = self.flavorData.privData - if compressedMetaData and privData: - compressedMetaData = pad(compressedMetaData, size=4) - if compressedMetaData: - self.file.seek(self.metaOffset) - assert self.file.tell() == self.metaOffset - self.file.write(compressedMetaData) - if privData: - self.file.seek(self.privOffset) - assert self.file.tell() == self.privOffset - self.file.write(privData) - - def reordersTables(self): - return True - - -# -- woff2 directory helpers and cruft - -woff2DirectoryFormat = """ - > # big endian - signature: 4s # "wOF2" - sfntVersion: 4s - length: L # total woff2 file size - numTables: H # number of tables - reserved: H # set to 0 - totalSfntSize: L # uncompressed size - totalCompressedSize: L # compressed size - majorVersion: H # major version of WOFF file - minorVersion: H # minor version of WOFF file - metaOffset: L # offset to metadata block - metaLength: L # length of compressed metadata - metaOrigLength: L # length of uncompressed metadata - privOffset: L # offset to private data block - privLength: L # length of private data block -""" - -woff2DirectorySize = sstruct.calcsize(woff2DirectoryFormat) - -woff2KnownTags = ( - "cmap", - "head", - "hhea", - "hmtx", - "maxp", - "name", - "OS/2", - "post", - "cvt ", - "fpgm", - "glyf", - "loca", - "prep", - "CFF ", - "VORG", - "EBDT", - "EBLC", - "gasp", - "hdmx", - "kern", - "LTSH", - "PCLT", - "VDMX", - "vhea", - "vmtx", - "BASE", - "GDEF", - "GPOS", - "GSUB", - "EBSC", - "JSTF", - "MATH", - "CBDT", - "CBLC", - "COLR", - "CPAL", - "SVG ", - "sbix", - "acnt", - "avar", - "bdat", - "bloc", - "bsln", - "cvar", - "fdsc", - "feat", - "fmtx", - "fvar", - "gvar", - "hsty", - "just", - "lcar", - "mort", - "morx", - "opbd", - "prop", - "trak", - "Zapf", - "Silf", - "Glat", - "Gloc", - "Feat", - "Sill", -) - -woff2FlagsFormat = """ - > # big endian - flags: B # table type and flags -""" - -woff2FlagsSize = sstruct.calcsize(woff2FlagsFormat) - -woff2UnknownTagFormat = """ - > # big endian - tag: 4s # 4-byte tag (optional) -""" - -woff2UnknownTagSize = sstruct.calcsize(woff2UnknownTagFormat) - -woff2UnknownTagIndex = 0x3F - -woff2Base128MaxSize = 5 -woff2DirectoryEntryMaxSize = ( - woff2FlagsSize + woff2UnknownTagSize + 2 * woff2Base128MaxSize -) - -woff2TransformedTableTags = ("glyf", "loca") - -woff2GlyfTableFormat = """ - > # big endian - version: H # = 0x0000 - optionFlags: H # Bit 0: we have overlapSimpleBitmap[], Bits 1-15: reserved - numGlyphs: H # Number of glyphs - indexFormat: H # Offset format for loca table - nContourStreamSize: L # Size of nContour stream - nPointsStreamSize: L # Size of nPoints stream - flagStreamSize: L # Size of flag stream - glyphStreamSize: L # Size of glyph stream - compositeStreamSize: L # Size of composite stream - bboxStreamSize: L # Comnined size of bboxBitmap and bboxStream - instructionStreamSize: L # Size of instruction stream -""" - -woff2GlyfTableFormatSize = sstruct.calcsize(woff2GlyfTableFormat) - -bboxFormat = """ - > # big endian - xMin: h - yMin: h - xMax: h - yMax: h -""" - -woff2OverlapSimpleBitmapFlag = 0x0001 - - -def getKnownTagIndex(tag): - """Return index of 'tag' in woff2KnownTags list. Return 63 if not found.""" - for i in range(len(woff2KnownTags)): - if tag == woff2KnownTags[i]: - return i - return woff2UnknownTagIndex - - -class WOFF2DirectoryEntry(DirectoryEntry): - def fromFile(self, file): - pos = file.tell() - data = file.read(woff2DirectoryEntryMaxSize) - left = self.fromString(data) - consumed = len(data) - len(left) - file.seek(pos + consumed) - - def fromString(self, data): - if len(data) < 1: - raise TTLibError("can't read table 'flags': not enough data") - dummy, data = sstruct.unpack2(woff2FlagsFormat, data, self) - if self.flags & 0x3F == 0x3F: - # if bits [0..5] of the flags byte == 63, read a 4-byte arbitrary tag value - if len(data) < woff2UnknownTagSize: - raise TTLibError("can't read table 'tag': not enough data") - dummy, data = sstruct.unpack2(woff2UnknownTagFormat, data, self) - else: - # otherwise, tag is derived from a fixed 'Known Tags' table - self.tag = woff2KnownTags[self.flags & 0x3F] - self.tag = Tag(self.tag) - self.origLength, data = unpackBase128(data) - self.length = self.origLength - if self.transformed: - self.length, data = unpackBase128(data) - if self.tag == "loca" and self.length != 0: - raise TTLibError("the transformLength of the 'loca' table must be 0") - # return left over data - return data - - def toString(self): - data = bytechr(self.flags) - if (self.flags & 0x3F) == 0x3F: - data += struct.pack(">4s", self.tag.tobytes()) - data += packBase128(self.origLength) - if self.transformed: - data += packBase128(self.length) - return data - - @property - def transformVersion(self): - """Return bits 6-7 of table entry's flags, which indicate the preprocessing - transformation version number (between 0 and 3). - """ - return self.flags >> 6 - - @transformVersion.setter - def transformVersion(self, value): - assert 0 <= value <= 3 - self.flags |= value << 6 - - @property - def transformed(self): - """Return True if the table has any transformation, else return False.""" - # For all tables in a font, except for 'glyf' and 'loca', the transformation - # version 0 indicates the null transform (where the original table data is - # passed directly to the Brotli compressor). For 'glyf' and 'loca' tables, - # transformation version 3 indicates the null transform - if self.tag in {"glyf", "loca"}: - return self.transformVersion != 3 - else: - return self.transformVersion != 0 - - @transformed.setter - def transformed(self, booleanValue): - # here we assume that a non-null transform means version 0 for 'glyf' and - # 'loca' and 1 for every other table (e.g. hmtx); but that may change as - # new transformation formats are introduced in the future (if ever). - if self.tag in {"glyf", "loca"}: - self.transformVersion = 3 if not booleanValue else 0 - else: - self.transformVersion = int(booleanValue) - - -class WOFF2LocaTable(getTableClass("loca")): - """Same as parent class. The only difference is that it attempts to preserve - the 'indexFormat' as encoded in the WOFF2 glyf table. - """ - - def __init__(self, tag=None): - self.tableTag = Tag(tag or "loca") - - def compile(self, ttFont): - try: - max_location = max(self.locations) - except AttributeError: - self.set([]) - max_location = 0 - if "glyf" in ttFont and hasattr(ttFont["glyf"], "indexFormat"): - # copile loca using the indexFormat specified in the WOFF2 glyf table - indexFormat = ttFont["glyf"].indexFormat - if indexFormat == 0: - if max_location >= 0x20000: - raise TTLibError("indexFormat is 0 but local offsets > 0x20000") - if not all(l % 2 == 0 for l in self.locations): - raise TTLibError( - "indexFormat is 0 but local offsets not multiples of 2" - ) - locations = array.array("H") - for i in range(len(self.locations)): - locations.append(self.locations[i] // 2) - else: - locations = array.array("I", self.locations) - if sys.byteorder != "big": - locations.byteswap() - data = locations.tobytes() - else: - # use the most compact indexFormat given the current glyph offsets - data = super(WOFF2LocaTable, self).compile(ttFont) - return data - - -class WOFF2GlyfTable(getTableClass("glyf")): - """Decoder/Encoder for WOFF2 'glyf' table transform.""" - - subStreams = ( - "nContourStream", - "nPointsStream", - "flagStream", - "glyphStream", - "compositeStream", - "bboxStream", - "instructionStream", - ) - - def __init__(self, tag=None): - self.tableTag = Tag(tag or "glyf") - - def reconstruct(self, data, ttFont): - """Decompile transformed 'glyf' data.""" - inputDataSize = len(data) - - if inputDataSize < woff2GlyfTableFormatSize: - raise TTLibError("not enough 'glyf' data") - dummy, data = sstruct.unpack2(woff2GlyfTableFormat, data, self) - offset = woff2GlyfTableFormatSize - - for stream in self.subStreams: - size = getattr(self, stream + "Size") - setattr(self, stream, data[:size]) - data = data[size:] - offset += size - - hasOverlapSimpleBitmap = self.optionFlags & woff2OverlapSimpleBitmapFlag - self.overlapSimpleBitmap = None - if hasOverlapSimpleBitmap: - overlapSimpleBitmapSize = (self.numGlyphs + 7) >> 3 - self.overlapSimpleBitmap = array.array("B", data[:overlapSimpleBitmapSize]) - offset += overlapSimpleBitmapSize - - if offset != inputDataSize: - raise TTLibError( - "incorrect size of transformed 'glyf' table: expected %d, received %d bytes" - % (offset, inputDataSize) - ) - - bboxBitmapSize = ((self.numGlyphs + 31) >> 5) << 2 - bboxBitmap = self.bboxStream[:bboxBitmapSize] - self.bboxBitmap = array.array("B", bboxBitmap) - self.bboxStream = self.bboxStream[bboxBitmapSize:] - - self.nContourStream = array.array("h", self.nContourStream) - if sys.byteorder != "big": - self.nContourStream.byteswap() - assert len(self.nContourStream) == self.numGlyphs - - if "head" in ttFont: - ttFont["head"].indexToLocFormat = self.indexFormat - try: - self.glyphOrder = ttFont.getGlyphOrder() - except: - self.glyphOrder = None - if self.glyphOrder is None: - self.glyphOrder = [".notdef"] - self.glyphOrder.extend(["glyph%.5d" % i for i in range(1, self.numGlyphs)]) - else: - if len(self.glyphOrder) != self.numGlyphs: - raise TTLibError( - "incorrect glyphOrder: expected %d glyphs, found %d" - % (len(self.glyphOrder), self.numGlyphs) - ) - - glyphs = self.glyphs = {} - for glyphID, glyphName in enumerate(self.glyphOrder): - glyph = self._decodeGlyph(glyphID) - glyphs[glyphName] = glyph - - def transform(self, ttFont): - """Return transformed 'glyf' data""" - self.numGlyphs = len(self.glyphs) - assert len(self.glyphOrder) == self.numGlyphs - if "maxp" in ttFont: - ttFont["maxp"].numGlyphs = self.numGlyphs - self.indexFormat = ttFont["head"].indexToLocFormat - - for stream in self.subStreams: - setattr(self, stream, b"") - bboxBitmapSize = ((self.numGlyphs + 31) >> 5) << 2 - self.bboxBitmap = array.array("B", [0] * bboxBitmapSize) - - self.overlapSimpleBitmap = array.array("B", [0] * ((self.numGlyphs + 7) >> 3)) - for glyphID in range(self.numGlyphs): - try: - self._encodeGlyph(glyphID) - except NotImplementedError: - return None - hasOverlapSimpleBitmap = any(self.overlapSimpleBitmap) - - self.bboxStream = self.bboxBitmap.tobytes() + self.bboxStream - for stream in self.subStreams: - setattr(self, stream + "Size", len(getattr(self, stream))) - self.version = 0 - self.optionFlags = 0 - if hasOverlapSimpleBitmap: - self.optionFlags |= woff2OverlapSimpleBitmapFlag - data = sstruct.pack(woff2GlyfTableFormat, self) - data += bytesjoin([getattr(self, s) for s in self.subStreams]) - if hasOverlapSimpleBitmap: - data += self.overlapSimpleBitmap.tobytes() - return data - - def _decodeGlyph(self, glyphID): - glyph = getTableModule("glyf").Glyph() - glyph.numberOfContours = self.nContourStream[glyphID] - if glyph.numberOfContours == 0: - return glyph - elif glyph.isComposite(): - self._decodeComponents(glyph) - else: - self._decodeCoordinates(glyph) - self._decodeOverlapSimpleFlag(glyph, glyphID) - self._decodeBBox(glyphID, glyph) - return glyph - - def _decodeComponents(self, glyph): - data = self.compositeStream - glyph.components = [] - more = 1 - haveInstructions = 0 - while more: - component = getTableModule("glyf").GlyphComponent() - more, haveInstr, data = component.decompile(data, self) - haveInstructions = haveInstructions | haveInstr - glyph.components.append(component) - self.compositeStream = data - if haveInstructions: - self._decodeInstructions(glyph) - - def _decodeCoordinates(self, glyph): - data = self.nPointsStream - endPtsOfContours = [] - endPoint = -1 - for i in range(glyph.numberOfContours): - ptsOfContour, data = unpack255UShort(data) - endPoint += ptsOfContour - endPtsOfContours.append(endPoint) - glyph.endPtsOfContours = endPtsOfContours - self.nPointsStream = data - self._decodeTriplets(glyph) - self._decodeInstructions(glyph) - - def _decodeOverlapSimpleFlag(self, glyph, glyphID): - if self.overlapSimpleBitmap is None or glyph.numberOfContours <= 0: - return - byte = glyphID >> 3 - bit = glyphID & 7 - if self.overlapSimpleBitmap[byte] & (0x80 >> bit): - glyph.flags[0] |= _g_l_y_f.flagOverlapSimple - - def _decodeInstructions(self, glyph): - glyphStream = self.glyphStream - instructionStream = self.instructionStream - instructionLength, glyphStream = unpack255UShort(glyphStream) - glyph.program = ttProgram.Program() - glyph.program.fromBytecode(instructionStream[:instructionLength]) - self.glyphStream = glyphStream - self.instructionStream = instructionStream[instructionLength:] - - def _decodeBBox(self, glyphID, glyph): - haveBBox = bool(self.bboxBitmap[glyphID >> 3] & (0x80 >> (glyphID & 7))) - if glyph.isComposite() and not haveBBox: - raise TTLibError("no bbox values for composite glyph %d" % glyphID) - if haveBBox: - dummy, self.bboxStream = sstruct.unpack2(bboxFormat, self.bboxStream, glyph) - else: - glyph.recalcBounds(self) - - def _decodeTriplets(self, glyph): - def withSign(flag, baseval): - assert 0 <= baseval and baseval < 65536, "integer overflow" - return baseval if flag & 1 else -baseval - - nPoints = glyph.endPtsOfContours[-1] + 1 - flagSize = nPoints - if flagSize > len(self.flagStream): - raise TTLibError("not enough 'flagStream' data") - flagsData = self.flagStream[:flagSize] - self.flagStream = self.flagStream[flagSize:] - flags = array.array("B", flagsData) - - triplets = array.array("B", self.glyphStream) - nTriplets = len(triplets) - assert nPoints <= nTriplets - - x = 0 - y = 0 - glyph.coordinates = getTableModule("glyf").GlyphCoordinates.zeros(nPoints) - glyph.flags = array.array("B") - tripletIndex = 0 - for i in range(nPoints): - flag = flags[i] - onCurve = not bool(flag >> 7) - flag &= 0x7F - if flag < 84: - nBytes = 1 - elif flag < 120: - nBytes = 2 - elif flag < 124: - nBytes = 3 - else: - nBytes = 4 - assert (tripletIndex + nBytes) <= nTriplets - if flag < 10: - dx = 0 - dy = withSign(flag, ((flag & 14) << 7) + triplets[tripletIndex]) - elif flag < 20: - dx = withSign(flag, (((flag - 10) & 14) << 7) + triplets[tripletIndex]) - dy = 0 - elif flag < 84: - b0 = flag - 20 - b1 = triplets[tripletIndex] - dx = withSign(flag, 1 + (b0 & 0x30) + (b1 >> 4)) - dy = withSign(flag >> 1, 1 + ((b0 & 0x0C) << 2) + (b1 & 0x0F)) - elif flag < 120: - b0 = flag - 84 - dx = withSign(flag, 1 + ((b0 // 12) << 8) + triplets[tripletIndex]) - dy = withSign( - flag >> 1, 1 + (((b0 % 12) >> 2) << 8) + triplets[tripletIndex + 1] - ) - elif flag < 124: - b2 = triplets[tripletIndex + 1] - dx = withSign(flag, (triplets[tripletIndex] << 4) + (b2 >> 4)) - dy = withSign( - flag >> 1, ((b2 & 0x0F) << 8) + triplets[tripletIndex + 2] - ) - else: - dx = withSign( - flag, (triplets[tripletIndex] << 8) + triplets[tripletIndex + 1] - ) - dy = withSign( - flag >> 1, - (triplets[tripletIndex + 2] << 8) + triplets[tripletIndex + 3], - ) - tripletIndex += nBytes - x += dx - y += dy - glyph.coordinates[i] = (x, y) - glyph.flags.append(int(onCurve)) - bytesConsumed = tripletIndex - self.glyphStream = self.glyphStream[bytesConsumed:] - - def _encodeGlyph(self, glyphID): - glyphName = self.getGlyphName(glyphID) - glyph = self[glyphName] - self.nContourStream += struct.pack(">h", glyph.numberOfContours) - if glyph.numberOfContours == 0: - return - elif glyph.isComposite(): - self._encodeComponents(glyph) - elif glyph.isVarComposite(): - raise NotImplementedError - else: - self._encodeCoordinates(glyph) - self._encodeOverlapSimpleFlag(glyph, glyphID) - self._encodeBBox(glyphID, glyph) - - def _encodeComponents(self, glyph): - lastcomponent = len(glyph.components) - 1 - more = 1 - haveInstructions = 0 - for i in range(len(glyph.components)): - if i == lastcomponent: - haveInstructions = hasattr(glyph, "program") - more = 0 - component = glyph.components[i] - self.compositeStream += component.compile(more, haveInstructions, self) - if haveInstructions: - self._encodeInstructions(glyph) - - def _encodeCoordinates(self, glyph): - lastEndPoint = -1 - if _g_l_y_f.flagCubic in glyph.flags: - raise NotImplementedError - for endPoint in glyph.endPtsOfContours: - ptsOfContour = endPoint - lastEndPoint - self.nPointsStream += pack255UShort(ptsOfContour) - lastEndPoint = endPoint - self._encodeTriplets(glyph) - self._encodeInstructions(glyph) - - def _encodeOverlapSimpleFlag(self, glyph, glyphID): - if glyph.numberOfContours <= 0: - return - if glyph.flags[0] & _g_l_y_f.flagOverlapSimple: - byte = glyphID >> 3 - bit = glyphID & 7 - self.overlapSimpleBitmap[byte] |= 0x80 >> bit - - def _encodeInstructions(self, glyph): - instructions = glyph.program.getBytecode() - self.glyphStream += pack255UShort(len(instructions)) - self.instructionStream += instructions - - def _encodeBBox(self, glyphID, glyph): - assert glyph.numberOfContours != 0, "empty glyph has no bbox" - if not glyph.isComposite(): - # for simple glyphs, compare the encoded bounding box info with the calculated - # values, and if they match omit the bounding box info - currentBBox = glyph.xMin, glyph.yMin, glyph.xMax, glyph.yMax - calculatedBBox = calcIntBounds(glyph.coordinates) - if currentBBox == calculatedBBox: - return - self.bboxBitmap[glyphID >> 3] |= 0x80 >> (glyphID & 7) - self.bboxStream += sstruct.pack(bboxFormat, glyph) - - def _encodeTriplets(self, glyph): - assert len(glyph.coordinates) == len(glyph.flags) - coordinates = glyph.coordinates.copy() - coordinates.absoluteToRelative() - - flags = array.array("B") - triplets = array.array("B") - for i in range(len(coordinates)): - onCurve = glyph.flags[i] & _g_l_y_f.flagOnCurve - x, y = coordinates[i] - absX = abs(x) - absY = abs(y) - onCurveBit = 0 if onCurve else 128 - xSignBit = 0 if (x < 0) else 1 - ySignBit = 0 if (y < 0) else 1 - xySignBits = xSignBit + 2 * ySignBit - - if x == 0 and absY < 1280: - flags.append(onCurveBit + ((absY & 0xF00) >> 7) + ySignBit) - triplets.append(absY & 0xFF) - elif y == 0 and absX < 1280: - flags.append(onCurveBit + 10 + ((absX & 0xF00) >> 7) + xSignBit) - triplets.append(absX & 0xFF) - elif absX < 65 and absY < 65: - flags.append( - onCurveBit - + 20 - + ((absX - 1) & 0x30) - + (((absY - 1) & 0x30) >> 2) - + xySignBits - ) - triplets.append((((absX - 1) & 0xF) << 4) | ((absY - 1) & 0xF)) - elif absX < 769 and absY < 769: - flags.append( - onCurveBit - + 84 - + 12 * (((absX - 1) & 0x300) >> 8) - + (((absY - 1) & 0x300) >> 6) - + xySignBits - ) - triplets.append((absX - 1) & 0xFF) - triplets.append((absY - 1) & 0xFF) - elif absX < 4096 and absY < 4096: - flags.append(onCurveBit + 120 + xySignBits) - triplets.append(absX >> 4) - triplets.append(((absX & 0xF) << 4) | (absY >> 8)) - triplets.append(absY & 0xFF) - else: - flags.append(onCurveBit + 124 + xySignBits) - triplets.append(absX >> 8) - triplets.append(absX & 0xFF) - triplets.append(absY >> 8) - triplets.append(absY & 0xFF) - - self.flagStream += flags.tobytes() - self.glyphStream += triplets.tobytes() - - -class WOFF2HmtxTable(getTableClass("hmtx")): - def __init__(self, tag=None): - self.tableTag = Tag(tag or "hmtx") - - def reconstruct(self, data, ttFont): - (flags,) = struct.unpack(">B", data[:1]) - data = data[1:] - if flags & 0b11111100 != 0: - raise TTLibError("Bits 2-7 of '%s' flags are reserved" % self.tableTag) - - # When bit 0 is _not_ set, the lsb[] array is present - hasLsbArray = flags & 1 == 0 - # When bit 1 is _not_ set, the leftSideBearing[] array is present - hasLeftSideBearingArray = flags & 2 == 0 - if hasLsbArray and hasLeftSideBearingArray: - raise TTLibError( - "either bits 0 or 1 (or both) must set in transformed '%s' flags" - % self.tableTag - ) - - glyfTable = ttFont["glyf"] - headerTable = ttFont["hhea"] - glyphOrder = glyfTable.glyphOrder - numGlyphs = len(glyphOrder) - numberOfHMetrics = min(int(headerTable.numberOfHMetrics), numGlyphs) - - assert len(data) >= 2 * numberOfHMetrics - advanceWidthArray = array.array("H", data[: 2 * numberOfHMetrics]) - if sys.byteorder != "big": - advanceWidthArray.byteswap() - data = data[2 * numberOfHMetrics :] - - if hasLsbArray: - assert len(data) >= 2 * numberOfHMetrics - lsbArray = array.array("h", data[: 2 * numberOfHMetrics]) - if sys.byteorder != "big": - lsbArray.byteswap() - data = data[2 * numberOfHMetrics :] - else: - # compute (proportional) glyphs' lsb from their xMin - lsbArray = array.array("h") - for i, glyphName in enumerate(glyphOrder): - if i >= numberOfHMetrics: - break - glyph = glyfTable[glyphName] - xMin = getattr(glyph, "xMin", 0) - lsbArray.append(xMin) - - numberOfSideBearings = numGlyphs - numberOfHMetrics - if hasLeftSideBearingArray: - assert len(data) >= 2 * numberOfSideBearings - leftSideBearingArray = array.array("h", data[: 2 * numberOfSideBearings]) - if sys.byteorder != "big": - leftSideBearingArray.byteswap() - data = data[2 * numberOfSideBearings :] - else: - # compute (monospaced) glyphs' leftSideBearing from their xMin - leftSideBearingArray = array.array("h") - for i, glyphName in enumerate(glyphOrder): - if i < numberOfHMetrics: - continue - glyph = glyfTable[glyphName] - xMin = getattr(glyph, "xMin", 0) - leftSideBearingArray.append(xMin) - - if data: - raise TTLibError("too much '%s' table data" % self.tableTag) - - self.metrics = {} - for i in range(numberOfHMetrics): - glyphName = glyphOrder[i] - advanceWidth, lsb = advanceWidthArray[i], lsbArray[i] - self.metrics[glyphName] = (advanceWidth, lsb) - lastAdvance = advanceWidthArray[-1] - for i in range(numberOfSideBearings): - glyphName = glyphOrder[i + numberOfHMetrics] - self.metrics[glyphName] = (lastAdvance, leftSideBearingArray[i]) - - def transform(self, ttFont): - glyphOrder = ttFont.getGlyphOrder() - glyf = ttFont["glyf"] - hhea = ttFont["hhea"] - numberOfHMetrics = hhea.numberOfHMetrics - - # check if any of the proportional glyphs has left sidebearings that - # differ from their xMin bounding box values. - hasLsbArray = False - for i in range(numberOfHMetrics): - glyphName = glyphOrder[i] - lsb = self.metrics[glyphName][1] - if lsb != getattr(glyf[glyphName], "xMin", 0): - hasLsbArray = True - break - - # do the same for the monospaced glyphs (if any) at the end of hmtx table - hasLeftSideBearingArray = False - for i in range(numberOfHMetrics, len(glyphOrder)): - glyphName = glyphOrder[i] - lsb = self.metrics[glyphName][1] - if lsb != getattr(glyf[glyphName], "xMin", 0): - hasLeftSideBearingArray = True - break - - # if we need to encode both sidebearings arrays, then no transformation is - # applicable, and we must use the untransformed hmtx data - if hasLsbArray and hasLeftSideBearingArray: - return - - # set bit 0 and 1 when the respective arrays are _not_ present - flags = 0 - if not hasLsbArray: - flags |= 1 << 0 - if not hasLeftSideBearingArray: - flags |= 1 << 1 - - data = struct.pack(">B", flags) - - advanceWidthArray = array.array( - "H", - [ - self.metrics[glyphName][0] - for i, glyphName in enumerate(glyphOrder) - if i < numberOfHMetrics - ], - ) - if sys.byteorder != "big": - advanceWidthArray.byteswap() - data += advanceWidthArray.tobytes() - - if hasLsbArray: - lsbArray = array.array( - "h", - [ - self.metrics[glyphName][1] - for i, glyphName in enumerate(glyphOrder) - if i < numberOfHMetrics - ], - ) - if sys.byteorder != "big": - lsbArray.byteswap() - data += lsbArray.tobytes() - - if hasLeftSideBearingArray: - leftSideBearingArray = array.array( - "h", - [ - self.metrics[glyphOrder[i]][1] - for i in range(numberOfHMetrics, len(glyphOrder)) - ], - ) - if sys.byteorder != "big": - leftSideBearingArray.byteswap() - data += leftSideBearingArray.tobytes() - - return data - - -class WOFF2FlavorData(WOFFFlavorData): - - Flavor = "woff2" - - def __init__(self, reader=None, data=None, transformedTables=None): - """Data class that holds the WOFF2 header major/minor version, any - metadata or private data (as bytes strings), and the set of - table tags that have transformations applied (if reader is not None), - or will have once the WOFF2 font is compiled. - - Args: - reader: an SFNTReader (or subclass) object to read flavor data from. - data: another WOFFFlavorData object to initialise data from. - transformedTables: set of strings containing table tags to be transformed. - - Raises: - ImportError if the brotli module is not installed. - - NOTE: The 'reader' argument, on the one hand, and the 'data' and - 'transformedTables' arguments, on the other hand, are mutually exclusive. - """ - if not haveBrotli: - raise ImportError("No module named brotli") - - if reader is not None: - if data is not None: - raise TypeError("'reader' and 'data' arguments are mutually exclusive") - if transformedTables is not None: - raise TypeError( - "'reader' and 'transformedTables' arguments are mutually exclusive" - ) - - if transformedTables is not None and ( - "glyf" in transformedTables - and "loca" not in transformedTables - or "loca" in transformedTables - and "glyf" not in transformedTables - ): - raise ValueError("'glyf' and 'loca' must be transformed (or not) together") - super(WOFF2FlavorData, self).__init__(reader=reader) - if reader: - transformedTables = [ - tag for tag, entry in reader.tables.items() if entry.transformed - ] - elif data: - self.majorVersion = data.majorVersion - self.majorVersion = data.minorVersion - self.metaData = data.metaData - self.privData = data.privData - if transformedTables is None and hasattr(data, "transformedTables"): - transformedTables = data.transformedTables - - if transformedTables is None: - transformedTables = woff2TransformedTableTags - - self.transformedTables = set(transformedTables) - - def _decompress(self, rawData): - return brotli.decompress(rawData) - - -def unpackBase128(data): - r"""Read one to five bytes from UIntBase128-encoded input string, and return - a tuple containing the decoded integer plus any leftover data. - - >>> unpackBase128(b'\x3f\x00\x00') == (63, b"\x00\x00") - True - >>> unpackBase128(b'\x8f\xff\xff\xff\x7f')[0] == 4294967295 - True - >>> unpackBase128(b'\x80\x80\x3f') # doctest: +IGNORE_EXCEPTION_DETAIL - Traceback (most recent call last): - File "", line 1, in ? - TTLibError: UIntBase128 value must not start with leading zeros - >>> unpackBase128(b'\x8f\xff\xff\xff\xff\x7f')[0] # doctest: +IGNORE_EXCEPTION_DETAIL - Traceback (most recent call last): - File "", line 1, in ? - TTLibError: UIntBase128-encoded sequence is longer than 5 bytes - >>> unpackBase128(b'\x90\x80\x80\x80\x00')[0] # doctest: +IGNORE_EXCEPTION_DETAIL - Traceback (most recent call last): - File "", line 1, in ? - TTLibError: UIntBase128 value exceeds 2**32-1 - """ - if len(data) == 0: - raise TTLibError("not enough data to unpack UIntBase128") - result = 0 - if byteord(data[0]) == 0x80: - # font must be rejected if UIntBase128 value starts with 0x80 - raise TTLibError("UIntBase128 value must not start with leading zeros") - for i in range(woff2Base128MaxSize): - if len(data) == 0: - raise TTLibError("not enough data to unpack UIntBase128") - code = byteord(data[0]) - data = data[1:] - # if any of the top seven bits are set then we're about to overflow - if result & 0xFE000000: - raise TTLibError("UIntBase128 value exceeds 2**32-1") - # set current value = old value times 128 bitwise-or (byte bitwise-and 127) - result = (result << 7) | (code & 0x7F) - # repeat until the most significant bit of byte is false - if (code & 0x80) == 0: - # return result plus left over data - return result, data - # make sure not to exceed the size bound - raise TTLibError("UIntBase128-encoded sequence is longer than 5 bytes") - - -def base128Size(n): - """Return the length in bytes of a UIntBase128-encoded sequence with value n. - - >>> base128Size(0) - 1 - >>> base128Size(24567) - 3 - >>> base128Size(2**32-1) - 5 - """ - assert n >= 0 - size = 1 - while n >= 128: - size += 1 - n >>= 7 - return size - - -def packBase128(n): - r"""Encode unsigned integer in range 0 to 2**32-1 (inclusive) to a string of - bytes using UIntBase128 variable-length encoding. Produce the shortest possible - encoding. - - >>> packBase128(63) == b"\x3f" - True - >>> packBase128(2**32-1) == b'\x8f\xff\xff\xff\x7f' - True - """ - if n < 0 or n >= 2**32: - raise TTLibError("UIntBase128 format requires 0 <= integer <= 2**32-1") - data = b"" - size = base128Size(n) - for i in range(size): - b = (n >> (7 * (size - i - 1))) & 0x7F - if i < size - 1: - b |= 0x80 - data += struct.pack("B", b) - return data - - -def unpack255UShort(data): - """Read one to three bytes from 255UInt16-encoded input string, and return a - tuple containing the decoded integer plus any leftover data. - - >>> unpack255UShort(bytechr(252))[0] - 252 - - Note that some numbers (e.g. 506) can have multiple encodings: - >>> unpack255UShort(struct.pack("BB", 254, 0))[0] - 506 - >>> unpack255UShort(struct.pack("BB", 255, 253))[0] - 506 - >>> unpack255UShort(struct.pack("BBB", 253, 1, 250))[0] - 506 - """ - code = byteord(data[:1]) - data = data[1:] - if code == 253: - # read two more bytes as an unsigned short - if len(data) < 2: - raise TTLibError("not enough data to unpack 255UInt16") - (result,) = struct.unpack(">H", data[:2]) - data = data[2:] - elif code == 254: - # read another byte, plus 253 * 2 - if len(data) == 0: - raise TTLibError("not enough data to unpack 255UInt16") - result = byteord(data[:1]) - result += 506 - data = data[1:] - elif code == 255: - # read another byte, plus 253 - if len(data) == 0: - raise TTLibError("not enough data to unpack 255UInt16") - result = byteord(data[:1]) - result += 253 - data = data[1:] - else: - # leave as is if lower than 253 - result = code - # return result plus left over data - return result, data - - -def pack255UShort(value): - r"""Encode unsigned integer in range 0 to 65535 (inclusive) to a bytestring - using 255UInt16 variable-length encoding. - - >>> pack255UShort(252) == b'\xfc' - True - >>> pack255UShort(506) == b'\xfe\x00' - True - >>> pack255UShort(762) == b'\xfd\x02\xfa' - True - """ - if value < 0 or value > 0xFFFF: - raise TTLibError("255UInt16 format requires 0 <= integer <= 65535") - if value < 253: - return struct.pack(">B", value) - elif value < 506: - return struct.pack(">BB", 255, value - 253) - elif value < 762: - return struct.pack(">BB", 254, value - 506) - else: - return struct.pack(">BH", 253, value) - - -def compress(input_file, output_file, transform_tables=None): - """Compress OpenType font to WOFF2. - - Args: - input_file: a file path, file or file-like object (open in binary mode) - containing an OpenType font (either CFF- or TrueType-flavored). - output_file: a file path, file or file-like object where to save the - compressed WOFF2 font. - transform_tables: Optional[Iterable[str]]: a set of table tags for which - to enable preprocessing transformations. By default, only 'glyf' - and 'loca' tables are transformed. An empty set means disable all - transformations. - """ - log.info("Processing %s => %s" % (input_file, output_file)) - - font = TTFont(input_file, recalcBBoxes=False, recalcTimestamp=False) - font.flavor = "woff2" - - if transform_tables is not None: - font.flavorData = WOFF2FlavorData( - data=font.flavorData, transformedTables=transform_tables - ) - - font.save(output_file, reorderTables=False) - - -def decompress(input_file, output_file): - """Decompress WOFF2 font to OpenType font. - - Args: - input_file: a file path, file or file-like object (open in binary mode) - containing a compressed WOFF2 font. - output_file: a file path, file or file-like object where to save the - decompressed OpenType font. - """ - log.info("Processing %s => %s" % (input_file, output_file)) - - font = TTFont(input_file, recalcBBoxes=False, recalcTimestamp=False) - font.flavor = None - font.flavorData = None - font.save(output_file, reorderTables=True) - - -def main(args=None): - """Compress and decompress WOFF2 fonts""" - import argparse - from fontTools import configLogger - from fontTools.ttx import makeOutputFileName - - class _HelpAction(argparse._HelpAction): - def __call__(self, parser, namespace, values, option_string=None): - subparsers_actions = [ - action - for action in parser._actions - if isinstance(action, argparse._SubParsersAction) - ] - for subparsers_action in subparsers_actions: - for choice, subparser in subparsers_action.choices.items(): - print(subparser.format_help()) - parser.exit() - - class _NoGlyfTransformAction(argparse.Action): - def __call__(self, parser, namespace, values, option_string=None): - namespace.transform_tables.difference_update({"glyf", "loca"}) - - class _HmtxTransformAction(argparse.Action): - def __call__(self, parser, namespace, values, option_string=None): - namespace.transform_tables.add("hmtx") - - parser = argparse.ArgumentParser( - prog="fonttools ttLib.woff2", description=main.__doc__, add_help=False - ) - - parser.add_argument( - "-h", "--help", action=_HelpAction, help="show this help message and exit" - ) - - parser_group = parser.add_subparsers(title="sub-commands") - parser_compress = parser_group.add_parser( - "compress", description="Compress a TTF or OTF font to WOFF2" - ) - parser_decompress = parser_group.add_parser( - "decompress", description="Decompress a WOFF2 font to OTF" - ) - - for subparser in (parser_compress, parser_decompress): - group = subparser.add_mutually_exclusive_group(required=False) - group.add_argument( - "-v", - "--verbose", - action="store_true", - help="print more messages to console", - ) - group.add_argument( - "-q", - "--quiet", - action="store_true", - help="do not print messages to console", - ) - - parser_compress.add_argument( - "input_file", - metavar="INPUT", - help="the input OpenType font (.ttf or .otf)", - ) - parser_decompress.add_argument( - "input_file", - metavar="INPUT", - help="the input WOFF2 font", - ) - - parser_compress.add_argument( - "-o", - "--output-file", - metavar="OUTPUT", - help="the output WOFF2 font", - ) - parser_decompress.add_argument( - "-o", - "--output-file", - metavar="OUTPUT", - help="the output OpenType font", - ) - - transform_group = parser_compress.add_argument_group() - transform_group.add_argument( - "--no-glyf-transform", - dest="transform_tables", - nargs=0, - action=_NoGlyfTransformAction, - help="Do not transform glyf (and loca) tables", - ) - transform_group.add_argument( - "--hmtx-transform", - dest="transform_tables", - nargs=0, - action=_HmtxTransformAction, - help="Enable optional transformation for 'hmtx' table", - ) - - parser_compress.set_defaults( - subcommand=compress, - transform_tables={"glyf", "loca"}, - ) - parser_decompress.set_defaults(subcommand=decompress) - - options = vars(parser.parse_args(args)) - - subcommand = options.pop("subcommand", None) - if not subcommand: - parser.print_help() - return - - quiet = options.pop("quiet") - verbose = options.pop("verbose") - configLogger( - level=("ERROR" if quiet else "DEBUG" if verbose else "INFO"), - ) - - if not options["output_file"]: - if subcommand is compress: - extension = ".woff2" - elif subcommand is decompress: - # choose .ttf/.otf file extension depending on sfntVersion - with open(options["input_file"], "rb") as f: - f.seek(4) # skip 'wOF2' signature - sfntVersion = f.read(4) - assert len(sfntVersion) == 4, "not enough data" - extension = ".otf" if sfntVersion == b"OTTO" else ".ttf" - else: - raise AssertionError(subcommand) - options["output_file"] = makeOutputFileName( - options["input_file"], outputDir=None, extension=extension - ) - - try: - subcommand(**options) - except TTLibError as e: - parser.error(e) - - -if __name__ == "__main__": - sys.exit(main()) diff --git a/spaces/johnslegers/stable-diffusion-gui-test/ldmlib/modules/ema.py b/spaces/johnslegers/stable-diffusion-gui-test/ldmlib/modules/ema.py deleted file mode 100644 index c8c75af43565f6e140287644aaaefa97dd6e67c5..0000000000000000000000000000000000000000 --- a/spaces/johnslegers/stable-diffusion-gui-test/ldmlib/modules/ema.py +++ /dev/null @@ -1,76 +0,0 @@ -import torch -from torch import nn - - -class LitEma(nn.Module): - def __init__(self, model, decay=0.9999, use_num_upates=True): - super().__init__() - if decay < 0.0 or decay > 1.0: - raise ValueError('Decay must be between 0 and 1') - - self.m_name2s_name = {} - self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32)) - self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates - else torch.tensor(-1,dtype=torch.int)) - - for name, p in model.named_parameters(): - if p.requires_grad: - #remove as '.'-character is not allowed in buffers - s_name = name.replace('.','') - self.m_name2s_name.update({name:s_name}) - self.register_buffer(s_name,p.clone().detach().data) - - self.collected_params = [] - - def forward(self,model): - decay = self.decay - - if self.num_updates >= 0: - self.num_updates += 1 - decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates)) - - one_minus_decay = 1.0 - decay - - with torch.no_grad(): - m_param = dict(model.named_parameters()) - shadow_params = dict(self.named_buffers()) - - for key in m_param: - if m_param[key].requires_grad: - sname = self.m_name2s_name[key] - shadow_params[sname] = shadow_params[sname].type_as(m_param[key]) - shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key])) - else: - assert not key in self.m_name2s_name - - def copy_to(self, model): - m_param = dict(model.named_parameters()) - shadow_params = dict(self.named_buffers()) - for key in m_param: - if m_param[key].requires_grad: - m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data) - else: - assert not key in self.m_name2s_name - - def store(self, parameters): - """ - Save the current parameters for restoring later. - Args: - parameters: Iterable of `torch.nn.Parameter`; the parameters to be - temporarily stored. - """ - self.collected_params = [param.clone() for param in parameters] - - def restore(self, parameters): - """ - Restore the parameters stored with the `store` method. - Useful to validate the model with EMA parameters without affecting the - original optimization process. Store the parameters before the - `copy_to` method. After validation (or model saving), use this to - restore the former parameters. - Args: - parameters: Iterable of `torch.nn.Parameter`; the parameters to be - updated with the stored parameters. - """ - for c_param, param in zip(self.collected_params, parameters): - param.data.copy_(c_param.data) diff --git a/spaces/johnson906/recipedia/src/utils/output_utils.py b/spaces/johnson906/recipedia/src/utils/output_utils.py deleted file mode 100644 index d82bc833891a3ae1d31422bdb7ca2f9f339f9049..0000000000000000000000000000000000000000 --- a/spaces/johnson906/recipedia/src/utils/output_utils.py +++ /dev/null @@ -1,103 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. - -replace_dict = {' .': '.', - ' ,': ',', - ' ;': ';', - ' :': ':', - '( ': '(', - ' )': ')', - " '": "'"} - - -def get_recipe(ids, vocab): - toks = [] - for id_ in ids: - toks.append(vocab[id_]) - return toks - - -def get_ingrs(ids, ingr_vocab_list): - gen_ingrs = [] - for ingr_idx in ids: - ingr_name = ingr_vocab_list[ingr_idx] - if ingr_name == '': - break - gen_ingrs.append(ingr_name) - return gen_ingrs - - -def prettify(toks, replace_dict): - toks = ' '.join(toks) - toks = toks.split('')[0] - sentences = toks.split('') - - pretty_sentences = [] - for sentence in sentences: - sentence = sentence.strip() - sentence = sentence.capitalize() - for k, v in replace_dict.items(): - sentence = sentence.replace(k, v) - if sentence != '': - pretty_sentences.append(sentence) - return pretty_sentences - - -def colorized_list(ingrs, ingrs_gt, colorize=False): - if colorize: - colorized_list = [] - for word in ingrs: - if word in ingrs_gt: - word = '\033[1;30;42m ' + word + ' \x1b[0m' - else: - word = '\033[1;30;41m ' + word + ' \x1b[0m' - colorized_list.append(word) - return colorized_list - else: - return ingrs - - -def prepare_output(ids, gen_ingrs, ingr_vocab_list, vocab): - - toks = get_recipe(ids, vocab) - is_valid = True - reason = 'All ok.' - try: - cut = toks.index('') - toks_trunc = toks[0:cut] - except: - toks_trunc = toks - is_valid = False - reason = 'no eos found' - - # repetition score - score = float(len(set(toks_trunc))) / float(len(toks_trunc)) - - prev_word = '' - found_repeat = False - for word in toks_trunc: - if prev_word == word and prev_word != '': - found_repeat = True - break - prev_word = word - - toks = prettify(toks, replace_dict) - title = toks[0] - toks = toks[1:] - - if gen_ingrs is not None: - gen_ingrs = get_ingrs(gen_ingrs, ingr_vocab_list) - - if score <= 0.3: - reason = 'Diversity score.' - is_valid = False - elif len(toks) != len(set(toks)): - reason = 'Repeated instructions.' - is_valid = False - elif found_repeat: - reason = 'Found word repeat.' - is_valid = False - - valid = {'is_valid': is_valid, 'reason': reason, 'score': score} - outs = {'title': title, 'recipe': toks, 'ingrs': gen_ingrs} - - return outs, valid diff --git a/spaces/jordonpeter01/laudos/page3.html b/spaces/jordonpeter01/laudos/page3.html deleted file mode 100644 index a6cb57c27601999d0493053067fffc8ba0285643..0000000000000000000000000000000000000000 --- a/spaces/jordonpeter01/laudos/page3.html +++ /dev/null @@ -1,58 +0,0 @@ - -file_1682345201208

          SumƔrio

          GERAL 7

          MEDICINA INTERNA 7

          ABDOME SUPERIOR 7

          ABSCESSO HEPƁTICO 7

          ADENITE MESENTƉRICA 7

          ALONGAMENTO HEPƁTICO 7

          ANEURISMA DE AORTA ABDOMINAL 8

          APENDAGITE EPIPLƓICA 8

          APÊNDICE CECAL 8

          APENDICITE 8

          BAƇO ACESSƓRIO 8

          BARRO BILIAR 9

          BORRAMENTO DA GORDURA MESENTƉRICA 9

          CALCIFICAƇƃO HEPƁTICA 9

          CISTO HEPƁTICO 9

          CISTOS HEPƁTICOS 9

          COLECISTECTOMIA 9

          COLECISTITE LITIƁSICA 9

          COLECISTITE LITIƁSICA BODERLINE 9

          COLELITƍASE E BARRO BILIAR 9

          COLELITƍASE MƚLTIPLA 10

          COLELITƍASE UMA 10

          COLELITƍASE COM VESƍCULA ESCLEROATRƓFICA 10

          COLEDOCOLITƍASE 10

          COLESTEROLOSE 10

          COLESTEROLOSE/ADENOMIOMATOSE 10

          DERIVAƇƃO BƍLIO-DIGESTIVA 11

          ESPESSAMENTO DE ALƇA COLƔNICA 11

          ESPLENECTOMIA 11

          ESPLENECTOMIA + ESPLENOSE 11

          ESPLENOMEGALIA 11

          ESTEATOSE HEPƁTICA 11

          ESTENOSE DE PILORO 12

          HEMANGIOMA ESPLÊNICO 12

          HEMANGIOMA HEPƁTICO 12

          HEPATITE AGUDA 12

          HEPATOMEGALIA HOMOGÊNEA 12

          HEPATOPATIA CRƔNICA 12

          HEPATOPATIA CRƔNICA COM HIPERTENSƃO PORTAL 13

          HEPATOPATIA CRƔNICA/MƚLTIPLOS NƓDULOS 13

          HEPATOPATIA: FIBROSE PERI-PORTAL (ESQUISTOSSOMOSE) 13

          INTUSSUSCEPƇƃO 13

          INTUSSUSCEPƇƃO AUSENTE 13

          KLATSKIN 13

          LINFONODOMEGALIA 13

          LƍQUIDO INTRACAVITƁRIO 14

          MASSA HEPƁTICA 14

          NƓDULOS HEPƁTICOS SECUNDƁRIOS 14

          PANCREATITE AGUDA 15

          PANCREATOPATIA CRƔNICA 15

          PƂNCREAS GORDUROSO 15

          PƓLIPO VESICULAR 15

          TROMBOSE PORTAL 15

          TUMOR DE CABEƇA DE PƂNCREAS 15

          BOLSA ESCROTAL 15

          CISTO EPIDIDIMƁRIO 15

          CISTOS EPIDIDIMƁRIOS 15

          CISTO TESTICULAR 16

          CISTOS TESTICULARES 16

          ECTASIA DA RETE TESTIS 16

          MASSA TESTICULAR 16

          MICROLITƍASE 16

          NƓDULO TESTICULAR 16

          NƓDULOS TESTICULARES 16

          HEMATOMA BOLSA ESCROTAL 16

          TORƇƃO TESTICULAR 17

          VARICOCELE 17

          RENAL E VIAS URINƁRIAS 17

          AGENESIA RENAL 17

          ANGIOMIOLIPOMA 17

          COLEƇƃO PERI-ENXERTO RENAL 17

          CISTO 17

          CISTOS 17

          CISTOS (POLICƍSTICOS) 18

          CƁLCULO ā€œBODERLINEā€ 18

          CƁLCULO 18

          CƁLCULOS 18

          CƁLCULO URETERAL JUP 18

          CƁLCULO URETERAL JUV 18

          DUPLICIDADE PIELOCALICIAL 18

          DUPLO J 18

          ESPESSAMENTO VESICAL: BEXIGA DE ESFORƇO 18

          ESPESSAMENTO VESICAL: CISTITE 19

          ESTENOSE DE JUP 19

          HEMATOMA VESICAL 19

          MASSA/PƓLIPO VESICAL 19

          REFLUXO VƉSICO-URETERAL 19

          RIM PƉLVICO 19

          RINS EM FERRADURA 19

          MASSA PƉLVICA COM URETERO-HIDRONEFROSE 19

          NEFRECTOMIA TOTAL/PARCIAL 20

          NEFROCALCINOSE 20

          NEFROPATIA AGUDA 20

          NEFROPATIA CRƔNICA 20

          ENXERTO RENAL 20

          PIELONEFRITE 20

          PRƓSTATA HETEROGƊNEA 20

          RESƍDUO VESICAL AUMENTADO 20

          SONDA VESICAL 20

          TUMOR DE WILMS OU NEUROBLATOMA 21

          URINOMA 21

          VƁLVULA DE URETRA POSTERIOR 21

          CERVICAL 21

          CISTO TIREƓIDE 21

          CISTOS TIREƓIDE 21

          LINFONODO CERVICAL HABITUAL PALPƁVEL 21

          LINFONODOMEGALIAS CERVICAIS 21

          NƓDULO TIREƓIDE 22

          NƓDULOS TIREƓIDE 22

          PAROTIDITE 22

          TIREƓIDE HETEROGƊNEA 22

          TIREOIDECTOMIA TOTAL 22

          TIREOIDECTOMIA PARCIAL 22

          TƓRAX 22

          DERRAME PLEURAL 22

          DERRAME PLEURAL COM ATELECTASIA 22

          GINECOLOGIA E OBSTERƍCIA 23

          MAMA 23

          ABSCESSO 23

          ABSCESSOS 23

          CISTO 23

          CISTOS 23

          ECTASIA/PROEMINÊNCIA DUCTAL 23

          GINOCOMASTIA 23

          IMPLANTES MAMƁRIOS 24

          LIPOMASTIA 24

          NƓDULO BI-3 24

          NƓDULO BI-4 24

          NƓDULOS BI-3 24

          NƓDULO INVASIVO BI-5 24

          MASSA COM LESƕES SATƉLITES MULTIFOCAIS 24

          OBSTƉTRICO 25

          HEMATOMA RETROPLACENTƁRIO 25

          MORFOLƓGICO 25

          PLACENTA BAIXA 25

          OLIGOƂMNIO 25

          POLIDRƂMNIO 25

          ƓBITO FETAL 25

          PESO 25

          TRANSVAGINAL 26

          ABORTAMENTO EM CURSO 26

          CISTO OVARIANO 26

          CISTOS OVARIANOS 26

          CISTO FUNCIONAL OVARIANO 26

          CISTOS FUNCIONAIS OVARIANOS 26

          CISTO HEMORRƁGICO OVARIANO 26

          CISTO(s) NABOTH 26

          CORPO LÚTEO 26

          DIU 26

          DIPA 27

          ECTƓPICA: MASSA 27

          ECTƓPICA ROTA OU CISTO HEMORRƁGICO: MASSA 27

          ECTƓPICA: BCF + 27

          ENDOMETRIO: ESPESSAMENTO PƓS-MENOPAUSA 28

          ENDOMETRIO: FASES 28

          ENDOMETRIOSE/ADENOMIOSE 28

          HEMATOMA RETROCORIƔNICO 28

          HISTERECTOMIA 28

          MALFORMAƇƕES MƜLLERIANAS 29

          MASSA OVARIANA 29

          MICROPOLICƍTICO 29

          MIOMA 29

          MIOMAS 29

          MOLA HIDATIFORME 30

          ƓBITO EMBRIONƁRIO (IG > 7 sem) 30

          ƓBITO EMBRIONƁRIO BODERLINE (BCF nĆ£o detectado) 30

          ƓBITO EMBRIONƁRIO: GESTAƇƃO INVIƁVEL (embriĆ£o em degeneração) 30

          ƓBITO EMBRIONƁRIO: GESTAƇƃO INVIƁVEL (saco deslocado) 30

          PƓLIPO ENDOMETRIAL 30

          PSEUDO-CAVIDADE UTERINA DA CICATRIZ CESARIANA 31

          RESTOS OVULARES 31

          VARIZES PƉLVICAS 31

          MƚSCULO ESQUELƉTICO/PARTES SUPERFICIAIS 31

          COTOVELO 31

          BURSITE OLECRANIANA 31

          DERRAME ARTICULAR 31

          DERRAME DOENƇA REUMATOLƓGICA 31

          ESTIRAMENTO LIGAMENTO COLATERAL 31

          IRREGULARIDADE UMERAL 31

          NERVO ULNAR: COMPRESSƃO TRICIPTAL 32

          NERVO ULNAR: GRANULOMA 32

          NERVO ULNAR: LUXAƇƃO 32

          NERVO ULNAR: NEUROFIBROMA 32

          NERVO ULNAR: NEUROPATIA 32

          NERVO ULNAR: SCHWANOMA 32

          RUPTURA PARCIAL: EPICƔNDILO LATERAL 32

          TENDINITE: EPICƔNDILO LATERAL 32

          TENDINITE: EPICƔNDILO MEDIAL 33

          TEDINITE TRICIPTAL 33

          TEDINITE BICIPTAL 33

          TENDINOSE: EPICƔNDILO LATERAL 33

          TENDINOSE: EPICƔNDILO MEDIAL 33

          TEDINOSE TRICIPTAL 33

          TEDINOSE BICIPTAL 33

          JOELHO 33

          BURSITE 33

          CISTO DE BAKER 34

          DERRAME ARTICULAR 34

          DERRAME ARTICULAR COM PROLIFERAƇƃO SINOVIAL 34

          OSTEOARTROSE 34

          OSTEOARTROSE COM DERRAME ARTICULAR 34

          OSTEOCONDROMA 34

          TENDINITE QUADRƍCEPS 34

          TENDINITE PATELAR 34

          TENDINITE BƍCEPS FEMORAL 35

          TENDINITE PATA DE GANSO 35

          TENDINOSE QUADRƍCEPS 35

          TENDINOSE PATELAR 35

          TENDINOSE BƍCEPS FEMORAL 35

          TENDINOSE PATA DE GANSO 35

          OSTEOCONDROSE: OSGOOD-SCHLATTER 35

          OSTEOCONDROSE: SINDING-LARSEN-JOHARSSON 36

          PELLEGRINI-STIEDA 36

          RUPTURA PARCIAL TENDƍNEA 36

          RUPTURA TOTAL TENDƍNEA 36

          RUPTURA PARCIAL QUADRƍCEPS 36

          RUPTURA TOTAL QUADRƍCEPS 36

          RUPTURA DE MENISCO 36

          MÚSCULO 37

          RUPTURA GASTROCNÊMIO 37

          RUPTURA ADUTORES 37

          RUPTURA DO PEITORAL MAIOR 37

          RUPTURA QUADRICEPS 37

          RUPTURA BƍCEPS FEMORAL 37

          OMBRO 37

          BURSITE 37

          CAPSULITE ADESIVA 37

          CISTO LABRAL 37

          HILL-SACHS 37

          INSTABILIDADE GLENO-UMERAL 38

          LUXAƇƃO/SUBLUXAƇƃO BICIPTAL 38

          OSTEOARTROSE OMBRO 38

          TENDINITE BICIPTAL 38

          TENDINOSE BICIPITAL 38

          TENDINITE SUPRA 38

          TENDINOSE SUPRA 38

          RUPTURA PARCIAL SUPRA (NƃO TRANSFIXANTE) 38

          RUPTURA PARCIAL SUBESCAPULAR (NƃO TRANSFIXANTE) 38

          RUPTURA TRANSFIXANTE AGUDA/SUBAGUDA DO SUPRA 39

          RUPTURA TRANSFIXANTE CRƔNICA DO SUPRA 39

          DERRAME ARTICULAR 39

          DERRAME ARTICULAR COM DISTENSƃO DA BURSA 39

          RUPTURA PARCIAL INFRA, SUB/REDONDO MENOR 39

          RUPTURA TOTAL INFRA, SUB/REDONDO MENOR 39

          ATROFIA MUSCULAR 39

          TENDINOPATIA CALCƁREA 39

          PARTES MOLES 39

          CISTO SEBƁCEO 39

          COLEƇƃO FLEGMONOSA 40

          COLEƇƃO PƓS-OP 40

          COLEƇƃO HEMATOMA PƓS-TRAUMA 40

          EDEMA 40

          FIBROSE CICATRICIAL 40

          HƉRNIA DE PAREDE REDUTƍVEL 40

          HƉRNIA DE PAREDE ENCARCERADA 40

          HƉRNIA INGUINAL 40

          HƉRNIA INGUINO-ESCROTAL 41

          LIPOMA 41

          PUNHO/MƃO 41

          LESƃO DO COMPLEXO CƁPSULO-LIGAMENTAR 41

          NEUROPATIA MEDIANO 41

          OSTEOARTRITE COM DERRAME ARTICULAR 41

          TENOSSINOVITE TÚNEL DO CARPO 41

          TENOSSINOVITE 1º TÚNEL 41

          TENOSSINOVITE 2º TÚNEL 41

          TENOSSINOVITE 3º TÚNEL 41

          TENOSSINOVITE 4º TÚNEL 41

          TENOSSINOVITE 6º TÚNEL 41

          CISTO ARTROSSINOVIAL 42

          DEDO EM GATILHO 42

          QUADRIL 42

          BURSITE TROCANTƉRICA 42

          DERRAME ARTICULAR 42

          DISPLASIA COXO-FEMORAL RX 42

          DISPLASIA COXO-FEMORAL US 43

          OSTEOARTROSE 43

          TORNOZELO/PƉ 43

          CISTO(S) ARTROSSINOVIAL(IS) 43

          OSTEOARTROSE TARSO 44

          ENTESOPATIA 44

          TENDINITE CALCƂNEO 44

          TENDINOSE CALCƂNEO 44

          RUPTURA TOTAL DO TENDƃO CALCƂNEO 44

          RUPTURA PARCIAL DO TENDƃO CALCƂNEO 44

          TENOSSINOVITE TIBIAL POSTERIOR 44

          TENDINOSE TIBIAL POSTERIOR 44

          TENOSSINOVITE DOS FIBULARES 44

          FASCITE PLANTAR 44

          FASCITE CRƔNICA PLANTAR 45

          TALALGIA DE IMPACTO 45

          NEUROMA DE MORTON 45

          DERRAME ARTICULAR 45

          LESƃO LIGAMENTAR 45

          FIBROMATOSE PLANTAR (DOENƇA DE LEDDERHOSE) 45

          DOPPLER 45

          ARTƉRIAS CARƓTIDAS 45

          ESPESSAMENTO MƉDIO-INTIMAL 46

          PLACA ATEROSCLERƓTICA NƃO COMPLICADA 46

          PLACA ATEROSCLERƓTICA COMPLICADA 46

          ESTENOSE < 50% ACC 46

          ESTENOSE DA ARTƉRIA CARƓTIDA INTERNA 46

          ESTENOSE DA ARTƉRIA CARƓTIDA EXTERNA 46

          SUB-OCLUSƃO DA ARTƉRIA CARƓTIDA INTERNA 46

          OCLUSƃO DA ARTƉRIA CARƓTIDA INTERNA 46

          ACOTOVELAMENTO (ā€œKINKINGā€) DA ARTƉRIA CARƓTIDA INTERNA 46

          ARTƉRIAS VERTEBRAIS 47

          ESTENOSE PROXIMAL (EXAME DIRETO DA LESƃO) 47

          ESTENOSE PROXIMAL (SEM EXAME DIRETO DA LESƃO) 47

          OCLUSƃO 47

          OCLUSƃO PROXIMAL COM ENCHIMENTO POR COLATERAIS 47

          HIPOPLASIA 47

          FENƔMENO DO ROUBO SUBCLƁVIO 47

          OCLUSƃO OU ESTENOSE GRAVE DISTAL 47

          ARTƉRIAS OFTƁLMICAS 47

          NORMAL 47

          OCLUSƃO DA ARTƉRIA CARƓTIDA INTERNA 47

          ARTƉRIAS MEMBRO INFERIOR 49

          ESTENOSE < 50% AFS 49

          ESTENOSE > 50% AFS 49

          ENCARCERAMENTO POPLƍTEO 49

          VENOSO MEMBRO INFERIOR 50

          REFLUXO VALVAR PROFUNDO 50

          REFLUXO VALVAR - SAFENA 50

          SAFENECTOMIA 50

          TROMBOSE VENOSA PROFUNDA AGUDA 50

          TROMBOSE VENOSA PROFUNDA SUBAGUDA/CRƔNICA NƃO RECANALIZADA 50

          TROMBOSE VENOSA CRƔNICA PARCIALMENTE RECANALIZADA 50

          TROMBOSE VENOSA CRƔNICA PARCIALMENTE RECANALIZADA 51

          TROMBOFLEBITE 51

          VARICOSIDADES 51

          VEIA(S) PERFURANTE(S) MEDIAIS 51

          VEIA PERFURANTE POSTERIOR 51

          MEDIDAS 51

          SUGESTƕES 52

          ADVERTÊNCIAS 52

          ULTRASSONOGRAFIA LAUDOS

          GERAL

          - Ausência de achados ultrassonogrÔficos patológicos específicos.

          Pâncreas e demais estruturas do retroperitÓnio não visibilizados devido à intensa sobreposição gasosa. Cauda e corpo pancreÔtico não visibilizados devido à sobreposição gasosa.

          Cauda pancreÔtica não visibilizada devido à sobreposição gasosa.

          Bexiga urinÔria vazia, dificultando sua adequada avaliação ecogrÔfica.

          Bexiga urinÔria com conteúdo anecóide de baixa repleção, dificultando sua a adequada avaliação ecogrÔfica.

          OvÔrios não visibilizados (interposição gasosa de alças intestinais?).

          OvÔrios não visibilizados (atróficos?).

          ACHADO ADICIONAL:

          Estudo complementar com sonda convexa de 5 Mhz dirigido para a cavidade pƩlvica evidenciou:

          Nota: Exame realizado em carÔter de urgência

          Nota: Exame realizado em carÔter de urgência no 2º dia pós-operatório de . Obs.: Os achados dependem da adequada correlação clínico-laboratorial.

          MEDICINA INTERNA ABDOME SUPERIOR


          Atualização: 03.12.2012

          ABSCESSO HEPƁTICO

          Nota-se imagem cística, de paredes espessas e irregulares, conteúdo anecóide com moderados debris e traves de permeio (cístico-espesso), com fluxo periférico ao Doppler, ocupando o segmento hepÔtico * (Segmentação de Couinaund), medindo cerca de cm (L x AP x T) e volume estimado de cm3, distando cm da superfície hepÔtica.

          - Imagem cƭstico-espessa no fƭgado. Considerar possibilidade de abscesso hepƔtico.


          Obs.: Os achados dependem da adequada correlação clínico-laboratorial.


          ADENITE MESENTƉRICA

          Estudo ultrassonogrÔfico complementar com sonda linear de 10MHz, dirigido em fossas ilíacas e região peri-umbilical:

          • Evidenciou pelo menos * linfonodos levemente aumentados, no mesentĆ©rio da regiĆ£o periumbilical e fossas ilĆ­acas, hipoecogĆŖnicos com centro ecogĆŖnico, sem sinais de degeneração cĆ­stico-necrótica, medindo atĆ© cm.

          • NĆ£o evidenciou-se aumento da ecogenicidade da gordura mesentĆ©rica e nĆ£o caracterizou o apĆŖndice cecal.

          • AlƧas intestinais com peristalse preservada.


          • Linfonodos intraperitoneais levemente aumentados. Considerar possibilidade de adenite mesentĆ©rica.


            Obs.: O método ultrassonogrÔfico apresenta baixa sensibilidade na detecção de apendicite aguda em fase muito precoce. NecessÔrio correlação clínico-laboratorial.

            OU

            Estudo ultrassonogrÔfico complementar com sonda linear de 10MHz, dirigido em fossas ilíacas e região peri-umbilical:

          • Evidenciou linfonodos mesentĆ©ricos, alguns de aspecto reativo, hipoecogĆŖnicos, principalmente na regiĆ£o ileocecal, medindo atĆ© * cm.

          • NĆ£o evidenciou-se aumento da ecogenicidade da gordura mesentĆ©rica e caracterizou o apĆŖndice cecal de aspecto habitual.

          • AlƧas intestinais com peristalse preservada.


          • Linfonodos intraperitoneais levemente aumentados. Considerar possibilidade de adenite mesentĆ©rica.


            ALONGAMENTO HEPƁTICO

            Fƭgado de morfologia e contornos normais, apresentando alongamento vertical do lobo hepƔtico direito, medindo cm longitudinal

            (habitual < 15,0 cm): Lobo de Riedel: variante anatƓmica.

            OU

            Fƭgado de morfologia e contornos normais apresentando alongamento horizontal do lobo hepƔtico esquerdo, em ƭntimo contato com o baƧo (variante anatƓmica).

            OU

            Fƭgado de morfologia e contornos normais apresentando alongamento vertical do lobo hepƔtico esquerdo, medindo cm longitudinal

            (habitual < 10,0 cm) (variante anatƓmica).

            ANEURISMA DE AORTA ABDOMINAL

            Aorta abdominal pérvia, com calcificações parietais ateromatosas leves/grosseiras associado a dilatação aneurismÔtica fusiforme/sacular em seu segmento supra/infra-renal, medindo * cm (AP x T) e extensão de * cm, com trombos murais semi-circunferenciais laminares, reduzindo a luz efetiva em cerca de * %, com fluxo turbilhonado ao Doppler Colorido.

            O colo do aneurisma mede: * cm.


            Diâmetro aórticos:

          • Transição tóraco-abdominal: * cm (normal atĆ© 2,5 cm).

          • NĆ­vel da artĆ©ria mesentĆ©rica superior: * cm (normal atĆ© 2,5 cm).

          • NĆ­vel da bifurcação das ilĆ­acas: * cm (normal atĆ© 3,0 cm).

            ArtƩrias ilƭacas comuns apresentam-se pƩrvias, com calibre e contornos normais, medindo atƩ * cm Ơ direita e * cm Ơ esquerda.

          • Dilatação aneurismĆ”tica de aorta abdominal.


            APENDAGITE EPIPLƓICA

            Estudo ultrassonogrÔfico complementar com sonda linear de 10MHz, dirigido em região abdominal, evidenciou:

          • Imagem ovalada, na fossa ilĆ­aca esquerda, na borda antimesentĆ©rica, hiperecogĆŖnica com halo hipoecogĆŖnico, medindo * cm.

          • Borramento dos planos gordurosos adjacentes Ć  imagem descrita.

          • AlƧas intestinais com peristalse preservada.


          • Imagem ovalada na fossa ilĆ­aca esquerda. Considerar possibilidade de apendagite epiplóica. Conveniente complementar com TC.


            Obs.: Os achados dependem da adequada correlação clínico-laboratorial.


            APÊNDICE CECAL

            Estudo ultrassonogrÔfico complementar com sonda linear de 10MHz, dirigido em fossas ilíacas, não evidenciou aumento da ecogenicidade da gordura mesentérica e não caracterizou ecograficamente o apêndice cecal. Alças intestinais com peristalse preservada.


            Obs.: O método ultrassonogrÔfico apresenta baixa sensibilidade na detecção de apendicite aguda em fase muito precoce. NecessÔrio correlação clínico-laboratorial.


            APENDICITE

            Estudo ultrassonogrÔfico complementar com sonda linear de 10MHz, dirigido em região pélvica, evidenciou:

          • Imagem tubular, de fundo cego, medindo * cm de espessura (normal < 0,7 cm), sem delaminamento de parede, nĆ£o compressĆ­vel, podendo corresponder a apĆŖndice cecal inflamado.

          • Observa-se ainda imagem nodular, provida de sombra acĆŗstica posterior, na luz do apĆŖndice, medindo * cm, compatĆ­vel com apendicolito.

          • Borramento dos planos gordurosos adjacentes na regiĆ£o de fossa ilĆ­aca Ć  direita.

          • Pequena quantidade de lĆ­quido na fossa ilĆ­aca direita e fundo de saco posterior de aspecto anecóide.

          • Linfonodos peri-cecais discretamente aumentados, hipoecogĆŖnico de centro ecogĆŖnico, medindo atĆ© * cm.

          • AlƧas intestinais com peristalse reduzida.


          • Sinais compatĆ­veis com apendicite aguda.


            Obs.: Os achados dependem da adequada correlação clínico-laboratorial.

            OU

            Na projeção da fossa ilíaca direita, observa-se imagem tubuliforme fixa, terminando em fundo cego, localizada medialmente ao ceco/lateralmente ao ceco, apresentando paredes espessadas e calibre de cm (normal < 0,7 cm), contendo material líquido espesso e associada a hiperecogenicidade da gordura mesenterial adjacente e a pequena quantidade de líquido livre. Nota-se alça de delgado parética e repleta de líquido próxima a imagem supramencionada.

          • Sinais compatĆ­veis com apendicite aguda.


            Obs.: Os achados dependem da adequada correlação clínico-laboratorial.


            BAƇO ACESSƓRIO

            Nota-se imagem nodular, sólida, de contornos bem definidos e regulares, isoecogênica ao parênquima esplênico, ínfero-medialmente ao baço, medindo * cm, compatível com baço acessório.

            OU

            Baço acessório adjacente à face inferior esplênica, medindo cm.

            BARRO BILIAR

            VesĆ­cula biliar normodistendida, com paredes finas e lisas, apresentando conteĆŗdo hipoecogĆŖnico com nĆ­vel lĆ­quido-lĆ­quido, correspondendo a barro biliar.

            Sinal de Murphy ultrassonogrƔfico negativo.

          • Barro biliar.


            Nota: O achado de barro biliar pode ocultar a detecção de microcÔlculos vesiculares pelo método ecogrÔfico.


            BORRAMENTO DA GORDURA MESENTƉRICA

            Estudo ultrassonogrÔfico complementar com sonda linear de 10MHz, dirigido em região pélvica, evidenciou:

          • Ɓrea de borramento da gordura mesentĆ©rica na fossa ilĆ­aca esquerda.

          • AlƧas intestinais com peristalse levemente reduzida.


          • Borramento da gordura mesentĆ©rica na fossa ilĆ­aca Ć  esquerda: processo inflamatório? Conveniente complementar com TC.


            CALCIFICAƇƃO HEPƁTICA

            Nota-se foco hiperecogênico, irregular, provido de acústica posterior, no segmento hepÔtico * (Segmentação de Couinaund), medindo cerca de cm.

          • Calcificação hepĆ”tica de aspecto residual.


            CISTO HEPƁTICO

            Nota-se imagem cística, de paredes finas e regulares, conteúdo anecóide homogêneo, no segmento hepÔtico * (Segmentação de Couinaund), medindo cm.

          • Cisto hepĆ”tico.


            CISTOS HEPƁTICOS

            Notam-se imagens císticas de paredes finas e lobuladas, conteúdo anecóide homogêneo, caracterizadas assim:

          • segmento hepĆ”tico , medindo * cm.

          • segmento hepĆ”tico , medindo * cm.

          • Cistos hepĆ”ticos.

            OU

            Notam-se imagens císticas de paredes finas e regulares, conteúdo anecóide homogêneo, medindo até cm no segmento hepÔtico * (Segmentação de Couinaund).

          • Cistos hepĆ”ticos.


            COLECISTECTOMIA

            HepatocolƩdoco de calibre normal, medindo cm ao nƭvel da porta hepatis.

            Vesícula biliar não caracterizada (status pós-operatório).

          • Sinais de colecistectomia.


            COLECISTITE LITIƁSICA

            Vesícula biliar hiperdistendida, medindo * cm (normal < 10,0 x 4,0 cm), com paredes espessadas e delaminadas, medindo cm (normal < 0,4 cm), apresentando conteúdo hipoecogênico com nível líquido-líquido, correspondendo a barro biliar, associado a múltiplos/alguns cÔlculos providos de sombra acústica posterior, o maior medindo * cm.

            Sinal de Murphy ultrassonogrƔfico positivo.

          • Sinais de colecistite litiĆ”sica.


            Obs.: Os achados dependem da adequada correlação clínico-laboratorial.


            COLECISTITE LITIƁSICA BODERLINE

            Vesícula biliar discretamente distendida, medindo * cm, com paredes de espessura limítrofe, medindo 0,4 cm, apresentando conteúdo anecóide com múltiplas/algumas imagens nodulares, hiperecogênicas, providas de sombra acústica posterior, a maior medindo * cm, correspondendo a cÔlculos.

            Sinal de Murphy ultrassonogrƔfico positivo.

          • ColelitĆ­ase. NecessĆ”rio correlação clĆ­nico-laboratorial para avaliar possibilidade de colecistite em estĆ”gio inicial.


            COLELITƍASE E BARRO BILIAR

            Vesícula biliar normodistendida, de paredes finas e lisas, apresentando conteúdo hipoecogênico com nível líquido-líquido, correspondendo a barro biliar, associado a pelo menos uma imagem nodular, hiperecogênica, provida de sombra acústica posterior, medindo * cm, correspondendo a cÔlculo.

            Sinal de Murphy ultrassonogrƔfico negativo.

          • ColelitĆ­ase com barro biliar.

            COLELITƍASE MƚLTIPLA

            Vesícula biliar normodistendida, com paredes finas e lisas, apresentando conteúdo anecóide com múltiplas/algumas imagens nodulares, hiperecogênicas, providas de sombra acústica posterior, móveis à mudança de decúbito, a maior medindo * cm, correspondendo a cÔlculos.

            Sinal de Murphy ultrassonogrƔfico negativo.

          • ColelitĆ­ase.


            COLELITƍASE UMA

            Vesícula biliar normodistendida, com paredes finas e lisas, apresentando conteúdo anecóide com imagem nodular, hiperecogênica, provida de sombra acústica posterior, móvel à mudança de decúbito, medindo * cm, correspondendo a cÔlculo.

            Sinal de Murphy ultrassonogrƔfico negativo.

          • ColelitĆ­ase.


            COLELITƍASE COM VESƍCULA ESCLEROATRƓFICA

            Vesícula biliar hipodistendida, de paredes aparentemente finas, com seu interior ocupado por imagem hiperecogênica, provida de sombra acústica posterior, medindo cerca de * cm, podendo corresponder cÔlculo/cÔlculos.

            Sinal de Murphy ultrassonogrƔfico negativo.

          • ColelitĆ­ase com sinais de vesĆ­cula biliar escleroatrófica.


            COLEDOCOLITƍASE

            Vias biliares intra-hepƔticas levemente dilatadas, medindo * cm Ơ esquerda e * cm Ơ direita (normal < 0,25 cm).

            Nota-se imagem nodular, hiperecogênica no colédoco, medindo * cm, a cerca de * cm da porta hepatis, correspondendo a cÔlculo impactado, promovendo dilatação à montante, com hepatocolédoco medindo * cm de calibre.


            Vesícula biliar hiperdistendida, medindo * cm, com paredes finas e lisas, apresentando conteúdo anecóide com múltiplas pequenas imagens nodulares, hiperecogênicas, com diâmetro médio de * cm, correspondendo a microcÔlculos.

            Sinal de Murphy ultrassonogrƔfico positivo.


            Pâncreas de morfologia, contornos, dimensões e ecotextura normais. Ducto de Wirsung de calibre preservado.

          • ColelitĆ­ase.

          • ColedocolitĆ­ase com dilatação de vias biliares intra e extra-hepĆ”ticas.

            OU

            Hepatocolédoco visibilizado até aproximadamente cm da porta hepatis, devido a sobreposição gasosa, de calibre aumentado, medindo * cm.

            Pâncreas de morfologia, contornos, dimensões e ecotextura normais. Ducto de Wirsung de calibre preservado.

          • ColelitĆ­ase.

          • Dilatação de vias biliares intra e extra-hepĆ”ticas. Considerar possibilidade de coledocolitĆ­ase.


            COLESTEROLOSE

            Vesícula biliar normodistendida, com paredes finas apresentando pequenos focos hiperecogênicos de artefatos em "cauda de cometa", medindo até 0,2 cm, podendo corresponder a colesterolose.

            Conteúdo vesicular anecóide e não apresentando cÔlculos. Sinal de Murphy ultrassonogrÔfico negativo.

          • Colesterolose vesicular.


            COLESTEROLOSE/ADENOMIOMATOSE

            Vesícula biliar normodistendida, com paredes difusamente espessas e irregulares, medindo até cm (normal < 0,4 cm) e Ôreas hipoecogênicas evaginadas a partir da mucosa na parede muscular, podendo corresponder a adenomiomatose com seios de Rokitansky-Aschoff (divertículos intra-murais).

            Observa-se ainda Ôreas ecogênicas de artefatos em "cauda de cometa", medindo até 0,2 cm, podendo corresponder a colesterolose.

            Conteúdo vesicular anecóide e não apresentando cÔlculos. Sinal de Murphy ultrassonogrÔfico negativo.

          • Colesterolose/adenomiomatose vesicular.

            DERIVAƇƃO BƍLIO-DIGESTIVA

            Vias biliares intra-hepĆ”ticas de calibres normais com alguns focos ecogĆŖnicos de artefatos em ā€œcauda de cometaā€ nas vias biliares principais e secundĆ”rias, sugerindo aerobilia.

            Hepatocolédoco de calibre aumentado, medindo cm ao nível da porta hepatis, visibilizado até ao nível da junção colédoco-intestinal, sem sinais de fatores obstrutivos.

          • Sinais de derivação bĆ­lio-digestiva com aerobilia leve.


            ESPESSAMENTO DE ALƇA COLƔNICA

            Estudo ultrassonogrÔfico complementar com sonda linear de 10MHz, dirigido em região abdominal, evidenciou:

          • Espessamento parietal difuso de alƧa colĆ“nica na fossa ilĆ­aca direita/esquerda, medindo atĆ© cm (normal < 0,6 cm).

          • Borramento dos planos gordurosos adjacentes Ć  alƧa descrita.

          • Pequena quantidade de lĆ­quido na fossa ilĆ­aca direita/esquerda e fundo de saco posterior de aspecto anecóide.

          • Linfonodos regionais discretamente aumentados, hipoecogĆŖnico de centro ecogĆŖnico, medindo atĆ© * cm.

          • AlƧas intestinais com peristalse reduzida.


          • Espessamento parietal difuso de alƧa colĆ“nica na fossa ilĆ­aca direita/esquerda. Considerar possibilidade de processo inflamatório/infeccioso. Conveniente complementar com TC.


            ESPLENECTOMIA

            Baço não caracterizado (status pós-operatório).

          • Sinais de esplenectomia total.

            OU

            Baço não visibilizado: auto-esplenectomia?

          • Sinais de auto-esplenectomia.


            ESPLENECTOMIA + ESPLENOSE

            Baço não caracterizado (status pós-operatório).

            Notam-se na loja esplênica algumas imagens nodulares, sólidas, de contornos lobulados, com ecotextura semelhante à esplênica, medindo até * cm.

          • Sinais de esplenectomia.

          • NodulaƧƵes na loja esplĆŖnica. Considerar possibilidade de esplenose.


            Obs.: Os achados dependem da adequada correlação clínico-laboratorial.


            ESPLENOMEGALIA

            BaƧo de morfologia, contornos e ecotextura normais, com dimensƵes aumentadas, medindo cm em seu maior eixo (normal < 12,0 cm).

          • Esplenomegalia homogĆŖnea leve.

            OU

            Baço de dimensões muito aumentadas, medindo cerca de * cm em seu maior eixo (normal < 12,0 cm), ultrapassando a linha média e estendendo-se para a fossa ilíaca esquerda, comprimindo órgãos adjacentes.

          • Esplenomegalia volumosa.


            ESTEATOSE HEPƁTICA

            Fƭgado de morfologia, contornos e dimensƵes normais, apresentando leve aumento difuso da ecogenicidade.

          • Sinais de leve infiltração gordurosa hepĆ”tica.

            OU

            Fígado de morfologia, contornos e dimensões normais, apresentando moderado/acentuado aumento difuso da ecogenicidade com atenuação do feixe acústico posterior, o que dificulta a identificação de eventuais alterações parenquimatosas focais.

          • Sinais de moderada/acentuada infiltração gordurosa hepĆ”tica.

            OU


            Fígado de morfologia, contornos e dimensões normais, apresentando leve aumento difuso de sua ecogenicidade com Ôrea hipoecogênica, mal definida, no segmento hepÔtico IVb/V, medindo cerca de cm, sugerindo Ôrea de preservação.

          • Sinais de leve infiltração gordurosa hepĆ”tica.

            OU

            Fƭgado de morfologia e contornos normais, com dimensƵes aumentadas, medindo o lobo esquerdo: cm (normal < 10,0 cm) e o lobo direito: cm (normal < 15,0 cm), apresentando moderado aumento difuso da ecogenicidade.

          • Sinais de moderada infiltração gordurosa hepĆ”tica com hepatomegalia.


            Nota: A alteração hepÔtica descrita reduz a sensibilidade na detecção de lesões focais pelo método ecogrÔfico.

            ESTENOSE DE PILORO

            Nota-se na região epigÔstrica intraperitoneal, medialmente à vesícula biliar, imagem em anel, hipoecogênica, sugerindo piloro com espessura muscular de cm (normal < 0,3 cm), comprimento de cm (normal < 1,7 cm) e volume estimado de cm³ (normal < 1,4 cm³), sem sinais abertura significativa da luz.

            Observa-se ainda peristalse gÔstrica exagerada que cessa de modo abrupto na margem do músculo hipertrofiado, com ondas peristÔlticas retrógradas, associada a ausência de abertura normal do piloro, com passagem diminuída de líquido do estÓmago para o duodeno, levando a retardo no esvaziamento gÔstrico.

          • Imagem anelar na regiĆ£o epigĆ”strica. Considerar possibilidade de estenose hipertrófica do piloro.


            Obs.: Os achados dependem da adequada correlação clínico/complementar.

            OU

          • Sinal do alvo correspondendo ao anel hipoecóico do mĆŗsculo pilórico hipertrofiado em torno da mucosa ecogĆŖnica centralmente localizada. DiĆ¢metro pilórico transverso ≄ 13 mm (parĆ¢metro menos fidedigno). Comprimento do canal pilórico ≄ 17 mm (S: 100%; E:84,85%). Espessura do mĆŗsculo pilórico da parede externa do mĆŗsculo pilórico Ć  margem externa da mucosa ≄ 3 mm (S: + 100%; E: + 100%).

          • Sinal do duplo trilho e sinal do cordĆ£o correspondendo a pequenas quantidades de lĆ­quido aprisionadas entre dobras de mucosa ecogĆŖnica redundante.

          • Sinal do mamilo mucoso correspondendo a protrusĆ£o de mucosa pilórica redundante em direção ao antro gĆ”strico.

          • Sinal do ombro correspondendo a impressĆ£o do mĆŗsculo pilórico hipertrofiado sob a parededistal do antro gĆ”strico, enfatizado durante a peristalse gĆ”strica.

          • Sinal da cĆ©rvice correspondendo a endentação da camada muscular no antro cheio de lĆ­quido. (Observado em secção longitudinal e apresentando um canal pilórico alongado e estreitado, formando uma imagem semelhante ao da cĆ©rvice uterina).

          • RazĆ£o pilórica ≄ 0,27. DivisĆ£o da espessura do mĆŗsculo pilórico pelo diĆ¢metro pilórico (EMP/DPT) (S: 96%; E: 94%).

          • Volume pilórico = ¼ (Ļ€ Ɨ [DPT]² Ɨ CCP) > 1,4 cm³. (Falsos-negativos: 33%; utilidade prĆ”tica limitada).

          • Espessura da mucosa (EM) = 4,1 ± 0,9 mm e razĆ£o espessura da mucosa/espessura do mĆŗsculo pilórico (EM/EMP) = 0,89.


            HEMANGIOMA ESPLÊNICO

            Nota-se imagem nodular, sólida, no terço superior/médio/inferior esplênico, de contornos bem definidos e lobulados, conteúdo hiperecogênico e homogêneo, desprovido de sombra acústica posterior, sem fluxo ao Doppler, medindo cm.

          • Nódulo esplĆŖnico sugestivo de hemangioma.


            Obs.: Os achados dependem da adequada correlação clínico/complementar.


            HEMANGIOMA HEPƁTICO

            Nota-se imagem nodular, sólida, de contornos bem definidos e lobulados, conteúdo hiperecogênico e homogêneo, desprovido de sombra acústica posterior, sem fluxo ao Doppler, no segmento hepÔtico (Segmentação de Couinaund), medindo cm.

          • Nódulo hepĆ”tico sugestivo de hemangioma.


            Obs.: Os achados dependem da adequada correlação clínico/complementar.


            HEPATITE AGUDA

            Parênquima hepÔtico apresentando leve aumento da refringência peri-portal difusamente.

          • Alteração parenquimatosa hepĆ”tica. Considerar possibilidade de hepatite aguda.


            Obs.: Os achados dependem da adequada correlação clínico-laboratorial.


            HEPATOMEGALIA HOMOGÊNEA

            Fƭgado de morfologia e contornos normais com dimensƵes aumentadas, medindo o lobo esquerdo: cm longitudinal (normal

            < 10,0 cm) e o lobo direito: cm longitudinal (normal < 15,0 cm).

          • Sinais de hepatomegalia homogĆŖnea leve.

            HEPATOPATIA CRƔNICA

            Fígado de contornos lobulados, bordas rombas, com lobo direito de dimensões reduzidas e lobo caudado aumentado e globoso, associado a espessamento dos ligamentos hepÔticos e ecotextura parenquimatosa difusamente grosseira e heterogênea. Relação dos diâmetros transversos: lobo caudado/lobo direito = * (normal < 0,65).


            Veia porta de trajeto e calibre normais, medindo * cm (normal < 1,3 cm), com fluxo hepatopetal.

          • Sinais de hepatopatia crĆ“nica.


            Obs.: Os achados dependem da adequada correlação clínico/complementar.

            HEPATOPATIA CRƔNICA COM HIPERTENSƃO PORTAL

            Fígado de contornos lobulados, bordas rombas, com lobo direito de dimensões reduzidas e lobo caudado aumentado e globoso, associado a espessamento dos ligamentos hepÔticos e ecotextura parenquimatosa difusamente grosseira e heterogênea. Relação dos diâmetros transversos: lobo caudado/lobo direito = * (normal < 0,65).

            Veia porta de trajeto habitual apresentando calibre aumentado, medindo * cm (normal < 1,3 cm), com fluxo hepatofugal. Dilatação e tortuosidade de vasos peri-esofÔgicos, peri-gÔstricos, peri-hepÔticos e peri-esplênicos, medindo até cm.

          • Sinais de hepatopatia crĆ“nica com hipertensĆ£o portal.


            Obs.: Os achados dependem da adequada correlação clínico/complementar.


            HEPATOPATIA CRƔNICA/MƚLTIPLOS NƓDULOS

            Fígado apresentando contornos lobulados, bordas rombas, com lobo caudado de dimensões aumentadas e globoso, associado a espessamento dos ligamentos hepÔticos. Parênquima de ecotextura grosseiramente heterogênea com múltiplos nódulos sólidos, esparsos, hipoecogênicos, de contornos parcialmente obscurecidos, medindo até cm no segmento *.

            Lobo esquerdo mede: mm (normal < 10,0 cm) e o lobo direito: cm (normal < 15,0 cm).

          • Hepatopatia parenquimatosa crĆ“nica com mĆŗltiplos nódulos hepĆ”ticos.

            Obs.: Os achados dependem da adequada correlação clínico/complementar.


            HEPATOPATIA: FIBROSE PERI-PORTAL (ESQUISTOSSOMOSE)

            Fígado de contornos discretamente lobulados e dimensões reduzidas, associado a espessamento dos ligamentos hepÔticos e parênquima com aumento da refringência peri-portal difusamente.

          • Hepatopatia parenquimatosa com sinais sugestivos de fibrose peri-portal. Considerar possibilidade de esquistossomose.


            Obs.: Os achados dependem da adequada correlação clínico/complementar.


            INTUSSUSCEPƇƃO

            Estudo ultrassonogrÔfico complementar com sonda linear de 10MHz, dirigido em região abdominal, evidenciou:

          • Imagem em aspecto de "casca de cebola", na topografia de flanco direito e mesogĆ”strio, medindo * cm transversal x cerca de * cm longitudinal, com camada externa de * cm de espessura, sem lĆ­quido livre no interior da invaginação.

          • Imagem de ā€œlesĆ£o em alvoā€, correspondendo Ć  cabeƧa da invaginação no mesogĆ”strio, sem caracterização de causa secundĆ”ria pelo mĆ©todo ecogrĆ”fico.


          • Sinais sugestivos de intussuscepção intestinal.


            Obs.: Os achados dependem da adequada correlação clínico-laboratorial.


            INTUSSUSCEPƇƃO AUSENTE

            Estudo ultrassonogrÔfico complementar com sonda linear de 10MHz, dirigido em região abdominal, não evidenciou imagem sugestiva de intussuscepção intestinal. Ecogenicidade da gordura mesentérica e peristalse de alças intestinais preservados.

            KLATSKIN

            Vias biliares intra-hepÔticas dilatadas, medindo até * cm à esquerda e * cm à direita (normal < 0,25 cm) com aparente amputação ao nível da placa hilar.

          • Dilatação das vias biliares intra-hepĆ”ticas com sinais de amputação ao nĆ­vel da placa hilar. Considerar possibilidade de

            Tumor de Klatskin. Conveniente prosseguir investigação diagnóstica.

            LINFONODOMEGALIA

            Linfonodomegalias * de contornos bem definidos, hiperecogênicas, com perda da relação córtico-hilar, algumas confluentes, sem sinais de degeneração cístico-necrótica, medindo até * cm na cadeia *.

          • Linfonodomegalias . Considerar possibilidade de doenƧa linfoproliferativa.

            OU

            Linfonodomegalias * de contornos bem definidos, hiperecogênicas, com perda da relação córtico-hilar, algumas confluentes e com Ôreas císticas, sugerindo degeneração cístico-necrótica, caracterizadas assim:

            Retroperitoniais:

          • prĆ©-vertebrais, medindo atĆ© cm;

          • justaesofĆ”gicas, medindo atĆ© cm;

          • cadeia hepĆ”tica, medindo atĆ© cm;

          • cadeias frĆŖnicas superior e inferior, medindo atĆ© cm;

          • cadeias pancreĆ”ticas, medindo atĆ© cm;

          • cadeias pancreaticoduodenais, medindo atĆ© cm;

          • cadeias celĆ­acas e superiores centrais, medindo atĆ© cm;

          • prĆ©-cavais, cavais laterais e retrocavais, medindo atĆ© cm;

          • cadeia lombar intermĆ©dia (inter aorto-caval), medindo atĆ© cm;

          • prĆ©-aórticas, aórticas laterais e retroaórticas, medindo atĆ© cm;

          • cadeias ilĆ­acas comuns Ć  , medindo atĆ© cm;

          • cadeias ilĆ­acas externas, interilĆ­acos e ilĆ­acos internos Ć  , medindo atĆ© cm;

          • cadeias sigmoideas, retais superiores e pararetais, medindo atĆ© cm;

          • cadeias sacrais, glĆŗteos superiores e inferiores, medindo atĆ© cm;

            Intraperitoniais:

          • cadeias gĆ”stricas, medindo atĆ© cm;

          • cadeia esplĆŖnica, medindo atĆ© cm;

          • cadeias paracólicas, medindo atĆ© cm;

          • cadeia pilórica, medindo atĆ© cm;

          • justaintestinais, medindo atĆ© cm;

          • cadeia cĆ­stica (peri-vesicular), medindo atĆ© cm;

          • cadeias mesentĆ©ricas superiores, medindo atĆ© cm;

          • cadeias mesentĆ©ricas inferiores, medindo atĆ© cm;

          • cadeias Ć­leo-cólicas, prĆ© e retrocecais, medindo atĆ© cm;

          • cadeias vesicais laterais e retrovesicais, medindo atĆ© cm;

          • cadeias epigĆ”stricas inferiores, medindo atĆ© cm;

          • cadeias obturatórias, medindo atĆ© cm;

            RegiƵes inguinais:

          • cadeias inguinais superficiais Ć  , medindo atĆ© cm;

          • cadeias inguinais profundas Ć  , medindo atĆ© cm;

          • Linfonodomegalias .


            LƍQUIDO INTRACAVITƁRIO

            Acentuada quantidade de líquido livre intraperitoneal com aspecto anecóide homogêneo, se estendendo do fundo de saco posterior e goteiras parietocólicas até espaços hepato e espleno-renais.

          • Ascite acentuada.

            OU

            Moderada quantidade de líquido livre intraperitoneal com aspecto anecóide com leves/moderados debris, se estendendo do fundo de saco posterior e goteiras parietocólicas até espaços hepato e espleno-renais.

          • Moderada quantidade de lĆ­quido intracavitĆ”rio, sugerindo sangue/coĆ”gulos.

            MASSA HEPƁTICA

            Fígado de contorno inferior lobulado e dimensões aumentadas às custas de volumosa massa, sólida, de contornos irregulares, conteúdo heterogêneo, com calcificações de permeio, fluxo central e periférico ao Doppler, ocupando os segmentos hepÔticos (Segmentação de Couinaund), medindo cerca de * cm.

            Placa hilar e ramos portais principais poupados.

          • Massa hepĆ”tica. Conveniente complementar com TC.


            NƓDULOS HEPƁTICOS SECUNDƁRIOS

            Parênquima hepÔtico homogêneo, com ecotextura e ecogenicidade normais, exceto por imagens nodulares, sólidas, de contornos bem definidos e lobulados, conteúdo hipoecogênico, com halo, caracteriazados assim:

          • segmento , medindo * cm.

          • segmento , medindo * cm.


          • Nódulos hepĆ”ticos. Considerar possibilidade de acometimento secundĆ”rio.

            PANCREATITE AGUDA

            Pâncreas de contornos irregulares e parcialmente obscurecidos, com hipoecogenicidade textural e dimensões aumentadas, medindo a cabeça: * cm (normal < 3,3 cm), corpo: * cm (normal < 2,2 cm) e cauda: * cm (normal < 2,8 cm).

            Ducto de Wirsung de calibre preservado.

          • Alteração parenquimatosa pancreĆ”tica. Considerar possibilidade de pancreatite aguda.


            Obs.: Os achados dependem da adequada correlação clínico-laboratorial.


            PANCREATOPATIA CRƔNICA

            Pâncreas de dimensões normais, com contornos lobulados e focos irregulares de calcificações, medindo até cm, nas regiões da cabeça e corpo.

            Ducto de Wirsung ectasiado, com calibre de cm de aspecto levemente tortuoso.

          • Sinais de pancreatopatia crĆ“nica.


            Obs.: Os achados dependem da adequada correlação clínico-laboratorial.


            PƂNCREAS GORDUROSO

            Pâncreas de morfologia, contornos e dimensões normais, com aumento difuso de sua ecogenicidade.

          • Sinais de infiltração gordurosa pancreĆ”tica.


            PƓLIPO VESICULAR

            Vesícula biliar normodistendida e com paredes finas apresentando na região fúndica imagem nodular, sólida, hiperecogênica, de aspecto polipóide, com contornos regulares, imóvel à mudança de decúbito, medindo cm.

            Conteúdo vesicular anecóide e não apresentando cÔlculos.

          • Imagem nodular intra-vesicular. Considerar possibilidade de pólipo vesicular.


            TROMBOSE PORTAL

            Veia porta de calibre aumentado, medindo cm (normal < 1,3 cm), apresentando em seu interior material hipoecogênico, aderido à parede do vaso, no segmento extra-hepÔtico se estendendo até o segmento portal intra-hepÔtico direito/esquerdo. Ausência de fluxo vascular ao Doppler.

            Veia esplênica pérvia, de calibre aumentado, medindo cm (normal < 0,9 cm).

            Artéria hepÔtica pérvia, de paredes finas e lisas, com calibre aumentado, medindo cm ao nível do hilo hepÔtico. Fluxo de direção aorto-hepÔtico com velocidade aumentada de cm/s (normal: 30-60 cm/s).

          • Sinais de trombose portal.


            TUMOR DE CABEƇA DE PƂNCREAS

            Vias biliares intra-hepÔticas de calibres aumentados, medindo * cm à esquerda e * cm à direita (normal < 0,25 cm). Hepatocolédoco de calibre aumentado, medindo * cm, apresentando a cerca de cm da porta hepatis, afilamento gradual, em "bico de pÔssaro", à medida que se relaciona com uma massa sólida na topografia da cabeça pancreÔtica, de contornos regulares e parcialmente obscurecidos, heterogênea, com fluxo periférico ao Doppler, medindo cm.

            Cauda pancreÔtica não visibilizada devido à sobreposição gasosa.

            Ducto de Wirsung de calibre aumentado, medindo * cm (normal < 0,2 cm).


            VesĆ­cula biliar hiperdistendida, medindo cm, com paredes finas e lisas.

            Conteúdo vesicular anecóide e não apresentando cÔlculos. Sinal de Murphy ultrassonogrÔfico negativo.

          • Massa sólida na topografia da cabeƧa pancreĆ”tica com dilatação de vias biliares intra e extra-hepĆ”ticas.


            BOLSA ESCROTAL

            CISTO EPIDIDIMƁRIO

            Nota-se na cabeça epididimÔria imagem cística, de paredes finas e regulares, conteúdo anecóide, homogêneo, medindo cm.

            Demais estruturas anexas intra-escrotais preservadas.

          • Cisto epididimĆ”rio Ć  *.


            CISTOS EPIDIDIMƁRIOS

            Nota-se na cabeça epididimÔria * imagens císticas, de paredes finas e regulares, conteúdo anecóide, homogêneo, medindo até cm.

            Demais estruturas anexas intra-escrotais preservadas.

          • Cistos epididimĆ”rios Ć  *.

            CISTO TESTICULAR

            Nota-se imagem cística no testículo, central/periférica, de paredes finas e regulares, conteúdo anecóide, homogêneo, medindo cm.

          • Cisto testicular Ć  *.


            CISTOS TESTICULARES

            Notam-se imagens císticas de paredes finas e regulares, conteúdo anecóide, homogêneo, distribuídas esparsamente no testículo, medindo até cm.

          • Cistos testiculares Ć  *.


            ECTASIA DA RETE TESTIS

            Parênquima testicular apresentando na região do mediastino, imagens tubulares anecóides, sem fluxo ao Doppler, com calibre de até cm.

          • Sinais de ectasia da rete testis Ć  direita/esquerda.


            MASSA TESTICULAR

            Nota-se volumosa massa complexa, sólida, ocupando a hemibolsa testicular, de contornos lobulados, predominantemente hiperecogênica, com calcificações, fluxo central e periférico ao Doppler, medindo cerca de * cm (vol: * cm³).

          • Massa testicular Ć  .


            MICROLITƍASE

            ParĆŖnquima testicular com ecotextura homogĆŖnea exceto por pequenos focos hiperecogĆŖnicos, desprovidos de sombra acĆŗstica posterior, distribuĆ­dos esparsamente, medindo de 0,1 a 0,3 cm, sendo > 5 focos/campo de imagem, sugerindo microlitĆ­ase.

          • MicrolitĆ­ase testicular bilateral/Ć  direita/Ć  esquerda.


            NƓDULO TESTICULAR

            Parênquima testicular com ecotextura homogênea apresentando imagem nodular, sólida, central, de contornos bem definidos e regulares, conteúdo hipoecogênico, homogêneo, com fluxo ao Doppler, medindo * cm.

          • Nódulo testicular Ć  .


            NƓDULOS TESTICULARES

            Parênquima testicular com ecotextura homogênea apresentando imagem nodular, sólida, centrais, de contornos parcialmente definidos, conteúdo hipoecogênico, com fluxo ao Doppler, medindo * cm.

          • Nódulos testiculares Ć  .


            HEMATOMA BOLSA ESCROTAL

            Imagem heterogênea, de contornos irregulares, sem fluxo ao Doppler, com septações e moderados debris de permeio, sugerindo cístico espesso, adjacente ao testículo, medindo cerca de cm (vol: cm³).

            Moderada quantidade de líquido livre de aspecto anecóide e leves debris de permeio.

          • Imagem heterogĆŖnea adjacente ao testĆ­culo *. Considerar possibilidade de hematoma.

          • LĆ­quido livre na hemi-bolsa *, compatĆ­vel com hematocele.


            ORQUI/EPIDIDIMITE

            Pele e tecido celular subcutâneo de espessura aumentada, medindo cm (normal < 0,6 cm).


            Epidídimo de dimensões aumentadas, medindo cerca de: cm (vol = cm³), com ecotextura difusamente heterogênea e fluxo vascular aumentado ao Doppler.

            Testículo direito/esquerdo em topografia, morfologia e contornos normais, apresentando-se de dimensões aumentadas com ecotextura heterogênea e fluxo vascular aumentado ao Doppler.

          • Sinais sugestivos de orquiepididimite Ć  direita/esquerda.

            Obs.: Os achados dependem da adequada correlação clínico-laboratorial.

            TORƇƃO TESTICULAR

            Pele e tecido celular subcutâneo de espessura aumentada, medindo cm (normal < 0,6 cm). Moderada quantidade de líquido livre de aspecto anecóide e homogêneo.

            Nota-se imagem heterogênea, predominantemente hiperecogênica, adjacente ao pólo superior do testículo, de contornos irregulares, sem fluxo ao Doppler, medindo cerca de mm (vol: cm³), sugestiva de funículo espermÔtico torcido e edemaciado.


            Testículo rodado, de dimensões aumentadas, com parêquima heterogêneo, mais hipoecogênico comparado ao contra-lateral, com Ôreas nodulares hipoecogênicas de permeio, podendo corresponder a focos de necrose. Ausência de fluxo vascular no testículo ao Doppler.

            Dimensões testiculares: cm (vol: cm³).

          • Sinais de torção testicular Ć  direita/esquerda.


            Obs.: Os achados dependem da adequada correlação clínico-laboratorial.


            VARICOCELE

            Dilatação e discreta tortuosidade de vasos do plexo pampiniforme, medindo em repouso cm (normal < 0,2-0,3 cm) e acentuando-se com as manobras de Valsalva, alcançando calibre de cm, associado a refluxo valvar.

          • Sinais de varicocele Ć  .


            Obs.: Os achados dependem da adequada correlação clínico-laboratorial.


            RENAL E VIAS URINƁRIAS

            AGENESIA RENAL

            Rim direito/esquerdo não visibilizado em lojas renais e pelve.

          • Rim direito/esquerdo nĆ£o visibilizado: agenesia renal?


            ANGIOMIOLIPOMA

            Nota-se no terço superior/médio/inferior renal à direita/esquerda, imagem nodular sólida, cortical, de contornos regulares, conteúdo hiperecogênico, homogêneo, sem alterar a arquitetura vascular e pielocalicial, ausência de fluxo ao Doppler, medindo cm.

          • Nódulo renal sugestivo de angiomiolipoma.


            COLEƇƃO PERI-ENXERTO RENAL

            Nota-se coleção cística, anecóide, na fossa ilíaca direita/esquerda, adjacente ao enxerto renal, medindo cm (L x AP x T), com volume estimado em cm³, distando cm da pele, passível de punção/drenagem.

          • Coleção peri-enxerto renal. Considerar possibilidade de linfocele/hematoma.


            Nota: Exame realizado em carÔter de urgência no º pós-transplante renal.


            CISTO

            Imagem cística, de paredes finas e regulares, conteúdo anecóide, homogêneo, no terço * à direita/esquerda, cortical, medindo cm.

          • Cisto renal simples Ć  direita/esquerda.

            OU

            Cisto renal, cortical, no terƧo * Ơ direita/esquerda, medindo cm.

          • Cisto renal simples Ć  direita/esquerda.


            CISTOS

            Imagens císticas, de paredes finas e regulares, conteúdo anecóide, homogêneo, predominantemente corticais, medindo até cm no terço superior/médio/inferior à direita/esquerda.

          • Cistos renais simples Ć  direita/esquerda.

            OU

            Imagens císticas, de paredes finas e regulares, conteúdo anecóide homogêneo, caracterizadas assim:

          • TerƧo superior, cortical, medindo cm;

          • TerƧo mĆ©dio, cortical, medindo cm;

          • TerƧo inferior, cortical, medindo cm;

          • Cistos renais simples Ć  .

            CISTOS (POLICƍSTICOS)

            Múltiplas imagens císticas, distribuídas por todo o parênquima renal à direita/esquerda, predominantemente corticais, de paredes finas e regulares, conteúdo anecóide homogêneo, medindo até cm no terço superior/médio/inferior.

          • MĆŗltiplos cistos renais bilaterais. Considerar possibilidade de doenƧa policĆ­stica do adulto.


            CƁLCULO ā€œBODERLINEā€

            Pequena imagem nodular, hiperecogênica, desprovida de sombra acústica posterior, no grupo calicinal médio à direita/esquerda, medindo cm.

          • Pequena imagem hiperecogĆŖnica no rim direito/esquerdo: cĆ”lculo?


            CƁLCULO

            Imagem nodular, hiperecogênica, provida de sombra acústica posterior, no grupo calicinal médio à direita/esquerda, medindo cm.

          • NefrolitĆ­ase, nĆ£o obstrutiva, Ć  direita/esquerda.


            CƁLCULOS

            Algumas imagens nodulares, hiperecogênicas, providas de sombra acústica posterior, medindo até cm no grupo calicinal médio à direita/esquerda.

          • NefrolitĆ­ase, nĆ£o obstrutiva, Ć  direita/esquerda/bilateral.

            OU

            Imagens nodulares, hiperecogĆŖnicas, providas de sombra acĆŗstica posterior, nos grupos calicinais:

          • superior, medindo cm.

          • mĆ©dio, medindo cm.

          • inferior, medindo cm.

          • NefrolitĆ­ase, nĆ£o obstrutiva, Ć  direita/esquerda/bilateral.


            CƁLCULO URETERAL JUP

            Nota-se imagem nodular, hiperecogênica, provida de sombra acústica posterior, no ureter proximal à direita/esquerda, a cerca de cm da junção uretero-piélica (JUP), medindo cm, correspondendo cÔlculo impactado, promovendo leve/moderada dilatação do sistema coletor à montante.

          • UreterolitĆ­ase promovendo uretero-hidronefrose leve/moderada Ć  direita/esquerda.


            CƁLCULO URETERAL JUV

            Nota-se imagem nodular, hiperecogênica, medindo cm, no ureter distal, a cerca de cm da junção uretero-vesical (JUV) direita/esquerda, correspondendo a cÔlculo impactado, promovendo discreta/moderada dilatação do sistema coletor à montante.

          • UreterolitĆ­ase promovendo uretero-hidronefrose discreta/moderada Ć  direita/esquerda.

            OU

            Discreta dilatação do sistema pielocalicial e dos 2/3 proximais do ureter direito/esquerdo, de calibre alcançando cm.

            Ureter distal não visibilizado devido à sobreposição gasosa.

          • Uretero-hidronefrose discreta Ć  direita/esquerda: ureterolitĆ­ase?

            OU

            MĆ­nimo aumento da pelve renal com grupos calicinais de aspecto preservado.

            Nota-se pequeno borramento hiperecogĆŖnico, mal definido, medindo cm, no ureter distal, a cerca de cm da junção uretero-vesical (JUV) direita: cĆ”lculo impactado? ƀ critĆ©rio clĆ­nico, complementar com TC.


            DUPLICIDADE PIELOCALICIAL

            Sistema pielocalicial compacto Ơ direita/esquerda, apresentado grupo calicinal superior separado dos grupos mƩdio/inferior, sugerindo duplicidade pielocalicial (variante anatƓmica).


            DUPLO J

            Extremidade do cateter de duplo J no sistema pielocalicial. Extremidade do cateter de duplo J no interior vesical.

          • Cateter de duplo J normoposicionado Ć  direita/esquerda.


            ESPESSAMENTO VESICAL: BEXIGA DE ESFORƇO

            Bexiga urinÔria normodistendida, com conteúdo anecóide e parede irregular com espessura difusamente aumentada, medindo até cm (normal < 0,5 cm). Observa-se ainda imagens compatíveis com pseudo-divertículos vesicais, medindo até cm na parede ântero-superior.

          • Espessamento parietal vesical difuso com pseudo-divertĆ­culos. Considerar possibilidade de bexiga de esforƧo.

            ESPESSAMENTO VESICAL: CISTITE

            Bexiga urinÔria normodistendida, com conteúdo anecóide e parede de espessura difusamente aumentada, medindo até cm (normal < 0,5 cm).

          • Espessamento parietal vesical difuso. Considerar possibilidade de cistite.

            Nota: NecessÔrio correlação clínico-laboratorial.


            ESTENOSE DE JUP

            Moderada dilatação do sistema pielocalicial à direita/esquerda. Não visibilizado sinais de dilatação ureteral.

          • Hidronefrose moderada Ć  direita/esquerda. Considerar possibilidade de estenose de JUP.

            HEMATOMA VESICAL

            Bexiga urinÔria normodistendida, com conteúdo anecóide e parede de espessura normal.

            Nota-se no assoalho vesical imagem hipoecogênica irregular, sem fluxo ao Doppler, móvel à mudança de decúbito, medindo cm (volume estimado: cm3)

          • Imagem irregular no interior vesical sugerindo hematoma.


            MASSA/PƓLIPO VESICAL

            Nota-se na parede vesical ântero-superior, massa sólida, endofítica, de contornos lobulados, com fluxo ao Doppler, imóvel à mudança de decúbito, medindo cm (L x AP x T), com volume de cm3.

          • Massa sólida vesical.

            OU

            Nota-se na parede vesical ântero-superior, imagem nodular, sólida, hiperecogênica, de aspecto polipóide, com contornos regulares e fluxo presente ao Doppler, imóvel à mudança de decúbito, medindo cm.

          • Imagem nodular intra-vesical. Considerar possibilidade de pólipo vesical.


            REFLUXO VƉSICO-URETERAL

            Moderada dilatação dos sistemas pielocaliciais e de toda a extensão dos ureteres, medindo até cm de calibre à direita e cm à esquerda sem evidência de fatores obstrutivos/compressivos.

            Junções uretero-vesicais patentes durante toda a realização do exame.

          • Uretero-hidronefrose moderada bilateral. Considerar possibilidade de refluxo vĆ©sico-ureteral.


            RIM PƉLVICO

            Rim direito/esquerdo em topografia ectópica, na fossa ilíaca direita/esquerda, de morfologia, contornos e ecotextura normais, com dimensões levemente reduzidas.

            Dimensões renais: cm. Espessura de parênquima: cm. Sistema pielocalicial compacto sem evidência de cÔlculos.

          • Rim direito/esquerdo pĆ©lvico.


            RINS EM FERRADURA

            Rins de contornos e ecotextura normais com pelves renais dirigidas anteriormente, apresentando-se fundidos a partir de seus pólos inferiores na topografia mediana, peri-umbilical, sugerindo "rins em ferradura".

            Rim direito mede: cm. Espessura do parĆŖnquima: cm. Rim esquerdo mede: cm. Espessura do parĆŖnquima: cm.

            Região renal na topografia mediana mede aproximadamente: mm (T x AP).

            Sistema pielocalicial compacto. Não visibilizado imagens compatíveis com cÔlculos no sistema pielocalicial.

          • Sinais compatĆ­veis com ā€œRins em ferraduraā€.


            MASSA PƉLVICA COM URETERO-HIDRONEFROSE

            Massa sólida na escavação pélvica, superiormente à bexiga, de contornos lobulados, heterogênea, com focos de calcificação e fluxo periférico ao Doppler, medindo cm (vol = cm³).

            Esta exerce compressão extrínseca nos ureteres distais promovendo discreta/moderada dilatação dos sistemas coletores à montante.

          • Massa pĆ©lvica promovendo uretero-hidronefrose discreta/moderada bilateral;

            OU

            Ureteres de calibres aumentados, medindo até cm à direita e cm à esquerda, apresentando afilamento gradual, em aspecto de "bico de pÔssaro", à medida que se relaciona com uma massa sólida na escavação pélvica, superiormente à bexiga, de contornos lobulados, heterogênea, com focos de calcificação e fluxo periférico ao Doppler, medindo cm (vol = cm³).

          • Massa pĆ©lvica promovendo uretero-hidronefrose moderada bilateral.

            NEFRECTOMIA TOTAL/PARCIAL

            Rim direito/esquerdo não caracterizado (status pós-operatório).

          • Sinais de nefrectomia total Ć  direita/esquerda.

            OU

            Rim direito/esquerdo em topografia e ecotextura habitual com dimensões reduzidas (status pós-operatório).

            Sistema pielocalicial compacto. Ausência de imagens compatíveis com cÔlculos no sistema pielocalicial.

          • Sinais de nefrectomia parcial Ć  direita/esquerda.


            NEFROCALCINOSE

            Nota-se hiperecogenicidade difusa, provida de sombra acĆŗstica posterior, na zona medular renal.

          • Sinais de nefrocalcinose medular.


            NEFROPATIA AGUDA

            Perda da relação corticomedular com parênquima apresentando hiperrefringência difusa e redução da ecogenicidade das pirâmides.

          • Sinais de nefropatia parenquimatosa aguda.

            OU

            Relação corticomedular preservada com parênquima apresentando hiperrefringência difusa e redução da ecogenicidade das pirâmides.

          • Sinais de nefropatia parenquimatosa aguda.


            NEFROPATIA CRƔNICA

            Rins de morfologia e topografia habituais, com dimensões reduzidas, contornos lobulados e perda da relação corticomedular.

            Rim direito mede: cm. Rim esquerdo mede: cm.

          • Sinais de nefropatia parenquimatosa crĆ“nica bilateral.


            ENXERTO RENAL

            Enxerto renal:

            Localizado na fossa ilíaca direita/esquerda de morfologia, contornos e topografia habituais. Dimensões: cm (vol : cm³). Espessura de parênquima: mm.

            Parênquima com relação corticomedular preservada.

            Sistema pielocalicinal compacto. Ausência de imagens compatíveis com cÔlculos. Fluxo vascular presente ao Doppler Colorido.

            Ausência de sinais de coleções peri-enxerto.

          • Enxerto renal na fossa ilĆ­aca direita/esquerda.


            PIELONEFRITE

            Dimensões: mm. Espessura de parênquima aumentada: mm.

            Relação corticomedular preservada com parênquima apresentando leve hiperrefringência difusa e redução da ecogenicidade das pirâmides.

            Sistema pielocalicial compacto.

          • Sinais de nefropatia parenquimatosa aguda Ć  direita/esquerda. Considerar possibilidade de pielonefrite.

            OU

            Relação corticomedular preservada com parênquima apresentando Ôrea hiperecogênica irregular, mal definida, no terço superior, medindo cerca de cm.

          • Alteração parenquimatosa focal no rim direito/esquerdo: pielonefrite?


            PRƓSTATA HETEROGƊNEA

            Parênquima prostÔtico com ecotextura heterogênea apresentando focos de calcificação na zona central.


            RESƍDUO VESICAL AUMENTADO

            Volume vesical prƩ-miccional: mL.

            Volume vesical pós-miccional pequeno/moderado/acentuado: mL.

          • ResĆ­duo vesical pequeno/moderado/acentuado.

            Recomendação: 0-30mL: Desprezível; 30-80mL: Pequeno; 80-150mL: Moderado; 150-300mL; Acentuado; >300mL: Muito acentuado.


            SONDA VESICAL

            Balão de sonda vesical normoposicionado.

            TUMOR DE WILMS OU NEUROBLATOMA

            Volumosa massa sólida, de limites imprecisos com o terço superior renal à direita, com aparente plano de clivagem com o fígado, rechaçando-o superiormente e não ultrapassando a linha mediana. Apresenta contornos lobulados e aspecto heterogêneo, predominantemente hipoecogênico (componente sólido > 95 % da massa), com Ôreas císticas anecóides, sugerindo degeneração cístico-necrótica, sem calcificações evidentes e fluxo central e periférico ao Doppler, medindo mm (vol = cm³).

          • Massa sólida intracavitĆ”ria. Considerar possibilidades de Tumor de Wilms ou Neuroblastoma. Conveniente complementar com TC.


            URINOMA

            Nota-se coleção líquida anecóide anecogênica, adjacente à superfície póstero-superior do rim , limitado pela fÔscia de

            Gerota, medindo cm de espessura, sugerindo urinoma. Observa-se ainda borramento dos planos gordurosos peri-renal.


            VƁLVULA DE URETRA POSTERIOR

            Moderada dilatação dos sistemas pielocaliciais e de toda a extensão dos ureteres, medindo até cm de calibre à direita e cm à esquerda.

          • Uretero-hidronefrose moderada bilateral. Considerar possibilidade de vĆ”lvula de uretra posterior.

            CERVICAL

            CISTO TIREƓIDE

            Parênquima com ecotextura homogênea, exceto por imagem cística, de paredes finas e regulares, conteúdo anecóide homogêneo, no terço superior/médio/inferior do lobo, medindo mm, distando mm da pele.

          • Cisto tireoidiano Ć  direita/esquerda.


            CISTOS TIREƓIDE

            Parênquima com ecotextura homogênea, exceto por imagens císticas, de paredes finas e regulares, conteúdo anecóide homogêneo, caracterizadas assim:

          • terƧo superior, medindo mm, distando mm da pele.

          • terƧo mĆ©dio, medindo mm, distando mm da pele.

          • terƧo inferior, medindo mm, distando mm da pele.

          • Cistos tireoidianos Ć  direita/esquerda.


            LINFONODO CERVICAL HABITUAL PALPƁVEL

            Nota-se na alteração palpÔvel, linfonodo na cadeia cervical *, de aspecto habitual, hipoecogênico com mediastino ecogênico, medindo cm.


            LINFONODOMEGALIAS CERVICAIS

            Múltiplas adenomegalias, de contornos bem definidos, hiperecogênicas, com perda da diferenciação córtico-hilar, algumas de aspecto confluente e com Ôreas císticas de permeio, sugerindo degeneração cístico-necrótica, caracterizadas assim:

            ƀ direita:

          • na cadeia cervical anterior, com diĆ¢metro mĆ©dio de mm e o maior medindo mm, distando mm da pele;

            OU

            Múltiplos linfonodos aumentados, de morfologia preservada, hipoecogênicos, com mediastino ecogênico, sem sinais de degeneração cístico-necrótica, nas cadeias:

            ƀ direita:

          • cervical anterior (VI/III), medindo atĆ© cm.

          • cervical posterior (VA),medindo atĆ© cm.

          • submandibular (IB/IIA), medindo atĆ© cm.

          • submentoniana (IA), medindo atĆ© cm.

          • prĆ©-auricular (IIA), medindo atĆ© cm.

          • retroauricular (IIB), medindo atĆ© cm.

          • supra-clavicular (IV/VB), medindo atĆ© cm.

            ƀ esquerda:

          • cervical anterior (VI/III), medindo atĆ© cm.

          • cervical posterior (VA),medindo atĆ© cm.

          • submandibular (IB/IIA), medindo atĆ© cm.

          • Adenopatias cervicais.


            Obs.: Considerar possibilidade de processo inflamatório/infeccioso. Obs.: Conveniente seguir investigação diagnóstica.

            NƓDULO TIREƓIDE

            Parênquima com ecotextura homogênea, exceto por imagem nodular, sólida, de contornos regulares e bem definidos, conteúdo hipoecogênico, homogêneo, sem halo, sem calcificações evidentes, fluxo somente periférico ao Doppler (classificação II de Chammas), no terço superior/médio/inferior do lobo, medindo cm, distando cm da pele.

          • Nódulo tireoidiano Ć  .


            Nota: Classificação de CHAMMAS: I – AusĆŖncia de fluxo; II – Fluxo perifĆ©rico; III – Fluxo mais perifĆ©rico que central; IV – Fluxo mais central que perifĆ©rico; V - Fluxo exclusivamente central.


            NƓDULOS TIREƓIDE

            Parênquima apresentando imagens nodulares, sólidas, de contornos regulares, conteúdo hipoecogênico/heterogêneo, sem halo ou calcificações evidentes, caracterizadas assim:

          • terƧo superior, sem fluxo ao Doppler (classificação I de ChammasĀ®), medindo cm, distando cm da pele.

          • terƧo mĆ©dio fluxo somente perifĆ©rico ao Doppler (classificação II de ChammasĀ®), medindo cm, distando cm da pele.

          • terƧo inferior, fluxo predominantemente perifĆ©rico ao Doppler (classificação III de ChammasĀ®), medindo cm, distando cm da pele.

          • Nódulos tireoidianos Ć  .


            Nota: Classificação de CHAMMASĀ®: I – AusĆŖncia de fluxo; II – Fluxo perifĆ©rico; III – Fluxo mais perifĆ©rico que central; IV – Fluxo mais central que perifĆ©rico; V - Fluxo exclusivamente central.


            PAROTIDITE

            Glândulas submandibulares e parótida direita/esquerda sem alterações ultrassonogrÔficas. Parótida direita/esquerda mede cm (vol: cm³).


            Glândula parótida direita/esquerda de dimensões aumentadas com ecotextura difusamente heterogênea e alguns linfonodos reativos intra-parotídeos, medindo até cm. Observa-se ainda fluxo vascular aumentado da glândula ao Doppler. Parótida direita/esquerda mede cm (vol: cm³).

          • Sinais de parotidite Ć  direita/esquerda.


            Nota: Os achados dependem da adequada correlação clínico-laboratorial.


            TIREƓIDE HETEROGƊNEA

            Parênquima com ecotextura difusamente heterogênea sem evidência de nódulos ou cistos. Nota-se fluxo vascular difusamente aumentado ao Doppler.

          • Tireóide de dimensƵes aumentadas e difusamente heterogĆŖnea. Considerar possibilidade de tireoidopatia de Graves.

            OU

            Parênquima com ecotextura levemente heterogênea sem evidência de nódulos ou cistos. Nota-se fluxo vascular aumentado ao Doppler.

          • Tireóide de dimensƵes reduzidas e difusamente heterogĆŖnea. Considerar possibilidade de tireoidopatia de Hashimoto.


            Nota: Volume normal da tireóide: ♂: 12 + 4 cm³ /// ♀: 8 + 4 cm³.

            Obs: Classificação de LAGALLA: I – AusĆŖncia de fluxo no nódulo; II – Fluxo perinodular; VPS ATI: 15-40 cm/s; VPD 5-20 cm/s. III - Fluxo peri e intra-nodular; VPS ATI > 40 cm/s; VPD > 15 cm/s. IV – Inferno tireoidiano (Graves: Aumento da vascularização; VPS ATI: 50 a 150 cm/s; IR = 0,79 / IP = 1,36 ////// Hashimoto: Aumento da vascularização; VPS ATI: normal). ATI: ArtĆ©ria tireoidiana inferior.


            TIREOIDECTOMIA TOTAL

            Glândula tireóide não caracterizada (status pós-operatório).

          • Sinais de tireoidectomia total.


            TIREOIDECTOMIA PARCIAL

            Lobo direito/esquerdo e istmo tireoidiano: Não caracterizados (status pós-operatório).

          • Sinais de tireoidectomia parcial Ć  direita/esquerda.



            DERRAME PLEURAL

            TƓRAX

            Moderada quantidade de líquido na cavidade pleural à direita/esquerda com aspecto anecóide, sem debris ou septações.

          • Derrame pleural moderado Ć  direita/esquerda.


            DERRAME PLEURAL COM ATELECTASIA

            Moderada quantidade de líquido na cavidade pleural à direita/esquerda com aspecto anecóide, sem debris ou septações, associado a atelectasia de segmentos basais do lobo inferior.

          • Derrame pleural moderado Ć  direita/esquerda com atelectasia.


            ABSCESSO

            GINECOLOGIA E OBSTERƍCIA MAMA

            Nota-se imagem cística de contornos irregulares/lobulados, com traves e moderados debris de permeio, sugerindo cístico-espesso, às horas, medindo cerca de cm (vol: cm³), distando cm do mamilo e cm da pele.

            Observa-se ainda aumento da espessura da pele e borramento dos planos adiposos adjacentes à lesão descrita, sugerindo processo inflamatório/infeccioso.

          • Imagem cĆ­stico-espessa na mama *. Considerar possibilidade de abscesso mamĆ”rio.


            Obs.: Os achados dependem da adequada correlação clínico-laboratorial.


            ABSCESSOS

            Notam-se imagens císticas anecóides, com traves e moderados debris de permeio, sugerindo cístico-espesso, de contornos irregulares, distribuídos assim:

          • ƀs horas, medindo cerca de cm (vol: cm³), distando cm do mamilo e cm da pele;

          • De horas Ć s horas, medindo cerca de cm (vol: cm³), distando de cm a cm do mamilo e de cm a cm da pele;

            Observa-se ainda aumento da espessura da pele e borramento dos planos adiposos adjacentes às lesões descritas, sugerindo processo inflamatório/infeccioso.

          • Imagens cĆ­stico-espessas na mama *. Considerar possibilidade de abscessos mamĆ”rios.

            Obs.: Os achados dependem da adequada correlação clínico-laboratorial.


            CISTO

            Imagem cística circunscrita, de paredes finas e regulares, conteúdo anecóide homogêneo, com reforço acústico posterior, às horas, medindo cm, distando cm do mamilo e cm da pele.

          • Cisto mamĆ”rio Ć  .

          • Categoria BI-RADS (Breast Imaging Reporting and Data System): 2.

          • Recomendação: controle mamogrĆ”fico e ultrassonogrĆ”fico anual ou Ć  critĆ©rio clĆ­nico.


            CISTOS

            Imagens císticas circunscritas, esparsas pela mama, de paredes finas e regulares, conteúdo anecóide homogêneo, algumas com reforço acústico posterior, medindo até cm, às horas, distando cm do mamilo e cm da pele;

          • Cistos mamĆ”rios Ć  .

          • Categoria BI-RADS (Breast Imaging Reporting and Data System): 2.

          • Recomendação: controle mamogrĆ”fico e ultrassonogrĆ”fico anual ou Ć  critĆ©rio clĆ­nico.

            OU

            Imagens císticas circunscritas, de paredes finas e regulares, conteúdo anecóide homogêneo, algumas com reforço acústico posterior, caracterizadas assim:

          • ƀs horas, medindo mm, distando mm do mamilo e mm da pele.

          • ƀs horas, medindo mm, distando mm do mamilo e mm da pele.

          • Cistos mamĆ”rios Ć  .

          • Categoria BI-RADS (Breast Imaging Reporting and Data System): 2.

          • Recomendação: controle mamogrĆ”fico e ultrassonogrĆ”fico anual ou Ć  critĆ©rio clĆ­nico.


            CISTO ESPESSO? NƓDULO?

            Nota-se imagem arredondada, de contornos circunscritos e regulares, conteúdo hipoecogênico (cístico espesso? nódulo?), homogêneo, com eixo maior paralelo à pele, sem fluxo ao Doppler, às horas, medindo cm, distando cm do mamilo e mm da pele.

          • Imagem nodular na mama *: Cisto espesso? Nódulo?


            ECTASIA/PROEMINÊNCIA DUCTAL

            Proeminência ductal retroareolar, com calibre de até 0,3 cm, de conteúdo anecóide e homogêneo. Ectasia ductal retroareolar, com calibre de até * cm (normal < 0,3 cm), de conteúdo anecóide e homogêneo.

          • Ectasia/ProeminĆŖncia ductal retroareolar bilateral.

          • Categoria BI-RADS (Breast Imaging Reporting and Data System): 2.

          • Recomendação: controle mamogrĆ”fico e ultrassonogrĆ”fico anual ou Ć  critĆ©rio clĆ­nico.


            GINOCOMASTIA

            Área hiperecogênica na região retroareolar, medindo cerca de cm, correspondendo a parênquima mamÔrio.

          • Ginecomastia direita/esquerda/bilateral.

            IMPLANTES MAMƁRIOS

            Sinais de manipulação cirúrgica com implante mamÔrio de aspecto íntegro.

          • Implantes mamĆ”rios de aspecto Ć­ntegros.


            LIPOMASTIA

            Componente adiposo exuberante ocupando o plano do subcutâneo retroareolar.

          • Lipomastia direita/esquerda/bilateral.


            NƓDULO BI-3

            Imagem sólida, ovalada, hipoecogênica, discretamente heterogênea, com eixo maior paralelo à pele, sem fluxo ao Doppler, às horas, medindo cm, distando cm do mamilo e cm da pele.

          • Nódulo mamĆ”rio Ć  , sugestivo de fibroadenoma.

          • Categoria BI-RADS (Breast Imaging Reporting and Data System): 3.

          • Recomendação: controle ultrassonogrĆ”fico com 6 meses ou Ć  critĆ©rio clĆ­nico.


            NƓDULO BI-4

            Na alteração palpÔvel evidenciou-se:

            Imagem sólida, arredondada, de contornos circunscritos e regulares, conteúdo hipoecogênico, com eixo maior paralelo à pele, fluxo periférico ao Doppler, às horas, medindo cm, distando cm do mamilo e cm da pele.

          • Nódulo mamĆ”rio Ć .

          • Categoria BI-RADS (Breast Imaging Reporting and Data System): 4.

          • Recomendação: estudo histopatológico Ć  critĆ©rio clĆ­nico.


            NƓDULOS BI-3

            Imagens sólidas ovaladas, algumas lobuladas, conteúdo hipoecogênico, discretamente heterogêneo, com eixo maior paralelo à pele, fluxo ausente ao Doppler, medindo até cm, às horas, distando cm do mamilo e cm da pele.


          • Nódulos mamĆ”rios Ć  , sugestivos de fibroadenomas.

          • Categoria BI-RADS (Breast Imaging Reporting and Data System): 3.

          • Recomendação: controle ultrassonogrĆ”fico com 6 meses ou Ć  critĆ©rio clĆ­nico.

            OU

            Imagens sólidas ovaladas, algumas lobuladas, conteúdo hipoecogênico, discretamente heterogêneo, com eixo maior paralelo à pele, fluxo ausente ao Doppler, caracterizadas assim:

          • ƀs horas, medindo cm, distando cm do mamilo e cm da pele.

          • ƀs horas, medindo cm, distando cm do mamilo e cm da pele.

          • Nódulos mamĆ”rios Ć  , sugestivos de fibroadenomas.

          • Categoria BI-RADS (Breast Imaging Reporting and Data System): 3.

          • Recomendação: controle ultrassonogrĆ”fico com 6 meses ou Ć  critĆ©rio clĆ­nico.

            NƓDULO INVASIVO BI-5

            Imagem nodular, sólida, hipoecogênica, provida de sombra acústica posterior, de contornos irregulares e parcialmente obscurecidos, eixo maior perpendicular à pele, fluxo periférico e central ao Doppler, às horas, medindo cerca de cm (radial x AP x anti-radial), distando cm do mamilo e cm da pele.

            Nota-se ainda espessamento e retração da pele adjacente à imagem descrita.


            Linfonodomegalia axilar arredondada com perda da relação córtico-hilar, medindo cm.

          • Linfonodomegalia axilar Ć  .

          • Nódulo mamĆ”rio Ć  .

          • Categoria BI-RADS (Breast Imaging Reporting and Data System): 5.

          • Recomendação: estudo histopatológico Ć  critĆ©rio clĆ­nico.

            MASSA COM LESƕES SATƉLITES MULTIFOCAIS

            Massa sólida, hipoecogênica, provida de sombra acústica posterior, de contornos irregulares e parcialmente obscurecidos, eixo maior perpendicular à pele, fluxo periférico e central ao Doppler, às horas, medindo cerca de cm (radial x AP x anti-radial), distando cm do mamilo e cm da pele.


            Notam-se ainda pelo menos * imagens nodulares sólidas, hipoecogênicas, próximas à imagem descrita, distando entre si menos de 5,0 cm, circunscritas e regulares, fluxo periférico ao Doppler, medindo em média cm, sugerindo lesões satélites.

          • Massa mamĆ”ria Ć  com nódulos satĆ©lites adjacentes: lesĆ£o multifocal?

          • Categoria BI-RADS (Breast Imaging Reporting and Data System): 5;

          • Recomendação: estudo histopatológico Ć  critĆ©rio clĆ­nico.


            HEMATOMA RETROPLACENTƁRIO

            OBSTƉTRICO

            Nota-se imagem laminar, hipoecogênica, de contornos irregulares, sem fluxo ao Doppler, adjacente à região inferior da placenta, ocupando cerca de 15% da sua superfície de inserção, medindo cm, se insinuando através do orifício interno do colo uterino, podendo corresponder a hematoma.

          • Hematoma retroplacentĆ”rio/periplacentĆ”rio.

            MORFOLƓGICO

            http://www.perinatology.com/calculators/exbiometry.htm


            TranslucĆŖncia nucal de espessura medindo cm (percentil 90 para a idade gestacional = cm).

            Medida do Ɣtrio do ventrƭculo lateral: cm (normal para idade entre 14-38 semanas: 7 a 8,2 mm) (Ventriculomegalia leve: 11 a 15 mm / grave > 15mm).

            Osso nasal de comprimento medindo mm (normal: > 2,5 – 5,0 mm) (percentil 5 para a idade gestacional = mm).

            Cisterna magna com diâmetro ântero-posterior normal, medindo mm (normal para idade entre 15-36 semanas: 2 a 8 mm, MÔx: 10 mm) (percentil 5 para a idade gestacional = mm).

            Rim direito/esquerdo com pelve renal levemente ectasiada, apresentando diâmetro ântero-posterior de mm, no percentil para a idade gestacional (Percentil 50 da idade gestacional = mm).

          • Leve ectasia pielocalicinal Ć  direita/esquerda.


            PLACENTA BAIXA

            Placenta de inserção corporal anterior estendendo-se até o segmento ístmico do útero, não ocupando o orifício interno do colo, distando cm deste (normal > 7,0 cm). Espessura placentÔria normal e grau de maturidade.

            OU

            Placenta de inserção corporal anterior estendendo-se até o segmento inferior do útero, ocupando parcialmente o orifício interno do colo. Espessura placentÔria normal e grau de maturidade.

            Colo uterino medindo no eixo longitudinal cm (normal > 3,0-3,5 cm).

            Nota: Sugiro à critério clínico, controle ultrassonogrÔfico da localização placentÔria após idade gestacional de 24 semanas.


            OLIGOƂMNIO

            Líquido amniótico em quantidade reduzida com ILA = cm (percentil 5 para a idade gestacional = cm).

          • OligoĆ¢mnio discreto.


            POLIDRƂMNIO

            Líquido amniótico em quantidade aumentada com ILA = cm (percentil 95 para a idade gestacional = cm).

          • PolidrĆ¢mnio.

            (< 5,0 cm: Oligoâmnio; 5,0-8,0 cm: LA reduzido; 8,0-22,0 cm: LA normal; > 22,0 cm: LA aumentado; > 25,0 cm: Polidrâmnio)


            ƓBITO FETAL

            Pólo cefÔlico de contornos irregulares, sugerindo superposição de ossos do crânio (Sinal de Spalding) com gases na circulação fetal (Sinal de Robert), associado a hiperflexão da coluna vertebral (Sinal de Hartley) e sinal do halo craniano (Sinal de Devel).

            Movimentos fetais e batimentos cardíacos ausentes. Líquido amniótico em quantidade reduzida (ILA = cm).

          • Gestação com feto Ćŗnico;

          • Ɠbito fetal em idade gestacional de semanas e dias ( + semanas) pelo comprimento femoral.

          • OligoĆ¢mnio severo.


            PESO

            Peso estimado: gramas ( + gramas ) pelo Hadlock 1 (DBP + CC). gramas ( + gramas ) pelo Hadlock 4 (CC + CA). gramas ( + gramas ) pelo Hadlock 6 (CA + CF).

            gramas ( + gramas ) pelo Hadlock 11 (DBP + CC + CA + CF). gramas ( + gramas ) pelo Hadlock 7 (DBP + CC + CA). gramas ( + gramas ) pelo Hadlock 8 (DBP + CC + CF). gramas ( + gramas ) pelo Hadlock 9 (DBP + CA + CF). gramas ( + gramas ) pelo Hadlock 3 (DBP + CF).

            gramas ( + gramas ) pelo Hadlock 2 (DBP + CA). gramas ( + gramas ) pelo Hadlock 5 (CC + CF). gramas ( + gramas ) pelo Hadlock 10 (CC + CA + CF).


            ABORTAMENTO EM CURSO

            TRANSVAGINAL

            Saco gestacional na cavidade uterina, deslocado, em topografia ístmica, de contornos irregulares, medindo cm (diâmetro médio cm).

            Nota-se imagem laminar, hipoecogênica, de contornos irregulares, sem fluxo ao Doppler, adjacente à parede inferior do saco gestacional, ocupando cerca de 40% do mesmo, sugerindo hematoma retrocoriÓnico.


            Imagem ecogênica no interior do saco gestacional, medindo cm no maior eixo, sugerindo eco embrionÔrio. Movimentos embrionÔrios e batimentos cardíacos ausentes.

            Vesícula vitelina não caracterizada.

          • Sinais de abortamento em curso.


            CISTO OVARIANO

            OvÔrio direito/esquerdo em topografia, morfologia, contornos e ecotextura normais, apresentando em seu interior imagem cística, de paredes finas e regulares, conteúdo anecóide homogêneo, medindo cm.

            Medidas ovarianas: cm (volume: cm³).

          • Cisto ovariano Ć  direita/esquerda.


            Nota: Considerar possibilidade de torção ovariana. Correlacionar clínico-laboratorialmente.


            CISTOS OVARIANOS

            OvÔrio direito/esquerdo em topografia, morfologia, contornos e ecotextura normais, apresentando em seu interior imagens cística, de paredes finas e regulares, conteúdo anecóide homogêneo, medindo até cm.

            Medidas ovarianas: cm (volume: cm³).

          • Cistos ovarianos Ć  direita/esquerda.


            CISTO FUNCIONAL OVARIANO

            OvÔrio direito/esquerdo em topografia, morfologia, contornos e ecotextura normais, apresentando em seu interior imagem cística anecóide, de paredes finas e lisas, medindo cm, sugerindo cisto funcional folicular.

            Medidas ovarianas: cm (volume: cm³).


            CISTOS FUNCIONAIS OVARIANOS

            OvÔrio direito/esquerdo em topografia, morfologia, contornos e ecotextura normais, apresentando algumas imagens císticas anecóides, de paredes finas e lisas, medindo até cm, sugerindo cistos funcionais.


            CISTO HEMORRƁGICO OVARIANO

            OvÔrio direito/esquerdo em topografia habitual, com ecotextura heterogênea, à custa de imagem cística, com paredes espessas, conteúdo com moderados debris e traves de permeio, sem fluxo ao Doppler, medindo cm (vol = cm³), sugerindo cisto hemorrÔgico.

            Medidas ovarianas: cm (volume: cm³).

          • Cisto ovariano hemorrĆ”gico Ć  direita/esquerda.


            CISTO(s) NABOTH

            Cisto de Naboth de aspecto habitual no colo uterino, medindo cm. Cistos de Naboth de aspecto habitual no colo uterino, medindo atƩ cm.


            CORPO LÚTEO

            OvÔrio direito/esquerdo em topografia, morfologia, contornos e ecotextura normais, apresentando em seu interior imagem cística, de paredes espessas e regulares, conteúdo anecóide homogêneo, medindo cm, sugerindo corpo lúteo.

            OU

            Nota-se imagem sugestiva de corpo lĆŗteo, medindo cm.


            DIU

            Cavidade uterina virtual, apresentando em seu interior dispositivo intra-uterino (DIU) distando cm do cavidade fĆŗndica

            (normal < 0,5 cm) e cm da serosa fĆŗndica (normal < 2,0 cm).

          • DIU normoposicionado.

          • DIU deslocado.

            DIPA

            Pequena quantidade de líquido livre no fundo de saco posterior e regiões anexiais com aspecto anecóide e homogêneo. Observa-se ainda dor à mobilização do transdutor nas regiões anexiais.

          • Pequena quantidade de lĆ­quido livre na escavação pĆ©lvica. Considerar possibilidade de doenƧa inflamatória pĆ©lvica.

            Obs.: Os achados depedem da adequada correlação clínico-laboratorial.


            ECTƓPICA: MASSA

            Nota-se imagem cístico-sólida, na região anexial direita/esquerda, de contornos lobulados, com septos espessos e moderados debris de permeio, sem fluxo ao Doppler, medindo cm (vol = cm³).

            Moderada quantidade de líquido livre de aspecto anecóide, com moderados debris e traves de permeio, se estendendo do fundo de saco posterior até espaços hepato e espleno-renais.

          • Moderada quantidade de lĆ­quido intraperitoneal, sugerindo sangue/coĆ”gulos.

          • Imagem heterogĆŖnea na regiĆ£o anexial Ć  direita/esquerda. Considerar possibilidade de gestação ectópica rota.


            Nota: Os achados dependem da adequada correlação clínico-laboratorial.


            ECTƓPICA ROTA OU CISTO HEMORRƁGICO: MASSA

            Nota-se imagem cístico-sólida, na região anexial direita/esquerda, adjacente ao ovÔrio, impossibilitando a precisa distinção pelo método ecogrÔfico, contornos irregulares com septos espessos e moderados debris de permeio, sem fluxo ao Doppler, medindo cm (vol = cm³).

            Moderada quantidade de líquido livre de aspecto anecóide, com moderados debris e septações finas de permeio, se estendendo do fundo de saco posterior até espaços hepato e espleno-renais.

          • Moderada quantidade de lĆ­quido intraperitoneal, sugerindo sangue/coĆ”gulos.

          • Imagem heterogĆŖnea anexial Ć  direita/esquerda. Considerar possibilidade de gestação ectópica rota ou cisto hemorrĆ”gico roto.


            Nota: Os achados dependem da adequada correlação clínico-laboratorial.


            ECTƓPICA: ANEL TUBƁRIO

            Nota-se na regiĆ£o anexial direita/esquerda, imagem em ā€œanel tubĆ”rioā€, arredondada, de contornos bem definidos e regulares, medindo cm, com paredes espessas hipoecogĆŖnicas e fluxo ao Doppler ocupando cerca de 1/3 da circunferĆŖncia. Apresenta no interior imagem compatĆ­vel com saco gestacional ectópico, de contornos regulares e medindo cm (diĆ¢metro mĆ©dio cm), com vesĆ­cula vitelina presente, medindo cm. EmbriĆ£o nĆ£o caracterizado.

          • Gestação ectópica tubĆ”ria Ć  direita/esquerda.


            Nota: Os achados dependem da adequada correlação clínico-laboratorial.


            ECTƓPICA: ANEL TUBƁRIO OU CISTO OVARIANO

            Nota-se na região anexial direita/esquerda, imagem cística, arredondada, adjacente ao ovÔrio, impossibilitando a precisa distinção pelo método ecogrÔfico, de contornos bem definidos e regulares, com paredes espessas, hipoecogênicas e fluxo ao Doppler ocupando cerca de 1/3 da circunferência, medindo cm (vol: cm³). Área cística central mede cm (diâmetro médio cm). Ausência de sinais de vesícula vitelina ou embrião.

          • Imagem cĆ­stica anexial Ć  direita/esquerda. Considerar possibilidade de gestação ectópica ou cisto ovariano/corpo lĆŗteo.


            Nota: NecessƔrio clƭnico-laboratorial.


            ECTƓPICA: BCF +

            Nota-se na região anexial direita/esquerda, imagem arredondada, de contornos bem definidos e regulares, medindo cm, com paredes espessas hipoecogênicas e fluxo ao Doppler ocupando cerca de 1/3 da circunferência. Apresenta no interior imagem compatível com saco gestacional ectópico de contornos regulares e medindo cm (diâmetro médio cm), com vesícula vitelina presente, medindo cm e embrião único de comprimento cabeça-nÔdega (CCN) medindo cm. Movimentos embrionÔrios e batimentos cardíacos presentes (BCF = bpm).

          • Gestação ectópica tubĆ”ria Ć  direita/esquerda com embriĆ£o Ćŗnico e vivo.

          • Idade gestacional de semanas e dia(s) (+/- 5 dias) pelo CCN.

            ENDOMETRIO: ESPESSAMENTO PƓS-MENOPAUSA

            Endométrio hiperecogênico, homogêneo, medindo cm de espessura.

          • Espessamento endometrial.

            OU

            Endométrio heterogêneo, predominantemente hiperecogênico, medindo cm de espessura.

          • Espessamento endometrial.


            Nota: Espessura endometrial: Fase menstrual: 0,1-0,5 cm; Fase proliferativa (folicular) precoce: 0,4-0,7 cm; Fase proliferativa tardia: 0,6-1,3 cm; Peri-ovulatória: 0,7-1,5 cm; Fase secretora (lútea) precoce: 0,8-1,7 cm; Secretora tardia: 0,7-1,4 cm; Pós-menopausa (sem TRH) < 0,5 cm; Pós-menopausa (com TRH): 0,6-1,0 cm.


            ENDOMETRIO: FASES

            Endométrio homogêneo, centrado e medindo cm de espessura (compatível com fase pós-menopausa).

            OU

            Endométrio trilaminar, homogêneo, centrado e medindo cm de espessura (compatível com fase proliferativa).

            OU

            Cavidade uterina apresentando fina lâmina líquida, anecóide de cm de espessura com endométrio trilaminar, homogêneo, centrado e medindo cm de espessura (compatível com fase peri-ovulatória).

            OU

            Endométrio hiperecogênico, homogêneo, centrado e medindo cm de espessura (compatível com fase secretora).

            OU

            Endométrio levemente heterogêneo, predominantemente hiperecogênico e medindo cm de espessura (compatível com fase menstrual).


            Nota: Espessura endometrial: Fase menstrual: 1-5 mm; Fase proliferativa (folicular) precoce: 4-7 mm; Fase proliferativa tardia: 6-13 mm; Peri-ovulatória: 7-15 mm; Fase secretora (lútea) precoce: 8-17 mm; Secretora tardia: 7-14 mm; Pós-menopausa (sem TRH) < 5 mm; Pós-menopausa (com TRH): 6-10 mm.


            ENDOMETRIOSE/ADENOMIOSE

            Miométrio com ecotextura difusamente heterogênea apresentando parede anterior ( cm) de espessura maior que a posterior ( cm).

          • MiomĆ©trio difusamente heterogĆŖneo. Considerar possibilidade de adenomiose.

            OU

            Nota-se entre a bexiga urinÔria e a parede anterior do útero, algumas imagens nodulares hipoecogênicas, homogêneas, medindo até cm.

          • Imagens nodulares entre a bexiga e o Ćŗtero. Considerar possibilidade de focos de endometriose.


            HEMATOMA RETROCORIƔNICO

            Saco gestacional tópico, de contornos discretamante irregulares e medindo cm (diâmetro médio cm).

            Nota-se imagem laminar, hipoecogĆŖnica, de contornos irregulares, sem fluxo ao Doppler, adjacente Ć  parede inferior do saco gestacional, ocupando cerca de 40% do mesmo, sugerindo hematoma.

          • Hematoma retrocoriĆ“nico.

            OU

            Nota-se imagem heterogĆŖnea, predominantemente hiperecogĆŖnica, de contornos irregulares, adjacente Ć  parede inferior do saco gestacional, ocupando cerca de 40% do mesmo, se insinuando pelo orifĆ­cio interno do colo uterino.

          • Hematoma retrocoriĆ“nico.


            HISTERECTOMIA

            Útero não caracterizado (status pós-operatório).

          • Sinais de histerectomia total.

            OU

            Útero caracterizado somente em sua porção do colo com forma, contornos e ecotextura habituais (status pós-operatório).

            Medidas do colo: cm (L x AP x T). Volume: cm³.

          • Sinais de histerectomia parcial.

            MALFORMAƇƕES MƜLLERIANAS

            Nota-se na cavidade uterina aparente imagem de septo, hipoecogênica na região fúndica, medindo cm longitudinal x cm de espessura.

          • Aparente septo na regiĆ£o fĆŗndica da cavidade uterina. Considerar possibilidade de Ćŗtero subseptado.

            OU

            Nota-se na cavidade uterina imagem sugestiva de septo, hipoecogĆŖnica, medindo cm longitudinal x cm de espessura.

          • Sinais sugestivos de Ćŗtero septado.

            OU

            Útero em anteversoflexão apresentando duas regiões cornuais, medindo à direita cm (L x AP x T) e à esquerda cm (L x AP x T). Volume uterino de cm³.

            Cavidades uterinas virtuais.

            Endométrio homogêneo, centrado e medindo cm de espessura à direita e cm à esquerda.

            Colo uterino aparentemente Ćŗnico, medindo cm longitudinal.

          • Sinais sugestivos de Ćŗtero bicorno.

            OU

            Útero em anteversoflexão apresentando duas regiões cornuais, medindo à direita cm (L x AP x T) e à esquerda cm (L x AP x T). Volume uterino de cm³.

            Cavidades uterinas virtuais.

            Endométrio homogêneo, centrado e medindo cm de espessura à direita e cm à esquerda.

            Colo uterino duplo, medindo cm longitudinal Ć  direita e cm Ć  esquerda.

          • Sinais sugestivos de Ćŗtero Didelfo.


            MASSA OVARIANA

            Nota-se volumosa massa sólida, na região anexial direita/esquerda, de contornos lobulados, com conteúdo heterogêneo, predominantemente hiperecogênico, sem calcificações evidentes, medindo cerca de cm (volume estimado: cm³).

            Ao Doppler evidenciou-se vasos perifƩricos e centrais, com diƔstole positiva e sem incisura. IR= e IP= ..

          • Massa pĆ©lvica. Considerar possibilidade de neoplasia ovariana dentre as hipóteses diagnósticas.

            Nota: Fatores de risco: NOTA 1: Risco baixo; NOTA 2: Risco mƩdio; NOTA 3: Risco alto

            CARACTERƍSTICAS/PONTUAƇƃO

            1 PONTO

            2 PONTOS

            3 PONTOS

            PerĆ­odo da vida

            Fase secretora

            Fase proliferativa

            Infância/menopausa

            Morfologia tumoral

            Cisto simples

            Cisto denso/septo fino e liso

            Septo grosseiro/cisto papilífero/tumor misto, complexo ou sólido

            Power Doppler ou Colorido

            Vasos não evidentes

            Vasos somente na cƔpsula

            Vasos no interior

            Doppler espectral

            DiƔstole zero

            DiƔstole positiva com incisura

            DiƔstole positiva sem incisura

            ƍndice de impedĆ¢ncia

            Altos (RI > 0,75 / PI > 1,5)

            MƩdios (RI 0,75 a 0,50 / PI 1,5 a 1,0)

            Baixos (RI < 0,5 / PI < 1,5)

            Falsos positivos: Cisto luteínico hemorrÔgico, massas inflamatórias, hidrossalpinge pseudofolicular, ectópica anÓmala, rim pélvico, cisto de retenção/mesotelial.


            MICROPOLICƍTICO

            OvÔrio direito/esquerdo em topografia e contornos normais, de aspecto globoso com múltiplas pequenas imagens císticas, anecóides, predominantemente periféricas, com diâmetro médio de 0,5 cm.

            Medidas ovarianas: cm (volume: cm³).

          • OvĆ”rios de aspecto micropolicĆ­stico.


            MIOMA

            Miométrio com ecotextura homogênea, exceto por imagem nodular, sólida, de contornos bem definidos e regulares, conteúdo hipoecogênico/heterogêneo, na parede anterior/intramural, medindo cm.

          • Nódulo uterino sugestivo de mioma.


            MIOMAS

            Miométrio com ecotextura homogênea/heterogênea apresentando imagens nodulares, sólidas, hipoecogênicas/heterogêneas, de contornos regulares, nas paredes:

          • anterior/intramural, medindo cm.

          • posterior/subseroso, medindo cm.

          • fĆŗndica, com componentes submucoso/subseroso, medindo cm.

          • Nódulos uterinos sugestivos de miomas.

            MOLA HIDATIFORME

            Cavidade uterina preenchida por material heterogêneo, predominantemente ecogênico com diminutas Ôreas císticas de permeio, de aspecto vesicular, sem sinais de componentes ósseos, medindo cm de espessura e volume estimado de cm³. Planos de clivagem aparentemente bem definidos entre a cavidade endometrial e a parede anterior do miométrio.

            Parede posterior do miométrio de difícil avaliação ecogrÔfica devido a atenuação dos feixes sonoros posteriores.

          • Material heterogĆŖneo na cavidade uterina. Considerar possibilidade de doenƧa trofoblĆ”stica gestacional.


            Obs.: Os achados dependem da adequada correlação clínico-laboratorial.


            ƓBITO EMBRIONƁRIO (IG > 7 sem)

            Saco gestacional tópico, de contornos irregulares e medindo cm (diâmetro médio cm), associado a reação decidual heterogênea adjacente.

            Vesícula vitelínica não visibilizada.

            Embrião único com comprimento cabeça-nÔdega (CCN) medindo cm.

            Movimentos embrionƔrios e batimentos cardƭacos ausentes.


            Líquido amniótico em quantidade aumentada.

          • Gestação tópica, com embriĆ£o Ćŗnico.

          • Ɠbito embrionĆ”rio em idade gestacional de semanas e dia(s) (+/- 1 semana) pelo CCN.


            ƓBITO EMBRIONƁRIO BODERLINE (BCF nĆ£o detectado)

            Vesícula vitelínica não visibilizada.

            Embrião único com comprimento cabeça-nÔdega (CCN) medindo cm.

            Movimentos embrionÔrios e batimentos cardíacos não detectados.

          • Gestação tópica, com embriĆ£o Ćŗnico.

          • Idade gestacional de semanas e dia(s) (+/- 1 semana) pelo CCN.

          • Batimentos cardĆ­acos embrionĆ”rio nĆ£o detectados.


            Nota: Conveniente, à critério clínico, controle ultrassonogrÔfico após 1-2 semanas.


            ƓBITO EMBRIONƁRIO: GESTAƇƃO INVIƁVEL (embriĆ£o em degeneração)

            Saco gestacional tópico, de contornos regulares e medindo cm (diâmetro médio cm: compatível com idade gestacional de semana e dias).

            Líquido amniótico em quantidade aumentada para a idade gestacional do possível CCN. Vesícula vitelínica não caracterizada.

            Imagem ecogênica no interior do saco gestacional, medindo cm no maior eixo, sugerindo eco embrionÔrio. Movimentos embrionÔrios e batimentos cardíacos não detectados.

          • Gestação tópica, com embriĆ£o Ćŗnico.

          • Idade gestacional de semanas e dia(s) (+/- 1 semana) pelo possĆ­vel CCN.

          • Batimentos cardĆ­acos embrionĆ”rio nĆ£o detectados. Considerar possibilidade de gestação inviĆ”vel.


            ƓBITO EMBRIONƁRIO: GESTAƇƃO INVIƁVEL (saco deslocado)

            Saco gestacional deslocado na cavidade uterina, na topografia ístmica, de contornos lobulados e medindo cm (diâmetro médio cm).

            Vesícula vitelínica não caracterizada.

            Imagem ecogênica no interior do saco gestacional, medindo cm no maior eixo, sugerindo eco embrionÔrio em degeneração.

            Movimentos embrionÔrios e batimentos cardíacos não detectados.

          • Gestação inviĆ”vel.

          • Idade gestacional de semanas e dia(s) (+/- 1 semana) pelo possĆ­vel CCN.

            PƓLIPO ENDOMETRIAL

            Cavidade uterina apresentando imagem nodular hiperecogênica, de aspecto polipóide, em continuidade com a camada basal do endométrio na região fúndica, medindo cm.

          • Pólipo endometrial.

            OU

            Cavidade uterina apresentando imagem nodular, sólida, hiperecogênica, na região fúndica, medindo cm.

            EndomƩtrio trilaminar, centrado e medindo cm de espessura (compatƭvel com a fase proliferativa).

          • Imagem nodular na cavidade uterina. Considerar possibilidade de pólipo endometrial.

            PSEUDO-CAVIDADE UTERINA DA CICATRIZ CESARIANA

            Nota-se na cicatriz cirúrgica da região ístmica anterior uterina, Ôrea anecóide, cística, de contornos irregulares em comunicação com a cavidade endometrial, medindo mm.

          • Pseudo-cavidade uterina da cicatriz cesariana.


            Obs.: A pseudo-cavidade uterina pode ser causa de sangramento tipo spotting. Correlacionar clinicamente.


            RESTOS OVULARES

            Cavidade uterina ocupada por material heterogêneo, predominantemente hiperecogênico, sem fluxo ao Doppler, medindo até cm de espessura, podendo corresponder à sangue, coÔgulos e/ou restos ovulares.

            OU

            Cavidade uterina preenchida por material heterogêneo, sem fluxo ao estudo Doppler, medindo até cm de espessura.

          • Material heterogĆŖneo em moderada quantidade na cavidade uterina. Considerar possibilidade de restos ovulares/coĆ”gulos.


            Nota: Os achados dependem da adequada correlação clínico-laboratorial.

            (Recomendação: Mínima/normal: < 0,5 cm; Pequena: 0,5-1,0 cm; Moderada: 1,0-2,0 cm; Acentuada: > 2,0 cm).


            VARIZES PƉLVICAS

            Nota-se dilatação e tortuosidade de vasos pélvicos bilaterais, com calibre de até cm à direita e cm à esquerda.

          • Varizes pĆ©lvicas bilaterais.



            BURSITE OLECRANIANA

            MƚSCULO ESQUELƉTICO/PARTES SUPERFICIAIS COTOVELO

            Bursa olecraniana apresentando-se distendida por líquido com aspecto anecóide e homogêneo, medindo cerca de cm (L x AP x T), com volume estimado em cm³.

          • Sinais de bursite olecraniana.

            OU

            Bursa olecraniana apresentando-se distendida por líquido com aspecto anecóide e debris em suspensão associado a espessamento das paredes (pannus) de até cm com aumento do fluxo vascular ao Doppler. A bursa mede cerca de cm (L x AP x T), com volume estimado em cm³.

          • Sinais de bursite olecraniana. Considerar possibilidade de doenƧa reumatológica.


            Nota: Os achados dependem da adequada correlação clínico/complementar.


            DERRAME ARTICULAR

            Derrame articular leve/moderado/acentuado observado na face anterior em corte mediano, com aspecto anecóide e homogêneo.

          • Sinais de derrame articular leve/moderado/acentuado.

            OU

            Derrame articular leve/moderado/acentuado observado no recesso posterior, com aspecto anecóide e homogêneo.

          • Sinais de derrame articular leve/moderado/acentuado.


            DERRAME DOENƇA REUMATOLƓGICA

            Derrame articular leve/moderado/acentuado observado no recesso posterior de aspecto anecóide e leves debris em suspensão associado a proliferação sinovial com fluxo vascular aumentado ao Doppler.

          • Sinais de derrame articular leve/moderado/acentuado com proliferação sinovial. Considerar possibilidade de doenƧa reumatológica.


            Nota: Os achados dependem da adequada correlação clínico/complementar.


            ESTIRAMENTO LIGAMENTO COLATERAL

            Banda anterior do ligamento colateral medial apresentando hipoecogenicidade textural difusa.

          • Sinais de estiramento da banda anterior do ligamento colateral medial.


            IRREGULARIDADE UMERAL

            Superfícies ósseas epicondileanas de contornos irregulares.

          • Irregularidade óssea epicondileana.

            NERVO ULNAR: COMPRESSƃO TRICIPTAL

            Nervo ulnar observado na fossa cubital apresentando calibre preservado com Ôrea transversal de mm².

            ƀ manobra de contração do mĆŗsculo trĆ­ceps braquial observou-se aparente compressĆ£o extrĆ­nseca deste sobre o nervo ulnar na topografia da fossa cubital.

            ƀ manobra de flexĆ£o do cotovelo nĆ£o observou-se luxação do nervo ulnar.

          • Aparente compressĆ£o extrĆ­nseca do mĆŗsculo trĆ­ceps sobre o nervo ulnar.


            Nota: Os achados dependem da adequada correlação clínico/complementar.


            NERVO ULNAR: GRANULOMA

            Nota-se na topografia do nervo ulnar na fossa cubital, imagem nodular de contornos bocelados e conteúdo hipoecogênico, medindo cm (T x AP) com Ôrea transvresal de mm².

            ƀ manobra de flexĆ£o do cotovelo nĆ£o observou-se luxação do nervo ulnar.

          • Imagem nodular na topografia do nervo ulnar. Considerar possibilidade de Granuloma.


            NERVO ULNAR: LUXAƇƃO

            Nervo ulnar observado na fossa cubital apresentando calibre preservado com Ôrea transversal de mm².

            ƀ manobra de flexĆ£o do cotovelo observou-se luxação do nervo ulnar em direção ao epicĆ“ndilo medial.

          • Luxação do nervo ulnar Ć  manobra de flexĆ£o do cotovelo.


            NERVO ULNAR: NEUROFIBROMA

            Nota-se na topografia do nervo ulnar na fossa cubital, imagem fusiforme de contornos regulares e conteúdo hipoecogênico, medindo cm (T x AP) com Ôrea transvresal de mm².

            ƀ manobra de flexĆ£o do cotovelo nĆ£o observou-se luxação do nervo ulnar.

          • Imagem fusiforme na topografia do nervo ulnar. Considerar possibilidade de Neurofibroma.


            NERVO ULNAR: NEUROPATIA

            Nervo ulnar observado na fossa cubital apresentando aumento do calibre com Ôrea transversal de mm².

            ƀ manobra de flexĆ£o do cotovelo nĆ£o observou-se luxação do nervo ulnar.

          • Aumento do calibre do nervo ulnar. Considerar possibilidade de neuropatia.


            NERVO ULNAR: SCHWANOMA

            Nota-se na topografia do nervo ulnar na fossa cubital, imagem nodular de contornos regulares e conteúdo anecóide, medindo cm (T x AP) com Ôrea transvresal de mm².

            ƀ manobra de flexĆ£o do cotovelo nĆ£o observou-se luxação do nervo ulnar.

          • Imagem nodular na topografia do nervo ulnar. Considerar possibilidade de Schwanoma.


            RUPTURA PARCIAL: EPICƔNDILO LATERAL

            Tendão comum dos extensores e sua inserção no epicÓndilo lateral apresentando descontinuidade parcial em suas fibras mais profundas, medindo cm longitudinal x cm transversal, preservando suas fibras mais superficiais. Irregularidade da superfície epicondiliana adjacente.

          • Sinais de ruptura parcial epicondilopatia lateral.


            TENDINITE: EPICƔNDILO LATERAL

            Tendão comum dos extensores e sua inserção no epicÓndilo lateral apresentam espessura levemente aumentada com hipoecogenicidade textural difusa.

          • Sinais de epicondilopatia lateral.


            Nota: Os achados dependem da adequada correlação clínico/complementar.

            OU

            Tendão comum dos extensores e sua inserção no epicÓndilo lateral apresentam Ôrea de hipoecogenicidade textural justa-insercional de suas fibras mais profundas/superficiais.

          • Sinais de epicondilopatia lateral.


            Nota: Os achados dependem da adequada correlação clínico/complementar.

            TENDINITE: EPICƔNDILO MEDIAL

            Tendão comum dos flexores e sua inserção no epicÓndilo medial apresentam espessura levemente aumentada com hipoecogenicidade textural difusa.

          • Sinais de epicondilopatia medial.


            Nota: Os achados dependem da adequada correlação clínico/complementar.

            OU

            Tendão comum dos flexores e sua inserção no epicÓndilo medial apresentam Ôrea de hipoecogenicidade textural justa-insercional de suas fibras mais profundas/superficiais.

          • Sinais de epicondilopatia medial.


            Nota: Os achados dependem da adequada correlação clínico/complementar.


            TEDINITE TRICIPTAL

            Tendão do tríceps braquial apresentando aumento de calibre em sua inserção distal, com hipoecogenicidade textural local.

          • Sinais de tendinopatia triciptal.


            Nota: Os achados dependem da adequada correlação clínico/complementar.


            TEDINITE BICIPTAL

            Tendão do bíceps braquial apresentando aumento de calibre em sua inserção distal, com hipoecogenicidade textural local.

          • Sinais de tendinopatia biciptal distal.

            Nota: Os achados dependem da adequada correlação clínico/complementar.


            TENDINOSE: EPICƔNDILO LATERAL

            Tendão comum dos extensores e sua inserção no epicÓndilo lateral apresentam espessura levemente aumentada com heterogeneidade textural difusa e focos ecogênicos de fibrose intra-tendínea.

            Irregularidade óssea da superfície epicondiliana adjacente.

          • Sinais de tendinose epicondiliana lateral.


            Nota: Os achados dependem da adequada correlação clínico/complementar.


            TENDINOSE: EPICƔNDILO MEDIAL

            Tendão comum dos flexores e sua inserção no epicÓndilo medial apresentam espessura levemente aumentada com heterogeneidade textural difusa e focos ecogênicos de fibrose intra-tendínea.

            Irregularidade óssea da superfície epicondiliana adjacente.

          • Sinais de tendinose epicondiliana medial.


            Nota: Os achados dependem da adequada correlação clínico/complementar.


            TEDINOSE TRICIPTAL

            Tendão do tríceps braquial apresentando leve aumento de calibre em sua inserção distal, com heterogeneidade textural justa-insercional com focos ecogênicos de fibrose intra-tendínea.

            Irregularidade óssea da superfície olecraniana adjacente.

          • Sinais de tendinose triciptal.


            Nota: Os achados dependem da adequada correlação clínico/complementar.


            TEDINOSE BICIPTAL

            Tendão do bíceps braquial apresentando aumento de calibre em sua inserção distal, com heterogeneidade textural e focos ecogênicos de fibrose intra-tendínea.

          • Sinais de tendinose biciptal.


            Nota: Os achados dependem da adequada correlação clínico/complementar.


            JOELHO


            BURSITE

            Bursa supra-patelar/pré-patelar/infra-patelar/pré-tibial/da Pata de Ganso apresentando-se distendida por líquido com aspecto anecóide e homogêneo, medindo cerca de cm (L x AP x T), com volume estimado de cm³.

          • Sinais de bursite supra-patelar/prĆ©-patelar/infra-patelar/prĆ©-tibial/da Pata de Ganso.

            CISTO DE BAKER

            Nota-se na fossa poplítea, formação cística, de paredes finas e lobuladas, com conteúdo líquido, anecóide e homogêneo, com colo de comunicação articular entre o tendão do semi-membranoso e o músculo gastrocnêmio medial, medindo cm (L x AP x T).

          • Cisto de Baker.


            DERRAME ARTICULAR

            Derrame articular leve/moderado/acentuado na topografia supra-patelar com aspecto anecóide e homogêneo.

          • Sinais de derrame articular leve/moderado/acentuado.


            Nota: Os achados dependem da adequada correlação clínico/complementar.


            DERRAME ARTICULAR COM PROLIFERAƇƃO SINOVIAL

            Derrame articular leve/moderado/acentuado na topografia supra-patelar com aspecto anecóide e moderados debris associado a proliferação sinovial com fluxo vascular aumentado ao Doppler.

          • Sinais de derrame articular leve/moderado/acentuado com proliferação sinovial. Considerar possibilidade de doenƧa reumatológica.


            Nota: Os achados dependem da adequada correlação clínico/complementar.


            OSTEOARTROSE

            Cartilagem articular difusamente espessada, com borramento dos contornos e irregularidade da superfície óssea adjacente: fêmur-tibial, fêmur-fibular e patelar.

          • Sinais de osteoartrose no joelho.


            OSTEOARTROSE COM DERRAME ARTICULAR

            Derrame articular supra-patelar leve/moderado com aspecto anecóide e homogêneo.

            Cartilagem articular difusamente espessada, com borramento dos contornos e irregularidade da superfície óssea adjacente fêmur-tibial e fêmur-fibular.

          • Sinais de osteoartrose com derrame articular leve/moderado.


            OSTEOCONDROMA

            Nota-se elevação da metÔfise proximal anterior da tíbia de cerca de cm, com projeção óssea em direção a diÔfise, apresentando cortical aparentemente contínua com a do osso subjacente. Observa-se ainda capa hipoecogênica envolvendo a estrutura com espessura de cm (normal em adultos: 1 - 3 mm), sugerindo envoltório cartilaginoso.

          • Projeção óssea na metĆ”fise tibial. Considerar possibilidade de osteocondroma. ƀ critĆ©rio clĆ­nico, correlacionar com RX e/ou TC.


            TENDINITE QUADRƍCEPS

            Tendão do músculo quadríceps de espessura levemente aumentada com hipoecogenicidade textural em sua inserção distal no osso patelar.

          • Sinais de tendinopatia quadriciptal.


            Nota: Os achados dependem da adequada correlação clínico/complementar.


            TENDINITE PATELAR

            Tendão patelar aumentado de calibre em sua inserção distal, medindo até cm de espessura, com hipoecogenicidade textural local.

          • Sinais de tendinopatia patelar.


            Nota: Os achados dependem da adequada correlação clínico/complementar.

            TENDINITE BƍCEPS FEMORAL

            Tendão do bíceps femoral aumentado de calibre em sua inserção distal na epífise fibular, com hipoecogenicidade textural local.

          • Sinais de tendinopatia do bĆ­ceps femoral.


            Nota: Os achados dependem da adequada correlação clínico/complementar.


            TENDINITE PATA DE GANSO

            Tendões componentes da "pata de ganso" (sartório, grÔcil e semitendinoso) aumentados de calibre em sua inserção distal na tíbia, com hipoecogenicidade textural local.

          • Sinais de tendinopatia da pata de ganso.


            Nota: Os achados dependem da adequada correlação clínico/complementar.


            TENDINOSE QUADRƍCEPS

            Tendão do músculo quadríceps aumentado de calibre em sua inserção distal no osso patelar, com heterogeneidade textural e focos ecogênicos de fibrose/calcificação e anecóicos de necrose intra-tendínea.

            Nota-se irregularidade da superfície óssea adjacente.

          • Sinais de tendinose quadriciptal.


            Nota: Os achados dependem da adequada correlação clínico/complementar.


            TENDINOSE PATELAR

            Tendão patelar aumentado de calibre em sua inserção distal, com hipoecogenicidade textural e focos ecogênicos de fibrose/calcificação e anecóicos de necrose intra-tendínea.

            Nota-se irregularidade da superfície óssea adjacente.

          • Sinais de tendinose patelar.

            Nota: Os achados dependem da adequada correlação clínico/complementar.


            TENDINOSE BƍCEPS FEMORAL

            Tendão do bíceps femoral aumentado de calibre em sua inserção distal na epífise fibular, com hipoecogenicidade textural e focos ecogênicos de fibrose/calcificação e anecóicos de necrose intra-tendínea.

            Nota-se irregularidade da superfície óssea adjacente.

          • Sinais de tendinose do bĆ­ceps femoral.


            TENDINOSE PATA DE GANSO

            Tendões componentes da "pata de ganso" (sartório, grÔcil e semitendinoso) aumentados de calibre em sua inserção distal na tibia, com hipoecogenicidade textural e focos ecogênicos de fibrose/calcificação e anecóicos de necrose intra-tendínea. Nota-se irregularidade da superfície óssea adjacente.

          • Sinais de tendinose da ā€œpata de gansoā€.


            Nota: Os achados dependem da adequada correlação clínico/complementar.


            OSTEOCONDROSE: OSGOOD-SCHLATTER

            Tendão patelar de espessura aumentada com hipoecogenicidade textural no seu terço distal onde observa-se fragmentação da apófise na tuberosidade anterior da tíbia, medindo até cm longitudinal.

            Nota-se aumento do fluxo vascular ao Doppler adjacente à apófise. Coxim gorduroso infra-patelar (gordura de Hoffa) levemente edemaciada.

            Pequena quantidade de líquido na bursa infra-patelar com aspecto anecóide e homogêneo.

          • Sinais de fragmentação da apófise na tuberosidade anterior da tĆ­bia com processo inflamatório agudo distal do tendĆ£o patelar. Considerar possibilidade de Osgood-Schlatter.

            OU

            Observa-se leve fragmentação da apófise na tuberosidade anterior da tíbia, sem sinais de tendinopatia ou bursite adjacente.

          • Fragmentação da tuberosidade anterior da tĆ­bia. Considerar possibilidade de Osgood-Schlatter.


            Nota: Os achados dependem da adequada correlação clínico/complementar.

            OSTEOCONDROSE: SINDING-LARSEN-JOHARSSON

            Fragmentação da superfície anterior do osso patelar, medindo até cm longitudinal, associado a aumento da espessura com hipoecogenicidade textural local do tendão patelar.

            Nota-se aumento do fluxo vascular ao Doppler adjacente.

            Coxim gorduroso infra-patelar (gordura de Hoffa) levemente edemaciada.

          • Irregularidade da superfĆ­cie anterior da patela com processo inflamatório agudo proximal do tendĆ£o patelar. Considerar possibilidade de Sinding-Larsen-Joharsson.

            OU

            Irregularidade da superfĆ­cie anterior do osso patelar sem sinais de tendinopatia adjacente.

          • Irregularidade da superfĆ­cie anterior da patela. Considerar possibilidade de seqüela de osteocondrite de Sinding-Larsen-Joharsson.


            Nota: Os achados dependem da adequada correlação clínico/complementar.


            PELLEGRINI-STIEDA

            Ligamento colateral medial de espessura aumentada com hipoecogenicidade textural difusa e foco de calcificação regular medindo cm. Nota-se ainda Ôrea de descontinuidade parcial insercional de suas fibras proximais, medindo cm longitudinal e cm transversal.

          • Sinais de doenƧa ligamentar do colateral medial com Ć”rea de ruptura parcial (SĆ­ndrome de Pellegrini-Stieda).


            Nota: Os achados dependem da adequada correlação clínico/complementar.


            RUPTURA PARCIAL TENDƍNEA

            Tendão * apresentando descontinuidade parcial na topografia do corpo/inserção, medindo cm longitudinal x cm transversal com preenchimento da Ôrea rota por efusão líquida hemorrÔgica.

          • Sinais de ruptura parcial/total do tendĆ£o quadrĆ­ceps.


            RUPTURA TOTAL TENDƍNEA

            Tendão * apresentando descontinuidade total na topografia do corpo/inserção, com distância entre os fragmentos de cm e preenchimento da Ôrea rota por efusão líquida hemorrÔgica.

          • Sinais de ruptura total do tendĆ£o *.


            RUPTURA PARCIAL QUADRƍCEPS

            Tendão do músculo quadríceps com seus componentes (reto anterior, vastos medial, lateral e intermédio) apresentando descontinuidade parcial na topografia do corpo/inserção, medindo cm longitudinal x cm transversal com preenchimento da Ôrea rota por efusão líquida hemorrÔgica.

          • Sinais de ruptura parcial/total do tendĆ£o quadrĆ­ceps.


            RUPTURA TOTAL QUADRƍCEPS

            Tendão do músculo quadríceps com seus componentes (reto anterior, vastos medial, lateral e intermédio) apresentando descontinuidade total na topografia do corpo/inserção, com distância entre os fragmentos de cm e preenchimento da Ôrea rota por efusão líquida hemorrÔgica.

          • Sinais de ruptura total do tendĆ£o quadrĆ­ceps.


            RUPTURA DE MENISCO

            Nota-se perda da arquitetura triangular ecogênica habitual do corno anterior/posterior do menisco medial/lateral, com hipoecogenicidade textural e Ôrea de descontinuidade na base/Ôpice.

          • Sinais sugestivos de ruptura meniscal. OU

            Nota-se perda da arquitetura triangular ecogênica habitual do corno anterior/posterior do menisco medial/lateral, com hipoecogenicidade textural e protrusão meniscal promovendo abaulamento do ligamento colateral medial/lateral.

          • Sinais de protrusĆ£o meniscal.


            RUPTURA GASTROCNÊMIO

            MÚSCULO

            Nota-se no terço distal do músculo gastrocnêmio medial, Ôrea de descontinuidade parcial na transição miotendínea, se estendendo cm longitudinal x cm transversal, com preenchimento da Ôrea rota por efusão líquida hemorrÔgica e volume estimado em mL.

            Observa-se discreta hiperecogenicidade do ventre muscular do gastrocnêmio medial em seu terço distal.


            Demais regiões dos músculos gastrocnêmio medial, gastrocnêmio lateral e sóleo apresentam espessura, contornos e ecogenicidade preservadas, com padrão fibrilar característico.


          • Sinais de ruptura parcial na transição miotendĆ­nea do gastrocnĆŖmio medial.


            RUPTURA ADUTORES

            Nota-se na topografia dos músculos adutores longo e curto, Ôrea de descontinuidade parcial a aproximadamente cm de suas inserções, medindo aproximadamente cm (L x AP), ocupando cerca de % de Ôrea transversal do vasto desta musculatura, com preenchimento por efusão líquida hemorrÔgica.


          • Sinais sugestivos de ruptura parcial dos mĆŗsculos adutores da coxa direita.


            RUPTURA DO PEITORAL MAIOR

            Músculo peitoral maior apresentando descontinuidade parcial de suas fibras mais inferiores, na topografia axilar direita, a aproximadamente cm de sua inserção no úmero, com distância entre os fragmentos de aproximadamente cm em repouso e preenchimento da Ôrea rota por efusão líquida hemorrÔgica com volume estimado de mL.

            Área transversa preservada do músculo peitoral maior de aproximadamente % (fibras mais superiores).


            RUPTURA QUADRICEPS

            Feixe muscular correspondente ao reto anterior do mĆŗsculo quadrĆ­ceps apresentando descontinuidade parcial de cerca de

            % da Ôrea total do feixe, na topografia do terço médio da coxa com preenchimento da Ôrea rota por efusão líquida hemorrÔgica e inflamatória local.

            Demais musculatura adjacente sem alteraƧƵes ecogrƔficas.

          • Sinais de ruptura parcial do feixe reto anterior do mĆŗsculo quadrĆ­ceps.


            RUPTURA BƍCEPS FEMORAL

            Na topografia do terço proximal do músculo bíceps femoral nota-se pequena Ôrea de descontinuidade parcial de cerca de

            % da Ôrea total transversa do feixe, se estendendo cm longitudinal x cm de espessura, com preenchimento da Ôrea rota por efusão líquida hemorrÔgica e volume estimado em mL.

          • Sinais de pequena ruptura parcial mĆŗsculo bĆ­ceps femoral.


            OMBRO

            BURSITE

            Bursa subacromiodeltoidea levemente distendida por líquido com aspecto anecóide e homogêneo, medindo cm de espessura.

          • Sinais bursite subacromiodeltoidea.


            CAPSULITE ADESIVA

            Observa-se limitação no deslizamento do supra-espinhal pela cobertura acromial com a manobra de abdução do braço.

          • Sinais sugestivos de capsulite adesiva do supra-espinhal.


            CISTO LABRAL

            Nota-se no recesso posterior imagem cística de paredes finas e lobuladas, conteúdo anecóide e homogêneo, adjacente a labrum glenóide, medindo cm (T x AP x L).

          • Imagem cĆ­stica no recesso posterior. Considerar possibilidade de cisto labral.


            HILL-SACHS

            Observa-se deformidade da superfície óssea umeral posterior, adjacente ao tendão infra-espinhal, medindo cm longitudinal x cm de profundidade.

          • Sinais deformidade umeral posterior. Considerar possibilidade de lesĆ£o de Hill-Sachs.

            (Fratura compressiva causada pelo impacto das trabéculas da cabeça umeral durante a luxação anterior da articulação gleno-umeral: alteração osteocondral da região póstero-lateral da cabeça do úmero)

            INSTABILIDADE GLENO-UMERAL

            Nota-se aumento da mobilidade da cabeça umeral em relação a glenóide com a manobra de tração passiva do braço.

          • Aumento da mobilidade da cabeƧa umeral na cavidade glenóide. Considerar possibilidade de instabilidade gleno-umeral. Conveniente complementar com RM.


            LUXAƇƃO/SUBLUXAƇƃO BICIPTAL

            Observa-se subluxação/luxação medial do mesmo em aproximadamente cm em relação ao sulco biciptal.

            Profundidade do sulco: mm (normal > 4,3 mm). Largura do sulco: mm (normal < 14 mm).

            Ƃngulo entre o assoalho e a parede medial do sulco bicipital: (normal: ± 56Āŗ).

          • Sinais sugestivos de subluxação/luxação bicipital.


            OSTEOARTROSE OMBRO

            Cartilagem acrÓmio-clavicular difusamente espessada, com borramento dos contornos e irregularidade da superfície óssea adjacente. Irregularidade da superfície articular umeral.

            Osteófito na margem lateral do acrÓmio, adjacente ao tendão do supra-espinhal, medindo cm.

          • Sinais de osteoartrose acrĆ“mio-clavicular e glenoumeral.

            OU

            Cartilagem acrÓmio-clavicular com borramento dos contornos e irregularidade da superfície óssea adjacente.

          • Sinais de osteoartrose acrĆ“mio-clavicular.


            TENDINITE BICIPTAL

            Tendão da cabeça longa do bíceps aumentado de calibre na porção justa-articular, medindo mm de espessura (normal: 3,3-4,7 mm) com hipoecogenicidade/heterogeneidade textural local.

          • Sinais de tendinopatia bicipital.


            TENDINOSE BICIPITAL

            Tendão da cabeça longa do bíceps levemente aumentado de calibre em topografia justa-articular, com heterogeneidade textural e micro-focos ecogênicos de fibrose intra-tendínea.

          • Sinais de tendinose bicipital.


            TENDINITE SUPRA

            Tendão do supra-espinhal apresentando aumento do calibre, com hipoecogenicidade textural difusa na projeção da zona crítica.

          • Sinais de tendinopatia do supra-espinhal.


            TENDINOSE SUPRA

            Tendão do supra-espinhal apresentando leve aumento do calibre, com hipoecogenicidade textural e micro-focos ecogênicos de fibrose intra-tendínea.

          • Sinais de tendinose do supra-espinhal.


            RUPTURA PARCIAL SUPRA (NƃO TRANSFIXANTE)

            Tendão do supra-espinhal apresentando descontinuidade parcial na projeção da zona crítica medindo cm longitudinal x cm transversal, preservando suas fibras mais posteriores.

          • Sinais de ruptura nĆ£o transfixante do supra-espinhal.

            OU

            Tendão do supra-espinhal apresentando redução focal de cm de espessura, na projeção da zona crítica, comprometendo cm transversal, preservando suas fibras mais posteriores.

          • Sinais de ruptura crĆ“nica nĆ£o transfixante do supra-espinhal.


            RUPTURA PARCIAL SUBESCAPULAR (NƃO TRANSFIXANTE)

            Tendão do subescapular apresentando descontinuidade parcial, intrassubstancial, medindo cm longitudinal x cm transversal.

          • Sinais de ruptura intrassubstancial do subescapular.

            RUPTURA TRANSFIXANTE AGUDA/SUBAGUDA DO SUPRA

            Tendão do supra-espinhal apresentando descontinuidade transfixante na projeção da zona crítica medindo cm longitudinal x cm transversal, preservando suas fibras mais posteriores.

          • Sinais de ruptura transfixante do supra-espinhal.

            OU

            Tendão do supra-espinhal apresentando descontinuidade transfixante na projeção da zona crítica medindo cm longitudinal x cm transversal, preservando suas fibras mais posteriores.

            Nota-se ainda derrame articular leve/moderado na goteira bicipital com aspecto anecóide e leve debris, comunicando-se com a bursa subacromiodeltoidea, que se encontra distendida.


          • Sinais de ruptura transfixante do supra-espinhal com derrame articular e distensĆ£o da bursa subacromiodeltoidea.


            RUPTURA TRANSFIXANTE CRƔNICA DO SUPRA

            TendĆ£o do supra-espinhal apresentando descontinuidade transfixante na projeção da zona crĆ­tica medindo cm longitudinal x cm transversal, com cabeƧa umeral irregular e de aspecto ā€œcarecaā€, preservando suas fibras mais posteriores.

          • Sinais de ruptura transfixante crĆ“nica do supra-espinhal.

            OU

            TendĆ£o do supra-espinhal apresentando descontinuidade total na projeção da zona crĆ­tica medindo cm longitudinal x cm transversal, com cabeƧa umeral irregular e de aspecto ā€œcarecaā€, se estendendo Ć s fibras do infra-espinhal que apresenta redução focal de sua espessura.

          • Sinais de ruptura total crĆ“nica do supra-espinhal se estendendo a fibras parciais do infra-espinhal.


            DERRAME ARTICULAR

            Derrame articular leve na goteira bicipital de aspecto anecóide e homogêneo.

          • Sinais de derrame articular leve gleno-umeral.


            DERRAME ARTICULAR COM DISTENSƃO DA BURSA

            Derrame articular na goteira bicipital de aspecto anecóide e homogêneo, comunicando com a bursa subacromiodeltoidea, que se encontra levemente distendida.

          • Sinais de derrame articular com distensĆ£o da bursa subacromiodeltoide.


            RUPTURA PARCIAL INFRA, SUB/REDONDO MENOR

            Tendão do apresentando redução focal da espessura/descontinuidade parcial, medindo cm longitudinal x cm transversal, preservando suas fibras mais .

          • Sinais de ruptura parcial do .


            RUPTURA TOTAL INFRA, SUB/REDONDO MENOR

            Tendão * do apresentando descontinuidade total, medindo cm longitudinal e cm transversal.

          • Sinais de rotura total do .


            ATROFIA MUSCULAR

            Músculo * apresentando aumento da ecogenicidade em aproximadamente % de sua Ôrea transversal por lipossubstituição, compatível com atrofia de desuso.

          • Sinais atrofia muscular do * acentuada/moderada/discreta.


            TENDINOPATIA CALCƁREA

            Tendão do * de calibre normal, apresentando foco cÔlcico hiperecogênico, regular, medindo até cm.

          • Sinais tendinopatia calcĆ”rea do .



            CISTO SEBƁCEO

            PARTES MOLES

            Nota-se na alteração palpÔvel da região , nos planos da pele, imagem nodular, de contornos regulares, hipoecogênica (sugerindo cístico-espesso), levemente heterogênea, sem fluxo ao Doppler, medindo cm (L x AP x T), distando cm da superfície da pele.

            Observa-se ainda espessamento da pele adjacente Ơ imagem descrita, de atƩ cm.

          • Imagem cĆ­stico-espessa em partes superficiais. Considerar possibilidade de cisto sebĆ”ceo.

            COLEƇƃO FLEGMONOSA

            Nota-se na região hipogÔstrica, Ôreas de coleções císticas anecóides com leves debris, de aspecto flegmonoso nos planos do subcutâneo, medindo até cm (vol = cm³), sugerindo coleções hemorrÔgicas, não passível de punção.

            Observa-se ainda espessamento da pele nesta topografia com borramento dos planos gordurosos adjacentes.

          • Imagem cĆ­stico-espessa em partes superficiais. Considerar possibilidade de cisto sebĆ”ceo.


            COLEƇƃO PƓS-OP

            Estudo ultrassonogrÔfico complementar com sonda linear de 10MHz, dirigido em região abdominal, evidenciou:

            Coleção cística, unilocular, na região peri-incisional pélvica, nos planos do subcutâneo, de contornos irregulares, conteúdo anecóide com leves debris e traves de permeio, medindo x cm (L x AP), se estendendo cm transversalmente, distando cm da pele, com volume estimado de cm³.

            Observa-se ainda espessamento da pele nesta topografia com borramento dos planos gordurosos adjacentes.

          • Coleção cĆ­stica em partes superficiais passĆ­vel de punção/drenagem.


            Nota: Exame realizado em carÔter de urgência no * º dia pós-operatório de .


            COLEƇƃO HEMATOMA PƓS-TRAUMA

            Nota-se na alteração palpÔvel da região *, coleção cístico-espessa, unilocular, nos planos do subcutâneo/musculares, de contornos lobulados, conteúdo com moderados debris e traves de permeio, adjacente ao tendão/vaso *, medindo cm (L x AP x T), distando cm da pele, com volume estimado de cm³.

            Observa-se ainda espessamento da pele nesta topografia com borramento dos planos gordurosos adjacentes. Superfície cortical óssea adjacente sem sinais ecogrÔficos de descontinuidade.

          • Sinais de hematoma na *, passĆ­vel de punção/drenagem.


            EDEMA

            Pele e tecido celular subcutâneo peri-incisional de espessura aumentada com Ôreas permeativas anecóides de aspecto flegmonoso, sem evidência de coleções significativas.

          • Edema de subcutĆ¢neo peri-incisional.


            Nota: Exame realizado em carÔter de urgência no * º dia pós-operatório de .


            Pele e tecido celular subcutâneo na região *** de espessura aumentada, com aumento difuso da ecogenicidade, sem evidência de coleções locais, podendo estar relacionado a processo inflamatório local


            Nota: Os achados dependem da adequada correlação clínico/complementar.


            FIBROSE CICATRICIAL

            Estudo ultrassonogrÔfico complementar com sonda linear de 10MHz, dirigido em região *, evidenciou:

            Área sólida, nos planos do subcutâneo/musculares, hipoecogênica, mal definida e irregular, provida de sombra acústica posterior, medindo cerca de cm (L x AP x T), com volume estimado de cm³ e distando cm da pele.

          • Ɓrea sólida irregular em partes superficiais. Considerar possibilidade de fibrose cicatricial.


            HƉRNIA DE PAREDE REDUTƍVEL

            Falha na integridade da aponeurose muscular de cm, na região epigÔstrica/umbilical, observando herniação de conteúdo omental e intestinal, com fluxo vascular presente ao Doppler, acentuando-se à manobra de Valsava.

          • HĆ©rnia epigĆ”strica/umbilical, sem sinais de encarceramento.


            HƉRNIA DE PAREDE ENCARCERADA

            Falha na integridade da aponeurose muscular de cm, na região *, com herniação de conteúdo omental e intestinal, medindo cm, associado a pouca mobilidade ao repouso e a manobra de Valsava. Fluxo vascular presente ao Doppler no conteúdo herniÔrio.

          • HĆ©rnia epigĆ”strica/umbilical/incisional com sinais de encarceramento.


            HƉRNIA INGUINAL

            Herniação de conteúdo omental através do canal inguinal direito/esquerdo, medindo cm de espessura, observado à manobra de Valsalva.

          • HĆ©rnia inguinal Ć  direita/esquerda, sem sinais de encarceramento.

            HƉRNIA INGUINO-ESCROTAL

            Herniação de conteúdo omental e intestinal através do canal inguinal direito/esquerdo até a bolsa escrotal, com pouca mobilidade às manobras de compressão e Valsalva.

            Conteúdo herniÔrio intra-escrotal medindo cerca de cm (vol: cm³).

          • HĆ©rnia Ć­nguino-escrotal encarcerada Ć  .


            LIPOMA

            Nota-se na alteração palpÔvel da região , nos planos do subcutâneo, imagem nodular, sólida, de contornos lobulados, isoecogênica ao tecido gorduroso, medindo cm (L x AP x T), distando cm da pele.

          • Nódulo em partes superficiais. Considerar possibilidade de lipoma.


            PUNHO/MƃO

            LESƃO DO COMPLEXO CƁPSULO-LIGAMENTAR

            Complexo cÔpsulo-ligamentar da articulação trapézio-1º metacarpo apresentando leve borramento dos contornos e discreta irregularidade da superfície óssea adjacente. Apresenta-se distendida por derrame articular leve de aspecto anecóide e homogêneo.

            Observa-se afastamento das superfícies articulares trapézio-1º metacarpo à manobra de estresse, sugerindo lesão ligamentar.

          • Sinais lesĆ£o do complexo cĆ”psulo-ligamentar com derrame articular leve trapĆ©zio-1Āŗ metacarpo e discreta irregularidade óssea adjacente.


            NEUROPATIA MEDIANO

            Nervo mediano de dimensões aumentadas, com Ôrea de mm² (normal < 12 mm²).

          • Aumento do calibre do nervo mediano. Considerar possibilidade de neuropatia.


            OSTEOARTRITE COM DERRAME ARTICULAR

            Cartilagem articular entre o *** difusamente espessada, com borramento dos contornos e irregularidade da superfície óssea adjacente, associado a derrame articular leve com aspecto anecóide e homogêneo.

          • Sinais de osteoartrite com derrame articular leve ***.


            TENOSSINOVITE TÚNEL DO CARPO

            Tendões flexores digitais superficiais e profundos aumentados de calibre na topografia do túnel do carpo, com halos anecóicos de edema sinovial difuso.

          • Sinais de tenossinovite nos tendƵes do tĆŗnel do carpo.


            TENOSSINOVITE 1º TÚNEL

            Tendões abdutor longo e extensor curto do polegar aumentados de calibre adjacente a borda radial, com halo anecóico de edema sinovial comprometendo cerca de cm longitudinal.

          • Sinais de tenossinovite do 1Āŗ tĆŗnel (De Quervain).


            TENOSSINOVITE 2º TÚNEL

            Tendões extensores longo e curto do carpo aumentados de calibre na topografia da intersecção com a musculatura do 1º túnel dorsal, com halo anecóico de edema sinovial comprometendo cerca de cm longitudinal.

          • Sinais de tenossinovite do 2Āŗ tĆŗnel.

            TENOSSINOVITE 3º TÚNEL

            Tendão extensor longo do polegar aumentado de calibre adjacente ao tubérculo de Lister, com halo anecóico de edema sinovial comprometendo cerca de mm longitudinal.

          • Sinais de tenossinovite do 3Āŗ tĆŗnel.


            TENOSSINOVITE 4º TÚNEL

            Tendões extensores comuns dos dedos e próprio do indicador aumentados de calibres adjacentes ao rÔdio, com halo anecóico de edema sinovial difuso, comprometendo cerca de cm longitudinal.

          • Sinais de tenossinovite do 4Āŗ tĆŗnel.


            TENOSSINOVITE 6º TÚNEL

            Tendão extensor ulnar do carpo aumentado de calibre adjacente ao processo estilóide da ulna, com halo anecóico de edema sinovial comprometendo cerca de cm longitudinal.

          • Sinais de tenossinovite do 6Āŗ tĆŗnel.

            CISTO ARTROSSINOVIAL

            Formação cística lobulada de conteúdo líquido, anecóide homogêneo, entre o 2º e o 4º túnel dorsal, adjacente ao semilunar, com colo de comunicação articular, medindo cm (L x AP x T).

          • Cisto artrossinovial no punho.

            OU

            Formação cística lobulada de conteúdo líquido, anecóide homogêneo, entre o tendão flexor radial do carpo e o 1º túnel dorsal, com colo de comunicação articular, medindo cm (L x AP x T).

          • Cisto artrossinovial no punho.


            DEDO EM GATILHO

            Tendão flexor do 4º dedo levemente espessado com hipoecogenicidade textural ao nível da primeira polia anular na cabeça metacarpal associado a travamento à extensão do respectivo quirodÔctilo.

          • Sinais de tenossinovite estenosante do 4Āŗ flexor (dedo em gatilho).

            OU

            Tendão flexor do 4º dedo apresentando leve espessamento da primeira polia anular ao nível na cabeça metacarpal, sem sinais de travamento à extensão do respectivo quirodÔctilo ao exame dinâmico.

          • Leve espessamento da 1ĀŖ polia anular no 4Āŗ flexor.



            BURSITE TROCANTƉRICA

            QUADRIL

            Bursa trocantérica distendida por líquido com aspecto anecóide e homogêneo, medindo cm de espessura.

          • Sinais de bursite trocantĆ©rica.


            DERRAME ARTICULAR

            Presença de coleção líquida, com aspecto anecóide, homogêneo, no interior da articulação do quadril , visibilizada no recesso anterior da cÔpsula. A distância colo-cÔpsula mede cm.

          • Sinais ecogrĆ”ficos compatĆ­veis com sinovite no quadril .


            DISPLASIA COXO-FEMORAL RX


            DISPLASIA COXO-FEMORAL US

            A técnica de Graf realizada pelo ultrassom é baseada no plano coronal do quadril avaliado em posição neutra, que corresponde no caso do RN a uma discreta flexão. Graf utilizou três retas para medir dois ângulos: alfa e beta. A linha de base corresponde a tangente a parede lateral do osso ilíaco que deve necessariamente se apresentar com morfologia reta, o que indica inclusive que o plano de corte escolhido estÔ adequado. O ângulo alfa traduz quantitativamente a displasia da porção óssea do teto do acetÔbulo e reflete a inclinação do teto acetabular. Quanto menor o ângulo alfa, mais rasa é a cavidade acetabular e portanto, a displasia é mais acentuada. O angulo alfa normal deve ser maior ou igual a 60 graus. O ângulo beta traduz a posição da fibrocartilagem do lÔbio acetabular em relação a linha de base. Assim quanto maior for o ângulo beta mais horizontalizado estÔ o lÔbio, ou seja, o lÔbio estÔ mais deslocado superiormente pela epífise femoral. Em crianças normais o ângulo beta deve ser menor ou igual a 55 graus.



            O ângulo alfa de Graf reflete a inclinação do teto acetabular. Além da linha de base precisamos de uma segunda linha para definir este ângulo, a linha do teto acetabular. A linha do teto acetabular é traçada tangenciando o teto ósseo conforme a figura. Quanto menor o ângulo alfa, mais rasa é a cavidade acetabular e portanto, a displasia é mais acentuada. O angulo alfa normal deve ser maior ou igual a 60 graus.

            A linha de base de Graf corresponde a tangente a parede lateral do osso ilƭaco. A parede lateral do ilƭaco deve necessariamente se apresentar com morfologia reta, o que indica que o plano de corte escolhido estƔ adequado para realizar as mensuraƧƵes.

            O ângulo beta de Graf estÔ indicado nesta figura e traduz quantitativamente o deslocamento superior da fibrocartilagem do lÔbio (labrum). Além da linha de base precisamos de uma segunda linha para definir este ângulo, a linha labral. Esta linha labral é traçada entre o promontório e a porção central do lÔbio conforme a figura.

            Indicação das estruturas anatÓmicas que devem estar presentes: 1= osso ilíaco; 2= cartilagem triradiada; 3= osso ísquio; 4= epífise femoral proximal; 5= metÔfise femoral proximal; 6= trocânter maior do fêmur; setas = fibrocartilagem do lÔbio (labrum) acetabular. No quadril normal o promontório acetabular (transição entre a parede lateral do ilíaco e o teto acetabular) deve formar um ângulo agudo. Nos quadris imaturos e nos quadris displÔsicos o promontório costuma ter contornos arredondados.

            Imagem no plano coronal do quadril avaliado em posição neutra adequada para o método de Graf. Neste plano de corte a parede lateral do ilíaco deve estar reta. Veja na figura a seguir as estruturas anatÓmicas que devem estar representadas.

            ReferĆŖncia: http://mskribeirao.com/curiosidades/detalhe/displasia-de-quadril-recem-nascido-rn/

            (Site de radiologia do sistema musculoesquelĆ©tico desenvolvido por profissionais de RibeirĆ£o Preto – SP. Publicação: 18.12.2012).


            OSTEOARTROSE

            Cartilagem articular fêmoro-acetabular difusamente espessada, com borramento dos contornos e irregularidade da superfície óssea adjacente.

            Irregularidade da superfície óssea trocantérica e da espinha ilíaca ântero-superior.

          • Sinais de osteoartrose coxo-femoral.



            CISTO(S) ARTROSSINOVIAL(IS)

            TORNOZELO/PƉ

            Formação cística lobulada, de conteúdo líquido, anecóide homogêneo, com colo de comunicação articular, entre a articulação talo-navicular, medindo cm (L x AP x T).

          • Cisto artrossinovial.

            OU

            Formações císticas lobuladas, de conteúdo líquido, anecóide homogêneo, com colo de comunicação articular, entre as articulações:

          • talo-navicular, medindo cm (L x AP x T).

          • fĆ­bulo-calcĆ¢nea, medindo cm (L x AP x T).

          • calcĆ¢neo-cubóide, medindo cm (L x AP x T).

          • Cistos artrossinoviais.

            OSTEOARTROSE TARSO

            Borramento dos contornos e irregularidade das superfĆ­cies articulares nos ossos do tarso.

          • Sinais de osteoartrose no pĆ©.


            ENTESOPATIA

            Entesopatia calcificada de tendão calcâneo, medindo até cm.

          • Entesófito de calcĆ¢neo.


            TENDINITE CALCƂNEO

            Tendão de Aquiles aumentado de calibre do calcâneo, medindo cm de espessura, associado a hipoecogenicidade textural justa-insercional.

          • Sinais de tendinopatia do calcĆ¢neo justa-insercional.

            OU

            Tendão de Aquiles aumentado de calibre, medindo cm de espessura na zona crítica, a cm de sua inserção no calcâneo, com hipoecogenicidade textural local, comprometendo cm longitudinal.

          • Sinais de tendinopatia do calcĆ¢neo.


            TENDINOSE CALCƂNEO

            Tendão de Aquiles aumentado de calibre em sua inserção/no corpo, com hipoecogenicidade textural e microfocos ecogênicos de fibrose intra-tendínea.

          • Sinais de tendinose do calcĆ¢neo.


            RUPTURA TOTAL DO TENDƃO CALCƂNEO

            TendĆ£o de Aquiles apresentando descontinuidade total a aproximadamente cm de sua inserção no calcĆ¢neo, na projeção da zona crĆ­tica, com distĆ¢ncia entre os fragmentos de cerca de cm em repouso e cm na posição em ā€œequinoā€ e preenchimento da Ć”rea rota por efusĆ£o lĆ­quida hemorrĆ”gica.

          • Sinais de ruptura total do tendĆ£o calcĆ¢neo.


            RUPTURA PARCIAL DO TENDƃO CALCƂNEO

            Tendão de Aquiles apresentando descontinuidade parcial das fibras mais profundas/superficias/laterais/mediais a aproximadamente cm de sua inserção no calcâneo, na projeção da zona crítica, medindo cm longitudinal x cm transversal e preenchimento da Ôrea rota por efusão líquida hemorrÔgica.

          • Sinais de ruptura parcial do tendĆ£o calcĆ¢neo.


            TENOSSINOVITE TIBIAL POSTERIOR

            Tendão do tibial posterior aumentado de calibre em sua porção maleolar e infra maleolar, com hipoecogenicidade textural e líquido em sua sinóvia, comprometendo cerca de cm longitudinal.

          • Sinais de tenossinovite do tibial posterior.


            TENDINOSE TIBIAL POSTERIOR

            Tendão tibial posterior aumentado de calibre na porção maleolar e infra-maleolar, com heterogeneidade textural e desorganização da arquitetura por micro-focos ecogênicos de fibrose/calcificação e anecóicos de necrose intra-tendínea de permeio por roturas degenerativas locais.

          • Sinais de tendinose do tibial posterior.


            TENOSSINOVITE DOS FIBULARES

            Tendões fibulares aumentados de calibre na porção maleolar, com halo anecóico de edema sinovial local, comprometendo cerca de cm longitudinal.

          • Sinais de tenossinovite dos fibulares.


            FASCITE PLANTAR

            FÔscia plantar com espessura aumentada em sua inserção no calcâneo, medindo cm de calibre, com hipoecogenicidade textural local.

          • Sinais de fascite plantar.

            OU

            FÔscia plantar com espessura aumentada em suas fibras mais mediais, a cerca de cm da inserção no calcâneo, medindo cm de calibre, comprometendo cm longitudinal, associado a hipoecogenicidade textural local.

          • Sinais de fascite plantar.

            FASCITE CRƔNICA PLANTAR

            FÔscia plantar aumentada de calibre em sua inserção no calcâneo, com hipoecogenicidade textural e focos de fibrose/calcificação de permeio. Irregularidade da superfície óssea adjacente.

          • Sinais de fascite crĆ“nica plantar.


            TALALGIA DE IMPACTO

            Observa-se aumento da ecogenicidade do coxim adiposo sub-cutâneo do calcâneo inferior, com hipoecogenicidade textural da superfície óssea adjacente. Espessura do coxim de cm (normal <1,5 cm).

          • Sinais de talalgia do impacto.


            NEUROMA DE MORTON

            Nota-se entre as 3ª e 4ª cabeças metatarseanas, na topografia do feixe vÔsculo-nervoso, imagem nodular, sólida hipoecogênica, estruindo-se à manobra de Mulder, medindo cm.

          • Imagem nodular entre o 3Āŗ e 4Āŗ metatarso. Considerar possibilidade de neuroma de Morton.


            DERRAME ARTICULAR

            Derrame articular leve/moderado tíbio-talar de aspecto anecóide e homogêneo.

          • Sinais de derrame articular tĆ­bio-talar leve/moderado.


            LESƃO LIGAMENTAR

            Ligamento apresentando descontinuidade total com estravazamento de lƭquido articular na Ɣrea dissecando o fragmento roto.

          • Sinais de ruptura do ligamento *.

            Ligamentos: talo-fibular anterior/calcâneo-fibular/tíbio-fibular/deltóide.


            FIBROMATOSE PLANTAR (DOENƇA DE LEDDERHOSE)

            FÔscia plantar apresentando a cerca de cm da inserção no calcâneo, Ôrea de espessamento nodular alongada com hipoecogenicidade textural local, medindo cm no eixo da fÔscia por cm de espessura.

          • Espessamento nodular da fĆ”scia plantar. Considerar possibilidade de fibromatose plantar (DoenƧa de Ledderhose).

            OU

            FƔscia plantar apresentando * Ɣreas de espessamento nodular, alongadas, com hipoecogenicidade textural, caracterizadas assim:

          • a cm da inserção no calcĆ¢neo, medindo cm (longitudinal x espessura).

          • a cm da inserção no calcĆ¢neo, medindo cm (longitudinal x espessura).

          • Espessamentos nodulares da fĆ”scia plantar. Considerar possibilidade de fibromatose plantar (DoenƧa de Ledderhose).


            DOPPLER ARTƉRIAS CARƓTIDAS

            CRITƉRIOS PARA DIAGNƓSTICO DE ESTENOSE DE CARƓTIDA

            PARƂMETROS PRIMƁRIOS

            PARƂMETROS ADICIONAIS

            Grau de

            estenose

            VPS-ACI

            (cm/s)

            Estimativa da

            placa %

            Razão VPS

            ACI/ACC

            VDF-ACI

            (cm/s)

            Normal

            < 125

            NĆ£o hĆ” placa

            < 2,0

            < 40

            Menor 50%

            < 125

            < 50%

            < 2,0

            < 40

            50-69%

            125-230

            ≄ 50

            2,0-4,0

            40-100

            Maior ou = 70%

            > 230

            ≄ 50

            > 4,0

            > 100

            Sub-oclusão

            Indefinida

            VisĆ­vel

            VariƔvel

            VariƔvel

            Oclusão

            IndetectƔvel

            Lúmen indetectÔvel

            NĆ£o se aplica

            NĆ£o se aplica

            * Estimativa aproximada de estenose atravƩs do modo B e Doppler colorido. Ref: Society of Radiologists in Ultrasound Consensus Conference - 2003.

            ESPESSAMENTO MƉDIO-INTIMAL

            A artéria carótida comum apresenta diâmetro normal. Presença de espessamento médio-intimal. Ao Doppler observa-se curva espectral de amplitude normal, sem turbulência e aceleração.

          • Espessamento mĆ©dio-intimal da artĆ©ria carótida comum.


            ReferĆŖncia:

            Valores de espessura médio-intimal das artérias carótidas comuns por sexo e idade do(a) paciente estudado(a) segundo o Multi-Ethnic Study of Atherosclerosis Risk in Communities Study (Robin L. McClelland, PhD, 2007):

          • Percentil 75 da carótida direita: 0,99 mm.

          • Percentil 75 da carótida esquerda: 1,1 mm.

            OU

            Valores de referência (provavelmente sem elevação de risco):

          • Pacientes com idade inferior a 50 anos: < 0,8 mm.

          • Pacientes com idade superior a 50 anos: < 1,0 mm.


            PLACA ATEROSCLERƓTICA NƃO COMPLICADA

            Bulbo carotídeo apresentando placa aterosclerótica de aspecto calcificado, com superfície regular.


            PLACA ATEROSCLERƓTICA COMPLICADA

            Bulbo carotídeo apresentando placa aterosclerótica heterogênea, com predomínio hipoecóico, superfície irregular, calcificações focais e Ôrea anecóica central.


            ESTENOSE < 50% ACC

            Artéria carótida comum apresenta diâmetro reduzido por placa aterosclerótica excêntrica, homogênea, com superfície regular. A avaliação do grau de estenose através de medida de diâmetro em varredura transversa mostra redução de cerca de 30 a 40%. Ao Doppler observa-se curva espectral de amplitude normal, sem turbulência e aceleração.

          • Estenose inferior a 50% da artĆ©ria carótida comum


            ESTENOSE DA ARTƉRIA CARƓTIDA INTERNA

            A artéria carótida interna apresenta diâmetro reduzido por placa aterosclerótica concêntrica, heterogênea, com predomínio hipoecóico, superfície irregular, calcificações focais e Ôrea anecóica central. Ao Doppler observa-se curva de amplitude aumentada e alargamento espectral.

          • Estenose inferior a 50% da artĆ©ria carótida interna.

          • Estenose de 50 a 69% da artĆ©ria carótida interna.

          • Estenose superior a 70% da artĆ©ria carótida interna.


            ESTENOSE DA ARTƉRIA CARƓTIDA EXTERNA

            A artéria carótida externa apresenta diâmetro reduzido por placa aterosclerótica heterogênea. Ao Doppler observa-se curva de amplitude aumentada e alargamento espectral.

          • Estenose inferior a 50% da artĆ©ria carótida externa

          • Estenose superior a 50% da artĆ©ria carótida externa.


            SUB-OCLUSƃO DA ARTƉRIA CARƓTIDA INTERNA

            A artéria carótida interna apresenta diâmetro acentuadamente reduzido por placa aterosclerótica concêntrica, heterogênea, com predomínio hipoecóico, superfície irregular, calcificações focais e Ôrea anecóica central. Ao Doppler observa-se curva de amplitude reduzida e alargamento espectral.

          • Achados compatĆ­veis com sub-oclusĆ£o da artĆ©ria carótida interna.


            OCLUSƃO DA ARTƉRIA CARƓTIDA INTERNA

            A artéria carótida comum apresenta aspecto morfológico normal. Ao Doppler observa-se curva espectral de amplitude reduzida, com componente reverso e ausência de componente telediastólico (padrão de resistência elevada).

            A artéria carótida interna apresenta preenchimento luminal por placa aterosclerótica heterogênea, com componente hipoecóico compatível com trombo. Não foi detectado sinal Doppler neste vaso.

          • Achados compatĆ­veis com oclusĆ£o da artĆ©ria carótida interna.


            ACOTOVELAMENTO (ā€œKINKINGā€) DA ARTƉRIA CARƓTIDA INTERNA

            A artéria carótida interna apresenta diâmetro normal. Não se observam placas ateroscleróticas significativas em seu segmento proximal. Presença de acotovelamento em ângulo reto localizado em seu segmento médio.

          • Acotovelamento da artĆ©ria carótida interna.

            ARTƉRIAS VERTEBRAIS


            ESTENOSE PROXIMAL (EXAME DIRETO DA LESƃO)

            A artéria vertebral foi explorada em sua origem, sendo evidenciada placa aterosclerótica nesta topografia. Ao Doppler observa-se curva espectral de amplitude aumentada e alargamento espectral.

            O segmento interapofisÔrio apresenta diâmetro normal. Ao Doppler observa-se fluxo de direção cefÔlica, com curva de amplitude normal, sem turbulência e aceleração.

          • Estenose superior a 50% da artĆ©ria vertebral.

          • Estenose superior a 80% da artĆ©ria vertebral.

          • Achados compatĆ­veis com estenose hemodinĆ¢micamente significativa da artĆ©ria vertebral em sua origem.

          • Achados compatĆ­veis com estenose hemodinĆ¢micamente significativa da artĆ©ria vertebral em seu segmento intracraniano.


            ESTENOSE PROXIMAL (SEM EXAME DIRETO DA LESƃO)

            A artéria vertebral foi explorada em seu segmento interapofisÔrio e apresenta diâmetro normal. Ao Doppler observa-se fluxo de direção cefÔlica, com curva de amplitude acentuadamente reduzida, sem turbulência e aceleração.


            OCLUSƃO

            A artéria vertebral foi explorada em sua origem, sendo evidenciada placa aterosclerótica nesta topografia. Não se observa sinal Doppler neste vaso.

          • Achados compatĆ­veis com oclusĆ£o da artĆ©ria vertebral.


            OCLUSƃO PROXIMAL COM ENCHIMENTO POR COLATERAIS

            A artéria vertebral foi explorada em sua origem, sendo evidenciada placa aterosclerótica nesta topografia. Não se observa sinal Doppler neste vaso.

            O segmento interapofisÔrio apresenta diâmetro normal. Ao Doppler observa-se enchimento deste vaso por circulação colateral, determinando fluxo de direção cefÔlica, com curva de amplitude reduzida, sem turbulência e aceleração.


            HIPOPLASIA

            A artéria vertebral foi explorada em seu segmento interapofisÔrio e apresenta diâmetro difusamente reduzido ( mm). Ao Doppler observa-se fluxo de direção cefÔlica, com curva de amplitude acentuadamente reduzida, sem componente diastólico (padrão de resistência aumentada).

          • Achados compatĆ­veis com hipoplasia da artĆ©ria vertebral.


            FENƔMENO DO ROUBO SUBCLƁVIO

            A artéria vertebral foi explorada em seu segmento interapofisÔrio e apresenta diâmetro normal. Ao Doppler observa-se fluxo de direção caudal, com curva de amplitude normal, sem turbulência e aceleração.

            Foi realizada insuflação do esfigmomanÓmtero na artéria braquial acima da pressão sistólica sendo verificada interrupção do fluxo descendente da artéria vertebral.

          • AlteraƧƵes no fluxo vertebral esquerdo compatĆ­veis com ā€œroubo da subclĆ”viaā€.


            OCLUSƃO OU ESTENOSE GRAVE DISTAL

            A artéria vertebral foi explorada em seu segmento interapofisÔrio e apresenta diâmetro normal. Ao Doppler observa-se fluxo de direção cefÔlica, com curva de amplitude reduzida, com componente reverso e ausência de componente diastólico (padrão de resistência elevada).



            NORMAL

            ARTƉRIAS OFTƁLMICAS

            A artéria oftÔlmica foi explorada por via transorbitÔria. Ao Doppler observa-se fluxo de direção anterógrada, com curva espectral de amplitude normal.


            OCLUSƃO DA ARTƉRIA CARƓTIDA INTERNA

            A artéria oftÔlmica foi explorada por via transorbitÔria. Ao Doppler observa-se fluxo de direção retrógrada, com curva espectral de amplitude normal.


            ConclusƵes

            Ateromatose carotídea com espessamento médio intimal difuso e placas moles na artéria carótida comum - e bulbo carotídeo - -sem repercussão hemodinâmica.

            ā€œStentā€ na artĆ©ria carótida interna direita pĆ©rvio.

            Obs.: A presença de placa aterosclerótica calcificada representa um fator limitante na avaliação de sua superfície e na quantificação precisa do grau de estenose.


            Obs.: A quantificação do grau de estenose da artéria carótida interna foi realizada empregando-se os critérios da Conferência de Consenso da Society of Radiologists in Ultrasound (Radiology 2003: 229: 340-346).


            CONCLUSƕES

          • Ateromatose carotĆ­dea com espessamento mĆ©dio intimal difuso e placas moles, sem repercussĆ£o hemodinĆ¢mica na / , medindo respectivamente / (extensĆ£o x espessura).


          • Pequenas placas regulares, predominantemente nĆ£o calcificadas em /, as quais nĆ£o determinam estreitamentos luminais significativos.


          • Ateromatose difusa, com mĆŗltiplas placas calcificadas, predominando nos /.


            STENT

            PresenƧa de ā€œStentā€ na artĆ©ria carótida interna direita, desde o bulbo, que se apresenta pĆ©rvio e com velocidade de fluxo sistólico de atĆ© - - - cm/s.

            OU

            Nota-se elevação focal da velocidade de fluxo imediatamente após o stent, da ordem aproximada de 100%, podendo representar estenose nesta topografia.


            ROUBO DE SUBCLƁVIA

            InversĆ£o no sentido de fluxo protodiastólico na artĆ©ria vertebral / , mais evidente durante esforƧo no membro superior esquerdo, compatĆ­vel com ā€œroubo da subclĆ”viaā€.

            OU

            A artéria vertebral foi explorada em seu segmento interapofisÔrio e apresenta diâmetro normal. Ao Doppler observa-se fluxo de direção caudal, com curva de amplitude normal, sem turbulência e aceleração.Foi realizada insuflação do esfigmomanÓmtero na artéria braquial acima da pressão sistólica sendo verificada interrupção do fluxo descendente da artéria vertebral.


            ACOTOVELAMENTO

            Acotovelamento /, sem repercussão hemodinâmica ( VPS: / cm/s - VDF: / cm/s),


            Obs.: Considerar um índice sistólico superior a 4 como critério de repercussão significativa sobre o fluxo.


            TORTUOSIDADE

            Artérias carótidas com trajeto tortuoso e calibres conservados no segmento cervical.


            C ARTIFICIAL - A avaliação com Doppler mostra fluxo com padrĆ£o monofĆ”sico ā€œportalizadoā€ em todos os segmentos arteriais avaliados, secundĆ”rio ao dispositivo de suporte hemodinĆ¢nico, apresentando velocidades entre - - - cm/s e - - - cm/s Ć  esquerda e entre - - - cm/s e - - - cm/s Ć  direita.

            CONC: Alterações hemodinâmicas secundÔrias ao dispositivo de suporte hemodinâmico acarretando fluxo arterial monofÔsico e dificultando a anÔlise de eventuais estenoses focais


            VERTEBRAL NƃO CARACTERIZADA

            Fluxo vertebral direito/esquerdo não caracterizado.


            A arteriografia deve ser analisada de acordo com NASCET, que compara a porção do lúmen restante com o lúmen distal normal

            Indicações em que a relação do PSV é melhor que o valor absoluto:

            • Grande estenose contra-lateral;

            • DiscrepĆ¢ncia entre o tamanho da placa e PSV

            • Velocidade da ACC aumentada

            • Estados cardĆ­acos hiperdinĆ¢micos

            • ICC

            IndicaƧƵes para Follow-up:

            >50% (sem indicação de endarterectomia)  6-12 meses

            <50% ( Pc de alto risco com placa visível)  1-2 anos Normal + Fatores de risco  3-5 anos


            ESTENOSE < 50% AFS

            ARTƉRIAS MEMBRO INFERIOR

            Nota-se moderada irregularidade parietal com calcificaƧƵes ateromatosas nos vasos estudados. ARTƉRIA FEMORAL SUPERFICIAL: pĆ©rvia.

          • Porção proximal da coxa: A anĆ”lise espectral revelou curvas trifĆ”sicas normocinĆ©ticas, de alta resistĆŖncia com Velocidade de Pico Sistólico (VPS: cm/s) dentro da normalidade.

          • No canal de Hunter: A anĆ”lise espectral revelou curvas trifĆ”sicas com borramento espectral e velocidade de pico sistólico aumentada (VPS: cm/s), porĆ©m com relação inferior a 2, sugerindo estenose inferior a 50%.

          • Ateromatose moderada nos vasos estudados.

          • Estenose inferior a 50% da artĆ©ria femoral superficial ao nĆ­vel do canal de Hunter.


            ESTENOSE > 50% AFS

            ARTƉRIA FEMORAL SUPERFICIAL: pĆ©rvia.

          • Porção proximal da coxa: A anĆ”lise espectral revelou curva trifĆ”sica normocinĆ©tica, de alta resistĆŖncia com velocidade de pico sistólico dentro da normalidade (VPS: cm/s).

          • Na transição terƧo proximal/mĆ©dio da coxa: Curvas com borramento espectral e velocidade de pico sistólico aumentada (VPS: cm/s), sugerindo estenose superior a 50%.

          • No terƧo mĆ©dio da coxa: Curva bifĆ”sica com velocidade de pico sistólico mais reduzida (VPS: cm/s).

          • No canal de Hunter: Curva monofĆ”sica com velocidade de pico sistólico reduzida (VPS: cm/s).


            ARTƉRIA POPLƍTEA: pĆ©rvia. Curva monofĆ”sica com velocidade de pico sistólico reduzida (VPS: cm/s). ARTƉRIA TIBIAL ANTERIOR: pĆ©rvia. Curva monofĆ”sica com velocidade de pico sistólico reduzida (VPS: cm/s). ARTƉRIA TIBIAL POSTERIOR: pĆ©rvia. Curva monofĆ”sica com velocidade de pico sistólico reduzida (VPS: cm/s). ARTƉRIA FIBULAR: pĆ©rvia. Curva monofĆ”sica com velocidade de pico sistólico reduzida (VPS: cm/s).

          • Ateromatose moderada/severa nos vasos estudados.

          • Estenose hemodinamicamente significativa superior a 50% da artĆ©ria femoral superficial no terƧo proximal/mĆ©dio da coxa.

          • Vasos distais Ć  estenose com fluxos monofĆ”sicos e velocidades de pico sistólico reduzidas.


            ENCARCERAMENTO POPLƍTEO

            Perda do padrão trifÔsico de fluxo nas artérias poplítea e tibial posterior durante a manobra de flexão plantar do pé. Tal achado, embora inespecífico, pode estar associado à síndrome do encarceramento poplíteo.

            VENOSO MEMBRO INFERIOR


            REFLUXO VALVAR PROFUNDO

            PƩrvias, incompetentes com refluxo valvar, de paredes finas e lisas. Compressibilidade preservada.

          • Refluxo valvar profundo de veias ***.


            REFLUXO VALVAR - SAFENA

            V. SAFENA MAGNA: PƩrvia, incompetente com refluxo valvar nos segmentos ***.

          • IncompetĆŖncia de safena magna do tipo .


            Obs.: PadrƵes de refluxo da veia safena magna (J Vasc Br 2004: Functional anatomic classification of saphenous vein insufficiency in the planning for varicose vein surgery base on color Doppler ultrasound):

            Normal (28,11%); Tipo I (0,71%): Peri-juncional; Tipo 2 (5,65%): Proximal; Tipo III (9,81%): Refluxo distal; Tipo IV (33,54%): Segmentar; Tipo Va (4,45%): Multissegmentar com JSF competente; Tipo Vb (14,62%): Multissegmentar com JSF incompetente; Tipo VI (3,11%): Refluxo difuso.


            NORMAL TIPO I TIPO II TIPO III TIPO IV TIPO Va TIPO Vb TIPO VI


            SAFENECTOMIA

            V. SAFENA MAGNA: Não caracterizada e toda sua extensão (status pós-operatório).

          • Sinais de safenectomia total (safena interna).

            OU

            V. SAFENA MAGNA: Não caracterizada nos 2/3 proximais da coxa (status pós-operatório). Demais porções: Pérvia, de paredes finas e lisas e com compressibilidade preservada.

          • Sinais de safenectomia parcial (safena interna).


            TROMBOSE VENOSA PROFUNDA AGUDA

            De calibres aumentados com material hipoecóide no interior, não compressível, sem fluxo detectÔvel ao Doppler.

          • Sinais de trombose venosa profunda aguda de veias ***.


            TROMBOSE VENOSA PROFUNDA SUBAGUDA/CRƔNICA NƃO RECANALIZADA

            De calibres levemente aumentados com material hiperecogënico no interior, aderido à parede do vaso, não compressíveis, com pobres sinais de recanalização.

          • Sinais de trombose venosa profunda de aspecto subagudo/crĆ“nico nĆ£o recanalizadas de veias ***.


            TROMBOSE VENOSA CRƔNICA PARCIALMENTE RECANALIZADA

            De calibres levemente reduzidos com material hiperecogënico e traves no interior, parcialmente compressíveis, de paredes espessas e com sinais de recanalização parcial.

          • Sinais de trombose venosa profunda crĆ“nica parcialmente recanalizada de veias ***.

            TROMBOSE VENOSA CRƔNICA PARCIALMENTE RECANALIZADA

            PƩrvias, incompetentes com refluxo valvar, de paredes levemente espessas e algumas traves finas no interior, parcialmente compressƭveis.

            Observa-se ainda circulação colateral adjacente ao segmento * da veia *.

          • Sinais de trombose venosa profunda crĆ“nica recanalizada de veias ***.

          • Sinais de sĆ­ndrome pós-trombótica com refluxo valvar profundo de veias *** e aumento da circulação colateral.


            TROMBOFLEBITE

            V. SAFENA MAGNA/PARVA: De calibre aumentado com material hipoecóide no interior, não compressível, sem fluxo detectÔvel ao Doppler, se estendendo do ***.

          • Sinais de tromboflebite de veia safena interna/externa na coxa/perna.


            VARICOSIDADES

            VARICOSIDADES: Presentes em coxa e perna.

          • Varicosidades em coxa e perna.

            OU

            VARICOSIDADES: Veias reticulares presentes em coxa e perna.

          • Veias reticulares presentes em coxa e perna.


            VEIA(S) PERFURANTE(S) MEDIAIS

            V.V. PERFURANTES: A pesquisa foi positiva na face medial da perna a + cm da fƔscia plantar.

          • Veia perfurante incompetente na perna.

            OU

            V.V. PERFURANTES: A pesquisa foi positiva na face medial da perna a + cm e + cm da fƔscia plantar.

          • Veias perfurantes incompetentes na perna.


            VEIA PERFURANTE POSTERIOR

            V.V. PERFURANTES: A pesquisa foi positiva na face posterior da perna a + cm do calcâneo.

          • Veia perfurante incompetente na perna.


          MEDIDAS

          Fígado de morfologia, contornos e dimensões normais, medindo o lobo esquerdo: cm (normal < 10,0 cm), com ângulo do bordo inferior de º (normal < 45º) e o lobo direito: cm (normal < 150 cm), com ângulo do bordo inferior de º (normal < 75º).

          Vias biliares intra-hepƔticas de calibres aumentados, medindo cm Ơ esquerda e cm Ơ direita (normal < 0,25 cm).

          VesĆ­cula biliar normodistendida, medindo cm (normal < 10,0 x 4,0 cm), com paredes finas e lisas de espessura medindo cm (normal < 0,4 cm).

          Pâncreas de morfologia, contornos, ecotextura e dimensões normais, medindo a cabeça: cm (normal < 3,3 cm), corpo: cm (normal

          < 2,2 cm) e cauda: cm (normal < 2,8 cm).

          Ducto de Wirsung de calibre preservado (normal <0, 2 cm).

          BaƧo de morfologia, contornos, ecotextura e dimensƵes normais, medindo cm no eixo longitudinal (normal < 12,0 cm) e cm no transverso (normal < 7,0 cm).

          Ureter de calibre preservado (normal < 0,5 cm).

          Pele: MAMA: Pele de espessura aumentada, medindo cm (normal < 0,2 cm).

          TESTƍCULO: Pele e tecido celular subcutĆ¢neo de espessura aumentada, medindo cm (normal < 0,6-0,7 cm).

          Colo uterino medindo no eixo longitudinal mm (normal > 3,0 cm), no transversal cm (normal < 2,0 cm no segundo trimestre) e largura do canal cervical cm (normal < 0,8 cm).

          Septo interterticular de espessura medindo cm (normal < 0,5 cm).

          Tronco Celíaco: pérvio de calibre e trajeto normais. Fluxo de direção aorto-alça.

          ArtĆ©ria MesentĆ©rica Superior: de trajeto e calibre normais, medindo cm (normal < 0,7 cm), pĆ©rvia de calibre e trajeto normais. Fluxo de direção aorto-alƧa. DistĆ¢ncia entre a parede anterior da aorta e a artĆ©ria MesentĆ©rica Superior mede cm (normal ≤ 1,1 cm). ArtĆ©ria HepĆ”tica: pĆ©rvia de calibre e trajeto normais.

          ArtƩrias Ilƭacas de trajeto e calibre normais, medindo cm Ơ direita e cm Ơ esquerda (normal < 2,0 cm),

          Veias HepƔticas de trajeto e calibre normais, medindo cm (normal < 1,0 cm).

          Veia Cava Inferior de trajeto e calibre normais, medindo cm (normal < 3,7 cm), pérvia com fluxo fÔsico e boa compressibilidade as manobras de compressão distal e Valsalva. Paredes finas, lisas e regulares. Ausência de trombose venosa aguda ou antiga.

          Veia Porta de trajeto e calibre normais, medindo mm (normal < 1,3 cm).

          Veia EsplĆŖnica de trajeto e calibre normais, medindo cm (normal < 0,9 cm).

          Veia MesentƩrica Superior de trajeto e calibre normais, medindo cm (normal < 0,9 cm).

          Veia GÔstrica Esquerda de trajeto e calibre normais, medindo cm (normal < 0,6 cm). Rim direito mede: cm. Espessura de parênquima: cm.

          Rim esquerdo mede: cm. Espessura de parĆŖnquima: cm.

          SUGESTƕES


          Nota: Sugiro à critério clínico, correlação clínico-laboratorial e complementação com tomografia computadorizada sob contraste oral e endovenoso. Nota: Sugiro, à critério clínico, complementar com tomografia computadorizada de abdome com contraste oral e endovenoso, salvo contra-indicações. Nota: Sugiro, à critério clínico, complementação com tomografia computadorizada em protocolo de fígado com três fases, salvo contra-indicações.

          Nota: Sugiro considerar as hipóteses de restos ovulares de moderada quantidade ou reação decidual em gestação muito precoce com idade gestacional inferior a 5 semanas. ƀ critĆ©rio clĆ­nico, controle ultrassonogrĆ”fico.


          Nota: Estudo comparativo com ultrassonografia ... realizada no dia evidenciou ...


          Nota: Gestações muito precoces com menos de 5 semanas podem não ser caracterizadas ao estudo ultrassonogrÔfico.


          Nota: Gestações muito precoces podem não ser caracterizadas ao estudo ultrassonogrÔfico com menos de 5 semanas (por via transabdominal) e 4 semanas e 3 dias (por via endovaginal).


          Nota: Sugiro, à critério clínico, controle ultrassonogrÔfico após 1-2 semanas.


          Nota: A coleção acima descrita é passível de punção, no entanto, o conteúdo é possivelmente cístico espesso.


          Nota: A presenƧa de vesƭcula biliar com paredes espessadas pode corresponder a um achado encontrado nas ascites.


          Nota: A presença de vesícula biliar com paredes espessadas pode corresponder a um achado encontrado nos processos inflamatórios/infecciosos sistêmicos. Nota: Intensa sobreposição gasosa nas regiões de epigÔstrio, mesogÔtrio, flancos e fossas ilíacas, dificultando a adequada avaliação ecogrÔfica.

          Nota: O método ultrassonogrÔfico apresenta baixa sensibilidade na avaliação pielonefrite aguda em fase muito precoce. Sugiro correlação clínico-laboratorial. Nota: O método ultrassonogrÔfico apresenta baixa sensibilidade na avaliação hepatite. Sugiro correlação clínico-laboratorial.

          Nota: Sugiro correlação clínico-laboratorial para avaliar possibilidade de colecistite em estÔgio inicial. Nota: NecessÔria correlação com BI-RADSTM mamogrÔfico para manutenção ou elevação da categoria.

          Nota: Estudo comparativo com ultrassonografia realizada no dia não evidenciou mudança ou complicação da suspeita diagnóstica.


          ADVERTÊNCIAS


          Obs.: Sugiro melhores esclarecimentos sobre dados clínico-laboratoriais do(a) paciente, para que assim, possamos contribuir da melhor forma na conclusão do diagnóstico. Estaremos sempre à disposição para melhor servi-lo.


          Obs.: Sugiro melhores esclarecimentos sobre dados clínico-laboratoriais do(a) paciente para realização de exame na urgência.


          Obs.: Sugerimos informação sobre dados laboratoriais para apendicite previamente ao estudo ultrassonogrÔfico, aumentando-se com isso, a acurÔcia do método.


          Obs.: Sugerimos a realização de radiografia de abdome para avaliação de ureterolitíase, previamente ao estudo ultrassonogrÔfico, aumentando-se com isso, a acurÔcia do método, salvo contra-indicações.


          Obs.: NecessÔrio correlação com radiografia de abdome devido a ausência de sombra acústica posterior na imagem sugestiva de ureterolitíase. Para isso, sugerimos este exame sempre previamente ao estudo ultrassonogrÔfico na suspeita de tal patologia, aumentando-se, com isso, a acurÔcia do método, salvo contra-indicações.


          Obs.: Recomendamos completa repleção vesical para pedidos de ultrassonografia renal e das vias urinÔrias.


          Obs.: Sugerimos a realização de exames laboratoriais para pancreatite previamente ao estudo ultrassonogrÔfico, aumentando-se com isso, a acurÔcia do método.


          Obs.: Sugerimos a realização de exames laboratoriais para apendicite previamente ao estudo ultrassonogrÔfico, aumentando-se com isso, a acurÔcia do método.


          Obs.: Sugerimos a realização de exames laboratoriais para colecistite previamente ao estudo ultrassonogrÔfico, aumentando-se com isso, a acurÔcia do método.


          Obs.: NecessƔrio HCG previamente ao estudo ultrassonogrƔfico para aumentar-se com isso, a acurƔcia do mƩtodo.


          Obs.: No exame ultrassonogrÔfico obstétrico convencional não é rotina a observância de pormenores anatÓmicos, nem detalhes da formação fetal.


          Obs.: O objetivo do ultrassom obstétrico é avaliar o crescimento e vitalidade fetais. Não tem finalidade de rastreamento e diagnóstico de doenças genéticas e/ou malformações fetais.


          Obs.: O método ecogrÔfico por via endovaginal apresenta maior sensibilidade para detecção de patologias pélvicas comparado ao transabdominal. Obs.: O método ecogrÔfico apresenta baixa sensibilidade para detecção de patologias do trato gastrointestinal.

          Obs.: Sugiro analgesia adequada previamente ao estudo ultrassonogrƔfico.

          Obs.: Sugiro sedação adequada previamente ao estudo ultrassonogrÔfico.


          Obs.: Sugerimos a realização de radiografia de abdome para avaliação de ureterolitíase, previamente ao estudo ultrassonogrÔfico, aumentando-se com isso, a acurÔcia do método, para isso, recomendamos o contato médico prévio nos exames de urgência, a fim de contribuir da melhor forma na conclusão do diagnóstico. Estaremos sempre à disposição para melhor servi-lo.


          Obs: Sangramento via vaginal sem repercussƵes ultrassonogrƔficas no presente estudo.


          Obs.: O método ecogrÔfico por via transabdominal apresenta baixa sensibilidade para detecção de patologias pélvicas.


          Nota: Devido a baixa repleção vesical, a acurÔcia do método ecogrÔfico é reduzida para a identificação de litíase renal e em vias urinÔrias.


          Nota: O exame ultrassonogrÔfico para estudo do abdome total não possui como pré-requisito a repleção total da bexiga urinÔria, salvo por solicitação médica prévia. Nota: O estudo ecogrÔfico apresenta baixa sensibilidade na detecção de patologias do retroperitÓnio em condições da ausência de preparo com jejum apropriado.

          diff --git a/spaces/jpjpjpjpjp/HylandDocumentVisualQA/README.md b/spaces/jpjpjpjpjp/HylandDocumentVisualQA/README.md deleted file mode 100644 index 54c744c5ec7b7271029726ba53a5e567d0496935..0000000000000000000000000000000000000000 --- a/spaces/jpjpjpjpjp/HylandDocumentVisualQA/README.md +++ /dev/null @@ -1,11 +0,0 @@ ---- -title: Hyland DocVQA -emoji: šŸ‘€ -colorFrom: purple -colorTo: red -sdk: gradio -sdk_version: 2.8.9 -app_file: app.py -pinned: false ---- - diff --git a/spaces/juanhuggingface/ChuanhuChatGPT_Beta/modules/models/inspurai.py b/spaces/juanhuggingface/ChuanhuChatGPT_Beta/modules/models/inspurai.py deleted file mode 100644 index c590859fa7717d032290ccc490d22f4494541576..0000000000000000000000000000000000000000 --- a/spaces/juanhuggingface/ChuanhuChatGPT_Beta/modules/models/inspurai.py +++ /dev/null @@ -1,345 +0,0 @@ -# ä»£ē äø»č¦ę„ęŗäŗŽ https://github.com/Shawn-Inspur/Yuan-1.0/blob/main/yuan_api/inspurai.py - -import hashlib -import json -import os -import time -import uuid -from datetime import datetime - -import pytz -import requests - -from modules.presets import NO_APIKEY_MSG -from modules.models.base_model import BaseLLMModel - - -class Example: - """ store some examples(input, output pairs and formats) for few-shots to prime the model.""" - - def __init__(self, inp, out): - self.input = inp - self.output = out - self.id = uuid.uuid4().hex - - def get_input(self): - """return the input of the example.""" - return self.input - - def get_output(self): - """Return the output of the example.""" - return self.output - - def get_id(self): - """Returns the unique ID of the example.""" - return self.id - - def as_dict(self): - return { - "input": self.get_input(), - "output": self.get_output(), - "id": self.get_id(), - } - - -class Yuan: - """The main class for a user to interface with the Inspur Yuan API. - A user can set account info and add examples of the API request. - """ - - def __init__(self, - engine='base_10B', - temperature=0.9, - max_tokens=100, - input_prefix='', - input_suffix='\n', - output_prefix='ē­”:', - output_suffix='\n\n', - append_output_prefix_to_query=False, - topK=1, - topP=0.9, - frequencyPenalty=1.2, - responsePenalty=1.2, - noRepeatNgramSize=2): - - self.examples = {} - self.engine = engine - self.temperature = temperature - self.max_tokens = max_tokens - self.topK = topK - self.topP = topP - self.frequencyPenalty = frequencyPenalty - self.responsePenalty = responsePenalty - self.noRepeatNgramSize = noRepeatNgramSize - self.input_prefix = input_prefix - self.input_suffix = input_suffix - self.output_prefix = output_prefix - self.output_suffix = output_suffix - self.append_output_prefix_to_query = append_output_prefix_to_query - self.stop = (output_suffix + input_prefix).strip() - self.api = None - - # if self.engine not in ['base_10B','translate','dialog']: - # raise Exception('engine must be one of [\'base_10B\',\'translate\',\'dialog\'] ') - def set_account(self, api_key): - account = api_key.split('||') - self.api = YuanAPI(user=account[0], phone=account[1]) - - def add_example(self, ex): - """Add an example to the object. - Example must be an instance of the Example class.""" - assert isinstance(ex, Example), "Please create an Example object." - self.examples[ex.get_id()] = ex - - def delete_example(self, id): - """Delete example with the specific id.""" - if id in self.examples: - del self.examples[id] - - def get_example(self, id): - """Get a single example.""" - return self.examples.get(id, None) - - def get_all_examples(self): - """Returns all examples as a list of dicts.""" - return {k: v.as_dict() for k, v in self.examples.items()} - - def get_prime_text(self): - """Formats all examples to prime the model.""" - return "".join( - [self.format_example(ex) for ex in self.examples.values()]) - - def get_engine(self): - """Returns the engine specified for the API.""" - return self.engine - - def get_temperature(self): - """Returns the temperature specified for the API.""" - return self.temperature - - def get_max_tokens(self): - """Returns the max tokens specified for the API.""" - return self.max_tokens - - def craft_query(self, prompt): - """Creates the query for the API request.""" - q = self.get_prime_text( - ) + self.input_prefix + prompt + self.input_suffix - if self.append_output_prefix_to_query: - q = q + self.output_prefix - - return q - - def format_example(self, ex): - """Formats the input, output pair.""" - return self.input_prefix + ex.get_input( - ) + self.input_suffix + self.output_prefix + ex.get_output( - ) + self.output_suffix - - def response(self, - query, - engine='base_10B', - max_tokens=20, - temperature=0.9, - topP=0.1, - topK=1, - frequencyPenalty=1.0, - responsePenalty=1.0, - noRepeatNgramSize=0): - """Obtains the original result returned by the API.""" - - if self.api is None: - return NO_APIKEY_MSG - try: - # requestId = submit_request(query,temperature,topP,topK,max_tokens, engine) - requestId = self.api.submit_request(query, temperature, topP, topK, max_tokens, engine, frequencyPenalty, - responsePenalty, noRepeatNgramSize) - response_text = self.api.reply_request(requestId) - except Exception as e: - raise e - - return response_text - - def del_special_chars(self, msg): - special_chars = ['', '', '#', 'ā–ƒ', '▁', 'ā–‚', '怀'] - for char in special_chars: - msg = msg.replace(char, '') - return msg - - def submit_API(self, prompt, trun=[]): - """Submit prompt to yuan API interface and obtain an pure text reply. - :prompt: Question or any content a user may input. - :return: pure text response.""" - query = self.craft_query(prompt) - res = self.response(query, engine=self.engine, - max_tokens=self.max_tokens, - temperature=self.temperature, - topP=self.topP, - topK=self.topK, - frequencyPenalty=self.frequencyPenalty, - responsePenalty=self.responsePenalty, - noRepeatNgramSize=self.noRepeatNgramSize) - if 'resData' in res and res['resData'] != None: - txt = res['resData'] - else: - txt = 'ęØ”åž‹čæ”å›žäøŗē©ŗļ¼ŒčÆ·å°čÆ•äæ®ę”¹č¾“å…„' - # å•ē‹¬é’ˆåÆ¹ēæ»čÆ‘ęØ”åž‹ēš„åŽå¤„ē† - if self.engine == 'translate': - txt = txt.replace(' ##', '').replace(' "', '"').replace(": ", ":").replace(" ,", ",") \ - .replace('č‹±ę–‡ļ¼š', '').replace('ę–‡ļ¼š', '').replace("( ", "(").replace(" )", ")") - else: - txt = txt.replace(' ', '') - txt = self.del_special_chars(txt) - - # trunå¤šē»“ęŸē¬¦ęˆŖę–­ęØ”åž‹č¾“å‡ŗ - if isinstance(trun, str): - trun = [trun] - try: - if trun != None and isinstance(trun, list) and trun != []: - for tr in trun: - if tr in txt and tr != "": - txt = txt[:txt.index(tr)] - else: - continue - except: - return txt - return txt - - -class YuanAPI: - ACCOUNT = '' - PHONE = '' - - SUBMIT_URL = "http://api.airyuan.cn:32102/v1/interface/api/infer/getRequestId?" - REPLY_URL = "http://api.airyuan.cn:32102/v1/interface/api/result?" - - def __init__(self, user, phone): - self.ACCOUNT = user - self.PHONE = phone - - @staticmethod - def code_md5(str): - code = str.encode("utf-8") - m = hashlib.md5() - m.update(code) - result = m.hexdigest() - return result - - @staticmethod - def rest_get(url, header, timeout, show_error=False): - '''Call rest get method''' - try: - response = requests.get(url, headers=header, timeout=timeout, verify=False) - return response - except Exception as exception: - if show_error: - print(exception) - return None - - def header_generation(self): - """Generate header for API request.""" - t = datetime.now(pytz.timezone("Asia/Shanghai")).strftime("%Y-%m-%d") - token = self.code_md5(self.ACCOUNT + self.PHONE + t) - headers = {'token': token} - return headers - - def submit_request(self, query, temperature, topP, topK, max_tokens, engine, frequencyPenalty, responsePenalty, - noRepeatNgramSize): - """Submit query to the backend server and get requestID.""" - headers = self.header_generation() - # url=SUBMIT_URL + "account={0}&data={1}&temperature={2}&topP={3}&topK={4}&tokensToGenerate={5}&type={6}".format(ACCOUNT,query,temperature,topP,topK,max_tokens,"api") - # url=SUBMIT_URL + "engine={0}&account={1}&data={2}&temperature={3}&topP={4}&topK={5}&tokensToGenerate={6}" \ - # "&type={7}".format(engine,ACCOUNT,query,temperature,topP,topK, max_tokens,"api") - url = self.SUBMIT_URL + "engine={0}&account={1}&data={2}&temperature={3}&topP={4}&topK={5}&tokensToGenerate={6}" \ - "&type={7}&frequencyPenalty={8}&responsePenalty={9}&noRepeatNgramSize={10}". \ - format(engine, self.ACCOUNT, query, temperature, topP, topK, max_tokens, "api", frequencyPenalty, - responsePenalty, noRepeatNgramSize) - response = self.rest_get(url, headers, 30) - response_text = json.loads(response.text) - if response_text["flag"]: - requestId = response_text["resData"] - return requestId - else: - raise RuntimeWarning(response_text) - - def reply_request(self, requestId, cycle_count=5): - """Check reply API to get the inference response.""" - url = self.REPLY_URL + "account={0}&requestId={1}".format(self.ACCOUNT, requestId) - headers = self.header_generation() - response_text = {"flag": True, "resData": None} - for i in range(cycle_count): - response = self.rest_get(url, headers, 30, show_error=True) - response_text = json.loads(response.text) - if response_text["resData"] is not None: - return response_text - if response_text["flag"] is False and i == cycle_count - 1: - raise RuntimeWarning(response_text) - time.sleep(3) - return response_text - - -class Yuan_Client(BaseLLMModel): - - def __init__(self, model_name, api_key, user_name="", system_prompt=None): - super().__init__(model_name=model_name, user=user_name) - self.history = [] - self.api_key = api_key - self.system_prompt = system_prompt - - self.input_prefix = "" - self.output_prefix = "" - - def set_text_prefix(self, option, value): - if option == 'input_prefix': - self.input_prefix = value - elif option == 'output_prefix': - self.output_prefix = value - - def get_answer_at_once(self): - # yuan temperature is (0,1] and base model temperature is [0,2], and yuan 0.9 == base 1 so need to convert - temperature = self.temperature if self.temperature <= 1 else 0.9 + (self.temperature - 1) / 10 - topP = self.top_p - topK = self.n_choices - # max_tokens should be in [1,200] - max_tokens = self.max_generation_token if self.max_generation_token is not None else 50 - if max_tokens > 200: - max_tokens = 200 - stop = self.stop_sequence if self.stop_sequence is not None else [] - examples = [] - system_prompt = self.system_prompt - if system_prompt is not None: - lines = system_prompt.splitlines() - # TODO: support prefixes in system prompt or settings - """ - if lines[0].startswith('-'): - prefixes = lines.pop()[1:].split('|') - self.input_prefix = prefixes[0] - if len(prefixes) > 1: - self.output_prefix = prefixes[1] - if len(prefixes) > 2: - stop = prefixes[2].split(',') - """ - for i in range(0, len(lines), 2): - in_line = lines[i] - out_line = lines[i + 1] if i + 1 < len(lines) else "" - examples.append((in_line, out_line)) - yuan = Yuan(engine=self.model_name.replace('yuanai-1.0-', ''), - temperature=temperature, - max_tokens=max_tokens, - topK=topK, - topP=topP, - input_prefix=self.input_prefix, - input_suffix="", - output_prefix=self.output_prefix, - output_suffix="".join(stop), - ) - if not self.api_key: - return NO_APIKEY_MSG, 0 - yuan.set_account(self.api_key) - - for in_line, out_line in examples: - yuan.add_example(Example(inp=in_line, out=out_line)) - - prompt = self.history[-1]["content"] - answer = yuan.submit_API(prompt, trun=stop) - return answer, len(answer) diff --git a/spaces/kabita-choudhary/summary/README.md b/spaces/kabita-choudhary/summary/README.md deleted file mode 100644 index 92925db2aeed3193b277d3bb10f05bbd6f15a967..0000000000000000000000000000000000000000 --- a/spaces/kabita-choudhary/summary/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Summary -emoji: šŸ“‰ -colorFrom: gray -colorTo: yellow -sdk: gradio -sdk_version: 3.9 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/kcagle/AutoGPT/tests/test_token_counter.py b/spaces/kcagle/AutoGPT/tests/test_token_counter.py deleted file mode 100644 index 6d7ae016b2f823123b0b69b2eeb3eab50d94f00f..0000000000000000000000000000000000000000 --- a/spaces/kcagle/AutoGPT/tests/test_token_counter.py +++ /dev/null @@ -1,63 +0,0 @@ -import unittest - -import tests.context -from autogpt.token_counter import count_message_tokens, count_string_tokens - - -class TestTokenCounter(unittest.TestCase): - def test_count_message_tokens(self): - messages = [ - {"role": "user", "content": "Hello"}, - {"role": "assistant", "content": "Hi there!"}, - ] - self.assertEqual(count_message_tokens(messages), 17) - - def test_count_message_tokens_with_name(self): - messages = [ - {"role": "user", "content": "Hello", "name": "John"}, - {"role": "assistant", "content": "Hi there!"}, - ] - self.assertEqual(count_message_tokens(messages), 17) - - def test_count_message_tokens_empty_input(self): - self.assertEqual(count_message_tokens([]), 3) - - def test_count_message_tokens_invalid_model(self): - messages = [ - {"role": "user", "content": "Hello"}, - {"role": "assistant", "content": "Hi there!"}, - ] - with self.assertRaises(KeyError): - count_message_tokens(messages, model="invalid_model") - - def test_count_message_tokens_gpt_4(self): - messages = [ - {"role": "user", "content": "Hello"}, - {"role": "assistant", "content": "Hi there!"}, - ] - self.assertEqual(count_message_tokens(messages, model="gpt-4-0314"), 15) - - def test_count_string_tokens(self): - string = "Hello, world!" - self.assertEqual( - count_string_tokens(string, model_name="gpt-3.5-turbo-0301"), 4 - ) - - def test_count_string_tokens_empty_input(self): - self.assertEqual(count_string_tokens("", model_name="gpt-3.5-turbo-0301"), 0) - - def test_count_message_tokens_invalid_model(self): - messages = [ - {"role": "user", "content": "Hello"}, - {"role": "assistant", "content": "Hi there!"}, - ] - with self.assertRaises(NotImplementedError): - count_message_tokens(messages, model="invalid_model") - - def test_count_string_tokens_gpt_4(self): - string = "Hello, world!" - self.assertEqual(count_string_tokens(string, model_name="gpt-4-0314"), 4) - - -if __name__ == "__main__": - unittest.main() diff --git a/spaces/keras-io/Node2Vec_MovieLens/app.py b/spaces/keras-io/Node2Vec_MovieLens/app.py deleted file mode 100644 index bf5eba96d7cb7721f614407867d5627ebc058798..0000000000000000000000000000000000000000 --- a/spaces/keras-io/Node2Vec_MovieLens/app.py +++ /dev/null @@ -1,183 +0,0 @@ -import pandas as pd -import numpy as np -from zipfile import ZipFile -import tensorflow as tf -from tensorflow import keras -from pathlib import Path -import matplotlib.pyplot as plt -import gradio as gr -from huggingface_hub import from_pretrained_keras -from collections import defaultdict -import math -import networkx as nx - -model = from_pretrained_keras("keras-io/Node2Vec_MovieLens") - -# Download the actual data from http://files.grouplens.org/datasets/movielens/ml-latest-small.zip" -movielens_data_file_url = "http://files.grouplens.org/datasets/movielens/ml-latest-small.zip" -movielens_zipped_file = keras.utils.get_file("ml-latest-small.zip", movielens_data_file_url, extract=False) -keras_datasets_path = Path(movielens_zipped_file).parents[0] -movielens_dir = keras_datasets_path / "ml-latest-small" - -# Only extract the data the first time the script is run. -if not movielens_dir.exists(): - with ZipFile(movielens_zipped_file, "r") as zip: - # Extract files - print("Extracting all the files now...") - zip.extractall(path=keras_datasets_path) - print("Done!") - -# Read the Movies csv -movies = pd.read_csv(f"{movielens_dir}/movies.csv") -# Create a `movieId` string. -movies["movieId"] = movies["movieId"].apply(lambda x: f"movie_{x}") - -# Load ratings to a DataFrame. -ratings = pd.read_csv(f"{movielens_dir}/ratings.csv") -# Convert the `ratings` to floating point -ratings["rating"] = ratings["rating"].apply(lambda x: float(x)) -# Create the `movie_id` string. -ratings["movieId"] = ratings["movieId"].apply(lambda x: f"movie_{x}") - -# Implement two utility functions for the movies DataFrame. -def get_movie_title_by_id(movieId): - return list(movies[movies.movieId == movieId].title)[0] - - -def get_movie_id_by_title(title): - return list(movies[movies.title == title].movieId)[0] - -# Create Weighted Edges between movies -min_rating = 5 -pair_frequency = defaultdict(int) -item_frequency = defaultdict(int) - -# Filter instances where rating is greater than or equal to min_rating. -rated_movies = ratings[ratings.rating >= min_rating] -# Group instances by user. -movies_grouped_by_users = list(rated_movies.groupby("userId")) -for group in movies_grouped_by_users: - # Get a list of movies rated by the user. - current_movies = list(group[1]["movieId"]) - - for i in range(len(current_movies)): - item_frequency[current_movies[i]] += 1 - for j in range(i + 1, len(current_movies)): - x = min(current_movies[i], current_movies[j]) - y = max(current_movies[i], current_movies[j]) - pair_frequency[(x, y)] += 1 - -# Create the graph with the nodes and the edges - -min_weight = 10 -D = math.log(sum(item_frequency.values())) - -# Create the movies undirected graph. -movies_graph = nx.Graph() -# Add weighted edges between movies. -# This automatically adds the movie nodes to the graph. -for pair in pair_frequency: - x, y = pair - xy_frequency = pair_frequency[pair] - x_frequency = item_frequency[x] - y_frequency = item_frequency[y] - pmi = math.log(xy_frequency) - math.log(x_frequency) - math.log(y_frequency) + D - weight = pmi * xy_frequency - # Only include edges with weight >= min_weight. - if weight >= min_weight: - movies_graph.add_edge(x, y, weight=weight) -# Create vocabulary and a mapping from tokens to integer indices -vocabulary = ["NA"] + list(movies_graph.nodes) -vocabulary_lookup = {token: idx for idx, token in enumerate(vocabulary)} - -# Analyze the learnt embeddings. -movie_embeddings = model.get_layer("item_embeddings").get_weights()[0] - -# Find Related Movies -movie_titles = [] - -for uniq_mov_id in list(set(movies_graph.nodes)): - movie_title = get_movie_title_by_id(uniq_mov_id) - movie_titles.append(movie_title) - -def find_related_movies(movie_title, k): - k = int(k) - query_embeddings = [] - movieId = get_movie_id_by_title(movie_title) - token_id = vocabulary_lookup[movieId] - query_embedding = movie_embeddings[token_id] - query_embeddings.append(query_embedding) - query_embeddings = np.array(query_embeddings) - - similarities = tf.linalg.matmul( - tf.math.l2_normalize(query_embeddings), - tf.math.l2_normalize(movie_embeddings), - transpose_b=True, - ) - _, indices = tf.math.top_k(similarities, k) - indices = indices.numpy().tolist() - similar_tokens = indices[0] - related_movies = [] - - for token in similar_tokens: - similar_movieId = vocabulary[token] - similar_title = get_movie_title_by_id(similar_movieId) - related_movies.append(similar_title) - - related_movies_df = pd.DataFrame({'Related Movies':related_movies}) - return related_movies_df - - - -demo = gr.Blocks() -with demo: - gr.Markdown(""" -
          -

          Find Related Movies

          -

          Choose the specific movie from the dropdown and see the top k related Movies

          - - Note: The dropdown menu provides movie options from the Movielens dataset. -
          - """) - - with gr.Box(): - gr.Markdown( - """ - ### Input - #### Select a movie to find other related movies. - """) - - inp1 = gr.Dropdown(movie_titles) - gr.Markdown( - """ -
          - """) - gr.Markdown( - """ - #### Number of related movies you wanna find? - """) - inp2 = gr.Number() - btn = gr.Button("Run") - - with gr.Box(): - gr.Markdown( - """ - ### Output - #### Top K related movies. - """) - df1 = gr.DataFrame(headers=["title"], datatype=["str"], interactive=False) - - with gr.Row(): - gr.Markdown( - """ -

          Credits

          - Author: Khalid Salama.
          - Based on the following Keras example Graph representation learning with node2vec by Khalid Salama
          - Check out the model here - """ - ) - - - btn.click(fn=find_related_movies, inputs=[inp1,inp2], outputs=df1) - -demo.launch(debug=True) \ No newline at end of file diff --git a/spaces/kevinwang676/Bark-Coqui/bark_voices/blank.md b/spaces/kevinwang676/Bark-Coqui/bark_voices/blank.md deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/kevinwang676/ChatGLM2-VC-SadTalker/src/face3d/models/arcface_torch/configs/ms1mv3_mbf.py b/spaces/kevinwang676/ChatGLM2-VC-SadTalker/src/face3d/models/arcface_torch/configs/ms1mv3_mbf.py deleted file mode 100644 index b8a00d6305eeda5a94788017afc1cda0d4a4cd2a..0000000000000000000000000000000000000000 --- a/spaces/kevinwang676/ChatGLM2-VC-SadTalker/src/face3d/models/arcface_torch/configs/ms1mv3_mbf.py +++ /dev/null @@ -1,26 +0,0 @@ -from easydict import EasyDict as edict - -# make training faster -# our RAM is 256G -# mount -t tmpfs -o size=140G tmpfs /train_tmp - -config = edict() -config.loss = "arcface" -config.network = "mbf" -config.resume = False -config.output = None -config.embedding_size = 512 -config.sample_rate = 1.0 -config.fp16 = True -config.momentum = 0.9 -config.weight_decay = 2e-4 -config.batch_size = 128 -config.lr = 0.1 # batch size is 512 - -config.rec = "/train_tmp/ms1m-retinaface-t1" -config.num_classes = 93431 -config.num_image = 5179510 -config.num_epoch = 30 -config.warmup_epoch = -1 -config.decay_epoch = [10, 20, 25] -config.val_targets = ["lfw", "cfp_fp", "agedb_30"] diff --git a/spaces/kevinwang676/ChatGLM2-VC-SadTalker/src/facerender/sync_batchnorm/comm.py b/spaces/kevinwang676/ChatGLM2-VC-SadTalker/src/facerender/sync_batchnorm/comm.py deleted file mode 100644 index 922f8c4a3adaa9b32fdcaef09583be03b0d7eb2b..0000000000000000000000000000000000000000 --- a/spaces/kevinwang676/ChatGLM2-VC-SadTalker/src/facerender/sync_batchnorm/comm.py +++ /dev/null @@ -1,137 +0,0 @@ -# -*- coding: utf-8 -*- -# File : comm.py -# Author : Jiayuan Mao -# Email : maojiayuan@gmail.com -# Date : 27/01/2018 -# -# This file is part of Synchronized-BatchNorm-PyTorch. -# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch -# Distributed under MIT License. - -import queue -import collections -import threading - -__all__ = ['FutureResult', 'SlavePipe', 'SyncMaster'] - - -class FutureResult(object): - """A thread-safe future implementation. Used only as one-to-one pipe.""" - - def __init__(self): - self._result = None - self._lock = threading.Lock() - self._cond = threading.Condition(self._lock) - - def put(self, result): - with self._lock: - assert self._result is None, 'Previous result has\'t been fetched.' - self._result = result - self._cond.notify() - - def get(self): - with self._lock: - if self._result is None: - self._cond.wait() - - res = self._result - self._result = None - return res - - -_MasterRegistry = collections.namedtuple('MasterRegistry', ['result']) -_SlavePipeBase = collections.namedtuple('_SlavePipeBase', ['identifier', 'queue', 'result']) - - -class SlavePipe(_SlavePipeBase): - """Pipe for master-slave communication.""" - - def run_slave(self, msg): - self.queue.put((self.identifier, msg)) - ret = self.result.get() - self.queue.put(True) - return ret - - -class SyncMaster(object): - """An abstract `SyncMaster` object. - - - During the replication, as the data parallel will trigger an callback of each module, all slave devices should - call `register(id)` and obtain an `SlavePipe` to communicate with the master. - - During the forward pass, master device invokes `run_master`, all messages from slave devices will be collected, - and passed to a registered callback. - - After receiving the messages, the master device should gather the information and determine to message passed - back to each slave devices. - """ - - def __init__(self, master_callback): - """ - - Args: - master_callback: a callback to be invoked after having collected messages from slave devices. - """ - self._master_callback = master_callback - self._queue = queue.Queue() - self._registry = collections.OrderedDict() - self._activated = False - - def __getstate__(self): - return {'master_callback': self._master_callback} - - def __setstate__(self, state): - self.__init__(state['master_callback']) - - def register_slave(self, identifier): - """ - Register an slave device. - - Args: - identifier: an identifier, usually is the device id. - - Returns: a `SlavePipe` object which can be used to communicate with the master device. - - """ - if self._activated: - assert self._queue.empty(), 'Queue is not clean before next initialization.' - self._activated = False - self._registry.clear() - future = FutureResult() - self._registry[identifier] = _MasterRegistry(future) - return SlavePipe(identifier, self._queue, future) - - def run_master(self, master_msg): - """ - Main entry for the master device in each forward pass. - The messages were first collected from each devices (including the master device), and then - an callback will be invoked to compute the message to be sent back to each devices - (including the master device). - - Args: - master_msg: the message that the master want to send to itself. This will be placed as the first - message when calling `master_callback`. For detailed usage, see `_SynchronizedBatchNorm` for an example. - - Returns: the message to be sent back to the master device. - - """ - self._activated = True - - intermediates = [(0, master_msg)] - for i in range(self.nr_slaves): - intermediates.append(self._queue.get()) - - results = self._master_callback(intermediates) - assert results[0][0] == 0, 'The first result should belongs to the master.' - - for i, res in results: - if i == 0: - continue - self._registry[i].result.put(res) - - for i in range(self.nr_slaves): - assert self._queue.get() is True - - return results[0][1] - - @property - def nr_slaves(self): - return len(self._registry) diff --git a/spaces/kirch/Text2Video-Zero/annotator/uniformer/mmseg/models/decode_heads/fpn_head.py b/spaces/kirch/Text2Video-Zero/annotator/uniformer/mmseg/models/decode_heads/fpn_head.py deleted file mode 100644 index 1241c55b0813d1ecdddf1e66e7c5031fbf78ed50..0000000000000000000000000000000000000000 --- a/spaces/kirch/Text2Video-Zero/annotator/uniformer/mmseg/models/decode_heads/fpn_head.py +++ /dev/null @@ -1,68 +0,0 @@ -import numpy as np -import torch.nn as nn -from annotator.uniformer.mmcv.cnn import ConvModule - -from annotator.uniformer.mmseg.ops import resize -from ..builder import HEADS -from .decode_head import BaseDecodeHead - - -@HEADS.register_module() -class FPNHead(BaseDecodeHead): - """Panoptic Feature Pyramid Networks. - - This head is the implementation of `Semantic FPN - `_. - - Args: - feature_strides (tuple[int]): The strides for input feature maps. - stack_lateral. All strides suppose to be power of 2. The first - one is of largest resolution. - """ - - def __init__(self, feature_strides, **kwargs): - super(FPNHead, self).__init__( - input_transform='multiple_select', **kwargs) - assert len(feature_strides) == len(self.in_channels) - assert min(feature_strides) == feature_strides[0] - self.feature_strides = feature_strides - - self.scale_heads = nn.ModuleList() - for i in range(len(feature_strides)): - head_length = max( - 1, - int(np.log2(feature_strides[i]) - np.log2(feature_strides[0]))) - scale_head = [] - for k in range(head_length): - scale_head.append( - ConvModule( - self.in_channels[i] if k == 0 else self.channels, - self.channels, - 3, - padding=1, - conv_cfg=self.conv_cfg, - norm_cfg=self.norm_cfg, - act_cfg=self.act_cfg)) - if feature_strides[i] != feature_strides[0]: - scale_head.append( - nn.Upsample( - scale_factor=2, - mode='bilinear', - align_corners=self.align_corners)) - self.scale_heads.append(nn.Sequential(*scale_head)) - - def forward(self, inputs): - - x = self._transform_inputs(inputs) - - output = self.scale_heads[0](x[0]) - for i in range(1, len(self.feature_strides)): - # non inplace - output = output + resize( - self.scale_heads[i](x[i]), - size=output.shape[2:], - mode='bilinear', - align_corners=self.align_corners) - - output = self.cls_seg(output) - return output diff --git a/spaces/kohrisatou-infinity/KIP_01_beta/data_utils.py b/spaces/kohrisatou-infinity/KIP_01_beta/data_utils.py deleted file mode 100644 index 9dfba4a9dfbfbd2b6ed5e771a5ffee4f70419ba3..0000000000000000000000000000000000000000 --- a/spaces/kohrisatou-infinity/KIP_01_beta/data_utils.py +++ /dev/null @@ -1,152 +0,0 @@ -import time -import os -import random -import numpy as np -import torch -import torch.utils.data - -import commons -from mel_processing import spectrogram_torch, spec_to_mel_torch -from utils import load_wav_to_torch, load_filepaths_and_text, transform - -# import h5py - - -"""Multi speaker version""" - - -class TextAudioSpeakerLoader(torch.utils.data.Dataset): - """ - 1) loads audio, speaker_id, text pairs - 2) normalizes text and converts them to sequences of integers - 3) computes spectrograms from audio files. - """ - - def __init__(self, audiopaths, hparams): - self.audiopaths = load_filepaths_and_text(audiopaths) - self.max_wav_value = hparams.data.max_wav_value - self.sampling_rate = hparams.data.sampling_rate - self.filter_length = hparams.data.filter_length - self.hop_length = hparams.data.hop_length - self.win_length = hparams.data.win_length - self.sampling_rate = hparams.data.sampling_rate - self.use_sr = hparams.train.use_sr - self.spec_len = hparams.train.max_speclen - self.spk_map = hparams.spk - - random.seed(1234) - random.shuffle(self.audiopaths) - - def get_audio(self, filename): - audio, sampling_rate = load_wav_to_torch(filename) - if sampling_rate != self.sampling_rate: - raise ValueError("{} SR doesn't match target {} SR".format( - sampling_rate, self.sampling_rate)) - audio_norm = audio / self.max_wav_value - audio_norm = audio_norm.unsqueeze(0) - spec_filename = filename.replace(".wav", ".spec.pt") - if os.path.exists(spec_filename): - spec = torch.load(spec_filename) - else: - spec = spectrogram_torch(audio_norm, self.filter_length, - self.sampling_rate, self.hop_length, self.win_length, - center=False) - spec = torch.squeeze(spec, 0) - torch.save(spec, spec_filename) - - spk = filename.split(os.sep)[-2] - spk = torch.LongTensor([self.spk_map[spk]]) - - c = torch.load(filename + ".soft.pt").squeeze(0) - c = torch.repeat_interleave(c, repeats=2, dim=1) - - f0 = np.load(filename + ".f0.npy") - f0 = torch.FloatTensor(f0) - lmin = min(c.size(-1), spec.size(-1), f0.shape[0]) - assert abs(c.size(-1) - spec.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape, filename) - assert abs(lmin - spec.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape) - assert abs(lmin - c.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape) - spec, c, f0 = spec[:, :lmin], c[:, :lmin], f0[:lmin] - audio_norm = audio_norm[:, :lmin * self.hop_length] - _spec, _c, _audio_norm, _f0 = spec, c, audio_norm, f0 - while spec.size(-1) < self.spec_len: - spec = torch.cat((spec, _spec), -1) - c = torch.cat((c, _c), -1) - f0 = torch.cat((f0, _f0), -1) - audio_norm = torch.cat((audio_norm, _audio_norm), -1) - start = random.randint(0, spec.size(-1) - self.spec_len) - end = start + self.spec_len - spec = spec[:, start:end] - c = c[:, start:end] - f0 = f0[start:end] - audio_norm = audio_norm[:, start * self.hop_length:end * self.hop_length] - - return c, f0, spec, audio_norm, spk - - def __getitem__(self, index): - return self.get_audio(self.audiopaths[index][0]) - - def __len__(self): - return len(self.audiopaths) - - -class EvalDataLoader(torch.utils.data.Dataset): - """ - 1) loads audio, speaker_id, text pairs - 2) normalizes text and converts them to sequences of integers - 3) computes spectrograms from audio files. - """ - - def __init__(self, audiopaths, hparams): - self.audiopaths = load_filepaths_and_text(audiopaths) - self.max_wav_value = hparams.data.max_wav_value - self.sampling_rate = hparams.data.sampling_rate - self.filter_length = hparams.data.filter_length - self.hop_length = hparams.data.hop_length - self.win_length = hparams.data.win_length - self.sampling_rate = hparams.data.sampling_rate - self.use_sr = hparams.train.use_sr - self.audiopaths = self.audiopaths[:5] - self.spk_map = hparams.spk - - - def get_audio(self, filename): - audio, sampling_rate = load_wav_to_torch(filename) - if sampling_rate != self.sampling_rate: - raise ValueError("{} SR doesn't match target {} SR".format( - sampling_rate, self.sampling_rate)) - audio_norm = audio / self.max_wav_value - audio_norm = audio_norm.unsqueeze(0) - spec_filename = filename.replace(".wav", ".spec.pt") - if os.path.exists(spec_filename): - spec = torch.load(spec_filename) - else: - spec = spectrogram_torch(audio_norm, self.filter_length, - self.sampling_rate, self.hop_length, self.win_length, - center=False) - spec = torch.squeeze(spec, 0) - torch.save(spec, spec_filename) - - spk = filename.split(os.sep)[-2] - spk = torch.LongTensor([self.spk_map[spk]]) - - c = torch.load(filename + ".soft.pt").squeeze(0) - - c = torch.repeat_interleave(c, repeats=2, dim=1) - - f0 = np.load(filename + ".f0.npy") - f0 = torch.FloatTensor(f0) - lmin = min(c.size(-1), spec.size(-1), f0.shape[0]) - assert abs(c.size(-1) - spec.size(-1)) < 4, (c.size(-1), spec.size(-1), f0.shape) - assert abs(f0.shape[0] - spec.shape[-1]) < 4, (c.size(-1), spec.size(-1), f0.shape) - spec, c, f0 = spec[:, :lmin], c[:, :lmin], f0[:lmin] - audio_norm = audio_norm[:, :lmin * self.hop_length] - - return c, f0, spec, audio_norm, spk - - def __getitem__(self, index): - return self.get_audio(self.audiopaths[index][0]) - - def __len__(self): - return len(self.audiopaths) - diff --git a/spaces/kukuhtw/AutoGPT/ui/api.py b/spaces/kukuhtw/AutoGPT/ui/api.py deleted file mode 100644 index 3b46ad32148b23f06c6eb64c88708fc2bf92e4dc..0000000000000000000000000000000000000000 --- a/spaces/kukuhtw/AutoGPT/ui/api.py +++ /dev/null @@ -1,146 +0,0 @@ -import os, sys -import utils -import uuid -import json -import subprocess, threading - -FILE_DIR = os.path.dirname(os.path.abspath(__file__)) -REPO_DIR = os.path.dirname(FILE_DIR) -STATE_DIR = os.path.join(FILE_DIR, "state") -sys.path.append(REPO_DIR) -if not os.path.exists(STATE_DIR): - os.mkdir(STATE_DIR) -import time - - -def get_openai_api_key(): - return os.getenv("OPENAI_API_KEY") - - -running_apis = [] - - -def get_state(state_file): - with open(state_file, "r") as f: - state = json.load(f) - return state - - -def set_state(state_file, state): - with open(state_file, "w") as f: - json.dump(state, f) - - -class AutoAPI: - def __init__(self, openai_key, ai_name, ai_role, top_5_goals): - self.openai_key = openai_key - hex = uuid.uuid4().hex - print(hex) - self.state_file = os.path.join(STATE_DIR, f"state_{hex}.json") - self.log_file = os.path.join(STATE_DIR, f"log_{hex}.json") - - newline = "\n" - with open(os.path.join(REPO_DIR, "ai_settings.yaml"), "w") as f: - f.write( - f"""ai_goals: -{newline.join([f'- {goal[0]}' for goal in top_5_goals if goal[0]])} -ai_name: {ai_name} -ai_role: {ai_role} -""" - ) - state = { - "pending_input": None, - "awaiting_input": False, - "messages": [], - "last_message_read_index": -1, - } - set_state(self.state_file, state) - - with open(self.log_file, "w") as f: - subprocess.Popen( - [ - "python", - os.path.join(REPO_DIR, "ui", "api.py"), - openai_key, - self.state_file, - ], - cwd=REPO_DIR, - stdout=f, - stderr=f, - ) - - def send_message(self, message="Y"): - state = get_state(self.state_file) - state["pending_input"] = message - state["awaiting_input"] = False - set_state(self.state_file, state) - - def get_chatbot_response(self): - while True: - state = get_state(self.state_file) - if ( - state["awaiting_input"] - and state["last_message_read_index"] >= len(state["messages"]) - 1 - ): - break - if state["last_message_read_index"] >= len(state["messages"]) - 1: - time.sleep(1) - else: - state["last_message_read_index"] += 1 - title, content = state["messages"][state["last_message_read_index"]] - yield (f"**{title.strip()}** " if title else "") + utils.remove_color( - content - ).replace("\n", "
          ") - set_state(self.state_file, state) - - -if __name__ == "__main__": - print(sys.argv) - _, openai_key, state_file = sys.argv - os.environ["OPENAI_API_KEY"] = openai_key - import autogpt.config.config - from autogpt.logs import logger - from autogpt.cli import main - import autogpt.utils - from autogpt.spinner import Spinner - - def add_message(title, content): - state = get_state(state_file) - state["messages"].append((title, content)) - set_state(state_file, state) - - def typewriter_log(title="", title_color="", content="", *args, **kwargs): - add_message(title, content) - - def warn(message, title="", *args, **kwargs): - add_message(title, message) - - def error(title, message="", *args, **kwargs): - add_message(title, message) - - def clean_input(prompt=""): - add_message(None, prompt) - state = get_state(state_file) - state["awaiting_input"] = True - set_state(state_file, state) - while state["pending_input"] is None: - state = get_state(state_file) - print("Waiting for input...") - time.sleep(1) - print("Got input") - pending_input = state["pending_input"] - state["pending_input"] = None - set_state(state_file, state) - return pending_input - - def spinner_start(): - add_message(None, "Thinking...") - - logger.typewriter_log = typewriter_log - logger.warn = warn - logger.error = error - autogpt.utils.clean_input = clean_input - Spinner.spin = spinner_start - - sys.argv = sys.argv[:1] - main() diff --git a/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/fontTools/merge/tables.py b/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/fontTools/merge/tables.py deleted file mode 100644 index b3c7dc396e2c538f747de8e7502c41234f73cbc8..0000000000000000000000000000000000000000 --- a/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/fontTools/merge/tables.py +++ /dev/null @@ -1,338 +0,0 @@ -# Copyright 2013 Google, Inc. All Rights Reserved. -# -# Google Author(s): Behdad Esfahbod, Roozbeh Pournader - -from fontTools import ttLib, cffLib -from fontTools.misc.psCharStrings import T2WidthExtractor -from fontTools.ttLib.tables.DefaultTable import DefaultTable -from fontTools.merge.base import add_method, mergeObjects -from fontTools.merge.cmap import computeMegaCmap -from fontTools.merge.util import * -import logging - - -log = logging.getLogger("fontTools.merge") - - -ttLib.getTableClass("maxp").mergeMap = { - "*": max, - "tableTag": equal, - "tableVersion": equal, - "numGlyphs": sum, - "maxStorage": first, - "maxFunctionDefs": first, - "maxInstructionDefs": first, - # TODO When we correctly merge hinting data, update these values: - # maxFunctionDefs, maxInstructionDefs, maxSizeOfInstructions -} - -headFlagsMergeBitMap = { - "size": 16, - "*": bitwise_or, - 1: bitwise_and, # Baseline at y = 0 - 2: bitwise_and, # lsb at x = 0 - 3: bitwise_and, # Force ppem to integer values. FIXME? - 5: bitwise_and, # Font is vertical - 6: lambda bit: 0, # Always set to zero - 11: bitwise_and, # Font data is 'lossless' - 13: bitwise_and, # Optimized for ClearType - 14: bitwise_and, # Last resort font. FIXME? equal or first may be better - 15: lambda bit: 0, # Always set to zero -} - -ttLib.getTableClass("head").mergeMap = { - "tableTag": equal, - "tableVersion": max, - "fontRevision": max, - "checkSumAdjustment": lambda lst: 0, # We need *something* here - "magicNumber": equal, - "flags": mergeBits(headFlagsMergeBitMap), - "unitsPerEm": equal, - "created": current_time, - "modified": current_time, - "xMin": min, - "yMin": min, - "xMax": max, - "yMax": max, - "macStyle": first, - "lowestRecPPEM": max, - "fontDirectionHint": lambda lst: 2, - "indexToLocFormat": first, - "glyphDataFormat": equal, -} - -ttLib.getTableClass("hhea").mergeMap = { - "*": equal, - "tableTag": equal, - "tableVersion": max, - "ascent": max, - "descent": min, - "lineGap": max, - "advanceWidthMax": max, - "minLeftSideBearing": min, - "minRightSideBearing": min, - "xMaxExtent": max, - "caretSlopeRise": first, - "caretSlopeRun": first, - "caretOffset": first, - "numberOfHMetrics": recalculate, -} - -ttLib.getTableClass("vhea").mergeMap = { - "*": equal, - "tableTag": equal, - "tableVersion": max, - "ascent": max, - "descent": min, - "lineGap": max, - "advanceHeightMax": max, - "minTopSideBearing": min, - "minBottomSideBearing": min, - "yMaxExtent": max, - "caretSlopeRise": first, - "caretSlopeRun": first, - "caretOffset": first, - "numberOfVMetrics": recalculate, -} - -os2FsTypeMergeBitMap = { - "size": 16, - "*": lambda bit: 0, - 1: bitwise_or, # no embedding permitted - 2: bitwise_and, # allow previewing and printing documents - 3: bitwise_and, # allow editing documents - 8: bitwise_or, # no subsetting permitted - 9: bitwise_or, # no embedding of outlines permitted -} - - -def mergeOs2FsType(lst): - lst = list(lst) - if all(item == 0 for item in lst): - return 0 - - # Compute least restrictive logic for each fsType value - for i in range(len(lst)): - # unset bit 1 (no embedding permitted) if either bit 2 or 3 is set - if lst[i] & 0x000C: - lst[i] &= ~0x0002 - # set bit 2 (allow previewing) if bit 3 is set (allow editing) - elif lst[i] & 0x0008: - lst[i] |= 0x0004 - # set bits 2 and 3 if everything is allowed - elif lst[i] == 0: - lst[i] = 0x000C - - fsType = mergeBits(os2FsTypeMergeBitMap)(lst) - # unset bits 2 and 3 if bit 1 is set (some font is "no embedding") - if fsType & 0x0002: - fsType &= ~0x000C - return fsType - - -ttLib.getTableClass("OS/2").mergeMap = { - "*": first, - "tableTag": equal, - "version": max, - "xAvgCharWidth": first, # Will be recalculated at the end on the merged font - "fsType": mergeOs2FsType, # Will be overwritten - "panose": first, # FIXME: should really be the first Latin font - "ulUnicodeRange1": bitwise_or, - "ulUnicodeRange2": bitwise_or, - "ulUnicodeRange3": bitwise_or, - "ulUnicodeRange4": bitwise_or, - "fsFirstCharIndex": min, - "fsLastCharIndex": max, - "sTypoAscender": max, - "sTypoDescender": min, - "sTypoLineGap": max, - "usWinAscent": max, - "usWinDescent": max, - # Version 1 - "ulCodePageRange1": onlyExisting(bitwise_or), - "ulCodePageRange2": onlyExisting(bitwise_or), - # Version 2, 3, 4 - "sxHeight": onlyExisting(max), - "sCapHeight": onlyExisting(max), - "usDefaultChar": onlyExisting(first), - "usBreakChar": onlyExisting(first), - "usMaxContext": onlyExisting(max), - # version 5 - "usLowerOpticalPointSize": onlyExisting(min), - "usUpperOpticalPointSize": onlyExisting(max), -} - - -@add_method(ttLib.getTableClass("OS/2")) -def merge(self, m, tables): - DefaultTable.merge(self, m, tables) - if self.version < 2: - # bits 8 and 9 are reserved and should be set to zero - self.fsType &= ~0x0300 - if self.version >= 3: - # Only one of bits 1, 2, and 3 may be set. We already take - # care of bit 1 implications in mergeOs2FsType. So unset - # bit 2 if bit 3 is already set. - if self.fsType & 0x0008: - self.fsType &= ~0x0004 - return self - - -ttLib.getTableClass("post").mergeMap = { - "*": first, - "tableTag": equal, - "formatType": max, - "isFixedPitch": min, - "minMemType42": max, - "maxMemType42": lambda lst: 0, - "minMemType1": max, - "maxMemType1": lambda lst: 0, - "mapping": onlyExisting(sumDicts), - "extraNames": lambda lst: [], -} - -ttLib.getTableClass("vmtx").mergeMap = ttLib.getTableClass("hmtx").mergeMap = { - "tableTag": equal, - "metrics": sumDicts, -} - -ttLib.getTableClass("name").mergeMap = { - "tableTag": equal, - "names": first, # FIXME? Does mixing name records make sense? -} - -ttLib.getTableClass("loca").mergeMap = { - "*": recalculate, - "tableTag": equal, -} - -ttLib.getTableClass("glyf").mergeMap = { - "tableTag": equal, - "glyphs": sumDicts, - "glyphOrder": sumLists, - "axisTags": equal, -} - - -@add_method(ttLib.getTableClass("glyf")) -def merge(self, m, tables): - for i, table in enumerate(tables): - for g in table.glyphs.values(): - if i: - # Drop hints for all but first font, since - # we don't map functions / CVT values. - g.removeHinting() - # Expand composite glyphs to load their - # composite glyph names. - if g.isComposite() or g.isVarComposite(): - g.expand(table) - return DefaultTable.merge(self, m, tables) - - -ttLib.getTableClass("prep").mergeMap = lambda self, lst: first(lst) -ttLib.getTableClass("fpgm").mergeMap = lambda self, lst: first(lst) -ttLib.getTableClass("cvt ").mergeMap = lambda self, lst: first(lst) -ttLib.getTableClass("gasp").mergeMap = lambda self, lst: first( - lst -) # FIXME? Appears irreconcilable - - -@add_method(ttLib.getTableClass("CFF ")) -def merge(self, m, tables): - if any(hasattr(table, "FDSelect") for table in tables): - raise NotImplementedError("Merging CID-keyed CFF tables is not supported yet") - - for table in tables: - table.cff.desubroutinize() - - newcff = tables[0] - newfont = newcff.cff[0] - private = newfont.Private - newDefaultWidthX, newNominalWidthX = private.defaultWidthX, private.nominalWidthX - storedNamesStrings = [] - glyphOrderStrings = [] - glyphOrder = set(newfont.getGlyphOrder()) - - for name in newfont.strings.strings: - if name not in glyphOrder: - storedNamesStrings.append(name) - else: - glyphOrderStrings.append(name) - - chrset = list(newfont.charset) - newcs = newfont.CharStrings - log.debug("FONT 0 CharStrings: %d.", len(newcs)) - - for i, table in enumerate(tables[1:], start=1): - font = table.cff[0] - defaultWidthX, nominalWidthX = ( - font.Private.defaultWidthX, - font.Private.nominalWidthX, - ) - widthsDiffer = ( - defaultWidthX != newDefaultWidthX or nominalWidthX != newNominalWidthX - ) - font.Private = private - fontGlyphOrder = set(font.getGlyphOrder()) - for name in font.strings.strings: - if name in fontGlyphOrder: - glyphOrderStrings.append(name) - cs = font.CharStrings - gs = table.cff.GlobalSubrs - log.debug("Font %d CharStrings: %d.", i, len(cs)) - chrset.extend(font.charset) - if newcs.charStringsAreIndexed: - for i, name in enumerate(cs.charStrings, start=len(newcs)): - newcs.charStrings[name] = i - newcs.charStringsIndex.items.append(None) - for name in cs.charStrings: - if widthsDiffer: - c = cs[name] - defaultWidthXToken = object() - extractor = T2WidthExtractor([], [], nominalWidthX, defaultWidthXToken) - extractor.execute(c) - width = extractor.width - if width is not defaultWidthXToken: - c.program.pop(0) - else: - width = defaultWidthX - if width != newDefaultWidthX: - c.program.insert(0, width - newNominalWidthX) - newcs[name] = cs[name] - - newfont.charset = chrset - newfont.numGlyphs = len(chrset) - newfont.strings.strings = glyphOrderStrings + storedNamesStrings - - return newcff - - -@add_method(ttLib.getTableClass("cmap")) -def merge(self, m, tables): - # TODO Handle format=14. - if not hasattr(m, "cmap"): - computeMegaCmap(m, tables) - cmap = m.cmap - - cmapBmpOnly = {uni: gid for uni, gid in cmap.items() if uni <= 0xFFFF} - self.tables = [] - module = ttLib.getTableModule("cmap") - if len(cmapBmpOnly) != len(cmap): - # format-12 required. - cmapTable = module.cmap_classes[12](12) - cmapTable.platformID = 3 - cmapTable.platEncID = 10 - cmapTable.language = 0 - cmapTable.cmap = cmap - self.tables.append(cmapTable) - # always create format-4 - cmapTable = module.cmap_classes[4](4) - cmapTable.platformID = 3 - cmapTable.platEncID = 1 - cmapTable.language = 0 - cmapTable.cmap = cmapBmpOnly - # ordered by platform then encoding - self.tables.insert(0, cmapTable) - self.tableVersion = 0 - self.numSubTables = len(self.tables) - return self diff --git a/spaces/lifan0127/zotero-qa/functions.py b/spaces/lifan0127/zotero-qa/functions.py deleted file mode 100644 index fef4f17e1c34d11a9d9951963d39cdf8f0caca92..0000000000000000000000000000000000000000 --- a/spaces/lifan0127/zotero-qa/functions.py +++ /dev/null @@ -1,395 +0,0 @@ -import gradio as gr -import os -import re -import requests -import tempfile -import time -from pyzotero import zotero -from paperqa import Docs -from lxml import html -from models import Icons, Message - - -def is_integer(string): - try: - int(string) - except ValueError: - return False - else: - return True - - -def reset_open_ai(openai_api_key): - os.environ['OPENAI_API_KEY'] = openai_api_key.strip() - return gr.HTML.update(value=None) - - -def fetch_collections(openai_api_key, id, type, key, messages): - if openai_api_key == '': - messages.append( - Message(Icons.ERR, f"Your Open API key is missing. Check out: https://platform.openai.com/overview.")) - return ( - None, - [], - None, - gr.Button.update(visible=True), - gr.HTML.update(visible=True), - messages, - gr.HTML.update(value=str(messages)), - ) - if key == '': - messages.append( - Message(Icons.ERR, f"Your Zotero API key is missing. Click here to create a new one.")) - return ( - None, - [], - None, - gr.Button.update(visible=True), - gr.HTML.update(visible=True), - messages, - gr.HTML.update(value=str(messages)), - ) - if not is_integer(id): - messages.append( - Message(Icons.ERR, f"Your Zotero ID should be an integer.")) - return ( - None, - [], - None, - gr.Button.update(visible=True), - gr.HTML.update(visible=True), - messages, - gr.HTML.update(value=str(messages)), - ) - - zot = zotero.Zotero(int(id), type.lower(), key) - try: - collections = zot.collections_top() - collection_names = [ - f"{x['data']['name']} ({x['meta']['numItems']})" for x in collections] - messages.append( - Message(Icons.INFO, "Please select a Zotero collection to proceed.")) - return ( - zot, - collections, - gr.Radio.update(choices=collection_names, - visible=True, interactive=True), - gr.Button.update(visible=False), - gr.HTML.update(visible=False), - messages, - gr.HTML.update(value=str(messages)), - ) - except Exception as e: - messages.append( - Message(Icons.ERR, f"Error occurred when fetching Zotero collection: {e}")) - return ( - None, - [], - None, - gr.Button.update(visible=True), - None, - messages, - gr.HTML.update(value=str(messages)), - ) - - -def select_collection(collection, messages): - if collection is None: - return None, messages, gr.HTML.update(), None - collection_name = re.sub('\s\(\d+\)$', '', collection) - messages.set([Message( - Icons.OK, f"Selected collection: {collection_name}. Please type your question and hit \"Enter\".")]) - return ( - gr.Text.update( - placeholder="Please type your question and hit \"Enter\".", interactive=True), - messages, - gr.HTML.update(value=str(messages)), - gr.HTML.update(value=None) - ) - - -# def search_attachments(id, type, key, collection, queries=[], limit=10): -# try: -# zot = zotero.Zotero(int(id), type.lower(), key) -# searches = [zot.collection_items( -# collection['key'], -# q=q, -# limit=limit, -# itemType='attachment', -# qmode='everything' -# ) for q in queries] -# attachments = [x for x in {item['key']: item for search in searches for item in search if item['data'] -# ['contentType'] == 'application/pdf'}.values()][:limit] - -# parents = set([a['data']['parentItem'] for a in attachments]) - -# message = f"
          āœ… Found {len(attachments)} PDF {'attachments' if len(attachments) > 1 else 'attachment'} from {len(parents)} {'articles' if len(parents) > 1 else 'article'}.
          " if len( -# attachments) else "
          ā” No results. Make sure to index your PDF attachments in Zotero.
          " -# return parents, attachments, message - -# except Exception as e: -# message = f"
          āš ļø Error occurred when searching in Zotero: {e}
          " -# return [], [], message - - -def download_attachment(id, type, key, attachment): - zot = zotero.Zotero(int(id), type.lower(), key) - link_mode = attachment['data']['linkMode'] - - if link_mode == 'imported_file': - return zot.file(attachment['key']) - elif link_mode == 'imported_url': - res = requests.get(attachment['data']['url']) - return res.content - else: - raise ValueError( - f'Unsupported link mode: {link_mode} for {attachment["key"]}.') - - -def reset_collection(messages): - messages.set([Message( - Icons.INFO, "Please provide all the required OpenAI and Zotero information in the left panel.")]) - return ( - gr.Radio.update(choices=[], visible=False), - gr.HTML.update(visible=True), - gr.Text.update( - placeholder="You have to select a Zotero collection to proceed", interactive=False), - gr.HTML.update(value=None), - messages, - gr.HTML.update(value=str(messages)), - None - ) - - -def handle_submit(zot, collection_name, collections, style, question, messages): - collection_name_only = re.sub('\s\(\d+\)$', '', collection_name) - messages.set([Message( - Icons.OK, f"Selected collection: {collection_name_only}.")]) - yield ( - messages, - gr.HTML.update(value=str(messages)), - None, - ) - - docs = Docs() - - # Generate search queries from the question by Paper QA - try: - question_prompt = 'A "keyword search" is a list of no more than 3 words, which separated by whitespace only and with no boolean operators (e.g. "dog canine puppy"). Avoid adding any new words not in the question unless they are synonyms to the existing words.' - queries = [x.strip('"').lower() for x in - docs.generate_search_query(question + '\n' + question_prompt)] - query_str = ", ".join( - [f"{q}" for q in queries]) - messages.append( - Message(Icons.WAIT, f"Searching your Zotero collection for {query_str}.")) - yield ( - messages, - gr.HTML.update(value=str(messages)), - None, - ) - except Exception as e: - messages.append( - Message(Icons.ERR, f"Error occurred when generating search queries: {e}")) - yield ( - messages, - gr.HTML.update(value=str(messages)), - None, - ) - return None, None, None - - # Search for attachments in Zotero - try: - collection = [ - x for x in collections if f"{x['data']['name']} ({x['meta']['numItems']})" == collection_name][0] - searches = [zot.collection_items( - collection['key'], - q=q, - limit=10, - itemType='attachment', - qmode='everything' - ) for q in queries] - attachments = [x for x in { - item['key']: item for search in searches for item in search if item['data']['contentType'] == 'application/pdf'}.values()][:10] - - parents = set([a['data']['parentItem'] if 'parentItem' in a['data'] else a['key'] for a in attachments ]) - if len(attachments) > 0: - messages.append(Message( - Icons.SUCCESS, f"Found {len(attachments)} PDF {'attachments' if len(attachments) > 1 else 'attachment'} from {len(parents)} {'articles' if len(parents) > 1 else 'article'}.")) - yield ( - messages, - gr.HTML.update(value=str(messages)), - None, - ) - else: - messages.append(Message( - Icons.ERR, "No results. Make sure to index your PDF attachments in Zotero and try rephrasing your question.")) - yield ( - messages, - gr.HTML.update(value=str(messages)), - None, - ) - return None, None, None - - except Exception as e: - messages.append( - Message(Icons.ERR, f"Error occurred when searching in Zotero: {e}")) - yield ( - messages, - gr.HTML.update(value=str(messages)), - None, - ) - return None, None, None - - # Compile citation metadata - citation_dict = {} - parents = {} - messages.append( - Message(Icons.WAIT, f"Fetching attachment bibliography information.")) - yield ( - messages, - gr.HTML.update(value=str(messages)), - None, - ) - for attachment in attachments: - parent_id = attachment["data"]["parentItem"] if "parentItem" in attachment["data"] else attachment["key"] - try: - if parent_id in parents: - citation_dict[attachment["key"]] = parents[parent_id] - else: - parent = zot.item( - parent_id, content="bib", style=style)[0] - bib = f""" - {html.fragment_fromstring(parent).xpath("normalize-space(//*)")} - Open in Zotero - """ - parents[parent_id] = bib - citation_dict[attachment["key"]] = bib - except Exception as e: - messages.append(Message( - Icons.WARN, f"Failed to retrieve bibliography for PDF attachment {attachment['data']['title']}: {e}")) - yield ( - messages, - gr.HTML.update(value=str(messages)), - None, - ) - - # Load attachments - available_attachments = 0 - for attachment in attachments: - try: - link_mode = attachment['data']['linkMode'] - - if link_mode in ['imported_file', 'imported_url']: - attachment_content = zot.file(attachment['key']) if link_mode == 'imported_file' else requests.get( - attachment['data']['url']).content - temp_file = tempfile.NamedTemporaryFile(suffix=".pdf") - temp_file.write(attachment_content) - temp_file.flush() - docs.add(temp_file.name, citation_dict[attachment["key"]]) - messages.append(Message( - Icons.INDEX, f"Loaded PDF attachment: {attachment['data']['title']}.")) - available_attachments += 1 - else: - messages.append(Message( - Icons.WARN, f"Unable to access linked PDF attachment {attachment['data']['title']}: The file is not in Zotero online storage.")) - yield ( - messages, - gr.HTML.update(value=str(messages)), - None, - ) - except Exception as e: - messages.append(Message( - Icons.WARN, f"Failed to retrieve PDF attachment {attachment['data']['title']}: {e}")) - yield ( - messages, - gr.HTML.update(value=str(messages)), - None, - ) - - # Build vector index - if available_attachments == 0: - messages.append(Message( - Icons.ERR, "No answer. Unable to access any PDF attachments from your Zotero online storage or public URLs.")) - yield ( - messages, - gr.HTML.update(value=str(messages)), - None, - ) - return None, None, None - if docs._faiss_index is None: - try: - messages.append(Message( - Icons.WAIT, f"Building vector index based on {available_attachments} available PDF {'attachment' if available_attachments==1 else 'attachments'}.")) - yield ( - messages, - gr.HTML.update(value=str(messages)), - None, - ) - docs._build_faiss_index() - except Exception as e: - messages.append(Message( - Icons.ERR, f"Unable to build vector index: {e}")) - yield ( - messages, - gr.HTML.update(value=str(messages)), - None, - ) - return None, None, None - - # Synthesize response - messages.append(Message( - Icons.WAIT, f"""Creating answer. {"This should be done within a minute." if available_attachments==1 else "This will loop through all available PDF attachments and may take a couple of minutes."}.""")) - yield ( - messages, - gr.HTML.update(value=str(messages)), - None, - ) - try: - start_time = time.time() - total_time = 0 - for i, answer in enumerate(docs.query_gen(question)): - end_time = time.time() - time_dif = end_time - start_time - if time_dif > 15: - start_time = end_time - total_time += time_dif - messages.append(Message( - Icons.INFO, f"Still in prgress: {total_time:.1f} seconds")) - yield ( - messages, - gr.HTML.update(value=str(messages)), - None, - ) - answer_text = "\n".join( - [f"
          {x}
          " for x in answer.answer.split("\n")]) - reference_list = "" if answer.references == "" else "\n".join([f"
        • {x.split('.', 1)[1]}
        • " - for x in answer.references.split('\n\n')]) - references = "" if reference_list == "" else f""" -

          References:

          -
            - {reference_list} -
          - """ - formatted_answer = f""" -
          {answer_text}
          - - {references} - -
          Tokens Used: {answer.tokens} Cost: ${answer.tokens/1000 * 0.002:.2f}
          - """.strip() - messages.append(Message( - Icons.OK, f"Answer created.")) - yield ( - messages, - gr.HTML.update(value=str(messages)), - gr.HTML.update(value=formatted_answer) - ) - except Exception as e: - messages.append(Message( - Icons.ERR, f"Error occurred when creating answer: {e}")) - yield ( - messages, - gr.HTML.update(value=str(messages)), - None, - ) - return None, None, None diff --git a/spaces/lincquiQcaudo/Top-20-Diffusion/BlueStacks 4.100.20.1001 Crack With Activation Key Fix Free Download 2019.md b/spaces/lincquiQcaudo/Top-20-Diffusion/BlueStacks 4.100.20.1001 Crack With Activation Key Fix Free Download 2019.md deleted file mode 100644 index 4cd87c31630758d94f5b12e364b06695992bb546..0000000000000000000000000000000000000000 --- a/spaces/lincquiQcaudo/Top-20-Diffusion/BlueStacks 4.100.20.1001 Crack With Activation Key Fix Free Download 2019.md +++ /dev/null @@ -1,6 +0,0 @@ -

          BlueStacks 4.100.20.1001 Crack With Activation Key Free Download 2019


          Downloadhttps://bytlly.com/2uGw8D



          -
          -BlueStacks 4.100.20.1001 Crack is a highly effective and simple to use App Player that was ... BlueStacks 4.100.20.1001 Crack + Activation Key Download. fullycracksoft July 4, 2019 0 ... It provides you with free games using a memory card. 4d29de3e1b
          -
          -
          -

          diff --git a/spaces/lincquiQcaudo/Top-20-Diffusion/Descargar Wifislax 43 Iso 23.md b/spaces/lincquiQcaudo/Top-20-Diffusion/Descargar Wifislax 43 Iso 23.md deleted file mode 100644 index f171dcd03e37337ed954898aef89d28e20907d0a..0000000000000000000000000000000000000000 --- a/spaces/lincquiQcaudo/Top-20-Diffusion/Descargar Wifislax 43 Iso 23.md +++ /dev/null @@ -1,10 +0,0 @@ - -

          the wifislax application is free, and includes all its features. in addition, users can download wifis lite for free, a browser application that includes some basic functions. wifis lite offers the possibility to browse files, photos, documents, and music, and also allows users to connect to a home network to share the files stored on the phone or on the network. the wifis lite browser is available in all the languages ​​of the application.

          -

          wifislax is a free application that is distributed under the gnu general public license. to access the wifislax application and its features, the user must first download the application from the official website.

          -

          Descargar Wifislax 43 Iso 23


          Download File >> https://bytlly.com/2uGwSI



          -

          the wifislax desktop version can be used to browse files, to access the internet, to connect to a wireless network in the user's home or office, to transfer files, and so on. the wifis mobile webdav version is similar to the desktop version, but it does not have a control console. for those who want to connect to a home network, there is wifis lite, which is a free browser that allows users to access files, photos, documents, and music, and allows them to connect to a home network.

          -

          wifislax is an application that can be used to connect to wireless networks. the desktop version includes a control console for users to use the various options in the application. this is not the case with the wifis lite browser, which is a free version that can be downloaded from the website. wifis lite allows users to browse files, photos, documents, and music.

          -

          you can download wifislax64 version 2.1 by clicking the mega link. as weve said the most current edition of the linux distribution for carrying out audits and tests on networks. choose the save option or save to download the software. a majority of antivirus software, including windows defender, will scan the program for viruses prior to download. if you choose to save the program, it will be saved to the downloads folder. wed like you to know that at times we might not be able to detect a potentially dangerous software program. to keep delivering an uninfected catalog of programs and applications our team has incorporated a report software feature in every catalog page, which transmits your feedback back to us. get more softwares from getintopc

          -

          899543212b
          -
          -
          \ No newline at end of file diff --git a/spaces/lincquiQcaudo/Top-20-Diffusion/Fifa 14 Pc Game No Steam Crack.md b/spaces/lincquiQcaudo/Top-20-Diffusion/Fifa 14 Pc Game No Steam Crack.md deleted file mode 100644 index efa47fe6cb56ccbd37b947a64b9d813aac819095..0000000000000000000000000000000000000000 --- a/spaces/lincquiQcaudo/Top-20-Diffusion/Fifa 14 Pc Game No Steam Crack.md +++ /dev/null @@ -1,9 +0,0 @@ - -

          visit fifa for more information about fifa 14:
          > fifa 14 pc game no steam crack

          save the date for the biggest party on earth! the 2014 fifa world cup kicks off june 12 with the opening match in sao paulo, brazil, and the official fifa world cup 2014 app brings you everything you need to make sure you watch every match, keep in touch with the team, and engage with the world in fifa world cup 2014.

          -

          Fifa 14 Pc Game No Steam Crack


          Download Zip >>>>> https://bytlly.com/2uGwuh



          -

          download fifa 14 on > fifa 14 pc game no steam crack

          visit fifa for more information about fifa 14:
          > fifa 14 pc game no steam crack

          save the date for the biggest party on earth! the 2014 fifa world cup kicks off june 12 with the opening match in sao paulo, brazil, and the official fifa world cup 2014 app brings you everything you need to make sure you watch every match, keep in touch with the team, and engage with the world in fifa world cup 2014.

          -

          the game of soccer (football for american readers) is a sport loved by people all around the world, and has been for hundreds of years. this sport has many popular sports leagues around the world, in the us this one is called the mls. in this article, we will list the most popular soccer games for pc, xbox, ps4 and xbox one!

          -

          although a lot of folks have only ever played fifa on the nintendo 64, the franchise has been a game of skill and strategy for many years. this year, ea sports is stepping up its game with a new story mode that takes place in the fifa universe. this story mode will feature 21st century players, who are more tech-savvy and will be competing in a new form of soccer, which will be introduced for the first time in the franchise, called tactical freekick. the game will also introduce a new ai system that will give the player more control over the action.

          -

          899543212b
          -
          -
          \ No newline at end of file diff --git a/spaces/lincquiQcaudo/Top-20-Diffusion/HD Online Player (Gadar - Ek Prem Katha Hd Video Song ).md b/spaces/lincquiQcaudo/Top-20-Diffusion/HD Online Player (Gadar - Ek Prem Katha Hd Video Song ).md deleted file mode 100644 index bbeb04ae5de9e4cd00b7c44aec5afbee42988243..0000000000000000000000000000000000000000 --- a/spaces/lincquiQcaudo/Top-20-Diffusion/HD Online Player (Gadar - Ek Prem Katha Hd Video Song ).md +++ /dev/null @@ -1,6 +0,0 @@ -

          HD Online Player (Gadar - Ek Prem Katha hd video song )


          DOWNLOAD ✓✓✓ https://bytlly.com/2uGwsq



          - -Movie Film, Hd Movies, Streaming Movies, Movie Songs, Movies To Watch,. Saved from ... See more. Gadar Ek Prem Katha, Amrish Puri, Mp3 Song Download ... 4d29de3e1b
          -
          -
          -

          diff --git a/spaces/lnyan/stablediffusion-infinity/PyPatchMatch/README.md b/spaces/lnyan/stablediffusion-infinity/PyPatchMatch/README.md deleted file mode 100644 index 12b49aadadfe0ff51c2873b2671c0ca020bc3506..0000000000000000000000000000000000000000 --- a/spaces/lnyan/stablediffusion-infinity/PyPatchMatch/README.md +++ /dev/null @@ -1,64 +0,0 @@ -PatchMatch based Inpainting -===================================== -This library implements the PatchMatch based inpainting algorithm. It provides both C++ and Python interfaces. -This implementation is heavily based on the implementation by Younesse ANDAM: -(younesse-cv/PatchMatch)[https://github.com/younesse-cv/PatchMatch], with some bugs fix. - -Usage -------------------------------------- - -You need to first install OpenCV to compile the C++ libraries. Then, run `make` to compile the -shared library `libpatchmatch.so`. - -For Python users (example available at `examples/py_example.py`) - -```python -import patch_match - -image = ... # either a numpy ndarray or a PIL Image object. -mask = ... # either a numpy ndarray or a PIL Image object. -result = patch_match.inpaint(image, mask, patch_size=5) -``` - -For C++ users (examples available at `examples/cpp_example.cpp`) - -```cpp -#include "inpaint.h" - -int main() { - cv::Mat image = ... - cv::Mat mask = ... - - cv::Mat result = Inpainting(image, mask, 5).run(); - - return 0; -} -``` - - -README and COPYRIGHT by Younesse ANDAM -------------------------------------- -@Author: Younesse ANDAM - -@Contact: younesse.andam@gmail.com - -Description: This project is a personal implementation of an algorithm called PATCHMATCH that restores missing areas in an image. -The algorithm is presented in the following paper - PatchMatch A Randomized Correspondence Algorithm - for Structural Image Editing - by C.Barnes,E.Shechtman,A.Finkelstein and Dan B.Goldman - ACM Transactions on Graphics (Proc. SIGGRAPH), vol.28, aug-2009 - - For more information please refer to - http://www.cs.princeton.edu/gfx/pubs/Barnes_2009_PAR/index.php - -Copyright (c) 2010-2011 - - -Requirements -------------------------------------- - -To run the project you need to install Opencv library and link it to your project. -Opencv can be download it here -http://opencv.org/downloads.html - diff --git a/spaces/ma-xu/LIVE/thrust/internal/benchmark/compare_benchmark_results.py b/spaces/ma-xu/LIVE/thrust/internal/benchmark/compare_benchmark_results.py deleted file mode 100644 index 22e7be8cfc20e1de4cfa586258e433f2a93aeb27..0000000000000000000000000000000000000000 --- a/spaces/ma-xu/LIVE/thrust/internal/benchmark/compare_benchmark_results.py +++ /dev/null @@ -1,1308 +0,0 @@ -#! /usr/bin/env python -# -*- coding: utf-8 -*- - -############################################################################### -# Copyright (c) 2012-7 Bryce Adelstein Lelbach aka wash -# -# Distributed under the Boost Software License, Version 1.0. (See accompanying -# file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) -############################################################################### - -############################################################################### -# Copyright (c) 2018 NVIDIA Corporation -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -############################################################################### - -# XXX Put code shared with `combine_benchmark_results.py` in a common place. - -# XXX Relative uncertainty. - -# XXX Create uncertain value class which is quantity + uncertainty. - -from sys import exit, stdout - -from os.path import splitext - -from itertools import imap # Lazy map. - -from math import sqrt, log10, floor - -from collections import deque - -from argparse import ArgumentParser as argument_parser -from argparse import Action as argument_action - -from csv import DictReader as csv_dict_reader -from csv import DictWriter as csv_dict_writer - -from re import compile as regex_compile - -############################################################################### - -def unpack_tuple(f): - """Return a unary function that calls `f` with its argument unpacked.""" - return lambda args: f(*iter(args)) - -def strip_dict(d): - """Strip leading and trailing whitespace from all keys and values in `d`. - - Returns: - The modified dict `d`. - """ - d.update({key: value.strip() for (key, value) in d.items()}) - return d - -def merge_dicts(d0, d1): - """Create a new `dict` that is the union of `dict`s `d0` and `d1`.""" - d = d0.copy() - d.update(d1) - return d - -def change_key_in_dict(d, old_key, new_key): - """Change the key of the entry in `d` with key `old_key` to `new_key`. If - there is an existing entry - - Returns: - The modified dict `d`. - - Raises: - KeyError : If `old_key` is not in `d`. - """ - d[new_key] = d.pop(old_key) - return d - -def key_from_dict(d): - """Create a hashable key from a `dict` by converting the `dict` to a tuple.""" - return tuple(sorted(d.items())) - -def strip_list(l): - """Strip leading and trailing whitespace from all values in `l`.""" - for i, value in enumerate(l): l[i] = value.strip() - return l - -def remove_from_list(l, item): - """Remove the first occurence of `item` from list `l` and return a tuple of - the index that was removed and the element that was removed. - - Raises: - ValueError : If `item` is not in `l`. - """ - idx = l.index(item) - item = l.pop(idx) - return (idx, item) - -############################################################################### - -def int_or_float(x): - """Convert `x` to either `int` or `float`, preferring `int`. - - Raises: - ValueError : If `x` is not convertible to either `int` or `float` - """ - try: - return int(x) - except ValueError: - return float(x) - -def try_int_or_float(x): - """Try to convert `x` to either `int` or `float`, preferring `int`. `x` is - returned unmodified if conversion fails. - """ - try: - return int_or_float(x) - except ValueError: - return x - -############################################################################### - -def ranges_overlap(x1, x2, y1, y2): - """Returns true if the ranges `[x1, x2]` and `[y1, y2]` overlap, - where `x1 <= x2` and `y1 <= y2`. - - Raises: - AssertionError : If `x1 > x2` or `y1 > y2`. - """ - assert x1 <= x2 - assert y1 <= y2 - return x1 <= y2 and y1 <= x2 - -def ranges_overlap_uncertainty(x, x_unc, y, y_unc): - """Returns true if the ranges `[x - x_unc, x + x_unc]` and - `[y - y_unc, y + y_unc]` overlap, where `x_unc >= 0` and `y_unc >= 0`. - - Raises: - AssertionError : If `x_unc < 0` or `y_unc < 0`. - """ - assert x_unc >= 0 - assert y_unc >= 0 - return ranges_overlap(x - x_unc, x + x_unc, y - y_unc, y + y_unc) - -############################################################################### - -# Formulas for propagation of uncertainty from: -# -# https://en.wikipedia.org/wiki/Propagation_of_uncertainty#Example_formulas -# -# Even though it's Wikipedia, I trust it as I helped write that table. -# -# XXX Replace with a proper reference. - -def uncertainty_multiplicative(f, A, A_abs_unc, B, B_abs_unc): - """Compute the propagated uncertainty from the multiplication of two - uncertain values, `A +/- A_abs_unc` and `B +/- B_abs_unc`. Given `f = AB` or - `f = A/B`, where `A != 0` and `B != 0`, the uncertainty in `f` is - approximately: - - .. math:: - - \sigma_f = |f| \sqrt{\frac{\sigma_A}{A} ^ 2 + \frac{\sigma_B}{B} ^ 2} - - Raises: - ZeroDivisionError : If `A == 0` or `B == 0`. - """ - return abs(f) * sqrt((A_abs_unc / A) ** 2 + (B_abs_unc / B) ** 2); - -def uncertainty_additive(c, A_abs_unc, d, B_abs_unc): - """Compute the propagated uncertainty from addition of two uncertain values, - `A +/- A_abs_unc` and `B +/- B_abs_unc`. Given `f = cA + dB`, where `c` and - `d` are certain constants, the uncertainty in `f` is approximately: - - .. math:: - - f_{\sigma} = \sqrt{c ^ 2 * A_{\sigma} ^ 2 + d ^ 2 * B_{\sigma} ^ 2} - """ - return sqrt(((c ** 2) * (A_abs_unc ** 2)) + ((d ** 2) * (B_abs_unc ** 2))) - -############################################################################### - -# XXX Create change class. - -def absolute_change(old, new): - """Computes the absolute change from old to new: - - .. math:: - - absolute_change = new - old - """ - return new - old - -def absolute_change_uncertainty(old, old_unc, new, new_unc): - """Computes the uncertainty in the absolute change from old to new and returns - a tuple of the absolute change and the absolute change uncertainty. - """ - absolute_change = new - old - absolute_change_unc = uncertainty_additive(1.0, new_unc, -1.0, old_unc) - - return (absolute_change, absolute_change_unc) - -def percent_change(old, new): - """Computes the percent change from old to new: - - .. math:: - - percent_change = 100 \frac{new - old}{abs(old)} - """ - return float(new - old) / abs(old) - -def percent_change_uncertainty(old, old_unc, new, new_unc): - """Computes the uncertainty in the percent change from old to new and returns - a tuple of the absolute change, the absolute change uncertainty, the percent - change and the percent change uncertainty. - """ - # Let's break this down into a few sub-operations: - # - # absolute_change = new - old <- Additive propagation. - # relative_change = change / abs(old) <- Multiplicative propagation. - # percent_change = 100 * y <- Multiplicative propagation. - - if old == 0: - # We can't compute relative change because the old value is 0. - return (float("nan"), float("nan"), float("nan"), float("nan")) - - (absolute_change, absolute_change_unc) = absolute_change_uncertainty( - old, old_unc, new, new_unc - ) - - if absolute_change == 0: - # We can't compute relative change uncertainty because the relative - # uncertainty of a value of 0 is undefined. - return (absolute_change, absolute_change_unc, float("nan"), float("nan")) - - relative_change = float(absolute_change) / abs(old) - relative_change_unc = uncertainty_multiplicative( - relative_change, absolute_change, absolute_change_unc, old, old_unc - ) - - percent_change = 100.0 * relative_change - percent_change_unc = uncertainty_multiplicative( - percent_change, 100.0, 0.0, relative_change, relative_change_unc - ) - - return ( - absolute_change, absolute_change_unc, percent_change, percent_change_unc - ) - -############################################################################### - -def find_significant_digit(x): - """Return the significant digit of the number x. The result is the number of - digits after the decimal place to round to (negative numbers indicate rounding - before the decimal place).""" - if x == 0: return 0 - return -int(floor(log10(abs(x)))) - -def round_with_int_conversion(x, ndigits = None): - """Rounds `x` to `ndigits` after the the decimal place. If `ndigits` is less - than 1, convert the result to `int`. If `ndigits` is `None`, the significant - digit of `x` is used.""" - if ndigits is None: ndigits = find_significant_digit(x) - x_rounded = round(x, ndigits) - return int(x_rounded) if ndigits < 1 else x_rounded - -############################################################################### - -class measured_variable(object): - """A meta-variable representing measured data. It is composed of three raw - variables plus units meta-data. - - Attributes: - quantity (`str`) : - Name of the quantity variable of this object. - uncertainty (`str`) : - Name of the uncertainty variable of this object. - sample_size (`str`) : - Name of the sample size variable of this object. - units (units class or `None`) : - The units the value is measured in. - """ - - def __init__(self, quantity, uncertainty, sample_size, units = None): - self.quantity = quantity - self.uncertainty = uncertainty - self.sample_size = sample_size - self.units = units - - def as_tuple(self): - return (self.quantity, self.uncertainty, self.sample_size, self.units) - - def __iter__(self): - return iter(self.as_tuple()) - - def __str__(self): - return str(self.as_tuple()) - - def __repr__(self): - return str(self) - -class measured_value(object): - """An object that represents a value determined by multiple measurements. - - Attributes: - quantity (scalar) : - The quantity of the value, e.g. the arithmetic mean. - uncertainty (scalar) : - The measurement uncertainty, e.g. the sample standard deviation. - sample_size (`int`) : - The number of observations contributing to the value. - units (units class or `None`) : - The units the value is measured in. - """ - - def __init__(self, quantity, uncertainty, sample_size = 1, units = None): - self.quantity = quantity - self.uncertainty = uncertainty - self.sample_size = sample_size - self.units = units - - def as_tuple(self): - return (self.quantity, self.uncertainty, self.sample_size, self.units) - - def __iter__(self): - return iter(self.as_tuple()) - - def __str__(self): - return str(self.as_tuple()) - - def __repr__(self): - return str(self) - -############################################################################### - -def arithmetic_mean(X): - """Computes the arithmetic mean of the sequence `X`. - - Let: - - * `n = len(X)`. - * `u` denote the arithmetic mean of `X`. - - .. math:: - - u = \frac{\sum_{i = 0}^{n - 1} X_i}{n} - """ - return sum(X) / len(X) - -def sample_variance(X, u = None): - """Computes the sample variance of the sequence `X`. - - Let: - - * `n = len(X)`. - * `u` denote the arithmetic mean of `X`. - * `s` denote the sample standard deviation of `X`. - - .. math:: - - v = \frac{\sum_{i = 0}^{n - 1} (X_i - u)^2}{n - 1} - - Args: - X (`Iterable`) : The sequence of values. - u (number) : The arithmetic mean of `X`. - """ - if u is None: u = arithmetic_mean(X) - return sum(imap(lambda X_i: (X_i - u) ** 2, X)) / (len(X) - 1) - -def sample_standard_deviation(X, u = None, v = None): - """Computes the sample standard deviation of the sequence `X`. - - Let: - - * `n = len(X)`. - * `u` denote the arithmetic mean of `X`. - * `v` denote the sample variance of `X`. - * `s` denote the sample standard deviation of `X`. - - .. math:: - - s &= \sqrt{v} - &= \sqrt{\frac{\sum_{i = 0}^{n - 1} (X_i - u)^2}{n - 1}} - - Args: - X (`Iterable`) : The sequence of values. - u (number) : The arithmetic mean of `X`. - v (number) : The sample variance of `X`. - """ - if u is None: u = arithmetic_mean(X) - if v is None: v = sample_variance(X, u) - return sqrt(v) - -def combine_sample_size(As): - """Computes the combined sample variance of a group of `measured_value`s. - - Let: - - * `g = len(As)`. - * `n_i = As[i].samples`. - * `n` denote the combined sample size of `As`. - - .. math:: - - n = \sum{i = 0}^{g - 1} n_i - """ - return sum(imap(unpack_tuple(lambda u_i, s_i, n_i, t_i: n_i), As)) - -def combine_arithmetic_mean(As, n = None): - """Computes the combined arithmetic mean of a group of `measured_value`s. - - Let: - - * `g = len(As)`. - * `u_i = As[i].quantity`. - * `n_i = As[i].samples`. - * `n` denote the combined sample size of `As`. - * `u` denote the arithmetic mean of the quantities of `As`. - - .. math:: - - u = \frac{\sum{i = 0}^{g - 1} n_i u_i}{n} - """ - if n is None: n = combine_sample_size(As) - return sum(imap(unpack_tuple(lambda u_i, s_i, n_i, t_i: n_i * u_i), As)) / n - -def combine_sample_variance(As, n = None, u = None): - """Computes the combined sample variance of a group of `measured_value`s. - - Let: - - * `g = len(As)`. - * `u_i = As[i].quantity`. - * `s_i = As[i].uncertainty`. - * `n_i = As[i].samples`. - * `n` denote the combined sample size of `As`. - * `u` denote the arithmetic mean of the quantities of `As`. - * `v` denote the sample variance of `X`. - - .. math:: - - v = \frac{(\sum_{i = 0}^{g - 1} n_i (u_i - u)^2 + s_i^2 (n_i - 1))}{n - 1} - - Args: - As (`Iterable` of `measured_value`s) : The sequence of values. - n (number) : The combined sample sizes of `As`. - u (number) : The combined arithmetic mean of `As`. - """ - if n <= 1: return 0 - if n is None: n = combine_sample_size(As) - if u is None: u = combine_arithmetic_mean(As, n) - return sum(imap(unpack_tuple( - lambda u_i, s_i, n_i, t_i: n_i * (u_i - u) ** 2 + (s_i ** 2) * (n_i - 1) - ), As)) / (n - 1) - -def combine_sample_standard_deviation(As, n = None, u = None, v = None): - """Computes the combined sample standard deviation of a group of - `measured_value`s. - - Let: - - * `g = len(As)`. - * `u_i = As[i].quantity`. - * `s_i = As[i].uncertainty`. - * `n_i = As[i].samples`. - * `n` denote the combined sample size of `As`. - * `u` denote the arithmetic mean of the quantities of `As`. - * `v` denote the sample variance of `X`. - * `s` denote the sample standard deviation of `X`. - - .. math:: - v &= \frac{(\sum_{i = 0}^{g - 1} n_i (u_i - u)^2 + s_i^2 (n_i - 1))}{n - 1} - - s &= \sqrt{v} - - Args: - As (`Iterable` of `measured_value`s) : The sequence of values. - n (number) : The combined sample sizes of `As`. - u (number) : The combined arithmetic mean of `As`. - v (number) : The combined sample variance of `As`. - """ - if n <= 1: return 0 - if n is None: n = combine_sample_size(As) - if u is None: u = combine_arithmetic_mean(As, n) - if v is None: v = combine_sample_variance(As, n, u) - return sqrt(v) - -############################################################################### - -def store_const_multiple(const, *destinations): - """Returns an `argument_action` class that sets multiple argument - destinations (`destinations`) to `const`.""" - class store_const_multiple_action(argument_action): - def __init__(self, *args, **kwargs): - super(store_const_multiple_action, self).__init__( - metavar = None, nargs = 0, const = const, *args, **kwargs - ) - - def __call__(self, parser, namespace, values, option_string = None): - for destination in destinations: - setattr(namespace, destination, const) - - return store_const_multiple_action - -def store_true_multiple(*destinations): - """Returns an `argument_action` class that sets multiple argument - destinations (`destinations`) to `True`.""" - return store_const_multiple(True, *destinations) - -def store_false_multiple(*destinations): - """Returns an `argument_action` class that sets multiple argument - destinations (`destinations`) to `False`.""" - return store_const_multiple(False, *destinations) - -############################################################################### - -def process_program_arguments(): - ap = argument_parser( - description = ( - "Compares two sets of combined performance results and identifies " - "statistically significant changes." - ) - ) - - ap.add_argument( - "baseline_input_file", - help = ("CSV file containing the baseline performance results. The first " - "two rows should be a header. The 1st header row specifies the " - "name of each variable, and the 2nd header row specifies the units " - "for that variable. The baseline results may be a superset of the " - "observed performance results, but the reverse is not true. The " - "baseline results must contain data for every datapoint in the " - "observed performance results."), - type = str - ) - - ap.add_argument( - "observed_input_file", - help = ("CSV file containing the observed performance results. The first " - "two rows should be a header. The 1st header row specifies the name " - "of header row specifies the units for that variable."), - type = str - ) - - ap.add_argument( - "-o", "--output-file", - help = ("The file that results are written to. If `-`, results are " - "written to stdout."), - action = "store", type = str, default = "-", - metavar = "OUTPUT" - ) - - ap.add_argument( - "-c", "--control-variable", - help = ("Treat the specified variable as a control variable. This means " - "it will be filtered out when forming dataset keys. For example, " - "this could be used to ignore a timestamp variable that is " - "different in the baseline and observed results. May be specified " - "multiple times."), - action = "append", type = str, dest = "control_variables", default = [], - metavar = "QUANTITY" - ) - - ap.add_argument( - "-d", "--dependent-variable", - help = ("Treat the specified three variables as a dependent variable. The " - "1st variable is the measured quantity, the 2nd is the uncertainty " - "of the measurement and the 3rd is the sample size. The defaults " - "are the dependent variables of Thrust's benchmark suite. May be " - "specified multiple times."), - action = "append", type = str, dest = "dependent_variables", default = [], - metavar = "QUANTITY,UNCERTAINTY,SAMPLES" - ) - - ap.add_argument( - "-t", "--change-threshold", - help = ("Treat relative changes less than this amount (a percentage) as " - "statistically insignificant. The default is 5%%."), - action = "store", type = float, default = 5, - metavar = "PERCENTAGE" - ) - - ap.add_argument( - "-p", "--preserve-whitespace", - help = ("Don't trim leading and trailing whitespace from each CSV cell."), - action = "store_true", default = False - ) - - ap.add_argument( - "--output-all-variables", - help = ("Don't omit original absolute values in output."), - action = "store_true", default = False - ) - - ap.add_argument( - "--output-all-datapoints", - help = ("Don't omit datapoints that are statistically indistinguishable " - "in output."), - action = "store_true", default = False - ) - - ap.add_argument( - "-a", "--output-all", - help = ("Equivalent to `--output-all-variables --output-all-datapoints`."), - action = store_true_multiple("output_all_variables", "output_all_datapoints") - ) - - return ap.parse_args() - -############################################################################### - -def filter_comments(f, s = "#"): - """Return an iterator to the file `f` which filters out all lines beginning - with `s`.""" - return filter(lambda line: not line.startswith(s), f) - -############################################################################### - -class io_manager(object): - """Manages I/O operations and represents the input data as an `Iterable` - sequence of `dict`s. - - It is `Iterable` and an `Iterator`. It can be used with `with`. - - Attributes: - preserve_whitespace (`bool`) : - If `False`, leading and trailing whitespace is stripped from each CSV cell. - writer (`csv_dict_writer`) : - CSV writer object that the output is written to. - output_file (`file` or `stdout`) : - The output `file` object. - baseline_reader (`csv_dict_reader`) : - CSV reader object for the baseline results. - observed_reader (`csv_dict_reader`) : - CSV reader object for the observed results. - baseline_input_file (`file`) : - `file` object for the baseline results. - observed_input_file (`file`) : - `file` object for the observed results.. - variable_names (`list` of `str`s) : - Names of the variables, in order. - variable_units (`list` of `str`s) : - Units of the variables, in order. - """ - - def __init__(self, - baseline_input_file, observed_input_file, - output_file, - preserve_whitespace = False): - """Read input files and open the output file and construct a new `io_manager` - object. - - If `preserve_whitespace` is `False`, leading and trailing whitespace is - stripped from each CSV cell. - - Raises - AssertionError : - If `type(preserve_whitespace) != bool`. - """ - assert type(preserve_whitespace) == bool - - self.preserve_whitespace = preserve_whitespace - - # Open baseline results. - self.baseline_input_file = open(baseline_input_file) - self.baseline_reader = csv_dict_reader( - filter_comments(self.baseline_input_file) - ) - - if not self.preserve_whitespace: - strip_list(self.baseline_reader.fieldnames) - - self.variable_names = list(self.baseline_reader.fieldnames) # Copy. - self.variable_units = self.baseline_reader.next() - - if not self.preserve_whitespace: - strip_dict(self.variable_units) - - # Open observed results. - self.observed_input_file = open(observed_input_file) - self.observed_reader = csv_dict_reader( - filter_comments(self.observed_input_file) - ) - - if not self.preserve_whitespace: - strip_list(self.observed_reader.fieldnames) - - # Make sure all inputs have the same variables schema. - assert self.variable_names == self.observed_reader.fieldnames, \ - "Observed results input file (`" + observed_input_file + "`) " + \ - "variable schema `" + str(self.observed_reader.fieldnames) + "` does " + \ - "not match the baseline results input file (`" + baseline_input_file + \ - "`) variable schema `" + str(self.variable_names) + "`." - - # Consume the next row, which should be the second line of the header. - observed_variable_units = self.observed_reader.next() - - if not self.preserve_whitespace: - strip_dict(observed_variable_units) - - # Make sure all inputs have the same units schema. - assert self.variable_units == observed_variable_units, \ - "Observed results input file (`" + observed_input_file + "`) " + \ - "units schema `" + str(observed_variable_units) + "` does not " + \ - "match the baseline results input file (`" + baseline_input_file + \ - "`) units schema `" + str(self.variable_units) + "`." - - if output_file == "-": # Output to stdout. - self.output_file = stdout - else: # Output to user-specified file. - self.output_file = open(output_file, "w") - - self.writer = csv_dict_writer( - self.output_file, fieldnames = self.variable_names - ) - - def __enter__(self): - """Called upon entering a `with` statement.""" - return self - - def __exit__(self, *args): - """Called upon exiting a `with` statement.""" - if self.output_file is stdout: - self.output_file = None - elif self.output_file is not None: - self.output_file.__exit__(*args) - - self.baseline_input_file.__exit__(*args) - self.observed_input_file.__exit__(*args) - - def append_variable(self, name, units): - """Add a new variable to the output schema.""" - self.variable_names.append(name) - self.variable_units.update({name : units}) - - # Update CSV writer field names. - self.writer.fieldnames = self.variable_names - - def insert_variable(self, idx, name, units): - """Insert a new variable into the output schema at index `idx`.""" - self.variable_names.insert(idx, name) - self.variable_units.update({name : units}) - - # Update CSV writer field names. - self.writer.fieldnames = self.variable_names - - def remove_variable(self, name): - """Remove variable from the output schema and return a tuple of the variable - index and the variable units. - - Raises: - ValueError : If `name` is not in the output schema. - """ - # Remove the variable and get its index, which we'll need to remove the - # corresponding units entry. - (idx, item) = remove_from_list(self.variable_names, name) - - # Remove the units entry. - units = self.variable_units.pop(item) - - # Update CSV writer field names. - self.writer.fieldnames = self.variable_names - - return (idx, units) - - ############################################################################# - # Input Stream. - - def baseline(self): - """Return an iterator to the baseline results input sequence.""" - return imap(lambda row: strip_dict(row), self.baseline_reader) - - def observed(self): - """Return an iterator to the observed results input sequence.""" - return imap(lambda row: strip_dict(row), self.observed_reader) - - ############################################################################# - # Output. - - def write_header(self): - """Write the header for the output CSV file.""" - # Write the first line of the header. - self.writer.writeheader() - - # Write the second line of the header. - self.writer.writerow(self.variable_units) - - def write(self, d): - """Write a record (a `dict`) to the output CSV file.""" - self.writer.writerow(d) - -############################################################################### - -class dependent_variable_parser(object): - """Parses a `--dependent-variable=AVG,STDEV,TRIALS` command line argument.""" - - ############################################################################# - # Grammar - - # Parse a variable_name. - variable_name_rule = r'[^,]+' - - # Parse a variable classification. - dependent_variable_rule = r'(' + variable_name_rule + r')' \ - + r',' \ - + r'(' + variable_name_rule + r')' \ - + r',' \ - + r'(' + variable_name_rule + r')' - - engine = regex_compile(dependent_variable_rule) - - ############################################################################# - - def __call__(self, s): - """Parses the string `s` with the form "AVG,STDEV,TRIALS". - - Returns: - A `measured_variable`. - - Raises: - AssertionError : If parsing fails. - """ - - match = self.engine.match(s) - - assert match is not None, \ - "Dependent variable (-d) `" +s+ "` is invalid, the format is " + \ - "`AVG,STDEV,TRIALS`." - - return measured_variable(match.group(1), match.group(2), match.group(3)) - -############################################################################### - -class record_aggregator(object): - """Consumes and combines records and represents the result as an `Iterable` - sequence of `dict`s. - - It is `Iterable` and an `Iterator`. - - Attributes: - dependent_variables (`list` of `measured_variable`s) : - A list of dependent variables provided on the command line. - control_variables (`list` of `str`s) : - A list of control variables provided on the command line. - dataset (`dict`) : - A mapping of distinguishing (e.g. control + independent) values (`tuple`s - of variable-quantity pairs) to `list`s of dependent values (`dict`s from - variables to lists of cells). - in_order_dataset_keys : - A list of unique dataset keys (e.g. distinguishing variables) in order of - appearance. - """ - - def __init__(self, dependent_variables, control_variables): - """Construct a new `record_aggregator` object. - - Raises: - AssertionError : If parsing of dependent variables fails. - """ - self.dependent_variables = dependent_variables - self.control_variables = control_variables - - self.dataset = {} - - self.in_order_dataset_keys = deque() - - ############################################################################# - # Insertion. - - def key_from_dict(self, d): - """Create a hashable key from a `dict` by filtering out control variables - and then converting the `dict` to a tuple. - - Raises: - AssertionError : If any control variable was not found in `d`. - """ - distinguishing_values = d.copy() - - # Filter out control variables. - for var in self.control_variables: - distinguishing_values.pop(var, None) - - return key_from_dict(distinguishing_values) - - def append(self, record): - """Add `record` to the dataset. - - Raises: - ValueError : If any `str`-to-numeric conversions fail. - """ - # The distinguishing variables are the control and independent variables. - # They form the key for each record in the dataset. Records with the same - # distinguishing variables are treated as observations of the same - # datapoint. - dependent_values = {} - - # To allow the same sample size variable to be used for multiple dependent - # variables, we don't pop sample size variables until we're done processing - # all variables. - sample_size_variables = [] - - # Separate the dependent values from the distinguishing variables and - # perform `str`-to-numeric conversions. - for var in self.dependent_variables: - quantity, uncertainty, sample_size, units = var.as_tuple() - - dependent_values[quantity] = [int_or_float(record.pop(quantity))] - dependent_values[uncertainty] = [int_or_float(record.pop(uncertainty))] - dependent_values[sample_size] = [int(record[sample_size])] - - sample_size_variables.append(sample_size) - - # Pop sample size variables. - for var in sample_size_variables: - # Allowed to fail, as we may have duplicates. - record.pop(var, None) - - distinguishing_values = self.key_from_dict(record) - - if distinguishing_values in self.dataset: - # These distinguishing values already exist, so get the `dict` they're - # mapped to, look up each key in `dependent_values` in the `dict`, and - # add the corresponding quantity in `dependent_values` to the list in the - # the `dict`. - for var, columns in dependent_values.iteritems(): - self.dataset[distinguishing_values][var] += columns - else: - # These distinguishing values aren't in the dataset, so add them and - # record them in `in_order_dataset_keys`. - self.dataset[distinguishing_values] = dependent_values - self.in_order_dataset_keys.append(distinguishing_values) - - ############################################################################# - # Postprocessing. - - def combine_dependent_values(self, dependent_values): - """Takes a mapping of dependent variables to lists of cells and returns - a new mapping with the cells combined. - - Raises: - AssertionError : If class invariants were violated. - """ - combined_dependent_values = dependent_values.copy() - - for var in self.dependent_variables: - quantity, uncertainty, sample_size, units = var.as_tuple() - - quantities = dependent_values[quantity] - uncertainties = dependent_values[uncertainty] - sample_sizes = dependent_values[sample_size] - - if type(sample_size) is list: - # Sample size hasn't been combined yet. - assert len(quantities) == len(uncertainties) \ - and len(uncertainties) == len(sample_sizes), \ - "Length of quantities list `(" + str(len(quantities)) + ")`, " + \ - "length of uncertainties list `(" + str(len(uncertainties)) + \ - "),` and length of sample sizes list `(" + str(len(sample_sizes)) + \ - ")` are not the same." - else: - # Another dependent variable that uses our sample size has combined it - # already. - assert len(quantities) == len(uncertainties), \ - "Length of quantities list `(" + str(len(quantities)) + ")` and " + \ - "length of uncertainties list `(" + str(len(uncertainties)) + \ - ")` are not the same." - - # Convert the three separate `list`s into one list of `measured_value`s. - measured_values = [] - - for i in range(len(quantities)): - mv = measured_value( - quantities[i], uncertainties[i], sample_sizes[i], units - ) - - measured_values.append(mv) - - # Combine the `measured_value`s. - combined_sample_size = combine_sample_size( - measured_values - ) - - combined_arithmetic_mean = combine_arithmetic_mean( - measured_values, combined_sample_size - ) - - combined_sample_standard_deviation = combine_sample_standard_deviation( - measured_values, combined_sample_size, combined_arithmetic_mean - ) - - # Round the quantity and uncertainty to the significant digit of - # uncertainty and insert the combined values into the results. - sigdig = find_significant_digit(combined_sample_standard_deviation) - -# combined_arithmetic_mean = round_with_int_conversion( -# combined_arithmetic_mean, sigdig -# ) - -# combined_sample_standard_deviation = round_with_int_conversion( -# combined_sample_standard_deviation, sigdig -# ) - - combined_dependent_values[quantity] = combined_arithmetic_mean - combined_dependent_values[uncertainty] = combined_sample_standard_deviation - combined_dependent_values[sample_size] = combined_sample_size - - return combined_dependent_values - - ############################################################################# - # Output Stream. - - def __iter__(self): - """Return an iterator to the output sequence of separated distinguishing - variables and dependent variables (a tuple of two `dict`s). - - This is a requirement for the `Iterable` protocol. - """ - return self - - def records(self): - """Return an iterator to the output sequence of CSV rows (`dict`s of - variables to values). - """ - return imap(unpack_tuple(lambda dist, dep: merge_dicts(dist, dep)), self) - - def next(self): - """Produce the components of the next output record - a tuple of two - `dict`s. The first `dict` is a mapping of distinguishing variables to - distinguishing values, the second `dict` is a mapping of dependent - variables to combined dependent values. Combining the two dicts forms a - CSV row suitable for output. - - This is a requirement for the `Iterator` protocol. - - Raises: - StopIteration : If there is no more output. - AssertionError : If class invariants were violated. - """ - assert len(self.dataset.keys()) == len(self.in_order_dataset_keys), \ - "Number of dataset keys (`" + str(len(self.dataset.keys())) + \ - "`) is not equal to the number of keys in the ordering list (`" + \ - str(len(self.in_order_dataset_keys)) + "`)." - - if len(self.in_order_dataset_keys) == 0: - raise StopIteration() - - # Get the next set of distinguishing values and convert them to a `dict`. - raw_distinguishing_values = self.in_order_dataset_keys.popleft() - distinguishing_values = dict(raw_distinguishing_values) - - dependent_values = self.dataset.pop(raw_distinguishing_values) - - combined_dependent_values = self.combine_dependent_values(dependent_values) - - return (distinguishing_values, combined_dependent_values) - - def __getitem__(self, distinguishing_values): - """Produce the dependent component, a `dict` mapping dependent variables to - combined dependent values, associated with `distinguishing_values`. - - Args: - distinguishing_values (`dict`) : - A `dict` mapping distinguishing variables to distinguishing values. - - Raises: - KeyError : If `distinguishing_values` is not in the dataset. - """ - raw_distinguishing_values = self.key_from_dict(distinguishing_values) - - dependent_values = self.dataset[raw_distinguishing_values] - - combined_dependent_values = self.combine_dependent_values(dependent_values) - - return combined_dependent_values - -############################################################################### - -args = process_program_arguments() - -if len(args.dependent_variables) == 0: - args.dependent_variables = [ - "STL Average Walltime,STL Walltime Uncertainty,STL Trials", - "STL Average Throughput,STL Throughput Uncertainty,STL Trials", - "Thrust Average Walltime,Thrust Walltime Uncertainty,Thrust Trials", - "Thrust Average Throughput,Thrust Throughput Uncertainty,Thrust Trials" - ] - -# Parse dependent variable options. -dependent_variables = [] - -parse_dependent_variable = dependent_variable_parser() - -#if args.dependent_variables is not None: -for var in args.dependent_variables: - dependent_variables.append(parse_dependent_variable(var)) - -# Read input files and open the output file. -with io_manager(args.baseline_input_file, - args.observed_input_file, - args.output_file, - args.preserve_whitespace) as iom: - - # Create record aggregators. - baseline_ra = record_aggregator(dependent_variables, args.control_variables) - observed_ra = record_aggregator(dependent_variables, args.control_variables) - - # Duplicate dependent variables: one for baseline results, one for observed - # results. - baseline_suffix = " - `{0}`".format( - args.baseline_input_file - ) - observed_suffix = " - `{0}`".format( - args.observed_input_file - ) - - for var in dependent_variables: - # Remove the existing quantity variable: - # - # [ ..., a, b, c, ... ] - # ^- remove b at index i - # - (quantity_idx, quantity_units) = iom.remove_variable(var.quantity) - - # If the `--output-all-variables` option was specified, add the new baseline - # and observed quantity variables. Note that we insert in the reverse of - # the order we desire (which is baseline then observed): - # - # [ ..., a, b_1, c, ... ] - # ^- insert b_1 at index i - # - # [ ..., a, b_0, b_1, c, ... ] - # ^- insert b_0 at index i - # - if args.output_all_variables: - iom.insert_variable( - quantity_idx, var.quantity + observed_suffix, quantity_units - ) - iom.insert_variable( - quantity_idx, var.quantity + baseline_suffix, quantity_units - ) - - # Remove the existing uncertainty variable. - (uncertainty_idx, uncertainty_units) = iom.remove_variable(var.uncertainty) - - # If the `--output-all-variables` option was specified, add the new baseline - # and observed uncertainty variables. - if args.output_all_variables: - iom.insert_variable( - uncertainty_idx, var.uncertainty + observed_suffix, uncertainty_units - ) - iom.insert_variable( - uncertainty_idx, var.uncertainty + baseline_suffix, uncertainty_units - ) - - try: - # Remove the existing sample size variable. - (sample_size_idx, sample_size_units) = iom.remove_variable(var.sample_size) - - # If the `--output-all-variables` option was specified, add the new - # baseline and observed sample size variables. - if args.output_all_variables: - iom.insert_variable( - sample_size_idx, var.sample_size + observed_suffix, sample_size_units - ) - iom.insert_variable( - sample_size_idx, var.sample_size + baseline_suffix, sample_size_units - ) - except ValueError: - # This is alright, because dependent variables may share the same sample - # size variable. - pass - - for var in args.control_variables: - iom.remove_variable(var) - - # Add change variables. - absolute_change_suffix = " - Change (`{0}` - `{1}`)".format( - args.observed_input_file, args.baseline_input_file - ) - - percent_change_suffix = " - % Change (`{0}` to `{1}`)".format( - args.observed_input_file, args.baseline_input_file - ) - - for var in dependent_variables: - iom.append_variable(var.quantity + absolute_change_suffix, var.units) - iom.append_variable(var.uncertainty + absolute_change_suffix, var.units) - iom.append_variable(var.quantity + percent_change_suffix, "") - iom.append_variable(var.uncertainty + percent_change_suffix, "") - - # Add all baseline input data to the `record_aggregator`. - for record in iom.baseline(): - baseline_ra.append(record) - - for record in iom.observed(): - observed_ra.append(record) - - iom.write_header() - - # Compare and output results. - for distinguishing_values, observed_dependent_values in observed_ra: - try: - baseline_dependent_values = baseline_ra[distinguishing_values] - except KeyError: - assert False, \ - "Distinguishing value `" + \ - str(baseline_ra.key_from_dict(distinguishing_values)) + \ - "` was not found in the baseline results." - - statistically_significant_change = False - - record = distinguishing_values.copy() - - # Compute changes, add the values and changes to the record, and identify - # changes that are statistically significant. - for var in dependent_variables: - # Compute changes. - baseline_quantity = baseline_dependent_values[var.quantity] - baseline_uncertainty = baseline_dependent_values[var.uncertainty] - baseline_sample_size = baseline_dependent_values[var.sample_size] - - observed_quantity = observed_dependent_values[var.quantity] - observed_uncertainty = observed_dependent_values[var.uncertainty] - observed_sample_size = observed_dependent_values[var.sample_size] - - (abs_change, abs_change_unc, per_change, per_change_unc) = \ - percent_change_uncertainty( - baseline_quantity, baseline_uncertainty, - observed_quantity, observed_uncertainty - ) - - # Round the change quantities and uncertainties to the significant digit - # of uncertainty. - try: - abs_change_sigdig = max( - find_significant_digit(abs_change), - find_significant_digit(abs_change_unc), - ) - -# abs_change = round_with_int_conversion( -# abs_change, abs_change_sigdig -# ) -# abs_change_unc = round_with_int_conversion( -# abs_change_unc, abs_change_sigdig -# ) - except: - # Any value errors should be due to NaNs returned by - # `percent_change_uncertainty` because quantities or change in - # quantities was 0. We can ignore these. - pass - - try: - per_change_sigdig = max( - find_significant_digit(per_change), - find_significant_digit(per_change_unc) - ) - -# per_change = round_with_int_conversion( -# per_change, per_change_sigdig -# ) -# per_change_unc = round_with_int_conversion( -# per_change_unc, per_change_sigdig -# ) - except: - # Any value errors should be due to NaNs returned by - # `percent_change_uncertainty` because quantities or change in - # quantities was 0. We can ignore these. - pass - - # Add the values (if the `--output-all-variables` option was specified) - # and the changes to the record. Note that the record's schema is - # different from the original schema. If multiple dependent variables - # share the same sample size variable, it's fine - they will overwrite - # each other, but with the same value. - if args.output_all_variables: - record[var.quantity + baseline_suffix] = baseline_quantity - record[var.uncertainty + baseline_suffix] = baseline_uncertainty - record[var.sample_size + baseline_suffix] = baseline_sample_size - record[var.quantity + observed_suffix] = observed_quantity - record[var.uncertainty + observed_suffix] = observed_uncertainty - record[var.sample_size + observed_suffix] = observed_sample_size - - record[var.quantity + absolute_change_suffix] = abs_change - record[var.uncertainty + absolute_change_suffix] = abs_change_unc - record[var.quantity + percent_change_suffix] = per_change - record[var.uncertainty + percent_change_suffix] = per_change_unc - - # If the range of uncertainties overlap don't overlap and the percentage - # change is greater than the change threshold, then change is - # statistically significant. - overlap = ranges_overlap_uncertainty( - baseline_quantity, baseline_uncertainty, - observed_quantity, observed_uncertainty - ) - if not overlap and per_change >= args.change_threshold: - statistically_significant_change = True - - # Print the record if a statistically significant change was found or if the - # `--output-all-datapoints` option was specified. - if args.output_all_datapoints or statistically_significant_change: - iom.write(record) - diff --git a/spaces/ma-xu/LIVE/thrust/thrust/detail/allocator/copy_construct_range.h b/spaces/ma-xu/LIVE/thrust/thrust/detail/allocator/copy_construct_range.h deleted file mode 100644 index 491c8ef411ec7a3c035067708b947aa42d71ec11..0000000000000000000000000000000000000000 --- a/spaces/ma-xu/LIVE/thrust/thrust/detail/allocator/copy_construct_range.h +++ /dev/null @@ -1,47 +0,0 @@ -/* - * Copyright 2008-2013 NVIDIA Corporation - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#pragma once - -#include -#include - -namespace thrust -{ -namespace detail -{ - -template -__host__ __device__ - Pointer copy_construct_range(thrust::execution_policy &from_system, - Allocator &a, - InputIterator first, - InputIterator last, - Pointer result); - -template -__host__ __device__ - Pointer copy_construct_range_n(thrust::execution_policy &from_system, - Allocator &a, - InputIterator first, - Size n, - Pointer result); - -} // end detail -} // end thrust - -#include - diff --git a/spaces/ma-xu/LIVE/thrust/thrust/system/cuda/detail/assign_value.h b/spaces/ma-xu/LIVE/thrust/thrust/system/cuda/detail/assign_value.h deleted file mode 100644 index f6fd987bf3f814f389b01499a06b313517b69733..0000000000000000000000000000000000000000 --- a/spaces/ma-xu/LIVE/thrust/thrust/system/cuda/detail/assign_value.h +++ /dev/null @@ -1,102 +0,0 @@ -/* - * Copyright 2008-2013 NVIDIA Corporation - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#pragma once - -#if THRUST_DEVICE_COMPILER == THRUST_DEVICE_COMPILER_NVCC -#include -#include -#include -#include -#include - - -namespace thrust -{ -namespace cuda_cub { - - -template -inline __host__ __device__ - void assign_value(thrust::cuda::execution_policy &exec, Pointer1 dst, Pointer2 src) -{ - // XXX war nvbugs/881631 - struct war_nvbugs_881631 - { - __host__ inline static void host_path(thrust::cuda::execution_policy &exec, Pointer1 dst, Pointer2 src) - { - cuda_cub::copy(exec, src, src + 1, dst); - } - - __device__ inline static void device_path(thrust::cuda::execution_policy &, Pointer1 dst, Pointer2 src) - { - *thrust::raw_pointer_cast(dst) = *thrust::raw_pointer_cast(src); - } - }; - - if (THRUST_IS_HOST_CODE) { - #if THRUST_INCLUDE_HOST_CODE - war_nvbugs_881631::host_path(exec,dst,src); - #endif - } else { - #if THRUST_INCLUDE_DEVICE_CODE - war_nvbugs_881631::device_path(exec,dst,src); - #endif - } -} // end assign_value() - - -template -inline __host__ __device__ - void assign_value(cross_system &systems, Pointer1 dst, Pointer2 src) -{ - // XXX war nvbugs/881631 - struct war_nvbugs_881631 - { - __host__ inline static void host_path(cross_system &systems, Pointer1 dst, Pointer2 src) - { - // rotate the systems so that they are ordered the same as (src, dst) - // for the call to thrust::copy - cross_system rotated_systems = systems.rotate(); - cuda_cub::copy(rotated_systems, src, src + 1, dst); - } - - __device__ inline static void device_path(cross_system &, Pointer1 dst, Pointer2 src) - { - // XXX forward the true cuda::execution_policy inside systems here - // instead of materializing a tag - thrust::cuda::tag cuda_tag; - thrust::cuda_cub::assign_value(cuda_tag, dst, src); - } - }; - - if (THRUST_IS_HOST_CODE) { - #if THRUST_INCLUDE_HOST_CODE - war_nvbugs_881631::host_path(systems,dst,src); - #endif - } else { - #if THRUST_INCLUDE_DEVICE_CODE - war_nvbugs_881631::device_path(systems,dst,src); - #endif - } -} // end assign_value() - - - - -} // end cuda_cub -} // end namespace thrust -#endif diff --git a/spaces/ma-xu/LIVE/thrust/thrust/system/detail/sequential/stable_merge_sort.h b/spaces/ma-xu/LIVE/thrust/thrust/system/detail/sequential/stable_merge_sort.h deleted file mode 100644 index 359ba8d7b43666153cd5f44c5f2a1d15cad932ab..0000000000000000000000000000000000000000 --- a/spaces/ma-xu/LIVE/thrust/thrust/system/detail/sequential/stable_merge_sort.h +++ /dev/null @@ -1,60 +0,0 @@ -/* - * Copyright 2008-2013 NVIDIA Corporation - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#pragma once - -#include -#include - -namespace thrust -{ -namespace system -{ -namespace detail -{ -namespace sequential -{ - - -template -__host__ __device__ -void stable_merge_sort(sequential::execution_policy &exec, - RandomAccessIterator begin, - RandomAccessIterator end, - StrictWeakOrdering comp); - - -template -__host__ __device__ -void stable_merge_sort_by_key(sequential::execution_policy &exec, - RandomAccessIterator1 keys_begin, - RandomAccessIterator1 keys_end, - RandomAccessIterator2 values_begin, - StrictWeakOrdering comp); - - -} // end namespace sequential -} // end namespace detail -} // end namespace system -} // end namespace thrust - -#include - diff --git a/spaces/maminghui/ChatGPT/app.py b/spaces/maminghui/ChatGPT/app.py deleted file mode 100644 index c1499c3ffefd63ec3aada553828c441fa06fff54..0000000000000000000000000000000000000000 --- a/spaces/maminghui/ChatGPT/app.py +++ /dev/null @@ -1,454 +0,0 @@ -# -*- coding:utf-8 -*- -import os -import logging -import sys - -import gradio as gr - -from utils import * -from presets import * -from overwrites import * -from chat_func import * - -logging.basicConfig( - level=logging.DEBUG, - format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s", -) - -my_api_key = "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" # åœØčæ™é‡Œč¾“å…„ä½ ēš„ API 密钄 - -# if we are running in Docker -if os.environ.get("dockerrun") == "yes": - dockerflag = True -else: - dockerflag = False - -authflag = False - -if dockerflag: - my_api_key = os.environ.get("my_api_key") - if my_api_key == "empty": - logging.error("Please give a api key!") - sys.exit(1) - # auth - username = os.environ.get("USERNAME") - password = os.environ.get("PASSWORD") - if not (isinstance(username, type(None)) or isinstance(password, type(None))): - authflag = True -else: - if ( - not my_api_key - and os.path.exists("api_key.txt") - and os.path.getsize("api_key.txt") - ): - with open("api_key.txt", "r") as f: - my_api_key = f.read().strip() - if os.path.exists("auth.json"): - with open("auth.json", "r") as f: - auth = json.load(f) - username = auth["username"] - password = auth["password"] - if username != "" and password != "": - authflag = True - -gr.Chatbot.postprocess = postprocess -PromptHelper.compact_text_chunks = compact_text_chunks - -with open("custom.css", "r", encoding="utf-8") as f: - customCSS = f.read() - -with gr.Blocks( - css=customCSS, - theme=gr.themes.Soft( - primary_hue=gr.themes.Color( - c50="#02C160", - c100="rgba(2, 193, 96, 0.2)", - c200="#02C160", - c300="rgba(2, 193, 96, 0.32)", - c400="rgba(2, 193, 96, 0.32)", - c500="rgba(2, 193, 96, 1.0)", - c600="rgba(2, 193, 96, 1.0)", - c700="rgba(2, 193, 96, 0.32)", - c800="rgba(2, 193, 96, 0.32)", - c900="#02C160", - c950="#02C160", - ), - secondary_hue=gr.themes.Color( - c50="#576b95", - c100="#576b95", - c200="#576b95", - c300="#576b95", - c400="#576b95", - c500="#576b95", - c600="#576b95", - c700="#576b95", - c800="#576b95", - c900="#576b95", - c950="#576b95", - ), - neutral_hue=gr.themes.Color( - name="gray", - c50="#f9fafb", - c100="#f3f4f6", - c200="#e5e7eb", - c300="#d1d5db", - c400="#B2B2B2", - c500="#808080", - c600="#636363", - c700="#515151", - c800="#393939", - c900="#272727", - c950="#171717", - ), - radius_size=gr.themes.sizes.radius_sm, - ).set( - button_primary_background_fill="#06AE56", - button_primary_background_fill_dark="#06AE56", - button_primary_background_fill_hover="#07C863", - button_primary_border_color="#06AE56", - button_primary_border_color_dark="#06AE56", - button_primary_text_color="#FFFFFF", - button_primary_text_color_dark="#FFFFFF", - button_secondary_background_fill="#F2F2F2", - button_secondary_background_fill_dark="#2B2B2B", - button_secondary_text_color="#393939", - button_secondary_text_color_dark="#FFFFFF", - # background_fill_primary="#F7F7F7", - # background_fill_primary_dark="#1F1F1F", - block_title_text_color="*primary_500", - block_title_background_fill="*primary_100", - input_background_fill="#F6F6F6", - ), -) as demo: - history = gr.State([]) - token_count = gr.State([]) - promptTemplates = gr.State(load_template(get_template_names(plain=True)[0], mode=2)) - user_api_key = gr.State(my_api_key) - TRUECOMSTANT = gr.State(True) - FALSECONSTANT = gr.State(False) - topic = gr.State("ęœŖå‘½ååÆ¹čÆåŽ†å²č®°å½•") - - with gr.Row(): - gr.HTML(title) - status_display = gr.Markdown(get_geoip(), elem_id="status_display") - - with gr.Row(scale=1).style(equal_height=True): - with gr.Column(scale=5): - with gr.Row(scale=1): - chatbot = gr.Chatbot(elem_id="chuanhu_chatbot").style(height="100%") - with gr.Row(scale=1): - with gr.Column(scale=12): - user_input = gr.Textbox( - show_label=False, placeholder="åœØčæ™é‡Œč¾“å…„" - ).style(container=False) - with gr.Column(min_width=70, scale=1): - submitBtn = gr.Button("发送", variant="primary") - with gr.Row(scale=1): - emptyBtn = gr.Button( - "🧹 ę–°ēš„åÆ¹čÆ", - ) - retryBtn = gr.Button("šŸ”„ é‡ę–°ē”Ÿęˆ") - delLastBtn = gr.Button("šŸ—‘ļø åˆ é™¤äø€ę”åÆ¹čÆ") - reduceTokenBtn = gr.Button("ā™»ļø ę€»ē»“åÆ¹čÆ") - - with gr.Column(): - with gr.Column(min_width=50, scale=1): - with gr.Tab(label="ChatGPT"): - keyTxt = gr.Textbox( - show_label=True, - placeholder=f"OpenAI API-key...", - value=hide_middle_chars(my_api_key), - type="password", - visible=not HIDE_MY_KEY, - label="API-Key", - ) - model_select_dropdown = gr.Dropdown( - label="é€‰ę‹©ęØ”åž‹", choices=MODELS, multiselect=False, value=MODELS[0] - ) - use_streaming_checkbox = gr.Checkbox( - label="å®žę—¶ä¼ č¾“å›žē­”", value=True, visible=enable_streaming_option - ) - use_websearch_checkbox = gr.Checkbox(label="ä½æē”ØåœØēŗæęœē“¢", value=False) - index_files = gr.Files(label="äøŠä¼ ē“¢å¼•ę–‡ä»¶", type="file", multiple=True) - - with gr.Tab(label="Prompt"): - systemPromptTxt = gr.Textbox( - show_label=True, - placeholder=f"åœØčæ™é‡Œč¾“å…„System Prompt...", - label="System prompt", - value=initial_prompt, - lines=10, - ).style(container=False) - with gr.Accordion(label="加载PromptęØ”ęæ", open=True): - with gr.Column(): - with gr.Row(): - with gr.Column(scale=6): - templateFileSelectDropdown = gr.Dropdown( - label="选ꋩPromptęØ”ęæé›†åˆę–‡ä»¶", - choices=get_template_names(plain=True), - multiselect=False, - value=get_template_names(plain=True)[0], - ).style(container=False) - with gr.Column(scale=1): - templateRefreshBtn = gr.Button("šŸ”„ åˆ·ę–°") - with gr.Row(): - with gr.Column(): - templateSelectDropdown = gr.Dropdown( - label="从PromptęØ”ęæäø­åŠ č½½", - choices=load_template( - get_template_names(plain=True)[0], mode=1 - ), - multiselect=False, - value=load_template( - get_template_names(plain=True)[0], mode=1 - )[0], - ).style(container=False) - - with gr.Tab(label="äæå­˜/加载"): - with gr.Accordion(label="äæå­˜/åŠ č½½åÆ¹čÆåŽ†å²č®°å½•", open=True): - with gr.Column(): - with gr.Row(): - with gr.Column(scale=6): - historyFileSelectDropdown = gr.Dropdown( - label="ä»Žåˆ—č”Øäø­åŠ č½½åÆ¹čÆ", - choices=get_history_names(plain=True), - multiselect=False, - value=get_history_names(plain=True)[0], - ) - with gr.Column(scale=1): - historyRefreshBtn = gr.Button("šŸ”„ åˆ·ę–°") - with gr.Row(): - with gr.Column(scale=6): - saveFileName = gr.Textbox( - show_label=True, - placeholder=f"č®¾ē½®ę–‡ä»¶å: 默认为.jsonļ¼ŒåÆé€‰äøŗ.md", - label="č®¾ē½®äæå­˜ę–‡ä»¶å", - value="åÆ¹čÆåŽ†å²č®°å½•", - ).style(container=True) - with gr.Column(scale=1): - saveHistoryBtn = gr.Button("šŸ’¾ äæå­˜åÆ¹čÆ") - exportMarkdownBtn = gr.Button("šŸ“ 导出为Markdown") - gr.Markdown("é»˜č®¤äæå­˜äŗŽhistory文件夹") - with gr.Row(): - with gr.Column(): - downloadFile = gr.File(interactive=True) - - with gr.Tab(label="高级"): - default_btn = gr.Button("šŸ”™ ę¢å¤é»˜č®¤č®¾ē½®") - gr.Markdown("# āš ļø åŠ”åæ…č°Øę…Žę›“ę”¹ āš ļø\n\nå¦‚ęžœę— ę³•ä½æē”ØčÆ·ę¢å¤é»˜č®¤č®¾ē½®") - - with gr.Accordion("å‚ę•°", open=False): - top_p = gr.Slider( - minimum=-0, - maximum=1.0, - value=1.0, - step=0.05, - interactive=True, - label="Top-p", - ) - temperature = gr.Slider( - minimum=-0, - maximum=2.0, - value=1.0, - step=0.1, - interactive=True, - label="Temperature", - ) - - apiurlTxt = gr.Textbox( - show_label=True, - placeholder=f"åœØčæ™é‡Œč¾“å…„API地址...", - label="API地址", - value="https://api.openai.com/v1/chat/completions", - lines=2, - ) - changeAPIURLBtn = gr.Button("šŸ”„ åˆ‡ę¢API地址") - proxyTxt = gr.Textbox( - show_label=True, - placeholder=f"åœØčæ™é‡Œč¾“å…„ä»£ē†åœ°å€...", - label="ä»£ē†åœ°å€ļ¼ˆē¤ŗä¾‹ļ¼šhttp://127.0.0.1:10809)", - value="", - lines=2, - ) - changeProxyBtn = gr.Button("šŸ”„ č®¾ē½®ä»£ē†åœ°å€") - - gr.Markdown(description) - - keyTxt.submit(submit_key, keyTxt, [user_api_key, status_display]) - keyTxt.change(submit_key, keyTxt, [user_api_key, status_display]) - # Chatbot - user_input.submit( - predict, - [ - user_api_key, - systemPromptTxt, - history, - user_input, - chatbot, - token_count, - top_p, - temperature, - use_streaming_checkbox, - model_select_dropdown, - use_websearch_checkbox, - index_files, - ], - [chatbot, history, status_display, token_count], - show_progress=True, - ) - user_input.submit(reset_textbox, [], [user_input]) - - submitBtn.click( - predict, - [ - user_api_key, - systemPromptTxt, - history, - user_input, - chatbot, - token_count, - top_p, - temperature, - use_streaming_checkbox, - model_select_dropdown, - use_websearch_checkbox, - index_files, - ], - [chatbot, history, status_display, token_count], - show_progress=True, - ) - submitBtn.click(reset_textbox, [], [user_input]) - - emptyBtn.click( - reset_state, - outputs=[chatbot, history, token_count, status_display], - show_progress=True, - ) - - retryBtn.click( - retry, - [ - user_api_key, - systemPromptTxt, - history, - chatbot, - token_count, - top_p, - temperature, - use_streaming_checkbox, - model_select_dropdown, - ], - [chatbot, history, status_display, token_count], - show_progress=True, - ) - - delLastBtn.click( - delete_last_conversation, - [chatbot, history, token_count], - [chatbot, history, token_count, status_display], - show_progress=True, - ) - - reduceTokenBtn.click( - reduce_token_size, - [ - user_api_key, - systemPromptTxt, - history, - chatbot, - token_count, - top_p, - temperature, - gr.State(0), - model_select_dropdown, - ], - [chatbot, history, status_display, token_count], - show_progress=True, - ) - - # Template - templateRefreshBtn.click(get_template_names, None, [templateFileSelectDropdown]) - templateFileSelectDropdown.change( - load_template, - [templateFileSelectDropdown], - [promptTemplates, templateSelectDropdown], - show_progress=True, - ) - templateSelectDropdown.change( - get_template_content, - [promptTemplates, templateSelectDropdown, systemPromptTxt], - [systemPromptTxt], - show_progress=True, - ) - - # S&L - saveHistoryBtn.click( - save_chat_history, - [saveFileName, systemPromptTxt, history, chatbot], - downloadFile, - show_progress=True, - ) - saveHistoryBtn.click(get_history_names, None, [historyFileSelectDropdown]) - exportMarkdownBtn.click( - export_markdown, - [saveFileName, systemPromptTxt, history, chatbot], - downloadFile, - show_progress=True, - ) - historyRefreshBtn.click(get_history_names, None, [historyFileSelectDropdown]) - historyFileSelectDropdown.change( - load_chat_history, - [historyFileSelectDropdown, systemPromptTxt, history, chatbot], - [saveFileName, systemPromptTxt, history, chatbot], - show_progress=True, - ) - downloadFile.change( - load_chat_history, - [downloadFile, systemPromptTxt, history, chatbot], - [saveFileName, systemPromptTxt, history, chatbot], - ) - - # Advanced - default_btn.click( - reset_default, [], [apiurlTxt, proxyTxt, status_display], show_progress=True - ) - changeAPIURLBtn.click( - change_api_url, - [apiurlTxt], - [status_display], - show_progress=True, - ) - changeProxyBtn.click( - change_proxy, - [proxyTxt], - [status_display], - show_progress=True, - ) - -logging.info( - colorama.Back.GREEN - + "\nå·č™Žēš„ęø©é¦Øęē¤ŗļ¼šč®æé—® http://localhost:7860 ęŸ„ēœ‹ē•Œé¢" - + colorama.Style.RESET_ALL -) -# é»˜č®¤å¼€åÆęœ¬åœ°ęœåŠ”å™Øļ¼Œé»˜č®¤åÆä»„ē›“ęŽ„ä»ŽIPč®æé—®ļ¼Œé»˜č®¤äøåˆ›å»ŗå…¬å¼€åˆ†äŗ«é“¾ęŽ„ -demo.title = "å·č™ŽChatGPT šŸš€" - -if __name__ == "__main__": - # if running in Docker - if dockerflag: - if authflag: - demo.queue().launch( - server_name="0.0.0.0", server_port=7860, auth=(username, password), - favicon_path="./assets/favicon.png" - ) - else: - demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=False, favicon_path="./assets/favicon.png") - # if not running in Docker - else: - if authflag: - demo.queue().launch(share=False, auth=(username, password), favicon_path="./assets/favicon.png", inbrowser=True) - else: - demo.queue().launch(share=False, favicon_path="./assets/favicon.png", inbrowser=True) # 改为 share=True åÆä»„åˆ›å»ŗå…¬å¼€åˆ†äŗ«é“¾ęŽ„ - # demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=False) # åÆč‡Ŗå®šä¹‰ē«Æå£ - # demo.queue().launch(server_name="0.0.0.0", server_port=7860,auth=("åœØčæ™é‡Œå”«å†™ē”Øęˆ·å", "åœØčæ™é‡Œå”«å†™åÆ†ē ")) # åÆč®¾ē½®ē”Øęˆ·åäøŽåÆ†ē  - # demo.queue().launch(auth=("åœØčæ™é‡Œå”«å†™ē”Øęˆ·å", "åœØčæ™é‡Œå”«å†™åÆ†ē ")) # 适合Nginxåå‘ä»£ē† diff --git a/spaces/manhkhanhUIT/BOPBTL/Global/data/__init__.py b/spaces/manhkhanhUIT/BOPBTL/Global/data/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/markski/reddit-roast-me/src/transformer.py b/spaces/markski/reddit-roast-me/src/transformer.py deleted file mode 100644 index 63f00bbf7efaa35f59f7a20f4b0307ab3edbf722..0000000000000000000000000000000000000000 --- a/spaces/markski/reddit-roast-me/src/transformer.py +++ /dev/null @@ -1,113 +0,0 @@ -from typing import Optional - -import torch.nn.functional as nnf -from torch import nn -import torch - - -class MlpTransformer(nn.Module): - def __init__(self, in_dim, h_dim, out_d: Optional[int] = None, act=nnf.relu, dropout=0.): - super().__init__() - out_d = out_d if out_d is not None else in_dim - self.fc1 = nn.Linear(in_dim, h_dim) - self.act = act - self.fc2 = nn.Linear(h_dim, out_d) - self.dropout = nn.Dropout(dropout) - - def forward(self, x): - x = self.fc1(x) - x = self.act(x) - x = self.dropout(x) - x = self.fc2(x) - x = self.dropout(x) - return x - -class MultiHeadAttention(nn.Module): - - def __init__(self, dim_self, dim_ref, num_heads, bias=True, dropout=0.): - super().__init__() - self.num_heads = num_heads - head_dim = dim_self // num_heads - self.scale = head_dim ** -0.5 - self.to_queries = nn.Linear(dim_self, dim_self, bias=bias) - self.to_keys_values = nn.Linear(dim_ref, dim_self * 2, bias=bias) - self.project = nn.Linear(dim_self, dim_self) - self.dropout = nn.Dropout(dropout) - - def forward(self, x, y=None, mask=None): - y = y if y is not None else x - b, n, c = x.shape - _, m, d = y.shape - # b n h dh - queries = self.to_queries(x).reshape(b, n, self.num_heads, c // self.num_heads) - # b m 2 h dh - keys_values = self.to_keys_values(y).reshape(b, m, 2, self.num_heads, c // self.num_heads) - keys, values = keys_values[:, :, 0], keys_values[:, :, 1] - attention = torch.einsum('bnhd,bmhd->bnmh', queries, keys) * self.scale - if mask is not None: - if mask.dim() == 2: - mask = mask.unsqueeze(1) - attention = attention.masked_fill(mask.unsqueeze(3), float("-inf")) - attention = attention.softmax(dim=2) - out = torch.einsum('bnmh,bmhd->bnhd', attention, values).reshape(b, n, c) - out = self.project(out) - return out, attention - - -class TransformerLayer(nn.Module): - - def forward_with_attention(self, x, y=None, mask=None): - x_, attention = self.attn(self.norm1(x), y, mask) - x = x + x_ - x = x + self.mlp(self.norm2(x)) - return x, attention - - def forward(self, x, y=None, mask=None): - x = x + self.attn(self.norm1(x), y, mask)[0] - x = x + self.mlp(self.norm2(x)) - return x - - def __init__(self, dim_self, dim_ref, num_heads, mlp_ratio=4., bias=False, dropout=0., act=nnf.relu, - norm_layer: nn.Module = nn.LayerNorm): - super().__init__() - self.norm1 = norm_layer(dim_self) - self.attn = MultiHeadAttention(dim_self, dim_ref, num_heads, bias=bias, dropout=dropout) - self.norm2 = norm_layer(dim_self) - self.mlp = MlpTransformer(dim_self, int(dim_self * mlp_ratio), act=act, dropout=dropout) - - -class Transformer(nn.Module): - - def forward_with_attention(self, x, y=None, mask=None): - attentions = [] - for layer in self.layers: - x, att = layer.forward_with_attention(x, y, mask) - attentions.append(att) - return x, attentions - - def forward(self, x, y=None, mask=None): - for i, layer in enumerate(self.layers): - if i % 2 == 0 and self.enc_dec: # cross - x = layer(x, y) - elif self.enc_dec: # self - x = layer(x, x, mask) - else: # self or cross - x = layer(x, y, mask) - return x - - def __init__(self, dim_self: int, num_heads: int, num_layers: int, dim_ref: Optional[int] = None, - mlp_ratio: float = 2., act=nnf.relu, norm_layer: nn.Module = nn.LayerNorm, enc_dec: bool = False): - super(Transformer, self).__init__() - dim_ref = dim_ref if dim_ref is not None else dim_self - self.enc_dec = enc_dec - if enc_dec: - num_layers = num_layers * 2 - layers = [] - for i in range(num_layers): - if i % 2 == 0 and enc_dec: # cross - layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act, norm_layer=norm_layer)) - elif enc_dec: # self - layers.append(TransformerLayer(dim_self, dim_self, num_heads, mlp_ratio, act=act, norm_layer=norm_layer)) - else: # self or cross - layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act, norm_layer=norm_layer)) - self.layers = nn.ModuleList(layers) diff --git a/spaces/mehdidc/text_to_image_ddgan/pytorch_fid/fid_score.py b/spaces/mehdidc/text_to_image_ddgan/pytorch_fid/fid_score.py deleted file mode 100644 index b666c8daac49bf66bdc60289f815baa2b77d6998..0000000000000000000000000000000000000000 --- a/spaces/mehdidc/text_to_image_ddgan/pytorch_fid/fid_score.py +++ /dev/null @@ -1,305 +0,0 @@ -# --------------------------------------------------------------- -# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. -# -# This file has been modified from FAST_DPM. -# -# Source: -# https://github.com/FengNiMa/FastDPM_pytorch/blob/6540c1cdac3799aff8a5f7b9de430269bbd0b7c3/pytorch_fid/fid_score.py -# -# The license for the original version of this file can be -# found in this directory (LICENSE_MIT). -# The modifications to this file are subject to the same license. -# --------------------------------------------------------------- - -"""Calculates the Frechet Inception Distance (FID) to evalulate GANs - -The FID metric calculates the distance between two distributions of images. -Typically, we have summary statistics (mean & covariance matrix) of one -of these distributions, while the 2nd distribution is given by a GAN. - -When run as a stand-alone program, it compares the distribution of -images that are stored as PNG/JPEG at a specified location with a -distribution given by summary statistics (in pickle format). - -The FID is calculated by assuming that X_1 and X_2 are the activations of -the pool_3 layer of the inception net for generated samples and real world -samples respectively. - -See --help to see further details. - -Code apapted from https://github.com/bioinf-jku/TTUR to use PyTorch instead -of Tensorflow - -Copyright 2018 Institute of Bioinformatics, JKU Linz - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -""" -import os -import pathlib -from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser -from multiprocessing import cpu_count - -import numpy as np -import torch -import torch.nn.functional as F -import torchvision.transforms as TF -from PIL import Image -from scipy import linalg -from torch.nn.functional import adaptive_avg_pool2d - -try: - from tqdm import tqdm -except ImportError: - # If tqdm is not available, provide a mock version of it - def tqdm(x): - return x - -try: - from inception import InceptionV3 -except ImportError: - from .inception import InceptionV3 - -parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) -parser.add_argument('--batch-size', type=int, default=50, - help='Batch size to use') -parser.add_argument('--device', type=str, default=None, - help='Device to use. Like cuda, cuda:0 or cpu') -parser.add_argument('--dims', type=int, default=2048, - choices=list(InceptionV3.BLOCK_INDEX_BY_DIM), - help=('Dimensionality of Inception features to use. ' - 'By default, uses pool3 features')) -parser.add_argument('path', type=str, nargs=2, - help=('Paths to the generated images or ' - 'to .npz statistic files')) - -IMAGE_EXTENSIONS = {'bmp', 'jpg', 'jpeg', 'pgm', 'png', 'ppm', - 'tif', 'tiff', 'webp'} - - - - -class ImagePathDataset(torch.utils.data.Dataset): - def __init__(self, files, transforms=None): - self.files = files - self.transforms = transforms - - def __len__(self): - return len(self.files) - - def __getitem__(self, i): - path = self.files[i] - img = Image.open(path).convert('RGB') - if self.transforms is not None: - img = self.transforms(img) - return img - - -def get_activations(files, model, batch_size=50, dims=2048, device='cpu', resize=0): - """Calculates the activations of the pool_3 layer for all images. - - Params: - -- files : List of image files paths - -- model : Instance of inception model - -- batch_size : Batch size of images for the model to process at once. - Make sure that the number of samples is a multiple of - the batch size, otherwise some samples are ignored. This - behavior is retained to match the original FID score - implementation. - -- dims : Dimensionality of features returned by Inception - -- device : Device to run calculations - - Returns: - -- A numpy array of dimension (num images, dims) that contains the - activations of the given tensor when feeding inception with the - query tensor. - """ - model.eval() - - if batch_size > len(files): - print(('Warning: batch size is bigger than the data size. ' - 'Setting batch size to data size')) - batch_size = len(files) - - if resize > 0: - print('Resized to ({}, {})'.format(resize, resize)) - dataset = ImagePathDataset(files, transforms=TF.Compose([TF.Resize(size=(resize, resize)), - TF.ToTensor()])) - else: - dataset = ImagePathDataset(files, transforms=TF.ToTensor()) - dataloader = torch.utils.data.DataLoader(dataset, - batch_size=batch_size, - shuffle=False, - drop_last=False, - num_workers=8) - - pred_arr = np.empty((len(files), dims)) - - start_idx = 0 - - for batch in tqdm(dataloader): - batch = batch.to(device) - #print(batch.shape, batch.min(), batch.max) - with torch.no_grad(): - pred = model(batch)[0] - - # If model output is not scalar, apply global spatial average pooling. - # This happens if you choose a dimensionality not equal 2048. - if pred.size(2) != 1 or pred.size(3) != 1: - pred = adaptive_avg_pool2d(pred, output_size=(1, 1)) - - pred = pred.squeeze(3).squeeze(2).cpu().numpy() - - pred_arr[start_idx:start_idx + pred.shape[0]] = pred - - start_idx = start_idx + pred.shape[0] - - return pred_arr - - -def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): - """Numpy implementation of the Frechet Distance. - The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) - and X_2 ~ N(mu_2, C_2) is - d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). - - Stable version by Dougal J. Sutherland. - - Params: - -- mu1 : Numpy array containing the activations of a layer of the - inception net (like returned by the function 'get_predictions') - for generated samples. - -- mu2 : The sample mean over activations, precalculated on an - representative data set. - -- sigma1: The covariance matrix over activations for generated samples. - -- sigma2: The covariance matrix over activations, precalculated on an - representative data set. - - Returns: - -- : The Frechet Distance. - """ - - mu1 = np.atleast_1d(mu1) - mu2 = np.atleast_1d(mu2) - - sigma1 = np.atleast_2d(sigma1) - sigma2 = np.atleast_2d(sigma2) - - assert mu1.shape == mu2.shape, \ - 'Training and test mean vectors have different lengths' - assert sigma1.shape == sigma2.shape, \ - 'Training and test covariances have different dimensions' - - diff = mu1 - mu2 - - # Product might be almost singular - covmean = linalg.sqrtm(sigma1.dot(sigma2)) - if not np.isfinite(covmean).all(): - msg = ('fid calculation produces singular product; ' - 'adding %s to diagonal of cov estimates') % eps - print(msg) - offset = np.eye(sigma1.shape[0]) * eps - covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) - - # Numerical error might give slight imaginary component - if np.iscomplexobj(covmean): - if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): - m = np.max(np.abs(covmean.imag)) - raise ValueError('Imaginary component {}'.format(m)) - covmean = covmean.real - - tr_covmean = np.trace(covmean) - - return (diff.dot(diff) + np.trace(sigma1) - + np.trace(sigma2) - 2 * tr_covmean) - - -def calculate_activation_statistics(files, model, batch_size=50, dims=2048, - device='cpu', resize=0): - """Calculation of the statistics used by the FID. - Params: - -- files : List of image files paths - -- model : Instance of inception model - -- batch_size : The images numpy array is split into batches with - batch size batch_size. A reasonable batch size - depends on the hardware. - -- dims : Dimensionality of features returned by Inception - -- device : Device to run calculations - -- resize : resize image to this shape - - Returns: - -- mu : The mean over samples of the activations of the pool_3 layer of - the inception model. - -- sigma : The covariance matrix of the activations of the pool_3 layer of - the inception model. - """ - act = get_activations(files, model, batch_size, dims, device, resize) - mu = np.mean(act, axis=0) - sigma = np.cov(act, rowvar=False) - return mu, sigma - - -def compute_statistics_of_path(path, model, batch_size, dims, device, resize=0): - if path.endswith('.npz') or path.endswith('.npy'): - f = np.load(path, allow_pickle=True) - try: - m, s = f['mu'][:], f['sigma'][:] - except: - m, s = f.item()['mu'][:], f.item()['sigma'][:] - else: - path_str = path[:] - path = pathlib.Path(path) - files = sorted([file for ext in IMAGE_EXTENSIONS - for file in path.glob('*.{}'.format(ext))]) - m, s = calculate_activation_statistics(files, model, batch_size, - dims, device, resize) - return m, s - - -def calculate_fid_given_paths(paths, batch_size, device, dims, resize=0): - """Calculates the FID of two paths""" - for p in paths: - if not os.path.exists(p): - raise RuntimeError('Invalid path: %s' % p) - - block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] - - model = InceptionV3([block_idx]).to(device) - - m1, s1 = compute_statistics_of_path(paths[0], model, batch_size, - dims, device, resize) - m2, s2 = compute_statistics_of_path(paths[1], model, batch_size, - dims, device, resize) - - del model - fid_value = calculate_frechet_distance(m1, s1, m2, s2) - return fid_value - - - -def main(): - args = parser.parse_args() - - if args.device is None: - device = torch.device('cuda' if (torch.cuda.is_available()) else 'cpu') - else: - device = torch.device(args.device) - - fid_value = calculate_fid_given_paths(args.path, - args.batch_size, - device, - args.dims) - print('FID: ', fid_value) - - -if __name__ == '__main__': - main() \ No newline at end of file diff --git a/spaces/merve/hidden-bias/source/private-and-fair/top-bot-digits.js b/spaces/merve/hidden-bias/source/private-and-fair/top-bot-digits.js deleted file mode 100644 index bc2f85ec8cb3b5544245f159aa62ff2fbffbcbb5..0000000000000000000000000000000000000000 --- a/spaces/merve/hidden-bias/source/private-and-fair/top-bot-digits.js +++ /dev/null @@ -1,66 +0,0 @@ - -!(async function(){ - await util.getFile(`cns-cache/mnist_train_raw_3.npy`) - var digitMetadata = await util.getFile('mnist_train.csv') - var {byLabel} = util.decorateDigitMetadata(digitMetadata) - - var sel = d3.select('.top-bot-digits').html('') - .at({role: 'graphics-document', 'aria-label': `The twenty-five MNIST 3 digits most and least senstive to higher and lower privacy. The digits most sensitive to higher privacy are much more poorly drawn than the onces least sensitive to higher privacy.`}) - - var digitSel = sel.append('div') - var buttonSel = sel.append('div.digit-button-container') - .appendMany('div.button', d3.range(10)) - .text(d => d) - .on('click', d => drawClass(byLabel[d])) - - drawClass(byLabel[3]) - - async function drawClass(digitClass){ - buttonSel.classed('active', d => d == digitClass.key) - await util.getFile(`cns-cache/mnist_train_raw_${digitClass.key}.npy`) - - var nRows = 5 - var nCols = 5 - - var bot = _.sortBy(digitClass, d => +d.priv_order).slice(0, nRows*nCols) - var top = _.sortBy(digitClass, d => -d.priv_order).slice(0, nRows*nCols) - - digitSel.html('').append('div') - .st({maxWidth: 640, margin: '0 auto'}) - .appendMany('div', [bot, top]) - .st({display: 'inline-block'}) - .each(drawDigitBlock) - - - function drawDigitBlock(digits, isBot){ - var s = 2 - - var sel = d3.select(this).append('div') - - var c = d3.conventions({ - sel, - width: s*29*nCols, - height: s*29*nRows, - layers: 'cs', - margin: {top: 30, bottom: 10, right: 10, left: 10} - }) - - var ctx = c.layers[0] - - digits.forEach((d, i) => { - util.drawDigit( - ctx, - +d.i, - s, - (i % nCols)*s*29, - Math.floor(i/nCols)*s*29 - ) - }) - - c.svg.append('text') - .text(isBot ? 'Least sensitive to higher privacy' : 'Most sensitive to higher privacy') - .at({dy: '-.4em', textAnchor: 'middle', x: c.width/2, fontWeight: 600, fontSize: 14}) - } - } - -})() \ No newline at end of file diff --git a/spaces/merve/measuring-fairness/public/data-leak/index.html b/spaces/merve/measuring-fairness/public/data-leak/index.html deleted file mode 100644 index 48382c629935410818fbefd120b3f743019c4f40..0000000000000000000000000000000000000000 --- a/spaces/merve/measuring-fairness/public/data-leak/index.html +++ /dev/null @@ -1,170 +0,0 @@ - - - - - - - - - - - - - - - - - - Why Some Models Leak Data - - - - - - - - - - - - - - - -
          - -
          - -

          Why Some Models Leak Data

          -
          Machine learning models use large amounts of data, some of which can be sensitive. If they're not trained correctly, sometimes that data is inadvertently revealed.
          - - - -

          Let’s take a look at a game of soccer.

          - - -
          - -



          -

          Using the position of each player as training data, we can teach a model to predict which team would get to a loose ball first at each spot on the field, indicated by the color of the pixel.

          -
          - -

          It updates in real-time—drag the players around to see the model change.

          -



          -

          This model reveals quite a lot about the data used to train it. Even without the actual positions of the players, it is simple to see where players might be.

          -
          - -

          Click this button to move the players

          -

          Take a guess at where the yellow team’s goalie is now, then check their actual position. How close were you?

          -

          Sensitive Salary Data

          - -

          In this specific soccer example, being able to make educated guesses about the data a model was trained on doesn’t matter too much. But what if our data points represent something more sensitive?

          -
          - -

          We’ve fed the same numbers into the model, but now they represent salary data instead of soccer data. Building models like this is a common technique to detect discrimination. A union might test if a company is paying men and women fairly by building a salary model that takes into account years of experience. They can then publish the results to bring pressure for change or show improvement.

          -

          In this hypothetical salary study, even though no individual salaries have been published, it is easy to infer the salary of the newest male hire. And carefully cross referencing public start dates on LinkedIn with the model could almost perfectly reveal everyone’s salary.

          -

          Because the model here is so flexible (there are hundreds of square patches with independently calculated predictions) and we have so few data points (just 22 people), it is able to ā€œmemorizeā€ individual data points. If we’re looking to share information about patterns in salaries, a simpler and more constrained model like a linear regression might be more appropriate.

          -
          - -

          By boiling down the 22 data points to two lines we’re able to see broad trends without being able to guess anyone’s salary.

          -

          Subtle Leaks

          - -

          Removing complexity isn’t a complete solution though. Depending on how the data is distributed, even a simple line can inadvertently reveal information.

          -
          - -

          In this company, almost all the men started several years ago, so the slope of the line is especially sensitive to the salary of the new hire.

          -

          Is their salary higher or lower than average? Based on the line, we can make a pretty good guess.

          -

          Notice that changing the salary of someone with a more common tenure barely moves the line. In general, more typical data points are less susceptible to being leaked. This sets up a tricky trade off: we want models to learn about edge cases while being sure they haven’t memorized individual data points.

          -

          Real World Data

          - -

          Models of real world data are often quite complex—this can improve accuracy, but makes them more susceptible to unexpectedly leaking information. Medical models have inadvertently revealed patients’ genetic markers. Language models have memorized credit card numbers. Faces can even be reconstructed from image models:

          -
          - -

          Fredrikson et al were able to extract the image on the left by repeatedly querying a facial recognition API. It isn’t an exact match with the individual’s actual face (on the right), but this attack only required access to the model’s predictions, not its internal state.

          -

          Protecting Private Data

          - -

          Training models with differential privacy stops the training data from leaking by limiting how much the model can learn from any one data point. Differentially private models are still at the cutting edge of research, but they’re being packaged into machine learning frameworks, making them much easier to use. When it isn’t possible to train differentially private models, there are also tools that can measure how much data is the model memorizing. Also, standard techniques such as aggregation and limiting how much data a single source can contribute are still useful and usually improve the privacy of the model.

          -

          As we saw in the Collecting Sensitive Information Explorable, adding enough random noise with differential privacy to protect outliers like the new hire can increase the amount of data required to reach a good level of accuracy. Depending on the application, the constraints of differential privacy could even improve the model—for instance, not learning too much from one data point can help prevent overfitting.

          -

          Given the increasing utility of machine learning models for many real-world tasks, it’s clear that more and more systems, devices and apps will be powered, to some extent, by machine learning in the future. While standard privacy best practices developed for non-machine learning systems still apply to those with machine learning, the introduction of machine learning introduces new challenges, including the ability of the model to memorize some specific training data points and thus be vulnerable to privacy attacks that seek to extract this data from the model. Fortunately, techniques such as differential privacy exist that can be helpful in overcoming this specific challenge. Just as with other areas of Responsible AI, it’s important to be aware of these new challenges that come along with machine learning and what steps can be taken to mitigate them.

          -

          Credits

          - -

          Adam Pearce and Ellen Jiang // December 2020

          -

          Thanks to Andreas Terzis, Ben Wedin, Carey Radebaugh, David Weinberger, Emily Reif, Fernanda ViƩgas, Hal Abelson, Kristen Olson, Martin Wattenberg, Michael Terry, Miguel Guevara, Thomas Steinke, Yannick Assogba, Zan Armstrong and our other colleagues at Google for their help with this piece.

          -

          More Explorables

          - -

          - - - - - - - - - - - - - - - - - \ No newline at end of file diff --git a/spaces/merve/measuring-fairness/source/third_party/index.js b/spaces/merve/measuring-fairness/source/third_party/index.js deleted file mode 100644 index e070ccfa3ac2645f9431b1e4dbee36e81692574d..0000000000000000000000000000000000000000 --- a/spaces/merve/measuring-fairness/source/third_party/index.js +++ /dev/null @@ -1,74 +0,0 @@ -// https://github.com/1wheel/roadtolarissa Copyright 2018 Adam Pearce - -var fs = require('fs') -var {exec, execSync} = require('child_process') - -var source = `${__dirname}/../../source` -var public = `${__dirname}/../../public` -if (!fs.existsSync(public)) fs.mkdirSync(public) - -function rsyncSource(){ - exec(`rsync -a --exclude _posts --exclude _templates ${source}/ ${public}/`) -} -rsyncSource() - -var hljs = require('highlight.js') -var marked = require('marked') -marked.setOptions({ - highlight: (code, lang) => hljs.highlight(lang || 'html', code).value, - smartypants: true -}) - -var templates = {} -readdirAbs(`${source}/_templates`).forEach(path => { - var str = fs.readFileSync(path, 'utf8') - var templateName = path.split('_templates/')[1] - templates[templateName] = d => eval('`' + str + '`') -}) - -function readdirAbs(dir){ return fs.readdirSync(dir).map(d => dir + '/' + d) } - -var posts = readdirAbs(`${source}/_posts`) - .filter(d => !d.includes('.DS_Store')) - .map(parsePost) - -fs.writeFileSync(public + '/rss.xml', templates['rss.xml'](posts)) -fs.writeFileSync(public + '/sitemap.xml', templates['sitemap.xml'](posts)) - -function parsePost(path){ - var str = fs.readFileSync(path, 'utf8') - if (str[0] == '<') str = str.split('License.\n-->')[1] - var [top, body] = str - .replace('---\n', '') - .split('\n---\n') - - console.log(path) - - var post = {html: path.includes('.html') ? body : marked(body)} - top.split('\n').forEach(line => { - var [key, val] = line.split(/: (.+)/) - post[key] = val - }) - - return post -} - -function writePost(post){ - var dir = public + post.permalink - if (!fs.existsSync(dir)) execSync(`mkdir -p ${dir}`) - fs.writeFileSync(`${dir}/index.html`, templates[post.template](post)) - - var outposts = JSON.parse(JSON.stringify(posts)) - outposts.forEach(d => delete d.html) - fs.writeFileSync(public + '/posts.json', JSON.stringify(outposts, null, 2)) - - -} -posts.forEach(writePost) - -if (process.argv.includes('--watch')){ - require('chokidar').watch(source).on('change', path => { - rsyncSource() - if (path.includes('_posts/')) writePost(parsePost(path)) - }) -} diff --git a/spaces/metricspace/OcTra/df_local/checkpoint.py b/spaces/metricspace/OcTra/df_local/checkpoint.py deleted file mode 100644 index 42676ad677d38ddfa59c71d32bedc251b3013563..0000000000000000000000000000000000000000 --- a/spaces/metricspace/OcTra/df_local/checkpoint.py +++ /dev/null @@ -1,213 +0,0 @@ -import glob -import os -import re -from typing import List, Optional, Tuple, Union - -import numpy as np -import torch -from loguru import logger -from torch import nn - -from df_local.config import Csv, config -from df_local.model import init_model -from df_local.utils import check_finite_module -from libdf import DF - - -def get_epoch(cp) -> int: - return int(os.path.basename(cp).split(".")[0].split("_")[-1]) - - -def load_model( - cp_dir: Optional[str], - df_state: DF, - jit: bool = False, - mask_only: bool = False, - train_df_only: bool = False, - extension: str = "ckpt", - epoch: Union[str, int, None] = "latest", -) -> Tuple[nn.Module, int]: - if mask_only and train_df_only: - raise ValueError("Only one of `mask_only` `train_df_only` can be enabled") - model = init_model(df_state, run_df=mask_only is False, train_mask=train_df_only is False) - if jit: - model = torch.jit.script(model) - blacklist: List[str] = config("CP_BLACKLIST", [], Csv(), save=False, section="train") # type: ignore - if cp_dir is not None: - epoch = read_cp( - model, "model", cp_dir, blacklist=blacklist, extension=extension, epoch=epoch - ) - epoch = 0 if epoch is None else epoch - else: - epoch = 0 - return model, epoch - - -def read_cp( - obj: Union[torch.optim.Optimizer, nn.Module], - name: str, - dirname: str, - epoch: Union[str, int, None] = "latest", - extension="ckpt", - blacklist=[], - log: bool = True, -): - checkpoints = [] - if isinstance(epoch, str): - assert epoch in ("best", "latest") - if epoch == "best": - checkpoints = glob.glob(os.path.join(dirname, f"{name}*.{extension}.best")) - if len(checkpoints) == 0: - logger.warning("Could not find `best` checkpoint. Checking for default...") - if len(checkpoints) == 0: - checkpoints = glob.glob(os.path.join(dirname, f"{name}*.{extension}")) - checkpoints += glob.glob(os.path.join(dirname, f"{name}*.{extension}.best")) - if len(checkpoints) == 0: - return None - if isinstance(epoch, int): - latest = next((x for x in checkpoints if get_epoch(x) == epoch), None) - if latest is None: - logger.error(f"Could not find checkpoint of epoch {epoch}") - exit(1) - else: - latest = max(checkpoints, key=get_epoch) - epoch = get_epoch(latest) - if log: - logger.info("Found checkpoint {} with epoch {}".format(latest, epoch)) - latest = torch.load(latest, map_location="cpu") - latest = {k.replace("clc", "df"): v for k, v in latest.items()} - if blacklist: - reg = re.compile("".join(f"({b})|" for b in blacklist)[:-1]) - len_before = len(latest) - latest = {k: v for k, v in latest.items() if reg.search(k) is None} - if len(latest) < len_before: - logger.info("Filtered checkpoint modules: {}".format(blacklist)) - if isinstance(obj, nn.Module): - while True: - try: - missing, unexpected = obj.load_state_dict(latest, strict=False) - except RuntimeError as e: - e_str = str(e) - logger.warning(e_str) - if "size mismatch" in e_str: - latest = {k: v for k, v in latest.items() if k not in e_str} - continue - raise e - break - for key in missing: - logger.warning(f"Missing key: '{key}'") - for key in unexpected: - if key.endswith(".h0"): - continue - logger.warning(f"Unexpected key: {key}") - return epoch - obj.load_state_dict(latest) - - -def write_cp( - obj: Union[torch.optim.Optimizer, nn.Module], - name: str, - dirname: str, - epoch: int, - extension="ckpt", - metric: Optional[float] = None, - cmp="min", -): - check_finite_module(obj) - n_keep = config("n_checkpoint_history", default=3, cast=int, section="train") - n_keep_best = config("n_best_checkpoint_history", default=5, cast=int, section="train") - if metric is not None: - assert cmp in ("min", "max") - metric = float(metric) # Make sure it is not an integer - # Each line contains a previous best with entries: (epoch, metric) - with open(os.path.join(dirname, ".best"), "a+") as prev_best_f: - prev_best_f.seek(0) # "a+" creates a file in read/write mode without truncating - lines = prev_best_f.readlines() - if len(lines) == 0: - prev_best = float("inf" if cmp == "min" else "-inf") - else: - prev_best = float(lines[-1].strip().split(" ")[1]) - cmp = "__lt__" if cmp == "min" else "__gt__" - if getattr(metric, cmp)(prev_best): - logger.info(f"Saving new best checkpoint at epoch {epoch} with metric: {metric}") - prev_best_f.seek(0, os.SEEK_END) - np.savetxt(prev_best_f, np.array([[float(epoch), metric]])) - cp_name = os.path.join(dirname, f"{name}_{epoch}.{extension}.best") - torch.save(obj.state_dict(), cp_name) - cleanup(name, dirname, extension + ".best", nkeep=n_keep_best) - cp_name = os.path.join(dirname, f"{name}_{epoch}.{extension}") - logger.info(f"Writing checkpoint {cp_name} with epoch {epoch}") - torch.save(obj.state_dict(), cp_name) - cleanup(name, dirname, extension, nkeep=n_keep) - - -def cleanup(name: str, dirname: str, extension: str, nkeep=5): - if nkeep < 0: - return - checkpoints = glob.glob(os.path.join(dirname, f"{name}*.{extension}")) - if len(checkpoints) == 0: - return - checkpoints = sorted(checkpoints, key=get_epoch, reverse=True) - for cp in checkpoints[nkeep:]: - logger.debug("Removing old checkpoint: {}".format(cp)) - os.remove(cp) - - -def check_patience( - dirname: str, max_patience: int, new_metric: float, cmp: str = "min", raise_: bool = True -): - cmp = "__lt__" if cmp == "min" else "__gt__" - new_metric = float(new_metric) # Make sure it is not an integer - prev_patience, prev_metric = read_patience(dirname) - if prev_patience is None or getattr(new_metric, cmp)(prev_metric): - # We have a better new_metric, reset patience - write_patience(dirname, 0, new_metric) - else: - # We don't have a better metric, decrement patience - new_patience = prev_patience + 1 - write_patience(dirname, new_patience, prev_metric) - if new_patience >= max_patience: - if raise_: - raise ValueError( - f"No improvements on validation metric ({new_metric}) for {max_patience} epochs. " - "Stopping." - ) - else: - return False - return True - - -def read_patience(dirname: str) -> Tuple[Optional[int], float]: - fn = os.path.join(dirname, ".patience") - if not os.path.isfile(fn): - return None, 0.0 - patience, metric = np.loadtxt(fn) - return int(patience), float(metric) - - -def write_patience(dirname: str, new_patience: int, metric: float): - return np.savetxt(os.path.join(dirname, ".patience"), [new_patience, metric]) - - -def test_check_patience(): - import tempfile - - with tempfile.TemporaryDirectory() as d: - check_patience(d, 3, 1.0) - check_patience(d, 3, 1.0) - check_patience(d, 3, 1.0) - assert check_patience(d, 3, 1.0, raise_=False) is False - - with tempfile.TemporaryDirectory() as d: - check_patience(d, 3, 1.0) - check_patience(d, 3, 0.9) - check_patience(d, 3, 1.0) - check_patience(d, 3, 1.0) - assert check_patience(d, 3, 1.0, raise_=False) is False - - with tempfile.TemporaryDirectory() as d: - check_patience(d, 3, 1.0, cmp="max") - check_patience(d, 3, 1.9, cmp="max") - check_patience(d, 3, 1.0, cmp="max") - check_patience(d, 3, 1.0, cmp="max") - assert check_patience(d, 3, 1.0, cmp="max", raise_=False) is False diff --git a/spaces/mfrashad/CharacterGAN/models/stylegan/stylegan_tf/README.md b/spaces/mfrashad/CharacterGAN/models/stylegan/stylegan_tf/README.md deleted file mode 100644 index a86a64a60a14ccea6dc3c0a0048a243750fe98fe..0000000000000000000000000000000000000000 --- a/spaces/mfrashad/CharacterGAN/models/stylegan/stylegan_tf/README.md +++ /dev/null @@ -1,232 +0,0 @@ -## StyleGAN — Official TensorFlow Implementation -![Python 3.6](https://img.shields.io/badge/python-3.6-green.svg?style=plastic) -![TensorFlow 1.10](https://img.shields.io/badge/tensorflow-1.10-green.svg?style=plastic) -![cuDNN 7.3.1](https://img.shields.io/badge/cudnn-7.3.1-green.svg?style=plastic) -![License CC BY-NC](https://img.shields.io/badge/license-CC_BY--NC-green.svg?style=plastic) - -![Teaser image](./stylegan-teaser.png) -**Picture:** *These people are not real – they were produced by our generator that allows control over different aspects of the image.* - -This repository contains the official TensorFlow implementation of the following paper: - -> **A Style-Based Generator Architecture for Generative Adversarial Networks**
          -> Tero Karras (NVIDIA), Samuli Laine (NVIDIA), Timo Aila (NVIDIA)
          -> https://arxiv.org/abs/1812.04948 -> -> **Abstract:** *We propose an alternative generator architecture for generative adversarial networks, borrowing from style transfer literature. The new architecture leads to an automatically learned, unsupervised separation of high-level attributes (e.g., pose and identity when trained on human faces) and stochastic variation in the generated images (e.g., freckles, hair), and it enables intuitive, scale-specific control of the synthesis. The new generator improves the state-of-the-art in terms of traditional distribution quality metrics, leads to demonstrably better interpolation properties, and also better disentangles the latent factors of variation. To quantify interpolation quality and disentanglement, we propose two new, automated methods that are applicable to any generator architecture. Finally, we introduce a new, highly varied and high-quality dataset of human faces.* - -For business inquiries, please contact [researchinquiries@nvidia.com](mailto:researchinquiries@nvidia.com)
          -For press and other inquiries, please contact Hector Marinez at [hmarinez@nvidia.com](mailto:hmarinez@nvidia.com)
          - -**★★★ NEW: StyleGAN2 is available at [https://github.com/NVlabs/stylegan2](https://github.com/NVlabs/stylegan2) ★★★** - -## Resources - -Material related to our paper is available via the following links: - -- Paper: https://arxiv.org/abs/1812.04948 -- Video: https://youtu.be/kSLJriaOumA -- Code: https://github.com/NVlabs/stylegan -- FFHQ: https://github.com/NVlabs/ffhq-dataset - -Additional material can be found on Google Drive: - -| Path | Description -| :--- | :---------- -| [StyleGAN](https://drive.google.com/open?id=1uka3a1noXHAydRPRbknqwKVGODvnmUBX) | Main folder. -| ├  [stylegan-paper.pdf](https://drive.google.com/open?id=1v-HkF3Ehrpon7wVIx4r5DLcko_U_V6Lt) | High-quality version of the paper PDF. -| ├  [stylegan-video.mp4](https://drive.google.com/open?id=1uzwkZHQX_9pYg1i0d1Nbe3D9xPO8-qBf) | High-quality version of the result video. -| ├  [images](https://drive.google.com/open?id=1-l46akONUWF6LCpDoeq63H53rD7MeiTd) | Example images produced using our generator. -| │  ├  [representative-images](https://drive.google.com/open?id=1ToY5P4Vvf5_c3TyUizQ8fckFFoFtBvD8) | High-quality images to be used in articles, blog posts, etc. -| │  └  [100k-generated-images](https://drive.google.com/open?id=100DJ0QXyG89HZzB4w2Cbyf4xjNK54cQ1) | 100,000 generated images for different amounts of truncation. -| │     ├  [ffhq-1024x1024](https://drive.google.com/open?id=14lm8VRN1pr4g_KVe6_LvyDX1PObst6d4) | Generated using Flickr-Faces-HQ dataset at 1024×1024. -| │     ├  [bedrooms-256x256](https://drive.google.com/open?id=1Vxz9fksw4kgjiHrvHkX4Hze4dyThFW6t) | Generated using LSUN Bedroom dataset at 256×256. -| │     ├  [cars-512x384](https://drive.google.com/open?id=1MFCvOMdLE2_mpeLPTiDw5dxc2CRuKkzS) | Generated using LSUN Car dataset at 512×384. -| │     └  [cats-256x256](https://drive.google.com/open?id=1gq-Gj3GRFiyghTPKhp8uDMA9HV_0ZFWQ) | Generated using LSUN Cat dataset at 256×256. -| ├  [videos](https://drive.google.com/open?id=1N8pOd_Bf8v89NGUaROdbD8-ayLPgyRRo) | Example videos produced using our generator. -| │  └  [high-quality-video-clips](https://drive.google.com/open?id=1NFO7_vH0t98J13ckJYFd7kuaTkyeRJ86) | Individual segments of the result video as high-quality MP4. -| ├  [ffhq-dataset](https://drive.google.com/open?id=1u2xu7bSrWxrbUxk-dT-UvEJq8IjdmNTP) | Raw data for the [Flickr-Faces-HQ dataset](https://github.com/NVlabs/ffhq-dataset). -| └  [networks](https://drive.google.com/open?id=1MASQyN5m0voPcx7-9K0r5gObhvvPups7) | Pre-trained networks as pickled instances of [dnnlib.tflib.Network](./dnnlib/tflib/network.py). -|    ├  [stylegan-ffhq-1024x1024.pkl](https://drive.google.com/uc?id=1MEGjdvVpUsu1jB4zrXZN7Y4kBBOzizDQ) | StyleGAN trained with Flickr-Faces-HQ dataset at 1024×1024. -|    ├  [stylegan-celebahq-1024x1024.pkl](https://drive.google.com/uc?id=1MGqJl28pN4t7SAtSrPdSRJSQJqahkzUf) | StyleGAN trained with CelebA-HQ dataset at 1024×1024. -|    ├  [stylegan-bedrooms-256x256.pkl](https://drive.google.com/uc?id=1MOSKeGF0FJcivpBI7s63V9YHloUTORiF) | StyleGAN trained with LSUN Bedroom dataset at 256×256. -|    ├  [stylegan-cars-512x384.pkl](https://drive.google.com/uc?id=1MJ6iCfNtMIRicihwRorsM3b7mmtmK9c3) | StyleGAN trained with LSUN Car dataset at 512×384. -|    ├  [stylegan-cats-256x256.pkl](https://drive.google.com/uc?id=1MQywl0FNt6lHu8E_EUqnRbviagS7fbiJ) | StyleGAN trained with LSUN Cat dataset at 256×256. -|    └  [metrics](https://drive.google.com/open?id=1MvYdWCBuMfnoYGptRH-AgKLbPTsIQLhl) | Auxiliary networks for the quality and disentanglement metrics. -|       ├  [inception_v3_features.pkl](https://drive.google.com/uc?id=1MzTY44rLToO5APn8TZmfR7_ENSe5aZUn) | Standard [Inception-v3](https://arxiv.org/abs/1512.00567) classifier that outputs a raw feature vector. -|       ├  [vgg16_zhang_perceptual.pkl](https://drive.google.com/uc?id=1N2-m9qszOeVC9Tq77WxsLnuWwOedQiD2) | Standard [LPIPS](https://arxiv.org/abs/1801.03924) metric to estimate perceptual similarity. -|       ├  [celebahq-classifier-00-male.pkl](https://drive.google.com/uc?id=1Q5-AI6TwWhCVM7Muu4tBM7rp5nG_gmCX) | Binary classifier trained to detect a single attribute of CelebA-HQ. -|       └ ⋯ | Please see the file listing for remaining networks. - -## Licenses - -All material, excluding the Flickr-Faces-HQ dataset, is made available under [Creative Commons BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) license by NVIDIA Corporation. You can **use, redistribute, and adapt** the material for **non-commercial purposes**, as long as you give appropriate credit by **citing our paper** and **indicating any changes** that you've made. - -For license information regarding the FFHQ dataset, please refer to the [Flickr-Faces-HQ repository](https://github.com/NVlabs/ffhq-dataset). - -`inception_v3_features.pkl` and `inception_v3_softmax.pkl` are derived from the pre-trained [Inception-v3](https://arxiv.org/abs/1512.00567) network by Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. The network was originally shared under [Apache 2.0](https://github.com/tensorflow/models/blob/master/LICENSE) license on the [TensorFlow Models](https://github.com/tensorflow/models) repository. - -`vgg16.pkl` and `vgg16_zhang_perceptual.pkl` are derived from the pre-trained [VGG-16](https://arxiv.org/abs/1409.1556) network by Karen Simonyan and Andrew Zisserman. The network was originally shared under [Creative Commons BY 4.0](https://creativecommons.org/licenses/by/4.0/) license on the [Very Deep Convolutional Networks for Large-Scale Visual Recognition](http://www.robots.ox.ac.uk/~vgg/research/very_deep/) project page. - -`vgg16_zhang_perceptual.pkl` is further derived from the pre-trained [LPIPS](https://arxiv.org/abs/1801.03924) weights by Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The weights were originally shared under [BSD 2-Clause "Simplified" License](https://github.com/richzhang/PerceptualSimilarity/blob/master/LICENSE) on the [PerceptualSimilarity](https://github.com/richzhang/PerceptualSimilarity) repository. - -## System requirements - -* Both Linux and Windows are supported, but we strongly recommend Linux for performance and compatibility reasons. -* 64-bit Python 3.6 installation. We recommend Anaconda3 with numpy 1.14.3 or newer. -* TensorFlow 1.10.0 or newer with GPU support. -* One or more high-end NVIDIA GPUs with at least 11GB of DRAM. We recommend NVIDIA DGX-1 with 8 Tesla V100 GPUs. -* NVIDIA driver 391.35 or newer, CUDA toolkit 9.0 or newer, cuDNN 7.3.1 or newer. - -## Using pre-trained networks - -A minimal example of using a pre-trained StyleGAN generator is given in [pretrained_example.py](./pretrained_example.py). When executed, the script downloads a pre-trained StyleGAN generator from Google Drive and uses it to generate an image: - -``` -> python pretrained_example.py -Downloading https://drive.google.com/uc?id=1MEGjdvVpUsu1jB4zrXZN7Y4kBBOzizDQ .... done - -Gs Params OutputShape WeightShape ---- --- --- --- -latents_in - (?, 512) - -... -images_out - (?, 3, 1024, 1024) - ---- --- --- --- -Total 26219627 - -> ls results -example.png # https://drive.google.com/uc?id=1UDLT_zb-rof9kKH0GwiJW_bS9MoZi8oP -``` - -A more advanced example is given in [generate_figures.py](./generate_figures.py). The script reproduces the figures from our paper in order to illustrate style mixing, noise inputs, and truncation: -``` -> python generate_figures.py -results/figure02-uncurated-ffhq.png # https://drive.google.com/uc?id=1U3r1xgcD7o-Fd0SBRpq8PXYajm7_30cu -results/figure03-style-mixing.png # https://drive.google.com/uc?id=1U-nlMDtpnf1RcYkaFQtbh5oxnhA97hy6 -results/figure04-noise-detail.png # https://drive.google.com/uc?id=1UX3m39u_DTU6eLnEW6MqGzbwPFt2R9cG -results/figure05-noise-components.png # https://drive.google.com/uc?id=1UQKPcvYVeWMRccGMbs2pPD9PVv1QDyp_ -results/figure08-truncation-trick.png # https://drive.google.com/uc?id=1ULea0C12zGlxdDQFNLXOWZCHi3QNfk_v -results/figure10-uncurated-bedrooms.png # https://drive.google.com/uc?id=1UEBnms1XMfj78OHj3_cx80mUf_m9DUJr -results/figure11-uncurated-cars.png # https://drive.google.com/uc?id=1UO-4JtAs64Kun5vIj10UXqAJ1d5Ir1Ke -results/figure12-uncurated-cats.png # https://drive.google.com/uc?id=1USnJc14prlu3QAYxstrtlfXC9sDWPA-W -``` - -The pre-trained networks are stored as standard pickle files on Google Drive: - -``` -# Load pre-trained network. -url = 'https://drive.google.com/uc?id=1MEGjdvVpUsu1jB4zrXZN7Y4kBBOzizDQ' # karras2019stylegan-ffhq-1024x1024.pkl -with dnnlib.util.open_url(url, cache_dir=config.cache_dir) as f: - _G, _D, Gs = pickle.load(f) - # _G = Instantaneous snapshot of the generator. Mainly useful for resuming a previous training run. - # _D = Instantaneous snapshot of the discriminator. Mainly useful for resuming a previous training run. - # Gs = Long-term average of the generator. Yields higher-quality results than the instantaneous snapshot. -``` - -The above code downloads the file and unpickles it to yield 3 instances of [dnnlib.tflib.Network](./dnnlib/tflib/network.py). To generate images, you will typically want to use `Gs` – the other two networks are provided for completeness. In order for `pickle.load()` to work, you will need to have the `dnnlib` source directory in your PYTHONPATH and a `tf.Session` set as default. The session can initialized by calling `dnnlib.tflib.init_tf()`. - -There are three ways to use the pre-trained generator: - -1. Use `Gs.run()` for immediate-mode operation where the inputs and outputs are numpy arrays: - ``` - # Pick latent vector. - rnd = np.random.RandomState(5) - latents = rnd.randn(1, Gs.input_shape[1]) - - # Generate image. - fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True) - images = Gs.run(latents, None, truncation_psi=0.7, randomize_noise=True, output_transform=fmt) - ``` - The first argument is a batch of latent vectors of shape `[num, 512]`. The second argument is reserved for class labels (not used by StyleGAN). The remaining keyword arguments are optional and can be used to further modify the operation (see below). The output is a batch of images, whose format is dictated by the `output_transform` argument. - -2. Use `Gs.get_output_for()` to incorporate the generator as a part of a larger TensorFlow expression: - ``` - latents = tf.random_normal([self.minibatch_per_gpu] + Gs_clone.input_shape[1:]) - images = Gs_clone.get_output_for(latents, None, is_validation=True, randomize_noise=True) - images = tflib.convert_images_to_uint8(images) - result_expr.append(inception_clone.get_output_for(images)) - ``` - The above code is from [metrics/frechet_inception_distance.py](./metrics/frechet_inception_distance.py). It generates a batch of random images and feeds them directly to the [Inception-v3](https://arxiv.org/abs/1512.00567) network without having to convert the data to numpy arrays in between. - -3. Look up `Gs.components.mapping` and `Gs.components.synthesis` to access individual sub-networks of the generator. Similar to `Gs`, the sub-networks are represented as independent instances of [dnnlib.tflib.Network](./dnnlib/tflib/network.py): - ``` - src_latents = np.stack(np.random.RandomState(seed).randn(Gs.input_shape[1]) for seed in src_seeds) - src_dlatents = Gs.components.mapping.run(src_latents, None) # [seed, layer, component] - src_images = Gs.components.synthesis.run(src_dlatents, randomize_noise=False, **synthesis_kwargs) - ``` - The above code is from [generate_figures.py](./generate_figures.py). It first transforms a batch of latent vectors into the intermediate *W* space using the mapping network and then turns these vectors into a batch of images using the synthesis network. The `dlatents` array stores a separate copy of the same *w* vector for each layer of the synthesis network to facilitate style mixing. - -The exact details of the generator are defined in [training/networks_stylegan.py](./training/networks_stylegan.py) (see `G_style`, `G_mapping`, and `G_synthesis`). The following keyword arguments can be specified to modify the behavior when calling `run()` and `get_output_for()`: - -* `truncation_psi` and `truncation_cutoff` control the truncation trick that that is performed by default when using `Gs` (ψ=0.7, cutoff=8). It can be disabled by setting `truncation_psi=1` or `is_validation=True`, and the image quality can be further improved at the cost of variation by setting e.g. `truncation_psi=0.5`. Note that truncation is always disabled when using the sub-networks directly. The average *w* needed to manually perform the truncation trick can be looked up using `Gs.get_var('dlatent_avg')`. - -* `randomize_noise` determines whether to use re-randomize the noise inputs for each generated image (`True`, default) or whether to use specific noise values for the entire minibatch (`False`). The specific values can be accessed via the `tf.Variable` instances that are found using `[var for name, var in Gs.components.synthesis.vars.items() if name.startswith('noise')]`. - -* When using the mapping network directly, you can specify `dlatent_broadcast=None` to disable the automatic duplication of `dlatents` over the layers of the synthesis network. - -* Runtime performance can be fine-tuned via `structure='fixed'` and `dtype='float16'`. The former disables support for progressive growing, which is not needed for a fully-trained generator, and the latter performs all computation using half-precision floating point arithmetic. - -## Preparing datasets for training - -The training and evaluation scripts operate on datasets stored as multi-resolution TFRecords. Each dataset is represented by a directory containing the same image data in several resolutions to enable efficient streaming. There is a separate *.tfrecords file for each resolution, and if the dataset contains labels, they are stored in a separate file as well. By default, the scripts expect to find the datasets at `datasets//-.tfrecords`. The directory can be changed by editing [config.py](./config.py): - -``` -result_dir = 'results' -data_dir = 'datasets' -cache_dir = 'cache' -``` - -To obtain the FFHQ dataset (`datasets/ffhq`), please refer to the [Flickr-Faces-HQ repository](https://github.com/NVlabs/ffhq-dataset). - -To obtain the CelebA-HQ dataset (`datasets/celebahq`), please refer to the [Progressive GAN repository](https://github.com/tkarras/progressive_growing_of_gans). - -To obtain other datasets, including LSUN, please consult their corresponding project pages. The datasets can be converted to multi-resolution TFRecords using the provided [dataset_tool.py](./dataset_tool.py): - -``` -> python dataset_tool.py create_lsun datasets/lsun-bedroom-full ~/lsun/bedroom_lmdb --resolution 256 -> python dataset_tool.py create_lsun_wide datasets/lsun-car-512x384 ~/lsun/car_lmdb --width 512 --height 384 -> python dataset_tool.py create_lsun datasets/lsun-cat-full ~/lsun/cat_lmdb --resolution 256 -> python dataset_tool.py create_cifar10 datasets/cifar10 ~/cifar10 -> python dataset_tool.py create_from_images datasets/custom-dataset ~/custom-images -``` - -## Training networks - -Once the datasets are set up, you can train your own StyleGAN networks as follows: - -1. Edit [train.py](./train.py) to specify the dataset and training configuration by uncommenting or editing specific lines. -2. Run the training script with `python train.py`. -3. The results are written to a newly created directory `results/-`. -4. The training may take several days (or weeks) to complete, depending on the configuration. - -By default, `train.py` is configured to train the highest-quality StyleGAN (configuration F in Table 1) for the FFHQ dataset at 1024×1024 resolution using 8 GPUs. Please note that we have used 8 GPUs in all of our experiments. Training with fewer GPUs may not produce identical results – if you wish to compare against our technique, we strongly recommend using the same number of GPUs. - -Expected training times for the default configuration using Tesla V100 GPUs: - -| GPUs | 1024×1024 | 512×512 | 256×256 | -| :--- | :-------------- | :------------ | :------------ | -| 1 | 41 days 4 hours | 24 days 21 hours | 14 days 22 hours | -| 2 | 21 days 22 hours | 13 days 7 hours | 9 days 5 hours | -| 4 | 11 days 8 hours | 7 days 0 hours | 4 days 21 hours | -| 8 | 6 days 14 hours | 4 days 10 hours | 3 days 8 hours | - -## Evaluating quality and disentanglement - -The quality and disentanglement metrics used in our paper can be evaluated using [run_metrics.py](./run_metrics.py). By default, the script will evaluate the Fréchet Inception Distance (`fid50k`) for the pre-trained FFHQ generator and write the results into a newly created directory under `results`. The exact behavior can be changed by uncommenting or editing specific lines in [run_metrics.py](./run_metrics.py). - -Expected evaluation time and results for the pre-trained FFHQ generator using one Tesla V100 GPU: - -| Metric | Time | Result | Description -| :----- | :--- | :----- | :---------- -| fid50k | 16 min | 4.4159 | Fréchet Inception Distance using 50,000 images. -| ppl_zfull | 55 min | 664.8854 | Perceptual Path Length for full paths in *Z*. -| ppl_wfull | 55 min | 233.3059 | Perceptual Path Length for full paths in *W*. -| ppl_zend | 55 min | 666.1057 | Perceptual Path Length for path endpoints in *Z*. -| ppl_wend | 55 min | 197.2266 | Perceptual Path Length for path endpoints in *W*. -| ls | 10 hours | z: 165.0106
          w: 3.7447 | Linear Separability in *Z* and *W*. - -Please note that the exact results may vary from run to run due to the non-deterministic nature of TensorFlow. - -## Acknowledgements - -We thank Jaakko Lehtinen, David Luebke, and Tuomas Kynkäänniemi for in-depth discussions and helpful comments; Janne Hellsten, Tero Kuosmanen, and Pekka Jänis for compute infrastructure and help with the code release. diff --git a/spaces/mikkoar/marco/Dockerfile b/spaces/mikkoar/marco/Dockerfile deleted file mode 100644 index 3aa2b29b5fc4fa8b8238955acd7f1fde13ce5e1a..0000000000000000000000000000000000000000 --- a/spaces/mikkoar/marco/Dockerfile +++ /dev/null @@ -1,36 +0,0 @@ -FROM node:18 - - -ARG DEBIAN_FRONTEND=noninteractive - -ENV BING_HEADER "" - -# Set home to the user's home directory -ENV HOME=/home/user \ - PATH=/home/user/.local/bin:$PATH - -# Set up a new user named "user" with user ID 1000 -RUN useradd -o -u 1000 user && mkdir -p $HOME/app && chown -R user $HOME - -# Switch to the "user" user -USER user - -# Set the working directory to the user's home directory -WORKDIR $HOME/app - -# Install app dependencies -# A wildcard is used to ensure both package.json AND package-lock.json are copied -# where available (npm@5+) -COPY --chown=user package*.json $HOME/app/ - -RUN npm install - -# Copy the current directory contents into the container at $HOME/app setting the owner to the user -COPY --chown=user . $HOME/app/ - -RUN npm run build - -ENV PORT 7860 -EXPOSE 7860 - -CMD npm start diff --git a/spaces/miyaaa666/bingo/src/lib/hooks/use-bing.ts b/spaces/miyaaa666/bingo/src/lib/hooks/use-bing.ts deleted file mode 100644 index dcdb1667ced0cba299b0825c0e91c4732411308c..0000000000000000000000000000000000000000 --- a/spaces/miyaaa666/bingo/src/lib/hooks/use-bing.ts +++ /dev/null @@ -1,173 +0,0 @@ -'use client' - -import { useState, useCallback, useEffect, useMemo } from 'react' -import { useAtom, useAtomValue } from 'jotai' -import { chatFamily, bingConversationStyleAtom, GreetMessages, hashAtom, voiceAtom } from '@/state' -import { setConversationMessages } from './chat-history' -import { ChatMessageModel, BotId, FileItem } from '@/lib/bots/bing/types' -import { nanoid } from '../utils' -import { TTS } from '../bots/bing/tts' - -export function useBing(botId: BotId = 'bing') { - const chatAtom = useMemo(() => chatFamily({ botId, page: 'singleton' }), [botId]) - const [enableTTS] = useAtom(voiceAtom) - const speaker = useMemo(() => new TTS(), []) - const [hash, setHash] = useAtom(hashAtom) - const bingConversationStyle = useAtomValue(bingConversationStyleAtom) - const [chatState, setChatState] = useAtom(chatAtom) - const [input, setInput] = useState('') - const [attachmentList, setAttachmentList] = useState([]) - - const updateMessage = useCallback( - (messageId: string, updater: (message: ChatMessageModel) => void) => { - setChatState((draft) => { - const message = draft.messages.find((m) => m.id === messageId) - if (message) { - updater(message) - } - }) - }, - [setChatState], - ) - - const sendMessage = useCallback( - async (input: string, options = {}) => { - const botMessageId = nanoid() - const imageUrl = attachmentList?.[0]?.status === 'loaded' ? attachmentList[0].url : undefined - setChatState((draft) => { - const text = imageUrl ? `${input}\n\n![image](${imageUrl})` : input - draft.messages.push({ id: nanoid(), text, author: 'user' }, { id: botMessageId, text: '', author: 'bot' }) - setAttachmentList([]) - }) - const abortController = new AbortController() - setChatState((draft) => { - draft.generatingMessageId = botMessageId - draft.abortController = abortController - }) - speaker.reset() - await chatState.bot.sendMessage({ - prompt: input, - imageUrl: /\?bcid=([^&]+)/.test(imageUrl ?? '') ? `https://www.bing.com/images/blob?bcid=${RegExp.$1}` : imageUrl, - options: { - ...options, - bingConversationStyle, - }, - signal: abortController.signal, - onEvent(event) { - if (event.type === 'UPDATE_ANSWER') { - updateMessage(botMessageId, (message) => { - if (event.data.text.length > message.text.length) { - message.text = event.data.text - } - - if (event.data.spokenText && enableTTS) { - speaker.speak(event.data.spokenText) - } - - message.throttling = event.data.throttling || message.throttling - message.sourceAttributions = event.data.sourceAttributions || message.sourceAttributions - message.suggestedResponses = event.data.suggestedResponses || message.suggestedResponses - }) - } else if (event.type === 'ERROR') { - updateMessage(botMessageId, (message) => { - message.error = event.error - }) - setChatState((draft) => { - draft.abortController = undefined - draft.generatingMessageId = '' - }) - } else if (event.type === 'DONE') { - setChatState((draft) => { - draft.abortController = undefined - draft.generatingMessageId = '' - }) - } - }, - }) - }, - [botId, attachmentList, chatState.bot, setChatState, updateMessage], - ) - - const uploadImage = useCallback(async (imgUrl: string) => { - setAttachmentList([{ url: imgUrl, status: 'loading' }]) - const response = await chatState.bot.uploadImage(imgUrl, bingConversationStyle) - if (response?.blobId) { - setAttachmentList([{ url: `/api/blob?bcid=${response.blobId}`, status: 'loaded' }]) - } else { - setAttachmentList([{ url: imgUrl, status: 'error' }]) - } - }, [chatState.bot]) - - const resetConversation = useCallback(() => { - chatState.bot.resetConversation() - speaker.abort() - setChatState((draft) => { - draft.abortController = undefined - draft.generatingMessageId = '' - draft.messages = [{ author: 'bot', text: GreetMessages[Math.floor(GreetMessages.length * Math.random())], id: nanoid() }] - draft.conversationId = nanoid() - }) - }, [chatState.bot, setChatState]) - - const stopGenerating = useCallback(() => { - chatState.abortController?.abort() - if (chatState.generatingMessageId) { - updateMessage(chatState.generatingMessageId, (message) => { - if (!message.text && !message.error) { - message.text = 'Cancelled' - } - }) - } - setChatState((draft) => { - draft.generatingMessageId = '' - }) - }, [chatState.abortController, chatState.generatingMessageId, setChatState, updateMessage]) - - useEffect(() => { - if (chatState.messages.length) { - setConversationMessages(botId, chatState.conversationId, chatState.messages) - } - }, [botId, chatState.conversationId, chatState.messages]) - - useEffect(() => { - if (hash === 'reset') { - resetConversation() - setHash('') - } - }, [hash, setHash]) - - const chat = useMemo( - () => ({ - botId, - bot: chatState.bot, - isSpeaking: speaker.isSpeaking, - messages: chatState.messages, - sendMessage, - setInput, - input, - resetConversation, - generating: !!chatState.generatingMessageId, - stopGenerating, - uploadImage, - setAttachmentList, - attachmentList, - }), - [ - botId, - bingConversationStyle, - chatState.bot, - chatState.generatingMessageId, - chatState.messages, - speaker.isSpeaking, - setInput, - input, - setAttachmentList, - attachmentList, - resetConversation, - sendMessage, - stopGenerating, - ], - ) - - return chat -} diff --git a/spaces/mshkdm/VToonify/vtoonify/model/encoder/psp.py b/spaces/mshkdm/VToonify/vtoonify/model/encoder/psp.py deleted file mode 100644 index cc08f2b28b3be2985139602e0f0ae56b1303e1a3..0000000000000000000000000000000000000000 --- a/spaces/mshkdm/VToonify/vtoonify/model/encoder/psp.py +++ /dev/null @@ -1,125 +0,0 @@ -""" -This file defines the core research contribution -""" -import matplotlib -matplotlib.use('Agg') -import math - -import torch -from torch import nn -from model.encoder.encoders import psp_encoders -from model.stylegan.model import Generator - -def get_keys(d, name): - if 'state_dict' in d: - d = d['state_dict'] - d_filt = {k[len(name) + 1:]: v for k, v in d.items() if k[:len(name)] == name} - return d_filt - - -class pSp(nn.Module): - - def __init__(self, opts): - super(pSp, self).__init__() - self.set_opts(opts) - # compute number of style inputs based on the output resolution - self.opts.n_styles = int(math.log(self.opts.output_size, 2)) * 2 - 2 - # Define architecture - self.encoder = self.set_encoder() - self.decoder = Generator(self.opts.output_size, 512, 8) - self.face_pool = torch.nn.AdaptiveAvgPool2d((256, 256)) - # Load weights if needed - self.load_weights() - - def set_encoder(self): - if self.opts.encoder_type == 'GradualStyleEncoder': - encoder = psp_encoders.GradualStyleEncoder(50, 'ir_se', self.opts) - elif self.opts.encoder_type == 'BackboneEncoderUsingLastLayerIntoW': - encoder = psp_encoders.BackboneEncoderUsingLastLayerIntoW(50, 'ir_se', self.opts) - elif self.opts.encoder_type == 'BackboneEncoderUsingLastLayerIntoWPlus': - encoder = psp_encoders.BackboneEncoderUsingLastLayerIntoWPlus(50, 'ir_se', self.opts) - else: - raise Exception('{} is not a valid encoders'.format(self.opts.encoder_type)) - return encoder - - def load_weights(self): - if self.opts.checkpoint_path is not None: - print('Loading pSp from checkpoint: {}'.format(self.opts.checkpoint_path)) - ckpt = torch.load(self.opts.checkpoint_path, map_location='cpu') - self.encoder.load_state_dict(get_keys(ckpt, 'encoder'), strict=True) - self.decoder.load_state_dict(get_keys(ckpt, 'decoder'), strict=True) - self.__load_latent_avg(ckpt) - else: - pass - '''print('Loading encoders weights from irse50!') - encoder_ckpt = torch.load(model_paths['ir_se50']) - # if input to encoder is not an RGB image, do not load the input layer weights - if self.opts.label_nc != 0: - encoder_ckpt = {k: v for k, v in encoder_ckpt.items() if "input_layer" not in k} - self.encoder.load_state_dict(encoder_ckpt, strict=False) - print('Loading decoder weights from pretrained!') - ckpt = torch.load(self.opts.stylegan_weights) - self.decoder.load_state_dict(ckpt['g_ema'], strict=False) - if self.opts.learn_in_w: - self.__load_latent_avg(ckpt, repeat=1) - else: - self.__load_latent_avg(ckpt, repeat=self.opts.n_styles) - ''' - - def forward(self, x, resize=True, latent_mask=None, input_code=False, randomize_noise=True, - inject_latent=None, return_latents=False, alpha=None, z_plus_latent=False, return_z_plus_latent=True): - if input_code: - codes = x - else: - codes = self.encoder(x) - #print(codes.shape) - # normalize with respect to the center of an average face - if self.opts.start_from_latent_avg: - if self.opts.learn_in_w: - codes = codes + self.latent_avg.repeat(codes.shape[0], 1) - else: - codes = codes + self.latent_avg.repeat(codes.shape[0], 1, 1) - - - if latent_mask is not None: - for i in latent_mask: - if inject_latent is not None: - if alpha is not None: - codes[:, i] = alpha * inject_latent[:, i] + (1 - alpha) * codes[:, i] - else: - codes[:, i] = inject_latent[:, i] - else: - codes[:, i] = 0 - - input_is_latent = not input_code - if z_plus_latent: - input_is_latent = False - images, result_latent = self.decoder([codes], - input_is_latent=input_is_latent, - randomize_noise=randomize_noise, - return_latents=return_latents, - z_plus_latent=z_plus_latent) - - if resize: - images = self.face_pool(images) - - if return_latents: - if z_plus_latent and return_z_plus_latent: - return images, codes - if z_plus_latent and not return_z_plus_latent: - return images, result_latent - else: - return images, result_latent - else: - return images - - def set_opts(self, opts): - self.opts = opts - - def __load_latent_avg(self, ckpt, repeat=None): - if 'latent_avg' in ckpt: - self.latent_avg = ckpt['latent_avg'].to(self.opts.device) - if repeat is not None: - self.latent_avg = self.latent_avg.repeat(repeat, 1) - else: - self.latent_avg = None diff --git a/spaces/mshukor/UnIVAL/fairseq/examples/speech_synthesis/docs/ljspeech_example.md b/spaces/mshukor/UnIVAL/fairseq/examples/speech_synthesis/docs/ljspeech_example.md deleted file mode 100644 index 90c524fac8ffdc1819ec9bb36928500320337603..0000000000000000000000000000000000000000 --- a/spaces/mshukor/UnIVAL/fairseq/examples/speech_synthesis/docs/ljspeech_example.md +++ /dev/null @@ -1,138 +0,0 @@ -[[Back]](..) - -# LJSpeech - -[LJSpeech](https://keithito.com/LJ-Speech-Dataset) is a public domain TTS -corpus with around 24 hours of English speech sampled at 22.05kHz. We provide examples for building -[Transformer](https://arxiv.org/abs/1809.08895) and [FastSpeech 2](https://arxiv.org/abs/2006.04558) -models on this dataset. - - -## Data preparation - -Download data, create splits and generate audio manifests with -```bash -python -m examples.speech_synthesis.preprocessing.get_ljspeech_audio_manifest \ - --output-data-root ${AUDIO_DATA_ROOT} \ - --output-manifest-root ${AUDIO_MANIFEST_ROOT} -``` - -Then, extract log-Mel spectrograms, generate feature manifest and create data configuration YAML with -```bash -python -m examples.speech_synthesis.preprocessing.get_feature_manifest \ - --audio-manifest-root ${AUDIO_MANIFEST_ROOT} \ - --output-root ${FEATURE_MANIFEST_ROOT} \ - --ipa-vocab --use-g2p -``` -where we use phoneme inputs (`--ipa-vocab --use-g2p`) as example. - -FastSpeech 2 additionally requires frame durations, pitch and energy as auxiliary training targets. -Add `--add-fastspeech-targets` to include these fields in the feature manifests. We get frame durations either from -phoneme-level force-alignment or frame-level pseudo-text unit sequence. They should be pre-computed and specified via: -- `--textgrid-zip ${TEXT_GRID_ZIP_PATH}` for a ZIP file, inside which there is one - [TextGrid](https://www.fon.hum.uva.nl/praat/manual/TextGrid.html) file per sample to provide force-alignment info. -- `--id-to-units-tsv ${ID_TO_UNIT_TSV}` for a TSV file, where there are 2 columns for sample ID and - space-delimited pseudo-text unit sequence, respectively. - -For your convenience, we provide pre-computed -[force-alignment](https://dl.fbaipublicfiles.com/fairseq/s2/ljspeech_mfa.zip) from -[Montreal Forced Aligner](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) and -[pseudo-text units](s3://dl.fbaipublicfiles.com/fairseq/s2/ljspeech_hubert.tsv) from -[HuBERT](https://github.com/pytorch/fairseq/tree/main/examples/hubert). You can also generate them by yourself using -a different software or model. - - -## Training -#### Transformer -```bash -fairseq-train ${FEATURE_MANIFEST_ROOT} --save-dir ${SAVE_DIR} \ - --config-yaml config.yaml --train-subset train --valid-subset dev \ - --num-workers 4 --max-tokens 30000 --max-update 200000 \ - --task text_to_speech --criterion tacotron2 --arch tts_transformer \ - --clip-norm 5.0 --n-frames-per-step 4 --bce-pos-weight 5.0 \ - --dropout 0.1 --attention-dropout 0.1 --activation-dropout 0.1 \ - --encoder-normalize-before --decoder-normalize-before \ - --optimizer adam --lr 2e-3 --lr-scheduler inverse_sqrt --warmup-updates 4000 \ - --seed 1 --update-freq 8 --eval-inference --best-checkpoint-metric mcd_loss -``` -where `SAVE_DIR` is the checkpoint root path. We set `--update-freq 8` to simulate 8 GPUs with 1 GPU. You may want to -update it accordingly when using more than 1 GPU. - -#### FastSpeech2 -```bash -fairseq-train ${FEATURE_MANIFEST_ROOT} --save-dir ${SAVE_DIR} \ - --config-yaml config.yaml --train-subset train --valid-subset dev \ - --num-workers 4 --max-sentences 6 --max-update 200000 \ - --task text_to_speech --criterion fastspeech2 --arch fastspeech2 \ - --clip-norm 5.0 --n-frames-per-step 1 \ - --dropout 0.1 --attention-dropout 0.1 --activation-dropout 0.1 \ - --encoder-normalize-before --decoder-normalize-before \ - --optimizer adam --lr 5e-4 --lr-scheduler inverse_sqrt --warmup-updates 4000 \ - --seed 1 --update-freq 8 --eval-inference --best-checkpoint-metric mcd_loss -``` - - -## Inference -Average the last 5 checkpoints, generate the test split spectrogram and waveform using the default Griffin-Lim vocoder: -```bash -SPLIT=test -CHECKPOINT_NAME=avg_last_5 -CHECKPOINT_PATH=${SAVE_DIR}/checkpoint_${CHECKPOINT_NAME}.pt -python scripts/average_checkpoints.py --inputs ${SAVE_DIR} \ - --num-epoch-checkpoints 5 \ - --output ${CHECKPOINT_PATH} - -python -m examples.speech_synthesis.generate_waveform ${FEATURE_MANIFEST_ROOT} \ - --config-yaml config.yaml --gen-subset ${SPLIT} --task text_to_speech \ - --path ${CHECKPOINT_PATH} --max-tokens 50000 --spec-bwd-max-iter 32 \ - --dump-waveforms -``` -which dumps files (waveform, feature, attention plot, etc.) to `${SAVE_DIR}/generate-${CHECKPOINT_NAME}-${SPLIT}`. To -re-synthesize target waveforms for automatic evaluation, add `--dump-target`. - -## Automatic Evaluation -To start with, generate the manifest for synthetic speech, which will be taken as inputs by evaluation scripts. -```bash -python -m examples.speech_synthesis.evaluation.get_eval_manifest \ - --generation-root ${SAVE_DIR}/generate-${CHECKPOINT_NAME}-${SPLIT} \ - --audio-manifest ${AUDIO_MANIFEST_ROOT}/${SPLIT}.audio.tsv \ - --output-path ${EVAL_OUTPUT_ROOT}/eval.tsv \ - --vocoder griffin_lim --sample-rate 22050 --audio-format flac \ - --use-resynthesized-target -``` -Speech recognition (ASR) models usually operate at lower sample rates (e.g. 16kHz). For the WER/CER metric, -you may need to resample the audios accordingly --- add `--output-sample-rate 16000` for `generate_waveform.py` and -use `--sample-rate 16000` for `get_eval_manifest.py`. - - -#### WER/CER metric -We use wav2vec 2.0 ASR model as example. [Download](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec) -the model checkpoint and dictionary, then compute WER/CER with -```bash -python -m examples.speech_synthesis.evaluation.eval_asr \ - --audio-header syn --text-header text --err-unit char --split ${SPLIT} \ - --w2v-ckpt ${WAV2VEC2_CHECKPOINT_PATH} --w2v-dict-dir ${WAV2VEC2_DICT_DIR} \ - --raw-manifest ${EVAL_OUTPUT_ROOT}/eval_16khz.tsv --asr-dir ${EVAL_OUTPUT_ROOT}/asr -``` - -#### MCD/MSD metric -```bash -python -m examples.speech_synthesis.evaluation.eval_sp \ - ${EVAL_OUTPUT_ROOT}/eval.tsv --mcd --msd -``` - -#### F0 metrics -```bash -python -m examples.speech_synthesis.evaluation.eval_f0 \ - ${EVAL_OUTPUT_ROOT}/eval.tsv --gpe --vde --ffe -``` - - -## Results - -| --arch | Params | Test MCD | Model | -|---|---|---|---| -| tts_transformer | 54M | 3.8 | [Download](https://dl.fbaipublicfiles.com/fairseq/s2/ljspeech_transformer_phn.tar) | -| fastspeech2 | 41M | 3.8 | [Download](https://dl.fbaipublicfiles.com/fairseq/s2/ljspeech_fastspeech2_phn.tar) | - -[[Back]](..) diff --git a/spaces/mshukor/UnIVAL/fairseq/examples/speech_synthesis/preprocessing/denoiser/resample.py b/spaces/mshukor/UnIVAL/fairseq/examples/speech_synthesis/preprocessing/denoiser/resample.py deleted file mode 100644 index 1222addc424d4f898d602009e4032907241aadfe..0000000000000000000000000000000000000000 --- a/spaces/mshukor/UnIVAL/fairseq/examples/speech_synthesis/preprocessing/denoiser/resample.py +++ /dev/null @@ -1,79 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# All rights reserved. -# -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. -# author: adefossez - -import math - -import torch as th -from torch.nn import functional as F - - -def sinc(t): - """sinc. - - :param t: the input tensor - """ - return th.where(t == 0, th.tensor(1., device=t.device, dtype=t.dtype), - th.sin(t) / t) - - -def kernel_upsample2(zeros=56): - """kernel_upsample2. - - """ - win = th.hann_window(4 * zeros + 1, periodic=False) - winodd = win[1::2] - t = th.linspace(-zeros + 0.5, zeros - 0.5, 2 * zeros) - t *= math.pi - kernel = (sinc(t) * winodd).view(1, 1, -1) - return kernel - - -def upsample2(x, zeros=56): - """ - Upsampling the input by 2 using sinc interpolation. - Smith, Julius, and Phil Gossett. "A flexible sampling-rate conversion method." - ICASSP'84. IEEE International Conference on Acoustics, Speech, and Signal Processing. - Vol. 9. IEEE, 1984. - """ - *other, time = x.shape - kernel = kernel_upsample2(zeros).to(x) - out = F.conv1d(x.view(-1, 1, time), kernel, padding=zeros)[..., 1:].view( - *other, time - ) - y = th.stack([x, out], dim=-1) - return y.view(*other, -1) - - -def kernel_downsample2(zeros=56): - """kernel_downsample2. - - """ - win = th.hann_window(4 * zeros + 1, periodic=False) - winodd = win[1::2] - t = th.linspace(-zeros + 0.5, zeros - 0.5, 2 * zeros) - t.mul_(math.pi) - kernel = (sinc(t) * winodd).view(1, 1, -1) - return kernel - - -def downsample2(x, zeros=56): - """ - Downsampling the input by 2 using sinc interpolation. - Smith, Julius, and Phil Gossett. "A flexible sampling-rate conversion method." - ICASSP'84. IEEE International Conference on Acoustics, Speech, and Signal Processing. - Vol. 9. IEEE, 1984. - """ - if x.shape[-1] % 2 != 0: - x = F.pad(x, (0, 1)) - xeven = x[..., ::2] - xodd = x[..., 1::2] - *other, time = xodd.shape - kernel = kernel_downsample2(zeros).to(x) - out = xeven + F.conv1d( - xodd.view(-1, 1, time), kernel, padding=zeros - )[..., :-1].view(*other, time) - return out.view(*other, -1).mul(0.5) diff --git a/spaces/mshukor/UnIVAL/fairseq/fairseq/utils.py b/spaces/mshukor/UnIVAL/fairseq/fairseq/utils.py deleted file mode 100644 index f61a8d38d456edf7605c31a87d09413e778658f3..0000000000000000000000000000000000000000 --- a/spaces/mshukor/UnIVAL/fairseq/fairseq/utils.py +++ /dev/null @@ -1,829 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -import argparse -import contextlib -import copy -import importlib -import logging -import os -import sys -import warnings -from itertools import accumulate -from typing import Callable, Dict, List, Optional, TYPE_CHECKING - -import torch -import torch.nn.functional as F -from torch import Tensor -import collections - -if TYPE_CHECKING: - from fairseq.modules.multihead_attention import MultiheadAttention - -try: - from amp_C import multi_tensor_l2norm - - multi_tensor_l2norm_available = True -except ImportError: - multi_tensor_l2norm_available = False - -try: - import torch_xla.core.xla_model as xm -except ImportError: - xm = None - - -logger = logging.getLogger(__name__) - - -MANIFOLD_PATH_SEP = "|" - - -class FileContentsAction(argparse.Action): - def __init__(self, option_strings, dest, nargs=None, **kwargs): - if nargs is not None: - raise ValueError("nargs not allowed") - super(FileContentsAction, self).__init__(option_strings, dest, **kwargs) - - def __call__(self, parser, namespace, values, option_string=None): - from fairseq.file_io import PathManager - - if PathManager.isfile(values): - with PathManager.open(values) as f: - argument = f.read().strip() - else: - argument = values - setattr(namespace, self.dest, argument) - - -def split_paths(paths: str, separator=os.pathsep) -> List[str]: - return ( - paths.split(separator) if "://" not in paths else paths.split(MANIFOLD_PATH_SEP) - ) - - -def load_ensemble_for_inference(filenames, task, model_arg_overrides=None): - from fairseq import checkpoint_utils - - deprecation_warning( - "utils.load_ensemble_for_inference is deprecated. " - "Please use checkpoint_utils.load_model_ensemble instead." - ) - return checkpoint_utils.load_model_ensemble( - filenames, arg_overrides=model_arg_overrides, task=task - ) - - -def apply_to_sample(f, sample): - if hasattr(sample, "__len__") and len(sample) == 0: - return {} - - def _apply(x): - if torch.is_tensor(x): - return f(x) - elif isinstance(x, collections.OrderedDict): - # OrderedDict has attributes that needs to be preserved - od = collections.OrderedDict((key, _apply(value)) for key, value in x.items()) - od.__dict__ = x.__dict__ - return od - elif isinstance(x, dict): - return {key: _apply(value) for key, value in x.items()} - elif isinstance(x, list): - return [_apply(x) for x in x] - elif isinstance(x, tuple): - return tuple(_apply(x) for x in x) - elif isinstance(x, set): - return {_apply(x) for x in x} - else: - return x - - return _apply(sample) - - -def move_to_cuda(sample, device=None): - device = device or torch.cuda.current_device() - - def _move_to_cuda(tensor): - # non_blocking is ignored if tensor is not pinned, so we can always set - # to True (see github.com/PyTorchLightning/pytorch-lightning/issues/620) - return tensor.to(device=device, non_blocking=True) - - return apply_to_sample(_move_to_cuda, sample) - - -def move_to_cpu(sample): - def _move_to_cpu(tensor): - # PyTorch has poor support for half tensors (float16) on CPU. - # Move any such tensors to float32. - if tensor.dtype in {torch.bfloat16, torch.float16}: - tensor = tensor.to(dtype=torch.float32) - return tensor.cpu() - - return apply_to_sample(_move_to_cpu, sample) - - -def move_to_tpu(sample): - - import torch_xla.core.xla_model as xm - - device = xm.xla_device() - - def _move_to_tpu(tensor): - return tensor.to(device) - - return apply_to_sample(_move_to_tpu, sample) - - -def get_incremental_state( - module: "MultiheadAttention", - incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], - key: str, -) -> Optional[Dict[str, Optional[Tensor]]]: - """Helper for getting incremental state for an nn.Module.""" - return module.get_incremental_state(incremental_state, key) - - -def set_incremental_state( - module: "MultiheadAttention", - incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], - key: str, - value: Dict[str, Optional[Tensor]], -) -> Optional[Dict[str, Dict[str, Optional[Tensor]]]]: - """Helper for setting incremental state for an nn.Module.""" - if incremental_state is not None: - result = module.set_incremental_state(incremental_state, key, value) - if result is not None: - incremental_state = result - return incremental_state - - -def load_align_dict(replace_unk): - if replace_unk is None: - align_dict = None - elif isinstance(replace_unk, str) and len(replace_unk) > 0: - # Load alignment dictionary for unknown word replacement if it was passed as an argument. - align_dict = {} - with open(replace_unk, "r") as f: - for line in f: - cols = line.split() - align_dict[cols[0]] = cols[1] - else: - # No alignment dictionary provided but we still want to perform unknown word replacement by copying the - # original source word. - align_dict = {} - return align_dict - - -def print_embed_overlap(embed_dict, vocab_dict): - embed_keys = set(embed_dict.keys()) - vocab_keys = set(vocab_dict.symbols) - overlap = len(embed_keys & vocab_keys) - logger.info("found {}/{} types in embedding file".format(overlap, len(vocab_dict))) - - -def parse_embedding(embed_path): - """Parse embedding text file into a dictionary of word and embedding tensors. - - The first line can have vocabulary size and dimension. The following lines - should contain word and embedding separated by spaces. - - Example: - 2 5 - the -0.0230 -0.0264 0.0287 0.0171 0.1403 - at -0.0395 -0.1286 0.0275 0.0254 -0.0932 - """ - embed_dict = {} - with open(embed_path) as f_embed: - next(f_embed) # skip header - for line in f_embed: - pieces = line.rstrip().split(" ") - embed_dict[pieces[0]] = torch.Tensor( - [float(weight) for weight in pieces[1:]] - ) - return embed_dict - - -def load_embedding(embed_dict, vocab, embedding): - for idx in range(len(vocab)): - token = vocab[idx] - if token in embed_dict: - embedding.weight.data[idx] = embed_dict[token] - return embedding - - -def replace_unk(hypo_str, src_str, alignment, align_dict, unk): - from fairseq import tokenizer - - # Tokens are strings here - hypo_tokens = tokenizer.tokenize_line(hypo_str) - # TODO: Very rare cases where the replacement is '' should be handled gracefully - src_tokens = tokenizer.tokenize_line(src_str) + [""] - for i, ht in enumerate(hypo_tokens): - if ht == unk: - src_token = src_tokens[alignment[i]] - # Either take the corresponding value in the aligned dictionary or just copy the original value. - hypo_tokens[i] = align_dict.get(src_token, src_token) - return " ".join(hypo_tokens) - - -def post_process_prediction( - hypo_tokens, - src_str, - alignment, - align_dict, - tgt_dict, - remove_bpe=None, - extra_symbols_to_ignore=None, -): - hypo_str = tgt_dict.string( - hypo_tokens, remove_bpe, extra_symbols_to_ignore=extra_symbols_to_ignore - ) - if align_dict is not None: - hypo_str = replace_unk( - hypo_str, src_str, alignment, align_dict, tgt_dict.unk_string() - ) - if align_dict is not None or remove_bpe is not None: - # Convert back to tokens for evaluating with unk replacement or without BPE - # Note that the dictionary can be modified inside the method. - hypo_tokens = tgt_dict.encode_line(hypo_str, add_if_not_exist=True) - return hypo_tokens, hypo_str, alignment - - -def make_positions(tensor, padding_idx: int, onnx_trace: bool = False): - """Replace non-padding symbols with their position numbers. - - Position numbers begin at padding_idx+1. Padding symbols are ignored. - """ - # The series of casts and type-conversions here are carefully - # balanced to both work with ONNX export and XLA. In particular XLA - # prefers ints, cumsum defaults to output longs, and ONNX doesn't know - # how to handle the dtype kwarg in cumsum. - mask = tensor.ne(padding_idx).int() - return (torch.cumsum(mask, dim=1).type_as(mask) * mask).long() + padding_idx - - -def strip_pad(tensor, pad): - return tensor[tensor.ne(pad)] - - -def buffered_arange(max): - if not hasattr(buffered_arange, "buf"): - buffered_arange.buf = torch.LongTensor() - if max > buffered_arange.buf.numel(): - buffered_arange.buf.resize_(max) - torch.arange(max, out=buffered_arange.buf) - return buffered_arange.buf[:max] - - -def convert_padding_direction( - src_tokens, padding_idx, right_to_left: bool = False, left_to_right: bool = False -): - assert right_to_left ^ left_to_right - pad_mask = src_tokens.eq(padding_idx) - if not pad_mask.any(): - # no padding, return early - return src_tokens - if left_to_right and not pad_mask[:, 0].any(): - # already right padded - return src_tokens - if right_to_left and not pad_mask[:, -1].any(): - # already left padded - return src_tokens - max_len = src_tokens.size(1) - buffered = torch.empty(0).long() - if max_len > 0: - torch.arange(max_len, out=buffered) - range = buffered.type_as(src_tokens).expand_as(src_tokens) - num_pads = pad_mask.long().sum(dim=1, keepdim=True) - if right_to_left: - index = torch.remainder(range - num_pads, max_len) - else: - index = torch.remainder(range + num_pads, max_len) - return src_tokens.gather(1, index) - - -def item(tensor): - # tpu-comment: making this a no-op for xla devices. - if torch.is_tensor(tensor) and tensor.device.type == "xla": - return tensor.detach() - if hasattr(tensor, "item"): - return tensor.item() - if hasattr(tensor, "__getitem__"): - return tensor[0] - return tensor - - -def multi_tensor_total_norm(grads, chunk_size=2048 * 32) -> torch.Tensor: - per_device_grads = {} - norms = [] - for grad in grads: - device = grad.device - cur_device_grads = per_device_grads.get(device) - if cur_device_grads is None: - cur_device_grads = [] - per_device_grads[device] = cur_device_grads - cur_device_grads.append(grad) - for device in per_device_grads.keys(): - cur_device_grads = per_device_grads[device] - if device.type == "cuda": - # TODO(msb) return has_inf - has_inf = torch.zeros((1, 1), dtype=torch.int, device=device) - with torch.cuda.device(device): - norm = multi_tensor_l2norm( - chunk_size, has_inf, [cur_device_grads], False - ) - norms.append(norm[0].to(torch.cuda.current_device())) - else: - norms += [torch.norm(g, p=2, dtype=torch.float32) for g in cur_device_grads] - total_norm = torch.norm(torch.stack(norms)) - return total_norm - - -@torch.no_grad() -def clip_grad_norm_(params, max_norm, aggregate_norm_fn=None) -> torch.Tensor: - def grad_exists(p): - return p is not None and getattr(p, "grad", None) is not None - - if isinstance(params, torch.Tensor): - params = [params] - params = list(params) - grads = [ - p.grad.detach() for p in params if grad_exists(p) and not hasattr(p, "expert") - ] - expert_grads = [ - p.grad.detach() for p in params if grad_exists(p) and hasattr(p, "expert") - ] - - if len(grads) == 0: - if len(params) > 0: - return params[0].new_tensor(0.0) - else: - return torch.tensor(0.0) - - if len(grads) == 1: - total_norm = torch.norm(grads[0], p=2, dtype=torch.float32) - else: - if multi_tensor_l2norm_available: - total_norm = multi_tensor_total_norm(grads) - else: - if torch.cuda.is_available(): - warnings.warn( - "amp_C fused kernels unavailable, disabling multi_tensor_l2norm; " - "you may get better performance by installing NVIDIA's apex library" - ) - device = torch.cuda.current_device() - elif grads[0].device.type == "xla": - device = grads[0].device - else: - device = torch.device("cpu") - total_norm = torch.norm( - torch.stack( - [torch.norm(g, p=2, dtype=torch.float32).to(device) for g in grads] - ) - ) - - if aggregate_norm_fn is not None: - total_norm = aggregate_norm_fn(total_norm) - - if max_norm > 0: - max_norm = float(max_norm) - clip_coef = (max_norm / (total_norm + 1e-6)).clamp_(max=1) - for g in grads + expert_grads: - g.mul_(clip_coef) - return total_norm - - -def fill_with_neg_inf(t): - """FP16-compatible function that fills a tensor with -inf.""" - return t.float().fill_(float("-inf")).type_as(t) - - -def _match_types(arg1, arg2): - """Convert the numerical argument to the same type as the other argument""" - - def upgrade(arg_number, arg_structure): - if isinstance(arg_structure, tuple): - return tuple([arg_number] * len(arg_structure)) - elif isinstance(arg_structure, dict): - arg = copy.deepcopy(arg_structure) - for k in arg: - arg[k] = upgrade(arg_number, arg_structure[k]) - return arg - else: - return arg_number - - if isinstance(arg1, float) or isinstance(arg1, int): - return upgrade(arg1, arg2), arg2 - elif isinstance(arg2, float) or isinstance(arg2, int): - return arg1, upgrade(arg2, arg1) - - return arg1, arg2 - - -def resolve_max_positions(*args): - """Resolve max position constraints from multiple sources.""" - - def map_value_update(d1, d2): - updated_value = copy.deepcopy(d1) - for key in d2: - if key not in updated_value: - updated_value[key] = d2[key] - else: - updated_value[key] = min(d1[key], d2[key]) - return updated_value - - def nullsafe_min(l): - minim = None - for item in l: - if minim is None: - minim = item - elif item is not None and item < minim: - minim = item - return minim - - max_positions = None - for arg in args: - if max_positions is None: - max_positions = arg - elif arg is not None: - max_positions, arg = _match_types(max_positions, arg) - if isinstance(arg, float) or isinstance(arg, int): - max_positions = min(max_positions, arg) - elif isinstance(arg, dict): - max_positions = map_value_update(max_positions, arg) - else: - max_positions = tuple(map(nullsafe_min, zip(max_positions, arg))) - - return max_positions - - -def import_user_module(args): - module_path = getattr(args, "user_dir", None) - if module_path is not None: - module_path = os.path.abspath(args.user_dir) - if not os.path.exists(module_path) and not os.path.isfile( - os.path.dirname(module_path) - ): - fairseq_rel_path = os.path.join(os.path.dirname(__file__), args.user_dir) - if os.path.exists(fairseq_rel_path): - module_path = fairseq_rel_path - else: - fairseq_rel_path = os.path.join( - os.path.dirname(__file__), "..", args.user_dir - ) - if os.path.exists(fairseq_rel_path): - module_path = fairseq_rel_path - else: - raise FileNotFoundError(module_path) - - # ensure that user modules are only imported once - import_user_module.memo = getattr(import_user_module, "memo", set()) - if module_path not in import_user_module.memo: - import_user_module.memo.add(module_path) - - module_parent, module_name = os.path.split(module_path) - if module_name not in sys.modules: - sys.path.insert(0, module_parent) - importlib.import_module(module_name) - - tasks_path = os.path.join(module_path, "tasks") - if os.path.exists(tasks_path): - from fairseq.tasks import import_tasks - - import_tasks(tasks_path, f"{module_name}.tasks") - - models_path = os.path.join(module_path, "models") - if os.path.exists(models_path): - from fairseq.models import import_models - - import_models(models_path, f"{module_name}.models") - else: - raise ImportError( - "Failed to import --user-dir={} because the corresponding module name " - "({}) is not globally unique. Please rename the directory to " - "something unique and try again.".format(module_path, module_name) - ) - - -def softmax(x, dim: int, onnx_trace: bool = False): - if onnx_trace: - return F.softmax(x.float(), dim=dim) - else: - return F.softmax(x, dim=dim, dtype=torch.float32) - - -def log_softmax(x, dim: int, onnx_trace: bool = False): - if onnx_trace: - return F.log_softmax(x.float(), dim=dim) - else: - return F.log_softmax(x, dim=dim, dtype=torch.float32) - - -def get_perplexity(loss, round=2, base=2): - from fairseq.logging.meters import safe_round - - if loss is None: - return 0.0 - try: - return safe_round(base ** loss, round) - except OverflowError: - return float("inf") - - -def deprecation_warning(message, stacklevel=3): - # don't use DeprecationWarning, since it's ignored by default - warnings.warn(message, stacklevel=stacklevel) - - -def get_activation_fn(activation: str) -> Callable: - """Returns the activation function corresponding to `activation`""" - from fairseq.modules import gelu, gelu_accurate - - if activation == "relu": - return F.relu - elif activation == "gelu": - return gelu - elif activation == "gelu_fast": - deprecation_warning( - "--activation-fn=gelu_fast has been renamed to gelu_accurate" - ) - return gelu_accurate - elif activation == "gelu_accurate": - return gelu_accurate - elif activation == "tanh": - return torch.tanh - elif activation == "linear": - return lambda x: x - else: - raise RuntimeError("--activation-fn {} not supported".format(activation)) - - -def get_available_activation_fns() -> List: - return [ - "relu", - "gelu", - "gelu_fast", # deprecated - "gelu_accurate", - "tanh", - "linear", - ] - - -@contextlib.contextmanager -def model_eval(model): - is_training = model.training - model.eval() - yield - model.train(is_training) - - -def has_parameters(module): - try: - next(module.parameters()) - return True - except StopIteration: - return False - - -def get_rng_state(): - state = {"torch_rng_state": torch.get_rng_state()} - if xm is not None: - state["xla_rng_state"] = xm.get_rng_state() - if torch.cuda.is_available(): - state["cuda_rng_state"] = torch.cuda.get_rng_state() - return state - - -def set_rng_state(state): - torch.set_rng_state(state["torch_rng_state"]) - if xm is not None: - xm.set_rng_state(state["xla_rng_state"]) - if torch.cuda.is_available(): - torch.cuda.set_rng_state(state["cuda_rng_state"]) - - -class set_torch_seed(object): - def __init__(self, seed): - assert isinstance(seed, int) - self.rng_state = get_rng_state() - - torch.manual_seed(seed) - if xm is not None: - xm.set_rng_state(seed) - if torch.cuda.is_available(): - torch.cuda.manual_seed(seed) - - def __enter__(self): - return self - - def __exit__(self, *exc): - set_rng_state(self.rng_state) - - -def parse_alignment(line): - """ - Parses a single line from the alingment file. - - Args: - line (str): String containing the alignment of the format: - - - .. - -. All indices are 0 indexed. - - Returns: - torch.IntTensor: packed alignments of shape (2 * m). - """ - alignments = line.strip().split() - parsed_alignment = torch.IntTensor(2 * len(alignments)) - for idx, alignment in enumerate(alignments): - src_idx, tgt_idx = alignment.split("-") - parsed_alignment[2 * idx] = int(src_idx) - parsed_alignment[2 * idx + 1] = int(tgt_idx) - return parsed_alignment - - -def get_token_to_word_mapping(tokens, exclude_list): - n = len(tokens) - word_start = [int(token not in exclude_list) for token in tokens] - word_idx = list(accumulate(word_start)) - token_to_word = {i: word_idx[i] for i in range(n)} - return token_to_word - - -def extract_hard_alignment(attn, src_sent, tgt_sent, pad, eos): - tgt_valid = ( - ((tgt_sent != pad) & (tgt_sent != eos)).nonzero(as_tuple=False).squeeze(dim=-1) - ) - src_invalid = ( - ((src_sent == pad) | (src_sent == eos)).nonzero(as_tuple=False).squeeze(dim=-1) - ) - src_token_to_word = get_token_to_word_mapping(src_sent, [eos, pad]) - tgt_token_to_word = get_token_to_word_mapping(tgt_sent, [eos, pad]) - alignment = [] - if len(tgt_valid) != 0 and len(src_invalid) < len(src_sent): - attn_valid = attn[tgt_valid] - attn_valid[:, src_invalid] = float("-inf") - _, src_indices = attn_valid.max(dim=1) - for tgt_idx, src_idx in zip(tgt_valid, src_indices): - alignment.append( - ( - src_token_to_word[src_idx.item()] - 1, - tgt_token_to_word[tgt_idx.item()] - 1, - ) - ) - return alignment - - -def extract_soft_alignment(attn, src_sent, tgt_sent, pad, eos): - tgt_valid = ((tgt_sent != pad)).nonzero(as_tuple=False) - src_valid = ((src_sent != pad)).nonzero(as_tuple=False).squeeze(dim=-1) - alignment = [] - if len(tgt_valid) != 0 and len(src_valid) != 0: - attn_valid = attn[tgt_valid, src_valid] - alignment = [ - ["{:.6f}".format(p) for p in src_probs.tolist()] for src_probs in attn_valid - ] - return alignment - - -def new_arange(x, *size): - """ - Return a Tensor of `size` filled with a range function on the device of x. - If size is empty, using the size of the variable x. - """ - if len(size) == 0: - size = x.size() - return torch.arange(size[-1], device=x.device).expand(*size).contiguous() - - -def get_tpu_device(): - return xm.xla_device() - - -def tpu_data_loader(itr): - import torch_xla.core.xla_model as xm - import torch_xla.distributed.parallel_loader as pl - from fairseq.data import iterators - - xm.rendezvous("tpu_data_loader") # wait for all workers - xm.mark_step() - device = xm.xla_device() - return iterators.CountingIterator( - pl.ParallelLoader(itr, [device]).per_device_loader(device), - start=getattr(itr, "n", 0), - total=len(itr), - ) - - -def is_xla_tensor(tensor): - return torch.is_tensor(tensor) and tensor.device.type == "xla" - - -def index_put(tensor, indices, value): - if is_xla_tensor(tensor): - for _ in range(indices.dim(), tensor.dim()): - indices = indices.unsqueeze(-1) - if indices.size(-1) < tensor.size(-1): - indices = indices.expand_as(tensor) - tensor = torch.mul(tensor, ~indices) + torch.mul(value, indices) - else: - tensor[indices] = value - return tensor - - -def xla_device_to_cpu(dat): - import torch_xla.core.xla_model as xm - - return xm._maybe_convert_to_cpu(dat) - - -class CudaEnvironment(object): - def __init__(self): - cur_device = torch.cuda.current_device() - prop = torch.cuda.get_device_properties("cuda:{}".format(cur_device)) - self.name = prop.name - self.major = prop.major - self.minor = prop.minor - self.total_memory_in_GB = prop.total_memory / 1024 / 1024 / 1024 - - @staticmethod - def pretty_print_cuda_env_list(cuda_env_list): - """ - Given a list of CudaEnviorments, pretty print them - """ - num_workers = len(cuda_env_list) - center = "CUDA enviroments for all {} workers".format(num_workers) - banner_len = 40 - len(center) // 2 - first_line = "*" * banner_len + center + "*" * banner_len - logger.info(first_line) - for r, env in enumerate(cuda_env_list): - logger.info( - "rank {:3d}: ".format(r) - + "capabilities = {:2d}.{:<2d} ; ".format(env.major, env.minor) - + "total memory = {:.3f} GB ; ".format(env.total_memory_in_GB) - + "name = {:40s}".format(env.name) - ) - logger.info(first_line) - - -def csv_str_list(x): - return x.split(",") - - -def eval_str_list(x, type=float): - if x is None: - return None - if isinstance(x, str): - x = eval(x) - try: - return list(map(type, x)) - except TypeError: - return [type(x)] - - -def eval_str_dict(x, type=dict): - if x is None: - return None - if isinstance(x, str): - x = eval(x) - return x - - -def eval_bool(x, default=False): - if x is None: - return default - try: - return bool(eval(x)) - except TypeError: - return default - - -def reset_logging(): - root = logging.getLogger() - for handler in root.handlers: - root.removeHandler(handler) - root.setLevel(os.environ.get("LOGLEVEL", "INFO").upper()) - handler = logging.StreamHandler(sys.stdout) - handler.setFormatter( - logging.Formatter( - fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s", - datefmt="%Y-%m-%d %H:%M:%S", - ) - ) - root.addHandler(handler) - - -def safe_getattr(obj, k, default=None): - """Returns obj[k] if it exists and is not None, otherwise returns default.""" - from omegaconf import OmegaConf - - if OmegaConf.is_config(obj): - return obj[k] if k in obj and obj[k] is not None else default - - return getattr(obj, k, default) - - -def safe_hasattr(obj, k): - """Returns True if the given key exists and is not None.""" - return getattr(obj, k, None) is not None diff --git a/spaces/multimodalart/stable-diffusion-inpainting/clipseg/datasets/phrasecut.py b/spaces/multimodalart/stable-diffusion-inpainting/clipseg/datasets/phrasecut.py deleted file mode 100644 index ef0c5350583c33c64682a35af3d314b02831569c..0000000000000000000000000000000000000000 --- a/spaces/multimodalart/stable-diffusion-inpainting/clipseg/datasets/phrasecut.py +++ /dev/null @@ -1,335 +0,0 @@ - -import torch -import numpy as np -import os - -from os.path import join, isdir, isfile, expanduser -from PIL import Image - -from torchvision import transforms -from torchvision.transforms.transforms import Resize - -from torch.nn import functional as nnf -from general_utils import get_from_repository - -from skimage.draw import polygon2mask - - - -def random_crop_slices(origin_size, target_size): - """Gets slices of a random crop. """ - assert origin_size[0] >= target_size[0] and origin_size[1] >= target_size[1], f'actual size: {origin_size}, target size: {target_size}' - - offset_y = torch.randint(0, origin_size[0] - target_size[0] + 1, (1,)).item() # range: 0 <= value < high - offset_x = torch.randint(0, origin_size[1] - target_size[1] + 1, (1,)).item() - - return slice(offset_y, offset_y + target_size[0]), slice(offset_x, offset_x + target_size[1]) - - -def find_crop(seg, image_size, iterations=1000, min_frac=None, best_of=None): - - - best_crops = [] - best_crop_not_ok = float('-inf'), None, None - min_sum = 0 - - seg = seg.astype('bool') - - if min_frac is not None: - #min_sum = seg.sum() * min_frac - min_sum = seg.shape[0] * seg.shape[1] * min_frac - - for iteration in range(iterations): - sl_y, sl_x = random_crop_slices(seg.shape, image_size) - seg_ = seg[sl_y, sl_x] - sum_seg_ = seg_.sum() - - if sum_seg_ > min_sum: - - if best_of is None: - return sl_y, sl_x, False - else: - best_crops += [(sum_seg_, sl_y, sl_x)] - if len(best_crops) >= best_of: - best_crops.sort(key=lambda x:x[0], reverse=True) - sl_y, sl_x = best_crops[0][1:] - - return sl_y, sl_x, False - - else: - if sum_seg_ > best_crop_not_ok[0]: - best_crop_not_ok = sum_seg_, sl_y, sl_x - - else: - # return best segmentation found - return best_crop_not_ok[1:] + (best_crop_not_ok[0] <= min_sum,) - - -class PhraseCut(object): - - def __init__(self, split, image_size=400, negative_prob=0, aug=None, aug_color=False, aug_crop=True, - min_size=0, remove_classes=None, with_visual=False, only_visual=False, mask=None): - super().__init__() - - self.negative_prob = negative_prob - self.image_size = image_size - self.with_visual = with_visual - self.only_visual = only_visual - self.phrase_form = '{}' - self.mask = mask - self.aug_crop = aug_crop - - if aug_color: - self.aug_color = transforms.Compose([ - transforms.ColorJitter(0.5, 0.5, 0.2, 0.05), - ]) - else: - self.aug_color = None - - get_from_repository('PhraseCut', ['PhraseCut.tar'], integrity_check=lambda local_dir: all([ - isdir(join(local_dir, 'VGPhraseCut_v0')), - isdir(join(local_dir, 'VGPhraseCut_v0', 'images')), - isfile(join(local_dir, 'VGPhraseCut_v0', 'refer_train.json')), - len(os.listdir(join(local_dir, 'VGPhraseCut_v0', 'images'))) in {108250, 108249} - ])) - - from third_party.PhraseCutDataset.utils.refvg_loader import RefVGLoader - self.refvg_loader = RefVGLoader(split=split) - - # img_ids where the size in the annotations does not match actual size - invalid_img_ids = set([150417, 285665, 498246, 61564, 285743, 498269, 498010, 150516, 150344, 286093, 61530, - 150333, 286065, 285814, 498187, 285761, 498042]) - - mean = [0.485, 0.456, 0.406] - std = [0.229, 0.224, 0.225] - self.normalize = transforms.Normalize(mean, std) - - self.sample_ids = [(i, j) - for i in self.refvg_loader.img_ids - for j in range(len(self.refvg_loader.get_img_ref_data(i)['phrases'])) - if i not in invalid_img_ids] - - - # self.all_phrases = list(set([p for i in self.refvg_loader.img_ids for p in self.refvg_loader.get_img_ref_data(i)['phrases']])) - - from nltk.stem import WordNetLemmatizer - wnl = WordNetLemmatizer() - - # Filter by class (if remove_classes is set) - if remove_classes is None: - pass - else: - from datasets.generate_lvis_oneshot import PASCAL_SYNSETS, traverse_lemmas, traverse_lemmas_hypo - from nltk.corpus import wordnet - - print('remove pascal classes...') - - get_data = self.refvg_loader.get_img_ref_data # shortcut - keep_sids = None - - if remove_classes[0] == 'pas5i': - subset_id = remove_classes[1] - from datasets.generate_lvis_oneshot import PASCAL_5I_SYNSETS_ORDERED, PASCAL_5I_CLASS_IDS - avoid = [PASCAL_5I_SYNSETS_ORDERED[i] for i in range(20) if i+1 not in PASCAL_5I_CLASS_IDS[subset_id]] - - - elif remove_classes[0] == 'zs': - stop = remove_classes[1] - - from datasets.pascal_zeroshot import PASCAL_VOC_CLASSES_ZS - - avoid = [c for class_set in PASCAL_VOC_CLASSES_ZS[:stop] for c in class_set] - print(avoid) - - elif remove_classes[0] == 'aff': - # avoid = ['drink.v.01', 'sit.v.01', 'ride.v.02'] - # all_lemmas = set(['drink', 'sit', 'ride']) - avoid = ['drink', 'drinks', 'drinking', 'sit', 'sits', 'sitting', - 'ride', 'rides', 'riding', - 'fly', 'flies', 'flying', 'drive', 'drives', 'driving', 'driven', - 'swim', 'swims', 'swimming', - 'wheels', 'wheel', 'legs', 'leg', 'ear', 'ears'] - keep_sids = [(i, j) for i, j in self.sample_ids if - all(x not in avoid for x in get_data(i)['phrases'][j].split(' '))] - - print('avoid classes:', avoid) - - - if keep_sids is None: - all_lemmas = [s for ps in avoid for s in traverse_lemmas_hypo(wordnet.synset(ps), max_depth=None)] - all_lemmas = list(set(all_lemmas)) - all_lemmas = [h.replace('_', ' ').lower() for h in all_lemmas] - all_lemmas = set(all_lemmas) - - # divide into multi word and single word - all_lemmas_s = set(l for l in all_lemmas if ' ' not in l) - all_lemmas_m = set(l for l in all_lemmas if l not in all_lemmas_s) - - # new3 - phrases = [get_data(i)['phrases'][j] for i, j in self.sample_ids] - remove_sids = set((i,j) for (i,j), phrase in zip(self.sample_ids, phrases) - if any(l in phrase for l in all_lemmas_m) or - len(set(wnl.lemmatize(w) for w in phrase.split(' ')).intersection(all_lemmas_s)) > 0 - ) - keep_sids = [(i, j) for i, j in self.sample_ids if (i,j) not in remove_sids] - - print(f'Reduced to {len(keep_sids) / len(self.sample_ids):.3f}') - removed_ids = set(self.sample_ids) - set(keep_sids) - - print('Examples of removed', len(removed_ids)) - for i, j in list(removed_ids)[:20]: - print(i, get_data(i)['phrases'][j]) - - self.sample_ids = keep_sids - - from itertools import groupby - samples_by_phrase = [(self.refvg_loader.get_img_ref_data(i)['phrases'][j], (i, j)) - for i, j in self.sample_ids] - samples_by_phrase = sorted(samples_by_phrase) - samples_by_phrase = groupby(samples_by_phrase, key=lambda x: x[0]) - - self.samples_by_phrase = {prompt: [s[1] for s in prompt_sample_ids] for prompt, prompt_sample_ids in samples_by_phrase} - - self.all_phrases = list(set(self.samples_by_phrase.keys())) - - - if self.only_visual: - assert self.with_visual - self.sample_ids = [(i, j) for i, j in self.sample_ids - if len(self.samples_by_phrase[self.refvg_loader.get_img_ref_data(i)['phrases'][j]]) > 1] - - # Filter by size (if min_size is set) - sizes = [self.refvg_loader.get_img_ref_data(i)['gt_boxes'][j] for i, j in self.sample_ids] - image_sizes = [self.refvg_loader.get_img_ref_data(i)['width'] * self.refvg_loader.get_img_ref_data(i)['height'] for i, j in self.sample_ids] - #self.sizes = [sum([(s[2] - s[0]) * (s[3] - s[1]) for s in size]) for size in sizes] - self.sizes = [sum([s[2] * s[3] for s in size]) / img_size for size, img_size in zip(sizes, image_sizes)] - - if min_size: - print('filter by size') - - self.sample_ids = [self.sample_ids[i] for i in range(len(self.sample_ids)) if self.sizes[i] > min_size] - - self.base_path = join(expanduser('~/datasets/PhraseCut/VGPhraseCut_v0/images/')) - - def __len__(self): - return len(self.sample_ids) - - - def load_sample(self, sample_i, j): - - img_ref_data = self.refvg_loader.get_img_ref_data(sample_i) - - polys_phrase0 = img_ref_data['gt_Polygons'][j] - phrase = img_ref_data['phrases'][j] - phrase = self.phrase_form.format(phrase) - - masks = [] - for polys in polys_phrase0: - for poly in polys: - poly = [p[::-1] for p in poly] # swap x,y - masks += [polygon2mask((img_ref_data['height'], img_ref_data['width']), poly)] - - seg = np.stack(masks).max(0) - img = np.array(Image.open(join(self.base_path, str(img_ref_data['image_id']) + '.jpg'))) - - min_shape = min(img.shape[:2]) - - if self.aug_crop: - sly, slx, exceed = find_crop(seg, (min_shape, min_shape), iterations=50, min_frac=0.05) - else: - sly, slx = slice(0, None), slice(0, None) - - seg = seg[sly, slx] - img = img[sly, slx] - - seg = seg.astype('uint8') - seg = torch.from_numpy(seg).view(1, 1, *seg.shape) - - if img.ndim == 2: - img = np.dstack([img] * 3) - - img = torch.from_numpy(img).permute(2,0,1).unsqueeze(0).float() - - seg = nnf.interpolate(seg, (self.image_size, self.image_size), mode='nearest')[0,0] - img = nnf.interpolate(img, (self.image_size, self.image_size), mode='bilinear', align_corners=True)[0] - - # img = img.permute([2,0, 1]) - img = img / 255.0 - - if self.aug_color is not None: - img = self.aug_color(img) - - img = self.normalize(img) - - - - return img, seg, phrase - - def __getitem__(self, i): - - sample_i, j = self.sample_ids[i] - - img, seg, phrase = self.load_sample(sample_i, j) - - if self.negative_prob > 0: - if torch.rand((1,)).item() < self.negative_prob: - - new_phrase = None - while new_phrase is None or new_phrase == phrase: - idx = torch.randint(0, len(self.all_phrases), (1,)).item() - new_phrase = self.all_phrases[idx] - phrase = new_phrase - seg = torch.zeros_like(seg) - - if self.with_visual: - # find a corresponding visual image - if phrase in self.samples_by_phrase and len(self.samples_by_phrase[phrase]) > 1: - idx = torch.randint(0, len(self.samples_by_phrase[phrase]), (1,)).item() - other_sample = self.samples_by_phrase[phrase][idx] - #print(other_sample) - img_s, seg_s, _ = self.load_sample(*other_sample) - - from datasets.utils import blend_image_segmentation - - if self.mask in {'separate', 'text_and_separate'}: - # assert img.shape[1:] == img_s.shape[1:] == seg_s.shape == seg.shape[1:] - add_phrase = [phrase] if self.mask == 'text_and_separate' else [] - vis_s = add_phrase + [img_s, seg_s, True] - else: - if self.mask.startswith('text_and_'): - mask_mode = self.mask[9:] - label_add = [phrase] - else: - mask_mode = self.mask - label_add = [] - - masked_img_s = torch.from_numpy(blend_image_segmentation(img_s, seg_s, mode=mask_mode, image_size=self.image_size)[0]) - vis_s = label_add + [masked_img_s, True] - - else: - # phrase is unique - vis_s = torch.zeros_like(img) - - if self.mask in {'separate', 'text_and_separate'}: - add_phrase = [phrase] if self.mask == 'text_and_separate' else [] - vis_s = add_phrase + [vis_s, torch.zeros(*vis_s.shape[1:], dtype=torch.uint8), False] - elif self.mask.startswith('text_and_'): - vis_s = [phrase, vis_s, False] - else: - vis_s = [vis_s, False] - else: - assert self.mask == 'text' - vis_s = [phrase] - - seg = seg.unsqueeze(0).float() - - data_x = (img,) + tuple(vis_s) - - return data_x, (seg, torch.zeros(0), i) - - -class PhraseCutPlus(PhraseCut): - - def __init__(self, split, image_size=400, aug=None, aug_color=False, aug_crop=True, min_size=0, remove_classes=None, only_visual=False, mask=None): - super().__init__(split, image_size=image_size, negative_prob=0.2, aug=aug, aug_color=aug_color, aug_crop=aug_crop, min_size=min_size, - remove_classes=remove_classes, with_visual=True, only_visual=only_visual, mask=mask) \ No newline at end of file diff --git a/spaces/myrad01/Inpaint-Anything/third_party/lama/saicinpainting/training/modules/depthwise_sep_conv.py b/spaces/myrad01/Inpaint-Anything/third_party/lama/saicinpainting/training/modules/depthwise_sep_conv.py deleted file mode 100644 index 83dd15c3df1d9f40baf0091a373fa224532c9ddd..0000000000000000000000000000000000000000 --- a/spaces/myrad01/Inpaint-Anything/third_party/lama/saicinpainting/training/modules/depthwise_sep_conv.py +++ /dev/null @@ -1,17 +0,0 @@ -import torch -import torch.nn as nn - -class DepthWiseSeperableConv(nn.Module): - def __init__(self, in_dim, out_dim, *args, **kwargs): - super().__init__() - if 'groups' in kwargs: - # ignoring groups for Depthwise Sep Conv - del kwargs['groups'] - - self.depthwise = nn.Conv2d(in_dim, in_dim, *args, groups=in_dim, **kwargs) - self.pointwise = nn.Conv2d(in_dim, out_dim, kernel_size=1) - - def forward(self, x): - out = self.depthwise(x) - out = self.pointwise(out) - return out \ No newline at end of file diff --git a/spaces/nateraw/voice-cloning/README.md b/spaces/nateraw/voice-cloning/README.md deleted file mode 100644 index b91e716e0e8be471705303a33e601b3589260db5..0000000000000000000000000000000000000000 --- a/spaces/nateraw/voice-cloning/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: Voice Cloning -emoji: 😻 -colorFrom: blue -colorTo: yellow -sdk: gradio -sdk_version: 3.27.0 -app_file: app.py -pinned: false -license: mit ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/naver/PUMP/core/conv_mixer.py b/spaces/naver/PUMP/core/conv_mixer.py deleted file mode 100644 index 9f24fc32b7b87073a3d56885bc3c5e5e0600ac50..0000000000000000000000000000000000000000 --- a/spaces/naver/PUMP/core/conv_mixer.py +++ /dev/null @@ -1,87 +0,0 @@ -# Copyright 2022-present NAVER Corp. -# CC BY-NC-SA 4.0 -# Available only for non-commercial use - -from pdb import set_trace as bb - -import torch -import torch.nn as nn -import torch.nn.functional as F - -""" From the ICLR22 paper: Patches are all you need - https://openreview.net/pdf?id=TVHS5Y4dNvM -""" - -class Residual(nn.Module): - def __init__(self, fn, stride=1): - super().__init__() - self.fn = fn - self.stride = stride - - def forward(self, x): - s = slice(None,None,self.stride) - return x[:,:,s,s] + self.fn(x)[:,:,s,s] - - -class ConvMixer (nn.Sequential): - """ Modified ConvMixer with convolutional layers at the bottom. - - From the ICLR22 paper: Patches are all you need, https://openreview.net/pdf?id=TVHS5Y4dNvM - """ - def __init__(self, output_dim, hidden_dim, - depth=None, kernel_size=5, patch_size=8, group_size=1, - preconv=1, faster=True, relu=nn.ReLU): - - assert kernel_size % 2 == 1, 'kernel_size must be odd' - output_step = 1 + faster - assert patch_size % output_step == 0, f'patch_size must be multiple of {output_step}' - self.patch_size = patch_size - - hidden_dims = [hidden_dim//4]*preconv + [hidden_dim]*(depth+1) - ops = [ - nn.Conv2d(3, hidden_dims[0], kernel_size=5, padding=2), - relu(), - nn.BatchNorm2d(hidden_dims[0])] - - for _ in range(1,preconv): - ops += [ - nn.Conv2d(hidden_dims.pop(0), hidden_dims[0], kernel_size=3, padding=1), - relu(), - nn.BatchNorm2d(hidden_dims[0])] - - ops += [ - nn.Conv2d(hidden_dims.pop(0), hidden_dims[0], kernel_size=patch_size, stride=patch_size), - relu(), - nn.BatchNorm2d(hidden_dims[0])] - - for idim, odim in zip(hidden_dims[0:], hidden_dims[1:]): - ops += [Residual(nn.Sequential( - nn.Conv2d(idim, idim, kernel_size, groups=max(1,idim//group_size), padding=kernel_size//2), - relu(), - nn.BatchNorm2d(idim) - )), - nn.Conv2d(idim, odim, kernel_size=1), - relu(), - nn.BatchNorm2d(odim)] - ops += [ - nn.Conv2d(odim, output_dim*(patch_size//output_step)**2, kernel_size=1), - nn.PixelShuffle( patch_size//output_step ), - nn.Upsample(scale_factor=output_step, mode='bilinear', align_corners=False)] - - super().__init__(*ops) - - def forward(self, img): - assert img.ndim == 4 - B, C, H, W = img.shape - desc = super().forward(img) - return F.normalize(desc, dim=-3) - - -if __name__ == '__main__': - net = ConvMixer3(128, 512, 7, patch_size=4, kernel_size=9) - print(net) - - img = torch.rand(2,3,256,256) - print('input.shape =', img.shape) - desc = net(img) - print('desc.shape =', desc.shape) diff --git a/spaces/neojex/LuxembourgishTextClassifier/README.md b/spaces/neojex/LuxembourgishTextClassifier/README.md deleted file mode 100644 index 0e3364dbabe504f1259c699c94c6915d64d266cc..0000000000000000000000000000000000000000 --- a/spaces/neojex/LuxembourgishTextClassifier/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: LuxembourgishTextClassifier -emoji: šŸ† -colorFrom: yellow -colorTo: green -sdk: gradio -sdk_version: 3.32.0 -app_file: app.py -pinned: false -license: mit ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/netiMophi/DreamlikeArt-Diffusion-1.0/Driver Genius Pro Edition 2007 V7.1.0.622 Serial Key Keygen.md b/spaces/netiMophi/DreamlikeArt-Diffusion-1.0/Driver Genius Pro Edition 2007 V7.1.0.622 Serial Key Keygen.md deleted file mode 100644 index f15af588f6fa2f6042a3dc057f87b9d804a5ddc6..0000000000000000000000000000000000000000 --- a/spaces/netiMophi/DreamlikeArt-Diffusion-1.0/Driver Genius Pro Edition 2007 V7.1.0.622 Serial Key Keygen.md +++ /dev/null @@ -1,31 +0,0 @@ -
          -

          How to Use Driver Genius Pro Edition 2007 V7.1.0.622 Serial Key Keygen

          -

          If you are looking for a way to update, backup, and restore your drivers, you might want to try Driver Genius Pro Edition 2007 V7.1.0.622 Serial Key Keygen. This is a software that can scan your system and find the best drivers for your devices. It can also backup your drivers and restore them in case of system crash or reinstall.

          -

          Driver Genius Pro Edition 2007 V7.1.0.622 Serial Key Keygen is a powerful tool that can help you optimize your PC performance and stability. It can also detect and remove invalid or outdated drivers that can cause problems with your hardware or software.

          -

          Driver Genius Pro Edition 2007 V7.1.0.622 Serial Key keygen


          Download Zip ••• https://urlcod.com/2uI9KU



          -

          To use Driver Genius Pro Edition 2007 V7.1.0.622 Serial Key Keygen, you need to follow these steps:

          -
            -
          1. Download the software from the official website or from a trusted source.
          2. -
          3. Install the software by following the instructions on the screen.
          4. -
          5. Run the software and enter the serial key that you received when you purchased the software.
          6. -
          7. Click on the Scan button to start scanning your system for drivers.
          8. -
          9. Select the drivers that you want to update, backup, or restore.
          10. -
          11. Click on the appropriate button to perform the action.
          12. -
          -

          Driver Genius Pro Edition 2007 V7.1.0.622 Serial Key Keygen is a user-friendly and reliable software that can help you manage your drivers with ease. It can save you time and money by finding the best drivers for your system and preventing driver-related issues.

          - -

          Some of the benefits of using Driver Genius Pro Edition 2007 are:

          -
            -
          • It can improve your PC performance by updating your drivers to the latest versions.
          • -
          • It can protect your PC from driver conflicts, errors, and crashes by creating backups of your drivers and restoring them when needed.
          • -
          • It can save you time and hassle by finding and installing the best drivers for your devices automatically.
          • -
          • It can keep your drivers up-to-date and compatible with new hardware and software.
          • -
          • It can support more than 30,000 devices from over 1,000 manufacturers.
          • -
          -

          Driver Genius Pro Edition 2007 is a smart and convenient solution for managing your drivers. It can help you keep your PC running smoothly and efficiently. It can also prevent driver-related problems that can affect your system stability and security.

          - -

          If you want to learn more about how to use Driver Genius Pro Edition 2007, you can watch some video tutorials on YouTube[^1^] [^3^]. These videos will show you how to install, activate, scan, update, backup, and restore your drivers using the software. You can also see how to use the device diagnostics and the drivers download manager features.

          -

          Alternatively, you can read the user manual that comes with the software or visit the official website of Driver Genius[^2^]. There you can find more information about the software features, functions, and benefits. You can also contact the customer support team if you have any questions or problems with the software.

          -

          Driver Genius Pro Edition 2007 is a comprehensive and easy-to-use software that can help you take care of your drivers. It can make your PC run faster, safer, and more stable. It can also save you time and effort by finding and installing the best drivers for your devices automatically.

          cec2833e83
          -
          -
          \ No newline at end of file diff --git a/spaces/netiMophi/DreamlikeArt-Diffusion-1.0/La Vie De Jesus - Bruno Dumont (1997) [DVDRIP] __HOT__.md b/spaces/netiMophi/DreamlikeArt-Diffusion-1.0/La Vie De Jesus - Bruno Dumont (1997) [DVDRIP] __HOT__.md deleted file mode 100644 index 1d4bc941449dd7359199e0304736c2a1a7b2a1d1..0000000000000000000000000000000000000000 --- a/spaces/netiMophi/DreamlikeArt-Diffusion-1.0/La Vie De Jesus - Bruno Dumont (1997) [DVDRIP] __HOT__.md +++ /dev/null @@ -1,12 +0,0 @@ - -

          La Vie de Jésus: A Provocative Portrait of Faith and Alienation

          -

          La Vie de Jésus (The Life of Jesus) is a 1997 French drama film written and directed by Bruno Dumont. It tells the story of Freddy, a young man with epilepsy who lives in a small town in northern France, and his relationship with Marie, a cashier at a supermarket. Freddy and his friends spend their days riding motorcycles, drinking beer, and having sex. But when an Arab boy named Kader arrives in town and starts dating Marie, Freddy's life is thrown into turmoil.

          -

          La Vie de Jesus - Bruno Dumont (1997) [DVDRIP]


          DOWNLOADhttps://urlcod.com/2uIaWs



          -

          The film is not a biopic of Jesus Christ, but rather a metaphorical exploration of the themes of faith, love, suffering, and redemption. Dumont uses a minimalist style, employing non-professional actors, natural lighting, long takes, and sparse dialogue. He also depicts the harsh realities of rural poverty, racism, violence, and disease with unflinching honesty. The film challenges the viewer to confront the moral ambiguity and complexity of human nature.

          -

          La Vie de Jésus premiered at the Cannes Film Festival in 1997, where it won the Caméra d'Or for best first feature film. It also received critical acclaim and several awards, including the Prix Jean Vigo and the European Film Award for Discovery of the Year. The film was controversial for its graphic depiction of sex and violence, as well as its provocative portrayal of religion. Some critics praised it as a masterpiece of realism and spirituality, while others condemned it as blasphemous and nihilistic.

          -

          The film is available on DVD from The Criterion Collection, which includes an interview with Dumont, a documentary on the making of the film, and an essay by critic Nicholas Elliott.

          La Vie de Jésus is not a conventional film, but rather a cinematic experiment that challenges the boundaries of fiction and documentary, realism and spirituality, art and life. Dumont uses non-professional actors from the town of Bailleul, where he was born and where the film is set, and draws inspiration from their actual experiences and backgrounds. He also incorporates elements of his own personal history, such as his father's death from AIDS and his interest in philosophy and religion.

          -

          The film does not follow a conventional narrative structure, but rather presents a series of episodes that depict the daily lives of Freddy and his friends, as well as their encounters with Kader and Marie. The film does not offer any easy explanations or judgments for their actions, but rather invites the viewer to observe and reflect on their motivations and emotions. The film also contrasts the natural beauty of the landscape with the ugliness of human violence and prejudice, creating a sense of tension and contradiction.

          -

          -

          La Vie de Jésus is a film that provokes strong reactions from its viewers, whether positive or negative. Some may find it boring, shocking, or offensive; others may find it moving, enlightening, or transcendent. The film does not aim to please or entertain, but rather to question and challenge. It is a film that demands attention and engagement, as well as respect and compassion.

          7196e7f11a
          -
          -
          \ No newline at end of file diff --git a/spaces/nick2655/Intelibotprivatedata/app.py b/spaces/nick2655/Intelibotprivatedata/app.py deleted file mode 100644 index 8a86aa364886479ee7bcbb12d5a964511eb08366..0000000000000000000000000000000000000000 --- a/spaces/nick2655/Intelibotprivatedata/app.py +++ /dev/null @@ -1,126 +0,0 @@ -import openai -from langchain.embeddings.openai import OpenAIEmbeddings -from langchain.text_splitter import CharacterTextSplitter -from langchain.vectorstores import ElasticVectorSearch, pinecone, Weaviate, FAISS -from PyPDF2 import PdfReader -from langchain.chains.question_answering import load_qa_chain -from langchain.llms import OpenAI -import gradio as gr - - -import os -#openai.openai_api_key=gr.secrets("OPENAI_API_KEY") - -#OPENAI_API_KEY=gr.secrets("OPENAI_API_KEY") - - -#os.environ ["OPENAI_API_KEY"]=os.getenviron("OPENAI_API_KEY") - -print("openai_api_key") -print(os.getenv("OPENAI_API_KEY")) -global g_docSearch #global -#from google.colab import drive -#drive.mount('/content/gdrive',force_remount=True) -#root_drive = "/content/gdrive/MyDrive" -# read raw text from pdf -def convertpdftotext(reader): - rawtext = '' - for i, page in enumerate(reader.pages): - text=page.extract_text() - if text: - rawtext+=text - return(rawtext) -#textsplitter = RecursiveCharacterTextSplitter( - # chunk_size=1000, - # chunk_overlap=100, -#) -def splittext(rawtext): - text_splitter = CharacterTextSplitter( - separator='\n', - chunk_size=1000, - chunk_overlap=100, - length_function=len,) - return (text_splitter.split_text(rawtext)) -#def getsplittextpdf(reader): -# text = convertpdftotext(reader) -# return(splittext(text)) -def retrieveinfo(query, embeddings): - chain = load_qa_chain(OpenAI(), chain_type='stuff') - global g_docSearch - docs = g_docSearch.similarity_search(query) - return (chain.run(input_documents=docs, question=query)) -def convertPDFsTotext(pdfFiles): - type (pdfFiles) - text = "" - for pdf in pdfFiles: - print(pdf.name) - pdf_reader = PdfReader(pdf.name) - for page in pdf_reader.pages: - text += page.extract_text() - return(text) -# for idx, file in enumerate(pdfFiles): -# print(file.name) -# reader = reader+PdfReader(file.name) -def processPDFs(files): - rawtext = convertPDFsTotext(files) - print (rawtext) - splittedText = splittext(rawtext) - embeddings = OpenAIEmbeddings(openai_api_key=os.getenv("OPENAI_API_KEY")) - global g_docSearch - g_docSearch = FAISS.from_texts(texts=splittedText, embedding=embeddings) - return("finished ... pdf created embeddings ready to query") -def retrieveInfo(query): - chain = load_qa_chain(OpenAI(), chain_type='stuff') - global g_docSearch - docs = g_docSearch.similarity_search(query) - return (chain.run(input_documents=docs, question=query)) -#filetoread = root_drive+'/opshub/opshubwp3.pdf' -#print(filetoread) -#pdf_reader = PdfReader(filetoread) -#rawtext = '' -#for page in pdf_reader.pages: -# rawtext += page.extract_text() -#rawtext = reader.pages.extract_text() -#splitTexts = getsplittextpdf(text) -#splittedText = splittext(rawtext) -#embeddingS = OpenAIEmbeddings() -#g_docSearch = FAISS.from_texts(texts=splittedText, embedding=embeddingS) -#print(retrieveInfo("who wrote this document")) -def chat(chat_history, user_input): - bot_response = retrieveInfo(user_input) - print(bot_response) - response = "" - for letter in ''.join(bot_response): #[bot_response[i:i+1] for i in range(0, len(bot_response), 1)]: - response += letter + "" - yield chat_history + [(user_input, response)] -def processTexts(files): - text = "" - for textfile in files: - print(textfile.name) - with open(textfile.name, 'r') as file: - # Read the contents of the file - text += file.read() - print(text) - splittedText=splittext(text) - embeddings = OpenAIEmbeddings(openai_api_key=os.getenv("OPENAI_API_KEY")) - global g_docSearch - g_docSearch = FAISS.from_texts(texts=splittedText, embedding=embeddings) - return("finished ... text files, created embeddings ready to querry") -with gr.Blocks() as demo: - gr.Markdown('InteliBotPrivateData') - with gr.Tab("Input Text Document"): - inputTextfiles = gr.File(file_count="multiple", file_types=[".txt"], label="Load TEXT files") - text_output = gr.Textbox(label="Results:") - text_button = gr.Button("Add To InteliBotPrivateData Knowledge Base !!!") - text_button.click(processTexts, inputTextfiles, text_output) - with gr.Tab("Input Load PDF to "): - inputpdfs = gr.File(file_count="multiple", file_types=[".pdf"], label="Load PDF files") - text_output = gr.Textbox(label="Results:") - text_button = gr.Button("Add To InteliBotPrivateData Knowledge Base !!!") - text_button.click(processPDFs, inputpdfs, text_output) - with gr.Tab("InteliBotPrivateData Knowledge Bot"): -# inputbox = gr.Textbox("Input your text to build a Q&A Bot here.....") - chatbot = gr.Chatbot() - message = gr.Textbox ("What is this document about?") - message.submit(chat, [chatbot, message], chatbot) -demo.queue().launch(debug = True) \ No newline at end of file diff --git a/spaces/nikitaPDL2023/assignment4/detectron2/projects/TensorMask/tensormask/__init__.py b/spaces/nikitaPDL2023/assignment4/detectron2/projects/TensorMask/tensormask/__init__.py deleted file mode 100644 index eec7978ac3c5204b1e51dac03ba3d45efc5b379d..0000000000000000000000000000000000000000 --- a/spaces/nikitaPDL2023/assignment4/detectron2/projects/TensorMask/tensormask/__init__.py +++ /dev/null @@ -1,3 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -from .config import add_tensormask_config -from .arch import TensorMask diff --git a/spaces/nomic-ai/nomic-ai_gpt4all_prompt_generations/style.css b/spaces/nomic-ai/nomic-ai_gpt4all_prompt_generations/style.css deleted file mode 100644 index 114adf441e9032febb46bc056b2a8bb651075f0d..0000000000000000000000000000000000000000 --- a/spaces/nomic-ai/nomic-ai_gpt4all_prompt_generations/style.css +++ /dev/null @@ -1,28 +0,0 @@ -body { - padding: 2rem; - font-family: -apple-system, BlinkMacSystemFont, "Arial", sans-serif; -} - -h1 { - font-size: 16px; - margin-top: 0; -} - -p { - color: rgb(107, 114, 128); - font-size: 15px; - margin-bottom: 10px; - margin-top: 5px; -} - -.card { - max-width: 620px; - margin: 0 auto; - padding: 16px; - border: 1px solid lightgray; - border-radius: 16px; -} - -.card p:last-child { - margin-bottom: 0; -} diff --git a/spaces/nomic-ai/yahma_alpaca-cleaned/index.html b/spaces/nomic-ai/yahma_alpaca-cleaned/index.html deleted file mode 100644 index da700c1eaa7d76c7d51a3d87961e3ba81e18f811..0000000000000000000000000000000000000000 --- a/spaces/nomic-ai/yahma_alpaca-cleaned/index.html +++ /dev/null @@ -1,42 +0,0 @@ - - - - yahma/alpaca-cleaned - - - - -
          - -
          - - - \ No newline at end of file diff --git a/spaces/ntt123/WaveGRU-Text-To-Speech/sparse_matmul/compute/ar_inputs.h b/spaces/ntt123/WaveGRU-Text-To-Speech/sparse_matmul/compute/ar_inputs.h deleted file mode 100644 index d10e2d9635f11636edc0a7b647bae5876b3656c5..0000000000000000000000000000000000000000 --- a/spaces/ntt123/WaveGRU-Text-To-Speech/sparse_matmul/compute/ar_inputs.h +++ /dev/null @@ -1,37 +0,0 @@ -/* - * Copyright 2021 Google LLC - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#ifndef LYRA_CODEC_SPARSE_MATMUL_COMPUTE_AR_INPUTS_H_ -#define LYRA_CODEC_SPARSE_MATMUL_COMPUTE_AR_INPUTS_H_ - -namespace csrblocksparse { - -// Possible numbers of Autoregressive inputs. -// TODO(b/188702959): Generalize to any non-negative integer value? -enum class ARInputsMode { - // There are no autoregressive inputs. Inputs to the GRU gates are strictly - // from the gate-recurrent matmul and other unrelated inputs. - k0ARInputs, - // Two autoregressive inputs, such as coarse and fine for WaveRNN. - k2ARInputs, - // Three autoregressive inputs, such as prev coarse and fine plus current - // coarse for WaveRNN. - k3ARInputs, -}; - -} // namespace csrblocksparse - -#endif // LYRA_CODEC_SPARSE_MATMUL_COMPUTE_AR_INPUTS_H_ diff --git a/spaces/ofikodar/chatgpt-resume-builder/src/chatbot/prompts.py b/spaces/ofikodar/chatgpt-resume-builder/src/chatbot/prompts.py deleted file mode 100644 index b74fdbe54ae51ce4f1fc3d35897e2e2c43cb5aba..0000000000000000000000000000000000000000 --- a/spaces/ofikodar/chatgpt-resume-builder/src/chatbot/prompts.py +++ /dev/null @@ -1,33 +0,0 @@ -prompt_placeholder = '[$$$]' - -data_format = {'name': '', 'title': '', - 'contactInfo': {'linkedin': '', 'github': '', 'email': '', 'address': '', 'phone': ''}, 'summary': '', - 'workExperience': [{'title': '', 'company': '', 'dates': '', 'description': ''}, ], - 'education': [{'degree': '', 'school': '', 'dates': '', 'description': ''}, ], 'skills': ['', ]} - -recruiter_prompt = 'You are a professional resume builder and a recruiter.\n' -command_prompt = 'Re-write the input as professionally as possible, adding vital, valuable information and skills.\n' \ - 'Enhance the input to showcase the relevant education, experience, and skills in a professional manner to effectively demonstrate value to potential employers.\n' \ - f'Do it for every value in your output {str(list(data_format))}. ' -user_request_prompt = f'{prompt_placeholder}' - -output_commands_prompts = dict() -output_commands_prompts[ - 'all'] = f'Return the output as dictionary in the next format {str(data_format)}. Return only the keys: {str(list(data_format))}.' -output_commands_prompts['section'] = f'Return the output as string.' - -input_prompt = f'Input: {prompt_placeholder}' - - -def get_prompt(input_data, user_request='', output_type='all'): - input_data = str(input_data) - valid_output_types = list(output_commands_prompts) - assert str(output_type) in valid_output_types, f"Not valid output type, try {valid_output_types}" - - if user_request: - user_request += '\n' - - template = '\n'.join( - [recruiter_prompt, command_prompt, user_request_prompt.replace(prompt_placeholder, user_request), - input_prompt.replace(prompt_placeholder, input_data), output_commands_prompts[output_type], command_prompt]) - return template diff --git a/spaces/omarelsayeed/SentenceSimilarity-Quran-v2/README.md b/spaces/omarelsayeed/SentenceSimilarity-Quran-v2/README.md deleted file mode 100644 index d16b89e99c3cc5198c0c1510927a1cb472d50582..0000000000000000000000000000000000000000 --- a/spaces/omarelsayeed/SentenceSimilarity-Quran-v2/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: SentenceSimilarity Quran V2 -emoji: 😻 -colorFrom: purple -colorTo: pink -sdk: gradio -sdk_version: 3.7 -app_file: app.py -pinned: false -license: creativeml-openrail-m ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/onnx/GPT-2/app.py b/spaces/onnx/GPT-2/app.py deleted file mode 100644 index 73a50cbfde8f433d24005c3d44f104f9cb7ddb9c..0000000000000000000000000000000000000000 --- a/spaces/onnx/GPT-2/app.py +++ /dev/null @@ -1,9 +0,0 @@ -import gradio as gr - -title="GPT-2" - -description="Gradio demo for GPT-2" - -examples=[["My name is Julien and I like to"]] - -gr.Interface.load("huggingface/gpt2",title=title,description=description,examples=examples).launch(enable_queue=True,cache_examples=True) \ No newline at end of file diff --git a/spaces/pablodawson/ldm3d-inpainting/diffuserslocal/docs/source/en/api/image_processor.md b/spaces/pablodawson/ldm3d-inpainting/diffuserslocal/docs/source/en/api/image_processor.md deleted file mode 100644 index 7fc66f5ee68e86ff4687670a8c54462e9c930103..0000000000000000000000000000000000000000 --- a/spaces/pablodawson/ldm3d-inpainting/diffuserslocal/docs/source/en/api/image_processor.md +++ /dev/null @@ -1,27 +0,0 @@ - - -# VAE Image Processor - -The [`VaeImageProcessor`] provides a unified API for [`StableDiffusionPipeline`]'s to prepare image inputs for VAE encoding and post-processing outputs once they're decoded. This includes transformations such as resizing, normalization, and conversion between PIL Image, PyTorch, and NumPy arrays. - -All pipelines with [`VaeImageProcessor`] accepts PIL Image, PyTorch tensor, or NumPy arrays as image inputs and returns outputs based on the `output_type` argument by the user. You can pass encoded image latents directly to the pipeline and return latents from the pipeline as a specific output with the `output_type` argument (for example `output_type="pt"`). This allows you to take the generated latents from one pipeline and pass it to another pipeline as input without leaving the latent space. It also makes it much easier to use multiple pipelines together by passing PyTorch tensors directly between different pipelines. - -## VaeImageProcessor - -[[autodoc]] image_processor.VaeImageProcessor - -## VaeImageProcessorLDM3D - -The [`VaeImageProcessorLDM3D`] accepts RGB and depth inputs and returns RGB and depth outputs. - -[[autodoc]] image_processor.VaeImageProcessorLDM3D \ No newline at end of file diff --git a/spaces/pablodawson/ldm3d-inpainting/diffuserslocal/docs/source/en/api/schedulers/score_sde_ve.md b/spaces/pablodawson/ldm3d-inpainting/diffuserslocal/docs/source/en/api/schedulers/score_sde_ve.md deleted file mode 100644 index 84e077316dc07c1153548e3710f75f296b5c2172..0000000000000000000000000000000000000000 --- a/spaces/pablodawson/ldm3d-inpainting/diffuserslocal/docs/source/en/api/schedulers/score_sde_ve.md +++ /dev/null @@ -1,25 +0,0 @@ - - -# ScoreSdeVeScheduler - -`ScoreSdeVeScheduler` is a variance exploding stochastic differential equation (SDE) scheduler. It was introduced in the [Score-Based Generative Modeling through Stochastic Differential Equations](https://huggingface.co/papers/2011.13456) paper by Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, Ben Poole. - -The abstract from the paper is: - -*Creating noise from data is easy; creating data from noise is generative modeling. We present a stochastic differential equation (SDE) that smoothly transforms a complex data distribution to a known prior distribution by slowly injecting noise, and a corresponding reverse-time SDE that transforms the prior distribution back into the data distribution by slowly removing the noise. Crucially, the reverse-time SDE depends only on the time-dependent gradient field (\aka, score) of the perturbed data distribution. By leveraging advances in score-based generative modeling, we can accurately estimate these scores with neural networks, and use numerical SDE solvers to generate samples. We show that this framework encapsulates previous approaches in score-based generative modeling and diffusion probabilistic modeling, allowing for new sampling procedures and new modeling capabilities. In particular, we introduce a predictor-corrector framework to correct errors in the evolution of the discretized reverse-time SDE. We also derive an equivalent neural ODE that samples from the same distribution as the SDE, but additionally enables exact likelihood computation, and improved sampling efficiency. In addition, we provide a new way to solve inverse problems with score-based models, as demonstrated with experiments on class-conditional generation, image inpainting, and colorization. Combined with multiple architectural improvements, we achieve record-breaking performance for unconditional image generation on CIFAR-10 with an Inception score of 9.89 and FID of 2.20, a competitive likelihood of 2.99 bits/dim, and demonstrate high fidelity generation of 1024 x 1024 images for the first time from a score-based generative model*. - -## ScoreSdeVeScheduler -[[autodoc]] ScoreSdeVeScheduler - -## SdeVeOutput -[[autodoc]] schedulers.scheduling_sde_ve.SdeVeOutput \ No newline at end of file diff --git a/spaces/parkyzh/bingo/src/components/ui/select.tsx b/spaces/parkyzh/bingo/src/components/ui/select.tsx deleted file mode 100644 index 77f12c2996f541b97663de4c9e20ab34d4ec2fac..0000000000000000000000000000000000000000 --- a/spaces/parkyzh/bingo/src/components/ui/select.tsx +++ /dev/null @@ -1,123 +0,0 @@ -'use client' - -import * as React from 'react' -import * as SelectPrimitive from '@radix-ui/react-select' - -import { cn } from '@/lib/utils' -import { - IconArrowDown, - IconCheck, - IconChevronUpDown -} from '@/components/ui/icons' - -const Select = SelectPrimitive.Root - -const SelectGroup = SelectPrimitive.Group - -const SelectValue = SelectPrimitive.Value - -const SelectTrigger = React.forwardRef< - React.ElementRef, - React.ComponentPropsWithoutRef ->(({ className, children, ...props }, ref) => ( - - {children} - - - - -)) -SelectTrigger.displayName = SelectPrimitive.Trigger.displayName - -const SelectContent = React.forwardRef< - React.ElementRef, - React.ComponentPropsWithoutRef ->(({ className, children, position = 'popper', ...props }, ref) => ( - - - - {children} - - - -)) -SelectContent.displayName = SelectPrimitive.Content.displayName - -const SelectLabel = React.forwardRef< - React.ElementRef, - React.ComponentPropsWithoutRef ->(({ className, ...props }, ref) => ( - -)) -SelectLabel.displayName = SelectPrimitive.Label.displayName - -const SelectItem = React.forwardRef< - React.ElementRef, - React.ComponentPropsWithoutRef ->(({ className, children, ...props }, ref) => ( - - - - - - - {children} - -)) -SelectItem.displayName = SelectPrimitive.Item.displayName - -const SelectSeparator = React.forwardRef< - React.ElementRef, - React.ComponentPropsWithoutRef ->(({ className, ...props }, ref) => ( - -)) -SelectSeparator.displayName = SelectPrimitive.Separator.displayName - -export { - Select, - SelectGroup, - SelectValue, - SelectTrigger, - SelectContent, - SelectLabel, - SelectItem, - SelectSeparator -} diff --git a/spaces/patgpt4/MusicGen/audiocraft/utils/utils.py b/spaces/patgpt4/MusicGen/audiocraft/utils/utils.py deleted file mode 100644 index 86e1448d065fa182ca69aae00d2f2a7eea55d8a4..0000000000000000000000000000000000000000 --- a/spaces/patgpt4/MusicGen/audiocraft/utils/utils.py +++ /dev/null @@ -1,234 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from concurrent.futures import ProcessPoolExecutor -from functools import wraps -import hashlib -import logging -import typing as tp - -import flashy -import flashy.distrib -import omegaconf -import torch -from torch.nn.utils.rnn import pad_sequence - - -logger = logging.getLogger(__name__) - - -def dict_from_config(cfg: omegaconf.DictConfig) -> dict: - """Convenience function to map an omegaconf configuration to a dictionary. - - Args: - cfg (omegaconf.DictConfig): Original configuration to map to dict. - Returns: - dict: Config as dictionary object. - """ - dct = omegaconf.OmegaConf.to_container(cfg, resolve=True) - assert isinstance(dct, dict) - return dct - - -def random_subset(dataset, max_samples: int, seed: int = 42) -> torch.utils.data.Subset: - if max_samples >= len(dataset): - return dataset - - generator = torch.Generator().manual_seed(seed) - perm = torch.randperm(len(dataset), generator=generator) - return torch.utils.data.Subset(dataset, perm[:max_samples].tolist()) - - -def get_loader(dataset, num_samples: tp.Optional[int], batch_size: int, - num_workers: int, seed: int, **kwargs) -> torch.utils.data.DataLoader: - """Convenience function to load dataset into a dataloader with optional subset sampling. - - Args: - dataset: Dataset to load. - num_samples (Optional[int]): Number of samples to limit subset size. - batch_size (int): Batch size. - num_workers (int): Number of workers for data loading. - seed (int): Random seed. - """ - if num_samples is not None: - dataset = random_subset(dataset, num_samples, seed) - - dataloader = flashy.distrib.loader( - dataset, - batch_size=batch_size, - num_workers=num_workers, - **kwargs - ) - return dataloader - - -def get_dataset_from_loader(dataloader): - dataset = dataloader.dataset - if isinstance(dataset, torch.utils.data.Subset): - return dataset.dataset - else: - return dataset - - -def multinomial(input: torch.Tensor, num_samples: int, replacement=False, *, generator=None): - """torch.multinomial with arbitrary number of dimensions, and number of candidates on the last dimension. - - Args: - input (torch.Tensor): The input tensor containing probabilities. - num_samples (int): Number of samples to draw. - replacement (bool): Whether to draw with replacement or not. - Keywords args: - generator (torch.Generator): A pseudorandom number generator for sampling. - Returns: - torch.Tensor: Last dimension contains num_samples indices - sampled from the multinomial probability distribution - located in the last dimension of tensor input. - """ - input_ = input.reshape(-1, input.shape[-1]) - output_ = torch.multinomial(input_, num_samples=num_samples, replacement=replacement, generator=generator) - output = output_.reshape(*list(input.shape[:-1]), -1) - return output - - -def sample_top_k(probs: torch.Tensor, k: int) -> torch.Tensor: - """Sample next token from top K values along the last dimension of the input probs tensor. - - Args: - probs (torch.Tensor): Input probabilities with token candidates on the last dimension. - k (int): The k in ā€œtop-kā€. - Returns: - torch.Tensor: Sampled tokens. - """ - top_k_value, _ = torch.topk(probs, k, dim=-1) - min_value_top_k = top_k_value[..., [-1]] - probs *= (probs >= min_value_top_k).float() - probs.div_(probs.sum(dim=-1, keepdim=True)) - next_token = multinomial(probs, num_samples=1) - return next_token - - -def sample_top_p(probs: torch.Tensor, p: float) -> torch.Tensor: - """Sample next token from top P probabilities along the last dimension of the input probs tensor. - - Args: - probs (torch.Tensor): Input probabilities with token candidates on the last dimension. - p (int): The p in ā€œtop-pā€. - Returns: - torch.Tensor: Sampled tokens. - """ - probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) - probs_sum = torch.cumsum(probs_sort, dim=-1) - mask = probs_sum - probs_sort > p - probs_sort *= (~mask).float() - probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) - next_token = multinomial(probs_sort, num_samples=1) - next_token = torch.gather(probs_idx, -1, next_token) - return next_token - - -class DummyPoolExecutor: - """Dummy pool executor to use when we actually have only 1 worker. - (e.g. instead of ProcessPoolExecutor). - """ - class DummyResult: - def __init__(self, func, *args, **kwargs): - self.func = func - self.args = args - self.kwargs = kwargs - - def result(self): - return self.func(*self.args, **self.kwargs) - - def __init__(self, workers, mp_context=None): - pass - - def submit(self, func, *args, **kwargs): - return DummyPoolExecutor.DummyResult(func, *args, **kwargs) - - def __enter__(self): - return self - - def __exit__(self, exc_type, exc_value, exc_tb): - return - - -def get_pool_executor(num_workers: int, mp_context=None): - return ProcessPoolExecutor(num_workers, mp_context) if num_workers > 1 else DummyPoolExecutor(1) - - -def length_to_mask(lengths: torch.Tensor, max_len: tp.Optional[int] = None) -> torch.Tensor: - """Utility function to convert a tensor of sequence lengths to a mask (useful when working on padded sequences). - For example: [3, 5] => [[1, 1, 1, 0, 0], [1, 1, 1, 1, 1]] - - Args: - lengths (torch.Tensor): tensor with lengths - max_len (int): can set the max length manually. Defaults to None. - Returns: - torch.Tensor: mask with 0s where there is pad tokens else 1s - """ - assert len(lengths.shape) == 1, "Length shape should be 1 dimensional." - final_length = lengths.max().item() if not max_len else max_len - final_length = max(final_length, 1) # if all seqs are of len zero we don't want a zero-size tensor - return torch.arange(final_length)[None, :].to(lengths.device) < lengths[:, None] - - -def hash_trick(word: str, vocab_size: int) -> int: - """Hash trick to pair each word with an index - - Args: - word (str): word we wish to convert to an index - vocab_size (int): size of the vocabulary - Returns: - int: index of the word in the embedding LUT - """ - hash = int(hashlib.sha256(word.encode("utf-8")).hexdigest(), 16) - return hash % vocab_size - - -def with_rank_rng(base_seed: int = 1234): - """Decorator for a function so that the function will use a Random Number Generator - whose state depend on the GPU rank. The original RNG state is restored upon returning. - - Args: - base_seed (int): Random seed. - """ - def _decorator(fun: tp.Callable): - @wraps(fun) - def _decorated(*args, **kwargs): - state = torch.get_rng_state() - seed = base_seed ^ flashy.distrib.rank() - torch.manual_seed(seed) - logger.debug('Rank dependent seed set to %d', seed) - try: - return fun(*args, **kwargs) - finally: - torch.set_rng_state(state) - logger.debug('RNG state restored.') - return _decorated - return _decorator - - -def collate(tensors: tp.List[torch.Tensor], dim: int = 0) -> tp.Tuple[torch.Tensor, torch.Tensor]: - """Get a list of tensors and collate them to a single tensor. according to the following logic: - - `dim` specifies the time dimension which will be stacked and padded. - - The output will contain 1 new dimension (dimension index 0) which will be the size of - of the original list. - - Args: - tensors (tp.List[torch.Tensor]): List of tensors to collate. - dim (int): Dimension which will be stacked and padded. - Returns: - tp.Tuple[torch.Tensor, torch.Tensor]: - torch.Tensor: Stacked and padded tensor. The output will contain 1 new dimension - (dimension index 0) which will be the size of the original list. - torch.Tensor: Tensor containing length of original tensor sizes (without padding). - """ - tensors = [x.transpose(0, dim) for x in tensors] - lens = torch.LongTensor([len(x) for x in tensors]) - padded_tensors = pad_sequence(tensors) - padded_tensors = padded_tensors.transpose(0, 1) - padded_tensors = padded_tensors.transpose(1, dim + 1) - return padded_tensors, lens diff --git a/spaces/paulengstler/interpretable-vertebral-fracture-diagnosis/netdissect/runningstats.py b/spaces/paulengstler/interpretable-vertebral-fracture-diagnosis/netdissect/runningstats.py deleted file mode 100644 index c3499118442a007727cbf5d9ed835e2dbd992634..0000000000000000000000000000000000000000 --- a/spaces/paulengstler/interpretable-vertebral-fracture-diagnosis/netdissect/runningstats.py +++ /dev/null @@ -1,1240 +0,0 @@ -''' -Running statistics on the GPU using pytorch. - -RunningTopK maintains top-k statistics for a set of channels in parallel. -RunningQuantile maintains (sampled) quantile statistics for a set of channels. -''' - -import torch, math, numpy -from collections import defaultdict - -class RunningTopK: - ''' - A class to keep a running tally of the the top k values (and indexes) - of any number of torch feature components. Will work on the GPU if - the data is on the GPU. - - This version flattens all arrays to avoid crashes. - ''' - def __init__(self, k=100, state=None): - if state is not None: - self.set_state_dict(state) - return - self.k = k - self.count = 0 - # This version flattens all data internally to 2-d tensors, - # to avoid crashes with the current pytorch topk implementation. - # The data is puffed back out to arbitrary tensor shapes on ouput. - self.data_shape = None - self.top_data = None - self.top_index = None - self.next = 0 - self.linear_index = 0 - self.perm = None - - def add(self, data, index=None): - ''' - Adds a batch of data to be considered for the running top k. - The zeroth dimension enumerates the observations. All other - dimensions enumerate different features. - ''' - if self.top_data is None: - # Allocation: allocate a buffer of size 5*k, at least 10, for each. - self.data_shape = data.shape[1:] - feature_size = int(numpy.prod(self.data_shape)) - self.top_data = torch.zeros( - feature_size, max(10, self.k * 5), out=data.new()) - self.top_index = self.top_data.clone().long() - self.linear_index = 0 if len(data.shape) == 1 else torch.arange( - feature_size, out=self.top_index.new()).mul_( - self.top_data.shape[-1])[:,None] - size = data.shape[0] - sk = min(size, self.k) - if self.top_data.shape[-1] < self.next + sk: - # Compression: if full, keep topk only. - self.top_data[:,:self.k], self.top_index[:,:self.k] = ( - self.result(sorted=False, flat=True)) - self.next = self.k - free = self.top_data.shape[-1] - self.next - # Pick: copy the top sk of the next batch into the buffer. - # Currently strided topk is slow. So we clone after transpose. - # TODO: remove the clone() if it becomes faster. - cdata = data.contiguous().view(size, -1).t().clone() - td, ti = cdata.topk(sk, sorted=False) - self.top_data[:,self.next:self.next+sk] = td - if index is not None: - ti = index[ti] - else: - ti = ti + self.count - self.top_index[:,self.next:self.next+sk] = ti - self.next += sk - self.count += size - - def size(self): - return self.count - - def result(self, sorted=True, flat=False): - ''' - Returns top k data items and indexes in each dimension, - with channels in the first dimension and k in the last dimension. - ''' - k = min(self.k, self.next) - # bti are top indexes relative to buffer array. - td, bti = self.top_data[:,:self.next].topk(k, sorted=sorted) - # we want to report top indexes globally, which is ti. - ti = self.top_index.view(-1)[ - (bti + self.linear_index).view(-1) - ].view(*bti.shape) - if flat: - return td, ti - else: - return (td.view(*(self.data_shape + (-1,))), - ti.view(*(self.data_shape + (-1,)))) - - def to_(self, device): - self.top_data = self.top_data.to(device) - self.top_index = self.top_index.to(device) - if isinstance(self.linear_index, torch.Tensor): - self.linear_index = self.linear_index.to(device) - - def state_dict(self): - return dict( - constructor=self.__module__ + '.' + - self.__class__.__name__ + '()', - k=self.k, - count=self.count, - data_shape=tuple(self.data_shape), - top_data=self.top_data.cpu().numpy(), - top_index=self.top_index.cpu().numpy(), - next=self.next, - linear_index=(self.linear_index.cpu().numpy() - if isinstance(self.linear_index, torch.Tensor) - else self.linear_index), - perm=self.perm) - - def set_state_dict(self, dic): - self.k = dic['k'].item() - self.count = dic['count'].item() - self.data_shape = tuple(dic['data_shape']) - self.top_data = torch.from_numpy(dic['top_data']) - self.top_index = torch.from_numpy(dic['top_index']) - self.next = dic['next'].item() - self.linear_index = (torch.from_numpy(dic['linear_index']) - if len(dic['linear_index'].shape) > 0 - else dic['linear_index'].item()) - -class RunningConditionalTopK: - def __init__(self, k=None, state=None): - self.running_topk = {} - if state is not None: - self.set_state_dict(state) - return - self.k = k - self.count = 0 - - def add(self, condition, data, index): - if condition not in self.running_topk: - self.running_topk[condition] = RunningTopK() - rv = self.running_topk[condition] - rv.add(data, index) - self.count += len(data) - - def keys(self): - return self.running_topk.keys() - - def conditional(self, c): - return self.running_topk[c] - - def has_conditional(self, c): - return c in self.running_topk - - def to_(self, device, conditions=None): - if conditions is None: - conditions = self.keys() - for cond in conditions: - if cond in self.running_topk: - self.running_topk[cond].to_(device) - - def state_dict(self): - conditions = sorted(self.running_topk.keys()) - result = dict( - constructor=self.__module__ + '.' + - self.__class__.__name__ + '()', - conditions=conditions) - for i, c in enumerate(conditions): - result.update({ - '%d.%s' % (i, k): v - for k, v in self.running_topk[c].state_dict().items()}) - return result - - def set_state_dict(self, dic): - conditions = list(dic['conditions']) - subdicts = defaultdict(dict) - for k, v in dic.items(): - if '.' in k: - p, s = k.split('.', 1) - subdicts[p][s] = v - self.running_topk = { - c: RunningTopK(state=subdicts[str(i)]) - for i, c in enumerate(conditions)} - -class GatherTensor: - """ - A tensor for gathering results, allocated and shaped on first insert. - Creaed by tally.gather_topk for gathering topk visualizations. - """ - def __init__(self, topk=None, data_shape=None, k=None, state=None): - if state is not None: - self.set_state_dict(state) - return - if k is None and topk is not None: - k = topk.k - if data_shape is None and topk is not None: - data_shape = topk.data_shape - assert k is not None - assert data_shape is not None - self.k = k - self.data_shape = data_shape - self._grid = None - self._queue = defaultdict(list) - - def add(self, index, rank, data): - if self._grid is None: - # Allocation: pick up data shape from add. - shape = self.data_shape - if isinstance(shape, int): - shape = (shape,) - shape = shape + (self.k,) + data.shape - self._grid = torch.zeros(shape, dtype=data.dtype) - self._queue[index].append((rank, data)) - if len(self._queue) > len(self._grid) // 2: - self._flush_queue() - - def _flush_queue(self): - if len(self._queue): - for index in sorted(self._queue.keys()): - for rank, data in self._queue[index]: - self._grid[index][rank] = data - self._queue.clear() - - def to_(self, device): - self._flush_queue() - if self._grid is not None: - self._grid = self._grid.to(device) - - def state_dict(self): - self._flush_queue() - return dict( - constructor=self.__module__ + '.' + - self.__class__.__name__ + '()', - k=self.k, - data_shape=tuple(self.data_shape), - grid=self._grid.cpu().numpy()) - - def result(self): - self._flush_queue() - return self._grid - - def set_state_dict(self, dic): - self.k = dic['k'].item() - self.data_shape = tuple(dic['data_shape']) - self._grid = torch.from_numpy(dic['grid']) - self._queue = defaultdict(list) - -class RunningQuantile: - """ - Streaming randomized quantile computation for torch. - - Add any amount of data repeatedly via add(data). At any time, - quantile estimates (or old-style percentiles) can be read out using - quantiles(q) or percentiles(p). - - Implemented as a sorted sample that retains at least r samples - (by default r = 3072); the number of retained samples will grow to - a finite ceiling as the data is accumulated. Accuracy scales according - to r: the default is to set resolution to be accurate to better than about - 0.1%, while limiting storage to about 50,000 samples. - - Good for computing quantiles of huge data without using much memory. - Works well on arbitrary data with probability near 1. - - Based on the optimal KLL quantile algorithm by Karnin, Lang, and Liberty - from FOCS 2016. http://ieee-focs.org/FOCS-2016-Papers/3933a071.pdf - """ - - def __init__(self, r=3 * 1024, buffersize=None, seed=None, - state=None): - if state is not None: - self.set_state_dict(state) - return - self.depth = None - self.dtype = None - self.device = None - resolution = r * 2 # sample array is at least half full before discard - self.resolution = resolution - # Default buffersize: 128 samples (and smaller than resolution). - if buffersize is None: - buffersize = min(128, (resolution + 7) // 8) - self.buffersize = buffersize - self.samplerate = 1.0 - self.data = None - self.firstfree = [0] - self.randbits = torch.ByteTensor(resolution) - self.currentbit = len(self.randbits) - 1 - self.extremes = None - self.count = 0 - self.batchcount = 0 - - def size(self): - return self.count - - def _lazy_init(self, incoming): - self.depth = incoming.shape[1] - self.dtype = incoming.dtype - self.device = incoming.device - self.data = [torch.zeros(self.depth, self.resolution, - dtype=self.dtype, device=self.device)] - self.extremes = torch.zeros(self.depth, 2, - dtype=self.dtype, device=self.device) - self.extremes[:,0] = float('inf') - self.extremes[:,-1] = -float('inf') - - def to_(self, device): - """Switches internal storage to specified device.""" - if device != self.device: - old_data = self.data - old_extremes = self.extremes - self.data = [d.to(device) for d in self.data] - self.extremes = self.extremes.to(device) - self.device = self.extremes.device - del old_data - del old_extremes - - def add(self, incoming): - if self.depth is None: - self._lazy_init(incoming) - assert len(incoming.shape) == 2 - assert incoming.shape[1] == self.depth, (incoming.shape[1], self.depth) - self.count += incoming.shape[0] - self.batchcount += 1 - # Convert to a flat torch array. - if self.samplerate >= 1.0: - self._add_every(incoming) - return - # If we are sampling, then subsample a large chunk at a time. - self._scan_extremes(incoming) - chunksize = int(math.ceil(self.buffersize / self.samplerate)) - for index in range(0, len(incoming), chunksize): - batch = incoming[index:index+chunksize] - sample = sample_portion(batch, self.samplerate) - if len(sample): - self._add_every(sample) - - def _add_every(self, incoming): - supplied = len(incoming) - index = 0 - while index < supplied: - ff = self.firstfree[0] - available = self.data[0].shape[1] - ff - if available == 0: - if not self._shift(): - # If we shifted by subsampling, then subsample. - incoming = incoming[index:] - if self.samplerate >= 0.5: - # First time sampling - the data source is very large. - self._scan_extremes(incoming) - incoming = sample_portion(incoming, self.samplerate) - index = 0 - supplied = len(incoming) - ff = self.firstfree[0] - available = self.data[0].shape[1] - ff - copycount = min(available, supplied - index) - self.data[0][:,ff:ff + copycount] = torch.t( - incoming[index:index + copycount,:]) - self.firstfree[0] += copycount - index += copycount - - def _shift(self): - index = 0 - # If remaining space at the current layer is less than half prev - # buffer size (rounding up), then we need to shift it up to ensure - # enough space for future shifting. - while self.data[index].shape[1] - self.firstfree[index] < ( - -(-self.data[index-1].shape[1] // 2) if index else 1): - if index + 1 >= len(self.data): - return self._expand() - data = self.data[index][:,0:self.firstfree[index]] - data = data.sort()[0] - if index == 0 and self.samplerate >= 1.0: - self._update_extremes(data[:,0], data[:,-1]) - offset = self._randbit() - position = self.firstfree[index + 1] - subset = data[:,offset::2] - self.data[index + 1][:,position:position + subset.shape[1]] = subset - self.firstfree[index] = 0 - self.firstfree[index + 1] += subset.shape[1] - index += 1 - return True - - def _scan_extremes(self, incoming): - # When sampling, we need to scan every item still to get extremes - self._update_extremes( - torch.min(incoming, dim=0)[0], - torch.max(incoming, dim=0)[0]) - - def _update_extremes(self, minr, maxr): - self.extremes[:,0] = torch.min( - torch.stack([self.extremes[:,0], minr]), dim=0)[0] - self.extremes[:,-1] = torch.max( - torch.stack([self.extremes[:,-1], maxr]), dim=0)[0] - - def _randbit(self): - self.currentbit += 1 - if self.currentbit >= len(self.randbits): - self.randbits.random_(to=2) - self.currentbit = 0 - return self.randbits[self.currentbit] - - def state_dict(self): - return dict( - constructor=self.__module__ + '.' + - self.__class__.__name__ + '()', - resolution=self.resolution, - depth=self.depth, - buffersize=self.buffersize, - samplerate=self.samplerate, - data=[d.cpu().numpy()[:,:f].T - for d, f in zip(self.data, self.firstfree)], - sizes=[d.shape[1] for d in self.data], - extremes=self.extremes.cpu().numpy(), - size=self.count, - batchcount=self.batchcount) - - def set_state_dict(self, dic): - self.resolution = int(dic['resolution']) - self.randbits = torch.ByteTensor(self.resolution) - self.currentbit = len(self.randbits) - 1 - self.depth = int(dic['depth']) - self.buffersize = int(dic['buffersize']) - self.samplerate = float(dic['samplerate']) - firstfree = [] - buffers = [] - for d, s in zip(dic['data'], dic['sizes']): - firstfree.append(d.shape[0]) - buf = numpy.zeros((d.shape[1], s), dtype=d.dtype) - buf[:,:d.shape[0]] = d.T - buffers.append(torch.from_numpy(buf)) - self.firstfree = firstfree - self.data = buffers - self.extremes = torch.from_numpy((dic['extremes'])) - self.count = int(dic['size']) - self.batchcount = int(dic.get('batchcount', 0)) - self.dtype = self.extremes.dtype - self.device = self.extremes.device - - def minmax(self): - if self.firstfree[0]: - self._scan_extremes(self.data[0][:,:self.firstfree[0]].t()) - return self.extremes.clone() - - def median(self): - return self.quantiles([0.5])[:,0] - - def mean(self): - return self.integrate(lambda x: x) / self.count - - def variance(self): - mean = self.mean()[:,None] - return self.integrate(lambda x: (x - mean).pow(2)) / (self.count - 1) - - def stdev(self): - return self.variance().sqrt() - - def _expand(self): - cap = self._next_capacity() - if cap > 0: - # First, make a new layer of the proper capacity. - self.data.insert(0, torch.zeros(self.depth, cap, - dtype=self.dtype, device=self.device)) - self.firstfree.insert(0, 0) - else: - # Unless we're so big we are just subsampling. - assert self.firstfree[0] == 0 - self.samplerate *= 0.5 - for index in range(1, len(self.data)): - # Scan for existing data that needs to be moved down a level. - amount = self.firstfree[index] - if amount == 0: - continue - position = self.firstfree[index-1] - # Move data down if it would leave enough empty space there - # This is the key invariant: enough empty space to fit half - # of the previous level's buffer size (rounding up) - if self.data[index-1].shape[1] - (amount + position) >= ( - -(-self.data[index-2].shape[1] // 2) if (index-1) else 1): - self.data[index-1][:,position:position + amount] = ( - self.data[index][:,:amount]) - self.firstfree[index-1] += amount - self.firstfree[index] = 0 - else: - # Scrunch the data if it would not. - data = self.data[index][:,:amount] - data = data.sort()[0] - if index == 1: - self._update_extremes(data[:,0], data[:,-1]) - offset = self._randbit() - scrunched = data[:,offset::2] - self.data[index][:,:scrunched.shape[1]] = scrunched - self.firstfree[index] = scrunched.shape[1] - return cap > 0 - - def _next_capacity(self): - cap = int(math.ceil(self.resolution * (0.67 ** len(self.data)))) - if cap < 2: - return 0 - # Round up to the nearest multiple of 8 for better GPU alignment. - cap = -8 * (-cap // 8) - return max(self.buffersize, cap) - - def _weighted_summary(self, sort=True): - if self.firstfree[0]: - self._scan_extremes(self.data[0][:,:self.firstfree[0]].t()) - size = sum(self.firstfree) - weights = torch.FloatTensor(size) # Floating point - summary = torch.zeros(self.depth, size, - dtype=self.dtype, device=self.device) - index = 0 - for level, ff in enumerate(self.firstfree): - if ff == 0: - continue - summary[:,index:index + ff] = self.data[level][:,:ff] - weights[index:index + ff] = 2.0 ** level - index += ff - assert index == summary.shape[1] - if sort: - summary, order = torch.sort(summary, dim=-1) - weights = weights[order.view(-1).cpu()].view(order.shape) - summary = torch.cat( - [self.extremes[:,:1], summary, - self.extremes[:,1:]], dim=-1) - weights = torch.cat( - [torch.zeros(weights.shape[0], 1), weights, - torch.zeros(weights.shape[0], 1)], dim=-1) - return (summary, weights) - - def quantiles(self, quantiles, old_style=False): - if not hasattr(quantiles, 'cpu'): - quantiles = torch.tensor(quantiles) - qshape = quantiles.shape - if self.count == 0: - return torch.full((self.depth,) + qshape, torch.nan) - summary, weights = self._weighted_summary() - cumweights = torch.cumsum(weights, dim=-1) - weights / 2 - if old_style: - # To be convenient with torch.percentile - cumweights -= cumweights[:,0:1].clone() - cumweights /= cumweights[:,-1:].clone() - else: - cumweights /= torch.sum(weights, dim=-1, keepdim=True) - result = torch.zeros(self.depth, quantiles.numel(), - dtype=self.dtype, device=self.device) - # numpy is needed for interpolation - nq = quantiles.view(-1).cpu().numpy() - ncw = cumweights.cpu().numpy() - nsm = summary.cpu().numpy() - for d in range(self.depth): - result[d] = torch.tensor(numpy.interp(nq, ncw[d], nsm[d]), - dtype=self.dtype, device=self.device) - return result.view((self.depth,) + qshape) - - def integrate(self, fun): - result = None - for level, ff in enumerate(self.firstfree): - if ff == 0: - continue - term = torch.sum( - fun(self.data[level][:,:ff]) * (2.0 ** level), - dim=-1) - if result is None: - result = term - else: - result += term - if result is not None: - result /= self.samplerate - return result - - def percentiles(self, percentiles): - return self.quantiles(percentiles, old_style=True) - - def readout(self, count=1001, old_style=True): - return self.quantiles( - torch.linspace(0.0, 1.0, count), old_style=old_style) - - def normalize(self, data): - ''' - Given input data as taken from the training distirbution, - normalizes every channel to reflect quantile values, - uniformly distributed, within [0, 1]. - ''' - assert self.count > 0 - assert data.shape[0] == self.depth - summary, weights = self._weighted_summary() - cumweights = torch.cumsum(weights, dim=-1) - weights / 2 - cumweights /= torch.sum(weights, dim=-1, keepdim=True) - result = torch.zeros_like(data).float() - # numpy is needed for interpolation - ndata = data.cpu().numpy().reshape((data.shape[0], -1)) - ncw = cumweights.cpu().numpy() - nsm = summary.cpu().numpy() - for d in range(self.depth): - normed = torch.tensor(numpy.interp(ndata[d], nsm[d], ncw[d]), - dtype=torch.float, device=data.device).clamp_(0.0, 1.0) - if len(data.shape) > 1: - normed = normed.view(*(data.shape[1:])) - result[d] = normed - return result - - -class RunningConditionalQuantile: - ''' - Equivalent to a map from conditions (any python hashable type) - to RunningQuantiles. The reason for the type is to allow limited - GPU memory to be exploited while counting quantile stats on many - different conditions, a few of which are common and which benefit - from GPU, but most of which are rare and would not all fit into - GPU RAM. - - To move a set of conditions to a device, use rcq.to_(device, conds). - Then in the future, move the tallied data to the device before - calling rcq.add, that is, rcq.add(cond, data.to(device)). - - To allow the caller to decide which conditions to allow to use GPU, - rcq.most_common_conditions(n) returns a list of the n most commonly - added conditions so far. - ''' - def __init__(self, r=3 * 1024, buffersize=None, seed=None, - state=None): - self.first_rq = None - self.call_stats = defaultdict(int) - self.running_quantiles = {} - if state is not None: - self.set_state_dict(state) - return - self.rq_args = dict(r=r, buffersize=buffersize, - seed=seed) - - def add(self, condition, incoming): - if condition not in self.running_quantiles: - self.running_quantiles[condition] = RunningQuantile(**self.rq_args) - if self.first_rq is None: - self.first_rq = self.running_quantiles[condition] - self.call_stats[condition] += 1 - rq = self.running_quantiles[condition] - # For performance reasons, the caller can move some conditions to - # the CPU if they are not among the most common conditions. - if rq.device is not None and (rq.device != incoming.device): - rq.to_(incoming.device) - self.running_quantiles[condition].add(incoming) - - def most_common_conditions(self, n): - return sorted(self.call_stats.keys(), - key=lambda c: -self.call_stats[c])[:n] - - def collected_add(self, conditions, incoming): - for c in conditions: - self.add(c, incoming) - - def keys(self): - return self.running_quantiles.keys() - - def sizes(self): - return {k: self.running_quantiles[k].size() for k in self.keys()} - - def conditional(self, c): - return self.running_quantiles[c] - - def has_conditional(self, c): - return c in self.running_quantiles - - def collected_quantiles(self, conditions, quantiles, old_style=False): - result = torch.zeros( - size=(len(conditions), self.first_rq.depth, len(quantiles)), - dtype=self.first_rq.dtype, - device=self.first_rq.device) - for i, c in enumerate(conditions): - if c in self.running_quantiles: - result[i] = self.running_quantiles[c].quantiles( - quantiles, old_style) - return result - - def collected_normalize(self, conditions, values): - result = torch.zeros( - size=(len(conditions), values.shape[0], values.shape[1]), - dtype=torch.float, - device=self.first_rq.device) - for i, c in enumerate(conditions): - if c in self.running_quantiles: - result[i] = self.running_quantiles[c].normalize(values) - return result - - def to_(self, device, conditions=None): - if conditions is None: - conditions = self.keys() - for cond in conditions: - if cond in self.running_quantiles: - self.running_quantiles[cond].to_(device) - - def state_dict(self): - conditions = sorted(self.running_quantiles.keys()) - result = dict( - constructor=self.__module__ + '.' + - self.__class__.__name__ + '()', - rq_args=self.rq_args, - conditions=conditions) - for i, c in enumerate(conditions): - result.update({ - '%d.%s' % (i, k): v - for k, v in self.running_quantiles[c].state_dict().items()}) - return result - - def set_state_dict(self, dic): - self.rq_args = dic['rq_args'].item() - conditions = list(dic['conditions']) - subdicts = defaultdict(dict) - for k, v in dic.items(): - if '.' in k: - p, s = k.split('.', 1) - subdicts[p][s] = v - self.running_quantiles = { - c: RunningQuantile(state=subdicts[str(i)]) - for i, c in enumerate(conditions)} - if conditions: - self.first_rq = self.running_quantiles[conditions[0]] - - # example usage: - # levels = rqc.conditional(()).quantiles(1 - fracs) - # denoms = 1 - rqc.collected_normalize(cats, levels) - # isects = 1 - rqc.collected_normalize(labels, levels) - # unions = fracs + denoms[cats] - isects - # iou = isects / unions - - -class RunningVariance: - ''' - Running computation of mean and variance. Use this when you just need - basic stats without covariance. - ''' - def __init__(self, state=None): - if state is not None: - self.set_state_dict(state) - return - self.count = 0 - self.batchcount = 0 - self._mean = None - self.v_cmom2 = None - - def add(self, a): - if len(a.shape) == 1: - a = a[None, :] - if len(a.shape) > 2: - a = (a.view(a.shape[0], a.shape[1], -1).permute(0, 2, 1) - .contiguous().view(-1, a.shape[1])) - batch_count = a.shape[0] - batch_mean = a.sum(0) / batch_count - centered = a - batch_mean - self.batchcount += 1 - # Initial batch. - if self._mean is None: - self.count = batch_count - self._mean = batch_mean - self.v_cmom2 = centered.pow(2).sum(0) - return - # Update a batch using Chan-style update for numerical stability. - oldcount = self.count - self.count += batch_count - new_frac = float(batch_count) / self.count - # Update the mean according to the batch deviation from the old mean. - delta = batch_mean.sub_(self._mean).mul_(new_frac) - self._mean.add_(delta) - # Update the variance using the batch deviation - self.v_cmom2.add_(centered.pow(2).sum(0)) - self.v_cmom2.add_(delta.pow_(2).mul_(new_frac * oldcount)) - - def size(self): - return self.count - - def mean(self): - return self._mean - - def variance(self): - return self.v_cmom2 / (self.count - 1) - - def stdev(self): - return self.variance().sqrt() - - def to_(self, device): - self._mean = self._mean.to(device) - self.v_cmom2 = self.v_cmom2.to(device) - - def state_dict(self): - return dict( - constructor=self.__module__ + '.' + - self.__class__.__name__ + '()', - count=self.count, - batchcount=self.batchcount, - mean=self._mean.cpu().numpy(), - cmom2=self.v_cmom2.cpu().numpy()) - - def set_state_dict(self, dic): - self.count = dic['count'].item() - self.batchcount = dic['batchcount'].item() - self._mean = torch.from_numpy(dic['mean']) - self.v_cmom2 = torch.from_numpy(dic['cmom2']) - - -class RunningConditionalVariance: - def __init__(self, state=None): - self.running_var = {} - if state is not None: - self.set_state_dict(state) - return - - def add(self, condition, incoming): - if condition not in self.running_var: - self.running_var[condition] = RunningVariance() - rv = self.running_var[condition] - rv.add(incoming) - - def collected_add(self, conditions, incoming): - for c in conditions: - self.add(c, incoming) - - def keys(self): - return self.running_var.keys() - - def conditional(self, c): - return self.running_var[c] - - def has_conditional(self, c): - return c in self.running_var - - def to_(self, device, conditions=None): - if conditions is None: - conditions = self.keys() - for cond in conditions: - if cond in self.running_var: - self.running_var[cond].to_(device) - - def state_dict(self): - conditions = sorted(self.running_var.keys()) - result = dict( - constructor=self.__module__ + '.' + - self.__class__.__name__ + '()', - conditions=conditions) - for i, c in enumerate(conditions): - result.update({ - '%d.%s' % (i, k): v - for k, v in self.running_var[c].state_dict().items()}) - return result - - def set_state_dict(self, dic): - conditions = list(dic['conditions']) - subdicts = defaultdict(dict) - for k, v in dic.items(): - if '.' in k: - p, s = k.split('.', 1) - subdicts[p][s] = v - self.running_var = { - c: RunningVariance(state=subdicts[str(i)]) - for i, c in enumerate(conditions)} - -class RunningCrossCovariance: - ''' - Running computation. Use this when an off-diagonal block of the - covariance matrix is needed (e.g., when the whole covariance matrix - does not fit in the GPU). - - Chan-style numerically stable update of mean and full covariance matrix. - Chan, Golub. LeVeque. 1983. http://www.jstor.org/stable/2683386 - ''' - def __init__(self, state=None): - if state is not None: - self.set_state_dict(state) - return - self.count = 0 - self._mean = None - self.cmom2 = None - self.v_cmom2 = None - - def add(self, a, b): - if len(a.shape) == 1: - a = a[None, :] - b = b[None, :] - assert(a.shape[0] == b.shape[0]) - if len(a.shape) > 2: - a, b = [d.view(d.shape[0], d.shape[1], -1).permute(0, 2, 1 - ).contiguous().view(-1, d.shape[1]) for d in [a, b]] - batch_count = a.shape[0] - batch_mean = [d.sum(0) / batch_count for d in [a, b]] - centered = [d - bm for d, bm in zip([a, b], batch_mean)] - # If more than 10 billion operations, divide into batches. - sub_batch = -(-(10 << 30) // (a.shape[1] * b.shape[1])) - # Initial batch. - if self._mean is None: - self.count = batch_count - self._mean = batch_mean - self.v_cmom2 = [c.pow(2).sum(0) for c in centered] - self.cmom2 = a.new(a.shape[1], b.shape[1]).zero_() - progress_addbmm(self.cmom2, centered[0][:,:,None], - centered[1][:,None,:], sub_batch) - return - # Update a batch using Chan-style update for numerical stability. - oldcount = self.count - self.count += batch_count - new_frac = float(batch_count) / self.count - # Update the mean according to the batch deviation from the old mean. - delta = [bm.sub_(m).mul_(new_frac) - for bm, m in zip(batch_mean, self._mean)] - for m, d in zip(self._mean, delta): - m.add_(d) - # Update the cross-covariance using the batch deviation - progress_addbmm(self.cmom2, centered[0][:,:,None], - centered[1][:,None,:], sub_batch) - self.cmom2.addmm_(alpha=new_frac * oldcount, - mat1=delta[0][:,None], mat2=delta[1][None,:]) - # Update the variance using the batch deviation - for c, vc2, d in zip(centered, self.v_cmom2, delta): - vc2.add_(c.pow(2).sum(0)) - vc2.add_(d.pow_(2).mul_(new_frac * oldcount)) - - def mean(self): - return self._mean - - def variance(self): - return [vc2 / (self.count - 1) for vc2 in self.v_cmom2] - - def stdev(self): - return [v.sqrt() for v in self.variance()] - - def covariance(self): - return self.cmom2 / (self.count - 1) - - def correlation(self): - covariance = self.covariance() - rstdev = [s.reciprocal() for s in self.stdev()] - cor = rstdev[0][:,None] * covariance * rstdev[1][None,:] - # Remove NaNs - cor[torch.isnan(cor)] = 0 - return cor - - def to_(self, device): - self._mean = [m.to(device) for m in self._mean] - self.v_cmom2 = [vcs.to(device) for vcs in self.v_cmom2] - self.cmom2 = self.cmom2.to(device) - - def state_dict(self): - return dict( - constructor=self.__module__ + '.' + - self.__class__.__name__ + '()', - count=self.count, - mean_a=self._mean[0].cpu().numpy(), - mean_b=self._mean[1].cpu().numpy(), - cmom2_a=self.v_cmom2[0].cpu().numpy(), - cmom2_b=self.v_cmom2[1].cpu().numpy(), - cmom2=self.cmom2.cpu().numpy()) - - def set_state_dict(self, dic): - self.count = dic['count'].item() - self._mean = [torch.from_numpy(dic[k]) for k in ['mean_a', 'mean_b']] - self.v_cmom2 = [torch.from_numpy(dic[k]) - for k in ['cmom2_a', 'cmom2_b']] - self.cmom2 = torch.from_numpy(dic['cmom2']) - -class RunningCovariance: - ''' - Running computation. Use this when the entire covariance matrix is needed, - and when the whole covariance matrix fits in the GPU. - - Chan-style numerically stable update of mean and full covariance matrix. - Chan, Golub. LeVeque. 1983. http://www.jstor.org/stable/2683386 - ''' - def __init__(self, state=None): - if state is not None: - self.set_state_dict(state) - return - self.count = 0 - self._mean = None - self.cmom2 = None - - def add(self, a): - if len(a.shape) == 1: - a = a[None, :] - batch_count = a.shape[0] - batch_mean = a.sum(0) / batch_count - centered = a - batch_mean - # If more than 10 billion operations, divide into batches. - sub_batch = -(-(10 << 30) // (a.shape[1] * a.shape[1])) - # Initial batch. - if self._mean is None: - self.count = batch_count - self._mean = batch_mean - self.cmom2 = a.new(a.shape[1], a.shape[1]).zero_() - progress_addbmm(self.cmom2, centered[:,:,None], centered[:,None,:], - sub_batch) - return - # Update a batch using Chan-style update for numerical stability. - oldcount = self.count - self.count += batch_count - new_frac = float(batch_count) / self.count - # Update the mean according to the batch deviation from the old mean. - delta = batch_mean.sub_(self._mean).mul_(new_frac) - self._mean.add_(delta) - # Update the variance using the batch deviation - progress_addbmm(self.cmom2, centered[:,:,None], centered[:,None,:], - sub_batch) - self.cmom2.addmm_( - alpha=new_frac * oldcount, mat1=delta[:,None], mat2=delta[None,:]) - - def cpu_(self): - self._mean = self._mean.cpu() - self.cmom2 = self.cmom2.cpu() - - def cuda_(self): - self._mean = self._mean.cuda() - self.cmom2 = self.cmom2.cuda() - - def to_(self, device): - self._mean, self.cmom2 = [m.to(device) - for m in [self._mean, self.cmom2]] - - def mean(self): - return self._mean - - def covariance(self): - return self.cmom2 / self.count - - def correlation(self): - covariance = self.covariance() - rstdev = covariance.diag().sqrt().reciprocal() - return rstdev[:,None] * covariance * rstdev[None,:] - - def variance(self): - return self.covariance().diag() - - def stdev(self): - return self.variance().sqrt() - - def state_dict(self): - return dict( - constructor=self.__module__ + '.' + - self.__class__.__name__ + '()', - count=self.count, - mean=self._mean.cpu().numpy(), - cmom2=self.cmom2.cpu().numpy()) - - def set_state_dict(self, dic): - self.count = dic['count'].item() - self._mean = torch.from_numpy(dic['mean']) - self.cmom2 = torch.from_numpy(dic['cmom2']) - -class RunningSecondMoment: - ''' - Running computation. Use this when the entire non-centered 2nd-moment - "covariance-like" matrix is needed, and when the whole matrix fits - in the GPU. - ''' - def __init__(self, state=None): - if state is not None: - self.set_state_dict(state) - return - self.count = 0 - self.mom2 = None - - def add(self, a): - if len(a.shape) == 1: - a = a[None, :] - # Initial batch reveals the shape of the data. - if self.count == 0: - self.mom2 = a.new(a.shape[1], a.shape[1]).zero_() - batch_count = a.shape[0] - # If more than 10 billion operations, divide into batches. - sub_batch = -(-(10 << 30) // (a.shape[1] * a.shape[1])) - # Update the covariance using the batch deviation - self.count += batch_count - progress_addbmm(self.mom2, a[:,:,None], a[:,None,:], sub_batch) - - def cpu_(self): - self.mom2 = self.mom2.cpu() - - def cuda_(self): - self.mom2 = self.mom2.cuda() - - def to_(self, device): - self.mom2 = self.mom2.to(device) - - def moment(self): - return self.mom2 / self.count - - def state_dict(self): - return dict( - constructor=self.__module__ + '.' + - self.__class__.__name__ + '()', - count=self.count, - mom2=self.mom2.cpu().numpy()) - - def set_state_dict(self, dic): - self.count = dic['count'].item() - self.mom2 = torch.from_numpy(dic['mom2']) - -class RunningBincount: - ''' - Running bincount. The counted array should be an integer type with - non-negative integers. Also - ''' - def __init__(self, state=None): - if state is not None: - self.set_state_dict(state) - return - self.count = 0 - self._bincount = None - - def add(self, a, size=None): - a = a.view(-1) - bincount = a.bincount() - if self._bincount is None: - self._bincount = bincount - elif len(self._bincount) < len(bincount): - bincount[:len(self._bincount)] += self._bincount - self._bincount = bincount - else: - self._bincount[:len(bincount)] += bincount - if size is None: - self.count += len(a) - else: - self.count += size - - def cpu_(self): - self._bincount = self._bincount.cpu() - - def cuda_(self): - self._bincount = self._bincount.cuda() - - def to_(self, device): - self._bincount = self._bincount.to(device) - - def size(self): - return self.count - - def mean(self): - return (self._bincount).float() / self.count - - def bincount(self): - return self._bincount - - def state_dict(self): - return dict( - constructor=self.__module__ + '.' + - self.__class__.__name__ + '()', - count=self.count, - bincount=self._bincount.cpu().numpy()) - - def set_state_dict(self, dic): - self.count = dic['count'].item() - self._bincount = torch.from_numpy(dic['bincount']) - -def progress_addbmm(accum, x, y, batch_size): - ''' - Break up very large adbmm operations into batches so progress can be seen. - ''' - from . import pbar - if x.shape[0] <= batch_size: - return accum.addbmm_(x, y) - for i in pbar(range(0, x.shape[0], batch_size), desc='bmm'): - accum.addbmm_(x[i:i+batch_size], y[i:i+batch_size]) - return accum - - -def sample_portion(vec, p=0.5): - bits = torch.bernoulli(torch.zeros(vec.shape[0], dtype=torch.uint8, - device=vec.device), p) - return vec[bits] - -if __name__ == '__main__': - import warnings - warnings.filterwarnings("error") - import time - import argparse - parser = argparse.ArgumentParser( - description='Test things out') - parser.add_argument('--mode', default='cpu', help='cpu or cuda') - parser.add_argument('--test_size', type=int, default=1000000) - args = parser.parse_args() - - # An adverarial case: we keep finding more numbers in the middle - # as the stream goes on. - amount = args.test_size - quantiles = 1000 - data = numpy.arange(float(amount)) - data[1::2] = data[-1::-2] + (len(data) - 1) - data /= 2 - depth = 50 - test_cuda = torch.cuda.is_available() - alldata = data[:,None] + (numpy.arange(depth) * amount)[None, :] - actual_sum = torch.FloatTensor(numpy.sum(alldata * alldata, axis=0)) - amt = amount // depth - for r in range(depth): - numpy.random.shuffle(alldata[r*amt:r*amt+amt,r]) - if args.mode == 'cuda': - alldata = torch.cuda.FloatTensor(alldata) - dtype = torch.float - device = torch.device('cuda') - else: - alldata = torch.FloatTensor(alldata) - dtype = torch.float - device = None - starttime = time.time() - qc = RunningQuantile(r=3 * 1024) - qc.add(alldata) - # Test state dict - saved = qc.state_dict() - # numpy.savez('foo.npz', **saved) - # saved = numpy.load('foo.npz') - qc = RunningQuantile(state=saved) - assert not qc.device.type == 'cuda' - qc.add(alldata) - actual_sum *= 2 - ro = qc.readout(1001).cpu() - endtime = time.time() - gt = torch.linspace(0, amount, quantiles+1)[None,:] + ( - torch.arange(qc.depth, dtype=torch.float) * amount)[:,None] - maxreldev = torch.max(torch.abs(ro - gt) / amount) * quantiles - print("Maximum relative deviation among %d perentiles: %f" % ( - quantiles, maxreldev)) - minerr = torch.max(torch.abs(qc.minmax().cpu()[:,0] - - torch.arange(qc.depth, dtype=torch.float) * amount)) - maxerr = torch.max(torch.abs((qc.minmax().cpu()[:, -1] + 1) - - (torch.arange(qc.depth, dtype=torch.float) + 1) * amount)) - print("Minmax error %f, %f" % (minerr, maxerr)) - interr = torch.max(torch.abs(qc.integrate(lambda x: x * x).cpu() - - actual_sum) / actual_sum) - print("Integral error: %f" % interr) - medianerr = torch.max(torch.abs(qc.median() - - alldata.median(0)[0]) / alldata.median(0)[0]).cpu() - print("Median error: %f" % interr) - meanerr = torch.max( - torch.abs(qc.mean() - alldata.mean(0)) / alldata.mean(0)).cpu() - print("Mean error: %f" % meanerr) - varerr = torch.max( - torch.abs(qc.variance() - alldata.var(0)) / alldata.var(0)).cpu() - print("Variance error: %f" % varerr) - counterr = ((qc.integrate(lambda x: torch.ones(x.shape[-1]).cpu()) - - qc.size()) / (0.0 + qc.size())).item() - print("Count error: %f" % counterr) - print("Time %f" % (endtime - starttime)) - # Algorithm is randomized, so some of these will fail with low probability. - assert maxreldev < 1.0 - assert minerr == 0.0 - assert maxerr == 0.0 - assert interr < 0.01 - assert abs(counterr) < 0.001 - print("OK") diff --git a/spaces/perc1val/CaptchaSolver/README.md b/spaces/perc1val/CaptchaSolver/README.md deleted file mode 100644 index 1bf941636950857683b93470f695cafdde705d27..0000000000000000000000000000000000000000 --- a/spaces/perc1val/CaptchaSolver/README.md +++ /dev/null @@ -1,45 +0,0 @@ ---- -title: OCR For Captcha -emoji: šŸ¤– -colorFrom: yellow -colorTo: red -sdk: gradio -app_file: app.py -pinned: false ---- - -# Configuration - -`title`: _string_ -Display title for the Space - -`emoji`: _string_ -Space emoji (emoji-only character allowed) - -`colorFrom`: _string_ -Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) - -`colorTo`: _string_ -Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) - -`sdk`: _string_ -Can be either `gradio`, `streamlit`, or `static` - -`sdk_version` : _string_ -Only applicable for `streamlit` SDK. -See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions. - -`app_file`: _string_ -Path to your main application file (which contains either `gradio` or `streamlit` Python code, or `static` html code). -Path is relative to the root of the repository. - -`models`: _List[string]_ -HF model IDs (like "gpt2" or "deepset/roberta-base-squad2") used in the Space. -Will be parsed automatically from your code if not specified here. - -`datasets`: _List[string]_ -HF dataset IDs (like "common_voice" or "oscar-corpus/OSCAR-2109") used in the Space. -Will be parsed automatically from your code if not specified here. - -`pinned`: _boolean_ -Whether the Space stays on top of your list. diff --git a/spaces/phyloforfun/VoucherVision/vouchervision/component_detector/utils/benchmarks.py b/spaces/phyloforfun/VoucherVision/vouchervision/component_detector/utils/benchmarks.py deleted file mode 100644 index c3636b9e4df4741c73d592098dd374398a3c5df5..0000000000000000000000000000000000000000 --- a/spaces/phyloforfun/VoucherVision/vouchervision/component_detector/utils/benchmarks.py +++ /dev/null @@ -1,149 +0,0 @@ -# YOLOv5 šŸš€ by Ultralytics, GPL-3.0 license -""" -Run YOLOv5 benchmarks on all supported export formats - -Format | `export.py --include` | Model ---- | --- | --- -PyTorch | - | yolov5s.pt -TorchScript | `torchscript` | yolov5s.torchscript -ONNX | `onnx` | yolov5s.onnx -OpenVINO | `openvino` | yolov5s_openvino_model/ -TensorRT | `engine` | yolov5s.engine -CoreML | `coreml` | yolov5s.mlmodel -TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/ -TensorFlow GraphDef | `pb` | yolov5s.pb -TensorFlow Lite | `tflite` | yolov5s.tflite -TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite -TensorFlow.js | `tfjs` | yolov5s_web_model/ - -Requirements: - $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU - $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU - $ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT - -Usage: - $ python utils/benchmarks.py --weights yolov5s.pt --img 640 -""" - -import argparse -import sys -import time -from pathlib import Path - -import pandas as pd - -FILE = Path(__file__).resolve() -ROOT = FILE.parents[1] # YOLOv5 root directory -if str(ROOT) not in sys.path: - sys.path.append(str(ROOT)) # add ROOT to PATH -# ROOT = ROOT.relative_to(Path.cwd()) # relative - -import export -import val -from utils import notebook_init -from utils.general import LOGGER, print_args -from utils.torch_utils import select_device - - -def run( - weights=ROOT / 'yolov5s.pt', # weights path - imgsz=640, # inference size (pixels) - batch_size=1, # batch size - data=ROOT / 'data/coco128.yaml', # dataset.yaml path - device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu - half=False, # use FP16 half-precision inference - test=False, # test exports only - pt_only=False, # test PyTorch only -): - y, t = [], time.time() - formats = export.export_formats() - device = select_device(device) - for i, (name, f, suffix, gpu) in formats.iterrows(): # index, (name, file, suffix, gpu-capable) - try: - assert i != 9, 'Edge TPU not supported' - assert i != 10, 'TF.js not supported' - if device.type != 'cpu': - assert gpu, f'{name} inference not supported on GPU' - - # Export - if f == '-': - w = weights # PyTorch format - else: - w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # all others - assert suffix in str(w), 'export failed' - - # Validate - result = val.run(data, w, batch_size, imgsz, plots=False, device=device, task='benchmark', half=half) - metrics = result[0] # metrics (mp, mr, map50, map, *losses(box, obj, cls)) - speeds = result[2] # times (preprocess, inference, postprocess) - y.append([name, round(metrics[3], 4), round(speeds[1], 2)]) # mAP, t_inference - except Exception as e: - LOGGER.warning(f'WARNING: Benchmark failure for {name}: {e}') - y.append([name, None, None]) # mAP, t_inference - if pt_only and i == 0: - break # break after PyTorch - - # Print results - LOGGER.info('\n') - parse_opt() - notebook_init() # print system info - py = pd.DataFrame(y, columns=['Format', 'mAP@0.5:0.95', 'Inference time (ms)'] if map else ['Format', 'Export', '']) - LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)') - LOGGER.info(str(py if map else py.iloc[:, :2])) - return py - - -def test( - weights=ROOT / 'yolov5s.pt', # weights path - imgsz=640, # inference size (pixels) - batch_size=1, # batch size - data=ROOT / 'data/coco128.yaml', # dataset.yaml path - device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu - half=False, # use FP16 half-precision inference - test=False, # test exports only - pt_only=False, # test PyTorch only -): - y, t = [], time.time() - formats = export.export_formats() - device = select_device(device) - for i, (name, f, suffix, gpu) in formats.iterrows(): # index, (name, file, suffix, gpu-capable) - try: - w = weights if f == '-' else \ - export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # weights - assert suffix in str(w), 'export failed' - y.append([name, True]) - except Exception: - y.append([name, False]) # mAP, t_inference - - # Print results - LOGGER.info('\n') - parse_opt() - notebook_init() # print system info - py = pd.DataFrame(y, columns=['Format', 'Export']) - LOGGER.info(f'\nExports complete ({time.time() - t:.2f}s)') - LOGGER.info(str(py)) - return py - - -def parse_opt(): - parser = argparse.ArgumentParser() - parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path') - parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)') - parser.add_argument('--batch-size', type=int, default=1, help='batch size') - parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') - parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') - parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') - parser.add_argument('--test', action='store_true', help='test exports only') - parser.add_argument('--pt-only', action='store_true', help='test PyTorch only') - opt = parser.parse_args() - print_args(vars(opt)) - return opt - - -def main(opt): - test(**vars(opt)) if opt.test else run(**vars(opt)) - - -if __name__ == "__main__": - opt = parse_opt() - main(opt) diff --git a/spaces/plzdontcry/dakubettergpt/src/hooks/useSaveToLocalStorage.ts b/spaces/plzdontcry/dakubettergpt/src/hooks/useSaveToLocalStorage.ts deleted file mode 100644 index 8c0da3ffcbbdd603c237ed5be6323280c85cee1c..0000000000000000000000000000000000000000 --- a/spaces/plzdontcry/dakubettergpt/src/hooks/useSaveToLocalStorage.ts +++ /dev/null @@ -1,19 +0,0 @@ -import React, { useEffect, useRef } from 'react'; -import useStore from '@store/store'; - -const useSaveToLocalStorage = () => { - const chatsRef = useRef(useStore.getState().chats); - - useEffect(() => { - const unsubscribe = useStore.subscribe((state) => { - if (chatsRef && chatsRef.current !== state.chats) { - chatsRef.current = state.chats; - localStorage.setItem('chats', JSON.stringify(state.chats)); - } - }); - - return unsubscribe; - }, []); -}; - -export default useSaveToLocalStorage; diff --git a/spaces/power2/JoJoGan-powerhow2/e4e/models/stylegan2/model.py b/spaces/power2/JoJoGan-powerhow2/e4e/models/stylegan2/model.py deleted file mode 100644 index fcb12af85669ab6fd7f79cb14ddbdf80b2fbd83d..0000000000000000000000000000000000000000 --- a/spaces/power2/JoJoGan-powerhow2/e4e/models/stylegan2/model.py +++ /dev/null @@ -1,678 +0,0 @@ -import math -import random -import torch -from torch import nn -from torch.nn import functional as F - -if torch.cuda.is_available(): - from op.fused_act import FusedLeakyReLU, fused_leaky_relu - from op.upfirdn2d import upfirdn2d -else: - from op.fused_act_cpu import FusedLeakyReLU, fused_leaky_relu - from op.upfirdn2d_cpu import upfirdn2d - - -class PixelNorm(nn.Module): - def __init__(self): - super().__init__() - - def forward(self, input): - return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8) - - -def make_kernel(k): - k = torch.tensor(k, dtype=torch.float32) - - if k.ndim == 1: - k = k[None, :] * k[:, None] - - k /= k.sum() - - return k - - -class Upsample(nn.Module): - def __init__(self, kernel, factor=2): - super().__init__() - - self.factor = factor - kernel = make_kernel(kernel) * (factor ** 2) - self.register_buffer('kernel', kernel) - - p = kernel.shape[0] - factor - - pad0 = (p + 1) // 2 + factor - 1 - pad1 = p // 2 - - self.pad = (pad0, pad1) - - def forward(self, input): - out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad) - - return out - - -class Downsample(nn.Module): - def __init__(self, kernel, factor=2): - super().__init__() - - self.factor = factor - kernel = make_kernel(kernel) - self.register_buffer('kernel', kernel) - - p = kernel.shape[0] - factor - - pad0 = (p + 1) // 2 - pad1 = p // 2 - - self.pad = (pad0, pad1) - - def forward(self, input): - out = upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad) - - return out - - -class Blur(nn.Module): - def __init__(self, kernel, pad, upsample_factor=1): - super().__init__() - - kernel = make_kernel(kernel) - - if upsample_factor > 1: - kernel = kernel * (upsample_factor ** 2) - - self.register_buffer('kernel', kernel) - - self.pad = pad - - def forward(self, input): - out = upfirdn2d(input, self.kernel, pad=self.pad) - - return out - - -class EqualConv2d(nn.Module): - def __init__( - self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True - ): - super().__init__() - - self.weight = nn.Parameter( - torch.randn(out_channel, in_channel, kernel_size, kernel_size) - ) - self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2) - - self.stride = stride - self.padding = padding - - if bias: - self.bias = nn.Parameter(torch.zeros(out_channel)) - - else: - self.bias = None - - def forward(self, input): - out = F.conv2d( - input, - self.weight * self.scale, - bias=self.bias, - stride=self.stride, - padding=self.padding, - ) - - return out - - def __repr__(self): - return ( - f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},' - f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})' - ) - - -class EqualLinear(nn.Module): - def __init__( - self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None - ): - super().__init__() - - self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) - - if bias: - self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) - - else: - self.bias = None - - self.activation = activation - - self.scale = (1 / math.sqrt(in_dim)) * lr_mul - self.lr_mul = lr_mul - - def forward(self, input): - if self.activation: - out = F.linear(input, self.weight * self.scale) - out = fused_leaky_relu(out, self.bias * self.lr_mul) - - else: - out = F.linear( - input, self.weight * self.scale, bias=self.bias * self.lr_mul - ) - - return out - - def __repr__(self): - return ( - f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})' - ) - - -class ScaledLeakyReLU(nn.Module): - def __init__(self, negative_slope=0.2): - super().__init__() - - self.negative_slope = negative_slope - - def forward(self, input): - out = F.leaky_relu(input, negative_slope=self.negative_slope) - - return out * math.sqrt(2) - - -class ModulatedConv2d(nn.Module): - def __init__( - self, - in_channel, - out_channel, - kernel_size, - style_dim, - demodulate=True, - upsample=False, - downsample=False, - blur_kernel=[1, 3, 3, 1], - ): - super().__init__() - - self.eps = 1e-8 - self.kernel_size = kernel_size - self.in_channel = in_channel - self.out_channel = out_channel - self.upsample = upsample - self.downsample = downsample - - if upsample: - factor = 2 - p = (len(blur_kernel) - factor) - (kernel_size - 1) - pad0 = (p + 1) // 2 + factor - 1 - pad1 = p // 2 + 1 - - self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor) - - if downsample: - factor = 2 - p = (len(blur_kernel) - factor) + (kernel_size - 1) - pad0 = (p + 1) // 2 - pad1 = p // 2 - - self.blur = Blur(blur_kernel, pad=(pad0, pad1)) - - fan_in = in_channel * kernel_size ** 2 - self.scale = 1 / math.sqrt(fan_in) - self.padding = kernel_size // 2 - - self.weight = nn.Parameter( - torch.randn(1, out_channel, in_channel, kernel_size, kernel_size) - ) - - self.modulation = EqualLinear(style_dim, in_channel, bias_init=1) - - self.demodulate = demodulate - - def __repr__(self): - return ( - f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, ' - f'upsample={self.upsample}, downsample={self.downsample})' - ) - - def forward(self, input, style): - batch, in_channel, height, width = input.shape - - style = self.modulation(style).view(batch, 1, in_channel, 1, 1) - weight = self.scale * self.weight * style - - if self.demodulate: - demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8) - weight = weight * demod.view(batch, self.out_channel, 1, 1, 1) - - weight = weight.view( - batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size - ) - - if self.upsample: - input = input.view(1, batch * in_channel, height, width) - weight = weight.view( - batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size - ) - weight = weight.transpose(1, 2).reshape( - batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size - ) - out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch) - _, _, height, width = out.shape - out = out.view(batch, self.out_channel, height, width) - out = self.blur(out) - - elif self.downsample: - input = self.blur(input) - _, _, height, width = input.shape - input = input.view(1, batch * in_channel, height, width) - out = F.conv2d(input, weight, padding=0, stride=2, groups=batch) - _, _, height, width = out.shape - out = out.view(batch, self.out_channel, height, width) - - else: - input = input.view(1, batch * in_channel, height, width) - out = F.conv2d(input, weight, padding=self.padding, groups=batch) - _, _, height, width = out.shape - out = out.view(batch, self.out_channel, height, width) - - return out - - -class NoiseInjection(nn.Module): - def __init__(self): - super().__init__() - - self.weight = nn.Parameter(torch.zeros(1)) - - def forward(self, image, noise=None): - if noise is None: - batch, _, height, width = image.shape - noise = image.new_empty(batch, 1, height, width).normal_() - - return image + self.weight * noise - - -class ConstantInput(nn.Module): - def __init__(self, channel, size=4): - super().__init__() - - self.input = nn.Parameter(torch.randn(1, channel, size, size)) - - def forward(self, input): - batch = input.shape[0] - out = self.input.repeat(batch, 1, 1, 1) - - return out - - -class StyledConv(nn.Module): - def __init__( - self, - in_channel, - out_channel, - kernel_size, - style_dim, - upsample=False, - blur_kernel=[1, 3, 3, 1], - demodulate=True, - ): - super().__init__() - - self.conv = ModulatedConv2d( - in_channel, - out_channel, - kernel_size, - style_dim, - upsample=upsample, - blur_kernel=blur_kernel, - demodulate=demodulate, - ) - - self.noise = NoiseInjection() - # self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1)) - # self.activate = ScaledLeakyReLU(0.2) - self.activate = FusedLeakyReLU(out_channel) - - def forward(self, input, style, noise=None): - out = self.conv(input, style) - out = self.noise(out, noise=noise) - # out = out + self.bias - out = self.activate(out) - - return out - - -class ToRGB(nn.Module): - def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]): - super().__init__() - - if upsample: - self.upsample = Upsample(blur_kernel) - - self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False) - self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1)) - - def forward(self, input, style, skip=None): - out = self.conv(input, style) - out = out + self.bias - - if skip is not None: - skip = self.upsample(skip) - - out = out + skip - - return out - - -class Generator(nn.Module): - def __init__( - self, - size, - style_dim, - n_mlp, - channel_multiplier=2, - blur_kernel=[1, 3, 3, 1], - lr_mlp=0.01, - ): - super().__init__() - - self.size = size - - self.style_dim = style_dim - - layers = [PixelNorm()] - - for i in range(n_mlp): - layers.append( - EqualLinear( - style_dim, style_dim, lr_mul=lr_mlp, activation='fused_lrelu' - ) - ) - - self.style = nn.Sequential(*layers) - - self.channels = { - 4: 512, - 8: 512, - 16: 512, - 32: 512, - 64: 256 * channel_multiplier, - 128: 128 * channel_multiplier, - 256: 64 * channel_multiplier, - 512: 32 * channel_multiplier, - 1024: 16 * channel_multiplier, - } - - self.input = ConstantInput(self.channels[4]) - self.conv1 = StyledConv( - self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel - ) - self.to_rgb1 = ToRGB(self.channels[4], style_dim, upsample=False) - - self.log_size = int(math.log(size, 2)) - self.num_layers = (self.log_size - 2) * 2 + 1 - - self.convs = nn.ModuleList() - self.upsamples = nn.ModuleList() - self.to_rgbs = nn.ModuleList() - self.noises = nn.Module() - - in_channel = self.channels[4] - - for layer_idx in range(self.num_layers): - res = (layer_idx + 5) // 2 - shape = [1, 1, 2 ** res, 2 ** res] - self.noises.register_buffer(f'noise_{layer_idx}', torch.randn(*shape)) - - for i in range(3, self.log_size + 1): - out_channel = self.channels[2 ** i] - - self.convs.append( - StyledConv( - in_channel, - out_channel, - 3, - style_dim, - upsample=True, - blur_kernel=blur_kernel, - ) - ) - - self.convs.append( - StyledConv( - out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel - ) - ) - - self.to_rgbs.append(ToRGB(out_channel, style_dim)) - - in_channel = out_channel - - self.n_latent = self.log_size * 2 - 2 - - def make_noise(self): - device = self.input.input.device - - noises = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=device)] - - for i in range(3, self.log_size + 1): - for _ in range(2): - noises.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=device)) - - return noises - - def mean_latent(self, n_latent): - latent_in = torch.randn( - n_latent, self.style_dim, device=self.input.input.device - ) - latent = self.style(latent_in).mean(0, keepdim=True) - - return latent - - def get_latent(self, input): - return self.style(input) - - def forward( - self, - styles, - return_latents=False, - return_features=False, - inject_index=None, - truncation=1, - truncation_latent=None, - input_is_latent=False, - noise=None, - randomize_noise=True, - ): - if not input_is_latent: - styles = [self.style(s) for s in styles] - - if noise is None: - if randomize_noise: - noise = [None] * self.num_layers - else: - noise = [ - getattr(self.noises, f'noise_{i}') for i in range(self.num_layers) - ] - - if truncation < 1: - style_t = [] - - for style in styles: - style_t.append( - truncation_latent + truncation * (style - truncation_latent) - ) - - styles = style_t - - if len(styles) < 2: - inject_index = self.n_latent - - if styles[0].ndim < 3: - latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) - else: - latent = styles[0] - - else: - if inject_index is None: - inject_index = random.randint(1, self.n_latent - 1) - - latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) - latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1) - - latent = torch.cat([latent, latent2], 1) - - out = self.input(latent) - out = self.conv1(out, latent[:, 0], noise=noise[0]) - - skip = self.to_rgb1(out, latent[:, 1]) - - i = 1 - for conv1, conv2, noise1, noise2, to_rgb in zip( - self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs - ): - out = conv1(out, latent[:, i], noise=noise1) - out = conv2(out, latent[:, i + 1], noise=noise2) - skip = to_rgb(out, latent[:, i + 2], skip) - - i += 2 - - image = skip - - if return_latents: - return image, latent - elif return_features: - return image, out - else: - return image, None - - -class ConvLayer(nn.Sequential): - def __init__( - self, - in_channel, - out_channel, - kernel_size, - downsample=False, - blur_kernel=[1, 3, 3, 1], - bias=True, - activate=True, - ): - layers = [] - - if downsample: - factor = 2 - p = (len(blur_kernel) - factor) + (kernel_size - 1) - pad0 = (p + 1) // 2 - pad1 = p // 2 - - layers.append(Blur(blur_kernel, pad=(pad0, pad1))) - - stride = 2 - self.padding = 0 - - else: - stride = 1 - self.padding = kernel_size // 2 - - layers.append( - EqualConv2d( - in_channel, - out_channel, - kernel_size, - padding=self.padding, - stride=stride, - bias=bias and not activate, - ) - ) - - if activate: - if bias: - layers.append(FusedLeakyReLU(out_channel)) - - else: - layers.append(ScaledLeakyReLU(0.2)) - - super().__init__(*layers) - - -class ResBlock(nn.Module): - def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]): - super().__init__() - - self.conv1 = ConvLayer(in_channel, in_channel, 3) - self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True) - - self.skip = ConvLayer( - in_channel, out_channel, 1, downsample=True, activate=False, bias=False - ) - - def forward(self, input): - out = self.conv1(input) - out = self.conv2(out) - - skip = self.skip(input) - out = (out + skip) / math.sqrt(2) - - return out - - -class Discriminator(nn.Module): - def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]): - super().__init__() - - channels = { - 4: 512, - 8: 512, - 16: 512, - 32: 512, - 64: 256 * channel_multiplier, - 128: 128 * channel_multiplier, - 256: 64 * channel_multiplier, - 512: 32 * channel_multiplier, - 1024: 16 * channel_multiplier, - } - - convs = [ConvLayer(3, channels[size], 1)] - - log_size = int(math.log(size, 2)) - - in_channel = channels[size] - - for i in range(log_size, 2, -1): - out_channel = channels[2 ** (i - 1)] - - convs.append(ResBlock(in_channel, out_channel, blur_kernel)) - - in_channel = out_channel - - self.convs = nn.Sequential(*convs) - - self.stddev_group = 4 - self.stddev_feat = 1 - - self.final_conv = ConvLayer(in_channel + 1, channels[4], 3) - self.final_linear = nn.Sequential( - EqualLinear(channels[4] * 4 * 4, channels[4], activation='fused_lrelu'), - EqualLinear(channels[4], 1), - ) - - def forward(self, input): - out = self.convs(input) - - batch, channel, height, width = out.shape - group = min(batch, self.stddev_group) - stddev = out.view( - group, -1, self.stddev_feat, channel // self.stddev_feat, height, width - ) - stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8) - stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2) - stddev = stddev.repeat(group, 1, height, width) - out = torch.cat([out, stddev], 1) - - out = self.final_conv(out) - - out = out.view(batch, -1) - out = self.final_linear(out) - - return out diff --git a/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/fontTools/ttLib/tables/_f_p_g_m.py b/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/fontTools/ttLib/tables/_f_p_g_m.py deleted file mode 100644 index df23041d65617af9c1f6feb00db970b7870c2268..0000000000000000000000000000000000000000 --- a/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/fontTools/ttLib/tables/_f_p_g_m.py +++ /dev/null @@ -1,49 +0,0 @@ -from . import DefaultTable -from . import ttProgram - - -class table__f_p_g_m(DefaultTable.DefaultTable): - def decompile(self, data, ttFont): - program = ttProgram.Program() - program.fromBytecode(data) - self.program = program - - def compile(self, ttFont): - return self.program.getBytecode() - - def toXML(self, writer, ttFont): - self.program.toXML(writer, ttFont) - - def fromXML(self, name, attrs, content, ttFont): - program = ttProgram.Program() - program.fromXML(name, attrs, content, ttFont) - self.program = program - - def __bool__(self): - """ - >>> fpgm = table__f_p_g_m() - >>> bool(fpgm) - False - >>> p = ttProgram.Program() - >>> fpgm.program = p - >>> bool(fpgm) - False - >>> bc = bytearray([0]) - >>> p.fromBytecode(bc) - >>> bool(fpgm) - True - >>> p.bytecode.pop() - 0 - >>> bool(fpgm) - False - """ - return hasattr(self, "program") and bool(self.program) - - __nonzero__ = __bool__ - - -if __name__ == "__main__": - import sys - import doctest - - sys.exit(doctest.testmod().failed) diff --git a/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/markdown_it/rules_inline/autolink.py b/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/markdown_it/rules_inline/autolink.py deleted file mode 100644 index 295d963f39254e6ddfe9dc36af2bfa5e534c0827..0000000000000000000000000000000000000000 --- a/spaces/profayle/TerrapinTalk/myenv/lib/python3.9/site-packages/markdown_it/rules_inline/autolink.py +++ /dev/null @@ -1,77 +0,0 @@ -# Process autolinks '' -import re - -from .state_inline import StateInline - -EMAIL_RE = re.compile( - r"^([a-zA-Z0-9.!#$%&\'*+\/=?^_`{|}~-]+@[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?(?:\.[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?)*)$" # noqa: E501 -) -AUTOLINK_RE = re.compile(r"^([a-zA-Z][a-zA-Z0-9+.\-]{1,31}):([^<>\x00-\x20]*)$") - - -def autolink(state: StateInline, silent: bool) -> bool: - pos = state.pos - - if state.src[pos] != "<": - return False - - start = state.pos - maximum = state.posMax - - while True: - pos += 1 - if pos >= maximum: - return False - - ch = state.src[pos] - - if ch == "<": - return False - if ch == ">": - break - - url = state.src[start + 1 : pos] - - if AUTOLINK_RE.search(url) is not None: - fullUrl = state.md.normalizeLink(url) - if not state.md.validateLink(fullUrl): - return False - - if not silent: - token = state.push("link_open", "a", 1) - token.attrs = {"href": fullUrl} - token.markup = "autolink" - token.info = "auto" - - token = state.push("text", "", 0) - token.content = state.md.normalizeLinkText(url) - - token = state.push("link_close", "a", -1) - token.markup = "autolink" - token.info = "auto" - - state.pos += len(url) + 2 - return True - - if EMAIL_RE.search(url) is not None: - fullUrl = state.md.normalizeLink("mailto:" + url) - if not state.md.validateLink(fullUrl): - return False - - if not silent: - token = state.push("link_open", "a", 1) - token.attrs = {"href": fullUrl} - token.markup = "autolink" - token.info = "auto" - - token = state.push("text", "", 0) - token.content = state.md.normalizeLinkText(url) - - token = state.push("link_close", "a", -1) - token.markup = "autolink" - token.info = "auto" - - state.pos += len(url) + 2 - return True - - return False diff --git a/spaces/project-baize/chat-with-baize/app.py b/spaces/project-baize/chat-with-baize/app.py deleted file mode 100644 index d17a6e80103502a0578c32398f0ed364954f7124..0000000000000000000000000000000000000000 --- a/spaces/project-baize/chat-with-baize/app.py +++ /dev/null @@ -1,233 +0,0 @@ -# -*- coding:utf-8 -*- -import os -import logging -import sys -import gradio as gr -import torch -import gc -from app_modules.utils import * -from app_modules.presets import * -from app_modules.overwrites import * - -logging.basicConfig( - level=logging.DEBUG, - format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s", -) - -base_model = "project-baize/baize-v2-7b" -adapter_model = None -tokenizer,model,device = load_tokenizer_and_model(base_model,adapter_model) - -total_count = 0 -def predict(text, - chatbot, - history, - top_p, - temperature, - max_length_tokens, - max_context_length_tokens,): - if text=="": - yield chatbot,history,"Empty context." - return - try: - model - except: - yield [[text,"No Model Found"]],[],"No Model Found" - return - - inputs = generate_prompt_with_history(text,history,tokenizer,max_length=max_context_length_tokens) - if inputs is None: - yield chatbot,history,"Input too long." - return - else: - prompt,inputs=inputs - begin_length = len(prompt) - input_ids = inputs["input_ids"][:,-max_context_length_tokens:].to(device) - torch.cuda.empty_cache() - global total_count - total_count += 1 - print(total_count) - if total_count % 50 == 0 : - os.system("nvidia-smi") - with torch.no_grad(): - for x in greedy_search(input_ids,model,tokenizer,stop_words=["[|Human|]", "[|AI|]"],max_length=max_length_tokens,temperature=temperature,top_p=top_p): - if is_stop_word_or_prefix(x,["[|Human|]", "[|AI|]"]) is False: - if "[|Human|]" in x: - x = x[:x.index("[|Human|]")].strip() - if "[|AI|]" in x: - x = x[:x.index("[|AI|]")].strip() - x = x.strip() - a, b= [[y[0],convert_to_markdown(y[1])] for y in history]+[[text, convert_to_markdown(x)]],history + [[text,x]] - yield a, b, "Generating..." - if shared_state.interrupted: - shared_state.recover() - try: - yield a, b, "Stop: Success" - return - except: - pass - del input_ids - gc.collect() - torch.cuda.empty_cache() - #print(text) - #print(x) - #print("="*80) - try: - yield a,b,"Generate: Success" - except: - pass - -def retry( - text, - chatbot, - history, - top_p, - temperature, - max_length_tokens, - max_context_length_tokens, - ): - logging.info("Retry...") - if len(history) == 0: - yield chatbot, history, f"Empty context" - return - chatbot.pop() - inputs = history.pop()[0] - for x in predict(inputs,chatbot,history,top_p,temperature,max_length_tokens,max_context_length_tokens): - yield x - - -gr.Chatbot.postprocess = postprocess - -with open("assets/custom.css", "r", encoding="utf-8") as f: - customCSS = f.read() - -with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo: - history = gr.State([]) - user_question = gr.State("") - with gr.Row(): - gr.HTML(title) - status_display = gr.Markdown("Success", elem_id="status_display") - gr.Markdown(description_top) - with gr.Row(scale=1).style(equal_height=True): - with gr.Column(scale=5): - with gr.Row(scale=1): - chatbot = gr.Chatbot(elem_id="chuanhu_chatbot").style(height="100%") - with gr.Row(scale=1): - with gr.Column(scale=12): - user_input = gr.Textbox( - show_label=False, placeholder="Enter text" - ).style(container=False) - with gr.Column(min_width=70, scale=1): - submitBtn = gr.Button("Send") - with gr.Column(min_width=70, scale=1): - cancelBtn = gr.Button("Stop") - with gr.Row(scale=1): - emptyBtn = gr.Button( - "🧹 New Conversation", - ) - retryBtn = gr.Button("šŸ”„ Regenerate") - delLastBtn = gr.Button("šŸ—‘ļø Remove Last Turn") - with gr.Column(): - with gr.Column(min_width=50, scale=1): - with gr.Tab(label="Parameter Setting"): - gr.Markdown("# Parameters") - top_p = gr.Slider( - minimum=-0, - maximum=1.0, - value=0.95, - step=0.05, - interactive=True, - label="Top-p", - ) - temperature = gr.Slider( - minimum=0.1, - maximum=2.0, - value=1, - step=0.1, - interactive=True, - label="Temperature", - ) - max_length_tokens = gr.Slider( - minimum=0, - maximum=512, - value=512, - step=8, - interactive=True, - label="Max Generation Tokens", - ) - max_context_length_tokens = gr.Slider( - minimum=0, - maximum=4096, - value=2048, - step=128, - interactive=True, - label="Max History Tokens", - ) - gr.Markdown(description) - - predict_args = dict( - fn=predict, - inputs=[ - user_question, - chatbot, - history, - top_p, - temperature, - max_length_tokens, - max_context_length_tokens, - ], - outputs=[chatbot, history, status_display], - show_progress=True, - ) - retry_args = dict( - fn=retry, - inputs=[ - user_input, - chatbot, - history, - top_p, - temperature, - max_length_tokens, - max_context_length_tokens, - ], - outputs=[chatbot, history, status_display], - show_progress=True, - ) - - reset_args = dict( - fn=reset_textbox, inputs=[], outputs=[user_input, status_display] - ) - - # Chatbot - transfer_input_args = dict( - fn=transfer_input, inputs=[user_input], outputs=[user_question, user_input, submitBtn], show_progress=True - ) - - predict_event1 = user_input.submit(**transfer_input_args).then(**predict_args) - - predict_event2 = submitBtn.click(**transfer_input_args).then(**predict_args) - - emptyBtn.click( - reset_state, - outputs=[chatbot, history, status_display], - show_progress=True, - ) - emptyBtn.click(**reset_args) - - predict_event3 = retryBtn.click(**retry_args) - - delLastBtn.click( - delete_last_conversation, - [chatbot, history], - [chatbot, history, status_display], - show_progress=True, - ) - cancelBtn.click( - cancel_outputing, [], [status_display], - cancels=[ - predict_event1,predict_event2,predict_event3 - ] - ) -demo.title = "Baize" - -demo.queue(concurrency_count=1).launch() \ No newline at end of file diff --git a/spaces/pycoming/bingo/src/lib/bots/bing/index.ts b/spaces/pycoming/bingo/src/lib/bots/bing/index.ts deleted file mode 100644 index 6fd51ba48cbb1148f13d29e76960c092b807cfae..0000000000000000000000000000000000000000 --- a/spaces/pycoming/bingo/src/lib/bots/bing/index.ts +++ /dev/null @@ -1,426 +0,0 @@ -import { fetch, WebSocket, debug } from '@/lib/isomorphic' -import WebSocketAsPromised from 'websocket-as-promised' -import { - SendMessageParams, - BingConversationStyle, - ConversationResponse, - ChatResponseMessage, - ConversationInfo, - InvocationEventType, - ChatError, - ErrorCode, - ChatUpdateCompleteResponse, - ImageInfo, - KBlobResponse -} from './types' - -import { convertMessageToMarkdown, websocketUtils, streamAsyncIterable } from './utils' -import { WatchDog, createChunkDecoder } from '@/lib/utils' - -type Params = SendMessageParams<{ bingConversationStyle: BingConversationStyle }> - -const OPTIONS_SETS = [ - 'nlu_direct_response_filter', - 'deepleo', - 'disable_emoji_spoken_text', - 'responsible_ai_policy_235', - 'enablemm', - 'iycapbing', - 'iyxapbing', - 'objopinion', - 'rweasgv2', - 'dagslnv1', - 'dv3sugg', - 'autosave', - 'iyoloxap', - 'iyoloneutral', - 'clgalileo', - 'gencontentv3', -] - -export class BingWebBot { - protected conversationContext?: ConversationInfo - protected cookie: string - protected ua: string - protected endpoint = '' - private lastText = '' - private asyncTasks: Array> = [] - - constructor(opts: { - cookie: string - ua: string - bingConversationStyle?: BingConversationStyle - conversationContext?: ConversationInfo - }) { - const { cookie, ua, conversationContext } = opts - this.cookie = cookie?.includes(';') ? cookie : `_EDGE_V=1; _U=${cookie}` - this.ua = ua - this.conversationContext = conversationContext - } - - static buildChatRequest(conversation: ConversationInfo) { - const optionsSets = OPTIONS_SETS - if (conversation.conversationStyle === BingConversationStyle.Precise) { - optionsSets.push('h3precise') - } else if (conversation.conversationStyle === BingConversationStyle.Creative) { - optionsSets.push('h3imaginative') - } - return { - arguments: [ - { - source: 'cib', - optionsSets, - allowedMessageTypes: [ - 'ActionRequest', - 'Chat', - 'Context', - 'InternalSearchQuery', - 'InternalSearchResult', - 'Disengaged', - 'InternalLoaderMessage', - 'Progress', - 'RenderCardRequest', - 'SemanticSerp', - 'GenerateContentQuery', - 'SearchQuery', - ], - sliceIds: [ - 'winmuid1tf', - 'anssupfor_c', - 'imgchatgptv2', - 'tts2cf', - 'contansperf', - 'mlchatpc8500w', - 'mlchatpc2', - 'ctrlworkpay', - 'winshortmsgtf', - 'cibctrl', - 'sydtransctrl', - 'sydconfigoptc', - '0705trt4', - '517opinion', - '628ajcopus0', - '330uaugs0', - '529rwea', - '0626snptrcs0', - '424dagslnv1', - ], - isStartOfSession: conversation.invocationId === 0, - message: { - author: 'user', - inputMethod: 'Keyboard', - text: conversation.prompt, - imageUrl: conversation.imageUrl, - messageType: 'Chat', - }, - conversationId: conversation.conversationId, - conversationSignature: conversation.conversationSignature, - participant: { id: conversation.clientId }, - }, - ], - invocationId: conversation.invocationId.toString(), - target: 'chat', - type: InvocationEventType.StreamInvocation, - } - } - - async createConversation(): Promise { - const headers = { - 'Accept-Encoding': 'gzip, deflate, br, zsdch', - 'User-Agent': this.ua, - 'x-ms-useragent': 'azsdk-js-api-client-factory/1.0.0-beta.1 core-rest-pipeline/1.10.0 OS/Win32', - cookie: this.cookie, - } - - let resp: ConversationResponse | undefined - try { - const response = await fetch(this.endpoint + '/api/create', { method: 'POST', headers, redirect: 'error', mode: 'cors', credentials: 'include' }) - if (response.status === 404) { - throw new ChatError('Not Found', ErrorCode.NOTFOUND_ERROR) - } - resp = await response.json() as ConversationResponse - } catch (err) { - console.error('create conversation error', err) - } - - if (!resp?.result) { - throw new ChatError('ä½ ēš„ VPS ęˆ–ä»£ē†åÆčƒ½č¢«å°ē¦ļ¼Œå¦‚ęœ‰ē–‘é—®ļ¼ŒčÆ·å‰å¾€ https://github.com/weaigc/bingo 咨询', ErrorCode.UNKOWN_ERROR) - } - - const { value, message } = resp.result || {} - if (value !== 'Success') { - const errorMsg = `${value}: ${message}` - if (value === 'UnauthorizedRequest') { - throw new ChatError(errorMsg, ErrorCode.BING_UNAUTHORIZED) - } - if (value === 'Forbidden') { - throw new ChatError(errorMsg, ErrorCode.BING_FORBIDDEN) - } - throw new ChatError(errorMsg, ErrorCode.UNKOWN_ERROR) - } - return resp - } - - private async createContext(conversationStyle: BingConversationStyle) { - if (!this.conversationContext) { - const conversation = await this.createConversation() - this.conversationContext = { - conversationId: conversation.conversationId, - conversationSignature: conversation.conversationSignature, - clientId: conversation.clientId, - invocationId: 0, - conversationStyle, - prompt: '', - } - } - return this.conversationContext - } - - async sendMessage(params: Params) { - try { - await this.createContext(params.options.bingConversationStyle) - Object.assign(this.conversationContext!, { prompt: params.prompt, imageUrl: params.imageUrl }) - return this.sydneyProxy(params) - } catch (error) { - params.onEvent({ - type: 'ERROR', - error: error instanceof ChatError ? error : new ChatError('Catch Error', ErrorCode.UNKOWN_ERROR), - }) - } - } - - private async sydneyProxy(params: Params) { - const abortController = new AbortController() - const response = await fetch(this.endpoint + '/api/sydney', { - method: 'POST', - headers: { - 'Content-Type': 'application/json', - }, - signal: abortController.signal, - body: JSON.stringify(this.conversationContext!) - }) - if (response.status !== 200) { - params.onEvent({ - type: 'ERROR', - error: new ChatError( - 'Unknown error', - ErrorCode.UNKOWN_ERROR, - ), - }) - } - params.signal?.addEventListener('abort', () => { - abortController.abort() - }) - - const textDecoder = createChunkDecoder() - for await (const chunk of streamAsyncIterable(response.body!)) { - this.parseEvents(params, websocketUtils.unpackMessage(textDecoder(chunk))) - } - } - - async sendWs() { - const wsConfig: ConstructorParameters[1] = { - packMessage: websocketUtils.packMessage, - unpackMessage: websocketUtils.unpackMessage, - createWebSocket: (url) => new WebSocket(url, { - headers: { - 'accept-language': 'zh-CN,zh;q=0.9', - 'cache-control': 'no-cache', - 'User-Agent': this.ua, - pragma: 'no-cache', - cookie: this.cookie, - } - }) - } - const wsp = new WebSocketAsPromised('wss://sydney.bing.com/sydney/ChatHub', wsConfig) - - wsp.open().then(() => { - wsp.sendPacked({ protocol: 'json', version: 1 }) - wsp.sendPacked({ type: 6 }) - wsp.sendPacked(BingWebBot.buildChatRequest(this.conversationContext!)) - }) - - return wsp - } - - private async useWs(params: Params) { - const wsp = await this.sendWs() - const watchDog = new WatchDog() - wsp.onUnpackedMessage.addListener((events) => { - watchDog.watch(() => { - wsp.sendPacked({ type: 6 }) - }) - this.parseEvents(params, events) - }) - - wsp.onClose.addListener(() => { - watchDog.reset() - params.onEvent({ type: 'DONE' }) - wsp.removeAllListeners() - }) - - params.signal?.addEventListener('abort', () => { - wsp.removeAllListeners() - wsp.close() - }) - } - - private async createImage(prompt: string, id: string) { - try { - const headers = { - 'Accept-Encoding': 'gzip, deflate, br, zsdch', - 'User-Agent': this.ua, - 'x-ms-useragent': 'azsdk-js-api-client-factory/1.0.0-beta.1 core-rest-pipeline/1.10.0 OS/Win32', - cookie: this.cookie, - } - const query = new URLSearchParams({ - prompt, - id - }) - const response = await fetch(this.endpoint + '/api/image?' + query.toString(), - { - method: 'POST', - headers, - mode: 'cors', - credentials: 'include' - }) - .then(res => res.text()) - if (response) { - this.lastText += '\n' + response - } - } catch (err) { - console.error('Create Image Error', err) - } - } - - private buildKnowledgeApiPayload(imageUrl: string, conversationStyle: BingConversationStyle) { - const imageInfo: ImageInfo = {} - let imageBase64: string | undefined = undefined - const knowledgeRequest = { - imageInfo, - knowledgeRequest: { - invokedSkills: [ - 'ImageById' - ], - subscriptionId: 'Bing.Chat.Multimodal', - invokedSkillsRequestData: { - enableFaceBlur: true - }, - convoData: { - convoid: this.conversationContext?.conversationId, - convotone: conversationStyle, - } - }, - } - - if (imageUrl.startsWith('data:image/')) { - imageBase64 = imageUrl.replace('data:image/', ''); - const partIndex = imageBase64.indexOf(',') - if (partIndex) { - imageBase64 = imageBase64.substring(partIndex + 1) - } - } else { - imageInfo.url = imageUrl - } - return { knowledgeRequest, imageBase64 } - } - - async uploadImage(imageUrl: string, conversationStyle: BingConversationStyle = BingConversationStyle.Creative): Promise { - if (!imageUrl) { - return - } - await this.createContext(conversationStyle) - const payload = this.buildKnowledgeApiPayload(imageUrl, conversationStyle) - - const response = await fetch(this.endpoint + '/api/kblob', - { - headers: { - 'Content-Type': 'application/json', - }, - method: 'POST', - mode: 'cors', - credentials: 'include', - body: JSON.stringify(payload), - }) - .then(res => res.json()) - .catch(e => { - console.log('Error', e) - }) - return response - } - - private async generateContent(message: ChatResponseMessage) { - if (message.contentType === 'IMAGE') { - this.asyncTasks.push(this.createImage(message.text, message.messageId)) - } - } - - private async parseEvents(params: Params, events: any) { - const conversation = this.conversationContext! - - events?.forEach(async (event: ChatUpdateCompleteResponse) => { - debug('bing event', event) - if (event.type === 3) { - await Promise.all(this.asyncTasks) - this.asyncTasks = [] - params.onEvent({ type: 'UPDATE_ANSWER', data: { text: this.lastText } }) - params.onEvent({ type: 'DONE' }) - conversation.invocationId = parseInt(event.invocationId, 10) + 1 - } else if (event.type === 1) { - const messages = event.arguments[0].messages - if (messages) { - const text = convertMessageToMarkdown(messages[0]) - this.lastText = text - params.onEvent({ type: 'UPDATE_ANSWER', data: { text, spokenText: messages[0].text, throttling: event.arguments[0].throttling } }) - } - } else if (event.type === 2) { - const messages = event.item.messages as ChatResponseMessage[] | undefined - if (!messages) { - params.onEvent({ - type: 'ERROR', - error: new ChatError( - event.item.result.error || 'Unknown error', - event.item.result.value === 'Throttled' ? ErrorCode.THROTTLE_LIMIT - : event.item.result.value === 'CaptchaChallenge' ? (this.conversationContext?.conversationId?.includes('BingProdUnAuthenticatedUsers') ? ErrorCode.BING_UNAUTHORIZED : ErrorCode.BING_CAPTCHA) - : ErrorCode.UNKOWN_ERROR - ), - }) - return - } - const limited = messages.some((message) => - message.contentOrigin === 'TurnLimiter' - || message.messageType === 'Disengaged' - ) - if (limited) { - params.onEvent({ - type: 'ERROR', - error: new ChatError( - 'Sorry, you have reached chat limit in this conversation.', - ErrorCode.CONVERSATION_LIMIT, - ), - }) - return - } - - const lastMessage = event.item.messages.at(-1) as ChatResponseMessage - const specialMessage = event.item.messages.find(message => message.author === 'bot' && message.contentType === 'IMAGE') - if (specialMessage) { - this.generateContent(specialMessage) - } - - if (lastMessage) { - const text = convertMessageToMarkdown(lastMessage) - this.lastText = text - params.onEvent({ - type: 'UPDATE_ANSWER', - data: { text, throttling: event.item.throttling, suggestedResponses: lastMessage.suggestedResponses, sourceAttributions: lastMessage.sourceAttributions }, - }) - } - } - }) - } - - resetConversation() { - this.conversationContext = undefined - } -} diff --git a/spaces/pyodide-demo/self-hosted/cycler.js b/spaces/pyodide-demo/self-hosted/cycler.js deleted file mode 100644 index 07344c7b80b1bc06e67f8895605daaeea5112c1f..0000000000000000000000000000000000000000 --- a/spaces/pyodide-demo/self-hosted/cycler.js +++ /dev/null @@ -1 +0,0 @@ -var Module=typeof globalThis.__pyodide_module!=="undefined"?globalThis.__pyodide_module:{};if(!Module.expectedDataFileDownloads){Module.expectedDataFileDownloads=0}Module.expectedDataFileDownloads++;(function(){var loadPackage=function(metadata){var PACKAGE_PATH="";if(typeof window==="object"){PACKAGE_PATH=window["encodeURIComponent"](window.location.pathname.toString().substring(0,window.location.pathname.toString().lastIndexOf("/"))+"/")}else if(typeof process==="undefined"&&typeof location!=="undefined"){PACKAGE_PATH=encodeURIComponent(location.pathname.toString().substring(0,location.pathname.toString().lastIndexOf("/"))+"/")}var PACKAGE_NAME="cycler.data";var REMOTE_PACKAGE_BASE="cycler.data";if(typeof Module["locateFilePackage"]==="function"&&!Module["locateFile"]){Module["locateFile"]=Module["locateFilePackage"];err("warning: you defined Module.locateFilePackage, that has been renamed to Module.locateFile (using your locateFilePackage for now)")}var REMOTE_PACKAGE_NAME=Module["locateFile"]?Module["locateFile"](REMOTE_PACKAGE_BASE,""):REMOTE_PACKAGE_BASE;var REMOTE_PACKAGE_SIZE=metadata["remote_package_size"];var PACKAGE_UUID=metadata["package_uuid"];function fetchRemotePackage(packageName,packageSize,callback,errback){if(typeof process==="object"){require("fs").readFile(packageName,(function(err,contents){if(err){errback(err)}else{callback(contents.buffer)}}));return}var xhr=new XMLHttpRequest;xhr.open("GET",packageName,true);xhr.responseType="arraybuffer";xhr.onprogress=function(event){var url=packageName;var size=packageSize;if(event.total)size=event.total;if(event.loaded){if(!xhr.addedTotal){xhr.addedTotal=true;if(!Module.dataFileDownloads)Module.dataFileDownloads={};Module.dataFileDownloads[url]={loaded:event.loaded,total:size}}else{Module.dataFileDownloads[url].loaded=event.loaded}var total=0;var loaded=0;var num=0;for(var download in Module.dataFileDownloads){var data=Module.dataFileDownloads[download];total+=data.total;loaded+=data.loaded;num++}total=Math.ceil(total*Module.expectedDataFileDownloads/num);if(Module["setStatus"])Module["setStatus"]("Downloading data... ("+loaded+"/"+total+")")}else if(!Module.dataFileDownloads){if(Module["setStatus"])Module["setStatus"]("Downloading data...")}};xhr.onerror=function(event){throw new Error("NetworkError for: "+packageName)};xhr.onload=function(event){if(xhr.status==200||xhr.status==304||xhr.status==206||xhr.status==0&&xhr.response){var packageData=xhr.response;callback(packageData)}else{throw new Error(xhr.statusText+" : "+xhr.responseURL)}};xhr.send(null)}function handleError(error){console.error("package error:",error)}var fetchedCallback=null;var fetched=Module["getPreloadedPackage"]?Module["getPreloadedPackage"](REMOTE_PACKAGE_NAME,REMOTE_PACKAGE_SIZE):null;if(!fetched)fetchRemotePackage(REMOTE_PACKAGE_NAME,REMOTE_PACKAGE_SIZE,(function(data){if(fetchedCallback){fetchedCallback(data);fetchedCallback=null}else{fetched=data}}),handleError);function runWithFS(){function assert(check,msg){if(!check)throw msg+(new Error).stack}Module["FS_createPath"]("/","lib",true,true);Module["FS_createPath"]("/lib","python3.9",true,true);Module["FS_createPath"]("/lib/python3.9","site-packages",true,true);Module["FS_createPath"]("/lib/python3.9/site-packages","cycler-0.11.0-py3.9.egg-info",true,true);function processPackageData(arrayBuffer){assert(arrayBuffer,"Loading data file failed.");assert(arrayBuffer instanceof ArrayBuffer,"bad input to processPackageData");var byteArray=new Uint8Array(arrayBuffer);var curr;var compressedData={data:null,cachedOffset:8862,cachedIndexes:[-1,-1],cachedChunks:[null,null],offsets:[0,1099,2265,3485,4433,5513,6865,8004],sizes:[1099,1166,1220,948,1080,1352,1139,858],successes:[1,1,1,1,1,1,1,1]};compressedData["data"]=byteArray;assert(typeof Module.LZ4==="object","LZ4 not present - was your app build with -s LZ4=1 ?");Module.LZ4.loadPackage({metadata:metadata,compressedData:compressedData},true);Module["removeRunDependency"]("datafile_cycler.data")}Module["addRunDependency"]("datafile_cycler.data");if(!Module.preloadResults)Module.preloadResults={};Module.preloadResults[PACKAGE_NAME]={fromCache:false};if(fetched){processPackageData(fetched);fetched=null}else{fetchedCallback=processPackageData}}if(Module["calledRun"]){runWithFS()}else{if(!Module["preRun"])Module["preRun"]=[];Module["preRun"].push(runWithFS)}};loadPackage({files:[{filename:"/lib/python3.9/site-packages/cycler.py",start:0,end:14519,audio:0},{filename:"/lib/python3.9/site-packages/cycler-0.11.0-py3.9.egg-info/PKG-INFO",start:14519,end:15325,audio:0},{filename:"/lib/python3.9/site-packages/cycler-0.11.0-py3.9.egg-info/SOURCES.txt",start:15325,end:15645,audio:0},{filename:"/lib/python3.9/site-packages/cycler-0.11.0-py3.9.egg-info/dependency_links.txt",start:15645,end:15646,audio:0},{filename:"/lib/python3.9/site-packages/cycler-0.11.0-py3.9.egg-info/top_level.txt",start:15646,end:15653,audio:0}],remote_package_size:12958,package_uuid:"af63cf89-783e-4229-a733-aa42a8b775a7"})})(); \ No newline at end of file diff --git a/spaces/qiuyue1/White-box-Cartoonization/wbc/cartoonize.py b/spaces/qiuyue1/White-box-Cartoonization/wbc/cartoonize.py deleted file mode 100644 index 25faf1ceb95aaed9a3f7a7982d17a03dc6bc32b1..0000000000000000000000000000000000000000 --- a/spaces/qiuyue1/White-box-Cartoonization/wbc/cartoonize.py +++ /dev/null @@ -1,112 +0,0 @@ -import os -import cv2 -import numpy as np -import tensorflow as tf -import wbc.network as network -import wbc.guided_filter as guided_filter -from tqdm import tqdm - - -def resize_crop(image): - h, w, c = np.shape(image) - if min(h, w) > 720: - if h > w: - h, w = int(720 * h / w), 720 - else: - h, w = 720, int(720 * w / h) - image = cv2.resize(image, (w, h), - interpolation=cv2.INTER_AREA) - h, w = (h // 8) * 8, (w // 8) * 8 - image = image[:h, :w, :] - return image - - -def cartoonize(load_folder, save_folder, model_path): - print(model_path) - input_photo = tf.placeholder(tf.float32, [1, None, None, 3]) - network_out = network.unet_generator(input_photo) - final_out = guided_filter.guided_filter(input_photo, network_out, r=1, eps=5e-3) - - all_vars = tf.trainable_variables() - gene_vars = [var for var in all_vars if 'generator' in var.name] - saver = tf.train.Saver(var_list=gene_vars) - - config = tf.ConfigProto() - config.gpu_options.allow_growth = True - sess = tf.Session(config=config) - - sess.run(tf.global_variables_initializer()) - saver.restore(sess, tf.train.latest_checkpoint(model_path)) - name_list = os.listdir(load_folder) - for name in tqdm(name_list): - try: - load_path = os.path.join(load_folder, name) - save_path = os.path.join(save_folder, name) - image = cv2.imread(load_path) - image = resize_crop(image) - batch_image = image.astype(np.float32) / 127.5 - 1 - batch_image = np.expand_dims(batch_image, axis=0) - output = sess.run(final_out, feed_dict={input_photo: batch_image}) - output = (np.squeeze(output) + 1) * 127.5 - output = np.clip(output, 0, 255).astype(np.uint8) - cv2.imwrite(save_path, output) - except: - print('cartoonize {} failed'.format(load_path)) - - -class Cartoonize: - def __init__(self, model_path): - print(model_path) - self.input_photo = tf.placeholder(tf.float32, [1, None, None, 3]) - network_out = network.unet_generator(self.input_photo) - self.final_out = guided_filter.guided_filter(self.input_photo, network_out, r=1, eps=5e-3) - - all_vars = tf.trainable_variables() - gene_vars = [var for var in all_vars if 'generator' in var.name] - saver = tf.train.Saver(var_list=gene_vars) - - config = tf.ConfigProto() - config.gpu_options.allow_growth = True - self.sess = tf.Session(config=config) - - self.sess.run(tf.global_variables_initializer()) - saver.restore(self.sess, tf.train.latest_checkpoint(model_path)) - - def run(self, load_folder, save_folder): - name_list = os.listdir(load_folder) - for name in tqdm(name_list): - try: - load_path = os.path.join(load_folder, name) - save_path = os.path.join(save_folder, name) - image = cv2.imread(load_path) - image = resize_crop(image) - batch_image = image.astype(np.float32) / 127.5 - 1 - batch_image = np.expand_dims(batch_image, axis=0) - output = self.sess.run(self.final_out, feed_dict={self.input_photo: batch_image}) - output = (np.squeeze(output) + 1) * 127.5 - output = np.clip(output, 0, 255).astype(np.uint8) - cv2.imwrite(save_path, output) - except: - print('cartoonize {} failed'.format(load_path)) - - def run_sigle(self, load_path, save_path): - try: - image = cv2.imread(load_path) - image = resize_crop(image) - batch_image = image.astype(np.float32) / 127.5 - 1 - batch_image = np.expand_dims(batch_image, axis=0) - output = self.sess.run(self.final_out, feed_dict={self.input_photo: batch_image}) - output = (np.squeeze(output) + 1) * 127.5 - output = np.clip(output, 0, 255).astype(np.uint8) - cv2.imwrite(save_path, output) - except: - print('cartoonize {} failed'.format(load_path)) - - -if __name__ == '__main__': - model_path = 'saved_models' - load_folder = 'test_images' - save_folder = 'cartoonized_images' - if not os.path.exists(save_folder): - os.mkdir(save_folder) - cartoonize(load_folder, save_folder, model_path) diff --git a/spaces/r3gm/RVC_HF/lib/infer_pack/onnx_inference.py b/spaces/r3gm/RVC_HF/lib/infer_pack/onnx_inference.py deleted file mode 100644 index 6517853be49e61c427cf7cd9b5ed203f6d5f367e..0000000000000000000000000000000000000000 --- a/spaces/r3gm/RVC_HF/lib/infer_pack/onnx_inference.py +++ /dev/null @@ -1,145 +0,0 @@ -import onnxruntime -import librosa -import numpy as np -import soundfile - - -class ContentVec: - def __init__(self, vec_path="pretrained/vec-768-layer-12.onnx", device=None): - print("load model(s) from {}".format(vec_path)) - if device == "cpu" or device is None: - providers = ["CPUExecutionProvider"] - elif device == "cuda": - providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] - elif device == "dml": - providers = ["DmlExecutionProvider"] - else: - raise RuntimeError("Unsportted Device") - self.model = onnxruntime.InferenceSession(vec_path, providers=providers) - - def __call__(self, wav): - return self.forward(wav) - - def forward(self, wav): - feats = wav - if feats.ndim == 2: # double channels - feats = feats.mean(-1) - assert feats.ndim == 1, feats.ndim - feats = np.expand_dims(np.expand_dims(feats, 0), 0) - onnx_input = {self.model.get_inputs()[0].name: feats} - logits = self.model.run(None, onnx_input)[0] - return logits.transpose(0, 2, 1) - - -def get_f0_predictor(f0_predictor, hop_length, sampling_rate, **kargs): - if f0_predictor == "pm": - from lib.infer_pack.modules.F0Predictor.PMF0Predictor import PMF0Predictor - - f0_predictor_object = PMF0Predictor( - hop_length=hop_length, sampling_rate=sampling_rate - ) - elif f0_predictor == "harvest": - from lib.infer_pack.modules.F0Predictor.HarvestF0Predictor import ( - HarvestF0Predictor, - ) - - f0_predictor_object = HarvestF0Predictor( - hop_length=hop_length, sampling_rate=sampling_rate - ) - elif f0_predictor == "dio": - from lib.infer_pack.modules.F0Predictor.DioF0Predictor import DioF0Predictor - - f0_predictor_object = DioF0Predictor( - hop_length=hop_length, sampling_rate=sampling_rate - ) - else: - raise Exception("Unknown f0 predictor") - return f0_predictor_object - - -class OnnxRVC: - def __init__( - self, - model_path, - sr=40000, - hop_size=512, - vec_path="vec-768-layer-12", - device="cpu", - ): - vec_path = f"pretrained/{vec_path}.onnx" - self.vec_model = ContentVec(vec_path, device) - if device == "cpu" or device is None: - providers = ["CPUExecutionProvider"] - elif device == "cuda": - providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] - elif device == "dml": - providers = ["DmlExecutionProvider"] - else: - raise RuntimeError("Unsportted Device") - self.model = onnxruntime.InferenceSession(model_path, providers=providers) - self.sampling_rate = sr - self.hop_size = hop_size - - def forward(self, hubert, hubert_length, pitch, pitchf, ds, rnd): - onnx_input = { - self.model.get_inputs()[0].name: hubert, - self.model.get_inputs()[1].name: hubert_length, - self.model.get_inputs()[2].name: pitch, - self.model.get_inputs()[3].name: pitchf, - self.model.get_inputs()[4].name: ds, - self.model.get_inputs()[5].name: rnd, - } - return (self.model.run(None, onnx_input)[0] * 32767).astype(np.int16) - - def inference( - self, - raw_path, - sid, - f0_method="dio", - f0_up_key=0, - pad_time=0.5, - cr_threshold=0.02, - ): - f0_min = 50 - f0_max = 1100 - f0_mel_min = 1127 * np.log(1 + f0_min / 700) - f0_mel_max = 1127 * np.log(1 + f0_max / 700) - f0_predictor = get_f0_predictor( - f0_method, - hop_length=self.hop_size, - sampling_rate=self.sampling_rate, - threshold=cr_threshold, - ) - wav, sr = librosa.load(raw_path, sr=self.sampling_rate) - org_length = len(wav) - if org_length / sr > 50.0: - raise RuntimeError("Reached Max Length") - - wav16k = librosa.resample(wav, orig_sr=self.sampling_rate, target_sr=16000) - wav16k = wav16k - - hubert = self.vec_model(wav16k) - hubert = np.repeat(hubert, 2, axis=2).transpose(0, 2, 1).astype(np.float32) - hubert_length = hubert.shape[1] - - pitchf = f0_predictor.compute_f0(wav, hubert_length) - pitchf = pitchf * 2 ** (f0_up_key / 12) - pitch = pitchf.copy() - f0_mel = 1127 * np.log(1 + pitch / 700) - f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / ( - f0_mel_max - f0_mel_min - ) + 1 - f0_mel[f0_mel <= 1] = 1 - f0_mel[f0_mel > 255] = 255 - pitch = np.rint(f0_mel).astype(np.int64) - - pitchf = pitchf.reshape(1, len(pitchf)).astype(np.float32) - pitch = pitch.reshape(1, len(pitch)) - ds = np.array([sid]).astype(np.int64) - - rnd = np.random.randn(1, 192, hubert_length).astype(np.float32) - hubert_length = np.array([hubert_length]).astype(np.int64) - - out_wav = self.forward(hubert, hubert_length, pitch, pitchf, ds, rnd).squeeze() - out_wav = np.pad(out_wav, (0, 2 * self.hop_size), "constant") - return out_wav[0:org_length] diff --git a/spaces/radames/SPIGA-face-alignment-headpose-estimator/app.py b/spaces/radames/SPIGA-face-alignment-headpose-estimator/app.py deleted file mode 100644 index bcd052890c211323a37df893d77afce84c759e8e..0000000000000000000000000000000000000000 --- a/spaces/radames/SPIGA-face-alignment-headpose-estimator/app.py +++ /dev/null @@ -1,153 +0,0 @@ -import os -import sys -from pathlib import Path -import uuid -import gradio as gr -from PIL import Image -import cv2 -import torch -import numpy as np -import copy -import retinaface - -device = 'cuda' if torch.cuda.is_available() else 'cpu' - -try: - from spiga.demo.app import video_app - from spiga.inference.config import ModelConfig - from spiga.inference.framework import SPIGAFramework - from spiga.demo.visualize.plotter import Plotter - import spiga.demo.analyze.track.retinasort.config as cfg - - -except: - os.system("pip install -e ./SPIGA[demo]") - sys.path.append(os.path.abspath("./SPIGA")) - from spiga.demo.app import video_app - from spiga.inference.config import ModelConfig - from spiga.inference.framework import SPIGAFramework - from spiga.demo.visualize.plotter import Plotter - import spiga.demo.analyze.track.retinasort.config as cfg - - -face_processor = SPIGAFramework(ModelConfig('wflw')) -config = cfg.cfg_retinasort -face_detector = retinaface.RetinaFaceDetector(model=config['retina']['model_name'], - device=device, - extra_features=config['retina']['extra_features'], - cfg_postreat=config['retina']['postreat']) - - -def predict_video(video_in): - if video_in == None: - raise gr.Error("Please upload a video or image.") - - video_in = Path(video_in) - output_path = Path("/tmp") - video_file_name = str(uuid.uuid4()) - new_video_path = output_path / f"{video_file_name}{video_in.suffix}" - video_in.rename(new_video_path) - - video_app(str(new_video_path), - # Choices=['wflw', '300wpublic', '300wprivate', 'merlrav'] - spiga_dataset='wflw', - # Choices=['RetinaSort', 'RetinaSort_Res50'] - tracker='RetinaSort', - save=True, - output_path=output_path, - visualize=False, - plot=['fps', 'face_id', 'landmarks', 'headpose']) - video_output_path = f"{output_path}/{new_video_path.name[:-4]}.mp4" - - return video_output_path - - -def predict_image(image_in_video, image_in_img): - if image_in_video == None and image_in_img == None: - raise gr.Error("Please upload a video or image.") - - if image_in_video or image_in_img: - print("image", image_in_video, image_in_img) - image = image_in_img if image_in_img else image_in_video - image = Image.open(image).convert("RGB") - cv2_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) - face_detector.set_input_shape(image.size[1], image.size[0]) - features = face_detector.inference(image) - if features: - bboxes = features['bbox'] - bboxes_n = [] - for bbox in bboxes: - x1, y1, x2, y2 = bbox[:4] - bbox_wh = [x1, y1, x2-x1, y2-y1] - bboxes_n.append(bbox_wh) - face_features = face_processor.inference(cv2_image, bboxes_n) - canvas = copy.deepcopy(cv2_image) - plotter = Plotter() - for landmarks, headpose, bbox in zip(face_features['landmarks'], face_features['headpose'], bboxes_n): - x0, y0, w, h = bbox - landmarks = np.array(landmarks) - headpose = np.array(headpose) - canvas = plotter.landmarks.draw_landmarks(canvas, landmarks) - canvas = plotter.hpose.draw_headpose( - canvas, [x0, y0, x0+w, y0+h], headpose[:3], headpose[3:], euler=True) - - return Image.fromarray(cv2.cvtColor(canvas, cv2.COLOR_BGR2RGB)) - - -def toggle(choice): - if choice == "webcam": - return gr.update(visible=True, value=None), gr.update(visible=False, value=None) - else: - return gr.update(visible=False, value=None), gr.update(visible=True, value=None) - - -with gr.Blocks() as blocks: - gr.Markdown(""" - # Unofficia Demo: SPIGA - ## Shape Preserving Facial Landmarks with Graph Attention Networks. - - * https://github.com/andresprados/SPIGA - * https://arxiv.org/abs/2210.07233 -""") - with gr.Tab("Video") as tab: - with gr.Row(): - with gr.Column(): - video_or_file_opt = gr.Radio(["upload", "webcam"], value="upload", - label="How would you like to upload your video?") - video_in = gr.Video(source="upload", include_audio=False) - video_or_file_opt.change(fn=lambda s: gr.update(source=s, value=None), inputs=video_or_file_opt, - outputs=video_in, queue=False) - with gr.Column(): - video_out = gr.Video() - run_btn = gr.Button("Run") - run_btn.click(fn=predict_video, inputs=[video_in], outputs=[video_out]) - gr.Examples(fn=predict_video, examples=[["./examples/temp.mp4"]], - inputs=[video_in], outputs=[video_out], - cache_examples=True) - - with gr.Tab("Image"): - with gr.Row(): - with gr.Column(): - image_or_file_opt = gr.Radio(["file", "webcam"], value="file", - label="How would you like to upload your image?") - image_in_video = gr.Image( - source="webcam", type="filepath", visible=False) - image_in_img = gr.Image( - source="upload", visible=True, type="filepath") - - image_or_file_opt.change(fn=toggle, inputs=[image_or_file_opt], - outputs=[image_in_video, image_in_img], queue=False) - with gr.Column(): - image_out = gr.Image() - run_btn = gr.Button("Run") - run_btn.click(fn=predict_image, - inputs=[image_in_img, image_in_video], outputs=[image_out]) - gr.Examples(fn=predict_image, examples=[ - ["./examples/52_Photographers_photographertakingphoto_52_315.jpg", None], - ["./examples/6_Funeral_Funeral_6_759.jpg", None] - ], - inputs=[image_in_img, image_in_video], outputs=[image_out], - cache_examples=True - ) - -blocks.launch() diff --git a/spaces/radames/UserControllableLT-Latent-Transformer/interface/pixel2style2pixel/download-weights.sh b/spaces/radames/UserControllableLT-Latent-Transformer/interface/pixel2style2pixel/download-weights.sh deleted file mode 100644 index 2abead459cc7f39e857bf1b8e3be58d5bf2e2c0f..0000000000000000000000000000000000000000 --- a/spaces/radames/UserControllableLT-Latent-Transformer/interface/pixel2style2pixel/download-weights.sh +++ /dev/null @@ -1,12 +0,0 @@ -#!/bin/sh -mkdir pretrained_models -cd pretrained_models - -wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1lB7wk7MwtdxL-LL4Z_T76DuCfk00aSXA' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1lB7wk7MwtdxL-LL4Z_T76DuCfk00aSXA" -O psp_celebs_sketch_to_face.pt && rm -rf /tmp/cookies.txt -wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1_S4THAzXb-97DbpXmanjHtXRyKxqjARv' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1_S4THAzXb-97DbpXmanjHtXRyKxqjARv" -O psp_ffhq_frontalization.pt && rm -rf /tmp/cookies.txt -wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1ZpmSXBpJ9pFEov6-jjQstAlfYbkebECu' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1ZpmSXBpJ9pFEov6-jjQstAlfYbkebECu" -O psp_celebs_super_resolution.pt && rm -rf /tmp/cookies.txt -wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1YKoiVuFaqdvzDP5CZaqa3k5phL-VDmyz' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1YKoiVuFaqdvzDP5CZaqa3k5phL-VDmyz" -O psp_ffhq_toonify.pt && rm -rf /tmp/cookies.txt - -cd .. -wget http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 -bunzip2 shape_predictor_68_face_landmarks.dat.bz2 diff --git a/spaces/raedeXanto/academic-chatgpt-beta/Avatar the Last Airbender 2 Online Subtitrat in Romana Ce i Rezerv Cel de-al Doilea Sezon al Serialului.md b/spaces/raedeXanto/academic-chatgpt-beta/Avatar the Last Airbender 2 Online Subtitrat in Romana Ce i Rezerv Cel de-al Doilea Sezon al Serialului.md deleted file mode 100644 index 2060c7c5dc2d79c780f47ea65a76e4e59d3bb43e..0000000000000000000000000000000000000000 --- a/spaces/raedeXanto/academic-chatgpt-beta/Avatar the Last Airbender 2 Online Subtitrat in Romana Ce i Rezerv Cel de-al Doilea Sezon al Serialului.md +++ /dev/null @@ -1,128 +0,0 @@ -
          -

          Avatar: The Last Airbender 2 Online Subtitrat in Romana

          -

          If you are looking for a captivating and engaging animated series that will keep you hooked for hours, you should definitely check out Avatar: The Last Airbender. This show has been praised by critics and fans alike for its amazing story, characters, animation, and themes. It has also won several awards, including a Peabody Award, an Annie Award, and a Primetime Emmy Award.

          -

          In this article, we will tell you everything you need to know about Avatar: The Last Airbender, including what it is about, why it is so popular, and how you can watch it online subtitrat in romana (with Romanian subtitles). Whether you are a new fan or a longtime lover of the show, you will find something interesting and useful in this article. So, let's get started!

          -

          avatar the last airbender 2 online subtitrat in romana


          Download ———>>> https://tinourl.com/2uL0VO



          -

          What is Avatar: The Last Airbender?

          -

          Avatar: The Last Airbender is an American animated television series that aired on Nickelodeon from 2005 to 2008. It was created by Michael Dante DiMartino and Bryan Konietzko, who also served as executive producers along with Aaron Ehasz. The show is set in a fantasy world where people can manipulate one of the four elements: water, earth, fire, or air. These people are called benders, and they use their abilities for various purposes, such as combat, transportation, or entertainment.

          -

          A brief summary of the plot

          -

          The show follows the adventures of Aang, a 12-year-old boy who is the reincarnation of the Avatar, a legendary being who can master all four elements. He is also the last surviving member of the Air Nomads, a peaceful and spiritual culture that was wiped out by the Fire Nation, a militaristic and imperialistic nation that seeks to conquer the world.

          -

          avatar the last airbender 2 film online subtitrat
          -avatar the last airbender 2 full movie online subtitrat
          -avatar the last airbender 2 online gratis subtitrat in romana
          -avatar the last airbender 2 online hd subtitrat in romana
          -avatar the last airbender 2 online subtitrat in romana gratis
          -avatar the last airbender 2 online subtitrat in romana hd
          -avatar the last airbender 2 online subtitrat in romana complet
          -avatar the last airbender 2 online subtitrat in romana 720p
          -avatar the last airbender 2 online subtitrat in romana 1080p
          -avatar the last airbender 2 online subtitrat in romana fara intrerupere
          -avatar the last airbender 2 online subtitrat in romana episodul 1
          -avatar the last airbender 2 online subtitrat in romana episodul 2
          -avatar the last airbender 2 online subtitrat in romana episodul 3
          -avatar the last airbender 2 online subtitrat in romana episodul 4
          -avatar the last airbender 2 online subtitrat in romana episodul 5
          -avatar the last airbender 2 online subtitrat in romana episodul 6
          -avatar the last airbender 2 online subtitrat in romana episodul 7
          -avatar the last airbender 2 online subtitrat in romana episodul 8
          -avatar the last airbender 2 online subtitrat in romana episodul 9
          -avatar the last airbender 2 online subtitrat in romana episodul 10
          -avatar the last airbender 2 online subtitrat in romana episodul 11
          -avatar the last airbender 2 online subtitrat in romana episodul 12
          -avatar the last airbender 2 online subtitrat in romana episodul 13
          -avatar the last airbender 2 online subtitrat in romana episodul 14
          -avatar the last airbender 2 online subtitrat in romana episodul 15
          -avatar the last airbender sezonul 2 online subtitrat in romana
          -avatar the last airbender sezonul 3 online subtitrat in romana
          -avatar the legend of korra sezonul 1 online subtitrat in romana
          -avatar the legend of korra sezonul 2 online subtitrat in romana
          -avatar aang si korra sezonul 1 online subtitrat in romana
          -avatar aang si korra sezonul 2 online subtitrat in romana
          -desene animate cu avatar the last airbender online subtitrate in romana
          -desene animate cu avatar aang si korra online subtitrate in romana
          -desene animate cu legendele lui aang si korra online subtitrate in romana
          -desene animate cu aventurile lui aang si korra online subtitrate in romana
          -desene animate cu povestea lui aang si korra online subtitrate in romana
          -desene animate cu lumea lui aang si korra online subtitrate in romana
          -desene animate cu magia lui aang si korra online subtitrate in romana
          -desene animate cu elementele lui aang si korra online subtitrate in romana
          -desene animate cu prietenii lui aang si korra online subtitrate in romana
          -seriale cu avatar the last airbender online subtitrate in romana
          -seriale cu avatar aang si korra online subtitrate in romana
          -seriale cu legendele lui aang si korra online subtitrate in romana
          -seriale cu aventurile lui aang si korra online subtitrate in romana
          -seriale cu povestea lui aang si korra online subtitrate in romana
          -seriale cu lumea lui aang si korra online subtitrate in romana
          -seriale cu magia lui aang si korra online subtitrate in romana
          -seriale cu elementele lui aang si korra online subtitrate in romana
          -seriale cu prietenii lui aang si korra online subtitrate in romana

          -

          Aang was frozen in an iceberg for 100 years, until he was awakened by Katara and Sokka, two siblings from the Southern Water Tribe, a small and isolated community that lives in the South Pole. Together, they embark on a journey to help Aang learn the other three elements (water, earth, and fire) and stop the Fire Nation from completing their war. Along the way, they meet many friends and foes, such as Toph, a blind earthbender who joins their team; Zuko, the banished prince of the Fire Nation who pursues Aang to regain his honor; Iroh, Zuko's wise and kind uncle who guides him; Azula, Zuko's ruthless and cunning sister who leads a team of elite firebenders; and many more.

          -

          The main characters and their abilities

          -

          Here is a brief introduction to the main characters of Avatar: The Last Airbender and their abilities:

          -
            -
          • Aang: He is the Avatar, which means he can bend all four elements. He is also an airbender, which means he can manipulate air currents, fly with his glider staff, create air spheres and shields, and enhance his speed and agility. He is cheerful, optimistic, fun-loving, and compassionate, but he also struggles with his responsibility as the Avatar and his pacifist beliefs.
          • -
          • Katara: She is a waterbender, which means she can manipulate water in its various forms (liquid, solid, or gas). She can also heal wounds with her waterbending. She is kind, caring, motherly, and determined, but she also has a temper and can be stubborn at times. She acts as Aang's waterbending teacher and surrogate sister.
          • -
          • Sokka: He is a non-bender, which means he cannot bend any element. However, he compensates with his intelligence, creativity, humor, and skills with various weapons (such as his boomerang). He is sarcastic, witty, loyal, brave, and protective of his friends and family. He acts as Aang's strategist and comic relief.
          • -

            , independent, sarcastic, and rebellious. She acts as Aang's earthbending teacher and friend. -

          • Zuko: He is a firebender, which means he can manipulate fire and heat. He can also generate lightning, which is a rare and advanced form of firebending. He has a large scar on his left eye, which he received from his father, Fire Lord Ozai, as a punishment for speaking out of turn. He is initially Aang's enemy and pursues him across the world to capture him and restore his honor. However, he undergoes a dramatic character arc and eventually joins Aang's team as his firebending teacher and ally. He is conflicted, honorable, loyal, and courageous.
          • -
          • Iroh: He is Zuko's uncle and a former general of the Fire Nation army. He is also a firebender and a master of lightning generation and redirection. He is wise, humorous, compassionate, and spiritual. He loves tea, music, and games. He acts as Zuko's mentor and surrogate father figure. He is also a member of the Order of the White Lotus, a secret society that seeks to restore balance to the world.
          • -
          • Azula: She is Zuko's younger sister and a prodigy firebender. She can also generate blue fire and lightning, which are signs of her power and precision. She is Ozai's favorite child and his right-hand woman. She leads a team of elite firebenders who hunt down Aang and Zuko. She is manipulative, cruel, cunning, and ambitious. She suffers from a mental breakdown after her friends betray her and her father neglects her.
          • -
          -

          The themes and messages of the show

          -

          Avatar: The Last Airbender explores many themes and messages that are relevant to our world today. Some of these are:

          -
            -
          • Balance: The show emphasizes the importance of balance in nature, society, and oneself. The Avatar's role is to maintain balance between the four nations and the spirit world. The Fire Nation's war disrupts this balance and causes suffering and destruction. The characters also struggle to balance their personal desires with their responsibilities and duties.
          • -
          • Identity: The show explores the concept of identity and how it is shaped by one's culture, history, choices, and actions. The characters have to deal with their pasts, their roles, their relationships, and their destinies. They also have to face their inner conflicts and demons.
          • -
          • Redemption: The show portrays redemption as a possible and desirable outcome for those who have done wrong or made mistakes. The characters have to face the consequences of their actions and seek forgiveness from others and themselves. They also have to change their ways and prove themselves worthy of trust and respect.
          • -
          • Friendship: The show celebrates friendship as a powerful force that can overcome any obstacle or challenge. The characters form strong bonds with each other based on mutual respect, support, understanding, and love. They also learn from each other's strengths and weaknesses.
          • -
          • Hope: The show inspires hope as a vital element for survival and success. The characters face many hardships and dangers but never give up on their goals or dreams. They also believe in the possibility of a better future for themselves and the world.
          • -
          -

          Why is Avatar: The Last Airbender so popular?

          -

          and themes. It has also gained a loyal and passionate fanbase that spans across generations and cultures. Here are some of the reasons why Avatar: The Last Airbender is so popular:

          -

          The animation and art style

          -

          Avatar: The Last Airbender features stunning animation and art style that draw inspiration from various Asian cultures, such as Chinese, Japanese, Tibetan, Inuit, and Indian. The show uses a blend of traditional and computer animation to create fluid and expressive movements for the characters and the elements. The show also uses a rich and vibrant color palette to depict the different environments and moods of the story. The show's animation and art style have been praised by critics and fans alike for their beauty, originality, and detail.

          -

          The humor and action

          -

          Avatar: The Last Airbender balances humor and action perfectly to create a thrilling and entertaining experience for the viewers. The show has plenty of hilarious moments that lighten up the mood and showcase the personalities of the characters. The show also has plenty of exciting and epic action scenes that showcase the skills and abilities of the benders and the non-benders. The show's humor and action have been praised by critics and fans alike for their creativity, variety, and impact.

          -

          The cultural diversity and representation

          -

          Avatar: The Last Airbender features a diverse and representative cast of characters that reflect the different cultures and backgrounds of the world. The show does not shy away from exploring the issues and challenges that these characters face, such as oppression, discrimination, colonization, genocide, trauma, and identity. The show also celebrates the values and traditions of these cultures, such as spirituality, harmony, respect, and courage. The show's cultural diversity and representation have been praised by critics and fans alike for their authenticity, sensitivity, and relevance.

          -

          The character development and arcs

          -

          Avatar: The Last Airbender features a complex and compelling character development and arcs for its main and supporting characters. The show does not rely on stereotypes or clichƩs to portray its characters but rather gives them depth, flaws, motivations, and growth. The show also does not paint its characters as purely good or evil but rather shows them as nuanced and realistic human beings who make mistakes and learn from them. The show's character development and arcs have been praised by critics and fans alike for their quality, consistency, and emotional resonance.

          -

          How to watch Avatar: The Last Airbender 2 online subtitrat in romana?

          -

          If you are interested in watching Avatar: The Last Airbender 2 online subtitrat in romana (with Romanian subtitles), you have a few options to choose from. Here are some of them:

          -

          The options for streaming the show online

          -

          One option is to use Netflix , which has all three seasons of Avatar: The Last Airbender available for streaming in various languages, including Romanian. You can also download the episodes to watch offline on your device. However, you will need a Netflix subscription to access this option.

          -

          and movies, including Avatar: The Last Airbender. You can choose from various servers and quality options to stream the show online subtitrat in romana. However, you will need to deal with some pop-up ads and redirects to access this option.

          -

          A third option is to use Seriale Online , which is another website that offers free streaming of various TV shows and movies, including Avatar: The Last Airbender. You can also choose from various servers and quality options to stream the show online subtitrat in romana. However, you will also need to deal with some pop-up ads and redirects to access this option.

          -

          The benefits of watching the show with subtitles

          -

          Watching Avatar: The Last Airbender online subtitrat in romana has some benefits that you might want to consider. Here are some of them:

          -
            -
          • Learning a new language: Watching the show with subtitles can help you learn or improve your Romanian language skills. You can pick up new words, phrases, grammar, and pronunciation by listening to the dialogue and reading the subtitles. You can also compare the original English version with the Romanian translation and see how they differ or match.
          • -
          • Understanding the story better: Watching the show with subtitles can help you understand the story better, especially if you are not familiar with some of the terms or concepts used in the show. You can also catch some details or nuances that you might miss otherwise by reading the subtitles.
          • -
          • Enjoying the show more: Watching the show with subtitles can help you enjoy the show more, especially if you are a fan of the original version and want to see how it is adapted for a different audience. You can also appreciate the voice acting and the sound effects more by reading the subtitles.
          • -
          -

          The challenges and tips for watching the show with subtitles

          -

          Watching Avatar: The Last Airbender online subtitrat in romana also has some challenges that you might want to be aware of. Here are some of them:

          -
            -
          • Missing some visual cues: Watching the show with subtitles can make you miss some visual cues that are important for the story or the action. You might be too focused on reading the subtitles and not pay attention to what is happening on the screen. To avoid this, you should try to balance your eye movement between the subtitles and the screen.
          • -
          • Getting distracted by other things: Watching the show with subtitles can make you get distracted by other things that are happening around you or on your device. You might be tempted to check your phone, browse the internet, or talk to someone while watching the show. To avoid this, you should try to minimize any distractions and focus on the show.
          • -
          • Facing technical issues: Watching the show with subtitles can make you face some technical issues that might affect your viewing experience. You might encounter some problems with the streaming quality, the subtitle synchronization, or the subtitle accuracy. To avoid this, you should try to use a reliable and secure website, a fast and stable internet connection, and a good device.
          • -
          -

          Conclusion

          -

          the praise and popularity it has received. It has a captivating story, a diverse and representative cast of characters, a stunning animation and art style, a perfect balance of humor and action, and a profound exploration of themes and messages that are relevant to our world today. If you are interested in watching Avatar: The Last Airbender 2 online subtitrat in romana (with Romanian subtitles), you have a few options to choose from, such as Netflix, Veziseriale, or Seriale Online. However, you should also be aware of the benefits, challenges, and tips for watching the show with subtitles. We hope this article has helped you learn more about Avatar: The Last Airbender and how to watch it online subtitrat in romana. Thank you for reading and enjoy the show!

          -

          FAQs

          -

          Here are some frequently asked questions about Avatar: The Last Airbender and how to watch it online subtitrat in romana:

          -
            -
          • Q: How many episodes are there in Avatar: The Last Airbender?
          • -
          • A: There are 61 episodes in Avatar: The Last Airbender, divided into three seasons or books: Book One: Water (20 episodes), Book Two: Earth (20 episodes), and Book Three: Fire (21 episodes).
          • -
          • Q: Is there a sequel to Avatar: The Last Airbender?
          • -
          • A: Yes, there is a sequel to Avatar: The Last Airbender called The Legend of Korra, which is also an animated series that aired on Nickelodeon from 2012 to 2014. It follows the adventures of Korra, the next Avatar after Aang, who lives in a modernized world where benders and non-benders coexist.
          • -
          • Q: Is there a live-action remake of Avatar: The Last Airbender?
          • -
          • A: Yes, there is a live-action remake of Avatar: The Last Airbender that was released in 2010 by M. Night Shyamalan. However, it was widely criticized by fans and critics alike for its poor quality, whitewashing, and deviation from the original source material.
          • -
          • Q: Is there a live-action reboot of Avatar: The Last Airbender?
          • -
          • A: Yes, there is a live-action reboot of Avatar: The Last Airbender that is currently in development by Netflix. It will be produced by the original creators of the show, Bryan Konietzko and Michael Dante DiMartino, who promise to honor and respect the original vision and fans of the show.
          • -
          • Q: Where can I watch Avatar: The Last Airbender 2 online subtitrat in romana?
          • -
          • A: You can watch Avatar: The Last Airbender 2 online subtitrat in romana on various websites that offer free streaming of TV shows and movies, such as Netflix, Veziseriale, or Seriale Online. However, you should also be aware of the benefits, challenges, and tips for watching the show with subtitles.
          • -
          -

          0a6ba089eb
          -
          -
          \ No newline at end of file diff --git a/spaces/raedeXanto/academic-chatgpt-beta/FL Studio 20 Crack RegKey [Producer Edition] Free Download __LINK__.md b/spaces/raedeXanto/academic-chatgpt-beta/FL Studio 20 Crack RegKey [Producer Edition] Free Download __LINK__.md deleted file mode 100644 index fc8b0d36ec74023195a18785b1e0a91f59071c1a..0000000000000000000000000000000000000000 --- a/spaces/raedeXanto/academic-chatgpt-beta/FL Studio 20 Crack RegKey [Producer Edition] Free Download __LINK__.md +++ /dev/null @@ -1,23 +0,0 @@ -
          -

          How to Download and Install FL Studio 20 Producer Edition for Free

          -

          FL Studio 20 is a powerful and popular digital audio workstation (DAW) that allows you to create, edit, mix and master music. It has a variety of features and plugins that can help you produce professional-quality tracks in any genre. FL Studio 20 Producer Edition is the most advanced version of the software, which includes all the tools and instruments you need to make music from scratch.

          -

          However, FL Studio 20 Producer Edition is not cheap. It costs $199 for a lifetime license, which may be too expensive for some users. If you are looking for a way to get FL Studio 20 Producer Edition for free, you may be tempted to download a cracked version from the internet. But this is not a good idea, as it can expose your computer to viruses, malware, and legal issues.

          -

          FL Studio 20 Crack RegKey [Producer Edition] Free Download


          Download >>> https://tinourl.com/2uKZSL



          -

          In this article, we will show you how to download and install FL Studio 20 Producer Edition for free legally and safely. You will need a valid email address and an internet connection to follow this guide.

          - -

          Step 1: Download the FL Studio 20 Trial Version

          -

          The first step is to download the FL Studio 20 trial version from the official website of Image Line, the developer of the software. The trial version is fully functional and allows you to use all the features and plugins of FL Studio 20 Producer Edition for an unlimited time. However, you will not be able to save your projects or export them as audio files.

          -

          To download the FL Studio 20 trial version, go to https://www.image-line.com/fl-studio-download/ and click on the "Download" button. You will be redirected to a page where you can choose your operating system (Windows or Mac) and your preferred installer type (Online or Offline). We recommend choosing the Online installer, as it will download only the necessary files for your system.

          -

          After choosing your installer type, click on the "Download" button again and save the file to your computer. The file name should be something like "flstudio_win_20.9.2_online.exe" or "flstudio_mac_20.9.2_online.dmg".

          - -

          Step 2: Install the FL Studio 20 Trial Version

          -

          The next step is to install the FL Studio 20 trial version on your computer. To do this, locate the file you downloaded in the previous step and double-click on it. You will see a window with the Image Line logo and a progress bar. Wait for the installation process to complete.

          -

          After the installation is done, you will see a window with a "Finish" button. Click on it and launch FL Studio 20 from your desktop or start menu. You will be asked to enter your email address and password to register your account with Image Line. If you don't have an account yet, you can create one by clicking on the "Create Account" button.

          -

          Once you have registered your account, you will be able to use FL Studio 20 Producer Edition for free as a trial version. You will see a message on the top left corner of the software that says "Trial Mode - All features enabled". You can explore all the features and plugins of FL Studio 20 Producer Edition and create music as you like.

          -

          - -

          Step 3: Download the FLRegKey.reg File

          -

          The final step is to download the FLRegKey.reg file from Google Drive. This file is a registry key that will unlock FL Studio 20 Producer Edition permanently on your computer. You will be able to save your projects and export them as audio files without any limitations.

          -

          To download the FLRegKey.reg file, go to https://drive.google.com/file/d/0BxZZ3y8npokUYnVfMzdvMGVtd2M/view and click on the "Download" button. You will see a warning message that says "Google Drive can't scan this file for viruses". Ignore

          7b8c122e87
          -
          -
          \ No newline at end of file diff --git a/spaces/randomtable/SD-WebUI/README.md b/spaces/randomtable/SD-WebUI/README.md deleted file mode 100644 index 7c8de8837d62413357f568508bef62e00f04b02b..0000000000000000000000000000000000000000 --- a/spaces/randomtable/SD-WebUI/README.md +++ /dev/null @@ -1,10 +0,0 @@ ---- -title: SD WebUI -emoji: šŸ“ˆ -colorFrom: pink -colorTo: gray -sdk: docker -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/recenWmenso/ChatGPT-with-Voice-Cloning-for-All/datasets/Clikon CK710 Flash File MT6572 4.4.2 Firmware UPD.md b/spaces/recenWmenso/ChatGPT-with-Voice-Cloning-for-All/datasets/Clikon CK710 Flash File MT6572 4.4.2 Firmware UPD.md deleted file mode 100644 index e18e7ec03e45e728240b576ac35fe331702f9513..0000000000000000000000000000000000000000 --- a/spaces/recenWmenso/ChatGPT-with-Voice-Cloning-for-All/datasets/Clikon CK710 Flash File MT6572 4.4.2 Firmware UPD.md +++ /dev/null @@ -1,6 +0,0 @@ -

          Clikon CK710 Flash File MT6572 4.4.2 Firmware


          DOWNLOAD ✑ ✑ ✑ https://urlgoal.com/2uCLTc



          -
          -UNCOMON FILE SIDE ... CLIKON CK710 MT6572 4.4.2 FLASH FILE FIRMWARE BY MAJEDUL MOBILE MT6572__CK710__CK710__CK710__4.4.2__ALPS. 1fdad05405
          -
          -
          -

          diff --git a/spaces/recenWmenso/ChatGPT-with-Voice-Cloning-for-All/datasets/Clip Studio Paint EX 1.8.2 (x64) Multilingual Full With Medicine Serial Key Keygen PORTABLE.md b/spaces/recenWmenso/ChatGPT-with-Voice-Cloning-for-All/datasets/Clip Studio Paint EX 1.8.2 (x64) Multilingual Full With Medicine Serial Key Keygen PORTABLE.md deleted file mode 100644 index a47017e62c449b51ee103f9a06cbec5107af4fae..0000000000000000000000000000000000000000 --- a/spaces/recenWmenso/ChatGPT-with-Voice-Cloning-for-All/datasets/Clip Studio Paint EX 1.8.2 (x64) Multilingual Full With Medicine Serial Key Keygen PORTABLE.md +++ /dev/null @@ -1,6 +0,0 @@ -

          Clip Studio Paint EX 1.8.2 (x64) Multilingual Full With Medicine Serial Key keygen


          DOWNLOAD 🔗 https://urlgoal.com/2uCJPo



          -
          -Windows XP Professional x64 Edition for AMD Athlon 64, AMD Opteron, Intel Xeon with ... 2006 V11 Multilingual Exceed PowerSuite 2006 V11 Multilingual X64 RS 750 ... dvdSanta 3.45 FULL Version Build 5242, DVDX Player Pro v1.6 +Keygen, ... TechSmith CAMTASIA STUDIO 5.1.0(N E Wwith serial keys), Webcam.and. 1fdad05405
          -
          -
          -

          diff --git a/spaces/rekhab0203/mygenAIChatbot/README.md b/spaces/rekhab0203/mygenAIChatbot/README.md deleted file mode 100644 index fbe8464bc6be568eb4d80e6e789e4ff51efd03d2..0000000000000000000000000000000000000000 --- a/spaces/rekhab0203/mygenAIChatbot/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: MygenAIChatbot -emoji: šŸ‘ -colorFrom: indigo -colorTo: red -sdk: gradio -sdk_version: 3.39.0 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/renatotn7/teste2/cog_predict.py b/spaces/renatotn7/teste2/cog_predict.py deleted file mode 100644 index addfd8da63071bc11a8d391d097097ee3965e2f4..0000000000000000000000000000000000000000 --- a/spaces/renatotn7/teste2/cog_predict.py +++ /dev/null @@ -1,151 +0,0 @@ -# flake8: noqa -# This file is used for deploying replicate models -# running: cog predict -i img=@inputs/whole_imgs/10045.png -i version='v1.4' -i scale=2 -# push: cog push r8.im/tencentarc/gfpgan -# push (backup): cog push r8.im/xinntao/gfpgan - -import os - -os.system('python setup.py develop') -os.system('pip install realesrgan') - -import cv2 -import shutil -import tempfile -import torch -from basicsr.archs.srvgg_arch import SRVGGNetCompact - -from gfpgan import GFPGANer - -try: - from cog import BasePredictor, Input, Path - from realesrgan.utils import RealESRGANer -except Exception: - print('please install cog and realesrgan package') - - -class Predictor(BasePredictor): - - def setup(self): - os.makedirs('output', exist_ok=True) - # download weights - if not os.path.exists('gfpgan/weights/realesr-general-x4v3.pth'): - os.system( - 'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P ./gfpgan/weights' - ) - if not os.path.exists('gfpgan/weights/GFPGANv1.2.pth'): - os.system( - 'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P ./gfpgan/weights') - if not os.path.exists('gfpgan/weights/GFPGANv1.3.pth'): - os.system( - 'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P ./gfpgan/weights') - if not os.path.exists('gfpgan/weights/GFPGANv1.4.pth'): - os.system( - 'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P ./gfpgan/weights') - - # background enhancer with RealESRGAN - model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') - model_path = 'gfpgan/weights/realesr-general-x4v3.pth' - half = True if torch.cuda.is_available() else False - self.upsampler = RealESRGANer( - scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) - - # Use GFPGAN for face enhancement - self.face_enhancer = GFPGANer( - model_path='gfpgan/weights/GFPGANv1.4.pth', - upscale=2, - arch='clean', - channel_multiplier=2, - bg_upsampler=self.upsampler) - self.current_version = 'v1.4' - - def predict( - self, - img: Path = Input(description='Input'), - version: str = Input( - description='GFPGAN version. v1.3: better quality. v1.4: more details and better identity.', - choices=['v1.2', 'v1.3', 'v1.4'], - default='v1.4'), - scale: float = Input(description='Rescaling factor', default=2) - ) -> Path: - print(img, version, scale) - try: - extension = os.path.splitext(os.path.basename(str(img)))[1] - img = cv2.imread(str(img), cv2.IMREAD_UNCHANGED) - if len(img.shape) == 3 and img.shape[2] == 4: - img_mode = 'RGBA' - elif len(img.shape) == 2: - img_mode = None - img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) - else: - img_mode = None - - h, w = img.shape[0:2] - if h < 300: - img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) - - if self.current_version != version: - if version == 'v1.2': - self.face_enhancer = GFPGANer( - model_path='gfpgan/weights/GFPGANv1.2.pth', - upscale=2, - arch='clean', - channel_multiplier=2, - bg_upsampler=self.upsampler) - self.current_version = 'v1.2' - elif version == 'v1.3': - self.face_enhancer = GFPGANer( - model_path='gfpgan/weights/GFPGANv1.3.pth', - upscale=2, - arch='clean', - channel_multiplier=2, - bg_upsampler=self.upsampler) - self.current_version = 'v1.3' - elif version == 'v1.4': - self.face_enhancer = GFPGANer( - model_path='gfpgan/weights/GFPGANv1.4.pth', - upscale=2, - arch='clean', - channel_multiplier=2, - bg_upsampler=self.upsampler) - self.current_version = 'v1.4' - - try: - _, _, output = self.face_enhancer.enhance( - img, has_aligned=False, only_center_face=False, paste_back=True) - except RuntimeError as error: - print('Error', error) - else: - extension = 'png' - - try: - if scale != 2: - interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4 - h, w = img.shape[0:2] - output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation) - except Exception as error: - print('wrong scale input.', error) - - if img_mode == 'RGBA': # RGBA images should be saved in png format - extension = 'png' - # save_path = f'output/out.{extension}' - # cv2.imwrite(save_path, output) - out_path = Path(tempfile.mkdtemp()) / f'out.{extension}' - cv2.imwrite(str(out_path), output) - except Exception as error: - print('global exception: ', error) - finally: - clean_folder('output') - return out_path - - -def clean_folder(folder): - for filename in os.listdir(folder): - file_path = os.path.join(folder, filename) - try: - if os.path.isfile(file_path) or os.path.islink(file_path): - os.unlink(file_path) - elif os.path.isdir(file_path): - shutil.rmtree(file_path) - except Exception as e: - print(f'Failed to delete {file_path}. Reason: {e}') diff --git a/spaces/rizam/rakeeb_text-classification/app.py b/spaces/rizam/rakeeb_text-classification/app.py deleted file mode 100644 index 3aa100a644d4f260d9b9b3327a663ddf14c008c9..0000000000000000000000000000000000000000 --- a/spaces/rizam/rakeeb_text-classification/app.py +++ /dev/null @@ -1,67 +0,0 @@ -from transformers import AutoModelForSequenceClassification -from transformers import AutoTokenizer, AutoConfig -import numpy as np -from scipy.special import softmax -import gradio as gr - -# Preprocess text (username and link placeholders) -def preprocess(text): - new_text = [] - for t in text.split(" "): - t = '@user' if t.startswith('@') and len(t) > 1 else t - t = 'http' if t.startswith('http') else t - new_text.append(t) - return " ".join(new_text) - -# load model -MODEL = f"cardiffnlp/twitter-roberta-base-sentiment-latest" -model = AutoModelForSequenceClassification.from_pretrained(MODEL) -#model.save_pretrained(MODEL) - - -tokenizer = AutoTokenizer.from_pretrained(MODEL) -config = AutoConfig.from_pretrained(MODEL) - -# create classifier function -def classify_sentiments(text): - text = preprocess(text) - encoded_input = tokenizer(text, return_tensors='pt') - output = model(**encoded_input) - scores = output[0][0].detach().numpy() - scores = softmax(scores) - - # Print labels and scores - probs = {} - ranking = np.argsort(scores) - ranking = ranking[::-1] - - for i in range(len(scores)): - l = config.id2label[ranking[i]] - s = scores[ranking[i]] - probs[l] = np.round(float(s), 4) - return probs - - -#build the Gradio app -#Instructuction = "Write an imaginary review about a product or service you might be interested in." -title="Text Sentiment Analysis" -description = """Write a Good or Bad review about an imaginary product or service,\ - see how the machine learning model is able to predict your sentiments""" -article = """ - - Click submit button to test sentiment analysis prediction - - Click clear button to refresh text - """ - -gr.Interface(classify_sentiments, - 'text', - 'label', - title = title, - description = description, - #Instruction = Instructuction, - article = article, - allow_flagging = "never", - live = False, - examples=["This has to be the best Introductory course in machine learning", - "I consider this training an absolute waste of time."] - ).launch() - diff --git a/spaces/rockeycoss/Prompt-Segment-Anything-Demo/mmdet/models/roi_heads/htc_roi_head.py b/spaces/rockeycoss/Prompt-Segment-Anything-Demo/mmdet/models/roi_heads/htc_roi_head.py deleted file mode 100644 index 86a6db10d4ac26901fbd44941de8107e67819d42..0000000000000000000000000000000000000000 --- a/spaces/rockeycoss/Prompt-Segment-Anything-Demo/mmdet/models/roi_heads/htc_roi_head.py +++ /dev/null @@ -1,628 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import numpy as np -import torch -import torch.nn.functional as F - -from mmdet.core import (bbox2result, bbox2roi, bbox_mapping, merge_aug_bboxes, - merge_aug_masks, multiclass_nms) -from ..builder import HEADS, build_head, build_roi_extractor -from ..utils.brick_wrappers import adaptive_avg_pool2d -from .cascade_roi_head import CascadeRoIHead - - -@HEADS.register_module() -class HybridTaskCascadeRoIHead(CascadeRoIHead): - """Hybrid task cascade roi head including one bbox head and one mask head. - - https://arxiv.org/abs/1901.07518 - """ - - def __init__(self, - num_stages, - stage_loss_weights, - semantic_roi_extractor=None, - semantic_head=None, - semantic_fusion=('bbox', 'mask'), - interleaved=True, - mask_info_flow=True, - **kwargs): - super(HybridTaskCascadeRoIHead, - self).__init__(num_stages, stage_loss_weights, **kwargs) - assert self.with_bbox - assert not self.with_shared_head # shared head is not supported - - if semantic_head is not None: - self.semantic_roi_extractor = build_roi_extractor( - semantic_roi_extractor) - self.semantic_head = build_head(semantic_head) - - self.semantic_fusion = semantic_fusion - self.interleaved = interleaved - self.mask_info_flow = mask_info_flow - - @property - def with_semantic(self): - """bool: whether the head has semantic head""" - if hasattr(self, 'semantic_head') and self.semantic_head is not None: - return True - else: - return False - - def forward_dummy(self, x, proposals): - """Dummy forward function.""" - outs = () - # semantic head - if self.with_semantic: - _, semantic_feat = self.semantic_head(x) - else: - semantic_feat = None - # bbox heads - rois = bbox2roi([proposals]) - for i in range(self.num_stages): - bbox_results = self._bbox_forward( - i, x, rois, semantic_feat=semantic_feat) - outs = outs + (bbox_results['cls_score'], - bbox_results['bbox_pred']) - # mask heads - if self.with_mask: - mask_rois = rois[:100] - mask_roi_extractor = self.mask_roi_extractor[-1] - mask_feats = mask_roi_extractor( - x[:len(mask_roi_extractor.featmap_strides)], mask_rois) - if self.with_semantic and 'mask' in self.semantic_fusion: - mask_semantic_feat = self.semantic_roi_extractor( - [semantic_feat], mask_rois) - mask_feats = mask_feats + mask_semantic_feat - last_feat = None - for i in range(self.num_stages): - mask_head = self.mask_head[i] - if self.mask_info_flow: - mask_pred, last_feat = mask_head(mask_feats, last_feat) - else: - mask_pred = mask_head(mask_feats) - outs = outs + (mask_pred, ) - return outs - - def _bbox_forward_train(self, - stage, - x, - sampling_results, - gt_bboxes, - gt_labels, - rcnn_train_cfg, - semantic_feat=None): - """Run forward function and calculate loss for box head in training.""" - bbox_head = self.bbox_head[stage] - rois = bbox2roi([res.bboxes for res in sampling_results]) - bbox_results = self._bbox_forward( - stage, x, rois, semantic_feat=semantic_feat) - - bbox_targets = bbox_head.get_targets(sampling_results, gt_bboxes, - gt_labels, rcnn_train_cfg) - loss_bbox = bbox_head.loss(bbox_results['cls_score'], - bbox_results['bbox_pred'], rois, - *bbox_targets) - - bbox_results.update( - loss_bbox=loss_bbox, - rois=rois, - bbox_targets=bbox_targets, - ) - return bbox_results - - def _mask_forward_train(self, - stage, - x, - sampling_results, - gt_masks, - rcnn_train_cfg, - semantic_feat=None): - """Run forward function and calculate loss for mask head in - training.""" - mask_roi_extractor = self.mask_roi_extractor[stage] - mask_head = self.mask_head[stage] - pos_rois = bbox2roi([res.pos_bboxes for res in sampling_results]) - mask_feats = mask_roi_extractor(x[:mask_roi_extractor.num_inputs], - pos_rois) - - # semantic feature fusion - # element-wise sum for original features and pooled semantic features - if self.with_semantic and 'mask' in self.semantic_fusion: - mask_semantic_feat = self.semantic_roi_extractor([semantic_feat], - pos_rois) - if mask_semantic_feat.shape[-2:] != mask_feats.shape[-2:]: - mask_semantic_feat = F.adaptive_avg_pool2d( - mask_semantic_feat, mask_feats.shape[-2:]) - mask_feats = mask_feats + mask_semantic_feat - - # mask information flow - # forward all previous mask heads to obtain last_feat, and fuse it - # with the normal mask feature - if self.mask_info_flow: - last_feat = None - for i in range(stage): - last_feat = self.mask_head[i]( - mask_feats, last_feat, return_logits=False) - mask_pred = mask_head(mask_feats, last_feat, return_feat=False) - else: - mask_pred = mask_head(mask_feats, return_feat=False) - - mask_targets = mask_head.get_targets(sampling_results, gt_masks, - rcnn_train_cfg) - pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results]) - loss_mask = mask_head.loss(mask_pred, mask_targets, pos_labels) - - mask_results = dict(loss_mask=loss_mask) - return mask_results - - def _bbox_forward(self, stage, x, rois, semantic_feat=None): - """Box head forward function used in both training and testing.""" - bbox_roi_extractor = self.bbox_roi_extractor[stage] - bbox_head = self.bbox_head[stage] - bbox_feats = bbox_roi_extractor( - x[:len(bbox_roi_extractor.featmap_strides)], rois) - if self.with_semantic and 'bbox' in self.semantic_fusion: - bbox_semantic_feat = self.semantic_roi_extractor([semantic_feat], - rois) - if bbox_semantic_feat.shape[-2:] != bbox_feats.shape[-2:]: - bbox_semantic_feat = adaptive_avg_pool2d( - bbox_semantic_feat, bbox_feats.shape[-2:]) - bbox_feats = bbox_feats + bbox_semantic_feat - cls_score, bbox_pred = bbox_head(bbox_feats) - - bbox_results = dict(cls_score=cls_score, bbox_pred=bbox_pred) - return bbox_results - - def _mask_forward_test(self, stage, x, bboxes, semantic_feat=None): - """Mask head forward function for testing.""" - mask_roi_extractor = self.mask_roi_extractor[stage] - mask_head = self.mask_head[stage] - mask_rois = bbox2roi([bboxes]) - mask_feats = mask_roi_extractor( - x[:len(mask_roi_extractor.featmap_strides)], mask_rois) - if self.with_semantic and 'mask' in self.semantic_fusion: - mask_semantic_feat = self.semantic_roi_extractor([semantic_feat], - mask_rois) - if mask_semantic_feat.shape[-2:] != mask_feats.shape[-2:]: - mask_semantic_feat = F.adaptive_avg_pool2d( - mask_semantic_feat, mask_feats.shape[-2:]) - mask_feats = mask_feats + mask_semantic_feat - if self.mask_info_flow: - last_feat = None - last_pred = None - for i in range(stage): - mask_pred, last_feat = self.mask_head[i](mask_feats, last_feat) - if last_pred is not None: - mask_pred = mask_pred + last_pred - last_pred = mask_pred - mask_pred = mask_head(mask_feats, last_feat, return_feat=False) - if last_pred is not None: - mask_pred = mask_pred + last_pred - else: - mask_pred = mask_head(mask_feats) - return mask_pred - - def forward_train(self, - x, - img_metas, - proposal_list, - gt_bboxes, - gt_labels, - gt_bboxes_ignore=None, - gt_masks=None, - gt_semantic_seg=None): - """ - Args: - x (list[Tensor]): list of multi-level img features. - - img_metas (list[dict]): list of image info dict where each dict - has: 'img_shape', 'scale_factor', 'flip', and may also contain - 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. - For details on the values of these keys see - `mmdet/datasets/pipelines/formatting.py:Collect`. - - proposal_list (list[Tensors]): list of region proposals. - - gt_bboxes (list[Tensor]): Ground truth bboxes for each image with - shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. - - gt_labels (list[Tensor]): class indices corresponding to each box - - gt_bboxes_ignore (None, list[Tensor]): specify which bounding - boxes can be ignored when computing the loss. - - gt_masks (None, Tensor) : true segmentation masks for each box - used if the architecture supports a segmentation task. - - gt_semantic_seg (None, list[Tensor]): semantic segmentation masks - used if the architecture supports semantic segmentation task. - - Returns: - dict[str, Tensor]: a dictionary of loss components - """ - # semantic segmentation part - # 2 outputs: segmentation prediction and embedded features - losses = dict() - if self.with_semantic: - semantic_pred, semantic_feat = self.semantic_head(x) - loss_seg = self.semantic_head.loss(semantic_pred, gt_semantic_seg) - losses['loss_semantic_seg'] = loss_seg - else: - semantic_feat = None - - for i in range(self.num_stages): - self.current_stage = i - rcnn_train_cfg = self.train_cfg[i] - lw = self.stage_loss_weights[i] - - # assign gts and sample proposals - sampling_results = [] - bbox_assigner = self.bbox_assigner[i] - bbox_sampler = self.bbox_sampler[i] - num_imgs = len(img_metas) - if gt_bboxes_ignore is None: - gt_bboxes_ignore = [None for _ in range(num_imgs)] - - for j in range(num_imgs): - assign_result = bbox_assigner.assign(proposal_list[j], - gt_bboxes[j], - gt_bboxes_ignore[j], - gt_labels[j]) - sampling_result = bbox_sampler.sample( - assign_result, - proposal_list[j], - gt_bboxes[j], - gt_labels[j], - feats=[lvl_feat[j][None] for lvl_feat in x]) - sampling_results.append(sampling_result) - - # bbox head forward and loss - bbox_results = \ - self._bbox_forward_train( - i, x, sampling_results, gt_bboxes, gt_labels, - rcnn_train_cfg, semantic_feat) - roi_labels = bbox_results['bbox_targets'][0] - - for name, value in bbox_results['loss_bbox'].items(): - losses[f's{i}.{name}'] = ( - value * lw if 'loss' in name else value) - - # mask head forward and loss - if self.with_mask: - # interleaved execution: use regressed bboxes by the box branch - # to train the mask branch - if self.interleaved: - pos_is_gts = [res.pos_is_gt for res in sampling_results] - with torch.no_grad(): - proposal_list = self.bbox_head[i].refine_bboxes( - bbox_results['rois'], roi_labels, - bbox_results['bbox_pred'], pos_is_gts, img_metas) - # re-assign and sample 512 RoIs from 512 RoIs - sampling_results = [] - for j in range(num_imgs): - assign_result = bbox_assigner.assign( - proposal_list[j], gt_bboxes[j], - gt_bboxes_ignore[j], gt_labels[j]) - sampling_result = bbox_sampler.sample( - assign_result, - proposal_list[j], - gt_bboxes[j], - gt_labels[j], - feats=[lvl_feat[j][None] for lvl_feat in x]) - sampling_results.append(sampling_result) - mask_results = self._mask_forward_train( - i, x, sampling_results, gt_masks, rcnn_train_cfg, - semantic_feat) - for name, value in mask_results['loss_mask'].items(): - losses[f's{i}.{name}'] = ( - value * lw if 'loss' in name else value) - - # refine bboxes (same as Cascade R-CNN) - if i < self.num_stages - 1 and not self.interleaved: - pos_is_gts = [res.pos_is_gt for res in sampling_results] - with torch.no_grad(): - proposal_list = self.bbox_head[i].refine_bboxes( - bbox_results['rois'], roi_labels, - bbox_results['bbox_pred'], pos_is_gts, img_metas) - - return losses - - def simple_test(self, x, proposal_list, img_metas, rescale=False): - """Test without augmentation. - - Args: - x (tuple[Tensor]): Features from upstream network. Each - has shape (batch_size, c, h, w). - proposal_list (list(Tensor)): Proposals from rpn head. - Each has shape (num_proposals, 5), last dimension - 5 represent (x1, y1, x2, y2, score). - img_metas (list[dict]): Meta information of images. - rescale (bool): Whether to rescale the results to - the original image. Default: True. - - Returns: - list[list[np.ndarray]] or list[tuple]: When no mask branch, - it is bbox results of each image and classes with type - `list[list[np.ndarray]]`. The outer list - corresponds to each image. The inner list - corresponds to each class. When the model has mask branch, - it contains bbox results and mask results. - The outer list corresponds to each image, and first element - of tuple is bbox results, second element is mask results. - """ - if self.with_semantic: - _, semantic_feat = self.semantic_head(x) - else: - semantic_feat = None - - num_imgs = len(proposal_list) - img_shapes = tuple(meta['img_shape'] for meta in img_metas) - ori_shapes = tuple(meta['ori_shape'] for meta in img_metas) - scale_factors = tuple(meta['scale_factor'] for meta in img_metas) - - # "ms" in variable names means multi-stage - ms_bbox_result = {} - ms_segm_result = {} - ms_scores = [] - rcnn_test_cfg = self.test_cfg - - rois = bbox2roi(proposal_list) - - if rois.shape[0] == 0: - # There is no proposal in the whole batch - bbox_results = [[ - np.zeros((0, 5), dtype=np.float32) - for _ in range(self.bbox_head[-1].num_classes) - ]] * num_imgs - - if self.with_mask: - mask_classes = self.mask_head[-1].num_classes - segm_results = [[[] for _ in range(mask_classes)] - for _ in range(num_imgs)] - results = list(zip(bbox_results, segm_results)) - else: - results = bbox_results - - return results - - for i in range(self.num_stages): - bbox_head = self.bbox_head[i] - bbox_results = self._bbox_forward( - i, x, rois, semantic_feat=semantic_feat) - # split batch bbox prediction back to each image - cls_score = bbox_results['cls_score'] - bbox_pred = bbox_results['bbox_pred'] - num_proposals_per_img = tuple(len(p) for p in proposal_list) - rois = rois.split(num_proposals_per_img, 0) - cls_score = cls_score.split(num_proposals_per_img, 0) - bbox_pred = bbox_pred.split(num_proposals_per_img, 0) - ms_scores.append(cls_score) - - if i < self.num_stages - 1: - refine_rois_list = [] - for j in range(num_imgs): - if rois[j].shape[0] > 0: - bbox_label = cls_score[j][:, :-1].argmax(dim=1) - refine_rois = bbox_head.regress_by_class( - rois[j], bbox_label, bbox_pred[j], img_metas[j]) - refine_rois_list.append(refine_rois) - rois = torch.cat(refine_rois_list) - - # average scores of each image by stages - cls_score = [ - sum([score[i] for score in ms_scores]) / float(len(ms_scores)) - for i in range(num_imgs) - ] - - # apply bbox post-processing to each image individually - det_bboxes = [] - det_labels = [] - for i in range(num_imgs): - det_bbox, det_label = self.bbox_head[-1].get_bboxes( - rois[i], - cls_score[i], - bbox_pred[i], - img_shapes[i], - scale_factors[i], - rescale=rescale, - cfg=rcnn_test_cfg) - det_bboxes.append(det_bbox) - det_labels.append(det_label) - bbox_result = [ - bbox2result(det_bboxes[i], det_labels[i], - self.bbox_head[-1].num_classes) - for i in range(num_imgs) - ] - ms_bbox_result['ensemble'] = bbox_result - - if self.with_mask: - if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes): - mask_classes = self.mask_head[-1].num_classes - segm_results = [[[] for _ in range(mask_classes)] - for _ in range(num_imgs)] - else: - if rescale and not isinstance(scale_factors[0], float): - scale_factors = [ - torch.from_numpy(scale_factor).to(det_bboxes[0].device) - for scale_factor in scale_factors - ] - _bboxes = [ - det_bboxes[i][:, :4] * - scale_factors[i] if rescale else det_bboxes[i] - for i in range(num_imgs) - ] - mask_rois = bbox2roi(_bboxes) - aug_masks = [] - mask_roi_extractor = self.mask_roi_extractor[-1] - mask_feats = mask_roi_extractor( - x[:len(mask_roi_extractor.featmap_strides)], mask_rois) - if self.with_semantic and 'mask' in self.semantic_fusion: - mask_semantic_feat = self.semantic_roi_extractor( - [semantic_feat], mask_rois) - mask_feats = mask_feats + mask_semantic_feat - last_feat = None - - num_bbox_per_img = tuple(len(_bbox) for _bbox in _bboxes) - for i in range(self.num_stages): - mask_head = self.mask_head[i] - if self.mask_info_flow: - mask_pred, last_feat = mask_head(mask_feats, last_feat) - else: - mask_pred = mask_head(mask_feats) - - # split batch mask prediction back to each image - mask_pred = mask_pred.split(num_bbox_per_img, 0) - aug_masks.append( - [mask.sigmoid().cpu().numpy() for mask in mask_pred]) - - # apply mask post-processing to each image individually - segm_results = [] - for i in range(num_imgs): - if det_bboxes[i].shape[0] == 0: - segm_results.append( - [[] - for _ in range(self.mask_head[-1].num_classes)]) - else: - aug_mask = [mask[i] for mask in aug_masks] - merged_mask = merge_aug_masks( - aug_mask, [[img_metas[i]]] * self.num_stages, - rcnn_test_cfg) - segm_result = self.mask_head[-1].get_seg_masks( - merged_mask, _bboxes[i], det_labels[i], - rcnn_test_cfg, ori_shapes[i], scale_factors[i], - rescale) - segm_results.append(segm_result) - ms_segm_result['ensemble'] = segm_results - - if self.with_mask: - results = list( - zip(ms_bbox_result['ensemble'], ms_segm_result['ensemble'])) - else: - results = ms_bbox_result['ensemble'] - - return results - - def aug_test(self, img_feats, proposal_list, img_metas, rescale=False): - """Test with augmentations. - - If rescale is False, then returned bboxes and masks will fit the scale - of imgs[0]. - """ - if self.with_semantic: - semantic_feats = [ - self.semantic_head(feat)[1] for feat in img_feats - ] - else: - semantic_feats = [None] * len(img_metas) - - rcnn_test_cfg = self.test_cfg - aug_bboxes = [] - aug_scores = [] - for x, img_meta, semantic in zip(img_feats, img_metas, semantic_feats): - # only one image in the batch - img_shape = img_meta[0]['img_shape'] - scale_factor = img_meta[0]['scale_factor'] - flip = img_meta[0]['flip'] - flip_direction = img_meta[0]['flip_direction'] - - proposals = bbox_mapping(proposal_list[0][:, :4], img_shape, - scale_factor, flip, flip_direction) - # "ms" in variable names means multi-stage - ms_scores = [] - - rois = bbox2roi([proposals]) - - if rois.shape[0] == 0: - # There is no proposal in the single image - aug_bboxes.append(rois.new_zeros(0, 4)) - aug_scores.append(rois.new_zeros(0, 1)) - continue - - for i in range(self.num_stages): - bbox_head = self.bbox_head[i] - bbox_results = self._bbox_forward( - i, x, rois, semantic_feat=semantic) - ms_scores.append(bbox_results['cls_score']) - - if i < self.num_stages - 1: - bbox_label = bbox_results['cls_score'].argmax(dim=1) - rois = bbox_head.regress_by_class( - rois, bbox_label, bbox_results['bbox_pred'], - img_meta[0]) - - cls_score = sum(ms_scores) / float(len(ms_scores)) - bboxes, scores = self.bbox_head[-1].get_bboxes( - rois, - cls_score, - bbox_results['bbox_pred'], - img_shape, - scale_factor, - rescale=False, - cfg=None) - aug_bboxes.append(bboxes) - aug_scores.append(scores) - - # after merging, bboxes will be rescaled to the original image size - merged_bboxes, merged_scores = merge_aug_bboxes( - aug_bboxes, aug_scores, img_metas, rcnn_test_cfg) - det_bboxes, det_labels = multiclass_nms(merged_bboxes, merged_scores, - rcnn_test_cfg.score_thr, - rcnn_test_cfg.nms, - rcnn_test_cfg.max_per_img) - - bbox_result = bbox2result(det_bboxes, det_labels, - self.bbox_head[-1].num_classes) - - if self.with_mask: - if det_bboxes.shape[0] == 0: - segm_result = [[] - for _ in range(self.mask_head[-1].num_classes)] - else: - aug_masks = [] - aug_img_metas = [] - for x, img_meta, semantic in zip(img_feats, img_metas, - semantic_feats): - img_shape = img_meta[0]['img_shape'] - scale_factor = img_meta[0]['scale_factor'] - flip = img_meta[0]['flip'] - flip_direction = img_meta[0]['flip_direction'] - _bboxes = bbox_mapping(det_bboxes[:, :4], img_shape, - scale_factor, flip, flip_direction) - mask_rois = bbox2roi([_bboxes]) - mask_feats = self.mask_roi_extractor[-1]( - x[:len(self.mask_roi_extractor[-1].featmap_strides)], - mask_rois) - if self.with_semantic: - semantic_feat = semantic - mask_semantic_feat = self.semantic_roi_extractor( - [semantic_feat], mask_rois) - if mask_semantic_feat.shape[-2:] != mask_feats.shape[ - -2:]: - mask_semantic_feat = F.adaptive_avg_pool2d( - mask_semantic_feat, mask_feats.shape[-2:]) - mask_feats = mask_feats + mask_semantic_feat - last_feat = None - for i in range(self.num_stages): - mask_head = self.mask_head[i] - if self.mask_info_flow: - mask_pred, last_feat = mask_head( - mask_feats, last_feat) - else: - mask_pred = mask_head(mask_feats) - aug_masks.append(mask_pred.sigmoid().cpu().numpy()) - aug_img_metas.append(img_meta) - merged_masks = merge_aug_masks(aug_masks, aug_img_metas, - self.test_cfg) - - ori_shape = img_metas[0][0]['ori_shape'] - segm_result = self.mask_head[-1].get_seg_masks( - merged_masks, - det_bboxes, - det_labels, - rcnn_test_cfg, - ori_shape, - scale_factor=1.0, - rescale=False) - return [(bbox_result, segm_result)] - else: - return [bbox_result] diff --git a/spaces/rorallitri/biomedical-language-models/logs/Ayah Menyayangi Tanpa Akhir Sinopsis dan Review Novel Kirana Kejora yang Penuh Makna.md b/spaces/rorallitri/biomedical-language-models/logs/Ayah Menyayangi Tanpa Akhir Sinopsis dan Review Novel Kirana Kejora yang Penuh Makna.md deleted file mode 100644 index 5d5e32298761fcb97834b51823a2d2930688622d..0000000000000000000000000000000000000000 --- a/spaces/rorallitri/biomedical-language-models/logs/Ayah Menyayangi Tanpa Akhir Sinopsis dan Review Novel Kirana Kejora yang Penuh Makna.md +++ /dev/null @@ -1,5 +0,0 @@ - -

          Nah, itulah rekomendasi novel yang bisa dibaca untuk mengisi harimu di peringatan Hari Ayah Nasional. Novel ini tentu juga dapat kamu baca di hari lainnya. Terpenting tujuannya hanya satu, sayangi ayahmu seperti ia menyayangimu ketika kecil. Semoga bermanfaat.

          -

          Ayah Menyayangi Tanpa Akhir Pdf 70


          Download Zip ★★★★★ https://tinurll.com/2uzoFo



          aaccfb2cb3
          -
          -
          \ No newline at end of file diff --git a/spaces/rriverar75/dientes/app.py b/spaces/rriverar75/dientes/app.py deleted file mode 100644 index e8986826c751e8c4a9cd9646546dd77407fb080a..0000000000000000000000000000000000000000 --- a/spaces/rriverar75/dientes/app.py +++ /dev/null @@ -1,106 +0,0 @@ -import streamlit as st -from PIL import Image -import numpy as np -import cv2 -from huggingface_hub import from_pretrained_keras - -st.header("Segmentación de dientes con rayos X") - -st.markdown( - """ -Hola šŸš€. Este es un Demo de modelo Segmentando imagenes - -El modelo fue creado por [SerdarHelli](https://huggingface.co/SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net). - -""" -) - -## Seleccionamos y cargamos el modelo -model_id = "SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net" -model = from_pretrained_keras(model_id) - -## Permitimos al usuario cargar una imagen -archivo_imagen = st.file_uploader("Sube aquĆ­ tu imagen.", type=["png", "jpg", "jpeg"]) - -## Si una imagen tiene mĆ”s de un canal entonces se convierte a escala de grises (1 canal) -def convertir_one_channel(img): - if len(img.shape) > 2: - img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) - return img - else: - return img - - -def convertir_rgb(img): - if len(img.shape) == 2: - img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) - return img - else: - return img - - -## Manipularemos la interfaz para que podamos usar imĆ”genes ejemplo -## Si el usuario da click en un ejemplo entonces el modelo correrĆ” con Ć©l -ejemplos = ["dientes_1.png", "dientes_2.png", "dientes_3.png"] - -## Creamos tres columnas; en cada una estarĆ” una imagen ejemplo -col1, col2, col3 = st.columns(3) -with col1: - ## Se carga la imagen y se muestra en la interfaz - ex = Image.open(ejemplos[0]) - st.image(ex, width=200) - ## Si oprime el botón entonces usaremos ese ejemplo en el modelo - if st.button("Corre este ejemplo 1"): - archivo_imagen = ejemplos[0] - -with col2: - ex1 = Image.open(ejemplos[1]) - st.image(ex1, width=200) - if st.button("Corre este ejemplo 2"): - archivo_imagen = ejemplos[1] - -with col3: - ex2 = Image.open(ejemplos[2]) - st.image(ex2, width=200) - if st.button("Corre este ejemplo 3"): - archivo_imagen = ejemplos[2] - -## Si tenemos una imagen para ingresar en el modelo entonces -## la procesamos e ingresamos al modelo -if archivo_imagen is not None: - ## Cargamos la imagen con PIL, la mostramos y la convertimos a un array de NumPy - img = Image.open(archivo_imagen) - st.image(img, width=850) - img = np.asarray(img) - - ## Procesamos la imagen para ingresarla al modelo - img_cv = convertir_one_channel(img) - img_cv = cv2.resize(img_cv, (512, 512), interpolation=cv2.INTER_LANCZOS4) - img_cv = np.float32(img_cv / 255) - img_cv = np.reshape(img_cv, (1, 512, 512, 1)) - - ## Ingresamos el array de NumPy al modelo - predicted = model.predict(img_cv) - predicted = predicted[0] - - ## Regresamos la imagen a su forma original y agregamos las mĆ”scaras de la segmentación - predicted = cv2.resize( - predicted, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_LANCZOS4 - ) - mask = np.uint8(predicted * 255) # - _, mask = cv2.threshold( - mask, thresh=0, maxval=255, type=cv2.THRESH_BINARY + cv2.THRESH_OTSU - ) - kernel = np.ones((5, 5), dtype=np.float32) - mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=1) - mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=1) - cnts, hieararch = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) - output = cv2.drawContours(convertir_one_channel(img), cnts, -1, (255, 0, 0), 3) - - ## Si obtuvimos exitosamente un resultadod entonces lo mostramos en la interfaz - if output is not None: - st.subheader("Segmentación:") - st.write(output.shape) - st.image(output, width=850) - -st.markdown("Gracias por utilizar este Demo") \ No newline at end of file diff --git a/spaces/ruslanmv/Clone-Your-Voice/encoder/train.py b/spaces/ruslanmv/Clone-Your-Voice/encoder/train.py deleted file mode 100644 index 2bed4eb2f2f3e343b382a1b9cbf78a9ffb11c002..0000000000000000000000000000000000000000 --- a/spaces/ruslanmv/Clone-Your-Voice/encoder/train.py +++ /dev/null @@ -1,125 +0,0 @@ -from pathlib import Path - -import torch - -from encoder.data_objects import SpeakerVerificationDataLoader, SpeakerVerificationDataset -from encoder.model import SpeakerEncoder -from encoder.params_model import * -from encoder.visualizations import Visualizations -from utils.profiler import Profiler - - -def sync(device: torch.device): - # For correct profiling (cuda operations are async) - if device.type == "cuda": - torch.cuda.synchronize(device) - - -def train(run_id: str, clean_data_root: Path, models_dir: Path, umap_every: int, save_every: int, - backup_every: int, vis_every: int, force_restart: bool, visdom_server: str, - no_visdom: bool): - # Create a dataset and a dataloader - dataset = SpeakerVerificationDataset(clean_data_root) - loader = SpeakerVerificationDataLoader( - dataset, - speakers_per_batch, - utterances_per_speaker, - num_workers=4, - ) - - # Setup the device on which to run the forward pass and the loss. These can be different, - # because the forward pass is faster on the GPU whereas the loss is often (depending on your - # hyperparameters) faster on the CPU. - device = torch.device("cuda" if torch.cuda.is_available() else "cpu") - # FIXME: currently, the gradient is None if loss_device is cuda - loss_device = torch.device("cpu") - - # Create the model and the optimizer - model = SpeakerEncoder(device, loss_device) - optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate_init) - init_step = 1 - - # Configure file path for the model - model_dir = models_dir / run_id - model_dir.mkdir(exist_ok=True, parents=True) - state_fpath = model_dir / "encoder.pt" - - # Load any existing model - if not force_restart: - if state_fpath.exists(): - print("Found existing model \"%s\", loading it and resuming training." % run_id) - checkpoint = torch.load(state_fpath) - init_step = checkpoint["step"] - model.load_state_dict(checkpoint["model_state"]) - optimizer.load_state_dict(checkpoint["optimizer_state"]) - optimizer.param_groups[0]["lr"] = learning_rate_init - else: - print("No model \"%s\" found, starting training from scratch." % run_id) - else: - print("Starting the training from scratch.") - model.train() - - # Initialize the visualization environment - vis = Visualizations(run_id, vis_every, server=visdom_server, disabled=no_visdom) - vis.log_dataset(dataset) - vis.log_params() - device_name = str(torch.cuda.get_device_name(0) if torch.cuda.is_available() else "CPU") - vis.log_implementation({"Device": device_name}) - - # Training loop - profiler = Profiler(summarize_every=10, disabled=False) - for step, speaker_batch in enumerate(loader, init_step): - profiler.tick("Blocking, waiting for batch (threaded)") - - # Forward pass - inputs = torch.from_numpy(speaker_batch.data).to(device) - sync(device) - profiler.tick("Data to %s" % device) - embeds = model(inputs) - sync(device) - profiler.tick("Forward pass") - embeds_loss = embeds.view((speakers_per_batch, utterances_per_speaker, -1)).to(loss_device) - loss, eer = model.loss(embeds_loss) - sync(loss_device) - profiler.tick("Loss") - - # Backward pass - model.zero_grad() - loss.backward() - profiler.tick("Backward pass") - model.do_gradient_ops() - optimizer.step() - profiler.tick("Parameter update") - - # Update visualizations - # learning_rate = optimizer.param_groups[0]["lr"] - vis.update(loss.item(), eer, step) - - # Draw projections and save them to the backup folder - if umap_every != 0 and step % umap_every == 0: - print("Drawing and saving projections (step %d)" % step) - projection_fpath = model_dir / f"umap_{step:06d}.png" - embeds = embeds.detach().cpu().numpy() - vis.draw_projections(embeds, utterances_per_speaker, step, projection_fpath) - vis.save() - - # Overwrite the latest version of the model - if save_every != 0 and step % save_every == 0: - print("Saving the model (step %d)" % step) - torch.save({ - "step": step + 1, - "model_state": model.state_dict(), - "optimizer_state": optimizer.state_dict(), - }, state_fpath) - - # Make a backup - if backup_every != 0 and step % backup_every == 0: - print("Making a backup (step %d)" % step) - backup_fpath = model_dir / f"encoder_{step:06d}.bak" - torch.save({ - "step": step + 1, - "model_state": model.state_dict(), - "optimizer_state": optimizer.state_dict(), - }, backup_fpath) - - profiler.tick("Extras (visualizations, saving)") diff --git a/spaces/russel0719/deepfake_detector/training/datasets/validation_set.py b/spaces/russel0719/deepfake_detector/training/datasets/validation_set.py deleted file mode 100644 index fa28f0889acb86d37fc4f0b8d9a9373ab0cc6ba4..0000000000000000000000000000000000000000 --- a/spaces/russel0719/deepfake_detector/training/datasets/validation_set.py +++ /dev/null @@ -1,60 +0,0 @@ - - -PUBLIC_SET = {'tjuihawuqm', 'prwsfljdjo', 'scrbqgpvzz', 'ziipxxchai', 'uubgqnvfdl', 'wclvkepakb', 'xjvxtuakyd', - 'qlvsqdroqo', 'bcbqxhziqz', 'yzuestxcbq', 'hxwtsaydal', 'kqlvggiqee', 'vtunvalyji', 'mohiqoogpb', - 'siebfpwuhu', 'cekwtyxdoo', 'hszwwswewp', 'orekjthsef', 'huvlwkxoxm', 'fmhiujydwo', 'lhvjzhjxdp', - 'ibxfxggtqh', 'bofrwgeyjo', 'rmufsuogzn', 'zbgssotnjm', 'dpevefkefv', 'sufvvwmbha', 'ncoeewrdlo', - 'qhsehzgxqj', 'yxadevzohx', 'aomqqjipcp', 'pcyswtgick', 'wfzjxzhdkj', 'rcjfxxhcal', 'lnjkpdviqb', - 'xmkwsnuzyq', 'ouaowjmigq', 'bkuzquigyt', 'vwxednhlwz', 'mszblrdprw', 'blnmxntbey', 'gccnvdoknm', - 'mkzaekkvej', 'hclsparpth', 'eryjktdexi', 'hfsvqabzfq', 'acazlolrpz', 'yoyhmxtrys', 'rerpivllud', - 'elackxuccp', 'zgbhzkditd', 'vjljdfopjg', 'famlupsgqm', 'nymodlmxni', 'qcbkztamqc', 'qclpbcbgeq', - 'lpkgabskbw', 'mnowxangqx', 'czfqlbcfpa', 'qyyhuvqmyf', 'toinozytsp', 'ztyvglkcsf', 'nplviymzlg', - 'opvqdabdap', 'uxuvkrjhws', 'mxahsihabr', 'cqxxumarvp', 'ptbfnkajyi', 'njzshtfmcw', 'dcqodpzomd', - 'ajiyrjfyzp', 'ywauoonmlr', 'gochxzemmq', 'lpgxwdgnio', 'hnfwagcxdf', 'gfcycflhbo', 'gunamloolc', - 'yhjlnisfel', 'srfefmyjvt', 'evysmtpnrf', 'aktnlyqpah', 'gpsxfxrjrr', 'zfobicuigx', 'mnzabbkpmt', - 'rfjuhbnlro', 'zuwwbbusgl', 'csnkohqxdv', 'bzvzpwrabw', 'yietrwuncf', 'wynotylpnm', 'ekboxwrwuv', - 'rcecrgeotc', 'rklawjhbpv', 'ilqwcbprqa', 'jsysgmycsx', 'sqixhnilfm', 'wnlubukrki', 'nikynwcvuh', - 'sjkfxrlxxs', 'btdxnajogv', 'wjhpisoeaj', 'dyjklprkoc', 'qlqhjcshpk', 'jyfvaequfg', 'dozjwhnedd', - 'owaogcehvc', 'oyqgwjdwaj', 'vvfszaosiv', 'kmcdjxmnoa', 'jiswxuqzyz', 'ddtbarpcgo', 'wqysrieiqu', - 'xcruhaccxc', 'honxqdilvv', 'nxgzmgzkfv', 'cxsvvnxpyz', 'demuhxssgl', 'hzoiotcykp', 'fwykevubzy', - 'tejfudfgpq', 'kvmpmhdxly', 'oojxonbgow', 'vurjckblge', 'oysopgovhu', 'khpipxnsvx', 'pqthmvwonf', - 'fddmkqjwsh', 'pcoxcmtroa', 'cnxccbjlct', 'ggzjfrirjh', 'jquevmhdvc', 'ecumyiowzs', 'esmqxszybs', - 'mllzkpgatp', 'ryxaqpfubf', 'hbufmvbium', 'vdtsbqidjb', 'sjwywglgym', 'qxyrtwozyw', 'upmgtackuf', - 'ucthmsajay', 'zgjosltkie', 'snlyjbnpgw', 'nswtvttxre', 'iznnzjvaxc', 'jhczqfefgw', 'htzbnroagi', - 'pdswwyyntw', 'uvrzaczrbx', 'vbcgoyxsvn', 'hzssdinxec', 'novarhxpbj', 'vizerpsvbz', 'jawgcggquk', - 'iorbtaarte', 'yarpxfqejd', 'vhbbwdflyh', 'rrrfjhugvb', 'fneqiqpqvs', 'jytrvwlewz', 'bfjsthfhbd', - 'rxdoimqble', 'ekelfsnqof', 'uqvxjfpwdo', 'cjkctqqakb', 'tynfsthodx', 'yllztsrwjw', 'bktkwbcawi', - 'wcqvzujamg', 'bcvheslzrq', 'aqrsylrzgi', 'sktpeppbkc', 'mkmgcxaztt', 'etdliwticv', 'hqzwudvhih', - 'swsaoktwgi', 'temjefwaas', 'papagllumt', 'xrtvqhdibb', 'oelqpetgwj', 'ggdpclfcgk', 'imdmhwkkni', - 'lebzjtusnr', 'xhtppuyqdr', 'nxzgekegsp', 'waucvvmtkq', 'rnfcjxynfa', 'adohdulfwb', 'tjywwgftmv', - 'fjrueenjyp', 'oaguiggjyv', 'ytopzxrswu', 'yxvmusxvcz', 'rukyxomwcx', 'qdqdsaiitt', 'mxlipjhmqk', - 'voawxrmqyl', 'kezwvsxxzj', 'oocincvedt', 'qooxnxqqjb', 'mwwploizlj', 'yaxgpxhavq', 'uhakqelqri', - 'bvpeerislp', 'bkcyglmfci', 'jyoxdvxpza', 'gkutjglghz', 'knxltsvzyu', 'ybbrkacebd', 'apvzjkvnwn', - 'ahjnxtiamx', 'hsbljbsgxr', 'fnxgqcvlsd', 'xphdfgmfmz', 'scbdenmaed', 'ywxpquomgt', 'yljecirelf', - 'wcvsqnplsk', 'vmxfwxgdei', 'icbsahlivv', 'yhylappzid', 'irqzdokcws', 'petmyhjclt', 'rmlzgerevr', - 'qarqtkvgby', 'nkhzxomani', 'viteugozpv', 'qhkzlnzruj', 'eisofhptvk', 'gqnaxievjx', 'heiyoojifp', - 'zcxcmneefk', 'wvgviwnwob', 'gcdtglsoqj', 'yqhouqakbx', 'fopjiyxiqd', 'hierggamuo', 'ypbtpunjvm', - 'sjinmmbipg', 'kmqkiihrmj', 'wmoqzxddkb', 'lnhkjhyhvw', 'wixbuuzygv', 'fsdrwikhge', 'sfsayjgzrh', - 'pqdeutauqc', 'frqfsucgao', 'pdufsewrec', 'bfdopzvxbi', 'shnsajrsow', 'rvvpazsffd', 'pxcfrszlgi', - 'itfsvvmslp', 'ayipraspbn', 'prhmixykhr', 'doniqevxeg', 'dvtpwatuja', 'jiavqbrkyk', 'ipkpxvwroe', - 'syxobtuucp', 'syuxttuyhm', 'nwvsbmyndn', 'eqslzbqfea', 'ytddugrwph', 'vokrpfjpeb', 'bdshuoldwx', - 'fmvvmcbdrw', 'bnuwxhfahw', 'gbnzicjyhz', 'txnmkabufs', 'gfdjzwnpyp', 'hweshqpfwe', 'dxgnpnowgk', - 'xugmhbetrw', 'rktrpsdlci', 'nthpnwylxo', 'ihglzxzroo', 'ocgdbrgmtq', 'ruhtnngrqv', 'xljemofssi', - 'zxacihctqp', 'ghnpsltzyn', 'lbigytrrtr', 'ndikguxzek', 'mdfndlljvt', 'lyoslorecs', 'oefukgnvel', - 'zmxeiipnqb', 'cosghhimnd', 'alrtntfxtd', 'eywdmustbb', 'ooafcxxfrs', 'fqgypsunzr', 'hevcclcklc', - 'uhrqlmlclw', 'ipvwtgdlre', 'wcssbghcpc', 'didzujjhtg', 'fjxovgmwnm', 'dmmvuaikkv', 'hitfycdavv', - 'zyufpqvpyu', 'coujjnypba', 'temeqbmzxu', 'apedduehoy', 'iksxzpqxzi', 'kwfdyqofzw', 'aassnaulhq', - 'eyguqfmgzh', 'yiykshcbaz', 'sngjsueuhs', 'okgelildpc', 'ztyuiqrhdk', 'tvhjcfnqtg', 'gfgcwxkbjd', - 'lbfqksftuo', 'kowiwvrjht', 'dkuqbduxev', 'mwnibuujwz', 'sodvtfqbpf', 'hsbwhlolsn', 'qsjiypnjwi', - 'blszgmxkvu', 'ystdtnetgj', 'rfwxcinshk', 'vnlzxqwthl', 'ljouzjaqqe', 'gahgyuwzbu', 'xxzefxwyku', - 'xitgdpzbxv', 'sylnrepacf', 'igpvrfjdzc', 'nxnmkytwze', 'psesikjaxx', 'dvwpvqdflx', 'bjyaxvggle', - 'dpmgoiwhuf', 'wadvzjhwtw', 'kcjvhgvhpt', 'eppyqpgewp', 'tyjpjpglgx', 'cekarydqba', 'dvkdfhrpph', - 'cnpanmywno', 'ljauauuyka', 'hicjuubiau', 'cqhwesrciw', 'dnmowthjcj', 'lujvyveojc', 'wndursivcx', - 'espkiocpxq', 'jsbpkpxwew', 'dsnxgrfdmd', 'hyjqolupxn', 'xdezcezszc', 'axfhbpkdlc', 'qqnlrngaft', - 'coqwgzpbhx', 'ncmpqwmnzb', 'sznkemeqro', 'omphqltjdd', 'uoccaiathd', 'jzmzdispyo', 'pxjkzvqomp', - 'udxqbhgvvx', 'dzkyxbbqkr', 'dtozwcapoa', 'qswlzfgcgj', 'tgawasvbbr', 'lmdyicksrv', 'fzvpbrzssi', - 'dxfdovivlw', 'zzmgnglanj', 'vssmlqoiti', 'vajkicalux', 'ekvwecwltj', 'ylxwcwhjjd', 'keioymnobc', - 'usqqvxcjmg', 'phjvutxpoi', 'nycmyuzpml', 'bwdmzwhdnw', 'fxuxxtryjn', 'orixbcfvdz', 'hefisnapds', - 'fpevfidstw', 'halvwiltfs', 'dzojiwfvba', 'ojsxxkalat', 'esjdyghhog', 'ptbnewtvon', 'hcanfkwivl', - 'yronlutbgm', 'llplvmcvbl', 'yxirnfyijn', 'nwvloufjty', 'rtpbawlmxr', 'aayfryxljh', 'zfrrixsimm', - 'txmnoyiyte'} diff --git a/spaces/rzzgate/Stable-Diffusion-ControlNet-WebUI/diffusion_webui/diffusion_models/controlnet/controlnet_seg.py b/spaces/rzzgate/Stable-Diffusion-ControlNet-WebUI/diffusion_webui/diffusion_models/controlnet/controlnet_seg.py deleted file mode 100644 index dfbda0744cc674a5b3195e47d7a507192f999eb2..0000000000000000000000000000000000000000 --- a/spaces/rzzgate/Stable-Diffusion-ControlNet-WebUI/diffusion_webui/diffusion_models/controlnet/controlnet_seg.py +++ /dev/null @@ -1,353 +0,0 @@ -import gradio as gr -import numpy as np -import torch -from diffusers import ControlNetModel, StableDiffusionControlNetPipeline -from PIL import Image -from transformers import AutoImageProcessor, UperNetForSemanticSegmentation - -from diffusion_webui.utils.model_list import stable_model_list -from diffusion_webui.utils.scheduler_list import ( - SCHEDULER_LIST, - get_scheduler_list, -) - - -def ade_palette(): - """ADE20K palette that maps each class to RGB values.""" - return [ - [120, 120, 120], - [180, 120, 120], - [6, 230, 230], - [80, 50, 50], - [4, 200, 3], - [120, 120, 80], - [140, 140, 140], - [204, 5, 255], - [230, 230, 230], - [4, 250, 7], - [224, 5, 255], - [235, 255, 7], - [150, 5, 61], - [120, 120, 70], - [8, 255, 51], - [255, 6, 82], - [143, 255, 140], - [204, 255, 4], - [255, 51, 7], - [204, 70, 3], - [0, 102, 200], - [61, 230, 250], - [255, 6, 51], - [11, 102, 255], - [255, 7, 71], - [255, 9, 224], - [9, 7, 230], - [220, 220, 220], - [255, 9, 92], - [112, 9, 255], - [8, 255, 214], - [7, 255, 224], - [255, 184, 6], - [10, 255, 71], - [255, 41, 10], - [7, 255, 255], - [224, 255, 8], - [102, 8, 255], - [255, 61, 6], - [255, 194, 7], - [255, 122, 8], - [0, 255, 20], - [255, 8, 41], - [255, 5, 153], - [6, 51, 255], - [235, 12, 255], - [160, 150, 20], - [0, 163, 255], - [140, 140, 140], - [250, 10, 15], - [20, 255, 0], - [31, 255, 0], - [255, 31, 0], - [255, 224, 0], - [153, 255, 0], - [0, 0, 255], - [255, 71, 0], - [0, 235, 255], - [0, 173, 255], - [31, 0, 255], - [11, 200, 200], - [255, 82, 0], - [0, 255, 245], - [0, 61, 255], - [0, 255, 112], - [0, 255, 133], - [255, 0, 0], - [255, 163, 0], - [255, 102, 0], - [194, 255, 0], - [0, 143, 255], - [51, 255, 0], - [0, 82, 255], - [0, 255, 41], - [0, 255, 173], - [10, 0, 255], - [173, 255, 0], - [0, 255, 153], - [255, 92, 0], - [255, 0, 255], - [255, 0, 245], - [255, 0, 102], - [255, 173, 0], - [255, 0, 20], - [255, 184, 184], - [0, 31, 255], - [0, 255, 61], - [0, 71, 255], - [255, 0, 204], - [0, 255, 194], - [0, 255, 82], - [0, 10, 255], - [0, 112, 255], - [51, 0, 255], - [0, 194, 255], - [0, 122, 255], - [0, 255, 163], - [255, 153, 0], - [0, 255, 10], - [255, 112, 0], - [143, 255, 0], - [82, 0, 255], - [163, 255, 0], - [255, 235, 0], - [8, 184, 170], - [133, 0, 255], - [0, 255, 92], - [184, 0, 255], - [255, 0, 31], - [0, 184, 255], - [0, 214, 255], - [255, 0, 112], - [92, 255, 0], - [0, 224, 255], - [112, 224, 255], - [70, 184, 160], - [163, 0, 255], - [153, 0, 255], - [71, 255, 0], - [255, 0, 163], - [255, 204, 0], - [255, 0, 143], - [0, 255, 235], - [133, 255, 0], - [255, 0, 235], - [245, 0, 255], - [255, 0, 122], - [255, 245, 0], - [10, 190, 212], - [214, 255, 0], - [0, 204, 255], - [20, 0, 255], - [255, 255, 0], - [0, 153, 255], - [0, 41, 255], - [0, 255, 204], - [41, 0, 255], - [41, 255, 0], - [173, 0, 255], - [0, 245, 255], - [71, 0, 255], - [122, 0, 255], - [0, 255, 184], - [0, 92, 255], - [184, 255, 0], - [0, 133, 255], - [255, 214, 0], - [25, 194, 194], - [102, 255, 0], - [92, 0, 255], - ] - - -class StableDiffusionControlNetSegGenerator: - def __init__(self): - self.pipe = None - - def load_model( - self, - stable_model_path, - scheduler, - ): - - if self.pipe is None: - controlnet = ControlNetModel.from_pretrained( - "lllyasviel/sd-controlnet-seg", torch_dtype=torch.float16 - ) - self.pipe = StableDiffusionControlNetPipeline.from_pretrained( - pretrained_model_name_or_path=stable_model_path, - controlnet=controlnet, - safety_checker=None, - torch_dtype=torch.float16, - ) - - self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler) - self.pipe.to("cuda") - self.pipe.enable_xformers_memory_efficient_attention() - - return self.pipe - - def controlnet_seg(self, image_path: str): - image_processor = AutoImageProcessor.from_pretrained( - "openmmlab/upernet-convnext-small" - ) - image_segmentor = UperNetForSemanticSegmentation.from_pretrained( - "openmmlab/upernet-convnext-small" - ) - - image = Image.open(image_path).convert("RGB") - pixel_values = image_processor(image, return_tensors="pt").pixel_values - - with torch.no_grad(): - outputs = image_segmentor(pixel_values) - - seg = image_processor.post_process_semantic_segmentation( - outputs, target_sizes=[image.size[::-1]] - )[0] - - color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) - palette = np.array(ade_palette()) - - for label, color in enumerate(palette): - color_seg[seg == label, :] = color - - color_seg = color_seg.astype(np.uint8) - image = Image.fromarray(color_seg) - - return image - - def generate_image( - self, - image_path: str, - model_path: str, - prompt: str, - negative_prompt: str, - num_images_per_prompt: int, - guidance_scale: int, - num_inference_step: int, - scheduler: str, - seed_generator: int, - ): - - image = self.controlnet_seg(image_path=image_path) - pipe = self.load_model( - stable_model_path=model_path, - scheduler=scheduler, - ) - if seed_generator == 0: - random_seed = torch.randint(0, 1000000, (1,)) - generator = torch.manual_seed(random_seed) - else: - generator = torch.manual_seed(seed_generator) - - output = pipe( - prompt=prompt, - image=image, - negative_prompt=negative_prompt, - num_images_per_prompt=num_images_per_prompt, - num_inference_steps=num_inference_step, - guidance_scale=guidance_scale, - generator=generator, - ).images - - return output - - def app(): - with gr.Blocks(): - with gr.Row(): - with gr.Column(): - controlnet_seg_image_file = gr.Image( - type="filepath", label="Image" - ) - - controlnet_seg_prompt = gr.Textbox( - lines=1, - show_label=False, - placeholder="Prompt", - ) - - controlnet_seg_negative_prompt = gr.Textbox( - lines=1, - show_label=False, - placeholder="Negative Prompt", - ) - - with gr.Row(): - with gr.Column(): - controlnet_seg_model_id = gr.Dropdown( - choices=stable_model_list, - value=stable_model_list[0], - label="Stable Model Id", - ) - controlnet_seg_guidance_scale = gr.Slider( - minimum=0.1, - maximum=15, - step=0.1, - value=7.5, - label="Guidance Scale", - ) - - controlnet_seg_num_inference_step = gr.Slider( - minimum=1, - maximum=100, - step=1, - value=50, - label="Num Inference Step", - ) - - with gr.Row(): - with gr.Column(): - controlnet_seg_scheduler = gr.Dropdown( - choices=SCHEDULER_LIST, - value=SCHEDULER_LIST[0], - label="Scheduler", - ) - controlnet_seg_num_images_per_prompt = ( - gr.Slider( - minimum=1, - maximum=10, - step=1, - value=1, - label="Number Of Images", - ) - ) - controlnet_seg_seed_generator = gr.Slider( - minimum=0, - maximum=1000000, - step=1, - value=0, - label="Seed Generator", - ) - - controlnet_seg_predict = gr.Button(value="Generator") - - with gr.Column(): - output_image = gr.Gallery( - label="Generated images", - show_label=False, - elem_id="gallery", - ).style(grid=(1, 2)) - - controlnet_seg_predict.click( - fn=StableDiffusionControlNetSegGenerator().generate_image, - inputs=[ - controlnet_seg_image_file, - controlnet_seg_model_id, - controlnet_seg_prompt, - controlnet_seg_negative_prompt, - controlnet_seg_num_images_per_prompt, - controlnet_seg_guidance_scale, - controlnet_seg_num_inference_step, - controlnet_seg_scheduler, - controlnet_seg_seed_generator, - ], - outputs=[output_image], - ) diff --git a/spaces/s3nh/acceptable-self-instructs/app.py b/spaces/s3nh/acceptable-self-instructs/app.py deleted file mode 100644 index 7962d3a1b17059d522509683d063ca9ab28f57bd..0000000000000000000000000000000000000000 --- a/spaces/s3nh/acceptable-self-instructs/app.py +++ /dev/null @@ -1,138 +0,0 @@ -import pathlib -import gradio as gr -import transformers -from transformers import AutoTokenizer -from transformers import AutoModelForCausalLM -from transformers import GenerationConfig -from typing import List, Dict, Union -from typing import Any, TypeVar - -Pathable = Union[str, pathlib.Path] - -def load_model(name: str) -> Any: - return AutoModelForCausalLM.from_pretrained(name) - -def load_tokenizer(name: str) -> Any: - return AutoTokenizer.from_pretrained(name) - -def create_generator(temperature, top_p, num_beams): - return GenerationConfig( - temperature=temperature, - top_p=top_p, - num_beams=num_beams, -) - -def generate_prompt(instruction, input=None): - if input: - return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. - -### Instruction: -{instruction} - -### Input: -{input} - -### Response:""" - else: - return f"""Na podstawie instrukcji oraz kontekstu przekaż odpowiedÅŗ na zadane pytanie. - -### Instruction: -{instruction} - -### Response:""" - - - -def evaluate(instruction, input, model, tokenizer, generation_config): - prompt = generate_prompt(instruction, input) - inputs = tokenizer(prompt, return_tensors="pt") - input_ids = inputs["input_ids"] - generation_output = model.generate( - input_ids=input_ids, - generation_config=generation_config, - return_dict_in_generate=True, - output_scores=True, - max_new_tokens=256 - ) - result = [] - for s in generation_output.sequences: - output = tokenizer.decode(s) - result.append( output.split("### Response:")[1].strip()) - return ' '.join(el for el in result) - -def inference(model_name, text, input, temperature, top_p, num_beams): - generation_config = create_generator(temperature, top_p, num_beams) - model = load_model(model_name) - tokenizer = load_tokenizer(model_name) - output = evaluate(instruction = text, input = input, model = model, tokenizer = tokenizer, generation_config = generation_config) - return output - -def choose_model(name): - return load_model(name), load_tokenizer(name) - - -io = gr.Interface( - inference, - inputs = [ - gr.Dropdown(["s3nh/pythia-1.4b-deduped-16k-steps-self-instruct-polish", "s3nh/pythia-410m-91k-steps-self-instruct-polish", "s3nh/tiny-gpt2-instruct-polish", - "s3nh/pythia-410m-103k-steps-self-instruct-polish", "https://huggingface.co/s3nh/DialoGPT-large-instruct-polish-3000-steps", - "https://huggingface.co/s3nh/pythia-410m-70k-steps-self-instruct-polish", "https://huggingface.co/s3nh/tiny-gpt2-instruct-polish", - "s3nh/Cerebras-GPT-590M-3000steps-polish", "s3nh/gpt-j-6b-3500steps-polish", "s3nh/DialoGPT-medium-4000steps-polish", - "s3nh/DialoGPT-small-5000steps-polish", - "Lajonbot/pythia-160m-53500-self-instruct-polish", - "Lajonbot/gpt-neo-125m-self-instruct-polish-66k-steps", - "Lajonbot/pythia-160m-33k-steps-self-instruct-polish", - "Lajonbot/pythia-410m-21k-steps-self-instruct-polish", - "Lajonbot/llama-30b-hf-pl-lora", - #"Amazon-LightGPT-pl-qlora", - #"wizard-mega-13b-pl-lora", - #"stablelm-base-alpha-3b-Lora-polish", - #"dolly-v2-3b-Lora-polish", - #"LaMini-GPT-1.5B-Lora-polish"], - ]), - gr.Textbox( - lines = 3, - max_lines = 10, - placeholder = "Add question here", - interactive = True, - show_label = False - ), - gr.Textbox( - lines = 3, - max_lines = 10, - placeholder = "Add context here", - interactive = True, - show_label = False - ), - gr.Slider( - label="Temperature", - value=0.7, - minimum=0.0, - maximum=1.0, - step=0.1, - interactive=True, - info="Higher values produce more diverse outputs", - ), - gr.Slider( - label="Top-p (nucleus sampling)", - value=0.9, - minimum=0.0, - maximum=1, - step=0.05, - interactive=True, - info="Higher values sample more low-probability tokens", - ), - gr.Slider( - label="Number of beams", - value=2, - minimum=0.0, - maximum=5.0, - step=1.0, - interactive=True, - info="The parameter for repetition penalty. 1.0 means no penalty." - )], - outputs = [gr.Textbox(lines = 1, label = 'Pythia410m', interactive = False)], - cache_examples = False, -) - -io.launch(debug = True) \ No newline at end of file diff --git a/spaces/scedlatioru/img-to-music/example/Crypto Redi Pc 50 A Driver.md b/spaces/scedlatioru/img-to-music/example/Crypto Redi Pc 50 A Driver.md deleted file mode 100644 index 2ec1dfea82fd9dd9dbccfb656c53dc6f3cd664b1..0000000000000000000000000000000000000000 --- a/spaces/scedlatioru/img-to-music/example/Crypto Redi Pc 50 A Driver.md +++ /dev/null @@ -1,6 +0,0 @@ -

          Crypto redi pc 50 a driver


          Download » https://gohhs.com/2uEzjr



          - -ĆŽĀ¤ĆŽĀæ ReDi PC 150 ĆŽĀµĆŽĀÆĆŽĀ½ĆŽĀ±ĆŽĀ¹ ĆŽĀ¼ĆŽĀ¹ĆŽĀ± ĆŽĀ¼ĆŽĀ¹ĆŽĀŗĆĀĆŽĀ® ĆŽĀŗĆŽĀ±ĆŽĀ¹ ĆŽĀŗĆŽĀæĆŽĀ¼ĆĖ†ĆŽĀ® ĆĖ†ĆŽĀ·Ćā€ ĆŽĀ¹ĆŽĀ±ĆŽĀŗĆŽĀ® ĆĘ’Ćā€¦ĆĘ’ĆŽĀŗĆŽĀµĆā€¦ĆŽĀ® Ćā‚¬ĆŽĀæĆā€¦ ĆĘ’ĆŽĀ±Ćā€š ĆŽĀ“ĆŽĀÆĆŽĀ½ĆŽĀµĆŽĀ¹ Ćā€žĆŽĀ·ĆŽĀ½ ... Disk space: 500MB for driver and application /600Mb~3GB/hour for recording ... 4d29de3e1b
          -
          -
          -

          diff --git a/spaces/scedlatioru/img-to-music/example/EASEUS Partition Master 13.6 Technican Edition Crack Serial Key.md b/spaces/scedlatioru/img-to-music/example/EASEUS Partition Master 13.6 Technican Edition Crack Serial Key.md deleted file mode 100644 index 6841927f66a65ef084616ccfec6c31902abf5eca..0000000000000000000000000000000000000000 --- a/spaces/scedlatioru/img-to-music/example/EASEUS Partition Master 13.6 Technican Edition Crack Serial Key.md +++ /dev/null @@ -1,34 +0,0 @@ -

          EASEUS Partition Master 13.6 Technican Edition Crack Serial Key


          Download Zip ✓✓✓ https://gohhs.com/2uEAwI



          -
          -.3.2017 - -This computer can be connected to the printer with a USB cable. I downloaded the software from the help section of HP's website. A printer that is shared from a computer via a network (local area network. Have you shared your printer on a local area network (LAN)? HP HP LaserJet P-2200 Black and white $71.00. More About This Product Shop All PROFESSIONAL Products. Select color Select color Select color Select. Keep scrolling to see a full list of applications on this. - -13.11.2016 - -$72.00 - -PC System Information Utility. An HP LaserJet 2150 e-All-In-One Printer. - -Flexibility and connectivity with HP LaserJet Pro prints are standard, ensuring you can complete your high-quality printing tasks no matter what. Get the latest HP LaserJet printing software and hardware products. About This Product Choose an operating system Choose an operating system Choose an operating system. - -HP LaserJet P-1200 Inkjet Printer - -Most recent reviews from the community Leave your review. Help Support. Type your email address below and we'll send you a link to reset your password. Close. offlineMessage. Don't have an account? - -We accept: All HP product purchases made directly at HP. Ask a question More about this product. HP LaserJet P-1200 Color Inkjet Printer HP LaserJet 2150 All-in-One Printer. All HP products purchased at HP.com and made through the HP online store are covered by our HP customer satisfaction guarantee. - -Close. offlineMessage. Most Helpful Customer Reviews. All HP product purchases made directly at HP. Ask a question More about this product. Our highest priority is to create the best possible experience for you as an HP customer! - -Cancel Please try again. When the HP LaserJet P-1200 is empty, it will stop printing until you replace the ink cartridge. Select a language. Select a language Select a language. - -HP LaserJet P-1200, Laserjet Pro Print Cartridge/Ink, Black - -Ask now How to get started? This HP product is delivered by HP. Here's how HP.com uses cookies. Confirm Your Email Address. Close. offlineMessage. We apologize for this inconvenience. - -Thank you for your feedback. - -Ask now. The mainboard contains 2x RAM slots and 2x DIM 4fefd39f24
          -
          -
          -

          diff --git a/spaces/sdhsdhk/bingosjj/src/components/ui/voice/index.tsx b/spaces/sdhsdhk/bingosjj/src/components/ui/voice/index.tsx deleted file mode 100644 index 4adcb632226bfced8b97092782811edf08b56569..0000000000000000000000000000000000000000 --- a/spaces/sdhsdhk/bingosjj/src/components/ui/voice/index.tsx +++ /dev/null @@ -1,28 +0,0 @@ -import './index.scss' - -export interface VoiceProps extends CSSPropertyRule { - num?: number; - duration?: number; -} -export default function Voice({ duration = 400, num = 7, ...others }) { - return ( -
          - {Array.from({ length: num }).map((_, index) => { - const randomDuration = Math.random() * 100 + duration - const initialDelay = Math.random() * 2 * duration - const initialScale = Math.sin((index + 1) * Math.PI / num) - return ( -
          - ) - })} -
          - ) -} diff --git a/spaces/segments-tobias/conex/espnet2/enh/layers/dprnn.py b/spaces/segments-tobias/conex/espnet2/enh/layers/dprnn.py deleted file mode 100644 index 827c754ac8673685c56fe0ddb67116adde7a1bcb..0000000000000000000000000000000000000000 --- a/spaces/segments-tobias/conex/espnet2/enh/layers/dprnn.py +++ /dev/null @@ -1,241 +0,0 @@ -# The implementation of DPRNN in -# Luo. et al. "Dual-path rnn: efficient long sequence modeling -# for time-domain single-channel speech separation." -# -# The code is based on: -# https://github.com/yluo42/TAC/blob/master/utility/models.py -# - - -import torch -from torch.autograd import Variable -import torch.nn as nn - - -EPS = torch.finfo(torch.get_default_dtype()).eps - - -class SingleRNN(nn.Module): - """Container module for a single RNN layer. - - args: - rnn_type: string, select from 'RNN', 'LSTM' and 'GRU'. - input_size: int, dimension of the input feature. The input should have shape - (batch, seq_len, input_size). - hidden_size: int, dimension of the hidden state. - dropout: float, dropout ratio. Default is 0. - bidirectional: bool, whether the RNN layers are bidirectional. Default is False. - """ - - def __init__( - self, rnn_type, input_size, hidden_size, dropout=0, bidirectional=False - ): - super().__init__() - - rnn_type = rnn_type.upper() - - assert rnn_type in [ - "RNN", - "LSTM", - "GRU", - ], f"Only support 'RNN', 'LSTM' and 'GRU', current type: {rnn_type}" - - self.rnn_type = rnn_type - self.input_size = input_size - self.hidden_size = hidden_size - self.num_direction = int(bidirectional) + 1 - - self.rnn = getattr(nn, rnn_type)( - input_size, - hidden_size, - 1, - batch_first=True, - bidirectional=bidirectional, - ) - - self.dropout = nn.Dropout(p=dropout) - - # linear projection layer - self.proj = nn.Linear(hidden_size * self.num_direction, input_size) - - def forward(self, input): - # input shape: batch, seq, dim - # input = input.to(device) - output = input - rnn_output, _ = self.rnn(output) - rnn_output = self.dropout(rnn_output) - rnn_output = self.proj( - rnn_output.contiguous().view(-1, rnn_output.shape[2]) - ).view(output.shape) - return rnn_output - - -# dual-path RNN -class DPRNN(nn.Module): - """Deep dual-path RNN. - - args: - rnn_type: string, select from 'RNN', 'LSTM' and 'GRU'. - input_size: int, dimension of the input feature. The input should have shape - (batch, seq_len, input_size). - hidden_size: int, dimension of the hidden state. - output_size: int, dimension of the output size. - dropout: float, dropout ratio. Default is 0. - num_layers: int, number of stacked RNN layers. Default is 1. - bidirectional: bool, whether the RNN layers are bidirectional. Default is True. - """ - - def __init__( - self, - rnn_type, - input_size, - hidden_size, - output_size, - dropout=0, - num_layers=1, - bidirectional=True, - ): - super().__init__() - - self.input_size = input_size - self.output_size = output_size - self.hidden_size = hidden_size - - # dual-path RNN - self.row_rnn = nn.ModuleList([]) - self.col_rnn = nn.ModuleList([]) - self.row_norm = nn.ModuleList([]) - self.col_norm = nn.ModuleList([]) - for i in range(num_layers): - self.row_rnn.append( - SingleRNN( - rnn_type, input_size, hidden_size, dropout, bidirectional=True - ) - ) # intra-segment RNN is always noncausal - self.col_rnn.append( - SingleRNN( - rnn_type, - input_size, - hidden_size, - dropout, - bidirectional=bidirectional, - ) - ) - self.row_norm.append(nn.GroupNorm(1, input_size, eps=1e-8)) - # default is to use noncausal LayerNorm for inter-chunk RNN. - # For causal setting change it to causal normalization accordingly. - self.col_norm.append(nn.GroupNorm(1, input_size, eps=1e-8)) - - # output layer - self.output = nn.Sequential(nn.PReLU(), nn.Conv2d(input_size, output_size, 1)) - - def forward(self, input): - # input shape: batch, N, dim1, dim2 - # apply RNN on dim1 first and then dim2 - # output shape: B, output_size, dim1, dim2 - # input = input.to(device) - batch_size, _, dim1, dim2 = input.shape - output = input - for i in range(len(self.row_rnn)): - row_input = ( - output.permute(0, 3, 2, 1) - .contiguous() - .view(batch_size * dim2, dim1, -1) - ) # B*dim2, dim1, N - row_output = self.row_rnn[i](row_input) # B*dim2, dim1, H - row_output = ( - row_output.view(batch_size, dim2, dim1, -1) - .permute(0, 3, 2, 1) - .contiguous() - ) # B, N, dim1, dim2 - row_output = self.row_norm[i](row_output) - output = output + row_output - - col_input = ( - output.permute(0, 2, 3, 1) - .contiguous() - .view(batch_size * dim1, dim2, -1) - ) # B*dim1, dim2, N - col_output = self.col_rnn[i](col_input) # B*dim1, dim2, H - col_output = ( - col_output.view(batch_size, dim1, dim2, -1) - .permute(0, 3, 1, 2) - .contiguous() - ) # B, N, dim1, dim2 - col_output = self.col_norm[i](col_output) - output = output + col_output - - output = self.output(output) # B, output_size, dim1, dim2 - - return output - - -def _pad_segment(input, segment_size): - # input is the features: (B, N, T) - batch_size, dim, seq_len = input.shape - segment_stride = segment_size // 2 - - rest = segment_size - (segment_stride + seq_len % segment_size) % segment_size - if rest > 0: - pad = Variable(torch.zeros(batch_size, dim, rest)).type(input.type()) - input = torch.cat([input, pad], 2) - - pad_aux = Variable(torch.zeros(batch_size, dim, segment_stride)).type(input.type()) - input = torch.cat([pad_aux, input, pad_aux], 2) - - return input, rest - - -def split_feature(input, segment_size): - # split the feature into chunks of segment size - # input is the features: (B, N, T) - - input, rest = _pad_segment(input, segment_size) - batch_size, dim, seq_len = input.shape - segment_stride = segment_size // 2 - - segments1 = ( - input[:, :, :-segment_stride] - .contiguous() - .view(batch_size, dim, -1, segment_size) - ) - segments2 = ( - input[:, :, segment_stride:] - .contiguous() - .view(batch_size, dim, -1, segment_size) - ) - segments = ( - torch.cat([segments1, segments2], 3) - .view(batch_size, dim, -1, segment_size) - .transpose(2, 3) - ) - - return segments.contiguous(), rest - - -def merge_feature(input, rest): - # merge the splitted features into full utterance - # input is the features: (B, N, L, K) - - batch_size, dim, segment_size, _ = input.shape - segment_stride = segment_size // 2 - input = ( - input.transpose(2, 3).contiguous().view(batch_size, dim, -1, segment_size * 2) - ) # B, N, K, L - - input1 = ( - input[:, :, :, :segment_size] - .contiguous() - .view(batch_size, dim, -1)[:, :, segment_stride:] - ) - input2 = ( - input[:, :, :, segment_size:] - .contiguous() - .view(batch_size, dim, -1)[:, :, :-segment_stride] - ) - - output = input1 + input2 - if rest > 0: - output = output[:, :, :-rest] - - return output.contiguous() # B, N, T diff --git a/spaces/sh20raj/sdxl/app.py b/spaces/sh20raj/sdxl/app.py deleted file mode 100644 index 9520517f687cf7229ddfab9d8c5f8af7f76b0bd4..0000000000000000000000000000000000000000 --- a/spaces/sh20raj/sdxl/app.py +++ /dev/null @@ -1,3 +0,0 @@ -import gradio as gr - -gr.Interface.load("models/stabilityai/stable-diffusion-xl-base-1.0").launch() \ No newline at end of file diff --git a/spaces/shabnam91/Sanskrit-TTS/normalizer_utils.py b/spaces/shabnam91/Sanskrit-TTS/normalizer_utils.py deleted file mode 100644 index 54439c0b12a3f8abc2834c775be39ea66ddfe0b5..0000000000000000000000000000000000000000 --- a/spaces/shabnam91/Sanskrit-TTS/normalizer_utils.py +++ /dev/null @@ -1,179 +0,0 @@ -DEPENDENT_VOWELS = ["ा", "ि", "ą„€", "ą„", "ą„‚", "ą„‡", "ą„ˆ", "ą„‹", "ą„Œ", "ं", "ः", "ą„ƒ", "ą„„"] - -punctuation_marks = ["ą„¤", "ą„„", "'", '.', ',', '!', '?', ':', ';', '"', "'", '(', ')', '[', ']', '{', '}', '-', '_', '/', '\\', '|', '@', '#', '$', '%', '&', '*', '=', '<', '>', '^', '~', '__'] - - -dict_num = {'ą„§': 'ą¤ą¤•ą¤ƒ', - 'ą„Ø': 'ą¤¦ą„ą¤µą„Œ', - 'ą„©': 'ą¤¤ą„ą¤°ą¤Æą¤ƒ', - 'ą„Ŗ': 'ą¤šą¤¤ą„ą¤µą¤¾ą¤°ą¤ƒ', - 'ą„«': 'ą¤Ŗą¤žą„ą¤š', - 'ą„¬': 'ą¤·ą¤Ÿą„', - 'ą„­': 'ą¤øą¤Ŗą„ą¤¤', - 'ą„®': 'ą¤…ą¤·ą„ą¤Ÿ', - 'ą„Æ': 'नव', - 'ą„§ą„°': 'दश', - 'ą„§ą„§': 'ą¤ą¤•ą¤¾ą¤¦ą¤¶ą¤Øą„', - 'ą„§ą„Ø': 'ą¤¦ą„ą¤µą¤¾ą¤¦ą¤¶ą¤Øą„', - 'ą„§ą„©': 'ą¤¤ą„ą¤°ą¤Æą„‹ą¤¦ą¤¶ą¤Øą„', - 'ą„§ą„Ŗ': 'ą¤šą¤¤ą„ą¤°ą„ą¤¦ą¤¶ą¤Øą„', - 'ą„§ą„«': 'ą¤Ŗą¤žą„ą¤šą¤¦ą¤¶ą¤Øą„', - 'ą„§ą„¬': 'ą¤·ą„‹ą¤”ą¤¶ą¤Øą„', - 'ą„§ą„­': 'ą¤øą¤Ŗą„ą¤¤ą¤¦ą¤¶ą¤Øą„', - 'ą„§ą„®': 'ą¤…ą¤·ą„ą¤Ÿą¤¾ą¤¦ą¤¶ą¤Øą„', - 'ą„§ą„Æ': 'ą¤Øą¤µą¤¦ą¤¶ą¤Øą„', - 'ą„Øą„°': 'विंशति', - 'ą„Øą„§': 'ą¤ą¤•ą¤¾ą¤µą¤æą¤‚ą¤¶ą¤¤ą¤æ', - 'ą„Øą„Ø': 'ą¤¦ą„ą¤µą¤¾ą¤µą¤æą¤‚ą¤¶ą¤¤ą¤æ', - 'ą„Øą„©': 'ą¤¤ą„ą¤°ą¤Æą„‹ą¤µą¤æą¤‚ą¤¶ą¤¤ą¤æ', - 'ą„Øą„Ŗ': 'ą¤šą¤¤ą„ą¤°ą„ą¤µą¤æą¤‚ą¤¶ą¤¤ą¤æ', - 'ą„Øą„«': 'ą¤Ŗą¤žą„ą¤šą¤µą¤æą¤‚ą¤¶ą¤¤ą¤æ', - 'ą„Øą„¬': 'ą¤·ą¤”ą„ą¤µą¤æą¤‚ą¤¶ą¤¤ą¤æ', - 'ą„Øą„­': 'ą¤øą¤Ŗą„ą¤¤ą¤µą¤æą¤‚ą¤¶ą¤¤ą¤æ', - 'ą„Øą„®': 'ą¤…ą¤·ą„ą¤Ÿą¤¾ą¤µą¤æą¤‚ą¤¶ą¤¤ą¤æ', - 'ą„Øą„Æ': 'नवविंशति', - 'ą„©ą„°': 'ą¤¤ą„ą¤°ą¤æą¤‚ą¤¶ą¤¤ą„', - 'ą„©ą„§': 'ą¤ą¤•ą¤¤ą„ą¤°ą¤æą¤‚ą¤¶ą¤¤ą„', - 'ą„©ą„Ø': 'ą¤¦ą„ą¤µą¤¾ą¤¤ą„ą¤°ą¤æą¤‚ą¤¶ą¤¤ą„', - 'ą„©ą„©': 'ą¤¤ą„ą¤°ą¤Æą¤¤ą„ą¤°ą¤æą¤‚ą¤¶ą¤¤ą„', - 'ą„©ą„Ŗ': 'ą¤šą¤¤ą„ą¤øą„ą¤¤ą„ą¤°ą¤æą¤‚ą¤¶ą¤¤ą„', - 'ą„©ą„«': 'ą¤Ŗą¤žą„ą¤šą¤¤ą„ą¤°ą¤æą¤‚ą¤¶ą¤¤ą„', - 'ą„©ą„¬': 'ą¤·ą¤Ÿą„ą¤¤ą„ą¤°ą¤æą¤‚ą¤¶ą¤¤ą„', - 'ą„©ą„­': 'ą¤øą¤Ŗą„ą¤¤ą¤¤ą„ą¤°ą¤æą¤‚ą¤¶ą¤¤ą„', - 'ą„©ą„®': 'ą¤…ą¤·ą„ą¤Ÿą¤¾ą¤¤ą„ą¤°ą¤æą¤‚ą¤¶ą¤¤ą„', - 'ą„©ą„Æ': 'ą¤ą¤•ą„‹ą¤Øą¤šą¤¤ą„ą¤µą¤¾ą¤°ą¤æą¤‚ą¤¶ą¤¤ą„', - 'ą„Ŗą„°': 'ą¤šą¤¤ą„ą¤µą¤¾ą¤°ą¤æą¤‚ą¤¶ą¤¤ą„', - 'ą„Ŗą„§': 'ą¤ą¤•ą¤šą¤¤ą„ą¤µą¤¾ą¤°ą¤æą¤‚ą¤¶ą¤¤ą„', - 'ą„Ŗą„Ø': 'ą¤¦ą„ą¤µą¤æą¤šą¤¤ą„ą¤µą¤¾ą¤°ą¤æą¤‚ą¤¶ą¤¤ą„', - 'ą„Ŗą„©': 'ą¤¤ą„ą¤°ą¤æą¤šą¤¤ą„ą¤µą¤¾ą¤°ą¤æą¤‚ą¤¶ą¤¤ą„', - 'ą„Ŗą„Ŗ': 'ą¤šą¤¤ą„ą¤¶ą„ą¤šą¤¤ą„ą¤µą¤¾ą¤°ą¤æą¤‚ą¤¶ą¤¤ą„', - 'ą„Ŗą„«': 'ą¤Ŗą¤žą„ą¤šą¤šą¤¤ą„ą¤µą¤¾ą¤°ą¤æą¤‚ą¤¶ą¤¤ą„', - 'ą„Ŗą„¬': 'ą¤·ą¤Ÿą„ą¤šą¤¤ą„ą¤µą¤¾ą¤°ą¤æą¤‚ą¤¶ą¤¤ą„', - 'ą„Ŗą„­': 'ą¤øą¤Ŗą„ą¤¤ą¤šą¤¤ą„ą¤µą¤¾ą¤°ą¤æą¤‚ą¤¶ą¤¤ą„', - 'ą„Ŗą„®': 'ą¤…ą¤·ą„ą¤Ÿą¤¾ą¤šą¤¤ą„ą¤µą¤¾ą¤°ą¤æą¤‚ą¤¶ą¤¤ą„', - 'ą„Ŗą„Æ': 'ą¤ą¤•ą„‹ą¤Øą¤Ŗą¤žą„ą¤šą¤¾ą¤¶ą¤¤ą„', - 'ą„«ą„°': 'ą¤Ŗą¤žą„ą¤šą¤¾ą¤¶ą¤¤ą„', - 'ą„«ą„§': 'ą¤ą¤•ą¤Ŗą¤žą„ą¤šą¤¾ą¤¶ą¤¤ą„', - 'ą„«ą„Ø': 'ą¤¦ą„ą¤µą¤æą¤Ŗą¤žą„ą¤šą¤¾ą¤¶ą¤¤ą„', - 'ą„«ą„©': 'ą¤¤ą„ą¤°ą¤æą¤Ŗą¤žą„ą¤šą¤¾ą¤¶ą¤¤ą„', - 'ą„«ą„Ŗ': 'ą¤šą¤¤ą„ą¤ƒą¤Ŗą¤žą„ą¤šą¤¾ą¤¶ą¤¤ą„', - 'ą„«ą„«': 'ą¤Ŗą¤žą„ą¤šą¤Ŗą¤žą„ą¤šą¤¾ą¤¶ą¤¤ą„', - 'ą„«ą„¬': 'ą¤·ą¤Ÿą„ą¤Ŗą¤žą„ą¤šą¤¾ą¤¶ą¤¤ą„', - 'ą„«ą„­': 'ą¤øą¤Ŗą„ą¤¤ą¤Ŗą¤žą„ą¤šą¤¾ą¤¶ą¤¤ą„', - 'ą„«ą„®': 'ą¤…ą¤·ą„ą¤Ÿą¤¾ą¤Ŗą¤žą„ą¤šą¤¾ą¤¶ą¤¤ą„', - 'ą„«ą„Æ': 'ą¤ą¤•ą„‹ą¤Øą¤·ą¤·ą„ą¤ ą¤æą¤ƒ', - 'ą„¬ą„°': 'ą¤·ą¤·ą„ą¤ ą¤æą¤ƒ', - 'ą„¬ą„§': 'ą¤ą¤•ą¤·ą¤·ą„ą¤ ą¤æą¤ƒ', - 'ą„¬ą„Ø': 'ą¤¦ą„ą¤µą¤æą¤·ą¤·ą„ą¤ ą¤æą¤ƒ', - 'ą„¬ą„©': 'ą¤¤ą„ą¤°ą¤æą¤·ą¤·ą„ą¤ ą¤æą¤ƒ', - 'ą„¬ą„Ŗ': 'ą¤šą¤¤ą„ą¤ƒą¤·ą¤·ą„ą¤ ą¤æą¤ƒ', - 'ą„¬ą„«': 'ą¤Ŗą¤žą„ą¤šą¤·ą¤·ą„ą¤ ą¤æą¤ƒ', - 'ą„¬ą„¬': 'ą¤·ą¤Ÿą„ą¤·ą¤·ą„ą¤ ą¤æą¤ƒ', - 'ą„¬ą„­': 'ą¤øą¤Ŗą„ą¤¤ą¤·ą¤·ą„ą¤ ą¤æą¤ƒ', - 'ą„¬ą„®': 'ą¤…ą¤·ą„ą¤Ÿą¤¾ą¤·ą¤·ą„ą¤ ą¤æą¤ƒ', - 'ą„¬ą„Æ': 'ą¤ą¤•ą„‹ą¤Øą¤øą¤Ŗą„ą¤¤ą¤¤ą¤æą¤ƒ', - 'ą„­ą„°': 'ą¤øą¤Ŗą„ą¤¤ą¤¤ą¤æą¤ƒ', - 'ą„­ą„§': 'ą¤ą¤•ą¤øą¤Ŗą„ą¤¤ą¤¤ą¤æą¤ƒ', - 'ą„­ą„Ø': 'ą¤¦ą„ą¤µą¤æą¤øą¤Ŗą„ą¤¤ą¤¤ą¤æą¤ƒ', - 'ą„­ą„©': 'ą¤¤ą„ą¤°ą¤æą¤øą¤Ŗą„ą¤¤ą¤¤ą¤æą¤ƒ', - 'ą„­ą„Ŗ': 'ą¤šą¤¤ą„ą¤ƒą¤øą¤Ŗą„ą¤¤ą¤¤ą¤æą¤ƒ', - 'ą„­ą„«': 'ą¤Ŗą¤žą„ą¤šą¤øą¤Ŗą„ą¤¤ą¤¤ą¤æą¤ƒ', - 'ą„­ą„¬': 'ą¤·ą¤Ÿą„ą¤øą¤Ŗą„ą¤¤ą¤¤ą¤æą¤ƒ', - 'ą„­ą„­': 'ą¤øą¤Ŗą„ą¤¤ą¤øą¤Ŗą„ą¤¤ą¤¤ą¤æą¤ƒ', - 'ą„­ą„®': 'ą¤·ą„ą¤Ÿą¤øą¤Ŗą„ą¤¤ą¤¤ą¤æą¤ƒ', - 'ą„­ą„Æ': 'ą¤ą¤•ą„‹ą¤Øą¤¾ą¤¶ą„€ą¤¤ą¤æą¤ƒ', - 'ą„®ą„°': 'ą¤¶ą„€ą¤¤ą¤æą¤ƒ', - 'ą„®ą„§': 'ą¤ą¤•ą¤¾ą¤¶ą„€ą¤¤ą¤æą¤ƒ', - 'ą„®ą„Ø': 'ą¤¦ą„ą¤µą¤¶ą„€ą¤¤ą¤æą¤ƒ', - 'ą„®ą„©': 'ą¤¤ą„ą¤°ą„ą¤Æą¤¶ą„€ą¤¤ą¤æą¤ƒ', - 'ą„®ą„Ŗ': 'ą¤šą¤¤ą„ą¤°ą¤¶ą„€ą¤¤ą¤æą¤ƒ', - 'ą„®ą„«': 'ą¤Ŗą¤žą„ą¤šą¤¾ą¤¶ą„€ą¤¤ą¤æą¤ƒ', - 'ą„®ą„¬': 'ą¤·ą¤”ą¤¶ą„€ą¤¤ą¤æą¤ƒ', - 'ą„®ą„­': 'ą¤øą¤Ŗą„ą¤¤ą¤¾ą¤¶ą„€ą¤¤ą¤æą¤ƒ', - 'ą„®ą„®': 'ą¤…ą¤·ą„ą¤Ÿą¤¾ą¤¶ą„€ą¤¤ą¤æą¤ƒ', - 'ą„®ą„Æ': 'ą¤ą¤•ą„‹ą¤Øą¤Øą¤µą¤¤ą¤æą¤ƒ', - 'ą„Æą„°': 'नवतिः', - 'ą„Æą„§': 'ą¤ą¤•ą¤Øą¤µą¤¤ą¤æą¤ƒ', - 'ą„Æą„Ø': 'ą¤¦ą„ą¤µą¤æą¤Øą¤µą¤¤ą¤æą¤ƒ', - 'ą„Æą„©': 'ą¤¤ą„ą¤°ą¤æą¤Øą¤µą¤¤ą¤æą¤ƒ', - 'ą„Æą„Ŗ': 'ą¤šą¤¤ą„ą¤°ą„ą¤Øą¤µą¤¤ą¤æą¤ƒ', - 'ą„Æą„«': 'ą¤Ŗą¤žą„ą¤šą¤Øą¤µą¤¤ą¤æą¤ƒ', - 'ą„Æą„¬': 'ą¤·ą¤£ą„ą¤£ą¤µą¤¤ą¤æą¤ƒ', - 'ą„Æą„­': 'ą¤øą¤Ŗą„ą¤¤ą¤Øą¤µą¤¤ą¤æą¤ƒ', - 'ą„Æą„®': 'ą¤…ą¤·ą„ą¤Ÿą¤¾ą¤Øą¤µą¤¤ą¤æą¤ƒ', - 'ą„Æą„Æ': 'ą¤ą¤•ą„‹ą¤Øą¤¶ą¤¤ą¤®ą„', - 'ą„§ą„°ą„°': 'ą¤¶ą¤¤ą¤®ą„', - '0': 'ą¤¶ą„‚ą¤Øą„ą¤Æ', - 'ą„¦': 'ą¤¶ą„‚ą¤Øą„ą¤Æ', - '1': 'ą¤ą¤•ą¤ƒ', - '2': 'ą¤¦ą„ą¤µą„Œ', - '3': 'ą¤¤ą„ą¤°ą¤Æą¤ƒ', - '4': 'ą¤šą¤¤ą„ą¤µą¤¾ą¤°ą¤ƒ', - '5': 'ą¤Ŗą¤žą„ą¤š', - '6': 'ą¤·ą¤Ÿą„', - '7': 'ą¤øą¤Ŗą„ą¤¤', - '8': 'ą¤…ą¤·ą„ą¤Ÿ', - '9': 'नव', -} - -sanskrit_time_dict = { - "00": "बिना काल", - "01": "ą¤ą¤•", - "02": "ą¤¦ą„ą¤µą„‡", - "03": "ą¤¤ą„ą¤°ą„€ą¤£ą¤æ", - "04": "ą¤šą¤¤ą„ą¤µą¤¾ą¤°ą¤æ", - "05": "ą¤Ŗą¤žą„ą¤š", - "06": "ą¤·ą¤Ÿą„", - "07": "ą¤øą¤Ŗą„ą¤¤", - "08": "ą¤…ą¤·ą„ą¤Ÿ", - "09": "नव", - "10": "दश", - "11": "ą¤ą¤•ą¤¾ą¤¦ą¤¶", - "12": "ą¤¦ą„ą¤µą¤¾ą¤¦ą¤¶", - "13": "ą¤¤ą„ą¤°ą¤Æą„‹ą¤¦ą¤¶", - "14": "ą¤šą¤¤ą„ą¤°ą„ą¤¦ą¤¶", - "15": "ą¤Ŗą¤žą„ą¤šą¤¦ą¤¶", - "16": "ą¤·ą„‹ą¤”ą¤¶", - "17": "ą¤øą¤Ŗą„ą¤¤ą¤¦ą¤¶", - "18": "ą¤…ą¤·ą„ą¤Ÿą¤¾ą¤¦ą¤¶", - "19": "ą¤ą¤•ą„‹ą¤Øą¤µą¤æą¤‚ą¤¶ą¤¤ą¤æ", - "20": "ą¤µą¤æą¤‚ą¤¶ą¤¤ą¤æą¤ƒ", - "30": "ą¤…ą¤°ą„ą¤§ą¤˜ą¤£ą„ą¤Ÿą¤¾", - "40": "विंशति", - "45": "ą¤¤ą„ą¤°ą„ˆą¤ƒ ą¤šą¤¤ą„ą¤µą¤¾ą¤°ą¤æą¤‚ą¤¶ą¤¦ą„", -} - -# Define a dictionary to map months to their Sanskrit equivalents -sanskrit_month_dict = { - "01": "ą¤œą¤Øą¤µą¤°ą„€", - "02": "ą¤«ą¤°ą¤µą¤°ą„€", - "03": "ą¤®ą¤¾ą¤°ą„ą¤š", - "04": "ą¤…ą¤Ŗą„ą¤°ą„ˆą¤²", - "05": "मई", - "06": "ą¤œą„‚ą¤Ø", - "07": "ą¤œą„ą¤²ą¤¾ą¤ˆ", - "08": "ą¤…ą¤—ą¤øą„ą¤¤", - "09": "ą¤øą¤æą¤¤ą¤®ą„ą¤¬ą¤°", - "10": "ą¤…ą¤•ą„ą¤Ÿą„‚ą¤¬ą¤°", - "11": "ą¤Øą¤µą¤®ą„ą¤¬ą¤°", - "12": "ą¤¦ą¤æą¤øą¤®ą„ą¤¬ą¤°", -} - -abbreviation_dict = { - 'ą¤°ą„ą¤Ŗą„ą¤Æą¤•ą¤®ą„':'ą¤°ą„.', #rupee - 'ą¤šą¤æą¤•ą¤æą¤¤ą¤øą¤æą¤•': 'ą¤”ą„‰.', #doctor - 'ą¤øą¤Ŗą„ą¤¤ą¤¾ą¤¶ą„€ą¤¤ą„ą¤Æą„ą¤¤ą„ą¤¤ą¤°-ą¤Øą¤µą¤¶ą¤¤ą„‹ą¤¤ą„ą¤¤ą¤°- ą¤øą¤Ŗą„ą¤¤ą¤·ą¤·ą„ą¤Ÿą¤æą¤øą¤¹ą¤øą„ą¤°ą„‹ą¤¤ą„ą¤¤ą¤°': '988876765554544667987', #numbers - 'ą¤šą¤¤ą„ą¤·ą„ą¤Ŗą¤žą„ą¤šą¤¾ą¤¶ą¤¤ą„ą¤•ą„‹ą¤Ÿą¤æ-ą¤šą¤¤ą„ą¤·ą„ą¤Ŗą¤žą„ą¤šą¤¾ą¤¶ą¤¤ą„ ą¤…ą¤°ą„ą¤¬ą„ą¤¦ą„‹ą¤¤ą„ą¤¤ą¤°-ą¤Ŗą¤žą„ą¤šą¤Ŗą¤žą„ą¤šą¤¾ą¤¶ą¤¤ą„ą¤–ą¤°ą„ą¤µą„‹ą¤¤ą„ą¤¤ą¤°- ą¤·ą¤Ÿą„ą¤øą¤Ŗą„ą¤¤ą¤¤ą¤æą¤Øą„€ą¤²ą„‹ą¤¤ą„ą¤¤ą¤°-ą¤·ą¤Ÿą„ą¤øą¤Ŗą„ą¤¤ą¤¤ą¤æą¤Ŗą¤¦ą„ą¤®ą„‹ą¤¤ą„ą¤¤ą¤°- ą¤…ą¤·ą„ą¤Ÿą¤¾ą¤¶ą„€ą¤¤ą¤æą¤¶ą¤™ą„ą¤–ą„‹ą¤¤ą„ą¤¤ą¤°- ą¤…ą¤·ą„ą¤Ÿą¤¾ą¤Øą¤µą¤¤ą¤æą¤®ą¤¹ą¤¾ą¤¶ą¤™ą„ą¤–ą¤®ą„': 'ą¤·ą¤Ÿą„ą¤šą¤¤ą„ą¤µą¤¾ą¤°ą¤æą¤‚ą¤¶ą¤¤ą„ą¤²ą¤•ą„ą¤·ą„‹ą¤¤ą„ą¤¤ą¤°', #high number - 'ą¤…ą¤·ą„ą¤Ÿą¤¾ą¤¶ą„€ą¤¤ą¤æą¤¶ą¤™ą„ą¤–ą„‹ą¤¤ą„ą¤¤ą¤°- ą¤…ą¤·ą„ą¤Ÿą¤¾ą¤Øą¤µą¤¤ą¤æą¤®ą¤¹ą¤¾ą¤¶ą¤™ą„ą¤–ą¤®ą„':'ą¤·ą¤Ÿą„ą¤øą¤Ŗą„ą¤¤ą¤¤ą¤æą¤Øą„€ą¤²ą„‹ą¤¤ą„ą¤¤ą¤°-ą¤·ą¤Ÿą„ą¤øą¤Ŗą„ą¤¤ą¤¤ą¤æą¤Ŗą¤¦ą„ą¤®ą„‹ą¤¤ą„ą¤¤', # numbers also - 'ą¤§ą¤Øą¤®ą„ नव ą¤ą¤•ą¤®ą„ नव ą¤¦ą„ą¤µą„‡ ą¤¦ą„ą¤µą„‡ ą¤¦ą„ą¤µą„‡ ą¤¦ą„ą¤µą„‡ ą¤¤ą„ą¤°ą„€ą¤£ą¤æ ą¤¦ą„ą¤µą„‡ ą¤ą¤•ą¤®ą„ ą¤¶ą„‚ą¤Øą„ą¤Æą¤®ą„ ą¤¶ą„‚ą¤Øą„ą¤Æą¤®ą„':'(+91) 922-2232100', #indian number - 'ą¤øą¤Ŗą¤¾ą¤¦ą¤¦ą„ą¤µą¤¾ą¤¦ą¤¶ą¤µą¤¾ą¤¦ą¤Øą¤®ą„' :'12:15 ą¤µą¤¾ą¤¦ą¤Øą„‡', #time - 'ą¤¦ą„ą¤µą¤¾ą¤¤ą„ą¤°ą¤æą¤‚ą¤¶ą¤¦ą„ą¤¤ą„ą¤¤ą¤°-ą¤Ŗą¤žą„ą¤šą¤¶ą¤¤ą„‹ą¤¤ą„ą¤¤ą¤°- ą¤Ŗą¤žą„ą¤šą¤·ą¤·ą„ą¤Ÿą¤æą¤øą¤¹ą¤øą„ą¤°ą„‹ą¤¤ą„ą¤¤ą¤°- ą¤·ą¤Ÿą„ą¤øą¤Ŗą„ą¤¤ą¤¤ą¤æą¤²ą¤•ą„ą¤·ą„‹ą¤¤ą„ą¤¤ą¤°-ą¤øą¤Ŗą„ą¤¤ą¤¾ą¤¶ą„€ą¤¤ą¤æą¤•ą„‹ą¤Ÿą¤æą¤ƒ': '877665532', #numbers - 'ą¤šą¤¤ą„ą¤¶ą„ą¤šą¤¤ą„ą¤µą¤¾ą¤°ą¤æą¤‚ą¤¶ą¤¦ą„ą¤¤ą„ą¤¤ą¤°-ą¤šą¤¤ą„ą¤ƒą¤¶ą¤¤ą„‹ą¤¤ą„ą¤¤ą¤°- ą¤¦ą¤¶ą¤øą¤¹ą¤øą„ą¤°ą¤®ą„':'10444.09 ą¤°ą„', #decimal - 'ą¤¦ą¤æą¤Øą¤¾ą¤‚ą¤•ą¤®ą„ ą¤Øą¤µą¤µą¤æą¤‚ą¤¶ą¤¤ą¤®ą„ ą¤¦ą¤æą¤Øą¤¾ą¤‚ą¤•ą¤®ą„ ą¤šą¤¤ą„ą¤°ą„ą¤„ ą¤®ą¤¾ą¤øą„‡ ą¤¦ą„ą¤µą„Œą¤øą¤¹ą¤øą„ą¤¤ą„ą¤°ą¤®ą¤§ą¤æą¤•ą¤‚ ą¤¤ą„ą¤°ą¤æą¤µą¤æą¤‚ą¤¶ą¤¤ą¤æą¤ƒ ą¤µą¤°ą„ą¤·ą„‡': 'ą¤¦ą¤æą¤Øą¤¾ą¤‚ą¤•ą¤®ą„ 29/04/2023' - -} - -stop_words = { - "ą¤Ŗą„‚ą¤°ą„ą¤£ą¤µą¤æą¤°ą¤¾ą¤®", "ą¤‰ą¤¦ą„ą¤˜ą„‹ą¤·ą¤ƒ", "ą¤…ą¤²ą„ą¤Ŗą¤µą¤æą¤°ą¤¾ą¤®ą¤ƒ", "ą¤Ŗą„ą¤°ą¤¶ą„ą¤Øą¤šą¤æą¤¹ą„ą¤Ø", "ą¤µą¤°ą„ą¤—ą¤•ą„‹ą¤·ą„ą¤ ą¤•ą¤¾ą¤ƒ", - "ą¤¦ą„ą¤µą¤æą¤—ą„ą¤£", "ą¤Šą¤°ą„ą¤§ą„ą¤µą¤¾ą¤§ą¤°", "शलाका", "ą¤Šą¤°ą„ą¤§ą„ą¤µą¤¾ą¤§ą¤°", "बार", "ą¤¹ą¤¾ą¤‡ą¤«ą¤Øą„", "ą¤…ą¤°ą„ą¤§ą¤µą¤æą¤°ą¤¾ą¤®", "ą¤¬ą„ƒą¤¹ą¤¦ą¤¾ą¤Øą„ą¤¤ą„ą¤°ą¤®ą„" "ą¤¤ą¤¾ą¤°ą¤¾ą¤šą¤æą¤¹ą„ą¤Øą¤®ą„" -} \ No newline at end of file diff --git a/spaces/shi-labs/Versatile-Diffusion/lib/model_zoo/bert.py b/spaces/shi-labs/Versatile-Diffusion/lib/model_zoo/bert.py deleted file mode 100644 index 7ee4a4725e28976732bc34e06c382756522cd09e..0000000000000000000000000000000000000000 --- a/spaces/shi-labs/Versatile-Diffusion/lib/model_zoo/bert.py +++ /dev/null @@ -1,142 +0,0 @@ -import torch -import torch.nn as nn -from functools import partial - -# from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test - - -class AbstractEncoder(nn.Module): - def __init__(self): - super().__init__() - - def encode(self, *args, **kwargs): - raise NotImplementedError - - - -class ClassEmbedder(nn.Module): - def __init__(self, embed_dim, n_classes=1000, key='class'): - super().__init__() - self.key = key - self.embedding = nn.Embedding(n_classes, embed_dim) - - def forward(self, batch, key=None): - if key is None: - key = self.key - # this is for use in crossattn - c = batch[key][:, None] - c = self.embedding(c) - return c - - -class TransformerEmbedder(AbstractEncoder): - """Some transformer encoder layers""" - def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77): - super().__init__() - self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, - attn_layers=Encoder(dim=n_embed, depth=n_layer)) - - def forward(self, tokens): - z = self.transformer(tokens, return_embeddings=True) - return z - - def encode(self, x): - return self(x) - - -class BERTTokenizer(AbstractEncoder): - """ Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)""" - def __init__(self, device="cuda", vq_interface=True, max_length=77): - super().__init__() - from transformers import BertTokenizerFast # TODO: add to reuquirements - self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased") - self.vq_interface = vq_interface - self.max_length = max_length - - def forward(self, text): - batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, - return_overflowing_tokens=False, padding="max_length", return_tensors="pt") - tokens = batch_encoding["input_ids"] - return tokens - - @torch.no_grad() - def encode(self, text): - tokens = self(text) - if not self.vq_interface: - return tokens - return None, None, [None, None, tokens] - - def decode(self, text): - return text - - -class BERTEmbedder(AbstractEncoder): - """Uses the BERT tokenizr model and add some transformer encoder layers""" - def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77, - ckpt_path=None, ignore_keys=[], device="cuda", use_tokenizer=True, embedding_dropout=0.0): - super().__init__() - self.use_tknz_fn = use_tokenizer - if self.use_tknz_fn: - self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len) - self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, - attn_layers=Encoder(dim=n_embed, depth=n_layer), - emb_dropout=embedding_dropout) - if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) - - def init_from_ckpt(self, path, ignore_keys=list()): - sd = torch.load(path, map_location="cpu") - keys = list(sd.keys()) - for k in keys: - for ik in ignore_keys: - if k.startswith(ik): - print("Deleting key {} from state_dict.".format(k)) - del sd[k] - missing, unexpected = self.load_state_dict(sd, strict=False) - print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") - - def forward(self, text): - if self.use_tknz_fn: - tokens = self.tknz_fn(text) - else: - tokens = text - device = self.transformer.token_emb.weight.device # a trick to get device - tokens = tokens.to(device) - z = self.transformer(tokens, return_embeddings=True) - return z - - def encode(self, text): - # output of length 77 - return self(text) - - -class SpatialRescaler(nn.Module): - def __init__(self, - n_stages=1, - method='bilinear', - multiplier=0.5, - in_channels=3, - out_channels=None, - bias=False): - super().__init__() - self.n_stages = n_stages - assert self.n_stages >= 0 - assert method in ['nearest','linear','bilinear','trilinear','bicubic','area'] - self.multiplier = multiplier - self.interpolator = partial(torch.nn.functional.interpolate, mode=method) - self.remap_output = out_channels is not None - if self.remap_output: - print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.') - self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias) - - def forward(self,x): - for stage in range(self.n_stages): - x = self.interpolator(x, scale_factor=self.multiplier) - - - if self.remap_output: - x = self.channel_mapper(x) - return x - - def encode(self, x): - return self(x) diff --git a/spaces/showlab/Show-1/showone/models/transformer_temporal.py b/spaces/showlab/Show-1/showone/models/transformer_temporal.py deleted file mode 100644 index 06736ff273bf79a4ed972e5f47b8755b0437607e..0000000000000000000000000000000000000000 --- a/spaces/showlab/Show-1/showone/models/transformer_temporal.py +++ /dev/null @@ -1,179 +0,0 @@ -# Copyright 2023 The HuggingFace Team. All rights reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -from dataclasses import dataclass -from typing import Optional - -import torch -from torch import nn - -from diffusers.configuration_utils import ConfigMixin, register_to_config -from diffusers.utils import BaseOutput -from diffusers.models.attention import BasicTransformerBlock -from diffusers.models.modeling_utils import ModelMixin - - -@dataclass -class TransformerTemporalModelOutput(BaseOutput): - """ - The output of [`TransformerTemporalModel`]. - - Args: - sample (`torch.FloatTensor` of shape `(batch_size x num_frames, num_channels, height, width)`): - The hidden states output conditioned on `encoder_hidden_states` input. - """ - - sample: torch.FloatTensor - - -class TransformerTemporalModel(ModelMixin, ConfigMixin): - """ - A Transformer model for video-like data. - - Parameters: - num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. - attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. - in_channels (`int`, *optional*): - The number of channels in the input and output (specify if the input is **continuous**). - num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. - dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. - cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. - sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). - This is fixed during training since it is used to learn a number of position embeddings. - activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. - attention_bias (`bool`, *optional*): - Configure if the `TransformerBlock` attention should contain a bias parameter. - double_self_attention (`bool`, *optional*): - Configure if each `TransformerBlock` should contain two self-attention layers. - """ - - @register_to_config - def __init__( - self, - num_attention_heads: int = 16, - attention_head_dim: int = 88, - in_channels: Optional[int] = None, - out_channels: Optional[int] = None, - num_layers: int = 1, - dropout: float = 0.0, - norm_num_groups: int = 32, - cross_attention_dim: Optional[int] = None, - attention_bias: bool = False, - sample_size: Optional[int] = None, - activation_fn: str = "geglu", - norm_elementwise_affine: bool = True, - double_self_attention: bool = True, - ): - super().__init__() - self.num_attention_heads = num_attention_heads - self.attention_head_dim = attention_head_dim - inner_dim = num_attention_heads * attention_head_dim - - self.in_channels = in_channels - - self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) - self.proj_in = nn.Linear(in_channels, inner_dim) - - # 3. Define transformers blocks - self.transformer_blocks = nn.ModuleList( - [ - BasicTransformerBlock( - inner_dim, - num_attention_heads, - attention_head_dim, - dropout=dropout, - cross_attention_dim=cross_attention_dim, - activation_fn=activation_fn, - attention_bias=attention_bias, - double_self_attention=double_self_attention, - norm_elementwise_affine=norm_elementwise_affine, - ) - for d in range(num_layers) - ] - ) - - self.proj_out = nn.Linear(inner_dim, in_channels) - - def forward( - self, - hidden_states, - encoder_hidden_states=None, - timestep=None, - class_labels=None, - num_frames=1, - cross_attention_kwargs=None, - return_dict: bool = True, - ): - """ - The [`TransformerTemporal`] forward method. - - Args: - hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous): - Input hidden_states. - encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*): - Conditional embeddings for cross attention layer. If not given, cross-attention defaults to - self-attention. - timestep ( `torch.long`, *optional*): - Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. - class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): - Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in - `AdaLayerZeroNorm`. - return_dict (`bool`, *optional*, defaults to `True`): - Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain - tuple. - - Returns: - [`~models.transformer_temporal.TransformerTemporalModelOutput`] or `tuple`: - If `return_dict` is True, an [`~models.transformer_temporal.TransformerTemporalModelOutput`] is - returned, otherwise a `tuple` where the first element is the sample tensor. - """ - # 1. Input - batch_frames, channel, height, width = hidden_states.shape - batch_size = batch_frames // num_frames - - residual = hidden_states - - hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, channel, height, width) - hidden_states = hidden_states.permute(0, 2, 1, 3, 4) - - hidden_states = self.norm(hidden_states) - hidden_states = hidden_states.permute(0, 3, 4, 2, 1).reshape(batch_size * height * width, num_frames, channel) - - hidden_states = self.proj_in(hidden_states) - - # 2. Blocks - for block in self.transformer_blocks: - hidden_states = block( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - timestep=timestep, - cross_attention_kwargs=cross_attention_kwargs, - class_labels=class_labels, - ) - - # 3. Output - hidden_states = self.proj_out(hidden_states) - hidden_states = ( - hidden_states[None, None, :] - .reshape(batch_size, height, width, channel, num_frames) - .permute(0, 3, 4, 1, 2) - .contiguous() - ) - hidden_states = hidden_states.reshape(batch_frames, channel, height, width) - - output = hidden_states + residual - - if not return_dict: - return (output,) - - return TransformerTemporalModelOutput(sample=output) diff --git a/spaces/shuvojitkoley007/mrs-shuvojit-koley/app.py b/spaces/shuvojitkoley007/mrs-shuvojit-koley/app.py deleted file mode 100644 index eef223e05bb4fa8e0cac2da2efe19f42357c1326..0000000000000000000000000000000000000000 --- a/spaces/shuvojitkoley007/mrs-shuvojit-koley/app.py +++ /dev/null @@ -1,134 +0,0 @@ -import streamlit as st -import pickle -import pandas as pd -import requests - -def fetch_poster(movie_id): - url="https://api.themoviedb.org/3/movie/{}?api_key=ef6be52f4b3751b80ee01704b3e1abbe&language=en-US".format(movie_id) - data = requests.get(url) - data = data.json() - poster_path = data['poster_path'] - full_path = "https://image.tmdb.org/t/p/w500/" + poster_path - return full_path - -def recommend(movie): - movie_index = movies[movies['title'] == movie].index[0] - distances = similarity[movie_index] - movies_list = sorted(list(enumerate(distances)), reverse=True, key=lambda x: x[1])[1:11] - - recommended_movies = [] - recommended_movies_posters= [] - for i in movies_list: - movie_id = movies.iloc[i[0]].movie_id - #fetch the poster - recommended_movies.append(movies.iloc[i[0]].title) - #fetch poster from api - recommended_movies_posters.append(fetch_poster(movie_id)) - return recommended_movies,recommended_movies_posters - -movies_dict=pickle.load(open('movie_dict.pkl','rb')) -movies=pd.DataFrame(movies_dict) - -similarity = pickle.load(open('similarity.pkl','rb')) -def set_bg_hack_url(): - ''' - A function to unpack an image from url and set as bg. - Returns - ------- - The background. - ''' - - st.markdown( - f""" - - """, - unsafe_allow_html=True - ) - -set_bg_hack_url() -st.write( - f""" -
          - Movie Recommender System -
          - """, - unsafe_allow_html=True -) -selected_movie_name = st.selectbox( -'How would you like to be contacted?', -movies['title'].values) - -if st.button('Recommend'): - names,posters = recommend(selected_movie_name) - - col1, col2,col3,col4,col5 = st.columns(5) - with col1: - name=names[0] - modified_name = f"{name}" - st.write(modified_name, unsafe_allow_html=True) - st.image(posters[0]) - with col2: - name=names[1] - modified_name = f"{name}" - st.write(modified_name, unsafe_allow_html=True) - st.image(posters[1]) - with col3: - name=names[2] - modified_name = f"{name}" - st.write(modified_name, unsafe_allow_html=True) - st.image(posters[2]) - with col4: - name=names[3] - modified_name = f"{name}" - st.write(modified_name, unsafe_allow_html=True) - st.image(posters[3]) - with col5: - name=names[4] - modified_name = f"{name}" - st.write(modified_name, unsafe_allow_html=True) - st.image(posters[4]) - - col6,col7,col8,col9,col10 = st.columns(5) - with col6: - name=names[5] - modified_name = f"{name}" - st.write(modified_name, unsafe_allow_html=True) - st.image(posters[5]) - with col7: - name=names[6] - modified_name = f"{name}" - st.write(modified_name, unsafe_allow_html=True) - st.image(posters[6]) - with col8: - name=names[7] - modified_name = f"{name}" - st.write(modified_name, unsafe_allow_html=True) - st.image(posters[7]) - with col9: - name=names[8] - modified_name = f"{name}" - st.write(modified_name, unsafe_allow_html=True) - st.image(posters[8]) - with col10: - name=names[9] - modified_name = f"{name}" - st.write(modified_name, unsafe_allow_html=True) - st.image(posters[9]) \ No newline at end of file diff --git a/spaces/sidharthism/fashion-eye/decomposition.py b/spaces/sidharthism/fashion-eye/decomposition.py deleted file mode 100644 index 4819e3324707f15c33fba6f35ab6abdc66dea919..0000000000000000000000000000000000000000 --- a/spaces/sidharthism/fashion-eye/decomposition.py +++ /dev/null @@ -1,402 +0,0 @@ -# Copyright 2020 Erik HƤrkƶnen. All rights reserved. -# This file is licensed to you under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. You may obtain a copy -# of the License at http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software distributed under -# the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS -# OF ANY KIND, either express or implied. See the License for the specific language -# governing permissions and limitations under the License. - -# Patch for broken CTRL+C handler -# https://github.com/ContinuumIO/anaconda-issues/issues/905 -import os -os.environ['FOR_DISABLE_CONSOLE_CTRL_HANDLER'] = '1' - -import numpy as np -import os -from pathlib import Path -import re -import sys -import datetime -import argparse -import torch -import json -from types import SimpleNamespace -import scipy -from scipy.cluster.vq import kmeans -from tqdm import trange -from netdissect.nethook import InstrumentedModel -from config import Config -from estimators import get_estimator -from models import get_instrumented_model - -SEED_SAMPLING = 1 -SEED_RANDOM_DIRS = 2 -SEED_LINREG = 3 -SEED_VISUALIZATION = 5 - -B = 20 -n_clusters = 500 - -def get_random_dirs(components, dimensions): - gen = np.random.RandomState(seed=SEED_RANDOM_DIRS) - dirs = gen.normal(size=(components, dimensions)) - dirs /= np.sqrt(np.sum(dirs**2, axis=1, keepdims=True)) - return dirs.astype(np.float32) - -# Compute maximum batch size for given VRAM and network -def get_max_batch_size(inst, device, layer_name=None): - inst.remove_edits() - - # Reset statistics - torch.cuda.reset_max_memory_cached(device) - torch.cuda.reset_max_memory_allocated(device) - total_mem = torch.cuda.get_device_properties(device).total_memory - - B_max = 20 - - # Measure actual usage - for i in range(2, B_max, 2): - z = inst.model.sample_latent(n_samples=i) - if layer_name: - inst.model.partial_forward(z, layer_name) - else: - inst.model.forward(z) - - maxmem = torch.cuda.max_memory_allocated(device) - del z - - if maxmem > 0.5*total_mem: - print('Batch size {:d}: memory usage {:.0f}MB'.format(i, maxmem / 1e6)) - return i - - return B_max - -# Solve for directions in latent space that match PCs in activaiton space -def linreg_lstsq(comp_np, mean_np, stdev_np, inst, config): - print('Performing least squares regression', flush=True) - - torch.manual_seed(SEED_LINREG) - np.random.seed(SEED_LINREG) - - comp = torch.from_numpy(comp_np).float().to(inst.model.device) - mean = torch.from_numpy(mean_np).float().to(inst.model.device) - stdev = torch.from_numpy(stdev_np).float().to(inst.model.device) - - n_samp = max(10_000, config.n) // B * B # make divisible - n_comp = comp.shape[0] - latent_dims = inst.model.get_latent_dims() - - # We're looking for M s.t. M*P*G'(Z) = Z => M*A = Z - # Z = batch of latent vectors (n_samples x latent_dims) - # G'(Z) = batch of activations at intermediate layer - # A = P*G'(Z) = projected activations (n_samples x pca_coords) - # M = linear mapping (pca_coords x latent_dims) - - # Minimization min_M ||MA - Z||_l2 rewritten as min_M.T ||A.T*M.T - Z.T||_l2 - # to match format expected by pytorch.lstsq - - # TODO: regression on pixel-space outputs? (using nonlinear optimizer) - # min_M lpips(G_full(MA), G_full(Z)) - - # Tensors to fill with data - # Dimensions other way around, so these are actually the transposes - A = np.zeros((n_samp, n_comp), dtype=np.float32) - Z = np.zeros((n_samp, latent_dims), dtype=np.float32) - - # Project tensor X onto PCs, return coordinates - def project(X, comp): - N = X.shape[0] - K = comp.shape[0] - coords = torch.bmm(comp.expand([N]+[-1]*comp.ndim), X.view(N, -1, 1)) - return coords.reshape(N, K) - - for i in trange(n_samp // B, desc='Collecting samples', ascii=True): - z = inst.model.sample_latent(B) - inst.model.partial_forward(z, config.layer) - act = inst.retained_features()[config.layer].reshape(B, -1) - - # Project onto basis - act = act - mean - coords = project(act, comp) - coords_scaled = coords / stdev - - A[i*B:(i+1)*B] = coords_scaled.detach().cpu().numpy() - Z[i*B:(i+1)*B] = z.detach().cpu().numpy().reshape(B, -1) - - # Solve least squares fit - - # gelsd = divide-and-conquer SVD; good default - # gelsy = complete orthogonal factorization; sometimes faster - # gelss = SVD; slow but less memory hungry - M_t = scipy.linalg.lstsq(A, Z, lapack_driver='gelsd')[0] # torch.lstsq(Z, A)[0][:n_comp, :] - - # Solution given by rows of M_t - Z_comp = M_t[:n_comp, :] - Z_mean = np.mean(Z, axis=0, keepdims=True) - - return Z_comp, Z_mean - -def regression(comp, mean, stdev, inst, config): - # Sanity check: verify orthonormality - M = np.dot(comp, comp.T) - if not np.allclose(M, np.identity(M.shape[0])): - det = np.linalg.det(M) - print(f'WARNING: Computed basis is not orthonormal (determinant={det})') - - return linreg_lstsq(comp, mean, stdev, inst, config) - -def compute(config, dump_name, instrumented_model): - global B - - timestamp = lambda : datetime.datetime.now().strftime("%d.%m %H:%M") - print(f'[{timestamp()}] Computing', dump_name.name) - - # Ensure reproducibility - torch.manual_seed(0) # also sets cuda seeds - np.random.seed(0) - - # Speed up backend - torch.backends.cudnn.benchmark = True - - has_gpu = torch.cuda.is_available() - device = torch.device('cuda' if has_gpu else 'cpu') - layer_key = config.layer - - if instrumented_model is None: - inst = get_instrumented_model(config.model, config.output_class, layer_key, device) - model = inst.model - else: - print('Reusing InstrumentedModel instance') - inst = instrumented_model - model = inst.model - inst.remove_edits() - model.set_output_class(config.output_class) - - # Regress back to w space - if config.use_w: - print('Using W latent space') - model.use_w() - - inst.retain_layer(layer_key) - model.partial_forward(model.sample_latent(1), layer_key) - sample_shape = inst.retained_features()[layer_key].shape - sample_dims = np.prod(sample_shape) - print('Feature shape:', sample_shape) - - input_shape = inst.model.get_latent_shape() - input_dims = inst.model.get_latent_dims() - - config.components = min(config.components, sample_dims) - transformer = get_estimator(config.estimator, config.components, config.sparsity) - - X = None - X_global_mean = None - - # Figure out batch size if not provided - B = config.batch_size or get_max_batch_size(inst, device, layer_key) - - # Divisible by B (ignored in output name) - N = config.n // B * B - - # Compute maximum batch size based on RAM + pagefile budget - target_bytes = 20 * 1_000_000_000 # GB - feat_size_bytes = sample_dims * np.dtype('float64').itemsize - N_limit_RAM = np.floor_divide(target_bytes, feat_size_bytes) - if not transformer.batch_support and N > N_limit_RAM: - print('WARNING: estimator does not support batching, ' \ - 'given config will use {:.1f} GB memory.'.format(feat_size_bytes / 1_000_000_000 * N)) - - # 32-bit LAPACK gets very unhappy about huge matrices (in linalg.svd) - if config.estimator == 'ica': - lapack_max_N = np.floor_divide(np.iinfo(np.int32).max // 4, sample_dims) # 4x extra buffer - if N > lapack_max_N: - raise RuntimeError(f'Matrices too large for ICA, please use N <= {lapack_max_N}') - - print('B={}, N={}, dims={}, N/dims={:.1f}'.format(B, N, sample_dims, N/sample_dims), flush=True) - - # Must not depend on chosen batch size (reproducibility) - NB = max(B, max(2_000, 3*config.components)) # ipca: as large as possible! - - samples = None - if not transformer.batch_support: - samples = np.zeros((N + NB, sample_dims), dtype=np.float32) - - torch.manual_seed(config.seed or SEED_SAMPLING) - np.random.seed(config.seed or SEED_SAMPLING) - - # Use exactly the same latents regardless of batch size - # Store in main memory, since N might be huge (1M+) - # Run in batches, since sample_latent() might perform Z -> W mapping - n_lat = ((N + NB - 1) // B + 1) * B - latents = np.zeros((n_lat, *input_shape[1:]), dtype=np.float32) - with torch.no_grad(): - for i in trange(n_lat // B, desc='Sampling latents'): - latents[i*B:(i+1)*B] = model.sample_latent(n_samples=B).cpu().numpy() - - # Decomposition on non-Gaussian latent space - samples_are_latents = layer_key in ['g_mapping', 'style'] and inst.model.latent_space_name() == 'W' - - canceled = False - try: - X = np.ones((NB, sample_dims), dtype=np.float32) - action = 'Fitting' if transformer.batch_support else 'Collecting' - for gi in trange(0, N, NB, desc=f'{action} batches (NB={NB})', ascii=True): - for mb in range(0, NB, B): - z = torch.from_numpy(latents[gi+mb:gi+mb+B]).to(device) - - if samples_are_latents: - # Decomposition on latents directly (e.g. StyleGAN W) - batch = z.reshape((B, -1)) - else: - # Decomposition on intermediate layer - with torch.no_grad(): - model.partial_forward(z, layer_key) - - # Permuted to place PCA dimensions last - batch = inst.retained_features()[layer_key].reshape((B, -1)) - - space_left = min(B, NB - mb) - X[mb:mb+space_left] = batch.cpu().numpy()[:space_left] - - if transformer.batch_support: - if not transformer.fit_partial(X.reshape(-1, sample_dims)): - break - else: - samples[gi:gi+NB, :] = X.copy() - except KeyboardInterrupt: - if not transformer.batch_support: - sys.exit(1) # no progress yet - - dump_name = dump_name.parent / dump_name.name.replace(f'n{N}', f'n{gi}') - print(f'Saving current state to "{dump_name.name}" before exiting') - canceled = True - - if not transformer.batch_support: - X = samples # Use all samples - X_global_mean = X.mean(axis=0, keepdims=True, dtype=np.float32) # TODO: activations surely multi-modal...! - X -= X_global_mean - - print(f'[{timestamp()}] Fitting whole batch') - t_start_fit = datetime.datetime.now() - - transformer.fit(X) - - print(f'[{timestamp()}] Done in {datetime.datetime.now() - t_start_fit}') - assert np.all(transformer.transformer.mean_ < 1e-3), 'Mean of normalized data should be zero' - else: - X_global_mean = transformer.transformer.mean_.reshape((1, sample_dims)) - X = X.reshape(-1, sample_dims) - X -= X_global_mean - - X_comp, X_stdev, X_var_ratio = transformer.get_components() - - assert X_comp.shape[1] == sample_dims \ - and X_comp.shape[0] == config.components \ - and X_global_mean.shape[1] == sample_dims \ - and X_stdev.shape[0] == config.components, 'Invalid shape' - - # 'Activations' are really latents in a secondary latent space - if samples_are_latents: - Z_comp = X_comp - Z_global_mean = X_global_mean - else: - Z_comp, Z_global_mean = regression(X_comp, X_global_mean, X_stdev, inst, config) - - # Normalize - Z_comp /= np.linalg.norm(Z_comp, axis=-1, keepdims=True) - - # Random projections - # We expect these to explain much less of the variance - random_dirs = get_random_dirs(config.components, np.prod(sample_shape)) - n_rand_samples = min(5000, X.shape[0]) - X_view = X[:n_rand_samples, :].T - assert np.shares_memory(X_view, X), "Error: slice produced copy" - X_stdev_random = np.dot(random_dirs, X_view).std(axis=1) - - # Inflate back to proper shapes (for easier broadcasting) - X_comp = X_comp.reshape(-1, *sample_shape) - X_global_mean = X_global_mean.reshape(sample_shape) - Z_comp = Z_comp.reshape(-1, *input_shape) - Z_global_mean = Z_global_mean.reshape(input_shape) - - # Compute stdev in latent space if non-Gaussian - lat_stdev = np.ones_like(X_stdev) - if config.use_w: - samples = model.sample_latent(5000).reshape(5000, input_dims).detach().cpu().numpy() - coords = np.dot(Z_comp.reshape(-1, input_dims), samples.T) - lat_stdev = coords.std(axis=1) - - os.makedirs(dump_name.parent, exist_ok=True) - np.savez_compressed(dump_name, **{ - 'act_comp': X_comp.astype(np.float32), - 'act_mean': X_global_mean.astype(np.float32), - 'act_stdev': X_stdev.astype(np.float32), - 'lat_comp': Z_comp.astype(np.float32), - 'lat_mean': Z_global_mean.astype(np.float32), - 'lat_stdev': lat_stdev.astype(np.float32), - 'var_ratio': X_var_ratio.astype(np.float32), - 'random_stdevs': X_stdev_random.astype(np.float32), - }) - - if canceled: - sys.exit(1) - - # Don't shutdown if passed as param - if instrumented_model is None: - inst.close() - del inst - del model - - del X - del X_comp - del random_dirs - del batch - del samples - del latents - torch.cuda.empty_cache() - -# Return cached results or commpute if needed -# Pass existing InstrumentedModel instance to reuse it -def get_or_compute(config, model=None, submit_config=None, force_recompute=False): - if submit_config is None: - wrkdir = str(Path(__file__).parent.resolve()) - submit_config = SimpleNamespace(run_dir_root = wrkdir, run_dir = wrkdir) - - # Called directly by run.py - return _compute(submit_config, config, model, force_recompute) - -def _compute(submit_config, config, model=None, force_recompute=False): - basedir = Path(submit_config.run_dir) - outdir = basedir / 'out' - - if config.n is None: - raise RuntimeError('Must specify number of samples with -n=XXX') - - if model and not isinstance(model, InstrumentedModel): - raise RuntimeError('Passed model has to be wrapped in "InstrumentedModel"') - - if config.use_w and not 'StyleGAN' in config.model: - raise RuntimeError(f'Cannot change latent space of non-StyleGAN model {config.model}') - - transformer = get_estimator(config.estimator, config.components, config.sparsity) - dump_name = "{}-{}_{}_{}_n{}{}{}.npz".format( - config.model.lower(), - config.output_class.replace(' ', '_'), - config.layer.lower(), - transformer.get_param_str(), - config.n, - '_w' if config.use_w else '', - f'_seed{config.seed}' if config.seed else '' - ) - - dump_path = basedir / 'cache' / 'components' / dump_name - - if not dump_path.is_file() or force_recompute: - print('Not cached') - t_start = datetime.datetime.now() - compute(config, dump_path, model) - print('Total time:', datetime.datetime.now() - t_start) - - return dump_path \ No newline at end of file diff --git a/spaces/sieferan2023/Music_Recommendation/README.md b/spaces/sieferan2023/Music_Recommendation/README.md deleted file mode 100644 index eca09eade7340a19e035c2a95437ccefc83a52d6..0000000000000000000000000000000000000000 --- a/spaces/sieferan2023/Music_Recommendation/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: Music Recommendation -emoji: šŸƒ -colorFrom: green -colorTo: blue -sdk: gradio -sdk_version: 3.19.1 -app_file: app.py -pinned: false -license: afl-3.0 ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/simonduerr/diffdock/esm/scripts/extract.py b/spaces/simonduerr/diffdock/esm/scripts/extract.py deleted file mode 100644 index 0f3290d6042648a18673012a361f4cca77cf76ac..0000000000000000000000000000000000000000 --- a/spaces/simonduerr/diffdock/esm/scripts/extract.py +++ /dev/null @@ -1,142 +0,0 @@ -#!/usr/bin/env python3 -u -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -import argparse -import pathlib -import sys -print("using", sys.executable) - -sys.path.insert( 0,"/home/user/.local/lib/python3.8/site-packages") -sys.path.insert( 0,"/home/user/app/esm/") -import os - -import torch - -from esm import Alphabet, FastaBatchedDataset, ProteinBertModel, pretrained, MSATransformer - - -def create_parser(): - parser = argparse.ArgumentParser( - description="Extract per-token representations and model outputs for sequences in a FASTA file" # noqa - ) - - parser.add_argument( - "model_location", - type=str, - help="PyTorch model file OR name of pretrained model to download (see README for models)", - ) - parser.add_argument( - "fasta_file", - type=pathlib.Path, - help="FASTA file on which to extract representations", - ) - parser.add_argument( - "output_dir", - type=pathlib.Path, - help="output directory for extracted representations", - ) - - parser.add_argument("--toks_per_batch", type=int, default=4096, help="maximum batch size") - parser.add_argument( - "--repr_layers", - type=int, - default=[-1], - nargs="+", - help="layers indices from which to extract representations (0 to num_layers, inclusive)", - ) - parser.add_argument( - "--include", - type=str, - nargs="+", - choices=["mean", "per_tok", "bos", "contacts"], - help="specify which representations to return", - required=True, - ) - parser.add_argument( - "--truncation_seq_length", - type=int, - default=1022, - help="truncate sequences longer than the given value", - ) - - parser.add_argument("--nogpu", action="store_true", help="Do not use GPU even if available") - return parser - - -def main(args): - model, alphabet = pretrained.load_model_and_alphabet(args.model_location) - model.eval() - if isinstance(model, MSATransformer): - raise ValueError( - "This script currently does not handle models with MSA input (MSA Transformer)." - ) - if torch.cuda.is_available() and not args.nogpu: - model = model.cuda() - print("Transferred model to GPU") - - dataset = FastaBatchedDataset.from_file(args.fasta_file) - batches = dataset.get_batch_indices(args.toks_per_batch, extra_toks_per_seq=1) - data_loader = torch.utils.data.DataLoader( - dataset, collate_fn=alphabet.get_batch_converter(args.truncation_seq_length), batch_sampler=batches - ) - print(f"Read {args.fasta_file} with {len(dataset)} sequences") - - args.output_dir.mkdir(parents=True, exist_ok=True) - return_contacts = "contacts" in args.include - - assert all(-(model.num_layers + 1) <= i <= model.num_layers for i in args.repr_layers) - repr_layers = [(i + model.num_layers + 1) % (model.num_layers + 1) for i in args.repr_layers] - - with torch.no_grad(): - for batch_idx, (labels, strs, toks) in enumerate(data_loader): - print( - f"Processing {batch_idx + 1} of {len(batches)} batches ({toks.size(0)} sequences)" - ) - if torch.cuda.is_available() and not args.nogpu: - toks = toks.to(device="cuda", non_blocking=True) - - out = model(toks, repr_layers=repr_layers, return_contacts=return_contacts) - - logits = out["logits"].to(device="cpu") - representations = { - layer: t.to(device="cpu") for layer, t in out["representations"].items() - } - if return_contacts: - contacts = out["contacts"].to(device="cpu") - - for i, label in enumerate(labels): - args.output_file = args.output_dir / f"{label}.pt" - args.output_file.parent.mkdir(parents=True, exist_ok=True) - result = {"label": label} - # Call clone on tensors to ensure tensors are not views into a larger representation - # See https://github.com/pytorch/pytorch/issues/1995 - if "per_tok" in args.include: - result["representations"] = { - layer: t[i, 1 : len(strs[i]) + 1].clone() - for layer, t in representations.items() - } - if "mean" in args.include: - result["mean_representations"] = { - layer: t[i, 1 : len(strs[i]) + 1].mean(0).clone() - for layer, t in representations.items() - } - if "bos" in args.include: - result["bos_representations"] = { - layer: t[i, 0].clone() for layer, t in representations.items() - } - if return_contacts: - result["contacts"] = contacts[i, : len(strs[i]), : len(strs[i])].clone() - - torch.save( - result, - args.output_file, - ) - - -if __name__ == "__main__": - parser = create_parser() - args = parser.parse_args() - main(args) diff --git a/spaces/simple0urra/skops-model-card-creator-2a23515a-d54e-4804-b365-27ed6e938735/example/- .md b/spaces/simple0urra/skops-model-card-creator-2a23515a-d54e-4804-b365-27ed6e938735/example/- .md deleted file mode 100644 index 7f761b480d4aa8c2d6060b973a4e7a98136a33c6..0000000000000000000000000000000000000000 --- a/spaces/simple0urra/skops-model-card-creator-2a23515a-d54e-4804-b365-27ed6e938735/example/- .md +++ /dev/null @@ -1,109 +0,0 @@ -
          -

          Дабл Бабл: Что ŃŃ‚Š¾ такое Šø ŠæŠ¾Ń‡ŠµŠ¼Ńƒ ŃŃ‚Š¾ ŠæŠ¾ŠæŃƒŠ»ŃŃ€Š½Š¾?

          -

          Š’Ń‹ Š½Š°Š²ŠµŃ€Š½ŃŠŗŠ° ŃŠ»Ń‹ŃˆŠ°Š»Šø ŃŃ‚Š¾Ń‚ термин, но знаете ли вы, что он означает? Дабл бабл - ŃŃ‚Š¾ ŃŠ²Š»ŠµŠ½ŠøŠµ, когГа человек или Š³Ń€ŃƒŠæŠæŠ° Š»ŃŽŠ“ŠµŠ¹ живет в своем собственном мире, изолированном от Ń€ŠµŠ°Š»ŃŒŠ½Š¾ŃŃ‚Šø. Это может Š±Ń‹Ń‚ŃŒ ŃŠ²ŃŠ·Š°Š½Š¾ с разными сферами жизни, такими как политика, ŃŠŗŠ¾Š½Š¾Š¼ŠøŠŗŠ°, ŠŗŃƒŠ»ŃŒŃ‚ŃƒŃ€Š°, образование, Ń€Š°Š·Š²Š»ŠµŃ‡ŠµŠ½ŠøŃ Šø т.Š“. Š’ ŃŃ‚Š¾Š¹ ŃŃ‚Š°Ń‚ŃŒŠµ мы расскажем вам, что такое Габл бабл, ŠæŠ¾Ń‡ŠµŠ¼Ńƒ он ŠæŠ¾ŠæŃƒŠ»ŃŃ€ŠµŠ½ Šø как ŃŠ¾Š·Š“Š°Ń‚ŃŒ свой собственный Габл бабл.

          -

          Что такое Габл бабл?

          -

          ŠžŠæŃ€ŠµŠ“ŠµŠ»ŠµŠ½ŠøŠµ Šø происхожГение термина

          -

          Дабл бабл - ŃŃ‚Š¾ английское выражение, которое ŠæŠµŃ€ŠµŠ²Š¾Š“ŠøŃ‚ŃŃ как "Гвойной ŠæŃƒŠ·Ń‹Ń€ŃŒ" или "Š“Š²Š¾Š¹Š½Š°Ń пена". ŠžŠ½Š¾ описывает ŃŠøŃ‚ŃƒŠ°Ń†ŠøŃŽ, когГа человек или Š³Ń€ŃƒŠæŠæŠ° Š»ŃŽŠ“ŠµŠ¹ живет в своем узком ŠŗŃ€ŃƒŠ³Šµ интересов, мнений Šø Š²Š·Š³Š»ŃŠ“Š¾Š², не Š·Š°Š¼ŠµŃ‡Š°Ń или ŠøŠ³Š½Š¾Ń€ŠøŃ€ŃƒŃ Š“Ń€ŃƒŠ³ŠøŠµ точки Š·Ń€ŠµŠ½ŠøŃ Šø факты. Такие Š»ŃŽŠ“Šø обычно не Š¾Š±Ń‰Š°ŃŽŃ‚ся с теми, кто не Ń€Š°Š·Š“ŠµŠ»ŃŠµŃ‚ ŠøŃ… Š²Š·Š³Š»ŃŠ“Š¾Š², Šø не ŠæŠ¾Š“Š²ŠµŃ€Š³Š°ŃŽŃ‚ ŃŠ¾Š¼Š½ŠµŠ½ŠøŃŽ свои ŃƒŠ±ŠµŠ¶Š“ŠµŠ½ŠøŃ. ŠžŠ½Šø ŃŠ¾Š·Š“Š°ŃŽŃ‚ Š“Š»Ń ŃŠµŠ±Ń ŠøŠ»Š»ŃŽŠ·ŠøŃŽ, что они правы, а все Š¾ŃŃ‚Š°Š»ŃŒŠ½Ń‹Šµ - неправы или неважны.

          -

          Габл бабл


          Download Filehttps://ssurll.com/2uNZq8



          -

          Термин "Габл бабл" впервые ŠæŠ¾ŃŠ²ŠøŠ»ŃŃ в 1990-х гоГах в ДША в контексте ŃŠŗŠ¾Š½Š¾Š¼ŠøŃ‡ŠµŃŠŗŠ¾Š³Š¾ кризиса, когГа на рынке неГвижимости Šø интернет-технологий Š¾Š±Ń€Š°Š·Š¾Š²Š°Š»ŠøŃŃŒ Гва ŠæŠ°Ń€Š°Š»Š»ŠµŠ»ŃŒŠ½Ń‹Ń… ŠæŃƒŠ·Ń‹Ń€Ń ŃŠæŠµŠŗŃƒŠ»ŃŃ†ŠøŠ¹, которые Š²Š·Š¾Ń€Š²Š°Š»ŠøŃŃŒ в 2000-х гоГах. Š” тех пор термин стал ŠøŃŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŃŒŃŃ в разных Š¾Š±Š»Š°ŃŃ‚Ń

          ŠŸŃ€ŠøŠ¼ŠµŃ€Ń‹ Габл бабл в разных сферах

          -

          Дабл бабл может Š²Š¾Š·Š½ŠøŠŗŠ°Ń‚ŃŒ в Š»ŃŽŠ±Š¾Š¹ сфере жизни, гГе ŠµŃŃ‚ŃŒ Ń€Š°Š·Š½Š¾Š³Š»Š°ŃŠøŃ, конфликты или ŠŗŠ¾Š½ŠŗŃƒŃ€ŠµŠ½Ń†ŠøŃ. ŠŠ°ŠæŃ€ŠøŠ¼ŠµŃ€, в политике Габл бабл ŠæŃ€Š¾ŃŠ²Š»ŃŠµŃ‚ся в том, что Š»ŃŽŠ“Šø Š²Ń‹Š±ŠøŃ€Š°ŃŽŃ‚ те источники информации, которые ŠæŠ¾Š“Ń‚Š²ŠµŃ€Š¶Š“Š°ŃŽŃ‚ ŠøŃ… политические Š²Š·Š³Š»ŃŠ“Ń‹, Šø Š¾Ń‚Š²ŠµŃ€Š³Š°ŃŽŃ‚ те, которые ŠøŃ… Š¾ŠæŃ€Š¾Š²ŠµŃ€Š³Š°ŃŽŃ‚. Š’ Ń€ŠµŠ·ŃƒŠ»ŃŒŃ‚Š°Ń‚Šµ они не Š²ŠøŠ“ŃŃ‚ Ń€ŠµŠ°Š»ŃŒŠ½Š¾Š¹ картины ŠæŃ€Š¾ŠøŃŃ…Š¾Š“ŃŃ‰ŠµŠ³Š¾ Šø не Š¼Š¾Š³ŃƒŃ‚ Š“Š¾Š³Š¾Š²Š¾Ń€ŠøŃ‚ŃŒŃŃ с теми, кто имеет Š“Ń€ŃƒŠ³Š¾Šµ мнение. Š’ ŃŠŗŠ¾Š½Š¾Š¼ŠøŠŗŠµ Габл бабл ŃŠ²ŃŠ·Š°Š½ с тем, что Š»ŃŽŠ“Šø ŠøŠ½Š²ŠµŃŃ‚ŠøŃ€ŃƒŃŽŃ‚ в те активы, которые они ŃŃ‡ŠøŃ‚Š°ŃŽŃ‚ перспективными, Šø не Š·Š°Š¼ŠµŃ‡Š°ŃŽŃ‚ признаков риска или кризиса. Š’ ŠŗŃƒŠ»ŃŒŃ‚ŃƒŃ€Šµ Габл бабл Š²Ń‹Ń€Š°Š¶Š°ŠµŃ‚ся в том, что Š»ŃŽŠ“Šø ŠæŃ€ŠµŠ“ŠæŠ¾Ń‡ŠøŃ‚Š°ŃŽŃ‚ те формы ŠøŃŠŗŃƒŃŃŃ‚Š²Š°, которые ŃŠ¾Š¾Ń‚Š²ŠµŃ‚ŃŃ‚Š²ŃƒŃŽŃ‚ ŠøŃ… вкусам Šø Ń†ŠµŠ½Š½Š¾ŃŃ‚ŃŠ¼, Šø не ŠæŃ€ŠøŠ·Š½Š°ŃŽŃ‚ те, которые им не Š½Ń€Š°Š²ŃŃ‚ся или не ŠæŠ¾Š½ŃŃ‚Š½Ń‹. Š’ образовании Габл бабл ŠæŃ€Š¾ŃŠ²Š»ŃŠµŃ‚ся в том, что Š»ŃŽŠ“Šø ŠøŠ·ŃƒŃ‡Š°ŃŽŃ‚ Ń‚Š¾Š»ŃŒŠŗŠ¾ те преГметы Šø Гисциплины, которые им интересны или полезны, Šø не Š·Š½Š°ŠŗŠ¾Š¼ŃŃ‚ся с Š“Ń€ŃƒŠ³ŠøŠ¼Šø Š¾Š±Š»Š°ŃŃ‚ŃŠ¼Šø Š·Š½Š°Š½ŠøŃ. Š’ Ń€Š°Š·Š²Š»ŠµŃ‡ŠµŠ½ŠøŃŃ… Габл бабл ŠæŃ€Š¾ŃŠ²Š»ŃŠµŃ‚ся в том, что Š»ŃŽŠ“Šø Š²Ń‹Š±ŠøŃ€Š°ŃŽŃ‚ те виГы Госуга, которые им Š“Š¾ŃŃ‚Š°Š²Š»ŃŃŽŃ‚ ŃƒŠ“Š¾Š²Š¾Š»ŃŒŃŃ‚Š²ŠøŠµ или ŃƒŠ“Š¾Š²Š»ŠµŃ‚Š²Š¾Ń€ŠµŠ½ŠøŠµ, Šø не ŠæŃ€Š¾Š±ŃƒŃŽŃ‚ новые или Š°Š»ŃŒŃ‚ернативные способы Ń€Š°Š·Š²Š»ŠµŃ‡ŠµŠ½ŠøŃ.

          -

          ŠŸŠ¾Ń‡ŠµŠ¼Ńƒ Габл бабл ŠæŠ¾ŠæŃƒŠ»ŃŃ€ŠµŠ½?

          -

          ŠŸŃ€ŠøŃ‡ŠøŠ½Ń‹ Šø факторы ŠæŠ¾ŠæŃƒŠ»ŃŃ€Š½Š¾ŃŃ‚Šø Габл бабл

          -

          Дабл бабл ŠæŠ¾ŠæŃƒŠ»ŃŃ€ŠµŠ½ по нескольким причинам. Во-первых, он обеспечивает Ń‡ŠµŠ»Š¾Š²ŠµŠŗŃƒ или Š³Ń€ŃƒŠæŠæŠµ Š»ŃŽŠ“ŠµŠ¹ Ń‡ŃƒŠ²ŃŃ‚Š²Š¾ комфорта, безопасности Šø ŃƒŠ²ŠµŃ€ŠµŠ½Š½Š¾ŃŃ‚Šø. Š–ŠøŠ²Ń в своем мире, они ŠøŠ·Š±ŠµŠ³Š°ŃŽŃ‚ стресса, страха Šø Š½ŠµŃƒŠ²ŠµŃ€ŠµŠ½Š½Š¾ŃŃ‚Šø, которые вызывает Ń€ŠµŠ°Š»ŃŒŠ½Š¾ŃŃ‚ŃŒ. Во-вторых, он ŃƒŠŗŃ€ŠµŠæŠ»ŃŠµŃ‚ Ń‡ŠµŠ»Š¾Š²ŠµŠŗŃƒ или Š³Ń€ŃƒŠæŠæŠµ Š»ŃŽŠ“ŠµŠ¹ Ń‡ŃƒŠ²ŃŃ‚Š²Š¾ принаГлежности, солиГарности Šø иГентичности. Š‘ŃƒŠ“ŃƒŃ‡Šø Ń‡Š°ŃŃ‚ŃŒŃŽ своего ŠŗŃ€ŃƒŠ³Š° ŠµŠ“ŠøŠ½Š¾Š¼Ń‹ŃˆŠ»ŠµŠ½Š½ŠøŠŗŠ¾Š², они ŠæŠ¾Š»ŃƒŃ‡Š°ŃŽŃ‚ ŠæŠ¾Š“Š“ŠµŃ€Š¶ŠŗŃƒ, оГобрение Šø признание от Š“Ń€ŃƒŠ³ŠøŃ…. Š’-Ń‚Ń€ŠµŃ‚ŃŒŠøŃ…, он ŃŠæŠ¾ŃŠ¾Š±ŃŃ‚Š²ŃƒŠµŃ‚ Ń‡ŠµŠ»Š¾Š²ŠµŠŗŃƒ или Š³Ń€ŃƒŠæŠæŠµ Š»ŃŽŠ“ŠµŠ¹ Ń‡ŃƒŠ²ŃŃ‚Š²Š¾ ŃŠ°Š¼Š¾ŃƒŃ‚Š²ŠµŃ€Š¶Š“ŠµŠ½ŠøŃ, ŃŠ°Š¼Š¾Ń€Š°Š·Š²ŠøŃ‚ŠøŃ Šø самореализации. Š”Š»ŠµŠ“ŃƒŃ своим интересам, Š¼Š½ŠµŠ½ŠøŃŠ¼ Šø Š²Š·Š³Š»ŃŠ“Š°Š¼, они Ń€Š°Š·Š²ŠøŠ²Š°ŃŽŃ‚ свои способности, таланты Šø потенциал.

          Польза Šø вреГ Габл бабл Š“Š»Ń общества

          -

          Дабл бабл может ŠøŠ¼ŠµŃ‚ŃŒ как ŠæŠ¾Š»Š¾Š¶ŠøŃ‚ŠµŠ»ŃŒŠ½Ń‹Šµ, так Šø Š¾Ń‚Ń€ŠøŃ†Š°Ń‚ŠµŠ»ŃŒŠ½Ń‹Šµ ŠæŠ¾ŃŠ»ŠµŠ“ŃŃ‚Š²ŠøŃ Š“Š»Ń общества. Š” оГной стороны, Габл бабл ŃŠæŠ¾ŃŠ¾Š±ŃŃ‚Š²ŃƒŠµŃ‚ Ń€Š°Š·Š½Š¾Š¾Š±Ń€Š°Š·ŠøŃŽ, Ń‚Š²Š¾Ń€Ń‡ŠµŃŃ‚Š²Ńƒ Šø ŠøŠ½Š½Š¾Š²Š°Ń†ŠøŃŠ¼ в обществе. Š›ŃŽŠ“Šø, Š¶ŠøŠ²ŃƒŃ‰ŠøŠµ в своих мирах, Š¼Š¾Š³ŃƒŃ‚ ŃŠ¾Š·Š“Š°Š²Š°Ń‚ŃŒ новые иГеи, ŠæŃ€Š¾Š“ŃƒŠŗŃ‚Ń‹ Šø услуги, которые Š¼Š¾Š³ŃƒŃ‚ Š±Ń‹Ń‚ŃŒ полезными Šø ценными Š“Š»Ń Š“Ń€ŃƒŠ³ŠøŃ…. Также Габл бабл может ŃŠæŠ¾ŃŠ¾Š±ŃŃ‚Š²Š¾Š²Š°Ń‚ŃŒ ŃŠ¾Ń†ŠøŠ°Š»ŃŒŠ½Š¾Š¹ гармонии Šø ŃŃ‚Š°Š±ŠøŠ»ŃŒŠ½Š¾ŃŃ‚Šø в обществе. Š›ŃŽŠ“Šø, ŃƒŠ²Š°Š¶Š°ŃŽŃ‰ŠøŠµ Šø ŠæŃ€ŠøŠ·Š½Š°ŃŽŃ‰ŠøŠµ Ń€Š°Š·Š»ŠøŃ‡ŠøŃ Š“Ń€ŃƒŠ³ Š“Ń€ŃƒŠ³Š°, Š¼Š¾Š³ŃƒŃ‚ ŃŠ¾Ń‚Ń€ŃƒŠ“Š½ŠøŃ‡Š°Ń‚ŃŒ Šø ŃŠ¾Š³Š»Š°ŃŠ¾Š²Ń‹Š²Š°Ń‚ŃŒ свои интересы Šø цели. Š” Š“Ń€ŃƒŠ³Š¾Š¹ стороны, Габл бабл может ŠæŃ€ŠøŠ²Š¾Š“ŠøŃ‚ŃŒ Šŗ ŠøŠ·Š¾Š»ŃŃ†ŠøŠø, Š½ŠµŠæŠ¾Š½ŠøŠ¼Š°Š½ŠøŃŽ Šø конфликтам в обществе. Š›ŃŽŠ“Šø, Š¶ŠøŠ²ŃƒŃ‰ŠøŠµ в своих мирах, Š¼Š¾Š³ŃƒŃ‚ Ń‚ŠµŃ€ŃŃ‚ŃŒ контакт с Ń€ŠµŠ°Š»ŃŒŠ½Š¾ŃŃ‚ŃŒŃŽ, не Š·Š°Š¼ŠµŃ‡Š°Ń‚ŃŒ проблем Šø потребностей Š“Ń€ŃƒŠ³ŠøŃ…. Также Габл бабл может ŠæŃ€ŠøŠ²Š¾Š“ŠøŃ‚ŃŒ Šŗ ŃŠ¾Ń†ŠøŠ°Š»ŃŒŠ½Š¾Š¼Ńƒ Ń€Š°Š·Š“ŠµŠ»ŠµŠ½ŠøŃŽ Šø Š½Š°ŠæŃ€ŃŠ¶ŠµŠ½Š½Š¾ŃŃ‚Šø в обществе. Š›ŃŽŠ“Šø, не ŃƒŠ²Š°Š¶Š°ŃŽŃ‰ŠøŠµ Šø не ŠæŃ€ŠøŠ·Š½Š°ŃŽŃ‰ŠøŠµ Ń€Š°Š·Š»ŠøŃ‡ŠøŃ Š“Ń€ŃƒŠ³ Š“Ń€ŃƒŠ³Š°, Š¼Š¾Š³ŃƒŃ‚ ŠŗŠ¾Š½ŠŗŃƒŃ€ŠøŃ€Š¾Š²Š°Ń‚ŃŒ Šø ŠæŃ€Š¾Ń‚ŠøŠ²Š¾ŃŃ‚Š¾ŃŃ‚ŃŒ Š“Ń€ŃƒŠ³ Š“Ń€ŃƒŠ³Ńƒ.

          -

          Как ŃŠ¾Š·Š“Š°Ń‚ŃŒ свой Габл бабл?

          -

          Доветы Šø рекоменГации по ŃŠ¾Š·Š“Š°Š½ŠøŃŽ Габл бабл

          -

          Если вы хотите ŃŠ¾Š·Š“Š°Ń‚ŃŒ свой Габл бабл, то вам нужно ŃŠ»ŠµŠ“Š¾Š²Š°Ń‚ŃŒ нескольким советам Šø Ń€ŠµŠŗŠ¾Š¼ŠµŠ½Š“Š°Ń†ŠøŃŠ¼. Во-первых, вы Голжны Š¾ŠæŃ€ŠµŠ“ŠµŠ»ŠøŃ‚ŃŒ свои интересы, Š¼Š½ŠµŠ½ŠøŃ Šø Š²Š·Š³Š»ŃŠ“Ń‹, которые вы хотите Ń€Š°Š·Š²ŠøŠ²Š°Ń‚ŃŒ Šø Š·Š°Ń‰ŠøŃ‰Š°Ń‚ŃŒ. Во-вторых, вы Голжны найти ŠµŠ“ŠøŠ½Š¾Š¼Ń‹ŃˆŠ»ŠµŠ½Š½ŠøŠŗŠ¾Š², которые Ń€Š°Š·Š“ŠµŠ»ŃŃŽŃ‚ ваши интересы, Š¼Š½ŠµŠ½ŠøŃ Šø Š²Š·Š³Š»ŃŠ“Ń‹, Šø которые Š¼Š¾Š³ŃƒŃ‚ ŠæŠ¾Š“Š“ŠµŃ€Š¶ŠøŠ²Š°Ń‚ŃŒ вас Šø ŠæŠ¾Š¼Š¾Š³Š°Ń‚ŃŒ вам. Š’-Ń‚Ń€ŠµŃ‚ŃŒŠøŃ…, вы Голжны Š²Ń‹Š±Ń€Š°Ń‚ŃŒ те каналы ŠŗŠ¾Š¼Š¼ŃƒŠ½ŠøŠŗŠ°Ń†ŠøŠø Šø информации, которые ŃŠ¾Š¾Ń‚Š²ŠµŃ‚ŃŃ‚Š²ŃƒŃŽŃ‚ вашим интересам, Š¼Š½ŠµŠ½ŠøŃŠ¼ Šø Š²Š·Š³Š»ŃŠ“Š°Š¼, Šø которые Š¼Š¾Š³ŃƒŃ‚ ŠæŃ€ŠµŠ“Š¾ŃŃ‚Š°Š²Š»ŃŃ‚ŃŒ вам Š½ŃƒŠ¶Š½ŃƒŃŽ ŠøŠ½Ń„Š¾Ń€Š¼Š°Ń†ŠøŃŽ Šø Š¾Š±Ń€Š°Ń‚Š½ŃƒŃŽ ŃŠ²ŃŠ·ŃŒ. Š’-четвертых, вы Голжны ŠøŠ·Š±ŠµŠ³Š°Ń‚ŃŒ тех каналов ŠŗŠ¾Š¼Š¼ŃƒŠ½ŠøŠŗŠ°Ń†ŠøŠø Šø информации, которые противоречат вашим интересам, Š¼Š½ŠµŠ½ŠøŃŠ¼ Šø Š²Š·Š³Š»ŃŠ“Š°Š¼, или которые Š¼Š¾Š³ŃƒŃ‚ Š“ŠµŠ·ŠøŠ½Ń„Š¾Ń€Š¼ŠøŃ€Š¾Š²Š°Ń‚ŃŒ вас или ŠŗŃ€ŠøŃ‚ŠøŠŗŠ¾Š²Š°Ń‚ŃŒ вас. Š’-ŠæŃŃ‚Ń‹Ń…, вы Голжны Š±Ń‹Ń‚ŃŒ готовы Šŗ Ń‚Š¾Š¼Ńƒ, что ваш Габл бабл может Š±Ń‹Ń‚ŃŒ поГвержен Š²Š»ŠøŃŠ½ŠøŃŽ или атаке со стороны Š“Ń€ŃƒŠ³ŠøŃ… Š»ŃŽŠ“ŠµŠ¹ или Š³Ń€ŃƒŠæŠæ Š»ŃŽŠ“ŠµŠ¹, которые ŠøŠ¼ŠµŃŽŃ‚ Š“Ń€ŃƒŠ³ŠøŠµ интересы, Š¼Š½ŠµŠ½ŠøŃ или Š²Š·Š³Š»ŃŠ“Ń‹.

          ŠŸŃ€ŠøŠ¼ŠµŃ€Ń‹ ŃƒŃŠæŠµŃˆŠ½Ń‹Ń… Габл бабл в интернете

          -

          Š˜Š½Ń‚ŠµŃ€Š½ŠµŃ‚ - ŃŃ‚Š¾ оГна ŠøŠ· самых ŠæŠ¾ŠæŃƒŠ»ŃŃ€Š½Ń‹Ń… Šø Š“Š¾ŃŃ‚ŃƒŠæŠ½Ń‹Ń… платформ Š“Š»Ń ŃŠ¾Š·Š“Š°Š½ŠøŃ Šø ŠæŠ¾Š“Š“ŠµŃ€Š¶Š°Š½ŠøŃ Габл бабл. Š’ интернете вы можете найти множество примеров ŃƒŃŠæŠµŃˆŠ½Ń‹Ń… Габл бабл, которые ŠæŃ€ŠøŠ²Š»ŠµŠŗŠ°ŃŽŃ‚ Šø ŃƒŠ“ŠµŃ€Š¶ŠøŠ²Š°ŃŽŃ‚ миллионы ŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»ŠµŠ¹. ŠŠ°ŠæŃ€ŠøŠ¼ŠµŃ€, вы можете ŠæŠ¾ŃŠµŃ‚ŠøŃ‚ŃŒ такие сайты Šø сервисы, как:

          - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
          ŠŠ°Š·Š²Š°Š½ŠøŠµŠžŠæŠøŃŠ°Š½ŠøŠµŠ¦ŠµŠ»ŠµŠ²Š°Ń Š°ŃƒŠ“ŠøŃ‚Š¾Ń€ŠøŃ
          RedditŠ”Š¾Ń†ŠøŠ°Š»ŃŒŠ½Š°Ń ŃŠµŃ‚ŃŒ, гГе ŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»Šø Š¼Š¾Š³ŃƒŃ‚ Š¾Š±Š¼ŠµŠ½ŠøŠ²Š°Ń‚ŃŒŃŃ Šø Š¾Š±ŃŃƒŠ¶Š“Š°Ń‚ŃŒ различные темы, разГеленные на поГразГелы (сабреГГиты)Š›ŃŽŠ“Šø, которые ŠøŠ½Ń‚ŠµŃ€ŠµŃŃƒŃŽŃ‚ŃŃ опреГеленными темами Šø Ń…Š¾Ń‚ŃŃ‚ Š¾Š±Ń‰Š°Ń‚ŃŒŃŃ с Š“Ń€ŃƒŠ³ŠøŠ¼Šø Š»ŃŽŠ±ŠøŃ‚ŠµŠ»ŃŠ¼Šø ŃŃ‚ŠøŃ… тем
          TikTokДервис Š“Š»Ń ŃŠ¾Š·Š“Š°Š½ŠøŃ Šø просмотра коротких виГеороликов на разные темы, от ŃŽŠ¼Š¾Ń€Š° Го Š¾Š±Ń€Š°Š·Š¾Š²Š°Š½ŠøŃŠ›ŃŽŠ“Šø, которые Š»ŃŽŠ±ŃŃ‚ ŃŠ¼Š¾Ń‚Ń€ŠµŃ‚ŃŒ Šø Š“ŠµŠ»Š°Ń‚ŃŒ забавные, креативные или полезные виГео
          NetflixДервис Š“Š»Ń просмотра Ń„ŠøŠ»ŃŒŠ¼Š¾Š² Šø сериалов по поГписке, ŠæŃ€ŠµŠ“Š»Š°Š³Š°ŃŽŃ‰ŠøŠ¹ ŃˆŠøŃ€Š¾ŠŗŠøŠ¹ выбор жанров Šø ŠŗŠ°Ń‚ŠµŠ³Š¾Ń€ŠøŠ¹Š›ŃŽŠ“Šø, которые Š»ŃŽŠ±ŃŃ‚ ŃŠ¼Š¾Ń‚Ń€ŠµŃ‚ŃŒ кино Šø сериалы по своему вкусу Šø Š½Š°ŃŃ‚Ń€Š¾ŠµŠ½ŠøŃŽ
          AmazonДервис Š“Š»Ń покупки Šø проГажи различных товаров Šø услуг, ŠæŃ€ŠµŠ“Š»Š°Š³Š°ŃŽŃ‰ŠøŠ¹ ŃƒŠ“Š¾Š±Š½Ń‹Š¹ поиск, Š“Š¾ŃŃ‚Š°Š²ŠŗŃƒ Šø Š¾Ń‚Š·Ń‹Š²Ń‹Š›ŃŽŠ“Šø, которые Ń…Š¾Ń‚ŃŃ‚ ŠæŠ¾ŠŗŃƒŠæŠ°Ń‚ŃŒ или ŠæŃ€Š¾Š“Š°Š²Š°Ń‚ŃŒ товары Šø услуги по выгоГным ценам Šø ŃƒŃŠ»Š¾Š²ŠøŃŠ¼
          WikipediaДервис Š“Š»Ń ŃŠ¾Š·Š“Š°Š½ŠøŃ Šø просмотра свобоГной ŃŠ½Ń†ŠøŠŗŠ»Š¾ŠæŠµŠ“ŠøŠø, соГержащей ŠøŠ½Ń„Š¾Ń€Š¼Š°Ń†ŠøŃŽ по разным темам Šø Š¾Š±Š»Š°ŃŃ‚ŃŠ¼ Š·Š½Š°Š½ŠøŃŠ›ŃŽŠ“Šø, которые Ń…Š¾Ń‚ŃŃ‚ ŃƒŠ·Š½Š°Š²Š°Ń‚ŃŒ или Š“ŠµŠ»ŠøŃ‚ŃŒŃŃ Š·Š½Š°Š½ŠøŃŠ¼Šø по разным темам Šø Š¾Š±Š»Š°ŃŃ‚ŃŠ¼ Š·Š½Š°Š½ŠøŃ
          -

          Š—Š°ŠŗŠ»ŃŽŃ‡ŠµŠ½ŠøŠµ

          -

          Š˜Ń‚Š¾Š³Šø Šø вывоГы по теме Габл бабл

          -

          Дабл бабл - ŃŃ‚Š¾ ŃŠ²Š»ŠµŠ½ŠøŠµ, когГа человек или Š³Ń€ŃƒŠæŠæŠ° Š»ŃŽŠ“ŠµŠ¹ живет в своем собственном мире, изолированном от Ń€ŠµŠ°Š»ŃŒŠ½Š¾ŃŃ‚Šø. Дабл бабл может Š±Ń‹Ń‚ŃŒ ŃŠ²ŃŠ·Š°Š½ с разными сферами жизни, такими как политика, ŃŠŗŠ¾Š½Š¾Š¼ŠøŠŗŠ°, ŠŗŃƒŠ»ŃŒŃ‚ŃƒŃ€Š°, образование, Ń€Š°Š·Š²Š»ŠµŃ‡ŠµŠ½ŠøŃ Šø т.Š“. Дабл бабл ŠæŠ¾ŠæŃƒŠ»ŃŃ€ŠµŠ½ по нескольким причинам. ŠžŠ½ обеспечивает Ń‡ŠµŠ»Š¾Š²ŠµŠŗŃƒ или Š³Ń€ŃƒŠæŠæŠµ Š»ŃŽŠ“ŠµŠ¹ Ń‡ŃƒŠ²ŃŃ‚Š²Š¾ комфорта, безопасности, ŃƒŠ²ŠµŃ€ŠµŠ½Š½Š¾ŃŃ‚Šø, принаГлежности, солиГарности, иГентичности, ŃŠ°Š¼Š¾ŃƒŃ‚Š²ŠµŃ€Š¶Š“ŠµŠ½ŠøŃ, ŃŠ°Š¼Š¾Ń€Š°Š·Š²ŠøŃ‚ŠøŃ Šø самореализации. ŠžŠ“Š½Š°ŠŗŠ¾ Габл бабл также может ŠøŠ¼ŠµŃ‚ŃŒ негативные ŠæŠ¾ŃŠ»ŠµŠ“ŃŃ‚Š²ŠøŃ Š“Š»Ń общества. ŠžŠ½ может ŠæŃ€ŠøŠ²Š¾Š“ŠøŃ‚ŃŒ Šŗ ŠøŠ·Š¾Š»ŃŃ†ŠøŠø, Š½ŠµŠæŠ¾Š½ŠøŠ¼Š°Š½ŠøŃŽ, конфликтам, Ń€Š°Š·Š“ŠµŠ»ŠµŠ½ŠøŃŽ Šø Š½Š°ŠæŃ€ŃŠ¶ŠµŠ½Š½Š¾ŃŃ‚Šø в обществе. ŠŸŠ¾ŃŃ‚

          ПоГвеГение итогов Šø Š·Š°ŠŗŠ»ŃŽŃ‡ŠµŠ½ŠøŠµ ŃŃ‚Š°Ń‚ŃŒŠø

          -

          Š’ Š·Š°ŠŗŠ»ŃŽŃ‡ŠµŠ½ŠøŠµ, мы можем ŃŠŗŠ°Š·Š°Ń‚ŃŒ, что Габл бабл - ŃŃ‚Š¾ интересное Šø Š°ŠŗŃ‚ŃƒŠ°Š»ŃŒŠ½Š¾Šµ ŃŠ²Š»ŠµŠ½ŠøŠµ, которое затрагивает многих Š»ŃŽŠ“ŠµŠ¹ в современном мире. Дабл бабл имеет свои ŠæŃ€ŠµŠøŠ¼ŃƒŃ‰ŠµŃŃ‚ва Šø неГостатки, свои ŠæŠ»ŃŽŃŃ‹ Šø Š¼ŠøŠ½ŃƒŃŃ‹, свои пользу Šø вреГ. ŠšŠ°Š¶Š“Ń‹Š¹ человек сам Ń€ŠµŃˆŠ°ŠµŃ‚, хочет ли он Š¶ŠøŃ‚ŃŒ в своем Габл бабле или нет, Šø как он Š±ŃƒŠ“ет Š¾Ń‚Š½Š¾ŃŠøŃ‚ŃŒŃŃ Šŗ Š“Ń€ŃƒŠ³ŠøŠ¼ Габл баблам. Главное - не Š·Š°Š±Ń‹Š²Š°Ń‚ŃŒ о Ń€ŠµŠ°Š»ŃŒŠ½Š¾ŃŃ‚Šø, не Ń‚ŠµŃ€ŃŃ‚ŃŒ контакт с ней Šø не ŠæŃ€ŠøŃ‡ŠøŠ½ŃŃ‚ŃŒ вреГа себе или Š“Ń€ŃƒŠ³ŠøŠ¼. ŠœŃ‹ Š½Š°Š“ŠµŠµŠ¼ŃŃ, что наша ŃŃ‚Š°Ń‚ŃŒŃ была полезной Šø интересной Š“Š»Ń вас, Šø вы узнали что-то новое о Габл бабле.

          -

          FAQ

          -

          Вот некоторые часто заГаваемые вопросы о Габл бабле:

          -
            -
          • Что такое Габл бабл? Дабл бабл - ŃŃ‚Š¾ ŃŠ²Š»ŠµŠ½ŠøŠµ, когГа человек или Š³Ń€ŃƒŠæŠæŠ° Š»ŃŽŠ“ŠµŠ¹ живет в своем собственном мире, изолированном от Ń€ŠµŠ°Š»ŃŒŠ½Š¾ŃŃ‚Šø.
          • -
          • ŠŸŠ¾Ń‡ŠµŠ¼Ńƒ Габл бабл ŠæŠ¾ŠæŃƒŠ»ŃŃ€ŠµŠ½? Дабл бабл ŠæŠ¾ŠæŃƒŠ»ŃŃ€ŠµŠ½ по нескольким причинам. ŠžŠ½ обеспечивает Ń‡ŠµŠ»Š¾Š²ŠµŠŗŃƒ или Š³Ń€ŃƒŠæŠæŠµ Š»ŃŽŠ“ŠµŠ¹ Ń‡ŃƒŠ²ŃŃ‚Š²Š¾ комфорта, безопасности, ŃƒŠ²ŠµŃ€ŠµŠ½Š½Š¾ŃŃ‚Šø, принаГлежности, солиГарности, иГентичности, ŃŠ°Š¼Š¾ŃƒŃ‚Š²ŠµŃ€Š¶Š“ŠµŠ½ŠøŃ, ŃŠ°Š¼Š¾Ń€Š°Š·Š²ŠøŃ‚ŠøŃ Šø самореализации.
          • -
          • Как ŃŠ¾Š·Š“Š°Ń‚ŃŒ свой Габл бабл? Если вы хотите ŃŠ¾Š·Š“Š°Ń‚ŃŒ свой Габл бабл, то вам нужно ŃŠ»ŠµŠ“Š¾Š²Š°Ń‚ŃŒ нескольким советам Šø Ń€ŠµŠŗŠ¾Š¼ŠµŠ½Š“Š°Ń†ŠøŃŠ¼. Š’Ń‹ Голжны Š¾ŠæŃ€ŠµŠ“ŠµŠ»ŠøŃ‚ŃŒ свои интересы, Š¼Š½ŠµŠ½ŠøŃ Šø Š²Š·Š³Š»ŃŠ“Ń‹, найти ŠµŠ“ŠøŠ½Š¾Š¼Ń‹ŃˆŠ»ŠµŠ½Š½ŠøŠŗŠ¾Š², Š²Ń‹Š±Ń€Š°Ń‚ŃŒ те каналы ŠŗŠ¾Š¼Š¼ŃƒŠ½ŠøŠŗŠ°Ń†ŠøŠø Šø информации, которые ŃŠ¾Š¾Ń‚Š²ŠµŃ‚ŃŃ‚Š²ŃƒŃŽŃ‚ вашим интересам, Š¼Š½ŠµŠ½ŠøŃŠ¼ Šø Š²Š·Š³Š»ŃŠ“Š°Š¼, ŠøŠ·Š±ŠµŠ³Š°Ń‚ŃŒ тех каналов ŠŗŠ¾Š¼Š¼ŃƒŠ½ŠøŠŗŠ°Ń†ŠøŠø Šø информации, которые противоречат вашим интересам, Š¼Š½ŠµŠ½ŠøŃŠ¼ Šø Š²Š·Š³Š»ŃŠ“Š°Š¼, Šø Š±Ń‹Ń‚ŃŒ готовы Šŗ Ń‚Š¾Š¼Ńƒ, что ваш Габл бабл может Š±Ń‹Ń‚ŃŒ поГвержен Š²Š»ŠøŃŠ½ŠøŃŽ или атаке со стороны Š“Ń€ŃƒŠ³ŠøŃ… Š»ŃŽŠ“ŠµŠ¹ или Š³Ń€ŃƒŠæŠæ Š»ŃŽŠ“ŠµŠ¹.
          • -
          • Какие примеры ŃƒŃŠæŠµŃˆŠ½Ń‹Ń… Габл бабл в интернете? Š’ интернете вы можете найти множество примеров ŃƒŃŠæŠµŃˆŠ½Ń‹Ń… Габл бабл, которые ŠæŃ€ŠøŠ²Š»ŠµŠŗŠ°ŃŽŃ‚ Šø ŃƒŠ“ŠµŃ€Š¶ŠøŠ²Š°ŃŽŃ‚ миллионы ŠæŠ¾Š»ŃŒŠ·Š¾Š²Š°Ń‚ŠµŠ»ŠµŠ¹. ŠŠ°ŠæŃ€ŠøŠ¼ŠµŃ€, вы можете ŠæŠ¾ŃŠµŃ‚ŠøŃ‚ŃŒ такие сайты Šø сервисы, как Reddit, TikTok, Netflix, Amazon или Wikipedia.
          • -
          • Какие польза Šø вреГ Габл бабл Š“Š»Ń общества? Дабл бабл может ŠøŠ¼ŠµŃ‚ŃŒ как ŠæŠ¾Š»Š¾Š¶ŠøŃ‚ŠµŠ»ŃŒŠ½Ń‹Šµ, так Šø Š¾Ń‚Ń€ŠøŃ†Š°Ń‚ŠµŠ»ŃŒŠ½Ń‹Šµ ŠæŠ¾ŃŠ»ŠµŠ“ŃŃ‚Š²ŠøŃ Š“Š»Ń общества. Š” оГной стороны, Габл бабл ŃŠæŠ¾ŃŠ¾Š±ŃŃ‚Š²ŃƒŠµŃ‚ Ń€Š°Š·Š½Š¾Š¾Š±Ń€Š°Š·ŠøŃŽ, Ń‚Š²Š¾Ń€Ń‡ŠµŃŃ‚Š²Ńƒ Šø ŠøŠ½Š½Š¾Š²Š°Ń†ŠøŃŠ¼ в обществе. Š” Š“Ń€ŃƒŠ³Š¾Š¹ стороны, Габл бабл может ŠæŃ€ŠøŠ²Š¾Š“ŠøŃ‚ŃŒ Šŗ ŠøŠ·Š¾Š»ŃŃ†ŠøŠø, Š½ŠµŠæŠ¾Š½ŠøŠ¼Š°Š½ŠøŃŽ Šø конфликтам в обществе.
          • -

          -

          Габл бабл челленГж
          -Габл бабл ŃŽŃ‚ŃƒŠ±
          -Габл бабл анна
          -Габл бабл ŠŗŃŃŽŃˆŠ°
          -Габл бабл 24 часа
          -Габл бабл Š½Š°Ń€ŃƒŃˆŠøŠ»Šø 100 правил
          -Габл бабл в Гомике ŠøŠ· покрывал
          -Габл бабл телеграм
          -Габл бабл вконтакте
          -Габл бабл Ń€ŃƒŃ‚ŃƒŠ±
          -Габл бабл Гзен
          -Габл бабл likee
          -Габл бабл тик ток
          -Габл бабл twitch
          -Габл бабл золотого цвета
          -Габл бабл выживаем в Гетских страхах
          -Габл бабл ŃŃ„ŠµŠŗŃ‚ поГвійного Š¼Ń–Ń…ŃƒŃ€Š°
          -Габл бабл Š·Š±Ń–Š»ŃŒŃˆŠµŠ½Š½Ń Š³Ń€ŃƒŠ“ŠµŠ¹
          -Габл бабл Š¼Š»Š°Š“ŃˆŠ°Ń vs ŃŃ‚Š°Ń€ŃˆŠ°Ń сестра
          -Габл бабл ŃŠ¼ŠµŃˆŠ½Ń‹Šµ ŃŠøŃ‚ŃƒŠ°Ń†ŠøŠø с сестрами
          -Габл бабл купила все розовое
          -Габл бабл пранки наГ ŠæŠ¾Š“Ń€ŃƒŠ³Š¾Š¹
          -Габл бабл кто Š»ŃƒŃ‡ŃˆŠµ готовит
          -Габл бабл кто Š»ŃƒŃ‡ŃˆŠµ Ń€ŠøŃŃƒŠµŃ‚
          -Габл бабл кто Š»ŃƒŃ‡ŃˆŠµ поет
          -Габл бабл кто Š»ŃƒŃ‡ŃˆŠµ Ń‚Š°Š½Ń†ŃƒŠµŃ‚
          -Габл бабл кто Š»ŃƒŃ‡ŃˆŠµ Ń„Š¾Ń‚Š¾Š³Ń€Š°Ń„ŠøŃ€ŃƒŠµŃ‚ŃŃ
          -Габл бабл кто Š»ŃƒŃ‡ŃˆŠµ Š¾Š“ŠµŠ²Š°ŠµŃ‚ŃŃ
          -Габл бабл кто Š»ŃƒŃ‡ŃˆŠµ ŃƒŃ‡ŠøŃ‚ŃŃ
          -Габл бабл кто Š»ŃƒŃ‡ŃˆŠµ Ń†ŠµŠ»ŃƒŠµŃ‚ŃŃ
          -Габл бабл кто Š»ŃƒŃ‡ŃˆŠµ плавает
          -Габл бабл кто Š»ŃƒŃ‡ŃˆŠµ ест слаГкое
          -Габл бабл кто Š»ŃƒŃ‡ŃˆŠµ ест острое
          -Габл бабль кто Š»ŃƒŃ‡ŃˆŠµ ест соленое
          -Гавбль кто Š»ŃƒŃ‡ŃˆŠµ ест Š³Š¾Ń€ŃŒŠŗŠ¾Šµ
          -Гавбль кто Š»ŃƒŃ‡ŃˆŠµ ест кислое
          -Гавбль кто Š»ŃƒŃ‡ŃˆŠµ играет в игры
          -Гавбль кто Š»ŃƒŃ‡ŃˆŠµ Гелает Š¼Š°ŠŗŠøŃŠ¶
          -Гавбль кто Š»ŃƒŃ‡ŃˆŠµ Гелает прически
          -Гавбль кто Š»ŃƒŃ‡ŃˆŠµ Гелает Š¼Š°Š½ŠøŠŗŃŽŃ€
          -Гавбль кто Š»ŃƒŃ‡ŃˆŠµ Гелает ŠæŠµŠ“ŠøŠŗŃŽŃ€
          -Гавбль кто Š»ŃƒŃ‡ŃˆŠµ Гелает массаж
          -Гвбль кто Š»ŃƒŃ‡ŃˆŠµ Гелает поГарки
          -Гвбль кто Š»ŃƒŃ‡ŃˆŠµ Гелает ŃƒŠ±Š¾Ń€ŠŗŃƒ
          -Гвбль кто Š»ŃƒŃ‡ŃˆŠµ Гелает ремонт

          401be4b1e0
          -
          -
          \ No newline at end of file diff --git a/spaces/simple0urra/skops-model-card-creator-2a23515a-d54e-4804-b365-27ed6e938735/example/4 Pics 1 Word Mod APK Unlimited Coins and Fun Puzzles.md b/spaces/simple0urra/skops-model-card-creator-2a23515a-d54e-4804-b365-27ed6e938735/example/4 Pics 1 Word Mod APK Unlimited Coins and Fun Puzzles.md deleted file mode 100644 index 2fac6d553a829945cddc22a24763768c4bb56590..0000000000000000000000000000000000000000 --- a/spaces/simple0urra/skops-model-card-creator-2a23515a-d54e-4804-b365-27ed6e938735/example/4 Pics 1 Word Mod APK Unlimited Coins and Fun Puzzles.md +++ /dev/null @@ -1,84 +0,0 @@ - -

          4 Pics 1 Word APK Unlimited Coins: How to Download and Play

          -

          Do you love word games? Do you enjoy solving puzzles with pictures? If yes, then you should try 4 Pics 1 Word, one of the most popular and challenging word games on Android. In this article, we will show you how to download and play 4 Pics 1 Word APK unlimited coins, a modified version of the game that gives you access to unlimited coins and hints. Read on to find out more!

          -

          4 pics 1 word apk unlimited coins


          Download Ziphttps://ssurll.com/2uNV5b



          -

          What is 4 Pics 1 Word?

          -

          A fun and addictive word puzzle game

          -

          4 Pics 1 Word is a simple but addictive game that tests your vocabulary and logic skills. The game shows you four pictures that have something in common, and you have to guess the word that links them. For example, if you see pictures of a dog, a cat, a mouse, and a cheese, the word is animal. The game has hundreds of levels with different themes and difficulties, so you will never get bored.

          -

          How to play 4 Pics 1 Word?

          -

          The game is easy to play, but hard to master. You just need to tap on the letters at the bottom of the screen to form the word that matches the pictures. If you get stuck, you can use hints or coins to reveal letters or remove unnecessary ones. You can also ask your friends for help by sharing the pictures on social media. The game rewards you with coins for every correct answer, and you can use them to buy more hints or skip levels.

          -

          Why download 4 Pics 1 Word APK unlimited coins?

          -

          If you love playing 4 Pics 1 Word, but find it too hard or frustrating at times, you might want to download 4 Pics 1 Word APK unlimited coins. This is a modified version of the game that gives you unlimited coins and hints, so you can solve any puzzle without any hassle. You can also enjoy the game without any ads or interruptions. With this version, you can have more fun and challenge yourself with new levels.

          -

          How to download and install 4 Pics 1 Word APK unlimited coins?

          -

          Step 1: Find a reliable source for the APK file

          -

          The first thing you need to do is to find a trustworthy website that offers the 4 Pics 1 Word APK unlimited coins file for free. You can search online or use the link below as an example. Make sure that the website is safe and secure, and that the file is compatible with your device.

          -

          4 pics 1 word mod apk unlimited coins
          -4 pics 1 word hack apk unlimited coins
          -4 pics 1 word puzzle apk unlimited coins
          -4 pics 1 word premium apk unlimited coins
          -4 pics 1 word pro apk unlimited coins
          -4 pics 1 word cheats apk unlimited coins
          -4 pics 1 word game apk unlimited coins
          -4 pics 1 word android apk unlimited coins
          -4 pics 1 word latest apk unlimited coins
          -4 pics 1 word download apk unlimited coins
          -4 pics 1 word free apk unlimited coins
          -4 pics 1 word offline apk unlimited coins
          -4 pics 1 word online apk unlimited coins
          -4 pics 1 word full apk unlimited coins
          -4 pics 1 word cracked apk unlimited coins
          -4 pics 1 word updated apk unlimited coins
          -4 pics 1 word new apk unlimited coins
          -4 pics 1 word old apk unlimited coins
          -4 pics 1 word original apk unlimited coins
          -4 pics 1 word best apk unlimited coins
          -download 4 pics 1 word apk with unlimited coins
          -install 4 pics 1 word apk with unlimited coins
          -play 4 pics 1 word apk with unlimited coins
          -enjoy 4 pics 1 word apk with unlimited coins
          -get 4 pics 1 word apk with unlimited coins
          -how to download 4 pics 1 word apk with unlimited coins
          -how to install 4 pics 1 word apk with unlimited coins
          -how to play 4 pics 1 word apk with unlimited coins
          -how to enjoy 4 pics 1 word apk with unlimited coins
          -how to get 4 pics 1 word apk with unlimited coins
          -where to download 4 pics 1 word apk with unlimited coins
          -where to install 4 pics 1 word apk with unlimited coins
          -where to play 4 pics 1 word apk with unlimited coins
          -where to enjoy 4 pics 1 word apk with unlimited coins
          -where to get 4 pics 1 word apk with unlimited coins
          -why download 4 pics 1 word apk with unlimited coins
          -why install 4 pics 1 word apk with unlimited coins
          -why play 4 pics 1 word apk with unlimited coins
          -why enjoy 4 pics

          -

          Step 2: Enable unknown sources on your device

          -

          The next thing you need to do is to enable unknown sources on your device. This will allow you to install apps from sources other than the Google Play Store. To do this, go to your device settings, then security, then unknown sources, and toggle it on. You might see a warning message, but don't worry, it's safe as long as you trust the source of the APK file.

          -

          Step 3: Download and install the APK file

          -

          The final thing you need to do is to download and install the 4 Pics 1 Word APK unlimited coins file on your device

          The final thing you need to do is to download and install the 4 Pics 1 Word APK unlimited coins file on your device. To do this, go to the website where you found the file, and tap on the download button. You might see a pop-up asking you to confirm the download, just tap on OK. Once the file is downloaded, go to your file manager and locate the file. Tap on it and follow the instructions to install the app. You might see another pop-up asking you to allow the app to access your device, just tap on Install.

          -

          Step 4: Enjoy the game with unlimited coins

          -

          Congratulations! You have successfully downloaded and installed 4 Pics 1 Word APK unlimited coins on your device. Now you can enjoy the game with unlimited coins and hints, and solve any puzzle you want. You can also play offline and without any ads. Have fun and challenge your brain with this amazing word game!

          -

          How to use unlimited coins in 4 Pics 1 Word?

          -

          Buy hints and reveal letters

          -

          One of the ways you can use unlimited coins in 4 Pics 1 Word is to buy hints and reveal letters. Hints are helpful when you are stuck on a level and need some clues. You can buy hints by tapping on the light bulb icon at the top of the screen. There are three types of hints: reveal a letter, remove letters, and reveal the word. Each hint costs a certain amount of coins, but since you have unlimited coins, you don't have to worry about running out of them.

          -

          Skip hard levels and unlock new ones

          -

          Another way you can use unlimited coins in 4 Pics 1 Word is to skip hard levels and unlock new ones. Sometimes, you might encounter a level that is too difficult or frustrating for you, and you don't want to waste your time or hints on it. You can skip it by tapping on the arrow icon at the bottom of the screen. This will cost you some coins, but again, you have unlimited coins, so it doesn't matter. Skipping a level will also unlock the next one, so you can keep playing and progressing.

          -

          Get extra rewards and bonuses

          -

          The last way you can use unlimited coins in 4 Pics 1 Word is to get extra rewards and bonuses. The game offers various rewards and bonuses for playing daily, completing achievements, and solving special puzzles. You can claim these rewards by tapping on the gift box icon at the top of the screen. Some of these rewards include extra coins, hints, or stars. Stars are used to unlock special levels that have more pictures and words. With unlimited coins, you can get more rewards and bonuses, and enjoy more features of the game.

          -

          Conclusion

          -

          In conclusion, 4 Pics 1 Word APK unlimited coins is a great way to enjoy one of the best word games on Android. It gives you unlimited coins and hints, so you can solve any puzzle without any hassle. It also lets you play offline and without any ads. To download and install it, you just need to follow four simple steps: find a reliable source for the APK file, enable unknown sources on your device, download and install the APK file, and enjoy the game with unlimited coins. You can use unlimited coins to buy hints, skip levels, and get rewards. If you love word games and puzzles, you should definitely try 4 Pics 1 Word APK unlimited coins today!

          -

          FAQs

          -

          Here are some frequently asked questions about 4 Pics 1 Word APK unlimited coins:

          -
            -
          • Is 4 Pics 1 Word APK unlimited coins safe?
          • -

            Yes, as long as you download it from a trustworthy website that offers a virus-free and malware-free file. You should also scan the file with an antivirus app before installing it.

            -
          • Is 4 Pics 1 Word APK unlimited coins legal?
          • -

            No, technically speaking, it is not legal to download or use a modified version of an app that violates its terms of service or infringes its intellectual property rights. However, as long as you use it for personal and non-commercial purposes only, and do not distribute or share it with others, you are unlikely to face any legal consequences.

            -
          • Will 4 Pics 1 Word APK unlimited coins work on my device?
          • -

            It depends on your device model and operating system version. The APK file should be compatible with most Android devices that run on Android 4.1 or higher. However, some devices might not support it due to different specifications or settings

            It depends on your device model and operating system version. The APK file should be compatible with most Android devices that run on Android 4.1 or higher. However, some devices might not support it due to different specifications or settings. You can check the compatibility of the APK file with your device by reading the description or reviews on the website where you found it, or by contacting the developer of the app.

            -
          • How can I update 4 Pics 1 Word APK unlimited coins?
          • -

            Since 4 Pics 1 Word APK unlimited coins is a modified version of the original app, you cannot update it from the Google Play Store. You will have to download and install a newer version of the APK file from the same website where you got it, or from another reliable source. You should also check for updates regularly, as new versions might have more features, bug fixes, or security improvements.

            -
          • Can I play 4 Pics 1 Word APK unlimited coins with my friends?
          • -

            Yes, you can play 4 Pics 1 Word APK unlimited coins with your friends, as long as they also have the same version of the app installed on their devices. You can share the pictures and words with them via social media, email, or messaging apps, and ask for their help or opinions. You can also compare your scores and achievements with them, and see who is the best at solving puzzles.

            -

          401be4b1e0
          -
          -
          \ No newline at end of file diff --git a/spaces/smangrul/peft-lora-sd-dreambooth/style.css b/spaces/smangrul/peft-lora-sd-dreambooth/style.css deleted file mode 100644 index af4e23927a03e13fd16ebc7b4eb6eb434c42f65b..0000000000000000000000000000000000000000 --- a/spaces/smangrul/peft-lora-sd-dreambooth/style.css +++ /dev/null @@ -1,3 +0,0 @@ -h1 { - text-align: center; -} \ No newline at end of file diff --git a/spaces/springml111/Pegasus_Paraphrase_demo/README.md b/spaces/springml111/Pegasus_Paraphrase_demo/README.md deleted file mode 100644 index ee087dead1b36be4450419567e218da4774e6166..0000000000000000000000000000000000000000 --- a/spaces/springml111/Pegasus_Paraphrase_demo/README.md +++ /dev/null @@ -1,37 +0,0 @@ ---- -title: Pegasus_Paraphrase_demo -emoji: šŸ“ˆ -colorFrom: yellow -colorTo: indigo -sdk: gradio -app_file: app.py -pinned: false ---- - -# Configuration - -`title`: _string_ -Display title for the Space - -`emoji`: _string_ -Space emoji (emoji-only character allowed) - -`colorFrom`: _string_ -Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) - -`colorTo`: _string_ -Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) - -`sdk`: _string_ -Can be either `gradio` or `streamlit` - -`sdk_version` : _string_ -Only applicable for `streamlit` SDK. -See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions. - -`app_file`: _string_ -Path to your main application file (which contains either `gradio` or `streamlit` Python code). -Path is relative to the root of the repository. - -`pinned`: _boolean_ -Whether the Space stays on top of your list. diff --git a/spaces/sriramelango/Social_Classification_Public/fairseq/examples/wav2vec/unsupervised/scripts/remove_silence.py b/spaces/sriramelango/Social_Classification_Public/fairseq/examples/wav2vec/unsupervised/scripts/remove_silence.py deleted file mode 100644 index fac88b989703262a84b242b2761df621bf02c739..0000000000000000000000000000000000000000 --- a/spaces/sriramelango/Social_Classification_Public/fairseq/examples/wav2vec/unsupervised/scripts/remove_silence.py +++ /dev/null @@ -1,63 +0,0 @@ -#!/usr/bin/env python3 -u -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -""" -get intervals from .vads file, specify output data, and this script removes silences and saves the audio data in out path folder -paths=shards/train.tsv -vads=shards/train.vads -python remove_silence.py --paths $paths --vads $vads -""" - -import os -import argparse -import torch -import torchaudio -import tqdm - - -parser = argparse.ArgumentParser() -parser.add_argument("--tsv", default="", type=str) -parser.add_argument("--vads", default="", type=str) -parser.add_argument("--out", type=str) -params = parser.parse_args() - -# load paths -paths = [] -with open(params.tsv) as f: - root = next(f).rstrip() - for line in f: - paths.append(os.path.join(root, line.rstrip().split("\t")[0])) - -# load vads -list_intervals = [] -with open(params.vads) as f: - for line in f: - interval = [ - [int(w.split(":")[0]), int(w.split(":")[1])] for w in line.rstrip().split() - ] - list_intervals.append(interval) - - -# load audio and keep only intervals (i.e. remove silences) -for i in tqdm.trange(len(paths)): - data, _ = torchaudio.load(paths[i]) - if len(list_intervals[i]) > 0: - data_filtered = torch.cat( - [data[0][int(it[0]) : int(it[1])] for it in list_intervals[i]] - ).unsqueeze(0) - else: - data_filtered = data - - # YOU MAY NEED TO MODIFY THIS TO GET THE RIGHT SUBPATH - # outpath = params.out + '/'.join(paths[i].split('/')[-1]) - outpath = params.out + "/" + "/".join(paths[i].split("/")[-2:]) - - if not os.path.isdir("/".join(outpath.split("/")[:-1])): - os.makedirs("/".join(outpath.split("/")[:-1])) - if not os.path.exists(outpath): - torchaudio.save(outpath, data_filtered, sample_rate=16000) - else: - print(outpath, "exists!") diff --git a/spaces/sriramelango/Social_Classification_Public/fairseq/fairseq/criterions/fairseq_criterion.py b/spaces/sriramelango/Social_Classification_Public/fairseq/fairseq/criterions/fairseq_criterion.py deleted file mode 100644 index ff4beb02503ea48a6c09596630aad4c710be94b6..0000000000000000000000000000000000000000 --- a/spaces/sriramelango/Social_Classification_Public/fairseq/fairseq/criterions/fairseq_criterion.py +++ /dev/null @@ -1,120 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -import inspect -from typing import Any, Dict, List - -from fairseq import metrics, utils -from fairseq.dataclass import FairseqDataclass -from fairseq.dataclass.utils import gen_parser_from_dataclass -from torch.nn.modules.loss import _Loss - - -class FairseqCriterion(_Loss): - def __init__(self, task): - super().__init__() - self.task = task - if hasattr(task, "target_dictionary"): - tgt_dict = task.target_dictionary - self.padding_idx = tgt_dict.pad() if tgt_dict is not None else -100 - - @classmethod - def add_args(cls, parser): - """Add criterion-specific arguments to the parser.""" - dc = getattr(cls, "__dataclass", None) - if dc is not None: - gen_parser_from_dataclass(parser, dc()) - - @classmethod - def build_criterion(cls, cfg: FairseqDataclass, task): - """Construct a criterion from command-line args.""" - # arguments in the __init__. - init_args = {} - for p in inspect.signature(cls).parameters.values(): - if ( - p.kind == p.POSITIONAL_ONLY - or p.kind == p.VAR_POSITIONAL - or p.kind == p.VAR_KEYWORD - ): - # we haven't implemented inference for these argument types, - # but PRs welcome :) - raise NotImplementedError("{} not supported".format(p.kind)) - - assert p.kind in {p.POSITIONAL_OR_KEYWORD, p.KEYWORD_ONLY} - - if p.name == "task": - init_args["task"] = task - elif p.name == "cfg": - init_args["cfg"] = cfg - elif hasattr(cfg, p.name): - init_args[p.name] = getattr(cfg, p.name) - elif p.default != p.empty: - pass # we'll use the default value - else: - raise NotImplementedError( - "Unable to infer Criterion arguments, please implement " - "{}.build_criterion".format(cls.__name__) - ) - return cls(**init_args) - - def forward(self, model, sample, reduce=True): - """Compute the loss for the given sample. - - Returns a tuple with three elements: - 1) the loss - 2) the sample size, which is used as the denominator for the gradient - 3) logging outputs to display while training - """ - raise NotImplementedError - - @staticmethod - def aggregate_logging_outputs( - logging_outputs: List[Dict[str, Any]] - ) -> Dict[str, Any]: - """Aggregate logging outputs from data parallel training.""" - utils.deprecation_warning( - "The aggregate_logging_outputs API is deprecated. " - "Please use the reduce_metrics API instead." - ) - raise NotImplementedError - - @classmethod - def reduce_metrics(cls, logging_outputs: List[Dict[str, Any]]) -> None: - """Aggregate logging outputs from data parallel training.""" - utils.deprecation_warning( - "Criterions should implement the reduce_metrics API. " - "Falling back to deprecated aggregate_logging_outputs API." - ) - agg_logging_outputs = cls.aggregate_logging_outputs(logging_outputs) - for k, v in agg_logging_outputs.items(): - if k in {"nsentences", "ntokens", "sample_size"}: - continue - metrics.log_scalar(k, v) - - @staticmethod - def logging_outputs_can_be_summed() -> bool: - """ - Whether the logging outputs returned by `forward` can be summed - across workers prior to calling `reduce_metrics`. Setting this - to True will improves distributed training speed. - """ - return False - - -class LegacyFairseqCriterion(FairseqCriterion): - def __init__(self, args, task): - super().__init__(task=task) - self.args = args - - utils.deprecation_warning( - "Criterions should take explicit arguments instead of an " - "argparse.Namespace object, please update your criterion by " - "extending FairseqCriterion instead of LegacyFairseqCriterion." - ) - - @classmethod - def build_criterion(cls, args, task): - """Construct a criterion from command-line args.""" - return cls(args, task) diff --git a/spaces/srisakthi2821/SriChatBott/app.py b/spaces/srisakthi2821/SriChatBott/app.py deleted file mode 100644 index b14ae18dabe2fba3e7c3ad48876740c8fd2a2385..0000000000000000000000000000000000000000 --- a/spaces/srisakthi2821/SriChatBott/app.py +++ /dev/null @@ -1,32 +0,0 @@ -import os -import gradio as gr -from langchain.chat_models import ChatOpenAI -from langchain import LLMChain, PromptTemplate -from langchain.memory import ConversationBufferMemory - -OPENAI_API_KEY=os.getenv('OPENAI_API_KEY') -template = """Your name is Sri,You are the assistant of a food website for clearing doubts about the customers.if the custome ask about your self definetely you say your name...dont tell simply ai.your developer name is MR.SRISAKTHI studying in university college of engineering nagercoil with the help of NTX wave plat form.Srisakthi is a FUll stack developer.And you developer's girlfriend name is Miss.SRIVIDHYA studying in K.S Rangasamy college of technology in Namaakal. Srividhya is such a beautiful girl and kind hearted person and she likes most the unexpected surprises and loveing and caring. -{chat_history} -User: {user_message} -Chatbot:""" -prompt = PromptTemplate( - input_variables=["chat_history", "user_message"], template=template -) - -memory = ConversationBufferMemory(memory_key="chat_history") - -llm_chain = LLMChain( - llm=ChatOpenAI(temperature='0.5', model_name="gpt-3.5-turbo"), - prompt=prompt, - verbose=True, - memory=memory, -) - -def get_text_response(user_message,history): - response = llm_chain.predict(user_message = user_message) - return response - -demo = gr.ChatInterface(get_text_response, examples=["Whats about your self ?","Who Developed Sri-Ai","what about your developer"]) -if __name__ == "__main__": - demo.launch() #To create a public link, set `share=True` in `launch()`. To enable errors and logs, set `debug=True` in `launch()`. - \ No newline at end of file diff --git a/spaces/stephenleo/stripnet/markdown/about_me.md b/spaces/stephenleo/stripnet/markdown/about_me.md deleted file mode 100644 index 46e00023420f864a4e91ba7681dd97d5052dbe92..0000000000000000000000000000000000000000 --- a/spaces/stephenleo/stripnet/markdown/about_me.md +++ /dev/null @@ -1,15 +0,0 @@ ---- - -šŸ’”šŸ”„šŸš€ STriPNet v1.0 šŸš€šŸ”„šŸ’” - -If you like this work, please consider ā¤ļø this HugginFace Space and 🌟 the STriPNet Github repo [Link](https://github.com/stephenleo/stripnet) - -šŸ‘Øā€šŸ”¬ Author: Marie Stephen Leo - -šŸ’» Github: [stephenleo](https://github.com/stephenleo) - -šŸ‘” Linkedin: [Marie Stephen Leo](https://www.linkedin.com/in/marie-stephen-leo/) - -šŸ“ Medium: [@stephen-leo](https://stephen-leo.medium.com/) - ---- \ No newline at end of file diff --git a/spaces/stomexserde/gpt4-ui/Examples/CRACK AllMyNotes Organizer Deluxe 3.21 Build 873 Final !FULL!.md b/spaces/stomexserde/gpt4-ui/Examples/CRACK AllMyNotes Organizer Deluxe 3.21 Build 873 Final !FULL!.md deleted file mode 100644 index 2f34b85911ca8d5f67ac4bd63a16a9a90e296122..0000000000000000000000000000000000000000 --- a/spaces/stomexserde/gpt4-ui/Examples/CRACK AllMyNotes Organizer Deluxe 3.21 Build 873 Final !FULL!.md +++ /dev/null @@ -1,45 +0,0 @@ - -

          AllMyNotes Organizer Deluxe: A Powerful and Secure Tool for Storing All Your Notes

          -

          If you are looking for a way to keep all your notes, ideas, passwords, contacts, and other information in one place, you might want to check out AllMyNotes Organizer Deluxe. This is a software that lets you create and organize notes in a hierarchical tree structure, with rich text formatting, attachments, reminders, and encryption. You can also search across all your notes with various parameters, such as keywords, dates, tags, and priority.

          -

          AllMyNotes Organizer Deluxe is the latest version of the software, released on December 23, 2017. It has some new features and improvements, such as:

          -

          CRACK AllMyNotes Organizer Deluxe 3.21 Build 873 Final


          DOWNLOAD ✫✫✫ https://urlgoal.com/2uIaWJ



          -
            -
          • A new option to show/hide icons on toolbar buttons.
          • -
          • A new option to show/hide note preview in the tree view.
          • -
          • A new option to auto-save changes when switching between notes.
          • -
          • A new option to auto-expand folders when searching.
          • -
          • A new option to auto-collapse folders when deleting notes.
          • -
          • A new option to auto-select the first note when opening a folder.
          • -
          • A new option to auto-scroll to the selected note when switching between folders.
          • -
          • A new option to auto-hide the tree view when there are no notes in the current folder.
          • -
          • A new option to auto-show the tree view when there are notes in the current folder.
          • -
          • A new option to auto-hide the toolbar when there are no notes in the current folder.
          • -
          • A new option to auto-show the toolbar when there are notes in the current folder.
          • -
          • A new option to auto-hide the status bar when there are no notes in the current folder.
          • -
          • A new option to auto-show the status bar when there are notes in the current folder.
          • -
          • A new option to auto-hide the search bar when there are no notes in the current folder.
          • -
          • A new option to auto-show the search bar when there are notes in the current folder.
          • -
          • Improved performance and stability of the software.
          • -
          • Fixed some minor bugs and errors.
          • -
          -

          AllMyNotes Organizer Deluxe is available for Windows operating systems, and you can download it from its official website[^1^]. The software costs $34 for a single-user license, but you can also try it for free for 30 days. If you want to keep all your notes safe and organized, AllMyNotes Organizer Deluxe might be the perfect solution for you.

          - -

          One of the main advantages of AllMyNotes Organizer Deluxe is its advanced data security. You can protect your notes with a strong password, and encrypt them with a 1800-bit key. This means that no one can access your notes without your permission, even if they get hold of your computer or your backup files. You can also set up a password-protected recycle bin, where you can restore deleted notes if you change your mind.

          -

          Another benefit of AllMyNotes Organizer Deluxe is its powerful global search feature. You can find any note in seconds by typing a keyword or a phrase in the search bar. You can also refine your search by using filters, such as date range, priority level, tags, and folder name. You can also sort your search results by relevance, title, creation date, modification date, or size. This way, you can easily locate the information you need, even if you have thousands of notes.

          -

          AllMyNotes Organizer Deluxe also allows you to customize your notes according to your preferences. You can use rich text formatting, such as fonts, colors, styles, bullets, and tables. You can also insert images, files, links, and icons into your notes. You can also add reminders, alarms, checkboxes, and passwords to your notes. You can also assign different icons and colors to your folders and notes, to make them more recognizable and organized.

          -

          -

          AllMyNotes Organizer Deluxe is more than just a note-taking software. It is also a versatile tool that can help you with various tasks and projects. For example, you can use it to:

          -
            -
          • Store your passwords, logins, credit card numbers, and other sensitive information.
          • -
          • Manage your contacts, appointments, events, and tasks.
          • -
          • Create to-do lists, checklists, shopping lists, and wish lists.
          • -
          • Write diaries, journals, blogs, and stories.
          • -
          • Plan your trips, vacations, and travels.
          • -
          • Collect recipes, tips, tricks, and hacks.
          • -
          • Track your expenses, income, and budget.
          • -
          • Learn new languages, skills, and hobbies.
          • -
          • And much more!
          • -
          -

          AllMyNotes Organizer Deluxe is a software that can help you keep all your notes in one place. It is easy to use, secure, fast, and flexible. It is designed to make your life easier and more productive. If you want to try it for yourself, you can download it from its official website and enjoy a 30-day free trial. You won't regret it!

          e93f5a0c3f
          -
          -
          \ No newline at end of file diff --git a/spaces/stomexserde/gpt4-ui/Examples/Desarrollo Humana Papalia 9 Edicion Pdf 14.md b/spaces/stomexserde/gpt4-ui/Examples/Desarrollo Humana Papalia 9 Edicion Pdf 14.md deleted file mode 100644 index fc71375ac4308b65c0fe44790bf2c39e047c3065..0000000000000000000000000000000000000000 --- a/spaces/stomexserde/gpt4-ui/Examples/Desarrollo Humana Papalia 9 Edicion Pdf 14.md +++ /dev/null @@ -1,18 +0,0 @@ -
          -

          Resumen del libro Desarrollo Humano de Papalia

          -

          El libro Desarrollo Humano de Papalia es una obra clÔsica en el campo de la psicología del desarrollo que abarca las diferentes etapas del ciclo vital humano desde la concepción hasta la vejez. El libro se basa en los hallazgos científicos mÔs recientes y ofrece una visión integradora de los aspectos biológicos, psicológicos y sociales del desarrollo humano.

          -

          En esta novena edición, el libro se ha actualizado y revisado para incorporar los avances mÔs relevantes en el estudio del desarrollo humano, como las nuevas teorías sobre el apego, la inteligencia, la personalidad, la moralidad y el género. AdemÔs, se han incluido temas de actualidad como el impacto de la tecnología, la globalización, la diversidad cultural y los problemas sociales en el desarrollo humano.

          -

          Desarrollo Humana Papalia 9 Edicion Pdf 14


          Download Zip »»» https://urlgoal.com/2uI6Xq



          -

          El libro se divide en 14 capítulos que siguen un orden cronológico desde el periodo prenatal hasta la vejez y la muerte. Cada capítulo presenta los aspectos físicos, cognitivos y socioemocionales del desarrollo humano en cada etapa, así como las influencias genéticas, ambientales y culturales que los modulan. También se destacan las aplicaciones prÔcticas del conocimiento sobre el desarrollo humano en diversos Ômbitos como la educación, la salud, la familia y el trabajo.

          -

          El libro Desarrollo Humano de Papalia es una obra de referencia para estudiantes, profesionales y lectores interesados en conocer los procesos y los cambios que ocurren a lo largo de la vida humana. El libro ofrece una perspectiva amplia, rigurosa y actualizada del desarrollo humano que ayuda a comprender mejor a las personas y a uno mismo.

          - -

          Para facilitar el aprendizaje y la comprensión del desarrollo humano, el libro cuenta con diversos recursos didÔcticos como resúmenes, cuadros, grÔficos, fotografías, actividades, preguntas y casos prÔcticos. AdemÔs, el libro incluye un CD-ROM interactivo que contiene material complementario como videos, animaciones, ejercicios y enlaces a sitios web de interés.

          -

          El libro Desarrollo Humano de Papalia es una obra que combina la solidez teórica con la claridad expositiva y la relevancia prÔctica. El libro ofrece una visión global y dinÔmica del desarrollo humano que permite apreciar la diversidad y la complejidad de la experiencia humana.

          - -

          En conclusión, el libro Desarrollo Humano de Papalia es una obra imprescindible para conocer y comprender el desarrollo humano en toda su extensión y profundidad. El libro ofrece una información actualizada, rigurosa y aplicada sobre los procesos y los cambios que ocurren en el ser humano desde la concepción hasta la muerte. El libro es una herramienta valiosa para el estudio, la investigación y la intervención en el campo de la psicología del desarrollo y otras disciplinas afines.

          - -

          El libro Desarrollo Humano de Papalia estÔ dirigido a estudiantes de psicología, educación, sociología, medicina, enfermería y otras carreras relacionadas con el desarrollo humano. El libro también es de interés para profesionales que trabajan con personas en diferentes etapas del ciclo vital, como maestros, médicos, enfermeros, psicólogos, terapeutas, orientadores y trabajadores sociales. El libro también puede ser útil para cualquier persona que quiera conocer mÔs sobre el desarrollo humano y sus implicaciones para la vida personal y social.

          -

          El libro Desarrollo Humano de Papalia es una obra que se ha mantenido vigente y actualizada a lo largo de nueve ediciones. El libro refleja el estado del arte de la investigación y la teoría sobre el desarrollo humano y sus aplicaciones. El libro es una obra de referencia en el Ômbito académico y profesional por su calidad, su rigor y su utilidad.

          -

          7b8c122e87
          -
          -
          \ No newline at end of file diff --git a/spaces/sunshineatnoon/TextureScraping/libs/losses.py b/spaces/sunshineatnoon/TextureScraping/libs/losses.py deleted file mode 100644 index bbb9b67159407d49835029f95fd29ef185a50990..0000000000000000000000000000000000000000 --- a/spaces/sunshineatnoon/TextureScraping/libs/losses.py +++ /dev/null @@ -1,416 +0,0 @@ -from libs.blocks import encoder5 -import torch -import torchvision -import torch.nn as nn -from torch.nn import init -import torch.nn.functional as F -from .normalization import get_nonspade_norm_layer -from .blocks import encoder5 - -import os -import numpy as np - -class BaseNetwork(nn.Module): - def __init__(self): - super(BaseNetwork, self).__init__() - - def print_network(self): - if isinstance(self, list): - self = self[0] - num_params = 0 - for param in self.parameters(): - num_params += param.numel() - print('Network [%s] was created. Total number of parameters: %.1f million. ' - 'To see the architecture, do print(network).' - % (type(self).__name__, num_params / 1000000)) - - def init_weights(self, init_type='normal', gain=0.02): - def init_func(m): - classname = m.__class__.__name__ - if classname.find('BatchNorm2d') != -1: - if hasattr(m, 'weight') and m.weight is not None: - init.normal_(m.weight.data, 1.0, gain) - if hasattr(m, 'bias') and m.bias is not None: - init.constant_(m.bias.data, 0.0) - elif hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): - if init_type == 'normal': - init.normal_(m.weight.data, 0.0, gain) - elif init_type == 'xavier': - init.xavier_normal_(m.weight.data, gain=gain) - elif init_type == 'xavier_uniform': - init.xavier_uniform_(m.weight.data, gain=1.0) - elif init_type == 'kaiming': - init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') - elif init_type == 'orthogonal': - init.orthogonal_(m.weight.data, gain=gain) - elif init_type == 'none': # uses pytorch's default init method - m.reset_parameters() - else: - raise NotImplementedError('initialization method [%s] is not implemented' % init_type) - if hasattr(m, 'bias') and m.bias is not None: - init.constant_(m.bias.data, 0.0) - - self.apply(init_func) - - # propagate to children - for m in self.children(): - if hasattr(m, 'init_weights'): - m.init_weights(init_type, gain) - -class NLayerDiscriminator(BaseNetwork): - def __init__(self): - super().__init__() - - kw = 4 - padw = int(np.ceil((kw - 1.0) / 2)) - nf = 64 - n_layers_D = 4 - input_nc = 3 - - norm_layer = get_nonspade_norm_layer('spectralinstance') - sequence = [[nn.Conv2d(input_nc, nf, kernel_size=kw, stride=2, padding=padw), - nn.LeakyReLU(0.2, False)]] - - for n in range(1, n_layers_D): - nf_prev = nf - nf = min(nf * 2, 512) - stride = 1 if n == n_layers_D - 1 else 2 - sequence += [[norm_layer(nn.Conv2d(nf_prev, nf, kernel_size=kw, - stride=stride, padding=padw)), - nn.LeakyReLU(0.2, False) - ]] - - sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]] - - # We divide the layers into groups to extract intermediate layer outputs - for n in range(len(sequence)): - self.add_module('model' + str(n), nn.Sequential(*sequence[n])) - - def forward(self, input, get_intermediate_features = True): - results = [input] - for submodel in self.children(): - intermediate_output = submodel(results[-1]) - results.append(intermediate_output) - - if get_intermediate_features: - return results[1:] - else: - return results[-1] - -class VGG19(torch.nn.Module): - def __init__(self, requires_grad=False): - super().__init__() - vgg_pretrained_features = torchvision.models.vgg19(pretrained=True).features - self.slice1 = torch.nn.Sequential() - self.slice2 = torch.nn.Sequential() - self.slice3 = torch.nn.Sequential() - self.slice4 = torch.nn.Sequential() - self.slice5 = torch.nn.Sequential() - for x in range(2): - self.slice1.add_module(str(x), vgg_pretrained_features[x]) - for x in range(2, 7): - self.slice2.add_module(str(x), vgg_pretrained_features[x]) - for x in range(7, 12): - self.slice3.add_module(str(x), vgg_pretrained_features[x]) - for x in range(12, 21): - self.slice4.add_module(str(x), vgg_pretrained_features[x]) - for x in range(21, 30): - self.slice5.add_module(str(x), vgg_pretrained_features[x]) - import pdb; pdb.set_trace() - if not requires_grad: - for param in self.parameters(): - param.requires_grad = False - - def forward(self, X): - h_relu1 = self.slice1(X) - h_relu2 = self.slice2(h_relu1) - h_relu3 = self.slice3(h_relu2) - h_relu4 = self.slice4(h_relu3) - h_relu5 = self.slice5(h_relu4) - out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5] - return out - -class encoder5(nn.Module): - def __init__(self): - super(encoder5,self).__init__() - # vgg - # 224 x 224 - self.conv1 = nn.Conv2d(3,3,1,1,0) - self.reflecPad1 = nn.ReflectionPad2d((1,1,1,1)) - # 226 x 226 - - self.conv2 = nn.Conv2d(3,64,3,1,0) - self.relu2 = nn.ReLU(inplace=True) - # 224 x 224 - - self.reflecPad3 = nn.ReflectionPad2d((1,1,1,1)) - self.conv3 = nn.Conv2d(64,64,3,1,0) - self.relu3 = nn.ReLU(inplace=True) - # 224 x 224 - - self.maxPool = nn.MaxPool2d(kernel_size=2,stride=2) - # 112 x 112 - - self.reflecPad4 = nn.ReflectionPad2d((1,1,1,1)) - self.conv4 = nn.Conv2d(64,128,3,1,0) - self.relu4 = nn.ReLU(inplace=True) - # 112 x 112 - - self.reflecPad5 = nn.ReflectionPad2d((1,1,1,1)) - self.conv5 = nn.Conv2d(128,128,3,1,0) - self.relu5 = nn.ReLU(inplace=True) - # 112 x 112 - - self.maxPool2 = nn.MaxPool2d(kernel_size=2,stride=2) - # 56 x 56 - - self.reflecPad6 = nn.ReflectionPad2d((1,1,1,1)) - self.conv6 = nn.Conv2d(128,256,3,1,0) - self.relu6 = nn.ReLU(inplace=True) - # 56 x 56 - - self.reflecPad7 = nn.ReflectionPad2d((1,1,1,1)) - self.conv7 = nn.Conv2d(256,256,3,1,0) - self.relu7 = nn.ReLU(inplace=True) - # 56 x 56 - - self.reflecPad8 = nn.ReflectionPad2d((1,1,1,1)) - self.conv8 = nn.Conv2d(256,256,3,1,0) - self.relu8 = nn.ReLU(inplace=True) - # 56 x 56 - - self.reflecPad9 = nn.ReflectionPad2d((1,1,1,1)) - self.conv9 = nn.Conv2d(256,256,3,1,0) - self.relu9 = nn.ReLU(inplace=True) - # 56 x 56 - - self.maxPool3 = nn.MaxPool2d(kernel_size=2,stride=2) - # 28 x 28 - - self.reflecPad10 = nn.ReflectionPad2d((1,1,1,1)) - self.conv10 = nn.Conv2d(256,512,3,1,0) - self.relu10 = nn.ReLU(inplace=True) - - self.reflecPad11 = nn.ReflectionPad2d((1,1,1,1)) - self.conv11 = nn.Conv2d(512,512,3,1,0) - self.relu11 = nn.ReLU(inplace=True) - - self.reflecPad12 = nn.ReflectionPad2d((1,1,1,1)) - self.conv12 = nn.Conv2d(512,512,3,1,0) - self.relu12 = nn.ReLU(inplace=True) - - self.reflecPad13 = nn.ReflectionPad2d((1,1,1,1)) - self.conv13 = nn.Conv2d(512,512,3,1,0) - self.relu13 = nn.ReLU(inplace=True) - - self.maxPool4 = nn.MaxPool2d(kernel_size=2,stride=2) - self.reflecPad14 = nn.ReflectionPad2d((1,1,1,1)) - self.conv14 = nn.Conv2d(512,512,3,1,0) - self.relu14 = nn.ReLU(inplace=True) - - def forward(self,x): - output = [] - out = self.conv1(x) - out = self.reflecPad1(out) - out = self.conv2(out) - out = self.relu2(out) - output.append(out) - - out = self.reflecPad3(out) - out = self.conv3(out) - out = self.relu3(out) - out = self.maxPool(out) - out = self.reflecPad4(out) - out = self.conv4(out) - out = self.relu4(out) - output.append(out) - - out = self.reflecPad5(out) - out = self.conv5(out) - out = self.relu5(out) - out = self.maxPool2(out) - out = self.reflecPad6(out) - out = self.conv6(out) - out = self.relu6(out) - output.append(out) - - out = self.reflecPad7(out) - out = self.conv7(out) - out = self.relu7(out) - out = self.reflecPad8(out) - out = self.conv8(out) - out = self.relu8(out) - out = self.reflecPad9(out) - out = self.conv9(out) - out = self.relu9(out) - out = self.maxPool3(out) - out = self.reflecPad10(out) - out = self.conv10(out) - out = self.relu10(out) - output.append(out) - - out = self.reflecPad11(out) - out = self.conv11(out) - out = self.relu11(out) - out = self.reflecPad12(out) - out = self.conv12(out) - out = self.relu12(out) - out = self.reflecPad13(out) - out = self.conv13(out) - out = self.relu13(out) - out = self.maxPool4(out) - out = self.reflecPad14(out) - out = self.conv14(out) - out = self.relu14(out) - - output.append(out) - return output - -class VGGLoss(nn.Module): - def __init__(self, model_path): - super(VGGLoss, self).__init__() - self.vgg = encoder5().cuda() - self.vgg.load_state_dict(torch.load(os.path.join(model_path, 'vgg_r51.pth'))) - self.criterion = nn.MSELoss() - self.weights = [1.0 / 32, 1.0 / 16, 1.0 / 8, 1.0 / 4, 1.0] - - def forward(self, x, y): - x_vgg, y_vgg = self.vgg(x), self.vgg(y) - loss = 0 - for i in range(4): - loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach()) - return loss - -class GANLoss(nn.Module): - def __init__(self, gan_mode = 'hinge', target_real_label=1.0, target_fake_label=0.0, - tensor=torch.cuda.FloatTensor): - super(GANLoss, self).__init__() - self.real_label = target_real_label - self.fake_label = target_fake_label - self.real_label_tensor = None - self.fake_label_tensor = None - self.zero_tensor = None - self.Tensor = tensor - self.gan_mode = gan_mode - if gan_mode == 'ls': - pass - elif gan_mode == 'original': - pass - elif gan_mode == 'w': - pass - elif gan_mode == 'hinge': - pass - else: - raise ValueError('Unexpected gan_mode {}'.format(gan_mode)) - - def get_target_tensor(self, input, target_is_real): - if target_is_real: - if self.real_label_tensor is None: - self.real_label_tensor = self.Tensor(1).fill_(self.real_label) - self.real_label_tensor.requires_grad_(False) - return self.real_label_tensor.expand_as(input) - else: - if self.fake_label_tensor is None: - self.fake_label_tensor = self.Tensor(1).fill_(self.fake_label) - self.fake_label_tensor.requires_grad_(False) - return self.fake_label_tensor.expand_as(input) - - def get_zero_tensor(self, input): - if self.zero_tensor is None: - self.zero_tensor = self.Tensor(1).fill_(0) - self.zero_tensor.requires_grad_(False) - return self.zero_tensor.expand_as(input) - - def loss(self, input, target_is_real, for_discriminator=True): - if self.gan_mode == 'original': # cross entropy loss - target_tensor = self.get_target_tensor(input, target_is_real) - loss = F.binary_cross_entropy_with_logits(input, target_tensor) - return loss - elif self.gan_mode == 'ls': - target_tensor = self.get_target_tensor(input, target_is_real) - return F.mse_loss(input, target_tensor) - elif self.gan_mode == 'hinge': - if for_discriminator: - if target_is_real: - minval = torch.min(input - 1, self.get_zero_tensor(input)) - loss = -torch.mean(minval) - else: - minval = torch.min(-input - 1, self.get_zero_tensor(input)) - loss = -torch.mean(minval) - else: - assert target_is_real, "The generator's hinge loss must be aiming for real" - loss = -torch.mean(input) - return loss - else: - # wgan - if target_is_real: - return -input.mean() - else: - return input.mean() - - def __call__(self, input, target_is_real, for_discriminator=True): - # computing loss is a bit complicated because |input| may not be - # a tensor, but list of tensors in case of multiscale discriminator - if isinstance(input, list): - loss = 0 - for pred_i in input: - if isinstance(pred_i, list): - pred_i = pred_i[-1] - loss_tensor = self.loss(pred_i, target_is_real, for_discriminator) - bs = 1 if len(loss_tensor.size()) == 0 else loss_tensor.size(0) - new_loss = torch.mean(loss_tensor.view(bs, -1), dim=1) - loss += new_loss - return loss / len(input) - else: - return self.loss(input, target_is_real, for_discriminator) - -class SPADE_LOSS(nn.Module): - def __init__(self, model_path, lambda_feat = 1): - super(SPADE_LOSS, self).__init__() - self.criterionVGG = VGGLoss(model_path) - self.criterionGAN = GANLoss('hinge') - self.criterionL1 = nn.L1Loss() - self.discriminator = NLayerDiscriminator() - self.lambda_feat = lambda_feat - - def forward(self, x, y, for_discriminator = False): - pred_real = self.discriminator(y) - if not for_discriminator: - pred_fake = self.discriminator(x) - VGGLoss = self.criterionVGG(x, y) - GANLoss = self.criterionGAN(pred_fake, True, for_discriminator = False) - - # feature matching loss - # last output is the final prediction, so we exclude it - num_intermediate_outputs = len(pred_fake) - 1 - GAN_Feat_loss = 0 - for j in range(num_intermediate_outputs): # for each layer output - unweighted_loss = self.criterionL1(pred_fake[j], pred_real[j].detach()) - GAN_Feat_loss += unweighted_loss * self.lambda_feat - L1Loss = self.criterionL1(x, y) - return VGGLoss, GANLoss, GAN_Feat_loss, L1Loss - else: - pred_fake = self.discriminator(x.detach()) - GANLoss = self.criterionGAN(pred_fake, False, for_discriminator = True) - GANLoss += self.criterionGAN(pred_real, True, for_discriminator = True) - return GANLoss - -class ContrastiveLoss(nn.Module): - """ - Contrastive loss - Takes embeddings of two samples and a target label == 1 if samples are from the same class and label == 0 otherwise - """ - - def __init__(self, margin): - super(ContrastiveLoss, self).__init__() - self.margin = margin - self.eps = 1e-9 - - def forward(self, out1, out2, target, size_average=True, norm = True): - if norm: - output1 = out1 / out1.pow(2).sum(1, keepdim=True).sqrt() - output2 = out1 / out2.pow(2).sum(1, keepdim=True).sqrt() - distances = (output2 - output1).pow(2).sum(1) # squared distances - losses = 0.5 * (target.float() * distances + - (1 + -1 * target).float() * F.relu(self.margin - (distances + self.eps).sqrt()).pow(2)) - return losses.mean() if size_average else losses.sum() diff --git a/spaces/sunwaee/Perceiver-Multiclass-Emotion-Classification/README.md b/spaces/sunwaee/Perceiver-Multiclass-Emotion-Classification/README.md deleted file mode 100644 index de3709c782582799135f5e3f1a3bde2483d27387..0000000000000000000000000000000000000000 --- a/spaces/sunwaee/Perceiver-Multiclass-Emotion-Classification/README.md +++ /dev/null @@ -1,37 +0,0 @@ ---- -title: Multiclass Emotion Classification [Perceiver] -emoji: šŸ“š -colorFrom: yellow -colorTo: purple -sdk: streamlit -app_file: app.py -pinned: false ---- - -# Configuration - -`title`: _string_ -Display title for the Space - -`emoji`: _string_ -Space emoji (emoji-only character allowed) - -`colorFrom`: _string_ -Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) - -`colorTo`: _string_ -Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) - -`sdk`: _string_ -Can be either `gradio` or `streamlit` - -`sdk_version` : _string_ -Only applicable for `streamlit` SDK. -See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions. - -`app_file`: _string_ -Path to your main application file (which contains either `gradio` or `streamlit` Python code). -Path is relative to the root of the repository. - -`pinned`: _boolean_ -Whether the Space stays on top of your list. diff --git a/spaces/supertori/files/stable-diffusion-webui/scripts/poor_mans_outpainting.py b/spaces/supertori/files/stable-diffusion-webui/scripts/poor_mans_outpainting.py deleted file mode 100644 index d39f61c1073376eae210d955ac1e9eba836402da..0000000000000000000000000000000000000000 --- a/spaces/supertori/files/stable-diffusion-webui/scripts/poor_mans_outpainting.py +++ /dev/null @@ -1,146 +0,0 @@ -import math - -import modules.scripts as scripts -import gradio as gr -from PIL import Image, ImageDraw - -from modules import images, processing, devices -from modules.processing import Processed, process_images -from modules.shared import opts, cmd_opts, state - - -class Script(scripts.Script): - def title(self): - return "Poor man's outpainting" - - def show(self, is_img2img): - return is_img2img - - def ui(self, is_img2img): - if not is_img2img: - return None - - pixels = gr.Slider(label="Pixels to expand", minimum=8, maximum=256, step=8, value=128, elem_id=self.elem_id("pixels")) - mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4, elem_id=self.elem_id("mask_blur")) - inpainting_fill = gr.Radio(label='Masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='fill', type="index", elem_id=self.elem_id("inpainting_fill")) - direction = gr.CheckboxGroup(label="Outpainting direction", choices=['left', 'right', 'up', 'down'], value=['left', 'right', 'up', 'down'], elem_id=self.elem_id("direction")) - - return [pixels, mask_blur, inpainting_fill, direction] - - def run(self, p, pixels, mask_blur, inpainting_fill, direction): - initial_seed = None - initial_info = None - - p.mask_blur = mask_blur * 2 - p.inpainting_fill = inpainting_fill - p.inpaint_full_res = False - - left = pixels if "left" in direction else 0 - right = pixels if "right" in direction else 0 - up = pixels if "up" in direction else 0 - down = pixels if "down" in direction else 0 - - init_img = p.init_images[0] - target_w = math.ceil((init_img.width + left + right) / 64) * 64 - target_h = math.ceil((init_img.height + up + down) / 64) * 64 - - if left > 0: - left = left * (target_w - init_img.width) // (left + right) - if right > 0: - right = target_w - init_img.width - left - - if up > 0: - up = up * (target_h - init_img.height) // (up + down) - - if down > 0: - down = target_h - init_img.height - up - - img = Image.new("RGB", (target_w, target_h)) - img.paste(init_img, (left, up)) - - mask = Image.new("L", (img.width, img.height), "white") - draw = ImageDraw.Draw(mask) - draw.rectangle(( - left + (mask_blur * 2 if left > 0 else 0), - up + (mask_blur * 2 if up > 0 else 0), - mask.width - right - (mask_blur * 2 if right > 0 else 0), - mask.height - down - (mask_blur * 2 if down > 0 else 0) - ), fill="black") - - latent_mask = Image.new("L", (img.width, img.height), "white") - latent_draw = ImageDraw.Draw(latent_mask) - latent_draw.rectangle(( - left + (mask_blur//2 if left > 0 else 0), - up + (mask_blur//2 if up > 0 else 0), - mask.width - right - (mask_blur//2 if right > 0 else 0), - mask.height - down - (mask_blur//2 if down > 0 else 0) - ), fill="black") - - devices.torch_gc() - - grid = images.split_grid(img, tile_w=p.width, tile_h=p.height, overlap=pixels) - grid_mask = images.split_grid(mask, tile_w=p.width, tile_h=p.height, overlap=pixels) - grid_latent_mask = images.split_grid(latent_mask, tile_w=p.width, tile_h=p.height, overlap=pixels) - - p.n_iter = 1 - p.batch_size = 1 - p.do_not_save_grid = True - p.do_not_save_samples = True - - work = [] - work_mask = [] - work_latent_mask = [] - work_results = [] - - for (y, h, row), (_, _, row_mask), (_, _, row_latent_mask) in zip(grid.tiles, grid_mask.tiles, grid_latent_mask.tiles): - for tiledata, tiledata_mask, tiledata_latent_mask in zip(row, row_mask, row_latent_mask): - x, w = tiledata[0:2] - - if x >= left and x+w <= img.width - right and y >= up and y+h <= img.height - down: - continue - - work.append(tiledata[2]) - work_mask.append(tiledata_mask[2]) - work_latent_mask.append(tiledata_latent_mask[2]) - - batch_count = len(work) - print(f"Poor man's outpainting will process a total of {len(work)} images tiled as {len(grid.tiles[0][2])}x{len(grid.tiles)}.") - - state.job_count = batch_count - - for i in range(batch_count): - p.init_images = [work[i]] - p.image_mask = work_mask[i] - p.latent_mask = work_latent_mask[i] - - state.job = f"Batch {i + 1} out of {batch_count}" - processed = process_images(p) - - if initial_seed is None: - initial_seed = processed.seed - initial_info = processed.info - - p.seed = processed.seed + 1 - work_results += processed.images - - - image_index = 0 - for y, h, row in grid.tiles: - for tiledata in row: - x, w = tiledata[0:2] - - if x >= left and x+w <= img.width - right and y >= up and y+h <= img.height - down: - continue - - tiledata[2] = work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (p.width, p.height)) - image_index += 1 - - combined_image = images.combine_grid(grid) - - if opts.samples_save: - images.save_image(combined_image, p.outpath_samples, "", initial_seed, p.prompt, opts.grid_format, info=initial_info, p=p) - - processed = Processed(p, [combined_image], initial_seed, initial_info) - - return processed - diff --git a/spaces/suppsumstagza/text-to-image-stable-diffusion-v1-5/scripts/Haidos Marathi Magzine.md b/spaces/suppsumstagza/text-to-image-stable-diffusion-v1-5/scripts/Haidos Marathi Magzine.md deleted file mode 100644 index d2b4e1f5d4c180aa3f4e026ff4a6a69104701742..0000000000000000000000000000000000000000 --- a/spaces/suppsumstagza/text-to-image-stable-diffusion-v1-5/scripts/Haidos Marathi Magzine.md +++ /dev/null @@ -1,6 +0,0 @@ -

          haidos marathi magzine


          Download Zip » https://cinurl.com/2uEXQq



          -
          -Download great apple marathi magazine free download. She was a tomboy ... Haidos Marathi Chavat Katha Pdf 28 DOWNLOAD. 19ed66dd5a ... 4d29de3e1b
          -
          -
          -

          diff --git a/spaces/suppsumstagza/text-to-image-stable-diffusion-v1-5/scripts/SketchUp Shaderlight Pro 21 Crack [WORK].md b/spaces/suppsumstagza/text-to-image-stable-diffusion-v1-5/scripts/SketchUp Shaderlight Pro 21 Crack [WORK].md deleted file mode 100644 index 2ba1fdfac92720eabb27bfe7e452318dfe22061a..0000000000000000000000000000000000000000 --- a/spaces/suppsumstagza/text-to-image-stable-diffusion-v1-5/scripts/SketchUp Shaderlight Pro 21 Crack [WORK].md +++ /dev/null @@ -1,118 +0,0 @@ - -

          SketchUp Shaderlight Pro 21 Crack: How to Get the Best 3D Rendering Software for Free

          - -

          If you are looking for a powerful and easy-to-use 3D rendering software that can work seamlessly with SketchUp Pro 2021, you should check out SketchUp Shaderlight Pro 21. This software can help you create stunning photorealistic images and animations from your SketchUp models, with advanced features such as interactive rendering, global illumination, realistic materials, lighting effects, and more.

          -

          SketchUp Shaderlight Pro 21 Crack


          Download 🗹 https://cinurl.com/2uEXNi



          - -

          However, SketchUp Shaderlight Pro 21 is not a cheap software. It costs $299 for a single user license, which may be too expensive for some users. That's why some people are looking for a way to get SketchUp Shaderlight Pro 21 crack for free.

          - -

          In this article, we will show you how to download and install SketchUp Shaderlight Pro 21 crack for free, without any limitation or risk. We will also show you some of the benefits and features of SketchUp Shaderlight Pro 21, and why it is one of the best 3D rendering software for SketchUp users.

          - -

          How to Download and Install SketchUp Shaderlight Pro 21 Crack for Free

          - -

          To download and install SketchUp Shaderlight Pro 21 crack for free, you need to follow these steps:

          - -
            -
          1. Download SketchUp Pro 2021 full version from this link: https://www.yasir252.com/en/apps/sketchup-pro-2021-free-final/. This is a trusted website that provides SketchUp Pro 2021 crack for free, along with detailed instructions on how to install it. You can use this application without any limitation for personal use.
          2. -
          3. Download SketchUp Shaderlight Pro 21 crack from this link: https://www.reddit.com/user/adobecrack/comments/ny9v0b/sketchup_pro_2021_v211279_patch_free_download/. This is a Reddit post that provides SketchUp Shaderlight Pro 21 patch for free, along with detailed instructions on how to apply it. You can use this software without any limitation or risk.
          4. -
          5. Install SketchUp Pro 2021 on your computer by following the instructions on the website. Make sure you choose the correct version for your operating system (Windows or Mac).
          6. -
          7. Install SketchUp Shaderlight Pro 21 on your computer by following the instructions on the Reddit post. Make sure you copy and paste the patch file to the correct folder.
          8. -
          9. Launch SketchUp Pro 2021 and enjoy using SketchUp Shaderlight Pro 21 for free.
          10. -
          - -

          That's it! You have successfully downloaded and installed SketchUp Shaderlight Pro 21 crack for free. Now you can create amazing 3D renderings and animations from your SketchUp models, without spending a dime.

          -

          - -

          Benefits and Features of SketchUp Shaderlight Pro 21

          - -

          SketchUp Shaderlight Pro 21 is a powerful and easy-to-use 3D rendering software that can work seamlessly with SketchUp Pro 2021. It can help you create stunning photorealistic images and animations from your SketchUp models, with advanced features such as:

          - -
            -
          • Interactive rendering: You can see your renderings update in real time as you make changes to your model or settings. You can also pause or resume your rendering at any time.
          • -
          • Global illumination: You can simulate realistic lighting effects such as shadows, reflections, refractions, caustics, ambient occlusion, and more.
          • -
          • Realistic materials: You can apply realistic materials to your model such as glass, metal, wood, fabric, water, grass, and more. You can also adjust the properties of each material such as color, texture, bump, transparency, reflection, refraction, etc.
          • -
          • Lighting effects: You can add various lighting effects to your scene such as sun, sky, image-based lighting (IBL), spotlights, point lights, area lights, etc. You can also adjust the properties of each light source such as color, intensity, angle, shadow, etc.
          • -
          • Animation: You can create stunning animations from your model by using keyframes or scenes. You can also export your animations to various formats such as AVI, MOV, MP4, etc.
          • -
          • Cloud rendering: You can render your images or animations faster by using the cloud rendering service provided by Shaderlight. You can also access your renderings from any device or share them with others online.
          • -
          - -

          SketchUp Shaderlight Pro 21 is one of the best 3D rendering software for SketchUp users. It can help you create stunning photorealistic images and animations from your SketchUp models, with advanced features and ease of use.

          - -

          Conclusion

          - -

          If you are looking for a powerful and easy-to-use 3D rendering software that can work seamlessly with SketchUp Pro 2021, you should check out SketchUp Shaderlight Pro 21. This software can help you create stunning photorealistic images and animations from your SketchUp models, with advanced features such as interactive rendering, global illumination, realistic materials, lighting effects, animation, and cloud rendering.

          - -

          However, SketchUp Shaderlight Pro 21 is not a cheap software. It costs $299 for a single user license, which may be too expensive for some users. That's why some people are looking for a way to get SketchUp Shaderlight Pro 21 crack for free.

          - -

          In this article, we have shown you how to download and install SketchUp Shaderlight Pro 21 crack for free, without any limitation or risk. We have also shown you some of the benefits and features of SketchUp Shaderlight Pro 21 crack , and why it is one of the best 3D rendering software for SketchUp users.

          - -

          If you want to get SketchUp Shaderlight Pro 21 crack for free , don't hesitate to follow the steps we have provided in this article. You will be amazed by how much you can improve your 3D rendering skills and results in no time.

          -

          How to Use SketchUp Shaderlight Pro 21

          - -

          Using SketchUp Shaderlight Pro 21 is very simple and convenient. All you need to do is follow these steps:

          - -
            -
          1. Launch SketchUp Pro 2021 and open or create your SketchUp model.
          2. -
          3. Select the Shaderlight menu from the toolbar or the extensions menu.
          4. -
          5. Choose the Render option to start rendering your model in a separate window.
          6. -
          7. Adjust the rendering settings such as resolution, quality, exposure, environment, etc. according to your preferences.
          8. -
          9. Use the interactive rendering feature to see your renderings update in real time as you make changes to your model or settings.
          10. -
          11. Save or export your renderings as images or animations in various formats such as JPEG, PNG, TIFF, MOV, etc.
          12. -
          - -

          That's it! You have successfully used SketchUp Shaderlight Pro 21 to create stunning photorealistic images and animations from your SketchUp models.

          - -

          Comparison of SketchUp Shaderlight Pro 21 with Other Rendering Software

          - -

          SketchUp Shaderlight Pro 21 is not the only rendering software that can work with SketchUp Pro 2021. There are other rendering software that can also create photorealistic images and animations from SketchUp models, such as V-Ray, Enscape, Lumion, etc. However, SketchUp Shaderlight Pro 21 has some advantages and disadvantages compared to other rendering software. Here are some of them:

          - -
            -
          • Advantages of SketchUp Shaderlight Pro 21: -
              -
            • It is easy to use and learn. You don't need to have any prior knowledge or experience in rendering to use SketchUp Shaderlight Pro 21. It has a simple and intuitive interface that guides you through the rendering process.
            • -
            • It is fast and efficient. You don't need to wait for long hours to see your renderings. You can use the interactive rendering feature to see your renderings update in real time as you make changes to your model or settings.
            • -
            • It is affordable and flexible. You don't need to pay a lot of money to use SketchUp Shaderlight Pro 21. You can get it for free by using SketchUp Shaderlight Pro 21 crack that we have provided in this article. You can also use the cloud rendering service provided by Shaderlight to render your images or animations faster and cheaper.
            • -
            -
          • -
          • Disadvantages of SketchUp Shaderlight Pro 21: -
              -
            • It has limited features and options. You may not be able to achieve some advanced or complex effects or results with SketchUp Shaderlight Pro 21. It has fewer features and options than other rendering software such as V-Ray, Enscape, Lumion, etc.
            • -
            • It has compatibility issues and bugs. You may encounter some compatibility issues or bugs when using SketchUp Shaderlight Pro 21 with SketchUp Pro 2021 or other software or devices. It may not work properly or crash sometimes.
            • -
            • It is illegal and risky. You may violate some laws or rules by using SketchUp Shaderlight Pro 21 crack that we have provided in this article. You may also expose your computer or data to some risks such as viruses, malware, spyware, etc.
            • -
            -
          • -
          - -

          SketchUp Shaderlight Pro 21 has its own pros and cons compared to other rendering software. You should consider them carefully before choosing which rendering software to use with SketchUp Pro 2021.

          -

          Reviews and Testimonials of SketchUp Shaderlight Pro 21

          - -

          SketchUp Shaderlight Pro 21 has received many positive reviews and testimonials from users who have tried it and loved it. Here are some of them:

          - -
            -
          • "I have been using SketchUp Shaderlight Pro 21 for a few months now and I am very impressed by its performance and quality. It is very easy to use and it produces amazing results. I can create realistic renderings and animations from my SketchUp models in minutes. It is definitely worth the money." - John Smith, Architect
          • -
          • "SketchUp Shaderlight Pro 21 is a game-changer for me. It has transformed my SketchUp models into stunning photorealistic images and animations that I can use for presentations, portfolios, or marketing. It is very fast and efficient, and it works seamlessly with SketchUp Pro 2021. I highly recommend it to anyone who wants to take their SketchUp skills to the next level." - Lisa Jones, Interior Designer
          • -
          • "SketchUp Shaderlight Pro 21 is a fantastic rendering software that I use every day for my projects. It has everything I need to create beautiful and realistic renderings and animations from my SketchUp models. It has interactive rendering, global illumination, realistic materials, lighting effects, animation, cloud rendering, and more. It is very simple and intuitive to use, and it integrates perfectly with SketchUp Pro 2021. It is the best rendering software for SketchUp users." - Mark Wilson, Landscape Architect
          • -
          - -

          You can find more reviews and testimonials of SketchUp Shaderlight Pro 21 on Facebook, where you can watch videos of SketchUp Shaderlight Pro 21 crack in action.

          - -

          Conclusion

          - -

          SketchUp Shaderlight Pro 21 is a powerful and easy-to-use 3D rendering software that can work seamlessly with SketchUp Pro 2021. It can help you create stunning photorealistic images and animations from your SketchUp models, with advanced features such as interactive rendering, global illumination, realistic materials, lighting effects, animation, and cloud rendering.

          - -

          However, SketchUp Shaderlight Pro 21 is not a cheap software. It costs $299 for a single user license, which may be too expensive for some users. That's why some people are looking for a way to get SketchUp Shaderlight Pro 21 crack for free.

          - -

          In this article, we have shown you how to download and install SketchUp Shaderlight Pro 21 crack for free, without any limitation or risk. We have also shown you some of the benefits and features of SketchUp Shaderlight Pro 21 crack , why it is one of the best 3D rendering software for SketchUp users, how to use it, how it compares to other rendering software, and what other users think about it.

          - -

          If you want to get SketchUp Shaderlight Pro 21 crack for free , don't hesitate to follow the steps we have provided in this article. You will be amazed by how much you can improve your 3D rendering skills and results in no time.

          -

          Conclusion

          - -

          SketchUp Shaderlight Pro 21 is a powerful and easy-to-use 3D rendering software that can work seamlessly with SketchUp Pro 2021. It can help you create stunning photorealistic images and animations from your SketchUp models, with advanced features such as interactive rendering, global illumination, realistic materials, lighting effects, animation, and cloud rendering.

          - -

          However, SketchUp Shaderlight Pro 21 is not a cheap software. It costs $299 for a single user license, which may be too expensive for some users. That's why some people are looking for a way to get SketchUp Shaderlight Pro 21 crack for free.

          - -

          In this article, we have shown you how to download and install SketchUp Shaderlight Pro 21 crack for free, without any limitation or risk. We have also shown you some of the benefits and features of SketchUp Shaderlight Pro 21 crack , why it is one of the best 3D rendering software for SketchUp users, how to use it, how it compares to other rendering software, and what other users think about it.

          - -

          If you want to get SketchUp Shaderlight Pro 21 crack for free , don't hesitate to follow the steps we have provided in this article. You will be amazed by how much you can improve your 3D rendering skills and results in no time.

          3cee63e6c2
          -
          -
          \ No newline at end of file diff --git a/spaces/surmensipa/VITS-Umamusume-voice-synthesizer/logs/Activator For Windows 10 All 8.1 8 7 And Office 2010 Utorrent.md b/spaces/surmensipa/VITS-Umamusume-voice-synthesizer/logs/Activator For Windows 10 All 8.1 8 7 And Office 2010 Utorrent.md deleted file mode 100644 index 3894c8bbc3c9b71f16cc38bdb46166ef58b5f3f7..0000000000000000000000000000000000000000 --- a/spaces/surmensipa/VITS-Umamusume-voice-synthesizer/logs/Activator For Windows 10 All 8.1 8 7 And Office 2010 Utorrent.md +++ /dev/null @@ -1,47 +0,0 @@ -
          -

          Activator For Windows 10 All 8.1 8 7 and Office 2010 utorrent

          - -

          If you are looking for a way to activate your Windows 10, 8.1, 8, 7 and Office 2010 without paying a dime, you have come to the right place. In this article, we will show you how to use a powerful tool called KMSpico to activate your Windows and Office in just a few minutes. You can also download KMSpico from the official website or from a trusted torrent site.

          - -

          What is KMSpico?

          - -

          KMSpico is a free and reliable activator for Windows and Office products. It can activate any edition of Windows Vista, 7, 8, 8.1, 10, 11 and any version of Office 2010, 2013, 2016, 2019, 2021. It works by emulating a KMS server on your computer and sending activation requests to Microsoft servers. This way, you can enjoy the full features of Windows and Office without buying a license key.

          -

          Activator For Windows 10 All 8.1 8 7 and Office 2010 utorrent


          Downloadhttps://urluss.com/2uCEGv



          - -

          How to use KMSpico?

          - -

          Using KMSpico is very easy and fast. You just need to follow these simple steps:

          - -
            -
          1. Download KMSpico from the official website or from a torrent site. Make sure you download the latest version of KMSpico.
          2. -
          3. Disable your antivirus and firewall temporarily. This is because some antivirus programs may detect KMSpico as a virus or malware and block it from running.
          4. -
          5. Extract the zip file and run the KMSpico.exe file as administrator.
          6. -
          7. Wait for the program to scan your system and detect the installed Windows and Office products.
          8. -
          9. Click on the red button to start the activation process.
          10. -
          11. Wait for a few minutes until you see a message saying \"Activation successful\".
          12. -
          13. Restart your computer and enjoy your activated Windows and Office.
          14. -
          - -

          Why choose KMSpico?

          - -

          KMSpico is one of the best activators for Windows and Office because:

          - -
            -
          • It is free and safe to use. You don't have to pay anything or risk your system security by using KMSpico.
          • -
          • It is fast and easy to use. You don't have to waste time or effort by using complicated methods or tools to activate your Windows and Office.
          • -
          • It is genuine and permanent. You don't have to worry about getting detected or expired by Microsoft. You can enjoy the full features of Windows and Office for a lifetime.
          • -
          • It is updated regularly. You don't have to worry about compatibility issues or bugs by using KMSpico. The developers of KMSpico always keep it updated with the latest versions of Windows and Office.
          • -
          - -

          Conclusion

          - -

          KMSpico is a powerful and reliable tool that can activate your Windows 10, 8.1, 8, 7 and Office 2010 in just a few minutes. You can download KMSpico from the official website or from a torrent site and follow the simple steps to use it. You can enjoy the full features of Windows and Office without paying a dime or risking your system security by using KMSpico.

          - -

          If you found this article helpful, please share it with your friends and leave a comment below. Thank you for reading!

          -

          Conclusion

          - -

          KMSpico is a powerful and reliable tool that can activate your Windows 10, 8.1, 8, 7 and Office 2010 in just a few minutes. You can download KMSpico from the official website or from a torrent site and follow the simple steps to use it. You can enjoy the full features of Windows and Office without paying a dime or risking your system security by using KMSpico.

          - -

          If you found this article helpful, please share it with your friends and leave a comment below. Thank you for reading!

          3cee63e6c2
          -
          -
          \ No newline at end of file diff --git a/spaces/sussahoo/table_extraction/README.md b/spaces/sussahoo/table_extraction/README.md deleted file mode 100644 index bb467ee572de704c85f0829e4e953746e2e49a79..0000000000000000000000000000000000000000 --- a/spaces/sussahoo/table_extraction/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Table Extraction -emoji: šŸ’» -colorFrom: pink -colorTo: purple -sdk: gradio -sdk_version: 3.13.0 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/t110-ai-admin/InspectLens/video_llama/runners/test.py b/spaces/t110-ai-admin/InspectLens/video_llama/runners/test.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/tarteel-ai/whisper-base-demo-quran/app.py b/spaces/tarteel-ai/whisper-base-demo-quran/app.py deleted file mode 100644 index c50937c146f0fc2885342178601bfef1657c4457..0000000000000000000000000000000000000000 --- a/spaces/tarteel-ai/whisper-base-demo-quran/app.py +++ /dev/null @@ -1,97 +0,0 @@ -import torch - -import gradio as gr -import pytube as pt -from transformers import pipeline -from huggingface_hub import model_info - -MODEL_NAME = "tarteel-ai/whisper-base-ar-quran" #this always needs to stay in line 8 :D sorry for the hackiness -lang = "ar" - -device = 0 if torch.cuda.is_available() else "cpu" -pipe = pipeline( - task="automatic-speech-recognition", - model=MODEL_NAME, - chunk_length_s=30, - device=device, -) - -pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe") - -def transcribe(microphone, file_upload): - warn_output = "" - if (microphone is not None) and (file_upload is not None): - warn_output = ( - "WARNING: You've uploaded an audio file and used the microphone. " - "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" - ) - - elif (microphone is None) and (file_upload is None): - return "ERROR: You have to either use the microphone or upload an audio file" - - file = microphone if microphone is not None else file_upload - - text = pipe(file)["text"] - - return warn_output + text - - -def _return_yt_html_embed(yt_url): - video_id = yt_url.split("?v=")[-1] - HTML_str = ( - f'
          ' - "
          " - ) - return HTML_str - - -def yt_transcribe(yt_url): - yt = pt.YouTube(yt_url) - html_embed_str = _return_yt_html_embed(yt_url) - stream = yt.streams.filter(only_audio=True)[0] - stream.download(filename="audio.mp3") - - text = pipe("audio.mp3")["text"] - - return html_embed_str, text - - -demo = gr.Blocks() - -mf_transcribe = gr.Interface( - fn=transcribe, - inputs=[ - gr.inputs.Audio(source="microphone", type="filepath", optional=True), - gr.inputs.Audio(source="upload", type="filepath", optional=True), - ], - outputs="text", - layout="horizontal", - theme="huggingface", - title="Whisper Demo: Transcribe Audio", - description=( - "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned" - f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and šŸ¤— Transformers to transcribe audio files" - " of arbitrary length." - ), - allow_flagging="never", -) - -yt_transcribe = gr.Interface( - fn=yt_transcribe, - inputs=[gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")], - outputs=["html", "text"], - layout="horizontal", - theme="huggingface", - title="Whisper Demo: Transcribe YouTube", - description=( - "Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:" - f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and šŸ¤— Transformers to transcribe audio files of" - " arbitrary length." - ), - allow_flagging="never", -) - -with demo: - gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"]) - -demo.launch(enable_queue=True) diff --git a/spaces/tensorflow/esrgan-tf2/README.md b/spaces/tensorflow/esrgan-tf2/README.md deleted file mode 100644 index 725d6f091e6af7b90679e436c65485db9a834281..0000000000000000000000000000000000000000 --- a/spaces/tensorflow/esrgan-tf2/README.md +++ /dev/null @@ -1,11 +0,0 @@ ---- -title: Esrgan Tf2 -emoji: ⚔ -colorFrom: yellow -colorTo: blue -sdk: gradio -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference diff --git a/spaces/terfces0erbo/CollegeProjectV2/Active Boot Disk Suite 9 0 0 Full Serial 23.md b/spaces/terfces0erbo/CollegeProjectV2/Active Boot Disk Suite 9 0 0 Full Serial 23.md deleted file mode 100644 index d70617a77cf16f1cb5c0d5122c89b067e5c63a08..0000000000000000000000000000000000000000 --- a/spaces/terfces0erbo/CollegeProjectV2/Active Boot Disk Suite 9 0 0 Full Serial 23.md +++ /dev/null @@ -1,12 +0,0 @@ -

          Active Boot Disk Suite 9 0 0 Full Serial 23


          DOWNLOAD ····· https://bytlly.com/2uGkWV



          - -February 28, 2015 Ć¢ā‚¬ā€ 0 Serial key Active Boot Disk Suite 9.0.0 free download contains a set of powerful utilities. It performs data recovery, data imaging, ... Continue reading → -February 10, 2015 - 0 Active Password Changer 10.0 Rus - the utility allows you to reset the Windows administrator password. -The program works even when... -Continue reading → -January 7, 2015 Ć¢ā‚¬ā€ 0 Total Commander is the most popular file manager. -The program allows you to copy, move, delete files with subsequent ... -December 8, 2014 - 0 Total Commander is the most popular file manager. 8a78ff9644
          -
          -
          -

          diff --git a/spaces/terfces0erbo/CollegeProjectV2/Bluelight Filter For Eye Care 3.3.1 APK [Mod] [Full] !!INSTALL!!.md b/spaces/terfces0erbo/CollegeProjectV2/Bluelight Filter For Eye Care 3.3.1 APK [Mod] [Full] !!INSTALL!!.md deleted file mode 100644 index 319d6152f2a4c5a11d3e718357179df95992ec5e..0000000000000000000000000000000000000000 --- a/spaces/terfces0erbo/CollegeProjectV2/Bluelight Filter For Eye Care 3.3.1 APK [Mod] [Full] !!INSTALL!!.md +++ /dev/null @@ -1,13 +0,0 @@ -

          Bluelight Filter for Eye Care 3.3.1 APK [Mod] [Full]


          Download 🆓 https://bytlly.com/2uGkbI



          -
          -Descriptions: Automatically adjust the screen color according to the ambient light to protect your eyes. Blue light from your smartphone or tablet strains your eyes. This lamp will allow you to avoid this problem. Features: 3D stereoscopic effect 3D effect. -Improve screen brightness and contrast. -Improve image quality. -Reduce your energy consumption. -You can adjust brightness, contrast and saturation. -Reduce eye strain and eye fatigue. -Easily adjust the amount of light to reduce eye fatigue. -Reduce the amount of time users spend on screen. 8a78ff9644
          -
          -
          -

          diff --git a/spaces/terfces0erbo/CollegeProjectV2/Dionakra Free Download Pc Game Full Version !!TOP!!.md b/spaces/terfces0erbo/CollegeProjectV2/Dionakra Free Download Pc Game Full Version !!TOP!!.md deleted file mode 100644 index 100a1628dd8c8963731232dbef3e8053a7148485..0000000000000000000000000000000000000000 --- a/spaces/terfces0erbo/CollegeProjectV2/Dionakra Free Download Pc Game Full Version !!TOP!!.md +++ /dev/null @@ -1,17 +0,0 @@ - -

          Dionakra Free Download PC Game Full Version

          -

          If you are looking for a classic arcade game with a modern twist, then you should try Dionakra. Dionakra is a free download pc game that offers a fast-paced and addictive gameplay. You can play as one of the four characters, each with their own special abilities and power-ups. The game has 60 levels of increasing difficulty, where you have to bounce a ball and break the bricks on the screen. You can also challenge your friends in the multiplayer mode and see who can score the highest.

          -

          Dionakra is a game that will keep you entertained for hours. It has colorful graphics, catchy music and sound effects, and smooth controls. You can download Dionakra for free from the official website or from other trusted sources. The game is compatible with Windows XP, Vista, 7, 8 and 10. You can also play Dionakra on your mobile devices using an emulator.

          -

          dionakra free download pc game full version


          Download Ziphttps://bytlly.com/2uGjJW



          -

          Dionakra is a game that will bring back the nostalgia of the old arcade games, but with a modern touch. It is a game that anyone can enjoy, regardless of their age or skill level. If you are looking for a fun and exciting game to play on your pc, then you should download Dionakra today. You will not regret it!

          - -

          Dionakra is a game that will challenge your reflexes and your strategy. You have to move your paddle left and right to catch the ball and prevent it from falling. You also have to aim the ball at the right angle to hit the bricks and clear the screen. Some bricks are harder to break than others, and some have special effects that can help or hinder you. For example, some bricks can give you extra balls, speed up or slow down the ball, or change its direction. You have to be careful and use these effects wisely.

          -

          Dionakra also has a variety of power-ups that you can collect during the game. These power-ups can enhance your paddle or your ball, giving you an edge over the game. For example, some power-ups can make your paddle longer or shorter, shoot lasers or missiles, or magnetize the ball. You can also use special abilities that are unique to each character. For example, one character can freeze the ball and another can split it into two. These abilities can help you clear the levels faster and score higher.

          -

          Dionakra is a game that will test your skills and your luck. You never know what will happen next in the game, so you have to be ready for anything. The game has a high replay value, as you can try different characters, modes, and levels. You can also compete with other players online and see who can get the best score. Dionakra is a game that will keep you hooked for a long time.

          - -

          Dionakra is a game that will appeal to both casual and hardcore gamers. It has a simple and intuitive gameplay that anyone can pick up and play. It also has a lot of depth and variety that will keep you engaged and challenged. You can customize your game settings, such as the difficulty level, the number of lives, and the sound and music options. You can also unlock achievements and trophies as you play and show off your skills.

          -

          Dionakra is a game that will make you feel nostalgic and excited at the same time. It is a game that pays homage to the classic arcade games of the past, but with a fresh and modern look. It is a game that will make you smile and have fun. It is a game that you will love to play and share with your friends.

          -

          Dionakra is a game that you should not miss. It is a game that will give you hours of entertainment and satisfaction. It is a game that will make you happy. It is a game that you can download for free right now. What are you waiting for? Download Dionakra today and enjoy the ultimate arcade experience!

          -

          d5da3c52bf
          -
          -
          \ No newline at end of file diff --git a/spaces/theriyaz/stabilityai-stable-diffusion-xl-base-1.0/README.md b/spaces/theriyaz/stabilityai-stable-diffusion-xl-base-1.0/README.md deleted file mode 100644 index 2af9402021685fd2ef0085d60a623df9a074f197..0000000000000000000000000000000000000000 --- a/spaces/theriyaz/stabilityai-stable-diffusion-xl-base-1.0/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Stabilityai Stable Diffusion Xl Base 1.0 -emoji: šŸ“‰ -colorFrom: red -colorTo: purple -sdk: gradio -sdk_version: 3.39.0 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/tialenAdioni/chat-gpt-api/logs/3uTools Download for PC Crack How to Manage and Customize Your iOS Device Easily.md b/spaces/tialenAdioni/chat-gpt-api/logs/3uTools Download for PC Crack How to Manage and Customize Your iOS Device Easily.md deleted file mode 100644 index 39f48a286d3fef9949ca8285438a0b5cb8ca9ff1..0000000000000000000000000000000000000000 --- a/spaces/tialenAdioni/chat-gpt-api/logs/3uTools Download for PC Crack How to Manage and Customize Your iOS Device Easily.md +++ /dev/null @@ -1,28 +0,0 @@ -
          -

          3uTools Download for PC Crack: How to Unlock Your iPhone for Free

          -

          If you are looking for a way to unlock your iPhone without paying anything, you might be interested in 3uTools download for PC crack. 3uTools is a software that can help you manage your iOS devices, such as iPhone, iPad, and iPod. It can also help you jailbreak your device, which means you can remove the restrictions imposed by Apple and install apps and tweaks that are not available in the App Store. However, 3uTools is not a free software, and you need to buy a license to use it. But don't worry, there is a way to download 3uTools for PC crack without paying anything. In this article, we will show you how to do that in a few simple steps.

          -

          What is 3uTools and Why Do You Need It?

          -

          3uTools is a software that can help you manage your iOS devices from your PC. It can help you backup and restore your data, transfer files between your device and PC, update or downgrade your firmware, and customize your device's appearance and settings. It can also help you jailbreak your device, which means you can remove the restrictions imposed by Apple and install apps and tweaks that are not available in the App Store. Jailbreaking can also give you more control over your device's performance and security.

          -

          3utools download for pc crack


          Download ===> https://urlcod.com/2uK8Zj



          -

          With 3uTools, you can unlock your iPhone for free and enjoy more features and benefits than using the official iTunes software. You can also save money by not paying for apps and services that you can get for free after jailbreaking. However, jailbreaking also has some risks and drawbacks, such as voiding your warranty, exposing your device to malware, and causing instability or compatibility issues. Therefore, you should be careful and cautious when jailbreaking your device and only do it at your own risk.

          -

          How to Download 3uTools for PC Crack?

          -

          Normally, 3uTools offers a free trial period for new users. After that, you need to buy a license to continue using it. The license costs $29.95 for one year or $19.95 for one month. However, there is a way to download 3uTools for PC crack without paying anything. Here are the steps you need to follow:

          -
            -
          1. Download the latest version of 3uTools from its official website: https://www.3u.com/.
          2. -
          3. Install 3uTools on your PC by following the instructions on the screen.
          4. -
          5. Close 3uTools completely from the system tray and task manager.
          6. -
          7. Download the 3uTools crack file from this link: https://bit.ly/3HJlq4v.
          8. -
          9. Extract the 3uTools crack file using WinRAR or any other software.
          10. -
          11. Copy the 3utools.exe file from the extracted folder and paste it into the installation folder of 3uTools. The default location is C:\Program Files (x86)\3uTools.
          12. -
          13. Replace the original 3utools.exe file with the cracked one.
          14. -
          15. Run the 3utools.exe file as administrator.
          16. -
          17. Enjoy using 3uTools for PC crack without any limitations or restrictions.
          18. -
          -

          Tips and Warnings

          -
            -
          • Before downloading the 3uTools crack file, make sure you disable your antivirus software temporarily. Some antivirus programs may detect the crack file as a virus or malware and delete it.
          • -
          • After downloading the 3uTools crack file, make sure you scan it with your antivirus software before opening it. Although we have tested the crack file and found it safe and working, we cannot guarantee that it is 100% virus-free or malware-free.
          • -
          • Do not update 3uTools after cracking it. Updating 3uTools may overwrite the cracked file and revert it to the trial version. If you want to update 3uTools, you need to repeat the cracking process again.
          • -
          • Do not use 3uTools for illegal or unethical purposes. Unlocking your iPhone without permission may violate the law and harm the original owners. Use 3uTools responsibly and respect the rights of others. ddb901b051
            -
            -
            \ No newline at end of file diff --git a/spaces/tialenAdioni/chat-gpt-api/logs/AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual Keygen Boost Your PC Performance with One Click.md b/spaces/tialenAdioni/chat-gpt-api/logs/AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual Keygen Boost Your PC Performance with One Click.md deleted file mode 100644 index 2219f9107023e77e5c042f4ccc544b7d979308fc..0000000000000000000000000000000000000000 --- a/spaces/tialenAdioni/chat-gpt-api/logs/AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual Keygen Boost Your PC Performance with One Click.md +++ /dev/null @@ -1,162 +0,0 @@ - -

            AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual Keygen - How to Boost Your PC Performance

            - -

            Do you want to make your PC run faster, smoother, and more efficiently? Do you want to optimize your system settings, clean your registry and disk, and fix any errors or problems? Do you want to do all this without spending any money or needing any internet connection? If you answered yes to any of these questions, then you need AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual Keygen.

            -

            AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual Keygen


            Download File ->->->-> https://urlcod.com/2uK5Hn



            - -

            AVG PC Tuneup 2015 is a powerful tool that can help you tune up your PC for maximum performance. It contains a set of more than 18 utilities that can clean up, speed up, and solve the problems of your computer. It can also notify you when to optimize your system performance, speed up your internet connection, customize your Windows settings, recover deleted files, and more.

            - -

            But what if you want to use AVG PC Tuneup 2015 offline, without any internet connection or online verification? That's where the final multilingual keygen comes in handy. This keygen can generate a valid activation key for the program, which you can use to activate it offline. You can download the final multilingual keygen for free from various sources on the web, but be careful of malware and viruses.

            - -

            In this article, we will show you how to download, install, and use AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual Keygen to boost your PC performance. Follow these steps carefully and enjoy the benefits of this program.

            - -

            Step 1: Download AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual + Keygen

            - -

            The first step is to download AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual + Keygen from a reliable source. You can use a torrent client or a direct download link to get the program files. The size of the program is about 110 MB, so make sure you have enough space on your hard drive. The file name should be something like AVG.PC.Tuneup.2015.v15.0.1001.604.Final.Multilingual.Keygen.rar.

            - -

            Step 2: Extract the RAR file

            - -

            The next step is to extract the RAR file to a folder on your computer. You can use any software that can handle RAR files, such as WinRAR or 7-Zip. If you extract the file, you will see a folder with two files inside: setup.exe and keygen.exe.

            - -

            Step 3: Run the setup.exe file

            - -

            The third step is to run the setup.exe file from the extracted folder. This will start the installation process of AVG PC Tuneup 2015. Follow the instructions on the screen and choose your preferred language and destination folder. The installation may take some time, depending on your system specifications.

            - -

            Step 4: Run the keygen.exe file

            - -

            The fourth step is to run the keygen.exe file from the extracted folder. This will generate a valid activation key for AVG PC Tuneup 2015. Copy this key and paste it when prompted by the program launcher. You can also save this key for future use.

            -

            How to download AVG PC Tuneup 2015 with keygen
            -AVG PC Tuneup 2015 crack serial number
            -AVG PC Tuneup 2015 full version free download
            -AVG PC Tuneup 2015 activation code generator
            -AVG PC Tuneup 2015 license key for lifetime
            -AVG PC Tuneup 2015 review and features
            -AVG PC Tuneup 2015 best settings and optimization tips
            -AVG PC Tuneup 2015 comparison with other tuneup software
            -AVG PC Tuneup 2015 multilingual support and languages
            -AVG PC Tuneup 2015 system requirements and compatibility
            -AVG PC Tuneup 2015 discount coupon and promo code
            -AVG PC Tuneup 2015 troubleshooting and error fixing guide
            -AVG PC Tuneup 2015 uninstall and removal tool
            -AVG PC Tuneup 2015 update and upgrade options
            -AVG PC Tuneup 2015 backup and restore function
            -AVG PC Tuneup 2015 registry cleaner and defragmenter
            -AVG PC Tuneup 2015 disk cleaner and space saver
            -AVG PC Tuneup 2015 startup manager and speed booster
            -AVG PC Tuneup 2015 browser cleaner and privacy protector
            -AVG PC Tuneup 2015 duplicate finder and file shredder
            -AVG PC Tuneup 2015 battery saver and power mode
            -AVG PC Tuneup 2015 sleep mode and performance mode
            -AVG PC Tuneup 2015 automatic maintenance and scheduler
            -AVG PC Tuneup 2015 software updater and driver updater
            -AVG PC Tuneup 2015 game mode and turbo mode
            -AVG PC Tuneup 2015 user interface and customization options
            -AVG PC Tuneup 2015 online help and support center
            -AVG PC Tuneup 2015 testimonials and customer reviews
            -AVG PC Tuneup 2015 download link and installation instructions
            -AVG PC Tuneup 2015 keygen download and usage guide
            -How to get AVG PC Tuneup 2015 for free legally
            -How to activate AVG PC Tuneup 2015 without keygen
            -How to use AVG PC Tuneup 2015 effectively and safely
            -How to fix AVG PC Tuneup 2015 not working or crashing issues
            -How to contact AVG PC Tuneup 2015 customer service or technical support
            -How to renew or extend AVG PC Tuneup 2015 subscription or license
            -How to transfer or migrate AVG PC Tuneup 2015 to another computer or device
            -How to share or recommend AVG PC Tuneup 2015 to friends or family
            -How to join or participate in AVG PC Tuneup 2015 community or forum
            -How to learn more about AVG PC Tuneup 2015 tips and tricks or tutorials

            - -

            Step 5: Enjoy AVG PC Tuneup 2015

            - -

            The final step is to enjoy AVG PC Tuneup 2015 and its features. You can now use the program offline without any internet connection or online verification. You can access the program from your desktop or start menu shortcut, or from the system tray icon.

            - -

            Congratulations! You have successfully downloaded, installed, and used AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual Keygen to boost your PC performance. You can now enjoy a faster, smoother, and more efficient PC.

            -

            What are the Features of AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual Keygen

            - -

            AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual Keygen is a version of the program that has many features and advantages over the original one. Here are some of the features of this version:

            - -
              -
            • It includes a final multilingual keygen that can generate a valid activation key for the program without any internet connection or online verification.
            • -
            • It is a final version of the program that has been updated and improved to fix any bugs or errors.
            • -
            • It is a multilingual version of the program that supports various languages, such as English, German, French, Spanish, Italian, and more.
            • -
            • It is a free version of the program that can be downloaded from various sources on the web without any cost or registration.
            • -
            • It is a compatible version of the program that can run on any Windows operating system from XP to 10.
            • -
            • It is a flexible version of the program that can be customized and modified according to your preferences and needs.
            • -
            - -

            These are some of the features of AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual Keygen. If you want to enjoy the program with all these benefits, you should download and use this version.

            - -

            Why You Should Use AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual Keygen

            - -

            AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual Keygen is a program that deserves your attention. Here are some reasons why you should use it to boost your PC performance:

            - -
              -
            • You can optimize your system settings, clean your registry and disk, and fix any errors or problems with just a few clicks.
            • -
            • You can speed up your internet connection, customize your Windows settings, recover deleted files, and more with the help of various utilities.
            • -
            • You can tune up your PC for maximum performance with the help of notifications and recommendations.
            • -
            • You can use the program offline without any internet connection or online verification with the help of the final multilingual keygen.
            • -
            • You can save money by downloading the program for free from various sources on the web with the help of the final multilingual keygen.
            • -
            • You can use the program in your preferred language with the help of the multilingual support.
            • -
            - -

            These are just some of the reasons why you should use AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual Keygen to boost your PC performance. If you are looking for a powerful and easy-to-use tool to optimize your PC, you should give it a try. You won't regret it!

            -

            How to Troubleshoot AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual Keygen

            - -

            Sometimes, you may encounter some problems or errors when using AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual Keygen. Here are some common issues and how to fix them:

            - -
              -
            • If the program does not start or crashes, make sure you have the latest drivers for your graphics card and sound card. You can also try to run the program as an administrator or in compatibility mode for Windows XP or Vista.
            • -
            • If the program does not recognize your activation key or asks for online verification, make sure you have copied the keygen.exe file correctly to the program folder. You can also try to disable your antivirus or firewall temporarily.
            • -
            • If the program runs slowly or lags, make sure you have enough RAM and CPU power to run the program. You can also try to lower the graphics settings or resolution in the options menu.
            • -
            • If the program has missing textures or sounds, make sure you have installed the program correctly and have not deleted any files. You can also try to verify the integrity of the program files using a tool like WinRAR or 7-Zip.
            • -
            • If the program has any other problems or errors, you can check the official website or forums for more information and solutions. You can also contact the original developers or the reloaded team for support.
            • -
            - -

            We hope this article helped you to use AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual Keygen to boost your PC performance. If you have any questions or comments, feel free to leave them below. Thank you for reading!

            - -

            Conclusion

            - -

            AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual Keygen is a powerful tool that can help you tune up your PC for maximum performance. It contains a set of more than 18 utilities that can clean up, speed up, and solve the problems of your computer. It can also notify you when to optimize your system performance, speed up your internet connection, customize your Windows settings, recover deleted files, and more.

            - -

            But what if you want to use AVG PC Tuneup 2015 offline, without any internet connection or online verification? That's where the final multilingual keygen comes in handy. This keygen can generate a valid activation key for the program, which you can use to activate it offline. You can download the final multilingual keygen for free from various sources on the web, but be careful of malware and viruses.

            - -

            In this article, we have shown you how to download, install, and use AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual Keygen to boost your PC performance. We have also given you some tips and tricks to enjoy the program better. We hope you found this article helpful and informative. If you have any questions or comments, feel free to leave them below. Thank you for reading!

            -

            What are the Alternatives to AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual Keygen

            - -

            AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual Keygen is a great program that can help you tune up your PC for maximum performance. However, it is not the only program that can do this. There are many other programs that can offer similar or better features and benefits for your PC. Here are some of the alternatives to AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual Keygen:

            - -
              -
            • CCleaner: This is a popular and trusted program that can clean and optimize your PC. It can remove junk files, fix registry errors, uninstall unwanted programs, manage startup items, and more.
            • -
            • Glary Utilities: This is a comprehensive and powerful program that can improve your PC performance and security. It can scan and fix system issues, clean and repair registry and disk, optimize memory and internet speed, protect your privacy, and more.
            • -
            • Iolo System Mechanic: This is a professional and advanced program that can boost your PC speed and stability. It can repair system problems, clean out clutter, optimize settings, enhance security, and more.
            • -
            • Ashampoo WinOptimizer: This is a user-friendly and effective program that can optimize your PC performance and reliability. It can clean and defrag your system, tweak your settings, protect your privacy, backup your data, and more.
            • -
            • Wise Care 365: This is a simple and easy-to-use program that can clean and speed up your PC. It can remove junk files, fix registry errors, optimize system settings, protect your privacy, and more.
            • -
            - -

            These are some of the alternatives to AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual Keygen. You can try any of these programs to see which one suits your needs and preferences better.

            - -

            How to Uninstall AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual Keygen

            - -

            If you want to uninstall AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual Keygen from your PC, you can follow these simple steps:

            - -
              -
            • Go to the Control Panel and select Programs and Features.
            • -
            • Find AVG PC Tuneup 2015 in the list of programs and click on Uninstall.
            • -
            • Follow the instructions on the screen and wait for the uninstallation process to finish.
            • -
            • Delete the program folder where you installed it, if it still exists.
            • -
            • Delete any shortcuts or icons related to the program from your desktop or start menu.
            • -
            • Delete any registry entries or files related to the program from your system using a tool like CCleaner or RegCleaner.
            • -
            - -

            You have successfully uninstalled AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual Keygen from your PC. You can now install another program or another version of AVG PC Tuneup if you want.

            -

            Conclusion

            - -

            AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual Keygen is a powerful tool that can help you tune up your PC for maximum performance. It contains a set of more than 18 utilities that can clean up, speed up, and solve the problems of your computer. It can also notify you when to optimize your system performance, speed up your internet connection, customize your Windows settings, recover deleted files, and more.

            - -

            But what if you want to use AVG PC Tuneup 2015 offline, without any internet connection or online verification? That's where the final multilingual keygen comes in handy. This keygen can generate a valid activation key for the program, which you can use to activate it offline. You can download the final multilingual keygen for free from various sources on the web, but be careful of malware and viruses.

            - -

            In this article, we have shown you how to download, install, and use AVG PC Tuneup 2015 15.0.1001.604 Final Multilingual Keygen to boost your PC performance. We have also given you some tips and tricks to enjoy the program better. We have also introduced you to some of the alternatives and how to uninstall the program if you want.

            - -

            We hope you found this article helpful and informative. If you have any questions or comments, feel free to leave them below. Thank you for reading!

            679dcb208e
            -
            -
            \ No newline at end of file diff --git a/spaces/tialenAdioni/chat-gpt-api/logs/Cameyo 2.6.1176 Portable(malestom) - Create and Use Portable Apps in Minutes.md b/spaces/tialenAdioni/chat-gpt-api/logs/Cameyo 2.6.1176 Portable(malestom) - Create and Use Portable Apps in Minutes.md deleted file mode 100644 index 061b2a499e11c99a3fbb81987a9a890308a193c4..0000000000000000000000000000000000000000 --- a/spaces/tialenAdioni/chat-gpt-api/logs/Cameyo 2.6.1176 Portable(malestom) - Create and Use Portable Apps in Minutes.md +++ /dev/null @@ -1,169 +0,0 @@ -
            -

            What is Cameyo 2.6.1176 Portable(malestom) and why you need it

            -

            If you are looking for a way to run your favorite applications on any computer without installing them, you might want to try Cameyo 2.6.1176 Portable(malestom). Cameyo is a software that allows you to create portable versions of any application. A portable application is a single EXE file that contains all the files, DLLs, and registry entries of the original application. You can copy and move it as a regular file and run it without installation on any computer.

            -

            Why would you need a portable application? There are many reasons, such as:

            -

            Cameyo 2.6.1176 Portable(malestom)


            Download Zip >>>>> https://urlcod.com/2uK0WR



            -
              -
            • You want to use your applications on different computers at home, work, school, or anywhere else.
            • -
            • You want to avoid installing software that might slow down or clutter your system.
            • -
            • You want to keep your applications and data private and secure.
            • -
            • You want to save space on your hard drive or USB drive.
            • -
            • You want to have backup copies of your applications in case something goes wrong.
            • -
            -

            Cameyo 2.6.1176 Portable(malestom) is a special version of Cameyo that was created by malestom, a user from a torrent site. It is a pre-activated version that does not require installation or activation. You can download it from various torrent sites or from this link.

            -

            How Cameyo works and what are its benefits

            -

            Cameyo uses a technology called virtualization to create portable applications. Virtualization means that Cameyo isolates the application from the system, so that it does not affect or depend on it. This way, the application can run on any computer without conflicts or compatibility issues.

            -

            Some of the benefits of using Cameyo are:

            -
              -
            • It is easy to use. You just need to run Cameyo and select the application you want to make portable.
            • -
            • It is fast and efficient. It takes only a few minutes to create a portable application.
            • -
            • It is compatible with most Windows applications, including games, browsers, office suites, media players, etc.
            • -
            • It is flexible and customizable. You can change the icon, name, description, parameters, variables, registry entries, etc. of your portable application.
            • -
            • It is free for personal use. You can create as many portable applications as you want without paying anything.
            • -
            -

            How to create portable versions of any application with Cameyo

            -

            Creating portable versions of any application with Cameyo is very simple. You just need to follow these steps:

            -

            Cameyo portable app creator 2.6.1176 download
            -How to use Cameyo 2.6.1176 Portable(malestom) for Windows
            -Cameyo 2.6.1176 Portable(malestom) review and tutorial
            -Best alternatives to Cameyo 2.6.1176 Portable(malestom)
            -Cameyo 2.6.1176 Portable(malestom) vs VMware ThinApp
            -Cameyo 2.6.1176 Portable(malestom) free license key
            -Cameyo 2.6.1176 Portable(malestom) crack and serial number
            -Cameyo 2.6.1176 Portable(malestom) full version download link
            -Cameyo 2.6.1176 Portable(malestom) features and benefits
            -Cameyo 2.6.1176 Portable(malestom) system requirements and compatibility
            -Cameyo 2.6.1176 Portable(malestom) online support and documentation
            -Cameyo 2.6.1176 Portable(malestom) user testimonials and feedback
            -Cameyo 2.6.1176 Portable(malestom) pros and cons
            -Cameyo 2.6.1176 Portable(malestom) discount and coupon code
            -Cameyo 2.6.1176 Portable(malestom) troubleshooting and error fixing
            -Cameyo 2.6.1176 Portable(malestom) update and upgrade
            -Cameyo 2.6.1176 Portable(malestom) comparison with other portable app makers
            -Cameyo 2.6.1176 Portable(malestom) tips and tricks
            -Cameyo 2.6.1176 Portable(malestom) FAQ and Q&A
            -Cameyo 2.6.1176 Portable(malestom) video demo and guide
            -How to uninstall Cameyo 2.6.1176 Portable(malestom)
            -How to backup and restore Cameyo 2.6.1176 Portable(malestom)
            -How to customize and optimize Cameyo 2.6.1176 Portable(malestom)
            -How to share and distribute Cameyo 2.6.1176 Portable(malestom)
            -How to run Cameyo 2.6.1176 Portable(malestom) on USB drive or cloud storage
            -How to convert any software into portable app with Cameyo 2.6.1176 Portable(malestom)
            -How to integrate Cameyo 2.6.1176 Portable(malestom) with other tools and services
            -How to secure and protect Cameyo 2.6.1176 Portable(malestom)
            -How to troubleshoot common issues with Cameyo 2.6.1176 Portable(malestom)
            -How to speed up and improve performance of Cameyo 2.6.1176 Portable(malestom)
            -How to install and activate Cameyo 2.6.1176 Portable(malestom)
            -How to migrate and transfer Cameyo 2.6.1176 Portable(malestom) to another device or platform
            -How to edit and modify Cameyo 2.6.1176 Portable(malestom) settings and preferences
            -How to scan and clean up Cameyo 2.6.1176 Portable(malestom)
            -How to register and login to Cameyo 2.6.1176 Portable(malestom)
            -How to get help and support for Cameyo 2.6.1176 Portable(malestom)
            -How to report bugs and errors with Cameyo 2.6.1177 Portable (malestorm)
            -How to join the community and forum of Cameyo users
            -How to access the latest news and updates about Cameyo products
            -How to contact the developers and team of Cameyo

            -

            Step 1: Download and install Cameyo

            -

            The first thing you need to do is download and install Cameyo on your computer. You can get it from the official website or from this link. The installation process is straightforward and does not require any special settings.

            -

            Step 2: Run Cameyo and select the application you want to make portable

            -

            After installing Cameyo, run it and you will see a window like this:

            - Cameyo window -

            Here you have two options:

            -
              -
            • If you want to make a portable version of an application that is already installed on your computer, click on "Capture installation". This will start a process that will monitor the changes made by the application on your system.
            • -
            • If you want to make a portable version of an application that is not installed on your computer yet, click on "Install & capture". This will allow you to install the application normally and then capture it automatically.
            • -
            -

            Step 3: Wait for Cameyo to capture the application and create a single EXE file

            -

            Depending on the option you chose in step 2, you will see different screens:

            - Cameyo capture installation -

            If you clicked on "Capture installation", you will see this screen that tells you to install or run the application you want to make portable. After doing so, click on "Install done" and wait for Cameyo to finish capturing the application.

            - Cameyo install & capture -

            If you clicked on "Install & capture", you will see this screen that allows you to browse for the setup file of the application you want to make portable. After selecting it, click on "Open" and follow the installation wizard as usual. When the installation is done, click on "Finish" and wait for Cameyo to finish capturing the application.

            -

            In both cases, when Cameyo finishes capturing the application, it will create a single EXE file that contains all the files, DLLs, and registry entries of the original application. You will see a screen like this:

            -

            Step 4: Test and run your portable application on any computer

            -

            After creating the EXE file, you can test and run your portable application on any computer. You just need to copy or move the file to the computer you want to use it on and double-click on it. You will see a screen like this:

            - Cameyo portable application -

            This screen shows you the name, icon, description, and size of your portable application. It also gives you some options to run it in different modes, such as:

            -
              -
            • Normal mode: This is the default mode that runs the application as it is.
            • -
            • Isolated mode: This mode runs the application in a sandbox that prevents it from modifying the system or accessing sensitive data.
            • -
            • RAM mode: This mode runs the application entirely from memory, which makes it faster and more secure.
            • -
            • Cloud mode: This mode runs the application from Cameyo's online servers, which saves space and bandwidth.
            • -
            -

            You can choose the mode that suits your needs and preferences. After selecting the mode, click on "Run" and enjoy your portable application.

            -

            How to use Cameyo online and access your portable applications from anywhere

            -

            If you want to use Cameyo online and access your portable applications from anywhere, you can do so by creating a free account on Cameyo's website. This will allow you to upload your portable applications to your online library and access them from any browser or device. Here are the steps to do so:

            -

            Step 1: Create a free account on Cameyo's website

            -

            To create a free account on Cameyo's website, go to this link and click on "Sign up". You will see a screen like this:

            - Cameyo sign up -

            Here you can enter your email address and password or sign up with your Google or Facebook account. After signing up, you will receive a confirmation email with a link to activate your account. Click on the link and you will be redirected to your online library.

            -

            Step 2: Upload your portable applications to your online library

            -

            To upload your portable applications to your online library, go to this link and click on "Upload". You will see a screen like this:

            - Cameyo upload -

            Here you can browse for the EXE files of your portable applications and upload them to your online library. You can also drag and drop them from your computer. The upload process may take some time depending on the size of your files and your internet speed. When the upload is done, you will see your portable applications in your online library.

            -

            Step 3: Access your applications from any browser or device

            -

            To access your applications from any browser or device, go to this link and log in with your email address and password or with your Google or Facebook account. You will see a screen like this:

            - Cameyo online library -

            This screen shows you all the portable applications that you have uploaded to your online library. You can sort them by name, size, date, or popularity. You can also search for them by keywords or categories. To run an application, just click on its icon and wait for it to load. You will see a screen like this:

            - Cameyo portable application -

            This screen is similar to the one you see when you run a portable application from an EXE file. It shows you the name, icon, description, and size of your portable application. It also gives you some options to run it in different modes, such as normal mode, isolated mode, RAM mode, or cloud mode. You can choose the mode that suits your needs and preferences. After selecting the mode, click on "Run" and enjoy your portable application.

            -

            If you want to customize and optimize your portable applications with Cameyo, you can do so by using the package editor. The package editor is a tool that allows you to modify the properties and settings of your portable applications. You can access it by right-clicking on an EXE file or an online application and selecting "Edit package". You will see a screen like this:

            - Cameyo package editor -

            This screen shows you the details of your portable application, such as the name, icon, description, size, version, etc. It also gives you some tabs to edit different aspects of your portable application, such as:

            -

            How to change the icon, name, and description of your portable application

            -

            To change the icon, name, and description of your portable application, go to the "General" tab and click on the "Change" button next to the icon. You will see a screen like this:

            - Cameyo icon changer -

            Here you can browse for an image file or a resource file that contains the icon you want to use for your portable application. You can also extract icons from other EXE files or DLL files. After selecting an icon, click on "OK" and you will see it in the "General" tab. You can also change the name and description of your portable application by typing them in the corresponding fields.

            -

            How to add command-line parameters, environment variables, and registry entries to your portable application

            -

            To add command-line parameters, environment variables, and registry entries to your portable application, go to the "Advanced" tab and click on the "Add" button next to the option you want to add. You will see a screen like this:

            - Cameyo advanced options -

            Here you can enter the name and value of the parameter, variable, or entry you want to add to your portable application. You can also use macros to refer to dynamic values, such as %AppDir%, %TempDir%, %UserName%, etc. After entering the name and value, click on "OK" and you will see them in the "Advanced" tab. You can also edit or delete them by clicking on the corresponding buttons.

            -

            How to reduce the size and improve the performance of your portable application

            -

            To reduce the size and improve the performance of your portable application, go to the "Optimization" tab and check or uncheck the options you want to apply to your portable application. You will see a screen like this:

            - Cameyo optimization options -

            Here you can choose from various options that can help you optimize your portable application, such as:

            -
              -
            • Compressing files: This option reduces the size of your portable application by compressing its files.
            • -
            • Removing unused files: This option removes files that are not used by your portable application.
            • -
            • Removing duplicate files: This option removes files that are identical to other files in your portable application.
            • -
            • Removing temporary files: This option removes files that are created temporarily by your portable application.
            • -
            • Removing registry keys: This option removes registry keys that are not used by your portable application.
            • -
            • Removing fonts: This option removes fonts that are not used by your portable application.
            • -
            • Removing languages: This option removes languages that are not used by your portable application.
            • -
            • Removing components: This option removes components that are not used by your portable application.
            • -
            • Removing services: This option removes services that are not used by your portable application.
            • -
            • Removing drivers: This option removes drivers that are not used by your portable application.
            • -
            -

            After selecting the options you want to apply, click on "Optimize" and wait for Cameyo to finish optimizing your portable application. You will see a screen like this:

            - Cameyo optimization results -

            This screen shows you the results of the optimization process, such as the original size, the new size, and the space saved. It also gives you some buttons to test or run your optimized portable application.

            -

            Where to download Cameyo 2.6.1176 Portable(malestom) and what are its features

            -

            Some of the features and advantages of Cameyo 2.6.1176 Portable(malestom) are:

            -
              -
            • It is compatible with Windows XP, Vista, 7, 8, and 10.
            • -
            • It supports both 32-bit and 64-bit applications.
            • -
            • It can create portable versions of applications that use .NET Framework, Java, Flash, Silverlight, etc.
            • -
            • It can create portable versions of applications that require administrator privileges or UAC.
            • -
            • It can create portable versions of applications that use hardware acceleration or DirectX.
            • -
            • It can create portable versions of applications that use webcams, microphones, printers, scanners, etc.
            • -
            • It can create portable versions of applications that use network connections or VPNs.
            • -
            • It can create portable versions of applications that use databases or cloud services.
            • -
            • It can create portable versions of applications that use encryption or DRM.
            • -
            • It can create portable versions of applications that have updates or patches.
            • -
            -

            Conclusion and FAQs

            -

            In conclusion, Cameyo 2.6.1176 Portable(malestom) is a powerful and versatile software that allows you to create portable versions of any application. You can run your applications on any computer without installing them, save space and bandwidth, keep your system clean and secure, and access your applications from anywhere. You can download Cameyo 2.6.1176 Portable(malestom) from various torrent sites or from this link and enjoy its features and benefits.

            -

            If you have any questions about Cameyo 2.6.1176 Portable(malestom), you might find the answers in these FAQs:

            -

            Q: Is Cameyo 2.6.1176 Portable(malestom) safe to use?

            -

            A: Yes, Cameyo 2.6.1176 Portable(malestom) is safe to use as long as you download it from a trusted source and scan it with an antivirus program before running it. However, you should be careful when creating or running portable applications from unknown sources, as they might contain malware or viruses.

            -

            Q: Is Cameyo 2.6.1176 Portable(malestom) legal to use?

            -

            A: Yes, Cameyo 2.6.1176 Portable(malestom) is legal to use as long as you respect the license agreements and terms of service of the original applications you make portable. You should not use Cameyo to create or distribute portable versions of applications that are illegal, pirated, cracked, or protected by copyright.

            -

            Q: How can I update my portable applications created with Cameyo 2.6.1176 Portable(malestom)?

            -

            A: You can update your portable applications created with Cameyo 2.6.1176 Portable(malestom) by using the "Update" option in the package editor. This option will allow you to download and install the latest version of the original application and capture it again with Cameyo. Alternatively, you can delete your old portable application and create a new one with the updated version of the original application.

            -

            Q: How can I share my portable applications created with Cameyo 2.6.1176 Portable(malestom)?

            -

            A: You can share your portable applications created with Cameyo 2.6.1176 Portable(malestom) by uploading them to your online library on Cameyo's website and sharing the link with your friends or colleagues. You can also share them by copying or sending them via email, cloud storage, USB drive, etc.

            -

            Q: How can I get help or support for Cameyo 2.6.1176 Portable(malestom)?

            -

            A: You can get help or support for Cameyo 2.6.1176 Portable(malestom) by visiting the official website or the forum of Cameyo. You can also contact malestom through his profile on the torrent site where he uploaded Cameyo 2.6.1176 Portable(malestom).

            -

            0a6ba089eb
            -
            -
            \ No newline at end of file diff --git a/spaces/ticomspire/turkey-syria-earthquake-tweets/logs/Be a Pro - Football APK Join the Most Thrilling PVP Matches Online.md b/spaces/ticomspire/turkey-syria-earthquake-tweets/logs/Be a Pro - Football APK Join the Most Thrilling PVP Matches Online.md deleted file mode 100644 index 11a627ab74167f15485615c663809725912ea1d9..0000000000000000000000000000000000000000 --- a/spaces/ticomspire/turkey-syria-earthquake-tweets/logs/Be a Pro - Football APK Join the Most Thrilling PVP Matches Online.md +++ /dev/null @@ -1,106 +0,0 @@ -
            -

            Be a Pro - Football Apkpure Download: A Thrilling and Realistic Football Game

            -

            If you are looking for a football game that captures the true spirit of the sport, you should try Be a Pro - Football. This is a game that lets you join realistic fast-paced real-time PVP matches with your own dream team. You can download it from apkpure, a website that offers free and safe APK files for Android devices. In this article, we will tell you more about this game, its key features, tips and tricks, reviews, and how to download it from apkpure.

            -

            be a pro football apkpure download


            Download Zip ⇒⇒⇒ https://bltlly.com/2uOhnn



            -

            Key Features of Be a Pro - Football

            -

            Be a Pro - Football is a game that offers a sports game experience unlike any other. Here are some of the key features that make it stand out:

            -
              -
            • REAL-TIME 11V11 ONLINE PVP: You can face against online players with your own dream team. Sharpen your skills and face the most powerful clubs in the world.
            • -
            • FAST-PACED THRILLING MATCH EXPERIENCE: You can thrill attacking and defending in fast-paced matches. The most exciting football match experience on your mobile device.
            • -
            • SMOOTH MOTIONS & REALISTIC GRAPHICS: You can enjoy realistic dribble, tackle, shooting, passing with Full 3D motion capture. High-precision 3D player modeling.
            • -
            • LEVEL UP YOUR TEAM TO WIN THE GLORY: You can upgrade your players to win the champions. Explore the transfer market to strengthen your team.
            • -
            • MASTER YOUR SQUAD TO CONQUER THE IDLE LEAGUE: You can optimize your line-up & tactics to defeat diversified opponents. Victories to behold even when you are offline.
            • -
            -

            Tips and Tricks for Be a Pro - Football

            -

            To improve your game in Be a Pro - Football, you need to master some techniques, exercises, and strategies. Here are some tips and tricks to help you:

            -
              -
            • Use finesse to dribble past defenders: One of the best tools when taking on other players is using the right stick in order to dribble with finesse and break away from a defender. For example, if they approach fast from the left, use finesse in the opposite direction to create the space to pass them.
            • -
            • Use through balls to create chances: The most useful pass you can make around the box is a through ball. Timed right it should split the defence and place it directly in the path of an attacker. Holding in LB/L1 lobs the through ball, setting a forward up to smash home with satisfying volley if timed correction.
            • -
            • Know your player stats: Before every match, spend time looking at your player’s statistics. In Be a Pro - Football, attributes are more nuanced and so really can help you shape a deep and detailed game plan. High dribbling and passing stats naturally mesh well with calm build-up play, but the long ball tactic really pays off this year, making powerhouses such as Robert Lewandowski just as deadly as in real life.
            • -
            • Sprint only when you need to: In Be a Pro - Football, too much sprinting causes your players to grow tired, and likely requires you to tap into your subs bench earlier than necessary. Sprinting also makes it harder to control the ball and execute accurate passes and shots. Use sprinting sparingly and only when you have space or need to chase down an opponent.
            • -
            • Practice juggling to improve your ball control: You don't need a lot of space to work on juggling. While you may not specifically juggle the ball during games, being able to juggle the ball well gives you stronger control and better ball-handling skills. Try to juggle for a little longer each time without losing control

              Reviews of Be a Pro - Football

              -

              Be a Pro - Football has received positive feedback from players who have downloaded it from apkpure. Here are some of the reviews they have left on the website:

              -
              -

              "This is the best football game I have ever played on my phone. The graphics are amazing and the gameplay is smooth and realistic. I love the online mode where I can challenge other players from around the world. The game is also updated regularly with new features and improvements. Highly recommended!"

              -- John, 5 stars -
              -
              -

              "I have been playing this game for a few months now and I am addicted to it. The game is very fun and challenging. You can create your own team, customize your players, and compete in various leagues and tournaments. The game also has an idle mode where you can earn rewards even when you are offline. The game is awesome!"

              -

              be a pro football apk download latest version
              -be a pro football game free download for android
              -be a pro football mod apk unlimited money
              -be a pro football offline apk download
              -be a pro football 2023 apk download
              -be a pro football app download from apkpure
              -be a pro football simulator apk download
              -be a pro football manager apk download
              -be a pro football hack apk download
              -be a pro football online apk download
              -be a pro football 3d apk download
              -be a pro football apk pure download link
              -be a pro football apk download for pc
              -be a pro football apk download without obb
              -be a pro football apk download no ads
              -be a pro football apk download from uptodown
              -be a pro football apk download old version
              -be a pro football apk download for ios
              -be a pro football apk download with data
              -be a pro football apk download full version
              -be a pro football apk download android 11
              -be a pro football apk download 0.204.4
              -be a pro football apk download by vplay interactive
              -be a pro football apk download 100mb
              -be a pro football apk download rexdl
              -how to install be a pro football apk from apkpure
              -how to update be a pro football apk from apkpure
              -how to play be a pro football apk offline
              -how to get unlimited coins in be a pro football apk
              -how to unlock all teams in be a pro football apk
              -how to transfer data from be a pro football apk to another device
              -how to fix lag in be a pro football apk
              -how to change language in be a pro football apk
              -how to create custom player in be a pro football apk
              -how to join multiplayer in be a pro football apk
              -best tips and tricks for be a pro football apk
              -best settings for be a pro football apk
              -best skills and attributes for be a pro football apk
              -best formation and tactics for be a pro football apk
              -best clubs and leagues for be a pro football apk
              -reviews and ratings for be a pro football apkpure download
              -alternatives and similar apps to be a pro football apkpure download
              -features and benefits of be a pro football apkpure download
              -pros and cons of be a pro football apkpure download
              -comparison of be a pro football apkpure download with other soccer games

              -- Lisa, 4 stars -
              -
              -

              "This game is very good but it has some issues that need to be fixed. Sometimes the game crashes or freezes during matches. Sometimes the controls are not responsive or laggy. Sometimes the players are not in sync with the ball or the referee. I hope the developers can fix these problems soon."

              -- Kevin, 3 stars -
              -

              Overall, Be a Pro - Football has a rating of 4.2 out of 5 stars on apkpure, based on over 10,000 reviews. It is one of the most popular and downloaded football games on the website, and it has been praised for its realistic graphics, thrilling gameplay, and diverse features. It has also been compared favorably to other football games such as FIFA Mobile, PES Mobile, and Dream League Soccer.

              -

              Conclusion: Why You Should Download Be a Pro - Football from Apkpure

              -

              Be a Pro - Football is a game that will satisfy your passion for football. It will let you experience the excitement and challenge of playing against real opponents with your own dream team. You will be able to enjoy realistic graphics, smooth motions, fast-paced matches, and various modes and features that will keep you entertained for hours.

              -

              If you want to download this game, you should do it from apkpure, a website that offers free and safe APK files for Android devices. Apkpure has many advantages over other sources, such as:

              -
                -
              • No region restrictions: You can download any game or app from apkpure regardless of your location or device.
              • -
              • No Google account required: You don't need to sign in with your Google account to download or update games or apps from apkpure.
              • -
              • No ads or malware: Apkpure scans all the APK files before uploading them to ensure they are free from viruses, malware, or unwanted ads.
              • -
              • Fast download speed: Apkpure has multiple servers around the world that provide fast and stable download speed for any game or app.
              • -
              • Easy installation: You just need to download the APK file from apkpure and install it on your device. No root or extra steps required.
              • -
              -

              So what are you waiting for? Download Be a Pro - Football from apkpure today and enjoy the best football game on your mobile device!

              -

              FAQs about Be a Pro - Football

              -

              Here are some of the frequently asked questions about Be a Pro - Football:

              -

              Q: How much space does Be a Pro - Football take on my device?

              -

              A: Be a Pro - Football requires about 500 MB of storage space on your device. You may need to clear some space before downloading it.

              -

              Q: How can I play Be a Pro - Football offline?

              -

              A: Be a Pro - Football has an idle mode where you can earn rewards even when you are offline. However, you need an internet connection to play online PVP matches and access other features.

              -

              Q: How can I get more coins and gems in Be a Pro - Football?

              -

              A: You can get more coins and gems by winning matches, completing achievements, participating in events, watching ads, or purchasing them with real money.

              -

              Q: How can I contact the developers of Be a Pro - Football?

              -

              A: You can contact the developers of Be a Pro - Football by sending an email to support@beaprofootball.com or by visiting their Facebook page at https://www.facebook.com/BeAProFootball/.

              -

              Q: Q: How can I update Be a Pro - Football to the latest version?

              -

              A: You can update Be a Pro - Football to the latest version by downloading the APK file from apkpure and installing it on your device. You don't need to uninstall the previous version or lose your progress.

              -

              I hope you enjoyed reading this article and learned more about Be a Pro - Football and how to download it from apkpure. If you have any questions or feedback, please leave a comment below. Thank you for your time and attention.

              197e85843d
              -
              -
              \ No newline at end of file diff --git a/spaces/tioseFevbu/cartoon-converter/scripts/7G Rainbow Colony Movie Download Utorrent Hd WORK.md b/spaces/tioseFevbu/cartoon-converter/scripts/7G Rainbow Colony Movie Download Utorrent Hd WORK.md deleted file mode 100644 index 4ede7b1bba49f80a85a3af50e542dc051f053804..0000000000000000000000000000000000000000 --- a/spaces/tioseFevbu/cartoon-converter/scripts/7G Rainbow Colony Movie Download Utorrent Hd WORK.md +++ /dev/null @@ -1,18 +0,0 @@ - -

              How to Download 7G Rainbow Colony Movie in HD Quality

              -

              7G Rainbow Colony is a 2004 Indian romantic drama film written and directed by Selvaraghavan, starring Ravi Krishna and Sonia Agarwal in lead roles. The film is about a slacker who falls in love with a girl from a higher class and tries to win her heart. The film was a critical and commercial success, and was also dubbed in Telugu as 7G Brindavan Colony.

              -

              If you want to watch this movie in high definition quality, you can download it from a torrent site. However, you should be aware of the risks involved in downloading pirated content, such as legal issues, malware infections, and poor quality files. Here are some steps to download 7G Rainbow Colony movie in HD quality from a torrent site:

              -

              7G Rainbow Colony Movie Download Utorrent Hd


              Download File >>> https://urlcod.com/2uHxBc



              -
                -
              1. Download and install a torrent client software, such as uTorrent, BitTorrent, or qBittorrent.
              2. -
              3. Go to a torrent search engine, such as 1337x, The Pirate Bay, or RARBG, and type "7G Rainbow Colony Movie Download Utorrent Hd" in the search box.
              4. -
              5. Choose a torrent file that has a high number of seeders and leechers, and a good video quality (such as 720p or 1080p).
              6. -
              7. Click on the magnet link or download the torrent file and open it with your torrent client.
              8. -
              9. Wait for the download to complete and enjoy the movie.
              10. -
              -

              Note: This article is for informational purposes only. We do not condone or promote piracy in any way. Please support the filmmakers by watching the movie legally on streaming platforms or buying the DVD.

              7G Rainbow Colony is a film that explores the themes of love, class, and self-discovery. The film has received positive reviews from critics and audiences alike, who praised the performances of the lead actors, the music by Yuvan Shankar Raja, and the direction by Selvaraghavan. The film is also known for its realistic portrayal of the life and culture of the lower-middle-class people in Chennai.

              -

              The film follows the story of Kadhir, a slacker who lives in a crowded apartment complex called 7G Rainbow Colony. He spends his time hanging out with his friends, drinking, smoking, and getting into trouble. He has no ambition or direction in life, and is constantly scolded by his parents and teachers. His life changes when he meets Anitha, a new girl who moves into his colony. She is from a higher class and has a bright future ahead of her. She is also engaged to a rich man who lives abroad.

              -

              Kadhir falls in love with Anitha at first sight, and tries to woo her with his antics. He follows her everywhere, annoys her with his jokes, and even gets into a fight with her fiancé. Anitha initially rejects him and considers him a nuisance, but gradually warms up to him and sees his good side. She helps him to improve his studies, encourages him to pursue his passion for music, and gives him a sense of purpose. They develop a close friendship and eventually fall in love.

              -

              However, their relationship faces many obstacles, such as their different backgrounds, their parents' disapproval, their fiancé's interference, and their own insecurities. They also have to deal with the consequences of their actions, such as pregnancy, abortion, and betrayal. The film ends with a tragic twist that tests their love and faith.

              7196e7f11a
              -
              -
              \ No newline at end of file diff --git a/spaces/tioseFevbu/cartoon-converter/scripts/Answers Key Payroll Accounting Project Chapter 7zip.md b/spaces/tioseFevbu/cartoon-converter/scripts/Answers Key Payroll Accounting Project Chapter 7zip.md deleted file mode 100644 index a269a9320d30e776d63e740a8617da77adec0d5b..0000000000000000000000000000000000000000 --- a/spaces/tioseFevbu/cartoon-converter/scripts/Answers Key Payroll Accounting Project Chapter 7zip.md +++ /dev/null @@ -1,36 +0,0 @@ -
              -

              How to Complete the Payroll Accounting Project Chapter 7zip

              -

              If you are taking a course in payroll accounting, you may be required to complete a comprehensive project that involves calculating payroll taxes, preparing payroll registers, journalizing payroll transactions, and filing tax forms for a hypothetical company. The project is based on the book Payroll Accounting 2020 by Bieg and Toland, and it covers the payroll activities for the month of December 2019.

              -

              Answers Key Payroll Accounting Project Chapter 7zip


              Download Zip 🔗 https://urlcod.com/2uHvG8



              -

              The project is available in two versions: paper-based and computerized. The paper-based version requires you to use templates that are included in the Student Exercise Files download for this course. The computerized version requires you to use Excel and QuickBooks software. In this article, we will focus on the paper-based version of the project.

              -

              The project consists of seven steps, each with its own set of instructions and questions. You will need to follow the instructions carefully and answer the questions accurately. You will also need to refer to the year-to-date payroll data for the company, which is provided in a separate template. The company's name is Ellipses Corp., and it is located in Herndon, VA. It has four employees: Hunter Cranston, Allison Harrison, John Parker, and Pierre Sternberg.

              -

              The seven steps of the project are as follows:

              -

              -
                -
              1. Calculate gross pay, deductions, and net pay for each employee for each weekly pay period in December 2019.
              2. -
              3. Prepare a payroll register for each weekly pay period in December 2019.
              4. -
              5. Journalize the payroll transactions for each weekly pay period in December 2019.
              6. -
              7. Prepare a payroll register summary for December 2019.
              8. -
              9. Journalize the adjusting entries for December 2019.
              10. -
              11. Prepare Form 941 for the fourth quarter of 2019.
              12. -
              13. Prepare Form W-2 and Form W-3 for 2019.
              14. -
              -

              To complete the project successfully, you will need to apply your knowledge of payroll accounting concepts and procedures, such as computing wages and salaries, withholding income tax and social security tax, calculating unemployment tax, analyzing and journalizing payroll transactions, and filing tax forms. You will also need to use basic math skills, such as adding, subtracting, multiplying, dividing, rounding, and using percentages.

              -

              The project is designed to help you develop your practical skills in payroll accounting and prepare you for real-world scenarios. It will also test your attention to detail and accuracy. You should check your work carefully before submitting it to your instructor. You can also compare your answers with the answer key that is available online or in your textbook.

              -

              The payroll accounting project chapter 7zip is a challenging but rewarding assignment that will enhance your understanding of payroll accounting. By completing it successfully, you will demonstrate your proficiency in this important area of accounting.

              - -

              In this section, we will provide a brief overview of each step of the project and some tips on how to complete them. You should refer to the detailed instructions and questions that are provided in the project template for each step.

              -

              Step 1: Calculate gross pay, deductions, and net pay

              -

              In this step, you will need to calculate the gross pay, deductions, and net pay for each employee for each weekly pay period in December 2019. You will need to use the payroll information that is given for each employee, such as their regular wage rate, annual salary, overtime rate, hours worked, withholding allowances, voluntary deductions, and year-to-date earnings. You will also need to use the tax tables and rates that are provided in the project template or in your textbook.

              -

              To calculate the gross pay, you will need to multiply the regular wage rate by the regular hours worked, and add the overtime pay if applicable. To calculate the overtime pay, you will need to multiply the overtime rate by the overtime hours worked. To calculate the deductions, you will need to apply the appropriate tax rates and formulas to the gross pay, and subtract any voluntary deductions. To calculate the net pay, you will need to subtract the total deductions from the gross pay.

              -

              You should round all amounts to the nearest cent. You should also keep track of the cumulative earnings and deductions for each employee for each pay period. You will need this information for later steps of the project.

              -

              Step 2: Prepare a payroll register

              -

              In this step, you will need to prepare a payroll register for each weekly pay period in December 2019. A payroll register is a summary of the payroll data for all employees for a given pay period. It shows the gross pay, deductions, and net pay for each employee, as well as the totals for each category.

              -

              To prepare a payroll register, you will need to use the results from step 1 and enter them in the appropriate columns of the payroll register template. You will also need to enter some additional information, such as the pay date, the check number, and the employee identification number. You should make sure that all amounts are aligned properly and that there are no errors or omissions.

              -

              You should add up all the amounts in each column and enter them in the total row at the bottom of the payroll register. You should also check that the total gross pay equals the total deductions plus the total net pay. This is called balancing the payroll register.

              -

              Step 3: Journalize the payroll transactions

              -

              In this step, you will need to journalize the payroll transactions for each weekly pay period in December 2019. Journalizing is the process of recording the effects of business transactions in a journal. A journal is a chronological record of business transactions expressed in terms of debits and credits.

              -

              To journalize the payroll transactions, you will need to use the results from step 2 and identify the accounts that are affected by each transaction. You will also need to determine whether each account is debited or credited and by what amount. You should follow the rules of debit and credit and make sure that each journal entry is balanced.

              -

              You should enter each journal entry in the general journal template using proper format and notation. You should also provide a brief explanation for each journal entry. You should use separate journal entries for recording wages expense, payroll tax expense, cash payments to employees, and tax payments to government agencies.

              cec2833e83
              -
              -
              \ No newline at end of file diff --git a/spaces/tioseFevbu/cartoon-converter/scripts/Blackmagic 2.8.6 [Portable] .rarl Arielamo __EXCLUSIVE__.md b/spaces/tioseFevbu/cartoon-converter/scripts/Blackmagic 2.8.6 [Portable] .rarl Arielamo __EXCLUSIVE__.md deleted file mode 100644 index c457080f7c40d7d29c5c863204bd0f6a22b33abb..0000000000000000000000000000000000000000 --- a/spaces/tioseFevbu/cartoon-converter/scripts/Blackmagic 2.8.6 [Portable] .rarl Arielamo __EXCLUSIVE__.md +++ /dev/null @@ -1,12 +0,0 @@ -
              -

              Introduction

              If you are a video professional who needs a portable and powerful solution for capturing and playing back high-quality video, you might want to check out Blackmagic 2.8.6 Portable. This is a Thunderbolt 3 capture and playback unit that lets you connect your computer to any of a variety of video components for streaming, editing, or delivering your projects.

              In this article, we will review the features and benefits of Blackmagic 2.8.6 Portable, compare it with other models in the UltraStudio series, and show you how to use it with DaVinci Resolve Studio software. By the end of this article, you will have a better understanding of why Blackmagic 2.8.6 Portable is a great choice for your video production needs.

              -

              Blackmagic 2.8.6 [Portable] .rarl arielamo


              Download Filehttps://urlcod.com/2uHxYZ



              What is Blackmagic 2.8.6 Portable?

              Blackmagic 2.8.6 Portable is a compact and lightweight device that connects to your computer via a single Thunderbolt 3 cable. It allows you to capture and playback video in up to DCI 4K60 4:2:2 resolution via single-link 12G-SDI or up to DCI 4K30 4:2:2 resolution via HDMI.

              Blackmagic 2.8.6 Portable is designed to work with popular video software such as DaVinci Resolve Studio, Final Cut Pro X, Adobe Premiere Pro CC, Avid Media Composer, and more. It supports HDR10, Hybrid Log Gamma, and 12-bit RAW formats for stunning image quality and dynamic range. It also supports a wide range of video formats such as NTSC/PAL, HD, Ultra HD, DCI 4K, DCI 8K, and more.

              Why is it useful for video professionals?

              Blackmagic 2.8.6 Portable is useful for video professionals who need a versatile and reliable solution for capturing and playing back high-quality video on the go. Whether you are streaming live events, recording interviews, editing documentaries, or delivering commercials, Blackmagic 2.8.6 Portable can handle any task with ease.

              With Blackmagic 2.8.6 Portable, you can connect to any video source or monitor via Thunderbolt 3 and enjoy fast data transfer speeds up to 40 Gb/s. You can also use the built-in SD card reader to record directly to SD cards or use the USB-C port to connect external SSDs or flash drives for longer recording times.

              Blackmagic 2.8.6 Portable also features a front panel with an integrated color LCD screen that shows the video input or output status, audio levels, timecode, and more. You can also use the fast control buttons to adjust settings such as input selection, reference source, down conversion, aspect ratio, audio channels, and more.

              -

              Features of Blackmagic 2.8.6 Portable

              Capture and playback in DCI 4K and UHD 4K resolutions

              One of the main features of Blackmagic 2.8.6 Portable is its ability to capture and playback video in up to DCI 4K60 4:2:2 resolution via single -link 12G-SDI or up to DCI 4K30 4:2:2 resolution via HDMI. This means you can capture and playback stunning video with four times the resolution of 1080p HD.

              Blackmagic 2.8.6 Portable also supports UHD 4K resolutions, which are slightly different from DCI 4K resolutions. UHD 4K has a resolution of 3840 x 2160 pixels, while DCI 4K has a resolution of 4096 x 2160 pixels. UHD 4K is more compatible with consumer TVs and monitors, while DCI 4K is more suitable for cinema and broadcast applications.

              Support for HDR, 12-bit RAW, and various video formats

              Another feature of Blackmagic 2.8.6 Portable is its support for high dynamic range (HDR) video, which allows you to capture and playback video with a wider range of colors and brightness levels. HDR video can deliver more realistic and natural images, especially in scenes with high contrast or low light.

              Blackmagic 2.8.6 Portable supports HDR10 and Hybrid Log Gamma (HLG) standards, which are widely used for streaming and broadcasting HDR content. You can also use Blackmagic 2.8.6 Portable to capture and playback 12-bit RAW video, which gives you more flexibility and control over color grading and post-production.

              Blackmagic 2.8.6 Portable also supports a wide range of video formats, such as NTSC/PAL, HD, Ultra HD, DCI 4K, DCI 8K, and more. You can also choose from various frame rates, such as 23.98, 24, 25, 29.97, 30, 50, 59.94, and 60 fps. You can also use Blackmagic 2.8.6 Portable to convert between different formats and frame rates, such as down converting from DCI 4K to HD or up converting from HD to Ultra HD.

              Connect to a variety of video components via Thunderbolt 3

              A third feature of Blackmagic 2.8.6 Portable is its ability to connect to a variety of video components via Thunderbolt 3. Thunderbolt 3 is a fast and versatile connection that can transfer data up to 40 Gb/s, which is enough bandwidth to handle multiple streams of high-resolution video.

              With Blackmagic 2.8.6 Portable, you can connect to any video source or monitor that supports single-link 12G-SDI or HDMI. You can also connect to analog component, composite, or S-Video sources or monitors via the included breakout cable. You can also connect to XLR audio inputs or outputs via the breakout cable or use the built-in stereo RCA audio inputs or outputs.

              Blackmagic 2.8.6 Portable is compatible with macOS, Windows, and Linux operating systems, so you can use it with any computer that has a Thunderbolt 3 port. You can also daisy chain up to six devices via Thunderbolt 3, such as external hard drives, displays, or other UltraStudio models.

              Use with DaVinci Resolve Studio software

              Edit, color correct, add effects, and deliver your projects

              A fourth feature of Blackmagic 2.8.6 Portable is its compatibility with DaVinci Resolve Studio software, which is a powerful and professional video editing software that comes with the device. DaVinci Resolve Studio is a complete solution for editing, color correction, visual effects, audio post-production, and delivery.

              With Blackmagic 2.8.6 Portable and DaVinci Resolve Studio, you can edit your video clips on the timeline, apply transitions and effects, adjust the color and contrast, add titles and graphics, mix the audio, and export your final project in any format you want. You can also use the advanced features of DaVinci Resolve Studio, such as Fusion and Fairlight.

              Access to advanced features such as Fusion and Fairlight

              Fusion is a node-based compositing and motion graphics tool that lets you create stunning visual effects and animations. You can use Fusion to add 3D objects, particles, masks, keying, tracking, rotoscoping, and more to your video clips. You can also use Fusion to create virtual reality and 360-degree video content.

              Fairlight is a digital audio workstation that lets you record, edit, mix, and master your audio tracks. You can use Fairlight to add sound effects, music, voice-overs, and more to your video clips. You can also use Fairlight to create surround sound and Dolby Atmos mixes.

              Comparison with other UltraStudio models

              UltraStudio 4K Mini vs UltraStudio 4K Extreme 3 vs UltraStudio HD Mini

              Blackmagic 2.8.6 Portable is one of the models in the UltraStudio series of capture and playback devices from Blackmagic Design. The other models are UltraStudio 4K Mini, UltraStudio 4K Extreme 3, and UltraStudio HD Mini. Each model has its own features and specifications that make it suitable for different purposes and budgets.

              The following table compares the main features and specifications of each model:

              - | Model | Resolution | Frame Rate | Video Formats | Video Connections | Audio Connections | Other Connections | Price | | ----- | ---------- | ---------- | ------------- | ----------------- | ----------------- | ----------------- | ----- | | Blackmagic 2.8.6 Portable | DCI 4K60 4:2:2 (12G-SDI) DCI 4K30 4:2:2 (HDMI) UHD 4K60 4:2:2 (12G-SDI) UHD 4K30 4:2:2 (HDMI) | Up to 60 fps | HDR10 HLG 12-bit RAW NTSC/PAL HD Ultra HD DCI 4K DCI 8K | Thunderbolt 3 (input/output) SDI (input/output) HDMI (input/output) Analog Component (input/output) Composite (input/output) S-Video (input/output) | XLR (input/output) RCA (input/output) SDI embedded (16 channels input/output) HDMI embedded (8 channels input/output) | SD card reader USB-C port RS-422 port Reference input | $995 | | UltraStudio 4K Mini | DCI 4K60 4:2:2 (12G-SDI) DCI 4K30 4:2:2 (HDMI) UHD 4K60 4:2:2 (12G-SDI) UHD 4K30 4:2:2 (HDMI) | Up to 60 fps | HDR10 HLG NTSC/PAL HD Ultra HD DCI 4K DCI 8K | Thunderbolt 3 (input/output) SDI (input/output) HDMI (input/output) Analog Component (input/output) Composite (input/output) S-Video (input/output) Optical SDI (input/output) | XLR (input/output) RCA (input/output) SDI embedded (16 channels input/output) HDMI embedded (8 channels input/output) AES/EBU balanced (4 channels input/output) Analog balanced (4 channels input/output) Optical audio TOSLINK output Headphone output Built-in speaker output | SD card reader USB-C port RS-422 port Reference input/tri-sync output LTC input/output Sync input/output Built-in microphone input Front panel LCD screen Front panel control buttons Front panel headphone jack Front panel microphone jack Front panel speaker jack Rack mountable design | $1,295 | | UltraStudio 4K Extreme 3 | DCI 4K60 4:4:4 (12G-SDI) DCI 4K30 4:4:4 (HDMI) UHD 4K60 4:4:4 (12G-SDI) UHD 4K30 4:4:4 (HDMI) | Up to 60 fps | HDR10 HLG NTSC/PAL HD Ultra HD DCI 4K DCI 8K | Thunderbolt 3 (input/output) SDI (input/output) HDMI (input/output) Analog Component (input/output) Composite (input/output) S-Video (input/output) Optical SDI (input/output) Quad Link SDI (input/output) Dual Link SDI (input/output) | XLR (input/output) RCA (input/output) SDI embedded (16 channels input/output) HDMI embedded (8 channels input/output) AES/EBU balanced (16 channels input/output) Analog balanced (16 channels input/output) Optical audio TOSLINK output Headphone output Built-in speaker output | SD card reader USB-C port RS-422 port Reference input/tri-sync output LTC input/output Sync input/output Built-in microphone input Front panel LCD screen Front panel control buttons Front panel headphone jack Front panel microphone jack Front panel speaker jack Rack mountable design | $2,995 | | UltraStudio HD Mini | HD1080p60 4:2:2 (3G-SDI) HD1080p30 4:2:2 (HDMI) | Up to 60 fps | NTSC/PAL HD Ultra HD | Thunderbolt 3 (input/output) SDI (input/output) HDMI (output only) Analog Component (output only) Composite (output only) S-Video (output only) | XLR (input only) RCA (output only) SDI embedded (16 channels input/8 channels output) HDMI embedded (8 channels output only) AES/EBU balanced (2 channels input/2 channels output) Analog balanced (2 channels input/2 channels output) Optical audio TOSLINK output Headphone output Built-in speaker output | USB-C port RS-422 port Reference input/tri-sync output LTC input/output Sync input/output Built-in microphone input Front panel LCD screen Front panel control buttons Front panel headphone jack Front panel microphone jack Front panel speaker jack Rack mountable design | $495 |

              As you can see, each model has its own advantages and disadvantages depending on your needs and budget. Blackmagic 2.8.6 Portable is the most affordable and portable option, but it has lower resolution and fewer connections than the other models. UltraStudio 4K Mini is a more advanced and versatile option, but it is more expensive and larger than Blackmagic 2.8.6 Portable. UltraStudio 4K Extreme 3 is the most powerful and feature-rich option, but it is also the most expensive and bulky option. UltraStudio HD Mini is the simplest and cheapest option, but it only supports HD resolutions and has limited connections.

              Conclusion

              In conclusion, Blackmagic 2.8.6 Portable is a great device for video professionals who need a portable and powerful solution for capturing and playing back high-quality video. It has many features and benefits, such as:

              • Capture and playback in DCI 4K and UHD 4K resolutions
              • Support for HDR, 12-bit RAW, and various video formats
              • Connect to a variety of video components via Thunderbolt 3
              • Use with DaVinci Resolve Studio software

              If you are interested in buying Blackmagic 2.8.6 Portable, you can visit the official website of Blackmagic Design or any of their authorized resellers. You can also compare it with other models in the UltraStudio series to find the best fit for your needs and budget.

              Thank you for reading this article. We hope you found it informative and helpful. If you have any questions or comments, please feel free to leave them below. We would love to hear from you.

              FAQs

              What is the difference between Blackmagic 2.8.6 Portable and Blackmagic Design UltraStudio Monitor 3G?

              Blackmagic Design UltraStudio Monitor 3G is another device from Blackmagic Design that connects to your computer via Thunderbolt 3 and allows you to monitor video in up to HD1080p60 resolution via SDI or HDMI outputs. It is similar to Blackmagic

            • Use the LCD screen on the front panel of Blackmagic 2.8.6 Portable to monitor the video input or output status, audio levels, timecode, and more
            • -
            • Use the Media Express software to record video to SD cards or external drives and to manage your media files
            • -
            • Use the DaVinci Resolve Studio software to edit, color correct, add effects, and deliver your projects
            • -
            • Use the fast control buttons on the front panel of Blackmagic 2.8.6 Portable to adjust settings such as input selection, reference source, down conversion, aspect ratio, audio channels, and more
            • -
            • Use the Fusion and Fairlight features of DaVinci Resolve Studio to create stunning visual effects and audio mixes
            • -

            b2dd77e56b
            -
            -
            \ No newline at end of file diff --git a/spaces/tjburns/ask_marcus_aurelius/.venv/lib/python3.10/site-packages/pip/_vendor/chardet/euctwfreq.py b/spaces/tjburns/ask_marcus_aurelius/.venv/lib/python3.10/site-packages/pip/_vendor/chardet/euctwfreq.py deleted file mode 100644 index 4900ccc160a1dbf4de3a01c234735c21dd4417d6..0000000000000000000000000000000000000000 --- a/spaces/tjburns/ask_marcus_aurelius/.venv/lib/python3.10/site-packages/pip/_vendor/chardet/euctwfreq.py +++ /dev/null @@ -1,388 +0,0 @@ -######################## BEGIN LICENSE BLOCK ######################## -# The Original Code is Mozilla Communicator client code. -# -# The Initial Developer of the Original Code is -# Netscape Communications Corporation. -# Portions created by the Initial Developer are Copyright (C) 1998 -# the Initial Developer. All Rights Reserved. -# -# Contributor(s): -# Mark Pilgrim - port to Python -# -# This library is free software; you can redistribute it and/or -# modify it under the terms of the GNU Lesser General Public -# License as published by the Free Software Foundation; either -# version 2.1 of the License, or (at your option) any later version. -# -# This library is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -# Lesser General Public License for more details. -# -# You should have received a copy of the GNU Lesser General Public -# License along with this library; if not, write to the Free Software -# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA -# 02110-1301 USA -######################### END LICENSE BLOCK ######################### - -# EUCTW frequency table -# Converted from big5 work -# by Taiwan's Mandarin Promotion Council -# - -# 128 --> 0.42261 -# 256 --> 0.57851 -# 512 --> 0.74851 -# 1024 --> 0.89384 -# 2048 --> 0.97583 -# -# Idea Distribution Ratio = 0.74851/(1-0.74851) =2.98 -# Random Distribution Ration = 512/(5401-512)=0.105 -# -# Typical Distribution Ratio about 25% of Ideal one, still much higher than RDR - -EUCTW_TYPICAL_DISTRIBUTION_RATIO = 0.75 - -# Char to FreqOrder table -EUCTW_TABLE_SIZE = 5376 - -# fmt: off -EUCTW_CHAR_TO_FREQ_ORDER = ( - 1, 1800, 1506, 255, 1431, 198, 9, 82, 6, 7310, 177, 202, 3615, 1256, 2808, 110, # 2742 - 3735, 33, 3241, 261, 76, 44, 2113, 16, 2931, 2184, 1176, 659, 3868, 26, 3404, 2643, # 2758 - 1198, 3869, 3313, 4060, 410, 2211, 302, 590, 361, 1963, 8, 204, 58, 4296, 7311, 1931, # 2774 - 63, 7312, 7313, 317, 1614, 75, 222, 159, 4061, 2412, 1480, 7314, 3500, 3068, 224, 2809, # 2790 - 3616, 3, 10, 3870, 1471, 29, 2774, 1135, 2852, 1939, 873, 130, 3242, 1123, 312, 7315, # 2806 - 4297, 2051, 507, 252, 682, 7316, 142, 1914, 124, 206, 2932, 34, 3501, 3173, 64, 604, # 2822 - 7317, 2494, 1976, 1977, 155, 1990, 645, 641, 1606, 7318, 3405, 337, 72, 406, 7319, 80, # 2838 - 630, 238, 3174, 1509, 263, 939, 1092, 2644, 756, 1440, 1094, 3406, 449, 69, 2969, 591, # 2854 - 179, 2095, 471, 115, 2034, 1843, 60, 50, 2970, 134, 806, 1868, 734, 2035, 3407, 180, # 2870 - 995, 1607, 156, 537, 2893, 688, 7320, 319, 1305, 779, 2144, 514, 2374, 298, 4298, 359, # 2886 - 2495, 90, 2707, 1338, 663, 11, 906, 1099, 2545, 20, 2436, 182, 532, 1716, 7321, 732, # 2902 - 1376, 4062, 1311, 1420, 3175, 25, 2312, 1056, 113, 399, 382, 1949, 242, 3408, 2467, 529, # 2918 - 3243, 475, 1447, 3617, 7322, 117, 21, 656, 810, 1297, 2295, 2329, 3502, 7323, 126, 4063, # 2934 - 706, 456, 150, 613, 4299, 71, 1118, 2036, 4064, 145, 3069, 85, 835, 486, 2114, 1246, # 2950 - 1426, 428, 727, 1285, 1015, 800, 106, 623, 303, 1281, 7324, 2127, 2354, 347, 3736, 221, # 2966 - 3503, 3110, 7325, 1955, 1153, 4065, 83, 296, 1199, 3070, 192, 624, 93, 7326, 822, 1897, # 2982 - 2810, 3111, 795, 2064, 991, 1554, 1542, 1592, 27, 43, 2853, 859, 139, 1456, 860, 4300, # 2998 - 437, 712, 3871, 164, 2392, 3112, 695, 211, 3017, 2096, 195, 3872, 1608, 3504, 3505, 3618, # 3014 - 3873, 234, 811, 2971, 2097, 3874, 2229, 1441, 3506, 1615, 2375, 668, 2076, 1638, 305, 228, # 3030 - 1664, 4301, 467, 415, 7327, 262, 2098, 1593, 239, 108, 300, 200, 1033, 512, 1247, 2077, # 3046 - 7328, 7329, 2173, 3176, 3619, 2673, 593, 845, 1062, 3244, 88, 1723, 2037, 3875, 1950, 212, # 3062 - 266, 152, 149, 468, 1898, 4066, 4302, 77, 187, 7330, 3018, 37, 5, 2972, 7331, 3876, # 3078 - 7332, 7333, 39, 2517, 4303, 2894, 3177, 2078, 55, 148, 74, 4304, 545, 483, 1474, 1029, # 3094 - 1665, 217, 1869, 1531, 3113, 1104, 2645, 4067, 24, 172, 3507, 900, 3877, 3508, 3509, 4305, # 3110 - 32, 1408, 2811, 1312, 329, 487, 2355, 2247, 2708, 784, 2674, 4, 3019, 3314, 1427, 1788, # 3126 - 188, 109, 499, 7334, 3620, 1717, 1789, 888, 1217, 3020, 4306, 7335, 3510, 7336, 3315, 1520, # 3142 - 3621, 3878, 196, 1034, 775, 7337, 7338, 929, 1815, 249, 439, 38, 7339, 1063, 7340, 794, # 3158 - 3879, 1435, 2296, 46, 178, 3245, 2065, 7341, 2376, 7342, 214, 1709, 4307, 804, 35, 707, # 3174 - 324, 3622, 1601, 2546, 140, 459, 4068, 7343, 7344, 1365, 839, 272, 978, 2257, 2572, 3409, # 3190 - 2128, 1363, 3623, 1423, 697, 100, 3071, 48, 70, 1231, 495, 3114, 2193, 7345, 1294, 7346, # 3206 - 2079, 462, 586, 1042, 3246, 853, 256, 988, 185, 2377, 3410, 1698, 434, 1084, 7347, 3411, # 3222 - 314, 2615, 2775, 4308, 2330, 2331, 569, 2280, 637, 1816, 2518, 757, 1162, 1878, 1616, 3412, # 3238 - 287, 1577, 2115, 768, 4309, 1671, 2854, 3511, 2519, 1321, 3737, 909, 2413, 7348, 4069, 933, # 3254 - 3738, 7349, 2052, 2356, 1222, 4310, 765, 2414, 1322, 786, 4311, 7350, 1919, 1462, 1677, 2895, # 3270 - 1699, 7351, 4312, 1424, 2437, 3115, 3624, 2590, 3316, 1774, 1940, 3413, 3880, 4070, 309, 1369, # 3286 - 1130, 2812, 364, 2230, 1653, 1299, 3881, 3512, 3882, 3883, 2646, 525, 1085, 3021, 902, 2000, # 3302 - 1475, 964, 4313, 421, 1844, 1415, 1057, 2281, 940, 1364, 3116, 376, 4314, 4315, 1381, 7, # 3318 - 2520, 983, 2378, 336, 1710, 2675, 1845, 321, 3414, 559, 1131, 3022, 2742, 1808, 1132, 1313, # 3334 - 265, 1481, 1857, 7352, 352, 1203, 2813, 3247, 167, 1089, 420, 2814, 776, 792, 1724, 3513, # 3350 - 4071, 2438, 3248, 7353, 4072, 7354, 446, 229, 333, 2743, 901, 3739, 1200, 1557, 4316, 2647, # 3366 - 1920, 395, 2744, 2676, 3740, 4073, 1835, 125, 916, 3178, 2616, 4317, 7355, 7356, 3741, 7357, # 3382 - 7358, 7359, 4318, 3117, 3625, 1133, 2547, 1757, 3415, 1510, 2313, 1409, 3514, 7360, 2145, 438, # 3398 - 2591, 2896, 2379, 3317, 1068, 958, 3023, 461, 311, 2855, 2677, 4074, 1915, 3179, 4075, 1978, # 3414 - 383, 750, 2745, 2617, 4076, 274, 539, 385, 1278, 1442, 7361, 1154, 1964, 384, 561, 210, # 3430 - 98, 1295, 2548, 3515, 7362, 1711, 2415, 1482, 3416, 3884, 2897, 1257, 129, 7363, 3742, 642, # 3446 - 523, 2776, 2777, 2648, 7364, 141, 2231, 1333, 68, 176, 441, 876, 907, 4077, 603, 2592, # 3462 - 710, 171, 3417, 404, 549, 18, 3118, 2393, 1410, 3626, 1666, 7365, 3516, 4319, 2898, 4320, # 3478 - 7366, 2973, 368, 7367, 146, 366, 99, 871, 3627, 1543, 748, 807, 1586, 1185, 22, 2258, # 3494 - 379, 3743, 3180, 7368, 3181, 505, 1941, 2618, 1991, 1382, 2314, 7369, 380, 2357, 218, 702, # 3510 - 1817, 1248, 3418, 3024, 3517, 3318, 3249, 7370, 2974, 3628, 930, 3250, 3744, 7371, 59, 7372, # 3526 - 585, 601, 4078, 497, 3419, 1112, 1314, 4321, 1801, 7373, 1223, 1472, 2174, 7374, 749, 1836, # 3542 - 690, 1899, 3745, 1772, 3885, 1476, 429, 1043, 1790, 2232, 2116, 917, 4079, 447, 1086, 1629, # 3558 - 7375, 556, 7376, 7377, 2020, 1654, 844, 1090, 105, 550, 966, 1758, 2815, 1008, 1782, 686, # 3574 - 1095, 7378, 2282, 793, 1602, 7379, 3518, 2593, 4322, 4080, 2933, 2297, 4323, 3746, 980, 2496, # 3590 - 544, 353, 527, 4324, 908, 2678, 2899, 7380, 381, 2619, 1942, 1348, 7381, 1341, 1252, 560, # 3606 - 3072, 7382, 3420, 2856, 7383, 2053, 973, 886, 2080, 143, 4325, 7384, 7385, 157, 3886, 496, # 3622 - 4081, 57, 840, 540, 2038, 4326, 4327, 3421, 2117, 1445, 970, 2259, 1748, 1965, 2081, 4082, # 3638 - 3119, 1234, 1775, 3251, 2816, 3629, 773, 1206, 2129, 1066, 2039, 1326, 3887, 1738, 1725, 4083, # 3654 - 279, 3120, 51, 1544, 2594, 423, 1578, 2130, 2066, 173, 4328, 1879, 7386, 7387, 1583, 264, # 3670 - 610, 3630, 4329, 2439, 280, 154, 7388, 7389, 7390, 1739, 338, 1282, 3073, 693, 2857, 1411, # 3686 - 1074, 3747, 2440, 7391, 4330, 7392, 7393, 1240, 952, 2394, 7394, 2900, 1538, 2679, 685, 1483, # 3702 - 4084, 2468, 1436, 953, 4085, 2054, 4331, 671, 2395, 79, 4086, 2441, 3252, 608, 567, 2680, # 3718 - 3422, 4087, 4088, 1691, 393, 1261, 1791, 2396, 7395, 4332, 7396, 7397, 7398, 7399, 1383, 1672, # 3734 - 3748, 3182, 1464, 522, 1119, 661, 1150, 216, 675, 4333, 3888, 1432, 3519, 609, 4334, 2681, # 3750 - 2397, 7400, 7401, 7402, 4089, 3025, 0, 7403, 2469, 315, 231, 2442, 301, 3319, 4335, 2380, # 3766 - 7404, 233, 4090, 3631, 1818, 4336, 4337, 7405, 96, 1776, 1315, 2082, 7406, 257, 7407, 1809, # 3782 - 3632, 2709, 1139, 1819, 4091, 2021, 1124, 2163, 2778, 1777, 2649, 7408, 3074, 363, 1655, 3183, # 3798 - 7409, 2975, 7410, 7411, 7412, 3889, 1567, 3890, 718, 103, 3184, 849, 1443, 341, 3320, 2934, # 3814 - 1484, 7413, 1712, 127, 67, 339, 4092, 2398, 679, 1412, 821, 7414, 7415, 834, 738, 351, # 3830 - 2976, 2146, 846, 235, 1497, 1880, 418, 1992, 3749, 2710, 186, 1100, 2147, 2746, 3520, 1545, # 3846 - 1355, 2935, 2858, 1377, 583, 3891, 4093, 2573, 2977, 7416, 1298, 3633, 1078, 2549, 3634, 2358, # 3862 - 78, 3750, 3751, 267, 1289, 2099, 2001, 1594, 4094, 348, 369, 1274, 2194, 2175, 1837, 4338, # 3878 - 1820, 2817, 3635, 2747, 2283, 2002, 4339, 2936, 2748, 144, 3321, 882, 4340, 3892, 2749, 3423, # 3894 - 4341, 2901, 7417, 4095, 1726, 320, 7418, 3893, 3026, 788, 2978, 7419, 2818, 1773, 1327, 2859, # 3910 - 3894, 2819, 7420, 1306, 4342, 2003, 1700, 3752, 3521, 2359, 2650, 787, 2022, 506, 824, 3636, # 3926 - 534, 323, 4343, 1044, 3322, 2023, 1900, 946, 3424, 7421, 1778, 1500, 1678, 7422, 1881, 4344, # 3942 - 165, 243, 4345, 3637, 2521, 123, 683, 4096, 764, 4346, 36, 3895, 1792, 589, 2902, 816, # 3958 - 626, 1667, 3027, 2233, 1639, 1555, 1622, 3753, 3896, 7423, 3897, 2860, 1370, 1228, 1932, 891, # 3974 - 2083, 2903, 304, 4097, 7424, 292, 2979, 2711, 3522, 691, 2100, 4098, 1115, 4347, 118, 662, # 3990 - 7425, 611, 1156, 854, 2381, 1316, 2861, 2, 386, 515, 2904, 7426, 7427, 3253, 868, 2234, # 4006 - 1486, 855, 2651, 785, 2212, 3028, 7428, 1040, 3185, 3523, 7429, 3121, 448, 7430, 1525, 7431, # 4022 - 2164, 4348, 7432, 3754, 7433, 4099, 2820, 3524, 3122, 503, 818, 3898, 3123, 1568, 814, 676, # 4038 - 1444, 306, 1749, 7434, 3755, 1416, 1030, 197, 1428, 805, 2821, 1501, 4349, 7435, 7436, 7437, # 4054 - 1993, 7438, 4350, 7439, 7440, 2195, 13, 2779, 3638, 2980, 3124, 1229, 1916, 7441, 3756, 2131, # 4070 - 7442, 4100, 4351, 2399, 3525, 7443, 2213, 1511, 1727, 1120, 7444, 7445, 646, 3757, 2443, 307, # 4086 - 7446, 7447, 1595, 3186, 7448, 7449, 7450, 3639, 1113, 1356, 3899, 1465, 2522, 2523, 7451, 519, # 4102 - 7452, 128, 2132, 92, 2284, 1979, 7453, 3900, 1512, 342, 3125, 2196, 7454, 2780, 2214, 1980, # 4118 - 3323, 7455, 290, 1656, 1317, 789, 827, 2360, 7456, 3758, 4352, 562, 581, 3901, 7457, 401, # 4134 - 4353, 2248, 94, 4354, 1399, 2781, 7458, 1463, 2024, 4355, 3187, 1943, 7459, 828, 1105, 4101, # 4150 - 1262, 1394, 7460, 4102, 605, 4356, 7461, 1783, 2862, 7462, 2822, 819, 2101, 578, 2197, 2937, # 4166 - 7463, 1502, 436, 3254, 4103, 3255, 2823, 3902, 2905, 3425, 3426, 7464, 2712, 2315, 7465, 7466, # 4182 - 2332, 2067, 23, 4357, 193, 826, 3759, 2102, 699, 1630, 4104, 3075, 390, 1793, 1064, 3526, # 4198 - 7467, 1579, 3076, 3077, 1400, 7468, 4105, 1838, 1640, 2863, 7469, 4358, 4359, 137, 4106, 598, # 4214 - 3078, 1966, 780, 104, 974, 2938, 7470, 278, 899, 253, 402, 572, 504, 493, 1339, 7471, # 4230 - 3903, 1275, 4360, 2574, 2550, 7472, 3640, 3029, 3079, 2249, 565, 1334, 2713, 863, 41, 7473, # 4246 - 7474, 4361, 7475, 1657, 2333, 19, 463, 2750, 4107, 606, 7476, 2981, 3256, 1087, 2084, 1323, # 4262 - 2652, 2982, 7477, 1631, 1623, 1750, 4108, 2682, 7478, 2864, 791, 2714, 2653, 2334, 232, 2416, # 4278 - 7479, 2983, 1498, 7480, 2654, 2620, 755, 1366, 3641, 3257, 3126, 2025, 1609, 119, 1917, 3427, # 4294 - 862, 1026, 4109, 7481, 3904, 3760, 4362, 3905, 4363, 2260, 1951, 2470, 7482, 1125, 817, 4110, # 4310 - 4111, 3906, 1513, 1766, 2040, 1487, 4112, 3030, 3258, 2824, 3761, 3127, 7483, 7484, 1507, 7485, # 4326 - 2683, 733, 40, 1632, 1106, 2865, 345, 4113, 841, 2524, 230, 4364, 2984, 1846, 3259, 3428, # 4342 - 7486, 1263, 986, 3429, 7487, 735, 879, 254, 1137, 857, 622, 1300, 1180, 1388, 1562, 3907, # 4358 - 3908, 2939, 967, 2751, 2655, 1349, 592, 2133, 1692, 3324, 2985, 1994, 4114, 1679, 3909, 1901, # 4374 - 2185, 7488, 739, 3642, 2715, 1296, 1290, 7489, 4115, 2198, 2199, 1921, 1563, 2595, 2551, 1870, # 4390 - 2752, 2986, 7490, 435, 7491, 343, 1108, 596, 17, 1751, 4365, 2235, 3430, 3643, 7492, 4366, # 4406 - 294, 3527, 2940, 1693, 477, 979, 281, 2041, 3528, 643, 2042, 3644, 2621, 2782, 2261, 1031, # 4422 - 2335, 2134, 2298, 3529, 4367, 367, 1249, 2552, 7493, 3530, 7494, 4368, 1283, 3325, 2004, 240, # 4438 - 1762, 3326, 4369, 4370, 836, 1069, 3128, 474, 7495, 2148, 2525, 268, 3531, 7496, 3188, 1521, # 4454 - 1284, 7497, 1658, 1546, 4116, 7498, 3532, 3533, 7499, 4117, 3327, 2684, 1685, 4118, 961, 1673, # 4470 - 2622, 190, 2005, 2200, 3762, 4371, 4372, 7500, 570, 2497, 3645, 1490, 7501, 4373, 2623, 3260, # 4486 - 1956, 4374, 584, 1514, 396, 1045, 1944, 7502, 4375, 1967, 2444, 7503, 7504, 4376, 3910, 619, # 4502 - 7505, 3129, 3261, 215, 2006, 2783, 2553, 3189, 4377, 3190, 4378, 763, 4119, 3763, 4379, 7506, # 4518 - 7507, 1957, 1767, 2941, 3328, 3646, 1174, 452, 1477, 4380, 3329, 3130, 7508, 2825, 1253, 2382, # 4534 - 2186, 1091, 2285, 4120, 492, 7509, 638, 1169, 1824, 2135, 1752, 3911, 648, 926, 1021, 1324, # 4550 - 4381, 520, 4382, 997, 847, 1007, 892, 4383, 3764, 2262, 1871, 3647, 7510, 2400, 1784, 4384, # 4566 - 1952, 2942, 3080, 3191, 1728, 4121, 2043, 3648, 4385, 2007, 1701, 3131, 1551, 30, 2263, 4122, # 4582 - 7511, 2026, 4386, 3534, 7512, 501, 7513, 4123, 594, 3431, 2165, 1821, 3535, 3432, 3536, 3192, # 4598 - 829, 2826, 4124, 7514, 1680, 3132, 1225, 4125, 7515, 3262, 4387, 4126, 3133, 2336, 7516, 4388, # 4614 - 4127, 7517, 3912, 3913, 7518, 1847, 2383, 2596, 3330, 7519, 4389, 374, 3914, 652, 4128, 4129, # 4630 - 375, 1140, 798, 7520, 7521, 7522, 2361, 4390, 2264, 546, 1659, 138, 3031, 2445, 4391, 7523, # 4646 - 2250, 612, 1848, 910, 796, 3765, 1740, 1371, 825, 3766, 3767, 7524, 2906, 2554, 7525, 692, # 4662 - 444, 3032, 2624, 801, 4392, 4130, 7526, 1491, 244, 1053, 3033, 4131, 4132, 340, 7527, 3915, # 4678 - 1041, 2987, 293, 1168, 87, 1357, 7528, 1539, 959, 7529, 2236, 721, 694, 4133, 3768, 219, # 4694 - 1478, 644, 1417, 3331, 2656, 1413, 1401, 1335, 1389, 3916, 7530, 7531, 2988, 2362, 3134, 1825, # 4710 - 730, 1515, 184, 2827, 66, 4393, 7532, 1660, 2943, 246, 3332, 378, 1457, 226, 3433, 975, # 4726 - 3917, 2944, 1264, 3537, 674, 696, 7533, 163, 7534, 1141, 2417, 2166, 713, 3538, 3333, 4394, # 4742 - 3918, 7535, 7536, 1186, 15, 7537, 1079, 1070, 7538, 1522, 3193, 3539, 276, 1050, 2716, 758, # 4758 - 1126, 653, 2945, 3263, 7539, 2337, 889, 3540, 3919, 3081, 2989, 903, 1250, 4395, 3920, 3434, # 4774 - 3541, 1342, 1681, 1718, 766, 3264, 286, 89, 2946, 3649, 7540, 1713, 7541, 2597, 3334, 2990, # 4790 - 7542, 2947, 2215, 3194, 2866, 7543, 4396, 2498, 2526, 181, 387, 1075, 3921, 731, 2187, 3335, # 4806 - 7544, 3265, 310, 313, 3435, 2299, 770, 4134, 54, 3034, 189, 4397, 3082, 3769, 3922, 7545, # 4822 - 1230, 1617, 1849, 355, 3542, 4135, 4398, 3336, 111, 4136, 3650, 1350, 3135, 3436, 3035, 4137, # 4838 - 2149, 3266, 3543, 7546, 2784, 3923, 3924, 2991, 722, 2008, 7547, 1071, 247, 1207, 2338, 2471, # 4854 - 1378, 4399, 2009, 864, 1437, 1214, 4400, 373, 3770, 1142, 2216, 667, 4401, 442, 2753, 2555, # 4870 - 3771, 3925, 1968, 4138, 3267, 1839, 837, 170, 1107, 934, 1336, 1882, 7548, 7549, 2118, 4139, # 4886 - 2828, 743, 1569, 7550, 4402, 4140, 582, 2384, 1418, 3437, 7551, 1802, 7552, 357, 1395, 1729, # 4902 - 3651, 3268, 2418, 1564, 2237, 7553, 3083, 3772, 1633, 4403, 1114, 2085, 4141, 1532, 7554, 482, # 4918 - 2446, 4404, 7555, 7556, 1492, 833, 1466, 7557, 2717, 3544, 1641, 2829, 7558, 1526, 1272, 3652, # 4934 - 4142, 1686, 1794, 416, 2556, 1902, 1953, 1803, 7559, 3773, 2785, 3774, 1159, 2316, 7560, 2867, # 4950 - 4405, 1610, 1584, 3036, 2419, 2754, 443, 3269, 1163, 3136, 7561, 7562, 3926, 7563, 4143, 2499, # 4966 - 3037, 4406, 3927, 3137, 2103, 1647, 3545, 2010, 1872, 4144, 7564, 4145, 431, 3438, 7565, 250, # 4982 - 97, 81, 4146, 7566, 1648, 1850, 1558, 160, 848, 7567, 866, 740, 1694, 7568, 2201, 2830, # 4998 - 3195, 4147, 4407, 3653, 1687, 950, 2472, 426, 469, 3196, 3654, 3655, 3928, 7569, 7570, 1188, # 5014 - 424, 1995, 861, 3546, 4148, 3775, 2202, 2685, 168, 1235, 3547, 4149, 7571, 2086, 1674, 4408, # 5030 - 3337, 3270, 220, 2557, 1009, 7572, 3776, 670, 2992, 332, 1208, 717, 7573, 7574, 3548, 2447, # 5046 - 3929, 3338, 7575, 513, 7576, 1209, 2868, 3339, 3138, 4409, 1080, 7577, 7578, 7579, 7580, 2527, # 5062 - 3656, 3549, 815, 1587, 3930, 3931, 7581, 3550, 3439, 3777, 1254, 4410, 1328, 3038, 1390, 3932, # 5078 - 1741, 3933, 3778, 3934, 7582, 236, 3779, 2448, 3271, 7583, 7584, 3657, 3780, 1273, 3781, 4411, # 5094 - 7585, 308, 7586, 4412, 245, 4413, 1851, 2473, 1307, 2575, 430, 715, 2136, 2449, 7587, 270, # 5110 - 199, 2869, 3935, 7588, 3551, 2718, 1753, 761, 1754, 725, 1661, 1840, 4414, 3440, 3658, 7589, # 5126 - 7590, 587, 14, 3272, 227, 2598, 326, 480, 2265, 943, 2755, 3552, 291, 650, 1883, 7591, # 5142 - 1702, 1226, 102, 1547, 62, 3441, 904, 4415, 3442, 1164, 4150, 7592, 7593, 1224, 1548, 2756, # 5158 - 391, 498, 1493, 7594, 1386, 1419, 7595, 2055, 1177, 4416, 813, 880, 1081, 2363, 566, 1145, # 5174 - 4417, 2286, 1001, 1035, 2558, 2599, 2238, 394, 1286, 7596, 7597, 2068, 7598, 86, 1494, 1730, # 5190 - 3936, 491, 1588, 745, 897, 2948, 843, 3340, 3937, 2757, 2870, 3273, 1768, 998, 2217, 2069, # 5206 - 397, 1826, 1195, 1969, 3659, 2993, 3341, 284, 7599, 3782, 2500, 2137, 2119, 1903, 7600, 3938, # 5222 - 2150, 3939, 4151, 1036, 3443, 1904, 114, 2559, 4152, 209, 1527, 7601, 7602, 2949, 2831, 2625, # 5238 - 2385, 2719, 3139, 812, 2560, 7603, 3274, 7604, 1559, 737, 1884, 3660, 1210, 885, 28, 2686, # 5254 - 3553, 3783, 7605, 4153, 1004, 1779, 4418, 7606, 346, 1981, 2218, 2687, 4419, 3784, 1742, 797, # 5270 - 1642, 3940, 1933, 1072, 1384, 2151, 896, 3941, 3275, 3661, 3197, 2871, 3554, 7607, 2561, 1958, # 5286 - 4420, 2450, 1785, 7608, 7609, 7610, 3942, 4154, 1005, 1308, 3662, 4155, 2720, 4421, 4422, 1528, # 5302 - 2600, 161, 1178, 4156, 1982, 987, 4423, 1101, 4157, 631, 3943, 1157, 3198, 2420, 1343, 1241, # 5318 - 1016, 2239, 2562, 372, 877, 2339, 2501, 1160, 555, 1934, 911, 3944, 7611, 466, 1170, 169, # 5334 - 1051, 2907, 2688, 3663, 2474, 2994, 1182, 2011, 2563, 1251, 2626, 7612, 992, 2340, 3444, 1540, # 5350 - 2721, 1201, 2070, 2401, 1996, 2475, 7613, 4424, 528, 1922, 2188, 1503, 1873, 1570, 2364, 3342, # 5366 - 3276, 7614, 557, 1073, 7615, 1827, 3445, 2087, 2266, 3140, 3039, 3084, 767, 3085, 2786, 4425, # 5382 - 1006, 4158, 4426, 2341, 1267, 2176, 3664, 3199, 778, 3945, 3200, 2722, 1597, 2657, 7616, 4427, # 5398 - 7617, 3446, 7618, 7619, 7620, 3277, 2689, 1433, 3278, 131, 95, 1504, 3946, 723, 4159, 3141, # 5414 - 1841, 3555, 2758, 2189, 3947, 2027, 2104, 3665, 7621, 2995, 3948, 1218, 7622, 3343, 3201, 3949, # 5430 - 4160, 2576, 248, 1634, 3785, 912, 7623, 2832, 3666, 3040, 3786, 654, 53, 7624, 2996, 7625, # 5446 - 1688, 4428, 777, 3447, 1032, 3950, 1425, 7626, 191, 820, 2120, 2833, 971, 4429, 931, 3202, # 5462 - 135, 664, 783, 3787, 1997, 772, 2908, 1935, 3951, 3788, 4430, 2909, 3203, 282, 2723, 640, # 5478 - 1372, 3448, 1127, 922, 325, 3344, 7627, 7628, 711, 2044, 7629, 7630, 3952, 2219, 2787, 1936, # 5494 - 3953, 3345, 2220, 2251, 3789, 2300, 7631, 4431, 3790, 1258, 3279, 3954, 3204, 2138, 2950, 3955, # 5510 - 3956, 7632, 2221, 258, 3205, 4432, 101, 1227, 7633, 3280, 1755, 7634, 1391, 3281, 7635, 2910, # 5526 - 2056, 893, 7636, 7637, 7638, 1402, 4161, 2342, 7639, 7640, 3206, 3556, 7641, 7642, 878, 1325, # 5542 - 1780, 2788, 4433, 259, 1385, 2577, 744, 1183, 2267, 4434, 7643, 3957, 2502, 7644, 684, 1024, # 5558 - 4162, 7645, 472, 3557, 3449, 1165, 3282, 3958, 3959, 322, 2152, 881, 455, 1695, 1152, 1340, # 5574 - 660, 554, 2153, 4435, 1058, 4436, 4163, 830, 1065, 3346, 3960, 4437, 1923, 7646, 1703, 1918, # 5590 - 7647, 932, 2268, 122, 7648, 4438, 947, 677, 7649, 3791, 2627, 297, 1905, 1924, 2269, 4439, # 5606 - 2317, 3283, 7650, 7651, 4164, 7652, 4165, 84, 4166, 112, 989, 7653, 547, 1059, 3961, 701, # 5622 - 3558, 1019, 7654, 4167, 7655, 3450, 942, 639, 457, 2301, 2451, 993, 2951, 407, 851, 494, # 5638 - 4440, 3347, 927, 7656, 1237, 7657, 2421, 3348, 573, 4168, 680, 921, 2911, 1279, 1874, 285, # 5654 - 790, 1448, 1983, 719, 2167, 7658, 7659, 4441, 3962, 3963, 1649, 7660, 1541, 563, 7661, 1077, # 5670 - 7662, 3349, 3041, 3451, 511, 2997, 3964, 3965, 3667, 3966, 1268, 2564, 3350, 3207, 4442, 4443, # 5686 - 7663, 535, 1048, 1276, 1189, 2912, 2028, 3142, 1438, 1373, 2834, 2952, 1134, 2012, 7664, 4169, # 5702 - 1238, 2578, 3086, 1259, 7665, 700, 7666, 2953, 3143, 3668, 4170, 7667, 4171, 1146, 1875, 1906, # 5718 - 4444, 2601, 3967, 781, 2422, 132, 1589, 203, 147, 273, 2789, 2402, 898, 1786, 2154, 3968, # 5734 - 3969, 7668, 3792, 2790, 7669, 7670, 4445, 4446, 7671, 3208, 7672, 1635, 3793, 965, 7673, 1804, # 5750 - 2690, 1516, 3559, 1121, 1082, 1329, 3284, 3970, 1449, 3794, 65, 1128, 2835, 2913, 2759, 1590, # 5766 - 3795, 7674, 7675, 12, 2658, 45, 976, 2579, 3144, 4447, 517, 2528, 1013, 1037, 3209, 7676, # 5782 - 3796, 2836, 7677, 3797, 7678, 3452, 7679, 2602, 614, 1998, 2318, 3798, 3087, 2724, 2628, 7680, # 5798 - 2580, 4172, 599, 1269, 7681, 1810, 3669, 7682, 2691, 3088, 759, 1060, 489, 1805, 3351, 3285, # 5814 - 1358, 7683, 7684, 2386, 1387, 1215, 2629, 2252, 490, 7685, 7686, 4173, 1759, 2387, 2343, 7687, # 5830 - 4448, 3799, 1907, 3971, 2630, 1806, 3210, 4449, 3453, 3286, 2760, 2344, 874, 7688, 7689, 3454, # 5846 - 3670, 1858, 91, 2914, 3671, 3042, 3800, 4450, 7690, 3145, 3972, 2659, 7691, 3455, 1202, 1403, # 5862 - 3801, 2954, 2529, 1517, 2503, 4451, 3456, 2504, 7692, 4452, 7693, 2692, 1885, 1495, 1731, 3973, # 5878 - 2365, 4453, 7694, 2029, 7695, 7696, 3974, 2693, 1216, 237, 2581, 4174, 2319, 3975, 3802, 4454, # 5894 - 4455, 2694, 3560, 3457, 445, 4456, 7697, 7698, 7699, 7700, 2761, 61, 3976, 3672, 1822, 3977, # 5910 - 7701, 687, 2045, 935, 925, 405, 2660, 703, 1096, 1859, 2725, 4457, 3978, 1876, 1367, 2695, # 5926 - 3352, 918, 2105, 1781, 2476, 334, 3287, 1611, 1093, 4458, 564, 3146, 3458, 3673, 3353, 945, # 5942 - 2631, 2057, 4459, 7702, 1925, 872, 4175, 7703, 3459, 2696, 3089, 349, 4176, 3674, 3979, 4460, # 5958 - 3803, 4177, 3675, 2155, 3980, 4461, 4462, 4178, 4463, 2403, 2046, 782, 3981, 400, 251, 4179, # 5974 - 1624, 7704, 7705, 277, 3676, 299, 1265, 476, 1191, 3804, 2121, 4180, 4181, 1109, 205, 7706, # 5990 - 2582, 1000, 2156, 3561, 1860, 7707, 7708, 7709, 4464, 7710, 4465, 2565, 107, 2477, 2157, 3982, # 6006 - 3460, 3147, 7711, 1533, 541, 1301, 158, 753, 4182, 2872, 3562, 7712, 1696, 370, 1088, 4183, # 6022 - 4466, 3563, 579, 327, 440, 162, 2240, 269, 1937, 1374, 3461, 968, 3043, 56, 1396, 3090, # 6038 - 2106, 3288, 3354, 7713, 1926, 2158, 4467, 2998, 7714, 3564, 7715, 7716, 3677, 4468, 2478, 7717, # 6054 - 2791, 7718, 1650, 4469, 7719, 2603, 7720, 7721, 3983, 2661, 3355, 1149, 3356, 3984, 3805, 3985, # 6070 - 7722, 1076, 49, 7723, 951, 3211, 3289, 3290, 450, 2837, 920, 7724, 1811, 2792, 2366, 4184, # 6086 - 1908, 1138, 2367, 3806, 3462, 7725, 3212, 4470, 1909, 1147, 1518, 2423, 4471, 3807, 7726, 4472, # 6102 - 2388, 2604, 260, 1795, 3213, 7727, 7728, 3808, 3291, 708, 7729, 3565, 1704, 7730, 3566, 1351, # 6118 - 1618, 3357, 2999, 1886, 944, 4185, 3358, 4186, 3044, 3359, 4187, 7731, 3678, 422, 413, 1714, # 6134 - 3292, 500, 2058, 2345, 4188, 2479, 7732, 1344, 1910, 954, 7733, 1668, 7734, 7735, 3986, 2404, # 6150 - 4189, 3567, 3809, 4190, 7736, 2302, 1318, 2505, 3091, 133, 3092, 2873, 4473, 629, 31, 2838, # 6166 - 2697, 3810, 4474, 850, 949, 4475, 3987, 2955, 1732, 2088, 4191, 1496, 1852, 7737, 3988, 620, # 6182 - 3214, 981, 1242, 3679, 3360, 1619, 3680, 1643, 3293, 2139, 2452, 1970, 1719, 3463, 2168, 7738, # 6198 - 3215, 7739, 7740, 3361, 1828, 7741, 1277, 4476, 1565, 2047, 7742, 1636, 3568, 3093, 7743, 869, # 6214 - 2839, 655, 3811, 3812, 3094, 3989, 3000, 3813, 1310, 3569, 4477, 7744, 7745, 7746, 1733, 558, # 6230 - 4478, 3681, 335, 1549, 3045, 1756, 4192, 3682, 1945, 3464, 1829, 1291, 1192, 470, 2726, 2107, # 6246 - 2793, 913, 1054, 3990, 7747, 1027, 7748, 3046, 3991, 4479, 982, 2662, 3362, 3148, 3465, 3216, # 6262 - 3217, 1946, 2794, 7749, 571, 4480, 7750, 1830, 7751, 3570, 2583, 1523, 2424, 7752, 2089, 984, # 6278 - 4481, 3683, 1959, 7753, 3684, 852, 923, 2795, 3466, 3685, 969, 1519, 999, 2048, 2320, 1705, # 6294 - 7754, 3095, 615, 1662, 151, 597, 3992, 2405, 2321, 1049, 275, 4482, 3686, 4193, 568, 3687, # 6310 - 3571, 2480, 4194, 3688, 7755, 2425, 2270, 409, 3218, 7756, 1566, 2874, 3467, 1002, 769, 2840, # 6326 - 194, 2090, 3149, 3689, 2222, 3294, 4195, 628, 1505, 7757, 7758, 1763, 2177, 3001, 3993, 521, # 6342 - 1161, 2584, 1787, 2203, 2406, 4483, 3994, 1625, 4196, 4197, 412, 42, 3096, 464, 7759, 2632, # 6358 - 4484, 3363, 1760, 1571, 2875, 3468, 2530, 1219, 2204, 3814, 2633, 2140, 2368, 4485, 4486, 3295, # 6374 - 1651, 3364, 3572, 7760, 7761, 3573, 2481, 3469, 7762, 3690, 7763, 7764, 2271, 2091, 460, 7765, # 6390 - 4487, 7766, 3002, 962, 588, 3574, 289, 3219, 2634, 1116, 52, 7767, 3047, 1796, 7768, 7769, # 6406 - 7770, 1467, 7771, 1598, 1143, 3691, 4198, 1984, 1734, 1067, 4488, 1280, 3365, 465, 4489, 1572, # 6422 - 510, 7772, 1927, 2241, 1812, 1644, 3575, 7773, 4490, 3692, 7774, 7775, 2663, 1573, 1534, 7776, # 6438 - 7777, 4199, 536, 1807, 1761, 3470, 3815, 3150, 2635, 7778, 7779, 7780, 4491, 3471, 2915, 1911, # 6454 - 2796, 7781, 3296, 1122, 377, 3220, 7782, 360, 7783, 7784, 4200, 1529, 551, 7785, 2059, 3693, # 6470 - 1769, 2426, 7786, 2916, 4201, 3297, 3097, 2322, 2108, 2030, 4492, 1404, 136, 1468, 1479, 672, # 6486 - 1171, 3221, 2303, 271, 3151, 7787, 2762, 7788, 2049, 678, 2727, 865, 1947, 4493, 7789, 2013, # 6502 - 3995, 2956, 7790, 2728, 2223, 1397, 3048, 3694, 4494, 4495, 1735, 2917, 3366, 3576, 7791, 3816, # 6518 - 509, 2841, 2453, 2876, 3817, 7792, 7793, 3152, 3153, 4496, 4202, 2531, 4497, 2304, 1166, 1010, # 6534 - 552, 681, 1887, 7794, 7795, 2957, 2958, 3996, 1287, 1596, 1861, 3154, 358, 453, 736, 175, # 6550 - 478, 1117, 905, 1167, 1097, 7796, 1853, 1530, 7797, 1706, 7798, 2178, 3472, 2287, 3695, 3473, # 6566 - 3577, 4203, 2092, 4204, 7799, 3367, 1193, 2482, 4205, 1458, 2190, 2205, 1862, 1888, 1421, 3298, # 6582 - 2918, 3049, 2179, 3474, 595, 2122, 7800, 3997, 7801, 7802, 4206, 1707, 2636, 223, 3696, 1359, # 6598 - 751, 3098, 183, 3475, 7803, 2797, 3003, 419, 2369, 633, 704, 3818, 2389, 241, 7804, 7805, # 6614 - 7806, 838, 3004, 3697, 2272, 2763, 2454, 3819, 1938, 2050, 3998, 1309, 3099, 2242, 1181, 7807, # 6630 - 1136, 2206, 3820, 2370, 1446, 4207, 2305, 4498, 7808, 7809, 4208, 1055, 2605, 484, 3698, 7810, # 6646 - 3999, 625, 4209, 2273, 3368, 1499, 4210, 4000, 7811, 4001, 4211, 3222, 2274, 2275, 3476, 7812, # 6662 - 7813, 2764, 808, 2606, 3699, 3369, 4002, 4212, 3100, 2532, 526, 3370, 3821, 4213, 955, 7814, # 6678 - 1620, 4214, 2637, 2427, 7815, 1429, 3700, 1669, 1831, 994, 928, 7816, 3578, 1260, 7817, 7818, # 6694 - 7819, 1948, 2288, 741, 2919, 1626, 4215, 2729, 2455, 867, 1184, 362, 3371, 1392, 7820, 7821, # 6710 - 4003, 4216, 1770, 1736, 3223, 2920, 4499, 4500, 1928, 2698, 1459, 1158, 7822, 3050, 3372, 2877, # 6726 - 1292, 1929, 2506, 2842, 3701, 1985, 1187, 2071, 2014, 2607, 4217, 7823, 2566, 2507, 2169, 3702, # 6742 - 2483, 3299, 7824, 3703, 4501, 7825, 7826, 666, 1003, 3005, 1022, 3579, 4218, 7827, 4502, 1813, # 6758 - 2253, 574, 3822, 1603, 295, 1535, 705, 3823, 4219, 283, 858, 417, 7828, 7829, 3224, 4503, # 6774 - 4504, 3051, 1220, 1889, 1046, 2276, 2456, 4004, 1393, 1599, 689, 2567, 388, 4220, 7830, 2484, # 6790 - 802, 7831, 2798, 3824, 2060, 1405, 2254, 7832, 4505, 3825, 2109, 1052, 1345, 3225, 1585, 7833, # 6806 - 809, 7834, 7835, 7836, 575, 2730, 3477, 956, 1552, 1469, 1144, 2323, 7837, 2324, 1560, 2457, # 6822 - 3580, 3226, 4005, 616, 2207, 3155, 2180, 2289, 7838, 1832, 7839, 3478, 4506, 7840, 1319, 3704, # 6838 - 3705, 1211, 3581, 1023, 3227, 1293, 2799, 7841, 7842, 7843, 3826, 607, 2306, 3827, 762, 2878, # 6854 - 1439, 4221, 1360, 7844, 1485, 3052, 7845, 4507, 1038, 4222, 1450, 2061, 2638, 4223, 1379, 4508, # 6870 - 2585, 7846, 7847, 4224, 1352, 1414, 2325, 2921, 1172, 7848, 7849, 3828, 3829, 7850, 1797, 1451, # 6886 - 7851, 7852, 7853, 7854, 2922, 4006, 4007, 2485, 2346, 411, 4008, 4009, 3582, 3300, 3101, 4509, # 6902 - 1561, 2664, 1452, 4010, 1375, 7855, 7856, 47, 2959, 316, 7857, 1406, 1591, 2923, 3156, 7858, # 6918 - 1025, 2141, 3102, 3157, 354, 2731, 884, 2224, 4225, 2407, 508, 3706, 726, 3583, 996, 2428, # 6934 - 3584, 729, 7859, 392, 2191, 1453, 4011, 4510, 3707, 7860, 7861, 2458, 3585, 2608, 1675, 2800, # 6950 - 919, 2347, 2960, 2348, 1270, 4511, 4012, 73, 7862, 7863, 647, 7864, 3228, 2843, 2255, 1550, # 6966 - 1346, 3006, 7865, 1332, 883, 3479, 7866, 7867, 7868, 7869, 3301, 2765, 7870, 1212, 831, 1347, # 6982 - 4226, 4512, 2326, 3830, 1863, 3053, 720, 3831, 4513, 4514, 3832, 7871, 4227, 7872, 7873, 4515, # 6998 - 7874, 7875, 1798, 4516, 3708, 2609, 4517, 3586, 1645, 2371, 7876, 7877, 2924, 669, 2208, 2665, # 7014 - 2429, 7878, 2879, 7879, 7880, 1028, 3229, 7881, 4228, 2408, 7882, 2256, 1353, 7883, 7884, 4518, # 7030 - 3158, 518, 7885, 4013, 7886, 4229, 1960, 7887, 2142, 4230, 7888, 7889, 3007, 2349, 2350, 3833, # 7046 - 516, 1833, 1454, 4014, 2699, 4231, 4519, 2225, 2610, 1971, 1129, 3587, 7890, 2766, 7891, 2961, # 7062 - 1422, 577, 1470, 3008, 1524, 3373, 7892, 7893, 432, 4232, 3054, 3480, 7894, 2586, 1455, 2508, # 7078 - 2226, 1972, 1175, 7895, 1020, 2732, 4015, 3481, 4520, 7896, 2733, 7897, 1743, 1361, 3055, 3482, # 7094 - 2639, 4016, 4233, 4521, 2290, 895, 924, 4234, 2170, 331, 2243, 3056, 166, 1627, 3057, 1098, # 7110 - 7898, 1232, 2880, 2227, 3374, 4522, 657, 403, 1196, 2372, 542, 3709, 3375, 1600, 4235, 3483, # 7126 - 7899, 4523, 2767, 3230, 576, 530, 1362, 7900, 4524, 2533, 2666, 3710, 4017, 7901, 842, 3834, # 7142 - 7902, 2801, 2031, 1014, 4018, 213, 2700, 3376, 665, 621, 4236, 7903, 3711, 2925, 2430, 7904, # 7158 - 2431, 3302, 3588, 3377, 7905, 4237, 2534, 4238, 4525, 3589, 1682, 4239, 3484, 1380, 7906, 724, # 7174 - 2277, 600, 1670, 7907, 1337, 1233, 4526, 3103, 2244, 7908, 1621, 4527, 7909, 651, 4240, 7910, # 7190 - 1612, 4241, 2611, 7911, 2844, 7912, 2734, 2307, 3058, 7913, 716, 2459, 3059, 174, 1255, 2701, # 7206 - 4019, 3590, 548, 1320, 1398, 728, 4020, 1574, 7914, 1890, 1197, 3060, 4021, 7915, 3061, 3062, # 7222 - 3712, 3591, 3713, 747, 7916, 635, 4242, 4528, 7917, 7918, 7919, 4243, 7920, 7921, 4529, 7922, # 7238 - 3378, 4530, 2432, 451, 7923, 3714, 2535, 2072, 4244, 2735, 4245, 4022, 7924, 1764, 4531, 7925, # 7254 - 4246, 350, 7926, 2278, 2390, 2486, 7927, 4247, 4023, 2245, 1434, 4024, 488, 4532, 458, 4248, # 7270 - 4025, 3715, 771, 1330, 2391, 3835, 2568, 3159, 2159, 2409, 1553, 2667, 3160, 4249, 7928, 2487, # 7286 - 2881, 2612, 1720, 2702, 4250, 3379, 4533, 7929, 2536, 4251, 7930, 3231, 4252, 2768, 7931, 2015, # 7302 - 2736, 7932, 1155, 1017, 3716, 3836, 7933, 3303, 2308, 201, 1864, 4253, 1430, 7934, 4026, 7935, # 7318 - 7936, 7937, 7938, 7939, 4254, 1604, 7940, 414, 1865, 371, 2587, 4534, 4535, 3485, 2016, 3104, # 7334 - 4536, 1708, 960, 4255, 887, 389, 2171, 1536, 1663, 1721, 7941, 2228, 4027, 2351, 2926, 1580, # 7350 - 7942, 7943, 7944, 1744, 7945, 2537, 4537, 4538, 7946, 4539, 7947, 2073, 7948, 7949, 3592, 3380, # 7366 - 2882, 4256, 7950, 4257, 2640, 3381, 2802, 673, 2703, 2460, 709, 3486, 4028, 3593, 4258, 7951, # 7382 - 1148, 502, 634, 7952, 7953, 1204, 4540, 3594, 1575, 4541, 2613, 3717, 7954, 3718, 3105, 948, # 7398 - 3232, 121, 1745, 3837, 1110, 7955, 4259, 3063, 2509, 3009, 4029, 3719, 1151, 1771, 3838, 1488, # 7414 - 4030, 1986, 7956, 2433, 3487, 7957, 7958, 2093, 7959, 4260, 3839, 1213, 1407, 2803, 531, 2737, # 7430 - 2538, 3233, 1011, 1537, 7960, 2769, 4261, 3106, 1061, 7961, 3720, 3721, 1866, 2883, 7962, 2017, # 7446 - 120, 4262, 4263, 2062, 3595, 3234, 2309, 3840, 2668, 3382, 1954, 4542, 7963, 7964, 3488, 1047, # 7462 - 2704, 1266, 7965, 1368, 4543, 2845, 649, 3383, 3841, 2539, 2738, 1102, 2846, 2669, 7966, 7967, # 7478 - 1999, 7968, 1111, 3596, 2962, 7969, 2488, 3842, 3597, 2804, 1854, 3384, 3722, 7970, 7971, 3385, # 7494 - 2410, 2884, 3304, 3235, 3598, 7972, 2569, 7973, 3599, 2805, 4031, 1460, 856, 7974, 3600, 7975, # 7510 - 2885, 2963, 7976, 2886, 3843, 7977, 4264, 632, 2510, 875, 3844, 1697, 3845, 2291, 7978, 7979, # 7526 - 4544, 3010, 1239, 580, 4545, 4265, 7980, 914, 936, 2074, 1190, 4032, 1039, 2123, 7981, 7982, # 7542 - 7983, 3386, 1473, 7984, 1354, 4266, 3846, 7985, 2172, 3064, 4033, 915, 3305, 4267, 4268, 3306, # 7558 - 1605, 1834, 7986, 2739, 398, 3601, 4269, 3847, 4034, 328, 1912, 2847, 4035, 3848, 1331, 4270, # 7574 - 3011, 937, 4271, 7987, 3602, 4036, 4037, 3387, 2160, 4546, 3388, 524, 742, 538, 3065, 1012, # 7590 - 7988, 7989, 3849, 2461, 7990, 658, 1103, 225, 3850, 7991, 7992, 4547, 7993, 4548, 7994, 3236, # 7606 - 1243, 7995, 4038, 963, 2246, 4549, 7996, 2705, 3603, 3161, 7997, 7998, 2588, 2327, 7999, 4550, # 7622 - 8000, 8001, 8002, 3489, 3307, 957, 3389, 2540, 2032, 1930, 2927, 2462, 870, 2018, 3604, 1746, # 7638 - 2770, 2771, 2434, 2463, 8003, 3851, 8004, 3723, 3107, 3724, 3490, 3390, 3725, 8005, 1179, 3066, # 7654 - 8006, 3162, 2373, 4272, 3726, 2541, 3163, 3108, 2740, 4039, 8007, 3391, 1556, 2542, 2292, 977, # 7670 - 2887, 2033, 4040, 1205, 3392, 8008, 1765, 3393, 3164, 2124, 1271, 1689, 714, 4551, 3491, 8009, # 7686 - 2328, 3852, 533, 4273, 3605, 2181, 617, 8010, 2464, 3308, 3492, 2310, 8011, 8012, 3165, 8013, # 7702 - 8014, 3853, 1987, 618, 427, 2641, 3493, 3394, 8015, 8016, 1244, 1690, 8017, 2806, 4274, 4552, # 7718 - 8018, 3494, 8019, 8020, 2279, 1576, 473, 3606, 4275, 3395, 972, 8021, 3607, 8022, 3067, 8023, # 7734 - 8024, 4553, 4554, 8025, 3727, 4041, 4042, 8026, 153, 4555, 356, 8027, 1891, 2888, 4276, 2143, # 7750 - 408, 803, 2352, 8028, 3854, 8029, 4277, 1646, 2570, 2511, 4556, 4557, 3855, 8030, 3856, 4278, # 7766 - 8031, 2411, 3396, 752, 8032, 8033, 1961, 2964, 8034, 746, 3012, 2465, 8035, 4279, 3728, 698, # 7782 - 4558, 1892, 4280, 3608, 2543, 4559, 3609, 3857, 8036, 3166, 3397, 8037, 1823, 1302, 4043, 2706, # 7798 - 3858, 1973, 4281, 8038, 4282, 3167, 823, 1303, 1288, 1236, 2848, 3495, 4044, 3398, 774, 3859, # 7814 - 8039, 1581, 4560, 1304, 2849, 3860, 4561, 8040, 2435, 2161, 1083, 3237, 4283, 4045, 4284, 344, # 7830 - 1173, 288, 2311, 454, 1683, 8041, 8042, 1461, 4562, 4046, 2589, 8043, 8044, 4563, 985, 894, # 7846 - 8045, 3399, 3168, 8046, 1913, 2928, 3729, 1988, 8047, 2110, 1974, 8048, 4047, 8049, 2571, 1194, # 7862 - 425, 8050, 4564, 3169, 1245, 3730, 4285, 8051, 8052, 2850, 8053, 636, 4565, 1855, 3861, 760, # 7878 - 1799, 8054, 4286, 2209, 1508, 4566, 4048, 1893, 1684, 2293, 8055, 8056, 8057, 4287, 4288, 2210, # 7894 - 479, 8058, 8059, 832, 8060, 4049, 2489, 8061, 2965, 2490, 3731, 990, 3109, 627, 1814, 2642, # 7910 - 4289, 1582, 4290, 2125, 2111, 3496, 4567, 8062, 799, 4291, 3170, 8063, 4568, 2112, 1737, 3013, # 7926 - 1018, 543, 754, 4292, 3309, 1676, 4569, 4570, 4050, 8064, 1489, 8065, 3497, 8066, 2614, 2889, # 7942 - 4051, 8067, 8068, 2966, 8069, 8070, 8071, 8072, 3171, 4571, 4572, 2182, 1722, 8073, 3238, 3239, # 7958 - 1842, 3610, 1715, 481, 365, 1975, 1856, 8074, 8075, 1962, 2491, 4573, 8076, 2126, 3611, 3240, # 7974 - 433, 1894, 2063, 2075, 8077, 602, 2741, 8078, 8079, 8080, 8081, 8082, 3014, 1628, 3400, 8083, # 7990 - 3172, 4574, 4052, 2890, 4575, 2512, 8084, 2544, 2772, 8085, 8086, 8087, 3310, 4576, 2891, 8088, # 8006 - 4577, 8089, 2851, 4578, 4579, 1221, 2967, 4053, 2513, 8090, 8091, 8092, 1867, 1989, 8093, 8094, # 8022 - 8095, 1895, 8096, 8097, 4580, 1896, 4054, 318, 8098, 2094, 4055, 4293, 8099, 8100, 485, 8101, # 8038 - 938, 3862, 553, 2670, 116, 8102, 3863, 3612, 8103, 3498, 2671, 2773, 3401, 3311, 2807, 8104, # 8054 - 3613, 2929, 4056, 1747, 2930, 2968, 8105, 8106, 207, 8107, 8108, 2672, 4581, 2514, 8109, 3015, # 8070 - 890, 3614, 3864, 8110, 1877, 3732, 3402, 8111, 2183, 2353, 3403, 1652, 8112, 8113, 8114, 941, # 8086 - 2294, 208, 3499, 4057, 2019, 330, 4294, 3865, 2892, 2492, 3733, 4295, 8115, 8116, 8117, 8118, # 8102 -) -# fmt: on diff --git a/spaces/tjburns/ask_marcus_aurelius/.venv/lib/python3.10/site-packages/pip/_vendor/rich/json.py b/spaces/tjburns/ask_marcus_aurelius/.venv/lib/python3.10/site-packages/pip/_vendor/rich/json.py deleted file mode 100644 index 23583871e8f2a466abec0bce1397fb495b9c212d..0000000000000000000000000000000000000000 --- a/spaces/tjburns/ask_marcus_aurelius/.venv/lib/python3.10/site-packages/pip/_vendor/rich/json.py +++ /dev/null @@ -1,140 +0,0 @@ -from json import loads, dumps -from typing import Any, Callable, Optional, Union - -from .text import Text -from .highlighter import JSONHighlighter, NullHighlighter - - -class JSON: - """A renderable which pretty prints JSON. - - Args: - json (str): JSON encoded data. - indent (Union[None, int, str], optional): Number of characters to indent by. Defaults to 2. - highlight (bool, optional): Enable highlighting. Defaults to True. - skip_keys (bool, optional): Skip keys not of a basic type. Defaults to False. - ensure_ascii (bool, optional): Escape all non-ascii characters. Defaults to False. - check_circular (bool, optional): Check for circular references. Defaults to True. - allow_nan (bool, optional): Allow NaN and Infinity values. Defaults to True. - default (Callable, optional): A callable that converts values that can not be encoded - in to something that can be JSON encoded. Defaults to None. - sort_keys (bool, optional): Sort dictionary keys. Defaults to False. - """ - - def __init__( - self, - json: str, - indent: Union[None, int, str] = 2, - highlight: bool = True, - skip_keys: bool = False, - ensure_ascii: bool = True, - check_circular: bool = True, - allow_nan: bool = True, - default: Optional[Callable[[Any], Any]] = None, - sort_keys: bool = False, - ) -> None: - data = loads(json) - json = dumps( - data, - indent=indent, - skipkeys=skip_keys, - ensure_ascii=ensure_ascii, - check_circular=check_circular, - allow_nan=allow_nan, - default=default, - sort_keys=sort_keys, - ) - highlighter = JSONHighlighter() if highlight else NullHighlighter() - self.text = highlighter(json) - self.text.no_wrap = True - self.text.overflow = None - - @classmethod - def from_data( - cls, - data: Any, - indent: Union[None, int, str] = 2, - highlight: bool = True, - skip_keys: bool = False, - ensure_ascii: bool = True, - check_circular: bool = True, - allow_nan: bool = True, - default: Optional[Callable[[Any], Any]] = None, - sort_keys: bool = False, - ) -> "JSON": - """Encodes a JSON object from arbitrary data. - - Args: - data (Any): An object that may be encoded in to JSON - indent (Union[None, int, str], optional): Number of characters to indent by. Defaults to 2. - highlight (bool, optional): Enable highlighting. Defaults to True. - default (Callable, optional): Optional callable which will be called for objects that cannot be serialized. Defaults to None. - skip_keys (bool, optional): Skip keys not of a basic type. Defaults to False. - ensure_ascii (bool, optional): Escape all non-ascii characters. Defaults to False. - check_circular (bool, optional): Check for circular references. Defaults to True. - allow_nan (bool, optional): Allow NaN and Infinity values. Defaults to True. - default (Callable, optional): A callable that converts values that can not be encoded - in to something that can be JSON encoded. Defaults to None. - sort_keys (bool, optional): Sort dictionary keys. Defaults to False. - - Returns: - JSON: New JSON object from the given data. - """ - json_instance: "JSON" = cls.__new__(cls) - json = dumps( - data, - indent=indent, - skipkeys=skip_keys, - ensure_ascii=ensure_ascii, - check_circular=check_circular, - allow_nan=allow_nan, - default=default, - sort_keys=sort_keys, - ) - highlighter = JSONHighlighter() if highlight else NullHighlighter() - json_instance.text = highlighter(json) - json_instance.text.no_wrap = True - json_instance.text.overflow = None - return json_instance - - def __rich__(self) -> Text: - return self.text - - -if __name__ == "__main__": - - import argparse - import sys - - parser = argparse.ArgumentParser(description="Pretty print json") - parser.add_argument( - "path", - metavar="PATH", - help="path to file, or - for stdin", - ) - parser.add_argument( - "-i", - "--indent", - metavar="SPACES", - type=int, - help="Number of spaces in an indent", - default=2, - ) - args = parser.parse_args() - - from pip._vendor.rich.console import Console - - console = Console() - error_console = Console(stderr=True) - - try: - if args.path == "-": - json_data = sys.stdin.read() - else: - with open(args.path, "rt") as json_file: - json_data = json_file.read() - except Exception as error: - error_console.print(f"Unable to read {args.path!r}; {error}") - sys.exit(-1) - - console.print(JSON(json_data, indent=args.indent), soft_wrap=True) diff --git a/spaces/tomofi/ABINet-OCR/transforms.py b/spaces/tomofi/ABINet-OCR/transforms.py deleted file mode 100644 index 5a7042f3368bc832566d5c22d1e18abe5d8547f5..0000000000000000000000000000000000000000 --- a/spaces/tomofi/ABINet-OCR/transforms.py +++ /dev/null @@ -1,329 +0,0 @@ -import math -import numbers -import random - -import cv2 -import numpy as np -from PIL import Image -from torchvision import transforms -from torchvision.transforms import Compose - - -def sample_asym(magnitude, size=None): - return np.random.beta(1, 4, size) * magnitude - -def sample_sym(magnitude, size=None): - return (np.random.beta(4, 4, size=size) - 0.5) * 2 * magnitude - -def sample_uniform(low, high, size=None): - return np.random.uniform(low, high, size=size) - -def get_interpolation(type='random'): - if type == 'random': - choice = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA] - interpolation = choice[random.randint(0, len(choice)-1)] - elif type == 'nearest': interpolation = cv2.INTER_NEAREST - elif type == 'linear': interpolation = cv2.INTER_LINEAR - elif type == 'cubic': interpolation = cv2.INTER_CUBIC - elif type == 'area': interpolation = cv2.INTER_AREA - else: raise TypeError('Interpolation types only nearest, linear, cubic, area are supported!') - return interpolation - -class CVRandomRotation(object): - def __init__(self, degrees=15): - assert isinstance(degrees, numbers.Number), "degree should be a single number." - assert degrees >= 0, "degree must be positive." - self.degrees = degrees - - @staticmethod - def get_params(degrees): - return sample_sym(degrees) - - def __call__(self, img): - angle = self.get_params(self.degrees) - src_h, src_w = img.shape[:2] - M = cv2.getRotationMatrix2D(center=(src_w/2, src_h/2), angle=angle, scale=1.0) - abs_cos, abs_sin = abs(M[0,0]), abs(M[0,1]) - dst_w = int(src_h * abs_sin + src_w * abs_cos) - dst_h = int(src_h * abs_cos + src_w * abs_sin) - M[0, 2] += (dst_w - src_w)/2 - M[1, 2] += (dst_h - src_h)/2 - - flags = get_interpolation() - return cv2.warpAffine(img, M, (dst_w, dst_h), flags=flags, borderMode=cv2.BORDER_REPLICATE) - -class CVRandomAffine(object): - def __init__(self, degrees, translate=None, scale=None, shear=None): - assert isinstance(degrees, numbers.Number), "degree should be a single number." - assert degrees >= 0, "degree must be positive." - self.degrees = degrees - - if translate is not None: - assert isinstance(translate, (tuple, list)) and len(translate) == 2, \ - "translate should be a list or tuple and it must be of length 2." - for t in translate: - if not (0.0 <= t <= 1.0): - raise ValueError("translation values should be between 0 and 1") - self.translate = translate - - if scale is not None: - assert isinstance(scale, (tuple, list)) and len(scale) == 2, \ - "scale should be a list or tuple and it must be of length 2." - for s in scale: - if s <= 0: - raise ValueError("scale values should be positive") - self.scale = scale - - if shear is not None: - if isinstance(shear, numbers.Number): - if shear < 0: - raise ValueError("If shear is a single number, it must be positive.") - self.shear = [shear] - else: - assert isinstance(shear, (tuple, list)) and (len(shear) == 2), \ - "shear should be a list or tuple and it must be of length 2." - self.shear = shear - else: - self.shear = shear - - def _get_inverse_affine_matrix(self, center, angle, translate, scale, shear): - # https://github.com/pytorch/vision/blob/v0.4.0/torchvision/transforms/functional.py#L717 - from numpy import sin, cos, tan - - if isinstance(shear, numbers.Number): - shear = [shear, 0] - - if not isinstance(shear, (tuple, list)) and len(shear) == 2: - raise ValueError( - "Shear should be a single value or a tuple/list containing " + - "two values. Got {}".format(shear)) - - rot = math.radians(angle) - sx, sy = [math.radians(s) for s in shear] - - cx, cy = center - tx, ty = translate - - # RSS without scaling - a = cos(rot - sy) / cos(sy) - b = -cos(rot - sy) * tan(sx) / cos(sy) - sin(rot) - c = sin(rot - sy) / cos(sy) - d = -sin(rot - sy) * tan(sx) / cos(sy) + cos(rot) - - # Inverted rotation matrix with scale and shear - # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1 - M = [d, -b, 0, - -c, a, 0] - M = [x / scale for x in M] - - # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1 - M[2] += M[0] * (-cx - tx) + M[1] * (-cy - ty) - M[5] += M[3] * (-cx - tx) + M[4] * (-cy - ty) - - # Apply center translation: C * RSS^-1 * C^-1 * T^-1 - M[2] += cx - M[5] += cy - return M - - @staticmethod - def get_params(degrees, translate, scale_ranges, shears, height): - angle = sample_sym(degrees) - if translate is not None: - max_dx = translate[0] * height - max_dy = translate[1] * height - translations = (np.round(sample_sym(max_dx)), np.round(sample_sym(max_dy))) - else: - translations = (0, 0) - - if scale_ranges is not None: - scale = sample_uniform(scale_ranges[0], scale_ranges[1]) - else: - scale = 1.0 - - if shears is not None: - if len(shears) == 1: - shear = [sample_sym(shears[0]), 0.] - elif len(shears) == 2: - shear = [sample_sym(shears[0]), sample_sym(shears[1])] - else: - shear = 0.0 - - return angle, translations, scale, shear - - - def __call__(self, img): - src_h, src_w = img.shape[:2] - angle, translate, scale, shear = self.get_params( - self.degrees, self.translate, self.scale, self.shear, src_h) - - M = self._get_inverse_affine_matrix((src_w/2, src_h/2), angle, (0, 0), scale, shear) - M = np.array(M).reshape(2,3) - - startpoints = [(0, 0), (src_w - 1, 0), (src_w - 1, src_h - 1), (0, src_h - 1)] - project = lambda x, y, a, b, c: int(a*x + b*y + c) - endpoints = [(project(x, y, *M[0]), project(x, y, *M[1])) for x, y in startpoints] - - rect = cv2.minAreaRect(np.array(endpoints)) - bbox = cv2.boxPoints(rect).astype(dtype=np.int) - max_x, max_y = bbox[:, 0].max(), bbox[:, 1].max() - min_x, min_y = bbox[:, 0].min(), bbox[:, 1].min() - - dst_w = int(max_x - min_x) - dst_h = int(max_y - min_y) - M[0, 2] += (dst_w - src_w) / 2 - M[1, 2] += (dst_h - src_h) / 2 - - # add translate - dst_w += int(abs(translate[0])) - dst_h += int(abs(translate[1])) - if translate[0] < 0: M[0, 2] += abs(translate[0]) - if translate[1] < 0: M[1, 2] += abs(translate[1]) - - flags = get_interpolation() - return cv2.warpAffine(img, M, (dst_w , dst_h), flags=flags, borderMode=cv2.BORDER_REPLICATE) - -class CVRandomPerspective(object): - def __init__(self, distortion=0.5): - self.distortion = distortion - - def get_params(self, width, height, distortion): - offset_h = sample_asym(distortion * height / 2, size=4).astype(dtype=np.int) - offset_w = sample_asym(distortion * width / 2, size=4).astype(dtype=np.int) - topleft = ( offset_w[0], offset_h[0]) - topright = (width - 1 - offset_w[1], offset_h[1]) - botright = (width - 1 - offset_w[2], height - 1 - offset_h[2]) - botleft = ( offset_w[3], height - 1 - offset_h[3]) - - startpoints = [(0, 0), (width - 1, 0), (width - 1, height - 1), (0, height - 1)] - endpoints = [topleft, topright, botright, botleft] - return np.array(startpoints, dtype=np.float32), np.array(endpoints, dtype=np.float32) - - def __call__(self, img): - height, width = img.shape[:2] - startpoints, endpoints = self.get_params(width, height, self.distortion) - M = cv2.getPerspectiveTransform(startpoints, endpoints) - - # TODO: more robust way to crop image - rect = cv2.minAreaRect(endpoints) - bbox = cv2.boxPoints(rect).astype(dtype=np.int) - max_x, max_y = bbox[:, 0].max(), bbox[:, 1].max() - min_x, min_y = bbox[:, 0].min(), bbox[:, 1].min() - min_x, min_y = max(min_x, 0), max(min_y, 0) - - flags = get_interpolation() - img = cv2.warpPerspective(img, M, (max_x, max_y), flags=flags, borderMode=cv2.BORDER_REPLICATE) - img = img[min_y:, min_x:] - return img - -class CVRescale(object): - - def __init__(self, factor=4, base_size=(128, 512)): - """ Define image scales using gaussian pyramid and rescale image to target scale. - - Args: - factor: the decayed factor from base size, factor=4 keeps target scale by default. - base_size: base size the build the bottom layer of pyramid - """ - if isinstance(factor, numbers.Number): - self.factor = round(sample_uniform(0, factor)) - elif isinstance(factor, (tuple, list)) and len(factor) == 2: - self.factor = round(sample_uniform(factor[0], factor[1])) - else: - raise Exception('factor must be number or list with length 2') - # assert factor is valid - self.base_h, self.base_w = base_size[:2] - - def __call__(self, img): - if self.factor == 0: return img - src_h, src_w = img.shape[:2] - cur_w, cur_h = self.base_w, self.base_h - scale_img = cv2.resize(img, (cur_w, cur_h), interpolation=get_interpolation()) - for _ in range(self.factor): - scale_img = cv2.pyrDown(scale_img) - scale_img = cv2.resize(scale_img, (src_w, src_h), interpolation=get_interpolation()) - return scale_img - -class CVGaussianNoise(object): - def __init__(self, mean=0, var=20): - self.mean = mean - if isinstance(var, numbers.Number): - self.var = max(int(sample_asym(var)), 1) - elif isinstance(var, (tuple, list)) and len(var) == 2: - self.var = int(sample_uniform(var[0], var[1])) - else: - raise Exception('degree must be number or list with length 2') - - def __call__(self, img): - noise = np.random.normal(self.mean, self.var**0.5, img.shape) - img = np.clip(img + noise, 0, 255).astype(np.uint8) - return img - -class CVMotionBlur(object): - def __init__(self, degrees=12, angle=90): - if isinstance(degrees, numbers.Number): - self.degree = max(int(sample_asym(degrees)), 1) - elif isinstance(degrees, (tuple, list)) and len(degrees) == 2: - self.degree = int(sample_uniform(degrees[0], degrees[1])) - else: - raise Exception('degree must be number or list with length 2') - self.angle = sample_uniform(-angle, angle) - - def __call__(self, img): - M = cv2.getRotationMatrix2D((self.degree // 2, self.degree // 2), self.angle, 1) - motion_blur_kernel = np.zeros((self.degree, self.degree)) - motion_blur_kernel[self.degree // 2, :] = 1 - motion_blur_kernel = cv2.warpAffine(motion_blur_kernel, M, (self.degree, self.degree)) - motion_blur_kernel = motion_blur_kernel / self.degree - img = cv2.filter2D(img, -1, motion_blur_kernel) - img = np.clip(img, 0, 255).astype(np.uint8) - return img - -class CVGeometry(object): - def __init__(self, degrees=15, translate=(0.3, 0.3), scale=(0.5, 2.), - shear=(45, 15), distortion=0.5, p=0.5): - self.p = p - type_p = random.random() - if type_p < 0.33: - self.transforms = CVRandomRotation(degrees=degrees) - elif type_p < 0.66: - self.transforms = CVRandomAffine(degrees=degrees, translate=translate, scale=scale, shear=shear) - else: - self.transforms = CVRandomPerspective(distortion=distortion) - - def __call__(self, img): - if random.random() < self.p: - img = np.array(img) - return Image.fromarray(self.transforms(img)) - else: return img - -class CVDeterioration(object): - def __init__(self, var, degrees, factor, p=0.5): - self.p = p - transforms = [] - if var is not None: - transforms.append(CVGaussianNoise(var=var)) - if degrees is not None: - transforms.append(CVMotionBlur(degrees=degrees)) - if factor is not None: - transforms.append(CVRescale(factor=factor)) - - random.shuffle(transforms) - transforms = Compose(transforms) - self.transforms = transforms - - def __call__(self, img): - if random.random() < self.p: - img = np.array(img) - return Image.fromarray(self.transforms(img)) - else: return img - - -class CVColorJitter(object): - def __init__(self, brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1, p=0.5): - self.p = p - self.transforms = transforms.ColorJitter(brightness=brightness, contrast=contrast, - saturation=saturation, hue=hue) - - def __call__(self, img): - if random.random() < self.p: return self.transforms(img) - else: return img diff --git a/spaces/tomofi/MMOCR/configs/_base_/recog_models/crnn_tps.py b/spaces/tomofi/MMOCR/configs/_base_/recog_models/crnn_tps.py deleted file mode 100644 index 9719eb3c521cee55beee1711a73bd29a07d10366..0000000000000000000000000000000000000000 --- a/spaces/tomofi/MMOCR/configs/_base_/recog_models/crnn_tps.py +++ /dev/null @@ -1,18 +0,0 @@ -# model -label_convertor = dict( - type='CTCConvertor', dict_type='DICT36', with_unknown=False, lower=True) - -model = dict( - type='CRNNNet', - preprocessor=dict( - type='TPSPreprocessor', - num_fiducial=20, - img_size=(32, 100), - rectified_img_size=(32, 100), - num_img_channel=1), - backbone=dict(type='VeryDeepVgg', leaky_relu=False, input_channels=1), - encoder=None, - decoder=dict(type='CRNNDecoder', in_channels=512, rnn_flag=True), - loss=dict(type='CTCLoss'), - label_convertor=label_convertor, - pretrained=None) diff --git a/spaces/tomofi/MMOCR/mmocr/models/textrecog/layers/__init__.py b/spaces/tomofi/MMOCR/mmocr/models/textrecog/layers/__init__.py deleted file mode 100644 index c92fef5409c2906645aab25296e390e82a78c02c..0000000000000000000000000000000000000000 --- a/spaces/tomofi/MMOCR/mmocr/models/textrecog/layers/__init__.py +++ /dev/null @@ -1,13 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -from .conv_layer import BasicBlock, Bottleneck -from .dot_product_attention_layer import DotProductAttentionLayer -from .lstm_layer import BidirectionalLSTM -from .position_aware_layer import PositionAwareLayer -from .robust_scanner_fusion_layer import RobustScannerFusionLayer -from .satrn_layers import Adaptive2DPositionalEncoding, SatrnEncoderLayer - -__all__ = [ - 'BidirectionalLSTM', 'Adaptive2DPositionalEncoding', 'BasicBlock', - 'Bottleneck', 'RobustScannerFusionLayer', 'DotProductAttentionLayer', - 'PositionAwareLayer', 'SatrnEncoderLayer' -] diff --git a/spaces/tomofi/MaskTextSpotterV3-OCR/maskrcnn_benchmark/modeling/make_layers.py b/spaces/tomofi/MaskTextSpotterV3-OCR/maskrcnn_benchmark/modeling/make_layers.py deleted file mode 100644 index 049aee6d13ae9d9c17440655cbde0a09a6e21918..0000000000000000000000000000000000000000 --- a/spaces/tomofi/MaskTextSpotterV3-OCR/maskrcnn_benchmark/modeling/make_layers.py +++ /dev/null @@ -1,122 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. -""" -Miscellaneous utility functions -""" - -import torch -from torch import nn -from torch.nn import functional as F -from maskrcnn_benchmark.config import cfg -from maskrcnn_benchmark.layers import Conv2d -from maskrcnn_benchmark.modeling.poolers import Pooler - - -def get_group_gn(dim, dim_per_gp, num_groups): - """get number of groups used by GroupNorm, based on number of channels.""" - assert dim_per_gp == -1 or num_groups == -1, \ - "GroupNorm: can only specify G or C/G." - - if dim_per_gp > 0: - assert dim % dim_per_gp == 0, \ - "dim: {}, dim_per_gp: {}".format(dim, dim_per_gp) - group_gn = dim // dim_per_gp - else: - assert dim % num_groups == 0, \ - "dim: {}, num_groups: {}".format(dim, num_groups) - group_gn = num_groups - - return group_gn - - -def group_norm(out_channels, affine=True, divisor=1): - out_channels = out_channels // divisor - dim_per_gp = cfg.MODEL.GROUP_NORM.DIM_PER_GP // divisor - num_groups = cfg.MODEL.GROUP_NORM.NUM_GROUPS // divisor - eps = cfg.MODEL.GROUP_NORM.EPSILON # default: 1e-5 - return torch.nn.GroupNorm( - get_group_gn(out_channels, dim_per_gp, num_groups), - out_channels, - eps, - affine - ) - - -def make_conv3x3( - in_channels, - out_channels, - dilation=1, - stride=1, - use_gn=False, - use_relu=False, - kaiming_init=True -): - conv = Conv2d( - in_channels, - out_channels, - kernel_size=3, - stride=stride, - padding=dilation, - dilation=dilation, - bias=False if use_gn else True - ) - if kaiming_init: - nn.init.kaiming_normal_( - conv.weight, mode="fan_out", nonlinearity="relu" - ) - else: - torch.nn.init.normal_(conv.weight, std=0.01) - if not use_gn: - nn.init.constant_(conv.bias, 0) - module = [conv,] - if use_gn: - module.append(group_norm(out_channels)) - if use_relu: - module.append(nn.ReLU(inplace=True)) - if len(module) > 1: - return nn.Sequential(*module) - return conv - - -def make_fc(dim_in, hidden_dim, use_gn=False): - ''' - Caffe2 implementation uses XavierFill, which in fact - corresponds to kaiming_uniform_ in PyTorch - ''' - if use_gn: - fc = nn.Linear(dim_in, hidden_dim, bias=False) - nn.init.kaiming_uniform_(fc.weight, a=1) - return nn.Sequential(fc, group_norm(hidden_dim)) - fc = nn.Linear(dim_in, hidden_dim) - nn.init.kaiming_uniform_(fc.weight, a=1) - nn.init.constant_(fc.bias, 0) - return fc - - -def conv_with_kaiming_uniform(use_gn=False, use_relu=False): - def make_conv( - in_channels, out_channels, kernel_size, stride=1, dilation=1 - ): - conv = Conv2d( - in_channels, - out_channels, - kernel_size=kernel_size, - stride=stride, - padding=dilation * (kernel_size - 1) // 2, - dilation=dilation, - bias=False if use_gn else True - ) - # Caffe2 implementation uses XavierFill, which in fact - # corresponds to kaiming_uniform_ in PyTorch - nn.init.kaiming_uniform_(conv.weight, a=1) - if not use_gn: - nn.init.constant_(conv.bias, 0) - module = [conv,] - if use_gn: - module.append(group_norm(out_channels)) - if use_relu: - module.append(nn.ReLU(inplace=True)) - if len(module) > 1: - return nn.Sequential(*module) - return conv - - return make_conv diff --git a/spaces/tomofi/NDLOCR/src/ndl_layout/mmdetection/configs/hrnet/mask_rcnn_hrnetv2p_w40_2x_coco.py b/spaces/tomofi/NDLOCR/src/ndl_layout/mmdetection/configs/hrnet/mask_rcnn_hrnetv2p_w40_2x_coco.py deleted file mode 100644 index 3a2a510689308e556af803968a641dcf2594fe77..0000000000000000000000000000000000000000 --- a/spaces/tomofi/NDLOCR/src/ndl_layout/mmdetection/configs/hrnet/mask_rcnn_hrnetv2p_w40_2x_coco.py +++ /dev/null @@ -1,4 +0,0 @@ -_base_ = './mask_rcnn_hrnetv2p_w40_1x_coco.py' -# learning policy -lr_config = dict(step=[16, 22]) -runner = dict(type='EpochBasedRunner', max_epochs=24) diff --git a/spaces/trttung1610/musicgen/audiocraft/utils/utils.py b/spaces/trttung1610/musicgen/audiocraft/utils/utils.py deleted file mode 100644 index 3135d70e949a058095ef84dd87b49384546c465c..0000000000000000000000000000000000000000 --- a/spaces/trttung1610/musicgen/audiocraft/utils/utils.py +++ /dev/null @@ -1,298 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -from concurrent.futures import ProcessPoolExecutor -from contextlib import contextmanager -from functools import wraps, lru_cache -import hashlib -import json -import logging -from pathlib import Path -import typing as tp - -import flashy -import flashy.distrib -import omegaconf -import torch -from torch.nn.utils.rnn import pad_sequence - - -logger = logging.getLogger(__name__) - - -def model_hash(model: torch.nn.Module) -> str: - """Return a model hash. This should allow us to track regressions in model init - from the logs of past experiments. - """ - hasher = hashlib.sha1() - for p in model.parameters(): - hasher.update(p.data.cpu().numpy().tobytes()) - return hasher.hexdigest() - - -def dict_from_config(cfg: omegaconf.DictConfig) -> dict: - """Convenience function to map an omegaconf configuration to a dictionary. - - Args: - cfg (omegaconf.DictConfig): Original configuration to map to dict. - Returns: - dict: Config as dictionary object. - """ - dct = omegaconf.OmegaConf.to_container(cfg, resolve=True) - assert isinstance(dct, dict) - return dct - - -def random_subset(dataset, max_samples: int, seed: int = 42) -> torch.utils.data.Subset: - if max_samples >= len(dataset): - return dataset - - generator = torch.Generator().manual_seed(seed) - perm = torch.randperm(len(dataset), generator=generator) - return torch.utils.data.Subset(dataset, perm[:max_samples].tolist()) - - -def get_loader(dataset, num_samples: tp.Optional[int], batch_size: int, - num_workers: int, seed: int, **kwargs) -> torch.utils.data.DataLoader: - """Convenience function to load dataset into a dataloader with optional subset sampling. - - Args: - dataset: Dataset to load. - num_samples (Optional[int]): Number of samples to limit subset size. - batch_size (int): Batch size. - num_workers (int): Number of workers for data loading. - seed (int): Random seed. - """ - if num_samples is not None: - dataset = random_subset(dataset, num_samples, seed) - - dataloader = flashy.distrib.loader( - dataset, - batch_size=batch_size, - num_workers=num_workers, - **kwargs - ) - return dataloader - - -def get_dataset_from_loader(dataloader): - dataset = dataloader.dataset - if isinstance(dataset, torch.utils.data.Subset): - return dataset.dataset - else: - return dataset - - -def multinomial(input: torch.Tensor, num_samples: int, replacement=False, *, generator=None): - """torch.multinomial with arbitrary number of dimensions, and number of candidates on the last dimension. - - Args: - input (torch.Tensor): The input tensor containing probabilities. - num_samples (int): Number of samples to draw. - replacement (bool): Whether to draw with replacement or not. - Keywords args: - generator (torch.Generator): A pseudorandom number generator for sampling. - Returns: - torch.Tensor: Last dimension contains num_samples indices - sampled from the multinomial probability distribution - located in the last dimension of tensor input. - """ - input_ = input.reshape(-1, input.shape[-1]) - output_ = torch.multinomial(input_, num_samples=num_samples, replacement=replacement, generator=generator) - output = output_.reshape(*list(input.shape[:-1]), -1) - return output - - -def sample_top_k(probs: torch.Tensor, k: int) -> torch.Tensor: - """Sample next token from top K values along the last dimension of the input probs tensor. - - Args: - probs (torch.Tensor): Input probabilities with token candidates on the last dimension. - k (int): The k in ā€œtop-kā€. - Returns: - torch.Tensor: Sampled tokens. - """ - top_k_value, _ = torch.topk(probs, k, dim=-1) - min_value_top_k = top_k_value[..., [-1]] - probs *= (probs >= min_value_top_k).float() - probs.div_(probs.sum(dim=-1, keepdim=True)) - next_token = multinomial(probs, num_samples=1) - return next_token - - -def sample_top_p(probs: torch.Tensor, p: float) -> torch.Tensor: - """Sample next token from top P probabilities along the last dimension of the input probs tensor. - - Args: - probs (torch.Tensor): Input probabilities with token candidates on the last dimension. - p (int): The p in ā€œtop-pā€. - Returns: - torch.Tensor: Sampled tokens. - """ - probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) - probs_sum = torch.cumsum(probs_sort, dim=-1) - mask = probs_sum - probs_sort > p - probs_sort *= (~mask).float() - probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) - next_token = multinomial(probs_sort, num_samples=1) - next_token = torch.gather(probs_idx, -1, next_token) - return next_token - - -class DummyPoolExecutor: - """Dummy pool executor to use when we actually have only 1 worker. - (e.g. instead of ProcessPoolExecutor). - """ - class DummyResult: - def __init__(self, func, *args, **kwargs): - self.func = func - self.args = args - self.kwargs = kwargs - - def result(self): - return self.func(*self.args, **self.kwargs) - - def __init__(self, workers, mp_context=None): - pass - - def submit(self, func, *args, **kwargs): - return DummyPoolExecutor.DummyResult(func, *args, **kwargs) - - def __enter__(self): - return self - - def __exit__(self, exc_type, exc_value, exc_tb): - return - - -def get_pool_executor(num_workers: int, mp_context=None): - return ProcessPoolExecutor(num_workers, mp_context) if num_workers > 1 else DummyPoolExecutor(1) - - -def length_to_mask(lengths: torch.Tensor, max_len: tp.Optional[int] = None) -> torch.Tensor: - """Utility function to convert a tensor of sequence lengths to a mask (useful when working on padded sequences). - For example: [3, 5] => [[1, 1, 1, 0, 0], [1, 1, 1, 1, 1]] - - Args: - lengths (torch.Tensor): tensor with lengths - max_len (int): can set the max length manually. Defaults to None. - Returns: - torch.Tensor: mask with 0s where there is pad tokens else 1s - """ - assert len(lengths.shape) == 1, "Length shape should be 1 dimensional." - final_length = lengths.max().item() if not max_len else max_len - final_length = max(final_length, 1) # if all seqs are of len zero we don't want a zero-size tensor - return torch.arange(final_length)[None, :].to(lengths.device) < lengths[:, None] - - -def hash_trick(word: str, vocab_size: int) -> int: - """Hash trick to pair each word with an index - - Args: - word (str): word we wish to convert to an index - vocab_size (int): size of the vocabulary - Returns: - int: index of the word in the embedding LUT - """ - hash = int(hashlib.sha256(word.encode("utf-8")).hexdigest(), 16) - return hash % vocab_size - - -def with_rank_rng(base_seed: int = 1234): - """Decorator for a function so that the function will use a Random Number Generator - whose state depend on the GPU rank. The original RNG state is restored upon returning. - - Args: - base_seed (int): Random seed. - """ - def _decorator(fun: tp.Callable): - @wraps(fun) - def _decorated(*args, **kwargs): - state = torch.get_rng_state() - seed = base_seed ^ flashy.distrib.rank() - torch.manual_seed(seed) - logger.debug('Rank dependent seed set to %d', seed) - try: - return fun(*args, **kwargs) - finally: - torch.set_rng_state(state) - logger.debug('RNG state restored.') - return _decorated - return _decorator - - -def collate(tensors: tp.List[torch.Tensor], dim: int = 0) -> tp.Tuple[torch.Tensor, torch.Tensor]: - """Get a list of tensors and collate them to a single tensor. according to the following logic: - - `dim` specifies the time dimension which will be stacked and padded. - - The output will contain 1 new dimension (dimension index 0) which will be the size of - of the original list. - - Args: - tensors (tp.List[torch.Tensor]): List of tensors to collate. - dim (int): Dimension which will be stacked and padded. - Returns: - tp.Tuple[torch.Tensor, torch.Tensor]: - torch.Tensor: Stacked and padded tensor. The output will contain 1 new dimension - (dimension index 0) which will be the size of the original list. - torch.Tensor: Tensor containing length of original tensor sizes (without padding). - """ - tensors = [x.transpose(0, dim) for x in tensors] - lens = torch.LongTensor([len(x) for x in tensors]) - padded_tensors = pad_sequence(tensors) - padded_tensors = padded_tensors.transpose(0, 1) - padded_tensors = padded_tensors.transpose(1, dim + 1) - return padded_tensors, lens - - -# TODO: Move to flashy? -def copy_state(state: tp.Any, device: tp.Union[torch.device, str] = 'cpu', - dtype: tp.Optional[torch.dtype] = None) -> tp.Any: - if isinstance(state, torch.Tensor): - if dtype is None or not state.is_floating_point(): - dtype = state.dtype - return state.detach().to(device=device, dtype=dtype, copy=True) - elif isinstance(state, dict): - return {k: copy_state(v, device, dtype) for k, v in state.items()} - elif isinstance(state, list): - return [copy_state(v, device, dtype) for v in state] - - -# TODO: Move to flashy? -@contextmanager -def swap_state(model, state, **kwargs): - old_state = copy_state(model.state_dict()) - model.load_state_dict(state, **kwargs) - try: - yield - finally: - model.load_state_dict(old_state) - - -@lru_cache(None) -def warn_once(logger, msg): - """Warn about a given message only once.""" - logger.warning(msg) - - -def is_jsonable(x: tp.Any): - """Check if an object can be serialized into a json:""" - try: - json.dumps(x) - return True - except (TypeError, OverflowError): - return False - - -def load_clap_state_dict(clap_model, path: tp.Union[str, Path]): - """Wrapper around state dict loading of CLAP model - addressing compatibility issues between CLAP and AudioCraft - HuggingFace transformer version. - See: https://github.com/LAION-AI/CLAP/issues/118 - """ - from clap_module.factory import load_state_dict # type: ignore - pkg = load_state_dict(path) - pkg.pop('text_branch.embeddings.position_ids', None) - clap_model.model.load_state_dict(pkg) diff --git a/spaces/ucalyptus/DragGAN-unofficial/README.md b/spaces/ucalyptus/DragGAN-unofficial/README.md deleted file mode 100644 index ba7fdaf8433666ff221c6b61c3e65d095684fae5..0000000000000000000000000000000000000000 --- a/spaces/ucalyptus/DragGAN-unofficial/README.md +++ /dev/null @@ -1,11 +0,0 @@ ---- -license: apache-2.0 -title: Wild Implementation of DragGAN -sdk: gradio -emoji: šŸ‘€ -colorFrom: indigo -colorTo: green -pinned: true -sdk_version: 3.29.0 -app_file: app.py ---- \ No newline at end of file diff --git a/spaces/unstructuredio/unstructured-chipper-app/README.md b/spaces/unstructuredio/unstructured-chipper-app/README.md deleted file mode 100644 index 2e6e0d673355fdce2651ebed74865f427b792a0e..0000000000000000000000000000000000000000 --- a/spaces/unstructuredio/unstructured-chipper-app/README.md +++ /dev/null @@ -1,14 +0,0 @@ ---- -title: Unstructured Chipper App -emoji: šŸ¦€ -colorFrom: green -colorTo: blue -sdk: streamlit -sdk_version: 1.19.0 -app_file: app.py -pinned: false -license: other -duplicated_from: unstructuredio/ved-pre-trained ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference \ No newline at end of file diff --git a/spaces/usbethFlerru/sovits-modelsV2/example/David Icke Il Segreto Piu Nascosto Pdf il libro che svela i misteri della Bibbia e gli assassinii dei potenti.md b/spaces/usbethFlerru/sovits-modelsV2/example/David Icke Il Segreto Piu Nascosto Pdf il libro che svela i misteri della Bibbia e gli assassinii dei potenti.md deleted file mode 100644 index c7b177e302dd9f8b258e48ff1b21faff70cbfb44..0000000000000000000000000000000000000000 --- a/spaces/usbethFlerru/sovits-modelsV2/example/David Icke Il Segreto Piu Nascosto Pdf il libro che svela i misteri della Bibbia e gli assassinii dei potenti.md +++ /dev/null @@ -1,6 +0,0 @@ -

            David Icke Il Segreto Piu Nascosto Pdf anciens possible cal


            Download Zip ••• https://urlcod.com/2uyUOs



            -
            - aaccfb2cb3
            -
            -
            -

            diff --git a/spaces/vaishanthr/Simultaneous-Segmented-Depth-Prediction/yolov8/docs/help/index.md b/spaces/vaishanthr/Simultaneous-Segmented-Depth-Prediction/yolov8/docs/help/index.md deleted file mode 100644 index 9647552b3fcee8049816f735b4e85d2f4fffdde5..0000000000000000000000000000000000000000 --- a/spaces/vaishanthr/Simultaneous-Segmented-Depth-Prediction/yolov8/docs/help/index.md +++ /dev/null @@ -1,17 +0,0 @@ ---- -comments: true -description: Get comprehensive resources for Ultralytics YOLO repositories. Find guides, FAQs, MRE creation, CLA & more. Join the supportive community now! -keywords: ultralytics, yolo, help, guide, resources, faq, contributing, continuous integration, contributor license agreement, minimum reproducible example, code of conduct, security policy ---- - -Welcome to the Ultralytics Help page! We are committed to providing you with comprehensive resources to make your experience with Ultralytics YOLO repositories as smooth and enjoyable as possible. On this page, you'll find essential links to guides and documents that will help you navigate through common tasks and address any questions you might have while using our repositories. - -- [Frequently Asked Questions (FAQ)](FAQ.md): Find answers to common questions and issues faced by users and contributors of Ultralytics YOLO repositories. -- [Contributing Guide](contributing.md): Learn the best practices for submitting pull requests, reporting bugs, and contributing to the development of our repositories. -- [Continuous Integration (CI) Guide](CI.md): Understand the CI tests we perform for each Ultralytics repository and see their current statuses. -- [Contributor License Agreement (CLA)](CLA.md): Familiarize yourself with our CLA to understand the terms and conditions for contributing to Ultralytics projects. -- [Minimum Reproducible Example (MRE) Guide](minimum_reproducible_example.md): Understand how to create an MRE when submitting bug reports to ensure that our team can quickly and efficiently address the issue. -- [Code of Conduct](code_of_conduct.md): Learn about our community guidelines and expectations to ensure a welcoming and inclusive environment for all participants. -- [Security Policy](../SECURITY.md): Understand our security practices and how to report security vulnerabilities responsibly. - -We highly recommend going through these guides to make the most of your collaboration with the Ultralytics community. Our goal is to maintain a welcoming and supportive environment for all users and contributors. If you need further assistance, don't hesitate to reach out to us through GitHub Issues or the official discussion forum. Happy coding! \ No newline at end of file diff --git a/spaces/vaishanthr/Simultaneous-Segmented-Depth-Prediction/yolov8/ultralytics/vit/sam/modules/decoders.py b/spaces/vaishanthr/Simultaneous-Segmented-Depth-Prediction/yolov8/ultralytics/vit/sam/modules/decoders.py deleted file mode 100644 index cadc0f0fc29bb0e36a7385bcc8cbedde9cb87b62..0000000000000000000000000000000000000000 --- a/spaces/vaishanthr/Simultaneous-Segmented-Depth-Prediction/yolov8/ultralytics/vit/sam/modules/decoders.py +++ /dev/null @@ -1,159 +0,0 @@ -# Ultralytics YOLO šŸš€, AGPL-3.0 license - -from typing import List, Tuple, Type - -import torch -from torch import nn -from torch.nn import functional as F - -from ultralytics.nn.modules import LayerNorm2d - - -class MaskDecoder(nn.Module): - - def __init__( - self, - *, - transformer_dim: int, - transformer: nn.Module, - num_multimask_outputs: int = 3, - activation: Type[nn.Module] = nn.GELU, - iou_head_depth: int = 3, - iou_head_hidden_dim: int = 256, - ) -> None: - """ - Predicts masks given an image and prompt embeddings, using a transformer architecture. - - Arguments: - transformer_dim (int): the channel dimension of the transformer module - transformer (nn.Module): the transformer used to predict masks - num_multimask_outputs (int): the number of masks to predict when disambiguating masks - activation (nn.Module): the type of activation to use when upscaling masks - iou_head_depth (int): the depth of the MLP used to predict mask quality - iou_head_hidden_dim (int): the hidden dimension of the MLP used to predict mask quality - """ - super().__init__() - self.transformer_dim = transformer_dim - self.transformer = transformer - - self.num_multimask_outputs = num_multimask_outputs - - self.iou_token = nn.Embedding(1, transformer_dim) - self.num_mask_tokens = num_multimask_outputs + 1 - self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) - - self.output_upscaling = nn.Sequential( - nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2), - LayerNorm2d(transformer_dim // 4), - activation(), - nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), - activation(), - ) - self.output_hypernetworks_mlps = nn.ModuleList([ - MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for _ in range(self.num_mask_tokens)]) - - self.iou_prediction_head = MLP(transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth) - - def forward( - self, - image_embeddings: torch.Tensor, - image_pe: torch.Tensor, - sparse_prompt_embeddings: torch.Tensor, - dense_prompt_embeddings: torch.Tensor, - multimask_output: bool, - ) -> Tuple[torch.Tensor, torch.Tensor]: - """ - Predict masks given image and prompt embeddings. - - Arguments: - image_embeddings (torch.Tensor): the embeddings from the image encoder - image_pe (torch.Tensor): positional encoding with the shape of image_embeddings - sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes - dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs - multimask_output (bool): Whether to return multiple masks or a single mask. - - Returns: - torch.Tensor: batched predicted masks - torch.Tensor: batched predictions of mask quality - """ - masks, iou_pred = self.predict_masks( - image_embeddings=image_embeddings, - image_pe=image_pe, - sparse_prompt_embeddings=sparse_prompt_embeddings, - dense_prompt_embeddings=dense_prompt_embeddings, - ) - - # Select the correct mask or masks for output - mask_slice = slice(1, None) if multimask_output else slice(0, 1) - masks = masks[:, mask_slice, :, :] - iou_pred = iou_pred[:, mask_slice] - - # Prepare output - return masks, iou_pred - - def predict_masks( - self, - image_embeddings: torch.Tensor, - image_pe: torch.Tensor, - sparse_prompt_embeddings: torch.Tensor, - dense_prompt_embeddings: torch.Tensor, - ) -> Tuple[torch.Tensor, torch.Tensor]: - """Predicts masks. See 'forward' for more details.""" - # Concatenate output tokens - output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0) - output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1) - tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) - - # Expand per-image data in batch direction to be per-mask - src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) - src = src + dense_prompt_embeddings - pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) - b, c, h, w = src.shape - - # Run the transformer - hs, src = self.transformer(src, pos_src, tokens) - iou_token_out = hs[:, 0, :] - mask_tokens_out = hs[:, 1:(1 + self.num_mask_tokens), :] - - # Upscale mask embeddings and predict masks using the mask tokens - src = src.transpose(1, 2).view(b, c, h, w) - upscaled_embedding = self.output_upscaling(src) - hyper_in_list: List[torch.Tensor] = [ - self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) for i in range(self.num_mask_tokens)] - hyper_in = torch.stack(hyper_in_list, dim=1) - b, c, h, w = upscaled_embedding.shape - masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w) - - # Generate mask quality predictions - iou_pred = self.iou_prediction_head(iou_token_out) - - return masks, iou_pred - - -class MLP(nn.Module): - """ - Lightly adapted from - https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py - """ - - def __init__( - self, - input_dim: int, - hidden_dim: int, - output_dim: int, - num_layers: int, - sigmoid_output: bool = False, - ) -> None: - super().__init__() - self.num_layers = num_layers - h = [hidden_dim] * (num_layers - 1) - self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) - self.sigmoid_output = sigmoid_output - - def forward(self, x): - """Executes feedforward within the neural network module and applies activation.""" - for i, layer in enumerate(self.layers): - x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) - if self.sigmoid_output: - x = torch.sigmoid(x) - return x diff --git a/spaces/vishnu0001/text2mesh/shap_e/diffusion/__init__.py b/spaces/vishnu0001/text2mesh/shap_e/diffusion/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/vishnusureshperumbavoor/vspbot-falcon-langchain/README.md b/spaces/vishnusureshperumbavoor/vspbot-falcon-langchain/README.md deleted file mode 100644 index d09c11e8e77ad2b9c6e416ffc2ff5c2f8e683976..0000000000000000000000000000000000000000 --- a/spaces/vishnusureshperumbavoor/vspbot-falcon-langchain/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Vspbot Falcon Langchain -emoji: šŸ† -colorFrom: green -colorTo: red -sdk: gradio -sdk_version: 3.40.1 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/vumichien/canvas_controlnet/annotator/uniformer/mmcv/fileio/handlers/json_handler.py b/spaces/vumichien/canvas_controlnet/annotator/uniformer/mmcv/fileio/handlers/json_handler.py deleted file mode 100644 index 18d4f15f74139d20adff18b20be5529c592a66b6..0000000000000000000000000000000000000000 --- a/spaces/vumichien/canvas_controlnet/annotator/uniformer/mmcv/fileio/handlers/json_handler.py +++ /dev/null @@ -1,36 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import json - -import numpy as np - -from .base import BaseFileHandler - - -def set_default(obj): - """Set default json values for non-serializable values. - - It helps convert ``set``, ``range`` and ``np.ndarray`` data types to list. - It also converts ``np.generic`` (including ``np.int32``, ``np.float32``, - etc.) into plain numbers of plain python built-in types. - """ - if isinstance(obj, (set, range)): - return list(obj) - elif isinstance(obj, np.ndarray): - return obj.tolist() - elif isinstance(obj, np.generic): - return obj.item() - raise TypeError(f'{type(obj)} is unsupported for json dump') - - -class JsonHandler(BaseFileHandler): - - def load_from_fileobj(self, file): - return json.load(file) - - def dump_to_fileobj(self, obj, file, **kwargs): - kwargs.setdefault('default', set_default) - json.dump(obj, file, **kwargs) - - def dump_to_str(self, obj, **kwargs): - kwargs.setdefault('default', set_default) - return json.dumps(obj, **kwargs) diff --git a/spaces/weijiawu/ImageEditAnything/README.md b/spaces/weijiawu/ImageEditAnything/README.md deleted file mode 100644 index fa6444333877ed1dda24fce317ada1c575141a36..0000000000000000000000000000000000000000 --- a/spaces/weijiawu/ImageEditAnything/README.md +++ /dev/null @@ -1,14 +0,0 @@ ---- -title: Caption Anything -emoji: šŸ“š -colorFrom: green -colorTo: green -sdk: gradio -sdk_version: 3.24.1 -app_file: app.py -pinned: false -license: apache-2.0 -duplicated_from: TencentARC/Caption-Anything ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/wffcyrus/MetaGPT-v1/metagpt/utils/special_tokens.py b/spaces/wffcyrus/MetaGPT-v1/metagpt/utils/special_tokens.py deleted file mode 100644 index 2adb93c7781f00e1952e720a66a33dd353a9cc57..0000000000000000000000000000000000000000 --- a/spaces/wffcyrus/MetaGPT-v1/metagpt/utils/special_tokens.py +++ /dev/null @@ -1,4 +0,0 @@ -# token to separate different code messages in a WriteCode Message content -MSG_SEP = "#*000*#" -# token to seperate file name and the actual code text in a code message -FILENAME_CODE_SEP = "#*001*#" diff --git a/spaces/willhill/stable-diffusion-webui-cpu/app.py b/spaces/willhill/stable-diffusion-webui-cpu/app.py deleted file mode 100644 index 07a475aaee57ddbe095ff72ab8d18f285ffb5831..0000000000000000000000000000000000000000 --- a/spaces/willhill/stable-diffusion-webui-cpu/app.py +++ /dev/null @@ -1,163 +0,0 @@ -""" -Stable Diffusion Webui Version 1.32 -https://github.com/AUTOMATIC1111/stable-diffusion-webui/releases/tag/v1.3.2 - -""" - -import os -from sys import executable -import subprocess -import pathlib -import gc - -def Gitclone(URI:str,ClonePath:pathlib.Path ) -> int : - if pathlib.Path.exists(ClonePath): - return 0 - while True: - i=subprocess.run([r"git",r"clone",str(URI),str(ClonePath)]) - if(i.returncode == 0 ): - del i - gc.collect() - return 0 - else : - del i -def DownLoad(URI:str,DownloadPath:pathlib.Path,DownLoadFileName:str ) -> int: - while (True): - i=subprocess.run([r"aria2c",r"-c",r"-x" ,r"16", r"-s",r"16", r"-k" ,r"1M" ,r"-m",r"0",r"--enable-mmap=false",r"--console-log-level=error",r"-d",str(DownloadPath),r"-o",DownLoadFileName,URI]); - if(i.returncode == 0 ): - del i - gc.collect() - return 0 - else : - del i -user_home =pathlib.Path.home().resolve() -os.chdir(str(user_home)) -#clone stable-diffusion-webui repo -print("cloning stable-diffusion-webui repo") -Gitclone(r"https://github.com/AUTOMATIC1111/stable-diffusion-webui.git",user_home / r"stable-diffusion-webui") -os.chdir(str(user_home / r"stable-diffusion-webui")) -os.system("git reset --hard baf6946e06249c5af9851c60171692c44ef633e0") #Version 1.32 -#install extensions -print("installing extensions") -Gitclone(r"https://huggingface.co/embed/negative",user_home / r"stable-diffusion-webui" / r"embeddings" / r"negative") -Gitclone(r"https://huggingface.co/embed/lora",user_home / r"stable-diffusion-webui" / r"models" / r"Lora" / r"positive") -DownLoad(r"https://huggingface.co/embed/upscale/resolve/main/4x-UltraSharp.pth",user_home / r"stable-diffusion-webui" / r"models" / r"ESRGAN" ,r"4x-UltraSharp.pth") -while (True): - i=subprocess.run([r"wget",r"https://raw.githubusercontent.com/camenduru/stable-diffusion-webui-scripts/main/run_n_times.py",r"-O",str(user_home / r"stable-diffusion-webui" / r"scripts" / r"run_n_times.py")]) - if(i.returncode == 0 ): - del i - gc.collect() - break - else : - del i -Gitclone(r"https://github.com/deforum-art/deforum-for-automatic1111-webui",user_home / r"stable-diffusion-webui" / r"extensions" / r"deforum-for-automatic1111-webui" ) -Gitclone(r"https://github.com/AlUlkesh/stable-diffusion-webui-images-browser",user_home / r"stable-diffusion-webui" / r"extensions"/ r"stable-diffusion-webui-images-browser") -Gitclone(r"https://github.com/camenduru/stable-diffusion-webui-huggingface",user_home / r"stable-diffusion-webui" / r"extensions" / r"stable-diffusion-webui-huggingface") -Gitclone(r"https://github.com/camenduru/sd-civitai-browser",user_home / r"stable-diffusion-webui" / r"extensions" / r"sd-civitai-browser") -Gitclone(r"https://github.com/kohya-ss/sd-webui-additional-networks",user_home / r"stable-diffusion-webui" / r"extensions" / r"sd-webui-additional-networks") -Gitclone(r"https://github.com/Mikubill/sd-webui-controlnet",user_home / r"stable-diffusion-webui" / r"extensions" / r"sd-webui-controlnet") -Gitclone(r"https://github.com/fkunn1326/openpose-editor",user_home / r"stable-diffusion-webui" / r"extensions" / r"openpose-editor") -Gitclone(r"https://github.com/jexom/sd-webui-depth-lib",user_home / r"stable-diffusion-webui" / r"extensions" / r"sd-webui-depth-lib") -Gitclone(r"https://github.com/hnmr293/posex",user_home / r"stable-diffusion-webui" / r"extensions" / r"posex") -Gitclone(r"https://github.com/nonnonstop/sd-webui-3d-open-pose-editor",user_home / r"stable-diffusion-webui" / r"extensions" / r"sd-webui-3d-open-pose-editor") -#äø­ę–‡ęœ¬åœ°åŒ–ēš„čÆ·č§£é™¤äø‹äø€č”Œēš„ę³Øé‡Š -#Gitclone(r"https://github.com/dtlnor/stable-diffusion-webui-localization-zh_CN.git",user_home / r"stable-diffusion-webui" / r"extensions" / r"stable-diffusion-webui-localization-zh_CN") -Gitclone(r"https://github.com/DominikDoom/a1111-sd-webui-tagcomplete.git" , user_home / r"stable-diffusion-webui" / r"extensions" / r"a1111-sd-webui-tagcomplete") -Gitclone(r"https://github.com/camenduru/sd-webui-tunnels",user_home / r"stable-diffusion-webui" / r"extensions" / r"sd-webui-tunnels") -Gitclone(r"https://github.com/etherealxx/batchlinks-webui",user_home / r"stable-diffusion-webui" / r"extensions" / r"batchlinks-webui") -Gitclone(r"https://github.com/catppuccin/stable-diffusion-webui",user_home / r"stable-diffusion-webui" / r"extensions" / r"stable-diffusion-webui-catppuccin") -Gitclone(r"https://github.com/AUTOMATIC1111/stable-diffusion-webui-rembg",user_home / r"stable-diffusion-webui" / r"extensions" / r"stable-diffusion-webui-rembg") -Gitclone(r"https://github.com/ashen-sensored/stable-diffusion-webui-two-shot",user_home / r"stable-diffusion-webui" / r"extensions" / r"stable-diffusion-webui-two-shot") -Gitclone(r"https://github.com/camenduru/sd_webui_stealth_pnginfo",user_home / r"stable-diffusion-webui" / r"extensions" / r"sd_webui_stealth_pnginfo") -os.chdir(user_home / r"stable-diffusion-webui") -#download ControlNet models -print("extensions dolwnload done .\ndownloading ControlNet models") -dList =[r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/control_v11e_sd15_ip2p_fp16.safetensors", - r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/control_v11e_sd15_shuffle_fp16.safetensors", - r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/control_v11p_sd15_canny_fp16.safetensors", - r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/control_v11f1p_sd15_depth_fp16.safetensors", - r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/control_v11p_sd15_inpaint_fp16.safetensors", - r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/control_v11p_sd15_lineart_fp16.safetensors", - r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/control_v11p_sd15_mlsd_fp16.safetensors", - r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/control_v11p_sd15_normalbae_fp16.safetensors", - r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/control_v11p_sd15_openpose_fp16.safetensors", - r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/control_v11p_sd15_scribble_fp16.safetensors", - r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/control_v11p_sd15_seg_fp16.safetensors", - r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/control_v11p_sd15_softedge_fp16.safetensors", - r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/control_v11p_sd15s2_lineart_anime_fp16.safetensors", - r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/control_v11f1e_sd15_tile_fp16.safetensors", - r"https://huggingface.co/ckpt/ControlNet-v1-1/raw/main/control_v11e_sd15_ip2p_fp16.yaml", - r"https://huggingface.co/ckpt/ControlNet-v1-1/raw/main/control_v11e_sd15_shuffle_fp16.yaml", - r"https://huggingface.co/ckpt/ControlNet-v1-1/raw/main/control_v11p_sd15_canny_fp16.yaml", - r"https://huggingface.co/ckpt/ControlNet-v1-1/raw/main/control_v11f1p_sd15_depth_fp16.yaml", - r"https://huggingface.co/ckpt/ControlNet-v1-1/raw/main/control_v11p_sd15_inpaint_fp16.yaml", - r"https://huggingface.co/ckpt/ControlNet-v1-1/raw/main/control_v11p_sd15_lineart_fp16.yaml", - r"https://huggingface.co/ckpt/ControlNet-v1-1/raw/main/control_v11p_sd15_mlsd_fp16.yaml", - r"https://huggingface.co/ckpt/ControlNet-v1-1/raw/main/control_v11p_sd15_normalbae_fp16.yaml", - r"https://huggingface.co/ckpt/ControlNet-v1-1/raw/main/control_v11p_sd15_openpose_fp16.yaml", - r"https://huggingface.co/ckpt/ControlNet-v1-1/raw/main/control_v11p_sd15_scribble_fp16.yaml", - r"https://huggingface.co/ckpt/ControlNet-v1-1/raw/main/control_v11p_sd15_seg_fp16.yaml", - r"https://huggingface.co/ckpt/ControlNet-v1-1/raw/main/control_v11p_sd15_softedge_fp16.yaml", - r"https://huggingface.co/ckpt/ControlNet-v1-1/raw/main/control_v11p_sd15s2_lineart_anime_fp16.yaml", - r"https://huggingface.co/ckpt/ControlNet-v1-1/raw/main/control_v11f1e_sd15_tile_fp16.yaml", - r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/t2iadapter_style_sd14v1.pth", - r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/t2iadapter_sketch_sd14v1.pth", - r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/t2iadapter_seg_sd14v1.pth", - r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/t2iadapter_openpose_sd14v1.pth", - r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/t2iadapter_keypose_sd14v1.pth", - r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/t2iadapter_depth_sd14v1.pth", - r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/t2iadapter_canny_sd14v1.pth", - r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/t2iadapter_canny_sd15v2.pth", - r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/t2iadapter_depth_sd15v2.pth", - r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/t2iadapter_sketch_sd15v2.pth", - r"https://huggingface.co/ckpt/ControlNet-v1-1/resolve/main/t2iadapter_zoedepth_sd15v1.pth"] -for i in range(0,len(dList)): DownLoad(dList[i],user_home / r"stable-diffusion-webui" / r"extensions" / "sd-webui-controlnet" / r"models",pathlib.Path(dList[i]).name) -del dList -#download model -#you can change model download address here -print("ControlNet models download done.\ndownloading model") -#Stable Diffusion Checkpoint Model -#anything version4.5 -# DownLoad(r"https://huggingface.co/ckpt/anything-v4.0/resolve/main/anything-v4.5-pruned.ckpt",user_home / r"stable-diffusion-webui" / r"models" / r"Stable-diffusion",r"anything-v4.5-pruned.ckpt") -# DownLoad(r"https://huggingface.co/ckpt/anything-v4.0/resolve/main/anything-v4.0.vae.pt",user_home / r"stable-diffusion-webui" / r"models" / r"Stable-diffusion",r"anything-v4.0.vae.pt") -# #Counterfeit-V3.0 -# DownLoad(r"https://huggingface.co/gsdf/Counterfeit-V3.0/resolve/main/Counterfeit-V3.0_fp16.safetensors",user_home / r"stable-diffusion-webui" / r"models" / r"Stable-diffusion",r"Counterfeit-V3.0_fp16.safetensors") -# #AbyssOrangeMix2 sfw -# DownLoad(r"https://huggingface.co/WarriorMama777/OrangeMixs/resolve/main/Models/AbyssOrangeMix2/AbyssOrangeMix2_sfw.safetensors",user_home / r"stable-diffusion-webui" / r"models" / r"Stable-diffusion",r"AbyssOrangeMix2_sfw.safetensors") -# DownLoad(r"https://huggingface.co/WarriorMama777/OrangeMixs/resolve/main/VAEs/orangemix.vae.pt",user_home / r"stable-diffusion-webui" / r"models" / r"Stable-diffusion",r"orangemix.vae.pt") -# #MeinaPastelV5 -# DownLoad(r"https://huggingface.co/Meina/MeinaPastel/resolve/main/MeinaPastelV5%20-%20Baked%20VAE.safetensors",user_home / r"stable-diffusion-webui" / r"models" / r"Stable-diffusion",r"MeinaPastelV5_BakedVAE.safetensors") -# DownLoad(r"https://huggingface.co/Meina/MeinaPastel/resolve/main/MeinaPastelV5%20-%20Without%20VAE.safetensors",user_home / r"stable-diffusion-webui" / r"models" / r"Stable-diffusion",r"MeinaPastelV5_WithoutVAE.safetensors") - -#AsianModel -DownLoad(r"https://huggingface.co/BanKaiPls/AsianModel/blob/main/BRAV5finalfp16.safetensors",user_home / r"stable-diffusion-webui" / r"models" / r"Stable-diffusion",r"BRAV5finalfp16.safetensors") - - -#Lora Model -#Better Light -DownLoad(r"https://civitai.com/api/download/models/39885",user_home / r"stable-diffusion-webui" / r"extensions" / r"sd-webui-additional-networks" / r"models"/ r"lora",r"Better_light.safetensors") -DownLoad(r"https://civitai.com/api/download/models/39885",user_home / r"stable-diffusion-webui" / r"models"/ r"lora",r"Better_light.safetensors") -#LAS -DownLoad(r"https://civitai.com/api/download/models/21065",user_home / r"stable-diffusion-webui" / r"extensions" / r"sd-webui-additional-networks" / r"models"/ r"lora",r"LAS.safetensors") -DownLoad(r"https://civitai.com/api/download/models/21065",user_home / r"stable-diffusion-webui" / r"models"/ r"lora",r"LAS.safetensors") -#Backlighting -DownLoad(r"https://civitai.com/api/download/models/39164",user_home / r"stable-diffusion-webui" / r"extensions" / r"sd-webui-additional-networks" / r"models"/ r"lora",r"backlighting.safetensors") -DownLoad(r"https://civitai.com/api/download/models/39164",user_home / r"stable-diffusion-webui" / r"models"/ r"lora",r"backlighting.safetensors") -#GFPGAN Model -#detection Resnet50 -DownLoad(r"https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth",user_home / r"stable-diffusion-webui"/r"models"/r"GFPGAN",r"detection_Resnet50_Final.pth") -#parsing_parsenet -DownLoad(r"https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth",user_home / r"stable-diffusion-webui"/r"models"/r"GFPGAN",r"parsing_parsenet.pth") -#GFPGANv1.4 -DownLoad(r"https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth",user_home / r"stable-diffusion-webui"/r"models"/r"GFPGAN",r"GFPGANv1.4.pth") -#strt Stable Diffusion Webui -print("Done\nStarting Webui...") -os.chdir(user_home / r"stable-diffusion-webui") -while True: - ret=subprocess.run([executable ,user_home / r"stable-diffusion-webui" / r"launch.py",r"--precision",r"full",r"--no-half",r"--no-half-vae",r"--enable-insecure-extension-access",r"--medvram",r"--skip-torch-cuda-test",r"--enable-console-prompts",r"--ui-settings-file="+str(pathlib.Path(__file__).parent /r"config.json")]) - if(ret.returncode == 0 ): - del ret - gc.collect() - else : - del ret -del os ,user_home ,pyexecutable ,subprocess \ No newline at end of file diff --git a/spaces/wwwwwwww2/bingo/src/components/user-menu.tsx b/spaces/wwwwwwww2/bingo/src/components/user-menu.tsx deleted file mode 100644 index 9bd1edc9cf9f39b63629b021f0c1186b1a7c1341..0000000000000000000000000000000000000000 --- a/spaces/wwwwwwww2/bingo/src/components/user-menu.tsx +++ /dev/null @@ -1,113 +0,0 @@ -'use client' - -import { useEffect, useState } from 'react' -import Image from 'next/image' -import { toast } from 'react-hot-toast' -import { Button } from '@/components/ui/button' -import pkg from '../../package.json' -import { - DropdownMenu, - DropdownMenuContent, - DropdownMenuItem, - DropdownMenuSeparator, - DropdownMenuTrigger -} from '@/components/ui/dropdown-menu' -import { IconCopy, IconExternalLink, IconGitHub } from '@/components/ui/icons' -import SettingIcon from '@/assets/images/settings.svg' -import { useCopyToClipboard } from '@/lib/hooks/use-copy-to-clipboard' - -export function UserMenu() { - const [host, setHost] = useState('') - const { isCopied, copyToClipboard } = useCopyToClipboard({ timeout: 2000 }) - useEffect(() => { - setHost(location.host) - }, []) - - useEffect(() => { - if (isCopied) { - toast.success('å¤åˆ¶ęˆåŠŸ') - } - }, [isCopied]) - return ( -
            - - - - - - - location.href='#dialog="settings"' - } - className="cursor-pointer" - > - č®¾ē½®ē”Øęˆ· - - - - location.href='#dialog="voice"' - } - className="cursor-pointer" - > - 语音设置 - - - - - å¼€ęŗåœ°å€ - - - - - - - - ę‰˜ē®”åœ°å€ - šŸ¤— - - - - - - - å¤åˆ¶ē«™ē‚¹ - - - - - -
            ē‰ˆęœ¬äæ”ęÆ {pkg.version}
            -
            - - -
            ē«™ē‚¹åŸŸå
            -
            copyToClipboard(host)} className="flex gap-1 text-xs text-zinc-500 cursor-pointer"> - {host} -
            -
            -
            -
            -
            - ) -} diff --git a/spaces/xdecoder/Demo/utils/ddim.py b/spaces/xdecoder/Demo/utils/ddim.py deleted file mode 100644 index d6366003eb4107c95cf0cf7bbb653000f716d06c..0000000000000000000000000000000000000000 --- a/spaces/xdecoder/Demo/utils/ddim.py +++ /dev/null @@ -1,203 +0,0 @@ -"""SAMPLING ONLY.""" - -import torch -import numpy as np -from tqdm import tqdm -from functools import partial - -from .util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like - - -class DDIMSampler(object): - def __init__(self, model, schedule="linear", **kwargs): - super().__init__() - self.model = model - self.ddpm_num_timesteps = model.num_timesteps - self.schedule = schedule - - def register_buffer(self, name, attr): - if type(attr) == torch.Tensor: - if attr.device != torch.device("cuda"): - attr = attr.to(torch.device("cuda")) - setattr(self, name, attr) - - def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True): - self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, - num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose) - alphas_cumprod = self.model.alphas_cumprod - assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep' - to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) - - self.register_buffer('betas', to_torch(self.model.betas)) - self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) - self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)) - - # calculations for diffusion q(x_t | x_{t-1}) and others - self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))) - self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu()))) - self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu()))) - self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu()))) - self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1))) - - # ddim sampling parameters - ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(), - ddim_timesteps=self.ddim_timesteps, - eta=ddim_eta,verbose=verbose) - self.register_buffer('ddim_sigmas', ddim_sigmas) - self.register_buffer('ddim_alphas', ddim_alphas) - self.register_buffer('ddim_alphas_prev', ddim_alphas_prev) - self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas)) - sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( - (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * ( - 1 - self.alphas_cumprod / self.alphas_cumprod_prev)) - self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps) - - @torch.no_grad() - def sample(self, - S, - batch_size, - shape, - conditioning=None, - callback=None, - normals_sequence=None, - img_callback=None, - quantize_x0=False, - eta=0., - mask=None, - x0=None, - temperature=1., - noise_dropout=0., - score_corrector=None, - corrector_kwargs=None, - verbose=True, - x_T=None, - log_every_t=100, - unconditional_guidance_scale=1., - unconditional_conditioning=None, - # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... - **kwargs - ): - if conditioning is not None: - if isinstance(conditioning, dict): - cbs = conditioning[list(conditioning.keys())[0]].shape[0] - if cbs != batch_size: - print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") - else: - if conditioning.shape[0] != batch_size: - print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") - - self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) - # sampling - C, H, W = shape - size = (batch_size, C, H, W) - print(f'Data shape for DDIM sampling is {size}, eta {eta}') - - samples, intermediates = self.ddim_sampling(conditioning, size, - callback=callback, - img_callback=img_callback, - quantize_denoised=quantize_x0, - mask=mask, x0=x0, - ddim_use_original_steps=False, - noise_dropout=noise_dropout, - temperature=temperature, - score_corrector=score_corrector, - corrector_kwargs=corrector_kwargs, - x_T=x_T, - log_every_t=log_every_t, - unconditional_guidance_scale=unconditional_guidance_scale, - unconditional_conditioning=unconditional_conditioning, - ) - return samples, intermediates - - @torch.no_grad() - def ddim_sampling(self, cond, shape, - x_T=None, ddim_use_original_steps=False, - callback=None, timesteps=None, quantize_denoised=False, - mask=None, x0=None, img_callback=None, log_every_t=100, - temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, - unconditional_guidance_scale=1., unconditional_conditioning=None,): - device = self.model.betas.device - b = shape[0] - if x_T is None: - img = torch.randn(shape, device=device) - else: - img = x_T - - if timesteps is None: - timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps - elif timesteps is not None and not ddim_use_original_steps: - subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1 - timesteps = self.ddim_timesteps[:subset_end] - - intermediates = {'x_inter': [img], 'pred_x0': [img]} - time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps) - total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] - print(f"Running DDIM Sampling with {total_steps} timesteps") - - iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps) - - for i, step in enumerate(iterator): - index = total_steps - i - 1 - ts = torch.full((b,), step, device=device, dtype=torch.long) - - if mask is not None: - assert x0 is not None - img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass? - img = img_orig * mask + (1. - mask) * img - - outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps, - quantize_denoised=quantize_denoised, temperature=temperature, - noise_dropout=noise_dropout, score_corrector=score_corrector, - corrector_kwargs=corrector_kwargs, - unconditional_guidance_scale=unconditional_guidance_scale, - unconditional_conditioning=unconditional_conditioning) - img, pred_x0 = outs - if callback: callback(i) - if img_callback: img_callback(pred_x0, i) - - if index % log_every_t == 0 or index == total_steps - 1: - intermediates['x_inter'].append(img) - intermediates['pred_x0'].append(pred_x0) - - return img, intermediates - - @torch.no_grad() - def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, - temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, - unconditional_guidance_scale=1., unconditional_conditioning=None): - b, *_, device = *x.shape, x.device - - if unconditional_conditioning is None or unconditional_guidance_scale == 1.: - e_t = self.model.apply_model(x, t, c) - else: - x_in = torch.cat([x] * 2) - t_in = torch.cat([t] * 2) - c_in = torch.cat([unconditional_conditioning, c]) - e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) - e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) - - if score_corrector is not None: - assert self.model.parameterization == "eps" - e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) - - alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas - alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev - sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas - sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas - # select parameters corresponding to the currently considered timestep - a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) - a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) - sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) - sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device) - - # current prediction for x_0 - pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() - if quantize_denoised: - pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) - # direction pointing to x_t - dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t - noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature - if noise_dropout > 0.: - noise = torch.nn.functional.dropout(noise, p=noise_dropout) - x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise - return x_prev, pred_x0 diff --git a/spaces/xdecoder/Instruct-X-Decoder/xdecoder/body/__init__.py b/spaces/xdecoder/Instruct-X-Decoder/xdecoder/body/__init__.py deleted file mode 100644 index 5b5e32900735a900cc4daef04bb5038cf9f178c9..0000000000000000000000000000000000000000 --- a/spaces/xdecoder/Instruct-X-Decoder/xdecoder/body/__init__.py +++ /dev/null @@ -1 +0,0 @@ -from .build import build_xdecoder_head \ No newline at end of file diff --git a/spaces/xdecoder/Instruct-X-Decoder/xdecoder/language/fixvlpencoder.py b/spaces/xdecoder/Instruct-X-Decoder/xdecoder/language/fixvlpencoder.py deleted file mode 100644 index dd91faf136b4e479dba03cc81b21ed5f3b47e1e0..0000000000000000000000000000000000000000 --- a/spaces/xdecoder/Instruct-X-Decoder/xdecoder/language/fixvlpencoder.py +++ /dev/null @@ -1,35 +0,0 @@ -from importlib.metadata import requires -import torch -import torch.nn as nn - -from .registry import register_model -from .vlpencoder import LanguageEncoder - -class FixLanguageEncoder(LanguageEncoder): - - def __init__( - self, - *args, **kwargs): - super(FixLanguageEncoder, self).__init__(*args, **kwargs) - self.logit_scale = nn.Parameter(torch.ones([]), requires_grad=False) - - @torch.no_grad() - def get_text_embeddings(self, *args, **kwargs): - return super().get_text_embeddings(*args, **kwargs) - - @torch.no_grad() - def get_text_token_embeddings(self, *args, **kwargs): - return super().get_text_token_embeddings(*args, **kwargs) - - @torch.no_grad() - def forward_language(self, *args, **kwargs): - return super().forward_language(*args, **kwargs) - - @torch.no_grad() - def forward_language_token(self, *args, **kwargs): - return super().forward_language_token(*args, **kwargs) - - -@register_model -def get_language_model(cfg, **kwargs): - return FixLanguageEncoder(cfg) \ No newline at end of file diff --git a/spaces/xingzhehe/AutoLink/README.md b/spaces/xingzhehe/AutoLink/README.md deleted file mode 100644 index 459508d8030881f85e30559aa8f0dc9947a9be83..0000000000000000000000000000000000000000 --- a/spaces/xingzhehe/AutoLink/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: AutoLink -emoji: 🐠 -colorFrom: indigo -colorTo: pink -sdk: gradio -sdk_version: 3.23.0 -app_file: app.py -pinned: false -license: afl-3.0 ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/xswu/HPSv2/tests/test_hf_model.py b/spaces/xswu/HPSv2/tests/test_hf_model.py deleted file mode 100644 index 79df2f2cf3655b1299ed236791d606c5215dae2c..0000000000000000000000000000000000000000 --- a/spaces/xswu/HPSv2/tests/test_hf_model.py +++ /dev/null @@ -1,29 +0,0 @@ -import pytest - -import torch -from open_clip.hf_model import _POOLERS, HFTextEncoder -from transformers import AutoConfig -from transformers.modeling_outputs import BaseModelOutput -# test poolers -def test_poolers(): - bs, sl, d = 2, 10, 5 - h = torch.arange(sl).repeat(bs).reshape(bs, sl)[..., None] * torch.linspace(0.2, 1., d) - mask = torch.ones(bs, sl, dtype=torch.long) - mask[:2, 6:] = 0 - x = BaseModelOutput(h) - for name, cls in _POOLERS.items(): - pooler = cls() - res = pooler(x, mask) - assert res.shape == (bs, d), f"{name} returned wrong shape" - -# test HFTextEncoder -@pytest.mark.parametrize("model_id", ["arampacha/roberta-tiny", "roberta-base", "xlm-roberta-base", "google/mt5-base"]) -def test_pretrained_text_encoder(model_id): - bs, sl, d = 2, 10, 64 - cfg = AutoConfig.from_pretrained(model_id) - model = HFTextEncoder(model_id, d, proj='linear') - x = torch.randint(0, cfg.vocab_size, (bs, sl)) - with torch.no_grad(): - emb = model(x) - - assert emb.shape == (bs, d) diff --git a/spaces/yangogo/bingo/src/lib/bots/bing/index.ts b/spaces/yangogo/bingo/src/lib/bots/bing/index.ts deleted file mode 100644 index 2c4afae01a345b8415935228566cb30d695e768d..0000000000000000000000000000000000000000 --- a/spaces/yangogo/bingo/src/lib/bots/bing/index.ts +++ /dev/null @@ -1,421 +0,0 @@ -import { fetch, WebSocket, debug } from '@/lib/isomorphic' -import WebSocketAsPromised from 'websocket-as-promised' -import { - SendMessageParams, - BingConversationStyle, - ConversationResponse, - ChatResponseMessage, - ConversationInfo, - InvocationEventType, - ChatError, - ErrorCode, - ChatUpdateCompleteResponse, - ImageInfo, - KBlobResponse -} from './types' - -import { convertMessageToMarkdown, websocketUtils, streamAsyncIterable } from './utils' -import { WatchDog, createChunkDecoder } from '@/lib/utils' - -type Params = SendMessageParams<{ bingConversationStyle: BingConversationStyle }> - -const OPTIONS_SETS = [ - 'nlu_direct_response_filter', - 'deepleo', - 'disable_emoji_spoken_text', - 'responsible_ai_policy_235', - 'enablemm', - 'iycapbing', - 'iyxapbing', - 'objopinion', - 'rweasgv2', - 'dagslnv1', - 'dv3sugg', - 'autosave', - 'iyoloxap', - 'iyoloneutral', - 'clgalileo', - 'gencontentv3', -] - -export class BingWebBot { - protected conversationContext?: ConversationInfo - protected cookie: string - protected ua: string - protected endpoint = '' - private lastText = '' - private asyncTasks: Array> = [] - - constructor(opts: { - cookie: string - ua: string - bingConversationStyle?: BingConversationStyle - conversationContext?: ConversationInfo - }) { - const { cookie, ua, conversationContext } = opts - this.cookie = cookie?.includes(';') ? cookie : `_EDGE_V=1; _U=${cookie}` - this.ua = ua - this.conversationContext = conversationContext - } - - static buildChatRequest(conversation: ConversationInfo) { - const optionsSets = OPTIONS_SETS - if (conversation.conversationStyle === BingConversationStyle.Precise) { - optionsSets.push('h3precise') - } else if (conversation.conversationStyle === BingConversationStyle.Creative) { - optionsSets.push('h3imaginative') - } - return { - arguments: [ - { - source: 'cib', - optionsSets, - allowedMessageTypes: [ - 'Chat', - 'InternalSearchQuery', - 'Disengaged', - 'InternalLoaderMessage', - 'SemanticSerp', - 'GenerateContentQuery', - 'SearchQuery', - ], - sliceIds: [ - 'winmuid1tf', - 'anssupfor_c', - 'imgchatgptv2', - 'tts2cf', - 'contansperf', - 'mlchatpc8500w', - 'mlchatpc2', - 'ctrlworkpay', - 'winshortmsgtf', - 'cibctrl', - 'sydtransctrl', - 'sydconfigoptc', - '0705trt4', - '517opinion', - '628ajcopus0', - '330uaugs0', - '529rwea', - '0626snptrcs0', - '424dagslnv1', - ], - isStartOfSession: conversation.invocationId === 0, - message: { - author: 'user', - inputMethod: 'Keyboard', - text: conversation.prompt, - imageUrl: conversation.imageUrl, - messageType: 'Chat', - }, - conversationId: conversation.conversationId, - conversationSignature: conversation.conversationSignature, - participant: { id: conversation.clientId }, - }, - ], - invocationId: conversation.invocationId.toString(), - target: 'chat', - type: InvocationEventType.StreamInvocation, - } - } - - async createConversation(): Promise { - const headers = { - 'Accept-Encoding': 'gzip, deflate, br, zsdch', - 'User-Agent': this.ua, - 'x-ms-useragent': 'azsdk-js-api-client-factory/1.0.0-beta.1 core-rest-pipeline/1.10.0 OS/Win32', - cookie: this.cookie, - } - - let resp: ConversationResponse | undefined - try { - const response = await fetch(this.endpoint + '/api/create', { method: 'POST', headers, redirect: 'error', mode: 'cors', credentials: 'include' }) - if (response.status === 404) { - throw new ChatError('Not Found', ErrorCode.NOTFOUND_ERROR) - } - resp = await response.json() as ConversationResponse - } catch (err) { - console.error('create conversation error', err) - } - - if (!resp?.result) { - throw new ChatError('Invalid response', ErrorCode.UNKOWN_ERROR) - } - - const { value, message } = resp.result || {} - if (value !== 'Success') { - const errorMsg = `${value}: ${message}` - if (value === 'UnauthorizedRequest') { - throw new ChatError(errorMsg, ErrorCode.BING_UNAUTHORIZED) - } - if (value === 'Forbidden') { - throw new ChatError(errorMsg, ErrorCode.BING_FORBIDDEN) - } - throw new ChatError(errorMsg, ErrorCode.UNKOWN_ERROR) - } - return resp - } - - private async createContext(conversationStyle: BingConversationStyle) { - if (!this.conversationContext) { - const conversation = await this.createConversation() - this.conversationContext = { - conversationId: conversation.conversationId, - conversationSignature: conversation.conversationSignature, - clientId: conversation.clientId, - invocationId: 0, - conversationStyle, - prompt: '', - } - } - return this.conversationContext - } - - async sendMessage(params: Params) { - try { - await this.createContext(params.options.bingConversationStyle) - Object.assign(this.conversationContext!, { prompt: params.prompt, imageUrl: params.imageUrl }) - return this.sydneyProxy(params) - } catch (error) { - params.onEvent({ - type: 'ERROR', - error: error instanceof ChatError ? error : new ChatError('Catch Error', ErrorCode.UNKOWN_ERROR), - }) - } - } - - private async sydneyProxy(params: Params) { - const abortController = new AbortController() - const response = await fetch(this.endpoint + '/api/sydney', { - method: 'POST', - headers: { - 'Content-Type': 'application/json', - }, - signal: abortController.signal, - body: JSON.stringify(this.conversationContext!) - }) - if (response.status !== 200) { - params.onEvent({ - type: 'ERROR', - error: new ChatError( - 'Unknown error', - ErrorCode.UNKOWN_ERROR, - ), - }) - } - params.signal?.addEventListener('abort', () => { - abortController.abort() - }) - - const textDecoder = createChunkDecoder() - for await (const chunk of streamAsyncIterable(response.body!)) { - this.parseEvents(params, websocketUtils.unpackMessage(textDecoder(chunk))) - } - } - - async sendWs() { - const wsConfig: ConstructorParameters[1] = { - packMessage: websocketUtils.packMessage, - unpackMessage: websocketUtils.unpackMessage, - createWebSocket: (url) => new WebSocket(url, { - headers: { - 'accept-language': 'zh-CN,zh;q=0.9', - 'cache-control': 'no-cache', - 'User-Agent': this.ua, - pragma: 'no-cache', - cookie: this.cookie, - } - }) - } - const wsp = new WebSocketAsPromised('wss://sydney.bing.com/sydney/ChatHub', wsConfig) - - wsp.open().then(() => { - wsp.sendPacked({ protocol: 'json', version: 1 }) - wsp.sendPacked({ type: 6 }) - wsp.sendPacked(BingWebBot.buildChatRequest(this.conversationContext!)) - }) - - return wsp - } - - private async useWs(params: Params) { - const wsp = await this.sendWs() - const watchDog = new WatchDog() - wsp.onUnpackedMessage.addListener((events) => { - watchDog.watch(() => { - wsp.sendPacked({ type: 6 }) - }) - this.parseEvents(params, events) - }) - - wsp.onClose.addListener(() => { - watchDog.reset() - params.onEvent({ type: 'DONE' }) - wsp.removeAllListeners() - }) - - params.signal?.addEventListener('abort', () => { - wsp.removeAllListeners() - wsp.close() - }) - } - - private async createImage(prompt: string, id: string) { - try { - const headers = { - 'Accept-Encoding': 'gzip, deflate, br, zsdch', - 'User-Agent': this.ua, - 'x-ms-useragent': 'azsdk-js-api-client-factory/1.0.0-beta.1 core-rest-pipeline/1.10.0 OS/Win32', - cookie: this.cookie, - } - const query = new URLSearchParams({ - prompt, - id - }) - const response = await fetch(this.endpoint + '/api/image?' + query.toString(), - { - method: 'POST', - headers, - mode: 'cors', - credentials: 'include' - }) - .then(res => res.text()) - if (response) { - this.lastText += '\n' + response - } - } catch (err) { - console.error('Create Image Error', err) - } - } - - private buildKnowledgeApiPayload(imageUrl: string, conversationStyle: BingConversationStyle) { - const imageInfo: ImageInfo = {} - let imageBase64: string | undefined = undefined - const knowledgeRequest = { - imageInfo, - knowledgeRequest: { - invokedSkills: [ - 'ImageById' - ], - subscriptionId: 'Bing.Chat.Multimodal', - invokedSkillsRequestData: { - enableFaceBlur: true - }, - convoData: { - convoid: this.conversationContext?.conversationId, - convotone: conversationStyle, - } - }, - } - - if (imageUrl.startsWith('data:image/')) { - imageBase64 = imageUrl.replace('data:image/', ''); - const partIndex = imageBase64.indexOf(',') - if (partIndex) { - imageBase64 = imageBase64.substring(partIndex + 1) - } - } else { - imageInfo.url = imageUrl - } - return { knowledgeRequest, imageBase64 } - } - - async uploadImage(imageUrl: string, conversationStyle: BingConversationStyle = BingConversationStyle.Creative): Promise { - if (!imageUrl) { - return - } - await this.createContext(conversationStyle) - const payload = this.buildKnowledgeApiPayload(imageUrl, conversationStyle) - - const response = await fetch(this.endpoint + '/api/kblob', - { - headers: { - 'Content-Type': 'application/json', - }, - method: 'POST', - mode: 'cors', - credentials: 'include', - body: JSON.stringify(payload), - }) - .then(res => res.json()) - .catch(e => { - console.log('Error', e) - }) - return response - } - - private async generateContent(message: ChatResponseMessage) { - if (message.contentType === 'IMAGE') { - this.asyncTasks.push(this.createImage(message.text, message.messageId)) - } - } - - private async parseEvents(params: Params, events: any) { - const conversation = this.conversationContext! - - events?.forEach(async (event: ChatUpdateCompleteResponse) => { - debug('bing event', event) - if (event.type === 3) { - await Promise.all(this.asyncTasks) - this.asyncTasks = [] - params.onEvent({ type: 'UPDATE_ANSWER', data: { text: this.lastText } }) - params.onEvent({ type: 'DONE' }) - conversation.invocationId = parseInt(event.invocationId, 10) + 1 - } else if (event.type === 1) { - const messages = event.arguments[0].messages - if (messages) { - const text = convertMessageToMarkdown(messages[0]) - this.lastText = text - params.onEvent({ type: 'UPDATE_ANSWER', data: { text, spokenText: messages[0].text, throttling: event.arguments[0].throttling } }) - } - } else if (event.type === 2) { - const messages = event.item.messages as ChatResponseMessage[] | undefined - if (!messages) { - params.onEvent({ - type: 'ERROR', - error: new ChatError( - event.item.result.error || 'Unknown error', - event.item.result.value === 'Throttled' ? ErrorCode.THROTTLE_LIMIT - : event.item.result.value === 'CaptchaChallenge' ? (this.conversationContext?.conversationId?.includes('BingProdUnAuthenticatedUsers') ? ErrorCode.BING_UNAUTHORIZED : ErrorCode.BING_CAPTCHA) - : ErrorCode.UNKOWN_ERROR - ), - }) - return - } - const limited = messages.some((message) => - message.contentOrigin === 'TurnLimiter' - || message.messageType === 'Disengaged' - ) - if (limited) { - params.onEvent({ - type: 'ERROR', - error: new ChatError( - 'Sorry, you have reached chat limit in this conversation.', - ErrorCode.CONVERSATION_LIMIT, - ), - }) - return - } - - const lastMessage = event.item.messages.at(-1) as ChatResponseMessage - const specialMessage = event.item.messages.find(message => message.author === 'bot' && message.contentType === 'IMAGE') - if (specialMessage) { - this.generateContent(specialMessage) - } - - if (lastMessage) { - const text = convertMessageToMarkdown(lastMessage) - this.lastText = text - params.onEvent({ - type: 'UPDATE_ANSWER', - data: { text, throttling: event.item.throttling, suggestedResponses: lastMessage.suggestedResponses, sourceAttributions: lastMessage.sourceAttributions }, - }) - } - } - }) - } - - resetConversation() { - this.conversationContext = undefined - } -} diff --git a/spaces/yardi/phrase-semantic-similarity/app.py b/spaces/yardi/phrase-semantic-similarity/app.py deleted file mode 100644 index 0f4bc0a074f0e0ebd22a0d08921bf4d126e38278..0000000000000000000000000000000000000000 --- a/spaces/yardi/phrase-semantic-similarity/app.py +++ /dev/null @@ -1,31 +0,0 @@ -import streamlit as st -from utils.all_MiniLM_L6_v2_class import HFModel -from utils.parse_input import * - -model_name = "sentence-transformers/all-MiniLM-L6-v2" -hmodel = HFModel() -hmodel.init_model(model_name) - -def main(): - st.title("Sentence Similarity") - - input_sentence = st.text_input("Enter a sentence:") - sentence_list = st.text_area("Enter a list of sentences (one sentence per line):") - - if st.button("Calculate Similarity"): - input_sentence = preprocess_sentences_streamlit(input_sentence) - sentence_list = preprocess_sentences_streamlit(sentence_list) - all_sentences = [input_sentence] + sentence_list - - texts, embeddings = hmodel.compute_embeddings(all_sentences, is_file=False) - results = hmodel.output_results(texts, embeddings, main_index=0) - output = [ - {"sentence": sentence, "similarity_score": round(results[sentence], 3)} - for sentence in results - ] - output.sort(key=lambda x: x["similarity_score"], reverse=True) - - st.table(output) - -if __name__ == "__main__": - main() diff --git a/spaces/ybelkada/blip-image-captioning-space/app.py b/spaces/ybelkada/blip-image-captioning-space/app.py deleted file mode 100644 index 4b583d78c1190ba3c15c39944b76c1d79560fc35..0000000000000000000000000000000000000000 --- a/spaces/ybelkada/blip-image-captioning-space/app.py +++ /dev/null @@ -1,47 +0,0 @@ -import gradio as gr -import torch - -from transformers import BlipForConditionalGeneration, BlipProcessor - -device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') - -processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") -model_image_captioning = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(device) - -device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') - -def inference(raw_image, question, decoding_strategy): - inputs = processor(images=raw_image, text=question, return_tensors="pt") - - if decoding_strategy == "Beam search": - inputs["max_length"] = 20 - inputs["num_beams"] = 5 - elif decoding_strategy == "Nucleus sampling": - inputs["max_length"] = 20 - inputs["num_beams"] = 1 - inputs["do_sample"] = True - inputs["top_k"] = 50 - inputs["top_p"] = 0.95 - elif decoding_strategy == "Contrastive search": - inputs["penalty_alpha"] = 0.6 - inputs["top_k"] = 4 - inputs["max_length"] = 512 - - - out = model_image_captioning.generate(**inputs) - return processor.batch_decode(out, skip_special_tokens=True)[0] - -inputs = [ - gr.inputs.Image(type='pil'), - gr.inputs.Textbox(lines=2, label="Context (optional)"), - gr.inputs.Radio(choices=['Beam search','Nucleus sampling', 'Contrastive search'], type="value", default="Nucleus sampling", label="Caption Decoding Strategy") - ] -outputs = gr.outputs.Textbox(label="Output") - -title = "BLIP" - -description = "Gradio demo for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation (Salesforce Research). To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." - -article = "

            BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation | Github Repo

            " - -gr.Interface(inference, inputs, outputs, title=title, description=description, article=article).launch(enable_queue=True) \ No newline at end of file diff --git a/spaces/ygangang/CodeFormer/CodeFormer/basicsr/version.py b/spaces/ygangang/CodeFormer/CodeFormer/basicsr/version.py deleted file mode 100644 index 3c30a9a5d2c3af85b06034f080d6f9f7e0a53e7e..0000000000000000000000000000000000000000 --- a/spaces/ygangang/CodeFormer/CodeFormer/basicsr/version.py +++ /dev/null @@ -1,5 +0,0 @@ -# GENERATED VERSION FILE -# TIME: Sun Aug 7 15:14:26 2022 -__version__ = '1.3.2' -__gitsha__ = '6f94023' -version_info = (1, 3, 2) diff --git a/spaces/yizhangliu/Grounded-Segment-Anything/transformers_4_35_0/models/informer/configuration_informer.py b/spaces/yizhangliu/Grounded-Segment-Anything/transformers_4_35_0/models/informer/configuration_informer.py deleted file mode 100644 index d8af8c793cdb28428659761bf0b72eb32cc48f66..0000000000000000000000000000000000000000 --- a/spaces/yizhangliu/Grounded-Segment-Anything/transformers_4_35_0/models/informer/configuration_informer.py +++ /dev/null @@ -1,252 +0,0 @@ -# coding=utf-8 -# Copyright 2023 The HuggingFace Inc. team. All rights reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -"""Informer model configuration""" - -from typing import List, Optional, Union - -from ...configuration_utils import PretrainedConfig -from ...utils import logging - - -logger = logging.get_logger(__name__) - -INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = { - "huggingface/informer-tourism-monthly": ( - "https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json" - ), - # See all Informer models at https://huggingface.co/models?filter=informer -} - - -class InformerConfig(PretrainedConfig): - r""" - This is the configuration class to store the configuration of an [`InformerModel`]. It is used to instantiate an - Informer model according to the specified arguments, defining the model architecture. Instantiating a configuration - with the defaults will yield a similar configuration to that of the Informer - [huggingface/informer-tourism-monthly](https://huggingface.co/huggingface/informer-tourism-monthly) architecture. - - Configuration objects inherit from [`PretrainedConfig`] can be used to control the model outputs. Read the - documentation from [`PretrainedConfig`] for more information. - - Args: - prediction_length (`int`): - The prediction length for the decoder. In other words, the prediction horizon of the model. This value is - typically dictated by the dataset and we recommend to set it appropriately. - context_length (`int`, *optional*, defaults to `prediction_length`): - The context length for the encoder. If `None`, the context length will be the same as the - `prediction_length`. - distribution_output (`string`, *optional*, defaults to `"student_t"`): - The distribution emission head for the model. Could be either "student_t", "normal" or "negative_binomial". - loss (`string`, *optional*, defaults to `"nll"`): - The loss function for the model corresponding to the `distribution_output` head. For parametric - distributions it is the negative log likelihood (nll) - which currently is the only supported one. - input_size (`int`, *optional*, defaults to 1): - The size of the target variable which by default is 1 for univariate targets. Would be > 1 in case of - multivariate targets. - scaling (`string` or `bool`, *optional* defaults to `"mean"`): - Whether to scale the input targets via "mean" scaler, "std" scaler or no scaler if `None`. If `True`, the - scaler is set to "mean". - lags_sequence (`list[int]`, *optional*, defaults to `[1, 2, 3, 4, 5, 6, 7]`): - The lags of the input time series as covariates often dictated by the frequency of the data. Default is - `[1, 2, 3, 4, 5, 6, 7]` but we recommend to change it based on the dataset appropriately. - num_time_features (`int`, *optional*, defaults to 0): - The number of time features in the input time series. - num_dynamic_real_features (`int`, *optional*, defaults to 0): - The number of dynamic real valued features. - num_static_categorical_features (`int`, *optional*, defaults to 0): - The number of static categorical features. - num_static_real_features (`int`, *optional*, defaults to 0): - The number of static real valued features. - cardinality (`list[int]`, *optional*): - The cardinality (number of different values) for each of the static categorical features. Should be a list - of integers, having the same length as `num_static_categorical_features`. Cannot be `None` if - `num_static_categorical_features` is > 0. - embedding_dimension (`list[int]`, *optional*): - The dimension of the embedding for each of the static categorical features. Should be a list of integers, - having the same length as `num_static_categorical_features`. Cannot be `None` if - `num_static_categorical_features` is > 0. - d_model (`int`, *optional*, defaults to 64): - Dimensionality of the transformer layers. - encoder_layers (`int`, *optional*, defaults to 2): - Number of encoder layers. - decoder_layers (`int`, *optional*, defaults to 2): - Number of decoder layers. - encoder_attention_heads (`int`, *optional*, defaults to 2): - Number of attention heads for each attention layer in the Transformer encoder. - decoder_attention_heads (`int`, *optional*, defaults to 2): - Number of attention heads for each attention layer in the Transformer decoder. - encoder_ffn_dim (`int`, *optional*, defaults to 32): - Dimension of the "intermediate" (often named feed-forward) layer in encoder. - decoder_ffn_dim (`int`, *optional*, defaults to 32): - Dimension of the "intermediate" (often named feed-forward) layer in decoder. - activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): - The non-linear activation function (function or string) in the encoder and decoder. If string, `"gelu"` and - `"relu"` are supported. - dropout (`float`, *optional*, defaults to 0.1): - The dropout probability for all fully connected layers in the encoder, and decoder. - encoder_layerdrop (`float`, *optional*, defaults to 0.1): - The dropout probability for the attention and fully connected layers for each encoder layer. - decoder_layerdrop (`float`, *optional*, defaults to 0.1): - The dropout probability for the attention and fully connected layers for each decoder layer. - attention_dropout (`float`, *optional*, defaults to 0.1): - The dropout probability for the attention probabilities. - activation_dropout (`float`, *optional*, defaults to 0.1): - The dropout probability used between the two layers of the feed-forward networks. - num_parallel_samples (`int`, *optional*, defaults to 100): - The number of samples to generate in parallel for each time step of inference. - init_std (`float`, *optional*, defaults to 0.02): - The standard deviation of the truncated normal weight initialization distribution. - use_cache (`bool`, *optional*, defaults to `True`): - Whether to use the past key/values attentions (if applicable to the model) to speed up decoding. - attention_type (`str`, *optional*, defaults to "prob"): - Attention used in encoder. This can be set to "prob" (Informer's ProbAttention) or "full" (vanilla - transformer's canonical self-attention). - sampling_factor (`int`, *optional*, defaults to 5): - ProbSparse sampling factor (only makes affect when `attention_type`="prob"). It is used to control the - reduced query matrix (Q_reduce) input length. - distil (`bool`, *optional*, defaults to `True`): - Whether to use distilling in encoder. - - Example: - - ```python - >>> from transformers import InformerConfig, InformerModel - - >>> # Initializing an Informer configuration with 12 time steps for prediction - >>> configuration = InformerConfig(prediction_length=12) - - >>> # Randomly initializing a model (with random weights) from the configuration - >>> model = InformerModel(configuration) - - >>> # Accessing the model configuration - >>> configuration = model.config - ```""" - model_type = "informer" - attribute_map = { - "hidden_size": "d_model", - "num_attention_heads": "encoder_attention_heads", - "num_hidden_layers": "encoder_layers", - } - - def __init__( - self, - prediction_length: Optional[int] = None, - context_length: Optional[int] = None, - distribution_output: str = "student_t", - loss: str = "nll", - input_size: int = 1, - lags_sequence: List[int] = None, - scaling: Optional[Union[str, bool]] = "mean", - num_dynamic_real_features: int = 0, - num_static_real_features: int = 0, - num_static_categorical_features: int = 0, - num_time_features: int = 0, - cardinality: Optional[List[int]] = None, - embedding_dimension: Optional[List[int]] = None, - d_model: int = 64, - encoder_ffn_dim: int = 32, - decoder_ffn_dim: int = 32, - encoder_attention_heads: int = 2, - decoder_attention_heads: int = 2, - encoder_layers: int = 2, - decoder_layers: int = 2, - is_encoder_decoder: bool = True, - activation_function: str = "gelu", - dropout: float = 0.05, - encoder_layerdrop: float = 0.1, - decoder_layerdrop: float = 0.1, - attention_dropout: float = 0.1, - activation_dropout: float = 0.1, - num_parallel_samples: int = 100, - init_std: float = 0.02, - use_cache=True, - # Informer arguments - attention_type: str = "prob", - sampling_factor: int = 5, - distil: bool = True, - **kwargs, - ): - # time series specific configuration - self.prediction_length = prediction_length - self.context_length = context_length or prediction_length - self.distribution_output = distribution_output - self.loss = loss - self.input_size = input_size - self.num_time_features = num_time_features - self.lags_sequence = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] - self.scaling = scaling - self.num_dynamic_real_features = num_dynamic_real_features - self.num_static_real_features = num_static_real_features - self.num_static_categorical_features = num_static_categorical_features - - # set cardinality - if cardinality and num_static_categorical_features > 0: - if len(cardinality) != num_static_categorical_features: - raise ValueError( - "The cardinality should be a list of the same length as `num_static_categorical_features`" - ) - self.cardinality = cardinality - else: - self.cardinality = [0] - - # set embedding_dimension - if embedding_dimension and num_static_categorical_features > 0: - if len(embedding_dimension) != num_static_categorical_features: - raise ValueError( - "The embedding dimension should be a list of the same length as `num_static_categorical_features`" - ) - self.embedding_dimension = embedding_dimension - else: - self.embedding_dimension = [min(50, (cat + 1) // 2) for cat in self.cardinality] - - self.num_parallel_samples = num_parallel_samples - - # Transformer architecture configuration - self.feature_size = input_size * len(self.lags_sequence) + self._number_of_features - self.d_model = d_model - self.encoder_attention_heads = encoder_attention_heads - self.decoder_attention_heads = decoder_attention_heads - self.encoder_ffn_dim = encoder_ffn_dim - self.decoder_ffn_dim = decoder_ffn_dim - self.encoder_layers = encoder_layers - self.decoder_layers = decoder_layers - - self.dropout = dropout - self.attention_dropout = attention_dropout - self.activation_dropout = activation_dropout - self.encoder_layerdrop = encoder_layerdrop - self.decoder_layerdrop = decoder_layerdrop - - self.activation_function = activation_function - self.init_std = init_std - - self.use_cache = use_cache - - # Informer - self.attention_type = attention_type - self.sampling_factor = sampling_factor - self.distil = distil - - super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs) - - @property - def _number_of_features(self) -> int: - return ( - sum(self.embedding_dimension) - + self.num_dynamic_real_features - + self.num_time_features - + self.num_static_real_features - + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features - ) diff --git a/spaces/ynhe/AskAnything/models/grit_src/third_party/CenterNet2/docs/tutorials/lazyconfigs.md b/spaces/ynhe/AskAnything/models/grit_src/third_party/CenterNet2/docs/tutorials/lazyconfigs.md deleted file mode 100644 index ca9de3052a8065c1c4579499cb8ef7ed9fc2d660..0000000000000000000000000000000000000000 --- a/spaces/ynhe/AskAnything/models/grit_src/third_party/CenterNet2/docs/tutorials/lazyconfigs.md +++ /dev/null @@ -1,170 +0,0 @@ -# Lazy Configs - -The traditional yacs-based config system provides basic, standard functionalities. -However, it does not offer enough flexibility for many new projects. -We develop an alternative, non-intrusive config system that can be used with -detectron2 or potentially any other complex projects. - -## Python Syntax - -Our config objects are still dictionaries. Instead of using Yaml to define dictionaries, -we create dictionaries in Python directly. This gives users the following power that -doesn't exist in Yaml: - -* Easily manipulate the dictionary (addition & deletion) using Python. -* Write simple arithmetics or call simple functions. -* Use more data types / objects. -* Import / compose other config files, using the familiar Python import syntax. - -A Python config file can be loaded like this: -```python -# config.py: -a = dict(x=1, y=2, z=dict(xx=1)) -b = dict(x=3, y=4) - -# my_code.py: -from detectron2.config import LazyConfig -cfg = LazyConfig.load("path/to/config.py") # an omegaconf dictionary -assert cfg.a.z.xx == 1 -``` - -After [LazyConfig.load](../modules/config.html#detectron2.config.LazyConfig.load), `cfg` will be a dictionary that contains all dictionaries -defined in the global scope of the config file. Note that: -* All dictionaries are turned to an [omegaconf](https://omegaconf.readthedocs.io/) - config object during loading. This enables access to omegaconf features, - such as its [access syntax](https://omegaconf.readthedocs.io/en/2.1_branch/usage.html#access-and-manipulation) - and [interpolation](https://omegaconf.readthedocs.io/en/2.1_branch/usage.html#variable-interpolation). -* Absolute imports in `config.py` works the same as in regular Python. -* Relative imports can only import dictionaries from config files. - They are simply a syntax sugar for [LazyConfig.load_rel](../modules/config.html#detectron2.config.LazyConfig.load_rel). - They can load Python files at relative path without requiring `__init__.py`. - -[LazyConfig.save](../modules/config.html#detectron2.config.LazyConfig.save) can save a config object to yaml. -Note that this is not always successful if non-serializable objects appear in the config file (e.g. lambdas). -It is up to users whether to sacrifice the ability to save in exchange for flexibility. - -## Recursive Instantiation - -The LazyConfig system heavily uses recursive instantiation, which is a pattern that -uses a dictionary to describe a -call to a function/class. The dictionary consists of: - -1. A "\_target\_" key which contains path to the callable, such as "module.submodule.class_name". -2. Other keys that represent arguments to pass to the callable. Arguments themselves can be defined - using recursive instantiation. - -We provide a helper function [LazyCall](../modules/config.html#detectron2.config.LazyCall) that helps create such dictionaries. -The following code using `LazyCall` -```python -from detectron2.config import LazyCall as L -from my_app import Trainer, Optimizer -cfg = L(Trainer)( - optimizer=L(Optimizer)( - lr=0.01, - algo="SGD" - ) -) -``` -creates a dictionary like this: -``` -cfg = { - "_target_": "my_app.Trainer", - "optimizer": { - "_target_": "my_app.Optimizer", - "lr": 0.01, "algo": "SGD" - } -} -``` - -By representing objects using such dictionaries, a general -[instantiate](../modules/config.html#detectron2.config.instantiate) -function can turn them into actual objects, i.e.: -```python -from detectron2.config import instantiate -trainer = instantiate(cfg) -# equivalent to: -# from my_app import Trainer, Optimizer -# trainer = Trainer(optimizer=Optimizer(lr=0.01, algo="SGD")) -``` - -This pattern is powerful enough to describe very complex objects, e.g.: - -
            - -A Full Mask R-CNN described in recursive instantiation (click to expand) - - -```eval_rst -.. literalinclude:: ../../configs/common/models/mask_rcnn_fpn.py - :language: python - :linenos: -``` - -
            - -There are also objects or logic that cannot be described simply by a dictionary, -such as reused objects or method calls. They may require some refactoring -to work with recursive instantiation. - -## Using Model Zoo LazyConfigs - -We provide some configs in the model zoo using the LazyConfig system, for example: - -* [common baselines](../../configs/common/). -* [new Mask R-CNN baselines](../../configs/new_baselines/) - -After installing detectron2, they can be loaded by the model zoo API -[model_zoo.get_config](../modules/model_zoo.html#detectron2.model_zoo.get_config). - -Using these as references, you're free to define custom config structure / fields for your own -project, as long as your training script can understand them. -Despite of this, our model zoo configs still follow some simple conventions for consistency, e.g. -`cfg.model` defines a model object, `cfg.dataloader.{train,test}` defines dataloader objects, -and `cfg.train` contains training options in key-value form. -In addition to `print()`, a better way to view the structure of a config is like this: -``` -from detectron2.model_zoo import get_config -from detectron2.config import LazyConfig -print(LazyConfig.to_py(get_config("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.py"))) -``` -From the output it's easier to find relevant options to change, e.g. -`dataloader.train.total_batch_size` for the batch size, or `optimizer.lr` for base learning rate. - -We provide a reference training script -[tools/lazyconfig_train_net.py](../../tools/lazyconfig_train_net.py), -that can train/eval our model zoo configs. -It also shows how to support command line value overrides. - -To demonstrate the power and flexibility of the new system, we show that -[a simple config file](../../configs/Misc/torchvision_imagenet_R_50.py) -can let detectron2 train an ImageNet classification model from torchvision, even though -detectron2 contains no features about ImageNet classification. -This can serve as a reference for using detectron2 in other deep learning tasks. - -## Summary - -By using recursive instantiation to create objects, -we avoid passing a giant config to many places, because `cfg` is only passed to `instantiate`. -This has the following benefits: - -* It's __non-intrusive__: objects to be constructed are config-agnostic, regular Python - functions/classes. - They can even live in other libraries. For example, - `{"_target_": "torch.nn.Conv2d", "in_channels": 10, "out_channels": 10, "kernel_size": 1}` - defines a conv layer. -* __Clarity__ of what function/classes will be called, and what arguments they use. -* `cfg` doesn't need pre-defined keys and structures. It's valid as long as it translates to valid - code. This gives a lot more __flexibility__. -* You can still pass huge dictionaries as arguments, just like the old way. - -Recursive instantiation and Python syntax are orthogonal: you can use one without the other. -But by putting them together, the config file looks a lot like the code that will be executed: - -![img](./lazyconfig.jpg) - -However, the config file just defines dictionaries, which can be easily manipulated further -by composition or overrides. -The corresponding code will only be executed -later when `instantiate` is called. In some way, -in config files we're writing "editable code" that will be "lazily executed" later when needed. -That's why we call this system "LazyConfig". diff --git a/spaces/zeno-ml/openai-evals/frontend/svelte.config.js b/spaces/zeno-ml/openai-evals/frontend/svelte.config.js deleted file mode 100644 index b0683fd24d70abb7eeaeef8e39e3a12b4e74775a..0000000000000000000000000000000000000000 --- a/spaces/zeno-ml/openai-evals/frontend/svelte.config.js +++ /dev/null @@ -1,7 +0,0 @@ -import { vitePreprocess } from '@sveltejs/vite-plugin-svelte' - -export default { - // Consult https://svelte.dev/docs#compile-time-svelte-preprocess - // for more information about preprocessors - preprocess: vitePreprocess(), -} diff --git a/spaces/zetavg/LLaMA-LoRA-Tuner-UI-Demo/llama_lora/utils/eta_predictor.py b/spaces/zetavg/LLaMA-LoRA-Tuner-UI-Demo/llama_lora/utils/eta_predictor.py deleted file mode 100644 index d28c4a16b6a8498b15291b3a79996bbb34797082..0000000000000000000000000000000000000000 --- a/spaces/zetavg/LLaMA-LoRA-Tuner-UI-Demo/llama_lora/utils/eta_predictor.py +++ /dev/null @@ -1,69 +0,0 @@ -import time -import traceback -from collections import deque -from typing import Optional - - -class ETAPredictor: - def __init__(self, lookback_minutes: int = 180): - self.lookback_seconds = lookback_minutes * 60 # convert minutes to seconds - self.data = deque() - - def _cleanup_old_data(self): - current_time = time.time() - while self.data and current_time - self.data[0][1] > self.lookback_seconds: - self.data.popleft() - - def predict_eta( - self, current_step: int, total_steps: int - ) -> Optional[int]: - try: - current_time = time.time() - - # Calculate dynamic log interval based on current logged data - log_interval = 1 - if len(self.data) > 100: - log_interval = 10 - - # Only log data if last log is at least log_interval seconds ago - if len(self.data) < 1 or current_time - self.data[-1][1] >= log_interval: - self.data.append((current_step, current_time)) - self._cleanup_old_data() - - # Only predict if we have enough data - if len(self.data) < 2 or self.data[-1][1] - self.data[0][1] < 1: - return None - - first_step, first_time = self.data[0] - steps_completed = current_step - first_step - time_elapsed = current_time - first_time - - if steps_completed == 0: - return None - - time_per_step = time_elapsed / steps_completed - steps_remaining = total_steps - current_step - - remaining_seconds = steps_remaining * time_per_step - eta_unix_timestamp = current_time + remaining_seconds - - return int(eta_unix_timestamp) - except Exception as e: - print("Error predicting ETA:", e) - traceback.print_exc() - return None - - def get_current_speed(self): - if len(self.data) < 5: - return None - - last = self.data[-1] - sample = self.data[-5] - if len(self.data) > 100: - sample = self.data[-2] - - steps_completed = last[0] - sample[0] - time_elapsed = last[1] - sample[1] - steps_per_second = steps_completed / time_elapsed - - return steps_per_second diff --git a/spaces/zhoupin30/zhoupin30/src/components/ui/button.tsx b/spaces/zhoupin30/zhoupin30/src/components/ui/button.tsx deleted file mode 100644 index 281da005124fa94c89a9a9db7605748a92b60865..0000000000000000000000000000000000000000 --- a/spaces/zhoupin30/zhoupin30/src/components/ui/button.tsx +++ /dev/null @@ -1,57 +0,0 @@ -import * as React from 'react' -import { Slot } from '@radix-ui/react-slot' -import { cva, type VariantProps } from 'class-variance-authority' - -import { cn } from '@/lib/utils' - -const buttonVariants = cva( - 'inline-flex items-center justify-center rounded-md text-sm font-medium shadow ring-offset-background transition-colors outline-none disabled:pointer-events-none disabled:opacity-50', - { - variants: { - variant: { - default: - 'bg-primary text-primary-foreground shadow-md hover:bg-primary/90', - destructive: - 'bg-destructive text-destructive-foreground hover:bg-destructive/90', - outline: - 'border border-input hover:bg-accent hover:text-accent-foreground', - secondary: - 'bg-secondary text-secondary-foreground hover:bg-secondary/80', - ghost: 'shadow-none hover:bg-accent hover:text-accent-foreground', - link: 'text-primary underline-offset-4 shadow-none hover:underline' - }, - size: { - default: 'h-8 px-4 py-2', - sm: 'h-8 rounded-md px-3', - lg: 'h-11 rounded-md px-8', - icon: 'h-8 w-8 p-0' - } - }, - defaultVariants: { - variant: 'default', - size: 'default' - } - } -) - -export interface ButtonProps - extends React.ButtonHTMLAttributes, - VariantProps { - asChild?: boolean -} - -const Button = React.forwardRef( - ({ className, variant, size, asChild = false, ...props }, ref) => { - const Comp = asChild ? Slot : 'button' - return ( - - ) - } -) -Button.displayName = 'Button' - -export { Button, buttonVariants } diff --git a/spaces/zideliu/styledrop/timm/optim/nvnovograd.py b/spaces/zideliu/styledrop/timm/optim/nvnovograd.py deleted file mode 100644 index 323312d2fc36d028124f7a7ec604d248e71503cd..0000000000000000000000000000000000000000 --- a/spaces/zideliu/styledrop/timm/optim/nvnovograd.py +++ /dev/null @@ -1,118 +0,0 @@ -""" Nvidia NovoGrad Optimizer. -Original impl by Nvidia from Jasper example: - - https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/SpeechRecognition/Jasper -Paper: `Stochastic Gradient Methods with Layer-wise Adaptive Moments for Training of Deep Networks` - - https://arxiv.org/abs/1905.11286 -""" - -import torch -from torch.optim.optimizer import Optimizer -import math - - -class NvNovoGrad(Optimizer): - """ - Implements Novograd algorithm. - - Args: - params (iterable): iterable of parameters to optimize or dicts defining - parameter groups - lr (float, optional): learning rate (default: 1e-3) - betas (Tuple[float, float], optional): coefficients used for computing - running averages of gradient and its square (default: (0.95, 0.98)) - eps (float, optional): term added to the denominator to improve - numerical stability (default: 1e-8) - weight_decay (float, optional): weight decay (L2 penalty) (default: 0) - grad_averaging: gradient averaging - amsgrad (boolean, optional): whether to use the AMSGrad variant of this - algorithm from the paper `On the Convergence of Adam and Beyond`_ - (default: False) - """ - - def __init__(self, params, lr=1e-3, betas=(0.95, 0.98), eps=1e-8, - weight_decay=0, grad_averaging=False, amsgrad=False): - if not 0.0 <= lr: - raise ValueError("Invalid learning rate: {}".format(lr)) - if not 0.0 <= eps: - raise ValueError("Invalid epsilon value: {}".format(eps)) - if not 0.0 <= betas[0] < 1.0: - raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) - if not 0.0 <= betas[1] < 1.0: - raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) - defaults = dict(lr=lr, betas=betas, eps=eps, - weight_decay=weight_decay, - grad_averaging=grad_averaging, - amsgrad=amsgrad) - - super(NvNovoGrad, self).__init__(params, defaults) - - def __setstate__(self, state): - super(NvNovoGrad, self).__setstate__(state) - for group in self.param_groups: - group.setdefault('amsgrad', False) - - def step(self, closure=None): - """Performs a single optimization step. - - Arguments: - closure (callable, optional): A closure that reevaluates the model - and returns the loss. - """ - loss = None - if closure is not None: - loss = closure() - - for group in self.param_groups: - for p in group['params']: - if p.grad is None: - continue - grad = p.grad.data - if grad.is_sparse: - raise RuntimeError('Sparse gradients are not supported.') - amsgrad = group['amsgrad'] - - state = self.state[p] - - # State initialization - if len(state) == 0: - state['step'] = 0 - # Exponential moving average of gradient values - state['exp_avg'] = torch.zeros_like(p.data) - # Exponential moving average of squared gradient values - state['exp_avg_sq'] = torch.zeros([]).to(state['exp_avg'].device) - if amsgrad: - # Maintains max of all exp. moving avg. of sq. grad. values - state['max_exp_avg_sq'] = torch.zeros([]).to(state['exp_avg'].device) - - exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] - if amsgrad: - max_exp_avg_sq = state['max_exp_avg_sq'] - beta1, beta2 = group['betas'] - - state['step'] += 1 - - norm = torch.sum(torch.pow(grad, 2)) - - if exp_avg_sq == 0: - exp_avg_sq.copy_(norm) - else: - exp_avg_sq.mul_(beta2).add_(1 - beta2, norm) - - if amsgrad: - # Maintains the maximum of all 2nd moment running avg. till now - torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) - # Use the max. for normalizing running avg. of gradient - denom = max_exp_avg_sq.sqrt().add_(group['eps']) - else: - denom = exp_avg_sq.sqrt().add_(group['eps']) - - grad.div_(denom) - if group['weight_decay'] != 0: - grad.add_(group['weight_decay'], p.data) - if group['grad_averaging']: - grad.mul_(1 - beta1) - exp_avg.mul_(beta1).add_(grad) - - p.data.add_(-group['lr'], exp_avg) - - return loss