parquet-converter commited on
Commit
a76b9fc
·
1 Parent(s): d01490c

Update parquet files (step 55 of 249)

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. spaces/101-5/gpt4free/SECURITY.md +0 -4
  2. spaces/1acneusushi/gradio-2dmoleculeeditor/data/Arrival (English) Telugu Movie Video Songs Hd 1080p Watch and Listen to the Amazing Soundtrack of the Sci-Fi Film.md +0 -87
  3. spaces/1acneusushi/gradio-2dmoleculeeditor/data/Create Custom Layouts with Tych Panel 2 Full Version for Photoshop CC.md +0 -120
  4. spaces/1gistliPinn/ChatGPT4/Examples/Download Elijah Blakes Drift Album in Zip Format.md +0 -6
  5. spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Discover the Secrets of Ashfall a New Post-Apocalyptic MMORPG.md +0 -114
  6. spaces/1phancelerku/anime-remove-background/Download Mkhathazi Songs for Free - The Best of Maskandi Music.md +0 -108
  7. spaces/1phancelerku/anime-remove-background/Download Real Cricket GO Mod APK and Enjoy Unlimited Money and Features.md +0 -131
  8. spaces/1toTree/lora_test/ppdiffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +0 -631
  9. spaces/AIGC-Audio/AudioGPT/text_to_speech/tasks/tts/synta_mlm.py +0 -25
  10. spaces/ATang0729/Forecast4Muses/Model/Model6/Model6_1_ClothesKeyPoint/mmpose_1_x/configs/fashion_2d_keypoint/README.md +0 -7
  11. spaces/Abhilashvj/planogram-compliance/data/scripts/get_coco128.sh +0 -17
  12. spaces/Abhilashvj/planogram-compliance/utils/google_app_engine/Dockerfile +0 -25
  13. spaces/Adapting/YouTube-Downloader/README.md +0 -13
  14. spaces/Aditya9790/yolo7-object-tracking/utils/aws/__init__.py +0 -1
  15. spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/confirmdialog/methods/Modal.js +0 -29
  16. spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/ninepatch2/NinePatch.js +0 -2
  17. spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/sizer/AddChildMethods.js +0 -170
  18. spaces/Akmyradov/TurkmenTTSweSTT/uroman/lib/JSON/backportPP/Boolean.pm +0 -27
  19. spaces/AlekseyKorshuk/model-evaluation/tabs/playground.py +0 -123
  20. spaces/AlgoveraAI/algovera_squad_active_passive_model/README.md +0 -11
  21. spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/src/diffusers/models/autoencoder_kl.py +0 -417
  22. spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/src/diffusers/models/modeling_utils.py +0 -980
  23. spaces/AnimaLab/bias-test-gpt-pairs/bloomberg_vis.py +0 -85
  24. spaces/AnonAndDesu/Desu_Proxy/greeting.md +0 -3
  25. spaces/Anonymous-123/ImageNet-Editing/editing_diffusion/guided_diffusion/setup.py +0 -7
  26. spaces/Anonymous-sub/Rerender/ControlNet/annotator/uniformer/mmcv/cnn/bricks/__init__.py +0 -35
  27. spaces/AriaMei/TTSdemo/monotonic_align/setup.py +0 -9
  28. spaces/ArkanDash/rvc-models-new/lib/infer_pack/modules/F0Predictor/HarvestF0Predictor.py +0 -86
  29. spaces/Arulkumar03/GroundingDINO_SOTA_Zero_Shot_Model/groundingdino/config/__init__.py +0 -0
  30. spaces/AsakuraMizu/moe-tts/text/__init__.py +0 -32
  31. spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_internal/cli/cmdoptions.py +0 -1074
  32. spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_vendor/platformdirs/api.py +0 -179
  33. spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_vendor/tenacity/_asyncio.py +0 -94
  34. spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/setuptools/_distutils/command/install.py +0 -814
  35. spaces/AzumaSeren100/XuanShen-Bert-VITS2/models.py +0 -707
  36. spaces/CVPR/Dual-Key_Backdoor_Attacks/bottom-up-attention-vqa/language_model.py +0 -81
  37. spaces/CVPR/Dual-Key_Backdoor_Attacks/openvqa/openvqa/models/butd/tda.py +0 -97
  38. spaces/CVPR/LIVE/pybind11/tests/test_pytypes.cpp +0 -375
  39. spaces/CVPR/LIVE/thrust/thrust/system/cpp/pointer.h +0 -351
  40. spaces/CVPR/LIVE/thrust/thrust/system/cuda/detail/inner_product.h +0 -94
  41. spaces/CVPR/LIVE/thrust/thrust/system/omp/memory.h +0 -95
  42. spaces/CVPR/WALT/mmdet/models/detectors/single_stage.py +0 -154
  43. spaces/CVPR/WALT/mmdet/models/detectors/sparse_rcnn.py +0 -110
  44. spaces/CVPR/WALT/walt/datasets/pipelines/instaboost.py +0 -98
  45. spaces/CVPR/lama-example/saicinpainting/evaluation/losses/__init__.py +0 -0
  46. spaces/CikeyQI/Yunzai/Yunzai/plugins/other/update.js +0 -240
  47. spaces/CjangCjengh/Shanghainese-TTS/models.py +0 -535
  48. spaces/CofAI/chat/server/bp.py +0 -6
  49. spaces/CofAI/picscore/README.md +0 -13
  50. spaces/Crossper6/stable-diffusion-webui/app.py +0 -75
spaces/101-5/gpt4free/SECURITY.md DELETED
@@ -1,4 +0,0 @@
1
- ## Reporting a Vulnerability
2
-
3
- Reporting a Vulnerability
4
- Please report (suspected) security vulnerabilities to https://t.me/xtekky. You will receive a response within 48 hours. If the issue is confirmed, we will release a patch as soon as possible depending on complexity but historically within a few days.
 
 
 
 
 
spaces/1acneusushi/gradio-2dmoleculeeditor/data/Arrival (English) Telugu Movie Video Songs Hd 1080p Watch and Listen to the Amazing Soundtrack of the Sci-Fi Film.md DELETED
@@ -1,87 +0,0 @@
1
- <br />
2
- <h1>Panda Antivirus Pro v17.0.1 Final Crack: What You Need to Know</h1>
3
- <p>If you are looking for a reliable and powerful antivirus software for your PC, you might have come across Panda Antivirus Pro v17.0.1, one of the latest versions of the popular security product from Panda Security. Panda Antivirus Pro v17.0.1 offers comprehensive protection against all kinds of online threats, such as viruses, malware, ransomware, phishing, and more. It also comes with a range of features that enhance your privacy and performance, such as firewall, VPN, Wi-Fi protection, parental control, data shield, optimization and cleanup tools, and more.</p>
4
- <h2>Panda.Antivirus.Pro.v17.0.1.Final..rar crack</h2><br /><p><b><b>Download</b> ===> <a href="https://byltly.com/2uKvUW">https://byltly.com/2uKvUW</a></b></p><br /><br />
5
- <p>However, if you are tempted to download a cracked version of Panda Antivirus Pro v17.0.1 from some shady website or torrent site, you might want to think twice before doing so. A crack is a program that modifies or bypasses the original software's license verification or activation process, allowing you to use it for free or with unlimited features. While this might sound like a good deal, using a cracked version of Panda Antivirus Pro v17.0.1 can expose you to various risks and disadvantages that outweigh any potential benefits.</p>
6
- <h2>Features of Panda Antivirus Pro v17.0.1</h2>
7
- <p>Panda Antivirus Pro v17.0.1 is a comprehensive security solution that protects your PC from all kinds of online threats. Some of its features include:</p>
8
- <ul>
9
- <li><b>Protection against viruses, malware, ransomware, and phishing:</b> Panda Antivirus Pro v17.0.1 uses cloud-based scanning and real-time updates to detect and block any malicious programs or websites that try to infect your PC or steal your personal information.</li>
10
- <li><b>Firewall, VPN, and Wi-Fi protection:</b> Panda Antivirus Pro v17.0.1 helps you secure your network connection and prevent unauthorized access to your PC or data. It also allows you to browse anonymously and access geo-restricted content with its built-in VPN service.</li>
11
- <li><b>Parental control and data shield:</b> Panda Antivirus Pro v17.0.1 lets you monitor and control your children's online activity and block inappropriate content or applications. It also encrypts your sensitive files and folders to prevent unauthorized access or modification.</li>
12
- <li><b>Optimization and cleanup tools:</b> Panda Antivirus Pro v17.0.1 helps you improve your PC's performance and free up disk space by removing junk files, optimizing settings, and managing startup programs.</li>
13
- </ul>
14
- <h2>Risks of Using a Cracked Version of Panda Antivirus Pro v17.0.1</h2>
15
- <p>While using a cracked version of Panda Antivirus Pro v17.0.1 might seem like a convenient way to save money or get more features, it can also expose you to various risks and disadvantages that can compromise your security, performance, legality, and ethics.</p>
16
- <table>
17
- <tr><th>Risk</th><th>Description</th></tr>
18
- <tr><td><b>Legal issues and penalties for software piracy:</b></td><td>Using a cracked version of Panda Antivirus Pro v17.0.1 is considered software piracy, which is illegal in most countries and can result in fines or even jail time if caught.</td></tr>
19
- <tr><td><b>Security threats and vulnerabilities from malware-infected cracks:</b></td><td>Many cracks are infected with malware themselves or contain hidden backdoors that can allow hackers to access your PC or data without your knowledge or consent.</td></tr>
20
- <tr><td><b>Performance issues and compatibility problems from outdated or modified cracks:</b></td><td>Many cracks are outdated or modified versions of the original software that can cause errors, crashes, or conflicts with other programs or system updates.</td></tr>
21
- <tr><td><b>Ethical issues and unfairness to the developers of Panda Antivirus Pro:</b></td><td>Using a cracked version of Panda Antivirus Pro v17.0.1 is unethical and unfair to the developers who spent time and money creating the software and providing updates and support.</td></tr>
22
- </table>
23
- <h2>Alternatives to Using a Cracked Version of Panda Antivirus Pro v17.0.1</h2>
24
- <p>If you want to use Panda Antivirus Pro v17.0.1 without risking any of the above-mentioned issues, there are some alternatives that you can consider instead of using a crack.</p>
25
- <ul>
26
- <li><b>Buying a legitimate license of Panda Antivirus Pro v17.0.1:</b> The best way to use Panda Antivirus Pro v17.0.1 is to buy a legitimate license from the official website or an authorized reseller. This way, you can enjoy all the features and benefits of the software without any legal or security risks.</li>
27
- <li><b>Using a free trial or a free version of Panda Antivirus Pro v17.0.1:</b> If you want to try out Panda Antivirus Pro v17.0.1 before buying it, you can use a free trial that lasts for 30 days or a free version that offers basic protection features.</li>
28
- <li><b>Using other free or paid antivirus software that suits your needs:</b> If you are not satisfied with Panda Antivirus Pro v17.0.1 or its price, you can also use other free or paid antivirus software that suits your needs. There are many options available in the market that offer different features and levels of protection.</li>
29
- </ul>
30
- <h2>Conclusion</h2>
31
- <p>Panda Antivirus Pro v17.0.1 is a comprehensive security solution that protects your PC from all kinds of online threats and enhances your privacy and performance with various features.</p>
32
- <p>Panda Antivirus Pro 17.0.1 Final full version download<br />
33
- How to crack Panda Antivirus Pro 17.0.1 Final rar file<br />
34
- Panda Antivirus Pro 17.0.1 Final license key generator<br />
35
- Panda Antivirus Pro 17.0.1 Final activation code free<br />
36
- Panda Antivirus Pro 17.0.1 Final patch download<br />
37
- Panda Antivirus Pro 17.0.1 Final serial number crack<br />
38
- Panda Antivirus Pro 17.0.1 Final keygen torrent<br />
39
- Panda Antivirus Pro 17.0.1 Final cracked software download<br />
40
- Panda Antivirus Pro 17.0.1 Final rar password remover<br />
41
- Panda Antivirus Pro 17.0.1 Final registration code crack<br />
42
- Panda Antivirus Pro 17.0.1 Final product key crack<br />
43
- Panda Antivirus Pro 17.0.1 Final crack download for windows 10<br />
44
- Panda Antivirus Pro 17.0.1 Final crack download for mac<br />
45
- Panda Antivirus Pro 17.0.1 Final crack download for linux<br />
46
- Panda Antivirus Pro 17.0.1 Final crack download for android<br />
47
- Panda Antivirus Pro 17.0.1 Final portable version download<br />
48
- Panda Antivirus Pro 17.0.1 Final offline installer download<br />
49
- Panda Antivirus Pro 17.0.1 Final latest update download<br />
50
- Panda Antivirus Pro 17.0.1 Final premium features unlock<br />
51
- Panda Antivirus Pro 17.0.1 Final lifetime activation crack<br />
52
- Panda Antivirus Pro 17.0.1 Final malware removal tool crack<br />
53
- Panda Antivirus Pro 17.0.1 Final virus protection crack<br />
54
- Panda Antivirus Pro 17.0.1 Final firewall crack<br />
55
- Panda Antivirus Pro 17.0.1 Final VPN crack<br />
56
- Panda Antivirus Pro 17.0.1 Final parental control crack<br />
57
- Panda Antivirus Pro 17.0.1 Final data recovery crack<br />
58
- Panda Antivirus Pro 17.0.1 Final system optimizer crack<br />
59
- Panda Antivirus Pro 17.0.1 Final identity protection crack<br />
60
- Panda Antivirus Pro 17.0.1 Final ransomware protection crack<br />
61
- Panda Antivirus Pro 17.0.1 Final phishing protection crack<br />
62
- Panda Antivirus Pro 17.0.1 Final webcam protection crack<br />
63
- Panda Antivirus Pro 17.0.1 Final password manager crack<br />
64
- Panda Antivirus Pro 17.0.1 Final file shredder crack<br />
65
- Panda Antivirus Pro 17.0.1 Final file encryption crack<br />
66
- Panda Antivirus Pro 17.0.1 Final safe browsing crack<br />
67
- Panda Antivirus Pro 17.0.1 Final game mode crack<br />
68
- Panda Antivirus Pro 17.0</p>
69
- <p>However, using a cracked version of Panda Antivirus Pro v17.0.1 can expose you to various risks and disadvantages that can compromise your security, performance, legality, and ethics.</p>
70
- <p>The best way to use Panda Antivirus Pro v17.0.1 is to buy a legitimate license from the official website or an authorized reseller. Alternatively, you can use a free trial or a free version of Panda Antivirus Pro v17.0. I have already written the article on the topic you provided. Here is the rest of the article with HTML formatting. <p>1 or another free or paid antivirus software that suits your needs.</p>
71
- <p>We hope this article has helped you understand what you need to know about Panda Antivirus Pro v17.0.1 and its crack. If you have any questions or comments, feel free to leave them below.</p>
72
- <h2>FAQs</h2>
73
- <ul>
74
- <li><b>Q: Is Panda Antivirus Pro v17.0.1 compatible with Windows 10?</b></li>
75
- <li><b>A: Yes, Panda Antivirus Pro v17.0.1 is compatible with Windows 10 and other Windows versions from XP to 8.1.</b></li>
76
- <li><b>Q: How much does Panda Antivirus Pro v17.0.1 cost?</b></li>
77
- <li><b>A: Panda Antivirus Pro v17.0.1 costs $39.99 for a one-year license for one PC, $59.99 for a two-year license for one PC, or $79.99 for a three-year license for one PC.</b></li>
78
- <li><b>Q: How can I get a free trial or a free version of Panda Antivirus Pro v17.0.1?</b></li>
79
- <li><b>A: You can get a free trial of Panda Antivirus Pro v17.0.1 by downloading it from the official website and activating it with your email address. You can get a free version of Panda Antivirus Pro v17.0.1 by downloading it from the official website and installing it on your PC.</b></li>
80
- <li><b>Q: What are some other free or paid antivirus software that I can use instead of Panda Antivirus Pro v17.0.1?</b></li>
81
- <li><b>A: Some other free or paid antivirus software that you can use instead of Panda Antivirus Pro v17.0.1 are Avast Free Antivirus, Bitdefender Antivirus Plus, Kaspersky Anti-Virus, Norton 360, and McAfee Total Protection.</b></li>
82
- <li><b>Q: How can I contact the support team of Panda Antivirus Pro v17.0.1 if I have any issues or queries?</b></li>
83
- <li><b>A: You can contact the support team of Panda Antivirus Pro v17.0.1 by visiting the official website and clicking on the "Support" tab. You can also call them at +34 91 398 37 00 or email them at [email protected].</b></li>
84
- </ul>
85
- </p> 0a6ba089eb<br />
86
- <br />
87
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1acneusushi/gradio-2dmoleculeeditor/data/Create Custom Layouts with Tych Panel 2 Full Version for Photoshop CC.md DELETED
@@ -1,120 +0,0 @@
1
- <br />
2
- <h1>James Cameron's Avatar: The Game Reloaded Serial Crack</h1>
3
- <h2>Introduction</h2>
4
- <p>If you are a fan of James Cameron's epic sci-fi movie Avatar, you might want to play the video game adaptation of it. James Cameron's Avatar: The Game is a third-person action-adventure game that lets you experience the stunning world of Pandora and its inhabitants. You can choose to fight for the human invaders or the native Na'vi, and explore a rich and diverse environment full of exotic creatures and plants.</p>
5
- <h2>james cameron's avatar the game reloaded serial crack</h2><br /><p><b><b>Download File</b> &#9734;&#9734;&#9734; <a href="https://byltly.com/2uKvNj">https://byltly.com/2uKvNj</a></b></p><br /><br />
6
- <p>However, playing this game is not as easy as it sounds. You need a serial crack to activate the game and bypass the online verification process. Otherwise, you will be stuck at the activation screen and unable to enjoy the game. This is where Reloaded Serial Crack comes in handy. In this article, we will show you what Reloaded Serial Crack is, why you need it, how to get it, and some tips and tricks for playing Avatar: The Game.</p>
7
- <h2>What is James Cameron's Avatar: The Game?</h2>
8
- <p>James Cameron's Avatar: The Game is a video game based on the 2009 blockbuster movie Avatar, directed by James Cameron. The game was developed by Ubisoft Montreal and released in 2009 for Windows, PlayStation 3, Xbox 360, Wii, PSP, Nintendo DS, and iOS devices.</p>
9
- <p>The game is set in 2152, two years before the events of the movie. You play as either a soldier of the Resources Development Administration (RDA), a corporation that wants to exploit Pandora's resources, or a member of the Na'vi, a race of blue-skinned humanoid aliens that live in harmony with nature. You can switch between these two factions at any time during the game.</p>
10
- <p>The game features a nonlinear storyline that changes depending on your choices and actions. You can also customize your character's appearance, weapons, skills, and abilities. The game has both single-player and multiplayer modes, where you can cooperate or compete with other players online.</p>
11
- <h2>What is Reloaded Serial Crack?</h2>
12
- <p>Reloaded Serial Crack is a software tool that allows you to activate James Cameron's Avatar: The Game without having to go through the online verification process. The game requires you to enter a unique activation key that matches your hardware ID, which is generated by the game installer based on your computer specifications. However, this activation key can only be obtained from Ubisoft's official website, which is no longer available.</p>
13
- <p>Reloaded Serial Crack solves this problem by generating a valid activation key for any hardware ID. It also cracks the game files so that you can play the game offline without any internet connection. Reloaded Serial Crack was created by Reloaded, a group of hackers that specializes in cracking video games.</p>
14
- <h2>Why do you need Reloaded Serial Crack for Avatar: The Game?</h2>
15
- <p>You need Reloaded Serial Crack for Avatar: The Game if you want to play the game without any hassle. Without Reloaded Serial Crack, you will not be able to activate the game and play it. You will also miss out on some features and updates that are only available in version 1.02 of the game.</p>
16
- <p>avatar the game reloaded crack download<br />
17
- james cameron's avatar pc game serial key<br />
18
- how to install avatar the game reloaded<br />
19
- avatar the game reloaded activation code<br />
20
- james cameron's avatar the game crack only<br />
21
- avatar the game reloaded system requirements<br />
22
- james cameron's avatar pc game reloaded torrent<br />
23
- avatar the game reloaded free full version<br />
24
- james cameron's avatar the game keygen generator<br />
25
- avatar the game reloaded gameplay<br />
26
- james cameron's avatar the game patch download<br />
27
- avatar the game reloaded iso file<br />
28
- james cameron's avatar the game license key<br />
29
- avatar the game reloaded cheats codes<br />
30
- james cameron's avatar the game trainer download<br />
31
- avatar the game reloaded online multiplayer<br />
32
- james cameron's avatar the game mods<br />
33
- avatar the game reloaded rar password<br />
34
- james cameron's avatar the game steam<br />
35
- avatar the game reloaded error fix<br />
36
- james cameron's avatar the game review<br />
37
- avatar the game reloaded windows 10 compatibility<br />
38
- james cameron's avatar the game walkthrough<br />
39
- avatar the game reloaded skidrow crack<br />
40
- james cameron's avatar the game soundtrack<br />
41
- avatar the game reloaded direct link<br />
42
- james cameron's avatar the game ps3 iso<br />
43
- avatar the game reloaded xbox 360 controller support<br />
44
- james cameron's avatar the game xbox 360 download<br />
45
- avatar the game reloaded save file location<br />
46
- james cameron's avatar the game pc requirements<br />
47
- avatar the game reloaded no cd crack<br />
48
- james cameron's avatar the game pc gameplay<br />
49
- avatar the game reloaded update download<br />
50
- james cameron's avatar the game pc download highly compressed<br />
51
- avatar the game reloaded registration code generator<br />
52
- james cameron's avatar the game pc controls<br />
53
- avatar the game reloaded unlock code free<br />
54
- james cameron's avatar the game pc cheats<br />
55
- avatar the game reloaded graphics settings<br />
56
- james cameron's avatar the game pc mods<br />
57
- avatar the game reloaded offline activation keygen download<br />
58
- james cameron's avatar the game pc patch 1.02 download<br />
59
- avatar the game reloaded crack only download free full version pc games torrentz2.eu torrentz2.eu torrentz2.eu torrentz2.eu torrentz2.eu torrentz2.eu torrentz2.eu torrentz2.eu torrentz2.eu torrentz2.eu torrentz2.eu torrentz2.eu torrentz2.eu torrentz2.eu torrentz2.eu torrentz2.eu torrentz2.eu torrentz2.eu torrentz2.eu torrentz2.eu torrentz2.eu torrentz2.eu torrentz2.eutorrents.com torrents.com torrents.com torrents.com torrents.com torrents.com torrents.com torrents.com torrents.com torrents.com torrents.com torrents.com torrents.com torrents.com torrents.com torrents.com torrents.com torrents.com torrents.com torrents.com torrents.com torrents.com torrents.com torrents.com torrents.com torrents.comtorrents.net torrents.net torrents.net torrents.net torrents.net torrents.net torrents.net torrents.net torrents.net torrents.net torrents.net torrents.net torrents.net torrents.net torrents.net torrents.net torrents.net torrents.net torrents.net torrents.net torrents.nettorrents.me</p>
60
- <p>With Reloaded Serial Crack, you can enjoy the following benefits:</p>
61
- <ul>
62
- <li>You can play the game offline without any internet connection.</li>
63
- <li>You can play the game on any computer regardless of its hardware specifications.</li>
64
- <li>You can update the game to version 1.02, which fixes some bugs and improves some graphics.</li>
65
- <li>You can access all the content and modes of the game without any restrictions.</li>
66
- <li>You can save money by not having to buy an original copy of the game.</li>
67
- </ul>
68
- <h2>How to get Reloaded Serial Crack for Avatar: The Game?</h2>
69
- <p>Getting Reloaded Serial Crack for Avatar: The Game is not difficult if you follow these steps:</p>
70
- <h3>Download the game from a trusted source</h3>
71
- <p>The first step is to download James Cameron's Avatar: The Game from a trusted source. You can find many websites that offer free downloads of pirated games, but be careful as some of them may contain viruses or malware that can harm your computer. We recommend using ElAmigos official site, which provides a safe and reliable download link for James Cameron's Avatar: The Game ElAmigos release.</p>
72
- <p>The ElAmigos release is already cracked after installation (crack/keygen by Reloaded). It also includes all languages and updates up to version 1.02. The upload size is 2.77GB and you can choose between RAR parts or ISO image format.</p>
73
- <h3>Install the game and update it to version 1.02</h3>
74
- <p>The next step is to install James Cameron's Avatar: The Game on your computer. To do this, you need to extract the RAR parts or mount the ISO image using a software like WinRAR or Daemon Tools Lite. Then, run the setup.exe file and follow the instructions on screen.</p>
75
- <p>After installing the game, you need to update it to version 1.02. This will fix some bugs and improve some graphics in the game. To update the game, run patch.exe file from Update folder inside ISO image or extracted folder.</p>
76
- <h3>Launch the game and choose manual activation</h3>
77
- <p>The third step is to launch James Cameron's Avatar: The Game from your desktop shortcut or start menu. During the first launch, you will see an activation window that asks you to register online or manually. Select manual activation option as online activation is no longer possible.</p>
78
- <p>You will then see your hardware ID displayed on screen. This is a unique code that identifies your computer based on its specifications. You need this code to generate an activation key using Reloaded Serial Crack.</p>
79
- <h3>Use the keygen to generate an activation key</h3>
80
- <p>The fourth step is to use Reloaded Serial Crack (keygen) to generate an activation key for your hardware ID. To do this, you need to open keygen.exe file from Keygen folder inside ISO image or extracted folder.</p>
81
- <p>Then, copy your hardware ID from the game's activation window and paste it into Keygen field in keygen.exe file. Click Generate button and you will get an activation key displayed on screen.</p>
82
- <h3>Enter the activation key in the game's activation window</h3>
83
- <p>The final step is to enter the activation key in the game's activation window. To do this, you need to copy the activation key from keygen.exe file and paste it into Activation Key field in the game's activation window. Click Activate button and the game will launch automatically. You need to do this only once, after that you can delete the keygen.exe file.</p>
84
- <h2>Tips and tricks for playing Avatar: The Game</h2>
85
- <p>Now that you have activated James Cameron's Avatar: The Game, you can start playing it and have fun. Here are some tips and tricks for playing Avatar: The Game:</p>
86
- <h3>Choose your faction: RDA or Na'vi</h3>
87
- <p>The first choice you have to make in the game is which faction you want to join: the RDA or the Na'vi. This will affect your storyline, your gameplay, and your character development. The RDA are the human invaders who use advanced technology and weapons to exploit Pandora's resources. The Na'vi are the native aliens who use bows, spears, and animals to defend their homeland. these two factions at any time during the game, but be aware that your actions will have consequences and affect your reputation with each side.</p>
88
- <h3>Customize your character and skills</h3>
89
- <p>The second choice you have to make in the game is how to customize your character and skills. You can choose from different classes, such as soldier, infiltrator, commando, or scientist for the RDA, or warrior, hunter, shaman, or scout for the Na'vi. Each class has its own strengths and weaknesses, as well as unique weapons and abilities.</p>
90
- <p>You can also upgrade your skills by earning experience points (XP) and spending them on skill trees. There are four skill trees for each faction: combat, stealth, survival, and support for the RDA, and combat, stealth, nature, and spirit for the Na'vi. You can mix and match skills from different trees to create your own playstyle.</p>
91
- <h3>Explore the beautiful world of Pandora</h3>
92
- <p>The third thing you can do in the game is to explore the beautiful world of Pandora. Pandora is a rich and diverse environment full of exotic creatures and plants. You can interact with many of them, either as allies or enemies. You can also ride some of them, such as direhorses, banshees, or leonopteryxes.</p>
93
- <p>Pandora is also full of secrets and hidden areas that you can discover by using your scanner or your senses. You can find collectibles, such as cell samples, artifacts, or logs that will give you more information about the world and its history. You can also find resources and items that you can use to craft new weapons and equipment.</p>
94
- <h3>Complete missions and side quests</h3>
95
- <p>The fourth thing you can do in the game is to complete missions and side quests. Missions are the main objectives that advance the story and change depending on your faction and choices. Side quests are optional tasks that you can do to earn extra XP, resources, items, or reputation.</p>
96
- <p>You can find missions and side quests by talking to NPCs or checking your map. Some missions and side quests are faction-specific, while others are shared by both sides. Some missions and side quests are also time-sensitive or have branching outcomes. You can track your progress and objectives by using your HUD or your menu.</p>
97
- <h3>Collect resources and items</h3>
98
- <p>The fifth thing you can do in the game is to collect resources and items. Resources are materials that you can use to craft new weapons and equipment. You can find resources by scanning plants or animals, looting enemies or containers, or mining deposits. You can craft weapons and equipment by using workbenches or vendors.</p>
99
- <p>Items are consumables that you can use to enhance your performance or heal yourself. You can find items by scanning plants or animals, looting enemies or containers, or buying them from vendors. You can use items by accessing your inventory or using hotkeys.</p>
100
- <h2>Conclusion</h2>
101
- <h4>Summary of the main points</h4>
102
- <p>In conclusion, James Cameron's Avatar: The Game is a fun and immersive game that lets you experience the stunning world of Pandora and its inhabitants. However, to play this game, you need Reloaded Serial Crack to activate it and bypass the online verification process. To get Reloaded Serial Crack, you need to download the game from a trusted source, install it and update it to version 1.02, launch it and choose manual activation, use the keygen to generate an activation key, and enter it in the game's activation window.</p>
103
- <h4>Call to action</h4>
104
- <p>If you are ready to play James Cameron's Avatar: The Game with Reloaded Serial Crack, don't wait any longer. Follow the steps we have shown you in this article and start your adventure on Pandora today. You won't regret it!</p>
105
- <h2>FAQs</h2>
106
- <ul>
107
- <li><b>Q: Is Reloaded Serial Crack safe to use?</b></li>
108
- <li>A: Yes, Reloaded Serial Crack is safe to use as long as you download it from a trusted source like ElAmigos official site. It does not contain any viruses or malware that can harm your computer.</li>
109
- <li><b>Q: Can I play James Cameron's Avatar: The Game online with Reloaded Serial Crack?</b></li>
110
- <li>A: No, Reloaded Serial Crack only works for offline mode. If you want to play online with other players, you need an original copy of the game with a valid activation key.</li>
111
- <li><b>Q: How long does it take to activate James Cameron's Avatar: The Game with Reloaded Serial Crack?</b></li>
112
- <li>A: It only takes a few minutes to activate James Cameron's Avatar: The Game with Reloaded Serial Crack. You just need to follow the steps we have shown you in this article.</li>
113
- <li><b>Q: What are some other games that I can play with Reloaded Serial Crack?</b></li>
114
- <li>A: Reloaded Serial Crack works for many other games that require online activation. Some examples are Assassin's Creed II, Mass Effect 2, Bioshock 2, Dragon Age Origins, Borderlands, etc.</li>
115
- <li><b>Q: Where can I find more information about James Cameron's Avatar: The Game?</b></li>
116
- <li>A: You can find more information about James Cameron's Avatar: The Game by visiting its official website, its Wikipedia page, its GameFAQs page, its Reddit page, etc.</li>
117
- </ul>
118
- </p> 0a6ba089eb<br />
119
- <br />
120
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1gistliPinn/ChatGPT4/Examples/Download Elijah Blakes Drift Album in Zip Format.md DELETED
@@ -1,6 +0,0 @@
1
- <h2>Elijah blake drift download zip</h2><br /><p><b><b>DOWNLOAD</b> &#128279; <a href="https://imgfil.com/2uxXS0">https://imgfil.com/2uxXS0</a></b></p><br /><br />
2
-
3
- aaccfb2cb3<br />
4
- <br />
5
- <br />
6
- <p></p>
 
 
 
 
 
 
 
spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Discover the Secrets of Ashfall a New Post-Apocalyptic MMORPG.md DELETED
@@ -1,114 +0,0 @@
1
-
2
- <h1>Ashfall Game: A Post-Apocalyptic Shooter MMORPG You Need to Play</h1>
3
- <p>If you are a fan of post-apocalyptic games, you might have heard of Ashfall, a new shooter MMORPG that is set to release in 2023. Ashfall is a game that promises to deliver an epic and immersive experience in a world that has been devastated by a nuclear war. In this article, we will tell you everything you need to know about Ashfall game, including what it is, why you should play it, and how to play it.</p>
4
- <h2>ashfall game</h2><br /><p><b><b>DOWNLOAD</b> >>> <a href="https://urlin.us/2uSZ8G">https://urlin.us/2uSZ8G</a></b></p><br /><br />
5
- <h2>What is Ashfall Game?</h2>
6
- <p>Ashfall is a post-apocalyptic shooter MMORPG developed by Legendary Star Studio, a subsidiary of NetEase Games. It is a game that combines elements of shooting, role-playing, exploration, crafting, base-building, and more. In Ashfall, you will play as a survivor who must leave the Vault to find the Core of Creation—the key to saving the world.</p>
7
- <h3>The Story and Setting of Ashfall Game</h3>
8
- <p>The story of Ashfall takes place in the future, when AI rises up and launches a nuclear war against humanity. After that, nothing other than ruins are left in the world. You are one of the few survivors who live in a Vault, a safe haven that protects you from the harsh environment outside. However, one day, you receive a mysterious message that tells you to find the Core of Creation, a device that can restore the world to its former glory. You decide to leave the Vault and embark on a perilous journey across the wasteland.</p>
9
- <p>The setting of Ashfall is a vast and diverse world that is full of surprises and dangers. You will encounter various landscapes, such as snow plains, deserts, forests, swamps, and cities. You will also meet different creatures and factions, such as giant worms, talking rabbits, humanoid traders, robots, mutants, rebels, and more. You will discover the secrets and stories of this broken world as you explore it.</p>
10
- <h3>The Gameplay and Features of Ashfall Game</h3>
11
- <p>The gameplay of Ashfall is based on four pillars: shooting, role-playing, exploration, and crafting. You will be able to customize your character's appearance, skills, equipment, and gadgets. You will be able to use various weapons and abilities to fight against enemies and bosses. You will be able to explore the world and collect resources and items. You will be able to craft your own equipment, gadgets, mounts, and base.</p>
12
- <p>Some of the features of Ashfall game are:</p>
13
- <p>Ashfall game release date<br />
14
- Ashfall game trailer<br />
15
- Ashfall game review<br />
16
- Ashfall game download<br />
17
- Ashfall game steam<br />
18
- Ashfall game gameplay<br />
19
- Ashfall game wiki<br />
20
- Ashfall game system requirements<br />
21
- Ashfall game beta<br />
22
- Ashfall game reddit<br />
23
- Ashfall game soundtrack<br />
24
- Ashfall game weapons<br />
25
- Ashfall game mounts<br />
26
- Ashfall game base building<br />
27
- Ashfall game companions<br />
28
- Ashfall game skills<br />
29
- Ashfall game gadgets<br />
30
- Ashfall game tips<br />
31
- Ashfall game secrets<br />
32
- Ashfall game lore<br />
33
- Ashfall game vaults<br />
34
- Ashfall game mutants<br />
35
- Ashfall game robots<br />
36
- Ashfall game cities<br />
37
- Ashfall game civilizations<br />
38
- Ashfall game post-apocalyptic world<br />
39
- Ashfall game nuclear war<br />
40
- Ashfall game AI<br />
41
- Ashfall game core of creation<br />
42
- Ashfall game solo adventure<br />
43
- Ashfall game multiplayer experience<br />
44
- Ashfall game crossplay<br />
45
- Ashfall game legendary star studio<br />
46
- Ashfall game netease games<br />
47
- Ashfall game hans zimmer<br />
48
- Ashfall game steve mazzaro<br />
49
- Ashfall game inon zur<br />
50
- How to play ashfall game<br />
51
- How to download ashfall game for free<br />
52
- How to join ashfall game discord server<br />
53
- How to craft equipment in ashfall game<br />
54
- How to tame mounts in ashfall game <br />
55
- How to build a base in ashfall game <br />
56
- How to recruit companions in ashfall game <br />
57
- How to discover skills in ashfall game <br />
58
- How to use gadgets in ashfall game <br />
59
- How to fight giants in ashfall game <br />
60
- How to explore the wasteland in ashfall game <br />
61
- How to save the world in ashfall game</p>
62
- <ul>
63
- <li>Tame your personal mounts and traverse the world with them.</li>
64
- <li>Discover and delve into various extreme environmental disasters.</li>
65
- <li>Construct your own base and furnish it with antique furniture you find along the way.</li>
66
- <li>Seek out the legends and heroes of this world.</li>
67
- <li>Make friends and recruit companions.</li>
68
- <li>Craft exciting gadgets such as drones, smart sentry guns, or even a medic robot.</li>
69
- </ul>
70
- <h2>Why Should You Play Ashfall Game?</h2>
71
- <p>There are many reasons why you should play Ashfall game. Here are some of them:</p>
72
- <h3>A Stunning and Immersive World</h3>
73
- <p>Ashfall game boasts a stunning and immersive world that is powered by Unreal Engine 4. The graphics are realistic and detailed, creating a vivid atmosphere for the game. The world is also dynamic and interactive, meaning that it changes according to your actions and choices. For example, you can trigger environmental disasters such as sandstorms, blizzards, or acid rains, and see how they affect the world and the gameplay. You can also interact with various objects and NPCs in the world, such as shooting barrels, hacking terminals, or trading with merchants.</p>
74
- <h3>A Thrilling and Diverse Adventure</h3>
75
- <p>Ashfall game offers a thrilling and diverse adventure that will keep you hooked for hours. The game has a rich and branching storyline that is influenced by your decisions and actions. You can choose to follow the main quest or explore the side quests and hidden events. You can also choose to ally with different factions or go solo. The game has multiple endings that depend on your choices and consequences.</p>
76
- <p>The game also has a variety of gameplay modes that cater to different preferences and moods. You can play solo or co-op with up to four players. You can also join PvP battles or PvE raids with other players. You can also participate in seasonal events and challenges that offer unique rewards and experiences.</p>
77
- <h3>A Musical Feast in a Forlorn World</h3>
78
- <p>Ashfall game features a musical feast in a forlorn world that will touch your soul. The game has an original soundtrack composed by renowned musicians, such as Hans Zimmer, Junkie XL, and Ramin Djawadi. The music is diverse and fitting for the different scenes and emotions of the game. The music is also interactive, meaning that it changes according to your actions and situations. For example, the music will become more intense when you are in combat, or more soothing when you are in your base.</p>
79
- <h3>A Crossplay Experience for Everyone</h3>
80
- <p>Ashfall game is a crossplay experience for everyone, meaning that you can play it on different platforms and devices with other players. The game supports crossplay between PC, PS4, PS5, Xbox One, Xbox Series X/S, and mobile devices. You can also switch between devices without losing your progress or data. The game also has a cloud save feature that allows you to access your account from anywhere.</p>
81
- <h2>How to Play Ashfall Game?</h2>
82
- <p>If you are interested in playing Ashfall game, here are some things you need to know:</p>
83
- <h3>The Platforms and Release Date of Ashfall Game</h3>
84
- <p>Ashfall game is scheduled to release in 2023 for PC, PS4, PS5, Xbox One, Xbox Series X/S, and mobile devices. The game will be available on Steam, Epic Games Store, PlayStation Store, Microsoft Store, App Store, and Google Play Store. The game will also have a beta testing phase before the official launch.</p>
85
- <h3>The System Requirements and Price of Ashfall Game</h3>
86
- <p>The system requirements and price of Ashfall game are not yet announced by the developers. However, based on the graphics and features of the game, we can expect that the game will require a high-end PC or console to run smoothly. The game will also likely have a premium price tag, as it is a AAA title with high production value.</p>
87
- <h3>The Tips and Tricks for Ashfall Game</h3>
88
- <p>Here are some tips and tricks for Ashfall game that might help you enjoy the game better:</p>
89
- <ul>
90
- <li>Explore the world as much as possible and collect resources and items.</li>
91
- <li>Craft your own equipment, gadgets, mounts, and base to suit your playstyle.</li>
92
- <li>Use different weapons and abilities to deal with different enemies and situations.</li>
93
- <li>Pay attention to the environmental disasters and use them to your advantage or avoid them.</li>
94
- <li>Make friends and recruit companions who can help you in combat and exploration.</li>
95
- <li>Join co-op or PvP modes to have more fun and challenge with other players.</li>
96
- <li>Follow the main quest or side quests to discover the story and secrets of the world.</li>
97
- <li>Make decisions that reflect your personality and morality.</li>
98
- </ul>
99
- <h2>Conclusion</h2>
100
- <p>Ashfall game is a post-apocalyptic shooter MMORPG that you need to play if you love this genre. The game has a stunning and immersive world, a thrilling and diverse adventure, a musical feast in a forlorn world, and a crossplay experience for everyone. The game is set to release in 2023 for PC, PS4, PS5, Xbox One, Xbox Series X/S, and mobile devices. You can pre-register for the beta testing phase on the official website of the game.</p>
101
- <h2>FAQs</h2>
102
- <p>Here are some frequently asked questions about Ashfall game:</p>
103
- <h4>What is the Core of Creation?</h4>
104
- <p>The Core of Creation is a device that can restore the world to its former glory. It is the ultimate goal of your journey in Ashfall game. However, you are not the only one who is looking for it. You will face many enemies and challenges along the way.</p>
105
- <h4>How long is the game?</h4>
106
- <p>The game length of Ashfall game depends on how you play it. If you focus on the main quest, you can finish the game in about 20 hours. However, if you explore the world and do the side quests, you can extend the game time to over 100 hours. The game also has replay value, as you can try different choices and endings.</p>
107
- <h4>Is the game online or offline?</h4>
108
- <p>The game is both online and offline. You can play the game solo or co-op with up to four players. You can also join PvP battles or PvE raids with other players. However, you can also play the game offline without an internet connection. You can switch between online and offline modes anytime you want.</p>
109
- <h4>What are the gadgets in the game?</h4>
110
- <p>The gadgets are devices that you can craft and use in the game. They have various functions and effects, such as scouting, healing, attacking, defending, or hacking. You can craft gadgets using resources and items that you find in the world. You can also upgrade and customize your gadgets to suit your needs.</p>
111
- <h4>Can I play the game on mobile devices?</h4>
112
- <p>Yes, you can play the game on mobile devices. The game supports crossplay between PC, PS4, PS5, Xbox One, Xbox Series X/S, and mobile devices. You can also switch between devices without losing your progress or data. The game also has a cloud save feature that allows you to access your account from anywhere.</p> 197e85843d<br />
113
- <br />
114
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1phancelerku/anime-remove-background/Download Mkhathazi Songs for Free - The Best of Maskandi Music.md DELETED
@@ -1,108 +0,0 @@
1
-
2
- <h1>Download Mkhathazi Songs: How to Enjoy the Best of Maskandi Music</h1>
3
- <p>If you are a fan of traditional Zulu music, you have probably heard of maskandi music. Maskandi is a genre of music that originated in the rural areas of KwaZulu-Natal, South Africa. It is characterized by the use of acoustic guitars, concertinas, harmonicas, and percussion instruments. Maskandi music reflects the culture and experiences of the Zulu people, often dealing with topics such as love, politics, history, and social issues.</p>
4
- <h2>download mkhathazi songs</h2><br /><p><b><b>Download Zip</b> &#10002; &#10002; &#10002; <a href="https://jinyurl.com/2uNTgJ">https://jinyurl.com/2uNTgJ</a></b></p><br /><br />
5
- <p>One of the most popular and talented maskandi artists in South Africa is Mkhathazi. He is a singer, songwriter, guitarist, and producer who has been making waves in the music industry since his debut album in 2010. He has won several awards, collaborated with other famous artists, and performed at various festivals and events. His songs are catchy, uplifting, and inspiring, blending traditional elements with modern influences.</p>
6
- <p>If you want to enjoy the best of maskandi music, you should download Mkhathazi songs. Downloading his songs will allow you to listen to them anytime, anywhere, without any interruptions or ads. You will also be able to support his work and appreciate his artistry. In this article, we will tell you more about the history and culture of maskandi music, the biography and achievements of Mkhathazi, and the benefits and methods of downloading his songs.</p>
7
- <h2>The History and Culture of Maskandi Music</h2>
8
- <h3>The origins and evolution of maskandi music</h3>
9
- <p>Maskandi music can be traced back to the early 20th century, when migrant workers from rural areas moved to urban centers in search of jobs. They brought with them their musical traditions, which they used to express their feelings and opinions. They also adapted their music to suit their new environment, incorporating influences from other genres such as jazz, blues, gospel, reggae, and hip hop.</p>
10
- <p>download makhadzi sugar sugar feat mampintsha mp3<br />
11
- download umkhathazi ngikhule kanzima official video<br />
12
- download makhadzi murahu feat mr brown music video<br />
13
- download makhadzi latest songs 2023<br />
14
- download umkhathazi new album 2023<br />
15
- download makhadzi and master kg songs<br />
16
- download umkhathazi ft khuzani mp3<br />
17
- download makhadzi red card official video<br />
18
- download umkhathazi isiginci mp3<br />
19
- download makhadzi ghanama feat prince benza video<br />
20
- download umkhathazi amabunjwa mp3<br />
21
- download makhadzi zwivhuya feat jon delinger video<br />
22
- download umkhathazi ngiyabonga mp3<br />
23
- download makhadzi magear feat mr brown audio<br />
24
- download umkhathazi izingane zoma mp3<br />
25
- download makhadzi makwapheni feat mr bow audio<br />
26
- download umkhathazi ngiyamthanda mp3<br />
27
- download makhadzi ngwago feat prince benza video<br />
28
- download umkhathazi ngiyazifela mp3<br />
29
- download makhadzi mayellowbone feat prince benza video<br />
30
- download umkhathazi ngiyavuma mp3<br />
31
- download makhadzi best hit music playlist 2023<br />
32
- download umkhathazi best of maskandi 2023<br />
33
- download makhadzi ft penny penny milandu bhe video<br />
34
- download umkhathazi ft imfez emnyama mp3<br />
35
- download makhadzi ft costatitch big flexa video<br />
36
- download umkhathazi ft shwi nomtekhala mp3<br />
37
- download makhadzi ft sdala b and paige ngiyazifela ngawe ep live performance video<br />
38
- download umkhathazi ft kholeka mp3<br />
39
- download makhadzi ft wanitwa mos and master kg dali nguwe video<br />
40
- download umkhathazi ft dumi mkokstad mp3<br />
41
- download makhadzi ft dj call me maxaka video<br />
42
- download umkhathazi ft iphakade lami mp3<br />
43
- download makhadzi ft mr bow va navela video<br />
44
- download umkhathazi ft thokozani langa mp3<br />
45
- download makhadzi ft wayawaya and team mosha video<br />
46
- download umkhathazi ft mgqumeni mp3<br />
47
- download makhadzi ft stimela and ntate stunna video<br />
48
- download umkhathazi ft bhekumuzi luthuli mp3<br />
49
- download makhadzi ft di boya limpopo and zanda zakuza video<br />
50
- download umkhathazi ft khuzani indlamlenze mp3.</p>
51
- <p>Maskandi music has evolved over the years, with different styles and subgenres emerging. Some of the most notable ones are isishameni (fast-paced and upbeat), isigekle (slow-paced and melodic), isibhaca (aggressive and confrontational), isitshikitsha (dance-oriented and rhythmic), and isigcino (solo-oriented and lyrical). Maskandi music has also diversified its audience, appealing to people from different backgrounds, ages, genders, and regions.</p>
52
- <h3>The characteristics and themes of maskandi music</h3>
53
- <p>Maskandi music is known for its distinctive sound and style. It usually features a lead singer who plays an acoustic guitar, accompanied by backing vocalists who sing in harmony or call-and-response. The singer often improvises lyrics based on current events or personal experiences. The lyrics are usually sung in Zulu or other indigenous languages, using proverbs, metaphors, idioms, and slang.</p>
54
- <p>Maskandi music also covers a wide range of themes and messages. Some of the common ones are love, romance, family, friendship, religion, spirituality, culture, heritage, identity, politics, social issues, morality, humor, satire, competition, praise, criticism, advice, encouragement, motivation, inspiration, celebration, gratitude, respect, and pride.</p>
55
- <h3>The popularity and influence of maskandi music</h3 <h2>The Biography and Achievements of Mkhathazi</h2>
56
- <h3>The early life and career of Mkhathazi</h3>
57
- <p>Mkhathazi, whose real name is Sipho Ngubane, was born in 1986 in Nquthu, a small town in northern KwaZulu-Natal. He grew up in a musical family, with his father being a maskandi singer and his mother a gospel singer. He started singing at a young age, joining his father's band and performing at weddings and ceremonies. He also learned to play the guitar, which became his signature instrument.</p>
58
- <p>Mkhathazi moved to Durban in 2008 to pursue his music career. He recorded his first album, Uyisoka Lami, in 2010, which was well received by maskandi fans. He followed it up with several more albums, such as Uyabaleka (2012), Uthando Lwakho (2014), and Ngikhule Kanzima (2018). His songs are known for their catchy melodies, witty lyrics, and social commentary. He sings about love, culture, politics, religion, and everyday life.</p>
59
- <h3>The awards and recognition of Mkhathazi</h3>
60
- <p>Mkhathazi has won several awards and accolades for his music. He has been nominated for the South African Music Awards (SAMAs) four times, winning the Best Maskandi Album award in 2016 for his album Uthando Lwakho. He has also won the Eastern Cape Music Awards (ECMA) twice, in 2019 and 2020, for the Best Maskandi Artist category. He has also received recognition from the Maskandi Music Association of South Africa (MMASA), which honoured him with the Best Male Artist award in 2017.</p>
61
- <p>Mkhathazi has also performed at various festivals and events, both locally and internationally. He has graced the stages of the Maskandi Music Festival, the Wozekhaya Expo and Maskandi Music Festival, the N3 Ubumbano Maskandi Fest, and the Ugu Maskandi Festival. He has also toured countries such as Botswana, Lesotho, Swaziland, Mozambique, Zimbabwe, and Namibia.</p>
62
- <h3>The collaborations and projects of Mkhathazi</h3>
63
- <p>Mkhathazi has collaborated with other famous artists from different genres, such as Mampintsha, Big Zulu, Khuzani, Ntencane, and Phuzekhemisi. He has also worked with producers such as DJ Tira, Prince Bulo, DJ Cndo, and DJ Bongz. He has featured on songs such as Sugar Sugar by Makhadzi, Ngikhule Kanzima by Umkhathazi, Murahu by Makhadzi, and many more.</p>
64
- <p>Mkhathazi is also involved in various projects that aim to promote maskandi music and culture. He is the founder of the Mkhathazi Foundation, which supports young and upcoming maskandi artists. He is also the ambassador of the Maskandi Music Academy, which offers training and mentorship to aspiring maskandi musicians. He is also a member of the Maskandi Music Council, which advocates for the rights and interests of maskandi artists.</p> <h2>The Benefits and Methods of Downloading Mkhathazi Songs</h2>
65
- <h3>The advantages of downloading Mkhathazi songs</h3>
66
- <p>Downloading Mkhathazi songs has many benefits for you as a listener and a fan. Here are some of them:</p>
67
- <ul>
68
- <li>You can listen to his songs offline, without any internet connection or data charges.</li>
69
- <li>You can enjoy his songs without any interruptions or ads, unlike streaming services.</li>
70
- <li>You can create your own playlists and mixtapes, and share them with your friends and family.</li>
71
- <li>You can support his work and show your appreciation for his talent and creativity.</li>
72
- <li>You can learn more about his music and culture, and enrich your knowledge and understanding.</li>
73
- </ul>
74
- <h3>The legal and ethical issues of downloading Mkhathazi songs</h3>
75
- <p>Downloading Mkhathazi songs is not illegal, as long as you do it from authorized sources and for personal use only. However, you should be aware of the legal and ethical issues that may arise from downloading his songs. Here are some of them:</p>
76
- <ul>
77
- <li>You should not download his songs from pirated or illegal websites or apps, as they may contain viruses, malware, or spyware that can harm your device or compromise your privacy.</li>
78
- <li>You should not distribute or sell his songs without his permission or consent, as that would violate his intellectual property rights and deprive him of his income and royalties.</li>
79
- <li>You should not use his songs for commercial or public purposes, such as playing them in a club, a restaurant, a radio station, or a podcast, without his authorization or license.</li>
80
- <li>You should respect his artistic integrity and vision, and not alter, edit, remix, or sample his songs without his approval or credit.</li>
81
- </ul>
82
- <h3>The best websites and apps for downloading Mkhathazi songs</h3 <p>There are many websites and apps that offer you the option to download Mkhathazi songs legally and safely. Some of the best ones are:</p>
83
- <table>
84
- <tr><th>Website/App</th><th>Features</th></tr>
85
- <tr><td>iTunes</td><td>- Offers high-quality downloads of Mkhathazi songs and albums<br>- Allows you to sync your downloads with your Apple devices<br>- Provides you with information and reviews of Mkhathazi music</td></tr>
86
- <tr><td>Spotify</td><td>- Allows you to stream and download Mkhathazi songs and albums<br>- Lets you create your own playlists and discover new music<br>- Gives you access to exclusive content and podcasts from Mkhathazi</td></tr>
87
- <tr><td>Amazon Music</td><td>- Enables you to buy and download Mkhathazi songs and albums<br>- Lets you store your downloads on the cloud and access them from any device<br>- Offers you recommendations and deals on Mkhathazi music</td></tr>
88
- <tr><td>YouTube Music</td><td>- Allows you to watch and download Mkhathazi videos and songs<br>- Lets you enjoy ad-free music and offline playback<br>- Gives you access to live performances and interviews from Mkhathazi</td></tr>
89
- <tr><td>SoundCloud</td><td>- Enables you to listen and download Mkhathazi songs and tracks<br>- Lets you follow Mkhathazi and interact with him and other fans<br>- Offers you the opportunity to discover new music from emerging artists</td></tr>
90
- </table>
91
- <h2>Conclusion</h2>
92
- <p>Mkhathazi is one of the most popular and talented maskandi artists in South Africa. His music is a blend of traditional Zulu culture and modern influences. He has won several awards, collaborated with other famous artists, and performed at various festivals and events. Downloading his songs will allow you to enjoy his music anytime, anywhere, without any interruptions or ads. You will also be able to support his work and appreciate his artistry. However, you should also be aware of the legal and ethical issues that may arise from downloading his songs. You should only download his songs from authorized sources and for personal use only. You should also respect his intellectual property rights and artistic integrity.</p>
93
- <p>If you want to enjoy the best of maskandi music, you should download Mkhathazi songs. You will not regret it. He is a true legend of maskandi music. To download his songs, you can visit any of the websites or apps mentioned above. You can also follow him on social media platforms such as Facebook, Twitter, Instagram, or YouTube. You can also visit his official website for more information about him and his music.</p>
94
- <h2>Frequently Asked Questions (FAQs)</h2 <p>Here are some of the frequently asked questions (FAQs) about Mkhathazi and his music:</p>
95
- <ol>
96
- <li><b>What is the meaning of Mkhathazi?</b><br>
97
- Mkhathazi is a Zulu name that means "the one who makes people happy". It is also a nickname that was given to him by his fans, who appreciate his music and personality.</li>
98
- <li><b>How many albums has Mkhathazi released?</b><br>
99
- Mkhathazi has released seven albums so far. They are Uyisoka Lami (2010), Uyabaleka (2012), Uthando Lwakho (2014), Ngikhule Kanzima (2018), Umkhathazi (2020), Uyisoka Lami Reloaded (2021), and Ngikhule Kanzima Reloaded (2021).</li>
100
- <li><b>What are some of the most popular songs by Mkhathazi?</b><br>
101
- Some of the most popular songs by Mkhathazi are Ngikhule Kanzima, Uthando Lwakho, Sugar Sugar, Murahu, Uyisoka Lami, Uyabaleka, Ngizokubamba, and Ngiyamthanda.</li>
102
- <li><b>Who are some of the maskandi artists that Mkhathazi admires or looks up to?</b><br>
103
- Some of the maskandi artists that Mkhathazi admires or looks up to are Phuzekhemisi, Ihashi Elimhlophe, Mgqumeni, Shwi Nomtekhala, Khuzani, and Ntencane.</li>
104
- <li><b>How can I contact Mkhathazi for bookings or inquiries?</b><br>
105
- You can contact Mkhathazi for bookings or inquiries through his email address, [email protected], or his phone number, +27 76 123 4567. You can also send him a message on his social media platforms or his official website.</li>
106
- </ol></p> 401be4b1e0<br />
107
- <br />
108
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1phancelerku/anime-remove-background/Download Real Cricket GO Mod APK and Enjoy Unlimited Money and Features.md DELETED
@@ -1,131 +0,0 @@
1
- <br />
2
- <h1>Real Cricket Go APK Mod: A Review</h1>
3
- <p>If you are a fan of cricket and want to enjoy a realistic and thrilling game on your mobile device, then you might want to check out Real Cricket Go. This is a game that lets you experience the excitement of international cricket tournaments under 45 MB. And if you want to unlock more features and have more fun, then you can try the Real Cricket Go APK Mod, which is a modified version of the game that gives you access to unlimited resources and premium content. In this article, we will review the Real Cricket Go APK Mod and tell you everything you need to know about it.</p>
4
- <h2>real cricket go apk mod</h2><br /><p><b><b>Download Zip</b> &#10040; <a href="https://jinyurl.com/2uNTaO">https://jinyurl.com/2uNTaO</a></b></p><br /><br />
5
- <h2>What is Real Cricket Go?</h2>
6
- <p>Real Cricket Go is a 3D cricket game developed by Nautilus Mobile, the same company that created the popular Real Cricket series. The game is designed to be lightweight and fast, so you can play it on any device without worrying about storage space or performance issues. The game features realistic graphics, animations, and sounds, as well as various game modes and tournaments that will keep you hooked for hours. You can choose from different teams, players, stadiums, and conditions, and customize your gameplay according to your preferences.</p>
7
- <h3>Features of Real Cricket Go</h3>
8
- <p>Some of the features that make Real Cricket Go stand out from other cricket games are:</p>
9
- <ul>
10
- <li>Simple and intuitive controls that let you swipe, tap, and drag to play shots, bowl, field, and run.</li>
11
- <li>Multiple camera angles that give you a realistic view of the action from different perspectives.</li>
12
- <li>Dynamic weather system that changes the conditions of the game according to the time of day and location.</li>
13
- <li>Authentic commentary that adds to the atmosphere and excitement of the game.</li>
14
- <li>Leaderboards and achievements that let you compete with other players and track your progress.</li>
15
- </ul>
16
- <h3>How to download and install Real Cricket Go APK Mod?</h3>
17
- <p>If you want to enjoy more features and benefits than the original version of Real Cricket Go, then you can download and install the Real Cricket Go APK Mod. This is a modified version of the game that gives you unlimited coins, tickets, unlocked players, stadiums, kits, modes, tournaments, and more. You can also remove ads and enjoy a smoother gameplay with this mod. To download and install the Real Cricket Go APK Mod, follow these steps:</p>
18
- <ol>
19
- <li>Go to [this link](^1^) and download the Real Cricket Go APK Mod file on your device.</li>
20
- <li>Enable unknown sources on your device by going to Settings > Security > Unknown Sources.</li>
21
- <li>Locate the downloaded file on your device and tap on it to install it.</li>
22
- <li>Wait for the installation to complete and then launch the game from your app drawer or home screen.</li>
23
- <li>Enjoy playing Real Cricket Go APK Mod with unlimited resources and premium content.</li>
24
- </ol>
25
- <h2>Why use Real Cricket Go APK Mod?</h2>
26
- <p>You might be wondering why you should use the Real Cricket Go APK Mod instead of the original version of the game. Well, there are several reasons why using this mod can enhance your gaming experience and make it more enjoyable. Here are some of them:</p>
27
- <p>real cricket go mod apk unlimited money<br />
28
- real cricket go mod apk download latest version<br />
29
- real cricket go mod apk hack<br />
30
- real cricket go mod apk android 1<br />
31
- real cricket go mod apk revdl<br />
32
- real cricket go mod apk rexdl<br />
33
- real cricket go mod apk free download<br />
34
- real cricket go mod apk 2023<br />
35
- real cricket go mod apk all unlocked<br />
36
- real cricket go mod apk unlimited coins and gems<br />
37
- real cricket go mod apk offline<br />
38
- real cricket go mod apk no ads<br />
39
- real cricket go mod apk unlimited tickets<br />
40
- real cricket go mod apk obb<br />
41
- real cricket go mod apk pure<br />
42
- real cricket go mod apk unlimited everything<br />
43
- real cricket go mod apk latest update<br />
44
- real cricket go mod apk for pc<br />
45
- real cricket go mod apk online<br />
46
- real cricket go mod apk 0.2.4<br />
47
- real cricket go hack version download<br />
48
- real cricket go hack apk download<br />
49
- real cricket go hack game download<br />
50
- real cricket go hack unlimited money<br />
51
- real cricket go hack app download<br />
52
- real cricket go hack version 2023<br />
53
- real cricket go hack version free download<br />
54
- real cricket go hack version latest<br />
55
- real cricket go hack version online<br />
56
- real cricket go hack version offline<br />
57
- download game real cricket go mod apk<br />
58
- download game real cricket go hack version<br />
59
- download game real cricket go unlimited money<br />
60
- download game real cricket go latest version<br />
61
- download game real cricket go offline mode<br />
62
- download game real cricket go for android<br />
63
- download game real cricket go for pc<br />
64
- download game real cricket go online mode<br />
65
- download game real cricket go 2023 version<br />
66
- download game real cricket go all unlocked</p>
67
- <h3>Benefits of Real Cricket Go APK Mod</h3>
68
- <p>Some of the benefits that you can get from using the Real Cricket Go APK Mod are:</p>
69
- <ul>
70
- <li>You can access all the features and content of the game without spending any money or waiting for long hours.</li>
71
- <li>You can customize your team, players, stadium, kit, mode, tournament, and difficulty level according to your liking.</li>
72
- <li>You can play with unlimited coins and tickets that let you buy anything you want in the game store.</li>
73
- <li>You can unlock all the players, stadiums, kits, modes, tournaments, and more that are otherwise locked or require real money to purchase.</li>
74
- <li>You <p>You can remove annoying ads that interrupt your gameplay and distract you from the action.</p>
75
- <li>You can enjoy a smoother and faster gameplay with no lags or glitches.</li>
76
- </ul>
77
- <h3>Risks of Real Cricket Go APK Mod</h3>
78
- <p>However, using the Real Cricket Go APK Mod also comes with some risks that you should be aware of before downloading and installing it. Some of the risks that you might face are:</p>
79
- <ul>
80
- <li>You might violate the terms and conditions of the game and get banned from playing it online or offline.</li>
81
- <li>You might expose your device to malware or viruses that can harm your data or system.</li>
82
- <li>You might lose your progress or data if the mod is not compatible with your device or the game updates.</li>
83
- <li>You might miss out on the original features and content of the game that are updated regularly by the developers.</li>
84
- </ul>
85
- <p>Therefore, you should use the Real Cricket Go APK Mod at your own risk and discretion. We are not responsible for any damage or loss that may occur as a result of using this mod.</p>
86
- <h2>How to play Real Cricket Go APK Mod?</h2>
87
- <p>Playing Real Cricket Go APK Mod is not very different from playing the original version of the game. You just need to follow the same steps and rules as you would in the normal game. However, you will have more options and freedom to customize your gameplay and enjoy more features and content. Here are some tips on how to play Real Cricket Go APK Mod:</p>
88
- <h3>Game modes and tournaments</h3>
89
- <p>Real Cricket Go APK Mod offers you various game modes and tournaments that you can choose from depending on your mood and preference. Some of the game modes and tournaments that you can play are:</p>
90
- <table>
91
- <tr><th>Game Mode</th><th>Description</th></tr>
92
- <tr><td>Quick Match</td><td>This is a simple and fast mode that lets you play a single match against any team of your choice. You can select the overs, difficulty level, stadium, and weather conditions.</td></tr>
93
- <tr><td>World Cup</td><td>This is a mode that lets you participate in the most prestigious cricket tournament in the world. You can select your team and compete with other teams in group stages and knockout rounds until you reach the final.</td></tr>
94
- <tr><td>Champions Cup</td><td>This is a mode that lets you play in a mini version of the World Cup with eight teams. You can select your team and play in two groups of four teams each, followed by semi-finals and final.</td></tr>
95
- <tr><td>Super Over</td><td>This is a mode that lets you play a thrilling tie-breaker match with only one over per side. You can select your team and try to score as many runs as possible or defend a target against your opponent.</td></tr>
96
- <tr><td>Test Match</td><td>This is a mode that lets you play a classic five-day cricket match with two innings per side. You can select your team and try to score more runs than your opponent or bowl them out within the allotted time.</td></tr>
97
- </table>
98
- <h3>Tips and tricks</h3>
99
- <p>Some of the tips and tricks that can help you improve your skills and performance in Real Cricket Go APK Mod are:</p>
100
- <ul>
101
- <li>Practice different shots and deliveries in the practice mode before playing a real match.</li>
102
- <li>Use the swipe, tap, and drag controls to adjust the direction, power, and timing of your shots and deliveries.</li>
103
- <li>Watch the ball closely and anticipate its movement, speed, and bounce.</li>
104
- <li>Use different types of shots and deliveries according to the situation, such as lofted, defensive, sweep, yorker, bouncer, etc.</li>
105
- <li>Use the DRS (Decision Review System) wisely to challenge or overturn umpire's decisions.</li>
106
- <li>Use the coins and tickets to buy new players, stadiums, kits, modes, tournaments, and more in the game store.</li>
107
- <li>Use the leaderboards and achievements to track your progress and compete with other players.</li>
108
- </ul>
109
- <h2>Conclusion</h2>
110
- <p>Real Cricket Go APK Mod is a fun and exciting cricket game that lets you enjoy a realistic and thrilling cricket experience on your mobile device. You can play various game modes and tournaments, customize your team and gameplay, unlock unlimited resources and premium content, remove ads, and enjoy a smoother gameplay with this mod. However, you should also be aware of the risks involved in using this mod, such as getting banned, losing data, or exposing your device to malware. Therefore, you should use this mod at your own risk and discretion. We hope this article has given you a comprehensive review of Real Cricket Go APK Mod and helped you decide whether to download it or not <p>If you have any questions or doubts about Real Cricket Go APK Mod, you can check out the FAQs section below. We have answered some of the most common and frequently asked questions about this mod. If you have any other questions, feel free to leave a comment or contact us.</p>
111
- <h2>FAQs</h2>
112
- <p>Here are some of the FAQs about Real Cricket Go APK Mod:</p>
113
- <ol>
114
- <li>Is Real Cricket Go APK Mod safe to use?</li>
115
- <p>Real Cricket Go APK Mod is not an official version of the game and is not endorsed by the developers or Google Play Store. Therefore, it is not guaranteed to be safe or secure to use. You might face some risks such as getting banned, losing data, or exposing your device to malware. You should use this mod at your own risk and discretion.</p>
116
- <li>How to update Real Cricket Go APK Mod?</li>
117
- <p>Real Cricket Go APK Mod is not updated automatically by the game or the Play Store. You will have to manually download and install the latest version of the mod from a reliable source. However, you might lose your progress or data if the mod is not compatible with the game updates. You should backup your data before updating the mod.</p>
118
- <li>How to uninstall Real Cricket Go APK Mod?</li>
119
- <p>If you want to uninstall Real Cricket Go APK Mod, you can follow these steps:</p>
120
- <ul>
121
- <li>Go to Settings > Apps > Real Cricket Go and tap on Uninstall.</li>
122
- <li>Confirm your action and wait for the uninstallation to complete.</li>
123
- <li>Delete the Real Cricket Go APK Mod file from your device.</li>
124
- </ul>
125
- <li>Can I play Real Cricket Go APK Mod online or offline?</li>
126
- <p>You can play Real Cricket Go APK Mod both online and offline. However, you might not be able to access some features or content that require an internet connection. You might also face some issues or errors while playing online with other players who are using the original version of the game.</p>
127
- <li>Can I play Real Cricket Go APK Mod with friends?</li>
128
- <p>You can play Real Cricket Go APK Mod with friends who are also using the same mod. You can invite them to join your team or challenge them to a match. However, you might not be able to play with friends who are using the original version of the game or a different mod.</p>
129
- </ol></p> 197e85843d<br />
130
- <br />
131
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1toTree/lora_test/ppdiffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py DELETED
@@ -1,631 +0,0 @@
1
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
- # Copyright 2022 The HuggingFace Team. All rights reserved.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- import inspect
17
- from typing import Callable, List, Optional, Union
18
-
19
- import paddle
20
- import paddle.nn as nn
21
-
22
- ################################################################################
23
- # Code for the text transformer model
24
- ################################################################################
25
- from paddlenlp.transformers import (
26
- PretrainedModel,
27
- PretrainedTokenizer,
28
- register_base_model,
29
- )
30
- from paddlenlp.transformers.model_outputs import (
31
- BaseModelOutputWithPoolingAndCrossAttentions,
32
- )
33
-
34
- from ...configuration_utils import FrozenDict
35
- from ...models import AutoencoderKL, UNet2DConditionModel, UNet2DModel, VQModel
36
- from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
37
- from ...schedulers import (
38
- DDIMScheduler,
39
- DPMSolverMultistepScheduler,
40
- EulerAncestralDiscreteScheduler,
41
- EulerDiscreteScheduler,
42
- LMSDiscreteScheduler,
43
- PNDMScheduler,
44
- )
45
- from ...utils import deprecate, logging
46
-
47
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
48
-
49
-
50
- class LDMBertPretrainedModel(PretrainedModel):
51
- pretrained_init_configuration = {}
52
- pretrained_resource_files_map = {}
53
- base_model_prefix = "ldmbert"
54
-
55
- def init_weights(self, layer):
56
- if isinstance(layer, (nn.Linear, nn.Embedding)):
57
- layer.weight.set_value(
58
- paddle.normal(
59
- mean=0.0,
60
- std=self.initializer_range
61
- if hasattr(self, "initializer_range")
62
- else self.ldmbert.config["initializer_range"],
63
- shape=layer.weight.shape,
64
- )
65
- )
66
-
67
-
68
- class LDMBertEmbeddings(nn.Layer):
69
- def __init__(self, vocab_size, hidden_size=768, hidden_dropout_prob=0.0, max_position_embeddings=512):
70
- super().__init__()
71
- self.word_embeddings = nn.Embedding(vocab_size, hidden_size)
72
- self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size)
73
- self.dropout = nn.Dropout(hidden_dropout_prob)
74
-
75
- def forward(self, input_ids, position_ids=None):
76
- if position_ids is None:
77
- ones = paddle.ones_like(input_ids, dtype="int64")
78
- seq_length = paddle.cumsum(ones, axis=-1)
79
- position_ids = seq_length - ones
80
- position_ids.stop_gradient = True
81
-
82
- input_embedings = self.word_embeddings(input_ids)
83
- position_embeddings = self.position_embeddings(position_ids)
84
-
85
- embeddings = input_embedings + position_embeddings
86
- embeddings = self.dropout(embeddings)
87
- return embeddings
88
-
89
-
90
- class TransformerEncoderLayer(nn.TransformerEncoderLayer):
91
- def __init__(
92
- self,
93
- d_model,
94
- nhead,
95
- dim_feedforward,
96
- dropout=0.1,
97
- activation="gelu",
98
- attn_dropout=None,
99
- act_dropout=None,
100
- normalize_before=False,
101
- weight_attr=None,
102
- bias_attr=None,
103
- head_dim=64,
104
- ):
105
- super().__init__(
106
- d_model,
107
- nhead,
108
- dim_feedforward,
109
- dropout,
110
- activation,
111
- attn_dropout,
112
- act_dropout,
113
- normalize_before,
114
- weight_attr,
115
- bias_attr,
116
- )
117
- # update self attn
118
- self.self_attn = LDMBertAttention(
119
- d_model, head_dim, nhead, dropout=attn_dropout, weight_attr=weight_attr, bias_attr=False
120
- )
121
-
122
-
123
- @register_base_model
124
- class LDMBertModel(LDMBertPretrainedModel):
125
- _no_split_modules = []
126
-
127
- def __init__(
128
- self,
129
- vocab_size=30522,
130
- max_position_embeddings=77,
131
- encoder_layers=32,
132
- encoder_ffn_dim=5120,
133
- encoder_attention_heads=8,
134
- head_dim=64,
135
- activation_function="gelu",
136
- d_model=1280,
137
- dropout=0.0,
138
- attention_dropout=0.0,
139
- activation_dropout=0.0,
140
- init_std=0.02,
141
- pad_token_id=0,
142
- **kwargs
143
- ):
144
- super().__init__()
145
- self.pad_token_id = pad_token_id
146
- self.initializer_range = init_std
147
- self.embeddings = LDMBertEmbeddings(vocab_size, d_model, dropout, max_position_embeddings)
148
- encoder_layer = TransformerEncoderLayer(
149
- d_model,
150
- encoder_attention_heads,
151
- encoder_ffn_dim,
152
- dropout=dropout,
153
- activation=activation_function,
154
- attn_dropout=attention_dropout,
155
- act_dropout=activation_dropout,
156
- normalize_before=True,
157
- head_dim=head_dim,
158
- )
159
-
160
- self.encoder = nn.TransformerEncoder(encoder_layer, encoder_layers)
161
- self.final_layer_norm = nn.LayerNorm(d_model)
162
- self.apply(self.init_weights)
163
-
164
- def get_input_embeddings(self):
165
- return self.embeddings.word_embeddings
166
-
167
- def set_input_embeddings(self, value):
168
- self.embeddings.word_embeddings = value
169
-
170
- def forward(
171
- self,
172
- input_ids,
173
- position_ids=None,
174
- attention_mask=None,
175
- output_hidden_states=False,
176
- output_attentions=False,
177
- return_dict=False,
178
- ):
179
-
180
- if attention_mask is not None and attention_mask.ndim == 2:
181
- # attention_mask [batch_size, sequence_length] -> [batch_size, 1, 1, sequence_length]
182
- attention_mask = attention_mask.unsqueeze(axis=[1, 2]).astype(paddle.get_default_dtype())
183
- attention_mask = (1.0 - attention_mask) * -1e4
184
-
185
- embedding_output = self.embeddings(input_ids=input_ids, position_ids=position_ids)
186
-
187
- encoder_outputs = self.encoder(
188
- embedding_output,
189
- src_mask=attention_mask,
190
- output_attentions=output_attentions,
191
- output_hidden_states=output_hidden_states,
192
- return_dict=return_dict,
193
- )
194
-
195
- if isinstance(encoder_outputs, type(embedding_output)):
196
- sequence_output = self.final_layer_norm(encoder_outputs)
197
- return (sequence_output,)
198
- else:
199
- sequence_output = encoder_outputs[0]
200
- sequence_output = self.final_layer_norm(sequence_output)
201
- if not return_dict:
202
- return (sequence_output,) + encoder_outputs[1:]
203
- return BaseModelOutputWithPoolingAndCrossAttentions(
204
- last_hidden_state=sequence_output,
205
- hidden_states=encoder_outputs.hidden_states,
206
- attentions=encoder_outputs.attentions,
207
- )
208
-
209
-
210
- class LDMBertAttention(nn.MultiHeadAttention):
211
- def __init__(
212
- self,
213
- embed_dim,
214
- head_dim,
215
- num_heads,
216
- dropout=0.0,
217
- kdim=None,
218
- vdim=None,
219
- need_weights=False,
220
- weight_attr=None,
221
- bias_attr=None,
222
- ):
223
- super().__init__(embed_dim, num_heads, dropout, kdim, vdim, need_weights, weight_attr, bias_attr)
224
- assert embed_dim > 0, "Expected embed_dim to be greater than 0, " "but recieved {}".format(embed_dim)
225
- assert num_heads > 0, "Expected num_heads to be greater than 0, " "but recieved {}".format(num_heads)
226
-
227
- self.embed_dim = embed_dim
228
- self.kdim = kdim if kdim is not None else embed_dim
229
- self.vdim = vdim if vdim is not None else embed_dim
230
- self.num_heads = num_heads
231
- self.dropout = dropout
232
- self.need_weights = need_weights
233
-
234
- self.head_dim = head_dim
235
- self.inner_dim = head_dim * num_heads
236
- self.scaling = self.head_dim**-0.5
237
-
238
- self.q_proj = nn.Linear(embed_dim, self.inner_dim, weight_attr, bias_attr=bias_attr)
239
- self.k_proj = nn.Linear(self.kdim, self.inner_dim, weight_attr, bias_attr=bias_attr)
240
- self.v_proj = nn.Linear(self.vdim, self.inner_dim, weight_attr, bias_attr=bias_attr)
241
- self.out_proj = nn.Linear(self.inner_dim, embed_dim, weight_attr)
242
-
243
-
244
- class LDMBertModelForMaskedLM(LDMBertPretrainedModel):
245
- def __init__(self, ldmbert):
246
- super().__init__()
247
- self.ldmbert = ldmbert
248
- self.to_logits = nn.Linear(ldmbert.config["hidden_size"], ldmbert.config["vocab_size"])
249
- self.apply(self.init_weights)
250
-
251
- def forward(
252
- self,
253
- input_ids=None,
254
- attention_mask=None,
255
- position_ids=None,
256
- output_attentions=None,
257
- output_hidden_states=None,
258
- return_dict=None,
259
- ):
260
- outputs = self.ldmbert(
261
- input_ids,
262
- attention_mask=attention_mask,
263
- position_ids=position_ids,
264
- output_attentions=output_attentions,
265
- output_hidden_states=output_hidden_states,
266
- return_dict=return_dict,
267
- )
268
- return outputs
269
-
270
-
271
- class LDMTextToImagePipeline(DiffusionPipeline):
272
- r"""
273
- This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
274
- library implements for all the pipelines (such as downloading or saving, running on a particular xxxx, etc.)
275
-
276
- Parameters:
277
- vqvae ([`VQModel`]):
278
- Vector-quantized (VQ) Model to encode and decode images to and from latent representations.
279
- bert ([`LDMBertModel`]):
280
- Text-encoder model based on [BERT](https://paddlenlp.readthedocs.io/zh/latest/source/paddlenlp.transformers.bert.modeling.html#paddlenlp.transformers.bert.modeling.BertModel) architecture.
281
- tokenizer (`paddlenlp.transformers.BertTokenizer`):
282
- Tokenizer of class
283
- [BertTokenizer](https://paddlenlp.readthedocs.io/zh/latest/source/paddlenlp.transformers.bert.tokenizer.html#paddlenlp.transformers.bert.tokenizer.BertTokenizer).
284
- unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
285
- scheduler ([`SchedulerMixin`]):
286
- A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
287
- [`DDIMScheduler`], [`LMSDiscreteScheduler`], [`PNDMScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`]
288
- or [`DPMSolverMultistepScheduler`].
289
- """
290
-
291
- def __init__(
292
- self,
293
- vqvae: Union[VQModel, AutoencoderKL],
294
- bert: PretrainedModel,
295
- tokenizer: PretrainedTokenizer,
296
- unet: Union[UNet2DModel, UNet2DConditionModel],
297
- scheduler: Union[
298
- DDIMScheduler,
299
- PNDMScheduler,
300
- LMSDiscreteScheduler,
301
- EulerDiscreteScheduler,
302
- EulerAncestralDiscreteScheduler,
303
- DPMSolverMultistepScheduler,
304
- ],
305
- ):
306
- super().__init__()
307
- if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
308
- deprecation_message = (
309
- f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
310
- f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
311
- "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
312
- " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
313
- " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
314
- " file"
315
- )
316
- deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
317
- new_config = dict(scheduler.config)
318
- new_config["steps_offset"] = 1
319
- scheduler._internal_dict = FrozenDict(new_config)
320
-
321
- if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
322
- deprecation_message = (
323
- f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
324
- " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
325
- " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
326
- " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
327
- " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
328
- )
329
- deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
330
- new_config = dict(scheduler.config)
331
- new_config["clip_sample"] = False
332
- scheduler._internal_dict = FrozenDict(new_config)
333
-
334
- self.register_modules(vqvae=vqvae, bert=bert, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
335
- self.vae_scale_factor = 2 ** (len(self.vqvae.config.block_out_channels) - 1)
336
-
337
- def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
338
- r"""
339
- Encodes the prompt into text encoder hidden states.
340
-
341
- Args:
342
- prompt (`str` or `list(int)`):
343
- prompt to be encoded
344
- num_images_per_prompt (`int`):
345
- number of images that should be generated per prompt
346
- do_classifier_free_guidance (`bool`):
347
- whether to use classifier free guidance or not
348
- negative_prompt (`str` or `List[str]`):
349
- The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
350
- if `guidance_scale` is less than `1`).
351
- """
352
- batch_size = len(prompt) if isinstance(prompt, list) else 1
353
-
354
- text_inputs = self.tokenizer(
355
- prompt,
356
- padding="max_length",
357
- max_length=self.tokenizer.model_max_length,
358
- truncation=True,
359
- return_tensors="pd",
360
- )
361
- text_input_ids = text_inputs.input_ids
362
- untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pd").input_ids
363
-
364
- if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not paddle.equal_all(
365
- text_input_ids, untruncated_ids
366
- ):
367
- removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
368
- logger.warning(
369
- "The following part of your input was truncated because LDMBert can only handle sequences up to"
370
- f" {self.tokenizer.model_max_length} tokens: {removed_text}"
371
- )
372
-
373
- text_embeddings = self.bert(text_input_ids)
374
- text_embeddings = text_embeddings[0]
375
-
376
- # duplicate text embeddings for each generation per prompt, using mps friendly method
377
- bs_embed, seq_len, _ = text_embeddings.shape
378
- text_embeddings = text_embeddings.tile([1, num_images_per_prompt, 1])
379
- text_embeddings = text_embeddings.reshape([bs_embed * num_images_per_prompt, seq_len, -1])
380
-
381
- # get unconditional embeddings for classifier free guidance
382
- if do_classifier_free_guidance:
383
- uncond_tokens: List[str]
384
- if negative_prompt is None:
385
- uncond_tokens = [""] * batch_size
386
- elif type(prompt) is not type(negative_prompt):
387
- raise TypeError(
388
- f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
389
- f" {type(prompt)}."
390
- )
391
- elif isinstance(negative_prompt, str):
392
- uncond_tokens = [negative_prompt]
393
- elif batch_size != len(negative_prompt):
394
- raise ValueError(
395
- f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
396
- f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
397
- " the batch size of `prompt`."
398
- )
399
- else:
400
- uncond_tokens = negative_prompt
401
-
402
- max_length = text_input_ids.shape[-1]
403
- uncond_input = self.tokenizer(
404
- uncond_tokens,
405
- padding="max_length",
406
- max_length=max_length,
407
- truncation=True,
408
- return_tensors="pd",
409
- )
410
-
411
- uncond_embeddings = self.bert(uncond_input.input_ids)
412
- uncond_embeddings = uncond_embeddings[0]
413
-
414
- # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
415
- seq_len = uncond_embeddings.shape[1]
416
- uncond_embeddings = uncond_embeddings.tile([1, num_images_per_prompt, 1])
417
- uncond_embeddings = uncond_embeddings.reshape([batch_size * num_images_per_prompt, seq_len, -1])
418
-
419
- # For classifier free guidance, we need to do two forward passes.
420
- # Here we concatenate the unconditional and text embeddings into a single batch
421
- # to avoid doing two forward passes
422
- text_embeddings = paddle.concat([uncond_embeddings, text_embeddings])
423
-
424
- return text_embeddings
425
-
426
- def decode_latents(self, latents):
427
- latents = 1 / 0.18215 * latents
428
- image = self.vqvae.decode(latents).sample
429
- image = (image / 2 + 0.5).clip(0, 1)
430
- # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
431
- image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
432
- return image
433
-
434
- def prepare_extra_step_kwargs(self, generator, eta):
435
- # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
436
- # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
437
- # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
438
- # and should be between [0, 1]
439
-
440
- accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
441
- extra_step_kwargs = {}
442
- if accepts_eta:
443
- extra_step_kwargs["eta"] = eta
444
-
445
- # check if the scheduler accepts generator
446
- accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
447
- if accepts_generator:
448
- extra_step_kwargs["generator"] = generator
449
- return extra_step_kwargs
450
-
451
- def check_inputs(self, prompt, height, width, callback_steps):
452
- if not isinstance(prompt, str) and not isinstance(prompt, list):
453
- raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
454
-
455
- if height % 8 != 0 or width % 8 != 0:
456
- raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
457
-
458
- if (callback_steps is None) or (
459
- callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
460
- ):
461
- raise ValueError(
462
- f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
463
- f" {type(callback_steps)}."
464
- )
465
-
466
- def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
467
- shape = [batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor]
468
- if isinstance(generator, list) and len(generator) != batch_size:
469
- raise ValueError(
470
- f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
471
- f" size of {batch_size}. Make sure the batch size matches the length of the generators."
472
- )
473
-
474
- if latents is None:
475
- if isinstance(generator, list):
476
- shape = [
477
- 1,
478
- ] + shape[1:]
479
- latents = [paddle.randn(shape, generator=generator[i], dtype=dtype) for i in range(batch_size)]
480
- latents = paddle.concat(latents, axis=0)
481
- else:
482
- latents = paddle.randn(shape, generator=generator, dtype=dtype)
483
- else:
484
- if latents.shape != shape:
485
- raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
486
-
487
- # scale the initial noise by the standard deviation required by the scheduler
488
- latents = latents * self.scheduler.init_noise_sigma
489
- return latents
490
-
491
- @paddle.no_grad()
492
- def __call__(
493
- self,
494
- prompt: Union[str, List[str]],
495
- height: int = 256,
496
- width: int = 256,
497
- num_inference_steps: int = 50,
498
- guidance_scale: float = 1.0,
499
- negative_prompt: Optional[Union[str, List[str]]] = None,
500
- num_images_per_prompt: Optional[int] = 1,
501
- eta: float = 0.0,
502
- generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
503
- latents: Optional[paddle.Tensor] = None,
504
- output_type: Optional[str] = "pil",
505
- return_dict: bool = True,
506
- callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
507
- callback_steps: Optional[int] = 1,
508
- ):
509
- r"""
510
- Function invoked when calling the pipeline for generation.
511
-
512
- Args:
513
- prompt (`str` or `List[str]`):
514
- The prompt or prompts to guide the image generation.
515
- height (`int`, *optional*, defaults to 256:
516
- The height in pixels of the generated image.
517
- width (`int`, *optional*, defaults to 256:
518
- The width in pixels of the generated image.
519
- num_inference_steps (`int`, *optional*, defaults to 50):
520
- The number of denoising steps. More denoising steps usually lead to a higher quality image at the
521
- expense of slower inference.
522
- guidance_scale (`float`, *optional*, defaults to 1.0):
523
- Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
524
- `guidance_scale` is defined as `w` of equation 2. of [Imagen
525
- Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
526
- 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
527
- usually at the expense of lower image quality.
528
- negative_prompt (`str` or `List[str]`, *optional*):
529
- The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
530
- if `guidance_scale` is less than `1`).
531
- num_images_per_prompt (`int`, *optional*, defaults to 1):
532
- The number of images to generate per prompt.
533
- eta (`float`, *optional*, defaults to 0.0):
534
- Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
535
- [`schedulers.DDIMScheduler`], will be ignored for others.
536
- generator (`paddle.Generator`, *optional*):
537
- One or a list of paddle generator(s) to make generation deterministic.
538
- latents (`paddle.Tensor`, *optional*):
539
- Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
540
- generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
541
- tensor will ge generated by sampling using the supplied random `generator`.
542
- output_type (`str`, *optional*, defaults to `"pil"`):
543
- The output format of the generate image. Choose between
544
- [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
545
- return_dict (`bool`, *optional*, defaults to `True`):
546
- Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
547
- plain tuple.
548
- callback (`Callable`, *optional*):
549
- A function that will be called every `callback_steps` steps during inference. The function will be
550
- called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
551
- callback_steps (`int`, *optional*, defaults to 1):
552
- The frequency at which the `callback` function will be called. If not specified, the callback will be
553
- called at every step.
554
-
555
- Returns:
556
- [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
557
- [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
558
- When returning a tuple, the first element is a list with the generated images, and the second element is a
559
- list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
560
- (nsfw) content, according to the `safety_checker`.
561
- """
562
- # 1. Check inputs. Raise error if not correct
563
- self.check_inputs(prompt, height, width, callback_steps)
564
-
565
- # 2. Define call parameters
566
- batch_size = 1 if isinstance(prompt, str) else len(prompt)
567
- # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
568
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
569
- # corresponds to doing no classifier free guidance.
570
- do_classifier_free_guidance = guidance_scale > 1.0
571
-
572
- # 3. Encode input prompt
573
- text_embeddings = self._encode_prompt(
574
- prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
575
- )
576
-
577
- # 4. Prepare timesteps
578
- self.scheduler.set_timesteps(num_inference_steps)
579
- timesteps = self.scheduler.timesteps
580
-
581
- # 5. Prepare latent variables
582
- num_channels_latents = self.unet.in_channels
583
- latents = self.prepare_latents(
584
- batch_size * num_images_per_prompt,
585
- num_channels_latents,
586
- height,
587
- width,
588
- text_embeddings.dtype,
589
- generator,
590
- latents,
591
- )
592
-
593
- # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
594
- extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
595
-
596
- # 7. Denoising loop
597
- num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
598
- with self.progress_bar(total=num_inference_steps) as progress_bar:
599
- for i, t in enumerate(timesteps):
600
- # expand the latents if we are doing classifier free guidance
601
- latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
602
- latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
603
-
604
- # predict the noise residual
605
- noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
606
-
607
- # perform guidance
608
- if do_classifier_free_guidance:
609
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
610
- noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
611
-
612
- # compute the previous noisy sample x_t -> x_t-1
613
- latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
614
-
615
- # call the callback, if provided
616
- if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
617
- progress_bar.update()
618
- if callback is not None and i % callback_steps == 0:
619
- callback(i, t, latents)
620
-
621
- # 8. Post-processing
622
- image = self.decode_latents(latents)
623
-
624
- # 9. Convert to PIL
625
- if output_type == "pil":
626
- image = self.numpy_to_pil(image)
627
-
628
- if not return_dict:
629
- return (image,)
630
-
631
- return ImagePipelineOutput(images=image)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AIGC-Audio/AudioGPT/text_to_speech/tasks/tts/synta_mlm.py DELETED
@@ -1,25 +0,0 @@
1
- import os
2
- import torch
3
- import torch.nn.functional as F
4
- from torch import nn
5
-
6
- from text_to_speech.modules.tts.syntaspeech.syntaspeech import SyntaSpeech
7
- from tasks.tts.ps_adv_mlm import PortaSpeechAdvMLMTask
8
- from text_to_speech.utils.commons.hparams import hparams
9
-
10
-
11
- class SyntaSpeechMLMTask(PortaSpeechAdvMLMTask):
12
- def build_tts_model(self):
13
- ph_dict_size = len(self.token_encoder)
14
- word_dict_size = len(self.word_encoder)
15
- self.model = SyntaSpeech(ph_dict_size, word_dict_size, hparams)
16
-
17
- self.gen_params = [p for p in self.model.parameters() if p.requires_grad]
18
- self.dp_params = [p for k, p in self.model.named_parameters() if (('dur_predictor' in k) and p.requires_grad)]
19
- self.gen_params_except_dp = [p for k, p in self.model.named_parameters() if (('dur_predictor' not in k) and p.requires_grad)]
20
- self.bert_params = [p for k, p in self.model.named_parameters() if (('bert' in k) and p.requires_grad)]
21
- self.gen_params_except_bert_and_dp = [p for k, p in self.model.named_parameters() if ('dur_predictor' not in k) and ('bert' not in k) and p.requires_grad ]
22
-
23
- self.use_bert = True if len(self.bert_params) > 0 else False
24
-
25
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/ATang0729/Forecast4Muses/Model/Model6/Model6_1_ClothesKeyPoint/mmpose_1_x/configs/fashion_2d_keypoint/README.md DELETED
@@ -1,7 +0,0 @@
1
- # 2D Fashion Landmark Detection
2
-
3
- 2D fashion landmark detection (also referred to as fashion alignment) aims to detect the key-point located at the functional region of clothes, for example the neckline and the cuff.
4
-
5
- ## Data preparation
6
-
7
- Please follow [DATA Preparation](/docs/en/dataset_zoo/2d_fashion_landmark.md) to prepare data.
 
 
 
 
 
 
 
 
spaces/Abhilashvj/planogram-compliance/data/scripts/get_coco128.sh DELETED
@@ -1,17 +0,0 @@
1
- #!/bin/bash
2
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
3
- # Download COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
4
- # Example usage: bash data/scripts/get_coco128.sh
5
- # parent
6
- # ├── yolov5
7
- # └── datasets
8
- # └── coco128 ← downloads here
9
-
10
- # Download/unzip images and labels
11
- d='../datasets' # unzip directory
12
- url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
13
- f='coco128.zip' # or 'coco128-segments.zip', 68 MB
14
- echo 'Downloading' $url$f ' ...'
15
- curl -L $url$f -o $f -# && unzip -q $f -d $d && rm $f &
16
-
17
- wait # finish background tasks
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Abhilashvj/planogram-compliance/utils/google_app_engine/Dockerfile DELETED
@@ -1,25 +0,0 @@
1
- FROM gcr.io/google-appengine/python
2
-
3
- # Create a virtualenv for dependencies. This isolates these packages from
4
- # system-level packages.
5
- # Use -p python3 or -p python3.7 to select python version. Default is version 2.
6
- RUN virtualenv /env -p python3
7
-
8
- # Setting these environment variables are the same as running
9
- # source /env/bin/activate.
10
- ENV VIRTUAL_ENV /env
11
- ENV PATH /env/bin:$PATH
12
-
13
- RUN apt-get update && apt-get install -y python-opencv
14
-
15
- # Copy the application's requirements.txt and run pip to install all
16
- # dependencies into the virtualenv.
17
- ADD requirements.txt /app/requirements.txt
18
- RUN pip install -r /app/requirements.txt
19
-
20
- # Add the application source code.
21
- ADD . /app
22
-
23
- # Run a WSGI server to serve the application. gunicorn must be declared as
24
- # a dependency in requirements.txt.
25
- CMD gunicorn -b :$PORT main:app
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Adapting/YouTube-Downloader/README.md DELETED
@@ -1,13 +0,0 @@
1
- ---
2
- title: YouTube Downloader
3
- emoji: 🐢
4
- colorFrom: indigo
5
- colorTo: purple
6
- sdk: streamlit
7
- sdk_version: 1.15.2
8
- app_file: app.py
9
- pinned: false
10
- license: mit
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Aditya9790/yolo7-object-tracking/utils/aws/__init__.py DELETED
@@ -1 +0,0 @@
1
- #init
 
 
spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/confirmdialog/methods/Modal.js DELETED
@@ -1,29 +0,0 @@
1
- import IsFunction from '../../../../plugins/utils/object/IsFunction.js';
2
- import ModalMethods from '../../basesizer/ModalMethods.js';
3
-
4
- var Modal = function (config, onClose) {
5
- if (IsFunction(config)) {
6
- onClose = config;
7
- config = undefined;
8
- }
9
-
10
- if (config === undefined) {
11
- config = {};
12
- }
13
-
14
- var zeroButtonMode = (this.buttonMode === 0);
15
-
16
- if (!config.hasOwnProperty('anyTouchClose')) {
17
- config.anyTouchClose = zeroButtonMode;
18
- }
19
-
20
- if (!config.hasOwnProperty('manualClose')) {
21
- config.manualClose = !zeroButtonMode;
22
- }
23
-
24
- ModalMethods.modal.call(this, config, onClose);
25
-
26
- return this;
27
- }
28
-
29
- export default Modal;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/ninepatch2/NinePatch.js DELETED
@@ -1,2 +0,0 @@
1
- import NinePatch from '../../../plugins/ninepatch2.js'
2
- export default NinePatch;
 
 
 
spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/sizer/AddChildMethods.js DELETED
@@ -1,170 +0,0 @@
1
- import AddChild from '../basesizer/utils/AddChild.js';
2
- import GetBoundsConfig from '../utils/GetBoundsConfig.js';
3
- import ALIGNMODE from '../utils/AlignConst.js';
4
- import Space from '../space/Space.js';
5
- import { GetDisplayWidth, GetDisplayHeight } from '../../../plugins/utils/size/GetDisplaySize.js';
6
- import GetNearestChildIndex from './GetNearestChildIndex.js';
7
-
8
- const IsPlainObject = Phaser.Utils.Objects.IsPlainObject;
9
- const GetValue = Phaser.Utils.Objects.GetValue;
10
- const ALIGN_CENTER = Phaser.Display.Align.CENTER;
11
- const PROPORTIONMODE = {
12
- min: 0,
13
- full: -1,
14
- }
15
-
16
- var Add = function (
17
- gameObject,
18
- proportion, align, paddingConfig, expand,
19
- childKey, index,
20
- minWidth, minHeight,
21
- fitRatio,
22
- ) {
23
-
24
- AddChild.call(this, gameObject);
25
-
26
- var isRexSpace = gameObject.isRexSpace;
27
- var proportionType = typeof (proportion);
28
- if (proportion === null) {
29
- return this;
30
- } else if (proportionType === 'number') {
31
-
32
- } else if (proportionType === 'string') {
33
- proportion = PROPORTIONMODE[proportion];
34
- } else if (IsPlainObject(proportion)) {
35
- var config = proportion;
36
- proportion = GetValue(config, 'proportion', undefined);
37
- align = GetValue(config, 'align', ALIGN_CENTER);
38
- paddingConfig = GetValue(config, 'padding', 0);
39
- expand = GetValue(config, 'expand', false);
40
- childKey = GetValue(config, 'key', undefined);
41
- index = GetValue(config, 'index', undefined);
42
-
43
- if (!gameObject.isRexSizer) {
44
- minWidth = GetValue(config, 'minWidth', undefined);
45
- minHeight = GetValue(config, 'minHeight', undefined);
46
- }
47
-
48
- fitRatio = GetValue(config, 'fitRatio', 0); // width/height
49
- }
50
-
51
- if (typeof (align) === 'string') {
52
- align = ALIGNMODE[align];
53
- }
54
-
55
- if (proportion === undefined) {
56
- proportion = (isRexSpace) ? 1 : 0;
57
- }
58
- if (align === undefined) {
59
- align = ALIGN_CENTER;
60
- }
61
- if (paddingConfig === undefined) {
62
- paddingConfig = 0;
63
- }
64
- if (expand === undefined) {
65
- expand = false;
66
- }
67
-
68
- if (minWidth === undefined) {
69
- if (isRexSpace) {
70
- minWidth = 0;
71
- } else if (!gameObject.isRexSizer) {
72
- minWidth = gameObject._minWidth;
73
- }
74
- }
75
- if (minHeight === undefined) {
76
- if (isRexSpace) {
77
- minHeight = 0;
78
- } else if (!gameObject.isRexSizer) {
79
- minHeight = gameObject._minHeight;
80
- }
81
- }
82
-
83
- if (fitRatio === undefined) {
84
- fitRatio = 0;
85
- }
86
-
87
- var config = this.getSizerConfig(gameObject);
88
- config.proportion = proportion;
89
- config.align = align;
90
- config.padding = GetBoundsConfig(paddingConfig);
91
- config.expand = expand;
92
- config.fitRatio = (proportion === 0) ? fitRatio : 0;
93
-
94
- if ((index === undefined) || (index >= this.sizerChildren.length)) {
95
- this.sizerChildren.push(gameObject);
96
- } else {
97
- this.sizerChildren.splice(index, 0, gameObject);
98
- }
99
-
100
- if (!gameObject.isRexSizer) { // Expand normal game object
101
- if (proportion > 0) {
102
- if (this.orientation === 0) { // x
103
- // minWidth is still undefined, uses current display width
104
- gameObject.minWidth = (minWidth === undefined) ? GetDisplayWidth(gameObject) : minWidth;
105
- } else {
106
- // minHeight is still undefined, uses current display height
107
- gameObject.minHeight = (minHeight === undefined) ? GetDisplayHeight(gameObject) : minHeight;
108
- }
109
- }
110
- if (expand) {
111
- if (this.orientation === 0) { // x
112
- // Might have minHeight value, or still undefined
113
- gameObject.minHeight = minHeight;
114
- } else {
115
- // Might have minWidth value, or still undefined
116
- gameObject.minWidth = minWidth;
117
- }
118
- }
119
- }
120
-
121
- if (childKey !== undefined) {
122
- this.addChildrenMap(childKey, gameObject)
123
- }
124
-
125
- return this;
126
- };
127
-
128
- export default {
129
- add: Add, // sizer.add could be override
130
-
131
- addSpace(proportion) {
132
- this.insertSpace(undefined, proportion);
133
- return this;
134
- },
135
-
136
- insertSpace(index, proportion) {
137
- if (proportion === undefined) {
138
- proportion = 1;
139
- }
140
- Add.call(this, new Space(this.scene),
141
- {
142
- proportion: proportion,
143
- minWidth: 0,
144
- minHeight: 0,
145
- index: index
146
- }
147
- );
148
- // No problem if sizer.add is override
149
- return this;
150
- },
151
-
152
- insert(index, gameObject, proportion, align, paddingConfig, expand, childKey, minSize) {
153
- if (IsPlainObject(proportion)) {
154
- proportion.index = index;
155
- }
156
-
157
- Add.call(this, gameObject, proportion, align, paddingConfig, expand, childKey, index, minSize);
158
- // No problem if sizer.add is override
159
- return this;
160
- },
161
-
162
- insertAtPosition(x, y, gameObject, proportion, align, paddingConfig, expand, childKey, minSize) {
163
- var index = GetNearestChildIndex.call(this, x, y);
164
- if (index === -1) {
165
- index = undefined;
166
- }
167
- this.insert(index, gameObject, proportion, align, paddingConfig, expand, childKey, minSize);
168
- return this;
169
- }
170
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Akmyradov/TurkmenTTSweSTT/uroman/lib/JSON/backportPP/Boolean.pm DELETED
@@ -1,27 +0,0 @@
1
- =head1 NAME
2
-
3
- JSON::PP::Boolean - dummy module providing JSON::PP::Boolean
4
-
5
- =head1 SYNOPSIS
6
-
7
- # do not "use" yourself
8
-
9
- =head1 DESCRIPTION
10
-
11
- This module exists only to provide overload resolution for Storable
12
- and similar modules. See L<JSON::PP> for more info about this class.
13
-
14
- =cut
15
-
16
- use JSON::backportPP ();
17
- use strict;
18
-
19
- 1;
20
-
21
- =head1 AUTHOR
22
-
23
- This idea is from L<JSON::XS::Boolean> written by
24
- Marc Lehmann <schmorp[at]schmorp.de>
25
-
26
- =cut
27
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AlekseyKorshuk/model-evaluation/tabs/playground.py DELETED
@@ -1,123 +0,0 @@
1
- import gradio as gr
2
- from conversation import Conversation
3
-
4
-
5
- def get_tab_playground(download_bot_config, get_bot_profile, model_mapping):
6
- gr.Markdown("""
7
- # 🎢 Playground 🎢
8
- ## Rules
9
- * Chat with any model you would like with any bot from the Chai app.
10
- * Click “Clear” to start a new conversation.
11
- """)
12
- default_bot_id = "_bot_e21de304-6151-4a04-b025-4c553ae8cbca"
13
- bot_config = download_bot_config(default_bot_id)
14
- user_state = gr.State(
15
- bot_config
16
- )
17
- with gr.Row():
18
- bot_id = gr.Textbox(label="Chai bot ID", value=default_bot_id, interactive=True)
19
- reload_bot_button = gr.Button("Reload bot")
20
-
21
- bot_profile = gr.HTML(get_bot_profile(bot_config))
22
- with gr.Accordion("Bot config:", open=False):
23
- bot_config_text = gr.Markdown(f"# Memory\n{bot_config['memory']}\n# Prompt\n{bot_config['prompt']}")
24
-
25
- first_message = (None, bot_config["firstMessage"])
26
- chatbot = gr.Chatbot([first_message])
27
-
28
- msg = gr.Textbox(label="Message", value="Hi there!")
29
- with gr.Row():
30
- send = gr.Button("Send")
31
- regenerate = gr.Button("Regenerate")
32
- clear = gr.Button("Clear")
33
- values = list(model_mapping.keys())
34
- model_tag = gr.Dropdown(values, value=values[0], label="Model version")
35
- model = model_mapping[model_tag.value]
36
-
37
- with gr.Accordion("Generation parameters", open=False):
38
- temperature = gr.Slider(minimum=0.0, maximum=1.0, value=model.generation_params["temperature"],
39
- interactive=True, label="Temperature")
40
- repetition_penalty = gr.Slider(minimum=0.0, maximum=2.0,
41
- value=model.generation_params["repetition_penalty"],
42
- interactive=True, label="Repetition penalty")
43
- max_new_tokens = gr.Slider(minimum=1, maximum=512, value=model.generation_params["max_new_tokens"],
44
- interactive=True, label="Max new tokens")
45
- top_k = gr.Slider(minimum=1, maximum=100, value=model.generation_params["top_k"],
46
- interactive=True, label="Top-K")
47
- top_p = gr.Slider(minimum=0.0, maximum=1.0, value=model.generation_params["top_p"],
48
- interactive=True, label="Top-P")
49
-
50
- def respond(message, chat_history, user_state, model_tag,
51
- temperature, repetition_penalty, max_new_tokens, top_k, top_p):
52
- custom_generation_params = {
53
- 'temperature': temperature,
54
- 'repetition_penalty': repetition_penalty,
55
- 'max_new_tokens': max_new_tokens,
56
- 'top_k': top_k,
57
- 'top_p': top_p,
58
- }
59
- conv = Conversation(user_state)
60
- conv.set_chat_history(chat_history)
61
- conv.add_user_message(message)
62
- model = model_mapping[model_tag]
63
- bot_message = model.generate_response(conv, custom_generation_params)
64
- chat_history.append(
65
- (message, bot_message)
66
- )
67
- return "", chat_history
68
-
69
- def clear_chat(chat_history, user_state):
70
- chat_history = [(None, user_state["firstMessage"])]
71
- return chat_history
72
-
73
- def regenerate_response(chat_history, user_state, model_tag,
74
- temperature, repetition_penalty, max_new_tokens, top_k, top_p):
75
- custom_generation_params = {
76
- 'temperature': temperature,
77
- 'repetition_penalty': repetition_penalty,
78
- 'max_new_tokens': max_new_tokens,
79
- 'top_k': top_k,
80
- 'top_p': top_p,
81
- }
82
- last_row = chat_history.pop(-1)
83
- chat_history.append((last_row[0], None))
84
- model = model_mapping[model_tag]
85
- conv = Conversation(user_state)
86
- conv.set_chat_history(chat_history)
87
- bot_message = model.generate_response(conv, custom_generation_params)
88
- chat_history[-1] = (last_row[0], bot_message)
89
- return chat_history
90
-
91
- def reload_bot(bot_id, bot_profile, chat_history):
92
- bot_config = download_bot_config(bot_id)
93
- bot_profile = get_bot_profile(bot_config)
94
- return bot_profile, [(None, bot_config[
95
- "firstMessage"])], bot_config, f"# Memory\n{bot_config['memory']}\n# Prompt\n{bot_config['prompt']}"
96
-
97
- def get_generation_args(model_tag):
98
- model = model_mapping[model_tag]
99
- return (
100
- model.generation_params["temperature"],
101
- model.generation_params["repetition_penalty"],
102
- model.generation_params["max_new_tokens"],
103
- model.generation_params["top_k"],
104
- model.generation_params["top_p"],
105
- )
106
-
107
- model_tag.change(get_generation_args, [model_tag], [temperature, repetition_penalty, max_new_tokens, top_k,
108
- top_p], queue=False)
109
- send.click(respond,
110
- [msg, chatbot, user_state, model_tag, temperature, repetition_penalty, max_new_tokens, top_k,
111
- top_p], [msg, chatbot],
112
- queue=False)
113
- msg.submit(respond,
114
- [msg, chatbot, user_state, model_tag, temperature, repetition_penalty, max_new_tokens, top_k,
115
- top_p], [msg, chatbot],
116
- queue=False)
117
- clear.click(clear_chat, [chatbot, user_state], [chatbot], queue=False)
118
- regenerate.click(regenerate_response,
119
- [chatbot, user_state, model_tag, temperature, repetition_penalty, max_new_tokens, top_k,
120
- top_p], [chatbot], queue=False)
121
- reload_bot_button.click(reload_bot, [bot_id, bot_profile, chatbot],
122
- [bot_profile, chatbot, user_state, bot_config_text],
123
- queue=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AlgoveraAI/algovera_squad_active_passive_model/README.md DELETED
@@ -1,11 +0,0 @@
1
- ---
2
- title: Algovera_squad_active_passive_model
3
- emoji: 🐢
4
- colorFrom: blue
5
- colorTo: purple
6
- sdk: streamlit
7
- app_file: app.py
8
- pinned: false
9
- ---
10
-
11
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/src/diffusers/models/autoencoder_kl.py DELETED
@@ -1,417 +0,0 @@
1
- # Copyright 2023 The HuggingFace Team. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- from dataclasses import dataclass
15
- from typing import Dict, Optional, Tuple, Union
16
-
17
- import torch
18
- import torch.nn as nn
19
-
20
- from ..configuration_utils import ConfigMixin, register_to_config
21
- from ..loaders import FromOriginalVAEMixin
22
- from ..utils import BaseOutput, apply_forward_hook
23
- from .attention_processor import AttentionProcessor, AttnProcessor
24
- from .modeling_utils import ModelMixin
25
- from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder
26
-
27
-
28
- @dataclass
29
- class AutoencoderKLOutput(BaseOutput):
30
- """
31
- Output of AutoencoderKL encoding method.
32
-
33
- Args:
34
- latent_dist (`DiagonalGaussianDistribution`):
35
- Encoded outputs of `Encoder` represented as the mean and logvar of `DiagonalGaussianDistribution`.
36
- `DiagonalGaussianDistribution` allows for sampling latents from the distribution.
37
- """
38
-
39
- latent_dist: "DiagonalGaussianDistribution"
40
-
41
-
42
- class AutoencoderKL(ModelMixin, ConfigMixin, FromOriginalVAEMixin):
43
- r"""
44
- A VAE model with KL loss for encoding images into latents and decoding latent representations into images.
45
-
46
- This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
47
- for all models (such as downloading or saving).
48
-
49
- Parameters:
50
- in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
51
- out_channels (int, *optional*, defaults to 3): Number of channels in the output.
52
- down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
53
- Tuple of downsample block types.
54
- up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
55
- Tuple of upsample block types.
56
- block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
57
- Tuple of block output channels.
58
- act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
59
- latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
60
- sample_size (`int`, *optional*, defaults to `32`): Sample input size.
61
- scaling_factor (`float`, *optional*, defaults to 0.18215):
62
- The component-wise standard deviation of the trained latent space computed using the first batch of the
63
- training set. This is used to scale the latent space to have unit variance when training the diffusion
64
- model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
65
- diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
66
- / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
67
- Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
68
- force_upcast (`bool`, *optional*, default to `True`):
69
- If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
70
- can be fine-tuned / trained to a lower range without loosing too much precision in which case
71
- `force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
72
- """
73
-
74
- _supports_gradient_checkpointing = True
75
-
76
- @register_to_config
77
- def __init__(
78
- self,
79
- in_channels: int = 3,
80
- out_channels: int = 3,
81
- down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
82
- up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
83
- block_out_channels: Tuple[int] = (64,),
84
- layers_per_block: int = 1,
85
- act_fn: str = "silu",
86
- latent_channels: int = 4,
87
- norm_num_groups: int = 32,
88
- sample_size: int = 32,
89
- scaling_factor: float = 0.18215,
90
- force_upcast: float = True,
91
- ):
92
- super().__init__()
93
-
94
- # pass init params to Encoder
95
- self.encoder = Encoder(
96
- in_channels=in_channels,
97
- out_channels=latent_channels,
98
- down_block_types=down_block_types,
99
- block_out_channels=block_out_channels,
100
- layers_per_block=layers_per_block,
101
- act_fn=act_fn,
102
- norm_num_groups=norm_num_groups,
103
- double_z=True,
104
- )
105
-
106
- # pass init params to Decoder
107
- self.decoder = Decoder(
108
- in_channels=latent_channels,
109
- out_channels=out_channels,
110
- up_block_types=up_block_types,
111
- block_out_channels=block_out_channels,
112
- layers_per_block=layers_per_block,
113
- norm_num_groups=norm_num_groups,
114
- act_fn=act_fn,
115
- )
116
-
117
- self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
118
- self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1)
119
-
120
- self.use_slicing = False
121
- self.use_tiling = False
122
-
123
- # only relevant if vae tiling is enabled
124
- self.tile_sample_min_size = self.config.sample_size
125
- sample_size = (
126
- self.config.sample_size[0]
127
- if isinstance(self.config.sample_size, (list, tuple))
128
- else self.config.sample_size
129
- )
130
- self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1)))
131
- self.tile_overlap_factor = 0.25
132
-
133
- def _set_gradient_checkpointing(self, module, value=False):
134
- if isinstance(module, (Encoder, Decoder)):
135
- module.gradient_checkpointing = value
136
-
137
- def enable_tiling(self, use_tiling: bool = True):
138
- r"""
139
- Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
140
- compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
141
- processing larger images.
142
- """
143
- self.use_tiling = use_tiling
144
-
145
- def disable_tiling(self):
146
- r"""
147
- Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
148
- decoding in one step.
149
- """
150
- self.enable_tiling(False)
151
-
152
- def enable_slicing(self):
153
- r"""
154
- Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
155
- compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
156
- """
157
- self.use_slicing = True
158
-
159
- def disable_slicing(self):
160
- r"""
161
- Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
162
- decoding in one step.
163
- """
164
- self.use_slicing = False
165
-
166
- @property
167
- # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
168
- def attn_processors(self) -> Dict[str, AttentionProcessor]:
169
- r"""
170
- Returns:
171
- `dict` of attention processors: A dictionary containing all attention processors used in the model with
172
- indexed by its weight name.
173
- """
174
- # set recursively
175
- processors = {}
176
-
177
- def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
178
- if hasattr(module, "set_processor"):
179
- processors[f"{name}.processor"] = module.processor
180
-
181
- for sub_name, child in module.named_children():
182
- fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
183
-
184
- return processors
185
-
186
- for name, module in self.named_children():
187
- fn_recursive_add_processors(name, module, processors)
188
-
189
- return processors
190
-
191
- # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
192
- def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
193
- r"""
194
- Sets the attention processor to use to compute attention.
195
-
196
- Parameters:
197
- processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
198
- The instantiated processor class or a dictionary of processor classes that will be set as the processor
199
- for **all** `Attention` layers.
200
-
201
- If `processor` is a dict, the key needs to define the path to the corresponding cross attention
202
- processor. This is strongly recommended when setting trainable attention processors.
203
-
204
- """
205
- count = len(self.attn_processors.keys())
206
-
207
- if isinstance(processor, dict) and len(processor) != count:
208
- raise ValueError(
209
- f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
210
- f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
211
- )
212
-
213
- def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
214
- if hasattr(module, "set_processor"):
215
- if not isinstance(processor, dict):
216
- module.set_processor(processor)
217
- else:
218
- module.set_processor(processor.pop(f"{name}.processor"))
219
-
220
- for sub_name, child in module.named_children():
221
- fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
222
-
223
- for name, module in self.named_children():
224
- fn_recursive_attn_processor(name, module, processor)
225
-
226
- # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
227
- def set_default_attn_processor(self):
228
- """
229
- Disables custom attention processors and sets the default attention implementation.
230
- """
231
- self.set_attn_processor(AttnProcessor())
232
-
233
- @apply_forward_hook
234
- def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput:
235
- if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
236
- return self.tiled_encode(x, return_dict=return_dict)
237
-
238
- if self.use_slicing and x.shape[0] > 1:
239
- encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)]
240
- h = torch.cat(encoded_slices)
241
- else:
242
- h = self.encoder(x)
243
-
244
- moments = self.quant_conv(h)
245
- posterior = DiagonalGaussianDistribution(moments)
246
-
247
- if not return_dict:
248
- return (posterior,)
249
-
250
- return AutoencoderKLOutput(latent_dist=posterior)
251
-
252
- def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
253
- if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
254
- return self.tiled_decode(z, return_dict=return_dict)
255
-
256
- z = self.post_quant_conv(z)
257
- dec = self.decoder(z)
258
-
259
- if not return_dict:
260
- return (dec,)
261
-
262
- return DecoderOutput(sample=dec)
263
-
264
- @apply_forward_hook
265
- def decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
266
- if self.use_slicing and z.shape[0] > 1:
267
- decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
268
- decoded = torch.cat(decoded_slices)
269
- else:
270
- decoded = self._decode(z).sample
271
-
272
- if not return_dict:
273
- return (decoded,)
274
-
275
- return DecoderOutput(sample=decoded)
276
-
277
- def blend_v(self, a, b, blend_extent):
278
- blend_extent = min(a.shape[2], b.shape[2], blend_extent)
279
- for y in range(blend_extent):
280
- b[:, :, y, :] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
281
- return b
282
-
283
- def blend_h(self, a, b, blend_extent):
284
- blend_extent = min(a.shape[3], b.shape[3], blend_extent)
285
- for x in range(blend_extent):
286
- b[:, :, :, x] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
287
- return b
288
-
289
- def tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput:
290
- r"""Encode a batch of images using a tiled encoder.
291
-
292
- When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
293
- steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is
294
- different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
295
- tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
296
- output, but they should be much less noticeable.
297
-
298
- Args:
299
- x (`torch.FloatTensor`): Input batch of images.
300
- return_dict (`bool`, *optional*, defaults to `True`):
301
- Whether or not to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
302
-
303
- Returns:
304
- [`~models.autoencoder_kl.AutoencoderKLOutput`] or `tuple`:
305
- If return_dict is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain
306
- `tuple` is returned.
307
- """
308
- overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
309
- blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
310
- row_limit = self.tile_latent_min_size - blend_extent
311
-
312
- # Split the image into 512x512 tiles and encode them separately.
313
- rows = []
314
- for i in range(0, x.shape[2], overlap_size):
315
- row = []
316
- for j in range(0, x.shape[3], overlap_size):
317
- tile = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
318
- tile = self.encoder(tile)
319
- tile = self.quant_conv(tile)
320
- row.append(tile)
321
- rows.append(row)
322
- result_rows = []
323
- for i, row in enumerate(rows):
324
- result_row = []
325
- for j, tile in enumerate(row):
326
- # blend the above tile and the left tile
327
- # to the current tile and add the current tile to the result row
328
- if i > 0:
329
- tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
330
- if j > 0:
331
- tile = self.blend_h(row[j - 1], tile, blend_extent)
332
- result_row.append(tile[:, :, :row_limit, :row_limit])
333
- result_rows.append(torch.cat(result_row, dim=3))
334
-
335
- moments = torch.cat(result_rows, dim=2)
336
- posterior = DiagonalGaussianDistribution(moments)
337
-
338
- if not return_dict:
339
- return (posterior,)
340
-
341
- return AutoencoderKLOutput(latent_dist=posterior)
342
-
343
- def tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
344
- r"""
345
- Decode a batch of images using a tiled decoder.
346
-
347
- Args:
348
- z (`torch.FloatTensor`): Input batch of latent vectors.
349
- return_dict (`bool`, *optional*, defaults to `True`):
350
- Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
351
-
352
- Returns:
353
- [`~models.vae.DecoderOutput`] or `tuple`:
354
- If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
355
- returned.
356
- """
357
- overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))
358
- blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor)
359
- row_limit = self.tile_sample_min_size - blend_extent
360
-
361
- # Split z into overlapping 64x64 tiles and decode them separately.
362
- # The tiles have an overlap to avoid seams between tiles.
363
- rows = []
364
- for i in range(0, z.shape[2], overlap_size):
365
- row = []
366
- for j in range(0, z.shape[3], overlap_size):
367
- tile = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
368
- tile = self.post_quant_conv(tile)
369
- decoded = self.decoder(tile)
370
- row.append(decoded)
371
- rows.append(row)
372
- result_rows = []
373
- for i, row in enumerate(rows):
374
- result_row = []
375
- for j, tile in enumerate(row):
376
- # blend the above tile and the left tile
377
- # to the current tile and add the current tile to the result row
378
- if i > 0:
379
- tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
380
- if j > 0:
381
- tile = self.blend_h(row[j - 1], tile, blend_extent)
382
- result_row.append(tile[:, :, :row_limit, :row_limit])
383
- result_rows.append(torch.cat(result_row, dim=3))
384
-
385
- dec = torch.cat(result_rows, dim=2)
386
- if not return_dict:
387
- return (dec,)
388
-
389
- return DecoderOutput(sample=dec)
390
-
391
- def forward(
392
- self,
393
- sample: torch.FloatTensor,
394
- sample_posterior: bool = False,
395
- return_dict: bool = True,
396
- generator: Optional[torch.Generator] = None,
397
- ) -> Union[DecoderOutput, torch.FloatTensor]:
398
- r"""
399
- Args:
400
- sample (`torch.FloatTensor`): Input sample.
401
- sample_posterior (`bool`, *optional*, defaults to `False`):
402
- Whether to sample from the posterior.
403
- return_dict (`bool`, *optional*, defaults to `True`):
404
- Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
405
- """
406
- x = sample
407
- posterior = self.encode(x).latent_dist
408
- if sample_posterior:
409
- z = posterior.sample(generator=generator)
410
- else:
411
- z = posterior.mode()
412
- dec = self.decode(z).sample
413
-
414
- if not return_dict:
415
- return (dec,)
416
-
417
- return DecoderOutput(sample=dec)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/src/diffusers/models/modeling_utils.py DELETED
@@ -1,980 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2023 The HuggingFace Inc. team.
3
- # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
4
- #
5
- # Licensed under the Apache License, Version 2.0 (the "License");
6
- # you may not use this file except in compliance with the License.
7
- # You may obtain a copy of the License at
8
- #
9
- # http://www.apache.org/licenses/LICENSE-2.0
10
- #
11
- # Unless required by applicable law or agreed to in writing, software
12
- # distributed under the License is distributed on an "AS IS" BASIS,
13
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
- # See the License for the specific language governing permissions and
15
- # limitations under the License.
16
-
17
- import inspect
18
- import itertools
19
- import os
20
- import re
21
- from functools import partial
22
- from typing import Any, Callable, List, Optional, Tuple, Union
23
-
24
- import torch
25
- from torch import Tensor, device, nn
26
-
27
- from .. import __version__
28
- from ..utils import (
29
- CONFIG_NAME,
30
- DIFFUSERS_CACHE,
31
- FLAX_WEIGHTS_NAME,
32
- HF_HUB_OFFLINE,
33
- SAFETENSORS_WEIGHTS_NAME,
34
- WEIGHTS_NAME,
35
- _add_variant,
36
- _get_model_file,
37
- deprecate,
38
- is_accelerate_available,
39
- is_safetensors_available,
40
- is_torch_version,
41
- logging,
42
- )
43
-
44
-
45
- logger = logging.get_logger(__name__)
46
-
47
-
48
- if is_torch_version(">=", "1.9.0"):
49
- _LOW_CPU_MEM_USAGE_DEFAULT = True
50
- else:
51
- _LOW_CPU_MEM_USAGE_DEFAULT = False
52
-
53
-
54
- if is_accelerate_available():
55
- import accelerate
56
- from accelerate.utils import set_module_tensor_to_device
57
- from accelerate.utils.versions import is_torch_version
58
-
59
- if is_safetensors_available():
60
- import safetensors
61
-
62
-
63
- def get_parameter_device(parameter: torch.nn.Module):
64
- try:
65
- parameters_and_buffers = itertools.chain(parameter.parameters(), parameter.buffers())
66
- return next(parameters_and_buffers).device
67
- except StopIteration:
68
- # For torch.nn.DataParallel compatibility in PyTorch 1.5
69
-
70
- def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
71
- tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
72
- return tuples
73
-
74
- gen = parameter._named_members(get_members_fn=find_tensor_attributes)
75
- first_tuple = next(gen)
76
- return first_tuple[1].device
77
-
78
-
79
- def get_parameter_dtype(parameter: torch.nn.Module):
80
- try:
81
- params = tuple(parameter.parameters())
82
- if len(params) > 0:
83
- return params[0].dtype
84
-
85
- buffers = tuple(parameter.buffers())
86
- if len(buffers) > 0:
87
- return buffers[0].dtype
88
-
89
- except StopIteration:
90
- # For torch.nn.DataParallel compatibility in PyTorch 1.5
91
-
92
- def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
93
- tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
94
- return tuples
95
-
96
- gen = parameter._named_members(get_members_fn=find_tensor_attributes)
97
- first_tuple = next(gen)
98
- return first_tuple[1].dtype
99
-
100
-
101
- def load_state_dict(checkpoint_file: Union[str, os.PathLike], variant: Optional[str] = None):
102
- """
103
- Reads a checkpoint file, returning properly formatted errors if they arise.
104
- """
105
- try:
106
- if os.path.basename(checkpoint_file) == _add_variant(WEIGHTS_NAME, variant):
107
- return torch.load(checkpoint_file, map_location="cpu")
108
- else:
109
- return safetensors.torch.load_file(checkpoint_file, device="cpu")
110
- except Exception as e:
111
- try:
112
- with open(checkpoint_file) as f:
113
- if f.read().startswith("version"):
114
- raise OSError(
115
- "You seem to have cloned a repository without having git-lfs installed. Please install "
116
- "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
117
- "you cloned."
118
- )
119
- else:
120
- raise ValueError(
121
- f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
122
- "model. Make sure you have saved the model properly."
123
- ) from e
124
- except (UnicodeDecodeError, ValueError):
125
- raise OSError(
126
- f"Unable to load weights from checkpoint file for '{checkpoint_file}' "
127
- f"at '{checkpoint_file}'. "
128
- "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True."
129
- )
130
-
131
-
132
- def _load_state_dict_into_model(model_to_load, state_dict):
133
- # Convert old format to new format if needed from a PyTorch state_dict
134
- # copy state_dict so _load_from_state_dict can modify it
135
- state_dict = state_dict.copy()
136
- error_msgs = []
137
-
138
- # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
139
- # so we need to apply the function recursively.
140
- def load(module: torch.nn.Module, prefix=""):
141
- args = (state_dict, prefix, {}, True, [], [], error_msgs)
142
- module._load_from_state_dict(*args)
143
-
144
- for name, child in module._modules.items():
145
- if child is not None:
146
- load(child, prefix + name + ".")
147
-
148
- load(model_to_load)
149
-
150
- return error_msgs
151
-
152
-
153
- class ModelMixin(torch.nn.Module):
154
- r"""
155
- Base class for all models.
156
-
157
- [`ModelMixin`] takes care of storing the model configuration and provides methods for loading, downloading and
158
- saving models.
159
-
160
- - **config_name** ([`str`]) -- Filename to save a model to when calling [`~models.ModelMixin.save_pretrained`].
161
- """
162
- config_name = CONFIG_NAME
163
- _automatically_saved_args = ["_diffusers_version", "_class_name", "_name_or_path"]
164
- _supports_gradient_checkpointing = False
165
- _keys_to_ignore_on_load_unexpected = None
166
-
167
- def __init__(self):
168
- super().__init__()
169
-
170
- def __getattr__(self, name: str) -> Any:
171
- """The only reason we overwrite `getattr` here is to gracefully deprecate accessing
172
- config attributes directly. See https://github.com/huggingface/diffusers/pull/3129 We need to overwrite
173
- __getattr__ here in addition so that we don't trigger `torch.nn.Module`'s __getattr__':
174
- https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
175
- """
176
-
177
- is_in_config = "_internal_dict" in self.__dict__ and hasattr(self.__dict__["_internal_dict"], name)
178
- is_attribute = name in self.__dict__
179
-
180
- if is_in_config and not is_attribute:
181
- deprecation_message = f"Accessing config attribute `{name}` directly via '{type(self).__name__}' object attribute is deprecated. Please access '{name}' over '{type(self).__name__}'s config object instead, e.g. 'unet.config.{name}'."
182
- deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False, stacklevel=3)
183
- return self._internal_dict[name]
184
-
185
- # call PyTorch's https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
186
- return super().__getattr__(name)
187
-
188
- @property
189
- def is_gradient_checkpointing(self) -> bool:
190
- """
191
- Whether gradient checkpointing is activated for this model or not.
192
- """
193
- return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())
194
-
195
- def enable_gradient_checkpointing(self):
196
- """
197
- Activates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or
198
- *checkpoint activations* in other frameworks).
199
- """
200
- if not self._supports_gradient_checkpointing:
201
- raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
202
- self.apply(partial(self._set_gradient_checkpointing, value=True))
203
-
204
- def disable_gradient_checkpointing(self):
205
- """
206
- Deactivates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or
207
- *checkpoint activations* in other frameworks).
208
- """
209
- if self._supports_gradient_checkpointing:
210
- self.apply(partial(self._set_gradient_checkpointing, value=False))
211
-
212
- def set_use_memory_efficient_attention_xformers(
213
- self, valid: bool, attention_op: Optional[Callable] = None
214
- ) -> None:
215
- # Recursively walk through all the children.
216
- # Any children which exposes the set_use_memory_efficient_attention_xformers method
217
- # gets the message
218
- def fn_recursive_set_mem_eff(module: torch.nn.Module):
219
- if hasattr(module, "set_use_memory_efficient_attention_xformers"):
220
- module.set_use_memory_efficient_attention_xformers(valid, attention_op)
221
-
222
- for child in module.children():
223
- fn_recursive_set_mem_eff(child)
224
-
225
- for module in self.children():
226
- if isinstance(module, torch.nn.Module):
227
- fn_recursive_set_mem_eff(module)
228
-
229
- def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
230
- r"""
231
- Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
232
-
233
- When this option is enabled, you should observe lower GPU memory usage and a potential speed up during
234
- inference. Speed up during training is not guaranteed.
235
-
236
- <Tip warning={true}>
237
-
238
- ⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes
239
- precedent.
240
-
241
- </Tip>
242
-
243
- Parameters:
244
- attention_op (`Callable`, *optional*):
245
- Override the default `None` operator for use as `op` argument to the
246
- [`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention)
247
- function of xFormers.
248
-
249
- Examples:
250
-
251
- ```py
252
- >>> import torch
253
- >>> from diffusers import UNet2DConditionModel
254
- >>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp
255
-
256
- >>> model = UNet2DConditionModel.from_pretrained(
257
- ... "stabilityai/stable-diffusion-2-1", subfolder="unet", torch_dtype=torch.float16
258
- ... )
259
- >>> model = model.to("cuda")
260
- >>> model.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
261
- ```
262
- """
263
- self.set_use_memory_efficient_attention_xformers(True, attention_op)
264
-
265
- def disable_xformers_memory_efficient_attention(self):
266
- r"""
267
- Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
268
- """
269
- self.set_use_memory_efficient_attention_xformers(False)
270
-
271
- def save_pretrained(
272
- self,
273
- save_directory: Union[str, os.PathLike],
274
- is_main_process: bool = True,
275
- save_function: Callable = None,
276
- safe_serialization: bool = False,
277
- variant: Optional[str] = None,
278
- ):
279
- """
280
- Save a model and its configuration file to a directory so that it can be reloaded using the
281
- [`~models.ModelMixin.from_pretrained`] class method.
282
-
283
- Arguments:
284
- save_directory (`str` or `os.PathLike`):
285
- Directory to save a model and its configuration file to. Will be created if it doesn't exist.
286
- is_main_process (`bool`, *optional*, defaults to `True`):
287
- Whether the process calling this is the main process or not. Useful during distributed training and you
288
- need to call this function on all processes. In this case, set `is_main_process=True` only on the main
289
- process to avoid race conditions.
290
- save_function (`Callable`):
291
- The function to use to save the state dictionary. Useful during distributed training when you need to
292
- replace `torch.save` with another method. Can be configured with the environment variable
293
- `DIFFUSERS_SAVE_MODE`.
294
- safe_serialization (`bool`, *optional*, defaults to `False`):
295
- Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
296
- variant (`str`, *optional*):
297
- If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
298
- """
299
- if safe_serialization and not is_safetensors_available():
300
- raise ImportError("`safe_serialization` requires the `safetensors library: `pip install safetensors`.")
301
-
302
- if os.path.isfile(save_directory):
303
- logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
304
- return
305
-
306
- os.makedirs(save_directory, exist_ok=True)
307
-
308
- model_to_save = self
309
-
310
- # Attach architecture to the config
311
- # Save the config
312
- if is_main_process:
313
- model_to_save.save_config(save_directory)
314
-
315
- # Save the model
316
- state_dict = model_to_save.state_dict()
317
-
318
- weights_name = SAFETENSORS_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
319
- weights_name = _add_variant(weights_name, variant)
320
-
321
- # Save the model
322
- if safe_serialization:
323
- safetensors.torch.save_file(
324
- state_dict, os.path.join(save_directory, weights_name), metadata={"format": "pt"}
325
- )
326
- else:
327
- torch.save(state_dict, os.path.join(save_directory, weights_name))
328
-
329
- logger.info(f"Model weights saved in {os.path.join(save_directory, weights_name)}")
330
-
331
- @classmethod
332
- def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
333
- r"""
334
- Instantiate a pretrained PyTorch model from a pretrained model configuration.
335
-
336
- The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To
337
- train the model, set it back in training mode with `model.train()`.
338
-
339
- Parameters:
340
- pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
341
- Can be either:
342
-
343
- - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
344
- the Hub.
345
- - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
346
- with [`~ModelMixin.save_pretrained`].
347
-
348
- cache_dir (`Union[str, os.PathLike]`, *optional*):
349
- Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
350
- is not used.
351
- torch_dtype (`str` or `torch.dtype`, *optional*):
352
- Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
353
- dtype is automatically derived from the model's weights.
354
- force_download (`bool`, *optional*, defaults to `False`):
355
- Whether or not to force the (re-)download of the model weights and configuration files, overriding the
356
- cached versions if they exist.
357
- resume_download (`bool`, *optional*, defaults to `False`):
358
- Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
359
- incompletely downloaded files are deleted.
360
- proxies (`Dict[str, str]`, *optional*):
361
- A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
362
- 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
363
- output_loading_info (`bool`, *optional*, defaults to `False`):
364
- Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
365
- local_files_only(`bool`, *optional*, defaults to `False`):
366
- Whether to only load local model weights and configuration files or not. If set to `True`, the model
367
- won't be downloaded from the Hub.
368
- use_auth_token (`str` or *bool*, *optional*):
369
- The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
370
- `diffusers-cli login` (stored in `~/.huggingface`) is used.
371
- revision (`str`, *optional*, defaults to `"main"`):
372
- The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
373
- allowed by Git.
374
- from_flax (`bool`, *optional*, defaults to `False`):
375
- Load the model weights from a Flax checkpoint save file.
376
- subfolder (`str`, *optional*, defaults to `""`):
377
- The subfolder location of a model file within a larger model repository on the Hub or locally.
378
- mirror (`str`, *optional*):
379
- Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
380
- guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
381
- information.
382
- device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
383
- A map that specifies where each submodule should go. It doesn't need to be defined for each
384
- parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
385
- same device.
386
-
387
- Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
388
- more information about each option see [designing a device
389
- map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
390
- max_memory (`Dict`, *optional*):
391
- A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
392
- each GPU and the available CPU RAM if unset.
393
- offload_folder (`str` or `os.PathLike`, *optional*):
394
- The path to offload weights if `device_map` contains the value `"disk"`.
395
- offload_state_dict (`bool`, *optional*):
396
- If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
397
- the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
398
- when there is some disk offload.
399
- low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
400
- Speed up model loading only loading the pretrained weights and not initializing the weights. This also
401
- tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
402
- Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
403
- argument to `True` will raise an error.
404
- variant (`str`, *optional*):
405
- Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when
406
- loading `from_flax`.
407
- use_safetensors (`bool`, *optional*, defaults to `None`):
408
- If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the
409
- `safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors`
410
- weights. If set to `False`, `safetensors` weights are not loaded.
411
-
412
- <Tip>
413
-
414
- To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
415
- `huggingface-cli login`. You can also activate the special
416
- ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a
417
- firewalled environment.
418
-
419
- </Tip>
420
-
421
- Example:
422
-
423
- ```py
424
- from diffusers import UNet2DConditionModel
425
-
426
- unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
427
- ```
428
-
429
- If you get the error message below, you need to finetune the weights for your downstream task:
430
-
431
- ```bash
432
- Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
433
- - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
434
- You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
435
- ```
436
- """
437
- cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
438
- ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
439
- force_download = kwargs.pop("force_download", False)
440
- from_flax = kwargs.pop("from_flax", False)
441
- resume_download = kwargs.pop("resume_download", False)
442
- proxies = kwargs.pop("proxies", None)
443
- output_loading_info = kwargs.pop("output_loading_info", False)
444
- local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
445
- use_auth_token = kwargs.pop("use_auth_token", None)
446
- revision = kwargs.pop("revision", None)
447
- torch_dtype = kwargs.pop("torch_dtype", None)
448
- subfolder = kwargs.pop("subfolder", None)
449
- device_map = kwargs.pop("device_map", None)
450
- max_memory = kwargs.pop("max_memory", None)
451
- offload_folder = kwargs.pop("offload_folder", None)
452
- offload_state_dict = kwargs.pop("offload_state_dict", False)
453
- low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
454
- variant = kwargs.pop("variant", None)
455
- use_safetensors = kwargs.pop("use_safetensors", None)
456
-
457
- if use_safetensors and not is_safetensors_available():
458
- raise ValueError(
459
- "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetensors"
460
- )
461
-
462
- allow_pickle = False
463
- if use_safetensors is None:
464
- use_safetensors = is_safetensors_available()
465
- allow_pickle = True
466
-
467
- if low_cpu_mem_usage and not is_accelerate_available():
468
- low_cpu_mem_usage = False
469
- logger.warning(
470
- "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
471
- " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
472
- " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
473
- " install accelerate\n```\n."
474
- )
475
-
476
- if device_map is not None and not is_accelerate_available():
477
- raise NotImplementedError(
478
- "Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set"
479
- " `device_map=None`. You can install accelerate with `pip install accelerate`."
480
- )
481
-
482
- # Check if we can handle device_map and dispatching the weights
483
- if device_map is not None and not is_torch_version(">=", "1.9.0"):
484
- raise NotImplementedError(
485
- "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
486
- " `device_map=None`."
487
- )
488
-
489
- if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
490
- raise NotImplementedError(
491
- "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
492
- " `low_cpu_mem_usage=False`."
493
- )
494
-
495
- if low_cpu_mem_usage is False and device_map is not None:
496
- raise ValueError(
497
- f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and"
498
- " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
499
- )
500
-
501
- # Load config if we don't provide a configuration
502
- config_path = pretrained_model_name_or_path
503
-
504
- user_agent = {
505
- "diffusers": __version__,
506
- "file_type": "model",
507
- "framework": "pytorch",
508
- }
509
-
510
- # load config
511
- config, unused_kwargs, commit_hash = cls.load_config(
512
- config_path,
513
- cache_dir=cache_dir,
514
- return_unused_kwargs=True,
515
- return_commit_hash=True,
516
- force_download=force_download,
517
- resume_download=resume_download,
518
- proxies=proxies,
519
- local_files_only=local_files_only,
520
- use_auth_token=use_auth_token,
521
- revision=revision,
522
- subfolder=subfolder,
523
- device_map=device_map,
524
- max_memory=max_memory,
525
- offload_folder=offload_folder,
526
- offload_state_dict=offload_state_dict,
527
- user_agent=user_agent,
528
- **kwargs,
529
- )
530
-
531
- # load model
532
- model_file = None
533
- if from_flax:
534
- model_file = _get_model_file(
535
- pretrained_model_name_or_path,
536
- weights_name=FLAX_WEIGHTS_NAME,
537
- cache_dir=cache_dir,
538
- force_download=force_download,
539
- resume_download=resume_download,
540
- proxies=proxies,
541
- local_files_only=local_files_only,
542
- use_auth_token=use_auth_token,
543
- revision=revision,
544
- subfolder=subfolder,
545
- user_agent=user_agent,
546
- commit_hash=commit_hash,
547
- )
548
- model = cls.from_config(config, **unused_kwargs)
549
-
550
- # Convert the weights
551
- from .modeling_pytorch_flax_utils import load_flax_checkpoint_in_pytorch_model
552
-
553
- model = load_flax_checkpoint_in_pytorch_model(model, model_file)
554
- else:
555
- if use_safetensors:
556
- try:
557
- model_file = _get_model_file(
558
- pretrained_model_name_or_path,
559
- weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
560
- cache_dir=cache_dir,
561
- force_download=force_download,
562
- resume_download=resume_download,
563
- proxies=proxies,
564
- local_files_only=local_files_only,
565
- use_auth_token=use_auth_token,
566
- revision=revision,
567
- subfolder=subfolder,
568
- user_agent=user_agent,
569
- commit_hash=commit_hash,
570
- )
571
- except IOError as e:
572
- if not allow_pickle:
573
- raise e
574
- pass
575
- if model_file is None:
576
- model_file = _get_model_file(
577
- pretrained_model_name_or_path,
578
- weights_name=_add_variant(WEIGHTS_NAME, variant),
579
- cache_dir=cache_dir,
580
- force_download=force_download,
581
- resume_download=resume_download,
582
- proxies=proxies,
583
- local_files_only=local_files_only,
584
- use_auth_token=use_auth_token,
585
- revision=revision,
586
- subfolder=subfolder,
587
- user_agent=user_agent,
588
- commit_hash=commit_hash,
589
- )
590
-
591
- if low_cpu_mem_usage:
592
- # Instantiate model with empty weights
593
- with accelerate.init_empty_weights():
594
- model = cls.from_config(config, **unused_kwargs)
595
-
596
- # if device_map is None, load the state dict and move the params from meta device to the cpu
597
- if device_map is None:
598
- param_device = "cpu"
599
- state_dict = load_state_dict(model_file, variant=variant)
600
- model._convert_deprecated_attention_blocks(state_dict)
601
- # move the params from meta device to cpu
602
- missing_keys = set(model.state_dict().keys()) - set(state_dict.keys())
603
- if len(missing_keys) > 0:
604
- raise ValueError(
605
- f"Cannot load {cls} from {pretrained_model_name_or_path} because the following keys are"
606
- f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass"
607
- " `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize"
608
- " those weights or else make sure your checkpoint file is correct."
609
- )
610
- unexpected_keys = []
611
-
612
- empty_state_dict = model.state_dict()
613
- for param_name, param in state_dict.items():
614
- accepts_dtype = "dtype" in set(
615
- inspect.signature(set_module_tensor_to_device).parameters.keys()
616
- )
617
-
618
- if param_name not in empty_state_dict:
619
- unexpected_keys.append(param_name)
620
- continue
621
-
622
- if empty_state_dict[param_name].shape != param.shape:
623
- raise ValueError(
624
- f"Cannot load {pretrained_model_name_or_path} because {param_name} expected shape {empty_state_dict[param_name]}, but got {param.shape}. If you want to instead overwrite randomly initialized weights, please make sure to pass both `low_cpu_mem_usage=False` and `ignore_mismatched_sizes=True`. For more information, see also: https://github.com/huggingface/diffusers/issues/1619#issuecomment-1345604389 as an example."
625
- )
626
-
627
- if accepts_dtype:
628
- set_module_tensor_to_device(
629
- model, param_name, param_device, value=param, dtype=torch_dtype
630
- )
631
- else:
632
- set_module_tensor_to_device(model, param_name, param_device, value=param)
633
-
634
- if cls._keys_to_ignore_on_load_unexpected is not None:
635
- for pat in cls._keys_to_ignore_on_load_unexpected:
636
- unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
637
-
638
- if len(unexpected_keys) > 0:
639
- logger.warn(
640
- f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
641
- )
642
-
643
- else: # else let accelerate handle loading and dispatching.
644
- # Load weights and dispatch according to the device_map
645
- # by default the device_map is None and the weights are loaded on the CPU
646
- try:
647
- accelerate.load_checkpoint_and_dispatch(
648
- model,
649
- model_file,
650
- device_map,
651
- max_memory=max_memory,
652
- offload_folder=offload_folder,
653
- offload_state_dict=offload_state_dict,
654
- dtype=torch_dtype,
655
- )
656
- except AttributeError as e:
657
- # When using accelerate loading, we do not have the ability to load the state
658
- # dict and rename the weight names manually. Additionally, accelerate skips
659
- # torch loading conventions and directly writes into `module.{_buffers, _parameters}`
660
- # (which look like they should be private variables?), so we can't use the standard hooks
661
- # to rename parameters on load. We need to mimic the original weight names so the correct
662
- # attributes are available. After we have loaded the weights, we convert the deprecated
663
- # names to the new non-deprecated names. Then we _greatly encourage_ the user to convert
664
- # the weights so we don't have to do this again.
665
-
666
- if "'Attention' object has no attribute" in str(e):
667
- logger.warn(
668
- f"Taking `{str(e)}` while using `accelerate.load_checkpoint_and_dispatch` to mean {pretrained_model_name_or_path}"
669
- " was saved with deprecated attention block weight names. We will load it with the deprecated attention block"
670
- " names and convert them on the fly to the new attention block format. Please re-save the model after this conversion,"
671
- " so we don't have to do the on the fly renaming in the future. If the model is from a hub checkpoint,"
672
- " please also re-upload it or open a PR on the original repository."
673
- )
674
- model._temp_convert_self_to_deprecated_attention_blocks()
675
- accelerate.load_checkpoint_and_dispatch(
676
- model,
677
- model_file,
678
- device_map,
679
- max_memory=max_memory,
680
- offload_folder=offload_folder,
681
- offload_state_dict=offload_state_dict,
682
- dtype=torch_dtype,
683
- )
684
- model._undo_temp_convert_self_to_deprecated_attention_blocks()
685
- else:
686
- raise e
687
-
688
- loading_info = {
689
- "missing_keys": [],
690
- "unexpected_keys": [],
691
- "mismatched_keys": [],
692
- "error_msgs": [],
693
- }
694
- else:
695
- model = cls.from_config(config, **unused_kwargs)
696
-
697
- state_dict = load_state_dict(model_file, variant=variant)
698
- model._convert_deprecated_attention_blocks(state_dict)
699
-
700
- model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model(
701
- model,
702
- state_dict,
703
- model_file,
704
- pretrained_model_name_or_path,
705
- ignore_mismatched_sizes=ignore_mismatched_sizes,
706
- )
707
-
708
- loading_info = {
709
- "missing_keys": missing_keys,
710
- "unexpected_keys": unexpected_keys,
711
- "mismatched_keys": mismatched_keys,
712
- "error_msgs": error_msgs,
713
- }
714
-
715
- if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
716
- raise ValueError(
717
- f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
718
- )
719
- elif torch_dtype is not None:
720
- model = model.to(torch_dtype)
721
-
722
- model.register_to_config(_name_or_path=pretrained_model_name_or_path)
723
-
724
- # Set model in evaluation mode to deactivate DropOut modules by default
725
- model.eval()
726
- if output_loading_info:
727
- return model, loading_info
728
-
729
- return model
730
-
731
- @classmethod
732
- def _load_pretrained_model(
733
- cls,
734
- model,
735
- state_dict,
736
- resolved_archive_file,
737
- pretrained_model_name_or_path,
738
- ignore_mismatched_sizes=False,
739
- ):
740
- # Retrieve missing & unexpected_keys
741
- model_state_dict = model.state_dict()
742
- loaded_keys = list(state_dict.keys())
743
-
744
- expected_keys = list(model_state_dict.keys())
745
-
746
- original_loaded_keys = loaded_keys
747
-
748
- missing_keys = list(set(expected_keys) - set(loaded_keys))
749
- unexpected_keys = list(set(loaded_keys) - set(expected_keys))
750
-
751
- # Make sure we are able to load base models as well as derived models (with heads)
752
- model_to_load = model
753
-
754
- def _find_mismatched_keys(
755
- state_dict,
756
- model_state_dict,
757
- loaded_keys,
758
- ignore_mismatched_sizes,
759
- ):
760
- mismatched_keys = []
761
- if ignore_mismatched_sizes:
762
- for checkpoint_key in loaded_keys:
763
- model_key = checkpoint_key
764
-
765
- if (
766
- model_key in model_state_dict
767
- and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
768
- ):
769
- mismatched_keys.append(
770
- (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
771
- )
772
- del state_dict[checkpoint_key]
773
- return mismatched_keys
774
-
775
- if state_dict is not None:
776
- # Whole checkpoint
777
- mismatched_keys = _find_mismatched_keys(
778
- state_dict,
779
- model_state_dict,
780
- original_loaded_keys,
781
- ignore_mismatched_sizes,
782
- )
783
- error_msgs = _load_state_dict_into_model(model_to_load, state_dict)
784
-
785
- if len(error_msgs) > 0:
786
- error_msg = "\n\t".join(error_msgs)
787
- if "size mismatch" in error_msg:
788
- error_msg += (
789
- "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
790
- )
791
- raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")
792
-
793
- if len(unexpected_keys) > 0:
794
- logger.warning(
795
- f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
796
- f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
797
- f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task"
798
- " or with another architecture (e.g. initializing a BertForSequenceClassification model from a"
799
- " BertForPreTraining model).\n- This IS NOT expected if you are initializing"
800
- f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly"
801
- " identical (initializing a BertForSequenceClassification model from a"
802
- " BertForSequenceClassification model)."
803
- )
804
- else:
805
- logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
806
- if len(missing_keys) > 0:
807
- logger.warning(
808
- f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
809
- f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
810
- " TRAIN this model on a down-stream task to be able to use it for predictions and inference."
811
- )
812
- elif len(mismatched_keys) == 0:
813
- logger.info(
814
- f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
815
- f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the"
816
- f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions"
817
- " without further training."
818
- )
819
- if len(mismatched_keys) > 0:
820
- mismatched_warning = "\n".join(
821
- [
822
- f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
823
- for key, shape1, shape2 in mismatched_keys
824
- ]
825
- )
826
- logger.warning(
827
- f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
828
- f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
829
- f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be"
830
- " able to use it for predictions and inference."
831
- )
832
-
833
- return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs
834
-
835
- @property
836
- def device(self) -> device:
837
- """
838
- `torch.device`: The device on which the module is (assuming that all the module parameters are on the same
839
- device).
840
- """
841
- return get_parameter_device(self)
842
-
843
- @property
844
- def dtype(self) -> torch.dtype:
845
- """
846
- `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
847
- """
848
- return get_parameter_dtype(self)
849
-
850
- def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
851
- """
852
- Get number of (trainable or non-embedding) parameters in the module.
853
-
854
- Args:
855
- only_trainable (`bool`, *optional*, defaults to `False`):
856
- Whether or not to return only the number of trainable parameters.
857
- exclude_embeddings (`bool`, *optional*, defaults to `False`):
858
- Whether or not to return only the number of non-embedding parameters.
859
-
860
- Returns:
861
- `int`: The number of parameters.
862
-
863
- Example:
864
-
865
- ```py
866
- from diffusers import UNet2DConditionModel
867
-
868
- model_id = "runwayml/stable-diffusion-v1-5"
869
- unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet")
870
- unet.num_parameters(only_trainable=True)
871
- 859520964
872
- ```
873
- """
874
-
875
- if exclude_embeddings:
876
- embedding_param_names = [
877
- f"{name}.weight"
878
- for name, module_type in self.named_modules()
879
- if isinstance(module_type, torch.nn.Embedding)
880
- ]
881
- non_embedding_parameters = [
882
- parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
883
- ]
884
- return sum(p.numel() for p in non_embedding_parameters if p.requires_grad or not only_trainable)
885
- else:
886
- return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable)
887
-
888
- def _convert_deprecated_attention_blocks(self, state_dict):
889
- deprecated_attention_block_paths = []
890
-
891
- def recursive_find_attn_block(name, module):
892
- if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
893
- deprecated_attention_block_paths.append(name)
894
-
895
- for sub_name, sub_module in module.named_children():
896
- sub_name = sub_name if name == "" else f"{name}.{sub_name}"
897
- recursive_find_attn_block(sub_name, sub_module)
898
-
899
- recursive_find_attn_block("", self)
900
-
901
- # NOTE: we have to check if the deprecated parameters are in the state dict
902
- # because it is possible we are loading from a state dict that was already
903
- # converted
904
-
905
- for path in deprecated_attention_block_paths:
906
- # group_norm path stays the same
907
-
908
- # query -> to_q
909
- if f"{path}.query.weight" in state_dict:
910
- state_dict[f"{path}.to_q.weight"] = state_dict.pop(f"{path}.query.weight")
911
- if f"{path}.query.bias" in state_dict:
912
- state_dict[f"{path}.to_q.bias"] = state_dict.pop(f"{path}.query.bias")
913
-
914
- # key -> to_k
915
- if f"{path}.key.weight" in state_dict:
916
- state_dict[f"{path}.to_k.weight"] = state_dict.pop(f"{path}.key.weight")
917
- if f"{path}.key.bias" in state_dict:
918
- state_dict[f"{path}.to_k.bias"] = state_dict.pop(f"{path}.key.bias")
919
-
920
- # value -> to_v
921
- if f"{path}.value.weight" in state_dict:
922
- state_dict[f"{path}.to_v.weight"] = state_dict.pop(f"{path}.value.weight")
923
- if f"{path}.value.bias" in state_dict:
924
- state_dict[f"{path}.to_v.bias"] = state_dict.pop(f"{path}.value.bias")
925
-
926
- # proj_attn -> to_out.0
927
- if f"{path}.proj_attn.weight" in state_dict:
928
- state_dict[f"{path}.to_out.0.weight"] = state_dict.pop(f"{path}.proj_attn.weight")
929
- if f"{path}.proj_attn.bias" in state_dict:
930
- state_dict[f"{path}.to_out.0.bias"] = state_dict.pop(f"{path}.proj_attn.bias")
931
-
932
- def _temp_convert_self_to_deprecated_attention_blocks(self):
933
- deprecated_attention_block_modules = []
934
-
935
- def recursive_find_attn_block(module):
936
- if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
937
- deprecated_attention_block_modules.append(module)
938
-
939
- for sub_module in module.children():
940
- recursive_find_attn_block(sub_module)
941
-
942
- recursive_find_attn_block(self)
943
-
944
- for module in deprecated_attention_block_modules:
945
- module.query = module.to_q
946
- module.key = module.to_k
947
- module.value = module.to_v
948
- module.proj_attn = module.to_out[0]
949
-
950
- # We don't _have_ to delete the old attributes, but it's helpful to ensure
951
- # that _all_ the weights are loaded into the new attributes and we're not
952
- # making an incorrect assumption that this model should be converted when
953
- # it really shouldn't be.
954
- del module.to_q
955
- del module.to_k
956
- del module.to_v
957
- del module.to_out
958
-
959
- def _undo_temp_convert_self_to_deprecated_attention_blocks(self):
960
- deprecated_attention_block_modules = []
961
-
962
- def recursive_find_attn_block(module):
963
- if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block:
964
- deprecated_attention_block_modules.append(module)
965
-
966
- for sub_module in module.children():
967
- recursive_find_attn_block(sub_module)
968
-
969
- recursive_find_attn_block(self)
970
-
971
- for module in deprecated_attention_block_modules:
972
- module.to_q = module.query
973
- module.to_k = module.key
974
- module.to_v = module.value
975
- module.to_out = nn.ModuleList([module.proj_attn, nn.Dropout(module.dropout)])
976
-
977
- del module.query
978
- del module.key
979
- del module.value
980
- del module.proj_attn
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AnimaLab/bias-test-gpt-pairs/bloomberg_vis.py DELETED
@@ -1,85 +0,0 @@
1
- # def bloombergViz(val, numblocks=10, flip=False):
2
- # percent = round(val * 100)
3
- # percentStr = f"{percent}"
4
- # filled = "<div style='height:20px;width:20px;background-color:#065b41;display:inline-block'></div> "
5
- # unfilled = "<div style='height:20px;width:20px;background-color:#35d4ac;display:inline-block'></div> "
6
- # numFilled = round((percent/100) * numblocks)
7
- # numUnFilled = numblocks - numFilled
8
- # if flip:
9
- # return numFilled * unfilled + numUnFilled * filled;
10
- # return numFilled * filled + numUnFilled * unfilled
11
-
12
- # def att_bloombergViz(att, val, numblocks, flip=False):
13
- # viz = bloombergViz(val, numblocks, flip)
14
- # attHTML = f"<div style='border-style:solid;border-color:#999;border-radius:12px'>{att}: {round(val*100)}%<br>{viz}</div><br>"
15
- # return attHTML
16
-
17
- def bloombergViz(att, val, numblocks, score_templates_df, onRight=False, flip=False):
18
- # percent = round(val * 100)
19
- # percentStr = f"{percent}"
20
- # filled = "<div style='height:20px;width:20px;background-color:#555;display:inline-block'><span class='tooltiptext' style='color:#FFF'>{}</span></div> "
21
- # unfilled = "<div style='height:20px;width:20px;background-color:#999;display:inline-block'><span class='tooltiptext' style='color:#FFF'>{}</span></div> "
22
- # numFilled = round((percent/100) * numblocks)
23
- # numUnFilled = numblocks - numFilled
24
-
25
- leftColor = "#065b41" #"#555"
26
- rightColor = "#35d4ac" #"#999"
27
- if flip:
28
- leftColor = "#35d4ac" #"#999"
29
- rightColor = "#065b41" #"#555"
30
- res = ""
31
- spanClass = "tooltiptext_left"
32
- if onRight:
33
- spanClass = "tooltiptext_right"
34
- dfy = score_templates_df.loc[(score_templates_df['att_term'] == att) & (score_templates_df['stereotyped_b'] == 'yes')]
35
- dfn = score_templates_df.loc[(score_templates_df['att_term'] == att) & (score_templates_df['stereotyped_b'] == 'no')]
36
- #print("dfy", dfy)
37
- #print("dfn", dfn)
38
- for i in range(len(dfy.index)):
39
- #print("--GROUP IN BLOOMBERG--")
40
- groups = dfy.iloc[i, dfy.columns.get_loc("groups_rel")].split("/")
41
- gr_disp = groups[0]+"&#47;"+groups[1]
42
- grp_refs = list(dfy.iloc[i, dfy.columns.get_loc("grp_refs")])
43
-
44
- template = dfy.iloc[i, dfy.columns.get_loc("template")]
45
- for grp_pair in grp_refs:
46
- #print(f"Item: {grp_pair[0]} - {grp_pair[1]}")
47
- template = template.replace("[R]", grp_pair[0]+"/"+grp_pair[1], 1)
48
-
49
- # template based
50
- disp = template.replace("[T]", f"[{gr_disp}]") #, 1)
51
-
52
- # sentence/alt-sentence based
53
- #sentence = dfy.iloc[i, dfy.columns.get_loc("sentence")]
54
- #alt_sentence = dfy.iloc[i, dfy.columns.get_loc("alt_sentence")]
55
- #disp = f'"{sentence}"/"{alt_sentence}"'
56
-
57
- res += f"<div style='height:20px;width:20px;background-color:{leftColor};display:inline-block;position:relative' id='filled'><span class='{spanClass}' style='color:#FFF'>{disp}</span></div> "
58
- for i in range(len(dfn.index)):
59
- groups = dfn.iloc[i, dfn.columns.get_loc("groups_rel")].split("/")
60
- gr_disp = groups[0]+"&#47;"+groups[1]
61
- grp_refs = list(dfn.iloc[i, dfn.columns.get_loc("grp_refs")])
62
-
63
- template = dfn.iloc[i, dfn.columns.get_loc("template")]
64
- for grp_pair in grp_refs:
65
- #print(f"Item: {grp_pair[0]} - {grp_pair[1]}")
66
- template = template.replace("[R]", grp_pair[0]+"/"+grp_pair[1], 1)
67
-
68
- # template based
69
- disp = template.replace("[T]", f"[{gr_disp}]")#, 1)
70
-
71
- # sentence/alt-sentence based
72
- #sentence = dfn.iloc[i, dfn.columns.get_loc("sentence")]
73
- #alt_sentence = dfn.iloc[i, dfn.columns.get_loc("alt_sentence")]
74
- #disp = f'"{sentence}"/"{alt_sentence}"'
75
-
76
- res += f"<div style='height:20px;width:20px;background-color:{rightColor};display:inline-block;position:relative' id='empty'><span class='{spanClass}' style='color:#FFF'>{disp}</span></div> "
77
- return res
78
- # if flip:
79
- # return numFilled * unfilled + numUnFilled * filled;
80
- # return numFilled * filled + numUnFilled * unfilled
81
-
82
- def att_bloombergViz(att, val, numblocks, score_templates_df, onRight=False, flip=False):
83
- viz = bloombergViz(att, val, numblocks, score_templates_df, onRight, flip)
84
- attHTML = f"<div style='border-style:solid;border-color:#999;border-radius:12px'>{att}: {round(val*100)}%<br>{viz}</div><br>"
85
- return attHTML
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AnonAndDesu/Desu_Proxy/greeting.md DELETED
@@ -1,3 +0,0 @@
1
- Only for desu lovers~
2
- https://rentry.co/Desu_Proxy
3
-
 
 
 
 
spaces/Anonymous-123/ImageNet-Editing/editing_diffusion/guided_diffusion/setup.py DELETED
@@ -1,7 +0,0 @@
1
- from setuptools import setup
2
-
3
- setup(
4
- name="guided-diffusion",
5
- py_modules=["guided_diffusion"],
6
- install_requires=["blobfile>=1.0.5", "torch", "tqdm"],
7
- )
 
 
 
 
 
 
 
 
spaces/Anonymous-sub/Rerender/ControlNet/annotator/uniformer/mmcv/cnn/bricks/__init__.py DELETED
@@ -1,35 +0,0 @@
1
- # Copyright (c) OpenMMLab. All rights reserved.
2
- from .activation import build_activation_layer
3
- from .context_block import ContextBlock
4
- from .conv import build_conv_layer
5
- from .conv2d_adaptive_padding import Conv2dAdaptivePadding
6
- from .conv_module import ConvModule
7
- from .conv_ws import ConvAWS2d, ConvWS2d, conv_ws_2d
8
- from .depthwise_separable_conv_module import DepthwiseSeparableConvModule
9
- from .drop import Dropout, DropPath
10
- from .generalized_attention import GeneralizedAttention
11
- from .hsigmoid import HSigmoid
12
- from .hswish import HSwish
13
- from .non_local import NonLocal1d, NonLocal2d, NonLocal3d
14
- from .norm import build_norm_layer, is_norm
15
- from .padding import build_padding_layer
16
- from .plugin import build_plugin_layer
17
- from .registry import (ACTIVATION_LAYERS, CONV_LAYERS, NORM_LAYERS,
18
- PADDING_LAYERS, PLUGIN_LAYERS, UPSAMPLE_LAYERS)
19
- from .scale import Scale
20
- from .swish import Swish
21
- from .upsample import build_upsample_layer
22
- from .wrappers import (Conv2d, Conv3d, ConvTranspose2d, ConvTranspose3d,
23
- Linear, MaxPool2d, MaxPool3d)
24
-
25
- __all__ = [
26
- 'ConvModule', 'build_activation_layer', 'build_conv_layer',
27
- 'build_norm_layer', 'build_padding_layer', 'build_upsample_layer',
28
- 'build_plugin_layer', 'is_norm', 'HSigmoid', 'HSwish', 'NonLocal1d',
29
- 'NonLocal2d', 'NonLocal3d', 'ContextBlock', 'GeneralizedAttention',
30
- 'ACTIVATION_LAYERS', 'CONV_LAYERS', 'NORM_LAYERS', 'PADDING_LAYERS',
31
- 'UPSAMPLE_LAYERS', 'PLUGIN_LAYERS', 'Scale', 'ConvAWS2d', 'ConvWS2d',
32
- 'conv_ws_2d', 'DepthwiseSeparableConvModule', 'Swish', 'Linear',
33
- 'Conv2dAdaptivePadding', 'Conv2d', 'ConvTranspose2d', 'MaxPool2d',
34
- 'ConvTranspose3d', 'MaxPool3d', 'Conv3d', 'Dropout', 'DropPath'
35
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AriaMei/TTSdemo/monotonic_align/setup.py DELETED
@@ -1,9 +0,0 @@
1
- from distutils.core import setup
2
- from Cython.Build import cythonize
3
- import numpy
4
-
5
- setup(
6
- name = 'monotonic_align',
7
- ext_modules = cythonize("core.pyx"),
8
- include_dirs=[numpy.get_include()]
9
- )
 
 
 
 
 
 
 
 
 
 
spaces/ArkanDash/rvc-models-new/lib/infer_pack/modules/F0Predictor/HarvestF0Predictor.py DELETED
@@ -1,86 +0,0 @@
1
- from lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
2
- import pyworld
3
- import numpy as np
4
-
5
-
6
- class HarvestF0Predictor(F0Predictor):
7
- def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
8
- self.hop_length = hop_length
9
- self.f0_min = f0_min
10
- self.f0_max = f0_max
11
- self.sampling_rate = sampling_rate
12
-
13
- def interpolate_f0(self, f0):
14
- """
15
- 对F0进行插值处理
16
- """
17
-
18
- data = np.reshape(f0, (f0.size, 1))
19
-
20
- vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
21
- vuv_vector[data > 0.0] = 1.0
22
- vuv_vector[data <= 0.0] = 0.0
23
-
24
- ip_data = data
25
-
26
- frame_number = data.size
27
- last_value = 0.0
28
- for i in range(frame_number):
29
- if data[i] <= 0.0:
30
- j = i + 1
31
- for j in range(i + 1, frame_number):
32
- if data[j] > 0.0:
33
- break
34
- if j < frame_number - 1:
35
- if last_value > 0.0:
36
- step = (data[j] - data[i - 1]) / float(j - i)
37
- for k in range(i, j):
38
- ip_data[k] = data[i - 1] + step * (k - i + 1)
39
- else:
40
- for k in range(i, j):
41
- ip_data[k] = data[j]
42
- else:
43
- for k in range(i, frame_number):
44
- ip_data[k] = last_value
45
- else:
46
- ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
47
- last_value = data[i]
48
-
49
- return ip_data[:, 0], vuv_vector[:, 0]
50
-
51
- def resize_f0(self, x, target_len):
52
- source = np.array(x)
53
- source[source < 0.001] = np.nan
54
- target = np.interp(
55
- np.arange(0, len(source) * target_len, len(source)) / target_len,
56
- np.arange(0, len(source)),
57
- source,
58
- )
59
- res = np.nan_to_num(target)
60
- return res
61
-
62
- def compute_f0(self, wav, p_len=None):
63
- if p_len is None:
64
- p_len = wav.shape[0] // self.hop_length
65
- f0, t = pyworld.harvest(
66
- wav.astype(np.double),
67
- fs=self.hop_length,
68
- f0_ceil=self.f0_max,
69
- f0_floor=self.f0_min,
70
- frame_period=1000 * self.hop_length / self.sampling_rate,
71
- )
72
- f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.fs)
73
- return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
74
-
75
- def compute_f0_uv(self, wav, p_len=None):
76
- if p_len is None:
77
- p_len = wav.shape[0] // self.hop_length
78
- f0, t = pyworld.harvest(
79
- wav.astype(np.double),
80
- fs=self.sampling_rate,
81
- f0_floor=self.f0_min,
82
- f0_ceil=self.f0_max,
83
- frame_period=1000 * self.hop_length / self.sampling_rate,
84
- )
85
- f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
86
- return self.interpolate_f0(self.resize_f0(f0, p_len))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Arulkumar03/GroundingDINO_SOTA_Zero_Shot_Model/groundingdino/config/__init__.py DELETED
File without changes
spaces/AsakuraMizu/moe-tts/text/__init__.py DELETED
@@ -1,32 +0,0 @@
1
- """ from https://github.com/keithito/tacotron """
2
- from text import cleaners
3
-
4
-
5
- def text_to_sequence(text, symbols, cleaner_names):
6
- '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
7
- Args:
8
- text: string to convert to a sequence
9
- cleaner_names: names of the cleaner functions to run the text through
10
- Returns:
11
- List of integers corresponding to the symbols in the text
12
- '''
13
- _symbol_to_id = {s: i for i, s in enumerate(symbols)}
14
-
15
- sequence = []
16
-
17
- clean_text = _clean_text(text, cleaner_names)
18
- for symbol in clean_text:
19
- if symbol not in _symbol_to_id.keys():
20
- continue
21
- symbol_id = _symbol_to_id[symbol]
22
- sequence += [symbol_id]
23
- return sequence
24
-
25
-
26
- def _clean_text(text, cleaner_names):
27
- for name in cleaner_names:
28
- cleaner = getattr(cleaners, name)
29
- if not cleaner:
30
- raise Exception('Unknown cleaner: %s' % name)
31
- text = cleaner(text)
32
- return text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_internal/cli/cmdoptions.py DELETED
@@ -1,1074 +0,0 @@
1
- """
2
- shared options and groups
3
-
4
- The principle here is to define options once, but *not* instantiate them
5
- globally. One reason being that options with action='append' can carry state
6
- between parses. pip parses general options twice internally, and shouldn't
7
- pass on state. To be consistent, all options will follow this design.
8
- """
9
-
10
- # The following comment should be removed at some point in the future.
11
- # mypy: strict-optional=False
12
-
13
- import importlib.util
14
- import logging
15
- import os
16
- import textwrap
17
- from functools import partial
18
- from optparse import SUPPRESS_HELP, Option, OptionGroup, OptionParser, Values
19
- from textwrap import dedent
20
- from typing import Any, Callable, Dict, Optional, Tuple
21
-
22
- from pip._vendor.packaging.utils import canonicalize_name
23
-
24
- from pip._internal.cli.parser import ConfigOptionParser
25
- from pip._internal.exceptions import CommandError
26
- from pip._internal.locations import USER_CACHE_DIR, get_src_prefix
27
- from pip._internal.models.format_control import FormatControl
28
- from pip._internal.models.index import PyPI
29
- from pip._internal.models.target_python import TargetPython
30
- from pip._internal.utils.hashes import STRONG_HASHES
31
- from pip._internal.utils.misc import strtobool
32
-
33
- logger = logging.getLogger(__name__)
34
-
35
-
36
- def raise_option_error(parser: OptionParser, option: Option, msg: str) -> None:
37
- """
38
- Raise an option parsing error using parser.error().
39
-
40
- Args:
41
- parser: an OptionParser instance.
42
- option: an Option instance.
43
- msg: the error text.
44
- """
45
- msg = f"{option} error: {msg}"
46
- msg = textwrap.fill(" ".join(msg.split()))
47
- parser.error(msg)
48
-
49
-
50
- def make_option_group(group: Dict[str, Any], parser: ConfigOptionParser) -> OptionGroup:
51
- """
52
- Return an OptionGroup object
53
- group -- assumed to be dict with 'name' and 'options' keys
54
- parser -- an optparse Parser
55
- """
56
- option_group = OptionGroup(parser, group["name"])
57
- for option in group["options"]:
58
- option_group.add_option(option())
59
- return option_group
60
-
61
-
62
- def check_dist_restriction(options: Values, check_target: bool = False) -> None:
63
- """Function for determining if custom platform options are allowed.
64
-
65
- :param options: The OptionParser options.
66
- :param check_target: Whether or not to check if --target is being used.
67
- """
68
- dist_restriction_set = any(
69
- [
70
- options.python_version,
71
- options.platforms,
72
- options.abis,
73
- options.implementation,
74
- ]
75
- )
76
-
77
- binary_only = FormatControl(set(), {":all:"})
78
- sdist_dependencies_allowed = (
79
- options.format_control != binary_only and not options.ignore_dependencies
80
- )
81
-
82
- # Installations or downloads using dist restrictions must not combine
83
- # source distributions and dist-specific wheels, as they are not
84
- # guaranteed to be locally compatible.
85
- if dist_restriction_set and sdist_dependencies_allowed:
86
- raise CommandError(
87
- "When restricting platform and interpreter constraints using "
88
- "--python-version, --platform, --abi, or --implementation, "
89
- "either --no-deps must be set, or --only-binary=:all: must be "
90
- "set and --no-binary must not be set (or must be set to "
91
- ":none:)."
92
- )
93
-
94
- if check_target:
95
- if dist_restriction_set and not options.target_dir:
96
- raise CommandError(
97
- "Can not use any platform or abi specific options unless "
98
- "installing via '--target'"
99
- )
100
-
101
-
102
- def _path_option_check(option: Option, opt: str, value: str) -> str:
103
- return os.path.expanduser(value)
104
-
105
-
106
- def _package_name_option_check(option: Option, opt: str, value: str) -> str:
107
- return canonicalize_name(value)
108
-
109
-
110
- class PipOption(Option):
111
- TYPES = Option.TYPES + ("path", "package_name")
112
- TYPE_CHECKER = Option.TYPE_CHECKER.copy()
113
- TYPE_CHECKER["package_name"] = _package_name_option_check
114
- TYPE_CHECKER["path"] = _path_option_check
115
-
116
-
117
- ###########
118
- # options #
119
- ###########
120
-
121
- help_: Callable[..., Option] = partial(
122
- Option,
123
- "-h",
124
- "--help",
125
- dest="help",
126
- action="help",
127
- help="Show help.",
128
- )
129
-
130
- debug_mode: Callable[..., Option] = partial(
131
- Option,
132
- "--debug",
133
- dest="debug_mode",
134
- action="store_true",
135
- default=False,
136
- help=(
137
- "Let unhandled exceptions propagate outside the main subroutine, "
138
- "instead of logging them to stderr."
139
- ),
140
- )
141
-
142
- isolated_mode: Callable[..., Option] = partial(
143
- Option,
144
- "--isolated",
145
- dest="isolated_mode",
146
- action="store_true",
147
- default=False,
148
- help=(
149
- "Run pip in an isolated mode, ignoring environment variables and user "
150
- "configuration."
151
- ),
152
- )
153
-
154
- require_virtualenv: Callable[..., Option] = partial(
155
- Option,
156
- "--require-virtualenv",
157
- "--require-venv",
158
- dest="require_venv",
159
- action="store_true",
160
- default=False,
161
- help=(
162
- "Allow pip to only run in a virtual environment; "
163
- "exit with an error otherwise."
164
- ),
165
- )
166
-
167
- override_externally_managed: Callable[..., Option] = partial(
168
- Option,
169
- "--break-system-packages",
170
- dest="override_externally_managed",
171
- action="store_true",
172
- help="Allow pip to modify an EXTERNALLY-MANAGED Python installation",
173
- )
174
-
175
- python: Callable[..., Option] = partial(
176
- Option,
177
- "--python",
178
- dest="python",
179
- help="Run pip with the specified Python interpreter.",
180
- )
181
-
182
- verbose: Callable[..., Option] = partial(
183
- Option,
184
- "-v",
185
- "--verbose",
186
- dest="verbose",
187
- action="count",
188
- default=0,
189
- help="Give more output. Option is additive, and can be used up to 3 times.",
190
- )
191
-
192
- no_color: Callable[..., Option] = partial(
193
- Option,
194
- "--no-color",
195
- dest="no_color",
196
- action="store_true",
197
- default=False,
198
- help="Suppress colored output.",
199
- )
200
-
201
- version: Callable[..., Option] = partial(
202
- Option,
203
- "-V",
204
- "--version",
205
- dest="version",
206
- action="store_true",
207
- help="Show version and exit.",
208
- )
209
-
210
- quiet: Callable[..., Option] = partial(
211
- Option,
212
- "-q",
213
- "--quiet",
214
- dest="quiet",
215
- action="count",
216
- default=0,
217
- help=(
218
- "Give less output. Option is additive, and can be used up to 3"
219
- " times (corresponding to WARNING, ERROR, and CRITICAL logging"
220
- " levels)."
221
- ),
222
- )
223
-
224
- progress_bar: Callable[..., Option] = partial(
225
- Option,
226
- "--progress-bar",
227
- dest="progress_bar",
228
- type="choice",
229
- choices=["on", "off"],
230
- default="on",
231
- help="Specify whether the progress bar should be used [on, off] (default: on)",
232
- )
233
-
234
- log: Callable[..., Option] = partial(
235
- PipOption,
236
- "--log",
237
- "--log-file",
238
- "--local-log",
239
- dest="log",
240
- metavar="path",
241
- type="path",
242
- help="Path to a verbose appending log.",
243
- )
244
-
245
- no_input: Callable[..., Option] = partial(
246
- Option,
247
- # Don't ask for input
248
- "--no-input",
249
- dest="no_input",
250
- action="store_true",
251
- default=False,
252
- help="Disable prompting for input.",
253
- )
254
-
255
- keyring_provider: Callable[..., Option] = partial(
256
- Option,
257
- "--keyring-provider",
258
- dest="keyring_provider",
259
- choices=["auto", "disabled", "import", "subprocess"],
260
- default="auto",
261
- help=(
262
- "Enable the credential lookup via the keyring library if user input is allowed."
263
- " Specify which mechanism to use [disabled, import, subprocess]."
264
- " (default: disabled)"
265
- ),
266
- )
267
-
268
- proxy: Callable[..., Option] = partial(
269
- Option,
270
- "--proxy",
271
- dest="proxy",
272
- type="str",
273
- default="",
274
- help="Specify a proxy in the form scheme://[user:passwd@]proxy.server:port.",
275
- )
276
-
277
- retries: Callable[..., Option] = partial(
278
- Option,
279
- "--retries",
280
- dest="retries",
281
- type="int",
282
- default=5,
283
- help="Maximum number of retries each connection should attempt "
284
- "(default %default times).",
285
- )
286
-
287
- timeout: Callable[..., Option] = partial(
288
- Option,
289
- "--timeout",
290
- "--default-timeout",
291
- metavar="sec",
292
- dest="timeout",
293
- type="float",
294
- default=15,
295
- help="Set the socket timeout (default %default seconds).",
296
- )
297
-
298
-
299
- def exists_action() -> Option:
300
- return Option(
301
- # Option when path already exist
302
- "--exists-action",
303
- dest="exists_action",
304
- type="choice",
305
- choices=["s", "i", "w", "b", "a"],
306
- default=[],
307
- action="append",
308
- metavar="action",
309
- help="Default action when a path already exists: "
310
- "(s)witch, (i)gnore, (w)ipe, (b)ackup, (a)bort.",
311
- )
312
-
313
-
314
- cert: Callable[..., Option] = partial(
315
- PipOption,
316
- "--cert",
317
- dest="cert",
318
- type="path",
319
- metavar="path",
320
- help=(
321
- "Path to PEM-encoded CA certificate bundle. "
322
- "If provided, overrides the default. "
323
- "See 'SSL Certificate Verification' in pip documentation "
324
- "for more information."
325
- ),
326
- )
327
-
328
- client_cert: Callable[..., Option] = partial(
329
- PipOption,
330
- "--client-cert",
331
- dest="client_cert",
332
- type="path",
333
- default=None,
334
- metavar="path",
335
- help="Path to SSL client certificate, a single file containing the "
336
- "private key and the certificate in PEM format.",
337
- )
338
-
339
- index_url: Callable[..., Option] = partial(
340
- Option,
341
- "-i",
342
- "--index-url",
343
- "--pypi-url",
344
- dest="index_url",
345
- metavar="URL",
346
- default=PyPI.simple_url,
347
- help="Base URL of the Python Package Index (default %default). "
348
- "This should point to a repository compliant with PEP 503 "
349
- "(the simple repository API) or a local directory laid out "
350
- "in the same format.",
351
- )
352
-
353
-
354
- def extra_index_url() -> Option:
355
- return Option(
356
- "--extra-index-url",
357
- dest="extra_index_urls",
358
- metavar="URL",
359
- action="append",
360
- default=[],
361
- help="Extra URLs of package indexes to use in addition to "
362
- "--index-url. Should follow the same rules as "
363
- "--index-url.",
364
- )
365
-
366
-
367
- no_index: Callable[..., Option] = partial(
368
- Option,
369
- "--no-index",
370
- dest="no_index",
371
- action="store_true",
372
- default=False,
373
- help="Ignore package index (only looking at --find-links URLs instead).",
374
- )
375
-
376
-
377
- def find_links() -> Option:
378
- return Option(
379
- "-f",
380
- "--find-links",
381
- dest="find_links",
382
- action="append",
383
- default=[],
384
- metavar="url",
385
- help="If a URL or path to an html file, then parse for links to "
386
- "archives such as sdist (.tar.gz) or wheel (.whl) files. "
387
- "If a local path or file:// URL that's a directory, "
388
- "then look for archives in the directory listing. "
389
- "Links to VCS project URLs are not supported.",
390
- )
391
-
392
-
393
- def trusted_host() -> Option:
394
- return Option(
395
- "--trusted-host",
396
- dest="trusted_hosts",
397
- action="append",
398
- metavar="HOSTNAME",
399
- default=[],
400
- help="Mark this host or host:port pair as trusted, even though it "
401
- "does not have valid or any HTTPS.",
402
- )
403
-
404
-
405
- def constraints() -> Option:
406
- return Option(
407
- "-c",
408
- "--constraint",
409
- dest="constraints",
410
- action="append",
411
- default=[],
412
- metavar="file",
413
- help="Constrain versions using the given constraints file. "
414
- "This option can be used multiple times.",
415
- )
416
-
417
-
418
- def requirements() -> Option:
419
- return Option(
420
- "-r",
421
- "--requirement",
422
- dest="requirements",
423
- action="append",
424
- default=[],
425
- metavar="file",
426
- help="Install from the given requirements file. "
427
- "This option can be used multiple times.",
428
- )
429
-
430
-
431
- def editable() -> Option:
432
- return Option(
433
- "-e",
434
- "--editable",
435
- dest="editables",
436
- action="append",
437
- default=[],
438
- metavar="path/url",
439
- help=(
440
- "Install a project in editable mode (i.e. setuptools "
441
- '"develop mode") from a local project path or a VCS url.'
442
- ),
443
- )
444
-
445
-
446
- def _handle_src(option: Option, opt_str: str, value: str, parser: OptionParser) -> None:
447
- value = os.path.abspath(value)
448
- setattr(parser.values, option.dest, value)
449
-
450
-
451
- src: Callable[..., Option] = partial(
452
- PipOption,
453
- "--src",
454
- "--source",
455
- "--source-dir",
456
- "--source-directory",
457
- dest="src_dir",
458
- type="path",
459
- metavar="dir",
460
- default=get_src_prefix(),
461
- action="callback",
462
- callback=_handle_src,
463
- help="Directory to check out editable projects into. "
464
- 'The default in a virtualenv is "<venv path>/src". '
465
- 'The default for global installs is "<current dir>/src".',
466
- )
467
-
468
-
469
- def _get_format_control(values: Values, option: Option) -> Any:
470
- """Get a format_control object."""
471
- return getattr(values, option.dest)
472
-
473
-
474
- def _handle_no_binary(
475
- option: Option, opt_str: str, value: str, parser: OptionParser
476
- ) -> None:
477
- existing = _get_format_control(parser.values, option)
478
- FormatControl.handle_mutual_excludes(
479
- value,
480
- existing.no_binary,
481
- existing.only_binary,
482
- )
483
-
484
-
485
- def _handle_only_binary(
486
- option: Option, opt_str: str, value: str, parser: OptionParser
487
- ) -> None:
488
- existing = _get_format_control(parser.values, option)
489
- FormatControl.handle_mutual_excludes(
490
- value,
491
- existing.only_binary,
492
- existing.no_binary,
493
- )
494
-
495
-
496
- def no_binary() -> Option:
497
- format_control = FormatControl(set(), set())
498
- return Option(
499
- "--no-binary",
500
- dest="format_control",
501
- action="callback",
502
- callback=_handle_no_binary,
503
- type="str",
504
- default=format_control,
505
- help="Do not use binary packages. Can be supplied multiple times, and "
506
- 'each time adds to the existing value. Accepts either ":all:" to '
507
- 'disable all binary packages, ":none:" to empty the set (notice '
508
- "the colons), or one or more package names with commas between "
509
- "them (no colons). Note that some packages are tricky to compile "
510
- "and may fail to install when this option is used on them.",
511
- )
512
-
513
-
514
- def only_binary() -> Option:
515
- format_control = FormatControl(set(), set())
516
- return Option(
517
- "--only-binary",
518
- dest="format_control",
519
- action="callback",
520
- callback=_handle_only_binary,
521
- type="str",
522
- default=format_control,
523
- help="Do not use source packages. Can be supplied multiple times, and "
524
- 'each time adds to the existing value. Accepts either ":all:" to '
525
- 'disable all source packages, ":none:" to empty the set, or one '
526
- "or more package names with commas between them. Packages "
527
- "without binary distributions will fail to install when this "
528
- "option is used on them.",
529
- )
530
-
531
-
532
- platforms: Callable[..., Option] = partial(
533
- Option,
534
- "--platform",
535
- dest="platforms",
536
- metavar="platform",
537
- action="append",
538
- default=None,
539
- help=(
540
- "Only use wheels compatible with <platform>. Defaults to the "
541
- "platform of the running system. Use this option multiple times to "
542
- "specify multiple platforms supported by the target interpreter."
543
- ),
544
- )
545
-
546
-
547
- # This was made a separate function for unit-testing purposes.
548
- def _convert_python_version(value: str) -> Tuple[Tuple[int, ...], Optional[str]]:
549
- """
550
- Convert a version string like "3", "37", or "3.7.3" into a tuple of ints.
551
-
552
- :return: A 2-tuple (version_info, error_msg), where `error_msg` is
553
- non-None if and only if there was a parsing error.
554
- """
555
- if not value:
556
- # The empty string is the same as not providing a value.
557
- return (None, None)
558
-
559
- parts = value.split(".")
560
- if len(parts) > 3:
561
- return ((), "at most three version parts are allowed")
562
-
563
- if len(parts) == 1:
564
- # Then we are in the case of "3" or "37".
565
- value = parts[0]
566
- if len(value) > 1:
567
- parts = [value[0], value[1:]]
568
-
569
- try:
570
- version_info = tuple(int(part) for part in parts)
571
- except ValueError:
572
- return ((), "each version part must be an integer")
573
-
574
- return (version_info, None)
575
-
576
-
577
- def _handle_python_version(
578
- option: Option, opt_str: str, value: str, parser: OptionParser
579
- ) -> None:
580
- """
581
- Handle a provided --python-version value.
582
- """
583
- version_info, error_msg = _convert_python_version(value)
584
- if error_msg is not None:
585
- msg = "invalid --python-version value: {!r}: {}".format(
586
- value,
587
- error_msg,
588
- )
589
- raise_option_error(parser, option=option, msg=msg)
590
-
591
- parser.values.python_version = version_info
592
-
593
-
594
- python_version: Callable[..., Option] = partial(
595
- Option,
596
- "--python-version",
597
- dest="python_version",
598
- metavar="python_version",
599
- action="callback",
600
- callback=_handle_python_version,
601
- type="str",
602
- default=None,
603
- help=dedent(
604
- """\
605
- The Python interpreter version to use for wheel and "Requires-Python"
606
- compatibility checks. Defaults to a version derived from the running
607
- interpreter. The version can be specified using up to three dot-separated
608
- integers (e.g. "3" for 3.0.0, "3.7" for 3.7.0, or "3.7.3"). A major-minor
609
- version can also be given as a string without dots (e.g. "37" for 3.7.0).
610
- """
611
- ),
612
- )
613
-
614
-
615
- implementation: Callable[..., Option] = partial(
616
- Option,
617
- "--implementation",
618
- dest="implementation",
619
- metavar="implementation",
620
- default=None,
621
- help=(
622
- "Only use wheels compatible with Python "
623
- "implementation <implementation>, e.g. 'pp', 'jy', 'cp', "
624
- " or 'ip'. If not specified, then the current "
625
- "interpreter implementation is used. Use 'py' to force "
626
- "implementation-agnostic wheels."
627
- ),
628
- )
629
-
630
-
631
- abis: Callable[..., Option] = partial(
632
- Option,
633
- "--abi",
634
- dest="abis",
635
- metavar="abi",
636
- action="append",
637
- default=None,
638
- help=(
639
- "Only use wheels compatible with Python abi <abi>, e.g. 'pypy_41'. "
640
- "If not specified, then the current interpreter abi tag is used. "
641
- "Use this option multiple times to specify multiple abis supported "
642
- "by the target interpreter. Generally you will need to specify "
643
- "--implementation, --platform, and --python-version when using this "
644
- "option."
645
- ),
646
- )
647
-
648
-
649
- def add_target_python_options(cmd_opts: OptionGroup) -> None:
650
- cmd_opts.add_option(platforms())
651
- cmd_opts.add_option(python_version())
652
- cmd_opts.add_option(implementation())
653
- cmd_opts.add_option(abis())
654
-
655
-
656
- def make_target_python(options: Values) -> TargetPython:
657
- target_python = TargetPython(
658
- platforms=options.platforms,
659
- py_version_info=options.python_version,
660
- abis=options.abis,
661
- implementation=options.implementation,
662
- )
663
-
664
- return target_python
665
-
666
-
667
- def prefer_binary() -> Option:
668
- return Option(
669
- "--prefer-binary",
670
- dest="prefer_binary",
671
- action="store_true",
672
- default=False,
673
- help="Prefer older binary packages over newer source packages.",
674
- )
675
-
676
-
677
- cache_dir: Callable[..., Option] = partial(
678
- PipOption,
679
- "--cache-dir",
680
- dest="cache_dir",
681
- default=USER_CACHE_DIR,
682
- metavar="dir",
683
- type="path",
684
- help="Store the cache data in <dir>.",
685
- )
686
-
687
-
688
- def _handle_no_cache_dir(
689
- option: Option, opt: str, value: str, parser: OptionParser
690
- ) -> None:
691
- """
692
- Process a value provided for the --no-cache-dir option.
693
-
694
- This is an optparse.Option callback for the --no-cache-dir option.
695
- """
696
- # The value argument will be None if --no-cache-dir is passed via the
697
- # command-line, since the option doesn't accept arguments. However,
698
- # the value can be non-None if the option is triggered e.g. by an
699
- # environment variable, like PIP_NO_CACHE_DIR=true.
700
- if value is not None:
701
- # Then parse the string value to get argument error-checking.
702
- try:
703
- strtobool(value)
704
- except ValueError as exc:
705
- raise_option_error(parser, option=option, msg=str(exc))
706
-
707
- # Originally, setting PIP_NO_CACHE_DIR to a value that strtobool()
708
- # converted to 0 (like "false" or "no") caused cache_dir to be disabled
709
- # rather than enabled (logic would say the latter). Thus, we disable
710
- # the cache directory not just on values that parse to True, but (for
711
- # backwards compatibility reasons) also on values that parse to False.
712
- # In other words, always set it to False if the option is provided in
713
- # some (valid) form.
714
- parser.values.cache_dir = False
715
-
716
-
717
- no_cache: Callable[..., Option] = partial(
718
- Option,
719
- "--no-cache-dir",
720
- dest="cache_dir",
721
- action="callback",
722
- callback=_handle_no_cache_dir,
723
- help="Disable the cache.",
724
- )
725
-
726
- no_deps: Callable[..., Option] = partial(
727
- Option,
728
- "--no-deps",
729
- "--no-dependencies",
730
- dest="ignore_dependencies",
731
- action="store_true",
732
- default=False,
733
- help="Don't install package dependencies.",
734
- )
735
-
736
- ignore_requires_python: Callable[..., Option] = partial(
737
- Option,
738
- "--ignore-requires-python",
739
- dest="ignore_requires_python",
740
- action="store_true",
741
- help="Ignore the Requires-Python information.",
742
- )
743
-
744
- no_build_isolation: Callable[..., Option] = partial(
745
- Option,
746
- "--no-build-isolation",
747
- dest="build_isolation",
748
- action="store_false",
749
- default=True,
750
- help="Disable isolation when building a modern source distribution. "
751
- "Build dependencies specified by PEP 518 must be already installed "
752
- "if this option is used.",
753
- )
754
-
755
- check_build_deps: Callable[..., Option] = partial(
756
- Option,
757
- "--check-build-dependencies",
758
- dest="check_build_deps",
759
- action="store_true",
760
- default=False,
761
- help="Check the build dependencies when PEP517 is used.",
762
- )
763
-
764
-
765
- def _handle_no_use_pep517(
766
- option: Option, opt: str, value: str, parser: OptionParser
767
- ) -> None:
768
- """
769
- Process a value provided for the --no-use-pep517 option.
770
-
771
- This is an optparse.Option callback for the no_use_pep517 option.
772
- """
773
- # Since --no-use-pep517 doesn't accept arguments, the value argument
774
- # will be None if --no-use-pep517 is passed via the command-line.
775
- # However, the value can be non-None if the option is triggered e.g.
776
- # by an environment variable, for example "PIP_NO_USE_PEP517=true".
777
- if value is not None:
778
- msg = """A value was passed for --no-use-pep517,
779
- probably using either the PIP_NO_USE_PEP517 environment variable
780
- or the "no-use-pep517" config file option. Use an appropriate value
781
- of the PIP_USE_PEP517 environment variable or the "use-pep517"
782
- config file option instead.
783
- """
784
- raise_option_error(parser, option=option, msg=msg)
785
-
786
- # If user doesn't wish to use pep517, we check if setuptools and wheel are installed
787
- # and raise error if it is not.
788
- packages = ("setuptools", "wheel")
789
- if not all(importlib.util.find_spec(package) for package in packages):
790
- msg = (
791
- f"It is not possible to use --no-use-pep517 "
792
- f"without {' and '.join(packages)} installed."
793
- )
794
- raise_option_error(parser, option=option, msg=msg)
795
-
796
- # Otherwise, --no-use-pep517 was passed via the command-line.
797
- parser.values.use_pep517 = False
798
-
799
-
800
- use_pep517: Any = partial(
801
- Option,
802
- "--use-pep517",
803
- dest="use_pep517",
804
- action="store_true",
805
- default=None,
806
- help="Use PEP 517 for building source distributions "
807
- "(use --no-use-pep517 to force legacy behaviour).",
808
- )
809
-
810
- no_use_pep517: Any = partial(
811
- Option,
812
- "--no-use-pep517",
813
- dest="use_pep517",
814
- action="callback",
815
- callback=_handle_no_use_pep517,
816
- default=None,
817
- help=SUPPRESS_HELP,
818
- )
819
-
820
-
821
- def _handle_config_settings(
822
- option: Option, opt_str: str, value: str, parser: OptionParser
823
- ) -> None:
824
- key, sep, val = value.partition("=")
825
- if sep != "=":
826
- parser.error(f"Arguments to {opt_str} must be of the form KEY=VAL") # noqa
827
- dest = getattr(parser.values, option.dest)
828
- if dest is None:
829
- dest = {}
830
- setattr(parser.values, option.dest, dest)
831
- if key in dest:
832
- if isinstance(dest[key], list):
833
- dest[key].append(val)
834
- else:
835
- dest[key] = [dest[key], val]
836
- else:
837
- dest[key] = val
838
-
839
-
840
- config_settings: Callable[..., Option] = partial(
841
- Option,
842
- "-C",
843
- "--config-settings",
844
- dest="config_settings",
845
- type=str,
846
- action="callback",
847
- callback=_handle_config_settings,
848
- metavar="settings",
849
- help="Configuration settings to be passed to the PEP 517 build backend. "
850
- "Settings take the form KEY=VALUE. Use multiple --config-settings options "
851
- "to pass multiple keys to the backend.",
852
- )
853
-
854
- build_options: Callable[..., Option] = partial(
855
- Option,
856
- "--build-option",
857
- dest="build_options",
858
- metavar="options",
859
- action="append",
860
- help="Extra arguments to be supplied to 'setup.py bdist_wheel'.",
861
- )
862
-
863
- global_options: Callable[..., Option] = partial(
864
- Option,
865
- "--global-option",
866
- dest="global_options",
867
- action="append",
868
- metavar="options",
869
- help="Extra global options to be supplied to the setup.py "
870
- "call before the install or bdist_wheel command.",
871
- )
872
-
873
- no_clean: Callable[..., Option] = partial(
874
- Option,
875
- "--no-clean",
876
- action="store_true",
877
- default=False,
878
- help="Don't clean up build directories.",
879
- )
880
-
881
- pre: Callable[..., Option] = partial(
882
- Option,
883
- "--pre",
884
- action="store_true",
885
- default=False,
886
- help="Include pre-release and development versions. By default, "
887
- "pip only finds stable versions.",
888
- )
889
-
890
- disable_pip_version_check: Callable[..., Option] = partial(
891
- Option,
892
- "--disable-pip-version-check",
893
- dest="disable_pip_version_check",
894
- action="store_true",
895
- default=False,
896
- help="Don't periodically check PyPI to determine whether a new version "
897
- "of pip is available for download. Implied with --no-index.",
898
- )
899
-
900
- root_user_action: Callable[..., Option] = partial(
901
- Option,
902
- "--root-user-action",
903
- dest="root_user_action",
904
- default="warn",
905
- choices=["warn", "ignore"],
906
- help="Action if pip is run as a root user. By default, a warning message is shown.",
907
- )
908
-
909
-
910
- def _handle_merge_hash(
911
- option: Option, opt_str: str, value: str, parser: OptionParser
912
- ) -> None:
913
- """Given a value spelled "algo:digest", append the digest to a list
914
- pointed to in a dict by the algo name."""
915
- if not parser.values.hashes:
916
- parser.values.hashes = {}
917
- try:
918
- algo, digest = value.split(":", 1)
919
- except ValueError:
920
- parser.error(
921
- "Arguments to {} must be a hash name " # noqa
922
- "followed by a value, like --hash=sha256:"
923
- "abcde...".format(opt_str)
924
- )
925
- if algo not in STRONG_HASHES:
926
- parser.error(
927
- "Allowed hash algorithms for {} are {}.".format( # noqa
928
- opt_str, ", ".join(STRONG_HASHES)
929
- )
930
- )
931
- parser.values.hashes.setdefault(algo, []).append(digest)
932
-
933
-
934
- hash: Callable[..., Option] = partial(
935
- Option,
936
- "--hash",
937
- # Hash values eventually end up in InstallRequirement.hashes due to
938
- # __dict__ copying in process_line().
939
- dest="hashes",
940
- action="callback",
941
- callback=_handle_merge_hash,
942
- type="string",
943
- help="Verify that the package's archive matches this "
944
- "hash before installing. Example: --hash=sha256:abcdef...",
945
- )
946
-
947
-
948
- require_hashes: Callable[..., Option] = partial(
949
- Option,
950
- "--require-hashes",
951
- dest="require_hashes",
952
- action="store_true",
953
- default=False,
954
- help="Require a hash to check each requirement against, for "
955
- "repeatable installs. This option is implied when any package in a "
956
- "requirements file has a --hash option.",
957
- )
958
-
959
-
960
- list_path: Callable[..., Option] = partial(
961
- PipOption,
962
- "--path",
963
- dest="path",
964
- type="path",
965
- action="append",
966
- help="Restrict to the specified installation path for listing "
967
- "packages (can be used multiple times).",
968
- )
969
-
970
-
971
- def check_list_path_option(options: Values) -> None:
972
- if options.path and (options.user or options.local):
973
- raise CommandError("Cannot combine '--path' with '--user' or '--local'")
974
-
975
-
976
- list_exclude: Callable[..., Option] = partial(
977
- PipOption,
978
- "--exclude",
979
- dest="excludes",
980
- action="append",
981
- metavar="package",
982
- type="package_name",
983
- help="Exclude specified package from the output",
984
- )
985
-
986
-
987
- no_python_version_warning: Callable[..., Option] = partial(
988
- Option,
989
- "--no-python-version-warning",
990
- dest="no_python_version_warning",
991
- action="store_true",
992
- default=False,
993
- help="Silence deprecation warnings for upcoming unsupported Pythons.",
994
- )
995
-
996
-
997
- # Features that are now always on. A warning is printed if they are used.
998
- ALWAYS_ENABLED_FEATURES = [
999
- "no-binary-enable-wheel-cache", # always on since 23.1
1000
- ]
1001
-
1002
- use_new_feature: Callable[..., Option] = partial(
1003
- Option,
1004
- "--use-feature",
1005
- dest="features_enabled",
1006
- metavar="feature",
1007
- action="append",
1008
- default=[],
1009
- choices=[
1010
- "fast-deps",
1011
- "truststore",
1012
- ]
1013
- + ALWAYS_ENABLED_FEATURES,
1014
- help="Enable new functionality, that may be backward incompatible.",
1015
- )
1016
-
1017
- use_deprecated_feature: Callable[..., Option] = partial(
1018
- Option,
1019
- "--use-deprecated",
1020
- dest="deprecated_features_enabled",
1021
- metavar="feature",
1022
- action="append",
1023
- default=[],
1024
- choices=[
1025
- "legacy-resolver",
1026
- ],
1027
- help=("Enable deprecated functionality, that will be removed in the future."),
1028
- )
1029
-
1030
-
1031
- ##########
1032
- # groups #
1033
- ##########
1034
-
1035
- general_group: Dict[str, Any] = {
1036
- "name": "General Options",
1037
- "options": [
1038
- help_,
1039
- debug_mode,
1040
- isolated_mode,
1041
- require_virtualenv,
1042
- python,
1043
- verbose,
1044
- version,
1045
- quiet,
1046
- log,
1047
- no_input,
1048
- keyring_provider,
1049
- proxy,
1050
- retries,
1051
- timeout,
1052
- exists_action,
1053
- trusted_host,
1054
- cert,
1055
- client_cert,
1056
- cache_dir,
1057
- no_cache,
1058
- disable_pip_version_check,
1059
- no_color,
1060
- no_python_version_warning,
1061
- use_new_feature,
1062
- use_deprecated_feature,
1063
- ],
1064
- }
1065
-
1066
- index_group: Dict[str, Any] = {
1067
- "name": "Package Index Options",
1068
- "options": [
1069
- index_url,
1070
- extra_index_url,
1071
- no_index,
1072
- find_links,
1073
- ],
1074
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_vendor/platformdirs/api.py DELETED
@@ -1,179 +0,0 @@
1
- from __future__ import annotations
2
-
3
- import os
4
- import sys
5
- from abc import ABC, abstractmethod
6
- from pathlib import Path
7
-
8
- if sys.version_info >= (3, 8): # pragma: no branch
9
- from typing import Literal # pragma: no cover
10
-
11
-
12
- class PlatformDirsABC(ABC):
13
- """
14
- Abstract base class for platform directories.
15
- """
16
-
17
- def __init__(
18
- self,
19
- appname: str | None = None,
20
- appauthor: str | None | Literal[False] = None,
21
- version: str | None = None,
22
- roaming: bool = False,
23
- multipath: bool = False,
24
- opinion: bool = True,
25
- ensure_exists: bool = False,
26
- ):
27
- """
28
- Create a new platform directory.
29
-
30
- :param appname: See `appname`.
31
- :param appauthor: See `appauthor`.
32
- :param version: See `version`.
33
- :param roaming: See `roaming`.
34
- :param multipath: See `multipath`.
35
- :param opinion: See `opinion`.
36
- :param ensure_exists: See `ensure_exists`.
37
- """
38
- self.appname = appname #: The name of application.
39
- self.appauthor = appauthor
40
- """
41
- The name of the app author or distributing body for this application. Typically, it is the owning company name.
42
- Defaults to `appname`. You may pass ``False`` to disable it.
43
- """
44
- self.version = version
45
- """
46
- An optional version path element to append to the path. You might want to use this if you want multiple versions
47
- of your app to be able to run independently. If used, this would typically be ``<major>.<minor>``.
48
- """
49
- self.roaming = roaming
50
- """
51
- Whether to use the roaming appdata directory on Windows. That means that for users on a Windows network setup
52
- for roaming profiles, this user data will be synced on login (see
53
- `here <http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx>`_).
54
- """
55
- self.multipath = multipath
56
- """
57
- An optional parameter only applicable to Unix/Linux which indicates that the entire list of data dirs should be
58
- returned. By default, the first item would only be returned.
59
- """
60
- self.opinion = opinion #: A flag to indicating to use opinionated values.
61
- self.ensure_exists = ensure_exists
62
- """
63
- Optionally create the directory (and any missing parents) upon access if it does not exist.
64
- By default, no directories are created.
65
- """
66
-
67
- def _append_app_name_and_version(self, *base: str) -> str:
68
- params = list(base[1:])
69
- if self.appname:
70
- params.append(self.appname)
71
- if self.version:
72
- params.append(self.version)
73
- path = os.path.join(base[0], *params)
74
- self._optionally_create_directory(path)
75
- return path
76
-
77
- def _optionally_create_directory(self, path: str) -> None:
78
- if self.ensure_exists:
79
- Path(path).mkdir(parents=True, exist_ok=True)
80
-
81
- @property
82
- @abstractmethod
83
- def user_data_dir(self) -> str:
84
- """:return: data directory tied to the user"""
85
-
86
- @property
87
- @abstractmethod
88
- def site_data_dir(self) -> str:
89
- """:return: data directory shared by users"""
90
-
91
- @property
92
- @abstractmethod
93
- def user_config_dir(self) -> str:
94
- """:return: config directory tied to the user"""
95
-
96
- @property
97
- @abstractmethod
98
- def site_config_dir(self) -> str:
99
- """:return: config directory shared by the users"""
100
-
101
- @property
102
- @abstractmethod
103
- def user_cache_dir(self) -> str:
104
- """:return: cache directory tied to the user"""
105
-
106
- @property
107
- @abstractmethod
108
- def site_cache_dir(self) -> str:
109
- """:return: cache directory shared by users"""
110
-
111
- @property
112
- @abstractmethod
113
- def user_state_dir(self) -> str:
114
- """:return: state directory tied to the user"""
115
-
116
- @property
117
- @abstractmethod
118
- def user_log_dir(self) -> str:
119
- """:return: log directory tied to the user"""
120
-
121
- @property
122
- @abstractmethod
123
- def user_documents_dir(self) -> str:
124
- """:return: documents directory tied to the user"""
125
-
126
- @property
127
- @abstractmethod
128
- def user_runtime_dir(self) -> str:
129
- """:return: runtime directory tied to the user"""
130
-
131
- @property
132
- def user_data_path(self) -> Path:
133
- """:return: data path tied to the user"""
134
- return Path(self.user_data_dir)
135
-
136
- @property
137
- def site_data_path(self) -> Path:
138
- """:return: data path shared by users"""
139
- return Path(self.site_data_dir)
140
-
141
- @property
142
- def user_config_path(self) -> Path:
143
- """:return: config path tied to the user"""
144
- return Path(self.user_config_dir)
145
-
146
- @property
147
- def site_config_path(self) -> Path:
148
- """:return: config path shared by the users"""
149
- return Path(self.site_config_dir)
150
-
151
- @property
152
- def user_cache_path(self) -> Path:
153
- """:return: cache path tied to the user"""
154
- return Path(self.user_cache_dir)
155
-
156
- @property
157
- def site_cache_path(self) -> Path:
158
- """:return: cache path shared by users"""
159
- return Path(self.site_cache_dir)
160
-
161
- @property
162
- def user_state_path(self) -> Path:
163
- """:return: state path tied to the user"""
164
- return Path(self.user_state_dir)
165
-
166
- @property
167
- def user_log_path(self) -> Path:
168
- """:return: log path tied to the user"""
169
- return Path(self.user_log_dir)
170
-
171
- @property
172
- def user_documents_path(self) -> Path:
173
- """:return: documents path tied to the user"""
174
- return Path(self.user_documents_dir)
175
-
176
- @property
177
- def user_runtime_path(self) -> Path:
178
- """:return: runtime path tied to the user"""
179
- return Path(self.user_runtime_dir)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_vendor/tenacity/_asyncio.py DELETED
@@ -1,94 +0,0 @@
1
- # Copyright 2016 Étienne Bersac
2
- # Copyright 2016 Julien Danjou
3
- # Copyright 2016 Joshua Harlow
4
- # Copyright 2013-2014 Ray Holder
5
- #
6
- # Licensed under the Apache License, Version 2.0 (the "License");
7
- # you may not use this file except in compliance with the License.
8
- # You may obtain a copy of the License at
9
- #
10
- # http://www.apache.org/licenses/LICENSE-2.0
11
- #
12
- # Unless required by applicable law or agreed to in writing, software
13
- # distributed under the License is distributed on an "AS IS" BASIS,
14
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
- # See the License for the specific language governing permissions and
16
- # limitations under the License.
17
-
18
- import functools
19
- import sys
20
- import typing as t
21
- from asyncio import sleep
22
-
23
- from pip._vendor.tenacity import AttemptManager
24
- from pip._vendor.tenacity import BaseRetrying
25
- from pip._vendor.tenacity import DoAttempt
26
- from pip._vendor.tenacity import DoSleep
27
- from pip._vendor.tenacity import RetryCallState
28
-
29
- WrappedFnReturnT = t.TypeVar("WrappedFnReturnT")
30
- WrappedFn = t.TypeVar("WrappedFn", bound=t.Callable[..., t.Awaitable[t.Any]])
31
-
32
-
33
- class AsyncRetrying(BaseRetrying):
34
- sleep: t.Callable[[float], t.Awaitable[t.Any]]
35
-
36
- def __init__(self, sleep: t.Callable[[float], t.Awaitable[t.Any]] = sleep, **kwargs: t.Any) -> None:
37
- super().__init__(**kwargs)
38
- self.sleep = sleep
39
-
40
- async def __call__( # type: ignore[override]
41
- self, fn: WrappedFn, *args: t.Any, **kwargs: t.Any
42
- ) -> WrappedFnReturnT:
43
- self.begin()
44
-
45
- retry_state = RetryCallState(retry_object=self, fn=fn, args=args, kwargs=kwargs)
46
- while True:
47
- do = self.iter(retry_state=retry_state)
48
- if isinstance(do, DoAttempt):
49
- try:
50
- result = await fn(*args, **kwargs)
51
- except BaseException: # noqa: B902
52
- retry_state.set_exception(sys.exc_info()) # type: ignore[arg-type]
53
- else:
54
- retry_state.set_result(result)
55
- elif isinstance(do, DoSleep):
56
- retry_state.prepare_for_next_attempt()
57
- await self.sleep(do)
58
- else:
59
- return do # type: ignore[no-any-return]
60
-
61
- def __iter__(self) -> t.Generator[AttemptManager, None, None]:
62
- raise TypeError("AsyncRetrying object is not iterable")
63
-
64
- def __aiter__(self) -> "AsyncRetrying":
65
- self.begin()
66
- self._retry_state = RetryCallState(self, fn=None, args=(), kwargs={})
67
- return self
68
-
69
- async def __anext__(self) -> AttemptManager:
70
- while True:
71
- do = self.iter(retry_state=self._retry_state)
72
- if do is None:
73
- raise StopAsyncIteration
74
- elif isinstance(do, DoAttempt):
75
- return AttemptManager(retry_state=self._retry_state)
76
- elif isinstance(do, DoSleep):
77
- self._retry_state.prepare_for_next_attempt()
78
- await self.sleep(do)
79
- else:
80
- raise StopAsyncIteration
81
-
82
- def wraps(self, fn: WrappedFn) -> WrappedFn:
83
- fn = super().wraps(fn)
84
- # Ensure wrapper is recognized as a coroutine function.
85
-
86
- @functools.wraps(fn)
87
- async def async_wrapped(*args: t.Any, **kwargs: t.Any) -> t.Any:
88
- return await fn(*args, **kwargs)
89
-
90
- # Preserve attributes
91
- async_wrapped.retry = fn.retry # type: ignore[attr-defined]
92
- async_wrapped.retry_with = fn.retry_with # type: ignore[attr-defined]
93
-
94
- return async_wrapped # type: ignore[return-value]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/setuptools/_distutils/command/install.py DELETED
@@ -1,814 +0,0 @@
1
- """distutils.command.install
2
-
3
- Implements the Distutils 'install' command."""
4
-
5
- import sys
6
- import os
7
- import contextlib
8
- import sysconfig
9
- import itertools
10
-
11
- from distutils import log
12
- from distutils.core import Command
13
- from distutils.debug import DEBUG
14
- from distutils.sysconfig import get_config_vars
15
- from distutils.file_util import write_file
16
- from distutils.util import convert_path, subst_vars, change_root
17
- from distutils.util import get_platform
18
- from distutils.errors import DistutilsOptionError, DistutilsPlatformError
19
- from . import _framework_compat as fw
20
- from .. import _collections
21
-
22
- from site import USER_BASE
23
- from site import USER_SITE
24
-
25
- HAS_USER_SITE = True
26
-
27
- WINDOWS_SCHEME = {
28
- 'purelib': '{base}/Lib/site-packages',
29
- 'platlib': '{base}/Lib/site-packages',
30
- 'headers': '{base}/Include/{dist_name}',
31
- 'scripts': '{base}/Scripts',
32
- 'data': '{base}',
33
- }
34
-
35
- INSTALL_SCHEMES = {
36
- 'posix_prefix': {
37
- 'purelib': '{base}/lib/{implementation_lower}{py_version_short}/site-packages',
38
- 'platlib': '{platbase}/{platlibdir}/{implementation_lower}'
39
- '{py_version_short}/site-packages',
40
- 'headers': '{base}/include/{implementation_lower}'
41
- '{py_version_short}{abiflags}/{dist_name}',
42
- 'scripts': '{base}/bin',
43
- 'data': '{base}',
44
- },
45
- 'posix_home': {
46
- 'purelib': '{base}/lib/{implementation_lower}',
47
- 'platlib': '{base}/{platlibdir}/{implementation_lower}',
48
- 'headers': '{base}/include/{implementation_lower}/{dist_name}',
49
- 'scripts': '{base}/bin',
50
- 'data': '{base}',
51
- },
52
- 'nt': WINDOWS_SCHEME,
53
- 'pypy': {
54
- 'purelib': '{base}/site-packages',
55
- 'platlib': '{base}/site-packages',
56
- 'headers': '{base}/include/{dist_name}',
57
- 'scripts': '{base}/bin',
58
- 'data': '{base}',
59
- },
60
- 'pypy_nt': {
61
- 'purelib': '{base}/site-packages',
62
- 'platlib': '{base}/site-packages',
63
- 'headers': '{base}/include/{dist_name}',
64
- 'scripts': '{base}/Scripts',
65
- 'data': '{base}',
66
- },
67
- }
68
-
69
- # user site schemes
70
- if HAS_USER_SITE:
71
- INSTALL_SCHEMES['nt_user'] = {
72
- 'purelib': '{usersite}',
73
- 'platlib': '{usersite}',
74
- 'headers': '{userbase}/{implementation}{py_version_nodot_plat}'
75
- '/Include/{dist_name}',
76
- 'scripts': '{userbase}/{implementation}{py_version_nodot_plat}/Scripts',
77
- 'data': '{userbase}',
78
- }
79
-
80
- INSTALL_SCHEMES['posix_user'] = {
81
- 'purelib': '{usersite}',
82
- 'platlib': '{usersite}',
83
- 'headers': '{userbase}/include/{implementation_lower}'
84
- '{py_version_short}{abiflags}/{dist_name}',
85
- 'scripts': '{userbase}/bin',
86
- 'data': '{userbase}',
87
- }
88
-
89
-
90
- INSTALL_SCHEMES.update(fw.schemes)
91
-
92
-
93
- # The keys to an installation scheme; if any new types of files are to be
94
- # installed, be sure to add an entry to every installation scheme above,
95
- # and to SCHEME_KEYS here.
96
- SCHEME_KEYS = ('purelib', 'platlib', 'headers', 'scripts', 'data')
97
-
98
-
99
- def _load_sysconfig_schemes():
100
- with contextlib.suppress(AttributeError):
101
- return {
102
- scheme: sysconfig.get_paths(scheme, expand=False)
103
- for scheme in sysconfig.get_scheme_names()
104
- }
105
-
106
-
107
- def _load_schemes():
108
- """
109
- Extend default schemes with schemes from sysconfig.
110
- """
111
-
112
- sysconfig_schemes = _load_sysconfig_schemes() or {}
113
-
114
- return {
115
- scheme: {
116
- **INSTALL_SCHEMES.get(scheme, {}),
117
- **sysconfig_schemes.get(scheme, {}),
118
- }
119
- for scheme in set(itertools.chain(INSTALL_SCHEMES, sysconfig_schemes))
120
- }
121
-
122
-
123
- def _get_implementation():
124
- if hasattr(sys, 'pypy_version_info'):
125
- return 'PyPy'
126
- else:
127
- return 'Python'
128
-
129
-
130
- def _select_scheme(ob, name):
131
- scheme = _inject_headers(name, _load_scheme(_resolve_scheme(name)))
132
- vars(ob).update(_remove_set(ob, _scheme_attrs(scheme)))
133
-
134
-
135
- def _remove_set(ob, attrs):
136
- """
137
- Include only attrs that are None in ob.
138
- """
139
- return {key: value for key, value in attrs.items() if getattr(ob, key) is None}
140
-
141
-
142
- def _resolve_scheme(name):
143
- os_name, sep, key = name.partition('_')
144
- try:
145
- resolved = sysconfig.get_preferred_scheme(key)
146
- except Exception:
147
- resolved = fw.scheme(_pypy_hack(name))
148
- return resolved
149
-
150
-
151
- def _load_scheme(name):
152
- return _load_schemes()[name]
153
-
154
-
155
- def _inject_headers(name, scheme):
156
- """
157
- Given a scheme name and the resolved scheme,
158
- if the scheme does not include headers, resolve
159
- the fallback scheme for the name and use headers
160
- from it. pypa/distutils#88
161
- """
162
- # Bypass the preferred scheme, which may not
163
- # have defined headers.
164
- fallback = _load_scheme(_pypy_hack(name))
165
- scheme.setdefault('headers', fallback['headers'])
166
- return scheme
167
-
168
-
169
- def _scheme_attrs(scheme):
170
- """Resolve install directories by applying the install schemes."""
171
- return {f'install_{key}': scheme[key] for key in SCHEME_KEYS}
172
-
173
-
174
- def _pypy_hack(name):
175
- PY37 = sys.version_info < (3, 8)
176
- old_pypy = hasattr(sys, 'pypy_version_info') and PY37
177
- prefix = not name.endswith(('_user', '_home'))
178
- pypy_name = 'pypy' + '_nt' * (os.name == 'nt')
179
- return pypy_name if old_pypy and prefix else name
180
-
181
-
182
- class install(Command):
183
-
184
- description = "install everything from build directory"
185
-
186
- user_options = [
187
- # Select installation scheme and set base director(y|ies)
188
- ('prefix=', None, "installation prefix"),
189
- ('exec-prefix=', None, "(Unix only) prefix for platform-specific files"),
190
- ('home=', None, "(Unix only) home directory to install under"),
191
- # Or, just set the base director(y|ies)
192
- (
193
- 'install-base=',
194
- None,
195
- "base installation directory (instead of --prefix or --home)",
196
- ),
197
- (
198
- 'install-platbase=',
199
- None,
200
- "base installation directory for platform-specific files "
201
- + "(instead of --exec-prefix or --home)",
202
- ),
203
- ('root=', None, "install everything relative to this alternate root directory"),
204
- # Or, explicitly set the installation scheme
205
- (
206
- 'install-purelib=',
207
- None,
208
- "installation directory for pure Python module distributions",
209
- ),
210
- (
211
- 'install-platlib=',
212
- None,
213
- "installation directory for non-pure module distributions",
214
- ),
215
- (
216
- 'install-lib=',
217
- None,
218
- "installation directory for all module distributions "
219
- + "(overrides --install-purelib and --install-platlib)",
220
- ),
221
- ('install-headers=', None, "installation directory for C/C++ headers"),
222
- ('install-scripts=', None, "installation directory for Python scripts"),
223
- ('install-data=', None, "installation directory for data files"),
224
- # Byte-compilation options -- see install_lib.py for details, as
225
- # these are duplicated from there (but only install_lib does
226
- # anything with them).
227
- ('compile', 'c', "compile .py to .pyc [default]"),
228
- ('no-compile', None, "don't compile .py files"),
229
- (
230
- 'optimize=',
231
- 'O',
232
- "also compile with optimization: -O1 for \"python -O\", "
233
- "-O2 for \"python -OO\", and -O0 to disable [default: -O0]",
234
- ),
235
- # Miscellaneous control options
236
- ('force', 'f', "force installation (overwrite any existing files)"),
237
- ('skip-build', None, "skip rebuilding everything (for testing/debugging)"),
238
- # Where to install documentation (eventually!)
239
- # ('doc-format=', None, "format of documentation to generate"),
240
- # ('install-man=', None, "directory for Unix man pages"),
241
- # ('install-html=', None, "directory for HTML documentation"),
242
- # ('install-info=', None, "directory for GNU info files"),
243
- ('record=', None, "filename in which to record list of installed files"),
244
- ]
245
-
246
- boolean_options = ['compile', 'force', 'skip-build']
247
-
248
- if HAS_USER_SITE:
249
- user_options.append(
250
- ('user', None, "install in user site-package '%s'" % USER_SITE)
251
- )
252
- boolean_options.append('user')
253
-
254
- negative_opt = {'no-compile': 'compile'}
255
-
256
- def initialize_options(self):
257
- """Initializes options."""
258
- # High-level options: these select both an installation base
259
- # and scheme.
260
- self.prefix = None
261
- self.exec_prefix = None
262
- self.home = None
263
- self.user = 0
264
-
265
- # These select only the installation base; it's up to the user to
266
- # specify the installation scheme (currently, that means supplying
267
- # the --install-{platlib,purelib,scripts,data} options).
268
- self.install_base = None
269
- self.install_platbase = None
270
- self.root = None
271
-
272
- # These options are the actual installation directories; if not
273
- # supplied by the user, they are filled in using the installation
274
- # scheme implied by prefix/exec-prefix/home and the contents of
275
- # that installation scheme.
276
- self.install_purelib = None # for pure module distributions
277
- self.install_platlib = None # non-pure (dists w/ extensions)
278
- self.install_headers = None # for C/C++ headers
279
- self.install_lib = None # set to either purelib or platlib
280
- self.install_scripts = None
281
- self.install_data = None
282
- self.install_userbase = USER_BASE
283
- self.install_usersite = USER_SITE
284
-
285
- self.compile = None
286
- self.optimize = None
287
-
288
- # Deprecated
289
- # These two are for putting non-packagized distributions into their
290
- # own directory and creating a .pth file if it makes sense.
291
- # 'extra_path' comes from the setup file; 'install_path_file' can
292
- # be turned off if it makes no sense to install a .pth file. (But
293
- # better to install it uselessly than to guess wrong and not
294
- # install it when it's necessary and would be used!) Currently,
295
- # 'install_path_file' is always true unless some outsider meddles
296
- # with it.
297
- self.extra_path = None
298
- self.install_path_file = 1
299
-
300
- # 'force' forces installation, even if target files are not
301
- # out-of-date. 'skip_build' skips running the "build" command,
302
- # handy if you know it's not necessary. 'warn_dir' (which is *not*
303
- # a user option, it's just there so the bdist_* commands can turn
304
- # it off) determines whether we warn about installing to a
305
- # directory not in sys.path.
306
- self.force = 0
307
- self.skip_build = 0
308
- self.warn_dir = 1
309
-
310
- # These are only here as a conduit from the 'build' command to the
311
- # 'install_*' commands that do the real work. ('build_base' isn't
312
- # actually used anywhere, but it might be useful in future.) They
313
- # are not user options, because if the user told the install
314
- # command where the build directory is, that wouldn't affect the
315
- # build command.
316
- self.build_base = None
317
- self.build_lib = None
318
-
319
- # Not defined yet because we don't know anything about
320
- # documentation yet.
321
- # self.install_man = None
322
- # self.install_html = None
323
- # self.install_info = None
324
-
325
- self.record = None
326
-
327
- # -- Option finalizing methods -------------------------------------
328
- # (This is rather more involved than for most commands,
329
- # because this is where the policy for installing third-
330
- # party Python modules on various platforms given a wide
331
- # array of user input is decided. Yes, it's quite complex!)
332
-
333
- def finalize_options(self): # noqa: C901
334
- """Finalizes options."""
335
- # This method (and its helpers, like 'finalize_unix()',
336
- # 'finalize_other()', and 'select_scheme()') is where the default
337
- # installation directories for modules, extension modules, and
338
- # anything else we care to install from a Python module
339
- # distribution. Thus, this code makes a pretty important policy
340
- # statement about how third-party stuff is added to a Python
341
- # installation! Note that the actual work of installation is done
342
- # by the relatively simple 'install_*' commands; they just take
343
- # their orders from the installation directory options determined
344
- # here.
345
-
346
- # Check for errors/inconsistencies in the options; first, stuff
347
- # that's wrong on any platform.
348
-
349
- if (self.prefix or self.exec_prefix or self.home) and (
350
- self.install_base or self.install_platbase
351
- ):
352
- raise DistutilsOptionError(
353
- "must supply either prefix/exec-prefix/home or "
354
- + "install-base/install-platbase -- not both"
355
- )
356
-
357
- if self.home and (self.prefix or self.exec_prefix):
358
- raise DistutilsOptionError(
359
- "must supply either home or prefix/exec-prefix -- not both"
360
- )
361
-
362
- if self.user and (
363
- self.prefix
364
- or self.exec_prefix
365
- or self.home
366
- or self.install_base
367
- or self.install_platbase
368
- ):
369
- raise DistutilsOptionError(
370
- "can't combine user with prefix, "
371
- "exec_prefix/home, or install_(plat)base"
372
- )
373
-
374
- # Next, stuff that's wrong (or dubious) only on certain platforms.
375
- if os.name != "posix":
376
- if self.exec_prefix:
377
- self.warn("exec-prefix option ignored on this platform")
378
- self.exec_prefix = None
379
-
380
- # Now the interesting logic -- so interesting that we farm it out
381
- # to other methods. The goal of these methods is to set the final
382
- # values for the install_{lib,scripts,data,...} options, using as
383
- # input a heady brew of prefix, exec_prefix, home, install_base,
384
- # install_platbase, user-supplied versions of
385
- # install_{purelib,platlib,lib,scripts,data,...}, and the
386
- # install schemes. Phew!
387
-
388
- self.dump_dirs("pre-finalize_{unix,other}")
389
-
390
- if os.name == 'posix':
391
- self.finalize_unix()
392
- else:
393
- self.finalize_other()
394
-
395
- self.dump_dirs("post-finalize_{unix,other}()")
396
-
397
- # Expand configuration variables, tilde, etc. in self.install_base
398
- # and self.install_platbase -- that way, we can use $base or
399
- # $platbase in the other installation directories and not worry
400
- # about needing recursive variable expansion (shudder).
401
-
402
- py_version = sys.version.split()[0]
403
- (prefix, exec_prefix) = get_config_vars('prefix', 'exec_prefix')
404
- try:
405
- abiflags = sys.abiflags
406
- except AttributeError:
407
- # sys.abiflags may not be defined on all platforms.
408
- abiflags = ''
409
- local_vars = {
410
- 'dist_name': self.distribution.get_name(),
411
- 'dist_version': self.distribution.get_version(),
412
- 'dist_fullname': self.distribution.get_fullname(),
413
- 'py_version': py_version,
414
- 'py_version_short': '%d.%d' % sys.version_info[:2],
415
- 'py_version_nodot': '%d%d' % sys.version_info[:2],
416
- 'sys_prefix': prefix,
417
- 'prefix': prefix,
418
- 'sys_exec_prefix': exec_prefix,
419
- 'exec_prefix': exec_prefix,
420
- 'abiflags': abiflags,
421
- 'platlibdir': getattr(sys, 'platlibdir', 'lib'),
422
- 'implementation_lower': _get_implementation().lower(),
423
- 'implementation': _get_implementation(),
424
- }
425
-
426
- # vars for compatibility on older Pythons
427
- compat_vars = dict(
428
- # Python 3.9 and earlier
429
- py_version_nodot_plat=getattr(sys, 'winver', '').replace('.', ''),
430
- )
431
-
432
- if HAS_USER_SITE:
433
- local_vars['userbase'] = self.install_userbase
434
- local_vars['usersite'] = self.install_usersite
435
-
436
- self.config_vars = _collections.DictStack(
437
- [fw.vars(), compat_vars, sysconfig.get_config_vars(), local_vars]
438
- )
439
-
440
- self.expand_basedirs()
441
-
442
- self.dump_dirs("post-expand_basedirs()")
443
-
444
- # Now define config vars for the base directories so we can expand
445
- # everything else.
446
- local_vars['base'] = self.install_base
447
- local_vars['platbase'] = self.install_platbase
448
-
449
- if DEBUG:
450
- from pprint import pprint
451
-
452
- print("config vars:")
453
- pprint(dict(self.config_vars))
454
-
455
- # Expand "~" and configuration variables in the installation
456
- # directories.
457
- self.expand_dirs()
458
-
459
- self.dump_dirs("post-expand_dirs()")
460
-
461
- # Create directories in the home dir:
462
- if self.user:
463
- self.create_home_path()
464
-
465
- # Pick the actual directory to install all modules to: either
466
- # install_purelib or install_platlib, depending on whether this
467
- # module distribution is pure or not. Of course, if the user
468
- # already specified install_lib, use their selection.
469
- if self.install_lib is None:
470
- if self.distribution.has_ext_modules(): # has extensions: non-pure
471
- self.install_lib = self.install_platlib
472
- else:
473
- self.install_lib = self.install_purelib
474
-
475
- # Convert directories from Unix /-separated syntax to the local
476
- # convention.
477
- self.convert_paths(
478
- 'lib',
479
- 'purelib',
480
- 'platlib',
481
- 'scripts',
482
- 'data',
483
- 'headers',
484
- 'userbase',
485
- 'usersite',
486
- )
487
-
488
- # Deprecated
489
- # Well, we're not actually fully completely finalized yet: we still
490
- # have to deal with 'extra_path', which is the hack for allowing
491
- # non-packagized module distributions (hello, Numerical Python!) to
492
- # get their own directories.
493
- self.handle_extra_path()
494
- self.install_libbase = self.install_lib # needed for .pth file
495
- self.install_lib = os.path.join(self.install_lib, self.extra_dirs)
496
-
497
- # If a new root directory was supplied, make all the installation
498
- # dirs relative to it.
499
- if self.root is not None:
500
- self.change_roots(
501
- 'libbase', 'lib', 'purelib', 'platlib', 'scripts', 'data', 'headers'
502
- )
503
-
504
- self.dump_dirs("after prepending root")
505
-
506
- # Find out the build directories, ie. where to install from.
507
- self.set_undefined_options(
508
- 'build', ('build_base', 'build_base'), ('build_lib', 'build_lib')
509
- )
510
-
511
- # Punt on doc directories for now -- after all, we're punting on
512
- # documentation completely!
513
-
514
- def dump_dirs(self, msg):
515
- """Dumps the list of user options."""
516
- if not DEBUG:
517
- return
518
- from distutils.fancy_getopt import longopt_xlate
519
-
520
- log.debug(msg + ":")
521
- for opt in self.user_options:
522
- opt_name = opt[0]
523
- if opt_name[-1] == "=":
524
- opt_name = opt_name[0:-1]
525
- if opt_name in self.negative_opt:
526
- opt_name = self.negative_opt[opt_name]
527
- opt_name = opt_name.translate(longopt_xlate)
528
- val = not getattr(self, opt_name)
529
- else:
530
- opt_name = opt_name.translate(longopt_xlate)
531
- val = getattr(self, opt_name)
532
- log.debug(" %s: %s", opt_name, val)
533
-
534
- def finalize_unix(self):
535
- """Finalizes options for posix platforms."""
536
- if self.install_base is not None or self.install_platbase is not None:
537
- incomplete_scheme = (
538
- (
539
- self.install_lib is None
540
- and self.install_purelib is None
541
- and self.install_platlib is None
542
- )
543
- or self.install_headers is None
544
- or self.install_scripts is None
545
- or self.install_data is None
546
- )
547
- if incomplete_scheme:
548
- raise DistutilsOptionError(
549
- "install-base or install-platbase supplied, but "
550
- "installation scheme is incomplete"
551
- )
552
- return
553
-
554
- if self.user:
555
- if self.install_userbase is None:
556
- raise DistutilsPlatformError("User base directory is not specified")
557
- self.install_base = self.install_platbase = self.install_userbase
558
- self.select_scheme("posix_user")
559
- elif self.home is not None:
560
- self.install_base = self.install_platbase = self.home
561
- self.select_scheme("posix_home")
562
- else:
563
- if self.prefix is None:
564
- if self.exec_prefix is not None:
565
- raise DistutilsOptionError(
566
- "must not supply exec-prefix without prefix"
567
- )
568
-
569
- # Allow Fedora to add components to the prefix
570
- _prefix_addition = getattr(sysconfig, '_prefix_addition', "")
571
-
572
- self.prefix = os.path.normpath(sys.prefix) + _prefix_addition
573
- self.exec_prefix = os.path.normpath(sys.exec_prefix) + _prefix_addition
574
-
575
- else:
576
- if self.exec_prefix is None:
577
- self.exec_prefix = self.prefix
578
-
579
- self.install_base = self.prefix
580
- self.install_platbase = self.exec_prefix
581
- self.select_scheme("posix_prefix")
582
-
583
- def finalize_other(self):
584
- """Finalizes options for non-posix platforms"""
585
- if self.user:
586
- if self.install_userbase is None:
587
- raise DistutilsPlatformError("User base directory is not specified")
588
- self.install_base = self.install_platbase = self.install_userbase
589
- self.select_scheme(os.name + "_user")
590
- elif self.home is not None:
591
- self.install_base = self.install_platbase = self.home
592
- self.select_scheme("posix_home")
593
- else:
594
- if self.prefix is None:
595
- self.prefix = os.path.normpath(sys.prefix)
596
-
597
- self.install_base = self.install_platbase = self.prefix
598
- try:
599
- self.select_scheme(os.name)
600
- except KeyError:
601
- raise DistutilsPlatformError(
602
- "I don't know how to install stuff on '%s'" % os.name
603
- )
604
-
605
- def select_scheme(self, name):
606
- _select_scheme(self, name)
607
-
608
- def _expand_attrs(self, attrs):
609
- for attr in attrs:
610
- val = getattr(self, attr)
611
- if val is not None:
612
- if os.name == 'posix' or os.name == 'nt':
613
- val = os.path.expanduser(val)
614
- val = subst_vars(val, self.config_vars)
615
- setattr(self, attr, val)
616
-
617
- def expand_basedirs(self):
618
- """Calls `os.path.expanduser` on install_base, install_platbase and
619
- root."""
620
- self._expand_attrs(['install_base', 'install_platbase', 'root'])
621
-
622
- def expand_dirs(self):
623
- """Calls `os.path.expanduser` on install dirs."""
624
- self._expand_attrs(
625
- [
626
- 'install_purelib',
627
- 'install_platlib',
628
- 'install_lib',
629
- 'install_headers',
630
- 'install_scripts',
631
- 'install_data',
632
- ]
633
- )
634
-
635
- def convert_paths(self, *names):
636
- """Call `convert_path` over `names`."""
637
- for name in names:
638
- attr = "install_" + name
639
- setattr(self, attr, convert_path(getattr(self, attr)))
640
-
641
- def handle_extra_path(self):
642
- """Set `path_file` and `extra_dirs` using `extra_path`."""
643
- if self.extra_path is None:
644
- self.extra_path = self.distribution.extra_path
645
-
646
- if self.extra_path is not None:
647
- log.warn(
648
- "Distribution option extra_path is deprecated. "
649
- "See issue27919 for details."
650
- )
651
- if isinstance(self.extra_path, str):
652
- self.extra_path = self.extra_path.split(',')
653
-
654
- if len(self.extra_path) == 1:
655
- path_file = extra_dirs = self.extra_path[0]
656
- elif len(self.extra_path) == 2:
657
- path_file, extra_dirs = self.extra_path
658
- else:
659
- raise DistutilsOptionError(
660
- "'extra_path' option must be a list, tuple, or "
661
- "comma-separated string with 1 or 2 elements"
662
- )
663
-
664
- # convert to local form in case Unix notation used (as it
665
- # should be in setup scripts)
666
- extra_dirs = convert_path(extra_dirs)
667
- else:
668
- path_file = None
669
- extra_dirs = ''
670
-
671
- # XXX should we warn if path_file and not extra_dirs? (in which
672
- # case the path file would be harmless but pointless)
673
- self.path_file = path_file
674
- self.extra_dirs = extra_dirs
675
-
676
- def change_roots(self, *names):
677
- """Change the install directories pointed by name using root."""
678
- for name in names:
679
- attr = "install_" + name
680
- setattr(self, attr, change_root(self.root, getattr(self, attr)))
681
-
682
- def create_home_path(self):
683
- """Create directories under ~."""
684
- if not self.user:
685
- return
686
- home = convert_path(os.path.expanduser("~"))
687
- for name, path in self.config_vars.items():
688
- if str(path).startswith(home) and not os.path.isdir(path):
689
- self.debug_print("os.makedirs('%s', 0o700)" % path)
690
- os.makedirs(path, 0o700)
691
-
692
- # -- Command execution methods -------------------------------------
693
-
694
- def run(self):
695
- """Runs the command."""
696
- # Obviously have to build before we can install
697
- if not self.skip_build:
698
- self.run_command('build')
699
- # If we built for any other platform, we can't install.
700
- build_plat = self.distribution.get_command_obj('build').plat_name
701
- # check warn_dir - it is a clue that the 'install' is happening
702
- # internally, and not to sys.path, so we don't check the platform
703
- # matches what we are running.
704
- if self.warn_dir and build_plat != get_platform():
705
- raise DistutilsPlatformError("Can't install when " "cross-compiling")
706
-
707
- # Run all sub-commands (at least those that need to be run)
708
- for cmd_name in self.get_sub_commands():
709
- self.run_command(cmd_name)
710
-
711
- if self.path_file:
712
- self.create_path_file()
713
-
714
- # write list of installed files, if requested.
715
- if self.record:
716
- outputs = self.get_outputs()
717
- if self.root: # strip any package prefix
718
- root_len = len(self.root)
719
- for counter in range(len(outputs)):
720
- outputs[counter] = outputs[counter][root_len:]
721
- self.execute(
722
- write_file,
723
- (self.record, outputs),
724
- "writing list of installed files to '%s'" % self.record,
725
- )
726
-
727
- sys_path = map(os.path.normpath, sys.path)
728
- sys_path = map(os.path.normcase, sys_path)
729
- install_lib = os.path.normcase(os.path.normpath(self.install_lib))
730
- if (
731
- self.warn_dir
732
- and not (self.path_file and self.install_path_file)
733
- and install_lib not in sys_path
734
- ):
735
- log.debug(
736
- (
737
- "modules installed to '%s', which is not in "
738
- "Python's module search path (sys.path) -- "
739
- "you'll have to change the search path yourself"
740
- ),
741
- self.install_lib,
742
- )
743
-
744
- def create_path_file(self):
745
- """Creates the .pth file"""
746
- filename = os.path.join(self.install_libbase, self.path_file + ".pth")
747
- if self.install_path_file:
748
- self.execute(
749
- write_file, (filename, [self.extra_dirs]), "creating %s" % filename
750
- )
751
- else:
752
- self.warn("path file '%s' not created" % filename)
753
-
754
- # -- Reporting methods ---------------------------------------------
755
-
756
- def get_outputs(self):
757
- """Assembles the outputs of all the sub-commands."""
758
- outputs = []
759
- for cmd_name in self.get_sub_commands():
760
- cmd = self.get_finalized_command(cmd_name)
761
- # Add the contents of cmd.get_outputs(), ensuring
762
- # that outputs doesn't contain duplicate entries
763
- for filename in cmd.get_outputs():
764
- if filename not in outputs:
765
- outputs.append(filename)
766
-
767
- if self.path_file and self.install_path_file:
768
- outputs.append(os.path.join(self.install_libbase, self.path_file + ".pth"))
769
-
770
- return outputs
771
-
772
- def get_inputs(self):
773
- """Returns the inputs of all the sub-commands"""
774
- # XXX gee, this looks familiar ;-(
775
- inputs = []
776
- for cmd_name in self.get_sub_commands():
777
- cmd = self.get_finalized_command(cmd_name)
778
- inputs.extend(cmd.get_inputs())
779
-
780
- return inputs
781
-
782
- # -- Predicates for sub-command list -------------------------------
783
-
784
- def has_lib(self):
785
- """Returns true if the current distribution has any Python
786
- modules to install."""
787
- return (
788
- self.distribution.has_pure_modules() or self.distribution.has_ext_modules()
789
- )
790
-
791
- def has_headers(self):
792
- """Returns true if the current distribution has any headers to
793
- install."""
794
- return self.distribution.has_headers()
795
-
796
- def has_scripts(self):
797
- """Returns true if the current distribution has any scripts to.
798
- install."""
799
- return self.distribution.has_scripts()
800
-
801
- def has_data(self):
802
- """Returns true if the current distribution has any data to.
803
- install."""
804
- return self.distribution.has_data_files()
805
-
806
- # 'sub_commands': a list of commands this command might have to run to
807
- # get its work done. See cmd.py for more info.
808
- sub_commands = [
809
- ('install_lib', has_lib),
810
- ('install_headers', has_headers),
811
- ('install_scripts', has_scripts),
812
- ('install_data', has_data),
813
- ('install_egg_info', lambda self: True),
814
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AzumaSeren100/XuanShen-Bert-VITS2/models.py DELETED
@@ -1,707 +0,0 @@
1
- import copy
2
- import math
3
- import torch
4
- from torch import nn
5
- from torch.nn import functional as F
6
-
7
- import commons
8
- import modules
9
- import attentions
10
- import monotonic_align
11
-
12
- from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
13
- from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
14
-
15
- from commons import init_weights, get_padding
16
- from text import symbols, num_tones, num_languages
17
- class DurationDiscriminator(nn.Module): #vits2
18
- def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
19
- super().__init__()
20
-
21
- self.in_channels = in_channels
22
- self.filter_channels = filter_channels
23
- self.kernel_size = kernel_size
24
- self.p_dropout = p_dropout
25
- self.gin_channels = gin_channels
26
-
27
- self.drop = nn.Dropout(p_dropout)
28
- self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2)
29
- self.norm_1 = modules.LayerNorm(filter_channels)
30
- self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
31
- self.norm_2 = modules.LayerNorm(filter_channels)
32
- self.dur_proj = nn.Conv1d(1, filter_channels, 1)
33
-
34
- self.pre_out_conv_1 = nn.Conv1d(2*filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
35
- self.pre_out_norm_1 = modules.LayerNorm(filter_channels)
36
- self.pre_out_conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
37
- self.pre_out_norm_2 = modules.LayerNorm(filter_channels)
38
-
39
- if gin_channels != 0:
40
- self.cond = nn.Conv1d(gin_channels, in_channels, 1)
41
-
42
- self.output_layer = nn.Sequential(
43
- nn.Linear(filter_channels, 1),
44
- nn.Sigmoid()
45
- )
46
-
47
- def forward_probability(self, x, x_mask, dur, g=None):
48
- dur = self.dur_proj(dur)
49
- x = torch.cat([x, dur], dim=1)
50
- x = self.pre_out_conv_1(x * x_mask)
51
- x = torch.relu(x)
52
- x = self.pre_out_norm_1(x)
53
- x = self.drop(x)
54
- x = self.pre_out_conv_2(x * x_mask)
55
- x = torch.relu(x)
56
- x = self.pre_out_norm_2(x)
57
- x = self.drop(x)
58
- x = x * x_mask
59
- x = x.transpose(1, 2)
60
- output_prob = self.output_layer(x)
61
- return output_prob
62
-
63
- def forward(self, x, x_mask, dur_r, dur_hat, g=None):
64
- x = torch.detach(x)
65
- if g is not None:
66
- g = torch.detach(g)
67
- x = x + self.cond(g)
68
- x = self.conv_1(x * x_mask)
69
- x = torch.relu(x)
70
- x = self.norm_1(x)
71
- x = self.drop(x)
72
- x = self.conv_2(x * x_mask)
73
- x = torch.relu(x)
74
- x = self.norm_2(x)
75
- x = self.drop(x)
76
-
77
- output_probs = []
78
- for dur in [dur_r, dur_hat]:
79
- output_prob = self.forward_probability(x, x_mask, dur, g)
80
- output_probs.append(output_prob)
81
-
82
- return output_probs
83
-
84
- class TransformerCouplingBlock(nn.Module):
85
- def __init__(self,
86
- channels,
87
- hidden_channels,
88
- filter_channels,
89
- n_heads,
90
- n_layers,
91
- kernel_size,
92
- p_dropout,
93
- n_flows=4,
94
- gin_channels=0,
95
- share_parameter=False
96
- ):
97
-
98
- super().__init__()
99
- self.channels = channels
100
- self.hidden_channels = hidden_channels
101
- self.kernel_size = kernel_size
102
- self.n_layers = n_layers
103
- self.n_flows = n_flows
104
- self.gin_channels = gin_channels
105
-
106
- self.flows = nn.ModuleList()
107
-
108
- self.wn = attentions.FFT(hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, isflow = True, gin_channels = self.gin_channels) if share_parameter else None
109
-
110
- for i in range(n_flows):
111
- self.flows.append(
112
- modules.TransformerCouplingLayer(channels, hidden_channels, kernel_size, n_layers, n_heads, p_dropout, filter_channels, mean_only=True, wn_sharing_parameter=self.wn, gin_channels = self.gin_channels))
113
- self.flows.append(modules.Flip())
114
-
115
- def forward(self, x, x_mask, g=None, reverse=False):
116
- if not reverse:
117
- for flow in self.flows:
118
- x, _ = flow(x, x_mask, g=g, reverse=reverse)
119
- else:
120
- for flow in reversed(self.flows):
121
- x = flow(x, x_mask, g=g, reverse=reverse)
122
- return x
123
-
124
- class StochasticDurationPredictor(nn.Module):
125
- def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
126
- super().__init__()
127
- filter_channels = in_channels # it needs to be removed from future version.
128
- self.in_channels = in_channels
129
- self.filter_channels = filter_channels
130
- self.kernel_size = kernel_size
131
- self.p_dropout = p_dropout
132
- self.n_flows = n_flows
133
- self.gin_channels = gin_channels
134
-
135
- self.log_flow = modules.Log()
136
- self.flows = nn.ModuleList()
137
- self.flows.append(modules.ElementwiseAffine(2))
138
- for i in range(n_flows):
139
- self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
140
- self.flows.append(modules.Flip())
141
-
142
- self.post_pre = nn.Conv1d(1, filter_channels, 1)
143
- self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
144
- self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
145
- self.post_flows = nn.ModuleList()
146
- self.post_flows.append(modules.ElementwiseAffine(2))
147
- for i in range(4):
148
- self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
149
- self.post_flows.append(modules.Flip())
150
-
151
- self.pre = nn.Conv1d(in_channels, filter_channels, 1)
152
- self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
153
- self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
154
- if gin_channels != 0:
155
- self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
156
-
157
- def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
158
- x = torch.detach(x)
159
- x = self.pre(x)
160
- if g is not None:
161
- g = torch.detach(g)
162
- x = x + self.cond(g)
163
- x = self.convs(x, x_mask)
164
- x = self.proj(x) * x_mask
165
-
166
- if not reverse:
167
- flows = self.flows
168
- assert w is not None
169
-
170
- logdet_tot_q = 0
171
- h_w = self.post_pre(w)
172
- h_w = self.post_convs(h_w, x_mask)
173
- h_w = self.post_proj(h_w) * x_mask
174
- e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
175
- z_q = e_q
176
- for flow in self.post_flows:
177
- z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
178
- logdet_tot_q += logdet_q
179
- z_u, z1 = torch.split(z_q, [1, 1], 1)
180
- u = torch.sigmoid(z_u) * x_mask
181
- z0 = (w - u) * x_mask
182
- logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2])
183
- logq = torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q ** 2)) * x_mask, [1, 2]) - logdet_tot_q
184
-
185
- logdet_tot = 0
186
- z0, logdet = self.log_flow(z0, x_mask)
187
- logdet_tot += logdet
188
- z = torch.cat([z0, z1], 1)
189
- for flow in flows:
190
- z, logdet = flow(z, x_mask, g=x, reverse=reverse)
191
- logdet_tot = logdet_tot + logdet
192
- nll = torch.sum(0.5 * (math.log(2 * math.pi) + (z ** 2)) * x_mask, [1, 2]) - logdet_tot
193
- return nll + logq # [b]
194
- else:
195
- flows = list(reversed(self.flows))
196
- flows = flows[:-2] + [flows[-1]] # remove a useless vflow
197
- z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
198
- for flow in flows:
199
- z = flow(z, x_mask, g=x, reverse=reverse)
200
- z0, z1 = torch.split(z, [1, 1], 1)
201
- logw = z0
202
- return logw
203
-
204
-
205
- class DurationPredictor(nn.Module):
206
- def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
207
- super().__init__()
208
-
209
- self.in_channels = in_channels
210
- self.filter_channels = filter_channels
211
- self.kernel_size = kernel_size
212
- self.p_dropout = p_dropout
213
- self.gin_channels = gin_channels
214
-
215
- self.drop = nn.Dropout(p_dropout)
216
- self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
217
- self.norm_1 = modules.LayerNorm(filter_channels)
218
- self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
219
- self.norm_2 = modules.LayerNorm(filter_channels)
220
- self.proj = nn.Conv1d(filter_channels, 1, 1)
221
-
222
- if gin_channels != 0:
223
- self.cond = nn.Conv1d(gin_channels, in_channels, 1)
224
-
225
- def forward(self, x, x_mask, g=None):
226
- x = torch.detach(x)
227
- if g is not None:
228
- g = torch.detach(g)
229
- x = x + self.cond(g)
230
- x = self.conv_1(x * x_mask)
231
- x = torch.relu(x)
232
- x = self.norm_1(x)
233
- x = self.drop(x)
234
- x = self.conv_2(x * x_mask)
235
- x = torch.relu(x)
236
- x = self.norm_2(x)
237
- x = self.drop(x)
238
- x = self.proj(x * x_mask)
239
- return x * x_mask
240
-
241
-
242
- class TextEncoder(nn.Module):
243
- def __init__(self,
244
- n_vocab,
245
- out_channels,
246
- hidden_channels,
247
- filter_channels,
248
- n_heads,
249
- n_layers,
250
- kernel_size,
251
- p_dropout,
252
- gin_channels=0):
253
- super().__init__()
254
- self.n_vocab = n_vocab
255
- self.out_channels = out_channels
256
- self.hidden_channels = hidden_channels
257
- self.filter_channels = filter_channels
258
- self.n_heads = n_heads
259
- self.n_layers = n_layers
260
- self.kernel_size = kernel_size
261
- self.p_dropout = p_dropout
262
- self.gin_channels = gin_channels
263
- self.emb = nn.Embedding(len(symbols), hidden_channels)
264
- nn.init.normal_(self.emb.weight, 0.0, hidden_channels ** -0.5)
265
- self.tone_emb = nn.Embedding(num_tones, hidden_channels)
266
- nn.init.normal_(self.tone_emb.weight, 0.0, hidden_channels ** -0.5)
267
- self.language_emb = nn.Embedding(num_languages, hidden_channels)
268
- nn.init.normal_(self.language_emb.weight, 0.0, hidden_channels ** -0.5)
269
- self.bert_proj = nn.Conv1d(1024, hidden_channels, 1)
270
-
271
- self.encoder = attentions.Encoder(
272
- hidden_channels,
273
- filter_channels,
274
- n_heads,
275
- n_layers,
276
- kernel_size,
277
- p_dropout,
278
- gin_channels=self.gin_channels)
279
- self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
280
-
281
- def forward(self, x, x_lengths, tone, language, bert, g=None):
282
- x = (self.emb(x)+ self.tone_emb(tone)+ self.language_emb(language)+self.bert_proj(bert).transpose(1,2)) * math.sqrt(self.hidden_channels) # [b, t, h]
283
- x = torch.transpose(x, 1, -1) # [b, h, t]
284
- x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
285
-
286
- x = self.encoder(x * x_mask, x_mask, g=g)
287
- stats = self.proj(x) * x_mask
288
-
289
- m, logs = torch.split(stats, self.out_channels, dim=1)
290
- return x, m, logs, x_mask
291
-
292
-
293
- class ResidualCouplingBlock(nn.Module):
294
- def __init__(self,
295
- channels,
296
- hidden_channels,
297
- kernel_size,
298
- dilation_rate,
299
- n_layers,
300
- n_flows=4,
301
- gin_channels=0):
302
- super().__init__()
303
- self.channels = channels
304
- self.hidden_channels = hidden_channels
305
- self.kernel_size = kernel_size
306
- self.dilation_rate = dilation_rate
307
- self.n_layers = n_layers
308
- self.n_flows = n_flows
309
- self.gin_channels = gin_channels
310
-
311
- self.flows = nn.ModuleList()
312
- for i in range(n_flows):
313
- self.flows.append(
314
- modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers,
315
- gin_channels=gin_channels, mean_only=True))
316
- self.flows.append(modules.Flip())
317
-
318
- def forward(self, x, x_mask, g=None, reverse=False):
319
- if not reverse:
320
- for flow in self.flows:
321
- x, _ = flow(x, x_mask, g=g, reverse=reverse)
322
- else:
323
- for flow in reversed(self.flows):
324
- x = flow(x, x_mask, g=g, reverse=reverse)
325
- return x
326
-
327
-
328
- class PosteriorEncoder(nn.Module):
329
- def __init__(self,
330
- in_channels,
331
- out_channels,
332
- hidden_channels,
333
- kernel_size,
334
- dilation_rate,
335
- n_layers,
336
- gin_channels=0):
337
- super().__init__()
338
- self.in_channels = in_channels
339
- self.out_channels = out_channels
340
- self.hidden_channels = hidden_channels
341
- self.kernel_size = kernel_size
342
- self.dilation_rate = dilation_rate
343
- self.n_layers = n_layers
344
- self.gin_channels = gin_channels
345
-
346
- self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
347
- self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
348
- self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
349
-
350
- def forward(self, x, x_lengths, g=None):
351
- x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
352
- x = self.pre(x) * x_mask
353
- x = self.enc(x, x_mask, g=g)
354
- stats = self.proj(x) * x_mask
355
- m, logs = torch.split(stats, self.out_channels, dim=1)
356
- z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
357
- return z, m, logs, x_mask
358
-
359
-
360
- class Generator(torch.nn.Module):
361
- def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
362
- upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
363
- super(Generator, self).__init__()
364
- self.num_kernels = len(resblock_kernel_sizes)
365
- self.num_upsamples = len(upsample_rates)
366
- self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
367
- resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
368
-
369
- self.ups = nn.ModuleList()
370
- for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
371
- self.ups.append(weight_norm(
372
- ConvTranspose1d(upsample_initial_channel // (2 ** i), upsample_initial_channel // (2 ** (i + 1)),
373
- k, u, padding=(k - u) // 2)))
374
-
375
- self.resblocks = nn.ModuleList()
376
- for i in range(len(self.ups)):
377
- ch = upsample_initial_channel // (2 ** (i + 1))
378
- for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
379
- self.resblocks.append(resblock(ch, k, d))
380
-
381
- self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
382
- self.ups.apply(init_weights)
383
-
384
- if gin_channels != 0:
385
- self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
386
-
387
- def forward(self, x, g=None):
388
- x = self.conv_pre(x)
389
- if g is not None:
390
- x = x + self.cond(g)
391
-
392
- for i in range(self.num_upsamples):
393
- x = F.leaky_relu(x, modules.LRELU_SLOPE)
394
- x = self.ups[i](x)
395
- xs = None
396
- for j in range(self.num_kernels):
397
- if xs is None:
398
- xs = self.resblocks[i * self.num_kernels + j](x)
399
- else:
400
- xs += self.resblocks[i * self.num_kernels + j](x)
401
- x = xs / self.num_kernels
402
- x = F.leaky_relu(x)
403
- x = self.conv_post(x)
404
- x = torch.tanh(x)
405
-
406
- return x
407
-
408
- def remove_weight_norm(self):
409
- print('Removing weight norm...')
410
- for l in self.ups:
411
- remove_weight_norm(l)
412
- for l in self.resblocks:
413
- l.remove_weight_norm()
414
-
415
-
416
- class DiscriminatorP(torch.nn.Module):
417
- def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
418
- super(DiscriminatorP, self).__init__()
419
- self.period = period
420
- self.use_spectral_norm = use_spectral_norm
421
- norm_f = weight_norm if use_spectral_norm == False else spectral_norm
422
- self.convs = nn.ModuleList([
423
- norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
424
- norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
425
- norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
426
- norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
427
- norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
428
- ])
429
- self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
430
-
431
- def forward(self, x):
432
- fmap = []
433
-
434
- # 1d to 2d
435
- b, c, t = x.shape
436
- if t % self.period != 0: # pad first
437
- n_pad = self.period - (t % self.period)
438
- x = F.pad(x, (0, n_pad), "reflect")
439
- t = t + n_pad
440
- x = x.view(b, c, t // self.period, self.period)
441
-
442
- for l in self.convs:
443
- x = l(x)
444
- x = F.leaky_relu(x, modules.LRELU_SLOPE)
445
- fmap.append(x)
446
- x = self.conv_post(x)
447
- fmap.append(x)
448
- x = torch.flatten(x, 1, -1)
449
-
450
- return x, fmap
451
-
452
-
453
- class DiscriminatorS(torch.nn.Module):
454
- def __init__(self, use_spectral_norm=False):
455
- super(DiscriminatorS, self).__init__()
456
- norm_f = weight_norm if use_spectral_norm == False else spectral_norm
457
- self.convs = nn.ModuleList([
458
- norm_f(Conv1d(1, 16, 15, 1, padding=7)),
459
- norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
460
- norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
461
- norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
462
- norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
463
- norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
464
- ])
465
- self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
466
-
467
- def forward(self, x):
468
- fmap = []
469
-
470
- for l in self.convs:
471
- x = l(x)
472
- x = F.leaky_relu(x, modules.LRELU_SLOPE)
473
- fmap.append(x)
474
- x = self.conv_post(x)
475
- fmap.append(x)
476
- x = torch.flatten(x, 1, -1)
477
-
478
- return x, fmap
479
-
480
-
481
- class MultiPeriodDiscriminator(torch.nn.Module):
482
- def __init__(self, use_spectral_norm=False):
483
- super(MultiPeriodDiscriminator, self).__init__()
484
- periods = [2, 3, 5, 7, 11]
485
-
486
- discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
487
- discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
488
- self.discriminators = nn.ModuleList(discs)
489
-
490
- def forward(self, y, y_hat):
491
- y_d_rs = []
492
- y_d_gs = []
493
- fmap_rs = []
494
- fmap_gs = []
495
- for i, d in enumerate(self.discriminators):
496
- y_d_r, fmap_r = d(y)
497
- y_d_g, fmap_g = d(y_hat)
498
- y_d_rs.append(y_d_r)
499
- y_d_gs.append(y_d_g)
500
- fmap_rs.append(fmap_r)
501
- fmap_gs.append(fmap_g)
502
-
503
- return y_d_rs, y_d_gs, fmap_rs, fmap_gs
504
-
505
- class ReferenceEncoder(nn.Module):
506
- '''
507
- inputs --- [N, Ty/r, n_mels*r] mels
508
- outputs --- [N, ref_enc_gru_size]
509
- '''
510
-
511
- def __init__(self, spec_channels, gin_channels=0):
512
-
513
- super().__init__()
514
- self.spec_channels = spec_channels
515
- ref_enc_filters = [32, 32, 64, 64, 128, 128]
516
- K = len(ref_enc_filters)
517
- filters = [1] + ref_enc_filters
518
- convs = [weight_norm(nn.Conv2d(in_channels=filters[i],
519
- out_channels=filters[i + 1],
520
- kernel_size=(3, 3),
521
- stride=(2, 2),
522
- padding=(1, 1))) for i in range(K)]
523
- self.convs = nn.ModuleList(convs)
524
- # self.wns = nn.ModuleList([weight_norm(num_features=ref_enc_filters[i]) for i in range(K)])
525
-
526
- out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K)
527
- self.gru = nn.GRU(input_size=ref_enc_filters[-1] * out_channels,
528
- hidden_size=256 // 2,
529
- batch_first=True)
530
- self.proj = nn.Linear(128, gin_channels)
531
-
532
- def forward(self, inputs, mask=None):
533
- N = inputs.size(0)
534
- out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs]
535
- for conv in self.convs:
536
- out = conv(out)
537
- # out = wn(out)
538
- out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K]
539
-
540
- out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K]
541
- T = out.size(1)
542
- N = out.size(0)
543
- out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K]
544
-
545
- self.gru.flatten_parameters()
546
- memory, out = self.gru(out) # out --- [1, N, 128]
547
-
548
- return self.proj(out.squeeze(0))
549
-
550
- def calculate_channels(self, L, kernel_size, stride, pad, n_convs):
551
- for i in range(n_convs):
552
- L = (L - kernel_size + 2 * pad) // stride + 1
553
- return L
554
-
555
-
556
- class SynthesizerTrn(nn.Module):
557
- """
558
- Synthesizer for Training
559
- """
560
-
561
- def __init__(self,
562
- n_vocab,
563
- spec_channels,
564
- segment_size,
565
- inter_channels,
566
- hidden_channels,
567
- filter_channels,
568
- n_heads,
569
- n_layers,
570
- kernel_size,
571
- p_dropout,
572
- resblock,
573
- resblock_kernel_sizes,
574
- resblock_dilation_sizes,
575
- upsample_rates,
576
- upsample_initial_channel,
577
- upsample_kernel_sizes,
578
- n_speakers=256,
579
- gin_channels=256,
580
- use_sdp=True,
581
- n_flow_layer = 4,
582
- n_layers_trans_flow = 3,
583
- flow_share_parameter = False,
584
- use_transformer_flow = True,
585
- **kwargs):
586
-
587
- super().__init__()
588
- self.n_vocab = n_vocab
589
- self.spec_channels = spec_channels
590
- self.inter_channels = inter_channels
591
- self.hidden_channels = hidden_channels
592
- self.filter_channels = filter_channels
593
- self.n_heads = n_heads
594
- self.n_layers = n_layers
595
- self.kernel_size = kernel_size
596
- self.p_dropout = p_dropout
597
- self.resblock = resblock
598
- self.resblock_kernel_sizes = resblock_kernel_sizes
599
- self.resblock_dilation_sizes = resblock_dilation_sizes
600
- self.upsample_rates = upsample_rates
601
- self.upsample_initial_channel = upsample_initial_channel
602
- self.upsample_kernel_sizes = upsample_kernel_sizes
603
- self.segment_size = segment_size
604
- self.n_speakers = n_speakers
605
- self.gin_channels = gin_channels
606
- self.n_layers_trans_flow = n_layers_trans_flow
607
- self.use_spk_conditioned_encoder = kwargs.get("use_spk_conditioned_encoder", True)
608
- self.use_sdp = use_sdp
609
- self.use_noise_scaled_mas = kwargs.get("use_noise_scaled_mas", False)
610
- self.mas_noise_scale_initial = kwargs.get("mas_noise_scale_initial", 0.01)
611
- self.noise_scale_delta = kwargs.get("noise_scale_delta", 2e-6)
612
- self.current_mas_noise_scale = self.mas_noise_scale_initial
613
- if self.use_spk_conditioned_encoder and gin_channels > 0:
614
- self.enc_gin_channels = gin_channels
615
- self.enc_p = TextEncoder(n_vocab,
616
- inter_channels,
617
- hidden_channels,
618
- filter_channels,
619
- n_heads,
620
- n_layers,
621
- kernel_size,
622
- p_dropout,
623
- gin_channels=self.enc_gin_channels)
624
- self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
625
- upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
626
- self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
627
- gin_channels=gin_channels)
628
- if use_transformer_flow:
629
- self.flow = TransformerCouplingBlock(inter_channels, hidden_channels, filter_channels, n_heads, n_layers_trans_flow, 5, p_dropout, n_flow_layer, gin_channels=gin_channels,share_parameter= flow_share_parameter)
630
- else:
631
- self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, n_flow_layer, gin_channels=gin_channels)
632
- self.sdp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
633
- self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
634
-
635
- if n_speakers > 1:
636
- self.emb_g = nn.Embedding(n_speakers, gin_channels)
637
- else:
638
- self.ref_enc = ReferenceEncoder(spec_channels, gin_channels)
639
-
640
- def forward(self, x, x_lengths, y, y_lengths, sid, tone, language, bert):
641
- if self.n_speakers > 0:
642
- g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
643
- else:
644
- g = self.ref_enc(y.transpose(1,2)).unsqueeze(-1)
645
- x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, tone, language, bert,g=g)
646
- z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
647
- z_p = self.flow(z, y_mask, g=g)
648
-
649
- with torch.no_grad():
650
- # negative cross-entropy
651
- s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
652
- neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s]
653
- neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2),
654
- s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
655
- neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
656
- neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
657
- neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
658
- if self.use_noise_scaled_mas:
659
- epsilon = torch.std(neg_cent) * torch.randn_like(neg_cent) * self.current_mas_noise_scale
660
- neg_cent = neg_cent + epsilon
661
-
662
- attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
663
- attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
664
-
665
- w = attn.sum(2)
666
-
667
- l_length_sdp = self.sdp(x, x_mask, w, g=g)
668
- l_length_sdp = l_length_sdp / torch.sum(x_mask)
669
-
670
- logw_ = torch.log(w + 1e-6) * x_mask
671
- logw = self.dp(x, x_mask, g=g)
672
- l_length_dp = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(x_mask) # for averaging
673
-
674
- l_length = l_length_dp + l_length_sdp
675
-
676
- # expand prior
677
- m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
678
- logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
679
-
680
- z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
681
- o = self.dec(z_slice, g=g)
682
- return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q), (x, logw, logw_)
683
-
684
- def infer(self, x, x_lengths, sid, tone, language, bert, noise_scale=.667, length_scale=1, noise_scale_w=0.8, max_len=None, sdp_ratio=0,y=None):
685
- #x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, tone, language, bert)
686
- # g = self.gst(y)
687
- if self.n_speakers > 0:
688
- g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
689
- else:
690
- g = self.ref_enc(y.transpose(1,2)).unsqueeze(-1)
691
- x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, tone, language, bert,g=g)
692
- logw = self.sdp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) * (sdp_ratio) + self.dp(x, x_mask, g=g) * (1 - sdp_ratio)
693
- w = torch.exp(logw) * x_mask * length_scale
694
- w_ceil = torch.ceil(w)
695
- y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
696
- y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
697
- attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
698
- attn = commons.generate_path(w_ceil, attn_mask)
699
-
700
- m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
701
- logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1,
702
- 2) # [b, t', t], [b, t, d] -> [b, d, t']
703
-
704
- z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
705
- z = self.flow(z_p, y_mask, g=g, reverse=True)
706
- o = self.dec((z * y_mask)[:, :, :max_len], g=g)
707
- return o, attn, y_mask, (z, z_p, m_p, logs_p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/Dual-Key_Backdoor_Attacks/bottom-up-attention-vqa/language_model.py DELETED
@@ -1,81 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- from torch.autograd import Variable
4
- import numpy as np
5
-
6
-
7
- class WordEmbedding(nn.Module):
8
- """Word Embedding
9
-
10
- The ntoken-th dim is used for padding_idx, which agrees *implicitly*
11
- with the definition in Dictionary.
12
- """
13
- def __init__(self, ntoken, emb_dim, dropout):
14
- super(WordEmbedding, self).__init__()
15
- self.emb = nn.Embedding(ntoken+1, emb_dim, padding_idx=ntoken)
16
- self.dropout = nn.Dropout(dropout)
17
- self.ntoken = ntoken
18
- self.emb_dim = emb_dim
19
-
20
- def init_embedding(self, np_file):
21
- weight_init = torch.from_numpy(np.load(np_file))
22
- assert weight_init.shape == (self.ntoken, self.emb_dim)
23
- self.emb.weight.data[:self.ntoken] = weight_init
24
-
25
- def forward(self, x):
26
- emb = self.emb(x)
27
- emb = self.dropout(emb)
28
- return emb
29
-
30
-
31
- class QuestionEmbedding(nn.Module):
32
- def __init__(self, in_dim, num_hid, nlayers, bidirect, dropout, rnn_type='GRU'):
33
- """Module for question embedding
34
- """
35
- super(QuestionEmbedding, self).__init__()
36
- assert rnn_type == 'LSTM' or rnn_type == 'GRU'
37
- rnn_cls = nn.LSTM if rnn_type == 'LSTM' else nn.GRU
38
-
39
- self.rnn = rnn_cls(
40
- in_dim, num_hid, nlayers,
41
- bidirectional=bidirect,
42
- dropout=dropout,
43
- batch_first=True)
44
-
45
- self.in_dim = in_dim
46
- self.num_hid = num_hid
47
- self.nlayers = nlayers
48
- self.rnn_type = rnn_type
49
- self.ndirections = 1 + int(bidirect)
50
-
51
- def init_hidden(self, batch):
52
- # just to get the type of tensor
53
- weight = next(self.parameters()).data
54
- hid_shape = (self.nlayers * self.ndirections, batch, self.num_hid)
55
- if self.rnn_type == 'LSTM':
56
- return (Variable(weight.new(*hid_shape).zero_()),
57
- Variable(weight.new(*hid_shape).zero_()))
58
- else:
59
- return Variable(weight.new(*hid_shape).zero_())
60
-
61
- def forward(self, x):
62
- # x: [batch, sequence, in_dim]
63
- batch = x.size(0)
64
- hidden = self.init_hidden(batch)
65
- self.rnn.flatten_parameters()
66
- output, hidden = self.rnn(x, hidden)
67
-
68
- if self.ndirections == 1:
69
- return output[:, -1]
70
-
71
- forward_ = output[:, -1, :self.num_hid]
72
- backward = output[:, 0, self.num_hid:]
73
- return torch.cat((forward_, backward), dim=1)
74
-
75
- def forward_all(self, x):
76
- # x: [batch, sequence, in_dim]
77
- batch = x.size(0)
78
- hidden = self.init_hidden(batch)
79
- self.rnn.flatten_parameters()
80
- output, hidden = self.rnn(x, hidden)
81
- return output
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/Dual-Key_Backdoor_Attacks/openvqa/openvqa/models/butd/tda.py DELETED
@@ -1,97 +0,0 @@
1
- # --------------------------------------------------------
2
- # OpenVQA
3
- # Written by Zhenwei Shao https://github.com/ParadoxZW
4
- # based on the implementation in https://github.com/hengyuan-hu/bottom-up-attention-vqa
5
- # ELU is chosen as the activation function in non-linear layers due to
6
- # the experiment results that indicate ELU is better than ReLU in BUTD model.
7
- # --------------------------------------------------------
8
-
9
- import torch.nn as nn
10
- import torch.nn.functional as F
11
- from torch.nn.utils.weight_norm import weight_norm
12
- import torch
13
- import math
14
-
15
- # ------------------------------
16
- # ----- Weight Normal MLP ------
17
- # ------------------------------
18
-
19
- class MLP(nn.Module):
20
- """
21
- class for non-linear fully connect network
22
- """
23
-
24
- def __init__(self, dims, act='ELU', dropout_r=0.0):
25
- super(MLP, self).__init__()
26
-
27
- layers = []
28
- for i in range(len(dims) - 1):
29
- in_dim = dims[i]
30
- out_dim = dims[i + 1]
31
- if dropout_r > 0:
32
- layers.append(nn.Dropout(dropout_r))
33
- layers.append(weight_norm(nn.Linear(in_dim, out_dim), dim=None))
34
- if act != '':
35
- layers.append(getattr(nn, act)())
36
-
37
- self.mlp = nn.Sequential(*layers)
38
-
39
- def forward(self, x):
40
- return self.mlp(x)
41
-
42
- # ------------------------------
43
- # ---Top Down Attention Map ----
44
- # ------------------------------
45
-
46
-
47
- class AttnMap(nn.Module):
48
- '''
49
- implementation of top down attention
50
- '''
51
- def __init__(self, __C):
52
- super(AttnMap, self).__init__()
53
- self.__C = __C
54
- self.linear_q = weight_norm(
55
- nn.Linear(__C.HIDDEN_SIZE, __C.HIDDEN_SIZE), dim=None)
56
- self.linear_v = weight_norm(
57
- nn.Linear(__C.IMG_FEAT_SIZE, __C.IMG_FEAT_SIZE), dim=None)
58
- self.nonlinear = MLP(
59
- [__C.IMG_FEAT_SIZE + __C.HIDDEN_SIZE, __C.HIDDEN_SIZE], dropout_r=__C.DROPOUT_R)
60
- self.linear = weight_norm(nn.Linear(__C.HIDDEN_SIZE, 1), dim=None)
61
-
62
- def forward(self, q, v):
63
- v = self.linear_v(v)
64
- q = self.linear_q(q)
65
- logits = self.logits(q, v)
66
- w = nn.functional.softmax(logits, 1)
67
- return w
68
-
69
- def logits(self, q, v):
70
- num_objs = v.size(1)
71
- q = q.unsqueeze(1).repeat(1, num_objs, 1)
72
- vq = torch.cat((v, q), 2)
73
- joint_repr = self.nonlinear(vq)
74
- logits = self.linear(joint_repr)
75
- return logits
76
-
77
- # ------------------------------
78
- # ---- Attended Joint Map ------
79
- # ------------------------------
80
-
81
-
82
- class TDA(nn.Module):
83
- def __init__(self, __C):
84
- super(TDA, self).__init__()
85
-
86
- self.__C = __C
87
- self.v_att = AttnMap(__C)
88
- self.q_net = MLP([__C.HIDDEN_SIZE, __C.HIDDEN_SIZE])
89
- self.v_net = MLP([__C.IMG_FEAT_SIZE, __C.HIDDEN_SIZE])
90
-
91
- def forward(self, q, v):
92
- att = self.v_att(q, v)
93
- atted_v = (att * v).sum(1)
94
- q_repr = self.q_net(q)
95
- v_repr = self.v_net(atted_v)
96
- joint_repr = q_repr * v_repr
97
- return joint_repr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/LIVE/pybind11/tests/test_pytypes.cpp DELETED
@@ -1,375 +0,0 @@
1
- /*
2
- tests/test_pytypes.cpp -- Python type casters
3
-
4
- Copyright (c) 2017 Wenzel Jakob <[email protected]>
5
-
6
- All rights reserved. Use of this source code is governed by a
7
- BSD-style license that can be found in the LICENSE file.
8
- */
9
-
10
- #include "pybind11_tests.h"
11
-
12
-
13
- TEST_SUBMODULE(pytypes, m) {
14
- // test_int
15
- m.def("get_int", []{return py::int_(0);});
16
- // test_iterator
17
- m.def("get_iterator", []{return py::iterator();});
18
- // test_iterable
19
- m.def("get_iterable", []{return py::iterable();});
20
- // test_list
21
- m.def("get_list", []() {
22
- py::list list;
23
- list.append("value");
24
- py::print("Entry at position 0:", list[0]);
25
- list[0] = py::str("overwritten");
26
- list.insert(0, "inserted-0");
27
- list.insert(2, "inserted-2");
28
- return list;
29
- });
30
- m.def("print_list", [](py::list list) {
31
- int index = 0;
32
- for (auto item : list)
33
- py::print("list item {}: {}"_s.format(index++, item));
34
- });
35
- // test_none
36
- m.def("get_none", []{return py::none();});
37
- m.def("print_none", [](py::none none) {
38
- py::print("none: {}"_s.format(none));
39
- });
40
-
41
- // test_set
42
- m.def("get_set", []() {
43
- py::set set;
44
- set.add(py::str("key1"));
45
- set.add("key2");
46
- set.add(std::string("key3"));
47
- return set;
48
- });
49
- m.def("print_set", [](py::set set) {
50
- for (auto item : set)
51
- py::print("key:", item);
52
- });
53
- m.def("set_contains", [](py::set set, py::object key) {
54
- return set.contains(key);
55
- });
56
- m.def("set_contains", [](py::set set, const char* key) {
57
- return set.contains(key);
58
- });
59
-
60
- // test_dict
61
- m.def("get_dict", []() { return py::dict("key"_a="value"); });
62
- m.def("print_dict", [](py::dict dict) {
63
- for (auto item : dict)
64
- py::print("key: {}, value={}"_s.format(item.first, item.second));
65
- });
66
- m.def("dict_keyword_constructor", []() {
67
- auto d1 = py::dict("x"_a=1, "y"_a=2);
68
- auto d2 = py::dict("z"_a=3, **d1);
69
- return d2;
70
- });
71
- m.def("dict_contains", [](py::dict dict, py::object val) {
72
- return dict.contains(val);
73
- });
74
- m.def("dict_contains", [](py::dict dict, const char* val) {
75
- return dict.contains(val);
76
- });
77
-
78
- // test_str
79
- m.def("str_from_string", []() { return py::str(std::string("baz")); });
80
- m.def("str_from_bytes", []() { return py::str(py::bytes("boo", 3)); });
81
- m.def("str_from_object", [](const py::object& obj) { return py::str(obj); });
82
- m.def("repr_from_object", [](const py::object& obj) { return py::repr(obj); });
83
-
84
- m.def("str_format", []() {
85
- auto s1 = "{} + {} = {}"_s.format(1, 2, 3);
86
- auto s2 = "{a} + {b} = {c}"_s.format("a"_a=1, "b"_a=2, "c"_a=3);
87
- return py::make_tuple(s1, s2);
88
- });
89
-
90
- // test_bytes
91
- m.def("bytes_from_string", []() { return py::bytes(std::string("foo")); });
92
- m.def("bytes_from_str", []() { return py::bytes(py::str("bar", 3)); });
93
-
94
- // test_capsule
95
- m.def("return_capsule_with_destructor", []() {
96
- py::print("creating capsule");
97
- return py::capsule([]() {
98
- py::print("destructing capsule");
99
- });
100
- });
101
-
102
- m.def("return_capsule_with_destructor_2", []() {
103
- py::print("creating capsule");
104
- return py::capsule((void *) 1234, [](void *ptr) {
105
- py::print("destructing capsule: {}"_s.format((size_t) ptr));
106
- });
107
- });
108
-
109
- m.def("return_capsule_with_name_and_destructor", []() {
110
- auto capsule = py::capsule((void *) 1234, "pointer type description", [](PyObject *ptr) {
111
- if (ptr) {
112
- auto name = PyCapsule_GetName(ptr);
113
- py::print("destructing capsule ({}, '{}')"_s.format(
114
- (size_t) PyCapsule_GetPointer(ptr, name), name
115
- ));
116
- }
117
- });
118
- void *contents = capsule;
119
- py::print("created capsule ({}, '{}')"_s.format((size_t) contents, capsule.name()));
120
- return capsule;
121
- });
122
-
123
- // test_accessors
124
- m.def("accessor_api", [](py::object o) {
125
- auto d = py::dict();
126
-
127
- d["basic_attr"] = o.attr("basic_attr");
128
-
129
- auto l = py::list();
130
- for (const auto &item : o.attr("begin_end")) {
131
- l.append(item);
132
- }
133
- d["begin_end"] = l;
134
-
135
- d["operator[object]"] = o.attr("d")["operator[object]"_s];
136
- d["operator[char *]"] = o.attr("d")["operator[char *]"];
137
-
138
- d["attr(object)"] = o.attr("sub").attr("attr_obj");
139
- d["attr(char *)"] = o.attr("sub").attr("attr_char");
140
- try {
141
- o.attr("sub").attr("missing").ptr();
142
- } catch (const py::error_already_set &) {
143
- d["missing_attr_ptr"] = "raised"_s;
144
- }
145
- try {
146
- o.attr("missing").attr("doesn't matter");
147
- } catch (const py::error_already_set &) {
148
- d["missing_attr_chain"] = "raised"_s;
149
- }
150
-
151
- d["is_none"] = o.attr("basic_attr").is_none();
152
-
153
- d["operator()"] = o.attr("func")(1);
154
- d["operator*"] = o.attr("func")(*o.attr("begin_end"));
155
-
156
- // Test implicit conversion
157
- py::list implicit_list = o.attr("begin_end");
158
- d["implicit_list"] = implicit_list;
159
- py::dict implicit_dict = o.attr("__dict__");
160
- d["implicit_dict"] = implicit_dict;
161
-
162
- return d;
163
- });
164
-
165
- m.def("tuple_accessor", [](py::tuple existing_t) {
166
- try {
167
- existing_t[0] = 1;
168
- } catch (const py::error_already_set &) {
169
- // --> Python system error
170
- // Only new tuples (refcount == 1) are mutable
171
- auto new_t = py::tuple(3);
172
- for (size_t i = 0; i < new_t.size(); ++i) {
173
- new_t[i] = i;
174
- }
175
- return new_t;
176
- }
177
- return py::tuple();
178
- });
179
-
180
- m.def("accessor_assignment", []() {
181
- auto l = py::list(1);
182
- l[0] = 0;
183
-
184
- auto d = py::dict();
185
- d["get"] = l[0];
186
- auto var = l[0];
187
- d["deferred_get"] = var;
188
- l[0] = 1;
189
- d["set"] = l[0];
190
- var = 99; // this assignment should not overwrite l[0]
191
- d["deferred_set"] = l[0];
192
- d["var"] = var;
193
-
194
- return d;
195
- });
196
-
197
- // test_constructors
198
- m.def("default_constructors", []() {
199
- return py::dict(
200
- "bytes"_a=py::bytes(),
201
- "str"_a=py::str(),
202
- "bool"_a=py::bool_(),
203
- "int"_a=py::int_(),
204
- "float"_a=py::float_(),
205
- "tuple"_a=py::tuple(),
206
- "list"_a=py::list(),
207
- "dict"_a=py::dict(),
208
- "set"_a=py::set()
209
- );
210
- });
211
-
212
- m.def("converting_constructors", [](py::dict d) {
213
- return py::dict(
214
- "bytes"_a=py::bytes(d["bytes"]),
215
- "str"_a=py::str(d["str"]),
216
- "bool"_a=py::bool_(d["bool"]),
217
- "int"_a=py::int_(d["int"]),
218
- "float"_a=py::float_(d["float"]),
219
- "tuple"_a=py::tuple(d["tuple"]),
220
- "list"_a=py::list(d["list"]),
221
- "dict"_a=py::dict(d["dict"]),
222
- "set"_a=py::set(d["set"]),
223
- "memoryview"_a=py::memoryview(d["memoryview"])
224
- );
225
- });
226
-
227
- m.def("cast_functions", [](py::dict d) {
228
- // When converting between Python types, obj.cast<T>() should be the same as T(obj)
229
- return py::dict(
230
- "bytes"_a=d["bytes"].cast<py::bytes>(),
231
- "str"_a=d["str"].cast<py::str>(),
232
- "bool"_a=d["bool"].cast<py::bool_>(),
233
- "int"_a=d["int"].cast<py::int_>(),
234
- "float"_a=d["float"].cast<py::float_>(),
235
- "tuple"_a=d["tuple"].cast<py::tuple>(),
236
- "list"_a=d["list"].cast<py::list>(),
237
- "dict"_a=d["dict"].cast<py::dict>(),
238
- "set"_a=d["set"].cast<py::set>(),
239
- "memoryview"_a=d["memoryview"].cast<py::memoryview>()
240
- );
241
- });
242
-
243
- m.def("convert_to_pybind11_str", [](py::object o) { return py::str(o); });
244
-
245
- m.def("get_implicit_casting", []() {
246
- py::dict d;
247
- d["char*_i1"] = "abc";
248
- const char *c2 = "abc";
249
- d["char*_i2"] = c2;
250
- d["char*_e"] = py::cast(c2);
251
- d["char*_p"] = py::str(c2);
252
-
253
- d["int_i1"] = 42;
254
- int i = 42;
255
- d["int_i2"] = i;
256
- i++;
257
- d["int_e"] = py::cast(i);
258
- i++;
259
- d["int_p"] = py::int_(i);
260
-
261
- d["str_i1"] = std::string("str");
262
- std::string s2("str1");
263
- d["str_i2"] = s2;
264
- s2[3] = '2';
265
- d["str_e"] = py::cast(s2);
266
- s2[3] = '3';
267
- d["str_p"] = py::str(s2);
268
-
269
- py::list l(2);
270
- l[0] = 3;
271
- l[1] = py::cast(6);
272
- l.append(9);
273
- l.append(py::cast(12));
274
- l.append(py::int_(15));
275
-
276
- return py::dict(
277
- "d"_a=d,
278
- "l"_a=l
279
- );
280
- });
281
-
282
- // test_print
283
- m.def("print_function", []() {
284
- py::print("Hello, World!");
285
- py::print(1, 2.0, "three", true, std::string("-- multiple args"));
286
- auto args = py::make_tuple("and", "a", "custom", "separator");
287
- py::print("*args", *args, "sep"_a="-");
288
- py::print("no new line here", "end"_a=" -- ");
289
- py::print("next print");
290
-
291
- auto py_stderr = py::module::import("sys").attr("stderr");
292
- py::print("this goes to stderr", "file"_a=py_stderr);
293
-
294
- py::print("flush", "flush"_a=true);
295
-
296
- py::print("{a} + {b} = {c}"_s.format("a"_a="py::print", "b"_a="str.format", "c"_a="this"));
297
- });
298
-
299
- m.def("print_failure", []() { py::print(42, UnregisteredType()); });
300
-
301
- m.def("hash_function", [](py::object obj) { return py::hash(obj); });
302
-
303
- m.def("test_number_protocol", [](py::object a, py::object b) {
304
- py::list l;
305
- l.append(a.equal(b));
306
- l.append(a.not_equal(b));
307
- l.append(a < b);
308
- l.append(a <= b);
309
- l.append(a > b);
310
- l.append(a >= b);
311
- l.append(a + b);
312
- l.append(a - b);
313
- l.append(a * b);
314
- l.append(a / b);
315
- l.append(a | b);
316
- l.append(a & b);
317
- l.append(a ^ b);
318
- l.append(a >> b);
319
- l.append(a << b);
320
- return l;
321
- });
322
-
323
- m.def("test_list_slicing", [](py::list a) {
324
- return a[py::slice(0, -1, 2)];
325
- });
326
-
327
- m.def("test_memoryview_object", [](py::buffer b) {
328
- return py::memoryview(b);
329
- });
330
-
331
- m.def("test_memoryview_buffer_info", [](py::buffer b) {
332
- return py::memoryview(b.request());
333
- });
334
-
335
- m.def("test_memoryview_from_buffer", [](bool is_unsigned) {
336
- static const int16_t si16[] = { 3, 1, 4, 1, 5 };
337
- static const uint16_t ui16[] = { 2, 7, 1, 8 };
338
- if (is_unsigned)
339
- return py::memoryview::from_buffer(
340
- ui16, { 4 }, { sizeof(uint16_t) });
341
- else
342
- return py::memoryview::from_buffer(
343
- si16, { 5 }, { sizeof(int16_t) });
344
- });
345
-
346
- m.def("test_memoryview_from_buffer_nativeformat", []() {
347
- static const char* format = "@i";
348
- static const int32_t arr[] = { 4, 7, 5 };
349
- return py::memoryview::from_buffer(
350
- arr, sizeof(int32_t), format, { 3 }, { sizeof(int32_t) });
351
- });
352
-
353
- m.def("test_memoryview_from_buffer_empty_shape", []() {
354
- static const char* buf = "";
355
- return py::memoryview::from_buffer(buf, 1, "B", { }, { });
356
- });
357
-
358
- m.def("test_memoryview_from_buffer_invalid_strides", []() {
359
- static const char* buf = "\x02\x03\x04";
360
- return py::memoryview::from_buffer(buf, 1, "B", { 3 }, { });
361
- });
362
-
363
- m.def("test_memoryview_from_buffer_nullptr", []() {
364
- return py::memoryview::from_buffer(
365
- static_cast<void*>(nullptr), 1, "B", { }, { });
366
- });
367
-
368
- #if PY_MAJOR_VERSION >= 3
369
- m.def("test_memoryview_from_memory", []() {
370
- const char* buf = "\xff\xe1\xab\x37";
371
- return py::memoryview::from_memory(
372
- buf, static_cast<ssize_t>(strlen(buf)));
373
- });
374
- #endif
375
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/LIVE/thrust/thrust/system/cpp/pointer.h DELETED
@@ -1,351 +0,0 @@
1
- /*
2
- * Copyright 2008-2018 NVIDIA Corporation
3
- *
4
- * Licensed under the Apache License, Version 2.0 (the "License");
5
- * you may not use this file except in compliance with the License.
6
- * You may obtain a copy of the License at
7
- *
8
- * http://www.apache.org/licenses/LICENSE-2.0
9
- *
10
- * Unless required by applicable law or agreed to in writing, software
11
- * distributed under the License is distributed on an "AS IS" BASIS,
12
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- * See the License for the specific language governing permissions and
14
- * limitations under the License.
15
- */
16
-
17
- #pragma once
18
-
19
- #include <thrust/detail/config.h>
20
- #include <thrust/system/cpp/detail/execution_policy.h>
21
- #include <thrust/detail/type_traits.h>
22
- #include <thrust/detail/pointer.h>
23
- #include <thrust/detail/reference.h>
24
-
25
- namespace thrust
26
- {
27
- namespace system
28
- {
29
- namespace cpp
30
- {
31
-
32
- template<typename> class pointer;
33
-
34
- } // end cpp
35
- } // end system
36
- } // end thrust
37
-
38
-
39
- /*! \cond
40
- */
41
-
42
- // specialize thrust::iterator_traits to avoid problems with the name of
43
- // pointer's constructor shadowing its nested pointer type
44
- // do this before pointer is defined so the specialization is correctly
45
- // used inside the definition
46
- namespace thrust
47
- {
48
-
49
- template<typename Element>
50
- struct iterator_traits<thrust::system::cpp::pointer<Element> >
51
- {
52
- private:
53
- typedef thrust::system::cpp::pointer<Element> ptr;
54
-
55
- public:
56
- typedef typename ptr::iterator_category iterator_category;
57
- typedef typename ptr::value_type value_type;
58
- typedef typename ptr::difference_type difference_type;
59
- typedef ptr pointer;
60
- typedef typename ptr::reference reference;
61
- }; // end iterator_traits
62
-
63
- } // end thrust
64
-
65
- /*! \endcond
66
- */
67
-
68
-
69
- namespace thrust
70
- {
71
- namespace system
72
- {
73
-
74
- /*! \addtogroup system_backends Systems
75
- * \ingroup system
76
- * \{
77
- */
78
-
79
- /*! \namespace thrust::system::cpp
80
- * \brief \p thrust::system::cpp is the namespace containing functionality for allocating, manipulating,
81
- * and deallocating memory available to Thrust's standard C++ backend system.
82
- * The identifiers are provided in a separate namespace underneath <tt>thrust::system</tt>
83
- * for import convenience but are also aliased in the top-level <tt>thrust::cpp</tt>
84
- * namespace for easy access.
85
- *
86
- */
87
- namespace cpp
88
- {
89
-
90
- // forward declaration of reference for pointer
91
- template<typename Element> class reference;
92
-
93
- /*! \cond
94
- */
95
-
96
- // XXX nvcc + msvc have trouble instantiating reference below
97
- // this is a workaround
98
- namespace detail
99
- {
100
-
101
- template<typename Element>
102
- struct reference_msvc_workaround
103
- {
104
- typedef thrust::system::cpp::reference<Element> type;
105
- }; // end reference_msvc_workaround
106
-
107
- } // end detail
108
-
109
- /*! \endcond
110
- */
111
-
112
-
113
- /*! \p pointer stores a pointer to an object allocated in memory available to the cpp system.
114
- * This type provides type safety when dispatching standard algorithms on ranges resident
115
- * in cpp memory.
116
- *
117
- * \p pointer has pointer semantics: it may be dereferenced and manipulated with pointer arithmetic.
118
- *
119
- * \p pointer can be created with the function \p cpp::malloc, or by explicitly calling its constructor
120
- * with a raw pointer.
121
- *
122
- * The raw pointer encapsulated by a \p pointer may be obtained by eiter its <tt>get</tt> member function
123
- * or the \p raw_pointer_cast function.
124
- *
125
- * \note \p pointer is not a "smart" pointer; it is the programmer's responsibility to deallocate memory
126
- * pointed to by \p pointer.
127
- *
128
- * \tparam T specifies the type of the pointee.
129
- *
130
- * \see cpp::malloc
131
- * \see cpp::free
132
- * \see raw_pointer_cast
133
- */
134
- template<typename T>
135
- class pointer
136
- : public thrust::pointer<
137
- T,
138
- thrust::system::cpp::tag,
139
- thrust::system::cpp::reference<T>,
140
- thrust::system::cpp::pointer<T>
141
- >
142
- {
143
- /*! \cond
144
- */
145
-
146
- private:
147
- typedef thrust::pointer<
148
- T,
149
- thrust::system::cpp::tag,
150
- //thrust::system::cpp::reference<T>,
151
- typename detail::reference_msvc_workaround<T>::type,
152
- thrust::system::cpp::pointer<T>
153
- > super_t;
154
-
155
- /*! \endcond
156
- */
157
-
158
- public:
159
- // note that cpp::pointer's member functions need __host__ __device__
160
- // to interoperate with nvcc + iterators' dereference member function
161
-
162
- /*! \p pointer's no-argument constructor initializes its encapsulated pointer to \c 0.
163
- */
164
- __host__ __device__
165
- pointer() : super_t() {}
166
-
167
- #if THRUST_CPP_DIALECT >= 2011
168
- // NOTE: This is needed so that Thrust smart pointers can be used in
169
- // `std::unique_ptr`.
170
- __host__ __device__
171
- pointer(decltype(nullptr)) : super_t(nullptr) {}
172
- #endif
173
-
174
- /*! This constructor allows construction of a <tt>pointer<const T></tt> from a <tt>T*</tt>.
175
- *
176
- * \param ptr A raw pointer to copy from, presumed to point to a location in memory
177
- * accessible by the \p cpp system.
178
- * \tparam OtherT \p OtherT shall be convertible to \p T.
179
- */
180
- template<typename OtherT>
181
- __host__ __device__
182
- explicit pointer(OtherT *ptr) : super_t(ptr) {}
183
-
184
- /*! This constructor allows construction from another pointer-like object with related type.
185
- *
186
- * \param other The \p OtherPointer to copy.
187
- * \tparam OtherPointer The system tag associated with \p OtherPointer shall be convertible
188
- * to \p thrust::system::cpp::tag and its element type shall be convertible to \p T.
189
- */
190
- template<typename OtherPointer>
191
- __host__ __device__
192
- pointer(const OtherPointer &other,
193
- typename thrust::detail::enable_if_pointer_is_convertible<
194
- OtherPointer,
195
- pointer
196
- >::type * = 0) : super_t(other) {}
197
-
198
- /*! This constructor allows construction from another pointer-like object with \p void type.
199
- *
200
- * \param other The \p OtherPointer to copy.
201
- * \tparam OtherPointer The system tag associated with \p OtherPointer shall be convertible
202
- * to \p thrust::system::cpp::tag and its element type shall be \p void.
203
- */
204
- template<typename OtherPointer>
205
- __host__ __device__
206
- explicit
207
- pointer(const OtherPointer &other,
208
- typename thrust::detail::enable_if_void_pointer_is_system_convertible<
209
- OtherPointer,
210
- pointer
211
- >::type * = 0) : super_t(other) {}
212
-
213
- /*! Assignment operator allows assigning from another pointer-like object with related type.
214
- *
215
- * \param other The other pointer-like object to assign from.
216
- * \tparam OtherPointer The system tag associated with \p OtherPointer shall be convertible
217
- * to \p thrust::system::cpp::tag and its element type shall be convertible to \p T.
218
- */
219
- template<typename OtherPointer>
220
- __host__ __device__
221
- typename thrust::detail::enable_if_pointer_is_convertible<
222
- OtherPointer,
223
- pointer,
224
- pointer &
225
- >::type
226
- operator=(const OtherPointer &other)
227
- {
228
- return super_t::operator=(other);
229
- }
230
-
231
- #if THRUST_CPP_DIALECT >= 2011
232
- // NOTE: This is needed so that Thrust smart pointers can be used in
233
- // `std::unique_ptr`.
234
- __host__ __device__
235
- pointer& operator=(decltype(nullptr))
236
- {
237
- super_t::operator=(nullptr);
238
- return *this;
239
- }
240
- #endif
241
- }; // end pointer
242
-
243
- /*! \p reference is a wrapped reference to an object stored in memory available to the \p cpp system.
244
- * \p reference is the type of the result of dereferencing a \p cpp::pointer.
245
- *
246
- * \tparam T Specifies the type of the referenced object.
247
- */
248
- template<typename T>
249
- class reference
250
- : public thrust::reference<
251
- T,
252
- thrust::system::cpp::pointer<T>,
253
- thrust::system::cpp::reference<T>
254
- >
255
- {
256
- /*! \cond
257
- */
258
-
259
- private:
260
- typedef thrust::reference<
261
- T,
262
- thrust::system::cpp::pointer<T>,
263
- thrust::system::cpp::reference<T>
264
- > super_t;
265
-
266
- /*! \endcond
267
- */
268
-
269
- public:
270
- /*! \cond
271
- */
272
-
273
- typedef typename super_t::value_type value_type;
274
- typedef typename super_t::pointer pointer;
275
-
276
- /*! \endcond
277
- */
278
-
279
- /*! This constructor initializes this \p reference to refer to an object
280
- * pointed to by the given \p pointer. After this \p reference is constructed,
281
- * it shall refer to the object pointed to by \p ptr.
282
- *
283
- * \param ptr A \p pointer to copy from.
284
- */
285
- __host__ __device__
286
- explicit reference(const pointer &ptr)
287
- : super_t(ptr)
288
- {}
289
-
290
- /*! This constructor accepts a const reference to another \p reference of related type.
291
- * After this \p reference is constructed, it shall refer to the same object as \p other.
292
- *
293
- * \param other A \p reference to copy from.
294
- * \tparam OtherT The element type of the other \p reference.
295
- *
296
- * \note This constructor is templated primarily to allow initialization of <tt>reference<const T></tt>
297
- * from <tt>reference<T></tt>.
298
- */
299
- template<typename OtherT>
300
- __host__ __device__
301
- reference(const reference<OtherT> &other,
302
- typename thrust::detail::enable_if_convertible<
303
- typename reference<OtherT>::pointer,
304
- pointer
305
- >::type * = 0)
306
- : super_t(other)
307
- {}
308
-
309
- /*! Copy assignment operator copy assigns from another \p reference of related type.
310
- *
311
- * \param other The other \p reference to assign from.
312
- * \return <tt>*this</tt>
313
- * \tparam OtherT The element type of the other \p reference.
314
- */
315
- template<typename OtherT>
316
- reference &operator=(const reference<OtherT> &other);
317
-
318
- /*! Assignment operator assigns from a \p value_type.
319
- *
320
- * \param x The \p value_type to assign from.
321
- * \return <tt>*this</tt>
322
- */
323
- reference &operator=(const value_type &x);
324
- }; // end reference
325
-
326
- /*! Exchanges the values of two objects referred to by \p reference.
327
- * \p x The first \p reference of interest.
328
- * \p y The second \p reference of interest.
329
- */
330
- template<typename T>
331
- __host__ __device__
332
- void swap(reference<T> x, reference<T> y);
333
-
334
- } // end cpp
335
-
336
- /*! \}
337
- */
338
-
339
- } // end system
340
-
341
- namespace cpp
342
- {
343
-
344
- using thrust::system::cpp::pointer;
345
- using thrust::system::cpp::reference;
346
-
347
- } // end cpp
348
-
349
- } // end thrust
350
-
351
- #include <thrust/system/cpp/detail/pointer.inl>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/LIVE/thrust/thrust/system/cuda/detail/inner_product.h DELETED
@@ -1,94 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
3
- *
4
- * Redistribution and use in source and binary forms, with or without
5
- * modification, are permitted provided that the following conditions are met:
6
- * * Redistributions of source code must retain the above copyright
7
- * notice, this list of conditions and the following disclaimer.
8
- * * Redistributions in binary form must reproduce the above copyright
9
- * notice, this list of conditions and the following disclaimer in the
10
- * documentation and/or other materials provided with the distribution.
11
- * * Neither the name of the NVIDIA CORPORATION nor the
12
- * names of its contributors may be used to endorse or promote products
13
- * derived from this software without specific prior written permission.
14
- *
15
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18
- * ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
19
- * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20
- * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
21
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
22
- * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24
- * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25
- *
26
- ******************************************************************************/
27
- #pragma once
28
-
29
-
30
- #if THRUST_DEVICE_COMPILER == THRUST_DEVICE_COMPILER_NVCC
31
- #include <iterator>
32
- #include <thrust/system/cuda/detail/reduce.h>
33
- #include <thrust/detail/minmax.h>
34
- #include <thrust/distance.h>
35
-
36
- namespace thrust
37
- {
38
-
39
- namespace cuda_cub {
40
-
41
- template <class Derived,
42
- class InputIt1,
43
- class InputIt2,
44
- class T,
45
- class ReduceOp,
46
- class ProductOp>
47
- T __host__ __device__
48
- inner_product(execution_policy<Derived> &policy,
49
- InputIt1 first1,
50
- InputIt1 last1,
51
- InputIt2 first2,
52
- T init,
53
- ReduceOp reduce_op,
54
- ProductOp product_op)
55
- {
56
- typedef typename iterator_traits<InputIt1>::difference_type size_type;
57
- size_type num_items = static_cast<size_type>(thrust::distance(first1, last1));
58
- typedef transform_pair_of_input_iterators_t<T,
59
- InputIt1,
60
- InputIt2,
61
- ProductOp>
62
- binop_iterator_t;
63
-
64
- return cuda_cub::reduce_n(policy,
65
- binop_iterator_t(first1, first2, product_op),
66
- num_items,
67
- init,
68
- reduce_op);
69
- }
70
-
71
- template <class Derived,
72
- class InputIt1,
73
- class InputIt2,
74
- class T>
75
- T __host__ __device__
76
- inner_product(execution_policy<Derived> &policy,
77
- InputIt1 first1,
78
- InputIt1 last1,
79
- InputIt2 first2,
80
- T init)
81
- {
82
- return cuda_cub::inner_product(policy,
83
- first1,
84
- last1,
85
- first2,
86
- init,
87
- plus<T>(),
88
- multiplies<T>());
89
- }
90
-
91
- } // namespace cuda_cub
92
-
93
- } // end namespace thrust
94
- #endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/LIVE/thrust/thrust/system/omp/memory.h DELETED
@@ -1,95 +0,0 @@
1
- /*
2
- * Copyright 2008-2018 NVIDIA Corporation
3
- *
4
- * Licensed under the Apache License, Version 2.0 (the "License");
5
- * you may not use this file except in compliance with the License.
6
- * You may obtain a copy of the License at
7
- *
8
- * http://www.apache.org/licenses/LICENSE-2.0
9
- *
10
- * Unless required by applicable law or agreed to in writing, software
11
- * distributed under the License is distributed on an "AS IS" BASIS,
12
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- * See the License for the specific language governing permissions and
14
- * limitations under the License.
15
- */
16
-
17
- /*! \file thrust/system/omp/memory.h
18
- * \brief Managing memory associated with Thrust's OpenMP system.
19
- */
20
-
21
- #pragma once
22
-
23
- #include <thrust/detail/config.h>
24
- #include <thrust/system/omp/memory_resource.h>
25
- #include <thrust/memory.h>
26
- #include <thrust/detail/type_traits.h>
27
- #include <thrust/mr/allocator.h>
28
- #include <ostream>
29
-
30
- namespace thrust
31
- {
32
- namespace system
33
- {
34
- namespace omp
35
- {
36
-
37
- /*! Allocates an area of memory available to Thrust's <tt>omp</tt> system.
38
- * \param n Number of bytes to allocate.
39
- * \return A <tt>omp::pointer<void></tt> pointing to the beginning of the newly
40
- * allocated memory. A null <tt>omp::pointer<void></tt> is returned if
41
- * an error occurs.
42
- * \note The <tt>omp::pointer<void></tt> returned by this function must be
43
- * deallocated with \p omp::free.
44
- * \see omp::free
45
- * \see std::malloc
46
- */
47
- inline pointer<void> malloc(std::size_t n);
48
-
49
- /*! Allocates a typed area of memory available to Thrust's <tt>omp</tt> system.
50
- * \param n Number of elements to allocate.
51
- * \return A <tt>omp::pointer<T></tt> pointing to the beginning of the newly
52
- * allocated memory. A null <tt>omp::pointer<T></tt> is returned if
53
- * an error occurs.
54
- * \note The <tt>omp::pointer<T></tt> returned by this function must be
55
- * deallocated with \p omp::free.
56
- * \see omp::free
57
- * \see std::malloc
58
- */
59
- template<typename T>
60
- inline pointer<T> malloc(std::size_t n);
61
-
62
- /*! Deallocates an area of memory previously allocated by <tt>omp::malloc</tt>.
63
- * \param ptr A <tt>omp::pointer<void></tt> pointing to the beginning of an area
64
- * of memory previously allocated with <tt>omp::malloc</tt>.
65
- * \see omp::malloc
66
- * \see std::free
67
- */
68
- inline void free(pointer<void> ptr);
69
-
70
- /*! \p omp::allocator is the default allocator used by the \p omp system's containers such as
71
- * <tt>omp::vector</tt> if no user-specified allocator is provided. \p omp::allocator allocates
72
- * (deallocates) storage with \p omp::malloc (\p omp::free).
73
- */
74
- template<typename T>
75
- using allocator = thrust::mr::stateless_resource_allocator<T, memory_resource>;
76
-
77
- } // end omp
78
- } // end system
79
-
80
- /*! \namespace thrust::omp
81
- * \brief \p thrust::omp is a top-level alias for thrust::system::omp.
82
- */
83
- namespace omp
84
- {
85
-
86
- using thrust::system::omp::malloc;
87
- using thrust::system::omp::free;
88
- using thrust::system::omp::allocator;
89
-
90
- } // end omp
91
-
92
- } // end thrust
93
-
94
- #include <thrust/system/omp/detail/memory.inl>
95
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/WALT/mmdet/models/detectors/single_stage.py DELETED
@@ -1,154 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
-
4
- from mmdet.core import bbox2result
5
- from ..builder import DETECTORS, build_backbone, build_head, build_neck
6
- from .base import BaseDetector
7
-
8
-
9
- @DETECTORS.register_module()
10
- class SingleStageDetector(BaseDetector):
11
- """Base class for single-stage detectors.
12
-
13
- Single-stage detectors directly and densely predict bounding boxes on the
14
- output features of the backbone+neck.
15
- """
16
-
17
- def __init__(self,
18
- backbone,
19
- neck=None,
20
- bbox_head=None,
21
- train_cfg=None,
22
- test_cfg=None,
23
- pretrained=None):
24
- super(SingleStageDetector, self).__init__()
25
- self.backbone = build_backbone(backbone)
26
- if neck is not None:
27
- self.neck = build_neck(neck)
28
- bbox_head.update(train_cfg=train_cfg)
29
- bbox_head.update(test_cfg=test_cfg)
30
- self.bbox_head = build_head(bbox_head)
31
- self.train_cfg = train_cfg
32
- self.test_cfg = test_cfg
33
- self.init_weights(pretrained=pretrained)
34
-
35
- def init_weights(self, pretrained=None):
36
- """Initialize the weights in detector.
37
-
38
- Args:
39
- pretrained (str, optional): Path to pre-trained weights.
40
- Defaults to None.
41
- """
42
- super(SingleStageDetector, self).init_weights(pretrained)
43
- self.backbone.init_weights(pretrained=pretrained)
44
- if self.with_neck:
45
- if isinstance(self.neck, nn.Sequential):
46
- for m in self.neck:
47
- m.init_weights()
48
- else:
49
- self.neck.init_weights()
50
- self.bbox_head.init_weights()
51
-
52
- def extract_feat(self, img):
53
- """Directly extract features from the backbone+neck."""
54
- x = self.backbone(img)
55
- if self.with_neck:
56
- x = self.neck(x)
57
- return x
58
-
59
- def forward_dummy(self, img):
60
- """Used for computing network flops.
61
-
62
- See `mmdetection/tools/analysis_tools/get_flops.py`
63
- """
64
- x = self.extract_feat(img)
65
- outs = self.bbox_head(x)
66
- return outs
67
-
68
- def forward_train(self,
69
- img,
70
- img_metas,
71
- gt_bboxes,
72
- gt_labels,
73
- gt_bboxes_ignore=None):
74
- """
75
- Args:
76
- img (Tensor): Input images of shape (N, C, H, W).
77
- Typically these should be mean centered and std scaled.
78
- img_metas (list[dict]): A List of image info dict where each dict
79
- has: 'img_shape', 'scale_factor', 'flip', and may also contain
80
- 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
81
- For details on the values of these keys see
82
- :class:`mmdet.datasets.pipelines.Collect`.
83
- gt_bboxes (list[Tensor]): Each item are the truth boxes for each
84
- image in [tl_x, tl_y, br_x, br_y] format.
85
- gt_labels (list[Tensor]): Class indices corresponding to each box
86
- gt_bboxes_ignore (None | list[Tensor]): Specify which bounding
87
- boxes can be ignored when computing the loss.
88
-
89
- Returns:
90
- dict[str, Tensor]: A dictionary of loss components.
91
- """
92
- super(SingleStageDetector, self).forward_train(img, img_metas)
93
- x = self.extract_feat(img)
94
- losses = self.bbox_head.forward_train(x, img_metas, gt_bboxes,
95
- gt_labels, gt_bboxes_ignore)
96
- return losses
97
-
98
- def simple_test(self, img, img_metas, rescale=False):
99
- """Test function without test time augmentation.
100
-
101
- Args:
102
- imgs (list[torch.Tensor]): List of multiple images
103
- img_metas (list[dict]): List of image information.
104
- rescale (bool, optional): Whether to rescale the results.
105
- Defaults to False.
106
-
107
- Returns:
108
- list[list[np.ndarray]]: BBox results of each image and classes.
109
- The outer list corresponds to each image. The inner list
110
- corresponds to each class.
111
- """
112
- x = self.extract_feat(img)
113
- outs = self.bbox_head(x)
114
- # get origin input shape to support onnx dynamic shape
115
- if torch.onnx.is_in_onnx_export():
116
- # get shape as tensor
117
- img_shape = torch._shape_as_tensor(img)[2:]
118
- img_metas[0]['img_shape_for_onnx'] = img_shape
119
- bbox_list = self.bbox_head.get_bboxes(
120
- *outs, img_metas, rescale=rescale)
121
- # skip post-processing when exporting to ONNX
122
- if torch.onnx.is_in_onnx_export():
123
- return bbox_list
124
-
125
- bbox_results = [
126
- bbox2result(det_bboxes, det_labels, self.bbox_head.num_classes)
127
- for det_bboxes, det_labels in bbox_list
128
- ]
129
- return bbox_results
130
-
131
- def aug_test(self, imgs, img_metas, rescale=False):
132
- """Test function with test time augmentation.
133
-
134
- Args:
135
- imgs (list[Tensor]): the outer list indicates test-time
136
- augmentations and inner Tensor should have a shape NxCxHxW,
137
- which contains all images in the batch.
138
- img_metas (list[list[dict]]): the outer list indicates test-time
139
- augs (multiscale, flip, etc.) and the inner list indicates
140
- images in a batch. each dict has image information.
141
- rescale (bool, optional): Whether to rescale the results.
142
- Defaults to False.
143
-
144
- Returns:
145
- list[list[np.ndarray]]: BBox results of each image and classes.
146
- The outer list corresponds to each image. The inner list
147
- corresponds to each class.
148
- """
149
- assert hasattr(self.bbox_head, 'aug_test'), \
150
- f'{self.bbox_head.__class__.__name__}' \
151
- ' does not support test-time augmentation'
152
-
153
- feats = self.extract_feats(imgs)
154
- return [self.bbox_head.aug_test(feats, img_metas, rescale=rescale)]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/WALT/mmdet/models/detectors/sparse_rcnn.py DELETED
@@ -1,110 +0,0 @@
1
- from ..builder import DETECTORS
2
- from .two_stage import TwoStageDetector
3
-
4
-
5
- @DETECTORS.register_module()
6
- class SparseRCNN(TwoStageDetector):
7
- r"""Implementation of `Sparse R-CNN: End-to-End Object Detection with
8
- Learnable Proposals <https://arxiv.org/abs/2011.12450>`_"""
9
-
10
- def __init__(self, *args, **kwargs):
11
- super(SparseRCNN, self).__init__(*args, **kwargs)
12
- assert self.with_rpn, 'Sparse R-CNN do not support external proposals'
13
-
14
- def forward_train(self,
15
- img,
16
- img_metas,
17
- gt_bboxes,
18
- gt_labels,
19
- gt_bboxes_ignore=None,
20
- gt_masks=None,
21
- proposals=None,
22
- **kwargs):
23
- """Forward function of SparseR-CNN in train stage.
24
-
25
- Args:
26
- img (Tensor): of shape (N, C, H, W) encoding input images.
27
- Typically these should be mean centered and std scaled.
28
- img_metas (list[dict]): list of image info dict where each dict
29
- has: 'img_shape', 'scale_factor', 'flip', and may also contain
30
- 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
31
- For details on the values of these keys see
32
- :class:`mmdet.datasets.pipelines.Collect`.
33
- gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
34
- shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
35
- gt_labels (list[Tensor]): class indices corresponding to each box
36
- gt_bboxes_ignore (None | list[Tensor): specify which bounding
37
- boxes can be ignored when computing the loss.
38
- gt_masks (List[Tensor], optional) : Segmentation masks for
39
- each box. But we don't support it in this architecture.
40
- proposals (List[Tensor], optional): override rpn proposals with
41
- custom proposals. Use when `with_rpn` is False.
42
-
43
- Returns:
44
- dict[str, Tensor]: a dictionary of loss components
45
- """
46
-
47
- assert proposals is None, 'Sparse R-CNN does not support' \
48
- ' external proposals'
49
- assert gt_masks is None, 'Sparse R-CNN does not instance segmentation'
50
-
51
- x = self.extract_feat(img)
52
- proposal_boxes, proposal_features, imgs_whwh = \
53
- self.rpn_head.forward_train(x, img_metas)
54
- roi_losses = self.roi_head.forward_train(
55
- x,
56
- proposal_boxes,
57
- proposal_features,
58
- img_metas,
59
- gt_bboxes,
60
- gt_labels,
61
- gt_bboxes_ignore=gt_bboxes_ignore,
62
- gt_masks=gt_masks,
63
- imgs_whwh=imgs_whwh)
64
- return roi_losses
65
-
66
- def simple_test(self, img, img_metas, rescale=False):
67
- """Test function without test time augmentation.
68
-
69
- Args:
70
- imgs (list[torch.Tensor]): List of multiple images
71
- img_metas (list[dict]): List of image information.
72
- rescale (bool): Whether to rescale the results.
73
- Defaults to False.
74
-
75
- Returns:
76
- list[list[np.ndarray]]: BBox results of each image and classes.
77
- The outer list corresponds to each image. The inner list
78
- corresponds to each class.
79
- """
80
- x = self.extract_feat(img)
81
- proposal_boxes, proposal_features, imgs_whwh = \
82
- self.rpn_head.simple_test_rpn(x, img_metas)
83
- bbox_results = self.roi_head.simple_test(
84
- x,
85
- proposal_boxes,
86
- proposal_features,
87
- img_metas,
88
- imgs_whwh=imgs_whwh,
89
- rescale=rescale)
90
- return bbox_results
91
-
92
- def forward_dummy(self, img):
93
- """Used for computing network flops.
94
-
95
- See `mmdetection/tools/analysis_tools/get_flops.py`
96
- """
97
- # backbone
98
- x = self.extract_feat(img)
99
- # rpn
100
- num_imgs = len(img)
101
- dummy_img_metas = [
102
- dict(img_shape=(800, 1333, 3)) for _ in range(num_imgs)
103
- ]
104
- proposal_boxes, proposal_features, imgs_whwh = \
105
- self.rpn_head.simple_test_rpn(x, dummy_img_metas)
106
- # roi_head
107
- roi_outs = self.roi_head.forward_dummy(x, proposal_boxes,
108
- proposal_features,
109
- dummy_img_metas)
110
- return roi_outs
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/WALT/walt/datasets/pipelines/instaboost.py DELETED
@@ -1,98 +0,0 @@
1
- import numpy as np
2
-
3
- from ..builder import PIPELINES
4
-
5
-
6
- @PIPELINES.register_module()
7
- class InstaBoost(object):
8
- r"""Data augmentation method in `InstaBoost: Boosting Instance
9
- Segmentation Via Probability Map Guided Copy-Pasting
10
- <https://arxiv.org/abs/1908.07801>`_.
11
-
12
- Refer to https://github.com/GothicAi/Instaboost for implementation details.
13
- """
14
-
15
- def __init__(self,
16
- action_candidate=('normal', 'horizontal', 'skip'),
17
- action_prob=(1, 0, 0),
18
- scale=(0.8, 1.2),
19
- dx=15,
20
- dy=15,
21
- theta=(-1, 1),
22
- color_prob=0.5,
23
- hflag=False,
24
- aug_ratio=0.5):
25
- try:
26
- import instaboostfast as instaboost
27
- except ImportError:
28
- raise ImportError(
29
- 'Please run "pip install instaboostfast" '
30
- 'to install instaboostfast first for instaboost augmentation.')
31
- self.cfg = instaboost.InstaBoostConfig(action_candidate, action_prob,
32
- scale, dx, dy, theta,
33
- color_prob, hflag)
34
- self.aug_ratio = aug_ratio
35
-
36
- def _load_anns(self, results):
37
- labels = results['ann_info']['labels']
38
- masks = results['ann_info']['masks']
39
- bboxes = results['ann_info']['bboxes']
40
- n = len(labels)
41
-
42
- anns = []
43
- for i in range(n):
44
- label = labels[i]
45
- bbox = bboxes[i]
46
- mask = masks[i]
47
- x1, y1, x2, y2 = bbox
48
- # assert (x2 - x1) >= 1 and (y2 - y1) >= 1
49
- bbox = [x1, y1, x2 - x1, y2 - y1]
50
- anns.append({
51
- 'category_id': label,
52
- 'segmentation': mask,
53
- 'bbox': bbox
54
- })
55
-
56
- return anns
57
-
58
- def _parse_anns(self, results, anns, img):
59
- gt_bboxes = []
60
- gt_labels = []
61
- gt_masks_ann = []
62
- for ann in anns:
63
- x1, y1, w, h = ann['bbox']
64
- # TODO: more essential bug need to be fixed in instaboost
65
- if w <= 0 or h <= 0:
66
- continue
67
- bbox = [x1, y1, x1 + w, y1 + h]
68
- gt_bboxes.append(bbox)
69
- gt_labels.append(ann['category_id'])
70
- gt_masks_ann.append(ann['segmentation'])
71
- gt_bboxes = np.array(gt_bboxes, dtype=np.float32)
72
- gt_labels = np.array(gt_labels, dtype=np.int64)
73
- results['ann_info']['labels'] = gt_labels
74
- results['ann_info']['bboxes'] = gt_bboxes
75
- results['ann_info']['masks'] = gt_masks_ann
76
- results['img'] = img
77
- return results
78
-
79
- def __call__(self, results):
80
- img = results['img']
81
- orig_type = img.dtype
82
- anns = self._load_anns(results)
83
- if np.random.choice([0, 1], p=[1 - self.aug_ratio, self.aug_ratio]):
84
- try:
85
- import instaboostfast as instaboost
86
- except ImportError:
87
- raise ImportError('Please run "pip install instaboostfast" '
88
- 'to install instaboostfast first.')
89
- anns, img = instaboost.get_new_data(
90
- anns, img.astype(np.uint8), self.cfg, background=None)
91
-
92
- results = self._parse_anns(results, anns, img.astype(orig_type))
93
- return results
94
-
95
- def __repr__(self):
96
- repr_str = self.__class__.__name__
97
- repr_str += f'(cfg={self.cfg}, aug_ratio={self.aug_ratio})'
98
- return repr_str
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/lama-example/saicinpainting/evaluation/losses/__init__.py DELETED
File without changes
spaces/CikeyQI/Yunzai/Yunzai/plugins/other/update.js DELETED
@@ -1,240 +0,0 @@
1
- import plugin from '../../lib/plugins/plugin.js'
2
- import { createRequire } from 'module'
3
- import lodash from 'lodash'
4
- import fs from 'node:fs'
5
- import { Restart } from './restart.js'
6
- import common from '../../lib/common/common.js'
7
-
8
- const require = createRequire(import.meta.url)
9
- const { exec, execSync } = require('child_process')
10
-
11
- let uping = false
12
-
13
- export class update extends plugin {
14
- constructor() {
15
- super({
16
- name: '更新',
17
- dsc: '#更新 #强制更新',
18
- event: 'message',
19
- priority: 4000,
20
- rule: [
21
- {
22
- reg: '^#更新日志',
23
- fnc: 'updateLog'
24
- },
25
- {
26
- reg: '^#(强制)?更新',
27
- fnc: 'update'
28
- },
29
- {
30
- reg: '^#全部(强制)?更新$',
31
- fnc: 'updateAll',
32
- permission: 'master'
33
- }
34
- ]
35
- })
36
-
37
- this.typeName = 'TRSS-Yunzai'
38
- }
39
-
40
- async update() {
41
- if (!this.e.isMaster) return false
42
- if (uping) return this.reply('已有命令更新中..请勿重复操作')
43
-
44
- if (/详细|详情|面板|面版/.test(this.e.msg)) return false
45
-
46
- /** 获取插件 */
47
- const plugin = this.getPlugin()
48
- if (plugin === false) return false
49
-
50
- /** 执行更新 */
51
- await this.runUpdate(plugin)
52
-
53
- /** 是否需要重启 */
54
- if (this.isUp) {
55
- // await this.reply('即将执行重启,以应用更新')
56
- setTimeout(() => this.restart(), 2000)
57
- }
58
- }
59
-
60
- getPlugin(plugin = '') {
61
- if (!plugin) {
62
- plugin = this.e.msg.replace(/#(强制)?更新(日志)?/, '')
63
- if (!plugin) return ''
64
- }
65
-
66
- if (!fs.existsSync(`plugins/${plugin}/.git`)) return false
67
-
68
- this.typeName = plugin
69
- return plugin
70
- }
71
-
72
- async execSync(cmd) {
73
- return new Promise((resolve, reject) => {
74
- exec(cmd, { windowsHide: true }, (error, stdout, stderr) => {
75
- resolve({ error, stdout, stderr })
76
- })
77
- })
78
- }
79
-
80
- async runUpdate(plugin = '') {
81
- this.isNowUp = false
82
-
83
- let cm = 'git pull --no-rebase'
84
-
85
- let type = '更新'
86
- if (this.e.msg.includes('强制')) {
87
- type = '强制更新'
88
- cm = `git reset --hard && git pull --rebase --allow-unrelated-histories`
89
- }
90
- if (plugin) cm = `cd "plugins/${plugin}" && ${cm}`
91
-
92
- this.oldCommitId = await this.getcommitId(plugin)
93
-
94
- logger.mark(`${this.e.logFnc} 开始${type}:${this.typeName}`)
95
-
96
- await this.reply(`开始${type} ${this.typeName}`)
97
- uping = true
98
- const ret = await this.execSync(cm)
99
- uping = false
100
-
101
- if (ret.error) {
102
- logger.mark(`${this.e.logFnc} 更新失败:${this.typeName}`)
103
- this.gitErr(ret.error, ret.stdout)
104
- return false
105
- }
106
-
107
- const time = await this.getTime(plugin)
108
-
109
- if (/Already up|已经是最新/g.test(ret.stdout)) {
110
- await this.reply(`${this.typeName} 已是最新\n最后更新时间:${time}`)
111
- } else {
112
- await this.reply(`${this.typeName} 更新成功\n更新时间:${time}`)
113
- this.isUp = true
114
- await this.reply(await this.getLog(plugin))
115
- }
116
-
117
- logger.mark(`${this.e.logFnc} 最后更新时间:${time}`)
118
- return true
119
- }
120
-
121
- async getcommitId(plugin = '') {
122
- let cm = 'git rev-parse --short HEAD'
123
- if (plugin) cm = `cd "plugins/${plugin}" && ${cm}`
124
-
125
- const commitId = await execSync(cm, { encoding: 'utf-8' })
126
- return lodash.trim(commitId)
127
- }
128
-
129
- async getTime(plugin = '') {
130
- let cm = 'git log -1 --pretty=%cd --date=format:"%F %T"'
131
- if (plugin) cm = `cd "plugins/${plugin}" && ${cm}`
132
-
133
- let time = ''
134
- try {
135
- time = await execSync(cm, { encoding: 'utf-8' })
136
- time = lodash.trim(time)
137
- } catch (error) {
138
- logger.error(error.toString())
139
- time = '获取时间失败'
140
- }
141
-
142
- return time
143
- }
144
-
145
- async gitErr(err, stdout) {
146
- const msg = '更新失败!'
147
- const errMsg = err.toString()
148
- stdout = stdout.toString()
149
-
150
- if (errMsg.includes('Timed out')) {
151
- const remote = errMsg.match(/'(.+?)'/g)[0].replace(/'/g, '')
152
- return this.reply(`${msg}\n连接超时:${remote}`)
153
- }
154
-
155
- if (/Failed to connect|unable to access/g.test(errMsg)) {
156
- const remote = errMsg.match(/'(.+?)'/g)[0].replace(/'/g, '')
157
- return this.reply(`${msg}\n连接失败:${remote}`)
158
- }
159
-
160
- if (errMsg.includes('be overwritten by merge')) {
161
- return this.reply(`${msg}\n存在冲突:\n${errMsg}\n请解决冲突后再更新,或者执行#强制更新,放弃本地修改`)
162
- }
163
-
164
- if (stdout.includes('CONFLICT')) {
165
- return this.reply(`${msg}\n存在冲突:\n${errMsg}${stdout}\n请解决冲突后再更新,或者执行#强制更新,放弃本地修改`)
166
- }
167
-
168
- return this.reply([errMsg, stdout])
169
- }
170
-
171
- async updateAll() {
172
- const dirs = fs.readdirSync('./plugins/')
173
-
174
- await this.runUpdate()
175
-
176
- for (let plu of dirs) {
177
- plu = this.getPlugin(plu)
178
- if (plu === false) continue
179
- await common.sleep(1500)
180
- await this.runUpdate(plu)
181
- }
182
-
183
- if (this.isUp) {
184
- // await this.reply('即将执行重启,以应用更新')
185
- setTimeout(() => this.restart(), 2000)
186
- }
187
- }
188
-
189
- restart() {
190
- new Restart(this.e).restart()
191
- }
192
-
193
- async getLog(plugin = '') {
194
- let cm = 'git log -100 --pretty="%h||[%cd] %s" --date=format:"%F %T"'
195
- if (plugin) cm = `cd "plugins/${plugin}" && ${cm}`
196
-
197
- let logAll
198
- try {
199
- logAll = await execSync(cm, { encoding: 'utf-8' })
200
- } catch (error) {
201
- logger.error(error.toString())
202
- await this.reply(error.toString())
203
- }
204
-
205
- if (!logAll) return false
206
-
207
- logAll = logAll.trim().split('\n')
208
-
209
- let log = []
210
- for (let str of logAll) {
211
- str = str.split('||')
212
- if (str[0] == this.oldCommitId) break
213
- if (str[1].includes('Merge branch')) continue
214
- log.push(str[1])
215
- }
216
- let line = log.length
217
- log = log.join('\n\n')
218
-
219
- if (log.length <= 0) return ''
220
-
221
- let end = ''
222
- try {
223
- cm = 'git config -l'
224
- if (plugin) cm = `cd "plugins/${plugin}" && ${cm}`
225
- end = await execSync(cm, { encoding: 'utf-8' })
226
- end = end.match(/remote\..*\.url=.+/g).join('\n\n').replace(/remote\..*\.url=/g, '').replace(/\/\/([^@]+)@/, '//')
227
- } catch (error) {
228
- logger.error(error.toString())
229
- await this.reply(error.toString())
230
- }
231
-
232
- return common.makeForwardMsg(this.e, [log, end], `${plugin || 'TRSS-Yunzai'} 更新日志,共${line}条`)
233
- }
234
-
235
- async updateLog() {
236
- const plugin = this.getPlugin()
237
- if (plugin === false) return false
238
- return this.reply(await this.getLog(plugin))
239
- }
240
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CjangCjengh/Shanghainese-TTS/models.py DELETED
@@ -1,535 +0,0 @@
1
- import math
2
- import torch
3
- from torch import nn
4
- from torch.nn import functional as F
5
-
6
- import commons
7
- import modules
8
- import attentions
9
- import monotonic_align
10
-
11
- from torch.nn import Conv1d, ConvTranspose1d, Conv2d
12
- from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
13
- from commons import init_weights, get_padding
14
-
15
-
16
- class StochasticDurationPredictor(nn.Module):
17
- def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
18
- super().__init__()
19
- filter_channels = in_channels # it needs to be removed from future version.
20
- self.in_channels = in_channels
21
- self.filter_channels = filter_channels
22
- self.kernel_size = kernel_size
23
- self.p_dropout = p_dropout
24
- self.n_flows = n_flows
25
- self.gin_channels = gin_channels
26
-
27
- self.log_flow = modules.Log()
28
- self.flows = nn.ModuleList()
29
- self.flows.append(modules.ElementwiseAffine(2))
30
- for i in range(n_flows):
31
- self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
32
- self.flows.append(modules.Flip())
33
-
34
- self.post_pre = nn.Conv1d(1, filter_channels, 1)
35
- self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
36
- self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
37
- self.post_flows = nn.ModuleList()
38
- self.post_flows.append(modules.ElementwiseAffine(2))
39
- for i in range(4):
40
- self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
41
- self.post_flows.append(modules.Flip())
42
-
43
- self.pre = nn.Conv1d(in_channels, filter_channels, 1)
44
- self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
45
- self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
46
- if gin_channels != 0:
47
- self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
48
-
49
- def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
50
- x = torch.detach(x)
51
- x = self.pre(x)
52
- if g is not None:
53
- g = torch.detach(g)
54
- x = x + self.cond(g)
55
- x = self.convs(x, x_mask)
56
- x = self.proj(x) * x_mask
57
-
58
- if not reverse:
59
- flows = self.flows
60
- assert w is not None
61
-
62
- logdet_tot_q = 0
63
- h_w = self.post_pre(w)
64
- h_w = self.post_convs(h_w, x_mask)
65
- h_w = self.post_proj(h_w) * x_mask
66
- e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
67
- z_q = e_q
68
- for flow in self.post_flows:
69
- z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
70
- logdet_tot_q += logdet_q
71
- z_u, z1 = torch.split(z_q, [1, 1], 1)
72
- u = torch.sigmoid(z_u) * x_mask
73
- z0 = (w - u) * x_mask
74
- logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
75
- logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
76
-
77
- logdet_tot = 0
78
- z0, logdet = self.log_flow(z0, x_mask)
79
- logdet_tot += logdet
80
- z = torch.cat([z0, z1], 1)
81
- for flow in flows:
82
- z, logdet = flow(z, x_mask, g=x, reverse=reverse)
83
- logdet_tot = logdet_tot + logdet
84
- nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
85
- return nll + logq # [b]
86
- else:
87
- flows = list(reversed(self.flows))
88
- flows = flows[:-2] + [flows[-1]] # remove a useless vflow
89
- z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
90
- for flow in flows:
91
- z = flow(z, x_mask, g=x, reverse=reverse)
92
- z0, z1 = torch.split(z, [1, 1], 1)
93
- logw = z0
94
- return logw
95
-
96
-
97
- class DurationPredictor(nn.Module):
98
- def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
99
- super().__init__()
100
-
101
- self.in_channels = in_channels
102
- self.filter_channels = filter_channels
103
- self.kernel_size = kernel_size
104
- self.p_dropout = p_dropout
105
- self.gin_channels = gin_channels
106
-
107
- self.drop = nn.Dropout(p_dropout)
108
- self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2)
109
- self.norm_1 = modules.LayerNorm(filter_channels)
110
- self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
111
- self.norm_2 = modules.LayerNorm(filter_channels)
112
- self.proj = nn.Conv1d(filter_channels, 1, 1)
113
-
114
- if gin_channels != 0:
115
- self.cond = nn.Conv1d(gin_channels, in_channels, 1)
116
-
117
- def forward(self, x, x_mask, g=None):
118
- x = torch.detach(x)
119
- if g is not None:
120
- g = torch.detach(g)
121
- x = x + self.cond(g)
122
- x = self.conv_1(x * x_mask)
123
- x = torch.relu(x)
124
- x = self.norm_1(x)
125
- x = self.drop(x)
126
- x = self.conv_2(x * x_mask)
127
- x = torch.relu(x)
128
- x = self.norm_2(x)
129
- x = self.drop(x)
130
- x = self.proj(x * x_mask)
131
- return x * x_mask
132
-
133
-
134
- class TextEncoder(nn.Module):
135
- def __init__(self,
136
- n_vocab,
137
- out_channels,
138
- hidden_channels,
139
- filter_channels,
140
- n_heads,
141
- n_layers,
142
- kernel_size,
143
- p_dropout):
144
- super().__init__()
145
- self.n_vocab = n_vocab
146
- self.out_channels = out_channels
147
- self.hidden_channels = hidden_channels
148
- self.filter_channels = filter_channels
149
- self.n_heads = n_heads
150
- self.n_layers = n_layers
151
- self.kernel_size = kernel_size
152
- self.p_dropout = p_dropout
153
-
154
- if self.n_vocab!=0:
155
- self.emb = nn.Embedding(n_vocab, hidden_channels)
156
- nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
157
-
158
- self.encoder = attentions.Encoder(
159
- hidden_channels,
160
- filter_channels,
161
- n_heads,
162
- n_layers,
163
- kernel_size,
164
- p_dropout)
165
- self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
166
-
167
- def forward(self, x, x_lengths):
168
- if self.n_vocab!=0:
169
- x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
170
- x = torch.transpose(x, 1, -1) # [b, h, t]
171
- x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
172
-
173
- x = self.encoder(x * x_mask, x_mask)
174
- stats = self.proj(x) * x_mask
175
-
176
- m, logs = torch.split(stats, self.out_channels, dim=1)
177
- return x, m, logs, x_mask
178
-
179
-
180
- class ResidualCouplingBlock(nn.Module):
181
- def __init__(self,
182
- channels,
183
- hidden_channels,
184
- kernel_size,
185
- dilation_rate,
186
- n_layers,
187
- n_flows=4,
188
- gin_channels=0):
189
- super().__init__()
190
- self.channels = channels
191
- self.hidden_channels = hidden_channels
192
- self.kernel_size = kernel_size
193
- self.dilation_rate = dilation_rate
194
- self.n_layers = n_layers
195
- self.n_flows = n_flows
196
- self.gin_channels = gin_channels
197
-
198
- self.flows = nn.ModuleList()
199
- for i in range(n_flows):
200
- self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
201
- self.flows.append(modules.Flip())
202
-
203
- def forward(self, x, x_mask, g=None, reverse=False):
204
- if not reverse:
205
- for flow in self.flows:
206
- x, _ = flow(x, x_mask, g=g, reverse=reverse)
207
- else:
208
- for flow in reversed(self.flows):
209
- x = flow(x, x_mask, g=g, reverse=reverse)
210
- return x
211
-
212
-
213
- class PosteriorEncoder(nn.Module):
214
- def __init__(self,
215
- in_channels,
216
- out_channels,
217
- hidden_channels,
218
- kernel_size,
219
- dilation_rate,
220
- n_layers,
221
- gin_channels=0):
222
- super().__init__()
223
- self.in_channels = in_channels
224
- self.out_channels = out_channels
225
- self.hidden_channels = hidden_channels
226
- self.kernel_size = kernel_size
227
- self.dilation_rate = dilation_rate
228
- self.n_layers = n_layers
229
- self.gin_channels = gin_channels
230
-
231
- self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
232
- self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
233
- self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
234
-
235
- def forward(self, x, x_lengths, g=None):
236
- x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
237
- x = self.pre(x) * x_mask
238
- x = self.enc(x, x_mask, g=g)
239
- stats = self.proj(x) * x_mask
240
- m, logs = torch.split(stats, self.out_channels, dim=1)
241
- z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
242
- return z, m, logs, x_mask
243
-
244
-
245
- class Generator(torch.nn.Module):
246
- def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
247
- super(Generator, self).__init__()
248
- self.num_kernels = len(resblock_kernel_sizes)
249
- self.num_upsamples = len(upsample_rates)
250
- self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
251
- resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
252
-
253
- self.ups = nn.ModuleList()
254
- for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
255
- self.ups.append(weight_norm(
256
- ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
257
- k, u, padding=(k-u)//2)))
258
-
259
- self.resblocks = nn.ModuleList()
260
- for i in range(len(self.ups)):
261
- ch = upsample_initial_channel//(2**(i+1))
262
- for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
263
- self.resblocks.append(resblock(ch, k, d))
264
-
265
- self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
266
- self.ups.apply(init_weights)
267
-
268
- if gin_channels != 0:
269
- self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
270
-
271
- def forward(self, x, g=None):
272
- x = self.conv_pre(x)
273
- if g is not None:
274
- x = x + self.cond(g)
275
-
276
- for i in range(self.num_upsamples):
277
- x = F.leaky_relu(x, modules.LRELU_SLOPE)
278
- x = self.ups[i](x)
279
- xs = None
280
- for j in range(self.num_kernels):
281
- if xs is None:
282
- xs = self.resblocks[i*self.num_kernels+j](x)
283
- else:
284
- xs += self.resblocks[i*self.num_kernels+j](x)
285
- x = xs / self.num_kernels
286
- x = F.leaky_relu(x)
287
- x = self.conv_post(x)
288
- x = torch.tanh(x)
289
-
290
- return x
291
-
292
- def remove_weight_norm(self):
293
- print('Removing weight norm...')
294
- for l in self.ups:
295
- remove_weight_norm(l)
296
- for l in self.resblocks:
297
- l.remove_weight_norm()
298
-
299
-
300
- class DiscriminatorP(torch.nn.Module):
301
- def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
302
- super(DiscriminatorP, self).__init__()
303
- self.period = period
304
- self.use_spectral_norm = use_spectral_norm
305
- norm_f = weight_norm if use_spectral_norm == False else spectral_norm
306
- self.convs = nn.ModuleList([
307
- norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
308
- norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
309
- norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
310
- norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
311
- norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
312
- ])
313
- self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
314
-
315
- def forward(self, x):
316
- fmap = []
317
-
318
- # 1d to 2d
319
- b, c, t = x.shape
320
- if t % self.period != 0: # pad first
321
- n_pad = self.period - (t % self.period)
322
- x = F.pad(x, (0, n_pad), "reflect")
323
- t = t + n_pad
324
- x = x.view(b, c, t // self.period, self.period)
325
-
326
- for l in self.convs:
327
- x = l(x)
328
- x = F.leaky_relu(x, modules.LRELU_SLOPE)
329
- fmap.append(x)
330
- x = self.conv_post(x)
331
- fmap.append(x)
332
- x = torch.flatten(x, 1, -1)
333
-
334
- return x, fmap
335
-
336
-
337
- class DiscriminatorS(torch.nn.Module):
338
- def __init__(self, use_spectral_norm=False):
339
- super(DiscriminatorS, self).__init__()
340
- norm_f = weight_norm if use_spectral_norm == False else spectral_norm
341
- self.convs = nn.ModuleList([
342
- norm_f(Conv1d(1, 16, 15, 1, padding=7)),
343
- norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
344
- norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
345
- norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
346
- norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
347
- norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
348
- ])
349
- self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
350
-
351
- def forward(self, x):
352
- fmap = []
353
-
354
- for l in self.convs:
355
- x = l(x)
356
- x = F.leaky_relu(x, modules.LRELU_SLOPE)
357
- fmap.append(x)
358
- x = self.conv_post(x)
359
- fmap.append(x)
360
- x = torch.flatten(x, 1, -1)
361
-
362
- return x, fmap
363
-
364
-
365
- class MultiPeriodDiscriminator(torch.nn.Module):
366
- def __init__(self, use_spectral_norm=False):
367
- super(MultiPeriodDiscriminator, self).__init__()
368
- periods = [2,3,5,7,11]
369
-
370
- discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
371
- discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
372
- self.discriminators = nn.ModuleList(discs)
373
-
374
- def forward(self, y, y_hat):
375
- y_d_rs = []
376
- y_d_gs = []
377
- fmap_rs = []
378
- fmap_gs = []
379
- for i, d in enumerate(self.discriminators):
380
- y_d_r, fmap_r = d(y)
381
- y_d_g, fmap_g = d(y_hat)
382
- y_d_rs.append(y_d_r)
383
- y_d_gs.append(y_d_g)
384
- fmap_rs.append(fmap_r)
385
- fmap_gs.append(fmap_g)
386
-
387
- return y_d_rs, y_d_gs, fmap_rs, fmap_gs
388
-
389
-
390
-
391
- class SynthesizerTrn(nn.Module):
392
- """
393
- Synthesizer for Training
394
- """
395
-
396
- def __init__(self,
397
- n_vocab,
398
- spec_channels,
399
- segment_size,
400
- inter_channels,
401
- hidden_channels,
402
- filter_channels,
403
- n_heads,
404
- n_layers,
405
- kernel_size,
406
- p_dropout,
407
- resblock,
408
- resblock_kernel_sizes,
409
- resblock_dilation_sizes,
410
- upsample_rates,
411
- upsample_initial_channel,
412
- upsample_kernel_sizes,
413
- n_speakers=0,
414
- gin_channels=0,
415
- use_sdp=True,
416
- **kwargs):
417
-
418
- super().__init__()
419
- self.n_vocab = n_vocab
420
- self.spec_channels = spec_channels
421
- self.inter_channels = inter_channels
422
- self.hidden_channels = hidden_channels
423
- self.filter_channels = filter_channels
424
- self.n_heads = n_heads
425
- self.n_layers = n_layers
426
- self.kernel_size = kernel_size
427
- self.p_dropout = p_dropout
428
- self.resblock = resblock
429
- self.resblock_kernel_sizes = resblock_kernel_sizes
430
- self.resblock_dilation_sizes = resblock_dilation_sizes
431
- self.upsample_rates = upsample_rates
432
- self.upsample_initial_channel = upsample_initial_channel
433
- self.upsample_kernel_sizes = upsample_kernel_sizes
434
- self.segment_size = segment_size
435
- self.n_speakers = n_speakers
436
- self.gin_channels = gin_channels
437
-
438
- self.use_sdp = use_sdp
439
-
440
- self.enc_p = TextEncoder(n_vocab,
441
- inter_channels,
442
- hidden_channels,
443
- filter_channels,
444
- n_heads,
445
- n_layers,
446
- kernel_size,
447
- p_dropout)
448
- self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
449
- self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
450
- self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
451
-
452
- if use_sdp:
453
- self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
454
- else:
455
- self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
456
-
457
- if n_speakers > 1:
458
- self.emb_g = nn.Embedding(n_speakers, gin_channels)
459
-
460
- def forward(self, x, x_lengths, y, y_lengths, sid=None):
461
-
462
- x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
463
- if self.n_speakers > 0:
464
- g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
465
- else:
466
- g = None
467
-
468
- z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
469
- z_p = self.flow(z, y_mask, g=g)
470
-
471
- with torch.no_grad():
472
- # negative cross-entropy
473
- s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
474
- neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s]
475
- neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2), s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
476
- neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
477
- neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
478
- neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
479
-
480
- attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
481
- attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
482
-
483
- w = attn.sum(2)
484
- if self.use_sdp:
485
- l_length = self.dp(x, x_mask, w, g=g)
486
- l_length = l_length / torch.sum(x_mask)
487
- else:
488
- logw_ = torch.log(w + 1e-6) * x_mask
489
- logw = self.dp(x, x_mask, g=g)
490
- l_length = torch.sum((logw - logw_)**2, [1,2]) / torch.sum(x_mask) # for averaging
491
-
492
- # expand prior
493
- m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
494
- logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
495
-
496
- z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
497
- o = self.dec(z_slice, g=g)
498
- return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
499
-
500
- def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
501
- x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
502
- if self.n_speakers > 0:
503
- g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
504
- else:
505
- g = None
506
-
507
- if self.use_sdp:
508
- logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
509
- else:
510
- logw = self.dp(x, x_mask, g=g)
511
- w = torch.exp(logw) * x_mask * length_scale
512
- w_ceil = torch.ceil(w)
513
- y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
514
- y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
515
- attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
516
- attn = commons.generate_path(w_ceil, attn_mask)
517
-
518
- m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
519
- logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
520
-
521
- z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
522
- z = self.flow(z_p, y_mask, g=g, reverse=True)
523
- o = self.dec((z * y_mask)[:,:,:max_len], g=g)
524
- return o, attn, y_mask, (z, z_p, m_p, logs_p)
525
-
526
- def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
527
- assert self.n_speakers > 0, "n_speakers have to be larger than 0."
528
- g_src = self.emb_g(sid_src).unsqueeze(-1)
529
- g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
530
- z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
531
- z_p = self.flow(z, y_mask, g=g_src)
532
- z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
533
- o_hat = self.dec(z_hat * y_mask, g=g_tgt)
534
- return o_hat, y_mask, (z, z_p, z_hat)
535
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CofAI/chat/server/bp.py DELETED
@@ -1,6 +0,0 @@
1
- from flask import Blueprint
2
-
3
- bp = Blueprint('bp', __name__,
4
- template_folder='./../client/html',
5
- static_folder='./../client',
6
- static_url_path='assets')
 
 
 
 
 
 
 
spaces/CofAI/picscore/README.md DELETED
@@ -1,13 +0,0 @@
1
- ---
2
- title: PicScore — Picture Generator with Stable Diffusion
3
- emoji: 🖼
4
- colorFrom: green
5
- colorTo: green
6
- sdk: gradio
7
- sdk_version: 3.38.0
8
- app_file: picscore.py
9
- pinned: true
10
- license: mit
11
- ---
12
-
13
- 🖼 Generate pictures with the latest technology in PicScore now for free and unlimited!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Crossper6/stable-diffusion-webui/app.py DELETED
@@ -1,75 +0,0 @@
1
- import os
2
- from subprocess import getoutput
3
-
4
- gpu_info = getoutput('nvidia-smi')
5
- if("A10G" in gpu_info):
6
- os.system(f"pip install -q https://github.com/camenduru/stable-diffusion-webui-colab/releases/download/0.0.15/xformers-0.0.15.dev0+4c06c79.d20221205-cp38-cp38-linux_x86_64.whl")
7
- elif("T4" in gpu_info):
8
- os.system(f"pip install -q https://github.com/camenduru/stable-diffusion-webui-colab/releases/download/0.0.15/xformers-0.0.15.dev0+1515f77.d20221130-cp38-cp38-linux_x86_64.whl")
9
-
10
- os.system(f"git clone https://github.com/camenduru/stable-diffusion-webui /home/user/app/stable-diffusion-webui")
11
- os.chdir("/home/user/app/stable-diffusion-webui")
12
-
13
- os.system(f"wget -q https://github.com/camenduru/webui/raw/main/env_patch.py -O /home/user/app/env_patch.py")
14
- os.system(f"sed -i -e '/import image_from_url_text/r /home/user/app/env_patch.py' /home/user/app/stable-diffusion-webui/modules/ui.py")
15
- os.system(f"sed -i -e '/(modelmerger_interface, \"Checkpoint Merger\", \"modelmerger\"),/d' /home/user/app/stable-diffusion-webui/modules/ui.py")
16
- os.system(f"sed -i -e '/(train_interface, \"Train\", \"ti\"),/d' /home/user/app/stable-diffusion-webui/modules/ui.py")
17
- os.system(f"sed -i -e '/extensions_interface, \"Extensions\", \"extensions\"/d' /home/user/app/stable-diffusion-webui/modules/ui.py")
18
- os.system(f"sed -i -e '/settings_interface, \"Settings\", \"settings\"/d' /home/user/app/stable-diffusion-webui/modules/ui.py")
19
- os.system(f'''sed -i -e "s/document.getElementsByTagName('gradio-app')\[0\].shadowRoot/!!document.getElementsByTagName('gradio-app')[0].shadowRoot ? document.getElementsByTagName('gradio-app')[0].shadowRoot : document/g" /home/user/app/stable-diffusion-webui/script.js''')
20
- os.system(f"sed -i -e 's/ show_progress=False,/ show_progress=True,/g' /home/user/app/stable-diffusion-webui/modules/ui.py")
21
- os.system(f"sed -i -e 's/shared.demo.launch/shared.demo.queue().launch/g' /home/user/app/stable-diffusion-webui/webui.py")
22
- os.system(f"sed -i -e 's/ outputs=\[/queue=False, &/g' /home/user/app/stable-diffusion-webui/modules/ui.py")
23
- os.system(f"sed -i -e 's/ queue=False, / /g' /home/user/app/stable-diffusion-webui/modules/ui.py")
24
-
25
- # ----------------------------Please duplicate this space and delete this block if you don't want to see the extra header----------------------------
26
- os.system(f"wget -q https://github.com/camenduru/webui/raw/main/header_patch.py -O /home/user/app/header_patch.py")
27
- os.system(f"sed -i -e '/demo:/r /home/user/app/header_patch.py' /home/user/app/stable-diffusion-webui/modules/ui.py")
28
- # ---------------------------------------------------------------------------------------------------------------------------------------------------
29
-
30
- if "IS_SHARED_UI" in os.environ:
31
- os.system(f"rm -rfv /home/user/app/stable-diffusion-webui/scripts/")
32
-
33
- os.system(f"wget -q https://github.com/camenduru/webui/raw/main/shared-config.json -O /home/user/app/shared-config.json")
34
- os.system(f"wget -q https://github.com/camenduru/webui/raw/main/shared-ui-config.json -O /home/user/app/shared-ui-config.json")
35
-
36
- os.system(f"wget -q {os.getenv('MODEL_LINK')} -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/{os.getenv('MODEL_NAME')}")
37
- os.system(f"wget -q {os.getenv('VAE_LINK')} -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/{os.getenv('VAE_NAME')}")
38
- os.system(f"wget -q {os.getenv('YAML_LINK')} -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/{os.getenv('YAML_NAME')}")
39
-
40
- os.system(f"python launch.py --force-enable-xformers --disable-console-progressbars --enable-console-prompts --ui-config-file /home/user/app/shared-ui-config.json --ui-settings-file /home/user/app/shared-config.json --cors-allow-origins huggingface.co,hf.space --no-progressbar-hiding")
41
- else:
42
- # Please duplicate this space and delete # character in front of the custom script you want to use or add here more custom scripts with same structure os.system(f"wget -q https://CUSTOM_SCRIPT_URL -O /home/user/app/stable-diffusion-webui/scripts/CUSTOM_SCRIPT_NAME.py")
43
- os.system(f"wget -q https://gist.github.com/camenduru/9ec5f8141db9902e375967e93250860f/raw/d0bcf01786f20107c329c03f8968584ee67be12a/run_n_times.py -O /home/user/app/stable-diffusion-webui/scripts/run_n_times.py")
44
-
45
- # Please duplicate this space and delete # character in front of the extension you want to use or add here more extensions with same structure os.system(f"git clone https://EXTENSION_GIT_URL /home/user/app/stable-diffusion-webui/extensions/EXTENSION_NAME")
46
- #os.system(f"git clone https://github.com/camenduru/stable-diffusion-webui-artists-to-study /home/user/app/stable-diffusion-webui/extensions/stable-diffusion-webui-artists-to-study")
47
- os.system(f"git clone https://github.com/yfszzx/stable-diffusion-webui-images-browser /home/user/app/stable-diffusion-webui/extensions/stable-diffusion-webui-images-browser")
48
- os.system(f"git clone https://github.com/deforum-art/deforum-for-automatic1111-webui /home/user/app/stable-diffusion-webui/extensions/deforum-for-automatic1111-webui")
49
-
50
- # Please duplicate this space and delete # character in front of the model you want to use or add here more ckpts with same structure os.system(f"wget -q https://CKPT_URL -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/CKPT_NAME.ckpt")
51
- #os.system(f"wget -q https://huggingface.co/nitrosocke/Arcane-Diffusion/resolve/main/arcane-diffusion-v3.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/arcane-diffusion-v3.ckpt")
52
- #os.system(f"wget -q https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion/resolve/main/Cyberpunk-Anime-Diffusion.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/Cyberpunk-Anime-Diffusion.ckpt")
53
- os.system(f"wget -q https://huggingface.co/prompthero/midjourney-v4-diffusion/resolve/main/mdjrny-v4.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/mdjrny-v4.ckpt")
54
- #os.system(f"wget -q https://huggingface.co/nitrosocke/mo-di-diffusion/resolve/main/moDi-v1-pruned.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/moDi-v1-pruned.ckpt")
55
- #os.system(f"wget -q https://huggingface.co/Fictiverse/Stable_Diffusion_PaperCut_Model/resolve/main/PaperCut_v1.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/PaperCut_v1.ckpt")
56
- #os.system(f"wget -q https://huggingface.co/lilpotat/sa/resolve/main/samdoesarts_style.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/samdoesarts_style.ckpt")
57
- os.system(f"wget -q https://huggingface.co/hakurei/waifu-diffusion-v1-3/resolve/main/wd-v1-3-float32.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/wd-v1-3-float32.ckpt")
58
- os.system(f"wget -q https://huggingface.co/MehjourneyClosedAI/OpenAnimeJourney/resolve/main/OpenAnimeJourney.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/OpenAnimeJourney.ckpt")
59
- #os.system(f"wget -q https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/sd-v1-4.ckpt")
60
- #os.system(f"wget -q https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/v1-5-pruned-emaonly.ckpt")
61
- #os.system(f"wget -q https://huggingface.co/runwayml/stable-diffusion-inpainting/resolve/main/sd-v1-5-inpainting.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/sd-v1-5-inpainting.ckpt")
62
- #os.system(f"wget -q https://huggingface.co/B2gan/NovelAI/resolve/main/model.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/novelai.ckpt")
63
- os.system(f"wget --user Crossper6 --password pMRvyayxAP^Nv2$ -q https://huggingface.co/spaces/Crossper6/stable-diffusion-webui/resolve/main/novelai.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/novelai.ckpt")
64
- os.system(f"wget --user Crossper6 --password pMRvyayxAP^Nv2$ -q https://huggingface.co/spaces/Crossper6/stable-diffusion-webui/raw/main/novelai.yaml -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/novelai.yaml")
65
-
66
- #os.system(f"wget -q https://huggingface.co/Linaqruf/anything-v3.0/resolve/main/Anything-V3.0-pruned.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/Anything-V3.0-pruned.ckpt")
67
- #os.system(f"wget -q https://huggingface.co/Linaqruf/anything-v3.0/resolve/main/Anything-V3.0.vae.pt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/Anything-V3.0-pruned.vae.pt")
68
-
69
- #os.system(f"wget -q https://huggingface.co/stabilityai/stable-diffusion-2/resolve/main/768-v-ema.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/768-v-ema.ckpt")
70
- #os.system(f"wget -q https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/768-v-ema.yaml")
71
- os.system(f"wget -q https://r2.kamiya-b.me/dreambooth_lib/akakura-sn.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/akakura-sn.ckpt")
72
- #os.system(f"wget -q https://huggingface.co/stabilityai/stable-diffusion-2-1/resolve/main/v2-1_768-ema-pruned.ckpt -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/v2-1_768-ema-pruned.ckpt")
73
- os.system(f"wget -q https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml -O /home/user/app/stable-diffusion-webui/models/Stable-diffusion/v2-1_768-ema-pruned.yaml")
74
-
75
- os.system(f"python launch.py --ui-config-file /home/user/app/ui-config.json --ui-settings-file /home/user/app/config.json --disable-console-progressbars --enable-console-prompts --disable-safe-unpickle --cors-allow-origins huggingface.co,hf.space --no-progressbar-hiding --precision full --no-half --api --skip-torch-cuda-test")